
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY

MEMO AIM- 243

STAN-CS- 74 - 456

AL, A PROGRAMMING SYSTEM FOR AUTOMATION

BY

RAPHAEL FINKEL, RUSSEL TAYLOR, ROBERT BOLLES,

RICHARD PAUL AND JEROME FELDMAN

SUPPORTED BY

NATIONAL SCIENCE FOUNDATION

AND

| ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 2494

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

EE TUNIC

J33“2

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY NOVEMBER 1974

MEMO AIM-243

COMPUTER SCIENCE DEPARTMENT

REPORT CS-456

| AL, A Programming System for Automation

Raphael Finkel, Russell Taylor, Robert Bolles, Richard Paul, Jerome Feldman™®

AL 1s an high-level programming system for specification of manipulatory
tasks such as assembly of an object from parts. AL includes an ALGOL-like
source language, a translator for converting programs into runnable code, and
a runtime system for controlling manipulators and other devices. The system

: includes advanced features for describing individual motions of manipulators,
| for using sensory information, and for describing assembly algorithms in terms

of common domain-specific primitives. This document describes the design of
AL, which 1s currently being implemented as a successor to the Stanford
WAVE system.

* Jerome Feldman is now at the University of Rochester.

| This research was supported in part by the National Science Foundation under contract No.
G1-42906 and in part by the Advanced Research Projects Agency of the Office of Defense
under Contract No. DAHC-15-73-C-04335.

The views and conclusions in this document are those of the authors and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of the

funding agencies.

R eproduced in the USA. A vailable from the National Technical Information Service,
= S pringfield, Virginia 2215 1.

i

i

Page 11 FOREWORD

This document describes the new hand language, AL. It 1s not intended to be a final language
specification or a user’s manual. Rather, it 1s a working document presenting a number of related
ideas concerning a system for programmable automation. These ideas cover a broad range of
topics: arm servoing, parallel processing, assembly world modelling, strategists, and language
design. We have tried to combine these into a coherent system. However, as you read this
document you will notice that some topics have been explored more than others, some
explanations contain more detail than others, and some questions are left unanswered. Various
portions of the system have already been implemented.

Interested persons unfamiliar with the background for this work will find it useful to read TAe
Use of Sensory Feedback in a Programmable Assembly System [Bolles and Paul].

We would like to thank those people who have made numerous suggestions and have helped
implement various parts of the system. In particular,-we would to thank Bertrand Meyer, who
implemented the scanner and parser, Botond Eross, who 1s implementing the PDPIl runtime
monitor, Bruce Baumgart, who assisted with the illustrations, and Larry Tesler, whose document
preparation program PUB was used to prepare this paper. We also wish to thank D. Whitney,]J.
Nevins, and D. Killoran of Draper Labs and W. Park of Stanford Research Institute for their
helpful criticisms and suggestions.

During the period im which the work reported here was performed, Russ Taylor was supported in
part by a grant from the Alcoa Foundation, Raphael Finkel was supported by a NSF fellowship,
and Robert Bolles was supported in part by the Hertz Foundation. We would like to thank all
these agencies for their kind assistance.

The English language has no genderless personal pronoun; without any implication of sexism we
use arbitrary forms in its place.

TABLE OF CONTENTS Page 111

CHAPTER PAGE

1 AN OVERVIEW OF AL

1 INTRODUCTION 1

1.2 PHILOSOPHY AND DESIGN GOALS 2

1.2.1 DATA AND CONTROL STRUCTURES 2

1.2.2 MOTION SPECIFICATIONS 3

1.2.3 USE OF A PLANNING MODEL 3

1.2.4 USE OF DOMAIN-SPECIFIC KNOWLEDGE 4

1.2.5 THE RUNTIME SYSTEM 5

1.2.6 PROGRAMMING AIDS 6

1.3 GENERAL SYSTEM OUTLINE 1

1.3.1 HARDWARE 1

1.3.2 SOFTWARE 1

14 THE AL COMPILER 11

1.4.1 PARSER 11

1.4.2 EXPANDER 11

1.4.3 TRAJECTORY CALCULATOR 11

1.5 USER FEATURES 12

1.5.1 PROGRAM FORMULATION 12

1.52 PROGRAM COMPILATION 13

1.5.3 PROGRAM EXECUTION 13

2 THE BASIC SOURCE LANGUAGE 15

2.1 DATA STRUCTURES 15

2.1.1 DATA TYPES 15

2.1.2 ALGEBRAIC DATA TYPES: SCALARS 15

2.1.3 VECTORS 17

2.1.4 ROTATIONS 19

2.1.5 FRAMES 19

2.1.6 PLANES 20

2.1.7 TRANSFORMS 21

2.1.8 PLANNING VALUES 22

2.1.9 ARITHMETIC 22

2.1.10 SOME EXAMPLES-OF ARITHMETIC EXPRESSIONS 24

2.2 MOTIONS 25

2.2.1 COMPILE-TIME AND RUNTIME CONSIDERATIONS 25

2.2.2 SIMPLE MOVES 26

2.2.3 CONDITION MONITORS 26

2.2.4 FORCE DURING A MOTION 29

~ 2.2.5 DEPROACHES 30
2.2.6 OTHER MOTION CLAUSES 32

2.2.7 COMPLEX MOVES 33

2.2.8 SEARCHES 34

2.2.9 CENTER 35

| Page iv TABLE OF CONTENTS

| CHAPTER PAGE
2.2.10 CONSTANT VELOCITY MOTION 36
2.2.11 STOPPING 36
2.2.12 DEVICE CONTROL 36

2.3 AFFIXM ENT 37
2.3.1 THE AFFIX STATEMENT 37
2.3.2 THE UNFIX STATEMENT 39
2.3.3 MOTIONS AND AFFIXMENT 39

24 GRAPH STRUCTURES 40
2.4.1 EXPLICIT MODIFICATIONS TO THE GRAPH STRUCTURE 40
2.4.2 GRAPH STRUCTURES AND AFFIXMENT 42

2.5 CONTROL STRUCTURES 43
2.5. 1 TRADITIONAL STRUCTURES 43
2.5.2 COBEGIN-COEND 45
2.5.3 PARTIAL ORDERING OF SUBTASKS 45
2.5.4 EVENTS: SIGNAL AND WAIT 46
2.5.5 STATEMENT CONDITION MONITORS 47
2.5.6 COMMENTS 48
2.5.7 LABELS 48
2.5.8 ABORT 43
2.5.9 OUTPUT 49
2.5.10 PROCEDURES 49

3 COMPILE-TIME CONSTRUCTS 52
3.1 INTRODUCTION 52
3.2 PLANNING VALUES 52
3.3 PLANNING VARIABLES 55

3.3.1 ALGEBRAIC PLANNING VARIABLES 55
3.3.2 ATOMS 56
3.3.3 EXPRESSIONS, CLAUSES, STATEMENTS, AND FORMS 57

3.4 ASSERTIONS 58
3.4.1 THE ASSERT STATEMENT 59
3.4.2 THE DENY STATEMENT 60
3.4.3 CONSTRAINT ASSERTIONS 60
3.4.4 STANDARD USES FOR ASSERTIONS 61

3.5 CONDITIONAL EXPANSION 61
3.5.1 PLAN IF 61
3.5.2 TESTING FOR ASSERTIONS 62
3.5.3 THE ANYTHING CONSTRUCT 64
3.5.4 BINDING BOOLEANS 64

3.5.5 PICK 65
3.5.6 PLAN FOREACH 66

3.6 THE COMPILE-TIME CHECK STATEMENT 68
3.7 LIBRARY ROUTINES 68

3.7.1 SAVING LIBRARY ROUTINES 11

N

- TABLE OF CONTENTS Page v

CHAPTER PAGE

37.2 SAVING AND RESTORING PLANNING VALUES 71

4 VERY HIGH LEVEL LANGUAGE CAPABILITIES 13

4.1 INTRODUCTION 13

4.2 MACRO OPERATIONS AS A ‘HIGH LEVEL LANGUAGE’ 14

4.3 MORE POWERFUL PRIMJTIVES -- AN OVERVIEW 14

4.4 CALLING HIGH LEVEL PRIMITIVES 15

4.5 WORLD MODELLING OVERVIEW TT

4.6 INFORMATION ABOUT VARIABLES 18

47 OBJECT DESCRIPTION 80

4.7.1 ONE-PIECE OBJECTS 81

4.77.2 ASSEMBLIES 86

4.8 EXAMPLE: WATERPUMP ASSEMBLY-PROGRAM 86

5S RUNTIME OVERVIEW 92

5.1 CONTROL STRUCTURES 92
5.2 DATA STRUCTURES 93

5.2.1 VALUE CELLS 93

5.2.2 GRAPH STRUCTURES 94

6 EXTENSIONS TO AL 95

6.1 INCORPORATING VISUAL FEEDBACK 95

6.1.1 NECESSARY CAPABILITIES 95

6.1.2 STAGES IN INCORPORATING VISUAL FEEDBACK 96

6.2 DYNAMIC FRAMES 97

6.3 EXTENSIONS TO OTHER ARMS AND DEVICES 99

6.4 FINE CONTROL 99

6.5 COLLISION AVOIDING 99

7 BIBLIOGRAPHY 100

APPENDICES

I EXAMPLE DIALOG WITH THE AL SYSTEM 103

II PROGRAMMING EXAMPLES 106

[1.1 BOLTING A BRACKET ONTO A BEAM 106

[1.1.1 EXAMPLE ONE 109

11.1.2 EXAMPLE TWO 111

II. 1.3 EXAMPLE THREE 113
11.2 EXAMPLES OF COORDINATED ACTION 120

II.3 A “"VERY HIGH LEVEL’ EXAMPLE 123

II RUNTIME SYSTEM 125

Page vi TABLE OF CONTENTS

APPENDIX PAGE

111.1 THE RUNTIME SCHEDULER 125
[1.2 TRAJECTORIES 126
[II.3 JOINT SERVOING 126
[11.4 INTERPRETABLE CODE 128
[1.5 ALGORITHMS FOR USE OF GRAPH STRUCTURE 129

Page 1

CHAPTER 1

AN OVERVIEW OF AL

1.1 INTRODUCTION

The development of robot manipulators such as the "Unimate” has led to the belief that these
tools are in some way general-purpose devices and that they might be programmed like a
computer. As a general-purpose programmable device, the robot manipulator would provide an

| answer to the need for automation of assembly in batch manufacturing industries where small
production runs rule out the use of special-purpose-equipment to increase productivity.

This document describes a new manipulator programming language, “AL” which 1s being
) implemented as a successor to the WAVE system developed at the Stanford Artificial Intelligence

Laboratory during the last 5 years.

- The aim of this work 1s not to provide a “hands on” factory floor programming system but rather
an experimental laboratory tool for investigating the difficulty, necessary programming time, and
feasibility of writing programs to control assembly operations.

We are designing a system for small scale batch manufacturing where setup time 1s the key factor.
We will rely on a symbolic database and previously defined assembly primitives to minimize the
programming time. The system will be capable of top level planning and the intelligent

) interpretation of user defined primitives.

The batch manufacturing environment 1s fairly structured; we will make use of this fact to do as
much computation as possible before an assembly begins. Such computation can be done offline
and in connection with the data base; during this phase, time will be spent optimizing each
operation, By performing this computation prior to the assembly, the amount of computation that
the robot must perform for each assembly is reduced.

Unlike WAVE, which followed a machine-language-like programming style with skips and
jumps, AL is a highly structured language with control structures resembling those of Algol. The
facility to work in many different coordinate systems and to evaluate general expressions 1s added.
The new language will provide for the simultaneous control of more than one robot either
asynchronously or cooperatively. Macro-like routines may be defined to express general-purpose
assembly primitives which will be conditionally expanded at compile time. Additional data may
be added to these routines to enable a top level strategy program to use these routines to
accomplish entire assembly operations.

The language will allow a task to be specified at several different levels of detail, ranging from
very explicit and detailed manipulator control programs to programs written in terms of "high-
level” assembly operators which the system will then translate into manipulator control programs.
When used 1n this latter mode, the system makes extensive use of its planning model, together
with a progressive refinement strategy in order to produce a consistent and efficient output
program.

| Page 2 INTRODUCTION 1.1

The system itself 1s written 1n the high level language “SAIL” to facilitate modification and
change. We expect to modify the language on a day-to-day basis as we start to use it and gain
experience. We will implement the language as it is defined in this document, and based on
experience we will modify it to obtain a better system.

1.2 PHILOSOPHY AND DESIGN COALS

A full language for planning manipulatory tasks of the complexity required for assembly needs
many features, some of which do not exist in any current system. We have identified the
following interrelated goals.

1.2.1 DATA AND CONTROL STRUCTURES

We believe that the principal mode of input to AL should be textual, as opposed to spoken or
manual (joystick). There are levels of complexity which are much more readily transmitted from
man to machine through an interface of symbolic text. Complicated simultaneous motions of two
arms and specifications of termination and error conditions are more likely to be unambiguously
stated through the medium of text, if for no other reason than the structure imposed on the
textual language forces a consistent framework on initially less structured intuitive ideas. Non-
textual forms of input can be a very useful means for defining target locations, suggesting arm
trajectories designed to avoid collisions, and other purposes of this nature. We believe, however,
that such tools are most useful when applied in conjunction with a program text which supplies
the skeletal intent of the programmer; to this end AL should facilitate use of such input devices as
joysticks and other positioning tools during the process of programming.

The supervisor level of AL should be simple enough to allow natural teaching by showing; it
should be easy to interface such new devices as joysticks and simple vocal input into AL, although
we do not tend to do so at present.

We want to write entire programs in a natural manner. The machine-language aspect of current
manipulation languages makes it cumbersome to write long programs in any structured way. We
want a language which lends itself to a more systematic and perspicuous programming style.
Algol-like control structures are an improvement over assembly-like straight code with jumps.

Experience with languages like SAIL and WAVE has shown that text macros are a useful
feature; they reduce the amount of repetitive typing. AL should have a general-purpose text
macro system interfaced into the scanner and parser.

The datatypes available should include those types necessary to refer to one-dimensional measures
(like distance, time, mass) and three-dimensional measures (like directed distance, locations,

orientations). Arithmetic operators should be available not only for the standard scalar operations
like multiplication and addition, but also for such operations as rotation and translation.

| 1.2.1 PHILOSOPHY AND DESIGN GOALS Page 3

Simultaneous execution of several processes should be available. A general mechanism for
stmultaneity 1s desired, so that calculation and arm motion can take place simultaneously, and
several manipulators can be in independent motion.

; 1.2.2 MOTION SPECIFICATIONS

Experience with WAVE has shown that calculating trajectories for manipulators 1s a desirable
feature, although a time-consuming one. Trajectory calculations, together with all other
calculations which need only be performed once, should be done at compile time. This allocation

| of effort can drastically reduce the computing load at execution time and eliminate wasteful
; recomputation every time a sequence of actions 1s executed. This leads to a clear distinction

between compile-time and runtime.

The user should be able to demand that a trajectory pass through given intermediate points. The
| primary use of this is to avoid collisions during the motion. It is also useful in specifying
| complicated motions.

| A wide range of exceptional conditions can occur during the motion of a manipulator: excessive| force might be exerted, a stopping condition may be met, the arm might come too close to a
dangerous region, the user may mterrupt the motion manually, or some specified time limit might
be exceeded. Appropriate action must be taken as soon as any of these occurs, for example: to
start up a new concurrent process, to terminate something already active, to notify the user, to file
away a statistic somewhere in a table. Therefore, AL must allow the user flexibility in specifying
what conditions to monitor during the course of motions (and during execution of blocks of code
in general), and what to do in the case that a tested condition occurs. It 1s also useful to change
the nature of the test during a motion, if different segments of the motion require different types
of monitoring. This concept can be generalized to include the modification of a motion during its

| execution to accomodate to changing conditions.
We make the assumption that threshold tests suffice for assembly with sensory feedback. In many
cases, threshold tests do suffice: To tell if the arm has hit something, a threshold test on directed

force works. To tell if a screw 1s binding, a similar test serves. In general, however, such tests lack
the ability to modify trajectories on the basis of signal strength. This lack 1s only partially filled
by an ability to disable and enable condition monitors during the course of a motion. It 1s our
hope eventually to include the capacity for including devices such as wrist force sensors and
vision 1 the servo control loop in a programmable fashion. When these fascinating prospects are
better understood, they will be cluded in the language.

| 1.2.3 USE OFA PLANNING MODEL
Since locations are not known exactly during the planning of a trajectory, there should be a clear
distinction between planned values and runtime values. Planned values will be used for
trajectory calculation; at runtime, trajectories will be modified if necessary to account for any
discrepancies. The planned values are therefore a database on which trajectory calculations are

i; computed. This database will occasionally be referred to as a world model.

Page 4 PHILOSOPHY AND DESIGN GOALS 1.2.3

Assembly tasks require that one object be affixed to another. We wish to model this by having a
semantic attachment between objects. If two objects are affixed, and one moves, the second one
should move accordingly, that 1s, its planning value should be properly modified. Thus, the world
model must also include information on attachments of objects, since they will have an effect on
planning values. The affixment concept carries over to the runtime system, which does the
equivalent modifications of the actual values. This saves the user untold bookkeeping operations
to determine where an object 1s after its base has been moved.

More generally, the compiler should be able to maintain a wide variety of information about
expected runtime states. This includes not only object affixments and variable planning values,
as previously mentioned, but also information like the accuracy within which the planning value
1s known, how heavy an object 1s, how many faces it has on which it can rest, how wide the
fingers of an arm should open to grasp it. This information may come from several sources,
including explicit assertions by the user, the output-of computer-aided design programs, and
built-in knowledge about the system hardware. Therefore, AL should have a general framework
for representing such knowledge.

In addition to its own internal uses, AL should provide a number of explicit mechanisms for
applying this information, including simple retrieval of data from the compile-time model and
conditional compilation facilities for producing substantially different object programs, depending
on planning information. Such facilities allow the user to write a single piece of code in some
generality, while avoiding the inefficiencies of many needless runtime checks and the planning of
useless trajectories for cases that will never be executed.

1.2.4 USE OF DOMAIN-SPECIFIC KNOWLEDGE

The system should have enough domain-specific knowledge to allow programs to be written in
terms of common assembly operations, rather than exclusively in terms of detailed single motions.
At the simplest level, this mvolves provision of a library of common assembly “macro-operations”
that can be conditionally expanded to perform particular subtasks. Beyond this, we would like an
interactive system that can take a “high level” description of an assembly algorithm and fill in
many of the detailed decisions required to produce a consistent and efficient output program.

The range of decisions required to convert from-a high level description to an efficient output
program 1s quite broad, and many of the processes involved cannot be modelled readily in terms
of the purely local mechanisms used in expanding library routines. For instance, a command like
“put the engine block on the table in an upright position” might require the system to examine
future operations on the engine block to select the best orientation to use. Similarly, many
operations produce side effects that make other tasks either easier or harder. For instance,
inserting a pin into a hole yields information about the exact location of the hole and therefore of
the object into which the hole has been drilled. If there are a number of pins to be inserted, then
it may be a good idea to insert pins into the easier-to-locate holes first and then to use the
information so gained to help with the remaining insertions. (On the other hand, such an
ordering may very well make the actual insertions more difficult because of obstructions to the
hand). The system should be familiar with such considerations and use them as it generates the
output program.

LL 1.2.4 PHILOSOPHY AND DESIGN GOALS Page 5

F A user should be able to specify different parts of a task at various levels of detail. The system
must be able to accept explicit advice telling exactly how some particular subtask is to be

: accomplished and then complete the program in a way that does not conflict with those things
f that have been explicitly specified. This is especially important for early versions of AL, which

are not likely to be very “smart” and will therefore require a fair amount of explicit help.

BE The user should be able to describe the “intent” of a particular piece of code, at least to the extent
| of specifying any (non-obvious) prerequisites or updates to the world model. This facility 1s

especially important for programs that mix both high and low-level primitives. Similarly, the
system should be able to show the user how it 1s filling in the details to produce an output
program, and why. This 1s very important both for debugging and for explaining to the user any
requests for advice that it must make.

1.2.5 THE RUNTIME SYSTEM

The calculation of trajectories 1s time-consuming but not time-critical; servoing of devices 1s time-
i critical but not especially time-consuming. For efficient code generation, modification,

documentation, and execution, we will write the compiler in a high-level language and develop
and run it under time-sharing. The runtime programs will be written mn either machine language
or one of the new systems implementation languages (for example, BLISS), since time-efficient
code must be generated. As one execution computer will be required for each work station in a

factory, and as the runtime code and its memory requirements will be quite small, we will write
the runtime system for a minicomputer. The compiler could also be written for the small

| computer, but this would compound the problems of writing the compiler; the computational

oo requirements are much higher during compilation than execution, so implementing the compiler
on the mini would necessitate either an overly large minicomputer or an overly slow compiler.

LL | The runtime system must support simultaneous executions of many processes. Several
| manipulators or devices might be running simultaneously, and each motor requires a separate

process; several condition monitors might be active; several code segments (doing, perhaps,
calculations) might be simultaneously active. Those processes which are dealing with real-time

Fo devices (joint servos and condition checkers) must be guaranteed service at regular tervals; the
computation processes can fill in. any time gaps. Thus, the runtime system must include some
simple implementation of multiple processes under real-time constraints.

Trajectories are calculated by the compiler on the basis of incomplete information. At runtime, it
| 1s necessary to modify those plans to fit them to the somewhat different actual location of objects.

Co That means that certain information must be carried at runtime, specifically the locations that
each trajectory 1s desired to pass through, the locations of all objects, and how they are attached
together.

) The system must be capable of using vision and other currently unimplemented forms of
feedback. Vision would be quite useful in searching for objects and testing for adequacy of

| assembly. It 1s conceivable that vision will be used for the servoing of an arm; this implies that
- vision would be in the feedback loop during motions. Other dynamic feedback (like force-sensing

wrists) could make the capabilities of the arms much greater in dealing with non-rigid materials

I

Page 6 PHILOSOPHY AND DESIGN GOALS 1.2.5

like cloth or rope. What 1s needed is a way of specifying these “external” devices so that when
they become available, they can be meshed into the system without much difficulty.

The wide range of conceivable tasks implies that pure hardware servoing will not in general
suffice. The reason for this is that hardware servoing restricts use to one of a small number of
servo modes (typically position, velocity, or force), and has no provision for motions of
accomodation or motions whose modes might change in midstream due to some software-
detectable condition. Pure hardware servoing could not be readily modified to account for new
feedback devices or methods. A philosophy of software servoing has these advantages: It is
possible to program the manner in which feedback 1s to be used, to interface new types of sensors,
to modify the servo while the arm 1s in motion, to supply the driving program with information
concerning the success of the motion as well as to keep it up-to-date on the arm status. Some
clearly * distinguishable modes of servoing could be translated into hardware; however, the
hardware becomes complicated if the computer needs to be able to switch modes while the
program 1s being executed. There would not be much saving in compute power since the
computer would need to perform a servo calculation in order to understand what the manipulator
1s doing and to interact with the task.

1.26 PROGRAMMING AIDS

A user should be able to write a piece of code, try it on the spot, and delete or replace sections of
previous code.

The compiler should make a great number of semantic checks, such as assuring that a proposed
motion will not hit some object (although this 1s a difficult problem which has not yet been
satisfactorily solved) or that simultaneous independent motions are not being requested for the
same device.

AL should eventually include non-textual aids to programming. For example, joysticks might be
used to position heavy manipulators prior to reading their locations and using them in a program.
Graphical display could be used to to demonstrate the planned locations of objects and how this
changes during the course of the program.

Error recovery facilities are very important. A user should be able to recover from errors
discovered during any phase of debugging. Similarly, production programs should be able to
request operator intervention where necessary and should (at least) be able to be restarted at a
convenient place after the problem 1s fixed.

There should be a way to vestigate the contents of the runtime system, both variables and code,
in order to patch simple mistakes discovered during the course of a production run. This feature
will be especially useful for debugging the compiler.

1.3 GENERAL SYSTEM OUTLINE Page 7

| 1.3 GENERAL SYSTEM OUTLINE

| The actual version of AL which we will implement 1s related to our current hardware and
i software capabilities. The following sections describe the overall system from a general point of

VIEW.

1.2.1 HARD WARE

| Currently two Stanford Electric Arms, built by Victor Scheinman [Scheinman], are available.
| They are called YELLOW and BLUE. Each has six joints and a hand that can open and close.
1 The joints are controlled by electric motors; each joint has both position and velocity feedback.
oC Motor drives are sent from the computer to the arm via a digital-to-analog converter (D-to-A);

1 feedback signals are routed through an analog-to-digital converter (A-to-D) back to the
computer.

There are two computer-controlled cameras. The computer can control the pan, tilt, focus, iris,
filter, and zoom (or lens turret) on each camera.

| | Various others devices are designed and implemented as needed. We use tools, jigs and special
{ markings for several purposes: to render a task possible (an example 1s the arm itself), to improve
] efficiency (the mechanical screwdriver), and to overcome some of our sensory and mechanical
- limitations (the screw dispenser). Currently we have an electrically powered screwdriver, a
| pneumatic vise, and an electrically controlled turntable. The screwdriver can be picked up by an
| arm and operates in either direction over a range of speeds. The vise can be opened or closed;
BE | soon there will be a way to servo it to a specified opening. The computer can position the
} turntable to any rotation (within .5 degrees). As such devices are built, they will be interfaced to

the A-to-D, the runtime programs told how to control them, and the language extended to include

aN syntax to describe how to use them.

| AL resides on two computers: The PDP-10 for all planning, and a PDP-1 1/45 for the execution
: of the plans. The former 18 run as a timesharing computer (under a modified DEC system); the
oo latter is operated in stand-alone mode under the AL runtime system. Each computer is capable of

generating an interrupt in the other, and the PDP-10 has complete control over the PDP-11
| console and unibus. It 1s not certain exactly-what the mimimum runtime computer configuration
EL will be; we use floating point and memory management, but it 1s not clear that this 1s altogether

necessary.

| 1.3.2 SOFTWARE

= See Figure 1.1 for a picture of the system.

| The SUPERVISOR is the top level of AL. It runs on the timesharing computer and provides an
: interface between the user and the other parts of the system: 1) listening to the user’s console and

| interpreting input in a simple command language; 2) controlling the compiler, starting it and

Page 8 GENERAL SYSTEM OUTLINE 1.3.2

relaying its error messages back to the user; 3) signalling the loader when it 1s necessary to place
compiled code into the mini; 4) handling the runtime interface to the mini. Each of these
subsidiary modules 1s discussed below.

The USER sits at a console and makes requests of AL. These fall into several categories:
compilation, loading, execution of programs, debugging of code, requesting of status information,
asking for immediate arm motion, saving and restoring the state of the world at safe points,
requesting explanation of certain compiler decisions. There are two different consoles at which a
user can sit: one 1s connected to the timesharing computer, through which she can speak to the
supervisor and all the parts of AL residing on the timesharing computer; the other is connected to
the mini, and through it the user can investigate the runtime system and cause modifications.

The COMPILER reads AL programs from files (or, optionally, directly from the user’s console)
and produces load modules. The compiler 1s divided into three phases: The PARSER, the
EXPANDER, and the TRAJECTORY CALCULATOR. The compiler 1s discussed in detail in
the next section and is pictured in Figure 1.2.

The LOADER takes the load modules prepared by the compiler and enters them into the mini’s
runtime system. Address relocation and linking are done at this time. The loader also sets up the
data area in the runtime interface in the timesharing computer; this data includes output strings,
procedure linkages, and formation necessary for diagnostic purposes during runtime. Loading is
often done 1n a partially incremental fashion, installing new code following previously loaded
code.

The RUNTIME INTERFACE, which resides in the timesharing computer, 1s charged with
mmitiating the mini program, fielding procedure calls from the running program to procedures on
the timesharing machine, returning values from these procedures, and fetching values from the
mini for debugging purposes. The interface has the power to interrupt the execution of the
program and to modify the status of the runtime system, for example, by patching in additional
program, or modifying the values of some variables. This allows the user to control the program
through the timesharing computer.

The RUNTIME SYSTEM is the set of programs which reside in the mini. This system includes
kernel programs for time-slice cpu sharing and process control and a set of dynamically created
p rocesses. These are of three basic types: a) An INTERPRETER examines the code prepared by
the compiler and executes the numeric computations requested. When a move 1s to be started, the
interpreter creates a servo for each joint and waits until all these servos are finished. b) A
SERVO handles the motion of one moving joint. ¢) A CONDITION-MONITOR repeatedly
examines certain conditions (whatever the programmer has specified). If it should discover that
its condition has occurred, it creates an interpreter to take appropriate action. The runtime system
also includes routines for communication with the runtime interface in the timesharing computer.

13.2 GENERAL SYSTEM OUTLINE Page 9

AN

SUPERVISOR

2A NL
, | N

|
RUNTIME

COMPILER 1 INTERFACE
~ |

~

> LOADER no
- A /

I. [1

| \V~/

1

| RUNTIME SYSTEM |
PDP-11 |

AN

DEVICES

CONTROL AND DATA

DATA ONLY

Figure 1.1
Overall system

Page 10 GENERAL SYSTEM OUTLINE 112

| SOURCE FILE OR TELETYPE

|

ED

PARSER

i

—
_ 3

LIBRARIES EXPANDER ~

<- PLANNING
MODEL

oo

| 2

\ /
/

TRAJECTORY CALCULATOR |

— —
CONTROL AND DATA WV

“Mm -_ LOAD MODULES
DATA ONLY

Figure 1.2
| The ‘AL compiler

i

{

Page 11

1.4 THE AL COMPILER

The AL compiler is built of three parts: the parser, the expander, and the trajectory calculator.
! These are depicted in Figure 1.2.

1.4.1 PARSER

§ The PARSER reads source code from either the console or a file. Its purpose 1s to form parse
trees and do some simple manipulations, such as assigning line numbers, causing listings to be

| directed to the appropriate file (if desired), expanding text macros, and keeping a primitive
symbol table. If a syntax error is discovered, it informs the supervisor, which will give the user

) several options, including aborting the compilation, making local modifications on the spot, or
switching temporarily to a text editor.

1.4.2 EXPANDER

The EXPANDER shares with the trajectory calculator the responsibility for turning parser
output into code interpretable by the runtime system. Its main functions are to maintain a model
of the expected runtime state at each point in the program and to use this model to resolve a
number of compile-time decisions. The information kept includes planning values, object
descriptions, relations between objects, endpoint constraints on particular trajectories, and much
more. Simple uses of this information include providing the trajectory calculator with essential
data and resolving conditional compilation requests. Beyond this, the expander has principal
responsibility for filling in the details required to turn calls on various high and intermediate
level primitives into runnable manipulation programs. It therefore contains a number of quite
specialized routines with considerable knowledge about the domain of mechanical assembly, as
well as a number of more general mechanisms for coordmating the specialists.

The expander supplies to the trajectory calculator a structure which 1s very similar to the parse
trees 1t accepts as input. However, no choices are left; all values have been explicitly specified.

1.4.3 TRAJECTORY CALCULATOR

The TRAJECTORY CALCULATOR takes the expanded code and computes the required
trajectories for the arms. Tables of interpretable code are generated for handling arithmetic and
assignment operations, condition monitoring, and affixment structure building operations (the
runtime system keeps track of physical attachment of objects). For motions, detailed tables are
emitted specifying how each joint of each arm is to behave, what computations to make at run-
time for the modification of these trajectories to bring them into correspondence with the current
state of the world (for it happens often that objects are not exactly where they were planned to
be), and what conditions to monitor during the motion.

L

i

C

Page 12 THEALCOMPILER 1.4.3

The trajectory calculator also 1s used to provide information to the expander. For instance, it can
predict the runtime effects of a given modification of a planned trajectory. This information 1s
useful to the expander for deciding how many different trajectories must be planned for a given
motion request, for estimating the feasibility of a given motion, and for other similar purposes.

There are several errors which the trajectory calculator can detect. A request might take the arm
outside its range, or force a joint to exceed its velocity limits. It may discover that there 1s a
possibility of collision between the two arms, or between the arm and some object on the table. In
order to carry out these tests, it may request assurance from the user that some object lies within a
certain region, or it may give the user a warning. The world model is used for much of this
calculation. At its discretion, the trajectory calculator may make some critical motions very slow,
so that an impending collision will be detected before it happens.

The output of the trajectory calculator is stored in bmary files, for loading mto the PDP 11.

1.5 USER FEATURES

AL 1s designed for users of several varieties; not all of the system is of use to each of them. Some
users wish to make manipulation programs with primitive motions. Others are interested in

. combining several often-used library routines in order to make an assembly program. More
sophisticated users may wish to create library routines and interact with the intracacies of world
modelling. While a task 1s being executed by the manipulator, a user may wish to monitor its
progress, vestigate the internal state of the program, or insert patches mn the code to fix errors or
attempt some modification. Thus, the user may have various degrees of understanding of the AL
system, various modes of interaction, and various reasons for using AL.

The bulk of user interaction with AL 1s during the stage of planning a set of manipulations.
This planning has several phases: initial preparation of the program, removing syntactic errors
from the source code, trying the program out, and fixing discovered bugs until the program works
properly. The final stage is the production run of the program, which can occur in a basically
unsupervised mode. During execution, however, it 1s still possible to interrupt the machine and
find out exactly where it 1s 1n the plan and debug it further. This is useful for patching a
program which over the course of a long execution begins to “drift” from reality.

Thus, the user features can be divided roughly into these parts:

1.5.1 PROGRAM FORMULATION

The AL source language is intended to be a clear and complete system in which to express those
manipulations necessary for the correct execution of an assembly task. Writing in AL should be
relatively easy; its inherent structure will be great aid in preparing correct programs.

1.5.1 USER FEATURES Page 13

Another way in which AL can assist the programmer is that it can read the current location of an
arm and make 1t available to the programmer. This makes some teaching by showing possible.
One way to put together a simple program 1s merely to move the arm manually to the different
locations desired, have the system remember those locations, and then type in appropriate motion
commands using these points. In general, a simple “go there” approach fails, because it provides
no way to indicate how fast the arm 1s to move, what forces to apply, what errors to ignore and
what conditions to monitor. However, AL will allow one to build complete motion specifications
about a skeleton of intermediate points, using textual input to make up for the limitations of
purely tactile input.

1.5.2 PROGRAM COMPILATION

The supervisor is the key to this and the following features; it allows the user to oversee the
progress of the program and fix errors as they arise. There 1s a simple supervisor language used
to communicate with the AL system. Some of its commands are demonstrated in the sample
dialog given in Appendix I. One of the commands causes compilation to begin; the parser is
directed to read some file. An option 1s to have console input itself used to enter the source code;
this 1s especially useful mn causing the arm to do something immediately. When the parser finds a
syntax error, 1t will give an error message, and several options will in general be available. These
include aborting the compilation, skipping to the end of the current statement, editing the line
with the system line editor (after which the entire statement will be reparsed, if possible), and
temporarily switching to a text editor to fix the problem (after which the entire program must be
reparsed).

The compiler detects semantic errors such as generating a move to a point with undefined
planning value, not supplying enough information to a high-level primitive, or attempting to
move the same arm simultaneously in two blocks of code. In those cases where the problem is one
of insufficient information, the expander will prompt for more, and, if possible, continue. The
user may decide not to supply that information, and in that case, the offending statement is
flushed. Some errors are so drastic that they require complete recompilation; the user is always
given the option of switching to a text editor for major modifications.

The trajectory calculator can discover a limited number of errors. These mostly mvolve motions
beyond the capability of the manipulators involved. Options to the user include making the best
possible legal trajectory, causing the trajectory to be slowed down, and inserting a trajectory
which, when executed, does nothing.

1.5.3 PR OGRAM EXE CUTION

* After a program has been compiled, it resides on disk as a load module. Any number of modules
can be loaded together; the principal restriction is that each of them be a “top level” program. As
mentioned earlier, the loader will resolve calls between the large (planning) computer and the

N small (execution) computer for those functions which the user has decided require the
computational ability found only on the large computer.

.

Page 14 USER FEATURES 15.3

Execution is initiated by a supervisor command issued by the user. While the mini is executing
the program, the user can cause an interruption and examine values within the runtime system,
and modify them if he wishes. It 1s also possible to examine the code generated by the compiler
and modify it, but this 1s most likely only of interest to system programmers. Sizable patches
require recompilation. The programmer (or, at this stage, an operator) can continually examine
the status of the runtime system by means of the mini’s console. Values of variables can be
examined and changed, and individual processes can be interrupted without interfering with
other concurrent processes.

Sometimes hardware difficulties will cause abrupt termination of the program; these often are due
to runtime trajectory modifications overstraining the hardware. After issuing an error message to
the user, the system behaves just as it would should it have been interrupted manually. It 1s
possible, during one of these “breaks”, to request that the entire world be saved. This causes all
runtime values to be written out into a safe place, along with the current attachment structure and
the current program counters. This feature allows the debugging of the task to stop temporarily
and to be resumed later. More importantly, it 1s possible to create a “safe point” in the code, so
that if an error should occur later, it 1s possible to back up the program to a point at which

everything was still working.

Programs which have been completely debugged can be “unloaded”, that is, saved in a compiled
form for execution any time in the future.

Page 15

| | CHAPTER2
| THE BASIC SOURCE LANGUAGE

| AL has several levels of complexity. We will start by discussing the basic source language; this
covers enough to write substantial manipulator programs, but has none of the high level
capabilities mentioned in the section on goals and philosophy.

| 2.1 DATA STRUCTURES

: 2.1.1 DA TA TYPES

| In this section we present the data. types available in AL, Roughly speaking, a data type 1s a kind
of numeric object. For example, FORTRAN has the data types INTEGER and REAL. A

a variable 1s an identifier of some type which can take on values. In AL, each variable must be
| declared, that 1s, one must state what its type 1s, somewhere in the program before it 1s used.
| There are several reasons for this: It allows the compiler to detect spelling errors, and it allows the
oo same name to be used in different blocks without conflict. AL uses ALGOL block structure,
| which means that all variables declared between a particular BEGIN and END are accessible only

to code which appears between the same BEGIN-END pair. The exact details of block structure
are discussed in the section on control structures.

oo 2.1.2 ALGEBRAIC DATA TYPES: SCALARS

Algebraic data types are the most familiar. They represent measurements in the real world. An
algebraic variable can assume a value by means of the assignment statement, which consists of

i the variable name, a left arrow ("<"), and an expression which has the correct type. When an
| assignment statement 1s executed, the expression on the right hand side is evaluated, and that

value replaces the old value of the variable on the left hand side.

The most elementary data type is scalar, which is internally represented as a floating-point
number. Scalars are used for dimensionless quantities, like the number of times some operation 1s

| to be repeated, or to implement a signal which becomes positive when some critical operation 1s
finished. The arithmetic operations available on scalar variables are addition, subtraction,

| multiplication, and division; the arithmetic operators which perform these operations are the
standard: +, -,+, /. Asis usual in algebraic languages, the first two have lower precedence than
the others.

| Scalar constants are written as (base ten) numbers, either with or without a decimal point and
| fractional part, Here are some examples of declarations and applications of scalar variables:

|

Page 16 DATA STRUCTURES 2.1.2

SCALAR sl, s2;

(Our examples will use a mnemonic scheme for naming variables to clarify the
type of each entity. Please understand that identifiers can be any string of
letters, of any length, and that AL does not distinguish between upper and

lower case. Curly brackets are used in AL to enclose comments.)
sl « 2,

$2¢ 3.74;

S 1 «s2x(s1-3.2);

It 1s often desirable to give some physical meaning to scalar variables. AL provides for scalars
with the dimensions time, distance, angle, and mass in addition to “simple”, dimensionless scalars.
Time constants are just like simple scalar constants, except they are multiplied by the reserved
word sec (for “seconds”). The other reserved words related to these dimensioned scalars are cm

(centimeters), deg (degrees) and gm (grams).

Dimensioned scalars are used exactly mn the same way as simple scalars; the only difference is that
AL will check that addition and subtraction are only performed on compatible values. AL
performs dimension checking for each arithmetic operation and each assignment. Addition,
subtraction, and assignment require exact dimension match, but if match fails and one of the two
arguments is simple (no dimension), it will be converted. Thus it 1s always legal to use simple
scalars where dimensioned ones are expected. Multiplication and division do not require
dimension match; they produce a result of a dimension usually different from that of the
arguments; this new dimension is then propagated through the expression. In this way,
intermediate results can be of dimensions not declared. This causes no problem unless one tries to
use such results in an assignment.

Here are some examples of dimensioned scalars:

TIME SCALAR tm 1, tm2;

MASS SCALAR msl;

ANGLE SCALAR theta, phi;

tml « 3 « SEC;

ms 1 « msl + 2.2 « CM;
msl « msl + 2.2;

(The constant 2.2 will be automatically converted to grams.)
theta « 90 = DEG;

tm 1 « tm2 # 5.5;

phi « theta « 4 « DEG;
{This is a mistake; the right side has dimension anglerangle]

If the user feels more comfortable with inches or pounds, it 1s quite easy to write macros which
will make such usage possible. This 1s best demonstrated by example:

N 2.1.2 DATA STRUCTURES Page 17

DEFINE INCHES = “(2.54 « CM)“;
DEFINE FEET ="(12 :« INCHES)“;
DEFINE LB = “(GM = 1000 / 2.2);

ms 1 « 2.2:LB; {= 1 000:GM}
ds 1 «3sFEET; {= 3%12:2.54:CM}

The user may wish to create new dimensioned scalars, such as forces or velocities. This 1S readily
done by means of the dimension statement and a few macros. For instance,

DIMENSION FORCE =DISTANCE:MASS/TIME:«TIME);
DEFINE DYNES = (GM:CM/(SEC:SEC))";

DIMENSION VELOCITY = DISTANCE/TIME;

DEFINE CPS = “(CM/SEC)*;

FORCE SCALAR fol;

VELOCITY SCALAR ve 1;
vel « 2.3:CPS;

fol t vel «3 « GM / (8.4 « SEC);

Please note that the DIMENSION statement and macros follow block structure; it 1s a good idea
co put them in the outermost block.

2.1.3 VECTORS

Scalars are insufficient to describe all measurements of interest to the user of AL. We turn now co

ocher algebraic data types. They are syntactically much like scalars: they are declared and can
enter into arithmetic expressions and assignments.

The world m which AL resides has three dimensions. We impose a Euclidean structure on that
space by setting up three cardinal, orthogonal axes, which meet at the origin. The actual
alignment of these station axes will, in general, depend on the particular work station involved; it
1s expected, however, that the positive Z axis will point upwards (this 1s not at all crucial).

The first data type we will discuss 1s the vector. It represents either a translation or a location.
The latter meaning 1s the result of translating the null vector, that 1s, the origin of the coordinate
system. As 1s the case with scalars, vectors may be dimensioned.

Vectors can be constructed from three scalar expressions by means of the function VECTOR,
The scalar expressions must all be of the same dimension, and the resulting vector has that same
dimension.

Addition and subtraction are defined on vectors of the same dimension. One other function is

available: the dot product. For example, if the two vectors are:

| Page 18 DATA STRUCTURES 2.1.3

v |=VECTOR(x1,yl,z1) and v2=VECTOR(x2,y2,22),

then we have

su vl =:VECTOR(s:x 1, sty 1, sezl)
vl + v2 = VECTOR(X 1+x2, yl+y2, 21422)
vl - v2 = VECTOR(x 1-x2, yl1-y2, 21-22)
vi. v2=x1:x2+ylay2 + 21222

Thus, addition and subtraction produce vectors in the familiar way; the dot product is the sum of
the products of the three components; its dimension is the product of the dimensions of the two
arguments.

| It 1s possible co “stretch” or “shrink” vectors by multiplying and dividing them by scalars. The
| dimension of the resulting vector is the product or the quotient of the dimensions of the two
| arguments. The magnitude of a vector 1s calculated by the function ABS, which returns a scalar

of appropriate dimension.

There are several predeclared vectors in AL:

VECTOR X,Y, Z, NILVEC;

(There are predeclared and have values as follows)
X t VECTOR(1,0,0);
Y t VECTOR(0,1,0);

Z t VECTOR(O,0,));
NILVEC « VECTOR(0,0,0);

The components of a vector can be easily extracted as the dot product of the vector with X, Y, or
Z. Here are examples of other vectors:

VECTOR v 1;
DISTANCE VECTOR dv 1, dv2,

SCALAR sl;
DISTANCE SCALAR dsl, ds2;

dsl « 4 « CM;

S] « -2:
dv 1 « VECTORC(sI, 2.3, dsl);

(This is a distance vector; the simple scalars get converted.)

ds2« dv 1.Y; (So ds2 gets 2.3:CM}
viedv 1/ ds2; (So »1«VECTOR(-2/2.3,1,4/2.3)}
dv2 t ds2« v 1; {So v2 « dvl}
s1«ABS(v1);

- 2.14 DATA STRUCTURES Page 19

2.14R OTA TIONS

The rot, our next data type, represents either a rotation or an orientation. The latter 1s the result
i of applying the rotation co the station coordinate system. Rots are internally stored as 3x3

matrices, which operate on column vectors in the usual way. Thus rots can operate on vectors
and move them around the origin (without changing their length); they can also operate on other

- rots (by matrix multiplication). To rotate a vector (about the station origin), multiply the vector
(on the right) by the rot (on the left). To compose rots, multiply them together; the one on the
right will be applied first.

A rotation can be constructed with the function ROT, which takes two arguments: a simple vector,
which 1s co be the axis of rotation, and an angle, which is the amount Co rotate. The direction of
rotation follows the right-hand rule; a rotation of 90 degrees about the X axis moves the Y axis

) into the Z axis. This turns out Co be a general representation far easier Co write and understand
| than raw matrices. We hope the following examples will serve Co clarify the proper use of rots:

: ROT rr 1, 12, 13;

ANGLE SCALAR alpha, beta, gamma;
rl t ROT(X, 90:DEG);

g vitrl::: Z;

(VI gets Z rotated 90 degrees about X, so VJ « VECTOR(0,-1,0).}
12 « ROT(Y, 45:DEG);
13 «12 rl;

) (Thus, r3 means: rotate first 90 degrees about the X axis, then 45 about the
original Y axis.}

) r 1 «ROT(X alpha);
r2 « ROT(r 1:Y beta),

r3 t ROT(r2:Z gamma);
. 4 er3ar2arl;

{r4 is then a rotation with this meaning: Rotate by alpha degrees about the X
axis, then by beta degrees about the new Y axis, then by gamma degrees about

} the doubly new Z axis.}

| The null rot, which has no effect,-is called NILROT.

2.1.5 FRAMES

The next data type 1s the frame, used co represent a coordinate system. It has two components: the
location of the origin (a distance vector) and the orientation of the axes (a rot). Frames are

. typically used to describe objects; one can specify locations of features on an object by translating
| them from the object’s origin.

There are several predeclared frames in AL. Station 1s the frame which represents the work
station’s frame of reference. Each hand available to the system also has a frame variable, whose
value (continually updated) 1s the position of that hand. Currently, there are two such frames:

- yellow and blue. Each arm has a rest, or park position, known as ypark and bpark.

| Page 20 DATA STRUCTURES 2.15

A frame may be constructed by a call on the function FRAME:

| FRAME fl;
DISTANCE VECTOR dv |;

ROT rl;

fl « FRAME(rldvl)

| The two arguments are a a rot (for the orientation) and a distance vector (for the position). To
extract the rot or the vector from a frame, use the functions ORIENT and LOC, respectively. To

| find where a vector goes if its base 1s moved from the station to the coordinate system of some
frame, “multiply” the frame (on the left) by the vector (on the right). To translate a frame by
some distance, simply add a distance vector to it.

Often one wants co construct a vector which is oriented like some vector (for example, the X
vector) in some frame, say Fl. The with respect to operator WRT gives exactly that; one writes
(X WRT FI). Examples of this and other constructs pertaining to frames follow: ’

FRAME fl, f2;

| f1tFRAME(ROT(Z,90:DEG),2:X);

{fl sits 2 centimeters from the station, in the X direction. Its coordinate system
: has X where the station’s Y points.)

v1t X WRT f 1; (This evaluates to VECTOR (0,1,0).}
: F111 +v 1; {Just like f1, but with origin at (2,10).}

| v1eflxY; (This evaluates to VECTOR (1,0,0)}
v2«v3 WRT f2;

(This is equivalent to (f2«v3)-LOC(f2), and also to OR IEN T(f2):v3.}

| 2.1.6 PLANE S

| Next we have the plane, used to separate space into regions and Co specify the locus of searches.
Planes are formed by use of the function PLANE, which takes two distance vectors as arguments:
The plane 1s co pass through the first vector, and the outward-facing normal to the plane 1s in

| the direction of the second vector. Thus PLANE(X,Y) is a plane parallel to the X-Z plane,
| translated from it by one centimeter in the X direction.

| Planes are internally stored by four numbers: the first three are an outward-facing normal, and
the last 1s the opposite of the distance from the plane to the origin.

Each plane divides space into three regions: inside, on, and outside the plane. (The last set
contains all points on the same side as outward-facing normal.) To find out in which region a
point (represented by a distance vector) lies, extract the inner product of the vector with the plane.

| Its value 1s a distance scalar whose absolute value 1s the shortest distance from the vector co the
plane, and whose sign 1s negative if the vector is side the plane, O if the vector is on the plane,

| and positive if the vector is outside the plane. The arithmetic operator for the mner product 1s a

_ 2.16 DATA STRUCTURES Page 21

dot; the plane may appear on either side of the dot. If the plane P has an internal representation
consisting of four numbers A, B, C, and D, and V = VECTOR(X ,Y1,Z 1), then we have:

P.V=AuX1+ BaX2xCuX3+D

Other operations available on planes are translation (by adding a distance vector) and rotation
(by multiplying by a rotation). To get the outward-facing normal of a plane, use the function
NORMAL, which takes a plane argument and returns a distance vector.

| Examples:

PLANE pi, p2;
p 1 t PLANE(VECTOR(0,0,0),Z);

(This is the surface of the station)

vl « NORMAL(p! + v2);
(No matter what v2 is, vl will get Z}

| ds 1 «p 1. VECTOR(2,-13.2, 32.3);
{ds] gets 32.3%cm}

2.1.7 TRANSFORMS

| The last of the algebraic data types 1s the rrans, which stands for “transform”. It is an operator,
CL Chat is, a function, which can operate on vectors, frames, and planes. The application of a trans

Co any of these 1s written as if it were a multiplication, with the trans on the left. To compose
several transes together, “multiply” them, with the one cobe applied first on the right.

| | The trans itself 1s defined as a function which can take objects in one frame of reference into
| another. One can construct a trans by use of the function TRANS:

TRANS cl;
VECTOR v 1;

ROT rl;

cl « TRANS(r1,v1)

) The two arguments are a rotation the rotational part and a vector (the translational part). The
application of a trans to a vector, frame, or plane first rotates that object according to the rotation
part (rotating about the station origin), and then translates the result according Co the translational
part.

Transes, like vectors and scalars, carry dimension. The rule is that when a trans is applied to a
vector, they must agree in dimension; the resulting vector 1s of the same dimension. When a trans

| 1s applied co a frame, it must be a distance trans. When a frame is used in a context demanding
| a transformation, it will be understood as a shorthand for the distance trans leading from the

} station. When transes are composed, they must agree in dimension.

| -

Page 22 DATA STRUCTURES 2.1.7

There 1s another convenient way to specify a trans: by forming it from two frames. The trans is
then the function which takes the origin of the first frame across to the origin of the second,
performing a rotation first to get the axes aligned. This method of specifying a trans is
accomplished by use of the arithmetic operator "+".

Examples:

TRANS tl, t2;

t 1 ef 1 -f2{Thustl:fl= f2}
Vv] « tl = v2;
t2 « tl = tl;

v 1 ef 12v2; (Equivalent to (STA TION -f1):v2}

The null trans, equivalent to TRANS(NILROT,NILVEC) is called NILTRANS.

2.18 PLANNING VALUES

AL works under the fundamental philosophy that arm motions should be planned in advance.
Since an arm trajectory cannot be calculated reasonably unless the end-points (and any specified
Intermediate points) are known fairly accurately, it 1s necessary that the compiler maintain for
each variable a planning value which may be used in the case that the variable enters into a
motion specification. Planning values are discussed in more detail in Section 3.2.

Essentially, the compiler attempts to assign to each variable a planning value for each statement in
the program. Initially, the planning value of each variable 1s “undefined”; one of the ways that a
planning value can be assumed 1s through an assignment statement. The compiler evaluates the
planning value of the right hand side, and this becomes the new planning value of the variable
on the left. Propagating the planning value across loops 1s complicated; in the case that the
variable can take multiple values, the compiler either sets the planning value to “undefined” or, as
AL becomes more advanced, maintains parallel “worlds” in which each planning value is
monovalued.

Variables can attain different values at run-time than their planning values when some real-
world measurement 1s taken and the result used in an arithmetic expression. The most common
example of this is that the frames yellow and blue are always kept accurate at run-time by
feedback from the arm hardware, so their values will in general differ from those planned.

2.19ARITHME TIC

Here 1s a summary of the arithmetic expressions available. They are grouped by the type of their
values. These abbreviations are used: ‘s'= scalar, 'v’ = vector, ’ = rot, f’ = frame, ‘p’ = plane, ‘t’ =
trans.

I

scalar expressions:
S + S scalar addition (commutative)
Ss - S scalar subtraction

S XS scalar multiplication (commutative)
s /s scalar division

V . V dot product of two vectors (commutative)
P .v signed distance fromvector to plane (see discussion

above on planes)
v .P signed distance from vector to plane (see discussion

above on planes)

vector expressions:
SX V dilation of a vector

v/s contraction of a vector

~ V + V vector addition (translation of the first vector by
the second) (commutative)

Vv = V vector subtraction

rx Vv rotation of a vector

- t x v transformation of a vector

v WRT f a vector of length ABS(v) rotated into f's system; | ike
ORIENT (f)xv; that is, a vector in station
coordinates which looks to the station as v

does to f.

rot expressions:
rox r composition of two rots (first to be applied is on the

right)

frame express i ons:
f + v translation of a frame

t x f transformation of a frame

plane expressions:
P + v translation of a plane by a vector
rox p rotation of plane (about station origin)
t x p transformation of a plane by a trans

trans express i ons:
f = f transformation which leads from the first frame to

the second

t x t compos| ng- two transes. The one on the right will
operate first.

Page 24 DATA STRUCTURES 2.1.9

PREDECLARED CONSTANTS AND VARIABLES:

n 1s simple, has value = 3.14 159...
STATION 1s a frame which has standard station coordinates. (constant)
BLUE 1s the location of the blue hand.

YELLOW 1s the location of the yellow hand.
BPARK is where the blue hand parks. (constant)
YPARK 1s where the yellow hand parks. (constant)
X 1s VECTOR(1,0,0).
Y is VECTOR(0,1,0).

Z is VECTOR(0,0,1). .
NILVEC is YECTOR(0,0,0).

NILROT 1S ROT(X,0:DEG).
NILTRANS is TRANS(NILROT ,NILVECQC).

EXTRACTION FUNCTIONS:

LOC(FRAME) is a vector whose value is the location of the frame.

ORIENT(FRAME) is a rot whose value is the orientation of the frame.

NORMAL(PLANE) is the outward facing normal vector of a plane.

2.1.10 SOME EXAMPLES OF ARITHMETIC EXPRESSIONS

In the following examples, assume these declarations:
FRAME fl, £2, etc;

VECTOR vl, v2, etc;

SIMPLE sl, s2, etc;

ROT rl, r2, etc;

PLANE pl, p2, etc;

fI’S unit Y vector, in station coordinates:
fleY

f1’s Z vector as seen from £2:

(f2-11)«2

A vector pointing in same direction as f I's X coordinate:
X WRT fl

v 1 rotated 90 degrees about the station’s Z axis:
ROT(Z,90:DEG):v 1

fI’s Y-Z plane:
PLANE(LOC(f 1),XWRT f 1)

| ~ —

» 2.1.10 DATA STRUCTURES Page 25

- A plane 3 centimeters above the station:
PLANE(VECTOR(0,0,2),2),
PLANE(3:Z,2),

| An identity with WRT:
| VIWRT fI=ORIENT(f [)xvi= (flav 1) - LOC(f1)

| 2.2 MOTIONS

| Motion statements are at the heart of AL; it 1s by them that all manipulatory work is done.

2.2.1 COMPILE-TIME AND RUNTIME CONSIDERATIONS

- All motion statements cause the compiler to make some plans which will eventually be executed.
: Those motions which depend on the value of some frame expressions for intermediate and final

position will be planned using the compile-time planning values for all relevant expressions. This
| can lead to inaccurate plans, since at runtime, some of those expressions might have different

| values. An example 1s an expression involving the location of the arm; the variables yellow and
| blue are always kept accurate at runtime by reading the arm locations. Since every arm motion
Fo must begin at the current arm position, this 1s an implicit parameter to the motion specification

| which may not agree with its planning value. This 1s a special case of a general phenomenon:
| objects are seldom exactly where they were planned to be, and the runtime value of their frames

will very likely be based on the position of the hand after it successfully locates the object by
sensory feedback.

Thus 1t becomes necessary that the runtime system adjust all trajectories immediately before they
| are executed. Adjusting a trajectory is less time-consuming than the original calculation; it makes
| sense to adjust before each repetition of a motion, whereas it would be a waste of computer time
| to recalculate trajectories that often. Immediately before the arm starts moving on a trajectory,
BE then, the plan 1s modified to bring it into line with current values of frames. If there 1s any

discrepancy between the runtime and compile-time understanding of where any frame 1s, the

| servo will try to place the arm in the right place nonetheless.

_ There are limits to the proper use of this feature; if the planning value is seriously in error
i (which can happen if the error is but a few centimeters, depending on the arm being used and its

configuration), then the attempt to make last-minute corrections might overstrain the arm or
impair response to directional forces. It 1s the user’s responsibility to foresee large discrepancies in
the planning value and to program in a condition to select one of several possible moves.
Hopefully, this will be seldom needed.

After a motion has been completed, the new location of the hands will be read, and that will

|

Page 26 MOTIONS 2.2.1

determine the new value for yellow and blue, as well as for any frames which might be affixed to
them. For the moment, we will ignore affixments; they are discussed in great detail later.

2.2.2 SIMPLE MOVES

In this section we will discuss motions which are to be executed on only one arm. Let us start
with an example:

FR AM E frobgrasp, swing 1, swing?2;

‘MOVE yellow
TO frobgrasp
VIA swingl, swing?

This example demonstrates the general syntax; the reserved word MOVE 1s followed by the name
of the arm to be moved and a set of clauses, each beginning with a reserved word (here the words
TO and VIA). There is no punctuation necessary at the end of a clause. The arm 1s expected to

travel from its current position (wherever that is planned to be) to the final position (frobgrasp),
passing through the intermediate positions (swing! and swing2). A smooth trajectory for the
motion will be computed by splining together polynomial segments (usually third degree,
occasionally fourth) separately for each arm joint. This trajectory calculation 1s somewhat time-
consuming and is done completely at compile time.

Certain things must be specified for any move. First is the arm which is to be moved. It is
named by an arm frame (yellow or blue); other ways of specifying the arm will be mentioned after
the formal 1dea of affixment has been presented. Next, the destination frame must be specified.
“TO frobgrasp” means that at the end of the motion, the position of the arm should coincide with
the position of frobgrasp. There 1s a notational convenience for destinations: They can be
specified in terms of where the arm 1s at the start of the motion. The symbol for this 1s "e"
(sometimes pronounced “grinch”), that 1s, ® is a frame which has the location and orientation of
the arm at the start of the motion. Thus,

MOVE yellow TO e + Z:CM

will move the arm | centimeter in Z above its starting place.

2.2.3CONDITION MONITORS

During the course of an arm motion, it may be desired to monitor some condition or set of
conditions in order to prematurely stop the motion or inform some parallel process that a
condition has occurred. The conditions which may be checked are results of measurements, such
as time or force checking, and events, which are signals that can be explicitly sent by other
simultaneous processes. Events will be discussed in subsection 2.5.4; for the time being,
assume that the only conditions which may be checked are measurement conditions. Here 1s an
example which contains some condition monitors:

. 2.2.3 MOTIONS Page 27

N SCALAR warning;
VECTOR v I;

- MOVE yellow
TO ypark
ON DURATION 2 3:SEC DO warning « 1

N ON FORCE(v1)218:0Z DO STOP (Stops the arm}

This motion has two separate and independent condition monitors; the first will trigger if the
motion takes longer than three seconds, and the second will trigger if the force on the hand, as
measured along vector vl, exceeds 18 ounces. (Assume we have a macro which translates ounces
ito units of force.) The conclusion of a condition monitor, the code which will be executed if the
monitor triggers, 1s one statement prefaced with the reserved word DO.

A condition monitor has two states: enabled and disabled. Generally, a condition monitor will be
enabled as soon as its motion statement 1s started, and it becomes disabled when the motion ends.

. As soon as a condition monitor triggers, it becomes disabled unless it becomes explicitly reenabled.
Reenabling 1s done by executing the statement ENABLE ‘within the conclusion.

; In order to enable or disable some arbitrary monitor, it 1s necessary to give it a name; this 1s done
by putting a label immediately before the word ON. A label 1s an undeclared identifier followed
by a colon. Thus we could write:

- MOVE blue TO frobgrasp
test 1: ON DURATION 23:SEC DO DISABLE test2

test2: ON TEMPERATURE < 30 DO STOP

Thus, test2 1s only performed for the first three seconds.

Occasionally one wants to write a condition monitor which is initially disabled and becomes
enabled later. This 1s accomplished by putting the word DEFER before ON:

fudge: ON temperature > 400 DO
BEGIN {Keep shouting until someone hears.)
WRITE("BURNING");

STOP OVEN; (Pretend we have a device OVEN)

EN ABLE (This reenables fudge}
END

taste: DEFER ON cooked {Tis is an event.) DO DISABLE fudge
ON DURATION > 30:MIN DO ENABLE taste

It should be noted that this ability to enable and disable monitors explicitly 1s a non-structured
construct; using it can lead to unintelligible programs. In any case, scope rules must be observed;
it 1s not legal to enable or disable monitors across different MOVE statements. This means that
two motion statements which happen to be simultaneously executing (we shall see how to do this
later, in subsection 2.5.2) cannot interfere with each other’s condition monitors,

Boolean combinations of conditions are not allowed. Some of the continually measured functions

Page 28 MOTIONS 223

which may be tested are force along a vector, (FORCE(V)), force about an axis (TORQUE(V)),
time since beginning of motion (DURATION), and the force between the fingers (SQUEEZE).
One standard event 1s testable: ARRIVAL. This event occurs when the motion terminates due to

having reached its destination. It does nor become true if the arm stops for reasons other than
normal arrival at the destination; STOP does not trigger it.

The conclusion of a condition monitor may be any statement, including an entire block. The only
restriction 1s that if a motion statement 1s the only statement in the conclusion, it must be
surrounded by BEGIN and END. (This is necessary at times to prevent ambiguity.) The compiler
will complain if you try to embed a motion statement inside another if the result implies
simultaneous motion statements for the same device.

The existence of condition monitors raises this question: When is the motion really finished? It
can happen that the arm itself has stopped, but some monitor has triggered, and its conclusion 1s
still busy being executed. The rule is this: the motion 1s declared done when all the joints of the
arm are stopped, and all monitors are either disabled or not currently triggered. Any monitors
still enabled, but not triggered, are disabled at the time that the motion 1s declared finished.

The user must be aware of some timing considerations. Firstly, measurements like FORCE,
DURATION, and SQUEEZE are not really computed continually; there is a process which makes
a measurement and then lies dormant for a while (on the order of twenty milliseconds) before
again making a measurement. Thus, monitors do not trigger immediately when a tested condition
becomes true. Secondly, when a monitor triggers, any initial statements of enabling or disabling
are done immediately, but any arithmetic is scheduled to be done at some point in the near future.
Therefore it 1s not possible to guarantee that a critical computation happen immediately. If the
user desires, he may use the word CRITICAL at the start of the conclusion, and UNCRITICAL
at the start of that code which need not be guaranteed immediate execution. Only one occurrence
of CRITICAL, at the very start of the conclusion, and only one occurrence of UNCRITICAL are
allowed. AL automatically assumes CRITICAL before initial statements of enabling and
disabling, and UNCRITICAL immediately following. An example:

ON DURATION 2 4+SEC DO (Tested frequently)
BEGIN

ENABLE goodguy; {Assumed CRITICAL)
te3; {Assumed UNCRITICAL)
END

ON SQUEEZE 210+0Z DO (Tested frequently}
BEGIN

CRITICAL; (Overrides defaults}
ted; {Will be done immediately)
UNCRITICAL; {End of critical region)
DISABLE goodguy; {Done soon)
END

. 2.2.4 MOTIONS Page 29

) 2.2.4 FORCE DURING A MOTION

To make the arm compliant to external forces along some directions or about some axis it is
- necessary to specify the appropriate modes of freedom. Because AL works in three-dimensional

space, 1t only makes sense to specify at most three orthogonal directions and three orthogonal axes.
In addition to being compliant along degrees of freedom (whether translational or rotational), it 1s

\ also useful to apply a fixed force along some of these degrees. Then pure freedom reduces to
application of zero force.

x For example, suppose the arm 1s on the surface of the station; we wish to apply a force of 10000
dynes directly downward (the negative Z direction) while allowing the arm to comply to any
horizontal force. This 1s how we would write such a motion:

. MOVE blue TO © (moues nowhere) -
p WITH DURATION =10+:SEC {give it some tine.)

WITH FORCE =-10000:DY NES ALONG Z OF station

\ WITH FORCE = 0 ALONG X, Y OF station

This example illustrates several conventions. A translational degree of force (or freedom, if the
\ amount of force 1s zero) is specified by the word ALONG followed by a list which can only

contain the vectors X, Y, and Z, followed by the word OF and the name of the frame which
specifies the coordinate system in which the cardinal axes are to be understood. The amount of

| force must be 1n force units, which are of the scalar dimension mass:distance/(time:time), we have
- assumed in the example above that DYNES 1s a macro which expands to correct units.

Rotational degrees of force are written in much the same way; the axes are specified ABOUT a
\ combination of X, Y, and Z OF some frame, like this:

WITH FORCE = 5000:::DYNES ABOUT Z OF &

L {Applies a torque about the Z direction of the hand.)

| During a motion which has only translational force specifications, the orientation of the hand will

L remain as planned, but the location will comply with the specified force. During a motion which
has rotational degrees of force, the orientation of the hand will vary from that planned in accord
with the specification and whatever external forces are encountered.

\ It does not really make sense to have a force in the nominal direction of motion, but there 1s
neither a compile-time nor a runtime check to catch such usage. If it happens, the arm could go

| into oscillation.
.

Actually, not all of the full power of force specifications will be available in the first versions of
! AL. In particular, rotational specifications will be handled roughly or not at all. Another future

L embellishment will be to allow the directions of force to vary during the motion; this 1s useful for
such tasks as turning a crank. For example, the following will eventually be available:

MOVE yellow TO {frobgrasp
\ WITH FORCE = SIN(DURATION:DEG):10000:DYNES

ALONG Z OF g;

Page 30 MOTIONS 2.2.4

This specifies a varying amount of force along a varying direction: "@" means “the current location
of the hand, as it changes during the motion.”

Especially at first, some of the force control will be prepared by the compiler, not calculated
during the arm motion itself. Therefore, if the runtime values of the endpoints of motion are
significantly at odds with their planning values, application of force may go awry.

2.2.5 DE PR OACHES

Many objects have shapes which necessitate care as the arm approaches them or departs from
them. AL supplies a method for insuring that every time the arm approaches a frame, it will pass
through an associated spot first, and every time it leaves that frame, it passes once again through
the same spot. The “spot” is termed a deproack (from departure and approach); it is a
transformation to be applied to the frame involved in order to discover the appropriate place
through which to pass. The fact that a trans 1s used implies that the deproach point will move
about with its frame. It also means that the location of the deproach point 1s relative not to the
origin of the frame, but rather to the point in frame coordinates to which the motion leads. For
example, the deproach transformation of the station is TRANS(VECTOR(0,0,10:CM),NILROT).
If the arm is to go to, say, the point VECTOR(3,1,4)+station using station’s deproach, then it will
first go through YECTOR(3,1,14). This has the effect of preventing the arm from going through

. the surface of the station.

The deproach of a frame 1s specified by means of an assertion. Without going into full detail on
assertions (which will be covered in detail in Section 3.4), we give some examples:

ASSERT FORM(DEPROACH, station, TRANS(NILROT,VECTOR(0,0,10:CM));
(This is preasserted and need never be included.)

ASSERT FORM(DEPROACH, frob, TRANS(ROT(X,90:DEG),VECTOR(1,0,0)));

(Whenever you go to frob, go through a point 90 degrees about frob’s X axis
from a spot one centimeter in X from the nominal arrival point.)

Note that since deproaches are transformations, they have the power to include rotations. These
are considered to be rotations about the origin of the coordinate system involved; the rotation
occurs, as usual, before translation. The use of rotations is of marginal use, but is included for
completeness.

The deproach points of the departure frame and the arrival frame are used as implicit VIA
points for any motion, except when the destination is "e" or there is an overriding deproach
clause-in the motion statement. Here are some examples:

| _ —

1

2.2.5 MOTIONS Page 31

MOVE yellow TO e; (No departure or approach point used)

MOVE yellow TO frob
WITH APPROACH = NILDEPROACH;

{The default departure (which depends on the last motion made by
yellow) is used, but no approach point is desired.)

MOVE blue TO {rob

WITH DEPARTURE = NILDEPROACH

WITH APPROACH = DEPROACH(irobgrasp);
(No departure point is desired, but the approach should be as if the
destination were frobgrasp, not frob.}

Suppose that a frame f 1s given deproach transformation d. It is desired to find the frame which
1s the deproach point from some other frame h (for example, where the hand is, for departure),
using {’s deproach. The frame which will be used as a via point 1s this:

f «dw (f- station) «+h

The deproach point for { itself 1s discovered by setting h = f in the above expression. The

Identities

(f » station) = f = station, and a = station = a

reduce the resulting expression to f = d; this 1s therefore fs own deproach point.

We have not yet discussed affixment of frames, but the actual decision of which deproach to use
In a given situation depends on it somewhat, so let us just mention that there is a way to specify
that two frames are affixed, so that whenever on moves, so does the other. Exact details are

given in Section 2.3. With this understanding, we can describe the method used to describe
how AL determines what deproach to use:

When an arm moves ro a frame, t-he frame’s own deproach is used, if it has one. If not, then a
search is made along the string of affixments (that is, frames to which the given frame is affixed

\. are searched) until one 1s found which has a deproach. That deproach is the one that 1s used. If

) none at all 1s found, then the station’s deproach 1s used as a default. (One way to think of this is
to consider all frames ultimately affixed to the station.) In approaching a frame which is the result

R of a calculation, as in

MOVE yellow TO frob + VECTOR(0,0,1) |

the default approach 1s NILDEPROACH. The default deproach of e is also null.

In departing from a frame, 1t matters whether or not that frame 1s now attached to the hand. If
not, then the same algorithm used for finding departure 1s used for approach. But if the frame
has been detached from some erstwhile mother and 1s now attached to the hand, then its old

Page 32 MOTIONS 2.2.5

mother’s deproach is used (and if there 1s none, the same search 1s made). Thus, a frame attached
to the hand still has some “memory” of its previous state of attachment.

2.2.6 OTHER MOTION CLA USES

Here we describe some of the other additional clauses that may be associated with motion
statements. The first 1s WITH DURATION, which allows the user to specify the timing for the
motion. One can use 2,=, or £ for duration control. The first 1s used to guarantee that the motion
take a certain amount of time, that is, 1t guarantees that the motion will be slow enough so that all
the time 1s used. The second is rarer; it 1s used when the exact time 1s somehow critical. If the

compiler thinks that the arm cannot move fast enough, it will complain. The third form 1s
included primarily for completeness; once again, it can cause the compiler to complain. In the
absence of any timing specification, AL will compute the least time which will allow the particular
arm being used to move most efficiently.

VIA 1s used to name desired points along the trajectory. In its simplest form, the VIA clause
contains merely a list of frame expressions, such as in this example:

MOVE yellow TO finalpoint
VIA intl, int2 + YECTOR(0,0,1), int3;

‘The motion will be planned to go from the current location of the yellow arm, through a
departure pot (if there 1s one), through each of the intermediate frames, through the approach
point (again, if there is one), and finally to arrive at finalpoint.

At each of the intermediate points, it 1s possible to specify the velocity to be achieved at that point
(in terms of a velocity vector) as well as upper or lower bounds on the time used to reach this
frame from the previous one on the list. Here 1s an example demonstrating these features:

MOVE blue TO finalpoint
VIA intl WHERE VELOCITY = velol, DURATION = 3:SEC
VIA int2 WHERE DURATION 2 74SEC

WITH DURATION 210:SEC;

This specifies two intermediate points, each of which has some condition associated with it, A
time constraint for the entire motion 1s also given. Note that the word VIA must be repeated
when conditions are specified for some Intermediate point.

One final feature is available with respect to intermediate points: One may specify that a piece of
code 1s- to be initiated when any intermediate point is achieved. This 1s done with a THEN
construct:

MOVE red TO rpark
VIA intl THEN WRITE("Almost there!*)
VIA int2 THEN ENABLE prepare-for-landing;

-1

N 2926 MOTIONS Page 33

) The statement following THEN may not be a motion statement for the same arm; if the statement
1s a motion statement, it must be surrounded by BEGIN and END. It 1s legal to have
combinations of velocity, duration, and THEN-type specifications all at the same intermediate

: point.

DIRECTLY 1s a clause that tells the compiler that only the via points and the final point are of
. interest; no smooth trajectory need be planned. A smooth motion will result due to runtime

calculations. This will also set the deproaches to NILDEPROACH.

| TRACING is another option. It allows the user greater control over, the exact trajectory chosen
] for the move. The path can be traced at whatever speed desired. The path, or parameterized

frame, 1s a specification of what frame the arm is to go through for each value of the parameter.
| It 1s also possible to specify the relation between the parameter and real time, as well as the state
- the grain of the motion (that 1s, how often the actual location should coincide exactly with the

parameterized frame) or the acceptable tolerance (by a distance scalar). A glorious and complete
example:

ANGLE SCALAR alpha;
FR AM E cen ter;

) MOVE yellow (No destination specified with a tracing motion.)
TRACING center + 12:VECTOR(COS(alpha),SIN(alpha),0)
FOR alpha « 0 BY 10:DEG UNTIL 360:DEG

> WITHIN .12CM (This is the tolerance.)
WITH DURATION =10:SEC,;

\ This specifies a circular motion of radius twelve centimeters parallel to the surface of the station,
about the frame center. Every 10 degrees, the arm should actually be in the right place, and,
furthermore, it should never be more than .1 centimeter (pretty tight tolerance, actually; most likely

. beyond the capability of the manipulator) from the perfect circle.

The option MAINTAINING ORIENTATION causes the trajectory computed by AL to try to
maintain the same hand orientation throughout the motion. Of course, the final orientation must

\. be the same as the initial orientation for this to work at all.

2.2.7 COMPLEX MOVES

: A complex move 1s one which involves more than one arm at a time. A distinction can be made
between moves which merely require simultaneous acquisition of “agreement points” (let us call
this- weak synchrony), and those which require true coordinated motion throughout (strong

L synchrony).

Weak synchrony is achieved by pairing frames to make composite VIA points and destinations.
| A paired frame has the form: [F1: F2). Here is an example of a move statement using paired
\ frames:

LC

|

Page 34 MOTIONS 2.2.7

FRAME yl, y2,y3,y4,bl,b2, bd

MOVE [yellow : blue]
VIA [yl:b1]),[y2:)[y3:b2]
TO ([y4:b3]
ON [FORCE(Z)>3000:DYNES:] DO STOP

The via list 1s composed of a set of paired frames, where an empty field indicates “don’t care”, In
the example shown, the arms start together, achieve yl and b 1 simultaneously, the yellow arm
passes through y2, and together they pass through y3 and b2.

It 1s now more cumbersome to specify condition monitors and conditions in general, The paired
construct applies for all the optional fields; thus, one can write

WITH FORCE =(14000:DY NES:] ALONG [X OF yellow:]

The meanings of ¢ and e are now relative to which side of the pair they occupy; in the example
above, the left side always refers to the yellow arm, and the right side to the blue. To override
this convention, one may use expressions like “e.yellow", or “e.blue".

The meaning of STOP in the example above 1s extended to both arms at once; in order to specify
only one, it is necessary to say “STOP yellow” or “STOP blue”.

Strong synchrony involves one concept not included above: The ability to specify the location of
one arm throughout the motion in terms of the location of the other arm. The construct which
allows this specification 1s COORDINATING; it allows one to give an expression for the location
of one of the two arms. Suppose we wish to keep both arms in “lockstep”, that is, the blue arm
should retain its relative position to the yellow arm throughout the motion. (This might be
necessary for lifting some object by its two ends.) One way to code this task is as follows:

FRAME y I, ymt |, yint2;
MOVE [yellow : blue]

TO [yl]
VIA [yint 1:][yint2:]
COORDINATING LOC(blue) = LOC(yellow) + e.blue - ®.yellow
WITH FORCE =[:0) ALONG [: X,Y OF blue]

[MAINTAINING ORIENT : MAINTAINING ORIENT]

2.2.8 SEARCHES

A SEARCH is very much like a move. It 1s a means of specifying repeated action in a spiral. As
with a MOVE, it 1s necessary to name a controllable frame which 1s to be moved. The ON
construct is exactly as for MOV Es.

X 22.8 MOTIONS Page 35

Here is a complete example of a search:

PLANE pl;

SEARCH yellow
ACROSS pl
WITH INCREMENT = 3:CM

REPEATING

BEGIN {This is done at each iteration)
FRAME set;

set « yellow;
MOVE yellow TO e -Z

ON FORCE(Z) >3000:DYNES DO TERMINATE;

- MOVE yellow TO set DIRECTLY;
END

The plane of the search is specified by the ACROSS construct. A spiral box search will be
performed in this plane (or parallel to it, 1t the mitial location of the hand 1s not in the plane); the
increment for the search will be three centimeters. At each point in the search, the statement
following REPEATING 1s executed; in this case, that involves two motions. The special statement
TERM INATE causes the search to finally succeed; if there 1s an ON ARRIVAL clause in the
search, 1t will trigger when TERMINATE 1s executed. It 1s also possible to terminate a search by
setting some flag side the repeated code, and to test it in a condition monitor associated with the

~ search, That monitor can execute the statement STOP, causing the search to be halted, In this
case, any test for ARRIVAL will never trigger.

2.2.9 CENTER

' Occasionally the hand 1s positioned around an object, but it 1s not certain if it is centered. One
wants to close the fingers slowly, moving the arm meanwhile to accomodate to the location of the
object. This 1s accomplished by means of the CENTER command. The direction that the hand

“ will move 1s the direction between its fingers. All that the CENTER command needs 1s the name
of the arm being moved. The use of ON is the same as for a search or any other motion.

Here 1s a simple example:

CENTER blue

ON SQUEEZE > 4 DO STOP

Note that this 1s command, unlike MOVE, treats the fingers and the arm together as one device.

Page 36 MOTIONS 2.2.10

2.2.10 CONSTANT VELOCITY M OTION

A special form of the MOVE instruction 1s provided to cause the arm to quickly achieve a
particular velocity and to hold it in straight-line motion for a given distance:

VELOCITY VECTOR vv I;

VECTOR v 1;

FRAME dest;

MOVE yellow
WITH VELOCITY = vvl

THROUGH dest

FOR DISTANCE = 4:CM

ON FORCE(v I) >2000:DYNES DO STOP

The VELOCITY clause tells which vector to follow, and how fast. The THROUGH clause tells

the compiler where the move expects to end. The FOR DISTANCE tells the maximum distance
the hand should go. It 1s general practice to terminate such a move by use of a condition monitor.

2.2.11 STOPPING

Generally, an arm will stop its motion when it has achieved its destination. Often it 1s necessary
to stop it prematurely, for example, if some error condition is detected. The statement

STOP yellow

causes the yellow arm to be unconditionally stopped; any motion statement operating it will
terminate. This statement may be executed at any point in the program, not just inside a motion
statement.

2.2.12 DE VICE CONTROL

Each device has a name; currently, the legal device names are yellow, blue, vice, driver (an electric
screwdriver), sfingers,bfingers (The fingers of the two arms). STOP without any device name 1s
only legal within a motion command; it stops whatever device(s) that command 1s operating.
STOP followed by a device name will unconditionally stop that device.

There 1s a general command for operating devices other than arms; it 1s hoped that this will be
flexible enough for any device we are likely to use (if not, we will add special new forms). Assume
we have the device turntable, which 1s capable of moving at any velocity and for any length of
time, but which cannot go to a particular set point. Then the syntax would be this:

OPERATE turntable

WITH VELOCITY =3:DEG/SEC

WITH DURATION =8:SEC

“ 2.2.12 MOTIONS Page 37

The idea 1s that the WITH construct will suffice to account for any special data (in this case,
velocity and duration) peculiar to the particular device. The OPERATE statement also allows the
ON construct, so it can test for special conditions and take appropriate actions; it also always
allows WITH DURATION.

The screwdriver 1s a hand-held device which can be run at a range of speeds, in either direction.
By convention, a positive velocity means clockwise, and a negative velocity means anticlockwise.
The relevant reserved word 1s VELOCITY, which 1s equated with the name of a scalar variable
of dimension angle/time. This variable will be queried periodically during the screwdriver
motion to determine how much voltage to apply to the motor. This allows the velocity to change
during the operation of the device, perhaps under the control of a parallel process which is
monitoring some conditions. An example:

OPERATE driver

WITH VELOCITY = sp
WITH DURATION =4:SEC

- ON DURATION>2:SEC DO sp « 2:sp
{After two seconds, speed up the screwdriver.}

Each arm has two fingers at the end which are capable of closing and opening at various speeds.
The relevant reserved words are OPENING, which is to be set to the desired (distance scalar)

opening, and VELOCITY, which 1s to be set to the (velocity scalar) speed desired. It is possible
) to refer to the force scalar variable SQUEEZE, which indicates the force being applied by the

fingers. Condition monitors can also make use of the distance scalar variable OPENING which
will continually reflect the distance between the fingers. An example:

OPERATE yfingers
WITH OPENING =2:IN

WITH VELOCITY =2:CM/SEC

ON SQUEEZE > 2:0Z DO STOP
ON OPENING <1:CM DO STOP

2.3 AFFIXMENT

2.31 THE AFFIX STATEMENT

Assembly often involves affixing one object to another. AL has a mechanism to automatically
keep track of the location of a subsidiary piece of the assembly as its base 1s moved; the

. mechanism 1s called affixment. For example, there might be a frame called pump and a frame
called base. At some stage in the assembly, the pump is bolted to the base. At this time it 1s
appropriate to include the statement

Page 38 AFFIXMENT 2.3.1

AFFIX pump TO base

This statement informs the compiler that motions of base are to affect the location of pump causes
code to be generated for the runtime which will automatically update the value of pump every
time base is changed. Finally, the planning model will be updated to reflect the affixment. A
slightly more formal definition of affixment, in terms of explicit assertions and modifications to
the runtime graph structure, 1s given in subsection 2.4.2.

Please note that the AFFJX statement does not act as a library routine invocation; it does not
generate code to actually perform the bolting operation. The statement merely informs the AL
system that at this stage in the execution of the program, pump 1s to be considered affixed to
base.

If pump should be moved while affixed to base, the-value of base itself will not change, but the
affixment will remain for the new relative positions of pump and base. Occasionally it 1s desired
that the affixment be symmetric, so that motion of either frame will cause the other to move.
This 1s done by including the reserved word RIGIDLY in the affix statement:

AFFIX pump TO base RIGIDLY

The system uses a trans to store the relative positions (in our example, (base » pump)) of the
affixed frames. Normally, the system would invent a temporary variable to hold this trans;
however, the user can supply his own variable to be used instead, thus allowing his to modify the
affixment relation directly. This 1s done by including the phrase “BY «trans variable id>" in the
AFFIX statement. For instance,

TRANS tl;

AFFIX pump TO base BY tl;

If the value of the trans is modified in a non-rigid (that is, asymmetric) affixment, the effect is to
move the subsidiary frame. If the value of the trans changes in a rigid (symmetric) affixment,
then neither frame will change its value until one of them explicitly gets a new value; at that time
the other will spring to a new position, as determined by the trans.

The clusion of the construct “AT «trans expression>” will cause AL to use the indicated value
for the relative affixed position of the objects. Thus,

1

N 2.3.1 AFFIXMENT Page 39

) AFFIX pump TO base AT NJLTRANS

1s equivalent to

TRANS tempxf;
AFFIX pump TO base BY tempxf;

. TEMPXF « NJLTRANS

Similarly,

) TRANS XF;
AFFIX pump TO base BY xt AT TRANS(NILROT,Z),

1s equivalent to

TRANS XF;

AFFIX pump TO base BY xf;
“ xf « TRANS(NILROT,Z);

It 1s possible to make chains of affixments, possibly involving some rigid affixments and some
non -rigid ones.

h 2.3.2 THE UNFIX STATEMENT

Affixments are undone by the UNFIX statement. For example,
\

UNFIX pump FROM base

. will remove the affix structure between pump and base, and will discard the invented trans
(unless 1t was named, of course>. Similarly, the compiler’s planning model will be updated to

: reflect the fact that pump and base are no longer affixed. However, the fact that they were
previously affixed is important for calculation of default “deproaches" (Section 2.2.5), and is

- remembered until either of the two frames 1s changes. See subsection 2.4.2 for a more
detailed description of the assertions actually made do do this.

2.3.3 MOTIONS AND AFFIXMENT

\.

When some frame has been affixed to an arm, it can be treated as if it were itself an arm. Thus,

the following 1s legal and useful:

~ FRAME f{rob, frobgrasp;

AFFIX frobgrasp TO frob;
L AFFJX frob TO yellow;

MOVE frobgrasp TO & + (Z WRT frob);

Page 40 AFFJIXMENT 2.3.3

The effect of this motion statement 1s to cause the yellow arm to move in such a way that
frobgrasp moves one centimeter in frob’s Z direction. The compiler notices that frobgrasp is
affixed to frob, which in turn 1s affixed to yellow; furthermore, it knows the relative positions of
each of these, so it 1s not too hard to translate the given motion statement into a statement dealing
only with the yellow arm. It is a great convenience to let the compiler do this translation, which
can get messy in the presence of complicated affixment structures.

The use of "e" inside a motion always refers to the frame being treated as an arm, whether it is
actually an arm (blue, yellow) or an affixed frame (frobgrasp).

If some frame is attached to more than one arm, then it is not legal to use this feature, because the
compiler would have no way of determining which arm to use. Actually, such an attempt is most
likely an error on the user’s part; if an object 1s affixed to both arms, then they are joined
through that object. It is therefore not safe to move one arm and not the other. The “right”
thing to do mn such a case would be move all the relevant arms to the appropriate places. We do
not intend to implement this at first.

2.4 GRAPH STRUCTURES

" Affixments are stored in both the compiler and the runtime by means of a graph structure which
1s used to assure that variable values are consistently updated. The actual algorithms used for
this process are given in Appendix II. Essentially, the runtime system keeps track of
dependencies between variables. If a variable value is changed, any variables which depend on it
are marked as “invalid”. Then, whenever the value of an “invalid” variable 1s needed, the

runtime system will attempt to recompute it from the dependency information. If this attempt fails
(as might happen if two “invalid” variables depend on each other) then the current (“invalid”)
value 1s used as the best answer available.

2.4.1 EXPLICIT MODIFICATIONS .TO THE GRAPH STRUCTURE

The dependency information principally consists of a list of arithmetic expressions that may be
used to calculate the new value of a variable, together with a list of statements to execute
whenever the variable is changed. (In addition, the runtime keeps with each variable a list of all
other variables whose values may depend upon that variable). Generally, this formation will be
updated implicitly as part of the AFFIX and UNFIX statements. However, AL does provide
statements for updating the structure explicitly. The principal statement employed for this
purpose 1s the graph assignment statement:

<variable> <= <expression>

where "<=" may be read “is computed by”. This construct causes <expression> to be added to the
list of calculators for <variable>. Also, it causes the left hand side <variable> to be added to the

~ dependents list of any variables that may occur in the <expression>. Thus,

24.1 GRAPH STRUCTURES Page 41

FRAME fl, {-2;

TRANS ft;
fl <= tuf2;

says that f 1 is computed by the expression “t:f2" and, hence, depends on t and £2. Note that
graph assignment 1s cumulative, so that

a <= bu;

a <= d+e;

would cause a to be marked invalid whenever b, c, d, or e 1s changed. In such a case, it 1s
undefined whether "b:c" or "d+e" would be used to recompute a, assuming that all of the variables
were valid when the value of a is needed.

The statement

<variable> <# <expression>

causes <expression> to be removed from the list of calculators and makes the appropriate
modifications to the dependency lists. Similarly,

<variable> <<= <expression >

replaces the current calculator list for <expression>. The statement

<variable> «<=;

would cause the calculator list to be set to null.

In addition to the calculator list, a list of updater routines 1s associated with every variable. These
routines are executed whenever the variable value 1s changed. Initially, the list of updaters is
empty. However, the construct

WHEN CHANGING <variable> ALSO DO «<label>: <statement>:

will cause the statement to be added to the list of updaters for the variable. The label is optional,
but 1s necessary if the statement 1s ever to be removed from the updater list. In <statement>, the
reserved words OLD and NEW may be used to refer to the old and new values of var,
respectively. For instance:

, WHEN CHANCING f2 ALSO DO foo: fl « NEW:{(OLD > FI),

Updaters may be removed from the updater list by the statement

WHEN CHANCING <variable> DONT DO <label>

For our above example, this would be

WHEN CHANGING {2 DONT DO foo;

Page 42 GRAPH STRUCTURES 24.1

The form

WHEN CHANGING <variable> ONLY DO <statement>;

replaces the updater list with one containing just <statement>, and

: WHEN CHANGING <variable> ONLY DO;

clears the updater list completely. Since the affix structure makes use of updater and calculator
lists (see subsection 5.2.2), careless use of the replacement form is not advised.

One possible use for updater routines is tracing. For example,

WHEN CHANGING v ALSO DO

WRITE("The value of V is now "NEW);

One additional point that should be mentioned here 1s that the updater routines for a variable
are not called if the variable’s value 1s modified as a side effect of a change to some variable in
one of its calculators.

2.4.2 GRAPH STRUCTURES AND AFFIXMENT

As mentioned in the previous section, the AFFJX & UNFIX statements modify the graph
structure. In fact, these statements may be be defined in terms of their effects on graph structure.
Thus,

AFFIX f1 TO f2 BY tl

1s equivalent to

tl «£2 fl;

fl <= tl = £2;

WHEN CHANGING {1 ALSO DO yyy:tl«(f2 + NEW);

One additional effect of AFFIX is to cause the compiler’s planning model to be updated by the
addition of a symbolic assertion:

ASSERT FORM(AFFIXED,f1,f2,NONRIGIDLY, tl);

Such assertions are described more fully in Section 3.4. Essentially, all this one does 1s record
the fact that the two frames have been affixed. This information is used in calculating
deproaches (Section 2.2.5) and by several other parts of the compiler, and is also available to the
user.

Similarly,

UNFIX fl FROM f2;

|

- 24.2 GRAPH STRUCTURES Page 43

1s equivalent to

fl <# tluf2;

WHEN CHANGING f1 DONT DO yyy;
DENY FORM(AFFIXED, f 1,2, ANYTHING, ANYTHING);
ASSERT FORM(WAS_AFFIXED,fI, t-2);

The latter assertion 1s used in calculation of default deproach points. A side-effect of any
assignment, like "fl <value>“, is

DENY FORM(WAS_AFFIXED, ANYTHING, fl);
DENY FORM(WAS_AFFIXED, f I, ANYTHING)

Rigid affixments, such as

AFFIX 11 TO f2 BY tl RIGIDLY

are equivalent to

tl «£2 - fl;

fl <= tl = £2;

f2 <= INVERSE «x fl.

ASSERT FORM(AFFIXED, 1l, £2, RIGIDLY, tl);

2.5 CONTROL STRUCTURES

2.5.1 TRADITIONAL STRUCTURES

AL has many of the traditional Algol control structures, including statements, blocks, conditionals,
and loops. There are no jumps in AL, because they confuse the flow analysis needed for
maintaining planning values and because it 1s possible to accomplish much without them.

We have already seen some applications of block structure. More formally, a block is a list of
statements, separated by semicolons, and surrounded by the reserved words BEGIN and END.
The entire block 1s treated syntactically as a statement; thus, its definition is recursive. One

. particular kind of statement is the declaration. We have already seen declarations for algebraic
variables. There are a few rules pertaining to variables and declarations: Every variable must be
declared at some point in the program before it is used. Declarations may appear anywhere in a
block; there is no restriction that they must precede other statements. The local block of a variable
1s the block defined by the narrowest BEGIN-END pair which surrounds its declaration. Blocks
defined by narrower BEGIN-END pairs are called inner blocks, and those defined by wider pairs

Page 44 CONTROL STRUCTURES 2.5.1

are called global blocks. The primary rule 1s that variables may only be referenced in their own
local or inner blocks. Another way to state the same thing is that within any given block, it 1s
only legal to refer to variables declared locally or globally to that block.

Here 1s a simple example which demonstrates the other standard ALGOL control structures:

sample: BEGIN (Meaningless example)
SCALAR a, 1;

ae?
FOR 1« 1 STEP 1 UNTIL 10 DO a « asa;

{This is very likely to cause arithmetic overflow!}
"WHILE a > 0 DO
loop: BEGIN

aea-l

IF a< 5 THEN WRITE(a) ELSE WRITE(a-5)

END loop;
W R ITE("Done")

END sample

Even though there is no jump struction, there are labels; they are useful during debugging, for
naming condition monitors, and for some other purposes which we will see later. It 1s good
practice to name blocks, and to repeat the name after the closing END; this allows the compiler to
.check that the proper BEGINs and ENDs match.

The FOR loop 1s quite traditional; it follows the form:

FOR <svar> « <sexpr> STEP <s expr> UNTIL <sexpr> DO <statement>

where <svar> stands for “(possibly dimensioned) scalar variable” and <sexpr> stands for “scalar
expression of compatible dimension”. The initial value of the variable 1s the value of the first
expression; every time the statement 1s executed, its value is incremented by the value of the
second expression, and the process repeats until the value exceeds that of the third expression. If
the step size 1s negative, the right things happen. A test is made before the first iteration, so it is
possible that the loop will not get executed at all.

The WHILE loop 1s another means to control iteration. It syntax is this:

WHILE <condition> DO <statement>

where the condition 1s some boolean expression involving one of the operators «<,>,s,2,=, and #.
Boolean expressions can be built up out of such arithmetic operators, the logical connectives A
(and), v (or),- (not), and the logical constants true and false. The first check is made before
the first iteration; the statement is executed repeatedly until the condition fails.

The conditional statement has the form:

IF <condition>

THEN <statement>

| - - ELSE <statement>

N 2.5.1 CONTROL STRUCTURES Page 45

) The ELSE part 1s optional. The <condition>, which is just like the condition in a WHILE
statement, 1s evaluated; if it 1s rue, the THEN part will get executed; if it 1s false, the ELSE part
(if there 1s one) gets executed.

The conditional expression 1s much the same as the conditional statement:

. IF <condition>

THEN <expression>
ELSE <expression>

) This can be used whenever an expression is needed.

2.5.2 COBEGIN-COEND

In addition to traditional ALGOL structures, there are also some additional ones for more

sophisticated flow of control. The first such construct 1s the COBEGIN-COEND pair, which
brackets statements whose execution 1s meant to occur independently. Each of the statements
within the simultaneous block will eventually get executed, but there may be considerable overlap
of execution. For example, while one arm is moving, another statement can be computing; several
arms can also work at the same time. The termination of the block occurs only when all of the
statements in the scope of the COBECIN have terminated. Declarations should not be included
as local statements in the region of simultaneity. It is not particularly useful to have simultaneous
execution of a purely computational code; the real reason for the COBEGIN construct 1s to allow
simultaneous independent manipulator control. Here 1s a simple example:

swing: COBEGIN {Wish ro get all three arms to their rest positions.)
MOVE yellow TO ypark;

) MOVE blue TO bpark;

MOVE red (rue should Aave suck an arm) TO rpark;
: COEND swing

2.5.3 PARTIAL ORDERING OF SVBTASKS

) An assembly task is often divided into subtasks which enjoy a partial ordering with respect to the
intended order of execution. For example, consider a task A which contains four subtasks, B, C,
D, and E, of which B and C must be done before D, and D must be done before E, but B and C

1 could be done in any order. It is possible in AL to leave the ordering of the subtasks up to the
compiler, which will try to optimize the entire operation with respect to total expected time and
economy of motint For example,

|

Page 46 CONTROL STRUCTURES 2.5.3

a: TASK BEGIN {Sample of partial ordering on subtasks}
b: BEGIN

<code for task B>

END b;

c: <code for task C»;

d_e: BEGIN (both D and E}
<code for task D>

<code for task E>

END d_e;

PREREQUISITE OF d_e IS c;
PREREQUISITE OF d_e IS b;
END

The words TASK BEGIN introduce a rask block, which contains a set of statements, The

prerequisite statement

PREREQUISITE OF «<labell> IS <label 2>

informs the compiler that the statement identified by <label 2> must be done before the statement
identified by <labell>. One important restriction 1s that both statements so named, as well as the
prerequisite statement itself, must all occur mn the same TASK block.

The order in which the statements are performed 1s determined only insofar as the prerequisite
conditions demand. The compiler may reorder them consistently with the preconditions, and may
even execute some of the statements simultaneously (as if there were a COBEGIN), if this 1s
feasible.

As can be expected, it 1s rather difficult for the compiler to keep track of planning values in the
vicinity of a TASKBEGIN. For this reason, it is a good idea to make heavy use of the planning
value assignment statement (the one with the double arrow: "««" see Section 3.2) to keep the
compiler informed of what 1s intended to be true, both within the partially ordered block and
immediately afterwards.

2.54 EVENTS: SIGNAL AND WAIT

To achieve simultaneous coordinated motion, one uses a special form of the move commands
which will be discussed later. However, some simple synchronization is possible within the
context of simultaneous execution. This is achieved by means of explicit events, which can be
signaled and awaited. Every different event that the user wishes to use should be declared. For
instance,

EVENT el, e2,e3

2.5.4 CONTROL STRUCTURES Page 47

With each event 1s associated a count of how many times it has been signalled. Initially, the count
1s 0, that 1s, no signals have appeared, and no process 1s waiting. The statement

SIGNAL el

increments the count associated with event el, and if the resulting count 1s 0 or negative, one of
those processes waiting for el 1s released from its wait and readied for execution. The statement

WAIT el

decrements the count associated with event El, and if the resulting count is negative, the process
issuing the WAIT 1s blocked from continuing until a signal comes along. If the count 1s O or
positive, there 1s no waiting.

An example of the utility of this construct is inside a simultaneous block, where one path of
execution requires that the other path has passed some milestone. Here is how such a use might
appear:

EVENT milestone;

COBEGIN {Example of use of SIGNAL and WAIT)
path 1: BEGIN

<code before the critical point>
WAIT milestone;

<code after the critical point>
END path;

path2: BEGIN
<code in preparation for the milestone>
SIGNAL milestone;

<code following the milestone>
END path2

COEND

2.5.5 STATEMENT CONDITION MONITORS

We have already seen condition monitors in the context of motion statements. The same construct
1s of general utility; most of what was said before holds for the statement condition monitor as
welt.

The conditions which may be tested in statement condition monitors are principally events, since
DURATION, SQUEEZE, and FORCE are associated usually with a particular motion. As is the
case with motion condition monitors, the statement condition monitors can be in two states: enabled

and disabled. A monitor becomes enabled when its defining statement is executed, and becomes
disabled when it triggers, 1s explicitly disabled by some other statement, or its local block is exited.
The same conventions as have already been seen apply to the naming of condition monitors and

3 Page 48 CONTROL STRUCTURES 25.5

their explicit enabling and disabling. Scope rules come into play regarding what condition
monitors it 1s permitted to enable or disable; the rule 1s that only condition monitors defined
locally or globally to a piece of code can be touched by that code. The word DEFER still causes a
condition monitor to be defined in an mitially disabled state.

When a block 1s exited, all monitors local to that block are disabled. However, the block exit code

will wait until the bodies of any triggered monitors are completed before disabling any monitors,
| deallocating local variables, or performing any of the other functions associated with block

termination. If the execution of one of these triggered monitor bodies causes other monitors to
trigger, then the block exit will wait for those, also. Furthermore, block exit is treated as an
atomic process; all monitors are disabled at the same time.

| The constructs CRITICAL and UNCRITICAL apply to statement condition monitors just as they
do to motion condition monitors.

25.6 COMMENTS

| The most standard way to insert comments in an AL program is to surround them with curly
brackets, as we have done in all our examples so far. It 1s also legal to use the word COMMENT
before a comment, and to end it by a semicolon. This type of comment may not contain any

. semicolon. The user can optionally reset the comment delimiters from "{}" to whatever she wishes,
by means of a require statement such as

REQUIRE "2%" COMMENTDELIMITERS

| which would cause the scanner to ignore any text between "4" signs. It is expected that this will
seldom be needed.

2.5.7 LABELS

Labels specify points in the program;-they are useful for naming condition monitors, and subtasks.
It also assists during debugging of programs. To label a statement, preface it (with an identifier
followed by a colon. Labels are not declared.

foo: a «a +1;

2.5.8 ABORT

Occasionally the user wishes to stipulate that if the program ever reaches a particular point,
something 1s hopelessly wrong. The statement ABORT causes the runtime to stop all moving

| devices and to terminate execution. The supervisor 1s informed of the halt, and will inform the

|

!
L

user. ABORT takes an optional string argument, which 1s a message which will be given to the
| user if the ABORT statement is executed. An example:

- ABORT ("I keep missing the hole!)

2.5.9 OUTPUT

There are several ways that the user can request output from AL to the console. As mentioned
above, ABORT can print a message during execution. There 1s another way to print a message

L during execution, the WRITE statement, which takes as arguments a list of variables and
constants. It 1s also legal to include a string constant in this list (there are no string variables in
AL,). Formatting of output 1s automatic. An example:

L WRITE (“1 think that the pump is at ";PUMP)

|
C Some pieces of code are only intended to work under certain conditions of planning knowledge.

Such code might have a check to insure that its preconditions are met; if not, it 1s proper to signal
a compile-time error, with a message. This 1s done with the PLAN ERROR statement, which

L optionally takes a string argument, and which will halt compilation and print the message. One
| of the options the supervisor will give the user 1s to proceed as if no error had been encountered.

Here 1s an example:

\ PLAN ERROR("Hey!' You didn’t attach the pump to the hand!)y

| A similar statement which merely prints its message but does not halt compilation 1s the PLAN
WRITE statement, which behaves in all respects like the runtime WRITE statement in that it can

i take variables and constants in its argument list, but where variables are specified, the planning
L values will be printed. For example:

PLAN WRITE("Yellow arm should be at", yellow)
!

" 2.5.10 PROCEDURES

| AL has only a limited capacity for procedures. All parameters to a procedure assume the

4 planning value “undefined” at the conclusion of a procedure call, except those which are declared
as VALUE parameters in the procedure heading, or those stated to be UNCHANGED in the
procedure call. There 1s no safeguard against the accidental modification of “unchanged”
parameters; to state “unchanged” is entirely equivalent to an assertion that the parameter has not

L changed its value during the execution of the procedure. The declaration of a procedure is this:

type PROCEDURE name (argument list) |
L

L

| Page 50 CONTROL STRUCTURES 2.5.10
| where type 1s any data type (and is optional), and argument list 1s a list of parameter names with

their types. An example:

DISTANCE SCALAR PROCEDURE Igth (FRAME fl, f2; VECTOR VALUE vl);

| This declares that lgth 1s a procedure which returns a scalar, and takes as arguments two frames
and one vector. The vector is not changed by the procedure.

To call such a procedure:

DISTANCE SCALAR sl;
FRAME frob, hole;
VECTOR vect;

sl « Igth(frob, UNCHANGED hole, vect);

| This further asserts that hole is not changed by the call.
It is a good idea to use the planning value assignment (“««") heavily at the start of a procedure
body to inform the compiler of the values to expect for the various arguments. Remember that

| trajectories planned on the basis of highly inaccurate planning values will not work well. As a
procedure 1s entered, all variables have planning value “undefined”. Globals may be accessed, but
they also have undefined initial planning value. All variables which have explicit or implicit

| assignments within a procedure acquire the value “undefined” at the point directly after the
procedure call.

No modification of the affixment structure 1s allowed inside a procedure. The compiler (often
wrongly) assumes that there are no affixments involving variables within a procedure; it requires
an assertion like

ASSERT FORM(AFFIXED, fl, £2).

to override this mistake. Affixments are discussed in Section 2.3 and more general assertions in
Section 3.4.

There are four special types of procedure calls: A AL program might wish to call a routine coded
for the mini or a routine coded for the timesharing machine. Likewise, a program on the
timesharing computer may wish to control an AL program, or a routine on the mini may wish to
request some arm motion.

To achieve the first two cases, there exist external procedures in AL. These are compiled into
calls on either routines in the mini or routines in the timesharing computer’s runtime package. To
declare such a procedure:

EXTERNAL MAXI FRAME PROCEDURE foo (FRAME a, b; VECTOR v)

|
| This declares the procedure foo to be a procedure resident in the runtime “maxi” (that is,
| timesharing computer) package, expected to return a frame value, and taking as arguments two

|

L

v 2.5. 10 CONTROL STRUCTURES Page 51

.

frames and a vector. Maxi procedures do not have access to the actual variables sent, since copies
are made; therefore, all arguments to maxi procedures are considered to be VALUE parameters.

: Itis possible to declare untyped (i.e., statement-like, instead of expression-like) procedures as well.
Replace “maxi” with “mini” for procedures in the mini. Such procedures do have access to values,
and therefore parameters are not automatically considered to be VALUE.

To achieve the second two cases, there exist internal procedures in AL:

. INTERNAL FORCE VECTOR PROCEDURE baz (SCALAR 5s);

: Internal procedures must be at the top level of an AL program. A complete AL program is
L considered to be an untyped procedure without parameters.

w

L

“

Page 52

CHAPTER3

COMPILE-TIME CONSTRUCTS

3.1 INTRODUCTION

AL seeks to maintain a fairly accurate planning model of the expected state for each point in the
execution of a program. This planning model includes the expected values of runtime variables,
together with a number of symbolic assertions about objects, relations between frames, constraints
on trajectory endpoint conditions, and other information, and 1s important throughout the system.
At the lowest level, it provides “target” locations for the calculation of proper trajectories. Beyond
this, planning information is used to direct conditional expansion of input programs and library

routines, and provides a basis for decisions on how to translate the various high-level, assembly-
oriented constructs nto runnable manipulation programs.

Anumber of language constructs are provided in AL to allow the user to access this model and to
assist in maintaining it. These facilities are described in this chapter, which also discusses
language features such as conditional compilation for increasing the convenience of programming
and the flexibility of programs. The use of the planning model facilities for object descriptions
-and by the “very high level” components of AL 1s discussed more fully in Chapter 4.

3.2 PLANNING VALUES

One very important piece of information about a variable 1s its planning value, which is the
compiler’s estimate of what value the variable will have at some point in the program execution.
As with other aspects of the planning model, planning values have many uses in AL. One
especially important use 1s in trajectory calculation. Although provisions are made to modify any
preplanned trajectory before executing it, the current scheme requires that at least a roughly
accurate value be available at compile time 1f smooth trajectories are desired. This was discussed
in subsection 2.2. 1.

Typically, planning values are updated whenever the compiler encounters something that it has
reason to expect will cause the runtime value to change. For instance, the assignment statement

foo « 3

will cause the compiler to emit code to set foo to 3 and will cause it to change the planning value
of foo to become 3. Similarly

a«bs+c

will cause the planning value of variable a to be set to the planning value of é plus the planning
value of c, provided that both & and ¢ have known planning values. If one of the planning
values isn't known, then a gets the special planning value undefined, which 1s also used as an
mitial planning value at the time a variable 1s declared.

Motion statements also can cause planning values to be updated. For instance,

MOVE yellow TO bar

will cause the planning value of yellow to be set to the planning value of bar. Also, the planning °
value of any variables affixed to yellow will be updated appropriately.

The planning value of a variable may be retrieved by use of the construct

s(<variable name>)

which yields a constant equal to the planning value of the variable. For example,

b «3;
a « »(b),

has the same effect as

b« 3;

ae 3;

Although the compiler makes an effort to keep track of the expected runtime state of variables, it

must sometimes be given explicit assistance. For example, it is difficult for the compiler to
maintain unambiguous planning values over conditional statements, as in this example:

SCALAR sl, s2;

VECTORv 1;

sl « 100;

IF s2> 3 THEN

BEGIN :

vl « VECTOR(1,2,3);

sl « 101;

{#(s1) = 101}
{#(v 1) = YECTOR(1,2,3)}
END

ELSE

BEGIN

v1] « VECTOR(1,2,4);

{«(v1)=VECTOR(1,2,4)}
{#(s1)=100)
END;

{#(v 1) = UNDEFINED)
{#(s])= UNDEFINED)

Page 54 PLANNING VALUES 3.2

Although the compiler may eventually be smart enough to resolve a number of such cases, for the
moment the user must tell the compiler what planning value to use thereafter.

The compile-time assignment statement:

<variable> «« <constant expression?

1s provided to set the planning value of a variable. Such assignments affect only the planning
value; no code 1s emitted, and the runtime value of the variable remains unaffected. Thus, both

v « VECTOR(3,3,3)

and
v «« VECTOR(3,3,3)

set the planning value of v to VECTOR(3,3,3), but only the first form causes the runtime value of
v to be changed.

Planning values provide a useful way to generate error estimates, as in

FRAME fl, £2, £3;

AFFIX {1 TO f2 RIGIDLY;

AFFIX £2 TO yellow;
MOVE yellow TO 13;

(Moving the yellow arm will cause the runttme values of frames fl and f2,
which are affixed to it, to be updated as well.}

WHILE ABS(LOC(f)-LOC(s(f 1))) >.25:«CM DO
BEGIN

(Make a correction)

{iM ensure f1}

END;

Although it 1s theoretically possible for the user to fill in the relevant nominal values explicitly, mn
practice this can be rather inconvenient, especially when the planning values are derived from
some complicated computation. Furthermore, the availability of planning values offers significant
advantages with regard to program flexibility, since changing a particular expected value will not,
in general, require substantial changes mn program text.

- 3.3 PLANNING VARIABLES Page 55

3.3 PLANNING VARIABLES

Planning variables allow the user to take advantage of the compile-time computation and
planning value maintenance facilities of AL without incurring the runtime overhead of having
regular variables in cases where only their planning values are ever used. Typical uses include
attaching symbolic names to constants, use of temporary variables mm compile-time calculations,
object modelling, access to symbolic assertions in the planning model, passing “advice” to high-
level language primitives and to library routines.

3.3.1 ALGEBRAIC PLANNING VARIABLES

Algebraic planning variables are declared by the construct

PLANNING <data-type> <identifier 1>,..., <identifier n>

For instance,

4 PLANNING SCALAR a, b, c;

PLANNING DISTANCE SCALAR d 1, d 1;

PLANNING FORCE VECTOR fl, 2, lift;

. PLANNING TRANS ft;

Such variables may have planning values, but have no runtime existence whatsoever. This
means that they may appear on the left hand side of planning assignment statements (i.e., the "«&"

| form), but not of regular assignment statements (i.e., the "«" form). Similarly, a planning variable
may not appear in an arithmetic expression, although its planning value (that is, #(<ct var>)) may
do so. Thus, the following are legal:

PLANNING SIMPLE a, b;

SIMPLE v;

a ee3;

b cc +(a) -.01;
Ve2+*a)

- Ve W(V) - vas(b);
b cc UNDEFINED; {this causes b to lose its planning value)

These, however, are not legal:

PLANNING SIMPLE a, b;

_ SIMPLE v;

ae 3;

Vv « a; (Note that no coercions to planning values are ever made.)

b « a; (Ditto)
v« UNDEFINED; (UNDEFINED has no runtime meaning.)

Page 56 PLANNING VARIABLES 33.2

33 ATOMS

In addition to the regular runtime data types, there are several additional types that (presently)
can occur only with planning variables. These variables follow the usual rules concerning
planning value assignment and propagation, except that their “value” 1s not an arithmetic
quantity. Instead, it 1s the internal structure associated with some construct in the language.
Perhaps the most important of these variable types 1s the arom, which 1s a variable whose
(planning) value 1s the name of another variable. Atoms are declared by the construct

ATOM «idl»,. .., <idn>;

Note that the word “PLANNING” 1s not needed, since an atom 1s purely a planning construct.
Planning values may be assigned to atom variables by use of the construct

<atom name> «¢« <variable name>

as mm

ATOM al, a2, a3;
| DISTANCE SCALAR d;

al «« d;
a2 «« a3;

r(a2) «ea 1);
{Now, #(al)="d", #(a2)="a3", #(a3)="d"}

Notice that #(<atom>) yields the name of a variable; its effect is as if the variable itself were used.
Thus,

d « 100:feet

and

*(al)e 1 00:feet

will both have the same effect. Also, note that assignment to an atom constitutes the only case
where the name of a variable may -appear on the right hand side of a planning assignment
statement.

Atoms serve a number of useful purposes, the most prominent of which include serving as “key
words” in symbolic assertions, providing a means for retrieving and using variables as object
properties, and as a means for adapting the same piece of program text to perform different
versions of the same task. For instance,

a 33.2 PLANNING VARIABLES Page 57

| ATOM arm, h;
FR AM E hole 1 ,hole2;

arm cc blue;

h ee holel;

: MOVE *(arm) TO «(h);

h cc hole2;

MOVE #(arm) TO #(h);

Here, the MOVE statement has been typed out twice, so the actual saving is rather small. In
practice, however, it is common to place such statements inside a macro or library routine (see
Section 3.7), in which case the gain in convenience can be appreciable. Similarly, the atoms

h “arm” and "h" can be given planning values by means of the BIND construct in a planning
conditional expansion (see Section 3.5).

3.3.3 EXPRESSIONS, CLAUSES, STATEMENTS, AND FORMS

Another very important type 1s the expression, which takes as its planning value the internal
structure associated with an expression in the language. These variables are declared by the
construct

EXPRESSION «idl»,. . . <idn>;

. Again, note that the word “PLANNING’ is not used. If desired, an atom or expression variable
may be restricted to values of some particular algebraic type by inclusion of the appropriate
additional declarators. For instance,

| DISTANCE ATOM da;
VECTOR ATOM va;

FORCE VECTOR ATOM fva;
TRANS EXPRESSION tel, te2;

. Other planning only types include statement, clause, andform. Statement variables take as their
planning values the internal structure associated with a statement. Clause variables take as their
planning values the structure associated with clauses, such as “TO " and

R “WITH DURATION 2 3:SEC". Clauses, statements and expressions are primarily useful as a
means of passing explicit “advice” on to a library routine or high-level primitive. In addition,
statement variables are frequently very useful as placeholders in partially written code.

| Form variables hold references to assertions in the compiler’s planning model and are discussed in
more detail in subsequent sections. One use is to allow a user to remember the name of an
assertion in such a way as to facilitate undoing it later.

Page 58 PLANNING VARIABLES 33.3

Planning values may be assigned to clause, statement, expression, and form variables by use of the
appropriate construction functions to produce constants of the appropriate types. Thus we might
have:

TRANS tl;

FRAME widget;
ATOM height;
CLAUSE c;

EXPRESSION e;
STATEMENT s;

FORM f;

‘f «« FORM(height, widget, 100);
¢ «« EXPRESSION(t l=:ypark);
s CC STATEMENT(MOVE YELLOW TO «e));
c «« CLAUSE(VIA widget);

(Note that #(e) will not be evaluated until the planning value of s is used;
that is, until #(s) is used as a statement somewhere)

As one might expect, the argument to an expression primitive 1s an expression, the argument to
clause 1s a clause, and and the argument to a statement primitive is a statement. These compile-
time functions return the internal structures associated with their arguments; when this structure is
stored into a planning variable of the appropriate type then the planning value of that variable
becomes the expression or statement. Thus,

e «« EXPRESSION(t 1:42: 1);
c «« CLAUSE(VIA widget);
s cc STATEMENT(MOVE YELLOW TO {3 «c));

f3 « #»(e)

»(s);
and

f3 «tlut2af 1;

MOVE yellow TO 13 VIA widget;

will have exactly the-same effect.

3.4 ASSERTIONS

In addition to planning values, the planning model used by AL includes a number of facts that
are usefully expressed as symbolic assertions. These facts include object descriptions, semantic
information about what is in the hands, state information about required approaches for
motions,and relations between frames. Internally, all facts (whether added to the data base by the
compiler or explicitly by the user) are represented as forms of constant elements such as one might

- find as planning values for some variable or another. For example,

34 Page 59

FORM(Roses, are, red);

FOR M(W EIGHT, engine-block, 3.5:POUNDS);
FORM(AFFIXED, fl, TO, f2, BY, t3, RIGIDLY);
FORM(v 1, COMPUTED-BY, EXPRESSION(a:v2+v3));

are typical of the sort of forms which one might have in the data base.

Readers familiar with recent research in artificial intelligence will no doubt recognize the
similarity of many of the constructs presented in this section with comparable features in modern
Al languages. A detailed discussion of this relation or of implementation details 1s beyond the
scope of this paper. However, perhaps it should be pointed out again that the assertion
mechanisms in AL are a planning-time construct without any runtime existence. The system
attempts to keep track of what facts are expected to be true at each point in the program by
associating with each fact in the data base a set of "worlds" corresponding to each place that a fact
1s true. Some further discussion of this mechanism may be found in Section 4.5.

341 THE ASSERT STATEMENT

Symbolic assertions may be added to the data base by use of the statement

ASSERT <form>

where <form> is either the planning value of a FORM variable or a call on the FORM
construction primitive,

FORM (<element > <element 2>, . . . ,<element n>)

. In general, each <element> must be something that can appear on the right hand side of a
planning assignment statement (i.e., the "««" assignment). This includes constants, expressions
involving only constants (including &variable>)), variable names, and the results of construction
functions like EXPRESSION, STATEMENT, and FORM. (Also, the BIND construct 1s allowed,
but this 1s discussed later). For instance,

ATOM holds, SLOT, headtypel, HEX, now, 1s, the, time;
- (We are following a convention that individuals are in low er case, and classes

or properties are in upper case.)
STATEMENT PARKING-METHOD;

. FRAME driver];

FORM formvar;

C ASSERT FORM(yellow, holds, driver 1);
ASSERT FORM(SLOT, headtypel, HEX, 0.53);
ASSERT FORM(PARKING_METHOD, yellow,

STATEMENT(MOVE YELLOW TO YPARK));
~ formvar «« FORM(now, 1s, the, time);

ASSERT +(formvar)

Page 60 ASSERTIONS 3.4.1

The actual meaning of an asserted pattern is generally determined by whatever conventions the
user may wish to establish. However, a few pattern types, such as those for affixment or those
used by the very high level routines for object descriptions, are “understood” and used by the
compiler. (As mentioned earlier, AL includes a number of predeclared atoms to act as key words
in these reserved patterns.) The user can cause serious confusions by improper introduction or
deletion of such patterns, although, used properly, they provide a valuable tool for communication
with the planning model.

3.4.2 THE DENY STATEMENT

Generally, assertions will remain “true” in the compiler’s world model until explicitly deleted or, in
the case of assertions used by the compiler, as a side effect of processing some statement. Any
assertion may be undone by use of the DENY construct, which is similar to ASSERT:

DENY FORM(IN, HAND, screwdriver);
DENY s(formvar),

3.4.3 CONSTRAINT ASSERTIONS

In addition to planning values and symbolic assertions, the system’s planning model may include
constraint information delimiting the range of values that a variable may take on. Much of this
information 1s expressed internally by means of mathematical constraints on scalar variables that
represent degrees of freedom in object locations. For instance, if a flat surface of an object is flush
up against another flat surface, then (in the absence of other constraints) the object will have two
translational and one rotational degrees of freedom. These constraints are generally derived from
the semantics of the various “high level” operations, the object descriptions, and certain “standard”
assertional patterns. (See Section 4.6 for more details.) In addition, however, a user can use the
construct

ASSERT <expression><relation><constant>

in order to state a constraint relationship explicitly. The <relation> may be any of "<""<""="">",
and "2". At present, <expression> is restricted to be a linear form involving only scalar variables
or the dot product of two vectors. For instance,

DISTANCE SCALAR a, b, c;
VECTOR v;

ASSERT 3:a + 4b - 2:¢ < 2:INCHES;

ASSERT v .Z> 0.25;

This construct 1s primarily intended for use in debugging the higher level operators and in
writing library routines that are to be used with such operators. It is being described here in the

- Interests of completeness and because reference is made to it in Section 4.6.

344 ASSERTIONS Page 61

3.44 STANDARD USES FOR ASSERTIONS

The user may use the assertional database to store arbitrary information. Certain patterns,

however, are given special meaning in AL. For example, in our discussion of deproaches, we
implied that the compiler keeps track of each frame’s associated deproach by means of assertions.
Thus, to give the frame f 1 a deproach transformation tl, one writes:

ASSERT FORM(DEPROACH, f1,tI) |

Another standard use 1s for affixments. One effect of the statement

AFFIX fl TO f2

1s the assertion

ASSERT FORM(AFFIXED, fl, f2)

Similarly, the object descriptions used by the assembly-oriented operations, as well as the planning
model associated with such operations, rely quite strongly on standard assertion patterns. A fuller
discussion of some of these patterns may be found in Section 4.7. However, this document does
not purport to list fully all the patterns that are actually used by AL, although it should give the
reader some 1dea of their approximate extent and should provide a fair indication of how they
are actually used.

3.5 CONDITIONAL EXPANSION

It is frequently desirable to write a fairly general piece of source code that produces different
object code, depending on the specific task to be performed and on the compiler’s model of the
expected runtime environment.

: 3.5.1 PLAN IF

The principal mechanism provided for this purpose is the plan-time conditional construct, which
behaves like a conventional Algol “IF”, except that it 1s resolved at compile time, with only the the
“expanded” part having any effect on the compiler’s world model. The syntax is:

PLAN IF <condition> THEN

} <then-part>
ELSE

<else-part>

where the “ELSE” component may be omitted if desired. The condition may be any boolean
; expression which can be completely evaluated at plan-time. For instance:

Page 62 CONDITIONAL EXPANSION 3.5.1

PLAN IF «(blue) ¥ bpark THEN
MOVE blue TO bpark;

which says that if the planning value of the blue arm is not equal to bpark (that 1s, if the last
motion statement for the blue arm was not to its parked position), then insert a statement to move
it there. Similarly, suppose we have a general routine for putting screws in holes. Further,
assume that we are using a plan-time variable “chamfer” to contain the width of chamfering
around the hole. Then the routine might have something like:

PLAN IF s(chamfer) > .25:INCHES THEN
BEGIN

(Code to perform a simple “straight in” insertion)
END

ELSE

BEGIN

(Code to perform some sort of a search to get the screw into the hole}
END;

3.5.2 TESTING FOR ASSERTIONS

The presence in the data base of a symbolic form can be tested by use of the asserted construct, as
in

PLAN IF ASSERTED(FORM(IN,TOOLRACK,SCREWDRIVER)) THEN
BEGIN

(Code to fetch the screwdriver out of the tool rack)
END;

In general,

ASSERTED(<form>)

returns “true” whenever the <form> is asserted in the planning model at the point that the test is
made. Thus,

. 3.5.2 CONDITIONAL EXPANSION Page 63

FORM f;

TIME t;

PLAN IF ASSERTED(+(f)) THEN
BEGIN

te 32SEC;

DENY «f);

END;

PLAN IF ASSERTED(«(f)) THEN
BEGIN

t«4+SEC;

END;

would expand into

FORM f;

TIME t;

te 34SEC; |
DENY r(f);

Furthermore, note that ASSERTED(<form>) acts like a boolean primary and can enter into
- boolean expressions in the usual way. For instance,

PLAN IF ASSERTED(FORM(GOES_IN,shaftl,holel))
A~-ASSERTED(FORM,INshaftl,holel)) THEN

BEGIN

PLAN IF ASSERTED(FORM(THREADED,shaft 1)) THEN
BEGIN

(code to insert a threaded screw)

ASSERT FORM(SCREWED,shaft 1);
END

ELSE

BEGIN

(code to insert a smooth pin)
-ASSERT FORM(SLIPPED_INshaft 1);
END;

ASSERT FORM(IN,shaftl,holel);

END;

Page 64 CONDITIONAL EXPANSION 3.5.3

3.5.3 THE ANYTHING CONSTRUCT

Frequently, one may want to test a whole class of asserted forms at once. For instance, suppose we
may want to know if the blue hand 1s available for some task or another. We can keep track of
what 1s in the hand by means of assertions like

ASSERT FORM(blue, HOLDS, widget),

However, it is frequently inconvenient, and sometimes impossible, to test all possibilities explicitly,
as in:

PLAN IF -ASSERTED(FORM(BLUE,HOLDS,widget))
, A~ASSERTED(FORM(BLUE,HOLDS,frob)) A... THEN

BEGIN

(whatever)

END;

The reserved word ANYTHING 1s provided as a wild card to avoid this difficulty. Thus, we
can write:

PLAN IF -ASSERTED(FORM(BLUE,HOLDS,ANYTHING)) THEN
BEGIN

{whatever

END;

One restriction of the current implementation 1s that one is not allowed to assert forms containing
wild card elements like ANYTHING or the BIND construct discussed in the next section. One

can only use them in constructs like ASSERTED, which don’t try to add anything to the data
base.

3.5.4 BINDING BOOLEANS

Frequently a simple wild card element like ANYTHING does not suffice. For example, the user
may want to execute different code, depending on what 1s supposed to be in the blue hand. This
situation 1s provided for by the use of

BIND(<ct variable>)

as one or more of the elements in a FORM pattern being tested by the ASSERTED construct.
Generally, BIND(var) acts like a “wild card” that matches any element in the correct position in a
form that has the same type as var. It has the additional side effect of setting the planning value
of var to be the value of the element it matched. For example,

| 354 CONDITIONAL EXPANSION Page 65

ATOM thing;
PLANNING FRAME where;

| ASSERT FORM(blue,HOLDS frob);
| ASSERT FORM(CORRECT_SPOT_FORfrob FRAME(ROT(Y,180),VECTOR(1,2,3)));

ASSERT FORM(CORRECT_SPOT_FOR,widget,
FRAME(ROT(Y,180),VECTOR(4,586)));

| PLAN IF ASSERTED(FORM(blue, HOLDS,BIND(thing))) THEN
BEGIN

(Here, #(thing) will get "FROB"}

IF ASSERTED(FORM(CORRECT_SPOT_FOR,«(thing),BIND(where))) THEN
BEGIN

MOVE blue TO where); y

{some more code)
END

ELSE

| BEGIN
(some sort of error message, perhaps)
END;

| END;

| Would expand into

MOVE blue TO FRAME(ROT(Y,n:RAD),VECTOR(1,2,3));

| (some more code)

This construct 1s especially useful for library routines, which can use it to retrieve properties of
objects and then take appropriate action.

| 3.5.5 PICK

One frequent use of assertions in. to specify a number of properties of some object or variable.
For instance,

ASSERT FORM(HEIGHT, widget, 100:CM);
ASSERT FORM(WEIGHT ,widget,200:GM);
ASSERT FORM(DEPROACH, widget FRAME(ROT(Y,n«RAD),X));

These properties can, of course, be retrieved by means of the ASSERTED construct, as in

Page 66 CONDITIONAL EXPANSION 35.5

PLAN IF ASSERTED(FORM(HEIGHTwidget, BIND(h))) THEN
BEGIN

MOVE YELLOW TO widget + s(h);

END

ELSE

BEGIN

(perhaps some sort of error message]
END

Unfortunately, this sort of thing can be rather inconvenient for fetching values, since it requires
explicit use of an auxiliary variable and a fairly long statement. In such cases the PICK construct
can be used instead, as in

MOVE yellow TO widget + PICK(FORM(HEIGHTwidget, BIND(x)))

In general, PICK has the form

PICK (<form pattern>)

where the <form pattern> contains "BIND(:)" as one of its terms. PICK causes the compiler to
retrieve a form that 1s in the planning model and which matches the template provided by the
<form pattern>. The value in the form from the data base corresponding to the "BIND(x)" term
‘in the template pattern 1s then returned as the value for PICK. Note that the argument template
can also contain additional instances of ANYTHING and BIND(<variable>). These are bound

in the usual way. For instance,

ASSERT FORM (gadget fits,onto,widget,at, FRAME(NILROT,X))

obj «« PICK(FORM(gadgetfits,onto,BIND(:),ANYTHING,BIND(locn)))

would set the planning value of obj to “widget” and that of loch to FRAME(NILROT,X).

3.5.6 PLAN FOREACH

Sometimes, there may be several assertions in the data base that could satisfy a given FORM
retrieval pattern. For instance,

ASSERT FORM(s1, SCREWS,INTO,hl),

ASSERT FOR M(s2, SCREWS,INTO,h2),

ASSERT FORM(s3,SCREWS,INTO,h3),

PLAN IF ASSERTED(FORM(BIND(s)SCREWS,INTO,BIND(h))) THEN
BEGIN

END

35.6 CONDITIONAL EXPANSION Page 67

In such cases, the compiler would arbitrarily pick one of the eligible patterns to use as its template
for performing any requested bindings. Suppose, however, that the user wants to perform some
action for each pattern that matches, rather than for only one. For instance, he may want to insert
all the screws into their corresponding holes. The PLAN FOREACH construct is intended to
allow this sort of thing.

PLAN FOREACH <form> DO

<statement>

This construct will cause <statement> to be compiled once for each instance of <pattern > that
finds a match in the data base.

For Instance, a library routine that fastens down a head to an engine block by means of bolts
which can be inserted in any order might include a sequence like:

ATOM bolt, hole_id, head _id;

PLAN FOR EACH FORM(BIND(bolt),FASTENS,s(head_id)) DO
BEGIN

PLAN IF ASSERTED(FORM(a(bolt) FITS,INTO,BIND(hole_id))) THEN
INSERT #(bolt) INTO #(hole_id)

ELSE

BEGIN

PLAN ERROR(bolt,"doesn’t fit into" hole_id);
END;

END;

If we then have assertions:

ASSERT FORM(b1,FASTENS,pumphead),
ASSERT FORM(b2 FASTENS,pumphead);
ASSERT FORM (b3,FASTENS,pumphead);
ASSERT FORM(ILFRITS,INTO,hl),
ASSERT FORM (b2,FITS,INTO,h2),

ASSERT FORM(b3,FITS,INTO,h3);

and call our library routine to put on pumphead, the above fragment would expand into

INSERT bl INTO hl;

INSERT b2 INTO h2;
INSERT b3 INTO h3;

Page 68 THE COMPILE-TIME CHECK STATEMENT 3.6

3.6 THE COMPILE-TIME CHECK STATEMENT

i Since library routines will be commonly used, it 1s necessary to have some way of checking that
necessary preconditions are met as the first steps of the library routine. The way this 1s done 1s
with the check statement. A simple example:

CHECK «(s1)=3 A #(s2)>5

The contents of the check may be any boolean expression, including checks on the current world
model. The check 1s only made at compile-time; if the check is not satisfied, the compiler will
generate an error message. The effect of this statement is exactly like that of

| "PLAN IF ~(s(s1)=3 A #(s2)>5 THEN
PLAN ERROR("Check statement failed”)- .

3.7 LIBRARY ROUTINES

: Many of the applications for which AL 1s intended characteristicly mvolve repeating a number of
| ‘very similar subtasks. For instance, an assembly program might have to change sockets on an

electric driver many times in order to drive down a number of different bolts. If written in
| “simple” AL, with each such subtask coded out in explicit statements like MOVE and

OPERATE, such programs would be very tedious to write and debug. On the other hand, the
necessity of planning motions frequently makes procedures (in the traditional sense) infeasible. To
overcome this difficulty, AL provides a facility for “routines”, which externally resemble macros,
in that they are “expanded” each time they are invoked, although they are are stored and
manipulated by the compiler in a somewhat more efficient manner. The AL system will include a
predefined library of routines for performing a number of commonly useful functions, although a
user can, of course, “roll his own” by using the ROUTINE construct, which has the form

ROUTINE «<id> (<parameter list>);
<body>

| where the <parameter list> syntax is the same as for procedure definitions, and the <body> may
be cither an expression or a statement. When the library routine 1s expanded, all mstances of the

| parameter names are substituted with the actual parameters supplied in the call. Thus, a typical
library routine declaration might look like:

3.7 LIBRARY ROUTINES Page 69

EE ROUTINE reach(SCALAR thickness;FRAME place);
| BEGIN

(causes the hand to move to the indicated spot, and keep opening €
closing its fingers until something is put in them}

SCALAR flag;
: MOVE YELLOW TO place;

| flage 1;
WHILE flag # 0 DO

BEGIN

OPERATE YFINGERS WITH OPENING = 5;
OPERATE YFINGERS WITH OPENING = thickness-. 1

ON YTOUCH DO

BEGIN

flag«0;
STOP;
END;

-. END;
END

|
Library routines without parameters are invoked simply by including their name in the source

program. For instance, suppose we have a library routine PARK-YELLOW which parks the

| yellow arm. Then
IF h>3 THEN

| PARK-YELLOW
might expand into something like

" IF h>3 THEN
MOVE YELLOW TO YPARK

There are several ways to specify parameters. Perhaps the simplest is to follow the syntax for
: procedure calls, in which case the arguments must correspond in order and type with those in the

statement which defined the routine. For example,

reach(0.5, FRAME(ROT(Z,90:DEG),VECTOR(1.2,3)))

This can become very inconvenient for routines which have a large number of parameters, since
the user may have trouble remembering the correct order, or may want to leave some unspecified.
These difficulties are avoided by using the form

reach(thickness = 0.5, place = FR AME(ROT(Z,90:DEG),VECTOR(1,2,3)))

It 1s possible to specify default values for parameters to library routines by including the construct

(DEFAULT <value>)

after the parameter name in the formal parameter list for the routine. For example,

Page 70 LIBRARY ROUTINES 3.7

ROUTINE reach(FRAME arm(DEFAULT YELLOW),place;

SCALAR thicknesst DEFAULT 0));
BEGIN

END

reach(BLUE(S 1); {4 thickness of 0 is assumed.)

reach(place=f2,thickness= 10); (YELLOW arm assumed.)

The construct

SPECIFIED(<parameter id>)

may be used in a compile-time conditlonal to test whether the named parameter has been assigned

a value. For example,

ROUTINE transmogrify(ATOM errdev;...);
BEGIN

(Note here that the atom errdev is merely being used as a name passing
mechanism.)

IF errcond THEN

BEGIN

PLAN IF SPECIFIED(errdev)

THEN OPERATE (errdev)
ELSE ABORT

END;

END;

If a parameter has no default value specified and is not bound by the call, then any expansion of

the routine that uses the parameter will result in an error; occurrences of an unbound parameter

in the unexpanded part of a planningconditional are legal.

Yet another syntax is acceptable for invocation of library routines; it is included for compatibility

with high level primitives (see Chapter 4). In this form, the parameter names act like key words

identifying various clauses in a “pseudo-english” statement, as in

REACH thickness 0.5 place FRAME(ROT(Z,90:DEG),YECTOR(1,2,3))

If a parameter to a routine occurs in the body in some construct where a variable must occur (eg.

the left hand side of an assignment statement), the compiler will do the “right” thing when the

corresponding actual parameter is a constant or expression: a warning will be printed, and the

compiler will invent a temporary variable to hold the value.

| 3.7.1 LIBRARY ROUTINES Page 71

371SAVING LIBRARY ROUTINES

Library routines may be saved on a file by use of the statement (and supervisor command)

SAVE <flag> <routine name list> ON <file specifier>

| where <flag> may be either NEW, OLD, or <empty>. For instance,

SAVE reach, transmogrify ON "FEE.FIE[FO,FUM]",
SAVE OLD foobat ON "DEFS.I[I1,HE]",

SAVE NEW grabl, grab2, grab3 ON “GRABS”;

IF <flag> 1s <empty> and one of the named routines already exists on the specified file, the old
| definition 1s overwritten. IF <flag> 1s NEW, then only routines which do not already exist on the

: specified file will be added. Similarly, if <flag> is OLD then only routines which are already on
| the file will be saved. If the <routine name list> is omitted, then ail existing routines will be saved

on the specified file. E.g.

| SAVE ON "DEFS.ALL",
SAVE NEW ON “DEFS.2”;

| Library routines may be retrieved from a file by the command

RETRIEVE <flag> <routine name list> FROM <file specifier>

| If <flag> 1s empty, then the specified routines will be retrieved from the specified file. If,
| however, <flag> 1s NEW, then only routines which are not already defined will be read in; if

<flag> 1s OLD, then only routines which are already defined will be retrieved (they will be
redefined), If the <routine name list> is <empty>, then all routines on the file will be read (subject

: to any restrictions imposed by <flag>). Examples:

| RETRIEVE FROM "DEFS.RCB
| RETRIEVE Aeneas, Dido FROM “CAVE”;

RETRIEVE NEW FROM "AL.LIB[ALHE]J"

| 3.7.2 SAVING AND RESTORING PLANNING VALUES

| The statement SAVE WORLD ON W 1 will cause the “world” at that point in the planning to be
| written out into a file called W LWLD. The statement RETRIEVE WORLD FROM W 1 will

read in this file and set up the world as it was when saved. The world includes all planning
values and all assertions. It does not include defined library routines. Saving the world 1s
particularly useful for recovering when the arm runs into trouble; it makes it unnecessary to begin
the planning from scratch.

It 1s also possible to improve the planning values of frames after a period of execution; this 1s

Page 72 LIBRARY ROUTINES 31.2

done by the statement RESTORE WORLD FROM RUNTIME. The effect of this is that all the
variables which the runtime knows about are read, and their values become the new planning
values for those variables.

t

Page 73

CHAPTER 4

VERY HIGH LEVEL LANGUAGE CAPABILITIES

4.1 INTRODUCTION

_ To date, manipulator control languages have been very explicit, with the user giving detailed
specifications of what motions are to be made, what sensors are to be tested, etc. To some extent
this is also true of AL. One can conceive of programming complicated assemblies using only

| MOVE and OPERATE statements, condition monitors, and the like. In practice, however, such
v an approach has many disadvantages for users, who frequently don’t care about all the details

needed to produce a program at the manipulator level. For instance, an assembly engineer who
wants to put an engine together might typically want to write something like:

| FIT enginehead ONTO engineblock
. WITH ALIGNMENT stud_x IN headhole_x,

stud-y IN headhole-y;
INSERT bolt] IN headholel

: USING TOOL driver
N WITH TORQUE 10;

INSERT bolt2 IN headhole2

USING TOOL driver

WITH TORQUE 10;

INSERT dramplug IN sidehole;

| and allow the system to fill in the details, rather than coding up all the motions herself.

This chapter gives an overview of those parts of AL that allow the user to specify tasks at
| somewhat more convenient levels -of abstraction than provided by the manipulation control
| statements alone. Here, we are concerned with a “semi-automatic” programming system that can
= make a number of the specific decisions required to turn an “high level” task description to a

running program and which can ask for (and accept) help for those details that it cannot
determine for itself.

[-

The-range of decisions that the system may have to make is quite broad, ranging from very local
matters, such as the number of trajectories which must be planned to ensure correct performance

4 of all cases of some motion request, to rather global decisions, such as how an object should be
’ grasped, how an object orientation is to be determined, or what should be the relative order for

executing several related subtasks.

\ Some of these decisions are essentially domain-independent. For example, the system decides how
many different arm trajectories it must plan for a given MOVE statement by examining its model

Page 74 INTRODUCTION 4.1

of the locus of the destination frame (see Section 4.6), without much regard for the “meaning”
of the frame variable. Other decisions may require a significant degree of specialized knowledge
about the task domain. For instance, the INSERT primitive in our example would need to know
how a nutdriver 1s used to grasp a bolt, what effects (if any) the shape of the bolt tip or hole
chamfer has on choice of search method, what constraints are imposed on workpiece positioning,
and much more. One very important constraint on the output program 1s that it be consistent, in
the sense that code generated to accomplish one subtask should not be inconsistent with (and,
indeed, should facilitate) the accomplishment of other subtasks. This necessity, mn turn, frequently
generates further requirements for specialized knowledge about the requirements and effects of
the primitives being provided.

We have chosen small scale industrial automation as a good domain for investigating the issues
involved in incorporating such specialized knowledge into AL, and this discussion 1s oriented
accordingly. However, many of the mechanisms underlying the various language features
discussed here are fairly general; an expert system for some other manipulatory domain could be
organized along the same lines and, indeed, could use at least some of the same primitives. The
ease of such adaptation would depend, of course, on the closeness of the domains and on the
particular primitives involved.

4.2 MACRO OPERATIONS AS A ‘HIGH LEVEL LANGUAGE’

One obvious partial solution 1s to combine commonly occuring code sequences nto “macro
operations”, and then allow the user to specify tasks in terms of those operations. AL includes
sophisticated macro, defined routine, and conditional compilation facilities (see Chapter 3) for this
purpose. Such library routines have the advantage of being relatively easy for a person familiar
with AL to write, and are generally at least partially self-documenting. Typically, a user wishing
to know what a given library routine does can find out merely by looking at a listing of the
routine, which will (of course) be written mn a clear, well structured style with many comments
describing the more obscure passages. Generally, such libraries are most useful where there is
essentially only one way to do a given subtask, all actions required to do each subtask can be
performed at one place in the output program, and different subtasks are essentially independent.
When these conditions are not fully met, more powerful techniques are needed.

4.3 MORE POWERFUL PRIMITIVES -- AN OVERVIEW

Many domains are sufficiently complicated that macro expansion, even when used with
conditional compilation, is too limited. In assembly, there may be a number of different ways to
do some particular task; which way 1s “right” depends very largely on what other subtasks must be
done. Similarly, it is frequently possible to perform part of one subtask (or, at least, to gather
useful formation) in the course of doing another one. Such considerations are in general very

- difficult to express within the paradigm of macro expansion.

Co 4.3 HIGH-LEVEL PRIMITIVES Page 75

| In our introductory example, for instance, the system must decide how the engine block is to be
oriented to facilitate putting on the head. Furthermore, the block alignment must be sufficiently

j well determined so that the the aligning studs can find their way into the holes. One way to do
: this might be to push the engine block up against a simple aligning jig consisting of a low wall.

Other methods might include vision or simply grasping key features of the block and reading the
hand coordinates. Once the head is on, the system must insert the bolts and drainplug. The
system would like to avoid moving the engine block around more than it has to, since each move
requires time and may introduce uncertainties. This means that it should choose a block position
that allows the arm to reach the bolt and drain holes. If an aligning jig is in use, care should be
taken to keep the side hole free 1f possible, and so forth. Furthermore, an alignment technique
that visually locates the engine block head holes 1s apt to yield more useful information for the
insertion tasks than would some cruder, but less expensive, test which may work just as well for
the purpose of mating the head.

A full discussion of the mechanisms used by the system to transform a high level program into

\ one that can actually run 1s beyond the scope of this paper. Briefly, AL works by progressive
. refinement of the user’s program specifications, and uses process instantiation and communication

| mechanisms to keep track of the various subtasks and to ensure that all decisions are mutually
| compatible. Knowledge about assembly primitives 1s encoded into a number of procedures inside

\ the expander. With each program statement, the system associates a process instantiation of the
appropriate procedure (of course, the processes for low-level AL statements are fairly trivial).
These processes are then arranged into a prerequisite graph based initially on the user’s

| specification of what must be done before what (see subsection 2.5.3). A number of other-“bureaucrat” processes are created to work out compromises, invent new service tasks, decide
| relative ordering, watch out for obvious inefficiencies (such as putting down a tool and then

| picking it right back up again), and soon. As the plan becomes more detailed, and as decisions
- are made about the order in which subtasks are to be performed, successive copies of the program

graph are generated. (Additional information 1s stored both in the data base and in the internal
state of the various subtask processes.) The final phase 1s to run down the (linearized) graph,

§ asking each subtask process to generate the appropriate output code.

4.4 CALLING HIGH LEVEL PRIMITIVES

The syntax for high level primitives is keyword-oriented and resembles that for MOVE and
OPERATE statements in the sense that there is a main clause naming the operation, with
possibly a number of subordinate clauses giving further specifications as to what 1s to be done.
For example,

INSERT screw 1 INTO hotel (main clause)
USING TOOL nutdriver {subordinate clause)
WITH TORQUE = 10 (subordinate clause)

For convenience and readability, a number of different forms are acceptable. For instance, the

Page 76 CALLING HIGH LEVEL PRIMITIVES da

words “WITH” and “USING” are interchangeable, and punctuation (like the "=" above) is
frequently optional. Some of the subordinate clauses may themselves contain several elements, as
in

FIT carburetor ONTO engine-assembly-1
WITH ALIGNMENT

carburetor-hole I OVER stud 1,
carburetor-hole2 OVER stud?

In such cases, a comma 1s used to delimit successive elements.

Initially, only a fairly small set of high level primitives 1s being implemented, although some (like
INSERT) may be quite flexible. Even a few primitives, however, turn out to be sufficient for
many Interesting tasks, and provide quite a rich environment for investigation of how the various
parts of the system interact.

Probably the most elaborate primitive is INSERT, which is generally responsible for insertion of
shafts and shaft-like objects (including screws) to holes. The main clause 1s

INSERT <shaft-specification> INTO <hole-specification>

where the <shaft-specification> should be either an object of type shaft or one end of an object of

type shaft. In the former case, the system will assume that the “bottom end” of the specified shaft
should be inserted into the named hole. (See Section 4.7) Similarly, the <hole specification>
may be either the name of a hole or of a bore, in which case the top end will be assumed. AL
can learn a good part of exactly what it is being asked to do by looking at the object models. For
instance, if the shaft and bore are both threaded and have the same diameter, then the system will
attempt to screw in the shaft properly. Similarly, by looking at the chamfer of the hole, the taper
of the shaft, and the region around the hole, the system can decide how much determination is
required, what sort of search might be applicable, etc. Further specifications may be included in
subordinate clauses, such as the TOOL and TORQUE clauses in our first example, or as in the
TWIST clause of

INSERT aligning-pin INTO guide-hole
WITH TWIST = 3

which says that the pin 1s to be given three turns counter-clockwise as it 1s pushed into the guide
hole. Additional “advice” may also be provided in the data base. For instance, if there is a
special routine for grasping “type 1" screws with the nutdriver, there might be an assertion of the
form:

FOR M(GRASPING_M ETHOD, screwtype 1, nutdriver, routineid)

(This example rather oversimplifies the actual mechanism used to describe this sort of thing; a
fuller description, however, is beyond the scope of this paper.)

Another fairly elaborate primitive is
FIT <object I> ONTO <object2>

. 4.4 CALLING HIGH LEVEL PRIMITIVES Page 77

oC where <object I> 1s usually a subpart of assembly <object2>. (See Section 4.7 for more details
about assemblies.) If this 1s not the case, then the attachment location must be specified by a clause
of the form

AT <transform>

The most common modifying clause for this primitive 1s an alignment specification, such as

WITH ALIGNMENT

<hole> OVER <shaft>,

} <obj 1 feature> MEETS <obj 2 feature>,
<shaft> INTO <hole>

L Other primitives include:

SLIP <collar> OVER <shaft> (includes nut over threaded shaft)
.

PLACE <object> ON <surface>

| IN POSITION «stable position> {optional)
~ GRASP <object> AT <trans or frame>

[TIGHTEN <bolt or nut>WITH TORQUE <number> (this clause is required)

EXTRACT <shaft> (the inverse of INSERT]

4.5 WORLD MODELLING OVERVIEW

The planning information required by the very high level primitives is essentially a superset of
that required for the basic manipulation control statements; the same underlying mechanisms are
used, although sometimes in slightly different ways. This includes information about variable
semantics, object shape and structure, error estimates, and the purposes of programs, in addition
to the simple planning values and attachment structures used for low-level trajectory planning.

The expander frequently needs to consider the effects of some hypothetical action on a number of
program steps. Similarly, it 1s often necessary to consider the effects of modifying some earlier
decision or to find a way to perform some preparatory action at an early point in a program. AL
handles provides for this sort of consideration by the use of a simple “multi-world” data base.
Essentially, all fluent information (such as planning values of variables, assertions, etc) is
associated with a set of “world” states for which it 1s true. With every program statement, AL
then associates an “input world”, which contains the planning model of the environment just

Page 78 WORLD MODELLINC OVERVIEW 4.5

| before the statement gets executed, and an “output world” which will reflect the expected effects of
the statement on the runtime world. Normally, these two “worlds” can be the same when only
low-level AL statements are volved, since such statements don’t usually need to generate forward
or backward references to other planning states.

Although multiple worlds are primarily intended for use by the expander, a user can make
explicit references to different worlds by using

i IN <worldname>

in ASSERT and DENY statements and in the various PLAN constructs. The plan-time atoms
IWORLD and OWORLD always contain AL’s internal names for the current input and output
worlds, respectively. For example,

ATOM wi;

S «« |;

| wee (IWORLD);

PLAN IF (s(s)= 1) IN s(w) THEN
§ 2:

Comment, now #(s)=2

-Note: IN acts syntactically like a very high priority boolean binary operator, so that

+(a)= 1 IN s(wl) v #(b)=1 A #(a)=2 IN s(w2)
1s equivalent to

(*(a)= 1 IN s(w1)) v ((s(b)=1IN «(IWORLD) A («(a)=2 IN «(w2))

4,6 INFORMATION ABOUT VARIABLES

The system must deal with a number of different sorts of information about variables and
variable values. These include:

(1) Metaphysical value. The metaphysical value of a variable 1s that quantity
which the variable 1s supposed to represent. Traditionally, knowledge about
the meaning of variables has been more or less the exclusive province of the
programmer. For example, low level AL constructs don’t usually know or care
what some user-declared frame variable really represents, although the system
does understand a few predeclared variables (e.g., YELLOW, which gives the
location of the yellow arm). On the other hand, a statement like “fit the
pumphead onto the pump assembly” requires AL to “know” what variables
represent object locations, mateing position, grasping positions, and so forth.

CL 4.6 INFORMATION ABOUT VARIABLES Page 79

i (2) Runtime Value. This 1s the value that a given variable will have at run
- time. The compiler has a name for it, and must generate code that references

the corresponding memory location(s).

| (3) Locus information. Crudely put, the locus of a variable 1s the set of
possible runtime values for that variable. The term is also used here to mean

SE the compiler’s estimate of the locus. This estimate may merely be the planning
value, or it may include a region bounded by constraints. These constraints
may be expressed explicitly, as mathematical relations involving degrees of

. freedom, or implicitly, as semantic information like “the object 1s up against
the wall.”

| (4) Determination information. The determination of a variable is essentially a
- compile-time estimate of how accurately a runtime value will reflect the

: corresponding metaphysical value. As with the locus, this information may be
expressed in a number of ways.

For example, suppose we we want to compile code to pick up an object which we know will be
: sitting upright on the station. In such a case, the object will be free to rotate about the station z-

axis and will be free to move in the station x-axis and y-axis directions. If we assume that the
station 1s 15 inches square, this might be translated by the system into something like:

| ASSERT FORM (LOCUS,obj,

| EXPRESSION(FRAME(ROT(Ztheta),V ECTOR(xdf,ydf,0))));

ASSERT xdf 2 0:INCHES; ASSERT xdf<15:INCHES;

I - ASSERT vydf = 0:INCHES; ASSERT ydf<15: INCHES;
ASSERT theta 2 -n:RAD; ASSERT theta < n:RAD,;

§ where “obj” is a FRAME variable giving the location of the object, and "xdf","ydf", and “theta”

| represent the degrees of freedom.

| Of course, there may be additional constraints on where the object is. For instance, suppose that
the object 1s round and is known to have been shoved up against a low wall running diagonally
across the station. This might give us a constraint like:

f

ASSERT xdf+ydf= 15:INCHES;

| so that the object locus 1s now given by

| FRAME(ROT(Z theta),V ECTOR(xdf,ydf.0)) (Eq. 4.1]
: 0<xdfs 10

- Orydfr 10

| o xdf+ydf= 15i -n:R AD<thetasn:RAD

If the object had a flat side known to be shoved up against the wall, then we could also pin down
theta to some fixed value, such as

Page 80 INFORMATION ABOUT VARIABLES 4.6

theta ««0.75xnxRAD

Suppose that we now call a vision routine to locate the object to within one centimeter and three

degrees. The vision routine will store some value, say

FRAME(ROT(Z,90),VECTOR(10,5,0))

into the value cell for obj. We clearly cannot know in advance that this will be that value

returned, so the locus estimate given by Equation 4.1 will remain unchanged. On the other hand,

the determination of obj has been improved to the point where the object can be picked up. In

other words, if we execute the statement

MOVE YELLOW TO obj:objgrasp

then we know that the yellow arm will wind up sufficiently close to the nominal grasping point for

the object for the picking-up operation to succeed. In planning a trajectory to do this, the system.
will use its nominal value for obj, which (in the absence of any better advice) will be chosen at

the center of the locus,

FRAME(NILROT,VECTOR(7.5,7.5,0))

and then modified at runtime in the usual way.

This trajectory modification may cause problems if the runtime value of obj gets too far from the

nominal value. To avoid this, the expander will ask the trajectory calculator to evaluate the

suitability of its trajectory for extreme points of the locus of obj. If the modification seems to be

too great, then the expander will ask for several trajectories to be planned and will generate

conditional tests to select the correct one. We are currently investigating ways to facilitate this

communication between the expander and the trajectory calculator. One very simple, though

painstaking, method is to simulate moves to a number of spots. A better way would be for the

trajectory calculator to generate constraints telling what regions a trajectory is good for, but it is a

bit too early yet to tell how feasible this will be. Similarly, we are investigating ways for using

runtime errors to determine when splitting of a region may be needed.

4.7 OBJECT DESCRIPTION

This section is intended to provide an overview of the sorts of information about objects that AL

uses and of how this information is currently specified. It is not intended to be a complete list of

all the assertions currently used or as a user's manual for building object descriptions.

Our primary interest so far has been to investigate ways to use descriptive information about

objects, rather than to provide an extremely elegant input language for the descriptions. This has

led us to specify explicitly a number of things which are, in principle, computable from a more

general shape description. We expect that the process of describing an object to AL, which is

!

|

4.7 OBJECT DESCRIPTION Page 81
Ie

“ currently almost completely manual, will eventually become very largely automated, with most of

the information being either directly available or computed from the output of computer-aided-
design programs.

) Currently, objects are described by assertions about their “interesting” properties. These assertions
follow a number of conventions, so that the various high level primitives can use the information,

although a user can, of course manipulate it explicitly. Shape is treated simply as another object

Te attribute, and a several different shape descriptions may be present for a given object.

4.7.1 ONE -PIECE OBJECTS

. Objects are represented as tree-like structures; typically, the “root” node contains information

about the object as a whole, with “leaf” nodes telling about interesting features. By convention, we

use a frame variable for the object name. (This variable is then assumed to give the object

9 local ion).

For example,

FRAME valvebody,borel,bore2,bore3;
“ PLANNING TRANS upright,upside_down;

PLANE topsurface;

- upright «« NILTRANS;

upside-down ««TRANS(ROT(Y,n:RAD),VYECTOR(0,0,1.8));

ASSERT FORM(TYPE,valvebody,OBJECT);
ASSERT FORM(GEOMED,valvebody,"valveb3d");

ASSERT FORM(SUBPART,valvebody,borel);
- ASSERT FORM(SUBPART,valvebody,bore2);

ASSERT FORM(SUBPART,valvebody,bore3);
ASSERT FORM(SURFACE,valvebody,topsurface);

ASSERT FORM(STABLE_POSITION,valvebody,«(upright));
ASSER-T FORM(STABLE_POSITION,valvebody,s(upside_down));

ATTACH borel TO valvebody AT TRANS(NILROT,VECTOR(-1,0,2)) RIGIDLY;
~ ATTACH bore2 TO valvebody AT TRANS(NILROT,VECTOR(1,0,2)) RIGIDLY;

ATTACH bore3 TO valvebody AT TRANS(NILROT,VECTOR(1,0,3)) RIGIDLY;

“ declares that “valvebody” is an object whose GEOMED description is given by file "valve.b3d".
There are three interesting “subparts”, called "borel®, "bore", and "bored" and located at
FRAME(NILROT,VECTOR(-1,0,2)), FRAME(NILROT,VECTOR(1,0,2)), and

_ FRAME(NILROT,VECTORC(1,0,3)), respectively. Also, there is a planar surface called
“topsurface” located at PLANE(1.84Z,Z) in body coordinates. The valvebody can sit on the station

in two “stable positions”, upright and upside-down. Then, the assertion

Page 82 OBJECT DESCRIPTION 4.7.1

ASSERT FORM(valvebody,ON_SURFACEstation,«{upside_down))

tells the system that the location of the valve body will be given by an expression of the form:

TRANS(ROT(Ztheta), Y ECTOR(a,b,0)):e(upside_down):station

For degrees of freedom theta, a, and b. This reduces to

FRAME(ROT(Z theta')VECTOR(a'b’,1.8));

where theta’,a’ & b’ are another set of free scalar variables.

The subparts, “bore 1","bore2", and "bore3" are further described by assertions of the form:

ASSERTFORM(TYPE,borel,BORE)

ASSERT FORM(DIAMETERborel,0.9);
ASSERT FORM(THREAD,borel,32),

ASSERT FORM(LENGTH,borel,0.30);

ASSERT FORM(TOP_END,borel,holel),
ASSERT FORM(BOTTOM_END,borel,OPEN);

ASSERT FORM(TYPE,holelHOLE),

ASSERT FORM(LIES_IN,holel topsurface),
ASSERT FORM(CHAMFER_DEPTH,holel,0),
ASSERT FORM(CHAMFER_WIDTH,holel,0);

ASSERT FORM(LIP_SIZE,holel,(3/ 16);

(et cetera]

Here the system recognizes the word “BORE” as saying that borel is a negative cylinder (such as

might result from a drilling operation). The attributes DIAMETER, THREAD, and LENGTH

are obvious. TOP_END and BOTTOM-END, however, may require a bit more explanation.

The “top end” of a bore is always a hole -- ie, an intersection between the bore and the object

surface. If the bore completely pierces the object, then the bottom end will be also be a hole.

Otherwise, it may be “OPEN” (which means that it opens into some uninteresting cavity inside

the object, “CLOSED” (which means that it comes to an abrupt, but otherwise uninteresting, end),

or a named surface (which usually only happens for relatively large holes), See Figure 4.1.

Frequently, a user wishes to declare a number of instances of a single prototype. This may be

done by making assertions of the form:

A s s ER T FORM(TYPE,<object>,<prototype>) .

For instance,

ASSERT FORM(TYPE;sl screwtypel),
ASSERT FORM(TYPE,s2,screwtypel);

~ would declare sl and $2 to be instances of screwtypel, where screwtypel might be specified by

4.7.1 OBJECT DESCRIPTION Page 83

~ ASSERT FORM(TYPEscrewtypel SHAFT),
ASSERT FORM(DIAMETER screwtypel,0.62);
ASSERT FORM(LENGTH screwtypel,2.44);

. ASSERT FORM(THREAD,screwtypel,28);
ASSERT FORM(TOP_END,screwtypel,headtypel);
ASSERT FORM(BOTTOM_END screwtypeltiptypel);

ASSERT FORM(TYPE, headtypel,CYL_HEAD);
ASSERT FORM(SLOT headtypel HEX 0.53);

- ASSERT FORM(TYPEtiptypel FLAT _END);

| Note that shafts also are considered to be directed and to have two ends. By convention, all
- screws, bolts, or similar objects are assumed to have- their heads at the "tap" end. See Figure 4.2.

Page 84 OBJECT DESCRIPTION 4.7.1

S CHAMFER bWIDTH

TOP END (HOLE)

Y X ZN
CHAMFER DEPTH

hd

LENGTH BORE

| OBJECT 4 OBJECT
BOTTOM END (HOLE)

A

Figure 4.1

Bores and Holes

:
“

“ 4.7. | OBJECT DESCRIPTION Page 85

.

TOP-END X TOP-END

BOTTOM_END BOTTOM_END

4

Figure 4.2

\

Page 86 OBJECT DESCRIPTION 4.7.1

| 4.7.2 ASSEMBLIES

An “assembly” is an object whose various subparts are removable.

For instance,

| ASSERT FORM(TYPE,waterpump, ASSEMBLY);
ASSERT FORM(SUBPART, waterpump,gasket);

| ASSERT FORM(SUBPART waterpump,head);
ASSERT FOR M(SUBPART,waterpump,pumpbase);

| ASSERT FORM(gasket,FITS,ONTO,waterpump,
AT,TRANS(NILROT,VECTOR(0,0,3)));

Such objects provide a convenient framework for assembly tasks. Typically, one of the subparts is

chosen as a “base part”, which is used as an anchor to which the remaining parts are added.

In addition to the usual sorts of object attributes and the locations of the various subparts,

assemblies usually contain a number of "semantic" assertions about how things go together. Some
: of this information is inherent in the design. For instance,

ASSERT FORM(DESIGNED_TORQUE,screw1,40)

Other ‘information comes from the geometry of the parts, and (as indicated earlier) could

theoretically be computed from the shape description but is of enough interest to be worth

representing directly, especially in cases where the computation required is non-trivial. For
example,

ASSERT FORM(MATED,pumpbase.top_surf,gasket.bottom_surf)
ASSERT FORM(ALIGNED,head.borel,gasket.borel,pumpbase.borel)

| ASSERT FORM(RUNS_THRUsl gasket.borel;
| ASSERT FORM(RUNS_THRUsl, head.borel);

ASSERT FORM(SCREWED_INTO,s! pumpbase.borel);
|

:

|

| 4.8 EXAMPLE: WATERPUMP ASSEMBLY PROGRAM
This short example is intended to give some feel for what a very high level program for a simple
task looks like.

The task here is to mate the pump head and gasket with the pump base using two aligning pins,

n

-

3 4.8 WATERPUMP ASSEMBLY Page 87
\.

C then to secure the head with six machine screws. This task requires only a few basic operations,
the principle ones being FIT . . . ONTO and INSERT, and is very similar to one actually

performed by WAVE at Stanford. The WAVE program for this task consists of about 450 lines

. of “machine language”-like code, and was written over a period of several weeks by Bob Bolles
and Lou Paul. (Most of this time was spent on improving WAVE and developing techniques;

more recent tasks of similar complexity have taken on the order of three to eight days) The same

program, rewritten in low-level AL, would be somewhat shorter, although it would still require a

} fair amount of detailed effort on the part of the programmer.

pump: BEGIN

REQUIRE "PUMP.075" SOURCE-FILE;

_ (This file would contain many assertions describing the pump assembly and all its
subparts. Eventually, such descriptions will most likely be produced as part of the

; output of design automation programs. See the section on object descriptions for a
sampling of the sorts of things one might see here.}

-

: REQUIRE “STATN.04” SOURCEJILE;
-

(Reads in description of the work station. This would include location of tool racks,
standard “jigs" that may be available, etc.)

ASSERT FORM(pumpbase,ON_SURFACE conveyor_belts(upright));

(This assertion tells the strategist the initial location & “stable position” (ie “upright”) of
- the pumpbase. The value of “upright” is assumed to be set up in "PUMP.075".

The dynamic frame “conveyor-belt” is assumed to have been defined in “STA TN .04".

| A ctually, such moving devices won't be handled by early versions of AL. A n alternative
— would be to arrange the pumpbases in an array to one side of the work station (perhaps

using an “egg carton” arrangement to make it easier to pick one out).)

. ASSERT FORM(pumphead, ON_SURFACEside_table,s{onside));

: {A number of other assertions ‘might go here.)

\.

f

I

Page 88 WATERPUMP ASSEMBLY 4.8

(Here, we will use TASK BE GINs and allow the system to decide on the relative order
of the various subtasks.}

aligning: TASK BEGIN

INSERT pin 1 INTO pumpbase.hole 1;

INSERT pin 1 INTO pumpbase.hole2

END aligning;

(Note Acre that we are allowing the system ro decide how it will locate the
pumpbase and whether it will leave it on tie conveyor belt throughout the
assembly or place it in some temporary work area. Of course, we could have
made these decisions explicitly. For instance,

PLACE pumpbase ON station
IN POSITION upright

WITH ALIGNMENT left_side AGAINST walll,

back-end AGAINST wall;

could have been the first statement of the program.
"walll"& "wall2" are low wails described in “"STATN.O4" and form a corner
which could be used as a simple jig. “left_side” & "back. end” here would be
defined in "PUMP.075" as components in the "footprint® of the pumpbase. Sce
the section on object description for further details.)

FIT gasket ONTO pumpbase,assembly

WITH ALIGNMENT gasket.holel OVER pinl,
gasket.hole2 OVER pin2;

{The system uses its object model for the pumpbase assembly to tell it how the
gasket fits onto the pumpbase.}

FIT pumphead ONTO pumpbase,assembly
WITH ALIGNMENT head.holel OVER pinl,

head.hole2 OVER pin;

boltdown: TASK BEGIN

s3op: INSERT $3 INTO head.hole3
WITH TOOL driverl,

WITH TORQUE hand-tight;

END;

s4op: INSERT 84 | NTO head.hole4
WITH TOOL driverl,

WITH TORQUE hand-tight;

sbop: INSERT s5 | NT O head.holeb
WITH TOOL driverl,

WITH TORQUE hand-tight;

: Page 90 WATERPUMP ASSEMBLY 4.8

PLACE pump-assembly ON conveyor-belt IN POSITION upright;

{This will cause the system to pick an orientation for the completed pump assembly &

put it on the conveyor. The system can, of course, “remember” the position it picks. If
; there were some further task to be done on the pump, the system will know where to

END pump;

|

|

| Wi

ue Sls | i oY7 Al4 fark KL

(J,

Pump Asoembly. Station

Page 92

| CHAPTER 5

RUNTIME OVERVIEW

| The runtime is a set of programs residing in the PDP-11. We will discuss control structures and

bE data structures.

| 5.1 CONTROL STRUCTURES

| There are several types of processes any number of which can be active at any time:

| 1) Interpreters
| 2) Joint servos

3) Condition monitors

An interpreter is a process which is executing arithmetic or other stack-oriented instructions, not
one of the moves. Most straightforward AL code is executed by interpreters. During execution of

: simultaneous blocks, or while the conclusion of a condition monitor is running, there can be more

than one interpreter.

Each active interpreter has a stack on which it places operands, a program counter which points
] | to its particular block of code, and a list of those condition monitors for which it is responsible.

Each interpreter also has a reserved cell in which it stores information concerning its current

location 1n the source code; this is useful for debugging. The code which it interprets includes

instructions for stack manipulation, arithmetic operations, starting up subsidiary interpreters, flow

] of program control, and preparation for motions. Assoon as a move is encountered, the active
interpreter starts up the required joint servos and condition monitors and waits for the

| termination of the move before continuing.

| A joint servo 1s a process whose task is to servo one joint of a moving device according to the
planned trajectory for that joint. When finished, the servo stops the joint and disappears, If the
motion should be stopped by some other process, the servo takes care of actually stopping the

joint before it disappears. During its life, the servo is in charge of applying to one motor the

correct current, which will change over time. The correct signal is calculated based on the

planned location of the joint, its observed location and velocity, and its recent positional error,
After emitting the proper drive, the servo precalculates as much as it can for some future time,

| when 1t will again modify the drive, and then waits for that future time to arrive.

| A condition monitor is a process which continually checks for some condition. If that condition
should appear, then those actions specified by the compiler as critical are done immediately (in a

| non-interruptible fashion); for the rest, the monitor starts up an interpreter. The condition

monitor can be in two states: enabled and disabled. The checking is only ‘done while the monitor

1s enabled. A monitor disappears only when the system kills it. An enabled condition monitor

| can be of two types: hardware or software. The hardware type is a true interrupt handler that can
| Lo

J

5.1 CONTROL STRUCTURES Page 93

react tO some hardware condition. An example of this is a monitor to detect something hitting the

touch pads on the fingers. The software type is a set of calculations which are to be repeated

frequently, the result of which is a decision whether or not to trigger the conclusion of the

monitor.

These various types of processes are scheduled by a combination of priority structure and time-

slot request disciplines. Joint servos are critical in the sense that the calculations they make are

highly time-dependent; they must be guaranteed not to be interrupted. Therefore, they operate at

a very high software priority. Condition monitors are less critical, and they operate at a lower
priority. Interpreters run at the lowest priority. Both joint servos and condition monitors are
tasks which need to be awakened periodically. Therefore, time 1s divided into slots one

millisecond wide. One servo and any number of condition monitors can reserve a time slot; when

that time arrives, the servo 1s given guaranteed control, and when it terminates, all requesting
condition monitors are allowed to use the time remaining in the slot. After all these critical
requests are satisfied, any running interpreter uses the time left over until the next slot begins.
Appendix 5 describes the instructions available to the interpreter, the tables emitted for motions,

the nature of joint servos, and the priority interrupt and scheduling structure in greater detail.

52 DATA STRUCTURES

5.21 VALUE CELLS

Values are stored in cells; each datatype has its own format for the value cell. Floating point
numbers are used throughout. Dimensions (like time, distance) are not kept at runtime; they are

purely for use in the compiler to make consistency checks.

Scalars are stored as a single, floating point word.

Vectors are stored in four consecutive words. The fourth entry is usually 1; the arithmetic

routines are optimized for such normalized vectors. To normalize a vector, divide each entry by
the fourth one.

Planes are also stored in four words. The first three represent an outward-facing normal, and the
last is the negative distance to the (table) origin.

Frames are stored as 4x4 arrays, by columns. In addition, there are 6 words set aside for the joint
angles associated with the frame, that is, the angles necessary for one of the arms to reach that

point in space. There are a few bits to tell which arm is meant and whether the joint angles are

valid, that is, whether they have been calculated since last the frame's value was changed. Joint

angles are calculated only if needed. This happens if the frame is being used as a point in a

trajectory.

| Page 94 DATA STRUCTURES 5.2.1

Transes are stored in two 4x4 arrays: One holds the trans itself, and the other its inverse.

5.2.2 GRAPH STRUCTURES

Variables are allocated “node cells”. These cells have a pointer to the value cell, as well as other

fields used in graph structure manipulation.

NODE CELL

invmark -- =0 if value is valid, otherwise valid (note: the evalnode algorithm uses a
“time” to detect cycles. Therefore, this field needs to be (at least) 16 bits.

value -- pointer to a value cell.
calculator -- points to a list of calculator cells
changer -- points to a block of interpretable code. There are a few special-purpose

changers which do not point to any code, but are used as shorthands.
dependents -- points to a list of dependents
type -- encoding (in several bits) of datatype.

CALCULATOR CELL

link -- link to next on the chain (there can be more than one calculator for a node).
needed -- points to list of variables needed for this calculator. The dependents cel

format 1s used for the needed list.

code -- points to ablock of mterpretable code.

DEPENDENTS CELL

link -- link to next on the chain (there can be more than one dependent of a node).

dep -- points to the node cell of one dependent.

The algorithms used to extract values from and insert values into the graph structure are
described mm Appendix IIL

ig VISUAL FEEDBACK Page 95

~ CHAPTER 6

EXTENSIONS TO AL

6.1 INCORPORATING VISUAL FEEDBACK

6.1.1 NECESSARY CAPABILITIES

N This is a list of capabilities which would have to-be implemented in order to do dynamic visual
feedback within AL.

\ PICTURE BUFFERS AND WINDOWS

We need a new datatype, PICTURE, to contain a digitized picture, information on the camera

w used (particularly its location and orientation), what lens was used, what filters, and perhaps other

information.

_ _ Subpictures, that is windows, should be extractible from the picture itself, so that a visual
processing routine can look at whatever part it needs.

| CAMERA CONTROL

| There should be a syntax for specifying how to move a camera to a desired location, For
example,

AIM CAMERA-1 AT VECTOR(30,40,10)

) USING LENS=2, FILTER-CLEAR, IRIS=238;

| There should bea syntax for specifying that a picture be taken and stored in a certain picture
buffer. Since cameras have their own built-in synchronization, detailed timing control may be

- . _»

complicated. Read the explicit control of timing section below for some more ideas on this
subject.

~ OBJECT MODELS

| There should be sufficiently powerful data structures (such as arrays and list structures) available

L to implement complex object descriptions such as a network of features.

| It should 'be possible to implement programs which find predicted objects in pictures by use of

. modeling information. This may involve the use of recursion and backup, neither of which is
currently available.

| _

L

Page 96 INCORPORATING VISUAL FEEDBACK 6.1.1

VISUAL PROCESSING PRIMITIVES

There should be a mechanism for calling PDP11 and SPS41 routines which share data such as
pictures and object models. (The SPS41 is a signal processor which we will use for some vision

work.) To an extent, this already exists with the EXTERNAL MINI procedure.

MOTIONS OF ACCOMMODATION

There should be a way of specifying how to servo an arm based upon visual, force, or tactile

information. The arm is expected to change its trajectory as a function of sensory input; this

would allow visual servoing, for example. An implementation would involve dynamically

changing the arm’s destination or dynamically specifying relative changes to be made. In either

case, time is an important variable. Consider a typical sequence of events:

(1) A picture is taken of the arm.

(2) The picture is analyzed to determine an arm correction.

(3) While the visual processing is being done, the arm continues to move.

Hence a prediction should be made and incorporated into the specified

correction.

(4) The correction is sent to the servo.

EXPLICIT CONTROL OF TIMING

As pointed out above, time is an important factor within visual feedback. It will be necessary to

-have “picture ready” events which occur when data are ready for processing; it might be desirable

to allow explicit timing and scheduling to make efficient use of the camera.

It would also be useful to separate the ‘setup’ for a MOVE from the actual beginning of a move.

This suggests a setup and trigger mechanism to squeeze as much processing as possible into “free”
PDP 11 time.

INTERACTIVE DESIGN OF VISUAL PROCESSING

There should be an interface to a graphics system such as Bruce Baumgart’s CEOMED

[Baumgart) so the user can symbolically position the assembly parts and cameras, simulate arm
motions, and extract potential object models from synthetic pictures. The system supervisor

should be flexible enough to allow the user to interactively manipulate the actual arms and

cameras so that the resulting TV pictures correspond with the synthetic views. This involves
consistent models of the world.

6.1.2 STAGES IN INCORPORATING VISUAL FEEDBACK

There are roughly three different stages 1n the Process of incorporating visual feedback into AL:
(1) completely separate modules, (2) picture taking within AL but models and processing separate,

and (3) everything in AL. These stages are briefly discussed below.

COMPLETELY SEPARATE MODULES

| 6.1.2 INCORPORATING VISUAL FEEDBACK Page 97

S This means that the object modules, interpreters, camera control routines, etc. are in one or more

modules and the AL system is another module. Communication between modules is by messages.

This type of communication restricts the mode of operation; feedback will only be available while

. the arm is not in motion. Motions of accommodation would not be possible.

The current Stanford hand-eye system is of this form. It will be straightforward to provide this

type of system with AL. However, it has obvious limitations and hopefully would only be a

| temporary solution.

PICTURE TAKING WITHIN AL

This is the first step toward a complete integration. AL would provide camera control, pictures,

picture taking, and ways to call procedures which share data. The object models could either be
. written in SAIL (and be on the PDP 10) of be written in a PDP1l language (and be on the

PDP 11). In either case the models and pictures would be available to external routines which

analyze pictures and return improved location values for objects. Visual servoing and dynamic

feedback still could not be done; there is no way to control the scheduling to insure the necessary

service.

This type of procedure-calling is designed into the current AL system. It mainly involves a smart

> loader. The other extensions are reasonably straightforward; it appears to be an easy step up to

| this type of system. Its advantage over the previous system is that the basic requirements for
doing visual feedback are all directly accessible from within one system (assuming the routines are

" - on the PDP 11). This provides a chance to try out some of the ideas before moving on to the next

stage.

. COMPLETE INTEGRATION

Complete integration would involve motions of accommodation in full generality, with

modifications to trajectories while they are being executed. Picture taking and processing would

| all be run under AL, and they would be interfaced into the timing scheme to insure proper
service. Not only would true visual servoing be possible, but also fine control of the hand based

on delicate touch sensing.

6.2 DYNAMIC FRAMES

h One very desirable feature would be an ability to describe and use continually varying variables,

| In industrial applications, for instance, the runtime system should automatically make the
corrections required to track an object on a moving conveyor. Initially, this facility is not being

L implemented, although we are studying the problems involved. Actually, only a very few new

constructs would need to be introduced into the language to allow such things to be described.

! The principal addition required is a way of warning the compiler that some variables may be

{ dynamic. For instance,

L

Page 98 DYNAMICFRAMES 6.2

DYNAMIC DISTANCE VECTOR v;

DYNAMIC FRAME chain-hoist;

would tell the compiler that v and chain-hoist may vary continuously with time. Trajectories to

any locations that depend on such variables must be handled a bit differently by the servo.

Instead of applying the brakes at the end of a MOVE, the servo should periodically recompute

the destination location, obtain a new arm solution, and then servo to the new joint values.

The normal AL graph structures are readily adapted to such dynamic values. Essentially all that

is required is the addition of a special reserved scalar variable TIME, which is changed every
clock tick, thus invalidating any values calculated by expressions that depend on TIME (see

Section 2.4 and Appendix lll). For instance we might have

DYNAMIC FRAME conveyor-belt;

VELOCITY SCALAR speed; [speed of the conveyor belt}
speed «5sIN/SEC;

conveyor-belt <= FRAME(NILROT speed«TIMExY),

{In this example, we won't ever use the “true” location of the belt. Rather, we
will affix things to it, so that they are carried along by the belt.)

TIME SCALARtO;

REQUIRE "PUMP.075" SOURCE-FILE;

(This defines, among other things, the frames pumpbase and pumpgrasp.
Initially, suppose that rue know that the pumpbase is somewhere on the conveyor.
We call a vision routine to find it.)

VISUALLY_LOCAT E(pumpbase,t0);
(Also, set tO to the value of TIME at whichthe Picture was taken (ie the time

that the pumpbase was ar the location set by the procedure).)

AFFIX pumpbase TO conveyor-belt
AT (pumpbase + FRAME(NILROT speed:t0:Y));

(One effect of this is:
pumpbase(t) <= (pumpbase(t0)-conveyor_belt(t0)conveyor_belt;

}

| MOVE YELLOW TO pumpgrasp;

(Presumably, pumpgrasp is attached rigidly to pumpbase. Since pumpbase is
attached to a dynamic thing (conveyor belt) then pumpgrasp is computed
dynamically, too, so that the arm will track the grasp point.)

CENTER YELLOW;

(grasps the object)

I

6.2 DYNAMIC FRAMES Page 99

UNFIX pumpbase FROM conveyor-belt;
AFFIX pumpbase TO YELLOW;
MOVE pumpbase TO jig-location-I; {wherever that is}

It is perhaps worth pointing out that there is nothing particularly magical about TIME; a similar
technique could be used, say, for moving tO some frame whose value is a function of a

continuously varying A-to-D reading.

6.3 EXTENSIONS TO OTHER ARMS AND DEVICES

The 1nitial version of the ‘AL system will be designed to run with two Stanford Arms, but the

. system is in no way limited to any particular manipulators, All manipulator-dependent routines

are grouped together and are written in SAIL; in order to interface another manipulator to the
system these routines would have to be rewritten, most notably the solution and dynamics models.

In the case of non-manipulator type devices, such as cranes, the trajectory generating routines
would also need rewriting, but as we lack any experience in this direction we will pursue it no

further at this time.

: ~ Simple devices such as vices or tools have their own keyword syntax and are controlled by the
OPERATE statement. In this case new routines would need to be added.

} 6.4 FINE CONTROL

Interactive control of the arm has to date been limited; we can output joint torque and monitor

: joint position, and have two binary touch sensors inside the fingers. Force-sensing elements are
being developed for the hand and we are interested in more powerful touch sensors; when we

: have gained experience with these devices we will extend the language to facilitate their use. The

- present version of the language reflects those things which we have verified in practice and feel

will move development in the right direction.

- 6.5 COLLISION AVOIDING

Since the available collision avoiders are quite slow, the initial system relies upon the user to
N provide his own collision avoiding in the form of VIAs and DEPROACHes. When fast collision

avoiders become available they can be meaningfully included in the system.

Page 100

CHAPTER 7

BIBLIOGKAPHY

[Ambler & Popplestone] A.P. Ambler and R.J. Popplcstone, Inferring the Positions of Bodies
from Specified Spatial Relationships, manuscript, Dept. of Machine Intelligence,

University of Edinburgh

[Baumgart] B. Baumgart, GEOMED - A Geometric Editor Stanford Artificial Intelligence
Laboratory Operating Note 68, May 1972.

[Bejczy] A. K. Bejczy, Robot Arm Dynamics and Control, Jet Propulsion Laboratory, Technical
Memorandum 33-669, February, 1974.

[Bobrow and Raphael] Daniel G.Bobrow and Bertram Raphael, New Programming Languages

for Al Research Tutorial Lecture presented at the Third International Joint Conference
on Artificial Intelligence. Stanford University, Stanford, California 94025

[Bolles and Paul] R. C. Bolles, R. Paul, The Use of Sensory Feedbackina Programmable
Assembly System, Stanford Artificial Intelligence Project, Memo No, 220, October 1973.

[DEC] Digital Equipment Corporation, PDP 11/45 Processor Handbook, Digital Equipment
Corporation, 1974.

[Ernst] H. A. Ernst, “MH-1, A Computer-Operated Mechanical Hand,” 1962 Spring Joint

Computer Conference, San Francisco, May 1-3, AFIPS Proceedings, pp. 39-51.

[Feldman 7 la] J. A. Feldman, R. F. Sproull, System support for the Stanford Hund-Eye System,
Second International Joint Conference ON Artificial Intelligence, London, September 1-3,

1971.

[Feldman 71 b J J. Feldman, K. Pingle, T. Binford,G. Falk, A. Kay, R. Paul, R. Sproull, and J.
Tennenbaum, The Use of Vision and Manipulation to Solve the ‘Instant Insanity’
Puzzle, Second International Joint Conference on Artificial Intelligence, London,

September 1-3, 1971.

[Feldman 721J. Feldman, J. Low, R. Taylor, D. Swinehart, “Recent Developments in SAIL, an
Algol Based Language for Artificial Intelligence,” Proceedings of the F JCC, 1972
pp.1 1934202.

[Gill] A, Gill, Visual Feedback and Related Problems in Computer Controlled Hand-Eye
Coordination, Stanford Artificial Intelligence Project, Memo No. 178, October 1972.

[Goto] T. Goto,et al., “Compact Packaging by Robot With Tactile Sensors,” Proceedings of the

Second International Symposium on Industrial Robots, pp. 149-159, May 1972.

[IITRI] Proceedings of the 2nd. International Symposium on Industrial Robots, May 1972.

[Inoue] H. Inoue, “Computer Controlled Bilateral Manipulator,” Bulletin of the JSME, pp.
199-207, Vol. 14, No. 69, 197 |.

Page 101

[Inoue] H. Inoue, “Force Feedback in Precise Assembly Tasks,” Massachusetts Institute of
Technology A. I. Memo No. tu,

[Kahn] M. E. Kahn, The Near-Minimum-Time Control of Open-Loop Articulated Kinematic
Chains, Stanford Artificial Intelligence Project, Memo No. 106, December 1969.

[Leslie] W. H. P. Leslie, ed. Numerical Control Programming Languages, North-Holland
Publishing Company, London, 1972.

[Lindbom] T. H. Lindbom, “Today's Robots at Work in Industry: Matching the Robot and the

Job,” Proceedings of the 2nd. International Symposium On Industrial Robots, May 1972,
pp. 129-148

[Nevins 733 J. L. Nevins, D. E. Whitney, S. N. Simunovic, System Architecture for A ssembly
Machines, The Charles Stark Draper Laboratory, Inc., Memo No. R-764, November
1973.

[Nevins 74]J. L. Nevins, D. E. Whitney, et al., Exploratory Research in Industrial Modular
A ssembly, The Charles Stark Draper Laboratory, Inc., Memo No. R-800, March 1974.

[Nilsson] N. J.Nilsson,J. Agin, B. G. Deutsch, R. Fikes, E. D. Sacerdoti, J. M. Tenenbaum, “Plan
for a Computer-Based Consultant System,” Artificial Intelligence Center Technical Note

94, May 1974.

[Paul] R. P. Paul, Maieing, Trajectory Calculation and Servoing of@ Computer Controlled Arm,
Stanford Artificial Intelligence Project, Memo No. 177, March 1973.

[Pieper] D. L. Pieper, The Kinematics of Manipulators Under Computer Control, Stanford
Artificial Intelligence Project, Memo No. 72, October 1968.

[Popplestone] R. J. Popplestone, Solving Equations Involving R otatfons Memorandum MIP-R-99,
School of Artificial Intelligence, University of Edinburgh, January 1973.

[Requicha) A. A. G. Requicha, N. M. Samuel, H. B. Voelker, Part and Assembly Description
Languages = ll, TM-20, Production Automation Project, College of Engineering &
Applied Science, The University of Rochester, August 1974.

[Roberts 63] L. G. Roberts, Machine Perception of Three-Dimensional Solids, Technical Report
No. 315, Lincoln Laboratory, Massachusetts Institute of Technology, May 1963.

[Roberts 65] L. G. Roberts, Homogeneous Matrix Representation and Manipulation of N-
Dimensional Constructs, Document MS 1045, Lincoln Laboratory, Massachusetts Institute
of Technology, May 1965.

[Rosen] C Rosen, et. al., E xploratory Research inA dvanced A utomation, Stanford Research
Institute Report, December 1973.

[Scheinman] V. D. Scheinman, Design ofa Computer Manipulator, Stanford Artificial
Intelligence Project, Memo No. 92, June 1969.

i Page 102

~ [Sussman] Gerald Jay Sussman, A Computational Model of Skill Acquisition, Ph.D. dissertation,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Cambridge,

| Massachusetts. August, 1973.

] [Swinehart] D. Swinehart, R. Sproull, Sail, Stanford Artificial Intelligence Project, Memo No. 57,
November 1969.

[VanLehn] K VanLehn, ed. Sail User’s Manual, Stanford Artificial Intelligence Project, Memo
No. 204, July 1973.

[Whitney] D. E. Whitney, “Resolved Motion Rate Control of Manipulators and Human
Prostheses,” IEEE Transaction On Man-Machine Systems, pp. 47-53, Vol MMS-10, No.
2, June 1969.

| [Wickman] W. M. Wickman, Use of Optical Feedback inthe Computer Control of an Arm,
; Stanford Artificial Intelligence Project, Memo NO. 56, August 1967.

[Will] Peter M. Will and David D Grossman An Experimental System for Computer Controlled
| Mechanical Assembly, IBM Research Report RC 4922, Yorktown Heights, New York.
{ July, 1974.

|

| | ~

|

fw

Page 103

APPENDIXI

EXAMPLE DIALOG WITH THE AL SYSTEM

Here is a sample conversation a user might have with AL. It demonstrates the following features:
Typing in source code by hand, requesting source code to be read from a file, immediate

execution of commands by the arm, return of values from the arm, loading compiled code into the

runtime computer, and executing that code. The supervisor prompts with the sign ">" The
material in the right-hand column is explanatory.

> COMPILE TTY | Request to read in from
console for compilation,

c type<alt>when done | Message from supervisor
MOVE YELLOW | Simple move statement

T OFRAME (ROT (X,398),VECTOR(28,38,1));| Destination
FRAME PLACE; | Declaration
PLACE1 «YELLOW; | Assignment
PLACE2« PLACE1 + VECTOR (8,8,5)}; | Assignment
c OK to declare PLACE2a FRAME?>YES| Parser error, with option.
$ |End of file f(altmode)

c no errors. compiled: TTY({1l) > | Bampier message.
| Now user wants to park arm,

> COMPILE TTY | Request to read in from
console for compilation

c type<alt>when done> | Message from supervisor
YELLOW«« REAO (YELLOW)3 | Get planning value of Yellow

arm correct

ROVE YELLOW TO YPARK§ | User wants to park the arm
c no errors.compiled:s TTY(2) > |Compiler message.

> EXECUTE TTY (2) | Requass to execute parkcode

c loading TTY(2)> ||First, loading to be done
c executing TTY(2)> | Message as execution starter

c doned | Message at end of execution
INowuserwants totryhis new

code

DEXECUTETTY (1) | Request to execute code
c loading TTY(1)> | First, loading to be done
c executing TTY(1}> | Message as execution start8
c done> | Message at end of execution

|

SPLACES3 ««READ(YELLOW) se read handpositionc OK to dec | are PLACE3 a FRAME? DYES Use of undeclared variable

> WRITE (#(PLACE3)}) Want planning value
c #(PLACE3) « FRAME(ROT(VECTOR(.3,.5,.82 ,17xDEG),

VECTOR (19.9%CM, 38.1 %CM, 1.1%CM)) >
Indication of whatwas set

L > WRI TE (PLACES) Wantruntimevalue
c PLACE4 not dec | ared»> Noruntimevalue!

> WRITE (#(V1)) Request for planning value
c #(Vl) = VECTOR(3.8,8, 28.13)>
>Vlee VECTOR(4.8, 8, 28.131 User can change planning

values.

>V1le(4,8,8, 28.13) Userc@nchange real values,

Page 104

> COMPILE HACK.AL {1,L0U] Ask for compile from file
c Error in | ine 310 of HACK.ALI[1,LOU]. Parser error message

THEN Gives line with <I f>

STUP at point of error
Option > ? User typed "?"

| : Insert replacement text A list of options to user
Z: Use | ine editor to fix

Il: Show more context This would give entire
F: Flush to end of statement statement

E: Switch to E E is a text editor

S: Switch to SOS SOS is a text editor

Q: Quit. Abort compilation
Option o> 1 User chooses to insert

replacement
c type <alt> when done > Message from supervisor

THEN STOP "STUP" changed to “STOP”
$ Endof insertion

c error in line 528 of HACK.AL[1,L0U]. trajectory calculator error
message

MOVE YELLOW Only first line of
statement given

The desired motion goes out of bounds in joint 3
in the first segment of motion. |

| A bad motion |
Option > E | User wants to edit with E.
¢ Switching to E. To return, <CTR>XRU<CR> >

| Universe is saved for retry
© Welcome back to AL. | Editing done

Compilation of HACK. AL{1,LOU) aborted >| After an edit, compilationaborts,

> COMPILE HACK.AL {1,L0U] | Request for recompilation
c No errors. Compiled:HACK. AL[1,L0U]l >|

| Compilation succeeds.
> LOAD TTY(1),HACK.AL(1,LOU] | Request to load into servo
c¢ Loaded: TTY(1), HACK.ALI[1,LOU] > |
> STATUS User wants to know where

he is

Compi led: TTY(1),TTY(2),HACK.AL[1,LOU)| Compilation status
Loaded: TTY (1), HACK.AL (1,L0U] | Runtime status
> EXECUTE | Request for execution
c Executing TTY(1), HACK.AL[1,L0Ul>
> STATUS | User wants to know uhere

| she is
Interpreter at line 328 in HACK.ALI[1,LOU)

| Runtime status
c Interrupted by red button> |Runtime error message. User

| interrupted motion.
Interpretera tline 188 o f HACK.AL[1,LOU]

| Servo status
> PROCEEO | Request to continue motion
c Joint 4 has excessive force. |Runtime error message.
Interpreter at line 158 of HACK.AL[1,L0U)

| Servo status
> DELETE HACK. AL | Request to delete last

| compilation
c Deleting HACK.AL from runtime | Removed from runtime
c¢c Deleting HACK.AL from COMPILATION | Removed from world of

- compi ler

Page 105

> E | Switch to E.
c Switching to Es To return, <CTR>XRU<CR>>
c Welcome backto AL>
> COMPILE HACK.AL [1,L0U] | Request for compilation
c No errors, Compi led: HACK.AL([1,LOU) > | Compilation succeeds
> SAVE WORLO IN Wl | User wants world saved in
c World saved in Wl.WLD> | named location.

> RESTORE WORLD FROM W8@ | Request to restore Previouswor Id

c WB.WULD not found> | Expander error message
> RESTORE WORLD FROM W80 | Request to restore previous

| world
c¢ done
>BYE | Request to leave the room
c Finalstatus: | A final status rundown
Load modu | es ready: TTY(1).HLD, TTY(2).HLD, HACK.HLD
Goodbye>
EXIT

L

Page 106 BOLTING A BRACKET

| APPENDIX II

| PROGRAMMING EXAMPLES

11.1 BOLTING A BRACKET ONTO A BEAM

This is intended to be a series of progressively more complex examples which demonstrate some

of the features in AL, including affixment, control structures, macros, and library routines. The

first set of the examples have essentially the same goal: bolt a bracket to a beam. Each example

takes into account more possibilities or contains a different way of expressing the same thing.

The initial affixment structure is:

STATION

YELLOW

| BLUE

| BRACKET

| BRACKETHOLE

| BRACKET-GRASP

) BOLT
BEAM

| BEAM_HOLE

The final affixment structure is:

| STATION
| YELLOW

i BLUE

| BEAM

BEAM_HOLE

| BRACKET

BRACKETHOLE

BRACKET-GRASP

BOLT

The initial structure can be created by the following declarations and assignments. See Figure 2.1.

FRAME beam, beam-hole;

FRAME bracket, bracket-hole, bracket-grasp;

FRAME bolt;

beam « FRAME(ROT(Z,90«DEG), VECTOR(30, 24.2, 0));
(Beam is not dffixed to anything initially Thus its default DEPROACH isthe station’s

- DEPROACH which is: TRANS(NILROT, 10+xCM+Z)}

. Il. | BOLTING A BRACKET Page 107

- beam-hole « beam # FRAME(ROT(X, -90:DEG), VECTOR(5.1, 0, 15));
{FRAME(ROT(X,-90+:DEG), VECTOR(5.1, 0, 15)) is the relative transform from beam

to the beam-hole. Another way of looking at this is that within the beam’s frame of
reference, the beam-hole is at FRAME(ROT(X, -90«DEG), VECTOR(5.1, 0, 15)) The
premultiplication by beam transforms this relative location out to the corresponding
position (in station coordinates) with respect to the current location of beam.)

AFFIX beam-hole TO beam;
ASSERT FORM(DEPROACH, beam-hole, TRANS(NILROT, VECTOR(0, 0, -3));

{this sets up a DEPR OACH of -3 centimeters in theZ direction of the beam_hole's
coordinate system.)

bracket « FRAME(ROT(Z,90:DEG), VECTOR(20, 40, 0));
bracket-hole « bracket * FRAME(ROT(X,180:DEG), VECTOR(5.1, 2, 0));
AFFIX bracket-hole TO bracket;

bracket_grasp « bracket » FRAME(ROT(X, 180:DEG), VECTOR(0, 1.5, 5));

AFFIX bracket-grasp TO bracket RIGIDLY;

(Notice that changing bracket-grasp will automatically change bracket, which in turn will
) automatically change bracket-hole. This is very handy if the position of the whole ‘object’

is being updated by one grasping position (ie. bracket-grasp.)
bolt « FRAME(ROT(Z,90:DEG):ROT(X,180+:DEG),YECTOR(30, 60, 5));

{The bolt is assumed to be sticking out of a dispenser.)

Page 108 BOLTING A BRACKET Ill.1

TABLE
(&

BEAM |

A) "hi
| BRACKET-GRASP Ly(A

BRACKET |

Figure 2.1
| - ~ Initial World

|

F

-

L I. 1 BOLTING A BRACKET Page 109

11.1.1 EXAMPLE ONE

The task involves the following steps:

. (1) Pick up the bracket with the YELLOW arm and position it next tO the beam so that

the holes line up.

(2) Pick up the bolt with the BLUE arm and insert it in the hole (in this example it is

not screwed in; a later.example will use a socket driver to tighten the bolt).
(3) Return both arms to park.

- The bracket is assumed to be 1 cm thick , and the bolt 4 cm long. The following program is a
straightforward way to express the motions and feedback necessary to carry out the task.
Everything is assumed to be in the right place and every motion is assumed to accomplish its

~ desired effect. For example, this program assumes that the arm is accurate enough to align the

bracket-hole with the beam-hole and to insert the bolt without hitting the side or binding. Later

examples will take this type of error into account.

DEFINE OZ = "72.007789:DY NES’;

| (This macro defines a unit of force OZ equal to 1116 poundal}

- OPERATE YFINGERS WITH OPENING=3:CM;
MOVE YELLOW TO bracket-grasp;

| (Since bracket-grasp does not have a DEPR OACH explicitly associated with it, the
- compiler checks to see if it is affixed to anything. It is: bracket. But bracket does not
| have a DEPR OA CH associated with it either. Is it affixed to anything? No. Therefore,

by default the corn piler uses the ~~ STATION’ DE PR OACH (ie.
L TRANS(NILR OT 10+CM %Z)) as the approach for bracket-grasp.)

CENTER YELLOW;

L (This closes the fingers until they grab something.)
bracket-grasp « YELLOW,

(Since bracket-grasp is RIGIDLY affixed to bracket, this statement updates bracket and
hence anything affixed to bracket (eg. bracket_hkole). [n effect, the assumption being

~ made is that the position of the whole ‘object’ (ie. the bracket) can be updated by locating
| bracket_grasp. In the usage above the arm moves to the planning position for
| bracket-grasp and then centers itself about the object between its fingers. Notice that the
C final position of the arm may very well not be bracket-grasp (because of the

accommodation during the centering). Therefore, the bracket might not be where it was

planned to be. This discrepancy between the planned world and the ‘actual’ world has to

1 be reconciled. The simplest assumption (and the assumption being used here) is that the
only difference between the planned location and the actual is that the ‘whole’ bracket has
-been moved along the line between the fingers so that bracket-grasp 8 where the arm

1 found it. More complicated updating could be done by visually locating the bracket and
reseting bracket or by feeling the bracket two or three times, combining the resulting

locations into a new estimate of bracket’s location, and reseting bracket. Notice that if
the CENTER moved the arm away from the planned location and no updating were

L done, the AFFIX statement which follows would affix the bracket to the YELLOW arm in
such a way that the bracket. was assumed to be at its planning position (which would be

| . wrong). The subsequent move to the beam_hole would also be off by the same amount.)

L

Page 110 BOLTING A BRACKET 11.1.1

AFFIX bracket TO YELLOW;

MOVE bracket-hole TO beam-hole;

(Notice that the bracket approaches the beam from the side (not from above) because of
the DEPR OACH set up for beam-hole. In this example the bracket is assumed to go
right next to the beam. This MOVE is a move for the YELLOW arm (because. the
bracket is AFFIXed to it). From the definition of affixment this means that anything
affixed to the YELLOW arm is automatically moved. Thus, bracket, brachet,hole, and
bracket-grasp are all updated. The fact that the move was specified by mentioning
bracket-hole (and not YELLOW) does not change the automatic updating within the

graph structure. Notice, in particular, that this is quite different from:
AFFIX bracket TO YELLOW

bracket-hole « beam-hole

which would change the value of bracket-hole and the relative position between bracket

and bracket-hole, but leave YELLO W and bracket unchanged.]

OPERATE BFINCERS WITH OPENING=3:CM;

MOVE BLUE TO bolt;

(The station’s APPROACH is used since the bolt is not affixed to anything.)

CENTER BLUE;

bolt « BLUE:

(This insures that the latest value of bolt is used in the AFFIX command below.)

“AFFIX bolt TO BLUE;

MOVE bolt TO beam-hole + YVECTOR(0, 0, -5.3) WRT beam-hole;
(This should position the bolt .3 centimeters from the bracket. That is, the YELLOW
arm is now holding the bracket right next to the beam (with the bracket-hole aligned

with the beam-hole) and the BLUE arm is holding the bolt 5.3 centimeters away from the
bracket-hole (which is equivalent to beam-hole). But remember that the bracket is I cm

thick and the bolt is 4 cm long; thus the tip of the bolt ts 1.3 cm from the beam-hole
(or.3 off of the bracket).}

MOVE BLUE TO e+ VECTOR(0, 0, 5) WRT beam-hole:
WITH FORCE = 0 ALONG X,Y OF BLUE

ON FORCE(Z WRT BLUE) >6040Z DO STOP BLUE;
(The arm stops when the bolt hits the bottom of the hole. No DEPARTURE or
APPROACH is used because the destination involves the "®" construct.)

OPERATE YFINCERS WITH OPENING = 3CM;

UNFIX bracket FROM YELLOW;

AFFIX bracket TO beam;

MOVE YELLOW TO YPARK;

OPERATE BFINGERS WITH OPENING =3:CM;

UNFIX bolt FROM BLUE;

AFFIX bolt TO beam;

MOVE BLUE TO BPARK;

- WRITE("Finished");

1. 1.1 BOLTING A BRACKET Page 111

| END;

11.1.2 EXAMPLE TWO

f This version adds a number of checks (and some automatic recoveries) for possible run-time
errors such as not inserting the bolt. It also utilizes the COBEGIN = COEND capability to
describe simultaneous (unordered, independent) actions. Thus, the Yellow arm can be picking up
the bracket and positioning it near the beam while the Blue arm is picking up the bolt. Collision
avoidance is currently the responsibility of the user.

DEFINE OZ="((72.007789:GM«CM)/(SEC:SEC))";

positioning: COBEGIN

ypickup: BEGIN {pickup bracket by YELLOW)
OPERATE YFINCERS WITH OPENING=3:CM;

MOVE YELLOW TO bracket-grasp;

CENTER YELLOW

| ON OPENING =0:CM DO

| missed: B EC IN {missed bracket)
| STOP YELLOW;

SCALAR flag;

OPERATE YFINGERS WITH OPENING=3:CM;
| MOVE YELLOW

| TO bracket-grasp * DEPROACH(bracket_grasp) DIRECTLY;
(This should safely move the arm away so the operator can easily insert the
missing bracket. It moves the arm back out to the bracket_grasp’s approach

| point at runtime.)
WRITE("The bracket is missing. Position it and type ‘I’ to try again”);
READ(flag);
IF flag ¥ 1 THEN ABORT (“Giving up; you didn’t type ‘1’“);

{The ABORT stops everything, saves the world, and forces the operator to
deal with the problem at supervisor level, possibly investigating the saved
information, reinitializing the world to some previous state and restarting.)

MOVE YELLOW TO bracket-grasp DIRECTLY;

(this results in a simple move without a DEPARTURE or an APPROACH.)
CENTER YELLOW

ON OPENING=0:CM DO ABORT("I tried twice; | give up!“);
END missed;

YELLOW «« bracket-grasp;

(This tells the compiler that the yellow arm can be assumed to be at bracket-grasp

no matter how control got Acre, eg. possibly moving away and retrying the grasp.
The "e«" specifies that the planning value of bracket_grasp should be used to
update the compiler’s view of where the YELLO W is.)

bracket-grasp « YELLOW;

Page 112 BOLTING A BRACKET Il. 1.2

{This generates code to be run at run-time which updates the frame bracket-grasp

(which in turn updates bracket and bracket_hole). The result is thatthe following
AFFIX uses the best run-time value of the brachet’s position.)

AFFIX bracket TO YELLOW;

MOVE bracket-hole TO beam-hole + YVECTOR(0, 0, 1.3) WRT beam-hole;
(This uses the STA TION’s DEPAR TV RE (since the bracket is not affixed to
anything) and the beam-hole’s approach (since it is the only frame mentioned in the
destination). T&s move should position the bracket just off of the beam. The next
motion pushes it up against the beam.)

MOVE YELLOW TO e + VECTOR(0, 0, .5) WRT beam-hole

ON FORCE(Z WRT beam-hole) >50:0Z DO STOP YELLOW
ON ARRIVAL DO ABORT ("l seem to have gone too far”);

(Give up if the expected force is not felt. “AR R IVAL" means thatthe arm reached
its destination without being stopped by any of the condition monitors. In this case
this means that the arm did not reachthe expected force, which means that
something went wrong. The STOP YELLOW disables all condition monitors for the
yellow arm.}

E ND ypickup;

bpickup: BEGIN (pick up bolt by BLUE]

{Meanwhile the BLUE arm can be picking up the bolt.)
OPERATE BFINGERS WITH OPENING=3:CM;

MOVE BLUE TO bolt;

CENTER BLUE;

{A ssume everything is OK,)
bolt « BLUE;

AFFIX bolt TO STATION;

END bpickup

COEND positioning;

{The bracket should be positioned next to the beam and the BLUE arm should be holding the
bolt.)

MOVE bolt TO beam-hole + VECTOR(0, 0, -5.3) WRT beam-hole
WI THDEPROACH(beam_hole);

(This should position the bolt .3 centimeter off of the bracket,)

(Now begin a search just in case the bolt doesn’t immediately go in the hole: make .2 cm
steps around in a spiral; if the bolt does not go in within nine tries, abort the program.)
FRAME set; SCALAR n;

{n is the number of attempts.)
neo;

set « BLUE;

(Save initial arm position.]
SEARCH BLUE

INCREMENT .2«CM

ACROSS PLANE(NILVEC,Z WRT beam-hole)
REPEATING

inserting: BEGIN

I. 1.2 BOLTING A BRACKET Page 113

MOVE BLUE TO ® + YECTOR(0, 0, 1.6) WRT beam-hole
ON FORCE(Z WRT beam-hole) >6040Z DO

missed: BEGIN

STOP BLUE;

nens+ |;

IF n>9 THEN ABORT (“Giving up the search”);

MOVE BLUE TO set

END missed

ON ARRIVAL DO TERMINATE;

{This means that if the MOVE succeeds in reaching its goal, stop the search.
TERMINATE is a key word within SEARCHs.}

END inserting;

BLUE cc beam-hole + VECTOR(0, 0, 3.7) WRT-beam-hole;

{Expect to Rave the bolt (which is 4 cm long) .3 cm into the hole}

MO VE BLUE TO ex FRAME(ROT(Z, 90:DEG), VECTOR(0, 0, 4))
WITH FORCE = 0 ALONG X,Y OF BLUE

ON FORCE(Z WRT BLUE) >6040Z DO STOP BLUE;

{This moves the arm 4 cm straight ahead and twists it 90 degrees about its Z axis
(ie. straight ahead). Thus it moves ahead and twists.)

disengage: COBEGIN

foryellow: BEGIN

OPERATE YFINGERS WITH OPENING =3CM;

UNFIX bracket FROM YELLOW;

AFFIX bracket TO beam;

MOVE YELLOW TO YPARK

END foryellow;

forblue: BEGIN

OPERATE BFINGERS WITH OPENING =3:CM;

UNFIX bolt FROM BLUE;

AFFIX bolt TO beam;

MOVE BLUE TO BPARK .

E ND forblue

COEND disengage;

WRITE("Finished");

END;

11.1.3 EXAMPLE THREE

This example employs a text macro to simplify definitions, a macro to shorten the code for

searching, and a library routine to grasp things. The library routine is supposed to cover a

number of possibilities and provide for a number of parameters. Since library routines can be

Page 114 BOLTING A BRACKET I. 1.3

called with a subset of their parameters filled in, the routine’s flexibility is not oppressive for

those users who just want to do something simple.

DEFINE define_wrt(new_frame, mainframe, position) =
“new-frame ¢ mainframe : position;

AFFIX new-frame TO mainframe”;

A typical call might be:

define_wrt(bracket_hole, bracket, FR AME(ROT(X,180«DEG), VECTOR(5.1, 2, 0)):

which would expand into:

bracket-hole « bracket * FRAME(ROT(X, 180sDEG), VECTOR(5.1, 2, 0));
AFFIX bracket-hole TO bracket;

The following macro produces a string of tokens which imply a compile-time check on the value

of the conditional expanded by the parameter RIGID. If RIGID evaluates to TRUE then the

token sequence which rigidly affixes the new frame to the main frame is used.

DEFINE DEFINE_WRT(new_frame, mainframe, position, rigid) =
" “newframe e& mainframe #* position;

PLAN IF rigid

THEN AFFIX new-frame TO mainframe RIGIDLY

ELSE AFFIX new_frame TO mainframe”; .

Another, more complicated macro to facilitate a normal search:

DEFINE normal_search(the_arm, increm, dist_fwd, stopping-force, numc_tries)=
“BEGIN (This BEGIN is part Of the macro code.)
FRAME set; SCALAR n;

{nisthe number of attempts}
ne 0;

set « the-arm;

(Save initial arm position.)
SEARCH the-arm

INCREMENT increm

" ACROSS PLANE(NILVEC, Z WRT the-arm)
REPEATING

insertion: BEGIN

MOVE the-arm TO ® +(dist_fwdsZ) WRT the-arm

ON FORCE(Z WRT the-arm) > stopping-force DO
missed: BEGIN

STOP the-arm;

nens

I. 1.3 BOLTING A BRACKET Page 115

IF n > num_.tries THEN ABORT("'Giving up“);
| MOVE the-arm TO set;

| END missed

SE ON ARRIVAL DO TERMINATE

| END insertion;

ASSERT the-arm =#(set) + VECTOR(0, 0, distfwd);
(This changes the compiler’s view to believe that the arm succeeds on the first

| attempt, and hence the planning value for the arm will be the distance forward
plus set.)

END”;

; Notice that a pair of adjacent quotes inside of a macro definition (delimited by quotes) denotes a

single quote.

: A typical call would be:

| normal_search(Y ELLO Ww, .2xCM, 1.6:CM, 60+OZ, 9);

oo The above macro could easily be made into a library routine as follows:

i ROUTINE normal_search(FRAME the-arm; DISTANCE SCALAR increm, distfwd;

Eo FORCE SC AL AR stopping-force;

SCALAR num_tries(DEFAULT 9));
| BEGIN

| END;

The corresponding call:

normal_search(YELLOW, 2:CM, 1.6:CM, 60+0OZ, 9);

The “9” is a default value if no value is specified in the call. Thus, by naming the parameters the

same call can be made by:

normal_search(the_arm=YELLOW, distfwd- 1.64CM,

stopping_force=60:OZ, increm=.2:CM);

Notice that the order is not important if the parameters are named.

The following routine is a library routine to grasp things. Basically it does the following:

(I) Optionally open to an opening_before_departure.

Page 116 BOLTING A BRACKET ll. 1.3

(2) Depart via a departure (if there is one; a special-departure can be specified).

(3) Start opening the fingers to the opening-for-approach at the departure point (if
special-departure is specified, use it. Otherwise, use the standard DEPROACH

value.).

(4) Approach the grasping-point via the APPROACH (if a special-approach is
specified, use it).

(5) Center on the object. (If the fingers close so that the opening is less than (thickness -

10) call the operator and give him one chance to re-position the object and try
again.)

(6) Upon successfully centering on the grasp-point, update the object’s position by
assigning the grasp-point the current hand location (this, of course, assumes that

either the grasp-point and the object are the same frame or that the grasp-point is

RIGIDLY affixed to the object).

Notice that this routine can be used by either arm.

ROUTINE grasp{TR ANS special-departure, special-approach;
FRAME ATOM the-arm (DEFAULT YELLOW);

FRAME object, grasp-point, thing_ob ject_affixed_to;
DISTANCE SCALAR opening-before-departure,

opening-for-approach(DEFAULT 15:CM),
thickness(DEFAULT 3:CM));

{S pecial_depart ure is a trans for the relative position of departure.
Special-approach is a trans for the relative position of the approach.

Thing-object,ajjixed,to is the name of the frame that the object is affixed to (if
there is one) bejore the grasp routine is called. It is used to specify from what the
object should be unfixed upon being grasped. Thickness is defaulted to .3%CM so
that the condition monitor ON OPENING< (thickness -.2«CM) DO . . . will do a
reasonable thing.)

grasping: BEGIN

ATOM the-fingers;

CLAUSE t, u;

PLAN IF «(the_arm)=BL UE

THEN the-fingers «« BFINGERS

ELSE the-fingers «« YFINGERS;

(This sets up the ‘atom the_fingers to expand into the correct device name for the
OPERA TE statements (depending upon the choice of arm).)

PLAN IF SPECIFIED(opening-before-departure) THEN

OPERATE «(the_fingers) WITH OPENING-opening-before-departure;

(The next statement sets up a clause, u, which contains the phrase

“WITH APPROACH = <the special>" or NILDEPROACH depending upon whether
or not a special approach has been specified. This constructed phrase is used in

two or three places below to insure that the desired approach is being used.)

PLAN IF SPECIFIED(special_approach)

i IL 1.3 BOLTING A BRACKET Page 117

| THEN u «« CLAUSE(WITH APPROACH = special-approach)

ELSE u «« NILCLAUSE;

| PLAN IF SPECIFIED(special_departure)
| THEN MOVE s(the_arm) TO grasp-point

WITH DEPARTURE=NILDEPROACH

VIA s(the_arm) = special-departure THEN
BEGIN

OPERATE #(the_fingers)
WITH OPENING-opening-for-approach

END

«(u)

ELSE MOVE «(the_arm) TO grasp-point
WITH DEPARTURE=NILDEPROACH

VIA s(the_arm) « DEPROACH((grasp. point) THE N
BEGIN

OPERATE s(the_fingers)
WITH OPENING=o0pening_for_approach

END

«(u);

CENTER #(the_arm)

ON OPENING < (THICKNESS-.2&M) DO

missed: BEGIN

STOP #(the_arm);

SCALAR flag;

OPERATE the-fingers WITH OPENING=opening_for_approach;
PLAN IF SPECIFIED(special_approach)

THEN BEGIN (move to special approach point)
MOVE s(the_arm) TO #{the_arm) = special-approach

DIRECTLY

END

ELSE BEGIN {use the normal approach)
MOV E #{the_arm)

T O #(the_arm): DEPROACH(grasp_point)
DIRECTLY;

END

WRITE("Grasp failed; Type a ‘1’ to retry”);
READ(flag);

{This is simply “wait for proceed.)
IF flagf 1 THEN ABORT;
MOVE «(the_arm) TO grasp-point DIRECTLY;
CENTER #(the_arm)

ON OPENING < (THICKNESS-.2&M) DO ABORT (“Closed on air”):

END missed;

grasp.point « #(the_arm);
PLAN IF SPECIFIED(thing_object_affixed_to) THEN

UNFIX object FROM thing-object-affixed-to;

AFFIX object TO #(the_arm),

Page 118 BOLTING A BRACKET I. 1.3

END grasping;

The following is a typical call on such a routine:

grasp(the_arm=YELLOW, object=bracket,
grasp_point=bracket_grasp,
special_approach=FRAM E(ROT(Z,90:DEG),VECTOR(0,0,-3)),
opening._for_approach=3:CM),

which expands into:

MOVE YELLOW TO bracket-grasp
. WITH DEPARTURE=NILDEPROACH

VIA YELLOW«FRAME(NILROT,10:Z) THEN
BEGIN

OPERATE YFINCERS WITH OPENING=3:CM

END

WITH APPROACH =FRAME(ROT(Z,90«DEG), VECTOR(0,0,-3)):
CENTER YELLOW

ON OPENING <.22CM D O

missed: BEGIN

STOP YELLOW;

SCALAR flag;

OPERATE YFINGERS WITH OPENING=3:CM;
MOVE YELLOW

T 0 YELLOW:FRAME(ROT(Z,90:DEG), VECTOR(0, 0, -3))
DIRECTLY;

WRITE("Grasp failed; Type a ‘I’ to retry”);
READ(flag);
IF flag #1 THEN ABORT;

MOVE YELLOW TO bracket-grasp DIRECTLY;
CENTER YELLOW

ON OPENING <.2¢:CM DO ABORT (“Closed on air”);
END missed;

bracket-grasp « YELLOW;

AFFIX bracket TO YELLOW;

Finally, the whole task is made into a library routine so it can be ‘called’ (ie. expanded) as a

subtask from a higher level task.

DEFINE OZ="((72.007789:GM:CM)/(SEC:SEC))";

ROUTINE bolt-on-bracket;

whole-task: BEGIN

PLAN IF YELLOW)# YPARK

THEN PLAN ERROR(“The yellow arm is not planned to be in its

- park position, contrary to assumption in routine bolt-on-bracket”);

A

I. 1.3 BOLTING A BRACKET Page 119

PLAN IF FORM(AFFIXED, ANYTHING, YELLOW)

THEN PLAN ERROR("Something is affixed to the yellow hand;
the routine bolt-on-bracket expects the hand to be empty.”);

(This type of compile-time check and warning to the user is very useful for
insuring that tire interface assumptions for routines are met in the planning
world just before the routine is expanded. Notice that there is a built-in
procedure, PLAN ERROR, which prints the included message at compile-time and

stops the compilation. There is also a compile-time WRITE statement, PLAN
WRITE (".."). These two different ‘output’ statements ate used so thatthe user
can generate WRITE statements during the compilation of a program.)

COBECIN

ypickup: BEGIN (Pick up bracket withYELLOW}

grasp(grasp_point=bracket_grasp, object=bracket,
opening_for_approach=3:CM);

MO VE bracket-hole TO beam-hole + VECTOR(0, 0, 1.3) WRT beam-hole;
MOVE YELLOW TO + VECTOR(0, 0,.5) WRT beam-hole

ON FORCE(Z WRT beam-hole) >50:0Z DO STOP YELLOW
ON ARRIVAL DO ABORTY("I Seem to have gone too far.);

END ypickup;

bpickup: BEGIN (Pick up bolt with BLUE]

grasp(the_arm=BLUE, ob ject=bolt, grasp-point-bolt,
opening-for-approach= 3«CM)

END bpickup

COEND;

wv

MOVE bolt TO beam-hole + VECTOR(0, 0, -5.3) WRT beam-hole:
normal_search(BLUE, 2«CM, 1.6:CM, 60:0Z, 9);

(Assume that the bolt is now in the hole.)

© MOVE BLUE TO @«FRAME(ROT(Z,90:DEG), VECTOR(0, 0, 4))
ON FORCE(Z WRT BLUE) >60:0Z DO STOP BLUE;

S disengage: COBECIN
foryellow: BEGIN

OPERATE YFINGERS WITH OPENING = 3«CM;
. UNFIX bracket FROM YELLOW;

AFFIX bracket TO beam;

MOVE YELLOW TO YPARK

END foryellow;

“forblue: BEGIN

OPERATE BFINCERS WITH OPENING =3«CM;

- UNFIX bolt FROM BLUE;
AFFIX bolt TO beam;

MOVE BLUE TO BPARK

\ END forblue

COEND disengage

: END whole-task;

Page 120

[1.2 EXAMPLES OF COORDINATED ACTION

These two examples take into account some of the more subtle aspects of assembly such as freeing
the bracket while trying to insert the bolt in the hole and changing the speed of the driver
dynamically.

The following section of code is designed to simultaneously free the YELLOW arm and move the
BLUE arm to insert the bolt. The freeing of the YELLOW arm is to allow the bracket to

accommodate slightly along the surface of the beam as the BLUE arm tries to insert the bolt.

MOVE bolt TO beam-hole + VECTOR(0, 0, -5.3) WRT beam-hole;
(Remember that the bolt is in the BLUE hand.)

MOVE YELLOW TO]
WITH FORCE = 0 ALONG X,Y OF beam-hole

ON DURATION > 0:SEC DO

insertion: BEGIN

(Notice that “DURATION > 0+SEC" is an approximation to simultaneous motion.)
normal_search(BLU E, 2:CM,16:CM, 60:0Z, 9);

(Assume that the bolt is now in the hole.)

MOVE BLUE TO e: FRAME(ROT(Z,90:DEG), VECTOR(0, 0, 4))
ON FORCE(Z WRT BLUE) > 60:0Z DO STOP YELLOW;

END insertion

"ON DURATION »>4:SEC DO ABORT(“Operation took too long”);
(The “ON DURATION > 4:SEC DO ABORT” will generate an error if the
insertion takes more than 4 seconds. The error will force the operator to deal with
the situation at supervisor Level.l

Without the SEARCH this could be accomplished in “weak” synchrony:

MOVE bolt TO beam-hole + VECTOR(0, 0, -5.3) WRT beam-hole;
MOVE [BLUE: YELLOW)
TO [e+ VECTOR(0, 0, 1.6) WRT BLUE : &]
WITH [: FORCE = 0 ALONG X,Y OF beam-hole]
ON [FORCE(Z WRT BLUE) »60:0Z :] DO [STOP : STOP];

It 1s awkward to include the SEARCH in such a scheme. In fact, this type of coordination comes
up in a number of other places. For example, 1f you want to operate a device (eg. the DRIVER)
and move an arm or camera “at the same time.” Events and synchronizing primitives have been

added to solve these control problems. Consider the following way of programming this task:

EVENT y-ready, b-ready;
{y_ready is an event signalling that the YELLOW arm is ready to move, b-ready
indicates that the BLUE arm is ready to move.)

MOVE bolt TO beam-hole + VECTOR(0, 0, -5.3) WRT beam-hole;
bolt-insert: COBEGIN

free-yellow: BEGIN
- SIGNAL y-ready;

1

. 11.2 COORDINATED ACTION Page 121

WA | T b_ready;
MOVE YELLOW TO e

WITH FORCE = 0 ALONG X,Y OF beam-hole

ON DURATION > 4:SEC DO ABORT("Took too long”);
END {free-yellow

blue-insert: BEGIN {Use blue to insert bolt)
SIGNAL b-ready;
WAIT y_ready;
normal_search(BLUE, .2:CM,1.6:CM, 60:QZ, 9);

(A ssume that the bolt is now in the hole.)

MOVE BLUE TO #«FRAME(ROT(Z,90:DEG), VECTOR(0, 0, 4))
- ONFORCE(Z WRT BLUE) »60:0Z DO STOP YELLOW;
END blueinsert;

COEND bolt-insert;

Consider the problem of inserting in a screw and checking to make sure that it does not bind. If,
after a short time, the screw does not bind, the speed of the DRIVER can be increased. However,

(if 1t DOES bind, everything should stop and the DRIVER should be reversed to try to unbind
the screw.

EVENT d_ready, b_ready;
- SCALAR sp, flag;

sp « 30;
flag « 1;

N WHILE flag DO
screw-loop: BEGIN
move-screw: COBEGIN (Move and screw simultaneously]

_ drive: BEGIN
SIGNAL d_ready;
WAIT b_ready;
OPERATE DRIVER

WITH VELOCITY =sp
ON DURATION »> 8:SEC DO ABORT("Took too long”);

END drive

downward-force: BEGIN

SIGNAL b_ready;
WAIT d_ready;
MOVE BLUE TO e

WITH FORCE = 0 ALONG Z OF BLUE

. WITH FORCE = 40:0Z ALONG Z OF BLUE
bind: ON TORQUE(Z WRT BLUE) > 80:0Z DO

bound: BEGIN

DISABLE catch-ok;

STOP BLUE;

STOP DRIVER;

- COBECIN {Try to unbind by reversing the driver)

L

Page 122 COORDINATED ACTION 11.2

unscrew: BEGIN

SIGNAL d-ready;
WAIT b_ready;
sp « -60;
OPERATE DRIVER

WITH VELOCITY = SP

ON DURATION > 4:SEC DO ABORT("Can’t unbind”);
END unscrew

upward-force BEGIN
SIGNAL b-ready;
WAIT d_ready;
MOVE BLUE TO e

WITH FORCE = 0 ALONG Y, X-OF BLUE
WITH FORCE =40:0Z ALONG Z OF BLUE

out-ok: ON FORCE(Z WRT BLUE)<20+OZ DO
BEGIN

STOP DRIVER;

STOP BLUE;

{L eave flag true for retry.}
END

too-much-time: ON DURATION>4«SEC DO ABORT;

END upward-force
COEND

END bound

catch-ok: ON DURATION > 1:SEC DO

BEGIN

DISABLE bind;

ENABLE torqued _in_ok;
sp « 60; {maybe this should be CRITICAL.]
END

torqued _in_ok: DEFER ON TORQUE(Z WRT BLUE) > 80+OZ DO
BEGIN

STOP DRIVER;

STOP BLUE;

flag « 0; (indicating no retry}
END;

END downward-force

COEND move-screw

END screw-loop;

! 11.3 A ‘VERY HIGH LEVEL’ EXAMPLE Page 123

CC 11.3 A ‘VERY HIGH LEVEL’ EXAMPLE

oo This very short example demonstrates the use of assembly-oriented special primitives to simplify
a task specification, as well as some of the object description conventions used by those primitives.
Here, the task is the same as that of subsection II.1.1. For a fuller explanation of the use of such
primitives and another, longer example, see Chapter 4.

FRAME beam, bracket, bolt;

FRAME bracket-bore, beam-bore;

| FRAME bolt-grasp, bracket-handle;

: (We must first describe the various components. We expect that eventually the process Of
: making such descriptions will become very largely automated, as computer programs begin to

play an increasingly active role in mechanical design. See Section 4.7.) :

ASSERT FORM(TYPE, beam, object);
ASSERT FORM(GEOMED, beam, "beam.B3D[AL, HE"), (Shape description]
ASSERT FORM(SUBPART, beam, beam-bore);

ATTACH beam-bore TO beam RIGIDLY AT TRANS(ROT(Y,90),VECTOR(0,1.5,6));

| ASSERT FORM(TYPE, bracket, object);J

] ASSERT FORM(GEOMED, bracket, "BRACK.B3D[AL,HE]"); (Shape description.)

| ASSERT FORM(SUBPART, bracket, bracket-bore);
| ASSERT FOR M(SUBPART, bracket, bracket-handle);

| ATTACH bracket-bore TO bracket RIGIDLY AT TRANS(ROT(X, 180),VECTOR(5.1,2,0));
oo ATTACH bracket-handle TO bracket RIGIDLY AT TRANS(ROT(X,180)NILVEC):

| ASSERT FORM(TYPE, bolt, SHAFT);
oo ASSERT FORM(DIAMETER, bolt, 0.5:CM);

ASSERT FORM(TOP_END, bolt, head _typel),
ASSERT FOR M(BOTTOM-END, bolt, tiptypel);

| ASSERT FORM(TYPE, tiptypel, FLAT-END);

| ASSERT FOR M(TY PE, bracket-bore, BOR E):
ASSERT FORM(DIAMETER, bracket-bore, 0.502:CM);

Lo ASSERT FORM(LENGTH, bracket-bore, 0.5:CM);

| ASSERT FORM(TOP_END, bracket-bore, bracket,holel);
ASSERT FORM(BOTTOM_END, bracket-bore, bracket,holel);

(Et cetera)

{A lso, describe how things go together:}
Et ASSERT FORM(TYPE, beam-assembly, ASSEMBLY);

ASSERT FORM(SUBPART, beam-assembly, beam);
ASSERT FORM(SUBPART, beam-assembly, bolt);

EN ASSERT FORM(SUBPART, beam-assembly, bracket);

ASSERT FORM(bracket, FITS-ONTO, beam-assembly, AT,

Page 124 A ‘VERY HIGH LEVEL’ EXAMPLE I1.3

TRANS(ROT(Y,90),VECTOR(5.1,2,0));

ASSERT FOR M(bolt, FITS-ONTO, beam-assembly, AT,
TRANS(ROT(Y,90),VECTOR(5.1,2.3,0));

i ASSERT FOR M(MATED, beam,hsurf, bracket-bottom);
ASSERT FORM(ALIGNED, beam-bore, bracket-bore);
ASSERT FORM(RUNS_THRU, bolt, bracket-bore);

| ASSERT FORM(RUNS_THRU, bolt, beam-bore);
{Et cetera.)

(Now, describe the initial scene. Here, assume that the initial object locations are known

precisely.)
; bracket « FRAME(NILROT,VECTOR(20,40,0));

beam « FRAME(NILROT,VECTOR(10,60,0)); i
bolt « FRAME(ROT(Y,180),Y ECTOR(30,50,5));

| grasp bracket AT TRANS(ROT(Y,180),2:Z) WITH YELLOW;
(The system will use its internal model of the bracket to fill in the expected hand opening.)

FIT bracket ONTO beam-assembly
USING YELLOW

AFTERWARDS HOLD bracket WITH YELLOW;

(The system will use the object description information to fill in the exact location to which to
! move the bracket. Also, it will pick appropriate techniques to ensure that the bracket is

appropriately aligned. The AFTER WARDS clause tells the system that it is to use the
) yellow arm to hold the bracket in place]

INSERT bolt INTO bracket-hotel USING BLUE;

(Once again, the system will fill in the details, such as how the bolt is to be grasped, how it
! should be brought to the hole, how it will be pushed in, and so forth.}

| RELEASE bracket; (Since the bolt now holds it on.)

1

.

C Page 125

~ APPENDIX III

RUNTIMESYSTEM

- This appendix discusses in greater detail some of the aspects of the runtime system, which resides
| on the PDP 11 as a set of programs executing compiled code, operating devices in real time and

| receiving sensory Input.

[11.1 THE RUNTIME SCHEDULER

N As mentioned earlier, in Chapter 5, the runtime scheduling is managed through a combination of
priority level assignments to various types of processes and a time-slot request list. The PDP-I 1
hardware provides eight processor priority levels. These are assigned in the AL system as follows:

- 7. AD (Analog-to-digital converter), joint servoing
6. Clock, calendar

5. <spare>
4. condition monitors; Interrupt handlers for
various condition-checking devices (eg finger pads).
3. servo predictor

C] 2. <spare>
1. Interpreters, scheduler for background stuff.
0. Interpreters

The AL system keeps a calendar of things that must be done in each time interval. With time
slot 1s associated:

a. An AD command list which is to be started.

“ b. A queue of procedure calls to make at various priority levels.

Typically, a servoing operation will have two “phases”, one which runs at level 7 as a response to

_ an AD-done interrupt and which 1s responsible for emitting the new drive, and a somewhat lower
priority one which requests a new time slot from the calendar management routine and sets up the
correction phase for the new slot- As previously indicated, this first phase 1s “scheduled” by
putting a pointer to the appropriate AD command list into the “AD request” part of a calendar

~ time slot. The second phase 1s scheduled merely by entering it onto the calendar queue of things
to be requested in the same tick. Joint servos are described more fully In the next section.

- If a non-critical process (eg, a condition monitor) needs a “consistent” set of AD measurements, it
can get them by setting up the appropriate AD command list, finding a time slot for taking the

measurements, and then placing a request that the computation that is to use the set of

Lo measurements be started up at the time slot after the one mm which the measurements are made.

In cases where a command list is too long to be finished in one time slot, the process requesting

| the measurements must reserve two (or more) contiguous slots. This 1s done by placing the
. command list 1d in the first slot and a special flag value (perhaps -1) into the remaining slots, so

that no other processes will try to reserve them.

Page 126

III.2 TRAJECTORIES

A trajectory for the hand 1s generated at compile time under the assumption that the planning
values for the initial point, departure point, via points, arrival point and final position are
accurate.

If at run time 1t 1s found that some or all of these planned positions have moved slightly it
becomes necessary to modify the planned trajectory to pass through the actual positions. If the
actual positions are only slightly different from the planned positions then the trajectory is still
almost optimal, that 1s, it still has most of the properties with which it was designed. If the
deviation from the planned values to the actual are great then the trajectory is no longer optimal.
To plan a new trajectory would again optimize the move, but only if the time to compute is less
than the time saved is it worth recomputing. At present this is not the case, so no recalculation of
trajectories is done. Instead, the following trajectory modification step is performed:

Before the move 1s executed, it 1s prepared by computing the discrepancies between actual
locations and planned locations. Fifth degree interpolating polynomials (with zero initial and
final velocity and acceleration) are computed to be added ito the planned polynomials to bring
the planned trajectory into line with reality. The joint angles associated with a frame are stored
along with 1ts matrix, so this often does not mvolve much calculation, unless the frame has been
changed since these calculations were done last. Also at this time the joint inertias and gravity
loadings are calculated and stored in the value cell of relevant frames.

[11.3 JOINT SERVOINC

Any coordinated motion of the arm can be expressed as six time dependent motions, one for each
joint; the coordinated motion is parameterized in terms of time. The problem of servoing the
arm, or arms, is thus reduced to a problem of servoing a number ofjoints with respect to time.

A joint servo has two parts: a drive part and a predictor part. As mentioned before, the drive part
1s run at priority level 7. When it finishes, the servo enters priority level 3 for the predictor. First,
the predictor reserves a time for the next run of this servo. The delay 1s chosen based on
considerations of joint response time, joint velocity, and availability of time slots.

Now the predictor evaluates the motion polynomial for the time which it has reserved. This
evaluation may take into account an interpolating polynomial used for last-minute trajectory
modification, as well as any offset that might be necessary due to modifications being made
during the motion itself. These calculations give the predicted set point. The predicted velocity
and acceleration are obtained by difference techniques based on recent set point values, The joint
inertia and gravity force loading are interpolated. The gravity loading 1s added to the product of
the predicted acceleration and the joint inertia to yield a predicted drive.

If this joint has multiple wipers then the appropriate wiper to read the joint position is
determined. Then the joint calibration is applied to the set point to yield the expected

X 111.3 JOINT SERVOING Page 127

: potentiometer reading for the joint at the reserved time. The servo gains, which are dependent on
joint inertia, are next calculated, and finally the servo equation is set up in terms of observed
position and velocity. The form of the servo equation 1s dependent on whether the joint is being

. run with position, velocity, or force servoing. Having done all this predictive work, the joint
servo dismisses control.

When the reserved time occurs, the drive part of the servo runs in priority level 7. The drive part
measures the position and velocity, evaluates the servo equation prepared by the predictor, applies
friction compensation and drives the joint. This 1s a very fast computation and minimizes any
delay between observation and action. The predictor 1s then run again for the next servo

) scheduling, as described above.

Upon completion of the motion, or if some error should occur, or if some other process requests
. that the joint stop, completion codes are set for the joint, and then the servo terminates.

The advantage of this servo scheme 1s that it allow flexible scheduling: each joint can run at its

4 own required repetition rate. As the joint knows when it will be run next it 1s possible to pre-
compute most of the drive and thus reduce the servo delay.

Each servo routine has a control block which includes a status register. In the case of a joint servo
” the status register contains the following bits:

RUN joint 1s running or about to be run
FIRST first time through loop for this motion.
FINAL in final state, nulling errors
STOP stop this joint, or joint 1s stopped
EXFORCE joint stopped due to excessive force.
ADERR a/d error

NONEX joint is down or does not exist
STERR Servo was not run on schedule

SERVO position Servo
VELS velocity servo
FORCE exert force

WOB perturb this joint while running
NUL null errors at end and stop

|
L

When the servo is started up for the first time, it 1s given certain information, including which
| joint it should servo, what the properties of that joint are, what polynomial to follow, the
1 predicted gravity torque and inertia loadings.

This system allows us to move the arm and to carry loads; it 1s possible to exert forces along

4 various free directions. The system as it 1s described here is incapable of interacting with live
loads, springs, partially submerged objects and other objects with complex reactions to forces.

~~

L

Page 128 INTERPRETABLE CODE [11.4

[11.4 INTERPRETABLE CODE

The runtime interpreters act by interpreting a special kind of code generated by the compiler.
The pseudo operations available include stack manipulation, flow-of-control primitives, device
control, and arithmetic. Arithmetic routines always take their arguments from the stack, which
contains pointers to value cells. Variables are accessed through environments: an environment
points to all the variables local to a particular block level and also to the environment in force at
the next global level. When one interpreter sprouts several subsidiary interpreters (to implement
a simultaneous block, for example), each new imterpreter gets a new environment which points to
the old one; thus they all share global information.

Arguments are stored immediately after those pseudo-instructions which need them.

Here 1s a list of the pseudo-operations currently available:

STACK OPERATORS

gtval <arg> The argument has two fields: lexical level and offset. Together, these
determine a variable. The value of that variable 1s extracted from the graph
structure and a pointer to it 1s placed on the stack.

chnge <arg> The argument again determines a variable. The value currently pointed to by
the top of the stack is stored into that variable, and all necessary updating of
the graph structure 1s performed.

pop pops the stack.
copy <num> finds the <num>"th element down in the stack (this will be a pointer to some

value cell) and copy it to the top.
copys make a new scalar value cell; mitialize it to the same value as the cell currently

pointed to by the top of the stack, and push it.

copyv make a new vector value cell; initialize it to the same value as the cell
currently pointed to by the top of the stack, and push it.

copyr make a new rot value cell; imiftialize 1t to the same value as the cell currently
pointed to by the top of the stack, and push it.

copyf make a new frame value cell; initialize it to the same value as the cell currently
pointed to by the top of the stack, and push it.

copyp make a new plane value cell; mitialize it to the same value as the cell currently
pointed to by the top of the stack, and push it.

copyt make a new trans value cell; mitialize it to the same value as the cell currently
pointed to by the top of the stack, and push it.

flush clears the stack.

ARITHMETIC

Arithmetic routines are supplied for ali the operations described in subsection 2.1.9. The stack
contains pointers to the value cells needed as arguments. After the operation is completed, all
argument pointers are popped from the stack, and a pointer to the result value cell is pushed onto
the stack.

FLOW OF CONTROL

111.4 INTERPRETABLE CODE Page 129

proc Procedure call; takes as arguments the destination address, the argument list.
| All value parameters should first have been copied into temps.

return Procedure return

sprout Start up a new interpreter. The single argument tells where its code isto be
found.

enable <arg> start up an on-monitor with location of status word <arg>.
disable <arg> the on-monitor with location of status word <arg> 1s disabled.
wait wait until all descendant (non on-monitor) processes are dead. Then kill

descendant move on-monitors and continue.

terminate terminate this process. Should first call “wait”.
| jump <arg> unconditional jump to indicated location in interpreter code.

jumpp <arg> conditional jump on positive element at top of stack.
jumpz <arg> conditional jump on zero element at top of stack.
nop no-op.

ARM AND DEVICE CONTROL

prepmove <arg> <arg> points to the move vector. Trajectory modification happens now.
startmove sprouts joint servos and move-monitors
search <arg> <arg> points to the search vector.
stop <arg> <arg> encoding of what devices must be stopped.

INPUT AND OUTPUT

"Some sort of I/O will be implemented, most likely including string output to the supervisor, error
message output, and input (from supervisor or from coresident routines) of value cells.

DEBUGGING AIDS

source <arg> notes that <arg> 1s where the interpreter 1s now in source code.
tellsou rece output current source location to the 10.
step begins step mode, which does one interpretation at a time, requires message to

continue.

offstep turns off step mode; normal speed 1s resumed.

III.5 ALGORITHMS FOR USE OF GRAPH STRUCTURE

These are the algorithms (written in an Algol-like fashion) used to find values for variables in
the graph structure and to change those values.

Page 130 ALGORITHMS FOR USE OF GRAPH STRUCTURE [1.5

PROCEDURE invalidate (POINTER(NODE) n);
IF invmark(n)-O THEN

BEGIN COMMENT: This cell currently marked valid;
POINTER p;
imvmark(n)c - 1;

p « dependents(n);
WHILE p=NULL DO

BEGIN COMMENT: Mark all dependents as invalid;
invalidate(p);

END

END;

PROCEDURE change (POINTER(NODE) n; POINTER(VALUE) vnew);
BEGIN

COMMENT: This procedure 1s called in order to explicitly assign
a new value, vnew, to node n;

POINTER(VALUE) vold;
mvalidate(n);
vold « value(n);
value(n)-vnew;

p « changer(n);
WHILE p=NULL DO

BEGIN COMMENT: Handle all changers;
APPLY/(code(p),vold,vnew),
p « link(p);
END;

imvmark(n) « 0;
END;

POINTER(VALUE) PROCEDURE getvalue (POINTER(NODE) n);
BEGIN

IF invmark(n)=0 THEN evalnode(n, time « times+1);
RETURN(value(n));

END;

as 11.5 ALGORITHMS FOR USE OF GRAPH STRUCTURE Page 131

LT PROCEDURE evalnode (POINTER(NODE) n, INTEGER t);
| BEGIN COMMENT: Put a good value in the value cell of n.

t is used to break cycles;
- IF invmark(n)=0 fl invmark(n)=at THEN RETURN;
| imnvmark(n) et;

p « calculator(n);
WHILEp = NULL DO

BEG IN “cloop”
POINTER(node) d;

| d « needed(p);
Lo WHILE d = NULL DO

1 BEGIN

evalnode(node(d),t);

| - IF invmark(dep(d)}=0 THEN
j BEGIN

| p « next(p),
Lo CONTINUE “cloop®;

END;

- d « next(d);
i END;

Lo value(n)-APPLY/(code(p), args(p));
invmark(n)«0;

| RETURN;

LC END;
END;

| .
f

|

3

|

[]

