- Best
Available
Copy

AD-786 721

COPILOT A MULTIPLE PROCESS APPROACH
TO INTERACTIVE PROGRAMMING SYSTEMS

Daniel Carl Swinehart

Stanford University

Prepared for:

Advanced Research Projects Agency

July 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

T S

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMGC AIM-230 :

STAN-CS-74 - 412

COPILOT A MULTIPLE PROCESS APPROACH TO
INTERACTIVE PROGRAMMING SYSTEMS

BY
DANIEL CARL SWINEHART

AD786721

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORGER NO. 457

JULY 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

DJUNo Al W‘””‘T
.;’;\ - > 1,_'. APPI'OVod for
-y, ..-«, o Pubda: "ﬂul'ln:
e ,«"f;‘.{* |2 28 Unlunieg
S S g e
= % H I
-',;,5; ol '*p.l 4 ll:,:--

%S POANTLED o
S NAT!ONM TECHNICAI 5
| NFORMMI()N SERVICE 2.1
U S Department of Commerce
Springheld VA 22151

W
e

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

®
'y

REPCRT DOCUMENTATION PAGE

READ INSTRUCTIONS

7. REPORT NUMBER _
STAN=-CS=T4=412

2. GC /T ACCESSION NO

BEFORE COMPLETING FORM ‘
3. RECIPIENT'S GATALOG NUMBER

4. TITLE (and Subtitle)
COPILOT: A MULTIPLE PROCESS APPROACH @

INTERACTIVE PROGRAMMING SYSTEMS

5. TYPE OF REPORT & PERIOD CCVERED

technical, July 1974

6. PERFORMING ORG. REPORT NUMEER
STAN-CS-74-412

7. AUTHOR(S)

Daniel (. Swinehart

8. CONTRACT OR GRANT NUMBER(s)

SD-103

9. PERFORMING ORGANIZAT.ON NAME AND ADDRESS
Stanford Jniversity

Computer Science Dept.

Stanford, California 94305

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

ARPA ORDER NO. 457

11. CONTROLLING OFFICE NAME AND ADDRESS
ARPA/IPT, Attn: Stephen D. Crocker
1400 Wilson Blvd., Arlington, Va. 22zZ09

12. REPORT DATE
July 1974
13. NUMBER OF PAGLCS

21k

ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rm. 165

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

18. SECURITY TLASS. (of this report

SSIFICATICN DOWNGRADING

¥ Ei Sa. DECL AS
Stanford University i
Stanford, Ca. 94305 ST g
6. DISTRIBUTION STATEMENT (of this Report)
releasable without limitations on disse
17. DISTRIBUTION STATEMENT (of the abstrat entered in Block 20, if iitferont from Report 1
|
'8 TUPPLEMENTARY NOTES !
e —— R S P - i e 4
19 ¥ Fy wORDS (Continue on r vorse stde il necessary o {e i & number, i
!
|
H
|
|
30, ABSTRACT /Continun an reverse side M necn sars and identify Py bloc .
An experimental interacti t.em, COPI !
yehicle for testing and describing method: } i
il gy . i % i {
facilities Lo an interac 1a if 1 H |
SOPILOT allows the user to create, modi :
programs written in an Algol-like languag ' .
Althouph COP] OF ig c¢ "}‘.;"'!'-1'0.’-", y (
e applied to an interpretiv yotem. |
ntral to the design is the 5 Jt]
IR) gl & ¥ :
DD‘_&N"!]‘73 EDETION OF 1 ROV 65 15 OB ." .
a'§ AT ~ * Y A W ™ Fntersd

o LW e g
e e A TR A

b T

e

e et e e

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JULY 1974 B
MEMO AIM.-220 ‘

COMPUTER SCIENCE DEPARTMENT REPORT
STAN.CS-74-412

COPILOT: A MULTIPLE PROCESS APPROACH TO
INTERACTIVE PROGRAMMING SYSTEMS

by
Daniel Carl Swinehart

h |
|
ABSTRACT: An expenimental interactive system, CGPILOT, 1s used as the conciete id
vehicle for testing and describing methods for adding multiple processing facihities to arn i
mnteractive language enviror.ment.
COPILOT allows the user to create, modify, investigate, and control programs written 1
an Algnl-like language, augmented for multiple processing. Although COPILOT < .
compiler-based, many of our solutions could also be applied to an mterpretive system.
Central to the design 1s the use of CRT displays to present progranis, program data, anl {
system status. T his continnous display of information in context allows the user to retain
comprehension of complex program environments, and to indicate the environments to .
affected by his commands. i
1
COPILOT uses the muluple processing facihtues ta ats advantage to achieve a "ne.- i
| preemptive” kind of mteractive control. The nser's terminal is continuously available tor !
1 tomnands of any kind: program editmg, varnible anquny, progiam contiol, o, ;
nelependent of the execution state of the processes he s controlling. No jrrocess .y b4

nilarerally gam posiessan of the user's mpne, the user retans control at all times.

The emphasis thronghout 15 on improving the characteristics of the interface between the
user and the system.

L

‘ Thus 1esearch was supported in part by the Advanced Research Projects Agency of the Office
of Defense under Contract No. SD-183.

The views and conclusions in this document are those of the author and should not 1w
mterpreted as necessarily representing the official pohares, either expressed or imphied, of the

Advanced Research Projects Agency or the US. Government.

Reproduced in the USA. Available from the National Technical Information Service,

Springfield, Virgna 22151 1
Reproduced from
best available copy. E g

G i

ACKNOWLEDGMENTS

I would like to express special appreciation to my dissertation adviser, Professor Jerry
Feldman, for his guidance, and for his unfailing confidence in me, even when my own

was waning. | am indebted to Dr. Jim Mitchell, who offrred immeasurable assistance

with the technical problems, through many conversations and several thorough
readings. Professor Robert Floyd contributed helpful, detailed suggestions for

improving the style and clarity of this work, as well as several key ideas.

1 would like particularly to thank these colleagues who read the driufts, even though
they didn't have to: Alan Kay, Jim Low, Andy Moorer, Hanan Sanet, Dave Smith,
Bot Sproull, Larry Tesler, and Russell Taylor.

The publication of this document would not have been possible without the support of
the Stanford Artificial Intelligence Laboratory; nor could I have done without the aid
of Larry Tesler, who provided the publication system, and Brian Harvey, who helped

me make it work.

My deepest gratitude is reserved for my wife, Ann, who always understood why I was

gone, and who will have to put up with me now that I am back.

ii

TABLE OF CONTENTS

chapter

I INTRODUCTION

LA THE PROBLEM

I.LB COPILOT

I.C A BRIEF OUTLINE

HUMAN INTERACTIVE CHARACTERISTICS
2.A THE BEHAVIOR MATCH
2.B SCOPE OF APPLICATION

2.C SPECIFIC ATTRIBUTES
Multiple Activities
Single Language
Non-Preé¢mption
Response Time
Minimal (output) Modes
Maximum (input) Context
Access to Information

Non-symbolic operations

2.0 THE BEHAVIOR MATCH REVISITED

3 ASURVEY OF REPRESENTATIVE IHTERACTIVE PROGRAMMING SYSTEMS

3A BATCH COMPUTING SYSTEMS 16

3.B EARLY INTERACTIVE SYSTEMS (FSA/IPS) 17
Attribute Analysis 20
Representative Systems 21

3.C EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS) 21
Attribute Analysis 23
Representative Systems 23

3D REDUCED MODE SYSTEMS (FSA/IPS/RED) 23
Attribute Analysis 2
Representative Systems 26

3. E NESTED USER SYSTEMS (UPDA/IPS) 27
Attribute Analysis 30
Representative Systems 30

3F ADVANCED IPS SYSTEMS 31
BBN LISP 3
SLICE 32
ECL 33
FLEX 33
FLEX Attribute Analysis 34

3.G ATTRIBUTE SUMMARY 16

4 DESIGN OF COPILOT

4.A ACHIEVING THE BEHAVIOR MATCH 37
Use of Multiple Processes 3%
Use of Displays a8
Single Language 40

Abbreviation 40

4.B ADDITIONAL DESIGN DECISIONS
Compiler-Oriented 42
Static Block Structure 43
Emphasis on Large Systems 44

No Automatic Program Composition 45

4.C AN OVERVIEW OF THE COPILOT SYSTEM 45
The Environment 46
Basic Dialogue 51
A glimpse of Non-preémption 57

4D ATTRIBUTE ANALYSIS OF COPILOT 65

5 THE COPILOT SYSTEM: A USER-LEVEL DESCRIPTION

| , 5A BALIC SYSTEM STRUCTURE TERMINOLOGY 67
Screens 68

Regions 68

Scenes 69

Scene Types 69

5B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES 70

Informatton Structure Models 70

The Contour Model 70

The COPILOT Context Scenes 73

The Snapshot Requirement 73

COPILOT Context Scene Types 73

5C PROGRAM SCENES — THE PROGRAM COMPONENT

The MISLE Language

The Basic Featur<s of MISLE
Semantics of Extensions
Processes

Special Features

Program Scene Organization

The Instruction Point Portion of the Control Component

D DATA SCENES — THE STATIC DATA COMPONENT

Data Language Syntax

Semantics, Pragmatics

Data Scene Organization

The Data Language as an Input Facility

The Environment Point Portion of the Control Component

5E DYNAMIC SCENES — THE DYNAMIC DATA COMPONENT

T he Context Point

Adequacy of Scenes as External Information Structures

5F STAT SCENE — PROCESS STATUS

5G USER SCENES

5H REGIONS

Regions for Data Scenes — Special Problems and Provisions

6 THE CONTROL ALGORITHM

6.A SYSTEM STRUCTURE

The UCP — User Control Process

Crucial Primitives

vii

74
74
75
77
717
79
80
83

87

88

88

89

91

al
92

8 8 ¥

6.B THE USER LOOP
Algorithm A — Basic
Algorithm B — the Expand Routine
Algorithm C — Using the UCP
Algorithm D — Selective Interpretation

6.C THE POST PROCESS

Display of Users’ Scenes

7 COPILOT TERMINAL PRIMITIVES

7.A USER-ACCESSIBLE STRUCTURES

Access Primitives

7B GLOBAL STRUCTURE VARIABLES

7.C THE COPILOT TERMINAL PRIMITIVES

Notation

7.0 SEMANTICS OF SPECIAL STATEMENTS
Variable Query (Data Display)
Breakpoints

Temporary Statements

7E CONCLUSIONS

8 IMPLEMENTATION CONSIDERATIONS

8A TIERS
Tier Equivalence
Inter-Tier Connections
Tier Fidelity

Tiers 1n other Systems

8.B SCENE-TIER RELATIONSHIP

Permanent Scene Representation

8.C COPILOT TIERS
Text Tier
Token Tier
Tree Tier
The Symbol Table
Other Trees
Code Tier

Synchrofization

8D SELECTIVE EFFICIENCY
Space Efficiency .

8.E PARSING AND COMPILING
Parsing Methods
Detection of Increments
Timing of Parse Events
Process Structure
The Parse Process
Compiling: When and How
Mocifying Active Code

Compiling Temporary Statements

9 SHORT SUBJECTS

9.A ADDITIONAL COPILOT SUBJECTS

User Programs in the System Environment— Assistant Procedures

Display of (unnamtd) Expressions

Operations on the UCP Scene

151
152

156
156
157
159
160
161
162
163
164

165
165
166
167

9.B PROBLEMS
A UCP Scene Problem
Type Ahead Problems
Data Scene Flickering
Data Monitoring

Restoration of Active Context

9.C EXTENSIONS
Environment Modification by DYNA Scene Editing
Scene Branching
Modifying the User Loop
Display of Structured Data
' Error Messages
Text Scene Monitoring
Program Communication
A Final Modification to the User Loop

9D SUMMARY

APPENDIX A SYNTAX CONVENTIOMS

APPENDIX B ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE

BIBLIOGRAPHY

169
169
169
170
171
172

173
173
174
178
178
181
181
183
184

186

187

189

194

3

ey |

gt geey g o)

Rauoe-§

2]

2} hit ==]

=)

Py

FIGURES

figure page

2-1 Thoughts to Action

31 FSA/IS Behavior of DEC TOPS-10 Executive
3.2 FSA/IPS Behavior of BASIC Terminal Interface
33 FSA/IPS/RED Behavior of JOSS Terminal Interface
3.4 DPDA/IPS Behavior of LCC Terminal Interface
4-1 Typical COPILOT Scenes and Regions (screen I)
4-2 Typical COPILOT Scenes and Regions (screen 2)
4-3 The Stanford Al Project Keyboard

4-4 Simple Editing and Execution Control (part 1)
4.5 Simple Editing and Execution Control (part 2)
4-6 Controt of Muluple Processes (part 1)

4.7 Control of Multiple Processes (part 2)

4-8 Control of Multiple Processes (part 3)

4-9 Non-Preémptive Operation {part 1)

4-10 Non-Preémpiive QOperation (part 2)

4-11 Non-Preémptive Operation (part 3)

5-1 The Contour Model Representation for an Algorithm
5.2 PROG Scene Linkage

6-1 Global COPILOT Structure

8-1 (Inadequate) View of Scene/Tier Structures

8.2 Interconnected COPILOT Scenes

8-3 Overall View of COPILOT Tier Structures (part I)

8-4 Overall View of COPILOT Tier Structures (part 2)

8-5 COPILOT Program Text and Token Tiers

8-6 COPILOT Program Tree Tier

8-7 COPILOT Symbol Table Organization

8.8 COPILOT Program and Data Code T'ers

8-9 Selective Connectivity

8-10 Proposed Memory Organization for COPILOT Implemented in MULTICS
8-11 Proposed Memory Organization for COPILOT Impiemented 1n TENEX
8-12 Additional Token Tier Structure to Record Source Changes

Xi

4

User's View of Scene Branching

Efficient Scene Branch Implementation (Token, Tree)
Efficient Scene Branch Implementation (Code)
Possible Scene for Displaying Array Sections

Xii

TABLES

i table page

i.

§ 31 Behavior Match Attribute Summary %6
4.1 Commands Used in Chapter 4 Examples 53
5-1 Display Terminology 68
5-2 COPILOT Process Coutrol Primitives 78
5-3 Copi'ot Process Execution States 90
6-1 Shortcomings of User Loop Algorithm A 99
7-1 Structure Access (conversion) Priinitives 107
7-2 Global IPS Structure Variables 108
7-3 COPILOT Command Notation Conventions 110

|
:

Xiii

i
i
I
i
i
I
I
i
I
1
I
i
f
|
1
I
i
1
=

#
-

ABSTRACT

The addition of multiple processing facilities to a language used in an interactive computing
environment requires new techniques. This dissertation presents one approach, emphasizing

the characteristics of the interface betwse~, the user and the system.

We have designed an experimental interactive programming system, COPILOT, as the
concrete vehicle for testing and describing our methods. COPILOT allows the user to create,
modify, investigate, and control programs written in an Algol-like language, which has beei.
augmented with facilities for multiple processing. Although COPILOT is compiler-based,

many of our solutions could also be applied to an interpretive system.

Central to the design is the use of CRT displays to present programs, program data, and
system status. This continuous display of information in context allows the user to retain
comprehension of complex program environments, and to indicate the environments to be

affected by his commands.

COPILOT uses the multiple processing facilities to its advantage to achieve a kind of
interactive control which we have termed "non-preémptive”. The user’s terminal is
continuously available for commands of any kind: program editing, variable inquiry,
program control, etc, independent of the execution state of the processes he is controlling.
No process may unilaterally gain possession of the user’s input; the user retains control at all

times.

Commands in COPILOT are expressed as statements in the programming language. This
single language policy adds consistency to the system, and permits the user to construct
procedures for the execution of repetitive or complex command sequences. An abbreviation

facility is provided for the most common terminal operations, for convenience and speed.

We have attempted in this thesis to extend the facilities of interactive programming systems
in response to developments in language design and information display technology. The
resultant system provides an interface which, we think, is better matched to the interactive

needs of its user than are its predecessors.

Xiv

Baog oo

bl b’ P Skt

O Ded Bl e W BEN DO

CHAPTER |
INTRODUCTION

Interactive, or conversational, computing owes its existence to the development of
multiprogramming, or multiple processing, facilities. The scaicity and expense of
computing equipment prevented direct, convenient user interaction with the programs he
wrote until a way was found for several people io share the resources of a computer system

simultaneously.

A process, as we will use it, is "an activity comprised of a time-ordered sequence of actions”
[56). The behavior of a process does not deperd on the activity of other processes— except,
perhaps, for the time and other resources it requires to execute— unless such interaction is
intended. We may therciore treat a process as if it had sole use of its own processor
(computer or other active agent). Processes may communicate with each other, through

messages or shared data, or they may operate independently.

This multiple process activity can be simulated by a single processor, under control of the
appropriate operating system. In such a multiprogramming system, use of the processor
(and other resources) is allocated among the competing processes, providing for each a virtual
processor somewhat slower than the real one. A time sharing system is a multiprogramming
system to which terminal devices (eg, teletypes or display terminals) have been connected,

allowing users to communicate directly with active processes within the system.

Joss [7), Basic [29), LCC [45), APL [26), and BBN-Lisp (53] are examples of
language systems which are designed to operate in a time shaied environment: they are all
Interactive Programming Systems (IPSs). (x) They all allow a user to create a program "on
line", to execute it, examine its state, and modify its definition (to "debug” it); and to supply it
with requested data. In the current versions of these systems, the system algorithms and data,

along with those created by the user, form a single process within the operating system.

......................................

(%) We will examine these and other notable Interactive Programming Systems in Chapter 3.
1

Bl T e

ILA. THE PROBLEM

A tme sharing system can use process structures to provide a totally independent operating
environment for each of its users. However, when processes are allowed to communicate and
to codperate with each other, they can become a useful facility for the performance of a
single project. The Simula 67 document [14] contains several simple examples of
covperating processes. More recently, other operating systems and language systems have

begun providing their users direct access to multiple processing facilities.

Inherent in an Interactive Programming Systen, design 1s a specification of the role the user
plays in its operation: the appearance of the interiuce between the user and the system. The
more sophisticated =7 the IPSs mentioned above (those which impiement the more powerful
and complex langua _es) define a user role which cannot easily be extended to handle the
multple simultaneous control and data environments of a language system which supports

multiple processes. We will present arguments to support this contention.

In this dissertation we will address the problem of building Interactive Programming Systems
which can contend with multiple procesting environments. Instead of treating this endeavor
as a burden, we will look for ways to use these facilities to improve the performance of the

system, and of the user.

1.B. COPILOT

The bulk of this thesis 1s a description of an experimental IPS, COPILOT, which we have

designed as theXoncrete vehicle for testing and describing our methods. COPILOT allows

the user to create dnodify, investigate, and control programs written in an Algol-like language,

which has been augment.d with facilities for muluple processing. Although COPILOT s

compiler-based, many of our solutions could also be applied to an interpretive system.

Central to the design is the use of CRT displays to present programs, program data, and
system status. T his continuous display of information with some associated context helps the
user to retain comprehension of complex program environments, and to indicate the

environments to be affected by his commands.

5

[

i
i
i
I
I
I
[
i
v

COPILOT uses the multiple processing facilities to its advantage, to achieve a kind of
irteractive control which we call "non-preémptive”. The user’s terminal Is continuously
available for cormmands of any kind: program editing, variable inquiry, program control, etc.,
independent of the execution state of the processes he is controlling. No process may

unilaterally gain possession of the user's input; the user retains control at all times.

Commands in COPILOT are expressed as MISLE language statements. This single
language policy adds consistency to the system, and permits the user to construct procedures
for the execution of repetitive o1 complex commard sequences. A top-leve. abbreviation

facility is provided for the most common terminal operations.

The role of the COPILOT user is that of a global observer and controller, with equal access
to all his program and data environments, sub ject only to protection restrictions imposed by
the operating system. We will demonstrate that this view is substantially different from the

more local focus provided by the typicai single process IPS.

1.C. A BRIEF OUTLINE

The early chapters of this dissertation establiz’ a basis for the study, defining our goals
based on observed needs. A survey of existing IPSs follows, provided as a basis for
comparison, and to indicate the debt we owe to our predecessors.

Chapter 4 is an overview of the COPILO™ design. After describing the basic facilities of
the system, emphasizing the achievement ci the stated goals, we present a detailed example of
system operation. The reader interested in system design may choose to read this chapter

first; the references to earlier chapters should not interfere with this procedure.

Subsequent chapters provide detailed user-level descriptions of COPILOT, giving special
attention to the facilities for multiple processing, and to our reliance on the use of display

devices to enhance these facilities.

We have limited implementation considerations to a brief chapter which concentrates on the
structures we have created for representing programs at different levels, or “Tiers", and the

means for maintaining the necessary relationships betweea Tiers.

e BT

The final chapter is a compendium of miscellaneous topics, unsolved problems, and =

-~

suggestions for further research. |
.

9
-—-1

L -
sscme b

[25

o gy

§roemonsy

tmd

o1 e

-
[a] [4 []
[V} [

2
-

CHAPTER 2
HUMAN INTERACTIVE CHARACTERISTICS

2.A. THE BEHAVIOR MATCH

An Interactive computer System (IS) is the hardware and software which allows composition,
testing, debugging, and operation of computer programs, enhancing the “ability of the user to

initiate, interrupt, and generally interject himself into the control of the system” [44). Ir

practice, an 1S consists of a user con:ole (keyboard and printer), and the set of program and
interactive features which are available to it, operating on a ciigital computer, which is
usually time-shared. An Interactive Programming System (IPS) is an IS incorporating a

single programming language for all programming and prograra control.

Most recent emphases in IPS design (t) have been on improved laaguage design, improved
debugging facilities, and on the development of “single language” systems, which extend the
programming language to include the interactive facilities. Mitchell's thesis [44), itself a
significant contribution to Interactive Programming Systems, contains as well a good survey
of the leading examples of cuirent systems. His emphasis is is on language design and on
implementation considerations (flexibility, efficiency, and portability).

The emphasis of this disseitation 1s on the user-system interface. It is our desire to provide a
convenient, pleasant, intuitive interface between the user and the IPS. We intend to do this
by providing a system whose behavior matches as closely as possible the relevant
characteristics of the people who use it. Our thesis is that such a system can measurably

increase user performance.

There is an intriguing, if not terribly accurate, metaphor to be found in electronic lore: the
"impedance match”. For maximum efficiency (minimum wasted energy), the impedance of an
output from one device must ciosely match the input impedance of any device to which it is
connected. If the impedance mismatch is too great, the connection will fajl to perform
successfully at all. We will call our IPS analogue a "Behavior Match" — a term which we

shall attempt to justify.

(1) Examples are ECL, LCC, and BBN Lisp, all of which we will discuss in the survey of Chapter
3.
5

To emphasize our conviction of the importance of this Behavior Match concept, and the

necessity for some terminology to express it, we offer these informal definitions and terms:

The Behavior of an entity is that set of processes which determine the manner in which

information can be presented to it, and 1s presented by it.

A Behavior Match has been achieved when the "behavior” of a system complements the

behavior of its user, optimizing his performance.

These definitions are clearly sub jective, containing as well enough undefined terms and vague

he e b e

semantics to preclude their use for any measurement purposes. Although we hope to clarify
these definitions somewhat in the sequel, their major purpose is to provide an intuitive basis

for discussion.

S

The Behavior Match diverges from the impedance match example in that user and system

behavior neec not be identical, or even similar; they need only be “complementary.” However,

we shall show that the similarity 1s stronger than one might expect.

At the risk of overloading the "impedance match’ analogy, let us point out one additional
similarity: the impedance match between communicating devices need only exist at the
interface between them. It is possible to design circuits which isoiate the main body of a
device from its interface, allowing it to employ impedances (and other related characteristics)
which are internally convenient. Similarly, many of the internal details of an efficient,
powerful IPS must be hidden from the user, since their functions (eg. compilation, data
conversion) are not involved in the problem-solving efforts of the user, nor are their results

(binary machine instructions, etc.) likely to be meaning{ul to him.

2.B. SCOPE OF APPLICATION

The bulk of this dissertation is dedicated to the design of system interface characteristics
which will improve the interactive behavior match between system and user. Just as the
interface characteristics one chooses for an electronic device place certain constraints on the
internal device design, our IPS interface decisions will have an effect on all aspects of system

design and implementation. However, we should not let our human engineering decisions

P NN g o v e S Of

-

\ {?

unduly reduce our range of options in such fundamental areas as: the selection of a
programming language; the choice of cxecution methods (compiled or interpreted), whether
the system is intended for the creation of large, "production” programs, or for smaller,
"Instructional” ones, or whether it is intended chiefly for novice or expert users. We hope to
show that the approaches to IPS design which we advocate apply to systems which vary

widely i1n these parameters.

We will present in the course of the dissertation an IPS, COPILOT, as a concrete vehicle for
discussing methods for attaining 1 good Behavior Match. Because it 15 a concrete system,
COPILOT exhibits certain choices from the above parameter spectra. Indeed, we think we
have made the more difficult, perhaps less inherently flexible choice in nearly every case.
This is true in part because of the particular needs of the environment for which we have
designed the system, in part because of a desire to demonstrate the versatihty limits of our
methods. Nevertheless, particularly in these initial chapters, we will attempt to indicate those

areas where choices can be made, and those which are heavily constrained by our solutions.

2.C. ¢tPECIFIC ATTRIBUTES

We have chosen for study a set of human interactive attributes which, we believe, an IPS
should accommodate in order to achie /e a behavior match. This set of characteristics, which
follows, was derived in two ways: some are characteristics which we have observed, and
which influenced our design — a priori observations. The rest are, admittedly, a posteriori
observations, attributes we have noticed which are fortunate in light of what our methods

provide. This fact should not affect their validity.

We do not claim to have isolated all relevant interactive attributes. We have concentrated on
these behavioral aspects which relate to “process” and "information transfer”. Additionally,
these con jectures will have to stand as the opinions of the author— based on his observations
of the way he and others use interactive computer systems— used to justify and guide the
design of the COPILOT system’s behavior.

2.Cl Multiple Activities

The activity of someone engaged in the solution of an intellectual problem can be model'ed

as a single processor executing a set of cotrdinated sequential processes (coroutines), in che

sense that:

1) He is likely to shift his attention rapidly between different “processes.” His reason for
doing this may be generated internally (eg. boredom, inspiration) or externally (the
phone rings; or perhaps the part hasn't come In yet).

2) He may retain encugh “state” informatton about an abandoned process to return to it
again in time, or he may abandon it entirely.

3) If the alternauve 1s excessive unproductive waiting, he will often turn his attention to
some unrelated sub ject (the processes need not all codperate), returning to the task at
hand when 1t 1s again possible.

4) He can carry some state information concerning a previous actuivity in.> the next, often
correlating the two 1n order to understand complex relations. After all, he is presumably
pursuing some overall goal.

5) Although we have not modelled his internal behavior as true parallel processes (we give
him credit for single-mindedness), he can make use of several concurrent external
operations (stove burners, machines, computer programs, or whatever), as long as they
do not all require constant monitoring.

6) He seldom operates very recursively, or even properly nests operations— the above
coroutine-like model ts a more accurate one than a simpler recursive model.

2.C2 Single Language

Symbolic communications between people (and between a person and his later self, for that
matter) are primarily conducted by means of natural language. The same language base is
used for all areas of endeavor, although specialized lexicons (seldom specialized grammars)
form dialects for specific topics. All necessary symbolic activities are possible in a natural

language.

For efficiency and brevity, people have added to their communication abilities in two ma jor

ways:

1) through formal languages (eg. mathematics) which, though not contained in the base
language, nonetheless have a (usually cumbersome) mapping into it.

= ==

2) through acronyms, abbreviations, and possibly non-grammatical colloguialisms, often
understood by only a small segment of thie population (“far out!”). These artifacts clearly
m2p (though not always precisely) into grammatical forms in the base language.

Providing good symbolic communication between the user and his system wii. be a major
goal of tlus work. We believe that an iPS with a single input language, encompassing all
system commands, can enhance this communicaiion. We share an emphasis on the

importance of the single language idea with most IPS designers.

2.C3 Non-Preémption

A request for one's services is not always granted instantly. In fact, it is sometimes not
granted at all. At any rate, having noticed such a request, one may respond to it
immediately, queue it temporarily until some other task is complete, or ignore it entirely. He
is not automatically preémpted by a "service request”, he can continue what he is doing, or

go on to something else entirely, nor must he take care of things in a fixed order.

This non-preémptive pattern is often thwarted at the user terminal connected to a modern

IPS. Much of our attention will be devoted to correcting the situation.

2.C4 Response Time

In contrast, when one reques's a service, he would liie it to be handled at once. We would
like to distinguish between the time required to complete a request, which we call completion
time, and a potentially different interval, which we call response time: the time delay, after
submission one request, ural that request 1s acknowledged, and another may be submitted.
If there 1s but one agent for execution of requests, these two quantities will probably be the
same. However, in an environment which supports multiple activities, successive requests
may call for the initiation of concurrent activities, or they may terminate previous ones. If
such a<tivities are possible, then, in order to make maximum use of the concurrent facilities,
the response time should be short, independent of the completion time. (In our experience,
this time should be short compared to the time required to make the request, and should
seldom exceed one or two seconds) Miller {41} has studied computer system response,
determining empirically, for a variety of situations, what kinds of delays people will tolerate.

These times range from a second or two, in highly interactive situations, to fifteen seconds or

more for complex requests. Miller's report does not make our distinction between completion
time and response time. However, in most of the situations he cites in which people will

tolerate only short delays, it is rapid response which they seem to be seeking.

Simon, in [51), studied a related time interval, which he called the "minimum human
response time”. This is the smallest “time shce” which one can efficiently use to work on a
task, particularly in .i.e context of waiting for some possibly unrelated activity to complete.
In Simon's experience, this time is approximately ten minutes. We do not dispute it, kuat we
do believe that the "minimum human response time" could be reduced, if it were easizr to
establish the context necessary to switch to a new task. In a computing environment, this

requires a system which 1s both non-preémptive and responsive.

To summarize, people want to schedule requests for their services (output), but to obtain
rapid aitenticn to their own requests (input). This double standard is not always possible in

dealings with other people, but we can try to optimize it in an IPS.

2.C5 Minimal (output) Modes

This topic introduces another input/output double standard. People are capable of
understanding stimuli which are context-sensitive: whose meaning depends on the
environment, or context, in which they are presented. English itself is internally context-
sensitive, although normally only in a quite localized fashion- paragraphs can generally

stand alone.

In general, we think it is desirable to reduce the context-sensitivity of what one must say
(output) by reducing the number of "states”, or “modes’, which impose different
interpretations on his communications. The single-language criterion also aids us here: a
sentence, especially one intended to convey information unambiguously, should always "mean”
the same thing. This cannot be true if disjoint (or even worse, partially disjoint) languages
are provided for different purposes, since in the latter case a "mode” must be established to

determine which language to look for.

We do not mean to imply that the same results will obtain, no matter what the situation (or
state), when a given utterance is uttered, or when a given command is typed. There are

environmental conditions which influence the interpretation of communications. This context

1s usually implicit, however, and need not be included in the message.
10

We do not even intend that every statement be meaningful in every instance. Clearly, there
are sentences in nearly any language which are senseless, impossible, or merely silly under
some conditions. However, normally one can at least understand such a sentence, to the
extent that he can respond that it is senseless, silly, or impossible— and why. We would like

to preserve this behavior

We will, therefore, require of our non-preémptive. single language IPS, that it must allow a
user to express anything in that language, at any time— even if it is meaningless in context—

a system without excessive "modes”.

2.C6 Maximum (input) Context

While one prefers to supply as little explicit contextual information as possible when
conveying information (output), one absorbs information (input) most readily when the
environment in which it i1s presented is as completely described as possible. The more one
knows about a situation, the more capable he is of handling his part in it Our goal should
be to provide as rich a context as possible, without including irrelevant information which
could obscure understanding. Further, it 15 best if this information is continually present,

continually up to date.

When 1t is possible, we think that contextual information is best presented visually. This

sort of presentation can be made to satisfy the "continuously accurate” requirement, without
fliooding our sensory channeis— particularly because visual input also satisfies our non-
preémptive requirement— one need not look at everything all the ume, and in fact can select

what to look at, and when to look at it.

2.C7 Access to Information

This topic 15 closely related 1o the previous one, which requires that the available
information be presented as complotely and coherently as postible. Now we wish o require,
in addition, that as much information as possible be available (accessible). One is clearly
more able to deal with a situation or ¢bject when all its components are accessible (to see and,

hopefully, to change} than when he :nust treat it as a "black box" (or perhaps "gray box").

2.C8 Non-symbolic operations

Most of the topics we have discussed have dealt with symbolic terms: with language, its uses
and effects. But a remarkable number of things people do are not (at least at the conscious
"interface”) expressed symbolically at all; they are instead "manipulative” activities. We affect

things directly by moving them; we sense them directly by touch, sight or smell.

As an example, after one has become experienced at driving a car, he is seldom aware of
turning the wheel or manipulating pedals; instead, he turns the car, speeds up, or slows
down- another example of levels of internal mapping which involve intermediartes at other
than conscious levels. Perhaps a better example is the playing of a musical instrument: one
does not (except when learning something difficult) think in terms of plucking strings,
pushing keys, or blowing air. He thinks in terms of producing notes, or even melodic

phrases, of the desired pitches, amplitudes, durations, and tonal quality.

Exaniples of these operations for a computer terminal might be functions performed by a
single keystroke, perhaps qualified with “control key" modification, or by hght pens. function
kevboards, etc. The conscious mind 1s aware only of their effect. This feeling applies
especially to those operations which have an immediate and visible effect— for instance, the

movement of cursors or the deletion or movement of text on a display screen.

What we are advocating here is that the way in which such repetitive operations have to be
performed be made simple enough thit one thinks of them {(while doing them) only in terms
of their effect. In this way they tend to lose any symbolic meaning and to become practically

bodily extensions.

Having made the distinction betwzen symbolic and "manipulative” operations, we would like
to soften it somewhat. Although we do not normally do it, we can describe nearly any action
in words: there is a way to map a given action into an “equivalent” symbolic form. We will

find this duality very useful in the sequel.

12

g Tr——

W

9D. THE BEHAVIOR MATCH REVISITED

’«Wave attempted in the preceding section to indicate some characteristics of the IPS user
*_which the TPS must "complement” to achieve an acceptable "Behavior Match". Before we
proceed to an analysis of the success of previous systems in this regard, we should attempt to

clarify what we mean by "complementary” behavior (recall the definition of Behavior Match

in Section 2.A).

Whatever the means of communization, the user does not really "do” any of the things he
requests: the computer does them, under the control of the interface routines of the IPS.
Thus before he can communicate a message to his system, he must translate that (hought,
using his own internal model of this interface. into the series of symbols which will

accomplish the transmission.

This internal model must adequately represent the real thing, given the low tolerance of most

language systems for syntactic errors (}). In this sense the Behavior of model and system
must be quite similar; i.e., their Behavior must match precisely. What we wish to achieve, in

these terms, is a system which allows natural, intuitive, and convenient translation from the

original thought to the model.

P Gd B B i o

(1) Teitelman's DWIM system for BBN LISP [53] (see Section 3.F) is intended to reduce the
necessity for such precision by detecting and correcting simple errors (mismatches). We have
not treated error detection, correction, or minimization in this treatise, although in Section
9.C5 we have attempted to indicate how our non-preémptive methods can be used to soften
the effect of errors.

13

HOLVW HOIAVHIE ¥04 LIN3ITVAIND3 38 1SN

NOILOV | 3OV4HILNI SINOYLS uu«uu_mmm_._wz_ L NOILOV mu._mmwuoma
[W31SA ViIN3IN
0381530 [~ "ggNywmoo | W3LSAS AN 40 1300W | G3¥IS30 | NMONMINN

£
2
Ll
L4
<
°
L
[
Ll
-
s
=
°
=
-
&
[4
-
=
2
-

W31SAS 3OV4H3ILNI NOS¥3d

CHAPTER 3
A SURVEY OF REPRESENTATIVE INTERACTIVE PROGRAMMING SYSTEMS

To the extent that designers of computer systems have considered behavior match issues, we
believe that the designs refiect the designers’ views of adequate user models: that the user
could think quite naturally in the terms necessary for modelling the system’s behavior. Just
as we have suggested above, for example, that a person “is" a pseudo-parallel processor, the
designer of one of the early systems described below might have said that a person “is" a
finite-state automaton. We see a remarkable progression in complexity from early systems to
today's IPS systems, reflecting perhaps an increased respect for the complexity of human
processes. (%) In the discussion that follows, we present several different 1S designs, each
based on a different interface behavior model. Following the description of each model is a

list of real systems which approximately fit into the category defined by the model.

3A. BATCH COMPUTING SYSTEMS

We mention these systems only for completeness. The meager control languages provided for
these systems are adequate to define the environment and resources necessary for a run, and

to specify the order of application of programs in a multi-step job To be sure, systems

exhibiting evidence of human engineering are welcome to batch users. In fact, we could profit
by applying some of the lessons learned from IPS design to the batch regime. However, there
is not much to be learned about the problem at hand from analysis of batch systems.

We include in this category systems which use terminals for so-called remote job entry (R JE),

since they are not truly interactive systems.

(x) The structure of this section is largely the resull of a conversation with J. Mitchell.
16

4 G OB N SE n N ond e Oed e ded Nd W O e NS e 0E

3.B. EARLY INTERACTIVE SYSTEMS (FSA/IPS)

The terminal interface of some early time-shared computer systems (examples of which thrive
today) provide an excellent example of what we call the FSA/IS model. Here the system is
portrayed as a sort of Finite State Automaton (FSA), which enters a multitude of states, based
on current input and previous states. These states typically fall into a much smaller set of

classes (modes), as we shall explain.

(Based on the arguments 1n the introduction to this chapter, the implication of the FSA
design is that the user, also, is fundamentally content cast in the role of a very clever FSA.
He must maintain in his head a model of the current state, along with the meaning and
legality of the commands he might issue while in each state. Given this buman model, the
FSA/IS system provides an excellent behavior match. The same sort of argument can be

made for all of the systems which follow.)

This terminal interface model, though failing many of our behavior match requirements, has

performed admirably, especially in light of the accompanying software systems (compilers,
loaders, and the like), which are typically batch-oriented, and not suited for modification to
highly interactive situations. Elements of this design exist in nearly every subsequent

interactive system, though some of the shortcomings have been overcome.

The diagram of Figure 3-1 is a simplified state transition graph for the Digital Equipment
Corp. TOPS-10 time-sharing system, written for the DecSystem-10 computer, a system we
consider typical of the FSA/IS discipline.

{(7¥D H314¥) INNILNOD

{(3d¥3S3 AODN3IOH3INI) 1V

(S30ONENS H3SN AHMVYHLIBYY)

L1X3 TVWNHON

s
.«.r_. LY w
LNdNI 90ud @V SRR sy ¥
oa‘o. 50N8d M3SN s
N
a
= 2
_ <-9ne3aq (INWN) NNY &
. . — a
]
£
¥30vol e idiald, 2
il &
| w <
| avoT <
1 Y ¢}
NIDOT 3344 o
Ll NI =
HOLIO3 3 | HOl1103 tn.:_ S33N0 3
| HOLINOW :
i &
l1Q3 _ t
: | |
1 _ _
I ALIILN 304 |
| | _
= Ad0D
[| _
I | _
., S300WeNS, Q3NI430-¥3SN “ 300N ¥3SN _ Iaon tntzu:_ 300N 3344
|

To the reader already familiar with this common- organization, the interpretation of this
diagram should be particularly straightforward. The user agproaches the terminal in Free
mode (both system and user, according to our assumptions!) He (and the system) enters the

basic System mode using a restricted, and unique, Login language inierchange, then proceeds

to work.

While in System, or Monitor mode, the user communicates with the system using a verb-
argument syntax (eg, "RUN X[20,35]" or "COMPILE PTRAN"), which is interpreted
directly by the operating system. If this syntax appears elsewhere in the system (in other

modes), it is due to mimicry, not to any global design. Some of the Monitor mode commands,

rnotably those requesting simple status information ("What time is it?") perform their

functions, then return immediately to Moniwor mode to await additional commands. The
more interesting commands, however, cause other programs to be mapped into main memory
and run, entering one of 1 multitude of so-called User states (in User mode), whose input
grammars depend entirely on the program implementations. From here on, the system makes
I ttle modal distinction. The user can, however, in his programs, define his own substates,

specifying differently at different times what constitutes acceptable communication.

Control passes from User mode back to Monitor mode either by program request (only
indirectly influenced by user input), or by use of the special interrupt character, CALL (or
control-C), whose function is always to stop operation of the User-mode prograrn and to

return to Monitor mode.

This (crucial) CALL feature falls short of providing the non-preémptive environment to
which we subscribe, but its existence leads us to the following interesting observation:
although the user of this system has no direct access to it, at some level of implementation— a
very low one, in this instance— a non-preémptive discipline is in effect. The system responds
in a simtlar way to each character as 1t is typed, echos it on the output device (printer or
Aisplay), analyzes it for special meaning (eg, CALL), then either arranges for the return to
System mode or dispatches the character to the process currently preémpting the terminal.
Thus, though control of it has not been granted directly to the user, the value of a non-

preémptive regime has long been implicitly recognized.

At this level, the non-preémptive discipline reduces simply to an interrupt-driven, multiple
process priority discipline. This example illuminates the intimate connection between non-
preémptive and multiple process organizations.

19

In general, no simple way exists in these systems to suspend one action temporarily, in order

to perform some other (perhaps unrelated) action, then to return to the original task; mode

changes are usually destructive in that sense. More generally, little, if any, information about

previous states is retained by these systems — such memory must be provided by the user. 1

3.Bl Attribute Analysis
Let us now analyze systems of this character with respect to our Behavior match attributes.
An attribute is classified as variable if it is typically absent, but could be included in a system

without altering that system's basic category:

ik

1) Multiple activities: nonexistent or cumbersome to use.

L
Gh e i

2) Non-preémption: poor. As we have seen, the entire design embraces the concept of
preémption of the terminal by processes implementing different modes. One must in
every instance type only what is expected at that point, or else a specific (e.g. exit or
substate-entering) or general (e.g. CALL) "escape” character to change modes.

.

3) Response time: poor. The edit/compile/ run/debug cycles typical of these systems are
long and sequential, often requiring manuzl intervention between steps to initiate the
next. No fruitful work can be done during, for example, the compile phase.

4) Mode reduction: antithetical. In such systems there is a mode for every purpose.
5) Single Language: not provided. There is generally a different language for each mode.

6) Accessibility: variable. In a computer system we desire accessibility to such things as: the
variables of the running environment (the data), the statements or functions of the
language (the program), and, hopefully, the control structures of the system (the
interpreter).

-

The only global program and data variables in the TOPS-10 system are data and
program files on secondary storage. Any other data are defined and controlled by the
programs which run in User mode; the accessibility of these data is thus determined by
these programs, varying with each instance. These operating systems do not limit the
ability of their subsystems to provide good accessibility; most of the systems which we
will discuss were implemented using the facilities of general-purpose FSA/IPS systems.

S

B —

20

7) Context: variable, typically poor. Later we shall assert that a system cannot supply the
continuous context information we advocate without display devices with rapid random-
access capabilities. There is in principle no reason that :ich contextual displays could
not be integrated into any IS. However economic considerations have legislated heavily
against their use. lronically, many batch systems have fairly good context displays for
their operators [25]

8) Non-symbolic features: variable. The manipulative operations we envision could be
provided in any IPS, regardless of category. We know of only scattered instances where
any have been provided.

3.B2 Representative Systems

The command languages of most general purpose time sharing systems fit this category. In
addition to the TOPS-10 system [10] used in this section, they include the pioneering
CTSS system at MIT [9), The Stanford Computation Center time-sharing facility (25],
as well as newer systems like TENEX [5), MULTICS [43) and ITS [17). The latter
three do possess facilities for controlling multiple processes, by explicit assignment of the user
terminal to one process at a time. Nevertheless, for the most part they behave as FSA/IS

systems.

aC. EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS)

This class of programming system was developed for use where the needs of the user
community did not warrant development of a general time-sharing system, or where the need
for simplicity and comprehensive diagnostic infurmation was paramount. Although, unlike
the FSA/IS systems, these qualify as IPSs (using our requirement that an IPS be built around
a single language), these systems are actually more restrictive in many ways.

The terminal state diagram for BASIC [22], which we ccnsider representative of this
system type, appears in Figure 3-2. Operation of the system alternates between the edit
phase, in which programs are created, modified, fetched and stored to secondary storage, and
the execution phase, in which the meaning of user inputs are defined by the user’s program.
The number of mode classes is not really reduced from our TOPS-10 example, but the
number of User mode states is sharply reduced, restricting the user to the single language.

21

(S300NENS ¥3ISN ANVHLIENHY)

€4
I

3ALNd23X3

Figure 3-2. FSA/IPS Behavior of BASIC Termminal Interface

= e _— . . —— . . i 4 . __ — e

3.CI Attribute Analysis

FSA/IPS systems have about the same degree of success at meeting the behavior match

requirements that FSA/IS systems do. The one possible exception is the single language

criterion. BASIC does not even really qualify as a single language system, though, but is

simply a restricted (or dedicated) language system; there is no intersection between the syntax L

of the program editing commands and that of the statements which are edited.

3.C2 Representative Systems

BASIC and its derivatives are representative of this "compile and go” class.

3.D. REDUCED MODE SYSTEMS (FSA/IPS/RED)

These are the first truly interactive systems we have encountered. in these systems the user
can switch rapidly from program modification to partial program execution to variable value
query. They are also the first really single-language systems we have seen: statements which
implement user algorithms resemble in syntax those for modifying program text and for
controlling (starting, stopping, interrupting) execution of the algorithms. Also, in most cases,
either type of statement is legal whether executed "directly” (typed in at the terminal,
interpreted and obeyed immediately), or "indirectly” (as part of some previously created

program).

Our archetypical system of the FSA/IPS/RED type is JOSS [7). Figure 3-3 is an
approximation to the console state transition diagram for JOSS. Chiefly due to the
implementation of all functions as part of a single language, the segmentation of programs in
that language into parts and subparts (steps) which can be executed separately, and the
implementation of an interpreter for the language which can to perform these functions
incrementally, the designers were able to reduce greatly the number of modes. In JOSS,
there is the one predominant Command mode, the nearly irrelevant Free mode, and the

mode entered to accept input to the user program, on program request.

A system of this sort could presumably support any programming language. However, most
do not feature any but the simplest name scopes (static or dynamic), since the command

routine operates only at the "top level” of the system, requiring suspension of user program

23

i
L
i
i
i
]
i
i
5
i
1
|
i
i
i
i
1
{
\

execution (and perhaps loss of local context) before control returns to it. JOSS, for instance,
has only a single naming level (all variables are global). Others allow simple local
parameters to procedures. In other systens, including some LISPs [49), it is possible to
inhibit loss of local context after an error, or after an otherwise interrupted computation.
Because the nested User structure to be exhibited in the next section does not exist in these
systems, full interactive control is usually not possible in these suspended environments;

typically, only variable query and "backtrace” operations are available.

NOIL3ITdNOD

ANNILNOD

(S3lvisans SRR
¥3SN ‘8yY)

1504 904d

1NdNI 9508d

J3X3 1u8vd

S.NINILVLS JOVNONY TVNHON

1100

i__g. ||!‘l.\.1\.\|\..l|

ces 110Q330e -

WA—313730

(HOLNI3X3)

Vv CELL]

3
R
ONYWNNOD u3 3344

Figure 3-3. FSA/IPS/RED Behavior of JOSS Terminal Interface

3.D1 Attribute Analysis

1) Multiple activities: poor. The single program task may be interruptable, or even
continuable, but only trivial operations may be performed in the interim without
destroying the state of that task. Complete freedom does not necessarily exist to examine
all active data using terminal commands.

2) Non-preémption: not provided.

3) Response Time: fair. Unless the user’s program is running, preventing the system from
listening, commands are obeyed quickly (depending on system load, of course). Gaining
control can sometimes be a destructive process, however.

4) Mode-reduction: good. Unless the terminal has been preémpted for user input, nearly
any statement or command is legal whenever the system is willing to listen.

5) Single language: good. All but user-defined commands are in the same language.

6) Accessibility: moderately good. In some systems one can examine the state of any data
item, but only because the complexity of data declaration is sufficiently restricted. In
others, one is denied complete freedom to examine all active data from the terminal.

7) Context. variable. These systems do not present data continuously (do not support
displays), although they could. They therefore fall short of our context goals.

3.D2 Representative Systems

We have placed JOSS (and systems patterned after it: eg., AID [I1]), along with RUSH
(1), PL/ACME [63), QUICKTRAN ([13), and unaugmented (1) versions of some
LISPs (eg., [49)) in this category.

(1) LISP 15 seif-defining, allowing the user to write a command loop which, for the most part,
upgrades the system to the next ecategory.

26

3E. NESTED USER SYSTEMS (DPDA/IPS)

The systems we have seen so far have restricted the complexity of the programming
languages they could support. Major attributes of modern programring languages are the
naming and data allocation facilities which allow multiple recursive or parallel instances of
the data environments for procedures, and multiple use of names by scope-qualification.
Most of these facilities have been sacrificed in the IPSs we have described, because otherwise
they could not provide for the user convenient ways to “manipulate and roam around in the
information space which 1s of interest to him when it 1s of interest to him.” (3) In our terms,

they would provide inadequate accessibility.

The systems of the next category extend and modify the role of the user (or his
representative system interface, if you wish), greatly extending his ability to interact with

complex environments.

Our model system this time is LCC [45). In LCC the user is modelled as a recursively-
instantiable procedure “written” in the language supported by the IPS (see Figuie 3-4). The
system interface still interprei: input as program statements, generally executing them
consecutively, in FSA fashion. However, the means for accomplishing this are now more
explicit: an activation record for a PART'0 (or User) procedure exists on the stack, defining
the environment of the user. Each statement submitted from the terminal is treated as if it
were (had always been) the next statement 1n the User procedure. Such a system resembles at
the user interface (or models the user as) a finite state automator: with access to a push-down
stack for data and previcus state information. Such a device is known in automata theory as
a Deterministic Push-Down Automaton, or DPDA; thus our designation of this system type.
LCC is quite representative of the DPDA/IPS.

The differences between DPDA systems and other FSA systems are not striking at the “top
level"— while the keyboard input 1s driving the original outer-level User procedure instance.
However multiple instances of User procedure, at differen’ recursive levels, are permitted.
The running program may instantiate a User procedure cirectly, by a procedure call; or an
instance may be created synchronously (via a preset breakpoint), or asynchronously (eg., an

unexpected procedure call {47])) in response to a user-initiated “attention” signal. In any

......................................

(3) From (44]

i
i
§
|
i
|
i
I
I
I
I
1
1
[
i
i
b
i
b

case, only one User procedure may be active— responding to the keyboard— at any instant,
and then only when that User instance is the most recently entered procedure. This

automatically prevents any but the most deeply nested User procedure from being active.

Now it is possible to establish a precise interpretation for the meaning of names typed by the
user: they are interpreted in the environment of the User procedure in control, just as names
are interpreted 1n any other procedure. It is therefore possible to provide accessibility to
variables in any environment, by arranging to instantiate a User procedure which can "see”

that environment.

This arrangement still does not meet all our accessibility requirements. For instance, in any
recursive language, for a given User procedure instance there can be variables hidden from
view (using normal access methods) due to recursive instan.es of the same variable. In Algol-
like languages, the problem is worse: each instance of the User procedure must be considered
to be declared within the procedure from which it is called (or which it interrupts— it
amounts to the same thing) in order to "see” the data for that procedure. Not only is this
difficult to implement, but it also does not provide access to those active data not in the

lexical scope of any User procedure instance.

LCC does not suffer from the latter (Algol-induced) malady, but shares the former with other
systems. It solves them by providing rather clumsy (but complete) means for violating scope
restrictions, through extended names or explicit scope specification, indicating environments
of interest. We feel that some sort of scope-violation mechanism is inevitable for any IPS

which provides both a powerful enough language and an accessible enough system.

28

FREE =

ACTIVATION RECORD FOR
OUTER-LEVEL USER

ACTIVATION RECORD FOR
FIRST USER-CALLED

PROCEDURE
3 eee
. /\/\/\/\A—- FSA/IPS/RED
) RETURN TO PREVIOUS

FUNCTION

N PREVIOUS

** FUNCTION
\ USER

AR FOR PROCEDURE
i, ""-—-.____..,\

/__... eee

AR FOR PROCEDURE n TR
P Ay, |

LR N

AR FOR SECOND - [e
LIZVEL USER CALL

FSA/IPS/RED

R e Ve

Figure 3.4. DPDA/IPS Behavior of LCC Terminal Interface
29

3.E1 Attribute Analysis

)

2)

3)

1)

5)

6)

Multiple activities: fair. These systems, by allowing multiple instances of User procedure
(or a similar construct), gain some of the control powers we advocate, at least allowing
the user to switch his environment of interest without destroying previous information
(losing his place). However the system still has too much of a hand in when and how
this switch is made, which leads us to the following:

Non-Pre#mption: poor. A breakpoint or explicit program call to the USER function
preémpts the terminal for the new instance and context. When the user gains control via
“attention”, he is the instrument of this preémption. This facility lessens the preémptive
behavior, but does not eliminate it.

Response time: moderately good. When a User procedure is active, response is good by
all our measures. During a lengthy operation (e.g., a user’s problem program execution),
a new User instance can be asynchronously instantiated, again providing good response
time, at the expense of having to remember (with some system help) to return control to
lower levels later.

Single Language, Modes: as before, good.
Accessibility: pr: sent, but impaired. In most of these systems, the complexity of the
name and allocation structures has increased slightly beyond the ability of the user

interface to accommodate it.

Context: variable.

3.E2 Representative Systems

LCC [45) and all LISPs, at least with appropriate user-provided functions, perform: as

DPDA systems. BBN Lisp [53] exhibits this organizaion and, as we shall see, surpasses it

in scme important ways. There are also elements of DPDA behavior in Kay's FLEX design

(28], upon which we also intend to elaborate, for it too exhibits major behavior match

improvements over the systems in this category. The current incarnation of the ECL System

(58], under refinement at Harvard, seems to fall into this category. We shall discuss

Mitchell's SLICE system [44] briefly, chiefly because of improvements in technique -and

human engineering attributes which we have not stressed. Other DPDA/IPS systems include
APL [26] and CCs [50])

g 3F. ADVANCED IPS SYSTEMS

In this section we will consider the salient behavior match features of recent IPS <ys.erns, or

designs, which have provided much of the guidance and inspiration for this work.

3.F1 BBN LISP

This system [53) behaves mostly as a DPDA system, with several distinct modes in its FSA

component; some of the additional modes provide function editing capabilities and special
facilities within breakpoints. Of Particular interest to us are the contributions which

Teitelman has made to BBN LISP. These facilities first appeared in his thesis, {5¢], and L
have since been presented and elaborated in [53], [55).

Teitelman shares with us the desire for a system whose behavior complements the user’s,

ailowing him to work more efficiently and effectively. His chief emphases, however, treat user

attributes which we have not addressed:

1) Errors. People make errors when they speak, write, or type. Simple typographical,
logical or spel<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>