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Page ii FOREWORD

This document describes the new hand language, AL. It is not intended to be a final language
specification or a user’s manual. Rather, it is a working document presenting a number of related
ideas concerning a system for programmable automation. These ideas cover a broad range of
topics: arm servoing, parallel processing, assembly world modelling, strategists, and language
design. We have tried to combine these into a coherent system. However, as you read this
document you will notice that some topics have been explored more than others, some
explanations contain more detail than others, and some questions are left unanswered. Various
portions of the system have already been implemented.

Interested persons unfamiliar with the background for this work will find it useful to read Te
Use of Sensory Feedback in a Programmable A ssembly System [Bolles and Paul].

We would like to thank those people who have made numerous suggestions and have helped
implement various parts of the system. In particular,-we would to thank Bertrand Meyer, who
implemented the scanner and parser, Botond Eross, who is implementing the PDP Il runtime
monitor, Bruce Baumgart, who assisted with the illustrations, and Larry Tesler, whose document
preparation program PUB was used to prepare this paper. We also wish to thank D. Whitney, ].
Nevins, and D. Killoran of Draper Labs and W. Park of Stanford Research Institute for their
helpful criticisms and suggestions.

During the period in which the work reported here was performed, Russ Taylor was supported in
part by a grant from the Alcoa Foundation, Raphael Finkel was supported by a NSF fellowship,
and Robert Bolles was supported in part by the Hertz Foundation. We would like to thank all
these agencies for their kind assistance.

The English language has no genderless personal pronoun; without any implication of sexism we
use arbitrary forms in its place.
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CHAPTER 1
AN OVERVIEW OF AL

1.1 INTRODUCTION

The development of robot manipulators such as the "Unimate" has led to the belief that these
tools are in some way general-purpose devices and that they might be programmed like a
computer. As a general-purpose programmable device, the robot manipulator would provide an
answer to the need for automation of assembly in batch manufacturing industries where small
production runs rule out the use of special-purpose-equipment to increase productivity.

This document describes a new manipulator programming language, “AL” which is being
implemented as a successor to the WAVE system developed at the Stanford Artificial Intelligence
Laboratory during the last 5 years.

The aim of this work is not to provide a “hands on” factory floor programming system but rather
an experimental laboratory tool for investigating the difficulty, necessary programming time, and
feasibility of writing programs to control assembly operations.

We are designing a system for small scale batch manufacturing where setup time is the key factor.
We will rely on a symbolic database and previously defined assembly primitives to minimize the
programming time. The system will be capable of top level planning and the intelligent
interpretation of user defined primitives.

The batch manufacturing environment is fairly structured; we will make use of this fact to do as
much computation as possible before an assembly begins. Such computation can be done offline
and in connection with the data base; during this phase, time will be spent optimizing each
operation, By performing this computation prior to the assembly, the amount of computation that
the robot must perform for each assembly is reduced.

Unlike WAVE, which followed a machine-language-like programming style with skips and
jumps, AL is a highly structured language with control structures resembling those of Algol. The
facility to work in many different coordinate systems and to evaluate general expressions is added.
The new language will provide for the simultaneous control of more than one robot either
asynchronously or cooperatively. Macro-like routines may be defined to express general-purpose
assembly primitives which will be conditionally expanded at compile time. Additional data may
be added to these routines to enable a top level strategy program to use these routines to
accomplish entire assembly operations.

The language will allow a task to be specified at several different levels of detail, ranging from
very explicit and detailed manipulator control programs to programs written in terms of "high-
level” assembly operators which the system will then translate into manipulator control programs.
When used in this latter mode, the system makes extensive use of its planning model, together
with a progressive refinement strategy in order to produce a consistent and efficient output
program.
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The system itself is written in the high level language “SAIL” to facilitate modification and
change. We expect to modify the language on a day-to-day basis as we start to use it and gain
experience. We will implement the language as it is defined in this document, and based on
experience we will modify it to obtain a better system.

1.2 PHILOSOPHY AND DESIGN COALS

A full language for planning manipulatory tasks of the complexity required for assembly needs
many features, some of which do not exist in any current system. We have identified the
following interrelated goals.

1.2.1 DATA AND CONTROL STRUCTURES

We believe that the principal mode of input to AL should be textual, as opposed to spoken or
manual (joystick). There are levels of complexity which are much more readily transmitted from
man to machine through an interface of symbolic text. Complicated simultaneous motions of two
arms and specifications of termination and error conditions are more likely to be unambiguously
stated through the medium of text, if for no other reason than the structure imposed on the
textual language forces a consistent framework on initially less structured intuitive ideas. Non-
textual forms of input can be a very useful means for defining target locations, suggesting arm
trajectories designed to avoid collisions, and other purposes of this nature. We believe, however,
that such tools are most useful when applied in conjunction with a program text which supplies
the skeletal intent of the programmer; to this end AL should facilitate use of such input devices as
joysticks and other positioning tools during the process of programming.

The supervisor level of AL should be simple enough to allow natural teaching by showing; it
should be easy to interface such new devices as joysticks and simple vocal input into AL, although
we do not intend to do so at present.

We want to write entire programs in a natural manner. The machine-language aspect of current
manipulation languages makes it cumbersome to write long programs in any structured way. We
want a language which lends itself to a more systematic and perspicuous programming style.
Algol-like control structures are an improvement over assembly-like straight code with jumps.

Experience with languages like SAIL and WAVE has shown that text macros are a useful
feature; they reduce the amount of repetitive typing. AL should have a general-purpose text
macro system interfaced into the scanner and parser.

The datatypes available should include those types necessary to refer to one-dimensional measures
(like distance, time, mass) and three-dimensional measures (like directed distance, locations,
orientations). Arithmetic operators should be available not only for the standard scalar operations
like multiplication and addition, but also for such operations as rotation and translation.
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Simultaneous execution of several processes should be available. A general mechanism for
simultaneity is desired, so that calculation and arm motion can take place simultaneously, and
several manipulators can be in independent motion.

1.2.2 MOTION SPECIFICATIONS

Experience with WAVE has shown that calculating trajectories for manipulators is a desirable
feature, although a time-consuming one. Trajectory calculations, together with all other
calculations which need only be performed once, should be done at compile time. This allocation
of effort can drastically reduce the computing load at execution time and eliminate wasteful
recomputation every time a sequence of actions is executed. This leads to a clear distinction
between compile-time and runtime.

The user should be able to demand that a trajectory pass through given intermediate points. The
primary use of this is to avoid collisions during the motion. It is also useful in specifying
complicated motions.

A wide range of exceptional conditions can occur during the motion of a manipulator: excessive
force might be exerted, a stopping condition may be met, the arm might come too close to a
dangerous region, the user may interrupt the motion manually, or some specified time limit might
be exceeded. Appropriate action must be taken as soon as any of these occurs, for example: to
start up a new concurrent process, to terminate something already active, to notify the user, to file
away a statistic somewhere in a table. Therefore, AL must allow the user flexibility in specifying
what conditions to monitor during the course of motions (and during execution of blocks of code
in general), and what to do in the case that a tested condition occurs. It is also useful to change
the nature of the test during a motion, if different segments of the motion require different types
of monitoring. This concept can be generalized to include the modification of a motion during its
execution to accomodate to changing conditions.

We make the assumption that threshold tests suffice for assembly with sensory feedback. In many
cases, threshold tests do suffice: To tell if the arm has hit something, a threshold test on directed
force works. To tell if a screw is binding, a similar test serves. In general, however, such tests lack
the ability to modify trajectories on the basis of signal strength. This lack is only partially filled
by an ability to disable and enable condition monitors during the course of a motion. It is our
hope eventually to include the capacity for including devices such as wrist force sensors and
vision in the servo control loop in a programmable fashion. When these fascinating prospects are
better understood, they will be included in the language.

1.2.3 USE OF A PLANNING MODEL

Since locations are not known exactly during the planning of a trajectory, there should be a clear
distinction between planned values and runtime values. Planned values will be used for
trajectory calculation; at runtime, trajectories will be modified if necessary to account for any
discrepancies. The planned values are therefore a database on which trajectory calculations are
computed. This database will occasionally be referred to as a world model.
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Assembly tasks require that one object be affixed to another. We wish to model this by having a
semantic attachment between objects. If two objects are affixed, and one moves, the second one
should move accordingly, that is, its planning value should be properly modified. Thus, the world
model must also include information on attachments of objects, since they will have an effect on
planning values. The affixment concept carries over to the runtime system, which does the
equivalent modifications of the actual values. This saves the user untold bookkeeping operations
to determine where an object is after its base has been moved.

More generally, the compiler should be able to maintain a wide variety of information about
expected runtime states. This includes not only object affixments and variable planning values,
as previously mentioned, but also information like the accuracy within which the planning value
is known, how heavy an object is, how many faces it has on which it can rest, how wide the
fingers of an arm should open to grasp it. This information may come from several sources,
including explicit assertions by the user, the output-of computer-aided design programs, and
built-in knowledge about the system hardware. Therefore, AL should have a general framework
for representing such knowledge.

In addition to its own internal uses, AL should provide a number of explicit mechanisms for
applying this information, including simple retrieval of data from the compile-time model and
conditional compilation facilities for producing substantially different object programs, depending
on planning information. Such facilities allow the user to write a single piece of code in some
generality, while avoiding the inefficiencies of many needless runtime checks and the planning of
useless trajectories for cases that will never be executed.

1.2.4 USE OF DOMAIN-SPECIFIC KNOWLEDGE

The system should have enough domain-specific knowledge to allow programs to be written in
terms of common assembly operations, rather than exclusively in terms of detailed single motions.
At the simplest level, this involves provision of a library of common assembly “macro-operations”
that can be conditionally expanded to perform particular subtasks. Beyond this, we would like an
interactive system that can take a “high level” description of an assembly algorithm and fill in
many of the detailed decisions required to produce a consistent and efficient output program.

The range of decisions required to convert from-a high level description to an efficient output
program is quite broad, and many of the processes involved cannot be modelled readily in terms
of the purely local mechanisms used in expanding library routines. For instance, a command like
“put the engine block on the table in an upright position” might require the system to examine
future operations on the engine block to select the best orientation to use. Similarly, many
operations produce side effects that make other tasks either easier or harder. For instance,
inserting a pin into a hole yields information about the exact location of the hole and therefore of
the object into which the hole has been drilled. If there are a number of pins to be inserted, then
it may be a good idea to insert pins into the easier-to-locate holes first and then to use the
information so gained to help with the remaining insertions. (On the other hand, such an
ordering may very well make the actual insertions more difficult because of obstructions to the
hand). The system should be familiar with such considerations and use them as it generates the
output program.
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A user should be able to specify different parts of a task at various levels of detail. The system
must be able to accept explicit advice telling exactly how some particular subtask is to be
accomplished and then complete the program in a way that does not conflict with those things
that have been explicitly specified. This is especially important for early versions of AL, which
are not likely to be very “smart” and will therefore require a fair amount of explicit help.

The user should be able to describe the “intent” of a particular piece of code, at least to the extent
of specifying any (non-obvious) prerequisites or updates to the world model. This facility is
especially important for programs that mix both high and low-level primitives. Similarly, the
system should be able to show the user how it is filling in the details to produce an output
program, and why. This is very important both for debugging and for explaining to the user any
requests for advice that it must make.

1.2.5 THE RUNTIME SYSTEM

The calculation of trajectories is time-consuming but not time-critical; servoing of devices is time-
critical but not especially time-consuming. For efficient code generation, modification,
documentation, and execution, we will write the compiler in a high-level language and develop
and run it under time-sharing. The runtime programs will be written in either machine language
or one of the new systems implementation languages (for example, BLISS), since time-efficient
code must be generated. As one execution computer will be required for each work station in a
factory, and as the runtime code and its memory requirements will be quite small, we will write
the runtime system for a minicomputer. The compiler could also be written for the small
computer, but this would compound the problems of writing the compiler; the computational
requirements are much higher during compilation than execution, so implementing the compiler
on the mini would necessitate either an overly large minicomputer or an overly slow compiler.

The runtime system must support simultaneous executions of many processes.  Several
manipulators or devices might be running simultaneously, and each motor requires a separate
process; several condition monitors might be active; several code segments (doing, perhaps,
calculations) might be simultaneously active. Those processes which are dealing with real-time
devices (joint servos and condition checkers) must be guaranteed service at regular intervals; the
computation processes can fill in. any time gaps. Thus, the runtime system must include some
simple implementation of multiple processes under real-time constraints.

Trajectories are calculated by the compiler on the basis of incomplete information. At runtime, it
is necessary to modify those plans to fit them to the somewhat different actual location of objects.
That means that certain information must be carried at runtime, specifically the locations that
each trajectory is desired to pass through, the locations of all objects, and how they are attached
together.

The system must be capable of using vision and other currently unimplemented forms of
feedback. Vision would be quite useful in searching for objects and testing for adequacy of
assembly. It is conceivable that vision will be used for the servoing of an arm; this implies that
vision would be in the feedback loop during motions. Other dynamic feedback (like force-sensing
wrists) could make the capabilities of the arms much greater in dealing with non-rigid materials
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like cloth or rope. What is needed is a way of specifying these “external” devices so that when
they become available, they can be meshed into the system without much difficulty.

The wide range of conceivable tasks implies that pure hardware servoing will not in general
suffice. The reason for this is that hardware servoing restricts use to one of a small number of
servo modes (typically position, velocity, or force), and has no provision for motions of
accomodation or motions whose modes might change in midstream due to some software-
detectable condition. Pure hardware servoing could not be readily modified to account for new
feedback devices or methods. A philosophy of software servoing has these advantages: It is
possible to program the manner in which feedback is to be used, to interface new types of sensors,
to modify the servo while the arm is in motion, to supply the driving program with information
concerning the success of the motion as well as to keep it up-to-date on the arm status. Some
clearly ' distinguishable modes of servoing could be translated into hardware; however, the
hardware becomes complicated if the computer needs to be able to switch modes while the
program is being executed. There would not be much saving in compute power since the
computer would need to perform a servo calculation in order to understand what the manipulator
is doing and to interact with the task.

1.26 PROGRAMMING AIDS

A user should be able to write a piece of code, try it on the spot, and delete or replace sections of
previous code.

The compiler should make a great number of semantic checks, such as assuring that a proposed
motion will not hit some object (although this is a difficult problem which has not yet been
satisfactorily solved) or that simultaneous independent motions are not being requested for the
same device.

AL should eventually include non-textual aids to programming. For example, joysticks might be
used to position heavy manipulators prior to reading their locations and using them in a program.
Graphical display could be used to to demonstrate the planned locations of objects and how this
changes during the course of the program.

Error recovery facilities are very important. A" user should be able to recover from errors
discovered during any phase of debugging. Similarly, production programs should be able to
request operator intervention where necessary and should (at least) be able to be restarted at a
convenient place after the problem is fixed.

There should be a way to investigate the contents of the runtime system, both variables and code,
in order to patch simple mistakes discovered during the course of a production run. This feature
will be especially useful for debugging the compiler.
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1.3 GENERAL SYSTEM OUTLINE

The actual version of AL which we will implement is related to our current hardware and
software capabilities. The following sections describe the overall system from a general point of
view.

1.3.1 HARD WARE

Currently two Stanford Electric Arms, built by Victor Scheinman [Scheinman], are available.
They are called YELLOW and BLUE. Each has six joints and a hand that can open and close.
The joints are controlled by electric motors; each joint has both position and velocity feedback.
Motor drives are sent from the computer to the arm via a digital-to-analog converter (D-to-A);
feedback signals are routed through an analog-to-digital converter (A-to-D) back to the
computer.

There are two computer-controlled cameras. The computer can control the pan, tilt, focus, iris,
filter, and zoom (or lens turret) on each camera.

Various others devices are designed and implemented as needed. We use tools, jigs and special
markings for several purposes: to render a task possible (an example is the arm itself), to improve
efficiency (the mechanical screwdriver), and to overcome some of our sensory and mechanical
limitations (the screw dispenser). Currently we have an electrically powered screwdriver, a
pneumatic vise, and an electrically controlled turntable. The screwdriver can be picked up by an
arm and operates in either direction over a range of speeds. The vise can be opened or closed;
soon there will be a way to servo it to a specified opening. The computer can position the
turntable to any rotation (within .5 degrees). As such devices are built, they will be interfaced to
the A-to-D, the runtime programs told how to control them, and the language extended to include
syntax to describe how to use them.

AL resides on two computers: The PDP-10 for all planning, and a PDP-1 1/45 for the execution
of the plans. The former is run as a timesharing computer (under a modified DEC system); the
latter is operated in stand-alone mode under the AL runtime system. Each computer is capable of
generating an interrupt in the other, and the PDP-10 has complete control over the PDP-11
console and unibus. It is not certain exactly-what the minimum runtime computer configuration
will be; we use floating point and memory management, but it is not clear that this is altogether

necessary.

1.3.2 SOFTWARE
See Figure 1.1 for a picture of the system.
The SUPERVISOR is the top level of AL. It runs on the timesharing computer and provides an

interface between the user and the other parts of the system: 1) listening to the user’s console and
interpreting input in a simple command language; 2) controlling the compiler, starting it and
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relaying its error messages back to the user; 3) signalling the loader when it is necessary to place
compiled code into the mini; 4) handling the runtime interface to the mini. Each of these
subsidiary modules is discussed below.

The USER sits at a console and makes requests of AL. These fall into several categories:
compilation, loading, execution of programs, debugging of code, requesting of status information,
asking for immediate arm motion, saving and restoring the state of the world at safe points,
requesting explanation of certain compiler decisions. There are two different consoles at which a
user can sit: one is connected to the timesharing computer, through which she can speak to the
supervisor and all the parts of AL residing on the timesharing computer; the other is connected to
the mini, and through it the user can investigate the runtime system and cause modifications.

The COMPILER reads AL programs from files (or, optionally, directly from the user’s console)
and produces load modules. The compiler is divided into three phases: The PARSER, the
EXPANDER, and the TRAJECTORY CALCULATOR. The compiler is discussed in detail in
the next section and is pictured in Figure 1.2.

The LOADER takes the load modules prepared by the compiler and enters them into the mini’s
runtime system. Address relocation and linking are done at this time. The loader also sets up the
data area in the runtime interface in the timesharing computer; this data includes output strings,
procedure linkages, and information necessary for diagnostic purposes during runtime. Loading is
often done in a partially incremental fashion, installing new code following previously loaded

code.

The RUNTIME INTERFACE, which resides in the timesharing computer, is charged with
initiating the mini program, fielding procedure calls from the running program to procedures on
the timesharing machine, returning values from these procedures, and fetching values from the
mini for debugging purposes. The interface has the power to interrupt the execution of the
program and to modify the status of the runtime system, for example, by patching in additional
program, or modifying the values of some variables. This allows the user to control the program
through the timesharing computer.

The RUNTIME SYSTEM is the set of programs which reside in the mini. This system includes
kernel programs for time-slice cpu sharing and process control and a set of dynamically created
p rocesses. These are of three basic types: a) An INTERPRETER examines the code prepared by
the compiler and executes the numeric computations requested. When a move is to be started, the
interpreter creates a servo for each joint and waits until all these servos are finished. b) A
SERVO handles the motion of one moving joint. c) A CONDITION-MONITOR repeatedly
examines certain conditions (whatever the programmer has specified). If it should discover that
its condition has occurred, it creates an interpreter to take appropriate action. The runtime system
also includes routines for communication with the runtime interface in the timesharing computer.
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1.4 THE AL COMPILER

The AL compiler is built of three parts: the parser, the expander, and the trajectory calculator.
These are depicted in Figure 1.2.

1.4.1 PARSER

The PARSER reads source code from either the console or a file. Its purpose is to form parse
trees and do some simple manipulations, such as assigning line numbers, causing listings to be
directed to the appropriate file (if desired), expanding text macros, and keeping a primitive
symbol table. If a syntax error is discovered, it informs the supervisor, which will give the user
several options, including aborting the compilation, making local modifications on the spot, or
switching temporarily to a text editor.

1.4.2 EXPANDER

The EXPANDER shares with the trajectory calculator the responsibility for turning parser
output into code interpretable by the runtime system. Its main functions are to maintain a model
of the expected runtime state at each point in the program and to use this model to resolve a
number of compile-time decisions. The information kept includes planning values, object
descriptions, relations between objects, endpoint constraints on particular trajectories, and much
more. Simple uses of this information include providing the traje