
AD-/784 816

A STUDY IN AUTOMATIC PROGRAMMING

CARNEGIE-MELLON UNIVERSITY

FREPARED FOR

DEFENSE ADVANCED ReSEARCH PROJECTS AGENCY

AIR Forze OFFICE oF SCIENTIFIC RESEARCH

May 19/4

; DISTRIBUTED BY:

NTS
National Technical Information Service

| U. S. DEPARTMENT OF COMMERCE 4

ers NCL ASSET RD ee
SECUNITY CLASSIFICATION OF THIS RAGE Whnan Data Intered) *

ass ees. ini otis SO Arar iemeglitalt ier St AE 1 EET ei a I olEe ———_—ll. | __—_¥L, LB Nw » » L }
" Th oF READ PISTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1 PORT MeL 2. GOV ACCESSION NO 3 SRFECIPIENT'S CATALL06 HUMBILT

| FUR- R- 74-1426 AD 784 &/6| il A ————EEE ter Lite) L.500 WH.
: 4. TITLE (and Subtitle) % YYPFE OF ncPORT & PERIOD CAVERED |
| A STUDY IN AUTOMATIC PROGRAMMING Interim

| 6 PLRFORMING ORG REPORT NUMHER]! a ———————e—a —— TTyer

J. AUTHOR(s) 6. CONTRACT OR GRANT HUMHE kn)

Jack R. Buchanan F44620-73-C-0074

9. PERFORMING ORGANIZATION NAME AND ADORESS 10.PROGRAM ELEMENT PROJ CT,T
; AREA 8 WOKK Ut ~ NUMBERS

Carnegic=tellon University 61101D
Department of Computer Science 212/165. ’ . Furl }
Pitcsburgh, PA 15213

11 CONTROLLING OF FICE MAME ANNO ADDRESS 12. REPORT OATE ’
Defense Advanced Roscarch Projects Agency May, 1974
1400 Wilson Blvd 13. NUMBER OF PAGES

Arlington,VA 22209 om 155
14 MONITORING AGENCY MAME & ADDRESS different from Controlling Office) 15. SECURITY CLASS. fof thie report)

Air Force Office of Scientific Research /, 3/7] UNCLASSIFIED
1409 wilson Blvd

Arlington, VA 22209 159, DLCL ASSIFICATION [OWNGRACING
SCHEDULE

ee ——————————————— er ———p— te eet eer Rc. rsHER TR ——— pt
16 CiSTHRIBUTION STATEMENT (cf thie Kepcrt)

” 'q

Approved for public release; distribution unlimited.

i ——— A ————— ee

17. OISTRIBUTION STATEMENT (of the abstrac: entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

C—ORTT

19. KEY WOROS Continue on re erse side If necessary and Identify by block number)

NATIONAL TECHNICAL
INF RMA fl 'N SERV -

f VA :
a a I a r————— i

230 ABRLTEA-T "Coniimee an reverae side If necessary and identity by Block pei bref)

A description of methods and an implementation of a system [or automatic gener
ation of programs is given. The problems of writing programs for numerical
computation, symbol manipulation, robot control and cveryday planning have
been studied and sume programs generated. A particular formalism, i.e. a
FRAME, has been developed to define the programming environment and permit
the statement of a problem. A frame, I’, is formulated within the Logic of
Programs (Hoare 1969, Hoare and Wirth 1972) and includes primitive functions

IETS RARER SRE SR RE EL Ammann

FORM

DD , og) 1473 EOITION OF 1 NOV 65 15S OBSOLETE UNCLASSIFIED4 [WP NY

gs SECURITY CL ASSIFICATION OF THIS PAGE (Bhen Data Entered)

SCCURITY Ct ASSIFICATION OF THIS PAGLIWRaAn [inte tntared) %

* . . .

- "1

UNCLASSIFIED

SCCUR|TY Co ASSIFICATION OF THIS PAGE (Wren Data Fntered)
a

| 20. (abstract cont.)
| and procedures, axioms » definitions and rules of program composition, Given {
| a frame, F, a problem for Program ceastruction may be stated as a pair <1,

G7, where T is an input assertion and @ is an output assertion. The pro-
gram generation task is to construct a program A such thet SPALL", where
I's CQ. This process may be viewed as a search in the Logic of Programs for |
a proof that the generated program satisfies the given input-output asscer-
tions. Correctness of Programs generated using the formal algorithm is dis-cussed.

A frame is translated into a backtrack problem solver augmented by special
search procedures. The system is interactive, responds to simple advice and

| allows incremental and structured projram development.
& Ld »the output or solution program is a subsct of ALGOL containing procedure

| calls, assignments, while loops and conditional statements.

”

1]

will

DR TYTS —

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(WRAn [ata Frinred) :

. .

il oa
A STUDY IN AUTOMATIC PROGRAMMING

(0PM OF
By StF g 1974

Jack R. Buchanan Is LL 1] i
ABSTRACT B _-

A description of methods and an implementation of a system for automatic generation
of programs is given. The problems of writing programs for numerical computation,
symbol manipulation, robot control and everyday planning have been studiea and some
programs generated. A particular formalism, i.e. a FRAME, has been developed to
define the programming environment and permit the statement of a problem. A frame,
F, is formulated within the Logic of Programs [Hoare 1969, Hoare and Wirth 1972] and
includes primitive functions and procedures, axioms, definitions and rules of program
composition. Given a frame, F, a problem for program constuction may be stated as a
pair <I> where | is an input assertion and G is an output assertion. The program :
generation task is to construct a program A such that I{A}I’, where I’ > G. This
Process may be viewed as a search in the Logic of Programs for a proof that the
generated program satisfies the given input-output assertions. Correctness of :programs generated using the forr..! agorithm is discussed.

A frame is translated into 3 backtrack problem solver augmented by specicl saarch :
procedures. The system is interactive, responds to simple advice and allows
incremental and structured program development. i
The output or solution program is a subset of ALGOL containing procrndure calls, |assignments, while loops and conditional statements, |

a ea Be | ¢ . | |iat his : d

This research was supported in part by the Advanced Research Projects Agency of the : |Office of the Secretary of Defense under contracts [(F44€20-73-C-0074) and !
J [DAHC15-73-C-0435). |

|

i

!

1 ACKNOWLEDGEMENTS

I am very grateful to my advisor Dr. David C. Luckham for his constant encouragement
and guidance throughout the course of this research. He has contributed many ideas
and refinements to this work as it ha: progressed.

| Many others have contributed to the develtpment of this research through discussion
and programming suggestions to which 1 am very grateful. These include Bruce
Baumgart, Tom Binford, Horace Enea, Richard Fikes, Peter Hart, John McCarthy, Ni's
Nilsson, Richard Orban, David Smith, Dan Swinehart, and Larry Tesier.

Far TTR ort
|

1. INTRODUCTION 1 |
1.1 Contributions 8 :
1.2 Extensions 10
1.3 Future of Automatic Programming 13

| 2. LOGICAL BASIS FOR SEMANTIC DEFINITIONS 17
2.1 Logic of Programs 19

| 2.2 Frame Rules 20
2.3 A Simple Robotics Example 24

3. DEFINING THE PROGRAMMING ENVIRONMENT 23
3.1 Frame Language 43
3.2 Advice Language 94
3.3 Programming Language ud |

| 3.4 An Example 30

| 4. PROBLEM SOLVING PROCESSES 99

5. GENERATION OF CONDITIONAL STATEMENTS {3
9.1 Uncertain Preconditions 43
5.2 Conditional Statements 47

5.3 Selection of Contingency Goal 49 |5.4 Rejoin Conditions 2
9.5 Subprobiem Stack ol
5.6 Computation of Input-Output Assertions 02
5.7 Uncertain Primitive Procedures 03
5.8 An Example od
©.9 Correctness 0d

6. GENERATION OF ITERATIVE STATEMENTS Gd
0.1 Premisses for Consiructing a Luop CJ
0.2 Assembiy of Vinile | Jops Ld
0.3 Updating the State 02
65.4 An Example b3

7. PROGRAMMING AlUS o/
7.1 Program Library L/
/.2 Expansion of Assumpiions 74 " |

8. CORRECTNESS OF THE FORMAL ALGORITHM 70)
S.1 Backirack Programming 70
3.2 Traversing THAND-OR-AND Treas 78
3.3 Labeled, Urdured Subgoal Trees 81
8.4 Corruciness 5

9. SYSTEM DESCRIPTION 86
5 9.1 Overview of Interactive System Use 86

9.2 Procedural Representation of a Frame 89

9.3 The State Updating Methods 104 |
’ 9.4 Computation of Input-Output Assertions 106

9.5 Generation of Conditional Statements 103
9.6 Assembly of While Loops 113
9.7 Structured Programming 121]

Appendix A: ADDITIONAL EXAMPLES 123 |
1. Translate from Infix to Polish 123
2. Integer Square Root Problem 130
3. Hand-Eye Tusks 133
4 Queens Problem 136

Appendix B: AN INTERACTIVE SESSION 139

REFERENCES 146

| Sr

| LIST OF FIGURES |

Figure :

1 Main System Components 7

2 Search for Solutions .0 Climbing Froblem 25

3 Sy-~ tax for Assertions 28

d a Advice Language 33

| oe) Frame Information for Fibcnacci Problem 38
6 Program tor kiboracci Problem 38

7 Conditional Statement Diagram 50

8 Frame for Traveling Problem 55

9 Program for Traveling Problem 56

10 Frame for Factorial Problem 04

11 Prograin for Factorial Problem 06

12 Frame ior kobotics Problein 03

13 Program for Robotics Problem 72

14 Program with Assumptions /5

i5 Expanded Assumption 79

16 Problem 1: YTHAND-OR-AND Tree Search /8 |

17 interactive System od |

| i8 Functional Segments of Rules 94 J |

i9 Translated Procedure 98 |

ir |
|

]

-1

1. INTRODUCTION |

- During the 1950’s the phrase "automatic programming” described the process

carried out by assemblers and compilers, i.e. the translation of a program written in |

ora language into another where the "meaning" is preserved and the target language

is interpretable. Since then there have been many advances in programming languages |

and their associated processors allowing the user to specify at higher levels, or in

more natural ways, how the computation should proceed and removing the users

responsibility for such things as storage management, resource allocation, etc.

In the resent project, we have sought to develop m=thods that will further |

automate or augment the programming process by generating programs over several

domains in a suitably defined envirorment given a statement of what they are to

accomplish, i.e. programming by assertion rather than algorithmically. We seek to |

generate programs using a statement of the Uesired program’s properties rather than

compiling from one detail specification of the flow of control into ancther. It is in this

sense that we usu the term automatic programming. Automatic programming may be

further distin uished from compiling by its use of a semantic model together with a

deduction capability. It is to be expected, however, that as progress is mi.ade in

automatir program generation that research in compilation will be benefited. |

As the field of Artificial Intelligence has matured, problem solving techniques

| have been developed that ha.e allowed us to seriously consider building automatic

programming system. Some very influential ideas came from the Heuristic Compiler

: [Simon 1963] and the GPS [Newell and Simon 1963] projects, i.e. the notion of building |

1 } up a progrzin in a state-space tree search using a problem reduction procedure. This 1

is cer.ainly basic, almost subconsciously so, to the present project and has been |

widely used by others. |

1 INTRODUCTION |
| i

| During the 1960's much of the theory of problem solving was associated with
tree or graph searching methods. Well known techniques for restricting the search by

| using evaluation functions, "minimaxing", the oc-/3 method, etc. may be found in [Nilsson
1971], [Samuel 1963]. Later automatic programming work, still depending heavily on |
search strategies, sougnt to represent the domain semantics and carry out the

deduction in first order logic using the principle of resolution (Green 1969), [Waldinger j
| and Lee 1969]. A more powertui (generated deeper proofs) general deduction system

combining resolution, equality and algebraic simplification was reported in [/ilen and

| Luckham 1970] A great deal of the systems’ efforts were spent in search because |
most facts were uniformly represented as axioms in clause form and the search

strategies were largely syntactic. Greater efficiency was gained in a system built by

separating the heuristic search from the deduction and employing the GPS paradigm |
[Fikes and Nilsson 1971]. |

The difficulty in these systems of using facts to guide the search has prevented

them from solving hard (sor humans) problems or generating complex programs. It hae |
become clear that in addition to a manageable basic problem solving method,
knowledge, both general and domain specific, must be provided in a functionally useful

way to enable the sysiem to find a solution. During the last two years language
systems that allow the user to easily embed knowledge at all levels have been

developed. Other usefyl features are pattern matching, pattern evoked procedures, |
flexible control structures, multiple coniexts and processes [Hewitt 1969], [Sussman
and Mclermott 1972], [Kulifson et al. 1972}, [Feldman et al. 1972], [Tesler, Enea and
Smith 1973]. Our use of some of these features wiil be described in later sections.
Taking advantage ui sume of these features and refining the notion of semantics was a |

INTRODUCTION 3

natural language understanding system reported in [Winograd 1971]. Other automatic

programming or debugging systems are [Deutsch 1973] and [Sussman 1973]. Some

general descriptions and useful classifications of the components of an automatic

programming system have been given in [Balzer 1972]. The closure of all these

capabilities is yet to be fully exploited in a problem solving or automatic programming

system.

Procedural knowledge may be distinguished from declarative in that the

information content is expressed within the tlow of control of a computation (in the

general sense) sequence, i.e. the data from which useful information may be extracted

is the program itseif. This is probably the most efficient information access scheme of

all. An intelligent system in which all information is expressed procedurally will rely

more heavily (perhaps totally) on the current state of computation to determine its

future behaviour than a system utilizing declarative facts and also be, necessarily,

more dependent on the ordering of its knowledge.

However, the distinction begins to blur when we consider how a system may

effectively utilize declarative information and how given a general computational model,

e.g. problem reduction algorithm as in our system, declarative facts may be translated

into procedures. Another example of this is the "questionnaire programming" approach |

for customizing business application systems. Progress has been made in defining]

model specification languages having procedural and non-procedural components

[Hewitt 1469],[Martin 1973], (Hammer, Howe and Wladawsky 1974). Even a resolution |

based theorem prover with an appropriate protocol language (tne procedural pari) can

efficiently use its knowledge to solve a problem [Allen and Luckham 1973], [Stickel

1974].

|

ho INTRODUCTION
|

Research in verifying existing programs [Floyd 1967], [King 1969], [Katz and

Manna 1973], [Milner 1972] has contributed to our understanding of programs and we

have found (not surprisingly) that the kinds of facts required to verity programs are

not distinct from those required for the synthesis of correct programs. Progress has

| also been made in defining axioms and rules of inference for the semantics of

| programming languages [Hoare 1969] and in particular with respect to the

programming language PASCAL [Hoare and Wirth 1972]. This Logic of Programs has

been further developed and used as a basis for a verification system in [Igarashi

London and Luckham 1973]. As a logical basis for an automatic programming system

this logic is especially cunvenient since ihe rules are intuitively clear, the system

operation may be easily formalized and correctness considered, and rule applications

proceed in natural (for humans) steps.

The objectives of the present project have been to extend the theory of

semantic definitions to cescribe automatic programming problems and to design and |
implement a system that uses this information in a functionally useful way to

atuomatically, or interactively, generate programs. : 3

The particular formalism developed to define the programming environment (or |

FRAME) called the FRAME language, will be shown to have elements whose form

corresponds to statements in the Logic of Programs. It is based on a typed, free

variable first oroer logic in which statements may have truth values of either true,

talse or undetermined. The frame language consists of primitive procedures, logical

axioms, definitions, iterative schemes and additional information about these rules and

\ the relations in them. Other rules of program composition, referred to as standard
| rules (described in Section 2), are built into the system and needn't be specified for

each frame, i.e. composition rule, conditional rule, etc.

INTRODUCTION 5

| The frame language may be viewed as an intermediate level! mode! specification
language that is non-procedural and domain independent. It was motivated by
observing that in the general deduction systems previously mentioned there was more

Information in the axioms than was being used operationally, i.e. there were different

kinds of axioms and relations (see Section 3) that should be treated differently by the :

system. For example the truth value of some relations are functions of the state, or 1
| FLUENT [McCarthy and Hayes 1969] and some are NON-FLUENT. For efficiency some

relations could be handled in a two-valued logic, ie. TOTAL, and others require the

generality of a three-valued logic. Also search guidance information should be

provided (embedded) at all levels. For example compared with a resolution based

system we would like to choose the best "set-of-support” at each level of deduction.

We also wanted a language extendible to, or translatable from a higher level, more

natural input language, €.8. recursion equations for the Fibonacci series example in

Section 3 and the factorial example in Section 6. A frame actually describes

programming techniques, the extensiveness of which determine the complexity of
Programs produceable using it.

Given a frame, F, a problem for program construction may be stated as a pair

<[,G>, where I is an input assertion and G is an output assertion. The program |
generation task is to construct a program A such that I{A}l', where I'SG. This process

may be viewed as a search in the logic of programs for a proof that the generated :

Program satisfies the given input-output assertions. A solution to the problem is the

| sequence of rules of inference and axioms used in the proof. This view allows us to

show correctness of the formal methods for program construciion. The correctness of

the program actually generated by the system will depend on our ability to implement

6 INTRODUCTION

the formal algorithm. The solution, or output, programs are written in a subset of

ALGOL containing procedure calls, assignments, while loops and conditional statements.

Program construction is by simulated execution where iterative rules with associated

output assertions are used to update the computation model for simulating the

execution of a loop.

Tre application domains studied and in which programs have been generated are

numerical computation, symbolic manipulation, guidance procedures for a robot,

assembly and repair of machinery, and sequential planning together with generating AJ

contingency plans for a wid: range of decision making problems. Though we have

here pursued a course of developing cne system then applying it to several domains

by merely changing the content of the frame definitions, it is expected that for

practical performance, the form of the system definitions will depend on the domain.

For examnle this is currently happening in research attempting to appiy this system to

automating data base management tasks [Gerritsen 1974) and automated repair of

machinery [Luckham and Buchanan 1974)

The rules of inference, axioms and other logical facts expressed in the frame

definitions are translated into a backtrack problem reduction system augmented by

special search procedures using these facts. The target language of this translation is

LISP using primitives and backtracking facilities of Micro-Planner (Hewitt 1971),

[Sussman and Winograd 1972). This subgoaling system recursively applies to a goal

the rules of the frame to generate subgoals whose solution imply a solution to the 1
original goal.

As an auxilary to the subgoaling system is an ADVICE system with an associated

language that allows the user to guide the search, modify the frame, restrict rule

INTRODUCTION 7 |

applications and receive interactive feed-back during program construction. This is
described in Section 3.

| LIBRARY | *
\7

FRAME , f

PROBLEM, - TRANSLATOR ad BACKTRACK 2 PROGRAM —? OUTPUT
| ADVICE. | PROBLEM |%| ASSEMBLER PROGRAM

SOLVER.

| ‘4 Vv
INPUT | stack - OUTPUT

SUB-

PROCEDURE

PROBLEMS

Figure 1. Main System Components

The main components of the system are shown in figure 1. The user may

interactively specify a frame and provide some initial advice (mode! acquisition phase). |

This is eventually iranslated into a subgoaling problem solver to which a problem may
be given, i.e. a goal which the problem solver seeks to achieve using the rules of the

frame (program generation phase). If a solution program is constructed, the user may
incrementally extend it, i.e. pose another probiem which takes the output assertion of

the current solution program as its input assertion. The user may also optimize it, or

generalize it and place it in the program library for future inclusion in a generated |
program. If the program contains conditional calls to as yet ungenerated procedures

(see Section 9), these subg: oblems may be attempted. Subproblems may also arise by
declaring some primitive procedures defined in the frame to be assumptions to bc

expanded into concrete programs. This provides a rather rudimentary, at this time, |

interactive structured program development facility. |

piig e™l iI

8 INTRODUCTION

1.1 CONTRIBUTIONS

| Some of the areas of work along which progress has been made and
contributions to the tield may be noted are as follows:

(1) Extending the theory of semantic definitions for defining semantics of programming

| languages to define automatic program generation: environments. A relation has also

become more clear beiwee: the kind of assertions needed to verify programs and

those required 10 synthesize correct programs, e.g. «ompare loop invariants used in

our system with inductive assertions for program verification. }| (2) A prototype system has been develuped that is useful in a study to determine the
feasibility of building an autumatic programming system to augment the programmer in
the following ways:

(a) Automatic or interaciive generation of possible solution programs for

application domains suitably described, |

(b) The usefulness of an automated system to handle bookkeeping :

details,check consisiency, applicaoility, etc. |

(¢) The feasability of an interactive siruciured development system,

| (d) The feasability of interactively building up complex programs by allowing
| incremental program extension, library access, structured aevelopment,

and cuntingency planning.

: (3) A demonstration is made that declarative tacts can be incorporated(iranslated) into

an efficient problem solving search procedure which uses these facts at all levels of ;

search. |

(4) A typed, free variable first-order logic in which statements may have truih values

of true, false, or undetermined has been shown to be a natural logical basis for

automatically generating conditional statements in a program.

A |
| INTRODUCTION 9

(5) The iterative rule computaticn scheme has a currespondence to ‘“e principal of

mathematical induction and is a useful way to represent loop structure for a program

to be generated.

To the nagging question that it may be as hard (or hardei) to specify a frame as

| it is to write the program, the following answers may be given:
| (1) Yes, but we ere learning how to program hy assertion, and develop defining

| formalisms and methods for efficiently manipulating facts and rules. |
| (2) A frame may contain many atomic units of information whose interaction when

faced with a novel goal is not easily predictable. For example the robotics frame

defined in Section 7 may be used to generat: many different programs,

(3) An interactive facility for constructing programs with the extendable features

mentioned above can potentially augment the human programmer.

(4) Experience with our frame language has been helpiul in investigating the basic

information required to construct programs, now the task of raising the level of

lannuage interaction 10 a more natural (and useful) level will be aided.

lo

10 INTRODUCTION

1.2 EXTENSIONS

| The following specific research problems are suggested as natural extensions of)| this work (i.e. problems we didn't solve):
(the reader may want to scan these now then come back to them after rrading

further)

(1) In the area of conditional statement generation:

(a) Introduce probabilistic decision theory to determine preference among
contingen.y problems.

| (b) Develop criteria for recognizing equivalent or similar subproblems. |
(c) Design a more flexible mechanism for managing scope, program structure

| and contingency goal selection. Since there is no reason to prefer the

trunk path, the structure of the output program should not be fixed
from that point on.

(d) Compute completely correct input-output assertions for programs having
arbitrary nesting of conditional statements.

(2) In the area of automating structured programming:

(a) Develop a human engineered interactive system, Regardless of how the

: "theology" says we should program, there is something basic to the
human condition about how we do program and style improvement must
be made within that framework.

(b) Develop techniques for managing side effects, |

(c) Do lookahead or design a bottom-up, outside-in, etc. component. |

(3) In the area of generating programs with looping structure:

(a) Implement sume form of the recursion rule[Hoare 1969], i

1 i
| INTRODUCTION 11
| | |
| (b) Develop efficient and more complete methods for updating the -~iate]

consistently. Design criteria for detecting inconsistent states and 3
prevent them from invalidating the srogram.

(c) Generate while loops but reduce ths irformation that the user must

provide. For example, in iterative rules tha syste sh2..!d reasonably

deduce the contiol test or output assertion.

(d) Build in the iterative rule (analzgous to the way the conditional rule is

| built in). This is really trying to do induction. We would like the ability

to analyze a computation trace, recognize loop structure and denerato a

while loop.

(4) A higher level or more cumprehensive input language should be developed. It will
probably be domain dependent.

(5) Explore the implications of various logics for programs as a basis for automatic

programming. In [McCarthy and Hayes 1969] various logics are discussed for

intelligent systems.

(6) Strive to free the problem solver from being so dependent on the ordering of goals

in a condition to be achieved or the ordering of applicable rules. Develop reordering
strategies, lookahead, etc.

(7) In the area of paraliel processes: |

(a) Generate programs for parallel machines.

(b) Develop criteria for splitting up a generated sequential program into

subtasks for coor srating sequential processes.

(8) Exploit multiple processes and multiple contexts to increase the power of the

problem solvers, e.g. a better answer to the question of why a node failed could yield
automatic correction.

yy

12 INTRODUCTION

(9) Organize a library of gene. ated Programs and develop strategies for its a-cess.

(10) Study the prublem oi validation of program specification. Determine consisiency
| and adequacy of a programming model. Prove properties of the family of programs

constructable frum the same trame. Study the invariants of data structure under
application uf a family of programs, e.g. do they modify the tree orderedness of a label
tabie.

INTRODUCTION 13

1.3 COMMENTS ON THE FUTURE OF AUTOMATIC PROGRAMMING |

The need for some automation in the task of software production is becoming
increasingly clear. Sysiem are getting bigger and more complex which has caused

maintenance cost tc rise (It is now 50 per cent of the programming budget). Software

cCsts too much, it isn’t reliable, takes too long to develop and its difficult to modify or

fix. Programming has not attained the maturity to davelup standard engineering
practices witn their attendant reliability that otter disciplines have. Research in

! automatic programming seeks to understand the nature of the task and thereby |
| improve wroduciion. :

There are many dmensions along which automatic programming will progress. §

There is the theoretical dimension which implies gaining a more fundamental
understanding of the meaning of programs and developing descriptive and useful logics

for automatic programming problems that permit a rigorous investigation of the

properties of a program. Along the pragmatic dimension, we will be interested in 1
augmenting current practice with state of the art techniques. There is also the

heuristic dimension which contains the multitude of ideas, systems and ad hoc notions

tor which there is no good logical description nor is there any current practical |

application, but through them we gain understanding into the nature of the problem.

the foliowing are a list of rather random comments on the future of automatic
programming based on our experience.

(1) More emphasis will be placed on higher level descriptive formalisms and

programming languages to define programming environments. The level will be raised

(0 accumodate the nun-grogrammer as weil as to ease the job of the professional :
Some of these advances wili require major breakthroughs in Artificial inteliigence, e.g.

14 INTRODUCTION

dynamic acquisition of models, recognition of incomplete or inconsistent modals, or |

further development in representing knowlege in a functionally useful way.

| (2) Larger cuftware facilities will be develop.d for systems to contain more facts.

Deduction will be efficiently encoded (perhaps specislized as in the theorem prover

over the integers in [King and Floyd 1970).

(3) Specialized domain application sysicms will be built that will rival human abilities

J (perhaps the standard five year time estimate will do). Compared with the present

system these will require new kinds of Luilt in facts, different advice needs and

computation schemes. To make real progress tran terring technology developed in one

system to the improvement of another in perhaps a different domain we must focus on

the methods used to embed knowledge or define the environment rather than just

loading the system with facts and ad hoc tricks or using a human interface that only its

creator can understand. The field is so young that too much time shouldnt be spent |

hand tuning a system once the basic methods are exploited.

(4) There are some short term payoffs (within 5 years) for augmenting programmers,

e.g. betier interactive debugging systems, languages permitting user assertions to be

checked and better optimizers. Within a narrow domain present technology can yield

good performance. Automatic programming will not replace the programmer but will

raisc the educational level for those who would do computer assisted program

construction. With respect ic program synthesis we should strive to generate

programs of the type that pecpie understand and can write with some effort so that

program synthesis does not get completely lost in futuristic Al research. Within

current technology the size of the generateable programs will be small (one page) and |

complexity will be gained by combining and extending them with interactive aids.

INTRODUCTION 15

(5) INTERACTIVE systems will be developed that will do mundane logical chacking,

answering "what if" questions, and building up complex programs modularly such that |

the system will only have to focus on 0:2 small problem at a time,

(6) Within the forseeable future final production level systeris will not be automatically

produced but the ability to produce prototype systems quickly to test design ideas will

be a significant aid to software production. |

| 16 INTRODUCTION
| In Section 2 a short description of the logic of programs is given in which the |

frame definitions and program construction rules are formulated. A simple exampla is

given that illustrates how a problem is formulated and the meaning of a solution.

| section 3 describes the frame definition language, advice language and output progran |

languaga. In Section 4 the systems use of information auring the problem solving (
process is descrived. Sections 5 and 6 present the system methods for generating 1

conditional statements and iterative loops respeclively. Section 7 descibes the

programming aids provided in the system for the user to interactively generate more :

complex programs. In Section 8 is given tne formal program generation algorithm and a

description of the proof of its correctness. Section 9 is intended to document the

system implementation to the level that would be reasonably useful in designing an |

oxpanded sysiem. lilus'rative examples of frames and generaied programs are given in

sections 3,5, 6,7 a*d “ppendix A. Appendix 8 contains a complete interactive session. |

aSlAGL

17 |

2. LOGICAL BASIS FOR SEMANTIC DEFINITIONS

In this section we will briefly describe how frames can be formulated within the

| Logic of Programs. Later sections will expand on the frame formalism and its use.

| Program generation may then be viewed as a search for a proof within the Logic of

Programs that the generated program satisfies its input-output assertions. In Section

8 the formal algorithm will be given and correctness of solutions considered.

A distinction should be made between the problem solving algorithms and their

implementation in any particular system where an implemented system must fall shor!

! of the formal algorithm. For example program correctness will depend upon

maintaining consistency of each state occuring during program construction, yet in :

general the task of determining state ccnsistency is undecidable. However limited |

deduction is carried out and special mechanisms to detect common inconsistencies, e.g.

single valuedness of program variable, re implemented. |

NOTATION: X,Y,Z,U,V,W...variables,
X.Y Ly. lists of variables,
f,eg,h.... tunctions, A
st... functional terms,

hk

G,I,P,QR,S,.. Eoolean expressions (essentially formulas of first order :
logic with standard functions and predicates for equality,
numbers, lists and other data types),

P(X) denotes the formula obtained by replacing each free variable in P |
Ly a new variable from X,

(3X)P(X) denotes existential quantification over all X-varicbles in P(X), |

ABC... programs and program parts in an Algol-like plan language i
(details in Section 3),

p,q,.. procedure names, ;

ofS... substitutions of terms for variables, also denoted by (<x«t>).

P(t) denotes the result of replacing x by t everywhere in P(x).

o/3 denotes the COMPOSITION of « and 5; Ext =(Ex) for all
expressions E,

| 18 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

\We assume the existence of a fixed arbitrary ordering of literals defined in the

trame (atoms and negations of atoms) which is simply used as a computational aid for 3

descrioing and implementing the rule of invariance defined in Section 2.2 and not for
any heuristic advantage,

:

|
1

|

| LOGICAL BASIS FOR SEMANTIC DEFINITIONS 19

| 2.1 LOGIC OF PROGRAMS

We review briefly the elements of an inference system for proving properties of |
programs [Hoare 1969] This description is taken from (Igarashi, London, Luckham
1973]. | |

| STATEMENTS of the logic are of three kinds:
(i) Boolean expressions, (henceforth often called ASSERTIONS)

(ii) statements of the form P{A}JQ where P,Q are Boolean expressions and A is a
program or program part.

| P{A}Q means “if P is true of the input state and A halts (or halts normally in
the case that A contains a GO TO to a label not in A) then Q is true of the |
output state”.

(iii) Procedure declarations, p PROC K where p is a procedure name and K is a
program (the body of p).

| A RULE OF INFERENCE is a transformation rule from the conjunction of a set of
statements (premisses, say Hy ,..Hn) to a statement (conclusion, say K) of kind (ii).
Such rules are denoted by

Hy yn

The concept of PROOF in the logic of programs is defined in the usual way as a

sequence of statements that are either axioms or obtained from previous members of

the sequence by a rule. A proof sequence is a nroof of its end statement.

NOTATION: We use H ||- K to denote that K can be proved by assuming H. H |- K

denotes the same thing for first order logic. It is sometimes helpful to denote |
statements that are problems or subproblems for the program generator to solve by

P{?}Q.]

20 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

2.2 FRAME RULES

| The RULES in a frame F are of three kinds:
| (a) PROCEDURES transform states into states and are expressed as statements in
| the logic of programs.

| (b) SCHEMES are methods tor constructing Programs and are expresed as rules of
inference in the logic of programs. :

(¢) KELATIONAL LAWS: definitions and axioms which hold in all states and serve to
“complete” incomplete state descriptions by permitting first order deduction of
other elements of a state from those given.

Given a frame F a problem for program construction may be stated as a pair

<I,G>, where | is an input assertion (or initial state) and G is the output assertion (or |
| goal that must be true in the output state). The program construction task is to

construct a program A such that {A}l', where I'>G. A solution is the sequence of rules
of F used in the construction of the solution program A.

NOTATION and RESTRICTIONS: Q u F 5 R denotes that R is a logical consequence of Q
and the axioms of F, Assertions gescribing states are denoted by LI',..,G,G',.. These

assertions (but not the assertions in rule definitions) are restricted to be conjunctions

of atomic assertions. We write Rc to denote that R is a conjunct in I. L(F) denotes the |
logic of F,i.e. the set of consequences of the rules of F. Substitutions « do not
replace any variable that occurs in the initial state I. Expressions, all of whose

variables occur in the initial state are called "fully instantiated” |
STANDARD FRAME RULES: A set of standard rules are assumed to be part of every

| frame. These are rules implemented in the program construction methods of the |

| problem solving aigorithm: | 3
KO. Assignment Axioms:

LOGICAL BASIS FOR SEMANTIC DEFINITIONS 21

(i) Simple Assignment: P(t}ir ~t }P(x)

(ii) Conditional Assignment: (JDP(Z){IF P(W) THEN YeW}P(Y)
~(JDPAQUYNIF P(W) THEN YeW}Q(Y)

where Y-variables in P(Y) do not occur in P(W), W-variables are
| special variables ocurring only in conditional assignments, and YW

denotes the sequence of simple assignments between members of Y
and W that occur in the same argument positions in P(Y) and P(W).

| RL. Rule of Consequence: P>Q,Q{A}R P{A}Q,Q2R
P{AJR PAR

R2. Rule of Composition: P{A}QQ{B}R

P{ABJR

"3. Rule of Invariance: if P{AJQ and [UF > P then I{A}Inv(Q,])
where if Rj,Ry,..R, are the conjuncts of |
in the fixed order, then lg = Q,
tor Osm<n, [py =I, A Rm if ~(In UF 2 Ry)

Iver = Ip otherwise,
and Inv(Q,l) = I,

| R4. Change of Variables: P(x){A(x)}Q(x) where y is not a |
a special variable.

| Fly {A(y)}G(y)

RS, Conditional Rule: PAQ{AIR, PA-Q{BIR

P{IF Q THEN A ELSE B}R

R6. Undetermined values: If P{?}G c.nnot be solved and :
~(I'UF 2 -G) then G is UNDETERMINED in I".

STANDARD RULES

REMARKS: (i) The axioms ROG) define the semantics of conditional assignment :
statements used primarily in the system during the assembly of while loops. The

| 22 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

relation P(W) within the IF statement is interpreted as a call to a Boolean procedure
that, if successful, will bind the W-parameters to values from the state that make it
true. Our convention is to regard W-variables as "special variables” only occurring in |such conditional assignments. An alternative would be to define a typed procedure for
each relation in the frame that would return the appropriate value for direct
assignment to the Y-variables. We telt that the conditional assignment made the f
desired semantics more transparent however. |

. (ii) The rule of invariance means that during a state transformation and a new 1
statement Q becomes true in | that the function Inv(Q,1) will return Q union these facts
in I that do not contradict Q. We therefore do not need “frame axioms" to handle the
"frame problem” [McCarthy and Hayes 1969] as the resolution theorem provers |mentioned in the introduction did.

(iii) The rule of undetermined values guides the systems decision to generate 3conditional statements (Section 5).

INPUT FRAME RU! ES: In addition to the standard rules, a frame may contain rules of

the following types (these constitute the user defined elements of the frame):

Sl. Primitive procedures (or operators): tae rule defining procedure p is of the form

| P{p}Q. The assertions P and Q are the pre- and post-conditions of p. p must contain a
procedure name and parameter list.

$2. Iterative rules: an iterative rule definition containing the Boolean expressions
P(basis), Q(loop invariant), R(iteration step goal), L(coritrol test) and G(rule goal) Is a

rule of inference of the form: |

Piwhile L do %7?;G

where the free variables of R and L occur in Q. Such rules are permitted not to
contain P or L,in which case they correspond to inferences of the form:
(b) Q, QA~G{?}R, R{??}QvG

Q{while -G do %??71G

S3. Definitions. A definition of G in terms of P is a logical equivalence |- PsG. |
54. Axioms. A frame axiom P is a logical axiom |- P.

| LOGICAL BASIS FOR SEMANTIC DEFINITIONS 23 |

; Terms and predicates in assertions may contain calls to LISP functions. If the |

frame definition contains functional terms or predicate tests that are evaluated by celle

to LISP functions, the set of premisses must be expanded to include both the input-

output assertions for these function calls and the logical axioms for the relevant data
types.

REMARKS (i) The iterative schemes S2 permit the definition of methods for constructing
loops; they are instances of:

WEAK ITERATION RULE: QAL{B}Qv-L

Q{WHILE L DO B}-L

where Q is the invariant of the loop. The meaning of |-Q in the premiss is that the rule
may only be applied in states where Q is a first order consequence of the state
description. The program part ?? is restricted to be a sequence of assignment
statements (see Section 6).

(ii) Inconsistencies may arise in several different ways in frames. The axioms can be
inconsistent, or the post conditions of a rule can be inconsistent with the axioms. Also

the elements of iterative schemes must satisty some simple consistency criteria
(section 6).

(ir) Note that each frame rule has a goal. The goal of a procedure is its postcondition;

the goal of an axiom or definition is its consequent.

The following lemma is useful in proving properties of conditional assignments |

[lgarashiLondon,Luckham 1973]:

OR-LEMMA P{A}Q, R{A]}S

Pvik{A}QvS

24 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

2.3 A siMPLE KOBOTIC EXAMPLE

We will now consider a simple robotics environment and its description within

the tormalism. In the context of this example we will then consider formulating the :

correctness uf solutions,

Consider the fuliowing frame and problem: |

INPUT FRAME RULES:

Fl. Procodura: standon |

RT (x, NAT2, InkOLO Tk)ALOA(2){standon(,2)JOIN(x,2).

F2. Procedure: step-up

kOoOT(x)AON(x,yASTACKEU(2,y){step-upix,y,2) JON(x,2).

F3. Iterative Ruia: ciimo)

KOLO NMIAOINIW,YIAS TACKEWU,y)A-ONTOP(M){ ?JON(M,u)

KOBOT(M)AON(MAY JASTACKEL uy{WHILE-ONTOP(MIDOBEGIN 77?ENDJONTOP(M)
Fd. Axiom: ROBOT(x)A2y(ON(x,y)IAVZ~3TACKED(2,y))»ONTOP(x).

| FrOCLEM

I: ROLOTA\LBALOK UI INECAL2IAEOALIINATBLLINAAT(IM,L)
ASTRCKeEL(UZ,U1) A STACKED(L3,L2).

C: ONTO.)

PROBLEM 1: CLIMBING |

ReMARKS: (i) The iterative ruie says "A solution 10 the problem of Liabing one box at
a timo, cun bo used to cunsiruct a WHILE loop that solves tha prublem of climbing a
stuck uf boxes". Thu rule aerines the meaning of WHILE in the ¢ nvironment. Or we |
may regard the ruie as ain induction principio for the environment.

Gi) Tho program pert 72 in the conclusion of the iterative rule transforms the situation

artor the execuiion of the ivop body (f) back into one in which the invariant is sgain
(rug Ir tne west is frue:

One, u 7? IROGOT(x)AON(x,y ASTACKED(u,y).

Vea rosinct 12 10 ba a suquance of assignments.

(i) The youl uf climo 1s ONTOF(M), the nugation of the cuntrol test in this example.

LOGICAL BASIS FOR SEMANTIC DEFINITIONS 25 i

| i
standon (if, 4)) KE.ON(N,31)

[2] cam, a2; 4 Jos, 1)
* rd

1 # .

LY k |y LY

oo i

< TACKED (U,Y) ;HONQXTOP () >

GEO (0 000 (NW, YW ba STACKED (U, TY)

stapup(M,Y,U) J

aoLy (,)

: cliad

(o) omroran

: SEARCH FOR SOLUTIONS TO THE CLIMBING PROBLEM
Figure 2

Steps taken by a search Procedure in solving this problem are shown in figure

2. It starts with state situation | and determines by logical reasoning from | and the |
axioms which Operators have pre-conditions that are true in | . Jt applies these
Operators and updates the state to the new state using ‘he rule of invariance. [It
repeats this process on the new states. Node 6 indicates the initiation of a

subproblem (the premiss of the iterative rule) with a new initial state (the invariant) |
which is a subset of the state above it at Node 5. The solutions corresponding to the

paths shown in figure 2 are: |(i) I{standon(M,B1 Jistepup(M,B1,62);stepup(M,52,63)}0NTOP(M). |(ii) I{standon(M,51 y«Blu-B2;
WHILE ~ONTOP(M) DO BEGIN

|

26 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

stepup(M,y,u); |
yeu;

IF STACKED(w,y)THEN uew; |

ENDJONTOP(M) |

where the assignments within the WHILE loop correspond to the ?? of the iterative :

rule. The variable w is a special variable.

| Using the frame rules we can now construct a proof of the statement |
[{solution}G within the logic of programs. 3

i 1. IS(ROBOT(MAAT(M,LIAAT(B1,L)ABOX(B1)) |

2. I{standon(M,B1)JON(M,B1)AS TACKED(B2,81)AKOBOT(M) 1,F1,R4,R1,R3 |
3. ON(M,B1)ASTACKEL(B2,81)AROBOT(M){y«BI;

ueB2JROBOT(M)AON(M,y JAS TACKEXu,y) RO(i),R2,R3

4, l{standon(M,B1);y«B1;u¢-B2}JROBOT(M)AON(M,y JAS TACKED{u,y) 2,3,R2

5. ROBOT(M)AON(M,y)ASTACKED(u,y {ste pup(M,y,u) JON(M,u)AROBOT(M) F2,R4

6. KOBOT(M)AON(M,u){y«uJKOBOT(M)AON(M,y) KO,R3

4 ON(M,y)A32STACKED(z,y){IF STACKED(w,y) THEN uw JON(M,y)ASTACKEXu,y) RO,R3 |
: 8. ~32STACKED(2,y)AONTOP(M){IF STACKED(w,y)THEN uew}ONTOP(M) RO

9. (ON(M,y)A32STACKED(z2,y))v(~32S TACKED(2,y)AONTOP(M)) |{IF STACKED(w,y)THEN uew ON(M,y)ASTACKEDX u,y))v ONTOP(M) OR-Lemma 7,8.

10. ROBOT(M)AON(M,y)A~(32)S TACKED(2,y) > ONTOP(M) Fa,
2(ON(M,y)AI2 STACKED(2,y))VONTOP(M)

KOGOT(M)AOIN(M,y)A 32STACKEL(2,y) 2 (ON(M,y)A32STACKED(z,y))VONTOP(M)
KOBOT(M)AOIN(M,y) 2 (ON(M,y)A32STACKED(z,y))VONTOP(M) |

h 11. ROBOT(MIAON(M,y)JASTACKED uy){stepup(My,uy <u;
IF STACKED(w,y)THEN uew (ON(M,y)ASTACKED(u,y))v ONTOP(M) 5,6,10,9,R2,R1

12. KOBOT(M)AON(M,y)ASTACKEDX u,y {WHILE-ONTOP(M) DO ...JONTOP(M) 11,R1,F3
13. I{solution (ii)JOINTOR(M) 4,12,R2

FrOOF of {solution (ii)}G

LOGICAL BASIS FOR SEMANTIC DEFINITIONS 27

We refer to a formal proof of L(F)||-I{A}G as a correctness proof. The existence

of such a proot implies only that the program is correct relative to the frame. If we

| modify the frame we can investigate the correctness of solution (ii) in the extended

! frame by analyzing the proof of {solution (ii)JONTOP(M) by checking to see if any step

uses facts from an intermediate state situation I’ that contradict the extra logical rules.

We in effect carry out a "proof checking” operation for consistency of each step with

the additional facts. This process practically avoids search.

|

i

|

28

3. DEFINING THE PROGRAMMING ENVIRONMENT

In this section the Frame definition formalism is presented. This includes the

Frame language the Advice language, and the output Program language. A complete

example of an input frame, together with advice, and the resulting output prcgram is

given.

3.1 FRAME LANGUAGE

3.1.1 ASScRTIONS: The syntax for assertions used in definitions of rules, axioms and |

state descriptions is shown in figure 3.

<variable> ua <identifier>

<tunction symbo!> i= <identifier> }
<predicate symbc!> ::= <identifier>

| <term> ::= <variable>|(<function symbol>)|
(<function symbol><argument list>) |

K <argument list> i= <term>i<term>,<argument list> |
<functional term> ::= (EV<term>)|(EVN<term>)|<term>
<atomic formula> ::= <predicate symbol>(<predicate argument list>)
<predicate argument list> ::= <functional term>|<functional term>,

<predicate argument list>
<literal> ::= <atomic formula>|~<atomic formula»
<literal element> ::= <literal>|REQUEST(<literal>)|{ <assertio:>}
<disjunction> ::= <literal elemeni>|<literal elemer.t><or><disjunction>
<assertion> = <disjunction>|<disjunction><and><assertion>
<and> n= Ald
<01> n= Vio

SYNTAX OF ASSERTIONS

Figure 3.

| Identifiers are sirings of characters not containing the negation symbol, "=", nor |
the usual LISP delimiters, e.g., blanks, commas or parentheses. The <or> connectives

have higher precedence than the <and> connectives and a logical condition is]

terminated by a semicolon, *". Fur example,)

, F(x) v Qx) A K(x,y) A S(Zx) v {T(Z) A M(V)};

represents tha uxpression

[P(x) v QIV)] A Kix,y) A [S(Z%) v [T(Z) A MV)]]

DEFINING THE PROGRAMMING ENVIRONMENT 29

in fully parenthesized notation.

| The only constructs whose meaning requires special explanation are <functional

| term>, <literal element>, and the connectives "&" and "eo",
If a term is in the scope of the modifier "EV" then all functions in that term are

applied to their arguments (i.e. evaluated as LISP functions) when ‘hat literal is used in

| the problem-solving process. "EVN" further specifies that the functions to be

| evaluated have numerical values. The default convention is that the term is

| manipulated as an unevaluated symbolic expression. The "REQUEST" modifier, v/hich
takes a literal as its argument, alters the way that literal is treated by the prokticm

solver. This is discussed in Section 4.

The AND connective is denoted by "A" . Thus a state satisfies the assertion ANB

if it satisfies both A and B. The weaker THAND connective is denoted by &. Exclusive

OR is denoted by "e". |

3.1.2 STATE DESCRIPTIONS: Assertions specifying states are restricted to be

conjunctions of literals. |
3.1.3 AXIOMS: Axioms are stated in either of the forms P>Q or P, where P and Q are |

assertions. They hold in all states and are used to complete a given state description |
by deduction of other elements of a state from those given.

3.1.4 RULES: There are three types of rules: primitive procedures, definitions, and

iterative rules.

3 (a) A primitive procedure is specified by a name, an argument list, and its pre and
| post-conditions, i.e. |

P {f(x} px)}Q where P and Q are assertions in which xj ,..xx are free, and

f is the procedure name.

30 DEFINING THE PROGRAMMING ENVIRONMENT |

The variables are formal parametars of the procedure. They may be "bound" by

substitution of actual parameters when the procedure is applied to a state.

For example consider the operator,

move(R1,01,L1,L2):"R1 makes O01 from Li to L2"™ .
| with preconditions,

ROBOT(R1) A MOVABLE(O1) A AT(O1,L1) A AT(RI,LI) A~ ON(R1,02,L1);
and postconditions,

AT(01,L2) A AT(R1,L2); |

When a primitive procedure is defined it may be declared to be an ASSUMPTION.

If it is used in a successful program construction, then the user is informed and is

given the opportunity to carry out a structured program development of this non-

primitive operation. This is described in Section 7.

(b) A definitional rule is of the form K=S where R and S are assertions. The relation, S,

's given as the postcondition of the rule. The meaning of a definition is that whenever |
it is desired that S be true it is equivalent to establish the truth of R. A definition is

often used to shorten assertions in rules by defining a single relation as equivalent to
: an often used condition.

(c) Iterative rules specify conditions that if satisfied justify the assembly of a "while"

loop to achieve the associated goal. They are instances of the iterative rule $2 in

Section 2.2, and are defined by giving:
(1) A name, e.g. TLOOP, (without paramsters).
(it) A basis assertion P.

(iit) A loop invariant assertion (that specifies relations that must be true in

the state prior to each iteration.

(iv) An iteration step assertion R that specifies the goals to be achieved

during an execution of the loop body. y
(v) An iterative goal G, the assertion considered achievable by the iterative

process.

(vi) The format of iterative rules also allows the specification of a loop

control test L and an output assertion $ if they differ from G.

DEFINING THE PROGRAMMING ENVIRONMENT 31

The rule,
TLOOP

PiQiRiGiL;S;

| where P,Q,R,GL and S are assertions,
defines the iterative rule "TLOOP"

! associated with the goal G.

3.1.5 SPECIAL AXIOMS: After the rules and initial state have been cefined the system |

| requests the following information for each predicate symbol P that has been
mentioned. The system use of this information is discussed in Section 4.

a) "Is P a function of the state?" The intent of this classification is to separate

those relations whose truth value may be affected by a state |

| transformation, i.e, FLUENT relations,from those whose truth value is i

constant over all achievable worlds, i.e, NON-FLUENT relations such as

"ROBOT(X)", "INTEGER(Y)".

b) "Is knowledge represented using P partial? A partial relation may have |

truth values TRUE, FALSE, or UNDETERMINED. Partial relations may be used

to represent incomplete knowledge of the world which may cause

conditional statements to be generated as explained in Section 5. A |
relation may be declared “uncertain” which implies an absence of |

| knowledge about it so that . is assigned a truth value of undetermined a

priori. If P is not “partial” it is "total" and can only have truth values of

either true or false. Thus rule R6 applies to partial predicates only. :
c) "Does P have a uniqueness property in certain argument positions?” A

"yes" answer indicates that P cannot be true for two sequences Of |
argument values that differ only at one of those positions that are unique. |
The unique positicns are given using the notation, (X1,%X3,s,..,Xn), for |

|

32 DEFINING THE PROGRAMMING ENVIRONMENT

example, ta designate the second and fourth argument positions. For each

unique argument position in relation P(al,.,an), an axiom is "built-in" from

which a contradiction may be established with P(bl,..bn) that differs in a
| unique position and matches elsewhere.

The statement, "an object can only be in one place at one time", is expressed by,
| AT(X12). If we add, “and only one object can be at any place”, then we

| vse AT(s,z2),
3.1.6 SIMPLIFICATION: Algebraic simplification rules may be given to simplify the terms
that may occur in subgoals during the problem solving phase. The simplification is

| driven by a table of rules of the form sat where s and t are terms; occurrences of soc
are replaced by te for any substitution .

The output furmat vf any functional term may be specified by the user by giving |
a rule in which its input prefix form is on the left, e.g, (PLUS X Y) s (X+Y). |

DEFINING THE PROGRAMMING ENVIRONMENT 33
| COMMAND SYNTAX ACTION PERFORMED |Aee ———— te

TRY <rulel> BEFORE <rule2> Use <rulel> before <rule?> to
develop a subgoal.

— i ——————

FOR <rule> [FIRST] TRY <literal> Change the precondition Q of <rule> |
to <literal> & Q if "FIRST" is
given otherwise Q v <literal>.

DELETE {<rule>,<literal>, If <rule> is given, remove that
| <advice num>} rule. If <literal> then alte:

state to make <literal> not true.
If <advice num> then delete the
associated advice and undo its
effects on the system.

ADD{<rule>,<literal>] If <rule> is given then accept a]
new rule. If <literal> then alter
state to make <literal> true.

SS ——————————————————. —_——

ALTER <rule> <rule> may be modified.

ASSUME {<rule>,<literal>} If <rule> is given then an assumed
rule may be defined.

If <iiteral> then alter state to
make <literal> true and mark it as
an assumption.

RESTRICT <rule>{TO,FROM} For any goal in Q, if "TO" is given
<rule list> then only rules in <rule list> may

be used, if "FROM" then no rule in
<rule list> will be used.

ADVICE All advice given that session is
displayed. f

STATUS The following information is dig=-
played:

-rules entered and goals 1
pending in current subgoal |
tree,

-rules and goals in longest
path obtained so far,
-currently constructed program

segment |
-longest program segment |
constructed so far.

_—

PAIRWISE INEQUALITIES <proc> Pairwise equality is prohibited
in primitive procedure argument
positions containing ''*",

RECURSIVE <rule> The rule may be used directly to
achieve a goal in its pre-condition,
otherwise it may not.

Figure 4 |

34 DEFINING THE PROGRAMMING ENVIRONMENT

3.2. ADVICE LANGUAGE

The advice facility is intended to enable the user to impose structure relevant to

| solving a particular problem upon an already defined frame. This additional structure
| includes preference orderings among goals and rules, and restrictons on the search

space. The preferences may also reflect the kind of solution the user wants,

Advice is given during program generation by means of an interactive facility.
The advice subsystem may be entered by responding to a system query, "DO YOU
HAVE ADVICE?" | or by typing any key during program generation. The user may
request to see the current path in the subgoal tree i.e. rules entered and goals

pending, and receive a diagnosis of the cause of any failure. This is useful in deciding
what advice to give.

The advice system enters a read loop recognizing and numbering commands from

the language shown in figure 4. In the language syntax, optional symbols are enclosed

in “[" and "J% enclosing a list of symbols in I" and "}" indicates that one must be

chosen; <rule> is a ryle name; <rule list> is a list of rule names; <proc> is a primitive
procedure name; <advice num> is of the form "sn", where n is an integer; and Q
denotes the pre-condition of <rule>,

After advice has been given the system may be directed to reject the rule it is
currently using, if any, or to try (perhaps re-try) the current rule.

The advice tacility is an important tool for experimenting interactively with

different frames to determine their adequacy and soundness. At present, the language
is rudimentary and should be extended.

3.3 PROGRAMMING LANGUAGE

The generated programs are expressed in an elementary ALGOL-like language

DEFINING THE PROGRAMMING ENVIRONMENT 35

which includes block structure, assignment statements, conditional statements, while

| loops, and non-recursive procedures calls. The procedures may be typed, including
Boolean, and may have side effects in addition to the value returned. The procedure

| parameters are normally called by value except in the case of special W-variables in

conditional assignments (rule RO,section 2). |

| 36 DEFINING THE PROGRAMMING ENVIRONMENT
3.4 AN EXAMPLE

Consider the task of writing a program to compute the nth Fibonacci number for

some integer n. This task has been posed in [Balzer 1972] The basic information

required is the recursive definition and the basis values. One way to express this in

the Frame language ''ses the following predicates with the indicated meanings: |
VFIB(X,Y): "The value of the X Fibonacci number is Y*,
C(X,Y): "The contents of the variable X is Y’,
FIB(X,Y): "The variable X contains the Y Fibonacci number,
INTEGER(X): "X is an integer”,
ISVAR(X): "X is a variable”,
>(X,Y): "X is greater than Y"

NEWVAR(X,Y): "X and Y are local variables”,

The problem is ISVAR(X3)AINTEGER(N){?}FIB(X3,N).
The frame contains:

l. Axioms VFIB(1,1)and VFIB((ADDI 1),2Kthese define initial values).
2. Axiom

TAFIB

VFIB((SUBI1 V1),V2)AVFIB((SUB1(SUBI VIDV3)IA =(V4,(PLUS V2 V3));
VFIB(V1,v4); |(defines VFIB(V1,V4) for terms beyond the initial values).

3. An iterative rule (named TFIB) with goal FIB(X3,N); this rule defines the conditions

to be satisfied during an iterative upward computation. The basis condition (to initialize
the counter and program variables) is:

NEWVAR(V1,V2)AINTEGER(V8)AC(V](ADD1 1)AC(V2,1)AC(V3,(ADD] 1)). |
The loop invariant condition is:

C(V1,V5)AC(V2,VI)AC(V3,V10)AVFIB(VS,V10)AVFIB(SUS] V5),V9);. | |

This states that at each entry to the loop body, if the value in the counter is i and the

values in the program variables are) and k then j is the ith Fibonacci number and k Is
the (i-1)st Fibonacci number.

DEFINING THE PROGRAMMING ENVIRONMENT 37]

The iteration step condition

C(V1,(ADD! V5))AFIB(V2,V5)AFIB(V3,(ADD1 V5))

specifies what the iteration step is to accomplish. The control test, >(V5,V8) and an

output assertion FIB(V3,V8) are given.
4. A definition of FIB in terms of VFIB and C

TOFIB

VFIB(V2,V3)AC(VA,V3); F18(V4,V2);

5. A simple primitive procedure for assignment is also given, i.e.

«(V],Al)

ISVAR(V1); C(V1,Al);.

No rules are uaclared as assumptions. The additional information given to complete the

| frame specificat'on is shown in figure 5, and a program generated from this frame is
shown in figure 6.

] 38 DEFINING THE PROGRAMMING ENVIRONMENT

| PREDICATE SYMBOL FLUENT PART IAL UNIQUEN:SS
C TRUE FALSE

. c(x,*)a TRUE FALSE FIB(X,*)
TRUE FALSE FALSEVF18 TRUE FALSE IB(* »INTEGER : VF1B(*,*)1 Paise FALSE FALSE

FALSE FALSE
| ISVAR FALSE FALSE FALSE

SIMPLIFICATION RULES: FUNCTION OUTPUT SYNTAX:

(ADD1 (SUBL X)) -. x (ADDI X) = (x+1)
(SUB1 (ADDL X)) -. Xx (SUB1 X) « (1-1)

| (PLUS X Y) = (X+Y)

ADVICE: TRY TFIB BEFORE TDFIB

RECURSIVE TAFIB

Figure 5

HERRERA ER ERS RGB REE BR BARBERA ER RRR REE RN END NN

PROC] (X3,N)
ISVAR(X3); INTEGER(N);

COMMENT :
INPUT ASSERTION

NONE

OUTPUT ASSERTION

FIB(X5,N)
BEG IN

Y2 ~ 1;

X3 ~ (141);
WHILE ->(Y1,N) DO

BEGIN

22 ~ X3;

X35 ~ (X3 + Y2),

END

END

Figure 6

| .

4. PROBLEM SOLVING PROCESSES 1

| During the process of problem solving and program generation, information is

| needed at many points to reduce the search space or to produce reasonable programs.
Some of the information is provided in the frame specification by statements about the

rules and predicates; other useful facts are provided to the problem solver in the form

of rather simple advice. Roughly speaking, there are six basic processes in the ;

problem-solving system where extra facts can help: (a) pattern matching, (b)

development of nodes in the subgoal tree, (c) updating the state description (i.e.

implementing invariance), (d) backtracking in the subgoal tree, (e) conditional branching,

(f) assembly of programs. Each fact (as opposed to a rule or axiom) in a frame

specification and each sort of advice has at least one function in speeding up a basic |

process. Below we describe some of the ways in which the present variety of facts |

and advice is used.

| (1) OR-Node Selection. When more than one rule can be applied to reduce a given

goal, some selection and preference criteria are needed. By using the advice

system,the rules and axioms that may be applied to achieve goals within the

precondition of a rule or axiom may be restricted to or excluded from a given list.

Also, a preference ordering may be specified among rules and axioms with common |

post-conditions. Goals within the preconditions of axioms are always restricted to

deduction within the current state, i.e. can be reduced only by use of other axioms,

and do not cause a state transformation nor add any construct to the generated

program. |

(2) Predicate Classification. A predicate P is classified according to the kind of |

: subgoaling permitted to achieve a goal of the form P(t). If P is declared to be NON-

40 PROBLEM SOLVING PROCESSES |

FLUENT, then any goal literal containing P can be achieved only by deduction from the

] current state. No rules (procedure, iterative or definitional) are applied. FLUENT goals

are attempted by deduction and state transformation. If a fluent predicate occurs in a

literal which is the argument of the REQUEST modifier, then it is treated as a non-

fluent.

(3) Goal Ordering. The achievement of a condition (and the efficiency of the output |

| program) is strongly influenced by the ordering of its subgoals. In particular, the

: bindings of variables occurring in goals may be determined by earlier achieved

instances. In some cases only certain orderings will permit achievement. An objective

of an automatic problem solving system is to determine the optimal subgoal ordering,

| but at present this is provided by the user when the Frame is defined and may be
altered by advice. However, the system automatically orders non-fluent goals first in a

condition; this relatively short achievement search is used both as a quick rejection ;

strategy and to get variable bindings of the correct type for the remaining fluent |
. goals.

(4) Recurring failures. When failure occurs in some subtree prior to successfully

solving a subproblem, its causes should be used to avoid repeating the same failure in

the continued search if possible. At present this must be hand!2d using the interactive

advice system. This informs the user of the current path in the subgoal tree, current

| program generated, and goals that fail, thus allowing interactive correction when a |

| repetition occurs. These situations can also be eliminated by placing the (eventual) |
successful subprograms un the program library for use as MACROS.

(5) Repetition. Certain types of looping behavior in the subgoaler are prevented using |
the feature of the Frame language that allows a rule to be declared recursive or non-

PROBLEM SOLVING PROCESSES 41

recursive. If declared non-recursive, then that rule will not be used directly to |

achieve a goal in its pre- condition and it will not be entered twice to achieve the

| same instance of its post-condition within the same subgoal tree. A more general t

| mechanism should consider not only the current goai and rule but also the current 4
| state as well.

(6) Truth Values. Though the underlying semantics is three valued, search efficiency is

gained by restricting relations involving certain predicate symbols to be iwo valued. If

a predicate P is declared to be TOTAL, then failure tc achieve P indicates that -P is |

true. Only true positive instances of total predicates are stored in the state. The rule |
of undetermined values is not applicable to literals involving total predicates. The

additional processing required for PARTIAL predicates is described in Section 5.

(7) Useless Procedure Calls. In some cases, the application and generation of

redundant or trivial procedure calls are detected and avoided. At the moment this 13

done by placing restrictions in the frame on the actual parameters of primitive

i procedures. The system will not use an instance of a primitive procedure that contains

pairwise equality between its actual parameters that has been prohibited by the user. |

For example, the advice "PAIRWISE EQUALITY MOVE(x1,x2,3,2)" will cause the rejection

| of the procedure call "MOVE(MAN,CHAIRP,P)".

(8) Uniqueness Properties. Uniqueness or single-valuedness in argument positions of

certain predicates is sufficiently important to justify a special mechanism rather than

to rely on deduction using axioms. The designation of certain argument positions as ;

unique is equivalent to efficiently building in axioms of a particular form, e.g. P(x1,s)

represents the axiom, :

P(x1,x2) A x2 ¢# x3 = -P(x1,x3).

These special axioms are used for consistency checking (in the implementation of the

| rule of invariance) when the state is updated. :

a Clay Trgy ———€ | ,_—€§I]ene Ch —

42 PROBLEM SOLVING PROCESSES

(9) Context Linking. The context, which includes the state and bindings on subgoals

currently pending at a node, should be available to aid search decisions, e.g.

; instantiations of subgoals or choice of rule, at descendent nodes in the subgoal tree. |
| The system has a mechanism that if requested will keep track of the instantiated goals

| at each level of the subgoal tree so that their variable bindings are available when

attempting lower level goals that precede them in the depth first ordering. This is

used to instantiate the lower level goals. For example, suppose Q(b) A P(a) is a d

condition to be achieved and a primitive procedure Rly) A P(x) {p(x,y)}Qly) is applied |

; to achieve Q(b), then for the P(x) in the precondition of p, P(a) will be used since it
| must be achleved at the higher level anyway, i.e., |

/\
/ \

| Qb) Pa)

/\
| 7s

R(b) P(x) (<x«a>)

This heuristic may be viewed as the opposite of subsumption, the strategy being to |

get ground instances as soon as possibl: to help avoid long searches using rules. This |

Is a rather restrictive strategy that may exclude solutions and is only used when

| requested by the user.

| (10) Evaluation of Predicates and Functions. For certain predicates occurring in

| subgoals, achievement is most efficient by direct evaluation. If a literal occurring in a
goal is formed with a predicate that has a LISP definition, then that literal is evaluated

as a LISP statement. Special processes or even subsystems can thereby be linked into

program generation. Evaluation of arbitrary functions occurring in terms in arguments

of goal literals is done if the function occurs in the scope of an EV modifier. These

evaluations assume the soundness of implicit axioms describing the LISP definitions, |

PROBLEM SOLVING PROCESSES 43

and the consistency of these axioms with the Frame. For example, the equality

predicate, "=", is evaluated using the LISP "EQUAL", and the predicate

NEWVAR(x1,x2..,xn) takes an arbitrary number of arguments and binds each Frame

variable xi to a new program variable (for use perhaps as a local variable in a block).

(11) Simplification rules. Rules of the form s = t where s and t are terms, may be

included in the Frame. Such rules are applied to simplify terms in goals by replacing ,.

occurrences of so by te. This not only reduces the complexity of terms in the |

| subgoal tree, but it also modifins the pattern matching process and the set of rules

| that can be applied to reduce a goal.

(12) Computing Input/Output Assertions. In Section 2 primitive procedures were

viewed as Frame rules of the ‘orm ||-P{p}Q, where P and Q are the pre and

postconditions for p. The conditions P and Q may also be viewed as sufficient input

and output assertions for p , that must be satisfied by the actual parameters of p. For

any generated program segment A, the input assertion I, is computed as the

conjunction of all literals, |, from a state that were used in achieving subgoals !

encountered during the generation of A and did not occur in that state as a result of a

postcondition of a procedure whose generation in A preceded the addition of | to Ij.

The output asser‘ion OQ, is the conjunction of literals added to a state during the

generation of A that are true in the final state. The usefulness of computing sufficient :
input and output assertions for a program or segment thereof will become apparent

| when we discuss program generalization and the construction of conditional |
statements.

All of these applications of facts and advice with the exception of (12), are

intended to have a direct effect on reducing the growth of the subgoal tree (process

param GE i SLi Li /...otfu y i)

44 PROBLEM SOLVING PROCESSES

(b)). In addition, the pattern matching process (a) is extended by (11); (c) is aided by

the restriction of truth values and the special axioms (6,8); (e) is .ependent on (6 and 2

12); (f) is aided by (3,7,11,12). There are other techniques, mainly details of the |

| implementation, some of them heuristic, that affect problem solver, particularly the

| backtrack (d), the updating (c) and assembly of programs (f) (e.g. the implementation of
| the A connective by software interrupts that protect already achieved goals, includes

certain assumptions about backtracking when an AND-node tails).

| 45 |
| 5. GENERATION OF CONDITIONAL STATEMENTS

| Conditional statements are generated in situations where the rule of
| undetermined values (R6) applies or when the outcome of a primitive procedure is
| uncertain. In this section the system methods for constructing conditionals wili be

| described and an example given. The question of extending the formal algorithm and |
the correctness proof is considered.

| 5.1 UNCERTAIN PRECONDITIONS

As previously mentioned, relations involving partial predicates may have truth

values of TRUE, FALSE, or UNDETERMINED, whereas all other relations must be either

TRUE or FALSE. Partially valued predicates are intended to express the possibility of

an uncertainty or lack of knowledge about a state arising during the problem solving :

and program generation phase of the system. The formal algorithm for deciding when

| an uncertainty has arisen is rule R6. As with invariance, the implementation of R6 is

| only an approximation to the formal rule. The system may give up too early, but this,
in itself, does not lead to incorrect programs, merely redundant ones.

| 0.1.1 UNDETERMINED VALUES. During the generation of a program, uncertainty may
arise when a precondition for the application of a rule is UNDETERMINED with respect

to the current state. The implementation of the rule R6 is described by the following |
definitions:

DEFINITION A literal | is UNDETERMINED in a state S if the following conditions hold: |

(i) pred(l) is partial,

and (ii) the system halts without solving S{?}I,
and (iii) the system cannot prove SuFa-l.

Condition (ii) means that | is not true in S nor can S be transformed into a state i

46 GENERATION OF CONDITIONAL STATEMENTS :

| in which | is true. If condition (ii) is true and =I is true in S then | must retain a truth
value of FALSE =nu the precondition subgoal | must fail. Failure to prove = from S
establishes a truth value of UNDETERMINED for | with respect to S. This definition
applies to fluent and nonfluent literals but since the truth value of a "nonfluent” cannot

be changed by a state transformation, for them, it is sufficient to use only the logical
| axioms in deciding condition (ii).

For the more general case in which the precondition may be a disjunction of
literals we have the definition,

s DEFINITION A disjunction of literals {I; }7; is UNDETERMINED in a state S if at least
one literal is UNDETERMINED and no literal can be achieved from S.

GENERATION OF CONDITIONAL STATEMENTS 47

|
5.2 CONDITIONAL STATEMENTS

When a pre-condition P is UNDETERMINED in 3 state S, a conditional branch is

inserted in the solution program. If P is a single literal |, then program Lanaration may
continue either along the path in which | is assumed to be TRUE and in which future

goals are attempted with respect to state S U{l}, or along the path in which =I is

| assumed to be TRUE using state S U{~I}. The system convention has been to generata
| a call to a yet ungenerated procedure for the latter case. The tasks of generating

such contingency programs are placed in a subproblem stack for later attention (see

Section 5.5). Program generation continues, by convention, along the path using state

S U {I}. This path is referred to as the "trunk" program of the tree of contingency

| programs generated while attempting to achieve the main goal. The path selection at :

: present is rather ad hoc since no assignments of probability are made at the points of

uncertainty. For an undetermined disjunction US :
if =ly then

it sl then

W ~lw then p,

olse ppg

cise Pl
else pg

where each p; is a call to a program to achieve a selected goal G

trom state S| = S A {I, : inj+] & i<in } A {ls Isis) } and pg is the trunk

program segment which satisfies Snly{pg }G and forms the else-statement in the main-

48 GENERATION OF CONDITIONAL STATEMENTS

clause of the conditional. Each member of the set of triples {(p, , S; ,G):1Sjsm} is
|

placed in the stack of contingencies and program generation continues for pg The

assumed literal, 1}, is removed from the state following the generation of the ELSE |

clause in the trunk program if it is not in the output assertion.

GENERATION OF CONDITIONAL STATEMENTS 49

5.3 SELECTION OF CONTINGENCY GOAL

The goal G to be achieved by the contingency programs is selected from the set |

of goals in the subgoal tree that are global to the undetermined precondition. Let us

refer to the set of goals which are below G in the subgoal tree, as the SCOPE of G.

The particular G chosen and its associated scope affect the length of pg , duplication

among contingency programs, degree of difficulty in generating contingency programs

and validity of their use. If the structure of the trunk program is to remain fixed

during contingency program generation then the choice of G cannot be daferred. The

block structure of our program language imposes the restriction that for any |

conditionals in pg, a contingency goal G’ must not have a greater scope than G. There

is also the problem that if G is not fully instantiated then inconsistent instantiations

may occur in different contingency programs which must validly rejoin the main

program following the ELSE clause. The present system selects the least global fully

instantiated goal thereby satisfying the block nesting constraint and minimizing the

scope while avoiding the problem of handling deferred instantiation. This selection

process is always effective in the present system since the top level goal is fully

instantiated.

5.4 REJOIN CONDITIONS

| When a contingency prograr: is generated its output state must satisfy certain

conditions, hereafter called the rejoin condition, for return of control to the trunk

program to be correct. Consider the case of an undetermined goal L in state S and a

contingency goal G in figure 7 . Let A and B be program segments that satisfy S A

L{A}G and S A -L{B}G and let C be the rest of the trunk program.

50 GENERATION OF CONDITIONAL STATEMENTS

| v

YES

Figure 7

Let R be the output state of B obtained by applying invariance; thus SA-L{B}R

and RSG. Similarly, let SAL{A}P where PSG, and let Q be the sufficient subset of P

required as input to C (see Section 4(12)). Then, the KEJOIN CONDITION for B is R2Q.

Bis suid to have BAD SIDE EFFECTS if in fact K>Q cannot be established.

| GENERATION OF CONDITIONAL STATEMENTS 51 |

5.5 SUBPROBLEM STACK

The task of generating a contingency procedure is specified by the quadruple:

] (<procname> <state> <goal> <rejoincond>)
; where, :
] <prccname> is the name of the yet ungenerated procedure that must

satisfy <state>{<procname>}<goal> A <rejoincond>.

At the point in the planning when the uncertainty is encountered, the first three

elements of the quadrupie are placed in a stack. The rejoin condition is not known at |

this time since it involves the input assertion for the trunk segment C following the

point where control returns from the contingency plan to the trunk plan. After C is

generated, the rejoin condition is computed and stored as the fourth element of the

quadruple.

When planning has been completed fur a trunk procedure, if the subproblem |

stack is not empty then contingency planning may be done by removing a quadruple

from the stack and posing this as a program generation task. The state of the system

Is initialized to the specified contingency state and the subgoaling system is given

<goal> as its main goal. if it is successful in achieving a state in which the main goal is |

true then a test is made to see if the rejoin condition is true in that state. If it is then

the procedure declaration is adjoined to its trunk program. If the condition cannot be |

proved, the system allows the user two alternatives: (i) Mark the call to the program

as an error exit in the trunk program, or (ii) "Fit" the program to the trunk program by

posing the currently untrue rejoin condition as a new goal, constructing a new program !

segment that achieves it, and appending this segment to the end of the contingency

program.

| This process of generating a trunk procedure which n.ay create new contingency

52 GENERATION OF CONDITIONAL STATEMENTS

tasks then generating contingency procedures as directed by the user may continue

until all contingencies have been processed and the stack is exhausted.

5.6 COMPUTATION OF INPUT-QUTPUT ASSERTIONS

| The computation of input-output assertions for programs not containing

conditionals is described in Section 4(12). The uncertainty as to which path

computation will follow in a program containing conditional statements complicates |
these assertions. The input-output assertions in this case must be computed

incrementally as each contingency program is generated.

In the conditional statement shown in figure 7, suppose we know the minimal

input and output assertions for A and B, say P{A}Q and R{B}S. then the input and
output assertions for the conditional statement are

(LAP) v(-L ARif L then A else B}JQ v S. |

To reduce computation, We use the simpler sufficient input assertion P A R,

(Note that P A R should be consistent since it is a subconjunct of a previous state).

There doesn’t appear to be a simplifying approximation for output assertions .

: 5.7 UNCERTAIN PRIMITIVE PROCEDURES

A primitive procedure gq defined by P{q)Q has an uncertain outcome if Qls a

disjunction. In the present system, disjunctive post-conditions use the exclusive OR

connective, "®". This allows us to define frame procedures that have an intended

result hut may be unreliable. It is assumed that exactly one of the possible outcomes

| will be true in the output state . At the point where an uncertain operator is applied,
the problem solver has no knowledge of what the outcome will be and a conditional |

statement must be generated. Let Q be the disjunction of literals {I,fi=;. The first

outcome I; is considered to be the normal (goal) result of executing q. Following the

inclusion of q in the program in state S, a conditional statement of the following form is

generated.

| if = 1; then

if~1y Aly A~l3 ALAS, then po

else If ~1y A-~l2 Aly A~ly A.A-I, then pj

else if~1f A-ly AASIng Aly then pg,

else ppyi |

where each p, ,2 Sj sn, is acall to a program to achieve Ij from state S;, = SU {I, }

Uf-1,:ir; &1sisn} and Pre1 Is an error exit. The contingency states will |
correspond to the n ways of assigning exactly one literal true and the remaining

literals false.

TE ——————
| 54 GENERATION OF CONDITIONAL STATEMENTS

5.8 AN EXAMPLE |

Suppose a procedure is to be generated for a man to travel from San Francisco

| to New York given three modes of travel, i.e. flying, driving, or walking. This is similar
| to the "airport problem" discussed in [McCarthy 1959] A FRAME for this problem
| consists of defining a primitive procedure for each mode of travel, an initial state, and

relation information as shown in figure 8. A few of the contingency programs |

generated are shown in tigure 9.

p- i % iEEi ia Uy |

] | GENERATION OF CONDITIONAL STATEMENTS 55 ;
8 : :

1 RELATIONS DEFINITION FLUENT PARTIAL UNIQUENESS
PF ROB(X) "X 1s a robot" FALSE FALSE FALSE
| : AUTO(X) “X is an automobile" FALSE FALSE FALSEt

Ed PLANE (X) “X is an airplane" FALSE FALSE FALSE
i AIRPORT (X) "X is an airport” FALSE FALSE FALSE

: AT(X,Y) “X is at location Y" TRUE FALSE AT(X,*)

Ei WALKABLE (X,Y) "A walkable path exists between TRUE TRUE FALSE| | X and Y"

CLEAR(X,Y) “The sky is clear between X and Y" TRUE TRUE FALSE

DRIVABLE X,Y) “A drivable road exists between TRUE TRUE FALSE
X and Y"

EE HASUMBRELLA (X) "X has an umbrella" TRUE TRUE FALSE
CRASHED (X,Y,2) "X crashed between Y and 2" TRUE FALSE FALSE
KILLED X) "X has been killed" TRUE FALSE FALSE

RUNS(X) "X will run properly" TRUE TRUE FALSE

FLIES (X) "“X will fly properly" TRUE TRUE FALSE

Lh ad 83 28 8 gcd aR rer A EE Rac re

PRIMITIVE PROCEDURE PRE -COND IT IONS POST -CONDIT IONS

valk(Rl,L1,L2) ROB(R1)A= KILLED{R1)AAT(R1.L1) AT (R1,L2)
"Rl walks from L1 to L>" ACLEAR(L1,L2)VHASUMBRELLA (R1)

AWALKABLE (L1,L2);

drive (R1,C1,L1,L2) ROB(R1)A= KILLED (R1)AAUTO(CL) AT(R1,L2)
“Rl drives Cl from L1 to L2" AT(C1,L1)ARUNS(C1) AAT(C1,L2)

ADRIVABLE(L1,L2)AAT(R1,L1);

fly(R1,Al,L1,L2) ROB(R1)A= KILLED (R1)APLANE (Al) [AT(R1,L2)A
"Rl flies Al fram Ll to L2" AATRPORT (L2)AAT (Al,L1) AT(AL,L2))

. AFLIES(A1)ACLEAR(L1,L2) @{ CRASHED (A1,L1,L2)
AAT (R1,L1); © AKILLED(R1))

La dad ee EE EE ES EE SS RS RE Tu mop

INITIAL STATE

ROB/ MAN)AAUTO (BMW JAPLANE F111)AA IRPORT (SFO)AAIRPORT (NYC)AAT (MAN, HOME)JAAT (BMY GARAGE)AAT (F111,5F0);
Ladd dE gE 2 te rE sc TTI

ADVICE

PAIRWISE INEQUALITIES: wvalk(Rl,*,*) drive(R1,C1,*,*), fly(R1,Al,*,*)

TRY FLY BEFORE DRIVE, TRY DRIVE BEFORE WALK

Figure 8

56 GENERATION OF CONDITIONAL STATEMENTS

PROC1 MAN NYC)

ROB MAN [AUTO iM0 (TIANE 1111 (AIRPORT NYC
COMMENT

INPUT ASSERT1O.

AT MAN HOME ACLIAR nOME GARAGE #AT IN GARAGE “AT 1111 $10
AFLIES F111 ACLEAR S10 YC ARL.S BW
ADRIVABLE GARAGE STO “WALFABLE HOM. GARAGE
OUTPUT ASSERIIOL;

AT BM! S10 AAT FLL (YC AAT SAN NYC
COMMENT

PROCL1 ATIEMPTS TOACHIEVE AT MAN NYC
PROCL. ATTEMPIS _1O_ACHTEVE AT MAN (ARAGE
PROC" ATTEMPTS _TO_ACHIEVE_ AT MAN (ARAGH
PROC. ATIEMPIS_TO ACHIEVE AT MAN GARAGE
PROC. ATTEMPIS_[0_ACHIEVE_ AT MAN SIO
PROC. ATTEMPTS_TU_ACHIEVL_ AT MAN SIO
PROC: ATTIMPIS _10_ACHIEVE. AT MAN NYC
PROC ATTEMPTS _T0_ACHIEVE_ AT MAN NYC,

BEG IN

IF =FLIES 1111 THEN

PROC MAN NYC

ELSE

BEG Iv

1F —CLEAR SIO NYC THEN

PROC! MAN NYC
Else

BEGIN

IF “RUNS 8M THEN

PROG- MAN StO,
ELSE

BEGIN

1} “DRIVABLE GARAGE SFO THEY

PROC, MAN SFO,

ELSE 1BECLIN

IF CLEAR "HOME GARAGE, THEN
IF NASUMBRELLA MAN: THEN

PROC. ‘MAN GARAGE|
ELSE PROC? ‘MAN GARAGE,

LLSE

BEC IN

1F WALKABLE "HOME GARAGE) THEN
PROC1C ‘MAN GARAGE|

ELSE

BEGIN

WALK MAN HOME GARAGE

END [
END

DRIVE ‘MAN BMJ GARACE SFO,
END

END

FLY MAN F111 SFO NYC

IF =AT(CAN NYC) THON

IF —AT(/IAN YT) A CRASHED F111 SFO NYC)
PRUCTY (MAN LWYC)

ELSE PROCLR(MAN NYC)

£xpEND
END

PROCO (MAN NYC)

ROB(MAN) ;AUTO BMW| ,
COMMENT
INPUT ASSERTION:

AT (MAN HOME ACLEAR OME GARAGE AAT’ BMW GARAGE JARUNS (BMY)
ADRIVABLE(CARAGE NYC)AWALKABLEHOME GARAGE)

Figure 9 |
|
i

GENERATION OF CONDITIONAL STATEMENTS 57 |

OUTPUT_ ASSERTION:

AT! HMJ NYC)AAT MAN NYC);
COMMENT

PROCLl: ATTEMPTS _TO_ACHIEVE_ (AT MAN GARAGE)
PROCIS ATTEMPTS_TO_ACHIEVE_ (AT MAN GARAGE)
PROC14 ATTEMPTS _TO_ACHIEVE_ (AT MAN GARAGE)
PROC15 ATTEMPIS_TO_ACHIEVE_ (AT MAN NYC)
PROCle ATTEMPTS _TO_ACHIEVE_ (AT MAN NYC);

BEGIN

IF ~RUNS (BMJ) THEN f
PROCLZ (MAN NYC)

ELSE

BEGIN

IF ~DRIVABLE (GARACE NYC) THEN
PROCL3 (MAN trYC)

ELSE

BEGIN
IF ~CLEAR (HOME GARAGE) THEN

IF ~HASUM3RELLA(MAN) THEN

PROC14 ‘MAN GARAGE)
ELSE PROCIS(MAN GARAGE)

ELSE

BEGIN |
IF —~WALKAB E (HOME GARAGE) THEN

PROC16 (MAN GARAGE)
ELSE

BEGIN

WALK(MAN HOME GARAGE);
END

END

DRIVE(MAN BMY (ARAGE NYC)
END

END
END

PROCU (MAN SFO)
KOB (MAN);
COMMENT

INPUT ASSEK) JON:

AT (MAN HOME)ACLEAR(HOME SFI) WALKABLE (HOME SFO)
OUTPUT _ ASSERTION:

AT(MANTSFO);
COMMENT
PROC © ATTEMPTS _TO_ACHIEVE_ (AT MAN SFO)
PROCL ATTEMPTS_TO_ACHLEVE_ (AT MAN SFO)
PROC. 5 ATTEMPTS _TO_ACHIEVE_ (AT MAN SFO);

BECIN

IF ~=CLEAR(HOME SFO) THEN
IF —MASUMERELLA(MAN) THEN

PROCC3 (MAN SFO)
ELSE PROCIL (MAN SFO)

ELSE

BEGIN

IF —WALKABLE (HOME SFO) THEN
PROC" (MAN SFO)

ELSE

BEGIN

WALK (MAN HOME SFO,
END

END

END

PROC12(MAN NYC)
ROB MAN) ;
COMMENT

INPUT _ASSEKTION:

AT(MAN HOME)ACLEAR(HOME NYC) AWALKA BLE(HOME NYC)

Figure 9 - continued

4 of .

4

| 58 GENERATION OF CONDITIONAL STATEMENTSJ

|

3

OUTPUT_ASSERT ION:
s AT MAN NYC),
| COMME NT

PROC? ATTEMITS_TO_ ACHIEVE AT MAN NYC)
PROC” ATTEMPTS _TO_ACHIEVE (AT MAN NYC
PROC." ATTEMPTSTO ACHIEVE [AT MAN NYC \s

BEGIN

IF CLEAR HOME NYC) THEN

IV —HASLMBRELIA MAN) THEN

| PROC. © MAN NYC)ELSE PROCY7 (MAN NYC
ELSE

BECIN

IF =WALKAHLE HOME NYC) THEN

PROC40. MAN NYC)
ELSE

BEGIN

WALK MAN HOME NYC)
END

END

END

Figure 9 - continued

GENERATION OF CONGITIONAL STATEMENTS 59

| 5.9 CORRECTNESS

| Conditional statements will be correctly generated if the system methods are an

accurate implementation of the conditional rule, RS, presented in Section 2. Referring |

to figure 7 in Section 5.4, if we let S be the output state of C then by construction and

by verifying the rejoin conditions we have,

(1) IAL{A)JG AQ
(2) 1A-L{B)G AR,
(3) Q{C}s,

(4) |- R > Q, (rejoin condition verification) |

and the correctness argument may then be completed as follows,

| (3) 1A -L{B}G AQ, (2,4,Consequence Rule)
(6) I{if L then A else B}G AQ, (1,5,Conditional Ruie)
(7) {if L then A else B;C}S, (3,6,Composition Rule).

It should be noted that if conditional statements occur in B then R may only be |

an approximation of the true output state resulting from executing B as discussed in

Section 5.6. Similarly Q may be only an approximation of the true input assertion for

the remainder of the program. In these cases an incorrect program may result. |
However the above argument serves as a justification for the system methods. |

| 60

6. GENcRATION OF ITERATIVE STATEMENTS

An iterative rule allows the prugram generator to construct a WHILE loop

provided it can construct a loop body to satisty the premisses of the rule. Ultimately |

such rules should require the user merely to specify an invariant in order to have the

system write a correct iterative program. At the moment, the user needs to furnish |
some additional relevant facts. The algorithms used in the system to implement |

iterative rules of the form 32 (Section 2) and to assemble while loops are described |

briefly and an example given. Details of of the system implementation are found in : |
Section 9. |

6.1 PREMISSES FOR CONSTRUCTING A LOOP :

An iterative rule is defined by the assertions P(basis), Q(loop invariant},

| K(iteration step goal), G(rule goal), L(control test) and S(output assertion). All the free

variables in R and L must be among the free variables in Q. In order to use the rule,

to achieve I{?]G say, the formal algorithm requires that a.l of the following subgoals be

achieved or be true:

(i) Construct A such that L(F)||- I{A}P
(i) L(F)|- I{A}Q
(in) Construct B such that L(F)||-QAL{B}R
(iv) L(F) |- QAL{B}3QUZLIV(HIZIQ(Z)A-LLY))
(v) Construct C such that L(F) ||- QaL{B;C}Qv-L

Note that (ii) and (iv) are restricted to first order rules (consequence, invariance, and

the frame axioms). The input state for (iii) is GAL. In addition, an iterative rule must

satisfy the following minimal consistency requirements within the frame F.

(vi) s(SuF>L)andSUF =G. |

The conclusion of the rule is: [{A;WHILE L DO BEGIN B;C END}G.

Iterative frame ruies are instances of the iteration rule [Hoare 1969]:

QAL{A}Q, An-LoG

|

GENERATION OF ITERATIVE STATEMENTS 61

Q{WHILE L DO A}G.

It is possible to derive a weak form of the rule:

QAL{A}Qv-L, ~LoG

The weak form allows the invariant to fail on exit from the loop. We have founc

the weak form convenient to use in many examples.

The present implementation sets up clauses (i) - (iv) as a THAND of subgoals to

be achieved. More specifically, suppose an iterative rule is invoked to solve the

problem I{?}G. Let V be the list of variables in Q. The system does the following:

(1) A program segment p(P) is generated such that I{p(PNI’ and I'UF |- P (p(P) |

may be empty). |
(2) An instance QA of the loop invariant must be true in the state I’, i.e. A = {<v}

“ S] 2,..,%Vp © Sp 2} iS constructed such that PuF © QA. (3) A program segment

p(R) is generated such that Q A L{p(R)}I" and I"UF 2 R. |

(8) It is checked that I"UF>Q@v-L for some substitution 8 and a set of :

conditional assignment statements C is constructed such that 1"{C}Q v -L.

Thus, at the moment, clause (iv) ensures that C need contain only conditional

assignments. In the future we would want 10 relax this restriction. It 1s assumed that |
the user's definition of the rule satisfies (vi). The user may omit S or L; in the latter |

case ~ Gis used as the control test. |

62 GENERATION OF ITERATIVE STATEMENTS

6.2 ASSEMBLY OF WHILE LOOPS

After the premisses have been achieved, a loop is assembled as follows:

(1) Let Y and W be two distinct lists of variables in one-to-one correspondence

witn V. For eacn <v; « s; > € A corwstruct an initial assignment statement "y, «

si. Let "Y « S" denote "y} + S$}; Yo + $2 ii Yn * Sn i

(2) The WHILE loop may then be assembled in the form:

pir),

YS;

WHILE L(Y) UO

LeGIN

p(k(Y))

IF UW) THEN Y « W;
END

where Q(W) is an expression containing calis to Boolean procedures indicated

(syntactically) by the presence of the special W-variables (Section 2, Rule RO).

| There are many heuristics in the system to reduce the number of program |

variables, i.e. y's and w’s generated, to select the relevant portion of Q to be used in

conditional assignment statements, 10 generate simple assignment statements (whose

right hand sides are functional terms composed from functions in the frame) instead of |

conditional assignments, and to eliminate unnecessary assignment statements in the

assembled program. These may all be classitied as optimizations, some of which are |

done as the "WHILE" loop is assembled and others during a iater optimization phase. |

6.3 UPDATING THE STATE |
After the while statement has been generated, the system updates the state. If

an explicit output assertion S is given then the rule of invariance is applied in the

same manner as with the postcondition of a primitive procedure. In the absence of an

output assertion, a special update procedure runs the loop interpretively on the state

|

GENERATION OF ITERATIVE STATEMENTS 63

until the goal G becomes true. The resultant state is used in further planning. This

| latter method is useful when the global effects of the loop computation are so
extensive, or aven unpredictable, that an explicit specification of S is difficult. It may

result in excessive update computation, particularly when loops are nested.

6.4 AN EXAMPLE

As an example of "while" loop generation consider the task of generating a |

program to compute the value of n factorial for some positive integer n where

multiplication is not a primitive operation but is done by repeated addition. The Frame

for this problem is shown in figure 10. Also used is the primitive procedure for

assignment used in the example in Section 3. To achieve the 209 "FACT(XO,N)" the

system applies the iterative rule TFACT. The premises are achieved according to

Section 6.1 which results in an application of another iterative rule TPROD. The

premises of TPKOO are achieved, the "inrar"” loop assembled and optimized and state is

updated with respect to the output assertion. The assembled while loop is appended

to the iteration step program tor TFACT. The "outer" loop is then assembled and

optimized and the state further updated reflecting the total state transformation of an

execution of the nesied loop program. |

Tho cutput prcgram after optimization with statements labeled accordirg to their

source of generaton in the algorithm is shown in figure 11. Note that successive

values of the program variables are obtained by simple assignment statements rather

than by conditional assignment as described in the algorithm. This is the result of

applying system heuristics which are able to use the arithmetic operations PLUS and :

ADUI which are primitive tunctions in the frame, to -eplace the conditional

assignments,

GENERATION OF ITERATIVE STATEMENTS 64

RELATIONS DEFINITION FLUENT PARTIAL UNIQUENESS

VFACT(X Y) "The value of Y tactorial is X" TRUE FALSE VFACI(*,*)

C(X,Y) “The contents of variable X {s Y" TRLE FALSE c(X,*)

] FACT (X,Y) "The variable X contains Y factorial TRUE FALSE FACT X,*)
VPRODUCT (X,Y,2) "X fs equal to the product of Y and 2" TRUE FALSE FALSE

INTEGER (X) "X is an integer" FALSE FALSE FALSE

ISVAR/X) "X {s a varfable" FALSE FALSE FALSE

NEWVAR(X) "X is a new local variable" TRUE FALSE FALSE

(X,Y) "X equals Y" TRLE FALSE FALSE

chessnsniiifiodiondpsRor aldRenaRtNoRonany

AXIOM ANTECEDENT CONSEQUENCE

TAFACT {#(vy,1)A=(V10,1)) VEACT(V3,V1p);
V VFACT((DIV Vv) VID), (SUBL V1p));

TAPROD {=(v5,0)A=(VE,0)) VPRODUCT (V5,Vt , V3);
V VPRODLCT((MINUS V5,v3), (SUBY V6) ,v3);

Ad Esa ano RAsRN lI NEI XNRE PY NN? A NARY XCF

ADDL(SUBL X)) — X
SUBL(ADDL X}) + X
MINUS PLUS X Y)Y) -»X
‘DIV/PROD X Y)Y) —+ X

ADDL X) = (Xx + 1)
(SUBL X) = (X - 1)
PLUS X Y) = (X +Y)

]

Figure 10

sc_

Py

6S GENERATION OF ITERATIVE STATEMENTS

|

ITERATIVE RULES

RULE NAME TFACT TPROD LL]

BASIS CONDITION NEWVAR(V7 JAINTEGERVi NEWVAR(Va JAC V4,0)

AVFACT (V5, VF JAC (V3, VE AC(V1,5);

ACV], V0);

INVARIANT CV! ,VIR)IAC(VE, VY) C(Wh ,VE)AC(VL,VS)

AVEACT (Vv), VIE); AVPRODUCT (V5,\7 , V3);

| ITERATION STEP c(v/,(AbDDl V1@))A c(vs, (ADDY V6))
PRODUCT(V3, Vi, (ADD) V1¢)), c(vi, (PLUS Vy ,V3));

GOAL FACT (V5,V4) ; PRODUCT (V1,V2,V3),

TEST a=(V1g, Ve); —=(V6,V2)

OUTPUT ASSERTION C(V3, (FAC Vb)); C(vl, (PROD V2,V3)); {

METS TESS TESTER SRS RSR SNES EE NN 2 2 XS

\d Figure 10 - continued
¥

=

66 GENERATION OF ITERATIVE STATEMENTS

PROCL (Xp N)

ISVAR(X¢) ; INTEGER(N) ;

COMMENT

INPUT ASSERTIONS:

| NONE
| OUTPUT ASSERTIONS:

| C(Xp (FAC N));
BEGIN

p(P) (TFACT)——————— Xp ~ 1;

Initial Assignment———— YL «~ 1;
(TFACT)

WHILE = (Y4 N) DO

| BEGIN

p(P)(TPROD) (Optimized Out Jou, i (Yh + 1);

" ~- 0; |Initial Assignment (TPROD)” YZ —- 0;
WHILE== (Yl X¢) DO p(R) (TFACT)

BEGIN

p(R) (TPROD)—_ (Yo = (v2 + Yh);
v1 - (Yl + 1); |

UPDATE Assignments (TPROD)

(Optimized Out) A

UPDATE Assignment (TFACT)———X{ ~ Y2;

END |
END

|

Figure 11 |

|

67

J

7. PROGRAMMING AIDS |

The complexity of programs that can be generated using the system is increased

by some simple facilities described in this section. The capabilities discussed here are

incremental extension of a current program, use of a program library, and expansion of

assumptions,

The system enables a user to plan incremental extensions of a program simply

by saving each completed program segment A and its output state O in a stack. The

user may then pose a new goal G and solve the problem O{B}G. The composition A;B

will then be gulp He may choose to start from any previously saved state and

associated program segment.

7.1 PROGRAM LIBRARY

When a program A has been generated to solve P{A]Q, the user may request

thet it be "generalized" and filed in the program library where it may be accessed by

the subgoalor (similar use of a lit cary in robot planning is reported in [Fikes,Hart, and

Nilsson 1972). | |

Generalization is a process which constructs a procedure declaration for the

library as follows. Let I and O be the input-output assertions computed for A during |

its construction. We assume Pal, 0=QAQ’, and I{A}O. The non-fluent conjuncts of | are

taken as the type declarations, their variables being the parameters of the new |

procedure. These actual parameters are replaced throughout I{A}JO by new formal |

parameter variables. An entry of the form: :

((<procname> <goal> <effects> <type conditions> <state condition>)<body>) |

is made in the library, where <procname> is a name and parameter list, <goal> is Q, :

<effects> is O°, <body> is A, and it is assumed that

<type conditions> A <state condition>{<procname>}<goal> A <effects>

|

68 PROGRAMMING AIDS

. Library procedures are used during program generation by matching on the

<goal> then establishing the <type conditions> and <state conditions> as subgoals in

that order. If the conditions are satisfied then the instantiated <body> is included in

the program. The system requirement of achieving the input assertions and processing

the output assertion during update for a program taken from the library prevent its |
| incorrect use in a particular program. There is no attempt to organize the library for |

efficient selection; the system merely tries all library procedures before any frame

rule.

As en example of program assembly using the library consider the task of

building a tower to reach an object, i.e. achieve "HAS(M.3)". Use will be made of a

library program to find and put on shoes which achieves WEARIN(M,SHOES), previously

generated using the same Frame. The generated program is then extended

interactively by posing a new goal, AT(M,P).

A robotics frame for this problem is shown in figure 12, and the generated

programs in figure 13.

|

|

RELATIONS DEFINITION FLUENT PART IAL UNIQUENESS |

: ROBOT X) "X 1s a robot" FALSE FALSE FALSE
{ BOX X) "X is a box" FALSE FALSE FALSE
| AT(X,Y) "X is at location Y" TRUE FALSE AT(X,*)

ON X,Y) "X is on Y" TRUE FALSE ON(X,*)

HAS X,Y) "X has possession of Y" TRUE FALSE FALSE
STACKED X,Y,Z) "X isstacked on Y at location 2" TRUE FALSE FALSE

INSTACK X,Y! "X is in 2 stack at location Y" TRUE FALSE INSTA K(X,*)

STACKHE ICHT X,Y) “the stack height at location TRUE FALSE STACKHEIGHT (*,Y)
Y is xX"

HEICHT (X,Y) "X is positioned at a height TRUE FALSE HEIGHT (X,*®
of Y"

TOP (X,Y) “X is the top object in stack TRUE FALSE TOP(*,Y)
at Y"

HIENUF (X,Y,2) "X is as high as Y at 2" TRUE FALSE FALSE

HOLDING (X,¥,2) "X is holding Y at location 2" TRUE FALSE HOLDING(X, *,2)
CHAIR X) “X is a chair” FALSE FALSE FALSE

CLOTHES (X) “X is an article of clothing" FALSE FALSE FALSE

UNDER (X,Y) "X is under Y" TRUE TRUE FALSE

WEARING X,Y) "X is wearing clothing Y" TRUE FALSE FALSE

FOUMD(X,Y) “X found Y" TRUE FALSE FALSE

.(X,Y) "X is equal to Y" FALSE FALSE FALSE

ABOVER (X,Y,,Z) "object X is above robot Y at 2" TRUE FALSE FALSE

ABOVE X,v,2° "object X is above object Y at 2" TRUE FALSE FALSE

BOTTOMBOX X,Y) "X 1s the bottom box at y" TRUE FALSE FALSE

BOTTOMBOXU X,Y,7 "X is the bottom box at Z under Y" TRUE FALSE FALSE

BELOWR (X,Y,2Z) "object X is below robot Y at 2" TRUE FALSE FALSE

BELOW X,Y ,2) "object X is below object Y at 2" TRUE FALSE FALSE

SUPPLY X) "the supply is at location X" FALSE FALSE FALSE

NEXTBOX X,Y) "X is the next box after Y" TRUE FALSE FALSE

| Figure 12

X

70 PROGRAMMING AIDS

PRIMITIVE PROCEDURE PRE-CONDITIONS ___ ________ _ _ _ _ POST-CONDITONS

travel (R1,L1,L2) ROBOT {R1)AAT (R1,L1)AHEIGHT (R1,0); AT(R1,12);
"Rl travels from L1 to L>"

move (R1,01,L1,L>) ROBOT R1)ABOX(OL)AAT(01 ,L1)A= INSTACK (C1 ,L1)A AT(O1,L2)AAT(R1,L?);
“Rl moves Ol from L1 to L2" CLOTHES (07 JAWEARING (R1,07)AAT (R1,L1);

stack(R1,02,01,L1) ROBOT (R1)ABOX 01)ABOX 02)A#(01,02 JAAT(CO1,L1)A STACKED (02,01,L1)A
"Rl stacks OC on Ol at L1" AT(02,L1)AAT(R1,L1 JAHOLD ING(R1,02,L1)A STACKHEIGHT ((EVN(ADS! H1)),L1)

HEIGHT (R1,0)AON(R1,01,L]1)A~STACKED [03,01,L1) ATOP(Cl,Ll1);
ASTACKHEIGHT (H1,L1);

climb R1,01,L1) ROBOT 'R1)AABOVER (01 ,R1,L1)AAT(R1,L1)A ON(R1,01,L1)A
“Rl climbs Ol at L1" =INSTACK (01,L1)v HEIGHT(R1, (EVN(ADDL H1)));

{ STACKED (01,02 ,L1)AON(R1,02,L1) JA
REQUEST HEIGHT (R1,H1));

unc limb R1,02,L1) ROBOT (R1)ABELOWR (01,R1,L1)AAT(R1,L1)A ON(R1,01,L1)A
"Rl unclimbs 2 at L1" REQUEST (HE IGHT (R1,H1))A HEIGHT(R1, (EVN(SUB1 H1)));

REQUEST (STACKED (02,01,L1))A
ON(R1,0°,L1);

stepoff (R1,01,L1) =(H1,0)AHE IGHT (R1,1)AON(R1,01,L1); HE IGHT (R1,H1)A
"Rl steps off 01 at L1" =ON(R1,01,L1);

reach (R1,01,L1) ROBOT (R1)AAT(Ol ,L1)AHIENUF (R1,01,L1); HAS (R1,01);
"R1 reaches Ol at L1"

1ife(R1,01,L1) ROBOT (R1)ABOX(01)AAT(C1,L1)AAT(R1,L1)A HOLDING (R1,01,L1);
"Rl lifes O1 ac LL" =INSTACK(01,L1);

find 'R1,01,L1) ROBOT (R1)ACHAIR(02)AAT (02 ,L1)AAT(R1,L1)A FOUND(R1,01);
"Rl finds Ol at L1" UNDER (01,02);

put _on(R1,01) ROBOT (R1)ACLOTHES (01 JAFOUND(R1,01); WEARING (R1,01);
"R1 puts on O01"

aaa dE Es EE Ee EE EE ER ER EE EEE ER RE fe ee st sk

AXIOM ANTECEDENT CONSEQUENCE

TABOVER = ON R1,02,L1)v{ON(R1,03,L1)AMABOVE(C1,0%,L1)}; ABOVER(Ol,R1,L1);

TABOVE =(01,03)v{ STACKED (02,02 ,L1)AMABOVE (01,02,L1)}; ABOVE(O1,0%,L1);

TBELWR ON(R1,00,L1)ABELOW 01,02 ,L1); BELOWR (O1,R1,L1);

TBELOW «(01,03)v{ STACKED (03,0 ,L1)ABELOW (01,02,L1)}; BELOW (01,0%,L1);

TOT TOP(03,L1)ABOTTOMBOXU (01 ,03,L1); BOTTOMBOX(O1,L1);

TBOTU STACKED (0% ,04 ,L1)ASTACKED(Ok ,00 ,L1)Vv BOTTOMBOXU (01,03,L1);
STACKED (0%,01,L1)ASTACKED (Ok ,00 ,L1)V

| BOTTOMBOXU (01,04 ,L1);

| TNEXT SUPPLY (L1)AAT (0% ,L1); NEXTBOX(Ok ,03);

i TINSTACK TOP(02,L1)ABELOW (01,02,L1); INSTACK (01,L1);

| B20 0R PsP assBRBIRBREORRrRBRRERRT FREER IRERNERE

i TNITE HE IGMT (Ol ,H1)ASTACKHE IGHT (H1,L1)ATOP (02 ,L1)AON(R1,00,L1) # HIENUF(R1,01,L1)
E

i

|
i

| Figure 12 - continued

: ITERATIVE RULE BASIS CONDITION INVAR [ANT ITERATION STEP GOAL TEST ASSERTIOG!

TUP REQUEST (HEIGHT (R1,H>)) ON(R1,01,L1)A ON(R1,07,L1); HEICHT(RL Hl); ~-- --
AGZ (H2)v STACKED (0U2,01,L1)
{ BOTTOMBOX 07,L1) VTOP(01,L1);

TDOWN GZ (H1)A ON(R1,01,L1)A ON(K1,0,L1); HEIGHT (R1,Hl); == --
REQUEST (HEIGHT (R1,H”)) STACKED 01,00,L1)
ACT (H2 Hl); v BOTTOMBOX (01,L1);

TSTA STACKED 02,01,L1) TOP(0%,L1)A HOLDING (R1,04 ,L1) STACKHEIGHT -- --
AON R1,00,L1); STACKHE IGHT AHEIGHT (R1,H”) (H1,L1);

(H2,L1)A ASTACKED(G4 ,0%,L1);
NEXTBOX (04,03);

TE ——

INITIAL STATE

ROBOT M)ABOX BZ)JABOX BY JABOXB*)ABOX/ BC)ABOX| Be JABOX (BT JAAT (M, P)AAT (B,U)AAT (BZ, SLOC JAAT (BS , SLOC)AAT (B3 ,SLOC JA
AT Bo ,SLOC)AAT (B4 ,SLOC AAT (B”,SLOC 'ASUPPLY 5LOC)ASTACKHE IGHT (@,UJAHE IGHT (M,§)AHE IGHT(B,4 JACLOTHES (SHOES)A
CHAIR (CHAIR)ACHA IR (CHAIRS JAAT SHOESCORNERJAAT (CHA IR] , CORNER JAAT (CHAIR2 ,CORNER) ;

TT ———

ADVICE

RECURSIVE RULES: CLIMB, TABOVE,TBELOW,TBOTU PAIRWISE INEQUATITIES: ctravel(Rl,*,) move(R1,01, *,*)
STACK(R1,*,*,L1)

Figure 12 - cogtinued

72 PROGRAMMING AIDS

PROC (M SHOES

ROBOT M',CHAIR CHAIR®);CLUTHES SHOES) ;
COMMENT

INPUT ASSERTION:

HEIGHT MO JAAT(M P)AAT CHAIRS CORNER)
OUTPUT _ASSERTION:

AT | M CORNER)AIOLND M SHOLS JAWEAR ING (M SHOES);
COMME NT

1 PRO ATTEMPTS _TO_ACHIEVE_ (FOUND M SHOES) ,;
BEGIN

TRAVEL (M P CORR;

IF UNDER SHO'S CHAIR) THEN %
FROCZ | M SHOES| jELSE

BEGIN

FIND M SHOES CORNER
END

PUT_ON M SHOLS
END

PROCS (M 8

ROBOT (M),;B0X ® CLOTHES/ SHOES} CHAIR CHAIR); BOX Bw) ,SUFPLY 51.0C) ; BOX BA); BUX(B3);COMME NT

INPUT_ ASSERTION:

AT 'M PAAT B” SLOC)AHEIGHT M © JAAT (CHAIR CORNERAAT (BY SLOC
J AHEIGHT 8 «)ASTACKHEIGHT(¢ U)AAT | 86 SLOC)AAT(B3 SLOC)

OUTPUT ASSERTION:

AT(M PIAAT(B) HALT (Ba UIASTACKED(B4 B7 U)AAT(B6 U)
ASTACKED(B6 B4 U)ASTACKHEIGHT(4 UMA HAS (M B)AHEIGHT(M @)
AFOUND 'M SHOES JAWEARING M,SHOES); AAT B3 U) ASTACKED(B3 U},BEGIN

TRAVEL M |VCORNER);
IF UNDER S.I0ES CHAIR) THEN

Assembled FROCO (M SHOES)
from > ELSE
Library BEGIN

FIND/M SHOES CORNER)
END

FUT ON M SHOES);

REVEL TURNER SLOC);
MOVEM B’ SLOC U),
TRAVEL(M U S{oC);
MOVE M B. SLOC U);
LIFT(M BY U1);
CLIMB(M B” U);
STACK(M BL B7 U);
CLIMB(M BL U);

p YI = 2;
Yo = Bl;

IF NEXTBOX W4 YL) THEN
2h - Wy,

WHILE “STACKHE IGHT & U) DO
BEGIN

Z3 - ADDI (Y2);
Yl - v4,

IF STACKED Yl Wl U) THEN
Zl - Wil,

WHILE —HE ICHT(M 1)DO j
BEGIN J]UNCLIMB(M Yl U);
Yl ~ 21;

IF STACKED(Yl WI U) THEN
Zl - WI;

END

STEFOFF(M B7 U);
TRAVEL(M U SLoC),
MOVE(M 24 SLOC U);

Figure 13

3_"nEC————— ES

| PROGRAMMING AIDS 73 |
:

f LIFT(M Z4 U); |: CLIMB(M B/ U);
g Y2 = B7;

| | IF STACKED(W2 Y2 U) THEN
g 22 = WZ;
: WHILE =HEIGHT(M Y3) DO
: BEGIN
; CLIMB(M 2° U);
: Ye ~ 22;

IF STACKED(W2 Y? U) THEN
22 ~- W2;

END

STACK(M ZL YL U);
Y3 =~ 23;

Yh = 24;
IF NEXTBOXW. Yu) THEN

24 ~ We ;
END

CLIMB(M 8” U);
REACHM B U);
YS ~ B3;

IF STACKED(Y5 WS U) THEN

Incremental E32 =u5;
Extension ~——>} WHILE —HEIGHT(M 1 U) DO

BEGIN

UNCLIMB(M YS U);
YS ~ 25;

IF STACKED YS WS U) THEN
Z5 = W5;

END

STEPOFF(M B7 U);
TRAVELM U P);
END

|
|

| Figure 13 - continued

—_mamaTTT

j 74 PROGRAMMING AIDS
7.2 EXPANSION OF ASSUMPTIONS

|

A basic capability for structuring programs is provided by interactively allowing

| the user at any level in program generation to define a primitive procedure, P{p}Q, as |

| an assumption. The program generator will then use p as usual except at each point
of call to p in the program the current state | and current goal G will be saved. The

triple <p,I,G> is placed in a stack of subtasks for later expansion.

When a program containing assumed primitive procedures has been generated,

the user is given the list of assumptions his program depends on and allowed to

| selectively expand them in terms of lower level procedures. For the subtask <p,l’,G>,
| the state is initialized to I’, the frame may be changed, G is given as the goal,and a

body for the procedure p Is generated.

Consider the example given in Section 6 of computing the value of n factorial

where multiplication is not a primitive operation. The initial frame is the same except

that in place of an iterative rule for multiplication, there is an assumed primitive
procedure

ISVAR(V1){times(V1,V2V3)JPKODUCT(V1 V2,V3), |

where PRODUCT(V1,v2,v3):C(V1,(PRCD V2,V3)).

The program generated using this frame is given in figure 14. To expand the

i non-primitive procedure "times(V1,v2,V3)" the full trame including the iterative product
rule is given and the sub-program generated is shown in figure 15.

In the current implementation it is assumed tht the expanded sub-programs will |

have no side effects. However this assumption could be removed by a mechaniem |
similar to checking rejoin conditions for contingency programs (Section 5.4). |

To develop a useful structured programming system interaction appears |
essential along with further study about how humans do (or should do) programming.

|

ARR RU 0c os ss

PROGRAMMING AIDS 75

ISVAK X70; INTECER(N ;
COMMENT

INPUT ASSERTION:

NONE.

OUTPUT ASSERTION:

CiXd [FAC K));
COMMENT

THIS PROCRAM RELIES ON THE FOLLOWING ASSUMPTIONS:
TIMES

BEC IS

Re 1;

Yl «1;

WHILE — >. Y1 N) bO
BEGIN

YI ~ Y1l+1;

TIMESXE X¢ Y!

END

END

Figure 14

TIMES (Xd Y1 21)
ISVAK (XE);
COMMENT

INPUT ASSEKTION:

NONE

OUTPUT ASSERTION:

C(Xy (PROD Y1 Z1));
BECIN

XX - 9

Y. - ¢
WHILE — =(Y" Yl) IO

BECIN

YD « YO+1,

XS « X2421;
END

END

Figure 15

76

| 8. CORRECTNESS OF THE FORMAL ALGORITHM

| The basic problem solving algorithm impleme ted in the system is that of

| problem reduction subgoaling with backtrack. In this section the formal algorithm will
| be given and a proof of its correctness sketched.

8.1 BACKTRACK PROGRAMMING

Backtrack programming describes an exhaustive search procedure appropriate
tor solving problems ot the torm:

Given a collection of sels X1.X20.An (gOals to te achieved), select a sequence of
elements (X§,X2,....Xp), ONE trom each set (a way of echieving each goal), such that some

criterion function Hxpx...xn) is m .ximized. In general t may be numerical valued or

simply have the values of either “success” or “failure” for any sequence (x,x2,..,%), ks
n, and it 1s possible to determine whether or not a partial solution is inherently |
suboptimal, i.e. if there Joes not exist a successful x,¢ X, given the current choice of
3 To.

To control such a search a program must have the abilities to enumerate the

alternatives tor selection at the kth level, e.g. Xi 1 Xe 20 Xe m (@NUMETate function), select

one, say x; (choose function), and repeat this process at successively higher levels,

le, k+l, k42,.., until either the nth level is attained or a partial solution (X1,X2 0X ye Xp),
PS n, is reached that is inherently suboptimal, i.e., no selection can be made at level p
that is correct with respect to the previous choices already made. In the latter case
the program must "backtrack" to a previous level, e.g., k, at which a "new" selection

(different from previous level k selection) can be made that achieves a correct kth
level solution (unchoose function). The process then continues in the “forwarg”

direction. Ultimately either an nth level sequence is found hat is satisfactory or the

|

THE FORMAL ALGORITHM 77

operation of the program has proven that a solution does not exist, i.e., the program

has "backiracked” to the Oth level and has failed to soive the problem.

/8 THE FORMAL ALGORITHM

| 8.2 TRAVERSING THAND-OR-AND SUBGOAL TREES

Programs are generated by using rules and axioms to prove that the cutput
program transforms the initial siate into one in which the given goal condition is true.

| Frame rules act as partial functions on the domain of possible states, defined only on
those states in which their premisses a'e true and transforming them into states in
which their postconditions (or goal conditiuns) are true.

In figure 16 is given the subgoal tree traversed during the solution of the

example problem given in Section 2. Goal nodes are labeled with the goal and an

Integer indicating the order of achievement in the depth-first search. Rule nodes (used

to expand the goals) aro labeled wiln the rule name and an integer indicating the order

of successful application. In the tree absence of angle marks indicate OR connection, a
singie angle mark indicates AND connection and double angle marks indicate THAND
conneciicn,

(et)
Lx TOP (1)

i." Tm.“(»)\ nn
1

/ T\
Fan) Ly 13

WORT) \Ga. ¥) & oa,ul[11

\ i

& #

/ A f

I Fi

3 A & ; \

PROBLEM 1: THAND-OR-AND TREE SEARCH |Figure 106

|

gl ———
THE FORMAL ALGORITHM 79

Program generation is done by computing on a triple <G',I'A>, where G’ is the

subgoal to be attempted next, I' s the current state and A is the current program

| sagment. For each rule used, an instantiation of the associated program construct, if

any, is added to A using rule R2. The general form of rules to expand goals (as

explainod in Section 2.1) is,

Hy yoy Hy

K |

The instantiation of program constructs 1s built up in a substitution o that

replaces variables in the frame rules by terms from the initial state. For any rule if

KocmG' then that rule 1s applicable to the achievement of G' and the premisse’,

Hiet,..Hhot are the subgoals whose solution implies G'. We assume for the computation

of o¢ that variables in different applications of the same rule are distinct.

The syntax of assertions used in rules, axioms, definitions and state descriptions

1s given in Section 3.1. Consider the restrictions that the exclusive or "@" is used only |

as a top level connective in disjunctive postconditions of primitive procedures and the

thand "&" is only used to connect the premisses of an iterative rule (which in fact

follows the current implementation though its effect can be gained in any rule using

advice). Then for any <goal node>, say G' in state I’, the THAND-OR-AND solution tree

Tr that may be rooted at G' is described by the following grammar Gr:

<goal node> ::= <true goal>|<prim proc>|<def>|<it rule>|<undetermined goal> |
<prim proc> ::= <assertion> |<def> ::= <assertion>

<it rule> = (<basis> A <invariant>) & <it step>
<basis> ::= <assertion>

<invariant> ::= <assertion>

<i step> ::= <assertion>

<assertion> ::= <disjunction>|<disjunction> A <assertion>
<disjunction> ::= <goal node>|<goal node> v <disjunction>

80 THE FORMAL ALGORITHM

where if G’ is a <true goal> then (3cs)I'VF c ls’ and <undetermined goal> is as

dafined in Section 5. A full specification of the formal algorithm for processing
undetermined goals would include a formalization of the subproblem stack, the methods

for choosing contingency goals, assembly of conditional statements, keeoing track of

the goals in the scope of a contingency goal and contingency state manipulation.

However since the concepts involved are described quite completely in Sections 5 and
9 they will not be dealt with further here.

The definition of an achieved goal node G’ in a THAND-OR-AMD tree is:

(1) If G* is a <true goal> then it is achieved,

(2) If G* has OR subgoals then it is achieved iff at least one of its subgoals
Is achieved,

(3) If G’ has AND subgoals then it is achieved iff all of its subgoals are

achieved and remain true in the resulting state.

(4) If G* has THAND subgoals then it is achieved iff all of its subgoals heave
been achieved.

Further details on these kinds of problems may be found in [Nilsson 1971]

It G* is achieved under (2), (3), or (4) (i.e. by rule application), then I’ is updated]
by Inv(Kee,I') and a procedure call or a while loop may be appended to A. |

Search algorithms of this type may be convenientiy implemented using any of

/ the new languages that directly support subgoal tree generation, backtrack, and a data

base [Hewitt 1971, Sussman and Winograd 1972], (Rulifson et al. 1972] |

THE FORMAL ALGORITHM 81 be

8.3 LABELED, ORDERED SUBGOAL TREES

Before we can consider correctness, the notion of a labeled, ordered THAND-OR-

AND subgoal tree, say Tr, must be formalized. Let Tr be a solution tree generated by

the algorithm during a successful program generation, S be the set of nodes in Tr, i nd

RoSXS be a partial ordering on S. Let J be another relation on S defined in terms of Kk

by:

xJy iff (Vx,y)[xRy A =~ yRx A (Yz){z#Ay A zRy > zRx]}

For x,y¢S, xJy means that y is the R-direct descendent of x, or x is the R-direct

ancestor of vy.

DEFINITION A structure Tr = <§R> is a tree if the inllowing properties are satisfied:

(1) There is a root element of the tree, i.e., (3x), (Yy)y€S > xRy],

(2) For x,y,z €S, if xJz and yJz then xy

DEFINITION A structure Tr = <SR,L> is an ordered tree if the following properties are

satisfied:

(1) Tr = <S,R> is a tree,

(2) For each x¢S, L is a total ordering of {y : xJy},

| (3) For each x,y,z €S, if xLy and yRz and x¢¥y then xLz,

(4) For each x,y,z €5, if xLy and xRz and x#y then zLy.

The relation L orders the nodes of Tr in depth-first achievement order, e.g.,

?

/ \
3 ©

/\
1 24 5

Let V be the set of goals achieved in Tr instantiated by o«. The function f will be

called the lat.cling tunction.

82 THE FORMAL ALGORITHM

DEFINITION A structure Tr = <QVRLf> is a labeled, ordered tree if the following
properties are satisfied:

(1) Tr »« <SRL> is an ordered tree,

(2) The function f maps S onto V.

Let Gr be the gremmar describing solution subgoal trees and let Tr = <S,V,RL,f> be a
labeled, ordered tree.

DEFINITION Tr is a labeled, ordered THAND-OR-AND subgoal tree rooted at G' in Gr if
the following properties are satisfied:

(1) If x€S is the root of the tree <S,R> then f(x) = G,

(2) If 3y¢S such that fly) # A and xRy and xy then f(x) is not a <true
goal>(i.e. x is not a leaf node).

(B) If yipnyn € {y : xJy}, where y,Ly, tor I<j then there exist some frame i
| rule having pustcondition (or goal) f(x) and premisses fyi), ... flyp).

We will refer to such trees as solution trees in the next section,

THE FORMAL ALGORITHM 8°

8.4 CORRECTNESS

For any output program generzted by the system the associated solution

(sequence of axioms and rules used) provides a proof within the logic of programs

given in Section 2 that the program satisfies the given input-output asser!inns.

Because of implementation limitations, heuristic system methods, and consistency

requirements in a framg definition which the user may violate a system generated

program may in fact be incorrect. However we will show that from a solution trce ir

generated by the formal algorithm to solve the problem <I,G> with properties as

defined, a correctness proof of the solution can be given. Conditions for correctness of

| the procedure for generating conditional statements was given in Section 5.

We may show by induction on the ordering of nodes in Tr that the outpu®

program A solves the problem, i.e. L(F) ||-I[{A}G by showing it to be true for each

subgoal and partial program, i.e. if x¢5 is the root of the tree and f(x) = G then for any

y€S such that xRy , L(F) ||-l{A’}{(y), where A’ is the partial program in the tripic

computed by the achievement of t(y).

Let G' = f(x) be such that Vy«S xLy, then G'¢V is a <true goal>, i.e. it labels the

leftmost leaf node of Tr, and L(F) ||-I2G".

As an induction hypothesis assume that for an arbitrary G’=f(y) such that y is |

not the root of Tr that L(F) ||-I{A'}(y). We will then show that this must imply L(F) ||-

I{A"}(2), where yLz and either zJy or (3x)[xJy A xJz A ~ zJy], where A’ and A” are the

generated program segments in the associated triples.

Consider the cases for the triple <G',I’,A’>, |

(1) If G’ labels a leaf node of Tr then L(F) ||-I' v F > G' and the state and

program segment are unchanged by its achievement. This implies L(F) ||-1{A"}G’.

(2) If G’ labels a non-leaf nude x of Tr then we have the following subcases,

| 84 THE FORMAL ALGORITHM
An instance of a primitive procedure rule Poc{pat}Qu is applied to achieve G’, i.e.

Qe¢ 5 G*. Its application js justified by the change of variables rule RA. By hypothesis
PUF |- Pe since property (3) of the definition of a solution tree is satisfied. The rule
of consequence implies L(F) ||- P{pat}Qe¢ and invariance implies L(F) II-I'{p }I”, where
I” = Inv(Qe,I"). By the rule of composition R3 we may compose A’ with poz and by the
induction hypothesis we conclude that L(F) -I{A%pec}I”, where I” > G’,

| For the cases in which instances of definitions or iterative rules are applied to
| achieve G’, the induction step may also be proved establishing L(F) |)- {A}G. More
| formal details may be found in [Buchanan and Luckham 1974). This discussion was

intended to justify the formal methods implemented in the system by showing that
under certain assumptions about solution trees a correctness proof can be given.

: ET TTEETE TT TEETTTETrE eat be ERT Sa i a Bk isa3Ea 3 ian : Am—EL tis; i SElias vidio ’ i uy a T i ais ANG dL R= } wo ; - J | | a

B :

] § / Translate
i ; ISL 1| Load Frame Iza
: : Frame | Trans lator % befinition

: “SUBMIT
LL

: GOAL

E Use

i Advic :
System

: ! Program
E Gencra-
; tion

B Success SH Advice >

i

Ke join gp “Extend T
[4

A | : F\¢ | Set
@ ! Error| Mig Compute © iy

; Optimize |
: { Ceneral-

: Display |&] Solvtion
: Program

: | : Initialize | {Inter-
E i tructured Sua from active :

1 Fr Stack (LIFO) System

3 por :
3 | Stack i

; Program >= from ;

8 Initialize Kestore to

8 : Subproblem State 3
E Stack %

” ;

9. SYSTEM DESCRIPTION

This section will document the system implementation to the end that its j

operation might be better understood and to the conceptual level that would be

reasonably helpful in designing a more expanded system. The system was

| implemented in LISP using MICRO-PLANNER primitives [Sussman and Winograd, 1971],
| with which we will assume the reader has some familiarity. MICRO-PLANNER was a

very preliminary version of PLANNER [Hewitt, 1972] Many of our programming

| triumphs modifying MICRO-PLANNER and writing new primitives are no longer
necessary in light of the new languages now available [Sussman, 1972],[Rulifson et al.
1972]

9.1 OVERVIEW OF INTERACTIVE SYSTEM USE |

The interactive decision points and programs called at the top level are shown ir,

figure 17. (This is a tlow chart of the top ievel LISP function SUBGOAL.) The system
basically has three segments:

(1) a Frame translation program (see Section 9.2),

(2) a set of programs for program generation called trom SUBGOAL and using a
translated Frame,

(3) a set of primitives that modify and extend MICRO-PLANNER.

The user’s interaction with the system shown in figuia 17 is informally
described by the toilowing prucedure:

(1, A filename may be given as an argument to SUBGOAL. If the file contains a

Frame definition then the translator is read in, the Frame definition translated

and loaded. If the file contains a translated Frame then it is simply loaded. If no

filename is given then a Frame definition to be translated and loaded is given
interactively frum the terminal.

3

SYSTEM DESCRIPTION 87

(2) When prompted by the system, the user inputs a goal to be achieved by the
Piogram to be generated.

(3) If the user desires to give advice to the system relalive to the giver. goal then
the advice system is called.

| (4) The subgoaling system uses the translated Frame to attempt to generate a
program achieving the goal. If unsuccessful the user may try again with more
advice (go to (3)).

(3) If rejoin conditions (see Sections 5.4 and 9.4) are pending for this generaied |
procedure then they are tested for satisfaction. If they are not satisfied then |

the user may attempt to extend the procedure to yield a state in which they ure
true. If he chooses not to do this or the system fails in its attempt then an
error exii is substituted for any call to that procedure in its trunk program.

(6) If the user elects, the program may be optimized according to some simple
, criteria, e.g. elimination of dead assignment statements and reduction of the

number of program variaoles.

(7) The user may then choose to have the generated program generalized and filed
In a program brary.

(8) The Program is then displayed for visual inspection.

(9) If there are conditional statements (see Section 9.5) then the user may elect to
do contingency Proyram generation. If so then the state, goal pending and
answer is initialized from the stack of contingency tasks (go to (3)).

(10) If any assumed primitive procedures occur in the generated program the user is
informed and may structurally (see Section 9.7) develop each assumption |

procedure call by generating a program whose input and output assertions |

88 SYSTEM DESCRIPTION

| match the pre and postconditions of the assumed primitive procedure (Initialize
the state and go to (3)).

| (11) The program may now either be incrementally extended from the current state
by giving an additional goal (go to (2)) or any previously completed program

segment and final state may be returned to and extended.

In Appendix B is an example of an interactive dialogue including a Frame

translation and program generation.

|
|

|

SYSTEM DESCRIPTION 89

9.2 PROCEDURAL REPRESENTATION OF A FRAME

In Section 8 the basic problem reduction subgoaling algorithm was given and in

Section 4 associated problem solving processes using Frame information were

described. In this section a more detailed description of the function and form of a
J translated Frame will be given. The transiation and use of iterative rules anc the

generation of conditional statements will be given in Sections 9.6 and 9.5 respectively.)

9.2.1 SOME ELEMENTS OF MICRO-PLANNER

Assuming general familiarity with MICRO-PLANNER we will briefly describe a few

| basic primitives and theorem .ypes as used in the system description (sce [Sussman
and Winograd, 1971] or 'Baumgart, 1972). In the current implementation, <p attern>

will represent scme relation. In a more general treatment <pattern> could represent

an arbitrary Boolean expression of relations. Pattern matching is restricted to simple ;
unification,

The control structure is a backtrack stack interpreter consisting of a program

representation, a processor state, a processor and a push down stack of all previous |

states the processor has been through since the beginning of a particular computation,

The processor may backtrack to a previous state and exhaustively search a subgoal

tree in a depth-first manner trying all possible variable bindings and applicable

theorems to return success ultimately to the top goal node.

| (1) (THGOAL <pattern> <recommendation>). If no <recommendation> is given then |

THGOAL simply searches the data base for an assertion that matches the

pattern. If it finds one, it succeeds and carries out the unification substitution

for any variables in the pattern, otherwise it fails. If a <recommendation> is

given it will be of the form, (THTBF <filter>), where <filter> is the name of a

- A A " be .

90 SYSTEM DESCRIPTION

unary LISP function that selects from candidate THCONSE theorems to be called

| after a data base search has failed. The atom THTRUE is the always true filter,
| .e. allows any matching theorem to be tried.
| (2) (THNOT <argument>). THNOT fails if its <argument> succeeds, otheryi<e it fails.
| (3) (THASSERT <skeleton> <recommendation>). The <skeleton> may either be a
| theorem name to be put on a ready-to-use list or an instantiated relation that is

to be added to the data base. THASSERT fails only if it tries to assert a /

<skeleton> already existing either on the ready-to-use list or in the data vase, |
If a <recommendation> Is given it will be of the form, (THTBF <filter>), where
<filter> is the name of a unary LISP function that selects from candidate THANTE
theorems to be called,

(4) (THZRASE <skeleton> <recommendation>). The <skeleton> may either be a
theoram name to be removed from a ready-to-use ist or an instantiated relation
that is «0 be removed from the data base. THERASE fails only if it tries to
remove a <skeleton> that does rot exist either on the ready-to-use list or in the

data base. If a <recommendation> is given it will be of the form, (THTBF |
<tilter>), where <filter> is the name of a unary LISP function that sohacts from
candidate THERASING theorems to be called.

(5) (THOR <argl>..<argn> THOR succeeds if one of its arguments succeeds where
evaluation is left to right. This construct is used to implement logical disjunction.

(6) (THSETQ <var|> <ep> .. <var> <en>). This primitive assigns the value of
expression <e;> to the variable <var;> for i=l,.,n. The variable Is not

evaluated. This assignment is undone if failure backs up to it. A Simple
extension provided the function THSET which does evaluate its first argument
but is otherwise equivalent tv THSETQ.

|

:

SYSTEM DESCRIPTION 91

(7) Theorems. Theoreri. are pattern evoked ana have the format:

| (DEFPROP <name>(<type> <varlist> <pattern> <body>) THEOREM)
where

<name> is an atomic theorem name,
<type> is the theorem type,

| <varlist> is the list of variables used,
<pattern> is a relation for pattern match invocation,
<body> is a sequence of statements having the syntax of the body of a LISP PROG.

| The list (<type> <varlist> <pattern> <body>) is of course attached to the property list |
of <name> under the indicator THEOREM as a result of the DEFPROP.

Inere are three types of theorems:

(a) Consequent theorems (THCOMNSE) are call2d by a match between the

pattern of a THGOAL statement and the \“esrem pattern,

(b) Erasing theorems (THERASING) are called by a match between a relation

skeleton of a THERASE statement and the theorem pattern.

(c) Antecedent theorems (THANTE) are called by a match between a relation |

| skeleton of a THASSERT statement and the theorem pattern.

If a theorem’s patterr is matched by the appropriate callirg statement then the |

<varlist> is bound and body is executed such that for ine theorem iv succeed each |

statemont must succeed (return non-nil) witt, the capability for backtracking to

discover an instantiation and/or subgoal tree rooted at that statement that returns

successfully. THERASING and THANTE theorems do not return a value and are assumed

to succeed as it affects the success of the calling statement; however, THCONSE

theorems return either a success or a failure value that determines the success of the

calling statement.

92 SYST:-M DESCRIPTION

9.2.2 SPECIFICATION AND BASIC FUNCTIONS OF FRAME RULES

When a primitive procedure is initially input the following information is put on

the property list of the atomic procedure name:
(1) preconditions,
(2) postconditions,
(3) argument list,

| (4) whether or not the procedure is an assumption,
(3) whether or not the procedure is recursive,
(6) inequalities desired in argument positions,
(7) indicator of rule type, i.e. primitive procedure.

Except for argument list specifications ({3) and (6)), the analogous information for

axioms and detinitions is initially stored the same way.

On the property list of each predicate symbol is stored the following:
(1) argument list,

(2) whether or not the relation is a fluent,
(3) whether or not the relation is partial,
(4) argument positions having the uniqueness property.

The internal data structure used to represent assertions after input is a list of

lists where the interpretation of juxtaposition of e!aments is conjunction at the top

level and alternates between conjunction and disjunction at successive levels of

| nesting. At the bottom level a literal is represented as 2 list of negaiion sign (if any),
predicate symbol and the arguments. For example the assertion,

P(X) v Q(Y) A =R(X,Y) A S(Z,X) v {T(2) A M(V)};

is represenied as

| ({P X) (Q YD) ((~ R X YIX(S Z XX(T XM VI).

This internal representation is clearly adequate fe: assertions input using the

syntax given in Section 3.

A translated rule for a primitive procedure contains the basic functional

I segments shown in figure 18. An actual example of a primitive procedure definition

and its translated form is given in Section 9.2.3.1. The pattern is the postcondition

SYSTEM DESCRIPTION 93

achieved by an application of the procedure. The interactive program allows the user ‘

| to enter the Advice System then return for continuation of subgoaling. Trace
information of curren! path and goals panding is displayed. Nonfluent preconditions

are achieved first then the fluent preccnditions. The mechanism for achieving a

conjunction of fluent goals is described in Section 9.2.3.2. Processing to make the

| state consistent with the postcondition next to be asserted is carried out. The
instantiated procedure call is appended to the partially generated program followed Ly

processing for collecting input-output assertions, forming correct block structure in

nested conditional statements and diagnostic output to the user. |

| 94 SYSTEM DESCRIPTION
CALLING PATTERN

INTERACTIVE AND TRACE PROGRAMS

| | ACHIEVEMENT OF NON-FLUENT PRECONDITIONS

ACHIEVEMENT OF FLUENT FKECONDITIONS

STATE CONSISTENCY PROCESSING

| ASSERTION OF POSTCNNDITIONS

ASSEMBLY OF PROCEDURE CALL INTO PROGRAM

MISCELLANEOUS PROCESSING

(INPUT-OUTPUT ASSERTION, BLOCK STRUCTURE, DIAGNOSTICS)

FUNCTIONAL SEGMENTS OF KULES FOR PRIMITIVE PROCEDURES
FIGURE 18

SY-TEr4 DESCRIPTION 95

9.2.3 FRAME TRANSLATION

A Frame defined using the lang iage described in Section 3 is translated into a

set of LISP functions and MICRO-PLANNER theorems that form the basis for the

subgoaler. In particular fcr each rule or axiom, one or more MICRO-PLANNER THCONSE

theorems is constructed, for each distinct predicate symbol a THERASING theorem is

generated to implement the coniunction connective. The initial state description is |

converted to assertions placed in the data base.

9.2.3.1 TRANSLATION PROCEDURE |

: The translation is carried out according to the following procedure:

(1) The appropriate input device, i.e. terminal or disk, from which to read the Frame

definition is selrcted.

| (2) For each rule defined the information listed in Section 9.2.2 is input and |
internalized. |

(3) The initial state expressed in the syntax of conditions is input and internal:zed.

(4) For each predicate symbol used, the information listed in Section 9.2.2 is input

and internalized. |

(5) The user may request context linking or performance statistics to be gathered.

(6) Algebraic simplification rules may be given of the form,

" t = t’, where t,t’ are terms,

which are used to reduce t ta t* should t occur in an argument of a relation in a

THGOAL statement, e.g.

(MINUS(PLUS X,Y)Y) = X,

| where X and Y may be bound to arbitrary terms to which the rules will be

applied recursively. |

96 SYSTEM DESCRIPTION |

(7) Conversion rules for more readable output syntax for functions occurring in the

| generated program are specified in the form, :
| t =o, where tis a term and « is an expression in the new syntax,

which are used to produce the final output form of the generated program, e.g. ‘
(PLUS X Y) = (X + Y),

where X and Y may be bound to arbitrary terms to which the rules will be

applied recursively.

(8) The conjunction of literals given to form the initial state is asserted into the data

base according to the following rules giving the assertion made for a literal | as

a function of being negated or partial,

(a) If] =P(tl,.tn), for some predicate P, then assert P(t1,...tn),

(b) If | = ~P(t1,...,tn) and P is total then assert nothing, |

(c) If] =<P(tl,..tn) and P is partial then assert, by convention, NP(t1,...,tn). i
(9) For each predicate symbol used generate a THERASING theorem and some global

variables whose form and use in implementing conjunction are described in

Section 9.2.3.2. |

(10) For each rule defined, a THCONSE theorem is generated implementing the i

functions shown in figure 13, i.e. :

(a) The calling pattern is the rule postcondition.

(b) For each total precondition literal | a THGOAL statement is generated

according to tho rules: |

(i) If | w B(i1,.,tn) and P is non fluent then

(THGOAL(P e¢(t1)...c(tn)X THTEF FILTERAX))"

where FILTERAX is a LISP filter function which permits only dedu~tion

SYSTEM DESCRIPTION 97

| using the axioms relative to the current state and o¢ transforms ti into «
| valid MICRO-PLANNER term.

(ii) If | = ~P(t1,...tn) and P is non-fluent then

"(THNOT(THGOAL(P o¢(t1)...cc(tn)XTHTBF FILTERAX)))"

(iit) If | = P(t1,..,tn) and P is fluent then

(THGOAL(P o((t1)...a(tn)XTHTBF FILTEROP))"

where FILTEROP is a LISP function which controls the choice of rules or

axioms enterea on the basis of advice given, if any. |

(iv) If | = <P(t1,..,tn) and P is fluent then

(THNOT(THGOAL(P et(t1)...ec(tn)XTHTBF FILTEROP)))"

A Boolean expression of these statements corresponding to the precondition is

generated. The implementation of conjunction and other functional parts of the

thearem are described in later sections.

(11) The translated Frame is then loaded, i.e. functions, global variables and theorems |

defined and thecrems asserted. The user may now begin program generation. :
As an example of a translated rule consider the primitive procedure, |

ROB(R1)A-KILLED(R1)AAT(R1,L1)ACLEAR(L] L2)VHASUMBRELLA(R1)
AWALKABLE(L1,L2){walk(R1,L1,L2)}AT(RI ,L2). |

: which translates into the Micro-Planner theorem shown in figure 19

which is labeled according to the basic functional segments described in Section 9.2.2

and shown in figure 18. 3

| 98 SYSTEM DESCRIPTION
(DEFPROP WALK

(THCONSE (LoL L1 LZ RI 01 (LSTWALX (QUOTE (L2 R1})))

PATTERN (AT (THY R1) (TW L2) R)
(THSETIG (THV LCTR) (THY GCTIR))

(THUNIQUE LSTWALK)

INTERACTIVE (TREEPATH WALK (AT (THJ R1) (THY LZ21 R))
(TRACEINFO1)

AND TRACE (THOR T (TRACEINFDZ WALK))
{COND C((TTIYIN) (RDVICESYS)) (T T))

=(THCOAL (RDB (THV RI 1))

_ (THCOND ((THNOT (THGOAL (XILLED (THY Ri) RID) 1)
NON-FLUENTS (1 (THGOAL (NKILLED (TW RY) R) (THIGF FILTEROP))))

. o (THCOND ((THAND (THASYAL (THY RII)
ACHIEVEMENT (THSETG (THV NKILLEDARGS) (CONS (LIST (THY R1)) (THY NKILLEDARGS))))

fT 11)

| OF (THGOAL (AT (THY R1) (THY L1) R) (THIBF FILTEROP))
(THCOND ((THAND (THASUAL (THY L111) (THASUAL (THY R1)))

1 "w , fTHSETQ (THY ATARGS) (CONS (LIST (THV RI) (THV L1)) (THY ATARGS))))
FLUENT GOALS A

] (THOR (THAND (THCOND ((THGOAL (CLEAR (THY LI) (THY L2) R) (THIBF FILTERDP)) 1)
((THGOAL INCLEAR (THV L1) (THY LZ) R)) (THFAIL))

; (v

(UNCERTLIT (LIST (QUOTE CLEAR) {THV LI) (THY L2) (QUOTE RB)1 i
1

[QUOTE (CLEAR (THY LT) (THY L2) R))

! (QUOTE (NCLEAR (THY L1) (THY L2) RD)
(THCOND ((THAND (THASUAL (THY L2)) (THASVAL (THY L1)))

{THSETQ (THY CLERPARGS)

(CONS (LIST (THY L1) (THV L2)) {Ti CLEARARGS11T) 1

(TO)

(THAND (THCOND ({THGDAL (HASUMBRELLA (TW RI) R) (THIBF FILIERDAII T)

((THGOAL (NHASUMBRELLA (THY Ri) R)) (THFRIL))

(1

(UNCERTLET (LIST (QUOTE HASUMBRELLA) (THV RI) (QUOTE R))

1

(QUOTE (HASUMIRELLA (THY R1) R)) '

(QUOTE (NHASUMBRELLA (THV RD) RY) -

(THCOND ((THAHD (THASVAL (THY Ri)))

(THSETQ (THY HASUMBRELL AARGS)

(CONS (LIST (THY R11) (THY HASUMBRELLAARGS))))

(YT 11)

(CONDSTAT (THY CCL) T))

(THCOND ((THGOAL (WALVABLE (THY LI) (THY L2) R) (THIBF FILTEROP1) Ti

((THCOAL (NWALKABLE (THY LI) (THY L2) R)) (THFARIL))

(1

(UNCERTLIT (LIST (QUOTE WALKABLE) (THV L1) (THV L2) (QUOTE R))

NIL

(QUOTE (WALKABLE (THY LIT {TV LY RD)

(QUOTE (NWALXALE (THY L1) (THY L2) RI))))

(CONDSTAT (THY CCL) NIL)

(THCOND {(THAND (THASVAL (THY L2)) (THASVAL (THY L1)))

(THSETQ (THY WALKABLEARGS) (CONS (LIST (THY L3) (THY L2)) (THY HALKABLEARGS))1)
UPDATING THE (1 1)

: (THCOND ((NULL (THV WALXADLEARGS)) 1)

(T (THSETQ (THY WALKABLEARGS) (COR (THY WALKABLEARGS)) T 1)

STATE (THCOND ((NULL (THV ATARGS)) 1) (T (THSETQ (THY ATARCS! (COR (THY ATARCS)) T TH)
(THCOND ((NULL (THU NXILLEDARGS)) 1)

(T (THSETQ (THY NKILLEDARGS) (COR (THY NKILLEDARGS)) T 1)))

(THCOND ((THOOAL (HASUMBRELLA (THY RI) RY)

(THCOWD (NULL (THV HASUMGRELLAARGS)) 1)

(1 (THSETQ (THV HASUNGRELLAARGS) (COR (THY HASUMBRELLAARGS)) T T11))
(1T 1M

(THCOND ((THGOAL (CLEAR (THY L1) (THV L2) R)1 |
(THCOND (INULL (THY CLEARARGS)) T)

(T (THSETQ (THV CLEARARGS) (CDR (THY CLEARARGSY T THIN) E.
(T 1)

(THCOND ((THAND (THASUAL (THY L2)) (THASVAL (THY LI) TY (1 (THFERILID
(THCOND ((EQUAL (THV L2) (THY L1)) (THFAIL)Y) (TT T))

(THCOND ((THGOAL (AT (THV RI) (THY D1) RI) (THSETQ (THY ATINST, (LIST (THY R11 (THY D11111
(1 1)

(THCOND ((THGOAL (AT (THY R1) (THY DI) R)® (THERRSE (AT (THV R1) (THY D1) R) (THTBF THTRUEI)]
(Tm

(THCOND ((THERASE (WRONG PATH)) (THFAIL THEOREM) (T TN)

(THSET (CAR {THY ANS))

(CONS (CONS (QUOTE WALK) (LIST (THY R1) (THY L1) (THY L2))) (EVAL (CAR (THY ANS) 11))

(THSETQ (THY DLLITS) (CONS (CDAR CT) (THY DBLITS)1)

(THASSERT (AT (THY R1) (THV L2) R))

ASSERT PRC. (THSETQ (THY ASSERTLITS)
(CONS (LIST (LIST (QUOTE AT) (THY RI) (THV LZ) (QUITE R)) (LIST (QUOTE A) (QUOTE Alii

(THY RSSERTLITS)))

(PRINT (EEVEKSE (EVAL (CAR (THY ANS)))))

ASS (SETQ GANS (FEVERSE (EVAL (CAR (THY ANS)))))SOEMBLE SOLN (COND ((WGREAT (LENGTH GANS) (LENGTH LGCANS)) (SETQ LGCANS GANS)) (T Ti
3LOCK STRUCTURE (THDO (TERPR]))

-

CHE CKING (COND ((EQ (QUOTE IF) (CADAR TT)1 (ELSECLAUSE)D (T (THSET@ CT (CDR CT1 T T1111
THEDY EN)

Figure 19

SYSTEM DESCRIPTION 99

9.2.3.2 IMPLEMENTATION OF CONJUNCTION

The basic idea for implementing the achievement of a conjunction of goals, G; A |

G2 A.A Gp, is to prevent the falsification of any G;, 1 Si $n, until all G, are achiaved,

thus creating a state in which the conjunction is true.

For each fluent predicate symbol, say P, used there is a global variable createc,

I.e., PARGS, which is initialized to the value NIL and will hold a stack of instances of P ;

that are to be preserved during the achievement of the conjunction. This is done by

| adding the instance(s) of the literal(s) whose achievement causes the current goal in
| the conjunction, say G; , 1 Si <n, to be true to the appropriate stack before Gai is

attempted. When the entire conjunction has been achieved the literals for each G; in

that conjunction are popped trom the stack. The LISP function that generates this

code is recursive for arbitrary Boolean conditions satisfying the syntax.

A THERACING theorem is also generated for each P(X1,..,Xn) as follows:

(DEFPROP PGREMLIN

(THERASING (X1..Xn)

(P (THV X1)..(THV Xn) |
(THCOND((MEMBER(LIST(THV X1)..(THV Xn))

(THV PARGS))

(THASSERT(WRONG PATH)
(THEOREM),

where THV is a MICRO-PLANNER indicator that its argument is a variable.

If some instance P(tl,..tn) is to be erased to maintain state consistency (see

Section 9.2.3.4) then the act of erasing will call PGREMLIN which will assert the flag

(WRONG PATH) into the data base if (t1,..tn) is a member of PARGS. Such an assertion 1

Is responded to in the THCONSE theorem in which the erasure occurred by generating

the following statement after the erase statement:

3 (THCOND((THERASE(WRONG PATH)XTHFAIL THEOREMIXT T)). | |

W

100 SYSTEM DESCRIPTION

The THERASE statement in the above will succeed only if (WRONG PATH) existed

in the data base which was caused by an invalid erasure detected in the THERASING

theorem. The flag seems necessary since success or failure in the THERASING theorem

does not affect the success of the THCONSE theorem causing the erasure. The failure

of the THCONSE theorem will force the system to try to find another theorem

corresponding to another rule that does not talsity a goal in the conjunction.

SYSTEM DESCRIPTION 101

| 9.2.3.3 CONTEXT LINKING

This feature discussed in Section 4 is implemented by denoting certain

] assertions in the data base as being “hypothetical” or not part of the state and used
only in connection with this feature. If requested MICRO-PLANNER code is generated

to precede the achievement of the precondition goals for rules and axioris and ‘rc
carry out the following functions:

(1) The precondition goals are attempied relative to the hypothetical portion of

the data base only to determine possible varial.ie bindings.

(2) The instantizted precondition goals are asserted into the hypothetical data

base for use in descendant rule applications in the subgoal tree.

Following the achievement of the preconditions of a rule, the hypothetical data

base is restored to the state at rulo entry.

9.2.3.4 UNIQUENESS PROPERTIES

Updating the state is discussed in Section 4 as an application of the invariance

rule. "Building in" axioms cgefining uniqueness or single valuedness of certain relation

argument position has proven useful for state consistency processing.

When a Frame is defined an argument position of any relation may be designated

to be unique by responding to a system query with an asterisk in that position. |
Multiple argument positions may be so designated.

Before an instantiated postcondition, P(t1,..fi...tn) is asserted, contradictory]

literals in the data base are removed. For each position designated as unique, suppose
the ith, the goal P(t1,...X,..tn) is attempted with a new unbound variable in the ith

position. If it is successful, i.e. X is now bound tu val(X), then P(t1,.,val(X),..,tn) is |
erased.

| 102 SYSTEM DESCRIPTION

For example consider the predicate AT(X,Y) = "Object X is et location Y", where

both argument positions are unique, i.e. AT(s,s). Then in the stale update portion of |

the theorem the following code is generated: |

(THCOND((THGOAL(AT(THV XXTHV D1)
(THERASE(AT(THV XXTHY D1)XTHTSF THTRUE)))

THEO ERASE PATH)XTHFAIL THEO::4))
THO HSOALATIY D2XTHV Y)))

(THERASE(AT(THV D2XTHV Y)XTHTBF THTRUE)))

(THOONORCY HERASEONG FATH)XTHFAIL THEOREM)
| (TT),

where D1 and 02 are unbound variables.

This process assures that if the state is consistent with respect to uniqueness

properties initially that this consistency will be maintained.

y < ce pusibiupunn lp o£ y,

SYSTEM DF SCRIPTION 103

9.2.3.5 INTEPNAL REPRESENTATION OF GENERATED PROGRAM

A program segment generated by the sysiem is represznted internally in a list

data structure satistyir,g the following syntax:

| <program> i= <block>

<block> ua (<statement-list>)

<statement-list> ::= <statement>|<statement><statement-list>

<statement> ua (<procname><arglist>)
<statement> u= (IF<condition> THEN <stetement>)

<statement> u= (IF <condition> THEN <statement> ELSE <block>)

<statement> u= (WHILE <condition> DO <block>)

<statement> := (« <identitier><axpression>)
<procname> ne <identifier>

where,

<identifier> is an ALGOL ide tifier,

<expression> is a LISP functional expression in prefix form,
<condition> 1s a Boolean expression satisfying the syntax |

given in Section 3,

| <arglist> is list of arguments each of which is either
an <identifier> or an <expression>

For example,

((e XO 1)« Y1 IXWHILE ->(Y1 N) DO((« Y1 (ADD1 Y1)XTIMES XO XO Y1))),

is the factorial program in Section 7. The above syntax speci‘ication describes *he

structure of programs that may be generated by the system.

A partially generated program is actually maintained in a stack (a list with access

only from the front) of "CcNSYMed" variables which is pointed to by a global variable

ANS. Each time a deeper level of nesting is required, i.e. io generate the body of a

WHILE loop or nesied conditional statements, a new variable name is added to the top

of the stack and initialized ts NIL. Program constructs generated at this level are

assigned to the variatle at the top of the stack via ANS using a THSET. When a level

is emerged from the value of the top element is appended on to the value of the next-

to-top element and the stack is popped.

When a generated program is output it is translated into a subset of ALGOL in

the obvious way with nesting in the list structure correspanding to block nesting. 1

| 104 SYSTEM DESCRIPTION |

9.3 THE STATE UPDATING METHODS ‘

The updating of a state to the new state resulting from the zoplication of a

rame rule is formulated by invariance which in general is noi computable. Some of |

the more common causes of inconsistencies are handle by the uniqueness propaity

mechanism described in Section: 9.2.3.4. Also relevant to this topic is the discussion of

conjunction implemeniation in Section 9.2.9.2. As explained in Section 6, updating (le

state after the application of an iterative rule may be either impossible or impractical |
unless the user provides an output assertion for the iterative ruic in which case the

rule of ‘iwariance is applied as with a primitive procedure postcondition. The results 1

of applying the rule of invariance are influenced by the fixed, though arbitrary,

ordering of the literals. To compute Inv(1,Q) a subset of | that is consistent with Q is

sought. Since in general the choice of the Ri€l to be removed that prevents the

derivation of a contradiction witn Q is *.ot unique, the ordering determines the deletion,

If any.

The system philosophy has been thai inconsistencies are of no concern unless

they affect the correctness of the generated program. Consistent with this is a

suggested approach that if an inconsistency is detected, say during some axiomatic

| deduction, that the choice of literals in | to be deleted be guided by the following,

Jd (1) Tne infcrmation as to the state literals used to prove each previous goal as the

program has been generated could be kept as an extension of the input-output

assert computation (described later).

(2) The literals to be removed should be those that least affect the program, i.e.

either those as yet unused or those most recently used since program generation

wouid have to back up tu that point then proceed atier the deletion.

SYSTEM DESCRIPTION 105

The actual Micro-Planner code generated to update the state after a primitive
: procedure has been applied is shown in figure 19.

106 SYSTEM DESCRIPTION

9.4 CCMPUTA TION OF INPUT-OUTPUT ASSERTIONS

The compuiation of input-output assertions requires the extension of the

MICRO-PLANNER system to include & trace stack containing rules entered, goals

mending and goals achieved trom the state, i.e. leaf nodes in the subgoal tree. This

data structure is in addition to those which are a normal pari of the MICRO-PLANNER

Processor. This stack is a list data struciure satisfying the following syntax:

<trace-stack> ::= (<rule-list>) |

<rule-lict> = <rule-use>|<-ule-use><rule-list> |
<rule-use> ::= ((<rule-name><curreni-goal>)<flag-list><achieve d-goal-list>)
<achieved-goal-list> i= <achieved-goal>|<achieved-goal>~acineved-goal-list>
where,

<achieved-goal> is an instantiated precondition subgoal of the rule
that has been achieved directly trom the state,

<current-goal> is the current precondition suogoal pending in
the rule tor whose achievement rules above it in the

stack have ween entered, |
<flag-list> is a sequence of zero ur more tiags used to determine

proper block nesting in conditional statements
(Section 9.5).

For example the trace stack may appear as,

(((T1 (P X1 a)(Q a(T2 (R a X2)XS a b))), :

at sume stage of a computation and have the meaning,

(1) S(a,bj has teen achieved from the state in T?,

(2) K(a,)X2) is currently pending in T2 and T1 has been entered to att ympt its |
achievement, :

(3) (a) has been achieved from the state in Tl, and

(4) F(X1,a) is currently being attempted.

hs each rule, say T, is successfully applied, before its <rule-use> is popped from

the trace stack, its <achieved-goal-list> is conditionally added onto a global variable,

| SYSTEM DESCRIPTION 107
DBLITS. Similarly if T has post conditions or output assertions to add to the staie they |
are conditionally added onto a global variable, ASSERTLITS. The condition in both

cases is that this occurrence of T will appear in the completed subgoal tree. \
| For any generated Program segment A, the input assertion la end output

assertion 0, may be computed as follows.

| (1) By compzring each addition to DBLITS and ASSERTLITS in order of ad jition, |
those members of DBLITS that became true in the state as result of an |

assertion, (i.e. are members of ASSERTLITS), ‘rom a previous rule are
deleted.

(2) Redundancies in DBLITS are removed yielding the input assertion lo |
(3) The output assertion 0, is the non-redundant conjunction of all members of

ASSERTLITS that are true with respect to the final output state of A.

108 SYST" DESCRIPTION |

9.5 GENERATION OF CONDITIONAL STATEMENTS

In Section 5 the algorithms for generating conditional statements were

described. In this Seclion some of the details of the implementation will be given.

Topics to be covered include implementation of goal nodes containing partial relations,

contingency goa’ selection and its use, and associair n of rejoin conditions with

contingency programs.

9.5.1 GOAL NODES CONTAINING PARTIAL RELATIONS

Let L be a precondition subgoal literal containing a partial relation. Tre code

generated to attempt achievement of L is of the form: :

| (THCOND (ec(L) T)
(et(-L) (THFAIL))

(T (UNCERTLIT L SWITCH))) |

where o(L) is the appropriate THGOAL statement from for L as described in Section |

9.23.1; and UNCERTLIT is a LISP function or two arguments, i.e. an

undetermined literal, L, and a switch value indicating whether this goal occurs

in a conjunct.on (T) or in a disjunction (NIL).

The function UNCERTLIT does the following:

(1) Appends L to a global variable UNCERLIST, | ,

(2) Returns not[SWITCH].

If Lis in a disjunction then UNCERTLIT returns NIL, which forces the

next literal, it any, fo be tried before the disjunction is declared undetermined

and a conditional statement generated. See definitions in Section 5.1.

Either as the last statement of a THOR statement (which implements disjunction) |

or immediately following a THCOND statement like the above, a call to the LISP function |

CONDSTAT is generated wiih behaviour: i

SYSTEM DESCRIPTION 109

(1) If nulil[UNCERTLIST] then if in a disjunction return NilL(causes failure)

| otherwise T(success).

(2) If not[null[UNCERTLIST]] then generate a conditional statement and

contingency tasks as described in Section 5 and detailed in Scction 9.5.2.

For example the disjunctive goal (see example in App2ndix 4),

VAR(x) V LP(x) V RP(x) V OP(x),

will result in the ‘oilawing code generated by the frame translator:

(THOR(THCOND((THGOAL(VAR(THV X)NT)

((THGOAL(NVAR(THV X))) (THFAIL))

(T(UNCERTLIT(LIST(QUOTE VARXTHV X)T))
{ THCOND((THGOAL(LP(THVX)))T)

((THGOAL(NLP(THV X))) (THFAIL))

(T(UNCERTLIT(LIST(QUOTE LPXTHV X)T))
| (THCOND((THGOAL(KP(THV X)) T)

((THGOAL(NRP(THV X)XTHFAIL))

(T(UNCERTLIT(LIST(QUOTE RPXTHV X)HT))

(THCOND((THGOAL(OP(THV X)NT) |

((THGOAL(NOP(THV X)XTHFAIL))

(T(UNCERTLIST(LIST(QUOTE OPXTHV X)T)) i
(CONDSTAT(THV CGL)T)

where CGL. is a variable having as value the post condition ot the

rule and is used in the contingency goal selection procedure. The gua

occurring in a conjunction will result in the generation of the

following code

(THCOND((THGOAL(NEMPTY(THV X))T)

((THGOAL(EMPTY(THV X))XTHFAIL))

(T(UNCERTLIT(LIST(QUOTE NEMPTYXTHV X)NIL))
(CONDSTATE(THV CGL)NIL)

This code generated when the frame is translated will if executed at program

generation time call the necessary construction procedures io generate conditional |

statements as further described in the next section.

: 110 SYSTEM DESCRIPTION

9.5.2 IMPLEMENTATION OF CONDITIONAL STATEMENT GENERATION

When a goal is found to have an undetermined truth value as defined in Section |

5 and implemented according to Section 9.5.', the global variable UNCERTLIST is <at to

the list of undetermined literals (perhaps moi2 than one literal if G is a ¢.3junctio~)
| The following procedure is then carried out:

| (1) The trace stack is searched from ihe top (current rule entered) to find *Fo]
pending goal of smallest scope that is * lly instantiated, say G* and to «ct

(KPLACA) a flag,i.e. "IF", for each member of UNDERTLIST in the <rule-use>

above G* e.g. for rule names T and goals pending G,

GC. «T G) IF.) (T° Ge)

These flags in the trace stack will signal the end of the else clavue anc |

the point of rejoin for the contingency programs called from the

conditional sta‘ement and generated later.

(2) The conditional siaiement is generated as described in Section 5.2. In

particular for each member of UNCERTLIST, say L, a new procedure name,

say p, is generated, the appropriate siate, say S, is created and the triple

(0,5,G*) is placed on ihe subproblem stack. |

(3) An expressiun ui the form,

(UF ~Ly THEN..(IF SL THEN py ELSE py)..ELSE)

Is added to the top variable in the ANS stack. Note that the finai eise

clause is left empty but will be filled in with what was called the trunk

program segment in Section 5.2. :

1 (4) The list uf new procedure names generated in step (2) is "CONSed" to a :
yivbal variable FROCLIST.

SYSTEM DESCRIPTION 111 3

| (5) A new answer variable name is generated added to the top of ANS and |
initialized.

(6) Program generation continues until a rule has been successfully applied

that has some IF flags on its <rule-use> entry in the trace stack. The

following steps are then carried out:

(a) Append the value of the top variable in ANS to the next-to-the-top

variable and pop ANS. (note: This places the trunk program as the

else clause)

(b) Form the triple ((CAR PROCLIST) DBLITS ASSERTLITS) using current

J values of these global variables and add it on to the variable

| PROCDATA to be used later to compute the rajoin condition for (he |

programs named in (CAR PROCLIST)

REMARK: ANS and PROCLIST are managed as LIFO stacks which correspond ;

to the entering and exiting of Llocks in the generated program. This

assures that the correct elements will always be at the top of the stacks

and arbitrary dooth of block rniasting is allowed. |

(7) After the trunk program has been completely generated, each triple in

PROCDATA is accessed. Each consists of a list of procedure names having

the same rejoin point in the trunk program, and the values of UBLITS and

ASSERTLITS at the point of rejoin. The sufficient input assertion for the

program segment from the point of rejoin to the may be computed by by

removing from the values of DBLITS and ASSEKTLITS at final output state

their respective values at the point of rejoin then following the algorithm |
described in Section 9.4. This input assertion must be provable from the

112 SYSTeM DESCRIPTION

p final output state of each procedure in the list when it is generated (see h
Section 5.4) and is stored as an additional element of each associatea triple

in the sukproblem stack.

| |

7,jr
SYSTEM DESCRIPTION 113

|
| 9.6 ASSEMBLY OF WHILE LOOPS

In Section 8 problem reductior. search in a THAND-OR-AND tree was described

| and in Section 6.1 the subgoal structure of a node expanded using an iterative rule
| was given, i.e. the premises that must be achieved to justify the construction of a loop.

The subgoaling system provides program segments and substitution information

allowing the loop assembly phase to fully satisfy the premises and construct a WHILE

loop. This formal algorithm is sketched in Section 6 and now the metho implemented

will be considered in more detail.

The inputs to the loop assembler will first be described. Next the system |

methods will be given for computing the successions of values for program variables to |

1 have during successive iterations of the loop. Here some of the methods are decidely

neuristic in an effort to reduce the number of generated program variable and

: associated assignment statements. Then we describe the generation of the update |

assignment statements and their assembly with the other program segments tc

produce a complete while loop. |

9.6.1 INPUTS TO LOOP ASSEMBLER

Consider an iterative rule applied to achieve 1{?}G defined by the assertions

5 P(basis), Q(invariart), R(iteration step goal), Grule goal), L{control test) and S(output |

assertion) and whore V is the list of variables in Q. The inputs required for loop

assembly are as follows.

(1) A basis program segment p(P) is given that achieves the basis condition

from state I, i.e. I{p(P)}I’ and I’ P,

(¢) An instance QA of the loop invariant is given such that I'|-Q\, where A=

J {<vies>... <vpesp>). The substitution A is actually constructed by this

114 SYSTEM DESCRIPTION

deduction and will be used to provide initial values for system generated

program variables corresponding to certain v, determined below. 3

(3) The formal algorithm calls for the generation of a loop body program ¥-

segment p(R) that achieves the iteration step goal from the state QaL, i.e.

QAL{p(R)}I" and I"c R. This is to assure that the generation of p(R) did not

depend on particular properties of individual constants not shared by

others of the same type in the domain and that p(R) would, in general, be

incorrect. For example with respect to the integers zero has an additive |
property not shared by other integers, io. identity. In the current

implementation p(RA) is generated such that I'{p(RA)}I’", where QAALX are

true in I’, then p(RA) is generalized as described below.

| (4) An instance Q\’ of the loop invariant is given such that I’’l- QX\’, where A’ =

{<viety>,..,<vpet>). Since the invariant is a characterization of reiations in

the subset of the state relevant to the iteration, comparing QA and QA’ will

reveal instances of value “changes” that should be computed using system

generated 100p control variables. 4

| (5) An instance of the loop control test, i.e. L), is given,

In practice by {aking the entire state I’ as the input state from which to achieve

. R in step 3, the user’s responsibility to express in Q all properties needed in the |

subgoal tree rooted at R is reduced.

SYSTEM DESCRIPTION 115

9.6.2 COMPUTING SUCCESSIONS OF VALUES

It is assumed that the loop invariant Q characterizes the relations existing at

each iteration among values of program variables. In particular all free variables in R :

: and L must be among the free variables in Q. Therefore significant program variable
value changes are given by comparing successive instances of Q i.e. Qx and QX\’ for the |

first iteration. If for eac' argument position in each relation in Q a different program 1

variable is generated then a correct computation rule for updating the values in the

program variables is a conditional assignment statement as described in Section 6

where each argument position in Q has a different w-variable. That some optimization

(le. reduction of the number of program variables) could be done at program |

generation time is suggesied by two observations: |

(1) Many of the values in corresponding argument positions in QA and QX’ will

not change, i.e. they are constant for the loop,

(2) Many of those that do change may be controlled using the same program

variable.

Since the frame language allows functional terms some successive values may be

of the form, s; goes to f(s,). In this case direct functional assignments of the form, Y,

+ 1(Y;) may be efficiently placed at the top of the loop to avoid repeated computation. |

These ideas have led to a number of optimization heuristics which are intended to

either:

(1) reduce the number of generated program variables,
or (2) recognize successive values related by a function and assemble direct

functional assignments,

or (3) reduce the portion of Q required in a conditional assignment.

By comparing respective argument positions in Qr and QX’ the system

recognizes two kinds of computation rules relating successive values, namely functional

N

116 SYSTEM DESCRIPTION

computation, eg. t, = f(s;), and Boolean expressions, e.g. T(s,t;), where TeQ. The

system constructs a list of significant change pairs each corresponding to one of the
following cases:

(1) sy and t; are symbolic expressions related by the formula TcQ and are

represented by ((s, t,)T). |
(2) s; and t, are symbollic expressions related by a function f which is evaluated

| (using either EV or EVN), i.e. ty = f(s) and are represented by (sy, t;, f(s,). Note
| that in this case it is not sufficient to search terms in Q or R to find the function
| f. During the generation of P(R) the subgoal tree rooted at R is traced to retur:;

the function f, if any, used to compute a succession of values in the loop.

(3) s; and t, are symbollic expressions related by a function f which is not

evaluated but lefi in symbolic form, and are represenied by (sy, f(s;), f(s).

SYSTEM DESCRIPTION 117

9.6.3 ASSEMBLY OF PROGRAM SEGMENTS

{ Given the inputs specified in Section 9.6.1 and the change list described in

Section 9.6.2, the loop assembly procedure does the foliowing: |

1. Generates a pair <Y,, Z;> of control variables to take on the successions of |
values during loop execution for each change pair. This is to cover the case in

which both s, and t; occur in p(R) and we want to avoid the complexity of

| considering statement order in p(R). |

2. Constructs assignment statements that initialize the control variables prior to |

loon entry, their values for ea~h execution of the loop so that an instance of the

loop invariant will be true each time the loop body is entered,

3. Substitutes control variabbles for their values in the loop body

4. Assembles these proram segments together to form a "while" op

The detailed loop assembly procedure will now be given. The change pairs are

| given on a list CL and will either be of the form ((c¢,8)T) or (e¢,/8,F).

(1) Set PA to the first change pair on the change list CL. If all change pairs have been

| processed then go to (8). |

(2) Generate a new pair of variables Y and Z to be used for predecessor and

successor values respectively.

(3) Add (Y « o¢) and (Y « 2) at the ends of p(P) and p(R) respectively.

Justification: The assignment (Y « «) is an initialization of the variable Y to the initial

value o¢ and is done after the basis program p(P) prior to loop entry. The assignemtn

(Y « 1) updates the variable Y after the iteration program IP with the successor of its ;

former value which It is anticipated will be in Z in preparation for the next execution

of the loop body.

| 118 SYSTEM DESCRIPTION

(4) Add the replacement pair («, Y) to the predeces<or replacement list ALP and (3, 2)
| to the successor replacement list ALS for later substitution.

(0) If the change pair PA utilizes a function then add the assignment (Z « F) to the

successor function assignment list SASG, remove the first change pair from CL, and go
to (1).

Justification: The function F is a fully instantiated function whose value is equivalent to
AB. This step causes Z to get the successor value as required in step (3).

(6) Generate a new variable W to be used as a call by reference variable in a
conditional assignment statement and substitute W for all occurences of Bint |

| Justification: W will hold the successor value for the conditional assignment to Z.
(7) Add the conditional assignment (IF T THEN Z « W) to the conditional assignment list
SASGR, remove the first change pair from CL and go to (1).

Justification: The relation T IS assumed to specify the ordering between successive |
values that will be taken on by the control variables Y and Z, i.e. using T the successor

of Y may be deduced. This of course implies the computability of T as a procedure call |
at execution time.

(8) Substitute variables for values in SASG and SASGR using the closure of ALP.

Justification: By closing the association lists under substitution dependence upon the |
order of substitution into SASG and SASGR is avoided. Subsitution into successor

assighments only for predecessor values using their associated variables (Y's) is
sufficient and in fact required because: |

| (a) Any successor value that may have occurred in a relation T has already been |
substituted for by Ww. |

(b) A successor value is by our conventions the new value that is computed as a

SYSTEM DESCRIPTION 119 |

result of executing the loop body and occurs as an argument in the invariant Q . By

generating a distinct pair of control variables for each change pair, we separate

| the successor assignments so that each is a function of predecessor values only. |
Since the successor value of one change pair may be the predecessor of another

this restriction is necessary.

(9) Substitute variables for values in p(R) and L using the closure of ALP annd ALS.
(10) Assemble a "while" loop in the following form:

p(P); |
SASGR;
while ~ L do

begin
SASG;

p(R);

| SASGR;
end

Remark: Ambiguities may arise because of equalities among elements in the change of

values list, i.e. (sy, t) ... (sy, t,)). There are thee cases, i.e.

(a) Vij [is] A s is] A Fifi Att,) |

(b) Vi,j (is) A tet] A Fijlinj A s;i=s,},

(€) Vij [isj A sis; A ts] A Fijlikj As =t,]

These are resolved by referencing a trace of variable bindings in the subgoal

tree associated with each cccurence of each value or by simply re-achieving the

iteration step condition R from state I" uniil the ambiguities disappear.

To illustrate the process of computing a succession of values generating

successor assignments end substituting into them consider two examples from frames

treated sarlier.

| Consider a slight variant of the iterative rule TUP in figure 12 and we have,

QA = ON(M,B1,U) A STACKED(B2,B81,U) A SMALLER(B2,81), and |

|

120 SYSTEM DESCRIPTION

] QA" = OM(IM,B2,U) A STACKED(B3,82,U) A SMALLER(B3,B82)
which results in a change pair of the form,

((B1,82) STACKED(B2,81,U) A SMALLER(B2,81)).

and the successor assignment, (after substitution using ALP)

| IF STACkE(Wi VI UIASMALLER(W1 Y1) THEN
ll «Wl;

As ano'her example the iterative rule TFACT in tigure 10 yields, (where we
assume here that PROD is a primitive multiplication function)

QN = C(X0,1) A C(X1,0) A FACT(1,0), and

Q\' = C(XO,(PROD 1(ADD1 0))) A C(X1,(ADD1 0)) A FACT ((FROD 1 (ADDI 0)), (ADD |
0)),

which results in the change pairs,

(O,(ADD1 0), (ADO1 0)) and (1,(PROD 1(ADD 0))(PROD 1(ADD! 0)))

and successor assignments, (after substitution from closure of ALP and syntactic
transformation from prefix tunctions as specified in the frame)

Y1 «(Yl +1),
Y2 «(Y2 2 Y])

After the loop has been assembled, control is given to an update procedure 4

which applies the rule of Invariance using the given output assertion S ag previously |
described. If no output asserticn is given then the loop is interpretively executed until

the goal G is true. This is required to provide a correct initial state for continued
program generation.

SYSTEM DESCRIPTION 121 |

9.7 STRUCTURED PROGRAMMING | |
The objective of structured programming is to provide mental and organiza.ional

tools by which the programmer may create large systems while keeping the problem

complexity firmly within his mental grasp at each step of the creation. In Section / the

current rather rudimentary features in the system were briefly described au an

example given.

Structured programming consists of constructing a program to solve a parucuiar

problem by specifying a sequence of operations in which the operations are nol

necessarily “primitive” to the interpreter, e.g. computer, human, etc., but if successfully

/ carried our will correctly solve the problem. For each operation in the sequence th! |

| is not primitive i.e. the procedure is declared to be an assumption, the function it

performs becomes a subproblem <p,],G> for the system that may be similarly expandea

into a sequence of perhaps again non-primitive operations. The process continues by |

step-wise refining each operation until the problem can be solved correctly using only

"primitive" operations. The relationship between higher level operations and the

equivalent sequences of sub-operations that may be generated by successive levels of |

| structured development take the form of a tree with the initial generated program at

the rcot. |

During the structured development process an overall structure for the program

is built up that primitive constructs will have to tit into. An implicit system assumption

: is that a lower level operation will not have side effects that affect the correctness of

the overal structure containing it. This is essentially a "top-down" process, i.e, one

| proceeding from the general functional description level down to specification of

primitives. However, there is a "bottom-up" component that occurs when on the basis

122 SYSTEM DESCRIPTION

of information gained while generating lower level primitives, or to satisfy the

requirements of using them, the overall structure, i.e., operations previously generated

at a higher(closer to the root) level, must be modified. This may result in back’racking
if these modifications invalidate any previously specified operation. Also the over «|

structure may be moditied by shifting a high level operation specification to one which

utilizes more mathematical properties of the problem domain. In the current system

any bottom-up component and shifts(modifications) to higher level operations are do:.c

interactively by using the advice system. A useful automation of structured

programming should provide more powerful control and record keeping facilities fc

the traversing the siructured uevelopment tree.

The growing popularity of structured programming and its apparent usefuilness

for software understandability (and therefore reliability) indicates the need for

| continued researcn to automate this process. Certainly it is possible now to build an |
Interactive struciured programming system that can handle the top-down expansion,
bottom-up backtracking and shifts at any level for the augmentation of the
prcgraininer,

| 123
: APPENDIX A: EXAMPLES

l. A Simple Translator from Infix to Polish Notation

This example illustrates the generation of conditional tranches within '00ps in a

| program to convert strings of symbols in infix form into strings in polish form. ie.
"(X+Ys2)" converts to "XY+Zs" This is a common symbol manipulation tas< in

compiler. The example shows how the system can be used to program in a structured

"top down" manner. Ly
| A fully parenthesized, syntactically correct infix expression of a specified length

Is given as input and on output a result stack S contains the Polish string. A working |
stack R is used during the translation. We may consider the basic data structures |

(stacks)i.e. variables, constructors,(e.g. push) and selectors (e.g. pop)),and the primitive

operators as given. Then,in this case,the user proceeded in the following steps.

(1) First the actions of the top level of the program were described by declarative

statements (i.e. the definitions of RECOGNIZED and PROCESSYM in terms of basic

concepts such as "X is a left parenthesis”, and intermediate concepts such as "pop :
operators from stack X and push them unto stack Y". |

(2) Then at the second level, Rules - in this case iterative rules - were given tor

writing loops that implement the intermediate concepts. In doing this,the user specified

the major characteristics of 3 loop and left the system wiin the details of decidirg |
whether to write such a loop,and if so, with the choice of local variables,the actual |

operations in the loop body and their order,(in so far as that was not specified) and

with looking after the updating of the local variables. Thus in order to write the top
level loop, TSLOOP, to achieve POLTSL(T,UV), the user must have "thought out" an

invariant relation between the elements manipulated by the loop body and what the :

:

| 124 APPENDIX A

| goals of the locp body were (in this case one of the goals is a top level concept, |
RECOGNIZED(X,Y, Z)). The system, if it uses this rule in constructing the output, will |

| construct a loop body including update assignments, and assemble it into a WHILE
statement, Similary, in this example the user has supplied iterative rules for FOPOPS
anc POPHOPS.

The output program consists ¢‘ a main program, ie. PROCI, containing a
| compound conditional statement whicn splits up the cases for processing as a function

| | of the input symbol. Each allowable input symbol must be either of type variable,
operator, left parenthesis, or right parenthesis. The main program proceses the case

in which the input symbol is an Cperator and generates calls to contingency programs, |
| PROCS, FROC4, & FROCS, 10 be generated for the other three alternatives. The

procedure calls FROC2, FRUCS, & “KOCT result in error exits.

The various parts of the ‘rame definition will be given below followed by the
generated programs.

'

APPENDIX A 125

RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUENT PARTIAL UNIQUENESS

C(X,Y) “Contents of X is Y" TRUE FALSE C(X,x)
INTEGER(X) "X is an inteper" TRUE FALSE FALSE

VAR(X) "X is a variable" FALSE TRUE FALSE

LP(X) "X is a left paren” FALSE TKUE FALSE

| RP(X) "Kis aright paren” FALSE TRUE FALSE
OP(X) "X is an operator" FALSE TRUE FALSE

ISVAR(X) "Ais a program var- FALSE FALSE FALSE
table"

NEXTSYM(X) "A value for X is TRUE FALSE FALSE
input”

KECOGNIZED(X,Y,Z) "Symbol X is recog- TRUE FALSE FALSE
nized wrt stacks Y & 2°

PROCESSYM(X,Y,Z) “Symbol X is processed TRUE FALSE FALSE
wrt stacks Y & 2"

>(X,Y) "X is greater than FALSE FALSE FALSE
Y"

<(X,Y) "X is less than Y" FALSE FALSE FALSE

POLISH(X) "A contains a Polish TRUE FALSE FALSE
sequence” |

FOLTSL(X,Y,2) "Translate an infix TRUE FALSE FALSE
String x symbols |
long to Polish

: using stacks
Y and Z"

=(X,Y) "X is equal to Y" FALSE FALSE FALSE |
PUSHEL(K,Y) "Xis pushed onto Y* TRUE FALSE FALSE |

FOPRED(X) "X is popped" TRUE FALSE FALSE ;
TOPPED(X,Y,2) "The top symbol of TRUE FALSE TOPFED(X,Y,)

126 APPENDIX A

| stack Y of size

Lis assigned to X"

POPOPS(X,Y) "Pop operators from TRUE FALSE FALSE |
X and push onto Y"

| POPHOPS(X,Y,Z) "Pop operators from TRUE FALSE FALSE
Y that have greater
priority than X and

push onto Z"

| STACKSIZE(X,Y) "Size of stack X is TRUE FALSE STACKSIZE(X,*)
' Y" i

| STACK(X) "X is a stack” FALSE FALSE FALSE |

EMPTY(X) "Stack X is empty” FALSE TRUE FALSE

ITERATIVE RULES:

NAME: TSLOOP

BASIS: NeEWVAR(X,Y) A C(X,0)
INVARIANT: CX,W) A INTEGER(W) A STACK(V) A STACK(U) A ISVAR(Y)
ITERATION STEP: C(X,(ADD1 W)) A NEXTSYM(Y) A RECOGNIZED(Y,U,V)
CONTROL TEST: >(X,T)
OUTPUT ASSERTION: POLISH(V)

GOAL: POLTSL(T,U,V)

NAME: KLOOP

BASIS: NEWVAR(X) A STACKSIZE(U,Z) A TOPPEW(X,U,2)
INVAKIANT: CX,Y) A =(Y(TOP U)) A STACK(U) A STACK(V) A STACKSIZE(UW)
ITERATION STEP: PUSHED(X,V) A FOPPED(U).A TOPPELXX,U,W) |
CONTROL TEST: ~OP(X)
OUTHUT ASSERTION: FPOFOPS(U,V)
GOAL: FOPCPS(U,V)

NAME: OLOOP

BASIS: NEWVAR(X) A STACKSIZE(U,T) A TOPPED(X,U,T) |
INVARIANT: C(X,Y) A =(Y,(TOP U)) A STACK(U) A STACK(V) A STACKSIZE(U,W) i

| ITERATION STEP: PUSHED(X,V) A POPPED(U) A TOFPED(X,UW)
CONTROL TEST: ~OP(X) v <((FRIORITY XXPRIORITY 2))
OUTPUT #5SERTION: FOFROPS(Z,UV;
GOAL: FOPHOPS(Z,U,V)

APPENDIX A 127

PRIMITIVE PROCEDURE PRE-CONDITIONS POST-CONDITIONS

prish(X,Y) ISVAR(X) A STACK(Y) PUSHED(X,Y)
A STACKSIZE(Y,Z) A STACKSIZE(X,(SUB! Y))"Push symbol X

onto stack Y"

pop(X) STACK(X) A STACKSIZE(X,Y) POPPED(X)
"Pop stack X" A ~EMPTY(X) An STACKSIZE(X,(SUB1 Y))

getnext(X) ISVAR(X) NEXTSYM(X)
"Get next symbol"

«(X,Y) ISVAR(X) C(X,Y) :"Assign Y to X"

top(X,Y) ISVAR(X) A STACK(Y) TOPPED(X,Y,Z)
"Put top of stack A STACKSIZE(Y,2) A C(X(TOP Y))Yin X"

DEFINITIONS: :
BODY OF DEFINITION RELATION DEFINED

(VAR(X) v LP(X) v RP(X) v OP(X)) A PROCESSYM(X,Y,Z) RECOGNIZED(X,Y,Z)

VAR(X) A PUSHED(X,Z) PROCESSYM(X,Y,Z)

LP(X) An PUSHED(X,Y) PROCESSYM(X,Y,Z) |

KP(X) A POPOPS(Y,Z) A POPPED(X) PROCESSYM(X,Y,Z)

OP(X) A POPHOPS(X,Y,Z) A PUSHED(X,Y) PROCESSYM(X,Y,Z)

=(X,0) v INTEGER((SUBL X)) INTEGER(X)

INITIAL STATE: ;
STACK(S) A STACK(R) A STACKSIZE(S,I) A STACKSIZE(R,J)

| ALGEBRAIC SIMPLIFICATION: (SUBL(ADD1 X)) = X 3

128 APPENDIX A

PROC! (NR S)

ISVAR(X 1 KISVAR(X2);ISVAR(X3),STACK(S);STACK(R);
COMMENT

INPUT:CONDITIONS: .
STACKSIZc(R J)ASTACKSIZE(S 1)
OUTPUT:CONDITIONS:

POLISH(S);
COMMENT

PROC6 ATTEMPTS: TO:ACHIEVE: (POPPED R,
PROCS ATTEMPTS: TO:ACHIEVE: (PKOCESSYM X2 R S)
PROC ATTEMPTS: TO:ACRIEVE: (PROCESSYM X2 R S)
PROC3 ATTEMPTS: TO:ACHIEVE: (PROCESSYM X2 R S)
PROC2 ATTEMPTS. TO:ACHIEVE: (FROCESSYM X2 R S);

BEGIN

Xl «QO; AWHILE ->(X1 N) DO
BEGIN

ll « (K1+1);

GETNEXT(X2); ;IF -0r(X2) THEN

| IF -KP(X2) THEN

IF -VAR(X2) THFN

IF -LP(X2) THEN

FROC2(X2 R S)

ELSE PROC3(X2 RS)
ELSE FROCY(X2 R S)

LSE PROCH(X2 RS)
ELSE

LeGN

TOP(X3 R);

WHILE OP(X3) A ~<((FRIORITY X3XPRIORITYX2)) DO
BEGIN

| FUSH(X3 §)

IF EMPTY(R) THEN

PROCG(R) |

ELSE |
Le GIN

FOP(R);
END

TOP(X3 R);
ENO

PUSH(X2 R);
END

X1 « Z1 |

END
ENO

FKOC3 (x2 RS)

ISVAR(X2);STACK(R);
COMMENT

APPENDIX A 129

INPUT CONDITIONS:

STACKSIZE(R I)

OUTPUT:CONDITIONS:

STACKSIZE(R (ADD! 1))APUSHED(X2 RY);
BEGIN

PUSH(X2 R);
END

PROC4 (X2 R S)

ISVAR(X2);STACK(S);
COMMENT

INPUT:CONDITIONS:

STACKSIZE(S I)

OUTPUT:CONDITIONS:

STACKSIZE(S (ADD! I))APUSHED(X2 S);
BEGIN

PUSH(X2 S);
END

PROCS (X2 R S)
ISVAR(X4);STACK(S)STACK(R): |
COMMENT

INPUT:CONDITIONS:

STACKSIZE(R J)ASTACKSIZE(S I)
OUTPUT :CONDITIONS:

POPOPS(R S);
COMMENT

PROC7 ATTEMPTS:TO:ACHIEVE: (POPPED R) ;
BEGIN

TOP(X4 R);

WHILE OP(X4) DO

BEGIN
PUSH(X4 S) |
IF EMPTY(R) THEN

PROC7(R)

ELSE |
BEGIN

POP(R);
END

TOP(X4 R);
END

IF EMPTY(R) THEN !
PROCS8(R)

ELSE

BEGIN

POP(R);
END

| END

130 APPENDIX A

2. Integer Square Root Problem |

As an example of generating a program for numerical computation consider the

: task of computing the largest integer k for a given n such that k is less than or equal

to the square root of n. An essential fact formalied in the Frame definition is that the

| difference between the ith and (i+1)st squares is 2i+l, i.e.

I+)? - «i 42041-F =2itlmititl

This allows the simple iterative upward computation for any i, using two |

variables Y1 and Y2 and only the arithmetic operation of addition, of i in Y1 and (i+1)°

in Y2 such that when the value in Y2 exceeds n then Y1 will have the desired value k. |

The Frame definition in addition to a primitive procedure for assignment is given

below followed by the generated program.

APPENDIX A 131

RELATION INTERPRETATION FLUENT PARTIAL ~~ UNIQUENESS

C(X,Y) "Contents of X is Y" TRUE FALSE C(X,3)
>(X,Y) "X is greater than Y" FALSE FALSE FALSE

ISQRT(X,Y) “X contains the TRUE FALSE ISQRT(X,*)
integer square
root of "Y"

VSQ(X,Y) "X equals Y " TRUE FALSE FALSE

ISVAR(X) "X is a variable" FALSE FALSE FALSE

ITERATIVE RULE:

NAME: TSQ
BASIS: NEWVAR(X) An C(X,(ADDL 0)) A C(W,0)
INVARIANT: CW,Y) An C(X,Z) An VSQ(Z,(ADDL Y))
ITERATION STEP: C(W,(ADDI Y)) A CX,(PLUS Z(ADD1(PLUS(ADD1 YXADDI1 Y)))
CONTKOL TEST: >(Z,V) |

OUTPUT ASSERTION: ISQRT(W,V)

GOAL: ISQRT(W,V)

AXIOMS:

VSQ((ADD1 0),(ALD1 0))

VSQUMINUS Z(ADDI(PLUS Y Y))(SUBI Y)) € VSQ(ZY)

INITIAL STATE:

ISAVR(XO0)

ALGEBRAIC SIMPLIFICATION:

(SUBL(ADDI X)) = X
(MINUS (PLUS X Y)Y) = X

32 APPENDIX A

PROC1(X0 N)

ISAVR(X0); :COMMENT

INPUT ASSERTION:
NONE

OUTPUT ASSERTION: | |ISQRT(XO,N);
BEGIN

XO « 0;

Y2 « (O+1);
WHILE -> (Y2,N) DO
BEGIN

XO « (XO + 1);

Y2 « (Y2 + ((X0 + X0) + 1);
END

END

APPENDIX A 133 |

3. Hand-Eye Tasks |

In a simple robotics environment an “eye” (usually a Vidicon TV camera) may be

used to locate objects on a table and a computer contolled arm carries out

manipulatory tasks with these objects. We assume the identity and location of the

objects in the scene have been discovered and are given in the initial state.

Programs written for autonomous robot control must be capable of on carrying

some sort of dialogue with the real world since most relations will be partial and the

outcome of operations will not be totally reliable. Conditional calls to contingency

procedures is one way of establishing this dialogue.

The frame definition is given below followed by a generated program.

Best Available

Copy

for page 134

134 "APPENDIX A

]RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUENT 'PaltiaL OMIQUENESS

AT(X,Y) "X is at focdtion Y” TRUE PAUSE AT(X,#) |
MAGIX.Y) "X has Y™ TRUE FALSE : FALSE ;
CANTUACKXY,2) X can rondh TRUE GE "FALSE .fromY to 2 |

COLLIDEIXX,Y,Z)™ collidoy TRUE 'PALSE FALSE
batveeon ¥Y any 7"

OROPRED(W,X,Y,Z) “W droppoti X TRUE FALSE 'PBISE |
botwoon Y any 2" |

AVAILABLE(X,Y) "X 1s available TRUE TRBE FALSE |
iy” :

MISSED(X,Y,Z) "X missed Y TRUE FALSE FALSE
at 2" ;ROBOT(X) "X Is » robot” FALSE 'PALSE FALSE

PRIMITIVE PROCEDURE PRECONDITIONS POST -CONDIT INS

reach(A 11,12) NOBOTIAL) nOBKOL) A MAS(ALOL) (AT(OH LE) NATALLEY :
"Al reaches A = HAS(AL02) A CANREMIMAL LL LE)
trom L] 10 L2”

franspor{ALOILIL2) ROBOTAL) A OBKO1) A HASALO1) (ATOLL?) A ATCA LL DY)
"Al transports 01 AATOLAL A ATALLY) 0) {COLLIDEENA] 1342)
from L1 to L2" A CANREACH(ALLLLD) A DROPPED(ATOT L142)
prckup(A1,01.L1) ROGOTIAL) A OBKOL) A ATOLLL) MAB(ALOL) © MiBSED(A 10111)
"Al picks up 01 A = HAS(AL02) A AVICABLEWNLT)
at LI" A ATALLL)

putdown(A1,01,L1) ROGOTIAL) A HAALO1) 3 HABA OL) |
"Al puts down 0] AATIALLL)

at LI” |

| INITIAL STATE:

ROBOT(ARM) A 0BXBLKL) A AT(BLK1,P) A AT(ARMB)

’ lh en(Gl

APPENDIX A 135 |

PROC1(BLK1 ARM P §)
ROBOT(ARM); OBXBLK]1);
COMMENT

INPUT:CONDITIONS:

AT(BLK1 P) A AVAILABLE(BLK1 P) A CANREACH(ARM S P)
A CANREACH(ARM P §)
OUTPUT:CONDITIONS:

HAS(ARM BLK1) A AT(ARM S) A AT(BLK] S);
BEGIN

: IF ~ AVAILABLE(BLK1 P) THEN
PROC2(ARM BLK1) |

ELSE

BEGIN

IF ~ CANREACH(ARM S P) THEN

PROC3(ARM P) |ELSE

BEGIN

REACH(ARM $ F); |IF ~ AT(ARM P) THEN

IF ~ AT(ARM P) A COLLIDED(ARM S P) THENPROCA(ARM P)

_ ELSE PROCS(ARM P)
END

PICKUP(ARM BLK1P)
IF ~ HAS(ARM BLK1) THEN

IF ~ HAS(ARM BLK1) A MISSED(ARM BLK1 P) THEN
PROC6(ARM BLK1)

ELSE PROC7(ARM BLK1)

ENDIF ~ CANREACH(ARM P S) THEN

PROC10(BLK1 S) |ELSE

BEGIN

TRANSPORT(ARM BLK] P S);
IF ~ AT(BLK1 S) THEN

IF ~ AT(BLK1 S) A DROPPED(ARM BLK1 P S) THEN |
PROC1 1(BLK1 S) |

ELSE PROCI Z(BLK] §) |
END

END

136 APPENDIX A |

| 4. n-Queens Puzzle

| To illustrate how the program generation system may be used to solve puzzles,
a backtrack problem solving algorithm (see Section 9.1) is axiomatized in the frame

| definition language to solve the n-Queens puzzle. The object of this puzzle is to place

Nn queens on an n x n chessboard such that they are mutually non-attacking. the

algorithm proceeds by placing queens on the board a column at a time, backing up !
when no placement is possible.

The frame definition for this problem is given below followed by a generated |

solution programs for the 4-Queens and 8-Queens cases.

APPENDIX A 137 ’

RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUENT PARTIAL UNIQUENESS

SAFE(X,Y) "Square X,Y is safe” TRUE FALSE FALSE |
BOTHSAFE(W,X,Y,2) “Square WX is safe TRUE FALSE FALSE 5

: wrt square Y,2"
ALLSAFE(X,Y,2) "Square X,Y is safe TRUE FALSE FALSE \

wrt columns 1,.,2"

QUEEN(X,Y) "A queen is on TRUE FALSE FALSE
Square X,Y"

QPLACED(X,Y,Z) "Queens are placed TRUE FALSE FALSE
in columns X,..,2" |

=(X,Y) "X is equal to Y" FALSE FALSE FALSE
PLACED(X) "X queens have TRUE FALSE FALSE

been placed”

PRIMITIVE PROCEDURE PRE-CONDITION POST-CONDITION

placequeen(l,J) SAFE(LJ) QUEEN(],J)
"Place queen on square [,J"

: AXIOMS:

ANTECEDENT CONSEQUENT)

=(J,1) v {~=(J,1) A ALLSAFE(LJJ)} SAFE(]J) |

=(K,1) v {REQUEST(QUEEN(IP(EVN(SUBI K))) ALLSAFE(L,J,K
A BOTHSAFE(LJ IP<(EVN(SUBL K)A ALLSAFE(L.)(EVN(SUBI K))}

| ~=(11,I12) A ~=((EVN(PLUS 11 J1))(EVN(PLUS I2 J2))) BOTHSAFE(11,J1,12,J2) |
~=((EVN(DIFFERENCE 11 J1)),(EVN(DIFFERENCE 12 J2))) ;

DEFINITIONS:

BODY OF DEFINITION ' RELATION DEFINED

~=(I(EVN(ADDI1 N))) A ~=(J,0) A =(J(EVN(ADD1 N))) QPLACELXI,J,N)
v {QUEEN(L,J) A QPLACED(1,(EVN(ADDI J),N)}
v QPLACED((EVN(ADD! I), JN)

QPLACED(1,1,N} | PLACED(N} |

INITIAL STATE: (empty)

138 APPENDIX A |
PROC1

BEGIN

PLACEQUEEN(2 1);
PLACEQUEEN(4 2);

| PLACEQUEEN(] 3).
PLACEQUEEN(3 4);
END

PROC1

BEGIN

PLACEQUEEN(2 1);
PLACEQUEEN(S 2);
PLACEQUEEN(7 3);
PLACEQUEEN(1 4);
PLACEQUEEN(3 5);
PLACEQUEEN(S 6);
PLACEQUEEN(6 7);
PLACEQUEEN(4 8);
END

| ¢

139

APPENDIX B - AN INTERACTIVE SESSION |

4 A sample interactive session is here presented to illustrate the system’s use in

trame definition and program generation. Statements typed by the user will always be ;

prompted by "s". The top level system function is "SUBGOAL" which is called in the

manner given below to accept a frame definition from the terminal. Comments to aid

the reader’s understanding of the dialogue will be enclosed in quotes.
*(SUBGOAL)

"The system now enters an interactive mode for Frame definition.”
+ x x x SEMANTIC FRAME DEFINITION * = 2 =

RULE TYPE+ AXIOM

RULE NAME* AONTOP

IS THIS AN ASSUMPTION?# NIL

IS The RULE DIRECTLY RECURSIVE? NIL

INEQUALITIES IN ARGUMENT POSITIONS NIL
PRECONDITIONS:

x ROBOT(X1) A ON(X1,X2) A ~STACKED(X3,X2);
POSTCONDITIONS:

2 ONTOP(X1);

RULE TYPEs PRIMITIVE PROCEDURE |
| RULE NAMts STANDON(R1,Z1) |

IS THIS AN ASSUMPTION?* NIL !
IS THE KULE DIRECTLY RECURSIVE?s NIL

INEQUALITIES IN ARGUMENT POSITIONS* NIL :
PRECONDITIONS:
+ RKOBOT(R1) A ~ON(R1,W1) A BOX(Z1) A CLOTHES(O1) A WEARING(R1,01) |
A AT(Z1,Y1) A AT(R1,Y1); j
POSTCONDITIONS:

x ON(R1,Z1); |

RULE TYFE* PRIMITIVE PROCEDURE

RULE NAMEs DRESS(R1,01)
IS THIS AN ASSUMPTION?s T

IS THE RULE DIRECTLY RECURSIVE?s NIL

INEQUALITIES IN ARGUMENT POSITIONS* NIL

PRECONDITIONS:
2 ROBOT(R1) A CLOTHES(O1);
POSTCONDITIONS:

+ WEARING(R1,01);

RULE TYPes PRIMITIVE PROCEDURE |
RULE NAMc* TRAVEL(RL,L1,L2)
IS THIS AN ASSUMPTION? NIL

IS THE RULE DIRECTLY RECURSIVE?s NIL |

140 APPENDIX B
| INEQUALITIES IN ARGUMENT POSITIONS: (R1,8,4)PRECONDITIONS:

* ROBOT(R1) A AT(RI,L1) A ~ ON(R1,02,L1);POSTCONDITIONS:
| * AT(R1,L2);

RULE TYPEs PRIMITIVE PROCEDURE

RULE NAMES STEPUP(X1,Y171) |IS THIS AN ASSUMPTION?+ NIL

IS THE RULE DIRECTLY RECURSIVE?s NIL |INEQUALITIES IN ARGUMENT POSITIONS: (R1,3,%)PRECONDITIONS:

* BOX(Z1) A ROBOT(X1) A STACKED(Z1Y1) A ON(X1,Y1); || POSTCONDITIONS:
+ ON(X1,21),

RULE TYPE# ITERATIVE
RULE NAMEs ITONTOP

IS THIS RULE DIRECTLY RECURSIVE?s NIL
BASIS CONDITION:

* ROBOT(X1) A ON(X1,X2);
INVARIANT:

* ON(X1,X3) A STACKED(X4,X3);
ITERATION STEP CONDITION:
 ON(X1,X4);

CONTROL TESTs NIL | |OUTPUT ASSERTIONS NIL
GOALs ONTOP(X1);

RULE TYPEs NIL

INITIAL STATE:

* AT(MCORNER) A AT(BI,L) A STACKED(B382) A STACKED(B2,81) |A BOX(B3) A BOX(B2) A BOX(BA) A STACKED(B4,83) A BOX(B1) |A ROBOT(M) A CLOTHES(SHOES)

SEMANTIC PROPERTIES OF RELATIONS:

IS ROBOT(R1) A FUNCTION OF THE STATE? NIL
IS ROBOT(R1) PART;AL?s NIL
ARGUMENT UNIQUENESS PROPERTIES NIL

IS AT(R1,L1) A FUNCTION OF THE STATE? T
IS AT(R1,L1) PARTIAL? NIL

ARGUMENT UNIQUENESS PROPERTIES (R14)

IS STACKED(X4,X3) A FUNCTION 0" THE STATE? T

IS STACKED(X4,X3) PARTIAL?s NIL |ARGUMENT UNIQUENESS PROPERTIESs (X4,8)

ALiat

PPENDIX BH 141 |

IS BOX(Z1) A FUNCTION OF THE STATE?s NIL
IS BOX(Z1) PARTIAL?+ NIL

| ARGUMENT UNIQUENESS PROPERTIES# NIL

IS ONTOP(X1) A FUNCTION OF THE STATE? T
IS ONTOP(X1) PARTIAL?s NIL

ARGUMENT UNIQUENESS PROPERTIES NIL

IS CLOTHES(O1) A FUNCTION OF THE STATE?= NIL
IS CLOTHES(O1) PARTIAL? NIL

ARGUMENT UNIQUENESS PROPERTIESs NIL

IS WcARING(R1,01) A FUNCTION OF THE STATE?s T
IS WEARING(R1,01) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIESs NIL i

IS ON(X1,Z1) A FUNCTION OF THE STATE? T

IS ON(X1,Z1) PARTIAL?* NIL

ARGUMENT UNIQUENESS PROPERTIES (X1,8) |

FILENAME* DSK:PCLI

TRACE MODE?s T

FERFORMANCE STATISTICS? T
LOOKAHCAD?# NIL

ALGEBRAIC SIMPLIFICATION?+ NIL

SUBGOALING SYSTEM GENERATED!

"A subgoaling system corresponding to the Frame has now been generated
| and the system may now receive a goal to achieve.”

SUBMIT GOALs ONTOP(M) |
LO YOU WANT THE PROGRAM LIBR ARY?# NIL
DO YOU HAVE ANY ADVICE? T

sxx ENTERING ADVICE SYSEM #x%
1% TRY STANDON BEFORE STEPUP |

#2% NIL "Exit advice system and begin program generation.”

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---ITONTOP

RULES ENTERED AND GOALS PENDING IN CURRENT $UBGOAL TREE PATH:
---(ITONTOP(ON M X2))STANDON

KULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ON M X2)XSTANDON(WEARING M SHOES))DRESS

((DRcS3 M $R0CS))

"Current program segment generated is displayed in this form."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: : |

142 APPENDIX B

~==(ITONTOP(ON M X2)XSTANDON(AT M L))TRAVEL

| (DRESS M SHOESKTRAVEL M CORNER L))
((URESS M SHOES)H TRAVEL M CORNER L)STANDON M Bi)
"This cons’itutes the basis program for the iterative rule.”

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
| -~=(ITONTCP(ON M B2))STANDON

STANDON IS FAILING!!!
---(-ON M W1) WAS THE LOSER

“STANDON is only applicable for climbing from ground level.” |

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ON M B2))STEPUP

((STEP M Bl B2))

"This is part of the loop body."

RULES ENTERED ANT GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ONTOP M))AONTOP

"The system now interpretively updates the state until the goal is
true, then the while loop is assembled.”

DO YOU WANT TO OPTIMIZE THE PROGRAM?x NIL

IS THIS PLAN USEFUL ENOUGH TO GENERALIZE?* T |
| IS THIS A PROCEDURE WITHOUT SIDE EFFECTS?s NIL

THE GOAL (ONTOP M) IS ATTAINABLE BY THE FOLLOWING PROGRM:
"The desired program has been generated and will now be displayed.”

| PROC 1(M)
i ROBOT (M);Cl SHOES);(BOX(B1);,80X(B2);

COMMENT

INPUT ASSERTIONS:
AT(M CORNcR) A AT(B! L) A STACKED(B2 B1)
OUTPUT ASSERTIONS:

WEARING(M SHOES) A AT(M L) A ONTOP(M);
COMMENT

THIS PROGRAM RELIES ON THE FOLLOWING ASSUMPTIONS:
(DRESS);

BEGIN

DRESS(M SHOES);
TRAVEL(M CORNER L);

STANDON(M Bl); |
Y! « Bl;

IF STACKED(W! Y1) THEN |

Ll « WY;

WHILE ~ ONTOP(M) DO :
BEGIN

APPENDIX B 143

STEPUP(M YI Z1)
Yl « Z1

IF STACKED(W1 Y1) THEN
: Zl « WI;

END

END

DO YOU WANT TO DO STRUCTURED PROGRAM DEVELOPMENT?s T

TRYING---((DRESS M SHOESXWEARING M SHOESXSTAT1.AST))
| “This task triple consists of procedure name, goal and state.”

DO YOU HAVE ANY ADVICE?s T

/ *+3ENTERING ADVICE SYSTEM#1s
#1+ ADD PUT-ON

RULE TYPE* PRIMITIVE PROCEDURE

RULE NAME PUT-ON(R1,01)
IS THIS AN ASSUMPTION?s NIL

IS RULE DIRECTLY RECURSIVE?+ NIL
INEQUALITIES IN ARGUMENT POSITIONSs NIL
PReCONDITIONS:

* ROBOT(R1) An CLOTHES(O1) A FOUND(R1,01);
POSTCONDITIONS:

*WEARING(R1,01);

RULE TYPE+ PRIMITIVE PROCEDURE

RULE NAME FIN(R1,01,L1)
IS THIS AN ASSUMPTION?s NIL

IS RULE DIRECTLY RECURSIVE?+ NIL

INEQUALITIES IN ARGUMENT POSITIONS# NIL
PRECONDITIONS:

+ KOBOT(R1) A CHAIR(02) A AT(02,L1) A AT(R1,L1) A UNDER(O1,02);
POSTCONDITIONS:

* FOUND(R1,01);

KULE TYPE® NIL

INITIAL STATE:

* CHAIR(CHAIRI) A CHAIR(CHAIR2) A AT(CHAIR1,CORNER) |A AT(CHAIR2,CORNER);

SEMANTIC PROPERTIES OF RELATIONS:

IS FOUNDXR1,01) A FUNCTION OF THE STATE? T
IS FOUND(R1,01) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES NIL

IS CHAIR(02) A FUNCTION OF THE STATE?s NIL

144 APPENDIX B

IS CHAIR(O2) PARTIAL?s NIL |

ARGUMENT UNIQUENESS PROPERTIESs NIL

IS UNDER(O1,02) A FUNCTION OF THE STATE?s T

IS UNBER(O1,02) PARTIAL?s T

| ARGUMENT UNIQUENESS PROPERTIES* NIL

ALGEBRAIC SIMPLIFICATION?s NIL

SUBGOALING SYSTEM GENERATED!!!

"The Frame addition has now been translated.”

u2% DcLETE DRESS

#3s NIL

"Exit Advice system.”

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(PUT-ON(FOUND M SHOES))FIND

((FIND M SHOES CORNERY))

((IF(~UNDER SHOES CHAIR1) THEN (PROCZ M SHOES)
ELSE((FIND M SHOES CORNER))XPUT-ON M SHOES))

“The conditional statement is generated since it is not known where
the shoes are.”

DO YOU WANT TO OPTIMIZE THE PROGRAM?s NIL

IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?s T

IS THIS PROCEDURE WITHOUT SIDE EFFECTS?s NIL

THE GOAL (WEARING M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:

"This procedure is the siructured expansion of the non-primitive
procedure DRESS called in PROC.”

DRESS(M SHOES)

ROBOT(M);CLOTHES(SHOES),CHAIR(CHAIRL);
COMMENT

INPUT ASSERTIONS:

AT(M CORNER) A AT(CHAIR1 CORNER)
OUTPUT ASSERTIONS:

WEARING(M SHOES) A FOUND(M SHOES) An WEARING(M SHOES);
COMMENT

PROC2 ATTEMPTS TO ACHIEVE FOUND(M SHOES);
BEGIN |

IF ~-UNDER(SHOES CHAIR1) THEN
PROC2(M SHOES)

ELSE

BEGIN

FIND(M SHOES CORNER);
END

PUT -ONKM SHOES)

i

APPENDIX B 145

END

DO YOU WANT TO DO CONTINGENCY PLANNING?s T
WHAT IS YOUR PREFERENCE?
-===IF NONt TYPE NIL# NIL

| TRYING---(PROC2 (FOUND M SHOESKSTAT2.CST)) |
"The contingency task triple consists of procedure name, goal and state.”
DO YOU HAVE ANY ADVICE? NIL

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---FIND

| ((FIND M SHOES CORNER))
DO YOU WANT TO OPTIMIZE THIS PROGRAM?s NIL

| IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?s T
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?# NIL

THE GOAL FOUND(M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM: |
PROC2(M SHOCS)

KOBOT(M);,CHAIR(CHAIR2);
COMMENT

INPUT ASSERTIONS: |AT(CHAIR2 CORNER) A AT(M CORNER)
OUTPUT ASSERTIONS:
FOUND(M SHOES);
COMMENT

FROC3 ATTEMPTS TO ACHIEVE FOUND(M SHOES);
Le CIN

IF -UNDER(SHOZS CHAIR2) THEN
FKOC3(M SHOES)

ELSE

EcGIN

FIND(M SHOES CORNER); |END

END

DO YOU WANT YU DO CONTINGENCY PLANNING? NiL
DO YOU WANT TO CONTINUE FROM THE CURRENT STATE?* NIL

146

REFERENCES

Alien, J, Luckham, D.C, "An Interactive Theorem-Proving Program,” MACHINE
INTELLIGENCE 5, B. Meltzer and D. Michie (Eds.), Edinburgh University Press,March, 1970.

| Alien, J, Luckham, D.C., An unpublished working paper, Al Project Stanford University,1973.

Balzer, R. . "Automatic Programming”, Information Sciences Institute, Univ. SouthernCalifornia, Technical Memorandum, September 1972.

Baumbart, B.G, "Micro-Planner Alternate Reference Manual”, A] Project Operating| Note, Stanfory University, 1972.

Buchanan JR, Luckham D.C, "On Automating the Construction of Programs”, Al ProjectMemo, Stanford University, 1974,

Deutsch, P., Ph.D. Thesis, University of California at Berkeley, 1973.

Feldman, J, A. Low, J. R, Swinehart, |. C., Taylor, R, H, "Recent Developments in SAIL,An ALGOL Based Language for Artificial Intelligence, Al Memo AIM-176,Stanford University, 1972.

| Fikes, R. E., Hart, P. E, Nilsson, N.J, "Some New Directions in Robot Problem Solving,”| MACHINE INTELLIGENCE 7, 1972.

Fikes, R. E,, Nilsson, N. J, "STRIPS: A New Approach to the Application of Theorem |Proving to Problem Solving," ARTIFICIAL INTELLIGENCE, Vol. 2 (1971).

Floyd, R. W., "Assigning Meaning to Programs,” Proc. of Symposium in Applied /Mathematics, Vol 19, 1967.

Gerritsen, R, "Understanding Data Structures”, Ph.D. Thesis, Carnegie-Melion University,1974,

Green, C. C,, "Application of Theorem-Proving to Problem Solving,” Proc. JCAL, 1969.
Hammer, MM, Howe, W.G, Wiadawsky, 1, “an Interactive Business Definition System”,KC 4680, 16M Research, Yorktown heights, NY, 1974,

Hewitt, C. , "Description and Theoretical Analysis of Planner” Ph.D. Thesis, MLT. 197].
Hoare, C.AN. » An axiomatic basis for computer programming, Comm. ACM, 12, 10,Uctober 1969, 76-580, 583.

Hoare, C.AR, and Wirth, IN. , An axiomatic definition of tha programming languagePascal, Berichie der Fachgruppe Computer-Wissenschaften 6, ETH, Lurich,November 1972.

147

Igarashi, S.; London, RL; Luckham, D.C. » "Automatic Program Verification I: A Logical
Basis and Impiementation”, Stanford AIM 200, May 1973.

Katz, S. M,, Manna, Z,, "A Heuristic Approach to Program Verification," Proc. 1JCAI, 1973.

King, J,, Floyd, RW., " Interpretation Oriented Theorem Prover Over Integers”, Second
| Annual ACM Symposium on Theory of Computing, 1970.

King, J., "A Program Verifier," Ph.D. Thesis, Carnegie-Mellon University, 1969,

Luckham, D.C., Buchanan, J.R, "Automatic Generation of Prcgrams Containing Conditional
Statements”, AISB Summer Conference, Sussex, 1974.

Martin, W.A,, Unpublished Wc rking Paper, Project MAC, MIT, 1973.

McCarthy, J, and Hayes, P. , "Some Fhilosophical Problems from the Standpoint of
Artiticiai Intelligence” Machine Intelligence 4, pp. 463-502, Edinburgh
University Press.

Milner, R., "Logic tor Computabie Functions Descriptions,” Al Memo AIM-169, Stanford |
University, 1972.

| Newell, A, Simon, H. A, "GPS, A Program that Simulates Hunan Thought," COMPUTERS
AND THOUGHT, E. Feigenbaum and J. Feldman (Eds.), McGraw-Hill Book Ca,
1963.

Nilsson, N., "Problem Solving Methods in Artficial Intelligence”, McGraw-Hill, 1971. :

Rulifson, J. A, Derkson, R. A, Waldinger, R. A, "QA4: A Procedural Calculus for Intuitive
3 Reasoning,” Al Center Tech. Note 73, SIR, 1972.

Samuel, A. "Studies in Machine Learning Using the Game of Checkers," COMPUTERS AND
| THOUGHT, E. Feigenbaum and J. Feldman (Eds.), McGraw-Hill Book Co., 1963.

Simon, H. A, "Experiments with a Heuristic Compiler,” JACM 10 (Oct. 1963).

Stickel, M,, "A Frogremmable Siratcgy Theorem Prover®, Technical Keport, Department
of Computer Science, Carnegie-iellun University, 1974.

Sussman, J., Winograd, T., "Micro Planner Reference Manual”, M.L.T. Project MAC Report
1972.

Sussman, G.J, Ph.D. Thesis, M.LT., 1973.

Sussman, G. J. and McDermott, D. V., "Why Coniving is Better than Planning,” Proc. FJCC]
41 (Dec. 1972). |

Tesler, L. G, Enea, H J, Smith, D. C., "The LISP70 Fattern Matching System," Proc.
IJCAI, 1973.

148

Waldinger, R. J. and Lee, R. C. T., "PROW: A Step Toward Automatic Program Writing,”
Proc. [JCAI, 1969. |

Winograd, T., "Procedures as a Kepresentation for Data in a Computer Program for
| Understanding Natural Language,” Tech. Report MAC TR-84, M.L.T,, 1971.

