n24438

Stanford Artificial Intelligence Laboratory May 1975
Memo AIM-259

Computer Science Department
Report No. STAN-CS-75-438

Automatically Proving the Correctness
of Translations Involving Optimized Code

by

Hanan Samet

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Labaratory May 1975
Memo AIM-~-289

Computer Science Department
Report No. STAN-CS-75-498

Automatically Proving the Correctness
‘of Translations Involving Optimized Code

by

Hanan Samet

ABSTRACT

A formalism is described for proving that programs written in a higher level language are
correctly translated to assembly language. In order to demonstrate the validity of the formalism
a system has been designed and implemented for proving that programs written in a subset of
LISP 16 as the high level language are correctly translated to LAP {an assembly language for
the PDP-10} as the low level language. This work involves the identification of critical semantic
properties of the language and their interrelationship to the instruction repertoire of the
computer executing these programs. A primary use of the system is as a postoptimization step in
code generation as well as a compiler debugger. -

The assembly language programs need not have been generated by a compiler and in fact may
be handcoded. The primary restrictions on the assembly language programs relate to calling

T his research was supported by the Advanced Research Profects Agency of the Department of
Defense under Contract DAHC 15-73.C-0435 . The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of Stanford University, ARPA, or the U. §.
Government. ' _

Reproduced in the U.S.A. Available frofn the National Technical Information Service, Springfield,
Virginia 22161 :

sequences and well-formedness. The assembly language programs are processed by a program
understanding system which simulates their effect and returns as its result a representation of the
program in the form of a tree,

The proof procedure is independent of the intermediary mechanism which translates the high
level langnage into the low level language. A proof consists of applying valid transformations to
show the equivalence of the forms corresponding to the assembly language program and the
original higher level language program, for which there also exists a tree-like intermediate form.

Some interesting results include the ability to handle programs where recursion is implemented
. by bypassing the start of the program, the detection and pinpointing of a wide class of errors in
the assembly language programs, and a deeper understanding of the question of how to deal
automatically with transfations between high and extremely low level tanguages.

This dissertation was submitted to the Department of Computer Science and the Committee on
Graduate Studies of Stanford University in partial fulfillment of the requirements for the degree
of Doctor of Philosophy. ;

(C) Copyright 1975
by

Hanan Samet

iii
ACKNOWLEDGEMENTS

I would like to express my thanks to the following people who have contributed in different ways
to my thesis.

My adviser, Professor Vinton Cerf, whose help, enthusiasm, understanding, advice, and availability
played an immeasuarable role in this work.

Professors Donald Knuth and Terry Winograd who served on the reading committee and made
many valuable suggestions. Professor jerome Feldman who was my initial adviser and who
encouraged me to continue this work. Professor John McCarthy who stimulated {via a CS206 class
praject) and supported the work reported in this thesis.

Many thanks go to Jim Low and John Allen both of whom patiently listened to me as I debugged
my ideas at various stages. John Reiser for having done a thorough job of reading the thesis, and
Mike Farmwald for help in a last minute proof reading session.

[would also like to thank collectively all of the people at the Al lab who have provided the
facilities with which 1 was able perform the work reported in this thesis. Special thanks go to
Brian Harvey and Martin Frost for their help with PUB, the document compiler; to Dave Barstow
for creating the graphic fonts which | used to create the figures, and thereby write the entire thesis
in PUB; and to Tom Woipert who helped make the proof system run under the TENEX operating
system and the UCILISP environment.

I would be remiss if [did not thank the 'following people who have played, in various stages of my
hife, a vital role in enabling me to do this work: Margalit and Seev Berlinger, Harry Greiff, Eytan
and Varda Selberg, and Maurice and Toni Weinberger.

Finally and most importantly, 1 would like to thank my parents Julius and Lotte Samet whbse lave
and sacrifice made it all possible.

TABLE OF CONTENTS

Contents iv

CHAPTER PAGE
PREFACE 1
1 THE OPTIMIZER'S ASSISTANT 39
2 CMPLISP 29
| 2.A Introduction to LISP - 27
2.A1 Functions and Special Forms . o8

2.A2 SPECIAL Variables . 34

2A8 Atoms 39

2.A4 Property Lists . 39

2.A5% Other Functions . . 33

2B The CMPLISP Environment 39
2.B1 Data Structure. 24

2.B2 Implementation 35

2.B3 Functions . . 99

2.B4 Pre-Defined Funcnons 2 .. 3%

2.B5 Implications of EQ, EQUAL, ATOM and Llst Structure Modlﬂcatlon v 42

2.C Differences from Other Versions of LISP . . . Eowow 43

3 THE CANONICAL FORM 49
3.A Conditional Forms . 49
3B Adaptation to LISP . 54
3.C Flow Analysis 59
3.D Numbering Scheme . : £Q
3.E Revised Canenical Form A}gomhm 60

4 THE PROGRAM UNDERSTANDER 72
4A Introduction . 72
4B Architecture and Implementauon Constraints 73
4.C Data Types S “6
4Cl LISP %

4.C2 Stack %

v Contents

1.D

4E
4. F
4.G

4.C3 Data . .

4.C4 Half Word

4C5 Bit. . .

4.Cé Unknown .

Machine Description .

4Dl Memory : .
4.D2 Machine Descnptlon ;
Symbolic Execution .
Restrictions on Program Structure
Summary of the Rederivation Procedure
4.G1 Pass One .

4.G2 Pass Two .

4.G3 Pass Three

4.G4 Postprocessing .

5 THE PROOF SYSTEM

5A
5B
5C
5D

Introduction . .
Matching Procedure s
Recursive Calls Bypassing the Start of the Prograrn

Matching Recursive Calls Bypassing the Start of the Progi"am'

6 DEBUGGING

6.A
6B

Errors

HIERI . .

6.B! LISP Encodmg of HIERI :

6.B2 MLISP Encoding of HIERI . . .

6.B3 Compiler Generated Code for HIER]

6.B4 Hand Optimized Code for HIERI . . .
6.B5 Erroneous Hand Optimized Code for HIERI

7 EXAMPLES

7.A
7B

Introduction .
REVERSEI .

7€ NEXT

8 CONCLUSIONS

8.A
8B

Suggestions for Future Research
Observations .

8Bl Arithmetic. . .
8B2 CONS Opnmlzatlon .

77
77
77
77
77
78
80
84
87
93
94
95

100

100
101
108
iio

114

115
117
117
118
119
121
123

158

158
158
162

175

176
179
179
184

8 B3 New Instructions

BIBLIOGRAPHY

APPENDIX |- LAP

APPENDIX 2 - MACHINE DESCRIPTION PRIMITIVES

APPENDIX 38 - PDP-10 OPERATIONS
APPENDIX 4 - DETECTABLE ERRORS

APPENDIX 5 - RELOCATION ARITHMETIC

. APPENDIX & - SYSTEM USER MANUAL

AB.A System Overview
AB8.B Using the System

APPENDIX 7 - INSTRUCTION EXECUTION TIMES

APPENDIX 8 - DEPTH FIRST NUMBERING ALGORITHM

Contents

Vi

186

189

192

193

195

205

207

208

208

209

212

213

‘and read the relevant parts which are self contained.

O oab 2P =

Preface 1

PREFACE

This thesis describes a formalism for proving that programs written in a higher level language are

correctly translated to assembly language. It is hoped that the reader will go away with more than
the thought that a tool has been created. More importantly, we have gained a deeper
understanding of the problem of how to deal automatically with translations of programs between
high and extremely low level languages. We have implemented a system to handle most of the
contents of the thesis. We have used LISP as our higher level language and a variant of PDP.10
assembly language known as LAP as our object language. A proof procedure is presented which is
independent of the intermediary mechanism which translates the former into the latter. The system
is based on the identification of critical semantic properties of LISP and their interrelationship to
the instruction repertoire of the computer executing the LISP programs. The selection of the PDP.
10 as the host machine was done to illustrate an application of the ideas; the instruction sets of
other computers could easily be incorporated.

The thesis is divided into eight chapters. The purpose of the first chapter is to convey to the
reader a notion of the power of the concepts expressed in the work. It is designed to be self
contained. Examples are given in an ALGOL-like variant of LISP known as meta-LISP. A brief
description of the LISP implementation with respect to the PDP-10 is also given. The examples do
not presuppose a familiarity with the assembly language of the PDP-10. Each assembly language
encoding is fully annotated in terms of the operations performed, and their relationship to the
LISP function being encoded. The basic motivation for this chapter is to set a loose framework for
subsequent discussions while providing a brief summary of the type of results that can be expected
from the techniques espoused in this work. The reader who is totaily unfamiliar with LISP could
glance at Chapter 2 first where many of the relevant concepts are outlined. However, there is
clearly no need to read the previous chapter in its entirety in order to follow the introductory
chapter, :

Chapter 2 gives a definition of LISP in addition to an outline of the requirements that an
equivalence proving system places on a LISP system. These requirements lead to a design of a
LISP system that would satisfy them. Chapter 3 presents the canonical form used for the
representation of a LISP program. Chapter 4 is a description of the assembly program
understanding system. This includes a method for describing an instruction set of a computer.
Chapter 5 binds the results of the previous two chapters to define a proof -procedure for
equivalence. Chapter 6 indicates the error detection capabilities of the system and applies the
proof methods using a rather complicated example. Once the errors are detected, we show how an
automatic system could correct them. Thus we outline an automatic debugger. Chapter 7 provides
a pair of examples illustrating the mechanics of the proof procedure. Chapter 8 combines a
perspective on the previous chapters with suggestions for future research.

Therefore in summary we present the following characterization of a reader. See where you fit in

Browser: Chapter 1.

Curious about LISP: Chapter 2.

Formalism: Chapter 3.

Hardware: Chapter 4.

Iron stomach: Chapters 3,4,5 and Phillips Milk of Magnesia.

® -3 ®

Preface

Hacker: Chapter 6.
Non-believer: Chapter 7.

Graduate student: You read this far, so you might as well read Chapter 8.

= Optimizer's Assistant 3

CHAPTER 1

THE OPTIMIZER'S ASSISTANT

This thesis describes a formalism for proving that programs written in a higher level language are
correctly transiated to assembly language. Through this we hope to gain a deeper understanding of
‘the problem of how to deal automatically with translations of programs between high and
extremely low level languages. We tmplemented a system to handie virtually ail of the program
examples in the thesis using a subset of LISP(McCarthy60] as our higher level language and a
variant of PDP—10[DEC89] assembly language, known as LAP[Quam72], as our ob ject language.
The proof procedure is independent of the intermediary mechanism which transforms the former
into the latter. The system is based on the identification of critical semantic properties of LISP
and their interrelationship to the instruction repertoire of the computer executing these programs,
T he selection of the PDP—10 as the host machine is merely done to illustrate an application of the
ideas; the instruction sets of other computers could be incorporated.

We are interested in proving that programs are cotrectly transiated. A similar problem that has
been receiving much attention in the past few years is that of proving programs correct. Most of
the attempts have been along the lines of assertions({Floyd67]{King69)) about the intent of the
program which are then proved to hold. The difficuities with such methods are numerous. Most
notable are the problems encountered in specifying the assertions[Deutsch?3) and the actual ptroof
methads. Proofs using such methods reduce to showing that a set of assertions hold. However,
when examining such proofs we must allow for the possibility that the assertions are inadequate to
specify all of the effects of the program in question. Thus we are led to a belief that the concept of
intent is too imprecise for proving correctness of compilation. We feel that it is justifiable in
proving equivalence between algorithms. Nevertheless, in the case of computer programs written in
a higher level language we are primarily interested in the correctness of the translation. In this
case, there is no need for any knowledge about the purpose of the program to be translated. As an
example of a problem in which use is made of the purpose of the program, consider two methods
of computing the greatest common divisor. In such a case we have defined an input—output pair
relationship (i.e. the greatest common divisor) and we wish to determine if the two algorithms
actually yield the same results for all possible inputs. The problem of proving the equivalence of
two different algorithms is known to be unsolvable in general by use of halting problem—like
arguments. We do not deal with such problems in this thesis,

Notice that we prove the correctness of the translation. One method of achieving this is to prove
that the translator (e.g. a compiler) is correct — e.g. to prove that there does not exist a program
which is incorrectly translated by the compiler. In this case we would revert to the intent
characterization of correctness set forth in the previous paragraph. Instead, we prove for each
program input to the translation process, that the translated version is equivalent to the original
program. Thus, we are not saying anything about the general correctness of the translation process.
A proof must be generated. for each input to the translation process. However, this has several
important advantages, especially when the translator is a compiter. First, as long as the compiler
does its job for each case input 10 it, then its correctness is of a secondary nature — ie. we have
bootstrapped ourselves to the state where we can attribute an effective correctness to the compiler.
Second, the proof process is independent of the compiler. The latter means that if another
compiler were used, no difference would result. This implies that programs could be hand

4 Optimizer’s Assistant ' I.

compiled or translated. This is quite important and identifies our proof as belonging to the
semantics of the high and low level languages in which the input and output respectively are
expressed rather than to the translation process. Third, any proof method that would prove a
compiler ‘correct would be limited with respect to the types of optimizations that it could allow.
This is because such a proof would rely on the identification of all the possible input output pairs
for code sequences. This is the type of approach taken in the proof of the correctness of LCOMO
and LCOM4 (London?71]. .

Our proof system is not based on an assumption of an existence of a unique reiationship between
the source code and the object code. We feel that compilation is a many--to—many process — i.e.
there is no one—to-one relationship between source code and object code. Thus there is no
reflection of the source level syntax in the object code as is common in decompilation[Hollander73)
systems which attempt to reconstruct a program from the object code. We make no such attempts
at reconstructing the program. Insiead we use an intermediate representation of the program which
reflects all of the computations and decisions that are performed. In addition, this representation
reflects an ordering based on the relative times at which the various computations are executed.
This representation is known as the canonical form.

At this point an overview of the proof system is appropriate. The original LISP program is
converted to the intermediate form by a set of transformations outlined in Chapter 3, Similarly,
the LAP program is converted to the intermediate form by means of a process known as symbolic
executiont. This procedure is outlined in Chapter 4. Next an attempt is made to prove that the
two intermediate forms can be transformed into each other. This is the subject of the discussion in
Chapter 5. During the proof procedure inequivalence may be detected and the sources of error can
often be pinpointed. Chapter 6 provides an insight into the debugging capabilities afforded by the
system.

In order to obtain the intermediate form representation of the object program we require an
assembly language understanding system. Such a system includes a mechanism for describing a
computer instruction set and to some degree its basic architecture. For example, see Figure 1.1
where the MOVE} instruction is illustrated. Furthermore, these descriptions must be related to the
semantics of the higher level language. In order to be able to accomplish this task we must reduce
the semantics of the source language to a form which is compatible with the assembly language
_ without indicating how each construct is encoded. This is one of the reasons for choosing LISP as
our high level language. LISP is one of the simplest fanguages in terms of its constructs, and one
of the most powerful in terms of its capabilities. The simplicity of its basic features and its
similarity to case analysis allows the use of the same intermediate representation for the source
program and the ob ject program.

FEXPR MOVE{ARGS);
LOADSTORE(ACFIELD(ARGS) , CONTENTS(EFFECTADDRESS(ARGS))) ;

Figure 1.1 - MOVE instruction

t The meaning of symbolic execution is different from its use in the EFFIGY program testing
system[King?74]. In that system the term is used to denote a method of trying out various cases of
a high level language program by using symbolic values for the parameters.

! The instruction loads the accumulator with the contents of the effective address.

. Optimizer's Assistant &

The previous intermediate form can be directly obtained from the original LISP program by a set
of transformations as shown in Chapter 3. Moreover, this same intermediate form is used to
represent the effect of the object program. A correctness proof is reduced to transforming one of
the two intermediate forms into the other. The proof system is capable of detecting a certain class
of errors. in the optimized program. These errors pertain to programs that are well—formed — ie.
the computations performed in the assembly language program can be described using our
primitives. Moreover, well—formedness implies that there is adherence to certain conventions
pertaining to proper interfacing between functions (e.g. calling sequences, etc.).

The main motivation for this thesis has been a desire to write an optimizing compiler for LISP. In
order to do this properly, it was determined that a proof was necessary of the correctness of the
optimization process. Thus we are especially interested in proving that small perturbations in the
code leave the effect of the function unchanged. It is our feeling that this is where the big payoff

Ties in optimizing LISP. This resulted in part from the observation that the primary action of a

LISP program is to set up proper linkages between various functions. This view is buttressed by
the simplicity of the primitive operations available in LISP. It quickly became clear that formal
methods used in previous correctness work (ie. proofs by use of predicate calcuius) would be of
littte value. Thus we were led to design a representation of the program which would be
independent of these perturbations. '

The remainder of this chapter presents a scenario of an optimization process in which a user sits at
his terminal and interactively applies transformations to his program. During this process, mistakes
may be made and if possible they are detected and the user is informed of his errant ways. This is
quite similar to a system for achieving the type of results proposed in [Knuth74] The examples
serve a dual purpose. First, they show the reader what PDP—10 assembly language looks like
without having to refer to the manual. This is accomplished by annotating each instruction by a
verbal description of its effect thereby gently breaking the reader into the notation used in this
thesis. In addition, the optimizations used in the examples provide an indication of the power that
can be derived from such methods without being an expert assembly language programmert.
Second, many of the concepts that are embodied by the examples will reappear in subsequent
discussions and thus we are actuaily laying a foundation for these discussions. At the conclusion of
the chapter we will outline some of the difficult problems that arise in the attempts to achieve our
goal of proving the correctness of the transiations.

Two examples are given. The first is rather detailed and shows how a function can be
transformed step by step into an optimal encoding. We also indicate when such transformations
can no longer be applied. At that point we change the algorithm to accomplish further
optimizations. The second example is along similar lines, except that the medification of the
algorithm is of a more complex nature. During the process, we aiso show some erroneous
transformations which can be detected by the system. Any thoughts of similarity with
decompilation should be disspelled by the examples.

Consider the function NEXT which takes as its arguments a list L and an element X. It searches
L for an occurrence of X. If such an occurrence is found, and if it is not the last element of the

t The hackers among the readers may recognize even more optimal ways of achieving the desired
encodings. They will have to have patience, since one of the intents of the discussien is to
introduce the various instructions of the PDP—10 and to see how they can be used in reducing
time and space requirements.

6 Optimizer’s Assistant ‘ 1.

list, then the next element in the list is returned as the result of the function. Otherwise, NIL is
returned. For example, application of the function to the list (A B C D E) in search of D would
result in E, while a search for E or F would result in NIL. One formulation of this function in a
dialect of LISP[McCarthy60] known as MLISP[Smith70] (i.e. meta—LISP) is given in Figure 1.2.
This formulation of the function will be referred to as Algorithm 1. .

NEXT(L,X) = if NULL(L) or NULL(CDR(L)) then NIL
else if CAR(L) EQ X then CADR(L)
else NEXT(CDR(L),X)

Figure 1.2 - Algorithm 1 for NEXT

The symbolic representation of the intermediate form of the function given in Figure 1.2 is shown
on the left side of Figure 1.3. Notice the tree-like representation where non—terminal nodes
represent predicates and terminal nodes denote results. The left and right subtrees correspond to
the true and false cases respectively of the predicate appearing in the root node. In addition, we
also record, as part of the intermediate form, a numeric representation which serves to indicate a
relative ordering of the sequence of computation. The actual numbers are irrelevant — i.e. only the
partial ordering is of any importance. The significance of the numbers will become more apparent
in Chapters 3 and 5 when we discuss the rearranging of the order of computing functions. The
numeric representation for the NEXT function is given in the right side of Figure 1.3.

(NULL L) (10 5)
NIL (EQ (CAR L) X) 0 (18 (16 5) 6)

a N

(CAR_(CDR L)) (NEXT (CDR L) X) (22 (20 5)) (26 (24 5) 6)

Figure 1.3 - Intermediate Form of Figure 1.2

The LISP 16 compiler at Stanford[Quam72] generates the code given in Figure 1.4 for this
function. The code is in LAP, a variant of PDP-10 assembly language, which is described in
Appendices | and 2. Briefly, each PDP-10 word is 36 bits wide and can be partitioned into two
18 bit halves. A LISP cell is represented by a full word whose left and right halves point to CAR
and CDR respectively. Addresses of atoms are represented by (QUOTE <atom names) and by
zero in the case of the atom NIL. The left and right halves of an address denoting an atom
contain identical values corresponding to inaccessible locations. A list of the form (C 0 0 numl
num2) appearing in the address field of an instruction is interpreted as an address of a word

L Optimizer's Assistant 7

containing num! and num2 in its right and left halves respectively. The PDP—10 has a hardware
stack and LISP assumes that functions return via a return address which has been placed on the
stack by the invoking function. A LAP program expects to find its parameters in the
accumulatorsf, and also returns its result in accumulator 1. In our case L and X are in
accumulators 1 and 2 respectively. The registers cantaining the parameters are always of such a
form that a 0 is in the left half and the LISP pointer is in the right half. All parameters are
assumed to be valid LISP pointers. A program is entered at its first instruction and a return
address is situated in the top entry of a stack whose pointer is in register P. Whenever recursion
or a function call to an external function (via the CALL or JCALL mechanism) occurs, the
contents of ali the accumulators are assumed to have been destroyed unless otherwise known. In
the examples used here this is true for all functions except for CONS and XCONS (the
antisymmetric counterpart of CONS which differs only in the order of the arguments). In this case
all of the accumulators except 1 and 2 have their contents preserved.

(LAP NEXT SUBR) : i
(PUSH P 1) push L on the stack

PC2 {PUSH P 2) push X on the stack
PC3 {JUMPE 1 TAG3) jump te TAG3 if L is NIL
(HRRZ@ 1 1) load register 1 with CDR(L)
PCH (JUMPN 1 TAGZ2) Jump to TAGZ if CDR(L) is not NIL
TAG3 (MOVEI 1 (QUOTE NIL)} load register 1 with NIL
PC7 (JRST 0 TAG1) jump to TAGI
TAG2 (HLRZe 1 -1 P) load register 1 with CAR(L)
(CAME 1 2) skip if CAR(L) is EQ to X
(JRST 0 TAG4) jump to TAG4
(HRRZ@ 1 -1 P) - load register 1 with CDR{L)
{HLRZ® 1 1) load register 1 with CAR(CDR{L})
(JRST 0 TAGI1) Jjump to TAGI1
TAG4 (MOVE 2 0 P) load register 2 with X
(HRRZ@ 1 -1 P) load register 1 with CDR(L)
(CALL 2 {(E NEXT)) calli NEXT(CDR(L),X)
TAGI (SUBP(CQOD2Z2)) unde the first two push operations
(POPJ P) return
NIL
figure 1.4

There are many unnecessary operations in this encoding. For example, there is no need to push X
on the stack at location PC2 Therefore, at location TAG1 there is only a need to subtract one
from the stack pointer. Likewise register 2 need not be reloaded with X at location TAG4 since it
stifl contains X. The test at location PC3 may go directly to location TAG1 rather than to location
TAG3 where NIL is loaded into register 1 which already contains NIL if entered via location PC3.
The same line of reasoning holds when TAG3 is entered via PC5. Thus the instruction at location
TAG3 is redundant and can be removed. This causes a reevaluation of the necessity of the two
instructions at locations PC5 and PC7. The instruction at PC7 can be removed and, by reversing
the sense of the test, the instruction at location PC5 can be changed to conditionally branch to
location TAG!. At this point we have the encoding given in Figure 1.5, '

T AN accumulators can be used as index registers on the PDP—10. In our subsequent discussion
we will use the terms accumulator and register interchangeably.

8 Optimizer's Assistant 1.

(LAP NEXT SUBR) S
NEXT (PUSH P 1) : push L on the stack

(JUMPE 1 TAGl) - - jump to TAGI if L is NIL
(HRRZ® 1 1) load register 1 with CDR(L)
{JUMPE 1 TAG1) jump to TAGl if CDR(L) is NIL
TAGZ2 (HLRZ® 1 0 P) load register 1 with CAR(L)
(CAME 1 2) skip if CAR(L) is EQ to X
(JRST 0 TAG4) jump to TAG4
(HRRZ@ 1 0 P} load register-1 with CDR(L)
(HLRZE 1]) load register 1 with CAR(CDR(L)}
(JRST 0 TAGl) Jump to TAGL '
TAG4 {HRRZ® 1 0 P) load register 1 with CDR(L)
PCl2 (CALL 2 (E NEXT)) call NEXT(CDR{L}),X) .
TAG1 (SUBP(COO01 1)) undo the first push operation
PCl4 (POPJ P) return
. NIL
Figure 1.5

The optimizations performed in the transition from Figure 1.4 to Figure 1.5 have the effect of
reducing the size of the program from 18 to 14 instructionst. However, we could do better in terms
of speeding up the inner loop of the function. By the term inner loop we mean the execution path
when the values of the conditions are such that recursion is in order {ie. L and CDR(L) are not
NIL and CAR(L) is not EQ to X). The size of the inner loop has been decreased from 13
(37.88us) to 11 (31.444s) instructions. In addition, we have managed to optimize the base case
although this is of limited value since this code is only executed once at function exit. By using
accumulators other than | and 2 we can achieve a further reduction in the size of the inner loop.
In our example this will free us from using the stack, recomputing CDR(L) one of two times
(common subexpression elimination), and enable the removal of the instructions at locations NEXT
‘and TAGI. The purge of the latter renders unnecessary the recursion at PC12 which can now be
replaced by iteration. We also relabel PCi4 with TAGI. At this point we have the encoding
given in Figure 16. :

I In the discussion we also give in parentheses the running time of the inner loop in microseconds
(denoted by us). These values should be viewed with caution since they are somewhat dependent
on the memory configuration of the host computer (eg. memory access time) and whether
execution occurs in time—shared or dedicated modes. For our estimates we assume time—shared
mode since the effect of reducing the number of memory references is more marked due to the
added expense incurred by relocation arithmetic whenever memory fetches occur. Instruction
times are given in Appendix 7. Note that for some instructions two times are given. The first is
the basic execution time of the instruction while the second indicates the speed when the effective
address for a memory fetch is one of the accumulators. We also make the following assumptions:
Indexing takes 0.28 microseconds. When function calls occur we only give the execution time of
the instruction performing the call. Thus if a CONS operation is performed, then the time that is
counted is only that which is required for executing the linking operation. We assume that the
UUOs CALL and JCALL are of the same speed as the PUSH] and JRST instructions
respectively. This is not unreasonable since we are primarily interested in compiled code in which
case CALL and JCALL are converted to PUSH] and JRST respectively.

L ' Optimizer's Assistant 9

{LAP NEXT SUBR)

NEXT (JUMPE 1 TAG1) jump to TAG! if L is NIL
{HRRZ® 3 1} load register 3 with CDR(L)
PC3 (JUMPN 3 TAG2) Jump to TAG2 if CDR(L) 1s not NIL
{MOVET 1 (QUOTE NIL}) load register 1 with NIL
PC5 (JRST 0 TAGI1) jump to TAG1
TAGZ (HLRZ® 4 1) load register 4 with CAR(L)
(CAME 4 2) skip if CAR(L) is EQ to X
{JRST 0 TAG4) jump to TAG4
(HLRZ@ 1 3) load register 1 with CAR(CDR(L))
PCl10 (JRST 0 TAG1) jump to TAGI
TAG4 (MOVE 1 3) load register 1 with CDR(L)
(JRST 0 NEXT) call NEXT{CDR({L},X)
TAGI (POPJ P) return
NIL
Figure 1.6

Notice that the size of the function has only decreased by one instruction. However, the size of the
inner loop has been decreased from 11 (31.44us) to 8 (18.12ps) instructions. The reason the
program size did not decrease any further is that in order to speed up the inner loop we avoided
the use of a stack. This meant that CDR(L) could not reside in register | since we are no longer
saving the value of L on the stack. Thus we had to restore our previous sequence of instructions
for testing OR(NULL(LANULL{CDR(L))). This is done with no qualms since the end result is still
a decrease in execution time of the case when L is not NIL and CDR(L) is NIL although the
number of instructions remains the same (this is because stack manipulating instructions take more

time than other instructions). The latter case can still be speeded up by one instruction by noting

that the unconditional jump at location PC5 to the function exit at TAG1 is not necessary and can
be replaced by a function exit at tocation PC5. Similarly, we may replace the unconditional jump
at location PCI10 by a function exit. Replacing the target of the conditional branch operation at
location NEXT by PCB renders the function exit at TAG| inaccessible. Therefore, we remove this
instruction. At this point we have the encoding given in Figure 1.7.

(LAP NEXT SUBR)

NEXT {(JUMPE 1 PC5) Jjump to PC5 if L is NIL
(HRRZ® 3 1) load register 3 with CDR(L)
(JUMPN 3 TAGZ) jump to TAGZ if CDR(L) is not NIL
(MOVEI 1 (QUOTE NIL)) load register 1 with NIL
pcs - (PORPJ P) return
TAGZ (HLRZ® 4 1) load register 4 with CAR(L)
PC7 (CAME 4 2) skip if CAR(L) is EQ to X
Pcg . (JRST 0 TAG4) jump to TAG4
~ (HLRZ® 1 3) load register 1 with CAR{CDR{L))
s (POPJ P) return
TAG4 {MOVE 1 3) load register 3 with CDR(L}
(JRST O NEXT) compute NEXT(CDR(L),X)
NIL
Figure 1.7

The present encoding of the function is 12 instructions long with an inner loop of length 8

10 Optimizer's Assistant ' ‘ ' L

(18.12us5). We can decrease the length of the inner loop by one instruction (ie. to 16.85us) by
changing the sense of the test at location PC7. Currently, we jump to TAG4 when CAR(L) is not
EQ to X. This causes an added burden in the case of recursion since if the atom bound to X
appears as the n’th item in the list, then we need n—1 iterations for its detection. Therefore the
, instruction at location PC8 is executed n—1 times. Instead we feel that when conditional tests must
skip, the case resulting in recursion should be the one causing the condition to skip in the true case.
The result is that the terminating case of the function (i.e. we are ready to return the next element)
will take one extra instruction. Thus we have gained speed unless the desired atom is the first
element in the list in which case the resulting function will take one instruction longer. Another
optimization is in the number of memory fetches performed by the function. Indirect addressing
(@) is often used when indexing would be cheaper. In fact this is the case in all of the instructions
involving indirect addressing in this example. At this point we have the encoding in Figure 1.8.

(LAP NEXT SUBR)

NEXT (JUMPE 1 PC5) jump to PC5 if L is NIL
(HRRZ 3 0 1) load register 3 with CDR(L)
PC3 (JUMPN 3 TAGZ2) jump to TAGZ if CDR(L) is not NIL
PC4 (MOVEI 1 (QUOTE NIL)) load register 1 with NIL
PC5 (POPJ P) return '
TAG2 (HLRZ 4 0 1) load register 4 with CAR(L)
(CAMN 4 2 skip if CAR(L) is not EQ to X
(JRST 0 TAG4) . jump to TAG4
(MOVE 1 3) load register 1 with CDR(L)
PC10 (JRST 0 NEXT) compute NEXT(CDR(L),X) :
TAG4 (HLRZ 1 0 3) load register 1 with CAR(CDR(L))
(POPJ P) return
NIL
Figure 1.8

The total space occupied by the encoding in Figure 1.8 can be reduced from 12 instructions to 11
instructions by observing that function exit could be accomplished by one instruction. Such an
optimization is-possible when we note that registers may be loaded with values and control passed
to the next instruction via a skip. This is the effect of a SKIPA instruction with a non—zero index
field. In case the desired value is zero (ie. NIL) there is an even more efficient way of
accomplishing this result. A TDZA instruction has the effect of using the contents of the address
designated by the address field as a mask to zero all corresponding bits in the accumulator
designated by the accumulator field (the efficiency is derived from having one less memory
reference). Once this operation is performed, control is passed to the next instruction via a skip.
Thus when the accumulator and address fields of an instruction are identical, the said accumulator
is set to zero. Using this instruction we can accomplish the sequence of two instructions at PC4
and PC5 by means of a TDZA instruction between PC10 and TAG4 in Figure 1.8. We also
reverse the sense of the test at location PC3 and cause the branch to proceed to the TDZA
instruction. Furthermore, the first instruction must now branch to the last instruction if L is NIL.
At this point we have the encoding in Figure 1.9.

L Optimizer’s Assistant 11

(LAP NEXT SUBR)

NEXT (JUMPE 1 PCI11) jump to PCl1 if L is NIL
(HRRZ 3 0 1) load register 3 with CDR(L)
(JUMPE 3 TAG2) jump to TAGZ2 if CDR(L) is NIL
(HLRZ 4 0 1) load register 4 with CAR(L)
(CAMN 4 2) skip if CAR(L) is not EQ to X
. (JRST 0 TAG4) jump to TAG4
PC7 (MOVE 1 3) load register 1 with CDR(L)
(JRST 0 NEXT) compute NEXT(CDR(L),X)
TAG2 (TDZA 1 1) set register 1 to NIL and skip
TAG4 (HLRZ 1 0 3) load register 1 with CAR(CDR(L))
PCl11 (POPJ P) return
NIL :
Figure 1.9

We are now at the end of the road as far as the encoding given in Figure 1.9. The main
stumbling block to any further decrease in the length of the inner loop is the loading of register 1
with CDR(L) at location PC7 in Figure 1.9 so recursion can proceed in a valid manner. The
problem is that we would like to load CDR(L) directly into register 1 when it is computed, yet we
cannot destroy the previous contents of register I at that time since we may need it in case CDR(L)
is not NIL for the computation of CAR(L). CAR(L) is not precomputed since in case CDR(L) is
NIL, the function definition does not call for its computation. However, all is not lost. Recall, our
earlier statement about the capability of loading a register and skipping the next instruction. Well,
we have the same capability to test the value to be loaded into the register. Thus we can save the -
contents of register 1 in another register while at the same time testing its value. This is
accomplished by use of a SKIPN instruction at the location NEXT which will load register 3 with
L while testing if L is NIL. Thus we no longer need the TDZA operation. In effect we are
undoing the work performed in going from Figure 1.8 to Figure 1.9. The key property of the skip
and test optimization is that it enables us to proceed to recursion as soon as it is determined that
CAR(L) is not EQ to X. Thus we may once again reverse the sense of the test at location PC7.
Furthermore, we have managed to reduce the number of instructions necessary in the case that

» neither L nor CDR(L) are NIL and CAR(L) is EQ to X. At this point we have the encoding in
Figure 1.10

(LAP NEXT SUBR)

NEXT (SKIPN 3 1)

load register 3 with L and
skip if not NIL

(POPJ P) return NIL
PC3 (HRRZ 1 0 1) load register 1 with CDR(L)
(JUMPE 1 TAG1) jump to TAGl if CDR(L) is NIL
(HLRZ 4 0 3) load register 4 with CAR(L)
(CAME 4 2) skip if CAR(L) is EQ to X
pPC7 (JRST 0 NEXT) compute NEXT(CDR(L),X)
. (HLRZ 1 0 1) load register 1 with CAR(CDR(L))
TAG1 (POPJ P) return
NIL '

Figure 1.10

12 Optimizer's Assistant L

The length of the inner loop has now been reduced to 6 instructions (13.364s). Moreover, the
entire encoding has been reduced to a length of 9. Further reduction in the length of the inner
loop can be achieved by noting that once CDR(L) has been found not to be NIL, ali subsequent
recursive calls need not perform the test of L against NIL. This will be referred to as loop
shorteutting in the sequel. To a SAIL{VanLehn73] programmer this concept is somewhat
analogous to the similarity between a FOR loop and a DO UNTIL loop. It would seem that we
could simply jump to location PC3 from PC7 rather than to the start of the program. This is
shown in Figure L1 ' '

(LAP NEXT SUBR)

NEXT {SKIPN 3 1) load register 3 with L and
skip if not NIL

(POPJ P) return NIL
PC3 (HRRZ 1 0 1) load register 1 with CDR(L)
PC4 (JUMPE 1 TAGl) . Jump to TAGL if CDR(L) is NIL
PC5 (HLRZ 4 0 3) load register 4 with CAR(L)

(CAME 4 2) _ skip if CAR(L) is EQ to X
Pc7 (JRST 0 PC3} compute NEXT{CDR(L),X)

(HLRZ 1 G 1) load register 1 with CAR(CDR(L))
TAG1 (POPJ P) return

NIL

Figure 1.11

Upon a cursory glance it would seem that we are through with an inner loop of length 5 (11.09us).
However, there is an error in the program. Once recursion occurs, register 3, when referenced at
location PCS5, will not have the current binding of L. Thus we see that we could not bypass the
loading of register 3 with L at location NEXT despite the fact that the condition was redundant.
However, we may bypass the test of CDR(L) being NIL at the first instruction. Therefore,
interchange the first two instructions with the instruction at tocation PC4 and the desired function

is obtained as shown in Figure 1.12. Note that the inner loop is still of length 5 (11.57us).

(LAP NEXT SUBR}

NEXT (JUMPE § TAG1) jump to TAGLl if L is NIL

PC2 (HRRZ 1 0 1} load register 1 with CDR(L)

PC3 (SKIPN 3 1) load register 3 with CDR(L) and
skip if not NIL '

(POPJ P) return NIL -
PC5 (HLRZ 4 0 3) @ i load register 4 with CAR(L)
PC6 (CAME 4 2) ' skip if CAR{L) is EQ to X
- (JRST 0 EC%; compute NEXT{CDR(L),X)

(HLRZ 1 load register 1 with CAR({CDR(L))
TAG1 rE'FI’EPJ P) return

Figure 1.12

Once again we have erred. This time we have managed to destroy L before encountering the last
" location at which it is needed — i.e. PC5. It should be clear that we must not destroy the value of
L before CAR(L) is computed. However, by inserting a temporary storage operation at location

1 Optimizer’s Assistant 13

PC2, we may still bypass the testing of the nuliness of CDR(L). Moreover, we no longer need a test
and load operation at location PC3 — je. a test is sufficient. An additional minor optirmization is

the use of an immediate instruction accompanied by indexing at location PC8 thereby avoiding a

memory access. At this point we have the encoding shown in Figure 1.13.

(LAP NEXT SUBR)

NEXT (JUMPE 1 TAGl) jump to TAGl if L is NIL
pCc2 (MOVE 3 1) load register 3 with L
(HRRZ 1 0 1) load register 1 with CDR(L)
{(JUMPE 1 TAGl) jump to TAG1 if CDR(L) is NIL
(HLRZ 4 0 3} load register 4 with CAR(L)
(CAIE 4 0 2} skip if CAR(L) is EQ to X
(JRST 0 PC2) compute NEXT(CDR(L},X)
{HLRZ 1 0 1) load register 1 with CAR(CDR(L)}
TAG1 (POPJ P} return
NiL
Figure 1.13

When performing loop shortcutting we must make sure that all locations are set to their proper
values. This criterion is satisfied by the encoding given in Figure 1.13. The length of the inner
toop has been reduced from 13 (37.88us) ta & (12.84us) while the overall length of the program has
been reduced from I8 to 9 instructions. In fact the length of the inner loop can be further
decreased by one instruction if we are wiiling to accept an increase of twao instructions in the total
space occupied by the function. This revision is given in Figure 1.14 and was pointed out by
Donald Knuth. :

(LAP NEXT SUBR)

(JUMPN 1 PC6) jump to PC6 if L is not NIL
(POPJ P) w0 return
PC3 (HLRZ 4 0 3) load register 4 with CAR(L)
(CAIN 4 0 2) skip if CAR(L) is not EQ to X
(JRST 0 TAGZ) jump to TAGZ if CAR{L) is EQ to X
PC6 (MOVE 3 1) load register 3 with L
(HRRZ 1 0 1) load register 1 with CDR(L)
{JUMPN 1 PC3) jump te PC3 if CDR(L) is not NIL
© (POPJ P) return ;
TAGZ (HLRZ 1 0 1) load register 1 with CAR{CDR(L))
(POPJ P) return
NIL

Figure 1.14

The encoding given in Figure 1.14 has an inner loop of length 5 (11.37us). This is about as good
an encoding as we can get for this formulation of the NEXT function because six operations are
required for each iteration — although we have managed to reduce this requirement to four
operations by noting the redundancy of the test of the nullness of L when recursion eccurs, and
accomplishing a test operation simultaneously with the iteration step. These operations are the
camputation of CDR(L), CAR(L), the comparison of CDR(L) with NIL, the comparison of CAR(L}
with X, and the iteration step. Thus the length of the inner loop cannot be further reduced

14 Optimizer's Assistant ' L.

without changing the algorithm. This statement is crucial to the remainder of the thesis and we
shall have more to say about it at a later point. In fact, one further optimization proposed by
Donald Knuth is shown in Figure 1.14. '

(LAP NEXT SUBR)

(JUMPN 1 PC5) jump to PC5 if L is not NIL
- (POPJ P) return
PC3 (CAIN 4 0 2) skip if CAR(L) is not EQ to X
(JRST 0 TAG2) . jump to TAGZ if CAR(L) is EQ to X
PC5 (HLRZ 4 0 1) load register 4 with CAR(L)
' (HRRZ 1 0 1) load register 1 with CDR(L)
(JUMPN 1 PC3) Jjump to PC3 if CDR(L) is not NIL
(POPJ P) - return ' .
TAG2 (HLRZ 1 0 1) load register 1 with CAR(CDR{L))
(POPJ P) _ return
NIL
Figure 1.15

This encoding is 10 instructions long and has an inner loop of length 4 (9.28us). Unfortunately,
Figure 1.15 encodes a slightly different algorithm. The trouble is that when CDR(L) is known to
be NIL our original algorithm does not specify that CAR(L} is to be computed. In other words,
CAR(L) has been treated as a common subexpression. In Chapter 5 we shall shed more light on
the issue of when we would allow such superfluous computations,

An alternate formulation of the NEXT algorithm is one which recognizes that the test for CDR(L)
being not NIL is only necessary prior to the CADR(L) operation. This is because L is assumed to
be a list and if it is not NIL, then it cannot be atomic. Therefore the nullness of CDR(L) can be
checked when processing the recursive call. The new algorithm is given in Figure 1.18.

NEXT(L,X) = if NULL(L) then NIL
else if CAR{L) EQ X then
if NULL(CDR{L)) then NIL
~alse CADR{L)
aelse NEXT(CDR{L),X)

Figure 1.16 - Algorithm 2 for NEXT

The intermediate form representation of the new algorithm, known as Algorithm 2, is given in
Figure 1.17. Once again, the symbolic and numeric representations are denoted by the left and
right sides respectively of the Figure. Note the use of F instead of NIL.

. Optimizer's Assistant 15

(EQ L F) ' (26 5 0)
F (EQ (CAR L) X) 0 (30 (28 5) 6)

(EQ (CDR L) F) (NEXT (CDR L) X) (34 (32 5) 0) (40 (38 5) 6)

F- {CAR (CDR L)) 0 (36 (32 5))

Figure 1.17 - Intermediate Form of Figure 1.16

It is clear that algorithm 2 is better in the higher level because it reduces the number of operations
necessary prior to the performance of recursion. This has the effect of reducing the potential
length of the inner loop. Qur analysis for this algorithm will not go into as great a detail as for
Algorithm 1. The encodings that we present serve to demonstrate optimization techniques different
from those used in Algorithm 1. The LAP encoding produced by the LISP 1.6 compiler is shown
in Figure 1.18. -

(LAP NEXT SUBR)

PC1 {PUSH P 1) - push L on the stack
(PUSH P 2) _ push X on the stack
(JUMPE 1 TAGl) jump to TAGl if L is NIL
(HLRZ®' 1 1) load register 1 with CAR{L)
PC5 (CAME 1 2) skip if CAR{L) EQ X
(JRST 0 TAGZ) jump to TAGZ
PC7 (HRRZR® 1 -1 P) load register 1 with CDR(L)
PC8 (JUMPE 1 TAG3) Jump to TAG3 if CDR(L) is NIL
PC9 (HRRZ® 1 -1 P) load register 1 with CDR(L)
(HLRZ® 1 1) : load register 1 with CAR{CDR(L))
TAG3 “{JRST 0 TAGL) Jump to TAGL
TAG2 (MOVE 2 0 P) load register 2 with X
pPCl3 (HRRZ® 1 =1 P) lerad register 1 with CDR{L)
(CALL 2 (E NEXT)) " compute NEXT{CDR(L),X).
TAG1 (SUB P (CCG O 22)) undo the first two push operations
{(POPJ P) return i
NIL '
Figure 1.18

This encoding abounds with unnecessary operations. There is no need to save X on the stack since
register 2 is never stored into prior to being referenced. Register 1 already contains CDR(L) at
location PC9 and thus this instruction is unnecessary. The same line of reasoning holds for

I6 Optimizer's Assistant .

register 2 and X at location TAG2. Since CAR(L) is not needed in register | (i.e. for subsequeht
operations), we may place it in another register, say 3. Thus there is no need to save L on the stack
since register | will not be stored into prior to being referenced for the computation of CDR(L).
Therefore, the instructions at locations PCl and TAGI may be removed. Since CDR{(L) is
computed whether or not CAR(L) is EQ to X, we can factor its computation to a point before PC5.
This has the effect of rendering the two operations at locations PC7 and PCI3 unnecessary and
they can be removed. The conditional jump at location PC8 has as its target address an
unconditional jump instruction to location TAG1. Thus the destination of the conditional jump at
location PC8 is changed to TAGI. Once again no indirect addressing is needed. At this point we
have the encoding shown in Figure 1,19.

(LAP NEXT SUBR) -

(JUMPE 1 TAG1) Jump to TAGL if L is NIL

PC2 (HLRZ 3 0 1) ;% load register 3 with CAR(L)
(HRRZ 1 0 1) load register 1 with CDR{L)
(CAME 3 2) skip if CAR(L) EQ X

PCS (JRST 0 TAGZ) jump to TAG2
(JUMPE 1 TAGL) jump to TAG1 if CDR(L) is NIL
(HLRZ 1 0 1) load register 1 with CAR(CDR(L))

PCa {JRST 0 TAGI) _ Jjump to TAGI1

TAG2 « {CALL 2 (E NEXT)) compute NEXT(CDR{L),X)

TAG] I%FI’EPJ Py return

Figure 1.19

The optimizations performed in the transition from Figure 1.18 to Figure 1.19 have the effect of
reducing the size of the program from 16 to 10 instructions. Even more significant is the fact that
the length of the inner loop has been reduced from 11 (32.264s) to 7 (17.38us) instructions. Note
that there is no need for recursion — ie. the call to NEXT can be replaced by an unconditional
branch to the start of the program. Therefore, the unconditional jump to TAG2 at PC5 can be
replaced by a jump to the start of the progtam. But now the operation at location TAG?2 is
inaccessible and it can be removed. The latter causes the unconditional jump at PC8 to be
unnecessary and it too can be removed. At this point, we have the encoding shown in Figure 1.20.

(LAP NEXT SUBR)

NEXT (JUMPE 1 TAG1) jump to TAGI if L is NIL
PC2 ° (HLRZ 3 0 1) load register 3 with CAR(L)
{HRRZ 1 0 1) load register 1 with CDR(L)
- pC4 {CAME 3 2) skip if CAR(L) EQ X
PCS (JRST 0 NEXT) compute NEXT(CDR(L),X)
PCh (JUMPE 1 TAG1) jump to TAGl if CDR{L) is NIL
. - (HLRZ 1 0 1) load register 1 with CAR{CDR{L))
TAG1 (POPJ P) return
: NIL
Figure 1.20 t

Notice that the lengths of the program and the inner ioop have been reduced from 10 and 7
(17.38us) to 8 and 5 (11.09us) instructions respectively. Even further reduction in the size of the

L Optimizer's Assistant 17

inner ioop can be achieved. Recall our earlier comment about the redundancy of the test of
. nullness of L once recursion has started. This is not the case here; however, the concept of
bypassing the start of the program, which we called loop shortcutting, is relevant. At location PC5H
we branch unconditionally to a conditional branch. We could perform the test for the nullness of
L at location PC5 with the sense of the condition reversed. In this case, the condition at PCB is
true and we will proceed to the function exit with the right result since register 1 will contain NIL1.
An additional minor optimization is the use of an immediate instruction accompanied by indexing
in place of the memory access at location PC4. At this point we have the encoding shown in
Figure 1.21.

(LAP NEXT SUBR)

NEXT (JUMPE 1 TAGI) Jump to TAGl if L is NIL
Loop (HLRZ 3 0 1) load register 3 with CAR(L)
(HRRZ 1 0 1) load register 1 with CDR(L)
{CAIE 3 0 2) skip if CAR(L) EQ X
PCS (JUMPN 1 LOOP} if CDR(L) is not NIL then
compute NEXT{CDR{L),X)
PC6 (JUMPE 1 TAGL) jump to TAGl if CDR{L) is NIL
(HLRZ 1 0 1) . load register 1 with CAR{CDR(L)})
TAG1 (POPJ P} return
NIL
figure 1.21

We are now through. The intermediate form corresponding to the LAP encoding in Figure 1.21 is
given in Figure 1.22. Once again, note the two distinct representations. Qur last optimization has
resulted in a decrease of the length of the inner loop from 5 {11.094s) to 4 (9.28us) instructions. In
summary, the length of the original encoding has been reduced from 16 to 8 instructions. More
importantly, the length of the inner loop has decreased from 11 (32.26us) to 4 (9.28us) instructions.
The ‘last encoding can be considered optimal for the following reason. The NEXT function
formulated by Figure 1.16 requires the computation of CAR(L), CDR(L), the testing of CAR(L)
EQ to X, and the nullness of L, and the iteration step. All in all these comprise five operations.
At times a test may be combined with another non—test operation. Since we have two test
operations the minimal number of instructions with which we could accomplish our desired
computation is three. We have been abie to encode the function with four instructions and thus we
have almost achieved the lower bound. Further analysis would reveal that on the PDP—10 we
have indeed an optimal encoding since actually the only operation that can be simultaneously
achieved with a test is a branch and our function only requires one such branch (i.e. the iteration

step). :

t This optimization was pointed out to the author by Steve Savitsky.

18 Optimizer's Assistant 1.

(EQL F) - (10 5 0)
F (EQ (CAR L) X) o/ue\nz 5) 6)
(EQ (DR &cnn L) F) (18 {14 5((2\2(14 5) 0)

F (CAR (CDR L)) ® L) X) © (20 (14 5)) 0(2/4($6)

Figure 1.22 - Intermediate Form of Figure 1.21

In summary, we have demonstrated how the function has been optimized step by step. We feel
that in the future such refinements could be performed by a postoptimizing program. Notice how
for each of the two algorithms we removed the unnecessary steps until the inner loop was reduced
to its minimum. When Algorithm | was reduced to its minimum, we had to make a change in our
original algorithm in order Lo be able to proceed further. Using our methods we cannot vouch for
the equivalence of algorithms 1 and 2t. The proof system in this thesis is designed to prove correct
the manipulations performed in the transitions to optimality within each of the two algorithms but
not the equivalence of the two algorithms. This is an important point and we hope that the
example has demonstrated what we mean by equivalence.

As a second example consider the old standby of correctness work, REVERSE. The function takes
one argument, a list L, and returns as its result the reverse of the top elements of its argument.
For example, REVERSE applied to (A B C) yields (C B A); similarly, REVERSE({A (B C D) E))
would yield (E (B C D} A). One formulation of this function in meta~LISP is given in Figure
1.23. sAPPEND is a function whose arguments are lists that are concatenated to form the result of
the function. LIST is a function of an arbitrary number of arguments that returns a list
containing these arguments.

REVERSE(L) = if NULL(L) then NIL
else *APPEND(REVERSE(CPR{L)),LIST(CAR({L)))

Filgure 1.23 - Definition of REVERSE

t In fact the two algorithms are equivalent as can be shown indirectly by noting that the encodings
given in Figures 1.15 and 1.21 will have the same rederived forms (more precisely, the two
rederived forms can be shown to be equivalent) using our proof methods. This is sub ject to
showing that an unnecessary operation (CAR(L) in Figure 1.15) can be performed safely. This

- point is discussed in Chapter 5. However, the use of indirection is not very general since it relies

on the existence of assembly language encodings that can be shown to be equivalent to different
algorithms (in a higher level language sense). In other words we are demonstrating the
equivalence by using assembly language encodings rather than the higher fevel language
encodings.

L ' Optimizer's Assistant 19

The LAP encoding generated by the Stanford LISP 16 compiler is shown in Figure 1.24.
NCONS is a function of one argument which is equivalent to a CONS of its argument with NIL.
NCONS is known not to destroy any of the registers except for register 1. The encoding and the
inner loop are both 12 instructions long.

(LAP REVERSE SUBR)

(PUSH P 1) push L on the stack
PCZ (JUMPE 1 TAG!) jump to TAGl if L is NIL
(HRRZ® 1 0 P) load register 1 with CDR(L)
{CALL 1 (E REVERSE)) compute REVERSE(CDR(L))
PC5 (PUSH P 1) ' push REVERSE{CDR(L)) on the stack
(HLRZ® 1 -1 P) - - load register 1 with CAR(L)
(CALL 1 (E NCONS)} compute LIST{CAR(L))
(MOVE 2 1) load register 2 with LIST(CAR(L))
{(POP P 1) pop REVERSE{CDR(L)) from the stack
(CALL 2 (E *APPEND)) compute *APPEND(REVERSE(CDR(L)},
LIST{CAR(L)))
TAG1 (SUBP (COO01 1)) undo the first push operation
PCl2 (POPJ P) return
NIL
Figure 1.24

The encoding in Figure 1.24 can be improved upon in several ways. In case the test at PC2 is true,
then the previous push operation was not necessary. - Therefore, interchange the first two
instructions and the jump may now proceed to PCI2 rather than TAG1. The length of the inner
loop may be reduced by noting that xAPPEND requires that REVERSE(CDR(L)) be in register 1.
Thus since all results are returned in register 1, it would be preferable if the computation destined
for register 1 is computed last. This is possible only if it can be proved that no harm can result
from rearranging the order of computation of arguments to a function (i.e. no side—effects are
possible). In this case the rearranging is feasible. Another operation that is not necessary is the
PUSH instruction at location PC5. Instead we note that the value currently occupying the top of
the stack is L whose final use occurs in the next instruction. Thus we may recycle the allocated cell
on the stack by use of an EXCH which exchanges the contents of a register with a location in
memory. This renders the stack pointer adjustment at location TAGI unnecessary and it is
removed. Such optimizations are quite useful for several reasons. First of all, they reduce the
overall stack length required by a factor of two when recursion occurs, since an extra cell must be
-so allocated for each element in the list that is to be reversed. Secondly, when garbage collection{
occurs, we must perform what is known as the marking phase which consists of determining all of
the accessible cells in the List Structure. This is done by following the chains of all of the active
pointers. The active pointers are defined to be contents of locations that may be subsequently
referenced by the function. This includes certain accumulators and the stack. Thus reducing the
size of the stack may have an important effect on the efficiency of garbage collection since the
marking phase is reduced in length and more of the List Structure may be reclaimed. At this point
we have the encoding shown in Figure 1.25. e

t Reclaiming of storage in the List Structure that is no longer accessible. For more details see
Chapter 2 or [Knuth68).) : ' .

20 ° Optimizer's Assistant

(LAP REVERSE SUBR)

PCl (JUMPE 1 TAGL)

PCc2 (PUSH P 1)
(HLRZeé 1 0 P) ;
(CALL 1 (E NCONS))

jump to TAGI if L is NIL
push L on the stack

load register 1 with CAR(L)
compute LIST{CAR(L))

PCS (EXCH 1 0 P) exchange LIST(CAR(L)) with L

(HRRZ® 1 1) load register 1 with CDR(L)

(CALL 1 (E REVERSE)) compute REVERSE(CDR(L))

(POP P 2) pop LIST(CAR({L)) from the stack
PCO (CALL 2 (E ®APPEND)) compute *APPEND{REVERSE{CDR{L)},

LIST(CAR(L)))

TAG1 {POPJ P) return

NIL

Figure 1.25

We have only succeeded in decreasing the size of our program by two instructions. Similarly, for

the length of the inner loopt (i.e. the speed of the inner loop is reduced from 38.06us to 32.50us).
More can be achieved by noting that L need not be saved on the stack at location PCQ since
NCONS only destroys register 1. Thus we may temporarily save it in another register while
LIST(CAR(L)) is being computed. In fact, we will use a technique mentioned earlier which allows
a load and skip test to be performed simultaneously. We replace the instruction at PCI1 by a
SKIPN operation results in function exit if L is NIL. This modification forces the removal of the
EXCH operation at location PC5, and its replacement by a PUSH operation. Moreover, there is
no longer a need to enter sAPPEND via a recursive call. Instead, we may use a JCALL (same as a
call but does not place a return address on the stack) instruction at location PC9. Now, the
function exit operation at TAG! is unreachable and may be removed. We may also change all
uses of indirect addressing to indexing. At this point we have the encoding shown in Figure 1.26.

(LAP REVERSE SUBR)

(SKIPN 2 1) load register 2 with L and
skip if not NIL
r (POPJ P) return NIL

(HLRZ 1 0 1) load register 1 with CAR(L)

(CALL 1 (E NCONS)) compute LIST(CAR(L))

(PUSH P 1) push LIST(CAR{L)) on the stack

(HRRZ 1 0 2) load register 1 with CDR(L)}

(CALL 1 (E REVERSE)} compute REVERSE{CDR{L))

(POP P 2) : pop LIST{CAR(L)) from the stack
Pce {JCALL 2 (E *APPEND)) = compute *APPEND(REVERSE{CDR(L}),

- LIST(CAR{L)}))

Figure 1.26

t For the REVERSE function the actual times of the inner loops that are given only reflect the
time spent in the function being optimized. Recall the cautionary remark made earlier and the
example of the CONS operation whose only effect on the inner loop is the time required to
perform the linking operation. This is not unreasonable since our goal is to optimize a particular
function and not necessarily the functions invoked by it.

[Optimizer's Assistant 2]

The encoding in Figure 1.26 results in an inner loop of length 8 (22.91us) and overall function
length of 9. Thus we have once again succeeded in reducing the execution time by a factor close to
2. We don't see any further obvious optimization that can be done for this formulation of the
REVERSE function. This can be seen when we consider that the function definition requires six
basic operations — i.e. the computation of CAR(L), CDR(L), LIST(CAR(L)), *APPEND, recursion,
and the testing of the nullness of L. In addition we must temporarily save and restore the value of
one of the arguments to *xAPPEND while computing the other one.

Greater reductions in space and time requirements can be achieved by changing the algorithm.
The change we propose is a general one which is dependent on the schema of the function
definition. In our case the schema corresponding to REVERSE fits into a class of schemas given
in Figure 1.27 along with their equivalents. The driving force behind such transformations is a
desire to replace recursion by iteration via the use of an additional argument as an accumulator to
store temporary results, In the figure, a and b denote expressions and ® is an operation. The
transformations are applicable to the schemas provided that the e operation is associative.

f(x) = if p(x) then a becomes hix,y) if p(x) then yea
else bef{g(x)) else h{g(x),yeb)

f(x) = if p(x) then a becomes h{x,y) = if p(x) then asy
else f(g{x))eb else h(g.x}),bey)

Figure 1.27 - Transformation Schemas

Once the transformation is performed we stili have some unfinished business. The newly
transformed function serves as an auxiliary function and must be properly activated with an
appropriate initial value for the placeholder argument. For these transformations, we need a
redefinition of the function f to invoke the function h as shown in Figure 1.28 where ide is the
identity element of the @ operation,

f(x) = hi(x,ide)

Figure 1.28 - Identity Transformation

The definition of REVERSE given in Figure 123 has the same schema as the second
transformation given in Figure 1.27 with the following bindings. a and b are bound to the atom
NIL and to LIST(CAR(L)) respectively, and g, p, and e are bound to the functions CDR, NULL,
and *APPEND respectively. In addition, we cite in Figure 1.29 a pair of identities which wiil be
used to cbtain a more optimal function definition.

*APPEND(NIL,y) = ¥
*APPEND{LIST(CAR(L)),¥} = CONS{CAR(L),y)

Figure 1.29 - *APPEND Identities

T The associativity requirement was pointed out to the author by Ashok Chandra.

22 Optimizer’s Assistant : L

Use of the second transformation in Figure 1.27, the associativity of sAPPEND, the identities given
in Figure 1.29, and the fact that the identity element corresponding to *APPEND is NIL, yield the

- familiar function definition given in Figure 1.30. This formulation 'of the function is quite

efficient because there is no longer any need for the *APPEND function. The latter was a
drawback of the previous definition in that sAPPEND always creates an extra copy of its first
argument. Furthermore, the new algorithm may be implemented by iteration instead of recursion.

REVERSEI(L) = REVERSEIA(L,NIL)
REVERSEIA(L,RL) = if NULL(L) then RL
else REVERSEIA(CDR(L),CONS{CAR(L),RL))

Figure 1.30 - Definition of REVERSE with Two Arguments

Note that no matter how we optimize the algorithm, the result of the REVERSE function must be
a new list. In other words, we may not reverse the links in the original list as is done in the
algorithm given in Figure 1.31. This algorithm employs what has been referred to as "compile time
garbage collection” by [Darlington73). At first, such an approach seems attractive as it does not
result in the use of any free storagef. However, since list structures are generally shared, reversal of
the links in the original list will have a far reaching effect.

REVERSEIA(L,RL) = if NULL(L) then RL
else REVERSEIA(CDR(L),RPLACD{L,RL))

Figure 1.31 - Destructive REVERSE

Our system cannot detect the equivalence between the definitions given in Figures 1.28 and 1.30,
Such work is best done on the level of LISP function definitions. One method of proof is to have
a library of such valid schema transformations and to apply them in some reasonable manner.
Recently, Boyer and Moore have reported [Boyer73] work on a theorem prover for LISP functions.
We feel that such equivalences as necessary for REVERSE in Figures 1.23 and 1,30 fall more into
that domain. The transformations in Figure 1.27 can be applied to other functions {e.g. factorial)
and more than once as seen in the discussion of the Fibonacci function in Chapter 8.

As indicated earlier, use of such transformations as Figure 1.27 may reduce the need for recursion,
yet there is an extra cost in terms of memory space involved in initially activating the function.
Furthermore, we must not overlook the extra overhead that could result from the additional
argument. The extra argument adds instructions to the program for the purpose of saving
arguments prior to function cails as well as another argument to compute on each additional
recursive call. The encoding generated by the LISP 1.6 compiler is given in Figure 1.32.

1 Using optimizations similar to those discussed here, the entire function can be encoded using
four instructions and an inner loop of three instructions.

1. Optimizer's Assistant 23

(LAP REVERSEIA SUBR)

(PUSH P 1) push L on the stack
PC2 (PUSH P 2) push RL on the stack
{JUMPN 1 TAGZ) Jump to TAGZ if L is not NIL
(MOVE 1 2) load register 1 with RL
" (JRST 0 TAG1) jump to TAGI
TAGZ (MOVE 2 0 P) load register 2 with RL
(HLRZ® 1 -1 P) , load register 1 with CAR{L)
(CALL 2 (E CONS)) compute CONS{CAR(L),RL)
(MOVE 2 1) load register 2 with CONS(CAR(L),RL)
(HRRZ@ 1 -1 P) load register 1 with CDR(L)

(CALL 2 (E REVERSEIA)) compute REVERSE1A(CDR(L),
CONS(CAR(L),RL))

TAG1 (SUB P (CODO022)) undo the first two push operations
(POPJ P) return
NIL

Figure 1.32

The lengths of the program and the inner loop are 13 and 11 {33.86us) instructions respectively.
‘The encoding again suffers from a variety of redundant operations. These include the unnecessary
saving of RL on the stack at PC2, the loading of register 2 with RL at TAG2 when the register
already contains this value, saving the arguments on the stack prior to testing whether or not the
saving is necessary, and other problems that can be remedied using techniques simitar to those used
earlier. The main drawback of the encoding in Figure 1.32 is the need to perform many data
moving operations to make sure items are in the proper locations for recursion to occur. This
stems in part from the fact that the value that is to be returned as the result of the function is in
the second register. This can be alleviated in two equivalent ways. One way is to redefine the
function with the position of the arguments reversed (i.e. L. becomes the second argument and RL
becomes the first argument as shown in Figure 1.33). The alternative is simply to interchange the
arguments in the first two registers and then to perform recursion (actually we can convert the
recursive call to iteration).

REVERSE1(L) = REVERSEIA(NIL,L)
- REVERSEIA(RL,L) = if NULL(L) then RL
else REVERSEIA(CONS(CAR(L},RL},CDR(L))

' Figure 1.33 - Definition of REVERSE with Argument Positions Reversed

We choose to illustrate this transformation by use of the first method. Note that the algorithm has
now changed and our system will not be able to recognize the equivalence of the algorithms in
Figures 1.30 and 1.33. The LAP encoding produced by the LISP 1.6 compiler is given in Figure
1.34. :

24 Optimizer's Assistant L

{LAP REVERSE1A SUBR)

PCl (PUSH P 1) push RL on the stack

(PUSH P 2) push L on the stack
PC3 {JUMPN 2 TAGZ) - Jump to TAGZ if L is not NIL
PC4 (JRST 0 TAG1) jump to TAGI
TAGZ (MOVE 2 -1 P) load register 2 with RL
PCH {HLRZ® 1 0 P) load register 1 with CAR(L)

: (CALL 2 (E CONS)) compute CONS{CAR(L),RL)

(HRRZ®@ 2 0 P) load register 2 with CDR{L)

PC9 (CALL 2 (E REVERSEIA)) compute REVERSEIA{CONS(CAR(L),RL),
. CDR(L))

TAG1 (SUB P (COO0 2 2)) undo the first two push operations
PCl1 (POPJ P) return

NIL

Figure 1.34

- The length of the function and its inner loop are 11 and 10 (31.77us) instructions respectively.
.Several optimizations come to mind. The PUSH operation at location PCl is unnecessary.
Similarly, by using an XCONS operation, there is no need to load register 2 with RL at TAG?2.
The latter implies that register 2 be loaded with CAR(L) at location PC6. The pair of branch
instructions at locations PC3 and PC4 can be placed before the PUSH operation at PCI.
Moreover, this pair of instructions can be replaced by a JUMPE operation to PCll. The
recursion at location PC9 can be replaced by iteration provided that the stack pointer is ad justed
first. As was done for the example NEXT, the iterative jump may be replaced by a test having
the reverse sense of that performed at location PC3 in Figure 1.3¢. In other words we will once
again bypass the start of the program. At this point we have the encoding given in Figure 1.35.

(LAP REVERSEIA SUBR}

(JUMPE 2 TAG1) jump to TAG! if L is NIL
REV (PUSH P 2) push L on the stack
(HLRZ 2 0 2) load register 2 with CAR(L)
(CALL 2 (E XCONS}) compute CONS{CAR(L),RL)
(HRRZ@ 2 0 P) load register 2 with CDR(L)
PC6 (SUB P (COO01 1)) undo the first push operation
(JUMPN 2 REV) ' if CDR(L) is not NIL then compute
REVERSE1A(CONS(CAR(L),RL),CDR(L))
TAG1 (POPJ P) return
. NIL

Figure 1.35

The length of the function and its inner loop are 8 and 6 (17.92us) instructions respectively. This
can be improved upon by noting that the PUSH operation at location REV has the effect of
recycling a stack location which was just released at PC6. The length of the inner loop could be
decreased by two instructions if we would place the value of CDR(L) on the stack as well as in
register 2. This would mean that the PUSH operation at REV could be bypassed. Moreover, the
stack ad justment operation performed at PC6 would be moved out of the inner loop. One possible
way of achieving this effect is to use a HRRZS instruction which Stores its result in the register
specified by the accumulator field and in the location addressed by the effective address of the
instruction. This would result in the encoding given in Figure 1.36.

L Optimizer's Assistant 25

(LAP REVERSE1A SUBR)

(JUMPE 2 TAGIL) jump to TAGl if L is NIL
PC2 (PUSH P 2) push L on the stack
REV (HLRZ 2 0 2) load register 2 with CAR(L)

(CALL 2 (E XCONS)) compute CONS{CAR(L),RL)
PC5 (HRRZS@ 2 0 P) . load register 2 and the top of

_ the stack with CDR(L)
PC6 (JUMPN 2 REV) if CDR(L) is not NIL then compute
REVERSEIA{CONS{CAR{L),RL),CDR(L))

PC7 {SUBP(COO011)) unde the first push operation
TAGL {POPJ P) return

NIL

Figure 1.36

At a first glance it seems that we have succeeded in reducing the length of the inner loop to four
(11.88us} instructions. However, use of the equivalence proving system finds that we have erred.
Unfortunately, the HRRZS instruction places its result back in the location designated by the
effective address, Thus instead of having CDR(L) in the location on top of the stack, we have
succeeded in changing the contents of the location pointed at by L from CAR(L) and CDR(L) in
the left and right halves respectively to NIL and CDR(L) in the left and right halves respectively.
Again we see the potential usefulness of the equivalence proving system. We have to revert to our
previous means of computing CDR(L), and if we wish to recycle the stack location, then we have to
store the value back on the stack via a MOVEM operation between locations PC5 and PC8 in the
encoding given in Figure 1.36. We can still improve on this encoding by recalling that the CONS

, (and XCQONS) operations only destroy the contents of registers | and 2. Thus instead of using a

location on the stack to temporarily store the value of L, we can use another accumulator, say 3. In
this case, the PUSH operation at PC2 is no longer necessary and likewise for the stack pointer
ad justment at PC7. In fact, we merely need to initialize register 3 with the value of L and then
iterate with CDR(L} placed in register 3. Recalling our encoding of NEXT in Figure 1.10, we may
achieve this while simultaneously testing the nullness of L with a SKIPN instruction. At this peint
we will have the encoding given in Figure 1.37.

(LAP REVERSEIA SUBR)

(SKIPN 3 2) load register 3 with L. and
skip if not NIL
(POPJ P) return NIL
REV (HLRZ 2 0 3) load register 2 with CAR(L)
(CALL 2 (E XCONS)) compute CONS{CAR(L},RL)
(HRRZ 3 0 3) load register 3 with CDR(L)
(JUMPN 3 REV) if CDR(L) is not NIL then compute
REVERSELA{CONS{CAR{L),RL),CDR{L})
TAG1 é?OPJ P) return
L

Figure 1.37

The encoding given in Figure 1.37 is minimal in the following sense. The function definition of
REVERSEIA requires the computation of CAR, CDR, CONS, recursion, and a test for the
nuilness of L. All in all, these comprise five operations. At times a test may be combined with

26 Optimizer's Assistant 1.

another non—test operation. Since we have four non-—test operations and one test operation, the
minimal number of instructions that can accomplish our desired computation is four. Therefore
our encoding is indeed minimal. In summary, we have succeeded in reducing the length of the
program from 13 to 7 instructions. More significantly, the length of the inner loop has been

decreased from 11 (33.86us) to 4 (10.32us) instructions. When considering the type of operations
involved, the factor of optimization is greater than 38 since the number of memory references has
been greatly reduced. The latter includes the elimination of stack accessing operations which are
inherently slow due to the extra memory reference.

In conclusion, we have seen how a number of optimizations can be performed and recognized by
our system. These include rearranging of the order of computation of arguments to a function call,
bypassing the start of a program, making use of the results of tests, changing a calling sequence,
and others. Hopefully, we have also clarified the meaning of equivalence. In particular, when the
basic algorithm does not change, equivalence can be proved. We cannot prove equivalence in cases
where changes in the algorithm occur. This was illustrated by the transition from Algorithm 1 to
Algorithm 2 for NEXT, and the addition of an argument to REVERSE as well as the rearranging
of the parameter positions. For this type of modification it is not impassible to prove equivalence.
However, it should be proved on a higher level which does not irvolve any optimization in the
assernbly language encoding of an algorithm.

Now that the examples have been presented, we are better able to indicate some of the more
difficult problems that arise in proving the correctness of optimizations. First, we must have a
model of the computation. We have seen the use of an intermediate form as shown in Figures 1.3,
1.17, and 1.22. This model must be useful for representing both the higher level and lower level
formulations of an algorithm. This includes the capability for expressing a temporal relationship
between the various components of the computation. Second, a system is necessary for describing
the instruction set of a computer. Third, a proof procedure is required for demonstrating the
equivalence of representations of the higher level and lower level encodings of the algorithm. This
proof must allow for the rearranging of the order of computationt, substitution of equals for equals,
as well as loop shortcutting. Loop shortcutting is particularly important as shown by the difference
in the intermediate forms corresponding to Algorithm 2 for NEXT which are given in Figures 1.17
and 1.22.

The series of encodings that have been presented have been either proved correct or have had
their errors detected by our system. The need for such optimizations should be quite evident from
the examples. Specifically, the use of the proof procedure in the process of inner loop length
reduction is quite important since such a procedure can aid one in analyzing algorithms to detect
where a change in the formulation can lead to a substantial reduction in space and time
requirements. The basic process underlying the optimizations that we have shown is one of
stepwise refinement. Admittedly, many of the optimizations are of a heuristic nature. However, it
is our feeling that the big payoff in optimization is to be derived from such methods, The
heuristic nature of such a procedure requires a means of proving the correctness of the various
attempts at gaining optimality. The work reported in this thesis provides a framework for this
verification process as well as demonstrating its feasibility by presenting an implementation. The
interactive nature of the procedure could also be used as a means of debugging. However, the
main intent of such a system is an incorporation into an optimizing compiler to serve as a final
validation step.

t Important in the handling of computations having side—effects.

2. CMPLISP 27

CHAPTER 2
CMPLISP

2.A Introduction to LISP

LISP is a symbol manipulation language developed by John McCarthy [McCarthy60) having its
roots in recursive function theory and the lambda calculus[Church41]. 1t is distinguished by a
small number of primitive operations, and, most strikingly, by the indistinguishability of the
representation of program and data. This duality implies that LISP functions may be both created
and executed by other LISP functions.

The basic data structure in LISP is the s—expression. The syntax of s—expressions is given in
Figure 2.1 by means of BNF notation[Naur60] Note that the primary unit is the atom which,
practically speaking, denotes identifiers, numbers, and strings as well as the pre—defined
distinguished identifiers NIL and T. In the sequel we will often use the terms identifier and atom
interchangeably.

{s-expression> ::= { <{s-expraession> . <{s-expression))
<atom>

{identifier>

<number>

{string>

NiL

T

{atom> ;°

P R TR
H U muwuamwhn

Figure 2.1 - Syntax of S-expressions

As a programming language, LISP has been in existence for a number of years with a variety of
implementations. As originally designed, it is an interpretive language. However, for efficiency
considerations a number of attempts have been made to implement a compiled version. Further
efficiency considerations have resulted in implementations[Quam?2] which, in certain cases, are
characterized by yielding different results for identical functions, depending on whether the
functions are interpreted or compiled prior to being executed.

In this work we focus our attention on compiled LISP with certain restrictions. Rather than
itemize the restrictions, we define CMPLISP {(denoting compilable LISP) — a subset and variant of
LISP 16. In the course of the definition, we do not hesitate to stray into the implementation
domain in order to motivate the presence and absence of certain properties of LISP programs.
However, it should be clear that no attempt is made to discuss all of the properties of LISP
functions and implementations in this exposition. For a more complete description and definition
the reader is directed to the references [McCarthy62][Allen]74).

CMPLISP often defines functions in terms of their actions, assuming that the data is valid. The
meaning of valid is further explored in the section containing differences between CMPLISP and
other LISPs (see Section 2.C). Some of the differences are in features, and others are of a more

28 CMPLISP ' 2.A

fundamental nature. Some inconsistencies present in certain compiled LISP implementations will
be discussed, as well as the remedies offered by CMPLISP. The remedies are mainly in the form
of providing protection from undesirable side—effects of certain operations. However, it should be
noted that CMPLISP has been designed in such a manner that all programs capable of being
executed by the CMPLISP system are also executable by the LISP 16 system. Moreover, results of
CMPLISP functions are not dependent on whether the function is interpreted or compiled prior to
being executed. :

The ensuing definition of the syntax and semantics of a CMPLISP program uses a descriptive
variant of BNF. This definition uses list notation rather than S—eXxpression notation. Figure 2.2

" illustrates the conversion process from list notation to s—expression notation by means of examples,
while Figure 2.3 gives a more precise definition of the translation procedure. Note the use of NIL
as an atom indicating the last atomic element in the s—expression formulation of a list. The
rightward pointing arrow in Figure 2.3 indicates that when the reduction on the left is made, the
sentence on the right yields the translation. An asterisk («) on the right indicates that no
translation action is to be taken.

() = NIL
(A) = (A . NIL)
(AB) = (A. (B .NIL))
(A (B) C) = (A. ((B.NIL) . (C . NIL)))

Figure 2,2 - S-expression and List Notation Equivalents

{list> ::
_<rest list> :

{ <rest list> 4+ x

)+ NIL .

{atom> (rest list> » (<atom> . <rest list))
(list)> <{rest list> -+ { <listd . <raest list>)

I 0w

Figure' 2.3 - Conversion from S-expression to List Notation

2.A1 Functions and Special Forins

A CMPLISP program is a collection of global variables (known as SPECIAL variables) and
functions of the following form:

(DEFPROP <function name>

{ LAMBDA <parameter list> <functiocn body sequence>)
<functiqn type> } ,

<function name> is the name of the function.

<parameter list> is a sequence of zero or more variable names surrounded by parentheses. These
variable names act as placehiolders for computations and their names do not exist as atomns.

2.A1 Functions and Special Forms 29

{function body sequence> ::= {functicn body>
{function body sequence>
::= {function body>

{function body> ::= <{atom>
::= (non-atomic fbody>
{non-atomic fbody> ::= <{function call>

t:= {conditional form>
1= {internal lambda>

13= {prog>
(function call> ::s (<function name> <arglist))
<arglist> ::= <{function body> <{arglist)
{1z empty
{conditional form> ::= { COND <cond pairs)> }
<cond pairs> ::= { <function body>

{function body sequence>)
{cond pairs>

iz oempty
{internal lambda> ::= { (LAMBDA (<pairs>)
<pairs> ::= {varname> <pairs)> <function body>
::i=) <(function body sequence)>)
<{prog> ::= (PROG <{parameter list)> <prog body)>)
{parameter l1ist> ::= [<varlist>)
{varlist> ::= {varname)> <{varlist)
1= empty
<{prog body> ::= <{prog statement> <prog body>
1:= {prog statement>
{prog statement> ::= <atom> <non-atomic fbody>

3= {non-atomic fbody>

Figure 2.4 - Syntax of LiSP
<function types is one of the following:
1. EXPR — indicates that the function is invoked by the call by value mechanism — ie. all
arguments have been evaluated prior to the invocation ofthefuncnon.'Thefuncn0n|nay have an
arbitrary number of arguments.
2. FEXPR - indicates that the function is invoked by the call by name mechanism — ie. the
argument has ot been evaluated prior to the invocation of the function. The function has exactly

one argument.

<function body sequence> is a sequence of ane or more <function body>s which is defined below
(for a more precise description see the BNF given in the box In Figure 2.4).

[. atem or function call of the form (fname argl arg2 . . . argn) where argi are elements of
<function body>.

2. mternal lambda of the form:

30 CMPLISP | 2.A1

({ LAMBDA (varl var2 . . . varn)

. <function body sequence))
<{function body of varl_binding>
<{function body of var2_binding>

{function bhody of varn_binding>)

This construct indicates that varl, varg, . . ., varn (having the same properties as elements of
<parameter list>) are to be bound to their respective bindings and are to serve as formal
parameters to <function body sequence>. The value of the last <function body> is returned as the
result of the form. Its primary purpose is to avoid recomputing common subexpressions as well as
to temporarily store results of functions whose values may differ due to side—effects depending on
the instance of computation.

3. condition of the form:

(COND (Pl <function body sequencel))
{ P2 {function body segquence2)> }

{ Pn <functi$n body sequencen> })

COND is a special form indicating that Pl through Pn, elements of <function body>, are to be
evaluated in order until encountering the first Pi which returns a value not equal to NIL. If no
non—-NIL Pi is found, then NIL is returned; otherwise, <function body sequencei> is evaluated and
the value of the last <function body> in the sequence is returned as the result of the form. Note
that often the final Pn is the atom T which is always non—NIL. '

4. program feature of the form { PROG <progvar list> <prog body>) . PROG indicates that
elements of <progvar list> are to serve as the local variables for <prog body> — a list of atoms
interpreted as labels and non—atomic function bodies interpreted as statements. Basically PROG is
a procedure in the FORTRAN([ASI66) sense. In addition, PROGs may contain the constructs GO
and RETURN which may only appear at the top level of a PROG or in a COND at the top level
of a PROG. GO causes the sequence of control within the PROG to be transfered to the next
statement following its atomic argument. RETURN causes the PROG to exit with the value of its
argument.

PROGs pose a restriction on the occurrence of a label, GO, and RETURN. This can be Justified
by viewing a' PROG as a sequence of function definitions (henceforth referred to as
pseudofuncrions) having <parameter list> and <progvar list> as their local variables. <prog body>
is broken up into pseudofunctions as follows, Each COND appearing at the top level of the
PROG s a pseudofunction with the label associated with the COND as the function name (if
COND is unlabeled, then a unique label is generated). Also, each sequence of prog statements
between a COND and a label is a pseudofunction (determination of function names is identical to
that proposed for the COND). In addition, in each pseudofunction, except for the last one, each
terminal computation that is not a GO or RETURN is replaced by a call to the nex: sequential
pseudofunction with the current bindings of the pseudofunction variables. The PROG can now
be replaced by the first pseudofunction which only has <parameter list> as its local variables. Note
that in this discussion we have attributed a functional nature to the GO construct. Namely, we
interpret it as a FEXPR with the target label as an unevaluated functional parameter. An example

2.A1 Fuictions and Special Forins 3]

of the conversion of REVERSE in PROG notation to a sequence of functions REVERSE,
REVERSI, and REVERS? is given in the box in Figure 2.5.

{DEFPROP REVERSE (LAMBDA (SLiST)
(PROG (RESULT)
(SETQ RESULT NIL)
TAGL- (COND ((NULL SLIST) (RETURN RESULT)))
(SETQ RESULT (CONS (CAR SLIST) RESULT))
{SETQ SLIST (CDR SLIST))
: (GO TAG1)))
EXPR)

yields:

(DEFPROP REVERSE (LAMBDA (SLIST) (REVERS1 SLIST NIL))
EXPR)

followed by:

(DEFPROP REVERS] (LAMBDA (SLIST RESULT)
(COND ((NULL SLIST) RESULT)
(T (REVERSZ SLIST RESULT))))
EXPR)

followed by:

(DEFPROP REVERSZ (LAMBDA (SLIST RESULT)
(REVERS1 (CDR SLIST) (CONS (CAR SLIST) RESULT)))
EXPR)

Figure 2.5 - Example of PROG Elimination

2.A2 SPECIAL Variables

In our definition of CMPLISP programs we have seen two types of variables, elements of
<parameter list> and SPECIAL. The former have been noted to act merely as names associated
with certain computations. The latter have the previous property in addition to being atoms. We
will soon see that the characterization of a variable as an atom implies certain imporiant propetrties.
The primary reason for the existence of SPECIAL variables is to provide a means for the
communication of values across function boundaries and lifetimes,

32 CMPLISP 2.A3

2.A3 Atoms

In order that occurrences of atoms with the same symbolic representation (henceforth known as
printname) have the same internal address, there exists a table associating the internal address of
the atom with its description. This table, known as the OBLIST, contains all atoms and SPECIAL
variables (not elements of <parameter list>). :

Until now we have seen atoms created by the SPECIAL construct and these that exist in the
compiled function (henceforth known as the LAP program). The OBLIST is initialized to contain
them. All other atoms (such as those appearing in data) are entered in the OBLIST upon their
initial encounter if they have not been seen before. The special function GENSYM is yet another
means of creating atoms. These atoms are not automatically entered in the OBLIST. Instead, the
programmer has at his disposal the functions INTERN and REMOB which are used respectively
to enter their unevaluated argument in the OBLIST, if not already there, and to remove their
unevaluated argument from the OBLIST. Note that the atoms which are in the OBLIST prior to
the start of execution {i.e. immediately after compilation) cannot be removed from the OBLIST.

2.A4 Property Lists

We have mentioned that assoctated with each atom is a description (known as the property list)
containing data we may wish to associate with the atom. The property list is organized in terms of
pairs of entries where one part of the entry indicates a name (henceforth known as the property)
that we wish to associate with the data, and the other part is the actual value of the data. The
property list always contains the property PNAME which has as its corresponding value the
printname (i.e. symbolic representation) of the atom. All other properties have s—expressions as
their values. Another property alluded to previously is VALUE, which is associated with
SPECIAL variables and other distinguished atoms (i.e. NIL and T} and contains a pointer to their
s—expression values. In fact, whenever an atom is evaluated it is the VALUE property that is

“obtained.

As in the case of the OBLIST, there exist functions for accessing and modifying elements of the
property list. They are defined below and further elaborated upon in Section 2.C where their
differences from the LISP 16 definition are examined. Note that these functions have
s—expressions as both their arguments and results. '

GET(IDENTIFIER,VAL): Search the property list of IDENTIFIER looking for the property
name VAL. If such a property is found, then return the value associated with it: otherwise NIL is
returned.

PUTPROP(IDENTIFIER, VALPROPERTY): The function is an EXPR which enters the
property name PROPERTY with property value VAL into the property list of IDENTIFIER. If
the property name PROPERTY is already in the property list, then the old property value is
replaced by the new one; otherwise the new property name PROPERTY and its value VAL are
placed on the property list of IDENTIFIER. PUTPRQP returns VAL.

DEFPROP(IDENTIFIER,VALPROPERTY): The function is identical to PUTPROP except

' that it does not evaluate its arguments (i.e. a FEXPR) and returns IDENTIFIER as its value. This

form, as previously seen, is useful in creating function definitions.

REMPROP(IDENTIFIER,PROPERTY): Remove the property PROPERTY and its value from

2.A44 Property Lists 33

the property list of IDENTIFIER. REMPROP returns T if such a property was found, and NIL
otherwise.

2.A5 Other Function&

QUOTE is a FEXPR whose value is the unevaluated argument. It is primarily used for
preventing evaluation. Note that the FEXPR function type relieves, to some extent, (insofar as the
function has only one argument) the need for QUOTE since the argument to a FEXPR is not
evaluated. Recall that whenever an atom is evaluated, its VALUE property is obtained. The
prevention of this is one of the motivations for the QUOTE construct. The only atoms which do
not require this mechanism are T and NIL (which is often denoted by F),

EVAL is the heart of the CMPLISP system. It evaluates s—expressions. In some LISP systems
there exists a construct named EVALQUOTE which 15 very much like EVAL except that its
arguments are not evaluated. In such systems the user is talking to EVALQUOTE only at the top
level of his program while at all other times he is tatking to EVAL. This is quite confusing and
provides more than an ample excuse for its abandonment.

APPLY is a function of two arguments; a function name, fname, and a list of arguments ARCS.
The function stipulates that each s—expression in ARGS is to be evaluated and bound to the
corresponding argument of fname and returns as its result the value of fname applied to its
arguments.

OR is a function of an arbitrary number of arguments which evaluates them sequentially until one
of them has a non—NIL value. The function returns T if such an argument is found and NIL

otherwise. Note that the function only evaluates as many arguments as are necessary to establish

the desired result.

AND is a function of an arbitrary number of arguments which evaluates them sequentially until
one of them has a value of NIL. The function returns NIL if such an argument is found anad T
otherwise. Note that the function only evaluates as mainy arguments as are necessary to establish
the desired resuit.

2B The CMPLISP Easvironment

In the previous section we have seen a description of the syntax of LISP and its subset CMPLISP.
In addition, the semantics of the syntactic constructs were presented along with the basic data
structure (i.e., s—expressions). In this section we proceed to expand further on s—expressions in
terms of their implementation and functions that access, create, and modify them. Our approach is
to describe a data structure relevant to the semantics of CMPLISP. Next a mapping {(or
implementation) is outlined from CMPLISP and s—expressions into the data structure. The
mapping defines what is henceforth known as the CMPLISP environment. Finally, a series of
basic functions which operate on the CMPLISP environment is defined. These functions and
their interrelationships form a basis for the analysis and proofs in the remainder of the thesis,.

34

CMPLISP : 2.B

W

|| 5—1 | [\

T] oo

Figure 2.6 - Sample List Structufe

Q.Bl Data Structure

(1)

(2)

(3)
(4)

(5)

(6}

List Structure - a set of two-element cells (see Figure 2.6) of which each element is an address
of another cell in the List Structure or an address outside of the data structure. In the Figure
cross-hatched elements indicate an address outside of the data structure while hatched
elements denote a specific address in the List Structure.

Free Storage list - an area of two-element cefls of which one element contains the address of
the next cell in the list. The last cell in the list is marked in a unique manner.

Free Space - the cells comprising the List Structure and the Free Storage list.

Free Word Space - a set of cells containing an arbitrary number of elements. Cells or elements
of cells in this space are not directly accessible from cells in the List Structure. Elements of
cells in this space containing addresses of cells in the List Structure fall into two classes:

{(a) name space - possess a symbolic name known to the List Structure

(b) pointer space - possess a symbolic name known to the host (i.e. the computer) of the data
structure.

Binary Program Space - a set of four-element cells containing the machine encoding (i.e. LAP)
of operations on the List Structure. Some of the cells may contain as elements addresses of
cells in the List Structure or Free Word Space.

Garbage - those cells in the List Structure which are not accessible {directly or indirectly) from
outside of Free Space.

Associated with the data structure is a procedure known as Garbage Collection whose task is to
purge the List Structure of all cells which fall into the Garbage category. The removed cells are

2.B1 Data Structure 35

placed on the Free Storage list. The procedure is invoked whenever it is necessary to add a cell to
the List Structure and the Free Storage list is found to be empty. The List Structure is guaranteed
to be free of Garbage only between the most recent invocation of this procedure and the first
instance of addition (or allocation) of a cell from the Free Storage list inta the List Structure.

2.B2 Implementation

Each s-expression corresponds to a two-element cell in the List Structure, Atoms are represented by
a two-element cell containing identical marker symbols in both parts. These marker symbols are a
distinguished address outside of the CMPLISP environment and ate denoted in the figures by a
cross-hatched element. The distinguished atom NIL is represented graphically by a hatched
element and internally by 0. Non-atomic s-expressions are represented by pointers to two-element
cells in the List Structure. Symbolically, if S1 and S2 denote s-expressions, then we have the

_mapping S1 x 52 - pointer to cell . Henceforth, the element containing $1 is known as the Aead,

and the element containing 82 is known as the tgil. Figure 2.7 contains a detailed illustration of
the implementation.

Free Word Space contains the following special constructs which are not directly accessible from
within the List Structure. '

(1) Simple pointers reside in temporary locations not accessible from any 'eiement in the data
structure. These locations are machine dependent - ie. accumulators, stack, and memory.

(2) SPECIAL pointers (also known as SPECIAL or global variables) have a home base (ie. a
name associated with them) and a value. The existence of a name implies that a permanence
is associated with the value. This permanence is expanded on in the sequel.

(3) The QBLIST is a set of cells pointing into the List Structure and acts as a symbol table to
~ insure that all atoms with the same printname are uniquely represented. This staterent is
qualified by the earlier-discussion of GENSYM.

. (4) Property lists contain descriptions of atoms.

Binary Program Space contains the compiled code corresponding to certain LISP functions. These
code sequences are accessed either directly from other locations in Binary Program Space or via the
properties SUBR and FSUBR (for EXPR and FEXPR respectively) attached to the atomic
function name that is to be invoked. Binary Program Space also contains pointers to elements of
the List Structure for QUOTE lists and pointers to Free Word Space for SPECIAL cells.

36 CMPLISP

SPECIAL SPACE POINTER SPACE OBLIST
——) B E— ———
e — —_—— ————
LIST STRUCTURE
L 3 ¥ L ; Jl’
W —— 1 || 3] |\
¥ & J> J»
——L || ool
L 2 w

FREE STORAGE LIST

BINARY PROGRAM SPACE

PROPERTY LISTS

Figure 2.7 - LISP Ilmpiementation

2.B2

2 B3 ' Functions 57

2.B3 Functions

Functions evaluated in the CMPLISP environment have as their arguiments and results s
expressions which have been transformed by the mapping into pointers. The domain is a3 subser
of 51 x S:: X...X Sn where n is the number of arguments and S is an s-expression. Similarly, the

range Is a subset of the set of all s-expressions. Functions are characterized as primitive if all of the
following conditions are satisfied and non-primitive otherwise. We shall soon see that many
functions will satisfy some or most of these criteria, but that only a very smatl number will satisfy
them all. '

(1) The function terminates.
(2} The fuaction does not have side-effects - i.e. it does not modify the CMPLISP environment.

(2} No misapplication of the function is possible - i.e. no error can result from the application of
the function. This is the case if the domain of the function is the set of all s-expressions.

(1) The function only accesses pointers to the List Structure. In other words, the function does
not access cells in the List Structure {or for that matter, cells having symbolic names known to
the List Structure).

(5) The result of the function is repeatable. This means that the function will vield the same

result at all tmes if given the same arguments. This criterion only holds (and holds
automatically} for functions that do nothing but access pointers into the List Structure.

2. R4 Pre-Defined Functions

Ten basic functions are defined below as mappings. The definitions are coupled with
observations on whether or not the function is primitive. Whenever this is not the case, an attempt
18 made o indicate which of the criteria for primitiveness hoid and under what conditions.

I ATOM : <s-expression> -~ [NILT}

This priomitive function returns NIL or T depending on whether ar not the argument is a rion-
atomic s-expression. A typical implementation finds the atom property denoted by a marker of

vatue -1 (i.e. all bits in the word are 1). The function is primitive because of the sanctity of atoms -

Le. atom is the most basic s-expression and once an s-expression represents an atom it does so
torever.

2. CAR : (<s-expressionl> . <s-expression2>) =~ <s-expressionls

This Tunction accesses the head of a cell in the List Structure. It is a non-primitive operation
because it 1s undefined when given an atemic argument.

% CDR : («s-expressionl> . <s-expression2>) -- <s-expression2>

This function accesses the rail of a cell in the List Structure. It is a non-primitive operation
because it is undefined when given an atomic argument.

Compositian of CAR and CDR operations is common and a special shorthand notation exists. For
example, (CAR (CDR A})) = (CADR A).

38 CMPLISP . 2.B4

4. EQ: <s-expression> X <s-expression> -- {NILT}

This primitive transitive function (eg. if A EQ B and B EQ C, then A EQ C) returns NIL or T

depending on whether or not its two s-expression arguments are identical. It derives its usefulness

primarily when its arguments are atomic since atoms are uniquely represented. In case the two

arguments are both non-atomic, then they must be identical (i.e. not copies of one another). In all

other cases the function returns NIL. Note that, unlike some definitions of LISP[Allen74], EQ is
- defined for non-atemic arguments. -

There are several variants on EQ which are sufficiently common to warrant their definition at this
time. NEQ yields the negation of the EQ function. NOT and NULL are identical functions, of
one argument which return the value T if the argument is EQ to NIL, and NIL otherwise. NOT,
NULL, and NEQ are all primitive.

(SETQ A (CONS B (CDR A))) {RPLACA A B)

A NN Jefreemeer s . A N\

]
L 4 l ; L J

l v [[* +
CAR A CDR A : B CAR A . CDR A
B
Figure 2.8a _ ~ Figure 2.8b

5. RPLACA : (<s-expressionl> . <s-expression2>) x <s-eXpression3>
=~ (<s-expression3> . <s-expression2>}

+ This non-primitive function results in the modification of the List Structure - ie. the Aezd of the
specified cell is replaced. However, note that the value of the result is the same as the value of the
first argument - i.e. the pointer to the modified cell has not changed, instead the contents of the cell
has changed. The function owes its non-primitive nature to the fact that atoms cannot be
destroyed and consequently the function is not defined when its first argument is atomic. For
example, Figur<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>