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| Stanford Artificial Intelligence Laboratory June 1975 |
Memo AIM-260 |

: Computer Science Department :
3 Report No. STAN-CS-75-499 |

PYGMALION:
A Creative Programming Environment |

by

i David Canfield Smith

: ABSTRACT :

! | Lpryvo MALION 1s a two-dimensional, visual programming system implemented on an 3
. interactive computer with graphics display. Communication between human being and 3

computer is by means of visual entities called “icons”, subsuming the notions of Variable”, §
Heference’, “data structure”, “function” and picture”. The heart of the system is an interactive i

3 $remembering? editor for icons, which executes and (optionally) saves operations for later re- i
y execution. The display screen 1s viewed as a document to be edited. Programming consists of 3
3 creating a sequence of display frames, the last of which contains the desired information. |
; Display frames are modified by editing operations. WYO MALION employs a powerful 4
4 paradigm that can be incorporated in virtually any oth "programming language: g
: Every operation has both visual (aestheuic)* semantics and internal }
1 (mechanical) semantics. ¥

3 In fact, every operation in PYGMALION has three responsibilities: |
| | (a) for accomplishing a given internal machine task — the machine Ei “semantics” of the operation, y

T his research was supported by the Advanced Research Projects Agency of the Department of :
; Tiepronte under Contract DAHC 15-73-C-0435 and the National Institute of Mental Health. The 3
- views and conclusions contained in this document are those of the author(s) and should not be :
: inter preted as necessarily representing the official policies, either expressed or implied, of Stanford ]
3 University, ARPA, NIMH, or the U. S. Government. i
; F

; Reproduced in the US.A. Available from the National Technical Information Service, Springfield,

| Virginia 22161. §
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(b) in display mode, for generating a representative visual action;

: (c) in remember mode, for adding onto a code list the operation(s) necessary
to reproduce itself.

Thus the system includes an incremental “iconic compiler”. Since each operation has visual
semantics, the display becomes a visual metaphor for computing. The programmer need deal

2 with operations only on the display level; the corresponding machine semantics « * managed

) automatically. The mechanical aspects of programming languages has been and is |continuing to be well studied. The focus in this paper is on developing and interacting with 3
an articulate visual presentation. 3

i PYGMALION 1s a computational extension of the brain's short term memory. It is designed ;
; to relieve the load on the short term memory by providing alternative storage for mental

images during thought. The display screen is seen as a "dynamic blackboard”, on which ideas
| can be projected and animated. Instead of abstract symbols, the programer uses explicit :
3 display images. Considerable flexibility is provided for designing icons; the programmer may
9 give them any shape that can be generated by a routine. This helps to reduce the
! translation distance between representations used in the mind in thinking about a problem
i and representations used in programming the problem.

; The main innovations of PYGMALION are:

3 (1) a dynamic representation for programs — an emphasis on doing rather
E: than telling; :

3 (2) an iconic representation for parameters and data structures requiring less
4 translation from mental representations; ;
| ;

is " ; " . .
| (3) a remembering” editor for icons;

(4) descriptions in terms of the concrete, which PYGMALION turns into the . i

: abstract. ;2 The responsive, visual characteristics of PYGMALION permit it to play an active role in |

{ human problem solving. The principal application has been in assisting the design and |
3 simulation of algorithms, |
A This dissertation was submitted to the Department of Computer Science and the Committee on :
a. Graduate Studies of Stanford University in partial fulfiliment of the requirements for the degree :

of Doctor of Philosophy. ;
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Preface 3

: The following 1s a map of this document :
Chapters 1.2 -- A psychological model of creative thought, forming the basis for :

A the PYGMALION design principles. |
Chapter 3 -- Other pro jects which adhere to some of the same principles.

4 Chapters 4,5 -- The PYGMALION programming environment in detail. :
: Chapter 6 -- Examples of PYGMALION programs and data structures.

4 Chapter 7 -- Conclusions and suggestions for the future. :

4 This paper places equal emphasis on presenting a psychological model of thought | :
| and using the model in a computer environment. Readers interested in aspects of creative ia. thought which can be assisted by a computer should read chapters 1 and 2. Readers ]
| mnrerested in how the PYGMALION system attempts 10 stimulate creative thought should
1 look at chapter 6 (mostly pictures) to get the flavor, then read chapters 4 and 5. The works
4 of others which deal with the same aspects are described in chapter 3. Chapter 7 suggests ;
, areas for future exploration. Thorough readers will read the chaptersin order. Chapter 6and 4-A through 4.D are a minimal set for readers in a hurry. !
4 There are three parts to this report.

;

A Part | examines a psychological model which contends that visual imagery is a |
3 powerful metaphor for thought. Mental images are derived from sense perceptions, but: they may be abstracted and fragmented. Visual images are superior to linguistic :3 descriptions in the quantity of information they can contain and in the quality of their )

portrayal of objects and concepts. Aspects of creativity are also discussed. Creative
3 | thinking involves the conjunction of two normally distinct thought contexts using images |
= This part develops the criteria for articulate communication between a human being

E and a computer. A programming language can be more than just a passive medium for |: communication. The technology now exists to design systems which actively augment the |
user's ability to think and learn. {

y 4
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: 1v Preface
:

kK | ’: The goal is to develop a system whose representational and
: processing facilities correspond to and assist mental processes that
; occur during creative thought.

Part 11 derives a programming environment called PYGMALION from the 1. del

! 01 thought In Part |. PYGMALION is a two-dimensional, visual programming system 1
3 implemented on an interactive computer with graphics display. Communication between :] human bemg and computer 1s by means of visual entities called “icons”, subsuming the i
: notions of “variable”, “reference”, "data structure”, “function” and “picture”. The heart of I§ the system 1s an interactive “remembering” editor for icons, which executes and (optionally) h
4 saves operations for later re-execution. The display screen is viewed as a document to be
1 | edited. Programming CONsIsts of creating a sequence of display frames, the last of which ): contains the desired information, Display frames are modified by editing operations.q PYGMALION employs a powerful paradigm that can be incorporated in virtually any :
k other programming language: ;
A Every operation Las both visual (aesthetic) semantics and internal 3

(mechanical) semantics. ;

b In fact, every operation in PYGMALION has three responsibilities:

1 (a) for accomplishing a given internal machine task -- the machine “semantics” |
4 of the operation, i

. (b) in display mode, for generating a representative visual action; :
(¢) in remember mode, for adding onto a code list the operation(s) necessary to |

reproduce itself.

5 Thus the system includes an incremental “iconic compiler”. Since each operation has visual 3
d : semantics, the display becomes a visual metaphor for computing. The programmer need
1 deal with operations only on the display level; the corresponding machine semantics are
: managed automatically. The mechanical aspects of programming languages has been and is
A continuing to be well studied, The focus in this paper is on developing and interacting |
E with an articulate visual presentation. :
2 : {f- PYGCMALION is a computational extension of the brain's short term memory. It is :h designed to relieve the load on the short term memory by providing alternative storage for ;
I. mental images during thought, The display screen is seen as a "dynamic blackboard”, on
! | which ideas can be projected 2nd animated. Instead of abstract symbols, the programer |3 uses explicit display images. Considerable flexibility is provided for designing icons; the }
| programmer may give them any shape that can be generated by a routine. This helps to |
3 reduce the translation distance between representations used in the mind in thinking about :
rE a problem and representations used in programming the problem.
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A The main innovations of PYGMALION are: i

4 (1) a dynamic representation for programs -- an emphasis on doing rather than
; telling, ]

i 3 (2) an iconic representation for parameters and data structures requiring less if

\ translation from mental representations, f
ck (2) a "remembering" editor for icons; ik

(4) descriptions in terms of the concrete, which PYGMALION turns into the I
FE abstract. 5

13 The responsive, visual characteristics of PYGMALION permit it to play an active role in :
human problem solving. The principal application has been In assisting the design and 1
simulation of algorithms. Part II describes the implementation in detail and presents 4

Sa nUMerous examples. i

1 | Part 111 summarizes the results, with suggestions for the future. The responsive, |
k 1 visual characteristics of PYGMALION permit 1t to play an active role in human problem 3
i solving. The principal application has been in assisting the design and simulation of 3
3 aleorithms. 3

1 The appendices include a listing of the initial implementation, notes and ;
13 bibliography. In this paper, material that would normally be placed in footnotes has been 3
E assimilated directly into the text (possibly In parentheses) or dropped entirely. The notes #
| designated by superscripts °¢ 39 contain only specific article and page information and are ;
1 found at the end of the paper. They do nol contain any supplementary text. Superscripts 3
1 having a number higher than one hundred *8 1975 are dates. i
: | wish to express my sincere thanks to my advisers, Drs. Alan C. Kay of the Xerox t
23 © Palo Alto Research Center and Kenneth M. Colby of Stanford University. Dr. Kay has |
i inspired the most stimulating pro ject of my career by demonstrating the power of an |
4 3 individual with a personal computer. In seven years of association with Dr. Colby, he has 4
iE never been less than enlightening, motivating, and, in general, amazing. "His encouragement 3
i and guidance have been invaluable. I also wish to thank Drs. Terry Winograd and Cordell |
2 Green for helpful suggestions in the preparation of this manuscript; Horace Enea for bk

interesting and informative conversations too numerous to mention; Dr. John McCarthy, 3
14 Lester Earnest and everyone at the Stanford Artificial Intelligence Laboratory for making E
13 the lab a good place to work, my wife Janet for all the midnight hours spent helping me :
“1 with this thesis and with life; and finally the Greeks for the wonderful myth of Pygmalion, 3
1 giving shape to the dreams of creative people everywhere. A
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! Introduction 1|

1 In Greek mythology, Pygmalion was a king of Cyprus who fell in love p

: i with a statue of Aphrodite Ovid, in the Metamorphoses, invents a Hmore sophisticated version. Pygmalion, a sculptor, makes an ivory statue 1
3 representing his ideal of womanhood, then falls in love with his own Wl:

] § creation; Venus brings 1t to life in answer to his prayer.’ g

: Artists down through the centuries have felt Pygmalion's lure: to play the role of
creator. But outside the mythological world of gods and goddesses the struggle has been 3

| frustrating Arnsts have consistently reported a feeling of excitement during the process of ; icreation, followed by depression when the work is finished. Their best efforts always i
remained lifeless and, in the end, unsatisfying. Michelangelo is said to have struck with his
mallet the knee of perhaps the most beautiful statue ever created, the Pieta, when 1t would 3
not speak to him. The historian E.H.Gombrich discusses “the belief in the power of art to |

, create rather than to portray’ in his eloquent book Art and Illusion:

: ] Without the underlying promise of this myth, the secret hopes and {|
fears that accompany the act of creation, there might be no art as we 3
know 1t. One of the most original young painters of England, Lucien 1

! Freud, wrote very recently: "The moment of complete happiness never {4 occurs in the creation of a work of art. The promise of it is felt in the iE
X act of creation, but disappears toward ihe completion of the work. For $

it 15 then that the painter realises that it is only a picture he is painting. b

; | Until then he had almost dared to hope that the picture might spring to ;

| "Only a picture,” says Lucien Freud. It is a motif we find in the }
1 | whole history of Western art; Vasari tells of Donatello at work on his 1Zuccone, looking at it suddenly and threatening the stone with a i]

dreadful curse, "Speak, speak -- favella, favella, che ti venga il 5
" . !

cacasangue!” And the greatest wizard of them all, Leonardo da Vinci, HE
= extolled the power of the artist to create. In that hymn of praise to 1

. painting, the "Paragone,” he calls the painter "the Lord of all manner of Eh
| people and of all things.” "If the painter wishes to see beauties to fall in A

; love with, it 1s in his power to bring them forth, and if he wants to see jlmonstrous things that frighten or are foolish or laughable or indeed to 4:

| be pitied, he 1s their Lord and God.” | 1!

BR at sof oh, iy leii i Vat dn in GL dh lL
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Leonardo Da Vinci: Left: Grotesque heads, ¢.1495; Right: Leda, c.1509 [Combrich®]; J
i

Indeed the power of art to rouse the passions is to him a token of
its magic .. And yet Leonardo, if anyone, knew that the artist's desire to
create, to bring forth a second reality, finds its inexorable limits in the :
cestrictions of his medium. 1 feel we catch an echo of the

. disiflusionment with having created only a picture that we found in| Lucien Freud when we read in Leonardo's notes: “Painters often fall
| into despair .. when they see that their paintings lack the roundness 2nd ;

the liveliness which we find in objects seen in the mirror .. but it is
impossible for a painting to look as rounded as a mirror image ... except

| if you look at both with one eye ony."

Perhaps the passage betrays the ultimate reason for Leonardo's
deep dissatisfaction with his art, his reluctance to reach the fatal |
moment of completion: all the artist's knowledge and imagination are of ;
no avail, it is only a picture that he has been painting, and it will look :

: flat. Small wonder that contemporaries describe him in his later years :
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as most impatient of the brush and engrossed 1n mathematics, |

| Mathematics was to help hun to be the true maker. Today we read of| Leonardo's project to build a “flying machine,” but if we look Into
Leonardo's notes we will not find such an expression. What he wants to
make 1s a bird that will fly, and once more there is an exultant tone in

i | the master's famous prophecy that the bird would fly. It did not .. The
] claim to be a creator, a maker of things, passed from the painter to the
; engineer -- leaving to the artist only the small consolation of being a
: i maker of dreams?

f a, ‘ ow hy TE wh, a ; ,
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] Leonardo Da Vinci: Airscrew, c.1488 Wallace® /

! Today, with the advent of inexpensive computers, for the first time the average man
4 1s presented with a powerful medium through which his ideas can attain a life of their own,
4 / A computer program is a creation: unusual, appropriate, in a very real sense a work of art,4 perhaps more so than computer “scientists” like to admit. Many programmers have felt a
4 | sense of creative excitement watching their programs execute on a computer without
a fk needing their intervention, particularly if they can watch the programs’ progress with their 34 own eyes. Curprise, stimulation, satisfaction and savoring are the rewards of creativity.
i There is much to be learned from associating artistic concepts with computers. The
3 2 potential use of computers in creative activity is the source of much of their attraction and
i mystique. "The computer 1s the world's best toy," Papert has said in discussing his pro ject
A to use the computer to enhance education.” Arnheim advances a more serious reason:
3 f "There [is] much evidence that truly productive thinking, in whatever area of cognition,: takes place in the realm of imagery. There has been a longstanding isolation and neglect of
4 the arts in society and education.”® Pye is succinct in his agreement: "If anyone thinks it
4 i important to a civilization that a common ground between art and science shall be found,

, L BrTe : - Jaaco hr a hd i ai aa Lb bnab fdDT Tm,iE oS op
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then he had better look for it in front of his nose, for it 1s ten to one that he will see there :
something which has been designed."’ And Koestler contends that there is no difference |
between scientific and artistic Creativity, or even between scientific and comic creativity: .
"Regardless of what scale of values you choose to apply, you will move across a continuum i
without sharp breaks; there are no frontiers where the realm of science ends and that of art |
begins."® This report Investigates ways to exploit the creative potential of those using :
computers. |

3 i fl : ’ 3 - WV ] rr . 5

Durer: Drawing, ¢.1527 [Gombrich®) i
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Aspects of Creative Thinking |

| |
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Chapter |

Chapter 1

, . ,

Some Characteristics of Thought

: Swimmary bi

(1) Visual imagery 1s a productive metaphor for thought. Visual images are ;
concrete and easily mampulated, and they provide a powerful i
representational capability. The images are multi-dimensional and are
analogous to the pertinent features of the sub jects they represent.

(2) Words are "Fregean” and lack the representational power of images. :

- This part of the report is divided into three chapters. The first chapter presents a 2
E- model of some types of thought processes in the brain. The second chapter focuses more F
§ particularly on the riature of creative thinking, thought processes that are both original and ¥

productive The third chapter surveys several approaches to using machines which ;
k- augment these processes. The model of thinking has been largely adopted from the theories 3
5 of the psychologist Rudolf Arnheim, particularly from his superb book Visual! Thinking,

| augmented with other results from current psychological research. Only those aspects of the ]
: model which provide guidance for the design of a computer interface have been f

emphasized The goal of PYGMALION 1s to develop a computer system whose \
4 representational and processing facilities correspond to and assist mental processes that b

| occur during creative thought. Part [ serves as the raw material for the system. j

k

oeodd engi one.i
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| | A Words and Symbolic Thought y)

; | Section A -- Words and Symbolic Thought
;

The difference between words and pictures is the difference between
! telling and showing. |

5 -- William Bowman

Often we have to get away from speech tn order to think clearly. !
-- Woodworth? |

3 A traditional theory of psychology is that the mind manipulates words in the process ;
of thinking. As late as 192] Edward Sapir in his book Language wrote, "Thought may be g

: a natural domain apart from the artificial one of speech, but speech would seem to be the $
3 only road we know of that leads to it." In other words, language is the only discernible
A medium available for thought. Indeed, the capacity for symbolic reasoning has come to be :
: a determining factor in measuring “intelligence”. Undeniably words and symbols are |
1] imp tant to thought, but their precise role in the mind hat never been well defined or

understood. "[Psychologists] know a good deal about what thinking does but little about
0 what 1t 1s... A princapal question remains. What are the mental shapes of thought?" 3

. [Arnheim®] (This question, and this entire thesis, deals with the highest levels of cognitive |
3 activity. Obviously at the neuro-chemical level of individual brain cells, it makes little sense ;F. to talk about "shapes of thought”. We are investigating and attempting to aid high level ;
3 mental processes which are distinguishing characteristics of intelligent human beings.) |
: k

E- Suppose we remove words from their meanings and limit them to their actual §
3 shapes, te. examine language as language. The perceptual dimensions of language -- its |
] sounds and written appearance -- are unstructured. Little information can be communicated :
EF | to someone who does not know a language just by presenting him with spoken or written
3 words. (Though some languages, such as hieroglyphic languages, do use pictures of objects k

3 | as words.) Language has meaning only insofar as individual words and phrases are |: understood to have meaning, ie. only if we understand to what the words refer, both
| externally in the world and internally within ourselves. "Our ability to apply names and

1 | descriptions to objects in the world has to be mediated by analogical representations. For i| instance, one can define a word such as ‘plank’ in terms of other words, such as ‘straight’, I
4 ‘parallel’, ‘wooden’, etc., but eventually one has to say of some words, to a person who claims
3 not to understand them, ‘You'll just have to learn how things of that sort look." [Sloman ®)

Wards are “signs”, ie. they stand for a content without representing its structure. (This
1 terminology is defined in section G.) The mind must have something structural to :
E manipulate.

Hayes'%’3 has presented evidence that images are used even in such non-pictorial
4 domains as arithmetic and algebra. Most mathematicians visualize their formulae and

3 manipulate them as structure. Martin® agrees that the ability to visualize a problem is a
7 useful skill in solving it, and that to mathematicians, notation is a form of graphical
i visualization. In 1945 Jacques Hadamard conducted a systematic survey of the creative
; methods of American mathematicians. He concluded: "My mental pictures are exclusively |
4 visual... About the mathematicians born or resident in America, whom I asked, phenomena |
4 are mostly analogous to those which | have noticed in my own case. Practically all of them |
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1 avoid not only the use of mental words but also, just as I do, the mental use of algebraic
; or any other precise signs .. The mental pictures of the mathematicians whose answers |
3 have received are most frequently visual, but they may also be of another kind -- for
; instance, kinetic.” Einstein, replying to the survey, felt compelled to emphasize in a
k personal letter to Hadamard:

; The words or the language, as they are written or spoken, do not seem
; to play any role in my mechanism of thought. The physical entities
: which seem to serve as elements in thought are certain signs and more k
: or less clear images which can be ‘voluntarily’ reproduced and !
A combined... Taken from a psychological viewpoint, this combinatory ¥
] play seems to be the essential feature in productive thought -- before

there 1s any connection with logical construction in words or other kinds
: of signs which can be communicated to others. The above-mentioned
3 elements are, in any case, of visual and some of muscular type. }
1 Conventional words or other signs have to be sought for laboriously t
Ee only in a secondary stage, when the mentioned associative play is
A | sufficiently established and can be reproduced at will.® :

k Arnheim finds in art parallels between visual perception and cognitive processes: :
: "Artistic activity is a form of reasoning, in which perceiving and thinking are indivisibly
4 intertwined. The person who paints, writes, composes, dances .. thinks with his senses.
A This union of perception and thought [1s] not merely a specialty of the arts .. The :

remarkable mechanisms by which the senses understand the environment are all but :

3 identical with the operations described by the psychology of thinking. Inversely, there [is] |3 much evidence that truly productive thinking, in whatever area of cognition, takes place in
1 : the realm of imagery."® eae ee ET ;

E Images are derived from sense perceptions. They may be visual, auditory, |; kinesthetic, olfactory, and may even use taste. This thesis concentrates on visual images }
3 because (a) they have powerful representational capabilities; (b) operations on visual images 1
4 are versatile, yet simple; and (c) computer technology is at a stage where visual processing
: can be effectively augmented. Arnheim summarizes the relative potential of words and 3
i images in productive thought: ;
: Concepts are perceptual images and ... thought operations are the 1

handling of these images .. Images come at any level of abstractness. I
| However, even the most abstract among them must meet one condition. |

; T hey must be structurally similar (isomorphic) to the pertinent features of

| the situations for which the thinking shall be valid.'® [emphasis mine] iF- 1 k
: .. [While) language can supply information by what Kant calls

analytical judgments, .. purely verbal thinking is the prototype of |

: thoughtless thinking, the automatic recourse to connections retrieved ;from storage. It is useful but sterile. What makes language so valuable :
for thinking, then, cannot be thinking in words. It must be the help F

| that words lend to thinking while it operates in a more .appropriate
- medium, such as visual imagery. :

F | i :
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The visual medium is so enormously superior because it offers

structural equivalents to all characteristics of objects, events, relations. y
| The variety of available visual shapes is as great as that of possible

speech sounds, but what matters is that they can be organized according §
| to readily definable patterns, of which the geometrical shapes are the E

most tangible illustration. The principal virtue of the visual medium is i
: that of representing shapes in two-dimensional and three-dimensional 3
3 space, as compared with the one-dimensional sequence of verbal §

language. This polydimensional space not only yields good thought |
] models of physical ob jects or events, it also represents isomorphically the ;

dimensions needed for theoretical reasoning." 1
A .
1 :

$ Arnheim's notion of “isomorphic” here is not to be confused with the mathematical concept ;
of "1somorphism”. Rather it means that there is an element in the representation for each 5

- feature of the concept represented that the mind considers to be relevant. For complex 5
y concepts this requires considerable representational flexibility. Perceptual images, i
3 particularly visual images, provide more descriptive power than do words. ]

2 Section B -- Conscious Thought and Short Term Memory ;

a. - Experiments in psychology indicate that the brain possesses at least two kinds of 3
| memory, “long term” and “short term”. (There are apparently finer divisions of each, but :
5 this 1s the gross organization.) The “long term” memory (LTM) contains all the information. ,

3 that a person is able to recall, either voluntarily or involuntarily. We will make no |4 assumptions in this paper as to how information is stored in the long term memory. The ;
3 "short term” or “working” memory (STM) contains the objects currently being dealt with in 3
1 conscious thought. Much psychological research is being done on the nature of such
3 ob jects. Representative experiments are described later in this chapter which support 3

gr Arnheim's theory that visual imagery is an exceptionally productive medium.
| |

3 In my view, words normally play two roles in thinking:

4 (1) Words suppress detail, keeping the brain's limited-capacity short term
3 memory from overflowing. 3
3 ;
- (2) Words provide access paths to more complex structures in the long term ;
3 memory, which are then retrieved and manipulated directly in thought.
- Thus words are indices, pointers to concepts.
t.

. Psychologists are in substantial agreement that the information capacity of the short term ;
3 memory is limited. Miller, in a classic paper 197, proposed the "magic" number 7 +- 2 as the
a. size of the STM. The STM can hold between 5 and 9 "chunks" of information (the

id : number now appears to be as small as 4 or 5 [Chase and Simon 1973), but the size of each ;
3 | chunk can vary. More total information can be stored when an organization is imposed on
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] individual pieces of information than when the individual pieces are stored directly.
4 Moran'®’3 reports an experiment in which sub jects were asked to remember a sequence of
3 directions of the form: north, east, south, east, south, west, ... The experiment was designed
5 s0 that only the short term memory was involved. The sub jects were able to remember
3 quite long sequences (two-to-three times the usual capacity of the STM) by visualizing a line
: drawing of the directions: 1

3 North, east, south, east, south, west, ...

3 An interesting corollary of Moran's experiments is that the STM seems to have :
’ spatial as well as quantitative limits. With one sequence, sub jects complained that the path
9 "keeps dragging out” to the east'?, causing space bounds to be exceeded. §

a. Visual organization is an extremely efficient chunking method. A closed curve that
5 can be remembered topologically contains an infinite amount of information about :
1 individual points. One thing experimenters usually do with data is plot it on a graph or in E
4 a table, to organize it visually. Concepts become clear only when the overall structure of
$ individual pieces of information can be grasped.

:- “ ® 8 ] ] ]
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|4 " In computer programming, “structured” programming [Di jkstra'®’?] is an attempt ‘0Hi P Prog g prog gt) P
| organize the process of programming by chunking related activities into separate stages.

; a "Automatic programming (Balzer'%7¢) 1s similar to structured programming except that
5 B some of the stages are left for the computer to complete. These two concepts share an
b important characteristic with visual organization in the mind: they enable more information
hl ‘o .- more of the structure of a problem -- to be contained in the conscious memory. We must
3 be able to grasp the whole in all its fuzzy detail as well as to investigate parts of it as

| [1 minutely as necessary. However it is ironic that “structured programming” has dealt with
! unstructured programming languages. They are “unstructured” in the sense that programs
3 have no spatial organization, and data 1s designated abstractly, without displaying its
1 vy structure. A “structured” programming language would use structure in its semantics. As
3 Bowman points out, “spatial quality in the graphic figure is defined by the form that it

; .“- organizes"? In other words, the spatial relationship betwee: elements in a picture has asi B much to do with meaning as do the elements themselves. But “linear” programming
bi languages have no spatial structure at all. (By “linear” is meant a verbal language such as
a “a English, consisting of a sequence of words.) One of the few characteristics of “linear”

| languages that even approaches spatial organization is indentation:
|“ IF ... THEN

WHILE ... DO
BEGIN

bo END

|

At best this 1s only an indirect indicator of meaning. The vast potential of multi- |
| dimensional communication 1s simply not realized in linear languages because they are |
4 spatially unstructured. |

This paper primarily deals with conscious thought, concentrating particularly on
rT visual thinking as a basis for designing a graphical computer interface. The model of

: visual thinking presented so far may be summarized as follows.

b toh (1) Conscious thought deals with concepts in the short term memory
which are retrieved (in some fashion) from the long term memory. |

| (2) Concepts in the short term memory are metaphorical images
| derived from sense perceptions. Words are pointers to full concepts

| | and are used to suppress unnecessary detail.
» (3) Thought operations are transformations of images.

2 — PYGMALION uses a computer display as a computational extension of short term memory.
E Operations are provided to retrieve and store images between the display screen and long |
Pi 4: term memory (secondary storage). No assumptions are made as to the structure of long term :
Eig memory items. The critical re: riction is to concepts that enter and are manipulated in the :

short term memory as perceptual images. :

Ed { |
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Conversions ;

| | MAGES FE ?

:. short term memory long term memory 1]
} By patterning itself after this model PYGMALION hopes to stimulate and assist such :
3 thinking processes in people. y

1 Section C -- Analogical versus Fregean

1 To put the preceeding sections into different terms, Sloman distinguishes two kinds5 of systems “analogical” and "Fregean" (after G.Frege, the inventor of predicate calculus). iAnalogical systems are analogous wn structure to the things they describe; Fregean systems | |
3 bear no such resemblance. Natural language, for example, is Fregean for most tasks, | |whereas architectural diagrams are analogous (at some level) to the buildings they describe. I

3 In an analogical system .. the structure of the representation gives | : finformation about the structure of what is represented. As two-
3 dimensional pictures of three-dimensional scenes illustrate, the
3 correspondence need not be simple... The interpretation of an analogical 11 representation may involve very complex procedures, including the E

generation of large numbers of locally possible interpretations of parts of 4
i the representation and then searching for a globally possible i
! | combination... By contrast, in a Fregean system there is basically only 3- one type of ‘expressive’ relation between parts of a configuration, E
| namely the relation between "function-signs’ and "argument-signs’.... k
i The structure of such a configuration need not correspond to the §- structure of what it represents or denotes. At most, it corresponds to the 1
. structure of the procedure by which the object is identified, such as the 1

structure of the route through a complex "data structure” '? b

: Fregean representations have the advantage that concepts which are difficult to I]| represent (such as universals and non-ostensive concepts) can still be manipulated, since the 3
representation is always the same. However, as discussed in the last section this is not as 3

A powerful a medium for conscious thought as is visual imagery. Concepts which cannot bei represented visually are more difficult to "think about” than visual concepts, since the :
: | transformations are more abstract. Occasionally the words themselves become images for

3 4
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| non. visual concepts like “time”, “space”, “Infimty”, "love", “justice”. “Infimty” is not an eight.: letter concept; it has many dimensions, each of which can be retrieved and dealt with ondemand. The collection 1s represented in the image INFINITY, or perhaps «=. Even the

: mathematician G.Polya, who claims he thinks with words, “does not use words as: equivalents of ideas, since he uses one word or one or two letters to symbolize a whole line3 of thought; his psychological process would be in agreement with Stanley's statement that |; language, as an indicator, can only indicate by suggesting to our consciousness what 1s :
indicated, as object, thought or feeling..”"[Hadamard'®] Hadamard said he never met I

1 another man who responded as did Polya.
3 One of the advantages of analogical representations over Fregean ones is that istructures and actions on structures in the metaphorical context have a functional similarity
| to structures and actions in the represented context. It is less likely that operations will be :

- | applied to analogical representations which would be illegal in the other context. "When a1 ! representation 1s analogical, small changes In the representation (syntactic changes) are likely 1
to correspond to small changes in what is represented (semantic changes). Changes all in a ;

3 - certain direction or dimension in the representation correspond to similarly related changes
| in the configuration represented, and constraints in the problem situation .. are easily

represented by constraints in the types of transformations applied to the representation, so |
: that large numbers of impossible strategies don't have to be explicitly considered, and |
: re jected. Hence ‘search spaces’ can be efficiently organised. By contrast, the sorts of :7 changes which can be made to a Fregean, or other linguistic, description, such as replacing
: one name with another, .. are not so usefully related to changes in the structure of the || configuration described.” [Sloman'®) |

j The notion of an analogical representation is task dependent; descriptions analogicali in one dornain may be Fregean in another. Even FORTRAN is analogical when dealing |. with mathematical formulae: ?
: f(x) =ax?+bx+c I

: {F = A x Xxx2 + BxX + C i

3 But FORTRAN is Fregean and obscure for specifying change, the flow of control, or data I
3 structures other than numbers.

| ]
2



1 4 Mental Images 1-D

; Gection D -- Mental limages
| Without a presentation, intellectual activity 1s impossible.
i .. Aristotle!’
3 Thinking can deal with objects and events only if they are available tothe mind 1n some fashion. i. Rudolf Arnheim'® |

What are mental images like? The branch of psychology known as eidetics holds
that they are faithful replicas (edola) of the actual scene. People possessing eidetic recall H

s can examine their mental images and discover information of which they had not originally }been aware, almost like examining a photograph. The neurosurgeon Wilder Penfield has |
1 performed operations in which he used an electric probe to stimulate certain areas in the |S4 temporal lobes of the brains of his patients. The patients reported the recreation of events I
] in their past

4 All patients agreed that the experience 1S more vivid than anything they
f: could recollect voluntarily, it 1s not remembering but reliving. The
3 experienced episode proceeds at its natural speed as long as the electrodeis held in place; 1t can neither be stopped nor turned back by the
: patient's will. At the same time It Is not like a dream or hallucination. 1
| The person knows that he is lying on the operation table and is not
- tempted to talk to people he sees In his vision. Such images seem to4 approach the completeness of scenes directly perceived in the physical , ¥] environment; like that outer visual world, they seem to have the - oo. 41 character of something objectively given, which can be explored by
3 active perception the way one scrutinizes a painted or real landscape.] [Arnheim'?] ;
{ In addition to this involuntary re-creation, the psychologist Erich Jaensch has estimated that :1 407 of all children and some adults possess voluntary eidetic recall,® though eidetic recall E
§ ceems to deteriorate as children acquire language. Similar results have been obtained for1 sub jects under hypnosis: they are able to recreate events far more accurately than they could !: voluntarily. |

Some indication of the enormous capacity of the brain is furnished by the
=u experiments of Bela jules2'®?'.  Julesz used “random-dot siereograms” to study the
. physiology of perception. These are arrays of computer-generated random dots, typically 4100 x 100. When viewed superimposed, the arrays appear to contain a figure such as a ;
FE diamond raised above a random background. (The reader may try crossing his eyes to |3 superimpose the following stereogram, or he can refer to Julesz's book.) |

|
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1 A Random-Dot Stereogram [ Jules?!)

The figure will appear only if the superposition is exact, small displacements or }
3 maccurate reproduction of one of the arrays destroys the effect In a classic sequence cf ]
: experiments, one stereogram was shown for a few seconds to a subject possessing eidetic It
i recall. After a ten minute interval the subject was shown the other image and correctly E

superimposed them to detect an inverted T-shaped area. Furthermore the area was sharply |
defined, which 1s remarkable since blurring of either array causes the corners to appear |

i rounded off. The time between images was then extended to 24 hours with another set of :
stereograms. Again the eidetiker correctly detected a raised square area. That 10,000 v

3 picture elements of a random-dot texture could be precisely stored for 24 hours without loss ¥! of detail argues that at least a select few of Homo sapiens have a detailed texture 8
A memory." Julesz®®] The subject was then shown a series of stereograms to determine the 3

ultimate capacity of her eidetic memory; she was able to reproduce with complete accuracy i
] four 100 x 100 random-dot arrays. 3

Experiments like these indicate that the mind is capable of storing sensory data in
great detail. Furthermore, they suggest that the precise temporal order and rate of events is

1 preserved. Under the proper conditions this information can be regenerated, "read out” like b
g | a detatled computer dump. 1]

This is the full "data base” of the mind. However it is not the data of thought. E
el “The kind of ‘mental image’ needed for thought is unlikely to be a complete, colorful, and !: faithful replica of some visual scene. But memory can take things out of their contexts and Eshow them in isolation.”[Arnheim®3) Thought deals with fragments, transformations, |
v abstractions and combinations of incomplete scenes. The discerning mind selects only those :

traits which are relevant to its present goals. In his article "What People Dream About,” :
3 Calvin Hall'®®' wrote that in ten thousand dreams reperted from both men and women, 4

5



Id
| 16 Mental Images 1.D . +0

| 21% of the characters in the dreams were not identified as to sex Though obviously a 1
| characteristic of every human being, sex was not a relevant dimension in the dream report, :

so it was ignored by the mind. Something quite different is going on here from what : 4
Pentield reported. The psychologist Edward Titchener summed up the difference (in 1909).
“I'he incompleteness of the mental image is not simply a matter of fragmentation or |
insutiicient apprehension but a positive quality, which distinguishes the mental grasp oi an |
ob ect from the physical nature of that object itself. [It is an error to assume) that the

mind's account of a thing is identical with all or some of the thing's ob jective properties "24 |
4 In fact, as Colby points « 1%, “intelligence” might be defined as the ability to make |

| appropriate selections leadi: = to desired goals achieved under varying circumstances. |

Plato first advanced the concept that mental images are built up out of successive |
¥ sense impressions, like transparent photographs stacked one on top of the other. Gradually |

the common elements from many different horses will emerge in an "ideal" horse |
| Philosophers for two thousand years have struggled with the problems created by “ideal” |

bh: images. How can we have a concrete image of a horse without assigning it some attributes |
: of actual horses? How detailed can an “ideal” image be? Is a three-legged horse still a
: horse? A two-legged horse? A horse with no head? "None of us, | believe, carries in his |
| head such schematic pictures of bodies, horses, or lizards as [this] theory postulates. What |

these words con jure up will be different for all of us, but it will always be an elusive welter |
| of fleeting events which can never be communicated in full [Gombrich?®) Colby?®
; speculates that perhaps memory is generative: specific memories are processes which |
| generate the item remembered. For example, we remember how to swim by generating the

actions involved

] Mental images are not limited to concrete physical objects. Many fascinating books
have been written on the range of concepts that can be expressed visually’

A Visual Representation of "Rhythm"

Recently several experimenters have asked their subjects to represent such abstract concepts
"as Past, Present and Future, Democracy, Good and Bad Marriage, and Youth in drawings. |

| Most drawings successfully captured some essential dimension of the concept.

| :
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| Left: Good Marriage; Right: Bad Marriage [Arnheim?®]
E Even for concrete objects, images need not look like the objects. Images may be
RE classified as "mimetic" or "non-mimetic” depending on whether or not they resemble the
3 ob jects or concepts in physical appearance.

i .

Left: Mimetic Image of "Hill"; Right: Non-mimetic Image Stressing Dimension of "Barrier"

] Current research in psychology (see, for example, the Eighth Carnegie Symposium
on Cognition) is beginning to gather quantitat've experimental evidence on the nature of

1 visual tmages, rather than merely trying to demonstrate their existence. Arnheim suggests
\ that mental processes involved in thinking with images are similar to those involved in the
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perception of images. Cooper and Shepard suggest that perhaps the same mechanism 1S
volved. 1e the same functional units in the brain They note selective interference
experiments in which a sub ject is asked to form a mental visual image of an object. While
he 15s doing this, his ability to detect and recognize other externally-presented visual images
is 1educed The same thing happens with auditory images: while thinking of a tune, the i
sub ject 1s less able to detect and recognize othe sounds. However, visual images interfere
Jess in the detection of audio signals than do audio images, and vice versa. [Cooper and i
Shepard '973) This indicates that the image processing units in the brain are discrete |
according to the type of image

As opposed to interference, reinforcement occurs if the external signal is “compatible” i
with the internal image. The sub jects show improved detecting ability when external and |:
ternal images are similar in form. In fact, in that situation subjects forming mental
unages do better than sub jects forming no images at all. "Performance should then be best
when the imagery 15 In a form (modality, structure, or system) that is most -- not least -- |
similar to the form of the externally presented material’ [Cooper?®] The quickest mental
response occurs when the representation in the medium is closest to the representation in the |
mind.

I
[

Section E -- The Problem of an ‘Articulate’ Representation

| consider it a heresy to think that any painting as such records a sense
impression or a feeling. All human communication 1s through symbols, ; |
through the medium of a language, and the more articulate that

| language the greater the chance for the message to get through.
| .- EH.Gombrich3° |

:

l n v n

What 1s this?

|

| "A steamboat.” |

"And that scribble over there?

”" w3]} |
That is art. |

The fundamental problem for PYCMALION is to design an
ARTICULATE LANGUAGE for communication.

: Webster defines “articulate” as “expressing or expressed readily, clearly, or |
E effectively."®® The most readily, clearly and effectively expressed information is that which
3 requires the least translation between tne internal representation in the mind and the |
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external representation in ‘he media An articulate form for a problem 1s one which
corresponds closely to the form used In the mind mn thinking about the problem. (This 1s }
problem dependent, the mind uses different representations in different situations.) Let us |

| dete the “translation distance” hetween Wo representations as the number of
] (ranctormations that one representation must be put through to make 1t identical to the2 second 1epresentation Then we can summarize the results in the previous section In a |
: | "mimimum translation principle’ |

MINIMUM TRANSLATION PRINCIPLE: The most articulate
y | representation for a subject 1s at a minimuin translation distance

from the mind's representation.

| Like Arnheim, Cooper and Shepard report that their experiments “establish that the |
: internal representations and mental operations upon these representations are to some 3
1 degree analogous or structurally 1somorphic to corresponding objects and spatial :
1 transformations in the external world."33 This finding 1s restated in the following corollary. |

COROLLARY: Analogical systems are nore articulate than Fregean |
systems for extensional problems.

| Programming languages and environments have almnst all been Fregean systems.
: Computers normally accept problem solutions only in a static, linear form. The programmer
3 must translate his mind's representation Into this static, linear representation in a text file.
1 The translation distance is large The inarticulateness of a text representation explains the

$ following phenomena: Most programmers have difficulty understanding someone else's| program given Just a listing of the source code. They have less trouble if they can talk to |
1 the programmer directly and get the program explained to them. They usually have even
: tess trouble if a blackboard or other multi-dimensional medium can be used as part of the

explanation (Baecker at Toronto is presently engaged In animating program semantics.
His computer animations communicate the meaning of programs more effectively than

1 anything else | have seen. Cf Chapter 3.) Really articulate communication can “open our |
eyes" to meaning “Salvador Dali's way of letting cach form represent several things at the I
same time may focus our attention on the many possible meanings of each colour and form
—. much in the way in which a successful pun may make us aware of the function of words

3 and their meaning.” (Gombrich3?] An articulate representation may illuminate new and
y hitherto unrealized aspects of a problem and lead to a creative solution of it. With a ;
1 suttable representation, the problem-solving abilities of a person using a computer can be i1 vastly increased. '

] LN:

Ws dRA ATA MAE _ AoE Hd COO UT A AACE AG SA BA HOA KAN 30 7 AOA ARS , : Jaea



=) The Problem of an ‘Articulate’ Representation I-E

ABSTRACT CONCRETE

x 3
I
3

}

Two Ways of Designaling a REAL ARRAY § Long |

What is an “articulate form” for communicating with computers? It 1s generally ;
agreed that machine language programs are less clear than programs in higher-levellangauages like FORTRAN or ALGOL. lt is also true that flow charts of FORTRAN Li programs are (usually) more articulate than the programs themselves. IBM requires its IF| programmers (0 document their programs with flow charts in addition to the normal write- kups. Some languages have attempted to use flow charts themselves as program notation (e.g. | 3GRAIL -- see Chapter 3.B). But no one would claim that the limit of representational 13clarity has been achieved. \

| As everything so far suggests, [ lean toward higher-dimensional representations. ;¥ From an information processing stand point the superiority of two-dimensional EF| communication Over one-dimensional has been well documented through studies such as 41 Miller's. From an educational standpoint educators like Piaget and Dewey have long 3known that the concrete is easier for children to understand than the abstract. Much ]
"3 concept learning proceeds from the concrete to the abstract and from particulars to the A: general. Scientists since the Egyptians have used diagrams as an aid to solving problems1 and for communicating results to fellow scientists. Communication is concrete; iunderstanding involves abstraction. In computer science an increasing use is being made of 3graphical (even 3.D) presentation of data. And finally the model of thinking we are using JX asserts that regardless of how abstract mental images are, they "must meet one condition. i
I They must be structurally similar (isomorphic) to the pertinent features of the situations for |I which the thinking shall be valid.” [Arnheim®°) This requires more than one dimension ik for all but the simplest problems. f
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: i Section F -- The "Innocent Eye’ and Other Myths 7
The forms of art, ancient and modern, are not duplications of what the

E: | artist has tn mind any more than they are duplications of what he sees1 in the outer world. In both cases they are renderings within an

3 acquired medium, a medium grown up through tradition and skill --

3 | that of the artist and that of the beholder3®
E .. Any representation must of necessity allow of an infinite number of |
: interpretations and .. the selection of a reading consistent with our |

: | anticipations must always be the beholder’s share 3’ 1
3 .. The interpretation of all images [is] a philosophical problem 32 :
a. | -- EH.Gombrich i

: | Instead of dealing with complete, finely-detailed information, thought processes tend 1; to abstract information down to a skeleton of what the mind considers (at the time) to be

3 relevant features. This ts necessary to prevent the mind from being overwhelmed by a mass 4
1 of details. "It 1s a quality tnvaluable for abstract thought in that it offers the possibility of

] | reducing a theme visually to a skeleton of essential dynamic features, none of which is a
tangible part of the actual object” [Arnheim®®] In art, caricaturists since the sixteenth 1

: century have been aware that a single stroke of the brush could significantly alter the }

i | information content of a picture. A single line is capable of being seen as a complete scene, 1BL indeed a complete event. "The humble suitor is abstracted to the flash of a bent figure. 3
. And this perceptual abstraction takes place without removal from the concrete experience, 1

} | since the humble bend is not only understood to be that of the humble suitor but seen as i1 the suitor himself." [Arnheim] 3

y The impressionists elevated this principle to high art. As Gombrich tells us, the i
| beholder of an image always tries to project his internal preconceptions onto the external 1

world. He interprets an image not only in terms of its content but also in terms of the :
] context in which the image occurs and tn terms of his expectations of what the content will 1

1 1 be. Gombrich notes "a well-known experiment that a familiar shape will induce the iexpected color, if we cut out the shape of a leaf and of a donkey from identical material A
; and ask observers to match their exact shade from a color wheel, they will tend to select a :

: I greener shade of felt for the leaf and a grayer one for the donkey.” [Gombrich?!'] Thereason impressionist paintings often seem more accurate to modern viewers than medieval >
i | or renaissance paintings is that the spare, suggestive lines of the impressionists leave more :

l latitude for the viewer to fill in missing detail by projecting his preconceptions. ;
J af
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i The Ames Chair Demonstrations [Gombrich®?) |

: The psychologist Adelbert Ames has devised a set of clever trompe (oeil i
; demonstrations that show very clearly this process of projection in the perception of images. ]
£ The picture above shows three of the demonstrations. When viewed through strategically- :

placed peepholes, each room appears to contain a chair. But when viewed from above, two |
of the rooms actually contain only a skewed collection of lines. "What is hard to imagine is :
the tenacity of the illusion, the hold it maintains on us even after we have been undeceived. 8:

pg We return to the three peepholes and, whether we want it or not, the illusion is there.” 1

[Gombrich®3] 3

; The perception of any given picture ts heavily dependent on the context in which it !
; 1s viewed. This is the reason that art has evolved during its history. E

] 5
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| Now assuming the existence of mental images in thought, the next question is: what :
3 roles do they play? What functions can they assume? In Arn heim’s terms, there are three |
; functions performed by images: (1) signs, (2) symbols, and (3) pictures, in order of decreasing

abstractness. (1) An image 1s a sign if it is Fregean, i.e. "it stands for a particular content |
: without reflecting its characteristics .. To the extent to which images are signs they can 3
4 | serve only as indirect media, for they operate as mere references to the things for which b
4 they stand. They are not analogues, and therefore they cannot serve as media for thought k

in their own right .. Numerals and verbal languages ... are the sigh media par excellence.” E
The other two functions of images are analogic. (2) "An image acts as a symbol to the extent :

E to which it portrays things which are at a higher level of abstractness than is the symbol 2
| itself" (3) "Images are pictures to the extent to which they portray things located at a lower :
: level of abstractness than they are themselves .. A particular image may be used for each of :
# these functions and will often serve more than one at the same time. As a rule, the image :
3 itself does not tell which function is intended. A triangle may be a sign of danger or a 5
G. " 44 3

picture of a mountain or a symbol of hierarchy.” [Arnheim ] j

1 HIGH
FORCES J

: IDEAS 13

: IE Ra SYMBOLIC oo co
4 Q VEHICLES .

i STYLIZED :

0 OBJECTS GENERA 1
Represent

A REPLICAS P PARTICULARS

LOW IMAGE EXPERIENCE |

3 | Images as Pictures and Symbols [ Arnheim?)
- Images are metaphors for concepts. They provide an alternate reality which is :
g | simultaneously concrete in structure and analogic in representation. Koestler wrote of :
| Michael Faraday, whom he termed a ‘metaphorical visionary: "He saw the stresses i
Ta. surrounding magnets and electric currents as curves in space, for which he coined the name :
4 lines of forces’, and which, in his imagination, were as real as if they consisted of solid k

matter."9® The visual medium is an extremely useful metaphorical tool not only because it i:
3 :
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1 24 The Role of Mental Images in Thought 1-G

3 has powerful representational capabilities but also because it has a rich set of topological
: transformations within its own domain. Two- and higher-dimensional media possess far
: more versatile structural operations than do one-dimensional media.

; A system designed to manipulate images should allow them to assume different roles :
3 mn a program. For example, the programming language LISP permits lists to be used both 3
2 as data and as program to be evaluated, depending on the context. This provides a
: formahsm for proceeding from the concrete to the abstract. A particular image may first be 3
: used as a constant data object, standing for itself, and then it may be used to represent A
3 something else, as a variable. The variables in almost all programming languages today are E
E signs; their representations (e.g. X) bear no resemblance to the structure of their values. i
] The representation of.a problem in most programming languages bears little resemblance to 3
| the thought processes that occured in its solution. For this reason most programming 1
3 languages actually impede communication. In a multi-dimensional language the variables 3 - can be analogical, pictures of their values. i

; Section H -- Examples of Purely Iconic Reasoning :

3 Geometrical demonstration must start from the direct visual awareness :
| of the fact to be proven. :gE | | -- Schopenhauer?’ 3

: The earliest use of analogical reasoning on a computer was Gelernter’s "Geometry- ;
- Theorem Proving Machine"'*®3. His program employed properties of the representation to ;

| guide the proof of theorems. His simple heruristic "Reject as false any statement that is not k
: valid in the diagram” enabled his system to vastly reduce the search space of possible :
; . proofs.

1 Geometry has historically provided a fertile ground for analogical reasoning. In :
A ancient India a branch of geometry developed which used in proofs only diagrams and one
p theorem, the square of the hypotenuse. "Every proposition is presented as a self-contained &
- fact, relying on its own intrinsic evidence. Instead of presenting a sequence of steps, the i

| | Indian mathematician shows the relevant figure, completed, if necessary, with auxiliary lines i0) . A

a. and offered with no comment other than the word "Behold!" The proof consists of the 4
a. evidence visible within the given figure." This is analogical, visual thinking in its purest ;a. form. Examples of such proofs follow. :
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T he triangle based on the diameter of a circle is always right-angled. [Arnheim™®]
>

:

] BEHOLD !

i. b
| (A +» BY? = A? + 2AB + B? [Arnheim] ;

: | o A |
L | i
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| Pythagoras’ original proof of the Pythagorean Theorem:

: For all right triangles A B C, A? + BZ » C? [Courtesy of Alan Kay) j

{
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As Arnheim points out, mathematics so firmly related to perceptual evidence “can
arouse keen interest in unspoiled people. This is observed in the response of young :
children to structural algebra and arithmetic. It is equally true for the person of mature

: mind. If he 1s forced to perform at a level at which the task can only be solved by
memorized routines, his reasoning will protest or dry up. If instead he can operate in such i
a way that perception invites comprehension, he will realize by his own experience why |

| [Berthold] Brecht makes his Galileo say: ‘Thinking is among the greatest pleasures of the §
human race.” i

| Section I -- Concrete and Act! © .edia in Education
1 The ideas first in the mind, it 1s evident, are those of particular things, ;
4 from when _e, by slow degrees, the understanding proceeds to some few i

general cnes, which being taken from the ordinary and familiar objects
; of sense, are settled in the mind, with general names to them. Thus

particular ideas are first received and distinguished, and so knowledge 3
: got about them; and next to them, the less general or specific, which are ]
A next to particular. For abstract ideas are not so obvious or easy to 3
: children, or the yet unexercised mind, as particular ones. If they seem :
] so to grown men, it 1s only because by constant and familiar use they area made so. :
] - John Locke®! | |

3 In an abstract setting these concepts are difficult. Concretized in I
1 suitable “rojects in [a computer] laboratory they are perfectly accessible.
: .- Seymour Papert®?

Further foundation for the theory that communication is concrete and that 3
; understanding involves the abstraction of concrete information is supplied in some current ;
3 theories of education. Educators such as Dewey and Plaget have stressed that doing 1s 3] better than telling. Children learn more from direct experiences than from vicarious ones. :
y | Direct experiences are those that a child actually does or that actually happen to him. 1)
J Vicarious experiences are those in which he participates indirectly, such as by reading := about them or being told about them. With the advent of television, a vast amount of 4

\ vicarious experience has been opened to every child. "it has shifted the balance between ;
a. direct and vicarious experience towards vicarious expe: ence for all of us and has done so :most strongly for the young. Instead of information poverty, they now experience |
: information richness. Schools as they now exist were designed for an information-poor
1 society, in part to provide a child with vicarious experience from books and contact with :
3 the teacher. Obviously that function was radically altered by television, radio, and other ;
: media outside the school.” (Coleman®3] Some teact.ing methods, such as the Montessori |
§ method, emphasize direct experience and individual guidance. The child is encouraged to :
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: actively interact with his environment. "Although the school is no longer necessary to
provide information, it 1s more important than ever for developing skills for the
management of information." [Coleman®] This applies as much to computer science as to
education. Computers must provide their users with effective techniques for managing the Fi
ever growing quantity of information. |

The difference between direct and vicarious experience is the difference between an E
§ active and a passive medium. In a passive medium such as television, the user ‘nerely iobserves. He has no control over the events. In an attempt to supply an active theater, the
1 C:echoslovakian exhibit at the 1967 Montreal Expo allowed a movie audience to vote atcertain times on the direction the movie could take. But this provides only partial relief {i

from passivity. It is difficult for conventional media to permit participation. To counter
! passivity, active media are needed -- ones that permit the viewer to interact with and 1)| influence events. The computer is an ebvious candidate because its output is generative, as }
a. opposed to being fixed or static as in a filmstrip. A computer's output can be changed I]
; according to the input. If the user is to establish a causc-effect relationship, the medium jmust be interactive, so that changes are immediaté;y~observable. It must give the user the k
2 feeling of partici pating in an ex perience. . |
3 An active medium must also be inherently positive. If a computer is to act as a
1 laboratory for experimenting with ideas, it must not give negative feedback of the form:
1 "Vou did that incorrectly.” Instead something consistent with the situation should happen. i; If the result is not what was anticipated, it 1s up to the user to figure out wAy. Contrast this :with conventional computer-aided instruction, in which a child is asked to answer questions !
A and is told that he is either right or wrong There is little potential in such instruction for 18
=» a child to experiment with a sub ject in depth until he is finally satisfied he understands it. k
1 Simulation languages, such as SIMULA [Dah1'%%€), embody many of the laboratory- | i
g like capabilities of active media. Whenever a model is constructed of a given situation and |
4 then systematically changed to investigate different effects, the experimental paradigm is in :3 effect. But two difficulties with most simulations are. (1) They have not been immediately ;
4 interactive. When a parameter is changed, the effect cannot be observed until some time §
: later. (2) The representation of the parameters and of changes to the parameters have notA been 1n a natural notation. A translation of the parameters is required into some form, say 1: a series of numbers, that the computer can accept. The PYGMALION laboratory attempts |
3 to overcome these shortcomings by immediate interactive feedback and by flexibility in the
E definition of representations. Fubini admirably expresses the delights of a true computer2 laboratory when he says, "Perhaps the most moving and impressive show 1 have seen is the k
y simulation of the universe, and it is still in my eyes. A random population of uniform :|] bodies obeying Newton's Law was in jected in a simulated space. Then in a few seconds Eright in front of me, the moving bodies in apparently random motion acquired shape. It i
| was thrilling to see spiral, nebular, globular galaxies appear in completely unexpected 14gE | tashion. 1 did not truly realize the shape of the universe was defined in as gross Eg ~ morphology by Newton's Law alone. The ability to simulate physical and sociological 3g |! structures and to examine in detail the effects of changes is one of the most powerful ;
- pedagogical tools I have seen. It can be used to teach in concrete and immediate form the 41 ultimate consequences of a law or set of relations, and it can be used to teach a student to J
3 tind the relations himself." This is an admirable statement of the goals of an active ;4 medium. How often with ordinary programs and languages has stich enthusiasm been i
1 displayed? t
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The concreteness and immediacy of computers 1s beginning to be appreciated by

contemporary educators Computers are a tool for managing information and conducting
| ex periments, as such they can felp people to think and learn Several educators state the
: case for computers Robert Filep “Children can see immediate payoff on a computer in |

even the most minimal demonstration of their skills. 1 believe these factors have much to

; do with ‘he students’ excitement about using computers” Mark Greenberger: "The
A computer 1s very concrete. It 1s real -- soinething students can get their hands on and see |
; ihe effects of directly Its a refreshing change from abstract discussion in the classroom.” |
1 William Huggins: "Students today, at least at the college level, ive in a completely symbolic |
J world: a world of symbols, mathematics, and words. They do not get their hands on active |
; experiences that give symbols meaning and physical definition that produce intuitions that 1 1
| find missing.">> |

b In the future education will shift toward the teaching of strategies for learning an 1
8 managing information. Computer interaction will shift toward strategies for activery 3
| assisting thinking.
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| Chapter 2

i On Creativity

b i

} E
1 We may proceed to define the creative thinking process as the forming |
; of associative elements into new combinations which either meet |
1 specified requirements or are in some way useful. The more mutually
1 remote the elements of the new combination, the more creative the 4
4 process or solution. J

. Sarnoff Mednick z

3 Summary t

; (1) Creative thinking involves the juxtaposition of two normally-distinct i
a contexts, using elements from both in a new and productive way. |:
A t

: (2) The creative product is novel, appropriate to the situation, a transformation, Co b.
} of contexts, a condensation having summary power. 3

1 (3) Creativity is less logical than deductive reasoning. It involves emotion and }
7 may even involve chance.

:! hy ‘
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Section A -- The Nature of Creativity

We cannot judge expression without an awareness of the choice

; 3 situation, without a knowledge of the organon .. Where we have no: matrix, no keyboard, we cannot assess the meaning of an individual
L feature.

i ~- EH.Gombrich?he

J Creativity has only been examined quantitatively in the 20th Century Psychologists

& i have long been uncertain of its nature. Galton thought that creativity involved a collection
3 of qualities, among them what he called “fluency”, 1.e. “an unusual and spontaneous flow of
; images and ideas.” The creative mind is “always pullulating with new notions” Other

] x qualities are “receptivity” and “intuition of insight”. James called the latter quality4 “capacity”, and T.S.Eliot named 1t "sense of fact” McDougall added the quality of “de /jant
1 association”. But what these really are is a source of mystery. The word “creativity” was

2 A not even defined in the Oxford English Dictionary until its later editions.”
| One school of thought has held that creativity is not the gift of the individual but |

the spit of the age. "An idea whose time has come,” we often hear. Goethe called it
: ; Zewtgeist For example, had Copernicus, Kepler, and Newton died early in hfe, then

contempot aries eventually would still have discovered the laws of gravity and mouon,
’ Indeed environment does play a part in the creative act. Had Kepler not formulated hi

4 : theories on planetary motion, Newton would not have discovered the law of gravity (It is: interesting to speculate what he might have discovered instead.) But to believe that
a environment 1s the whole story 1s to believe that “if William Shakespeare, hike his elder
3 sisters, had died in the cradle, some other mother in Stratford-upon-Avon or Stratford atte-
3 i Bow would have engendered his duplicate before the Elizabethan era ended." No one
4 reatly wants to deny the genius of a Shakespeare or Bach or Picasso, and yet to make a
3 distinction between artists and scientists is to make a distinction between art and science. If

3 | there 1s one thing that psychologists such as Arnheim, Gombrich and Koestler have shown,A it 15 that the same mental processes are used in science as are used in art.

g | Arthur Koestler has written an excetlent book on the nature of creativity, The Act of3 Creation. Many of the principles in this chapter are derived from his enlightening theonies,
; Koestler contends that all creative activities have a basic pattern in common, and that conc
3 inspiration, scientific discovery and artistic originahty all share the same pattern "The first
E | is intended to make us taugh; the second to make us understand; the third to inake us
o maivel. The logical pattern of the creative process 1s the same in all three cases It consists

| of the discovery of hidden similarities. But the emotional climate 1s different in the three

E 1 panels: the comic simile has a touch of aggressiveness; the scientist's reasoning by analoyy is: emotionally detached, i.e. neutral; the poetic image 1s sympathetic or admiring, mspired by a |
A positive kind of emotion... When two independent matrices of perception or reasoning
4 interact with each other, the result is either a collision, ending in laughter, or thew fusion in
3 ! a new intellectual synthesis, or their confrontation in an aesthetic experience” The same
3 interaction may produce any of these results, depending on the emotional climate of the
f mteraction. The myth of Pygmalion itself 1s an example. The artistic or lyric aspects of

| creation as symbolized in the myth are represented in literature by Ovid and in painting by] Burne-Jones, who brought Pygmalion’s statue Galatea to life in a mystical atmosphere. The |
:

i 1
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comic attributes of this same event are represented in literature by Shaw and in painting by
Daumier. who treated the event in an irreverent, satirical manner. The intellectual aspects
have been pursued In a serious manner by Gombrich in his book Art and lllusion, and in
computer science by this report.

| ‘ % vv = 4 ~— Ay %
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Left: Burne-Jones, Pygmelion, 1878; Right: Daumier, Pygmalion, 1842 [Combrich®)

It 1s interesting [o try to place various phenomena on the continuum between science,
humor and art. In mathematics a popular way to refute a proposi on is by reducio ab
absurdum, which extrapolates the consequences of a theorem in a logically vahd sequence of
steps to a result that is 50 absurd as to be almost humorous. And frequently

= | mathematicians or computer scientists have criticized solutions to problems not because they
; were incorrect but because they lacked elegance

The pattern underlying a creative event is “the perceiving of a
i} situation or idea in two self-consistent but habitually incompatible

frames of reference .. While this unusual situation lasts, the idea is
not merely linked to one associative context, but bisociated with
two." [Koestler’]

B
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: Intersection of Thought Contexts [Koesiler®) E,

This 1s the ultimate source of the history of art. When faced with a new situation,
: the artist applies a schema developed 1n handling other situations, producing a ¥
1 juxtaposition of the two. He brings an established way of looking at things into a new ;
i. context. The visual contexts of artists are different from those of laymen. Artists have E
3 created a code of rules which they obey in looking at pictures. The innovations in art have E
e been modifications of this code. Artists before Constable represented landscapes in “the H
3 browns of an old violin” because their code of rules said that distance should be represented |

1 by varying shades of brown. Constable brought a new perceptual context to landscape 3
paimntung -- that of the non-artist, who sees landscapes in shades of green. This led to the t
codification of a new rule, namely: distance may equally be represented in shades of green k

| 1s in shades of brown. The drive toward realism has been the attempt to develop a code of |
rules among artists which 1s the same as the peiceptual code of the viewer. Modern ]
painting has developed a new goal. create codes that are deliberately different from those of 3
the layman viewer, forcing the viewer to adopt new rules for perception. I

This juxtaposition of thought contexts, Koestler believes, is transitory and tinstable. k
Sometimes 1t happens that the thread of thought oscillates rapidly between two frames of 3
reference. More likely though, the established context, the schema, produces an "Einstellung i

y effect”. The Einstellung effect is the following: After once thinking about a problem in one i
: way, it often becomes very difficult to think about it in other (even simpler) ways. A simple 4

| suggestion at this point may produce a powerful effect. Once the initial suggestion is made, |
‘ the receptive mind immediately begins exploring the new context. Immediately a host of &

comparisons present themselves. Conscious thought may remain in the schema, themetaphor, until the initial rush of discovery wanes. Thereafter it may return to the schema i
periodically for further comparisons and inspiration. 4

Ee ! ¥
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4 Oscillations Between Two Thought Contex1s [Koesiler®) |
3 "All coherent thinking is equivalent to playing a game according to a set of rules... 1

In the routines of disciplined thinking only one matrix [set of rules] is active at a time."'°
1 Therefore it seems plausible that a computer which knows the rules for a particular domain 13
4 should be able to assist and even stimulate thinking in that domain. k

: As an example of the way certain images trigger a whole “train of thought”, a 5
1 chess board with a single piece on it, say a knight, inay immediately start one questioning i
; whether a knight can legally touch every square on the board. This leads “naturally” into |
gE an entire set of sub-problems. Can the knight get to an ad jacent square? Can it get to an 3
E ad jacent square on the side of the board? Can it get to an ad jacent square from a corner? ;2 Can it get into a corner? From the results in Chapter 1 we can deduce that such trains of ¢
1 thought are more likely to be initiated by analogical pictures of the chess board than by 3
1 Fregean words like "chess board" and "knight". Then we might reformulate our definition k

| of “articulate” in operational terms: |
| A medium is "articulate" to the degree in which it elicits a productive k

Einstellung effect in its users. 3

: | The process of creative thinking has similarities with the process of perception. The E
mathematician Poincaré felt that the most productive ideas “are harmonious, and, ;

| consequently, at once useful and beautiful"'’ Gombrich applies the metric of “simplicity” to
ld measure the productivity of ideas: "It might be said, therefore, that the very process of :
- perception is based on the same rhythm that we found governing the process of
: representation: the rhythm of schema and correction. It is a rhythm which presupposes :

constant activity on our part in making guesses and modifying them in the light of our |
: experience... In looking for regularities, for a framework or schema on which we can at least :

provisionally rely (though we may have to modify it for ever), the only possible strategy is |

(
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to proceed from simple assumptions... This 1s not due to the fact that a simple assumption is

3 \ more probably right but because it 1s most easily refuted and modified... The simplicity¥ hypothesis cannot be learned. It is, indeed, the only condition under which we could learn§ at all. To probe the visible world we use the assumption that things are simple until they i
4 } prove 1o be otherwise."' However, to say that a concept is "simple" is not to say that it 1s2 “eamiliar” or “natural”; many inventions seem bizarre at first.

1 Section B -- The Great ‘Whale Ears’ Scandal i
+ i (The Use of Schemata in Thought) 4

3 i You cannot create a faithful image out of nothing. You must have £Ek | { | learned the trick if only from other pictures you have seen. 33 } -- E.H.Gombrich' :
1 : t To copy others is necessary, but to copy oneself is pathetic. ;§ -- Pablo Picasso'” k

2 Geombrich asserts that artists always begin a picture with a "schema", a framework to ;r serve as a foundation. They “classify the unfamiliar with the familiar”'®> A Dutch artist in &§ the sixteenth contury drew a picture of a whale that had washed up on the coast. Whales | 2E in the Netherlands are raré€ indeed, and the artist had undoubtedly never seen one before, kB particularly not lying on a beach. His picture shows that the whale had ears! "The EEl | draftsman probably mistook one of the whale's flippers for an ear and therefore placed it £3 far too close to the eye. He, too, was misled by a familiar schema, the schema of a typical E3 head"(GOmbrich!®] Though unintentional, in a SENSE the Dutch artist was actually being 13-. i creative; he created a new kind of animal -- a whale with ear lobes. Who would ever have E1 thought of that? 1

1 5M
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EE After Goltzius: Whale Washed Ashore in Holland, 1598 [Gombrich'’] 1

: On a more practical level the same type of reasoning was done by Johannes Kepler 1
in 1609 when he applied ‘the schema of Fuclidian proportion to the new situation of 1

3 planetary motion. Kepler's laws state that (1) the orbits of all planets are in the shape of an ;
3 ellipse with the sun at one focus, and (2) a line between a planet and the sun sweeps out |
1 equal areas of the ellipse in equal times. Wilson, in his article "How Did Kepler Discover 1
3 His First Two Laws?" investigates the question: which came first, the data or the model? 3
: "What emerges from Kepler's own account is that he goes on his journey laden with theory, ;
: and that he manages to arrive at the two laws only because he approached the problem 3
3 with a preconception. It is an initial hunch, a physical hypothesis, that guides him 3

throughout"'® In other words, the ellipse came first. Kepler knew, through Tycho Brahe's i
| observations, that Copernicus’ circle model was not correct. The observations together with 3

his area hypothesis suggested a more egg-shaped oval orbit. However since the calculations
: were so “horrendous” with the oval, Kepler simplified the shape to an ellipse. Why an ¥
: | ellipse? Because the oval resembled an ellipse in shape and because the ellipse is the next ;- simplest closed figure to a circle’ Newton said later, "Kepler knew ye Orb to be not circular h
- but oval, & guest it to be Elliptical.""? Actually Kepler did not start specifically with an £
: ; ellipse in mind; rather he firmly believed that the eventual solution would be simple, like an :
1 ellipse. Throughout his investigations Kepler relied on Euclidean geometry to provide a |
| schema for organizing the confusing world of Renaissance astronomy.

3 Kepler's investigation embodies the essence of the scientific method of |
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understanding: hypothesis formation, experimentation and observation, hypothesis
refutation, followed by hypothesis formation again, until finally an hypothesis remains
unrefuted and becomes a “law”. What Gombrich and Koestler tell us we can learn from art

: is that hypothesis formation (the creative link in the chain) involves schemata. We form
hypotheses in the same way we paint pictures, not out of nothing but by anplying a
preconceived schema to the new situation. The mathematical discipline is a schema which

: has proved invaluable for solving problems in physics. Mathematical formulae are
: attractive because they have many well-understood properties which can be manipulated

; independently of their referents, and then mapped back onto their referents transformed.3 In this sense they are I regean; their structure does not conform to the structure of the things
represented. But nevertheless, as was pointed out in Chapter |, mathematicians perceive

: formulae as structured, two-dimensional images. With practice mathematicians are able to
: : attain great skill in manipulating these images. Therefore formulating a fact in

| mathematical terms is tantamount to “understanding” it at a certain level. For example, the
: ! formula

; : cost = 2 coreft,) (t,., - t;)N |=

7 might mean “the cost of executing a program is directly related to the amount of core

3 required at time t; times the length of time (i, - t;) the core is required." This is an |
a illustration of Koestler's theory of intersecting thought contexts: if one can map a problem
3 into another context that he understands better, he may be able to get a solution more |
4 easily. It is the basic idea of linear systems theory: find a mapping from the problem space |
» into a (mostly) separable one [Kay®°] |

3 Transforming a problem after one becomes familiar with it may indeed lead to a oo
E. creative solution, but the question remains. Why do people deliberately approach problems

with preconceived schemata or biases? Artists are well aware of the quandary of starting |
Ee "from scratch™ “To draw an unfamiliar sight presents greater difficulties than is usually

3 realized." [Gombrich?'). Picasso said that "the most awful thing for a painter is the white
1 canvas."[Wertenbaker?®) To create something in an unknown domain is a superhuman
: task. True genius is able to make a large creative leap; we cannot overestimate the creative

contribution of Picasso in inventing cubism or of Buxtehude in inventing the organ style
h which culminated in Bach. But most creative achievements are transformations on the |
4 schemata of their predecessors. In computer science, programmers usually find it far easier
4 : to "optimize" an algorithm, to produce a more efficient or elegant algorithm that computes
bh the same result, than to write the original. The use of schema in creativity and the use of

orojection in analysis are important aspects of the process of creative thinking.

. i |
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Section C -- The Role of Entotions in Creativity

How 15 1t that each of the thousands of facts, 1mMages and perceptions that we gexperience every day does not lead to a creative idea’ Why are only certain images and 3
3 percepts weed tn creative thought? What is it about those images that others do not have’3 Several noted thinkers have suggested ar answer that STAR TREK'S unemotional Mr. 3§ Spock would scarcely be able to comprehend The answer suggested is that the aesthetic 33 qualities of 1deas react with our emotions on a subconscious level and those ideas having a |: favorable yeaction (in terms of the individual's personality) are raised to the level of 3conscious thought. Li
i | Poincare. in his famous address in 1913 on mathematical creativity, made a strong iBy case for the aesthetic. i: Among the great numbers of combinations blindly formed by the 13 subliminal self, almost _1 are without interest and without utility; but 13 just for that reason they are also without effect upon the esthetic1 censibility. Consciousness will never know them; only certain ones are 3) harmonious, and, consequently, at once useful and beautiful. They will 3- be capable of touching this special sensibility [that all mathematicians i3 vnow), .. and which, once aroused, will call our attention to them, and| thus give them occasion to become conscious. 4
] When a sudden illumination seizes upon the mind of the :FE mathematician, it usually happens that It does not deceive him, but it ialso sometimes happens .. that it does not stand the test of verification,
3 well we almost always notice that this false idea, had 1t been true, would Ahave gratified our natural feeling for mathematical elegance. = wr. E 1
1 Thus it is this special esthetic sensibility which plays the role of the 4] delicate sieve of which 1 spoke, and that sufficiently explains why the EFA }: one lacking it will never be a real creator?

Wilson says of Kepler's four-year, 000 page calculation that led to his planetary Ftheory: "Kepler's discoveries were a vind of miracle of chance anc love, and also of 3inventive hypothesizing and detective logic"? Nothing short of his love for the quest and Eb
| his "belief in the possibility of understanding” could have sustained such a prodigious :effort.

J 3
A k
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g Section D -- Galileo and The Accidental Nature of Discovery i

% Elias Howe had been frustrated for many years by his failure to perfect 3
1] the sewing machine. One night he dreamed he had been captured by k
| savages and dragged before their king. The king issued a royal 33 ultimatum. 1f Howe did not produce a machine that would sew within i
y 24 hours, he would die by the spear. Howe failed to meet the deadline E

and saw the savages approaching. The spears slowly rose and then 3
} started to descend. Howe forgot his fear as he noticed that the spears k

all had eye-shaped holes in their tips... 1
.- Krippner and Hughes?® k

g How does creation happen? What leads to a new idea or discovery? One might |
think 1t 1s an eminently rational process: after a body of representative facts is assembled, a 1

h | careful process of logical deduction leads to a new invention. While this may have 3
1 happened, it 1s by no means necessary. In fact, Taylor states that “the rules of logic and 4
3 scientific method are a psychelogical straight jacket for creative thought."?’ Often 3
4 creativity is emotional, imprecise, illogical and just plain wrong. It may even involve E
4 chance. Drake'%’2 has presented evidence that Galileo obtained his first formulation of the A:
4 law of accelerated motion by accident, through an error. Galileo's creative step was 3
3 enormous, but what was its nature? Like Kepler, Galileo applied a predefined schema -- the 3
EF Euclidean theory of proportion -- to his (hypothetical) data. This led directly to his 3
| synthesis of the law of motion. But Drake points out there was an error in Galileo's 4
! hypothetical data which contributed directly to the result. In fact, there appear to be two E4 accidents in his derivation; the second was his use of 4 and 9 for his hypothetical distances, |
4 both square numbers. These accidents appear to have been standard fare for Galileo. Ek

Another schema -- "nature always acts in the simplest way” -- he used all Ais life. Though | E
3 we might be tempted to regard Galileo less highly because of his "lucky” mistakes, as James 1:
3 Joyce has said, "A man of genius makes no mistakes; his errors are portals of discovery."?3 1
] And Hadamard'%%® points out that while there is a distinction between invention and 1
E discovery, both involve creativity. Some people have even carried the process of making 3
| errors to the extreme of making it their working method. Mednick tells of a physicist who [
1 places "in a fishbowl large numbers of slips of paper, each inscribed with a physical fact. 1;
E He regularly devotes some time to randomly drawing pairs of these facts from the fishbowl, |

looking for new and useful combinations." Many creative ideas have even been the result £
a of dreams, as the story of Elias Howe illustrates. 3
1 Ernst Mach, a 19th century thinker about thinking, has a memorable introspective i

description of how mental "luck" leads to discovery: E

1 After the repeated survey of a field has afforded opportunity for the ;
E | interposition of advantageous accidents, has rendered all the traits that
p | suit with the word or the dominant thought more vivid, and has :
4 gradually relegated to the background all things that are inappropriate, :
| § making their future appearance impossible; then from the teeming,

: swelling host of fancies which a free and high-flown imagination calls :
i forth, suddenly that particular form arises to the light which harmonizes

i perfectly with the ruling idea, mood, or design. Then it is that that 2
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which has resulted slowly as the result of a gradual selection, appears as

1 if 1t were the outcome of a deliberate act of cveation. Thus are to be :
9 explained the statements of Newton, Mozart, Richard- Wagner, and r
% others, when they say that thoughts, melodies, and harmonies had ¥
1 poured tn upon them, and that they had simply retained the right 3
i: ones. .

: "Harmonizes with the mood..." There 1s a critical principle hidden in these emotional terms. 3
i Unless a person really likes a task, has an affection for it, he is seldom if ever creative in it. E
3 What 1s the mechanism of creativity? Sarnoff Mednick has clearly outlined one E
3 atiswer. In general, "any ability or tendency which, erves tu bring otherwize mutually ra
} remote ideas tnto contiguity will facilitate a creative solution; any ability or tendency which ;

1 serves to keep remote ideas from contiguous evocation will inhibit the creative solution"! §
- In particular, there are three ways to arrive at a creative solution: 1
§ (1) Serendipity -- two stimuli may occur together by accident or “luck” and evoke an I
§ associated response. This is what the physicist above was trying. It 1s irreverently |]
3 recognized 1n the saying, "Give enough monkeys enough typewriters and they will
3 eventually produce the complete works of Shakespeare.” The stories of Newton and the |
4 apple and of Fleming and penicillin are other popular anecdotes about serendipity. :

1 (2) Similarity -- two stimuli may evoke a response due to the similarity of the
; elements evoked by the stumull. An example is the use in literature of homonyms and :
% rhyme. Mednick feels this is important in areas which are not dependent on the 4
4 NAH pUIILon 8 wyrnbi dy ie 5 painting, sculpture music poetry. §
: I

1 (3) Mediation -- two stimuli may evoke a response because they have some element(s) F
j in common. "For example, in psychology, the idea of relating reactive inhibition and 4
1 cortical satiation may have been mediated by the common associates ‘tiredness’ or 3
3 ‘fatigue’. Mednick feels this is particularly important for creativity in areas involving ;

heavy use of symbols (e.g. mathematics, chemistry). ]

j "Mednick distinguishes at least two distinct cognitive properties or dimensions that ]
| govern an individual's creativity: the “associative strength” dimension and the “visualizer. E

verbalizer" dimension. 3

| The “associative strength” dimension is the number of associations that an §
individual has between ideas and the strength between these associations. For example, we k

: might ask a person what concepts “table” suggest. It he is limited to just a few stereotyped 4

| responses or if he has difficulty generating many responses, he is said to have an associative E
- hierarchy with a steep slope. E
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E If the person 1s easily able to generate more remote associations, he is said to have a flat :
4 slope to his associative hierarchy. This is important because a person obviously is not: : going to be able to use elements in a creative way if he doesn't have the elements or if it is |: very difficult for him to generate them. Mednick concludes: f
: It would be predicted that the greater the concentration of |
4 | associative strength In a small number of stereotyped associative | I
: responses (steep hierarchy) the less probable it is that the individual will Is1 attain the creative solution. Thus, the word association behavior of the |9 high creative individual should be characterized by less stereotypy and i
1 commonality. E
4 .. The prediction suggesting an expectation of less creativity from Ian individual with a high concentration of associative strength in a few :
] responses leads to another prediction. The greater the number of ¥2 instances in which an individual has solved problems with given f
] | materials in a certain manner, the less is the likelihood of his attaining a i& | | creative solution using these materials.
| k
| There is a rather frightening implication for computer science: The more “skilled” or3 experienced a person is in using computers, the less likely it is that he will be able to use the F4 computer in a creative way! This induces the argument in Part II for a widening of the :1 concept of “computer scientist” from a person skilled in the use of computers to anyone who 1
5 knows how to do something and wants to use the computer as a tool in doing it. Such awidening requires not only an increased access to computers for the common man (Kay's | 1

: "personal dynamic medium”, for example), but it also requires an improved method for |
communicating with computers since it is presently too technical. |
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: The "visualizer-verbalizer” dimension 1s a restatement of the notions of analogical
and Fregean. The visualizer is one who tends to call up relatively complete memorial

1 sensory representations of the relevant concrete aspects of problems. If the problem deals
with horses. he tends to picture a horse in terms of its sensory qualities. On the other hand,

1 the verbalizer explores the problem by associating with words around the word "horse". If ;
] the requisite elements are high in his verbal associative hierarchy to the word horse, the4 verbalizer will be more likely to attain a creative solution; the visualizer may be thrown off v
3 or at least delayed by many false leads. On the other hand, if a requisite verbal associative i
4 response to the word horse 1s very low, or not present in the verbalizer's hierarchy, then the i
3 visuahzer will be more likely to attain the creative solution. It is therefore clear that some
4 types of problems will be solved more easily by the visualizer and some by the :
| verbalizer[Mednick®*] Conventional programming languages almost uniformly require a
3 person to verbalize his solution if he wants to implement it on a computer. PYGMALION ;
i. 1s an attempt to get further to the visualization end of the scale. i
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| The Relevance of Computers 3
: {4
: E
4 [Computers’] especial talent in the direction of intelligence is the ability 39 to make elaborate models and fiddle with them, to answer in detail 4|v questions that begin "What if .2° In this they parallel (and can help) 4| the acquiring of intelligence by children... The human mind .. can 4] tolerate and even thrive on inconsistency. i

i .. Stewart Brand’ |
] Summary ipl EF
1 (1) The computer has characteristics that can be used to assist a person's ¥- thinking and learning processes. ;
j (2) Some of these characteristics are being exploited successfully today. k

i Programming is often tedious work. It simply takes too much. time, effort and
: irrelevant detail to implement an idea on a computer. The programmer must know the ;F capabilities of his programming language, the efficiencies of its compiler, and even the I3 organization of the m chine. There are syntax conventions, semantic conventions and 33 conceptual conventions to which he must faithfully adhere. Computers are intolerant of 44 even the tiniest mistake, a single wrong bit may kill a program. As Stewart Brand :i irreverently says, "The basic fact of compuier use is ‘Garbage In, Garbage Out’ -- if ‘rou ;j feed the computer nonsense, it will dutifully convert your mistake into insanity-cubed and E3 feed it back to you.”> Few laymen feel competent to undertake large programs. Even ia. among computer scientists, there is a notable reluctance to do the actual coding. They ki prefer to hire people to implement their ideas. .The process of formulating a solution is i| interesting, but the implementation is not. i



bo
3

: This thesis addresses the questions:
3

; (1) Why 1s programming a tedious process: Is it necessarily tedious?
:

(°) What are the relationships between creating a solution to a problem and

: creating a problem to find a solution?

| (2) Do programming languages stimulate or inhibit creative solutions?2

: (4) Does creativity in art and mathematics provide any guidelines for creative
4 activity on a computer?

] | (5) Can a programming environment be constructed to stimulate creative
3 thought? What would be its characteristics’

= Programming need not be tedious. The rest of this paper 1s devoted to computer
3 systems which make programming fun. As we have seen, creativity Is an emotional process,
3 and joy 1s one of the strongest emotions. There is playfulness in creativity. Given the
3 groundwork of the first two chapters, we can begin to answer questions (1) through (4).
bi Question (4) in particular now warrants a resounding "yes!" This chapter bridges the gap
i between the abstract model of thought of Part I and the concrete computer environment of
k. Part II. In so doing, we attempt to tie together the threads represented by the first four
k questions.

i The main result of this paper 1s that the answer 10 the first part of question (5) is
= "ves" The answer to the second part of (5) forms Part II. In fact there are already several
3 systems existing today which successfully aid some aspects of creative problem solving. This
4 chapter contains a brief discussion of them and of the problems in interfacing a computer
A with a creative human being.

3 Section A -- Dynamic Programming
3 The Unimate Robot

The Unimate robot consists of a mechanical arm with 6 degrees of freedom mounted

; above a large base containing electronics. It 1s a programmable manipulator designed for
Ey industrial applications.
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£ The robot may be operated in either of two modes. training mode Of production13 4 mode. In training mode, the robot's arm is guided through the steps necessary [0 perform ai task by a human “wrainer’. The robot has a digital electronic memory in which it can
§ “remember” up to 1024 operations and their timing Typical operations are "rotate a joint’,3 | "move to (x,v)", "close the hand". etc. After the training phase the robot can operate in ;1 production mode. automatically repeating the operations in its memory. It will repeat the ii operations indefinitely, until stopped or until a pathological condition occurs. -2 ¥ The robot has been particularly cuccessful on assembly lines. General Motors is i; | presently using 26 Unimate robots to do 80% of the final welding on its Vega assembly hne. Fb & The primary practical deficiencies of the robot are the absence of (a) conditional branching ii § and (b) force or visual feedback. From a conceptual standpoint, the robot is a relatively: \ uninteresting computer since its only data structures are (X,Y) coordinates. d
ii However the Unimate demonstrates the potential of dynamic, analogical |
# programming. Rather than writing an algorithm whose form bears no resemblance to the iI task to be done, programming occurs by actually doing the task. Advantages: b
3 | 3 (1) The act of programming is analogous to the function of the program being iwritten. It is learning by dong Programming 1s exceptionally clear and
% easy.

k | (2) An untrained operator can program the robot, "untrained" in the sense that |E he need have little Lnowledge of computer programming -- he need only be fF. familiar with the task the robot is to perform. This makes the robot |
1 H accessible to a large class of users.
4 (3) Bug-free programs can be written the first time Since programming3 | involves doing the task once, successful completion of the task means that a b. correct program has been written (modulo mechanical and/or tuming] inaccuracies).

1 4 If there is a programming language which can make these claims, it should come forward: and be honored. (Radia Perlman's “TORTIS", described in section E, i: an excellent first il3 | attempt.) i

4 | | "TV" Editor |4 The Stanford Artif icial Intelligence Laboratory has installed a network of about BO t- “ raster-scan video displays driven by a Data Disc video disk. Several excellent programs b-— have been written at the lab to exploit the displays’ potential for visual interaction. A text E- editor called "TV" has been developed by Dan swinehart!®! (since written as "ETV" by E3 ’ Wright and Samuel). TV was inspired by other on-line display editors, particularly E: Engelbart’s "NLS" system for "augmenting human intellect”. 19621963 TV is organized fo around logical "pages and physical "windows" of text. A "window" is the text -- 33 lines -- t1 ¥ that can be physically shown on the display screen at one time. TV always shows a screen LH4 full of text as if currently exists; editing changes are made In place on the display screen as |
J |

;

ig hh pl de bafta ibid re oi .
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well as in the document. This makes it extremely easy to create and mndify text, and to

4 comprehend the current state of the document.
|

TV has several dynamic operations that have the same flavor as the Unimate 3
4 operations. Replacing characters in a line of text is accomplished by positioning a cursor 1
1 beneath the first character to be replaced and then simply typing the new text. The i
{ updated state of the line is always displayed. It is easy to see If the change has been made
2 correctly by just looking at the line. But the most analogical feature is "attach mode" a 4

method of designating text (first implemented in NLS). A group of consecutive lines can be 3f " " : ~ k

4 attached” and manipulated as a unit. The attached lines can be moved to another part of 3

A the document or even to a different document. Searches and substitutions can be limited to :3 just the attached lines. This gives the user excellent control over the scope of operations Fk
E. and over the structuring of text. Since he can always see the context above and below the b

attached lines, the user has virtually no difficulty positioning a body of text exactly where E
gE he wants it. Editing with "TV" is far more error-free than with batch oriented or non. :
4 display oriented editors. As with the Unimate, the appearance of each operation is i

: analogous to its effect. |
: HP-65 Pocket Calculator

1 A recent addition to the ranks of analogical programming systems is the Hewlett-
4 Packard HP-65 pocket calculator. The HP-65 differs from other hand-held calculators in 3

that it can accept magnetic strips containing up to 100-step programs. ]
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|

: The relevant aspect is the way in which programs are written. The calculator is
simply put in “program” mode, and then the desired sequence of keys are pushed, just as if
one were doing a calculation. The keys are remembered on a magnetic strip. In “run” mode :
the program can be executed, or the calculator can be operated manually. However a major
defect in the design is that while in “program” mode the display does not show the current |

p state of the calculation. Rather it shows a numerical representation for the last key pushed. 4
So typically programs have to be worked out in “run” mode, written down, and then entered 3

; in “program” mode. Going straight (o ‘program’ mode is too abstract. While 13
1 programmable desk-top calculators have been available for a number of years, the size and :

portability of the HP-6C give it many of the characteristics of Kay's "personal dynamic $
media"!'®’®. The calculator comes to be viewed as an extension of the self. I

5 LS ;

1 If one must program in machine language, the best debugger for it that I have seen
: is "RAID"'%70 developed at the Stanford Al Lab for the PDP-10. RAID is the |
1 culmination of a line of debuggers going back to the TX-2 at Lincoln Labs. It represents
8 the state of the art in debuggers. Using the excellent display facilities at Stanford, RAID is 3
E capable of :

> | (a) dynamically displaying the contents of memory locations, including locations 4
» which are referenced “indirectly” through other locations; i
Bl

Ek (b) stepping through an instruction sequence, during which the user can :
1 observe changes to his displayed locations; :

3 (c) initiating execution at any instruction, i
4 (d) replacing instructions with other instructions and then re-executing the :
3 sequence with the new code, k

3 (e) replacing the contents of displayed memory cells with values entered from |
| the keyboard; and

3 (f) other more standard debugging behavior.

The result 1s that the user can directly observe the effects of instructions on actual |
1 information. lt is concrete. The consequences of a sequence of even such primitive :
| operations as machine instructions are frequently difficult to comprehend in the abstract. :
| With RAID, it usually requires no more than one pass through a routine, replacing :
3 incorrect instructions as you go, to completely debug it. Occasionally users even write |
1 routines in debug mode. Interaction, concreteness, and a visual display are the keys to :
| RAID’s success. The chief deficiency of RAID, aside from the fact that one must deal with
5) machine language to use it, is that it displays only machine words. It does not display the

3 | . structure of data. |

13 ;
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High-level Debuggers

3 It is more difficult to design a good debugger for higher-level languages. Since most

: such languages are compiled before they are executed, less information is zvailable at run
! time than at compile time -- information such as the symbol table, the source code :

1 corresponding to an instruction sequence, the logical structure of data types, etc. Kay!969 :
3 addressed the problem of writing, displaying, monitoring and debugging high-level 4

bh programs through multiple processes. His "FLEX" machine divided its display screen into :| multiple "windows" and "viewports”. Each window in Kay's systsm shows a 1024 x 1024 33 section of a virtual 16384 x 16384 display. Viewports are subdivisions of windows. 3
J Windows and viewports are the communication links to processes. Swinehart'%74 4
1 implemented these and other ideas using the Stanford display facilities. Each of his 3
y windows can show the same computation in a different representation. One window might k
1 | be a RAID window showing the machine instructions being executed. Another might show ;
| the source text that corresponds to those instructions. Still others might show the state of |
| variables used in this part of the program, an image of the stack, program countars, or |
iA debugger options. Unimplemented but possible are dynamic, graphic displays of changing |
pi: data structures. An unusual notion is that each window-process can control the execution of| other processes. For example, one can single-step a source language statement in a text
bh | window, which causes the machine language window to execute a sequence of instructions
k and then pause. Or we can change variable values in a variable window, which will :

gE modify subsequent execution in other windows. This powerful concept of “floating control” |
¥ has also been successfully used in time-sharing systems such as the SDS-940 system 1
; [Lampson 9681989] and simulation languages such as SIMULA [Dah!'9%®] and i

4 SMALLTALK [Kay'%?] (a FLEX derivative) |
; Interpreters and Compilers |

1 Some of the difficulty of telling a user what is going on in compiled programs has ;
] been resolved simply by not compiling them. Some languages, notably LISP, APL and 18
3 SMALLTALK, are based on interpreters. Binding of tokens to semantics is delayed until I

1 values are actually required. For example, the identifier X might be bound to a variable i
4 value or a function name; in either case evaluating it will cause it to return a value. In the :
1: first case a simple fetch is dune; in the second, an arbitrary amount of work may be ¢
1. performed befere the value is obtained. The languages are not analogical, as with the f
'f Unimate, but the environment in which they execute is dynamic and concrete. "X" may be

i ambigucus at the time it is written, but at run time it will be bound to something which |
knows how to produce a value. Using interpreters, the programmer deals with concepts like i

| "value producer” and “generic operation”, instead of “cell which can contain a real number" J
4 or "integer addition”. Interpreters permit the kind of "selective abstraction” that we noticed :
i) in creative thinking (Chapters | and 2). Entities such as "X" can exist on a variety of

conceptual levels: as a (Fregean) representation for information, as a cell which can contain :
information, or as a routine which can generate information. This ability to defer

1 instantiation until necessary, so characteristic of the mind, usually makes it easier to :
program in interpreted languages than in compiled languages. |

Mitchell'9% merged the concepts of interpreter and compiler. He notes that

J
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3

4 compilers and interpreters do essentially the same work. Each must analyze program text
A for syntactic and semantic correctness. Interpreters then execute code based on the analysis,
3 while compilers emit code for later execution. Mitchell suggested that a way to delay 3

” instantiation in a compiler is to execute programs interpretively the first time. The compiler |E can then emit the same code that the interpreter executes! The execution of the interpreter
a provides a “semantic cache"? which the compiler can use to emit code with little extra effort. iE9 The successful interpretation of a program (a) indicates that it :s at least syntactically |
2 correct; (b) gives a certain confidence that it is semantically correct as well, and (c) gives a E
4 high degree of confidence in the correctness of the compi'~d code, since it is identical with
3 the interpreter's code. It is even possible to declare the types of variables at "interpreter
4 time”, by indicating to the compiler that the data type bound to a variable the first time will :
E | be the type in all successive bindings. This "dynamic declaration” is a promising concept. ]

i The logical extrapolation of interpreters in a computer environment is the concept of ;
A hardware interpreters. The Burroughs Corporation has developed interpreting machines in g
- its B-5000 (ca. 1961) and B-600C series. These machines provide instructions to load
! descriptors on top of an internal stack. The hardware interprets each descriptor and
3 executes the necessary operations to produce a value, whether it is by a simple literal call, an ]
. array access (which will pick up indices from the stack and check them against bounds), a
3 procedure call (which will set up a procedure frame and transfer control), or some other
A type of access. The compiler can invoke any of these cases by emitting a single type of
S instruction: "fetch descriptor”. Needless to say, this substantially simplifies writing compilers
: for Burroughs machines. Today, with the availability of fast, inexpensive, microcodable
4 computers, hardware interpreters are becoming an increasingly viable technique. |
; i fd

Programming by Example | |
s Sussman '%’® used some of these ideas in an automatic programming context. His I
; system "HACKER" has the ability to extend general cases to handle unforeseen exceptions. (]
1 Using HACKER the programmer writes an algorithm for the situations which ‘he knows 3
: will occur, or which he explicitly wants to handle. If during execution the algorithm i
3 encounters an exceptional situation, the system can (sometimes) automatically modify the :
: algorithm to handle the new case. There is a fixed set of strategies for modifying i
: algorithms, which Sussman has observed being used by “hackers” at MIT (programmers |
] who en joy squeezing the last ounce of performance out of a machine). This is a variation I}

J | on the "learning by doing” concept. The user programs a general strategy, and the final §: algorithm evolves in the course of trying various examples. It has similarities with the |
| Unimate/HP-65 systems discussed above, in that programs are written by doing specific ;

E tasks. ;
- ]

1. Winston'®7° addressed the related task of learning structural descriptions from :
! examples. He investigated the possibilities (and pitfalls) of generalization. For instance, his )
: system was able to develop the concept of “arch” from examples of specific arches.
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Section B -- Graphical Descriptions of Algorithms

“Sketchpad” |

: There have been and arz numerous graphical application programs (cf. Wells!972) |
; These are prograr:s written in a linear language, eg. FORTRAN or machine language, ¥
3 that are designed to incorporate gtaphical interaction in specific application domains, such ;

as architectural or engineering d-awing systems. They are special purpose programs. ¢
# However their operations are often cleverly choser and provide significant assistance to p
: workers in their domains. 3

] The first and still among the most elegant graphical application program is Ivan
b | Sutherland's "Sketchpad”'?®®. Sutherland's goal was to use the computer to help people i
3 visualize things. He pioneered methods of drawing on display screens. While Sketchpad is :

basically a drawing system, it does not just mimic paper. Instead it takes advantage of the |
3 computer's special abilities in such features as multiple “windows” and scaling. The user ;
1 draws on the display screen with a light pen. Sketchpad was the first to employ the "rubber
3 band” line (used in PYGMALION) in which one end of a line remains fixed on the
1 display while the other end follows the pen. The user may create and modify pictures and ;

their parts. Pictures may be constructed out of “instances” of other pictures. i

4 Ie

' fi

A Instance Derived Picture ;

f Sketchpad’s vocabulary deals with properties of geometric drawings. ' Sutherland developed :
a system for specifying pictorial “constraints”, such as two lines are to remain: (a) parallel to

a each other, (b) at a fixed angle to each other, or (c) connected at one end. The constraints :
¥: are specifiable pictorially, in an abstract diagram which can itself be given constraints and
E | manipulated iconically. Sketchpad was used in several applications, including an Hl

engineering application to compute the stresses on a bridge and an animation application in id
| which placing constraints ¢;: a diagram caused it to move.

] Sketchpad deals with images as pictures, to use Arnheim's terminology. The I
3 diagrams are manipulated as diagrams, not as representations of something else. f

“Sketchpad’s internal data structure and programs are so rigid that it is inconvenient to &
3 make a geometrical entity have non-geometric meaning."[W.R Sutherland] As with most :
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2
; graphical application programs, Sketchpad is not a general-purpose programming language.
; But 1t is an articulate medium for manipulating pictures, and the first to make effective use

of a light pen.

!

by ;

| Graphical Procedures £[vans brother, W.R.Sutherland, subsequently developed a Sketchpad-like system
3 giving the geometric diagrams symbolic capabilities. His system is based on an electronic ;4 circuit metaphor. His program elements are arithmetic, logical and control units with3 input/output leads that operate like the "level" (versus "pulse”) outputs of flip-flops. &

X = (A+B) / (CD) |

4 Using a light pen, the user can select elements from a menu, connect them, assigni values. and watch the network execute, all in real time. The language is very good for |: expressing parallel control, which is, of course, standard operating procedure in circuit :: diagrams. For example, a value placed on the lead labelled "B” above is shunted to the "+"1 and "x" boxes in parallel. A menu of circull elements provides functions for type-in, type- $out, “seeing” values on certain leads, arithmetic, logic, conditional branching, and some
3 diode-like elements for controlling data flow. A problem with the system, the same problem4 experienced by AMBIT (see below), is that the circuit diagrams are often so complex as to :3 be difficult to comprehend. Consider the following program, which computes the square :» root function. ;
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: 3 |

- F*

3 X = SQRT(A) } 3

3 The angled boxes are used to indicate more clearly the direction of data flow. Races
in networks like this are prevented by the ". notation above input leads. This specifies ;

3 that after use, the input is to go to undefined. Thereafter, the operation will not execute &
| until a new non-undefined value arrives. :

3 0 !
¢ go to UNDEFINED '————r

: preserved =e |

- W.R.Sutherland recognizes the potential of this medium of expression when he :
RF 3 writes: "The two-dimensional nature of the language helps in visualizing many things
y | happening at once... Being able .. to see a program run gives one 2 grasp of detail that is
1 hard to obtain in any other way." ;
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3 The GRAIL language (Ellis'?®?] developed at RAND was a ..mlar attempt to
3 describe programs visually The GRAIL philosophy was that since flowcharts are usually y

more articulate than the statements they describe, why not program in the flowchart

3 notation to begin with? GRAIL incorporated several graphical elements for representing 2
3 programming operations, such as conditional branching, functional elements, and loops. |]
o The contents of each box, however, consisted of ordinary machine language statements. i
i, Just the interaction of functional units was described graphically. GRAIL did include a 13
| “zooming” control for dynamically scaling program elements. Complexity could be managed :
: by enlarging boxes to be examined and then shrinking them again to see the overall E
] structure. :

3 "AMBIT" ;

2 Another approach to graphical programming is provided by the AMBIT family of ]
languages.[Christensen®] Ivan Sutherland's Sketchpad operated on pictorial data but

} without assigning machine semantics to the pictures. W.R Sutherland's system assigned ;
3 semantics to pictures, but the data was non-pictorial (e.g. numbers). AMBIT/G (for graphs) :

and AMBIT/L (for lists) are attempts to combine pictorial data and procedures. Processing
4 in AMBIT is by two-dimensional pattern matching. A procedure is actually an image of ;
3 the data to be passed to it. The image simultaneously specifies an input pattern to be i
4 matched and a transformation to occur if the match is successful This dual role is :
i. accomplished by having arrows made up of single lines represent links that exist in the
i. input data, and arrows made up of double lines represent new links to be formed in the b

output data. 1

An interesting feature is that each procedure-image contains a control link specifying iwhat to do when the pattern match succeeds (S) or fails (F). In the image above, success
i. causes the procedure to be called recursively. Some quite large programs have been written j
ne mn AMBIT, including several garbage collection algorithms. It is enlightening to see the

AMBIT versions of certain algorithms. AMBIT is a step toward an effective metaphorical i

1 context for working out problems. | 1

J | |
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A Reversing a List NE |

1 However AMBIT is a good illustration of the deficiencies inflicting all current ;
3 graphical programming languages. A practical deficiency is that implementations are not 11 yet efficient enough to make the languages usable on a large scale. But a more basic, . |3 theoretical deficiency is their philosophical orientation. Every graphical language suffers i3 from one or more of the following: |]4 [1 (1) They use static representations for dynamic processes. :
3 | (2) They lack detail suppression mechanisms. Consequently, pictures quickly f; increase in complexity beyond the ability of the eye and short term memory i
1 | to assimilate. (GRAIL is an exception.){ -
| (3) They operate on formal representations of data, one level removed from )| actual information. |
3 (4) They lack image-defining capabilities. The programmer cannot draw his: own images;he must use the images designed by others. This limits the 14 effectiveness of the metaphor. |

k
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3 Anyone who has looked at a large AMBIT program knows how hard it is to understand.
E: The maze of lines soon becomes overwhelming. Even small algorithms sometimes take a lot i
: of parsing by the eye before their operation can be discerned. This is probably due to 3
1 unfamiliarity with the languagzs, but articulate languages should not need much explaining!

i Much of the complexity can be traced to AMBIT's representation of both the i];
p present state and a future state in a single frame. This is an example of telling instead of in
- doing. Environments for describing computations are inherently more abstract and require | i
a a greater translation from mental representations than environments for doing computations. 1
E The program frames become more and more complex and full of notational dogma. They 1
iq violate one of the cardinal rules of ammation: il

1 What happens between each frame of a sequence of pictures is more |i important than what exists on each frame. The actual graphical i
b information at any given instant is relatively slight. The source of
- information is picture change [Baecker’] |

2 It is the business of animators to communicate effectively with human beings. The next {|
4 example discusses a computer animation system.

1 Animated Graphical Descriptions
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| Ron Baecker'9%? in his GENESYS system investigated ways to describe animation |
; sequences using pictorial control. For example, the graph above might be used to drive a
] movie of a ball bouncing. Recently he and his students at Toronto have made some
: animations of program semantics, such as (a) recursive functions in LOGO [Papert'979)

and SMALLTALK [Kay'?2), dynamically showing recursive calls until a terminating case :
is reached; (b) the operation of the railway switching algorithm for parsing; (c) the

4 execu’ion of various simulations, tn particular the simulation of the movement of people in :
3 a subway system. These animations are the most effective presentation of mechanical }
: semantics that I have seen. They begin to instill the level of insight and intuition so 3

3 necessary for creative thought. The critical aspect of their success is the dynamic, visual, |
8 movie-like presentation of information. A descendant called SHAZAM has been f
3 implemented in Kay's Learning Research Group at Xerox PARC (described in section D). 4
: SHAZAM enables the computer to dynamicaily interact with the animator, permitting him F
4 | to create and modify movies in real time. These animations are at the core of 3
3 PYGMALION's model of articulate communication. :

3 Visual media like the ones in this section provide the user with a rich working s
; environment. If a concept can be placed in one of these metaphors, extensive processing ]
] can be done on ii before the limitations of the medium become toc procrustean. With k
3 Fregean media such as verbal languages or one-dimensional programming languages, the A
- hmitations immediately impose constraints. In Koestler's terms, visual media provide 1
: alternative "matrices" or "thought contexts” which are powerful enough to be of use in §
] creative thinking, linear media do not.

: Section C -- The Computer as an Artistic Resource :

Art enters when we labor thoughtfully with some ideal in vie v -- that is,
: as soon as we cut loose from action that is purely mechanical. :b
i .- Clifton Johnson, photographer® |

|

3 A good example of the reasons why the aesthetic and technical elements |
a in design must be considered together is iraplicit in the term fair’, used ;

to describe fluid dynamic surfaces in products such as air-frames, aero.
| engines and ‘ships’ hulls. It is required that some surfaces be fair’ in
y | order that they should work properly, that the air or water should flow
! over them in the required way. But fairness can only be judged by :
| inspection of the surfaces, by aesthetic judgement. Thus we have in its :
- clearest form the need to keep the data structure and mathematical :

methods of design, and the visual or aesthetic aspects going hand in

| The use of ‘fairing’ is not a reason for ignoring precise technical
. methods in so far as they have been developed. One might perhaps say
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that the use of fairing represents the use of that part of knowledge
which comes from experience and has not yet been precisely formulated.

: But there will always be knowledge that has not been precisely
1 formulated.

| .- Anthony Hyman?
3 P'/GMALION brings art into computer science. Rather than providing a computer
: resource which artists can use to create (paint, compose music, etc.), PYGMALION is a first
. attempt to provide an ariistic resource which computer scientists can use to create. In fact, |
3 hope PYGMALION will contribute to a re-evaluation of what a “computer scientist” is. In
4 my view, a colnputer scientist is anyone who knows how to do something and wants to use

the computer in doing it. The view that only highly-trained programmers can implement
tasks on computers is intellectual snobbery of the worst kind. Anthony Hyman describes

' such conventional "computer scientists” as “computer specialists”:

The 1dea that computing 1s necessarily difficult and to be reserved for
senior grades or forms at school 1s surely wrong, corresponding to a |
rather early stage in the development of computers. experimental studies

3 with seven-year-old children [and even younger] have shown that
F children will take to the use of display terminals with ease if they are
3 given the opportunity young enough. Today computers are still
3 expensive and computing languages by and large still rather clumsy. (It
3 1s curious that after working with computers for many years some
A people have deluded themselves into thinking that FORTRAN, the
3 most commonly used scientific computing language, resembles a natural
3 language.)'®

ie

1 Such views are merely historical, an outgrowth of the anachronistic programming languages
1 that were first provided. As Kay says, we should have a more optimistic opinion of people;
3 people are smart, and incredibly versatile.

3 The skilled prograinmer is necessary only because the distance
: between the computer implementation of a task and a person's

mental conception of it is too great.

3 Symbiotic systems hke architectural design systems have eliminated the skilled programmer
: altogether, and substituted the architect, a real "computer scientist”. But architectural design
1 systems are special-purpose programs written (by a "skilled programmer”) in some general. j
! purpose language for a specific application. What is needed is a symbiotic general-purpose

language. As Hyman notes,

, A good case can be made that to achieve satisfactory results the ultimate
: user must have a say in the development of the design systems
= themselves .. The designer can no more rely on the computer specialist
: to develop design systems appropriate to his needs than a wood carver
: can allow other people to sharpen his tools. The computer specialist

does not have the knowledge and cannot acquire it without becoming a

. designer himself."
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Computer science does employ some general principles that are beneficial for every
programmer to know, such as subgoals and subroutines (subdividing a problem into smaller
units), heuristics and partial algorithms (it is not necessary to insure that a program will
work on all possible inputs or to specify all possible paths), recursion (parts may exhibit the
came characteristics as the whole), processes (the computer may remember state), tracing
(following the execution of a process step by step), debugging and editing (parts of a process |
may contain errors and be corrected independently of other parts), and others. But fAese |
are the concepts that should be taught to a person who is learning to use the computer, for
as Papert says, these are really teaching him about thinking. Too much tirne is spent |
teaching “integer variables must begin with the letters I, ], K,L, M and N and real :
variables with other letters” :

What is the potential of using computers artistically? "In Renaissance Florence men
uch as Brunelleschi and Da Vinci were at once artist and engineer. They were deeply
involved in extending both new ideas and new techniques .. [Today the sheer volume of 3
information makes this difficult] Recently computers, having acquired effective methods of | 3
display and considerable visual processing power, are beginning to be used for design in ;
earnest. With this development the possibility is raised of re-establishing the unity of ;
Renaissance Florence. [Hyman '?]

i

Section D -- The Computer as a Creative Resource

Artists create using a medium. The process of creation is incremental. Painters dab, |
dab. dab at their canvasses until they find just the right expression of their feelings.
Sculptors chip away at the stone until first a knee, then a nose, slowly a whole figure is :
perfected. Though they begin with an outline, a "grand idea", artists realize the idea ir: aseries of small steps ("subgoals”). There are a few exceptions. Chinese brush painting 3
emphasizes single strokes to define figures; the technique of placing the brush on the paper
has been highly developed. Painters using watercolors are prohibited by the nature of the p
medium from touching up their pictures, but just for this reason watercolors are difficult to :
use. Photographers seem to be most completely spared the incremental task. (In fact, Henri ;Cartier-Bresson refuses to allow his pictures to be cropped or modified during printing, j
declaring "The picture is good or not from the moment it was caught in the camera."'3) |

J But photographic creativity is ill-defined, and it is certainly more than the mechanics of
| camera, film and darkroom. “The oniy microscopic part of the photographic process whichcan be remotely described as ‘creative’ is that fractional instant when the photographer feels:

yes, now."!4 It may require years of patient experiments before a photographer develops: the instinct for "the decisive moment”. Though photographers do have a more immediate 1
medium, the process of learning to use il is still incremental.

The value of incrementality has not been ignored in computer science. Time- ;
sharing is an attempt to provide incremental computing, among its other goals. Manyprogramming languages are incremental, most prominently LISP, SMALLTALK and APL. :Some text editors are incremental; anyone who has tried to use a batch-oriented text editor |

; |

1s
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i will appreciate the vatue of incremental ones! The advantage of incremental computing 1s

that the consequences of an operation are immediately discernible by the user. He can
isolate the consequences of individual operations and debug them one at a time. The4 = isimilarity with artists is inescapable: painters dab on a bit of paint and then step back tn ;

1 jook at the result, etc.

: A computer will be of the greatest value to creativity if computing ik. done with it is incremental. b
O.K Moore stresses the need to take the work out of learning, making it seem in atl. : : > " hy Hrrespects like play, if we want to develop creative thinkers Wath his "Talking Typewriter” |and his notion of an "autotetic environment”, Moore concentrated on combining enjoyment I

- with substance. The computer alone ic not sufficient to interest children; it must be used in
. an imaginative way. Moore defines an activity as autotelic 1f "engaging mn it is done for its i

| own sake rather than for obtaining rewards or avoiding punishments that have no inherent
Ro connection with the activity itself."

The most imaginative work involving computers and children 1s going on today at
en L MIT under Seymour Papert and at Xerox PARC under Alan Kay. Papert and Kay have

3 abandoned the traditional approach to computer-aided instruction, which they view asusing the computer to teach the same old concepts 11 the same uid way. Their goal is to i
; develop new ways to teach concepts and, more importantly, new concepts themsetves. PapertB has developed a “turtle” controlted by a computer, and a simple command language 1(LOGO) for manipulating it. |

}
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them that "complete happiness” in creation of which Lucien Freud wrote. For the children, :

1 - through the computer, make the turtle draw the geometric figures. They create, as it were, §brief life histories for the turtle. Not since Pygmalion's statue Galatea stepped off her

C pedestal has a man-made object been brought to life to a comparable degree. a

4 4 Kay has expanded on Papert’s work. He and others at PARC have developed a 1 i
g- small, powerful, stand-alone computer with an excellent graphics display and zudio output. E
{ He relies on the display and a clean simulation language called SMALLTALK to teach +

i children how to think. The computer serves as a laboratory for experimenting with |
3 representations. Kay's eventual goal is to develop an inexpensive, portable “personal if
; computer” the size of a notebook. People will use it instead of paper. It will have an i
3 interchangeable tape cassette which can hold books, newspapers, letters and memos. [It wil! i i=» have the ability to use multiple type fonts, so that the owner can dynamically display text in LE
EL his favorite font (dynamic publishing). It will have a plug for connecting with remote 341 sources of information, such as libraries, newspaper offices, stores and banks. With its i

| high-resolution display screen, it can even be used to watch television and video tapes. Of 4 43 course, in addition the owner will be able to write programs with it. Its flexible, personal i
3 nature makes the computer a ‘user-moldable” medium. PYGMALION was begun to HE
4 i provide a two-dimensional way to communicate with this computer. 2 kA true genius is creative and stimulates the creativity in others. He causes an |3 atmosphere so charged with excitement that good things are bound to happen. The 5
EE i computer also, with the correct interface, can cause such an atmosphere. In Koestler's terms, 3
1 it can serve as the representational "matrix" whose intersection with the mind's “matrix” 3

g provides the “creative spark”. At Xerox PARC this small computer is being used to i
y i] stimulate people's enthusiasm, inventiveness and artistry. 3

\ | Section E -- Radia Perlman and Her Magical Button Box

‘ i Radia Perlman, a visitor at PARC from Papert's group at MIT, has developed a ! ]) unique instrument for teaching very young children (ages 3 to 6) about programming. The 3 :
: instrument is a "button box" and is used as an input device for a Papert turtle. The button i

\B | box 1s connected to a small computer. As the picture below shows, some of the buttons iEp | have an iconic description of their action on top. For example, pushing the button marked 1
: with a vertical arrow (which we will call "UP") causes the turtle to move forward one unit 44
E | (about half an inch). Other buttons make the turtle back up, turn to the left or right, honk :
- | its horn, put its pen up or down, turn its light on or off, and stop. Some buttons have ily numbers on them and can be used as repeat fz:tors: pushing 5 UP makes the turtle go five ir
] units forward. Since the turtle responds immediately, the children have little trouble Hq

5 understanding what the buttons do. With these few commands, children quickly learn to |draw pictures and geometric shapes. Radia calls her button language "TORTIS". 1

! x A
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The Basic Button Box |
j Now the plot thickens. In addition to this basic button box, Radia has developed
i another box which can be plugged into it: a “procedure” box. The procedure box, shown 1

below, has four buttons labelled with iconic descriptions of the actions “start remembering”, 1
4 "stop remembering”, “do it", and “forget it". (I leave it for the reader to figure out which 3
3 button represents which action.) Pushing the “start remembering” button causes the 3
1 computer to keep track of the buttons that are pushed from then on. While the computer is b
9 remembering the buttons, the turtle is also doing them, so the child can always see what he 3
a has done. Pushing DOIT causes the computer to execute iis remembered sequence. DOIT A
oy may be preceded by a repeat factor: 5 DOIT causes the sequence of remembered buttons to iF
1 be executed five times. In addition to these four buttons, the procedure box also has four 3
3 other buttons labeled with a color (red, blue, green and orange). These are “naming”
3 buttons and can be used to give a sequence of remembered button-pushes a name. “Start 1
y remembering” RED starts remembering button pushes and names the sequenc: RED. 3
} DOIT RED executes the red sequence. 5 DOIT RED executes the red sequence five times. p

The DOIT button may itself be remembered, so that a command to execute the blue !
; sequence (i.e. a subroutine) can be included in the red sequence. In fact the red sequence ;
1 can DOIT RED (i.e. execute itself) so that recursion is possible. However there is no way to

terminate recursion once started, since there is no “conditional” button. {|
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a The Procedure Box |
L Radia has also constructed two simpler button boxes to introduce children gradually 3
p to these concepts. The simplest box is the basic box without numbers, i.e. without the {
3 concept “repeat”. The other box is the procedure box without the colored "naming" buttons. 3
4 What can we learn from "Radia’s Magical Button Boxes" Surprisingly, these
4 simple boxes outperform the most sophisticated programming languages in several aspects!

3 (1) Children as young as four or five years old can learn to program with these boxes. 3
b These children have great difficulty learning to program with "adult" languages. And this ]
| is not entirely because the concepts are simpler, since the notions of subroutine, recursion, y

3 | iteration and (turtle) state are all incorporated in the system. Children can use the button3 boxes because the action associated with each button happens immediately upon pushing it, ¢
Ez | and that action is visually concrete. Each button has on its top an easily understood iconic
- description of its action. It is very easy to "see what is going on" and to establish b
A. cause/effect relationships. In other words, it is easy for the children ta form a model of the 3i semantics of each button and of the system as a whole. This morel-building is the key to :
E | understanding. What children can understand, they can use.g | :
i. (2) Children frequently write bug-free programs the first time. How many :
: programming languages can claim this, even with adult programmers? The reason for this
4 is that programming with the buttons is incremental with continual visual feedback. To see |2 .
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3 how this can lead to bug-free programs, suppose the child wants to write a program to inake
! the turtle draw a square. The simplest way is to push “s:art remembering” and fy 0
{ push the “forward” and "urn" buttons as many times as necessary to produce the Est| : " : 1 : ] :

| square. Finally, pushing "stop remembering finishes off the routine. So : pass, |
: | procedure, 0 bugs. True, these programs are very simple. But PYCHMALN Theoshicx . istics can be built into a general-purpose pr |: these same error-free characteris g |

| language.
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|
|

: Chapter 4 |

| Principles of Iconic Programming |
£5 Jo

4 Graphic communication draws upon the natural resources of its own A3 language, and refers to visual experience as a source of principles and i
| values for designing more articulate form .. [It] is a conceptual logic 33 rather than a technical method; a way of seeing the graphic figure asa ;visual statement. | b
3 .- William Bowman |

| Summary
i | The main innovations of PYGMALION are: ]
i (1) a dynamic representation for programs -- an emphasis on doing rather than J: telling, ]

| (2) an iconic representation for parameters and data structures requiring. less i1 translation frorn mental representations; —

1 (3) a "remembering" editor for icons; |
1 (4) descriptions in terms of the concrete, which PYGMALION turns into the 33 abstract. 3

1 Part I discussed a model of creative thought, emphasizing visual thinking. The ee ]
3 | model serves as the basis for the design principles in Part Il. Part I may be summarized as | iEt follows. |
| (1) Visual thought processes deal with images that are structurally similar to the )
© features of the concepts being represented. Images are a powerful, flexible :

1 and effective metaphor for thought. |
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: (2) Creativity involves the conjunction of two normally-distinct thought
; | contexts.

| (3) Communication 1s concrete. Abstraction (Le. urderstanding) occurs in the] mind from concrete information.
4 (4) Creativity and understanding are incremental; large discoveries usually |i derive from a bisociation of smaller ones. |
3 tH
3 This chapter utilizes the model in a computer environment. It presents the general |form and goals of PYGMALION. Most of the specific implem_ntation details are deferred :3 until the next chapter. f

fp Section A -- Introduction

4 The main goal of PYGMALION is to develop a system whose representational and |, processing facilities correspond to and assist the mental processes that occur during creative I{ thought. It attempts to make Pygmalions out of pzople, to provide the average person with 1
3 1 medium for creativity without requiring a substantial recasting of his ideas into terms 38 different from his normal way of thinking. The medium is an environment for writing 3computer programs. Non-numeric programming primarily involves the manipulation and i
] cransformation of structure. In PYGMALION sufficient flexibility is incorporated to 34 permit the programmer to design structures patterned after images in his mind. Part | k- provides two concrete guidelines for the implementation: |
3 | (1) Multi-dimensional representations are superior to one-dimensional fori | communicating some types of information to a human being. Since the intent is to provide 3| Te. as articulate an interface as possible, the system is founded on visual communication using a | 33 TT hics display. 3
¥ (2) Interastive feedback is essential in a creative environment. Interactive text 5i editors are.a case in pork they are far easier to use than batch-oriented editors. A text k3 editor is similar to a programim language operating on the restricted domain of text 1y strings. If we generalize the domain to jtrary data structures, the similarity becomes iA at more apparent. If the editor remembers the e iting-.commands and re-executes them on ;3 | on demand, the two concepts become virtually identical pa 4
3 | The heart of PYGMALION is an interactive, "remembering" editor for_iconic data E: | structures exhibited graphically on a display screen. PYGMALION is a visual metaphor :y © for computing. Instead of symbols and abstract concepts, the programmer uses concreteF display images, called "icons". The system maps the visual characteristics of icons into |3 corresponding machine semantics. The display screen is equivalent to a document to be | 1- edited. Programming involves creating a sequence of: display frames, the last of which

L 1 i pie flay gan ; si 4
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| contains the desired information. Display frames are modified by editing operations.When in "remember mode’, the system records the operations as they are done.
| PYGMALION is a direct descendant of Kay's FLEX machine!?%%. Many of the |
i features of the implementation are derived from FLEX and from conversations with Kay. |a: Perhaps the simplest description of PYGMALION is to say it is just Radia Periman’s| button box "grown up" (cf. Chapter 9.E). Though developed independently, they are jA similar in design. Instead of the elemental turtle operations like "go forward",EE PYGMALION incorporates general-purpose programming operations like ‘store value”. 3
| But the instant-response, visually-oriented, “teaching,” error-free characteristics and E| philosophy are the same. 3
1 | 1 want to emphasize that PYGMALION is not a graphical programming language iE | in the traditional sense. Graphical programming languages have all attempted to find two- Ei. dimensional ways to fell programs what to do. This inherently involves the manipulation 4
g of formal representations of data. PYGMALION has no representation for telling a tprogram anything; PYGMALION is an environment for doing computations. If the system 1happens to remember what is done, then a program i constructed as a side effect. But the HS3 goal of the programmer is to do a computation once. This is helpful for understanding in {3 any case: a good way to understand a complicated algorithm tn any language is to work: through it with representative values. Instead of using the medium of paper or blackboard, |
3 the PYGMALION programmer US€S the display screen.

3 Section B -- The PYGMALION Philosophy |
The overall philosophy of PYGMALION is summarized in the following list. |

: These are the design principles guiding the implementation. The individual principles iderive from the model of thought in Part IL. | 4
1 (1) VISUAL: The system ls visually oriented. 3
] (2) CONCRETE: Since for many subjects concrete information is easier to deal with i- than abstract concepts, the form of information manipulated is explicitly represented, rather E

| than implicitly described. Arguments and values of functions are analogical. ;(3) PARTIAL: Since people deal with selected, incomplete fragments of memory ]
| images, data structures may be left partially instantiated and routines partially specified, 3B with traps on incomplete paths. i

: (4) LEVELS OF DETAIL: Since the quantity of information a person can handle ;- comfortably (his short term memory) is limited, the system incorporates a detail suppression ;| control. ‘A structure may be displayed at any level of detail, including a symbolic (i.e. string) 1represent:.tion. 3
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3 | (5) MULTIPLE ROLES: Icons are capable of assuming different roles,
3 corresponding to the functions which images serve in thought. Variables may be signs,

symbols or pictures of their values. An icon representing a program may simultaneously be 4
J a part of a picture or data structure. 1P P E

: (6) SCHEMATA: In order to provide schemata for problem solving, generic i
: prototypes of common operations are provided, such as conditionals, subroutines, iteration, 4
; recursion, sequentiality, ;ubgoal hierarchies, and classes and subclasses. In addition, a E
: rectangular shape representing a cell for storing information is provided as the default ;
: iconic shape. i
3 (7) INCREMENTAL: Since creativity is incremental, zrogramming proceeds in a 3
| ste-by-step, interactive fashion, much as one uses an editor to change a body of text. 4

- (8) TIME DEPENDENT: Information is capable of a time-dependent readout, since ]
3 it is stored sequentially. The proper representation of a PYGMALION program is a movie. 3

E. (9) CONTEXT DEPENDENT: Since a person projects his internal models during
perception, the system does likewise. It forms expectations about its input and interprets the ;

3 input in light of those expectations. For example, the mouse buttons are context dependent. 3

1 (10) COMPUTABILITY: The system is a general purpose programming language, :
a capable of computing anything computable (i.e. equivalent to a Turing machine). 3

; Section C -- Iconology | - :

| The mysterious way in which shapes and marks can be made to signify
1 and suggest other things beyond themselves ...
| .- EH.Gombrich? I

4 Webster defines "icon" as “a pictorial representation, a vivid or graphic

3 | representation or description, something introduced to represent something else that it| strikingly resembles or suggests, a reproduction or imitation of the form of a thing."
A. PYGMALION icons are two-dimensional, visual, analogical, concrete descriptions of
| concepts. They can be used to represent anything that can be drawn on a blackboard. ;
| (This is not suggesting that icons may only represent concrete concepts or that they must
1. look like the concepts. Icons, like mental images, may be classified as "mimetic" or “non- 3
: mimetic” depending on whether they resemble objects or concepts in physical appearance.) 3
1 Visual images are a powerful medium for portrayal in the mind. Except for the restriction
3 to two dimensions, PYGMALION icons retain all the expressive power of mental images.
; Icons form the communication interface: person ® PYGMALION « computer.

] The primary entity used for computing in PYGMALION is the i
ICON.
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a

3 Examples of Icons I

Programming in PYGMALION is a process of designing and editing icons. The i
3 FYGMALION programmer is an “iconographer” -- "a maker or designer of figures or i
4 drawings."[Webster?]) The programmer of the future will be as well skilled in design as i
3 architects and artists today. Icons define the "PYGMALION machine”. Everything that I
] can be done to information is done through icons. Icons provide the mechanism for storing I
] and retrieving information and for representing procedures. Icons exist on a variety of |
1 conceptual levels. On the most primitive level, an icon may simply be a picture, a piece of }

1 | data consisting of line drawings. On a symbolic level, an icon may represent a singlemachine bit, and the contents of that icon represent the state of the bit, either 0 or 1. On

| higher levels an icon may represent a machine word, a sequence of words, an arbitrary data :
E structure, the state of the computation, all of memory, the entire computer, or indeed
d anything which can be simulated. Icons may also represent dynamic processes: func: ions, |
= coroutines, interrupts. - The virtue of PYGMALION lies in being able to use icons as
A metaphors for the objects to be manipulated. Every operation on icons affects the display
3 state as well as the internal machine state. The programmer need interact with the system
3 only on the display level, with the images he has created. The artist Alexander Cozens
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taught his students to project their ideas onto random blots of ink, much as Rorschach did
a century later The inkblots became a source of ideas to the artists. PYGMALION as an
iconic programming language attempts {0 fulfill the same role. Icons provide an alternative
representation which stimulates creative thought in the programme’

suppose, as an example, we want to design a controller for "spacewar” space ships. f
The display screen might contain the following: |

J controller I

| A Controller for Space War |
4 This indicates there are four arguments to “controller”: an object of type “ship”, an 3
| object of type “thrust”, an object of type "empty torpedo tube”, and an object of type “full 3
a torpedo tube”. This is ‘far more descriptive than: |
] PROCEDURE CONTROLLER (SHIP S$; THRUST T; t
3 EMPTY TORPEDO TUBE TI; FULL TORPEDO TUBE T2), i
i even assuming the programming language used permitted the above data types to be E

defined. which most languages do not. Some extensible languages, like SMALLTALK or 1
3 LISP70 [Tesler,EneaSmith!373), permit conceptual entities like "ship" to be easily defined 1
3 and manipulated. But imagine trying to manipulate a ship represented as an array of ]
1 numbers in FORTRAN. The amount of translation required from the mind's 3
: representation is enormous! 4

i Icons have several “properties” or “attributes”, some governing the visual (display) k
| state and some governing the internal (machine) state. The total collection of attributes i1 constitutes the "state" of an icon. Each attribute will se discussed in detail later in the k
| paper where it Is relevant. A complete listing follows. ]

arm EL aTTnama lL es ait fy Ve to ud J. . ’
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; Attributes of Icons
| NAME -- a string
4

VALUE -- any object

1 SHAPE -- code to generate the shape
; BODY _- code representing the functional semantics
: DISPLAYED -- one of (FALSE, NAME, VALUE, SHAPE]
| CONTAINER -- an icon
ee - RUNCODE  -- code executed when the icon is told to "RUN"

FRAME —- a display frame (a Smalltalk class); theentire rectangular boundary of the icon

] IX —- a number, the X coordinate of the upper left
3 corner of the boundary

p. 1Y _- 3 number. the Y coordinate of the upper left
; corner of the boundary

] [WD —— 2a number, the width of the boundary
h [HT —- a number, the height of the boundary

1 FETCHER  ~-- code to retrieve an attribute of.an icon
1 STORER —- code to store a value into an attribute of

an icon |

. Icons also respond to several queries and commands. (In Smalltalk parlance, theyrespond to "messages”.) The most important messages are "has", "run", "fetch" and "store":

3 <icon> has x y
| <jcon> run

3 | <icon> fetch <attribute>
1 | ~lcon> store <attribute> <value>
3 "Has" and "run" are discussed in Chapter 7-F. “Fetch” and "store" are generic access paths3 to the iconic state. Every icon responds to the messages "fetch" and “store”, but the actions
3 taken are icon-specific. In fact, the semantics of “fetch” (“store”) are: (a) bind some internal; variables to the rest of the message, then (b) execute the code in the FETCHER (STORER)

o attribute. This has great potential power, but it has been largely unexploited in the initial3 implementation of PYGMALION. See Chapter 5-C for the chief application. |

mn GN Sa a ll eat te i ne oA hhblend lsa TTois adiTmfh; ia ooii fh cic. ti dice lheleiad pki hilRTPTGofoadi i
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Section D -- Text Editors as Programining Languages

The actual implementation of PYGMALION 15 founded upon the following ;
observation: People using interactive text editors on a computer, even untrained people,
rarely make permanent-typ: mistakes 1n which they attempt to correct a line, fail to do so, £
and exit from the editor wi.h the line still wrong. Since the editor is interactive, the user (if ;he 15 paying attention) will see that the line is still wrong and will simply edit it again until :
he corrects it. Thousands of people have used interactive text editors, many of them 4
untrained in cornputer programming. Secretaries and office workers are beginning to use ;
them because it 15 so easy to create documents, correct mistakes, and change words. But ;
many of these same people shy away from programming because :t Is “too difficult” k

Text editors begin to lose their error-free characteristics when they become batch ;
oriented or when they employ complicated macros (for example, string-substitution macros) 7
that operate on large sections of the text before they show the results. With these types of :
editors, changes are sometimes made that were undesired and are not detected until later.

Let's examine the nature of text editors a little more closely. Without too much

difficulty, w.. should be able to see that text editors resemble programming languages i
operating on a restricted domain. Their operations, though restricted to text strings, have a :
functional similarity to operations in programming languages. For example, chan ing a 3
character in a text string is similar to changing the value of a variable. I'm not gcing to k
belabor this point; the reader will be able to find numerous similarities. Instead, note that 1
~ne difference between the two 1s that text editors forget their operations as soon as they H
have executed them. .% typical cycle 1s (1) prompt for & command, (2) execute the operation, |

| (3) display the result, (4) go to 1. In a program one wants the operations remembered, so i
that the program may be run as many times as desired. If, instead of forgetting, text editors I
remembered the operations as they were done, then the similarity with programming | |
languages would become even closer. With such a "remembering" editor, we would not only
be editing a body of text; we wouid also be writing a program that, given the same body of :
text containing the same errors, would automatically correct it. Furthermore, we could be I

; sure that if we correctly edited the text once, every subsequent processing of the same text
would also be correct! Of course this is seldom necessary, but some editors do maintain }
transaction files in case of machine crashes. At the heart of such editors is a powerful idea i
that may radically change the way software 1s written. For suppose that instead of limiting :
our editor to text, we expand its domain to include arbitrary data structures. And suppose }
we also eXpanu its set of Cperativne 10 eolulde arithmetic, eonditionals, subroutines ete i

d Then we find our once-meek editor assuming all the capabilities of a general-purpose |]
| programming language. And the motivation for doing this is our claim that it is a far E
| easier programming language to use. i
| BASIC PYGMALION METAPHOR: a program ic a series of ;

EDITING CHANGES to a DISPLAY DOCUMENT. Input to a 3

program is an initial display document, i.e. a display screen
containing images. Programming consists of editing the document.
The result of a computation is a modified document containing the
desired information.

:
B

: 1
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PYGMALION uses a remembering editor operating on iconic data structures.

PYGMALION differs from all other programming languages ii that there is no static

i representation for a program. One programs in PYGMA LION by doing the operations on
data structures directly, rather than by telling the program how to do them. When I first §

| began this project, 1 spent a great deal of time trying to decide what is a goodrepresentation for communicating with a machine. Should it be at machine-language level, 3
A or higher level? Linear or multi-dimensional? Procedural or descriptive? Pattern-matching :
A or imperative? Because of the reasons in Part I, I chose a two-dimensional representation b
8 for objects. But all two-dirensional languages I considered suffer from the same deficiency: E
1 they are too complex when representing the dynamic aspects of programming -- the |g
4 semantics of operations and the flow of control. The representation had to be articulate. It
3 had to correspond to representations in the mind. However I don't believe the current state
: of knowledge permits one to claim that some fixed notation is the mind's representation for :

any problem, let alone for all problems. In fact I believe that a myriad of representations
are used in everyone's. mind. The question then arises: why bother to have a predefined ;

E representation at all? The important thing is that the mind have a representation for a :
g problem. Why not just solve the problem and let the computer "take notes"? The answer,
3 which rather surprised me, is that there is no need for an intermediate, predefined level of
3 representation between the mind and the computer. Any intermediate level is Just extra work.
] The reason interactive editors like Engelbart’s "NLS" and Swinehart’'s "TV" are so easy to 1
5 use is that they don’t interpose an intermediate level of work between a person's intention to: do a task and the task itself. :

3 Section E -- The PYGMALION Machine | ;

3 In computer-aided design these relationships, between the aesthetic and bi
3 technical side, must be made explicit, must be clearly and precisely
4 formulated. There are two aspects of design to be considered: the visual I

and physical aspects of design as understood by the designer; and the :mathematical representation of the design and associated information ;
3 which is the form it takes inside the computer. f
! .- Anthony Hyman? |

Ee |

3
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Hardware

4 : ; 4 i
1 : ! (] “T# i

; Display with Keyboard and Mouse

3 To use PYGMALION, the designer sits in front of a television-like display screen. k
The one shown is capable of displaying both text and graphics. In front of the display is a 3

3 typewriter-like keyboard and a "mouse". A mouse is a small device originally developed at :2 SR] which has an X-Y tracking capability and three buttons on top that can be read under i
4 program control as three binary digits. Pressing a mouse button changes the corresponding :
ki binary digit from 0 to I, releasing it changes the digit back to 0. Associated with the mouse a
: i a cursor on the display screen, moving the mouse on the table moves the cursor i
1  arrespondingly on the display. The cursor instantaneously follows mouse movements, :
3 mouse tracking is done in machine language. An interactive computer, a graphics display
3 and a pointing device such as a mouse or light pen >ve the essential hardware ~lements of i
3 | PYGMALION. k
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3 Software )
3 When a programmer starts to use the system, the display screen shows the basic1 PYGMALION design environment. This provides a visual schema, an initial design :3 metaphor. The basic environment consists of six icons and an empty area called thei "design space’. The initial icons are named (1) world", (2) "menu", (3) “mouse”, (4) "mouse ]value", (5) "emembered"”, and (6) "smalltalk”. k

k. (1) [con "world" ;
Every icon is an instance of the Smalltalk class ICON. Two of the attributes :

possessed by every icon are a BOUNDARY and a CONTAINER.

1 BOUNDARY |
3 The BOUNDARY of an icon is a rectangular area of the display screen. An icon is ;1 capable of detecting when the mouse cursor is within its boundary. The boundary of the 31 "world" encompasses the entire display screen; therefore all icons shown on the display lie :3 within the boundary of the "world" icon. This sets up a correspondence between the physical ]4 and logical characteristics of the display. The upper left corner of the boundary is called E; the “origin”. All coordinates used by icons are relative to this point. When a 13 PYGMALION operation positions an icon on the display, it asks for a location for the 33 origin. The origin of the "world" icon is location (0,0) on the display. 3 | oo :

i CONTAINER 3
"Containment" is a natural characteristic of images. The rule is: |

) | The container of an icon "I" is the most recent icon created anda. currently being displayed whose boundary physically encloses I's ;
| origin.

The reason for this particular convention is related to the notion of “iconic context” and is
1 explained in Chapter 8. F. Ordinarily physical containment is the same as logical 3y containment; i.e. if the bouadary of icon A encloses icon B on the display screen, then icon |p A is B's CONTAINER. In the top two pictures below, icon A contains icon B; in the :3 bottom two pictures neither icon contains the other, because neither contains the other's §3 upper left corner. | |
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|
h,

4

A

| B |

i Iconic Containment :

5 An exception to the containment rule is provided by the "change container”3 command. (Individual operations are explained in detail in the next chapter) It is :
1 occasionally useful for icons to be logically connected while physically separate. The change ;E: container command explicitly sets the containment relationship between two icons. In the ;: example above, icon A could explicitly be made the container of B, or vice versa, by using ]

this command. |J i

3 Iconic Structures

3 The container attribute is an integral part of the interna! semantics of icons. It is‘ used to organize icons into hierarchical structures. The container of an icon is itself an 4A | icon. Every icon has a unique container, and every icon may, but need not, contain other gEo icons. If an icon does contain other icons, its VALUE attribute (discussed later) is said to :
| be an "iconic structure”. The VALUE of the "world" is an iconic structure containing ail ;
1 the top level icons. :

; iiia yd Bh hii hf eh hi fc y a
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icon |

2 An Icon Containing Three Sub-Icons E

94 An iconic structure is a collection of icons. The purpose of iconic structures is to
y provide a symbolic way to access all the icons on the display. Every icon is a member of
E some iconic structure. Internally iconic structures are organized as queues. New icons may fy

be added only to the back of the queue, but icons can be deleted from any position. i
A Internal descriptions of icons are in the form of index lists, in which each index is an offset
5 from the front of a queue. Since the boundary of the "world" icon encompasses the entire :
: display screen, all index lists begin with an offset in the "world’s" queue. Icons are
E recursively organized. In addition to being a member of some iconic structure, every icon :
| may contain its own iconic structure. The “world” is the root of the tree; it is the top-level
a. structure that provides access to all the other icons. The index list (6 3 5) refers to the sixth f
a. icon (call it "A") in the "world's" iconic structure, then to the third icon (call it "B") in A's 3
: iconic structure, and finally to the fifth icon in B's iconic structure. While (6 3 5) is a 3

Fregean representation internally, it is created analogically by pointing to the icon with the 3
mouse cursor (see icon "mouse" below).

E Since each icon has exactly one container, it follows that each icon must be unique. J
: Making a COPY of an icon creates a new icon, with its own unique container The i

container attribute may be changed by i

: (a) CREATEIing an icon; 1

4 | (b) FETCHing an icon from memory (core or disk). i

E | (c) COPYing an icon; 3
- 3
| (d) CHANGEIing an icon’s position; :

Eg | (¢) CHANGEing an icon’s contciner explicitly;

:
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:

)

: (2) Icon "menu’
: menu

As mentioned, PYGMALION uses an Interactive
remembering editor operating on iconic representations of data. Joos

: On the left of the display screen 1s a list called the "menu" of the oo :3 editing operations and submodes that are currently available. An Solete
] interesting aspect of PYGMALION is the scarcity and simplicity of CORY3 its operations. The trend among high-level languages is to include refresh1 more and more esoteric operations. PYGMALION runs counter to shou 14
3 this trend. There are only a few basic operations, and they are he4 grouped into four categories. | shape k
A structure -- operations which create and edit icons 3| themselves Le odes |
i. opcodes -- arithmetic and boolean operations on values . /
2 control -- operations which affect the flow of control in Sid :g- a program (conditional, iteration, subroutine) or :
3 others -- miscellaneous operations to save icons in ontrol
4 memory, turn remember mode on or off, draw a if
: shape, etc. repeat3 done 1
1 The principle structure operations are CREATE, DELETE and eval \3 COPY icons: CHANGE the size or position of icons; SHOW and return !
- REFRESH different levels of iconic structure; and fetch from and sthers i
3 store into the NAME, VALUE, SHAPE or BODY attributes of memory
1 icons. Fetching and storing attributes are comparabie to fetching disk :i. and storing the contents of a cell in memory -- the most primitive next E
2 machine operations. The opcodes provide the standard arithmetic display3 and boolean functions on values. The control operations provide rosea i2 conditional branching (IF), iteration (REPEAT, DONE), and oki
; cubroutine’ invocation (EVAL, RETURN). The miscellaneous traceid operations provide various other facilities that have been added constant :
3 from time to time: operations to save icons irr memory (MEMORY, plot
1 DISK), make line drawings (DRAW, TEXT), step through iconic exitstructures (NEXT), turn display and remember modes on and off ;
2 (DISPLAY, REMEMBER), trace the execution of iconic functions ¢
EE | (TRACE), fetch constant values (CONSTANT), make a hard copy :
1 | of the display screen (PLOT), and leave the PYGMALION :| environment (EXIT). No claim is made that this is a necessary, :
- complete or even the most useful set of operations. PYGMALIONA. ic intended to demonstrate how a set of operations (a display metaphor) can be implemented :
A iconically. The reader should be able to define his own set given the formalism presented :3 in this report. Additional operations can be added to the menu at any time. In fact, the :1 only difference between menu operations and iconic functions is that the names of the menu |
. operations appear in the menu. The reason names (a Fregear representation) are used In :
3 the menu is that there is not enough space to display all the operations graphically.1 However iconically-displayed operations can be created, and Chapter 5-B has an example of :
3 an iconic menu.
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E:

] Hyman has a perceptive comment on the use of menus:

: The presentation nf a menu of choice 1s a powerful working tool. With
] a well designed system a teaching manual is largely redundant the i

system incorporates a soit of programmed learning as a part of the
A design system It may be held that the rhetoric of a sub ject is not to be
| learned that way. but it will serve well enough for the three Rs. It |
| would also be of help to a designer transferring from one automateddesign to another. When the designer is freed from the burden of :
p attention to detail, which grows enormously in a real production system, :
§ his attention is freed for creative design.’ i

A menu provides constant reinforcement about the capabilities of the system. It relieves the :
4 | short term memory from constantly having to recall the available operations. E
py The programmer should quickly attain a high degree of confidence in the system ;
3 because

h: (a) each operation is simple and easy to understand; :A A

3 (b) its effect 1s immediately displayed, 3
- p: (¢) mistakes can usually be undone without harmful side effects. 3

3 A menu operation may be “executed” by pointing to it with the mouse cursor and pressing ;
y the top (DOIT, rouse button. 3
8 § 3

4 cons doit set point 3
3 create R 1
3 ghange cesessec=e del point] deletek C ceoecesoeees it .CY en Q ;

5 Executing a Menu Operation (note change in mouse state) |
| This typically sets up a new context In which subsequent commands are interpreted. :3 One effect is to proiect an interpretation onto the mouse buttons. \

J. }

1 :
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(3) Icon "mouse" mouse

The mouse is the primary input and control device in
PYGMALION. The two main uses of the mcse are to:

| (a) designate an icon |

E | (b) accept button commands. |
: | An icon is said to be "designated" when the mouse cursor is within its boundary. ;

Designating an Icon with the Mouse Cursor

Only icons currently on the display screen can be designated, and only designated i
he icons can be affected by menu operations. What you see is what you get. This is a |i simulation of the principle that only images in the brain's short term memory are operated i
-. on by conscious thought. The display screen corresponds to short term memory. Icons not ;
1 on the display must first be brought to display level by creating them or retrieving them. £
1 from storage. Core and disk memory simulate the brain's long term memecry. There is a 3A fairly accurate correspondence: :
1 T he Mind | The Computer | |
1 short term memory » display screen t
2 long term memory # core and disk memory I

conscious thought wh operations on icong |
; | (The simulation breaks down at the interface between short and long term memory. In
3 | PYGMALION icons are retrieved from memory by referring to their symbolic names, e.g. 1- vectorial” or “resistor”, under the control of a (conscious) menu operation. {n the mind that k- would correspond to bringing everything into short term memory under the contrci of iA conscious thought, which is certainly not the case. As pointed out in Chapter 2, creative :
2 retrieval is often subconscious and involuntary. However, the rest of the simulation is as 3

faithful as | can make it.)

: Actions are initiated by pointing to an icon with the mouse and pressing one of the ;
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: mouse buttons. The mouse is context sensitive, the mouse buttons have different
: interpretations depending on which icon the cursor is in and which operation is currently
] being executed. The "mouse” icon acts as a promt, displaying the current interpretation.

Descriptions of the interpretations are represented in this paper by the following picture. |
Explanation of the buttons |

| = 0 9 0 oe ee top ut ton :
! pallial middle button

bottom button :

3 For the menu, the interpretation is:

$ Execute the operation pointed to

mouse value |
: In PYGMALION, the mouse has a value associated with it, in addition to its cursor ;
4 and its buttons. Several operations like NAME and VALUE use the mouse value.
| : Fetching an attribute from an icon may be thought of as attaching it to the mouse. Th :
1 value may then be deposited in some other icon. The "mouse value” icon shows the current 3
3 ) value attached to the mouse. | :

3 Are 48 pf
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remembered

B+

: In “.emember" mode (explained later) the system keeps track of operations as they’ are done and inserts them in a code list. The last operation or two remembered (i.e. in the
3 current code list) is displayed in the “remembered” icon. :

) (6) Icon "smalltalk smalltalk ;

=. This 1con 1s for communicating with Smalltalk. When the mouse cursor Is in this ;
4 icon, Smalltalk expressions may be typed and evaluated. In addition, other information
E about the state of the system is periodically displayed in this icon.

The Design Space ;4

The rest of the screen is a large area called the “design space’, available for
% | displaying iconic data and program. The design space !tes within the "world’s" boundary, 3

; of course. The programmer performs computations in this environment by pointing with :
: the mouse cursor to operations in the menu and then selecting operands from the data Co :structures in the design space. At times an operation may request linear data, eg. a number. . ;
| or string, which may be input from the keyboard. The result of every operation is I
3 immediately displayed; if it is not what was intended, other operations can be executed until
3 the desired state is achieved.

4 Routines are written by editing actual data structures and performing operations on3 actual operands. It is programming by example. Instead of trying to imagine what data :
i objects are being passed around, the PYGMALION designer manipulates the actual
y: objects. And instead of telling the machine the sequence cf operations to perform by
3 putting them down on paper, the PYGMALION designer does them himself, and the |
EL | machine records them. With very few exceptions, programming languages have required
3 | programs to be written with formal arguments. This additional level of abstractness |4 obscures the meaning of routines and is the single most:important souice of programming :
Be errors. In PYGMALION even formal arguments can be visual images of structures. For |
| example, the structure of a data object can be concretely described while the values of the ;
A. fields are formally represented. The following Is an example of an iconic structure thata might be used to represent the concept “person” in varying degrees of tangibility. Even |
- 3 more concrete information could, of course, be shown; the degree is up to the designer. Thechile “Bobby” below may itself be a reference to an instance of PERSON, and it could be |
3 displayed to the same level of detail if desired.
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! ;
name E

a occupation p
: street address :
s city address :

state address

: ;

; Degrees of Representation of the Concept "PERSON" /
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Modes of Execution

| T here are two modes of execution in PYGMALION:

(1) Display mode |

: (2) Remember mode. |

: Every operation has a well-defined meaning in each of the modes, but not every operation
does something in each mode.

: (1) Display mode provides a means for communicating the semantics of operations
J visually. In display mode each operation shows iconically the results of its execution. This i
i permits the user to remain in the display metaphor without having to deal with the internal ¥

semantics of operations. Display mode is usually on nile a program is being written. It is
also turned on when an iconic trace of a program : = sired. Display mode may be turned |

3 off to gain additional speed of execution, since the display code in each operation will then |
not be executed. |

1 (2) Remember mode is for writing programs. In this mode the designer does the |
computation and the machine remembers each operation as it is done. The operations place Is
themselves in a "code list". When the computation is complete, the designer executes “stop |

3 remembering” and assigns the code list to the BODY or SHAPE attribute of an icon.
Programming in remember mode corresponds closely to the debugging process in most 1
languages. Remember mode 15 similar to an interactive, display-oriented debugger that J

| permits operations to be inserted and deleted in the code and that permits execution to be
initiated from any point.

PYCMALION routines may be partially written and run while only partially
$ specified; the specification has to be completed only when the code is about to be executed.

This 1s frequently done with conditionals. When a program is written using actual data, :
only one branch of a conditional “ill be taken, with th= other branch being left until (and {
if) 1t 1s entered. Every code list ends with a trap to the user asking for more instructions. If

: the list is completely specified (i.e. terminated with "stop remembering”), the trap is removed. |
| Only if the trap on a partially specified branch is encountered will the programmer have to |

give additional instructions. :

An unusual aspect of PYGMALION's remember mode is that it does not involve a
| compiler from the display-level actions to the machine-level actions. Rather each operation |

is its own compiler. Each operation is responsible :

(a) for accomplishing a given internal machine task -- the machine "semantics i
J. of the operation, 3

by

(b) in display mode, for generating a representative visual action; 1]3
3

(c) in remember mode, for adding onto the current code list the operations) i
necessary to reproduce itself. i

The operations added are “primitive” in the sense that they are not built up out of other :
§

:

L % |
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: operations available to the program designer. (An exception might he a macro-operation dq
{ added by the designer to do some commonly-repeated task.) Thus the product of remember |
| mode 15 a code sequence of the lowest-level operations possible. Ideally all or parts of these

operations would be coded in machine language or microcode. In the current
implementation they are coded tn Smalltalk. |

\ This concludes the basic hardware and software elements in the "PYGMALION
machine”.

. Section F .- Characteristics of Programming in PYGMALION |

; Using PYGMA LION causes several changes in the way software 1s constructed:

(1) One maw expect to write error-free programs the first time. This 1s not the usual (4
: case with programming languages, where a great amount of theory and effort has been

spent on the debugging process. It is the case with interactive text editors. The relevant |
4 characteristics are: (a) The system 1s highly interactive. The results of operations are
; immediately visible, and mistakes immediately correctable. (Therefore PYGMALION must I
i be implemented on a computer that permits interaction, for example on a time-sharing :
: system or mini-computer.) (b) Operations are primarily concrete rather than abstract. Some 3

operations are inherently abstract, such as evaluating a subroutine or iterating over the "ith" 2
4 element of a structure. But most operations are explicitly represented and their

consequences immediately displayed. This concreteness simplifies the model-building
(understanding) of the programmer. (c) Data and program are visually represented.
Programs are display documents that can be visually examined and changed until they k

| contain the desired information. ;

i (2) The standard mode for writing programs is what other systems consider to be |
y debugging mode. In the traditional writing mode, one works out the logic of a prog.am and

organizes the operations that will implemen: that logic. in debugging mode, one observes ]
the step-by-step execution of operations on actual data, interrogates key values at certain :
times, and corrects (or at least notes) those operations that are in error. In PYGMALION ik

= there 15 no difference between the two modes. Designers of large systems, such as operating 1
systems and programming languages, are beginning to realize that debugging tools should :

' be designed and implemented first, as an integral part of the project. The more complex a 3
system 1s, the stronger is the need to see what 1s going on. PYGMALION extracts the

| useful features of debuggers and integrates them directly into the programming process. i
| (3) The Auman programmer is considered to be part of the execution of the program. ;
1 A program need not be completely specified in machine-executable terms. At certain points

the human may be called upon to guide the machine through more operations, with the |
1 machine remembering what the human does. Thus there is a distinction between two kinds

| of programs in PYGMALION: “open” programs and “closed” programs. An open program
consists of one or more machine-executable operations, of which one or more are requests
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for human intervention, a closed program Consists of one or more machine-executable

E operations, none of which are requests for human intervention. The program is “closed” in
the sense that the human has told it everything it has to be toid. With few exceptions,

i conventional programming languages require closed programs. Production software (i.e.
: intended for use by other people without the writer being present) should be closed. But |
! software in development may, and in fact should, be "ope, since such software is far easier

to create. |

(4) No additional medium besides the computer is used in designing software: no F
4 paper listings, no punched cards, no scratch paper. Routines are. specified dynamically

| rather than statically, by doing rather than by telling. There has beer: no attempt to make a
] static :=presentation for a dynamic process. A listing of a PYGMALION routine is a movie, 8
; a sequ.nce of display frames. Examples of such movies are found in Chapter 8. i

4 Section G -- PYGMALION versus Automatic Programming

It is characteristic of computers that each time they intrude into a new 3
] sub ject they force practical decisions on questions which have hitherto |
1 been considered of a philosophical character, more suited to meandering §; discussions over cups of coffee far into the night than to the prosaic i
: daylight world of industrial practice. ik
k -- Anthony Hyman’ i

The goals of PYGMALION are quite different from those of automatic |
programming. The general goal of automatic programming is to automate some of the i
programming process. In the ideal system, the human specifies the goal of the program in |

] the form of input/output relations. The computer chooses internal representations, 13
3 organizes the logic, maintains consistency, verifies correctness, and so on. Such tasks are: problem-independent; they involve techniques that programmers learn from experience and i

: apply to many different programs. By extracting problem-independent aspects, automatic 3
] programming hopes to make the process of programming easier Balzer'9? presents an i: example of a person communicating the semantics of an airline reservation system to a F
FE | hypothetical automatic programming system. It is evident that such a system would require |
- less superfluous detail than would conventional programming languages.
- H| However there is a danger in this, if carried too far. By making the computer into a |“black box” that does the actual programming, the user has to think less about the logical |

structure of the problem. Furthermore, the user's interaction with the computer is on a |
J verbal level. Verbal communication is Fregean and inhibits understanding the developing :
A program. The questions that Balzer has his hypothetical system ask often seem obscure,

| since the user does not know what logical relationships the computer is forming. The :
computer may even ignore the user's recommendations, for example on internal

fe | representation, if it thinks it knows better. If successful, automatic programming systems

i ehA aHM Hi a rT , 5
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| 4.G  PYGMALION versus Automatic Programming gj3 will replace some fairly high-level thinking processes in humans. Instead of encouraging
humans to do more and better thinking, automatic programming may encourage humans to do

] less and poorer thinking. At any rate, automatic programming is unlikely to stimulate the |
: development of new problem-solving techniques in the user.

3 On the other hand Kay and Papert have shown that learning to program can |
; actually improve children’s thinking and learning skills. The notion of debugging is }
3 particularly frutful in giving children new learning strategies. Programming can serve as a It
1 catalyst for creativity, knowing how to program can provide the schemata necessary to solve ki

: problems, just as knowing how to play chess if frequentlv useful in real-world situations.
i With an articulate interlace, computers can form a symbiotic relationship with a person |

which will vastly increase his thinking power. PYGMALION and systems such as those i
; |

| mentioned in Chapter 3 are attempts to provide such an interface. 1
; 0

3 |
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oo }| Chapter 5
|

The Internal Structure of PYGMALION i
: |

1;

5 Summary

1 | (a) Icons can exist on a variety of conceptual levels: as pictures, symbols or |
signs.

3 (2) PYGMALION is a remembering editor for icons. Operations are provided
g to deal with icons on each of their levels.

Section A -- Smalltalk | |
3 PYGMALION is implemented in Smalltalk, a language designed by Alan Kay and
: implemented at Xerox PARC by his Learning Research Group. I highly recommend Kay's i1 "personal dynamic media” and Smalltalk papers! 972()10720),1978 for an en joyable reading |

experience. Smalltalk is an interactive symbol-processing language with flexible display
4 primitives. Smalltalk, like LISP, is an interpreted language, with an evaluator for implicitly; and explicitly evaluating objects. The dominant characteristics of Smalltalk are ita notions iof "class" and “intrinsic semantics”. In Smalltalk every object is an instance of a class. :Classes themselves are instances of the class CLASS. This provides an elegant and :

consistent internal structure, even more consistent than pure LISP. :
Communication between instances is done with "messages”. A message is a sequence

3 of symbols. The set of messages that a class can handle, together with the responses to those || messages, constitute the “semantics” of the class. (Hewett'?’3 has derived a similar concept
] called “actors” from these Smalltalk idees.) Since the code for processing messages is internal |
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! to the definition of each class, the semantics are said to be “intrinsic” to the class. Neither1 ‘he evaluator nor other classes know about the internal workings of a particular class; they
- know only to what messages the class will respond and what form the responses will take.
3 The class NUMBER responds to the message "+" by performing an addition, but how it
3 manages to accomplish the addition 1s usually not of interest. This differs from most other k4 systems 1n which the semantics of ob jects are represented "extrinsically”. In compilers the §3 semantics of data types are represented by the code the compiler produces for them. Data t

types themselves have no intrinsic meaning; their meaning is distributed among the code
> generators. Having the semantics localized in a single definition is a significant aid to| understanding and modiiying data types. |

! Classes and Subclasses

Smalltalk is a descendant of the original SIMULA [Dah!'%%%] and FLEX[Kay!%9] |
g Unlike SIMULA-67(Dahl'®%), however, Smalltalk classes normally exist on the same
4 conceptual level; that is, one does not normally think of Smalltalk classes as being subclasses
: of other classes (except class CLASS). Here we will briefly discuss the concept ofhierarchical classes, since iconic data structures (cf. section D) are hierarchically organized.
3 Hierarchical classes are not currently in Smalltalk, though they can be simulated. 3
- The key principle of hierarchical classes is that a subclass is an instance of an |
gr instance. Currently Smalltalk ob jects are classes, instances of classes, and activations of i
i instances. The notion of “subclass” involves a new kind of object: an instance of an ¥instance. One creates an instance of a class, as before, and gives it instance-specific state

information Then one makes a copy of it, preserving all the filled-in state. Additional
| information is then added to the new instance, making it a subclass of the original instance. 3
| Subclasses are recursive, a subclass can itself have subclasses, forming a tree structure. To

implement hierarchical classes, Smalltalk would need the additional capability of |dynamically adding attributes to instances. This is necessary if changes to attributes at a |
| subclass level are not to alter its superclasses. PYGMALION's iconic classes provide this

capability since additional icons can be added to iconic structures at any time. 4
| There are two kinds of behavior that subclasses can exhibit: |

] (1) Upward Mobility b
: (2) Downward Mobility 1

These refer to the information (and hence control) paths between class and subclass. ]

} (1) In "upward mobility", each subclass can access all of the knowledge of all of its 4superclasses. In addition each subclass has some information of its own which causes it to 3be distinguished from its immediate superclass. For example, the class HUMAN might be k
1 discriminated into subclasses MAN and WOMAN based on the additional information,; SEX. 3

1 :
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: HUMAN
;

MAN WOMAN

: ‘his additional state may involve changes :n the values of superclass attributes, or it may i
_ entirely new attributes not present in a superclass. Changes made at the subclass level H

i do wot affect its superclasses. For example, if subclass MAN changes the attribute HAIR- |
1 LENGTH to SHORT, the change occurs at the subclass (MAN) level, not at the superclass

(HUMAN) level.

1 The key aspect of upward mobility 1s the access method that subclasses use to retrieve 1
4 information. In what we might call "dynamic upward mobility”, a request for the value of arn |
A attribute begins at the level making the request and searches up the tree of superciasses }

antl it find the first occurrence of the attribute. This is the most general form. SIMULA.

. 67 uses a more restricted form, which we might call "static upward mobility". SIMULA
| coples superclass information into each subclass, so a subclass can access only the ]
A information that exists in its superclass at the time the subclass is created. No new

knowledge can be added dynamically. (Actually creating subclasses is a compile-time action
in SIMULA: at run-time SIMULA does not even remember the class-subclass relationship.) 4

| (2) In "downward mobility", any change in a superclass is reflected in all of its E
! subclasses. Again we might further discriminate this behavior into "dynamic downward 3
. mobility" and “static downward mobility". Suppose the class HUMAN possesses an attribute 3
gh | called NUMBER-OF-LEGS, and suppose its value suddenly changes from 2 to |. In the ;
3 dynamic form, all the subclasses of HUMAN (ie. MAN, WOMAN) are immediately |
A updated. In particular, any instance of HUMAN drawn on the display screen would now b
] be drawn with only one leg. In the static form, the change will be observed by the |
: subclasses if they ever ask for the value of the NUMBER-OF-LEGS attribute, but 1

otherwise they will never know. Static downward mobility is equivalent to dynamic upward 1
mobility. | ]

Dynamic upward mobility requires that there be a link from each subclass to at least i
] its immediate superclass and that the access method for attributes search back through the 3

tree. Dynamic downward mobility requires that each superclass have links to all of its A
i subclasses and that the "change attribute” operation be monitored, so that changes in a ]
3 superclass can be broadcast to the subclasses. Static upward mobility as in SIMULA does
j not require the presence of links, but it has the unfortunate trait that each subclass must be
Bu larger than its superclass, since the superclass information is copied into it. By the time one i
-» gets to the leaves of the tree, the subclasses might be quite large. |]

3 : Smalltalk has proven to be an exceptionally flexible language in which to implement
} PYGMALION, as well as a fascinating language in its own right. The SIMULA notions 11
un of subclasses have also proven useful. i

t
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3 Section B -- Iccis as Pictures

Icons derive their power of expression from the fact they are abstract in content but
concrete in shape. The virtue of abstraction is that many different instances can be |

: handled within one framework. The virtue of concreteness is that it provides a schema for i
organizing thought and reduces the possibility of mistakes. Arnheim points out that mental I

1 images can assume different functions: they can be signs, symbols or pictures of their values.
1 PYGMALION icons can also assume any of these functions. This section deals with their p
3 most concrete use, as hictures. The operations described here all deal with the visual |
; properties of icons themselves, as they appear on the display screen. The picture operations t

are:g {i

CREATE

| £

CHANCE — wm

i

: ¢

VALUE |10 |
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The user interface 1s basically the same for all of these, so we will only describe
CREATE in detail. Executing the CREATE operation in the menu establishes a context
for the mouse. The mouse icon will show that the user can now

: mouse Set a point (a corner of an Icon) ¥
: set point .
4 del point Delete the iaet point set

= The user moves the mouse cursor into the design area and presses the top button. This i
] fixes one corner of the rectangular boundary of an icon. As the mouse is moved around, the i

opposite corner follows the cursor, dynamically changing the shape of the rectangle. The |
3 middle button may be pressed to start over. Once an icon is started, pressing the top button ;

| a second tirae fixes the opposite corner. This completely defines the boundary of an icon.
Each icon starts off with its boundary as its shape, but it can be given a fancier shap-.

; The DELETE operation is the inverse of CREATE. The CHANGE operation can be :
3 used to change the position of an icon, the size of its boundary, or ts CONTAINER3 attribute. }

The CREATE, CHANGE and DELETE operations have internal semantics in t
3 addition to their display actions. As explained in Chapter 4-E, every icon is a member of
ES exactly one iconic structure, and every icon can (but need not) contain its own iconic
] structure. The CREATE operation adds the created icon to the structure which contains its |

origin. If no icon encompasses its origin, it 1s added to the "world's" iconic structure.
} Similarly for DELETE: the deleted icon is removed from the structure in which it occurred. . .
: Normally physical containment and logical containment are the same: an icon logically
: contains another icon if it physically encloses the other icon's origin. The CHANGE 1
1 operation can be used to explicitly change the container, and thus the structure containing, Hl

any icon. This enables icons to be logically linked while physically separate on the display i
1 screen.

1 (Aside: Most icons are pointed to only once, but multiple references to icons may be
created if iconic structures are treated as values. For example, if the value of an icon is an

] iconic structure, and its value is “fetched” and then "stored" in another icon, there will now
= be :wo references to all of the icons in the structure. This is dangerous and notrecommended. However it is sometimes done by the system in controlled circumstances.)

: The COPY operation gives icons class/subclass characteristics. An icon can be
- constructed. which represents a template of a class. For example, the following is an iconic

menu of classes of circuit elements. The elements are all icons which have been given |
| various pictorial and internal properties. The COPY operation can be used to create |

instances of each class. All properties are copied by value, not by reference. Thus iconic
J subclasses display static upward mobility (cf. section A) in the current implementation. With Ithe COPY operation items can be selected and positioned on the display without leaving |

the iconic metaphor -- that it, without having to refer to them symbolically.

| |
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| The SHOW and REFRESH operations cause different levels of iconic
: representation to be displayed. The REFRESH operation simply redraws an icon at its
| current level. This is useful if it has been obscured by other drawings. The SHOW

operation sets up the following mouse context. |

i ohm Show the NAME of an icon |
shou value Show the VALUE of an icon

[ shou shape Show the SHAPE of an icon

g | Usually pressing any of these buttons simply causes the corresponding attribute of the !
) designated icon to appear on the display. However there are several special cases. If the

| NAME of an icon (see the next section) is already being displayed when the "show name” |
] button is pushed, the effect 13 that (a) the name of the icon's container is displayed, and (b)

g all of the icons in the container’s iconic structure are erased. If the VALUE of an icon (see
| the next section) is an iconic structure, then pressing the “show value” button causes all of |y the icons in the structure to display themselves. The "show name” and “show value” |
= buttons can thus be used to move up and down in iconic structures, selectively displaying or I
| suppressing structure. If an icon has a shape routine defined for it, then pushing the "show

shape” button causes the shape routine to be evaluated. |

; SHAPE Attribute and Operation | Co

| The main pictorial attribute of icons is: |

SHAPE -- code to draw the icon |

: The initia! shape for an i.on consists of the rectangular boundary with its name inside it. |
J The default name is “icon”. :

MN - A

{ Default Iconic Shape i
; :

- y
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The default shape emphasizes the concept of “container™ an icon is a cell which can

hold information It also indicates that the cell has a name and can be referenced
symbohcally

| However icons are not hmited to rectangular shapes. In general the value of an l
| con's SHAPE attribute 1s a user-definable routine which displays the icon's surface-level1 structure A shape may be any dispiav image that can be generated by a routine. This

flexibility allows the iconographer to design his metaphors. He may give them whatever |
shape he considers appropriate 10 their meaning. This 18 another example of fr

J PYGMALION's attempt to program in the language of thought.

I

|

| header | (length AM |

preface back pointer 4

1 J |
+] = |0 k

:

sw] |

Some [cons with Fancy Shapes

a

Any icon can be given a fancy shape, regardless of its intended use: picture, |
: variable, function, data type, etc. The value of the shape in communicating semantic intent |

3 is entirely dependent on the user's skill in designing images. It 1s the task faced by artists in fcommunicating with the public. PYGMALION presents an empty canvas with only a few |
: pre-defined icons and operations. A suggestion for the future (Chapter 7) is to develop
! within the PYGMALION paradigm a more extensive graphic vocabulary to serve as

1



| 100 Icons as Pictures 5-B || |: schemata for the user. But the initial system presents just the tools and not the patterns fordesigning icons. (For those who can't draw, PYGMALION does provide tools for definingA rectangular shapes: CREATE, COPY, CHANGE) Defining a shape routine is exactly like |defining an iconic function, except that the code assembled is put in the SHAPE attribute
instead of the BODY attribute. Shape code is evaluated with the “show shape” button in

: the SHOW operation. (Function code 1s evaluated with the EVAL operation.) The |SHAPE operation is used to define shape routines. The procedure is to put the system in
“remember” mode, and then execute menu operations which draw the shape. This is
discussed extensively in the section on icons as functions, section E. While any menu |
operation can be “remembered”, the two most useful ones for shapes are DRAW and
TEXT.

3 DRAW Operation
The DRAW operation is used for making line drawings. It sets up the following

| mouse context.

MOUSE

star’: line Start a neu line
stop line End the current line

quit Quit

Pressing the top mouse button causes a new line to be started at the current position of the |
mouse cursor. As the mouse is moved around, the other end of the line will dynamically

3 follow the cursor (Sutherland's “rubber band” line). When the top button is pressed again,| the other end point is fixed at the current cursor position and a new line begun from there.
Pressing the middle button causes the end point to be fixed without starting a new line.
The bottom button leaves the mouse context. The lines are all relative to the origin of an
icon designated by the User; if the icon changes position, the lines move with it.

ie
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Drawing a Resistor

TEXT Operation |
Text strings can be included in pictures with the TEXT operation. Executing it (a)

first asks the user to type a string in the “smalltalk” icon, (b) then asks him to designate an
icon to use as a base position, and (c) finally asks him to position the text on the screen.
The text 1s positioned relative to the origin of the designated icon. As with line drawings, |
if the icon moves, the text moves also, maintaining the same relative position to the icon's
ongin :

Section C -- Icons as Variables

The mathematical concept of “variable” has the attributes NAME and VALUE
associated with it. These attributes are preserved in PYGMALION because icons can serve |
as variables

NAME -- a string

VALUE -- any object; e.g. number, string, vector,
icon, iconic structure |

But PYGMALION variables can have an additional attribute not usually possessed by
variables. a SHAPE. For example, a variable which is to be bound to resistors might be |
represented by an icon having the following attributes: :

;
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j

NAME —— "R"

| VALUE — unbound

SHAPE — AM

NAME Attribute and Operation

| The NAME attribute is an ordinary string of characters and is one way to refer to |
an icon. Names are used to suppress detail when complex structures are being manipulated.

: They can refer to icons without causing their shapes to be displayed. Names serve the samefunctions In PYGMALION that words serve in conscious thought: they provide a referenceto other structures without exhibiting the full detail of the structures. Just as the referentsof words, riot words themselves, are used in thinking, the referents of names (i.e. icons) are
| used In computations In PYGMALION. This correspondence is another of the ways inwhich PYGMALION attempts to bring programming closer to thinking.

: Examples of names: "x" |
| "a|ongname""a multi-word name"

"a strange @'1283+._.& name" .
"UPPER AND lower case LETTERS" |

The name of an icon can be changed by using the NAME operation in the menu. :
Executing the NAME operation sets up the following mouse context.

mouse Fetch the name attribute |
Store the name attribute

Quit '

The top button attaches the name attribute of the designated icon to the mouse. The )middle button deposits the mouse value in the name attribute of the designated icon. The ||



rralae ar Talo aa — el lib JE rR oil ae
nC. lcons as Variables 103

bottom button leaves this context. With these buttons the user can point to icons and
manipulate their NAME attributes. The effect of the buttons depends on the icon
designated, it 1s not the same for every icon. "Fetching” a name from the "smalitalk” icon

3 causes a “read” to happen; the user may then type in a name or something which evaluates
| to a name. “Storing” into the “smalltalk” icon causes the value attached to the mouse to beprinted. “Storing” into any of the other initial icons ("menu”, “mouse”, “mouse value”,

“.emembered” or "world" is illegal.

VALUE Attribute and Operation |bi

The VALUE attribute and VALUE operatiofi are identical to the NAME attribute ;
| and operation, except that the VALUE attribute can be any ob ject in the system, not just aP| string as with the NAME attribute. Since the VALUE of an icon can be any object, in
| particular 1t can be an iconic structure. (Recall that an iconic structure is an orderedcollection -- a queue -- of icons) Each of the icons in the structure can be usec as 2

variable, so that any icon can effectively have more than one value. Indeed any sub-icon
! can have its own 1conic structure as Its VALUE, and so on indefinitely. In this way entire

structures can be built up and manipulated.
;

Examples of values: atom i
1393 t
"a string" - —

| (a vector)

|
: ?

| |
|
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| Note that the NAME and VALUE operations, like the picture operations describedin the last section, are perceived by the user as editing operations on display images. They y

change the contents of the display screen as part of their execution. They also change the
internal state, of course, but the mapping between this state and the display screen permits
the user to deal with them on the display level, without bothering about the internal
implementation. He perceives his task as editing the display screen until it contains thedesired information. |

4 [;
3 Section D -- Icons as Data Structures ||

3 As mentioned in the previous section, an icon can have an iconic structure as its3 value. In that case we say the icon “contains” the iconic structure. That terminology derivesfrom the fact that the iconic structure usually occurs physically within the boundary of the
icon, as is the case with the example presented below:

An Iconic Structure Consisting of Three Sub-Icons
|

= Since sub-icons can themselves contain other icons, structures of any degree ofcomplexity can be built. The structure may be a single level deep, as in the array below, |
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|

| |

An Iconic Structure Representing an ARRAY |

or the structure can have nested sub-levels.

py flags k: preface back pointer I

relocatabl ¢
: ____sweepable

Nested Iconic Structure

EK Classes of ob jects can be constructed by creating an iconic structure containing tne k
desired number of subfields, filling in the relevant sub-fields with type-dependent 1

= information, and then saving it in memory or on the disk. This provides a visual template :
for the data type. The following are steps defining a class of 10 ohm resistors. i
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; Create an Icon icon
1
-

Give it a NAME roster d

Fill in the VALUE :

:. 10 |
Draw a SHAPE

g

] If we wanted arbitrary (instead of 10 ohm) resistors, we could simply leave the |
: VALUE attribute unspecified. This is a very simple definition, involving no substructure. I

A more realistic simulation of resistors might have sub-icons containing current flow, |
connectivity information, and other model-specific details. The design flexibility and the I

; visual concreteness of iconic structures permit the programmer to use them effectively to

represent his ideas. They serve as schemata in thought. |
)

y | Section E -- Icons as Functions i

a. Another attribute possessed by every icon is: :
BODY -- code for functional semantics

i This permits icons to represent functions. The BODY of an icon can be evaluated at any
i time by executing the EVAL menu operation and then pointing to the icon to be evaluated.
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}

Since the EVAL operation, like all operations, can be “remembered”, subroutine calls to
| tonic functions car be included in a function's definition. An iconic function can EVAL

itself, so that recursion is possible. This is similar to Radia Perlman’s Button Box, but
PYGMALION includes conditional and iteration operators for execution control. (Recall

i that Perlman’s procedures had no way to terminate recursion.)

| Defining Iconic Functions

: Iconic functions can be defined in PYGMALION by executing the BODY
| operation in the menu. Basically this entails putting the system in “remember” mode and
b then doing the calculation to be performed by the function. This is precisely the "dynamic
i programming” philosophy of the Unimate robot, HP-65 calculator and Perlman Button
Ht Box: the programmer “teaches” rhe machine a procedure by doing it once. The following
: are the steps necessary to compietély define a function

: (I) Create an icon. This is called the “function’s icon” and serves as the
| framework for the definition. The code for the function will be put in the

icon’s BODY attribute.

| (2) Give the icon a symbolic name. Symbolic names are used to invoke :
functions that are not on the display screen (i.e. that are in memory or on
the disk) The function need not have a name if it will never be invoked

symbolically, in which case it is like an unlabeled LAMBDA expression in
LISP.

(3) Create sub-icons in the function's icon to hold individual arguments to the
function. This makes the functions icon into a formal "argument icon". |

| This need not be done if the function takes no arguments.

(4) START REMEMBERING.

(5) DO THE COMPUTATION ONCE.

(6) Create sub-icons in the function's icon to hold the values computed. This
makes the function's icon into a "value icon”. This need not be done if the
function returns no values. Frequently the same structure can be used both

| as argument icon and as value icon.
(7) STOP REMEMBERING

The argument icon and the value icon provide the communications interface
| between routines. Anything in the argument icon when a function is EVA Led may be used

by the body of the function. Anything in the value icon when the function returns may be
used by the caller. It is easily seen that functions in PYGMALION can take zero or more |

' arguments (the contents of the argument icon) and return zero or more values (the contents
of the value icon). So we get multi-valued functions easily. The argument and value icons

1
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can be any size. In particular they can cover the entire design area. In that case everything
on the display screen is passed to and returned from the function

As with iconic data structures, the argument and value icons correspond to the
| schemata used in thought. Once the argument icon is displayed, the designer fills it in with
| actual values. This eases the problem of interfacing procedures since the called procedure

Ei can display the structure of the arguments that it wants. It eliminates a major source of
it bugs: calling a procedure with the wrong number or type of arguments. Similarly the value
Fi ican helps to reduce confusion about the values functions return. A cleverly designed value
| icon can be of substantial assistance in keeping values straight. In a large program with

many procedures, it is a difficult task to remember the calling/returning conventions.
Fregean descriptions of parameters (e.g. "ARRAY X", "LIST L") provide little help. One of
the aspects of PYGMALION 1 like best is the very real assistance provided by concrete,
analogical argument/value icons.

3 Icons representing functions can, of course, have any of the other attributes of the
#4 class ICON, such as a SHAPE routine.

| Remember Mode

_ "Remember" mode is one of the two modes in which PYGMALION can operate.
| (The other is "display" mode.) Remember mode is entered by evaluating either the BODY

or the SHAPE operation in the menu, depending on whether the ucer wants to define a
function body or an iconic shape. (Actually the difference between the two is purely a
matter of convention; the SHAPE attribute could be used to hold a second function body if

" the programmer so desires. Both attributes use the same set of operations) When the
BODY or SHAPE operation is executed, an empty “code list" is placed in the corresponding :
attribute of the designated icon. A “code list" is a sequence of operations. A reference to
the code list 1s also placed in the “remembered” icon. The code list in the “remembered”
icon is called the “current code list". As mentioned in Chapter 4, each operation in the
menu is capable of adding itself to the current code list. An internal flag called
REMEMBERMODE controls this: when true, operations execute and add themselves to the
current code list; when false, the operations simply execute. The BODY and SHAPE
operations set REMEMBERMODE to true. The “stop remembering” option of the
REMEMBER operation sets it to false when the computation is complete.

| There are several display indications that the system is in remember mode. The

| notation "remembering..." appears at the top of the screen. The last operation or two done| is shown in symbolic form in the “remembered” icon. The picture above shows that the
| user has just fetched the value 9999 from the fifth icon ("smalltalk”) and stored it in the

sixth icon (in the middle of the screen). Then the REMEMBER operation was executed to

display the “remember” options available: remembermode can be temporarily suspended and
then resumed, or stopped altogether. The suspend/resume option is useful to make

| ad justments to the display screen without having the operations remembered.
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i Calling Iconic Functions -- Iconic Contexts

H Each iconic function carries with it an “iconic context”. An iconic context is an

; image of the display screen -- the state of the display that exists when the function is first
defined. Internally an iconic context is just a copy of the “world's” iconic structure, in which

q the icons are copied into a new iconic structure by reference. Iconic contexts are necessary to
| insure that the display screen looks the same when a function is evaluated as when it was
| ‘fined. (This is explained further at the end of the next section.) The following are the
4 ste; = involved in calling an iconic function; the steps marked with an asterisk (:) are done
Hb by u..e user.

(1%) The argument icon for the function is brought to display level. Recall that ,
| the argument icon is an iconic structure containing cells for all the
| parameters to be passed to the function. The icon is displayed by retrieving

it from memory, from the disk, or by making a copy of an icon already on
the display screen. The parameter cells are then filled in with actual values.

; (2x) When its argument icon is sufficiently (not necessarily completely)
instantiated, the function is evaluated with the EVAL operation.

(3) The display screen is set to the function's iconic context. The display screen
now contains the same number and types of icons as it did when the
function was defined, except that the newly-instantiated argument icon
replaces the argument icon used when the function was written.

| (4) The BODY of the function is executed. Recall that the BODY attribute of
an icon contains a list of menu operations. Some of the operations must
place the values to be returried into the argument icon, turning it into a
value icon.

(5) The display screen is restored to its state before step (3), except that the
| function's value icon now appears where its argument icon used to be.

(6+) The values in the vaiue icon are attached with the mouse and deposited in
other argument or value icons, for use in further computations.

] Normally iconic functions should be defined with no superfluous icons on the screen.
: However some interesting effects can be acheived through the judicious choice of
| “permanent” icons, icons which remain on the screen across function boundaries. They can |

provide an alternative means of communicating between functions, similar to global |
variables in other ianguages The following is an iconic context with a four-icon interrupt
vector in one corner of the display screen. This can remain on the screen, and thus appear
in iconic contexts, for a number of functions. Any of the functions can set or interrogate
the icons. The icons themselves can be iconic functions that the user evaluates after he

fetches or stores their values. This is an iconic version of software interrupts

|
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| A Shared Structure: An Iconic Interrupt Vector |
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Another possibility 1s to create a set of shareable cells for use as global variables
The picture below shows a four-cell structure similar to a FORTRAN "COMMON" area,
of which three are taken by the (global) variabies X, Y and Z. If more cells are needed, the
user can always add additional icons to the iconic structure. The cells then be used to hold

| information for later access by other functions.

| Local variables are easy to create and a very natural concept in this environment. A
variable 1s just a cell for holding information. Since icons can have values, to create a new
local variable the user has only to create a new icon. (The CREATE operation can be
remembered.) The normal procedure is to position the icon in the design area so that i

| becomes part of the "world's" iconic structure, but it could be placed’ inside some other icon.
| The con's VALUE attribute can then be set and retrieved using the mouse. Local

variables can be created and deleted at any time as part of the definition of a function.
The number of variables is limited only by the size of the display screen. Using the detail-

: suppression techniques of the last section, even physical size presents little constraint.

4
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; : OPCODES i: '
| We will illustrate the execution of iconic functions with some simple functions called
5 “opcodes”. (AN Mustration of the execution of FACTORIAL is presented in Chapter 6-B.)
: Opcodes are operations on values that are so frequently used that it 1s convenient to include! their names in the menu. The semantcs of opcodes are identical to those of iconicG functions with one exception: since its name is tn the menu, an opcode can be invoked --
i that 1s, its argument icon brought to display level -- by simply executing its menu entry.E Other functions are invoked by fetching them from storage using the MEMORY or DISK
9 operation. As with all iconic functions, the body of the opcode may be evaluated as soon as3 the argument 1con is sufficiently instantiated. The value icon replaces the argument icon
9 when the execution 1s complete. The opcodes presently available are

3 Ar i thmetic opcodes: RY add
k - subtract
- X multiplyy / divide

4 Boolean opcodes: = equa |
A | < less than
y > greater than
p and logical and
: or logical or
| not logical not
a.

4 Since these all work the same way, We will only discuss "+" here. Executing the. "a"
5 operation in the menu initiates the following process.

A (1) The argument icon for "+" is brought to display level and positioned where
designated by the mouse cursor. The “." process then suspends.

a.
ne '

1 (2) "+s" has two formal icons for holding the addend and augend. They may be
given values.

i * i
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(

J
i

(1) As soon as both values are present, the body of "+" may be evaluated with i
EVAL. In this case the body simply computes the sum of the two values; J
le. 342

|

|

(4) When the body finishes executing, the value icon 1s displayed. In this case 7
it 1s simply a rectangle containing the number which 1s the sum. I

]

: E

v f
"won %

Actually, the value returned by "+" need not be a number at all. To be completely
acccurate, the value is the result returned by passing to the first argument the message "+" 3

di together with the second argument. The position taken by most extensible languages,
Smailtalk included, 1s that symbols like “+" have no intrinsic meaning. Symbols are defined I
by the rules which use them. For example, the rule :

<INTEGER> + <INTEGER> =»... 1

might be used to define "+" to be integer addition, but another rule |
k z

<AEAL> +4 <REAL> =~»...

|

i
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might be used in the same translator to define "." to be addition of real numbers. In
Smalltalk, classes have intrinsic meaning, not symbols. The symbol "+" has meaning only

: insofar as classes know how to deal with it. For example, Smalltalk ob jects of class }: NUMBER (eg 3) contain code to handle messages containing + understanding It to mean
ordinary addition. Ob jects of class STRING (eg “abc \ can also handle “+, but in this

: case 1t 1s interpreted to mean “concatenate” The semantics of classes are intrinsic In b
] Smalltalk. the semantics of symbols are extrinsic This distinction Is preserved in :
9 PYGMALION k
jr 3

The body of opcodes [step (2) above] may now be more accurately described as i
1 follows. !
: won :
3 (3) As soon as both values are present, the body of "+" may be EVALed. The }
: body passes to the first value the message together with the second ih
3 value; eg.

2 <value 1> + «va lue Z> 3

] The first value must be an ob ject that knows how to handle the message "+ ;

1 J Co ) | | E

1 8

a :

| :

H

; i Be

| |

i
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: IF Operation

Conditionals are provided by the IF menu operation. Executing it brings the ;
4. i

3 following argument icon to display level

1 | false 3

J The "if" icon 3

4 The "if" icon contains three sub-icons. Only the value of the sub-icon named "2" is 1
g of interest. It must be assigned a value before the "if" icon is EVALed. The BODY of the i
. “'f" con tests the value of the "?" icon and depending on the result evaluates the BODY of r
1 either the “true” icon or the “false” icon. Initially the BODY of these icons consist of code |
] lists containing only a trap to the user asking for more instructions. When the trap is
3 encountered, the system is automatically put in remember mode. The BODY can then be 9
3 defined in the usual way. :

p: REPEAT Operation i
i 1] " i
gt Iteration is provided by the REPEAT menu operation. The “repeat” icon has the ;
3 following shape. 4

el 4

= 1%
4 Ls

| The "repeat" icon |
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i The “repeat” icon has one sub-icon named “loop”. It has the same flavor as the "if"
: icon, except that its semantics are: successively evaluate the BODY of the "loop" icon until

the DONE operation is encountered. The DONE operation is for terminating repeat-loops.
As with the “true” and "false" icons above, the "loop" icon’s BODY initially consists only of |

3 a trap to the user asking for more instructions.

¥ EVAL Operation ;

‘& Subroutines are called with the EVAL menu operation. It may be used to evaluate 3
5 the BODY of any icon. The icon must be displayed before it can be evaluated. This !
h § means that invoking an iconic function 1s a three stage process: E

i (1) Bring the function's icon to display level. i
 b (2) Instantiate its argument icon with values. A
EL (3) Evaluate its BODY with EVAL. ;

a E

a3 Section F -- Icons as Processes :

| The key to associating actions with icons on the display screen is a set of attributes 54 possessed by icons: 1

3 DISPLAYED -- a data attribute 3b.: Ei +Lt : ‘id
E ¢ HAS -- a procedure attribute ]
1 RUN -- a procedure attribute k
3 3

| RUN :

Eb The RUN attribute is said to be a “procedure” attribute because a procedure, instead 3 3
El ¥ of a piece of data, is associated with it. (In precise Smalltalk terms, RUN is a message :

ey rather than an attribute of icons; but in this case there is no difference in the user’s I
hb perception of the two) PYGMALION is organized as a process structure. Each icon is an - 1
a independent process. An icon gains control by oeing internally told to RUN and by the

% oo
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:

: mouse bemg within its boundary [It will retain control so long as the mouse remains within g; the boundary. The mouse, then, serves as a dynamic control manipulator. The user i».
1 rransfers control between icons by moving the mouse from one to the other. (An exception: occurs if an icon, by error or design, does not give up control based on mouse movements. EZ This 1s sometimes necessary to insure that a task gets completed before control is |
>: transferred.) The code 1ssociated with the RUN attribute for user-defined icons usually | 8: just mnvokes the VALUE menu operation. The "malitalk” icon has run-code that waits for 22 character to be typed on the keyboard and then evaluates the subsequent Smalltalk 3
3 expression. The "menu" icon's run-code executes menu operations. The “remembered” 1
: con's run-code is an editor for code lists. 1| Process control derives from the "world" icon. The run-code for the "world" is: :
} , repetitively ask each icon if the mouse cursor is within its boundary; if it is, tell the icon to l
{ RUN. The "world" can access each icon because its value contains pointers to all of the top-. level icons on the display screen. These in turn contain pointers to lower level icons. i

3 "menu" "mouse" "mouse vaiue" ‘remembered "smalltalk” i

4 OTHER [CoNS }
2 DISPLAYED :
A The HAS and DISPLAYED attributes are the primitives used by PYGMALION to 33 control the "aesthetic” and “technical” elements in design. The programmer/designer canA manipulate only those icons tha he can see, that are on the display screen. The 33 DISPLAYED attribute can have any of the following values: 2
A. false - the icon is not currently being displayed. ip 2
E | ~ame ~- the name (and boundary) of the icon are| currently being displayed. :: | 1
i value - the value of the icon is currently being
I. displayed. )< f5 ’ .shape - the shape of the icon Is currently being
3 displayed.

i Cibo wd a a a4 ga refic BEA hl dai i rsa a aE plnie7i dg bY eg : a Nw
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: Only those icons having a non-false DISPLAYED(2mouse. And only designated icons can be the object of menu operations. The result is that
only icons displayed in some form are accessible to the user.

g

i HAS

: Like RUN, the HAS attribute is said to be a “procedure” attribute because a k3 procedure is associated with it. The procedure takes two parameters, an X coordinate and a £3 Y coordinate. An icon can be asked if it "has" a particular value of X and Y; eg. ¢
| i has mousex mousey .
9 The procedure checks if the X-Y values given are within the boundary of the icon. In the ;example above, the icon "i" is being asked if the mouse is currently within its boundaries. 13 HAS first checks if the DISPLAYED attribute is false, returning false if it is. Therefore, 1| an icon will respond that it "has" an X-Y value only if it is currently being displayed in 3
A some form and the X-Y pair is within its boundaries. :

a Abstract Designation of Icons ]
. There is no difficulty in designating icons when operations are first done. The 4; programmer merely points to an icon with the mouse and executes a command (such as ;Ee: “fetch value") Ly pushing a mouse button. The command then operates: on the icon to §3 which the mouse is pointing. But suppose we are defining a program. With !3 PYGMALION's "remembering editor" every operation done is added to a code list that %3 eventually becomes the BODY or SHAPE of some icon. When the program is run, the : ioperations will be re-executed, probably without the programmer even being present. It is: impossible (and, in any case, undesirable) to require the programmer to point with the i3 mouse to every icon to be operated on. He should have to designate the icons only while he :3 1s writing the program; thereafter the program must automatically act on corresponding !3 icons. The problem 1s; how are "corresponding " icons to be identified without using the f3 mouse? Three solutions: !

J (1) One solution might be to specify an icon by its X-Y coordinate location -- its two- :
z | dimensional "address" on the display. This is the two-dimensional analogue of absolute 3] addressing, in which symbolic variables (like "X") in a program are mapped to absolute :| locations in memory during compilation. However, absolute addressing has several :drawbacks, such as making recursion and relocation difficult. Recursive calls on a function - :
A would have to display the function's icons in the same place every time, overlaying andobscuring earlier calls. Furthermore, one might wish to rearrange the icons on the display ;

: screen for aesthetic reasons (permitted since PYGMALION's philosophy is that one designs : bi
] a program, and designing involves aesthetics). It seems unreasonable either to prohibit ;: rearranging icons or to have it invalidate code written earlier. (As lvan Sutherland pointed : |
3 out, the representations of images in human visual memory are invariant over size and i!4 position changes.) |

fadCk
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i A variation on absolute addressing might be to order the icons on the display
1 topologically But again one might wish to rearrange them for aesthetic reasons, which 4
3 should not mvalidate code 2

3 (2) Another solution might be to specify icons by a unique label. We could give i:
4 every icon 1n the system its own unique identifying symbol (such as a LISP "gensym”) and 3
3 use those symbols when dealing with icons. But again recursion causes difficulties. There 4
4 1s no way to tell at program-writing time what names will be used in recursive calls to a I
E function at execution time. f recursion is permitted, the method of accessing icons must 4
3 self be recursive. k

(3) The solution adopted by PYGMALION is a two-dimensional analogue of 2
J dynamic addressing. Some programming languages, e.g. ALGOL and LISP, use a stack to |
| allocate space for variables. Every time a function is entered, a fresh cell is created on the

gL stack for each local variable. This simplifies recursion at a slight cost in execution speed. 4
; As mentioned earlier, in PYGMALICN iconic structures are actually queues. Whenever an i

icon 1s created on the display screen, it is added to the end of the queue of the iconic
| structure which contains it. There is a top-level icon called the "world" whose boundary |
3 encloses the entire display, so every icon occurs within some iconic structure. This queue ;
3 structure establishes a time sequential access: icons which are put on the screen first occur
3 “earlier” in an iconic structure than later entries; i.e. they are towards the front of the queue.
g Since each icon 1s contained in exactly one iconic structure, we can uniquely describe it by ]
1 its queue index. The complete representation is a list of queue indices beginning with the 4
3 outermost structure (the "world"”). For example, the sixth icon on the display is represented
2 by (6). This description is recursive. If the sixth icon on the display contains an iconic :
4 structure, then we may specify the second icon in the structure by (6 2). There is no ]
: theoretical limit to the depth of this nesting. This was discussed in Chapter 4-E. 3

y Time sequential accessing is important to the "remembering editor” aspect of 1 RB 4
, ] PYGMA LION. Editing operations are done to actual icons on the display screen using the i
1 mouse: the icons are translated by the system into queue offsets when the operations are 3
Be: remembered. Concrete, aesthetic display images are transformed into abstract, technical 1

queue offsets. However there is a difficulty. With the time sequential access method :
described, the same environment must exist when a function is executed as when it was ;

k written, or at least the same number and types of icons must be present on the display 3
1 screen. Otherwise a queue representation like (6 2) may be invalid -- there may not even be
1 a sixth icon on the screen. To permit the PYGMALION programmer to use functions ]
i written by others without requiring him to know in detail their environments, each iconic E
4 function carries with it an iconic context (cf. section E). When the function is evaluated, the b
fs | screen 1s set to the state that existed when the function was defined, and restored after 3

| execution is complete. The function's argument/value icon is the primary means of i
y | communicating between the two contexts. 3

& iE
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3 129 Chapter 6

ie! L .

1 Chapter 1

4 Examples of Purely Iconic Programming

i ! 7

| This chanter imitates the branch of ancient Indian geometry that used only one y
1 : word "BEHOLD" in its proofs (Chapter 1-G). The reasoning was done iconically. In this E
( b chapter sequences of display images are presented with a minimumof text accompanying :

| 4
3 Section A -- LISP70 Memory Organization ;

Et lil 1.1973 || The first example is an iconic description of the LISP70 [Tesler,Enea,Smith'®'*] 3; : " "

: | memory organization. Memory consists of a series of structured “blocks” of consecutive | || words of core. The block structure is presented here in various levels of detail. The 4
: purpose of this example is to demonstrate the expository capacity of icons and the detail Ayy ) ¥

3 suppression facilities in PYGMALION. 3

be I> J
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6-A LISP70 Memory Organization
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: preface
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3 LISP70 Memory Organization  6-A124

k

:
3 1”

! : header Jenqth
5 | flags E
E. 19

1 preface baci pointer ;
1 oreface length E

4 1

5 Structure of a BLOCK HEADER 1

| i

4 header : length A

1 preface back pointer

4 : reface length ;
k :

| relocatable p3 seep able 13
d . i

|
5 | » ; !

Structure of the FLAGS field in a BLOCK HEADER RE

3
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E
8 Section B -- Factoriala i;

4 This example presents an lconic trace of the execution of the function :FACTORIAL on the argument 6. On the display screen these frames appear in sequence, E
s forming a movie of the execution. For completeness and to demonstrate that there is a
p static representation for PYGMALION functions, the code list assembled by these ]
3 operations 18 included at the end. But this is not the most articulate notation. The proper t
3 re presentation of a PYGMALION function is a movie. |
g This example presents the iconic versions of these concepts in the context of a
| famihar function, FACTORIAL. While FACTORIAL is not a particularly iconic
L function, mapping numbers into numbers, it does exhibit several powertul programming :
4 concepts:

3 (a) the concept of “variable”, and fetching from and storing into variables;
A (b) the concept of “conditional”; | 1
\ (c) the concept of "recursion’;

3 (d) arithmetic and boolean operations (+ acm), ]

. Note: the dashed lines in the following pictures are NOT part of the definition. 1
They have been added by hand to clarify the movement of values. In actual use such

y clarification is unnecessary, as the movements of the mouse cursor adequately indicate 13 which icons are affected. i

| | }

:X =
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;

: i

: ment 1
: icons a ]
3 create i

chatsdelete ;
: copy ;
: reFiesh :
; show
- name |
s value :
: . shape 3
g body
; i
- pcodes

3 /
TY oo] Q z

3 and 11

- not i

y return b
F repeat j
A done ‘
E eva) mouse value Mouse
; /3 others | | ]
3 remcmler
3 constant . :4 remembered |4 define §
: display 3
2 dram :
p: break smalltalk
3 plot :

: |

gE |

3 The BODY of FACTORIAL with the VALUE 6 is evaluated with the EVAL operation |

7 :

3 ;
RE | 3
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} i wv aw:d 7

1 men

E 7 icons
create :

: chanjye * ah I
1 delete Q

3 copy :| refresh 3
5 Show |
a name :
. value ;
3 shape
3 body 1

2 pecodes
1 .

| ani i
wk or ?
4 not ;

ontrol 1
u ? =
| | call 5
. return :
3 rep oat 1
i done |
A eval mouse vaiue mouse 4

: thers !x remember HL

| : remermbe :; define eerie E
gE draw 3
; text 4

break smalltalk :

: pilot I
Le exit d

:

: 3
8] 2
| !

1

4 | 4

3 The display screen is set to FACTORIAL's iconic context (no superfluous icons) : |
|

x vw i |
§ 1
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i

b
y. |

1 menu

; icons
create

. change
e delete < |

g Cobyhy refresh
4 shou

| shape
L body

3 pcodes hy
: false

i *
/

<

>

anc

p or
. not

a. ontrol

: call
S return
: repeat
A done
: eval mouse value mouse
A Ir!

thers

9 remember
: constant Br

define remembered
3 display
3 draw
k: text
E break smalltalk -
2 plot
p | exit

y A conditional icon is brought to display level |

E } i

7) H
| § ]
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f

?

x

men 4
4icons | 4

create 3change 6 :

delete Q §
refresh 3
Show i
name 4

; shape ?
body \ 1
pcodes 2 1
: faise 1
. 1

> :
and 1
or - i
not i

ontrol t? Ee
call : ;
return |
reseat 1
done 4
eva) mouse value mouse E
thers | | Eremerher 3
constant A kb: me i

define remembered i
display ;craw ]; text 3

fe | break smalltalk i
plot 1
exit :

:
| E

An icon for testing equality is invoked |
: i

3

| fi
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| 130 Factorial 6-B :
3 men 3

icons 3| create \/ 31 chanje :delete a 5

r reresh nd 44 show :: name , 13 value [ [7 |p| true iy. shape 3: body \ i
| pcodes \ 2 i
’ ‘ \

> N - !4 and ¥
f not :
Ry ontrol 1SE ? lcall |
‘ return | :repeat 1done E
i eval moluise value mouse ]
; other's p1 remember 3constant 3remembered |def ine idisplay 3
J draw rtext {3A. break smalltalk | kplot :
1 | exit 5| |

| |
; The argument to FACTORIAL is tested against the constant 1 : 13

I | 3 1
3 {of
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: 6-B  Factonal 131 ;
:

4 4
2

s

; meni E
J icons - 4

3 create \/ |, chanje E
: delete Q 2

2 show 3: name | true k3 value ER 3
y shape A \. 31 body A

3 pcodes \ 1

;- * \ false

‘ < J
k > p
2 ani 4

3 antrol E

3 call 3
% return 4
3 repeat |
; done 4
3 eval mouse value mouse k.

9 others =
- remember E

constant | remembered — 1
E define i 4
# display 1
i craw 1
E | text
3 break smalltalk
p plot 3
3 exit 8

| x
6¢ 1 0

: | $

A ] |

3 i
¢ Nl JsGA Eo pihni nr chan gic dd Sl a Gl iath dkdoa i fpsGs dediri iisi
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if |

1 ment |
XJ {cons1 create ¥ iA chanje ie 1 delete be Cl 3a cory 3 b refresh ’ 1
| 50
E. | name

gi | body :
9 pcodcs |
¢ -

oe / \
) > \ . ]
a andor |‘ :, not \b ontrol Ib 7

A callE return ;b+ heneal Ii one ;: evi mouse value mouse1 pthers !
. remember3 constant |: remerbered :j. define !
4 displaydraw ;: text |: break smalltalk3 plot |: exit !

1 The "false" icon causes 6 * FACTORIAL - Lio be computed | |
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“

: 5; ]
: men |
i | icons 31 create | Echanje 0 :

3 refresh ;1 show 37 name . ;3 | value false |——»| true :Eo shape :
3 body AN 3A i
y pcodes «d* false ]

3 et y ES

x > ih g
E and
3 or 3

6 ontrol &

3 return i3 reheat 11A; done

5 eval mouse value mouse
3 thers | | 1remember ;
gy: constant . :: rememberedbe define ;display ;
y draw Ie
A break smalltalk ;: plot :i exit 3

A. i

gr | :

4 Preparing for a recursive call on FACTORIAL |

BY, - | ta
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i menu IE

i: icons - 13

‘ change .
: delete Q 113
p. | copy : is refresh i 13
E show : ;
{ value false true 14
3 shape i

; | body \, i
+ false 1:

3 and ~ i

: ontrol 2 Ie
A call 31

z | return |
A repeat 14
3 done 3
. eval mouse value MOUSE il

E: remember 18
t constant ith membe A148
: define remembered 18

| display 414

1 break smalltalk 3d
3 plot bit

113

: FX

1 FACTORIAL(5) = 120 (The intermediate steps have not been shown.) 4
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I.: f

| 4

3menu 4
3 : 4
A 1COnNsS - i
: create y k3 chanje o | ]3 delate AQ -

y | vetresh 3
( show 2
] name: E:; . va tue false —> true i
by shape ]

g neoddes A |

1 - | ratse | 3n Eid3 iw :
: / bh
ee - * [5

. not | | 3a. ontrol Q ;F ?

b return z3 rereat

i done 3
eval mouse value mouse :

: thors 3
4 remember §4 constant : :
JX a po ) Te Ahe oe remembered :
1 display 42 chraw i. } text y
F | break smalltalk :: | plot ]7 exit ;
> |! 3
gE §

ir 2 J

1 The value 120 has heen placed in the other half of the multiplication icon ‘



v :

| 136 Factorial 6-B
| :
2

3 me hug :
A icons 3
3 Create |) ;i change 3
. delete Q -

refresh :

gt Show i 4
name f J

4 value | False— uue 1
A shape ( :
k: | body 3
4 x] 5Fit pcodes }
3 * \ false 1]

: > 720 3
4 and 4

or ]

1 ontrol Q

| return 4
5 repeat i
: done >

| eval rouse value mouse A

thers !
remember

3 constant . iremembered | !
8 define

E display | | idram g
3 text fbreak smalltalk 1}
: plot ;

4
:
:

i i Ii
: 6% 120 = 720

] - 5
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1 |

A i

Er Fl)

ment 3

3 icons 4
4 create -
3 chanjc 720 4
i: | delete Q :
; ret resh 4

| show qname . 3
; value false |—» true bi

| Ihody \, 4
Ee ems] >] 3

codes 3

3 ; false v

p and A

1 ontrol Q k

k- call ;
; return |
3 repeat 3

done 3
3 eval moitse value moLise ;

3 thers ’
Ei remember oS 4
E constant | fs t:
4 remembered |
3 clefine 4

display i:
1 draw 1
ji text Bi
: break smalltalk 6

; exit 14

3

} £

| |

:

Pe The value 720 is placed in F ACTORIAL's argument icon, turning it into a value icon “X
dg. / '

A *

. 2
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:

4 f

: menu |

] icons ‘ E
] create E
- change |
g delete

3 copy | 3refresh :
; show 3

| value :
k share 3
bi. body i g

: pcodes 4

i * y : A
= Q ;

4 < :
i > 3

& | not 0 3

gH ontrol 5

3 call co k
i return |

repeat I
: cone |g

3 eval mouse value mouse i

1 Sabon Fo 55 remember 4
constant weld | 3
define remembered 3

1 display | | 3q draw 4
] text 14
| break smalltalk A

' plot i
A | exit 4

3 The display is restored to its state at the time of the call on FACTORIAL | ]

: ’ kg
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| |
i ((IF 192 128 |
1 ({constant 1) i
A (store (6) value)) 3
E: ((opcode * 160 272) .
| (opcode - 160 352) k: (fetch (6) value) ) :

(store (8 1) value) 3
Li (store (9 1) value) ¥hy | (constant 1) |
i: (store (9 2) value) 4
; (constant ‘'factorial’) :
| (memory fetch 384 320)

: (Eval (9)) ;
ll (store (10) value) 3
a (Eval (10)) 3
E, (fetch (10) value) 3
; (store (8 2) value) :

ji (Eval (8)) §
3 (store (6) value)))
8 (opcode = 208 320) 1

(fetch (6) value) :
4 (store (8 1) value)
Al J (constant 1) |
Rr | (store (8 2) value)
E (Eval (8)) ;
JS (store (7 1) value) ;
| - (delete (8)) ]
i (Eval (7))) 3| 2

3
x .
4 Format of the instructions shown: 3
E (IF <x coordinate) <y coordinate> (<true code») (<false code)) ?
: 3
3 (opcode <name> <x coordinated <y coordinate) k

3 : (constant <value>) i
y (fetch (<icon>) <attribute) !

k | (store (<icon>) <attribute>)
E :

gE | (Eval (<icon>)) i
4 ! (memory [fetch,store] <x coordinate) <y coordinate») :
ih ¢

- (delete (<icond)) | |

The code assembled as a side effect of cemputing FACTORIAL 43

1 i:

BA q:
EL. J

Ls {I an mea 0 A AT RSL To 0 REBAR 0 MG A pr ET PEA 308Wh RE TR Bard fa SA ATR TaeWS BP RESie REAPBr Ta 0 iti om aT Ads HnlO eM FTI da Bt an
Bhi ih a Ce Bl SA Sta i iaa LB i pd ee tt ae
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| Section C -- Circuit Simulator -
B Iconic menus are possible, and in fact encouraged. The initial menu is symbolic | :
o (contains names) to save display space. Below 15 a menu of electronic circuit elements. The >gi

COPY operation 1s used to select icons from the menu. Each icon has a semantically
vo: descriptive SHAPE attribute. In addition, each icon contains an iconic structure 4
4 'epresenting the electronic characteristics that are being modeled. The structure of the :
| “power supply” icon is shown in one picture. The choice of structure is entirely up to the a
3 user, 1

2 The definition and execution of operations are not shown here; they are similar to v
the FACTORIAL example. The fact that the operations modify icons having fancy shapes 4

| Instead of mere rectangles has httle sigmficance internally. Programming the semantics of a 1
| circuit simulation proceeds in the same way as programming any function. The difference E
BE. between using PYGMALION and using a one-dimensional programming language is that p
k no additional media (scratch paper, blackboard) need be employed. The display screen can 3

be used 10 sketch out ideas. |

£3 i F.

3 be
43 Ly

¥:

ar : 4
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3 — 1
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3

: menu E

2 icons MA— i
5 | create ¥,
§ ghanac 3i: delete Ke H E
} copy E4 re resh Ei: Shou || name ~1| 1F,. | value b
: shape |

8 opcodes -—

% and 3

3 not | K+£ ontrol E
gl repeat i

ges | done 14
1 eval :

4 :
| others :
"3 memory g
2 disk mouse value mouse 3
F next E
2 display copy icon 3

emerbered |
: text 4 4
§ trace HPpT— :

: exit smalltalk Ji

A | k

ie

3 The COPY operation and a menu of electronic circuil elements | .
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; 14 Circuit Simulator 6-C

: }1

; menu

3 icons VV
a create |
A change3 delete
i copy

3 refresh¥ shou

| value
A shape
3 body —]
: opcodes -
i * =1 . 7 |
3 < Dd
i and

or

of not |5

3 ontrol
g if
| repeat
Bh done
) eval

return

: others
memory

: disk mouse value : mouse
i next: display copy icon
: fateh er :i emember; text J ed
3 trace ~~ 1171 1 1 1 11}
b constant

; : plot
i exit smalltalk

1 CT |
3 Y *
-

ih {

Several icons are copied from the menu and assembled into a circuit
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- ' ' : F) i

i ;

menu :

icons VV i
create |

change 3
delete j

copy §rc resh i

shou - | 3name | |
value i
shape

body —L |
opcodes ~

> Fu I |» /

< > 1
and ;
or .

hot | :ontrol 1
if 1}
repeat

| done :
eval
return t
others li
memory
disk mouse value mouse

pl |isplay J
kid irau rerembered
text |
trace |
constant 13

” plot
hi exit smalltalk

|
;

| 3
H ! y

The circuit is completed E
i

n
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44 Circuit Simulator 6-C

: >| ’

; menu :
: icons VV 4

| create
| change1 delete 54 1| re rresh |; SNOM —| hame = ]8 value 3
3 shape3 body 1] ;
i opcodes —

: ; _— ;4 < 2 |2. and §
3 not | j
] ontrol :1 if ;gr | repeat ;rE done |1 eval ;4 return y
, memory :3 disk mouse value mouse !
B splay: Lopmter :3 raw |/ remembered5 text < |{ trace |
: constant
I. plotE | exit smalltalk ;

3 » |

4 The NAME and BOUNDARY of the "power supply" icon are shown

BE |. ?
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|
| menu |§ icons - \W— E

hy create :
Ei | Ghange :: delete = ee :
: Coby 3
3 be resh 2A Show :| name 1] :
E. value :

; shape :

E opcodes - :
A & - »

1 < > oltage —_— ;
J and |
A or
5 hot

1 ontrol | ;
4 repeat :
4a done :

| return }

3 others :
§ | memory ;
| disk mouse value mouse 3
y next He

display |

onan 4i raw ;

3 text remembered :

A constant !
SS plot ;

1 exit smalltalk :®

:
|

3 | : The iconic structure of the "power supply” icon is shown §
3
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! 146 Circuit Simulator 6-C
a |

3

icons \ \ \ i
5 create 1

E change ;| delete
8 copy !
; [olrash} shou — I ;$ name | 1
5 value 3; shape 7

i= opcodes - ;ol Pe i
« / ;

5 ~ oo i

x or :

: ontrol |

3 repeat 3
3 done 4
| eval 1
Ee return A

] others 1
memory

i: disk mouse value mouse 4
1 display :
: PoManier ;14 i3 rau :remembered

f trace

. constant
E plot i
: exit smalltalk

a.

- | i
Ee

3 The power supply is set to 10 volts, direct current ;
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Geetion DD -- Smalltalk Evaluator

: This example contains part of a simulation of the Smalltalk evaluator, Several :: (aves mn the evaluation of a Smalltalk expression are displayed. The first two pictures
; present the principal memory structures involved: "activation records” (AREC) and "vector |
| messenzers” (VMESS). Subsequent frames show the creation and evolution of instances of |
1 thece structures. The actual operations changing the contents of the fields are not shown, as 3
: they were in the FACTORIAL example, just the results of operations on the state of the ;
: structures are presented here. | 4
i to cons : hd tl Jol («Fhd- 3
| (Fs
: (G7 hd « 3) ]
bi Thd) 3
A <Jtl> !

1 Gx « cons 3 4 :

1 x hd + x tl 1

4 The Smalltalk statements involved are hsted above tn Smalltalk notation. Briefly, ;
: the symbols have the following meanings: 1

1 in th { f literal ;3 ctebal | peek ahead in e message stream for a iltera :
yr symbo | ;

3 cloutyle right conditional: evaluate the vector on the r ight :
3 Arrow if the expression on the left Is true 1

3 double up return the value of the expression on the right

4 | hand quote the following atom

: colon fetch a message evaluated ;

3: " " " " :
). The class presented simulates a LISP "cons" pair. It responds to the messages hd” (head)
ES: | and "tu" (ai) The variable "x" 1s assigned the cons pair (3. 4). Then the expression "X hd3 , « tI" 1s evaluated. The display frames describe the execution from this point.
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: 148 Smalltalk Evaluator 6.D
4

i 4

4 o

3 >

i ctivation ector
: ord ssenger |
ih » 4

E 5 h
i

¥ | The principal memory structures usod s

A b:

L ass? arec ass! VMess 3
a arcaller vical ler p

global 1

arclass Context :
y _arinst fetcher 3

i. I

b The iconic structure of each element | :

§ 2

Be ir

13

bt J

4 vmcaller 3rid ;

y

4 context | 3
12 ' =

_—

; A VMESS is instantiated pointing to the vector (x hd + x tl) ood i

- bh

7 5 :

a 5

by oe
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|
3 L]

2
k

abe smallialh Evaluatol | 4¢i
3

ass: VMess :

; vmcaller | E

1) '

3 —

: context | A

0 : :

g 1aSSs_&arec E

a - arcaller 3=" - . i:

3 global) Cons

3 An AREC is instantiated pointing to the cous tustance; note VMESS:pe = | i

3 vmcaller 1

ve + * a

y :

3 tclass: arec
4 A arcaller 1bre [NY a

| Hatcka > cons i

4 arinst h.

1 n :

i vecaller 8 | i

A. context i

E. i + + » i) 4
: Al second VMESS is tustautiated pointing to the CONS message handler ;

J 1

5 7

A x

Be TASARTRE ASR RNSSERA.| oi]
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: 1 50) Smalltalk Evaluator 6.D
=

4 4
5
fi

= r #]

ht it

i

2) a

y J ily » L
E »Class: vmess ;

vy a

Hi !

A classy arec

5 8 arcal ler [Li [5

: | atcha > cons ]
A
RE, P

NE ¥ *

mg §

; lass: Vmess Dhecto ¢ I ‘Ly a 7

4 - wmcaller | 8 A |

id , ” a ' iii [] y
jd 1

i) “ontex
r ’ Lo

} a

: (TwicE) |

gL } 3

3 1.

' by

o . ] i FN

Lf, The message is scanned for the symbol "hd", and found - ig

H ® & “e %
RK 5 ,

i. 3 B

gl bj. ! ot ' PRT Malt 1) ALL my . . 0) fi ce ; 5 i Pi, 1 i a al Sy oy ¥ oll, dh 1§ Fas
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: 6-D Smalltalk Evaluator

’ id
)
3 3

; |

: | 1

; fu,
7! 1
1

Ee : ah k3 | »classs vress :

iN 4
ok

4 context 1

5 Ii lass arec .;
| arcaller 3

4 ¢ » 1ressaqe 3

hi; \ 3
fo: arinst br
. LY
EL iioH tak

el L] ! [] L | -
A vmcaller 8 11]

3 — 6 € —+6Pec 3

4 .

bys
gC pt
3
"iv 3La a

a 7

. i t "i

1 i

i The second VMESS now points to the vector after the conditional arrow f
gr »

i “HH

4 IE
EE H
1H : §
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: Smalltalk Evaluator 6-D

; 152F =? den

1 3

i
4

;

p i

1 | o |ie i

4 i 1

| lass? VMmesSSs :
Fn bs
# vecaller 2
Fi a 4

: vec > vecto :

! T lass: arec 5f¢ A

; i arcaller N |

| Pessade _ —3— L
Bi Je

+ i pi

i vmcaller 8 [7 :
it i

= context : =
133 2

J
* | :

[| (Twic€) |

 ¢ L] [] - J

3 yr’ t :

bs, i er

JAR 13

i A [3

as H :
x 3

rs, TOR] 3

4 The message is scanned for the symbol "<", and not found i

s w A) -

k V i
pit. 2
oR 3 [,

= J +
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6-0 Smalltalk Evaluator 153

5 E

- :

“3! +
ig. vecaller ik

| i Prlassi arec : 1
¢ | i arcaller " ;

j message J.

; h 3

je 3
e ft

i -_vmcaller | 8 3
1 — vec

"TC L[e_ I”
K context 3

I$ ; 3
b f

] | The return wp-arrow is evaluated, which instantiates another /AREC, etc.
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:

3

= Conclusions and Suggestions for the Future

3 Summary 3
i PYGMA LION 1s useful today for the simulation of algorithms. It activelyassists (nn the creation of programs, but current efficiency 1s not high enough for

production software. |

gE Part | of this paper enumerated capabilities that belong 1n an articulate medium of EEk communication. Part 11 described ways in which the PYGMALION system incorporates I:A many of these capabilities in a computer interface. This third part summarizes the results, ’presents some qualifications and suggests future work. 3
:

‘

4 Section A -- Areas of Success ;
| The characteristics of PYGMALION that seem to provide the greatest assistance to g

| problem solving and creative programming are: :
3 | (1) The display screen assists thinking by relieving the load on the short term 1}gE memory. This reduces mental fatigue and provides a convenient medium A
| for visualizing and transforming concepts.

| (2) Programming is in a “language of thought”. The programmer can design3 many 1mages in the form that is closest to his mental representations.
3 (3) The display serves as dynamic scratch paper. Ideas can be sketched out anddb {

1 - ui . 2 3ERSui MRAM, AFG WEREDISTyTT ro fneeahay os ei op pdt ATER TLD cone Tad FE ITAN asin: 6 TIRE a, aS ho SFE nen is ge



156 Areas of Success 7-A

developed step by step. Programs need not be completely specified before
] they can be executed.

1 (4) lcon'. invocation of functions improves communication between routines.
| The argument and value icons are “templates” or schemata of their
3 mmterfaces. They can be examined and instantiated visually by the

: programmer. This reduces such errors as calling a function with the wrong
; number or type of arguments.

(5) Aesthetic semantics are concrete; mechanical semantics are abstract. The

f. user has to deal only with the aesthetic attributes of unages; the mechanical

: aspects are managed automatically. The system maps particulars into
3 generals.
a)

ol (6) PYGMALION provides a laboratory-like environment for experimenting
with ideas. Tests can be conducted, the results observed, changes made, and
new tests conducted, completely interactively.

;

4 Section B -- Efficiency and Other Problems

4 The current PYGMALION system is only a prototype implementation. It is not a
: production programming language since it suffers from several defects.

Efficiency

; Systems employing interpreters are usually versatile but slow. In that ‘case,
: PYGMALION must be extremelty versatile, because PYGMALION operations are triply
; interpreted! Each level of interpretation slows the system down a bit more. The operations
4 in the menu are

(1) interpreted in Smalltalk, which is
FE {

| (2) interpreted in Nova code, which is
A

SI (3) interpreted in microcode on the mini-computer, since 1t is not a Nova!

Because efficiency was not an immediate design goal, this was acceptable intially. The
" correct way to remedy the situation is to build a "PYGMALION machine” in microcode, or

. at least in machine code. This task 1s made easier by the simplicity of PYGMALION
: operations. For example,

CF EET nes ILA PRES gp dima an lg Dh be fie entSd a iyAaARYAasShite oh gta oii A gt ined tientsRRPE ic Sh RTA) Liedla idSNts
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| (FETCH <icon> VALUE) :
(STORE <icon> NAME)

are primitive operations that could readily be written in machine code 3

Iuternal Representation 1
} Currently all icons are represented as instances of the Smalitalk class ICON. Thus ;

even if an icon describes a single machine bit, it occupies an elaborate structure in memory. b
A mapping needs to be constructed between the display level structure of icons and their :

| internal representations. J
| current: /
| uni form E| display | ems |

needed: A
: generic map 3

§

1

Qperations now treat icons in a type-independent, uniform fashion. For example, the “fetch {
value" button works the same regardless of the icon designated (except for the "smalitalk” E
icon). There should be a provision for specifying an icon's internal representation in terms }
of structural primitives. Then operations on icons could be generic on the type of
representation; e.g. “fetch value” could now have several generic cases: k

| |
[con stored as Implementation |

| bit "load byte" instruction :
Lord "load word" instruction

| part of structure load ith element of structure

| other co

| |
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| 15H8 For the Future 7-C
| Section C -- For the Future| i

The preceeding section suggested improvements in efficiency as ways to extend ¥
! PYGMALION, However there are more important directions which future research can :
4 take. PYGMALION has merely hinted at the potential of visual communication between 1

man and machine. k

3 Graphic Vocabulary |
x PYGMALION places minimum emphasis on pre-defined representations and
4 structures. lt 1s actually a non-language. PYGMALION is an environment for working iA calculations, a medium of communication with a machine. The stress is on permitting the E] iconographer to design Ais own images. But the complete absence of dogma is anarchy. Pre- 3: Jetined schemata are helpful in the initial attack on a problem. An articulate graphic ]
i vocabulary can be of significant assistance to the designer. Several fascinating books have 33 been written on expressing cohcepts visually, The most systematic in developing a graphic £
: vocabulary 18 Bowman's Graphic Communication. He explores the potential of graphic s

expression, developing techniques for many areas. Below are some of the concepts for 14
1 which his notation seems particularly appropriate. :

4 PHYSICAL A

p HON FORMAL ZED 3

: SURFACE ENVIRONMENTAL 13

E | TRANSPARENT <D 3
3 QR |
i COMPOSITIONAL

h Appearance [Bowman') :
: |3 . !
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] E

1 ELEMENTARY 3
: 4

1 SYMBOLIC (4

. RELATIONAL CONTINUOUS p
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¥

; 1H

A EMPHAS | ZED
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A £58

: COMPOUND GROUPED 1
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if 3

2 SUEDIVIDED ;
b- vi

3 g:

A INTERNAL DECLINING A

i} «i

» 1

>. A
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i. 1
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3 STRUCTURAL SPATIAL :
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: It seems clear that a good visual communications medium should find some common
] eround between a predefined graphic vocabulary and freedom of graphic expression.
2 PYGMALION has concentrated on the freedom end of the scale, primarily because |

traditional languages have concentrated on dogma. A good pro ject would be to
. systemattcally design sets of icons tailored to stimulating creativity in specific domains. 7
bi 3

by. Dynamic Operations :

4 - A ereater use should be made of dynamic operations. By this I mean operations 4
| whose execution inherently involve motion. My favorite example is Arnheim's dynamic 1
| eeometry. The motivation arises from the difficulty of visualizing “ideal” concepts (in the |
1 Platonic sense). Suppose we want to prove a theorem about triangles. Aristotle defines the 3
: task "Though we do not for the purpose of the proof make any use of the fact that ihe :
pb quanuty 1 the triangle 1s determinate, we nevertheless draw it determinate in quantity. 1
. This 1s undeniably difficult. We require a triangle which does not embody any unique 3
b characteristic (such as having a right angle) but which is nevertheless concrete in shape. 1

Much of the difficulty children have in education can be traced to the problem of 3
: differentiating the generic from the specific. 1

2 EE. P ptr 3
reg yl rd . 3

3 ’ % FA 7 hp |A Fl i # i h
4 4 A "il ' J

s of ccmmanka a 1
N J a y 3

3 Eyelid’s Thirty-second Proposition [Ariheim®] :

3 Something better 1s needed for the sake of true understanding. If I }
; demonstrate Euclid's thirty-second proposition by drawing a parallel to :
: one of the edges of a triangle (Figure a) and by showing that the ;
i. equivalent of the three angles adds up to half a circle, I can point out, ,
a. with Berkeley, that the size of the angles need not be referred to, and I :

thereby prove that the proposition holds for any triangle. To prove the
- correctness of a proposition is valuable practically; but what counts for !
E. | thinking is that the range of the proposition be made evident. The 1
g | figure I used shows, in fact, that the three angles add up to 130 degrees :
2 in this case. But in order to truly understand that this is so in all

b :

| a 4g
A Ey a Ia EL te as par iL ra sal CLLEONITI® ata aldo ighud 1 or ie op Fisk do beta$3 ay age ko i EY fe ean Teg tl BnPPL Lr TURE THLE SED Pggo dao ANS SF ahaa tefaba sail WELL S20 SabAEI fa abo ghia SLL } i
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162 For the Future 7-C

triangles and for what reason, I must go beyond the particular figure to a
full range of triangles. If | think of two of the edges as hands of
indefinite length, hinged in such a way that they can sweep :

: independently across the entire half circle (Figure b) 1 see that, whatever i
/ their positions, they will form three sectors adding up to the same
, semicircular whole. When one angle grows, its neighbor declines :
i automatically by the same amount. In this way, the size of the angles is E
A not ignored -- as Berkeley bids us to do, at the price of losing our visual A
4 | grip on the situation -- but perceived in the sweep of its total range. A 44 static concept has been replaced with a dynamic one. Generality intended |
i is now represented by generality perceived.[A rnheim®] (emphasis mine] 4

| Ivan Sutherland began the investigation of constraints on movable objects. For 3
i example, the sides of the triangles above must remain connected. Animators have also ¥:
. considered the problem. But much work remains to be done before a general specification ‘3
3 of iconic movement 1s developed. k3 ke

he Ek
Section D -- Epilogue 3

tL | If 1 had to sum up the lessons of this research in two sentences, I would say: i
3 (1) Visual communication with a computer is a productive metaphor for |
E assisting the thinking and learning processes of human beings. E

4 (2) Research into articulate graphical communication has just begun to scratch i
A the surface, but the paradigm of operations possessing both aesthetic and |
: mechanical semantics is a powerful approach. 1

3 i
iP i

Er r

4 © H
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4 Appendix

4 :
3 /

3

3 3

3 \ Appendix ]

, pe:

Ey Ey

g The complete listing of the SMALLTALK code for PYGMALION follows. At the :
§ ame of this writing, PYGMALION is the largest existing SMALLTALK program. 3

+ &

E 4H

hee i

4 { o
pe | :

| 1d 1
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1 pygmmalion PAGE 1)

1 (GET vhset G72 DONA ][14][6] « @
E (@Pvee «= vee] | to G7%size « size + 107].

4 vec[Gend « ond + 1] « input),
A to icon x y 2: name ix iwd iy iht frame CALLER valne shape body runcode displayed fetcher sto g
2 | ‘rer container
X : (Fs »
pee |. (.G7x is vectar =» E
be | (Gx « x eval, 7
i Fe 5 (Tx «:) Bx eval) 5
Eg J Je 5 (Tx «:) x eval) :

0 | (:x.:y.
ME tdhisplayed is false » {fTfalse) i
1 x C ix » (Mfalse) 3
i y iy » (ffalse) 4
2 x J ix + iwi > (false) :
5 | y 2 iy + iht 5» (false) E
i MTtrue)
Be; trun » (SELF has mx my » (runcode eval)) 9
he Jdisplay » :
 ! («fname » :

A ((F¢ » (Guame « stringify :)). :
Vj displaymode »

oa (SELF display erase. §
6 write SELF name. 3
8 ; G displayed « GPname)) ¥
gr 3 Ivalue >» i
| ((F+e 5 (:value)). 3
pr | displayimnode » s

i (GPdisplayed « GPvalue. i
| value is iconstructure > (value map(xi display name)) ;

write SELLE value))

: : «Jshape » :
i | ((<+~ » (:shape)). ]

ie ‘ displaymode » |g ( (null shape » (SELF display name) ;

a. shape eval). \
i: i @>displayed « Gshape)) 17
EL Fhody > (F« » (T:body) Thody) :

i Jerase :
Ek ! (displaymode » i
kr (ey displayed GPname » 1
i 4 (frame fclear. i
oF: « frame frame 0. ;

of @displayed « false) :
i ; eq displayed Gvalue » 3
Eb ({ value is iconstructure » (value map(xi display erase))). ;
aR frame fclear. j
i: frame frame 0. §
Yi GPdisplayed « false)
a eq displayed Gshape »

E (null shape » £) white shape eval black). 32: § Gdisplayed « GPvalue. ;

3 1 SELF display erase))) /
E 0 Jdelete » :

3 | ((displayed 5» (SELF display erase)). ;
y I container's value delete CALLER. ;
i SELF map @('s (GCname « Gframe « GC CALLER « GPvalue «
oA) G*shape « G”body « GPruncode « GPfotcher « :
18 Gstorer « GPcontainer « nil)))
§ F+ > (N:displayed) displayed)
43 <Ifetch » (:x. Tfetcher eval) \
i «¥store » (:x.:y. Tstorer eval)
1.48 <Feval » (Tbody eval World) ‘ ;
3 : <dmap » .
Hy : (:x. a
Po (value is iconstructure » (value map(xt map x))). 5

: | 3

: 3
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| pygmalion PAGE2) 1.

]
3 apply SELF to x)
§ | Jcupy » iJ
: (@&°x « icon name ix iwd iy ilit nil quick. g
: x's runcode « rnncode. i
, | x's displayed + displayed, ;
; x's fetcher « feteher, a
: X'S storer « storer, 4

, <Jquick > (Tx) 3
3 x's value « (value is iconstructure » (value copy) value), 3
$ x's shape « (shape is iconcontext » (shape copy) shape). |
4 x's body « (body 1s iconcontext > (body copy) body). | 8

: <Jcontainerless » (Tx) I. X's container + container. A

; Tx) 3
«change » 6

: ((¥position » Bi:

| | (@°x « =~ ix - ix, E:Bh G7°ix « ix + :X. 3

> GPiy «iy + iy). :
2 value is iconstructure » Al
y (value map (xi change position x y))) :
gE <Fsize » *
, (Giwd « max 16 ((:x * iwd) / 100) \ 16. 3
o G7’iht « max 16 (Cy * iht) 7 100) \ 186. 4
E (value is iconstructure -» 2]

iL (value map (xi change size x y))). 3
4 G7ix + (busex + (x * ix - basex) / 100) \ 16. A
Eg Giy « (basey + (y * iy - basey) / 100) \ 16)).
! frame param 3
i: (G7Pwinx « GPfrmx « ix. I
Ey | Gwiny « G7°friny « iy.
E @Pwinwd «+ GPfrmwd « iwd. E
AN GPwinht « G>frmht « iht)) A

he | isnew A
3 (G’name « stringify :. a
A @>framne « dispframe :ix :iwd :iy :iht :. A
4 >CALLER « SELF, i
b. <Fquick » () 5
: (displaymode » i
a (frame frame ~- 1, iy
E frame fclear, 1
a write SELF name. A
4 @G displayed « GPPname)). 3

Gruncode + iconrun. 4

8 G7>fetcher « iconfetch. 4
i G7 storer « iconstore. ny

change container absolute SELF ix iy.
i SELF)
A <gprint > (disp « ‘icon ' name print disp « *>')) 1
iL !

4 to iconcontext j oldx oldy oldWorld : 1 x y quick code World 3
E (Feval » i
4 ((World’s value is vector »
k: (G~oldx « World's value. 3
pe! World's value « iconstructure 10. 3

: for j « 1 to oldx length - 1 do k

| (World's value push Icontable[oldx[j]]))). ;Er geticon a - CALLER, :
?: quick » (code eval)
| ’ :0ldWorld. :
3 Goldx « CALLERSs ix. {:
2 ly Goldy « CALLERSs iy.
2 showicon CALLER x y World. :
6 . code eval. A
: SELF delete. i:
& showicon CALLER oldx oldy oldWorld) P
i isnew = 5
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| pygmalion PAGE 3 )
1

1 (GPWorld « Icontable[ 'world'] copy quick.
) <Jinitially »
! (:i. :x. :y. quick. .
' G7°code « ¥
| (:j is supervector » (j) supervector initially j). if& World's value « 4
9 (:j is vector » (j) iconstructure initially j vector)) E.
1 @GPquick « (quick » (true) false). 43: :oldWorld, :i. :code. A3 World's value « iconstructure initially oldWorld’s value vector. 1i GPx « 1's ix. i3 Gry « i's iy. ia GPi « geticon x y index) 2
a Ge » (Fj + :) tj eval) 5: <Jcopy » (Ticonecontext initially i x y quick code World's value) j2 Gis » (1SIT eval) 3: print » 4
) (disp « 'iconcontext initially @&'. 3: i print sp. ;a8 x print sp. W| y print sp. 3SF quick print. ]| disp « ' @' code print, .
p : disp + ' @°( ".i) World's value map(xi’s name print sp). ;
3 disp « ')'). <Fdelete » |
7. (GPoldx « World's value.fs forj « oldx length to 6 by - 1 do :i (eq oldx[j] CALLER » () oldx[j] display delete))) | |@ to iconouti jx ve i
k: disp « 'G7iiii « icon’. :>. i’s name print. Fl
i disp + ' basex+’. k(i's ix - basex) print. 3
a sp i's iwd print. :5: disp « ' basey+’. ®: (i's iy - basey) print, 3ki sp i’s ihit print. 1fr (null i's fraine param(buf) » (disp « ' nil.’ cr cr) :i sp i's frame print disp « '.' cr cr). i
i (Gc « i's container. g:
E c has i's ix i's iy » () 5N disp « 'change container absolute iiii basex+’. 4i (c's ix - basex) print. i: disp « ' basey+'. gE74 (c’s iy - basey) print. ¢2 disp « '.! cr cr). 32 Gv « [GPshape nil @body nil G7runcode iconrun G7 fetcher iconfetch GPstorer iconstore G7 value ni A
fv: for i+ 1 to vlength - 1by 2do ofi (x « is (VLiD)- 3
p eq x v[j+11= () 13x is iconstructure » (x map (iconout xi)) y.
pr. disp + 'iiii’s ' v[j] print disp «' ¢ '. kei. Xx is atom or Xx is vector » :
3 (disp ¢ '@' x print disp « ".! cr cr)
E: x print disp « '.! cr cr). i
EL Icontable[i’s name] »(Icontable[i’s name] delete)) »
Ee to iconstructu ve ii xx : vv }3 (Fis » (ISIT eval) 3x gcopy » [:
i (&xx ¢ vv vector. |

das a ” TF ] { wid
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|

| pygmalion PAGE 4 ; 1¢

for ii « 1 to xx length - 1 do
a } (xx{ii] » xxii] copy).

| diconstructure initially xx)hl ISNew -»

3 (<Finitially » (@>vv « supervector initially :) :

: G'vv « supervector :)<Iprint » 3
| (disp « 'iconstructure initially ['. 3

4 : vv nup(sp xt print). 3

2 disp «' ]') 4

E: | ep vv @Pxx « apply vv » () Txx) 3
| to abort (disp « ' ...aborted') 1]4 3

3 to and (1) |oo | to announce x i
> (:x. i

2 within dispframe 192 320 16 16 string 40 1]
hi. (disp clear. ha
1 disp + x. i
4 disp « '...")) i

3 to blink |2 (disp « 20. :
A do 10().
Wy disp + 8. 3
3 do 10()) :

3 to box x y wd ht :
b (penup. goto :x :y. pendn. up. :wd. :ht. |
J do 2 :
L (right 90. go wd. 3
2 right 90. go ht)) i
2 to change i j x y hasex basey

(<¥position »
: (Gi « geticon GP. A
A i display erase. : 4
pi i's container’s value delete i. ih:fi | move i to :x iy) 3
i size » .

: (Gi « geticon G7. 1kA i's (Fhasex « ix. GPbasey « iy). HE
Er i display erase.

§ i change size :x :y. :

i i display shape) 3
b <Jcontainer » 3
; ((<Fabsolute » :

p Gj « geticon :x+1 :y41) ie

X Gi « geticon :@, | :1 G7) « geticon :G7°). ih
3 G7°x « i's container. | ?; g i’s container ¢ j, | :
3 (null x » () 3|) x's value is iconstructure » (x's value delete i)). | ;
EE | (eq js displayed G>name » (j’s displayed « GPvalue)). ]

| 57 he 1) | |3 )'s value is iconstructure » (j’s value push i) !
F- eq j)'s value nil »
3 ) (j’s value « iconstructure 2, Ii
| )’s value push i)

1 sorry ‘container is not an iconic structure: ' + stringify j's value. Ri
By SELF display erase)) \ :

- wn a

3 to constant 1
. (Mouse store GPvalue :)

= md” LEE. RSL PO ' Eo Eh aE Linton SnFl A el iAL LEER tt no FTEAde RSIS RG VD BL iN A FA SAE TE SRE A a
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1 pygmaltion PAGE 5

; to copy 1 X y E(move goticon :@2i copy containerless to :x 'y) ‘FB

: to create x wd y ht { iti (icon ‘icon’ :x wi :y :ht nil) Ee
: to delete | i3 (1 « (Ficon » (:) geticon G7). . [3r | i store Gdisplay GPdelete) { 1
E to disk fil basex basey baseicon iiii : : showey |hi (2's >» (1:@>x aval) §jo! fal, |; Jfeteh

: (:basex. .basey. rE:: filin fil. !x | baseicon display shape.
d teontable| baseicon's name] « baseicon copy containerless) fi Jstore » :

: (G7*haseicon « geticon :@>. 1GChasex « basecican's ix. :
5 G7°busey « baseicon’s iy. :% fitout fit G( baseicon))) |
i 4
h to drawline x y E3 (goto :x + ix :y + iy) 4
k- to Eval 3

((geticon :@7°) eval) b
- to extend x attrib :i (:G7 attrib. 4-& GPx « CALLER's (attrib). :3 | cr disp « ‘need more instructions for ' + CALLER’s name. bEe (x is iconcontext » (GPx « x's code)). :
3 (eq Remember's value x » (remember resume) 3kh remember start with x). 4
. repeat (eq Remember’s value x » (World run) done)) Ehe oH
: to fetch i :7 (@°i « geticon :@. E
43 Mouse store Gvalue i fetch :@) :
3 to gethutton m n 3
. (G’n « 0. 1
1 repeat 83 (0 = Gm « mouse 7 » (black 1 n) 3G”mousex « mouse 8. 3. @ mousey « mouse 9. 3
Ha n=msx() K
- (m>34 ;A | (Gm «mm - 4. 13: Mouse's (black box ix iy + 12iwd - 1 17)) 43 | Mouse's (white box ix iy + 12 iwd - 1 17)). i 5et (m>15 :1 (Gm em - 2, ’ ia. Mouse's (black box ix iy + 68 iwd - 1 17)) 3; | Mouse's (white box ix iy + 68 iwd - 1 17)). }8 (m>0> §: (Mouse's (black box ix iy + 40 iwd - 1 17)) : i: Mouse's (white box ix iy + 40 iwd - 1 17))))

: 3
E to geticon x y v i 1 |k (:x is vector » i| (&°i « World. or R

us for y « 1 to x length - 2 do (Gi « is value[x[y]]). {
- E)
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A pygmalion PAGE € lo

L

: Tits value[x[x length = 17] « v)
4 for y « 1 to x length - 1 do (G7 « i's value[x[y]]).
3 7)

3 : <Jtop »
5 (index > (7 World's value map until (xi has x y) index]) :
3 “World's value map until(xi has x y))
E <index > i& (C7°v « supervector 5. :

getindex x y World's value, 3
t | Tv vector) k

b/ Wi « get] x y World's value » (i) TWorld) k3 iy

gE ) to getindex x y z i xi EJ {:%. :¥s 1
3 fori e« 1to:zlength do 1

9 xis displayed is false » (false) {
L: l V +], 3
y (xis value is iconstructure > :
. (getindex x y xis value 5 (Ttrue))). :
gr xi has x y » (Ttrue) v pop). §
i Tfalse) #

; togetl xyzijxi

i fori « 1 to :z length do |
p (Gxi + z[i). &
E xi's displayed is false 5» (Mfalse) ]
br. (xi's value is iconstructure » A
| (G72) « got] x y xis value » (1}))). :
E xi has x y » (Txi)). k
3 MTfalse) 1
ou tolFixy 4
= | (Mouse store G7*value if". 34 G7i « memory fetch :x :y. 2

id i's value[27]'s body « x. :
3 i's value[3]'s body + y.

i 1
3 to init ]
i. (PUT USER @G°DO G°(World run). 4
4 Gdisp « Smalltalk’s frame. {
: disp clear. ;
o World's frame fclear. :
2 World display shape.) H

: to makeline x y |
A (penup. goto :x :y.

3 | pendn, goto :x :y) :
to max x y

g | (x 2>:y>» (Tx) Ty) y #F
BE
i. to memory i x y
A. (Ffetch »
A. (:x. :y.
i @i « Icontable[Mouse’s value] » (Tmove i copy to x y)
1 sorry 'Cicon ' + stringify Mouse’s value + '> is not in memory')
yg <Fstore

; (&°i « geticon :@. ¢
Be Icontable[i’s name] « i copy containerless)) i

i : to memq x v 5

EC 10 <:v[1 to v length] find x) b

fy i?

b a: iASSAR SAN OL A NA NS CE RIS HANBnSAG pe AX a Siblan MHA (OGRA.of
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. pyginalion PAGE 7 :

3 J
to nin x y

3 (ixCty » (x)Ty) |
3 to move Lt x y

I to, :

pt: change container absolute i :x uy. |
Er 1 chitnge position to x y.
3 I display shape.
{} Ti) .

: to nameout i

? (:i's

: (Gdisplayed ~ GPname. .
F frame frame ~ 1,

frame show.

= | within dispframe ix iwd iy - 16 16 string 100(disp + name)))

to neg x

(:x CO (M[x]) tx)

to opcode opi x y
: (&° « icon :GPop :x 176 :y 64 nil,
, icon "i's ix + 16 48 i’s iy + 16 32 nil.
2 icon " 1's ix + 112 48 i's iy + 16 32 nil.
4 i display « G”shape. |
3 i's shape « G7

j (SELF display name. |
4 value[1] display value.
; ~value[2] display value).
4 Gx «+ G72(SELF display value «
X Mouse store G7 value value[1]'s value ® value[2]'s value).
. x[15] + op.
oo i's body « x[1 to x length].
5 ti)

4 to opcodel opi jx y
: (:G op.
3 Gi « icon "ix 112 :y 64 nil.

a Sly geticon x y index,] [G7text, op, j, 16, 24] eval.

# icon "i's or! 48 48 i's iy + 16 32 nil.o i display + G/°’shape.

(text name © 16 24. |
; value[1] display value).

x[3] « j.
4 i's shape « x[1 to x length].
3 Gx + GP(SELF display value «
; Mouse store G”value & value[1]'s value). I:
k: ! x[9] « op. 2
g 1’s body « x[1 to x length].

i. | to or
q ; {. Ttrue) . s

Ef to plot .
1 ((null GET xplot G”DO =» (filin 'xplot')).
3 disp fclear.
a xplot :,
3 disp show)

; to refresh i

f. (Gi « geticon :@°. -
i display erase.

k i display shape) , J

A {

|i me Cae i hdA is pc dftl lh i ly tbe ied iUp RLS Ub SS
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pygnulion PAGE 8° [ul

to remember i x CALLER(<Fstart » :(announce ‘remembering’. y: Grememberimode « true. ‘e" <Fwith » 4(Remember's value « x. 4
. Renmendher™ frame clear. iwithin Remember’s frame f

(fori « 1 to x length = 1 do (cr x[i] print))) 3G7 x. iRemembers value « supervector initially[[@Pextend x1]. 3Remember’s frame clear) 4
<gstop -» be.(remembermode is false » () kRemembers vatuefend] + nil, bi

; . announce 'stopped remembering’. i} G7’remembermode « false. yry Remembers frame clear) 3; suspend » (rememberinode » Ib} (announce "temporarily stopped reinembering’. A: GW remembermode « false)) 1d: <fresume > 3¥. (Remembers value = |B(announce ‘remembering’. TT7 G}’remembermode « true)) 2
; x. (remembermode » EsI (G*i «+ Remember's value pop. 3Remember's value push x. :

: Remember's value push i. p:within Remembers frame(cr x print))). 3
! Gdoit » (Tx eval) Tx) 4Re

to REPEAT i x y k(Mouse store @Pvalue ‘repeat’. 4G71 + memory fetch xy. i
: {G7xX.i's value[1]'s body ¢ x. 3; 1) |

to setinouse x y z p
(:x.:y. :z 3within Mouse's frame q

(disp clear. 3cr disp « x cr. Y
cr disp « y cr. ]cr disp « z)) i

to Show i i
J (Gi « geticon :G™. ;
of i store G display (@°)

to showicon i x y :
(:i change position to ix ty.
within dispframe 112 400 32 432 nil(disp fclear).
.i*s value map from 6(xi display shape)) :

to sorry 3
(cr disp + ‘sorry, ' disp «
cr disp + 'last operation aborted’.- cr disp + 'read-eval-print loop -- type done to proceed:’. :
ev)

to startline x y

” (penup. goto ix + ix iy + 1y. pendn)
1 to store i x(Gi + geticon :@. 8!; i store :@°x Mouse's value) 4

| |1 aidx

| ) #
; i; ON <p SATU RN FIA RIS AEA EAE ASTI Fibs ab LNA AT ig
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pyrnralion PAGE 9 )

: : d;

1

! to streagify x disp
4 (x is string > (Tx) §
: disp + supevstring 10. :
; N priat, : a

: Tdisp string) 3
} to superstring xx : vec end

id (<-> :A: (xx is string » 1
Fo i (GPvee « veel1 to end + xx length]. ky3 vec[end + 1 to @’end « end + xx length] « xx. .
\ vee length < GPend « end + 1 » ;| (G7 vee ~ veel to 2 * end - 1]. 41 ; Tveefend] « xx) E:
| veel end) « xx) 43 string > ("veel1 to end]) 1a ISTEeW -» 3i (G/ovee « string :. y4 \ ead « 0)) 3
iF to supervector it xx xi: vec end E:

i J i
: (vee length > GPeond « end + 1 5 (Tvec[end] « 2) : 4
5 Gr vee + vee[1 to 2 * end].

ie Tvecelend] « 2) ;
3 A <Fniap » k: (<Funtil » f
 & (:G xx. k
2 for ii « 1 to end do 3
a4 (G7xi « vee[ii]. k
 § xx eviel > (Findex » (Mii) xi)). 41 index 5 (10) false)

K @>xi « (from » (2) 1). :
14 for ii « xi to end do /

: (G7>xi + vec[ii]. 3
1] xx eval)) ]
1 3 LIpusit 5» (TSELF « 2) 31 Qop > A i§ (end = 0 5 (Tnil)

4 Gxx + vee[end].
vee[end] « nil,

i G7end « end - 1. :
$ txx) 3! <Flength » (fend) 2
i Fvectar » (Tvec[1 to and + 1]) i
' eval 5 (Tvec eval) :! ddelete » /(G7*ii « vec[1 to end] find :.

i1=0 5 () , §vec[ii to end - 1] « vec[ii + 1 to end]. i
vec[ end] « nil. k
G7’end « end - 1) ;

Fis » (1SIT eval) !
<Qprint > (vec[1 to end + 1] print) [+isnew » i A(<Finitially »

(GP end « vec length - 1, = iTSELF) :
@’ vec « vector :. :
G7*end - 0. i

eq vec Wxx « apply vec » () Txx) |
7

to table i x : names values fe :

G7°i « names map until (x = xi) index. .

be py



i

5

pyr abion PAGE 10 4

I
| <J + > | a> | (nataes « x.f Tvalues « 1)

: “vale i} « x) RE/ 120s (false)

Q Ddilete J
(names delete mameasf i), g
vichuss delote values[i]) 3

: Tvalues[i]) | 3er ISTICW =» ¥: | (GPnames « supervector :i, 5
1 Tvvalues « supervector i) .1 print » (nantes print)) 3

1 5; 33 to text si xy bt:- (:s 3
| Cow goticon (7, iue ~- GPX Ris ix + i 4

|, Cy ws iy + 5, A
, within dispframe x 256 y 256 string 100( disp « s)) 4
ge h:
: . to waitmouse n x y z : A
: (setmonse x iy cz, b
= Gtopbntton « G2midbutton « GPbotbutton « false. 5fi: repeat 43 (0 = monse 7 5 () 2
h' G71 « gothntton. 33 n=d 5 (Mowses frame show. opplot) done). 3
Ey. Monse's frame clear. 7
v ns=9. (G7 tophntton + true) 1B | n=15s(eqy dishes » (ahort) Gz>midbutton « true) "
b n=2 5 (cqz dashes 5 (abort) GPhotbntton « true) E
:. abort) 1
7 to within disp ;F (:elisp.

3 FG) eval) 4
3 to write i vx wi y ht ;
4 Gv + stringify :. xGwe = min i's iwd 8 * v length. 3
4 G/"ht « min i's iht 16 * :

(1 + (viength-1)/i'siwd / 8). ]
Xi: Gx «i's ix +4 + (i's iwd - wd) / 2. :Gy « i'siy + 2 + (i's iht - ht) / 2. JL i's frame frame - 1. i
¢ £8 i's frame fclear. iE- vithin dispframe x wd y ht string 100(disp « v)) gHE 1 Fri3 tof vi
d (G7°v « vector 10,

3 8 Gi « 0. :A repeat i] | (F]»>(Tv[1toi+1]) 3
i v[@iei+1]e: /
x | vc length 5 (Gv oe v[1 to 2 * v length]))) 2

| to <i bii. (icon » (Gi + Icontable[:i]. «>. 1))
3 to opl op i’
F wiaitmouse ' position’ dashes dashes.
2 tophitton -» i

v) (remember[GPopeodel, op, mousex \ 16, mousey \ 16] doit.)) g!
ol :

i jn
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|

to op op

, (:G op.
3 wiitmouse | position’ dashes dashes.
3 topbutton

(remember @ opcode, op, mousex \ 16, mousey \ 16] doit.))

3 to opbody i ;
: (waitmouse ' dofine hody' *' fetch body' ' store body’. :
a tophutton » 3
| (G7*i « geticon mousex mousey. 5
ie sp disp « 1's name. i
2 i's body is icancontext » 3
¥: (remember start with i°s body's code) :
; remeimnber start body. :
! i's body « iconcantext World i Remember's value,
Bs Icontableli's nmne] » :

| (Teontable[i's name]'s body « i's body copy) 3- cr disp + ‘do you want ' + i's name + ' saved in memory? (y or n)'. :
E, memy read 1] @(y Y) »
By (Teontable[is name] « i capy containerless)) 5
: midbutton » k
| (rememhber[G fetch, geticon mousex mousey index, @>body] doit) |
E.:. botbuttan -» 3
b- (rememberG7 store, geticon mousex mousey index, @>body] doit)) |
3 to apchange i j :7 (waitmouse ' change pos' ' change size’ ' change cont’. :
| tophutton =» 3
A (G”i « geticon mousex mousey.

# eq i World » (sorry ‘cant ¢' ange position of world’) yi
eg. | G7) « geticon mousex monsey index. 3
& | wititmouse ' upper left’ dashes dashes. 7

topbutton » ;

i | (remember[GPchange, GPposition, j, mousex\16, mousey\ 16] doit)) ;21 midbutton » 4
& : (&”1 « geticon monsex mousey. :
E eq i World » (sorry ‘cant change size of world’) ;
a G7”) « geticon mousex niousey index, j
1 waitmouse ' lower right' dashes dashes, :
gl topbutton » 3
Pi (remember[GPchange, GPsize, j, 1
4 (100 * mousex - 1's ix) / i's iwd, i
El (100 * mousey - i's iy) / i's iht] doit)) 4
>. betbutton » :
i. (Gi « geticon mousex mousey index.

waitmouse ' container’ dashes dashes. :

. topbutton » 5
p: (remember[GPchange, GPcontainer, i, geticon mousex mousey index] doit))) ¢

i to opconstant :
ah | (cr disp « 'value? '.

oh | rememher[GPconstant, read eval] doit)h I
] to opcopy i :

. | (waitmonse ' copy icon' dashes dashes. :1 topbutton » a
BE (G71 + geticon mousex mousey index. 1
a. waitmouse ' position’ dashes dashes.
A topbutton »

E | (remember[G copy, i, mousex\16, mousey\16] doit}))3

” | to opereate n started x wd y ht3 (G7 started « false.
7 setmouse ' set point' ' del point'' quit’.
B repeat ) |
i (Gn « getbutton.
oh n=4o- |
E (Mouse's (white box ix iy + 12 iwd - 1 17 black). ;

tTehptAE at aAiaEoth i Se fdiSn do dsSci ft deet pig alii ¢ initi eloi dhe



] a

a pylon PAGE 12). 17

| started 1s false »
(Ws « monsex \ 16.

4 Gy - mosey \ 16,
5 Crowil « G2 hit « 0.
- (77started « trie).
3 mem 65 « 1 'XOR ink".

v box x y wd hit,
4 mem 65 « 0,

A - Cwd « (monsex \ 16) - x.
i G7’ht « (mousey \ 16) - vy. :
fe (wd C0 »

. (G7Pwd « - wl, I
| y Gx « monsex \ 16)). |A (ht <0 » Rt
5 (G7ht « - ht. [12
, Gry « monsey \ 16)). 3
F. remember GPereate x wil y ht] doit. 3
i Gos tarted « false) A
= m=1- b.
RB (Monsees (white hoax ix iy + 40 iwd - 1 17 black). i
5 started -»

| (mem 65 « 1, 3
3 box «x vy wid ht, 3x mem 65 « 0, : 13
| Gwid « Git « 0. 13

GPostarted « false)) :
b- n=22- 3
# (done with Mouse's frame clear) ME

started » k.
i (mem GH + 1, |
Bi . box x y wid ht. ,
4 box x y @>wd « (mmx \ 16) - x G7ht « (my \ 16) ~ y. b9 mem 65 « 0))) k
0 | to opdelete
3 (waitimonse ' delete icon’ dashes dashes. 7gi | topbntton » ||
ke (remember G77delete, geticon monsex mousey irdex] doit)) §

: A

} to npdisk ij fil 13
& (wiitmonse ' feoteh'' store’ dashes. 3
fr topbutton » :% (cr disp « "please type a file name: *.

R - G7 fil « read eval, !
| fil iq string » 33 (remember[G7 disk, fil, @>fetch, mousex \ 16, mousey \ 16] doit) E

EL abort) |: midbutton » : ;
3 (G7°i « geticon mousex mousey. fo
p (7°) « peticon mousex mousey index. 1
: (1's name = ‘icon’ » 3
J. (cr disp « "please type a name (a string) for the icon: °. 3
i i dhisplay name + read eval)),

; cr disp « "please type a file name: °, 3: G7>fil « read eval. x
3 fil is string !
“N I (sp disp « i's name. 3
[ remember [@2disk, fil, G store, yj] doit) Pol
Eo ) abort)) ; :
a. to opdisplay !

(waitmonse' on'' off dashes. /- | topbutton » (remember G(@Gdisplaymode « true) doit) :
y' -. midhutton 5 (remember GP(GPdisplaymode « false) doit)) Co
| an to opdraw i n started xstart ystart xstop ystop
H (G7>started « false. | ;
¥ ’. waitmonse ' relative to' dashes dashes. i i3 | topbntton is false » () 14

3 ke 3
’ LE
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i G7°) poeticon monsex nousey, .y Setinouse "start line' * stop line’! quit’,1 7 repeat

: i (Gn = gethutton. :
gH (Mouses (white box ix iy + 12 iwd - 1 17 black).: started
Al (remember[ Gdrawline, Xstop - is ix, neg ystop - i's iy]. oF i
3 Gxstart « xstop. 1| GFystart « ystop)

1 GQsstart « G7 xstop © mousex. :3 Goystart « GPystop + mousey. k: rememberGPstartline, xstart - js IX, neg ystart - i's iy]. 3ia Gstarted « true) : 44 ns=1.:, 1ix; (Mousses (white box ix iy + 40 iwd - 1 17 black). e3 started » :- § (remember[ GPdrawline, xstop - 1's ix, neg ystop - i's iy]. ,: G/2started « false)) i
A E n=? ye § ((started » 3EI (mem 65 « 1 'XOR ink’. b
fe makeline xstart ystart xstop ystop. ]k mem 65 « 0)). .
£ done with Mouse's frame clear) :3 started 11: (mem 65 « 1, ]makeline xstart ystart xstop ystop. Anitheline xstart ystart G xstop « mx Gystop « my.

nem 65 « 0))) 13
y to opeval .:F (waitmouse ' eval icon’ dashes dashes.

) topbutton - 3ET (remember[ Eval, geticon mousex mousey index] doit)) A
X to opexit j(PUT USER G°DO sysUSER. 4G7disp « sysDISP,

i remember suspend. 6:3 Warld’s frame fclear. :
disp frame - 1,) E

to opif :
; (waitmouse ' position’ dashes dashes. 3; topbutton » fr(remember[ GIF, mousex \ 16, mousey \ 16, ]

supervector initially G°((extend body)), : .supervector initially G°((extend body))] doit))

to opmemory i j | 3(waitmouse ' fetch'' store’ fetch mouse’. 3topbntton » £(cr disp « "please type a name (a string) for the icon: '. kremember[@G constant, read eval] doit.

remember{ memory, G fetch, mousex \ 16, mousey \ 16] doit) |
midbutton » i(Gi « geticon mousex mousey, :@”j « geticon mousex mousey index. i(is name = 'icon' » - |(cr disp « ‘please type a name (a string) for the icon: '. |i store G name read eval)). ;J (Icontable[i's name] » i. (eri print disp « ' js already in memory". : :

er disp « "type y to replace: °, yniemqy read[1] G(y Y) » () Tabort)). = hhsp disp « 1's name. : 83 remember [@miemory, @store, j] doit) it 5bothutton o ;
i
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|

3 (remember G7 memory, GP ete, mousex \ 16, mousey \ 16] doit))

A T to opname {repeat i
E (wartmonse ' feteh name’ ' store name’! quit’, ;
E topbutton -» x
3 (remember] G2 fetel, geticon monsex mousey index, GPname] doit) i- ie mitkhutton »

E (remember store, geticon mousex mousey index, @ name] doit) f

ps botbntton 5» {doue))) |gee |

E } to opuext () ;a b
be to opplot fil |

i {cr disp « ‘please type a file name: °'. .
4 G7>fil « read eval, 3
bi I" fil is string -» (remember[GPplot, fil] doit) abort)

ke. # to oprefresh (repeat 1
oe (wintmonse ‘refresh icon’ dashes ' quit’,

4 tophmtion » . 3
i (remember[G refresh, geticon niousex mousey index] doit)
. bothutton » (done))) E:

p to opremember 1
“18 (waitinouse ' stop’ ' suspend’ ' resume’.
L. tophutton » (remember stop)

midhutton » (remember suspend)
bothutton -» {remember resume) {

: to oprepeat |
(waitmouse ' position’ dashes dashes. p

3 topbutton » J

§ | (vementher| G2PREPEAT, mousex \ 16, monsey \ 16, en
nl supervector initinlly @°((extend body))] doit)) 3

: to opshape i :
(wiaitmouse ‘define shape’ ' fetch shape' *' store shape’.

b: topbutton » | 3i: (Gi « goticon monsex mousey. ;
| . sp disp « i°s name, | A

E. 1's shape is iconcontext » 13
: (renmiember stat with i's shape’s code) 3
| remember start shape, i
Pr : 1's shape « iconcontext quick World i Remember’s value.

g tcontable] i's name] » }

a ) (tcontable[i°s nume]’s shape « i's shape copy)) a
3 midbutton -» 3
g (remember[G7°fotch, geticon monsex mousey index, @ shape] doit) ’

bothutton -» A
: (remember[G store, geticon mousex monsey index, Gshape] doit)) ;

4 | to opshow i j y3 (wiaitmonse ' show name’ ' show value’ ' show shape’. i

i topbutton - 143 (G71 « peticon monsex mousey, :
pr G7} « geticon monsex mousey index. 5
TT. , (eq i display G/>name » il

a (eq 1's container World » () :Ed ) Lj length = 17] « nil.
E- Wj « jl 1 to j length - 1])). |
Re remember[GShow, j, @ name] doit) 8
A we midbutton -»

£ (remember[GF show, geticon mousex mousey index, Gvalue] doit)
fF -- bhothutton »

H (G7°) « geticon mousex monsey index. ;
E -n remember{ Show, j, @ shape] doit))

3

& a to optext i js :

7 (waitmonse * relative 10’ dashes dashes. 3
b ve Bh
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g tophutton ». (ZF « Leticon monsex mousey, FA
G77) = geticon mouses mousey index. ~ *y,

3 cr disp + "please type the text (a string) to be displayed: °'. : 2
r Gs « stringify read eval.
: wiktmouse © position’ dashes dashes, b 4
A tophutton » 4

| (remember[@ text, s, j, mousex - i's ix, mousey = i's iy + 16] doit))) 7
Ed ta optrace 4

3 | (wailtmousce ' trace icon’ 'untrace icon’ dashes. E
n topbutton -» b

Ee | (remember[@ trace, geticon mousex mousey index, @ on] doit) E
14 midhutton p

(remember[@ trace, geticon imousex mousey index, Poff] doit)) Ay

4 to opvalne n -
E" | (setnouse ' feteh value’ ' store value' ' ~===-=--==", peEs | repeat | a
4 (Gn + gathutton, -
ji nz 3
gL: | (Mouse's frame clear. 4)

p | remember GPfetch, geticon mousex mousey index, G value] doit.
he dane) . 3

n=1a=» 3
vi (Mouse's frame clear, : 3
x remembes f G77store, geticon mousex mousey index, Gvalue] doit. i
bs done) > é
bs. CALLER has mx my » () k
ih done with Mouse's frame clear)) in. 3

E to initall 3
| (disk’s i o
fe (to showev x bv.

(disp « '@baseicon « °. :

a | iconout x eval)). 3]pe | (emg G2°\ GET nnmber G°DO » () : E
Er addto number G2(<\ » (f:x * (SELF + x / 2) / x)). :
: addto dispframe GP(<Iprint » (buf print)). b
ie (GET shispframe GDO)[59][50] « O. 4
. (GET psbow GPDO)[10][4] « 6. . 2
i (GET pshow G7PDO)[22][34] « GP: GC #1 [FI >3). 4
= (GET file FDOILTOI[24 104) « ¢d 3E (dp0 evals filesopen map 4
4 (vecfi) evals G2(@ dirinst « nil))). p
gy (sysUSER « GET USER GPDO. ;

G7sysDISP « disp). k.
Grmdashies « ' —-—mmmmmm?, : ‘

i! @>run « G run, gi
a G7 Icontable « table 10. 9
#4 Icontable['world'] « nil. : 13
BC G7iconrun « G=(opvalue). 3
el i G7”iconfetch « GZ>([CALLER Gs x] eval). h
2 Giconstore « G7 |
3 (eq x G7 display » ([CALLER Gdisplay y] eval) :

s a ALLEL Gdisplay x GPe GPG y] eval). 3by © specialstore « (sorry ‘cant change ' + stringify CALLER). Aud If

A | Gro displuymode « true, :gE GPremembermode « false. - ih
. initworld initmenu initmouse initremember initsmalltalk initicons.

; i World's frame clear. : 3
E i disp frame -1, 1
f ¥ GFinitworld « @initmenu « GPinitmouse « G’initremember « Ginitsmalltalk « GPiniticons « @inita

 § **I1 « nil) i
E i to initicons i baseicon basex basey gl.
3 (Gbasex « 192, 1p
3 7 G7 hasey « 192. T! H

Fs. 43 3
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| | CHhasvrcon - C21 we dcon if basex+0 192 hasev+0 112 nil,i's shipe = GP (value] 1] display name, value[ 2] display value. value[3] display value. startline
fon IR draw line 1210 18 drawline 111 10, diawliue 111 26. drawline 121 18. startline 66 34.

*tdrawline 101 77 drawline 92 756. drawline 101 65. drawline 101 77). é

. i's body = G2( value { 1 ]°s value » ( value [ 2 J eval ) value [ 3 ] eval ). &

| G71 + icon 7? basex+0 64 bhasey+0 32 ' -
| i's runcods « G77( opvalue ), 4
4 :

| G71 « ican "true Liranch' basex+128 61 basey+0 32 * *. I$ i's shape « G7°( SELF display value ). |
of 1’s value true, H3

3 G21 + icon ‘false branch’ basex+96G 61 basey+80 32 ' ', 3
A , i's shape « G2( SELF display value ). 2
: i's valne « false. 5

: lcontable['1f'] « bascvicon copy containerless. E
a Lascicon display delete, =
pe CPlueican « CF = jeon ‘repeat’ hasex+0 48 liasey+0 32 nil,
4 1 is shape « GUCALLER display value, startline 23 33. drawline 23 59. drawline -31 60. drawline 4
Ee. *e-31 (-38). drawline 23 (-38). drawline 23 (-2). drawline 13 (~13). drawline 33 (~13). drawli E
h spe 20 (-2)). :
1 : i's value « ' loop’. !Bh.

, leontalile[ 'repeat’] « baseicon copy containerless. 3
v baseicon display delete) RE

& to initmenu i 3
a (G/°Meun « leontalile['menu‘] « icon 'menn' 16 80 32 647 string 300. E:
3 ' Mons shape « G2°(nameont SELF). by
i Menus runcode « G7 14

. (setrmiouse ' doit’ da 2s dashes, 13
be | 1 rej eat i
NN (gethntton = 4 » 3
Bi 4 (Mouse's frame clear. 4
pe: G/°x « (Menus frame mfindt mousex mousey) / 2. 5
fi 0 <x ¢ mennops length + 1 » b
fi. (sp menunames[x] print, A
| . Goperatian « mennaps[x]. 1
4 eq operation GPundefined » IEs . (done with disp « ' undefined") tH:
5 World's (operation eval). |
h i disp « * ok’, ti
i done)) {i

SELF has mx my =» () 13
F 1 done with Mouse's frame clear)). Ih
pos Menus fetcher « iconfetch, }
g : Menu's storer « specialstore. 4
33 G7“ menunames « superve--tor 50, ;
E =» G"menuops « supervector 50. 3
K within Menn’s frame 3

4 ye (supervector initially G :B:. ((icons undefined create opcreate change opchange delete opdelete copy opcopy refresh od
ge a ** oprefresh shaw opshow name opname valne opvalue shape opshape body opbody)
Es | (opcodes undefined 1

g + (op2 +) - (op2 -) * (op2 *) / (op2 /) ;J = (op2 =) < (op2 <) > (op2) :

A. and (op2 and) or (op2 or) not (opl not)) fha 1 1 (vontiol undefined if opif repeat oprepeat done opdone eval opeval return opreturn T
Bs. **) 1

, { pa (others undefined memory opmemory disk opdisk next opnext display opdisplay rememb f
#8 **er opremember draw opdraw text optext trace optrace constant opconstant plot opplot exit ope g
BJ map +

Be 1 | (menunames « xi[ 1]. dg:
| mennops « xi[2]. ¥
eH La cr xif1] print cr. 4

A | i
he os
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pypmalion PAGE 17 ] |
| fori « 3 to xilength-1 by 2 do
3 (menmunnes « xifi]. v
; mennops + xif i + 1).
3 memyg xii] @(+ * <) » (sp xi[i] print sp)

spoili] print er))))

h

to 1mthimnanse +
: (G7 Mouse « lcantalile] ‘mouse'] « icon 'mouse' 400 96 480 96 string 50. ~| Mouse’s shape « G2(nameont SELF).
\ Mouse's runcode « nil, | H

Mouse's fetcher « iconfetch. TH
4 | Mouse's storer « @ NE4 (eq x @display » (nil) of BR
| within Monsevalue’s frame 13E (din clear. RI
3 t Mouse's value « y print)). /

C7’Mounsevalue « leontable[ ‘mouse villue'] « icon "mouse value’ 112 272 480 32 string 100. . |
: Mousevalne's value « supervector initially G2(" '' "). ;
5 Mousevaloe's shape « Mause's shape. E.3 Monseoalue's runcode + nil,
: | Mousevalue's fetcher « iconfetch, |
f | Monsevalue’s storer « spcceialstore) 4
; 3 to initrewember

: (G7”Remember + lcontable['rcimembered'] « icon ‘remembered’ 112 272 544 32 string 100. tMGo Remembers value « false, -

4 Remembers shape « GP(nameout SELF).
: Remembers runcode « G2 *
4 (setinonse ' insert’ ' delcte'' scroll’. 13
4 repeut
+ (G7°% + getbutton. jI X = 4 ¢...")

NX = 2 =» ('...") 19
3 | SELLE has mix my » ()
4 done with Mouse’s frame clear)). A
pi Remember's fetcher « iconfetch. ' iri Remembers storer « specialstore) A

jo to imitsmalltalk 3
(G”Smalltalk « lcontable['smalltalk'] « icon 'smalltalk' 112 384 608 71 string 300. 5

gE Smalltalk's shape « GP(nameout SELF). 3A Smalltalk's body « G7”

| (er disp « ‘input? °, 5
. Mouse store @ value read eval). 5
B Smalltalk’s runcode « G7 (repeat ;
3 (kbek » (er read eval print) :; SELF has mx my =» (blink)
3 done)). p
53 Smalltalk’s fctcher « @G° :

i (cr x print disp « '? °, ;
| read cval),

pi Smalltalk’s storcr « G>(Mouse’s value print)) :
i | to initworldA (G7World « lcontable['world'] ¢ icon ‘world’ 0 512 0 680 nil quick. 13

World's value « iconstructure 10. :i: Warld’s shape « G7°(value map(xi display shape)). L3 3
A World's runcode « G&G

(Mouse's frame clear. I4 value map(xi run)). B
World's fctcher « iconfetch. gt

1 World's storer « specialstore. or +H
AS | World's container « World) 1
| ( initall ) k
# Hi

E il tf
a 4
7 :
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| 1 |. Encyclopaedia Britannica, Encyclopaedia Britannica Inc., 18, 1973, p.891.bt 2. Gombrich, p.95
EB o£ 2. Gombrich, pp.94-97 (reprinted by permission of Princeton University Press)

Bt 1 +. Wallace. p.116
EF 5. Papert, unrecorded talk, but see Papert 1970, 197i(a), 1971(b), 1971(c), 1973 for ways to
4 make the computer fun for children.
bE 6. Arnheim, p.v
v 1 7. David Pye, in Hyman, v.31
V. S. Koestler, p.28

1 ” 9. Gombrich, p.3061

Ed - Chapter |
| I. Bowman, p.vii

” 2. Koestler, p.173

| : 2. Quoted in Arnheim, p.228
a8 4. Arnheim, p.227
: E 5. Sloman, p.276
3 6. Wilham A. Martin, p.78
| - 7. Hadamard, p 82-5
AE 8. Hadamard, p.142-3
3 -- 9. Arnheim, p.v

10. Arnheim, p.277 |
] a Il. Arnheim, pp.221-232
: a 12. Moran, p.475
a8 13. Bowman, p.16
| ae I4. Sloman, p.273
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| 15. Sloman, p.275

a F 17. Aristotle, On Memory and Reminiscence, p.449.
3 rd 18. Arnheim, p.98
g 15 19. Arnheim, pp.103-104

Fie = 20. Paraphrased in Arnheim, p.102
IE A «1. Julesz, p.xi
al 22. Julesz, p. 240
i | 23. Arnheim, p.104

Ei 1 24. Arnheim, p.107
a 25 Gombrich, p.23
rt 26. Colby, private communication :

EI | 27. See, for example, Bowman (op.cit.) and Learning to See.
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i 28. Arnheim, pp.125-126 (reprint-* by permission of the University of California Press) -
; 29. Cooper & Shepard, p.80 |
i 20. Gombrich, p.285 id
h 21. Gombrich, p 119
i 32. Webster's dictionary, p.50 3
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i 24. Gombrich, p.295
| 25. Arnheim, p.277 Ee
{ 2c Gombrich, p.370 |i *7. Gombrich, p.293 JHE
H 28. Arnheim, p.108 :
i! 2G, Gombrich, px  ]
1 10. Arnheim, p.108 go]
; 41. Gombrich, p.226
/ +2 Gombrich, p.248 “1
bs +3. Gombrich, pp.248-249
E +4. Arnheim, pp.136-138 wv
El 45. Arnheim, p.151 (reprinted by permission of the University of California Press) |
4 16. Koestler, p.170 - 1
Br 47. Paraphrased in Arnheim, p.224 |
& +8. Arnheim, p.223 oo

9. Arnheim, p.221 =}
| 50. Arnheim, p.225 :
1 51. John Locke, An Essay Concerning Human Understanding, Introduction, sect.8. a

52. Papert 1971(a), p.14 |
2 53. Coleman, pp.117-118 -

54. Coleman, p.125 |

El 55. Quoted in Coleman, p.132 ;

& Chapter 2 |
‘ I. Mednick, p.22i :

2. Gombrich, p.376
a 2. Quoted in Koestler, pp.14-15

{ +. Koestler, p.16
b 5. Koestler, pp.27,45 :

6. Gombrich, p.94
: 7. Koestler, p.35 :

| 8. Koestler, p.35 :
9. Koestler, p.37
10. Koestler, p.39

] i 11. Campbell, p.287

| 12. Gombrich, pp.271-272 : :
14. Wertenbaker, p.74 "1
15. Gombrich, pp.79-80 1
16. Gombrich, pp.80-81

b 17. Gombrich, p.80 a

| 18. Wilson, p.92p 19. Wilson, p.106 -
| 20. Alan Kay, private note

21. Gombrich, p81 r
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- 22. Wertenbaker, p.162
D I 22 Wertenbaker, p.162
: 24. Campbell, pp.387-388
5 25 Wilson, p.106

I } 26 Krippner, p 42i 27 Golann, p 550
{ 28 Drake, p89
i 20 Mednick, pp.221-222

2 } x0. Campbell, p 287: 21. Mednick, p.222
 - 22. Mednick, p. 222
| , 23. Mednick, p.223
£ | 24 Mednick, p.224 |
g Chapter 3

i I |. Brand, p.77&. 2. Brand, p.77 ]
|. 2. Term suggested by Alan Kay !
£ 4+. W.R Sutherland, p.59

§ 1 5 W.R Sutherland, p.89
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