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fe 1. INTRODUCTION Hi |

- In this dissertation, we will be concerned with the development, § .
id = M4 :
Co . | . . . . . x
Fo implementation and 2pplicatiop of an algorithm to solve the following x
' pO

" " roblem: 1

SJ Compute accurate approximations to the r least Mo

ER eigenvalues of a large, sparse symmetric matrix A where 2.

Br 3 3 r is much less than n , the order of A . To
poo Problems of this type often arise in mechanics where 4 represents a | i

Ld discrete differential operator, the order of A is one thousand or 3 4

: = more, fewer than 54 of its elements are non-zero, and T is only 2 i d

FE small fraction of the value of n . $

Lo The more common algorithms for solving general symmetric eigen=- qu

To. problems such as the Householder, QR, bisection, and inverse iteration 2 7
- <= ' . A a

: methods, can gererally not be applied to the above problem because they 5 7
T x - 3 i

would reguire excessive amounts of storage or computer time. In contrast EI

“t to these methods, our algorithm does not transform the matrix A in any i gl

TL way, and therefore any special structure that A may possess is preserved. E A
£ 4 . . - - . 3 =
Fd Rather, the only way in which A is used is in computing the product Ay 2

ook . . . | . Xo:
i i= given a vector y , and if A 1s sparse, even Though of large order, this A
i 1 - .
nh & - x = ~ = —_ 2
a. .-. matrix muitiplication can usually be carried out efficiently. i

SE . Our method is organized about a Block lLanczos algorithm which is an 5
CC z - % -

. Cx extension and generalization of a method originally proposed by Lanczos. 3 "
: ; . In the ext section, we will review the historical background of the 5

8 ; © Lanczos method. In Section 1.2 we will make some general remarks 3 y
g : > concerning the accuracy of computed eigenvalues and eigenvectors, and: a

OR in Section 1.5, we will outline our thesis and summarize our results. bs:



: 1.1 Historical Background and Survey of Literature |
i | In 1950, Lanczos [13] described an algorithm which could be used 4 |
£ to compute some or all of the eigenvalues and eigenvectors of a symmetric A
: matrix A . Although not a method for computing eigenvalues and eigen- E
: vectors per se, it could be used to compute the minimum polynomial p
: of A with respect to a vector x (cf. §2.4) and a sequence of vectors |
: (x;y where l<m<n and n is the order of A . Some or all of the :
i eigenvalues of A could be found by computing the roots of p and 2

: Lanczos showed how the Xs could be combined to form eigenvectors once i
| thé eigenvalues had been found. Although very attractive at first 2

: glance, Lanczos®' method presented some unforseen difficulties (cf. §2.L) | .
when implemented and applied, and with the development of the Givens and i
bisection methods and then the Householder and QR methods, it was soon E 4
set aside as a method Of general application. i | he

) Tn recent years, however, interest in Lanczos' method has increased |
: due to its consideration as a means of computing a few of the extreme %

eigenvalues and eigenvectors of large, sparse, -symmetric matrices. | 3
: | From & modern viewpoint> Lapczos' method is a vey of obtaining, from A oo : 5
: a symmetric tridiagonal matrix T_, say, where T is of order 5

m <n - The eigenvalues of T_ are also eigenvalues of A and the a
eigenvectors of IT can be used to compute eigenvectors 2f A . Let 3

: I, stand for the s-by-s leading vrincipal submatrix of Th > 8<m. a
; T_ can be computed by carryingout s steps of the Lanczos method | - »
: and stopping short of its normal completion point. In 1966, Kaniel f11] =
: : published a paper containing results which implied that a few of the Z

: | eigenvalues of T_ at either end of its spectrum will usually be very - % -
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] accurate approximations to the corresponding eigenvalues of A for :
E relatively sm2ll values of s . (Lenczos was also aware of this pneno- %
1 “> menon. See [13], p. 270.) Xaniel also gave bounds con the errors in the 4
; Fig

k eigenvalues of Tg as approximations to the eigenvalues cf A and E
“] showed that for the extreme eigenvalues, they decrease rapidly as s 2

| - increases. Kaniel's -rork suggested that for the relatively small cost . |
i of computing the s-by-s matrix T, ard its eigenvalues and eigenvec- 2
a tors, one could obtain accurate approximations to some of the eigen- =
: ~ values and eigenvectors of A . §
: uring the application of the Lanczos mwethod, a sequence of vectors :

: (x05, is computed which, although orthogonal in exact arithmetic, in :
vo practice with finite precision arithmetic, lose orthogonality very rapidly. :
: _ In order to be sure of the stability of tke method, these vectors must :
: | be reorthogonalized with respect to all previously computed vectors as :

they are generated. Were it not for this shortcoming, Lanczos' method :
would pe an attractive approach in general for the solution of the eigen- i

; problem. Motivated by Kaniel's work, Paige [17] carried out a detailed :
: | study of lanczos' method and found that useful results could be computed | E
: even if reorthogonalization is not carried out. The advantage of this :

: - approach is tkat the entire sequence of vectors (x05, need not be :
: kent around at 211 times, resulting in = considerable savings in both 3

‘ storage and time. A drawback is that, unless this method is carefully ; 3
H applied, the computed results may indicate that A has multiple roots

: | even though this may not be the case. This same phenomenon was reported : .
~ | by Godunov and Prokopov [6] who applied the Ienczos method in the same 3

way as Paige to Thesolution of the eigenproblem of an elliptic differ- : :
- ential operator. | 2



| Aside from the Lanczos method, one of the principal methods of

solving the eigenproblem for large sparse symmetric matrices is the > ;
| power method [23]. The method known as simultaneous iteration [19,20]

; is based or the power method but iterates simultaneously with several

‘. vectors by means of which improved rates of convergence are achieved. N ,
In 1975, Golub suggested to this author that a2 similar improvement might

be realized for the lanczos methed if it too were extended so as to work

simultaneously with several vectors. This thesis is concerned with the | :
| development and application of a method based on a Block Lanczos algorithm |

following the suggestion of Golub. | |

Cullum and Donatk [4] have alse developed and applied a Block ”

: Lanczos algorithm but their use and implementation of the method differs

- from ours. ZXahan and Parlett [10] have recently given an error analysis

_ - of Lanczos' method which is based on Kahan's work with a Block Lanczos

: method dating back to the late 1950's. |

k The papers mentioned previously deal primarily with the use of :

| the Lanczos method as an iterative algorithm in a fashion suggested ;
by Kaniel's paper. For more general discussions of Lanczos' method |

) see Wilkinson [23], Golub [ 8 ], Golub, Underwood, and Wilkinson [7 1, _ :
| and Paige [15,16]. "i

i

1.2 The Accuracy of Computed Eigenvalues and Eigenvectors ;

If A is a symmetric matrix of order =n , then the eigenvalues * :

A. end eigenvectors q, satisfy ,

Ag; -N4; = © , i=1...on , | |
|

= where 8 is the zero vector and the q are orthonormal. Ganerally
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iE Wwe can only compute values Wu. and vectors x, with hx il = 1 such that 5

rg 3 Ths 0s > 2 2 > (1.2.1) 5

- where 5

1 Wes lis “i : (1.2-2) “

and |ji-ji, denotes the spectral norm. By Weinstein's inequality [21], =

: we can be sure that there is an eigenvalue A of A such that Ee

i - - << €. - TR, ot! Kyl = 3 ( Pe g
. ul

Sf However, we can nov be sure that the computed vector *; 1s close to oF

: ¢ an eigenvector of A , and this is an inherent limitation in our 2,
pt

i compusations. The most that we can say is thav Xs is close to the =

; : subspace spanned by the. eigenvectors corresponding to The eigenvalues 23: SEA

1.3 - - - - - oF

ke ” which axe near to A . If A is 2 single or multiple eigenvalue which Vax
EI - - - - he y - or

- 3 is isolated from the other eigenvalues, then Xs will be close to an

; B eigenvector. If A is one of 2 cluster of very close but distinct E-

f ¢ eigenvalues, then xX; may nct be close To an eigenvector even if the a
8 ES
a . . - - . ow

i corresponding €; in (1.3.3) is very small. 5
a; *

g- =xampie. Let

LR N

ff c in HL
xe 1 10 1 i.

g € It follows that

— AX - ux = :
: -10 :

10 -
a

- so that a
po

. -— |

¢
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: We can conclude that there is an eigenvalue A of A such that

) A-p] < 207°

: : -10 -10
: (In fact, the eigenvalues of A are I1+10 and 1-10 .} However, |

E the eigenvectors of A are :

: q, =} and gq, = ’ oo AEE

: 1 1 2 1

) end XxX is close to ne-ther vector.

Hence, throughout this thesis, statements to the effect that we |

d will compute accurate approximations to the eigenvectors of a matrix :
H \
2 :

5 are made with this limitation in mind. Our goal will be tc find :

i scalars p, and vectors Xx; which satisfy (1.5.2) with €; relatively |

: small. How close these computed scalars and vectors are to the actual

: eigenvalues and eigenvectors of A will depend on the spectrum of A

a and the magnitudes of the €

i) Note: It is often possible to compute a posteriori bounds on

h the errors in computed values and vectors which are much smaller than :

: those indicated here. See, for example, Wilkinson [23], Paige [16], <i

’ Stewart [22 ], Davis and Kahan [5 ], and Ortega [1h]. y
2

3 1.3 Outline of Thesis and Summary of Results o :
i In Chapter 2, we will present a theoretical development of our :
8! algorithm. We will review the notion of a restricted operator and show ;

] that the extreme eigenvalues and vectors of a matrix A restricted to Fx :
k | a oarticulaer subspace will be accurate approximations to the corresponding

i 6
p

H
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4 , : elgenvalues and eigenvectors of A . We will review Lanczos' method |
4 E | ¢ and see how it can be used to compute Lhe eipenvzlucs and eigenvectors
= bX:

3 : 3 L of the above restricted operator. We then generzlize these notions to

3 i work with several vectors simulitanesusly. In marticular, we will extend
3 i . Yanjel's pesic result on the rate of convergence of the least eigenvalue
4 1 : computed using the Lanczos method to the least eigenvalue of A . We
B i will also develop & Block Lanczos algoritem which is an extension of NB
a © Lenczos' original algorithm. We will then construct a new algorithm

3 E which utilizes our Zlock Lanczos algorithm to compute 2 specified number |

= i of the least eigenvalues and corresponding eigenvectors of a symmetric
1 N 3 : ¢ matrix to a given accuracy. X |
i ¥ In Chepter 3, we consider the practical aspects of implerenting
4 | FE the aigorithm developed in Chapter 2. The number oF vectors we Cnoose
;3 ee to iterate with at each application of Th= Block Lanczos zalgoriths | .

- 3 affects the number of overations required to corpute a given number of |
1 ~~ vectors. In Chapter 5, we will consider some of the problems associated
j 1 ¢ with the choice of block size and suggest some strategies based on our }
23 3 : theoretical nowledge of the algorithm and our computational experience. |
# 3 : An imporiant issue relating to the use of the Lanczos method is .
3 E 1 ‘ whether reorthogeonalization is carried out. In our current application,
: 3 : we do reorthogonalize the vectors generated by our Block Tanczos algorithm.
- 32 In Chapter 3, we discuss this issue and indicate why we have decided on |
3 1 5 € this course. i
2 3 : Also in Chapter 5, we consider various aspects of the program
o : implemencing our method. We discuss program and data organization,
1 | E£ ‘ how to estimate the accuracy of computed results in the context of
v 3 : the Lanczos method, the effects of round-off errors» and give operation Co
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% Finally, in Chapter L, we present the results of numerical experiments EI

=z on a number of problems comparing our method with the method of Cs

E simultanecus iteration. We wiil see that in most cases our method BE

g : is superior to the latter method in terms of the amount of work required : :
=! : Wo x BN

i. to canpute 2 given number of vectors to a specified accuracy. 2 )

- ke i.

; [SI

- eh a"

iw t

: ] X
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. 2. THEORETICAL DEVELOPMENT =

i. LJ In this chapter we will be concerned with the development of an aE

Dos algorithm to solve the following problem: ha

ii: Given a symmetric matrix A <f order n with eigenvalues Sra
Et PCRR

Hi . A <A, < ... <A and corresponding eigenvectors qg.,,q.,-:-9 > Ew

- § and given an inteser r greater than zero and less than or equal to n , 3 P
5p . corpute accurate approximations to ho and qs for i =1,...,T - gi :

2 8 e We will Cefine the notion of a restricted operator in Section 2.2 = <
pd and show in Section 2.3 that the least eigenvalue of A restricted to i

3 1 i
¥ 4 the subspace spanned by the set of vectors (%,AX,...,A  “x) where x SE

PE ¢ is a vector and s is an integer less than n , will usually be a very = 2

i ¢ accurate approximation to the least eigenvalue of A itself. In Ry -

A Section 2.4 we will show how Lanczos' method can be used to compute the wm

DF ° eigenvalues and eigenvectors Of the restricted operator described avove. © AE
: i . - - - - . = - gi o

CA In Sections 2.5 and 2.6, we will extend this basic idea by replacing the a a
a g - - - "a a Te A

E x vector x with a matrix X . The basis of our algorithm will be a iro

fF ® Elock Lanczos method which is an extension cf an algorithm originally = =zPR rr) let: 1]

y h proposed by Lanczos. In Section 2.7 we will develop a Block Lanczos 2 i
5g 3
Ry algorithm and show how it can be used to compute the eigenvalues and = §

ie Shelf

2 e eigenvectors of A restricted to a space cimilexr to The space suggested BE
TOR Wk.

xg above. Finally, in S=ctions 2.5, 2.9, and 2.10, we will integrate our wr-

i Block lanczos method inte 2 complete algorithm for solving the above on :

; aps . - ree
gC 2.1 Notation, Definitions, and Basic Results 21 7 A I—. pep

; : 2 = - - yy - - - - - - dh
i In this section we will give the notation and basic definitions and

> lemmas which will be used elsewhere in this chapter. L

+ : )
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H] I » - a. - 5| 3 If x. XsR »¥%, are m vectors of order n , then 3
CEL | Fok. i

bo Xx = (x,,x x_) / NebEbr TALIA Xn -

: 1 i - m / Ey #
 E will mean that X is the n-by-n matrix whose j-th column is x. - dE

| 3 Similax»ly, if X.,X,,..-,X arg n-by-p matrices, then re NI
VE @ 1°72 m ay

} ATW

CR will mean that X is an n-by-p X m matrix whose first p columns are SAL
: a

i ¢ X. , whose second Pp columns are X, , ete. i 3- F + / FE

£% If X = (x,,x% 2% ) , th | pet“3 = xq a? aay mn 3 cn x :
yy | age 3

: SB(%y 5X55 . -5%) or Sp(X) i 3
N & o ' 4 i ]
i will denote the subspace spanned oy the coinmms of X a, 4

§ £ if EL REET are scalars, then £ ):

3 diag (Mh >A A | | TLCos & ¥ * ew . = oh

8 will stand for the diagonal matrix of order m whose j-th diagonal 3 E
3 8 element is A. . SS

PE s Let p be a polynomial of degree m . Let <; be the coefficient : 4
£5 of AY in the expansion of p{A) in powers of A . That is, 2 3Cg 9 es
i / m PE 5
% J (A) = Cpt Chto + c A . za

: - - 3 - -— 0 a; : , For any matrix A , p{A) is a matrix defined as foilows: oe

a - 4 RS

LE J : Note that if x is a vector, then He

iy - . - bs

7% og Furthermore, if A = diag(A Ao cee) , then i

YL i 1 1 A - aan A -

EE - ' :

ze 0°



Let 4 be a symmetric matrix of order n with eigenvalues ; ;

Ay shy - TN and orthonormal eigenvectors Ay59p7 ==, » and let \ : } :

If p is the polynomial defined above, then it can be shown that 3 ;

. p(A)e = ap(n) |

fo Lemma 2.1.1. Let A be a symmetric matrix of order n with eigenvalues :

: AN SAL... SA) 5 then : :

(¥p5--9 3 YEO Ty |
! EES - 1 ?

j | where the minimm is taken over all subsets of n-k vectors R
.

: fy, ceeFp 5) and the meximum over all vectors y such that y £6 SE.
3

i and yy, =0, 1=1,...,0=k . Similarly, we have .

| Neel = max min Li . : y
| | ypp-eovy,} F468 77 ;
ol ¥¥;=0 :

iy | Proof. This is the Courant-Fischer theorem. For a discussion )

] and proof, see Wilkinson [23], pp. 98-101. .- :Pi ' * a
3 For our purposes, we restate this result as follows. {

Vo . . . ry a. . J
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: Lemma 2.1.2. let A be a cymmetric malrix of order n with 2 i.
- eijrenvaluecs Ay CAN, < cea I An 5 Lhen =PO -— rr. - — “Tad a
= THE

: i A, = min max Lh i :
1 2 E E. YF® vy . a2

wr - . a ] } a p

where the minimum is taken over all subspaces E, of BR, of dimension 3

Ee at least k and the maximm over non-zero vectors y in BE Se J

i Similarly, 3

¥ A = max min + . ew

vom, rv J
OF 5, .

Loe Proof. This is a direct consequence of the previous theorem. = .

CE Let S be a subspace of R of dimension m . The projection Ee L!

3 matrix for S , denoted by Pg y 1s defined to be that matrix such that 3 LsCO . ———— a J

toy ior any vector XeR_, y = PX eS and y (x=y) =0 . 3
a! Intuitively PX is the vector in S which is closest to x if A

Cd the vector norm i-lly is used to measure distance. Note that for any / d

: If Q is an orthonormel matrix whose colurms form a basis for S$, =

- Po =QQ° ~

; The projection operator onto the space orthgomal to S , denoted by Pg ’ EN
; is given by 3

’ 4.

pt ta 5 = I-Pg = I-QQ - -

4 , LJ



: ’ E

. oF

: If x is a vector, the Euclidean nom I=L, of x is defined 3
; as follows: = |
] re

| lixll, = (x=)= . bE

We will usually omit the subscript and write simply |x] - ;

| If A is a matrix, then [lAll, or MAN denotes the spectral i:. 2

norm of A induced by the Buclidean norm. That is, #

lal, = mex lawl “5

: It is easy to show that B

: where n,So (AA) is the largest eigenvalue of ACA . 2
The Frobenius nom [[All; of a matrix A of order n is defined 3

; as follows: E

pi = (2 ta, ) :% = &. a x:
¥ j=1 T * 3

: where a, is the i-th colwm of A . : :
p

: The singular values of a matrix A are the square roots of the E |
; : & }

: Lo eigenvalues of Ata . That is, B J

k; where A is an eigenvalue of AA . Note then that :

3 all, = o_ (8) 3

i where oAREY is the largest singular value of A . a4
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: : If A is a symmetric matrix and ~ 7:

: | where yu is a scalar and x is a vector with [ixl] = 1 , then Weinstein's 3
: pe inequality [23] states that there is an eigenvalue ) of A such that ] :3 hop] = =:

a 2.2 Restricted Operators I
fi i

| Let A be a symmetric matrix of order n which maps the real oI
. f ¢ n-dimensional Puclidean vector space R, into R, . Let 5S be an i "

d | m-dimensional subspace of R where m <n . Fc
§ Definition 2.2.1. The restriction of A to S , demoted by A , ic a 3 :

: . linear operator (matrix) which maps S onto S as follows: For any : -
- £ giv

i vector xeS , 3 ;. & -

i where Py is the projection matrix omto S . ji J
. . . Thy .

. iet QQ be an n-by-m orthonormal matrix whose columns are a basis = J

: | ” for S ; then = g
Fg = QQ. | 5:

ro and for amy xeS , oo or 5

= PAPX since X = FX | for

a = (QR)A(QQ)x 3

Co = eB '

4 18 | |



" B = QM |
and oo 3

: B is a symetric matrix of order m and is essentially the mstrix
| representationof & . Let uy <u, < --- Sy, be-the eigenvalues

of B with eigenvectors VyrVpreeesV Let |

qa = QV; i=1L2...,m -.

| It foliows that yu, and ag are an eigenvalue and eigenvector, | |
1 respectively, of A for i = 1,2,...,m . This can be seen as follows:

| Ag; = QBv, since v. =Q 3» .

; = by simee BY; =n

: M, =ud , 1=L2,...m . |

: A therefore has m eigenvalues and eigenvectors which can be computed

. subspaceof A , then the eigenvalnes and eigenvectors of A will also :
: be eigenvaluessnd eigenvectors of A -

By Lemme 2.1.2, we have | put

Hye = EN £0 oy :
eb - SE

: | or kX = 1,25... , Where the minimm is taken over all subspaces of R, :
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; is dimension at least k . By observing that ol

Cl y By | yeaoy _ fay) aloy) 5

i yy yQQy (Qy) "(Qy) a

Ci ® and that for any subspace I, 9% R_, the set of vectors ES

= izlz =qy, y<E.} ed

; i is a subspace of 5 of the same dimension, we have the following result. =

t iTh : Ro]

'o © E, FEO yy %

. where the minimun is taken over all subspaces E, of dimension at least 2
; ¥ cf § and the maximum over all non-zero vectors y in Fy, . Similarly, 2- ] - - or

_ we have for k = 1,2,...,m ,

- E, Y£6 v¥ &
; eg . or tig

. Proof- This result is a straightforward application of Lemma 2.1.2. I=

: In Equation 2.2.1, the minfmm is achieved when : 5 :

k where ¢5 is the i-th eigenvector of A , and the maximum in Equation 2.2.2 ay

: & i he



Combining this observation with Lemma 2.1.5 gives us the following

MN She ZS Mame x

| A simple consequence of Lemma 2.2.1 is the following.

Lemma 2.2.5. Let by be the least eigenvalue of A restricted to ; |
I

a subspace S ; then i

i = min RES :
| YEO Fy

yes

where the minimum is taken over &ll non-zero vectors y in S .

2.3 The Basic Tdea oT

Let A be 2a symmetric matrix of order n and let x be a given "

. vector.

oo 3 Definition 2.3.1. The Krylov sequence of x with respect to A is

; | the sequence of vectors |

X, AXAX,oan

For any § greater then zero, we will denote by K(s,x,4) the

| subspace spammed by the first s elements of the above sequence. That is,

s=1 :
| K(s,x,A) = Sp(x,AX,...,A" "X) .

| Kaniel [11] showed that if we consider RA , the restriction of A
.

to K(s,%,A) for a relatively small value of s , then a few of the
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Ll least {and zreatect) e=igenvelues of A will usually be 004d approiima- hy

Poe tions to the eigenvalues of 4£ and showed that they decrease rapidly E>

as s increases. a
b -

7 par

ox The phenomenon described in the last paragraph is the basic idea PY
4 yy

ioe behind our eligorithn. In the next cection we will describe and discuss "

: Lanezos' method and show now it can be used to compute the eigenvaluss i

© 3 and eigenvectors of Z . We will see taet for the relatively smell cost i

| of gcumputing the eigenvalues and eigenvectors of A , we often obtain =
i remarkably accurate approximations ic some of the eigenvalues 2nd eizen- *

- pk

! velues 2f A. From the standpoint of large sparse matrices, this 3

a zpproack wilil prove to be particularly effective since no transformation RY

wl - or

Cl of A itself is required. Es

} a - = _- - -» Ld Je
a 3eiore TrOCeeCing, however, tre dasic result of Zarnjel concerning PL
2 Ww

9 the least eigenvalue of A will be stated and its proof reviewed to :
h ! - - - Ll - ~- - = iH
oo vrovide some intuitive bacxground Ior these ideas. %

! | Eh

oo Kote: Some of Rarniel's results were incorrect 2s stated in his &

a paper. Paige [17] redeveloped this theory, correcting The errors in the 3

co process. It is essentially Paige's result which is stated here. i
L 1

C3 Lo. ] ) . :
Le Theorem 2.3.1. Let & be 2 symmetric metrix of order n , and let x 3

| be a vector such thet xl] = 1. Let XA <A <<... <A be the ¢
" eigenvalues of A with corresponding orthorormal eigenvectors g.,-.. 2G, :

’ Let 5s be an integer greater than zero ané less than n . Suppose that i}

: 1 2 !
t LN

b, = a°x = cos @ £0 ,
| 1-H :

» i -

oo where © dis the angle between gq and Xx ; then Hy 2 the least eigenvalue

Co cf A , the restriction of A to the subspace K(s,x,A) satisfies
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2 } (A, =) tan” ©
1° 2 dy ?

3 .s=1\ 1-7

: T 4 is the (s-1) -st Chebyshev polynomial of the first

: kind, and |

: 7? = oohyn 1

Example. Suppose n = 300 , A = 0.0 , Ay = 0.10 , Moo = 1.00 , |
} s=20, and x is such that b, = 0-0 . We then have

: 2 2, 4. 2
: ten” @ = (1-Db,)/b; = €2k.0 -

y = .10/1.00 = .10 ,

1 ry .

n ] | :
; | e _ _1.00x = 5 = % x10
: (1.27 x10) |

& A < pg < Ag+ .0000000k |

: implying that bq is accurate to at least seven significant digiis. The :

; | above bound is an overestimate and if we computed By (using the Lanczos
. method, say,) it would actually be far more accurate than the bound oo

Y indicetes.

] | 19
H
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: : Tndication of proof. We will only outline the proof here. for 5:ib Miz

bt @ the details, refer to Paige [17], po- LL-51. =

Ly - a

3 We mow by Lemmas 2.2.2 and 2.2.5 that dr
Tg a

oR g” xv fh
L3 M Sug <8 Agfez 3

| ; for any non-zero g in X(s,x,2) . Our strategy ic to pick a vector = =
3 visi

i in X(s,x,8) for which Le
g t t 2 5
a ghe/ee < Mrey 5
_ where £q is as given in the statement of the theorem. (nce we have 5

2 e-tablished this result, the theorem is proved. E

I Chcose g as follows: Let © be a polynomial such that Co

3 e{N) = T z 1

“ie where T__, is the {s-1) -st Chebyshev polynomial of the first kind and oo

Cd for any A, . ey

H L] = =X

Ea Note that by the properties of the Chebyshev polynomials, 3

. le) | <1 for i=2,53,...,00, and i. = Le

yo Cc = T =i > 1 bYCo (*) al=) i

AEE where 7 1s as defined in the theorem. We now let. 3:
. 3 §
: g = c(A)x - :
T 2 - ES

- : Since ¢ is of degree s-1, £ is a linear cimbination 92 the vectors: #.
lh | 2 s-1 i
SE X,H8%,AX, ... ,A” "x and thus is contained in K{s.X,A) . Furtrermore, An vf

Sl if we let p=4 x, ther x =Qb and : La

BE : | &
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. gt re * a , ri I I ET ~ ater : = »

g = c(A)x RE

= c(A)Qb A :

= Qe(A)b where A = diag(h;---M) BEA
= + +... + a 4

bye(Ay)ay +bers), bela, SE

where o. is the i-th component of b . Note that in comparison to x , 3 5

the component of 94 corresponding to A in & has been amplified A 3
wile the components of the other eigenvectors have been decreased. IT [I

we now form the Rayleigh quotient gag)ee » Wwe will find after some rE :
algebraic manipulation that I

which establishes the theorem. | | a

: ; 2.4 Ianczos' Algorithm for Symmetric Matrices 7 )

Let A be a symmetric matrix of order n and let x be a vector. Sh

Let m be the first velue for which the vectors z

Xs AX 5 Box 5 oun 5 A CE

+ are dependert. Since each of these vectors is of order n , it must be HF

the case that m <n . Furthermore, since m is the first value for 3 :
. FP

which the above vectors are dependent, A x must be a linear combination 3
of the vectors x, Ax, ..., mL . That is, 5 ‘

| | m Ce m-1 54

for some scalar values Cqr8qr---2Cn1 . Denote by P5A the 3 :

ria :
woo

(A) = ANB- AL Cen . xLAaN A Cc 1 cM - cq | 2



TT LNG re he EE mRaRT RARISLET AIRE ELoR Z

Wo.
- pi J] w

»
Note that by Bquation (2.4.1), ie :

® —- BE ’
P (8)x = Alx-c A"%x-...-c.Ax-c.%x = 9 . ER
X3A m-1 1 0 5

Definition 2.4.1. P_,, is the minimum polymomial of x with respect 2. se eT KA HE
to A . EA
—_—— ,Lox 2

20s a

It can be shown that the zeroes of FT, .a are elganvalues of A . 5
2 SEI

re, 9
¢ In 1950, Lanczos published 2 paper [13] on computing solutions to wl, i

| the eigenprobiem which contained a asseripticon of an alzorithm for i :

computing P_., . His approach, although very attractive at first EE

® glance, presented some numerical problems in Implementation and ¥ i

application (cf. Section 5.1) and with the development of the Givens Wa

and Householder methods [23] , Was soon set aside as 2 method of general A

® application. Ey

oe In recent years, however, some researchers, notably C. Paige of <a

McGill University and G. Golub of Stanford University, have proposed A)

3 that Lanczos! method be used as means of computing solutions to the ELI

symretric eigepproblem when the matrix is of large order and sparse for wo
Fd x

the following reasons: (1) Many methods such as Householder's method ft J

i and the QR method, carry out similarity transformations of the matrix. ag

| | Such transformations generally dectroy sparse structure. By contrast, @ :
Lanczos' method does not trznsform the matrix and, therefore, any sparse wg

3 structure can be preserved throughout the application of the aigorithn. i

In particular, the only way in wnich the xpatrix A is used in Lanczos! ; :
method is in computing the product Ay given a vector y , 2nd if A a E

. is sparse, even though of large order, this multiplication can generally i! :
be accomplished efficiently. (2) Although originally intended to be i :

2 | 2
ho A



used to compute the minimum polynomial of a vector, Lanczos! method can :
be used to achieve other ends. As we will soon see, it can be used as oo ;
means of computing the eigenvalues and eigenvectors of A restricted to

the space spanned by {x,8%,A°%, - . -A575 for some s less than :

nn. As Wwe saw in the previous section, the least eigenvalue of this |

restricted operator will generally be an accurate approximation to the i
least eigenvalue of A itself. | .

We will now review Lanczos' method and same of its properties. ol :
Iater on we will extend Iazpczos'! method and the ideas of the previous s

section to work with a matrix of vectors X instead of a single vector x . | :
This generalization will afford us certain advancages computationally over be :
the single vector approach. : :

| The results stated here will be given without proof. For a more :
complete discussion of Lanc-os' method, refer to the following sources: - ?

Wilkinson [23], Golub [8 ], Golub, Underwoed and Wilkinson [ 7], and |

Paige [17,18]. | | ;
| Lanczos' method can take many different forms depending on the |

application, but for present purposes, it is as follows: ;
Tet A be a symmetric matrix of order n . Let Xx be a vector | ;

of unit length (|lx]| = 1) . | |

Compute sequences of scalars (0)5.1 and (85)wo 3 and a sequence | p
| of orthonormal vectors (%)5 1 as follows: :

Step1. Let x =x amd i=1. | :
Step 2. Compute ¥; = Ax. y CQ = XV (= x AX. ) , and Zoe Co

where "

| ys - Cx, - BX: 4 if i>1 . :
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: Step 5 Compute B = 2, |i 2 i

J Step L. If B.. . = 0 , then ztop. a
3 itl = gx

: : olep 5. Compule x “.. [JB - = ;
DE = j+1 +1 Tadd HE

le Step 6. Increase the value of 1 by one and go to Step 2. = 3

RE This algoritmm will stop for some value of I <n . Let m be Van

Pk : : FA
LF . the final value of i . | So: I

a As Wwe will see, Lanczos! method is not a method for camputing 5 .

fg eigenvalues and eigenvectors per se. Rather it is a wey of transforming #2
ep _ . . . AT z

: the eigenproblem into a problem in a different form and it must be Xu

a combined with an algoritim to solve the second problem to produce a 1
: } CA
vd complete method for computing eigenvalues and eigenvectors. For example, eo

5: Ianczos used the sequences (& y= and" (B ya to form P the zl
A - Uh »

HES - ar - - - ne ol

oo ninimum polynomial of x with respect to A . Computing the zerces 5G
: ] wo

Fl of P. a yielded eigenvalues of A , and once the eigenvalues had been = oo

LE found, Lanczos showed how the Xs could be combined to form eigenvectors. aE cl

Co The more modern viewpoint is that Lanczos' method is a way of transforming pro

a general symmetric matrix into 2 symmetric tridiagonal matrix T . | ad ; The eigenproblem for T can then be solved in a variely of ways, e.g. ¥ 3 x
BR the QR method or a bisection method based on Sturm sequences [23], and ] Ln

+ i - - - - LL) - ) k oe a
vo the resulting solution can be used to find the eigenvalues ani eigenvectors 3

To Furthermore, there is a practical difficulty with Lanczos' method 3 =

§ as described above. Although the sequence of vectors Xqs ee erX, generated of

ro by the gbove algorithm in exact arithmetic will be orthonormal, in EE
- - [n 2 *

: . = - . or nl

aE rractice they will generally lose orthogonality after a few steps of oH

pe. | Lo I CL Coe Ny ig
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|

the aigorithm have been carried out. The main cause of this phenomenon

iy is the loss of accuracy caused by cancellation when z.., is computed :
% in Step 2. Since for many applications of the method, this is a serious |

; source of error, it is usually modified so that after Step 5, Xs 1 is :
i reorthogonalized with respect to XysXgy ory and then rensrmalized. )

t Since reorthogomalizing X54 is such a time consuming operation, it d
i was this shortcoming that originally caused many to disregard Lanczos!

i method. From the standpoint of the way we intend to use Lanczos' method, : ;

i i.e., as a means of computing & few of the least eigenvalues and eigen-

4 vectors of a large, sparse symmetric matrix, it is still a relatively :

9 efficient method even if a reorthogonzlization step is included.

3 C. Paige has suggested [17] that reorthogonalization is unnecessary

4 if Ianczos' method is used as we intend to use it. He argues that,
:d :

j rather than being a liability, loss of orthogonality is actually a
1 blessing in disguise since it is indicative of convergence of some of

F the eigenvalues of the restricted operator to eigenvalues of‘the matrix A .

i We will discuss this issue further in Section 3.1. For the time being, | .
i we will ignore this aspect of the algorithm and deal with its theoretical :
fo properties. For this purpose, the above description of the algorithm is

Ea adequate. :

| To begin with, observe that the a. , B; , and x; satisfy the |

H following equations: : !

A - 3 ]

Elamecde Wands =v ACh AMAT amar da. Ww EI y Ce «geEE—— I. ?
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oo Sfp = 3p = Ay mRE #5

.e 3%, = 2. = Ax -QF% -B.X aE
: 30 Rnd Sts SN de” St" as 2 .

. 3 -

Tk Tie :
C= 8% = z = Ax -2 NX -= x. RC

mm mr m-1 ‘m-1I'm-1 “m-1"m-z2 °’ SE

Co & = Ax =u x =-B % . WE
m mm Sm m-1 Ry :

oo We can rewrite thece equations as follows: Eo

Axy ln I 3
Ax, = Bx, +QqX +E. XX, Eo

. - F -

Ax = = -+ ho A - 5 :oo k © OK%-1T But Zea EE

: for any k between one and m where z , =& . Define x

- . -
- SEA _
: Q = 2

: | 3

ld : ) ’ mo

: %-1 Px 5

od 1 ".

i Co for k = 1,2,...,m . (rg, is a symmetric tridiagonal matrix with = J.

; Cys =e along its diagonal and Bos +e osBy along/its off-diagonals.) a .
| pd Using this notation we can write Eaquations (2.4.2Y as x
n - rd - -



: By = Mr (85850n ny) een |

: where the last matrix is n-ty-k with zeroes in its first k-1 colums
| and z,,. in its last column. In particular, for k =m,

: Ap = XM, - |
From this equation we see that x spans an invariant subspace of A . .

Therefore, the eigenvalues of Mo are eigenvelues of A and if v ic :

an eigenvector of Mo then X Vv 1s an eigenvector of A (cf. Section :
| 2.2.)

Also, by Equation (2.1.3), we have |

KA = 4 |

h since zy, XK, = 8 . Referring to Section 2.2, we conclude that M, |
| is the representation of the matrix A restricted to the space spanned

by the colunms of Xp . Furthermore, we can show that xe is a linear

- combination of the vectors X,AX,A%%, - . ., AF Ix » for k=1,2,...,m - |

: Therefore, for k = 1,2,..-,m , the colums of X, form an orthonormal
; basis for the space K(k,x,A) =panned by the vectors x5 AX, ATX, I ’ |

| and Mo is the representation of A restricted to K(k,x,A) . The work Co
: of Keniel and Paige suggest that for relatively small values of k , the

: least (and greatest) eigenvalues of My will usually be very good
| approximations to the least (and greatest) eigenvalues of A . e :

Computational experience verifies this idea. See, for example, ~~ ) :
: Paige [17] and Godunov and FProkopov [ 6]. |
: This suggests that instead of carrying out the algorithm until KB

Fo+1 = © @s described before, we stop after a fixed number of steps, } |

sy s steps, and use the resulting matrices M_, and X_ to compute |

CX "S ee ae —————— oo oo . es A
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Co of A . For this use, Lanczos’ method can be decceribed as follo- cS
Cd let A be a symmetric matrix of order n znd let = be a vector 4 :
Ce such that xj; = 1 - Let = be an integer greater than one and less Wo
'@ ay
y Ss s - ET :

than or equal to n . Compute ceguences (&.). . » (8.) , anc we
i7i=1 i‘i=2 x

7 (x. )° as follows: x
173=1 Ho

: ® Step i. Let Xy =X and I =1. = :

Step 2a. Compute yy, = xX, rand Q&, = X.F. . ng
i i 1 i171 3

.d i = 4 :

ol . Step 2b. If 1 5 , stop. % :

Do: Step 2c. Compute Z:,1 BS before. ] 3

Cl Step 2. Compute 8, , = 125,11 . 2

:
p 2 ompute x, 5 = 23.49/35. x

PE Step ©- Increase i by ome and go to Step 2. “a

; ] Ho d

oo If the final value of i is less than s , we decrease © to z
- this value. - i

Tole Note:. If. and v are an eigenvalue and eigenvector, respecti- 2

Lo - ively, of .¥_ and if we define a

: qQ=MNy , C8

then Equation (2.k.3%) implies that 3

: CI i NS NT | (2-5-5) al
PR where Vv, is the k-th component of Vv . For the extreme eigenvalues 88

of M » the corresponding v's are often extremely small regardless 2: :



pr eee LEE : | |

“ of the magnitude of Zien] which serves to explain partly why the
. : extreme eigenvalues of M are often very good approximations to the } |
. : cigenvaloes of A. Equation (2.h.B) cin in fach. be used Lo estimete

the crror in eigenvalues and eigenvectors compuled using Lhe Lanczos

: ‘method. We will develop a similar formula for our Block Lanczos |

- While an efficient and viable algorithm for computing eigenvalues |

above, preliminary experiments by this author indicated, however, that

: some advantages could be gained by extending the ideas of the last two |

: sections to work with a matrix of vectors X insteadof a single vector

. x as above. In particular, these experiments indicated that less work

o overall was required if we iterated with a block of vectors rather than

3 a sirwle vector. Furthermore, with the standerd Lanczos method, at most

one eigenvalue and vector corresponding to & multiple eigenvalue can

E " be camputedat & time. This shortcoming is overcome partly or wholely

by working with several vectors simmltaneously.

: For this reason, we will move on at this point to the development

L LetA be a symmetric matrix of order n and let Xx be a vector
+ of mnit length. In the last two sections we saw that the least eigen-

: | velues and eigenvectorsof A , the restriction of A to the space Spanned
by the vectors (28, + + + ,A5 Tx) where 8 is an integer value such that

: 1 < s <n, were usually good gpproximations to the least eigenvalues
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| and eigenvectors of A . We also saw how the Lanczos method could te Zz :
| | 8 used to compute the eigenvalues and eizenvectors of A - In this and 2

the next Two sections we will extenc these ideas so that instead of 3
| : working with a single vector x , we will work with an orthonormal 5 -

| @ matrix X . This generalization will zlliow us 19 compute several 3 |
| : eigenvalues and eigenvectors simultaneously and will lead us to an =
| : algorithm for computing solutions to the symmetric eigenproblem which E 5
: : s will require & fewer mumber of operations overall when compared with an i. |
ro | algoritim based on a single vector approach. With this extended approach, ;

| : we will also be able to compute multiple eigenvalues and eigenvectors i

3 at the same time. | 3

SE In the remainder 5f this section, we will outline this idea and - 1 :
| establish basic definitions and notation. : ;
: > 4 Let A be defined as above and let p and s be integer values 3 :

oo such that s >1, p>1, and L<pXs<n. LetX be an n-by-p = :

| orthonormal matrix. 3

| Definition 2.5.1. Let K(s,X,A) be the space spanned by the .pxs E :
: colums of the matrices X,AX,...,A°3X . |

: . Cc If the set of vectors comprised of the columns of the matrices = :

X, AX, --as is independent, then the dimension of K(s,X,A) will 3 :

: _ We now redefine A . : 5 ;

Definition 2.5.2. ~ Let A denote the restriction of A to a subspace :] ;
: ] L(s,X,A) of dimension pXs containing K(s,X,A) . . 5 :



: L(s,X,A) will be determined by means of a Block Lanczos algorithm 7
, to be described in Section 2.7. Tor the moment it is important to know k
: only that L(s,X,A) contains the colums of the matrices X,AX, ces . &

We now proceed as before. Let Xg De an n-ty-pxXs crthonormal i
: matrix whose columns fonn a basis for L(s,X,A) - Let 3
| T= xA : 3

7 - is the matrix representation of A. Let Hq < IN < --- XZ xcs and 4
: | FyS¥pr---s¥ De the eigenvalues and eigenvectors respectively of T - E:

} > ot

: : for i =1,2,...,pXs . It follows that (cf. Section 2.2) ws and aq, 7
: are an eigenvalue and eigenvector respectively of A for i = 1,2,...,0XS - g
E In the next section we will show that the p least eigenvalues of ‘ :
’ .- A will usually be accurate approximations to the Pp least eigenvalues i

of A and give bounds on the errors. In Section 2.7 we will describe :
: a Block Lanczos algorithm which carn be used to compute Me and Xe - ¢
: The results of this and the next two sections indicate that the least :
: eigenvalues of Me will be accurate approximations to the eigenvalues ;
; Of A. We will bese our algorithm on this idea.

; 2.6 The Frror in the Least Eigenvalnes of A Restricted to L(s,X,A) :
; Let A be a symmetric matrix of order n . Let p and s be -

: integer valnes such that s >1, p>1, and 1 <pxs<n . let X ;
: be an n-by-p orthonormal matrix.

: Let A be the matrix A restricted to a space IL(s,X,A) of =i
: | dimension pxs containing K(s,X,A) .
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oo In this section we Will give pounds <n the errors in the p least 2
EY eigenvalues of £ as approximations to the p least eigenvalues of £ . 2

Tae pounds will be stated zs 5 theorexr and derived in the course of a 232
) proof of the theorem. 53

 @ First. however, we will establish some lemmos which will be used 5

in the proc oI tne theorem. pi

Lemme <=... et Lo, fu, £ eS be tke eigenvalues 2 L ; then Hs| Lame =o “1 = ep = = “pxs os

Lo Ye YT | 1

Co wnere I, is any k-dimensional subspace of L(s,X,A) and the maxirmm 5

oo is taken over zli non-null vectors y in E_ . ¥

. - Proc. This lemma is a direct consequence of Lemma 2.2.1. 3

Lermz= 2.4.2. Let Ey he a subcpace of Ls,X,A) of dimension kk . €

Co - : : Let G, be an n-by-k matrix whose columns form a basis for E, 5 then od

Lo max YAY = AL Ja
: YEO Ty 2

r i “gt

: where A; is the largest eigenvalue of the generalized eigenproblem

t t 3

_ AGAG)Y (G, Gy | =

Proof. In general it can be shown that if C and F are symmetric =

| matrices of order kX and F is positive definite, then hv

" 1 pL
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E is equal to the largest eigenvalue of the generalized eigenproblem 3
Ya. -

3 Cz = ANFz . i

3 Observe now that any vector y in BE, ~an be written Ek

3) v= 4
> Ty

LF where z is in R, . Therefore, . 5

2 - 2G, AG, 2 3

24 YE vy 2/6 2 GGz i.
-1 5)
i yey zl he
- ¥ " . iE
or and the lemme follows directly from this equation. 1 y

A Lemma 2.6.3- Let vy Sv, £ -ce Sw be the eigenvalues of the a 13

i! generalized eigenproblem 7 E

RB where C and F are symmetric matrices of order k and F is positive Lo. =

} definite. Then V,=0rVs=05 + --3V"0 are the eigenvaiues of 2

: for any real og - &

A Proof. Subtract Fz from both sides of Equation (2.6.1) and we have «

7 (C=-gF)z = (v-g)Fz - :

$3 Thus, if v is an eigenvalue of Equation (2.6.1), then wv-g is an Ia

f eigenvalue of Equation {2.6.2). 7
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tk lemme 2.5.L. Let ¢ end TF pe girmetric matrices oF order Ko a
Sn AL

_ ° . Suppose C is negative semi-definite and IF 1s posizive Iofinite. £2

Lk Tet E be a symmetric matrix. The largest eigenvalue AT oT “

a (C+E)z = Mrz (2.5.20 E

Cl satisfies be |

. hg [ER 1) - :

1 roof. Let S be the Cholesky actor of FP [23]. “he esigenvaliec

EEE of the generalized eigenproblem (2.5.%) zre the same zs the sizenveluecs |

1 f of the standerd problem .

| d | | -1 -t oo -
©. , S T(C+E)S w = Aw, (2.A.L) |
: I

& od where

Sa: SS' =F and w=8S8z .

Pm Note that _ i
. zr .
SN -1 -t -1l..-t .-1..-t i
» 3 S "(C+E)S ° = 8S CS "+S TES .

: — = _ }

r Since C is negative semi-definite, § "IS must also ve negevive Co :

RE semi-definite and all of its eigenvalues must be less than or emal to

= zero. Ry Weinstein's inequality, the eigenvalues of Equaticn (2.7.14) :

: ! - ~1. -1 . . ' . i - .Sa | can differ from those of S TS by cuantities which are pounded bv .

A lisT"ES™"]} - Thus the largest eigenvalue of Equation (2.6.3) must L

; . — -% TPR BEAAT Wr
: is™=s% < fisTs TVR 4

i Since S is the Cholesky factor of FF, a
' L_- Fity

isT sf = FH i

v and the lemma is proved. 3
: 2 | 3

=. or



Lemma 2.6.5. For any matrices C and TF , | E

reer < jFEj-lell ;

Proof. By the general properties of matrix norms, ;

~dirTerl < dlFCliel - El -

For the spectral nomm, we also have CC 3

iw = iF = FEE EEN
ané the lemma follows from the last two equations. :

| Note: Lemma 2.6.5 was also established by Crawford [3], but :

the proof given here is different. !

Lemma 2.6.5. If C is an n-by-n symmetric matrix and C, 1s the | :
“leading k-by-k principal submatrix of CT , then :

iedi < cl

for k = 1,2, asst] : - o>

bs rooT. For any symmetric matrix F , say, [iF] = max |». (F) | . The

lemma follows from the fact that the eigenvalues of C, must lie within )

the interval containing the eigenvalues of C [ J. : :

Lerm2 2.6.7. If D = dieg(d,,d,,---»4) > then :

Proos. |

iol = max| x, (D) | = mex|a, | 3 :
i 1 .

35 |
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| Lemma 2.6.3. Let E be a positive semi-definite symmetric matrix; wo o

5 Proof. This lemma follows from the cbservation that all the eigenvalues wT
of (I+E) are greater than or egual to one, and therefore, all the oh :

eigenvelues of (I+E) -1 are greater than zero and less than or equal " J

to one. RE
at J Ty .

Lemma 2.6.9. Let W be an n-by-» orthonormal matrix. Let : ;

-s W = y .

W,, Fo

bo where W, and W, are composed of the first p and last n-p rows EE

N of W , respectively. Let _. be the least singular value of W, - :
If oo. >0 , then

4 t. .-1 1 Cs

; Wy “WoW WT = 5-1 | po

Proof. Since W is orthonormal, i

Since Opin > Oo, Wy exists. Therefore, after multiplying the last z :
equation by W, on the left and by W] on the right, and then :!Co
rearranging terms, we have 2 2

-t.. t -1 -t_-1 =
a = -T - el
- Wy WoW, =W, W, -I : %

a -—m eB
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Since the largest eigenvalue of WW] ) = (WW1) is 1fSpin !

| t..-1 1 :

iW WT =I = 5—-1 :
Omin

and the lemma follows from the last two equations. :

We will now state and prove the theorem giving the bounds on the .

Theorem 2.6.1. Let A be a symmetric matrix of order n with

eigenvalues A <A, < ... <A and orthonormal eigenvectors | i

4729p -+-»>8, - Let p and s be integer values such that p> 0, 3 ;

s>0;and l<pXs <n. Assumethat A_< . LetX be an | :
’ = Ws 2 p= tpr1 :

n-by-p orthonormal matrix, and A , the restriction of A to a sub-

space I{s,X,A) of dimension mxXs containing K(s,X,A) . Let ;

By ho < coe < Bows be the eigenvalues of A . Define

Q = (ay58,5---59,)

Wy

Ws

where wy and LA are composed of first p and last n-p rows of W, : ;
respectively. Let o ._ be the smallest singular velue of LAY - :

Me Shp Steg ;

where
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: 3

ig = Ou) 5 (=) ? LA3 S=1\ 1-7, SER

| _ © = arc cos Opin 3 CL ~ | : i

| . I._1 = (s-1) -st Chebyshev polynomiel of the first kind. 3 )

Proof. we will show that there are 7p vectors 82857 - 165 in v

| L(s,X,A) such that if E, = Sp(g,> oo rr By) , then ’ :

A! < max YAY < AN +e . (2.6.5) .
x - t —- kk k y

yeBE, ¥V¥

¥ £0 |

By Lerma 2.2.2 and Lemma 2.6.1, .

Combining {2.4.5) and (2.6.6) will complete the proof of our theorem. )

Let P be the polynomial such that oC

where .

(Mpg = M) | EE
z = 1-2 SA

and T__, is the (s-1) -st Chebyshev polynomial of the first lind. a

Note that, dy the proverties of Chebyshev polynomials, ra

IP) <1 (2.5.7) 3.



J

for 1 = ptly--.510 L and d

P(A) > P(A) > ee > P(M) >1 i (2.0.3) Lo

Let CyrCqseerrCe be the coefficients in the expansion of P(A) in |
powers of A . That is,

0 1 s=-1 : |

s-1 :

: H = P(A) X = (egIte,Ato.ote JA ) X |
Note that the colums of H are linear combinations of the columns

of X, AX + «os AS IX and hence are in L(s,X,A) . Since § is the

matrix of eigenvectors of A, |

P(A) @ = Q (A)

From the definition of WwW, :

X = GW .

Thus, ] :

E = P(A)X :

= P(A)QW

= QA.

| Now let Ay diag(hy, 2) and A, diag(AWETEERY » Thus,

P(A) Ll
| F(A) = ’ ;

P(A) : |

he LL SU

P(A)W, i
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75

ra ys BE 3

® PUA IW, Lo
i =0Q : (2.4.2) :

: 5 = (&72%, “rer 6) = EW, “P(A,) . :

llote tnat g « Lis, .A) . k = 1,2,...,p , &ince it is a linear ~ )

combination of the columns of H . By Equation (2.6.9) |

G = Q :

: where ; 8

' ! — - ow -_ Ww W A - - -

Now let >

3 G,. = (817857 +--53,) L :

be We now want to bound % :

Ap, = mat yay . SI

: Y#6 i S

: Sy Lemma 2.6.2, Me is the largest eigenvalue of the generalized by: )

eigenproblem 5

od ta = MGE =| (GAG)y = MGG)Y SH



! GAS = Dv ih ly : :

g Gly = I+ a8 |

Dp, = aiag(Ap,hnse-eh)

: Thus, A is the lergest eigenvalue of ]
) t t :
: (D+8 Ap 8)y = MI+a 2) -

By Lemma 2.£.35, the largest eigenvalue of :

: (Dy + 8 “A(T a8 ))y = AMI+d |et OptoBy “AIHA 8))Y = MI+a a)y

: is MoM - (Observe that

: (Dy + by dp by = NIT 80) = (Dy =X TD) + 8, (Ny = NTE) |
; and that

N A hy }

g (Dy=A T) = : | .

; is negative semidefinite. By Lemma 2.6.L, :
3 ‘ tt, \- t3 No-Ay <THa 4) THIRIAL(A, - ADA - (2.6.19) :

E Iz +afa) <1 (2.6.11) :

a 3y Lemmas 2.6.5 and 2.6.7, |

» aga, aT) a dl < lag aiitii(a, -ADI < (=Aiia all - (2.6.12)
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Fe) |

. Se

} Note +hat pet :; cl
7,

6 -1 -2 J

where (WH, J Stamds for the first zo e2lumns of WH, . Thus Za y

® . | 4 it . 1, _. ”, SE - f™ fay vr ad ya a -* od ; — oo i

® | oly bit = GFDL) EGE, Ty PUA) PUA) WE, PDL) Tu ip

: Three applications of Lerma #.-°.5 give us DA

| Ee = UPD ERD) Thwa wT) Be) REAL). (2al12) EEabyLy = EDL) SD) illo, ) TER, yn PUR, pli = Peete dl RE

§ : By Lemma 2.4.7 and Ecuztionc (2.4.7) ang (2.4.8)

LES =F . ’ \ = Li x - " - \
(20,3 R) Th © —— (2.5.14) Co

EN ; P(,) | .

> oo - . .

oi WPA) PIAL <1 (2.6.15) i

0 - ) ' -1.1 ee ’ i -1.%. -1, a, =o. Lt =f, - E
gly ow } (5 iy << fr W ‘WW I 1 "KR Ww. » .> 4 . ok." . a ] J [] oy f — UY -> As fe

it Ii CANN REL Yai = WRF Te 21 i iy Bo Ray Ul . :

Ey Since ¥ is orthonormal, W is orthonormal and therefore, by Lemma 2.5.9, be! ;

‘3 - vo mt t 3. 1 & :g ; UW WT, =m e——m—=] . (2.6.1 :2 HY 1 Wo fay 2 - (2.6 1} 5. goiL - a :

; By the definition of & , x

: COS 8 = SA | %

3 —_—— = = —— = = = tan © . (2.6.17) 1:
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By combining Equations (2.6.10) through (2.6.17), we get | |

g (nN =X) |
1 ASN + Pah tan© ©

FO)

, CN)
Pin) = Tl Tpny || oA s-1 (Apr A .

! { - “A =2n

| Tehe WI |
(Ae =x) Mov =A

_ (AN A} +A, A 1)
SEECC)

4 1+» -A h

) = Ea where 7g = "pr -: 4 Ae n :

Therefore,

a a) -: ‘ ~n 2 :

d oo < A + > T+7, tan” 9 . ; p

‘ and the proof of the theorem is complete. .

Exarole. Suppose A of order 1000 is such that A, = 0.0, :
hy = 0.1, Ay = 0.5 and ooo =1.0. Suppose g =10 and X is 2 ; !

such thet ¢ , = -OF ; then ;
| ,. o 0:0-0.5 _ 1 i

¢ :

_ 9.1-0.5 _ k
72 = 0.1-10 - 9

Ca oo RE | ibs f



- me Hal a ga a. La ta ame NLT .. an a [a FE ET TC _ [EEJU Jt = Caen ee ML meen ee whe -. ey ea a EE, hem ow, wn i Je , =

| ' ’ » _ . - . . ) 3
EE ETERMECTESRT Te

: @ = arc cos(.cl) , and =

1e hs 7 )

We have 5

1+7 & bg :. - ~L

: T —t = T (3) = 2.9510 » enc Eh

T\ T=5. ) = Tp" = 95x107 :

i Thus, wk, and k, satisfy, . py

Li NS ENTE 2.9 x 107 = 2q * 2.410 7 .
« 1.5% 1077 ;
4 and . ;

: - Ao< < A. + SE) SN «+ 3.0x 10° = 3 + = £510” -
. hap 2 = "2 = 2 — i2 ol 2 “= ‘ -:

; -Gt x 10 |

| The Sneoren and The example cugsest that hs will tend to converge B |
i f Je

J TO A. nore rz v than .. ta A. for 1 =1,2,..4,p~1 . This .
. - et idl wi+1 i+1 > + <=> <a N . -
] j . . . » ot Ce i
oq does, in fact, occur in practice. i . x

In the next section we will develop a Block Lanczos algorithm ot

| = which can be use tio compute the eigemvalnuec Lys ==- TB es of A ha :
; le E

; restricted to L(s,X,4} . i 2
ir : r & .

| = 2.7 A Block Lanczos Algorithm E
: In this section we will develop an algorithm which is an extension a |

t of Lanczos original algorithm presented in Sectiom Z.h. / Rather than x
PY start witk2 single vector X , we will begin with a block of vectors X of :

and generate sequences of matrices HM) > (R.) >» and (Ks) which play ~ >



: roles similar to those played by the sequences (a) , (B;) , and (x) ,
: respectively, ir Lanczos' method.

: Lanczos developed his method as follows:

| Jet A be 2a symmetric matrix of order n . Given a vector x

such that |x| = 1 , compute Ax and choose @ such that [lzJ] is | |
minimized where z, = Ax-aXx - It can be shown thet a. = x Ax and

that with this choice for 4 > 2, is orthogonal to x . Note that

if z, = 9 , then x would be an eigenvector and ay , an eigenvalue.

Define x, = z,/|lz,| and X; =X . At the j-th step, we have vectors

; X 9X9 «oer and we choose 2 and 713577257 * 27 51, 3 such that

2 | 112 5p ql is minimized where Zap = AXg SOXoYs Xo gmeee=TyKg oe
5 Lanczos showed that, in fact, {jzjez need only be minimized with
) respect to o; amd y,, , (7; ;=0 for i<J-1) and that with

these optimal choices for a, and 75-1, » Zs41 is orthogonal to

XysXps ee nsXs . If 2501 £0 , we let ivi = Zsy/ li= gpl . For some

velnem less than or equal to nn, z,, will be eyual to © and tke

sequences (@)3 ’ Vee, 10kPY ‘and (5) ey can be used to compuie |
: some or all of the eigenvalues and eigenvectors of A . oo

] Note: ir we let 8, = Trl,k » then the sequences generated by
the above procedure are the same as those computedby the algorithmin :

. Section 2.h. *
We also saw in Section 2.h thet if we stopped the algorithm after

computing &, in Step 5, then useful information could be obtained from :
the sequences (og)Rel > (B30 and (x)3m . Namely, by observing ¢ i
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toat the vACLOrs XH, .....%_ were an crohonormal basis for the cpzce =
. . s-1 Da — A= =” 3

SY 3 K(c.%,A) = Splx,ir....,A  ~x) and that the E95 NY and (5,) vel

| could be used to obtain the matriv reprecentation of the restriction a
1 of A to ¥ls,¥%,A) , We Saw That atcurate approximations To the least pe

1 & and greatest eigenvalues of £ could te 2omputed. vo
4 we will Gevelop e Zlock Lenczos algoritiam with 2 cimiler appiitatic:n a

. In mind. Cur gcel is an 2lgoritem which, starting from an n-Dy=-D :

SR orthonsrmal matrix XX , computes = sequence oF mutuzlly orthogonal Lo

Cf n-by-p orihonormal matrices A, ...,4_ and sequences of D-Ly-D
X — £. 2 -

i met ricec EIN JPRS =n RoR, sy -=+s8_  zuch that the colwnnc of' ; I al 5 ~ v - ]

3) i x... fa (7, shiny yw 29 {2 f.1) a

= form zn orthonormal basis for a soace IL(s,9,5) which contains the

Cr 1 FL = w ATS S=i., :¢ lume of the matrices L.h0. ...,A TX . and :

x pb 2° .
a 1 ro :

yw. . : . }

3 . ed pay ih
| s-1 "¢ ~

' a

ho- R 5 iy

f | vn
Sweft

TF - x - } - - - - - . - 5
oh 1s The matriz representation of 4 , now celired 0 be thc cperator A 2

Sr - my + T fe :» restricted to L{s5,X,A} - 3B
Dy

' In orger oo reduce somewhat tae complexity of the development, we x

| rextrict sligatiy “he range oF values the parameters in the problem may
: oy . - =

| $ assume. In particular, we assume that the mumber © of 'colurmms in X =

| 5 -



and the number of steps s satisfy :

| l <pxs <n . (2.7.3) :

- This restriction implies, for example, that if we start with an :

i n-by-p matrix X where 1 <p <n, then we can carry through the e

: Block Lanczos method at most s steps where s satisfies :
y 1 <s <nfp - i

7 From the standpoint of the problems to which this method will usually ¥ ?

; be applied, i.e., problems of very large order n for which, because :

: of limited storage, p << n and gxs << n , Equation (2.7.3) does not 3

represent a real restriction. :
‘ We will follow a path similsr to that followed by Lanczos in :

: developing his algorithm. To begin, let A be a symmetric matrix i

of order n and let X be an n-by-p orthonormal matrix X. Let = :

v = x

= and let Z, te the result of projecting ¥, onto the subspace orthogonal

. | to X; . That is, ¥ y

Zp, = (I-XX)8K i
j = AX, -X.M, (2.7.4) :

where pr

M, = X;AX; 3
£ ] ] 3

: By definition, X;Z, =© . Strictly speaking, choosing Z, iu this ¢ F)
mammer does not follow Lanczos' development. It can be shown, however, 24
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cg

i that choosing 2, as in Equation (2.7.1) minimizes |Z; with recpect
- i - I

i ¢ to =11 possible choices of WM, -
Ab
Pf . . . © ae

if Z, is an n-by-p matrix. Assume for the moment that Z, Foe,

x © and let g, Ye the rank of Z, . Since Z, £0. 5, >C, 20d by

Cf definition, Oss <p . Tractor Zn into the product of an =2-0y-p :

: : orthoncrmal matrix 7, and & p-py-p meirixz R, . Theat is,
f - =

Ck 2, =X
1 ~y ~~ik 3 [a ~Rs _
T

" Where

: : x; = 1 .

- IT 65 7 Ps then xy is orthogonal to iA, since 5 is orthogonal

‘gf to x . If os <p, toan this may not necessarily ve the case, zo

we add the orthogonality condition as an azdditioneal criterion for

Pe choosing X, - In any event,

E bh 2 1

: : _ Note that £5 and Ry can be computed using a Gram-Schmidt method

Ll or 2 QR factorization method based on iIousebolder transformations.

“ If p, <P, then (p-o,) colums of ¥, will not be determined by B

Ch either of these methods. However, both methods can be programmed in ‘3
EE a ' ah

a such a way that the additional p-p, columns can be chosen so that £q be

¢ | is orthonormal and Equation (2.7.5) is satisfied. : a
. - Nard

AEE Thus, abt the end of the first step, starting from xy =X 4 we x
Cl have computed matrices M, ; R, and X, such that re

13 where ba

gy - fe

‘f 48 | _a LEE

- ’ ae
r ky |
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Ma = X;1 4% - Co

and X, is orthonormel and orthogonal to X, . | Co :
Assume now that we are at the beginning of the j-th step where 2 }

J <s . and that we have a sequence of mutually orthonormal matrices :

Xs .e co Xs and sequences of matricec Mi, Mes I. -M,1 and RysRz» oe sR -
such that :

Rofo = Zp = AX —XgM :

AsRs = 25 = BK, =X Mp -X; Ry :

: | (2.7.6) :

X.R. = Z. = AX. , =X. -M_ . -X. BR ;
JJ J j-1 “j-13-1 “j-27j-1 °° :

where ;

M. = XCAX i=l." :i i771 7 7m .

Compute Ys = AL and let 2, #1 be the result of projecting ¥, onto :
the space Sp(X,, ‘eo =X.) orthogonal to that spenned by X 5X, coeyX, -

Since the projector onto SB(X4 5 . --2X) is :

1 -1j-1 : :: SB(X, 5X5 + -5X,) 9d 3d gE a:
Wwe have H

_ £ t ot Cd
2509 = (I Xg¥s ~Ks Xs ge XX )AX

= AX, ~XM,=X, N. 2 o=-e0=XN, . lL 1
J “33 Ti-YJ-L,3 I 1,3 ET

(

where 3 1

J J J I

tt:
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;

for i = 1,2,...,j=-1 . Bowever, for 1 < j-1 , we have LE ;

$ N, ooo =
1s.d iE

Mg = aR PAM TY AaB i

Lv Ecuation {2.7.%) and i .

3 for k=4-1, k=4%,cr k= itl if i < j-1. Thus, I

2541 A; hil “5-15; -1,3 4

- Note thet by EBouation (2.7.6), : .

AX =X. RU +X. .M. _+X.R LI
j-1 = 7-2-1 §-1g-1 Td) : B

~ x t -
N. . = X.AX. = R. =. i i
3-1, J i-1 J i.

Thus « :

v AX. -X.M.~-X. -Re To
iy = 3 = : Terodls TAL : . .3 :~ J+l d “373 73-1 EI

Note also that in computing Z.4] 2 we need only project AX, onto the +,J oa p

space orthogonal To Xs 1 and X. , and Z5+1 will automatically be gs Cd—— rT | x

L orthogonal to X,,.-- 2X oo" i ’= i E

25s is an n-by-p meitrix. Assume for the moment that 2511 £0 :
fadpal :

i let be ti Co. we di : tSand le =F+1 °° tne rank of 2;+1 As we did for Z, , factor 2,+1 4 i

~ into the product of an n-by-p orthonormal matrix Xv1 and a D-by-p : ;

matrix Rs+1 That 1s, 3 :
Bp1 TRprfie 2 >

where x xX. =I. If pp... <P, ther X is required in addition 2 ‘
- J+1 J+tl “Jt1 J+1 =



to be orthogonal to Xx sXps +o =X; . | }

Thus, during the j-th set, we have computed matrices M, ; Xiry , :

and Ry+1 such thet :

X..-R = Z. = AX. -X -X RC :| FLL T 4 SRR ar RE |

where | -

M. - X. AX. '
J J J

and Xs is orthogonal to KyrXpy ee erXs . ’
Assume now that we are at the beginning of Step 5 and that we have

s n-by-p mutually orthonormal matrices x5X50 “a2X and sequences :

of matrices M, >My ve M4 and RnsRz, .- -sR, such that

XR = Zp, = AX) 4M

Lr -

Xgfs = 2 = Rp Xih XR

| XR, =Z_ = AX_-X_ .M__.-X_ R
ss Ps 7 TMs-1"Ts-1l's-1 "s-2°s-1 °°

As before, we now compute Y, = AX and let ZS+1 be the result of | .

) projecting YT, ontc the space orthogonal to that spanned by LEVY OVERS 2% . ;

However, as we saw above for the j-th step, AX need only be projected |

onto the space orthogonal to ¥_ and X_ ; and it will be sutomatically j

orthogonal to XsKs ooo Xoo + That is, :

yA = (T-XXC-X_ .X° _)AX oostl ss “s=1l's-1"""s

= ARK-X Mg - XoNea,s |

where -

i“ {M, X AX, :



- TE EE . Ce ow wn. Ce Mm aw a o . _ #0 FE na La om men | Cea ot. - = LA Sp - a ee =

’ N = Xx EX _ .
s-1,s s-17"7¢ :

Also, as before, |

. L

s NH. 4 . = R_. - :

: Av this point, stop and consider Lhe reogldic ff our efforts. He

. HET - oh - FE] - - dt way amg ' “yr i. r - LY |
: Lave compuled tegucnces of matrices (hai eer il) , (Msi pe eesld s

: ane (BH pH... ER) cuch that “he XA. are mutually orthonormal and vgt [A - BR -

' " = 7 —_— £5 -— a vr aAR, Z = Al2 .

: X.R = Z. = AX - AL 2 - xX,3 : |

. LY a= - "ar -p © Lard ,
%.. -R. = Z. = AV. =X.M. -X. SR. (2.7.7) :
atid jr J dd d="

- XR - % = AL. =%_ Wi .-%X_.R
s a s s=-1 s=1"c=1 C=? sel |

po SY4 -% M -Z_ .R . ;. s+1 £ $s LoL :

| i |
| Let :

' a = (KX panna X, 2.7-2 EEoo x (Ky: Xoo = 2: i) (2-7-8) *

ana E ,

HT 4 ry ™ uw- 1 — - - - BE .ho R EI

R aM - » : - - "Sr 3

: . . . . M, R F
; k ¥=-1 k x ;

, a i . =) RB A =



for ¥ = 1,2,...,s . That is, yx, is an n-by-pXik orthonormal matrix

formed from the sequence (X,,X,>--.,%,) and %_ is a symmetric block -

tridiagonal matrix of order 7v-kX formed from the sequences (M35 eee2M)

and (Rys----R.) « We will now show that :

.
| Ts = %gAXg (2.7.10)

and that |

L{s;X,A) = Spx) (2.7.11)

contains )

- s-ly

We will then give a precise description of am algorithm for computing N

(Kgs oosX) 5 (M50--,M) 5 and (Ry .--pR.) . This algorithmwill be |
based directly on the preceding development and in light of Equations

(2.7.9), (2.7.10), and (2.7.11), is sur goal in this sectiom oo

Observe that Equations (2.7.7) can be rewritten ;

My = XR + XJpr ESR

ae TB CTR ERBS -

- § }

_ t +7 :

i

In matrix notation, these equations can be written i

Bo = X M+ Zyy (2.7.18) i
where : :

| Zp = (9500058,20) :

CT Menne ———— — fas
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ic an n-Ly-pxs matrix all of whose columns are zero except the last p PR

i ® which are the columns of Z__, - By definition, Z_, is orthogonal . Ne ’
Lm [5J j= wt mm “tg !

; to Mise.”_ . Therefore, = )
ro 1 S I ;

z iv .. :
E XZ, = & 3 .
= S$ Ss =L l ‘

i pa x - a =
ss : 7 > .

} — - Fa jo] :
we have by Zcuation (2.7.1L), =

Lc Thus, 7%. ic the reprecentation of A , the restriction of A to EE

the space L{s,X,A) . 4

: We also have the following result. + =

Theorem 2.7.1. L{s,X,A4) , the space spanned by the columns of Ey ;

SY 4 i - S- 3 Co
(Xp Xp 20%) , contains the colurms of the matrices X,Al,...,A ' . 4 CA

SE Proof. We will show induccively that i H
: 2 -

3 (Roly =p BH) = (KppXps os XU, (2.7.15) 3

bE for k = 1,2,...,s , where U, _s matrix of order pk - This will q

yd imply that each column of the matrices X,AX,.-..,A is 2 linear Es o

combination of the colums of (X15 .e =X) and, therefore, that each + J
7 ts L

! [ar 5

HL columm is contained in L(s,X,A) - go

} Clearly, Equation (2.7.15) holds for k = 1 since a



Assume that Equation (2.7.15) holds for some k <s . Multiplying aE

both sides of Equation (2.7.15) by A gives mus | 2

| (AX, 45K, 8%) = (AX, AK, ---,AX DU, (2.7.15)

from which ye can conclude that :

. I © :

(8X, -- AK) = (Xp, 8K, -+0,8K,) : (2.7.17) |
e Uy, ’

By Equations (2.7-13) with s replaced by k, ; :

i oT (X,,4X,, > -»A) = (X15X5, .e 2X pq) * . - + (2 7-18) i
{ R . Ry ¢ .

t Let V, denote the last matrix in Equation (2.7.18). By combining ; a

: Equations (2.7.17) and (2.7.18), We have Co : :

: (XA, « «os , 47%) = (X15X,5 ol 2 SE) [LN | ;
where | | | :

i ers k\e ® 7
d k | Pd

3 This completes the inductive step and the proof of the theorem. E

5 Before deseribing our algorithm, one point needs to be cleared up. | :
if Namely, our assumption that Z.., £@ for J = 1,2,..-,5-1 - Suppose | Cd
3 that we intend to carry through s steps of our algorithm, computing : 1 !

RE TLIC PRET TW a eh oe hpi Meade 0 rT om sa Le ge el pe gn “Tu pe he ve a Te own RB EU L. A
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. Sequences (4; ) $21 ° (BR): 5 » and (Xs a , but for some value jj <s, fF

oo Z.,, = © - In this circumstunce, we replace the value o by j and X :

use the catrices 74 and, x to compute exact elgenvalucs and . :
i. eigenvectors of A . This can be ceen by considering Equation (2.7.14). | i

| * If we replace s Dy J , the equation is ctill valid, and since z !

5 201 T° PR

: Thus, the eigenvalues of 7 5 are eigenvalues of A and its eigen- : .
vectors can be used to cqmpute eigenvectors of A (cf. Section 2.2). : ;

% It would also be possible to continue computing if Zs+1 = 8 for k .
Cy 5 <'s by simply choosing X., such that I

g XX, = © i <3 SE
oe ig+1 > +32d ER

cn and letting R.., = © - An algorithm incorporating this idea is of TE
2 little interest considering the applications we have in mind. Further- FI

; more, it is extremely unlikely in practice that Zsiq = for any J | : .
Le even if exact arithmetic operations are assumed. : 3

H | We now describe a Block Lanczos algorithm which can be used to 2 :

: comput and { - FR:s e the sequences M:); 4 ’ (RDS0? (X.) $01 © : i
. Iet A be a symmetric matrix of order n . Let p and s be h/ ;
il 3

: imbeger values such that p >1 and : S
15 1 <gXxs <n . | 3
| let X be an n-by-p orthonormal matrix. % .

1 - Step 1. Let 5 =X and 1i=1. : : i

Ster ompute Y. AX, and M XY, 3



p=: Ch ma ee AC ER - LL a a Reo aml — in EE. Set meea I . Cen 3. _

: Step5- If i =s , stop. |

: Step Compute Zs 01 where |

: AX, - XqMo if 1=1 |

ZS . :
Ag =XsM; =X3 By AF 1>1 .

JES Step 5- If Z..,=9, set s=1i.

Step 6. Compute X.. and R. . such that :

] P41 = Fpa1feny

and 541 is orthonormal. If the rank of AY is | :
Lo less than p , we require X. , to be orthonormal. :

i Step T- Increase the value of i by one and go to Step 2. Se :

e The only time s will be different from its original velue is if i -

“ Zivy = 8 for some i < s ., As noted before, this is an extremely un- i :

CE As the development preceding the above description suggests, the : :

SE metrices (X,); , computed using this algorithm will be mrtually !
OF 3

s | orthonormal and if ; N

| TTR TER RL wat em en - } — ET TT ——————e oN
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kL - ———t—. o E———— Y- - A

® Eo

Tar :[a

/ ne pt TE= ah”. A

: i} Ys-1 “sg YE

a = = bE] a )

} L(s;X58) = Sp(X5¥5s +e -5X,) Fs

: ; contains the space Ee E
! i iw 3

3 If we compute the eigenvalues 2f MM cs ? then the results of the previous a N
Ta . . =u nN _ . PIS e
: section indicate tha the 7p least eigenvalues of Me will usually be 4 ,

& - - - - - hr. 4: accurate approximations to the Pp Jeast eigenvalues of A . Computational 5 ol
3 experience has shown this to be the case. 3 p
NN In the case of the standard Lanczos algoritim, «we saw that the 2

2 I sequence of vectors (x;) generated by the method would lose orthogonality I

i ] unless the vectcrs z, were reorthogonelized with respect to all pe -

“3 previously computed x, y J <i . The same problem arises in the Block x

EK Lanczos method. Namely, the sequence of matrices Xs » although i

“3 theoretically orthogonal with respect to each other, will in practice I.

1 lose orthogonality unless the metrices Zs are reorthogonalized with ys ;

i. respect to all matrices Xjo 1 < J . The reorthogomalizatison on

js | can be combined with the computation of Xi and R.+1 in Step 6. a 4

-§ 58 : §



Ac with the standard Lanczos method, there is a question ac to

whether reorthogonelization is actually needed. That 3z, loss of

orthogonality implies convergence of some of the eigenvalues of the |

restricted operator to those of the orizinal matrix. Continuing the

carputation beyond the point that orthogonality is lost, however, will

to result in eigenvalues being computed more than once even if they are

not multiple. Thus, for a reliable algoritom, we must either

reorthogonalize or develop a criterion for determining whem orthogonality

N is lost. We have chosen the former path which, although more time

consuming, is more straightforward than the latter. We will discuss

1 this point further in Section 3.1. oo

3 Note: If wu and wv are an eigenvalue and eigenvector, respectively, :

t are eigenvalue and eigenvector of A , the restriction of A to
1 L(s,X,A) = Spx) . By Equation (2.7.14), we have |

i Bou = 7,0) |

; where of s) denctes the vector composed of the last pp components of vy :
i This equation implies by Weinstein®s inequality that there is an |
y : %

0 eigenvalue A of A such that : |

x rou) < lz, < liIE |

;Lo The eigenvectors corresponding to the extreme eigenvalues of 7M are
B often such that lu®)|| is very smell. This seems to explain partly ,
ft why the eigenvalues of 7M sc axe often good approximations to the



eigenvelusz of A . Note that if we computed X_fl and R__, such 7

then we have bl

. Zev = mv ;

| since the spectral nom is wnitarily invariant. Thus, ; -
Mew] < Ir =

| ’ 2.8 Iterating to Improve Accuracy i
RB Let A be 2 symmetric matrix of order n and let X be an %

RB: n-by-p orthonormal matrix. Let << be an integer greater chan or vs

ci @ equal to 1 and suppose that p and s satisfy 3

$ 1 <pts <n . u

| . Let 7_ be the representation of A , the restriction of A to the k
al space spanned by the columns of X_ = (Xy,X5s--- »X.} which contains Fi

| the space SD(Xy AXy A Ky « - <5 AS D9 where 7% - and Xo have been i- 3 © a =

| computed using the Block Lanczos method of Section 2.7. Finally, let 3_ ee . . — -_ Cee - - - a ;
: By2ko? = o2bng rnd U4, 2s be the eigenvalues and eigenvectors, 55: - pe

1 respectively, of A computed using 7, end .X_ - 3
i. . Theorem 2-6.1 suggests that the first Pp eigenvalues and eigen- or

vectors of A ill usually be accurate approximations to the corresponding £2

i eigenvalues of A . However, the expression bounding the errors im the 2

: | ° ejgenvalnes contains a term tan © where © is essentially the angle =
B between Sp(X) and Sp(Q,) where Q, is the orthonormal matrix i



comprised or the first pp eigenvectors of A . If we let

| Q = (9y70pr +>) and & be the angle between Sp(,) and SpQ.) > ¢
then we might reasonably expect that 8 <5 and therefore that ;

tan © < ten 6 since the vectors in Q will usually be more accurate
: approximations to eigenvectors of A than X . Thus, we might 8

reasonably expect to compute more accurate approximacions by re-applying

the Block Lanczos method to Q; . :
This discussion suggests the following algorithm for computing ~ |

approximations to the pp least eigenvalues and eigenvectors of A *%o :
| a specified accuracy:

: et A, DP, S$, and X be as defined above. ©

* | Step 1. Using the Block Lanczos method, compute p and Mo » |
+ the representation of A restricted to the space spanned |
ky | | by X, which contains the space Sp(X,AX, -.. ,A5 1) .
; Step 2. Compute the eigenvalues Bs and eigenvectors y. of Me . |
3 Compute qs =XY¥; >» 1=12,--55D. |

| Step 3. Estimate the accuracy of ps and 9 as approximations
to the Pp least eigenvalues and eigenvectors of A

: | | If they are all sufficiently accurate, stop. _

: : Step bh. Iet X = (95955 --->%) and go to Step 1. ]

: | Wa will discuss how to estimate the accuracy of computed results in Co

| | The ebove algorithm contains most of the essential features of our
: : final method. We will modify it however for the following reasons: | Co.

: : p1) The block size p will usually be different from the mumber of |
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fea co

| eigenvalues we are attempting to compute. In fact, we will want to ou= ® vary the block size as the computaiion proceeds. (2) AS we now in E

Section 2.G, the errors in the computed cigenvaluec deerauce ul wiryings |

rates. lience, sone oF the eigenvalues, usually those least in veluc,

E® will converge sooner than ouners. ror thls reason, we Willi want To

3 continue computing after we have Gccepted and stored some eigenvalue |

| and eigenvector approximations, without recomputing the same eigenvalues’ ¥

LE \ 2 and eigenvectors. Some modification of sur current melnod is tous

: i required since it will zlways tend to compute the least eigenvaltes.}

KF

R: In the next section, we will sees now To €o this.

N: 2.9 Restricting A io a Space Orthogonal to Computed Eigenvectors

| Let A be a symmetric matrix. Let Ay <A, <<... <A De toe
3 eigenvalues of A with eigeuvectors Qy5855 -- 2G - Let

3 N, «h <<... <h znd g.,,;9,,-.-»Q_ be approximate eigenvalues |
: ¢ 1 =" = =n 21? 20? 2S 191% g
a and eigenvectors, respectively, of A in the sense that :

i: * AQ. -N.q, = 0: 2 i1=12,.--,m ; (2.9.1) :
[ i 17x “1 K

‘¥ and the 9: are orthonormzl where || o, | =e; <«<1 and m is some ;

is integer greater than zero and less than n . -s 33

0d How can we use the algorithm of the previous section to compute ps

3 apoprorxizations to eigenvalues and eigenvectors different from those St: tn

: . § . - E

yi a we have already computed without recomputing these letter velues and _ >. 3

< k vectors? For instance, if the As and Qs; were compttted by means
T % -  - . - - - - - Se

; i of this method, Then they will most likely correspond to the m least oF

SE | eigenvalues and eigenvectors of A . Re-applying the method To A gl:

| without taking these already computed approximations into account ir i
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sare fashion would result in our recomputing the same eigenvalues and

eigenvectors. :

The answer to the above question is to apply our method to an :

operator which is different yor A but, nonetheless, related to A . - i

In particular, we apply our method to A , The restriction of A to ve i

the space orthogonal wo Sp(g,,0,5-.-Ti . & las n-m eigenvalues

and eigenveciors which are approximations to the eigenvalues and |

vectors of A different from those alrcady approximated. To see this, ¢ |

t 3 3G ase--=d = 2 1 basis for the ce (of -le 17%, -q, be an orthonormal basi he space ( |
dimension n-m }) orthogonel to Sng 2951 - + +3) . Let1

1

Gp = (nyy0---0Q)

. :
M, = Se AG, and -

-- =t a —
FT Spaly

Let ane1’LIN «aa TE denote the n-m eigenvalues of IN . Note

that 7, Is the representetion of A and, hence its eigenvalues .

| are The aigemvalues of 2 . :

: We now went ty show that if each “5 d2fined in Bquation (2.9.1)

is small, than Moy? -- “sh will he accurate approximetionzs to {the .

remaining eigenvalues of A . Note that if all the €; = QO , then : :

| ths ajgenvalues of 2 would also be eigenvalues of 4 .

Define |



—_— ae —_ CTT eT ER SeRARTIT SL TARE INE SET :

9 i :

+ a -t = =

. . 44% A% | Eo
B = Q AQ = : =

~t , = ~t , = Je
“phi GA 3

® liocte that B is similar to A . Let ho

~t AD G 2 5 5“a Ay 4h 3

e c tag, | g 1 IE

8 3S a3 EF
. Q Ads Lo

3 = 3 N
+t = : -

Thus, , .

Since B is similar to A , the eigenvalues of B zre the same as the LA

2 eigenvalues of A . By the theory of perturvations for symmetric x |

matrices, (see, for example, Wilkinson [23], Chapter 3), the eigenvalues EE

of C differ from those of B (ard hence A ) by amounts that are 2 ’

3 bounded by (lal - This quantity can in turn be bounded as follows: x

Tt can be shown that 5

° where p, 1s the residual vector defined ir Equation (2.9.1). 3By the i :
ga2finition of Dy 2 i ;



we have § :

AQ; = aR ; | 5 :

and therefore, ’

all = liegAQyll = UQyRi  - go

Since the spectral norm is invariant with respect t. orthogonal :

transformations, and Q is orthogonal, | i

lal = ileyRll = fi” oo

If 21l the e. = {lp.|| are small, then {a} will be small also. For N

example, |

IR < (Cred ..eW? i

If m=9 and ce, sw, i=-212,...,9, then 3 ;

and the eigenvalues of C differ from those of B , and hence A, § ;
by quantities which are less in modulus than 3.1010 . 3

The set of eigenvalues of C is the union of the sets of eigen- p i
values of M, and M, - From Equation (2.9.2) we can conclude that J

1 7 Mt a

Thus, A, zo. -. sh differ from the eigenvalues of M, by amounts =
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iy

. £

bounded by RI . TFTurthermore, The 2fgentaliues oF NM. are the samc Es ’
4 [| NK] -— Es J

2s the eigenvelues ¢I A . Taken together, (Ay sy, 1=1,...,m)}) anc 3 i

: the [(p-m) eigenvaluez of A approximete the entire spectrum of A . 5

Tnus. for example, if A. g-- sh avoroxinate the mm least eigenvalues 5 ;
9 ~ } n RE

As RTL of A , then the p least eigenvalues of A will approximate ie :

Mk 17 NeroJR2p with errors bounded by Ri - 5 .
The Block Lanczos algorithm of Section 2.5 can be aprlied directly Bi :

to A To compute approximations to its least eigenvalues. The initizl x

- re “ .
orchonormael matrix ¥ must lie in the domein of A . That is, X mast ae |

lie in +the space orthogoreal to the vectors G12 oo- . Note also

: that 28

Ay = (I-Q, :y = (I-Q;&])Ay Co

5 so that to multiply by A , we first multiply by A and then project 3

the result onte the space orthogonal to QqrQnreverQ - rurthermore, ed

: referring to Section 2.7, we add the extra requirement that X; be hA |

) & compuled so thet it is orthogonal to g,,4,,.-.,4 in the event that SO

: 2 is of less thax full rank. Note that this will automatically be a.r LAF N

: the case if Zs is of full rank. mo

XK The algorithm of the previous section, wher modified +o take into i :
y . account previously computed eigenvalue approximations, can be described i: SE

i as follows: - J.

. 3 Let A be a symmetric matrix of order n . Let G13 cera #3

l ; be orthonormal vectors with m <n . Let » and s be integer values we

1 < pxs < nao . >

66 BB



Fh LE] — be . Cm - - -- “on . } a . _

Let X be an n-by-p orthonormal matrix which satisfies

where Q, = (Gys--250,) . ve
Compute approximations to the p least eigenvalues of A , the | :

| rastriction of A to the space orthogonal to sp(q;» . -+3a) » as follows: : :

Step 1. Using the Block Lanczos algorithm, compute X_, and 7, A
the representation of A restricted to the spece spanned -

by Xe which contains the vectors (X,AX, - -- ,A571x) - :

Step 2. Compute the eigenvalues . and eigenvectors Ys : :

of Mo . Compute Teg =My, for i =1,...p - .

Step 7. Estimate the accuracy of Hy and q; as approximations -
to an eigenvalue and cigenvector, respectively, of A . J g

If they are all sufficiently accurate, stop- :

Step bk. Let X = (9,720, 00 -+->3_,) and go to Step 1. :
: J

Note that, by earlier comments, each column in X_ will be orthogonal Co

| to Q, and, hence, each CI will be orthogonal to Q y i=21,..D . | ;
Therefore, each time Step 1 is executed, the matrix represented by X - : +

| : ;
| will satisfy Equation (2.9.3). i

If a5 Qs .e-SQ are accurate approximations to some of the :

eigenvectors of A in the sense of Equation (2.9.1), then our discussion ¢ : :
| suggests that the above algorithm will compute approximations to ;

bo

| eigenvalues and eigenvectors of A different from those already computed. | "
So. In the next section, we will integrate this method into a complete i. :

: algorithm which will also allow us to vary the block size p . ;
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2.10. A Complete Iterative Block Lanczos Algorithm 24 :

& Let A be a symmetric matrix of order n with eigenvalues =

A -ee MN PF - + par i
| MN < > < < n and orthonormal eigenvectors 9559s 29, Le 3

r be an integer greater than zero and lest than or equal to n . In . :1@® this section we will cutline an algorithm to solve the following 53 .

| problem: Compute accurate approimations Ay znd ¢5 to As and qs : :| for I =1,..-,v - Our algorithm will incorporate the idea of the 3 g
I previous section and have as its basis the Block Lanczos method. E> :

Basically, the plan of the algorithm is as follows: Compute approxi- 3 ’

§ nations to the least eigenvalues and eigenvectors of A . Wien some * :
Ae of them, say m , ave sufficiently accurate, compute approximations to : )- Fi I

: the least eigenvalues and eigenvectors of A , the restriction of A to & i
z the space orthogonal to those vectors already computed. i *

i ,

{= Our method can be described as follows: 2 h
§ Step 1. Let m =0 -. Pick values for p and s such that 2 -
x Pr>1, s3>2, end 1<pxks<n . Choosean n-by-p 3
0; orthonormal matrix X . EC BE

“i Step 2. Starting with X , apply the Block Lanczos method =

PU to A , the restriction of A to the space orthogonal a

4 to 957957== +29, - (If m =0 , then A =A.) Let 4a Me and X_ be the matrices computed by the Block gs

3 Lanczos method. : iE:

g Step 5. Compute the eigenvalues Ry and eigenvectors vs of Mg 5 RY Gg

: I: BE
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Step bk. Estimate the accuracy of Ars = ps ané CH as | ;
. approximations to an eigenvalue and eigenvector, . t .

respectively, of A for i = 1,2,...,p - Suppose the

: first k of these approximations are accepted. (If

none is accepted, k=0 .) \ |

) Step 5. Choose new values for p and s such that p >1,

s§>2, and 1< ps < n-(m+k) . Iet

: | X = (GpgeryrOpeiore? == 2 Sriery) | :
i ;

| Step6. Increase the value of m by k. If m<r,go to co :

: Step 2. Otherwise, stop. SE

- | An unfortunate choice for the initial X can cause this algorithm :
: | to fail. For instance, if none of the columns of X contains components ' ;

corresponding to any of the eigenvectors for one of the initial :

. eigenvalues hs » 1<1i<7r , then the above algorithm will fail to | :
: compute Ay . In practice, however, such a circumstance is unlikely i ;
] | to occur so we overlook this possibility and accept the above algorithm | | :
) : as a solution to the problem posed at the start of this section. ;
: | ’ Note that in Step 5, if k =0 , then X is chosen as. in the last £ 2
i 3 section. Thet is, X is chosen to be the eigenvectors corresponding : :

; to the Pp least eigenvalues of A . Otherwise, if k >0 , then X .
: | is chosen to be the next Pp eigenvectors following the k that were | , :

: | Also, each time Step 2 is executed after the first, X will be : :
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. where A  ,A Sp gre the eigenvalues of A computed during Tek :. m+” m2’ TTT mrp S18 =
8 the previous ctep. This can be seen as Jollows: aL f

We have & :
| . | g. Al
\ y - X_ - 3

: Mg = X AX =
x J hd - AL ~

| The X we chose in Step 5 satisfies =z

| | x xXst =

: Ww = = .e- . definition Ae :: here ¥ = (Y__.->¥5» 2 By s ] Eo

. La —_— A x - rw A - he t

ox 5

BE Therefore, EE

XAL = ¥Y X_AX_ XY . z :

; diag( ml’ me2’ "7 mip) = ;

RE y Since advantage can be taken of this property, the initial X we | 2 G
; i NE i MIC 2
3 choose in Step 1 will, in practice, also te chosen so that X AX is

: a diagonal matrix. SE

A Note, in addition, that each time Step 2 is executed, X will %

3 be orthogonal to all previously computed vectors. This allows us to 1a .

4 use the Block Lanczos algorithm to compute the eigenvalues and eigen- ®

:!- vectors of A . = SE

y Finally, the range of velues for p and s will in practice be = A

7 restricted somewhat more than indicated in Steps 1 and 5. In our SE

HES implementation, we require basically pxs vectors in which to carry :2 :

- out the Block Lanczos method. In practice, we will generally have BE
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: much fewer than =n vectors for this purpose and the values of p

and s must be chosen with this limitation in mind. :

: In the next chapter, we will consider the problems associated

; with the implementation of the above algorithm. In particumlar, we will :

‘ consider strategies for choosing values for p and s . We will also -

: consider the problem of estimating the accuracy of computed eigenvalues ;

and eigenvectors. ;
T

i

:

4 . _ } \
i : r

br i pe

& , i iy

. . - — :

ES
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'e In this chapter we will concider the problems associated with :

implementing: and arpliying the alporithe developed in the previcus :

e In Section Z.1, we will discuss the neéd for recrthogonaiizing )

the ceguence of matrices Xs) ~coxputed In the Block Lanczos metod. : }
In our use of tric method, we do recrthogonalize These matrices and :

| in this cecuion we will discuss our reasons for taking This path. : :
7 4

Estimating the accuracy of corputed eigenvelues ané eigenvectors k E

| will be the subject matter of Section %.2. We will see how information .

¢ on the accurazy of computel results can be obtained in the context of . ;
our method and how it can be used to step the rogram when a specified :

accuracy has been obtained. | Co

* In Section 5.5, we will exzmine the problem of choosing a block ; ;
size for the Block Lanczos method. 33y considering some examples, we : ;

: will see that this is pot 2 simple problem. We will then suggest sme :
3 * guidelines by which an informed choice might be made. | i :
4 Finally, in Section 3.3 we will consider certain practical matters 3 :
i such as program and storage organization, storage requirements and ¥ ;

A | |

! 3-1 Reorthogonalizationin the Block Lanczos Method | :

: 3 Recall that in the Block Lanczos method we compute 2 sequence of ]
1 matrices Xi 2Xns --eX which theoretically form a basis for the space | 2 ;
; Sp(X, 8%, -. 8575) where A is a symmetric matrix of order n and : :
2 ¢ X is an n-by-p orthonormal matrix, where p and s are integers Co ;
® | k} N



suck that p>1, s>1, and pxs < nn . While theoretically the

sequence oF matrices (Xs) is orthonormal, in practice they depart

! from orthonommality after a few Steps of the method. From the standpoint

of the standard Lanczos method (Pp = 1) . this loss of orthogonality was

; & serious shortcoming. To remedy this situation, an ortaogonalization
step was added to-.the algorithm whereby each vector x, iz
reorthogonalized with respect to all previously computed X y J <i.

| ‘Paige [17] however found that useful recults could be obtained even if :

| a reorthogonalization step is not included since loss of orthogonality
§ implies convergence 9f same of the eigenvalues of the tridiagonal matrix

! to those of the original matrix A . The major drawback with Paige's Co
| aporsach is that eigenvalues of A will often appear more than once |
; when the eigenvalunes of the tridiasonal matrix are computed. The reason
| for this is that once orthogonality ic last, the melhod eccentially
N restarts and recomputes eigenvalues it has already camputed. ‘Thus, lhe |

validity of resulls computed using the Lanczos method without |

> The same problem arises with the Black Lanczos method. That is, :
: if we apply the method without reorthogonalizing the Ls then zczurate |

: ! results can be computed but their validity is questionable in the same -
; | sense as before -- we can not determine which of the eigenvalues we i
: : compute are real aad which are images. :
3 Adding reorthogonalization to the Block Lanczos method stabilizes 3 :
3 | it and we can be sure of the results we compute, but the cost. of this
; ] _ insurance is considerable. (The stability of the method with : z-
: reorthogonalization is not something we have proved, but is an observation 3 |
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cased on OLX computational experience.) oT only does reorthogonnlitoatisa <
t & ada a large nuxrber <I operatiomne to the method, but necessitates Tie z
i precence of ezen matrix Xs in memory Grring each step of the Block E 3
F Ianczes method. If reorthogonzlization could be zafely eliminated, } |

EE then not only would there Le a concsicercble reduction in the wnount oF ;

: computation, but at most two elements of the sequence (X.) would need R

| TG Le Drezent in memory al any tine allowing the otners to be stored on :
| & magnetic dick or tape. - :
| However, even with vaorthogonalization, our early experirents E

| indicated thet the Block Lanczos method could compete effectively in :
13 terms of reliability, efficiency, and storage requirements with the :

method of sirmltaneous iteration sy previously the most effective method : |

| ir Zeneral for the solution of large sparse eigenproblems. For this :
g & reason, we chose originally vo remedy the zbove problem with the Block :

Lanczos method by adding reortidgonalization. : -

| Since this time, Professor W. Kahan of the University of California ;
| - at Berkeley has related some of his results and conclusions obtained ; :R! from experiments using a Block Lanczos method in the late 1950's, which :
: have rever veen published. He concluded that a Block Lanczos ;

: 2 method could be applied in an iterative fashion (as we have used 1
i it} without reorthogonalization as lorg 2s the sequence of matrices (X;) ;

retained "nealthy independence”. He also discovered a way of determining 3 ‘

| > when Independence is lost and used this test as a means of stopping the E TE) method. The work of Cullum [ 4 ! appears to reflect Xahants ideas and ; ¥
| approach. The reader is urged to consult Cullum's work for more details :
4 or this alternate approach. | | : ;

1 CN



: 3.2 Estimating Accuracy and Convergence Criteria
{ | Given 2 symmetric matrix A , the goal of our algorithm is to |

: compute scalars, and vectors x, (wheze we assume fies | = 1) such

Ax, -p.X, = By | (4.2.1)

lol = 5 <= (>-2-2)

where T is some tolerence (to be determined). In this section we

are interested in determining when the eigenvalue and vector approximations

canputed using the iterative Block Lanczos method satisfy Equation (3.2.2).

Let X be an n-by-p orthonormal matrix. Suppose that |

XAX = M = aiag(uysmgs-eerm) (5-2-3) Co<

where

: KC ax, = bs (5.2.4) :
J J J

and x, is the j-th colmm of X - If X is used to start the Block

: Lanczos method (refer to Section 2.7 for notation), then xX =X and .
) ]

Zp = RG Xp (5-2-5) :

and the j-th column of 2, is } ;

1 2s - Ag =p oxy = Ps . (3.2.6)
i Thus, the Block Lanczos method immediately provides estimates of the ;
i form (3.2.1) for the columns of X and the Rayleigh quotients Is 3 !
i defined by Equation (3.2.4) provided X sztisfies (5.2.3). However, :
. for the method we have developed, the X used to start the Block Lanczos

; method each time will satisfy (5.2.3) where the tos are the eigenvalues 4 =
: computed during the previous step (cf. Section 2.10). - )
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i! |

| Note: Since (cf. Section 2.7)
‘12

3 4p = XR, :

) and X, is orthonormal, we also have

. t J t Ir,e. = loi = liz = liz.

| 3 5 = legli = hizgh = rg
i where rs is the j-th column of FB, - In our progrem, however, we have
A found it easier to use Zz, than BR, to compute the values of “ 5 .
1 - The tolerance T we use 1s bhesically relative error for eigenvelues
3 greater than one in modulus and absolute error for eigenvalues less than

| or equal $O one in modulus. That is,
EH

g 2 i ths- lil xeps if fu.| >1 , and
‘3 | T = (2.2.7)

kb | eps if lps | <1 , |

i where Hes is the eigenvalue approximation corresponding to <5 and
: EB

i =

yd eps is some specified precision. ~

} However, in determining the accuracy of computed resulfs and |
ES :

3 establishing & stopring eriterion, the errdr in previsdsusly computed :

| eigenvalves and eigenvectors must aisO be taken into account. Recall :
(cf. Section 2.9) that if we have already computed m eigenvalue and :

: eigenvector opproximations Ay rho censh and a5Asyooesq , then ;
g additional approximations may be obtained by computing the eigenvalues ¢ )
5 end eigenvectors of A , the restriction of A to the space orthogonal 3

g To SpCIE .o- »q_) - However, the eigenvalues and eigenvectors of A 3
Lt will differ from those of A by axounts that depend on the magnitudes #

I 2
’ ¢

| . of €9> €p7 = 2, where 3 |

i 76 3
Ad ' i £3)

The i
oa £
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Sor 1c 1.0. ..,m 0 For Instance ob one extreme, 1f the Cs mays lire oo
anc the G. oar ny relationship to Lhe- eigenvectors of A, then we :

would not a2xpect ine eijenvalues and eiienvectors of 2 to be useful % :

aporoximaliims 10 those of & . AL the other extreme, if all Lhe < ; £5 :

are Zorg. then each 1 is an eigenvector of A =2ad the eigenvalues : |
ané eigenvelttors 51 a will also be eiganvelues and eigenvectors oF 4A ‘

When applying our azgorithk, the eigenvalues and eigenvectors we 2

are computing are cinvarging to those of .2 and not A and, therefore. :

. if we compule the 5 in Zouwation (3.2.2) with respect to 4 and not 3 . :
then there is 2 lower limit TS the vaiues of the i beyond which we E |
can not reasonably c¥pect them to deccen..

Our prosgrar Lakss this error into account as fmllows:

if |

then we accent a value oo and a vector x if their corresponding Cs p ;
satisfies 3

€ <TH T. (3.2.90) € :
where +t is ziven by Equation (3.2.7). (We will add one more term to 3
vr later on to zccomt for round->ff error in compacting £5 .) Ome way i
of looking at this criterion is that it is a way Of estimating when the ¢ ; |

computed eigenvalue pu has converged to an eigenvalue pp of A . Recall k

from Section 2.9 that there is an eigenvalue A of A such that F :
« 3

hog] 5 Bee D2 Lo i
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ir we let

= | !

¢ Cy = (G.5---5a_) . !

then :

cs = A=.X -

$ :

= (I-30) Aux) oy Gefinitica of A :

~~ = =T. : A !
= {I-2,Q))¢c woere gg = AE- LX

v = 5S, 8 . .

Thus. :

p= vo nE AY on

o

IL can ne shown that J
:

x ot ~ ;

Thus. as long &s i

+ nen B

isi 2 7

and we can improve on the accuracy of , relativeto tT . Basically, : ]

once (3.2.9) has been satisfied we have reached the obtainable accuracy )

allowed by the errors in hs and % , is=1,....m . SE
. Lo ; 4

Note: The eigenvalues gy. Ccorpuesi Dy Our program are Rayleigh - i
- :

quotients computed using the vector x. . We assume that sli =1.) SE[3] - N '

That js; i

= 3 )
BL: = X. AX. a

It is well known that the Rayleigh quotient is often twice as accurate 5 4

78 5
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an approximation to an eigenvalue 2 A as the vector used to form it. |
Thet is, if to

then there is an eigenvalue AX oI A such that | :

> :

rough = vt
where 5 is the minimum separation betwean 23 and the remaining

eigenvalues of & [23, p. 135]. Thus, for well separated eigenvalues, |

‘the er=or in 5 will be approximetely 2 rather than . . | ) : |
Surthermore, the error in the eigenvalues of a as approximations |

to the eigenvalues of A will often be far lesc “han the bound suggested :

oy Fouation (4.2.8). The results of Paige [14] in fact suggest that the !
error {or well separated eigenvalues will be proportional to |

(75+ 2. --a 72) rather than the square root of thic term. no
Therefore, we expect the computed eigenvalues Lo be twice ao !

| accurate 2s the norms “5 of the residuals 5 indicate. Computational :
experience verifies that this is usually the case. |

The error in the computed value of €5 arising from round-off ! i |
errors will generzlly be umimportant in estimating the accurzcy of computed : |

results and determining when convergence has occurred. That is, while Cs .
may be somewhat imprecise in terms of number of significant digits, its SL

order of magnitude will usually be correct and thic is what is importent :
To

in determining convergence. The exception to this statement occurs when 3

almost complete cancellation takes place when ay is computed. This will ‘ :

6 i
3)

CM ee ] &



happen when the guantity =ps ir Zcuation (5.2.7) is chosen close to - :

$ the limits of the precision obteinzble on the machine the program is :

being executed on. To remedy this situation, we modify 1 a= follows: .

fecept .. and x, when the norm . of thelr residual caticfiecs -ala -— . }

3 - : :
£. < T+ 7
1 = 2

where =< is now defined to de

5 le. lieps + 10m xmachnens) if {i.| >2 ) Co

(eps + 10n x macneps) - it fool <1 . .
Hl -— :

where nn iz the order Of A 2nd macheps ic the smallest positive
~ :

floating point value such that 1 +machens ™ 1 on the machine the pe

program is being executed on. (iL.g.., macheps = 1% 77 for double :

precision computation on I.3.M4. System/3A0 romputcrss.) The form oF the -
“+r

| new tens 15 suggested by the Mozting ixint error anslysis of the :

computation of immer products (see Willkinsc- [23], Chepter 2) and ;
i

=. - . . F z

Co zetuaily is z considerable overestimate (ty zbout 2 factor of 10 which

is arbitrarily chosen) 27 the errors that zetuzlly occur. However, as | :

: we pointed out above, This new Terx will usually be insignificant in 3

a comparison to eps in most applications. .
- .

i i

= | | a LT



5.3 Choice of Block Size # :
One of the problems we have not discussed up to this point is h

he to choose the block size for the Block Lanczos method during each ; )

iteration of the algorithm of Section 2.10. A good choice for the i g
block size can often considerably reduce the number of iterations «4

required to compute a given mumber of eigenvalues and eigenvectors.

The difficulty is that the best information for choosing the block size 2
is cecurate imowledge of the spectrum oi the problem matrix which is, vo

of course, the information we are trying to determine. Fven for the ;
seme malrix, however, the best block Size will also depend on tne number 3 :

| of eigenvalues and eigenvectors we are irying to compute and the number ' . :
of steps s of the Block Lanczos method we can carry out for a given ; :
block size bp .

-1 1
Sxample. Let A = -H where H 1s the discrete biharmonic Lo

operator of order 25¢ [1]. Suppose we are given gq = 12 vectors in .

which to apply the Block Lanczos method. This means (ef. Section 3.1) :

that at any woint in our computation, the number m of eigenvalues ) : ’
| we have already computed, the block size Pp , and the mmber of steps =¢ ; :

| for the Block Lanczos method must satisfy m+ pXs £12 . Suppose also : :
that we are trying to campute r = §& eigenvalues and eigenvectors. * :
If we apply the program of Appenaix A to this problem, we arrive at § |
the results given in Table 3.3.1, where an iteration basically involves 1

an execution of steps two through six of the iterative Block lenczos ! :
algorithm of Section 2.10, end the mmber of matrix multiplies is the ;

number of times the matrix-vector product Ay is computed where y is . ; ;
a given vectcr. | '

oo 81
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i o

initial block size iterations matrix multiplies 2 ,

1 10 93 : .

5 o) 3% ; .

Note: The strategy used in tnese tests is at each point to choose | i

the block size egual to the previous block si = p unless there are ; :

v fewer than p vectors to be computed in which cese it is chosen :

| equal $0 tne number of actors left To be commuted. : .

If we increase the regulred numder oF vectors Tr to 10 , then -

v we have the results of Table 5.35.2. .

=. :

- Table 5.2.2 ;
- a

initial block size © iterations matrix mzlciplies E

- 1 53 175 Co

CG 2 20 126 .

| X 20 15% p %
: 5 19 133 :
a He .
-— ] ;

: ES y

— . .
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| Note that with gq = 12 , the largest block size allowed is ;

p = 6 . Note also that it is inefficient to choose p = 5 since - :

.with this block size, only two steps of the Block Lanczos method | :

can be carried cut as is the case with p = 6 . : :

Pinelly with q incretsed to 2k and r equal to 10 , we -

have the results of Table 3.3.3. :

: Table 5.3.3 |

: initial block size iterations matrix multiplies

1 1 219 : :
2 8 158 ; :

3 / 8 156 | )

6 7 128

| 8 7 139 :
12 EK: 166 3

It would appear from this example that the best block size when -

g=12 is p=2, and when q =2k, it is p = 6 . This examplealso Co -

| demonstrates that there are advantages to be grined by using a Block

, Lanczos nethod in comparison to ao standard Lanczos method (p = 1) - - :

The point of this example is that it is difficult in advance to | oo
n predict what the best block size will be. Therefore, rather than | |

attempt to describe specific strategy for choosing the block size, we | |

will establish some guidelines that we can use to make informed decisions

: in particulsr problems. :

, | In our program, we are assuming that there is an upper bound on the . | :
i wroduct pxXs imposed by storage limitations. Thus, if we increase the 8 ,

: ] 83 "



4 5
: value of p , the value of s must usually decrease. This generally z ;

. implies that each individual vector in the block will converge at a “ :
’ slower rate. These clower rates of convergence are compensated for by g -

the fact that we are computing more vectors at once. One conclusion we

| *® can draw, however, is that it seldom pays to choose 2 block size larger 3
| than the number of eigenvalues we are trying to compute. Tor example, if fl ;
| we are interested in computing two eigenvalues, then while it might ji :
= sometimes prove advantageous to choose p =1 , it will scarcely ever : = ]

pay to choose p =3 . g :

1 Cullum and Donath [4] choose the block size equal to the EPo rmumber of vectors that remain to be computed znd, thus, initially o ;
| equal to the required number of eigenvalues. There is much $0 recommend :
| this approach. There is no difficulty in restarting after some eigenvalues 4
3! | have converged since the block size can only decrease. All useful : :
| information is retained from one iteration to the next. However, as + ;
¥ the above example indicates, choosing the block size in this way does -

| not always lead to the best choice, and it also means that we cap only 2 :
L compute a number of vectors less than or =qual to one-half of She total 5 E

| number gq of vectors available to the Block Lanczos method. While this 3
my strategy can be atilized with the program we have included in the Appendix, 2

the program bas been designed to compute as many as ¢-1 eigenvalues and =
eigenvectors. In situations where the value of q is several times that 3

- of r , the required number of eigenvalues, and where there is no informa- 5
| tion about the matrix to indicate otherwise, Cullen's approach is a good #2 }

< For problems which are known to have multiple eigenvalues, it is 3

best to choose the block size at least as large as the greatest 5

3 | _ Sn



3 \
: multiplicity, or if this is not possible, at least\greater than one.

: For example, the biharmonic operator in the abave Se is known to | )
: have multiple eigenvalues with multiplicities at most two tecause of

: symmetries in the physical problem it models. This suggests a block ¢
k size of at least two. As the results indicate, a block size of one |

was clearly less efficient tham a block size greater than ome. | ;
| Theorem 2.6.1 gave bounds on the errors in tie least eigenvalues |

: corputed using the Block Lanczos method. These bounds contained 2 term

: Ey where 7 = (ng = Mp) (=) » DP is the block size, :
: s is the number of steps, and M, ’ Mea » and LN are the k-th, | . )
: fp+1) -st, and n-th eigenvalues of A , the problem matrix of order n .
: While our attempts to formulate a precise strategy for choosing the :

: block size using this term as a relative measure of effectiveness were
largely wmsuccesstul, it does yield some qualitative information about
how to choose the block size. That is, we try to choose p such that

1 ) the difference Nem Age is as large as possible and s ic not tog-— |
: small. This suggests, for instance, that if several eigenvalues are :

clustered at one end of the spectrum with a gap between them and the

: remaining eigenvalnes, that we should attempt to choose the block size :
ol at least as large as the number of eigenvalues in the cluster. :

J In conclusion, we suggest that simple strategies chosen along :

: the lines suggested above will usually prove to be completely adeguate

To in most applications. ;

85 SE



oo ) tps een BT as \ ETCSeOR TUTn TO A aE LI SeERT ND EEE PEL eT he EN

: Eo

= -» . - To .

Z 2.4 Progrem and Storage Organization ame

- It will be convenient to relate our discussion to the actual ETA

5 rortran program contained in Appendix A. In particular, we will refer af

; Lo the various parts of the program through the names of the subroutines. Te +
i . . . - - Pec ¥

 -» There are certain auxilliary functions performed in the program LCE
fb } - - n . A Co mI :
g 2 which we will dezl with first. During each iteration of the iterative je] .

E. 3lock Lanczos method, it Is necessary on solve the eigenproblem for 77. » Yo

gS Py | the mairix of the restricted operator couputed by the Block ILenczos Sea :
F method (ef. Section 2.7). This is accomplished viz the subroutine EIGEN EE

2 which simply restores 7 _ in such a manner that it is acceptable to or
2, N ake LC

t J the subroutines TREDZ and TQI2 . These latter subroutines are i
3 designed to solve standard symmetric eigenprcblems and are Fortran ee] H
i implementations [21] of Algel ‘GC procedures of the same name described We

: ¥ & in [24]. Note that To is also a2 pand symmetric matrix with 2 xp+l 500"

1 dizgonals. Although tuere are special Technigues and programs available wed
% SE

- E: Tor tne solution of eigenprovlems for bapd symmetrie matrices, we found 2% g
y . . . a i
a that their use did not conveniently allow us to reduce the amount of 2

LE necessary time or storage. However, it is relatively unimportant which : 3 :
38 method is used to solve the eigemproblem for Mas long as it is 4 -
E » nmmerically stable. I SE

" In tae Block Lenczos method we compute matrices Z; and for each ET

® matrix, it is necessary to compute its orthogonal factorization: EE.

Z. = X.R. 3-3
E J Ja EB

"1 i where x, is orthogonal 2nd R, is upper trianguisr. This is accomplished Fi
: through the subroutine ORTHG which implements a stable variant of the Hy

i Gram~Schmidt orthogonalization method. ORTHEG wes derived from the x



Algol €0 procedure ORTHOG contained in the program for simultaneous

: iteration described by Rutishauser [20]. ORIHG has also been designed

to carry out the functions of re-orthogonalization of the X; (ef.

; Section 3.1) and projection of the Xs onto the space orthogonal to
previously computed eigenvectors (cf. Section 2.9). ORTHEG is also

| used to generate the initial matrix X used in the Block Lanczos

: method.
| RANDOM is a subroutine used to fill the columns of an array with

a pseudo-random sequence of real values. The resulting matrix of random

: elements is orthogonalized (using ORTHG) and sent to the subroutine

: SECTN. SECTN rotates the orthonormal matrix X , say, so that xCax
: is diagonal as follows: X 3s multiplied or the right by U where
; U is the orthonormal natrix of eigenvectors of C = XA - If X

] is n-by-p and Ay 5dr - erly are the eigenvalues of C , then |

fF (x0) “a (xu) = Xoytaux = diag(d,,d,; + -»d,) -
: | The rotation of X can be accamplished through the subroutine ROTATE
I which 1s also used to compute the eigenvectors of the restricted operators

: (cf. Section 2.9) in the main subroutine using the matrices Xg and V | |
; where A and 7M are computed by the Block Lanczos method and V Is |
¢ composed of same of the eigenvectors of Mg . That is, if vs is an
: eigenvector of Me » then ROTATE is used to compute a; where a, = Mov. :
: for several values of i . :
H The principal part of the vrogram is contained in the five
: subroutines called CNVEST, ERR, FCH, BKLANC, and MINVAL. CNVIST and |

: ERR are fairly simple subroutines which implement the ideas of Section 5.2. |
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Bb ERR is called in BKLANC, the subroutine for the Block Lanczos method, =

: ® ) afer 2, has been computed and before it has been orthogonalized with a
| respect to previously computed eigenvectors end reorthogonalized with pi

respect to XK , the matrix used {oo start the Block Lanczos method. 2
: t ® a EER simply computes the lengths <5 of the columms of Z, which are e
| the residual vectors for X . CNVIST is called from MINVAL, the main &
3 . subroutine, and determines whith of the ¢, satisfy the convergence 2
E ® criterion described in Section 2.5. =

| : The purpose of PCH is to choose = new block size for the Bleck a
7 Lanczos method during the next jteration of the program it another 5s
| * iteracion is necessary. The strategy of the specific subroutine ga
i contained in Appendix A is fairly simple: The block size p during =

: each step will be the same 2s it was during the previous step unless ke

-. fewer than © eigenvalues remain 0 be computed. In the latter case, . =
P 1s set equal to The mumber of sigenvelnes left to be computed. in
PCE also chooses a value fcr s , the mmbe> Of steps the Biock irmczes =

& method is carried out. The value of ss is chosen so as 0 maximize 3
: ’ the use of the storage available to the Block Lanczos method. 1 the %

block size p is such that fewer than two steps of the Block Lanczos | =

g : & met™0od can be carried out because of storage limitations, ther p is =
: ; reduced to the point that s can be assigned a value of two.

: The subroutine BKIANC implements the Block Lanczos method of =
. * Section 2.7 with reorthogonalization. If p is the block size, s is :- 3

| : : the mmber of steps, a is the order of the matrix A whose eigenvalues =
: are being computed, and X is an n-by-p orthonormal matrix, the main
: . purpose of BKIARC is to compute Xg and 7g 5 the representation of A



restricted to X_ where Sp(Xx_) contains Sp(X,A, - - - 457%)

: Recall, also, that Mg is a pXs-by-pxs symmetric block tridiagonal
| matrix with p-by-p matrices M,,M,,...,M_ along its diagonal and
t p-by=-p upper-trianguiar p-by-p matrices R.,5 R, ye -«»R, on its first
: | lower diagonal. The matrix Xg is n-oy-pxS so an array T , cay, with
: at least pxXs colums of length n is supplied to BKLANC to store xq
E . in. However, as we will see, previously computed eigenvector approximations

: are also stored in T . If m such approximations have been obtained,

} they are stored in the first m columns of T , and BKLANC stores Xs
in columns m+l through m+ ms of T . Note that if the actual

; dimensions of T are n-by-g where q is some integer value greater
than one, that at any point in the execution of tne program, m , P,

y and s must satisfy |

: m+pks <q .

ICH chooses values for p and s with this restriction in mind. The

initial »p-by-p matrix X is stored in cclumns pl through m+p

: of T . |
: The computation performed by BKLANC is comprised of s major

: steps- During the j-th step, Ms P Riva > and iva are computed )
¥ except that during tke s-th step, only M_ is computed. The mairix X

: is assumed to be such that M, = xX ax is diagonal. Advantage is Taken
of this in the first step. BR,+1 and X,+] are obtainsd by first ; .

: forming 2541 (ef. Section 2.7) and storing it in, T in the same. B .
location that x,+1 will occupy. ORTHG is tL1 executed which

- orthogonalizes Z547, with respect to all previous vectors stored |
in T and decamposes the result into X541 and Rg... - The

: 39
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: : orthogonalization with respect to previous vectors in T accomplishes i

| ® two ends: | (1) OCrthogonalization with respect to the first m columns pi!
: E impijes that we are applying the Block Lanczos method to 4 + the | =

¥ restriction of A To the space orthogonal to previously computed | fit

: 3 ad eigenvector approximations (cf. Sectiom 2.9); (2) Orthogomalization
| : with respect Lo tle remeining columms of T =azccamplishes the ol
3 re-orthogonalizavion of Z,+1 with respect to 9 s i<j (ef. =

: 5 hd Section 7.1). M_ 4s stored in rows and colums ml through I
: m+ pXs ¢f an array C , say. Since Mm, is band symmetric, only

‘ : its lower ptl diagonals are stored in C . : I
- hd Finally, the subroutine MINVAL is the main subroutine which 4

combines the functions of the above subroutines into an implementation 8

| of the iterative Block Lanczos method of Section 2.10. An n-by-g BE
: ® array T is surplied to MIXVAL which is used by BKLANC as described o
: above and also to store the eigenvector aprroximations as they are B

. | computed. A variabie = is used tc count the number of computed values -

- and vectors and when its value exceeds r , the reguired mmber of on

: eigenvalues ang vectors being sought, the program stops. iB

: : | The initial size of the block size 1p is supplied to the program. =

: ; . In the preliminary phase of the program, the number of steps s is oo
x i selected and the initial orthonormal matrix X is computed and rotated By
oo so that XUAX is diagonal. The main part of the subroutine is e sequence a
. of staimments which carries out steps two through six of the algoriim i

LE described in Section 2.10. The main difference between the progrem 7

3 and the description of Section 2.10 is that the computation of the i
- * eigenvectors a: is put off wmiil the end of the 100Dn. This is bhecar—e [4



both the eigenvectors which have converged and those that will be used | ; i
to form the orthonormal matrix X for the next iteration must be 4 j E

| computed simmltanecusly. Since the new block size is computed at the ; ;
end Jf the iteration, the computalion of the eiprenvectors must be : 4

) ‘delayed until this point. | | t :
| Information on the matrix A is passed into MINVAL through the | .

| name of a subroutine with three arguments. When the subroutine is $i
called, one of the arguments will be an array containing a vector vv, .-. :

say. The subroutine computes the product A xv and stores it in a | :
second array parameter. This is the only way the matrix A is referenced ;

| in the entire program. 3

The storage requirements of the program are as follows: | i

: 1. An n-by~q array T . T is used in BKLANC and alco {oo j

store the computed eigenvectors. This array is supplied to N

g | MINVAL by the program wich calls it. The value of q should :
be as large as possible, but, in any event, it should be at | -

i least one greater than r , the required irmumber of eigenvalues ol :
and eigenvectors. 3

2. An array D of length at least q elements for storing the I :
| conputed eigenvalues. This array is also supplied externally. ;

| 3. fn array C with zt least g° elements. CC is used to : :
store Mm in BKLANC and also to store the eigenvectors of ‘ | :

Lh, tn array E with at least g elements for storing the noms |
of the residuals in ERE. _



3 In addition to the above sturage, the program also includes two arrays a ;

A J in the subroutine EIGEN with at least q elerents for use with TREDZ ES :

: and TQL2. Also, two arrays of lenglh n are provided which are used Ea

3 with the subroutine for computing the matrix-vector product Ay where oy N

PE y is a vector. All these arrays were provided to make the program oo

’ more flexible znd usable and are to 2 certain extent, optional. ; 3

: By far the bulk or the computation is performed by the subroutines :

Cp BKLAKC, EIGEN, and ROTATE so we will confine our operation count AN

i | analysis to these three subroutines. The counts given below are for AEE

5 either additive and multiplicative operations and are for one step - ; TT

I of the iterative Block Lanczos method. The terms n,m, Pp, S are ) v

: the order of A , the number of previously computed vectors, the block ¥

| size and the number of steps for the Block Lanczos method, respectively. E

= l. BKLANC: :

: Computation of M, 's: npiprlilenl) : gi
:b 2 :
- . . + -— :

v Computation of Zs 's: np + np + p(s-1) Ek

8 Computation of Ls 's and Rs 's: 2nmps + np°s° + nps CG

z 2. EIGEN (using TRED2 and TQL2): approx. 2(ps) - So

] ' In addicion, there are pxs matrix-vector products computed in BKLANWC. :
Z This computation is performed externally and devends on the matrix A . :

:. Depending on the problem, it may completely overshadow the rest of the :
x 3 eo. A . ; py
i computation or it may be insignificant in comparison. ) :

: 92 Lo
3 po
3



Example. Suppose n=1000 , p=5,&8=4, and m=3. We : :
then have the following counts: 3 :

Computation of M, 's; L5,000;

Computation of Z's: 120,000; ) !
Computation 2f X's and R's: 540,003 | :

2. EIGEN: 24,000. B |
3. ROTATE:  100,C00. : wo ;

Tn addition, there are 25 matrix-vector products involving A p

which is of order 1000 . ‘ ",

From this example, we’ see that the bulk of the computation cakes |
place in BKLANC, and in particular, in the computation of the X, 's | ;
and Rs 's which involves the orthogonalizatiun of the 2; 's. This :
exemple is fairly representative of the situation in general. |

| The above operation counts don't really say anything about the |
cverall running time of the program since this depends on how fast the oo

computed eigenvalues and vectors converge to those of A . The rates :
| of convergence in turn depend on the spectrum of A . In the next | :
| chapter, we will consider some specific examples and compare our :

algorithm with the method of simultaneous iteration. : :



F In this chapter, we will consider the results of applying the EX
iterative Block Lanczos algorithm to a number of examples. We will EN
also compare some of our results with those cttained using the method 3 :

“ of simultanezas iteration described by Rutishauser [20]. 3 :
For the purposes of testing our method and the method of

| simultaneous iteration, diagonal matrices are sufficiently general and :
’ particularly convenient. That they are sufficiently generel arises ; E

from the fact that neither of the ebove methods transforms the matrix 2 ; |

| whose eigenvalues are being camputed or in any other way attempts to }
take into account the structure of A . Rather. the only way A is : !
referenced is through a subroutine which computes v = Au Where u :

is a given vector. If : :

A = diag(ry, hy, .. 5M) ; :

where n is the order of A , then oo

where u., and v; are the i-th components of u and v , respectively. | :
i This can be easily programmed and 2 large number of different examples : i

: can be quickly generated whose exact eigenvalues and eigenvectors are : :
: known. More important than knowing the spectrum is the fact that we i :

; can specify the spectrum of A and therefore can study the behavior 3 :
. of our method from the standpoint of test examples whose spectrums vary 1
BN according to the separations and multiplicities of their eigenvalues. :All but one of our examples will be chosen from this class of problems. i

a | Sh 2



It is somewhat difficult to compare the iterative Block lanczos E :

method to the method of simultaneous iteration since the computations y :

they perform are differcnt. One mearure is the totil Lime cach require: : :
to solve a particular problem but this standard is rather crude and i -

| uninformative. There are two areas» however, in which the computations | 2 :
performed by the two methods coincide -- the computation of matrix-vector E ;
products Ay where y is a vector, and the orthogonalization of the i |
colums of a matrix which involves computing a large number of vector i
inner products. As we saw (cf. Section 3.4) a major part of the compu- 3 :
tation time in the iterative Block Lanczos method is spent in these two E
areas and the same is true of simultaneous iteration. Thus, for the : ;
purposes of comparing the two methods, we will report the following: EE :

1. The computed eigenvalues Bs : ;
2. The magnitudes €; of the residual vectors Ax, - bs Xs E | :

: where x. is the eigenvector corresponding to p. - H
3. The number of matrix-vector products computed. ) k ;

: L. The number of vector inner precducts computed in the A

; orthogonalization routines. : 2 :
| 5. The total execution time for the entire program. | : ;
3 Additionally, for the iterative Block Lanczos method, we will report - ;
| the number of iterations required which is also the number of times 1 ;

the Block Lanczos method per se is carried out. C 3 .
A listing of our iterative Rlock lanczos program is contained in E- “

; Appendix A. The output statements used to print out program statistics : ;
have been deleted from this listing. : , 4 - ;



Our progrem or simultaneous iteration is a Fortran translation : ;
tb of the Algol 60 procedure ritzit described by Rutishaucer [ 19,20]. : E ;

This procedure is actually a combination of simullancous iteration ; :
; end a Chebyshev type iteration. The biggest difficulty in using this ; ;

: program as a standard for comparison is that it often overshoots its :

: | | goal. That is, it either computes results far more accurately than ;
desired {taking more time in the process) or it computes more eigenvalues ;

1 : and eigenvectors than asked for. With sur method, it is far easier to ' :
| ] | control both the precision and number of results computed. Thus, our i
1 i ~ plan has been to perform a computation with the simvltaneous iteration oT ;
: ¥ program and then attempt To match its results in some sense using our ;
: iterative Block Lanczos program. . :

: ; Note: While our version of simultaneous iteration is a nearly :
. 3 literal translation of the Algol €0 orocedure, there are some minor :

: | differences between the two. The differences arise from our attempts | :
: to rectify some errors in the published version of the Algol €0 Bb
; : + ~ procedure, and to clarify the structure of the program which was very E E
: complicated at the start. No essential change was made in the ;
: algorithm, however, which would compromise its efficiency.

: > We now proceed to the examples. In each example, we will specify
; values for r , the required number of eigenvalues and eigenvectors to ;

be computed, and q°, the number of columns of length n in an array X : g
‘ ‘ which, is used in both the iterative Block Lanczos method and the method i i:
: : of simultaneous iteration. For both methods, the value of gq must be : :
: | greater then that of x . In addition, for our method, we will give 3 3

: * values for eps , the approximate precision desired in our computed i :

Le :



: results, and p , the block size to be used in the Block Lanczos ; .
| method. The strategy used for choosing the block size is as described y :

: in Section 3.4k. That is, the block size is chosen to be the least of : :

: the two following values: (1) The initial block size p 3 and, :
(2) the number of eigenvalues left to be computed. This strategy is : :

| | implemented by the program listed in Appendix A.

In Examples 1; 2, and 35, we will compare our method with the

method of simultaneous iteration when both are applied to problems a | :
with characteristic types of spectra. In Examples 1 end 2, we will : ;

consider problems for which our method is more effective. Example 3, ;
| | in contrast, favors simultaneous iteration. In Examples 4 and 5, we .. |

will consider the behavior of our method on matrices with multiple : :
: eigenvalues. Example 6 involves a matrix with very close eigenvalues. :

| Finally, in Example 7, we will consider the results of applying both ol :
| programs to the problem of computing the least eigenvalwes and eigen-
| vectors of the discrete biharmonic operator. |

: A is a (diegon2l) matrix of order bL5SL with eigenvalues ; )

| A = <10.00 , Ay = 9.99, A= 9.98, and A, = 9.00+ 02 X (i-h) oi
a for i =L,5,...,454. With @q =15, r=3, p=3, and eps = 1070 | : :

| the iterative Block Lanczos program computed 3 k
. uy = 9-99 999 999 999 9% , = 173x107 €

i pp = -9-98999 999 999 99% , e, = 2.85x10 J
| -8 E-SRI
| uz = -9.97 999 999 999 91 , ex =2.11x10 . ¢
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Note that les/hs | <10™° in each instance. Eleven iterations were i b
» required for this computation. : = .

In contrast, the program for simultaneous iteration computed E !
| _6 | EI

py = -9:99 999 999 999 995 , €; = 3.09x10°° , RE
. ‘ 3 ;

: ws = -9.97 999 999 999 992 , ex =2.21x10 . i ‘
| ” Note that the values of the ¢5 are greater in this case. i ;
1 Table L.1 summarizes the comparative statistics for the two ] :

Uy :

: Table 4.1 | |

:. matrix-vector vector inner time relative | %
. ’ products products (sec.) precision -

Block Lanczos 165 126% 45.95 approx. 10 ,

so Sim. Iter. T50 1560 69.03% approx. 107° :

- Times, unless otherwise indicated, will be total execution times for . :

: programs compiled using the University of Waterloo Watfiv Fortran h :

4 compiler and executed on am I.B.M. System 370/168 computer. FO

a This example is typical of those problems in which the iterative § :

x | Block Lanczos algorithm can be used to best advantage. In particular, EI

: problems in which the eigenvalues to be computed are seperated from the 4 .

| remaining eigenvalues by a relatively large gap. 3 :; |

| ” Note in each case that the eigenvalues are about twice as accurate dk :| ET
: EE

as the e€. indicate. %. :
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? The matrix in this example is the same as in Example 1 except that »

: the gaps between the <¢igenvalues have been decreased by a factor of 10 .

Thet is, A; = -10.00 y Ny= 9.999 , Ay = -9.998 , |

‘A, = -9.900+ (1-¥)X.002 , 1 =14,5,...,h5% . As before, r = 5 and |
: gq =15 . | |

; With p=3 and eps = 10  , the iterative Block Lanczos program

: computed in 10 iterations the following results: Lo

: _8
wy = =9:99 999 999 999 996 , e€; = 8.96x10 ° , |

. ho = -9-99 000 000 000 002 , ¢, = 1.9Tx 1078
R 8 |

: wz = 9-99 792 999 999 999 , €z = 1.29 x 10 .

. The simultaneouvs iteration program computed

a py = =9-99 999 999 IT 815 , € = 1-91x10 ’ |
-6

: by = =9-99 899 999 997 082 , ¢, = 1.92x107° , |

: ps = -9.99 799 999 920 755 , =; = 9.61x10 . : |

: In each case, the errors in the computed eigenvectors were approximately :

| the size of the e. 's. ~ :
| This example produced the results given in Table L.2. ; :

- 4 -

k 5

Table b4.2 Lo

matrix-vector vector immer time relative §
products products (sec.) precision .

Block Lenczos 1k9 11k0 11.80 1078 :

Sim. Iter. 1785 1800 88.9L 107° y
} ;
:

29 A
|
[| .



£ o The behavior of the iterative Block Lanczos »Hrogram was virtually E

. : unaffected by the reduction in the spread of the eigenvalues. This Ei :

s ! example serves to illustrate the point that the rates of convergence Cs BN

; of the approximations depend on the gaps between the eigenvalues YL :

; ) relative to the spread of the eigenvalues. This is suggested by Ga

yo Theorem 2.6.1 in which the bounds on the errors in the ,, depended '%
: on the eigenvalues through the quantities 7; where ~ g

To 3 ~ : ie
: (hg = 2) TE

I. | Decreasing the gaps between 2ll the eigenvalues by a constant factor E y

) does not affect the value ZF y JU . ee:
: The simultaneous iteration program, however, suffered by this change =)

: p¢ since the results it computes converge at rates that depend on the 33

; ratios Ap15 which increase when the eigenvalues were brought closer =
- together. : EF

. A is 2 (diegonal) matrix of order 101 with eigenvalues equally ‘
iF spaced in the interval [-1.0,0.0] . That is, A, = =-(101-3)/100 , OE

a. i = 1,25..05101 . In this example, we have T = 6 and g = 10 . In Ed

addition, we choose Pp =2 and eps = 10™° for the Block Lanczos method. FA

) > The jterative Block ILenczos program then computed six eigenvalues: =



: r.

by = --999 999 993 T--- , oe = .9@5x1070 3
N } } > :
, bp = =-989999 998 3... , oe, = Lhghx1077 ,
¢ -5
: wz = —-980 000 0QO0 3... , €s = 1.29x10 © , :

: by, = —-970 000 000 T... , & = 1.53x107° , “

; bs = --959 999 999 6... , eg = 2.07x1077

: wg = =-949 999 998 To... , ec = LI5x1070 .

; Note that the residuals exceeded 10° in the last five eigenvalues.

; This was because of the allowance made for the error in the firsi :

gd eigenvalue and eigenvector. :

: The simultaneous iteration program computed seven (ever though

“. only six were asked for): | :

pa u, = ~1.000 000 000 000 , e; = 2.15x1077 ,

\ Bo = -.989 g9¢ 999 999 9 So = 2.56% 107 >

py = —919999 999 999 » eg = 675x107 Ll
: y | -8 :© By = -.969 999 999 99 >» €, = 2.21x10 ’ :

: bs = =.959 999 999 B66, &; = 1.91x1070 .
{

: pg = --9%9.999 999 995 , ¢ = 2.02510 , |
/ = =.939 999 999 959 , & = }.5h x 1073 . |

: The comparative statistics for the two programs are given in {
Table k.3. i

£3

; 101 3



d Teple Lk.3 »

z matrix-vector vector time | hy
1 products inner-products (sec.) = precision J

y Block Tenczos 350 ~Agrh 217.96 approx. 10~7 :

i" Sim. Iter. 5 795 9.15 approx. 10 gp

| 5 This example is typical of the type of problem for which simultaneous SUN
pi iteration performs better than the iterative Block Lanczos method. Go

3 That is. blems for which the spectrum is fairly dense witn little i. at 1s. pro SE Kl

i ’ or no distance between those eigenvalues being sought and the remaining SA

od eigenvalues, and for which r is a large frection of g . | i

cc 8 Example bi. SRA Lt

” = Cant B

= . _ . . - | : ) ;
2 Lb A is a (diagonal) matrix of order 180 with eigenvalues | Cs

& i 4 i=35,6,...,1806 . Thus, M80 = 2.00 - No comparison with simultaneous SEd : a. Hew Bt-i

- LTE is
A iteration was made as the simultaneous iteration program computes:ithe TE
Tl g CE ihs J - . a - - , VL ge RR NE o - A a,

- eigenvalues of greatest modulus which are different in this case from. TEE

3 4 the least eigenvalues. _ =a | a

SE For this example we chose gq =10 , r =4 , eps =10 = -andgtried bg

oo p=21,2,3 and 4. For each of the four values of p , the iteralive = - Gib

ow ¥ Block Lanczos method computed four eigenvalues with residuals on “the: | pr

eo order of 10 . For instance for p = 2 , we computed RI |

oR | andy Col

el 102 | EC 5



] -Q =k

Ly = 5.38 x10 7 ’ u, = -582x10 ,

by = 1.57x1077 yp = -Gkx10T :
) 1 £1 -k |

~L :

by, = +999 999 997 9... , ny, = 628 x10 ©. i

The results for the other three cases are similar. The largest residuzl 3

in any case was approximately 1.59 x 107 . Note that for this case, :

the error is absolute and not relative error. The eigenvectors for

£1 and hy Were primaxily linear ccmbinations of e, and e5 and :
the errors in the remaining components were in all cases approximately ;

the size of the residual or less. Similarly for p, and yp, - ;
The comparative stabisties for the four values of T are as .

follows: A

. matrix-vector vector inner time
iterations products products (sec.) ;

p=1 20 158 997 13.19 | :

p= 2 15 125 725 11.15 | :

p=1 33 317 1330 29.53 !

Note that there was a definite improvement from p=1 to p=2 . oo

Maltiple eigenvalues tend -to slow down the standard Iarczos algorithm i:

(p = 1) since the eigenvalues of the restricted operator will converge :
{

to only one of a set of multiple roots. With q = 10 , effective use | :

of all the working storsge could not be made with p=3% or p=1 :

{since neither divides 10 evenly). However, with the program listed Cg
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in Appendix A, a biock size of 5 was chosen after the first iteration

- with p = 4 . Even though this change made better use of storage, . ¥

more Lime was required here than in the other three cases. | . )

yr Examrle 5. Lc }

A is a (diagonal) matrix of order 300 with eigenvalues 3 :

| AM =0.0, A, =0.1, NM =0.1, NM =0.1, A =1-3/(i-1) for oe }
i= 5,8,...,300 . For this example, we choose r =3, gq = 12 , end n ;

: eps = 10™ - We tried p=1,2;35 . Of the three values, the fastest !
- of

execution was achieved for » = 3 . In four iterations, the following 3

7 results were canpubed: ;

| Hy = -000 000 002 922 313 3 <5 = O27 x10 3 7

by = .100 000 O00 000 00k €& = .1k9 % 1077 ; . :

| pz = .1G0 000 000 090 571 , €3 = 110% 10~° . ; ;

: The statistics for this computation are as follows: 4

: matrix-vector products: 36 | :

| vector immer products: 288 | | 4

Co time (secs.): 7.86 I

: The eigenvectors for Mo and ug were Primarily combinations of es A ;

ade, the unit vectors with ones in the second and third positions, wd
i respectively. The errors in these vectors are again proportionzl to the E :

| sizes of the residuals ee; . ES

The fect that for Pp =3, A =A. shows thet Theorem 2.6.1 Ea
{ d on the rates of convergence does not adequately explain all situations. 3 :
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In fact, A, converged much more rapidly than MN » leading us to

conjecture that the rate of convergence for Ay involves Mg = .25 -
rether than Aptl = Ay, = .1 . We have, however, found no way of :
establishing this conjecture. i

Example o. | . )

A is the same matrix as in Example 5 except that A, = -0999999 , E

Ay = .1000000 , amd Ay = .1000001 . In this example, r =k, q =12, i

and eps = 107° . Qur iterative Bleck lanczos program computed :

By = 000 000 C57 € = 9.12 x 10 ’ ;

} ‘ i) | Hpy = -099 999 92 > &y =1.95x10 s 4

bs = .100 000 002 , €3 = 9.47 x 10 ’ 4

Note that in the case of yu, , The error is approximately of order €), :

rather than & - Furthermore, the eigenvectors for ho 2 Bg and tN .
esch contained significant components of the eigenvectors. corresponding :

to A, 5 As , and Ay . Rasically, the program regerds Ay s Mg » and b
MN, as multiple roots and any combination of their eigenvectors as an oo :

eigenvecsor also. Each computed elgenvector of Ho > Ws and by, oC | E
was very close, therefore, to the space spanned by the eigenvectors : :

corresponding to A, , 3 » and My . 3
These results are not indicative of a defect in our algorithm but : Co

represent inherent limits in the accuracy obtainable for eigenvectors §

corresponding to very close but distinct roots (cf. Section 1.2). :
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The statistics in this case sre as follows: h

l. matrix-vector products: 54

2. vector inner products: 408 Co.

5. time {secs.): 11.29 cl

Lk. iterations: 6 . | SE

. Example 7- - oF

The natural modes of vibration of & square clamped elastic plate 5

. can be solved by the following partial differential equation for w ! y

20 |

ow, 200 98 yxy) (%.1) oF

| in the interior of the plate with A

« = 0 = ncrmal derivative of | = ¥

3 on the boundary. If we attempt to compute a discrete approximation to [—

: the solution of the above equation at the points of a2 mesh superimposed ¥ ¥

: cn the plate, then we are led to & symmetric eigenproblem E
EE VI

2 where h is the mesh width and H is & symmetric block pentadiagonal ES :

A matrix derived using a 15-point finite difference approximation to the : . ;
3 differential operator in Equation 4.1 [1]. Rather than compute the 4 +

4 eigenvalues of H ; We will compute the eigenvalues of A = at - Note ) &
s that if A <A, <... <A are the eigenvalues of H , then EA

106 2 E
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vy Svy Sore Sv, Where wv, =~ 1/n; are the eigenvalues of A . :

Thus, if we compute the least eigenvalues of A , their negative i

! reciprocals will be the least eigenvalues of II with the same :

clgenvectors. ''o compute y - Ax given x , we colve ;

Hz = x Co (b.2) ,

: To solve Equation (4.2), we use a program provided by Dr. Fred Dorr of :

i the Ios Alamos Scientific Laboratory. Thais program is based on an idea -

£ of Buzbee and Dorr [2] and computes a solutior to Equation (4.2)

by a direct method.

i For a unit square and a mesh width of h = 1/33 , the order of A ;
. Nn r
. is 3 or 102% . For this problem we choose gq 16, r 12. :

: With p= 5 and eps = 10 ! , our program computed the results piven *

: in Table L.k4 where for each eigenvalue v of A , the corresponding :

: frequency f of vibration of the plate satisfies f£ =1 / Jnt . k

Wr 1 -



Table L.4 : ;

-% eigenvalue of residual frequency of . i
! i A e 37 ribratior E R

| ; - 1 ~02%.9165% 0.65 x 1 7 35.82709 :
| 2 225.799, 0.21 x 107% T72.80252 | -

_. :

; -225. 74997, G.25710 7 72.80252 )

- k -195,22k429 0.96 x 107 207.18577 \ :
oo 5 ~70.423L8 1.03 x 10° 129.763L6

~ = Lb o> . :
6 -(Q.73160 1.82 x15 130 .41065 :

| 7 -Lk 77957 1.29x107° ~ 162.73760 | S

8 LL 77956 3.06x107°  162.73760 cd

g =27.908L0 1.42 x 107° 206.13913 :
| 10 | -27.9083%9 2.05% 10° 20€.13917 :

| 11 _25.29523 1.87 x 10°2 216.52528 ;

1? -21.0675k 5.85 x 1072 237 .2580k | .

Because of the allowance made for error in previously canputed 3

eigenvalues and vectors, the relative error in the last four {

eigenvalues exceeds 107% and for the last eigenvalue is : :

: approximately 2 x 10™° . |

The frequencies computed from the eigenvalues of A correspond >

: ; closely to those reported by Bauer and Reiss in [1]. Note that i | :

. eigenvalues 2 and 53, 7 and 8, and 9 and 10 are multiple with p: {

| multiplicity 2 . Rough graphs of the eigenvectors verify that they i”

Cw describe fundamental modes of vibration very similar to those reported E :

: ) 108 5 3



i : :

The simultaneous iteration program could not complete its : :

computation in the two minutes of time allotted to it. Thus, we oll 3

increased the mesh width to 1/25 which lowered the order of A : :

to 576 . The program then computed the 13 least eigenvalues of A x :

to relative precisions ranging from approximately 107% to 107 - *

Both the frequencies and fundamental modes of vibration described by &

the eigenvectors computed here are what one would expect based on the : :

results reported in [ 1]. z |

Table L.5 summarizes the results of the two programs. ;

Table 4.5 = |

_ matrix- vector no. of |
Order vector inner time eigen- rel.
of A products products (sec.) values precision

@PpToX.

Block lanczos 1024 1k5 123% . 85.52 12 10° to 10° |

approx.
. p 2 i -14 <1Sim. Iter. S76 223 1752 64.92 1% 10 to 10

} A total of 19 iterations were required for the iterative Block Lanczos

| method. | :

As we pointed out at the start, it is difficult to use the

! simultaneous iteration program as a standard of comparison since it is

hard to control the number and precision of the results it computes. |

However. we would say that our program did a better job of completing

its assigned task of computing a specified mumber of eigenvalues to a

specified precision.

| :
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APPEND: A ITOPTRAN SROGRANM

.

This Appendix contains a listing of the program for the iterative

Block Lanczos method. See Section 2.4 for a discussion of the program. Bi

A sample driver program is included with a tect problem. N

2 :
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» SUBROUTINE MINYVAL (N,G,PINIT,R,MMAX,EPS,0P,M,D,X,IECODE) |
IMPLICIT REAL*3 {ai 072) ;it INTEGER N,Q,PINIT,R,MMAX /

: REAL*8 EPS ;

DIMENSION D(Q) »X(N,Q) 4 | :
| - INTEGER IECUODE | .
. C THIS SUBROUTINE IS THE MAIN SUBROUTINE |
: C IMPLEMENTING THE ITERATIVE BLOCK LANCZ0OS METHOD :

C FOR QOMPUTING THE EIGENVALUES AND EIGENVECTORS OF

: C SYMMETRIC MATRICES. :
c DESCRIPTION OF PARAMETERS: |X

- C N= INTEGER VARJABLE. THE ORDER OF THE SYMMETRIC

C MATRIX A WHUSE EIGENVALUES AND EIGENVECTORS ARE :
PL C BEING COMPUTED. THE VALUE OF N SHOULD BE LESS THAN

C OR EQUAL TO 1296 AND GREATER THAN OR EQUAL TO 2.
: C Q: INTEGER VARIABLE. THE NUMBER QF VECTORS OF LENGTH

C N CONTAINED IN THE ARRAY X. THE VALUE OF Q SHOULD |
: C 8E LESS THAN OR EQUAL TO 25, AT LEAST ONE
T C GREATER THAN THE VALUE OF R AND LESS THAN OR :
a. . OR EQUAL TO N. |

C PINIT: INTEGER VARIABLE. THE INITIAL BLOCK SIZE TO BE
C USED IN THE BLOCK LANCZOS METHOD. IF PINIT IS |

| C NEGATIVE, THEN —PINIT 1S USED FOR THE BLOCK SIZE :

C AND COLUMNS M+L, . » . M+ (CPINIT) OF THE ARRAY X :z C ARE ASSUMMED TO BE INITIALIZED TO INITIAL |
j C MATRIX USED TO START THE BLOCK LANCZOS METHOD. IF :

: C THE SUBROUTINE TERMINATES WITH A VALUE OF M LESS :
C ‘(HAN R, ThEN PINIT IS ASSIGNED A VALUE -P WHERE P |
C IS THE FINAL BLOCK SIZE CHOSEN. IN THIS

- C CIRCUMSTANCE, COLUMNS M+l, ... , M+P WILL CONTAIN
C THE MOST RECENT SET OF EIGENVECTOR APPROXIMATIONS |

Co C wHICH CAN BE USED TO RESTART THE SUBROUTINE IF

j C R: INTEGER VARIABLE. THE NUMBER OF EIGENVALUES AND
C AND EIGENVECTORS BEING COMPUTED. THAT IS, MINVAL
C ATTEMPTS TO COMPUTE ACCURATE APPROXIMATIONS TO THE |

: Cc R LEAST EIGENVALUES AND EIGENVECTORS OF THE MATRIX .. :
C A. THE VALUE OF R SHOULD BE GREATER THAN | :

- C ZERD AND LESS THAN Q. |
C MMAX : INTEGER VARIABLE. THE MAXIMUM NUMBER OF MATRIX- | -

: C VECTOR PRODUCTS A*X WHERE X IS A VECTOR THAT ARE |
| C ALLOWED DURING ONE CALL OF THIS SUBROUTINE TO :

- COMPLETE ITS TASK OF COMPUTING R EIGENVALUES AND oe
. C EIGENVECTORS. UNLESS THE PROBLEM INDICATES Si |

; C OTHERWISE, MMAX SHOULD HE GIVEN A VERY LAKGE VALDE.
C EPS: REAL*8 VARIABLE, INITIALLY, EPS SHOULD CONTAIN A J
C VALUE INDICATING THE RELATIVE PRECISION TO WHICH i

. C MINVAL WILL ATTEMPT T0 COMPUTE THE EIGENVALUES AND : :
C EIGENVECTORSOF A. FOR EIGENVALUESLESS IN MODULOS : :
C THAN 1, EPS WILL BE AN ABSOLUTE TOLERANCE. BECAUSE x k

: C OF THE WAY THIS METHOD WORKS, IT MAY BAPPEN THAT ~ :
ie C THE LATER EIGENVALUES CANNOT BE COMPUTED TO THE | IE
. . SaMe RELATIVE PRECISION AS THOSE LESS IN VALUE. SA
. C oP: SUBROUTINE NAME. THE ACTUAL ARGUMENT CORRESPONDING 3
g C TO OP SHOULD ZE THE NAME OF A SUBROUTINE USED TO a
' C DEFINE THE MATRIX A. THIS SUBROUTINE SHOULD HAVE ; .
* C THREE ARGUMENTS N, U, AND V, SAY, WHEREN IS AN e 3
& C INTEGER VARIABLE GIVING THE ORDER OF A AND U AND V 2 :
4 C ARE TWO ONE-DIMENSIONAL ARRAYS OF LENGTH N. IF W CE
rE A : :

BE AEA =



c DENOTES THE VECTOR OF ORDER N STORED IN U, THEN THE

_ ¢ CALL Of (N,U,V)
| C SHOULD RESULT IN THE VECTOR A*W BEING OOMPUTED AND
: C STORED IN V. THE CONTENTS OF U CAN RE MODIFIED BY

; C THIS CALL.
C M: INTEGER VARIABLE. M GIVES THE NUMBER OF :
C EIGENVALUES AND EIGENVECIOKS ALREADY COMPUTED.

SS C THUS, INITIALLY, M SHOULD BE ZERO. IF M IS GREATER
; C THAN ZERO, THEN COLUMNS ONE THROUGH M OF THE ARRAY .

C X ARE ASSUMEDTU CONTAIN THE COMPUTED >
2 C APPROXIMATIONS TO THE M LEAST EIGENVALUES AND :

E C EIGENVECTORS OF A. AT EXIT, M CONTAINS A

)? C VALOE, EQUAL TO THE TOTAL NUMBER OF EIGENVALUES AND; C EIG RS COMPUTED INCLUDING ANY ALREADY :

1 C COMPUTED WHEN MINVAL WAS ENTERED. THOS, AT EXIT,E 5 C THE FIRST M ELEMENTS OF D AND THE FIKST M COLUMNS
E C OF X WILL CONTAIN APPROXIMATIONS TO THE M LEAST :
t C EIGENVALUES OF A.A

f C D: REAL*8 ARRAY. D CONTAINS THE COMPUTED EIGENVALUES.
I C D SHOULD BE A ONE DIMENSIONAL. ARRAY WITH AT LEAST CQ ‘

Ek }

ty C Xs REAL*S ARRAY. X CONTAINSTHE COMPUTED
8 C EIGENVECTORS. X SHGQULD BE AN ARRAY CONTAININGAT |

Cl C LEAST NS CLEMENTS« XxX IS USED NOT ONLY TO STOREa C THE EIGENVECTORS COMPUTED 8Y MINVAL, BUT ALSO AS
i. ¢ WORKING STORAGE FOR THE BLOCK LANCZOS METHOD. AT )
- Cc EXIT, THE FIRST N*M ELEMENTS OF X CONTAIN THE :

C EIGENVECTOR APPROXIMATIONS~ THE FIRST VECTOR IN :
: C THE FIRST N ELEMENTS, THE SECOND IN THE SECOND N ,

. C IECODE: INTEGER VARIABLE. THE VALUE OF IECUDE INDICATES
: C WHETHER MINVAL TERMINATED SOCCESSFULLY, AND IF NUT,

C C 1ECODE=@ : SUCCESSFUL TERMINATION. |
C IECQDE=1: THE VALUE OF N IS LESS THAN TWO. |

CT C IECODE=2 : THE VALUE OF N EXCEEDS 1296.
- C TECODE=3: THE VALUE OF R IS LESS THAN ONE. k
-  C IECODE=4: THE VALDE OF Q IS LESS THAR OR
, C EQUAL TO R. :
: C IECODE=S: THE VALUE OF Q IS GREATERTHAN 25. |
i C IECODE=6: TdAE VALUE OF Q EXCEEDSN.
; C IECODE=7 : THE VALDE OF WAS EXCEEDED
; Cc BEFORE R EIGENVALUES AND :

- C NOTE THAT THE SUBROUTINE BAS BEEN DESIGNED TO ALIOW INITIAL
ot C APPROXIMATIONS TO THE EIGENVECTORS CORRESPONDING TO THE LEAST ;

Co ¢ EIGENVALUES 10 BE UTILIZED IF THEY ARE KNOWN (BY STORING THEM |
C FURTHERMORE> a Has3 ALD BEENSERED TO LIP REARS TREPAREN

- C IF IT STOPS WITH IFCODE=7. THUS, THE USER OF THIS PROGRAM CAN
. C RESTART IT AFTER EXAMINING ANY PARITAL RESULTS WITHOUT LOSS Co
. . OF PREVIOUS WORK.
a. DIMENSION E C(25,25 5
. DIMENSION EiheS Gus, ¥
- c INTEGER P,S,PS SOR
3% © | Go
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|

C CHECK THAT THE INITIAL VALUES OF THE SUBROUTINE )
| C PARAMETERS ARE IN RANGE. |

IF (N.GT.1 95) 30 TO 982
| IF SEN TO 993 |IP (Q.LE.R} GO TO 904

IF 8i6r2 ) GO TO 985 :c IF {O.GT.N) GO 10 996
C CHOOSE INITIAL VALUES FOR THE BLOCK SIZE P, THE NUMBER
¢ OF STEPS THE BLOCK LANCZOS METHOD IS CARRIED OUT, AND p
C CHOOSE AN INITIAL N-BY-P ORTHONORMAL, MATRIX X1 USED TO

C START THE BLOCK LANCZOS METHOD. :
P=PINIT

| If (B.LT.0) p=—PIF BTU G0 TO lv |
5=2 SE ‘

C 2
183 IF {BINIT.LT.0) QO TO 158 ; |

- 129 CALL RANDOM (N,Q,K,X) |
c 154 IF (M.GT.8) GO TO 200 « :
c CALL ORTHG(N,Q,M,P,C,X)
c ROTATE THE INITIAL N-BY-P MATRIX X1 SO THAT |
. Xl ‘*A*X1 = DIAG(D1,D2, ... , DP) |

: C WHERE DI IS STORED IN D(I), I=1, ... , P. ‘
c CALL SECTN(N,Q.M,P,0P.X,C,D,U.V) :

ERRC=#.0D0 ©
204 ITER=0 -

- IMM=0 3
c THE MAIN BODYOF THE SUBROUTINE STARTS HERE. IMM
¢ COUNTS THE NUMBER OF MATRIX=VECTOR PRODUCTS COMPUTED .

| C WHICH IS THE NUMBER OF TIMES THE SUBROUTINE NAMED BY
c OP IS CALLED. ERRC MEASURES THE ACCUMULATEDERROR IN ;

322 IF (4.SER) G0 TO 909 |IF (IMM.GT.MMAX) QO TO 997 | |
| ITER=ITER+1 .

- PS=p*S | '
¢ BKLANC CARRIES OUT THE BLOCK LANCZOS METHOD AND v3
C STORES THE RESULTING BLOCK TRIDIAGONAL MATRIX MS IN C 3
C AND THE N-BY-PS ORTHONORMAL MATRIX XS IN X. THE i :

C INITIAL N-BY-P_ORTHONORMAL MATRIX IS ASSUMED TO 3 :C BE STORED IN M+] THROUGH MPS OF X. THE :
C RESIDUALS FOR THESE VECTORS AND THE EIGENVALUES ;

s APPROXIMATIONS IN D ARE.-COMPUTED AND STORED IN E. I |
CALL BKLANC (N,G.M,P,S,0P,D,C,X,E,U,V) p:

| 113



C 1
C EIGEN SOLVES THE EIGENPROBLEM FOR MS, SIORING THE

} C EIGENVALUES IN ELEMENTS M+1 THROUGH M+PS GF D |
zp ¢ AND THE EIGENVECTORS IN THE FIRSTP*S ROWS AND

} ¢ COLUMNS OF C (OVERWRITING MS, POSSIBLY.)
| | - CALL EIGEN(Q.M,P,PS,C,D)
of ¢ ONVIST DETERMINES HOW MANY OF THE EIGENVALUES AND y

C EIGENVECTORS HAVE CONVERGED USING THE ERROR ESTIMATES

- ¢ STOREDIN E. THE NUMBER THAT HAVE CONVERGED IS STORED :

Cz C IN NOONV. IF NCONV=@, THEN NONE HAVE CONVERGED.
. CALL CNVTST(N,Q.M,P,ERRC,EPS,D,E,NCONV) | :

| C PCH CHOOSES NEW VALUES FOR P AND S, THE BLOCKSIZE AND |
¢ THE NUMBER OF STEPS FOR THE BLOCK LANCZOS SUBPROGRAM, |

| C RESPECTIVELY.
SE C CALL PCH(N,Q,M,R,NCONV,P.S)

| C ROTATE COMPUTES THE EIGENVECTORSOF THE RESTRICTED
: ¢ OF THE RESTRICTED MATRIX USING XS STORED IN X AND :

C THE EIGENVECTORS OF MS STORED IN C. THESE VPCTORS
¢ SERVE BOTH AS EIGENVECTOR APPROXIMATIONS AND TO
C FORM THE MATRIX USED TO START THE BLOCK LANCZOS

: C METHOD IN THE NEXT ITERATION.

M=M+NOONV
Lo IMM=IEM4P*S

oo - GO TO 3080 |
C THIS IS THE END OF THE MAIN BODY OF THE SUBROUTINE. NOW

: ¢ SET THE VALUE OF IECODE AND EXIT.
; 908 IECODE=9 |

RETURN
: 981 IECODE=1

RETURN |
992 IECODE=2

993 IECODE=3 | :

994 IECODE=4

RETORN
99S IECODE=5 |

RETURN
996 IECODE=6

: 997 IECODE=7

PINIT=-P | |
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SUBROUTINE BKLANC (N,Q,M,P,S,0P,D,C,X,E,U,¥)

IMPLICIT REAL*S {at 0-2)| INTEGER N,Q,M,P

: DIMENSION Diof £100) X(N,0): - DIMENSION E{Q} ,U(N) ,V(N)
k C THIS SUBROUTINE IMPLEMENTS THE BLOCK LANCZOS
1 C METHOD WITH REORTHOGONALIZATION. BKLANC COMPUTES
i C A BLOCK TRiDIAGONAL MATRIXMS WHICH IT STORESIN

3 C ROWS AND COLUMNS M+] THROUGH M+P*S OF TBE ARRAY C, |
¥ ¢ AND AN ORTHONORMAL MATRIX XS WHICH IT STORES IN
if C COLUMNS M+1 . ROUGH M+P*S OF THE N-BY-Q ARRAY X.

i € MS IS A SYMAE. RIC MATRIX wITH BBY-P rs
% ¢ DIAGONAL AND P-BY-P SBbER “FRTANCOTAR: MATRICES

Mr cir AR NDID, NEY Tat SINCE? Cc 5 C AND BANDED, ONLY ITS LOWER
g ¢ TRIANGLE {Er DIAGONALS) IS STORED IN C. XS ISC COMPOSED OF S N=BI~P Qi MATRICES X{(1),

R c cee X(S) WHERE X(1) IS GIVEN AND SHOULD BEL C STORED IN COLUMNS THROUGH MP OF X.

g & X(1) ENN Ex, n D(M+1) Dees) TIoEY D(M+P))- ¢ XD 15 me HEN R(T AS aE 10 BE SREEONALC CTE VECHORS STONED IN COLONES 1 THEOOSE MOF X.
: C OP IS THE NAME OF AN EXTERNAL SUBROUTINE USED TO

& SORROGTINE sold 15 & AND THE £5 ARE: Cc EBD WHERE 53 = TT Aen] Bhd) Mat x3
| C IS THE J-TH COLUMN OF X(1], AND 113 |} DenesC THE EUCLIDEAN NORM. EJ IS STORED IN MJ), J=1,

& BY OP. |
| MP1=M+1 |
. . MPPS=M+D*S :
; - DO 99 L=1,S |
: LL=M+ (L~1) *P+1 |

c [=MIL*P |
DO 78 K=LL,LD

C

| 18 O{I)=X(TK).
| . AE TAR i

IF (L.GT.1) GO TO 19 :
DO 12 I=K,LD :

12eB :: 14 V RL K)

: 19 DO 38 I=K,LU
; I=0 |

22 rt hk I) so
: . 30 CE Kh ’

IT=K~-P :

. T=

DO 44 J=ITK i: 48 T=T+X(I.,J}*C(K,J) Cd
IF (K.EQ.LD) GO T0 60 :

: KP1=K+1 i



; 90 T=T+X(I J) *C(J K) :
- 61 IF (L.EQ.S) GU TO 7¢ =

DO & Rik
i C 63 X(I, K+P)=V(]) -
= 70 CONTINUE :
3 i} IF (L.EQ.1) CALL ERR(N,Q,M,P,X,E) k

- IF {E885 @Mm98 = =F :I ;

tb IT=LU .
}: DO 88 J=1,Pg IT=IT+1 | |
: DO 88 I=IL,IT

t r . 0 C(1,17-P)=C(1,IT) oo
 § . 99 CONTINUE )

. CT

i
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SUBROUTINE BCEN,Q,M, K, HCO (PS) °~ IMPLICIT REAL*S (A~H,0~1) | :

- INTEGER N,Q.M,R,NCONV.P,S .
C BASED ON THE VALUES OF N,Q M, R, AND NCONV, PCH :C CHOOSES NEW VALUES FOR P S, THE BLOCK SIZE AND - |
C NUMBER OF STEPS FOR THE BLOCK LANCZOS METHOD. THE : :
C STRATEGY USED HERE IS TO CHOOSE P TO BE THE ;
C SMALLER OF THE TWO FOLLOWING VALUES: 1) THE :
C PREVIOUS BLOCK SIZE; AND, 2) THE NUMBER OF VALUES
c IEFT TO RE COMPUTED. S IS CHOSENAS LARGE AS |
C POSSIBLE SUBJECT TO THE CONSTRAINTS IMPOSED 3Y TEE : 2 :
¢ LIMITS OF STORAGE. IN ANY EVENT, S IS GREATER :
C THAN OR EQUALTCO 2. N IS THE ORDEROF THE PROBLEM | :
c AND Q IS TRE NUMBER OF VECTORS AVAILABLE FOR k:
'. STORING EIGENVECTORS AND APPLYING THE BLOCK |
C LANCZOS METHOD. M IS THE NUMBER OF EIGENVALUES : a
C AND EIGENVECTORS THAT HAVE ALREADY BEEN QOMPUTED

C ~~ AND R IS ‘THE REQUIRED NUMBER. FINALLY, NOCONV IS .
C THE NUMBER OF EIGENVALUES AND EIGENVECTORS THAT = :
C HAVE CONVERGED IN THE CURRENT ITERATION. : :

INTEGER PT,S1' :
MT=M+NCONV : - .
PT=R=MT :

IF (ET.CT.E) Pr=p : ~ :IF (°T.GT.0) GO 10 101 = |

. P=0 :
- RETURN ,

161 CONFINUE |
Ir (Sr.crd GC TO 118 kK

c PT=¢{QO-MT) /2 z
11¢ P=PT

END .

| | a:
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SUBROUTINE ERR(N,Q.M.P,X,E) ;
TMBL 201 REALAG ey 3

- DIMENSION X(N,Q) ,E{(Q) | "
C ERR COMPUTES THE EUCLIDEAN LENGTHS OF THE VECTORS | ;
C STORED IN COLUMNS M+P+1 THROUGH M+P4HP OF THE :
¢ N-BY-Q ARRAY X AND STORES THEM IN ELEMENTS M+l ’¢ JH M+P OF E. R

MP1=M+P+1 ;
MPP=M+D+P
00 209 K=MP1 MEP !

- T=¢.00D0 - :

DO 100 i=1,N :

TT Ss£) =BoberZn ;
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SUBROUTINE QWTST (N,Q,M, P,ERRC ,EPS,D, E,NCONV) .
IMPLICIT REAL*8 (A-1,0-%)° ee :
INTEGEROH, _REAL*S :

- DIMENSION D{0) ,E(Q)
C CNVTST DETERMINES WHICH OF THE P EIGENVALUES | :
C STOREDIN ELEMENTS M+1 THROUGHM+P OF D HAVE )
C CONVERGED USING THE TEST DESCRIBED IN SECTION 3.2. .
c ERRC IS A MEASURE OF THE ACCUMULATED ERROR IN THE 3
C M PREVIOUSLY COMPUTED EIGENVALUES AND :
C EIGENVECTORS. ERRC IS UPDATED IF MORE p
C APPROXIMATIONS HAVE CONVERGED. THE NORMS OF THE |
Cc RESIDUAL VECTORS ARE STORED IN ELEMENTS M+1 i
C THROUGH M+P OF E. EPS IS THE PRECISION TO WHICH :
C WE ARE COMPUTING THE APPROXIMATIONS. FINALLY, |
C NCONV IS THE NUMBERTHAT HAVE CONVERGED. IF | -

| c NCONV=#, THEN NONE HAVE CONVERGED. :
- REAL*8 MCHEPS / 2.22D-16/ ;

K=0 E

DO 183 I=1,P y
T=DABS (D(M+1)) ;

1F (T.LT.1.0D0) 71.000 3162 IF E(M+I) .GT.T* (EPS + 10D@*N*MCHEPS)+ERRC) GO TO 208 ;
200 NCONV=K ;

- IF (K.EQ.0) RETURN -
T=0.9Dd | B
DO 398 I=]K |
T=THE (41) *2 | ,

308 CONTINUE : “24T) |ERRC=DSQRT {ERRC* 1

$i :

i « < :
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SUBROUTINE EIGEN {0.H,B,25.C,D) : ?IMELICIT REAL*E (A—-H.0-Z) i
INTEGER M,P,Q,PS :

- - DIMENSION C(O,Q}) ,D(D) :
¢ EISEN SOLVES THE EIGENPROBLEM FOR THE. SYMMETRIC¢ MATRIX MS OF ORDER PS STORED IN ROWS COLUMNS : A
¢ M+] THROUGH MiPS OF C. THE EIGENVALUES OF MS ARE ¥
C STORED IN ELEMENTS M+1 THROUGH M+PS OF D AND THE .
¢ EIGENVECTORS ARE STGRED IN ROWS AND COLUMNS 1 :
¢ THROOGH PS OF C POSSIBLY OVERWRITTING MS. EIGEN

l C SIMPLY RE~STORES: MS IN A MANNER ACCEPTABLE TO THE ;
C SUBROUTINES TRED2 AND TOL2. -
- DIMENSION DD(25) ,V(25) . 2

DO 159 I=1,PS | i» “;
LIM=I-P ] | EE

] IF (ILE) LIM=1 . 3o . IF (LIM.IE.1) GO TO 139 | :

DO 129 ISK, Ll p- 120 C(I,J)=0-¢Do N . :
132 DO 140 J=LiM,I :

. 129 C(1,3)=C(I+M,Jm) , ¥La Cr

- 150 CONTINUE :
CALL TRED2(O,PS,C,DD,V,C) )

J TOL2(Q, S,0D,V,C, IERR) | :
DO 169 1=1,PS i :

- 160 D(M+I}=DD(I) | :
ERD | | :



: SUBROUTINE SECTN(N,Q,M,P,0P,X,C,D,U,V :
’ THPLICIT REALS (Ado) «ro ei) |
: INTEGER N.Q,M,P\ EXTERNAL 0 ;
i - DIMENSION X(N,Q) ,C(Q.Q) ,D(Q) UN) ,V(N) |
: C SECTN TRANSFORMS THE N-BY-P ORTHONORMAL MATRIX Xl,
| C SAY, STORED IN COLUMNS M+] THROUGH M+P OF THE
3 C N~-B¢-Q ARRAY X SO THAT X1 *A*Xl = DIAG(D1,D2, ...
: C DP), WHERE ~ DENOTES TRANSPOSE AND A IS A
; C SYPMEFRIC BATRIX OF ORDER N DCPINED BY THE
: C SUBROUTINE OP. THE VALUES D1, D2, ..., DP ARE ;
~ C STORED IN ELEMENTS M+1 THROUGH M+P OF D. SECTN
: C FORMS THE MATRIX XI *A*X1 = CP, STORING CP IN THE i
: C ARRAY C. THE VALUES Dl, D2, ... , DP AND THE :

: ¢ EIGENVECTORS QP OF CP ARE COMPUTED BY EIGEN AND :L C STORED IN D C, RESP. ROTATE THEN CARRIES OUT

c THE TRANSFORMATION X1<=X1*QP. |
Z ICOL1=M ‘
= DO 388 J=1,P
: IO0L1=1C0Li+1
: 100 DUT)ox(1FOOL) |3 CALLOB (ftv)

x TOOL2=1C0L2+] '

3 : 200 T=T4+V(K) 1X(K ICOL2) :‘ o 380 C(ICOLL,I L2)=T |
: CALL EIGEN(Q,M,P,P,C,D) |
i o CALL ROTATE(N.Q.M,P.P,C,X) «

J A -

FS | | :



SUBROUTINE ROTATE (N,Q.M,PS,L,C :
IMPLICIT REAL*S TROL oLeCeX) :

c DIMENSION (0.0) .X (N,Q)
C ROTATE COMPUTES THE FIRST L COLUMNS OF THE MATRIX

Cc ASS WHERE XS IS AN N-BY-PS OKTHONORMAL MATRIX :: C STORED IN COLUMNS M+] THROUGH M4PS OF THE N~BY-0

C ARRAY X AND OS IS A PS~-BY-PS ORIHONORMAL MATRIXC STORED IN AND COLUMNS 1 THROUGH PS OF THE :

? C ARRAYC. THE RESULT IS STORED IN COLUMNS M+]

S THROUGH M+L OF X OVERWRITTING PART OF XS.
- DIMENSION V(25) -

DO 308 I=1,N |

T= i
HN ; DO 108 J=1,PS |

100 T=T4X(IMR) *C JK)200 ViK)=8 Kel,L |

- 300 X(I,M+K)=V(K)
RETURN |
END

J

r :

+ .

» 3



. SUBROUTINE ORIHG(N,OQ,F,P,B,X)
-- IMPLICIT REAL SA Es ‘ )

: INTEGER N.QF.2 P
: C DIMENSION B(Q,Q) ,X(N,Q)
- C ORTHG REORTHOGONALIZESTHE N-BY-P MATRIXZ STORED

| C IN COLUMNS E+] TROUGH PsP OF THE N-BY-O ARRAY X: C WITH RESPECT TD THE VECTORS STORED IN FIRSTFf
: c COLUMNS OF X AND THEN DECOMPOSES THE RESULTING
| c MATRIX INTO THE PRODUCT OF AN N-BY-P ORTHONORMAL

C MATRIX XORTHB, SAY, AND A P-BY-P UPPER TRIANGULAR 1
C MATRIX R. XORTH {S STORED OVER Z AND THE UPPER :
C TRIANGLE OF R IS STORED IN ROWS AND COLUMNS F+1
C THROUGH F+P OF TBE Q-BY-Q ARRAY B. A STABLE :C VARIANT OF THE pamORTHOGONALI ZATION

: C METHOD1S UTILIZED. THIS SUBROUTINEIS BASED
: ¢ DIRECTLY ON THE ALGOL 68 PROCEDURE ORTHOG

C OQONTAINED IN THE SIMULTANEOUS ITERATION PROGRAM OF

. INTEGER FPl,FPP |

: c LOGICAL ORIG |
- If (P.EQ.8) RETURN
: 16 Ee ) ;

FPP=F+P
| C 1

| DO 58 K=Fpl,FPP |

. KMi=K=-1
10 TE RMY.LT.1) GO TO 25

: D0 30 ISL,ML |
S=@ . 80d 1 |

15 sty 3 iN a K: 1P OIE AND 16h) B(I,K)=S |
: T=T4+SES

: oo 28 J=1,N :

y c 26 X(J,K)=X(J,K)-S*X(J.I)

: 39 S=S+X(J.K)*X(J,K) |

; ” a0 10 le
: BR R= ¢
: DoD J=] N -

oc 0 XK)=5*%(J.K) 3 |

: q |

: ’ I SE



SUBROUTINE RANDOM (N,Q,L.,X)
IMPLICIT REAL®S aaoets |
INTEGER N,Q,L

. - DIMENSION X(N,Q}
C RANDOM COMPUTES AND STORES A SEQUENCE OF N PSEUDO~RANDOM |¢ NUMBERS IN THE L-TH COLUMN OF N-BY=0Q ARRAYX. RANDOM

| C AN ARRAY WITH NE SEQUENCE AND USING THE SECOND T0 ACCESSC THE ARRAY IN A FASHION.
| | DIMENSION T 100)INTEGER F1/7141 /£2/21183/ FT :| ~ INTEGER A/6821/,C/53 7/.X8/5328/,x1 |
j DO 108 I=1,100 :

| X1=A*XD+C |

| c 189 xo=ka i
. DO 200 I=L,n

| EFT=F1+F2
; IF(FT.GE.1¢00080) FT=FT-10000800 ,

&=FT/1D6* 148+]
c X(I,L)=T(K) |

: | X1=A*XD4C

| . 200 X9=X1 )



| o SUBROCTINE TRED2(NM,N,A,D.E,2) £
: INTEGER I,J,K.L,N,1I,NM,JP1 :

| REAL*S AQ : EZ (NL)
REAL*8 F,G.f,

. REAL*8 DSORTDABS ,DSIGN
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED2,
C NOM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON. es |

C HANDBOOK FOR ADTO. GONE, VOL-TI-LINEAR ALAEBRA, 210-26 (1970): :
C THIS SUBROUTINE REDUCES A REAL SYMMETRICMATRIX TO A
c SYMMETRIC TRIDIAGONALMATRIX USING AND ACCUMULATING

| C ORTHOGONAL SIMILARITY TRANSFORMATIONS.
€ ON INPUT: < -
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL

: C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

. C DIMENS iON STATEMENT: .
< N IS THE ORDER OF THE MATRIX:
C A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE

: . LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. ¢

C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX;
C E CONTAINS THE SUBDIAGONAL ELEMENTSOF THE TRIDIAGONAL

¢ MATRIX IN ITS LAST N~1 POSITIONS. E(1) IS SET TO ZERO: . :
C 2 CONTAINS THE ORTHOGONAL TRANSFORMATION MATRIX : |
C PRODUCED IN THE REDUCTION:
c A AND Z MAY COINCIDE. IF DISTINCT,A IS UNALTERED. | |

| C QUESTIONS BND COMMENTS SHOULD BE DIRECTED 10 B. S. GARBOW, | |
c ED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY 0 |

c DO 100 I = 1, N : CC
™ 15 Mda oo

c 160 CONTINGE: ) |
IF (N .EQ. 1) co TO 328 i -C $2ss3s832s I=N STEP -1 UNTIL 2 DO =~ s:s:333:3: 3
DO 306 II = 2, N i
I=N+2=1I J
L=3I~1 3

| E = 90.008 :

5 %

2 ¢ :



C sz=z2:::2::2 SCALE ROw (ALGOL TOL THEN NOT NEEDED) z2:zz:::2:2:::
DO126 K=1, L

128 SCALE = SCALE + DABS(Z(I,K)) |
oo pe LE SAE WE. 0.000) @ TU 140
: . & ho 224 ‘

146 DO1SB K=1, L

Z(I,K) = £1 K) / SCALEH=H+ 2(1,K) * 2(I.K)

. c 159 CONTINUE
F=2(1,L

G = “8616 (osgrr (a1) ,F)
C E(I) = SCALE * G

H=R-F*G |

| Z(I,L) =F =G |

- F = ¢.6D0 |
oo bo 240 Ty Ls Eo / (SCALE * H)

G ='9.0D9 :
: C csszsz=:z> FORM ELEMENT OF A*) z:zz:zz=2z::: 3

DO18d K=1,J

- 180 G=G+ 2(J,K) * 2(1,K) |
: JP1 =J +1

c IF (L LT. JPl) GU TO 228 |
| 260 0.20 Ko) +z 1,K)= + .

C zzs2222=2= FORM Sr HT SEB 22322332233
| 220 ANAAA * 2(1,J) ’

o 240 CONTINUE
| BE =F / (H+ H

C LEE Eee a Zzzz323:3::
| DO268 J = 1, L

F = Z{T)G=E JL - HH * F
: C EJ) = - E

DO 20d R=: K) =F * E(K) = G * Z(I,K) |
- 268 CONTINGE f f f :

| DO 288 K= 1, L “- :

: - 280  2(I,K) = SCALE * 2(I,K) CE
a 290 D(I) = H

c 300 CONTINUE
320 De) = 9.000 :e(1) = 8.900 . |



‘ C Tesazzzszs ACCUMULATION OF TRANSFORMATION MATRICES crsssses::
: DOSge I =1, N

c IF (D(1) .EQ. 6.8D8) GO TO 388 a} a

DO 360 J =1, L Co

C G = 8.008
: DO 340 K = l, L

c 348 G=G+ 2{(1.K) * Z(K,J) : :
D0 "=i k.0 -G * Zk. I)ly - ’

3809 D(I) = 2(1,I

: 210 25ade
c (L .LT. 1) GO TO 500 |

DO 408 J = 1, L )

Z 1.7) = §.8D82171 = 9.008C 480
! c S82 CONTINUE

Cc gsesssr3:s LAST CARD OF TREDZ sa:2:sscs2ss

ps
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C

C b=___ - =" ~~ - ___- -  __-_- - °° -

- SUBROUTINE TOQL2(1M,N,D,E,Z,1ERK)
| INTEGER I,J,K,L,M,N,II,L1,1M,MML,IERR

REnEeg DIN) EN) ZOMN)
| . REAL*8 DORIDAES , BS 1GH

Cc THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQL2,
: C HUM. MATH. 11, 293-306 (1968) BY BOWDLER, MARTIN, REINSCH, AND

¢ HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-248(1971).
| ¢ THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECIORS

C OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE Qf. METHOD.

C HE EIGENVECTORS OF A FULL SYMMETRIC WATRI% CAN ALSO
C BE FOUND IF TREC2 HAS BEEN USED TO REDUCE THIS

" C FULL MATRIX TO TRIDIAGONAL FORM.
C Ol INPUT:

| C NM MUST BE SET TU ‘THE HOW DIMENSION OF TWO-DIMENSIONAL

| C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
S DIMENSION STATEMENT:

N S N 15 THE ORDER OF THE MATRIX;
C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX:

: C € CONTAINS THE SUBDLAGCNAL ELEMENTS OF THE INPUT MATRIX

. IN ITS LAST N-1 POSITIONS. E(1) 1S ARBITRARY:
C Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
C REDUCTION BY TREDZ2, IF PERFORMED. IF THE EIGENVECTORS

~ Cc OF 1HE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN
¢ THE IDENTITY MATRIX.
» ON OUTPUT:

: C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
¢ ERROREXIT IS MADE, THE EIGENVALUESARE CORRECT BUT |

3 . UNORDERED FOR INDICES 1,2,...,1ERR=-1;

C Zz CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC |
C TRIDIAGONALSOR FULL) MATRIX. IF AN ERROR EXIT IS ADE,C 2 CONTAINS B EIGENVECTORS. ASSOCIATED WITH THE STORED
c EIGENVALUES;

) c IERR IS SET TO |
C ZERD FOR NORMAL RETURN, |
C J IF THE o~-TH EIGENVALUEHAS NOT BEEN :

C DETERMINED AFTER 39 ITERATIONS.
C QUESTIONS AND QOMMENTS SHOOLD BE DIRECTED 10 B. S. CASON,C IED MATHEMATICS DIVISICN, ARGONNE NATTONAL LABORATORY

C s22:32:22: MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING ; ;
C THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC. : :

C MACHEP = 16.0D8** (-13) FOR LONG FORM ARITHMETIC |
| ~ DATA MACHEP/234108000820093000/ :

hd x



IERR= ©

c IF (N ED. 1) GO TO lu¥l
: DO 188 I = 2, N

$ c v8 E(I-1l) = E(I)
F = 8.0D9
B= 0.0D9

: C E(N) = 0.608
: Do 249 = 1, N

H = MACHEP * (DABS{DI(L)) + DABS(E(L)))IF (B .LT. H) pasSt
C sezezsz2zs LOOK FOR SMALL SUR~-DIAQOMAL, ELEMENT 2:2:z:z::::

DO 112 M- L, N

IF (DABS (E(M)) LE. B) Q T0 120C ss23s3s2:2 EN) ALWAYS Z » SO THERE IS NO EXIT
C THROUGHTHE BOTTOM OF THE LOOP :z::2:zzsz::

c 110 CONTINUE
120 EN: - LQ 10,48130 IF J: . ) © T0 1669

C zcszcz2:2:2: FORM SHIFT :::zszzz:o::
: L1=L+1

G = oi |
P= (D(Ll) _ foa2-oDe * E(L))R= Ri (P*P+] .0 AeD(L) = ER J (P + IGN({R,P)})

c H=G6- DL)
DO 148 I = L1, N

c 148. D(I) = D(1) — H
F=F +8

C tessz2:32: OL TRANSFORMATION ::::222:::
. P = D(M)

C= 1.8D0 ’
S = 8.0D8
Md. = M-L .

C . 332232323: FOR. J=M~1 STEP ~1 UNTIL L DO «= 2:zz2:2:2:2:2:23:
DO 200 1I = 1, MML

I =M~11
G=C* E(I

i IF(GABS(P) .LT. DABS(E(I))) GC TO 158
R= bedICAC+1.0D0) |E(I+l) = § *'p *R :
S=C/R
C=1.0D3 / R

: GO T0 168

: E(I+l) = S * E(I) * R
: S=1.8D0 / R

C=C=®S§S

| 160 PID D8 52 5°: D(I+l)= H+ S * (C*G +S * D(]I))
: C z22222233:: FORM VECTOR ::22:3:2:333
: pO 188 K = 1, N
: BH = Z(K,I+1)

2(K,I+1) = S * Z2(K,I) + C* H
: ZLIK,I) =C * Z(K,I) —-S*H

| c 18p QONTINUE
: c 20 CONTINUE :
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_ go SCA ER ECE WE as Sv arem ig

; Li) zs 1 E 3: D(Ly =C * P

. _ 1F (DABS(E(L)) .GT. B) GO TO 138

: 250 DL) = D(L) +F: 24¢ GORTLINUE
! C sssz2:::2:: ORDER EIGENVALUES AND EIGENVECTORS ::z:2:3:::
: DO 380 11 = 2, N
: I=1I~-1
; K=1

- c P = D(1)
: DO 268 J = II, N ;

IF_(D(0) -GE. P) QO 10 260
| P = D(J) )

: o 20 CONTINUE |
) IF IK EQ: QQ TU 309 |: = D

c DiI} =P
: DO 284 J = 1, N I

: Z 3-0 = Z2(J.K); AR: =P
X c 288 QONTINUE
p c 3¥90 CONTINUE |
; G0 T0 1061 .
k C szzzz2222: SET ERROR— NO CONVERGENCE TO aN
: C EIGENVALUE AFTER 3¥ ITERATIONS szcsscszzzs:
: 1dé@ IERR = L

Li 1881 RETURN
. C ==23:=222: LAST CARD Of TQL2 z3:33ss:22:

"EN Sm SneemoeEEmSWSREEEETS CC CT TY TT a ehoe



IMPLICIT REAL*8 (A-H.O-Z) . é

- DIMENSION X{N.O) : k
C PRINT OUT COLUMNS M+] THROUGH M+K OF THE re ;
¢ N—BY-0) ARRAY X. E

108 PRINT 1581 X(T M+J) ,J=1,K) Co ;1991 FORMAT 3 ,8p12.4) :
RETURN :

SUBROUTINE AX(N,U,V) BIMPLICIT REAL*S’ (A-H,0~Z)
INTEGER N x

- DIMENSION U(N),V(N)
C AX COMPUTES Y = A*X WHERE A = DIAG(-1,-1/2,-1/3, ... ,~1/N). ]

| c X IS STORED IN UJ AND AX STORES Y IN V. :
| 00 108 I=1,R

182 v(I)=-1pa/*u(1)

IMPLICIT REAL*8 (A~H,0~Z) ;
DIMENSION D(25) ,X(20609) x

- INTEGER Q,PINIT,R :
C SAMPLE MAIN PROGRAM. MINVAL IS USED TO COMPUTE :
C THE 4 LEAST EIGENVALUES OF THE MATRIX | ;

C A = DIAG(-1,-1/2, ... , =1/308) TO AN APPROXIMATEC PRECISION OF 10%**(~3). TWELVE VECTORS ARE ALLOWED. C Ek ANCL HE EO Ts ALLOW t
C SIZE OF 4 IS CHOSEN. | :

N=3d0 .
PINIT=4 )
R=d
M4AAX=5000
EPS=1D-03 I |

- M=p ; .
- CALL MINVAL(N,Q,PINIT,R,MMAX,EPS,AX,M,D,X,IECODE) : E

PRINT 10@1,M,IECODE, (D(I) ,I=1,M) . By

1601 FORMAT(/ SoH,1ECODESTA 1%, 14) (* =>E *,5D23.15)) :
PRINT 1882 ) qd y

1902 FORMAT(// EIGENVECTORS ... “//) : :

LE:

=

- = — = rE E—— ey i — - | | | | | | - Zar wat -
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