
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY

MEMO AIM-225

STAN-CS-74-406

MEMORY MODEL FOR A ROBOT

BY

W. A. Perkins

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 2494

PROJECT CODE 3D30

JANUARY 1974

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSHY

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JANUARY 1374

MEMO AIM-225
“

COMPUTER CCIENCE DEPARTMENT

REPORT NO. CS-406

MEMORY MODEL FOR A ROBOT

by

W. A. Perkinsx

o Astract: A memory model for a robot has been designed and tested in
| a simple toy-block world for uhich it has shoun

clarity, efficiency, and generality. In a constrained
pseudo-English one can ask the program to manipulate
objects and query it about the present, past, and
possible future states of its world, The program has
a good understanding: of its world.and gives intelligent
ansuers in reasonably good English. Past and hypothetical
states of the world are handled by changing the state
the world in an imaginary context. Procedures interrogate and g
moclify two global databases, one which contains the present
representation of the world and another which contains the
past history of events, conversations, etc. The program
has the abi | ity to create, destroy, and even resurrect
objects in its world.

% Present address is General Motors Research Laboratories,

Warren, Michigan 480830

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Contract DAHC15-73-C-8435.

The views and conclusions contained in this document are those of the

authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Re-
search Projects Agency or the U.S. Goverment.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

MEMORY MOOEL FOR A ROBOT

by

W. A. Perkins

TABLE OF CONTENTS

SECTION PAGE

|. INTRODUCTION 0

~ Il. DIALOG 5

Ill. DATABASES 46
A. Knowledge Representation Database
B. Historic Oat abase

NC

IV. PROCEDURAL DESCRIPTIONS 50

56

VI. CONTEXT MECHANISM 60

VII. DISCUSSION 63
A. Self-debugging

B. Generating Answers

C. Reasoning

0. Creating, Destroying, and Resurrecting

Tokens (Particular Objects)

E. Suggestion for Future Work

VIII. ACKNOWLEOGMENTS 70

~ APPENDIX A. HISTORIC DATABASE GENERATEO BY DIALOG 71

REFERENCES 115

| . INTRODUCTION

One of the main probiems in Artificial Intelligence is the
representation of knowledge. Early work on this important problem was

done by McCarthy[l], Newell, Shaw, and Simon[2], Amarel[3], and McCarthy
and Hays[4]. In natural language understanding Quillian[5], Winograd[6], and
Shank[7] have spent a large part of their effort in this area. In computer
vision the representation problem has been considered by Winston[8],
Binford[9], and Agin and Binford[18]. New programming languages have
been developed[11,12,13,14]} to make representation of knowledge easier

~ to work with. Several programs which attempt to model human memory

from the psychological point of view are EPAM[L5], SAL[L1 6], ELINOR[1 7],
and HAM[1&].

One needs a system which can readily store, retrieve, and manipulate
data. It must be flexible enough to work in a changing world and yet have
enough depth to embody difficult concepts and relationships. Work in this

direction has resulted in a program which can carry on a conversation about

its world in a constrained language. No natural-language parsing is done.
The input questions must satisfy a given format while the output is a little

more natural. The memory-model system has been tested on Winograd’'s

Block World[6] and it handled the questions with great speed and
efficiency.

Figure 1 shows a possible segmentation for a robot system.

Language input is via a teletype and visual input is via a TV camera with a

“hand” for manipulation of objects. In Winograd’ s system and the present

system the “hand” and servo-program are replaced with visual displays and

the TV camera, the visual parser (Segments 5 and 6) and the procedures
for storing and retrieving visual data (Segment 9) are all absent. The

. present system has been further constrained by elimination of the natural

language parser (Segments 2 and 3) with a somewhat simpler executive
(Segment 1). These simpiifications allowed concentration on the robot’ s
memory model (Segments 4,7,and 8).

The program (MAX) is written in SAIL[1 9] which is an extension of
ALGOL and has a good string structure. The program runs in about 188K of
PDP 18 core at a speed of about 18 times that of Winograd’ s Program[6]
(non-nat Ural-language part). The reasons for this gain in speed with the
same computer is: (1) Difference in programming languages--SAIL versus
LISP and MICROPLANNER,; (2) Difference in database structure--string array
retrieval versus pattern matching of database.

2

| 1. EXECUTIVE
|

| LL — —_
— — I| LL | | |

] d em — ay o) |
| 2. TOP-DOWN PARSER | | 7. PROCEDURES FOR

: TELETYPE | | STORING & RETRIEVING
| 3. BOTTOM-UP PARSER | | LANGUAGE DATA |

SE | ICo [
mr — |

8 . KNOWLEDGE

| |
| . ~ js | REPRESENTATION

SERVO 4. PROCEDURES | DATABASE

yo |
0 PROGRAM FOR CONTROLLING | HISTORIC DATABASE

| | AeD ROTOR ACTIVITIES | CONVERSATONS, ACTIONS,
|

HAND VISUAL IMAGES

"A

VIDEO STORING & RETRIEVING

Figure 1. A possible segmentation of a robot.

3

The basic data storage unit for the program’ s database is string

arrays. Each location in the string array- can be viewed as a storage
location of unlimited length. By use of the SAIL scanning functions and a
user-selected set of break characters, it is possible to quickly pick out the

. desired component from the string or list.
In its “static” database the program contains all the knowledge

necessary to describe the world in its present state (see Knowledge
| Representation Database, Segment 8). Some of the knowledge about an

| object can be pulled directly out of an array such as the color, location, and
w name of objects that it supports, and names of objects that it is supported

by. However, many descriptions involve manipulation of the database in

order to retrieve the desired answer. For example, “Find a block which is
taller than the one you are now holding” must be answered by manipulation
of the database since it would be impracticai to store on the property list
of each block whether it was taller than the block now being held by the

- hand. Some forms of data such as color and size are ideal for storage on
the property list while others such as “taller than..." are definitely not
suitable. Other data such as support relationships and left-of relationships
are in an intermediate category and could be handled either way. In the

program we chose to add the support relationship as a property, but not

. left-of, right-of, etc. This means that as objects are moved, the program
must continually update the properties top-status and bottom-status of all

objects that are affected by the movements. However, the program can

answer questions involving support with ease and speed. On the other
hand the program does not have to waste time keeping track of the left-of
relationship as it moves objects, but it must do a little calculation every

‘ time it wishes to know this relationship between two objects.

Segment 8 also contains historic data such as conversations and
actions which have occurred. This information is stored in a linear (one

index) array which we call the “Grapevine”. Many procedures store

information on this Grapevine and a smaller number interrogate it. Objects
are readily described by reference to this Grapevine in such expressions

as “the one | told you to pick up” and “objects that you touched while you

were doing it”.

Manipulation of blocks is done by a group of specialists. When the

“ strategist or higher level procedure wants a particular Block A put on top
of Block B, it does not have to concern itself with the fact that Block A is

three deep in one pile and Block B is four deep in another pile and the

| 4

]

hand is holding some other object. It simply asks that the final job be done

and each motion specialists calls on other specialists and sometimes itself

recursively in order to set up the proper conditions for it to do its job.

This is essentially the method used by Winograd[6,28] and we have found
it very satisfactory.

. The program uses a context mechanism to answer questions about

hypothetical and past states of the world. When asked if it can stack up

some configuration of blocks, the program searches its past (Historic

Database) to see if it has ever done such an operation. lf not, it will enter
an imaginary context and try to perform the operation. (The state of the

real world is preserved.) The program can answer any question about the

world in the past by entering the imaginary context, retracing its steps by
use of information stored in the Historic Database, and then examine its

database in light of this new context. There is no overhead for entering
this imaginary context and the memory space increases are proportional to
the size of the imaginary world (i. e. the extent of the modifications to the
real world).

The prograrn contains an extensive error checking system. Each
procedure checks the syntax of its input. If a procedure fails, it stores the

reason for failure on the Grapevine and reports failure to its caller. At
present this failure usually propagates upward to the highest level and the

program prints out on the teletype that it failed and the reason. It would

be highly desirable to have higher-level procedures or the executive
handle some of these problems, but this has only been done in a few
special cases. However, this error-checking has turned out to be an

excellent debugging technique as discussed in Section VII.

The program was written using the standard features of SAIL and
does not use LEAP (see Ref. 19). It is interesting to note that the abilities
of the program were achieved without using a high-level language such as

PLANNER[11], QA4[12], CONNIVER[13], or MLISP[21]. It was possible to
incorporate many of the ideas from those languages (such as procedural

knowledge and context mechanism) into the program. The program was

written over a period of eight months and represents about six-man months

of effort (the listing is about 250 pages). One of the reason that it was
possible to do this in such a short time is the fact that the program runs

more rapidly than similar program in high-level languages and therefore new

algorithms could be debugged in less time.

5

"

Il. DIALOG

_ The following is a dialog between MAX (the program) and a friend,
We have chosen Winograd’s Block World[6,28] so this system could be
compared with that important earlier work. Winograd chose his questions

so that every second or third question would bring in some new problem

for the representation system (a few of his questions were chosen only to
| test the natural language parser and are not very interesting in terms of

~ the represent at ion) .

Besides testing our system on all of Winograd’ s questions, we have

added 22 new questions which test additional features of our system

(these new questions are marked with a "¢" on the right). The quest ions

. given to MAX are marked by a "#" and his answers follow the questions
after a blank line. The natural language questions (in small letters) were

inserted later. Following each answer we have inserted the PDP 10 run

time (without displays) in square brackets. Comments are in curly
brackets.

“ A deeper insight into what MAX was thinking about during this

conversation can be obtained from Appendix A which will become

understandable after reading Sections lll, IV, V, and VI.

HELLO I' M MAX, WHAT CAN | DO FOR YOU?

{See Fig. 2. Some hidden lines in the back of
objects are omitted or dotted, but an object is

not obscured by another object in front of it. ;

= l. pick up a big red block.
| #/ YOU DO PICKUP BLOCK(COLOR = REDJSIZE = BIG).

OK

[run time = 0.4 sec]

{The display showed the hand grasping the big

green cube, putting it on the table, and then

picking up the big red block in going from Fig. 2

to Fig. 3. }

6

« HELLO | ‘M MAx . WHRT CAN | DO FOR YOU?

JS

=TBR Sail
pe UTA

~ Figure 2.

ae

| 7

| YOU 1 PICKUP BLOCK(COLOR = REDSIZE = BIG) .

i=r
PANSZ

=

| Figure 3.

8

“

2. grasp the pyramid.

u #1 YOU DO GRASP BLOCK(DEFINITEIKINDOF = PYRAMID).

COULDN'T DO IT BECAUSE DESCRIPTION FIT THE SMALL RED

PYRAMID THE SMALL GREEN PYRAMID THE SMALL BLUE PYRAMID

[run time = 0.3 sec]

~ {MAX was unable to carry out the operation

because he found three objects which fitted the

description, KINDOF = PYRAMID while DEFINITE
indicated that he should find only one. }

. 3. find a block which is taller than the one you are holding
and put it into the box.

{1 FIND BLOCK(HEIGHT > HEIGHT[BLOCK(HELD_STATUS = GRASPED-BY
HAND(MAX))]) AND YOU DO BLOCK(ANS:TFIND//X = LAST 2)
INSIDE BOX(DEFINITE) .

~ IT IS THE BIG BLUE PARALLELEPIPED

OK

[run time = 0.8 sec]

{Note that “it” was handled by reference to a

“ previous answer. The hand put the big red
block down and placed the big blue
parallelepiped inside the box resulting in the

scene of Fig. 4. }

“

4. what does the box contain?

FIND OBJECT(BOT,STATUS = ONTOP BOX(DEFINITE)).

ITIS THE BIG BLUE PARALLELEPIPED THAT. | AM NOW HOLDING

| AND THE SMALL BLUE PYRAMID

- [run time = 0. 4 sec]

" 9

«

FIND BLOCK(HEIGHT > HEIGHT] BLOCK(HELD_STARTUS)
= ORASPED_BY HAND(MAX) J)]) AND YOU DO BLOCK({(ANS:
FINDx => LAST 2) INSIDE BOx(DEFINITE) .

IT IS THE BIG BLUE PARALLELERPIPED

q OK

=|

| = HA falT= JZUND» pe | Bas
) =]

Figure 4.

“-

LC

19

5. what is the pyramid supported by?

FIND QBJECT(TOP_STATUS = HOLDING BLOCK(KINDOF = PYRAMID]
ANS: TFIND//X« LAST 2)).

IT IS THE BOX THAT | JUST PUT A BIG BLUE PARALLELEPIPED

INSIDE OF

[run time = 0. 7 sec]

{Here the description in the command was

essentially “the pyramid that you found” which

was unique. }

6. how many blocks are not in the box?

HOW MANY BLOCK(BOT_STATUS # ONTOP BOX(DEFINITE)|KINDOF
= PARALLELEPIPED)?

4 THE BIG RED PARALLELEPIPED AND THE BIG GREEN CUBE

WHICH IS TOWARD THE BACK AND THE BIG GREEN CUBE

THAT IS NOW HOLDING A SMALL RED PYRAMID AND THE

. SMALL RED CUBE

[run time = 0.3 sec]

7. Is at least one of them narrower than the one which i told

you to pick up?
fi DOES EXIST BLOCK(ANS:TEXIST/X/« LAST 2|YWIDTH<
YWIDTH|BLOCK(COM:HUMAN(FRIEND) TO HANDIMAX)TPICKUP/
HAND(MAX)/X« LAST w)])?

YES THE SMALL RED CUBE

[run time = 0.4 sec]

3. Is it supported?
I DOES EXIST OBJECT(TOP_STATUS = HOLDING BLOCK(ANS:TEXIST/
X/< LAST 2))?

YES THE TABLE

[run time = 8.6 sec]

11

9. can the table pick up blocks?
1S POSSIBLE TABLE DO PICKUP BLOCK()?

NO BECAUSE AN_VEG_MIN[TABLE(ITSELF)] NOT EQUAL ANIMATE
[run time = 8.82 sec]

(MAX was saying that since the property

AN_VEG_MIN for the category TABLE was not
ANIMATE, the answer was “no”. }

10. can a pyramid be supported by a block?

{1 1S POSSIBLE BLOCK(KINDOF = PYRAMID) ONTOP BLOCK(KINDOF
= PARALLELEPIPED)?

) YES EXAMPLE IS THE SMALL RED PYRAMID AND THE BIG
GREEN CUBE THAT IS NOW HOLDING A SMALL RED PYRAMID

[run time = 0.4 sec]

{In answering hypothetical questions such as
this MAX first looks for an example. }

11. can a pyramid support a pyramid?

{1S POSSIBLE BLOCK(KINDOF = PYRAMID) ONTOP BLOCK(KINDOF
= PYRAMID)?

NOBECAUSE BLOCK(SHAPE_OF_TOP = POINTED) NOT SUPPORT
ANY OBJECT

[run time = 0. 9 sec]

N {Since no example existed, MAX entered his
Imaginary world and tried to put a pyramid on

top of a pyramid. During execution he
discovered that this cannot be done and the

reason.}

3. 2. could you stack up three red blocks? @

Is POSSIBLE YOU DO STACKUP BLOCK(COLOR = RED) BLOCK(COLOR
= RED) AND BLOCK(COLOR = RED)?

12

YES| IMAGINE | COULD DO THAT

[run time = 1.7 sec]

(MAX first checked to see if he had ever

stacked up three red blocks. Since he had

never done it, he entered his imaginary world
and performed the action giving the result

shown in Fig. 5.}

13. could you pick up a red block? ®
1S POSSIBLE YOU DO PICKUP BLOCK(COLOR = RED)?

YES | ALREADY DID THAT

[run time = 0.2 sec]

In checking past actions, MAX discovered that
he had already picked up a red block. }

14. could you stack up three blocks? 6
IS POSSIBLE YOU DO STACKUP BLOCKO BLOCKO AND BLOCKO?

» YES | ALREADY FIGURED THAT OUT
oo [run time = 0.3 sec]

{Although MAX had not really stacked up three

blocks, in his imaginary world he had done it and

he remembered that, saving himself the effort of

figuring it out again. }

13

IS POSSIBLE YOU DO STACKUP BLOCK(COLOR

= RED) ! BLOCK(COLOR = RED) AND BLOCK(COLOR { wep»

YES I] IMAGINE I COULD DO THAT

if

! |

} N —

Py —

: LT| [2

it FT pal’=. (Tal

. | #0)

Figure 5.

14

15. the blue pyramid is nice.
STORE FACT LIKE-STATUS OF HUMAN(FRIEND) IS LIKE

_ BLOCK(DEFINITE|COLOR = BLUEIKINDOF = PYRAMID).

- OK
[run time = 0.1 sec]

{Note how different the surface structure is

S from the form used to represent the meaning. }

a 16. | like blocks which are not red, but i don’t like anything

which supports a pyramid.

N // STORE FACT LIKE-STATUS OF HUMAN(FRIEND) IS LIKE
BLOCK(COLOR# RED) AND STORE FACT LIKE-STATUS OF
HUMAN(FRIEND) IS NOT LIKE OBJECT(TOP_STATUS = HOLDING

BLOCK(KINDOF = PYRAMID)).

OK

L OK

[run time = 1 . 0 sec]

17. do i like the box?

% #18 FACT LIKE-STATUS OF HUMAN(FRIEND) IS LIKE BOX(DEFINITE)?
NO BECAUSE LIKE_STATUS[HUMAN(FRIEND)] NOT EQUAL LIKE
BOX(DEFINITE)
[run time = 0.1 sec]

“ {MAX was only saying that there does not exist
any fact that his friend likes the box. Therefore

It is necessary to ask the next question.}

| 11S FACT LIKE-STATUS OF HUMAN(FRIEND) IS NOT LIKE
~ BOX(DEFINITE)?

YES THE BOX

[run time = 0.1 sec]

‘ 15

18. do i like anything in the box?
DOES EXIST OBJECT(BOT_STATUS = ONTOP BOX(DEFINITE)|
LIKED-STATUS = LIKED-BY HUMAN(FRIEND))?

YES THE BIG BLUE PARALLELEPIPED THAT I AM NOW HOLDING

AND THE SMALL BLUE PYRAMID

[run time = 0.9 sec]

{Since (15) and (16) caused information to be
stored on the property list of the objects as

well as the human's property list, MAX can

easily answer this quest ion. ;

19. Is the green cube which is in front of a green block &
liked or disliked by anyone?

WHAT IS LIKED-STATUS OF BLOCK(COLOR = GREEN|KINDOF = CUBE]
LOCASHUN IN-FRONT-OF BLOCK(COLOR = GREEN))?

“ NOT LIKED-BY HUMAN(FRIEND)
[run tirne = 0.2 sec]

{MAX was given contradictory information about
his friend's feeling toward this block in (16).
Evidently he decided to believe the most recent

information. ;

20. will you please stack up both of the red blocks and either

a green cube or a pyramid?
1 YOU DO STACKUP BLOCK(COLOR = RED) BLOCK(COLOR = RED)
AND EITHER BLOCK(COLOR = GREEN) OR BLOCK(KINDOF = PYRAMID).

OK

[run time = 0.9 sec]

(The configuration of Fig. 6 is obtained. }

16

-

— YOU DO STACKUP BLOCK(COLOR = RED) BLOCK(COLOR

= RED) |AND EITHER BLOCK(COLOR = GREEN) OR

BLOCK(KINDOF = PYRAMID) .

OK

= EEoo i= 1

| — |i\ == hes

Figure 6.

17

21 . which cube is sitting on the table? |
FIND BLOCK(KINDOF = CUBE|BOT_STATUS = ONTOP TABLE(DEFINITE).

ITIS THE BIG GREEN CUBE THAT IS NOW HOLDING A SMALL

RED PYRAMID

[run time = 0.3 sec]

22. what do the red pyramid and the small cube have in common? ®

WHAT DO BLOCK(COLOR = RED|KINDOF = PYRAMID) AND
BLOCK(KINDOF = CUBE|SIZE = SMALL) HAVE IN COMMON?

THEY BOTH BELONG TO SAME CATEGORY

THEY BOTH HAVE THE COLOR RED

THEY BOTH HAVE THE SIZE SMALL

THE LENGTH OF BOTH IS 50

THE WIDTH OF BOTH IS 50

THEY ARE BOTH ON TOP OF THE BIG GREEN CUBE'’S

THEY ARE BOTH CLEAR ON TOP

[run time = 0.3 sec]

{Note that MAX not only looks at the similarities

of the objects in question but checks the

similarities of objects that they are on top of

and support .}

23. what do the green cube which is holding a cube and the @

green cube which is holding a pyramid have in common?
WHAT DO BLOCK(COLOR = GREEN|KINDOF = CUBE|TOP_STATUS
= HOLDING BLOCK(KINDOF = CUBE)) AND BLOCK(COLOR = GREEN]
TOP-STATUS = HOLDING BLOCK(KINDOF = PYRAMID)|KINDOF
= CUBE) HAVE IN COMMON?

THEY BOTH HAVE THE DESCRIPTION THE BIG GREEN CUBE

THEY BOTH HAVE THE DIMENSIONS 150 150 150

THEY ARE BOTH HOLDING SMALL RED BLOCK’S

18

«

[run time = 0.6 sec]

24. is there a large block behind a pyramid?

DOES EXIST BLOCK(SIZE = BIG|KINDOF = PARALLELEPIPED)]
XCOORD < XCOORD[3BLOCK(KINDOF = PYRAMID)])?

YES THE BIG BLUE PARALLELEPIPED AND THE BIG RED

PARALLELEPIPED AND THE BIG GREEN CUBE THAT IS NOW

“~ HOLDING A SMALL RED CUBE

[run time = 0.5 sec]

25. put a small one onto the green cube which supports a pyramid.
{1 YOU DO BLOCK(SIZE = SMALLIKINDOF = PARALLELEPIPED)

~ ONTOP BLOCK(COLOR = GREEN/TOP-STATUS = HOLDING BLOCK(KINDOF

= PYRAMID).

OK

[run time = 0.4 sec]

{MAX moves the block and the scene of Fig. 7
results. }

26. put the littlest pyramid on top of it.
1 YOU DO BLOCK(KINDOF = PYRAMID|HEIGHT< HEIGHT[Y
BLOCK(KINDOF = PYRAMID)]) ONTOP BLOCK(ACT:TONTOP/X/
~ LAST 3).

.,

OK

[run time = 8.6 sec]

{MAX moves the block and the scene of Fig. 8
results.}

“

pe 19

\-

SC

(I

Ke YOU DO BLOCK(SIZE = SMALLKINDOF = PAR-
ALLELEPIPED) ONTOA BLOCK(COLOR = GREENTOP_STATUS

= HOLDING BLOCK(KINDOF = PYRAMID)).

OK

C.

A BLUE

0 = = | Aa
“= [BE |

“

Figure 7.

“

\

20

\.

YOU DO BLOCK(KINDOF = PYRAMIDHEIGHT
HEIGHTL © BLOCK KINDOF = PYRAMID) J) ONTOP
Hosmer « LAST 2).

OK

|
|

N |

1 3 IN|ARs AN
= == Pas~~

Figure 8.

a

21

|

5

| 27. does the shortest thing the tallest pyramid’ s support
= supports support anything green?

// DOES EXIST OBJECT(TOP_STATUS = HOLDING BLOCK(KINDOF

= PYRAMID|HEIGHT 2 HEIGHT[V BLOCK(KINDOF = PYRAMID)]))
AND DOES EXIST OBJECT{COLOR = GREEN|BOT_STATUS = ONTOP
OBJECT(BOT_STATUS = ONTOP OBJECT(ANS:TEXIST/X/ =» LAST 3))|

- HEIGHT <HEIGHT[Y OBJECT(BOT_STATUS = ONTOP
| OBJ ECT(ANS:T EXIST/X/ = LAST 3))])7

YES THE BIG GREEN CUBE THAT IS NOW HOLDING A SMALL

RED CUBE AND A SMALL RED PYRAMID

YES THE SMALL GREEN PYRAMID THAT | AM NOW HOLDING

[run time = 7.5 sec]

// DOES EXIST OBJECT(COLOR = GREEN|BOT_STATUS = ONTOP
OBJECT(HEIGHT < HEIGHT[Y OBJECT(BOT_STATUS = ONTOP

« OBJECT(TOP_STATUS = HOLDING BLOCK(KINDOF = PYRAMID]
HEIGHT 2 HEIGHT[Y BLOCK(KINDOF = PYRAMID)]))) P)?

YES THE SMALL GREEN PYRAMID THAT | AM NOW HOLDING

| [run time = 18.7 sec]

N {This is a difficult question to say the least.
Since the question does not reveal to MAX that
all of the objects are blocks and the fact that
he does an exhaustive search makes this

particularly difficult. Note that the first

« formulation with less nesting takes less time. }

28. what color is it?
#/ WHAT IS COLOR OF OBJECT(TOP_STATUS = HOLDING

OBJECT(ANS:TEXIST/X/ « LAST 2)?

| RED
[run time = 0. 5 sec]

C 22

“

{This question was chosen by Winograd because
of the difficulty with “it” in the natural language

part. ;

29. how many things are on top of green cubes?
HOW MANY OBJECT(LOCASHUN DIRECTLY-ABOVE BLOCK(COLOR

= GREENIKINDOF = CUBE))?

3 THE SMALL RED CUBE AND THE SMALL RED PYRAMID

AND THE SMALL GREEN PYRAMID THAT | AM NOW HOLDING

[run tine = 0.8 sec]

30. had you touched any pyramid before you put the green one on
the little cube?

DOES EXIST BLOCK(KINDOF = PYRAMIDJACT:TGRASP/HAND(MAX)/
X -- COM:TONTOP/BLOCK(COLOR = GREEN|KINDOF = PYRAMID)/
BLOCK(SIZE= SMALLIKINDOF = CUBE)- w)?

YES TH: SMALL GREEN PYRAMID THAT | AM NOW HOLDING

[run time: 2.0 sec]

33 . when did you pick it up?
// WHEN DID YOU DO PICKUP BLOCK(ANS:TEXIST/X/ « LAST 0)?

| DID IT WHILE | PUT THE SMALL GREEN PYRAMID THAT

| AM NOW HOLDING ONTOP THE SMALL RED CUBE

[run time = 0. 4 sec]

32. when did you first pick it up? @

WHEN DID YOU DO [ACT:TGRASP/HAND(MAX)/BLOCK(ANS:TEXIST/
X/ —~ LAST o0)-FIRST 01]?

| DID IT WHILE | STACKUP THE BIG RED PARALLELEPIPED

THE BIG GREEN CUBE THAT IS NOW ON TOP OF A BIG RED

PARALLELEPIPED AND THE SMALL RED CUBE

[run time: 1.0 sec]

23

{Note that MAX answered in terms of the blocks

that he actually stacked up rather than in terms

of what he was requested to do. }

| 33. why?
{ WHY DID YOU DO [ACT:1// = PRES 2]?

IN ORDER TO PUT THE SMALL GREEN PYRAMID THAT | AM

NOW HOLDING OFFOF THE SMALL RED CUBE

[run time = 0.1 sec]

{MAX remembers why he performed each

| action.;

34. why did you clear off that cube?

WHY DID YOU DO [ACT:TOFFOF//BLOCK(KINDQOF = CUBE)
- PRES 4]?

IN ORDER TO PUT THE SMALL RED CUBE ONTOP THE BIG

GREEN CUBE THAT IS NOW ON TOP OF A BIG RED PARALLELEPIPED

[run time = 0.3 sec]

35. why did you do that?
WHY DID YOU DO [ACT:1//- PRES 2]?

SO | COULD MOVE MY HAND FROM LOCATION -422 -608 -460

TO LOCATION -75 -450 -460

[run time = 0. 2 sec]

36. why?
// WHY DID YOU DO [ACT:T//- PRES 2]?

$0 THE GRASP-STATUS OF MY HAND WOULD EQUAL GRASPING

BLOCK(BS)

[run time = 0.1 sec]

37. why did you do that?

24

.

WHY DID YOU DO [ACT:T//- PRES 2]?

SO | COULD MOVE THE SMALL RED CUBE FROM LOCATION

-75 -450 -460 TO LOCATION -310 -550 -110

[run time = 0.1 sec] |

33. why did you do that?
// WHY DID YOU DO [ACT:T//- PRES 2]?

IN ORDER TO PUT THE SMALL RED CUBE ONTOP THE BIG

GREEN CUBE THAT IS NOW ON TOP OF A BIG RED PARALLELEPIPED

[run time = 0.2 sec]

39. why did you do that?
WHY DID YOU DO [ACT:T// = PRES 2]?

BECAUSE YOU ASK ME TO

[run time = 0.03 sec]

40. how did you do it’?
#/ HOW DID YOU DO [COM:T// « PRES @]?

| RELEASE THE BIG BLUE PARALLELEPIPED

| MOVE MY HAND FROM -545 145 -260 TO -545 -255 -360

| GRALP THE EIG GREEN CUBE

| MOVE THE BIG GREEN CUBE FROM -545 -255 -360 TO -310 -550 -160

| PUT ‘I-HE BIG GREEN CUBE ONTOP THE BIG RED PARALLELEPIPED

| RELEASE THE BIG GREEN CUBE

| MOVE MY HAND FROM -310 -550 -160 TO -75 -450 -410

| GRASP THE SMALL GREEN PYRAMID

| MOVE THE SMALL GREEN PYRAMID FROM -75 -450 -410 TO -422 -608 -468

| TAKE -i-HE SMALL GREEN PYRAMID OFFOF THE SMALL RED CUBE

| RELEASETHE SMALL GREEN PYRAMID

| MOVE MY HAND FROM -422 -608 -460 TO -75 -450 -460

| GRASP THE SMALL RED CUBE

| MOVE THE SMALL RED CUBE FROM -75 -450 -460 TO -310 -550 -110

| PUT THE SMALL RED CUBE ONTOP THE BIG GREEN CUBE

[run time = 0.5 sec]

25

(MAX remembers in detail how he carried out a

command. }

41 . how many objects did you touch while you were doing it?
// HOW MANY OBJECT() YOU DO GRASP WHILE YOU DO

[COM:T// « PRES 2]?

3 THE BIG GREEN CUBE THAT IS NOW ON TOP OF A BIG

RED PARALLELEPIPED AND THE SMALL RED CUBE AND

THE SMALL GREEN PYRAMID THAT | AM NOW HOLDING

[run time = 0.4 sec]

{This question is more difficult than it first

appears to be. Note all the possible variations
such as (42)}.

42. how many red objects did you clear off before you did it? @

HOW MANY OBJECT(COLOR = RED) YOU DO OFFOF BEFORE
YOU DO [COM:1// » PRES 2]?

1 THE BIG RED PARALLELEPIPED

[run time = 0.4 sfc]

43. what did the red cube support before you started to clean
it off?

i FIND OBJECT(BOT_STATUS = ONTOP BLOCK(COLOR = RED]
KINDO= CUBE)) BEFORE YOU DO OBJECTO OFFOF BLOCK(COLOR
= RED|KINDOF = CUBE)?

IT IS THE SMALL GREEN PYRAMID

[run time = 2.5 sec]

{MAX enters his imaginary world and retraces
his steps to the configuration shown in Fig. 9.

Then he answers the questions by examining
the state of the imaginary world. }

26

|

-

|

|C FIND OBJECT Tens = ONTOP BLOCK(COLOR = RED
K INDOF = CUBE)) BEFORE YOU DO OBJECT() OFFOF

BLOCK{ COLOR = REDKINDOF = CUBE) ?
IT I5 THE SMALL |GREEN PYRAMID

|

.

-pl FLB= |
til | alll’

Zw | TAN

iN [BE | 7ore:
~ | RED

I

Figure 9.

27

| nq, there were five blocks to the left of the box then.
= /1 HOW MANY BLOCK(LOCASHUN LEFT-OF BOX(DEFINITE)|KINDOF

= PARALLELEPIPED) AT THAT TIME?

4 THE BIG RED PARALLELEPIPED AND THE BIG GREEN

CUBE THAT WAS ON TOP OF A BIG RED PARALLELEPIPED

“ AND THE BIG GREEN CUBE THAT WAS HOLDING A SMALL

RED PYRAMID AND THE SMALL RED CUBE

[run time = 3.3 sec]

| 45. how many things were on top of green cubes at that time? ®
~ f/f HOW MANY OBJECT(LOCASHUN DIRECTLY-ABOVE BLOCK{(COLOR

= GREENI|KINDOF = CUBE)) AT THAT TIME?

1 THE SMALL RED PYRAMID

[run time = 3.9 sec]
\.

{MAX deleted the imaginary world after

answering each of the questions (43), (44), and
(45). This caused him to retrace his steps each
time. If he had been a lit tle smarter, he could

have saved the imaginary world from Question
- (43) to answer Questions (44) and (45).

However, MAX was afraid that he would not

know when to delete the imaginary world if he
did that. }

) 46. put the blue pyramid on the block in the box.
// YOU GO BLOCK(COLOR = BLUE|KINDOF = PYRAMID) ONTOP

| BLOCK{BOT_STATUS = ONTOP BOX(DEFINITE)).

OK

~ [run time = 0.4 sec]

(The configuration of Fig. 10 is achieved. }

. 28

YOU DO BLOCK(COLOR = BLUEKINDOF = PYRAMID
ONTOP BLOCK(BOT_STATUS = ONTOP BOx(DEFINITH)) .

OK

pu plna pai

4 11pr gl BI BE

P pay I LT
Figure 10.

29

~~

47. Is there anything which is bigger that every pyramid but is

| not as wide as the thing that supports it?
| 4 DOES EXIST OBJECT(HEIGHT > HEIGHT[Y BLOCK(KINDOF
v ~ PYRAMID)]|BOT_STATUS = ONTOP OBJECT(YWIDTH >

YWIDTH[ITSELF])?

YES THE BIG BLUE PARALLELEPIPED THAT | JUST PUT A SMALL

BLUE PYRAMID ONTOP OF

“ [run time = 1. 7 sec]

{Note that MAX mentioned a recent event to

help identify the object. }

\ 48. does a steeple exist?
// DOES EXIST STEEPLEQO?

NO BECAUSE COMPOSITE-OBJECT NOT EXIST STEEPLE

[run time = 0.02 sec]

49. a “steeple” is a stack which contains two green cubes and a
pyramid.

#{ STORE COMPOSITE OBJECT STEEPLEO = BLOCK(COLOR = GREEN|
KINDQF = CUBE|TOP_STATUS = HOLDING BLOCK(COLOR = GREEN]

- KINDOF = CUBE|TOP_STATUS = HOLDING BLOCK(COLOR = RED]
KINDOF= PYRAMID))).

OK

[run time = 0.02 sec]

i [Our description of a “steeple” is essentially the
description of the bottom block. }

50. are there any steeples now?
h // DOES EXIST STEEPLEO?

NO BECAUSE BLOCK NOT EXIST BLOCK(COLOR = GREENIKINDOF = CUBE]
TOP-STATUS = HOLDING BLOCK(COLOR = GREEN|KINDOF = CUBE]

. 30

TOP_STATUS = HOLDING BLOCK(COLOR = REDIKINBOF = PYRAMID)))
[run time = 8. 3 sec]

(Note the different answers for the identical

| questions (48) and (50).}

51. build one.

YOU DO BUILD STEEPLE().

OK

[run time = 2. 7 sec]

(MAX built the steeple shown in Fig. 11.}

He. how did you build the steeple? &
// HOW DID YOU DO BUILD STEEPLEQO?

| RELTASE THE smALL BLUE PYRAMID

| MOVE MY HAND FROM -545 3.45 -160 TO -55 -155 -260

| GRASP THE SMALL GREEN PYRAMID

| MOVE THE SMALL GREEN PYRAMID FROM -55 -155 -260 TO -422 -608 -460

| TAKE THE SMALL GREEN PYRAMID OFFQOF THE SMALL RED CUBE

| RELEASE THE SMALL GREEN PYRAMID

| MOVE MY HAND FROM -422 -608 -460 TO -55 -155 -320

| GRASP THE SMALL RED CUBE

| MOVE THE SMALL RED CUBE FROM -55 -155 -310 TO -472 -608 -460

| TAKE THE SMALL RED CUBE OFFOF THE BIG GREEN CUBE

| RELEASE THE SMALL RED CUBE

| MOVE MY HAND FROM -472 -608 -460 TO -105 -70 -160

| GRASP TIE SMALL RED PYRAMID

| MOVE THE SMALL RED PYRAMID FROM -105 -70 -168 TO -522 -608 -310

| TAKE -I-HE SMALL RED PYRAMID OFFOF THE BIG GREEN CUBE

RELEASE THE SMALL RED PYRAMID

| MOVE MY HAND FROM -522 -608 -310 TO -310 -550 -160

| GRASP THE BiG GREEN CUBE

| MOVE THE BIG GREEN CUBE FROM -310 -550 -160 TO -75 -105 -210

| PUT THE BIG GREEN CUBE ONTOP THE BIG GREEN CUBE

31

YOU DO BUILD STEEPUEC) .

OK

\

fa patil

py> 1 —y BN
Figure 11.

32

«

) | RELEASE THE BIG GREEN CUBE
| MOVE MY HAND FROM -75 -105 -210 TO -522 -608 -310

| GRASP THE SMALL RED PYRAMID

| MOVE THE SMALL RED PYRAMID FROM -522 -608 -310 TO -75 -105 -10

| PUT THE SMALL RED PYRAMID ONTOP THE BIG GREEN CUBE

- [run time = 0. 9 sec]

53. a pile is a red pyramid which is on top of a blue block which «

IS supported by a green block.

// STORE COMPOSITE OBJECT PILE(GREEN|BLUE|RED) = BLOCK(COLOR
= GREEN|KINDOF= PARALLELEPIPEDITOP-STATUS = HOLDING
BLOCK(COLOR =BLUEIKINDOF = PARALLELEPIPEDITOP-STATUS
= HOLDING BLOCK(COLOR = RED|KINDOF = PYRAMID))).

OK

- [run time = 0.03 sec]

{This definition for a composite object allows us
to make substitutions. }

N 54. are they any green, green, and red piles now? &
DOES EXIST PILE(GREEN|GREEN|RED)?

YES THE BIG GREEN CUBE THAT IS NOW HOLDING A BIG GREEN

CUBE

~ [run time = 1.2 sec] |

55. how would you build a red, green, and blue pile? &
// HOW WOULD YOU DO BUILD PILE(RED|GREEN|BLUE)?

lwouLD MOVE THE SMALL RED PYRAMID FROM -75 -105 -10

TO -522-608-318

| WOULD TAKE THE SMALL RED PYRAMID OFFOF THE BIG GREEN CUBE |

| WOULD RELEASE THE SMALL RED PYRAMID

| WOULD MOVE MY HAND FROM -522 -608 -310 TO -75 -105 -210

| WOULD GRASP THE GIG GREEN CUBE

| WOULD MOVE THE BIG GREEN CUBE FROM -75 -105 -210 TO -310 -550 -1 68
| WOULD PUT THE BIG GREEN CUBE ONTOP THE BIG RED PARALLELEPIPED

C 33

KS

| WOULD RELEASE THE BIG GREEN CUBE

| WOULD MOVE MY HAND FROM -310 -550 -160 TO -545 145 -160

| WOULD GRASP THE SMALL BLUE PYRAMID

| WOULD MOVE THE SMALL BLUE PYRAMID FROM -545 145-168

TO -310 -550 -60

| WOULD PUT THE SMALL BLUE PYRAMID ONTOP THE BIG GREEN CUBE

[run time - 3.4 sec]

{To answer this question, MAX entered his
imaginary world, built the pile (see Fig. 12),

- and then examined how he did it in the

imaginary world. }

- 56. cet rid of those two green cubes. &
/ SUBTRACT DATABASE BLOCK(COLOR = GREEN|KINDOF = CUBE]
EOT,STATUS = ONTOP BLOCK(COLOR = GREEN)) AND SUBTRACT
DATABASE BLOCK(COLOR= GREENIKINDOF = CUBE).

. OK

OK

[run time = 0.5 sec]

{Note that MAX cleared off the top green cube

before he destroyed it. See Fig. 13.}

57. add a black cylinder and a very tall orange cylinder. &

. // ADD DATABASE BLOCK(COLOR = BLACK|KINDOF = CYLINDER)
AND ADD DATABASE BLOCK(COLOR = ORANGE|KINDOF = CYLINDERT

HEIGHT > HEIGHT[Y BLOCK()}). |

OK

| OK
h [run time = 0.4 sec]

+The two cylinders appear as in Fig. 14. }

34

-

C HOW WOULD YOU DO BUILD PILE(REDGREENBLUE)?

I WOULD MOVE THE SMALL RED PYRAMID ...

L

l .

ga H
C _ BRfae Co / IN

Frou i w=

ia LL LL]
7]

Figure 12.

|

C

35

\

|

SUBTRAJ* T DATABASE BLOCK(COLOR = GREENK INDOF

= CUBEBOT-STATUS = ONTOP BLOCK(COLOR = GREEN))
AND SUBTRACT DATABASE BLOCK(COLOR = GREEN

KINDOF = |CUBE>.

OK

OK

i _

— pall’i TL
ries MEiatatul|

Figure 13.

36

«

I~

< ADD DAT BASE BLOCK(COLOR = BLACKKINDOF)
= CYLINDER) AND ADD DATABASE BLOCK(COLOR = ORANGE
KINDOF = [CYLINDERMEIGHT 2 HEIGHT[© BLOCK() 1) .

OK

Ce OK

; JAN
CC) | af

A ITh be T1dike 1

Figure 14.

.

|

~

37

“~

l

| 58. add a small yellow cone in your hand and a box on top of ®

the large red block.

ADD DATABASE BLOCK{COLOR = YELLOW/|KINDOF = CONE|SIZE

| = SMALL|HELD_STATUS = GRASPED-BY HAND(MAX)) AND ADD
| DATABASE BOX(DESCRIPTION = THE BOX|BOT_STATUS = ONTOP

BLOCK(COLOR = RED|SIZE = BIG)).

OK

| OK
[run time = 0.3 sec]

| {MAX released -the red pyramid so he would
have a free hand for the cone. Note that MAX

| wilt follow any requirements given in the

description but he also fills in needed data that

IS not specified. The result is shown in Fig.
15. }

59. a rocket made of parallelepipeds and a pyramid is a pile. ®

| // STORE COMPOSITE OBJECT ROCKET(PARALLELEPIPED|PYRAMID|
YELLOW|BROWN|GREEN) = PILE(YELLOW|BROWN|GREEN).

OK

| run time =8. 7 sec]

{Note how easy it is to tell MAX about a rocket
since he already knows what a pile is. }

60. build a rocket of orange and black cylinders and a yellow cone. &
I: YOU DO BUILD ROCKET(CYLINDER|CONE|ORANGE|BLACK|YELLOW)?

OK

[run time = 2.8 sec]

{The result is shown in Fig. 16. }

38

|

w

“ ADD DAJABASE BLOCK(COLOR = YELLOWRINDOF = CONE"

SIZE = FPL HELD_STATUS = GRASPED_BY HAND(MAX))
AND ADD“BATABASE BOx(DESCRIPTION = THE BOx
BOT_STATUS = ONTOP BLOCK(COLOR = REDSIZE = BIG>> .

\ OK
OK

Mf> J 2

Tle Lae 1
HeIN Lo0

Figure 15.

LW

.

39

-

\ YOU DO BUILD ROGCKET(CYL INDERCONEORANGE
BLACKYELLOW ?

OK

.

Bie
>

- PZ

Figure 16.

40

G1. what objects are on top of the table now? &
FIND OBJECT(BOT_STATUS = ONTOP TABLE(DEFINITE))?

ITIS THEBIG RED PARALLELEPIPED AND THE SMALL

GREEN PYRAMID AND THE SMALL RED CUBE AND THE SMALL

RED PYRAMID AND THE MEDIUM-SIZED ORANGE CYLINDER

. THE BOX THAT IS NOW HOLDING A BIG BLUE PARALLELEPIPED

[run time = 1.2 sec]

[Note that MAX must now identify which box he

is refering to. }

| 62. call the biggest block “superblock”.
| {7 STORE FACT GNAME OF BLOCK(VOLUME > VOLUME[V BLOCK()])

IS SUPERBLOCK.

OK

BN [run time = 0.2 sec]

{We can establish between ourselves and MAX,

a common name for any object. ;

63. have you picked up superblock since we began?
WHEN DID YOU DO PICKUP BLOCK{GNAME = SUPERBLOCK)?

| DID IT WHILE | PICKUP THE BIG RED PARALLELEPIPED

CALLED SUPERBLOCK

[run time = 1.5 sec]

| {MAX still has his old internal name for that
object, so he is not confused in searching his

past. ;

: 64. how many blocks other than pyramids were left of the box ®
at that time?

{/ HOW MANY BLOCK(KINDOF# PYRAMIDILOCASHUN LEFT-OF
BOX()) AT THAT TIME?

41

|

“% THE BIG BLUE PARALLELEPIPED AND THE BIG RED

PARALLELEPIPED CALLED SUPERBLOCK AND THE SMALL RED

CURE AND THE BIG GREEN CUBE THAT WAS HOLDING A SMALL

RED PYRAMID AND THE BIG GREEN CUBE WHICH WAS TOWARD

THE BACK

[run time = 14.8 sec]

{This question is a difficult challenge for any

representation system. MAX must not only
RS retrace his steps, but he must also destroy and

resurrect old objects in an imaginary world as

he does it. The result is shown in Fig. 17. }

65. why did you drop superblock?

N // WHY DID YOU DO DROP BLOCK(GNAME = SUPERBLOCK)?

| DON'T REMEMBER DOING THAT

[run time = 3.2 sec]

Re 66. is there anything in front of the red pyramid?

DOES EXIST OBJECT(LOCASHUN IN-FRONT-OF BLOCK(COLOR = RED]
KINDOF = PYRAMID))?

YES THE BIG RED PARALLELEPIPED CALLED SUPERBLOCK

AND THE SMALL GREEN PYRAMID AND THE SMALL RED CUBE

h THE BOX THAT IS NOW ON TOP OF A BIG RED PARALLELEPIPED

[run time = 1.0 sec]

(See Fig. 18. }

[.

67. thank you.
/{f THANK YOU.

YOU’ RE WELCOME

42

-

H_O. WwW MANY BL OCK(KINDOF = PYRAMIDLOCASHUN
LEFT<OF BOX())AT THAT TIME ?

| or
EDOM

| >

BLACK VAN
| — J SEE

CA INT ! =
CN be 7! WL 7 | P

[| | | \

AA RAE += Reps | | A ==

pa ee I PR P<[Eh | GREEN I Ls ===7
s \

| | |

plER Pe | |“

Figure 17.

43

DOES ExISTOBJECT(LOCASHUN IN-FRONT-OF
BLOCK(COLOR = REDEKINDOF = PYRAMID))1

YES THE BIG RED PARALLELEPIPED CALLED

SUPERBLOCK AND THE SMALL GREEN PYRAMID

AND THE SMALL RED CUBE THE BOx THAT

IS NOW ON TOP OF |A BIG RED PARALLELEPIPED
| AEou

- PZ

po — 1
yd

Figure 18.

44

ne

1

~ ?
Ill. DATABASES

It is convenient to split the database into two parts, one which

5 contains complete information about the world in its present state
(Knowledge Represent at ion Database) and anot her which contains historic
information about the past conversations and events (Historic Database).
Data for the imaginary world is stored in the same string arrays (and same
locations) as that for the real world.

\

A. Knowledge Representation Database

\&

It is convenient to group objects in one’s world into categories. In

this robot ' s world there are only five categories:

BLOCK

« 2 BOX

3 TABLE

4 HUMAN

5 HAND

~ Here HAND stands for the Robot whose only effector is a hand. This
database is a list of properties. For each category there are two types of
lists. One is a list of properties which pertains to all objects in that
category, while the other is a list of properties which pertains to tokens or

particular objects. Thus there is one double-index array for each
g category. The first index goes from 8 to some number (for example 10).

The property list pertaining to ail objects of the category is stored in the

| array with the first index = ©, while the other numbers are used for storing
the property lists of tokens. A few examples should make all of this clear.

4 46

Table I. Property List for “All" BLOCK's

BLOCK[2,PNAME] S BLOCK
BLOCK[B,STATUS] 1S 8
BLOCK|3,FIRST_ONE] IS 1

i BLOCK[8,MOVEABLE] 1S MOVABLE
BLOCK[8,AN_VEG_MIN] S VEGETABLE
BLOCK] 8,ITSELF_LIST] IS 1
BLOCK[8,PLIST] IS 2
BLOCK[8,MAX_NUMB_POSSIBLE] IS 15

N BLOCK] 8,KINDOF] 1S WOODEN
BLOCK[8,GNAME] S

Table II. Property List for a Particular BLOCK

- BLOCK] 4,PNAME] S B4
BLOCK[4,HELD_STATUS] 1S FREE
BLOCK[4,LOCASHUN] S -75 -105 -360
BLOCK[4,COLOR] S GREEN
BLOCK] 4,SI12E] 1S BIG

. BLOCK[4,DESCRIPTION] S THE BIG GREEN CUBE
BLOCK[4,TOP_STATUS] S HOLDING BLOCK(B6)
BLOCK[4,BOT_STATUS] S ONTOP TABLE(TABLI)
BLOCK[4,KINDOF] 1S CUBE
RLOCK[4,DIMENSIONS] S 150 150 150

. BLOCK] 4,XLENGTH] S 150
BLOCK[4,YWIDTH] 1S 150
RLOCK[4,HEIGHT] 1S 150
BLOCK][4,XCOORD] 1S -75
BLOCK] 4,YCOORD] 1S -105
BLOCK[4,ZCOQRD] 1S -360

N BLOCK] 4,WALL_WIDTH] S
BLOCK[4,LIKED_STATUS] S
BLOCK[4,GNAME] S
BLOCK] 4,VOLUME] S 3375000
BLOCK[4,DISP_NUMB] S 4
BLOCK[4,SHAPE_OF _TOP] S FLAT

47

Table Il. Property List for a Particular HUMAN

HUMAN] 1,PNAME] IS FRIEND
HUMANI[],GRASP_STATUS] IS EMPTY
HUMANI 1,WEIGHT|] IS 175
HUMAN|1 LOCASHUN] 1S 100 200 200
HUMAN[1,HAIR_COLOR] IS BROWN
HUMANI 1,SIZE] 1S BIG
HUMAN] 1,DESCRIPTION] IS YOU
HUMAN[1 , TOP, STATUS] 1S CLEAR
HUMAN[1,BOT_STATUS] 1S ONTOP CHAIR(CHAIRL)
HUMAN] 1 ,KINDOF] IS HACKER

HUMAN|1 [EYE,COLOR] IS BROWN
HUMAN[1 ,AGE] 1S 25
HUMAN]1 ,SEX] IS MALE
HUMAN[1 HEIGHT] IS 72
HUMAN[1 XCOORD] 1S 100
t IUMANI[1,YCOORD] IS 200

HUMAN[L ,ZCOORD] 1S 200
HUMAN] 1,LIKE_STATUS] 1S
I-IUMAN] 1 ,LIKED_STATUS] 1S
HUMAN[1 .GNAME] 1S

HUMAN 1,VOLUME] 2HUMAN[1,DISP_NUMB] S
HUMAN[1,SHAPE_OF _TOP] S ROUND

The property list for all blocks is shown in Table I, and the property

list for a particular token, in Table II, and the property list of a particular

human, in Table lll. The two indices for the string arrays are shown in
square brackets. The first index is a nurnber, while the second index is a
string (MACRO) which is translated by the compiler into a number. The
array contains the strings in the right-hand column. You might ask “Where
does the semantic information reside? It is true that you have property

lists, but what do the properties mean to the program?” The answer is that
the semantics resides in the procedures which know about these

properties. The string names of the properties are contained in the string
array NAMEOF[I,d] for which the first index refers to which list (different
categories have different lists--the number for these are stored under

<object>[B,PLIST}--as shown in Table I} and the second index corresponds
to the property number.

48

Certain properties are classified as “unchanseable"” or "related". A
property may be in one, both, or neither of these classifications. An
unchangeable property cannot be changed by telling (i. e. the command:
STORE I-ACT . . .). Examples are XCOORD and TOP-STATUS. A related
property is one that has a complement. Examples are: (1) TOP-STATUS,
BOT, STATUS; (2) LIKE-STATUS, LIKED-STATUS. If a change in a related
property occurs, this results in other changes to the database. For
example, if the BOT,STATUS of some object is changed, this results in the
TOP-STATUS of some other object being changed. (There is a double
index array which holds related properties and their complements and a

short procedure which will quickly obtain the complement of any property.)
New properties can readily be added from the teletype (see Section VIIC
and VIE).

B. Historic Database

Informat ion about commands, facts, questions, answers, actions,
reasons, inferences, orders (internal commands), adding new tokens,
subtracting tokens, and thoughts about all of the above are stored in a
single index array called the “Grapevine”. Many procedures store

information on this “Grapevine” Array while some examine this information,

In order to establish a time sequence, an array with only one index is

used. This simple method works well in general but some problems such as

simultancous events cannot be handled so simply.

Table IV. Grapevine Array Format

CQM:

FACT:

QUEST:

ANS:

ACT: >» {extra information) T<action>/<subject>/<object>
REAS:

INFER:

ORD:

ADD:

sue:

THOUG H-f :COM:

THOUGHT:FACT:

49

The general format for an entry is shown in Table IV. The string

before the colon identifies the type of information. The string between the

colon and the upward arrow contains extra information such as type of

question if it is a question, who said it to whom, or the name of a

procedure to identify itself. Between the arrow and first slash there is an
action word such as a verb (or “not” followed by a verb). The next two

strings are <subject> and <object>. Most of the entries fit this format, but

there are a few exceptions such as the action “move” which has “from” and

“to” information. Typical entries can be seen in APPENDIX A which contains

t hc Grapevine Array which the program generated during the dialog of
Section II.

IV. PROCEDURAL DESCRIPTIONS

Objects are identified by a category narne followed by a description

in parentheses. Typical examples of descriptions are given in Table V. As
one can see there are several different formats. This flexibility seems to
be necessary. BLOCK(B3) is an example in which the format is just the
PNAME ii. e. the program's name for that particular object). This type of

description is used by the program as a fast, definite description. In
principle a human communicating with MAX would never know or refer to
this name. If a human wants to establish between himself and MAX a

common name for an object, he uses the property GNAME, which can be
changed without upsetting the databases.

BLOCK(VAR B3 B4B7) is an example of a description which refers
to any or all of the blocks with PNAMES BS, B4, and B7. This is useful in
cases for which there exists a choice. If MAX were asked to pick up a

creen block and B53, B4, and B/ were green blocks, the program would
convert the description to this form and delay a definite decision until the
| ast moment.

The most common type of description has the format of:

<property> <relation> <state>.

50

Table V. Examples of descriptions

~ BLOCK(B3)

BLOCK(COLOR = RED|KINDOF = CUBE)

BLOCK(VAR B3 B4 B7)

N

BLOCK(COLOR = BLUEJHEIGHT >
HEIGHT[BLOCK(HELD_STATUS = GRASPED-BY HAND(MAX))])

OBJECT(COLOR = GREEN|BOT_STATUS = ONTOP

OBJECT(HEIGHT < HEIGHT[Y OBJECT(BOT_STATUS = ONTOP

1 OBJECT(TOP_STATUS = HOLDING BLOCK(KINDOF = PYRAMID]
HEIGHT 2 HEIGHT[Y BLOCK(KINDOF = PYRAMID)))]))

BLOCK(KINDOF # PYRAMID|ANS:TEXIST/X/ « 107 o)

BLOCK(KINDOF = PYRAMIDIACT:TGRASP/HAND(MAX)/X «
COM:TONTOP/BLOCK(COLOR = GREEN|KINDOF = PYRAMID)

/BLOCK(SIZE = SMALLIKINDOF = CUBE>+ o)

\

BLOCK(VAR B3 B4 B7) is an example of a description which refers
to any or all of the blocks with PNAMES B3,B4, and B7. This is useful in

cases for which there exists a choice. If MAX were asked to pick up a

_ green block and B3, B4, and B7 were green blocks, the prograrn would
| convert the description to this form and delay a definite decision until the

last moment.

The most common type of description has the format of:

A= <property> <relation> <state>.

51
\

-

Table VI. Examples of Descriptive Segment

Property Relation State

(a)

KINDOF = PYRAMID

TOP_STATUS = HOLDING BLOCK(. . .)

HEIGHT > HEIGHT[BOX(. . .)]

(b)

YCOORD YCOORD[VY BLOCK(. . +)]
HEIGHT HEIGHT[3 BLOCK(...)]

Examples are shown in Table VI. If the program were asked to find
BLOCK(KINDOF = PYRAMID), it would cycle through all of its block tokens
pulling out their property KINDOF and noting those for which this property
were equal to PYRAMID. Some properties are more complicated such as
TOP-STATUS. For example, the TOP_STATUS of a particular block might
be

HOLDING BLOCK(B4)|HOLDING BOX(BOX3)|HOLDING BLOCK{(B?2)

while the state that the prograrn is trying to match is

HOLDING BLOCK(COLOR = BLUE).

The comparison is done by first finding all blocks satisfying the

descripl ion COLOR = BLUE through a recursive call by the procedure on

it self. Then each block that it is holding is cornpared with all the blue

52

blocks. The program does an exhaustive search returning all objects
satisfying any description, rather than stopping after it finds the first one.

To contrast our descriptions with those of Winograd, consider the

description “a red cube which supports a pyramid“. Winograd’ s[20]
description (PLANNER program) is:

(GOAL (IS 7X1 BLOCK))
(GOAL (COLOR-OF 7X1 RED))
(GOAL (EQUIDIMENSIONAL 7X1)
(GOAL (IS 7X2 PYRAMID))
(GOAL (SUPPORT ?X17X2))

while our description is:

BLOCK(COLOR = RED|KINDOF = CUBE]
TOP-STATUS = HOLDING BLOCK(KINDOF = PYRAMID)).

The <state> in third example in Table Vi{a) has the form:

<property>[<object>(<description>)].

The program (1) finds the particular object (if there is more t han one
and the state is not quantified, it reports failure); (2) gets the value of
<“property> for this object and converts it to a number. Then this is
compared with the <property> (also converted to a number) according to

the designated relation.

The program uses the following relations:

=#,2,%5,<,> ABOVE, BELOW, LEFT-OF, RIGHT-OF,
BEHIND, IN-FRONT-OF, DIRECTLY-ABOVE, DIRECTLY-BELOW,

EQUALS-EITHER-OR, and NOT <relation>.

There is a short algorithm connected with each of these that gives

them an exact mat hematical (although not necessarily intuitive> meaning.

Quantified descriptions have the form shown in Table V(b). The

53

familiar predicate calculus symbols "¥" and "1" all used for “all” and
“some”. However, their effect on the calculation is only that caused by a

particular algorithm and any symbol could be used. The combined effect of

the relation and the quantifier determines the number used for <state> in

the comparison. For example if the relation is "<" and the quantifier is "V"
then we must find the smallest number.

Any number of descriptions (<property> <relation> <state>) can be
concatenated together with a vertical line for a delimiter as shown in the

fifth example of Table V. Also, as indicated in that example the description

can contain other descriptions to any depth.

Another format is used to describe objects which were previously

refer red to. Pattern matching of the historic Grapevine Array is done by
filling in some (or possibly none) of the locations and by putting an "X" in
the location of the desired quantity as in the description:

BLOCK(ANS:T EXIST/X/ « LAST mw),

I-his type of description has the format:

<type>:<before-uparrow>T<action>/<subject>/<object>
<arrow> <pointer> <how-fars.

The first part is just the format for an entry in the Grapevine Array.

The quantity <pointer> indicates where the search should start and it can
be: (1) FIRST, for starting at the first entry; (2) LAST, for starting at the
last entry; (3) PRES, for starting at the time marker for the present
discussion. The words “when”, “how”, and “why” cause a time marker to be

set to some Grapevine index number, and PRES refers to this number; (4)
some Grapevine index number; or (5) another Grapevine entry to be
matched as in the last example of Table VI.

The quantity <arrow> can be «,=, or « depending upon whether the

ccarch is to be backward, forward, or around the designated entry. The
quantity <how-fat+ is a nurnber indicating the extent of the search (w
means go to the end).

A null (or "X") is the description will match anything in the

54

corresponding field . of the Grapevine entry. Non-null fields in <type>,
<pefore-uparrow>, and <action> must be identical for a match. In matching

<subject> and <object> fields we note that

COM:HUMAN(FRIEND) TO HAND(MAX)TPICKUP/HAND(MAX)/
BLOCK(COLOR = RED|SIZE = BIG)

should be matched by

COM:TPICKUP/X/BLOCK(COLOR = RED).

Also

ACT:TGRASP/HAND(MAX)/BLOCK(B?)

should be matched by

ACT:XTGRASP//BLOCK(KINDOF = PYRAMID)

If the block with PNAME of B7 is a pyramid.

These matches are accomplished as follows: (1) The set of all
objecls satisfying the desired description is found; (2) The set of all
objects satisfying the Grapevine description is found; (3) A set intersection
of the two sets is performed; (4) If the resulting set is not empty, they
match. Otherwise, they do not match.

Matches are also done to find locations in the Grapevine Array. In
these cases the "X" is omitted.

In matching the total description, the general order is that each

object is tested against the description until it fails to satisfy some

requirement or it succeeds. Descriptions involving actions such as “red

objects that you touched while . . . " (see Questions 41 and 42) are
handled by: (1) finding all objects satisfying the static description; (2)
finding all objects satisfying the motion description; and (3) doing a set
intersection of the two results. A description of the form:

55

BLOCK(KINDOF = PYRAMID|ACT:TGRASP/HAND(MAX)/X« LAST w)

is handled by backtracking (programmed especially for this case>. It would

be inefficient to search the Grapevine for all objects that the hand has
grasped and yet the program would fail (without backtracking) if the first

object that it found was not a pyramid.

The description format for composite objects was chosen so that it

would be easy to identify the presence of a composite object. For

example,

PILE(GREEN|BLUEIRED) = BLOCK(COLOR = GREEN]
KINDOF = PARALLELEPIPEDITOP,STATUS = HOLDING BLOCK(COLOR= BLUE]
KINDOF = PARALLELEPIPED|TOP_STATUS = HOLDING BLOCK(COLOR = RED]

KINDOF = PYRAMID)))

Is really only the description of one object (the bottom object) for which

the program already has an identification mechanism. The description inside

the parenthesis following the name of the composite object is treated like a

set of variables in a macro definition. Any quantity put inside the
parenthesis on the left (at the time that the definition is given) can be

freely substituted for in its every occurrence on the right at a later time.

V. MOTION PROCEDURES

There are a set of procedures for moving objects:

Specialists

GRASP

RELEASE

GETONTOPOF

GETOFFOF

FIND-SPOT

MOVETO

56

MOVE_DIRECT

AVOID_COLLISION

Strategists

CHANGETO

STACKUP

BUILD

One can command MAX to do the following simple actions (involving
one or two objects and the hand): grasp, release, ontop, offof, putdown,
pickup, near, inside, and move. All such requests pass through the
procedure CHANGETO which simply calls upon one or two of the
specialists. The specialists are rather independent. They check the

present st ate of the world at the time that they are called and report
failure if any errors in syntax or inconsistencies appear. If the present
state of the world is ready for them to do their job, they simple do it and

exit. However, if the present state of the world does not permit them to

do their job, they call on other procedures and themselves recursively to

creat e the proper conditions. For example, if we have the conditions

shown in Fig. 18, and one were to command MAX to grasp the green cube
which is sitting on the table, the procedure GRASP would call on (1)
GETOFFOF so that the object it wants to grasp would have a clear top; (2)
RELEASE so its hand would be empty; and (3) MOVETO so its hand would
be at the correct location to grasp the green cube. This simple operation

(GRASP is the only procedure called by CHANGETO) would cause the

following calling sequence:

21 GRASP it he big green cube)
12 GETOFFOF +t he small red cube off of the big green cube)

6 GETOFFOF {the small green pyramid off of the small red cube]

3 GRASP {the small green pyramid)

i RELEASE {the small blue pyrarnid;
2 MOVETO (hand frorn the blue pyramid to the small green pyramid]
4 FIND-SPOT {for the small green pyramid;

5 MOVETO {the small green pyramid to the table]
9 GRASP {the small red cube)

7 RELEASE (the small green pyramid)

57

8 MOVETO (hand from the green pyramid to the small red cube)
18 FIND-SPOT {for the small red cube)
11 MOVETO {the small red cube to the table)
18 GETOFFOF (the small red pyramid off of the big green cube)
15 GRASP (the small pyramid)

3.3 RELEASE {the small red cube)

14 MOVETO {hand from the small red cube to the small red pyramid)
16 FIND-SPOT {for the small red pyramid}
17 MOVETO (the small red pyramid to the table)
19 RELEASE {the small red pyramid}
20 MOVETO [hand from the small red pyramid to the big green cube}

Note that the order in which procedures are entered (listed from top

to bottom) is different from the order in which they do their main job

(given by the numbers on the left). The main effect of procedure GRASP
(and RELEASE) is to change the GRASP-STATUS of the hand and the
HELD_STATUS of some object, but their side effects can be considerable
as we have just discussed. RELEASE will not do its job unless the object
to be released is supported. If it is not, RELEASE will check to see if there
Is really some object just below the one that it wants to release. If there

Is, it calls upon another procedure to rnodify the top and bottom status of

the objects involved. If not, it calls on GETONTOPOF to put the object on
the table.

The location of objects is changed only by procedure MOVETO or
MOVE-DIRECT. (MOVE-DIRECT and AVQID_COLLISION are used in special
cases in which the hand and anything it happens to be holding are moved

left, right, up, down, backward, or forward). The main effect of

GETONTOPOF and GETOFFOF are to change the top and bottom status of
objects. All locations for placing objects ontop of other objects or the
table are selected by the procedure FIND-SPOT, although other procedures
can suggest that it use a certain location.

The procedures STACKUP and BUILD examine the objects, plan a
strategy for the overall task (without considering details), and then they
make calls on CHANGETO.

This method of moving objects is not new; Winograd[6,20] used a

58

| A.

very similar met hod. The advantage of this method is that the higher-level
procedures need only worry about the task that they want to achieve and

not the grimy details.

iN

Ss

\

\ 59

Vi. CONTEXT MECHANISM

In order to answer hypothetical questions, the program needs to
carry out actions in an irnaginary world. These actions must not affect the
data for the real world as the program will eventually want to return
quickly to this state. Usually one wants to start the modifications with the
database in its present form in the real world. Making an extra copy of the

database is an unsatisfactory solution as this would require a long time and

a large mernory space for a system with a large database. Typically one

wants the real-world database (which could be very large) with only a
small number of modifications.

This same problem also arises when the program wants to know
about a past state of the world. Saving all past states of the world is out

of the question. However, even if one knows what modifications occurred
and the order that they occurred in, he still needs an extra database (which

IS initially identical to the real database) in which to make the changes.

To solve these and other similar problems, we have devised a
cont ext mechanism. It is not too different from those used in

CONNIVER[13], QA4[12], AND MLISP2[21] when one considers the great
difference in programming languages.

In implementing this context mechanism, we require that all transfers
of information to and from the Knowledge Representation Database pass

t hrouzh a filter. The filtering procedure checks the present cont ext and
takes the appropriate action. If the context+0 then some locations in string
arrays may contain data which is different in the real world from that in the

imazinary world. The two data. strings are separat cd by a "x" with the
Imaginary-world data on the left and the real-world data on the right. Data
with no "x" are identical in the two worlds. A typical BLOCK array for
such a case is shown in Table VII.

60

Table VII. Property List for a Particular BLOCK with Existence of
Imaginary Context

BLOCK[5,PNAME] IS BS
BLOCK] 5,HELD_STATUS] IS FREE%FREE
BLOCK] 5,LOCASHUN] IS -310 -550 -268%-75 -450 -460

. BLOCK] 5,COLOR] IS RED
BLOCK] 5,SIZE] IS SMALL
BLOCK] 5,DESCRIPTION] IS THE SMALL RED CUBE
BLOCK[5,TOP_STATUS] IS HOLDING BLOCK(B6&)xHOLDING BLOCK(B7)
BLOCK[5,BOT_STATUS] IS ONTOP BLOCK(B2)xONTOP TABLE(TABLL)
BLOCK] 5,KINDOF] IS CUBE
BLOCK] 5,DIMENSIONS] IS 50 50 50
BLOCK[5,XLENGTH] IS 50

BLOCK] 5,YWIDTH] IS 50
BLOCK[5,HEIGHT] IS 50
BLOCK] 5,XCOORD] IS -318%-75
BLOCK] 5,YCOORD] IS -558%-450
BLOCK[5,ZCO0RD] IS -260%-468
BLOCK[5,WALL_WIDTH] IS
BLOCK[5,LIKED_STATUS] IS
BLOCK] 5,GNAME] IS
BLOCK[5,VOLUME] IS 125000

BLOCK] 5,DISP_NUME] IS 7%5
BLOCK] 5,SHAPE_OF _TOP] IS FLAT

The rules used in filtering the data to and from the string arrays are
as follows:

(1) if the context=08, then the filter does nothing letting data flow
in the normal manner.

(2) if the context=1, then:
(a) data is taken from the right of the "x" if a "x" exists.

Otherwise, from the complete location as normal.

61

Y

(b) data is stored after the "x" if a "x" exists. If no "x"

exists, then one is added before storage and a note of this
location is made.

(3) if the context=-1, then:

(a) data is taken from the left of the "x" if a "x" exists.
Otherwise, from the complete location as normal.

(b) data is stored before the "x" if a "x" exists. If no "x"

exists, then one is added before storage and a note of this
location is made.

The addresses of string-array locations which contain imaginary-
world data that is different than real-world data (i. e. a "x" is present) are
saved. (Note that each address in only saved once.) Thus the effort
involved in returning to the state in which only real-world data exists

(context = B) is proportional to the extent of the modifications in the
imaginary world and involves only a change in the "%" locations.

This context mechanism could be generalized to several contexts by
using several delimiters or adding cont ext labels between the entries, but

its efficiency would suffer greatly. At present, we have not found the
need for many contexts. The context mechanism has been implemented to

hanale the case in which one request, “Suppose we only had one pyramid
and one cube, what ...". Here we do not want to waste time adding a
"#" to all locations in setting up the imaginary world. This is handled by

setting the context = -2 for which only entries with a "x" exist in the
imaginary world. This context frame is convenient for small, completely
different, imaginary worlds.

Note that the frame with context = +1 or -1 can be used to handle

the situation in which one requests, “Remember everything as it is now.
All right, make the following changes ...". Here one just changes the
context from B to +1 and the state which the robot was asked to

remember will be the imaginary world with context = -1.

In summary, we think that this is a useful context mechanism for a

robot because (1) there is essentially no overhead involved in changing to
an imaginary world, and (2) The additional storage space and time involved
are proportional to the size of the changes in the imaginary world.

62

<

AL

VII. DISCUSSION

In this section we shall discuss several short topics which did not

seem to be appropriate for any earlier section.

A. Self-debugging

As Winograd[22] and others have noted, with large programs such as
SHRDLU there is a complexity barrier making them difficult to understand

and extend. When one wants to add a new procedure or modify an old '

one, he may not remember all the conditions and requirements of other

sections of the program (particularly if several months have elapsed since

the other sections were written).

With this complexity problem in mind, MAX was written in what some

might call an inefficient manner with considerable redundancy. This slightty
Increased the programming time and the size of the program, but it greatly

reduced the debugging time. All procedures (except trivial ones) were
given sore independence. Each procedure has some expectancy about its

input data. If the syntax is wrong or the data is in any way inconsistent
with these expectations, the procedure reports an error and indicates the

form of the error by adding an entry to the Grapevine Array. If the
procedure should fail to achieve an objective, it must also report failure

with a Grapevine message telling why the failure occurred. This error
testing greatly aided debugging because the error was detected earlier and
the program was less likely to die. For example if some new input “tickled

a bug” the error would usually be detected either inside the procedure in
which it occurred or the next procedure... Whereas, if no error testing

were done, the program might ramble on in its recursive, interwoven

manner through a dozen procedures before the crror was detected or it

died. The message usually explained the cause of the problem. If not, the

program was still alive to answer more questions about the bug.

63

|

B. Generating Answers

It is much easier to generate natural language than to parse natural

language into the correct program representation. Although the program

does not put out particularly good English, the effort for generating this

out put was trivial. This leads one to believe that it is a rather straight-
forward problem to generate output that humans can understand. The
same cannot be said of handling natural-language input which is a far more
difficult problern. (To generate output that is indistinguishable from that of
hurnans is, of course, difficult{23}.) Some answers are “canned”, but most
answers are a concatenation of strings from various parts of the program.

For example, the answers to Questions 12, 13, and 14 are “canned”. If the
program gets to one of these places in its analysis, there is only one

concept that it wishes to convey so a “canned” answer seems appropriate.

Procedure IDENTIFY provides a complete description for an object

(its input is the object's category and pname). First, it obtains a short
description such as “the big green cube” from the property DESCRIPTION
(see Table ll). Then it checks to see if the object has a gname. If it does,
then “called <gname>" is added to the short description. If it has no gname,
then the property HELD-STATUS is checked. If it is being held in robot’ s
hand then “that | STRING1 holding“ is added to the description for which
STRING1 is “am now” or “was” depending upon the situation. If neither of
the above conditions apply then IDENTIFY calls upon a procedure which

interrogat es the Grapevine Array to find out if this object has been
involved in any recent actions. This procedure interrogates the Grapevine
Array for six entries back and reports what action, if any, this object was
involved in. This is responsible for such answers as:

IT IS THE BOX THAT | JUST PUT A BIG BLUE PARALLELEPIPED INSIDE OF

(Quest ion 5)

YES THE BIG BLUE PARALLELEPIPED THAT | JUST PUT A SMALL BLUE

PYRAMID ONTOP OF (Question 47).

\ 64

If none of the above apply, the program checks to see if any other
object has the same description. If none does, it is satisfied with the short

description. If the object’ s description is identical to that of one or more

other objects, the procedure IDENTIFY checks the properties TOP-STATUS
and BOVT_STATUS trying to find something to distinguish it from other
similar objects. If these fail, it determines the direction with the greatest

spatial variation to separate this object from similar objects. This leads to
answers such as,

5 THE . . . THE BIG GREEN CUBE THAT WAS HOLDING A SMALL RED PYRAMID

« AND THE BIG GREEN CUBE WHICH WAS TOWARD THE BACK (Question 64)

For all failures the program calls on procedure REASON which puts

together a string by examining the Grapevine. For example consider

N Question 2. The Grapevine contains the following reason for failure:

GRAPEVINE 22: REAS: FIND_NUMB/TOOMANYTFIT/DESCRIPTION/
BLOCK(VAR B6 B7 B8)

AN Procedure FIND-NUMB has found three blocks satisfying the description
while the DEFINITE in the description required that it only find one.

Thercfore it reported failure and gave the above reason. Procedure
REASON just put this into the normal form of subject-verb-object, calling
on procedure IDENTIFY to describe the blocks with pnames B6, B7, and B&.
Thus reason returns the string:

BECAUSE DESCRIPTION FIT THE SMALL RED PYRAMID

THE SMALL GREEN PYRAMID AND THE SMALL BLUE PYRAMID

C. Reasoning

As one can see from the dialog (Section Il), the program has

considerable reasoning power, but no explicit predicate calculus is used.

Inst ead the program’ s reasoning abilities are built into the procedures and

65

structure of the system. (In other words, we followed the PLANNER[11]
method.) For example consider the following simple reasoning problem
In which one gives the program two factual statements and then asks a

quest ion:

All humans are mortal.

Turing is a human.

Is Turing mortal?

The following dialog was generated with MAX (since MAX does not have
the property MORTAL-STATUS stored, we must first get it added to the
property list for humans):

I~
STORE PROPERTY.

OK -- WHAT CATEGORY OF OBJECTS IS IT A PROPERTY

| OF? (BLOCK,BOX,HUMAN,. ..?)

HUMAN

IS IT A PROPERTY OF ALL HUMAN'’S -- Y OR N?

YES

WHAT IS THE NAME OF THE PROPERTY?

MORTAL-STATUS

IS IT AN UNCHANGEABLE PROPERTY? Y OR N?

NO

66

IS IT RELATED PROPERTY Y OR N?

1 NO

I” M READY TO STORE THE FOLLOWING DATA:

PROPERTY LIST = 3

PROPERTY = MORTAL-STATUS

ARE ALL OF THESE CORRECT -- Y OR N?

YES

OK

STORE FACT MORTAL-STATUS OF HUMAN(ITSELF) IS MORTAL.

OK

/# ADD DATABASE HUMAN(GNAME = TURING).

OK

H#ISFACT MORTAL-STATUS OF HUMAN(GNAME = TURING) IS MORTAL?

YES

//1S FACT MORTAL-STATUS OF HUMAN(GNAME = TURING) IS
IMMORTAL?

NO BECAUSE MORTAL-STATUS NOT EQUAL IMMORTAL

67

\.

WHAT IS MORTAL-STATUS OF HUMAN(GNAME = TURING)?

MORTAL

Note that the program actually added a “token” human to its

database, and its ability to answer the question was due to its use of the
database structure.

D. Creating, Destroying, and Resurrecting Tokens (Particular Objects)

Unlike Winograd’s SHRDLU[6], MAX can readily create and destroy
tokens (see Questions 56-58). The program has a set of default values for
properties so one can just command:

| ADD DATABASE BLOCKO

and the program will choose the type of block, its size, and call upon

FIND-SPOT to find a location for it, etc. Note that the program can use its

not ion procedures to clear off objects before it destroys them and put
‘ down objects so it has a free hand for new objects.

Whenever a token is destroyed, all of the information about the

token is eliminated from the Knowledge Representation Database (its

position in the string array is given to another token). However, the

| token’ s complete property list is saved (in the usual descriptive format) in
- a Grapevine entry. Thus it is easy to resurrect that token at a later time.

To answer Question 64, the program in an imaginary context destroyed.

objects and resurrected two green cubes. Since their pnames were unique,

the program had no trouble moving a resurrected token in ret racing its

steps.

It is quite apparent that a human taking MAX’s part in the dialog
would not (although he could) make a complete representation of the scene
at the beginning and then carry out the operation blind by modifying his

68

represent ation. It is more likely that he would look at the scene between
| actions, filling his database with tokens (from visual input) each time. Thus

| the addition and deletion of tokens from the working database may be very

Lo Important in simulating human behavior--particular if vision is included.

|) One sometimes wonders how a large Knowledge Representation
i Database could work efficiently. For example, if one asked MAX, “Who is

the t allest person in the room?" and MAX knew 1888 people, he would
| cycle through the all the people (1888) in his Knowledge Representation

Database before answering which would be very inefficient. One possible

“ solution to this problem is to have a small, relevant, working Knowledge

Representation Database. In this case, for ‘example, it might only be filled

| to answer the particular question and therefore only contain those people
in the room. The properties of all other tokens could be cont ained in

sornet hing like the Grapevine Array’ Thus, when two old friends appear,
they (their property lists, that is) could be resurrected to the working
database.

E. Suggestions for Future Work
L

Since it took only six months (see Section I) to get the program to
this level, one can be optimistic about extending it. As long as the

proeram runs rapidly and the self-debugging is effective, the larger, the

i“ better--that is, it is easier to do some new process because one can call
| on so many old procedures. Also it is easier for the program to learn about

some ncw composite object if they can be described in terms of ones that

it already knows about. For example, MAX was told about a “rocket” in
terms of a “pile”.

\ With the program at its present level of competence, there are
| several interesting directions in which it could be extended:

(1) Increasing the representation to handle properties and relations

« that are needed in a more complex world such as Euler Angles to
specify the orientation of an object and concepts such as objects

“touching”;

(2) Adding some or all of the vision segments shown in Fig. 1;

AN 69

(3) Adding a content-addressable database with pointers to entries
in the Grapevine Array;

(4) Increasing the abilities of the executive to do inferencing[24,25]
| and examination of all error messages;

(5) Extending the Grapevine Array format to something like a
conceptual-dependency diagram[7,24,25];

(6) Increasing the program’ s learning ability. At present, this
involves storing facts, adding and deleting tokens and properties.

The adding of new properties is perhaps the highest level of learning

achieved in the program, and it gives some indication of the methods

necessary for ext ending this capability. Properties can be added
directly from the teletype (see Section VIIC) and the program asks
the necessary questions. A complicated property such as

LIKE-STATUS (and its complement) are handled by putting strings in
several arrays and increasing the count number in other arrays. This

learning ability should be extented to adding and deleting new
| categories, new relations, and new actions.

Having procedural knowledge can make it more difficult to add new

knowledge. (Sussman[26] has worked on this problem.) For
example, if one adds a new type of object, the program needs to

know the property SHAPE-OF-TOP. If this property is “round”,

“pointed”, or “flat” then the present program can handle it. However,

if it were “peaked”, one would have to modify the coding to handle

this new case. This and similar problems could be handled by storing

lists (long strings that contain entries separated by a break character

and which can be augmented) of acceptable and unacceptable

SHAPE-OF-TOP s for supporting other objects.

VIll. ACKNOWLEDGMENTS

We would like to thank T. Winograd, J. A. Feldman, and T.0Q.

Binford for helpful discussions, J. R. Low for helping with SAIL related
problems, and B. A. Perkins for the graphic display program.

70

APPENDIX A. HISTORIC DATABASE GENERATED BY DIALOG

3 The Historic Database is initially empty when a conversation begins.
h This sect ion contains the Grapevine-Array entries which the program

generated during the dialog of Section ll. So that one can easily find the
Grapevine entries for a particular question, the computer output has been

| edit cd by the insertion of question numbers. “INFO” refers to array INFO
whose entries are given at the end. The program usually refers to objects

= by their pnames which for the blocks are as follows:

| B1 IS THE BIG BLUE PARALLELEPIPED.

| E2 IS THE BIG RED PARALLELEPIPED.

3 B3 IS THE BIG GREEN CUBE WHICH INITIALLY IS ON TOP OF BLOCK B2.
nN B4 IS THE BIG GREEN CUIZE WHICH INITIALLY IS HOLDING BLOCK B6.

B5 IS THE SMALL RED CUBE.

B6 IS THE SMALL RED PYRAMID.

B7 1S THE SMALL GREEN PYRAMID.

B88 IS THE SMALL BLUE PYRAMID.

reross-=--—-=-~ Question] ---------------

a GRAPEVINE 1.: COM:HUMAN(FRIEND) TO HAND(MAX)TPICKUP/
a HAND(MAX)/BLOCK(COLOR = RED|SIZE = BIG)

GRAPEVINE 2: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM @ 8 B/
: TO -31.0 -550 -160

| GRAPEVINE 3: REAS:ACHIEVETGRASP/HAND(MAX)/BLOCK(B3)
| GRAPEVINE 4: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
xe BL OCK(B3)

GRAPEVINE 5: REAS:ACHIEVETOFFOF/BLOCK(B3)/BLOCK(B2)
GRAPEVINE 6: ORD:GETOFFOF TO FIND_SPOTTFIND/FIND_SPOT/
INFO!|

GRAPEVINE 7: ACT:TMOVE/HAND(MAX)/BLOCK(B3)/FROM -310
| -5508 -1608/TO -545 -255 -360
~ GRAPEVINE 8: REAS:ACHIEVETONTOP/BLOCK(B3)/TABLE(TABLL)

GRAPEVINE 9: ACT:CAUSED_BY HAND(MAX)TOFFOF /BLOCK(B3)/
BLOCK(B2)

GRAPEVINE 18: REAS:ACHIEVETTOP_STATUS[BLOCK(B2)] = CLEAR

1 1

;

GRAPEVINE 11: ACT:CAUSED,BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCK(B3)

GRAPEVINE 12: REAS:ACHIEVETMOVE/HAND(MAX) /HAND(MAX)/
FROM -545 -255 -368/TQ -310 -550 -310
GRAPEVINE 13: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM -545
255 -3608/T0O -310: -550 -310
GRAPEVINE 1 4; REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
— GRASPING BLQOCK(B2)

GRAPEVINE 15: ACT:CAUSED,BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(B2)

oN GRAPEVINE 16: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(B2)/
FROM -310 -550 -318/T0O -310 -550 200

GRAPEVINE 1 7: ACT:TMOVE/HAND(MAX)/BLOCK(B2)/FROM -310
-558 -310/T0O -310 -550 208
GRAPEVINE 18: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)

GRAPEVINE 19: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/HAND(MAX)/
INFO#2

--------------Question2 ---------------
aN

GRAPEVINE 20: COM:HUMAN(FRIEND) TO HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(DEFINITE|KINDOF = PYRAMID)
GRAPEVINE 21: ACT:NOAP

GRAPEVINE 22: REAS:FIND_NUMB/TOOMANYTFIT/DESCRIPTION/
BLOCK(VAR B6 B7 BS)

GRAPEVINE 23: ANS:HAND(MAX) TO HUMAN(FRIEND)TNOT DID/

HAND(MAX)/INFO#3

m—meemmeme-=== Question 3 —-mmmmemmemeee-

GRAPEVINE 24: COM:HUMAN(FRIEND) TO HAND(MAX)TFIND/
HAND(MAX)/BLOCK(HEIGHT > HEIGHT[BLOCK(HELD_STATUS =
GRASPED-BY HAND(MAX))])
GRAPEVINE 25: ANS:HAND(MAX) TO HUMAN(FRIEND)TFIND/
HAND(MAX)/BLOCK(B1)
GRAPEVINE 26: COM:HUMAN(FRIEND) TO HAND(MAX)TINSIDE/
BLOCK(ANS:T FIND/X = 23 2)/BOX(DEFINITE)

GRAPEVINE 27: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPQT/

72

|

INFO#4

GRAPEVINE 28: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPQT/
INFO#5

GRAPEVINE 29: ACT:TMOVE/HAND(MAX)/BLOCK(B2)/FROM -310
| -550 206/70 -310 -550 -310

GRAFEVINE 30: REAS:ACHIEVETONTOP/BLOCK(B2)/TABLE(TABLL)
GRAPEVINE 31: ACT:CAUSED,BY HAND(MAX)TONTOP/BLOCK(B2)/
TABLI(TARLL)

GRAPEVINE 32: REAS:ACHIEVETRELEASE/HAND(MAX)/BLOCK(B?2)
GRAPEVINE 33: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCK(B?)

GRAFEVINE 34: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -310 -550 288/TO -475 -105 -260

GRAPEVINE 35; ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM -310
-550 2806/TO -475 -105 -260

GRAPEVINE 36: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
~= GRASPING BLOCK(BL)

GRAPEVINE 37: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(63)

GRAI‘EVINE 38: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(BL)/
FROM -475 -1.05 -2608/TQ -545 145 -260

GRAPEVINE 39: ACT:TMOVE/HAND(MAX)/BLOCK(B1)/FROM -475
-185-260/T0 -545 145 -260

GRAPEVINE 40: REAS:ACHIEVETONTOP/BLOCK(B1)/BOX(BOX1)

GRAPEVINE 41: ACT:CAUSED_BY HAND(MAX)TINSIDE/BLOCK(BL)/
BOX(BOX1)

GRAPEVINE 42: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)

GRAPEVINE 43: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/HAND(MAX)/
INFO!6

\ -------------- Question 4

GRAPEVINE 44: COM:HUM AN(FRIEND) TO HAND(MAX)T FIND/
HAND(MAX)/OBJECT(BOT_STATUS = ONTOP BOX(DEFINITE))
GRAPEVINE 45: ANS:HAND(MAX) TO HUMAN(FRIEND)TFIND/
HAND(MAX)/BLOCK(VAR B1 B8)

---—---______-- Question SI ERRREEELEE

“ 73

GRAPEVINE 46: COM:HUMAN(FRIEND) TO HAND{MAX)TFIND/
HAND(MAX)/OBJECT(TOP_STATUS = HOLDING BLOCK(KINDOF = PYRAMID]
ANS:TFIND//X« 45 2))
GRAPEVINE 47: ANS:HAND(MAX) TO HUMAN(FRIEND)TFIND/
HAND(MAX)/BOX(BOX1)

-=—--====--=== (Question 6 ---------------

GRAPEVINE 48: QUEST:HOW_MANY /HUMAN(FRIEND) TO HAND(MAX)
T EXIST/BLOCK(BOT,STATUS #ONTOP BOX(DEFINITE)|KINDOF
= PARALLELEPIPED)/

GRAPEVINE 49: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(VAR B2 B3 B4B5)/4

me—e——emmeem== Question 7 ---------o-----

GRAPEVINE 50: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)TEXIST/
BLOCK(ANS:TEXIST/X/ - 49 2|YWIDTH < YWIDTH[ELOCK(COM:
HUMAN(FRIEND) TO HAND(MAX)TPICKUP/HAND(MAX)}/X « 49 o0)1])/
GRAPEVINE 51: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(B5)/1

mmmmemm————=—= (Question &§ Fmmmeemeeeene-

GRAPEVINE 52: QUEST:YES_NO/HUMAN(FRIEND) TO HANDIMAX)TEXIST/
OBJECT(TOP_STATUS = HOLDING BLOCK(ANS:TEXIST/X/« 51 2))/
GRAPEVINE 53: ANS:HAND(MAX) TO HUMAN(FRIEND)T EXIST/
TABLE(TABLL)/1

—=—=—-------—-- Question 9 —==-m-~mmm————-

GRAPEVINE 54: QUEST:IS_POSSIBLE/HUMAN(FRIEND) TO HAND(MAX)
T DO/TABLE/PICKUP BLOCK()

74

|

GRAPEVINE 55: ANS:HAND(MAX) TO HUMAN(FRIEND)TNO//

GRAPEVINE 56: REAS:TNOT EQUAL/AN_VEG_MIN[TABLE(ITSELF)]/
ANIMATE

IAN

-==-----===== Question 18 -----=r-meea---

GRAPEVINE 57: QUEST:IS_POSSIBLE/HUMAN(FRIEND) TO HAND(MAX)
1ONTOP/BLOCK(KINDOF = PYRAMID)/BLOCK(KINDOF = PARALLELEPIPED)

> GRAPEVINE 58: ANS:HAND(MAX) TO HUMAN(FRIEND)TYES//
GRAPEVINE 59: REAS:TEXIST/EXAMPLE/INFO#7

« -===------==== Quest ion 11 -~=====--==—==--

GRAPEVINE 60: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)TONTOP/
| BLOCK(KINDOF = PYRAMID)/BLOCK(KINDOF = PYRAMID)

GRAPEVINE 61: THOUGHT:OHD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#8

oS GRAPEVINE 62: THOUGHT:ACT:NOAP

| GRAPEVINE 63: THOUGHT:REAS:FIND_SPOT/CANNOT_BE_DONETNOT

SUPPORT /BLOCK(SHAPE-OF-TOP = POINTED)/OBJECT(VAR)
GRAPEVINE 64: ANS:HAND(MAX) TO HUMAN(FRIEND)TNOQ//

—=========--=-- Question 12 ---------------

GRAPEVINE 65: QUEST:IS_POSSIBLE/HUMAN(FRIEND) TO HAND(MAX)
TDO/HAND(MAX)/STACKUP BLOCK(COLOR = RED) BLOCK(COLOR
= RED) AND BLOCK(COLOR = RED)
GRAPEVINE 66: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)

T1STACKUPRP/HAND(MAX)/BLOCK(COLOR = RED) BLOCK(COLOR =
RED) AND BLOCK(COLOR = RED)
GRAPEVINE 6 7: THOUGHT:ACT:NOAP

GRAPEVINE 68: THOUGHT:REAS:ACHIEVETBOT__STATUS[BLOCK(B2)]
= ONTOP TABLE(VAR)

GRAPEVINE 69: THOUGHT:ACT:CAUSED_BY HANDIMAX)TRELEASE/

HAND(MAX)/BLOCK(B1)
GRAPEVINE 70: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/

75

|

\/

HAND(MAX)/FROM -545 145 -260/TQ -75 -450 -410

GRAPEVINE 71: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -545 145 -268/TQ -75 -450 -410

GRAPEVINE 72: THOUGHT:REAS:ACHIEVETGRASP/HAND(MAX)/
C BLOCK(B7)

GRAPEVINE 73: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(B7)

GRAPEVINE 74: THOUGHT:REAS:ACHIEVETOFFOF /BLOCK(B7)/
BLOCK(ES)

GRAPEVINE 75: THOUGHT:ORD:GETOFFOF TO FIND_SPOTTFIND/
= FIND_SPOT/INFOH#10

GRAPEVINE 76: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B7)/
FROM -75 -450 -418/TO -422 -602 -460

GRAPEVINE 7 7: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(B7)/
TABLE(TABLL)

. GRAPEVINE 78: THOUGHT:ACT:CAUSED_BY HAND(MAX)TOFFQOF/
BLOCK(R7)/BLOCK(BS)

GRAPEVINE 79: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(B5)/
BLOCK(B2)

GRAPEVINE 38: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#11

Ni GRAPEVINE 81: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
| HAND(MAX)/BLOCK(B7)

GRAPEVINE 82: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/
HAND(MAX)/FROM -422 -688 -468/T0O -75 -450 -460

GRAPEVINE 83: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/

C FROM -422 -608 -468/T0O -75 -450 -460
| GRAPEVINE 84: THOUGHT:REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]

~ GRASPING BLOCK(BS5)

GRAPEVINE 85: THOUGHT:ACT:CAUSED_BY HAND{MAX)TGRASP/
HAND(MAX)/BLOCK(BS)

GRAI ‘WINE 86: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/
C BLOCK(BS)/FROM -75 -450 -460,"T0 -310 -550 -260

GRAPEVINE 87: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B5)/
FROM -75 -450 -468/TQ -310 -550 -260

GRAPEVINE 88: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(BS)/
BLOCK(B2)

. GRAPEVINE 89: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK(RS)/BLOCK(BR)

GRAPEVINE 90: THOUGHT:REAS:ACHIEVETSTACKUP/BLOCK(BS)/
BLOCK(B2)

GRAPEVINE 91: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/

76

|

|
FIND_SPOT/INFO#1 2

GRAPEVINE 92: THOUGHT:ACT:CAUSED_BY HANDIMAX)TRELEASE/
t INND(MAX)/BLOCK(B5)
GRAPEVINE 93: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/
HAND(MAX)/FROM -310 -550 -268/T0O -105 -70 -160

GRAPEVINE 94: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -310 -550 -2608/TQ -105 -70 -160

GRAPEVINE 95: THOUGHT:REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(B6)

GRAPEVINE 96: THOUGHT:ACT:.CAUSED_BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(B®6)

GRAPEVINE 97: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/
BLOCK(36)/FROM -105 -70 -168/TQ -310 -550 -60
GRAPEVINE 98: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B6)/
FROM -105 -70 -168/T0O -310 -550 -60

GRAPEVINE 99: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(B®G)/
BLOCK{BS)

GRAPEVINE 100: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BL OCK(B6)/BLOCK(BS)

GRAPEVINE 1.01: THOUGHT:REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 102: ANS:HAND(MAX) TO HUMAN(FRIEND)TYES//
GRAPEVINE 103: REAS:TIMAGINE/HAND(MAX)/INFO#13

-------------- Question 1 TE

GRAPEVINE 104: QUEST:IS_POSSIBLE/HUMAN(FRIEND) TO
HAND(MAX)TDO/HAND(MAX)/PICKUP BLOCK(COLOR = RED)
GRAPEVINE 105: ACT:NOAP

GRAPEVINE 106: REAS:MATCHX/ERRORTNOT CORRECT/FORM/
COM:TPICKUP/HAND(MAX)/BLOCK(COLOR = RED)
GRAPEVINE 10 7: ANS:HAND(MAX) TO HUMAN(FRIEND)TYES//
GRAPEVINE 108: REAS:GRAPEVINE #1 9STDONE/BEFORE/

-=mm—=—=----—- Question 14 "7777777

GRAPEVINE 109: QUEST:S_POSSIBLE/HUMAN(FRIEND) TO
HAND(MAX)TDO/HAND{MAX)/STACKUP BLOCK() BLOCKO AND BLOCKO
GRAPEVINE 110: ANS:HAND(MAX) TO HUMAN(FRIEND)TY ES//

77

~

GRAPEVINE 111: REAS:GRAPEVINE #183TTHOUGHT_DONE/BEFORE/

GRAPEVINE 112: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKED_STATUS[BLOCK(B8)]/LIKED_BY HUMAN(FRIEND)
GRAPEVINE 113: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKE_STATUS[HUMAN(FRIEND)]/LIKE BLOCK(B8)

Quest ion 16 ~=======c—e---—-

GRAPEVINE 114: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKED_STATUS[BLOCK(BL)]/LIKED_BY HUMAN{FRIEND)
GRAPEVINE | 15: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKED_STATUS[BLOCK(B3)]/LIKED_BY HUMAN(FRIEND)
GRAPEVINE 116: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKED_STATUS[BLOCK(B4)]/LIKED_BY HUMAN(FRIEND)
GRAPEVINE 117: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKED_STATUS[BLOCK(B 7)]/LIKED_BY HUM AN(FRIEND)
GRAFEVINE 118: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKED_STATUS[BLOCK(B8)]/LIKED_BY HUMAN(FRIEND)
GRAPEVINE 119: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKE_STATUS[HUMAN(FRIEND)]/LIKE BLOCK(BS8)|LIKE BLOCK(B7)|
LIKE BLOCK(B4)|LIKE BLOCK(B3)|LIKE BLOCK(B1)
GRAPEVINE 120: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/ |
LIKED_STATUS[BLOCK(B4)]/NOT LIKED-BY HUMAN(FRIEND)
GRAFEVINE 121: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKED_STATUS[BLOCK(BS)]/NOT LIKED-BY HUMAN(FRIEND)
GRAPEVINE 122: FACT:HUMAN(FRIEND) TO HAND{MAX)TEQUAL/
LIKE__STATUS[HUMAN(FRIEND)]/NOT LIKE BLOCK(BS)|NOT LIKE
BLOCK(B4)

GRAPEVINE 123: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKED _STATUS[BOX(BOX1)]/NOT LIKED-BY HUMAN(FRIEND)
GRAPEVINE 124: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
LIKE_STATUS[HUMAN(FRIEND)J/NOT LIKE BOX(BOX1)

78

A”.

~-—-me-em--=—- Question 17 --e-ccemmena--

GRAPEVINE 125: QUEST:IS_FACT/HUMAN(FRIEND) TO HAND(MAX)

1 EQUAL/LIKE_STATUS[HUMAN(FRIEND)]/LIKE BOX(DEFINITE)
. GRAPEVINE 126: ANS:HAND(MAX) TO HUMAN(FRIEND)TNO//

GRAPEVINE 127: REAS:IS_FACT/TNOT EQUAL/LIKE-STATUS
[HUMAN FRIEND) J/LIKE BOX(DEFINITE)
GRAPEVINE 128: QUEST:IS_FACT/HUMAN(FRIEND) TO HAND(MAX)
TEQUAL/LIKE_STATUS[HUMAN(FRIEND)]/NOT LIKE BOX(DEFINITE)
GRAPEVINE 129: ANS:HAND(MAX) TO HUMAN(FRIEND)TYES/

\ /BOX(BOX1)

wmmmmmm——meeee Question 18 —-mmmmmmmmooae-

GRAPEVINE 130: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/OBJECT(BOT_STATUS = ONTOP BOX(DEFINITE) |LIKED_STATUS
~ LIKED_BY HUMAN(FRIEND))/

GRAPEVINE 133 : ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(VAR Bl B8)/2

-------------- Questionl9 o-oo

GRAPEVINE 132: QUEST:WHAT_IS/HUMAN(FRIEND) TO HAND(MAX)TIS/
LIKED. STATUS/BLOCK(COLOR = GREEN|KINDOF = CUBE|LOCASHUN
IN-FRONT-OF BLOCK(COLOR = GREEN))

. GRAPEVINE 133: ANS:HAND(MAX) TO HUMAN(FRIEND)TIS/
LIKED-STATUS/NOT LIKED-BY HUMAN(FRIEND)

mmmmmmemmemee Question 20 --ccocooooe-

GRAPEVINE 134: COM:HUMAN{FRIEND) TO HAND(MAX)TSTACKUP/
HAND(MAX)/BLOCK(COLOR = RED) BLOCK(COLOR = RED) AND

/ EITHER BLOCK(COLOR= GREEN) OR BLOCK(KINDOF = PYRAMID) |
GRAPEVINE 135: ACT:NOAP

GRAPEVINE 1 36: REAS:ACHIEVETBOT_STATUS[BLOCK(B2)]
= ONTOP TABLE(VAR)

79

A.

GRAPEVINE 137: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/
INFQ/H14

GRAPEVINE 1 38: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCK(BI)

“ GRAPEVINE 139: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -545 145 -268/TQ -545 -255 -360

GRAPEVINE 148: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
-545 145 -260/TQ -545 -255 -360

GRAF EVINE1 41.: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]

. = GRASPING BLOCK(B3)
| GRAPEVINE 142: ACT:CAUSED,BY HAND(MAX)TGRASP/HAND(MAX)/

BLOCK(B3)

GRAPEVINE 143: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(B3)/
FROM -545 -255 -368/T0O -310 -550 -160

GRAPEVINE 144: ACT:TMOVE/HAND(MAX)/BLOCK(B3)/FROM
-545 -255 -368/T70 -310 -550 -160
GRAPEVINE 145: REAS:ACHIEVETONTOP/BLOCK(B3)/BLOCK(B2)
GRAPEVINE 146: ACT:CAUSED,BY HAND(MAX)TONTOP/BLOCK(B3)/
BLOCK(B2)

GRAPEVINE 147: REAS:ACHIEVETSTACKUP/BLOCK(B3)/BLOCK(B2)
GRAPEVINE 148: ACT:CAUSED,BY HAND(MAX)TRELEASE/HAND(MAX)/

A BLOCK(B3)

GRAPEVINE 149: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -310 -550 -168/TQ -75 -450 -410

GRAPEVINE 1.50: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
-310 -550 -168/TQ -75 -450 -410

KN GRAPEVINE 151: REAS:ACHIEVET GRASP/HAND(MAX)/BLOCK(B 7)
| GRAPEVINE 152: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

BLOCK(B7)

| GRAPEVINE 153: REAS:ACHIEVETOFFOF/BLOCK(B7)/BLOCK(B5)
| GRAPEVINE 154: ORD:GETOFFOF TO FIND_SPOTTFIND/FIND_SPQT/

~~ INFO#15

\ GRAPEVINE 155: ACT:TMOVE/HAND{MAX)/BLOCK(B7)/FROM
-75 -450 -4108/T0O -422 -608 -460

GRAPEVINE 156: REAS:ACHIEVETONTOP/BLOCK(B7)/TABLE(TABL1)
GRAPEVINE 157: ACT:CAUSED,BY HAND(MAX)TOFFOF/BLOCK(B7)/
BLOCFK(BB)

GRAPEVINE 1.58: REAS:ACHIEVETONTOP/BLOCK(B5)/BLOCK(B3)
| GRAPEVINE 159: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/

INFOH1 6

GRAPEVINE 160: ACT:CAUSED,BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCK(B7)

80

-

GRAPEVINE 161: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -422 -608 -468/T0Q -75 -450 -460

GRAPEVINE 162: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
422 -608 -4608/TO -75 -450 -460

GRAPEVINE 1 63: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(Bb)

GRAPEVINE 164: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(BS)

GRAPEVINE 165: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(BS)/
FROM -75 -450 -468/TO -310 -550 -110

hk GRAPEVINE 166: ACT:TMOVE/HAND(MAX)/BLOCK(B5)/FROM
-75 -450 -468/TO -310 -550 -110

GRAPEVINE 16 7: REAS:ACHIEVETONTOP/BLOCK(BS)/BLOCK(B3)
GRAPEVINE 1 68: ACT:CAUSED,BY HAND(MAX)TONTOP/BLOCK(B5)/
BLOCK(B3)

“ GRAPEVINE 169: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 170: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/INFO#17

--------------Question 21 ---------------

GRAPEVINE 171: COM:HUMAN(FRIEND) TO HAND(MAX)TFIND/
HAND MAX) /BLOCK(KINDOF = CUBE|BOT_STATUS = ONTOP T-
ABLE(DEFINITE))

GRAPEVINE 1 72: ANS:HANDIMAX) TO HUMAN(FRIEND)TFIND/
HAND(MAX)/BLOCK(B4)

--------------Question 22 ---------------

GRAPEVINE 173: QUEST:HAVE_IN_COMMON/HUMAN(FRIEND)
TO HAND{MAX)THAVE_IN_COMMON/BLOCK(B6)/BLOCK(B5)

GRAPEVINE 174: FACT:THAVE_IN_COMMON/BLOCK(B4)/BLOCK(B3)/
DESCRIPTION|DIMENSIONS

. GRAPEVINE I. 75: ANS:THAVE_IN__COMMON/BLOCK(B6)/BLOCK(BS)/
CATEGORY |COLORISIZE|XLENGTH|YWIDTH|~BOT_STATUS|TOP_STATUS

81

'

-=-=—--------- Question 23 ~--meecmcanea--

GRAPEVINE |. 76: QUEST:HAVE_IN_COMMON/HUMAN(FRIEND)
TO HAND{MAX)THAVE_IN_COMMON/BLOCK(B3)/BLOCK(B4)

GRAPEVINE 177: FACT:THAVE_IN_COMMON/BLOCK(B2)/TABLE(TABLL1)/
XCMS

GRAPEVINE |. 78: FACT:THAVE _IN_COMMON/BLOCK(B5)/BLOCK(BS6)/
CATEGORY |COLOR|SIZEIXLENGTH]YWIDTH|TOP_STATUS
GRAPEVINE 179: ANS:THAVE_IN_COMMON/BLOCK(B3)/BLOCK(B4)/
DESCRIPTION|DIMENSIONS|~TOP_STATUS

—emmmmemme——me (Question 24 ceeemcccccnne--

GRAPEVINE 3.80: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/BLOCK(SIZE = BIG|KINDOF = PARALLELEPIPED|XCOORD
<XCOORD[3BLOCK(KINDOF = PYRAMID)])/
GRAPEVINE 1 81: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(VAR Bl B2 B3)/3

~===we= =e--=== Question 25 “e-em

GRAPEVINE 182: COM:HUMAN(FRIEND) TO HANDIMAX)TONTOP/
BLOCK(SIZE = SMALL|KINDOF = PARALLELEPIPED)/BLOCK(COLOR
= GREENITOP,STATUS = HOLDING BLOCK(KINDOF= PYRAMID))
GRAPEVINE 183: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/
INFO: 18

GRAPEVINE 1.84: ACT:TMOVE/HAND(MAX)/BLOCK(B5)/FROM
-310 -550 -118/T0 -55 -155 -310
GRAPEVINE 185: REAS:ACHIEVETONTOP/BLOCK(BS)/BLOCK(B4)
GRAPEVINE 186: ACT:CAUSED_BY HAND(MAX)TONTOP/BLOCK(B5)/
BELOCK(EB4)

GRAPEVINE 187: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 1.88: ANS:HAND{MAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/INFO#19

~====eme--==== (Question 26 --------m---

82

|

GRAPEVINE 189: COM:HUMAN(FRIEND) TO HAND(MAX)TONTOP/
BLOCK(KINDOF = PYRAMID|HEIGHT < HEIGHT[Y BLOCK(KINDOF
= PYRAMID)])/BLOCK(ACT:TONTOP/X/ - 188 3)
GRAPEVINE I. 90: ORD:GETONTOROQOF TO FIND_SPOTTFIND/FIND_SPOT/
INFQ4 20

GRAPEVINE 191: ACT:CAUSED,BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCK(BS) |
GRAFEVINE 1.92: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM --55 -155 =318/TO -422 -601 -460

GRAPEVINE 193: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
55 -155 -318/TO -422 -608 -460

GRAPEVINE 194: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(B7)

GRAPEVINE 195: ACTCAUSED,BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(E7)

GRAPEVINE 196: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(B7)/
FROM -422 -608 -468/TO -55 -155 -260

GRAPEVINE 197: ACT:TMOVE/HAND(MAX)/BLOCK(B7)/FROM
-422 -608 -468/T0O -55 -155 -260

GRAPEVINE 1 98: REAS:ACHIEVETONTOP/BLOCK(B7)/BLOCK(B5)
GRAPEVINE 199: ACT:CAUSED,BY HAND(MAX)TONTOP/BLOCK(B?7)/
BLOCK(B5)

GRAPEVINE 200: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 201: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/INFO#21

~===re===-—m== (Question 27 ~e---mmmmeea-

GRAPEVINE 202: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)

TEXIST/OBJECT(TOP_STATUS = HOLDING BLOCK(KINDOF = PYRAMID]
HEIGHT 2HEIGHT[Y BLOCK(KINDOF = PYRAMID)]))/
GRAPEVINE 203: ANS:HAND({ MAX) TO HUM AN(FRIEND)? EXIST/
BLOCK(B4)/1
GRAPEVINE 204: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/OBJECT(COLOR = GREENIBOT,STATUS = ONTOP

OBJECT(BOT_STATUS = ONTOP OBJECT(ANS:TEXIST/X/ =» 201 3))|
HEIGHT <HEIGHT[Y OBJECT(BOT_STATUS = ONTOP OBJECT(ANS:T
EXIST/X/ = 201 3)]/
GRAPEVINE 205: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/

83

BLOCK(B7)/1

GRAPEVINE 206: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/OBJECT(COLOR = GREEN|BOT_STATUS = ONTOP OBJECT(HEIGHT

< HEIGHT[Y OBJECT(BOT_STATUS = ONTOP OBJECT(TOP_STATUS
= HOLDING BLOCK(KINDOF = PYRAMID[HEIGHT > HEIGHT[Y
BLOCK(KINDOF = PYRAMID)D)D)/
GRAPEVINE 207: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(B7)/1

--------------Question 28 ---------------

GRAPEVINE 208: QUEST:WHAT_IS/HUMAN(FRIEND) TO HANDIMAX)TIS/
COLOR/OBJECT(TOP_STATUS = HOLDING OBJECT(ANS:TEXIST/
X/ «= 207 2))
GRAPEVINE 209: ANS:HAND(MAX) TO HUMAN(FRIEND)TIS/COLOR/RED

mmm mma ee Quest ion 29 SCT TTT TTT TTT

GRAPEVINE 210: QUEST:HOW_MANY/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/OBJECT(LOCASHUN DIRECTLY-ABOVE BLOCK(COLOR = GREEN]
KINDO = CUBE))/

GRAPEVINE 211: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(VAR B5 B6 B7)/3

--e-==-----=-- (Question 38 ---------------

GRAPEVINE 212: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/BLOCK(KINDOF = PYRAMIDJACT:T GRASP/HAND(MAX)/
X — COM:TONTOP/BLOCK(COLOR = GREEN|KINDOF = PYRAMID)/
BLOCK(SIZE = SMALLIKINDOF = CUBE)« o)/
GRAPEVINE 213: ACT:NOAP

GRAPEVINE 214: REAS:INSTANCES/TNOT EXIST/BLOCK/BLOCK(KINDOF

~ PYRAMIDIPNUMBER = VAR B5)
GRAPEVINE 215: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(B7)/1

8 4

-========----- Question 31 ~~" TTTTTTC

GRAPEVINE 216: QUEST:WHEN_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND({ MAX)/PICKUP BLOCK(ANS:TEXIST/X/ « 215 w)
GRAPEVINE 21 7: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/#195/WHILE/#201

~-==--=------- Question 32 ------------o--

GRAPEVINE 218: QUEST:WHEN_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND(MAX)/ACT:TGRASP/HANDIMAX)/BLOCK(ANS:TEXIST/X/
«21 7 m0)= FIRST w

GRAPEVINE 219: ANS:HAND(MAX) TO HUMAN(FRIEND)T DID/
HAND(MAX)/#152/WHILE#1 70

-mem---------= Question 33 ---------------

GRAPEVINE 220: QUEST:WHY_DID/HUMAN(FRIEND) TO HANDIMAX)TDO/
HAND(MAX)/[ACT:T// =» 152 2]
GRAPEVINE 221: ANS:HAND(MAX) TO HUMAN(FRIEND)T ACTED BECAUSE/
HAND(MAX)/#1 53

—==----------- Question 34 -----------==--

GRAPEVINE 222: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND(MAX)TBO/
HAND(MAX)/[ACT:TOFFOF//BLOCK(KINDOF = CUBE) =1534]
GRAPEVINE 223: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

HAND(MAX)/#158

—e~--mm=-=—m—= Question 3b --------eeoee—-

GRAPEVINE 224: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND(MAX)TDOQ/

85

| |

C

A | [J

HAND(MAX)/[ACT:1// - 158 2]
GRAPEVINE 225: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

HAND(MAX)/#161

ttootttoooo- Question3 6 cmooomommooees

| GRAPEVINE 226: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND(MAX)/|ACT:1//= 161 23

“ GRAPEVINE 227: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

HAND(MAX)/#163

. tttstoottooo- Question3 7 tomo
GRAPEVINE 228: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND(MAX)TDOQ/

t {AND(MAX)/[ACT:1//~ 1632]
GRAPEVINE 229: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

HAND(MAX)/#165
«

"ctotottoooooo- Question 3 8 cmos

GRAPEVINE 230: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/

> HAND{MAX)/[ACT:1// = 165 2]
GRAPEVINE 231: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

HAND(MAX)/#167

| -===----------- Question 39 =-----=--------

GRAPEVINE 232: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND(MAX)/[ACT:1// = 167 2]
GRAPEVINE 233: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

~ HAND(MAX)/#1689

« 86

\

.

| memememmeemeee Question 48 mm-mmmmmmeeeoo

GRAPEVINE 234: QUEST:HOW_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND(MAX)/[COM:T// « 169 uw]
GRAPEVINE 235: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/FROM#134/TQO#1 78

~----m--—-—=-- Question 41 o-oo

GRAPEVINE 236: QUEST:HOW_MANY/HUMAN(FRIEND) TO HAND{MAX)
FEXIST/OBJECT()/

GRAPEVINE 237: ANS:HAND{ MAX) TO HUMAN(FRIEND)TEXIST/

—==w====—--=== (Question 42 --------mu-—-

BLOCK(VAR B3 B5B7)/3

GRAPEVINE 238: QUEST:HOW_MANY/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/OBJECT(COLOR= RED)/
GRAPEVINE 23 9: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(B2)/1

wmmmmmemme=m=== Question 43 ------L----w---

GRAPEVINE 240: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B7)/
FROM -55 -1.55 -268/T0Q -422 -608 -460
GRAPEVINE 241: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 242; THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#22
GRAPEVINE 243: THOUGHT:ACT:NOAP

GRAPEVINE 244: THOUGHT:REAS:ALREADY _DONETMOVE/HAND(MAX)/
BLOCK(B7)/FROM -422 -608 -468/TO -422 -608 -460

GRAPEVINE 245: THOUGHT:ACT:CAUSED,BY HAND(MAX)TONTOQP/
BLOCK(B7)/TABLE(TABL]1)

GRAFEVINE 246: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B7)

GRAPEVINE 247: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

87

HAND(MAX)/BLOCK(B7)
GRAPEVINE 248: THOUGHT:REAS:TASK/AT_TIME/RELEASE

GRAPEVINE 249: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -422 -608 -460/TQO -55 -155 -310

C GRAPEVINE 250: THOUGHT:REAS:TASK/AT_TIME/MQVETO
| GRAPEVINE 251: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HHAND{MAX)/BLOCK(B5)

GRAPEVINE 252: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRA PEVINE 253: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(BS5)/
FROM -55 -155 -316/T0O -310 -550 -110
GRAPEVINE 254: THOUGHT:REAS:TASK/AT_TIME/MOVETO

GRAPEVINE 255: THOUGHT:ACT:TMOVE/HAND{MAX)/BLOCK(B5)/
F-ROM -310 -550 -1108/T0Q -75 -450 -460
GRAPEVINE 256: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 257: THOUGHT:ORD:GETONTOPQF TO FIND_SPOTTFIND/

« FIND_SPOT/INFO/# 23
GRAPEVINE 258: THOUGHT:ACT:NOAP

GRAPEVINE 259: THOUGHT:REAS:ALREADY_DONETMOQVE/HAND(MAX)/
BLOCK(BS)/FROM -75 -450 -468/TO -75 -450 -460

GRAPEVINE 260: THOUGHT:ACT:CAUSED_BY HANDIMAX)TONTOP/
BLOCK(BES)/TABLE(TABL])

N GRAPEVINE 261: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B5)

GRAPEVINE 262: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BLOCK(B5)
GRAPEVINE 263: THOUGHT:REAS:TASK/AT_TIME/RELEASE

| GRAPEVINE 264: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
~ FROM -75 -450 -468/T0Q -422 -608 -460

GRAPEVINE 265: THOUGHT:REAS:TASK/AT_TIME/MQVETO
GRAPEVINE 266: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HANDIMAX)/BLOCK(B 7)
GRAPEVINE 36 7: THOUGHT:REAS:T ASK/AT-TIME/GRASP

.“ GRAPEVINE 265: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B7)/
FROM -122 -6B8 -4608/70 -75 -450 -410

GRAI'EVINE 269: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 270: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#24
GRAPLCVINE271 : THOUGHT:ACT:NOAP

> GRAPEVINE 272: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(B7)/FROM -75 -450 -41B/T0O -75 -450 -410

GRAPEVINE 273: THOUGHT:ACT:CAUSED_BY HANDIMAX)TONTOP/
BLOCK(B7)/BLOCK(BbS)

“ 8 8

“

GRAPEVINE 274: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B7?)

GRAPEVINE 275: THOUGHT:ACT.CAUSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BLOCK(B7)

GRAPEVINE 276: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 2 77: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)TFIND/
HAND(MAX)/OBJECT(BOT_STATUS = ONTOP BLOCK(COLOR = RED]
KINDOF = CUBE)

GRAPEVINE 278: ANS:HAND(MAX) TO HUMAN(FRIEND)TFIND/
HAND{MAX)/BLOCK(B7)

--------------- Question 4 4 e--v-----------

GRAPEVINE 279: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B7)/
FROM -55 -155 -268/T0 -422 -6088 -460
GRAPEVINE 280: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 281: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_GPOT/INFO#25
GRAPEVINE 252: THOUGHT:ACT:NOAP

“ GRAPEVINE 283: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(B7)/FROM -422 -608-460/TQ -422 -608 -460

GRAPEVINE 284: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK(B7)/TABLE(TABL])

GRAPEVINE 285: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B7)

GRAPEVINE 286: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BLOCK(B7)

GRAPEVINE 287: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 288: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -422 -608 -468/T0 -55 -155 -310
GRAPEVINE 289: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 290: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(BS)

GRAPEVINE 291: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 292: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(BS)/
FROM -55 -155 -318/T0 -310 -550 -110

GRAPEVINE 293: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 294: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B5)/
FROM -3113 -550 -118/TQO -75 -450 -460

GRAPEVINE 295: THOUGHT:REAS:TASK/AT_TIME/MOVETO

89

GRAPEVINE 296: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND__SPOT/INFO#26
GRAPEVINE 297: THOUGHT:ACT:NOAP

GRAPEVINE 298: THOUGHT:REAS:ALREADY_DONETMOQVE/HAND(MAX)/
BLOCK(B5)/FROM -75 -450 -468/T0 -75 -450 -460

= GRAPEVINE 299: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK(BS)/TABLE(TABLL)

GRAPEVINE 300: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(BED)

GRAPEVINE 301: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
“ tIANDIMAX)/BLOCK(BS)

" GRAPEVINE 302: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 303: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -75 -450 -468/T0O -422 -608 -460
GRAPEVINE 304: THOUGHT:REAS:TASK/AT_TIME/MQVETO
GRAPEVINE 305: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

he HAND(MAX)/BLOCK(B7)
GRAPEVINE 306: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 307: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B7)/
FROM -422 -608 -468/TQ -75 -450 -410

GRAFEVINE 308: THOUGHT:REAS:TASK/AT_TIME/MOVETO
“ GRAPEVINE 309: THOUGHT:ORD:GETONTOPOF TOFIND_SPOTTFIND/

FIND_SPOT/INFO#27
GRAFEVINE 318: THOUGHT:ACT:NOAP

GRAPEVINE 311:THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(B7)/FROM -75 -450 -418/TO -75 -450 -410

GRAPEVINE 312: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
~ BLOCK(B7)/BLOCK(B5)

GRAPEVINE 313: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B7)

GRAPEVINE 314: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND(M AX)/BLOCK(B 7)

o GRAPEVINE 315: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 316: QUEST:HOW_MANY/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/BLOCK(LOCASHUN LEFT-OF BOX(DEFINITE)|KINDOF
= PARALLELEPIPED)/

GRAPEVINE 317: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(VAR B2 B3 B4 B5)/4

—=eweemmemm—== (Question 45 -----mmmeuno

99

“

GRAPEVINE 318: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B7)/
FROM -55 -155 -268/TQ -422 -608 -460

GRAPEVINE 319: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 320: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO/#28
GRAPEVINE 321: THOUGHT:ACT:NOAP

GRAPEVINE 322: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(B7)/FROM -422 -602 -460/T0O -422 -608 -460
GRAPEVINE 323: THOUGHT:ACT:CAUSED,BY HANDI(MAX)TONTQOP/
BLOCK(B7)/TABLE(TABLI)
GRAPEVINE 324: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B7)

GRAPEVINE 325: THOUGHT:ACT:CAUSED,BY HAND(MAX)TRELEASE/
HANDMAX)/BLOCK(B7)

GRAPEVINE 326: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 327: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -422 -6088-468/T0 -55 -155 -310
GRAPEVINE 328: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 329: THOUGHT:ACT:CAUSED,BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(B5)

GRAPEVINE 330: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 331: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(BS)/
FROM -55 -155 -318/T0O -310 -550 -118
GRAPEVINE 332: THOUGHT:REAS:TASK/AT_TIME/MOVETO

GRAPEVINE 333: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B5)/
FROM -310 -5508 -1 18/TQ -75 -450 -460

GRAPEVINE 334: THOUGHT:REAS:TASK/AT_TIME/MQVETO
GRAPEVINE 335: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#29
GRAPEVINE 336: THOUGHT:ACT:NOAP |

GRAPEVINE 337: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(BS)/FROM -75 -450 -468/T0 -75 -450 -460
GRAPEVINE 338: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK(BS)/TABLE(TABLL)

GRAPEVINE 339: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(BS)

GRAPEVINE 340: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BLOCK(BS)
GRAI ‘WINE 341: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 342: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -75 -450 -468/T0Q -422 -608 -460

91

GRAPEVINE 343: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 344: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(B7)

GRAPEVINE 345: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 346: THOUGHT:ACT:TMOVE/HAND({MAX)/BLOCK(B 7)/
FROM -422 -608 -468/TO -75 -450 -410

GRAPEVINE 347: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 348: THOUGHT:ORD:GETONTOPOF TO FIND_SPQTTFIND/
FIND. _SPOT/INFO#30
GRAPEVINE 349: THOUGHT:ACT:NOAP

GRAPEVINE 350: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(B7)/FROM -75 -450 -4108/T0 -75 -450 -410

GRAPEVINE 351: THOUGHT:ACT:CAUSED,BY HAND(MAX)TONTOP/
BLOCK(B7)/BLOCK(B5)

GRAPEVINE 352: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B7/)

GRAPEVINE 353: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BLOCK(B7)

GRAPEVINE 354: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 355: QUEST:HOW_MANY/HUMAN(FRIEND) TO HAND(MAX)

TEXIST/OBJECT(LOCASHUN DIRECTLY-ABOVE BLOCK(COLOR= GREEN]
KINDOF = CUBE))/

GRAPEVINE 356: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(B6)/1

~—=----=-~---- Question 46 ~~" ------

GRAPEVINE 357: COM:HUMAN(FRIEND) TO HAND(MAX)TONTOP/
BLOCK(COL.OR = BLUE|KINDOF = PYRAMID)/BLOCK(BOT_STATUS
= ONTOP BEQX(DEFINITE)

GRAPCVINE 358: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/
INFO 31

GRAPEVINE 359: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCK(B7)

GRAPEVINE 360: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
| FROM -55 -155 -268/TQ -470 165 -410
~ GRAPEVINE 361: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM

-55 -1 55 -260/TQ -470 165 -410

GRAPEVINE 362: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(BS8)

. 92

GRAPEVINE 363: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(BS8).

GRAPEVINE 364: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(BS8)/
FROM -470 165 -4108/TQ -545 145 -160

GRAPEVINE 365: ACT:TMOVE/HAND(MAX)/BLOCK(B8)/FROM
470 1.65 -418/TO -545 145 -160

GRAPEVINE 366: REAS:ACHIEVETONTOP/BLOCK(BS8)/BLOCK(B1)
GRAF’EVINE 367: ACT:CAUSED,BY HAND(MAX)TONTOP/BLOCK(BS)/
BLOCK(BI1)

GRAPEVINE 368: REAS:TASK/HUMAN(FRIEND) /HAND(MAX)
GRAPEVINE 369: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/INFO#32

-------------- Question 4 7 --ooiioeiio---

GRAPEVINE 370: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)

TEXIST/OBJECT(HEIGHT > HEIGHT[V BLOCK(KINDOF = PYRAMID)]|
BOT_STATUS = ONTOP OBJECT(YWIDTH > YWIDTH[ITSELF]))/
GRAPEVINE 371: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(B1)/1

"coro Question 48 ccm

GRAPEVINE 372: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/STEEPLE()/
GRAPEVINE 373: ACT:NOAP

GRAPEVINE 374: REAS:WHATISIT/TNOT EXIST/COMPOSITE_OBJECT/
STEEPLE

~~ -------Question49 ----m-eom—-

GRAPEVINE 375: FACT:HUMAN(FRIEND) TO HANDIMAX)TEQUAL/
} STEEPLE()/BLOCK(COLOR= GREEN|KINDOF = CUBEITOP,STATUS

= HOLDING BLOCK(COLOR = GREENIKINDOF = CUBEITOP,STATUS

- HOLDING BLOCK(COLOR= RED|KINDOF = PYRAMID)))

93

-= ee =====-== Questionb0 ---------------

GRAPEVINE 376: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/STEEPLE()/
GRAPEVINE 3 77: ACT:NOAP

GRAPEVINE 378: REAS:INSTANCES/TNOT EXIST/BLOCK/BLOCK(COLOR

== GREEN|KINDOF = CUBE|TOP_STATUS = HOLDING BLOCK(COLOR
= GREEN|KINDOF = CUBEITOP,STATUS = HOLDING BLOCK(COLOR= RED]
KINDOF= PYRAMID)))
GRAI'EVINE 379: ANS:HAND(MAX) TO HUMAN(FRIEND)TNOT EXIST/

BLOCK(COLOR= GREENI|KINDOF = CUBE/TOP-STATUS = HOLDING
BLOCK(COLOR = GREENIKINDOF = CUBEITOP,STATUS = HOLDING

BLOCK(COLOR= RED|KINDOF = PYRAMID)))/

~e-mememe-—=—- Question B51 moomoo

GRAPEVINE 350: COM:HUMAN(FRIEND) TO HAND(MAX)TBUILD/
HAND(MAX)/STEEPLE()

GRAPEVINE 381: ORD:GETONTOPQOF TO FIND_SPOTTFIND/FIND_SPQT/
INFO 37

GRAPEVINE 382: ACT:NOAP

GRAPEVINE 383: REAS:FIND_SPOT/CANNOT_BE_DONETIS/AREA[(FREE)
OF BLOCK(B4)]/TOOSMALL
GRAPEVINE 384: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPQT/
INFO#35

GRAPEVINE 385: ACT:CAUSED,BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCK(I38)

GRAPEVINE 386: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -545 145 -168/T0 -55 -155 -260
GRAPEVINE 387: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
-545 145 -168/TO -55 -155 -260

GRAPEVINE 388: REAS:ACHIEVETGRASP/HAND(MAX)/BLOCK(B7)
GRAI'EVINE 389: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(B7)

GRAPEVINE 390: REAS:ACHIEVETOFFOF /BLOCK(B7)/BLOCK(B5)
GRAPEVINE 391: ORD:GETOFFOF TO FIND_SPOTTFIND/FIND_SPQT/
INFQ# 36

GRAPEVINE 392: ACT:TMOVE/HAND(MAX)/BLOCK(B7)/FROM

94

|

-55 -155 -2608/T0O -422 -608 -460

GRAPEVINE 393: REAS:ACHIEVETONTOP/BLOCK(B7)/TABLE(TABLL)
GRAPEVINE 394: ACT:CAUSED,BY HAND(MAX)TOFFOF/BLOCK(B7)/
BLOCKED)

N GRAPEVINE 395: REAS:ACHIEVETTOP_STATUS[BLOCK(B5)] = CLEAR
GRAPEVINE 396: ACT:CAUSED_BYHAND(MAX)TRELEASE/HAND(MAX)/

BELOCK(ETY)

GRAPEVINE ‘397: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -422 -608 -468/TO -55 -155 -310

GRAPEVINE 398: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
422 -608&-468/TO -55 -155 -310

GRAPEVINE 399: REAS:ACHIEVETGRASP/HAND(MAX)/BLOCK(BS)
GRAPEVINE 400: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
CLOCK(B5)

GRAPEVINE 401: REAS:ACHIEVETOFFOF/BLOCK(B5)/BLOCK(B4)
GRAPEVINE 402: ORD:GETOFFQOF TO FIND_SPOTTFIND/FIND_SPOT/
INFO) 37

GRAPEVINE 403: ACT:TMOVE/HAND(MAX)/BLOCK(BS)/FROM
-55 -1 55 -318B/TQ -472 -608 -460

GRAPEVINE 484: REAS:ACHIEVETONTCP/BLOCK(BS)/TABLE(TABLL)
GRAPEVINE 405: ACT:CAUSED_BY HANDIMAX)TOFFQOF /BLOCK(BS)/
BELOCK(BA)

GRA t 'EVINE 406: REAS:ACHIEVETTOP_STATUS[BLOCK(B4)] = CLEAR
GRAPEVINE 407: ACT:CAUSED_BY HANDIMAX)TRELEASE/HAND(MAX)/
BLOCK(ED)

GRAPEVINE 188: REAS:ACHIEVETMOVE/HANDIMAX) /HAND(MAX) /
"ROM -472 -608 -4G8/TO -1.05 -70 -160

GRAPEVINE 409: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
-N72 -608 -468/T0O -105 -70 -160

GRAPEVINE 410: REAS:ACHIEVETGRASP/HAND(MAX)/BLOCK(BS)
GRAPEVINE 411: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(EB)

GRAPEVINE 412: REAS:ACHIEVETOFFOF /BLOCK(B6)/BLOCK(B4)

GRAPEVINE 413: ORD:GETOFFOF TO FIND_SPOTTFIND/FIND_SPOT/
INFO 38

GRAPEVINE 414: ACT:TMOVE/HAND(MAX)/BLOCK(BS)/FROM
~-18% -70 -1.60/TO -522 -608 -310
GRAPEVINE 415: REAS:ACHIEVETONTOP/BLOCK(BS)/TABLE(TABLL)
GRAPEVINE 416: ACT:CAUSED_BY HANDIMAX)TOFFOF /BLOCK(B6)/
GLOCK(E4)

GRAPEVINE 41 7: REAS:ACHIEVETTOP_STATUS[BLOCK(B4)] = CLEAR
GRAPEVINE 418: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/

95

BLOCK{6)

GRAPEVINE 419: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -522 -608 -318/T0-310-558 -160

GRAPEVINE 420: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
-522 -608 -318/T0O -310 -550 -160

GRAPEVINE 421: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(B3)

GRAPEVINE 422: ACT:CAUSED,BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(BE3)

GRAPEVINE 423: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(B3)/
FROM -318 -550 -168/TQ -75 -105 -210

GRAPEVINE 424: ACT:TMOVE/HAND(MAX)/BLOCK(B3)/FROM
-310 -550 ~166/T0O -75 -105 -210
GRAPEVINE 425: REAS:ACHIEVETONTOP/BLOCK(B3)/BLOCK(B4)

GRAPEVINE 426: ACT:CAUSED_BY HAND(MAX)TONTOP/BLOCK(B3)/
BLOCKED

GRAPEVINE 427: REAS:ACHIEVETSTACKUP/BLOCK(B3)/BLOCK(B4)
GRAPEVINE 428: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/
INFO/ 39

GRAPEVINE 429: ACT:CAUSED,BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCK(B3)

GRAPEVINE 430: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -75 -105 -218/T0O -522 -608 -310

GRAPEVINE 431: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM
-75 1.¢-218/TQ2 -608 -310

GRAPILVINE 432: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(B6)

GRAPEVINE 433: ACT:CAUSED,BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(I3G)

GRAPEVINE 434: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(B6)/
FROM -522 -608 -318/TQ -75 -105 -10

GRAPEVINE 435: ACT: I MOVE/HAND({MAX)/BLOCK(B6)/FROM
.522 -608-318/T0 -75 -105 -10
GRAPEVINE 436: REAS:ACHIEVETONTOP/BLOCK(B6)/BLOCK(B3)
GRAPEVINE 437: ACT:CAUSED_BY HANDIMAX)TONTOP/BLOCK(B6)/
BLOCK(B3)

GRAPEVINE 438: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPLCVINE 439: ANS:HANDIMAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/INFO#33

S6

Sen

~=m=mme-=--==- (Question D2 ~=--m-memmmmeen

GRAPEVINE 440: QUEST:HOW_DID/HUMAN(FRIEND) TO HAND(MAX)TDOQ/
HAND(MAX)/BUILD STEEPLE()

Y GRAPEVINE 441: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/
HANDI(MAX)/FROM#388/TO#439

~=------------ Question 53 -----------m-—-
C

GRAPEVINE 442: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
PILE(GREEN|BLUE[RED)/BLOCK(COLOR = GREENI|KINDOF = -
PARALLELEPIPED|TOP_STATUS = HOLDING BLOCK(COLOR = BLUE]
KINDOF =PARALLELEPIPED|TOP_STATUS = HOLDING BLOCK(COLOR

“ = RED|KINDOF = PYRAMID)))

mmmmo—ee--———= (uestion D4 —mmemmmemeeee-

. GRAPEVINE 443; QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
| TEXIST/PILE(GREEN|GREEN|RED)/

GRAPEVINE 444: ANS:HANDIMAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(B4)/1

“

——=-=== —--=---- Question bb ~e---eeeeeeen--

GRAPEVINE 445: QUEST:HOW_WOULD/HUMAN(FRIEND) TO HAND(MAX)
1DO/HAND(MAX)/BUILD PILE(RED|GREEN|BLUE)

'« GRAPEVINE 446: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)TBUILD/
HAND(MAX)/PILE(RED|GREEN|BLUE)

GRAPEVINE 447: THOUGHT:ORD:GETOFFOF TO FIND_SPQOTTFIND/
FIND_SPOT/INFO#41

GRAPEVINE 448: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(BS6)/

. FROM -75 -105 -18/T0Q -522 -688-318
GRAPEVINE 449: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(BS)/
TABLE(TABLI)

GRAPEVINE 450: THOUGHT:ACT:CAUSED,BY HANDIMAX)TOFFQF/
BLOCK(B6)/BLOCK(B3)

97

GRAPEVINE 451: THOUGHT:REAS:ACHIEVETONTOPR/BLOCK(B3)/
[BL OCK(B2)

GRAPEVINE 452: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#42

GRAPEVINE 4 5 3 : THOUGHT:ACT:CAUSED_BY HANDIMAX)TRELEASE/
HAND! MAX) /BLOCK(B6)

GRAPEVINE 454: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/
| IAND(IMAX)/FROM -522 -683-318/T0 -75 -105 -210

GRAPEVINE 455: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -522 -608 -318/TO -75 -105 -210

GRAPEVINE 456: THOUGHT:REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
== GRASPING BLOCK(B3)

GRAFEVINE 457: THOUGHT:ACT:CAUSED-BY HAND(MAX)TGRASP/
tHHAND(MAX)/BLOCK(B3)

GRAPEVINE 458: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/
BLOCK(BE3)/FROM -75 -185-218/TQ -310 -550 -160

GRAI WINE 459: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B3)/
FROM -75 -1.05 -218/T0-318 -550 -160

GRAPEVINE 460: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(B3)/
BLOCK(EB?2)

GRAPEVINE 46): THOUGHT:ACT:CAUSED,BY HAND(MAX)TONTOP/
= BLOCK(BE3)/BLOCK(B2)

GRAPEVINE 46 2: THOUGHT:REAS:ACHIEVET STACKUPR/BLOCK(B3)/
BLOCK?)

GRAPEVINE 463: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
- IND_SPOIT/INFO/#43

GRAPEVINE 464: THOUGHT:ACT.CAUSED_BY HAND(MAX)TRELEASE/
HANDIMAX)/BLOCK(B3)

GRAPEVINE 165: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/
t IAND{MAX)/FROM -31.0 -550 -168/T0 -545 145 -160
GRAPEVINE 466: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -310 -550 -168/T0 -545 145 -160

GRAPEVINE 467: THOUGHT:REAS:ACHEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(ES)

GRAPEVINE 168: THOUGHT:ACT:CAUSED_BY HANDIMAX)TGRASP/
HAND{MAX) /BLOCK(B8)
GRAPEVINE 469: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/
BLOCK(B8)/FROM -545 145-168/T0 -310 -550 -60
GRAPEVINE 470: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(BS8)/
FROM -545 145 -166/TO -310 -550 -60

GRAPEVINE 471: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(BS8)/
BLOCK(B3)

08

GRAPEVINE 472: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK(ES)/BLOCK(B3)

GRAPEVINE 473: THOUGHT:REAS:TASK/HUMAN(FRIEND)/HAND{MAX)
GRAPEVINE 474: THOUGHT:ANS:HANDIMAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/INFO#406

GRAPEVINE 475: ANS:HAND({ MAX) TO HUMAN(FRIEND)TWOQULD DO/
HAND(MAX)/FROM/#445/TOH474

"coco 7777 Question 56 meemmmmmemeeeeo

GRAPEVINE 476: COM:HUMAN(FRIEND) TO HAND(MAX)T

SURTRACTDATABASE/HANDIMAX)/BLOCK(COLOR = GREEN|KINDOF = CUBE]
BOT_STATUS = ONTCP BLOCK(COLOR = GREEN))

GRAPEVINE 477: ORD:GETOFFOF TO FIND_SPOTTFIND/FIND_SPQOT/
INFO 44

GRAPEVINE 478: ACT:TMOVE/HAND(MAX)/BLOCK(ES)/FROM
-75 -105 -18/T0 -522 -608 -310

GRAPEVINE 479: REAS:ACHIEVETONTOP/BLOCK(B6)/TABLE(TABLL)
GRAPEVINE 480: ACT:CAUSED_BY HAND(MAX)TOFFQF /BLOCK(BS)/
BLOCK(33)

GRAPEVINE 481: REAS:ACHIEVETTOP_STATUS[BLOCK(B3)] = CLEAR
GRAPEVINE 492: SUB:TMODIFY/TSUBTRACT/HAND(MAX)/BLOCK(PNAME

= B3|HELD_STATUS = FREE|LOCASHUN = -75 -105 -218|COLOR
=GREEN]|SIZE= BIG|DESCRIPTION = THE BIG GREEN CUBE]
TOP-STATUS = CLEARIEOT,STATUS = ONTOPBLOCK(B4)|KINDOF
= CUBE|DIMENSIONS = 150 158 1 58|XLENGTH = 158|YWIDTH = 158]
HEIGHT = 158|XCOORD = -75|YCOORD = -185|ZCOORD = -219|
LIKED-STATUS = LIKED-BY HUMAN(FRIEND){VOLUME= 33750001
DISP_NUMB= 3JCENTER_OF _MASS = -75 -105 -285|XCMS = -75|
YCMS ~ -1 05|ZCMS = -285|SIHHAPE_OF_TOP = FLAT)
GRAPEVINE 483: ANS:HAND(MAX) TO HUMAN(FRIEND)T

SUBTRACT_DATABASE/HANDIMAX)/BLOCK(B3)

GRAPEVINE 484: COM:HUMAN(FRIEND) TO HAND(MAX)T

SUBTRACT _DATABASE/HAND(MAX)/BLOCK(COLOR = GREEN|KINDOF = CUBE)
GRAPEVINE 485:SUB:TMODIFY/TSUSTRACT/HAND(MAX)/BLOCK{PNAME

-- BAELD_STATUS = FREEJLOCASHUN = -75 -105 -360|COLOR
=: GREEN/SIZE = BIG/DESCRIPTION = THE BIG GREEN CUBE]
TOP_STATUS = CLEAR|BOT_STATUS = ONTOP TABLE(TABLL)|
KINDOIF = CUBE|DIMENSIONS = 150 150 158|XLENGTH = 159]
YWIDTH = 1 B8|HEIGHT = 1 58|XCOORD = -75|YCOORD = -1051

99

ZCOORD --368|LIKED_STATUS= NOT LIKED-BY HUMAN(FRIEND)]
VOLUME 3375800|DISP_NUMB = S|CENTER_OF_MASS = -75
-10% -435|XCMS = -75|YCMS = -105|ZCMS = -435|SHAPE_OF_TOP
: FLAT)
GRAPEVINE 486: ANS:HAND(MAX) TO HUMAN(FRIEND)T

SUBTRACT _DATABASE/HAND(MAX)/BLOCK(B4)

intbebebahatetaiaeh ah Quest ion 57 unten

GRAPEVINE 487: COM:HUMAN(FRIEND) TO HAND(MAX)TADD_DATABASE/
HAND(MAXY)/BLOCK(COLOR =BLACK|KINDOF = CYLINDER)
GRAPEVINE 488: 0RD:TMODIFY TO FIND_SPOTTFIND/FIND_SPOT/
INFO AS

GRAPEVINE 489: ADD:TMODIFY/TADD/HAND(MAX)/BLOCK(BLOCK488)
GRAPEVINE 490: ANS:HAND(MAX) TO HUMAN(FRIEND)TADD_DATABASE/

HANDIMAX) /BLOCK(BLOCKA488)
GRAPEVINE 491. : COM:HUMAN(FRIEND) TO HANDIMAX)TADD_DATABASE/
HAND; MAX)/BLOCK(COLOR = ORANGE|KINDOF = CYLINDER|HEIGHT

+ LIGHITTY BLOCKDOT
~ GRAPEVINE 492: ORD: TMODIFY TO FIND_SPOTTFIND/FIND_SPOT/

INFO 46

GRAPEVINE 493: ADD:TMODIFY/TADD/HAND(MAX)/BLOCK(BLOCK452)
GRAPEVINE 494: ANS:HANDIMAX) TO HUMAN(FRIEND)TADD_DATABASE/
HAND(MAX)/BLOCK(BLOCK492)

meme meeee-= (Question BE mmmmmmemmemeee

GRAPEVINE 495: COM:HUMAN(FRIEND) TO HANDIMAX)TADD_DATABASE/
HAND(MAX)/BLOCK(COLOR = YELLOWIKINDOF = CONE|SIZE = SMALL]
HELD _STA 1-US =GRASPED_BY HAND(MAX))
GRAPEVINE 496: ACT:CAUSED,BY HAND(MAX)TRELEASE/HAND(MAX)/
BELOCK(ES)

GRAPLVINE 497: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)] = EMPTY
GRAPEVINE 498: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM

522 -688 -310/TO-H22 -603 200
GRAPEVINE 499: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 5280: ADD:TMODIFY/TADD/HAND(MAX)/BLOCK(BLOCKA43E)
GRAPEVINE 581: ANS:HAND(MAX) TO HUMAN(FRIEND)TADD_DATABASE/

100

HANDIMAX)/BLOCK(BLOCK496)

GRAPEVINE 532: COM:HUMAN(FRIEND) TO HAND(MAX)TADD_DATABASE/
HANDIMAX)/BOX(DESCRIPTION = THE BOX|BOT_STATUS = ONTOP
BLOCK(COLOR = REDI|SIZE = BIG))

] GRAPEVINE 503: ORD: TMODIFY TO FIND_SPOTTFIND/FIND_SPQOT/
INFO 47

GRAPEVINE 504: ADD: TMODIFY/T ADD/HAND(MAX)/BOX(BOX583)
GRAI ‘EVINE 505: ANS:HAND(MAX) TO HUMAN(FRIEND)T ADD-DATABASE/

mmmm——--=--——- Question 59 —-m--mmmmeeeo-

HANDMAX) /BOX(BOX503)
GRAPEVINE 586: FACT:HUMAN(FRIEND) TO HANDIMAX)TEQUAL/

. ROCKET(PARALLELEPIPED|PYRAMID|YELLOW|BROWN|GREEN)/-
BLOCK(COLOR = YELLOWIKINDOF = PARALLELEPIPED|TOP_STATUS

= HOLDING BLOCK(COLOR= BROWNI|KINDOF = PARALLELEPIPED|
TOP-STATUS = HOLDING BLOCK{(COLOR= GREENIKINDOF = PYRAMID)))

———rmmoe—-w=—= (Question GF -e--meeemmonaee

GRAPEVINE 50 7: COM:HUMAN(FRIEND) TO HAND(MAX)TBUILD/
HANDIMAX)/ROCKET(CYLINDER|CONE]JORANGE|BLACK|YELLOW)

. GRA! ‘EVINE 508: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPQOT/
INFO#49

GRAPEVINE 50 9: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/
INFO) 58

GRAPEVINE 51 8: ACT:TMOVE/HAND(MAX)/BLOCK(BLOCK496)/
FROM 522 -608 288/T0O -25 -520 -460
GRAPEVINESLL : REAS:ACHIEVETONTOP/BLOCK(BLOCK4396)/
TABLO(TABLYD)

GRAPEVINE 512: ACT:CAUSED_BY HAND(MAX)TONTOP/BLOCK(BLOCK4986)
/TABLE(TABLL)
GRAPEVINE 513: REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(BLOCKA496)

GRAPEVINE 514: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/
RLOCK(BLOCKA486)

GRAPEVINE 51 5:REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -522 -608 208/70 -570 -533 -360

181

GRAPEVINE 516: ACT: TMOVE/HANDIMAX)/HAND(MAX)/FROM
HP? -G38288/TO -570 -533 -360

GRAPEVINE 51.7: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(BLOCKA488)

GRAPEVINE 51 8: ACT:CAUSED_BY HANDIMAX)TGRASP/HAND(MAX)/
BLOCK{BELOCKA488)

GRAPEVINE 51 9: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(BLOCK488)/
FROM -%70 -533 -3608/TO -570 -433 -118

GRAPEVINE 520: ACT:TMOVE/HAND(MAX)/BLOCK(BLOCK488)/
FROM . 570 -533 -368/T0 -570 -433 -110

GRATTVINE 521 :REAS:ACHIEVETONTOR/BLOCK(BLOCKA488)/
BLOCKIRLGCK492)

GRAPEVINE 522: ACT:CAUSED_BY HAND(MAX)TONTOP/BLOCK(BLOCK488)
BLOCK OCKA92)

GRAPEVINE 523: REAS:ACHIEVETSTACKUP/BLOCK(BLOCK488)/
BLOCH(BLOCK4S92)

GRAPEVINE 524: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/
INFOS

GR AP’EVINE 525: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/
BLOCKIBLOCKAES)

GRAPEVINE 526: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM . 570 -433 -118/T0O -25 -520 -460

GRAPEVINE 527: ACT:TMOVE/HANDIMAX)/HANDIMAX)/FROM
~570-433 -1 16/70 -25-520 -460

GRAPEVINE 528: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]
= GRASPING BLOCK(BLOCK196)

GRAPEVINE 529: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK(BLOCK496)

GRAPEVINE 530: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(BLOCK436)/
FROM -25 -520 -468/T0 -570 -433 -60
GRAPEVINE 531: ACT: TMOVE/HAND(MAX)/BLOCK(BLOCK496)/
FROM e-25 -520 -468/T0O -570 -433 -60

GRAPTVINE 532: REAS:ACHIEVETONTOP/BLOCK(BLOCK496)/
CLOCK(BLOCKAES)

GRAPEVINE 533: ACT:CAUSED_BY HANDIMAX)TONTOP/BLOCK(BLOCK496)
[LOCKE OCK488)
GRAPEVINE 534: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 535: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/
HAND{MAX)/INFO#48

102

KS

GRAPEVINE 536: COM:HUMAN(FRIEND) TO HAND(MAX)TFIND/
HAND(MAX)/OBJECT(BOT_STATUS = ONTOP TABLE(DEFINITE))

GRAPEVINE 537: ANS:HAND(MAX) TO HUMAN(FRIEND)TFIND/
HAND(MAX)/BLOCK(VAR B2 B7 B5 B6 BLOCK452)

GRAPEVINE 538: ANS:HAND({ MAX) TO HUMAN(FRIEND)T FIND/
HAND(MAX)/BOX(VAR BOX1)

meme-m———m= Question 62 ---------------

GRAPEVINE 539: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
GNAME|BLOCK(B2)]/SUPERBLOCK

—==-meme—e—me (Question I

GRAPEVINE 540: QUEST:WHEN_DID/HUMAN(FRIEND) TO HANDIMAX)TDO/
. HAND MAX) /PICKUP BLOCK(GNAME = SUPERBLOCK)

GRAPEVINE 541. : ACT:NOAP

GRAPEVINE 542: REAS:FIND_NUMB/1T NOT EXIST/RELATION/
GRAPEVINE 543: ACT:NOAP

GRAPEVINE 544: REAS:FIND_NUMB/TNOT EXIST/RELATION/

GRAPEVINE 545: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/
HAND(MAX)/#15/WHILE#] 9

~m=~em=mmemee- Question 6 4 -----o--ooo----

GRAPEVINE 546: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(BLOCK436)/
| ROM -570 -433 -63/T0 -25 -520 -460

GRAPEVINE 547: THOUGHT:REAS:TASK/AT _TIME/MOVETO
CRAFFEVINE 548: THOUGHT:ORD:GETONTOPQOF TO FIND_SPOTTFIND/
FIND _SPOT/INFOH#52

v GRAPEVINE 549: THOUGHT:ACT:NOAP

GRAPEVINE 550: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(BLOCKASE)/FROM -25 -520 -458/T0O -25 -520 -460

GRAPEVINE 551: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

N 103

“

DI OCK{BIOCKA496)/ TABLE(TABLL)
GRAPEVINE 552: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(BLOCKAS6)

GRAPEVINE 553: THOUGHT:ACT:CAUSED_BY HANDIMAX)TRELEASE/

. HAND(MAX)/BLOCK(BLOCK496)
GRAPEVINE 554: THOUGHT:REAS:T ASK/AT-TIME/RELEASE

GRATI “WINE 555:THOUGHT:ACT:i MOVE/HANDIMAX)/HAND(MAX)/
| FROM -25-520-4608/T0 -570 -433 -110

GRAPEVINE 556: THOUGHT:REAS:T ASK/AT_TIME/MOVETO
GRAPEVINE 557: THOUGHT :ACT:CAUSED_BY HANDIMAX)T GRASP/

\ HANDUMAX)/BLOCK(BLOCKA4GS)
GRAPEVINE 558: THOUGHT:REAS:T ASK/AT-TIME/GRASP

GRAPTVINE 559: THOUGHT:ACT:1MOVE/HAND(MAX)/BLOCK(BLOCK488)/
FROM 570 -433 -1108/T0O -570 -533 -360

GRA ‘EVINE 560: THOUGHT:REAS:TASK/AT_TIME/MOVETQO

GRAPEVINES6] : THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND SPOT/INFO#S3
GRAPEVINE 6 2: THOUGHT:ACT:NOAP

| GRAPLVINE 563: THOUGHT:REAS: ALREADY _DONETMOVE/HANDIMAX)/
BLOCKBLOCKASE FROM -6700-533 -268/T0-578 -533 -360

GRAPEVINE 564: THOUGH 1 :ACT:CAUSED_BY HANDIMAX)TONTOP/
« BLOCKOBLOCKASEY/TABLIZITABLL)

"GRAPEVINE 505: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
DLOCK(DLOCKASS)

GRAPLVINE 566: THOUGHT:ACT:CAUSED_BY HANDIMAX)TRELEASE/
HANDIMAX) /BLOCKIBLOCK AES)

« GRAPEVINE 56 7: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 568: THOUGH ACT:TMOVE/HANDIMAX) /HAND(MAX) /
FROM -5713 -503 -30U/T0O -522 -6U& 200
GRAPEVINE 569: THOUGHT:REAS:TASK/AT _TIME/MOVETQ
GRAPEVINE 573:THOUGHT:ACT: IMOQVE/HAND: MAX) /HAND{ MAX)/
FROM ~522 -608 208/70 - 2 5 -520 -40G0

\ CRAFEVINE 5 71: THOUGHT:REAS:ACHIEVET GRASP/HAND(MAX)/
DLOCKISLOCKA496)

GRAPEVINE 572: THOUGHT:ACT:CAUSED_BY HANDIMAX)TGRASP/
HANDMAX) /BLOCK(BLOCKA496)

GRAPEVING 573: THOUGH T:REAGT ASK/AT_TIME/GRASP

a GRAPEVINE 574: THOUGHT:ACT: IMOVE /HANDIMAX) /BLOCK(BLOCK 496) /
- FROM - 25 -520 -460/T0 -522 -608 200

GITAT'CVINE 5 75: THOUGH TREAS: TASK/AT_TIME/MOVETO

GRADTVINE 576: THOUGHT: SUR: TMODRIFY/TSUBTRACT /HANDIMAX) /
BOX PNAME = BOXBU3|HELD_STATUS - - FREE|LOCASHUN = -310

~ 104

XS

!

“

-551 -160|SIZE = MEDIUM-SIZED|DESCRIPTION = THE BOX]
TOP_STATUS = CLEAR|BOT_STATUS = ONTOP BLOCK(B2)|DIMENSIONS
-- 100 100 1 SOIXLENGTH = 100|YWIDTH = 180|HEIGHT = 158]
<COORD = -310]YCOORD = -558|ZCOORD = -168|VOLUME = 15000001

. DISP_NUMB = 2|CENTER_OF _MASS = -310 -550 -235|XCMS = -310]
YCMS -- -550]ZCMS = -235|SHAPE_OF_TOP = FLAT)
GRAPEVINE 577: THOUGHT:SUB:TMODIFY/TSUBTRACT/HAND{MAX)/
BLOCK(PNAME= BLOCK436|HELD_STATUS = GRASPED-BY HAND(MAX)|
L OCASIHUN= -522 -608 200|COLOR = YELLOW|SIZE = SMALL]

| DESCRIPTION = THE SMALL YELLOW CONE|TOP_STATUS = CLEAR]
\ EOT_STATUS = FREE|KINDGF = CONE|DIMENSIONS = 50 75 50]

X.UNGTH = BBIYWIDTH -- 75HEIGHT = B58]XCOORD = -522]
YCOORD = -688[ZCO0RD = 208|VOLUME = 73623|DISP_NUMB = 2
CEN (ER_OF_MASS= -522 -608 1 75|XCMS = -522|YCMS = -608|
LCMS= 1 75|SHAPE_OF_TOP = POINTED)
GRAPEVINE 578: THOUGHT:ACT:IMOVE/HAND(MAX)/HAND(MAX)/

~ FROM -522 -608288/TQ -522 -608 -310
GRAPEVINE 5 79: THOUGHT:REAS:TASK/AT _TIME/MOVETO

GRAPEVINE 58: THQUGHT:ACT:CAUSED_BY HAND MAX)TGRASP/
HANDIMAX) /ELOCK(BG)

GRAIPEVINE 581: THOUGHT: REAS:TASK/AT _TIME/GRASP

« GRAPEVINE 582: THOUGHT:SUB:TMODIFY/TSUBTRACT/HAND(MAX)/
BLOCK(PNAME - BLOCK482|HELD_STATUS = FREE[LOCASHUN
=-570 -433 -260)COLOR =ORANGE|SIZE = MEDIUM-SIZED]
DESCRIPTION = THE MEDIUM-SIZED ORANGE CYLINDER|TOP_STATUS
= CLEAR|BOT_STATUS=0ONTOP TABLE(TABL1)|KINDOF = CYLINDER]
DEVIENSIONS = 100 100 258JXLENGTH = 1BO|)YWIDTH = 180]

“ | FIGHT = 258|XCOORD = -578]YCOORD = -433|ZCOORD = -268]
VOLUME = 1963493|DISP_NUMB = 2|CENTER_OF_MASS = -570
-A33 -335[KCMS = -570|YCMS = -433|ZCMS = -385|SHAPE_QF_TOP
— FLAT)

GRAPEVINE 583: THOUGHT:SUB:TMODIFY/TSUBTRACT/HAND(MAX)/

QC BELOCKIPNAME = BLOCK4S8HELD_STATUS = FREE|LOCASHUN
= -570 -533 -360|COLOR= BLACK/SIZE = MEDIUM-SIZED|
DESCRIPTION = THE MEDIUM-SIZED BLACK CYLINDER|TOP_STATUS

| = CLEAR|EOT_STATUS= ONTOP TABLE(TABL1)|KINDOF = CYLINDER]

DIMENSIONS= 100 1. 00 150]XLENGTH = 108|YWIDTH = 188]
HEIGHT =158|XCOORD = -578|YCOORD = -533|ZCOORD = -368]

‘ VOLUME =1178096|DISP_NUMB = 3|CENTER_OF_MASS = -570
-533 -435|XCMS = -578|YCMS = ~-533|ZCMS = -435|SHAPE_OF_TOP
- FLAT)

--GRAPEVINE 584: THOUGHT:ORD:TMODIFY TO FIND_SPOTTFIND/

o 105

FIND_SPOT/INFOH#54

GRAPEVINE 585: THOUGHT:ADD:TMODIFY/T ADD/HANDI{MAX) /BLOCK(B4)
GRAPEVINE 586: THOUGHT:ORD:TMODIFY TO FIND_SPOTTFIND/
FIND _SPOT/ANFO&55

| GRAPTVINE 58 7: THOUGHT: ALD:TMODIFY/TADD/HANDIMAX)/BLOCK(B3)
| GRAPEVINE 588: THOUGHT:ACT:T MOVE/HAND{MAX)/BLOCK(BS6)/

FROM - 522 608 -313/T0-75-105 -10

GRAPEVINE 589: THOUGHT:REAS:T ASK/AT_TIME/MOVETO

GRAPEVINE 598: THQUGHT: ACT: IMOVE/HANDIMAX) /BLOCK(B8)/
FROM -75 -185 -18/T0O -522 -603 -310

: GRAPEVINE 591: THOUGHT:REAS:TASK/AT_TIME/MGCVETO
| GRAPEVINE 5 92: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/

FIND_SFOT/INFOH#GE
GRAPEVINE 593: THOUGHT:ACT:NOAP

GRAPEVINE 5 94: THOUGHT:REAS:ALREADY_DONET MOVE/HAND(MAX)/
BLOCK(BG)/FROM -522-6835-312/T0 -522 -688% -33 0

GRAPLVINE H65: THOUGHT:ACT.CAUSED_BY HANDIMAX)TONTOP/
BLOCKED)/ TABI E(TABLT)

GRAPEVINE 596: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
LLOCKIEBE6)

GRAPEVINES 9 7: THOUGHT:ACT:CAUSED_BY HAND{ MAX)TRELEASE/
HANDIMAX)/BLOCK(BE)

GRAPEVINE 5 53: THOUGHT: REAS:TASK/AT_TIME/RELEASE
GRAPCVINE 599: THOUGHT:ACT:TMOVE/HAND(MAX) /HANDIMAX)/
FROM -5G22 -608 -318/T0 -75 -18% -210

GRAI'EVINE 600: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPUVINE 661 : THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HAND{MAX)/ELOCK(RBS)

CRAFPEVINE 602: THOUGHT:REAG:TASK/AT_TIME/GRAGP

GIRADTVINE 683: THOUGHT:ACT: TMOVE/HANDIMAX) /BLOCKIB3)/
FROM -75 -105 -213/T0 -21& -550 -3.60
GRAFEVINE 684: THOUG HT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 6835: 9-1-10UGH T:0RD:GETONTOPQOF TO FIND-SPOT? FIND/

FIND_SPOT/INFO#B7
GRAFEVINE 606: THOUGHT:ACT:NOAP

GRAPEVINE 60 7: THOUGHT:REAS:ALREADY _DONETMOVE/HAND! MAX)/
FLOCK{BE3Y/FROM -310 -550 -1 68/T0-310 -550 -1 60
GRAPEVINE 608: THOUGHT:ACT:CAUSED_BY HANDIMAX)TONTOP/
DLOCECBS)Y/BLOCK(B2)

GRAPEVINE 609: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B3)

GRAPEVINE 610: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

106

\

HAND(MAX)/BLOCK(B3)

GRAPEVINE 611: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 612: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -310 -550 -168/T0O -522 -608 -310

GRAPEVINE 613: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAFEVINE 614: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HANDIMAX)/BLOCK(BS6)

GRAPEVINE 615: THOUGHT:REAS:TASK/AT_TIME/GRASP

GRAPEVINE 61.6: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B8)/
FROM e-522 -608 -318/TO -105 -70 -160

\ GRAPEVINE 617: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 618:THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#58
GRAPEVINE 619: THOUGHT:ACT:NOAP

GRAPEVINE 629: THOUGHT:REAS:ALREADY _DONETMOVE/HAND(MAX)/
BLOCK(B&)/FROM -105 -70-1608/TO-185 -70 -160

~ GRAPEVINE 621: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK(EG)/BLOCK(EA4)

GRAPEVINE 622: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(E36)

GRAPEVINE 623: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
C HAND(MAX)/BLOCK(B6)

GRAPEVINE 624: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 625: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND{MAX)/
FROM -185 -70 -168/T0O -472 -608 -460

GRAPEVINE 626: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE G27: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

- HAND(MAX)/BLOCK(B5)
GRAPEVINE 628: THOUGH T:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 6 2 9: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(BS5)/
FROM -472-608-4608/T0O -55 -155 -310

GRAPEVINE 630: THOUGHT:REAS:TASK/AT_TIME/MOVETO

Q GRAPEVINE63] : THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#5S
GRA! ‘EVINE 632: THOUGHT:ACT:NOAP

GRAPEVINE 633: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(ES)/FROM -55 -155 -318/TO -55 -155 -310

GRAPEVINE 63%: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
- BLOCK(B5)/BLOCK(BA)

GRAPEVINE 635: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCKED)

GRAFEVINE 636: THOUGHT:ACT.CAUSED_BY HANDIMAX)TRELEASE/

« 107

X

!

tIANDIMAX) /BLOCK(BS)
GRAPEVINE 637: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 638: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -55 -155 -318/TO -422 -683 -460
GRAPEVINE 639: THOUGHT:REAS:TASK/AT_TIME/MQVETO
GRAPEVINE 640: THOUGHT:ACT:CAUSED_BY HANDIMAX)TGRASP/
tIANDIMAX)/BLOCK(B7)

GRAPEVINE 641: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 642: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B7)/
FROM -422 -608 -460/T0 -55 -155 -260

GRAPEVINE 643: THOUGHT:REAS:TASK/AT_TIME/MOVETO

GRAPEVINE 644: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFOK6D
GRAPEVINE 645: THOUGHT:ACT:NOAP

GRAPEVINE 646: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(B7)/FROM -55 -155 -260/1-O -55 -155 -2GY

GRAFEVINE 647: THOUGHT:ACT:CAUSED,BY HANDIMAX)TONTOP/
ELOCK(E7)/BLOCK(BS)

GRAPEVINE 643: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
RI.OCK(R7)

GRAPEVINE 649: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
| HANDIMAX)/BLOCK(B7)

GRAI'EVINE 650: THOUGHT:REAS:TASK/AT _TIME/RELEASE

GRAPEVINE 651: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM 55 -155 -260; 1() -545 145 -160

GRAPEVINE 652: THOUGHT:REAS:TASK/AT _TIME/MOVETO
GRAPEVINE 653: THOUGHT:ACT:CAUSED,BY HAND(MAX)TGRASP/

HANDIMAX)/BLOCK(BS)
GRAPEVINE 654: THOUGHT:REAS:TASK/AT_TIME/GRASP

GRAPEVINE 655: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B8)/
FROM -54% 145 ~168/T0 -470 165 -410

GRAPEVINE 656: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 657: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO4E]
GRAPEVINE 653: THOUGHT:ACT:NOAP

GRAPEVINE 659: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(BS)/FROM-470165-4108/T0O -470 165 -410
GRAPLCVINE 660: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

| BLOCK(DS)/TABLE(TABLL)
GRAPEVINE 661: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCKS)

GRAPEVINE 662: THOUGHT:ACT:CAUSED,BY HAND(MAX)TRELEASE/

108

HAND(MAX)/BLOCK(B8)
GRAPEVINE 663: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 664: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -470 I. 65 -418/T0O -55 -155 -260

GRAPEVINE 665: THOUGHT:REAS:TASK/AT_TIME/MOVETO
) GRAPEVINE 666: THOUGHT:ACT:CAUSED_BY HAND(MAX)T GRASP/

HAND(MAX)/BLOCK(B7)

GRAPEVINE 667: THOUGHT:REAS:TASK/AT_TIME/GRASP

GRAPEVINE 668: THOUGHT:ACT:1MOVE/HAND(MAX)/BLOCK(B7)/
FROM -55 -155 -268/T0O -422 -608 -460
GRAPEVINE 66 9: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 6 70: THOUGH-I-:ORD:GETONTOPOF TO FIND_SPOTTFIND/

f IND_SPOT/INFOHG2
GRAPEVINE 6 71: THOUGHT:ACT:NOAP

GRAPEVINE 6 72: THOUGH T:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(D7)/FROM -422 -688-468/T0 -422 -608 -460

GRAPEVINE 6 73: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOQP/
BLOCK(B7)/TABLE(TABLL)

GRAPEVINE 6 74: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B7)

GRAPEVINE 6 75: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
tIANDIMAX)/BLOCK(B7)

GRAPEVINE 6 76: THOUGHT:REAS:TASK/AT_TIME/RELEASE

GRAPEVINE 677: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -422 -608 -460/TQ -55 -155 -310

GRAPEVINE 6 78: THOUGHT:REAS:TASK/AT_TIME/MOVETO

. GRAPEVINE 6 79: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(5)

GRAPEVINE 688: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 681: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B5)/
FROM -55 -155 -318/TQ -310 -550 -110

GRAPEVINE 682: THOUGHT:REAS:TASK/AT_TIME/MQOVETO
GRAPEVINE 683: THOUGHT:ACT:1MOVE/HAND(MAX)/BLOCK(BS)/
FROM -318 -550 -118/TQ -75 -450 -460
GRAPEVINE 684: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 63% THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND _SPOT/INFOMB3
GRAPEVINE686: THOUGHT:ACT:NOAP

GRAPEVINE 657: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(B5)/FROM -75 -450 -468/T0Q -75 -450 -460

GRAPEVINE 688: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK(B5)/TABLE(TABLL)

109

| l

GRAPEVINE 689: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(BbS)

GRAPEVINE 690: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HAND{MAX)/BLOCK(Bb)
GRAPEVINE 691: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 692: THOUGHT:ACT:TMOVE/HAND(MAX)/HANDIMAX)/
FROM -75 -450 -468/TO -422 -608 -460

GRAPEVINE 6 93: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 694: THOUGHT:ACT:CAUSED,BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(B7)
GRAPEVINE 695: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 696: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B7)/
FROM -422 -688 -468/70 -75 -450 -410
GRAPEVINE 697: THOUGHT:REAS:TASK/AT_TIME/MOVETO

GRADNEVINE £68: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/

. FIND_SPOT/INFO#64
GRAPEVINE 699: THOUGHT:ACT:NOAP

GRAPEVINE 700: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK{B7)/FROM -75 -450 -418/TO -75 -450 - 41 0
GRAPEVINE 701. : THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK(B7)/BLOCK(B5)

\ GRAPEVINE 702: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BLOCK(E/)

GRAPEVINE 703: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HANDIMAX)/BLLOCK(B7)
GRAPEVINE 704: THOUGHT:REAS:TASK/AT_TIME/RELEASE

GRAPEVINE 705: THOUGHT:ACT:TMQOVE/HAND(MAX) /HAND(MAX)/
FROM -75 -450 -418/TO -310 -550 -160
GRAPEVINE 706: THOUGHT:REAS:TASK/AT_TIME/MOVETOQO

GRAPEVINE 70 7: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HANDIMAX) /BLOCK(33)
GRAPEVINE 788: THOUGHT:REAS:T ASK/AT-TIME/GRASP

GRAPEVINE 70 9: THOUGHT:ACT:TMOVE/HANDIMAX)/BLOCK(B3)/
FROM -R1 0-558 -168/T0O -545 -255 -360
GRAPEVINE 710: THOUGHT:REAS:TASK/AT_TIME/MOVETO

CRA t’EVINE 7.11: THOUGHT:0RD:GETONTOPOF TO FIND,SPOTT FIND/
FIND_SPOT/INFOM65
GRAPEVINE 71.2: THOUGHT:ACT:NOAP

GRAPEVINE 713: THOUGHT:REAS:ALREADY _DONETMOVE/HAND(MAX)/
BLOCK{B3)/FROM -545 -255 -360/TO -545 -255 -360
GRAPEVINE 714: THOUGHT:ACT:CAUSED,BY HANDIMAX)TONTOP/
BLOCK(B3)/TABLE(TABLIL)

110

“

GRAPEVINE 715: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B3) |

GRAPEVINE 71.6: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BLOCK(B3)
GRAPEVINE 717: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 718: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM 545 -255 -360/TQ -545 145 -260
GRAPEVINE 719: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 720: THOUGHT:ACT:CAUSED,BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(BI1)

- GRAPEVINE 721: THOUGH-I“:REAS:I'ASK/AT-TIME/GRASP

GRATFVINE 722: THOUGHT:ACT:T MOVE/HANDIMAX)/BLOCK(B1)/
FROM -545 145 -2608/T0 -475 -105 -260

GRAPEVINE 723: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 724: THOUGHT:QRD:GETONTQOPOF TO FIND_SPOTT FIND/

IN FIND_SPOT/INFO466
. GRAPEVINE 725: THOUGH-J:ACT:NOAP

GRAPEVINE 726: THOUGHT:REAS:ALREADY_DONETMOVE/HAND{MAX)/
BLOCK(B! }/FROM -475 -105 -268/TO -475 -105 -260
GRAPEVINE 72 7: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
BLOCK) /TABLE(TABLI)

“ GRAPEVINE 725: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(B1)

GRAPEVINE 729: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BLOCK(BI)

GRAPEVINE 730: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 731: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND({ MAX)/
FROM -475 -105 -260/T0O -310 -550 200
GRAPEVINE 732: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 733: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/
FROM -33 8 -550 208/TO -310 -550 -310

GRAPEVINE 734: THOUGHT:REAS:ACHIEVETGRASP/HAND(MAX)/
\ BLOCK(EB2)

GRAPEVINE 735: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(B2)
GRAPEVINE 7/36: THOUGHT:REAS:1 ASK/AT-TIME/GRASP

GRAPEVINE 737: THOUGHT:ACT:TMOVE/HAND{MAX)/BLOCK(B2)/
FROM -31.0 -550 -318/T0Q -310 -550 200

he GRAPEVINE 738: THOUGH-i-:I?EAS:TASK/AT-TIME/MOVETO
GRAPEVINE 739: THOUGHT:ACT: MOVE/HAND(MAX)/BLOCK(B2)/
FROM -310 -550 288/70 -310 -550 -310

GRAPEVINE 740: THOUGHT:REAS:TASK/AT_TIME/MQOVETO

111

«

GRAPEVINE 741: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/
FIND_SPOT/INFO#6 7
GRAPEVINE 742: THOUGHT:ACT:NOAP

GRAPEVINE 743: THOUGHT:REAS:ALREADY _DONETMOVE/HAND(MAX)/

C BLOCK(R32)/FROM -310 -550 -318/T0 -310 -550 -310
GRAPEVINE 744: THOUGHT:ACT:CAUSED,BY HAND(MAX)TONTOP/
BLOCK(B2)/TABLE(TABLL)

GRAPEVINE 745: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BLOCK(BZ2)

GRAPEVINE 746: THOUGHT:ACT:CAUSED,BY HAND(MAX)TRELEASE/
\ HANDIMAX)/BLOCK(B2)

GRAPEVINE 747: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 748: QUEST:HOW_MANY/HUMAN(FRIEND) TO HAND(MAX)

TEXIST/IBLOCK(KINDOF #PYRAMID|LOCASHUN LEFT-OF BOX())/
GRAPEVINE 749: ANS:HAND({ MAX) TO HUMAN(FRIEND)TEXIST/

N BLOCK(VARBIL B2 B5 B4B3)/5

——===—---==---- Question 6 5 -----eoiioo----

« GRAPEVINE 750: QUEST:WHY_DID/HUMAN(FRIEND) TO HANDIMAX)TDOQ/
HHANDIMAX)/DROP BLOCK(GNAME = SUPERBLOCK)
GRAPEVINE 751: ACT:NOAP

GRAPEVINE 752: REAS:MATCHX/TNOT EXIST/STRAQ/ACT:TDROP/
HANDMAX)/BLOCK(GNAME= SUPERBLOCK) .

C GRAPEVINE 753: ANS:HAND(MAX) TO HUMAN(FRIEND)TNOT REMEMEER/
HAND(MAX)/INFO#68

-mmm—==e——~=== Question 66 -----memmu-

«

GRAPEVINE 754: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
7 EXIST/OBJECT(LOCASHUN IN_FRONT_OF BLOCK(COLOR = RED]
KINDOF= Pf RAMID))/

GRAPEVINE 755: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BLOCK(VARB2 E37 B5)/4

L GRAPEVINE 756: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/
BOX(VAR BOX5083)/4

Sg 112

“

<

INFO 1: LOCATION ONTOPOF TABLE(TABLI)

C INFO 2; COM:HUMAN(FRIEND) TO HAND(MAX)TPICKUP/HAND(MAX)/BLOCK(B?2)
INFO 3: COM:HUMAN(FRIEND) TO HANDIMAX)TGRASP/HAND(MAX)

/BLOCK(DEFINITEIKINDOF = PYRAMID)
INFO 4: LOCATION ONTOPOF BOX{BOX1)

INFO 5: LOCATION ONTOPOF TABLE(TABLL)

INFO 6: COM:HUMAN(FRIEND) TO HAND(MAX)TINSIDE/BLOCK(B1)/BOX(BOX1)
“ INFO 7: ONTOP/BLOCK(B6)/BLOCK(B4)

INFO 8: LOCATION ONTOPOF BLOCK(B8)

INFO 9: 114 1QUGHT:COM:HUMAN(FRIEND) TO HANDIMAX)TONTOP

/BLOCK(KINDOF= PYRAMID)/BLOCK(KINDOF = PYRAMID)
INFO | 0: LOCATION ONTOPOF TABLE(TABLL)

“ INFO 11: LOCATION ONTOPOF BLOCK(B2)
INFO | 2: LOCATION ONTOPOF BLOCK(B5S)

INFO 13: THOUGHT: COM:HUMAN(FRIEND) TO HANDIMAX)TSTACKUP

/HAND(MAX) /BLOCK(32) BLOCK(35) AND BLOCK(B®6)
INFO 3 4: LOCATION ONTOPOF BLOCK(B?2)

INFO 1 5: LOCATION ONTOPOF TABLE(TABLL)

AS INFO 16: LOCATION ONTOPOF BLOCK(B3)
INFO 1.7: COMIIUMAN(FRIEND) TO HANDIMAX)TSTACKUP/HAND(MAX)

/BLOCK(B2)BLOCK(B3) AND BLOCK(B5)
INFO1 8: LOCATION ONTOPOF BLOCK(B4)

INFO1 9: COM:HUMAN(FRIEND) TO HAND(MAX)TONTOP/BLQOCK(B5)/BLOCK(B4)
» INFO 20: LOCATION ONTOPOF BLOCK(B5)

Ie INFO 21: COM:HUMAN(FRIEND) TO HAND(MAX)TONTOP/BLOCK(B7)/BLOCK(BS5)
INFO 22: LOCATION ONTOPOF TABLE(TABLL)

INFO 23: LOCATION ONTOPOF TABLE(TABLL)

INFO 24: LOCATION ONTQOPOF BLOCK(B5)

| INFO 35: LOCATION ONTOPOF TABLL(TABLL)

" - INFO 26: LOCATION ONTOPOF TABLE(TABLL)
INFO 27: LOCATION ONTOPOF BLOCK{BS)

INFO 23: LOCATION ONTOPOF TABLE(TABLL)

INFO 29: LOCATION ONTOPOF TABLE(TABLL)

INFO 30: LOCATION ONTOPOF BLOCK(B5)

INFO 31: LOCATION ONTOPOF BLOCK(B1)

- INFO 32: COM:HUMAN(FRIEND) TO HAND(MAX)TONTOP/BLOCK(BS)/BLOCK(BL1)
INFO 33: COM:HUMAN(FRIEND) TO HAND(MAX)TBUILD/HAND(MAX)/STEEPLE()
INFO 34: LOCATION ONTOPQOF CLOSK)BAS

INFO 35: LOCATION ONTOPOF BLOCK(B4)

i“ 113

“

.

INFO 36: LOCATION ONTOPOF TABLE(TABLL)

INFO 37: LOCATION ONTOPOF TABLE(TABLL)

INFO 38: LOCATION ONTOPOF TABLE(TABLL)
INFO 39: LOCATION ONTOPOF BLOCK(B3)

yg INFO 40: THOUGHT:COM:HUMAN(FRIEND) To HANDIMAX)TBUILD
JHAND(MAX)/PILE(RED|GREEN|BLUE)

INFO 41: LOCATION ONTOPOF TABLE(TABLL)
INFO 42: LOCATION ONTOPOF BLOCK(B2)

INFO 43: LOCATION ONTOPOF BLOCK(B3)

C INFO 44: LOCATION ONTOPOF TABLE(TABLL)INFO 45: LOCATION ONTOPOF TABLE(TABLL)

INFO 46: LOCATION ONTOPOF TABLE(TABLL)

INFO 47: LOCATION ONTOPOF BLOCK(B2)

INFO 48: COM:HUMAN(FRIEND) TO HANDIMAX)TBUILD/HAND(MAX)
/ROCKET(CYLINDER|CONEJORANGE|BLACK|YELLOW)

re INFO 49: LOCATION ONTOPOF BLOCK(BLOCK492)
INFO 50: LOCATION ONTOPOF TABLE(TABLL)

INFO 51: LOCATION ONTOPOF BLOCK{(BLOCK488&)

INFO 52: | QCATION ONTOPOF TABLE(TABLI)
INFO 53: LOCATION ONTOPOF TABLE(TABLL)

INFO 54: LOCATION ONTOPOF TABLE(TABLL)

“ INFO 55: | OCATION ONTOPOF BLOCK(B4)
INFO 56: LOCATION ONTOPOF TABLE(TABLL)

INFO 57: LOCATION ONTOPOF BLOCK(B2)

INFO 58: LOCATION ONTOPOF BLOCK(B4)

INFO 59: LOCATION ONTOPOF BLOCK(BE4)

Q INFO 60: LOCATION ONTOPOF BLOCK(B5)
INFTO61 : LOCATION ONTOPOF TABLE(TABLL)

INFO G2: LOCATION ONTOPOF TABLE(TABLL)
INFO 63: LOCATION ONTOPOF TABLE(TABLL)

INFFQ 64: LOCATION ONTOPOF BLOCK(BS)

INFO 65: LOCATION ONTOPOF TABLE(TABLL)

\ INFO 66: LOCATION ONTOPOF TABLE(TABLL)

INFO 6 7: LOCATION ONTOPOF TABLE(TABLL)

INFO 68: ACT:TDROP/HAND(MAX)/BLOCK(GNAME - SUPERBLOCK)

“

i 114

“

| 1

“

REFERENCES

1. J. McCarthy, “Programs with Common Sense”, Mechanization of

. Thought Processes, Vol. 1, London: HMSO (1359).

2. A. Newell, J. C. Shaw, and H. A. Simmon, “Elements of a Theory
of Human Problem Solving”, Psychological Review 65, pl 51 (1958).

“

3. S. Amarel, “On the Representation Problerns of Reasoning about

Action”, in D. Mitchie(Ed.) Machine Intelligence 3, New York:
American, Elsevier (1968).

~ 4. J. McCarthy and P.J. Hayes, “Some Philosophical Problems from
the Standpoint of Artificial Intelligence”, in B. Meltzer and

D. Michie (Eds.) Machine Intelligence 4, p463, Edinburg (1969).

. 5. M.R. Quillian, “Semantic Memory”, in M. Minsky (Ed.), Semantic

Information Processing, Cambridge, Mass. M.I. T. Press, 1968,
"The Teachable Language Comprehender’”, Communications
of the ACM 12, p459 (13969).

~ 6. T. Winograd, “Procedures as a Representation for Understanding
Natural Language”, MAC TR-84 M. I. T. Artificial Intelligence
Laboratory, Ph. D. thesis (1971).
“Understanding Natural Language”, New York, Academic Press (1972).

\

7. R. C. Shank, “Conceptual Dependency: A Theory of NaturallLanguage
Understanding”, Cogn.Psychol., Vol. 3, 552 (1972).

8. P. M. Winston, “Learning Structural Descriptions form Examples”,

- MAC TR-76, M. |. T. Artificial Intelligence Laboratory Report,
Ph. D. thesis (1978).

\ 115

\

&

C

9. T. 0. Binford, “Visual Perception by Computer” in Systems,
| Science and Cybernetics, Miami. (Dec.1971).

“ 19. G. J.Agin and T. 0. Binford, “Computer Description of Curved
Objects”, p629, in Proceedings Third International Joint

Conference on Art ificiai Intelligence, St anford Research
| Institute, Menlo Park (Stanford, Aug. 1973).

\ 11. C. Hewitt, “PLANNER: A Language for Manipulating Models and
Proving Theorems in a Robot”, M. I. T. Artificial Intelligence
Laboratory Memo 168 (Aug. 1970).

“ 12. J. F. Rulifson, J. A. Derksen, and R. J. Waldinger, "QA4: A
Procedural Calculus for Intuitive Reasoning“, Tech. Note 74,

Artificial Intelligence Center SRI (Nov.1972).

| 3 3. J. V. McDermott and G. J. Sussman, “The Conniver Reference
. Manual”, M. I. T. Artificial Intelligence Laboratory Memo 259

(May,L 972).

14. C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular

« Act or Formalism for Artificial Intelligence”, p23D, in
Proceedings Third International Joint Conference on Artificial

Intelligence, Stanford Research Institute, Menlo Park

(Stanford, Aug. 1973).

. 15. E. A. Feigenbaum, “A Simulation in Verbal Learning Behavior”,
in E. A. Feigenbaum and Feldman (Ed.), Computers and Thought.
McGraw-Hill, New York, (1963).

lH. A. Simon and E. A. Feigcnbaum, “An Information Processing
Theory of Some Effects of Similarity, Familiarity, and

4 Meaningfulness in Verbal Learning”, Journal of Verbal Learning
and Verbal Behavior, Vol. 3, p385(1964).

Lv 116

\

“

16.D.L. Hintzman, “Explorations with a Discrimination Net Model
for Paired-associate Learning”, Journal of Mat hematical

Psychology, Vol. 5, pl 23.(1968).

-

17.D. E. Rurnelhart, P. H. Lindsay, and D. A. Norman, “A Process
Model for Long-term Memory”, in E. Tulving and W. Donaldson

(Eds.), Organization and Memory. Academic Press,
New York (1972).

1 8. J. R. Anderson and G. Bower, Human Associative Memory.
V. t-i. Winston and Sons, Washington, D. C. (1973).

19. Sce SAIL MANUAL, K. A. VanlLehn, Editor, Stanford Artificial

Intelligence Project, Memo No. 204 (June 1973).

20. T.Winograd, “A Procedural Model of Language Understanding”,
in R.C. Shank and K.M. Colby (Eds.), Computer Models of

\~ Thought and Language, W. H. Freeman and Company, San
Francisco, pl 52 (1973).

| 21. D. C. Smith and H. J. Enca, “Backtracking in MLISP2"p6 77,
in Proceedings Third International Joint Conference on

Artificial Intelligence, Stanford Research Institute,

Menlo Park (Stanford, Aug. 1973).

22. T. Winograd, "Breakingthe Complexity Barrier Again”,
in Proceedings of the ACM, SIGPLAN-SIGIR Interface Meeting,
(Nov. 1973) (to be published).

23. N. M. Goldman and C. K. Riesbeck, “A Conceptually Based Sentence

Paraphraser”, St anford Artificial Intelligence Laboratory
p

Memo No. 196 (May ! 873).

A

117

.

24. R.C. Shank and C.J.Rieger Ill, “Inference and Computer
Understanding of Natural Language”, AIM 197 (May,l 973).

. 25. C. J. Riegerlll, “Conceptual Memory”, Stanford Artificial
Intelligence Laboratory, Ph. D. thesis (1974).

26. G. J. Sussman, “A Computational Model of Skill Acquisition",
M. I. T. Artificial Intelligence Laboratory, Ph. D. thesis (Aug. 1973).

iy,

“

.

.

118

