AD-784 81o
A STUDY IN AUTOMATIC PROGRAMMING
CARNEGIE-MELLON UNIVERSITY

FREPARED FOR
DeEFeNSE ADVANCED ReSEARCH PRoJECTS AGENCY
A1r Forze OFFICE oF SCIENTIFIC RESEARCH

May 1974

DISTRIBUTED BY:

NS

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE




_UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS R AGFE YWnan Data ‘:;H‘Igd)
3 e 1 . !\P AD INSTRUCTIONS
LEPORT DOCU’th‘!TAT.OI“ PA(JE BEFORE, COMPLETING FORM
1 O’gﬁol”ﬂml? 4 1 4 2 é 2. GOV ACCESSION NOJ 3 SRECIFPIENT'S CATALLO uuunuc ;
4. TITLE (end Subtitle) S YTYPE OF ncPORT & PERIOD CCVERED
A STUDY IN AUTOMATIC PROGRAMMING Interim
6 PERFORMING OKG REPORT NUMHER
7. AUTHOR(s) 6. CONTRACT OR GMGT VUMBE b/ n)
Jack R. Buchanan F44620-73-C-0074
9. PERFORMING ORGANIZATION NAME AND ADORESS 10, PROGRANM ELEMONT PROJICTY, T

AREA 8 WORK Ut " NUMBERS

61101D
A02465

Carnegic-tellon University
DCPalC"LﬁL of Computey Scisnce
Pitesburgh, PA IS

1 CON*ROLL NG OF FICE nHANME anNO ADDRESS 12. REPORT OATE
Defense Advanced Roscarch Projccts Agency JMay, 1974
1400 Wilson Blvd 13. NUMBER OF PAGES
Arlincton, VA 22209 155

T4 MONITONING AGENCY NAME & ADDRESSA( different from Controlling Office) 15, SECURITY CLASS. (of thie report)

Air Force Office of Scicntific Rescarch///y/?V

1400 wilson Blvd UNCLASSIFIED
Arlington, VA 22209 15e. ot_cussmcnlon L UOWNGRACING
SCTHEOULE

16 CiSTHIBUTION STATEMENY (cf thie Kepcort)

Approved for public release; dicstribution unlimited.

17. OISTRIBUTION STATEMENT (of the abstrac: entered In Block 20, I dlfferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WOROS 7Continue on re erse eide If necessary and Identify by bfock number)

NATIONAI  TECHNICAI
INFORMATION SERVICE

¢ VA

20 ABSTRAC T ‘Conthwee an revarae gide IF neceseary and identily by Block number)

A description of methods and an implementation of a system [or automatic gener
ation of pregrams is given. The problems of writing programs for numerical
computation, symbol manipulation, robot control and everyday planning have
been studied and some programs penerated. A particular formalism, i.e. a
FRAME, has been developed to define the programming environment and permit

the statement of a problem. A frame, I, is formulated within the Logic of
Programs (Hoare 1969, Hovare and Wirth 1972) and includes primitive functions

DD 55, 1473  eoimion oF 1 Nov 6515 oBsOLETE UNCLASSTFIED

1 SECURITY CLASSIFICATION OF THIS PAGE {BWhen Data Entered)

S2CURITY Ct ASSIFICATION OF THIS PAGL/Whan ['ata tntared)




UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE(MWlen Data Fntered)

20.  (abstract cont.)

and procedurcs, axioms, definitions and rules of program composition, Given ;
a frame, F, a problem for Pregram ceastruction may be stated as a pair (1,
Gy, where T is an input assertion and ¢ is an output assertion. The pro-
gram generation task is to construct a program A such thet I{AII', where
I'2G. This process may be viewed as a search in the Logic of Programs for It
a proof that the generated program satisfics the given Input-output asscr-
tions. Correctness of programs generated using the formal algorithm is dis-
cussed.

A frame is translated into a backtrack problem solver augmented by special
scarch procedurcs. The system is interactive, responds to simple advice and

allows incremental and ftructured program development,

ihe ouEput or solution program is a subsct of ALGOL containing procedure
calls, assignments, while loops and cenditional statcments.

4

UNCLASSIFILD

SECURITY CL ASSIFICATION OF THiS PAGEWhan Iata Fritared)




MAY. 1974

A STUDY IN AUTOMATIC PROGRAMMING
By
Jack R. Buchanan

ABSTRACT

A description of methods and an implementation of a system for automatic generation
of programs is given. The problems of writing programs for numerical computation,
symbol manipulation, robot control and everyday planning have been studiea and some
programs generated. A particular formalism, i.e. a FRAME, has been developed to
define the Programming environment and permit the statement of a problem. A frame,
F, is formulated within the Logic of Programs [Hoare 1969, Hoare and Wirth 1972] and
includes primitive functions and procedures, axioms, definitions and rules of program
composition. Given a frame, F, a problem for program constuction may be stated as a
pair <G> where I is an input assertion and G i1s an output assertion. The program
generation task is to construct a program A such that I{A}l’, where I' > G. This
Process may be viewed as a search in the Logic of Programs for a proof that the
generated program satisfies the given input-output assertions. Correctness of
programs generated using the forr...| aigorithm is discussed.

A frame is translated into 2 backtrack problem solver augmented by specizl search

procedures. The system is interactive, responds to simple advice and allows
incremental and structured program development.

The output or solution program is a subset of ALGOL containing procndure calls,
assignments, while loops and conditional sta‘ements,

“TASTRIBITION

e s

Vb v
W . 4

.
nt

This research was supported in part by the Advanced Kesearch Frojects Agency of the

Office of the Secretary of Defense under contracts [F44620-73-0-0074] and
[DAHCIS-73-0-04351

e/

P ——— .

|
E




ACKNOWLEDGEMENTS

I am very grateful to my advisor Dr. David C. Luckham for his constant encouragement
and guidance throughout the course of this research. He has contributed many ideas
and refinements to this work as it ha: progressed.

Many others have contributed to the deve!tpment of this research through discussion
and programming suggestions to which 1 am very grateful. These include Bruce
Baumgart, Tom Binford, Horace Enea, Richard Fikes, Peter Hart, John McCarthy, Ni's
Nilsson, Richard Orban, David Smith, Dan Swinehart, and Larry Tesler.




CONTENTS

INTRODUCTION

1.1 Contributions

1.2 Extensions

1.3 Future of Automatic Programming

LOGICAL BASIS FOR SEMANTIC DEFINITIONS
2.1 Logic of Programs

2.2 Frame Rules

2.3 A Simple Robotics Example

DEFINING THE PROGRAMMING ENVIRONMENT
3.1 Frame Language

3.2 Advice Language

3.3 Programming Language

3.4 An Example

PROBLEM SOLVING PROCESSES

GENERATION OF CONDITIONAL STATEMENTS
5.1 Uncertain Preconditions

5.2 Conditional Statements

5.3 Selection of Contingency Goal

5.4 Rejoin Conditions

5.5 Subprobiem Stack

5.6 Computation of Input-Output Assertions
5.7 Uncertain Primitive Procedures

5.8 An Example

5.9 Correctress

GENERATION OF ITERATIVE STATEMENTS
6.1 Fremisses for Constructing a Loop
0.2 Assembiy of Vinile | Jops

6.3 Updating the State

6.4 An Example

PROGRAMMING ALUS
7.1 Program Library
7.2 Expansion of Assumpiions

CORRECTNESS OF THE FORMAL ALGORITHM
3.1 Backirack Programming

8.2 Traversing YHAND-OR-AND Trees

8.3 Lubeled, Urdered Subgoal Trees

8.4 Corruciness




9. SYSTEM DESCRIPTION
9.1 Overview of Interactive System Use
9.2 Procedural Representation of a Frame
9.3 The State Updating Methods
, 9.4 Computation of Input-Output Assertions
9.5 Generation of Conditional Statements
9.6 Assembly of While Loops
8.7 Structured Programming

Appendix A: ADDITIONAL EXAMPLES
1. Translate from Infix to Polish
2. Integer Square Root Problem
3. Hand-Eye Tusks
4 Queens Problem

Appendix B: AN INTERACTIVE SESSION

REFERENCES




Figure

10
11
12
13
14
i5
16
17
i8

19

Main System Components

Search for Solutions .0 Climbing Frobiem
Sy~ tax for Asseriions

Advice Language

Frame Information for Fibcnacci Problem
Program tor Fiboracci Problem
Conditional Statement Diagram

Frame for Traveling Problem

Program for Traveling Problem

Frame for Factorial Problem

Prograin for Factorial Problem

Frame ior koboiics Problem

Program for Robotics Problem

Program with Assumptions

Expanded Assumption

Problem 1: YHAND-OR-AND Tree Search
Interactive System

Functional Segments of Rules

Translated Procedure

LIST OF FIGURES

25

28

33

38

38

50

94

98




1. INTRODUCTION

During the 1950’s the phrase "automatic programming” described the process
carried out by assemblers and compilers, i.e. the translation of a program written in
org language into another where the "meaning” is preserved and the target language
is interpretable. Since then there have been many advances in programming languages
and their associated processors allowing the user to specify at higher levels, or in
more natural ways, how the computation should proceed and removing the users
responsibility for such things as storage management, resource allocation, etc.

In the »resent project, we have sought to develop mzthods that will further
automate or augment the programming process by generating programs over several
domains in a suitably defined envirorment given a statement of what they are to
accomplish, i.e. programming by assertion rather than algorithmically. We seek to
generate programs using a statement of the vesired program’s properties rather than
compiling from one detail specification of the flow of control into ancther. It is in this
sense that we usu the term automatic programming. Automatic programming may be
further distinyuished from compiling by its use of a semantic model together with a
deduction capability. It is to be expected, however, that as progress is r.ade in
automatis program generation that research in compilation will be benefited.

As the field of Artificial Intelligence has matured, probiem solving techniques
have been developed that ha.e allowed us to seriously consider building automatic
programming system. Some very influential ideas came from the Heuristic Compiler
[Simon 1963] and the GPS [Newell and Simon 1963] projects, i.e. the notion of building
up a progrzin in a state-space tree search using a problem reduction procedure. .This

is cer.ainly basic, almost subconsciously so, to the present project and has been

widely used by otheis.




INTRODUCTION

During the 1960’s much of the theory of problem solving was associated with
tree or graph searching methods. Well known techniques for restricting the search by
using evaluation tunctions, "minimaxing", the oc-/3 method, etc. may be found in [Nilsson
1971}, [Samuel 1963]. Later automatic programming work, still depending heavily on
search strategies, sougnt to reprasent the domain semantics and carry out the
deduction in first order logic using the principle of resolution (Green 1969), [Waldinger
and Lee 1969] A more powerfui (generated deeper proofs) general deduction system
combining resolution, equality and algebraic simplification was reported in [£ilen and
Luckham 1970]. A great deal of the systems’ efforts were spent in search because
most facts were uniformly represented as axioms in clause form and the search
strategies were largely syntactic. Greater efficiency was gained in a system built by
separating the heuristic search from the deduction and employing the GPS paradigm
[Fikes and Nilsson 1971].

The difficulty in these systems of using facts to guide the search has prevented

them from solving hard (sor humans) problems or generating complex programs. It hase

become clear that in addition to a manageable basic problem solving method,
knowledge, both general and domain specific, must be provided in a functionally useful
way to enable the sysiem *o find a solution, Ouring the last two years language
systems that allow the user to easily embed knowledge at all levels have been
developed. Other usefyl features are pattern matching, pattern evoked procedures,
flexible control structures, multiple coniexts and processes [Hewitt 1969], [Sussman
and McUermott 197¢], [Rulifson et al, 1972}, [Feldman et al. 1972}, [Tesler, Enea and
Smith 1973]. Qur use of some of these features wiil be described in later sections.

Taking advantage ui some of these features and refining the nution of semantics was a




INTRODUCTION

(]

natural language understanding system reported in [Winograd 1971]. Other automatic
programming or debugging systems are [Deutsch 1973] and [Sussman 1973]. Some
general descriptions and useful classifications of the components of an automatic
programming system have been given in [Balzer 1972). The closure of all these
capabilities is yet to be fully exploited in a problem solving or automatic programming
system,.

Procedural knowledge may be distinguished from declarative in that the
information content is expressec within the tlow of control of a computation (in the
general sense) sequence, i.e. the data from which useful information may be extracted
is the program itseif. This is probably the most efficient information access scheme of
all. An inielligent system in which all information is expressed procedurally will rely
more heavily (perhaps totally) on the current state of computation to determine its
future behaviour than a system utilizing declarative facts and also be, necessarily,
more dependent on the ordering of its knowledge.

However, the distinction begins to blur when we consider how a system may
ettectively utilize declarative infurmation and how given a general computational model,
e.g. problem reduction algorithm as in our system, declarative facts may be translated
into procedures. Another example of this is the "questionnaire programming” approach
for customizing business application systems. Progress has been made in defining
model specification langusges having procedural and non-procedural components
[Hewitt 1969],[Martin 1973], [Hammer, Howe and Wladawsky 1974). Even a resolution
based theorem prover with an zppropriate protocol language (tne procedural part) can
efficienily use its knowledge to solve a problem [Allen and Luckham 1973}, [Stickel

1974].




4 INTRODUCTION

Research in veritying existing programs [Floyd 1967], [King 1969], [Katz and
Manna 1973}, [Milner 1972] has contributed to our understanding of programs and we
have found (not surprisingly) that the kinds of facts required to verify programs are
not distinct from those required for the synthesis of currect programs. Progress has
also been made in defining axioms and rules of inference for the semantics of
programming languages [Hoare 1969] and in particular with respect to the
programming language PASCAL [Hoare and Wirth 1972]. This Logic of Programs has
been further developed and used as a basis for a verification system in [Igarashi,
London and Luckham 1973]. As a logical basis for an automatic programming system
this logic is especially cunvenient since the rules are intuitively clear, the system
operatior may be easily formalized and correctness considered, and rule applications
proceed in natural (for humans) steps.

The objectives of the present project have been to extend the theory of
semantic definitions to oescribe automatic programming problems and to design and
implement a system that uses this iniormation in a functionally useful way to
atuomatically, or interactively, generate programs.

The particular formalism developed to define the programming environment (or
FRAME) called the FRAME language, will be shown to have elements whose form
corresponds to statements in the Logic oi Programs. It is based or a typed, free
variable tirst oroer logic in which statements may have truth values of either true,
false or undetermined. The frame language consists of primitive procedures, logical
axioms, definitions, iterative schemes and additional information about these rules and
the relations in them. Other rules of program composition, referred to as standard
rules (described in Section 2), are built into the system and neednt be specified for

each frame, i.e. composition rule, conditional rule, elc.




INTRODUCTION

The frame lang

uage may be viewed as an intermediate level mode! spacification

language that is non-procedural and domain independent. [t was motivated by

observing that in the general deduction systems previously mentioned there was more

tnformation in the axioms than was being used operationally, i.e. there were different

kinds of axioms and relations (see Section 3) that should be treated differently by the

system. For example the truth value of some relations are functions of the state, or

FLUENT [McCarthy and Hayes 1969] and some are NON-FLUENT. For efficiency some

relations could be handled in a two-valued logic, i.e. TOTAL, and others require the

generality of a three-valued logic. Also search guidance information should be

provided (embedded) at all levels. For example compared with a resolution based

system we would like to choose the best "set-of-support” at each level of deduction.

We also wanted a language extendible to, or translatable from a higher level, more

natural input language,

e.g. recursion equations for the Fibonacci series example in

Section 3 and the factorial example

in Section 6. A frame actually describes

programming techniques, the

extensiveness of which determine the complexity of

Programs produceable using it.

Given a frame,

F, a problem for pprogram construction may be stated as a pair

<I,G>, where | is an input

assertion and G is an output assertion. The program

generation task is to construct a program A such that I{A}l",

where I'>G. This process

may be viewed as a search in the logic of programs for a proof that the generated

Program satisfies the given input

-output assertions. A solution to the problem is the

sequence of rules of

inference and axioms used in the proof. This view allows us to

show correctness of the formal methods for program construciion. The correctness of

the program actually generated by the system will depend on our ability to implement




6 INTRODUCTION

the formal algorithm. The solution, or output, programs are written in a subset of
ALGOL containing procedure calls, assignments, while ioops and conditional statements.
Program construction is by simulated execution where iterative rules with associated
output assertions are used to update the computation model for simutating the
execution of a loop.

The application domains studied and in which programs have been generated are
numerical computation, symboiic manipulation, guidance procedures for a robot,
assembly and repair of machinery, ang sequential planning together with generating
contingency plans for a wid: range of decision making problems. Though we have
here pursued a course of developing cne system then applying it to several domains
by merely changing the content of the frame definitions, it is expected that for
practical performance, the form of the system definitions will depend on the domain.
For example this is currently happening in researcn attempting to appiy this system to
automaiing data base management tasks [Gerritsen 1974) and automated repair of
machinery [Luckham and Buchanan 1974),

The rules of inference, axioms and other logical facts expressed in the frame
definitions are translated into a backtrack problem reduction system augmented by
speciai search procedures using these facts. The target language of this translation is
LISP using primitives and backtracking facilities oi Micro-Planner (Hewitt 1971),
[Sussman and Winograd 1972]. This subgoaling system recursively applies to a goal
the rules of the frame to generate subgoals whose solution imply a solution to the
original goal.

As an auxilary to the subgoaling system is an ADVICE system with an associated

language that allows the user to guide the search, modify the frame, restrict rule

[ PR e g T - =




INTRODUCTION

applications and receive interactive feed-back during program construction. This is

described in Section 3.

LIBRARY

\/

TRANSLATOR BACKTRACK PROGRAM OUTPUT
PROBLEM | ASSEMBLER PROGRA
SOLVER

\/

l Jl\

STACK OF
{ SUB-

PROCEDURE
PROBLEMS

Figure 1. Main System Components

The main components of the system are shown in figure 1. The user may
interactively specify a frame and provide some initial advice (mode! acquisition phase).
This is eventually iranslated into a subgoaling problem solver to which a problem may
be given, i.e. a goal which the problem solver seeks to achieve using the rules of the
frame (program generation phase). If a solution program is constructed, the user may
incrementally extend it, i.e. pose another probiem which takes the output assertion of
the current solution program as its input assertion. The user may also uptimize it, or
generalize it and place it in the program library for future inclusion in a generated

program. If the program contains conditional calls to as yet ungonerated procedures

(see Section 5), these subr:oblems may be attempted. Subproblems may also arise by

declaring some primitive procedures defined in the frame to be assumptions fo bc
expanded into concrete programs. This provides a rather rudimentary, at this time,

interactive structured program development facility.




8 INTRODUCTION

1.1 CONTRIBUTIONS

Some of the areas of work along which progress has been made and
contributions to the tield may be noted are as follows:
(1) Extending the theory of semantic definitions for defiring semantics of programming
languages to define automatic program generatior environments. A relation has also
become more clear betwee:. the kind of assertions needed to verify programs and
those required 10 synihesize correct programs, e.g. compare loop invarianis used in
our system with inductive assertions for program verification.
(2) A prototype system has been develuped that is useful in a study to determine the
feasibiiity of building an automatic programming system to augment the programmer in
the following ways:

(a) Automatic or interaciive generation of possible solution programs for
application domains suitably described,

(b) The usefulness of an automated system to handle bookkeeping
details,check consisiency, applicaoility, etc.,

(¢) The feasability of an interactive siruciured development system,

(d) The feasability of interactively building up complex programs by allowing
incremental program extension, library access, structured development,
and cuntingency planning.

(3) A demonstration is made that declarative facts can be incorporated(iranslated) into
an efficient problem solving search procedure which uses these facts at all levels of
search.

(4) A typed, free variable first-order logic in which statements may have truih values
of true, false, or undetermined has been shown to be a natural logical basis for

automatically generating conditional statements in a program.




L2 S——

: INTRODUCTION 9

(5) The iterative rule computaticn scheme has a currespondence to ‘“e principal of
mathematical induction and is a useful way to represent loop structure for a program
to be generated.

To the nagging question that it may be as hard (or harde:) to specity a frame as

it is to write the program, the following answers may be given:

(1) Yes, but we ere learning how to program hy assertion, and develop defining
1 formalisms and methods for efficiently manipulating facts and rules.

(2) A frame may contain many atomic units of information whose interaction when
faced with a novel goal is not easily predictable. For example the robotics frame
defined in Section 7 may be used to generat: many different programs.

(3) An interactive facility for constructing programs with the extendable features
mentioned above can potentially augment the human programmer.

(4) Experience with our frame language has been helpiul in investigating the basic

information required to construct programs, now the task of raising the level of

lannuage interaction to a more natural (and useful) level will be aided.




10 INTRODUCTION

1.2 EXTENS(ONS

The following specific research problems are suggested as natural extensions of
this work (i.e. problems we didn’t solve):

(the reader may want to scan these now then come back to them after rr ading
further)
(1) In the area of conditional statement generation:

(a) Introduce probabilistic decision theory to determine preferance among
contingen.y problems,

(b) Develop criteria for recognizing equivalent or similar subproblems.

(¢) Design a more tlexible mechanism for managing scope, program structure
and contingency goal selection. Since there is no reason to prefer the
trunk path, the structure of the output program should not be fixed
from that point on,

(d) Compute completely correct input-output assertions for programs having
arbitrary nesting of conditional statements.

(2) In the area of automating structured programming:

(a) Develop a human engincered interactive system, Regardiess of how the
“theology” says we should program, there is something basic to the
human condition about how we do program and style improvement must
be made within that framework.

(b) Develop techniques for managing side effects,

(c) Do lookahead or design a bottom-up, outside-in, etc. component.

(3) In the area of generating programs with looping structure:

(@) Implement sume form of the recursion rule[Hozre 1969].




sl

: INTRODUCTION 11

(b) Develop efficient and more complete methods for updatiné the -~tate "
consistently. Design criteria for detecting inconsistent states and
prevent them from invalidating the program,

; (c) Generate while loops but reduce the irformation that the user must
provide. For example, in iterative rules tha syste~ sh-.!d reasonably
deduce the contiol test or output assertion,

(d) Build in the iterative rule (analzgous to the way the concitional rule is
built in). This is really trying to do induction. We would like the ability
to analyze a computation trace, recognize loop structure and 3enerate a
while loop.

(4) A higher level or more cumprehensive input language should be developed. It will

probably be domain dependent.

(5) Explore the implications of various logics for programs as a basis for automatic

programming. In [McCarthy and Hayes 1969] various logics are discussed for

intelligent systems.

(6) Strive to free the problem solver from being so dependent on the ordering of goals
in a condition to be achieved or the ordering of applicable rules. Develop reordering
strategies, lookahead, etc.
(7) In the area of parailel processes:

(a) Generate programs for parallel machines.

(b) Develop criteria for splitting up a generated sequential program into

subtasks for coof arating sequential processes.

(8) Exploit multiple processes and multiple contexts to increase the power of the

problem solvers, e.g. a better answer to the question of why a node failed could yield

sutomatic correction.




12 INTRODUCTION

(9) Organize a library of gene. ated programs and develop strafegies for its ascess.

(10) Study the pruolem of validation of program specification. Determine consisiency
and adequacy of a programming model. Prove properties of the family of programs
constructabie from the same frame. Study the invariants of data structure under
application uf a family of programs, e.g. do they modify the tree orderedness of a label

tabia.




prmrrm s | ¥ 8

INTRODUCTION

1.3 COMMENTS ON THE FUTURE OF AUTOMATIC PROGRAMMING

The need for some automation in the task of software production is becoming

increasingly clear. Sysiem are getting bigger and more complex which has caused

maintenance cost tc rise (It is now 50 per cent of the programming budget). Software

cests too mucn, it isn't reliable, takes too long to develop and its difficult to modify or

! fix. Programming has not attained the maturity to dzvelup standard engineering

practices witn their attendant reliability that otter disciplines have. Research in

automatic programming seeks to understand the nature of the task and thereby

improve produciion.

There

m—mra

are many dmensions along which automatic programming will progress.

There is the theoretical dimension  which

implies gaining a more fundamental

understanding of the meaning of programs and developing descriptive and useful logics

for automatic programming problems that permit a rigorous investigation of the

properties of a program. Along the pragmatic dimension, we will be interested in

augmenting current practice with state of the art techniques. There is also the

heuristic dimension which contains the multitude of ideas, systems and ad hoc notions

for which there is no good logical description nor is there any current practical

application,

but through them we gain understanding into the nature of the problem,

The foliowing are a list of rather random comments on the future of automatic

programming based on our experience.

(1) More emphasis will be placed on higher

level descriptive formalisms and

programming languages to define programming environments. The level will be raised

10 accumodate the non-grogramme

ras wel as to ease the job of the professional.

Some of these

advances wili require major breakthroughs in Artificial Inteliigence, e.g.




14 INTRODUCTION

dynamic acquisition of models, recognition of incomplete or inconsistent modals, or
turther development in representing knowlege in a functionally useful way.

(2) Larger cuftware facilities will be develop.d for systems to contain more facts.
Deduction will be efficiently encoded (perhaps specislized as in the theorem prover
over the integers in [King and Floyd 1970])).

(3) Specialized domain application sysicms will be built that will rival human abilities
(perhaps the standard five year time estimate will do). Compared with the present
system these will require new kinds of bLuilt in facts, different advice needs and
computation schemes. To make real progress tranterring technology developed in one
system to the improvement of another in perhaps a different domain we must focus on
the methods used to embed knowledge or define the environment rather than just
loading the system with facts and ad hoc tricks or using a human interface that only its

creator can understand. The field is so young that too much time shouldn’t be spent

hand tuning a system once the basic methods are exploited.

(4) There are some short term payofts (within 5 years) for augmenting programmers,
e.g. better interactive debugging systems, languages permitting user assertions to be
checked and better optimizers. Within a narrow domain present technology can yield
good performance. Automatic programming will not replace the programmer but will
raisc the educational level for those who would do computer assisted program
construction. With respect ¢ program synthesis we should strive to generate
programs of the type that pecgie understand and can write with some effort so that
program synthesis does not get completely lost in futuristic Al research. Within
current technology the size of the generateable programs will be small (one page) and

complexity will be gained by combining and extending them with interactive aids.



INTRODUCTION 15

(5) INTERACTIVE systems will be developed that will do mundane logical chocking,
answering "what if" questions, and building up complex programs modularly such that
the system will only have to focus on o072 small problem at a time.

r (6) Within the forseeable future final production level systeras will not be automatically

produced but the ability to produce prototype systems quickly to test design ideas will

be a significant aid to software production.

s o b P T




INTRODUCTION

In Section 2 a short description of the logic of programs is given in which the
frame definitions and program construction rules are formulated. A simple example is
given that illusirates how a problem is formulated and the meaning of a solution,
section 3 describes the frame definition language, advice language and output progran
languaga. In Section 4 the systems use of information guring the problem solving
process is descrived. Sections 5 and 6 present the system methods for generating
conditional statemenis and iterative loops respectively. Section 7 descibes the
programming aids provided in the system for the user to interaciively generate more
complex programs. In Section 8 is given the formal program generation algorithm and a
description of the proof of its correciness. Section 9 is intended to document the
system implementation 1o the level that would be reasonably useful in designing an
oxpanded sysiem. lilusirative examples of frames and generated programs are given in

Sections 3,5, 6,7 a*d Appendix A. Appendix B8 contains a cumplete interactive session.




2. LOGICAL BASIS FOR SEMANTIC DEFINITIONS

In this section we will briefly describe how frames can be formulated within the

Logic of Programs. Later sections will expand on the frame formalism and its use.
Program generation may then be viewed as a search for a proof within the Logic of
Programs that the generaied program satisfies its input-output assertions. In Section
8 the formal algorithm will be given and correctness of solutions considered.

A distinction should be made between the problem solving algorithms and their
implementation in any particular system where an implemented system must fall shor!
of the formal algorithm. For example program correctness will depend upon
maintaining consistency of each state occuring during program construction, yet in
general the task of cetermining state ccnsistency is undecidable. However limited
deduction is carried out and special mechanisms to detect common inconsistencies, e.g.
single valuedness of program variable:, ere implemented.

NOTATION: X,¥,2,U,V,W..variables,

Xy lists of variables,
f,z,h.... tunctions,
s,t. functional terms,

GILP,QR,S,.. Eoolean expressions (essentially formulas of first order
logic with standard functions and predicates for equality,
numbers, lists and other data types),

P(X) denotes the formula obtained by replacing each free variable in P
Ly a new variable from ¥,

(3X)P(X) denotes existential quantification over all X-variables in P(X),

ABC,. programs and program parts in an Algol-like plan language
(details in Section 3),

P,q,.. procedure names,
o, 8\,... substitutions of terms for variables, also denoted by (<x«t>),

P(t) denotes the result of replacing x by t everywhere in P(x).

of$ denotes the COMPOSITION of o« and 8; Exf =(Ex)8 for all
expressions E.




18 LOGICAL BASIS FOR SEMANTIC DEFINITIONS
We assume the existence of a tixed arbitrary nrdering of literals defined in the

trame (atoms and negations of atoms) which is simply used as a computational aid for

descrioing and implementing the rule of invariance defined in Section 2.2 and not for

any heuristic advantage.




LOGICAL BASIS FOR SEMANTIC DEFINITIONS 19

2.1 LOGIC OF PROGRAMS
We review briefly the elements of an inference system for proving properties of

programs [Hoare 1969] This description is taken from (Igarashi, London, Luckham

1973}

STATEMENTS of the logic are of three kinds:

(i) Boolean expressions, (henceforth often called ASSERTIONS)

(ii) statements of the form P{A}Q where P,Q are Boolean expressions and A is a
program or program part.
P{A}Q means “if P is true of the input state and A halts (or halts normally in
the case that A contains a GO TO to a label not in A) then Q is true of tne
output state”,

(iit) Procedure declarations, p PROC K where p is a procedure name anc; K is a
program (the body of p).

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of

statements (premisses, say Hy ,..H, ) to a statement (conclusion, say K) of kind (ii).

Such rules are denoted by

The concept of PROOF in the logic of programs is defined in the usual way as a
sequence of statements that are either axioms or obtained from previous members of

the sequence by a rule. A proof sequence is a nroof of its end statement.

NOTATION: We use H II- K to denote that K can be proved by assuming H. H |- K
denotes the same thing for first order logic. It is sometimes helpful to denote

statements that are problems or subproblems for the program generator to solve by

P{?}Q.

e i s SRS S b

b Sl e o g Al R



20 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

2.2 FRAME RULES
The RULES in a frame F are of three kinds:

(a)  PROCEDURES transform states into states and are expressed as statements in
the logic of programs.

(b)  SCHEMES are methods for construciing Programs and are expresed as rules of
inference in the lugic of programs.

(c)  KELATIONAL LAWS: definitions and axioms which hold in all states and serve to
“complete” incomplete state descriptions by permitting tirst order deduction of
other elements of a state from those given.

Given a frame F a problem for program construction may be stated as a pair

<,G>, where I is an input assertion (or initial state) and G is the output assertion (or
goal that must be true in the output state). The program construction task is to
construct a program A such that I{A}l, where I'>G. A solution is the sequence of rules
of F used in the construction of the solution program A.
NOTATION and RESTRICTIONS: Q u F > R denotes that R is a logical consequence of Q
and the axioms of F. Assertions gescribing states are denoted by LI'...,G,G',... These
assertions (but not the assertions in rule definitions) are restricted to be conjunctions
of atomic assertions. We write Rl to denote that R is a conjunct in I. L(F) denotes the
logic of F,i.e. the set of consequences of the rules of F. Substitutions o do not
replace any variable that occurs in the initial state |. Expressions, all of whose
variables occur in the initial state are called "fully instantiated”.

STANDARD FRAME RULES: A set of standard rules are assumed to be part of every

frame. These are rules implemented in the program construction methods of the

probiem solving aigorithm:

KO. Assignment Axioms:




Fara——

LOGICAL BASIS FOR SEMANTIC DEFINITIONS 21

(i) Simple Assignment: P(t:{y ~t}P(x)

(i) Conditional Assignment: (JDP(Z)IF P(W) THEN YeW}P(Y)
~(BDPDAQUYNIF P(W) THEN YeW)Q(Y)

where Y-variables in P(Y) do not oceur in P(W), W-variables are
special variables ocurring only in cenditional assignments, and YeW
denotes the sequence of simple assignments between members of Y
and W that occur in the same argument positions in P(Y) and P(W).

R1. Rule of Consequence: PoQ,Q{AJR P{A}Q,QoR

P{A}R P{A}R

R2. Rule of Composition: P{A}JQQ{B}R

3. Rule of Invariance: if P{A}JQ and I U F 5 P then I{A}Inv(Q,])
where if R),R,,..R, are the conjuncts of |
in the fixed order, then Ig =Q,
tor Osm<n, Iny = I, AR, if ~(Im U F 2 -Ry)
Int1 = In otherwise,
and Inv(Q,]) = I,

R4. Change of Variables: P(x){A(x)}Q(x) where y is not a

---------------- special variable.
Fly {A(y)}(y)

RS, Conditional Rule: PAQ{AIR, PA~Q{BJR

P{IF Q THEN A ELSE BJR

R6. Undetermined values: If I'{?}G cennot be solved and
~(I'UF 2 -G) then G is UNDETERMINED in I"

STANDARD RULES

REMARKS: (i) The axiums RO(ii) define the semantics of conditional assignment
statements used primarily in the system during the assembly of while loops. The




22 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

relation P(W) within the If statement is interpreted as a call to a Boolean procedure
that, if successful, will bind the W-parameters to values from the state that make it
true. Our convention is to regard W-variables as "special variables” only occurring in
such conditional assignments. An alternative would be to define a typed procedure for
each relation in the frame that would return the appropriate value for direct
assigrment to the Y-variables. We felt that the conditional assignment made the
desired semantics more transparent however.

(i) The rule of invariance means that during a state transformation and a new
statement Q bacomes true in | that the function Inv(Q,1) will return Q union these facts

(iii) The rule of undetermined values guides the systems decision to generate
conditional statements (Section 5).

INPUT FRAME RUIES: In addition to the standard rules, a frame may contain rules of
the following types (these constitute the user defined elements of the frame):
S1. Primitive procedures (or operators): tae rule defining procedure p is of the form
P{p}Q. The assertions P and Q are the pre- and post-conditions of p. p must contain a
procedure name and parameter list.
$2. Iterative rules: an iterative rule definition containing the Boolean expressions
P(basis), Q(loop invariant), K(iteration step goal), L(coritrol test) and Glrule goal) Is a
rule of inference of the form:
(@ P,|-Q QAL{*IR, R{?7}Qv-L

.
where the free variables of R and L occur in Q. Such rules are permitted not to
contain P or L,in which case they correspond to inferences of the form:
(b) Q, QA~G{?}R, R{??}QvG

Q{while -G do ?;7?}G
§3. Definitions. A definition of G in terms of P is a logical equivalence |- PsG.

S4. Axioms. A frame axiom P is a logical axiom |- P.




LOGICAL BASIS FOR SEMANTIC DEFINITIONS 23

Terms and predicates in assertions may contain calls to LISP functions. If the
frame definition contains functional terms or predicate tests that are evaluated by celle
to LISP tunctions, the set of premisses must be expanded to include both the input-
output assertions for th’ese function calls and the logical axioms for the relevant data
types.

REMARKS (i) The iterative schemes S2 permit the definition of methods for constructing
loops; they are instances of:

WEAK ITERATION RULE:  QAL{BJQv-L

Q{WHILE L DO B}-L

where Q is the invariant of the loop. The meaning of |-Q in the premiss is that the rule
may only be applied in states where Q is a first order consequence of the state
description. The prugram part ?? is restricted to be a sequence of assignment
statements (see Section 6).

(ii) Inconsistencies may arise in several different ways in frames. The axioms can be
inconsistent, or the post conditions of a rule can be inconsistent with the axioms. Also
the elements of iterative schemes must satisfy some simple consistency criteria
(section 6).
(i1} Note that each frame rule has a goal. The goal of a procedure is its postcondition;
the goal of an axiom or definition is its consequent.

The following lemma is useful in proving properties of conditional assignments
(lgarashiLondon,Luckham 1973]:

OR-LEMMA P{A]Q, R{A])S

PVvK{AJQVS




R R Iy e ——ag

24 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

2.3 A SiMPLE KOBOTIC EXAMPLE

We will now consider a simple robotics environment and its description within
the formalism. In the context of this example we will then consider formulating the
correciness uf solutions,

Consider the fuliowing frame and problem:
INPUT FRAME KULES:
Fl. Procodure: standon
AT, NAT 2,y )IROLO Tk JALOX(2){standon(x,2) JON(x,2).
F2. Prucedure: siep-up
KOSOT(x)AON(x,y IASTACKEU(2,y ){step-upix,y,2) JON(x,2).
F3. Iterative Ruio: climo

kOGO FMMIAOINiV,y )AS TACKEW U,y )A-ONTOP(M){?JON(M,u)

KOBOT(MIAOKKMYIAS TACKEDy JWHILE-ONTOP(MIDO BEGIN 472 ENDJONTOP(M)
FA. Axiom: ROBOT(x)ASy(ON(x,y)IAVZ~3TACKEL(Z,y))»ONTOP(x).
FROCLEM

i ROCOT\LHALOA DNECKIL2JAEOALIAATIBLLIAAT(ML)
ASTACKEL(WZ,U1) A STACKED(L3,32).

C: ONTOr (L)
PROBLEM 1: CLIMBING

keMARKS: (i) The iterative ruie says "A sulution 1o the problem of Liimbing one box at
a timo, can bo used to consiruct a WHILE loop that solves tha prublem of climbing a
stuck uf Luxus". The ruie defines the meaning of WHILE in the ¢ nvironment. Or we
rmay tegard the ruie as an induction principio for the environment.

Gi) Tha program part 12 in the conclusion of the iterative rule transforms tha situation
aftor the execution of the ivop budy (¥) back into one in which the invariunt is egain
trug iv (e (st is trua:

ON(x,u)} 7?7 JROLOT(x)AON(x,y JASTACKED(u,y).

V/a resinct 17 to ba o sequence of assignments.

Gii) Tha youl uf climo 15 ONTOM(M), the neyation of the cuntrol test in this exampie.




LOGICAL BASIS FOR SEMANTIC DEFINITIONS 25

standon(lf, 1)

ON(N,B1)

. () stacxe(u, 1)
(a3 (7, 32)m AXTGN) > GarTOP ()

GROT Db 000N, Y D BTACKED (U, Y)
stepup(M,Y,U)
Qe Ly
clind

@ oNTOP (1)

SEARCH FOR SULUTIONS TO THE CLIMBING PROBLEM
Figure 2

Steps taken by a search procedure in solving this problem are shown in figure
2.

It starts with state situation I and determines by logical reasoning from [ and the

axioms which operators have pre-conditions that are true in 1 . 1t applies these

operators and updates the state to the new state using ‘he rule of invariance. It

repeats this process on the new states. Node 6 indicates the initiation of a

subproblem (the premiss of the iterative rule) with a new initial state (the invariant)

which is a subset of the state above it at Node 5. The solutions corresponding to the

paths shown in figure 2 are:

(i) I{standon(M,B1 );stepup(M,Bl,82);stepup(M,B2,E3)}ONTOP(M).

i
(ii) H{standon(M,81 hy«eBlu-B2;
WHILE ~ONTOP(M) DO BEGIN




26 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

stepup(M,y,u);
yeu;
IF STACKED(w,y)THEN uew;
ENDJONTOP(M)
where the assignments within the WHILE loop correspond to the ?? of the iterative
rule. The variable w is a special variable.
Using the frame rules we can now construct a proof of the statement
l{solution}G within the logic of programs.
1. ID(ROBOT(M)AAT(M,L)AAT(Bl,L)ABOX(Bl))
2. I{standon(M,Bl)}ON(M,Bl)ASTACKED(BZ,BI)AROBOT(M) 1,F1,R4,R1,R3

3. ON(M,BI)/\STACKEU(BZ,BI)AROBOT(M){y*-Bl;
u+B2JROBOT(MIAON(M,y )ASTACKED{u,y) RO(i),R2,R3

4, I{standon(M,Bl);y*—Bl;u*—B2}ROBOT(M)AON(M,y)ASTACKED(u,y) 2,3,R2

8. R’OBOT(M)AON(M,y)ASTACKED(u,y){stepup(M,y,u)}ON(M,u)AROBOT(M) F2,R4

6. ROBOT(M)AON(N,u){y«u JKOBOT(M)AON(M,y) KO,R3

7. ON(M,y)A3zSTACKED(z,y){IF STACKED(w,y) THEN uewJON(M,y)ASTACKEXu,y) RO,R3
8. -32STACKED(2,y)INONTOP(M){IF STACKED(w,y)THEN uew}ONTOP(M) RO

9. (ON(M,y)ABZSTACKED(Z.Y))v(~32STACKED(z,y)AONTOP(M))
{IF STACKED(w,y)THEN u«-w}(ON(M,y)ASTACKED(u,y))v ONTOP(M) OR-Lemma 7,8.

10. ROBOT(M)AON(M,y)A~(3z)STACKED(z,y) > ONTOP(M)  F4,
D(ON(M,V)ABZSTACKED(Z;Y))VONTOF’(M)
KOGOT(MIAOIN(V,y )A 32STACKEL(2,y) 2 (ON(M,y)A32STACKED(z,y ))VONTOP(M)
KOBOT(M)AOIN(M,y) > (ON(M,y)A32 STACKED(z,y))VONTOP(M)

11. ROSOT(M)/\ON(M,Y)ASTACKEU(U,Y){StepUD(M,y,U);Y“Ui
IF STACKED(w,y)THEN u4—w}(ON(M.Y)ASTACKEU(U,Y))V ONTOP(M) 5,6,10,9,R2,R1

12 ROBOT(M)AON(M,y)ASTACKED(u,y){WHILE~ONTOP(M) DO ..JONTOP(M) 11,R1,F3
13. I{solution \ii)JGNTOF(M) 4,12,R2

FROOF of I{solution (ii)}G




LOGICAL BASIS FOR SEMANTIC DEFINITIONS 27

We refer to a formal proof of L(F)||-I{A}G as a correctness proof. The existence
of such a proot implies only that the program is correct relative to the frame. If we
modify the frame we can investigate the correctness of solution (ii) in the extended
frame by analyzing the proof of [{solution (ii)JONTOP(M) by checking to see if any step
uses facts from an intermediate state situation I’ that contradict the extra logical rules.
We in effect carry out a "proof checking” operation for consistency of each step with

the additional facts. This process practically avoids search.




28

3. DEFINING THE PROGRAMMING ENVIRONMENT

In this section the Frame definition formalism is presented. This includes the

Frame language the Advice language, and the output Program language. A complete
example of an input frame, together with advice, and the resulting output prcgram is
given,

3.1 FRAME LANGUAGE

3.1.1 ASSERTIONS: The syntax for assertions used in definitions of rules, axioms and

state descriptions is shown in figure 3.

<variable> = <identitier>

<function symbc!> = <identifier>

<predicate symbc!> = <identifier>

<term> ::= <variable>|(<function symbol>))

(<function symbol><argument list>)

<argument list> = <term>j<term><argument list>

<functional term> ::= (EV<ierm>)|(EVN<term>)|<term>

<atomic formula> ::= <predicate symbol>(<predicate argument list>)

<predicate a-gument list> ::= <functional term>|<functional term>,
<predicate argument list>

<literal> ::= <atomic formula>|~<atomic formula>

<literal element> ::= <literal>|REQUEST(<literal>)|{ <assertion>}

<disjunction> ::= <literal elemeni>|<literal elemer.t><or><disjunction>

<assertion> = <disjunction>|<disjunction><and><assertion>

<and> um= A&

<01> 1= Vi@

SYNTAX OF ASSERTIONS
Figure 3.

Identifiers are sirings of characters not containing the negation symbol, "-", nor

the usual LISP delimiters, e.g., blanks, commas or parentheses. Tha <or> conneclives
have higher precedence than the <and> connectives and a logical condition is

terminated by a semicolon, %", For example,

P(x) v Qx) A K(x,y) A S(Zx) v {T(Z) A M(V)};

reprosents tha uxpression

(P v V)] A KOxy) A [S(Zx) v [T(2) A MV)]]




DEFINING THE PROGRAMMING ENVIRONMENT

in fully parenthesized notation.

The only constructs whose meaning requires special explanation are <functional
term>, <literal element>, and the connectives "&" and "e".

If a term is in the scope of the modifier "EV" then all functions in that term are
applied to their arguments (i.e. evaluated as LISP functions) when ‘hat litsral is used in
the problem-solving process. "EVN" further specifies that the functions to be
evaluated have numerical values. The default coavention is that the term is
manipulated as an unevaluated symbolic expression. The "REQUEST" modifier, v/hich
takes a literal as its argument, alters the way that literal is treated by the prokicm
solver. This is discussed in Section 4.

The AND connective is denoted by "A" . Thus a state satisfies the assertion AAB
if it satisfies both A and B. The weaker THAND connective is denoted by &. Exclusive
DR is denoted by "o".

3.1.2 STATE DESCRIPTIONS: Assertions specifying states are restricted to be
conjunctions of literals.

3.1.3 AXIOMS: Axioms are stated in either of the forms P>Q or P, where P and Q are
assertions. They hold in all states and are used to complete a given state description
by deduction of other elements of a state from those given.

3.1.4 RULES: There are three types of rules: primitive procedures, definitions, and

iterative rules.

(a) A primitive procedure is specified by a name, an argument list, and its pre and

post-conditions, i.e.
P {f (x} Xy )}Q where P and Q are assertions in which x3 ,.,x¢ are free, and

f is the procedure name.




et . o o

30 DEFINING THE PROGRAMMING ENVIRONMENT

The variables are formal parametars of the procedure. They may be "bound” by
substitution of actual parameters when the procedure is applied to a state.
For example consider the operator,
move(R1,01,L1,L2):"R1 makes 01 from Li to L2%
with preconditions,
ROBOT(R1) A MOVABLE(01) A AT(O1,L1) A AT(RL,L1) A~ OMRIL,02,L1)
and postconditions,
AT(01,L2) A AT(RI,L2)

When a primitive procedure is defined it may be declared to be an ASSUMPTION.
If it is used in a successful program construction, then the user is informed and is
given the opportunity to carry out a structured program development of this non-
primitive operation. This is described in Section 7.
(b) A definitional rule is of the form RS where R and S are assertions. The relation, S,
is given as the postcondition of the rule. The meaning of a definition is that whenever
it is desired that S be true it is equivalent to establish the truth of R. A definition is
often used to shorten assertions in rules by defining a single relation as equi\)alent to
an often used condition.
(c) Iterative rules specif. conditions that if satisfied justify the assembly of a "while"
loop to achieve the associated goal. They are instances of the iterative rule S2 in
Section 2.2, and are defined by giving:

(n A name, e.g. TLOOP, (without paramaters).

(ii) A basis assertion P.

(i) A loop invariant assertion ( that specifies relations that must be true in

the state prior to each iteration.
(iv) An iteration step assertion R that specifies the goals to be achieved

during an execution of the loop body.
(v) An iterative goal G, the assertion considered achievable by the iterative

process.
(vi) The format of iterative rules also allows the specification of a loop

control test L and an output assertion S if they differ from G.




DEFINING THE PROGRAMMING ENVIRONMENT 31
The rule,
TLOOP
PIQRGIL;S;

where P,Q,R,GL and S are assertions,
defines the iterative rule "TLOOP"
associated with the goal G.

3.1.5 SPECIAL AXIOMS: After the rules and initial state have been cefined the system

requests the following information for each predicate symbol P that has been

mentioned. The system use of this information is discussed in Section 4.

a)

b)

c)

“Is P a function of the state?" The intent of this classification is to separate
those relations whose truth value may be affected by a state
transformation, i.e., FLUENT relations,from those whose truth value is
constant over all achievable worlds, i.e., NON-FLUENT relations such as
"ROBOT(X)", "INTEGER(Y)".

“Is knowledge represented using P partial?™™ A partial relation may have
truth values TRUE, FALSE, or UNDETERMINED. Partial relations may be used
to represent incomplete knowledge of the world which may cause
conditional statements to be generated as explained in Section 5. A
relation may be declared "uncertair” which implies an absence of
knowledge about it so that . is assigned a truth value of undetermined a
priori. If P is not "partial” it is "total” and can only have truth values of
either true or false. Thus rule R6 applies to partial predicates only.

"Does P have a uniqueness property in certain argument positions?" A
"yes" answer indicates that P cannot be true for two sequences of

argument values that differ only at one of those positiors that are unique.

The unique positicns are given using the notation, (X1,5X3,%,..,.Xn), for




32 DEFINING THE PROGRAMMING ENVIRONMENT

example, ta designate the second and fourth argument positions. For each
unique argument position in relation P(al,.,an), an axiom is "built-in" from
which a contradiction may be established with P(bl,..bn) that differs in a
unique position and matches elsewhere,

The statement, "an object can only be in one place at one time", is expressed by,
AT(X1,#). If we add, “and only one object can be at any place”, then we
vse AT(s,s),

3.1.6 SIMPLIFICATION: Algebraic simplification rules may be given to simplify the terms
that may occur in subgoals during the problem solving phase. The simplification is
driven by a table of rules of the form s=t where s and t are terms; occurrences of soc
are replaced by te for any substitution o,

The output furmat vf any functional term may be specified by the user by giving

a rule in which its input prefix form is on the left, e.g., (PLUS X Y) 5 (X+Y).




DEFINING THE PROGRAMMING ENVIRONMENT

COMMAND SYNTAX

33

ACTION PERFORMED

TRY <rulel> BEFORE <rule2>

Use <rulel> before <rule?> to
develop a subgoal.

FOR <rule> [FIRST| TRY <literal>

Change the precondition Q of <rule>
to <literal> & Q if "FIRST" is
given otherwise Q v <literal>.

DELETE {<rule>,<literal>,
<advice num>}

If <rule> is given, remove that
rule. If <literal> then altey
state to make <literal> not true.
If <advice num> then delete the
associated advice and undo its
effects on the system.

ADD{ <rule>,<literal>}

If <rule> is given then accept a
new rule. 1If <literal> then alter
state to make <literal> true.

ALTER <rule>

<rule> may be modified.

ASSUME {<rule>,<literal>}

If <rule> is given then an assumed
rule may be defined.

If <literal> then alter state to
make <literal> true and mark it as
an assumption,

RESTRICT <rule>{TO,FROM}
<rule list>

For any goal in Q, if "T0" is given
then only rules in <rule list> may
be used, if "FROM" then no rule in
<rule list> will be used.

ADVICE All advice given that session is
displayed.
STATUS The following information is dis-

played:
-rules entered and goals
pending in current subgoal
tree,
-rules and goals in longest
path obtained so far,
-currently constructed program
segment
-longest program segment
constructed so far.

PAIRWISE INEQUALITIES <proc>

Pairwise equality is prohibited
in primitive procedure argument

-positions containing "%,

RECURSIVE <rule>

Figure 4

The rule may be used directly to

achieve a goal in its pre-condition,
otherwise it may not.




34 DEFINING THE PROGRAMMING ENVIRONMENT

3.2. ADVICE LANGUAGE

The advice facility is intended to enable the user to impose structure relevant to
solving a particular problem upon an already defined frame. This additional structure
includes preference orderings among goals and rules, and restrictons on the search
space. The preferences may also reflect the kind of solution the user wants,

Advice is given during program generation by means of an interactive facility,
The advice subsystem may be entered by responding to a system query, “DO YQU
HAVE ADVICE?" | or by typing any key during program generation. The user may
request to see the current path in the subgoal tree ie. rules entered and goals
pending, and receive a diagnosis of the cause of any failure. This is useful in deciding
what advice to give.

The advice system enters a read loop recognizing and numbering commands from
the language shown in figure 4. In the language syntax, optional symbols are enclosed
in "[" and "J" enclosing a list of symbols in {" and "}" indicates that one must be
chosen; <rule> is a rule name; <rule list> is a list of rule names; <proc> is a primitive
procedure name; <advice num> is of the form “sn", where n is an integer; and Q
denotes the pre-condition of <rule>,

After advice has been given the system may be directed to reject the rule it is
currentiy using, if any, or to try (perhaps re-try) the current rule.

The advice facility is an important tool for experimenting interactively with
different frames to determine their adequacy and soundness. At present, the language
is rudimentary and should be extended.

3.3 PROGRAMMING LANGUAGE

The generated programs are expressed in an elementary ALGOL-like language




DEFINING THE PROGRAMMING ENVIRONMENT 35

which includes block structure, assignment statements, conditional statements, while
loops, and non-recursive procedures calls. The procedures may be typed, including
Boolean, and may have side effects in addition to the value returned. The procedure

parameters are normally called by value except in the case of special W-variables in

conditional assignments (rule RO,section 2).




36 DEFINING THE PROGRAMMING ENVIRONMENT

3.4 AN EXAMPLE
Consider the task of writing a program to compute the nth Fibonacci number for
some integer n. This task has been posed in [Balzer 1972] The basic information
required is the recursive definition and the basis values. One way to express this in
the Frame language ''ses the following predicates with the indicated meanings:
VFIB(X,Y): "The value of the X Fibonacci number is Y*,
C(X,Y): "The contents of the variable X is ¥
FIB(X,Y): "The variable X contains the Y Fibonacci number,
INTEGER(X): "X is an integer",
ISVAR(X): "X is a variable"”,
>(X,Y): "X is greater than Y"
NEWVAR(X,Y): "X and Y are local variables”,
The problem is ISVAR(XS)AINTEGER(N){?}FIB(XS,N).
The frame contains:
1. Axioms VFIB(1,1)and VFIB((ADD1 1),2Xthese define initial values),
2. Axiom

TAFIB
VFIB((SUBI V1),V2)AVFIB((SUB1(SUBI VINV3IA =(V4,(PLUS V2 V3));

VFIB(V1,va);

(deflnes VFIB(V1,V4) for terms beyond the initial values).
3. An iterative rule (named TFIB) with goal FIB(X3,N); this rule defines the conditions
to be satisfied during an iterative upward computation. The basis condition (to initialize
the counter and program variables) is:

NEWVAR(V1,V2)AINTEGER(V8)AC(V1 (ADD1 1)AC(V2,1)AC(V3,(ADD1 1))

The loop invariant condition is:

C(V1,VB)AC(V2,VI)AC(V3,V10)AVF IB(V5,V10)AVFIB((SUB1 V5),V9);.

This states that at each entry to the loop body, if the value in the counter is i and the
values in the program variables are j and k then j is the ith Fibonacci number and k Is

the (i-1)st Fibonacci number.




B

DEFINING THE PROGRAMMING ENVIRONMENT 37

The iteration step condition

C(V1,(ADD1 V5))AFIB(V2,VE)AFIB(V3(ADD1 VB))

specifies what the iteration step is to accomplish. The control test, >(V5,v8) and an

output assertion FIB(V3,V8) are given.
4. A definition of FIB in terms of VFIB and C

TOFIB
VFIB(V2,V3)AC(V4,V3); FIB(V4V2);

5. A simple primitive procedure for assignment is also given, i.e.

«(V1,Al)
ISVAR(V1); C(V1,AL);

No rules are uaclared as assumptions. The additional information given to complete the

frame specification is shown in figure 5, and a program generated from this frame is

shown in figure 6.




38 DEFINING THE PROGRAMMING ENVIRONMENT

.

! PREDICATE SYMBOL FLUENT PART IAL UNIQUENZSS

3
C TRUE FALSE c(x,*) '
F18 TRUE FALSE ) FIB(X,")
> TRUE FALSE FALSE
VFIB TRUE FALSE VFIB(*,*) '
INTEGER FALSE FALSE FALSE
- TRUE

FALSE

SIMPLIFICATION KULES: FUNCTION OUTPUT SYNTAX:

(ADD1 (SUBL X)) -» x (ADDI X) = (X+1)
(SUB1 (ADD1 X)) -, X (SUBL X) = (x-1)

(PLUS X Y) = (X+v)

ADVICE: TRY TF1B BEFORE TDFIB
RECURSIVE TAF1B

Qlﬂ-l"}'!OQMQOOQG!!!!OQ!.!QQ!.'!QOO'!Q!O!i.

PROC1 (X3,N)
ISVAR(X3) ; INTEGER(N);
COMMENT
INPUT ASSERTION
NONE
OUTPUT ASSERTION
FIB(X3,N)
BEGIN
Y1 - (1+41);
Y2 ~1;
X3 - (141);
WHILE =>(Y1,N) DO
BEGIN
Yl = (Y1 +1);
22 ~ X3;
X3 =~ (X3 + Y2);
Y2 - 22;
END

END

Figure 6




4. PROBLEM SOLVING PROCESSES

During the process of problem solving and program generation, information is
needed at many points to reduce the search space or to produce reasonable programs.
Some of the information is provided in the frame specification by statements about the
rules and predicates; other useful facts are provided to the problem solver in the form
of rather simple advice. Roughly speaking, there are six basic processes in the
problem-solving system where extra facts can help: (a) pattern matching, (b)
development of nodes in the subgoal tree, (c) updating the state description (i.e.
implementing invariance), (d) backtracking in the subgoal tree, (e) conditional branching,
(f) assembly of programs., Each fact (as opposed to a rule or axiom) in a frame
specification and each sort of advice has at least one function in speeding up a basic
process. Below we describe some of the ways in which the present variety of facts
and advice is used.
(1) OR-Node Selection. When more than one rule can be applied to reduce a given
goal, some selection and preference criteria are needed. By using the advice
system,¢the rules and axioms that may be applied to achieve goals within the
precondition of a rule or axiom may be restricted to or excluded from a given list.
Also, a preference ordering may be specified among rules and axioms with common
post-conditions. Goals within the preconditions of axioms are always restricted to
deduction within the current state, i.e. can be reduced only by use of other axioms,
and do not cause a state transformation nor add any construct to the generated

program.

(2) Predicate Classification. A predicate P is classified according to the kind of

subgoaling permitted to achieve a goal of the form P(t). If P is declared to be NON-




40 PROBLEM SOLVING PROCESSES

FLUENT, then any goal literal containing P can be achieved only by deduction from the
current state. No rules (procedure, iterative or definitional) are applied. FLUENT goals
are attempted by deduction and state transformation. If a fluent predicate occurs in a
literal which is the argument of the REQUEST modifier, then it is treated as a non-
fluent.

(3) Goal Ordering. The achievement of a condition (and the efficiency of the output
program) is strongly influenced by the ordering of its subgoals. In particular, {he
bindings of variables occurring in goals may be determined by earlier achieved
instances. In some cases only certain orderings will permit achievement. An objective
of an automatic problem solving system is to determine the optimal subgoal ordering,
but at present this is provided by the user when the Frame is defined and may be
altered by advice. However, the system automatically orders non-fluent goals first in a
condition; this relatively short achievement search is used both as a quick rejection
strategy and to get variable bindings of the correct type for the remaining fluent
goals,

(4) Recurring failures. When failure occurs in some subtree prior to successfully
solving a subproblem, its causes should be used to avoid repeating the same failure in
the continued search if possible. At present this must be handi2d using the interactive
advice system. This informs the user of the current path in the subgoal tree, current
program generated, and goals that fail, thus allowing interactive correction when a
repetition occurs. These situations can also be eliminated by placing the (eventual)
successful subprograms on the program library for use as MACROS.

(5) Repetition. Certain types of looping behavior in the subgoaler are prevented using

the feature of the Frame language that allows a rule to be declared recursive or non-




PROBLEM SOLVING PROCESSES 4]

recursive. If declared non-recursive, then that rule will not be used directly to
achieve a goal in its pre- condition and it will not be entered twice to achieve the
same instance of its post-condition within the same subgoal tree. A more general
mechanism should consider not only the current goai and rule but also the curvent
state as well.

(6) Truth Values. Though the underlying semantics is three valued, search efficiency is
gained by restricting relations involving certain predicate symbols to be iwo valued. If
a predicate P is declared to be TOTAL, then failure tc achieve P indicates that -P is
true. Only true positive instances of total predicates are stored in the state. The rule
of undetermined values is not applicable to literals involving total predicates. The
additional processing required for PARTIAL predicates is described in Section 5.

(7) Useless Procedure Calls. In some cases, the application and generation of
redundant or trivial procedure calls are detected and avoided. At the moment this is
done by placing restrictions in the frame on the actual parameters of primitive
procedures. The system will not use an instance of a primitive procedure that contains
pairwise equality between its actual parameters that has been prohibited by the user.
For example, the advice "PAIRWISE EQUALITY MOVE(x1,x2,3,3)" will cause the rejection
of the procedure call "MOVE(MAN,CHAIR,P,P)".

(8) Uniqueness Properties. Uniqueness or single-valuedness in argument positions of
certain predicates is sufficiently important to justify a special mechanism rather than
to rely on deduction using axioms. The designation of certain argument positions as
unique is equivalent to efficiently building in axioms of a particular form, e.g. P(x1,s)

represents the axiom,
P(x1,x2) A x2 ¥ x3 - -P(x1,x3).

These special axioms are used for consistency checking (in the implementation of the

rule of invariance) when the state is updated.




42 PROBLEM SOLVING PROCESSES

(9) Context Linking. The context, which includes the state and bindings on subgoals
currently pending at a node, should be available to aid search decisions, e.g.
instantiations of subgoals or choice of rule, at descendent nodes in the subgoal tree.
The system has a mechanism that if requested will keep track of the instantiated goals
at each level of the subgoal tree so that their variable bindings are available when
attempting lower level goals that preccde them in the depth first ordering. This is
used to instantiate the lower level goals. For example, suppose Q(b) A P(a) is a
condition to be achieved and a primitive procedure Riy) A P(x) {p(x,y)}Qly) is applied
to achieve Q(b), then for the P(x) in the precondition of p, P(a) will be used since it

must be achleved at the higher level anyway, i.e.,

/ \
/ \
Q)  P(a)
Al
/ \

R(b) P(x) (<x«a>)

This heuristic may be viewed as the opposite of subsumption, the strategy being to
get ground instances as soon as possibl: to help avoid long searches using rules. This
is a rather restrictive strategy that may exclude solutions and is only used when
requested by the user.

(10) Evaluation of Predicates and Functions. For certain predicates occurring in
subgoals, achievement is most efficient by direct evaluation. It a literal occurring in a
goal is formed with a predicate that has a LISP definition, then that literal is evaluated
as a LISP statement. Special processes or even subsystems can thereby be linked into
program generation. Evaluation of arbitrary functions occurring in terms in arguments

of goal literals is done if the function occurs in the scope of an EV moditier. These

evaluations assume the soundness of implicit axioms describing the LISP definitions,

o




PROBLEM SOLVING PROCESSES 43

and the concistency of these axioms with the Frame. For example, the equality
predicate, "=", is evaluated using the LISP "EQUAL", and the predicate
NEWVAR(x1,x2...,xn) takes an arbitrary number of arguments and binds each Frame
variable xi to a new program variable (for use perhaps as a local variable in a block).
(11) Simplification rules. Rules of the form s - t where s and t are terms, may be
included in the Frame. Such rules are applied to simplify terms in goals by replacing
occurrences of so¢ by tee. This not only reduces the complexity of terms in the
subgoal tree, but it also modifins the pattern matching process and the set of rules
that can be applied to reduce a goal.
(12) Computing Input/Output Assertions. In Section 2 primilive procedures were
viewed as Frame rules of the ‘orm ||-P{p}Q, where P and Q are the pre and
postconditions for p. The conditions P and Q may also be v.ewed as sufficient input
and output assertions for p , that must be satisfied by the actual parameters of p. For
any generated program segment A, the input assertion 1, is computed as the
conjunction of all literals, |, from a state that were used in achieving subgoals
encountered during the generation of A and did not occur in that state as a result of a
postcondition of a procedure whose generation in A preceded the addition of | to Ia.
The output assertion O, is the conjunction of literals added to a state during the
generation of A that are true in the final state. The usefulness of computing sufficient
input and output assertions for a program or segment thereof will become apparent
when we discuss program generalization and the construction of conditional
statements.

All of these applications of facts and advice with the exception of (12), are

intended to have a direct effect on reducing the growth of the subgoal tree (process




BT T . VU S SRy v SR ey e P

44 FROBLEM SOLVING PROCESSES

(b)). In addition, the pattern matching process (a) is extended by (11); (c) is aided by
the restriction of truth values and the special axioms (6,8); (e) is .ependent on (6 and
12); (f) is aided by (3,7,11,12). There are other techniques, mainly details of the
implementation, some of them heuristic, that affect problem solver, particularly the
backtrack (d), the updating (c) and assembly of programs (f) (e.g. the implementation of
the A connective by suftware interrupts that protect already achieved goals, includes

certain assumptions about backtracking when an AND-node tails).

3
1
1
i




sk i s R . g

o R Gty TR —

- PRI e T

5. GENERATION OF CONDITIONAL STATEMENTS

Conditional statements are generated in situations where the rule of
undetermined values (R6) applies or when the outcome of a primitive procedure is
uncertain. In this section the system methods for constructing conditionals wili be
described and an example given. The question of extending the formal algorithm and

the correctness proof is considered.

5.1 UNCERTAIN PRECONDITIONS

As previously mentioned, relations involving partial predicates may have truth
values of TRUE, FALSE, or UNDETERMINED, whereas all other relations must be either
TRUE or FALSE. Partially valued predicates are intended to express the possibility of
an uncertainty or lack of knowledge about a state arising during the problem solving
and program generation phase of the system. The formal algorithm for deciding when
an uncertainty has arisen is rule R6. As with invariance, the implementation of R6 is
only an approximation to the formal rule. The system may give up too early, but tP';is,
in itself, does not lead to incorrect programs, merely redundant ones.
5.1.1 UNDETERMINED VALUES, During the generation of a program, uncertainty may
arise when a precondition for the application of a rule is UNDETERMINED with respect
to the current state. The implementation of the rule R6 is described by the following
definitions:
DEFINITION A literal | is UNDETERMINED in a state S if the following conditions hold:

(i) pred(t) is partial,

and (ii) the system halts without solving S{?}I,
and (iii) the system cannot prove SuFa-l.

Condition (ii) means that | is not true in S nor can S be transformed into a state




46 GENERATION OF CONDITIONAL STATEMENTS

in which 1 is true. If condition (ii) is true and 4l is true in S then | must retain a truth
value of FALSE ~ng the precondition subgoal | must fail, Failure to prove - from $
establishes a truth value of UNDETERMINED for | with respect to S. This definition
applies to fluent and nonfluent literals but since the truth value of a "nonfluent” cannot
be changed by a state transformation, for them, it is sufficient to use only the logical
axioms in deciding condition (i),

For the more general case in which the precondition may be a disjunction of
literals we have the definition,
DEFINITION A disjunction of literals {I; }i_; is UNDETERMINED in a state S if at least

one literal is UNDETERMINZD and no literal can be achieved from S.




- T g

GENERATION OF CONDITIONAL STATEMENTS 47

5.2 CONDITIONAL STATEMENTS

When a pre-condition P is UNDETERMINED in a state S, a conditional branch is
inserted in the solution program. If P is a single literal |, then program generaéion may
continue either along the path in which | is assumed to be TRUE and in which future
goals are attempted with respect to state S U{l}, or along the path in which =l is
assumed to be TRUE using state S U{~I}. The system convention has been to generata
a call to a yet ungenerated procedure for the latter case. The tasks of generating
such contingency programs are placed in a subproblem stack for later attention (see
Section 5.5). Program generation continues, by convention, along the path using state
S U {I}. This path is referred to as the "trunk" program of the tree of contingency
programs generated while attempting to achieve the main goal. The path selection at

present is rather ad hoc since no assighments of probability are made at the points of

uncertainty. For an undetermined disjunctior {li}?,=l .
if Iy then

it iz then

if "ln then p.

0lse py-y

else p;
else py
where each p; is a call to a program to achieve a selected goal G
from state ) = S A {I, : ixj+] & i<in } A () ¢ 1sij) } and pg is the trunk

program segment which satisfies Salj{pg }G and forms the else-statement in the main-




48 GENERATION OF CONDITIONAL STATEMENTS

clause of the conditional. Each member of the set of triples {(p, , §; ,G):1Sjsm} is
placed in the stack of contingencies and prugram generation continues for pg The
assumed literal, 1j, is removed from the state following the generation of the ELSE

clause in the trunk program if it is not in the output assertion.




3 IR W s Al _

GENERATION OF CONDITIONAL STATEMENTS 49

5.3 SELECTION OF CONTINGENCY GOAL

The goal G to be achieved by the contingency programs is selected from the set
of goals in the subgoal tree that are global to the undetermined precondition. Let us
refer to the set of goals which are below G in the subgoal tree, as the SCOPE of G.
The particular G chosen and its associated scope affect the length of pg , duplication
among contingency programs, degree of difficulty in generating contingency programs
and validity of their use. If the structure of the trunk program is to remain fixed
during contingency program generation then the choice of G cannot be caferred. The
block structure of our program language imposes the restriction that for any
conditionals in pg, a contingency goal G’ must not have a greater scope than G. ‘There
is also the problem that if G is not fully instantiated then inconsistent instantiations
may occur in different contingency programs which must validly rejoin the main
program following the ELSE clause. The present system selects the least global fully
instantiated goal thereby satisfying the block nesting constraint and minimizing the
scope while avoiding the problem of handling deferred instantiation. This selection
process is always effective in the present system since the top level goal is fully

instantiated.

5.4 REJOIN CONGITIONS

When a contingency prograr: is generated its output state must satisfy cert;lin
conditions, hereafter called the rejoin condition, for return of control to the trunk
program to be correct. Consider the case of an undeterrmined goal L in state S and a
contingency goal G in figure 7 . Let A and B be program segments that satisfy S A

L{A}G and S A -L{B}G and let C be the rest of the trunk program.




GENERATION OF CONDITIONAL STATEMENTS

Figure 7

Let R be the output state of B obtained by applying invariance; thus SA-L{B}R

and RoG. Similarly, let SAL{A}P where PG, and let Q be the sufficient subset of P

required as input to C (see Section 4(12)). Then, the KEJOIN CONDITION for B is RoQ.
B is suid to have BAD SIDE EFFECTS if in fact R2Q cannot be established.




S A el e 1 =

GENERATION OF CONDITIONAL STATEMENTS 51

5.5 SUBPROBLEM STACK
The task of generating a contingency procedure is specified by the quadruple:
(<procname> <state> <goal> <rejoincond>)
where,
<prccname> is the name of the yet ungenerated procedure that must
satisfy <state>{<procname>}<goal> A <rejoincond>.

At the point in the planning when the uncertainty is encountered, the first three
elements of the quadrupie are placed in a stack. The rejoin condition is not known at
this time since it involves the input assertion for the trunk segment C foIIO\;/ing the
point where control returns from the contingency plan to the trunk plan. After C is
generated, the rejoin condition is computed and stored as the fourth element of the
quadruple,

When planning has been completed fur a trunk procedure, if the subproblem
stack is not empty then contingency planning may be done by removing a quadruple
from the stack and posing this as a program generation task. The state of the system
is initialized to the specified contingency state and the subgoaling system is given
<goal> as its main goal. if it is successful in achieving a state in which the main goal is
true then a test is made to see if the rejoin condition is true in that state. If it is then
the procedure declaration is adjoined to its trunk program. If the condition cannot be
proved, the system allows the user two alternatives: (i) Mark the call to the program
as an error exit in the trunk program, or (ii) "Fit" the program to the trunk program by
posing the currently untrue rejoin cundition as a new goal, constructing a new program
segment that achieves it, and appending this segment to the end of the coniingency

program.

This process of generating a trunk procedure which n.ay create new contingency




52 GENERATION OF CONDITIONAL STATEMENTS

tasks then generating contingency procedures as directed by the user may continue
until all contingencies have been processed and the stack is exhausted.
5.6 COMPUTATION OF INPUT-QUTPUT ASSERTIONS

The computation of input-output assertions for programs not containing
conditionals is described in Section 4(12). The uncertainty as to which path
computation will follow in a program containing conditional statements complicates
these assertions. The input-output assertions in this case must be computed
incrementally as each contingency program is generatad.

In the conditional statement shown in figure 7, suppose we know the minimal
input and output assertions for A and B, say P{A}Q and R{B}S. then the input and
output assertions for the conditional statement are

(L AP) v (<L AR)if L then A else BIQvS.

To reduce computation, We use the simpler sufficient input assertion P A R,
(Note that P A R should be consistent since it is a subconjunct of a previous state).

There doesn’t appear to be a simplifying approximation for output assertions .




GENERATION OF CONDITIONAL STATEMENTS 53

5.7 UNCERTAIN PRIMITIVE PROCEDURES
A primitive procedure q defined by P{q)Q has an uncertain outcome if Qls a
disjunction. In the present system, disjunctive post-conditions use the exclusive OR

connective, "®". This allows us to define frame procedures that have an intended
result hut may be unreliable. It is assumed that exactly one of the possible outcomes
will b& irue in the output state . At the point where an uncertain operator is applied,
the problem solver has no knowledge of what the outcome will be and a conditlonal
statement must be generated. Let Q be the disjunction of literals {l,fi=;. The first
outcome | is considered to be the normal (goal) result of executing q. Following the
inclusion of q in the program in state S, a conditional statement of the following form is
generated.
if ~ 1y then
if =1y Alz A=l ALASI, then p;

else If ~Iy A~lz Al3 A~ly AuA-I, then pj

else if ~ly A~z ALA=Iy Aly thenp,

else ppyj

where eachp,,2 s jsn,is acall to a program to achieve Iy from staie S, = S U {l, }
U{~l):ir;&1sisn}and Pne1 is an error exit. The contingency states will

correspond to the n ways of assigning exactly one literal true and the remaining

literals false.




generated are shown in figure 9.

54 GENERATION OF CONDITIONAL STATEMENTS

5.8 AN EXAMPLE

Suppose a procedure is to be generated for a man to travel from San Francisco
to New York given three modes of travel, ie., flying, driving, or walking. This is similar
to the “airport problem” discussed in [McCarthy 1959]). A FRAME for this problem
consists of defining a primitive procedure for each mode of travel, an initial state, and

relation information as shown in figure 8. A few of the contingency programs




"Rl walks from L1 to L2"

drive(R1,C1,L1,L2)
"R1 drives Cl from L1 to L2"

fly(R1,A1,L1,12)
"R1 flies Al fram L1 to L2"

ACLEAR(L1,L2 )VHASUMBRELLA (R1)
AWALKABLE (L1,12);

ROB(R1)A= KILLED (R1)AAUTO(C1)
AT(C1,L1)ARUNS(C1)
ADRIVABLE(LL,12)AAT(R1,L1);

ROB(R1)A= KILLED (R1)APLANE (A1)
AAIRPORT (L2 )AAT (Al,L1)
AFLIES{A1)ACLEAR(L1,L2)
AAT(R1,L1);

INITIAL STATE

GENERATION OF CONDITIONAL STATEMENTS 55
NS DEFINITION FLUENT PARTIAL NESS
ROB(X) "X is a robot" FALSE . FALSE FALSE
AUTO(X) "X 1s an automobile" FALSE FALSE FALSE
PLANE (X) "X 18 an airplane" FALSE FALSE FALSE
AIRPORT (X) "X is an airport” FALSE FALSE FALSE
AT(X,Y) "X is at location Y" TRUE FALSE AT(X,*)
WALKABLE (X,Y) "A walkable path exists between TRUE TRUE FALSE
X and Y"
CLEAR(X,Y) “The sky is clear between X and Y" TRUE TRUE FALSE
DRIVABLE(X,Y) “A drivable road exists between TRUE TRUE FALSE
X and Y"
HASUMBRELLA (X) "X has an umbrella" TRUE TRUE FALSE
CRASHED (X,Y,Z) "X crashed between Y and 2" TRUE FALSE FALSE
KILLED(X) "X has been killed" TRUE FALSE FALSE
RUNS(X) "X will run properly” TRUE TRUE FALSE
FLIES(X) "X will fly properly" TRUE TRUE FALSE
a“kae “ae -

PRIMITIVE PROCEDURE PRE -COND IT IONS POST-CONDIT IONS
valk(Rl,L1,L2) ROB(R1)A= KILLED(R1)AAT(R1.L1) AT(R1,12)

AT(R1,L2)
AAT(C1,L2)

[AT(R1,L2)A
AT(AL,12)]

@{ CRASHED(A1,L1,L2)
AKILLED(R1))

I)B’MN)MUTO(W)APMNE:Flll)MIRPORT\SFO)MIRPOIT(HYC)M‘I(MN,HO}E)MT(W,GAMCE)MT\'FHI.SFO);

PAIRWISE INEQUALITIES:

TRY FLY BEFORE DRIVE,

SEsaenee * L il 2 a2 2 L TR

ADVICE

Figure 8

TRY DRIVE BEFORE WALK

valk(Rl,*,*) drive(R1,C1,%,*), fly(R1,AL,*,*

e .



56 GENERATION OF CONDITIONAL STATEMENTS

PROC1 MAN N (C!)
ROB MAN JAUTO 1M (TIANE T111 (AIRPORT NYC,
COMMENT
INPUT ASSERT1O::
AT MAN HOME ACLIAR nUME CARAGE 2AT I CARAGE AT (111 $10
AFLIES P 111 ACLEAR S10 NYC #RL.S BW
ADRIVABLE GARAGE STO “WALFABLE HOM. GARAGE
OUTIUT ASSERIICL:
AT BM! S10 AAT FLLL (0C #AT AN NYC
COMMENT
PROCLL ATIEMPTS TO_ACHIEVE_ AT MAN NYC
PROCL. ATTEMPIS JO_ACHILVE AT MAN (ARAGE
PROC™ ATTEMPTS _TO_ACHILVE_ AT MAN (ARAGH
PROC- ATTEMPTS_TO_ACHIEVE AT MAN GARACE,
PROC. ATTEMPIS _[O_ACHIEVE_ AT AN SIO
PROC. ATTEMPTS _TU_ACHIEVE_ AT MAN SIO
PROC: ATTIMPIS 10_AUHIEVE_ AT MAN NYC
PROC  ATTEMPTS _TO_ACHIEVE_ AT MAN NYC
BEG N
IF =FLIES [111  THEN
PROC MAN NYC
ELSE
HEG 1
IF =CLEAR SIO NYC) THEN
PROC? MAN NYC
ELSE
BEGLN
IF <RUNS 8 THEXN
PROC- MAN StO,
ELSE
BEGIN
I} “DRIVABLE GARAGE SFO, THEN
PROC. MAN SFOQ,
ELSE
BECLIN
IF —CLEAR "HOME GARAGE, THEN
IF ~HASUMBRELLA MAN, THEN
PROCY. 'MAN GARKAGE |
ELSE PROCT7 ‘MAN GARAGE,
ELSE
BECIN
IFYWALKABLE 'HOME GARAGE) THEN
PROC1C'MAN GARAGE
ELSE
EEGIN
WALK MAN HOME GARAGE,
END
END
CRIVE 'MAN BM{ GARACE SFO,
END
END
FLY MAN K111 SFO NyC!
IF —AT(MAN NYC) THon
IF —AT(HAN (YC) A CRASHED 111 SFO NYC)
PRUCTT (MAN WYC)
ELSE PROCLR(MAN NYC)
ENpEND
END
PROCZ (MAN NYC )
ROB(MAN) ;AUTO BMw | ;
COMMENT
INPUT_ASSERTION:
AT(MAN HOME | CLEAR 1IOME GARAGE AAT'BMJ GARAGE )ARUNS [ BMW )
ADRIVABLE (GARAGE NYC)AWALKABLE (HOME GARAGE)

Figure 9




GENERATION OF CONDITIONAL STATEMENTS

OUTPUT_ ASSERTION:
AT BMW NYC)AAT MAN NYC);
COMMENT
PROCL: ATTEMPTS_TO_ACHIEVE_ (AT MAN GARACE)
PROCIS ATTEMPTS_TO_ACHIEVE_ (AT MAN GARAGE)
PROCL4 ATTEMPTS_TO_ACHIEVE_ (AT MAN CARAGE)
PROCL3 ATTEMPIS_TO_ACHIEVE_ (AT MAN NYC)
PROCIZ ATTEMPTS_TO_ACHIEVE_ (AT MAN NYC);
BEGIN
IF —~KUNS(BMJ) THEN
PROCLZ (MAN NYC)
ELSE
BEGIN
IF —DRIVABLE (GARAGCE NYC) THEN
PROCL5(MAN trYC)
ELSE
BEGIN
IF ~CLEAR(HOME CARAGE) THEN
IF ~HASUMSRELLA (MAN) THEN
PROCL14 'MAN GARAGE)
ELSE PROCIS(MAN GARAGE)
ELSE
BEGIN
IF —WALKAB .E (HOME GARAGE) THEN
PROC16 (MAN GARAGE)
ELSE
BEGIN
WALK({MAN HOME GARAGE);
END
END
DRIVE(MAN BMY (ARAGE NYC)
END

PROCL (MAN SFO)
KOB(MAN);
COMMENT
INVUT_ ASSERI [ON:
AT (MAN HOME )ACLEAR(HOME SFJ)AWALKABLE (HOME SFO)
OUTPUT_ ASSERTION:
AT{MANTSFO);
COMMENT
PROC” 5 ATTEMPTS_TO_ACHLEVE_ (AT MAN SFO)
PROCCL ATTEMPTS_TO_ACHIEVE_ (AT MAN SFO)
PROC. 5 ATTEMPTS_TO_ACHIEVE_ (AT MAN SFO);
BEGIN
IF ~CLEAR(HOME SFO) THEN
IF —HASUMBRELLA (MAN) THEN
PROC23 (MAN SFO)
ELSE PROCL (MAN SFO)
ELSE
BEGIN
IF —WALKABLE (HOME SFO) THEN
PROC2Y (MAN SFO)
ELSE
BEGIN
WALK(MAN HOME SFO,
END
END
END

FROC12(MAN NYC)

HROB/MAN);

COMMENT

INPUT_ASSERTION:

AT(MAN HOME )ACLEAR(HOME NYC) AWALKA BLE(HOME NYC)

Figure 9 - continued




58 GENERATION OF CONDITIONAL STATEMENTS
r

OUTPUT_ASSERTION:
AT MAN NYC
COMME NT
PROCY . ATTEMITS _TO_ACHIEVE_ (AT MAN NYC)
PROC™ ATTEMPTS_TO_ACHIEVE_ (AT MAN NYC
PROC." ATTEMPTS TO_ACHIEVE_ (AT MAN NYC \
BEGIN
IF ~CLEAR HOME NYC) THEN
IF —HASUMBRELIA MAN) THEN
PROC. . MAN NYC)
ELLSE PROC”7 /MAN NYC
ELSE
BEGIN
IF =WALKABLE HOME NYC) THEN
PROC20. MAN NYC)
ELSE
BEGIN
WALK MAN HOME NYC)
END
J END
END

e Ay e | S Py ey wme TR wmm———

Figure 9 - continued




GENERATION OF CONDITIONAL STATEMENTS

5.9 CORRECTNESS
Conditional statements will be correctly generated if the system methods are an
accurate implementation of the conditional rule, RS, presented in Section 2. Referring
to tigure 7 in Section 5.4, if we let S be the output state of C then by construction and
by verifying the rejoin conditions we have,
(1) TAL{AJG A Q,
(2) IA-L{B)G AR,
(3) Q{Cjs,
(4) |- R > Q,(rejoin condition verification)
and the correctness argument may then be completed as follows,
(®) 1A -L{B}G A Q, (2,4,Consequence Rule)
(6) I{if L then A else B}G A Q, (1,5,Conditional Ruie)
(7) 1{if L then A else B;C}S, (3,6,Composition Rule).
It should be noted that if conditional statements occur in B then R may only be
an approximation of the true output state resulting from executing B 2s discussed in

Section 5.6. Similarly Q may be only an approximation of the true input assertion for

the remainder of the program. In these cases an incorrect program may result,

However the above argument serves as a justitication for the system methods.




60

6. GENZRATION OF ITERATIVE STATEMENTS
An iterative rule aliows the prugram generator to construct a WHILE loop

provided it can construct a loop body to salisty the premisses of the rule. Ultimately

such rules should require the user merely to specify an invariant in order to have the
system write a correct iterative program. At the moment, the user needs to furnish
some additional relevant facts. The algorithms used in the system to implement
iterative rules of the form 32 (Section 2) and to assemble while loops are described
briefly and an example given. Details of of the system implementation are found in
Section 9.
6.1 PREMISSES FOR CONSTRUCTING A LOOP

An iterative rule is defined by the assertions P(basis), Q(loop invariant},
k(iteration step goal), G(rule goal), L(control test) and S(outpu! assertion). All the free
variables in R and L must be among the free variables in Q. In order to use the rule,
to achieve 1{?}G say, the formal algorithm requires that a.l of the following subgoals be
achieved or be true:

(i) Construct A such that L(F)||- I{A}P

(ii) L(F)|- I{A}Q

(in) Construct B such that L(F)||-QAL{B}R

(iv) L(F) |- QAL{B3Z)QUZ)V(~(IZ)Q(Z)A-LLY)) ]

(v) Construct C such that L(F) ||- QaL{B;C}Qv-L
Note that (ii) and (iv) are restricted to first order rules (consequence, invariance, and
the frame axioms). The input state for (iii) is UAL. In addition, an iterative rule must

satisfy the following minimal consistency requirements within the frame F.

(vi) (SuFoLl)andSuUF =G . {

The conclusion of the rule is:  I{A;WHILE L DO BEGIN B;C END}G.

Iterative frame ruies are instances of the iteration rule [Hoare 1969}:

QAL{AJQ, r-LoG |



GENERATION OF ITERATIVE STATEMENTS

Q{WHILE L DO A}G .
It is possible to derive a weak form of the rule:

QAL{AJQv-L, ~LoG

The weak form allows the invariant to fail on exit from the loop. We have founc
the weak form convenient to use in many examples.

The present implementation sets up clauses (i) - (iv) as a THAND of subgoals to
be achieved. More specifically, suppose an iterative rule is invoked to solve the

problem I{?]G. Let V be the list of variables in Q. The system does the following:

(1) A program segment p(P) is generated such that I{p(P)}I’ and I'UF |- P ( p(P)

may be empty).

(2) An instance QX of the loop invariant must be true in the state I’,i.e. A = {<vy

€ §] > SVp € 5y O} s constructed such that 'uF > Q\. (3) A program segment

p(R) is generated such that Q A L{p(R)}JI" and I"UF 2 R.

(@) It is checked that I"uF2Q@v-L for some substitution B and a set of

conditional assignment statements C is constructed such that 1"{C}Q v -L.

Thus, at the moment, clause (iv) ensures that C need contain only conditional
assignments. In the future we would want 1o relax this resiriction. It is assumed that

the user’s definition of the rule satisfies (vi). The user may omit S or L; in the latter

case -~ G is used as the control test.




62 GENERATION OF ITERATIVE STATEMENTS

6.2 ASSEMBLY OF WHILE LOOPS

After the premisses have been achieved, a loop is assembled as follows:

(1) Let Y and W be two distinct lists of variables in one-to-one correspondence

witn V. For eacn <v; « s; > ¢ A corstruct an initial assigrment statement "y, «

si " Let"Y « S" denote "y} « $; ; Y2 & 82 i ¥n ¢ Sn i

(2) The WHILE loop may then be assembled in the form:

piP);
Yes
WHILE L(Y) DO
LEGIN
p(R(Y));
IF QW) THEN Y « W;
END
where Q(W) is an expression containing calls to Goolean procedures indicated
(syntactically) by the presence of the special W-variables (Section 2, Rule R0).

There are many heuristics in the system to reduce the number of program
variables, i.e. y’s and w's generated, to select the relevant portion of Q to be used in
conditional assignment statements, 10 generate simple assigrment statements (whose
right hand sides are functional terms composed from functions in the frame) instead of
conditional assignments, and to eliminate unneressary assignment statements in the

assembled program. These may all be classitied as optimizations, some of which are

done as the "WHILE" loop is assembled and others during a iater optimization phase.

6.3 UPDATING THE STATE

After the while statement has been generated, the system updates the state. If
an explicit output assertion S is given then the rule of invariance is applied in the
same manner as with the postcondition of a primitive procedure. In the absence of an

output assertion, a special update procedure runs the loop interpretively on the siate




GENERATION OF ITERATIVE STATEMENTS 63

until the goal G becomes true. The resultant state is used in further planning. This
latter method is useful when the global effects of the loop computation are so
extensive, or uven unpredictable, that an explicit specification of S is difficult. It may

result in excessive update computation, particularly when loops are nested.

6.4 AN EXAMPLE

As an example of "while" loop generation consider the task of generating a
program to compute the value of n factorial for some positive integer n where
multiplication is not a primitive operation but is done by repeated addition. The Frame
for this problem is shown in figure 10. Also used is the primitive procedure for
assignment used in the example in Section 3. To achieve the gc;al "FACT(XO,N)" the
sysiem applies the iterative rule TFACT. The premises are achieved according to
Section 6.1 which results in an application of another iterative rule TPROD. The
premises of TPKOD are achieved, the "inrar" loop assembled and optimized and state is
updated with respect to the output assertion. The assembled while loop is appended
to the iteration step program for TFACT. The “"outer" loop is then assembled and
optimized and the state further updated reflecting the total state transiormation of an
execuiion of the nesied loop program.

Tho cutput program after optimization with statements labeled accordirg to their
source of generaton in the algorithm is shown in figure 11. Note that successive
values of the program variables are obtained by simple assignment staiements rather
than by conditional assignment as described in the algorithm. This is the result of
applying system heuristics which are able to use the arithmetic operations PLUS and
ADUL which are primitive tunctions in the trame, to -eplace the conditional

assignments.




GEMNERATION OF ITERATIVE STATEMENTS

RELATIONS DEFINITION FLUENT PARTIAL UNIQUENESS

VFACT(X Y) "The value of Y tactorfal is X" TRUE FALSE VEACI(*,*)

c(x,Y) "“The contents of variable X {s Y" TRLE FALSE c(x,*)

FACT(X,Y) "The varf{able X contains Y factorfal" TRUE FALSE FACT (X,*)

VPRODUCT (X,Y,2) "X fs equal to the product of Y and 2" TRUE FALSE FALSE

INTEGER(X)

"X is an integer" FALSE FALSE FALSE
ISVAR/X) "X {s a varfable" FALSE FALSE FALSE
NEWVAR(X) "X is a new local varfable" TRUE FALSE FALSE

-(X,Y) “X equals Y" TRLE FALSE FALSE

L R Ny T o

AXIOM ANTECEDENT CONSEQUENCE

TAFACT {=(v9,1)A=(V10,1)) VFACT(V3,V1p);
V VFACT( (DIV v) V1), (SUBL vig));

TAPROD {=(v5,0)A=(Vv6,0)) VPRODUCT (V5 , V¢ ,V3);
vV VPRODLCT ( (MINUS V5,V3), (SUBL V€),v3);

AP NS SL A P RASR SR NEBIXNEI D Y AN ANA NV X

SIMPL'FICATION RULES

ADDI(SUBY X)) — X
(SUBL(ADDL X}) -+ X
MINUS PLUS X Y)Y) = X
(DIV/PROD X Y)Y) =+ X

FUNCTION OUTPUT SYWIAX

ADDL X) = (X + 1)
(SUBL X) = (X - 1)
PLUS X V) = (X +Y)




GENERATION OF ITERATIVE STATEMENTS

» ITERATIVE RULES

RULE NAME TFACT TPROD s
BASIS CONDITION NEWVAR( V7 JAINTEGER (Vi NEWVAR (V4 )AL (VL ,0)
AVFACT (V5 , VF JAC (V3 VS AC(VL,E)

AC(V7,VE)

A

INVARIANT CIV/,VIB)AC(VE,VY) C(W ,VE)AC(VL,V5)
AVEACT (V),VIE); AVPRODUCT (V5,\7 ,V3);

ITERATION STEP c(vr,(ADDL VIQ))A c(vt, (ADDY VE))
PRODUCT V4,V , (ADDY VI¢)); c(vi, (PLUS Wy ,V3));

GOAL FACT(V3,V4); PRODUCT (V1,V2,V3);

TEST =1,V ) —-=(V6,VR);

OUTPUT ASSERTION Cc(v3,(FAC Vb)), C(vl,(PROD V2,V3)};

M A RN R TR RN SRR NN RS NN o s ]

Figure 10 - continued




66 GENERATION OF ITERATIVE STATEMENTS
PROCL (X N)
ISVAR(X{ ) ; INTEGER(N);
COMMENT
INPUT ASSERTIONS:
NONE

OUTPUT ASSERTIONS:

c(xp (FAC N));

BEGIN
p(P) (TFACT) Xp ~ 1,
Initial Assignment———— YL ~ 1;
(TFACT)
WHILE == (Y4 N) DO
BEGIN
p(P)(TPROD) (Optimized Out/ Yh - (Y4 + 1)

Initial Assignment ( TPROD;’///’[;

p(R) (TFACT)

WHILE == (Y1 X§) DO

BEGIN

pm)(TmmD%—_____________fm - (Y2 + Yh);

lYl - (Y1 + 1);
UPDATE Assignments (TPROD)
(Optimized Out)

END

UPDATE Assignment (TFACT) Xp ~ Y23
END

END

Figure 11 |




7. PROGRAMMING AIDS

The complexity of programs that can be generated using the system is increased
by some simple facilities described in this section. The capabilities discussed here are
incremental extension of a current program, use of a program library, and expansion of
assumptions,

The system enables a user to plan incremental extensions of a program simply
by saving each completed program segment A and its output state O in a stack. The
user may then pose a new goal G and solve the problem O{B}G. The composition A;B
will then be output‘. He may choose to start from any previously saved state and
associated program segment.

7.1 PROGRAM LIBRARY
When a program A has been generated to solve P{A}Q, the user may request

that it be "generalized" and filed in the program library where it may be accessed by

the subgoalor (similar use of a lit rary in robot planning is reported in [Fikes,Hart, and

Nilsson 1972)).

Generalization is a process which constructs a procedure declaration for the
library as follows. Let I and O be the input-output assertions computed for A during
its construction. We assume P>l, 0=QAQ’, and I{A}O. The non-fluent conjuncts of | are
taken as the type declarations, their variables being the parameters of the new
procedure. These actual parameters are replaced throughout I{A}J0 by new formal
parameter variables. An entry of the form:

((<procname> <goal> <effects> <type conditions> <state condition>)<body>)
is made in the library, where <procname> is a name and parameter list, <goal> is Q,
<effects> is O', <body> is A, and it is assumed that

<type conditions> A <state condition>{<procname>}<gual> A <effects>




68 PROGRAMMING AIDS

Library procedures are used during program generation by matching on the
<goal> then establishing the <type conditions> and <state conditions> as subgoals in
that order. If the conditions are satisfied then the instantiated <body> is included in
the program. The system requirement of achieving the input assertions and processing
the output assertion during update for a program taken from the library prevent its
incorrect use in a particular program. There is no attempt to organize the library for
efficient selection; the system merely tries all library procedures before any frame
rule.

As an example of program assembly using the library consider the task of
building a tower to reach an object, i.e. achieve "HAS(M.3)". Use will be made of a
library program to find and put on shoes which achieves WEARINM,SHOES), previously
generated using the same Frame. The generated program is then extended
interactively by posing a new goal, AT(M,P).

A robotics frame for this problem is shown in figure 12, and the generated

programs in figure 13,




r-w—!w*""‘ -

e
B e R AR

PROGRAMMING AIDS

RELATIONS DEFINITION FLUENT PARTIAL UNIQUENESS
ROBOT X) "X is a robot" FALSE FALSE FALSE
BOX(X) “X is a box" FALSE FALSE FALSE
AT(X,Y) "X is at location Y" TRUE FALSE AT(X,*)
ON X,Y) "X is on Y" TRUE FALSE ON(X,*)
HAS X,Y) "X has possession of Y" TRUE FALSE FALSE
STACKED X,vY,Z) "X isstacked on Y at location 2" TRUE FALSE FALSE
INSTACK (X,Y) "X is in 2 stack at location Y" TRUE FALSE- INSTA K(X,*)
STACKHE ICHT (X,Y) ";hl liack height at location TRUE FALSE STACKHEIGHT (*,Y)
is X"
HEICHT(X,Y) "X is positioned at a height TRUE FALSE HEIGHT (X,
of Y"
TOP(X,Y) "X is the top object in stack TRUE FALSE TOP(*,Y)
at Y"
HIENUF (X,Y,2) "X is as high as Y at 2" TRUE FALSE FALSE
HOLDING (X,Y,2) "X is holding Y at location 2" TRUE FALSE HOLDING(X,*,2)
CHAIR(X) "X is a chair" FALSE FALSE FALSE
CLOTHES(X) "X is an article of clothing" FALSE FALSE FALSE
UNDER(X,Y) "X is under Y" TRUE TRUE FALSE
WEARING X,Y) "X is wearing clothing Y" TRUE FALSE FALSE
FOUMD(X,Y) "X found Y" TRUE FALSE FALSE
-(X,Y) "X s equal to Y" FALSE FALSE FALSE
ABOVER(X,Y,Z2) "object X is above robot Y at 2" TRUE FALSE FALSE
ABOVE X,Y,2" "object X is above object Y at 2" TRUE FALSE FALSE
BOTTOMBOX X,Y) "X 1s the bottom box at Y" TRUE FALSE FALSE
BOTTOMBOXU X,Y,7 ' "X is the bottom box at Z under Y'" TRUE FALSE FALSE
BELOWR (X,Y,2) "object X is below robot Y at 2" TRUE FALSE FALSE
BELOW X,Y,2) "object X is below object Y at 2" TRUE FALSE FALSE
SUPPLY X) "the supply is at location X" FALSE FALSE FALSE
NEXTBOX (X,Y) "X is the next box after y" TRUE FALSE FALSE

Figure 12



70

PRIMITIVE PROCEDURE

PROGRAMMING AIDS

PRE-COND ITIONS

POST-CONDITRONS

travel (R1,L1,L2)
"Rl travels from L1 to L°"

move (R1,01,L1,L7)
"Rl moves Ol from L1 to L2"

stack(R1,02,01,L1)
"Rl stacks O° on Ol at L1"

climb/R1,01,L1)
"Rl climbs Ol at L1"

unclimb R1,02,L1)
“R1 unclimbs C ac L1"

ROBOT {R1)AAT(R1,L1)AHEIGHT (R1,0);

ROBOT (R1)ABOX (01 )AAT (01 ,L1)A = INSTACK(C1,L1)A
CLOTHES (02 JAWEARING (R1,03 )AAT (R1,L1);

ROBOT (R1 )ABOX/01)ABOX 02 )A#(01,02 )JAAT(01,L1)A
AT(02,L1)AAT(R1,L1 JAHOLD ING(R1,02,L1)A

HEIGHT (R1,8)AON(R1,01,L1 )A=STACKED (03,01,L1)
ASTACKHEIGHT (H1,L1);

ROBOT /R1)AABOVER (01 ,R1,L1)AAT(R1,L1)A
=INSTACK (01,L1)v

{ STACKED (01,02,L1)AON(R1,02,L1)JA
REQUEST (HEIGHT (R1,H1));

ROBOT(R1)ABELOWR (01,R1,L1)AAT(R1,L1)A
REQUEST (HE IGHT (R1,H1))A

REQUEST (STACKED (02 ,C1,L1))A
ON(R1,02,L1);

AT(R1,12);

AT(O01,L2)AAT(R],L2);

STACKED(02,01,L1)A
STACKHEIGHT ( (EVN(ADD! H1)),L1)
ATOP(Ol,L1);

ON(R1,01,L1)A
HEIGHT(R1, (EVN(ADDL H1)));

ON(R1,01,L1)A
HEIGHT (R1, (EVN(SUBL H1)));

Figure 12 - continued

stepoff(R1,01,L1) =(H1,0)AHEIGHT (R1,1)AON(R1,01,L1); HEIGHT (R1,H1)A

"Rl steps off Ol ac L1" =ON(R1,01,L1);
reach(R1,01,L1) ROBOT (R1)AAT(O1,L1)AHIENUF (R1,01,L1); HAS(R1,01);

"Rl reaches 01 at L1"
1ife(R1,01,L1) ROBOT (R1)ABOX(01)AAT(01,L1)AAT(R1,L1)A HOLDING(R1,01,L1);

"R1 lifes O1 ac L1" =INSTACK(01,L1);
find ‘R1,01,L1) ROBOT (R1)ACHAIR (02 )AAT(02,L1)AAT(R1,L1)A FOUND(R1,01);

"Rl finds Ol at L1" UNDER (01,02);
put_on(R1,01) ROBOT (R1 )ACLOTHES (01 )AFOUND(R1,01); WEARING(R1,01);

1 puts on O1"
L R R R R R s e R R )
AXIOM ANTECEDENT CONSEQUENCE
TABOVER = ON(R1,02,L1)v{ON(R1,03,L1)AABOVE(01,03,L1)}; ABOVER(O1,Rl,L1);
TABOVE =(01,03)v{ STACKED (02,03,L1 )AABOVE (01,02,L1)}; ABOVE(0O1,03,L1);
TBELWR ON(R1,00,L1)ABELOW (01,02,L1); BELOWR (01,R1,L1);
TBELOW =(01,03)v{STACKED (03,(®,L1)ABELOW (01,02 ,L1)}; BELOW(01,03,L1);
T80T TOP(03,L1)ABOTTOMBOXU(01,03,L1); BOTTOMBOX(01,L1);
TBOTU STACKED (03,04 , L1 )ASTACKED (04 , 02, L1 )V BOTTOMBOXU(01,03,L1);
STACKED (03%,01,L1)A™STACKED (04 , 0 ,L1)V
BOTTOMBOXU (01,04 ,L1);
TNEXT SUPPLY (L1)AAT (04 ,L1); NEXTBOX (04 ,03);
TINSTACK TOP(02,L1)ABELOW (01,02 ,L1); INSTACK(01,L1);
IO.!..QIl.......'.'.'.'.....’"-!ll..ll.ll...

DEFINITION
TNITE HEIGHT (O1 ,H1)ASTACKHE IGHT (H1,L1)ATOP(02,L1)AON(R1,02,L1) & HIENUF(R1,01,L1)



P ]

T

PROGRAMMING AIDS "
OUTPUT
ITERATIVE RULE  BASIS CONDITION INVARIANT ITERATION STEP GOAL TEST ASSERTIO!
TUP REQUEST(HEIGHT (R1,H2)) ON(R1,01,L1)A ON(R1,07,L1); NEXCHT(RI,HZ); bt o]
AGZ(H2 v STACKED (02,01,L1)
{BOTTOMBOX (07,L1) VTOP(01,L1);
AON(R1,03,L1));
TDOWN GZ(H1)A ON(R1,01,L1)A ON(K1,0,L1); HE1GHT (R1,Hl1); =~ e
REQUEST (HEIGHT (R1,H2)) STACKED 01,02,L1)
ACT(H2 ,H1); ¥ BOTTOMBOX (0O1,L1);
TSTA STACKED (07,01,L1) TOP(0%,L1)A HOLDING (R1,04 ,L1)  STACKHE1GHT =» -
AON(R1,00,L1); STACKHE IGHT AHEIGHT (R1,H2) (H1,L1);
(H2,L1)A ASTACKED (O ,02,L1);
NEXTBOX (04 ,03);
INITIAL STATE

ROBOT M)ABOX B2 JABOX BY )Auox’s':\mx/a()Auox.s“)Aaox(m)m'r\n,r)/v\r;n,u)Mr{u,swc)Mr(as.swc)Ml (B%,SLOC)A
AT B0, SLOC)AAT (B4 ,SLOC'AAT(B”,SLOC 'ASUPPLY SLOC)ASTACKHEIGHT (@, U ) AHE IGHT (M, 8 )AHE IGHT ( B,4 JACLOTHES ( SHOES A
CHALIR (CHAIR1)ACHA IR (CHAIRZ )AAT  SHOES ,CORNER JAAT (CHAIR] , CORNER JAAT (CHAIR2 ,CORNER ) ;

ADVICE

RECURSIVE RULES: CLIMB,TABOVE,TBELOW,TBOTU PAIRWISE INEQUATITIES: travel(Rl,*,*) ,move (R1,01, *,*)
STACK(R1,*,*,L1)

Figure 12 - cogtinued




Assembled
from
Library

—>

PROGRAMMING AIDS

PROCL (M SHOES
ROBOT M, CIlAIR CHAIR®);CLOTHES SHOES);
COMMENT
INPUT ASSERTION:
HEIGHT M O )JAAT(M P)AAT CHAIR® CORNER)
OUTPUT_ASSERTION;
AT M CORNER)AFOUND M SHOLS JAWEAR ING (M SHOES ) ;
COMMF NT
PRO™ ATTEMPTS TO_ACHIEVE_ (FOUND M SHOES) ;

BEGIN

TRAVEL M P CURMER

IF =UNDER SHO'S CHAIR') THEN

FROCZ (M SHUES

ELSE
BEGIN
FIND M SHOES CORNER)
END
PUT_ON M SHOLS
END
PROCS (M B

ROBOT(M);BOX & iCLOTHES ' SHOES}CHATR 'CHAIR: ) ; BOX (B ) ; 3UFPLY  SLOC| +BOX(BA); BUX(B3);
COMME NT
INPUT_ASSERTION:
AT 'M P'AAT B SLOC)AHEIGHT M © JAAT (CHAIR CORNER JAAT (B4 SLOC
AHEIGHT B «)ASTACKHEIGHT (¢ U)AAT | B6 SLOC)AAT(B3 SLOC)
OUTPUT_ASSERTION:
AT(M PIAAT(BT UHALT (B4 UIASTACKED(B4 B7 U)AAT(B6 U)
ASTACKED (B6 B4 U)ASTACKHE]IGHT (4 UMAHAS (M B)AHEIGHT (M @)
AFOUND ‘M, SHOES AWEARING M,SHOES ) { AAT B3 U) ASTACKED (B3 8 u);
BEGIN
TRAVEL M | VCORNER) ;
IF—UNDER S.10ES CHATR) THEN
FROCZ (M THOES)
ELSE
BEGIN
FIND'M SHOES CORNER)
END
UT ON M SHOES);
RAVET Y TORNER SLOC) ;
MOVE M B’ SLOC U);
TRAVEL(M U Si0C);
MOVE'M B. SLOC U);
LIFT(M B U),
CLIMB(M B” U);
STACK(M B. B7 U);
CLIMB(M B. U);
Y3 -2,
Y4 = BblL;
I¥ NEXTBOX W4 Y4) THEN
P2
WHILE “STACKHEICHT 4 U) Do
BECIN
23 - ADDI(Y2);
Yl - vi,
IF STACKED (Yl W1 U) THEN
2l - Wi,
WHILE ~HEIGHT (M 1)DO
BEGIN
UNCLIMB(M Y1 U),
Yl - 21;
IF STACKED(YLl WI U) THEN
21 - W],
END
STEFOFF (M B7 U);
TRAVEL(M U SLOC);
MOVE(M Z4 SLOC U);

3

Figure 13




e )

PROGRAMMING AIDS

Incremental
Extension

—

LIFT(M z4 u);

CLIMB(M B/ U);

Y2 = B7;

IF STACKED (W2 Y2 U) THEN
22 - Wo;

WHILE —HEIGHT (M Y3) DO
BEGIN
CLIMB(M 22 U);
Y2 e~ 22;
IF STACKED (W2 Y2 U) THEN

22 - w2;

END

STACK(M 24 Y4 U);

Y3 - 23;

Yo - 24;

IF NEXTBOX Wi Y4) THEN
24 - Wi ;

END

CLIMB(M 87 u);
REACH(M B U);

Y5 - B2;
IF STACKED (Y5 W5 U) THEN

25 - W5;

WHILE —HEIGHT (M 1 U) DO

BEGIN

UNCLIMB(M Y5 U);

Y5 - 25;

IF STACKED (YS W5 U) THEN
25 ~ W5,

END

STEPOFF(M B7 U);

TRAVEL(M U P);

END

Figure 13 - continued

B

73



v

74 PROGRAMMING AIDS

7.2 EXPANSION OF ASSUMPTIONS

A basic capability for structur:ng programs is provided by interactively allowing
the user at any level in program generation to define a primitive procedure, P{p}Q, as
an assumption. The program generator will then use P as usual except at each point
of call to p in the program the current state I and current goal G will be saved. The
triple <p,I',G> is placed in a stack of subtasks for later expansion.

When a program containing assumed primitive procedures has been generated,
the user is given the list of assumptions his program cepends on and allowed to
selectively expand them in terms of lower level procedures. For the subtask <p,I',G>,
the state is initialized to I', the frame may be changed, G is given as the goal,and a
body for the procedure p is generated.

Consider the example given in Section 6 of computing the value of n factorial
where multiplication is not a primitive operation. The initial frame is the same except
that in place of an iterative rule for multiplication, there is an assumed primitive
procedure

lSVAR(V1){times(Vl.V2,V3)}PRODUCT(V1,V2,V3),

where PRODUCT(V1,v2,v3)=C(V1 (PRCD V2,V3)).

The program generated using this frame is given in figure 14. To expand the
non-primitive procedure “times(V1,v2,V3)" the full trame including the iterative product
rule is given and the sub-program generated is shown in figure 15.

In the current implementation it is assumed tht the expanded sub-programs will
have no side effects. However this assumption could be removed by a mechaniem
similar to checking rejoin conditions for contingency programs (Section 5.4),

To develop a useful structured programming system interaction appears

essential along with further study about how humans do (or should do) programming.

T TP e m————




PROGRAMMING AIDS 7

FROCL XS X)
ISVAR ¥ INTECER(N
COMMENT
INPUT ASSERTION:
NONE.
OUTPUT ASSERTION:
Cix [enc N));
COMMENT
THIS PROCKAM RELIES ON THE FOLLOWING ASSUMPTIONS:
TIMES
BEC N
5o~ 1,
Yl - 1,
WHILE — > Y1 N) O
BECIN
Yl - Y+l
TIMES X& X& Y1)
END
END

Figure 14

TIMES (X3 Y1 21)

ISVAK(X¢) s

COMMENT

INFUT ASSEKTION:

NONE

OUTPLUT ASSERTION:

c(xy (PROD Y1 21));
BECIN
b I

o

Y¥ - v
WHILE = =(Y" Y1) IO
BECIN
Y2 - Y041,
XS - X421,
END
END

Figure 15




76

8. CORRECTNESS OF THE FORMAL ALGORITHM
The basic problem solving algorithm impleme vted in the system is that of
problem reduction subgoaling with backtrack. In this section the formal algorithm will

be given and a proof of its correctness sketched.

8.1 BACKTRACK PROGRAMMING

Backtrack programming describes an exhaustive search procedure appropriate
for solving problems ot the torm:

Given a collection of sels X1,X2,.4n (goals to te achieved), select a sequence of
elements (x§,%2,..,%n), ONE from each set (a way of achieving each goal), such that some
criterion function Hx 1%, %) is m .ximized. In general t may be numerical valued or
simply have the values of either "success” or "failure” for any sequence (x),x2,..,xy), ks
n, and it 1s possible to determine whether or not a partial solution is inherently
suboptimal, i.e. if there Joes not exist a successful xx€ Xy given the current choice of
LS THS (I

To control such a search a Program must have the abilities to enumerate the
alternatives tor selection at the kth level, e g., Xk 1%k 2, Xy m (€NUMeErate function), select
One, say x,; (choose function), and repeat this process at successively higher levels,
e, kel, k+2,., until either the nth level 1s attained or 3 partial solution (X 1,X2 e X e Xp),
PS n, is reached that is inherently suboptimal, i.e., no selection can be made at levei p
that is correct with respect to the previous choices already made. In the latter case
the program must "backtrack” to a previous level, e.g., k, at which 8 "new" selection
(different from previous level k selection) can be made that achieves a correct kth

level solution (unchoose function). The process then continues in the “forwarg”

direction. Ultimately either an nth level sequence is found lhat is satisfactory or the




THE FORMAL ALGORITHM 77

operation of the program has proven that a solution does not exist, i.e, the program

has "backtracked” to the Oth level and has failed to soive the probler.




THE FORMAL ALGORITHM

8.2 TRAVERSING THAND-OR-AND SUBGOAL TREES

Programs are generated by using rules and axioms to prove that the cutput

program transforms the initial siate inio one in which the given goal condition is true.

Frame rules act as partial functions on the domain of possible states, defined only on

those states in which their premisses a'e true and transforming them into states in

which their postconditions (or goal conditiuns) are true.

In figure 16 is given the subgoal tree traversed during the solution of the

example problem given in Section 2. Coal nodes are labeled with the goal and an

integer indicating the order of achievement in the depth-first search. Rule nodes (used

to expand the goals) arc labeled witn the rule name and an integer indicating the order

of successful application. In the tree absence of angle marks indicate OR connection, a

singie angle mark indicates AND connection and double angle marks indicate THAND

conneciicn,

SASHSECNS
AT, LY (ATIRL,L) |

PROBLEM 1: THAND-OR-AND TREE SEARCH
Figure 16



THE FCRMAL ALGORITHM 79

Program generation is done by computing on a triple <G',I',A>, where G’ is the
subgoal to be attempted next, I' s the current state and A is the current program
s2gment. For each rule used, an instantiation of the associated program construct, if
any, is added to A using rule R2. The general form of rules to expand goals (as

explainod in Section 2.1) is,

The instantiation of program constructs is built up in a substitution o« that
replaces variables in the frame rules by terms from the initial state. For any rule if
Kec=G' then that rule i1s applicable to the achievement of G' and the premisse:,
Hiet,..,Hhot are the subgoals whose solution implies G'. We assume for the computation
of o that variables in different applications of the same rule are distinct.

The syntax of assertions used in rules, axioms, definitions and state descriptions
is given in Section 3.1. Counsider the restrictions that the exclusive or "e" is used only
as a top level connective in disjunctive postconditions of primitive procedures and the
thand "&" is only used to connect the premisses of an iterative rule (which in fact
follows the current implementation though its effect can be gained in any rule using

advice). Then for any <goal node>, say G'in state I', the THAND-OR-AND solution tree

Tr that may be rooted at G’ is described by the foliowing grammar Gr:

<goal node> ::= <true goal>|<prim proc>|<def>|<it rule>|<undetermined goal>
<prim proc> ::= <assertion>

<def> ::= <assertion>

<it rule> u= (<basis> A <invariant>) & <it step>

<basis> ::= <gssertion>

<invariant> u:= <assertion>

<it step> ::= <assertion>

<assertion> ::= <disjunction>|<disjunction> A <assertion>

<disjunction> ::= <goal node>|<goal node> v <disjunction>




80 THE FORMAL ALGORITHM

where if G’ is a <true goal> then (J4)I'VF ¢ ('« and <undetermined goal> is as
dafined in Section 5. A full specification of the formal algorithm for processing
undetermined goals would include a formalization of the subproblem stack, the methods
for choosing contingency goals, assembly of conditional statements, keeoing track of
the goals in the scope of a contingency goal and contingency state manipulation.
However since the concepts involved are described quite completely in Sections 5 and
9 they will not be dealt with further here.
The definition of an achieved goal node G’ in a THAND-OR-AMD tree is:
(1) If G*is a <true goal> then it is achieved,
(2) If G* has OR subgoals then it is achieved iff at least one of its subgoals
is achieved,
(3) It G* has AND subgoals then it is achieved iff all of its subgoals are
achieved and remain true in the resulting state.
(4) If G’ has THAND subgoals then it is achieved ift all of its subgoals have
been achieved.
Further details on these kinds of problems may be found in [Nilsson 1971]
If G’ is achieved under (2), (3), or (4) (i.e. by rule application), then I’ is updated
by Inv(Ket,I') and a procedure call or a while loop may be appended to A.
Cearch algorithms of this type may be convenientiy implemenied using any of
the new languages that directly support subgoal tree generation, backtrack, and a data

base [Hewitt 1971, Sussman and Winograd 1972], [Rulifson et al. 1972]




THE FORMAL ALGORITHM 81

8.3 LABELED, ORDERED SUBGOAL TREES
Before we can consider correctness, the notion of a labeled, ordered THAND-OR-

AND subgoal tree, say Tr, must be formalized. Let Tr be a solution tree generated by
the algorithm during a successful program generation, S be the set of nodes in Tr, i nd
ROSXS be a partial ordering on S. Let J be another relation on S defined in terms of K
by:

xJy iff (Yx,y)[xRy A ~ yRx A (Yz)[z#y A zRy > zRx]}

For x,y¢€S, xJy means that y is the R-direct descendent of x, or x is the R-direct

ancestor of y.
DEFINITION A structure Tr = <§R> is a tree if the inllowing properties are satisfied:

(1) There is a root element of the tree, i.e., (3x),(Yy)y¢S > xRy],

(2) For x,y,z €S, if xJz and yJz then xuy
DEFINITION A structure Tr = <SR,L> is an ordered tree if the following properties are
satisfied:

(1) Tr =« <§R> is a tree,

(2) For each x¢S, L is a total ordering of {y : xJy},

(3) For each x,y,z €S, if xLy and yRz and x¢y then xLz,

(4) For each x,y,z €5, if xLy and xRz and x#y then zLy.
The relation L orders the nodes of Tr in depth-first achievement order, e.g.,

4

a
3 6

I\ /N
1 24 5

Let V be the set of goals achieved in Tr instantiated by o¢. The function f will be

called the laticling tunction.




82 THE FORMAL ALGORITHM

DEFINITION A structure Tr = <SSVRLf> is a labeled, ordered tree if the following
properties are satisfied:
(1) Tr « <SR.L> is an ordered tree,
(2) The function f maps S onto V.
Let Gr be the grammar describing solution subgoal trees and let Tr = <S,VRL,f> be a
labeled, ordered tree.
DEFINITION Tr is a labeled, ordered THAND-OR-ANOD subgoal tree rooted at G’ in Gr if
the following properties are satisfied:
(1) If x€S is the root of the tree <S,R> then f(x) = G,
(2) If 3y¢S such that fy) # X\ and xRy and xfy then f(x) is not a <true
goal>(i.e. x is not a leaf node).
Q@) If yypyn € {y : xJy}, where y;ly, tor i<j then there exist some frame
rule having pustcondition (ur goal) f(x) and premisses fly1), . flyp).

We will refer to such trees as solution trees in the next section.




THE FORMAL ALGORITHM 82

8.4 CORRECTNESS

For any output program generzted by the system the associated solution
(sequence of axioms and rules used) provides a proof within the logic of programs
given in Section 2 that the program satisfies the given input-output asser!inns.
Because of implementation limitations, heuristic system methods, and consistency
requirements in a framg definition which the user may violate a systern generated
program may in fact be incorrect. However we will show that from a solution trce ir
genera‘ed by the formal algorithm to solve the problem <|,G> with properties as
defined, a correctness proof of the solution can be given. Conditions for correctness of
the procedure for generating conditional statements was given in Section 5.

We may show by induction on the ordering of nodes in Tr that the outpi!
program A solves the problem, i.e. L(F) [|-I[{A}JG by showing it to be true for each
subgoal and partial program, i.e. if x¢5 is the root of the tree and f(x) = G then for any
y€S such that xRy , L(F) ||-l1{A"}(y), where A’ is the partial program in the tripic
computed by the achievement of t(y).

Let G’ = f(x) be such that Vy<S xLy, then G'¢V is a <true goal>, i.e. it labels the
leftmost leaf node of Tr, and L(F) ||-I=G".

As an induction hypothesis assume that for an arbitrary G'=f(y) such that y is
not the root of Tr that L(F) ||-1{A’}f(y). We will then show that this must imply L(F) ||-
I{A”}{(z), where yLz and either zJy or (3x)[xJy A xJz A ~ 2Jy}, where A’ and A™ are the
generated program segments in the associated triples.

Consider the cases for the triple <G',I')A’>,

(1) If G labels a leaf node of Tr then L(F) ||-I' v F o G' and the state and

program segment are unchanged by its achievement. This implies L(F) ||-1{A’}G".

(2) If G’ labels a non-leaf nude x of Tr then we have the following subcases,




84 THE FORMAL ALGORITHM

An instance of a primitive procedure rule Put{pot}Qut is applied to achieve G’, i.e.

Q¢ 2 G Its application is justified by the change of variables rule R4. By hypothesis

P’UF |- Pe¢ since property (3) of the definition of a solution tree is satisfied. The rule

of consequence implies L(F) ||- I'{p«¢}Qet and invariance implies L(F) II-I"{pt}I”, where

I” = Inv(Qeg,I’). By the rule of composition R3 we may compose A’ with pez and by the

induction hypothesis we conclude that L(F) I1-1{A%pec}I™, where 1" > G,

For the cases in which instances of definitions or iterative rules are applied to

achieve G, the induction step may also be proved establishing L(F) II- HA)G. More

tormal details may be found in [Buchanan and Luckham 1974] This discussion was

intended to justity the formal methods implemented in the system by showing that

under certain assumptions about solution trees a correctness proof can be given.

. P — e by
—— T Tm T — N AT ey o




T

{Translate
Frame
Pefinition

1 General-
ize
Program

Initialize
tructured from
vel, Subproblem

Inter-

active u

Advice
System

¥ Stack (LIFO)
F—I"_"

Ta
Initialize
from
Subproblem

Stack

——




86

9. SYSTEM DESCRIPTION

This section will document the system implementation to the end that its
operation might be better understood and to the conceptual level that would be
reasonably helpful in designing a more expanded system. The system was
implemented in LISP using MICRO-PLANNER primitives [Sussman and Winograd, 1971),
with which we will assume the reader has some familiarity. MICRO-PLANNER was a
very preliminary version of PLANNER (Hewitt, 1972] Many of our programming
triumphs modifying MICRO-PLANNER and writing new primitives are no longer
necessary in light of the new languages now available [Sussman, 1972],[Rulifson et al.
1972]

9.1 OVERVIEW OF INTERACTIVE SYSTEM USE

The inleractive decision points and programs called at the top level are shown in
tigure 17, (This is a flow chart of the top ievel LISP function SUBGOAL.) The system
basically has three segments:

(1) aFrame translation program (see Section 9.2),

(2) a set of programs for program generation called trom SUBGOAL and using a
translated Frare,

(3)  aset of primitives that modify and extend MICRO-PLANNER,

The user’s interaction with the system shown in figuia 17 is informally
described by the toilowing prucedure:

(1 A filename may be given as an argument to SUBGOAL. If the file contains a

Frame definition then the transiator is read in, the Frame definition translated

and loaded. It the file contains a translated Frame then it is simply loaded. If no

filename is given then a Frame definition to be translated and loaded is given

interactively frum the terminal.




SYSTEM DESCRIPTION 87

(2)

When prompted by the system, the user inputs a goal to be achieved by tho
piogram to be generated.

If the user desires to give advice to the system relalive to the giver goal then
the advice system is called.

The subgoaling system uses the translated Frame to attempt to generate a
program achieving the goal. If unsuccessful the user may try again with more
advice (go to (3)).

It rejoin conditions (see Sections 5.4 and 9.4) are pending for this generaled
procedure then they are tested for satisfaction. If they are not satisfied then
the user may attempt to extend the procedure to yield a state in which they are
true. If he chooses not to do this or the system fails in its attempt then an
error exit is substituted for any call to that procedure in its trunk program.

If the user elects, the program may be optimized according to some simple
criteria, e.g. elimination of dead assignment statements and reduction of the
number of program variaoles.

The user may then choose to have the generated program generalized and filed
in a program library.

The program is then displayed for visual inspection.

If there are conditional statements (see Section 9.5) then the user may elect to
do contingency proi'ram generation. If so then the state, goal pending and

answer is initialized from the stack of contingency tasks (go to (3)).

If any assumed primitive procedures oceur in the generated program the user is

informed and may structurally (see Section Y.7) develop each assumption

procedure call by generating a program whose input and output assertions




88 SYSTEM DESCRIPTION

match the pre and postconditions of the assumed primilive procedure (Initialize
the state and go to (3)).

(11) The program may now either be incrementally extended from the current state
by giving an additional goal (go to (2)) or any previously completed program
segment and final state may be returned to and extended.

In Appendix & is an example of an interactive dialogue including a Frame

translation and program generation,

|
|
}




SYSTEM DESCRIPTION 89

9.2 PROCEDURAL REPRESENTATION OF A FRAME

In Section 8 the basic problem reduction subgoaling algorithm was given and in
Section 4 associated problem solving processes using Frame information were
described. In this section a more detailed description of the function and fqrm of a
translated Frame will be given. The transiation and use of iterative rules anc the
generation of conditional statements will be given in Sections 9.6 and 9.5 respectively.
9.2.1 SOME ELEMENTS OF MICRO-PLANNER

Assuming general familiarity with MICRO-PLANNER we will briefly describe a few
basic primitives and theorem ypes as used in the system description (sce [Sussman
and Winograd, 1971] or 'Baumgart, 1972)). In the current implementation, <p attern>
will represent scme relation. In a more general treatment <pattern> could represent
an arbitrary Boolean expression of relations. Pattern matching is restricted to simple
unification,

The control structure is a backtrack stack interpreter consisting ot a program
representation, a processor state, a processor and a push down stack of all previous
states the processar has been through since the beginning of a particular computation.
The processor may backtrack to a previous state and exhaustively search a subgoal
tree in a depth-first manner trying all possible variable bindings and applicable
theorems to return success ultimately to the top goal node.

(1)  (THGOAL <pattern> <recommendation>). If no <recommendation> is given then
THGOAL simply searches the data base for an assertion that matches the
pattern. If it finds one, it succeeds and carries out the unification substitution
for any variables in the pattern, otherwise it fails. If a <recommendation> is

given it will be of the form, (THTEF <filter>), where <filter> is the name of a




I (2)
(3)

(4)

(5)

(6)

SYSTEM DECSCRIPTION

unary LISP function that selects from candidate THCONSE theorems to be called
after a data base search has failed. The atom THTRUE is the always trye filter,
i.e. allows any matching theorem to be tried.

(THNOT <argument>), THNOT fails if its <argument> succeeds, other\+ice t fails.
(THASSERT <skeleton> <recommendation>). The <skeleton> may either be a
theorem name to be put on a ready-to-use list or an instantiated relation that is
to be added to the data base. THASSERT fails only if it tries to assert a
<skeleton> already existing either on the ready-to-use list or in the data Yase.
If a <recommendation> is given it will be of the form, (THTBF <filter>), where
<filter> is the name of a unary LISP function that selects from candidate THANTE
theorems to be called.

(THIRASE <skeleton> <recommendation>). The <skeleton> may either be a
theoram name to be removed from a ready-to-use iist or an instantiated relation
that is 0 be removed from the data base. THERASE fails only if it tries to
remove a <skeleton> that does not exist either on the ready-to-use list or in the
data base. If a <recommendation> is given it will be of the form, (THTBF
<filter>), where <filter> is the name of a unary LISP function that sele;ts from
candidate THERASING theorems to be called.

(THOR <argl>..<argn> THOR succeeds if one of its arguments succeeds where
evaluation is left to right. This construct is used to implement logical disjunction.
(THSETQ <var> <ep> .. <var> <en>). This primitive assigns the value of
expression <e,;> to the variable <var;> for i=l,.,n. The variable is  not
evaluated. This assignment is undone if failure backs up to it. A Simple
extensicn provided the function THSET which dues evaluate its first argument

but is otherwise equivalent tu THSETQ.

1
1
|



| SYSTEM DESCRIPTION 91

(7)  Theorems. Theorer.. are pattern evoked ana have the format:
(DEFPROP <name>(<type> <varlist> <pattern> <body>) THEQOREM)

where

<name> is an atomic theorem name,

<type> is the theorem type,

<varlist> is the list of variables used,

<pattern> is a relation for pattern match invocation,

<body> i5 a sequence of statements having the syntax of the body of a LISP PROG.

The list (<type> <varlist> <pattern> <body>) is of course attached to the property list

of <name> under ths indicator THEOREM as a result of the DEFPROP.

Tnere are three types of theorems:
(a) Consequent theorems (THCONSE) are callzd by & match between the
pattern of a THGOAL statement and the \“esrem pattern.
(b) Erasing theorems (THERASING) are called by a match between a relation
skeleton of a THERASE statement and the theorem pattern.
(c) Antecedent theorems (THANTE) are called by a match between a relation
skeleton of a THASSERT statement and the theorem pattern.
If a theorem's patterr is matched by the appropriate callirg statement then the
<varlist> is bound and body is executed such that for ine theorem tv succeed each
statement must succeed (return non-nil) with the capability for backiracking to
discover an instantiation and/or subgoal tree rooted at that statement ihat returns
successfully, THERASING and THANTE theorems do not return a value and are assumed
to succeed as it affects the success of the calling statement; however, THCONSE

theorems return either a success or a failure value that determines the success of the

calling statement.




92 SYST:M DESCRIPTION

9.2.2 SPECIFICATION AND BASIC FUNCTIONS OF FRAME RULES

When a primitive procedure is initially input the following information is put on

the property list of the atomic procedure name:

(1) preconditions,

(2)  postconditions,

(3)  argument list,

(4)  whether or not the procedure is an assumption,

(5)  whether or not the procedure is recursive,

(6) inequalities desired in argument positions,

(7)  indicator of rule type, i.e. primitive procedure.

Except for argument list specifications ({3) and (6)), the analogous information for
axioms and detinitions is initially stored the same way.

On the property list of each predicate symbol is stored the following:

(1) argument list,

(2)  whether or not the relation is a flueint,

(3)  whether or not the relation is partial,

(4)  argument positions having the uniqueness property.

The internal data structure used to represent assertions after input is a list of
lists where the interpretation of juxtaposition of elaments is conjunction at the top
level and alternates between conj:mctior\ and disjunction at successive levels of
nesting. At the bottom level a literal is represented as 2 list of negation sign (if any),
predicate symbol and the arguments. For example the assertion,

P(X) v Q(Y) A SR(X,Y) A S(ZX) v {T(D) A M(V)};
is represented as
(P X) (Q YD) (= R X YIS Z XXUT XM VI

This internal representation is clearly adequate fur assertions input using the

syntax given in Section 3.

A trenslated rule for a primitive procedure contains the basic functional

segments shown in figure 18. An actual example of a primitive procedure definition

and its translated form is given in Section 9.2.3.1. The pattern is the postcondition




FEETR TR T ———

SYSTEM DESCRIPTION 93

achieved by an application of the procedure. The interactive program allows the user
to enter the Advice System then return  for continuation of subgoaling. Trace
information of curren! path and goals panding is displayed. Nonfluent preconditions
are achieved first then the fluent preccnditions. The mechanism for achieving a
conjunction of fluent goals is described in Section 9.2.3.2. Processing to make the
state consistent with the postcondition next to be asserted is carried out. The
instantiated procedure call is appended to the partially generated program followed Ly
processing for collecting input-output assertions, forming correct block structure in

nested conditional statements and diagnostic output to the user.




SYSTEM DESCRIPTION

CALLING PATTERN
INTERACTIVE AND TRACE PROGRAMS
ACHIEVEMENT OF NON-FLUENT PRECONDITIONS
ACHIEVEMENT OF FLUENT FKECONDITIONS
STATE CONSISTENCY PROCESSING
ASSERTION OF POSTCONDITIONS

ASSEMBLY OF PROCEDURE CALL INTO PROGRAM

MISCELLANEOUS FROCESSING
(INPUT-OUTPUT ASSERTION, BLOCK STRUCTURE, DIAGNOSTICS)

FUNCTIONAL SEGMENTS UF KULES FOR PRIMITIVE FROCEDURES
FIGUrE 18




e A - ey i

SY“TEr4 DESCRIPTION 95

9.2.3 FRAME TRANSLATION

A Frame defined using the lang'1age described in Section 3 is translated into a
set of LISP functions and MICRO-PLANNER theorems that form the basis for the
subgoaler. In particular fcr each rule or axiom, one or more MICRO-PLANNER THCONSE
theorems is constructed, for each distinct predicate symbol a THERASING theorem is
generated to implement the coriunction connective. The initial state description is

converted to assertions placed in the data base.

9.2.3.1 TRANSLATION PROCEDURE
The translation is carried out according to the following procedure:
(1) The appropriate input device, i.e. terminal or disk, from which to read the Frame
definition is selrcted.
(2) For each rule defined the information listed in Section 9.2.2 is input and
internalized.
(3)  The initial state expressed in the syntax of conditions is input and internal:zed.
(4)  For wach predicate symbol used, the information listed in Section 9.2.2 is input
and internalized.
(5)  The user may request context linking or performance statistics to be gathered.
(6)  Algebraic simplification rules may be given of the form,
t 2 t’, where tt’ are terms,
which are used to reduce t to t* should t occur in an argument of a relation in a
THGOAL statement, e.g.
(MINUS(PLUS X,Y)Y) = X,
where X and Y may be bound to arbitrary terms to which the rules will be

applied recursively.




(8)

(9)

(10)

SYSTEM DESCRIPTION

Conversion rules for more readable output syntax for functions occurring in the
generated program are specified in the form,

t = o, where tis a term and o« is an expression in the new syntax,
which are used to produce the final output form of the generated program, e.g.
(PLUS X Y) = (X +Y),
where X and Y may be bound to arbitrary terms to whizh the rules will be
applied recursively,

The conjunction of literals given to form the initial state is asserted into the data
base according to the following rules giving the assertion made for a literal | as
a function of being negated or partial,

(@) If | = P(t1,.tn), for some predicate P, then assert P(t1,...tn),

(b) If | = ~P(t1,..tn) and P is total then assert nothing,

(c) Ift)]=-P(tl,.tn)and Pis partial then assert, by convention, NP(t1,....tn).

For each predicate symbo! used generate a THERASING theorem and some global
variables whose form and use in implementing conjunction are described in
Section 9.2.3.2.

For each rule defined, a THCONSE theorem it generated implementing the
functions shown in figure 138, i.e.

(a) The calling pattern is the rule postcondition.
(b) For each total precondition literal | a THGOAL statement is generated
according to the rules:

(1) 1f | w P(i1,..,tn) and P is non fluent then

“(THGOAL(P ot{t1)...cc(tn)XTHTEF FILTERAX))"

where FILTERAX is a LISP filter function which permits only dedustion




SYSTEM DESCRIPTION 97

using the axioms relative to the current state and o transforms ti into «
valid MICRO-PLANNER term. '

(ii) If | = ~P(t1,..,tn) and P is non-fluent then

"(THNOT(THGOAL(P o¢(t1)...c(tn)XTHTBF F ILTERAX)))"

(i) If | = P(t1,..,tn) and P is fluent then

“(THGOAL(P o(t1)...(tn)XTHTBF FILTEROP))"

where FILTEROP is a LISP function which controls the choice of rules or
axioms enterea on the basis of advice given, if any.

(iv)If | = ~P(t1,..,tn) and P is fluent then

"(THNOT(THGOAL(P ot(t1)...c¢(tn)XTHTBF FILTEROP)))"

A Boolean expression of these statements corresponding to the precondition is
generated. The implementation of conjunction and other functiona! parts of the
thearem are described in later sections.

(11) The translated Frame is then loaded, i.e. functions, global variables and theorems
defined and thecrems asserted. The user may now begin program generation.
As an example of a translated rule consider the primitive procedure,

ROB(R1)A-KILLED(R1)AAT(R1,L1)ACLEAR(L] )L2)VHASUMBRELLA(R1)
AWALKABLE(L 1,L2){walk(R1,L1,L2)]JAT(R1,L2).

which trenslztes into the Micro-Planner theorem shown in figure 19
which is labeled according to the basic functional segments described in Section 9.2.2

and shown in figure 18,




98 SYSTEM DESCRIPTION

(DEFPROP ALK
(THCONSE (Lol L1 L2 R1 O1 (LSTWALK (QUOTE (L2 R1})))
PATTERN (AT (THY R1) (THV L2) R)
(THSETQ (THV LCTR) (THY GCIR))
(THUNTQUE LSTWALK)
INTERACTIVE (TREEPATH WALK (AT (THJ RY) (THY L21 R))
(TRACEINFOI)
AND TRACE (THOR T (TRACEINFD2 WALK))
{COND C((TTYIN) (ADVICESYS)) (T 1))
(THGOAL (RDB (THV R11))
(THCOND ( (THNOT (THGOAL (XILLED (THV R1) R1)) 1)
NON-FLUENTS (1 (THGOAL (MKILLED (TWV R1) R) (THIBF FILTEROP))))

oy (THCOND ((THAND {THASVAL (THV R1)))
ACHIEVEMENT (THSETQ (THV NKILLEDARGS) (CONS (LIST (THV R1)) (THY MKILLEDARGS))))
T
OF (THCOAL (AT (THY RI) (THV L1) R) (THIBF FILTEROP))
(THCOND ((THAND (THASUAL (THV L1}) (THASVAL (THV R1)))
FLUENT L)OALS :":?E)TO (THY ATARGS) (CONS (LIST {THV R1) (THV L1)) (THV ATARGS))))
{
(THOR (THAND (THCOND ((THGOAL (CLEAR (THV L1) (THV L2) R) (THIBF FILTERDP)) T)
(UTHGOAL (NCLEAR (THY L1) (THY L2) R)) (THFAIL))
o
(UNCERTLIT (LIST (QUOTE CLEAR) (THV L1) (THV L2) (QUOTE R)1
1
(QUOTE (CLEARR {TWV L1T (THY L2) R))
(QUOTE (NCLEAR (THV L1) (THY L2) R
(THCOND ((THAND (THASYAL (THY L2)) (THASUAL (THV L1))
{THSETQ (THY CLEAPARGS)
(CONS (LIST (THV L1) (THV L2)) {Ti% CLEARARGS111)
(rmnn
(THAND (THCOND ((THGOAL (HASUMBRELLA (YU RI) R) (TAIBF FILTEROP) T)
((THGOAL (NHASUMBRELLA (THV R1) R)) (THFAIL))
(B
(UNCERTLET (LIST (QUOTE HASUMBRELLA) (THV RI) (QUOTE R))
1
(QUDTE (HASUMBRELLA (THY R1) R))
(QUOTE (NHASUMBRELLA (THY R1) RI1)))
(THCOND ((THAHD (THASWAL (THY R1)))
(THSETQ (THY HASUMBRELL AARGS )
(CONS (LIST (THV R11) (THY HASUMBRELLARGS))))
(Y nn
(CONDSTAT (THV CGL) T))
(THCOND ((THGOAL (WALVABLE (THY L1) (THV L2) R) (THIBF FILTEROP1) T1
CITHGOAL (INWALKABLE (THY L1) (THV L2) R)) (THFRIL))
8]
(UNCERTLIT (L1ST (QUOTE WALKABLE) (THV L1) (THV L2) (QUOTE R))
NiL
(QUOTE (NALKABLE (THV L11 (THV L2) R
(QUOTE (NWALKABLE (THY L1) 1TV L2) 1))
(CONDSTAT (THV CGL) NIL)
(THCOND ((THAND (THASVAL (THV L2)) (THASVAL (THV L1))
(THSETQ (THY WALKABLEARGS) (CONS (LIST (THY L) (THV L2)) (THV MALKABLEARGS))1)
UPDATING THE (tm
(THCOND ((NULL (THV WALXADLEARGS)) T)
(T (THSETQ (THY WALKABLEARGS) (CDR (THV WALKRBLEARGS)) T 1))
STATE (THCOND ((NULL (THV ATARGS)) 1) (T (THSETQ (THY ATARGS) (COR (THV ATARGS)) T TH1)
(THCOND ((NULL (THY NKILLEDARGS)) T)
(T (THSETQ (THY NKILLEDARGS) (COR (THY NKILLEDARGS)) T T D)
(THCOND ((THGOAL (HASUMBRELLA (THV RI) R))
(THCOWD (INULL (THV HASUMBRELLAARGS)) T)
(1 (THSETQ (THV HASUMGRELLARRGS) (COR (THY HASUMBRELLAARGS)) T T11))
(rmm
((THEOAL (CLEAR (THY L1) (THV L2) R)1
(THCOWD ((NULL (THV CLERARARGS)) T)
(1 (THSETQ (THV CLEARARGS) (CDR (THV CLEARARGS)) T T))))
(rm
(THCOND ((THAND (THASUAL (THV LZ)) (THASYAL (THV L1D)) T) (T (THFRILID)
(THCOND ((EQUAL (THV L2) (THV L1)) (THFAIL)) (T 1))
(THCOND ((THGOAL (AT (THV R1) (THY D1) R1) (THSETQ (THV ATINST, (LIST (THY R11 (THV D11111
tm
(THCOND ((THGOAL (AT (THV R1) (THV DI) R)® (THERASE (AT (THV R1) (THV D1) R) (THTBF THTRUEI)}
tmm
(THCOND ((THERASE (WRONG PATH)) (THFAIL THEOREM)) (T TN
(THSET (CRR {THV ANS))
(CONS (CONS (QUOTE WALK) (L1ST (THY RI) (THV L1) (THV L2))) (EVAL (CAR (THY ANS)11))
(THSETQ (THY DLLITS) (CONS (CDAR CT) (THV DBLITS) 1)
(THASSERT (AT (THY R1) (THV L2) R))
ASSERT PR.C. (THSETQ (THY ASSERTLITS)
(CONS (LIST (L1ST (QUOTE AT) (THY R1) (THV LZ) (QUATE R)) (LIST (QUOTE A) (QUOTE A1 11
(THY RSSERTLITS)))
(FRINT (FEVEKSE (EVAL (CAR (THV ANS)))))
ASS (SETQ GANS (FEVERSE (EVAL (CAR (THV ANS)))))
SSEMBLE SOLN (COND ((BGREAT (LENGTH GANS) (LENGTH LGONS)) (SETO LGANS GANS)) (T i
BLOCK STRUCTURE (THDO (TERPRI))
-
CHE CKING == (COND ({€£Q (QUOTE 1F) (CADAR TT)1 (ELSECLAUSE)! (T (THSETO CT (COR CT1 T T1111

Figure 19




e

SYSTEM DESCRIPTION 99

9.2.3.2 IMPLEMENTATION OF CONJUNCTION

The basic idea for implementing the achievement of a conjunction of goals, Gy A
G2 A..A G, is to prevent the falsification of any G;, 1 i s n, until all G, are achiaved,
thus creating a state in which the conjunction is true.

For each fluent predicate symbol, say P, used there is a global variable createc,
i.e., PARGS, which is initialized to the value NIL and will hold a stack of instances of P
that are to be preserved during the achievement of the conjunction. This is done by
adding the instance(s) of the literal(s) whose achievement causes the current goal in
the conjunction, say G; , 1 s i < n, to be true to the appropriate stack before Cutis
attempted. When the entire conjunction has been achieved the literals for each G, in
that conjunction are popped trom the stack. The LISP furction that generates this
code is recursive for arbitrary Boolean conditions satisfying the syntax.

A THERACING theorem is also generated for each P(X1,..,Xn) as follows:

(DEFPROP PGREMLIN
(THERASING (X1..Xn)
(P (THV X1)..(THV Xn)
(THCOND((MEMBER(LIST(THV X1)..(THV Xn))
(THV PARGS))
(THASSERT(WRONG PATH)))
(THEOREM),
where THV is a MICRO-PLANNER indicator that its argument is a variable.

If some instance P(tl,..tn) is to be erased to maintain state consistency (see
Section 9.2.3.4) then the act of erasing will call PGREMLIN which will assert the flag
(WRONG PATH) into the data base if (t1,..,tn) is a member of PARGS. Such an assertion
is responded to in the THCONSE theorem in which the erasure occurred by generating

the following statement after the erase statement:

(THCOND((THERASE(WRONG PATH)XTHFAIL THEOREM)XT T)).




SYSTEM DESCRIPTION

The THERASE statement in the above will succeed only if (WRONG PATH) existed
in the data base which was caused by an invalid erasure detected in the THERASING
theorem. The flag seems necessary since success or failure in the THERASING theorem
does not affect the success of the THCONSE theorem causing the erasure. The failure

of the THCONSE theorem will force the system to try to find another theorem

corresponding to another rule that gues not talsify a goal in the conjunction.




SYSTEM DESCRIPTION 101

9.2.3.3 CONTEXT LINKING
This feature discussed in Section 4 is implemented by denoting certain
assertions in the data base as being "hypothetical” or not part of the state and used
only in connection with this feature. If requested MICRO-PLANNER code is generated
to precede the achievement of the precondition goals for rules and axioris and ‘c
carry out the following functions:
(1) The precondition goals are attempied relative to the hypothetical portior of
the data base only to determine possible varial.ie bindings.
(2) The instantiated precondition goals are asserted into the hypothetical data
base for use in descendant rule applications in the subgoal tree.
Following the achievement of the preconditions of a rule, the hypothetical data

base is restored to the state at ruio entry.

9.2.3.4 UNIQUENESS PROPERTIES

Updating the state is discussed in Section 4 as an application of the invariance
rule. "Building in" axioms cefining uniqueness or single valuedness of certain relation
argument position has proven useful for state consistency processing.

When a Frame is defined an argument position of any relation may be designated
to be unique by responding to a system query with an asterisk in that position.
Multiple argument positions may be so designated.

Before an instantiated postcondition, P(tl,.fi,..tn) is asserted, contradictory
literals in the data base are removed. For each position designated as unique, suppose
the ith, the goal P(t1,..X,...tn) is attempted with a new unbound variable in the ith
position. If it is successful, i.e. X is now bound to val(X), then P(t1,...,val(X),.,in) is

erased.




102

SYSTEM DESCRIPTION

For example consider the predicate AT(X,Y) = "Object X is et location Y", where

both argument positions are unique, i.e. AT(s,#). Then in the stale update portion of

the theorem the following code is generated:

(THCOND((THGOAL(AT(THV XXTHV D1))

(THERASE(AT(THV XXTHY D1)XTHTSF THTRUE)))
(TT™

(THCOND((THERASE(WRONG PATH)XTHFAIL THECR!: 1))
(TTH

(TACOND((THGOAL(AT(THV D2XTHV Y)))

(THERASE(AT(THV D2KTHV Y)XTHTBF THTRUE)))
(TTH

(THCOND((THERASE(WRONG FATH)KTHFAIL THEOREM))
(T,

where D1 and 02 are unbound variables.

This process assures that if the state is consistent with respect to uniqueness

propertios initially that this consistency will be maintained.

e




SYSTEM DFSCRIPTION 103

9.2.3.5 INTEPNAL REPRESENTATION OF GENERATED PROGRAM
A program segment generated by the sysiem is represznted internally in a list

dats structure satisiying the following syntax:

<program> = <block>
<block> u= (<statement-list>)
<staiement-list> .:= <statement>|<statement><statement-list>
<statement>  ue (<procname><arglist>)
<statement>  := (IF<condition> THEN <stetement>)
<statement> = (IF <condition> THEN <statement> ELSE <block>)
<statement>  u= (WHILE <condition> DO <block>)
<statement> = (« <identitier><axpression>)
<procname> u= <identifier>
where,

<identifier> is an ALGOL ide ttifier,
<expression> is a LISP functional expression in prefix form,
<condition> s a Boolean expression satisfying the syntax
given in Section 3,
<arglist>  is list of arguments each of which is either
an <identifier> or an <expression>
For example,
((¢ XO 1)« Y1 IXWHILE ->(Y1 N) DO((« Y1 (ADD1 Y1)XTIMES X0 X0 Y1))),
is the factorial program in Section 7. The above syntax speci‘ication describes *he
structure of programs that may be generated by the system.

A partially generated program is actually maintained in a stack (a list with access
only from the front) of "GtNSYMed" variables which is pointed to by a global variable
ANS. Each time a deeper level of nesting is required, i.e. to generate the body of a
WHILE loop or nested conditional statements, a new variable name is added to the top
of the stack and initialized ts NIL. Frogram constructs generated at this level are
assigned to the variatle at the top of the stack via ANS using a THSET. When a level
is emerged from the value of the top element is appended on to the value of the next-
to-top element and the siack is popped.

When a generated progrem is output it is translated into a subset of ALGOL in

the obvious way with nesting in the list siructure correspunding to block nesting.




104 SYSTEM DESCRIPTION

9.3 THE STATE UPDATING METHODS

The updating of a state to the new state resulting from the zoplication of a
rame rule is formuleted by invariance which in gereral is noi compitable. Some of
the more common causes of inconsistencies are handlec by the uniqueness propaity
mechanism described in Sectior, 9.2.3.4. Also relevant to this topic is the discussion of
conjunction implemeniation in Section 9.2.3.2. As explained in Section 6, updating (e
state after the application of an iterative rule may be either impossible or impractical
unless the user provides an output assertion for the iterative ruic in which case the
rule of iivariance is applied as with a primitive procedure postcondition. The results
of applying the rule of invariance are influenced by the fixed, though arkitrary,
ordering of the literals. To compute Inv(1,Q) a subset of I that is consistent with Q is
sought. Since in general the choice of the Ri¢l to be removed that prevents the
derivation of a contradiction witn Q is r.ot unique, the ordering determines the deletion,
if any.

The system philosophy has been thai inconsistencies are of no concern unless
they affect the correctness of the generated program. Consistent with this is a

suggested approach that if an inconsisiency is detected, say during some axiomatic

deduction, that the choice of literals in | to be deleted be guided by the following,

(1) Tne infrrmation as to the state literals used to prove each previous goal as the
program has been generated could be kept as an extension of the input-output
assert computation (described later).

(2) The literals to be removed should be those that least affect the program, i.e.
either those as yet unused or those most recenily used since program generation

wouid have to back up tv that puint then proceed arter the deletion.




SYSTEM DESCRIPTION 105

The actual Micro-Planner code generated to update the state after a primitive

procedure has been applied is shown in figure 19,




106

SYSTEM DESCRIPTION

9.4 CCMPUTAION OF INPUT-OUTPUT ASSERTIONS

The compuiation of input-output assertions requires the extension of the

MICRO-PLANNER system to include & trace stack containing rules entered, goals

nending and' goals achieved from the state, i.e. leaf nodes in the subgoal tree. This

data structure is in addition to those which are a normal pari of the MICRO-PLANNER

Processor. This stack is a list data structure satisfying the following syntax:

<trace-stack> ::= (<rule-list>)

<rule-lict> ::= <rule-use>|<-ule-use><rule-list>

<rule-use> ::= ((<ru|e-name><curreni-gozl>)<flag-list><achieved-goal-Iist>)
<achieved-goal-list> ;= <achieved-goaI>|<achieved-goal»achneved-goal-Iist>

where,

<achieved-goal> is an instantiated precondition subgoal of ihe rule
that has been achieved directly from the state,

<current-goal> s the current precondition subgoal pending in
the rule tor whose achievement rules above it in the
stack have Leen entered,

<flag-list> is a sequence of zero or more tiags used to determine
proper block nesting in conditional statements
(Section 9.5).

For example the trace stack may appear as,

((T1 (P X1 a)XQ a)}(T2 (R a X2)XS a b)),

a* sume stage of a computation and have the meaning,

(1) S{a,bj has been achieved from the staute in T2,

(2) R(aX2) is currently pending in T2 and T1 has been entered to att »mpt its
achievement,

(3)  Q(a) has been achieved from the state in T, and

(4)  K(X1,a)is currently being attempted.

hs each rule, say T, is successfully applied, before its <rule-use> is popped from

the trace stack, its <achieved-goal-list> is conditionally added onto a global variable,




SYSTEM DESCRIPTION 107

DBLITS. Similarly if T has Post conditions or output assertions to add to the staie they
are conditionally added onto a global variable, ASSERTLITS. The condition in both
cases is that this occurrence of T will appear in the completed subgoal tree.

For any generated Program segment A, the input assertion la and output

assertion 0, may be computed as follows.

(1) By compzring each addition to DBLITS and ASSERTLITS in order of ad-jition,
those members of DBLITS that became true in the state as result of an
assertion, (i.e. are members of ASSERTLITS), from a previous rule are
deleted.

(2) Redundancies in DBLITS are removed yielding the input assertion lo-

(3) The output assertion 0, is the non-redundant conjunction of all members of

ASSERTLITS that are true with respect to the final output state of A.




108 SYS™"M DESCRIPTION

9.5 GENERATION OF CONDITIONAL STATEMENTS
In Section 5 the algorithms for generating conditional statements were
described. In this Seciion some of the details of the implementation will be given.
Topics to be covered include implementation of goal nodes cortaining partial relations,
contingency goa' selection and its use, and associalv n of rejoin conditions with
contingency programs.
9.5.1 GOAL NODES CONTAINING PARTIAL RELATIONS
Let L be a precondition subgoal literal containing a partial relation. Tre code
generated to attempt achievement of L is of the form:
(THCOND (et(L) T)
(ot(-L) (THFAIL))
(T (UNCERTLIT L SWITCH)))
where o(L) is the appropriate THGOAL statement from for L as described in Section
9.23.1; and UNCERTLIT is a LISP function or two arguments, i.e. an
undetermined literal, L, and a switch value indicating whether this goal occurs
in a conjuncton (T) or in a disjunction (NIL).
The function UNCERTLIT does the following:
(1) Appends L to a global variable UNCERLIST,
(2) Returns not[SWITCH]
If L is in a disjunction then UNCERTLIT returns NIL, which forces the
next literal, if any, to be tried before the disjunction is declared undetermined
and a conditional statement generated. See definitions in Section 5.1.
Either as the last statement of a THOR statement (which implements disjunction)
or immediately folluwing a THCOND statement like the above, a call to the LISP function

CONDSTAT is generated wiih behaviur:




SYSTEM DESCRIPTION 109

(1) If nuli{UNCERTLIST] then if in a disjunction return Nil(causes failure)

otherwise T(success).
(2) If not[null[UNCERTLIST]] then generate a conditional statement and
contingency tasks as described in Section 5 and detailed in Saction 9.5.2.
Fecr example the disjunctive goal (sze example in App:2ndix £),
VAR(x) V LP(x) V RP(x) V OP(x),
will result in the ‘oilowing code generated by the frame translator:

(THOR(THCOND(( THGOAL(VAR(THV X))T)
((THGOAL(NVAR(THV X))) (THFAIL))
(T(UNCERTLIT(LIST(QUOTE VARXTHV X))T)))

{THCOND(( THGOAL(LP(THVX))T)
((THGOAL(NLP(THV X)) (THFAIL))
(T(UNCERTLIT(LIST(QUOTE LPXTHV X)T))

(THCOND((THGOAL(KP(THV X)) T)
((THGOAL(NRP(THV X)XTHFAIL))
(T(UNCERTLIT(LIST(QUOTE RPXTHV X))T)))

(THCOND((THGOAL(OP(THV X))T)
((THGOAL(NOP(THV X)X THFAIL))
(TCUNCERTLIST(LIST(QUOTE OPXTHV X))T)))

(CONDSTAT(THV CGL)T))

where CGL. is a variable having as value the post condition ot the
rule and is used in the contingency goal selection procedure. The gua
~EMPTY(X),
occurring in a conjunction will result in the generation of the
following code
(THCOND({THGOAL(NEMPTY(THV X))T)
((THGOAL(EMPTY(THV X))XTHFAIL))
(T(UNCERTLIT(LIST(QUOTE NEMPTYXTHV X)NIL)))
(CONDSTATE(THV CGL)NIL)
This code generated when the frame is translated will if executed at program

generation time call the necessary construction procedures ‘o generate conditional

statements as further described in the next section.




110 SYSTEM DESCRIPTION

9.5.2 IMPLEMENTATION OF CONDITIONAL STATEMENT GENERATION

When a goal is found to have an undetermined truth value as defined in Section
5 and implemented according to Section 9.5.", the global variable UNCERTLIST is <at o
the list of undetermined literals (perhaps moi 2 than one literal if G is a disjunctio~)
The following procedure is then carried out:

(1) The trace stack is searched from the top (current rule entered) to fird the
pending goal of smallest scope that is * lly instantiated, say G* and to ¢zt
(KPLACA) a flag,i.e. "IF", for each member of UNDERTLIST in the <rule-use>
above G* e.g. for rule names T and goals pending G,

(. (T G IF ) (T GR)L)L)

These flags in the trace stack will signal the end of the else clavse and
the point of rejoin for the contingency programs called from the
conditional sta‘ement and generated later.

(2) The conditional siatement is generated as described in Section 5.2. In
particular for each member of UNCERTLIST, say L, a new procedure name,
say p, is generated, the appropriate state, say S, is created and the triple
(p,S,G*) is placed on ihe subproblem stack.

(3)  An expression ui the form,

UF =Ly THENLAIF <Ly THEN py ELSE py 1)..ELSE)

is added tu the top variable in the ANS stack. Note that the finai eise
clause is left empty but will be filled in with what was called the trunk
program segiment in Section 5.2.

(4) The list uF new procedure names generated in step (2) is "CONSed" to a

yivbal varisbie FROCLIST.




SYSTEM DESCRIPTION 111

(5)

(6)

(7)

A new answer variable name is generated added to the top of ANS and
initialized.

Program generation continues until a rule has been successfully applied
that has some IF flags on its <rule-use> entry in the trace stack. The
following steps are then carried out:

(a) Append the value of the top variable in ANS to the next-to-the-top
variable and pop ANS. (note: This places the trunk program as the
else clause)

(b) Form the triple ((CAR PROCLIST) DBLITS ASSERTLITS) using current
values of these global variables and add it on to the wariable
PROCDATA to be used later to compute the rajoin condition for the
programs named in (CAR PROCLIST)

REMARK: ANS and PROCLIST are managed as LIFO stacks which correspond
to the entering and exiting of Llocks in the generated program. This
assures that the correct elements will always be at the top of the stacks
and arbitrary dzoth of block niasting is allowed.

After the trunk program has been completely generated, each triple in
PROCDATA is accessed. Each consists of a list of procedure names having
the same rejoin puint in the trunk program, and the values of DBLITS and
ASSERTLITS at the point of rejoin. The sufficient input assertion for the
program segment from the point of rejoin to the may be computed by by
removing from the values of DBLITS and ASSERTLITS at final output state

their respective values at the point of rejoin then following the algorithm

described in Section 9.4. This input assertion must be provable from the




SYSTeM DESCRIPTION

é final output state of each procedure in the list when it is generated (see

Section 5.4) and is stored as an additional element of each associatea triple

in the sukproblem stack.




SYSTEM DESCRIPTION 113

9.6 ASSEMBLY OF WHILE LOOPS

In Section 8 problem reductior, search in a THAND-OR-AND tree was described
and in Section 6.1 the subgoal structure of a node expanded using an iterative rule
was given, i.e. the premises that must be achieved to justify the construction of a luop.
The subgoaling system provides program segments and substitution information
allowing the loop assembly phase to fully satisfy the premises and construct a WHILE
loop. This formal algorithm is sketched in Section 6 and now the methods’ implemented
will be considered in more detail.

The inputs to the loop assembler will first be described. Next the system
methods will be given for computing the successions of values for program variables to
have during successive iterations of the loop. Here some of the methods are decidely
neuristic in an effort to reduce the number of generated program variable and
associated assignment statements. Then we describe the generation of the update
assignment statements and thoir assembly with the other program segments tc

produce a complete while loop.

9.6.1 INPUTS TO LOOP ASSEMBLER
Consider an iterative rule applied to achieve I[{?]G defined by the assertions
P(basis), Q(invariart), R(iteration step goal), G(rule goal), L(control test) and S(output
assertion) and whare Vo is the list of variables in Q. The inputs rr:quired for loop
assembly are as follows.
(1) A basis program segment p(P) is given that schievas the basis condition
from state I, i.e. I{p(P)}I’ and I P.

(¢) An instance QX of the loop invariant is given such that I'}-Q)\, where A=

{<vies > <vpesp>). The substitution A is actually constructed by this



114 SYSTEM DESCRIPTION

deduction and will be used to provide initial values ‘or system generated
program variables corresponding to certain v, determined below.

(3) The formal algorithm calls for the generation of a loop body program
segment p(R) that achieves the iteration step goal from the state QAL, i.e.
QAL{p(R)}I" and I"c R. This is to assure that the generation of p(R) did not
depend on particular properties of individual constants not shared by
oihers of the same type in the domain and that p(R) would, in general, be
incorrect. For example witn respect to the integers zero has an additive
property not shared by other integers, io. identity. In the current
implementation p(RA) is generated such that I'{p(RA)}I”", where QAALX are
true in I, then p(R\) is generalized as described below.

(4) Aninstance G\’ of the loop invariant is given such that I"’|- Q\’, where X\’ =
{<viety>,..,<vpet>). Since the invariant is a characterization of rejations in
the subset of the state relevant to the iteration, comparing QX .and QA’ will
reveal instances of value "changes” that should be computed using system
generated loop control variables.

(5) An instance of the loop control test, i.e. LA, is given.

In practice by {aking the entire state I as the input state from which to achieve

R in step 3, the user’s responsibility to express in Q all properties needed in the

subgoal tree rooted at R is reduced.




SYSTEM DESCRIPTION 115

9.6.2 COMPUTING SUCCESSIONS OF VALUES

It is assumed that the loop invariant Q characterizes the relations existing at
each iteration among values of program variables. In particular all free variables in R
and L must be among the free variables in Q. Therefore significant program variable
value changes are given by comparing successive instances of Q, i.e. Qx and QX’ for the
first iteration. If for eac'* argument position in each relation in Q a different program
variable is generated then a correct computation rule for updating the values in the
program variables is a conditional assignment statement as described in Section 6
where each argument position in Q has a different w-variable. That some optimization
(ile. reduction of the number of program variables) could be done at program
generation time is suggesied by two observations:

(1) Many of the values in corresponding argument positions in QA and QX\’ will
not change, i.e. they are constant for the loop,

(2) Many of those that do change may be controlied using the same program
variable.

Since the frame language allows functional terms some successive values may be
of the form, s; goes to f(s;). In this case direct functional assignments of the form, Y,
« f(Y;) may be efficiently placed at the top of the loop to avoid repeated computation.
These ideas have led to a number of optimization heuristics which are intended to
either:

(1) reduce the number of generated program variables,
or (2) recognize successive values related by a function and assemble direct
functional assignments,

or (3) reduce the portion of Q required in a conditional assignment.

By comparing respective argument positions in Qr and QX' the system

recognizes two kinds of computation rules relating successive values, namely functional




116 SYSTEM DESCRIPTION

computation, eg. t, = f(sy), and Boolean expressions, e.g. T(s,,t,), where TeQ. The
system constructs a list of significant change pairs each corresponding to one of the
following cases:
(1) sy and t, are symbollic expressions related by the formula TcQ and are
represented by ((s,, t;)T).
(2) sy and t, are symbollic expressions related by a function f which is evaluated
(using either EV or EVN), i.e. t; = f(s;) and are represented by (s, t;, f(s,). Note
that in this case it is not sufficient to search terms in Q or R to find the function
f. During the generation of P(R) the subgoal tree rooted at R is traced to retur.;
the function f, if any, used to compute a succession of values in the loop.
(3) sy and t, are symbollic expressions related by a function f which is not

evaluated but leit in symbolic form, and are represenied by (s, f(s}), f(s,)).




SYSTEM DESCRIPTION 117

9.6.3 ASSEMBLY OF PROGRAM SEGMENTS
Given the inputs specified in Section 9.6.1 and the change list described in

Section 9.6.2, the loop assembly procedure does the foliowing:

1. Generates a pair <Y, Z;> of control variables to take on the successions of

values during loop execution for each change pair. This is to cover the case in

which both s; and t; occur in p(R) and we want to avoid the complexity of

considering statement order in p(R).

2. Constructs assignment statements that initialize the control variables prior to

loov entry, their values for ea~h execution of the loop so that an instance of the

loop invariant will be true each !ime the loop body is entered,

3. Substitutes control variabbles for their values in the loop body

4. Assembles these proram segments together to form a "while" Ioop..

The detailed loop assembly procedure will now be given. The change pairs are

given on a list CL and will either be of the form ((e¢,8)T) or (o, 8/F).
(1) Set PA to the first change pair on the change list CL. If all change pairs have been
processed then go to (8). |
(2) Generate a new pair of variables Y and Z to be used for predecessor and
successor values respectively.
(3) Add (Y « o¢) and (Y « Z) at the ends of p(P) and p(R) respectively.
Justlfication: The assignment (Y « o) is an initialization of the variable Y to the initial
value « and is done after the basis program p(P) prior to loop entry. The assignemtn
(Y « Z) updates the variable Y after the iteration program IP with the successor of its
former value which It is anticipated will be in Z in preparation for the next execution

of the loop body.




118 SYSTEM DESCRIPTION

(4) Add the replacement pair (¢, Y) to the predeces<or replacement list ALP and (3, 2)
to the successor replacement list ALS for later substitution.
(5 If the change pair PA utilizes a function then add the assignment (Z « F) to the
successor function assignment list SASG, remove the first change pair from CL, and go
to (1).
Justification: The function F is a fully instantiated function whose value is equivalent to
A. This step causes Z to get the successor value as required in step (3).
(6) Generate a new variable W to be used as a call by reference variable in a
conditional assignment statement and substitute W for all occurences of 8 in T.
Justification: W will hold the successor value for the conditional assignment to Z.
(7) Add the conditional assignment (IF T THEN Z « W) to the conditional assignment list
SASGR, remove the first change pair from CL and go to (1).
Justification: The relation T is assumed to specify the ordering between successive
values that will be taken on by the control variables Y and Z, ie. using T the successor
of Y may be deduced. This of course implies the computability of T as a procedure call
at execution time.
(8) Substitute variables for values in SASG and SASGR using the closure of ALP.,
Justification: By closing the assaciation lists under substitution dependence upon the
order of substitution into SASG and SASGR is avoided. Subsitution into successor
assignments only for predecessor values using their associated variables (Y’s) is
sufficient and in fact required because:

(a) Any successor value that may have occurred in a relation T has already been

substituted for by w.

(b) A successor value is by our conventions the new value that is computed as a




SYSTEM DESCRIPTION

result of executing the loop body and occurs as an argument in the invariant Q.By
generating a distinct pair of control variables for each change pair, we separate
the successor assignments so that each is a function of predecessor vaiues only.

Since the successor value of one change pair may be the predecessor of enother

this restriction is necessary.

(9) Substitute variables for values in P(R) and L using the closure of ALP annd ALS.

(10) Assemble a "while" loop in the following form:
p(P);
SASGR;
while -~ L do
begin
SASG;
p(R);
SASGR;
end

Remark: Ambiguities may arise because of equalities among elements in the change of
values list, i.e. ((sy, t;) ... (s, tv)). There are thee cases, i.e.

(a) Vi,j [iMj A sy¢s ] A Sij[inj A ty=t,],

(b) Vi,j [i#j A it ] A 3ijlidj A si=s,},

(€) Viyj [ihj A sy#s; A tidty ) A Jijlinj A s =t}

These are resolved by referencing a trace of variable bindings in the subgoal
tree associated with each cccurence of each value or by simply re-achieving the
iteration step condition R from state " until the ambiguities disappear.

To illustrate the process of computing a succession of values generating
successor assignments and substituting into them consider two examples from frames
treatcd aarlier.

Consider a slight variant of the iterative rule TUP in figure 12 and we have,

QX = ONMM,B1,U) A STACKED(B2,81,U) A SMALLER(B2,81), and




120 SYSTEM DESCRIPTION

QX" = ON(M,B2,U) A STACKED(B3,82,U) A SMALLER(B3,82)
which results in a change pair of the form,
((B1,B2) STACKED(B2,81,U) A SMALLER(B2,81)).
and the successor assignment, (after substitution using ALP)
IF STACKE(W1 Y1 U)ASMALLER(W1 Y1) THEN
1 « WI;
As ano'her example the iterative rule TFACT in figure 10 vyields, (where we
assume here that PROD is a primitive multiplication function)
QX = C(X0,1) A C(X1,0) A FACT(1,0), and
QX" = C(X0,(PROD 1(ADDI1 0))) A C(X1,(ADDI 0)) A FACT ((FROD 1 (ADD] 0)), (ADD1

0),
which resuits in the change pairs,

(O,(ADD1 0), (ADO1 0)) and (1,(PROD 1(ADD 0))(PROD 1(ADD] on
and successor assignments, (after substitution from closure of ALP and syntactic
transformation from prefix functions as specified in the frame)

Y! «(Y] + 1)
Y2 « (Y2 £ Y1)

After the loop has been assembled, control is given to an update procedure
which applies the rule of invariance using the given output assertion S as previously
described. If no output asserticn is given then the loop is interpretively executed until
the goal G is true. This is required to provide a correct initial state for continued

program generation.




SYSTEM DESCRIPTION 121

9.7 STRUCTURED PROGRAMMING

The objective of structured programming is to provide mental and organiza.ional
tools by which the programmer may create large systems while keeping the problem
complexity firmly within his mental grasp at each step of the creation. In Section / the
current rather rudimentary features in the system were briefly described a:u an
example given.

Structured programming consists of constructing a program to solve a parucuiar

problem by specifying a sequence of operations in which the operations are not

necessarily "primitive" to the interpreter, e.g. computer, human, etc., but if successfully
carried our will correctly solve the propblem. For each operation in the sequence th:t
is not primitive i.e. the procedure is declared to be an assumption, the function it
performs becomes a subproblem <p,l,G> for the system that may be similarly expanded
into a sequence of perhaps again non-primitive operations. The process continues by
step-wise refining each operation until the problem can be solved correctly using only
"primitive” operations. The relationship between higher level operations and the
equivalent sequences of sub-operations that may be generated by successive levels of
structured development take the form of a tree with the initial generated program at
the rcot.

Duriing the structured developmeni process an overall structure for the program
is built up that primitive constructs will have 1o tit into. An implicit system assumption
is that a lower level operation will not have side effects that affect the correctness of
the overal structure containing it. This is essentially a "top-down" process, i.e., one
proceeding from the general functional description level down to specification of

primitives. However, there is a "bottom-up” component that occurs when on the basis



122 SYSTEM DESCRIPTION

of information gained while generating lower level primitives, or to satisfy the
requirements of using them, the overall structure, i.e., operations previously generated
at a higher(closer to the root) level, must be modified. This may result in back’racking
if these modifications invalidate any previously specified operation. Also the aver 'l
structure may be moditied by shifting a high level operation specification to one which
utilizes more mathematical properties of the problem domain. In the current systen
any bottom-up component and shitts(modifications) to higher level operations are do:.c
interactively by using the advice system. A useful automation of structured
programming should provide more powerful control and record keeping facilities fo
the traversing the sicuctured gevelopment tree.

The growing popularity of structured programming and its apparent usefuilness
for software understandability (and therefore reliability) indicates the need for
continued researcn to automate this process. Certainly it is pussible now to build an
interactive structured programming system that can handle the top-down expansion,

bottom-up backtracking and shifts at any level for the augmentation of the

rcegraininer.
o




123

APPENDIX A: EXAMPLES
1. A Simple Translator from Infix to Polish Notation

This example illustrates the generation of conditional tranches within ‘oops in a
program to convert strings of symbols in infix form into strings in polish fornw. ie.
"(X+YsD)" converts to "XY+Z¢" This is @ common symbol manipulation tas< in 2
compiler. The example shows how the system can be used to program in a siructured
"top down" manner.

A fully parenthesized, syntactically correct infix expression of a specified lengtn
is given as input and on output a result stack S contains the Polish string. A working
stack R is used during the translation. We may consider the basic data structures
(stacks)ie. variables, constructors,(e.g. push) and selectors (e.g. pop)),and the primitive
Operators as given. Then,in this case,the user proceeded in the following steps.

(1) First the actions of the top level of the program were described by declarative
statements (i.e. the definitions of RECOGNIZED and PROCESSYM in terms of basic
concepts such as "X is a left parenthesis”, and intermediate concepts such as "pop
operators from stack X and push them onto stack Y"

(2) Then at the second level, Rules - in this case iterative rules - were given tor
writing loops that implement the intermediate concepts. In doing this,the user specified
the major characteristics of a loop and left the system wiih the detaiis of decidirg
whether to write such a loop,and if so, with the choice of local variables,the actual
operations in the loop body and their order,(in so far as that was not specified ) and
with looking after the updating of the local variables. Thus in order to write the top
level loop, TSLOOP, to achieve POLTSL(T,U,V), the user must have "thought out" an

invariant relation between the elements manipulated by the loop body and what the




124 APPENDIX A

goals of the logp body were (in this case one of the goals is a top level concept,
RECOGNIZED(X,Y.Z}). The system, if it uses this rule in constructing the output, will
construct a loop body including update assignments, and assemble it into a WHILE
statement. Similary, in this example the user has supplied iterative rules for FOPOPS
anc’ POPHOPS.

The output program consists ¢‘ a main program, ie. PROCI, containing a
compound conditional statement which splits up the cases for processing as a function
of the input symbol. Each aliowable input symbol must be eitner of type variable,
operator, left parenthesis, or right parenthesis. The main program proceses the case
in which the input symbol is an Cperator and generates calls to contingency programs,
PROC3, FROC4Y, & FROCS, 1o be generated for the other three alternatives. The
procedure calls FROCZ, FROC6, & “KOCT result in error exits.

The various parts of the “rame definition will be given below foilowed by the

generaied prougrams.




APPENDIX A 125

RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUENT  PARTIAL  UNIQUENESS
C(X,Y) “Contents of X is Y* TRUE FALSE C(X,%)
INTEGER(X) "X is an inteper" TRUE FALSE FALSE
VAR(X) "X is a vanable" FALSE TRUE FALSE
LP(X) "X is a left paren" FALSE TRUE FALSE
RP(X) "X is a right paren” FALSE TRUE FALSE
OP(X) "X is an operator" FALSE TRUE FALSE
ISVAR(X) "X is a program var- FALSE FALSE FALSE
table"
NEXTSYM(X) "A value for X is TRUE FALSE FALSE
input"

KRECOGNIZED(X,Y,Z) "Symbol X is recog- TRUE FALSE FALSE
nized wrt stacks Y & 2"

PROCESSYM(X,Y,Z) "Symbol X is processed TRUE FALSE FALSE
wrt stacks Y & 2"
>(X,Y) "X is greater than FALSE FALSE FALSE
Y"
<(X,Y) "X is less than Y" FALSE FALSE FALSE
POLISH(X) "X contains a Polish TRUE FALSE FALSE
sequence” 1
FOLTSL(X,Y,2) "Translate an infix TRUE FALSE FALSE

string x symbols 1
long to Polish
using stacks

Y and 2"
=(X,Y) "X is equal to Y" FALSE FALSE FALSE i
PUSHEZD(X,Y) "X is pushed onto Y" TRUE FALSE FALSE :
POPPED(X) "X is popped"” TRUE FALSE FALSE

TOPPED(X,Y,Z) "The top symbol of TRUE FALSE TOPFED(X,Y,*)




APPENDIX A

stack Y of size

Z is assigned to X"
POPOPS(X,Y) "Pop operators from
X and push unto Y"
POPHOPS(X,Y,Z)  "Pop operators from
Y that have greater
priority than X and
push onto Z"
STACKSIZE(X,Y)  "Size of stack X is TRUE
Yll

STACKSIZE(X,s)

STACK(X) "X is a stack” FALSE FALSE

EMPTY(X)

ITERATIVE RULES:

EBASIS:
INVARIANT:
ITERATION STEP:
CONTROL TEST:

OUTPUT ASSERTION:

GOAL:

NAME:

BASIS:
INVAKIANT:
ITERATION STEP:
CONTKOL TEST:

OUTHUT ASSERTION:

GOAL:

NAME:

BASIS:
INVARIANT:
ITERATION STEP:
CONTKOL TEST:

OUTPUT # 5SERTION:

GOAL:

"Stack X is empty" FALSE

TSLOOP

NEWVAR(X,Y) A C(X,0)

C(X,W) A INTEGER(W) A STACK(V) A STACK(U) A ISVAR(Y)
C(X,(ADD1 W)) A NEXTSYM(Y) A KECOGNIZED(Y,U,V)

>(X,T)

POLISH(V)

POLTSL(T,U,V)

KLOOP

NEWVAR(X) A STACKSIZE(U,Z) A TOPPELXX,U,Z)

CX,Y) A =(Y{TOP U)) A STACK(U) A STACK(V) A STACKSIZE(UW)
PUSHED(X,V) A POPPED(U) A TOPPELXX,UW) '

~OP(X)

POFOPS(U,V)

FOPCPS(U,V)

OLOOP
NEWVAR(X) A STACKSIZE(U,T) A TOPPED(X,U,T)

C(X,Y) A =(Y(TOP U)) A STACK(U) A STACK(V) A STACKSIZE(UW)
PUSHED(X,V) A POPPED(U) A TOPPED(X,U,W)

~OP(X) v <((FRIORITY XXPRIORITY 2))

FOPHOPS(Z,UV;

FOPHOPS(Z,UV)




APPENDIX A 127

PRIMITIVE PROCEDURE PRE-CONDITIONS POST-CONDITIONS
push(X,Y) ISVAR(X) A STACK(Y) PUSHED(X,Y)
A STACKSIZE(Y,2) A STACKSIZE(X,(SUBL Y))

"Push symbol X
onto stack Y"

pop(X) STACK(X) A STACKSIZE(X,Y) POPPED(X)

"Pop stack X" A ~EMPTY(X) A STACKSIZE(X,(SUBI1 Y))
getnext(X) ISVAR(X) NEXTSYM(X)

"Get next symbol"

«(X,Y) ISVAR(X) C(X,Y)

"Assign Y to X"

top(X,Y) ISVAR(X) A STACK(Y) TOPPED(X,Y,Z)

"Put top of stack n STACKSIZE(Y,Z) A C(X,(TOP Y))
YinX"

DEF INITIONS:

BODY OF DEFINITION RELATION DEFINED
(VAR(X) v LP(X) v RP(X) v OP(X)) A PROCESSYM(X,Y,Z) RECOGNIZED(X,Y,Z)
VAR(X) A PUSHED(X,2) PROCESSYM(X,Y,Z)
LP(X) A PUSHED(X,Y) PROCESSYM(X,Y,Z)
RP(X) A POPOPS(Y,2) A POPPED(X) PROCESSYM(X,Y,Z)
OP(X) A POPHOPS(X,Y,Z) A PUSHED(X,Y) PROCESSYM(X,Y,Z)
=(X,0) v INTEGER((SUB1 X)) INTEGER(X)

INITIAL STATE:

STACK(S) A STACK(R) A STACKSIZE(S,]) A STACKSIZE(R,J)

ALGEBRAIC SIMPLIFICATION: (SUB1(ADDI1 X)) » X




128 APPENDIX A

PROCI (NRS)
ISVAR(X1 KISVAR(X2);ISVAR(X3);,STACK(S);STACK(R);
COMMENT
INPUT:CONDITIONS:
STACKSIZE(R JINSTACKSIZE(S 1)
OUTPUT:CONDITIONS:
POLISH(S);
COMMENT
PROC6 ATTEMPTS:TO:ACHIEVE: (POPPED R}
PROC5 ATTEMPTS:TO:ACHIEVE: (PKOCESSYM X2 R S)
PROC4 ATTEMPTS:TO:ACHIEVE: (PROCESSYM X2 R S)
PROC3 ATTEMPTS:TO:ACHIEVE: (PROCESSYM X2 R S)
PROC2 ATTEMPTS.TO:ACHIEVE: (PROCESSYM X2 R S);
BEGIN
X1 « O
WHILE -~>(X1 N) DO
BEGIN
21 « (K1+1);
GETNEXT(X2);
IF =0P(X2) THEN
IF ~kP(X2) THEN
IF ~VAR(X2) THEN
IF ~LP(X2) THEN
FROC2(X2 R S)
ELSE FROC3(X2 R S)
ELSE PROCY(X2 R S)
ZLSE PROCS(X2 R S)
SE
EeGiN
TOP(X3 R);
WHILE OP(X3) A ~<((FRIORITY X3XPRIORITYX2)) DO
BEGIN
FUSH(X3 §)
IF EMPTY(R) THEN
PROCG(R)
ELSE
GEGIN
FOP(R);
END
TOP(X3 R);
END
PUSH(X2 R);
END
X1l « 71
ENO
END

FROC3 (X2 R §)
ISVAR(X2);STACK(R);
COMMENT




APPENDIX A

INPUT:CONDITIONS:

STACKSIZE(R 1)

OUTPUT:CONDITIONS:

STACKSIZE(R (ADD1 I))APUSHED(X2 R);
BEGIN
PUSH(X2 R);
END

PROC4 (X2 R S)

ISVAR(X2);STACK(S);

COMMENT

INPUT:CONDITIONS:

STACKSIZE(S I)

OUTPUT:CONDITIONS:

STACKSIZE(S (ADD1 1))APUSHED(X2 S);
BEGIN
PUSH(X2 S)
END

PROCS (X2 R S)
ISVAR(X4);STACK(S);STACK(R);
COMMENT
INPUT:CONDITIONS:
STACKSIZE(R J)ASTACKSIZE(S 1)
OUTPUT:CONDITIONS:
POPOPS(R S);
COMMENT
PROC7 ATTEMPTS:TQ:ACHIEVE: (POPPED R) ;
BEGIN
TOP(X4 R);
WHILE OP(X4) DO
BEGIN
PUSH(X4 S)
IF EMPTY(R) THEN
PROC7(R)
ELSE
BEGIN
POP(R);
END
TOP(X4 R);
END
IF EMPTY(R) THEN
PROC8(R)
ELSE
BeGIN
POP(R)
END
END




¥ I R e ——

130 APPENDIX A

2. Integer Square Root Problem

As an example of generating a program for numerical computation consider the
task of computing the largest integer k for a given n such that k is less than or equal
to the square root of n. An essential fact formalied in the Frame definition is that the
ditfference between the ith and (i+1)st squares is 2i+1, i.e.

Y =i F i wgen = &Fa ] =n il

This allows the simple iterative upward computation for any i, using two
variables Y1 and Y2 and only the arithmetic operation of addition, of i in Y1 and (i+1)°
in Y2 such that when the value in Y2 exceeds n then Y1 will have the desired value k.

The Frame definition in addition to a primitive procedure for assignment is given

below followed by the generaied program.




APPENDIX A 131

RELATION INTERPRETATION FLUENT  PARTIAL  UNIQUENESS

"Contents of X is Y"
>(X,Y) "X is greater than Y FALSE
ISQRT(X,Y) "X contains the ISQRT(X,*)
integer square
root of "Y"
VSQ(X,Y) "X equals ¥ " FALSE
ISVAR(X) "X is a variable”

ITERATIVE RULE:

BASIS: NEWVAR(X) A C(X,(ADD1 0)) A C(W,0)

INVARIANT: C(W,Y) A C(X,Z) A VSQ(Z,(ADDL Y))

ITERATION STEP: C(W,(ADDI Y)) A C(X(PLUS Z(ADD1(PLUS(ADD1 YXADD1 Y)))
CONTKROL TEST: 2(ZV)

OUTPUT ASSERTION: ISQRT(W,V)

GOAL: ISQRT(W,V)

AXIOMS:

VSQ((ADD! 0)(ALDI 0))
VSQUMINUS Z(ADDI(PLUS Y Y)))(SUBI Y)) € VSQ(Z,Y)

INITIAL STATE:
ISAVR(X0)
ALGEBRAIC SIMPLIFICATION:

(SUBL(ADDI X)) » X
(MINUS (PLUS X Y)Y) = X




132 APPENDIX A

PROC1(X0O N)
ISAVR(X0);
COMMENT
INPUT ASSERTION:
NONE
OUTPUT ASSERTION:
ISQRT(XO,N);
BEGIN
X0 « 0;
Y2 « (0+1);
WHILE ~> (Y2,N) 0O
BEGIN
X0 « (X0 + 1)
Y2 « (Y2 + ((X0 + X0) + 1)%
END
END




APPENDIX A 133

3. Hand-Eye Tasks

In a simple robotics environment an "eye” (usually a Vidicon TV camera) may be
used to locate objects on a table and a computer contolled arm carries out
manipulatory tasks with these objects. We assume the identity and location of the
objects in the scene have been discovered and are given in the initial state.

Programs written for autonomous robot control must be capable of on carrying
some sort of dialogue with the real world since most relations will be partial and the
outcome of operations will not be totally reliable. Conditional calls to contingericy

procedures is one way of establishing this dialogue.

The frame deiinition is given below followed by a generated program.




Best Available

Copy
for page 134



134 "RpBeEnDIX A

RELATIONS USED IN 'THE'FRAME BERINITION:

RELATION INTERPRETATION FLUENT  'PAIIAL  ONIQUENESS
AT(X,Y) "X is at tocdtion Y" TRUE PALSE NT(X,#)
HAS(X.Y) ™ hos Y Thue PACSE  'PALSE
CARTUAOWKY,Z) ™ can roach ThUE e fPaLseE
from Y to 2 :
COLLIDEIXX,Y,2)™ collidod TRUE 'PALSE FALSE
betweoh ¥ and 7*
OROPPED(W,X,Y,2) "W droppati X THUE PALSE 'PBSE
botwoon Y amyg 2°
AVAILABLE(K,Y) "X 15 avallabile TRUE TRUE FALSE
oy
MISSED(X,Y,Z) "X missed Y YAUE FALSE FALSE
at 2"
ROBOT(X) "X is o robof™ 'FALSE FALSE FALSE
PRIMITIVE PROCEDURE  PRE-CONDITIONS poyrmwmdws
resch(AlL1.L2) noao'nmu AOBXKOL) A meom {AT(O1LD) N ATRIL L 2))
"Al resches A~ HAS(ALO2) A CANREAIMONL LY )

trom L] 10 L2"

transport(A1,01 L112) ROBOTCAL) A OBKO1) A MABAAL 01) {AT(O1,L2) A ATEAL L DY)

"Al transports 01 A ATWOILAD) A ATALLD) © {COLLIDEENAT L3 4.2)

from L1 to L2" A CANREACH(ALLLLY) Uﬂdﬂbe{xmm L1E2Y)
prckup(A1,01,L1) ROGOT(AL) A OBKOL) A ATLLY)  HAB(ALOY) » MiSSEAL,01,L1)
"Al picks up 01 A~ HAS(AL02) A AVICABLEWOLLLY)

st L1” AN ATALLL)

putdown(A1,01,L1) ROGOTYAL) A HASALO1) 3 HAB(A L DY)

"Al puts down 01 A ATALLL)

atL1”

INITIAL STATE:

ROBOT(ARM) A OBXBLK1) A AT(BLK1,P) A AT(ARMB)




APPENDIX A

PROCI(BLK1 ARM P S)
ROBOT(ARM); OBXBLK1);
COMMENT
INPUT:CONDITIONS:
AT(BLK1 P) A AVAILABLE(BLK] P) A CANREACH(ARM S P)
A CANREACH(ARM P 5)
OUTPUT:CONDITIONS:
HAS(ARM BLK1) A AT(ARM S) A AT(BLK1 S)
BEGIN
IF ~ AVAILABLE(BLK] P) THEN
PROC2(ARM BLK1)
ELSE
BEGIN
IF ~ CANREACH(ARM S P) THEN
PROC3(ARM P)
ELSE
BEGIN
REACH(ARM S P);
IF ~ AT(ARM P) THEN
IF ~ AT(ARM P) A COLLIDEDXARM S P) THEN
PROC4(ARM P)
. ELSE PROCS(ARM P)
END
PICKUP(ARM BLK1P)
IF ~ HAS(ARM BLK1) THEN
IF ~ HAS(ARM BLK1) A MISSED{ARM BLK1 P) THEN
PROC6(ARM BLK1)
ELSE PROC7(ARM BLK1)
END
IF ~ CANREACH(ARM P S) THEN
PROC10(BLK1 S)
ELSE
BEGIN
TRANSPORT(ARM BLK1 P S);
IF - AT(BLK1 S) THEN
IF - AT(BLK1 S) A DROPPED(ARM BLK] P S) THEN
PROC1 1(BLK1 S)
ELSE PROC12(BLK1 §)
END
END




136 APPENDIX A

4. n-Queens Puzzle

To illustrate how the program generation system may be used to solve puzzles,
a backtrack problem solving algorithm (see Section 9.1) is axiomatized in the frame
definition language to solve the n-Queens puzzle. The object of this puzzle is to place
N queens on an n x n chessboard such that they are mutually non-attacking. the
algorithm proceeds by placing queens on the board a column at a time, backing up
when no placement is possible.

The frame definition for this problem is given below followed by a generated

solution programs for the 4-Queens and 8-Queens cases.




APPENDIX A 137

RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUENT  PARTIAL  UNIQUENESS

SAFE(X,Y) "Square X,Y is safe” TRUE FALSE FALSE

BOTHSAFE(W,X,Y,Z) "Square W,X is safe TRUE FALSE FALSE
wrt square Y,2"

ALLSAFE(X,Y,Z)  “Square XY is safe TRUE FALSE FALSE
wrt columns |1,.,2"

QUEEN(X,Y) "A queen is on TRUE FALSE FALSE
Square X,Y"

QPLACED(X,Y,Z)  "Queens are placed TRUE FALSE FALSE
in columns X,.. 2"

=(X,Y) "X is equal to Y" FALSE fFALSE FALSE

PLACED(X) "X queens have TRUE +ALSE FALSE
been placed”

PRIMITIVE PROCEDURE ~ PRE-CONDITION POST-CONDITION

placequeen(l,J) SAFE(LJ) QUEEN(LY)
"Place queen on square 1,J"

AXIOMS:

ANTECEDENT CONSEQUENT
=(J,1) v {~=(J,1) A ALLSAFE(L,JJ)} SAFE(LJ)
=(K,1) v {REQUEST(QUEEMIP,(EVN(SUBI K)))) ALLSAFE(I,JK

A BOTHSAFE(LJ,IP<(EVN(SUBL K)))A ALLSAFE(LJ(EVN(SUBL K))}

~=(11,12) A ~=((EVN(PLUS 11 J1))(EVN(PLUS I2 J2))) BOTHSAFE(11,J1,12,J2)
~=((EVN(DIFFERENCE 11 J1))(EVN(DIFFERENCE 12 J2)))

DEFINITIONS:
BODY OF DEFINITION ' RELATION DEFINED
~=(L(EVN(ADD1 N))) A ~=(},0) A =(J(EVN(ADD1 N))) QPLACELXL,J,N)

v {QUEEN(I,J) A QPLACED(1,(EVN(ADDI J)),N)}
v QPLACED((EVN(ADD1 1)),J,N)

QPLACED(1,1,N) . PLACED(N)

INITIAL STATE: (empty)




138 APPENDIX A

PROC1
BEGIN
PLACEQUEEN(2 1);
PLACEQUEEN(4 2);
PLACEQUEEN(1 3);
PLACEQUEEN(3 4)
END

PROC1
BEGIN
PLACEQUEEN(2 1);
PLACEQUEEN(S 2);
PLACEQUEEN(7 3);
PLACEQUEEN(] 4);
PLACEQUEEN(3 5);
PLACEQUEEN(S 6);
PLACEQUEEN(6 7);
PLACEQUEEN(4 8);
END




139

APPENDIX B - AN INTERACTIVE SESSION

A sample interactive session is here presented to illustrate the system’s use in
frame definition and program generation. Statements typed by the user will always be
prompted by "s". The top level system function is "SUBGOAL" which is called in the
manner given below to accept a frame definition from the terminal. Comments to aid

the reader’s understanding ot the dialogue will be enclosed in quotes.
*(SUBGOAL)

"The system now enters an interactive mode for Frame definition.”

* 2 x £ SEMANTIC FRAME DEFINITION # = = #

RULE TYPEs AXIOM

RULE NAME* AONTOP

IS THIS AN ASSUMPTION?# NIL

IS THE RULE DIKECTLY RECURSIVE?s NIL
INEQUALITIES IN ARGUMENT POSITIONS# NIL
PRECONDITIONS:

% ROBOT(X1) A ON(X1,X2) A ~STACKED(X3,X2);
POSTCONDITIONS:

* ONTOP(X1);

RULE TYPEs PRIMITIVE PROCEDURE

RULE NAMts STANDON(R1,21)

IS THIS AN ASSUMPTION?+ NIL

IS THE KULE DIRECTLY RECURSIVE?s NIL

INEQUALITIES IN ARGUMENT POSITIONS# NIL

PRECONDITIONS:

s ROBOT(R1) A ~-ON(R1,W1) A BOX(Z1) A CLOTHES(O1) A WEARING(R1,01)
A AT(Z1,Y1) A AT(R1,Y1);

POSTCONDITIONS:

* ON(R1,Z1);

RULE TYPE*x PRIMITIVE PROCEDURE ’
KRULE NAME* DRESS(R1,01)

IS THIS AN ASSUMPTION?s T

IS THE RULE DIRECTLY RECURSIVE?s NIL

INEQUALITIES IN ARGUMENT POSITIONS#* NIL

PRECONDITIONS:

s ROBOT(R1) A CLOTHES(O1);

POSTCONDITIONS:

* WEARING(R1,01);

RULE TYPEs PRIMITIVE PROCEDURE _4
RULE NAME# TRAVEL(R1,L1,L2) |
IS THIS AN ASSUMPTION?s NIL :
IS THE RULE DIRECTLY RECURSIVE?s NIL |




140 APPENDIX B

INEQUALITIES IN ARGUMENT POSITIONSs (R1,4,)
PRECONDITIONS:

* ROBOT(R1) A AT(RI,LL) A - ON(R1,02,L1);
POSTCONDITIONS:

* AT(R1,L2);

RULE TYPEs PRIMITIVE PROCEDURE

RULE NAMEs STEPUP(X1,Y1,21)

IS THIS AN ASSUMPTION?+ NIL

IS THE RULE DIRECTLY RECURSIVE?s NIL
INEQUALITIES IN ARGUMENT POSITIONS# (R1,3,s)
PRECONDITIONS:

* BOX(Z1) A ROBOT(X1) A STACKED(Z1,Y1) A ON(X1,Y1);
POSTCONDITIONS:

* ON(X1,Z1)

RULE TYPE+ ITERATIVE

RULE NAMEs ITONTOP

IS THIS RULE DIRECTLY RECURSIVE?s NIL
BASIS CONDITION:

* ROBOT(X1) A ON(X1,Xx2);
INVARIANT:

* ON(X1,X3) A STACKED(X4,X3);
ITERATION STEP CONDITION:

* ON(X1,X4);

CONTROL TESTs NIL

OUTPUT ASSERTIONs NIL
GOALs* ONTOP(X1);

RULE TYPEs NIL

INITIAL STATE:
* AT(M,CORNER) A AT(BIL) A STACKED(B3,B2) A STACKED(B2,81)
A BOX(B3) A BOX(B2) A BOX(B4) A STACKED(B4,83) A BOX(BI)
A ROBOT(M) A CLOTHES(SHOES);

SEMANTIC PROPERTIES OF RELATIONS:;

IS ROBOT(R1) A FUNCTION OF THE STATE?s NIL
IS ROBOT(R1) PART;AL?s NIL
ARGUMENT UNIQUENESS PROPERTIESs NIL

IS AT(R1,L1) A FUNCTION OF THE STATE?s T
IS AT(R1,L1) PARTIAL?s NIL
ARGUMENT UNIQUENESS PROPERTIES# (R1,s)

IS STACKED(X4,X3) A FUNCTION 0" THE STATE?s T
IS STACKED(X4,X3) PARTIAL?s NIL
ARGUMENT UNIQUENESS PROPERTIESs (X4,s)




IS BOX(Z1) A FUNCTION OF THE STATE?s NIL
IS BOX(Z1) PARTIAL?+ NIL
ARGUMENT UNIQUENESS PROPERTIES# NIL

IS ONTOP(X1) A FUNCTION OF THE STATE?s T
IS ONTOP(X1) PARTIAL?s NIL
ARGUMENT UNIQUENESS PROPERTIES# NIL

IS CLOTHES(O1) A FUNCTION OF THE STATE?s NIL
IS CLOTHES(O1) PARTIAL?+ NIL
ARGUMENT UNIQUENESS PROPERTIES# NIL

IS WCcARING(R1,01) A FUNCTION OF THE STATE? T
IS WEARING(R1,01) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIESs NIL

IS ON(X1,Z1) A FUNCTION OF THE STATE?* T
IS ON(X1,Z1) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIESs (X1,8)

FILENAME* DSK:PCLI

TRACE MODE?s T

FERFORMANCE STATISTICS?s T
LOOKAHEAD?: NIL

ALGEBRAIC SIMPLIFICATION?+ NIL

SUBGOALING SYSTEM GENERATED!!
"A subgoaling system corresponding to the Frame has now been generated
and the system may now receive a goal to achieve."

SUBMIT GOALs ONTOP(M)

LO YOU WANT THE FROGRAM LIBR 1RY?s NIL

DO YOU HAVE ANY ADVICE? T

s3% ENTERING ADVICE SYSEM %21

#1% TRY STANDON BEFORE STEPUP

#2% NIL "Exit advice system and begin program generation."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---ITONTOP

KULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ON M X2))STANDON

KULES ENTEKED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
--=(ITONTOP(ON M X2)XSTANDON(WEARING M SHOES))DRESS

((DReS3 M $ROES))
"Current program segment generated is displayed in this form."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:




142

-==(ITONTOP(ON M X2)XSTANDON(AT M L))TRAVEL

((DRESS M SHOESKTRAVEL M CORNER L))
((LCRESS M SHOES)TRAVEL M CORNER L) STANDON M B1)
"This cons’itutes the basis program for the iterative rule.”

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:

--~(ITONTOP(ON M B2))S TANDON

STANDON IS FAILING!!!
---(~-ON M W1) WAS THE LOSER
“STANDON is only applicable for climbing from ground level."”

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:

~--(ITONTOP(ON M B2))STEPUP

((STEP M B1 B2))
“This is part of the loop body."

RULES ENTERED ANC' GOALS PENDING IN CURRENT SUBGOAL TREE PATH:

---(ITONTOP(ONTOP M))AONTOP
"The system now interpretively updates the state until the goal is
true, then the while loop is assembled.”

DO YOU WANT TO OPTIMIZE THE PROGRAM?# NIL
IS THIS PLAN USEFUL ENOUGH TO GENERALIZE?* T
IS THIS A PROCEDURE WITHOUT SIDE EFFECTS?s NIL

THE GOAL (ONTOP M) IS ATTAINABLE BY THE FOLLOWING PROGRM:
"The desired program has been generated and will now be displayed.”

PROC1(M)
ROBOT(M)CI SHOES );(BOX(B1);B0X(B2);
COMMENT
INPUT ASSERTIONS:
AT(iM CORNER) A AT(B! L) A STACKED(B2 B1)
OUTPUT ASSERTIONS:
WEARING(M SHOES) A AT(M L) A ONTOP(M);
COMMENT
THIS PROGRAM RELIES ON THE FOLLOWING ASSUMPTIONS:
(DRESS);
BEGIN
DRESS(M SHOES);
TRAVEL(M CORNER L)
STANDON(M B1);
Y! « Bl;
IF STACKED(W! Y1) THEN
Zl « Wl
WHILE ~ ONTOP(M) DO
BEGIN

APPENDIX B




APPENDIX B

STEPUP(M Y1 Z1)
Yl « 21
IF STACKED(W1 Y1) THEN
] « Wi;
END
END

DO YOU WANT TO DO STRUCTURED PROGRAM DEVELOPMENT?¢ T

TRYING---((DRESS M SHOESXWEARING M SHOESXSTATI1.AST))
"This task triple consists of procedure name, goal and state.”

DO YOU HAVE ANY ADVICE?s T

**x3ENTERING ADVICE SYSTEM#ss
#1x ADD PUT-ON

RULE TYPEx PRIMITIVE PROCEDURE

RULE NAME+ PUT-ON(R1,01)

IS THIS AN ASSUMPTION?# NIL

IS RULE DIRECTLY RECURSIVE?+ NIL
INEQUALITIES IN ARGUMENT POSITIONS# NIL
PRECONDITIONS:

* ROBOT(R1) A CLOTHES(O1) A FOUND(R1,01);
POSTCONDITIONS:

*WEARING(R1,01);

RULE TYPE* PRIMITIVE PROCEDURE

RULE NAME* FINX(RL,01,L1)

IS THIS AN ASSUMPTION?+ NIL

IS RULE DIRECTLY RECURSIVE?+ NIL

INEQUALITIES IN ARGUMENT POSITIONSs NIL

PRECONDITIONS:

* KOBOT(R1) A CHAIR(02) A AT(02,L1) A AT(R1,L1) A UNDER(O1,02);
POSTCONDITIONS:

* FOUND(R1,01);

KULE TYPE* NIL

INITIAL STATE:

* CHAIR(CHAIRI) A CHAIR(CHAIR2) A AT(CHAIR1,CORNER)
A AT(CHAIR2,CORNER);

SEMANTIC PROPERTIES OF RELATIONS:

IS FOUNXR1,01) A FUNCTION OF THE STATE?s T

IS FOUNOD(R1,01) PARTIAL?* NIL

ARGUMENT UNIQUENESS PROPERTIES NIL

IS CHAIR(02) A FUNCTION OF THE STATE?s NIL




144 APPENDIX B

IS CHAIR(02) PARTIAL?s NIL
ARGUMENT UNIQUENESS PROPERTIES# NIL

IS UNDER(O1,02) A FUNCTION OF THE STATE?s T
IS UNDER(O1,02) PARTIAL?s T
ARGUMENT UNIQUENESS PROPERTIES# NIL

ALGEBRAIC SIMPLIFICATION?s NIL

SUBGOALING SYSTEM GENERATED!!
"The Frame addition has now been translated."

#2+ DcLETE DRESS
#3+ NIL
"Exit Advice system.”

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
==-(PUT-ON(FOUND M SHOES))FIND

((FIND M SHOES CORNERY))

((IF(~UNDER SHOES CHAIRL) THEN (PROCZ M SHOES)

ELSE((FIND M SHOES CORNER))XPUT-ON M SHOES))

“The conditionai statement is generated since it is not known where
the shoes are.”

DO YOU WANT TO OPTIMIZE THE PROGRAM?s NIL
IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?s T
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?s NIL

THE GOAL (WEARING M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:
"This procedure is the siructured expansion of the non-primitive
procedure DRcSS called in PRCCL.”

DRESS(M SHOES)
ROBOT(M);,CLOTHES(SHOES);CHAIR(CHAIRL );
COMMENT
INPUT ASSERTIONS:
AT(M CORNER) A AT(CHAIR1 CORNER)
OUTPUT ASSERTIONS:
WEARING(M SHOES) A FOUND(M SHOES) A WEARING(M SHOES);
COMMENT
PROC2 ATTEMPTS TO ACHIEVE FOUND(M SHOES);
BEGIN
IF ~UNDER(SHOES CHAIR1) THEN
PROC2(M SHOES)
ELSE
BEGIN
FIND(M SHOES CORNER);
END
PUT-ON(M SHOES)




APPENDIX B

END

DO YOU WANT TO DO CONTINGENCY PLANNING?s T
WHAT IS YOUR PREFERENCE?
-===IF NONE TYPE NILs NIL

TRYING---(PROC2 (FOUND M SHOESNSTAT2.CST))
"The contingency task triple consists of procedure name, goal and state.”

DO YOU HAVE ANY ADVICE?s NIL

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---FIND

((FIND M SHOES CORNER))

DO YOU WANT TO OPTIMIZE THIS PROGRAM?s NIL

IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?s T

IS THIS PROCEDURE WITHOUT SIDE EFFECTS?s NIL

THZ GOAL FOUND(M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:

PROC2(M SHOES)
KOBOT(M);,CHAIR(CHAIR2);
COMMENT
INPUT ASSERTIONS:
AT(CHAIR2 CORNER) A AT(M CORNER)
OUTPUT ASSERTIONS:
FOUND(M SHOES);
COMMENT
FPROC3 ATTEMPTS TO ACHIEVE FOUND(M SHOES);
BECIN
IF -UNDER(SHOES CHAIR2) THEN
FKROC3(M SHOES)
ELSE
EcGIN
FIND(M SHOES CORNER);
END
END
BO YOU WANT T0 DO CONTINGENCY PLARNNING?# NiL
DO YOU WANT TO CONTINUE FROM THE CURKRENT STATE?s NIL




146

REFERENCES

Alien, J, Luckham, D.C, "An Interactive Theorem-Proving Program," MACHINE

INTELLIGENCE 5, B. Meltzer and D. Michie (Eds.), Edinburgh University Press,
March, 1970.

Alien, J, Luckham, D.C., An unpublished working paper, Al Project Stanford University,
1973,

Balzer, R, . "Automatic Programming”, Information Sciences Institute, Univ. Southern
California, Technical Memorandum, September 1972,

Baumbart, B.G, "Micro-Planner Alternate Reference Manual®, Al Project Operating
Note, Stanford University, 1972.

Buchanan JR,, Luckham D.C, "On Automating the Construction of Programs”®, Al Project
Memo, Stanford University, 1974,

Deutsch, P., Ph.D. Thesis, University of California at Berkeley, 1973.

Feldman, J, A, Low, J. R, Swinehar?, D, C., Taylor, R. H, "Recent Developments in SAIL,
An ALGOL Based Language for Artificial Intelligence, Al Memo AIM-176,
Stanford University, 1972.

Fikes, R. E.,, Hart, P. E, Nilsson, N.J, "Some New Directions in Robot Problem Solving,"
MACHINE INTELLIGENCE 7, 1972.

Fikes, R. E,, Nilsson, N, J, "STRIPS: A New Approach to the Application of Theorem
Proving to Probiem Solving," ARTIFICIAL INTELLIGENCE, Vol. 2 (1971).

Floyd, R. v, "Assigning Meaning to Programs,” Proc. of Symposium in Applied
Mathematics, Vol 19, 1967.

Gerritsen, R, "Understanding Data Structures®, Ph.p, Thesis, Carnegie-Melion University,
1974,

Green, C. C,, "Application of Theorem-Proving to Problem Solving,” Proc. 1JCAI, 1969.

Hammer, MM, Howe, V.G, Wiadawsky, L, "An Interactive Business Definition System”,
KC 4680, 16M kesearch, Yorktown Reighis, NY, 1974,

Hewitt, C. , "Description and Theoretical Analysis of Planner* Ph.D. Thesis, MILT, 197].

Hoare, C.A.N. » An axiomatic basis for computer programming, Comm. ACM, 12, 10,
Getober 1969, 576-580, 553.

Hoare, C.AR, and Wirth, V. , 4n axiomatic definition of tha programniing language

Pascal, Berichie der Fachgruppe Computer-Wissenschaften 6, ETH, Lurich,
November 1972




147

Igarashi, S; London, R.L; Luckham, D.C. » "Automatic Program Verification I: A Logical
Basis and Impiementation”, Stanford AIM 200, May 1973.

Katz, S. M, Manna, Z.,, "A Heuristic Approach to Program Verification,” Proc. [JCAL, 1973.

King, J, Floyd, RW., " Interpretation Oriented Theorem Prover Over Integers”, Second
Annuat ACM Symposium on Theory of Computing, 1970.

King, J,, "A Program Verifier,"” Fh.D. Thesis, Carnegie-Mellon University, 1969,

Luckham, D.C., Buchanan, J.R,, "Automatic Generation of Prcgrams Containing Conditional
Statements™, AISB Summer Conference, Sussex, 1974,

Martin, W.A,, Unpublished Wcrking Paper, Project MAC, MIT, 1973.
McCarthy, J, and Hayes, P. , "Some Fhilosophical Problems from the Standpoint of
Artificiai Intelligence” Machine Intelligence 4, pp. 463-502, Edinburgh

University Press.

Milner, R, "Logic tor Computabie Functions Descriptions,” Al Memo AIM-169, Stanford
University, 1972.

Newell, A, Simon, H. A, "GPS, A Program that Simulates Huiwan Thought,” COMPUTERS
AND THOUGHT, E. Feigenbaum and J. Feldman (Eds.), McGraw-Hill Book Cu.,
1963.

Nilsson, N., "Froblem Solving Methods in Artficial Intelligence”, McGraw-Hill, 1971.

Rulifson, J. A, Derkson, R. A, Waldinger, R. A, "QA4: A Procedural Calculus for Intuitive
Reasoning,” Al Center Tech. Note 73, SIR, 1972,

Samuel, A. “Studies in Machine Learning Using the Game of Checkers," COMPUTERS AND
THOUGHT, E. Feigenbaum and J. Feldman (Eds.), McGraw-Hill Book Co., 1963.

Simon, H. A, "Experiments with a Heuristic Compiler,” JACM 10 (Oct. 1963).

Stickel, M, "A Frogrammable Sirategy Theorem Prover", Technical Keport, Department
of Computer Science, Carnegie-iellun University, 1974,

Sussman, J., Winograd, T., "Micro Planner Reference Manual”, M.L.T. Project MAC Report
1972.

Sussman, G.J,, Ph.U. Thesis, M.LT,, 1973.

Sussman, G. J. and McDermott, D. V., "Why Coniving is Better than Planning,” Proc. FJCC
41 (Dec. 1Y72).

Teslet, L. G, Enea, H. J, Smith, D. C., "The LISP70 Pattern Matching System,” Proc.
IJCAI, 1973,




148

Waldinger, R. J. and Lee, R. C. T., "PROW: A Step Toward Automatic Program Writing,"
Proc. 1JCAI, 1969.

Winograd, T, "Procedures as a Kepresentation for Data in a Computer Program for
Understanding Natural Language,” Tech. Report MAC TR-84, M.LT,, 1971.




