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1.8

SECTION 1

INTRODUCTION

1.1 GUIDE

The reader is advised to start reading this paper by briefly
reviewing the illustrations of some examples of picture processing on
pages 115-122, and returnino to this point. The illustrations are
pictures taken by a Polaroid camera from a talevision monitor, then
processed to get negatives wuhich are used to generate plates. These
plates are then used for offset printing of the illustrations (that
is uhy they are so "sharn" ). The wuwhite lines are overlaid by the
program on the original picture. These lines represent the
boundaries betueen regions that exist in the program's segmentation
of the inage. The programming system was applied to two problem
domains., The first domain was images of the type shown in
illustrations A through E uhich are road scenes. The second domain
was left ventricular angiograms illustrated in F and G. (A-7), (B-
5), (C-4), (D-5), (F-S) and (G-3) are examples of the desired output.

These are images segmented the way humans would segment them uwhile

Page 1
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trying to describe them in the specific context of the problem
domain. The achievement of our system is that this segmentation was
done automatically after the program was taught on the general
problem domain (semantics). Even though it is not apparent in the
images, the program also understands the segmented images properly.
That is, it assigns the same interpretation as humans assigns to the
regions. The captions of the different images will give the reade-~
some idea of the terms used in this paper and the problem domains.
Iltustrations (B-1) through (B-5) show the different stages of
processing (problem reduction steps). (A-2), (A-4), (A-5) and (D-3)
are examples of possible er ‘ors resulting from carrying any of the

problem reduction steps beyond their proper stopping criteria.

Since this paper describes the implemented system, the ideas are
usually presented in the order of their application to the system.
Section 1 is an introduction to the image processing problem domain.
Section 2 descri es both the general data structures and the flavor
of region growers in general, particularly the weakest-boundary-first
region grouwer. Section 3 is a detailed description of the
initialization and reduction of the problem by region growing Without
semantics. Section 4 starts by redefining the problem in statistical
terms and continues by describing the assumptions and structure of

the semantics representation. Section 5 describes the application of

Page 2
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the semantics to weakest-boundary-first region grouing. Section 6 is
devoted to describing an interpretation algorithm which is applied on
the segmented image to assign meaning to the regions. Extensions of
this algorithm uhich drive a region grouer, evaluate the partition
and provide for stopping criteria are described as well. Section 7
describes the method which we adopted for collecting the
probabilistic knowledge on the problem domain. Section 8 describes
specific feature detectors available for regions and boundaries, as
well as the results of applications of the whole system to tuo

problem domains,

Most of the ideas presented in this paper uWere implemented in the
programming system, but some of them are included as suggestions for
future research and development. Since these suggestions are
scattered in the paper ue note them explicitly here. Subsection 3.2
suggests inprovements in local feature detectors and texture
operators. Subsections 2.8 and 3.6 suggest using edge-following to
achieve accurate shape contour and improvement in the existing shape
description capabilities. Subsections 3.3 and 3.5 call for
evaluation of the quality of various general boundary strength and
state evaluation procedures. In subsections 4.4 and 4.6 extended
representations of the semantics are suggested for impliementation.

Section 6.2 describes extensions of the meaning assignment algorithm
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to drive a region grower with backup capabilities. Subsections 7.6-
7.8 contain ideas for various aspects of automation of the learning
which should be implemented to increase the effectiveness of the

classification.

1.2 THE SEGMENTATION PROBLEM IN A.1.

The problem of segmentation, breaking a complex image into sections,
is a central problem in machirn. perception. The analogous problem
arises in the analysis of speech [ VIC ] and, for that matter, in any
problem of overuhelming size. We will concentrate on the image
segmentation problem, but most of the ideas are of wider
applicanility. The main ideas are the application of Bayesian
decision theory techniques and the use of problem-dependent

information (semantics) to attack the image segmentation problem.,

The theory and implementation of a picture processing system which
utilizes semantics will be described in this thesis. The
segmentation process for pictures means breaking the picture area
into regions fitting each other in a jig-sau puzzle sense. The

interpretation of the segmented picture means naming ( asgignment of
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meaning to ) the different regions. In addition to interpreting
regions, boundaries and vertices wWill be interpreted. The naming of
a region means at least identifying the 3-D (three dimensional)
sur face for which that region is part of the image in the current
scene. For boundaries the interpretation will be the 3-D structure
associated with it (in addition to naming it as a boundary between

the tuo interpretations oY the regions defining it).

The segmentation problem for television images is as follous: given a
picture of some scene, we have a rectangular grid composed of some
2008x208 points and for each point some information about the |ight
intensitu and perhaps color. For any further processing 68888 points
are far tco many; depending on the perception task that we have in
mind, the image should be segmented into regions., That is, the 60000
grid points should be clustered into relatively few regions, where
each of these regions should be meaningful in the problem domain and
the relevant nformation needed for the specific task should be
easily obtainable. Meaningful segmentation for us means that each of
the resulting regions may be named as being one of the regions knoun
to the system a priori (like sky, grass, road, etc.), and the
properties of the resulting segmentation structure will match the
properties expected of that structure given the interpretation and a
priori knouwledge of the system about the problem domain. More

rigorous definition of the problem will be given in Subsection 4.1.
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1.3 METHODOLOGY

In the past, segmentation and interpretation were executed in two
levels of programs, a low level ani a high level. The interaction
betueen the tuo levels was done on the basis of failure interrupte.
The lou level portion segmented the input. The high level tried to
make sense of the segments produced by the low level. In case of
difficulty in the high level, the low level was recalled to resegment
the troubled portion of the picture with a different set of
parameters. Certain limited success has been achieved utilizing that
approach [ ROS J. Some meteorological images can be segmented
effectively using such techniques. However, for images |ike those
arising in road scenes or confronting assembly-line robots, the
existing algorithms do not suffice. A major problem is that the
existing algorithms use absolute and local criteria such as intensity
difference, boundary strength [ BF, BP J , etc. to form regions.
But the criteria for what is a "region" will surely vary with
context. Certain shades of green, yellow and brown might be merged
into a single region of grass in a scene, yet distinguishing the same
set of colors might be crucial for region separation in another scene
or even in another part of the same scene (like distinguishing a
yellou car from green grass that it partially occludes). Another

critical consideration is the goal of the perceiver. For some

Page 6
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problems, separating the green grass from uyellow grase will be
essential; in others It will be completely redundant and cause

needless complication,

The importance of goal direction and context-dependent information
{senantics) for effective problem solving is now well understood and
established in artificial intelligence and scene analysis is just
another example. One zan certainly write a special purpose region
analyzer for a fixed class of images and it will work better than any
general algorithm. This, in fact, has been done in various systems
[ BF , HE ) and is sometimes just the right thing to do. The obvious
difficulty with this ad-hoc approach is that it requires a lot of

work to build or modify each individual program.

The current implementation tries to tie organically the tuo tasks of
segmentation and interpretation so as to get a more reliable
partition and interpretation of the input. The general structure of
the system can be applied to any combination of segmentation and
interpretation process subject to the |imits of the system with
respect to the special structure of the semantics representation, and

the classification capabilities.

In all uork done on segmentation or visual input which are known to

Page 7
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the author, semantics was hardly used. When the semantics was used
it was used in an ad-hoc fashion. QOur system provides direct
incorporation of the semantics into the segmentation fprocess.
However, for practical reasons the representation of the semantics
had to be constrained. MWe developed a structure uhich is in some
sense first order semantics, It cannot be used to describe all that
we know about the problem domain, hut uhat is describable can be

directly incorporated in the segmentation process.

Before describing the system in more detail, we must make one
additional point of clarification. It is a tenet of artificial
intel ligence research that any information that can be brought to
bear will be helpful in a given task, This is especially true in
machine perception, but our current efforts do not attempt to exploit
it fully. Region analysis is assumed to be a preliminary {relatively
fast) partitioning of an image before further processing., For this
reason, we have made no attempt to include semantic features |ike
three-dimensional shape analysis in the current region analyzer. We
are still studying the capabilities of our semantic structure. As
results of more experiments become available, we uWill be able to
determine which information should be used in the segmentation

process and which should be left for higher level processing.
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1.4 HISTORY AND LITERATURE REVIEW

The following is a brief review of successful computer systems for
A.1 picture processing and a brief |iterature revien. No attempt is
made to cover all the literature relevant to image processing. The
reader who is interested in getting familiar with the literature is
encouraged to consult the |iterature surveys [ ROS1 R0OS2 ROS3 ) which
survey over thousand recent articles on image processing topics.
Relevant papers to our work appear in those surveys under the titles
"Edge and curve detection", "Pictorial pattern recognition", "Picture
parts", "Picture description” and "“Scene analysis". We will
reference only papers that had direct effect on our work or deal with

closely related topics.

The hand-eye system at Stanford uses the edge dete:tion approach. A
procedure was developed [ HUEC ] which when applied on a circle
around a point finds a best fit of a linear step function to the
light intensity function in a neighborhood of the point -

u Yx,y | akx+brysc
step(x,y)d

v Vx,y | akx+bxy>c

umy
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Depending on the quality of the fit and the difference between u and
v the probability of the existence of an edge Iline betusen two
different light intensity regions passing in the circle is computed.
The 2-d fit is needed to overcome noise by the use of the 2-d
structure of the edge line. Noise arises from both hardware noise
and small irregularities in homogeneous region. Alternative edge
detectors were developed by other researchers like [ GR ) which
approach the probiem as a statistical decision Wwith yes/no answer.
Some researchers have tried to use gradient techniques but it seems

that gradient derived operators are very sensitive to noise).

The recognition of edge segments using the Hueckel operator is very
reliable for simple scenes. The main problem is incorporating the
local edge segments detected in various points into a whole picture
description. This becomes a very complicated task of edge following
and making decisions as to hou to close edges to create part (or ail)
of the contour line of a region and then to interpret the resulting
objects by the world model [ FALK GG 1.  Then comes a complicated
feedback loop to call the edge detection and following process again
with different parameters to recognize predicted edges that were
missed, or to delete some erroneous edges ( PT TEN ), Algorithms for
connecting reliably and efficiently edge pieces were developed by

many researchers. The common alternatives to edge following are

Page 18
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various algorithms derived from the minimal spanning tree aigorithm
where attempt to pass the shortest path through all edge segments is
done. An alternative approach is represented by [ MON ) which
utilizes a simple version of dynamic programming for optimal curve

detection.

A region growing algorithm was tried at S.R.I. [ BF ). This
algorithm involived actually melting in random order all boundary
lines uhose strength was less than some thresholid. This threshold
nas supposed to be given a priori, and had to be adjusted for
different pictures. The strength of the boundary was computed as a
function of the length of the boundary and the structure of the
differences in light intensity across it. The main problems with
that system are the hsavy computational load resulting from iack of
any sanpling facilities, limited reliability because of randomly
ordered merging of boundaries uhose strength was less than some
absolute a priori threshold and the lack of any facility to
incorporate semantics directly into the region grower. A few
researchers have tried to develop techniques for local adjustment of
the thresholds of the region growers mainly through local histogram
analysis in various parts of the image; such work is now in progress
in J.é.L. (oral communication). The work on region growing

described in [ HE '} is in many respects the nearest to our work. It

Page 11
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is an attempt to tie region groning process Wwith specific problem
knouledge. The main difference is that our system ie more general and

more reliable.

Worid modeling for pictures was developed for planar eurface scenee
(block world of cubes and wedges) in parallel at Stanford A.l.
taboratory by G.Falk and G.Grape for real images, and in M.].T
A.1 laboratory by Guzmen and Waltz for idealized images. The result
of this effort was a well understood world model of planar surface
bodies which uas able to sustain quitz a lot of segmentation errors

by the lower level portion.

An attempt to use a semantic graph with some hints of associating
probabilities with the links was developed in [ PEP }. Thie wae an
attempt to model hand-input and hand-segmented images of outdoor

scenes,

Our world model is an extensior of these models to use both
probabilistic world knowledge collested by the system, and an option
to utilize the model directly while segmenting the picture. The
problem knowledge is collected by the system from training examples
and is not limited to planar surface objects. The major deficiency

of our current model with respect to the planar surface models is the

Page 12
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apbsence of vertices and explicit 3-d structure in our model, which
are of major importance in the planar surface model. Preliminary
investigation indicates that vertices and 3-d structure information
may be added to our model wuithout significant change in the

structures.

The first application of our system was to road scenes it is worth
mentioning in that connection that outdoor scenes analysis tends to
be a good source of texture oriented problems. [ RBJ ] describes work
on texture which involved also texture derived from outdoor scenes.

Though we provide easy hooks for utilizing textures, texture is not

being used in our current systenm,

Page 13
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SECTION 2

REGION GROWING - CLUSTERING BY MELTING WEAKEST-BOUNDARY-FIRST

2.1 OVERVIEM

This section is a description of the general region grouing
mechanism. The control mechanism of the weakest-boundary-first

region grouer will be described briefly, wuhile the specific details

of decision criteria will be described in later sections. Section 3
vwill deal with growing regions without direct use of the semantic
model. Section 4 will show the semantics representation, and the
following sections will show how we incorporate the model into the

region growers and image interpreter.

I will start with a brief overview of the system. The system consists
of a sampling mechanism, region growing subsystem and optional edge
folloning. Together they are intended to generate the basis for an
efficient and reliable image segmentation system. The region grouwing
algorithm will generate a sequence of partitions of the pictures and

will maintain an approximate description of regions, boundaries and

Page 14
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vertices for each partition of the picture observed. The features of
the regions, boundaries and vertices will be used to make the
decisions that contro! the algorithm. The basic step of the region
yrover is to take pairs of regions with a common boundary and merge

them to generate one bigger region. When using the Heakest-boundary-

first region grouer, the decision will be to melt the weakest
boundary between tuo regions in the current partition. The
evaluation of the strength of the boundaries’ will control the

algorithm. Successful evaluation of the strength of a boundary will
be the key to the success of the system. A large portion of the
thesis surveys options used to compute the strength with and without

the use of the specific problem knouledge.

An evaluation of the quality of partitions of the image is needed t-
decide how to terminate the algorithm. This evaluation scheme will
he used to identify the best partition observed and to restore it on
termination. The evaluation procedure provides also for an
alternative region grower which is driven from the model! directly
[ see Subsection 6.2 1. The semantics of the model would is used to

determine the evaluation of the quality of the partitions observed.

Initially the picture will be approximated using sampling to save

computing time, but in any stage the option to call an accurate

Page 15
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tracing routine for the contour |line of the regions will be
availanle. This procedure uill use the approximate description of
the regions and boundaries in the current partition to get the
accurate contour of the existing regions. After application of that
procedure an accurate shape description will be available. The
optimal partition is to be passed along for further processing by
special purpose routines which are determined by the specific task at
hand. This special purpose routine can make much better use of
special information about the problem domain which was not
expressible in terms of the limited structure of the semantics used

in the region growing mechanism.

2.2 INITIALIZATION .

Prior to the application of the region growing algorithm, the image
to be processed is covered with many small regions. Hith each
iteration of the region grouer, tuwo regions will be merged to becore
a larger region. It is not desirable to start the process with each
single grid point as a separate region. There is too much redundancy
if ue do that. The properties at each point are not reliable enough

hecause uf noise. Furthermore for practical application the smallest

Page 16
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region that may be encountered will be Composed of very many grid

points. For these reasons we place sample points over the image grid.

In our experiments, placing the sample points at every fifth point

yielded a reasonable density. Each of the sample points is assumed

to be re resentative of a different region for initialization. Doing

this we gained tuwo things: first, local operators may be applied

around each of the sample points to find more accurately the local

properties (reduce noise), and second, the number of regions is 1/25

of the number of grid points.

We start by placing sample points on the picture rectangle. The

placement of the points is such that they cover the picture in some

desired density. If information is available on the picture we may

want to place the samples so that they will be concentratea near

edges of regions and less frequent in the center of regions (here

"regions" means the regions that we want to te~minate With as defined

by the worid model). Local operators are applied to determine the

local structure around each sample point. This information may be

the dominant color, color texture, various histograms, color gradient

and 3-d local structure intormation, depending on what s available

and is considered important in the problem domain. This information

is stored in a feature vector that is associated with the sample

point. In the current imp'ementation it is just the dominant color
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and light intensity around the sample point. Substantial amount of
research is still required to develop good local texture operators

{see Subsection 3.2 for more details).

On initialization each sample point is assumed to be representative
of a different region, resulting in an implied region (area)
associated with each sample point. Take any sample point and call it
"sp". Then the implied region around "sp" is the intersection of all
half planes which include "sp" and are defined by the perpendicular
bisector of the line which connects "sp" and some other sample point.
Practically, ve do not need to take all such intersections because of
the special structure of the placement of sample points [see Figure
2.1). Between implied regions there are implied boundaries. The
implied boundary betueen tuo sample points, if it exists, is the
common line segment of their closed implied regions which is on their
perpendicular bisector. The single segment of an implied boundary
wili e ca'led the basic implied boundary and will stand for two
adjocent sample points from different regions. Later on, when more
than one sample point belongs to a single region the implied
houndaries will be composed of several segments of basic implied
boundaries. We define a gontour |ine to be the closed path that
surrounds a region or a hole inside a region. This contour |ine may
be composed of several boundaries which generate a closed circular

path [see Figure 2.2).
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One point that should be mentioned is the treatment of the limit of
the field of vision, Consider a point on the extreme end of the
grid. By our previous definition it would have an unbounded implied
region. We wuant to fix this case so that it will be treated
uniformly, An easy way to take care of this case is to have an
artificial region which will stand for the domain outside the field
of vision. This region uill be called 0. This region has a commun
boundary with all sample points that are on the border of the field
of vision. This boundary will never be melted and will be used to
close the contour line around sample points that had an unbounded
cdomain associated with them by our previous definition., Now whenever
we nant to check if a region touches the border of the vision fieid
all ue have to do is to look for a common boundary of this region
with the outside domain {the artificial region). This special
houndary provides for contour lines that are always closed paths
around regions. This simplifies the edge tracing. The existence and
shape of a common boundary between a region and the outside domain
are extremely important in recognition of regions, For instance if a
region touches the top of the vision field it increases its
probability of being sky in the context of outdoor scencs. The shape
of these boundaries indicates which of the four sides the region

touches and the length of each of the boundaries.
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2.3 WEAKEST-BUUNDARY-FIRST REGION GROWER

The description of the weakest-boundary-first region growing
algorithm is simplified if we consider the structure of regions and
boundaries as a graph structure where the nodes are regions and the
edges (links) are the boundaries (Figure 2.3). Each link,

representing a common boundary betueen two regions, has a value

associated with it. This value reflects the probability that the tuwo
regions are of different interpretation in our World model. These
values are called the boundary strengths. The evaluation of the
boundary strengths is the responsibility of the control mechanism. By

means of evaluating the boundary strengths, the control mechanism

controls the region grouwer. The successful evaluation of these

values is the key to the successful processing of pictures by the

system.

The basic step of this region grower is to take the wuweakest boundary
in the current image segmentation and merge the two regions for which
this is the common boundary into one bigger region. In the
corresponding graph structure this means collapsing into a single
node the two nodes joined by the weakest link. The resulting node
(region) will include all the points of the tuo regions. The |inks

(boundaries) of the new node (region) will be assigned new values
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(strength evaluation) and the next iteration will start (subject to

non-termination condition).

The structure that is created after several collapsing stages is
demonstrated in Figure 32.2 and in Figure 2.4. Each region is
composed of one or several sample points. The boundaries between
regions now are lists ot pairs of sample points. Each such pair has
one point from each nf the two regions that the boundary connects.
These tuo points are adjacent to each other. The pairs of sample
points which define a boundary are ordered by the order that the real
boundary line passes through them. There are two such orders,
clockuise and counter-clockwise as seen from each of the two regions.
The contour line is composed of one or more boundaries. MWe maintain
a circular list for each contour line of a region, which is the list
of the boundaries as they are encountered along the contour Iine.
The maintenance of the above structure is necessary to the
description of the boundary shape in each stage of the grouwth
algorithm and for the later accurate contour tracing. No attempt was
made at this stage to optimize the representation of the boundary and
it is clear that better encoding and more compact approximations are

available.
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2.4 THE REGION FTLTER

With each unification of tuwo regions the data structure needs to be
updated. The regions themselves are not ordered, so the combined
region is just the union of the points included in the two subregions
that compose it. Since the boundary structure is ordered, more
elaborate updating is needed. The major complexity results from the
fact that the boundary that was melted can be composcuy of several
discontinuous paths. In such a case the resulting region may not be
simply connected and hence its boundary will be composed of several
closed contour lines. Another minor complexity occurs when a third
regicn has a common houndary with both unified sub-regions, In this
case if these two boundaries are continuous then they should be
combined into one boundary for the new combined region. To cope with
all possible combinations a special algorithm for updating was

developed (see Figure 2.5 and Figure 2.6J.

2.5 THE BOUNDARY STRENGTH LIST

On each iteration of the ueakest-boundary-first region grower we need

to find the ueakest boundary. To reduce the search time, a list of
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the houndaries is maintained. This list is sorted according to the
strength of the boundaries on initialization of the algorithm. After
each iteration of the region grouer, the values of the strengths of
boundaries around the new region are evaluated. The boundaries with
neud values are then relocated in the boundary list to maintain the
proper order ({by boundary strength). The updating time usually ir
reduced when starting the search for the new position of the neu
boundary from the location of the corresponding boundary of the old
smaller region. It turned out that in many cases the new value is
about the same as the old one. To utilize this property the strength
list is doubly linked so that it is easy to float a boundary to its

appropriate position in the list as determined by its new strength.

2.6 SOME IMPLEMENTATION DETAILS

The program relies heavily with LEAP features of SAIL [ SAIL ). Each
sample point is an ITEM (pointer to data structure) which contains
the local feature vector at that point. The regions are set |TEMs

which contain all the sample points that belong to that region,

Associated with each region ITEM is a region feature vector which

contains proyerties of that region. This vector is updated whenever
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the region is merged into one of its adjacent regions, The
boundaries are lists of pairs of sample points, Each boundary is

associated with the two regions which define it. The boundary list is
ordered so that the pairs of points are ordered in the order of the
boundary path that passes betueen them. Since there are tuo such
orders there is an indication from which of the two regions the pairs
are seen ordered in clockuise direction. With each boundary is
associated a boundary feature vector which is updated as the boundary
grous. Nou for each region and for each of its boundar ies we
indicate which boundary is next when going clockuise along the
contour line of that region. This is done by the association
structure. It should be noticed that the boundary may close the
region and hence follow itse!f and there may be also several closed

contour lines for a region when it is not simply connected (has holes

).

2.7 STOPPING CRITERIA

One decision that has to be made is when to stop melting boundaries.
There are three possible options for doing that. One is to stop when

the uneakest boundary is stronger than some threshold. Another
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possibility is to have a state evaluation and to use a back up

mechznism to get to the most promising segmentation (that ie the one

Hith highest state value) from all pa-titions generated by the region

growing mechanism on its way to a single region. The third option is

to find the best interpretation for the scene given the current

segmentation. If the resulting inteipretation does not interpret any

tuo adjacent regions as parts of the same region (in the worid model

sense) then we quit merging (see Subsection 6.1). In the current

implementation the first and the last options are used.

2.8 EDGE FOLLOWING

Edge following can be used for refinement and verification of the
boundary structure betueen sample points for a given picture
partition, In such apartition, the implied boundary structure

generates implied contour lires around each of the implied regione.

This contour line is an approximat . on of the real contour {ine of the

region. Each basic implied boundary ie a segment that is located

| O T —

atong the perpendicular bisector of the two sample points. By edge
following, wne want to replace this implied boundary by a real

boundary; that is we want to replace it by the actual pairs of grid !
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points which define the boundary. To do that, we scan along the line

between each pair of sample points which define the basic implied
boundary ( two adjacent sample points from different regions) to find
the exact edge point. Since the two sample points belong to
different regions there must bs a point along the line that connects
them uhich is the best real edge between the two regions. MWe can use
any available edge operators to detect the optimal location for the
edge. This task is especially easy since we know the distinguishing
properties between the two regions. We repeat this process for all
pairs of sample points which define the basic implied boundaries.
Next ue wuwant to connect the edge points that we collected, and to
find the exact edge curve that passes along the boundary. The
implied boundary structure also includes the linkage between the
basic implied boundaries. This linkage is the order that the contour
line passes betueen the sample points. QOur task is to connect the
pieces of edges that we found to create the whole contour line. We
do it pairwise for adjacent edge points. (Wle know the adjacency by
the linkage structure). This is done using edge tracing which is
relatively easy since we know the properties of each of the two
regions that define that edge |ine and we knou tuwo edge points that

e uant to connect uith a simple edge line.

We may expect to find some discrepancies between tha implied boundary
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structure and the real boundary structure. There are two sources of
probliems. One problem is the discovery of neu regions when scanning
the lines betueen two samplie points. This may happen because the
sampling was not dense enough. The other occurs when tuo regions that
uere ascumed disconnected turn out to be connected by a bottle-neck
that was missed by the sampling process. Both problems require
special treatment. In the current impiementation we assume such
cases will not occur. This means we assume a dense enough sampling
that fine details will not be lost. 1f special  ~urpose technigues
were used they would be along the lines of those described in
Subsection 3.4. In the current impiementation this edge follouing
is still missing, but it wWill become essential wuhen more region and

boundary shape descriptors 2re added to our system.
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SECTION 3

REGION GROWING WITHOUT USING SEMANTICS

This section more thoroughly describes that part of ths system which
is active prior to the incorporation of the semantics into the region
grouer. This portion of the system is intended to be a problem
reducer. |t tries to reduce the complexity of the image from 60000
points to about 198 regions. The resulting regions are assumed to be
subparts of the regions With which ue want to terminate. That is, we
assume that only very few and minor false merges occur in this phase,
and if errors do occur they will be both tolerable, and anticipated
by the next phases of the system which utilizes the problem semantics
(e,g the semantic world model is generated by working experimentally
on real typical images of the probiem domain and hence false merges
occur while training the system and hence stored in its semantic
hase). To minimize the risk of erroneous merges, this region grouer
is stopped with veru conservative stopping criteria. This level is
more efficient computationally than the run with the semantic model
hbecause of a simpler decision mechanism. 0On the other hand, it is
much less reliable and for that reason it has to be stopped quite
early, before the decision as to which region to merge becomes

unreliable in the world model sense.
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REGION GROWING WITHOUT USING SEMANTICS 3.0

The aspects of the system that will he described here are:

1) Placement of sample points.

Z) The local measurements at each sample point.

3) Evaluation of boundary strength.

4) Evaluation of a given partition,

5) The information on regions and boundaries carried With the grower

algorithm,

These details are not essential to understand the subsequent sections

so the reader may skip points that are too technical to be

interesting.

3.1 PLACEMENT OF THE SAMPLE POINTS

The initialization of the region growing algorithm is done by

placement of the sample points. Each of these sample points is
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considered on initialization representative of a different region.
There are two conflicting goals here. On the one hand we want to
have as few sample points as possible so that the computational load
Will be reduced. On the other hand we want dense sampling so that
the finer details nf the picture will not be lost. The density of
the sampling should satisfy the following two conditions: first, from
each region that we want to terminate wlth, at least one sample will
be taken. Second, every "bottle neck" in a region will be sampled,
meaning that a connected region will not appear disconnected. In many
but not all classes of scenes we can find a satisfactory dens| ty,

which is also sparse.

To ease the computation effort, a fast way of eliminating redundant
sample points is provided. This will effectively allow us to increase
the sampling density and still keep the number of samples low. We
assume that tuwo adjacent sample points are in the same region if the
differences between their property vectors is less than some
threshold. This implies that a sample point for which the difference
betueen its feature vector and feature vectors of all neighboring
sample points is less than that threshold will aluays be inside a
region and not on a boundary. Such points are not interesting for us
and we can ignore them, and connect their neighboring points into one

region immediately. This way we reduce the number of samples. As a
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result samples from the center of big homogeneous regions are
ignored. In the current system it was found to be effective to set
this threshold as .85 of the maximum possible difference between the
property vectors of two sample points as computed by the histogram of
fight intensity over the grid. Using a higher value caused failures
by collapsing into one region sample points that should belong to
different regions. This sampie point reduction is faster
computationally than the region grower. Because this reduction is
faster than the melting procedure it allows effectively denser
samriing, Most of the simple region growing systems use versions of
this path-uise connectivity criterion as the major tool in their
region growing algorithm. This clustering mechanism is extremely
sensitive to noise and causes severe errors very early. That is why
we stop it with a very conservative stopping criterion. Ideally with
a more efficient implementation of the weakes.-boundary-first region
grower this stage could be avoided completely. Note that the
elimination of points from center of regions is more conservative
than the path connectivity, because in a sense we demand "wide" path

connectivity.
If some prior approximation to the location of boundaries is given,

then ne will place the samples mainly in the neighborhood of the

boundaries. This way with fewer sample points we still get a good
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description of the regions and boundaries (this will be very
effective in multi-picture processing uhere we have slowly varying
pictures). In the case where no prior information was available, the
most effective initial placement of the sample points is done by
placing the points so that initially all regions wWill be equal
regular hexagons. In this case, the small!est region or bottle neck
detected is tuice the radius of the hexagon. The advantage of the
renular hexagon cover over square or equilateral triangular covers of
the picture area is the symmetry of its boundary structure. 1|f
squares or equilateral triangles are used as the basic units of the
cover, there are pairs of regions that have only a single vertex in
common. These vertices make the two covers based on equilateral
triangle and on square wunits ambiguous, because it is not clear
vhether tuwo regions that have only one common boundary point (vertex)
in common should be considered adjacent. We ignore the single vertex

boundaries for the rectangle cover.

If ne chose any of the special structure covers of the plane (like
the one which is composed of equal squares), the initialization of
the boundary and region structure becomes triviai, because the
special stincture conveys directly the structure of the regions and
boundaries. Tlhe wuistance betuween the sample points will be called

tie quantization factor, which in the current application is a number
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betueen 5 and 28. This number reflects the quality of the
description of the shape of the regions and boundaries tha: we want
to get. The full size picture frame is a rectangle of 200x308 points
so e have 2408 to 15) sample points (depending on the sampling
density). In simple scenes ( composed of a few relatively homogeneous
regions ) the use of the initial point reduction reduces the number

of regions in the denser case to about 500.

3.2 LOCAL FEATURE DETECTORS

The information associated with each sample point depends on the
harduare available. In passive input devices it is the local light
intensity which reaches the image plane of the videcon at each of the
grid points. In our case ue measure the intensity through three
filters (red, green and blue), to get color information, In active
input devices where the source of light is available (mainly laser
beams), depth information and 3-d surface orientation are also
available. (For the capabilities of an active light system see [

GJA 1), laser light for scanning over the scene.

In the current application, only color and light intensity
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information was used. The color was used only to find the dominant
color around the sample point. A problem arises when the sample
point directly hits an edge betueen two regions. Dealing effectlively
With such cases will require application of "structure operators",
These operators will try to find a compact description for the |ight
intensity and color as a three valued function in a *wo dimensional
neighborhood of the sample point. [f we had such structure operators
they would have recognized the edge. Currently though we do not
apply them. To reduce the confusion resulting from such a case the
dominant color is taken to be the most frequent color, not the
average color. This way, in most cases, the properties of one of the

regions near that point will be associated With the point.

More elaboration will he needed to effectively use sensitive input
devices (more than the current 16 gray level input for each color) to
detect gradual changes and texture. Gradual change can be detected
easily by approximation of a planar fit to each of the color
components in some neighborhood of the sample point, instead of just
finding the dominant color. Detection of edges has been investigated
quite thoroughly and a few good edge detectors and operators are
available [ HUEC GRIF ]. Detection of texture is extremely hard, and

targely an unsolved problem. It is likely that texture and edge

detection will be tried in cases where the planar fit for the light
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intensity is insufficient. MWe anticipate that in that case a
sequential and conditional application of texture classification
operators will be called to classify the textura. One such class of
operators correlates the local intensity (color) with itself shifted
in different directions. These operators will detect directionality
and frequency in the local texture. Another approach is to locally
partition the picture into small regions (using threshold or local
clustering) to detect the local shape of the small regions which
compose the texture, The most pouerful system for texture
recognition known to the author was implemented by { RBJ 1, and is
based on local Fourier analysis. It is probable that sequential
classification of texture of the same statistical nature as the
classification of objects for the world model ( see Subsection 7.3 )
will be very helpful in texture recognition. There are many other
local measurements which may prove useful in certain scenes. The
understanding of which measurements distinguish obiects in scenes is
a central problem in machine perception. A major advantage of the
system described here is that new operators can be incorporated

easily as they are developed,
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3.3 BOUNDARY STRENGTH EVALUATION

The evaluation of the boundary strength depends on the context of the
scene wWhich is being analyzed. This strength should reflect the
probability that the boundary is 'real® in the semantic sense. In
the description that follows we try to present some general
parameters that can be considered in the evaluation of boundary
strength. None of these schemes uses the world model. Only direct
use of the boundary properties is utilized. No attempt ie made to
uncerstand uhat each boundary means in the world mode! semantics. On
the other hand the semantics of the world can be used to help
evaluate the weights of the different criteria used in evaluating the
boundary strength. MWe will return to this point in the descriptions

of the semantic boundary evaluation.

The first factor in evaluating the boundary strength ie the
difference betueen the values of properties of the sample points at
each pair along the boundary. A strong boundary will usually be one
where the differences across it are high and consistent along the
boundary line. This is quite standard, although no previous work
knoun to the author utilices multi-property differences. All of them

nmorked with a single property for evaluating boundary strength.
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- -
Let (x(i) , ytli) ) be the feature vectors of the pairs of sample

ial,

-
points along the boundary. x(i) is the value of the measursments at

-+
the i-th point on one side and y{i) the value of the measurements at

the point on the other side.

The average difference in properties along the boundaries will then

IS (xi)=g(i)) | /N
i=1,

In our system we have a 3-vecior associated with each sample point.

he

This 3-vector is derived from the three readings of the dominant
intensity of each color components in a small neighborhood of the
sample point. If (r,9,b) are the light intensities through the red,

green and blue filters, then

vi(l)er+g+i

v(2) e (-r+cos(2xn/3) x(g+b)) /v(1)

v(3)e(sin(2xn/3) %k (b-g))/v(l)
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v(l) is the intensity, v(2) and v(3) are the X,y coordinates in the

color plane.

It is reasonable to assume that in general we want to give different
ueights to different components in the feature vector. The values of
the weights are not obvious. We may want to scale each property so
that the maximum difference will be at most 1, and this is done in
our current implementation. It may turn out to be useful to reduce
the ueight of a property uhen the variance of the differences of that
Pproperty along the boundary is high, A high variance of a property
inside each region may also decrease the weight of the d}fferences of
that property. UWe also tried to give very high weight to the two
color components as compared to intensity, under the assumption that
color is a function of the material of the region and hence less
sensitive to lighting conditions (shadows and orlentation), but it

turned out in those |imited experiments not to be of any help.

In the future uhen more structure than just the dominant color at
each sample point will be used, the consistency of the features of
the tuo regions will be more complicated to evaluate. There Hill be
more involved structure in the properties that will be compared.
Such a property is, for instance, local variance of the color around

the point which we want to match., If it is high we may want to
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compare distribution structure on the two sides and not just the mean
or histogram peak. Gradual changes would be detected by the slope of
the 2-d linear fit to the property in a 2-d neighborhood of the
point. If such a fit is done, then the inconsistency betueen the
fits in the tuwo sample points will be the measurement of the boundary
strength. More elaborate matching evaluation will be needed if

texture detection in areas around sample points is computed.

The size and shape of the houndary and the regions should be wused in
the houndary strength evaluation. In general the shorter the boundary
relative to the area of the regions defining it, the stronger we

require it to be.

In the current implementation the following scaling is used.

Let:
csqrtisize of l-st region) + sqrt(size of 2-nd reqion)
g=
length of boundary
then:
(eq 8)

K2 +ql where K2<K3

strength of houndary = average differencesx K3+«

Page 45




STRENGTH 3.3

In cases uhere the sampling is fine enough to reflect the shape of
the boundary, the strength of a jagged boundary is likely to be
decreased. This will be especially true when the surfaces of our
objects have smooth edges. In this case jagged boundaries will
usually result from some gradual lighting change on a smooth surface.
The jaggedness is not trivial to compute because of the noise effect
of the quantization of the picture which results from application of
the sampling. 1t can be measured as the local deviation from a
smooth approximation (like straight line or low order polynomial)
scaled hy the quantization size. This principle was considered in
{ BF ] to evaluate reliably the boundary strength. Other
considerations in boundary strength evaluation may involve more shape
evaluation and broader context. These considerations are not
incorporated, though they can be used, mainly because they are left
for the semantic region growers uwhich makes better use of many

additional properties.

3.4 BOUNDARY STRENGTH EVALUATION THROUGH EDGE FOLLOWING

There is another possible approach to the evaluation of the boundary

strength. One could scan the picture frame along the Iine segnent
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connecting the pair of sample points and ook fo} edge structure
across this line. The use of an edge detection operator |ike the
Huecke! operator [ HUE ] could help to evaluate the probability that
there is an edge line between the twuo sample points and that they
therefore belong to different regions. This option was used in ear ly
versions of the system. It was dropped in favor of denser sampl ing
because of the complexity it added to the program structure. When
this option is used, the scan is done once on initialization.
Scanning is effective mainly for dealing with gradual changes and
reducing the requirement on the density of the initlal sampling. The
strength of the boundary between two adjacent sample points is taken
as the strength of the strongest edge structure which intersects the
straight line segment connecting the two sample points using some
edge detector. In case a new region is detected, a new sample point

uill be placed and a new region will be generated.

The treatment of a new region discovered by the scan betueen sample
points is relatively easy. For the sake of uniform treatment a new
cample point is taken from the new region. The implied region and
implied boundaries of the new point are generated, in the same manner
as for the initial sample points. For pairs of implied regions whose

common boundary is changed by the new sample point, the boundary

structure is updated. An intricate case may arise if the new region
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is very thin and hence a line of some sort. Then we want to invoke a
line following routine and avoid disconnecting the regions.
Currently there is no treatment of this case in the system. But it
should be included if a world model that includes |ine shapes (like
characters) uere added to the system. It turned out to be ver:y useful
immediately on creation of the neu sample point to check if its

boundary strength uith neighboring points is less than the lowest

value of current implied boundaries. In this case it is immediately

collapsed into the nearest region. In order to make sure that we do
not generate too many new sample points there should be a threshold
that prevents generation of new sample points if the strength of the
boundary of the new point (region) with one of the two points that
defined this point is less than this threshold. This threshold will
be set to bhe greater than or equal to the value of the vieakest
existing implied boundary, and will be increased over that value as
there are more sample points generated so as to promise termination

and simplicity.

3.5 STATE EVALUATION

The evaluation of the quality of a partitioning of the picture
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without wusing the semantics can be done only on the basis of a

simplicity criterion. Two such effective decision criteria are

available:

to maximize

surn__of strength of boundaries

total number of regions

or to maximize

cum_over regions_of the region‘s average houndary strengths

total number of regions

excluding the outsice of the picture and the external boundaries.

These cimplicity criteria try to minimize the complexity (the number
of regions) and maximize the confidence (strength of boundary). It

ias found that in a few experiments that the optimal partition Wwith

respect to these simplicity criteria was very near to the optimal

partition in the world model sense.

It should be mentioned in connection with these quality criteria that

the strength of the weakest boundary does not necessarily increase as
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the region grower is carried further, |f a mistaken unification
happens, the differences along the boundary may be inconsistent and
result in 3 ueaker boundary (recall that the boundary strength is
computed hy using the ahsolute sum of the difierences and not the sum
of their absolute values along the boundary and scaling them by their

length relative to the area of the regions defining them},

These state evaluation functions are not used in the current system.
This phase of region grouing is used as a problem reducer for the
semantic region grower. Currently uwe stop the merging by threshold.
That is, once the weakest boundary is stronger than some threshold we
quit. The threshold chosen is relatively conservative and was taken
to be .15 of the maximum possible boundary strength for road scenes
and 208 regions for the angiograms. We chose a consarvative stobping
criterion so as to reduce the problem and still keep the risk of

erroneous region merges lou.

3.6 MAINTENANCE OF REGION AND BOUNDARY PROPERTIES

Throughout the run of the algorithm the basic pronerties of regions

and boundaries need to be maintained. The current portion does not
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make thorough use of them but the semantics controlled part does.
Most of the needed features e<cept shape are easy to maintain, mainly
hecause the measurements are derived from various integrations. On
initialization each region is given its basic color, size and
position (the same as the sample point that constitutes it). When
tuo regions are collapsed, the tuo feature vectore are just added
correspondingly and associated with the new region. This sum is used
to compute the average of the property over the region, but uwe need
to remember that the average is not always what we want. I[f the
variance of some property is required, then the usum of squares of
that property is kept and the variance is easily obtainable. The
same holds true for the length of the boundaries. For the
differences along the boundary for different color components anc
different directions, the direction of the differences is im 2. tant.
A convention based on the clockuise and counter-clockuise convention
of the regions and boundaries structure is used to decide whether to
add or subtract properties of the two growing boundaries. It should
hbe noted also that in the current implementation we have a very rich
representation of the structure. UWe do not make any attempt to
compact the data. The reason is that this is an experimental system
here we uanted to have maximum convenience of access to information
nhen needed. Thus the finer details of compacting data were

completely ignored. A substantial saving in compute time and storage
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requirement is achievable by compact approximation to properties and
description of regions and boundaries instead of keeping them in the

rau form that ve are using currently.

If in addition to features derived from integrations, we have other
proper ties, then updating of properties uill become more complicated.
For example such properties are shape descriptors which require
keeping extreme points in various directions (extrema of a |inear
functional along the boundary path as function of the length) and

cross section length.

2.7 FINAL COIMMENTS ON THE NON SEMANTIC REGION GROWER

We can compare this part of our system wWith other region analysis
algorithns.  First, this algorithm, which uses sampling over the
grid, is substantially more efficient than other algorithms that use
exhaustive search on the whole picture and treat all grid points.
Our approach in a sense allous us to concentrate our attention very
rapidly on the important portions of picture, the boundaries between
regions. Secondly we do not collapse regions in random order as long

as the boundary is weaker than some a given priori threshold, We
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first merge the globally weakest boundary on the whole picture. This
m~kes the region grouer much more reliable (see illustration A ), and

enables us to use more sophisticated stopping criteria,

B R R RN T . M v T i, S

The major gain resulting from ordering the merges is that doubtful
f merges 1ill occur after obvious merges. The result is very often that
a lony boundary that has a local weak part will not be destroyed,
since often by performing more obvious merges, the boundary will grou
to its full length and then the strength computed by the average
differences will be high. A stopping criterion which is more general
ancd uses state evaluation can be applied to stop and back up to an
optimal state. The optimality can be determined using general
criteria on the types of regions and their anticipated inter-

relations or complexity.

It is possible to keep with each region a binary tree wuwhich will

trace how a region was generated (the pairs of regions whose merge

generated that region).  Such a tree can be used further by higher

level processing, eitier to get finer resolution on parts of the

regions or to decrease the number of regions by reunification.

Some of the simple region growing heuristics used in the past have

gross difficulties. Consider the following simnle example. Assume
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that ue grow regions by melting all boundaries with a value less than
some threshold independent of order. Thie is usually done by
starting with a point and trying to grouw around it the region of all
points which satisfy the following property: there is a path of
adjacent points with property differences less than some given
threshold connecting them to the first point, Often the threshold is
not an effective criterion as shoun in the following examples

1110660680

222086808

333888

Here we consider a 6x3 grid where the distance hetween nodes is just
the absolute difference betuween the values in the grid points. |f we
give 3 threshold of less than 1 it will end with 4 regions but any
thresnold greater than 1 will result in a single region which will be
the unole grid with an external boundary., On the other hand, our
technique wuse the weakest boundary firet, with the boundary
evaluation as in eq. 8. The result is that going down from &
regions the areas with values 1, 2 and ? w!ll aluays be merged first
before collapsing them into the 8 region ( remember that we also
count the length of boundary relative to size of region in boundary
strength evaluation). This means that we have a more reliable

mechaniem to overcome smooth changes where piecee of the boundary are
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obscured, a situation very common in real pictures wuhere shading

causes loss of some pieces of edges.




SECTION 4

WORLD MODEL

4.1 THE STATISTICAL PROBLEM DEFINITION

The uor ld model is statistical in nature, and in order to define it
more rigorousiy we need to define statistically the problem that we

face. In abstract terms we have A(i) + the possible meanings of
i=1,L

a grid point, uhere A(i) is the name of the object in the real world
for uhich this grid point is part of the image. Assume that we have a
- -
grid of x(i, ) points, where x(i,j) is the feature vector
i=1,N, j=1,M

of that point ( in our case x,y coordinate and r.g,b of the three
measured colior components). An interpretation of the scene will be
an assignment of some A(i) to each point, that is, identifying image
points with objects. Our task is to find a good assignment. We will
adopt the maximum likelihood principle. That is, we want an
assignment

[e NxM <




DEFINITION 4,1
{uhere 1(i,j) is one of the A(k) ¥ which is assumed to be the
k=l,

-
meaning of the (i, j)-th point uhich has feature vector x(i,j}), such

that the total joint probability of

P (x(i,j) )
1 iel,N jel,M

is maximized over all possible I,

Unfortunately this probabiiity measure in that space is extremely
hard to approximate, and even if ue had it in terms of this rau
assignment function, finding the optimal assignment would require a
horrendous amount of search. We are interested in image domaine
uhere there is a variety of changes between images. It may be easy

to compute some probabilities like

Alk)

-

that is, the probability that the point has property x if it is of
meaning A(i), However it is extremely difficult to extend this to

the joint probability of all features of points in a scene, since
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there is a high degree of dependence betueen properties and meaning
of different points. Our attempt is to reduce the dimensionality of
the possible assignment by grouping points into domains (regions)
vhere we constrain all points in the domain to be of the same
meaning. By this reduction we gain two things: first, the number of
possible choices is reduced significantly, and secondly we claim that
it is much easier to express the structure (and hence to approximate
the joint probability function) in terms of the domains and their
properties. The problem is then transformed into the problem of
segmenting the glohal scene into regions so that all points in a
single region Will be of the same meaning,and trying to find maximal
segments. That is, we do not want to be left with two adjacent
domains of the same meaning. In the initialization process, which
was described in the previous sections, we assumed that adjacent
points that have about the same local features are of the same
meaning independent of what the meaning is. The clustering process
1as carried out using this assumption to reduce the problem. However
to play safe we had to use a very conservative criterion for

similarity which left us uith about 188 regions and more reduction is

desirable,
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4.2 THE BASIC ASSUMPTION

In this section we try to represent a probabilistic model with the
folloning claims: First, it is a good approximation to the real
probabilistic structure for many picture domains. Secondly, it may bhe
used effectively in reducing the problem by allowing reliable
clustering which is far more advanced than the one based directly on
the feature vectors. For region analysis, we define the utility to

be:

Plalobal_interpretation | context,values of measurements)

This expression actually stands for

Pix(i,]) ) xP (1) /P [ txti,jn ]
] i=1,N jel,M a priori a priori i=1,N, jal,M

-

uhere x(i, j) are all the measurements in all points and 1(i,j) is the
meaning assigned to point (i,j), which will be its interpretation.
The context here means the underlying probability space of the
picture domain, which ue collect experimentally (see section 7 on
learning). The probability space is defined for each problem domain

by the variations in the scenes that are in that problem domain. We
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nill keep the conditionality on context to remind the reader of the
special probability space which is problem dependent, and perhaps
also variable. lle should also note that our discussion is immediately
extendable to more complex utility functions than the |inear utility

which is identical in this case to the maximum |ikelihood principle.

An interpretation divides the image into regions and attaches a
meaning to each region. One choice of the overall interpretation
evaluation would be attained by considering each region
independently. 1f for a given partition of the image into regions we

have R(i) regions, then the interpretation assigns label INT(i)
i=l,N

to region R(i). The values of INT(i) will be sky, grass, road, etc.,
depending on the context and goals. lf ue assume independence

betueen region features, ue want to maximize the expression

717 PURGi) is INT(i) | coniext,values of measurements on R(i) ]
R{i)

over all partitions of the image into regions and assignments of
labels to regions. This is quite conventional so far and is, in
fact, too simple for our purposes. We want to account for tuwo
additional considerations. First we must use the mcdel to get a good

seymentation of the image into regions. For example, we might want
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to merge green, yellow and broun patches to create the whole area
that we call grass. Secondly uwe want to use additional semantic
constraints (like the grass is belou the sky) to influence the total

probabitity that an analysis of the scene is correct.

In an attempt to enrich the semantic structure to support more of the
problem knouledge and to provide for 2 control mechanism on the
region growing algorithm, the semantic structure was allowed to have
also a3 "first order structure". In addition to the properties of
cach individual region, ue have, for each pair of adjacent regions of
some interpretation, expected relative properties and some expected
features of their common boundary line. For instance, if we have two
adjacent regions, one of which is named "sky" and the other "hill",
then we expect that the sky is above the hill, is a brighter blue
than the hills, and that the boundary is usually a more or less
horizontal, smooth line. The relative properties are usually more
significant than the absolute properties since they are less
vensitive to variation betueen pictures, This semantic mode! is too
limited to describe all that is knoun of a scene, but many classes of
scenes can be segmented properly with first order methods. The model

is limited to first order to avoid the combinatorial explosion in the

number of terms that have to be considered.
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Remember that we want to get a partition of the input and
interpretation for the regions (segments) and boundaries so as to
maximize the |ikelihood of having the right interpretation. Let R(i)
he the i-th region, B(i,j} the boundary between region R(i) and R(j)
(if it exists) and the lavel of R(i) be INT(i), Then with our first
order assumption, the expression that we want to maximize is:

eq. |

Pl global interpretation | values of measurements ] =

]ITP[ R{i) is INT(i) | values of measurements on R(i) ]
R(i)

* J i P( B(i,j) is betueen INT(i) and INT(j)
B(i,j)

| B(i,j)'s measurements)

The use of eq. 1 represents more than just our belief that

properties of individual regions and boundaries wWwill suffice for our

semantics, 1t also entails an assumption that the probability can be

factored into the product above. This amounts to assuming that the

probabilities of interpretations of each region (boundary) are

dependent on the local properties of the individual region (boundary)

and are independent of all other measurements. The interpretations of

regions and boundaries are tied only by the consistency constraint,
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that is, a boundary Bfi,j) which is the boundary betueen R(i) and
R(j} must be evaluated as a boundary betueen INT(i) and INT(j), where
R(i) is laveled INT(i) and R(j) is labeled INT(j}). For example, if
INT(i) is "sky" and INT(j) is "hill", the evaluation of the common
boundary of R(i) and R(j} will include factors involving the expected
direction, smoothness, etc. of a boundary betwen sky and hill. These
factors are assumed to he independent of the particular color etc. of
the sky and hill. This assumption that we can find local properties
for regions that uill be independent of both the relative properties
of the regions and the boundaries® properties is essential in mak ing
our approach feasible. Assuming independence, we do not need to
consider all cross combinations of the two classes of features. For
instance if we have sky that may be cloudy or bright then we will use
boundary properties of the sky with the hill which are independent of
the particular type of sky. Honever, if such properties are
insufficient to classify the sky boundaries, we will have to use two
separate objects cloudy sky and bright sky each as separate possible
interpretations. If the independence assumption seems to be

unreasonable, consider the following argument:
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.eq 2
P [ interpretation | values of meacurement,context ) =
Pl values of measurements | interpretation, context)
«P (interpretation a priori | context)
/Plvalues of measuremenis | context)
E Now

P{ values of measurements on R{i) | R(i) is INT(i}, context )

and

Pl values of measurements on B(i,j} | R(i) is INT(i} and R(j} is

INT(j), context )

the expression on the right of eq 1.

argument can be used for the factorization of the other two terms

“02

are plausibly considered independent of each other. A similar

in
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4.3 THE TASK OF THE WORLD MODEL

For a given utility function (in our case the maximum |ikelihood eq.
I } there are standard techniques in decision theory for finding the
max i mum utility., Unfortunately, the general techniques are too slow
and  much of our effort has gone into developing algorithms for
efficiently computing an approximately optimal partition. The region
grouing algorithm starts with many small regions, and on each
iteration, meryes two adjacent regions (regions wWith a common
bhoundary) . The two basic decisions are which pair of regions to
merge on each iteration and when to stop the algorithm. These two
decisions can be controlled directly by the limited probabilistic
semantic world model that we have. In general, on each iteration of

the ueakest-boundary-first region growing, the pair of regions whose

common boundary is the ueakest in the current image partition will be
merged, Hence the control of the region growing algorithm is by
evaluation of the boundary strength. We will show how our semantic

representation can be used directly to compute the boundary strength.
Alternatively, we can grow regions based directly on assignment

procedures [see Subsection 6.2).

The second task of the semantics is to produce the stopping

criterion. In our case we want to maximize:
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Pl interpretation | measurement values, context J.

Ideally, the optimal partition will be the one that has the
interpretation which maximizes this |ikelihood estimate over all
partitions and all possible interpretations of partitions. In order
to have an effective nay to determine that probability, we need a
relatively fast way to compute or estimate for a given partition the
value of its optimal interpretation. In the next section, we will
describe relatively fast methods for computing upper and lower bounds
on the optimal value of the probability of a given partition. These
bounds will be used as follows: The algorithm will collapse regions,
and generate a sequence of image partitions. For each partition
generated, the bounds on the possible value of the best
interpretation will be evaluated. Then, when the region collapsing
has been carried too far (as observed by a strong decline of the
possible state value) the system will back-up to the most pronising
partitions observed while grouing the regions (as indicated by the
louer and upper bounds estimates of the quality of the partition
observed). HNext ue uill search for the best interpretation for the
partitions observed whose bounds were high enough to make it possible
that they are the best partitions observed. The current algorithm
will simply choose the ovest of these, but more sophisticated

procedures can be used if necessary.
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It turned out that maximizing the utility (eq. 1) for a 9lven
partition frequently yields the best global interpretation. However
to compare different partitions we need some modifications that are
not available in our current implementation. The major modification
required is teaching the system about properties of false nerges,
that is, uhat are the properties of a region resulting from merging
tuo regions that should not be merged. In the current implementation
the system is taught on false boundaries (that is, boundaries between
suh-regions of the same terminal region like a boundary betueen part
of a hill and another part of a hill). When evaluating the quality
of a partition we should not allow any region ta be interpreted as a
merge of two regions of different meaning , and no boundary should be
interpreted as a boundary betueen tiio regions of the same meaning.
Currently ne use a different approach. We allow false boundaries in
the interpretation. 1f any of the bourdaries is interpreted as false
for the best interpretation found for the current structure, then we
continue merging. Otherwise we stop. The assignment procedure used

is cescribed in Subsection B.1.

4.4 EXTENSIONS OF MODEIL. TO 3-D
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The simplified structure of first order relations between objects is
just an approxin2'ion of the real world., It is clear that more
involved relations between regions and boundaries hold. One group of
such relations is the relation whose terms are the regions and
boundaries meeting at a vertex. These relations were found to be key
relations in analyzing plane surfaced objects [ WAL GG ), mainly, as
constraints on the 3-d structure of the surfaces and boundaries on
that vertex. 1f 3-d structure analysis were added to the'“mode. then
the vertices would be essential. In this case we would have three
classes of objects: regions, boundaries between regions, and vertﬁges
lintersections of several houndary lines). For each class of objects
each object can take one of a few possible meanings which will be its

interpretation.

The interpretation for a region wWill be the name of the 3-d surface
for uhich the region is part of the image. (We say part to provide
for partial occlusions or for the early stages of the region growing
algorithm, uhen the regions are only portions of what they should
be ). Some such interpretations are: hill, road, horizontal face of
cube, or the x-ray image of a rib, [n addition to naming regions,
some assumption about their 3-d structure wWill be made (like

orientation, distance, etc.).
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T'he houndaries will be named as boundaries between tuo regions of
some meaning e,g the boundary betueen sky and hill, In addition,
each boundary will have its oun interpretation, uhich is the 3-d

structure associated with it. If a boundary is the common boundary of
regions X and Y then it may happen tha‘*:

1) X occludes Y.

2) Y occludes X.

3) X and Y create a convex corner.

4) X and Y create a concave corner.

(concave or convex relative to the included
solid volume )

S) X and Y surfaces are smoothly continuous.

(There may be other more complex 3-d structures which we will ignore

currently),

Vertices are the intersections of several Uoundary |ines. The
ver tices uwere found to he extremely important in processing scenes of
planar surface objects, Their main use was to constrain the
geometrical structure associated with the boundaries. In scenes of
curved surface objects their role may diminish, but it seems that

they are going to be an important tool. In  our current
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interpretation they are not used, mainly because we are not trying to
solve explicitly for the 3-d structure. An important extension of
the current system would cope wWwith the 3-d structure achievable

through the use of the vertex and boundary 3-d structure.

In addition to being potentially useful in 3-d analysis, vertex
properties may turn out to be useful for adding edge following
information to the region grower. That is, we can check to what
extent the regions and boundaries meeting at the vertex centinue each
other. Hence vertex properties may aid in boundary strength

evaluation and the interpretation procedures,

4.5 EXTENSION OF MODEL TO INCLUDE GLOBAL CONTEXT PARAMETERS

One major deficiency of our system is the lack of global parameters
which are changeable as information is collected, One such parameter
couled be the domain from which the current image is drawn. That is
having the system also define the class of pictures from which the
current image uas draun, For instance interpreting a region as a
telephone or part of telephone will increase the probability that we

have an indoor scene, uwhile interpreting a region as a tree (or part
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of tree) increases the probability that the observed scene is an out-
door image. It is likely that such capabilities can be added anc tied
eacily to the tree search for optimal assignment as additional
variables that are updated on each assignment of meaning to a region
(see Subsection 6.1). Other parameters of this nature are
orientation and position of the camera which observed the image.
These parameters may scale all the features to normalize to standard
observer orientation, In general when these parameters are used the
context parameters will ve additional variables that we will want to

use in optimizing,

4.6 EXTENDED FIRST ORDER

lhe relations betueen regions that the current system observes are
relations between pairs of adjacent regions. We may extend this to

refations between any pair of regions. All the curient structure and

algorithms will remain valid with minor modification, ULut the

combinatorics will grow prohibitively. If before we had, for N
2

regions, approximat:ly 4xN relations, now we will have N retations

to be cco_idered in the various algorithms., There are Hays to reduce

the number of relations by restricting the classes of relations of

Page 71




EXTENDED FIRST ORDER 4.6 l

non adjacent regions. For instance, we might allow only relations
betwesn non-adjacent regions of specific meaning or of special

relative properties.
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SLOTION &

WEAKEST-BOUNDARY-FIRST REGION GROWER BASED ON SEMANTICS

S.1 SEMANTICS BOUNDARY STRENGTH EVALUATION

We return here to the description of the system. The initialization
levels nere used to reduce the problem to about 180 regions, Our
next step is to try to evaluate the boundary strength based on the i
ror l¢d model. This part of the algorithm first computes additional
properties (like shape) of the regions and bou-daries resulting from
the initialization. It then assigns probabilitiés to the alternative

interpretations of the regions, i.e. computes
PL R(i) is X | values of measurement on R(i) J.

The boundary strength may be evaluated by two related methods: 1) The

prohability that the houndary is a real boundary (a boundary betueen
differznt objects in our semantic world model), and 2) the cthange in
the value {probability of correctness) of the interpretation as a

result of eliminating the boundary. MWe will describe here the first
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of these wuhich is the one currently used for the ueakest boundary
meltec first region grower. The second method has some advantages

and will pe discussed belowu.

We approximate the probavbility of the boundary to be real as followus,
The estimate of the probability that the boundary B(i,j) which is

petueen RO} and R(j} should not be there (false boundary), is :

A/
P B

false  Kcint
Pl B(i,}) is a boundary between two subregions of X |
measurement values on B(i,j) ]

x PLR(i) is X | measurement values on R(i) ]

x P R(j) is X | measurement values on R(j) ],
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The estimate of the probability that voundary B(i, ) is real is:

P
real X,V X=Y

Pl B(i,j) is a boundary betueen X and Y |

measurement values on B(i, j) ]
* PLR{i)is X | measurement values on R(i) ]
* PLR(j) is Y | measurements’ values on R{j) 1.

This is the Bayesian probability (uhich is in our case the utility)
that, given the properties of the boundary and two regions defining

it, the boundary is a boundary betueen sub-parts of images of

cifterent objects.

The strength of the boundary is then computed to be
Preal

Preal+Pfalse

( Preal+Pfalse may be different from 1 since the independency

assumption is only approximation of the reality ).
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5.2 SEMANTIC STOPPING CRITERIA

He may apply three possihble stopping criteria. The simplest one is
the threshold stopping criterion, that is once the strength of the
rveakest boundary in the segmentation is above a certain threshold we
quit merging. The second stopping criterion is to look for a good
interpretation for the current segmnentation and if there is no
boundary which is interpreted as a false boundary then quit merging,
othernise continue merging (see Subsection 6.1 for the assignment
algorithm ).  Alternatively uwe can use the state evaluation for
backup and hence avoid usiny @ stopping criterion. That is, back up
to the segmentation with the highest state value observed while the

region grouwer is Working. The current interpretation provides for

utilizing the first tuo options, or a combination of the two.
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STATE EVALUATION FOR A GIVEN IMAGE SEGMENTATION

State eva'uation is required for effectively recognizing the most
promising state of image segmentation. Evaluating an image partition
Will also involve a search for the best interpretation for all
regions simultaneously, and hence will effectively provide a wuay for
really  understanding the scene. Currently, we use the state
evaluation only as a procedure to assign meaning to all regions (and
hence houndaries). The assignment procedure is used to verify that
the system really understands the segmented image, and to provide for
a stopping criterion for the region grower. The difference in state
value could also be used in region merging as criterion for melting
houndaries, though it is not being used this Wway in the current

implementation,

.1 INTERPRETATION OF THE SCEME - LOWER BOUND EVALUATION

A lou=r hound on the value of an image partition is computed by

actually finding a good global interpretation using a simple fast
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medaningassigment aigorcton, Bevetiy, we take the veglan of hiyhent
confidence interpretation and assign to it its  most probable
interpretation, Next, wusing the houndary features of the newly
assigned region, the probabilities of different interpretations of
Adjacent regions of the nenly interpreted region is updated. Then
the region of highest confidence from ail un-interpreted regions is
assigned, etc. This is essentially a depth first search of the t ee
of region interpretations and yields a value for the partition which
is the desired lower bound. Extending this search to a full tree
search would yield the optimal interpretation. More details on the

sequential assignment process are given below.

Recall that we want to approximate the maximum possible value of the

expression

eq 1

T
/( PURG) 1s INT(i) | values of measurements on R(i) ] x
R{1)

*;qu[ boundary B(k, ) between R(k) and R(1) is a boundary
Bik, )

betueen INT(k) and INT(i) | B(k,I) features)
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over all possible values of INT(,) for a given picture partition.
The assignment algorithm that we use to estimate the best possible

assignment of [NT(i) for all R(i) for a given image partition is as

fol lous:

( 11 Compute for each region the ratio (based just on local
measurements of  the region) between the most likely
interpretation and the next most likely interpretation. This
ratio will be called the CONFI (REG). Let x1 be such that

pl R(iI) is x1 | vatues of measurements on R(i) )
is maximized for R and let x2 be such that
PILR{i) is x2 | values of measurements on R(i) )

is the next highest., Then

confi(R{i))=P(R{i) is x] | measurements of R{i) )
P{ R(i) is x2 | measurements of R{i) ]

{ ) Sort the regions by their confidence ratio.
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i 3] Assign the region with highest confidence (the one with highest

ratio) its most likely interpretation.

( 4] Update probabilities for various interpretations of regions
that are not currently assigned meaning, assuming that the iast
assignment is true. Let the region assigned most recently be
R(l1) and its interpretation be INTI(1), Now if R(i) has
boundary B(l.i) with R(1), then for any interpretation x of

R(i) in evaluating eq 1 above, there will be a term of the form
Pl R({i) is x | values of measurement on R{i) ]
from the first product and one of the form
PLBI(L. i) is boundary betueen INT(1) and x | B(l,i)'s featuras ]
from the second product. Since both terms have only one
variable x now, a better approximation of the probability of
R{i) neing x, assuming that R(1) is INT(l), is
Preul R(i) is x ] = Poldl R(i) is x )x %

PLB(L,i) is a voundary hetueen x and INT(i) |

B(l,i)'s features ]
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Thus e use the neu information to find upclated probabilities
for the different possinle assignments for R(i), by counting

the newly interpreted region R(1).

We do that updating to all possible interpretations for all

adjacent regions of R{l).

[ 5] Cempute the neu confidence ratio and sort the regions by the

new confidence ratios,

{61 1f any region is still unassigned goto [ 3] else exit,

Thie process of ascigning interpretations iteratively provides a good
guesc about  the possible best interpretation, but it does not
gquarantee the total maximization of our product. We can extend the
corrent algorithm into a full tree search ( undoing some assignments
nd trying alternative ones ) to get the best interpretation, This
bl be a depth firest search in the tree of all possible assignments.
Each node in the tree will stand “or the assignment of an
interpretation to a region. In all sons of such a node the assignment
done in that node will be assumed to be true. The terminal nodes will
stand for a totally interpreted scene. For efficiency purposes we

Can use various pruning and tree search techniques [ NILSSON ch 31
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to reduce the number of termindl nodes needod to  he ohaorved ta
secur= optimality, Our current algorithm is the portion ot depth
first tree search of the assignment tree up to the point where we get

to the first terminal node (first global assignment),

One should also note that the same sequential assignment and
extension into tree search can be applied to the extended first order
vorld model described, where we allow relatior s between any two
regions {(not rccessarily adjacent) if we continue to assume
independence. The only difference is that ‘he probabilities and
confidence ratio of not only the adjacent regions of the newly
interpreted region, but of all related regions, will have to be

updated,

Working on extended models, uhere relations involving more then two

variable assignments exist, Wwill cause only minor changes. UWhenever a
region is interpreted, all the relations in which it appears wWill be
reducerd by one degree. That is, an n-ary relation will become an n-1

-ary relation. If there is an n-1 -ary relation already existing
Wwith the same variables, the two will be united (by muitiplication).

Except for that difference, everything will stay the same,
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.2 REGION GROWING BASED ON ASSIGNMENT

We use the assignment procedure described in the last section as a
reqion  grower by taking all pairs of adjacent regions that were
Assi ned the same meaning and merging them. To avoid false merging,
nwe consider all regions wuwhich were assigned meaning after the first
assignment of a meaning to a region wWith low confidence level
meaningless and hence not mergeable into other regions. This

approach may be extended by adding into the meaning assignment

algorithm another step [ 3.5 1.

[ 3.5 ) If any adjacent region of the newly interpreted region is
already assigned a meaning identical with the meaning assigned
to the neuly interpreted region, then merge the two together,
Undo the effect of the tuo small regions on their neighbors
interpretations. From this point on, the unified region will
be considered in updating probabilities of other, not yet

interpreted regions.

We can use the tuo extentions ( merging while assigning meaning, and
full depth first tree search) together. This will generate a very
reliable meaning assignment concurrent wWith a region growing

procedure  uwhich has bhackup capabilities. It will, houever, be

relatively slou.




UPPER BOUND

G.3 UPPER BOUND FOR STATE VALUE

The upper bound could be computed by relaxing the consistency

constraint. This condition means that a boundary betueen tuo regions

of kncun interpretation has to be counted in as a boundary betueen

those *‘wo interpretations. We could relax this condition by breaking
the product (eq.l) into local sub-producis and finding the best local
interpretation for thc terms involved in this subproduct. We would
take the best possible value for each sub-product separately, and

multtiply them, with proper scaling of common terms, This would

result itn an upper bound on the value of the best global
interpretation. For example such relaxation is to consider all
regions and boundaries independently and to assign for each the best
possible interpretation considering only its our properties. The
product of all these probabilities is an upper bound on the value of
eq l. It is this sort of estimate which could be used to approximate
the single step improvement in the second method of boundary
evaluastion mentioned above. An exact computation of the change in 1

interpretation value would be too time consuming. We do not yet know

thether this  boundary strength computation will be better than the

one described in subsection 6.1,

The local wupper bound estimation may be used also to get more
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reliable evaluation of the meaning 5f a region, by considering also
ite neighbors in evaluating the probabitities of different
interpretaticns for that region. This is analogous to various graph
isonorphism algorithms, which use deeper structure around a node for

finer node type classification.
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SECTION 7

THE PROBABILITY SYSTEM IMPLEMENTATION

7.1 GENERAL CONSIDERATION

Up to nou we were dealing uith our probabilities in abstract terms
without worrying about how to get these probabilities, or uhich
mezsurements (features) to consider. This problem is actually one
that appears generally in pattern recognition problems and decision
analysis. The general problem is to try to develop a classification
cystem for the objects which uill be able to indicate often and with
high probability the real meaning of the object. This section
describes the structure of the probability model implementation in
gencral terms. The next section describes the specific measurements

applied to our two classes of objects: regions and boundaries.

The thing that makes our case somewhal special is the fact that the
prebabilities are dependent upon themselves. In the region grower

algarithme the decision as to which pair of regions to merge is based

nn the probabilictic world model. MWe are working with probabilities
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of events produced by the algorithm (remember that
pl interpretation | measurement )] means the probability that an
ehject with those measurewents will be produced by the region grower
Alqorithm as part of an object of that interpretation). For that
reason uWe should be careful about generating ‘“steady state"
probabilities. In practice the recursive effect was ignored with the
assumption that the model will be stabilized after a feuw learning
cucles, Houever, this sffact should be modeled theoreticallu to see

the effect of the recursive relation.

Another difficulty is the cffect of the state ot the algorithm., There
are good reasons to assume that the probabilities of occurrences of
events depend on the state of the algorithm. In the early stages of
the algorithm there will be quite a few small regions which are
portions of the regions Wwith which we want to terminate. In an
advanced state of the algorithm most of the regions will be bigger
and near the wuhole terminating region. For this reason it is
desiranle to break the model into sub-models. each of them applied in
different stages of the algorithm. An indicator for the state of the
algorithu is the number of regions. In our practical implementation
the process uwas broken into only two phases: the initialization,
there no attempt to assign meaning uas done, and the second portion

which exploited the world wodel. In the initialization we used only
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a uniformiy applied procedure for boundary strength evaluation
[section 3). In the second portion, the probabiiity model is used,
and all the probabilities are counted oniy over that portion of the

region grower.

The system has to provide for experimental collecting of the
probabilities., We need to collect the probabilities of measurements
exper imentally. It turned out that in most cases we did not have a
good a priori idea of the distribution of the measurements and the
program haa to tearn them experimentaliy. Apparentiy, in most cases

our conscious knouledge of the visual world provides oniy a very

rough idea of the distribution of measurements.

7.2 THE PROBABILITY APPROXIMATION TECHNIQUE

At present ue use a simple form of learning in which ths Ccuputer
only helps in updating thc probability estimates inside a given
classification scheme. This is a version of the traditional non-
parametiic adjustment of the probability density function, In the
future we intend to use a more advanced learning phase in which the

program will keep a compiete historical iist of objects observed in
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the past along with their real interpretations, and will use it to
improve the existing classification scheme. In both cases the
learning will be supervised (since the intended meaning of the

training objects will be given manually).

The probabilistic model that uwe have is as follows: we have
ali} i:1,N possible parameters (meaning of the object). Picking an

ohiect randomly, it will be of type ali) with a priori probability

P (i). We are given a set X{(j) j=1,M of random variables
a priori
3
which are our measurements. We try to estimate P (X) (that is
ali)
-

the probability that an object of type ali) will have properties X )
-
We do that by estimating P [S) where S is a subset of X space (the
ali)
features space). Once these tuo terms are available (approximated)

we can compute the Bayesian probability (likelihood) that an unknown

object uhose measurements fell into S is draun from afi) as:

P [S)xP (i)
ali) a priori

S P (S (j)

i alj) a priori
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We use sequential classification estimates to generate a good cell
structure. Our task is to estimate the joint probability of the
random variables in this space. This is done by breaking the random
variable space into cells S(i) (not necessarily Cartesian) and
assuming that the densities (of each of the probability density
functinns) are uniform on the ;ubcell. Using training runs, we count
the number of objects of each meaning whose measurements fall into a
cell. This gives us an effective way of estimating the Bayesian
probability (likelihood) that an object is of some meaning if its
measurements fell into a cell. This estimate is the standard

Bayesian probability estimate and in our case is

plobject is «li) | measurements fall into the celll=

# of objects of meaning «li) whose measurements fell into that cell

total # of objects observed whose measurements fe!l into that cell

Our task is (o break the random variable space (that is the space of |
altl possible combinations of measurements) into cells that will
enable us to get an effective classification. That is, given that the
values of the measurements of an object fall into some cell, we

frequently want to have a high probability estimate for the real
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meaning of the object. Given such a fixed partition of the random
variable space into cells, learning the probabilities of different
interpretations of objects whose measurement values fall into a cell
till be done automatically. This is done by simply keeping, for each
cell and for each possibie interpretation, the count of how many
times in the past the value of the measurements of objects of that
interpretation fell into this cell, The real meaning of the objects
is indicated manually (supervised learning), and the learning is

applied for both regions and boundaries.

7.3 THE CLASSIFICATION TREE

This brings us to the classification tree structure which tries to

gencrate a cell structure with as few cells as possible while

attaining a good classification among the possible interpretations.

It is critical to keep the number of cells dowun., Otherwise the whole
approach  becomes impractical. For this purpose we utilize an
augmented decision tree uhose leaves correspond to the cells into
vhich we broke the space of all possible combinations of
measuremnents. This structure, which is a version of sequential

classification, enables us to treat in a special way special sub-
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spaces and hence to apply very special-purpose classirying procedures

uhen necessary. The option to use an augmented tree allows us also to

utilize, if knoun, the independency of some measurements and thus

recduce the number of terminal nodes.

The classification tree is quite standard. It corresponds to
sequential application of measurements. In each call the current
measurement called depends on the values returned by the previous
measirement. This way we may apply very specialized measurements if
necessary to classify objects, and still keep the classification
inexpensive since the special measurements will be used only when
needed, as indicated by results of already evaluated measurements.
By calling only on very effective features the number of terminal
nodes is minimized, and this way ue still have an effective way of
computing the probabilities (keeping the counts for each terminal

nocle) .

The tree siructure is as follous. There are three types of nodes:
terminal nodes, parallel branch nodes and function call nodes. A
terminal node stands for a subspace of the random variable space.
With each terminal node we keep counters of how many times in the
past the measurements of objects of some interpretation fell into

this subspace. A function call has an integer function associated
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uith it. This function can return a number from 1 to n where n is
the number of sons of that node. This function is a function of the
measurements of the object. Each of the sons corresponds to part of
the subspace associated with tne father node which includes all
points of the father's subspace for which the functicn returns that
value. That s, if a function has n values we break the subspace
ascociated with the node into n subspaces, one for each possible
ancwuer. Obviously the root of the tree has the wuhole space
ascociated with it (all possible combinations of measurements). We
altou also for branch nodes where we allow several independent
branches to propagate from then ov in parallel, and the value
propagated from that node back up Will be the product of each of the
sons multiplied, and scaled to one (see below), The parallel branch
nodes nere allowed in order to reduce the number of terminal nodes
uhen it is knoun that some features may be treated independently. For
instance, we may wWant to treat color ‘eatures independent|y from
shape features of a region. Suppose that the color feature space Was
broken into n cells (equivalent to having n terminal nodes for

classification based only on color), and suppose that the shape

features give wus m terminals. Then, treating them without assuming

independence, if ue consider all possible combinztions, there will be
n¥m terminals, Treating them assuming independence will produce n+m

terminal nodes.
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TREE 7.3

7.4 PROBABILITY COMPUTATION

Computing the probability vector (the probability for each
interpretation) for a given object for a fixed tree structure is done
hy & recursive procedure described below. In the description the
value returned is always a vector of all the probabilities of each
interpretation for that object. All these values will be non-
negative. By scaling such a vector to one we mean that we sum all
those non-negative numbers and divide each of the numbers by the sum
s0 the rew sum uill be one. The product (division) of tuwo such
vectors means here the pointuise multiplication (division) of the
elements of the vectors which results in 2 vector and not the scalar
4
product. P . is the vector which for each interpretation has
a prior)
the probability that an object picked at random will be of that

interpretation.

The probability vector returned is:




ST TG I ——

COMPUTATION 7.4

- -»
ansuer=i (top_nocde) %P
apriori

scaled toc one.

-

P is the vector resulting from scaling to one the vector
a prioci

uhose i-th element is the total # of objects of type i observed).

f (node) =

if node is a terminal then the returned vector is:

{ caunt of occurences of obil in that node

‘otal number of counts of objl

gount of occurences of obij2 in that node

total number of counts of obj2

counts of occurences of objn in that node

total number of counts of objn )
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scaled to one.

lf the node is a function call then

f(node)=f(i-th son of node)

where:
i is the value returned for the current
object by function associated

with the node.

l[f the node is a parallel brancih node then

f (node) = 7[ f(son) scaled to one,
son :

7.5 LEARNING: PROBABILITY ADJUSTMENT

Keeping the counts of occurrences of each interpretation for each
terminal node is done hy pointing at an object and indicating its
intended meaning (the meaning the user likes it to have). The program

then increments the count associated with this interpretation in all
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PROBABILITY ADJUSTMENT 7.5

terminals into which the properties of the current object lead. UWe
may have several such because of paralle! branch nodes where we have
one terminal for each paralle! branch. To ease the chore of naming
regions (and hence boundaries) we devaloped an interactive graphic
system. The system displays one region at a time by drauing its
boundaries over the original image on a television monitor and asks

for its meaning. Once all regions are interpreted, there is an option

to have a training run in which the region grouwer makes use of what
it knows on the real meaning of regions in order to increment the
counts associated with the real meaning of the object every time an
object is observed, while growing the regions in all terminal nodes
into which the properties of the Jbject lead (an object is either

region or houndary).

7.6 LEARNING: TREE GENERATION

At present, generating the tree and increasing its effectiveness are
tlone interactively., The user may look at terminal nodes that cause
errors in the region grower (in the training runs, these errors are

detected automatically by the system), or at terminal nodes where the

classification is not reliable. The latter are terminal nodes where

Page 98

R ——




P T TR W=

TREE GENERATION 7.8

there are relatively many occurrences of objects which are not of the
meaning uhich is the most frequent meaning in that terminal cell.
What the user can do in this case is to change the terminal node into
a non-terminal node, hence repiace the celi associated with that node
by finer sub-cells such that in each of the smaller cells the

classification uill be more reliable.

In the future wue intend to use an automatic system to generate the
classification tree. For an automatic .generation of a sub-optimal
classification tree the system will keep a historical list which
contains objects observed in the past, their properties and their
real meanings. Based on this history the system could try to order
the application of measurements so as to get good and cheap
classification, by creating as few as possible cells {leaves), and
still keeping the good classification probability high. It will be
avle to point out cells that are not sufficientiy discriminating so
that they may be wuworked on interactively (as it is now or
automatically (mainly breaking each such cell into finer subcells
such that, for each subcell the classification is more reliable).
Techniques for organizing the classification tree so as to get near-
optimal sequential classification are described in [ SR ), In [ SR}
the tree generation is considered as a game with nature where the
score is a quality measure of the clausification. Game (a-B) type

tree search is utilized in creating the decision tree.
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These types of learning are general to many pattern recognition and
sequential decision problems. A vast amount of research, both
theoretical and experimental, has been done in this area. [FU ] is
a good description of the theory and [ DH ] is a good introduction to
the various applicable techniques. [ SR ] which was mentioned above
is an interesting example of trying practical automatic generation of

a sub-optimal classification tree.

7.7 LEARNING: GENERATING NEW CLASS.~1ERS

One additional phase of learning is generating the discriminating
procedure. This may be both setting thresholds for already available
real-valued functions ( to get integer answers), and the generating
of the functions themselves. There are some standard techniques for
generating such functions, mainly various linear discrimination
procedures (see DH). It is not reasonable to assume though, that
this level will be automatic in the near future and it is likely that

generation of discriminating functions will rely on human intuition.
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7.8 NEAREST NEIGHBOR CONSIOERATIONS

It is interesting to compare our technique uwith the nearest neighbor
classification uhich is investigatad in various papers [ COV 1. This
principle is to take for a new unknoun occurrence of an object the
interpretation of the object observed in the past wuhoee features are
nearest to the features of the neuw object. There are tuo
deficiencies in this approach. First, only rarely is there an obvious
metric on the space of values of measurements, and hence only rarely
is it clear exactly hou to measure distance bhstueen the feature
vectors of two objects. Secondly, it is very hard to search for the
nearest object observed in the past (unless we are in one dimension)
since we have to compute the distance from all examples observed to
get the minimal distance. An effective way of reducing the search
time will call for breaking the space into celis the way we do. That
is, locating first the cell into wuhich the measurements of the neu
object fall and then searching for the nearest one only among knoun
objects uwhose measurements fall into that cell (and stored
associatively with that cell), ignoring objects uhich fall into other
cells. Thirdly, the ansuer returned is just one possible
interpretation and not a list of different possible interpretations
with various probabilities. Extending the nearest neighbor principle

to find the n- nearest objects and computing the probabilitiee of
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different interpretations based on them will make the computation
even less efficient because of search time and will force even more

reliance on space partitioning than the method ue currently use.

It seems that when the historical list is added to our system to
allou automatic generation of the classification tres, then we wiil
have associated with each cell|l the properties and meaning of objects
which fell into the cell, In this case it may be worthuhile to use
versions of nearest neighbor classification o~ some continuous
|parameter probability adjustment procedures for each cell to improve

the classification.
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SECTION 8

RESULTS

8.1 PROBLEM DOMAINS

We applied our software system to two picture domains. The first
domain was road scenes as they may be seen while driving a car. The
second domain was left ventricular angiograms ( x-ray images of the
left ventricle made visible by injection of a radio-opaque dye).
These angiograms are useful for various cardiologic applications
since they allow observation of myocardial movement. In the first
domain the system was taught about existence and properties of
regions uhich are whole or parts of images of the following objects:
sky, tree, road, car, shadow of cars and roadside vegetation. The
semantics used in the second domain described the heart interior,
chest cavity background and the dark frame border., [llustrations
given at the end of this section indicate the results of the
exper iments. All the pictures are taken from a computer graphic
terminal with gray level capabilities. There are six bits available

per image point. Five bits are used for displaying the original

Page 183




PROBLEM DOMAINS 8.1

picture, and the high order bit is used for the overlay of the

houndary |ines betueen regions.

The library of integer value procedures currently available for
genei‘ating the classification tree nodes for regions and boundaries
is still quite limited. MWe have only crude estimates of the features
of regions anrd boundaries, and there is still a long way to go before
a good description system is available. Qur attempt was mainly to
implement the iceas presented in this thesis on the A.l. laboratory
hardware-softuare system to prove the feasibility and effectiveness
of our approach. HWe consider the result a positive indication of the
feasibility of getting an automatic analysis of real world images by

computer,

The properties which are currently available in the system are
described below. Before getting into their detailed description |
Wwould like to make the following general comment. [t turned out that
individual region properties are very much special purpose mainly
hbecause of the weakness of the shape descriptor. Variations between
pictures, and the necessity of classifying sub-regions of the
terminal regions (as produced by the region growing algorithms) are
mainly responsible for the weakness of any classification based on

region properties alone. The weakness of classification based solely
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on regions features is very significant near initialization when
almost only local (point-wise) properties (light intensity color and
position) are available, Houever when we consider boundaries and
relative properties of regions the description becomes much more

general and less sensitive to variations betueen pictures.

8.2 REGION PROPERTIES

The region properties available are:

(1) The size, computed as size of region relative to the whole

picture area ( five degrees (ranges) logarithmically).

[ 2] Vertical position of center of gravity of the region in the

-

picture frame ( five degrees ),

[ 3) Horizontal position of center of gravity of the region in

picture frame ( five degrees ).

[ 4] Does the region touch top of picture frame? {yes/no)

[ S ] Does the region touch bottom of picture frame? (yes/no).
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[ 6 ) Length of boundary with bottom of picture ( four degrees).

[ 7] Average light intensity of the region relative to the histogram

of the lignt intensity in the entire image (four degrees).

[ 8 ) Color saturation (4 degrees).

(3] Color hue (eight degrees)

[ 186 ) Does the region touch the frame of the picture on the side?

(yes/ncl,

Ratio of height to width of the minimal upright rectangle
which bounds the region. This rectangle has vertical and

horizontal sides.

Position of center of gravity of the region relative to the
center of the minimal upright rectangle which bounds the

region.
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8.3 BOUNDARY FEATURES

The boundary properties available are:

) Light intensity differences between the two regions defining

the boundaries (six degrees).

[ 2 ] Shape of boundary based on breaking into four sets the pairs of
samnple points which define the boundary. The four classes of
pairs of pcints are defined by the position of the sample
point from the reference region relative to the other sample
point in the pair it may be below, above, left or right. For

each of the four sets we compute whether it is null, and if it

is not the average location of the points in the eet., See
Figure 8.1 for the twenty one basic boundary types which this
procedure recognizes. (21 degrees).

[ 3] Relative size of the two regions (6 degrees).

{ 4 ) Boundary length relative to the length of the whole image

perimeter ( 5 degrees).

( 5] Relative position of the two minimal upright rectangles that

Page 187




R N R

BOUNDARY FEATURES 8.3

bound the two regions defining the boundaries [ & functions

with 5 possible classes for each ].

{ 6 ) Location of center of gravity of boundary in picture frame ( 5

horizontal degrees and 5 vertical ).

{ 7 ) Some quantitative measurements on the relative length of the

boundary in the four directions defined in [ 2 ].

{ 8 ) Color differences betueen the two regions ( 4 functions with 3

degrees each ).
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8.4 RESULTS

In the first problem domain, the road scenes, the interpretation for
regions can be road, tree, sky, roadside vegetation, car and shadou
of car. The possible boundary interpretations are all the 6x6
combinations possible (remember that boundary properti s are
asummetric with respect to the reference region), The learning
(collecting the probabilities and interactively refining and
extending the classification tree) was done by training the system on
five pictures and then the collected probability estimates were
applied to another five pictures and worked successfully. (See
illustiations belou for some sampie runs). The non-semantic veakest-
boundary-first region grouer threshold was set to .13 of the maximum
Possible boundary strength, or 188 regions, whichever came first,
The semantic weakest-boundary-first region grower was stopped with
strength threshold 8.1. From that point on the region grower derived
from the sequential assignment was used until no two adjacent regions
vere interpreted as parts of the same object. The total computing

time for processing one picture is about five minutes. We believe it
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can be speeded up on the current hardware by a factor of 186 by

optimizing the code and data structures.

Illustration C is a good demonstration of some of the limitations of
the system. First, notice that the small car on the top right part of
the road is considered to be part of the roadside vegetation, 1§ ue

used the relative position of the two we would have done better. The

|

F

E
major difficulty is that in this case we nsed more involved relations
than the purely first order ojes available now. We may need to
consider the road, the small car and th; roadside vegetation, in
order to distinguish the small car from similar structure of roadeide
vegetation and road on the bottom left part of the picture. Also
better shape descriptors are needed in order to recognlze more

accurately the boundary between the car and its shadow.

The assignment algorithm is driven by the confidence values of
regions ( the ratio betusen the probability of the most likely
interpretation and the probability of the next most likely
interpretation). The recognition of the bigger regions |ike the sky,
road and the bigger parts of the trees and roadside vegetation
usual ly have unique interpretations even on the basis of local region
properties alone, and hence the assignrent wusually starts by

assigning them their correct meaning. For instance the bigger part
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of the sky is unique because there is only the sky which is big, is
very bright, touches the top of the picture along a long line and has
near ly blue color. The bigger part of the road is also unique because
only it can touch the bottom of the picture with a long line and be
relatively bright and almost colorless and horizontally near the
center. The bigger parts of the tree are usually unique because they
are big, very dark and near the top of the image (see an exampie of
classification for demonstration). Only later are regions which are
parts of the car or its shadow interpreted, based on their local
properties and the structure of their boundaries with the road and
the bigger roadside vegetation éreas. Later still smaller parts of
the roadside vegetation and trees are interpreted, mainly because it
is wusually unclear which of the two interpretations to assign to
them. In cases uhere ue are looking for the road, we may use a
utility that assigns a very low price to a confusion betuween a tree
and roadside vegetation, because such confusion has only a minor
effect on the analysis of the road. Currentiy though, we assign equél'

value for all errors.

In the problem domain of the left ventricular angiograms, no color
uas available. As a result light intensity, position and shape are
the major recognition tools. In addition the non-semantic region

grower had to stop at a relatively early stage because of noise and
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lack of high contrast border. The number of regions on termination of
the non-semantic region grower was two hundred. From that point on
the sequential assignment region grower was used (see illustration).
The run time was again around five minutes per image. It is
encouraging that the adjustment to the.second domain was very easy.
We hope that in the future a general and rich library of feature

extracting routines with the capability of working on many models

will be dev:lowed.

8.5 CONCLUSIONS

The successful application of the system to two problem domains is
very encouraging. Especially so, because it is clear that we can do
much better on each of the components of the system. The author
knous of no previous system able to work on such complex images
successful ly. Our system is also based on a general structure that
provides hooks for incorporating sophisticated subsystems for each of
the components. This paper suggests in many places ways of improving
the current implementation. The author believes that major
improvements may be achieved by the following developments: first,

aut natically generating a sub-optimal classification tree; second,
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improving the available shape classifiers ( which Wwill require the
option to pass from the sample point description to the finer grid
point description); and third, adding options for more complex

relations in the semantics representation.

To conclude, the generality of the ideas behind the system provides
for ways of incorporating improvements and special knowledge in every
one of the components. The author hopes that the generality of the
system will enable researchers to concentrate on each of the
components separately of the system, hence allowing this young

exper imental research field to mature as an unified research field.
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(A-1) The output of the
segmentation based on path
connectivity uhen it is stopped by
the default stopping criterion.
The resulting image is segmented
into a few hundred regions.

(A-3) The output of the region
grower which melts weakest boundary
first, with non-semantic boundary
strength evaluation. This is
the result of stopping with the
default stopping criterin~

(A-2) The effect of reducing the
number of regions to 48 using the
path  connectivity region grower
Wwith a more liberal threshoid than
our current stopping threshnt~

“-

s

- - o

(A-4) Result of merging regions
down to 38 regions using weakest
boundary  first algorithm -d
non-semantic boundary strength
evaluation. Note that the top of
the car is melted into the roadside
vegetation.
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(A-S) Result of attempt to reduce
the number of regions to 20 without
using semantics ( melting weakest
boundary first non-semantic
boundary strength evaluation).

(A-6) Output of region grower based

on semantics. (Melting weakest
boundary first uhere boundary
strength is computed using the
semantic world model).

(A-7) Final grouping of regions
based on the interpretation
assigned to them by the world
model. Regions whose meaning was
assigned with confidence less than
18 are rot mergable. They occur
usually on the real boundary
between tuo regions.
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X,
{
(B-1) Original picture. (B-2) Output of the non-semantic
{ weakest boundary melted first
region grouer,
{.

(B-3) Output of the semantic based (B-4) Result of grouping regions by
region grouer their assigned meaning, taking only
regions which uere 2ssigned meaning
uith confidence greater than 18.

(B-5) Grouping regions by their
assigned meaning, all regions
considered mergable.
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(C-1) Original, (C-2) Qutput of non-semantic region
grouer,

(C-3) Output of the semantic reg.on (C-4) Grouping regions by meaning
grower, Hith confidence 10.
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(D-2) Output of non-semantic region
grouer.

(D-3) Attempt to use non semantic (D-4) Output of the semantic region
region groder with more |iberal grouer,
stopping criterion,

(D-5) Final output after grouping
regions by their assigned meaning.
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(E-1) Initial.

(E-2) Output of non-semantic region
grouer.

@Rﬂ? b Ty

(E-3) Output of semantic region
grouer,
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(F-1)  Left ventricular angiogram,
Qutput of the non-semantics weakest
boundary first region grower. The
stopping criterion is to stop when
the merger gets doun to two hundred
regions.

(F-2-32-4) lterations of semantic
region grouer. Regions are groun

by grouping all adjacent regions
hich are assigned the caiie meaning
by the sequential assignment
procedure, hefore the first
assignment wWith low confidence
level occurs. On each jteration
the confidence threshold is
lonered,

(F-5) Final output . The heart
interior is the dark center, around
it is the chest cavity and on the two
sides there is the dark frame border.

Page 121




-' >

IJ.._-- | K
—
|~—|1_-"- =
- -

=t s

(G-1) Output of the non-semantic
Weakest boundary first region grower.

(G-2) First iteration of semantic
region grower. The region grower
used here is grouping of adjacent
regions that are assigned the same
meaning, before the first assignment
Wwith low confidence was done.

(G-3) Another iteration like (G-2)
where all assignments are considered
valid,
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