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| In this dissertation, we will be concerned with the development, }’f :
. X N i . A
implementation and 2pplicatiop of an algorithm to solve the following i :
s J
? e
¢ provlem: ?‘ .
5 Compute accurate approximations to the r least 1}
. E o
. B
eigenvalues of a large, sparse symmetric matrix A where &
: :
i s r is much less than n , the order of A . <
L
Problems of this type oftem arise in mechznics where A <represents a
discrete differential operator, the order of A is one thousend or
‘2 more, fewer than 54 of its elements are non-zero, aad T is only 2
smz2ll fraction of the value of rn . 7
The more common algorithms for solving general symmetric eigen-
. problems such as the Householder, QR, bisection, and inverse iteration
methods, can gererally not be applied to the above problem because they
would reguire excessive amounts of storage or computer time. In contrast 1
} to these methods, ocur algorithm does not transform the matrix A in any :

way, and therefore any special structure that A may possess is preserved.
Rather, *the only way in which A is used. is in computing the product Ay
given & vectdr Y >, 2nd if A 1is sparse, even jbhough of large order, this

matrix multiplication can usually be carried out efficiently.
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Our metkod is organized about & Block Lanczos algorithm which is an
_; ® extension and generalization of a method originally proposed by Lanczos.

In the rcext section, we will review the historical background of the
Lanczos method. In Section 1.2 we will make some general remarks
concerning the accuracy of computed eigenvalues and eigenvectors, and®

in Section 1-3, we will outline our thesis and summarize our results.
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1.1 Historicél Background and Survey of Li'l:e.?a.ture

' In 1950, Lanczos [13] described an alg‘;rithm which could be used
to compute ‘some or all of the eigenvalues a:ud eigenvectoi-s of a symmetric
matrix A . Although not a method for computing eigenvalues and eigen-
vectors per ie_, it could be used to compute the minimum polynomial p
of A with respect to a vector x (cf. §2.4) and a sequence of vectors
(xi)]i:.l=1 vwhere l<m <n and n 1is the order of A . Some or all of the
eigenvalues of A could be found by computing the roots of p and
Lanczos showed how the X could be combined to form eigenvectors oﬁce
thé eigenvalues had beeﬁ found. Although very attractive at first
glance, lanczos' method presented some unforseen difficulties (cf. §2.L)
when implemented and applied, and with the development of the Givens and
bisection methods and then the Householder and QR methods, it was soon ..>
set aside as a'method of general application.

Tn recent years, hwev&, interest in Lanczos' method has increased
due to its consideration as a means of computing a2 few of the extreme
eigenvalues and eigenvectors of large, sparse, -symmetric matrices.

From @ modern viewzaoint,' Iapczos' method is a wa.y of o'bta.:.m.ngfrom A
a symmetric tridiagonal matrix ‘I'm s Say, where Tm is of order

m <n - The eigenvalues oFf Tm are also eigenvalues of A and the
eigenvectors of Tm can be used to compute eigenvectors of A . Let

Ts stand for the s-by-s Ileading principal sﬁbmatrix of Tm > 8<m.
‘.|'.‘s can be computed by carrying out s steps of the Lanczos method

and stopping short of its normel completion point. In 1966, Kanjel [11]
published a paper containing results which implied that a few of the

eigenvalues of T s at either end of its spectrum will usually be very

.
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accurate approximetions to the corresponding eigenvalues of A for;
relatively sm2ll values of s . (ILenczos was also aware of this pneno-
menon. See [13], p. 270.) Xaniel 2lso gave bounds on the errors in the
eigenvalues of TS as approximations to the eigenvalues cf A and
showed that for the extreme eigenvdl ues, they decrease rapidly as s
increases. Xaniel's ~ork suggested that for thg relatively Asmall cost
of computing the s-by-s metrix Ts ard its eigenva.lues and eigenvec-
tors, one could obtain accurate a.pproxi.ma.tions to some of the eigen-
values and eigenvectors of A .

During the application of the Lanczos mwethod, a sequence of vectors
(y.i);l is computed which, although orthogonal in exact arithmetic, in
practice with finite precision arithmetic, lose orth'ogonajit& very rapidly.
In order to be sure of the stability of tke method, these vectors must
be reorthogonalized with respect to all previously computed vectors as
they are generated. Were it not for this shortcoming, Lanczos' method
would te an attractive approach in general for the solution of the eigen-
problem. Motivated by Kaniel's work, Paige {17] carried out a detailed
study of lanczos' method and found that useful results could be computed
even if reorthogonalization is not carried out. The advantage of this.
approech is tkat the entire sequence of vectors (xi):?;l need not be
kept around at 211 times, resulting in a considez‘a:ble savings in both
storage and time. A drawback is that, unless this method is carefully
applied, the computed results may indicate that A has mmltiple roots
even though this may not be the case. This same phencmenon was reported
by Godunov and Prokopov [6] who applied the Lenczos method in the same
way as Paige to :hg..;solution of the eigenproblem of an elliptic differ-

ential operator.
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Aside from the Lanczos method, one of the principal methods of
solving the eigenproblem for large sparse symmetric matrices is the
power method [23]. The method known as simultaneous iteration [19,20]
is based or the power meth.od but iterates simultaneously with several
vectors by means of which improved rates of convergence are achieved.

In 1973, Golub suggested to this author that 2 similer improvemen:t might
be realized for the Lanczos methed if it too were extended so as to work
simltanecusly with several vectors. This thesis is concerned with the
development and application of a method based on a Block Ianczos algorithm
following the suggestion of Golub- ‘

Cullum and Donatk [4] have ales developed and applied a Block
Lanczos algeorithm but their use and implementation of the method differs
from ours. Xahan and Parlett [10] have recently given an error analysis
of Lanczos™ method which is based on XKahan's work with a Block Lanczos
method dating back to the late 1950's.

‘The papers mentioned previously deal primerily with the use of
the Lanczos method as an iterative algorithm in 2 fashion suggested
by Kaniel’s paper. For more general discussions of Lanczos' method
see Wilkinson [23], Golub [ 8 ], Golub, Underwood, and Wilkinson [7 ],
and Paige [15,16].

1.2 The Accuracy of Computed Eigenvalues and Eigenvectors

If A is a symmebtric matrix of order n , then the eigenvalues

k.i end eigenvectors q satisfy

Aqi-}'iqi =90 , i=14L...,n ,

wh'ere 8 is the zero vector and the q are orthonormal. Generally
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vhere

i'up,-_lia = Ei {1.2.2}
and il'iie denotes the spectrel norm. By Weinstein's inequality [21],

we can be sure that there is an eigenvalue A of A such that

)

\H

l?&-p.il < € - (1.35.
However, we can nobv be sure that the computed vector x5 is close to
an eigenvector of A , and this is an inherent limitation in our
computations. The most that we can say is thav X, is close to the
subspace spanned by the. eigenvectors corresponding fo the‘eigenvalues
which are neaxr to A . If A 1is a2 sirgle or multiple eigenvalue which
is isolated from the other eigenvalues, then x; Wwill be close to an
eigenvector. If AN is one of 2 cluster of very close but distinct
eigenvalues, then x; may nct be close to an eigenvector even if the

corresponding ¢, in (1.3.3) is very small.

i
Exemple. Let
1 10”1 .
A- = EJ p. = l - 32(1 X = 0 -
10° 21
It follows that
. - 0

AX-ux =

-10

so that
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-10
€ = 10 .

We can conclude that there is an eigenvaelue A of A such that

IA-p] < 2070 .

10 =10

(In fact, the eigenvalues of A are 1+10 ° and 1-10 .} However,

the eigenvectors of A are

end X 1is close to nezther vector.

Hence, th;r.‘oughout this thesis, statements to the‘effect that we
will compute accurate approximations to the eigenvectors of a matrix
are made with this limitatiom in mind. Our goal will be t¢ find
scalars u; and vectors X which satisfy (1.3.2) with € relatively
small. How close these computed scalars and vectors are to the actual
eigenvalues and eigenvectors of A will depend on the spectrum of A

and the megnitudes of the € -

Note: It is often possible to compute a posteriori bounds on
the errors in computed values and vectors which are much smaller than
those indicated here. See, for example, Wilkinson [23], Paige [16],

Stewart [22 ], Davis and XKashan [ 5 ], and Ortegé. [1h].

1.3 Outline of Thesis and Summary of Results

In Chapter 2, we will present a theoretical develomment of our
algorithm. We will review the notion of a restricted operator and show
that the extreme eigenvalues and vectors of a matrix A restricted to

a Harticuler subspace will be accurate approximations to the corresponding
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. 8 cigenvalues and eigenvectore of A . We will reriew Lanczos' meikod
3 e and see how it cun be used to compute Lhe eigenvzlues and eigenvectors
fi
3 A ; 5T the above restricted operator. We then gererzlize these notionc to
; % work with several vectors simultanesusly. In particular, we will extend
: e =
3 § ¢ Yeniel's besic result on the rate of convergence of the least eigenvalue

computed using the Lanczos method to the least eigenvalue of A . Ve
will also develop & Block Lanczos algorithm which is zn extension of
Lenczos' original a2lgorithm. We will then construct 2 new zlgorithm
which utilizes ocur 2lock Lanczos algorithm to compute 2 specified number
of the least eigenvalues and corresponding eigenvectors of 2 symmetric

matrix to 2 given accuracy. :

In Chepter 3, we consider the p‘ra.ctical aspects of implerenting
the a2lgorithm @eveloped. in Chaepber 2. The numder of vectors we chnoose
to iterate with at each application of th= Block lanczos zalgorithe
affects the number of overations required to campute a given mmber of

- vectors. In Chapter 3, we will consid:ér some of the problems associated
with the choice of block size and suggest some strategies based on ocur
theoretical knowledge of the algorithm and our computational experisnce.

An imporient issue relating to the use of the Lanczos method is
whether reorthogenalization is carried out. In our current apolication,
we do reorthogonalize the vectors generated by our Block Lanczos algorithm.
In Chapter 3, we discuss this issue and indicate why we have decided on
this course. N

Aso in Chapter 35, we consider various aspects of the progrem
implementing our method. We discuss program and data organization,
how to estimate the accuracy of computed results in the context of

the Lanczos method, the effects of round-off errors, and give operation

counts.
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Finally, in Chapter L, we present the results of numerical experiments
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on a number of problems comparing our method with the method of

p—

simultanecus iteration. We wiil see that in most ceses our method

is superior to the latter method in terms of the amount of work required P
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to campute & given number of vectors to a specified accuracy.
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2. THECRETICAL DEVELOPMENT

e Tn this chapter we will be concerned with the develomment of an
algoritam to solve the following probliem:

Given a symmetric matrix A of order =z with eigenvalues
7\-1 < ~s < ... <Z }'n and corresponding eigenvectors Q95950 - =09, » ’
and given an integer r greater than zero and less vhan or egqual to n ,
corpute accurate approximations to )'i and 9 for i =1,..., .

We will d=fine the notion of a restricted operator in Section 2.2
and show in Section 2.3 that the least eigenvalue of A restricted to
the subspace spanned by the set of vectors (x,Ax,-..,As_lx) where x
is a vector and s is an integer less than n , will usually be a very
acecurate approximation to the least eigenvalue of A itself. 1In
Section 2.4 we will show how Lanczos' method can be-used to compute the
eigenvahies and eigenvectors of the restricted operator described avdove. * -
In Sections 2.5 and 2.6, we will extend this basic idea by replacing the
vecbor x with a matrix X . The bacis of our algorithm will be a
EBlock Lanczos method which is an extension of an algorithm originalily
proposed by Lanczos. In Section 2.7 we 'w::.ll develop a Block ILanczos
algorithm and show how it can be used to compute the eigenvaiues and

eigenvectors of A restricted to a space cimiler to the space suggested

avove. Finally, in Ssctions 2.8, 2.9, and 2.10, we will ihtegrate our

Block lanczos method into 2 complete algorithm for solwving the abaove

i problem.

2.1 Nntation, Definitions, and Basic Results

In this section we will give the notation and basic definitions and

‘ lemmas which will be used elsewhere in this chapter.

e 1
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It :L_L_. xa, ey are m vectors of order n , then
X = (L.I.’x2""’xm) /
will mean that X is the n-by-n /matrix whose j-th column is %5 -
Similaxrly, if xl,xg,... ,Xm a.7’ n-by-p matrices, tken
X = (xl,xz,...,xm),
will mean that X 1is an n-by-p X m mabrix whose first p columns are
X, , whose second p columns aré x2 , ete.
+ /
If x = (x].,xzy--d;xm) F thm
Splx)sXp- - -5%,)  oF  SP(X)
will denote the subspace spanned vy the coiumms of X .
if )‘.\.’}‘2"“”7"::: are scalars, thexi
di’ag(hl,he, .o .,hm)
will stand for the diagonal matrix of order m whose j-th diagonal
~ element is ;'j .
' Let p bé a polynomial of degree m . Let e, be the coefficient
of AY in the expansion of p{\) in powers of A . That is,
v
."'

m
o(\) = CotCht ..ot A .

/ For any matrix A , p(A) 1is a matrix defined as foilows:

t

’ _ " I o -
p(a) = ol -_l-c.:lA+ cecte B .. :

. ~

Note that if x isra. vector, then

p(A)x = c x+c

AX+ ...+ c ATX .
O m

I

Furthermore, if A = diag(k_l_,lz, ""’}\n) » then

p(0)- = aiag(®(r,),B00)5---s200)) -

~
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Let A De a symmeiric matrix of order n with eigenvalues

L.I.’)" ,..-,kn and ortkonormal eigenvectors CTEC YRR B and let

Q

(935 --+5a,)
and

A

dias(ll,---,hn) .
By definition,
A =Qh -

If p is the polynomial defined above, then it can be shown that
p(a)e = Qp(A) .
Temma 2.1.1. let A be a symmetric matrix of order n with eigenva:_lnes

7«157\.25... <™, 5 then

t

N = mac LA
frpse-eov 3 vEe vy
Y Yi=° .
where the minimm is taken over all subsets of n-k vectors

{yl,...,yn_k} and the meximum over all vectors y such that y £6

and ytyi =0, i=1,...,nvk . Similarly, we have
%
M1 = max min YTAE .
{375 -2V} ty;ée 7Y
ha y:-L:O

Proof. This is the Courant-Fischer theorem. For a discussion
and proof, see Wilkinson [23], pp. 98-101.

For our purposes, we restate this result as follows.

L
o
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Lemma 2.1.2. lLet A be a cymmetric matrix of order n with

eiysenvalues A'l SN, € e T A.n ;5 Lhen
=t = =

t
AN = min max Y Ay
k t
E. Y£® ¥y
J<E,

where the minimum is taken over all subspaces E}: of Rn. of dimension

at least k and the maximm over all non-zero vectors y in Ek -

Similarly,
h = max min w
n-k+1l t *

E, yte vy

YeB

Proof. This is a direct consequence of the previous theorem.

Let S be a subspace of 'Rn of dimension m . The projection
matrix for § , demoted by P , is defined to be that matrix such that
for any vector xeRn y ¥ = Psxes and yt(x-y) =0 .

Intuitively Psx is the vector in S which is c¢losest to x if
the vector norm |-{|, is used to measure distance. Note that for any
xeS , Psx =X .

If Q is an orthonormal matrix whose columms form a basis for S,

then
t
PS = QQ -

The projection operator onto the space orthgomal to S , denoted by yg ,

is given By

t
Pg = I-PS .=- I-QQ .
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If x _is a vector, the Enclidean nomrm llx112 of x is defined
as follows:

lixll, - (xtx)i’-’ .

We will usually omit the subscript and write simply ||x]| -

If A is a matrix, then IIAII2 or llAll denotes the spectral
norm of A induced by the Euclidean norm. That is,

s me bl
Wl = 2ex Tt

It is easy to show that
2 ¢
"Aug = X;QJC(A A)

where Xmax(AtA) is the largest eigenvalue of aa .
The Frobenius nom [|All, of 2 matrix A of order n is defined
as follows:

n -
“A'“F = (igl a': a'i)

where ai is the i-th colwmm of A .

The singular values of a matrix A are the square roots of the
eigenvalues of ACA . That is,

%t

O'i = i(A A) » 1 = 1,---,!1 >

vhere A, is an eigenvalue of A'A . Note then that

“A'ng = m(ﬂ)

where cm(A) is the largest singular value of A .
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& If A is a symmetric matrix and ~

e &

Jf flax -pxf] = « o
i where . is a scalar and x is a vector with [lxl] = 1 , then Weinstein's
-'o_ inequality [23] states that there is an eigenvalue 2 of A such that

H { e — -
: heul 2 -

@
2.2 Restricted Operators
Let A be a2 symmetric matrix of order n which maps the rezal

o P n-dimensional Buclidean vector space Rn into Rn . et S bean
;ﬂ f m-dimensional subspace of Rn vwhere m <n .
; § Definition 2.2.1. The restriction of A to S , demoted by A , ic a
i

. f d linear operator (matrix) which maps S onto S as follows: For any
1; g

S vector xeS ,
.
: ¥ =
Lt Ax = PAX
ig @

;L" wnere PS is the projection matrix omto S .
et ¢ be an n-by-m orthonormal matrix whose columns are & basis
;. for S ; then
: and for auy x<S ,

z o _

Ax = 'Psﬂx
= PSA.PSx since Xx = Psx
t t
4 = (QRAQ)x

: = QBv - v
. y
S e ik :
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where
t
B =QA
and

v =Qx .-

B_is a symmetric matrix of order m and is essentially the matrix

representation of A . Let ""1 <wp < --+ Sk, De-the eigenvalues

of B with eigenvectors VyrVpreeesVy o Let

?li = Qvi » i=1L2...0m .

It follows thet u. and c';i are an eigenvalne and eigenvector,
respectively, of A for i =1,2,...,m . Thkis can be seen as follows:

Agi = Q,‘Bvi since vi=Q

p.ini since Bvi = p.iV'i ’

= kY -
Thus,

L

A therefore has m eigenvalues and eigenvectors which can be camputed
using ¢ and 3B . It can also be shown that if S is an invariant
subspace of A , then the eigenvalnes and eigenvectors of A will also

be eigenvalues and eigenvectors of A -
By Lemms 2.1.2, we have
m = min mex Tt—fl
E ¥#® vy

I,

u-ia__,_ > i=342,--.,m -

Sor k = 1,2y..->m , Where the minimm is taken over 213 subspaces of Rm

/
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is dimension at least k . 3By observing that

t t.t t
¥yBy . ye Ay _ fay) AQv)

:ft!( yt’QtOJ (Qy) b Qy)

and that for any subspace E,{ _of Rm » the set of vectors
fzlz=qy, yE}

is a subspace of S of the same dimension, We have the following result.

Lemma 2.2.1. For k =1,2,...,mn,

t :
b = min max YA (2.2.1)

E, ¥£6 ¥¥
¥<E,
where the minimmm is taken over all subspaces E}_ of dimension at least
k cof S and the meximum over 211 non-zero vectors y  in F']' . Similariy,

we have for k = 1,2,...,m ,

. :
booep = mex min LAY : (2.2.2)
E, V6 ¥¥

v,

Proof. This result is a straightforward application of Lemma 2.1.2.

»

In Equg:tion 2.2.1, the minfmm is achieved when

Ek = SP(ql}""qk) 2

where qi' is the i-th eigenvector of A , and the maximum in Equatiom 2.2.2

when

Ek = SP(qn,_k_l, .o -,qm) - ] .'

16




Combining this observation with Lemma 2.1.5 gives us the following
result.

Lemma 2.2.2. For k = 1,25...,m
MM Sk 2 Mo N
A simple conseguence of Lemma 2.2.1 is the following.

Lemma 2.2.35. Let By be the least eigenvalue of A restricted to

a subspace S ; then

t
o= min L:I
YEO vy
yes

where the minimum is taken over &l non-zero vectors y in S .

2.3 The Basic Tdea

Let A Dbe a symmetric matrix of order n and let x be a given

vector.

Definition 2.3.1. The Krylov sequence of x with respect to A is

the sequence of vectors

Xy A, A%, can .

For any & greater than zero, we will denote by X(s,x,A) the
subspace spamned by the first s elements of the above sequence. That is,

K(S5%X,8) = Sp(X,AX, - -,A° %)

Keniel [11] showed that if we consider A , the restriction of A

to K(s,x,A) for a relatively swell value of s , then a few of the

I7
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least {and greatect) eigenvelues of A  will usually be zood approxima-
tions to the eigenvalues of 4 and showed that they detrease rapidly
as s increasss.

The phenomenon descrived in the last paragraph is the basic idea
behind our aigorithm. In the next cection we will describe and discuss
Lanezos' method and show now it can be used to compute tne eigenvalues
and eigenvectors of £ . We will see thet for the relatively small cost
of gumputing the eigenvalues and eigenvectors of A » we often obtain
remarizbly zccurate é.ppro:-::-‘.mations ic some of the eigenvalues and eizen-
velues 2f A . From the standpoint of lzrge sparse matrice;, this
zpproack wiil prove to be particularly effective since no tranzformation
of A& itself is reguired.

Beiore oroceeding, nhowever, tie vasic result of Xaniel concerning
the least eigenvalue of £ will be stated and its proof reviewed to

-

provide some intuitive bacxgrownd Ifor these ideas.

Liote: Some oFf Raniel's results were incorrect z2s stated in his
Daper. Paige [17) redeveloped this theory, correcting the errors in the
process. It iIs essentially Paige's result whick is stated here.

Theorem 2.7.1. Let A be 2 symmetric matrix of order n , and let x

be a vector such thet jxlf =1 . Let A <A, < ... <A De the

eigenvalues of A with corresponding orthonormal eigenvectors Qqs-=-2G, -

Let s be an integer greater than zero ané less than n . Suppose that

Ay <A, amd

olEqix=cosG;40 R

where & is the angle between g and x ; then My o2 the least eigenvelue

of A , the restriction of A to the subspace XK(s,X,A) satisfies

18
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2
()\n -kl) tan~ @

€. =
1 1y ?
= (32)

is the (s-1) -st Chebyshev polynomial of the first

kind, and

Example. Suppose n = 500 , )"l = 0.0, h2 = 0.10 , hSOO = 1.00 ,

s =20, and x is such that b, = 0.0k . We then have
tan® § = (l-bi)/bi - 62k.0 -,

y = .10/1.00 = .10 ,

By
1-7

Hry = 05
Tl9(1—7) = 1.27 x10 .

£ 1.222 , and

Thus,
)
e]e- = Me_;.—é- = IEXlO.B >
(1.27 x107) ' ’
and

N < pg < Ay + .0000000k

implying that By is accurate to at least seven significant digiis. The
gbove bound is an overestimete and if we computed By (using the lanczos
method, say,) it would actually be far more accurate than the bound

indicetes.

19

B bt B G h e bk A B Y 4 B AT ST 8L SRS e e

4



LS

R T AR T VAT Y WS UV e R L A A AT R T T e

L E
;g
¥
§

AR g I L T L A AR T L - e

RITTF R

et

Lewnn R
e miaweca e e s 6 s

.
c s
it
oo
P
ey
'_n
L
)
1

;
i
¢
L
,'i
M
.
1.'.i
T
T3
]
;

iyt s
Wk BT e

Indication of proof.  We will only outlire tke proof here. For
the details, refer to Paige [17], po. Lk-51.

We know by Lemmas 2.2.2 and 2.2.5 that

t ..t
M Sz 26 Ag/ze

for any non-zero g in X(s,x,~) . Our strategy ic to pick a vector

3]

in X(s,x,8) for which
t t 2
she/ee < Mtey
where .e.i is as given in the statement of the theorem. C(nce we have

e-tablished this result, the theorem is proved.

Chcose g as follows: Let ¢ be a polynomial such that
C(}\.) = Ts.l(Z)

where Ts-l is the (s-1) -st Chebyshev polynomial of the first ¥ind and
for any A, '

(-A' = A»&)

z = 1-=2 (ln 'la .
Note that by the properties of the Chebyshev polynomials,

fe)| <1 for i=23...,n, and

1+y
c(kl) = Ts-l(_l-j') > 1
where ¥ is as defined ir the theorem. We now let.

g = c{Ax .

Since ¢ is of Jdegree s-1, g is a linear cimbination 92 ithe vectorz -

. 2 s-1 - s - - .
X, AX,AX, ... ,A” "x and thus is contained in X{s.x,A) . Furtrermore,

if we let bEth,then x =Qb and

20
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c(d)x

m
]

c(4)Qb

Qe(A)b  where A = dias(kl: -"J}‘n) ’

blc(hl) 9, + bac (xa)qe + ...+ 'bnc:(%.n):;,n

where 'bi is the i-th component of » . Note that in comparisom to x ,
the component of a9, corresponding to 7\1 in g has been amplified
wile the components of the other eigenvectors have been decreased. If
we now form thé Rayleigh quotient gtAg/ gtg » we will find after some

algebraic manipulation that

£, st 2
ghgfe’'g < Mt

 which establishes the theorem.

2.4 Lanczos' Algorithm for Symmetric Matrices

Let A be a synimetric matrix of order n and let x be a vector.

Iet m be the first velue for which the vectors
Xy AX 5 A2 s veu 5 A%

are dependert. Since each of these vectors is of order n , it must be
the case that m <n . Furthermore, since m is the first value for

which the above vectors are dependent, A®x must be a linear combination

of the vectors X, AX, ..., A% Lx . That ie,

o ) :
AX = cgx+c Ax+...+c ATTX (2.k.1)

for some scalar values C.,8.5..:3C - Denote by P __. the
(¢ ) X3A

m-1
polynomial

-

m Lm=1
Bea™ = Nmoy N oL mehocg
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Note that by =quation (2.k4.1),

m m=-i .
Px;A(A)x = Ax-cm_lzf-. = -cle-co.x = 9 .
Definition 2.4.1. P is the minimum polynomial of x with respect

XA
to A .

It can be shown that the zeroces of P},_ A
-2

In 1950, Lanczos published a paper [13] on computing solutions to

are eisenvalues of A4 .

the eigenprobiem which contained a deseription of an alzorithm for
computing Px; A His approach, althcugh very attractive at first
glance, presented some numerical problems in implementation and
zpplication (cf. Section 5.1} and with the development of the Givens
and Householder methods [23] , was soon set aside as 2 method of general
application.

In recent years, however, some researchers, notably C. Paige of
MeGill University and G. Golub of Stanford University, have proposed
that Lanczos® method be used as means of computing solutions 'i:o the
symretric eigenproblem when the matrix is of large order and sparse for
the following reasons: (1) Many methods such as Householder's method
and the QR method, carry out simﬂarity"ﬁansfomatioms of the ma.tr:ix:
Such trensformations generally dectroy sparse structure. By contrast,
Lanczos' method does not trznsform the matrix and, therefore, any sparse
structure can be preserved throughout the application of the algoritb=m.
In particular, the only way in wnich the matrix A is used in Lanczos'
method is in computing the product Ay given a vector y , =2nd if A
is sparse, even though of large order, this multiplication can generally

be accomplished efficiently. (2) Although originally intended to be
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used to compute the minimm polynomial of a vector, Lanczos! metﬁod. can
be used to achieve other ends. As we will soon see, it can be used as
means of computing the eigenvalues and e"igenvectors of A restricted to
the space spanmned by {x,Ax,Aax,-.- ,As-lx} for some s 1less then
n. As we saw in the previous section, Tthe least ejigenvalmne of this
restricted operator will generally be an accurate approximation to the
least eigenvalue of A itseld.

We will now review ILanczos' method and same of its properties.

Later on we will extend Iapczos' method and the ideas of the previous

section to work with & matrix of vectors X instead of a single vector x .

This genera]imtiqn will afford us certain advantages computationally over
the single vector approach.

The results stated here will be given without proof. For a more
complete discussion cf Lanczos™ method, refer to the following sources:
Wilkinson [23], Golub [8 ], Golub, Underwoed and Wilkinson [ 7], and
Paige [17,18]. _ .

Lanczos' method can take many different forms depending on the
application, but for present purposes, it is as follaows:

et A be a symmetric matrix of order n . Let x be a vector
of wmit length (||| =1) .

Compute sequences of scalars (ai)!:i!;l and (55_)’:; o » and a sequence

of orthonormal vectors (xi):‘.l=l as follows:

Step 1. Let X, =X and i=1.

Step 2. Compute y; = A, Q= x?y. (= x:Axi) , and Zi01
where
2yaq = ¥y -~y ) if 1i=1, or
v; -aixi-sixi_l if i>1 .
23
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v 3 st . Compute B... = iz...| -

2 ep 3 pute B, . = ilz;,4li

- . . l.l. .

v Step L. it Bi+l = 0 , then =top.

Step 5. Compule x. .. %, J./Eii-l -

TR PTEE ALY b e T

® Step 6. TIncrease the value of i1 by one and go to Step 2.

-
i
5

j
i
2
i

'l

This algoritmm will stop for some value of L <n . Let m be F;*; K
2
. the final velue of i . ?;; i

.
oW
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£
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As we will see, Lanczos' method is not a method Zor camputing

-~

eigenvalues and eigenvectors per se. Rather it is a way of transforming

R T
e Bl e

ig

the eigenprovlem into =z problem in a different form and it must be

>

combined with an algorithm to solve the second problem to produce a -

2o
AL R

®
S e R )

complete method for computing eigenvalues and eigenvectors. For examplec,

- Lanczos used the seguences (a'):. and - (Bi)’;;l to i‘orm P, A the

=1

PR R S i
BT R ORI ¥

€
5

minimum polynomial of x with respect to A . Comptrl:mg the zeroes %

of P XA yielded eigenvalues of '.A s and once tke eigenvalues had been %
found, Lanczos showed how the X could be combined to form eigenvectors. :TE .
3 The more modern viewPomt is that Lanczos' method is a way of transforming f h
» . v
: a general symmetric matrix into 2 symmetric tridiagonal mabrix T -

o el

b

The eigenproblem for T can then be solved in a veriety of ways, e.g.

, +the QR method or a bisection method based on Sturm sequences [23], and

-8,
“

Lo the resulting solution can be used to find the eigenvalues and eigenvectors

of A .

TN e Bl

- Fuarthermore, there is & practical difficulty with Lapnezos' method
as described above. Although the sequence of vectors Xqs e erX, generated_
by the above algorithm in exact arithmetic will be orthonormal, in .

>

practice they will generally lose orthogonality after a few steps of

2)
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the algorithm have been carried out. The main cause of this phenomenon
is the loss of accuracy caused by cancellation when Zie1 is computed
in Step 2. Since for meny applications of the method, this is a serious
sote:-’ce of error, it is usually modified so that after Step 5, X1 is
reorthogonalized with respect to KysXys e emr Xy and then renormalized.
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Since reorthogonalizing X1 is such a time consuming operatiom, it
was this shorteoming that originally caused many to disregard Lanczos!
method. From the standpoint of the way we intend to use Lanczos' method,
i.e., as 8 means of computing & few of the least eigenvalues and eigen-
vectors of a large, sparse symmetric matrix, it is still a relatively
efficimlﬁ ‘method even if & reorthogonalization step is included.

C. Paige has su:ggested [17] that reorthogonalization is unnecessary

if ILanczos' method is used as we intend to use it. He argues that,

rather than being a lisbility, loss of orthog\onality is actually &

blessing in disguise since it is indicative of convergence of some of

the eigenvalues of the restricted operator to eigenvaluss 5f‘_-the matrix A .

We will discuss this issue further in Section 3.1. For the time being,

we will ignore this aspect of the algoritim and deal with its theoretical
properties. For this purpose, the above description of the algorithm is
adequate. 1
To begin with, observe that the &, , B; » and Xy satisfy the :
; following equations: '
i
4

25
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BeX, = 2. = BA, - Ot ~Bo¥y s

: o2,

2 x = z = Ax -f X - X .
mm m m=1 m-1"m-1 “m-1"m-2
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AN

>

s = . =L ¥ =5 % .
= }‘-Jm ‘mym bm’m-l
We can rewrite thece eguations as follows:
Axy = e -
Z = + + 5. X
A&a 52xl Clsz g Jx: (2.L.2)

Axy = B 1T RN T

for any k between one and m where Zovy = & . Define

:-:k = (xl,xe_. .- .,xk)

w
n
I\)Q

w

)

W

for k= 1,2,...,m . (K %5 & symmetric tridiegonel matrix with
Qys---»%  elong its diagonal and B, .58y along//its off-diagonals.)

/
Using this notation we can write Egquations (2.11-%Y as

1
AT

PR

5
R
kg
¥
=
b
i
&4
?
ki
-
<
4
A
-
o
.:iZE
2
a2
P
B
TR
!
%
ig
5




Ly

R PTG N

T

R

AX, = XM+ (8,8,...52,) st P

where the last matrix is n-by-k with zerces in its first k-

d

columms

and 2z

K+l in its last c¢olumn. In particular, for k = m ,

AX, = mem -

From this egquation we see that xm spans an invariant subspace of A .
Therefore, the eigenvalues of Mm are eigenvelues of A and if v i=
an eigenvector of M_, then X v 1is an eigenvector of A (¢f. Section
2.2.)

Also, by Equation (2.L.%), we have

XA, =

since z;_lxk =8 . Referring to Section 2.2, we conclude that Hy
is the representation of the matrix A restricted to the space spanned
by the columns of xk « Furthermore, we can show that Xy is a linear
combination of the vectors X,AX,A2x,-..,AN Lx , for k = 1,2,...,m .

Therefore, for k = 1,2,..-,m , the columns of x? form an orthonormal

basis for the space K(k,x,A) spanned by the vectors x,Ax,AQx,...,Ak-lx ,

and M, is the representaticn of A restricted to K(k,x,A) . The work
of XKaniel and Paige suggest that for relatively small values of Kk , the
least (and greatest) eigenvalnes of M, will usually be very good
approximations to the least (and greatest) eigenvalues of A .
Compctational experience verifies this idea. See, for example,
Paige [17] and Godunov and Prokopov [ 6 ]-

This suggests that instead of carrying out the algorithm until
;5?‘_,_1 = 0 as described tefore, we stop after a fixed number of steps,

sxy s steps, and use the resulting matrices Ms and xs to compute

27
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accurate approximations to come: L Lhe ejrenvniuns and e Litenveclor:s
of A . For this uce, Lanczos' method can be described as follc-.

Let 2 be a symmetric matrix of order n znd let = be a vector
such that % =1 . Let = be an integer greater than one and less

s s
than or equal to n . Compute secuences (ai):l=l > (ai)i=2 » ang

(xi):d as follows:

Step 1. Let xl=:f. ané i1 =1.

Step 2a. Compute ¥; = Axi -and ai = x;c_yi .

. Step 2b. If i = s, stop.

I > . L -
ep 2¢c. Compute Z;,, @S before

Step 2. Compute By ., =iz 4l -

Step L. It Bi"'l =8 , stop.

£
i

&

Step 5- Compute x . = zi-rl/si*l -

Step 6. Increase i by ome and go to Step 2.

S b

If the £inal value o 3§ is less than s , we decrease = t2

Sy

this value. B
Note:. If.p and v are an eigenvalue and eigerzvector, respeci-

. ively, of ﬁk and if we define

>

a=MHv ,
then Equation (2.k.3) implies that

where v, 1s the k-th component of v . For the extreme eigenvalues

k
of N&I,theconaponding vk'sa:recften;extremelysmallregarﬂess
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of the magnitude of Ziny which serves to explain partly why the
mrmeeigenvalmofﬂ'kareoftenvu'ygoodappmimtionstothe
cigenvalues of A . Eqoation (2.3.3) cun in facl be uned Lo estimamte

the crror in eigenvalues and eigenvectors compuled using Lhe Lanczos

‘method. We will develop & similar formuls for our Block Lanczos

algorithm.

While an efficient and viable algorithm for computing eigenvalunes
andeigeuvectorse‘culdbebuiltmdhnczos'mthodasdescmibed
;bave,preﬁ.minaryeamimentsbythisattharinﬂimteﬂ,hm, that
some advantages could be gained by extending the ideas of the last two
sections to work with a matrix of vectors X instead of a single vector
x as above. In particular, these experiments indicated that less t'rork
cvuﬂlmsrequiredifweitmtedwithablockofvectorsmherthm
& sirwle vector. Furthermore, with the standerd Lanczos method, at most
oneeigenvalneandvec‘éoreorrespondhgtoamltipleeigewalgecan
be computed at & time. This shortcoming is overcame partly or wholely
by working with several vectdrs simmltaneously.

For this reason, we will move on at this point to the development
of a Block Lanczos method.

2.5 Extending the Basic Idea
i‘zt_A be a symmetric matrix of order n and let X be & vector

of tmit length. In the last two sections we saw that the least eigen-
'va]nesand.eigemectorsof i,therestrictionof A to the space spammed

by the vectors (x,Ax,...,As'lx) where S8 is an integer value such that

1_<_sgn,wereusuallysoodsppmdm‘cionstothelmteigemalues

i e——— ——
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and eigenvectors of A . We also saw how the Lanczos method could te
used to compute the eigenvalueé and eizenvectors of A . In this and
the next two sections we will extenc these ideas so that instead of
worring with a single wrector =xz , we will work with an orthonormal
matrix X . This generalization will zlliow us 1o compute ceveral

eigenvaluec and eigenvectcrs simultanesusly and will lead us to an

algorithm for computing solutions to the symmetric eigenmproblem which '
will require & fewer number of operations overall when cbmpe.red. with an-

algorithm based on a single vector approach. With this extended approach,
we will also be sble to compute multiple eigenvalues and eigenvectors
a2t the same time. '

In the remainder bf this se&ion, we will outline this idea and
establish basic definitions and notation.

Let A be defined as sbove and let p and 5 be inmteger values
suchtl:a.t s>1, p>l,and 1< pXs<n. Let X be an n-by-p

orthonormal matrix.

Definition 2.5.1. 1Let K(s,X,A) be the space spammed by the pxs

columns of the matrices K,AX,.--,AS-JI .

If the set of vectors couprised of the columns of the matrices
XoAXy ---,A5" X 1is independent, then the dimemsion of K(s,X,A) will
be pXs . Otherwise, it will be less than pXs .

We now redefine A . '

Definition 2.5.2.  ILet A denote the restriction of A to a subspace

L(s,X,A) of dimension pxs conta.'i.ning K(s,X,A) .
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L(s,X,A) will be determined by means of a Block Lanczos algorithm
to be desceribed in Section 2.7. F;ar the moment it is important to know
only that L(s,X,A) contains the colwms of the matrices X,AX...,A5 X .
We now proceed as before. Let Xs be an n-bty-pxXs crthonormal

matrix whose columns form & basis for L(s,X,A) - Let

t
7’;5 = xs.Axs .
M- is the matrix representatiom of A - Let u, <u, < --- Siepes 20d
yl;yz, cee ’ypcs be the eigervelues and eigenvectors respectively of W .

Let

% = XYy
for i =1,2,...,p%s - It follows that (cf. Section 2.2) by amd g
are an eigenvalue and eigenvector respectively of A for i = 1,2,...,XS -
In the next section we will show that the p least eigenvalues of
A will usually be accurate approximations to the p least eigenvalues
of A and give bounds onr the errors. In Section 2.7 we will describe
a Block Lanczos algorithm which can be used to compute 17(: and Xg -
The results of this and the next two sectiomns indicate that the least
eigenvalues of WQ will be accurate appraximations to the eigenvalnes

of A . We will base our algorithm on this idea.

2.6 The Error in the Least Eigenvalnes of A Restricted to L(s,X,A)

Let A be a symmetric matrix of order n . Let p and s be
integer values such that s >1, p>1, and 1 <pxks<n - Let X
be an n-by-p orthonormal matrix.

Let A be the matrix A restricted to a space IL(s,X,A) of
dimension mxs containing X(s,X,A) -
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In tkis cection we will give bounds on the errors in the p leazst
eigenvalues of £ as approrimetions to the p least eigenvalues of 3 .
Tne bpounds will be stated as a theorex and derived in the course of 2
proof of the theoren.

First. however, we will establish some lemmos which will be used

in the proef o the theorenm.

Lempz %.7.1.  Let ., < hp € -es S be the eigenvalues of I ; then

wpere 5, 1s any k-dimemsional subspace of L(s,¥,2) and the maximm

is taken over zli nom-null vectors y in E, -

Procf. This lemma is a direct conseguence of Lemma 2.2.1.
Lerm= 2.4.2. Let ¥, be a subspace of L(s,X,A) of dimension &k .

Let G.k be an n-by-k matrix whose columns form a basis for El' ; then

T
max LA - ar
Y Ty
yeEk

where A] is the largest eigenvelue of the generalized eigenproblem

t o .t

Proof. 1In general 1t can be shown that if C and F are symmetric

natrices of crder k and F 1is positive definite, then
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. z Cz

- max ——=

¥ z}6 z'Fz

zr:'Rk

is equal to the largest eigenvalue of the generalized eigenproblem

by ‘

Cz = AFz .

o riqel

Observe now that any vector y in Ek =an be written

Loy
PRSPy

y = sz

L e

where z is in Rk . Therefore,

ERNAERE TSI

t t
% Z G AG, Z %
YEe vy 2f6 276Gz A

v, 2Ry

RN

and the lemma follows directly from this equation.
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Lemma 2.6.3. Let v, <v, S --- S be the eigenvalues of the

R
2 i

LynFy

generalized eigenproblem T

S
ekt

Cz = vFz (2.6.1)

Fhi

vwhere C and F axre symeti'ic matrices of order k and F is positive L.

i definite. Then V=0 Vy"05 - - -5V "0 are the eigenveliues of
(C-oF)z = vFz (2.6.2)
b

for any real o .

Proof. Subtract oFz from both sides of Equation (2.6.1) and we have

RS g et

(C-oF)z = (v-0)Fz -

Thus, if v is an eigenvalue of Equation (2.6.1), then v-¢ 1is an
eigenvalue of Equation {2.6.2).

33
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Terme 2.5.L. ILet ¢ end T be sirmetric matrises oF xeder ko
Suppose T iz negztive semi-definite and I 1is posiztive Iolinlite.

et E be a symmetric matrix. The largest eicenvalue A7 of
(C+E)z = *Fz (2.%.2;

satisfies .

Froof. Let S be the Cholesky Tactor of F [23]. T“he sigenvaluec
of the generalized eigenproblem (2.5.3) zre the same &s the eigenvelues

of the stancerd problem

sHe+E)S W = A, (2.4.1)

where:

Note thaz
- - - - -1 -
steE)st - shesPesTmst

i B
Since € is negeative semi-definite, § "ES + must also ve negavive

semi-definite and all of its eigenvalues must be less than or emal to
zexro. PRy Weinstein's inequality, the eigenvalues of Zqusticn (2-.6 Y
can differ from those of S TS T oy quantities' which are bounded by
§\s'lss'tu . Thus the 1érgest eigenvalue of Equation (2.6.3) must
satisfy -

o< fisTes T
By Lemma 2.6.5,

Is™=s™" < isTSTVIEE -
Since S is the Cholesky factor of F,

so=l =Ty P
iIs s Il = ”r It >

and the lemma is proved.
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Lemma 2.6.5. TFor any matrices C and F ,

< fiFCwi-llc

h T
f|rocr

Proof. By the general properties of matrix nomrms,

il T T !
fieverll < iF“llicl - jeld -
>,
For the spectral nowm, we also have
it P ot /2
I I T

and the lemma follows from the last two equations.

Note: Iemma 2.6.5 was also established by Crawford [3], bubt

the proof given here is different.-

Lemma 2.6.6. If C is an n-by-n symetric matrix and C, is the

k

Pl

leading k-by-k principel submatrix of C , then
e, i < el

for k = 1,2,---,::1 -

Troof. For any symmetric matriz F , say, |[[F] = mgxhi(F)I . The
. i

lemma foliows from the fact thet the eigenvalues of Ck must lie witnin

the interval containing the eigenvalues of C [ .

Lemm2 2.6.7- If D= iiﬂg(al,de:w-:dn) > then

ipli = max|a,|
1
Froosl.
ipil = max|x; (0)| = mexia,|
2 1
35
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Lerma 2.6.3. Let E be a positive semi-definite symmetric matrix;

I ™ <1 .

Proof. This lemma follows from the cbservation that all the eigenvalues '
of (T+E) are greater than or egual to one, and therefore, 211 the

eigenvelues of (T+E) 1 are greater than zero and less than or egual DY

to one. :
Lemma 2.6.9. Let W be an n-by-p orthonormal matrix. Let ;
"

L :

where Wl and W2 are composed of the first p and last n-p rows

of W , respectively. Let o . be the least singular value of Wl -
If o ._ >0, then

-1 1 5
i

“t_t ,
IlW1 WoWpWi'lh = 35— -1 - :
cmj-n ‘ -

3

i S BB A R s st i e
.. v.‘ AL et

Proof. Since W is orthonormal,

Wg.wl*"’;we =1 .

Since cmin >0, W-l exists. Therefore, after maltiplying the last

1

equation by W.U on the left and by Wy

1
rearranging terms, we have

on the right, and then




oo

-1

. -t = . t - [y
Since the largest eigenvalue of (wltwll) = gwlwl) is 1/ Cpsn *

“t._.-1 1
Wy W, - I =GT—-1 ,
min

and the lemma follows from the last two equations.

We will now state and prove the theorem giving the bounds on the

€ITors .

Theorem 2.6.1. ILet A be a symmetric matrix of order n with

eigenvalues Ll < he < ... < hn and orthonormal eigenvectors

977952 ‘...,g_n . Let p and s be integer values such that p> 0,

s>0,and l<pxs<n. Assume that A_< . Iet X be an
’ SPES : p < o1

n-by-p orthonormal matrix, and A , the restriction of A to a sub-

space I(s,X,A) of dimension pxXs conteining XK(s,X,A) . Let

by < pp S oee S g D the eigenvalues of A . Define
Q = (ql,qgs---:?n)
and
W
1
W o= =%,
W2

where Wl and We

respectively. Let Omin be the smallest singular velue of Wl -

are composed of first p and last n-p rows of W,

If g . >0, then for k = 1,2,...,D »

M Sy SNt

where
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71;
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& = arc cos . . -~
Imin ’

)i l)/()'k }‘) » and

T = (s-1) -st Chebyshev polynomiel of the first kind.

s=1

Proof. We will show that there are p vectors gl,gz,---,gp in

L(S,X,A) such that if Ek = Sp(sl,o.-’glg r then

N < max f—’ﬂ < Nt ei . (2.6.5)
¥<E, yv -
Y#0

By Lerma 2.2.2, and Lemma 2.6.1,

N oS SN . (2.6-6)

Combining {2.4.5) and (2.6.6) will complete the proof of our theorem.

Let P be the polynomial such that

FA) = Ts_l(z)
waere
(hpp =N
A, -h.n ?
and T_ , iIs the (s-1) -st Chebyshev polynomial of the first kind.
NWote tnat, by the properties of Chebyshev polynomiels,

2O = 2 (2-6.7)
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for 1 = P*'l,---,n > and

Let 5

P(N) > P(A) > v > PA) >1 . . 2.0.3)

’cl"""cs-l be the coefficients in the expansion of P(A) in

powers of A . That is,

P(N) = c0+c1x+...+cs_l?~.s'l .
s-1
H = P(A) X = (cI+eAt.cutc A7 )X .

Note that the colums of E are linear combinations of the ¢oluwmns

of X,AX-..sA5"IX and hence are in I(s,X,A) . Since Q is the

matrix of eigenvectors of A,

P(A) 2 = Q P(A) ‘

where A = diag(hl,hz,...,hn) .

From the definition of W,

Thus,

Now let

X = QW .
H = P(A)X
= P(A)QW
= QP(A)W .

1\1 = diag()l,.--,)..p) and A2 = dj.ag(kpl_l,...,hn) . Thus,

P(Al)
P(A) = . »
P(A,)
P(Al)wl
P(A)W =
P(AZ)WE

i
l
oy
1
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A
and i
‘&.‘
P17, )W, z
H =0 . (2.7.2) 7
P(AZ)H" %
- -
Defins
. -1, -1
G = (gl";E’""gp) = .:Wl :’(I!.l) -
llote that ¢ ¢ L{s,X:A) . k = 1,2,....,p , since it is a linear
combination of the columns of H . By Eguation (2.4.9)
7
I
G =9Q
5
where ’
- -1 ‘
A = (51752, .- -,Bn) = P(}?)szl]?(l‘b].) -
tow let
Gk = (g','_’g?""’g?:) 2
.’.‘.k = (51’52"."&'&) s and § .
¥We now want to bound o

By Lemma 2.6.2, >'1': is the largest eigenvalue of the generalized

eigenproblem

L.
t = maxn y_th.iv_
YE, YV

Y#6

t t

ko
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Now,
A% = Dt My by
GG, = I+ Aﬁﬁk |
D, = digg(Aphgse-sh) -
Thus, A, is the largest eigeavalue of
(D Bl 8)Y = MI+ 8,807
By Lemma 2.£.3, the largest eigemvalue of
(D + A§A2 & =N (T+ ”;Ax))y = M1+ “;“k)y
is M -A_ . Observe that
(o, + A;Aa & =N (T+ Af;ak)) = (D -2\ TI)+ A;(Aa -3 I1)8,)
and that "
[ |
(D -2 = '
is negative semidefinjte. By Lemma 2.6.h,
Ay < 0T+ a8 ) HenaN(A, - A DA - (2-6.19)
By Lemme 2.6.8,
mr+aa <1 . (2.6.11)
3y Lemmas 2.6.5 and 2.6.7,
lap(a, - Aol < Ik aiiviita, -ADIE < O -Aliav Al - (2-6.12)
b1
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Kote that

where (W.W. ), stands for the firct % eclumns o8

ey gio= B e ahT pla) teay) mEl R0, T,

Three applications of Lammz £.-.5 give us
. A " s =2 =1 -1t v -1
"E'Ir cﬂ{l: = ;'P(DH:} P(D?‘,) ll'il(W2W1 )'7'1(32“1 )...

-

By Lemma 2.4.7 and Ecuations (2.4.T) ané (2.£.3)

-1 2
;o <

L -—
4 ¥ P()h‘) 2

and
APALYTRIL) < 1 .

3y Lamma 2.5.7,

&l"-' o ll;('.-l;’--':l);..}: < %:(:"-QNZI) "_'wgg,;;l)“ -

P([L) P(Ar)ll -

Since ¥ is orthonormal, W is orthonormal and therefore, by Lemma 2.%.9,

I t "1 l
W t‘aa_.'v, =3 -1 .
Bytede*‘m_t:.an of &,
cOs 8 = o
nin
SO that
2
l-c_. 2
e e s A
Ipin %min :




By combining Equations (2.6.10) through {2.6.17), we get

(Kn-kk) 2
7\:‘ < ﬁ-ﬁ —P?(g—tm =} -
Finally,
. L (;' l-lk)
BAD = Teq| T2 ey P
ané
1-2 ()‘-n*l')"k) _ 7\li-l"":1'2}"1.?0—:!.“2’*‘1;
“‘p'-l -Ay) M1 =X
(N =2a) +Oh =2 )
R T
lvy, L
- .k ptl
= l°7k where 7k = }ﬁ:'hn .
Therefore,
Oy -2
’“;57"1-:"'1.2 nl)}J'k tan® 0
s-].(l-hk

and the proof of the theorem is complete.

Exaxple. Suppose A of order 1000 is such that J«-1=0.0,
7\-2=O-1, )s3=0.5 and L_Looo=l-0. Suppose g =10 and X is

such that o, = .0k ; then

. 0.0-0.5 _
7y < 00-1.0 ~

0| =

7 = 0-1—0. é =
2 0.1-1.0

Ol
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-
i
@ = arc cos(.ck) , and :—%
‘. o5
tan’ & - f2k . 5
We have hi
l+7l ] €
T\ —— = T = 3.9y10 end
9 1_71 9\3) 2G> »
|
1+ . - '
‘( 2) = T,9(2-"*) = -98x106 - :
Thus, ., and ., satisfy, A - w
‘ . 1.9 i 2 :
NS e ST S0 sy 2o
1.5x 1077 :
and ;
My € iy € Myt 2 . 5.0%10° = 3 + 2.5¢1077 g
2 = 2 = T2 - 12 2~ = g
-9t 10 ) ;
'
The tnedoren and the example cugzest tnat "3 will tend to conversge
[ "
¢ . .
zo ki more rapidly than Ngel ta )\'i+l s for 1= l,2,..4£,p—l : This R )
does, in fact, occur in practice. ; T :

Tn the next section we will develop a Block Lanczos algorithm
which can be used to compute the eigemvalues Bys s of A

restricted to L(S,KsA} - j

2.7 A Block Lanczos Algoritim

In this section we will develop an algoritim which is an extemsion
of Lanczos' original algorithm presented in Sectiom 2.4, {Rather than
start witk 2 single vettor X , we will begin with a block of vectors X

and generate segquences of matrices ;'Mi) ’ (Ri) » and (}:i) which play -

Lk




-

roles sinilar to those played by the sequences (a;) » (8;) , amd (x,) ,
respectively, in Lanczos® method.

Lanczos developed his method as follows:

Iet A be 2 symmetric matrix of order n . Given a vector x
such that ||xj] = 1 , compute Ax and choose @ such that iz is
minimized where 2z, = Ax-auX - Tt can be shown that oy = XAx and
that with this choice for O'._L > Zp is orthogonai to x . ‘Note that
if z, = 9 , then x would be an eigenvector and %4 , an eigenvalue.
Define x, = 2,/ lz,f and X) =X . At the j-th step, we have vectors
xl,xe,...,xd and we choose czg. and 71:}’723’""-73'-1,3 such that

;;zj_'_l;l is minimized where Zgpg T Xy SOX =Yg X g =Yy K -
Lanczos showed that, in fact, {z_ .!! need only be minimized with

g

x = -
respect to 5 and |y 31,3 (Ti’ 3 0 for i < j-1) and that with
these optimal chojizes for aj and ¥ 51,5 ? z‘i 1 is orthogonal to

XysXps eeesXy - If 2501 £0, we let X5y = zj+1/ii:j+li\ . For some

value m less than or equal to n , Zoe1

will be egual to @ and tke
m n ‘ m y .
seguences (ak)k--l » (7k—l,k)k=2 » and (xk)k=1 can be used to computie

some or all of the eigenvalues and eigenvectors of A .

Note: If we let Bk =73k’ then the sequences generated by
. =Ly
the ebove procedure are the same as those conputed by the algorithm in
Section 2.L.

We also saw in Section 2.l that if we stopped the algorithm after
computing czs ix Step 5, then usefal information could be obtained from

the seguences (a.k);zl » (5]:);:2 and (xk)id - Namely, by observing

L5
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tahat the vaCLOrs x,.....%_ were zn orihonormal basis for the spzce

o

could be used 1o obtain the matriv reprecentation of the restriction

-
- - - ) - - . P
K(cs#z,A) = Splx,ix,...,A” “x) and that the (J,w}? and (&

W

z

of A to ¥ls,x,i) , we Taw Tha!t atcurate approximations o the least

and greaztest eizenvalues of £ couwld Te zomputed.

we will develop e Block Lenezos glgorithm with 2 cimiler appiitaticon
in miné. Jur gcel is an zlgoritmm which, starting from an n-Dy-»

orthonsrmal matrix X , computes a sequence oF mutuslly orthogonal
n-by-p orihonormel malrices H,,%X.:....%_ and seguewces of D-LyV-p
— £

-

muiricec l'l{"’ el z=nd H?’Rﬁ’ .--sR_. szuch thet the coluwmnc ol
- - -
SN SR B (2.7.1)

form an orthonormal basis for a speees  L(s,<,4) which contains the

¢ ;luwme of the matrices X AN, ...,A7 "X . a2nd

o (2.7.2)

is the matriz representation of 2L , now Gelirmed t0 be tac cperator A
restricted to L{5,%,A}

In order o reduce somewhal ilne complexity of the development, we
restrict sligatiy vThe range oF values the parameters in 'tize problem rmay

assume. In particular, we assume that the mmber ¥ of colurms in X

Cemb

" - i



St

2nd the number of steps s satisfy
l<gxs<n . (2.7.3)

This restriction implies, for example, that if we start with an
n-by-p matrix X where 1 <Pp <n, then we can carry through the

Bloek Lanczos method at most s steps where s satisfies
1<s <nfp -

From the standpoint of the problems to which this method will usuzliy
be applied, i.e., problems of very large order n for which, because
of limited storage, P << n and pxs << n , Equation (2.7.3) does not
represent a real restrietion.

We will follow 2 path similazr to that followed by Lanczos in
developing his 2Igorithm. To begin, let A be & symmetric matrix

of order n and let X be an n-by-p orthonormal matrix X. Let

:{.' =X »
ecmpuste

v -

-1 - Axl 2

and let Zy te the result of projecting Yl onto the subspace orihogonal
to X; . That is,

Zy = (I'xlxi)‘“l
AXy -X My (2.7-%)

where
t
Ml = XlAXl .

By definitionm, x;:_zz = o . Strictly spesking, choosing Z, iu this

mamer does not follow Lanczos' development. It can be shown, however,

b7
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that choosing 2, a5 in Equation (2.7.1L) minimizesc !IZ_: with recpwct
o

i

to zll possible choices of Ml -

Z, is en n-by-p matrix. Assume for the moment thal Z, Foe,

and let g, ve the rank of Z, . Since Z, £ 0. 5, >C , and by
definition, ¢, <Pp . TFactor 2, into the product of an =2-dy-p
orthoncrmal matrix '1:2 and 2 p-by-p metriz 22 . Thet is,

Zy = %R

where

2{2 is orthogonal to X, sinze 7,2 is orthogonal

It s <P, toan this may not necessarily be the case, 2o

IT 65 7P then

to X, .
1

we add the orthogonality condition as an zdditionzl criterion for

choosing X_ - In any event,

z
xel =5 . (2.7.5)

Note that x2 and B.a can be computed using a Gram-Schmidt method

or 2 QR factorization method based on iHousebkolder transiormations.

If p, <D, then (p-p,) colums of X, will not be determined by -

either of these methods. However, both methods can be programmed in

such a way that the additional p- Po columns can be chosen so that -:(2

is orthonormal and Equation (2.7.5) is satisfied.

Thus, at the end of the first step, starting from X

l=x,we

have compuated matrices M, , R, and x2 such that

LRy = 25 = My -X M

where

.
i
wi
2
:.'Iy‘.
.
-
[




t
Ml = XlAXl

and 2(2 is orthonormal and orthogonal to xl .
Assume now that we are at the begimming of the j-th step where
5 < s . and that we have a sequence of mutually orthonormal matrices

x.l."'""(j and sequences of matrices Ml’ME’ ""Mj-l and. R?."RB""’RJ

such that
KRy = Zp = KXy -XgMy
. Lt
KBz =2y = AK, ~X M, -X)R;
. ' (2.7.6)
XR, = 2. = AX, . -X. M. . -X. _R°
PRI B B s B B M B 1 R

M - x x i = ‘_l
- - A. - ” 1= l, - --;J -

Compute YJ. = MJ and let Zj +1 pe the result of projecting Yj onto

1
1
the space Sp(xl, ...,xd.) orthogonal to that spenned by X sXps oo esX, -

Since the projector omto Sp(X, - -sKs)  is

t t t
P = (I-XX,-X, .X -...-3&3&) R
L 33 Ta-1J-1
SP(xl,xa: e JXJ-)
we have
_ t t . -
zjﬂ_ = (I xjxj xj_lxj_l xlxl)ij
= Ay T EM KN, T X
where
t
M. = X.aX
3 J77d
and
t
mi,j = X{AX,
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0

for i - 1,2,...,j-1 . However, for 1 < j-1 , we have

w, . - o
1sd
since
+
F. = RO+ LM+
Mg = By R P EM T 0B

for k=i-1, k=3, cr ¥ka=itl if i < j-1 . Thus,

so that

Thus.

fiq = AX XM, ~X RS-

Note also that in computing 2, o 2 We need only project ij onto the
<

space orthogonal o xj_, and X, , and ZJ.+1 will automatically be

orthogonal to X.,_, .- .,Xj 2 -

z is an n-by-p wmetrix. Assume for the moment that 25,1 £e

31

and let be the rank of 2.

41 As we did for Z2 » Tactor z,j+1

Dj"'l
into the product of an n-by-pr orthonormal matrix XJ. +1 and a p-by-p

matrix Rj+l . Thet is,

Zi41 “ XyeByey 2

where xt.' X.

J+H1 1 -1z

pj +1 <p , tkhen }‘:‘j +1 is reguired in addition

S0

L R A

o



to Pe orthogonal o xl,xe,...,xj -

Thus, during the j-th set, we have computed matrices Mfl s xjﬂ_ »

such that

and Ry,

' t
X..-R. = Z. = . - -X. .
jafyer = 2y = AKXy - XM X4 4Ry

where

t
. = X_AX,
MJ J Jd

and xj+l is orthogonal to xl,xg,...,xj .

Assume now that we are at the begimming of Step 5 and that we have
s n-by-p mnutually crthonormal matrices xl,xa, .- .,XS and seguences

of matrices M:I.’M“E’ .e "Ms-l and Rz’Rj’ . "Rs such that

XRy = 2, = AKX -X M
%
EsRs =2y = By =X M, -X3Ry
X R -; = AX_ . -X_ M. .-X_ .R°
s's  %s © "1 %s-1s-1 Ts-2°s-1

As before, we now compute Ys = Axs and let Z s+ be the result of

al
Frojecting IS ontc the space orthogonal to thet spanned by xl,xa,... ’xs -

However, as we saw above for the j-th step, &X s need only be projected

onto the space crthogonal to Xs and Ks_ and it will be automatically

1
orthogonal to xl’xa""’xs-E + That is,

_ t %
241 = T —X X -xs-lxs-l)Axs
= AXg-X M, - xs—le-l,s
Wwhere
+
MS = Xs Axs

51

T

B 2T LI




AT

PRl A ndl e ld

Pr— oy by e

P ———————

L

&

N

s-1,

4lso, acs before,

Let

s

N

Av this point, stop and consider the roouldis f

= i .
s #5-1 & e
.
. o
= 7 "te -

- camputed tequances oI matrices

k) tueh thau the

=2 s §
= = A%
= Z.: = .1.".2
= Z = L%

Sty 5 A

M
1

5 e
L

D

=
-

s

i

~453Rs
. 8
; 5
t
A
Mer Ry
R %

o

Lok seeesh ’
.L’ :;? r :)

arve mutuzlly srithonormal and

(2-7-2)

(2.7.9)

iy

a et GLA



for ¥ = 1,2,...,s . That is, x, is an n-by-pXk orthonormal matrix

formed from the seguence (x.l,xz,-..,xk) and '.’J;:E is a symmetric block

tridiagonal matrix of order ©p-k formed from the sequences (M__L, '...,Mg)

and (Rz,...,ss) « We will now show that

Ty = Xghxg
and that

L(s,X,A) =Sp(x,)
contains

K(S,I,A) = Sp(x,Ax, e -,&s-]x) -

(2.7.10)

(2.7.11)

(2-7-12)

We will then give a precise description of an algorithm for computing

(RysoemsX) (M},...,Ms) » and (Ry.--,R) - This algorithm will be

bpased directly oﬁ the preceding develommernt and in light of Equations

(2.7-9), (2-7-10), and (2.7.11), is our goal in this sectiom
Observe that Equations (2.7.7) can be rewritten

Xy = XMy + AR,
t
Ay = KRy + XM+ X5Rs
AX, = X. .R® + X.M,+X, .R.
J o L g | f T 3 e 3
AX —1; RE + X M_+Z
s - Ts-1's ss s+l °

In matrix notation, these equations can be written

J“ms = xsms".ZS'l-:L

where

Z_.. = (8,65.--56,

s+L Zova)

55
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y i
is an n-Ly-pxs matrix all of whose columns are zero except the last p :.”é %
which are the columns of Z__, - By definition, Z_ ., is orthogonal - Ft
to :-:l,..--,:ﬂ:s - Therefore, . ‘ ’

xZ, = & , T
£ and since ?

i ok = I, i

b o R

: we have by Zguatiorn [2.7.1L), :

r xs .--.Xs = /)is .

- i

= Thus, 7. 1ic the reprecentation of A , the restriction of A 1o -
. - .‘l.

the space L{s,X,A) . é

We also have the following result.

Theorem 2.7.1. L{s,X,4) , the spece spamned by the columns of B

(Xy5Xp5---»K.) ; contains the colwms of the matrices X, 8K - AS X . 3

- Proof. We will show inductively thet s
. . - =)

. (Ko hKy - s A5 E) = (KppXy e X )T, (2.7.15) 3

o ' : : 5

e for k =1,2,...,5 , where U, 'S matrix of order pk - This will i

L - &

5 imply that each column of the matrices X,AK,.-.,A5 X is a Linear |

. cambination of the colums of (xl, cae ,Xk) and, therefore, that each %

Z colymn is contained in L(s,X,A) -
‘ Clearly, Equation (2.7.15) holds for k = 1 since
X = xl
=7 .
i and UJ. I
I'4 5).}
=
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Assume that Equation (2.7-15) holds for some k <s . Multiplying
both sides of Eqéation (2.7.15) by A gives us

(A, 85K, - K%)= (AKX, 8K, - oo, AX U, (2.7.15)

from which ye can concligde that

: . I e '
(X, A%, - - -:Akx) = (xl"Axl’ .. -’Axk) ( ) - (2.7-17)
e Uk

By Equations (2.7.13) with s replaced by k ,

I
B

N
\Nwd'

ol

(X:L,Axl, .o -:Axk) = (xl’ 3. ° "xkl-l) - - -

Let V, denote the last matrix in Equation (2.7.18). By combining

Equations (2.7.17) and (2.7.18), We have

(KpBXy -5 8%) = (X)s%p - e XKy W1

- )
U. = V " -
kL k :
2] Uk

Tkis completes the indnctive step and the proof of the theorem..

Before desceribing our algorithm, one point needs to be cleared up.
Namely, our assumption that Zj-l-l £ for j‘=' 1,2y...y5-1 . Suppese
that we intend to cerry through s steps of our algoritim, computing
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Sequences (M"):.=l » (Rﬂ.);__2 , and (Xi)f=., s but for some valne j <s,

Z=+1 =8 . In this circumstunce, we replace.the value £ by .J and

use the patrices 7% ; and 'y_J Lo compule cxuct eigenviilucs and

.

eigenvectors of A . This can be ceen by considering Equation (2.7.18).
If we replace s by J , the eguation is still velié, and since

Z.

41 = %0

. = X. 7

J 3vd Py
Thus, the eigenvalues of W'j are eigenvalues of A and its eigen-
vectors can be used to cqmpute eigenvectors of A (cf. Section 2:‘-2)-

It wduid also be possible to continue computing if ZJ. 1 = 8 for

5 <s by simply choosing X, 1 such that
o
xtx e i<y
gl T > =23

and letting Rj-'rl =0 . An algorithm incorporating this idea is of
little interest consicdering the applications we have in mind. Further-

more, it is extremely umlikely in practice that Z.

3+l=9 for any j

even if exact arithmetic operations are assumed.
We now describe a Block Lanczos algorithm which can be used to

s s s
Fé -
compute the seguences (Mi)i=l ’ (Ri)i=2 » and "x')i—l :

Iet A be a symmetric matrix of order n . Let p and s Dbe

integer values such that p >1 and
1 <Xs<n -

ILet X be an n-by-p oOrthonormal mabrix.

Step 1. Let X1=x end 1=1.

St 2. . = . M. =X)Y. -
Step Commute Y, AX:L and 'Mfl x:Yl
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Step 5. If i =s , stop.

Step k. Compute Z;4q vhere

RX - XMy if i=1
zi+l = t -
AX, -X.M; -X, RS if i>1
I— Step 5. If Z,., =9, set s=1.

; Step 6. Compute X;,; @aod R, . such thet

Z.

i+l X1k

i+172+1

and X,

541 is orthonormal. If the rank of zi+ is

1

+to be orthonormal .

less than p,wgrequ:ire xi+l

toxj, JSi.

Step T- Increase the value of i by one and go to Step 2.

The only time s will be different from its originzl value is if
Zse1

likely circumstance.

=8 for some i< s . As noted before, this is an extremely un-

As the deve‘l.opnen‘l_: preceding the above description suggests, the
matrices (xi)f{ _y compited using this algorithm will be mrtually
orthonormal and if

S X =0T ork)

e
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PR RS

»

/.-.7 ot K
--l .h2 lk
L
. .- '
m, =
. t
- oM, RS
® M o
s s s
then |
Mg = XoAX,
and

L(s,X,8) = SP(xl,xz,..-,:(s) )

contains the space
k-
K(5,X,4) = SPOGAK, -8 7 K) .

If we compute the eigenvalues of ms » ther the results of the previous
secticn Indgicate that the p least eigenvalues of 7, will usually be
accurate approximetions to the p Ieast eigemvalues of A . Computational
experience has shown this to be the case.

In the case of the standard Lanczos 2lgorithm, we saw that the
sequence of vectors (xi) generated by the method would lose orthogonality
mnless the vecters zo were reorthogonzlized with respect to all
previously computed xJ. s J<i . The same problem arises in the Block
Lanczos method. Namely, the seguence of matrices :-:i » aIthough
theoretically orthogonal with respect to each other, will in practice
lose orthogonality unless the metrices zi are reorthogonalized with
respect to all mabrices xi s 1< j . The reorthogonalization

can be combined with the computation of X.py 2nd R,y 1In Step 6.
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Ac with the standard Lanczos method, there is a guestion a2t to
whether reorthogonalization is actually needed. That iz, loss of
orthogonality impliec convergence of some of the eigenvalues of the
restricted operator to those of the original metriv. Contimuing the
camputation beyonc the point that orthogonality is lost, however, will
result in eigenvalues being computed more than once evem if they are
not multiple. Thus, for a reliable algoritom, we must either
reorthogonalize or develop & criterion for determining whem orthogonality
is lost. We have chosen the former path which, although more time
consuming, is more straightforward than the latter. We will discuss

this point further in Section 3.1.

Note: If 4 and v are an eigenvalue and eigenvector, respectively,

of ms,then w and

qQ =st

are eigenvalme and eigenvector of A , the restriction of A to

L(s,X,A) =lSp(xs) . By Equation (2.7.1k), we have

s _.a L e (s)
Aq-?’-q = zS"’lv

where v< s) denotes the vector c¢omposed of the last p components of v .
This equation implies by Weinstein®s inequality that there is an

eigenvalue A of A such that
I -ul <z, < e 1SN -

The eigenvectors corresponding to the extreme eigenvalues of ms are
often such that Hv(s)ﬂ ic very smell. This seems to explain partly

why the eigenvalues of M s B&xe often good approximations to the

o9

O
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LR
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~ ke = "
eigenvelues of 4 . HNote that if we computed qu and R+ such
thet
Zar " Foaa®o v
then we have ”
. o N s
hzs.,.l“'( )!: = .ERS.,_l‘J ii
since ihe spectral nom is wnitarily inmvariant. Thus,
; (s), =
i\"#‘ < “R:.',l“ Ii -
2.8 Iterating to Improve Accuracy
Let A be 2 symmetric matrix of order n and let X be an ~
n-by-p orthonormal matrix. Let s be an imteger greater chan or
equal to 1 and Suppose that p and s satisfy By

1l <prs <nmn -

Let 7_ be the representation of A , the restriction of A to the

space spanned by the columns of X, (Il,}tz,...,xs) vwhich contains
the space Sp(X,AX,A°XK,...,A5 1K) where Mz '_ and X_ have been
computed using the Block Lanczos method of Section 2-7T- Finaily, let
Bokps - orbpg W04 51,52,...,61,5 be the eigenvalues and eigenvectors,
respectively, of A computed using Mg end X -

Theorem 2-6.1 suggests that the first p eigenvalues and eigen-
veetors of A will usually be accurate approximations to the corresponding
eigenvalues of A . However, the expression bounding the errors m the
eigenvalnes contains a term tan © where & is essentially the angle

between Sp(X) and Sp(Ql) vhere Q) is the orthonormal matrix

60
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camprised or the first p eigenvectors of A . If we let

51 = (c';l,c'lz,...,ap) and & be the angle between Sp(il) and Sp(Q,) >
then we might remsonably expect that 5 < 5 and therefore that

tan 8 < tan 6 since the vectors m 5_1 will usually be more accurate
approximetions to eigenvectors of A than X . Thus, we might -
reasonadbly expect to compute more accurate approximations by re-applying
the Block Lanczos method to 5,1 .

This discussion suggests the following algorithm for computing
approximations to the p least eigenvalues and eigenvectors of A *o
a specified accuracy:

et A, P, S, and X be as defined above.

Step 1. TUsing tke Block Lanczos method, compute Xg and ?Rs »

the representation of A restricted to the space s;pa.nned.
by X_ which contains the space SD(X,AX, - . -,857 %) .
Step 2. Compute the eigenvalues By and eigenvectors v of 'ms
Compute q; =Xy; > 1 =1,2,---,p -
Step 3. Estimate the accuracy of py end §1 as approvimations
to the P least eigenvalues and eigenvectors of A .

If they are all sufficiently accurate, stop.
Step k. Iet X = (51,52,.--@?) and ' go to Step 1.
W2 will discuss how to estimate the accuracy of computed results in

Chapter 3.
The sbove algoritim contains most of the essential features of our

finel method. We will modify it however for the following reasons:

) The block size p will ususlly be different from the mumber of

61
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Y .
i eigenvalues we are attempting to compute. In fact, we will want to :
k s vary the block size 2s the computation ‘procc-cd:. (2) &5 ve amw in
; Section 2.0, the errors in ihe compuled cigenvalues deercwse ul virying
' 3 rates. lience, some of the eigenvalues, usually tucse least in vzlue,

] will converge sooner than others. Tor thls »eafon, we Will want T2

3
h
3
n
P

continue computing aiter we have zccepted and stored some eigeavalus
ané eigenvector espproximalticrns, without recompuling the same eligenvalues

and eigenvectors. Some modification of our currenmt meltnod is thus

required since it will =2lways tend to compute the least eigenvalues.
1 &

¥ In the next secticon, we will see how To do this.

‘e
N 2.2 Restricting A +o 2 Space Orthogonal to Computed Eigenvectors
“ Let 4 be a symetric matrix. Let Ay <Ay < ... <A De the
« eigenvalues of A with eigeuvectors 'ql,qz,...,qn - Let

: R, <% < ... <X z2nd §,,3,,-.-52 ximate ei 1
)\..l_ < > < S"'m gnd ql,bqe, 2% be approximate eigenvalues

and eigenvectors, respectiveiy, of A 1in the sense tnat

CFpon Rp PO IPrU T

4* B, R, = e o ieL...m (2-3.1)
N :

and the 5:1 are orthonormal where le“ =¢ <1 and m is some

E i 1 integer greater than zero and less than n .

ii How can we use the algorithm of the previous section to compute

' appz.'éximations to eigenvalues and eigenvectors different from those

; P . we have elready computed without recomputing these letter velues and

vectors? For instance, if the Xi and c]i were computed by means
4

of this method, then they will most likely correspond to the m least

e eigenvaines and eigenvectors of A . Re-applying the method to &

P

without taking these already computed approximations into account in

VAP VNPT

52
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sare fashion would result in our recomputing the same eigenvalues and
eigenveciors.

The enswer to the ambove question is to apply our method to an
operator which is different fxom A but, nonetheless, related to A .
in particular, we apply our method to f&', the restriction of A to
the space orthogomal <o Sp(v:}l s c';g,-.- ,c'gm) . L las n-m eigenvalies
and eigeaveciors which are approximations to the eigenvalues and
vectors of A different from those already approximated. To see this,
let am-l’ar;wz’ .-.,.in be an orthonormal basis for the space (of

dimension n-m )} orthogonal to Sp(il,ia,...,am) . Let

M = 5T A%, » and -
J
ot = N3
Fyy, = -,2-02 -
. > 'y -a % = - 2 -
Let Nerr? ..:2"'""“':; denote the n-m eigenvalues of .:2 . Note

s the representetion of A and, hence its eigenvalues

ct
LS’
5
§
He

are th= aigenvalues of :.

We now wani vo show that if each defined in Bquation (2.9.1)
is smell, then A.w_l,...,f{n will be accurate approximetions to the
remaining eigenvalues o A . Note that if 21] the € = 0 , then

tas eigenvaines «f A4 would also be eigenvelues of 4 .

and

-
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° i
i3
-t , = =t = e
. . 2,49, Q{AG,
B = Q AQ = .
t,x =t,= |
GphQ) QAL &
° liote that B is similer to A . Let
& ag = 5 3
i My
C = = ,
. e gt ad 6 “ o
Q49 i M,
and . :
i 9 3 ag ;
) 1l 2
A= ;
+ -
Q2AQJ_ 4]
Thus, "
’ :

B =C+a -

Since B is similar to A , the eigenvelues of B =2zre the seme as the
2z eigenvelues of A . By the theory of perturvations for symmetric
matrices, (see. for example, Wilkinson [23], Chapter 3), the eigenvalues
of C @&iffer from those of B (and hence A ) by amounts that are
2 bounded by |jall - This quantity can in turn be bounded as follows:

Tt can be shown that

Let

R =1oy5pp0--000,0

where p, 1s the residual vector defined ir Equation (2.9.1). By the

dafinition of Py 2




we have

S =t 1

“

and therefore,

lall = idSAq, - I RI -

Since the spectral norm is invariant with respect t. orthogonal

transformations, and 5,1 is orthogonal,
A
lal = ileyrll = |i&ll -

If all the ¢, = “pi“ are small, then {|A]] will be small also. For

example,

2, 2 2,1/2
IRl < (c1+ea+...+em / .

510-10 > i=212,...,9, then

If m =9 and ‘-:i

il <3207

and the eigenvalues of C differ from those of B , and hence A,

by quantities which are less in modulus than 5-10'10 .

The set of eigenvalues of C is the union of the sets of eigen-

values of M, apd M, - Froam Equation (2.9-2) we can concliude that
M, = R +&°R
1 T MR-

Thus, R,,Xe,...,im differ from the eigenvalues of M, by amounts

_—
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bounded by R . Furthermove, The 2igentvnliues o M. are the samc

B

2s the eigenvelues of A . Taken together, ()T.i > 1=1,---,m) =andé
the [(n-p) eigenvalues of A =pproximete the entire spectrum of & .
Thus. for example, if A ,.. .,}:r‘ azpproximate the m least eigenvaluec

};l,...,hm of A , then the p least elgenvalues of :l-“. will approximate

A

m-f-l’hm-*-Q’ ... ’)"m-l-p with errors bounded by ,1R“ -

The Block Lanczos algorithm of Section 2.5 can be aprlied directily
1o :'l T0 compute approZimations to its least eigenvalues. The initizl
ortuonormel matrix X must lie in the domein of A . That is, X must
lie in the space orthogoral to the vectors §1,c';2,...,§m . Note also
that

By = (z-380)ar

so that to multiply by A , we first multiply by A end then project
the result onto the space orthogonal to 61,52,...,% .  Furthermore,
referring to Section 2.7, we 2dd the extrs reguirement that xj be
computed so thet it is orthogonal to 5-1"32’ ...,am in the event that
Z:i is of less thax full rank. Note that this will automatically be
the case if ZJ. is of full rank.

The algorithm of the previous section, W nodified to take into
account previously.computed eigenvalne approximations, can be described
as follows:

Let A be a symmetric matrix of order n . Let 51,52,...,6111

e orthonormal vectors with m <n . Let p and s be integer values

such that p>1 . s >1 and

1l < gxs < n=m .

5
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Let X be an n-by-p orthonormal matrix which satisfies

t
(e9-2

xﬁ_l;a

where 5,_,_ = (E.l,---,ip) .

Compute approximations to the p least eigenvalues of A » the
rastriction of A +to the space orthogonal to s:p(il, ...,cim) > as follows:
Step 1. Using the Block Lanczos algorithm, compute Xg and 'Jns s
the representation of A restricted to the space spanned

by X which contains the vectors (x,ﬁx,...,is']x) -

Step 2. Compute the eigenvalues By and eigenvectors yi
of ms - Compute Ut =Wzsyi for i =1y..4,D «

Step 5. Fstimate the accuracy of . and ‘31 as approximations
to an eigenvalue and cigenvector, respectively, of A .

If they are 211 sufficiently accurate, stop-

Step L. let X = @ml’ame""’q. ) and go to Step 1.

Note that, by earlier coments, each columm in Xg will be orthogonal
to Q, and, hence, each ami will be orthogonal to ﬁl > i=21,..0,D -
Therefore, each time Step 1 is execubted, the mabtrix represented by X
will satisfy Equation (2.9.3).

If fil, '32’ -..,Em are accurate approximations to some of the
eigenvectors of A in the sense of Equation (2.9.1), then our discussion
suggests that the above algorithm will compute approximations to
eigenvalues and eigenvectors of A different fram those already computed.

In the next section, we will integrate this method into a complete

algorithm which will also allow us to vary the block size p -

67

~

L.
Foa el

B TR

-G



L1

1]

e L L

L T T e e AT A 7 A T, g b
—— TR E

2.10. A Complete Iterative 3iock Lanczos Algorithm

Let A be a symmetric matrix of order n with eigenvalues
A< ).2 < ... <A, and orthonormal eigenvectors 9729507039, - Let
r be an integer greater than zero and les:c than or equal to n . In
this section we will cutline an algorithm to solve the following
problem: Compube accuvate approximations ii and ¢ ; to M and g
for i =1,...,7 . Our algorithm will incorporate the idea of the
previous section and have as its basis the Block Lanczos method.
Basically, the plan of the algorithm is as follows: Compute .approad.-
mations to the least eigenvelunes and eigenvectors of A . When some
of them, say m , ave sufiiciently eccurate, compute approximations to
the least eigenvzlues and eigenvectors of A » the restriction of A to

the space orthogonal tc those vectors a2lready computed.

Qur method can be described as follows:

Step 1. ILet m =0 - Pick values for p and s such that
p>1, s>2, and _lsgxssn. Choose an n-by-p

orthonormal metriv X .

Step 2.  Starting with X , apply the Block Lanczos method
to A , the restriction of A to the space orthogonal
to 3358y ---58, - (If m =0, then A=A.) Let
ms and X be the matrices computed by the Block

Lanczos method.

Step 3. Compute the eigenvalues By and eigenvectors ¥y of 7‘:’¢s

i=21...,mxs . Compute §m+i =xsyi > 1=1,2,...,D -
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Step k.

Step 5.

Step 6.

I N TR ¥ Tt O Y

Es‘tmatethea.ecuracy.of A, =y and 9y 25
approximetions to an eigenvalne and ejgenvector, -
respectively, of A for i = 1,2,...,p - Suppose the
first k of these approximations are accepted. (If

A
1

none is accepted, k=0 .) %
Choose new values for p and s such that p>1,
§>2, and 1< mxs <n-(mk) . Iet

X = (qmi-kl-l’qml-k:l-z""’qm-l-kl-p) :

Tncrease the value of m by k¥ . If m<r, go to
Step 2. Otherwise, stop.

An unfortunate choice for the initial X can cause this algorithm

to fajl. For instance, if none of the columns of X contains components

corresponding to eny of the eigenvectors for one of the initial

eigenvalues

hi, 1<1i<r , then the above algorithm will fail to

campute J\.i . In practice, however, such a circumstance is unlikely

accephed.

suck thet

to occur so we overlook this possibility and accept the above algorithm
as a sg]:rbion to the probiem posed at the start of this section.

Note that in Step 5, if k =0 , then X is chosen as.in the last
_section- Thet is, X 1is chosen to be the eigenvectors corresponding
to the p least eigenvalues of A . Otherwise, if k >0 , then X

is chosen to be the next p eigenvectors following the k +that were

Also, each time Step 2 is executed after the first, X will be

+ = - -
KB = ey hper o Ay
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~
i
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vhere hm+ =+
the previous ctep. This can be seen as Jcllows:

We have

vwhere Y = (ywl,y o7 oY, m_,‘p) . By definition,

't —-— Y 'y X
VY - adag(l N o eh ) -
Therefore,
X°BX = ¥UXCAX_Y )
t
=X msY

LERVTC SR P S B

Since advantage can be taken of this property, the initial X we
choose in Step 1 will, in practice, also be chosen so that XtAx is
a diagonal matrix.

Note, in addition, that each time Step 2 is executed, X will
be orthogonal to all previously campubed vectors. This allows us to
use the Block Lenczos algorithm to compute the eigenvalues and eigen-

vectors of 3 .

Finally, the range of values for p and s will in practice be

restricted samewhat more than :.nd:n.cate:l in Steps 1 and 5. Tn our
implementation, we require basically pxs vectors in which to carry
out the Block Lanczos method. In practice, we will generally have

T0

,,ime,-.-,i are the eigenvalues of A computed dnmring
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much fewer than n vectorss for this purpose znd the values of p
and s must be chosen with this limitation in mind.

In the next chapter, we will consider the problems associatea
with the implementation of the above algoritim. In particrlar, we will
consider strategies for choosing values for p and s .

consider the problem of estimating the accuracy of computed eigenvalues

and eigenvectors.

We will also -
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z. IMFTEMENTATTION -

In tkhis chapter we will concider the problems associated with
implementing; and arplying the aljrorithem developed in the previcus

In Section %.1, we will Giscucs the nedd for recrihogonalizing
the zcequence of matrices | xi) _computed in the Block TLanezos metnod.
In our use of this method, we do reorthcgonalize these matrices and
in this section we will discuss gur reasons for taling this path.

Estimating the accuracy of curputed eigenvelues ané eigenvectors
will be the subject matter of Section *.2. We will see how information
on the accuracsy of computel results can be obtained in the comtext of
our method and how it can be used to stop the rogram when a specified
accuracy has been ootained.

In Section 5.5, we will exsmine the problem of choosing a block
size for the Block lLanezos method. 3y considering some er.amplés, we
will see that this is pot 2 simple problem. We will then suggest same
guidelines by which an informed choice might be made.

Finally, in Section 3.% we will consider certain practical matters
such as progrem and storage organization, storage requirements and

o;er.'_a.tion counts.

3.1 Reorthogonzlization in the Block lLanczos Method

Reczll that in the Block Lanczos method we compute a2 sequence of
matrices xl,xa, '“’xs which theoretically form a basis for the space
Sp(X,AX,...,As-lx) where A is a symmetric matrix of order n and

X is an n-by-p orthonormal mabtrix, where p and s are integers

T2
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such that p>1, sS>1, and pxs < rn . While Theoretically the
Sequence of matrices (Xi) is orthonormal, in practice They depart

from orthonommality after a few steps of the method. From the standpoint

— -

of the standerd Lanczos method (P = 1)} . this Zoss of orthogonality was
& serious shortcoming. To remedy this situation, an orthogonaiizetion
step was added to-the algorit.tun whereby each vector X iz
reorthogonalized with rcspec‘t.]to all previcusly computed xd. y JJ<i .
‘Paige [17] however found that useful recults could be obtained even if

a reorthogonalization step is not included since loss of orthogonality

- - I - et .
S LY =AU PO Wy LU= . RSO TL

implies convergence of same of the eigenvalues of the tridiagonal matrix
to those of the original matrix A . The =major drawback with Peige's
zporsach is that eigemvalues of A will often appezar more than once

i when the eigenvalues of the tridiagonal matrix are couputed. The rezson
A for this is that once orthogonality ic lost, the meihod escentially
restarts and recomputes eigenvalues it has already camputed. ‘Thus, the

validity of resulis computed using the Lanczos methoad without

reorthogonalization is questionable.
The same problem arises with the Block Lanczos method. That is,

if we apply the method without reorthogonalizing the X; then accurate

$

results can be computed but their validity is questionable in the same
sense as before -- we can not determine which of the eigenvalues we

compute are real aad which are images.

.
;
»
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L
M
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—
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Adding reorthogonalization to the Block Lanczos method stabilizes

it and we can be sure of the results we compute, but the cost. of this

insurance is considerable. (The stability of the method with
reorthogonalization is not something we have proved, but is an observation 3

s




Ak

e

)

"

- e e o . Tl e e . M.ﬁ ot e Lae T e .

— . E . s TR S gl s e G T ST N T TR R M

tased on our computaEtional experience.) 0T oniy does reorthogonalisation
add 2 large nuxber ¢f operations to the method, but necessitates Tit
precence of ezeh matrix ;-(i in memory dGuring each step of the Block
lanczes method.  If reorthoponzlizatisn eould be zafely eliminated,

then not only would there be a consicdercble reduction in the wnount oF

compatation, but at most two elements of the sejuence .f}'.i) would need

1
[A]
v
4]
]
13
;:b:
=
(£

2 memory at any time allowing the otners to be stored ¢on
magnetic dick or Tape.

However, even with recrthoganalizatién, our early experirents
indicgted thet the Block Lanezos method couvll cowpete effectively in
ternms of reliability, efficiency, andé storage requirements with the
method of simmltaneous itera‘:.'ion, previously the most effective method
in feneral for the solution of lazrge sparse eigenproblems. For thic
reason, we chose originally 1o remedy the zbove problem with the Block
Lanczos method by adding reortingonaliization.

Since this time, Professor W. XKahan of the University of California
at Berkeley has related some of his results and conclusions obitained
from experiments using a Block Lancezos method in the late 1950's, which
have rever veen publisked. He concluded that a Block Ianczos
method could be applied in an iterative fashion (as we have used
it) sithout reorthogonclization as lorg 25 the sequence of matrices (xi) ]
retained "nealthy independence”. He also discovered a way of determining
when independence is lost and used this test as a means of stopping the
metkod.- The work of Cullum [ 4 ] appears to reflect Xahants ideas and
approach. The reader is urged to consult Cullum's work for more details

or this alternate approach.
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3.2 Estimating Accuracy and Convergence Criteria

Giver a symmetric matrix A , the goal of osur algoritim is to
campute scalars o, and vectors X, (whezre we assume ﬂxi'l‘; =1 ) such
that

Ax, -p.X, =

i s Py (3.2.1)

“"’i“ = ei <% (3.2-2)

where T 1is some tolerence (£o be determined). In this section we
are interested in determining when the eigenvalue and vector approximations
carputed using the jiterative Block Lanczos method satisfy BEquation (35.2.2).

et X be an n-by-p orthonormal matrix. Suppose that

t . -
XA =M = ala-s(ulmzs--uup) (5.2.3}
where
t .
JAX, = . 5.2.h
X5 Ax k3 (5 )

and xj is the j-th columm of X . If X 3Is used to start the Block

Lanczos method (refer to Section 2.7 for notation), them X, =X and

1
Z, = A XMy (3.2.5)
and the j-th column of 22 is
z, = AX.-pX. = p: - (3.2.6)

d 3 "F3 d

Thus, the Block Lanczos method immediately provides estimates of the
form (3.2.1) for the columns of X and the Rayleigh quotients g
defined by Equation (3.2.4) provided X sstisfies (3.2.3). However,
for the method we have developed, the X wused to start the Blceck Lanczos
method esch time will satisfy (3.2.3) where the o are the eigenvalues

computed during the previous step (c¢f. Section 2.10).

(£)
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Note: Since (cf. Section 2.7)

Z = Xy

-

and x2 is crthonormal, we also have

e, = logli = fizh = hr
where r'j is the j-th column of P.2 . In our progrem, however, we have
found it easier to use Z':': than Re
The tolerance T we use is besically relative errcr for eigenvelues

to compute the values of "j .

greater than one in modulus and absolute error for eigenvelues less than
or equal 5o one in modulus. That is,
luglxeps if [u.]>1 , and

T = ‘ (2.2.7)
eps if lpil <1,

where ey is the eigenvalue approximation corresponding to < and

He

¢ps 1is some specified precision.

However, in determining the accuracy of computed results and
esté.blishing & stopring eriterion, the error in previsusly computed
eigenvalves and eigenvectors must also be tzken into account. Recall
(ef. Section 2.9) that if we have already computed m eigenvalue and
eigenveetor Spproximations il,ie,..-,im and, &l,ie, ,Em » then
additional aprroximations may be obtained by computing the eigenvalues
end eigenvectors of i » the restriction of A +to the s;.'aé.ce orthogonal
to Sp(b:l,..-,am) . However, the eigenvalues and eigenvectors of 4
will differ from those of A by amounts that depend on the megnitudes

of El, 22, .. .,Em where

& = ol
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Soro i 1.0. . .l,m . For Inslance nt one extreme, 1f the 7 B

ané the ¢ 2ear no re.ationsnip to Lhee eigenvectors of A, thien wo
~

would not 2xpect ihe eijtenvalues and eijenvectors of & 1o be uselul

approximatioms to those of & . At the other extrene, if all the <

are cerg, than each 3

N is én eigenvector of & =z21d tTue esigenvalues

ané eigenvectors 3T 4 will also be eigenvelues and eigenveciors of

When applying our aigorithm, the eigenvalues and eigenvectors we

-~

are comruting are cinverging to those oFf .2 and not £ and, therefore-

e
[
i

)

£ we compulie the ‘5

[

then there is 2 lower limit s the vaiues of the ‘3 peyond which we
can not reasonably expect ther to deccten..
Our progran takes this error into account as fmllows:

re
1

1
~~

T
m
then we accent & velue o and 2 vector X if thsir corresponding «c.

satisfies

e, < T+

- z
i T ;-

aye Lot

X

cuatior {3.2.2) wish respect to A4 and not & ,

. -2 l/a ,£poy
* ea.r CE) {H5-2.8)
€L

2.0

where T is ziven by Equation (3.2.7). (We will add one more term to

T later on to a2ccomt for round--ff error in compating 5

»f looking at this criterion is that it is a way oOf estimating when the

-) Ome way

computed eigenvalue p has converged to an eipgenvalue o of R . Recall

from Section 2.2 that there is an eigenvalue Ak of A such that

-3l < (Be.le B2l

wooo
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i we let
G = (Gpse.era) o
then
= e e
- - Fr P2 S
- T, N ~
= {1 -’..‘,(Q.J(A..c ~ i) oy Gefiniticn of £,
- -T. .
= {I-940))¢ where g = Ax-ux
T oETS;s -
Thus.

Y1 ¢an be chowr that

DA

T B T R -
Thus. Aas long zs

B +‘:

i 2T

sl > <
ané we can imprcve on the accuracy of [, relative to T . Basically,

once (3.2.9) has been satisfied we have reachned the obtainable accuracy

allowed by the errors in ii and Z;i ;> i=s1,.-..m .

Note: The eigenwvalues ., compuied by our program are Reyleigh
3 -

quotients computed using the vector x, . rWe assume that jjx. i =1 .)
o

That js.

t
r. = X_AX, -
23 3™

It is well known that the Rayleigr guotient is oftten twice as accurate

18
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an approximation to an eigenvalue of A4 as the vector used to form it.

Thet is, if

and
|loj:: = i,
then there is an eigenvalue X oI A such that
2
A-yp.l < <7/8
l l"'.]‘ - j/

where 5 1is the minirmumm separation betwean =3 and the remaining
eigenvalues of A [23, p. 183]. Thus, for well seperated eigenvalues,
the error in :J will be approxima‘tely -'_2 rather than . . '
Purthermore, the errér in the eigenvalues of 2 as approximations
to the eigenvaiues of A will often be far lesc “han the bound suggested
by Fouation (7.2.3). The results of Paige [14] in fact suggest that The
error for well separated eigenvalues will be proportional to
(-—'-;'f+ T§+ R ?i) rather than the square root of this term.
Therefore, we expect the computed eigenvalues to be twice &s
accurate as the ndrms ¢, of the residuzls N indicate. Computational
experience verifies that this is usually the case.
The error in the computed value of €5 arising from round-off
errors will generzlly be umimportant in estimating the accuracy of computed
results and determining when convergence has occurred. That is, while <
may be somewhat imprecise in terms of number of significant digits, its
srder of megnitude will usually be correct and this is what is importent

in determining convergence. The exception to this statement occurs when

almost complete cancellation takes place when cH is computed. This will

9
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happen when the guzntity e=ps ir Zquatiom (5.2.7) is chosen close to

the limits of the precision obteinzble on the machine the progranm is

being executed on. To remedy this cituation, we modify < a= . fsllows:

Lecept . and :-:,1 when the norm . of their residual catisfies
- - .
c. < TH"
i-= 2

where <1 is now cefined to de

{e, |{eps + 10n xmacheps it ful >2
(eps + 10n xmacheps) - iz L""i! <i .

where n iz tze order of A 2and mecheps ic the smellest positive
floating point velue such that lsmacheps ™ X on the machine the
program i3 being executed on. (iL.g., macheps = 1671 for asuble
precision cowputation c¢n I.3.M4. System/3#0 tomputcrs.) The form oF the
new term I3 suggested by the Iloating peint error anzlysis of the
computation of inmer Troducts (see Willinss- [ 23], Chapter 3) and
zetualily is z considerzble overestimate (Ly zbout = :"s.ctér of 10 which

03

s arbitrarily chosen) o7 the exrors thet zotuzlly occur. However, as

[ED

we pointed out above, this new terz will usually be insignificant iz

cemparison £ eps in most zppiications.
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5.5 Choice of Block Size

One of the problems we have not discussed up to this point is
h~ to choose the block size for the Block Lanczos method during each
iteratior of the algorithm of Section 2.10. A good choice for the
block size can often considerably revduce the number of iterations
reguired to compute 2 given mmber of eigenvaiues and eigenvectors.
The difficulty is that the best intormation f’or .choosing the block size
is cecurate knowledge of the spectrum of the problem matrix which iz,
of course, the information we are trying to determine. FEven for the
seme matrix, however, the best block size will also depend on the number
of eigenvalues and eigenvectors we are trying to compute z2nd the number
of steps = of the Block Lanczos method we can carry out for a given

block size b .

Sxomple. Let A = -H L where H is the discrete bihamonic
operator of order 25¢ [1]. Suppose we are given ¢ = 12 vectors in
which to apply the Block Lanczos method. This means (ef. Sectiom 3.L%)
that at any point in our computation, the number m of eigenvalues

we have already compuated, the block sizc P , and the mmber of stepc

[ 2]

for the Block ILanczos method must satisfy =m+pPXs £12 . Suppose also
that we are trying o campute r = & eigenvelues and eigenvectors.

IT we apply the program of Appenaix A to this problem, we arrive at
the results given in Table 3.3.1, where an iteration basically involves
an execution of steps two through six of the iterative Block Lenczos
algorithem of Section 2.10, end the mmber of matrix multiplies is the
rmumber of times the matrix-vector product Ay is computed where y is

a given vectcr.
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Table 2.35.1

initial block size iterations matrix mulitiplies
1

AV, I i TR )
Qa O =3 -
[0 4] -3 v \O
[BAN g el S) N

Note: The strategy used in these tests is at each point to chooce

the block size egual tTo the previous block 5i 2 p unless there zre
fewer than p vectors to be computed in whick cese it is chosen
eqgual t0 the number of vectors lefl to be computed.

If we increase the reguired numder o vectors r 1o 10 , then

=
-

AN

we have The resuits of Table =,

Table 5.2.2

initial bilock size '  iterations matrix mzlsiplies
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Note that with q = 12 , the largest block size allowed is

P = 6 . Note also that it is inefficient to choose p = 5 since

-with this block size, only two steps of the Block Lanczos method
can be carried out as is the case with p = 6 .

Pinally with q increesed to 24 and r equal to 10 , we

have the results of Table 3.3.3.

Table 3.3.3
initial block size iterations
1 1n
2 . 8
3 ! 8
N ’ T
6 T
8 7
12 8

metrix multiplies

219
158
156
10
128
139
166

It would eppear from this example that the best block size when

q=12 is p=2, and when q =24 , It is p=6 .

This exemple also

demonstrates that there are advantages to be geined by using a Block

Lanczos method in comparison to o standard Lanczos method (p = 1) -

The point of this example is that it is difficult in advance to

predict'wha.t the best block size will be. Therefore, rather than

attempt to describe specific strategy for choosing the block size, we

will establish some guidelines that we can use to make informed decisions

in particular problems.

In our progrem, we are assuming that there is an upper bound on the
wroduct Xs imposed by storage limitations. Thus, if we increasse the
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(4

value of p , the value of s must usually decrease. This generally
impliés that each individual vector in the block will converge at 2
slower rate. These clower rates of convergence ere compensated for oy
the fact that we are computing more vectors at once. Ome conclusion we
can draw, however, iz that it seldom pays to choose 2 block size larger

than the mumber of ejgenvalues we are trying to compute. TFor example, if

we are interested in computing two eigenveluss, then while it might
sometimes prove advantageous to choose p =1 , it will scarcely ever

pay to choose p =3 .

Cullum and Donath [4] choose the block size egual to the CE
rumber of vectors that remain to be computed and, thus, initially R
equal to the reguired mumber of eigenvalues. There is much {0 recommend

this approach. There is no difficulty in restarting after some eigen e3

BT R

have converged since the block size can only decrease. All useful
information is retained from one iteration to the mext. However, as 2

the a2bove example indicates, choosing the block size in this way does

not always lead to the best choiée, and it also means that we can only ;_
compute & number of vectors less than or equal to one-ha2lf of She total z p
number ¢ of vectors available to the Block Lanczos method. While this é
strategy can be utiliz-;ad with the program we have included in the Appendix, -‘g
the program bas been d_esigned 1o compute as many as ¢-1 eigeqve.lues and Tg

eigenvectors. In situ;.;.ions vhere the value of q is several:.ti:lxies that
of r , the reguired sz.-ber of eigenvelues, and where there is no informa-
tion about the matrix I:o indicate otherwise, Cullen's approach is a good
strategy-

For problems which are known to have multiple eigenvalues, it is

best to choose the block size at least as large as the greatest

8k
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multiplicity, or if this is not possible, at least\greater than one.
For exsmple, the biharmonic operator in the abave Je is known to
have multiple eigenvalues with multiplicities at most tio tecause of
symmetries in the physical problem it models. This suggedts a2 block

size of at least two. As the results indicate, a block size\ of one

was clearly less efficient than a block size greater than cue. .

Theorem 2.6-1 gave bounds on the errors in tiie least eigenvalues

corputed using the Block Lanczos method. These bounds contained a term

l+7
( k) where ¥, = (A -X l)/(’\ -X)) , P is the block size,

s 4is the number of steps, and >\., 52 and L are the k-th,

P"
fp+l) -st, and n-th eigenvalues of A » the problem matrix of order n .
While our attempts to focrmmlate a precise streategy for choosing the
block size using this term as a relative measure of effectiveness were
largely unsuccessful, it does neld some qualitative information about
how to choose the block size. Thzt is, we try to ¢hoose p such tna.t.

the difference kk—h is as large as possible and s is n:»t tog

P+l
small. This suggests, for instance, that if several eigenvalues are

P‘,

clustered a2t one end of the specirum with a gap between.then and the
remaining eigenvalues, thet we should attempt to choose the block size
at least as large as the number of eigenvalues in the c':hzéta-.

In conclusion, we suggest that simple strategies chosen along
the lines suggested above will usually prove to be completely adeguate

in most applications.
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: 5.4 Progrem and Storege Organization

’ . It will be convenient to relate ocur discussion to the actual

: Fortran program contained in Appenéir A. In particular, we will refer

i’ 1o the various parts of the program through the names of the subroutines.
There are certain auwxilliary functions performed in the program

which we will dezl with firsi. During each jteration of the iterative
3lo¢ck Lanczos method, it is necessary ©o =0lve the eigenproblem for m: >
:the mairix of the restricied operator couputed by the Block Lanczos
method (¢f. Section 2.T7). This is accomplished via the subroutine EIGEN

which simply restores TES irn such a manner that it is acceptable to

the subroutines TREDZ2 and TQI2 - These latter subroutines are .
designed to solve standarc symmetric eigenprcblems and are Fortran i-;% ;
impiementations [21] of Algsl 4G procedures of the same name described : r'
F e in [2L]. HNote that M, is also 2 pand symmetric matrix with 2 xp+l
diagonals. Although tuere are special Technigues and programs available .
for the solution of eigenprovlems for band symmetrie metrices, we found
" & that their use did not conveniently aJ_'Low us to reduce the amount of J{

necessary time or storage. However, it is relatively unimportant which
method is used to solve the eigenproblem for ms as long as it is
mmerically stable.

In tae Block Leuczos method we compute matrices Z‘_.j and for each

matrix, it is necessary to compute its orthogomal factorization:

LTS 2 ,\-,'?F -l;‘,’m” "#«: FLI 1rom;§ WMAF‘ 1;‘
.

’ Z. = X.R.
’) d g
i where Z-(J. is orthogonal and Ri is upper trianguiar. This is accomplished
through the subroutine ORTHG whkich implements a steble variasnt of the
Y ] i
Gram~-Schmidt orthogonalization method. ORTHG wes derived from the 15
,: . ‘:
3

]
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Algol €0 procedure ORTHOG contained in the program for simultaneous
iteration described by Rutishauser [20]. CRTHG has alsd been designed
to carry out the functions of re-orthogonalization of the Xj (ef-
Section 3.1) and projection of the XJ. onto the space orthogonal to
previously computed eigenvectors (cf. Section 2.9). OEﬁ:EG is also
used to generate the initial matrix X wused in the Block ILanczos
method .

RANDOM is a subroutine used to fill the columns of an array with
a pseudo-random sequence of real values. The resulting matrix of random
elements is orthogonelized (using ORTHG) and sent to the subroutine
SECTN. SECTN rotates the orthonormal matrix X , say, so that KtAX
is diagonal as follows: X 3s multiplied or the right by U where
U is the orthonorﬁm‘.l nratrix of eigenvectcers of C = Kt'A:-: - If X

is n-by-p and dl’d'z""’dp are the eigenvalues of C , then
ooy iaom) = xTutanx = dingld)sdy - rd) -

The rotation of X can be accamplished through the subroutine ROTATE
which is also used to compute the eigenvectors of the restricted operators
(cf. Section 2.5) in the main subroutine using the matrices X and V
where Xs and Wzs are computed by the Block Lanczos method and V is
composed of same of the eigenvectors of 'ﬂis . That is, if v, dis an

i
eigenvector of M  , then ROTATE is used to compute ii where Ei = M,
for several wvalues of i .
The principal part of the program is contained in the five
subroutines called CNVTST, ERR, FCH, BKLANC, and MINVAL. CNVIST and

ERR are fairly sirple subroutines whick implement the ideas of Section 5.2.
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: ERR is called in BKLANC, the subroutine for the Block Lanczos method,

YRS oS

after 32 has been coamputed and before it has been orthogonalized with
respect to previously computed eigenvectors end reorthogonalized with

respect to X , the matrix used to start the Block Lanczos method.

EER simplwy computes the lengths = 5 of the columns of Z2 which are
the residual vectors for X . CNVIST is called from MINVAL, the main

subroutine, and determines whith of the ¢

5 satisfy the convergence

criterion described in Section 3.5.
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The purpose of PCH is 1o choose = new block size for the Bleck
Lanczos method during the next iteration of the program it another
iterzvion is necessary. The strategy of the specific subroutine
contained in Appendix A is fairly simple: The block size p during
each step will be the same as it was during the previous step unless
fewer than ©p eigenvelues remain 0 be computed. In the lztter cese, -
P 1is set equal to the mumber of eigenvelues left to be computed.

ICE also chooses a value fcr s , the mumber of stepe the Block irmezoes
method is carried out. The value of s is chosen so es to maximize

the use of the storage available to the Block Lancz=os method. If the

blocu size p is such that fewer than two steps of the Block Lanczos

met™od can be carried out because of storage l'imitations, ther p is
rednced to the point that s can be assigned 2 value of two.

The subroutine BKIANC implements the Bloclk Lanczos method of

Section 2.7 with reortkogonzlization. If p 4is the block size, s is
: . the mmber of steps, n is the order of the matrix A whose eigenvalues
. are being computed, and X 1is an n-by-p orthonormel mabtrix, the main
he purpose of BKLANC is to compute X, and 7_ , the represemtation of A
-
p
o
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restricted to X_ where Sp(x_) conmteins Sp(X,AX,--.,A57X) .

Recall, slso, that ms is 2 pXs-by-pxs symmetric block tridiasonal
motrix with p-by-p matrices M:I.’M:.’""’Ms along its diapomal and
p-by-p upper-triangular p-by-p matrices R:—z’aj’ ...,R= on its first
Jower diagomnal. The matrix xs is n-oy-pxS so an axrray T , cay, with
at least pxs cohmms of length n is supplied to BKLANC to store Xg
in. However, as we will see, previously computed eigenvector approximations
are also stored in T . If m such approximations have been obtained,
they are stored in the first m columms of T , and BKLANC stores Xg
in columns m+l through m+pXs of T . Ncte that if the actuzal
dimensions of T are n-by-gq where q is some integer value greater
tha.In one, that at any point in the execution of tae program, m , D,

and s must sabisfy
m+pxs < q .

ICH chooses values for p and s with this restriction in mind. The
initial p-by-p matrix X is stored in cclumns wm+1l through m+p
of T .

The computation performed by BKLANC is comprised of s major w
steps- During the j-th step, M; , Ry s and X, arve computed
except that during tke s-th step, only M is computed. The matrix X
is assumed to be such that M, = XAX is diagonsl. Advantage is taken

of this in the £irst step. R, and X, . are obtained by first

Jt1 j+1 _
forming Zj+l (ef. Section 2.7) and storing it in T in the same:
-~

location that X, will occupy. ORTHG is th =1 executed which

3+l
orthogonalizes Zj+1 with respect to all previcus vectors stored
in T and decomposes the result into x;j+1 and Rj+l . The

%

7 -
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orthogonalization with respect to previous vectors in T accomplishes
two ends: ‘ (1) Crthogonalization with respect to the first m columns
implies that we are applying the Block Lanczos method to A + tke .
restriction of A to the space orthogonal to previously computed
eigenvector approximations {cf. Sectiom 2.9); (2) Orthogomalization
with respect 1o tlhe remeining columms of T =za2ccaomplishes the
re-orthogonalization of zj+1 with respect to X. s i<j (ef.
Section %.1). M s s stored in rows and columis m+l through

m+ pXs ¢f an 2xray C , say. Since ms is band symmetric, only

its lower ptl diagonals are stored in C .

Pinally, the subroutine MINVAL is the main subroutine which -
combines the functions of the above subroutines into an implementaZion
of the iterative Block Lanczos method of Section 2.10. An n-by-g
arrzy T 1is suprplied to MINVAL which is used by BKLANC as described
above andé 21so0 to store the ejigenvector aporoximations as they are
computed. A variable = is used ic count the number of computed values
and vectors and when its value exceeds r , the reguired mmber of
eigenvalues anéd vectors being sought, the program stops.

The initial size of the block size D is supplied to the program.
In the preliminary phase of the program, the mumber of steps s is

selected and tre initial orthonormal matrix X is computed and xotated

so that KtAK is diagonal. The main part of The subroutine is 2 segrence

of staiamenmts which carries out steps two through six of the algoritim
descxribed in Section 2.10. The main differemce between the prograx
and the description of Section 2.10 is that the compaiation of the

eigenvectors g. is put ofY umtil the end of the 1oop. This is becar—e
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both the eigenvectors which have conver;g:éd and those that will ';'e used
to form the orthonormel matrix X for the next iteration must be
computed simmltaneously. Since the new block size is cor;zputed at the
end >f the iteration, the computalion of the eipenvectors must be
_deleyed until this point.

Information on the matrix A is passed into MINVAL through the
name of a subroutine with three arguments. When the subroutine is
called, Qne of the arguments will be an array containing & vector v ,
sz2y.-. The éubroutne computes the product A Xxv 2znd stores it in a
second arrzy parémeter. This is the only way the matrix A is refererced
in the entire program.

The storage requirements of the program are as focllows:

1. An n-by~gq array T . T 1is used in BKLANC and &lco 1o
store the computed eigenvectors. This array 1s supplied to
MINVAL by the program upich calls it. The value of g should
be as large as possible, but, in any event, it should be at
least one greater than r , the requiredirumber of eigenvalues

and eigenvectors.

2. Anarrey D of length at least g elements for storing the
conpubed eigenvalues. This array is also supplied exterpally.

2

3. fn array C with 2t Jeast g% elements. C 3is used to

store ms in BKLAWC and also to store the eigenvectors of

fﬂzs in ETGEN.

L. in array E with at least g elements for storing the nomms

of the residuals in ERR.
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In addition to the above sturage, the program also includes two arrays
in the subroutine EIGEN with at least g elements for use with TREDZ
and TQL2. Also, two arrays of lenglh n are provided which are used
with the subroutine for computing the matrix-vector product Ay where
¥ is a vector. All these arrays were provided to make the program
more flexible znd usable and are to 2z certain extent, optiocnal.

By far the bulk of the camputation is performed by the subroutines
BKLANC, EIGEN, and ROTATE so we will confine our operation count
analysis to these three subroutines. The counts given below are for
either additive and muitiplicative operations and are for one step N
of the iterative Blocck Lenczos method. The terms n, nm , p, S are
the order of A , the number of previously computed vectors, the block

size and the number of steps for the Block TLanczos metnod, respectively.

1. BKLANC :
Computation of M, 's: ) 1)(s-1
L 2
n(30° + p(s-1)
Computation of Z; 's: np + R

Computation of xi 's and Ri’s: 2nmps+npasg+ nps
2. EIGEN (using TRED2 and TQL2): approx. 2(1:-5)3
2
3. ROTATE: =np s .
In ition, there are pxs matrix-vector products computed in BKLANC.
This computation is performed externally and devends on the matrix A .

Depending on the problem, it may completely overshadow the rest of the

computation or it may be insignificant in comparison.
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Example. Suppose n=1000 , D=5, 8 =4, and m=3. We

then have the following counts:

1. BEKLANC:
Computation of Mi 's: L5,000;
Computation of Zi 's: 120,0003;
Computation of X's and R's: 540,000;
2. EIGEN‘: 2k4,000. |

3. ROTATE: 100,000.
>

To addition, there are 25 matrix-vector products involving A
which is of order 1000 .

From this example, we’ %ee that the bulk of the computation takes
plece in BKIANC, and in pé..:'ticular, in the computation of the xi 's
and Ri 's which involves the orthogonalizatisn of the Zi 's . This
exemple is fairly representative of the situation in gemeral.

The above operation counts don't really say anything ahout the
cverall r@ning time of the program since this depends on how fast the
computed eigenvalues and vectors converge to those of A . The rates
of convergence in turn depend on the spectrum of A . In the next
chapter, we will consider some specific examples and compare our

algorithm with the method of simmltameous iteration.
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L.  NUMERICAL EXAMPIES

In this chapter, we will consider the results of applying the
iterative Blocx Lanczos algoritbm to a number of examples. We will
also compare some of our results with those cbtained using the method
of simultanecas iteration described by Rutishauser [20].

For the purposes of testing c;ur method and the method of
simultaneous iteration, diagonal matrices are sufficiently general and
particularly convenient. That they are sufficiently generel arises
from the fact that neither of the above methods transforms the matrix 2
whose eigenvalues are being computed or in any other way attempts to
take into account the structure of A . Rather. the only way A is
referenced is through a subroutine which computes v = Au <Where u

is a given vector. If_
A = diag(hl,hg, - -J?"n)
vhere n is the order of 4 , then

vy o= Ay .

where us and v; are the i-th components of u and v , respectively.
This can be easily programmed and 2 large number of different examples
can be gquickly generated whose exact eigenvalues and eigenvectors are
known. More important than knowing the spectrum is the fact that we

can specify the spectrum of A and therefore can study the behavior

of our method from the standpoint of test examples whose spectrums very
according to the separations and multiplicities of their eigenvelues.

All but one of our examples will be chosen from this class of problems.
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It is somewhat difficult to compare the iterative Block Ianczos
method to the method of simultaneous iteration since the computations
they pg:;-form are differcnt. One mearurce is the totnl Lime each require:
to solve & particular problem but this standard is rather crudc and
uninformetive. There are two érea.s, however, in which the computations
performed by the two methods coincide -- the computation of n;atrix-vector
products Ay where ¥y 1is a vector, and the orthogonalization of the
columns of & metrix which involves computing a large number of vector
inner products. As we saw (cf. Section 3.4) a major part of the compu-
tation time in the itérative Block Lanczos method is spent in these two
areas 'a.nd the same is true of simltaneous iteration. Thus, for the

purposes of comparing the two methods, we will report the following:

1. The computed eigenvalues By -

2. The magnitudes €5 of the residunal vectors A:r:i ~ By
where xi is the eigenvector corresponding to By -

3. The number of matrix-vector products computed.

4, The number of vector inner products computed in the

orthogonalization routines.

5. The total execution time for the entire program.

Additionally, for the iterative Block Lanczos method, we will report
the number of iterations reguired which is also the number of {imes
the Block Lanczos method per se is carried out.

A listing of our iterative Rlock Lanczos program is contained in
Appendix A. The output statements used to print out program statistiecs

have been deleted from this listing.
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Our progrem for simultameous iteration is a Fortran translation
of the Algol 60 procedure ritzit deseribed by Rutishauser [19,20].
This procedure is actually a combination of simultancous iteration
end a Chebyshev type iteration. The biggest difficulty in using this
program as a standard for comparison is. thet it often overshoots its

H
goal. That is, it either computes gesults far more accurately than

desired (taking more time in the process) or it computes more eigenvalues

and eigenvectors then asked for. Witk our method, it is far easier to
control both the precision and number of results computed. Thus, our
plan has been to perform a2 computation with the simvltaneous iteration
program and then attempt to match its results in some sense using our

iterative Block Lanczos program.

Note: While our version of simultaneous iteration is a nearly
literal transliation of the Algol €0 procedure, there are some minor
differences between the two. The differences arise from our attempts
to rectify some errcrs in the published version of the Algol €0
procedure, and to clarify the structure of the program which was very
complicated at the start. No essential change wes made in the
algorithm, however, which would compromise its efficiency-

We now proceed to the examples. In each example, we will specify
values for r , the required number of eigenvalues and eigenvectors to
be computed, and q , the number of columns of length n in an array X
which is used in ‘r;oth the iteratiwve Block Lanczos method and the method
of simultuneous iteration. For both methods, the value of g must be
greater than that of x . In addition, for our method, we will give

values for eps , the spproximate precision desired in our computed

96

T S O S

o Jj-‘;.‘_k

AR R RG  s i

§

g gy it

Ti

+
o vt o



results, and p , the block size to be used in the Block Lanczos
method. The strategy used for choosing the block size is as described
in Section 3.4. That is, the block size is chosen to be the least of
the two following values: (1) The initial block size 7P 3 and,

(2) the number of eigemvalues left to be computed. This strategy is
implemented by the program listed in Appendix A.

In Examples 1; 2, and 3, we will compare our method with the
method of simultanecus iteration when both are applied to problems
with characteristic types of spectre. In Examples 1 and 2, we will
consider problems for which our method is more effective. Example 3,
in contrast, favors simultaneous iteration. In Examples b and 5, we
will consider the behavior of our method on matrices with multiple
eigenvalues. Example & involves a2 matrix with very close eigenvalves.
Finally, in Example 7, we will consider the results of applying both

programs to the problem of computing the least eigenvalies and eigen-

vectors of the discrete biharmonic operator.

Example 1.

A 1is a (diagonal) matrix of order US54k with eigenvalues
A, =-10.00 , A, =-9.99, Ay = -9.98 , and Ay = -9-00+ .02 x (i-h)
for i =k,5,...,454. With q =15, r=3, p=3, and eps =10'8,

the iterative Block Lanczos program computed

b = -9-99 999 999 999 9% , € = LT3xW0°
bp = -9-98 999 999 999 99k , ¢, = 2.85x20°
by = -9.97 999 999 999 991 , <5 - 2.11x10°0 .
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Note that |e /u.| < 1078 in each instance. Eleven iterations were
required for this computation.
In contrast, the program for simultanecus iteration computed
-6
By = -9-99 999 999 999 995 , € = 3.09x107° ,
-6
mp = -9-98 999 999 999 999 , ¢, = 1L.09x10°° ,
-6
bs = -9-97 999 999 999 992 , e: =2.21x10° .
Note that the values of the ¢ i are greater in this case.
Table L.l summarizes the comparzative statistics for the two
prog;rams
Table k.1
matrix-vector vector inner time relative
’ products products (sec.) precision
Block Lanczos 165 1265 15.95 approx. 10-8
Sim. Iter. 750 1560 69.03  approx. 1076

Times, unless otherwise indicated, will be total execution times for
programs compiled using the University of Waterloo Watfiv Fortra.n
compiler and executed on anm I.B.M. System 370/168 computer.

This example is typical of those problems in which the iterative
Block Lanczos aigorithm can be used to best advantage. In particular,
problems in which the eigenvalues to be computed are seperated from the
remaining eigenvalues by a relatively large gap.

Note in each case that the eigenvalues are about twice as accurate

as the ei indicate.
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Example 2.
The matrix in this example is the same as in Example 1 except that

the gaps between the digenvalues have been decreased by a factor of 10 .

Thet is, A; = -10.00 y A= 9999 , Ay = -9.998 ,

: A'i = -9.900+ (i-¥)x.0062 , 1 = h,s,j...,hsk . As before, r = 3 and

q = 15 . :
With p =35 and eps = 10-8 s the iterative Block lanczos program

computed in 10 1iterations the following results:

by = =9-99 999 999 9% 996 , € = B.96x107

Bp = -9-99 000 000 000 002 , ¢, = 1.9r7x1'c>'8 ’

by = 9-99799 999 999 M9 , ¢ = 139x107° .
The sitgultaneov.s iteration program computed

by = -9-99 999 999 W7 B15 , e = 7.91x107°0

by = =9-99 899 999 997 082 , ¢, = 1L.g2x10°° ,

bs = -9.99 799 999 920 753 , <=, = 9.-61x107° .

In each case, the errors in the computed eigenvectors were approximately
the size of the € 's.

This example produced the results given in Table 4.2.

Teble 4.2
matrix-vector vector immer time relative
products products (sec.) precision
Block Lanczos 149 11ko 11.80 1078
Sim. Tter. 1785 1800 g8a.9h 1076
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The behavior of the iterative Block Lanczos Drogram was virtually
wiaffected by the reduction in the spread of the eigenvalues. This
exemple serves to illustrate the point that the rates of convergence
of the approximations depend on the gaps between the eigenvalues
relative o the spread of the eigenvalues. This is suggested by
Theorem 2.6.1 in which the bounds on the errors in the w; depended

on the eigenvalues through the quantities 7 where

_ (»; -LE:J-)

* (ki = )"n)

Decreasing the gaps between a2ll the eigenvalues by a constant factor

does not affect the value & 7,
The simultanecus iteration program, however, suffered by this change

since the results it computes converge at rates that depend on the

ratios A p+1/"i which increase when the eigenvalues were brought closer

together.

Example 3.

A is a (diegonal) matrix of order 101 with eigenvalues equally
spaced in the interval [-1.0,90.0] . That is, hi = =(101-3)/100 ,
i = 1,25.045101 . In this example, we have T =6 and q =10 . In
addition, we choose p =2 and eps = 107 for the Block Lanczos method.

The jterative Block Lanczos program then computed six eigenvalues:
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by = =999 999999 T--- 5 € = -95x107° ..

bp = =989 999 998 3... , ¢, = Lgkx107 , “*

by = -.980 000 000 3... , & = 1.29x107°

by = =-970 000 00 T--- , ¢ = 1.55x107° , l :

by = =959 999 999 6.-. 5 &g = 2.07 x107

wg = —-949 999 998 T-.. , e = 1.75x107°0 .

Note that the residuals exceeded 10 2 in the last five eigenvalues.
This was because of the allowance made for the error in the firsil
eigenvalue and eigenvector.
The simzlﬁaneous iteration program computed seven. (even though

only six were asked for):
py = =-1.000 000 000 000 , & = 2.13x1077 , |

bp = -9B9 929999999 , g, = 2.56x107

by = 199G 99 IW , e = 6-T5xWT

by = —-969 999 999 99, el; = 2.21x10'8 3

b = =959 999 999 Le6 €5 = 1.91x1077 , z

pg = -—-99 999 999 995 , e = 2.02 x107 ’ §

by = —B999 999959 , e = b5k x1070 . B

The comparative statistics for the two programs a.fe given in §
Table k.3, g
: 3
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iteration was made as the simultaneous iteration program computes:

P I U PES R B e T R L T L ] e e e, P T TR - ] e ™ 8
T B . ' . . . 7 A -
- -~ - LAY X

Tevle k.3

matrix-vector vector time
products inner-products (seec.) - precision

Block lenczos 350 " ag7h 17.96  approx. 1072

Sim. Iter. 625 795 9.13 approx 1077
~ or less

This example is typical of the type of problem for which Smultane:ms
jteration performs better than the iterative Blcck La.nézos method.“
That is. problems for which the spectrum is fairly dense with ]_'".t'tle.
or no distance between those eigenvalues being saught and the renaa.n:mg

eigenvalues, and for which r is & large frectiom of g .

-

> -
- '

Example L.
A is a (diagonal) matrix of order 180 with eigenvalues

A =X, =0.0, 73 =N, =0.1, and A, = .25+ (i-5)x.01 ,

i=56...,180 . Thus, A, =2.00 . No comparisan with s:‘uuulta.neous

eigenvalues of greatest modulus which are different in this case
the least eigenvalues. ‘ ' ‘

For this exemple we chose g =10, r =14, eps - 107"
p=21,2, 3 and 4. For each of the four valunes of p , the ite
Block Tanczos method computed four eigenvalues with residuals on tHe:

order of 10" . For instance for P =2, we compated
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by = 5.38 x 1072 »oug = .58%:10'L :
by = 1.57x107 S A
ws = -100 000 000 9... , g = 1. rrxlo'l‘ ’
m, = <999 999 9T 9--. 5, gy = -628;<10'1"

The results for the other three éases are similar. The largest residuzl
in any case was approximately l.597(:i.0'1+ . Note that for this case,
the error is absolute and not relative errcr. The eigenvectors for

B1 and By vere primaxily linear ccmbinations of e, and e and
the errors-in the remaining componexnts were 3n all cases apprcximately

the size of the residual or less. 3imilariy for k3 and ) -

The comparative statisties for the four values of T are as

follows:
mabtrix-vector vector inner time
iterations products products (sec.)
p=1 20 158 997 15-19
p=2 i5 125 725 .15
P=3 a7 10 699 12.50
p=k 5 317 . 1330 29.53

Note that there was a Jdefinite improvement from p=1 to p=2 .
Multiple eigenvalues tend -to slow down the standard Iarczos algorithm
(p = 1) since the eigenvalueé of the restricted operator will converge
to oniy one of a set of multiple roots. With q = 10 , effective use
of all the v;rorlci.ng storsge could not bemade with p=3% or p=21

{since neither divides 10 evenly). However, with the program listed

103

PR SRR e A i



ey T

N
%
in Appendix A, a biock size of 5 was chosen after the first iteration
with p = 4 . Even though this change made better use of storage,
more time was required here than in the other three casec. . .
Example 5. L '_
A is 2 (diagonal) matrix of order 300 with eigenvalues
. M =00, Ay=0.3, M =01, N =01, A =1-3/(i-1) for '”‘ ,
o i=5,6,...,300 . For this example, we choose r =3 , q = 12 , end - 1
eps =10 . Wetried p=21,2,3 . Of the three values, the fastest Ty
A
execution was achieved for D =3 . In four iterations, the following
. results were canputed: :
by = -000 000 002 g22 313 , & = -32Tx107 :
Ly = -100 000 000 000 0Ok , e, = 49 x107° A
ks = -100 000 000 090 571 , &5 = 110% 107 . .k
.
The statistics for this computation are as follows: k
matrix-vector products: 36 ’ ,
vector imner products: 288
time (secs.): 7.86 -

The eigenvectors for and were pr-_ma.r:.:ly combinations of e o
U'a "'5 2 s

: and e > the unit vectors with ones in the second and third positions,

¥ respectively. The errors in these vectors are again proportionz2l to the
sizes of the residuals € -
i The fact that for p =3, J\P = J\P{_l shows that Theorem 2.6.1
f r on the rates of convergence does not adequately explain all situstions.

Lo
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In fact, >'.2 converged much more rapidly than 7\.1 » leading us to

conjecture that the rate of convergence for 7‘2 involves Ls = .25

rether than Kpﬂ_ = A‘h = .1 . We bhave, however, found no way of

establishing this conjecture.

Example d.

= wiin =

A is the same matrix as in Example 5 except that My = -0999999 ,

h3=.1000000,a.nd. A, = -1000001 . 1In this example, r=4, gq=12,

and eps = 10'5 . Qur iterative Blcck lanczos program computed

By = -000 000 o571 & = 9.:.2x1o‘h ,
wy = -099 999 926 , & = 1-93x10'h s
s = .100 000 002 , €5 = 9.l+7x10'1L ’
wy, = -100 000 078 , ¢ = 1.h2x1076 .

Note that in the case of ) , The error is approximately of order

rather than e12|_ - Furthermore, the eigenvectors for Bp 2 W3 and

y
By

each contained significant ccﬁponents of the eigenvectors. corresponding

to X ,7\3,a.nd .'\h‘ Rasically, the program regards A ,Aa,and
L}‘_ as multiple roots and any combination of their eigenvectors as an

eigenvecitor also. Each compubed eigenvector of Ho > b3 2 and N

was very close, therefore, to the space spammed by the eigenvectors

corresponding to ?\2 ’ Lj » and }‘11- .

These results are not indicative of a defect in our algorithm but

represent inherent limits in the accuracy obtainable for eigenvectors

corresponding to very close but distinct roots (cf. Section 1.2).
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The statistics in this case sre as follows:

l. matrix-vector products: Sk

2. vector inner products: 408

3. time (secs.): 11.29
k. iterations: 6 .

Example 7-
The natural modes of vibration of a square clamped elastic plate

can be solved by the following partial differential equation for o

and A :
i b L )

°) 20 5}
; —%-{- = g + _Em = 2(%y) (4.1) i
ox 3 xy oy - :
.
in the interior of the plate with
@ = O = ncrmal derivative of |
on the boundary. If we attempt to compute a discrete approximation to ,
the solution of the above eguation at the points of a mesh superimposed ”
on the plate, then we are led t0 a symmebric eigenproblem
1 5
H = AX &
¥

where h is the mesh width and H is a symmetric block pentadiagonal

matrix derived using a 13-point finite difference gpproximation to the

differential operator in Equation 4.1 [1]. Rather than compute the

eigenvalues of H , we will compute the eigenvalues of A = -H-l - Note

that if 7\157\25... <\, &re the eigenvalues of H , then

4
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V] Svp S -ve Sy, Where v, = - llk:.L are the eigenvalues of A .
Thus, if we compute the least eigenvalues of A , their negative
reciprocals will be the least eipgenvalues of I with the same

clgenvectors. 'M'o compute ¥y - Ax given x , we colve

Hz = x T (%.2)

and set

To solve Equation (L.2), Wwe use a program provided by Dr. Fred Dorr of
the Ios Alamos Scie.ntii‘ic Iaboratory.-. This program is based on an idea
of Buzbee and Dorr [2] and computes a sclutior to Equation (4.2)
by a direct method.

For a unit square and a mesh width of h = 1/33 , the order of A
is 5:!2 or 102h . For this problem we choose o 16, r 12 .
With p =3 and eps = :LO"ll , our progrem computed the results pgiven
in Teble b.k where for each eigenvalue v of A , the corresponding

frequency f of vibration of the plate satisfies £ =1/ Jt

84
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Because of the allowance made for error in previously canputed

eigenvalues and vectors, the relative error in the last four

-

eigenvalues and for the last eigenvalue is

approximately

The frequencies computed from the eigenvalues of A correspond

exceeds 10

eigenvalue of

A

=922 .9163%
-2235.74994
-225.7%991,
-195,22k29
~70.423L8
-(9.75160
-4k . 77957
-4 77956
-27.908L0

| -27.90839

-25.29525

-21.0675k

2x 107 .

Table L.4

residual
e 3
%

?
3

0.65x 1077
0.21x107%
G.25 % 1077
0.96 x lf)_l‘
1.05x 1077
1.82 x 157

1.29x 10~
3.06x 107

1.52x 1072

2.05x% 1072

1.87x 102

5.85 x 1072

frequency of

Jibration

55.8270¢
72.80252
72.80252
207.18577
129.768L6
150.41065
1€2.75760
162.73760
206.13913
20€.13917
216.52528
237.2580k

closely to those reported by Bauer and Reiss in [1]. Note that

eigenvalues 2 and 3,

multiplicity 2 -

describe fundamental modes of vibration very similar to those reported

' {1].
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7 and 8, and 9 and 10 are mltiple with
Rough graphs of the eigenvectors verify that they
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The simultaneous iteration propram could not complete its

L O PPt

computation in the two minutes of time allotted to it. Thus, we 1

Sl

increased the mesh width to 1/25 which lowered the order of A

to 576 . The program then computed the 13 least eigenvalues of A
to relative precisions ranging from approximately 10—:"}+ to 10'1‘ - e
Both the frequencies and fundamental modes of vibration described by
the eigenvectors computed herc are what one would expect based on the

results reported in [ 11].

Teble L.5 summarizes the reswlts of the two programs.

Table L.5 =
matrix- vector no. of
Order vector inner time eigen- rel.

of A  products products (sec.) values oprecision

apPprox.-
Block Lanczos 1024 1ks5 1233 . 85.52 12 10'6 to 10'5
approx.
s z = -1h4 =4
Sim. Iter. 574 223 1752 £9.92 13 10 to 10

A total of 19 iteratiosns were required for the iterative Block Lanczos
method..

As we pointed out at the start, it is difficult to use the
simaltaneous iteration program as a standard of comparison since it is
hard to control the number and precision of the results it comiutes.
HoweveYy. we would say that our program did a better job of completing
its assigned task of camputing 2 specified number of cigenvalues to a

specified precision. - :
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APPIIIDIZ: A TOPTRAN CROGRAM

This Appendix contains a listing of the prograz for the iterative
Block Lanczos method. See Section .4 for a discussion of the program.

A sample driver program is included with a tect problem.

110



I

R o A o T e

e e e e e

3 A ¥R S T A M Y e

OOOOOONNNNNNONNANNONNNOCNNNNANONONONNNNNNANNMNNNNNNNCOONONOOONONOONONN

;
SUBRQUTINE MINVAL N,Q 9)1th +RMMAX,EPS,0P,M,D, X,IBCODE",Q'

IMPLICIT REAL*8 ‘{'
INMR EPéQ ,PINIT,R,MAX

/

7

nmasmu" 5(0) ,X(N,Q) J
INTEGER IEC(QE' ’ .

THIS SUBROUTINE IS THE MAIN SUBROUTINE
gIDIENTLNG THE ITERATIVE BLOCK LANCZOS METHOD

ING THE EIGENVALUES AND EIGENVECTORS OF
SYMMETRIC MATRICES.

DESCRIPTION OF PARAMETERS:

N: INTEGER VARIABLE. THE ORDER OF THE SYMMETRIC
MATRIX A WHUSE EIGENVALUES AND EIGENVEIORS ARE
BEING COMPUTED. THE VALUE N SHOULD BE LESS THAN
OR EQUAL TOU 1296 ANDGREATER‘]HANOR EQUAL TO 2.

Q: INTEGER VARIASLE. THE NUMBER OF VECTORS OF

LENGTH
N CONTAINED IN THE ARRAY X. THE VALUE OF Q SHOULD
8E LESS THAN OR EQUAL TO 25, AT LEAST QNE
GREATER'IHAN'IHEVA[BEOFRMD[ESSTHANOR

OR EQUAL TO N

PINIT: INTEGER VARIABLE. THE INITIAL BLOCK SIZE TO BE
USED TN THE BIOCK LANCZOS METHOD. IF PINIT IS
NEGATIVE, THEN —PINIT 1S USED FOR THE BLOCK SI
AND COLUMNS M+L, . It (PINIT os"msmmxx
ARE ASSUMMED TO BE INITiALY INITIAL
MATR(X USED ‘IO START THE BLock mezos METHOD. IF

THE SUBHOUTINE TERMINATES WITH A VALUE OF MULESS
‘fHAN B, TuEN PINIT 1S ASSIGNED A VALUE —P WHERE P
zs&ssnm.smcxs ZE CHOSEN. IN THIS

CI L4 *ee H+P m
THE MOST RECENT SET OF ET R APPROXIMATIONS
wHICH CAN BE USED TO RESTART THE SUBRUJTINB Ir
DESIRED.

R: iINTEGER VARIABLE. THE NUMBER OF EIGENVALUES AND

AND EIGENVECTORS BEING COMPUTED. THAT IS, MINVAL

ATTEMPTS TO COMPUTE ACCUM‘]S APPROXIMATIONS TO THE
R LEAST EIGENVALUES AND EIGENVECTORS OF THE MATRIX
A. THE VALUE OF R SHOULD BE GREATER THAN

ZERO AND LESS THAN Q.

MMAX: INTEGER VARIABLE. THE MAXIMUM NUMBER OF MATRIX-
VECTOR pmcrs A*X WHERE X IS AVE!IOR'IHATARE
ALLOWED DURING ONE CALL OF THIS SUBROUTINE
GI“IPLE.TE I'I'STASK OF COMPUTING R EIGENVALUES AND

IGENVECTORS. UNLESS PROBLEM INDICATES
O'I‘I-'lERWISE MMAX SHOOLD EE GIVEN A VERY LAKGE VALUE.
: REAL*8 VARIABLE. INITIALLY, EPS SHOULD CONTAIN A
A e e L AL
EIGENVECTORS OF A. FOR EIGENVALUES LESS IN
WILL BE AN TOLERANCE

GENV. TO THE
SAME RELATIVE PRECISION AS THOSE LESS IN VALUE.
oP: SUBROUTINE NME. THE ARGUMENT CORRESPONDING
A SUBROUTINE USED TO

TO OP SHQULD ZSE THE NAME OF

DEE‘INE! THE MA‘!!RIX A. THIS SUBRCIJI'INB SHOULD HAVE
ARGUMENTS N .N.‘JDV. WHERE N IS AN

IN’I‘ESERVARIABLB& HDEQOFANDUANDV

AREMONE—DIHENSICNALARM!S OF LENGTH N. IF W

-t

.
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DENOTES THE VECTOR OF ORDER N SIORED IN U, THEN THE
STATEMENT

CALL OF (N,U,V)

SEDUIDRBSULTIN‘JBEVEXZ‘IURA‘WBERBMITBDAND
STORED IN V. THE CUNTENTS OF U CAN BE MODIFIED BY
THIS CALL.

M: INTEGER VARIABLE. M GIVES THE NUMBER OF

EIGENVALUES AND EIGENVECTORS ALREADY COMPUTED.
THUS, INITIALLY, M SHOULD BE ZERO. IF M IS GREATER
'IBANZERD, THEN COLUMNS ONE THROUGH M OF THE ARRAY
ARE ASSUMED TU CONTAIN THE COMPUTED
APPK)XIHATIWS TO THE M LEAST EIGENVALUES AND
ENVECTORS M CONTAINS A

OF A. AT EXIT, AIN

vawe TO THE TOTAL NUMBER OF emnwawm AND
RS COMPUTED INCLUDING ANY ALREADY

ooumm:owumnmvumsm . THOS, AT EXIT

THE FIRST M ELEMENTS OF D AND THE FIKST'M COLUMNS

OP X WILL mm-m APPROXIMATIONS TO THE M LEAST

EIGENVALUES OF

Dz REAL*8 ARRAY. D CONTAINS THE COMPUTED EIGENVALUES.
DEKXJLDBEA(NBDIHENSI(NALARRAYWI’IHATLEASTQ

X: KEAL*8 ARRAY. X CONTAINS

I
‘HE FIRST N ELEMENTS, THE SECOND IN THE SECOND N
ELEMENTS, EIC

IECODE: INTEGER VARIABLE, THE VALUE OF IP-GDE DICATES
WHETHER MINVAL TLMINATED SOCCESSEU AND IF NI,
THE REASON WHY.

SUCCESSFUL 'IERQINATICN.

THE OF R IS LESS THAN ONE.
msvawznoeorsnessmmoa
'ra:-:u VALOE OF Q IS GREATER THAN 25.
ms\mnaos EXCEEDS N

OF mssmmeo

BEE‘ORBREIGBNAIDE
EIGENVECTORS WERE COMPUTED.

WNOTE THAT THE mmmmmx@mmm INITIAL
APPROXIMATIONS TO THE EIGENVECTORS CORRESPONDING TO THE LEAST

EIGENVALUES TO BE UTILIZED IF THEY ARE RNOWN (BY STORING THEM

IN X AND ASSIGNING PINIT MINUS THE VALUE OF NOMBER,

FURTHERMORE , ITB&"':ALSDBEEN[BIQED'IU

II"ITSIOPS WITH IECODE=7. ‘THOUS USER OF THIS PROGRAM CAN

‘ESEFSSAKI‘ AE']‘ERBXHIININMPAR‘I RESULTS WITHOOT LOSS

BIRENSION §IT3beT VBl
INTEGER

ls’

%
8
s§§
-
E
#

IECQODE=!
IECODE=?7

at

?;\"-5%‘3)433..:.&.., RN
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154

200

300 IF

CHECK THAT THE INITIAL VALUES OF THE SUBROUTINE
PARAMETERS ARE IN RANGE.

IF (N.LT.2) QO TO 921
IF (N

1
IF (R.LT.]1 943
IP §.LE. L G0 _TO 904

IF GT.23) GO TO 985
IF (Q.GT.N) GO TO 996

CUOQSE_INITIAL VALUES FOR THE BLOCK SIZE P, THE NUMBER
OF STEPS THE BLOCK LANCZOS METHOD IS camxéo QUT, AND
CHOOSE AN INITIAL N-BY~P ORTHONORMAL MATRIX X1 USED TO
START THE BLOCK LANCZOS METHOD.

P=PINIT
g(gﬁmim p=—pP
IF (S.GT.2) GO TO 1¥¢
5=2 )
P=0/2
IF (eINIT. ug .8) G0 TO 150
SRt RANDCH (N,Q,K, X)
IF (M.GT.8) GO TO 200
CALL ORTHG(N,Q,M,P,C,X)
ROTATE THE INITIAL N-BY-P MATRIX X1 SO THAT

X1 ‘*A*X1 = DIAG(D1,D2, ... , DP)

WHERE DI IS STORED IN D(I), I=1, ... , P.
CALL SECTN(N,Q.M,P,0P,X,C,D,U,V)

ERRC=#.8D0

ITER=9

M=

THE HAIN E)DY THE SUBROUTINE STARTS HERE. IMM
QOUNTS TH N!E‘IBER OF MATRIX=-VECIOR PRODUCTS

CQOMPUTED
WIGISEENHBEROPT.HETHEMNEWBY
Op IS CALLED. ERRC MEASURES THE ACCUMOLATED ERROR IN
THE EIGENVALUES AND EIGENVECTORS.

{H.GE.R) G0 T0 9910 997
I‘I'ERB ITER+]1 *
PS=P*S

M+]1 THROUGH
RESIDUALS FOR 'msssvammsammelcmvmas
APPKJXIHATIQIS IN D ARE-COMPUTED AND STORED IN E.

CALL BKLANC (N,Q,M.P,S,0P,D,C,X,E,U,V)
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908
981
992
993
904
905
906
997

EIGEN SOLVES ‘I'HE EIGENPROBLEM FOR MS, SIORING THE
EIGBWALUB ELEMENTS M+1 THROUGH M+PS OF D

EIGENVECTORS IN THE FIRST P*S FOWS AND
COLUMNS OF C (OVERWRITING MS, POUSSIBLY.)

CALL EIGEN(Q,M,P,PS,C,D)

TST DETERMINES HOW MANY OF THE EIGENVALUES AND
EIGEINVEX?IDES HAVE CONVERGED USING THE ERROR ESTIMATES
STORED IN E. THE NUMBER THAT HAVE CONVERGED IS STORED
IN NCONV. IF NCONV=fl, THEN NG‘E HAVE CONVERGED.

CALL CNVTST(N.Q,M,P.ERRC,EPS,D,E,NCONV)

PCH CHOOSES NEW VALUES FOR P AND S, THE BLOCK SIZE AND
THE NUMBER OF STEPS FOR THE BLOCK LANCZOS SUBPROGRAM,
RESPECTIVELY.

CALL M(N.Q,H,RpmrPrS)

ROTATE COMPUTES THE EIGENVECTORS OF THE RESTRICTED
OF THE RESTRICTED MATRIX USING XS STORED IN X AND
THE EIGENVECTORS OF MS STORED IN C. THESE VECTORS
SERVE BOTH AS EIGENVECTOR APPROXIMATIONS AND TO
FORM THE MATRIX USED TO START THE BLOCK LANCZOS
METHOD IN THE NEXT ITERATION.

CALL ROTATE (N.Q.M,PS,NCONV+P,C,X)

M=M+NQONV
IMM=IMM4+P*S
GO TO 300

mxsxsmsamoe*'msmnmormssumrrma NOW
SET THE

VALUE OF IECODE AND EXIT
IECODE=0

11k
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SUBROUTINE BKLANC (N, M.P,S,0P,D,C,X,E,U,V)
IMPLICIT REAL*8 Z)

INTECER N By
Dmmsmn E{Qf . }3) %'xm'm

THIS SUBROUTINE IMPLEMENTS THE BLOCK LANCZOS
METHOD WITH REORTHOGONALIZATL BKLANC COMPUTES
AB.DCKTR;IAG)NALHATRI MS WHICH IT STORES IN
ROWS AND QOLUMNS M+l THROUGH oF

D MATRICES
R{(2), -.. » R(S) ALONG ITS LOWER DIAGONAL. SINCE
ré}ésxmsm{) BANDED, ONLY ITS LOWER
TRIANGLE °+1oumuu5}1ésmmomc. %S I

ED OF S N-57-P CRT Dok L NATRICES (1) .
STORED IR ILi P OF X.

FURTBERMORE X(1) IS ASSUMED 0 SRTISEY
X ‘A’Xél} = DIAG{D(HH.) D(+2) 'iO"' s Deep)) E
B e Vet STORED IN 1 THROOGH M OF X.
m:swzmosmmmmmm

DEPTNE THE MATRIX A ~DURING THE FIRST s'mp. THE
smmawrm—: ERR IS CALLED

PGTED WHERE EJ = A*le mJ

S ThE gh QoLgeN oF X)L, A0
THE EUCLIDEAN NORM w J=1.
2, ..., P. U AND V ARE AUXILL
8t op.

MP1l=M+1
MPPS=M+P*S

DO 99 L-1,85
LL=M+ (I~1) *P+1
L=M+L*P

DO 78 K=LL,LD
8 I=},N

1)=x(I, &
c&:l &80, n
IF (L.Gr.l) @ TO 19
Do 12 1=K, L0

glg—ﬂ 509

c K= =D K)
GSI)IGVéI)-D{K)*x(I,K)
DO 38 I=K,LU
=8
DO 28 J=1,N
T4V (J) *X(3, 1)
C(IIK)-

IT=K~P
DO 60 I=1,N
=

T=1+x(1,3) ¥C(K,J)
IF (K.£Q.L0) & T0

DO 58 J=KP1,L0

R




i

- gy

S AT

S¢ T=T+X I.J)'C(JrK)
69 V(I)=v(I)-T

6l IF él. EQ.SL QU TO
63 X(I K+P)=V(1)
7¢ QOUNTINUE

L.EQ.1l) CALL ERR(N,Q,M,P.X.E
IE‘LBQ.SG)‘.‘ID9('Q"")

CALL ORTHG (N,Q,LU,P,C,X)
IL=LU+1
IT=LU
DO 89 J=1,P
IT=11+1
DD 8@ I=IL
80 C(I, IT—P)=6(1.IT)
9% CONTINUE

RETURN
END
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SUBROUTINE PCH&N Q,M R NCONV P, S)
> IMPLICIT REAL* 0—2)
INTEGZR N,Q.M,R NCONV. S

BASED QN THE VALUES OF N, ASD M, R , PCH
CHOOSES NEW VALUES FOR rél-: BIDCK sxze AND

NUMBER OF STEPS FOR THE BLOCK CZ05 METHOD.
STRATEGY USED HERE IS‘IOCH(”SEPTOBETHE
SMALLER OF 1HE TWO FOLLOWING VALUES: 1) THE
PRBVIOUS BLOCK SIZE; AND 2) THE I\IJMBER OE‘ VA[UE:S
FT_TO BE COMPUTED. S CHOSEN AS

IMPCBED 8Y TEE
IS GREATER

"

HAVE CONVERGED IN THE CURRENT ITERATION.

INTEGER PT,SY
MI=M+NCONV *
PI=R-MT

IF (PT.GT.P) PT=P
IF (°PT.GT.8) GO 10 181
P=p

RETURN

O ONOOONOONDONOONNOONONEG
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73
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i
%
L]

==
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w

c
181 QoON
QSE 5T o 0 110
e PT' {O-MT) /2
114 P=PT
c 5=ST
RETURN
END
-
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SUBROUTINE ERR(N,Q.M.P
THPLICIT RB%L* N(giﬂ "z‘fs)

INTEGER N g
DIMENSION (N.Q) E(Q)
ERR COMPUTES THE E‘.UCLIDEAN LENGTHS OF THE VECTORS
STORED IN oomms P+l 'umouc;a n+p+p OF THE
N-BY: ARFAY AND STORES THEM IN ELEMENTS M+l
M+P OF E.

H.PI-M+P+1

MPP=M+P+
00 200 K"HPl,HPP
-r-a Do

1aﬂ I=1h

;&Rﬁ ‘ (T)

118

W W W Eyw—pemmm—

LT TORN

LN

Rt

rade .

DRV I

B TR
[ e



RO PR TORS!

O ONOOOOONONONNON

109 K=I
2090

300

SUBROUTINE CNVTST (N,Q,M, P, ERRC,EPS,D,E,NCONV ’
TMPLICTT REALSS (a-8.0-%) " +D- £ NCONV) .

+P

REAL*
DIMENSION D{Q) ,E(Q)

QIVTST DETERMINES WHICH OF THE P EIGENVALD
SIOREDINELB!EHTS M+l THROOGH M+P FDHAVE
CONVERGED US 'IEETETDESCRIBED]NSELTIONBZ.
ERECI AMEESURE THEACCUH[ILATEDERRD IN THE
M PREVIOUSLY COMPUTED EIGENVALUES AND
EIGENVECTORS, ERRC IS UPDATED IF MORE
APPROXIMATIONS HAVE CONVERGED. THE NORMS OF THE
RESIDUAL VECTORS ARE STORED IN ELEMENTS M+l
THROOGH M+P OF E. EPSIS‘]BEPRBCISICR'IOWICH
WE ARE COMPUTING THE APPROXIMATIONS. FINALLY,
IS THE NUMBER THAT HAVE CONVERGED. IF
NCONV=@, THEN NONE HAVE CONVERGED

REAL*8 MCHEPS / 2.22D-16/

K=0

DO 108 I—l,P

T=DABS (D(M+1) )

IF (T. L‘I‘ 1 BDB{* ana

1F (E{w+I) .GT.T*(EPS + 10DB*N*MCHEPS)+ERRC) GO TO 288

NCONV=K
IF (K.EQ.9) RETURN

S,
cmm:&us

ERRC=! ERRC**2+T
e 2
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132
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169

SUBROUTINE BIGENig.H,P.PS.C,D)
IMCLICIT REAL*E (A-H,0-Z)

INTEGER M,P,0,PS

DIMENSION'C(Q,Q} ,D(Q)

EISEN SOLVES THE EIGENPROBLEM FOR THE. RIC
MATRI ROAS ARD (L

X MS OF ORDER PS STORED IN
M+l THROUGH M+PS OF C. THE EIGENVALUES OF MS ARE
STORED ELEMENTS } THROUGH M+PS

PS
SIMPLY RE~-STORES: MS IN A MANNER ACCEPTABLE TO THE
SUBROUTINES TRED2 AND TQL2.
DIMENSION DD(25),V(25)

PO 159 1=1,PS

LIM=I-P

IF (I.LE.P) LIM=1

IF (LIM.LE.1) GO TO 139

LIM-1
DO 129 J=X, LMl
C(1,J)=0.0D0

DO 140 J=LiM,I
C(1,7)=C(1+M,J%m)

CONTINUE
CALL TRED2(O,PS,C,DD,V,C)
CALL TOL2(Q,Ps,00,v,¢, IERR)

DO 169 1=1,PS
D(M+I)=DD(1)

RETURN
ERD
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SUBROUTINE SECTN(N,Q,.M,¥,0P,X,C,D,U,V
IMPLICIT REAL#S {A—'-&:O-'-Zf «%:CeD,0,1)
INTEGER N,Q,M,

EXTERNAL
DIMENSION X(N,Q).C(Q,Q) ,D(Q) ,U(N) ,V(N)

sacmmmsmmsmn—sr-pm MATRIX X1,
SAY, STORED IN M+] THROUGH M+P OF THE
N-2f-Q ORERY % % SO THAT X1 *A*Xl = nm;(m,nz,
pP DENOTES TRANSPOSE AND A IS
é!m.l'hucumxosomnmmusym
SUBROUTINE OP. THE VALDES D1, D2, ..., DP ARE
ELEMENTS Med OF D, SECIN
Xl _*A*X1 = CP, SIORING CP IN TME
ARRAY C. msvmes 01, -v. , DP AND THE
EIGENVECTORS A% oﬁuwmbsxalcmm
STORED IN D c, RESP. THEN CARRIES OUT
THE TRANSFORMATION x1<-x1*qp.

V{K) *X(K,ICOL2
H()I&QCDL)

CALL EIGEN{Q,M,P,P,C,D)
CALL RUTATE(N,Q,M,P,.P,C.X)

RETURN
END

VAN
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SUBROUTINE RCTATE (N,Q.M,PS,L,C
mpucrr mm.-a mfn'g-zf oLeCoX)

INTEGER N.Q.M,ES,L
DIMENSTON &{0,Q) s X(N,Q)
ROTATE CUMPUTES THE FIRST L COLUMNS OF THE MATRIX
XS* vHERE XS IS AN N-BY=PS OKTHONORMAL MATRIX
STORED IN COLUMNS M+l THROUGH M#PS OF THE  N-BY-0
ARRAY )KANIIJ‘&;~ IS A PS=BY=PS ORITHONORMAL MATR
AND COLUMNS
ARRAY
THROUGH M+L OF X OVERWRITTING PART OF XS.
DIMENSION V(25)
DO 308 I=1,N
m an K‘l. .
100 _41 md)*cu.x)
200 V(K
300 x(I.H+K)=V(K)

RETURN
END
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BROUTINE ORTHG B,
%Pucn' REAL *B(NH 6-i X

DIMERGION' B(070
DIMENSTON B(Q.Q) ,X(N,Q)

ORTHG RED 2ES -pmmxzsmm
COLUMNS F+] TEROUGH F+P OF THE N-BY-
WITH RESPECT 10 THE N FIRST F
COLOMNS OF X AND THEN THE RESULTING
MATRIX INTO THE PRODUCT N~BY=P ORTHONORMAL
MATRIX XORTB, SAY, AND A P~BY-P UPPER TRIANGULAR
MATRIX R. XORTH S AND THE UPPER
TRIANGLE 1S COLOMNS F+1
THROUGH F+P OF TBE Q-BY-Q ARRAY B, A STABLE
V. GRAM= on

ORTHOG
IN THE SIMULTANEOUS ITERATION PROGRAM OF

INTEGER FPl,FPP
LOGICAL ORIG

IF (P.EQ.0) RETURN
EBLEiL
FPP=F+P

DO 58 K=FP1,FPP
ORIG=. -
KMi=K-1

T=0.809

I jol LT @125
S=0.000

5'90&61 x“"&.ﬂ B(I,K)=S
-r-'m

DO 29 1
X(J,K)=X(3,K)-5*X(3.T)

25 S=0.8D@

So

30 ssslz?ua. f *X(J,K)
T=T4S

IF (S.GT.T/108) GO TO 48
ORIG=.FALSE.
@G0 TO lo

40 S=DSORT (S}

%K"s? NE.@) S=1/5
0o éa'.J-i N
X(J,K)=5*%(J,K)

123

Waia

[ DI



——— T L

T
v e o .

aonanan

o]

iv2

200

SUBROUTINE
TMPLICTT REAL*B (A—éqb-i)

INTEGER N,Q,L
DIMENSION X(N.Q\

HANDOM CUOMPUTES AND STORES OF N_PSEUDO~RANDOM
messmmsn—mmumor N-BY=(Q ARRAY X. RANDOM
cmamm ™0 OF PSEUDO-RANDOR FILLING

Rﬁm AND USING THE SECOND T0 ACCESS
NIE ARRRY TN A FASHION.
DIMENSION T 141%/ -
NS A 821/,C/5327 .xz/S:iza/,xl
PO 199 I=1,108
1=A"XH4C
(x1 Ga.mooa) X1=X1-19020
%-!a Do--5be
DO 200 Isl,N
FT=F1+F2
Ie_ g‘r.ca.umaa) FT=FT-100080¢

F2=FT
K=FT/1D6*148+]1
X(I,L)=T(K)

XI.— * XP+C
(n.@.luau) xl-xl-lmu
‘l‘ K) xi X1/9999D0—

RETURN
END

24
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SUBROOTINE TREDZ2(NM,N,A,D,E,Z2)

14 '“l
REAL®S AI(ﬁJ-l Ngﬂ é z%m.m

m:ssusawmm B TRANSLATION OF THE ALGOL PROCEDURE TRED2.
NOM. MATH., 11, 181-195 1968) B!HAR[‘IN REINSCH, AND vm.xmsou
AANDBOOK FOR AUTO. II-LINEAR ALGEBRA, 212-226(1971).
THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A
SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING
ORTHOGONAL SIMILARITY TRANSFORMATIONS

ON INPUT:

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENS{ON STATEMENT:

N IS THE ORDER OF THE MATRIX;

A QONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY TBE
LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.

ON OUTPUT:
D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX;

E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
MATRIX IN I‘B[ASTN—I POSITIONS. E(l1) IS SET TO 2ERD;

CNSANDCI!HBHS BE DIRECTED TO B. S. GARBOW,
ED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

D01 I =1, N
Do

We J=1,1
Z(1,3) = A(IJ)

125
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C 2t2:z:22:::: SCALE K)i {ALGOL TOL THEN NOT NEEDED) z:::2:3::2:::
DO 120 K =
124  SCALE = scm..é by DABS(Z (I,K))
.NE. 9.8D3) GO TU 149

139 GSI&O— 251,

149 po %?I K) 1 / SCALE
H=" {l'() *" 2(1,K)
c 150 CDN‘I'INUE
F =
G= —&f& ’
D= (IEQRI'(H) F)
H=18- F * G
Z(1,L) = F -G
¢ F=0¢.6D0
P 20.h -5 F 0 7 scae * m)
G = 9.80D9
C gssrzozss RM ELEHM OF A" z:zz:2zz2z23::
DO 188 K =
o 180 G=G+ 2(J i) * Z(1,K)
JP, J+1
c IE'l(L .LT. JP1) GU TO 228
240 R Ll
(o zssszsazss PORM( (SE"P’::::::::::
20 §(=)E‘ + E(J) * 2(1,d)
240

F=Z(1,3)
G 3 E(If - ua *
c EW) = -
0o %sg oy i(J K) = F * E(K) = G * Z(I,K)
260 s 9 = 26 ’

c )
DO 286 K=1, L ' -
28 2(1,K) = scale * 2(1,K) :
29a M’ =8

320 g{ﬂ D.U%

A NS L

e g
“;A;’:SEA'C ‘T:('f IR sl
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(D’ .e0. 2.008) @ 10 388
DO 348 K
G=G+ zu.x) Y 2ken
360
855k -6 » zn

D(I) = Z2(I,I
2{1,I) = 1.9
ls(%-)[-}lgwmmﬂﬁ
Jd=
)

1
2 é.ane
2(3.1) = 6.808
o 400

2z3zsss Aocgm.mm OF TRANSFPORMATION MATRICES srssssseoss
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SUBROUTINE TQL2(l¥M,N,D,E,Z,IERK)

INTEGER [ L,¥,N,II,L1,:M,MML, IERR
REAL*S n(m ,e N) .2 ("M, N)

FE.A.L 8 Dég P,DAEé $iS,HAGiEP

THIS SUBROUTINE 1S A TRANSLATION OF THE ALGOL PROCEDURE TQL2,
SUM. MATH, 11, 293~306(1968) BY BOWDLER, MARTIN, REINSCH, AND

wILK
FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-248(1971).
THIS SUSRDUTINE FINDS THE EIGENVALUES AND EIGENVECIORS
UF A SYMMETRIC TRIDIAGJNM. MATRIX BY THE METHOD.
1HE EIGENVECTURS OF A FULL SYMMETRIC X CAN ALSO
BE FOUND IF TRED2 H.AS BEF.N USED TO REDUCE THIS
FULL MATRIX TO TRIDIAGONAL FORM.
ON INPUT:

NM MUST BE SET TU THE #Ow DIMENSION OF TWO-DIMENSTIONAYL
AKRAY PARAMEIERS AS DECLARED IN THE CALLING PROGRAM
DIMENSIUN STATEMENT

N IS5 THE ORDER OF THE MATRIX;

D CONTAINS ‘THE DIAGONAL ELEMENTS OF THE INPUT MATRIX;

€ CONTAINS THE SUBDIAGCNAL ELEMENTS OF THE I.NPUT MATRIX
IN ITS LASy N-1 POSITIONS. E(l) IS ARBITRARY

2 CONTAINS THE TRANSFORMATION MATRIX PHIUCED IN THE
REDUCTION 8Y TRED2, IF PERFORMED. THE EIGENVECTORS
OF IHE TRIDIAGONAL MATRIX ARE DESIRED. Z MUST CONTAIN
THE IDENTITY MATRIX.

ON OUTPUT:
D CONTAINS THE EICENVALUES IN ASCENDING ORDER.  IF AN
ERROR EXIT IS MADE, THE EIGENVALUES ARE BUT
FOR INDICES 1,2,...,IERR-1:

E HAS BEEN DESTROYED;

L 1]

Z CONTAINS ORTHONORMAL ECTORS OF THE SYMMETRIC
TRIDIAGONAL OR FULL t x. IF AN ERROR EXIT IS ®ADE,
Z CCN‘I‘AINS E EI RS ASSOCIATED WITH THE STORED

IERR IS SET TO
ZERD FOR NORMAL RETURN,

If THE 5~TH EIGENVALUE HAS NOT BEEN

DETERMINED AFTER 38 ITERATIONS.

%%INS QOMMENTS SBOULD BE DIRECTED TO B. S. GA.%
IED MATHEMATICS DIVISICN, Am RATORY

$3ssessz: MACHEP IS A MACHINE DEPENDENT P ARAHE!BR SPECIFYING
THE OF FLOATING POINT ARITHMFTIC.

PRECISTON
HACHEP 16.0D8** (-13) FOR LONG E‘O!H ARITHMETIC

S36
DATA HACHEP/ 23410800002080000/
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IERR = 9
IF (N .EQ. 1) GO TO 1ludl

DO 1¢8 I = 2; N~
1v¥ E(I-1) = E(I)

F = 0.0Dd

B =98.0Dd

E(N) = 0.0D0

Do 349 !j'= 1, N
H = MACHEP * (DABS D{L)) + DABS(E(L)))
IF (B .LT. H) B

sesszssiss I.CDK SHALL SUB~-DIAGOMAL ELEMENT 2:2:::::::
DO 110 M

110 CONTINUE

igg J ziJ % %6) GD 0 lﬁﬂﬂ

(D(L1) - G) / (2.8D8 * E(L))
l:Eé 7.19 + bSIG‘J (R,P))

148 . D(I)
3

mmug

* %)
o

p -l
™

—

m
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[
el 1o

P.LT. DABS(E(I))) GC TO 158
Gﬂnmw)
*'p * R
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E{L} =5 *rp
D(L) = C * p )
DABS (E(L)) .GT. B) GO TO 138
220 { b =D(L) + F
24ﬁ GORTINGE
sz3:2:2:3:2:: ORDER EIGENVALUES AND EIGENVECIORS :::z:3:3:::
DO 388 11 = 2, N
I=1I-1
K=1
c P = D(I)
DO 268 J II, N R
!I\E‘ (D(J) .GE. P) QO 10 Z6f
P = D(J)
c 260 CONTINUE
IF (K (EQ. I) U TU 30@
DIK) = D{I)
c (I) =P
el -
z2{J,I) = %(J.K)
Z}J,K =P
c 280 QONTINUE
c 39 CONTINUE
&0 TO 1961
C z:zzz:2:2: SET ERROR — OCONVERG.ENCETOAN
C EIGENVALUE AFTER 3¢ ITERATIONS ¢ sszs:
14 IERR = L
lﬂBl RETURN
zz2:2:z3::: LAST CARD OF TQL2 zs:3sss:2:
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SUBROUTINE PRINTX (N,Q.M K, X)
IMPLICIT REAL*8 (A-H,0-Z)

INTEGER N
DIMENSION giu.m

PRINT QUT COLUMNS M+]1 THROUGH M+K OF THE
N—-BY-Q ARRAY X.

109 pmﬁgﬁlﬁil xu £ J=1,8)
1801 FORMAT( => 2.4)
RETURN

(plglple

z

SUBROUTINE AXLN,U,\_IL
IMPLICIT REAL*8 (A-H,0~Z)

INTEGER N
DIMENSION U(N) ,V(N)

AX COMPUTES Y = A*X WHERE A = DIAG(-l,-1/2,-1/3, ... ,~1/N).
X IS STORED IN U AND AX STORES ¥ IN V.

DO 1 I=1
109 v¢1)=-mn/i*uu)
RETURN

END

4%

(olple]n]

IMPLICIT REAL*8 (A-H,0~2)
DIMENSTON D(25) .X(zuéla)
XTERNAL AX

INT!:.GER Q,PINIT,R
SAMPLE MAIN PROGRAM. MINVAL IS USED TO COMPUTE
4 LEAST EIGENVALUES OF THE MATRIX
A = DIAG(-1,- /‘_‘ R —1/3IB) TO AN APPROXIMATE
3) . vELVE VECTORS

9 ARE ALLOWED
mmsamcxuwézos onannmmmm.smcx t
SIZE OF 4 IS CBOSEN.

8:3&0
PINIT=4
R=4 ]
MARAX=5000

EPS=1D-93 4
M=p

CALI MINVAL(N,Q,PINIT,R,MMAX,EPS,AX,M,D,X,IECODE)

PRINT 10@1,M,IECODE, ({I),I= . .
C1601 Eomvﬂ M Iecooépfxi.lxlh}( =>E ~,5D23.15))

-~

(plglpliplglipigle!
iE 558 ;
b
g
o
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I aw Ay N e

19082 EORMAT(//z IGENVECTORS /4]
CaLL PRINTK(N.Q. MX)

STOP
END

-
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