STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-236

STAN-CS-74-433

ON AUTOMATING THE CONSTRUCTION OF PROGRAMS

BY

JACK R. BUCHANAN AND DAVID C. LUCKHAM
SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 2494

MAY, 1974

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

r—

/’_\_'~
w0 JUNIG,
~ /—\\:

P s
e N\
S [N
2R

.}; N

> £
IV .%.&'\\
w

AR o}

-

, \‘u Hu_r, .






STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM- 236

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-74- 433

ON AUTOMATING THE CONSTRUCTION OF PROGRAMS

by
JACK R. BUCHANAN and DAVID C. LUCKHAM

Artificial Intelligence Laboratory
St anford University

May 1974

ABSTRACT

An experimental system for automatically generating certain simple kinds of programs is
described. The programs constructed are expressed in a subset of ALGOL containing
assignments, function calls, conditional statements, while loops, and non-recursive
procedure calls. The input is an environment of primitive programs and programming
methods specified in a language currently used to define the semantics of the output
programming language. The system has been used to generate programs for symbolic
manipulation, robot control, every day planning, and computing arithmetical functions.

This research was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defense under contract [DAHC15-73-C-0435] The views
and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied,
of ARPA, NASA, or the U.S. Government.






J

l INTRODUCTION

1. INTRODUCTION.

We present an experimental system for writing certain simple kinds of programs
automatically.  The system requires as input a programming environment consisting,
roughly speaking, of primitive functions and procedures, rules of composition and
logical facts. If it is then given a problem it attempts to find a method of solution in
terms of these rules and primitives. It will take account of certain kinds of advice from
the user. Some of the techniques it uses are most decidedly “heuristic”, {f
successful, the system will output the method of solution in the form of a plan or
program in a language somewhat similar to a subset of Algol containing
assignments, function calls, conditional branches, while loops, and non-recursive
procedure calls. We call this language the OUTPUT ( or PROGRAM) language.  The
forms of the definitions of the elements of the programming environment (i.e. the
primitive procedures and rules of composition) correspond to axioms and rules of
inference in a logic of programs currently used to define the semantics of the
programming language Pascal [Hoare 1969, Hoare and Wirth 1972; see also lgarashi,
London, tuckham1973]. For example rules for constructing while loops have a form
corresponding to the iteration rule. The contents of these definitions vary with the
actual environment. Thus, the system can be used to generate simple Algol-like
programs for robot control problems, for every-day planning, or for computing
arithmetical functions.

Given a programming environment (from now on, often called a FRAME), problems to be
solved are stated as pairs of conditions, the initial input condition and the goal output
condition. We may regard these pairs as the input-output assertions of formulas in
the logic of programs referred to above. The system is presented with an
incomplete  formula (i.e. a program part that satisfies the input-output
assert ions is missing), and its job is to complete the formula. The construction of a
solution program may therefore be formulated as a search for a proof in the logic
of programs of a theorem whose input-output assertions match those of the
incomplete problem formula. This enables us to justify the formal methods of the
system {as opposed to the actual implementation) by showing that the formal methods
_wiII always construct correct programs.

The basic component that does most of the searching is a very simple backtrack
problem reduction algorithm. It recursively applies to a given goal the primitives and
rules of the programming environment to generate subgoals whose solution will imply a
solution to the goal. It proved necessary to use some of the logical facts of
the programming environment in special ways to evoke procedures for restricting
the growth of the subgoal tree. This is often referred to as “building in” knowledge.
In this case, this led to a few rather unusual complexities in the primitive
language we have for defining the environment, which we call the FRAME
language, The choice of special facts, as it stands at the moment, was very much
influenced by our original aim to study autonomous robot planning. The set of these
facts is not dependant on the environment but it probably should be. The point
is that the definition of a programming environment requires not only the
definitions of primitive procedures, rules of composition, and logical facts, but also
some additional information about the relations in the environment as well, This



INTRODUCTION 2

information to some extent guides the problem-solving behavior. The basis of the
frame language is a free variable first order logic in which statements may have one
of three truth values (TRUE, FALSE, and UNDETERMINED).

In addition to the special logical facts, certain statements about the action of the
problem solver itself are useful in reducing the search. These are statements such
as “when an attempt at goal A fails, do goal B before reattempting A” or “iry the
procedure FLY before the procedure WALK”; their usefulness usually varies from
problem to problem within a given frame. We have therefore chosen not to allow
such statements within the frame language, but to develop a separate ADVICE
language for them. Advice can be given to the system interactively while it is
attempting to produce a program. The kind of advice that can be expressed at the
moment is very elementary and is not specialized towards any particular domain of
program generation. The function of advice is to impose structure on the frame (more
accurately, preference and relevance connections between the rules and axioms).

Certainly the class of programs that this system will construct given only input-output
specifications depends on the extensiveness of the frame. If the frame contains enough
primitives and rules™( one might call these programming methods) and logical facts, the
system ought to enable a user to program a solution to a problem without having to
give much thought in advance to detailed methodology. Thus one of our examples of
generated programs (Section 3) is the very simple Fibonacci program suggested in
[Balzer 1972] as an example of what automatic programming systems ought to try
to do. Admittedly, our frame input isn’'t quite so informal, but it could easily be
extended to accept the recurrence equation input suggested in [Balzer 1972); this
could be translated into an iterative rule in the frame by straightforward met hods
(even the standard algorithm for translating linear recursive definitions to iterative form

would do).
i LIBRARY <
1
FRAME, [
PROBLEM, | | TRANSLATOR | BACKTRACK ;2 PROGRAM |—?| oUTPUT
ADVICE. PROBLEM ASSEMBLER PROGRAM
SOLVER J/
INPUT STACK OF OUTPUT
SUB-
PROCEDURE
PROBLEMS

Figure 1., Main System Components



«—

3 INTRODUCTION

At run time the first action of the system is to translate a given frame into a
backtrack problem solver augmented by special search procedures. If advice is
given during a search for a solution (i.e. during the program generation phase} the
translator is called and the problem solver is modified. If a solution program is found,
the user is faced with a number of choices. He can ask for another program which
takes the output conditions of the solution ‘as its input conditions; programs can thus
be constructed in segments that “fit toget her”. He can choose to have the
solution optimized according to some very ftrivial criteria, or generalized and placed
on a library of nonprimitive procedures. If the solution program contains conditional
branches calling other procedures, he can choose to have those secondary
procedures constructed. Eventually he may choose to stop. Figure 1 shows the
main components of the system and how they interact. We have begun to make
some other additions, for example, the ability to assume the existence of non-
primitive procedures, in order to try the system as an interactive aid to
structured programming. The system is implemented in LISP using the primitives
and backtracking facilities of MicroPlanner [Hewitt 1971, Sussman and Winograd
1972.1 In the following sections we have tried to say what the various
components of the system do without going into too many details of how. Most of
the algorithms are -quite straightforward so it does seem possible to do this.
Wherever we omit discussion of special tricks, or inadequacies in the
implementation languages force restrictions upon us, we try to leave a warning.
Details of the actual implementation are given in [Buchanan 1974].

. We assume that the reader is familiar with the usual notation and terminology of

first order logic and also with some straightforward concepts from the theory of
subgoaling and tree searching that are explained in [Nilsson1871] In addition we
rely on (i.e. use without defining) some of the concepts of backtrack
programming which have attained fairly standard usage in many papers, and may be
found in [Hewitt 1971, Sussman and Winograd, 1972] The interest in applications
to robot planning is manifest in our use of concepts such as FLUENT and NON-
FLUENT etc., to be found in [McCarthy and Hayes 1968].

Section 2 presents an overview of the program generation system, and introduces

- some of the questions dealt with in later sections, A brief outline of the logic of

programs is given and it is shown how frame definitions and the program construction
rules of the system may be formulated within this logic. An example of a frame
and problem is given. We indicate how a successful subgoal search for a solution may
be converted into a proof within the logic of programs that the output program
solves the given problem. At this point we give a sketch of how correctness
proofs may be constructed in general.

Section 3 describes the language for frame definitions, the advice language and the
output program language. Details of features of the system are given in the following
sections: Section 4 provides a brief description of how the various problem solving
and program generation processes use the extra facts provided in a frame
definition, evaluation of LISP functions, and advice from the user. The methods for
constructing conditional statements are given in Section 5, and for constructing
iterative loops in Section 6. Section 7 illustrates how simple facilities of this



INTRODUCTION 4

present system can be used to develop complicated programs in structured steps.
lllust rative examples of frames and generated programs are given in Sections 3,5, 6
and 7, and the appendix contains a complete interactive session.

This present system can be extended at many points. These include adding new
kinds of frame rules (for constructing recursive procedures, co-routines etc.),
and improving the implementation facilities, the interactive system, and the
problem solver. There are many other problem domains beyond those presented in
this paper where the possibility of using the present system to generate
procedures for solving problems exists. For example, its application to generating
assembly and repair programs for simple machinery is illustrated in [Luckham and
Buchanan, 1974]). At some point in these developments it will certainly pay to
construct specialized systems for particular classes of frames. Additional special
features common to frames in each class can be then used as built-in assumptions to
speed up the problem solver, make the frame and advice languages more natural,
and build up the program library.

What has been demonstrated thus far by the system presented here is (i) the
current axiomatic theory of defining the semantics of programming languages can
be used with slight modifications to define many other simple but useful problem
environments; (ii) there are straight-forward techniques for translating declarative
descriptions into procedural descriptions for problem solving; (iii) standard problem-
solving met hods can be used to synthesize programs in a structured way on the
basis of given specifications, and to handle some burdensome details.



5 LOGICAL BASIS and OVERVIEW

2. LOGICAL BASIS AND OVERVIEW

We begin by describing how frames and the program construction methods of the
system can be formulated within the Logic of Programs. The soundness of frames and
correctness of programs are discussed. A brief description of the underlying problem-
solving algorithm of the system is given. We then outline proofs that under certain
assumptions the programs constructed by the system will be correct. The presentation
here is intended to be informal and to serve as an introduction to the later
sections;many details are left unmentioned until later, and statements of the correctness
results are weaker and more restricted than they need be. Extensions of the
correctness proof are discussed in later sections.

NOTATION: x,y,z,u,v,w...variables,

XY, 2,... lists of variables,
f,g,h.... functions,
s,t... functional terms,

G,,P,Q,R,S,.. Boolean expressions (essentially formulas of first order logic
with standard functions and predicates for equality, numbers, lists
and other data types),

P(X) denotes the formula obtained by replacing each free variable in P by
a new variable from X,

(IX)P(X) denotes existential quantification over all X-variables in P(X),

AB,C,.. programs and program parts in an Algol-like plan language (details
in Section 3),

p,d,... procedure names,
o, 3,\,... substitutions of terms for variables, also denoted by (<x«t>),
P(t) denotes the result of replacing x by t everywhere in P(x),

, /3 denotes the COMPOSITION of « and /&; Ex/3 =(Ex)R for all
- expressions E.

We assume the existence of a fixed arbitrary ordering of literals (atoms and negations
of atoms).

2.1 LOGIC OF PROGRAMS

We review bDbriefly the elements of an inference system for proving properties of
programs [Hoare 1969]. Further details may be found in [lgarashi, London, Luckham

1973]
STATEMENTS of the logic are of three kinds:

(i) Boolean expressions, (henceforth often called ASSERTIONS)



LOGICAL BASIS AND OVERVIEW 6

(i) statements of the form P{A}Q where P,Q are Boolean expressions and A is a
program or program part.

P{A}Q means ‘if P is true of the input state and A halts (or halts normally in the
case that A contains a GO TO to a label not in A) then Q is true of the output

state”.

(iii) Procedure declarations, p PROC K where p is a procedure name and K is a
program (the body of p).

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of
statements (premisses, say H,,.,H, ) to a statement (conclusion, say K) of kind (ii). Such

rules are denoted by

The concept of PROOF in the logic of programs is defined in the usual way as a
sequence of statements that are either axioms or obtained from previous members of
the sequence by a rule. A proof sequence is a proof of its end statement.

NOTATION: We use H [|- K to denote that K can be proved by assuming H. H |-K

denotes the same thing for first order logic. It is sometimes helpful to denote
statements that are problems or subproblems for the program generator to solve by

P{21Q.
2.2 FRAMES AND PROBLEMS

We restrict our discussion to problems that can be represented in the following general
form.

The problem representation consists of two elements:
(1) F - a seto fu es (or laws) called the ENVIRONMENT (or FRAME)
(2)  The problem, which is a pair <l,G>:
| - an input assertion (or initial state).
G - output assertion (or goal).
The RULES in F are of at least three kinds:
(@) PROCEDURES: transforming stat es into stat es;

(b) SCHEMES: met hods for constructing programs;



r- r

7 LOGICAL BASIS AND OVERVIEW

(c) RELATIONAL LAWS: dfnitions and axioms which hold in all states and serve to
"complete" incomplete state descriptions by permitting deduction of other
elements of a state from those given.

The PROBLEM is the problem of transforming | into G using the rules of F. A SOLUTION
is a sequence of rules that transforms | to G.

REMARKS:

1. For the purposes of discussing the present system we can make the following
restrict ions:

(i) The language of assertions is very similar to Aigoi Boolean Expressions (as
referred to above).

(i)  Procedure rules and schemes are expressed as statements and as rules of
inference (respectively) in the logic of programs.

(iii)  The underlying logic of the relational laws is first order logic,
(iv)  The logic of the procedures and schemes is the logic of programs,

2. We probably ought to permit other kinds of rules in F, eg. rules for evaluating
stat es, comparing stat es etc.

NOTATION and RESTRICTIONS: Q U F 2 R denotes that R is a logical consequence of Q
and the axioms of F. Assertions describing states are denoted by |,..,G,G’,.. These
assertions (but not the assertions in rule definitions) are restricted to be conjunctions
of atomic assertions. We write R¢l to denote that R is a conjunct in I. L(F) denotes the
logic of F,ie. the set of consequences of the rules of F. Substitutions « do not
replace any variable that occurs in the initial state |. Expressions, ail of whose
variables occur in the initial state are called "fully instantiated”.

" STANDARD FRAME RULES: A set of standard rules are assumed to be part of every

frame. These are rules implemented in the program construction methods of the
problem solving aigorit hm:

RO. Assignment Axioms:
(i) Simple Assignment: P(t){xet}P(x)

(i), Conditional Assignment: (3Z)P(Z){IF P(W) THEN Y«W}P(Y)
~(JZP2)AQY){IF P(W) THEN YeW}Q(Y)

where Y-variables in P(Y) do not occur in P(W), W-variables are special
variables occurring only in conditional assignments, and Y«W denotes
the sequence of simple assignments between members of Y and W that
occur in the same argument positions in P(Y) and P(W).



LOGICAL BASIS AND OVERVIEW 8

R1. Rule of Consequencc_ai_?T_Q,Q_{A}R_!’_{q«}%(??'?

P{AIR P{AIR

R2. Rule of Composition: P{A}Q,Q{BIR

R3. Rule of Invariance: if P{A}Q and | U F 3 P then KA}Inv(Q,))
where if R;R,..,R, are the conjunct s of |

in the fixed order, then |, = Q,

for O<m<n, 1 ., = I, AR, if ~(l, U F 2-Rp)
lw1 = |, otherwise,
and Inv(Q,}) = I,.
R4. Change of Variables: P(x){A(x)}Q(x) where y is not a

"""""""" special variable,

P(y){A(y)}Q(y)

R5. Conditional Rule: PAQ{A}R,PA-Q{B}R

P{IF Q THEN A ELSE B}R

R6. Undetermined values: If I’{?}G cannot be solved and
~(PUF 2 -G) then G is UNDETERMINED in I'.

STANDARD RULES

REMARKS: The axioms RO(ii) define the semantics of conditional assignment statements,
The occurrence of P(W) within the IF statement is interpreted as a call to a procedure
with variable parameters W, the result of which is to bind those W-parameters to
values that make the Boolean statement P(W) true, if such values exist. We have
adopted a convention on W-variables, W,W.. whereby they occur only in conditional
assignments as above, and indicate the use of an atomic assertion as a procedure call
(we call them “special variables”). This eliminates the need for explicit Skolem
“successor” functions for each relation in the frame. Note that if «{(32)P(2) is true of
the input, then the rule “says” that the THEN part of the IF statement is not executed.



9 LOGICAL BASIS AND OVERVIEW

invariance states that things stay the same unless it can be proved that they conflict.
This is a way of dealing with the “frame problem” [McCart hy and Hayes 1969), but it
does force the user into being careful about stating what does change.lnvariance can be
derived within the logic of programs from a rule which states that procedures do not
have side effects. Undetermined values is a rule for deciding when to construct
conditional statements (section 2.4). The change of variables rule is an inst ance of the
rule  of substitution (see [Hoare 1969]for this and the remaining rules).
C Usually,restrictions are placed on R4 to maintain consistency. In this system the use of
the assignment axioms RO is restricted. However, the user can introduce a primitive
- assignment procedure (see below) which would not be restricted in its use;in this case
he should use a formulation which distinguishes between a variable and its value.

- INPUT FRAME RULES; In addition to the standard rules, a frame may contain rules of the
¢ following types (these constitute the user defined elements of the frame):

- S1. Primitive procedures (or operators): the rule defining procedure p is of the form
P{p;Q. The assertions P and Q are the pre- and post-conditions of p. p must contain a
procedure name and parameter list.

$2. lterative rules: an iterative rule definition containing the Boolean expressions
e P(basis), Qloop invariant), Rliteration step goal), L(control test) and G(rule goal) is a
L rule of inference of the form:

(a) P, |- Q, QAL{?}R, R{??}Qv-L

L P{while L do %;??}G

where the free variables of R and L occur in Q. Such rules are permitted not to contain
L P or L,in which case they correspond to inferences of the form:
(b) Q, QA-G{?}R,R{??}QVG

Qiwhile -G do ?%??}G
S3. Definitions. A definition of G in terms of P is a logical equivalence |- P=G.
S4. Axioms. A frame axiom P is a logical axiom |- P.
; Terms and predicates in assertions may contain calls to LISP functions. If the frame
definition contains functional terms or predicate tests that are evaluated by calls to
LISP functions, the set of premisses must be expanded to include both the input-output
assertions for these function calls and the logical axioms for the relevant data types.

REMARKS (i) The iterative schemes S2 permit the definition of methods for constructing
loops; they are instances of:



LOGICAL BASIS AND OVERVIEW 10

WEAK ITERATION RULE:  QAL{B}Qv-L

Q{WHILE L DO B}-L

where Q is the invariant of the loop. The meaning of |-Q in the premiss is that the rule
may only be applied in states where Q is -a first order consequence of the state
description. The program part ?? is restricted to be a sequence of assignment
statements (see Section 6). (ii) Inconsistencies may arise in several different ways in
frames. The axioms can be inconsistent, or the post conditions of a rule can be
inconsistent with the axioms. Also the elements of iterative schemes must satisfy some
simple consistency criteria (section 6). (iii) Note that each frame rule has a goal. The
goal of a procedure is its postcondition; the goal of an axiom or definition is its
consequent. If invariance (R3) is applied to program part A constructed from applying a
single frame rule,then Q is the goal of that rule.

The following lemma is useful in proving properties of conditional assignments
[lgarashi,London,Luckham 1973]:

OR-LEMMA __ P{A}Q, R{A}S

PvR{ A}QvS

EXAMPLE: Next, we show how a rather simple problem can be stated within our frame
formalism. This leads us very quickly into the further questions of (i) defining simple
general methods of finding solutions, (ii) formulating the correctness of solutions, and
(iii) the correctness of solutions obtained in frames that have unintended or nonstandard
interpretations.

Consider the following frame and problem:

INPUT FRAME RULES:

1. Procedure: st andon

AT(x,y)AAT(2,y) AROBOT(x)ABOX(2){standon(x,2) }ON(x,2).

F2. Procedure: step-up

ROBOT(x)AON(x,y)ASTACKED(z,y){step-up(x,y,z) JON(x,2).

F3. Iterative Rule: climb
ROBOT(M)AON(M,y)ASTACKED(u,y) A~ONTOP(M){? JON(M,u)

ROBOT( M) AON(M,y) ASTACKED(u,y) { WHILE-ONTOP(M)DO BEGIN ?%?? END}ONTOP( M)



11 LOGICAL BASIS AND OVERVIEW

F4. Axiom: ROBOT(x)AJy(ON(x,y)AYz~-STACKED(z,y))»ONTOP(x).
PROBLEM:

. ROBOT(M)ABOX(B 1 )ABOX(B2)ABOX(B3)AAT(B1,L)AAT(M,L)
NSTACKED(B2,B 1) A STACKED(B3,B2).

G: ONTOP(M)
PROBLEM 1: CLIMBING

COMMENTS ON PROBLEM 1:

i. The iterative rule says “A solution to the problem of climbing one box at a time, can
be used to construct a WHILE loop that solves the problem of climbing a stack of
boxes”. The rule defines the meaning of WHILE in the environment. Or, if we regard
WHILE as a primitive constructor whose meaning we understand, the rule is an induction
principle for the environment.

ii. The program part ?? in the conclusion of the iterative rule transforms the situation
after the execution of the loop body (?) back into one in which the invariant is again

true if the test is true;
ON(x,u){?? }ROBOT(x)AON(x,y) ASTACKED(u,y).

We restrict ?? to be a sequence of assignments.
iii. The goal of climb is ONTOP(M), the negation of the control test in this example,

Steps taken by a search procedure in solving this problem are shown in Figure 2. It
starts with state situation | and determines by logical reasoning from | and the axioms
which operators have pre-conditions that are true in | . It applies these operators and
updates the state to the new state using the rule of invariance. It repeats this process
on the new stat es. Node 6 indicates the initiation of a subproblem (the premiss of the
iterative rule) with a new initial state (the invariant) which is a subset of the state
above it at Node 5.



LOGICAL BASIS AND OVERVIEW 12

standon (1,B1)

(0% (T, B3)AAXICM) > ONTQP ()

ROBOT ()4 0% (M, Y)A STACKED (U, Y) u
stepup(M,Y,U)
ON(M,U)
climb

'(,(mmnm

SEARCH FOR SOULUTIONS TO THE CLIMBING PROBLEM
Figure 2

The solutions corresponding to the paths shown in figure 2 are:
(i) standon(M,B 1 );st epup(M,B1,B2);stepup(M,B2,B3)}ONTOP(M).

. (ii) {standon(M,B1);y<B1;u«B2;
WHILE ~-ONTOP(M) DO BEGIN
st epup(M,y,u);
yeu;
IF STACKED( w,y) THEN uew;
END}ONTOP (M) . -

where the assignments within the WHILE loop correspond to the ?? of the iterative rule.
The variable w is a special variable,

NOTE: It looks as though solution (ii) is more general than solution (i).

Using the frame rules we can now construct a proof of the statement I{solution}G within
the logic of programs.



13 LOGICAL BASIS AND OVERVIEW

1. I>(ROBOT(M)AAT(M,L)AAT(B1,L)ABOX(B1))
2 . {standon(M,B1)}ON(M,B1)ASTACKED(B2,B1)AROBOT(M) 1,F1,R4,R1,R3

3. ON(M,B1)ASTACKED(B2,B1)AROBOT(M){y«B1;
u<B2}ROBOT(M)AON(M,y)ASTACKED(u,y) RO(i),R2,R3

4. I{ st andon(M,B 1 );y«B 1;u«B2}ROBOT(M)AON(M,y)ASTACKED(u,y) 2,3,R2

5 . ROBOT(M)AON(M,y)ASTACKED(u,y){stepup(M,y,u) JON(M,u) AROBOT(M) F2,R4

6. ROBOT(M) AON(M,u) {y«u}ROBOT(M)AON( M,y) ROR3

7. ON(M,y)AdzSTACKED( z,y){IF STACKED{ w,y) THEN u~w }ON(M,y)ASTACKED( u,y) RO,R3
. ~d2STACKED(z,y) AONTOP(M){IF STACKED(w,y) THEN u«w]}ONTOP(M) RO

(o]

[{e]

. (ON( Myy)A3zSTACKED(z,y))v(-32STACKED(2,y)AONTOP(M))
{IF STACKED(w,y) THEN u<w }(ON(M,y)ASTACKED(u,y))v ONTOP(M) OR-Lemma 7,8.

10. ROBOT( M)AON(M,y)A~(32)STACKED(z,y) > ONTOP(M)  F4,
>(ON(M,y) AdzSTACKED(z,y)) vVONTOP(M)
ROBOT(M)AON(M,y)A 3zSTACKED(z,y) > (ON(M,y)AdzSTACKED(2,y))VONTOP(M)
ROBOT(M)AON(M,y) > (ON(M,y)AdzSTACKED(z,y))vONTOP(M)

1 1. ROBOT(M)AON(M,y)ASTACKED(u,y) {stepup(M,y,u);y«u;
IF STACKED(w,y) THEN ue-w }(ON(M,y)ASTACKED(u,y))v ONTOP(M) 5,6,1 0,3,R2R 1

12. ROBOT(M)AON(M,y)ASTACKED(u,y) { WHILE-ONTOP(M) DO . ..JONTOP(M) 11 R1F3

13. {solution (ii) JONTOP(M) 4,12,R2
PROOF of I{selution (ii)}G

We refer to a formal proof of L(F)||-{{A}G as a correctness proof. The existence of
such a proof implies only that the program is correct relative to the frame. Thus it is
easily seen that the final state implies (Yx)(BOX(x)>ON(M,x)), hardly a situat ion we had
intended, but which arises from the invariance rule owing to our not having axioms such

as,
ON(M,x) AON(M,y)ox=y.

In other words, our frame admits non-standard models.

We could extend the frame by adding this additional logical axiom and go back to
solving the problem all over again. But this would have to be repeated if some other
non-standard model was discovered still later. We ought to be able to do better than

that!

Now, solution (i) may still be “correct” (or solve the problem) in the extended frame.
And we can determine this from the proof of {solution (ii)}JONTOP(M) by checking to



LOGICAL BASIS AND OVERVIEW 14

see if any step uses facts from an intermediate state situation I’ that contradict the
extra logical rule. In other words, we can “run” the proof on the new world with a
special consistency check against the additional facts. This ought to be much easier
than solving the problem again from scratch.

The proof above formalizes (i.e. provides a description for the purposes of analysis)
WHAT it is the problem solver has finally done when it has solved the problem. It is a
record of those features of the frame and initial state that were essential in
constructing the solution. For example, we have actually proved
ROBOT(M)ABOX(B1)ASTACKED(B2,B1)AAT(M,L)IAAT(BI1,L){Solution(ii) IONTOP(M)

within L(F). This proof did not use BOX(B2),BOX(B3),or STACKED(B3,B2). If there was
a stacking operator in the environment, we could alter the proof--without having to
resort to the problem solver again -- to eliminate the hypothesis “Stacked (B2,B1)". It
will be noticed that a similar proof for solution (i) uses more properties of I; solution (i)
IS less general.

It is therefore plausible that a correctness proof for a solution program will be useful in
answering further questions about that program such as: Does it solve this new
problem? Can it be altered to solve a given new problem? Are there problems it will

work on that another program won’t?
15

=

1 8
ROBOT (1) STACKED
(U.Y)
; £ )
A
\ /
\

\ /
\ ]

;0';: @ &P

J

9
2 3

PROBLEM 1: THAND-OR-AND TREE SEARCH
Figure 3



15 LOGICAL BASIS AND OVERVIEW

2.3 THE FORMAL PROBLEM SOLVING ALGORITHM

To automate solving simple problems of this kind it is sufficient to use a straightforward
problem reduction search [Nilsson]. Figure 3 illustrates the depth first reduction of
goals to subgoals using the input frame rules (as described below) until subgoals are
reached that are true in the current state. In figure 3, there are two kinds of nodes,
Goal nodes and Rule nodes corresponding to the separate steps of (1) choosing a rule
to use, and (2) generating the subgoals necessary to apply that rule. Goal nodes may
be any combination of THAND,(defined below) OR, AND, but Rule nodes are always OR
nodes [Nilsson1971]. The arrows from each rule node point to its immediate subgoals.
If a node reduces to an OR of its subgoals (which are thus OR- nodes), it has no angle
mark; if it reduces to a THAND of its subgoals the relevant arrows are connected by
one angle mark; an AND of subgoals is denoted by two angle marks. Each rule node is
labelled <n,Fm> where n is the order in which it was achieved ( omitted if it was not)
and Fm is the frame rule used; similarly goal nodes are labelled <n,Gm>.

We give an informal description of the reduction algorithm (or subgoaler) in the simple
case where it does not contain the rule of undetermined values, as follows:

The subgoaler computes on a triple, <G’J,A>, where G’ is the subgoal to be attempted
next, I’ is the description of the current state, and A is the current partial answer. Let
~¢ be a substitution that replaces variables by terms from | (the initial state). Nodes in
the subgoal tree are developed by using input rules in F: if a rule of F has a conclusion
or postcondition Q such that Qe = G’ then the rule is USED to develop the node by
appending its premisses or preconditions Hje¢,..Hhe¢ as subgoals of G’. Q is said to

match G'.

A goal G’ is ACHIEVED in one of four ways:

(a) if there is an « such that I' U F > G,

(b) if not (a), then G’ is developed using an instance of a frame rule with post-condition

(or goal} Qo¢. Let the immediate subgoals of G’ be G1*G2 where * is the principle
connective in the preconditions of the frame rule, so that Gl and G2 are *-nodes. In

this case, G’ is ACHIEVED if:
(i) one of G1 or G2 is achieved (in the case ¥ is OR),
(ii) both G1 and G2 are achieved (in the case * is THAND),

(iiiy  both Gl and G2 are achieved (in that order, say) and the updated state
{defined below) that results from achieving G2 also satisfies G1 (in the
case ¥ is AND).



LOGICAL BASIS AND OVERVIEW 16

If G’ is achieved under (a) there is no change in the current state and answer.
However, in case (b), both are UPDATED as follows: let I' be the current state resulting
from achieving G 1 ¥G2; the state resulting from achieving G’ is Inv{Qe,l’). A is composed
(by R2) with the procedure call or while statement corresponding to the rule that was
used to develop G

A node in the THAND-OR-AND tree FAILS when the goal associated with the node
cannot be achieved - essentially because it is not true of the associated state and
either no rule can be applied to reduce it or one of its subgoals is not achievable.
Whenever a goal node fails, the search procedure (simplest form) "BACKS UP” to the
goal node immediately PRECEDING it and attempts the next OR-possibility for that goal.
The search is DEPTH FIRST.

Thus, an AND assertion is achieved when all of its elements (subgoals) have been
achieved simultaneously in the same state; a THAND assertion requires only that its
subgoals be achieved in some order but not necessarily simultaneously.

This simple kind of search algorithm can be implemented quite easily using the goal tree
generation, automatic backtrack and data base access functions of MICRO PLANNER
[Hewitt 1971, Sussman and Winograd 1972]), or any of the other current problem
solving languages. However,it is necessary to distinguish between the formal algorithm
and the implementation since the latter can only approximate some of the formal rules.

THE UPDATE PROBLEM. The updating of a state to the new state resulting from the
application of an inpyt rule is formulated by invariance. In general the rule of
invariance is not computable, but even in cases where it might be, it is IMPRACTICAL.
The implementation of this rule has to fall short of its formulation. Inconsistencies in
the state description are almost certain to arise eventually. We can try to delay this
by paying special attention to those axioms that are most likely to be transgressed (e.g.
uniqueness and single-valuedness properties). The case of ITERATIVE rules provides a
particular difficulty since the rule goal G may not provide enough information about
what went on during the iterations of the loop body to continue planning after an
applicat ion of such a rule. We allow the user to specify an output assertion as part of
an iterative rule, in which case invariance is applied using this assertion in place of the
usual rule goal (see section 6).

2.4 CONDITIONALS.

Extending the description of the goal reduction algorithm to include the rule of
undetermined truth values follows closely the actual system implementation discussed in
Section 5. Here we give some motivation for rules R5 and R6.

Conditional statements are constructed whenever an undetermined goal occurs. The
notion of undetermined truth value used here is an operational one. The problem
solver wants G’ to be true in I, G’ is not true in I, no way of making G’ true can be
found, and G’ is not false in I In such cases, the algorithm continues by splitting its



17 LOGICAL BASIS AND OVERVIEW

problem into two subproblems: to solve a more global problem G# say, (a) assuming G’
is true and (b) assuming G’ is false.

For example, relative to the frame in problem 1 we can pose a second problem,
11{?}ONTOP(M) where |1 differs from | only in not containing the assertion AT(M,L). Qur
solution (ii) above is no longer a solution to this new problem since AT(M,L) is not true
in t1 (neither is it known to be false!) and there is no way of achieving it, Using R6 and
R5,t he extended algorithm can construct the solution;

(iii) 11 {IF-AT(M,L) THEN CALL PROC1(M,L) ELSE
BEGIN
st andon( M,B 1 );y«B 1 ;u~B2;
WHILE-ONTOP(M) DO
BEGIN st epup(M,y,u); y«u;
IF STACKED(w,y) THEN uew;
END
END;ONTOP(M).

and the proof of correctness of solution (ii) can be extended to a proof of |1 (solution
(iii) }ONTOP(M).

The implement at ion of these rules is complicated by considerations such as the
following.

{a} A stack is required for the subproblems for cases when undetermined subgoals are
assumed false, i.e. subproblems for the form PA-G’{PROCN}Gx.

(b) Criteria for the choice of Gx are required. For example, the contingency problem
above is 11 A-AT(M,L){PROCI(M,L) JONTOP(M). Although the problem solver has found
that it cannot solve I1{?}AT(ML), there is no reason to suppose that this is a good
choice, or indeed that it can be solved. We might have chosen
I A-AT(M,L){PROC1}ON(M,B1) instead.

¢c) The order in which goals are attempted may affect not only whether a solution can
be found, but also whether the solution is sensible.

(d) Undetermined truth values can also arise as a result of applying unreliable
operators, for example;
AT(hand,x)AAT(object,x){lift(hand,object) }HAS(hand,object)y DROPPED(hand,object).

We shall consider these problems in detail in Section 5.

2.5. CORRECTNESS OF SOLUTIONS

In the previous examples we showed that if the frame rules were taken as assumptions
then the solutions could be proved within the logic of programs to solve the problems.



LOGICAL BASIS AND OVERVIEW 18

This is what we mean by the CORRECTNESS of the solutions. The proofs require the
standard rules, but these are all rules of the logic of programs, with the exception of
invariance and undetermined values. A proof of correctness of a solution generated by
the formal problem solving algorithm, based on the frame in which the problem was
posed,can be given in every case. This does not guarantee the correctness of every
actual solution since, as we have seen, the implementation only approximates certain
rules of the formal algorithm. It is a justification of the formal methods. In addition it
provides a measure of confidence in actual solutions relative to the soundness of the
frame (which is the user’s responsibility) and to the degree to which unsound heuristics
in the implementation have been invoked in finding a solution. In fact, the result allows
us to state sufficient conditions under which actual solutions will be correct, but we will

not do that here.

To establish this result it is necessary to prove (a) a successful search tree of the
formal algorithm has certain properties, and (b) a tree with those properties can be
transformed into a correctness proof of the solution. We shall state without proof the
properties of successful searches, and then give the details of step (b).

Let us first consider the very restricted case where (a) no calls to LISP functions take
place, (b) no undetermined goals occur, and (c) no iteration rules are used. We assume
that the problem is stated in the form {?}G where G contains only variables occurring in

The subgoaling algorithm treats V (or) as exclusive; in order to achieve P(x) v Q(x) it
tries to achieve P(x) and if this fails it tries Q(x). When the subgoaler completesa
successful computation it has constructed a goal tree, Tr say, and a substitution . Tr
consists solely of goal nodes (the single rule node between a goal and its subgoals in
the completed search tree can be eliminated and the arrows leading directly from the
goal to its subgoals labelled by the rule name). Tr and « have the following properties;

(1) each node of Tr has associated with it the number n if it was the nth node to be
achieved, a Boolean expression G(n) (its goal), a program part A(n), and a state

condition I(n),

(2) =« substitutes terms from I for variables in Tr,

(3) IUF|-G(1)ex,

(4y if G(n+1) is at a leaf node then I(N)UF|-G(n+1)cc,

(5) if G(n+1) is not at a leaf node then it is related to its immediate subbgoals

G(k),..,G(n) by a procedure P{p;Q or a definition P=Q such that Qu=G(n+1)xAQ’« and
Pec =G(k)#*..#G(n),where * is either AND or THAND. G(n+1)is achieved from I(n).

(6)In cases 3 and 4,and where a definition was used to develop G(n+l), n+1)=I(n) and
A(n+1)=A(n); in the case of a procedure call of the form Pec{pet¢}Qot, {n+1) is
Inv(Qo,l(n)) and A(n+1)=A(n);p-.. Finally, the property that G(n+1) is achieved from I(n)
implies that Kn)UF]-P«. (NOTE: this use of "|-" is an extension of the usual not ion of



19 LOGICAL BASIS AND OVERVIEW

first order proof in the case when P« is a THAND; however it is easily seen that
THAND connectives may be eliminated from frames by introducing extra definitions, so
the extension is not essential.)

Let the root of Tr be the myy node. We may prove that the output program A(m)
solves the problem, i.e., L(F)||-1{A(m)}G, (here G(m)=G) by proving a similar result for
each intermediate goal and partial answer. Namely, for each n<m, L(F) [|-l{A(n) }{(n) and
Kn)>G(n)~ can be proved by induction on n. The cases are as follows.

First, L(F)||-1>G(1)« by property (3) above
Now assume L(F) |- 1{A(n) }i(n).

If G(n+1) is at a leaf node then MUF>G(n+1)e¢, n+1)=l(n), and A(n+1)=A(n). Thus
L(F)||- {A(n+1) }i(n+1) and L(F) ||-I{A(n+1)}G(n+1)¢ by the rule of consequence R1.

If G(n+1) is not a leaf node then nUF|-P by property (5) above. If G(n+1) is related
to its immediate subgoals by a procedure, say P{p}Q, then Px{p}Qc is derivable by the
change of variables rule R4. The rule of consequence implies L(F) [}- I( n){pe¢ }Qe¢ and
invariance implies L(F)||-I(n){p=¢i(n+1). Rule R2 allows the composition of this with the
inductive assumption so that L(F)||- l{A(n);pec}i(n+1). Finally n+1)|- G(n+1)e since
Qx= G(n+1)oet A Q. The case when G(n+l) is related to its subgoals by a frame
. definition is straightforward.

Thus, by induction on n we can prove L(F)[|-I{A(m)}im) and (m)>Ge. Finally we note
that if G contains only variables occurring in | then Gx=G. Therefore, we have proved
L(F) |- {A}G.

The extension of this proof for the case when there are undetermined goals is given in
Section 5, and for the case when iterative rules are used in Section 6.



L



20

3. DEFINING THE PROGRAMMING ENVIRONMENT

In this section the Frame definition formalism is presented. This includes the Frame
language the Advice language, and the output Program language. A complete example
of an input frame, together with advice, and the resulting output program is given.

3.1 FRAME LANGUAGE

3.1.1 ASSERTIONS: The syntax for assertions used in definitions of rules, axioms and
state descriptions is shown in Figure 4.

<variable> u= <identifier>

<function symbol> ::= <identifier>

<predicat e symbol> ::= <identifier>

<term> ::= <variable>|(<function symbol>)|

(<function symbol><argument list>)

<argument list> = <term>|<term><argument list>

<functional term> = (EV<term>)|(EVN<term>)|<term>

<atomic formula> == <predicate symbol>(<predicate argument list>)

<predicat e argument list> ::= <functional t erm>|<functional term>,
<predicate argument list>

<literal> ::= <at omic formula>|-<at omic formula>

<literal element> = <literal>|REQUEST(<literal>)|{<assertion>}

<disjunction> u= <literal element>|<literal element><or><disjunction>

<assert ion> := <disjunction>|<disjunction><and><assertion>

<and> == A&

<or> :=v|®

SYNTAX OF ASSERTIONS
Figure 4.
Ident ifiers are strings of characters not containing the negation symbol, "-", nor the
usual LISP delimiters, e.g., blanks, commas or parentheses. The <or> connectives have
higher precedence than the <and> connectives and a logical condition is terminated by a

"
.

semicolon, ;.

The only constructs whose meaning requires special explanation are <functional terms,
<literal element>, and the connectives "&" and "e".

If a term is in the scope of the modifier “EV” then all functions in that term are applied
to their arguments (i.e. evaluated as LISP functions) when that literal is used in the
problem-solving process. “EVN” further specifies that the functions to be evaluated
have numerical values. The default convention is that the term is manipulated as an
unevaluated symbolic expression. The “REQUEST” modifier, which takes a literal as its
argument, alters the way that literal is treated by the problem solver. This is discussed
in Section 4.

The AND connective is denoted by “A". Thus a state satisfies the assertion AAB if it



21 DEFINING THE PROGRAMMING ENVIRONMENT

satisfies both A and B. The weaker THAND connective is denoted by & (Section 2).
Exclusive OR is denoted by "®".

3.1.2 STATE DESCRIPTIONS: Assert ions specifying stat es are restricted to be
conjunct ions of lit erals.

3.1.3 AXIOMS: Axioms are stated in either of the forms P>Q or P, where P and Q are
assert ions. They hold in all states and are used to complete a given st ate description
by deduction of other elements of a state from those given.

3.1.4 RULES: There are three types of rules: primitive procedures, definitions, and
iterative rules.

(a) A primitive procedure is specified by a name, an argument list, and its pre and post
- conditions, i.e.

P {f (x;,% )}Q where P and Q are assertions in which x;,...x, are free, and f
is the procedure name.

The variables are formal parameters of the procedure. They may be “bound” by
substitution of actual parameters when the procedure is applied to a state.

When a primitive procedure is defined it may be declared to be an ASSUMPTION. If it
is used in a successful program construction, then the user is informed and is given the
opportunity to carry out a structured program development of this non-primitive
operation. This is described in Section 7.

(b) A definitional rule is of the form RES where R and S are assertions. The relation, S,
is given as the post- condition of the rule. The meaning of a definition is that
whenever it is desired that S be true it is equivalent to establish the truth of R. A
definition is often used to shorten assertions in rules by defining a single relation as
equivalent to an oft en used condition.

" (c) iterative rules specify conditions that if satisfied justify the assembly of a "while"”
ioop to achieve the associated goal. They are instances of the iterative rule S2 in
Section 2.2, and are defined by giving:
(i A name, e.g. TLOOP, (without parameters).
(ii) A basis assertion P.
(iii) A loop invariant assertion Q that specifies relations that must be true in the
state prior to each iteration.
(iv)  An iteration step assertion R that specifies the goals to be achieved during
an execution of the loop body.
(v) An iterative goal G, the assertion considered achievable by the iterative
process.
(vi)  The format of iterative rules also allows the specification of a loop cont rol
test L and an output assertion S if they differ from G.




DEFINING THE PROGRAMMING ENVIRONMENT 22
The rule,

TLOOP

P:Q:R;G:L;S;

where P,Q,R,G,L and S are assertions,
defines the iterative rule "TLOOP"
associated with the goal G.

3.1.5 SPECIAL AXIOMS: After the rules and initial state have been defined the system
requests the following information for each predicate symbol P that has been
mentioned. The system use of this information is discussed in Section 4.

a) “Is P a function of the state?” The intent of this classification is to separate
those relations whose truth value may be affected by a state transformation,
i.e., FLUENT relations,from those whose truth value is constant over all
achievable worlds, i.e., NON-FLUENT relations such as “ROBOT(X)",
“INTEGER(Y)".

b) “Is knowledge represented using P partial?” A partial relation may have truth
values TRUE, FALSE, or UNDETERMINED. Partial relations may be used to
represent incomplete knowledge of the world which may cause conditional
statements to be generated as explained in Section 5. A relation may be
declared “uncertain” which implies an absence of knowledge about it so that it
is assigned a truth value of undetermined a priori. If P is not “partial” it is
“total” and can only have truth values of either true or false. Thus rule R6
applies to partial predicates only.

c¢) “Does P have a uniqueness property in certain argument positions?” A “yes”
answer indicates that P cannot be true for two sequences of argument values
that differ only at one of those positions that are unique. The unique
positions are given using the notation, (X1,%X3x,..Xn), for example, to
designate the second and fourth argument positions. For each unique
argument position in relation P(al,..,an), an axiom is “built-in” from which a

- contradiction may be established with P(bl,..bn) that differs in a unique

posit ion and matches elsewhere.

For example the statement, “an object can only be in one piece at one time”, is
expressed by, AT(X1,%). If we add, “and only one object can be at any place”, then we

use AT(x,%).

3.1.6 SIMPLIFICATION: Algebraic simplification rules may be given to simplify the terms
that may occur in subgoals during the problem solving phase. The simplification is driven
by a table of rules of the form s=t where s and t are terms; occurrences of s« are
replaced by te for any substitution .

The output format of any functional term may be s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>