
Available

~~ Copy

AD-786 721

COPILOT A MULTIPLE PROCESS APPROACH

TO INTERACTIVE PROGRAMMING SYSTEMS

Daniel Carl Swinehart

Stanford University

Prepared for:

Advanced Research Projects Agency

July 1974

DISTRIBUTED BY:

NTS |
National Technical Information Service :
U. S. DEPARTMENT OF COMMERCE i

5285 Port Royal Road, Springfield Va. 22151 |

J STANFORD ARTIFICIAL INTELLIGENCE LABORATORY

| ’ STAN-CS-74 - 412 |
1 COPILOT A MULTIPLE PROCESS APPROACH TO |

~~ INTERACTIVE PROGRAMMING SYSTEMS |
| LIS |
| Oo |

Qo DANIEL CARL SWINEHART
i

= i

i «T DDC.
SUPPORTED BY IRE :

| ctr & oo Ji| CSS pvgis J

| i ADVANCED RESEARCH PROJECTS AGENCY
1 ARPA ORDER NO. 457

| ¥ JULY 1974

11 COMPUTER SCIENCE DEPARTMENTSchool of Humanities and Sciences

| |B STANFORD UNIVERSITY

ja 2 th Approved for Puke i

bh, § SEE” "NATIONAL TECHNICA
Springfield VA 22151

| UNCLASSIFIED * x
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) gp Lh | or

a a REPGRT DOCUMENTATION PAGE ok READ INSTRUCTIONS R| | BEFORE COMPLETING FORM pi ety

| |}. REPORT NUMBER 2. GC IT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER : 1
| STAN=CS=T4=412 : !
| 4. TITLE (and Subtitle) 5S. TYPE OF REPORT & PERIOD COVERED]
| COPILOT: A MULTIPLE PROCESS APPROACH IO .

INTERACTIVE PROGRAMMING SYSTEMS technical, July 1974 | i
| 6. PERFORMING ORG. REPORT NUMEER 4
| STAN=-TS=74=412 a

7. AUTHOR(S) 3. CONTRACT OR GRANT NUMBER(S) E

Daniel (. Swinehart S5D=183 :

. P RGANIZAT.ON NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK ¢| 3. PERFORMING ORGANIZATION N AREA & WORK UNIT NUMBERS 3
| Stanford Jniversity :

Computer Science Dept. i
Stanford, California 94305 ARPA ORDER NO. u57 |

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE g

ARPA/IPT, Attn: Stephen D. Crocker July 197k 4
| 1400 Wilson Blvd., Arlington, Va. 22209 |13. NUMBER OF PAGCS 4

or eee ee ee ee ep TT ee: io - re Ee“ . - ¥ i:2. MONITORING AGENCY NAME & ADDRESSif different from Controlling Oflice) 1S. SECURITY TL ASS, (of this report) | a

| ONR Representative: Philip Surra TRAYS AGE TE" HTS b. “1 7 VauLUAOOLI 4 B42 4
Durand Aeronautics Bldg., Rm. 105 SudsssrasaEEDSal aaa 1

Int nr Sa. DECL ASSIFICATICN DOWNGRADING | 4
| Stanford University | SNE ra 2 1

Stanford, Ca. 94305 SOREEE DE RETRRe |
16. DISTRIBUTION STATEMENT (of this Report) h

releasable without limitations on dissemination. | 3 i

Le—————————————————————————-——————— : 1 yo 3

17. DISTRIBUTION STATEMENT (of the abstra! snterad in Block 20, if different from Kepor! : | -

1 (8 cuPRPLEMENTARY NOTES ss EE a IE il 3

CE ————————————————————— Ta 4 E
19 Ey wnDS (Contitiie on ri vorse sted of Pe ex SATY ident : [ook number, | 9

i cima — Le—— rn A ————E————————————— — —— - a ———— - . 2 4
20. ABLITRACT Continue an roverss vide 4 ne Ss Rar ned identify By F A k manit oer) g 2

: An cxperime tal interactive aystem, COPLLUL, r NSed as 0 Conere! | :

farnjlities Lo an 1NnLeracuive fan uagse environme: t, | ul :

OD TAN TS 1473 EIN TION DF 1 NOY 5315 DF ha ky iN. . i b

; IA cEr Bry C1 AS ATINN AF THIS PAGE "Wher wra Entered ; 2 ;

A 1

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JULY 1074
MEMO AIM.220

i COMPUTER SCIENCE DEPARTMENT REPORT
STAN.CS- 74-412 {13

} COPILOT: A MULTIPLE PROCESS APPROACH TOINTERACTIVE PROGRAMMING SYSTEMS ;

by d
Daniel Carl Swinehart

ARSTRACT: An expenimental interactive system, CGPILOT, 1s used as the concrete id

} vehicle for testing and describing methods for adding multiple processing facilities to arn| miteractive language environment.

COPH.OT allows the user to create, modify, investigate, and control programs written 1 |
: an Algnl-like language, augmented for multiple processing. Although COPILOT is :

compiler-based, many of our solutions could also be applied to an mterpretive system.

| Central to the design 1s the use of CRT displays to present progranis, program data, an 3
system status. This continous display of information in context allows the user to retain
comprehension of complex program environments, and to indicate the environments to lw

! affected Ly his commands.
COPILOT uses the muluple processing facihines to its advantage to achieve a "noi |
preemptive” kind of interactive control. The nser's terminal 1s continuously available tor

{ commands of any kid: program editimg, variable nquuy, program contiol, oc,
melependent of the execution state of the processes he as controling. No process nay

1 mntlarerally gan postessainn of the user's mpnt; the usey retains control at all times ;
: The ainphiasis throughout 18 on improving the characteristics of the interface between the 1

nser and the system,
yr

This research was supported in part by the Advanced Research Projects Agency of the Office
of Defense under Contract No. SD-183.

The views and conclusions in this document are those of the author and should not Iw 1:

mterpreted as necessarily represenung the official pohcies, either expressed or imphed, of the
Advanced Research Projects Agency or the US. Government. LE

Reproduced wn the USA. Available from the National Technical Information Service,
Springfield, Virginia 22151.

rT Reproduced from 1
best available copy. Or : |

Ag i} {A

o , : | ri

1 ACKNOWLEDGMENTS

A I would like to express special appreciation to my dissertation adviser, Professor Jerry |
Feldman, for his guidance, and for his unfailing confidence in me, even when my own i

| was waning. | am indebted to Dr. Jim Mitchell, who offered immeasurable assistance
with the technical problems, through many conversations and several thorough

!

| readings. Professor Robert Floyd contributed helpful, detailed suggestions for i
improving the style and clarity of this work, as well as several key ideas. 3

5 I would like particularly to thank these colleagues who read the drifts, even though {
they didnt have to: Alan Kay, jim Low, Andy Moorer, Hanan Sanet, Dave Smith,

| Bot: Sproull, Larry Tesler, and Russell Taylor. i

i The publication of this document would not have been possible without the support of |
the Stanford Artificial Intelligence Laboratory; nor could 1 have done without the aid

| of Larry Tesler, who provided the publication system, and Brian Harvey, who helped !me make it work. |

| My deepest gratitude is reserved for my wife, Ann, who always understood why 1 was :
gone, and who will have to put up with me now that I am back. 1

3

- A ———rrem renee aE

R TABLE OF CONTENTS i y

chapter page]

| INTRODUCTION |
LA THE PROBLEM 2 |

|

| IB COPILOT 2 I |
|

.C A BRIEF QUTLINE 3 ire

2 HUMAN INTERACTIVE CHARACTERISTICS |

2.A THE BEHAVIOR MATCH 5 |

| 2.B SCOPE OF APPLICATION 5 l| y 4
i 2.C SPECIFIC ATTRIBUTES 1 "

Multiple Activities 7 i
Single Language 8

Non-Preémption 9 I
Response Time 9 |

Minimal (output) Modes 10 |
Maximum (input) Context I :

| Access to Information 11 |
Non-symbolic operations 12 . |

2.0 THE BEHAVIOR MATCH RLVISITED 13 |

|
3 A SURVEY OF REPRESENTATIVE IHTERACTIVE PROGRAMMING SYSTEMS -

|

| i 3A BATCH COMPUTING SYSTEMS i6

; | 3B EARLY INTERACTIVE SYSTEMS (FSA/IPS) 17
Attribute Analysis 20 |

1 Representative Systems 21

x 3.C EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS) ol |Attribute Analysis 23

i Representative Systems 23
3D REDUCED MODE SYSTEMS (FSA/IPS/RED) 2%

| Attribute Analysis 26
Representative Systems 26

! 3E NESTED USER SYSTEMS (LPDA/IPS) 2%
Attribute Analysis 30 |

I Representative Systems 30

I 3F ADVANCED IPS SYSTEMS 31
BBN LISP 3]

J SLICE 39ECL 39

FLEX 33

I FLEX Attribute Analysis 34

: [3G ATTRIBUTE SUMMARY 25

In I 4 DESIGN OF COPILOT

| § 4A ACHIEVING THE BEHAVIOR MATCH 39
| Use of Multiple Processes 3%

Use of Displays 38

| Single Language 40

J Abbreviation 40v

N

| , Sp——— abu i

4B ADDITIONAL DESIGN DECISIONS 41 a 4
Compiler-Oriented 42
Static Block Structure 43

] Emphasis on Large Systems 14] |

No Automatic Program Composition 45 I
4.C AN OVERVIEW OF THE COPILOT SYSTEM 45 -

The Environment 46 i
Basic Dialogue 51 } |

| A glimpse of Non-preémption 57 |

4D ATTRIBUTE ANALYSIS OF COPILOT 65

-d

.

5 THE COPILOT SYSTEM: A USER-LEVEL DESCRIPTION / |

| 5A BAZIC SYSTEM STRUCTURE TERMINOLOGY 67) | |
Screens 68 | 4

Regions 68 i
Scenes 69 -

Scene Types 69]
5B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES 70 =

Information Structure Models 70 | |
The Contour Model 70

The COPILOT Context Scenes 73 | |
The Snapshot Requirement 73 ~~ 9

COPILOT Context Scene Types 73 -

| 3

i

| |
| 5C PROGRAM SCENES — THE PROGRAM COMPONENT v4The MISLE Language "4

The Basic Featurzs of MISLE 75 ;

1 Semantics of Extensions ”*
Processes ¢if

| Special Features 79
Program Scene Organization 80

| The Instruction Point Portion of the Control Component 83 1 3

; | nD DATA SCENES — THE STATIC DATA COMPONENT 83 |\ Data Language Syntax 84 |
Semantics, Pragmatics 84

| Data Scene Organization ol
The Data Language as an Input Facility 26 :

| i The Environment Point Portion of the Control Component RY {

I 5E DYNAMIC SCENES — THE DYNAMIC DATA COMPONENT 87The Context Point 88 \
Adequacy of Scenes as External Information Structures 88 ;

ib
5F STAT SCENE — PROCESS STATUS 89 §

5G USER SCENES 91 i

) 5H REGIONS al |

} i Regions for Data Scenes — Special Problems and Provisions 92
i 6 THE CONTROL ALGORITHM |

' 6.A SYSTEM STRUCTURE 94 |The UCP —- User Control Process 96

i Crucial Primitives 96
| vii
he

" J mE TELTr mm -

6.8 THE USER LOOP 97 {|
Algorithm A — Basic 97 |

Algorithm B — the Expand Routine 100 |

, Algorithm C — Using the UCP 101 i 3

Algorithm D — Selective Interpretation 102 I 1
6.C THE POST PROCESS 10 ;

Display of Users’ Scenes 104 |
|
i

| 7 COPILOT TERMINAL PRIMITIVES .

: 7.A USER-ACCESSIBLE STRUCTURES 105 | |
Access Primitives 106 i |

7B GLOBAL STRUCTURE VARIABLES 107 }
i

«J

| 7.C THE COPILOT TERMINAL PRIMITIVES 108

| Notation 109 i
/ 7.D SEMANTICS OF SPECIAL STATEMENTS 126 -

Variable Query (Data Display) 126 i i
Breakpoints 126

Temporary Statements 127 |

| 7.E CONCLUSIONS 128 |

8 IMPLEMENTATION CONSIDERATIONS iJ

| 8.A TIERS 129 BE

Tier Equivalence 129

| Inter-Tier Connections 131 |]
Tier Fidelity 131 !
Tiers in other Systems 132

viii I=

i

8B SCENE-TIER RELATIONSHIP 1392 E |

i Permanent Scene Representation 133 |
8.C COPILOT TIERS 136 i

i Text Tier 139 q
| Token Tier 139 i

| Tree Tier 141 :
The Symbol Table 143 iOther Trees 145 |

} | Code Tier [45 i
Synchronization 146

] |
8D SELECTIVE EFFICIENCY 151 {4

| Space Efficiency ; 152 |
| 8.E PARSING AND COMPILING 156 »

, ! Parsing Methods 156]
Detection of Increments 157

| Timing of Parse Events 159 t
Process Structure 160 1

| The Parse Process i61 1.
Compiling: When and How 162 Ri

Mocifying Active Code 163 |

| Compiling Temporary Statements 164 :

9 SHORT SUBJECTS |

| 9A ADDITIONAL COPILOT SUBJECTS 165
: User Programs in the System Environment— Assistant Procedures 165

i Display of (unnamt) Expressions 166
Operations on the UCP Scene 167]

8

| 9B PROBLEMS 169 1
\ A UCP Scene Problem 169

Type Ahead Problems 169 I |
Data Scene Flickering 170 . J

Data Monitoring 171 |/ Restoration of Active Context 179 a :

9.C EXTENSIONS 173 |
Environment Modification by DYNA Scene Editing 173

Scene Branching 174 I |
Modifying the User Loop 178 > |

Display of Structured Data 178 | |' Error Messages 181 a
Text Scene Monitoring 181 x

5

: Program Communication 183 1 i
A Final Modification to the User Loop 184

9D SUMMARY 186 |

| APPENDIX A SYNTAX CONVENTIONS 187 ;
I

| APPENDIX B ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE 189 1

| BIBLIOGRAPHY 194 |

| FIGURES

i figure page

1 2-1 Thoughts to Action 16
3-1 FSA/IS Behavior of DEC TOPS-10 Executive 19

3.2 FSA/IPS Behavior of BASIC Terminal Interface 23

i 3.3 FSA/IPS/RED Behavior of JOSS Terminal Interface 26
3.4 DPDA/IPS Behavior of LCC Terminal Interface 30

| | 4-1 Typical COPILOT Scenes and Regions (screen I) 48
4-2 Typical COPILOT Scenes and Regions (screen 2) 49

; | 4-3 The Stanford Al Project Keyboard 51
{ 4-4 Simple Editing and Execution Control (part 1) 56

ou 4.5 Simple Editing and Execution Control (part 2) 57
| | 4-6 Control of Muluple Processes (part I) 59

4.7 Control of Multiple Processes (part 2) 60

i 4-8 Control of Multiple Processes (part 3) 61
4-9 Non-Preémptive Operation {part 1) 63

| i 4-10 Non-Preémptive Operation (part 2) 64
4-11 Non-Preémptive Operation (part 3) 65

| 5-1 The Contour Model Representation for an Algorithm 73

| 5-2 PROG Scene Linkage 83
6- | Global COPILOT Structure 04

: | 8-1 (Inadequate) View of Scene/Tier Structures 135
8-2 Interconnected COPILOT Scenes 136

| 8.3 Overall View of COPILOT Tier Structures (part I) 138: 8-4 Overall View of COPILOT Tier Structures (part 2) 139
\ 8-5 COPILOT Program Text and Token Tiers 141

] i 8-6 COPILOT Program Tree Tier 143
. 87 COPILOT Symbol Table Organization 145

| 8-8 COPILOT Program and Data Code Trers i151
LB 8-9 Selective Connectivity 152

I B | 8.10 Proposed Memory Organization for COPILOT Implemented in MULTICS 155
g 8-11 Proposed Memory Organization for COPILO™ Implemented 1n TENEX 156
: 8-12 Additional Token Tier Structure to Record Source Changes 159
(| X1

be

|

Rg q-1 User's View of Scene Branching 176 7 :

1 9.2 Efficient Scene Branch Implementation (Token, Tree) 177 ; |
9.3 Efficient Scene Branch Implementation (Code) 178

9-4 Possible Scene for Displaying Array Sections 181 | :i

|

| oi

r

In

i

xii | |

1 TABLES

| table page 8

§ i 3-1 Behavior Match Attribute Summary 96 34-1 Commands Used in Chapter 4 Examples 53 |

i 5-1 Display Terminology 685-2 COPILOT Process Coutrol Primitives 78

5-3 Copi'ot Process Execution States 90 |

i 6-1 Shortcomings of User Loop Algorithm A a9
7-1 Structure Access (conversion) Priinitives 107 |

9.2 Global IPS Structure Variables 108

| 7-3 COPILOT Command Notation Conventions 110 |

: ;
|

|

1 L
i

21

| X iii
-

I ABSTRACT :
| The addition of multiple processing facilities to a language used in an interactive computing

| | environment requires new techniques. This dissertation presents one approach, emphasizing ;
! A the characteristics of the interface betwee, the user and the system. 1
4 I :

4 We have designed an experimental interactive programming system, COPILOT, as the 1;

; concrete vehicle for testing and describing our methods. COPILOT allows the user to create, : |
i i modify, investigate, and control programs written in an Algol-like language, which has beer. |
| augmented with facilities for multiple processing. Although COPILOT is compiler-based, §

| i many of our solutions could also be applied to an interpretive system. 3

| { Central to the design is the use of CRT displays to present programs, program data, and
: system status. This continuous display of information in context allows the user to retain

i] comprehension of complex program environments, and to indicate the environments to be
ij affected by his commands.

| COPILOT uses the multiple processing facilities to its advantage to achieve a kind of :
B interactive control which we have termed “non-preémptive”. The user's terminal is

i continuously available for commands of any kind: program editing, variable inquiry,
program control, etc, independent of the execution state of the processes he is controlling. |
No process may unilaterally gain possession of the user's input; the user retains control at all |

X times.

I Commands in COPILOT are expressed as statements in the programming language. This
single language policy adds consistency to the system, and permits the user to construct i

{ procedures for the execution of repetitive or complex command sequences. An abbreviation :
3 facility is provided for the most common terminal operations, for convenience and speed.

| ! We have attempted in this thesis to extend the facilities of interactive programming systems |
| in response to developments in language design and information display technology. The

) | resultant system provides an interface which, we think, is better matched to the interactive
: needs of its user than are its predecessors. i

al | Xv |

| 3

B

i |
CHAPTER | |

: INTRODUCTION

| | Interactive, or conversational, computing owes its existence to the development of
multiprogramming, or multiple processing, facilities. The scarcity and expense of

1 computing equipment prevented direct, convenient user interaction with the programs he
wrote until a way was found for several people io share the resources of a computer system

1 simultaneously.
A process, as we will use it, is "an activity comprised of a time-ordered sequence of actions”

x [56). The behavior of a process does not deperd on the activity of other processes— except,
perhaps, for the time and other resources it requires to execute— unless such interaction is

| intended. We may therciore treat a process as if it had sole use of its own processor
(computer or other active agent). Processes may communicate with each other, through

i messages or shared data, or they may operate independently.
This multiple process activity can be simulated by a single processor, under control of the

| appropriate operating system. In such a multiprogramming system, use of the processor
(and other resources) is allocated among the competing processes, providing for each a virtual

i processor somewhat slower than the real one. A time sharing system is a multiprogramming
system to which terminal devices (eg, teletypes or display terminals) have been connected,

| allowing users to communicate directly with active processes within the system.
loss (7), Basic [29), LCC [45], APL (26), and BBN-Lisp [53] are examples of |

| language systems which are designed to operate in a time shai*d environment: they are all
Interactive Programming Systems (IPSs). (x) They all allow a user to create a program “on b J

| line”, to execute it, examine its state, and modify its definition (to “debug” it), and to supply it
with requested data. In the current versions of these systems, the system algorithms and data, 4

I along with those created by the user, form a single process within the operating system.
I"

i

| (x) We will examine these and other notable Interactive Programming Systems in Chapter 3. || |

EE a A ea UO A sii — 9

\
§

’ ILA. THE PROBLEM

A time sharing system can use process structures to provide a totally independent operating 1

environment for each of its users. However, when processes are allowed to communicate and

to cotperate with each other, they can become a useful facility for the performance of a a }
single project. The Simula 67 document [14] contains several simple examples of |

cobperating processes. More recently, other operating systems and language systems have od |
: begun providing their users direct access to multiple processing facilities. 4

Inherent in an Interactive Programming Systen. design 1s a specification of the role the user h

plays in its operation: the appearance of the interiuce between the user and the system. The |
more sophisticated =f the IPSs mentioned above (those which impiement the more powerful)
and complex langua, es) define a user role which cannot easily be extended to handle the

| multiple simultaneous control and data environments of a language system which supports J
multiple processes. We will present arguments to support this contention. -1

| Il
In this dissertation we will address the problem of building Interactive Programming Systems]

which can contend with multiple procesting environments. Instead of treating this endeavor 2
as a burden, we will look for ways to use these facilities to improve the performance of the

system, and of the user. il

: I.B. COPILOT |

The bulk of this thesis is a description of an experimental IPS, COPILOT, which we have

designed as the¥oncrete vehicle for testing and describing our methods. COPILOT allows }

the user to create §nodify, investigate, and control programs written in an Algol-like language, |
which has been augment.d with facihties for muluple processing. Although COPILOT is g |
compiler-based, many of our solutions could also be applied to an interpretive system. 3

i “ |

Central to the design 1s the use of CRT displays to present programs, program data, and Rie

| system status. T his continuous display of information with some associated context helps the J
user to retain comprehension of complex program environments, and to indicate the

environments to be affected by his commands.
~é

>

2 Ls

i COPILOT uses the multiple processing facilities to its advantage, to achieve a kind of :interactive control which we call "non-preémptive”. The user's terminal is continuously :

| available for cornmands of any kind: program editing, variable inquiry, program control, etc., i i

" independent of the execution state of the processes he is controlling. No process may |

1 unilaterally gain possession of the user's input; the user retains control at all times. Li

: { Commands in COPILOT are expressed as MISLE language statements. This single :
oN. | language policy adds consistency to the system, and permits the user to construct procedures: | for the execution of repetitive o1 complex command sequences. A top-leve: abbreviation a

I facility is provided for the most common terminal operations.
The role of the COPILOT user is that of a global observer and controller, with equal access Ey

8 | to all his program and data environments, sub ject only to protection restrictions imposed by 2
3 the operating system. We will demonstrate that this view is substantially different from the

I more local focus provided by the typicai single process IPS. 1

1 1 1.C. A BRIEF OUTLINE "A

I The early chapters of this dissertation establiz’ a basis for the study, defining our goals §
based on observed needs. A survey of existing IPSs follows, provided as a basis for 3 !

I comparison, and to indicate the debt we owe to our predecessors. h |
Chapter 4 is an overview of the COPILO™ design. After describing the basic facilities of]

i 1 the system, emphasizing the achievement c; the stated goals, we present a detailed example of |
system operation. The reader interested in system design may choose to read this chapter +

| 1 first; the references to earlier chapters should not interfere with this procedure.]

1 Subsequent chapters provide detailed user-level descriptions of COPILOT, giving special 1| attention to the facilities for multiple processing, and to our reliance on the use of display ;

| [devices to enhance these facilities.
We have limited implementation considerations to a brief chapter which concentrates on the 1

g | structures we have created for representing programs at different levels, or “Tiers”, and the
| means for maintaining the necessary relationships betwee Tiers. |

§ ;
"

The final chapter is a compendium of miscellaneous topics, unsolved problems, and | |suggestions for further research. {

1

-

N

|

!

A

4 | |

11
| CHAPTER 2

i HUMAN INTERACTIVE CHARACTERISTICS 14%

L | 2A. THE BEHAVIOR MATCH |i An Interactive computer System (IS) is the hardware and software which allows composition,
testing, debugging, and operation of computer programs, enhancing the "ability of the user to |

1 initiate, interrupt, and generally interject himself into the control of the system” [44) Ir
practice, an 1S consists of a user con:ole (keyboard and printer), and the set of program and |

I interactive features which are available to it, operating on a ciigital computer, which is
usually time-shared. An Interactive Programming System (IPS; is an IS incorporating a T

i single programming language for all programming and prograr control. !
3 Most recent emphases in IPS design (1) have been on improved laaguage design, improved |

i debugging facilities, and on the development of "single language” systems, which extend the
programming language to include the interactive facilities. Mitchell's thesis [44], itself a

LB i significant contribution to Interactive Progr mming Systems, contains as well a good survey
4 of the leading examples of cuirent systems. His emphasis is is on language design and on ’

1 implementation considerations (flexibility, efficiency, and portability).
|

 . The emphasis of this disseitation 1s on the user-system interface. It is our desire to provide a :

i convenient, pleasant, intuitive interface between the user and the IPS. We intend to do this 1
by providing a system whose behavior matches as closely as possible the relevant 3

: i characteristics of the people who use it. Our thesis is that such a system can measurably 1 |
| increase user performance.]

| There is an intriguing, if not terribly accurate, metaphor to be found in electronic lore: the 1
| = "Impedance match”. For maximum efficiency (minimum wasted energy), the impedance of an ¥

3 output from one device must ciosely match the input impedance of any device to which it is 3 {
connected. If the impedance mismatch is too great, the connection will fail to perform Lt

3 i successfully at all. We will call our IPS analogue a "Behavior Match" — a term which we
1 shall attempt to justify. 1

(1) Examples are ECL, LCC, and BBN Lisp, all of which we will discuss in the survey of Chapter

!

|
To emphasize our conviction of the importance of this Behavior Match concept, and the 3
necessity for some terminology to express it, we offer these informal definitions and terms: i

ol

| The Behavior of an entity is that set of processes which determine the manner in which |
information can be presented to it, and 1s presented by it. SE

A Behavior Match has been achieved when the "behavior" of a system complements the JJ

behavior of its user, optimizing his performance. i

°.4

T hese definitions are clearly sub jective, containing as well enough undefined terms and vague b

semantics to preclude their use for any measurement purposes. Although we hope to clarify : |
: these definitions somewhat in the sequel, their major purpose is to provide an intuitive basis w. J
1 for discussion.

The Behavior Match diverges from the impedance match example in that user and system |
behavior need not be identical, or even similar, they need only be “complementary.” However, !
we shall show that the similarity 1s stronger than one might expect. |

At the risk of overloading the “impedance match’ analogy, let us point out one additional ad

similarity: the impedance match between communicating devices need only exist at the Iinterface between them. It is possible to design circuits which isoiate the main body of a J 8
: device from its interface, allowing it to employ impedances (and other related characteristics) +y EY

which are internally convenient. Similarly, many of the internal details of an efficient, i} |
d powerful IPS must be hidden from the user, since their functions (e.g. compilation, data |

conversion) are not involved in the problem-solving efforts of the user, nor are their results I |
(binary machine instructions, etc.) likely to be meaningful to him. : |

i
Ud]

2.B. SCOPE OF APPLICATION | |
ad |

The bulk of this dissertation is dedicated to the design of system interface characteristics

which will improve the interactive behavior match between system and user. Just as the ;
interface characteristics one chooses for an electronic device place certain constraints on the i
internal device design, our IPS interface decisions will have an effect on all aspects of system 1 |S
design and implementation. However, we should not let our human engineering decisions ull)

6

unduly reduce our range of options in such fundamental areas as: the selection of a .

| programming language; the choice of execution methods (compiled or interpreted), whether ;
the system is intended for the creation of large, "production” programs, or for smaller,

i "nstructional” ones; or whether it is intended chiefly for novice or expert users. We hope to ;
show that the approaches to IPS design which we advocate apply to systems which vary 0

¥ widely in these parameters.
We will present in the course of the dissertation an IPS, COPILOT, as a concrete vehicle for i

. pi discussing methods for attaining 1 good Behavior Match. Because it 1s a concrete system, |
COPILOT exhibits certain choices from the above parameter spectra. Indeed, we think we §

I have made the more difficult, perhaps less inherently flexible choice in nearly every case.
This is true in part because of the particular needs of the environment for which we have |

| designed the system, in part because of a desire to demonstrate the versatility limits of ourmethods. Nevertheless, particularly in these initial chapters, we will attempt to indicate those

f| areas where choices can be made, and those which are heavily constrained by our solutions.

1 I oC. ¢PECIFIC ATTRIBUTES i |

n We have chosen for study a set of human interactive attributes which, we believe, an IPS 3should accommodate in order to achie/e a behavior match. This set of characteristics, which

follows, was derived in two ways: some are characteristics which we have observed, and |

} | which influenced our design — a priori observations. The rest are, admittedly, a posteriori
observations, attributes we have noticed which are fortunate in light of what our methods =

i provide. This fact should not affect their validity. £
3

| We do not claim to have isolated all relevant interactive attributes. We have concentrated on a.
these behavioral aspects which relate to “process” and "information transfer”. Additionally,] :

1 these con jectures will have to stand as the opinions of the author— based on his observations |BB of the way he and others use interactive computer systems— used to justify and guide the |

design of the COPILOT system's behavior.

| '

I 2.C1 Multiple Activities
The activity of someone engaged in the solution of an intellectual problem can be model'ed :

7 |

rg

| ‘

ol} t

as a single processor executing a set of codrdinated sequential processes (coroutines), in che |
sense that: |

1) He is likely to shift his attention rapidly between different “processes.” His reason for |doing this may be generated internally (eg. boredom, inspiration) or externally (the .
a phone rings; or perhaps the part hasn't come in yet).

9) He may retain enough “state” information about an abandoned process to return to it i
| again In time, or he may abandon it entirely.

9) If the alternative 1s excessive unproductive waiting, he will often turn his attention to | 5
some unrelated sub ject (the processes need not all cooperate), returning to the task at

hand when it 1s again possible. |
4) He can carry some state information concerning a previous activity in.» the next, often b

) correlating the two In order to understand complex relations. After all, he is presumably “1
| pursuing some overall goal. B :

5) Although we have not modelled his internal behavior as true parallel processes (we give '
him credit for single-mindedness), he can make use of several concurrent external ' B
operations (stove burners, machines, computer programs, or whatever), as long as they Cl

do not all require constant monitoring. 1
bh 6) He seldom operates very recursively, or even properly nests operations— the above ol

coroutine-like model 1s a more accurate one than a simpler recursive model. i ON

2.C2 Single Language _

Symbolic communications between people (and between a person and his later self, for that I A
matter) are primarily conducted by means of natural language. The same language base is

| used for all areas of endeavor, although specialized lexicons (seldom specialized grammars)
‘ ee

form dialects for specific topics. All necessary symbolic activities are possible in a natural :

| language. |

For efficiency and brevity, people have added to their communication abilities in two major

ways: iB

] 1) through formal languages (eg. mathematics) which, though not contained in the base
| language, nonetheless have a (usually cumbersome) mapping into it. RE

8

i :]

| 2) through acronyms, abbreviations, and possibly non-grammatical colloquialisms, oftenunderstood by only a small segment of the population ("far out!"). These artifacts clearly r
map (though not always precisely) into grammatical forms in the base language.

i Providing good symbolic communication between the user and his system wii. be a major ; 3
goal of thus work. We believe that an iPS with a single input language, encompassing all

I system commands, can enhance this communicaiion. We share an emphasis on the 8
importance of the single language idea with most IPS designers.

i B

I 2.C3 Non-Preémption cBA request for one's services is not always granted instantly. In fact, it is sometimes not in

granted at all. At any rate, having noticed such a request, one may respond to it :
I immediately, quetie it temporarily until some other task is complete, or ignore it entirely. He :

is not automatically preémpted by a “service request”, he can continue what he is doing, or |

i go on to something else entirely; nor must he take care of things in a fixed order. 1I

(This non-preémptive pattern is often thwarted at the user terminal connected to a modern | 4
| IPS. Much of our attention will be devoted to correcting the situation. |

2.C4 Response Time

i In contrast, when one reques:s a service, he would lie it to be handled at once. We would |
like to distinguish between the time required to complete a request, which we call completion 1

| time, and a potentially different interval, which we call response time: the time delay, after |
submission one request, ural that request 1s acknowledged, and another may be submitted. 1

i If there 1s but one agent for execution of requests, these two quantities will probably be the
same. However, in an environment which supports multiple activities, successive requests |

may call for the initiation of concurrent activities, or they may terminate previous ones. If j

| such a<tivities are possible, then, in order to make maximum use of the concurrent facilities,
the response time should be short, independent of the completion time. (In our experience,

| this time should be short compared to the time required to make the request, and should y
seldom exceed one or two seconds) Miller (+i! has studied computer system response,

) determining empirically, for a variety of situations, what kinds of delays people will tolerate.These times range from a second or two, in highly interactive situations, to fifteen seconds or ;

Eh

rHpS EEk

1.
more for complex requests. Miller's report does not make our distinction between completion 1

time and response time. However, in most of the situations he cites in which people will {1
tolerate only short delays, it is rapid response which they seem to be seeking. | .

Simon, in (51), studied a related time interval, which he called the "minimum human Hd)
response time”. This is the smallest "time shce” which one can efficiently use to work on a :
task, particularly in ...e context of waiting for some possibly unrelated activity to complete. A |
In Simon's experience, this time is approximately ten minutes. We do not dispute it, bat we !

do believe that the "minimum human response time” could be reduced, if it were easizr to | |
establish the context necessary to switch to a new task. In a computing environment, this

requires a system which 1s both non-preémptive and responsive.
ad

To summarize, people want to schedule requests for their services (output), but to obtain i]

| rapid aitenticn to their own requests (input). This double standard is not always possible in i
dealings wich nther people, but we can try to optimize it in an IPS. "

2.C5 Minimal (output) Modes | | 3
This topic introduces another input/output double standard. People are capable of Re |
understanding stimuli which are context-sensit.ive: whose meaning depends on the |
environment, or context, in which they are presented. English itself is internally context- i

sensitive, although normally only in a quite localized fashion-- paragraphs can generally = ;
stand alone. 1

In general, we think it is desirable to reduce the context-sensitivity of what one must say |]
| (output) by reducing the number of ‘states’, or “modes”, which impose different :

| interpretations on his communications. The single-language criterion also aids us here: a

sentence, especially one intended to convey information unambiguously, should always “mean” fe ;
o the same thing. This cannot be true if disjoint (or even worse, partially disjoint) languages

| are provided for different purposes, since in the latter case a "mode" must be established to i
determine which language to look for.

We do not mean to imply that the same results will obtain, no matter what the situation (or | je
state), when a given utterance is uttered, or when a given command is typed. There are
environmental conditions which influence the interpretation of communications. This context

: 1s usually implicit, however, and need not be included in the message.
10 ;

|

EB We do not even intend that every statement be meaningful in every instance. Clearly, there

1B | are sentences in nearly any language which are senseless, impossible, or merely silly under
some conditions. However, normally one can at least understand such a sentence, to the | 3

| ; | extent that he can respond that it is senseless, silly, or impossible— and why. We would like |to preserve this behavior i |

Bn I3 We will, therefore, require of our non-preémptive. single language IPS, that it must allow a
user to express anything in that language, at any time— even if it is meaningless in context—

| 1 a system without excessive “modes”. y

f 9.C6 Maximum (input) Context |
:] While one prefers to supply as little explicit contextual information as possible when 1LB conveying information (output), one absorbs information (input) most readily when the i

environment in which it ts presented is as completely described as possible. The more one 1

| I knows about a situation, the more capable he is of handling his part in it. Our goal should
: be to provide as rich a context as possible, without including irrelevant information which Lb

13; 1 could obscure understanding. Further, it 1s best if this information is continually present,
continually up to date.

1 When 1t is possible, we think that contextual information is best presented visually. This
sort of presentation can be made to sausfy the "continuously accurate” requirement, without

i i flooding our sensory channels— particularly because visual input also satisfies our non-
preémptive requirement— one need not look at everything all the ume, and in fact can select

| what to look at, and when to look at it.

, i 2.C7 Access to Information
BB I This topic 15 closely related in the previous one, which requires that the availablei information be presented as completely and coherently as postible. Now we wish lo require,

in addition, that as much information as possible be available (accessible). One is clearly

EE | more able to deal with a situation or cb ject when all its components are accessible (to see and, |
2 hopefully, to change} than when he nust treat it as a "black box" (or perhaps “gray box").

i I
N

a A

SC ——— ——————————r———e oe S——te SSeS A SESH A rma re

|

|
A 2.C8 Non-symbolic operations

Most of the topics we have discussed have dealt with symbolic terms: with language, its uses 4

and effects. But a remarkable number of things people do are not (at least at the conscious

"interface”) expressed symbolically at all; they are instead “manipulative” activities. We affect]

things directly by moving them; we sense them directly by touch, sight or smell. “+ 3

As an example, after one has become experienced at driving a car, he is seldom aware of y

turning the wheel or manipulating pedals; instead, he turns the car, speeds up, or slows

: down- another example of levels of internal mapping which involve intermediaries at other L}
than conscious levels. Perhaps a better example is the playing of a musical instrument: one

does not (except when learning something difficult) think in terms of plucking strings, |
pushing keys, or blowing air. He thinks in terms of producing notes, or even melodic ~
phrases, of the desired pitches, amplitudes, durations, and tonal quality. 4

Examples of these operations for a computer terminal might be functions performed by a 5

single keystroke, perhaps qualified with “control key” modification, or by hight pens. function i | 3
keboards, etc. The conscious mind 1s aware only of their effect. This feeling applies

especially to those operations which have an immediate and visible effect— for instance, the ol
movement of cursors or the deletion or movement of text on a display screen. 0

i

]

What we are advocating here is that the way in which such repetitive operations have to be L}
performed be made simple enough th.t one thinks of them (while doing them) only in terms TN
of their effect. In this way they tend to lose any symbolic meaning and to become practically -.

bodily extensions.

: Having made the distinction between symbolic and “manipulative” operations, we would like Td
to soften it somewhat. Although we do not normally do it, we can describe nearly any action

in words: there is a way to map a given action into an “equivalent” symbolic form. We will OH
4 find this duality very useful in the sequel. |

: 12 |

a ie . v cas 2 . ,™ .- = " d - Er. -_. il |

i oD. THE BEHAVIOR MATCH REVISITED 11
“Ye have attempted in the preceding section to indicate some characteristics of the IPS user 1

a i "which the IPS must “complement” to achieve an acceptable "Behavior Match”. Before we 1 |
BP proceed to an analysis of the success of previous systems in this regard, we should attempt to q

I clarify what we mean by “complementary” behavior (recall the definition of Behavior Match ! |in Section 2.A).

1] Whatever the means of communication, the user does not really "do" any of the things he | :
EK requests: the computer does them, under the control of the interface routines of the IPS.

I Thus before he can communicate a message to his system, he must translate that thought, }
using his own internal model of this interface. into the series of symbols which will

= B ll accomplish the transmission. 1
This internal model must adequately represent the real thing, given the low tolerance of most

I! language systems for syntactic errors (3). In this sense the Behavior of model and system
3 must be quite similar; ie. their Behavior must match precisely. What we wish to achieve, in |

i] these terms, is a system which allows natural, intuitive, and convenient translation from the |
original thought to the model. \

1 |

| (1) Teitelman's DWIM system for BBN LISP [53] (see Section 3.F) is intended to reduce the3 necessity for such precision by detecting and correcting simple errors (mismatches). We have |
not treated error detection, correction, or minimization in this treatise, although in Section
9.C5 we have attempted to indicate how our non-preémptive methods can be used to soften :

“4 | the effect of errors.
v

" : > {] Rho haa Bin add g ow Nhtui tm db ie hl a

Sz
(+ 4 o i
on =
wn
asQ Rn

A
i ;

: :
- 3 do
: :
vn oO

|
-

- oh
i = T |on oO
> W > :
WZ p-

5 |Oo 3.

i ry
| 1 " | |1 bo &

uw >| | rd ;
Ee ee ee ee ee ee ee ee W | {Om ei —— —— —— —

Ww lla re |
= - a 4

o

2
-

(® -
w

or 3 on L
('Y Pry =

4 or p -

> b=
ons >
I

4 Ww 2
oO (1 ©)

me wl |] |
a. oO |

7) |

own
ZW |
wa
Sx (} §

Qa

Figure 2-1. Thoughts to Action

14

; EE Fa " i” i " . - - suka : g ia TTY : i

LT. : Ho pu rt———————L

| CHAPTER 3
A SURVEY OF REPRESENTATIVE INTERACTIVE PROGRAMMING SYSTEMS |

E i To the extent that designers of computer systems have considered behavior match issues, we
. believe that the designs reflect the designers’ views of adequate user models: that the user

i could think quite naturally in the terms necessary for modelling the system's behavior. Just |
as we have suggested above, for example, that a person "is" a pseudo-parallel processor, the :

: designer of one of the early systems described below might have said that a person “is” a 4
finite-state automaton. We see a remarkable progression in complexity from early systems to

i today's IPS systems, reflecting perhaps an increased respect for the complexity of human
processes. (x) In the discussion that follows, we present several different 1S designs, each :

i based on a different interface behavior model. Following the description of each model is a |list of real systems which approximately fit into the category defined by the model.

3A. BATCH COMPUTING SYSTEMS

We mention these systems only for completeness. The meager control languages provided for

| these systems are adequate to define the environment and resources necessary for a run, and }to specify the order of application of programs in a multi-step job To be sure, systems |
exhibiting evidence of human engineering are welcome to batch users. In fact, we could profit

by applying some of the lessons learned from IPS design to the batch regime. However, there |
is not much to be learned about the problem at hand from analysis of batch systems. |

We include in this category systems which use terminals for so-called remote job entry (R JE), 1

I since they are not truly interactive systems. | i

I (4) The structure of this section is largely the resull of a conversation with J. Mitchell.
16

1

: 3B. EARLY INTERACTIVE SYSTEMS (FSA/IPS) _
; 8

| The terminal interface of some early time-shared computer systems (examples of which thrive |

today) provide an excellent example of what we call the FSA/IS model. Here the system is | :
portrayed as a sort of Finite State Automaton (FSA), which enters a multitude of states, based |

\ on current input and previous states. These states typically fall into a much smaller set of

classes (modes), as we shall explain. -

| (Based on the arguments in the introduction to this chapter, the implication of the FSA by |

design is that the user, also, is fundamentally content cast in the role of a very clever FSA.

He must maintain in his head a model of the current state, along with the meaning and |
legality of the commands he might issue while in each state. Given this human model, the |
FSA/IS system provides an excellent behavior match. The same sort of argument can be |

| made for all of the systems which follow.) :

This terminal interface model, though failing many of our behavior match requirements, has

yr | performed admirably, especially in light of the accompanying software systems (compilers,

loaders, and the like), which are typically batch-oriented, and not suited for modification to |

| highly interactive situations. Elements of this design exist in nearly every subsequent
: | Interactive system, though some of the shortcomings have been overcome. |

¥ |

The diagram of Figure 3-1 is a simplified state transition graph for the Digital Equipment |Corp. TOPS-10 time-sharing system, written for the DecSystem-10 computer, a system we .

consider typical of the FSA/IS discipline.
|

17

) : 1 EE I I
| 7 ”

: W = a
: a] Oo

ial " 3
ry |= a = :

a - £ (|= LL' (i[+ ud = Lid
Lu mn vr wnnn = 0 = :
= 1 -

|
po &” re a — |a , 2 vs | aq =

o oc < -lo d3 pod ” oO “9 ©so -— oO
Lu ou ps @ >|

ae Ww =| go <
Ll -— vn | | =
- Ww = - Wi wlrr— — | Ce —— — Ldz 3 1 I =

a & Zz - «| 4 == ro
pa — -] Z| | =$ a S Z . x J Z

x 0 x : Z O

rE . CO] |$ a bd —
(= ls|

b- -
-

= 2
“:

| 8 - -
3 ”
i T

{

{ | Figure 3-1 FSA/IS Behavior of DEC TOPS-10 Executive
' 1S

-

|

) To the reader already familiar with this common: organization, the interpretation of this | |
diagram should be particularly straightforward. The user agproaches the terminal in Free

mode (both system and user, according to our assumptions!) He (and the system) enters the | i

basic System mode using a restricted, and unique, Login language inierchange, then proceeds

| to work.

| While in System, or Monitor mode, the user communicates with the system using a verb-

| argument syntax (eg, "RUN X[20,35]" or "COMPILE PTRAN"), which is interpreted |
directly by the operating system. If this syntax appears elsewhere in the system (in other

modes), it is due to mimicry, not to any global design. Some of the Monitor mode commands, a. |
notably those requesting simple status information ("What time is it?") perform their |

| functions, then return immediately to Moniwor mode to await additional commands. The :
more interesting commands, however, cause other programs to be mapped into main memory

and run, entering one of 1 multitude of so-called User states (in User mode), whose input

grammars depend entirely on the program implementations. From here on, the system makes
| ttle modal distinction. The user can, however, in his programs, define his own substates,

a specifying differently at different times what constitutes acceptable communication. |

Control passes from User mode back to Monitor mode either by program request (only i
inairectly influenced by user input), or by use of the special interrupt character, CALL (or :
control-C), whose function is always to stop operation of the User-mode prograrn and to J |

return to Monitor mode.

This (crucial) CALL feature falls short of providing the non-preémptive environment to :

which we subscribe, but its existence leads us to the following interesting observation:

although the user of this system has no direct access to it, at some level of implementation— a i

very low one, in this instance— a non-preémptive discipline is in effect. The system responds

in a sim:lar way to each character as it is typed, echos it on the output device (printer or 4

display), analyzes it for special meaning (eg, CALL), then either arranges for the return to

] System mode or dispatches the character to the process currently preémpting the terminal.

Thus, though control of it has not been granted directly to the user, the value of a non- |
| preemptive regime has long been implicitly recognized.

: At this level, the non-preémptive discipline reduces simply to an interrupt-driven, multiple

process priority discipline. This example illuminates the intimate connection between non.

preémptive and multiple process organizations.
: 19

¥ In general, no simple way exists in these systems to suspend one action temporarily, in order |
to perform some other (perhaps unrelated) action, then to return to the original task; mode

changes are usually destructive in that sense. More generally, little, if any, information about |

i previous states is retained by these systems — such memory must be provided by the user. 14¥

3.B1 Attribute Analysis Fr

| Let us now analyze systems of this character with respect to our Behavior match attributes. :| An attribute is classified as variable if it is typically absent, but could be included in a system :

| I without altering that system's basic category:: 1) Multiple activities: nonexistent or cumbersome to use. :]
1 2) Non-preémption: poor. As we have seen, the entire design embraces the concept of 5

; preémption of the terminal by processes implementing different modes. One must in }
: every instance type only what is expected at that point, or else a specific (e.g. exit or

] substate-entering) or general (e.g. CALL) “escape” character to change modes.
3) Response time: poor. The edit/compile/ run/debug cycles typical of these systems are |

: | long and sequential, often requiring manuzl intervention between steps to initiate the
1 next. No fruitful work can be done during, for example, the compile phase. '¥

i 4) Mode reduction: antithetical. In such systems there is a mode for every purpose.

| I 5) Single Language: not provided. There is generally a different language for each mode. id.
6) Accessibility: variable. In a computer system we desire accessibility to such things as: the 1

| variables of the running environment (the data); the statements or functions of the '
= I language (the program), and, hopefully, the control structures of the system (the 1

hy interpreter).

i The only global program and data variables in the TOPS-10 system are data and ibo program files on secondary storage. Any other data are defined and controlled by the |
| programs which run in User mode; the accessibility of these data is thus determined by 1
| these programs, varying with each instance. These operating systems do not limit the 4Br ability of their subsystems to provide good accessibility; most of the systems which we |

s I will discuss were implemented using the facilities of general-purpose FSA/IPS systems. 1

1

———— \ |

_ TE aa aan a a i SSS. — . |

]

7) Context: variable, typically poor. Later we shall assert that a system cannot supply the |
continuous context information we advocate without display devices with rapid random- ke 1
access capabilities. There is in principle no reason that ‘ich contextual displays could | |
not be integrated into any IS. However economic considerations have legislated heavily :
against their use. Ironically, many batch systems have fairly good context displays for 24
their operators [25]

8) iNon-symbolic features: variable. The manipulative operations we envision could be § |
provided in any IPS, regardless of category. We know of only scattered instances where }
any have been provided. I |

3.B2 Representative Systeins |

The command languages of most general purpose time sharing systems fit this category. In dk
addition to the TOPS-10 system [10] used in this section, they include the pioneering i

i CTSS system at MIT [9], The Stanford Computation Center time-sharing facility [25], |]
as well as newer systems like TENEX [5], MULTICS [43], and ITS [17]. The latter

three do possess facilities for controlling multiple processes, by explicit assignment of the user | :
terminal to one process at a time. Nevertheless, for the most part they behave as FSA/IS

systems. |

aC. EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS) | |

This class of programming system was developed for use where the needs of the user 3
community did not warrant development of a general time-sharing system, or where the need :
for simplicity and comprehensive diagnostic infurmation was paramount. Although, unlike ;
the FSA/IS systems, these qualify as IPSs (using our requirement that an IPS be built around a.]
a single language), these systems are actually more restrictive in many ways.

b i

The terminal state diagram for BASIC [29], which we ccnsider representative of this

system type, appears in Figure 3-2. Operation of the system alternates between the edit |

1 phase, in which programs are created, modified, fetched and stored to secondary storage, and |
the execution phase, in which the meaning of user inputs are defined by the user’s program. |
The number of mode classes is not really reduced from our TOPS-10 example, but the |

number of User mode states is sharply reduced, restricting the user to the single language.

| 21 |

ii

i 5 :3
z @

i

ax
w

: dd

I .=

x
| 3 i

wl @
ug1 :

0

Ld
| »

a,

Y @

Fo - A

po
o]

EB >

| w

| Figure 3-2. FSA/IPS Behavior of BASIC Terminal Interface
| 22

Y

|)

. 3.C1 Attribute Analysis)

FSA/IPS systems have about the same degree of success at meeting the behavior match

4 requirements that FSA/IS systems do. The one possible exception is the single language oo
; criterion. BASIC does not even really qualify as a single language system, though, but is

simply a restricted (or dedicated) language system; there is no intersection between the syntax i

of the program editing commands and that of the statements which are edited.

3.C2 Representative Systems i
; BASIC and its derivatives are representative of this "compile and go” class. :

3.D. REDUCED MODE SYSTEMS (FSA/IPS/RED) |

| These are the first truly interactive systems we have encountered. in these systems the user

| can switch rapidly from program modification to partial program execution to variable value
query. They are also the first really single-language systems we have seen: statements which

| implement user algorithms resemble in syntax those for modifying program text and for ;

controlling (starting, stopping, interrupting) execution of the algorithms. Also, in most cases,

either type of statement is legal whether executed “directly” (typed in at the terminal, i

interpreted and obeyed immediately), or “indirectly” (as part of some previously created |

program). |

Our archetypical system of the FSA/IPS/RED type is JOSS [7). Figure 3-3 is an |
approximation to the console state transition diagram for JOSS. Chiefly due to the

implementation of all functions as part of a single language, the segmentation of programs in

: that language into parts and subparts (steps) which can be executed separately, and the

implementation of an interpreter for the language which can to perform these functions ;

incrementally, the designers were able to reduce greatly the number of modes. In JOSS, |
there 1s the one predominant Command mode, the nearly irrelevant Free mode, and the

mode entered to accept input to the user program, on program request.

| A system of this sort could presumably support any programming language. However, most

do not feature any but the simplest name scopes (static or dynamic), since the command

routine operates only at the “top level” of the system, requiring suspension of user program

: 23

-

ILt

execution (and perhaps loss of local context) before control returns to it. JOSS, for instance, :

I has only a single naming level (all variables are global). Others allow simple local i
parameters to procedures. In other systens, including some LISPs [49), it is possible to

i inhibit loss of local context after an error, or after an otherwise interrupted computation.
Because the nested User structure to be exhibited in the next section does not exist in these

1 systems, full interactive control is usually not possible in these suspended environments; 1
typically, only variable query and “backtrace” operations are available.

; ? } . TTEYa rem OL EAN ANY

i |
x
Lay J
=

in La 8

52 33 }
™ “ 2 ,

z 5 |e Na |5 w | 3
3

| w 2 0 3 .
i : : sl (5

o 8 _ =z od :
uw a a | = a i.

& = x a | z| [= |" Q ol ol |o 1 |
IL ed iL wl 'E] 0 :

z r= el x i oo3 I
a g

[= i

= 3 i.

i

: bs |
) [1+ 1!

hi

Figure 3-3. FSA/IPS/RED Behavior of JOSS Terminal Interface |25 | |

| i $.DI Attribute Analysis |
I) Multiple activities: poor. The single program task may be interruptable, or even

H continuable, but only trivial operations may be performed in the interim withoutdestroying the state of that task. Complete freedom does not necessarily exist to examine
all active data using terminal commands.

| i 2) Non-preémption: not provided.

] 3) Response Time: fair. Unless the user's program is running, preventing the system fromlistening, commands are obeyed quickly (depending on system load, of course). Gaining
control can sometimes be a destructive process, however. |

: : 4) Mode-reduction: good. Unless the terminal has been preémpted for user input, nearly 4
any statement or command is legal whenever the system is willing to listen.

] 5) Single language: good. All but user-defined commands are in the same language. i
| 6) Accessibility: moderately good. In some systems one can examine the state cf any data |
] item, but only because the complexity of data declaration is sufficiently restricted. In

others, one is denied complete freedom to examine all active data from the terminal. |

] 1 7) Context: variable. These systems do not present data continuously (do not support
displays), although they could. They therefore fall short of our context goals.

3.D2 Representative Systems

i We have placed JOSS (and systems patterned after it: eg, AID {l11])), along with RUSH
: (1), PL/ACME [63), QUICKTRAN [13), and unaugmented (t) versions of some

I LISPs (eg, [49]) in this category.

: (1) LISP 1s seif-defining, allowing the user to write a command loop which, for the most part,
upgrades the system to the next category.

: 26

| 1

3. E. NESTED USER SYSTEMS (DPDA/IPS)

The systems we have seen so far have restricted the complexity of the programming

languages they could support. Major attributes of modern programming languages are the a8
naming and data allocation facilities which allow multiple recursive or parallel instances of
the data environments for procedures, and multiple use of names by scope-qualification. -
Most of these facilities have been sacrificed in the IPSs we have described, because otherwise a
they could not provide for the user convenient ways to “manipulate and roam around in the
information space which 1s of interest to him when it 1s of interest to him." (3) In our terms, =!
they would provide inadequate accessibility. |

oi

The systems of the next category extend and modify the role of the user (or his ;
representative system interface, if you wish), greatly extending his ability to interact with
complex environments. -

Our model system this time is LCC [45). In LCC the user is modelled as a recursively- > ¥
instantiable procedure “written” in the language supported by the IPS (see Figuie 3-4). The
system interface still interpre. input as program statements, generally executing them .
consecutively, in FSA fashion. However, the means for accomplishing this are now more |

explicit: an activation record for a PAR 0 (or User) procedure exists on the stack, defining ! |
the environment of the user. Each statement submitted from the terminal is treated as if it

were (had always been) the next statement in the User procedure. Such a system resembles at : H
the user interface (or models the user as) a finite state automator: with access to a push-down aE"
stack for data and previcus state information. Such a device 1s known in automata theory as
a Deterministic Push-Down Automaton, or DPDA; thus our designation of this system type. Bd

/ LCC is quite representative of the DPDA/IPS.

| The differences between DPDA systems and other FSA systems are not striking at the “top |

level"— while the keyboard input 1s driving the original outer-level User procedure instance.

. However multiple instances of User procedure, at differen’ recursive levels, are permitted.
The running program may instantiate a User procedure airectly, by a procedure call; or an
instance may be created synchronously (via a preset breakpoint), or asynchronously (e.g. an

unexpected procedure call (47]) in response to a user-initiated “attention” signal. In any

(3) From [44] |
27

case, only one User procedure may be active— responding to the keyboard— at any instant, §
i and then only when that User instance is the most recently entered procedure. This

automatically prevents any but the most deeply nested User procedure from being active. |

1b
| Now it is possible to establish a precise interpretation for the meaning of names typed by the |

i user: they are interpreted in the environment of the User procedure in control, just as names |
are interpreted in any other procedure. It is therefore possible to provide accessibility to

I variables in any environment, by arranging to instantiate a User procedure which can “see”| that environment. |

1 i This arrangement still does not meet all our accessibility requirements. For instance, in any
recursive language, for a given User procedure instance there can be variables hidden from 1

| view (using normal access methods) due to recursive instan~.es of the same variable. In Algol-
like languages, the problem is worse: each instance of the User procedure must be considered

1 to be declared within the procedure from which it is called (or which it interrupts— it B amounts to the same thing) in order to “see” the data for that procedure. Not only is this +

difficult to implement, but it also does not provide access to those active data not in the |

i lexical scope of any User procedure instance.

| | LCC does not suffer from the latter (Algol-induced) malady, but shares the former with other
systems. It solves them by providing rather clumsy (but complete) means for violating scope

| | restrictions, through extended names or explicit scope specification, indicating environments
of interest. We feel that some sort of scope-violation mechanism is inevitable for any IPS

) which provides both a powerful enough language and an accessible enough system.

IL

Fl

14

d

/ 28
{

a loot ess i Dist fhe bp

|

SE

FREE ~

¢ | |On
N |

USER |
ACTIVATION RECORD FOR :

OUTER -LEVEL USER — 4

| ACTIVATION RECORD FOR J

FIRST USER-CALLED

PROCEDURE LC) f°) |
i see

FSA/IPS/RED]

RETURN TO PREVIOUS 1
FUNCTION

RETURN TO

.. PREVIOUS
-« FUNCTION

NL USER
AR FOR PROCEDURE »

n=l ;
ue : (NH WN \

AR FOR PROCEDURE n [USER ca C — ae
— soe

AR FOR SECOND - ey |
LEVEL USER CALL |

FSA/IPS/RED |

® Oo ©

Figure 3-4. DPDA/IPS Behavior of LCC Terminal Interface
0g |

a a Al ed i lL a aCE

i 3.El Attribute Analysis
1) Multiple activities: fair. These systems, by allowing multiple instances of User procedure

[(or a similar construct), gain some of the control powers we advocate, at least allowing

2) i the user to switch his environment of interest without destroying previous information
(losing his place). However the system still has too much of a hand in when and how

1 this switch 1s made, which leads us to the following:
: 2) Non-Preémption: poor. A breakpoint or explicit program call to the USER function

preémpts the terminal for the new instance and context. When the user gains control via

| “attention”, he is the instrument of this preémption. This facility lessens the preémptive
behavior, but does not eliminate it.

| 3) Response time: moderately good. When a User procedure is active, response is good byall our measures. During a lengthy operation (e.g. a user's problem program execution),
a new User instance can be asynchronously instantiated, again providing good response

| time, at the expense of having to remember (with some system help) to return control tolower levels later.

| 4) Single Language, Modes: as before, good.
5) Accessibility: pr sent, but impaired. In most of these systems, the complexity of the

| name and allocation structures has increased slightly beyond the ability of the userinterface to accommodate it.

| 6) Context: variable.

| i 3.E2 Representative Systems
LCC (45) and all LISPs, at least with appropriate user-provided functions, perform: as

| DPDA systems. BBN Lisp [53] exhibits this organizaiion and, as we shall see, surpasses itin scme important ways. There are also elements of DPDA behavior in Kay's FLEX design

[28], upon which we also intend to elaborate, for it too exhibits major behavior match

i improvements over the systems in this category. The current incarnation of the ECL System
[58], under refinement at Harvard, seems to fall into this category. We shall discuss

| Mitchell's SLICE system [44] briefly, chiefly because of improvements in technique -and
human engineering attributes which we have not stressed. Other DPDA/IPS systems include

J APL [26] and CCS [50]. |

| 30

| A

: 3F. ADVANCED IPS SYSTEMS |

In this section we will consider the salient behavior match features of recent IPS cys.emns, or 1
designs, which have provided much of the guidance and inspiration for this work. ;

3.FI BBN LISP = | If

This system [53) behaves mostly as a DPDA system, with several distinct modes in its FSA]
component; some of the additional modes provide function editing capabilities and special td

facilities within breakpoints. Of Particular interest to us are the contributions which

Teitelman has made to BBN LISP. These facilities first appeared in his thesis, [54], and .

have since been presented and elaborated in [53], [55].

[Teitelman shares with us the desire for a system whose behavior complements the user's,
ailowing him to work more efficiently and effectively. His chief emphases, however, treat user

attributes which we have not addressed: - 3

| 1) Errors. People make errors when they speak, write, or type. Simple typographical, l
logical or spelling errors do not usually interfere with the comprehension of messages ‘f
the recipients are also people. It is therefore irritating and diverting to be forced to |
correct such simple errors in order to be understood. Most IPSs are very unforgiving of : | A
errors.

2) Repetition. A common act is to develop, by trial and error, a method for accomplishing
something, then to apply that method again when similar situations arise. o |

" Teitelman’s provision for the first attribute is the DWIM (for "Do What 1 Mean”) facility. 1
This constitutes a refinement of the User procedure/system interface: DWIM routines

; intervene before the User procedure is called. They examine the reason for calling User |

procedure, and try to handle the situation themselves (es, by correcting simple spelling ro

errors, or simple parenthesis blunders) In the most common configuration, DWIM simply

notifies the user of its actions and reti:rns to the caller with the error corrected. Only when

DWIM fails to find a solution does it invoke BBN-LISP’s User procedure analogue.

i If the User can anticipate more complex errors or exceptional conditions, he can have his |

program handle them by advising selected functions to take specified temporary actions

before, during, after, or in lieu of their normal operations. |

31

: ’ : : ; di ¥ ¥ oh ” i : aa as ap ReeRRL ER Ly Br TERE ap i ER .

.

|
It is quite often possible for the BBN LISP user to cancel the effect of an operation, even a

] complicated one, using the undo command. This feature is a powerful error-correcting tool
| in combination with the DWIM features.

i
| If a user anticipates the need, he can arrange, in most IPSs, to repeat a complex sequence of
Ti operations: he can create a macro or function to do it, then call it repeatedly. However, if he
| has simply carried out this sequence of operations, he must then recreate them in order to

repeat them. BBN LISP maintains a History List of recent terminal operations, typically the

I last thirty or so. One can redo one or more recent operations by referring to entries in this
1 list. One can also save a sequence of History entries for permanent accessibility as a Lisp

Il function. We have attempted to refine this facility in our system (see Section 6.A1, the UCP
Scene).

an
r 3.F2 SLICE

| The system described here is the one Mitchell uses in his thesis [44] to describe his IPS
" methods. His system, a derivative of LCC, shares with LCC the DPDA/FSA/RED

|! classification, and would submit to essentially the same attribute analysis. Its novelty lies in
its translation algorithms.

|
7 : Mitchell demonstrates that there is a spectrum of possibilities between a purely interpretive

(| and a purely compiled system. He discusses the merits of the two approaches in terms of the| inherently conilicting qualities of fiexibility and efficiency. Flexibility is the ability to modify
= program and data elements interactively, to inquire intelligently about program operation,

; | and to intervene in the flow of control. Efficiency in this case is a measure of the speed of
execution of the user's program.

|
| Mitchell supports his view that flexibility decreases while efficiency increases as one traverses

| 1 the spectrum from interpreted to compiled programs. He then describes an interpreter-based
. system which illuminates his contentions. Mitchell's system interprets the source program by

- - compiling and immediately executing sections of it as they are encountered, retaining the

1 4) compiled code seginents as a fortunate side-effect. By reusing the compiled segments as long
| as they remain valid, he obtains a system which smoothly traverses the spectrum from

1 flexibility to efficiency as an algorithm is perfected, and as the frequency of program
modification decreases. The keys to his methods are the algorithms and data structures he

BR .

|

developed to detect and correct segments made invalid by modifications to source statements
and declarations.

We shall have more to say about Mitchell's findings in Section 8.E6, for we have borrowed |

heavily from them in our translation methods. SH

3.F3 ECL :

ECL is the result of research begun by Wegbreit in his thesis (57) on extensible languages FA

for IPSs. The current effort is a |. ige project, directed by Wegbreit and Cheatham [581 at .
Harvard, dedicated to the creation of a software laboratory. An interpreter and eqivalent

compiler for the ECL language, ELI, will allow operation at both euds of the =
fexibility/efficiency spectrum. A major goal of ECL is application of sophisticated software |
aids to the development of very large, complex systems (for instance, an automatic Vo

| programming experiment) (8), without sacrificing ultimate efficiency. |

1 Most of the novel aspects of ECL lie in areas not directly treated in this work; efficient
1 extensible language design is foremost among them. In our Behavior Match terms, as we

mentioned, ECL is at present a DPDA/FSA system. We are unaware of plans for enhanced
terminal facilities at this writing. However, we believe that our methods would apply very

nicely in the ECL environment. :

3.F4 FLEX
The FLEX mini-computer and extensible language system form the central subject of Kay's
dissertation, The Reactive Engine [28]. This system (and its successors, for it is still in a Td

: state of evolution), until now existing only in experimental versions, gives one as much power

| to define and control his own language and programs as any now available, on machines of ;
any size. Kay has combined theories of language, software, and machine design in a |
comprehensive proposal for an easily learned, personal, and very powerful system. :

In the domain of our Behavior Match attributes, FLEX and its derivatives possess qualities |
which we have found missing in other systems. Kay's philosophies have strongly influenced

our design.

33 I

| FLEX is a display-oriented system, incorporating a graphics tablet and a special keyset for |
convenient manipulative inputs, along with a standard keyboard for symbolic input. The

} 1 built-in, extensible FLEX language allows concurrent operation of multiple processes. The |
full-blown system, written in FLEX (x), makes copious use of this ability, using parallel

i components in the hardware to allow scanning, parsing, compiling, and execution of
programs to proceed concurrently. In this way, though a structured text representation of a |

| program is the only permanent (and displayable) representation of that program, acceptably 1efficient execution is maintained. The system provides powerful display techniques, for

| editing and observing the operation of programs, for displaying structured textual andgraphical data, and for “echoing” the user's input of structured data.

I In our classification system, FLE> is a DPDA/IPS/RED system, whose stack environment is
extended to the stack configuration (similar to that used in the B6700 computer [47] or in

I Simula implementations [14]) needed for the operation of concurrent active processes. :

- i 3.F5 FLEX Attribute Analysis

i 1) Multiple activities: good. The system makes use of multiple processes, and the user has icontrol of them, bath in his programs, and directly at the terminal. i

i | 2) Minimal Modes: excellent, due to its single input language.
3) Single Language: excellent. All commands are expressible in the user-extensible

| I language. A few “invisible” edit commands duplicate some FLEX functions, forconvenience in editing. Like Lisp, FLEX is "homoiconic™ the executable and external
representations of programs are essentially the same. 4

|| i 4 Accessibility: good. All active data are accessible to the User procedure, and the user can
activate a User procedure in arbitrary active processes. i

[I 5 Context: very good. The display facilities allow presentation of user programs in :
context, and observation of their operation in that context. The user is free to provide

| additional context-rich displays in his programs and subsystems.

: (x) We are being intentionally vague about the distinction between the hardware and software.
The machine is microcoded, essentially implementing the nucleus language 2..d the system

| kernel. 34

ion

aTRS aay re—RR i a Ae A a a i at hn ES]

in

- 4

6 Non-symbolic operations: excellent. The combination of the keyset and tablet supply
impressive manipulative tools which enhance editing and graphical operations. The : :

1 short, easy editing commands, and the ability of the user to extend his language, a
supplement these tools.

7 Non-preémption: almost provided. The recursive (and now concurrently recursive),
nested USER concept is maintained in the breakpoint and terminal interrupt structure B 3
of FLEX. It is not made clear what happens if two processes attempt to break at once. |

The user may "ride piggyback” on the program evaluator (observe its interpretation of | |
the execution of his program, step by step), in order to follow and control the flow of) :

| operations in his multiple processing environment. |

! Kay would not necessarily stress these points as the most important topics of his work. We) i

would therefore be doing him a disservice to suggest that we have captured the “essence of A || FLEX" in this short report. The Reactive Engine is a comprehensive work, which has 5 i

contributions to make to most areas of system design. : |

35 :

Lb, a.

: | 3.G. ATTRIBUTE SUMMARY |
Table 3-1 is a summary of the attribute analyses for the basic system categories we have

j 1 studied. FLEX is included in a separate column, because it excels in many attributes. i

Table 3-1. Behavior Match Attribute Summary

| Category FSA/IS FSA/IPS FSA/IPS/RED DPDA/IPS FLEX |
| Attribute

| Multiple Activities ? - - X v :
Single Language . X v v v

Non-Preémption - - - - X

Response time - - - X v |

| Minimal modes - : X X v
R Maximum context ? > ? ? v 1

| Accessibility ? , v v v

: | Non-symbolic ops. ? : ? ? v
E.

|

- These systems do not support this behavior; their implementors may not |

| agree that such behavior is desirable.

x All or most of these systems partially support this behavior.

| ? This attribute is generally absent fron these systems, although nothing in

| their basic designs prevents its inclusior.. b{
| v These systems support this behavior. :
| |

|
- 3

| .

| CHAPTER 4
1 DESIGN OF COPILOT | y

i In this chapter we shall use the criteria of Chapter 2 to help specify the design of our
: experimental IPS, COPILOT. Here, we shall match the human traits to the corresponding :

desired behavior of the system. We shall also introduce additional design decisions (choice :

i of language, method of interpretation, etc) with reasons for their choice, although these do :
not relate directly to the behavior match topics. Finally we shall present an overview of the :

COPILOT system, wth emphasis on the ways in which it meets the design criteria. 3

Subsequent chapters will present the COPILOT system in more detail. ;

4A. ACHIEVING THE BEHAVIOR MATCH]

| 4.A1 Use of Multiple Processes
If one accepts our assumptions, people can monitor multiple simultaneous external activities, 3

| | and can maintain, at the conscious interface, multiple pseudo-parallel “processes”, or |
| "coroutines” of their own, while pursuing a task. They want to be able to schedule their own 4

gs. actions independent of the order or frequency of external requests (non-preémption), but they

desire rapid response, at least by acknowledgement, to their own requests for services. i

: \

To satisfy these requirements, we must first include facilicies, in the language and operating |

environment of our IPS, for the specification of multiple processes, allowing programs to

! | instantiate, activate, suspend and terminate “simultaneous” operations. Thomas [56] defines
a process as "an ac.'vity comprised of a time-ordered sequence of actions”. Within a :
computer system, a process is usually represented by an algorithm, specifying the sequence to :

i | perform, a collection of data elements upon which tha: algorithm can operate, and a pair of
indicators, or environment pointers, which together identify the current point of operation 4

- within the algorithm, and the current active values within the process data. By alternating ;
: among sets of environment pointer pairs, a single computer, or processor, can, in large part, 1

1 simulate the concurrent operation of more than one process. This allows the creation of the 1
| multiple processing {or multiprogramming) environment upon which this work is predicated. ;

We will describe the specific COPILOT implementation in Section 5.C4.

| The use of multiple-process facilities must be extended to the operation of the IPS itself.

This, as we will show, allows us to provide the terminal user the ability to control processes }
; directly. More importantly, we will use the multiple process discipline to provide the :

decoupling effect needed for non-preémptive control with good response time. Our process 1 :
structure comprises a high-priority User process, operating a User loop (see Section 4.C2),

1 to listen to the keyboard and respond to its commands, combined with a Post process to | :
| maintain a display of the status of all processes. This allows the user's problem, or target,

programs to run in one or more target processes, undisturbed by terminal operations except

where interaction is intended. Conversely, these target processes are not allowed to disturb = |
| (preémpt) the User process, so they cannot bother the user save by supplying status 4
| information to the Post process. The User process replaces the recursively instantiated User i

procedure of previous systems.

i We also hope to show that an IPS which uses multiple process structures properly can |
operate very efficiently, in its use of both time and space, particularly when the interactive }

3 facilities 2-e not actively in use. | i
| 4

4.A2 Use of Displays |
We have argued that, ideally, one’s statements should not be dependent on context for their |
interpretation (mode-minimization), but that one finds it easier to interpret communications

| when they are surrounded by appropriate contextual (environmental) information.]

Applied to IPS design, this need for adequate and current context, along with the need for |
rapid response, nearly eliminates the traditional hard-copy sequential-character computer :

; terminal as a feasible terminal output device. To achieve our context match, we require a 1

8 graphic display device, which we will henceforth term a display. The most common displays 3
| today are CRT -based point, vector, or raster-scan (TV) devices. J

: Current display devices do not contain sufficient area and resolution to present even the
f minimum information we require to operate the system. Unless and until displays are

| improved, we must provide a reasonable alternative. Ameng currently possible alternatives :
are: ;

| 38 |

| 1) to use multiple display screens. |
92) to implement multiple virtual display screens. This is possible if the available display

hardware and software permits rapid replacement of a screen's contents. |
3) to provide a very flexible mapping of groups of lines to areas of the display screen, so

that the user or program can select the most important text “windows” at any time. :

We have chosen to desigh COPILOT in terms of multiple display screens. It would not be

difficult to modify the design to operate in the virtual screen mode of item 2 above. The

third method would require considerable redesign; its performance under the best :

| implementation would, we believe, be unsatisfactory, since it would require the user to ;
1 remember too much about the complex, time-varying screen organization.

| U One important attribute of a display 1s its speed, allowing it to make large amounts of
information, and therefore adequate context, continuously visible. Perhaps as important is |

{ its two-dimensional, random-access characteristics. We must be able to select and change one |
section of the screen without affecting any other section. Using these facilities we can

partition the screen(s) into Regions at fixed positions, each devoted to a specific purpose: the |
i LP

| display of a portion of a program, of some program data, of system status, or of information

: | 1] generated by the user. We can use this positional constancy to our advantage in achieving |
| several of our other specific goals: |

| | 1) In support of our non-preémptive control, the user knows where *2 look for information
generated by various runr cesses, so he need not constantly foctis his attention on

m1 the output activity of his i

|
2) These processes can make the user aware of important occurrences (e.g. breakpoints)

I without interfering with his current activities.
3) Due to these visual reminders and event notices, the user can increase the number cf

r simultaneous activities which he can oversee without forgetting about them or losing :
i { | track of their operation. |

r7 Our goal here 1s to give the user a window into his system which is wide enough and clear]
i} enough that there is nothing more he needs to see, and to give him tools for directly |

manipulating those things he can see. He should be able to perform most necessary control

and modification functions by pointing and editing operations (again with random access) on
vi

: EB this visual context.

| Ry A aa |

| 4.A3 Single Language |

We have asserted that people communicate with each other in a single language, with lexical ;

extensions for special purposes. Therefore, 15 achieve our behavior match, we must provide

our user with a single language with which to communicate with our IPS. We must give it |

enough power not only to perform the user's algorithms, but also to carry out all terminal y

| operations: editing, program control, variable-monitoring, etc. The User process need only |
accept statements in that language in order to provide all system functions. Conversely,
because all terminal commands are elements of our language, the user can write readable |

procedures whose execution he can substitute for sequences of termina; operations. If the
user's recent commands are saved, he can even create these procedures from recent | |
operations. This facility eliminates the need for a special “macro” provi.ion at the terminal.
(1)

Any additional representations for programs (compiled code or other interr al structures) must

be totally hidden from the user: we must at all times preserve for him the illusion that he is |
operating directly in the chosen language. We we will describe methods for maintaining

| “equivalent” parallel representations for programs, their data, and other infcrmation at

several structural levels. We will maintain programs, for instance, as executable machine

code, as parse trees, and in an intermediate “parse token” representation.

4.A4 Abbreviation

Our observations have suggested that people avoid repetitive circumiocution by developing

formal concise notations or informal colloquialisms (jargon, slang), depending on the

formality of the sub ject. It 1s usually possible to map formal notations unambiguously into

sentences in the base language. There are also tasks which people do that are manipulative

1 rather than symbolic in nature.

We have attempted to provide both abbreviation and manipulative control in our IPS

design. The User process, while accepting complete base language statements (sentences) will

also accept shortened, abbreviated commands, each of which can be algorith nically expanded

: | into syntactically correct language forms. We have attempted to implement the most common
; |

(+) In the TVEDIT system for the PDP-1 [48], for instance, one can give a name to a string of |
command characters. He can subsequently issue a command, with that name as its argument,
which will cause that sequence of commands to be executed.

40

TT ——- eee i ——, aa ——————— ee ————— RENNIE

simple commands as single keystrokes; in this way we hope to achieve a "manipulative"

) feeling for these operations in the mind of the experienced user.

1 Because these facilities are available, we do not need to worry too much about the length or
ungainly structure of our basic system-control statements. Most of them turn out to be simple

| intrinsic ("built-in™) procedures and functions, called with many parameters. The standard
abbreviations which use them typically supply all or most of the parameters by referring to

| current visual context. The result 1s a simple, flexible, and well-defined command structure,as well as a reduced number of basic primitives.

| | These abbreviations provide a simple macro processor, which responds to user input, and
creates syntactically correct output. We have devoted little effort to the design of this facet of

| | COPILOT, except to attempt to make simple operations simple to evoke, and to partition the
system so that these front-end recognition algorithms can be replaced or altered, hopefully

1 even by the user, without affecting the base language facilities. A good deal of relevant
research Into macro processing has appeared in the literature, and could be useful in

| improving the appearance of the system. For instance, [34] and (62] suggest possible

[i | improvements. We do feel that the simple schemes rlescribed in the sequel will suffice to
; exhibit the power of the concept. |

1

I 4B. ADDITIONAL DESIGN DECISIONS
| The developments of the previous section follow directly from the behavior match

1 requirements. As we stated in Section 2B, there 1s still room for a variety of systems within |
this framework. This section will discuss some of these parameters, presenting the particular

I selections we have made in the COPILOT implementation. To a large extent these choices
reflect the environment in which this research was begun. The goal was to provide an IPS

i built around a local programming system (SAIL, [52)).
However, in each of the following cases, we seem to have chosen from the more difficult end

i] of the spectrum of possibilities. This 1s not necessarily laudable, nor even wise. It is,
however, fortunate in the context of this document, since, if our appraisal of the relative

1 difficulties 1s true, we can show that our IPS methods are widely applicable

I "

" “RRS. Srn————)

4.Bl1 Compiler-Oriented
The predominant form of IPS 1s built around an interpreter. In such a system, a source :

program is first converted to some internal form, retaining much or all of the symbolic and

structural information of the original. This program structure then drives a system routine, |

: called an interpreter, whose function is to carry out the actions specified by the algorithm. :

In a compiler-oriented system translation is from source program to machine code, in which

the algorithm can be executed directly on a computer. Neither the source, nor any

: intermediate structures used during the translation, are needed for correct program execution } |

after compilation is complete. |
Arguments in favor of an interpretive IPS are:

1) The interpreter is an active agent throughout the execution process. It is therefore easy =
to include in the interpretation algorithm facilities for continuous monitoring of special
conditions, dynamically set breakpoints, etc.

2) Semantic information about all program entities (variables, expressions, etc.) must be
maintained throughout execution. Interpreters usually use this to advantage, |

maintaining data types and other attributes dynamically. This late binding reduces the
number of attributes the user must declare, and increases the flexibility of the language.

3) Since this semantic information (and other data which is of interest to the user: names,

etc.) is retained anyway, most systems provide sophisticated interactive features which

put this information to good use. This kind of information is typically lost when a
program is compiled.

As we stated in Section 3.F2, Mitchell's factored interpreter methods can achieve the speed of

compiled, though not necessarily optimal, code in a basically interpretive system. With sci

; loss of flexibility, we have adapted Mitchell's methods to a system which maintains «11 user

programs in compiled form, compiling changes as they are made, rather than just befors the |
changed sections are executed. This allows us to avoid periodic return of control tc the

interpreter to check for modified sections, which in turn enables us to approach execution

speeds competitive with batch systems. This 1s an important attribute for very large systems,

which often run for long periods before requiring any interactive operations. The :

disadvantage to compiling before execution is that we may recompile the same section of code

many times without executing it. Under some circumstances this will significantly degrade

performance. Our method also makes it more difficult for us to accept incomplete programs. |

12

When they are not interacting with the user, Copilot code segments do not require the | :
i services, nor even the presence in memory, of the IPS routines cr data; nor do they require |

the presence of the higher-level program structures (eg. text strings or parse trees). With i |

i proper memory management, this allows debugged, non-interactive programs to approach the
a size efhiciency of conventional batch environments, without sacrificing the interactive facilities

: 1 when they are needed. This performance is achieved at the expense of additional time and
| space overhead in the IPS routines. In Section 8D we will present these “sele:tive

| I efficiency” methods in some detail.

I 4.B2 Static Block Structure
Another important design parameter for any programming system concerns the meaning of a |

| name in that system: its scope (lexical and dynamic range of validity), how its value is
obtained, and when this binding of name to value occurs.

1 None of these issues has any direct bearing on our main topics of study. However the choice
: we make has a large effect on the behavior of the language, and therefore on the overall

1 1 behavior of the system. It has an immense effect on the difficulty of implementing the |
g language In an interactive environment. ‘

! i We must consider this choice in the light of our previous decision to build a compiler-based |
1 system. Here a modification to the definition of a name can have far-reaching effects. These :changes are particularly difficult to handle incrementally, if the code compiled to gain access

to that name must also be changed; eg, if the name is bound to its access algorithm at |
Fr I compile time. |
&

i I Such 1s the case, for example, with the static block structure employed in Algol 60 [46], but
| | not with the dynamic scope rules used to access variables ui LISP 1.5, where all non-local |

. I names are bound to their values whenever they are referenced at run time. The problem is |B compounded in Algol 60 by the static lexical scope, which tends (in practice) to distribute ine

1 y effects of changing a global variable’s declaration over a wider range than do other methods. 3
I 4 True to form, we have chosen to use the Algol block structure, again picking the more |

| | I difficult end of the spectrum of possibilities. Fortunately, Mitchell's incremental compilation :
8 methods are equipped to handle this structure, and we shall use them in our design. The :

Ll

static Algol block structure affects our ability to display program variables conveniently, as we

shall see.

4.B3 Emphasis on Large Systems ii 3
The typical IPS is oriented towards aiding the development of the small (however complex)

program or cystem. Typical users are the beginning student of programming, and the : i
occasional user. They require that the system be easy to learn and use, that it be helpful, and i
that it be resilient to erroneous inputs. Efficiency is usually a secondary issue. When |

programs grow too large to survive economically In an interpretive environment, their |
creators must abandon these highly interactive and context-rich programming systems for :
more traditional batch-oriented methods. A few systems have survived the enlargement :

fairly well, among them most LISP systems. The LISP user sacrifices some of the flexibility

and interactive facility of the interpreter by compiling most functicns. In exchange, he : 1
achieves a significant improvement in speed and size. (The user may replace a compiled

) function by its interpretable equivalent in LISP, so that if he anticipates the need to interact
with a function before calling it. he may not suffer at all. However, there 1s a danger that a |
function which must be interpreted may be executed frequently enough to dominate |

| execution time).

In our experience, very large programs need comprehensive interactive methods most. Small

programs, even very complex ones, can usually be debugged with relatively unsophisticated

aids. In larger systems, troubles are often the result of “second or third order effects”. These i
effects can appear, due perhaps to new kinds of inputs, in routines long thought perfected,

whose details may have been forgotten. Such a situation typically develops only after a |
: langthy input sequence which would be expensive (or in real-time situations, impossible) to |

reproduce. The user needs the ability to apply a wide range of interactive aids to the

problem, wherever it occurs. }

Many of our COPILOT design decisions are independent of the size and complexity of the

programs we expect to handle. Where they are not, however, we have chosen in favor of

large systems. This 1s the chief reason for our emphasis on efficiency through compiled code.

It 1s the reason we segment the system so that IPS features can “retract” when idle. It 1s even

| partially responsible for our choice of a static block structure, since this name structure

sacrifices lets efficiency for its power than do other schemes.

| #4 |

1 We do not claim to be alone in decrying the neglect of large systems in IPS designs.Remedying it is an important goal of the BBN block-compiled LISP features [53], the

ECL system at Harvard [58), MPS and Smalltalk, being independently developed at the |
i Xerox Palo Alto Research Center, and Lisp70 under development at Stanford. All of them 3

are highly interactive systems, embodying many of the principles we support (see also Section

I 3.F). :

: 4.B4 No Automatic Program Composition

1] Most language processors place no restrictions on the assignment of language elements to text¢ lines. the indentation of lines, or the spacing between elements on a line. The composition, |

or physical appearance, of a program strongly affects its readability. Not nly do people

1 disagree with cach other concerning program composition rules, but a programmer may also
vary the format he chooses from one program area to another. We have therefore chosen to

ll do no recomposition of user programs, but to retain the form in which they are submitted. |
This does not preclude the provision of composition tools (eg., Prettyprint in BBN-LISP), as |

Bt optional facilities.
od

J 4C. AN OVERVIEW OF THE COPILOT SYSTEM

} | ;
| The final sections of this chapter serve as an introduction to the next chapter, which is a

- rather detailed presentation of our experimental IPS implementation, COPILOT (1).
[] COPILOT, as it appears on paper, possesses most of the traits we have advanced. The :
U current PDP-10 implementation falls considerably short of that, but is complete enough to
r3 demonstrate the feasibility and utility of our recommendations. Section 9.B deals with the

I aspects of COPILOT which we consider incomplete. :

i 1 Our overview consists of pictorial examples which should give the reader (and vicarious]
ET user) a “feel” for the use of COPILOT. We begin with a description of what he would see

It on his screens.

| i (3) The name is derived from Teitelman's "PILOT" -- used with permission. || 45 |

4.Cl1 The Environment 1

We will describe the system as it might appear after a significant amount of dialogue has :

A taken place, taking us from the initial state to something more typical. The user faces one or :]
| more display screens— in our implementation we require at least two. Referring to figures

4-1 and 4-2, the available display area has been segmented into several Regions, each
displaying a portion, or window, of a text Scene. (x) The configuration shown is a simple |

| one. This user's entire target (applications) program requires but one process. It therefore .

: contains at one time at most one active statement, which we will call the Instruction Point |

| (IP). Our user has simplified the situation by selecting for display only those few Scenes

required to understand the operation of his program, at the current IP and EP (or

| Environment Point, indicating the current “record of execution”, or active data }
environment). We call the current time ti.

The Region marked RPROG, available in one form or another in every IPS, is a

] | representation of a window of the user's program. The program is stored and displayed in
| exactly the same form in which the user (or some program) created it. The context cursor

("»" character) indicates the exact location of the IP in the program, at time tl. The language

is MISLE, which claims Algol 60 as a distant ancestor. |

| The RDATA Region is the visible representation of the instantaneous data environment, :

| consisting of the names and values of selected variables at tl. The context cursor ("»") here
| identifies the Environment point (EP), indicating the variables for the procedure most

recently entered.

4 The RDYNA region reveals the dynamic state of the computation through a graphic
representation of the process-stack configurations at time tl, while the RSTAT Region

; exhibits the current execution status of all processes (including in addition. to the Target

(applications) process the User and UCP processes which instantiate the basic IPS facilities). y

These four Context Scene types nearly exhaust the COPILOT repertory, although

| unlimited additional user-defined Scene types are possible. A few secondary COPILOT ;
Scene types are described in Section 5.Bb.

(x) The labels at the top of each region name the entities represented there. They take the
form <region>/<scene>(type), where the type entry is omitted if its name is the same as the
scene. f

16

hs : Las han - F's . - i . . y i seul 5 ; i i

Po 3| # ceccccccccecacecc= RPROG/EDIT (PROG) ~eeceiecew. -meeccceceaccoe 3
BOOLEAN PROCEOURE EOIT(INTEGER COMMAND, EDIT_SCW, EDIT_LINE,

INTEGER EDIT_CHAR, RI, A; STRING S1); g
BEG IN

INTEGER SERRCH_SCENE, SEARCH_LINE, SEARCH_CHAR;
INTEGER SERRCH_CNT, TINEQ, TIME; ;

OTHER_EOIT_ROUTINES; 3
BOOLEAN PROCEDURE SEARCH (INTEGER S_SCENE, S_LINE, S_CHAR; :

STRING WHAT); :

BEGIN |

| INTEGER SCN, LN, CHR, CHl; STRING SRCH_STR;
: # SEARCH_PRIMITIVES;

SCN « S_SCENE; TIMED « SYSTEM_TIME() - TIME®,
&

1 SEARCH_CNT; TIME;
FOR LN ~ S_LINE STEP 1 UNTIL GETLENGTH (SCN) |

| 00 BEGIN |
» SEARCH_CNT «» SEARCH_CNT + 1; 1

SRCH_STR « GET_TEXT(SCN, LN, CHR+l, 999); CHR + 0;
IF (CH1-F INO_STRING (WHAT, SRCH_STR)) THEN BEGIN

SEARCH_SCN = SCN; SEARCY_LINE « LN;

| SEARCH_CHAR »~ CHR4CHi+l; RETURN (TRUE) i
ENO Comment recursive search;

WHILE (CH1oFINO_STRING("#", SRCH_STR)' DD

IF SEARCH (F IND_SCENE (SRCH_STRICH1+1 TO 9991), 1, 8, WHAT) :

meccccccccccccccme RSTAT/STAT ccmmcceacemeececcaanas

| | ! USER RHARITING User Input :
POST RHRITING Postevent

UCP STEPPED

I TRRG! STEPPED

of : |

I Figure 4-1. Typical COPILOT Scenes and Regions (screen 1) :47 a.

[

Ig —— 1. (17/1| ({ JESSE

USER.COPILOT(...); :
BEG IN

TARG1. TEXTPROG (...); |
BECIN

TARG1.EDIT(...); I
i BEG IN 1

...4 SERRCH_CNT = 12

TARG 1, SEARCHA2(S_SCENE = 3, ..., WHAT = "THIS ONE");
» BEGIN

son} CHR t 17; toe t
END;

END; 1
END; :

END;

S——— 1,{TV}{ 7.JESER RSS

| 1]
USER.COPILOT -o- —ceememmen —omeee-

2) 3 4

| POST.POST UCP.UCP TARG1.TEXTPROG
;

EDIT

1 SEARCHA1
|

» SERRCH#2

: \ J

Figure 4-2. Typical COPILOT Scenes and Regiuns (screen 2)

18

i |

Almost any modern computer terminal keyboard and operating system interface would suffice

i [for a COPILOT-like system. Qurs (see Figure 4-3) can communicate with the program one
character at a time when desired, Increasing the possibilities for abbreviation. These

J possibilities are further multiplied by the TOP, CONTROL, and META keys. These keys,
| like the alphabetic SHIFT, allow multiple-interpretation of each character. TOP selectes an |

i alternate character, while the remaining two simply qualify the selected basic code. We will
use "aA" for CONTROL-A, "3B" for META-B, and "eC" for CONTROL-META.C. 4

1]

I J

i

1

aR

JL

i i 19
v

Best Available

Copy

for page 50

C—O a a a Er ne=

i

1] ! Eu
l= | 0} UV | ec | >| $ | #1 ~ 01 0111 =~] oe

@ |) 1 | 2 | + | & |S | 6 7) 8 | 9) + | ~~} = 4
rer, (EN, , DUN SSSA) FU JUSS, (S— N_— NUT—— NU, NU, J —"

- So Sree :
Alvi oe | 2] 6 A I DE I I DI UD I IER I

% a | 4 J ERT PY [VL Ooe Pt ZN ;

SR 0M N a

FORM | “NE L88 | A | 5s | 0 0 F) 6 HJ K pL) |: RETURN | LINE| .

SHIFT] NC IVI IR I NN TIO SU HO J HR A SR aed
J LOCK) SHIFT [TOP | Z 4 k | C | V | B | N | MN | , | . |TOP| SHIFT |#&¥] |

! | ;
| NETR | CONTROL | | CONTROL | RETA | ll:

(8) | (@) ____|RUOy { | SS PUN {3 NE

:

| | Contrui/Snist beoup |
|| E

I | §
| | Tabul tt ian Lroap

a FO |

Reproduced from pe |
best available copy. >

Figure 4.3. The Sanford Al Project Keyboard ;

; i kd alas dion a I EETI EEFmm TT

p 4.C2 Basic Dialogue

i The IPS must provide the routines for reading what the user types, and for invoking the
facilities of the IPS in response. We have said that the nature of these interface routines i

C establishes the behavior of the IPS, and thus the (interface) behavior the user must exhibit. | }
We are now in a position to treat the interface behavior of our system in some detail. '

1 I “We will call that routine which controls the operation of the user-IPS interface the basic
I control loop, or User loop. Its existence is at least implicit in all the IPSs reviewed in Chapter| 3, usually it is quite explicit, forming the central control ‘or the entire system. The basic

User loops are remarkably similar from one system to the next. When the loop gains control

il (in a fashion to be described later), it performs approximately these functions: i

ll 1) Accepts one command from the keyboard. }
2) Deciphers its meaning, and carries out its intent. ;

| 3) Reports the results, if necessary. 1]4 4) Returns to step |.

1 I An elegant example of this sort of algorithm is the top level of most LISP systems (e.g. ;
[49]). This algorithm, itself expressed in LISP, can be approximately stated in the LISP |

1] M-expression language [40] as:

: lI L: A[J;prog2[prinilevallread{JNIL]}L]

] I or, using the less pure PROG form
prog(}[L: printlevallread(JNILY, golL1)

4 i Although not all IPS implementations can express it quite this succinctly, they all have
something like this Read-Eval-Print User loop op ating at the command level. Though all

i. are similar, there are important differences betwern these User loops. One is the nature of
| the commands supplied to the ‘Read’ function: in an IFS these commands are usually

st .tements (S-expressions) in the single source language. The User loops of the various IPSs

| can be distinguished from each other by the ways in which they are able to gain control, the
times when that is possible, and the meaning of statements for a given instance of the User

| 51

x procedure or process (the scope of interpretation). In general, they differ in the relationships :
between the basic control routines and the remainder of the system. Ll

To a user familiar with any of ihese systems the User loop in COPILOT will present no p

immediate surprises. Commands in the form of MISLE statements are accepted sequentially 1
from the keyboard, and usually are carried out in incoming order. Results of user a
commands, if they need to be reported, are revealed by changes in the text displayed in the =
appropriate Regions of his screen. As long as the cperations to be performed are simple,

| commands and actions progress alternately, as in JOSS or BBN LISP. By describing A |
situations designed to demonstrate the non-preémptive aspects of COPILOT we shall soon } |
shatter this illusion, but for the present we shall retain it.

| COPILOT commands are available for editing program (and other) text, for examining i y

progiam data, for controlling program operation, or simply for thieir effect as statements (to het
test program sections, or for "desk calculator” operations). Figures 4-4 and 4-5 are 1 }

] continuations of the picture sequence begun in Figure 4-1, showing the effects of COPILOT i :

| operations on the contents of the user's screens. Regions are sometimes shown in different 3
positions from figure to figure in these examples, to minimize the information in each figure |]

i (in the actual system, the Regions would remain in fixed screen and line positions). A Region 3

is shown only when there is a significant change in its data. Each figure represents the state 1
: of the Regions it show: after execution of the commands which accompany that figure. J

The locus of user activity is indicated by the edit-cursor, a "A" character beneath a selected |]
character position in one Scene. Most of the editing primitives (EDIT_CHAR, 18
INSERT _LINE, etc.) use the location of the edit cursor. L]

3 The entries in the COMMANDS column are the actual character strings the user types to | :
perform the functions described in the examples. Entries in the EXPANDED column are the

| actual MISLE statements which he could type to get the same effect. Table 4-1 briefly | 4
describes the functions of the commands used in these examples. More complete descriptions ~~

of these commands and their expansions appear in Chapter 7.

52

& a : = Tr 5 4 . jd LR p : hr ' ” ik

Table 4-1. Commands Used in Chapter 4 Examples RB
p.

COMMAND MEANING | :i en<cr> Move the edit cursor ("A") down n lines (n is a number, and <cr> E
means “carriage return”). i

1 enaF <char> Move the edit cursor to the nth occurrence of the character <char> ;
following the current cursor position. \

|

i ®: Move the edit cursor to the first token of the statement which begins 3
nearest the current cursor p- sition. {

| <char> Place <char> in the current edit cursor position. Replace any
character which might already be there. '

1 enaD Delete n characiers.
® Move the control cursor (instruction or environment point indicator |

1] (">") to the edit cursor position.

I ®, Move the edit cursor to the control cursor position.
eB Set a breakpoint (insert a BREAK statement, see below) at the |

i statement nearest the edit cursor.
oP Allow the process indicated by the DATA Region containing the EP

contro! cursor (">") to proceed. This is usually used to resume a

I process after a break. §
eX Allow the process identified hy the EP cursor to execute one 94

i statement, identified by the IP cursor. X
®S If the statement at IP contains substatements, allow the process to |

I continue to its first substatement. Otherwise, this command is the
same as ox. !

1 o& <string> Execute the statement specified by «<string>, in the environment 41 specified by the EP context cursor ("»").)

1 ob Make visible the PROG, DATA, and DYNA Scenes corresponding to 1°: the most recently broken process.]

|

eM<str><cr> The string <str> 1s the name of new data which replaces the current
data in the Region containing the edit cursor.

eneR Move the edit cursor to the last pusition it occupied 1n the Region n

Regions away from the current one, where Regions are arranged in a
reasonable circular order.

| — A statement containing only an expression means that that expression’s current value 1
should be displayed in a DATA Region (eg. "J.").

— "BREAK(proc)” will cause the process named proc to suspend when it encounters the
BREAK statement.

— {sl s2, .. sn | sm” , where sl, etc. are statements, 1s equivalent to "BEGIN sl; ... sn; sm
END". See Section 7.D3, which describes these temporary statements.

After examining these figures, it should be clear why some form of abbreviation is desirable. |
| A user hould not be forced to submit a “mouthful” like "MOVE_CURSOR(..)" simply to

; reposition his edit-cursor, although the same string might be the best form (for precision and
legibility) to include in a program (“macro”) to position the cursor. Consequently, we have
caused the command “<cr>" (carriage return) to perform the same action as the

MOVE_CURSOR operation in Figure 4-4, by a mechanism explained in Section 6.B2. =
In fact, the form marked COMMAND in each of our examples is the preferred form of

direct input to our User loop: the expanded forms are always available for inclusion in |

programs and for documentation.

Notice that the cata display statements of Figure 4.5 are executed for their effect on the

program, operating in the program's environment. Others operate essenually in the
environment of the system (the “interpreter”). We will show these relationships in detail in |

Section 7.C8. This distinction 1s a very important one, the subject of a great deal of study

by Fisher [21] and others (for instance, Bobrow and Wegbreit in (6). g

54

1B |

| rd ceeiimmmcmcmaeccece RPROG/EDIT (PROG) -ecccceccccecccacmcecmcana- ~ |
| BOOLEAN PROCEOURE EDITCINTEGER COMMAND, EDIT_SCN, EDIT_LINE;

INTEGER EOIT_CHAR, RL, R2; STRING Sl);

i BEC ININTEGER SERRCH_SCEME, SEARCH_LINE, SEARCH_CHAR;

© INTEGER SERRCH_CNT, TIME®, TIME;

i # OTHER _EOIT_ROUTINES;BOOLEAN PROCEDURE SEARCH (INTEGER S_SCENE, S_LINE, S_CHAR;

| STRING WHAT); :BEGIN

i INTEGER SCN, LN, CHR, CH1: STRING SRCH_STR: |

SEARCH PRIMITIVES; |

SCN + S_SCENE; TIMEL « SYSTEM_TIME() - TIMED;
SEARCH _CNT; TIME];

| FOR LN « S_LINE STEP 1 UNTIL GETLENGTM(SCN)00 BEGIN

SEARCH _CNT + SERRCH_CNT « 1: §
SRCH_STR « GET_TEXT(SCN, LN, CHRe], 999); CHR . 8; 111] i

&

| IF (CHI-FIND_STRING(WHAT, SRCH_STR)) THEN BEGIN :
SERRCH_SCN « SCN: SERRCH_LINE « LN;

SEARCH _CHRAR + CHReCHle]l; RETURNI(TRUE)

ENO Comment recursive sedrch;;

| > WHILE (CHI-FIKND_STRING("£", SRCH_STR:) 00 121
IF SERRCM (FIND _SCENE (SRCH_STR[CH1el TO 9991),1,08, WHAT)

| cocsssanccnncnneeee RORTA/QRATR ccccccccccccccccccccaaa.
USER.COPILOTC(...);

BEGIN

i TARG 1. TEXTPROG(...);BEGIN

TARG1.EDITC...);

BEGIN

...: SEARCH _CNT = 12;

i ...3 TIMEL= 4.05; ...;TARG 1. SEARCH (S_SCENE = 3, ..., WHAT « “THIS DONE"); i
» BEGIN

coo;CHR o 8; ... (21 3

! ENO;END; ,

END: ;
END: oo

I

I COMMAND EXPANDED COMMENT - &

wher MOVECURSOR(CRNT_ REG, 4, 0, 08, 8); [1] Move the edit-cursor (8) down 4 |ines, §
nf; FIND STRING (CANT REG, ;", 1); then out to the first "C" after a ";° 4

> of C FIND_STRING(CANT _REG,"C", I); i

| v; SET _P (GET _PROCESS (EP), [2] Move tre context cursor (p), identifying
EDIT_STRUCT(CANT _REG) the IP (Instruction Point) to the 1

wX STEPP(GET_PROCESSEP), “47); edi t-cursor (0C., then execute two

i wX STEPP(GET_PROCESS(EP), “di"); stmts. The assignment to the |

: i variable CHR hag changed its value 1
from 17 in the previous diagram to ;

J 8 in this one.

i Figure 4-4. Simple Editing and Execution Control (part 1)55 |

se i
4 S———— {11rd 30) SI]1 od

| INTEGER SERRCKH_SCENE, SERRCH_LINE, SEARCH_CHAR; —
INTEGER SERRCH_CNT, TIMES®, TINE];

| # OTHER_EOIT_ROUTINES; i.
BOOLEAN PROCEQURE SEARCH (INTEGER S_SCENE, S_LINE, S_CHAR;

STRING WHAT);

BEGIN

INTEGER SCN, LN, CHR, CKl; STRING SRCH_STR; $d

SERARCK_PRIMITIVES; :

SCN « S_SCENE; TIMEL « SYSTEM_TIMEC - TINEO; .
SEARCH STR; TINE]; i)

FOR LN « S_LINE STEP 1 UNTIL GETLENGTH (SCN)
00 BEGIN |

SEARCH _CNT « SEARCK_CNT + |;

SRCH_STR « GET_TEXT(SCN, LN, CHR4], 999); CHR « §; | ;
IF (CH1-F INO_STRING (WHAT, SRCH_STR)) THEN BEGIN :
SEARCH _SCN « SCN; SERARCH_LINE « LN; :

| SERRCH_CHRR « CHRe4CH1el; RETURN(TRUE)
ENO Comment recursive search;

IF (CH1+FINO_STRING("#", SRCH_STR)) THEN 6 4
&

| » IF SEARCH (F INO_SCENE (SRCH_STRICHi«] TO 9991),1,8,UKAT) 131

mecceceeeesceccoe= ROATA/DATA -cemeecee-mmmmmomccanoaue

USER. COPILOT(...);

BEGIN .-
TARGL. TEXTPROG(...);
BEGIN

TARG1.EOIT(COMMANG = 17, ...); 141

BEGIN .i

ooo) SERRCH_CNT = 12;
...3 TINE] = 4.85; ...;

TARG1.SEARCH#A2(S_SCENE = 3, ..., WHAT = "THIS ONE");
» BEGIN Ll

vo. CHR = 8; ...;

SRCH_STR = "1S IT Tw13 ONE?" 14) —

: ENO;
ENO,

| ENO; | .\ Eo; A

COMMAND EXPANDED COMMENT

| “, SET_CURSOR (GET_REGION(IP), 131 Now bring tne edit cursor to the new
GET_LINE (IP), GET_COLUNNC(IP), -1); context cursor (IP) position, change the

12 FNIT_CHAR(CRNT_REG, "IF", 0) "WHILE" to an "IF" (replace "WH" by "IF",
«300 EOIT_CHRR (CRNT_REG,NULL,-3) then delete "ERE"), and *'he "DD" to "THEN".
«20F0 FIKD_STRING(CRNT_REG,"0",2) Then "step 1n" to the statement at IP by
THEN EOI _CHAR(CRNT_REG, "THEN", 0) executing the (successful) test and suspending
«S STEFP (GET _PROCESS (EP), "«") at the substatement.

w&SRCH_STR; <ccr> 164) Finally, execute data-display operations
EVAL ("SRCH_STR; ", IP, EP) to inspect (and retain in view) some

w&CONNAND ; <cr> additional variables.
EVAL ("CONNAND; ", IP EP) :

Figure 4-5. Simple Editing and Execution Control (prt 2)
56

| 4.C3 A glimpse of Non-pre¢mption
B i The User-loop of COPILOT is continuously active. This means that, within second or two

(a reasonable response interval) after accepting one command, it will be ready to accept (and

BE } act on) another. We have arranged to implement those operations which require longer :
intervals as separate, lower-priority processes, in order to maintain this response. Chief |

| among these other processes are the user's target (applications) processes.
1 Figures 4.6 through 4-8 portray a sequence which we hope will not appear too contrived. |

; 1 Program-editing statements (expanded from the simple eB command) first add a BREAK
FB (break pointing) statement temporarily. Then (Figure 4.6) the oP (proceed) statement allows

| processing to continue from (IP, EP) in the Target process. The breakpoint has been planted 4
to detect an unexpected condition, and the user knows that whether or not this condition

| develops, execution will take some time. He therefore (Figure 4-7) issues commands toB change some of his Regions, selecting a new Scene for view in the PROG Region and cutting 3
BE off most visual contact with the TARGI process, which continues to operate, indicating its |

EP | progress by occasional changes in the TIME! and SEARCH_CNT variables. In this
P| Ta instance the new Scene (SUBST) is a piece of code which he has just begun to compose.

i Because the process(es) implementing the User loop algorithm operate at a high priority, his
editing commands (Figure 4-8) receive service as they come in, “stealing cycles” from his

EF i running target, or applicaucns, process. In short, he has been able to initiate an external
operation, then to shift his locus of interest, while monitoring some aspects of the previous |

: operation. He has issued a stream of interspersed editing, debugging, and program control

| operations. He has accomplished this, we contend, with no noticeable loss of continuity, from]
b his standpoint. We have an IPS which satisfies our multiple-process, minimal mode, rich-

1 context criteria.

| 1

| i

BE |
| |

i i |
¢ meemeem—mcmcmeceee RPRDG/EJIT (PRDC) -eveeeeeemcmmcememeaccanae Ll

BEGIN)
‘ INTEGER SCN, LN, CHR, CHl; STRING SRCH_STR;

J SEARCH_PRIMITIVES; pt

SCN » S_SCENE; TIMELl « SYSTEM_TIMEC) - TIMEQ;
SEARCH _STR; TIME;
FOR LN « S_LINE STEP I UNTIL GETLENGTH(SCN)
DD BEGIN 1

SEARCH_CNT « SEARCH_CNT + 1;

SRCI_STR « GCT_TCXT(SCN, LN, CHRel, 999); CHR « 8; |
IF (CH1FIND_STRING(HHRT, SRCH_STR)) THEN BEGIN
SERRCH_SCN » SCN; SEARCH_LINE « LN;

SEARCH _CHAR « CHReCHlel; RETURN(TRUE) :
END Comment recursive search;

| iF (CH1-FIND_STRING("#"~, SRCH_STR)) THEN
IF SEARCH (FIND _SCENE (SRCH_STR(CHl+1l TD 999]),1,8,UHAT)

THEN RE TURN (TRUE) .] |
END Comment one ine; :

| IBREAK (TRRG1) | RETURN (FALSE); (5) .
A 1

END Comment Search;; .

| CASE COMMAND DF BEGIN |

DTHER EDITS;
BEGIN t

TIMES ~ SYSTEN_TIME(); SEARCH_CNT + 8;
RETURN (SERRCH(EDIT_SCENE, EDIT_LINE, EDIT_CHRR, S1))

| END Comment search command; /

STILL _DTHER_EDITS;
END Comment case;

END Comment Edit;

ceccaccenvemccceeee RESTAT/STAT ccccaccvccscvccccacaaaa
: 3

i
i USER AURITING User Input :

POST RURITING Postevent

uce STEPPED

; > TARG RUNNING (S)

AY Kd

~~ i a ————

|
1

COMMAND EXPANDED COMMENT

wéecr> NDVE_CURSDR(CRNT_REG,4,8,0,8); (SINow “plant a breakpoint®™ (the temporary
“: STRUCT _MOVE (CPNT_REG, ":"); "BREAK (TARG1)™) at a point which will

:) ED)T_CHRR (CRN _REG, " IBRERK (TRRG1)I",1); only be reached if ar error occurs, and]
of ACTIVATE (GET _PRDCESS(EP)); jet the process proceed.

Figure 4-6. Control of Multiple Processes (part 1)

58

LJ

1 J
B F

i
" i

]
——————————————oT————— A ———.

| Va [| I| ’ ——TAY {rfI
: PROCEOURE SUBST (INTEGER S_SCENE, S_LINE, S_CHAR;

STRING FROM, TD; INTEGER HOWMANY); | 4

BEGIN di
INTEGER TIMEL, LN;

FOR LN « S_LINE STEP 16)

emccccmcmenmenne=- ROATA/DATA ccrerccncrcrmmcccccccnn-

|

| USER.COPILOT(,..); i
BEGIN 1

3 TARG1.TEXTPROG(...}; :

BEGIN 1

| TARG1.EQIT (COMMAND « 17, ...)}BEGIN -

: ...3 SEARCH_CNT = 116;

: TARG1.SEARCHA2 (S_SCENE = 3, ..., WHAT = "TH]S ONE");
BEG IN

] coo CHR 2 0; ...3

. SRCH_STR = "R RANDOM SEARCH STRING"

ENO; |’ i

| END; h
END; i

: END; i

gE ; ceermmmeeecncee—ae== ROYNR/CALSEQ (USER) --r-cccccaccnea-- (61 A

L « GETLENGTH (SCENE) returns number of (ines In Scene ’

S « GET_TEXT(SCENE,LINE, returns a selected substring, not

, STRRTCHR, ENDCHR) to exceed remaining length of (ine. 2
p B ~ FIND_STRING("FOR", "IN™) TRUE 1f FOR in IN, FALSE oteruise. ;
i LINI J .

i I = o]

: % COMMAND EXPANDED COMMENT
v e2«R EQIT_REGION(NEXT_REGION(CRNT_REG, 2), [6)Move the edit cursor to tha RDYNR

: -1, =1, =1); Region, temporarily change its

' I sHCALSEQ<cr> NAP _SCENE (CALSEQ,CRNT_REG,1,1,1); Scene to one containing a ’g e-e«R EDIT_REGION(NEXT_REGIDN(CRNT_REGN,-2), function-description dorument,
i -1, =1, =1)3 then go back, switch the RPROG i

«ftSURST-cr> HRAP_SCENE (CRNT_REGN, SUBST); Region to a text Scene for a 3
| co. STRIN,.. EOQOIT_CHRR(CRNT_REG,"...ST...",0); rout ine under devejopment, and
3 ...BEGIN... EDIT_CHRR(CRNT_REG,"...BEGIN..",0); begin editing 1t. RSTRT and ROYNR

con “oe are still monitoring the Activity

& of the running process (TRRGI). 2

i Figure 4.7. Control of Multiple Processes (part 2) ¥
3 59

gE I. 3 = e PORES SL SATE Rid dha La ei TTIEY §TeerTR TIELEE ob 0 SL SR oy

A Po |

f cececcecccccmccee== RPROG/SUBST (PROC) ceccccccccccceccccccaa

PROCEOURE SUBST (INTEGER S_SCENE, S_L INE;
STRING FROM, TO; INTEGER HOWMANY);

BEGIN I

INTEGER TIMEL, LN;

FOR LN « S_LINE STEP | UNTIL GET_LENGTH(S_SCENE) 00 ed
IF FINO_STRING(FRONM,GET_TEXT(S_SCENE,S_LINE,1)) THEN
BEGIN a

INSERT _TEXT((7)
a :

1 cocccccecccccccecees ROATA/ORTA —eccccccccccccenanaa. a. |

USER.COPILOT(...);]
BEGIN 3

TARGL. TEXTPROG(...);

BEGIN Sad]

BEGIN)

» BEGIN

eve} CHR = 0; EN |
SRCH_STR = “This is indeed a string”

ENO;

END;]
ENO;

- ENO;

coecccrcacassecccce RSTAT/STAT ceccccccccccceccccccccnas

! USER AUAITING User Input
POST RUAITING Postevent

ucp STEPPED
se TARG! BROKEN |

| A

COMMANG EXPANDED COMMENT

INTEGER T1.. EDIT_CHAR(CRNT_REG,"...IN.."80); (7)Even though the TARGY process
FOR LN .. EDI T_CHAR (CRNT_REG,"...F0..",0); has suspended at the BREAK statement,

. BEGIN. EDIT_CHAR(CRNT_REG,"...BEGIN..",8); continue editing the SUBST Scene
Sls So (an exampie of non-preemption).

Figure 4.8. Control of Multiple Processes (part 8)

: 60

| 4

I Figures 4-8 through 4-11 provide our last example, demonstrating non-pre¢mption. InFigure 4-8 the STAT Scene indicates suspension of the TARG1 process due to a BREAK :
statement, and flashes the asterisk (at one-second inervals) to attract attention. Our user,

1 however, has devoted a good deal of thought to the construction of the line of code which he
was inserting when the BREAK occurred. Fortunately, he is under no obligation to do

I anything about the broken Target process. He finishes his line, adds another (Figure 4-10),
then (Figure 4-11) calls up the environment cf the broken TARGI process, and faces the

| bad news with a clear head.

| |

LJ) |
4 ceecmccccccccccecee RPROG/SUBST (PROG) -ecocococceccccaccaan-

FOR LN « S_LINE STEP | UNTIL GET_LENGTH(S_SCENE) DO ‘ |
IF (CHR1-FIND_STRING (FROM,GET_TEXT(S_SCENE,S_LINE,1))) THEN

BEGIN - p
3 INSERT _TEXT(S_SCENE, S_LINE, CHRL, 70);

(8) a | :
[;

i

/ |
SN ————— i ———————————————— EE— [:

A

COMMAND EXPANDED COMMENT

+ INSERT_T,.. EDIT_CHRR(CRNT_REG,"...IN..",08); [(8iReach a convenient place to etop =
} editing SUPST before handling the

breakpoint condition.

Figure 4-9. Non-Pre¢mptive Operation (part 1)

62

o] I I ore ee eee ee is isi Bsa ~~ JI i Sp——————— {1 {3 | Fd Xt I 1d1JeT £:)) :
BEGIN

j INTEGER SCN, LN, CHR, CHI; STRING SRCH_STR;

10s # SERRCH_PRIMITIVES, J
SCN « S_SCENE; TINEL « SYSTEM_TIME() - TIMED;

SEARCH _STR; TIMED;

FOR LN « S_LINE STEP 1 UNTIL GETLENGTH(SCN) ;
00 BEGIN !

SEARCH_CNT « SERARCH_CNT + I;)

SRCH_STR » GET_TEXT(SCN, LN, CHR+l, 988); CHR + 8;

IF (CHI-FIND_STRING(HHRAT, SRCH_STR)) THEN BEGIN

SERRCH_SCN + SCN; SERRCH_LINE «~ LN; :

SEARCH_CHRR « CHR+CHi+1l; RETURN(TRUE)

END Comment recursive search;; :

! IF (CH1-FIND_STRING("#", SRCH_STR)) THEN

: IF SEARCH (F INO _SCENE (SRCH_STRICHl1+1 TO 9981),1,8,HUHAT))THEN RETURN (TRUE)

END Comment on ine;

IBREAL (TARGL)t »RETURN(FALSE);
F

ENO Commant Search:

CASE COMMAND OF BEGIN :

OTHER _EOQITS;

BEGIN

| TIMED « SYSTEM_TINE(); SERRCH_CNT « 0;
| RETURN (SERRCH(EQ]T_SCENE, EOIT_LINE, EDIT_CHRR, S1))

END Comment search command;

| # STILL_DTHER_EOITS;
ENO Comment casa:

: END Comment Edit;;

coememereem—c—c-== RSTRAT/STAT ~tcececccccccccrccccccaaa

USER AHRITING User Input

POST RIIRI TING Postevaent

UCP STEPPED

; +¢ TRARGI BROKEN

\ J
ne eee —— i ssn sar

COMMAND EXPANDED COMMENT

“p TO_CONTEXT(-1); 18] Finatly, return RPROG anu RDOYNR Regions to
the context of the process (TARGL) which brole,

| and prepare to fix 11. See aiso the next figure.

BR Figure 4-10. Non-Pretémptive Operation (part 2)

|

]

Ly aihi i idk

I's cecvecvees vomeeme= RORTR/DATR ccrcccvecnccccccccerenna :

BEGIN

BEGIN

TARGL.EDIT(COMHAND « 17, ...)} »
i BEGIN
| «..3 SERRCH_CNT = 145;

coey TINEL = 13.23; «vey |TARG).SERRCHA2(S_SCENE = 3, ..., HHAT « “THIS ONE"), a :
: » BEGIN :

eon} CHR a 0; tes}
SRCH STR « “This is indeed a string”

END; l

END;

END;

| END; |

————— (j){F401}11 EEEERESEPERSSEER LLL ILLES (9)

; 11 -
USER.COPILDT =ve ccvececcac cccee--

21 3) Y |X POST.POST UCP.UCP TARGL.TEXTPROG
} ;

EDIT |
| |

SCARCHAL

| —

X » SEARCH#2

1 id

/ a=
N\ 4] i
~ od

COMMAND EXPANDED COMMENT
Remainder of final state, after returning

attention to the suspended process.

Figure 4-11. Non-Pre¢émptive Operation (part 3)
64 ;

' * he y 4

| -

| 4D. ATTRIBUTE ANALYSIS OF COPILOT
‘ We will apply the same behavior match aralysis to COPILOT which we applied to other i

: PB i IPSs. We will indicate, for each attribute, those qualities of COPILOT which satisfy the 1%
a requirements inyposed by that attribute.

EB The User loop of COPILOT, in common with other systems, fits the .educed mode FSA

\ TT model in its basic operation. In common with DP*DA systems, the statements executed © this :

3 i loop have different interpretations when applied te different program contexts. COPILOT
FE can not be considered a DPDA system, however. We have replaced the nested user concept, i

. § id which DPDA systems implement by creating instances of a User procedure in some operating i
i environment, by a sort of “omniscient user” organization. The user is given the illusion that :

| 1 he is "above the plane of his program, looking down” (or some illusion to that effect). He
En can, by pointing, cause any active environment to be influenced by his actions. User

lL 11 “instances” no longer need follow any particular control discipline. (In reality, thzre is but i
.o one User instance, whose activities invoke appropriate activities in other processes.)

IY Let us now perform the detailed attribute aralysis:

[1] 1) Multiple Activities. COPILOT allows the user complete control over the processes he 4
wh creates. The system itself makes copious use of the multiple processing and event |

handling facilities of the language. We have described some of these system processes.

| Others operate behind the scenes; they will be described in Chapter 8. |
E § 2) Non-preémption. Ironically, we have achieved non-preémptive behavior by having one :

| process, the User process, totally preémpt the terminal. This process is, fortunately,]
i designed as the mechanism for non-preémptive control of the other processes. The |
» terminal is always available for user commands.

| 1 3) Response time. The user may issue any meaningful command, and have it begun, 1
| § immediately after the system has accepted the previous command (limited only by the J

time delay of the User loop, which 1s determined by system load, but should remain

)! short). This 1s the combined result of the process structure, the User process design, and |
i mode minimization.

%

! | |

4) Minimal modes. There are no global modes in COPILOT; no special command must 1 |
be 1ssued to begin editing a function, or to begin inspecting program variables. There
ts a different command, or statement, in the single input language, for each interactive i J
operation in the system. This might require more different commands than systems ui
which provide modes, but the increase is not too great. The number of commands is ;

held tn check by the use of the same text-oriented and structure-oriented editing :
operations on each kind of IPS data. Thus, editing the program (e.g, RPROG) Region |
corresponds (0 a “program edit mode”, while editing a data (RDATA) or dynamic i
activation tree (RDYNA) region corresponds to some "debug mode” operations. Chapter !
7 presents, in just 39 commands and special statements, a reasonably complete set of IPS 1]
facilities, whose power may be enhanced by direct execution of normal language
statements.

5) Single language. Every action in COPILOT is expressible as a statement in the MISLE :
language. A statement, if correct and .neaningful, will always mean the same thing,]
except for the environment-dependent bindings of names. |

6) Accessibility. By referring to supplementary data structures, COPILOT facilities can 1

transcend normal scope limits, gaining access in a controlled manner to names and
values of any data in the "job" ‘ |

7) Context. All program contexts: programs, data, and execution state, can be visually |
displayed, in a manner revealing their structi.re. = df

8) Non-symbolic operations. The common operations for editing and process control are |
very short, manipulative in nature. We could extend our expansion algorithms to o |
accept non-symbolic input from devices such as a “mouse” or "graphics tablet”, again :
creating MISLE statements for execution.

J A

The chapters which follow present the COPILOT design in more detail— first the user level :

descriptions, then some implementation considerations. In the final chapter, we will discuss 4

some of its shortcomings, and some possible extensions.

66

: CHAPTER 5 | 4

i i THE COPILOT SYSTEM: A USER-LEVEL DESCRIPTION
: i In this chapter we wish to expand the introduction of Section 4.C, presenting the COPILOT :
q experimental design in some detail. Our goal is not to write a user's manual, but to cover all | |

:] the ma jor aspects of the system, to give the reader a general understanding of its capabilities, | 4
| and a feeling for its philosophy. | |

1 5A. BASIC SYSTEM STRUCTURE TERMINOLOGY i
 : Our discussion of COPILOT begins with the structures we have developed for the display |

3 | of information. These structures, while they need not strongly affect such things as the
| programming language design— the control and data structures it supports— do determine :

/ | how the user views his programs, and what role he can play in their operations.
¥ We will show that the Scere types defined in COPILOT constitute an adequate external

; | model for the Information Structure of most block-structured languages and that, when !
linked to the operant structures underlying them, these Scenes provide all necessary context 3

1 | for viewing and controlling program operation. |

E | We begin the discussion with a definition of the COPILOT display terminology.

1 I 67]

: Table 5-1. Display Terminology |

: SCREEN A physical display device, also known as a “display”.

REGION A contiguous, named group of lines on a Screen, assigned by user or program to
E a specific Screen location.

: SCENE A logically related, ordered set of text lines — a “page” from a user program, for
: instance. Each Scene also possesses a Scene Type to clarify its use. A Scene may

be part of a program, of a data specification, or any other textually representable

| entity.
| WINDOW The contiguous set of lines from a Scene, visible in the Region to which the
| Scene is assigned (mapped).

H 5.A1 Screens

In Section 4.A2 we state¢ that we would support multiple screens. A Screen, or Display, 1s a

| device capable of presenting continuously several lines of text. The Fardware and software

supporting each display must allow programs to control completely the data displayed on the

| screen. Updating must be fast enough that no appreciable delay is encountered while
Ho changing part or all of the data on the Screen. In addition, it must be possible to show

| several distinct indicators, or cursors, without disturbing the data. In COPILOT, the
| Screens assigned to a user are assigned permanent numbers during installation— naming

facilities at the screen level are not very important.

5.A2 Regions

Given enough Screens, a COPILOT user could devote one to each independent data Scene
which he or the system has created. However, it 1s rot usually possible to sausfy the

voracious appetites of COPILOT processes for display area Thus there is a need for
facilities which will allocate sections of the available Screens to these disparate uses

A Region is a named area on some Screen Region names and ranges may be assigned Dy

programs or by the user, the initial system configuration features a few Regions whose Scenes
display the initial system context The subsequent creation and mapping of Region to Screen
is an infrequent operation Typically, the user does it but once, at the beginning of a session,
to establish an augmented configuration to suit his needs and resources

68

A dE —— EEHE ~ —— : "

|
1 il

Ld

3 A Region 1s usually named, created, and used for a specific kind of Scene; if one wishes to

| 2 use the same Screen area for multiple purposes, he assigns multiple Regions to that area. In
the current system, no two Regions whose areas overlap may have Scenes mapped into them

{ (be visible) simultaneously. Such a facihity would require a priority scheme to resolve
conflicts

We will treat Regions and their relationship to Scenes in Section 5H, after a detailed

consideration of Scenes and what we put into them

5.A3 Scenes

We have used the term “Scene” loosely in the preceding paragraphs to describe the collections

of lines displayed in a Region In cur formal definition, such a collection of lines 1s a |

"Window" of some Scene If the Scene has fewer lines than its Region, enough empty lines

will be inserted to fill the Window The archetypical example 1s the Scene used for storing |

and displaying program text Program Scenes resemble the user-defined “pages” which often

segment program text files into logical groups A program Scene might be just one page from |

the file, although we intend to suggest an orgat.ization of programs into Scenes which 1s more

intuitively structured for interactive operation We have avoided use of the term “page” to

avoid confusion with the memory “pages” of some modern computing systems.

5.A4 Scene Types

Every Scene has the same format a set of text lines As we have suggested, though, Scenes

are put to various uses Some Scenes correspond to structures (such as “ompiled code) at other

levels. or contain data which system processes need to read The user may also define Scenes

which require special treatment We associate with each Scene a Scene type, a code

identifying 11s uses

p Additional at'ributes for a Scene include its name, a string optionally assigned 0 1t when it
18 created, its length (the number of lines). and the Current editing position within this Scene

The edi cursor ("A° character) visibly indicates this point whenever the Scene is selected for

rerminal-controlied editing operations

Other attributes could be used to place restrictions on the use of Scenes These attributes

69

. i} 4 ve ’ i ;

would be similar to the “Capabilities” of [32] and would specify for each process whether,

for instance, that proces: was permitted to read, modify, or (for Program Scenes) execute the | |

| Scene, who Its owner was (for shared Scenes), etc.

5B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES

Before we consider the Scene types which we have provided in COPILOT, we should say

just what 1t 1s we want these Scenes to accomplish: to supply the user with that contextual |

information needed both to observe the instantaneous state of a computation in a coherent

| mariner, and to predict and influence its future actions. We will refer collectively to these
Scene types as Context Scenes. |

5.B1 Information Structure Models

In [59], Wegner formalized the need for a way to describe program execution context with

his Information Structure Models. He categorized programming languages by the data J

| structures required to specify their Information Structures within a processor. These
structures include algorithms, data, and their control mechanisms. A set of Information

Structures, I, time.ordered “snapshots” of program and data configurations during a

computation; an initial configuration Ig from I; and a set of transformations (interpretation |

rules), F, taking configurations I to their successors— constitutes an Information Structure

Model of the computation, In a given programming language and sysem. In the Context |

Scenes, we will be concerned with the external representation of elements from I. For most |

programming languages, Wegner shows that one can further factor the Information

Structures of I into the following components:

1) The Program Component: a representation of the algorithm
2) The Data Component ob jects allocated and manipulated by the algorithm
3) The Control Component indicators of currently active program steps and data

J | environments within each active process.
| 5.82 The Contour Model

Johnston, [27], has developed an Information Structure Model, the Contour Model, for

70

RN———. : a

|

. | block-structured languages. This model has been shown adequate for representing the |information structures of Algol60, Algol68 (47), and Oregano, [4], which was designed
around it. The Contour Model appears to extend to the complex naming structures of PL/I

ql and Simula, as well, although it does not support the dynamically inherited naming scopes of
Lisp, LCC, and their 1lk.

Figure 5-1 1s an example of a “snapshot” from an Algol60 program, expressed in the

Contour Model. The Program Component is called the algorithm, the Data Componi nt the

record of activation. In the latter the nested Contours define the lexically nested access |

environment, while the dynamic (control, eg. caller and callee) nesting 1s shown by

| connecting arrows. The Control Component consists of one or more processors, each
| defining the locus of control of an independent process, each represented in the model by the
| IP (instruction point), and EP (environment point) arrows emanating from the “n” graphic

which depicts the processor.

R

5

| bl: BEGIN

REAL o,b,x;

| 2 PROCEDURE P(x,y);
REAL x,y;

. 3 bp: BEGIN

REAL c;

Rh] P(...,...)

5-6 END; ;
7 b2: BEGIN

REAL b,c; |

8 P{a,b) |

9 END

10 END,

GND Bi: BI BI
(ea | | (a| 35.8
> (A) ICN
ON x | 146.35

2 P -—— , ’"
x]| ep:3 Bp P P

GT = 25 _ x[24_
FIN [048 [332

218] gp | [I5] |

| cfloo [6i i |

6 [GOTO2

®
B2 B2

b| b

On | Lael 1a
8 * a ©

| CALL P(a,b) |

|

Figure 5-1. The Contour Model Represen:ation for an Algorithm

| mn 1

CS " |

|i |

| 5.B3 The COPILOT Context Scenes
% By viewing a snapshot, I,, in a Contour Model representation, and knowing how the

i interpreter, F, operates, one can predict the content: of snapshot I;,,, to whatever level of

: detail one chooses. This is precisely the kind of condition we want to create with our

‘ Context Scenes. Although we have not used the Contour Model notation directly, we will

| show the (potential) functional equivalence between the Contour Model and our Context ;

Scenes. This will demonstrate the adequacy of the Context Scenes as an external

! Information Structure representation, for MISLE and a variety of other languages. To
!

handle Lisp-like structures would require additional development. |

1 5.B4 The Snapshot Requ semeunt 1

We are limited by current hardware in the amount of concurrence we can achieve. Because

much of what we display (the name and value of a variable, for instance) must be converted

from the internal forms required for efficient operation, and because of the expense of this

i conversion, it 18 impossible to record each change visibly as soon as it occurs. Text Scenes :

are made to agree with changes in the ultimate underlying structures, not instantaneously, but

at frequent and adequate intervals, in a manner revealed in Section 6.C.

In order to preserve the “snapshot” quality of the Contour Model in our system, we will |

impose the following requirement: all visible context Scenes must be updated simultaneously, :

each time the display is changed. Therefore, at any instant, all visible system information is

a correct representation of some subset of the system state at a single previous instant. Thus,

the user sees 1s a single coherent “snapshot” of his system, not an album of individual

pictures whose time relationship is unclear.

5.B5 COPILOT Context Scene Types

We can now present descriptions of the Context Scene types. In each we will follow

approximately the same foimat

| a) Which component(s) of the Information Structure it exhibits
b) Details of the information content of this type (syntax, semantics).
¢) How the information is organized into Scenes.

73

i — Rede mod

4

There are only four different Scene types predefined in COPILOT: program, data, dynamic
structure, and status Scenes. We will deal with each in turn.

5C. PROGRAM SCENES — THE PROGRAM COMPONENT

We have designed a programming language, MISLE, in which the user both describes his

algorithms and controls their operation, by manipulating their representations as prograin

Scenes. Although these operators require substantial underlying structure, none i$ visible to

the user: he see: only the text of his programs, stored in Scenes. We have chosen this

standard textual representation over other alternatives (eg, Johnston's representation of

programs as flowcharts nested in Contour Templates) for a variety of reasons, among which
are:

1) The notation is more compact.

9) The control structure 1s more obvious (with a slight loss in the clarity of the data
| structure).

3) Editing operations are easier.
4) The text format 1s mote easily stored, transmitted and printed.

5.Cl The MISLE Language

MISLE is an easily-implemented subset of the language SAIL [52). SAIL is derived from

Algol60 [46], with some syntactic modifications to suit the designers. Extensions were

, originally made to this base to include a variable length character string facility, and to
include a variant of the associative processing language LEAP [18]. More recently, in

1 response to an increased need for sophisticated control and data structures in Artificial
Intelligence research, a major revision was developed [19] The addition mo:t relevant to

| our needs 1s a comprehensive set of facilities providing multiple processes in the style of
i Algol 68 [61]

| The current COPILOT implementation is written predominantly using SAIL; our preferred

language would be a SAIL superset. However, we have yielded in this dissertation to the
/ need for a language which is simple to implement, and to understand. Therefore, MISLE 1s

a limited SAIL subset, adding to the basic Algol-like constructs just enough to support the

IPS primitives which the user will need: process control primitives, text strings, etc.

14

1

:] 5.C2 The Basic Features of MISLE |i What follows is the syntax (and a brief semantic discussion) of the more or less standard |
| : SAIL-like aspects of MISLE. The reader who is already familiar with this sort of language
¢ RN would do well to skim this section and proceed with Section 5.C5, defining special additions |
| to the language for interactive uses. Refer to Appendix A for a description of our syntax |

| | notation.

1) | <program> := <block>
| 2 <block> = <head> <tail>

El 3 <head> := BEGIN <decl list>
B 4 <tail> := <statement> { ; <statement> J: END

| | 5 <decl list> := <decl> {decl}:

| 6 <decl> = <type> <idlist> ; | <pdec> |

| <algol-like array declarations>

: 7 <idlist> z= <id> {, <id> }=

| 8 «type> := <atype> | LABEL
| 9 <atype> := INTEGER | STRING

10 <pdec> := <untyped pdec> | <atype> <untyped_pdec>

: 11 <untyped_pdec> :=
PROCEDURE «<id> ({ <param_list> }) ; <statement>

12 <param list> := <param> {; <param> }:

13 <param> := <atype> <id>

14 <statement> := <block> |<compound_statement> |

| <conditional> | <assignment- | <jump>|
<for> | <while> | « | <pcall>| |
<id> : <statement> | <p) ..ess control statement>

| 15 <compound statement> := BEGIN <tail>| 16 <conditional> := IF <Boolean expr> |
| THEN «<statement> { ELSE <statement> }
: 17 <assignment> == <id> « <expression> :

18 <jump> = GO «id>

| 19 <for> := FOR <forhead> <statement> |20 <for'iead> := <id> « <arith expression> STEP !
Bi <arith expression> UNTIL <arith_exp “ssion>
| ; 75

TY TE iin | ——

21 <while> := WHILE <Boolean_expr> DO <statement>

22 <case> := CASE |

<arith_expression> OF <compound_statement>

| 23 <pcall> i= <id> ({ <expr_list> }) |

24 <process control statement> ::= ACTIVATE (<process_id>) |
TERMINATE (<process_id>) |

SUSPEND (<process_id>) | 3
SET PRIORITY (<process_id> , <expression>)

| 25 «process1d> ::= <arith expression>

26 <expr list> m= <expression> { , <expression> J:

27 <Boolean expr: u= <disjunct> { V <disjunct> jx

28 <disjunct> :~ <relation> { A <relation> }»
| 29 «<relation> = <a-ith_expression>

{ <relop> <arith_expression> }»

- 30 <expression> := <arith_expression>

{ & <arith_expression> }u |

| 3] <arith_expression> := { <pm> } <term> { <pm> <term> }»
32 <pm> ims | -

| 33 <term> u= <primary> { <td> <primary> }»
: 34 <td> w= |/ | MOD

| 35 <primary> := <id> { [<arith_expression>
TO «<arith_expression>] } |

¢.<all> | <constant> | (<expression>) |

1 <process control_primary>

<algol-like array element specifications>

36 <process_control _primary> := ,
£ SPROU (<pcall>,<father> <stacksize> <priority>) |

a EV_TYPE () | CAUSE (<evtype> , <value>) | |
{ EV_WAIT (<evtype>) | EV_GET (<evtype>) |

r AR_EV WAIT (<evtypearray>) | AR_.EV_GET ..

37 <evtype> = <arith_expression>

38 <father> = <process id>
76

1 Sahrenee———

0
1

| 1
39 <stacksize> um <arith_expression>

| 40 <priority> = <arith_expression> |
41 <constant» := <string_constant> | <integer_constant>

| 42 <comment > := COMMENT «<algol-like comment, ending in °," >
bE | 5.C3 Semantics of Extensions

MISLE 1s for the most part a slightly modified subset of Algol60 with the SAIL String data

type added. Its only data types are scalars and arrays of integer and string values, denoted

| by identifiers, constants, and expressions. Only explicit conversions (string to integer, integer

to string) are provided. The operators +, -, + /, and MOD are available for arithmetic |

operations, normal relationals are available f~r Booleans. Strings may be concatenated using

the operator &. S[n FOR m] yields the m-character substring of S, beginning with the nth

character. Parameters are passed to procedures by value only. Control facilities include (in

addition to proceduiss), GO TO, IF, FOR, WHILE, and CASE (alternative selection)

| statements. A syntactic modification places both the naming and type descriptions of |

procedure parameters within the (parenthesized) parameter list, as in Algol W [3], |

5.C4 Processes |
The process-manipulation primitives of the unenhanced language allow creation, deletion, |
suspension and activation of processes (see [4] as a reference to the kind of “cactus stack”
process structu.e we employ). We mean by “unenhanced” that these do not rely on the | 4

facilities of the IPS for their operation. i

Processes are assigned execution priorities when they are created. Whenever a running

: process suspends, or specifically requests it, the system scheduler selects a new process to run,

choosing the highest-priority process which 1s READY to run (see Section 5.F).

Events are interrupt and process-communication mechanisms. A process may cause an event

of a chosen event type, and may specify a value to be associated with the event. When the {

scheduler next runs (the running process suspends), it will ready any processes which are |

waiting for an event of this type, returning the associated value as the result of the function |

which does the waiting |]

7 i

Ptreser ee

; For each occurrence of an external interrupt (I/O, timer, etc.) basic system routines simulate a

very high priority process which causes an appropriate event and forces rescheduling as soon |

as possible. Processes handle interrupts by waiting for, or testing (polling) for, events of the

corresponding type. This approach to interrupts, as opposed to more standard interrupt

rnechanisms like those in [47) ("unexpected” procedure calls), is supported by Wirth [64].

The result is a consistent, process-oriented method for handling all asynchronous activity. t

| Table 5-2 provides the meanings of the basic process-control primitives. In Section 7.C7

we will describe additional process control functions, intended for interactive use. |

Table 5-2. COPILOT Process Control Primitives |

Sprout...) Creates a new, suspended process, with given stack size and priority. |

| An Instance of the specified procedure is readied within the new process. :Sprout returns a unique integer process identifier, or pid. |

Activate(pid) sets the state of the process pid to READY. It will be set RUNNING as |
soon as possible, based on its priority and the availability of resources. : I

| Suspend(pid) Sets the state of the process to SUSPENDED. It will not run again i
| until some other process Activates it. .

! Terminate(pid) Destroys the process pid, and any subprocesses.
| |

) bd

Set_priority(...) Changes the execution priority of a process.

Cause(..) creates an event of given type and value, READIES any processes |
awaiting events of that type, and forces reschedu ing.

{ Ev_wait(.) yields the value of an event of given type. It causes the process caliing
| it to wait (SUSPEND), if necessary, until such an event is available.
| The event 1s then forgotten by the system.

Ev_get(.) never waits. It yields 0 if no such event has been caused (and still |
exists). Otherwise, it is the same as Ev_wait.

Ev type() creates a new event type. Hi

|)

cP.a a Sy, sy psi ———————————————EA

|: :

| Ar_ev wait(..) waits for one of a set of event types, specified in an array. The result is :
3 the type of event which was actually caused. Ar_ev_wait does not

| delete the event; hence, an Ev _get may subsequently be used to fetch the
actual event.

J pp y=

; | Ar es get(.) never waits. It yields 0 if no such event exists. Otherwise, it is the same
; as Ar_ev wait.

Ll 5.C5 Special Features
‘ We have added the following additional constructs to the language in order tc make some of
i

| il the interactive facilities more convenient. The additions include variable-display (debugging)

- statements, breakpointing statements, and Scene linking constructs. The syntax follows:
| i |

: id

| | | | | <statement> := <Scene link> ; <statement>= 2 «declaration» := <Scene link> ; <declaration>

Yi 13 3 <Scene link> = » <Scene id>

ed 4 <Scene id> = <id>

5 <statement> = <show>

6 <show> := <expression>

7 <statement> := <temporary statements <statement> |

8 <statement> <temporary statement» |
i) <affect> <class> !

a 8 «temporary statement> = '{ {<class> :} {<switch> !}

| ' <statement> {, <statement>}: '}
9 caffect> == TURN ON |TURN OFF | DELETE

| 10 <class> == <id>
‘d

: 11 <switch> = ON | OFF

!
Be. 12 <statement> := BREAK (<process1d>) |

FI ARR BREAK (<process_id array»)

f i,
i

i ' 79 :
gn

REBESAEE ma. i aER — =p Te | en TT PTT Team

: Each of these additions depends heavily 01 suspect: of the IPS which remain to be described.

We will delay explanation of their semantics until the descriptions are complete.

| For an example of a MISLE program, refer to the PROG Scene of Figure 4-1, or one of |
those which follow it.

| 5.C6 Program Scene Organization
| | Traditional program source text organization is straightforward: a deck of cards, a magnetic

tape, or a disc file containing the lines of the program. In the latter case, perhaps the file is
linearly segmented into logical pages, mostly for display purposes.

One notable exception is the file system for NLS [15), developed over the last decade at

| SRI's Augmentation Research Center. Very briefly, the purpose of this display-based system
is to provide a complete interactive environment for the user, to dispense entirely with paper

and pencil, yielding a corresponding increase (augmentation) in intellectual power. The NLS
work has proved a major influence in this research. We hope to retain something of this :

power in COPILOT, while extending its domain to direct interaction with user algorithms.
|

i Files (not only program files) are not organized in simple linear fashivn in NLS. Instead,
they are hierarchical, resembling outlines; the NLS user can choose to view only the level of

| detail which suits him: just the major topics, the major and first subtopics, or the entire
| structure. He can also place hidden or visible links at arbitrary points in his files, providing =
: a path to related material in the same or other files. NLS makes it easy to follow these links,

. to save previous views, and generally to navigate fruitfully about a web of cross-references.

We cannot hope to do the NLS system justice in so short an introduction, nor have we space /

1 to describe other text-manipulation systems which support structured file organization. We

can suggest in addition the references (60), (24). and (42)

MISLE programs, being block-structured, are inherently hierarchical We envision an

) implementation of COPILOT which would allow the user NLS-like control of the degree of

detail (depth of nesting) of the displayed program. For instance, one could view only the top
level statements of a block, with substatements merely indicated. Hansen used something like

this in his thesis {24). The BBN-Lisp editor, (53), because of the need to be concise,

80

' uses a similar structure-compression technique in its teletype-oriented system. Our system

| contains many hierarchical structures, and techniques like these would enhar.ce any of them. J

hy | At present, however, our use of hierarchical design is explicit. Instead of fragmenting a
program into consecutive linear Scenes, the user can include Scene link constructs to achieve
a hierarchical segmentation. Figure 52 gives a simple example. The system views the

program as if it were a procedure, expressed in one Scene, containingthe data of Figure
K.2c: it treats a Scene link as a sort of “macro” call. The user views it as a procedure E

.ontaining a suppressed subprocedure (Figures 5-2a and 5-2b). The system prcvides

complete facilities for “following the links", both forwarc and backward, when the user
wishes more or less detail. When a Scene link occurs as the last line of a Scene, simulating 1

linear connections, special treatment avoids unnecessary nesting.

Our personal experience (supported by Mills in [42]) is that it is useful to segment a

program so that each Scene is fairly small, each representing a logizal section of the program ’
and of the control structure of the algorithm. The system will nevertheless support Scenes of

| arbitrary size. p

l 5

|

81
4

Scene oStl;

PROCEDURE TI(INTEGER DUM) i
: BEGIN

sSRNP ;

INTEGER JK; STRING §; |
FOR J«1 STEP 1 UNTIL 100 DO BEGIN

KeJed K;

WHILE K<J+10 DO OUTPUT(RNP(K)) | rr
END

END |

| a) Containing Scene i
Scene sSrnp; |]

{ STRING PROCEDURE RNP(INTEGER I); ‘IF 10 THEN RETURN(™) ELSE |
1 RETURN(RNP(1/10)%PUTCH(I MOD 10+48));

b) Contained Scene ; 1 | 3

PROCEDURE TI(INTEGER DUM);

| BEGIN | iSTRING PROCEDURE RNP(INTEGER 1), 1 4
IF 1=0 THEN RETURN(™) ELSE
RETURN(RNP(1/10)&PUTCH(I MOD 10+48)); op

INTEGER JK; £
FOR J«I STEP | UNTIL 100 DO BEGIN :

KeJ+3 K;
WHILE K<J+10 DO OUTPUT(RNP(K)) i

END 4

END 1
¢) Apparent Program

Figure 5-2. PROG Scene Linkage -

82 4

I 5.C7 The Instruction Point Portion of the Control Component
As we have indicated, we have distributed our representation of the Control Component :

i among the Context Scenes. In Program Scenes we indicate the IP (for a selected process) by
a special coutex* cursor, represented by the "»" character. This context cursor precedes the

I text for a statement in the selected process. Which of the active IPs is selected for displaydepends on an indicator in the DYNA Scene (see Section 3.EI). Any terminal commands

I which require implicit program location data obtain it from this selected IP. :
The context cursor is the visible representation of the active statement within the selected

Il process. No function used to retrieve program Scene data will ever yield a string containing
the context cursor. See Chapter 7 for functions which yieid its location.

I 5D. DATA SCENES — THE STATIC DATA CUMPONENT
Because algorithmic languages like MISLE were designed before we designed COPILOT, we |

| 1 had little trouble deciding a representation for the Program Component in the program
Scenes. This is not true of the Data Component, where few attempts have been made to

i create formal external representations for the data environments (for any language).

| I Again, a logical candidate might be the Contour Model representation; again we havedecided against using it directly. In addition to the reasons we gave in Section 5.C, we feel i

that use of Contours to display the Recora of Execution would create Scenes of confusing

| I complexity. We have instead developed a more linguistic method which we can prove
| equivalent in facilities to the Contour Model, thus adequate for Data Component

\ ll representation. |
: ,
!

| q Qur solution requires two new constructs:
1 1) A data specification notation, or Data Language ‘*), intimately related to the MISLE

1 language, for defining data values in their static (lexical) contexts (the static Data; Component)

I 2) A tree notation for exhibiting the dynamic (control) relationships of the Record of 1Execution.

(+) Some object to this term because the “language” is not algorithmic (no verbs). It is a
language formally, however. Read “specification” for “language” throughout, if you wish.

| 83 | |
t

1 i
:

=

We begin with the Data Language.

FA | .

| 5.D] Data Language Syntax

. «data layout> := <data block> A |)
2 «data block> == BEGIN «data tail>

o 3 «data tail> == <data spec> {; <data spec> }» END |] :
4 «data spec> = <equation> | <data block> | <pcall spec>

5 <pcall spec> = <pcall descr> ; <da.2 block> | i
6 <equa’'ion> = <id> = <constant> | ...)

7 <p:all descr> = <instance> ({ <equation list> }) |
8 «instance> := { <process name> .} = |

<procedure id> {s <nesting level> }

9 <equation list> := <equation> {, <equation> }x 3

5.D2 Semantics, Pragmatics a
The Data Language is a parasitic language. The syntax hints at this in its resemblance to

MISLE: the procedure and block structure productions are nearly identical, the equations of |

the Data Language correspond closely to MISLE declarations. We require that the | |
dependence be even more pronounced, however. A «data layout> is meaningless without = 3

reference to a section of the MISLE program to which it is linked (we coisider this linkage

in more detail below). One <pcall spec> or <data block> may exist at any instant for each i |
instance of a procedure or block activation.

There are two kinds of information in a <data layout>. The first, provided by equations,

comprises the names and values of selected variables (and expressions) at some instant. The |
constant in an equation must agree in data type with the type of the linked variable whose id

| name appears in the equation, and whose value it represents. We will say that an identifier |
is marked if it has been selected by the operations of Section 7.D1 for display in data |
Scenes. |

i The second is structural, provided by the block and procedure structure (whose interpretation

is transparent), and by ellipses (..). The ellipsis is an optional device which informs the |

viewer that there are variables in the Contour whose values do not appear in the Scene.]

84 SH

|

| The position of the ellipsis (or ellipses) in a <data block> or <equation list> corresponds to |
i the position of the omitted names in the declaration list of the linked algorithm. Figure 4-2

contains a Data Layout for one of the states enrciiiiered by the program in the same figure

I during its execution.

| 5.D3 Data Scene Organization
Ei] The second COPILOT Context Scene type is the data Scene. Each data Scene contains one :

| data layout which is linked (3) to a procedure in some program Scene. In COPILOT, a 4
| sir.gle data Scene, DS, can contain text level representations for the data from at most one

| 1 instance of some procedure, p, and from those forming its lexical ancestors. This means any
older recursive instances of this same procedure, any instances of other procedures in the

| dynamic ancestry of p (and in other process branches) whose variables are not accessible to p,can have no representation in DS. It is possible, however, to form other data Scenes at the

1 same time which do represent these hidden environments. :
| i | The user, or more commonly che system, can create a legal data Scene as follows:]

1) Choose a procedure, P=Pj, from some Scene, and some instance of that procedure,

I p=po Begin with an empty data Scene. {4| I
; 2) Record in a <pcall spec> the values of marked local variables and actual parameter 8
| values (with their formal names) from p, following the pattern established by P.

3) Obtain the immediate lexical parent, P’, of P, and the corresponding instance, p, from

: | the static environment of p. Quit if there is none. |
4 Embed the lines of the <pcall spec> created in step 2 in a <pcall spec> formed by .

| repeating steps 2 through 4, substituting P’ for P, p’ for p. An embedded <pcall spec: is SEt inserted just after the other declarations in the <data block> which corresponds to its
point of declaration. |

| The linkage of pg to Pg defines completely the linkage of the data Scene to the program
- Scene. |
i

We should emphasize that we have made many arbitrary decisions in this design. We |

IE

" (3) This is the antecedent link of Johnston's model; its explicit existence is usually omitted in his 3
| examples, but would have to be present in any implementation.

85 §

— re ———————————————_ its ces———_————A nr.Sen

{ .

| considered several other algorithms for generating data Scenes. Some of these allowed | i
| multiple instances of the same procedure, thereby including much more dynamic context

directly. Perhaps one of these methods (or one which d.d not occur to us) would be a |
superior one. Surely the designer of a COPILOTlike IPS for a different type of language Eg |
should reconsider the issue. Our final choice is based mainly on a desire for clarity. The I

dynamic Scenes of the next section help cure many of the inadequacies of the data Scenes. |

Section 5.H1 will depic. data Scenes in action. There we shall show how these Scenes are |
created and used, emphasizing tne most common situations. 4

5.D4 The Data Language as an Input Facility |Using Contour Model terminology, the Program Component of a Snapshot, I;, of a :

computadon (x)is externally represented in COPILCT by program Scenes. In some sense, |
| these Scenes also form a complete external representation of the initial state, Ij, since the ;

initial Record of Execution is empty; they cannot specify any subsequent Snapshot, Ij j=0. ;
Thus, although the language can specifya computation via an algorithm, it cannot directly J |
express intermediate states of that computation. R. Floyd has pointed out that it would be e

useful to have linguistic facilities for constructing these intermediate states (1). This would |
make it possible to: 4

1) Directly create a test environment for testing a routine in an incomplete program which d
does not yet include code for supplying that environment.

| 2) Directly modify an environment, perhaps to agree with a modified algorithm, perhaps | |
preparatory to altering the instruction point (IP) of a process operating in that |
environment (in complicated cases this might be preferable to what the system could do]
automatically). i

3) Save and restore intermediate computation f*uies in human-readable form. (For small |
programs, this “core dump” technique would allow one to save computations over oo :
conscie sessions. In Section 8 B1 we will examine more efficient methods.) |

{

4) View Snapshots of a computation in a reasonable form. od

| (x) The collection of snapshots defining the total operation of one program “run”.

(1+) Personal communication, October 1972.
86 3 |

We have not seen this kind of facility in an IPS. Comment (4) above should reveal our

I approach to providing it. We already possess a linguistic facility, the Data Language, for
~ displaying intermediate computatic 1 states. By selecting a data Scene for editing, then using

u standard text-editing operations to modify it, the user can even indicate changes he would |
like to make. To turn this into a full data-specification facility, it is only necessary to

1 convince the system to convert these changes into corresponding changes in the actual
underlying data structures. We have done this in the COPILOT design. Similar user

| | changes will be shown useful in dynamic Scenes, as well (see Section 9.C1). This achieves a || very pleasing symmetry within the Context Scenes: all constructs are useful for two-way |
: communications between the user and the system.

The editing operations required to accomplish text changes are presented in Chapter 7,

| including special convenience commands particular to data Scenes.
vd

J LJ 5.D5 The Environment Point Portion of the Control Component
We use here a development paralleling that for program Scenes. There is an Environment |

| Point (EP) in the Control Component for each active Process, defining its access a
environmer t. Information in the dynamic Scenes will indicate all the active Environment |

Points. 4
LJ i

Again, the user (or orie of his programs) may select a “distinguished” EP, which will be |

or displayed as a context cursor ("»") if the environment it defines appears in a visible data :

Scene. All terminal commands which require implicit environmental specification will obtain

| | it from this cursor.

I |
5E. DYNAMIC SCENES — THE DYNAMIC DATA COMPONENT

| Data Scenes can show any or every element of the Data Component, and the static (lexical)
] relationships between activations of <blocks> and <procedures>. They do not exhibit the

- Ll dynamic connections (eg. for procedure instance p, which procedure instance called it, or

- which created (-prouted) it; to which instance it will return). The purpose of the dynamic
1 Scene is to provide this information. {

uw

87
a

= ad h

1 :

! {

We are tempted to suggest another “language” here, with its own related syntax; we have
| decided instead to develop a mare graphical representation for the dynamic “cactus-stack”

structure of MISLE programs. This dynamic structure tree does share constructs in common A
with Data Language elements, however, and this linkage is important to our powerful 1]
context-roaming operations (Section 5H1). ob

There is but one dynamic Scene in a COPILOT environment, containing the single dynamic \

structure tree. Figure 4-2 is an example of the dynamic Scene. Its structure is quite simple:) J
| Each node (terminal or non-terminal) of the tree is an <instance>, as defined in the Data | |

Language grammar in Section 5D1. The root node ("USER.COPILOTI") provides the i |

3 base environment of the entire computation, or "job", including IPS facilities. Instances of i || active procedures in a process appear (in order of call) below each other in the same column. A t
The root nodes of subordinate processes are placed in adjacent columns as shown, then i

connected by horizontal line segments to the processes which own them (3). The terminal |
nodes of the dynamic tree define the set of active Environment Points.

5.E1 The Context Point gi .

At any one time, there can be but one EP visible (as a context cursor) in a data Scene, and N | 5
1 but one IP context cursor in a program Scene. In fact, given a computation in progress, and -

a particular EP, the corresponding IP is completely determined. Thus to select an (IP, EP) | | |
pair for display as context cursors, one need specify only the EP. i r

|
We accomplish this manual selection of e. ecution environment using an additional indicator, i

| which we will call the Context Point (CP). The CP is represented by a context cursor which | |
selects an instance in the dynamic Scene. We have functions for moving the Context Point ** 18

within the dynamic tree, and for generating data and program Scenes, with their context is i
cursors, to exhibit the environments which the CP selects. We will describe these functions A {
in Chapter 7. }

| 5.E2 Adequacy of Scenes as External Information Structures }
| In Section 5B3 we announced our intention to show a functional equivalence between the 5 3

: CL ee eeesmesssesemmssressenunmenanerne. a3 :
(+) For simplicity, MISLE follows the retention rules implicit in Algol60, and explicit in Algol68: A -
process must be extarminated if its owner ceases to exist.

: 8% 4
~ | |

: |

- | Context Scenes and Johnston's Contour Model. This is important, because it expands the rpower of our formulation to all the language types amenable to the Contour analysis.

\ Now that each of our Scene types has been developed, the demonstration of this equivalence |
} 1s quite simple: one need only select all variables for display, then create enough data Scenes

I to contain each instance of each active procedure and block at least once. Then for each
| relationship or value revealed in a Contour Snapshot one can identify constructs from one or

I more Context Scenes which reveal the same relationship or value (a formal proof would 1simply enumerate these correspunidences).

|[8
5F. STAT SCENE — PROCESS STATUS :

We have consistently omitted one important quantity from our Control Component |

| descriptions: the execution state of each process. A user viewing a snapshot composed only of

: program, data, and dynamic Scenes could not predict from it the appearance of the next, J
since he does not know which processes are running, which suspended.

| We have therefore added one last Context Scene type: the status Scene. Figure 4-5 contains

an example of one. It indicates for each process the execution status of that process:
| RUNNING, READY, or SUSPENDED. In a single processor system there can be but one

| | RUNNING process; those lacking only the processor to run them are instead termed
or READY. For most purposes the two states can be considered equivalent. :

||
(J) We have further distinguished suspended processes in the status Scene by including in their

] status the reason for their suspension. (A final state, terminal, is aften included in the set of .

| process states (see for instance [14] or [4)). In MISLE programs, for simplicity, all
structures connected with a process disappear on process termination. The entry therefore i

just disappears from the STAT Scene).

i | Table 5-3 is a list of the current STAT Scene state descrijtors.
EU

mm}

| i

.® 89

|

Table 5-3. Copilot Process Execution States 1
FLAG STATE REASON ”

> RUNNING The processor is executing this process, either because it has the * J
highest priority of any ready process, or because one of then, after all, -3
has to run.

READY This process will run when the processor can be assigned to it.] |
VIRGIN This suspended process has been created, but has neve. been READY RU |

or RUNNING. « X

B
SUSPENDED This process was unconditionally suspended, either by its own volition , {

or by some other process with the right to suspend it. Only another ”

process can reactivate it. | {
STEPPED This process has unconditionally suspended itself due to completion of 5 f

a "single step” command to execute but one complete statemen. (see
Section 7.C7). The state is otherwise identical to SUSPENDED. .

| AWAITING x i}
: “ !

The string x is a description of some ccndition whose occurrence will)

ready the process. The flag ("") is present only if that condition is to |
3 be satisfied by user action (or a procedure running for the user). The .

flag blinks on and off until the user stops it. i

BROKEN This state is again equivalent to SUSPENDED, except that suspension I |
occurred due to a Break Statement. The flag ("+") flashes until the user

stops it (or causes the process to continue execution), in order to draw 1 |} his attention to the breakpoint’s occurrence. ti 8

-” i

| |
30 |

!

4

A 5G. USER SCENES

The Scene is the basic unit of classifiable allocation for the storage of data to be displayed by

] COPILOT. Only Scenes can be mapped into Regions for view. So if the user wishes to

/ display and edit his own information, he will need Scene types in addition to those we have

» provided. Consequently we might provide primitives to do the following:

J 1) Create a new Scene type, assigning a name to a system-provided type identification.
- 2) Specify for a new Scene type a process which will activate (trigger) whenever selected

| events occur (Scene made visible, user changed line, etc.).

i 3) Create and name new Scenes of any type, and explicitly insert or delete information
from them (unless they are protected from modification).

4) Delete Scenes.
p

; This is an undeveloped area of COPILOT. The definition of user Scenes would follow the |

same sorts of derivations we have used for the context Scenes. The triggered process (above)

I could maintain user-defined structures corresponding to text Scenes, just as COPILOT
| routines do for context Scenes— we will describe these methods in Chapter 8. Graphic (non-

i] textual) Scenes should not prove difficult.

i 5H. REGIONS

i Regions are named areas with fixed Screen locations. A Region contains the following fixed

| I (x) attributes:
| 1) Its name, a unique global identifier.

2) Its location (x in columns, y in lines, Screen #) and extent (x in columns, y in lines) —

1 thus its Window size.
When the user or the system Maps a Scene into a Region, the Region acquires the following |

i dynamic attributes:

! I) The mapped Scene’s Name, and therefore indirectly the Scene data, type, length,| capabilities, structures, edit and context cursors.
2) The index of the first visible line in the Region.

i 4) Other bookkeeping information.

(») Assigned by user or system at Region creation and allocation time -- ran be changed by re-
allocating.

91

| |

This is all that is required to generate the display of an active Region. 3

The initial system configuration contains four Regions: 1
|

RSTAT, with the STAT Scene (also named STAT) mapped into it, showing that only
system processes exist, and none are running. :

; RDYNA, with the DYNA Scene (named DYNA) mapped, showing that the only active . |
procedures belong to system processes.

RPRQOG, with no Scene mapped. |
RDATA, with no Scene mapped.

| the user then proceeds to complicate this picture by fetching and interacting with his |
programs. oY |

5.HI Regions for Data Scenes — Special Problems and Provisions

| Data Regions require special treatment, because more than one is required for all but the
F | simplest tasks. In a fairly complex situation, for instance, there might be one or more data B
| Regions monitoring the progress of running processes, which would cause occasional screen

updates by executing data display statements. Another data Region, containing the context
| cursor, would display the data Scene for the possibly suspended process currently under the :

user's direct control. Li :

|
| We have discovered that these two uses— monitoring running processes, and manually | |

- investigating suspended ones— require data Regions with somewhat different behavior. We

| have therefore subdivided daia Regions, providing fixed context and variable context

| Regions. |
To monitor running processes, we need to guarantee that successive values of a variable (and !
only values of that variable) will be displayed in a single location of a screen. The
alternative would be an impossibly “noisy”, confusing situation. We therefore provide fixed |

: context, or simply fixed, data Regions. A fixed Region is one which 1s constrained to the

dispiay of variables in the lexical range of but one program block, and from but one process.
Whenever any instaice of that block, or any of its lexical parents, executes a data display
statement, a data Scene containing a Snapshot of that instance will appear in the Region.

The structure of data appearing in that Pegion remains fixed, although the values, and even

92 |

| the procedure instances represented there, may change. The user should create a fixed

. i Region for any program section whose behavior is of long-term interest.

j | For convenience, we have relaxed the Snapshot requirement of Section 5.B4 to permit the 1
retenticni of a data Scene in a fixed Region after the corresponding procedure instance has |

| } disappeared. This Scene is replaced whenever a new instance of the same context is created;
‘ it is deleted whenever the process suspends, if no corresponding instance really exists. This

facility prevents a fixed Region from flashing and flickering, as instances appear and }4 i disappear. |

| | Our other application is the manual observation of data values. In this instance, a data |
Scene responding to variable query, or to “single-step” operations, will not be changing

1 rapidly. Successive operations might require the creation of entirely different data Scenes. | i
For convenience and conservation, we would like to be able to display all these Scenes,

i successively, within the same Region. We will call such a Region a variable context, or || variable, data Region. Any data environment may be displayed in a variable Region. | 1
g

v3 i One variable Region must be selected at all times as a default for the display of data which
rp do not fit into any fixed Region. Initially, the RDATA Region is the only available Region

i for data Scenes. RDATA is a variable Region. Until more Regions are created, it provides
all data display services. The user can create specihc fixed Regions, and additional variable :

i Regions, if he wishes. In particular, he can designate a new variable Region as the default, |
to handle otherwise unassigned display requests from running processes. The original 4

i RDATA Region may then react to his direct queries, v'ithout interference. | :
* 3 Due to our data Scene creaticiv algorithms, variable Regions are susceptible to the annoying :

fl "Ricker" properties which the fixed Regions avoid. |
|

I |

i

93 l

CHAPTER 6

| THE CONTROL ALGORITHM

¥ This chapter completes the user-level presentation of COPILOT. It has three major sections,
roughly responsible for describing:

} A) The Block and Process Structures of the COPILOT System |
B) The COPILOT terminal control (USER) loop

| C) Constraints on MISLE statements used for top-level control

6.A. SYSTEM STRUCTURE

I Every COPILOT job, whatever sts function, can be expressed in MISLE as: |
| srocedure COPILOT; .

begin |
g suniversal, comment system intrinsics, basic process-control primitives, global data

| structures,
stargets, comment a Scene which :n turn contains links to the program Scenes

ccrtaining the user target, or applications, programs, ;

i begin ‘esystem, comment all IPS data and primitives, display primitives, invisible to
Targets,

l epost, comment a high-priority process to post state change information and
{ data display requests;

| sucp; comment the special User Control Process (see text); D
3] eassistants; comment processes created by the user to perform “macro” actions for .i him. They have access to IPS primitives and data,

sprout(post,post,...high), |
1 sprout(ucp,ucp...higher); |suser, comment the terminal-response p:ogram, the active body of COPILOT; :

| end y

| end comment the system, AFigure 6-1. Global COPILOT Structure |

| | This program is contained within the system as a Scene nariel Copilot. When a user |
activates a COPILOT System for himself, the target and assistants Scenes are empty, and

' B | the UCP is initialized as shown below. During initialization, the equivalent of a 1
Sprout(User,Copilot,.., highest priority) operation occurs, placing the Copilot procedure in the

oo] P= :

i
: base of the environmental hierarchy: the process named User. This procedure, whose only

active code is the basic control, or User loop, thus constitutes an entire COPILOT job. All |
user and system subprocesses are, as evidenced in the skeleton above, formed from routines

local to Copilot. (This skeleton is a “real” one: it supports the actual COPILOT system, when

it is fleshed out by expansion of the Scene links). Sa

T he target Scene contains links to he user's target, or applications, programs— the programs -

| which he has written, and with which he wishes to interact. Target procedures, running in

| their own process or processes, have access only ‘o the basic system routines and structures, i]

and to the environments which they themselves create. They interact with system processes

only indirectly (through the event mechanisms), when they suspend, terminate, or request

modifications to data Scenes. This denial of lexical access to system environment 1s useful not -
only in the protection it affords, but also in the storage efficiency it can support (by allowing | 3

i system routines and data to be “swapped out” of main storagz while inactive— Section 8.D1).)

Target procedures, lacking convenient access to the IPS’s interactive environment and Li

facilities, can not te written to operate in the user's stead, performing directly statements

which define the meanings of terminal commands. Such an ability 1s desirable, both to

facilitate execution of command sequences (“macros’), and to allow composition of more

sophisticated sequences, embedding these IPS statements in conditional and iterative control |
statements.)

The assistant Scene is designed to serve this purpose. Routines which are contained in the Ll

assistant Scene, or in Scenes accessible from it, do possess the necessary access to perform IPS

operations. We will demonstrate in Section 9.Al the means for invoking these sequences, L |
and for maintaining system integrity when faulty routines are executed.

| The sections which follow describe the operation of User, and its parasitic UCP, which |

define completely the input behavior of Copilot. The concluding section explains the role of

the POST process in maintaining the Context Scenes— defining the output behavior.

95 |

6.A1 The UCP —~ User Control Process

1 The following represents the initial contents of the Scene named UCP:

i procedure ucp,
begin

1 rendA

1 (The context and edit cursors are, as we have said, not part of the Scene data). The system
implements but one instance of the UCP procedure, as shown above in Figure 6-1. The sole i

i use of this process, also called UCP, is as a repository of user-submitted statements to be
executed. Operation of the UCP is controlled exclusively by the User loop; descriptions of |

i 1 UCP functions begin in Section 6.B3. |

i 6.A2 Crucial Primitives 9
We will introduce most of the IPS primitives, those statements invoked by the user at the

| | terminal, in the next chapter. A few, however, are crucial to the operation of the USER loop |
| itself. Brief descriptions of these routines follow. ’

|
stepp(process,”L”). This function is a special modification to the activate function. Its effect

4 | 1s to activate (make READY) the selected process, having first conditioned that process to
suspend itself on completing one MISLE statement — the one in the current environment (IP, |

EP) for this process. Vvhen the process suspends, it will cause a suspension event, for the

; | Post process, containing the location of the suspension and the reason (STEPPED) for it. |
| Stepp is usually executed by a process at the same or higher priority than the process it

: } readies, so that the activated process will not run until the activator next suspends. The
| stepped statement may be simple, or it may be complex, containing substatements and 3

] | procedure calls which arbitrarily extend its effects and duration. If Stepp is applied to a 3
| running process, its effect is normally to extend that process's execution by another statement,

: I before suspending; tut see Section 7.C7 1
set p(process, statement). The instruction point (IP) for this process is placed, if legal, at the 1

| | indicated statement (an expression derived from functions like the next one) 1

96

|]

sl

> get_struct(scene or region, line, space). This returns the unique statement identifier for the :

first statement beginning after the indicated point. BB

insert _line(scene or region, line, “string’). The string becomes a new line, in the selected :

Scene, just preceding the indicated one. This simple line-oriented function will suffice for :
insertions in the UTP. More versatile text modification functions may be found in Chapter 1
7. bed

delete _line(scene or region, line, coun’). The number of lines indicated L “count” disappear
from the Scene.

6B. THE USER LOOP

L }

T he ultimate interface behavior of COPILOT is determined by the program which listens to

J the terninal and responds to what it hears: the User loop. We shall first present a MISLE

program for a basic User algorithm which (barely) implements a non-preémptive terminal. :

We shall subsequently sub ject this algorithm to a series of refinements which enhance its J

power and efficiency. "3

j The User process always operates at a scheduling priority higher than any other process's. Jo
This allows the "sser process (whose active agent is the User loop) to be set RUNNING
immediately, whenever it becomes READY; the user's commands will have immediate effect.

: (See Section 8.E3 for our definition of "immediate”). Adjacent high-priority levels are |
A reserved for the UCP, Post, and other special processes (see Section €.A and Section 9.A 1).

6.B1 Algorithm A — Basic ff
This program, and all subsequent refinements, would occupy the Copilot Scene in the system |
of Figure 6-1. The meanings of undefined procedures in these examples will be explained in

the text following each example. The initial loop does not require the UCP.

r——————— AAAA,Hest rebates

i

| |

| 1 | user:
2 while true do begin

| 3 string statement; integer char, state,
| 4 read: statement « readaline;

|] 5 insert: insert line(user8 statement); || 6 compl: update_world, |
| - 7 doit:

| | 8 cleanup:delete line(user 8,1) |
Hq | 9 end, |

|
Operation of this program is simple: it repeatedly accepts a one line statement from the

B terminal. inserts it into the text representation of User loop itself, translates (compiles) it, then

1 | "falls into" the just-presented statement, executing it in the environment of User. Before |
returning for more input, it deletes all representations of the statement.

| In the function Readaline the User process suspends, aligwing other processes to run, until |
i the complete line (comprising but one statement) has been presented. When the line is

| complete, the User process supersedes any other running process and returns the resuiting

| line as a text string. The Insert call puts this string into a new line between Doit and
| Cleanup. The function of Update-world is to perform any compilations necessary to make all
| program Scenes (including Copilot) executable as they are currently stated. We will defer
Sx any further compilation consideration until Chapter 8, where this and other implementation |

| | topics appear. The user sees only the source-language behavior; we shall at present assume :
il ul that the system maintains all necessary structures to make this behavior correct. |

1 The final delete statement returns the Copilot Scene to the state shown in the figure. 1

: | This program alone, coupled with the posting algorithm below, can support a nearly non- |
] preémptive [PS with adequate visual context. It does not, however, satisfy all our behavior

: [] match requirements, nor is it free from other shortcomings. Our objections are listed inTable 6-1.

Ful

l I;

98 |

] 131 §

hppa | BB '

|

{|

FO|

Table 6-1. Shortcomings of User Loop Algorithm A | ;

1) The Readaline function meets none of our abbreviation ob jectives: only complete |
statements are permitted. Commands requiring multiple lines are likewise not possible. i |

9) The Usei loop is self-modifying! This is unacceptable in Copilot, for all the usual | |
reasons.] |

| 3) This algorithm maintains no record of the user's recent activity. Such a facility, ;
although dispensable, is desirable, both as a reference for the user, and as a source of o b
statements for future operations (see Section 9.A3).

p | 1
| 4) If the statement at Doit requires a long (or infinite) time to execute, the non-preémptive be

facility is lost: the user has no way to terminate its execution. The class of permissible
statements must be severely restricted, probably to the original system-provided

. B primitives.

5) In practice, this method proves too inefficient for the execution of frequent, simple
| operations (especially simple text-editing commands). Ll

Remedying these ob jections is the goal of the refinements we have made to this algorithm. | 3
Let us first provide a mechanism allowing abbreviat. d and "manipulative" commands, in] |

| order to eliminate ob jection sl. |

n

- 4

-

| 99 IN

| | 6.B2 Algorithm B — the Expand Routine

A | To achieve the abbreviation we desire, we replace the statement at Read by:
| read: char « readachar;

| expand: case getcom(char) of begin |
comment getcom provides a direct mapping of characters | 8

| to commands, often many to one;> fO(char);

A(char |]

i 4

fn(char) |
{

: end

| end,

| This particular solution imposes a simple prefix grammar on our terminal “language”;
1) another method with a comparable result would be equally acceptable. The f.(char) |

| | statements may use the original char, as well as local state information, and perhaps even |
additional input characters (via Readachar). To do this, it may have to implement 2 sort of |

[=]

| local FSA interpreter, in order to gather and correctly interpret the parameters, etc. In other
words, although there are no global modes in COPILOT, the basic User loop recognition :

4 | algorithm may establish local modes, corresponding to parser states, to interpret the syntax of |
ee user input. This will normally go unnoticed, but will result in the need for a continuously

active facility which permits abortion of a partially completed command input, in order to

‘ begin a different one.

Executing any f, statement a‘signs a string, comprising a complete MISLE statement, to the

| string named statement, which 1s used, as before, in the completion of the User loop. This

facility, expanding commands to calls on the primitive IPS functions defined in Chapter 7,

permits the terse commands exemplified in Section 4.C2.

100

ae cr ————— samss— 3

2

| i 4
This is but one recognition algorithm. Any method for generating statement strings from

input character sequences could be substituted for it, to provide a custom-tailored user 1

interface (see Section 9.C3). b

J
6.B3 Algorithm C ~ Using the UCP |

This small modification removes objections «2 and 3 from the list in Table 6-1 (self- |
modification and the lack of a history list), and alleviates #4 (lengthy or non-terminating

input statements). In Algorithm C, we replace the Insert, Doit, and Delete statements by: :

| insert: insert(statement, ucp, currentline), |

] currentline « currentline + I; |
compil. .. as before .. ofl

doit: ~~ suspend(ucp); stepp(ucp), 1
i cleanup: if desired then delete(ucp, 2, 1), comment optional; !

| This algorithm does not modify itself (objection #2). Instead, it adds its statements to the | ?
UCP text Scene, then causes them to be executed in the UCP process. Depending on the do

: predicate desired (optional), algorithm C retains all or part of the user's input sequence, or = | | 3
protocol, in this Scene. By mapping the last Window of this Scene to a Region, the user can | ! |

| have a visible record of his recent activity. This Scene may be edited, with interesting = 3
results. We will pursue this sub ject further in Section 9.A3. il 'g

Objections #2 and «3 have been overcome by the introduction of the UCP Scene. However] |
the most radical change in Algorithm C is the introduction of the UCP process. The Stepp =o

call at Doit arranges to READY the UCP process. Its IP is set to the newly compiled] |
statement. Its EP is the activation record for the UCP procedure within the UCP process; |

| since the procedure ha; no parameters or local variables, this data environment is virtually 1 |
| identical to that of Doit. Thus this change in the algorithm cannot change the meanings of Li

4 user statements. . |

The User process, because it has the highest priority, continues to run after the UCP . i
a ac vation statement at Doit. The User process does not suspend until control returns to |

Read; then the UCP, at a slightly lower priority, is guaranteed to run. The UCP process = |

101 rt

rree

1 |

suspends again after executing the one statement. We have achieved the final decoupling
I needed for a non-preémptive system since, by giving another command, the user can

supersede execution of the previous one (assured by the explicit UCP suspension at Doit).

| This implicit abortion facility, though useful for terminaiing long or runaway commands,
may not always be desirable. See Section 9.B2 for further consideration of the conflict
between "type ahead” and command “abortion”.

Although the decoupling achieved by executing user statements in the UCP process prevents
- any user-initiated operation from locking out (preémpting) the terminal, it is not the]

preferred method for accomplishing lengthy functions. Instead, statements executed in the
| UCP should be restricted to those whose operations will complete in a time consistent with |

the response time of the system (a matter of one or two seconds at most). Anything which
takes longer should be accomplished by activating a separate process to do it. The system

5 provides this facility for standard kinds of operations (e.g., string search within text Scenes), |
| and could make it easy for the user to use it for his own operations. The UCP’s ma jor ¥

functions are to collect a user input history and to eliminate modifications to User loop code.

| Normally, it will run in "lock-step” with the User process, behaving more as a subroutine
than as a coroutine or parallel process. A

6.B4 Algorithm D — Selective Interpretation

We can expect certain basic operations to occur quite frequently during the course of a
session with COPILOT. Examples are cursor-moving operations, and process control

\ functions such as Stepp. To perform these operations on current hardware, using the

| | insert/compile/execute algorithms of this section, is quite expensive. For more complex |
operations, even fundamental ones, the inherent flexibility of these methods justify the cost. k

i

L I

71

: 102 |
] |

As one possible remedy to the expense of basic operations, we can enclose the final steps of -3
the User loop with the following conditional: Jd i 8

| if length(statement) » 0 then begin

insert: ...; |

cleanup: ..; | i i
statement « null ad |

end; . .i

Now any of the f; cases at Expand can leave the string variable (statement) empty, and | |
directly execute the statement which it wouid otherwise store there. Since the execution |

| environment at f, is effectively the same as the UCP environment, the effect is guaranteed | 4- of

the same.

! | .
A serious flaw in this modification is that by bypassing the Insert step we have eliminated a.

the recording of some of the user protocol, thus re-introducing objection #3 (in Table 6-1), i
with an irritating mutation. We have deferred discussion of this anomaly to Section 9.BI. “
Fortunately, this recognition and expansion algorithm is easy to replace and modify, in a .
modular fashion (see Section 9.C3). 1

| 6.C. THE POST PROCESS | |
The input services of the User-UCP process pair join with the output services of the Post |
process to define the interface behavior of COPILOT. Post maintains and displays the |

| context Scenes. Whenever it runs, it updates the contents of the dynamic, the static, and all |
data Scenes, assures that all program Scene cursors are correct (other processes maintain the r+ 1

program text), and displays the results for visible Scenes. I

 } The Post process runs only in response to specific status changes in the running processes, or I
to specific requests by these processes. The mechanism in each case is the same: when a =

103 |
i

) .

| process makes such a request ar changes its status, it causes a posting event, whose value
contains a code describing the reason. 'Tiis occurrence wakes the high-priority Post process,

| which then issues an updated snapshot. 3
: The Post process operates in response to events caused by:

1) Process suspension. The process has BROKEN, STEPPED, SUSPENDED, or is :
AWAITING some external waking condition (an event occurrence). The reason for 3

suspension, and the current process state, are supplied in the event notice’s value.

2) Process activation. Snapshots are issued whenever a process becomes READY, and |
: again when it begins RUNNING. !

(This choice assumes that processes change state infrequently with respect to the
: overhead for issuing a snapshot. We could choose to bypass snapshot issuance where

| process activation or suspension does not directly interact with the IPS facilities.) |

3) Data display requests. The statements of Section 7.D1, by causing posting events, cause :
variables to be added to and removed from DATA Scenes. The Post process responds

| ! | by adding or removing these variables, then performing a standard update. :
|

We could have implemented posting through subroutines declared in Copilot's outer block.

| The scheduler routines and data-display statements would call them to report results. We
§ have chosen the process/event mechanisms insiead, as we have for other facilities, because |

this decoupling allows us to embed all system structures and display routines in a block

LJ inaccessible to target programs, affording them protection and name space independence from |
: each other. In addition, in Section 8.D1, we will show that this structure, with appropriate |

| segmentation, helps us achieve space efficiency. |

6.Cl Display of Users’ Scenes

The Post process only maintains context Scenes. However, it will update the display of all

{J} Scenes which currently have visible windows. this relieves the user of much of the effort of

} | displaying his Scenes. He need only maintain the data in the Scene and indicate current

1] cursor and window positions. He can have his programs issue a Post-only request for |
immed ate visual response. In this way he can synchronize his data display with the Context

N

| snapshots. Facilities exist as well for directly updating a user-maintained Scene, for better
4. & i

efficiency.

| od 104

{ |

i 5b
:

i

| CHAPTER 7 |COPILOT TERMINAL PRIMITIVES

i This "user's manual” chapter explains many of the terminal operations which are built in to

1 COPILOT. It should also serve as a guide for the implementation of additional features.
The first section deals with the user-accessible structures for describing and manipulating

i system entities such as Scenes, Regions, and processes It also defines terminology for these :entities. The following section presents a small number of variables, global to the User and

{ UCP routines, which are central to system operation. §
Section 7.C is a description of the more important primitive system functions, and the

J terminal-level commands which use them. The last section defines the semantics of the |
special statements of Section 5.CJ. |

| 7.A. USER-ACCESSIBLE STRULTURES 4
In the previous chapters we presented proces:-control statements which used integer values as |

i process designators. We did this because the MISLE language lacks sophisticated data type
facilities. We will extend the use of integer values as structure designators, to handle objects :

| such as Scenes and Regions. We will also employ them as instruction point, environment
point, and context point indicators (ip, ep, and cp). (1)

| A structure desiguator is always generated by the system, on request. Structure designators :

i are unique, like LISP atoms or LEAP Items. Associated with each structure is a structure |type code defining what kind of entity it represents, as well as its actual value: Scene data, a

1 process stack, etc.
Some structures (Scenes, Regions, processes) possess string-valued pnames, used to identify

| them in Scenes. Whenever such an entity is stored in a named variable, our convention is
that the entity name and variable name should be the same. |

| (1) In a language which provides structured data facilities, these entities lose their distinction. 1105 i 4

l

Instruction, environment, and context points could be represented as <Scene, line, colunin> :

triples, where program, data, or dynamic Scenes, respectively, would be selected. For
J

convenience, however, we have chosen to define structure designators for them, collectively : 1

called structptrs. One can derive from a structptr the <Scene, line, column> position it 71

defines, as well as the process (if any) associated with it. “d

Some procedures need the ability to accept as arguments structures of different types. An 1!
example is an editing function, whose Scene argument cou'd be supplied directly as a Scene 3

3

structptr, or indirectly by specifying the Region to which the Scene is mapped. Another
“wd

example is a structure-following procedure which can be applied to any structptr (see the

successor functions of Section 7.C4). These functions can obtain the structure types of their |
parameters, and can perform appropriate conversions, using the access primitives of the next :

| paragraph. (Scene types are subtypes of the structure type "Scene”). 4 i

7.A1 Access Primitives]

1 From a given structure it is often possible to derive related structures or values: the Scene,

line, and column locations of an ip, the Region corresponding to a Scene, or the cuirent line 4
nwany ’ et :

and column locations for the edit cursor ("A") in a Scene (or Region, if mapped). The i

following table defines a set of access (conversion) primitives and the structure types they will I] ;
accept. Legal types are marked "x" in the table, braces surround the entry ("[x)") if the 1

legality of the function depends on the Scere type of its argument (e.g., an IP can only be -

: obtained from a program Scene). Each function attempts to return some reasonable default]
| when the requested value is meaningless (marked "-"), or does not exist.

1]

iH 3

I T1
{

od d

| od

106

21
3

I Table 7-1. Structure Access (conversion) Primitives
Struct. Type Scene Region ip ep cp process

i Function :
| GET_SCENE : X Xx X X - |
1 GET_REGION X - X X XxX -

| GET _LINE X X X X -

| GET_COLUMN x X X X X - :
] GET. 'P x] [x] EE

| GET_CP (x] [x] - =. 0X ;GET_CP x] [x] SEE

] i GET_PROCESS , X X X -

7.B. GLOBAL STRUCTURE VARIABLES

: | The variables of Table 7-2 form the bases for access to all IPS structures. They are
declared in the System block (in the esystem Scene), they provide access to all Scenes and

I Regions, most processes, and some location structures (structptrs). (The primitives for
: creating Scenes and Regions cause declarations for the new objects to be inserted

i automatically into the System block.)

/

: r - wat i" - 55 en EEE . «

: al

¢ Table 7-2. Global IPS Structure Variables a
i 1

RPROG, RDATA, .. Structptrs of the initial Regions. 2

PROG, DATA, DYNA, .. Structptrs of the initial Scenes. |
CURRENT _REGION Structptr of the Region, in which the edit cursor ("A") is visible,

and which therefore is affected by edit commands. 3

| CP Structptr of the current Context Point, seen in the RDYNA
Region as a context cursor (">").

(|

IP The Instruction Point selected by CP. i.
§

4 EP The Environment Point selected by CP. od

}
J 7.C. THE COPILOT TERMINAL PRIMITIVES : :

¢ The COPILOT design includes an intermediate mapping between the terminal commands id e

: and the corresponding lengthy primitives. For each command we have defined a coimnimand ;
| procedure, whose name is short and at least moderately mi.emonic, which is defined in terms :

» | of one of the primitive functions (supplying the default arguments to it). Each command |

procedure accepts only one or two parameters, those which the user might provide in his | :terminal commands. ©

IH

| As an example, the command procedure expansion of the "<rept><cr>" command in Section i |

: 7.C2 is "DOWN(<rept>)"; its meaning is, as before, r

| "MOVE_CURSOR(CURRENT_REGION,<rept>,-999,0,0)" . | :

Although the intermediate command procedures make sequences of IPS statements easier to I |
read and modify (in the UCP and in assistant procedures, for instance), the extra lev! of -

mapping does not aid their exposition. In the descriptions which follow, we will directly i

express the COPILOT commands in terms of the primitive functions. bet }

| | 108 .

hs p n EE : hh oy a __ —— ii - _ 4

EE a me : F » d

] i The casual reader need not study the function descriptions in detail; he may scan the calling 11sequences and read the command descriptions to infer their general behavior. 4

7.C1 Notation 4

1 | We have arranged the following pages in pairs: even-numbered (left-facing) pages contain {
the names, calling sequences, and descriptions of primitive functions. The odd-numbered

| (right-facing) pages describe the commands whose expansions use these functions. Some ;. copies of this dissertation are prinied in one side only. The reader may find it convenient to

: y reverse the even pages in order to accomplish this correspondence. |
On the function description pages, when more than one structure type is permitted as a

| parameter, the alternatives will appear as [scenelregion). This example will commonly be |
| abbreviated (sir)

| The command descriptions employ the following conventions:

| 1 The left column, labelled "COMMANDS", lists the commands, with possible parameters, I"
| using the notation of Table 7-3. The middle column, "EXPANSIONS", defines for each |

| command the MISLE statement, in terms of the specified parameters, which the User loop

algorithm creates from that command, and which it will cause to be executed. The expanded

i statements In this presentation are all calls on primitive functions, using a “keyword
1 parameter” form: PCALL(x=5, y="abc") means PCALL(5 abc"), wiiere the formals used in

| declaring PCALL were x and y, respectively. Whenever the procedure name is omitted froman expansion, the most recently mentioned procedure is intended; whenever a parameter is :

i missing, the most recently mentioned parameter with the same keyword is intended. |

109

v {
v

| i

Table 7-3. COPILOT Command Notation Conventions

|
o The CONTROL key should modify the command character

8 The META key should be employed |]| © Both CONTROL and META are required v
| <cr> Carriage return -

<If> Line Feed / :
] | <alt> Alt mode -- a special "escape character”)

| <vt> Vertical tabulation character i p
<sp> Space, or Blank, character

| <bs> Backspace, or Delete, character |<rept> A numerical repeat factor, composed of a<digits> :

I

I

: :

| |
4 71

| iJ

10 : | ¥

E. EDITING COMMANDS 0

; 7.C2 FUNCTIONS, EXPLANATIONS «ld

| MOV E_CURSOR([scene|region]lines spaces, windowline limitflag) \ :"
“This function moves the edit cursor for the selected Scene a specified distance relative to the

current edit cursor position for this Scene. It also ad justs the position of the window on the :
Scene, if it is mapped. “oo

[scene] Must be a valid Scene, or |region] the designator for a mapped Region. In the latter case, MOVE_CURSOR i.
: applies GET SCENE to select a Scene. :

lines Number of text lines to move (positive is "down", negative is "up”). 1]
spaces Number of columns to move (+/-). i| :
windowline If himitflag enables it, after determining the new cursor position, arranges the

window such that line 1 of the window is ‘windowline’ lines away from the ’
cursor line (+/-). Adjusts if r=cessary so that the cursor is in the window. i)

limitflag |
0: Cursor may move beyond current window boundaries, ad just window to make "}

J the cursor visible, if mapped. i |
I: Cursor may not move beyond current window boundaries.

| 2. Cursor may move beyond current window boundaries, place window as nearly 11
; as possible to the position indicated by ‘winuowline’. 1

3. Cursor may not move beyond current window boundaries. Update window |

after moving cursor.] |
1 SET_CURSOR([scene|region] line space,windowline) ~

«: HN

This function is equivalent to: i !
MOVE_CURSOR(region,-999..9,-999..9,0,2), then —_
MOVE_CURSOR(region,linespace,windowline,2).

In other words, SET_CURSOR sets cursor and window to “absolute” positions (relative to rr
: the beginning of the Scene). |

| FIND_STRING([scene|region],"srchstr”" number) vy

This always uses GET_LINE(s|r) and GET_COLUMN(s|r) for its position. It searches from A
that position to the number'th occurrence of the search string, and does a ev
SET_CURSOR if it finds enough matches. Otherwise, the user is informed that the search

| failed, and the edit cursor is not moved. , “HB

| Preceding page blank ~ 3

3 112

I COMMANDS EXPANSIONS COMMENTS l 4
<rept><cr> move_cursor (: : Moves edit cursor <rept> lines :

| region=current_region, vertically, horizontally to left margin.
limitflag=0, Cursor may move out of current y |
spaces = -999, window, requiring window

1 lines = <rept>) adjustment. 3 |

i <rept><vt> lines = - <rept> <rept><vt> performs e-<rept><cr>. |
<rept><If> spaces = 0 Moves edit cursor <rept> lines 5

| lines = <rept> vertically, but not horizontally. i
| <rept><alt> lines = <rept> <rept><alt> performs e-<rept><If>. 1

| <rept>a<sp> lines = 0 Moves cursor <rept> columns |
spaces = <rept> forward, horizontally. 3

| <rept>a<bs> spaces = -<rept> Moves cursor <rept> column :backward. i i

| I oT limitflag=| Moves cursor to top left hand corner i ispaces= -999.9 of screen (window).
lines = -999..9 :

i eB lines = 999..9 Moves cursor to bottom left corner. 9
I o] spaces = 0 Moves current line to top of screen, 1lines = 0 adjusts window so that the line with 2

windowline = line the cursor is line one of the window. i

{ limitflag = 2 (or 3) 1
oW lines = 999..9, Moves the bottom line to the top of |

{ limitflag = 3, the Region (if possible), by adjusting 4windowline= -999...9, the window.

[oL lines = -999..9, Moves the top line to the bottom of EL §windowline = 999.9, the Region, if possible. ‘3

| <rept>eF<str><cr> find_string (Sets the edit cursor to the location of Fregion = current_region, the <rept>th copy of “str”, starting at rE
srchstr = "<str>”, the current position. 3

A number = <rept>) 4

! 13 4

1 Pa —— —.. |

; i

| EDITING COMMANDS, continued 1

:

| 7.C3 FUNCTIONS, EXPLANATIONS {J |
3 NEXT REGION (region, howmany) | 3

| There is some reasonable circular ordering among Regions, based on their Screen position.
NEXT_REGION yields the Region structptr for the howmany'th region from the one
specified. | |

EDIT_REGION(region, line, space, windowline) | |

This function selects the specified Region for (terminal) editing. It then performs a

| SET CURSQR operation using the remaining parameters. If any parameter is -1 it is not i)
changed from the setting it had the last time this Region was edited. (Region-switching is a | j

3 sort of coroutine-switching operation.) 3

CHANGE _CHAR([scene|region] line space,"char(s)" number) |]

| CHANGE CHAR can refer to its Scene directly, or indirectly through its mapped Region. :
| Its function is to insert, replace, or delete characters from the Scene. The edit cursor is

always placed beyond the affected string on termination of the command. : k

3 char A 7-bit character. | ;
number =0: replace current character(s) with ‘char(s)" a

>0: insert ‘char(s) before current. ’ y

<0: deleie [number| characters at current position. | :
| ‘

scene, region, line, space as before.] ;

| EDIT_CHAR([scene|region], “char(s)", number) is: il
CHANGE _CHAR([scenejregion]), GET_LINE([scene|region], 1 |

| GET_COLUMN([s|r], "char(s)", number) L. :

; INSERT_LINE ([scene|region], line, string) | .
DELETE_LINE ([scene|region], line, count) :

The specified string is inserted as a text line before the indicated line. (Or) count lines are i
deleted at the indicated line. oJ

14 :

3 1 COMMANDS EXPANSIONS COMMENTS
<rept>eR edit_region (Selects for editing the howmany'th

i line = -1 Region from the currently selectedspace = -| Region. Makes the edit cursor

windowline = -| visible in that Region.

| region = next_region |(current_region,<rept>) |

ll <arg>eR region = <arg> Selects the named region, as above.

| 3

ll <char> change_char (<char> is a 7-bit, non-activating |
line = get_line character. Replaces with it the :

: (current_region), character under the edit cursor. £
ll space = get_column

(current_region), || region=current_region, |
ll number = 0, /

char = "<char>")

| B<char> char = "<char>” Inserts <char> at the edit cursor.t

: Move other characters over.

I <rept><bs> space = cur. - <rept> Deletes <rept> characters t: the left
J number = -<rept> of the edit cursor.

1 <rept>aD space = cur... Deletes <rept> characters to the right
of the eoit cursor.

3 | <rept>e<cr> space = 999..9 Inseris <rept> new lines after the
char = <eese.o> current one. (e is <cr>).

i number = |

| <rept>eD delete_line (Deletes <rept> lines.
- region = current_region

2 il line = get_line(current_region)
| » count = <rept>)

hl i...reDea aea SA re t's

La)

hi: STRUCTURED EDITING COMMANDS (PROGRAMS, DATA LAYOUTS) |

7.C4 FUNCTIONS, EXPLANATIONS kel]

structptr « GET_STRUCT ([scene|region), line, space) |
In a PROG Scene, finds the closest statement to the specified location, and returns its |

structptr. The effect is similar in a DATA Scene, returning the closest equation (next page).
id

: structptr « EDIT_STRUCT ([scene|region))

EDIT STRUCT ([sIr)) is defined as: a

GET_STRUCT ([sir), GET _LINE([sir)), GET_SPACE([s|r)))]
| 5

structptr « NEXT _STRUCTURE (structptrl, "code") LJ |

code "I" Given structptrl (denoted by SC in the following examples), {
| NEXT_STRUCTURE returns its successor (SN in these examples): (J |

.. BEGIN ... SC; SN ... END; |

.. BEGIN .. BEGIN ... SC END; SN ... | k
. .. IF .. THEN SC ELSE SN; .. :

"1" Returns the predecessor to structptr]l. The definition is similar. u

"=" Returns the first substructure of strucptrl, if it has any. Otherwise returns :
| structptrl: SC is structptrl, SN the resultant substructure in the following: |

.. SC: BEGIN SN; .. END; ..

| .. $C: IF .. THEN SN ELSE .. |]
.. SC: SN: [«3;

"«" Returns the “father” structure, SN, to the given structptrl, SC: i
.. SN: BEGIN ... SC; .. END; .

.. SN: IF ... THEN SC ELSE ... | 3

"H" Returns a structptr to the block or compound statement containing the given |
structptr |. |

| | 116 SE

B COMMANDS EXPANSIONS COMMENTS

| ol struct_move (Moves edit cursor to the statement
region = current region, (or corresp. structure, for other Scene

4 code = "1") types), following the stmt. nearest

| | current the cursor pos.
ot code = “1° Moves edit cursor to the statement

3 1 preceding the nearest one.
| ®- code = "3" Moves cursor to first nested stmt.

| oe code = “«" Moves cursor to father stmt.
®: code = ™" Moves edit cursor to the statement

| nearest its current position.
oH code = "H" Moves cursor to block head

| | containing the nearest statement.

17

PROGRAMS, DATA LAYOUTS (cont) }

| 7.C5 FUNCTIONS, EXPLANATIONS |
| STRUCT _MOVE (region, "code") I
|

:

STRUCT _MOVE is defined as:) :

| BEGIN I
1 integer stmt;

stmtEDIT_STRUCT(region); | |
: if code » "" then |

stmt « NEXT_STRUCTURE (stmt,code); .

SET_CURSOR (region, GET_LINE(stmt), GET_COLUMN(stmt), -1) |
| END; U 8

I.

|

118 | §

| 1 APPLICATION OF STRUCT_MOVE TO OTHER SCENE TYPES:
i DATA SCENES —~ Let EC be the equation nearest the edit cursor, EN the equation

| identified by that cursor after perforining the command:

| ol 3.procs2(..EC, EN,...)3.proce2(...EC); begin EN; ...
EC: 3proce2(..); begin .. end; EN...

| of (inverse of el)RY. EC: 3procs(..); begin EN;
: a. (inverse of e=)

| 1 o EN=EC.

i DYNA SCENE — Each number is some instance node— ">" means "yields"

1 elat1>52 eolat2o53

a elat4o5 et at4>3

I | otat5>2 eat 2553 5 os at 555 eat 622
e-at2>2ec at4o 4

| 4 6 eHat6>5eH at 4> |

: 119

i SCENE MAPPING

| |
1 7.C6 FUNCTIONS, EXPLANATIONS

i |

| scene « SCENE_LINK([scene|region), line, space) i: This command follows Scene links ("s scene” constructs). Given a location within a Scene, it |
: finds the nearest Scene link, if any, and returns a structptr to the Scene it identifies. If there i !y are no Scene links, it returns a null structptr, which should be treated as an error or "no-
f operation”.

3 MAP_SCENE (scene, region, first line, fspace, fwindow) iL |

! This makes the Scene visible within the Region, and sets the window and edit cursor | |
po-itions as specified, using SET_CURSOR. |

| |

1 |

]

120 { | :

"1 ! COMMANDS ~~ EXPANSIONS COMMENTS
oM map_ scene (| Follows the nearest sscene link.

i scene = scene_iink (
region=current_region,

| line = cur..,

| 1 space = cur...),region = current_region,
first line = |,

I fspace = |,fwindow = 1) i

i <arg>oM scene = <arg> Maps the indicated Scene into thecurrent Region (the one with an edit

I cursor).

: I 121 |

r an bet AS A tee EE LS SS Ay Lments - lS a A

\ PROCESS CONTROL

| 9.C7 FUNCTIONS, EXPLANATIONS Ll 8

| SET_P (process, [ipleplpl) | 3
|

1 Places the context cursor at IP if structptr is a statement, EP if it is an instance in a data g
Scene, or CP for a dynamic Scene. |

STEPP (process, code)

code: : | :
"1" Single-steps one statement.
",” The same as "I" if the statement at I? has no substatements. Otherwise, |

| executes to the first encountered substatement (see examples on next page). { !

Stepp activates the process, at its current IP and EP, first setting Synch variables to suspend 2 |
after the desired execution. The "+" code suspends execution at the first encountered LU [f
substatement of the one indicated by IP.

- STEPPN (process, n) | |
This is a multiple-step command. If n=2, it executes the next two statements before |

: suspending; if n=3, the next three, etc. When applied to a statement within n statements of

| the end of a loop statement, n is reduced to prevent executing beyond that scope. =
STEPP(=-"1"), when applied to a process which is already being stepped, has the effect of | :
STEPPN(--,n), for n=2, 3, .. a

; | (ACTIVATE (process), SUSPEND (process), SUSPALL())
| .

These are the normal MISLE functions for activating, and suspending processes. SUSPALL

| suspends all but USER. 1|

J TO_CONTEXT (process) }

y This sets RDYNA, RSTAT, RPROG, and RDATA Regions to the Scenes describing the | \
| context point of the selected process. If -1 is the argument, it alternates among the suspended

Target processes, beginning with the most recently broken one. This is the normal way to | ;
establish context after a BREAK. k

Process either -1 (some broken process), or a precess id. |

122

—_s " , 4 -]

| |] COMMANDS EXPANSIONS COMMENTS
“ CY set_p (Moves the context cursor,

[1 process = get_process (ep), representing an ip, ep, or cp |
L] edit_struct(current_region)) (depending on Scene type), to the

stmt, equation, or procedure

[1] instance nearest the edit cursor.

eX stepp (Single-steps one stmt. in the p
| process = get_process(ep), context cursor is visible (the current

\ code « "1") process). |
|

: <arg>eX process = <arg> Single-sieps the selected process. |

- <arg>e®S code = "5" "Steps in” to (executes to the first :
substmt. of) the current stmt. of the

J selected process.

®S process = get_process(ep) "Steps in" to the current process

oP activate (Proceeds— readies the current

process = get_process (ep)) process.

<arg>eP process » <arg> Readies the selected process.

3 | {<arg>}e. suspend (get_process (ep)), Stops (suspends) a process.
or <arg>

| | ®: suspall () Stops all processes.

oB edit_char(Sets a break point at the edit cursor
region = current_region pos. Will break only when the
char(s) = "{break process encountering is the one

(get _process(ep))}”, which now has the context cursor.
3 number = 1),

| <arg>eB process = <arg> instead of .get _p.. Sets a break
point at the edit cursor position and

specifies which process can trigger it.

| id to_context (process = -1) Switches context Scenes to a
. representation of the environ-ment

- of some reasonable process (see
1 previous page).

<arg>e» process = <arg> Switches to the context of the chosen
I process.

| L 123
! Ml

| !

DIRECT STATEMENTS |

7.C8 FUNCTIONS, EXPLANATIONS Li

EV AL(statement”, ip, ep) |
Effectively, the statement is inserted in the scene at ip. Then it is executed in the
environment (therefore the process) uf ep. When the process suspends (on eventual

completion of that full step), the staternent and all levels of representation are deleted. | ,

J

d]\ |
|

i

LJ

| 124 |
wv

Jui St

| | COMMANDS EXPANSIONS COMMENTS .

I e'line<cr> line Executes the line as one statement.

| | o&line<cr> eval(“line”, ip, ep) Evaluates the line in the selected
I environment.

|

i |

i
|

125 | |

ee —— tee. Fes int miriitaa

1
1.D. SEMANTICS OF SPECIAL STATEMENTS]

| |

In Section 5C5, we presented the syntax for a set of MISLE constructs which are especially -
useful in an interactive environment. At that time we had not adequately presented the

contexts in which they are useful. Here we will explain these special statements, by means of ;

several examples. | 1
8

7.D1 Variable Query (Data Display)

1 Example: J; K12+3; -

A data display statement comprises a single expression. Executing one causes that ha f

expression’s value to be displayed in a data Scene. The first statement, above, is

representative of the most common use: the display of a named quantity. The variable] (in |

the scope of the current context cursor), is given the marked attribute (Section 5.D2), if it |
does not already possess it. this will cause an equation to be created for J, in any data Scenes x

| which display instances of the block or procedure in which -] is declared. Data displaystatements execute by causing posting events which awaken the Post process. When this

process runs, it causes all visible data Scenes to be updated— thus displaying J's current -

value, among others. |
| The second example above causes the selected expression to be displayed temporarily in the |

default data Region (see Section 5.HI). It is difficult to formulate a general algorithm for { || doing this satisfactorily. We will explore the problem further in Section 9.A2. |

| 7.D2 Breakpoints
: Example: BREAK(-1);

This statement always breaks. To do this, it simply suspends, after causing a POSTing |
event. The post process subsequently indicates in the STAT Scene that the process has

BROKEN. The user can, when he chooses, turn his attention to the broken process,

examine its causes, then take whatever action is appropriate. !

Example. BREAK(TARGI),

1%

| This statement will break only when the process encountering it is the one designated by
i TARGI.

| A last BREAK statement, ARR_BREAK, takes an array as its parameter, and will break if

| the running process is any of those specified in the array.

| 7.D3 Temporary Statements
| | Example:

I (TEST_SRCH: ON! IF SEARCH_CNT MOD 50 »0 then BREAK(-1)} J-PTXXMT),
| A temporary statement of the form { ts; ts2; .. tsn } sl is functionally equivalent to BEGIN

{ ll ts]: ts2; isn; s1 END. Similarly, sl {tsl; ...} behaves as BEGIN si; tsi; .. END. We make
the distinction for three reasons:

ll 1) As a purely visual device. It is easier to see that the statements within the braces are |
temporary.

ll 2) To aid in insertion and deletion. One need not find the end of the qualified statement
(e.g. s1) in order to place an END there, or to remove it.

1] 3) To allow the additional <class> and <switch> syntax.

| A temporary statement containing the switch "ON" behaves as one without a switch at all: allits substatements are executed in order, as described above. However, if a temporary

| - statement contains an "OFF", none of its substatements are executed. One may thus turn a
i temporary statement on and off by toggling this execution swiich. Section 8.E8 presents an

implementation for this feature which allows inactive (OFF) temporary statements to be left

1 i in a program, at no execution cost.

I The class label need not be unique to one temporary statement. If a set of temporary' statements exists, whose collective function is to monitor a particular situation, one may give

them all the same class name. He may then use the TURN ON and TURN OFF statements

| to toggle all members of a class simultaneously. Class names are global labels, whose scope is
the entire system.

: 127

The DELETE statement physically removes all statements labelled by a given class name

| from the Scenes they modify. 1(SY

i Temporary statements give us nearly all the power of Teitelman’s ADVISE facilities for
| BBN Lisp, which allow a user to change temporarily the meaning of a function, whether ut :

| compiled or interpreted, whether defined by the system or user. We cannot provide his ;]

a selective advising facility in the current design. (When this is specified, a function is |
modified by its advice only when called from one of a selected list of functions.) ;

vod .

7.E. CONCLUSIONS

We have presented in this chapter only the essentials of COPILOT. We are convinced that BE
| this design provides the basis for many elegant capabilities which are not possible in a -

preémptive system, or in one which presents less context. Some suggested extensions to
COPILOT appear in Chapter 9. Others will require further research. j

\

:

128 |

i

A

i f: |

| | CHAPTER 8

| I IMPLEMENTATION CONSIDERATIONS
MN || 8 A. TIERS

4

We have intentionally couched all our descriptions in terms of the Text Scenes which the :

|] COPILOT user can see directly. We have demonstrated that we can provide a remarkably

J rich set of primitives for IPS control in these terms. :

To provide the facilities described in the previous chapters, we require, in addition to the

Text Scenes, the support of additional structures. We can see clear evidence of the kinds of

structures required in the following:

1) We need the Text itself, for visual display and text operations.

2) We need to locate the Tokens, within a text line, which begin selected statements, as, for :

b | instance, in the EDIT _STRUCT(.) (e:) command. Some internal representation of : 1
program text as lists of Tokens would be useful, though not absolutely necessary.

3) We need access to the program structure, or abstract syntax tree [38], of the user's :

program, in order to perform operations like STRUCT_MOVE (e+, ol, etc), and |
4 process control operations. Similarly, we need a structured representation of the names 5

| | in the user's program (a symbol table), closely related to the program tree.

bl 4) Because we have chosen a compiler-oriented system, each statement in each PROG

1 Scene must have a corresponding code segment which, when run on the host machine,
} will perform the specified actions. Conversely, the data (activation records) on which

1] | these segments operate may be reflected in DATA Scenes at the text level.]
2 © We will call these levels of data representation Tiers. These same four kinds of Tiers (text, h

| [] token, tree, and code) exist for most of the Context Scenes in COPILOT. We will treat each |
ub use in detail below. Each Tier is the most convenient representation of the facts it expresses ¥

r for some class of system operations.
| |

i 8.Al Tier Equivalence :
For each Tiered quantity in the system there is a source Tier, where new information is

i 1 |
| 129

Aa =

i]

1]
introduced. For programs, this is the text Tier, where new statements are added. For data,]
the code Tier (of activation records) usually supplies the needed information. The contents 1 ;
of each Tier (other than the source Tier) is the byproduct of some translation operation. For J

programs, these operations have familiar names: 1

NAME TRANSLATION (Tier | to Tier 2) |

Scanning Text to Token -

Parsing Token to Tree 1 |
| Compiling Tree to Code |1 :

For data representations, we could speak of Uncompiling, Unparsing, and Unscanning, 1 |
beginning with activation records in the Code Tier, yielding readable Data Language .
“programs”. |

| In each case the intent is to create a representation which is in some sense equivalent to the - 3
original; that is, its meaning with respect to some set of attributes is invariant over the |
translation. (For compiling, this is the requirement of correctness. Most formal treatments of |

compiler correctness concentrate on proving this “equivalence” between the abstract syntax] :
(Tree Tier) and the Code (Code Tier) [29])) In order for the translation to have any value, :
of course, there must be other attributes which are not invariant: some information will be Tr |
lost, while other things will be added. Using our program example again, the scanning and |
parsing operations do not carry program format (spacing, etc.), into the Tree Tier, nor do :

| they always preserve the order of expressions, or even the precise choice of keywords and] |
operators. In addition, through these translations, explicit structural information about a

| program is added. Further compilation (to code) usually loses some of this structural |
information, and much symbolic data, while gaining efficient code for execution.

 } We will say that structures in two Tiers are weakly equivalent, or simply equivalent, if they % |
satisfy (or presume to satisfy (3)) specified correctness criteria for a selected szt of attributes. x
We will say that two Tiers are strongly equivalent if either can be completely regenerated, .
given the other. Co |

 B (£) We shall not offer any proofs. by130 Ny

There must be, for each class of multi-Tiered entities, and for each adjacent pair of Tiers, a
l] translation rule (algorithm), operating in at least one direction, which will convert from one J

Tier to the other. Compilers, parsers, and scanners are elements of this set of translators. 4

| |] 8.A2 Inter-Tier Connections]
a: The data of two equivalent Tiers need not be fully independent. Each may contain

references to locations or entities in the other. It must be possible, for instance, to find the |
| |] statement in the Code Tier corresponding to a given node in the program tree.

This division of IPS structures into Tiers and connections between Tiers allows us similarly
to segment the universe of IPS system routines into those which deal with the relationships)

Bl | | between “adjacent” Tiers, (compilers, etc, as well as routines like GET_STRUCT and 1
k GET _LINE), and these whose effects are confined to a single Tier (e.g, MOVE_CURSOR |

and STRUCT _MOVE).

| We will find that it is useful in some Tiers to minimize the number of extra-Tier connections,while other Tiers will contain numerous connections to their neighbors. We will discuss the

| advantages and drawbacks to this imbalance in Section 8.D.

8.A3 Tier Fidelity

In his thesis [44], Mitchell states what he calls a Visual Fidelity Principle, which requires

| that “the user must be able to expect that the appearance (text) of a program is a reliable
indication of the way that program acts (its semantics)” While this is predominantly a

restatement of our Tier equivalence requirements, it carries some additional implications.
J. Program Tiers are not always equivalent; there is a time after new text has been inserted in |

a program, but before it has been translated, when they are not. If we use the Visual

| Fidelity Principle as our guide, we require only that Tier equivalence between text and tree

be restored before doing any structured editing, and that tree and code Tiers be updated

before attempting execution of the modified algorithm. We can extend this notion of fidelity

1 LJ to other translations, specifying for each the conditions which require that necessary :
1. translations be made. For instance, code-tree-..text translations, for data, dynamic, and 2

|| status information, must occur whenever a posting event (Section 6.C) occurs: and our

| Snapshot requirement (Section 5.B4) means that all such translations must be done whenever]

2 131 :

NY: : ; i ; ; EN a LT aLm om

: any is done. (The Snapshot requirement states that the visible data must represent a subset

of total system state at a single previous instant.) od i

We will define the specific conditions for each COPILOT translation in the following i
sections. These conditions may be different in other IPS systems, depending on the methods |

of translation and interpretation. | :

8.A4 Tiers in other Systems |
The Tier concept is our attempt to normalize the naming conventions for the kinds of :

| structures which have been developed for IPSs (and other language systems), including i
| COPILOT. All of the systems we reviewed in Section 3, for instance, have constructs :

corresponding to the Text Tier; most possess representations corresponding to one or more of |
our other Tiers: JOSS maintains text only. Most LISP systems keep the trees (S-expressions))

and, for compiled functions, the code. Mitchell's system has representations at each Tier |
levei. We are satisfied with the generality of the Tier levels we have chosen, since we have ~ 18

encountered no trouble in categorizing the structures of other systems in terms of these Tiers. |W

8.B. SCENE-TIER RELATIONSHIP |

In the previous chapters we have developed two mechanisms for storing, naming, and 1 |
3 manipulating the data structures in our IPS: Scenes, for managing the text that presents .

| elements of the system to its user; and Tiers, for relating this text to its underlying structures.
In this section we will consider thr. relationship between these mechanisms. i

For each COPILOT program: Scene in the text Tier there is a directly corresponding | |
| collection of token lists in the Token Tier, equivalent to it. Similarly, for each of these :

1 collections there exists an identifiable set of equivalent (x) instruction segments in the code [1]
Tier. It would be tempting to extend this observation, and to state that each Context Scene h

3 can be considered a multi-Tier structure, with disjoint equivalent representations in each ’
Tier (Figure 8-1). This technique, however, immediately leads to trouble in the tree Tier. = i
Since the information in a data Scene represents data generated from the algorithms of |

| (x) Always in the weak sense
: 132

| program Scenes, one must expect this relationship to be expressed at some level, through :
shared structures. The natural place for this sharing is the tree Tier. In COPILOT (Figure :

8-2, and Figure 8-3), the tree structures which express data Scene information share

symbol table nodes with the program trees; from these symbol nodes, block structure

information from the program tree itself is available. |
L

Another difficulty with the disjoint structure of Figure 8-1 is that many data Scenes may

y exist at once, for many simultaneous instances of the same procedure. These occurrences
place a many to one relationship between some Text Scenes and some elements of their

| equivalent representations. Notice that not even data Scenes and their code Tier information
| need be in one to one correspondence, since the same information can appear in more than :
| one data Scene.
| 4

: Because of these arguments, we will relax our proposed Scene-Tier requirements, demanding

only that:

| i

| 1) An observer with access to all system data can derive from a quantity in one Tier all |
| equivalent quantities (1-1 or 1-many) in ail other Tiers.

2) Where necessary, direct or computable connections exist between Tiers to allow |
programs to derive the equivalent entities. Not all possible connections need be

| derivable.

1 8.B1 Permanent Scene Representation

| i For each type of Scene, one or more Tiers contain the most complete information about that
| Scene. From that Tier, all other representations can be generated. The source Tier (the one
| r \

| into which new information can be introduced) must be one such Tier.

i |

| 133

» RE § - . yumi Satants = :

: |

| We designate one of these Tiers as the Permanent Tier for each Scene type. We can then ’

choose to maintain equivalent information in the other Tiers only when it is necessary. The

permanent Tiers for each context Scene are: 1_

: SCENE TYPE SOURCE PERMANENT 1
PROG Tree Token - |

DATA Code Code A
DYNA Code Code

| STAT Code Code i |

7

Examples: data, status, and dynamic text Scenes are not needed at all for non-interactive oh
system operation. Thus it is possible never to generate Token or Text level information for r '

them at all, as long as the code and trees exist for regenerating them. In COPILOT, |
program Scenes need only exist in the text Tier when they are mapped to Regions, or when a i |

text-oriented function needs to look at it. We maintain all programs permanently in the _
strongly equivalent Token Tier (see Section 8.C2).

While a user is logged in, COPILOT maintains his program representations for all Tiers. |
gy To save space, we could choose to delete Code and Tree information when the user leaves r !

the system. This information would be regenerated when he next logged in, returning his |
1 system to the state it was in when he left. Notice that, although there are multiple

: representations for a given program, they all represent the same algorithm, maintaining the | |
illusion that there is but one representation— text Scenes— within the system for a user’s |

program. |

134

PROG DATA, DATA , DYNA STAT

i TEXT TEXT TEXT TEXT TEXT

PROG DATA, DATA, |

ll TOKENS TOKENS TOKENS |

: | PROG DATA, DATA, DYNA |
I TREES TREES TREES TREE |

| I PROG DATA, DATA, DYNA STAT
CODE CODE CODE CODE CODE

; I (?) (?) {

Figure 8-1. (Inadequale) View of Scene/Tier Structures t

1 |

| |
PROG DATA DATA 2 DYNA STAT

| I TEXT TEXT TEXT TEXT TEXT

| | PROG DATA, DATA,
I TOKENS TOKENS TOKENS

| Voy |
: SYMBOL |_ __ _ TO PROG TREE -

| PROG __. | DATA; | | DATA; | | DYNA [TO SYMBOL TABLEABLE : ThA

i TREES TREES | 7] TREES __.| TREE |TODATA, TREE |
- - a mon TE = = a

| i PROG DATA, DATA, i573ATA. CODE |CODE CODE CODE LUSH PE ——

EB TO DATA, CODE

} Figure 8-2. Interconnected COPILOT Scenes || 135

: ~ 8C. COPILOT TIERS

: This section briefly treats the COPILOT Tier structures, defining what each Tier is, and

; what it is used for.]
i The COPILOT system is coded in the SAIL language. The token and tree Tiers use the

i LEAP facilities of SAIL, creating the trees and lists which they require by making]
5 associations between items (see Appendix B for a very brief description of the LEAP
: associative facilities, and of their pictorial representations, used in this chapter.) Numerical 1 |
: and symbolic information in these Tiers are normal Algol-like structures. They are)
: appended to the LEAP nodes as datums.]
b Specially coded machine language routines manage the allocation and maintenance of text x

| and code Tier data, all in straightforward ways; type conversion routines exist to normalize i
£ inter-Tier references in these cases. .

Figures 8-3 and 8-4 give an overall view of the COPILOT structures. Since each |

: important aspect will be expanded in later diagrams, much detail is missing from these. They 1
k do, however, best demonstrate the sharing of Scene data in the Tree Tier, especially the

| symbol table entries. Notice also the relative density of references within and emanating |i | from the central Tiers, compared to those of the outer two. Our reasons for this appear in | |
bE Section 8.D. The process status Scene information (not shown) is quite simple in structure. : 1

It is composed only of its text Scenes and the corresponding status data in the code Tier. I :

196 | }

| PROCEDURE P3 (INTEGER PARAM); TARG 3.P3 #1 (PARAM=100); ,
BEGIN BEGIN — |

I INTEGER 1,J,K; 121540,
|e J+K; coe J

Ke ooo K=-3 4

: | END; END;

| | SCENE ITEM SCENE ITEM
TOKEN

Il Op Jie pl] |
I.SO AN TU. GR (——

I ! c E FRA| GIN’ PROC PRO c ...D

| BE SON TEMPLATE - Cg TREEll me 2

I 5 Pa 23 TREE| oi > aromasBROTHER N
B) & ZAON |

* Ww. "i" :

VL AC 5
| | QO «CC semis | | :

! NN EN INN :
ll \ ——
- INSTRUCTION

Il SEGMENTS SEGMENTS |K=1540| coDE
PROCEDURE NODE REF

I PROGRAM TIERS DATA TIERS :
| Figure 8-3. Overall View of COPILOT Tier Structures (part 1)127

USER COPILOT #|———————————-

2 | |
3 LL TARG 3.PI #1

8 | | TEXT5 TARG 3.P| #2

5 EB aw wa. e— ——— — | |

| NO TOKEN TIER NECESSARY TOKEN A

"USER" "USER COPILOT #1" |
PROC SPROUTED BY TREE

NAME |
- of |wl

F 3 > 1] i" |3 TARG 3 §
wo

=O OC"im NAME

uce = 0 PY ~

: NAME ur] 5 : &< Q (|
% 4(= :

J e’

: > CALLED BY +
: ® [TARG3.P3#| A)

OA O07

TTTanEx |CT
DATA FOR CODE

| LEXI KUSER COPILOT#: LEYICAL Links |
INSTANCE

LEX LINKS DATA FOR X
[oo

DATA FOR OTHER Pl#| DA oh
| CALLED INSTANCES & | INSTATIATING

| INSTANCES IN MAIN DATA FOR O PI
IN UCP PROCESS PI#2 So

Ar ing 8(79ee ormP3#|

UCP STACK MAIN PROCESS TARG 3 STACK TARG 4 STACK
STACK

Figure 8-4. Overall View of COPILOT Tier Structures (part 2)
128

|

8.Cl Text Tier :
1 We have exhaustively described this level. Its implementation is straightforward, providing 1]

for the storage, insertion, deletion, and replacement of lines of text. For convenience in

| implementing the user-level routines, these structures may be indexed by line and characternumber. Each line in the text Scene contains a reference to the LEAP item, in the token :

| J Tier, which represents that line. |

| 8.C2 Token Tier |
The output of a language processor's lexical scanner is a sequence of tokens, internal

i representations of the language symbols. In most languages, including MISLE, many |
program symbols are members of the relatively small set of terminal symbols, and the rest are

| \ identifiers and constants chosen from a relatively small number of declaration instances. |
Therefore, by proper encoding, an expression of the program in terms of these tokens may be

smaller than its text representation, depending on the implementation and the user's identifier :

| naming style. Its chief advantages, however, are the increased parsing speed when sections of
the text must be recompiled, and the additional structure which can be maintained in token {|

| lists (see Section 8. A). For these reasons we have chosen the token Tier as the permanent |
| Tier for programs. To do this, we must achieve strong equivalence by adding format |

| i information, chiefly to specify where spacing characters were present in the original. Figure
8-5 exhibits a section of the token Tier for the accompanying program. The Scene at this |

I level is a two-way threaded chain of line items, each of whose datuins is the token list and| spacing information describing the line. Linked to each line item is an index into the text A

| Scene for that line. :

i 11
We have taken advantage of the discreet nature of token lists to insert connections to the tree 3

1 Tier, so that statement nodes may be located (by GET_STRUCTY...), for instance). These d |
frsmrk items (see Figure 8-5) are distinguishable from token entries. Their datums contain \

H indices to aid (along with FIRST and LAST links) the inverse tree-to-token conversions.
We will introduce soime additional Token structures in Section 8.E2, when w: discuss the :

| storage and parsing of program modifications. i 1

| 139

|
FROM TOKEN --+ | BEGIN |

FROM TOKEN --+ 2 INTEGER i,j; (LEVEL 1) 1H §
| 3 je3,ieje3+5; TE

4 BEGIN | y.

5 INTEGER i,k; (LEVEL la) :

6 ke j-5iekefn(j)*7; «

| 7 IF i<j+| THEN... ELSE... dd

8 END; .,
FROM TOKEN--+ 9 j* +2 1
FROM TOKEN--+ 10 END,

Py 7]
lw al “az oF

> |

oe [7 9"
TO LINE| BEGIN) TO
IN TEXT , .

ul FRSMRK ITEM
w|= FURTHER IDENT. :

OW 5 INFO
FROM 18

3 TREE oi

Ll¥ LINE FIRST 4

da E fiay— SPACING INFG n 1aS EREC ECEEAC RE
C1 [ir h

od |

Zz -
-d

9 .
s

Figure 8-5. COPILOT Program Text and Token Tiers

140

4

; te Acide pa si . : oA wi — i . J.MowJ . Jai i

8.C3 Tree Tier |
| This is the central data structure of the IPS. Program trees are the product of parsing

operations ([36), [44]. Other tree Tier structures (data, status, dynamic) are derived A

I from code-level information. The program tree of Figure 8-6 represents a fragment of the i |
programs of the previous figures. It implements n-ary trees, where n is sometimes fixed ("IF !

{ <be> THEN <s> ELSE <s>", n=3), sometimes variable ("BEGIN <s>; .. <s> END", n=n). The 3trees are connected by leftmost-son, next-brother linkages [81] The tree is pruned, after : |
compilation, to include only the statement structure and lists of identifiers and function calls ;

| which appear in each statement. Although this limits the amount of resolution we can i ;
achieve in program control and in recompilation to statement units, it does not seem to us a ;

[great problem in view of the gain in compactness, especially for long, complex operations. J

\

| 141

| RAL |
TREE :

“ JTHER —

| BLOCK INFO | 7%

SON :

5h 1

ETC. ATEMENT ! |CODE BEGINS ETC. ETC :IN WORD 7,
TOKENS BEGIN :

IN LIST [1] |

|

SEM)) BRO BRO BRO |. 4

FN 0 0 0 |
2 2

J$ é 1’ Ny K2’ - Ji’ 4
CALL AT

WORD 10 SYM : |IN SEGMENT i) .
| LIST [6]

1 I ‘9

(SE nen ‘4 3
FIGURE) [PNAME-"1"]

P| p

CODE
CODE SEGMENTS

INSTRUCTIONS

Figure 8-6. COPILOT Program Tree Tier

142

A —

f | 8.C4 The Symbol Table
We have placed the symbol table (1) in the tree Tier, because of its close ties to the program 41

: i trees. Links from symbol entries to the block and procedure nodes in this tree define the i;scope (range of access) of the instances of a given name. |

} F'gure 8-7 contains a program tree, pruned of all but block structure detail. The symbol :
entries are accessible in a variety of ways: |

: | 1) As terminal program tree nodes. The compiler follows the SEMIS connections to these
entries to generate access or calling sequences for data and procedures.

| 2) By their point of declaration. Any local variable or formal parameter can be reached ii
| from the node for the block or procedure containing its declaration. The same links, g

q | followed backward, allow identification of the scope of a given entity. i
| 3) Symbolically. There is a unique name item in COPILOT for each identifier name. 14

| Linked to it by SYM links are all the entities (symbo] items) with that name. In mosti of the applications we have described, environmental information (in the form of block
or procedure nodes) is then used to choose the correct entity for the current scope. i

BE | Symbol table quantities, though all their connections are in the tree Tier, are really multi- q 0
Tier entities. Identifiers in the token Tier lists are actually symbol iteins. Additionally, i

3 i symbol items appear in generated code, to identify procedures on the stack, and to select ¥
| variables for display. :

L : |

; ll (1) The use of "table" is historical, since our actual structures are hardly tabular. :
| 3 143 |

a v . s qu = FL 7 pl ; rv a EE es cm hid pe Se Sis EE

: | BEGIN (LEVEL 1) | |
2 INTEGER i,j; |
3 BEGIN (LEVEL 1a)

4 INTEGER i,k; | |
5 200 *

6 END; |

7 BEGIN (LEVEL 1b) |
8 INTEGER i,m: i
9 eae J

10 END | |

Il END; -

BEGIN-- LEVEL 1

wl CD |ad

| I’ BLCK BLCK Jt’ ;

W SYM SYM LL) I
DIY): DW) |

LOCATION
| TYPE FROM

ETC. PROGRAM
| TREE

iF = ;
BEGIN-- LEVEL 1a BEGIN-- LEVEL 1b 2

{

C BRO i md |4,

Kia’ 11e’] | 11b’ pa b' | E
| BLCK BLCK BLCK BLCK

. = 3 |
oiktal| |3 5 [oma] ||| [oum 5 [ome |

* SYM SYM
[PNAME-- "k"] [PNAME --] [PNAME--"y"] N—FnavE-W']

Figure 8-7. COPILOT Symbol Table Organization

I44

Bb

i ! |
8.C5 Other Trees :

i Figures 8-3 and 8-4 are examples of tree Tier structures underlying data and dynainic Scenes.
There is one tree structure for the dynamic Scene, and one for each current data Scene. 3

i These trees are heavily connected to their “templates” in the program tree— algorithmic andsymbolic information. This sharing of structure reduces the amount of tree Tier information

i which must be maintained for non-program Scenes. i 1
In Chapter 7 we introduced entities called structptrs, produced by access primitives such as

| GET.IP and GET_EP, to provide compact representations for statements, data |
environments, Scenes, etc. In the COPILOT implementation, these structptrs are integer

1 representations for the items forming tree nodes, token Tier entities, Scene and Region items.
Extending MISLE to include the entire implementation language (SAIL) woula eliminate this

i conversion, allowing structptrs to be directly represented as items.

i 8.C6 Code Tier !

1 Since COPILOT is a compiler-based system, the most important (least dispensable) product |
of program translation is the set of machine instructions comprising the code Tier for

| programs. However, most aspects of code generation do not bear heavily on our IPS |considerations. Consequently, we shall not discuss code generation techniques as such. (1) We
will be content to list the requirements and constraints which our generated code satisfies, in q

| order to interface properly with the IPS and process facilities. :
|

| I. The code is organized as segments, built around the statement structure, which can be |
independently replaced. Major control points, labelled statements, procedures, and blocks E

| always begin segments. Segments are limited in size, so that recompilation of still-correct| statements in replaced segments will be acceptably infrequent. The compiler routines control 1
| the replacement, insertion and deletion of code, always in segment units. 3

: |
(ft) We might suggest Gries's book, Compiler Construction for Digital Computers [23], as d&n |

I excellent reference for all aspects of compilation. :145 1

| ES

..

2. Code segments are relocatable. A segment can be moved In order to compact storage, or to J)

accommodate the expansion of other storage blocks. We have chosen to make all but a smalil

number of header instructions in each segment address-independent. The header words]

contain transfer instructions which link each segment to the segments which precede and

follow it in the execution sequence, and to the segments which implement its substatements.

The base address of a running segment is available in a machine register to allow relative .
transfers of control within the segment. Other registers provide data access. Transfers to :

other segments from within a segment are performed by transferring to instructions in the .) ;
segment header. When a segment is moved, only the header instructions in those segments
which link to it must change. We can locate these other segments by referring to the tree .

| Tier structures, which contain complete segment location information, |

3. To allow prcgram modifications, we can delete and insert arbitrary code Segments. Given -
| our relocation facilities, this is rot hard. The tree Tier contains a complete description of the |

| segment structure of the Code Tier. After a new segment or set of segments has been created, . | |
after header instructions have been inserted to link them together, and after the segments to

be deleted have been identified (see Section 8.ES), it is then easy to modify the relocation

routines to treat the new Segments as relocated versions of the old ones. 3

i 4. We insert synchronization instructions in the code, to denote points where process-

rescheduling interrupts may take effect: so-called “clean points”. These synchronization

1 instructions also provide a mechanism for controlling Stepp, Break and data display q
operations. :

Jo

] 8.C7 Synchronization
We have chosen to use the statement as our grain of resolution for synchronization. This is 1

evident in the primitives of Chapter 7, where control is available down to the statement level. :

(x)

Within the data for each process, we allocate a variable, which we call a synch cell, for each

code segment which can operate in that process. A synch cell, normally zero, may be set by 4

(x) We may also gain control at orocedure calls within a statement. i
146

1 system functions to request suspension of code running in the corresponding segment; the
value placed in the cell indicates the reason for suspension, and aiso identifies the statement(s) j

i within the segment for which the synchronization request is intended. This latter value is 2
necessary because we sometimes compile several statements into one segment. i 4

I The initial instruction of code for each MISLE statement implements a synch test, which 3
a’ tests the corresponding synch cell for a non-zero value. If the test fails, execution of the body

1 of the statement continues. |

1 The second instruction of each statement is a routine call, nr synch trap. This call is
executed when the synch test succeeds. An argument to the call is a structptr to the tree Tier |

| i node corresponding to the trapping statement.

I The synch routine, called by the synch trap instruction, is a small procedure in the globalenvironment of all COPILOT processes. If the synch cell value indicates that the trapping

uy statement should actually trap (is not simply a “segment-mate” of the intended statement), the |

1 1 synch routine collects: the current process structptr (from a global variable), a structptr to the
8 tree Tier node which identifies the procedure which trapped (from the current activation :

| record, see Figure 8-8), the statement node structptr provided in the call, and the value of |
the synch variable. It then causes an event, whose value contains the collected information. |

| The event is either a keyboard event, if the process is becoming inactive to allow the User |
; loop to run, or a posting event, if the deactivation is due to a Stepp, Break, Suspend, i 3

| Terminate, or data display request. Having caused the synchronization event, the process §may suspend, depending on the reason for the trap. The following paragraphs treat each : 4

$ trapping reason in more detail ! |
1) When the user types a character which the User process needs to react to, the resulting :

: machine interrupt triggers a small procedure in the global environment. This interrupt

: | procedure sets the synch cell for the next statement to be executed in the RUNNING 2
process, the current-segment machine register which allows intra-segment control
transfers also allows this routine to find the right segment. The interrupt procedure

i then releases the interrupt, allowing the program to run to the next synch test, which :
3 must trap. The synch routine causes a keyboard event, but does not suspend the]

E trapping process, which therefore goes from RUNNING to READY, in deference to the

: I higher-priority User process. The User proces: awakens at Readaline (see Section 6.B 1), 13
4 where it had been waiting for a keyboard event.

i 147 i

[| i

t

p 9) The Stepp function operates by setting the synch cells for all possible successors to the
chosen statement (its immediate successor, as well as the successors of all its

| substatements, if they leave the range of the chosen statement). It then activates the gud
selected process. When that process traps at one of the successor statements, the trap

: routine causes a posting event and suspends the stepped process, which will not run 1
again until some other process restarts it. =

3) A Break statement contains only the synch test and synch trap instructions. The synch
cell for a segment containing a Break statement is always set, for the process selected by Ry
the argument to Break (all processes, if that argument is -1). Otherwise, a broken
process behaves as a stepped one.]

\ 4) Whenever a RUNNING or READY process is suspended by a Suspend or Terminate
call, the process-suspension primitive causes a posting event. The subsequent behavior
is quite similar to that for Stepp. The only difference is the reason code in the synch i
cell. :

We could eliminate the overhead of the synch test and trap operations by employing code- :

replacement techniques. We could temporarily replace the first instructions of a selected 3
statement with a synch trap, then simulate their behavior when the process next ran. The

trap instruction would be removed, and the originals replaced, when the trap condition no
longer obtained. We are wary, however, of any technique which requires modification of the
compiled code (1) for its operation, and have avoided it here. In Chapter 9 we will consider
the extent to which specialized hardware can improve synchronization operations,

eliminating the in-line instructions without code modification techniques. SE

: Figure 8-8 deronstrates the general structure of the code Tier. Code Items, whose datums |
are code segments, form the interface between the program code and program tree Tiers. 3
Additional information in the datum of each statement node locates that statement within its

(first) Segment. This figure also sketches the storage organization for process data in the code a :
: Tier. Each process uses a stack array for storage of its activation records (frames) and |

temporary values. Each activation record contains a procedure node referent, and links to oo
| static and dynamic ancestors. This structure is dictated more by the requirements of the

| language than those of the IPS. ;

! Although we have drawn them as the lowest Tiers of a multi-Tiered structure, in reality all |
the data in the system, implementing all Tiers, reside in, or are accessed through, references

(1) Except, of course, in response to changes in the source text.
148

i is a ali | ? x ' 5 & E. o kl ; 0 : v \ . y :

{ §

| in activation records of system processes within the code Tier. It is the special nature of thisdata, possessing references to information outside the normal lexical scope of the code

possessing it, which allows us to circumvent control and environmental scope rules, in

ll controlled fashion, to perform our complex IPS functions.

|

I 149

CODE TO TREES FROM

(1) LOCATE DYNA TREE, | | 3SEGMENT TO STACK BASE L 4
) T_T J NR

SEGBASE x i
| PROCESS DATA-- SAVED ID |<

HEADER INFORMATION TATE, INTERV.\L REGISTERS, |Z |
| WHILE SUSPENDED a |

-4 TO AR OF SPROUTER |=

l |! SYNCH TEST, SKIP FALSE PROCESS ID IN DYNA TREE |
| |! cALL syncH ROUTINE ACTIVATION STATIC (LEXICAL) PARENT | ME

Z|! RECORD OF %
| wll . SPROUTED—+ DYNAMIC LINK =¢ he

2) , PROCEDURE RETURN ADDRESS: § | 9= |IliNTERNAL suMPsS RELATIVE RETURN Zbimes ¢ a |
| i PARAMETERAND LOCAL _2) , LOCATES PARAMETER AND LOCAL |o

y bid cinicin STATEMENT! PROCEDURE ID (NODE) IN PROG -
| {IN TREE i |

TEST £ CALL / :

| I(ARGUMENT IS STATEMENT ITEM) - w

| Ml : OF SPROUTED DYNAMIC LINK = |¢ O

| =[\ PROCESS STACK RETURN ADDRESS 5 |
w| ~— JUMPS TO OTHER EP PARAMETERS AND LOCALS |=

i z SEGMENTS INDIRECT o
- NCOOE TIER PROCEDURE NODE ID E
> THROUGH HEADER (MAINTAINED URE NO :

| = IN INDEX
| _ , REGISTER) | |

¢ a

| Figure 8.8. COPILOT Program and Data Code Tiers :

| 150 !

|

|
¥ |

1 8.0. SELECTIVE EFFICIENCY

] i When IPS facilities are not active, we would like our target processes to run nearly as fast,
: and occupy nearly as little space, as they would if ine interactive facilities did not exist. This

1 requirement discourages extensive interaction between our compiled code and other Tiers,
; either to maintain them or to gain information from them. Our description of the

| R COPILOT code Tier has reflected this paucity of code-to-tree connections: references in the: code Tier are restricted to tree node structptrs, in synch trap calling sequences, and in the

| activation records for procedures; the compiled code makes no use of them except in the

I synch routine sequences described in the previous section.

I We also have reason to minimize text Tier information: y

i 1) All text Scenes are subject to the same set of text-oriented editing operations. An :
E 4 abundance of structural connections to the more specific underlying Tiers could interfere

with the implementation of these commands.
d

3

11 2) Displaying text is often a costly operation. In most display systems, such simple
activities as moving the Scene window, or inserting a line require the regeneration and

rT transfer of large amounts of information. The complexity of the Text Scenes could

|] ad versely affect this cost.

r The Token and Text Tiers, therefore, must provide the inter-Tier connections missing from
,

4 | Li the other two.J

I Text| &

~ nN
] Ll

od Token

A

we |

i ; |
ob v

Tree

| 1

Y]

| Code {
Figure 8-9. Selective Connectivity

A i iii All |

a

We pay for the selective efficiency we have gained in our outer Tiers with a corresponding :
| loss in the inner ones, and in the operations which use and maintain these inner Tiers. od
| Perhaps the greatest price is the increased difficulty of maintaining equivalence between the

| Tiers. As a running program modifies its environment (its data and control components), |
) information in corresponding sections of higher Tiers becomes incorrect. When a snapshot is

finally taken, updating these Tiers costs much more than consiant maintenance would have

cost. We present our maintenance methods below, in Section 8E (3) But

EB The interconnections between entities within the same Tier are also sparse for the outer ol

Tiers. No more links are maintained in the code Tier than are needed to support the

operation of the code. There 1s but one link per hne in the text Tier. Any outer Tier | |
operation which requires additional structure can find the corresponding tree node, follow

| appropriate tree Tier links to the desired structure, then return to the corresponding point in
| the original Tier. No power is lost; again, we sacrifice only time efficiency. |

8.D1 Space Efficiency

Figure 8-4, exhibiting the “cactus stack” nature of MISLE processes, is a logical diagram of |
the struciure of the computer memory while COPILOT is running. A contiguous data stack

1s allocated for each process, then linkages are created to establish the connections needed for

normal references to lexically available names, in the stack of the sprouting process. |
Addit:onal references (not shown) in the stacks for IPS processes provide the structured

| references to elements in all stacks which are needed for the Tier implementations we have
presented. Program code tegments possess a similar logical organization, although this is
simplified because there is but one instance of the code for each procedure.

While a target process runs, only its code, its stack and those of processes in its lexical scope,

the structures accessed through these stacks, and the global system routines need be present in

memory until that process next suspends. We could accomplish this isolation in COPILOT

by maintaining physical, as well as logical, separation of the code Tier segments from other
elements of the system. Although the current irnplementation does not do this, we have

designed all our structures with this separation in mind Nowhere do we depend on physical
proximity, of any pair of Tiers, or of the code segments for any pair of processes.

(3) This analysis would almost certainly be different for an interpretive system.

Co

i Fortunately, the hardware and operating systems of m2ny modern computers providefacilities for memory management, sharing, and protection which make it easy for us to :

implement this isolation. Figure 8-10 depicts the way in which the COPILOT ,

I implementation might be achieved in the MULTICS (43) system. Figure 8-11 is a
| possible solution for TENEX [5}, which runs on a modified PDP-10. Both provide,

J ll through their memory management policies, the complete withdrawal of recently unused
pages of information to inexpensive secondary storage, enhancing the Target process's

ll performance. (Both figures assume a familiarity with the memory management ‘acilities ofthese systems).

I For systems whose memory structures are less sophisticated, the isolation properties can be

| simulated using either of these designs as a guide.

i |

158 }

Bl |

| »
Pe i Ww i

n n CY J

; 2 z.| 23
X or | oWa [ooo

Ww OO “3 -o-lx i
ox oO 0 O .
> Lea Zon- “a -—

| <5 x

1 Wwx - ~-owl
4

0
w 0 2)

ZZw| JQO >
o|qwz q fmm ———— ow
ClShe| Oa ©
a 34 - 0 / =
7 x / S 3

: d

a /

| /
L_/ a

= -
/ ul ww | wa

/ nl 99 oh
/ tow <3 gq OoOO ~ -

xO
/ pri

| ou \l a

&

&
w

| wh m= en (Lo —-
Ww 2 |Qa«| >2 z Q=w Who| W lF-|vo 4 | Fs gr 3 @
S| 5 |38|zo | =| © SE > ©" = Fon LdWw 9 | Fw é a. 7

sO o
o

80

a ty 4 |
- ' EZ 3 oe \

OE Tx 2° 0 5
HL wo z w?® 2 ox © Ww <=
Eo Ew —nXxI WoO Z = Ca
Whoo + WZ > dragon! [OZ

535a,z | ZazE |3Eo"IE| LEO > 2 Ol0 a 0 = ow 2 na 0 O
oF Woo WE“ (WETnd x(MW wl ad Lud

-. . J — 'Saraar 939 aSiawd I |

- Figure 8-10. Proposed Memory Organization for COPILOT Implemented in MULTICS
154

i . a i . y 5 . ui . ie

1 i

{ Il

| OWNERSHIP — 2SHAR

| HARES BASE PROCESS gi
¥ COMMON

] r SYSTEM
Zz GLOBAL ;

| DATA
S TARGET SYSTEM (IPS)

CODE CODE

| SS Co ot| lo | I A
| IPS

SHARED TARGET _ | | OR SHARED 1| I DATA PROCESSES OCESSES DATA
| | IPS |

| 7 TARGET SYSTEM ;

IPS |PS DATA J

. TARGET YARGET Ne Ang INCLUDING TIER i] | DATA DATA TIER STRUCTURES
STRUCTURES |\2®

©

I ! Fo AREA FOR
YY \MAPPING TARGET

CODE

I] AREA FOR || MAPPING TARGET

bil DATA

U TARGET PROCESS SYSTEM PROCESSES |
PAGE MAP MEMORY PAGE MAP |

| Figure 8-11. Proposed Memory Organization for COPILOT Implemented in TENEN |
155 |

8.E. PARSING AND COMPILING i

It is implicit in the COPILOT design that incremental changes to the text of programs must no
result in changes to the other Tiers. The translation, to be acceptably efficient, must minimize |
the replacement of information which is still correct; it must make corresponding incremental :

changes to the lower Tiers. The Visual Fidelity Principle (Section 8.A3) determines the
maximum allowable delay between changes to text and the initiation of the corresponding

translations. We could perform them more often, but do not, since by waiting we are often |

able to simplify the translation, and to make more changes at once.

We can not offer significant contributions to the incremental compilation area. We will,
however, indicate the methods we have used in the COPILOT prototype, and hopefully

reveal any insights we have gained in the process.

We consider Mitchell's thesis to be the most comprehensive on the sub ject of incremental

compilation. For additional treatments see [35], (36], (37), (53) (50), (28) and
[58].

| | 8.El Parsing Methods
| Lindstrom [35] defines an increment as a string of program elements (tokens) delimited by =

| tokens from a distinguished increment set of terminal symbcis (e.g, “Begin”, "End", and 7"). |
He demonstrates that to limit parsing operations to the replacement of complete increments, Ll

rather than arbitrarily chosen strings, considerably reduces the complexity of an incremental

parser.

We suspect that most parsing methods would survive the modification to incremental |
operation. Mitchell used a top-down approach, namely Tree-Meta [16]. Lindstrom, in 2 SE
very promising approach to the subject, adapted the LR(k) algorithm of Knuth [30] for

the purpose. We have chosen to use the variant of the Floyd-Evans production language

parser (see references [22], [20], and (52)), which we developed for SAIL. Although
we currently reparse and recompile only complete procedures, we believe that the flexibility of

| the production language technique would allow us to recreate a parse state which would |
accept less restrictive increments, and to merge the results into the old program trees. For the
remainder of this section, we shall stipulate the existence of an adequate incremental parser

156

and compiler, which can at least replace any sequence of complete statements, at the same

I block level.

8.E2 Detection of increments

| In order to identify which program increments need retranslation, we must keep track of text 3
Scene changes as they occur. We must also relate these changes to the old program structure,

i for it is through study of the old structure that we can decide how to incorporate the new.
Figure 8-12 depicts an extension to our token Tier structures, which allows us to maintain

the needed update records. By following OLDLINE links, or NEXTLINE links whenever
bd

OLDLINE links do not exist, we can recreate the original Scene. By following NEXTLINE

links only, we obtain the current state of the Scene. There are nu Token lists for new lines,

) since no token-scanning operations have yet been applied to them. |

i i We will define a suspect procedure as one which will need to be processed by the parser and
| compiler before it is next executed, because it may contain invalid trees and/or invalid code.

E | For each set of changed lines, we must mark as suspect the tree node for the procedure |

containing the lines. Because they may be invalidated by the change, we must also mark as

suspect all subprocedures of a suspect procedure. We attach to each suspect procedure a set of

references to the changed areas within its body. This algorithm guarantees that all

procedures containing changes will be marked, and will therefore not escape the eventual 3
; attention of the parser.

bod :

.

j

.

| |
| |

i

. |

OTHER scene rem STANCES orp CHANGES | |
CHANGE i CENE| ”Y EITE @ as

NEXTLINE NEXTLINE NEXTLINE ou

CHANGES CHANGES CHANGES :

» TOKENS * TOKENS Po TOKENS °
NEXTLIN NEXTLINE NEXTLINE |

TXT TOKENS) TOKENS Fy TOKENS 3
OLDLINE NEXTLINE NEXTLINE

Tar [ENS Chk a 1Of OpeNEWLINES ¥
DELETED | OLDLINE NEXTLINE NEXTLINE OLDLINE [NEXTLINE
LINES |

\ : OLDLINE TOKENS a
23 LUE Lr CY fo [ie CX

CUDUNE (TEXT ONLY) 'OLDLINE |
NEXTLINE NEXTLINE

OKENS

TT TOKENS TOKENi ul TOKENS
w LL OLDLINE

| NEXTLINE | | NEXTLINE

| a. DELETED LINES b. INSERTED LINES ¢. REPLACED LINES

Figure 8-12. Additional Token Tier Structure to Record Source Changes

158

| | 8.E3 Timing of Parse Events
- There are possible advantages to parsing new Text Scene changes as they occur. Perhaps
i the most evident is that we could detect errors quickly, and notify the user of their nature.

| Continuous parsing would also allow us to prompt the user, continuously disp'aying the 4
11 "

|] "menu" of legal successors to the last input (see, for instance, (24]). In addition, continuous
| parsing would make it easier to maintain tree equivalence.

1S There are also drawbacks to continuous parsing. The known methods for parsing
7 incomplete program fragments either place undue restrictions on program composition (the

ne relationship between line and statement boundaries, conventions concerning line numbers, |

2 etc), or could not cope with the COPILOT compiled-code environment. We could also
5 expect the continuous operation to be far les: efficient, for not only must the routines for !

e 4

performing these translations be constantly active (incurring switching and “swapping” or

{1 “paging” overhead), but they must also maintain multiple parsing possibilities during the

2 Be times when, because it is incomplete, the program is .imbiguous. (x) |

my We would prefer tc apply continuous pirsing methods. Since the above problems are

a unsolved, however, we have not employed them. In.tead, we delay parsing operations as long |
| as possible, parsing only when not doing so would mean executing obsolete code. This allows

*é

the parser to expect that program changes are grammatically complete and correct when it

i parses them, or to be justified in seeking human aid if they are not. |
ad 4

ry Our methods for marking suspect procedures ensures that, if we operate the parser at the
] we times specified in the following paragraphs, the system will never execute incorrect code, nor

— exa.nine any incorrect data during structured editing operations.

an ' k

The parser must be called:

I 1) Whenever a process activates (whether sprouted or resumed) if the procedure to be run
is suspect. This includes any change in state to RUNNING, from SUSPENDED, |

| STEPPED, .., or READY.
EB 2) Whenever a procedure is called, if it is suspect. \

| (x) See, for instance, Lindstrom [35]. :

] 159 |

; Ld

| = |

3) Whenever a structured editing operation is performed, if the procedure containing the tH
indicated point is suspect (this covers operations which place the IP for a process into :
uncompiled regions). :

| Since the compilation operations can only occur when no other processes are RUNNING, |

case (1) above should be sufficient to guarantee that no incorrect code will be executed.

| However, by adding case (2), we do not have to compile all changes each time, but need only

| ensure that everything which can be reached without either suspending, or calling a | :
procedure, is correct. Thus, for example, UCP changes, required for the User loop operation, = | 15
can be compiled without attempting the translation of chang.; being made to other Scenes by

these UCP statements. od

Placing the compiler in the activation path between processes allows a simplification of the

User algorithm. We may now remove the Compil step from line 3 of the program in Section

6.B3, and from the corresponding lines of subsequent examples, since the compiler will put

5 things right during the Stepp activation on the following line. | |

8.E4 Process Structure

We have chosen to implement the parsing algorithm as an independent process, with access -

to all system structures. This gives it a particularly clean interface between the system and !

: target processes. This process, the Parse process, is nested in the same system block which

owns the Post and UCP processes. It runs at a priority between that of Post and UCP.

The Parse process, when not active, is suspended waiting for a parse event to occur. We can

best consider what happens by considering the following cases:

1) The User process inserts a statement into the UCP Scene, then executes Stepp. Stepp,
while activating the UCP at the new statement, causes a parse event. Because of the

User process's priority, no further action occurs until it again suspends at Readaline.
Then the Parse process activates, preparing the new statement for execution before it, in

turn, suspends and allows the UCP process to run.

2) When a parse event 1s caused during a procedure call, or before a structured editing
operation, the Parse process gains control immediately, due to its priority. Because of
this event-driven operation, an instance of parser execution is invisible, except for a
time-delay, to the normal control transfers between processes and procedures. ;

160

| BEPrRE TR

LF ¥ * 8.E5 The Parse Process i

3 = We will assume that, given a changed group of lines, our parser is capable of incrementally
¢ B il translating them (perhaps ccmbining these changes with other nearby or related changes.)

| Here we will outline our procedure for applying this parser to a particular instance. The |

1 parameter to the parser is always the tree Tier node for 2 suspect procedure. :
; T .

ll The parsing process:
| 1) Examines, starting with the given procedure, all static ancestors (father first), yielding :

ll the outermost suspect procedure. (1)
2) Determines, using the old tree and token lists, in con junction with the modified lines, a 3]

| range of tokens and text to reparse.
- 3) Performs the parsing operations in lexical order, so that declaration changes will occur

| before the statements affected by them are encountered. (3)

i. 4) Deletes old Token lists and linkages as they become useless. For each replaced or
| | deleted tree node, the parser deletes the tree structures, subnode structures, and code

RE *- Segments for it.

5) Invalidates (see [44]) those tree nodes whose code is now nonexistent or incorrect.

het The parser marks as invalid all new nodes, and all their lexical parents, terminating in

1 each case with the outermost suspect procedure.
¢ iJ 6) Handles changes to block structure or declarations. This demands special treatment,

since the effects of these changes are distributed over a range of program statements

I which might otherwise remain correct. Mitchell's design offsrs clear solutions to the: problems which arise from declaration changes. For each detected identifier deletion,

insertion, or attribute change, we mark as invalid any program tree node which uses

| ll that identifier. We must also invalidate all the ancestors of an invalidated node,‘ terminating at the block or procedure containing the innermost current declaration for
the identifier. Although we use the associative facilities of SAIL to perform this search,

] its operation is analogous to searching Mitchell's dependency lists for the modifiedentities,

(1) Since all subprocedures of a suspect procedure are also suspect, this determines the
: — maximum range of current changes which could possibly impair correct operation of the code up

: | to the next procedure call or process rescheduling operation. :
wh

(3) This assumes that we require an identifier to be declared lexically ahead of its first use, |
-— even in a procedure nested within the same block. This is not a requirement of Algo! 60. If we

1 relax this restriclion, the parsing job becomes somewhat more complex.
i161 ¥

ad S

i } A

: ~
| The parser must sometimes decide to recompile statements whose code is still correct. For

instance, since we cnly replace complete code segments, unchanged statements residing in the | |
same segment with a modified statement must also be recompiled. Unfortunately, not encugh }]
information about a statement remains in the pruned tree to allow the compiler to generate 3

| new code (see Section 8.C3), so we must arrange to recreate the full tree by reparsing the 1 ;
1 token lists which specify it. This is not difficult, for we know both that the increment to be -
: recompiled is syntactically correc’, and that it already fits correctly ino the surrounding ol

structure. BN |
‘4 3

| 8.E6 Compiling: When and How
We need not necessarily compile the incremental tree Tier changes as they are made, as long it
as the ultimate behavior satisfies the Visual Fidelity Principle. Previous systems have
handled this in different ways. The simplest are those, like most LISPs, which can either -t ;
interpret or compile their functicis. accommodating both forms in the same program
environment. In these systems, the user chooses the compilation time for each function; the
only operational effect of compiling is to enhance speed and size characteristics.

Mitchell's system compiles code at fae last possible moment, applying what he calls a Tree
Factored Interpreter (TFI) to the tree structures (he parses changes immediately, on a line by]
line basis). A tree-structured interpreter, much like LISP’s, is applied recursively to the s
program tree. Each program node inherits the code compiled for its subnode:, then has |
instructions of its own added io the inherited code. The code for a node is executed just .
after it is created. Thus interpretation is factored into a control component, which follows

| the tree structures, and an execution/interpretation component, which interprets the algorithm |
(by compiling and running machine code.)

In Mitchell's system, nodes are validated by compilation, and invalidated during parsing, |
using the methods described above (Section 8.E5). When the interpreter returns to a still ;
valid node, it can execute the previously compiled code. This policy, recursively applied, |
means that only truly incorrect code need be replaced.

Mitchell's method requires IPS (interpreter) intervention at very frequent intervals, perhaps
at every statement, even when executing correct code. We could perform last-minute
compilation in COPILOT by using synchronization techniques, similar to those we have

162

i
described (see Section 8.C7), tc suspend in favor of compiler processes at the necessary

| Intervals.

1 However, if each transfer of process control caused minimum code recompilation, we could. expect an inordinate, probably unacceptable amount of process-switching to occur after even 3
minor changes. We could partially avoid these problems by making some reaionable :

I decisions each time about how much to compile. ;

ll At present, as we have seen, we restrict parsing events to times whose rarity would nullify any j
" benefits of such selective and frequent compilation. In particular, we will seldom parse a ;

[1 change until just before the code it represents is scheduled for execution. We are therefore ¥
| content to synchronize compilation with parsing events. After all changes have been parsed 3

for the outermost suspect proce 'ure (which will by the preceding constructions be invalid)

Ld we apply a TFI compilation algorithm, similar to Mitchell's, to the updated parse tree for

that procedure, without executing the code segments we compile. (x)

| : A final compilation task 1s to insert the resuliant code segments into the code tier, and to
correctly link these segments to the surrounding code. :

8.E7 Modifying Active Code

| When the user (or any other agent) suspends operation of a process, then modifies the

! x program in a way which affects code in any active procedure within that process, to mainiain

| correct program behavior requires special treatment. The IP location might have to be
! | repaired, for instance. If a procedure is changed so that it no longer calls some active
i procedure, or calls it from a different place, the return label needs to be modified. |
| Modifications to declarations often require substantial changes to the data environment.

Mitchell discusses this problem at length in his thesis. He presents an algorithm, called

1 REVERT, which can restore a legal state whenever control transfers (by subroutine return, :

| the only possible time) to a modified context. i

We have not given this matter the same exhaustive analysis for COPILOT. In the

RE (x) Normally, Mitchell's TFi compiles onlv those nodes which it actually executes (for instance, it
§ would compile only the selected alternative of an IF statement, leaving the other until it was

.e selected.) He does provide modes, however, for compiling all nodes in such constructs, when i

; desired. This is the algorithm we are using.
FE 163

LS a

- prototype, the COPILOT user occasionally has to help reéstablish a correct environment by pl

direct editing of PROG, DATA, and DYNA Scenes. See Chapter 9 for thoughts on a more a :
satisfactory facility. :

IR|

8.E8 Compiling Temporary Statements 1

Temporary statements, when ON, are functionally indistinguishable frr.r any other A
| statements. When OFF, they are equivalent to null statements: they “ave no effect at ail. rl

Without the temporary statement facilities, the user could achiev: most of the same effects by N) E
] inserting conditional statements at selected program guints. These statements would test |

| variables used in place of our class identifiers, to determine whether or not to perform the

operations. }

We demonstrated in Section 7.D3 that the enhanced syntax for temporary statements J

4 constitutes a user convenience. It can benefit efficiency, as well When a temporary statement ' |

is OFF, its code need not exist. The compiler can choose, while "in the vicinity”, to delete any IR 1

segments owned by inactive temporary statements. The expense of the recompilation

required to turn such statements back ON is offset by the ability to leave potentially useful

debugging or monitoring statements permanently in a program, without execution cost.

|

wd |

: 164 io

1 CHAPTER 9
SHORT SUBJECTS

i In this concluding chapter, we wish to treat several topics:
BB 1) Some facilities whose descriptions may be better understood In light of the

uh

implementation information of Chapter 8.
- 2) Ursolved problems, some with partial solutions. We have mentioned most of these in

i previous chapters.
3) Possible extensions to COPILOT, made passible by the basic design

| The topics to be discussed do not fall neatly into single categories of any of the attribute
LEJ

spectra we have discussed. They are therefore simply presented as separate discussions, with

1 no significance attached to their order of appearance.
os

| “s 9.A. ADDITIONAL COPILOT SUBJECTS

i 9.A1 User Programs in the System Environinent— Assistant Procedures
| 1 We have not mentioned this sub ject since Section 4A3, when we briefly stated that the user

gi could write assistant procedures to perform repetitive terminal operations in his stead,

A eliminating the need for a special “macro” facility.

. ae 1.

- We need neither additional structure nor additional commands to provide this ability The
as system skeleton of Figure 6-1, in fact, has a provision for such programs The sassistants

| entry in that example indicates where Scenes containing special user procedures can be

placed, that Scene need not be called “assistants”, nor is there a limit to one such Scene.
i Lo

1 The global variables described in Chapter 7, which the terminal primitives use for their
operations, form part of the environment of the assistant procedures. It 1s therefore possible,

: by construction, for an assic nt procedure to do anything which the user can do in a single
| terminal operation By combining several terminal primitives with normal language

: i constructs— loops, conditionals, etc.— one can achieve much more complex actions
: Typically, the user will directly execute an assistant procedurs, by typing, for example,

3
1 165

“"PROC(pl, pn)" The PROC call will execute in the UCP process environment. It should,
like any UCP-executed statement, be written to complete quickly, or invoke another process if :

the operation might take lo. ger than a few seconds

The behavior of the system under sequential application of some primitives, particularly

process-activation functions like Stepp, depends on the ume intervals between successive calls,
since an activated subprocess may or may not have suspended when called upon to do

something else Although this condition is present in the operation of the User-UCP
processes, effecting the interpretation of user "type-ahead” (1), 1t 1s particularly troublesome in
assistant procedures. We will discuss the problem further in Section 9.B2

9.A2 Display of (unnamed) Expressions

We have heretofore considered the display, in DATA Scenes, of named entities only (e.g.

variables). We would like to attach a meaning to the general data display statement which,

in the syntax, allows us to select arbitrary expressions for display Our current solution 15 to

treat such expressions specially, adding the computed value to the current variable data

Scene, for one snapshot only, using the name “<temp>" to idenufy it. Unless exphcitly

renewed, this entire entry ¢ appears during generation of the next snapshot

A better solution (but much more expensive) would require that we attach to the data tree

nore for an expression's equation a reference to that expression's node in the program tree.

The expression would be re-evaluated, in the correct environment, during each snapshot
update, until the proper environment no longer existed, or until the user exphcitly deleted the
equation from the Text Tier In this case the text representation of the expression itself
wotild be used to name it (eg, "A«F(]Jh4 = 507), so that muluple simultaneous expressions

could be maintained

Another data display feature is provided as a convenience The stepping (eX. ®S) operations
are useless unless the user can see something of the results of executing a statment. He can,

of course. explicitly select variables for display, | ut the necessity to do this can be irritating,

particularly in those cases when what he probably wants is clear A few situations are very
clear after stepping the execution of an assignment statement, one would hike to know the

(t) The presentation of new ¢dnmmands faster than they are processed.
166

| value of any affected variables; or when execution suspends, just prior to execution of a FOR
loop's controlled statement, the value of the contiulling variable is arly always of interest.

i The Post process spontaneously adds variables io the appropriate data Scene, whenever a
I process suspends after “stepping” a statement which changed but one variable. The variable1 1s not, however, marked for continuous display. The effect is to display this variable during

one snapshot only, unless data display statements nave previously selected it.

i
We could extend this facility to more complex statements (e.g., complete blocks or compound

i statements), but we would, 1n each case, have to balance the added visual context this
achieves against the danger of flooding the data Scene with too much information.

:
” 9.A3 Operations on the UCP Scene

i Since the User and UCP Scenes are ordinary Scenes, they should submit to user modification
, rT through text-editing operations, particularly because such modifications could be quite useful,

permitting the user to tailor his system. However, in practice, such operations could yield

- unpredictable results, some of which are detailed below. We must therefore place limits on
ii what can be done, in order to protect the integrity of the system. We would also like to

.$ provide alternate facilities with equivalent power.
ry

1] Any IPS which treats either the programs implementing the system or the history of user
. commands as user-accessibie entries must tackle these same problems. Teitelmar encountered

mi some of them while implementing his BBN-Lisp facilities; he gives a lucid description of the |
results in (55). We share with him the belief that many of these operations are useful

I enough that we should not prohibit them entirely. We have therefore introduced the

= following restrictions:
rr

i 1) We will permit no direct changes to the programs implementing the User loop, the Post |
| process, or the parser/compiler processes (but see Section 9C3 for ways to obtain the

rs same effect.) This preserves the integrity of the basic system operation
| 2) We will permit no changes to the UCP Scene which alter the basic outer structure (that

of a procedure whose body 1s a compound statement). In addition, we will allow no |
-s insertions of text into the UCP Scene below the current IP for that Scene, except by the |
4 User process. }

3) Only the User process may control the activation of the UCP process, or th= placement
nn of its IP

| he 167

od

These latter requirements assure that the normal, sequential application of user commands
will not be impeded by user modifications to the UCP. od

Let us briefly consider what the user might want to achizve by direct operations on the UCP | |
Scene. Perhaps most obvious, and most difficult to achieve in light of the above restrictions, |
is repetition of previous commands. A conceptually easy way to achieve this would be to |
map the UCP Scene to a visible Region, to point the edit cursor at a previous statement, and he
to single-step the execution of that statement. To re-execute a series of commands, (ne would
surround a range of previous statements by BEGIN - END brackets, and step the execution x ;
of the resulting compound statement.

“

The problem with this technique 1s restriction (3) above: the IP-modification and STEPP
: operations implied by the above scenario are not allowed- to allow them would destroy the

integrity of our interactive control The solution is quite simple: it costs little to create an
additional process, which we might call UCPIL, as another nstance of the UCP procedure.

| As a separate process, UCP| possesses an independent executior state (IP,EP), its operation |
will not interfere with the operation of the UCP process. Process control operations on

UCP| may be performed in a manner no different from the control of any other process.
For convenience, we may devise explicit commands fo: the most common UCP transactions.

An example would be a command whose effect is similar to Teiteiman’s redo operation (1),
repeating the action of a very recent statement a

The UCP Scene Is a rich source of material for constructing assistant procedures, as well. H
Text-copying operations, which we have not shown, make this job easy. By embedding
selected UCP statements within conditional and repetitive statements, a user can create quite ‘

sophisticated sequences. As an example, having constructed and executed a sequence of
commaiids to test the performance of a new procedure, he could create an assistant procedure

to perform the same sequence, for a range of parameter values, using the statements from the
UCP to avoid reconstruction of the repeated text. One could, similarly, create another

assistant procedure to perform a complex sequence of text editing operations, then apply 1t to
a range of lines.

(3) see [53] or [55] |
168

1

gl

i

| i 9B PROBLEMS

: 9.B1 A UCP Scene Problem
5 If we use algorithm A, B, or C of Chapter 6, the UCP Scene will contain a complete record

| of recent terminal commands. However, algorithm D, which introduces the notion of
- selective interpretation, also introduces a potential problem. In algorithm D it is not always

u necessaiy to insert a statement string into the UCP in order to achieve that statement’s effect:
that statement may instead be executed directly. The UCP history wili therefore be

d incomplete, rendering impossible automatic duplication of recent actions. A safe, although
expensive, solution is to insert each expansion into the UCP Scene whether it 1s used or not.

Tl We could often increase efficiency by summarizing in the UCP Scene a sequence of actionsi (for instance, cursor-moving operations) by a smaller number of statements, appropriziely
~- parameterized. We do nnt have a more satisfactory solution to this problem.

|
|

| | 9.B2 Type Ahead Problems
” In Section 6.B3 we discovered a drawback to the decoupled control achieved in the

| HU User/UCP design: execution of one command will supersede that of a previous one if it is
be typed before that previous command completes operation. This behavior 1s necessary if we
03 are to . etain non-preémptive control over errant UCP statements. However, it 1s not the only

§ i possible treatment of type-ahead Cur cl “ices are

ow

i 1) To cause new statements to supersede old ones, as above.
-_" 2) To ignore statements completed while the UCP is active.

- 3) To queue new statements behind the vxecuting ones, suspending the UCP only when
po none remain to run (the normal behavior of Stepp when applied to a process which is

already stepping.)

1 We must immediately reject (2) as a solution, because it 1s completely unresponsive to the
user's n:eds. When affairs are progressing normally, in fact, (3) 1s the proper course,

1 performing all user commands in order Finally, as we have stated, we need to be able to || obtain the behavior of method (1)

| I No one has ever, to our knowledge, successfully resolved this conflict between the desire to be
; able to type aheac, and the desire to bo able to abort previous operations. We can offer no
Rr
: 169

v

| BeERA SEeta a_ |

|
complete solution here, but can at least offer a method which makes both the above

acceptable methods explicitly possible. To do it, we have further modified the User

algorithm, dividing the set of terminal commands into two classes. Each kind is expanded, ed

inserted, and compiled as usual When the UCP is inactive, both kinds behave identically.

When it is active, however, there is a type-ahead si:v'ation. For elements of one class, we od

apply method (3), queueing the statements for eventual execution. We do it by bypassing the | |

1 suspend statement of Algorithm C in Section 6.B3. Elements of the other we arrange to

| execute immediately, using method (1). We can now remove most of the commands of h
Chapter 7 from this latter, immediate, class and place them into the more orderly queued

class.

\ Heretofore we have really needed only one command (“e!<statement string><cr>") to perform hast

any terminal operation: all others could be defined in terms of this one. Let us place this

command into the queued c.a35. We now need a command which will execute a statement oi |

immediately: let us use "e?<statemen’ string><cr>" for that one. To abort the current UCP

operation, the user need type only “e?<cr>", which instantly terminates the current UCP |

| statement in order to execute the null statement. To suspend all non-system processes N
immediately (a good idea in a crisis), one could type "e?SUSPALL()<cr>", or, ideally, a

specially-designed CALL key which would expand to "SUSPALL()".

y Having executed an immediate command, one could retry any or all of the interrupted i
statements using redo or something like it. |

$

9.B3 Data Scene Flickering

We mentioned this problem before, in Section 5HI1. It does not arise when we are -
examining the state of a suspended process, either looking at previously selected values, or

adding new ones via directly entered data display statements. However, consider a visible

DATA Scene, D, which 15s monitoring a running process, P, where P's code contains several

data display statements. It 1s possible that these statements are being executed often, :
generating a large number of snapshots in a short time. In this case, the value field for the

equation of a displayed variable which is changing between each snapshot will become an

unreadable blur (hopefuily; otherwise the system 1s not fast enough). We are not concerned |

! by this, though, for that blur 1s in itself useful information

| 170

Wt cur A |

i

However, if these data display statements are scattered among several procedures, all defined

i within P and alternately called from within it, a far more serious “flicker” develops within D.
ft occuis because the variables for (wo disjoint procedures cannot appear simultaneously

i within D, even if both are simultaneously active. Even worse, if no action is taken to prevent
it, the equations for each will alternately occupy the same positions within the Scene. If these

I transitions occur frequently enough, the result is not only chaotic, but uninterpretable.

| If the user has enough disriay area, he can minimize this problem by creating several fixedScenes (see Section 5HI1), thus distributing the equations to fixed positions. With the

relaxation of the snapshot requirement which we described ‘n that section, these Scenes

| shou! be fairly well behaved. However, we have no general solu'.on to the problem, when
it appears in the variable Scenes. Its effect could be reduced if tne Post process were to apply

| heuristic guides to the placement of equations within variable Scenes.

9.B4 Data Monitoring

3 Data monitoring, or tracing, operations have always been a popular method of program

*» debugging For interactive systems, such a faality usually allows one to select a set of

- variables to monitor, specifying for each whether he is interested in every reference to it, or is

Li only interested In store operations which change its value. The occurrence of such an event
can cause the current value to be printed or displayed, can cause a “program break”, or can

1 Invoke some user-specified action.
ar

11 We may distinguish between facilities provided by translators (eg, compilers), and those
- provided by the “virtual machine” the hardware and the IPS software. We have
- concentrated most of our efforts on the latter, assuming as well that we can control only the
. IPS software The structure of the virtual machine determines the category into which

continuous monitoring operations fall. If the hardware provides a way to interrupt when

I selected events occur to selected memory locations, or If the system 1S interpreter-based,
monitoring may be handled as an IPS facility. Otherwise it 1s something which must be

1 handled by the translator In COPILOT, this would involve the recompilation of large

” amounts of code v-henever the monitoring attribute changed for a given variable. We feel

- that, although we must accommodate explicit changes to identifer declarations, any other

L facility which requires for its operation such widespread replacement of program code is
unacceptably inefficient, and should be avoided. The implementor willing to pay this price

I
171

>

NESSES EE ad

could do so, by treating monitoring as a declaration attribute, and by depending on the

incremental compiler to {ind and replace the necessary references. .d

If our hardware possessed the ability to monitor individual variables, genera.ing an interrupt

or simulating a procedure call whenever one of them changed, our attitude would be much bs |
different. Monitoring would become an iS facility, well within our domain. Qur data

display algorithm would respond readily to the needed modifications for displaying |

continously correct data values; and the process/event structures could provide more |

sophisticated monitoring operations, including the so-called “continuously evaluating .

expression” discussed by Kay [28] and Fisher [21]

The synch test and synch trap calls used to effect our process-control primitives are also }

translator-dependent, so our avoidance of such facilities 1s not completely consistent. In this 4
case, since we always generat” this synch code, massive changes need not be made to install .

and remove it 0 occasion. We have had to accept the additional overhead this method

causes as unavoidable. Again, the addition of hardware memory facilities, which would 1]

generate the appropriate exception conditions when control p2ssed to selected instructions, :

| would virtually ehminate the synchronization overhead.

Several machines possess adequate memory monitoring facilities for a hardware |

implementation of these features. hed

9.B5 Restoration of Active Context

This 1s the problem of restoring the control and data environment of an active procedure,

after its algorithm has been charged. We mention it here for completeness. We have

already described the problem and our progress in this area in Section 8.E7: that solutions |
exist for similar systems, but we have not yet succeeded in applying them to COPILOT. o

172

| 1 9.C. EXTENSIONS |
i 9.C| Environment Modification by DYNA Scene Editing

We have demonstrated the usefulness of structured pointing operations, applied to all the

| context Scenes, for selecting and communicating environmel.tal information. We have
similarly shown that one can modify this environment by suitable modifications to program

i and data Scenes. We would like to consider here what we could accomplish by allowing
controlled modification to the dynamic Scene.

! I We would, as usual, limit the kinds of operations we would allow. Any changes which did k }
. 2 not make sense would be repaired, perhaps by ignoring the changes. For this reason, the k 4

1 user would usually choose to "have the system make them”, by calling specific primitives (e.g. 4
Sprout), rather than use the general editing facilities, which would remain available for |

1 activities unanticipated by the designers :

- | We would provide a translator which would reflect, in the lower Tiers, controlled dynamic }i Scene changes of the following nature:

| 1 1) By deleting entries in the dynamic Scene one could “unwind the stack” of a process, |perhaps returning the environment to an earlier state, or removing intermediate |

I procedure instances (whatever that might mean).| 2). adding legal procedure instances, one could insert omitted procedure calls into the 1
rive environment, after correcting the omission in the code, or he could construct test

i environments (see also Section 5.D4). Default values would be assumed for variables inthe new activation records, until explicitly overridden by additional user or program

operations > §

L 1 3) More importantly, by speafying that an entire process branch be copied, suitably
i renamed. and inserted into the dynamic tree, one could accomplish a sort of 2 posteriori || process sprouting. Such a duplication could be useful when uebugging, since it would |, implement what amounts to a checkpoint to which one could later return. One would
’ run one of the duplicates for a while, then either terminate it and run the other

- I (possibly modified) one, or terminate the second process If the first were successful. This| is a facility similar to the one proposed by Lindstrom in [35]

. ! 4) Similarly (for symmetry) one could delete an entire process branch in the dyna tree, thusBn terminating the process Directly terminating the process (using the Terminate primitive) |
would have the same effect

| i 7

4

i 9.C2 Scene Branching iy
\ in the COPILOT system as defined in chapters 5 through 7, there is but one copy, within

: cach Tier, of the code for any given program segment; thus, the user need never perform .“

tewnudant modiheations, nur 1s there danger that changes will be left out of the “permanent”

copy of the program text. (x) There is, however, a danger that he will make a change to the It |
text which 1s difficult to reverse, especially during early development. Let us consider some

of the kinds of things one would like to do during these early stages: |

1) Try out proposed changes, without committing himself to them; try out several differen
versions of the same change. |

| 2) Add new, independent program segments individually, eliminating any possibility of oe
interference by other untested elements. b

2) Merge several independent changes after each has been tested, resolving any conflicts
between them. ol

We already possess the means for i<-'ating a section of prograni for independen:
| consideration: the nested program Scene. The user can accomplish something similar to the

operations in the above list, using the existing facilities. By copying a Scene's data into a

new Scene, making the necessary modifications, and replacing the s<scene> reference which wl .

| includes it in the program, he can achieve the redundancy needed for all the above |
capabilitres.

We could significantly increase the convenience and efficiency of these operations, however, If

we were to extend the syntax for Scenes and Scene references to include something like Scene a
arrays, whose interpretation 1s shown in Figure 9-1. By editing SUPERSCN, or by |

executing a special command, the user could switch alternatives at will. The major benefits

to this approach could be derived from proper implementation. For instance, all elements of

une Scene array could share common token, tree, and code Tier representations (see 9-2 and i.

9-3) where possible, diverging only where they differed. The currently selected index (in

: the Scene link) would determine the accessible code segment: for each divergent program

increment. The data structures required for the other features would make the merger
operations (item 3, above) quite simple. As a final example, because they would be

mexpensive, one could retain several old “versions” of each Scene, for documentation or

safety purposes.

(x) The token Tier 1s the permanant representation of his programs. It 1s retained when the
user 1s not "logged In”, ehiminating the need for separate "source files". :

174

I |

I SUPERSCN |
] PROCEDURE SRCH,;]
: BEGIN

| #SCN [3]; = BELLS i a .. -igew I

, END | |
| | \ :| {

| |

r | :

I " .

| SCN[i] SCN [2] SCN [3]; SCN[I] } |
| BEGIN BEGIN BEGIN BETIN |

i* 3; je 1e4; ie5,; |
a Pa joined, eos

ll END; END; END; END; |

I Figure 9-1. User's View of Scene Branching i175

q Wt) SCN[*] ITEM

) NEXTLINE .)
Dh, TOKEN TIER i)

IX iq A

1} Ne |
WE (i)

ul # ’ # Fl i .| (Hi so|((OH@sOD r@iacy] (4

{ - ‘d 1

-

BEGIN’ TREE TIER

7 4
“ CONNECTIONS TO

TOKEN TIER, ETC.

“i? A ood

son) BRO

sro[i] i | |
Fa

| BRO BRO [2] BRO |
Woo I ie

. BRO
: -’ -—'

BRO |

grata)

ey” =
E “NIMNECTION TO CODE TIER, ETC.

Figure 9-2. Efficient Scene Branching Implementation (Token. Tree)

176 |

-e

| |
Il ER ————

I
- SEG [1) SEG [2] SEG [3] SEG [i) |

(]

J i

Rl |

1

’ 1

: | Figure 9:3. Efficient Scene Branching Implementation (Code) |177 13

.

; EEAa i i...

il
9.C3 Modifying the User Loop

We have explicitly forbidden direct changes to the code implementing the User loop, and ul
| other critical system processes. We do not mean to prevent the user from designing his own;

we simply want to ensure that the transition to a new algorithm is orderly and correct. We |
: have already described an alternative for manipulations of the UCP, in Section 9.A3. The *!

: branching facility just described could be used to allow User loop modification. If the "suser” 1

Scene link in Figure 6-1 were instead a link to an element of an array of User Scenes, the “d |

user could create a new element of this array, copy the old User algorithm to it, and make :

selected modifications. He would then call a special system primitive to switch from the old od

algorithm to the new, within the same User process, or, alternately, to create a new process 1
and switch keyboard control to it.

ol

We could also provide new primitives for customizing the User loop command structure bv

changing, adding, or deleting the expansion strings for selected commana characters. va

| od

9.C4 Display of Structured Data

Current data Scenes can manage only scalar values. Thus, while 1t is possible to present |
: single array elements in a “ata Scene, we cannot display an entire array, or selected rows and h

| columns from an array. More complex structures (eg, LEAP associations), are equally i :unmanage:ble in data Scenes. : |

" |
We have already shown the benefits of a nested Scene structure for program Scenes. A od

similar approach could solve these data display problems. First, we would design a format 5 |
for the particular kind of code Tier structure to be displayed. Then we would compose |
functions to create a text Scene, of a newly generated type, from the code Tier data for that |

structure— we might create intermediate Tiers as well. 1 8
..)

Finally, we would add to the syntax for data language “programs” the productions:

<equation> := @ <scene 1d>

<data comment> = <comment>

We would also extend the data display statement syntax to include structure statements such

178

|

as "A", where A 1s a three dimensional array, "A[3,:]", or, in SAIL, "SONe?s?". The first 1

i would display the entire array, A The second would show just the rows and columns of
"layer 3" of A. The third statement would present all those item (1) pairs related to each |

1 | other by the SON attribute (father/son pairs)
To satisfy one of these requests, the system would create the appropriate structured Scene,

I map it to a selected Region, and insert a “sscene_id" entry, referring to this new Scene, into a
selected data Scene. We would include with the entry a "data comment”, bearing the orieinal

I data display statement, to allow the user to identify the reference. Figure 9-4 is an example
of this design for the partial array A[3,,:) Examples of possible display formats for SAIL

li associative structures abound in the figures of Chapter 8, for examole, Figure 8-6. |
We could extend this method to any of the basic, explicit structures of MISLE, of SAIL, or 3

| li of virtually any programming language. There is, however, a limit to the comprehensiveness
we could provide this way. A u:er, when developing d>ta structures for a specific use, must

ll use the provisions of the language to create them. The result need not resemble very closely
| the structure as he visualizes it. This 1s true even for extensible languages, such as ECL,

1 Lisp70, or Algol68, in which the user tells the system a great deal about the structural f
Be hierarchies he creates— although we might expect to do a good deal better in these cases. In {

} the past, as now, the burder [or creating any custom-tailored external representation for

| structures has been on the user himself. In the present COPILOT system our text Scene i}
primitives can offer some aid, but a method is still needed for specifying the external

ll representation of user-defined structures. Balzz: has done some work in this area (see [2)),
as has Hansen (see [24]). Yonke, at Utah, is engaged in a promising study which could

| provide the needed facilities.

I |
|

|] |

“4 {

— (1) See Appendix B for a description of the LEAP associative features. |
4b

|

| Ckae E . ————

|

f Al3,,) |
[1] [2,4] [3,4] [4,¢] .

(1) 15 0 0 0 |
ad

2) 12 15 0 0

| [3] 4 9 15 0 |

(4) -4% 137 -10 15 |

|

Figure 9-4. Possible Scene for Displaying Array Sections
180 |

13
| 9.C5 Error Messages
fl We could use the non-preémptive nature of COPILOT to take the sting out of errormessages: translation and execution-time errors detected by the system, or user-detected errors.

1 u see how, we need to consider the nature of errors in a multiple-process environment. The |
i effect of an error, in general, is to place ccnditions on the further activities of some process, f

but not necessarily to prohibit them entirely. As an example, the detection of a syntactic or | i
| semantic error during program translation need not, fortunately, prohibit further modification |

to the Scene text, although it m.ght, for a serious problem, prevent execution of the resultant : ;

I compiled code. | |
In many cases, then, we can replace the notion of “error” with that of "incompletion”. A |

1 *ranslation process can maintain, in an arpropriate Scene, a list of things which must be |]
done in order to remove all the constraints tha: have been placed on a situation. in our

I compiiing example, the parser and compiler could maintain in an error Scene a list of the
program Scene locations which contain incomplete or incorre.« code. Underlying error Scene |

| [| Tiers could, as usual, provide structure, linking the error entries to tne errant locales in the |program tree. This list, besides telling the user what problems remained, could help the |

| translator to interpret the meaning of new changes in these locations. The important thing

| I about this technique is its potential kindness. it is non-preémptive, and it could provide §
substantial aid to the person attempting to rectify the situation.

|

| 9.C6 Text Scene Monitoring |- We have described the control mechanisms for most of the translators which convert one |

COPILQT Tier to another. We have omitted tiie one which builds the OLDLINE and |

I NEXTLINE structures of Figure 8-12 in Section 8 E2, when PROG Scenes are modified. |
The current method is ad hoc, and not very interesting. We make special tests in the Scene

I modification routines, for selected Scene types, and take special action when they are found. |
While designing translators between other Tiers, we have discovered the efficacy of building

Il these translators as processes which monitor changes in their respective source Tiers. These
processes awaken at convenient and adequate intervals to perform their specified translations.

1 We subsequently developed the following generalization, which could handle the programi Scene maintenance case above, as well as other useful translations, some of which we will i
consider.

i 18] |

» |

In each case, the goal would be to provide a translation algorithm which would maintain the 3
equivalence, as defined in Section 8.Al, of two or more structures, in order to satisfy a
requirement such as the Visual Fidelity Principle of Section 8.A3. Each translator would be |
defined as a process with access to the data for its input Tier, and access to a suitable ;

destination 1:sr. Its frequency of operation and translation volume would depend on the i 1
conditions for invoking it. Each translator would specify these conditions by providing two

y quantities as attributes of the input Scene type. They would provide an activation
predicate, which would determine the conditions for invoking the translation, and an event 1
type to cause whenever the predicate succeeded. The Scene modification primitives (eg.
"change_char(..)") would evaluate the predicate for a Scene just after modifying the Scene. i {
This predicate could choose to activate its translator process:

i ;
a) On insertion, deletion, or replacement of a character in the Scene.
b) On insertion, deletion, or replacement of a line in the Scene. ¥
¢) On insertion of a character xi the end of the Scene. I i
d) On insertion of a line at che end of the Scene. I

The activation predirate could alsu contain other Boolean terms, testing such attributes as the 1 |
name of the process doing the modification, and perhaps relevant Scene attributes. type, k
mapped status. etc. 1

lt '

The translation process would then wait (monitor) for an event of the type specified for the

Scene, actit ating as soon after one occurred as its priority would allow (usually immediately). 1
It would perform its actions, then suspend, awaiting another event. One process might

handle more than one event type. 1

We will try in the following paragraphs to clarify this design with several examples.]
The parse and compile processes form our first example, since they already operate this way. r
As a second example, we could formalize the ad hoc operations which implement the Token i
Tier change structures for PROG and DATA Scenes by a simple process causing, say, a
Token event whenever a type (b) or (a) change were made to a program or data Scene. (1)

a ec eo ®» #8 ® ® = =m ®m =m ® @ ®™ ® we ® ss °° ® 88 ee ee se == 66 02" -9

(3) Combined with the compiler processes which lurk about the process activation interfaces, x
the resulting system would resemble Kay's FLEX system design. Here the monitoring has a

| : random-access character, whereas Kay's processes operate linearly on their inputs. .
182

: ae

°y A

{1 !

1 9.C7 Program Commuuication |
Scene monitoring can also aid user-program communicationt. We can categorize the kinds of .

2 demands for data which programs make of their user: into two general classes. The first 3
includes initial parameters, file names, !imits, modes of operation and the like, which the user

Fall provides to tailor the program for a particular “run”. The second is information actually

i processed by the program, eg, commands and requests, statements to be translated, or data
points to be considered.

I
| Our interactive facilit:=s have already eliminated the need for a third kind of user input to

| I programs: status and v-riable value requests, and many other debugging operations. We: think we have substantially reduced the need for the first kind (initialization), as well. After |
= all, the purpose of most such parameter requests is to set internal program variables to the |

{ values provided, or perhaps to retain default values when the users response so indicates.
Typically the user, in testing his program, will give the same responses again and again, an

{| operation which becomes something of a ritual after a time. We can eliminate this sort of |
request in COPILOT, since the user can set these internal variables using direct assignments

1] or function calls, often all~wing his selections to remain intact during multiple calls to the

Wo tested program segment. His program can post, in a visible Text Scene, the names and

Ti meanings of variables which it expects the user to set, or can simply create and present an
'y i appropriate data Scene as an indication of what things he may want to change. That process

2 n can further refuse to proceed until the user has provided satisfactory values for everything.
There will still, however, be occasions for more traditional input to programs (predominantly

I the second kind above). In this case, the general moriitoring facilities of the previous section
yield a very iuce solution. The user could, for instance, engage in the following kinds of |

: dialogue with his program:
.

Ti
ai

i

-~

3 183
}

| 1) Synchronous operation. Suppose that process P would like to ask a series of questions
@ of the user, assuming that he will answer each question before being asked the next. P |
p could create, or gain access to, a text Scene to use for communication, then arrange to be ta]

; activated whenever a line were inserted, by any process other than P itself, as the last is

b line of that Scene (a type (d) modification). Upon each activation, P could insert |Eq another question into that Scene (or into another Scene, if desired), and await user .

| response. With a slight modification, P cculd allow the speedy user to answer questions
i befure they were asked, interlacing the questions later to create a readable record. For ; |
b some applications, the questions might be simple one-character prompts, indicating .-

completion of previous processing. Although this last mode resembles the preémptive

3 User input loops of COPILOT's predecessors, neither this nor any of the following 7]
E schemes are preémptive, for the user could choose at any tin.c to do something other “i

than provide data, requested or otherwise, to P’s input/output Scene.

‘ 2) Command completion. Several recent operating systems, among them, the project Genie A
; system for the XDS940 [33], and the TENEX operating system for the PDP-10

i [5], provide a facility for minimizing user input, while providing a quite readable 1?
s result. To do it, a program monitors each input character. On user request in some i

cases, automatically in others, as soon as the value of the current input implies but one

: legal successor, the system automatically “types” it, yielding complete commands, file I)
3 names, etc. Some systems insert additional "noise words" to make the result even more §

readable. By using the methods of the previous example, but changing to a single

character (type c) activation condition, we could easily implement this kind of dialogue.]

3) General translation. The conditions labelled (a) and (b) in Section 9.C6 are the same

: ones used by our idealized COPILOT to maintain program Tier equivalence. By using |
: then, the user could provide his own continuous incremental translation facilities, |
4 thereby supporting his own language, or perhaps something less comprehensive. |

; 9.C8 A Final Modification to the User Loop a

3 The User Loop algorithms we presented in Section 6 demonstrated the capabilities which we t
war.t~d our User loop to provide, but did so without forming an integral part of the Scene .-

and Tier structures which lend consistency and flexibility to most of our system design. We

’ have partially investigated the possibility of applying our Scene monitoring techniques to the ‘
; | design of an improved top level interface. |

We would begin by writing a new User process, whose only function would be to insert typed ii

184

i

characters into a linear terminal Scene. It could optionally perform simple editing

1 operations, allowing for deletion and replacement of incorrectly typed characters, etc., :
depending on the Scene monitoring frequency (see below). This terminal Scene would serve

i merely as an input buffer, and operations upon it would be limited. We would implement it
as a Scene, so that the normal COPILOT operations could be used to view it, react to what

i happened to it, and change it.
We could now create a process, Expand, to monitor changes in the terminal Scene, and to

| | ! translate them either into direct action, or into complete statements in the UCP Scene for
execution. By alternating between activation frequencies (c) and (d) of Section 9.C6, the

I Expand process could allow the User process the simple editing capabilities, mentioned
above, whenever single-character reaction was unnecessary.

| | The ultimate behavior of these processes would not be too different frem those of Chapter 6, |
but the overall organization would become clearer, and potentially more powerful. In fact,

1 some useful extensions almost suggest themselves:
}

| i 1 We need not limit to one the number of processes monitoring a Scene. We could, therefore,
«= add a Prompting process, at the user’s option, to help the novice or infrequent user with his ;
1 commands. The prompter could complete commands, as described in Section 9.C7, and insert

| .o directives into the terminal Scene, as a guide to the user's responses, or to point out potential

-e mistakes.

wh

The monitor process structure would also make multiple-language systems possible: The

i expansion and compiling processes could be replaced in a modulai fashion, so that any
= aspect— the terminal “language”, or the underlying base language—~ could be changed, without |

: 13 altering basic system behavior. (We do not mean to imply that this task would be easy).
ar

- We feel that the monitoring technique dominating the preceding sections, though requiring

i - additional research, would help achieve a desirable system unity.

13
28

} &

§ 1

;
I 185

1

| T

prom SEEPSSEIS EIRRSB RU 3 SSL a a a aa a aaR a a ks

“td

Ld

\ 9D. SUMMARY

We have presented the COPILOT system design ir order to investigate certain aspects of

Interactive Programming Systems in a multiple processing environment. Our ma jor SE

approaches have been:
| A

»}

1) The application of multiple processing techniques to the IPS facilities t..emselves,
leading to a non-preémptive terminal operation, with convenient access to all relevant }
environments, and rapid response to user commands, independent of the activity of his |

: target processes. :

| 2) The use of (CRT) display devices, to increase the speed with which the system and user | 3. : . ”, ”" : %

tay communicate, and to allow information to be presented “in context’, improving the

- user's ability both to comprehend complex environments and to specify points of interest
A within them, }

«i

Rt
- 3) The expression of all user algorithms and terminal commands in terms of a single o

| programming language, providing a consistent, powerful user interface, and reducing |
the number of modes whith determine the meaning of user input. Top-level A

A abbreviation facilities allow the most common operations to become manipulative, reflex 3
actions, rather than symbolic commands.

f wd !

In Chapters 5 through 7 we described the COPILOT system, which employ these methods to |

meet the criteria of Chapter 2 for achieving a better behavior match. | | |
In Chapter 8 we discussed important implementation considerations: the content and

b structure of information used to represen: the system environment at different levels (Tiers), Te

and the methods for maintaining the necessary relationships (or equivalence) between Tiers. il

Finally, in these closing sections, we have attempted to Indicate possible implications of this i;
f work, especially the potential for extension, using our methods as a basis. i)

| 186

A

I APPENDIX A

| i SYNTAX CONVENTIONS
| This appendix defines the modified BNF syntactic forms used to describe the MISLE |

1 language and the Data layout in Chapter 5. It assumes a general knowledge of BNF, as ;
| defined in [46], for instance.

l Nonterminal symbols are expressed as lower case words surrounded by "<" and ">" e.g,
i i "<statement>".

o" Terminal symbols include punctuation: single characters or “diphthongs” defining themselves;

i reserved words: BEGIN, END, ELSE, etc; and the special nonterminal-like symbols <id>,
<string_constant>, <constant>, and <integer_constant>.

The character ™" causes the following character to be interpreted literally, if it would

1] otherwise have special meaning. ;
© Each rule, or production, is a nonterminal, followed by the definer ":=", then by one or more

; |

1} alternatives, separated by tne "I" character. An alternative is a list of terminal and

[nonterminal symbols, or is an option or a repeat alternative.
An option, of the form [<alternative> | <al.> | .. | <al.>] requires that one of the |

: | alternatives be chosen. The repeat alternative takes the form { <alternative> }«, and means |
: that instances of the alternative may appear zero or more times:

| |
Lo <c> i= A {, B }uis the same as <c> i= A|<c>, B |
a |

§

TT)

|] :

. 8

me |

Bu 187 ;

: Esepit ot Wohivhs i THEA dlidmainmimmee ion fall il di J Ee % in i hi i pall il A

Expressed in its own language, this syntactic specification is: : §
| Terminals: '['] '{ '}» = NONTERM TERM i

where NONTERM and TERM represent nonterminals, as defined above.

<production> := NONTERM "= <alternative> {, <alternative> }u | | |

calternative> = <element> { <element> } | |

celement> = TERM | NONTERM | <option> | <repeat> | |
<option> = '[<alternative> {| <alternative> }:']

<repeat> w= '{ <alternative> ‘Ju |
4

wed

i

| t..

188

i Ej . p pa ’ : 4 Ln

i APPENDIX B

1 ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE
We have represented many of our COPILOT structures in terms of the LEAP associative

i facilities embedded in SAIL. The structural diagrams of chapters 8 and 9 were presented in
a consistent pictorial style, representing these LEAP structures.

| We will first briefly describe SAIL's associative facilities. Following that we will provide a i

i correspondence between the SAIL structures and our pictorial representations.
The LEAP description has been extracted from [18], with the permission of the other

I authors: 1

1 SAIL contains an associative data system called LEAP which is used fer |symbolic computations. LEAP is a combination of syntax and runtime 3

I subroutines for handling items, sets of items and associations. }
A ll Items ;‘ Y

An Item is similar to a LISP atom. Items may be declared or obtained during } iid

| execution from a pool of items by using the function NEW. Items may be stored.) in variables (Itemvars), be members of sets, be elements of lists, or be associated

[|] together to form triples (associations) within the associative store. |L :

| | Triples |
Triples are ordered three tuples of items, and may themselves be considered |

]

ll items and occur in subsequent associations. They are added to the associative
store by executing MAKE statements. For example: ;

| MAKE use® plan] = task]; !
'] i
i The three item coin nents of an association are refered to as the “attribute”, the

- “object”, and the “value” respectively. Associations may be removed from the
i! store by using ERASE statements such as:

1 189 |
a EE |

3

f .

ERASE use planl = ANY; |

NO|

Datums

Each item other than those representing associations may have a Datum which |
is a scalar or array of any SAIL data-type. The data-type of a DATUM may be 4
checked during execution. DATUMs are used much as variables are. For

| example: .

DATUM(it) « 5, it

| would cause the datum of the item "it" to be replaced with "5". | |

\ -d A
Sets and Lists _

; A Set is an unordered collection of distinct items. Items may be inserted into set SE

variables by "PUT" statements and removed from set variables by "REMOVE" |
k statements. Set expressions may also be assigned to set variables. Set (vd

expressions including set constants, set functions, set union, subtraction and |
intersection are provided. | |»

4 Sets are deficient tn some applications because they are unordered. To remedy il
g this. SAIL contains a data-type called "list". A List is a (user)-ordered sequence I |
‘ of items. An item may appear more than once within a list. List operations 5

include inserting and removing specific items from a list variable by indexed i
: PUT and REMOVE statements. List variables may also be assigned list

expressions, including list constants, list functions, concatenation, and sublists. 1

| Foreach Statements i
The standard way of searching the LEAP associative store is the Foreach
Statement. A Foreach Statement specifies a "binding list” of itemvars to be |

assigned values (bindings), an “associative context” specifying how the cata
structure is to be searched to provide these bindings, and a statement to be

repeated for each set of binding values. Consider the following example:
190 |

1 1 |
| |

I 1

1 FOREACH gp.p.c | parent e cs p A parent © p s gp DOMAKE grandparent e c = gp;

1 In this example the binding-list consists of the itemvars "gp", "p", "c". The
| _ associative context consists of two “elements”, "parent @ c = p“, and “parent ® p =

H gp". The statement to be iterated is the MAKE statement.

§ Initially all three itemvars are “unbound”. That is, they are considered to haveno item value. Since "p” and “c” are unbound, the element “parent « c = p”

re represents an associative search. The LEAP interpreter is instructed to look for
A i triples containing “parent” as their attribute. On finding such a triple, the

: _ interpreter assigns the object and value components to “c” and “p” respectively.
| i We continue to the next element "parent @ p s gp. In this element there is only |

] one unbound itemvar, "gp". “p” is not unbound even though it is in the binding |

Il list because it was bound by a preceding element. A search is made for triples
with “parent” as their attribute and the current binding for “p” as their object.

I If such a triple 's found, its value component is bound to "gp" and the MAKE
. ar statement is evecuted. After execution of the MAKE statement, the LEAP

| i interpreter will "back up” and attempt to find another biading for “gp” and then
| 1 execute the MAKE statement again. When the inte: preter fails to find another. »

binding, it backs up to the preceding element and trys to find other bindings for
0 "p" and "¢". Finally when all triples matching the pattern of the first element
* have been tried, the execution of the FOREACH! statement is complete.

| | 191

Thus, with a FOREACH statement, one can provide answers to the following kinds of : ;
questions (SON, HARRY, and GEORGE are already bound items).]

od :

SON e¢ HARRY s GEORGE Does this relationship exist?

SON ¢ HARRY =? Who is (are) the son(s) of Harry? o

SON e? : GEORGE Who is (are) the father(s; of George?

? eeHARRY: GEORGE What is (are) the relationships?

SON e?s? What are the father/son relationships =
| ?e GEORGE 1 ? etc. | 4

?e?s HARRY etc. (these aren't too interesting) =

Pers? Dump associative men.ory (illegal in SAIL.) |

$d

We suggested in Section 9.C4 that we might use the above question-mark form as a “pecial

syntax for display of associations. |

Pnames =
We can associate with each item a string value, which we call its Pname. There can be but ,

one Pname for each item, and conversely. Efficient means are provided for finding one,

given the other. We have used this Pname mechanism in COPILOT to implement the

symbolic access to symbols. (J

192

' |

Pictorial Representation

. i In this dissertation an item 1s normally represented by a small circle, sometimes a small
4 square. Its datum representation, if any, !s appended to the item picture by a small

| unlabelled line segment. The datum 1s drawn in a convenient reprezentation for its data |type, meaning, etc. For example.

i r PNAME "1" | 4

I 9% { BEGIN)
i i —-i’'s iDESCRIPTOR

| An item's pname, if relevarr, appears near the item, enclosed in brackets, as [PNAME - "T"]. |
| Any other names apparently labelling an item is unofficial, included in the diagrams for |
1 descriptive purposes.

‘ i The association "ATTeOBJsVAL" is drawn as an arc, lab ‘led by the attribute ATT,LB connecting OBJ and VAL, as: |

’ ATT |

] 0BJ VAL |

| | 193 |

!

i

BIBLIOGRAPHY ;

L [1] Rush: Terminal User's Manual. Allan-Babcock Company, Inc., 1966. -
i [2] Balzer, R.M., EXDAMS: Extendible Debugging and Monitoring System. Proc. 1969

g Spring Joint Computer Conference, Vol. 34, pp. 567-580.
(3) Bauer, H., Becker, S,, and Graham, S, ALGOL W 'mplementation. CS 98, Computer |

| Science Dept., Stanford Univ., 1968.]

| [4] Berry, D.M. Introduction to Oregano. Proceedings of a Symposium on Data |Structures in Programming Languages, Gainesville, Fla, February 1971. |

1 [5] Bobrow, D.C. Burchfiel, J.D, Murphy, DL. and Tomlinson, R.S., TENEX, a Paged f
Time Sharing System for the PDP-10. Comm. ACM 15, 3 (March 1972), 135-143.

[6) ——, and Wegbreit, B, A Model and Stack Implementatioi of Multiple Environments.

) BBN Report No. 2334, Cambridge, Mass, March 1972.
(71 Bryan, G.E, and Smith, JW, Joss Language. Memorandum RM.5377.PR, The | 3

| RAND Corporation, August 1967.

] (8 Cheatham, T.E, and Wegbreit, B, A Laboraiory for the Study of Automating
Programming. Proc. AFIPS 1972 Spring Joint Coinputer Conference, Vol. 40, pp. 11-

| 22.

i [9) Corbato, F.J., CTSS Programmer's Guide, Project MAC, MIT, May 1965.
(10] Decsystem10 Users Handbook. The Digital Equipment Corporation, Maynard Mass,

{ 1972.

{ [11] Algebraic Ipterpretive Dialogue Conversational Language Manual. The DigitalEquipment Corp. DEC-10-A JCO-D, Maynard, Mass, 1970.

[12] Depres, RF, A Command Structure for Interactive Programming. Project Genie |
Report No. P-17, Berkeley, Ca, March 1969.

J 194 i

| A |

aN.Scll tim gi

|

(13] Dunn, TM, and Morrissey, JH, Remote Computing — An Experimental System.)
. Proc. 1964 Spring Joint Computer Conference, Vol. 25, pp. 413-424. I]

ed

[14] Dahl, O, Myhrhaug, B, ana Nygaard, K,, Common Base Language. Publication No. +
S-22, Norsk Regnesentral, Norwegian Computing Center, Oslo, Norway, October 1967. A |

g | (15] Engelbart, D.E, and English, WK. A Research Center for Augmenting Human |
Intellect. Proc AFIPS 1968 Fall Joint Computer Conference, Vol. 33, part !, pp. 395.

410. |
| (16) ——, ——, and Rulifson, JF, Development of a Multidisplay, Time-Shared Computer IT 3

Facility and Computer-Augmented Management Research. Stanford Research Institute J

| Report, April 1968. :
[17] Eastlake, R,, ITS 15 Reference Manual Project MAC, Mass, inst, of Tech. |

Cambridge, Mass, July 1969. i
(18] Feldman, J.A, and Rovner, P.D, An Algol-Based Associative Language. Comm. ACM Ti

12, 8 (Aug. 1969), 439-449 ol

[19] ——, Low, J.R, Swinehart, D.C, and Taylor, R.H., Recent Developments in SAIL —- An 1
ALGOL-Based Language for Artificial Intelligence. Proc. AFIPS 1972 Fall Joint
Computer Conference, Vol. 41, pp. 1193-1202.

[20] —-, A Formal Semantics for Computer Oriented Languages (thesis). Carnegie Inst. of iTech, Pittsburgh, Pa. 1964. -

I]

(21] Fisher, D., Control Structures for Programming Languages (thesis). Carnegie-Mellon i! |
Univ, Dept. of Computer Science, May 1970.

(22] Floyd, R, A Descriptive Language for Symbol Manipulation.]. ACM 8, (1961) PP.)
579-584 I

a

(23) Gries, D, Compiler Construction for Digital Computers. John Wiley and Sons, Inc. -

New York, 1971. i

195

EE=+ SO nena 2 a
)

[24] Hansen, W.], Creation of Hierarchic Text with a Computer Display (thesis). Stanford 9

I Univ, Dept. of Computer Science, Palo Alto, Ca, May 1971.
un [25] Hawker, E. (ed), USERS MANUAL. Computation Center, Stanford Univ., Stanford, 3

El Ca. 1971. |

y on

ll [26] Iverson, K.E, A Programming Language. John Wiley and Sons, Inc, New York,
1 1964. |

j | [27] Johnston, J.B, The Contour Model of Block Structure Processes. Proceedings of a)
Sympostum on Data Structures in Programming Languages, Gainesville, Fla, February

| 1971.

1 Il (28) Kay, A.C, The Reactive Engine (thesis). University of Utan, Dept. of Computer
Science, Salt Lake City, Utah, August 1969.

| [29] Kemeny, J.G, and Kurtz, T.E, BASIC — A Manual for BASIC, the Elementary 3
§ | Algebraic Language Designed for Use with the Dartmouth Time-Sharing System (third 4a edition), Dartmouth College, Jan. 1966. |

EB il [30] Knuth, D.E, On the Translaitcon of Languages From Left to Right. Information and
a. Control, Vol. 8 (1965), 607-639.

§ | [31] ——, The Art of Computer Programming, Volume |; Fundamental Algorithms. |
¥ Addison Wesley, New York, 1968, pp. 305-434.

| [32] Lampson, B.W. Dynamic Protection Structures. Proc. 1969 Fall Joint Computer

3 | Conference, Vol. 35, pp. 27-38. |

1 (33) —-, Time-Sharing System Reference Manual. Document 30.10.30, Dept. of Defense
Contract S1)-185, US. Printing Office, 1966.

; I (34) Leavenworth, BM, Syntax Macros and Extended Translation. Comm. ACM 9, I] |
I (Nov. 1966), 790-792.

| I 196 |

|

[35] Lindstrom, G. Vanability in Programming Languages (thesis). Carnegie-Mellon hel
2 Univ, Pittsburgh, Pa, July 1970.

[36] Lock, K., Structuring Programs for Multiprogram Time-Sharing On-Line Applications. |

Proc. AFIPS 1965 Spring Joint Computer Conicrence, Vol. 27. od :

® | [37) —-, Incremental Compilation (unpublished) :
. -

| [38] McCarthy, J. Iowards a Mathematical Science of Computation. Stanfor. University,1962. |

[39] ——, and Painter, J, Correctness of a Compiler for Arithmetic Expressions. Stanford
Artificial Intelligence Memo Number 40, April 1966.

| 3

) | [40] —-, Abrahams, P. Edwards, D, Hart, T, and Levin, M., Lisp 1.5 Programmer's = |
Manual. MIT Press, Cambridge, Mass., 1962 |

[41] Miller, R., Response Time in Man-computei Conversational Transactions. Proc.

, AFIPS 1968 Fall Joint Computer Conference, Vol. 53, pp. 267-278. 1] |

[42] Mills, H, Top Down Programming in Large Systems, Debugging Techniques in |=)

Large Systeins, R. Rustin (ed). Prentice Hall, Englewood Cliffs, New Jersey, 1971.

[43] The Multiplexed Information and Computing Service: Programmers’ Manual. Pro ject 2
MAC, Mass. Inst. of Tech, Cambridge, Mass., 1971. . | :

- [44] Mitchell, J.G., The Design and Construction of Flexible and Efficient Interactive |

Programming Systems (thesis). Carnegie Mellon Univ.,, Dept. of Computer Science,
Pittsburgh, Pa., June 1970.

| (45) ——-, Newcomer, J, Perlis, A, Van Zoeren, H, and Wile, D, Conversational

Programming — LCC. Carnegie-Mellon Univ., Dept. of Computer Science, Pittsburgh,
| Pa, June 1971.

[46] Naur, P. (Ed.), Revised report on the Algorithmic Language ALGOL 60. CACM 6, |

(1963). |
197

1

: ” — at mn, yo— oe tateynnase SENAA : : a fie

[47) Organick, EI, and Cleary, JG, A Data Structure Model of the BE700 Computer

I System. Proc. of a Symposium on Data Structures in Programming Languages, :
Gainesville, Fla, February 1971.

f | (48) Prebus, J. TVEDIT. Inst. for Math. Stud. in the Social Sciences (internal §
1 documentation), December, 1970. | i

[49] Quam, LH, and Diffie, B.W., Lisp 16 Reference Manual Stanford Artificial i
| Intelligence Laboratory Operating Note 28.5 (Sept. 1970). 1

I (50) Ryan, JL, Crandall, RL, and Medwedeff, M., A Conversational System for }18Incremental Compilation and Execution in a Time-Sharing Environment. Proc. ii

: I AFIPS 1966 Fall Joint Computer C.onference, Vol 29, pp. 1-22. LE
(51) Simon, H., Reflections on Time Sharing From a User's Point of View. Carnegie :

1 Institute of Technology Research Review, 1967. | |
I [52) Swinehart, D.C, and Sproull, RF, SA!L. Stanford Artificial Intelligence Laboratory J

| Operating Note 57.2, January 1971. 11

) (53) Teiteiman, W., Bobrow, D.G.,, Hartley, AK. and Murphy, DL, BBN-Lisp TENEX §

| I Reference Manual. Bolt Beranek and Newman Inc, Cambridge, Mass. July 1971.
(54) ——, PILOT: A Step Toward Man-Computer Symbiosis (thesis). Report TR-32, MIT 3)

| Project MAC, 1966. i

| 1 (55) ——, Automated Programmering — The Programmer's Assistant. Proc. AFIPS 1972 1| Fall Joint Computer Conference, Vol. 41, Part 2, pp. 917-922.

i (56) Thomas, R. H, A Model for Process Representation and Synthesis (thesis). Report E
: TR-87, MIT Project MAC, 1971. 1

§ [57] Wegbreit, B., Studies in Extensible Programming Languages (thesis). ESD-TR-70-297, 2

3) Harvard University, Cambridge, Mass., May 1970. | £
i 8 |

[58] ——, An Overview of the ECL Programming System. Proc. of the International]
Symposium on Extensible Languages, SIGPLAN Notices, Vol. 6, Number 12 |
(December, 1971). -

(59) Wegner, P, Data Structure Models for Programming Languages. Proc. of a |
Symposium on Data Structures in Programming Languages, Gainesville, Fla., February |

1971 |-. ;

[60] Van Dam, A, and Rice, D.E, On-Line Text Editing: A Survey. Acm Computing |

Surveys 3, 3 (Sept. 1971), 93-114 SE

(61) Van Wijngaarden, A(ed), Mailloux, B.J, Peck, JEL, and Koster, CH.A,, Report on I y
the Algorithmic Language Algol 68. Numerische Mathematik 14:79-218 (1969).

(62) Waite, W.M,, A Language-independent Macro Processor. Comm. ACM 10, 7 (July ;

1967), 433-440. |
id

[63] Wiederhold, V.,, PL/ACME. Stanford Univ. Computation Center ACME Facility, :

1967. ol

: (64) Wirth, N, On Muluprogramming, Machine Coding, and Computer Organization. | |
| Comm. ACM 12, 9 (Sept. 1969), 489-498). | |

199

