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SECTION 1

INTRODUCTION

1.1 GUIDE

The reader is advised to start reading this paper by briefly

reviewing the illustrations of some examples of picture processing on

| 2 pages 115-122, and returnino to this point. The illustrations are

pictures taken by a Polaroid camera from a talevision monitor, then

processed to get negatives which are used to generate plates. These

3 plates are then used for offset printing of the illustrations (that

is uhy they are so "sharn" ). The white lines are overlaid by the

program on the original picture, These lines represent the

J boundaries between regions that exist in the program's segmentation
$ |

of the inage. The programming system was applied to two problem

domains. The first domain was images of the tupe shoun in

illustrations A through E which are road scenes. The second domain

'S was left ventricular angiograms illustrated in F and G. (A-7), (B-

5), (C-4), (D-S), (F-S) and (G-3) are examples of the desired output,

These are images segmented the way humans would segment them while

’
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GUIDE 1.1

trying to describe them in the specific context of the problem

domain. The achievement of our system is that this segmentation was

done automatically after the program was taught on the general |

problem domain (semantics). Even though it is not apparent in the

images, the program also understands the segmented images properly.

That is, it assigns the same interpretation as humans assigns to the

regions. The captions of the different images will give the reade- |

some idea of the terms used in this paper and the problem domains.

| llustrations (B-1) through (B-5) shou the different stages of

processing (problem reduction steps). (A-2), (A-4), (A-S) and (D-3) |

are examples of possible er ‘ors resulting from carrying any of the

problem reduction steps beyond their proper stopping criteria. |

Since this paper describes the implemented system, the ideas are

usually presented in the order of their application to the system.

Section 1 is an introduction to the image processing problem domain.

| Section 2 descri' es both the general data structures and the flavor

of region growers in general, particularly the weakest-boundary-first |

region grower. Section 3 is a detailed description of the

initialization and reduction of the problem by region growing Without

| ¢ semantics. Section 4 starts by redefining the problem in statistical

| terms and continues by describing the assumptions and structure of
the semantics representation. Section 5 describes the application of

’
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Oo

the semantics to weakest-boundary-first region growing. Section 6 is

devoted to describing an interpretation algorithm which is applied on

| the segmented image to assign meaning to the regions. Extensions of |

- this algorithm which drive a region grower, evaluate the partition |
| and provide for stopping criteria are described as well. Section 7 |

describes the method which we adopted for collecting the

r probabilistic knowledge on the problem domain, Section 8 describes

specific feature detectors available for regions and boundaries, as

well as the results of applications of the whole system to two

| problem domains,
bJ

Most of the ideas presented in this paper were implemented in the

1 programming system, but some of them are included as suggestions for |
’ future research and development. Since these suggestions are

scattered in the paper we note them explicitly here. Subsection 3.2

suggests i#nprovements in local feature detectors and texture

operators. Subsections 2.8 and 3.6 suggest using edge-following to |

} achieve accurate shape contour and improvement in the existing shape
description capabilities. Subsections 3.3 and 3.5 call for

evaluation of the quality of various general boundary strength and

’ state evaluation procedures. In subsections 4.4 and 4.6 extended

representations of the semantics are suggested for implementation.

Section 6.2 describes extensions of the meaning assignment algorithm

’
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GUIDE 1.3
|

to drive a region grower with backup capabilities. Subsections 7.6-

| 7.8 contain ideas for various aspects of automation of the learning
which should be implemented to increase the effectiveness of the

classification.

1.2 THE SEGMENTATION PROBLEM IN A.1I.

The problem of segmentation, breaking a complex image into sections,

is a central problem in machin: perception. The analogous problem

arises in the analysis of speech [ VIC ] and, for that matter, in any

problem of overwhelming size. MWe will concentrate on the image

segmentation problem, but most of the ideas are of wider

applicability. The main ideas are the application of Bayesian

decision theory techniques and the use of problem-dependent

information (semantics) to attack the image segmentation problem,

The theory and implementation of a picture processing system which

utilizes semantics will be described in this thesis. The

3 segmentation process for pictures means breaking the picture area

into regions fitting each other in a jig-sau puzzle sense. The

interpretation of the segmented picture means naming | assignment of

!
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SEGMENTATION 1.2

meaning to ) the different regions. In addition to interpreting |
regions, boundaries and vertices Will be interpreted. The naming of

a region means at least identifying the 3-0 (three dimensional)

| 3 sur face for which that region is part of the image in the current

scene. For boundaries the interpretation Will be the 3-D structure

associated with it (in addition to naming it as a boundary between |

the two interpretations oy the regions defining it). |

The segmentation problem for television images is as follows: given a

picture of some scene, we have a rectangular grid composed of some

| : 200x208 points and for each point some information about the light
intensitu and perhaps color. For any further processing 68800 points

are far tco many; depending on the perception task that we have in

) mind, the image should be segmented into regions. That is, the 680800

| grid points should be clustered into relatively feu regions, where

each of these regions should be meaningful in the problem domain and

= the relevant information needed for the specific task should be

easily obtainable. Meaningful segmentation for us means that each of

the resulting regions may be named as being one of the regions knoun |
to the system a priori (like sky, grass, road, etc.), and the |

' properties of the resulting segmentation structure will match the

properties expected of that structure given the interpretation and a |

| priori knowledge of the system about the problem domain. More

' rigorous definition of the problem will be given in Subsection 4.1.

Page S
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ME THOLOLOGY 1.3

|

| 1.3 METHODOLOGY |
In the past, segmentation and interpretation were executed in two |
levels of programs, a low level ani a high level. The interaction

| betueen the tuo levels was done on the basis of failure interrupts.
The lou level portion segmented the input. The high level tried to

make sense of the segments produced by the low level. In case of

difficulty in the high level, the lou level was recalled to resegment

the troubled portion of the picture with a different set of

parameters. Certain limited success has been achieved utilizing that |
approach [ ROS 1). Some meteorological images can be segmented

effectively using such techniques. However, for images I|ike those

arising in road scenes or confronting assembly-line robots, the | ;
existing algorithms do not suffice. A major problem is that the

existing algorithms use absolute and local criteria such as intensity

difference, boundary strength [ BF, BP) , etc. to form regions.

L But the criteria for what is a "region" will surely vary with |

: context. Certain shades of green, yellow and brown might be merged

| into a single region of grass in a scene, yet distinguishing the same i
set of colors might be crucial for region separation in another scene

4 or even in another part of the same scene (like distinguishing a |
yellow car from green grass that it partially occludes). Another

critical consideration is the goal of the perceiver. For some ]

b |
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METHODOLOGY 1.3

| problems, separating the green grass from yellow grass will be

; essential; in others It will be completely redundant and cause

| needless complication.

The importance of goal direction and context-dependent information

(semantics) for effective problem solving is now well understood and

established in artificial intelligence and scene analysis is just

| another example. One zan certainly write a special purpose region

analyzer for a fixed class of images and it will work better than any

general algorithm. This, in fact, has been done in various systems

[ BF , HE J and is sometimes just the right thing to do. The obvious

difficulty with this ad-hoc approach is that it requires a lot of

work to build or modify each individual program.

The current implementation tries to tie organically the tuo tasks of

segmentation and interpretation so as to get a more reliable

partition and interpretation of the input. The general structure of

the system can be applied to any combination of segmentation and

interpretation process subject to the limits of the system with

respect to the special structure of the semantics representation, and

3 the classification capabilities.

In all uork done on segmentation or visual input which are known to

b &
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ME THOOOLOGY 1.3

the author, semantics was hardly used. When the semantics was used

it was used in an ad-hoc fashion. Our system provides direct

| incorporation of the semantics into the segmentation process.

However, for practical reasons the representation of the semantics

had to be constrained. We developed a structure which is in some |
sense first order semantics. |t cannot be used to describe all that |
we know about the problem domain, hut what is describable can be

directly incorporated in the segmentation process.

Before describing the system in more detail, we must make one

, additional point of clarification. It is a tenet of artificial |

intel| igence research that any information that can be brought to

bear will be helpful in a given task, This is especially true in

machine perception, but our current efforts do not attempt to exploit

it fully. Region analysis is assumed to be a preliminary (relatively ;

fast) partitioning of an image before further processing. For this

reason, we have made no attempt to include semantic features |ike |
pd three-dimensional shape analysis in the current region analyzer. We i

are still studying the capabilities of our semantic structure. As

results of more experiments become available, we will be able to ]

? determine which information should be used in the segmentation

process and which should be left for higher level processing. |

’
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HISTORY AND LL TERATURE REVIEW 1 6

1.4 HISTORY AND LITERATURE REVIEW :

| The following is a brief review of successful computer systems for
A.l picture processing and a brief |iterature review. No attempt is

made to cover all the literature relevant to image processing. The

reader who is interested in getting familiar with the literature is :

encouraged to consult the iiterature surveys [ ROS1 R0OS2 ROS3 ) which

| survey over thousand recent articles on image processing topics. :
Relevant papers to our work appear in those surveys under the titles |

: "Edge and curve detection", "Pictorial pattern recognition", "Picture i

parts”, "Picture description" and "Scene analysis". We will

| reference only papers that had direct effect on our work or deal with

1 closely related topics. |

The hand-eye system at Stanford uses the edge detection approach. A

procedure was developed [ HUEC 1] which uhen applied on a circle

around a point finds a best fit of a linear step function to the

light intensity function in a neighborhood of the point

u Vx,y | axx+biysc |
step (x,y) d |

v  Vx,y | axx+bxy>c

i 4 ]

Usy

3
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HISTORY AND LITERATURE REVIEW 1.4

Depending on the quality of the fit and the difference between u and |
| v the probability of the existence of an edge Iine between two

different light intensity regions passing in the circle is computed.

The 2-d fit is needed to overcome noise by the use of the 2-d

structure of the edge line. Noise arises from both hardware noise

and small irregularities in homogeneous region. Al ternative edge :

detectors were developed by other researchers like [ GR ] which

| approach the probiem as a statistical decision with yes/no answer.

Some researchers have tried to use gradient techniques but it seems

| that gradient derived operators are very sensitive to noise).

| The recognition of edge segments using the Hueckel operator is very

reliable for simple scenes. The main problem is incorporating the

local edge segments detected in various points into a whole picture

description. This becomes a very complicated task of edge following

and making decisions as to hou to close edges to create part (or ail)

] of the contour line of a region and then to interpret the resulting

objects by the world model [ FALK GG J. Then comes a complicated

| feedback loop to call the edge detection and following process again :

| with different parameters to recognize predicted edges that were

missed, or to delete some erroneous edges [ PT TEN )J. Algorithms for

connecting reliably and efficiently edge pieces were developed by

many researchers. The common alternatives to edge following are

Page 10



HISTORY AND LITERATURE REVIEW 1.4

| various algorithms derived from the minimal spanning tree algorithm

where attempt to pass the shortest path through all edge segments is

done. An alternative approach is represented by [ MON] which |

utilizes a simple version of dynamic programming for optimal curve

detection. :

A region growing algorithm was tried at S.R.I. [ BF J. This

algorithm involved actually melting in random order all boundary

| lines whose strenglh was less than some threshold. This threshold |

nas supposed to be given a priori, and had to be adjusted for

: different pictures. The strength of the boundary was computed as a
function of the length of the boundary and the structure of the

differences in light intensity across it, The main problems with

that system are the hsavy computational load resulting from lack of

any sampling facilities, limited reliability because of randomly

ordered merging of boundaries whose strength was less than some

absolute a priori threshold and the lack of any facility to

incorporate semantics directly into the region grower. A few

researchers have tried to develop techniques for local adjustment of

the thresholds of the region growers mainly through local histogram

d analysis in various parts of the image; such work is noW in progress |
in B.A (oral communication). The work on region growing

described in [ HE 1 is in many respects the nearest to our work. It |

?
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HISTORY AND LITERATURE REVIEW 1.4 |

is an attempt to tie region growing process with specific problem ;

knowledge. The main difference is that our system ie more general and |
more reliable.

World modeling for pictures was developed for planar eurface scenee

(block world of cubes and Wedges) in parallel at Stanford A.l.

| laboratory by G.Falk and G.Grape for real images, and in M.1.T

A.1 laboratory by Guzmen and Waltz for idealized images. The result

of this effort was a well understood world model of planar surface

| bodies which was able to sustain quit2 a lot of segmentation errors
by the lower level portion.

An attempt to use a semantic graph with some hints of associating
probabilities with the links was developed in [ PEP }. Thie wae an

attempt to model hand-input and hand-segmented images of outdoor
scenes,

Our world model is an extensior of these models to use both

probabilistic world knowledge col lexzted by the system, and an option

to utilize the model directly while segmenting the picture. The

problem knowledge is collected by the system from training examples

and is not limited to planar surface objects. The major deficiency
of our current model with respect to the planar surface models is the

Page 12
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absence of vertices and explicit 3-d structure in our model, which

are of major importance in the planar surface model. Preliminary

investigation indicates that vertices and 3-d structure information

may be added to our model Without significant change in the

structures.

r The first application of our system was to road scenes it is worth |

| mentioning in that connection that outdoor scenes analysis tends to |
be a good source of texture oriented problems. [ RBJ ] describes work

on texture which involved also texture derived from outdoor scenes,

Though we provide easy hooks for utilizing textures, texture is not |
being used in our current system,

Page 13
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| SECTION 2

REGION GROWING - CLUSTERING BY MELTING WEAKEST-BOUNDARY-FIRST

| 2.1 OVERVIEW

This section is a description of the general region growling

mechanism. The control mechanism of the weakest-boundary-first

region grouner will be described briefly, while the specific details

of decision criteria will be described in later sections. Section 3

will deal with growing regions without direct use of the semantic

model. Section 4 will show the semantics representation, and the

| following sections will show how we incorporate the model into the

region growers and image interpreter.

] will start with a brief overview of the system. The system consists

of a sampling mechanism, region growing subsystem and optional edge |

following. Together they are intended to generate the basis for an

s efficient and reliable image segmentation system. The region growing |

algorithm will generate a sequence of partitions of the pictures and

will maintain an approximate description of regions, boundaries and :

|
Page 14 |
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OVERVIEW 2.1

| vertices for each partition of the picture observed. The features of
| the regions, boundaries and vertices will be used to make the

decisions that control the algorithm. The basic step of the region

grover is to take pairs of regions with a common boundary and merge

| them to generate one bigger region. When using the Wweakest-boundary- 4
first region grower, the decision will be to melt the weakest i
boundary between tuo regions in the current partition. The

evaluation of the strength of the boundaries’ will contro! the

| algorithm. Successful evaluation of the strength of a boundary will
be the key to the success of the system. A large portion of the

thesis surveys options used to compute the strength with and without

the use of the specific problem knowledge.

An evaluation of the quality of partitions of the image is needed ts

decide how to terminate the algorithm. This evaluation scheme Will

he used to identify the hest partition observed and to restore it on

termination. The evaluation procedure provides also for an |

| alternative region grower which is driven from the mode! directly
[ see Subsection 6.2 ). The semantics of the mode! would is used to

determine the evaluation of the quality of the partitions observed, |

|
Initially the picture will be approximated using sampling to save |

computing time, but in any stage the option to call! an accurate

x
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OVERVIEW 2.1

tracing routine for the contour line of the regions will be

availanle. This procedure will use the approximate description of |
the regions and boundaries in the current partition to get the

| accurate contour of the existing regions. After application of that

procedure an accurate shape description wil! be available. The |
optimal partition is to be passed along for further processing by

| special purpose routines which are determined by the specific task at

hand. This special purpose routine can make much better use of

special information about the problem domain which was not

expressible in terms of the limited structure of the semantics used |

in the region growing mechanism.

2.2 INITIALIZATION :

Prior to the application of the region growing algorithm, the image |

to De processed is covered with many small regions. With each :

iteration of the region grower, two regions Wil! be merged to become ;

a larger region. It is not desirable to start the process with each

single grid point as a separate region. There is too much redundancy

if ue do that. The properties at each point are not reliable enough

because uf noise, Furthermore for practical application the smallest

Page 16
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$

region that may be encountered will be Composed of very many grid
points. For these reasons we place sample points over the image grid,

In our experiments, placing the sample points at every fifth point |
yielded a reasonable density. Each of the sample points is assumed

to be reresentative of a different region for initialization. Doing |
this ue gained two things: first, local operators may be applied
around each of the sample points to find more accurately the local

hroperties (reduce noise), and second, the number of regions is 1/25 |
of the number of grid points.

We start by placing sample points on the picture rectangle. The
placement of the points is such that they cover the picture in some

desired density. If information is available on the picture we may
want to place the samples so that they will be concentratea near

edges of regions and less frequent in the center of regions (here

"regions" means the regions that we want to te~minate With as defined
by the world model). Local operators are applied to determine the

local structure around each sample point. This information may be

the dominant color, color texture, various histograms, color gradient |

and 3-d local structure iniormation, depending on what is available ;
and is considered important in the problem domain. This information |

is stored in a feature vector that is associated with the sample

point. In the current imp'ementation it is just the dominant color |

Page 17



INITIALIZATION 2.2

and light intensity around the sample point, Substantial amount of

research is still required to develop good local texture operators

[see Subsection 3.2 for more details).

| On initialization each sample point is assumed to be representative
of a different region, resulting in an implied region (area)

associated with each sample point. Take any sample point and call it

"spp". Then the implied region around "sp" is the intersection of all

half planes which include "sp" and are defined by the perpendicular

| bisector of the line which connects "sp" and some other sample point. |

Practically, ue do not need to take all such intersections because of

| the special structure of the placement of sample points [see Figure |

2.1). Between implied regions there are implied boundaries. The |

implied boundary between two sample points, if it exists, is the

common |ine segment of their closed implied regions which is on their

perpendicular bisector. The single segment of an implied boundary

wili be called the basic implied boundary and Will stand for two

adjacent sample points from different regions. Later on, when more

than one sample point belongs to a single region the implied

houndaries will be composed of several segments of basic implied

] . houndaries. We define a contour line to be the closed path that

surrounds a region or a hole inside a region. This contour |ine may

he composed of several boundaries which generate a closed circular

path [see Figure 2.2).
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| One point that should be mentioned is the treatment of the limit of

the field of vision, Consider a point on the extreme end of the

grid. By our previous definition it would have an unbounded implied

region. We want to fix this case so that it will be treated

uniformly, An easy way to take care of this case is to have an

artificial region which will stand for the domain outside the field J
of vision. This region will be called 0. This region has a commun

boundary with all sample points that are on the border of the field

of vision. This boundary Will never be melted and will be used to

close the contour line around sample points that had an unbounded |

| cdlomain associated with them by our previous definition. Now whenever |
3 we nant to check if a region touches the border of the vision fied !

all we have to do is to look for a common boundary of this region

with the outside domain (the artificial region). This special

houndary provides for contour lines that are always closed paths

around regions. This simplifies the edge tracing. The existence and |

| shape of a common boundary between a region and the outside domain

are extremely important in recognition of regions. For instance if a

region touches the top of the vision field it increases its |
probability of being sky in the context of outdoor scencs. The shape |

‘4 of these boundaries indicates which of the four sides the region

touches and the length of each of the boundaries.
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2.3 WEAKEST-BUUNDARY-FIRST REGION GROWER

The description of the weakest-boundary-first region growing

algorithm is simplified if we consider the structure of regions and

boundaries as a graph structure where the nodes are regions and the i

| edges (links) are the boundaries (Figure 2.3). Each ink,

representing a common boundary between two regions, has a value

associated with it. This value reflects the probability that the two |
regions are of different interpretation in our World model. These |

values are called the boundary strengths. The evaluation of the

boundary strengths is the responsibility of the control mechanism. By

means of evaluating the boundary strengths, the control mechanism |

controls the region grower. The successful evaluation of these |

values is the key to the successful processing of pictures by the

system. |

The basic step of this region grower is to take the weakest boundary

in the current image segmentation and merge the two regions for which |
this is the common boundary into one bigger region. In the

corresponding graph structure this means collapsing into a single |
node the two nodes joined by the weakest link. The resulting node |

| (region) will include all the points of the tuo regions. The links

(boundaries) of the new node (region) will be assigned new values

|
Page 20
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(strength evaluation) and the next iteration will start (subject to |

non-termination condition).

The structure that is created after several collapsing stages is

demonstrated in Figure 32.2 and in Figure 2.4. Each region is |

composed of one or several sample points. The boundaries between

regions now are lists ot pairs of sample points. Each such pair has

one point from each nf the two regions that the boundary connects.

These tuo points are adjacent to each other. The pairs of sample

points which define a boundary are ordered by the order that the real

boundary |ine passes through them. There are two such orders,

clockuise and counter-clockwise as seen from each of the two regions. |

The contour line is composed of one or more boundaries. MWe maintain

a circular list for each contour line of a region, which is the list

of the boundaries as they are encountered along the contour line.

The maintenance of the above structure is necessary to the

description of the boundary shape in each stage of the growth

algorithm and for the later accurate contour tracing. No attempt was

made at this stage to optimize the representation of the boundary and

It is clear that better encoding and more compact approximations are

available.

| Page 21
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2.4 THE REGION FTLTER

With each unification of tuo regions the data structure needs to be

updated. The regions themselves are not ordered, so the combined

region is just the union of the points included in the two subregions

that compose it. Since the boundary structure is ordered, more

elaborate updating is needed. The major complexity results from the

fact that the boundary that was melted can be composcu of several |

discontinuous paths. In such a case the resulting region may not be

simply connected and hence its boundary Will be composed of several

closed contour lines. Another minor complexity occurs when a third

regicn has a common houndary with both unified sub-regions. In this

case if these two boundaries are continuous then they should be

combined into one boundary for the new combined region. To cope uith

all possible combinations a special algorithm for updating was

developed [see Figure 2.5 and Figure 2.6].

2.5 THE BOUNDARY STRENGTH LIST

On each iteration of the weakest-boundary-first region grower we need |

to find the ueakest boundary. To reduce the search time, a list of |

Page 22
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G

the boundaries is maintained. This list is sorted according to the

strength of the boundaries on initialization of the algorithm. After |
each iteration of the region grower, the values of the strengths of

boundaries around the new region are evaluated. The boundaries with

ned values are then relocated in the boundary list to maintain the

proper order (by boundary strength). The updating time usually ir

reduced when starting the search for the new position of the neu |
boundary from the location of the corresponding boundary of the old :

smaller region. It turned out that in many cases the new value is

about the same as the old one. To utilize this property the strength

list is doubly linked so that it is easy to float a boundary to its

appropriate position in the list as determined by its neu strength.

2.6 SOME IMPLEMENTATION DETAILS |

The program relies heavily with LEAP features of SAIL [ SAIL ). Each

sample point is an ITEM (pointer to data structure) which contains

the local feature vector at that point. The regions are set ITEMs :

which contain all the sample points that belong to that region.

] Associated with each region ITEM is a region feature vector which !

contains properties of that region. This vector is updated whenever

Page 23



SOME IMPLEMENTATION DETAILS 2.6

the region is merged into one of its adjacent regions, The

boundaries are lists of pairs of sample points. Each boundary is

associated with the tuo regions which define it. The boundary list is

ordered so that the pairs of points are ordered in the order of the

boundary path that passes between them. Since there are two such

orders there is an indication from which of the two regions the pairs |
are seen ordered in clockwise direction. With each boundary is

associated a boundary feature vector which is updated as the boundary

rons. Nou for each region and for each of its boundaries we

| indicate which boundary is next when going clockuise along the
contour line of that region. This is done by the association

structure. It should be noticed that the boundary may close the

region and hence follow itself and there may be also several closed A

contour lines for a region when it is not simply connected (has holes

).

2.7 STOPPING CRITERIA

| One decision that has to be made is when to stop melting boundaries.

There are three possible options for doing that. One is to stop when

the neakest boundary is stronger than some threshold, Another
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possibility is to have a state evaluation and to use a back up

nechznism to get to the most promising segmentation (that ie the one

ith highest state value) from all pa-titions generated by the region

growing mechanism on its way to a single region. The third option is

to find the best interpretation for the scene given the current :
segmentation. If the resulting intel pretation does not interpret any

tlio adjacent regions as parts of the same region (in the world model

| sense) then we quit merging (see Subsection 6.1). In the current

implementation the first and the last options are used. |

2.8 EDGE FOLLOWING |

Edge following can be used for refinement and verification of the

boundary structure between sample points for a given picture |

partition, In such a partition, the implied boundary structure

generates implied contour lines around each of the implied regione.

This contour line is an approximaton of the real contour line of the

region. Each basic implied boundary ie a segment that is located

along the perpendicular bisector of the two sample points. By edge |

following, ne want to replace this implied boundary by a real |
boundary: that is we want to replace it by the actual pairs of grid |

|
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noints which define the boundary. To do that, we scan along the line

between each pair of sample points which define the basic implied

boundary ( two adjacent sample points from different regions) to find

the exact edge point. Since the two sample points belong to |

different regions there must bs a point along the line that connects

; them which is the best real edge between the two regions, MWe can use

any available edge operators to detect the optimal location for the

edge. This task is especially easy since we know the distinguishing ;

properties between the two regions. We repeat this process for all

pairs of sample points which define the basic implied boundaries.

Next we want to connect the edge points that we collected, and to

find the exact edge curve that passes along the boundary. The

implied boundary structure also includes the linkage between the

| basic implied boundaries. This linkage is the order that the contour

line passes between the sample points. Our task is to connect the

pieces of edges that we found to create the whole contour line. We

do it pairwise for adjacent edge points. (le know the adjacency by

| the linkage structure). This is done using edge tracing which is

relatively easy since we know the properties of each of the two

regions that define that edge line and we know two edge points that

we want to connect with a simple edge |ine.

We may expect to find some discrepancies between the implied boundary

{
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| structure and the real boundary structure. There are two sources of

problems. One problem is the discovery of neu regions when scanning

the lines betueen two sample points. This may happen because the |

sampling was not dense enough. The other occurs when two regions that

were ascumed disconnected turn out to be connected by a bottie-neck

that was missed by the sampling process. Both problems require

cpecial treatment. [In the current implementation we assume such

cases will not occur. This means we assume a dense enough sampling

that fine details will not be lost. If special  urpose techniques

were used they would be along the Iines of those described in

| Subsection 3.4. In the current impiementation this edge following
is still missing, but it Will become essential when more region and |

boundary shape descriptors 2re added to our system. |
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K SECTION 3

REGION GROWING WITHOUT USING SEMANTICS

This section more thoroughly describes that part of ths system which

is active prior to the incorporation of the semantics into the region

grower, This portion of the system is intended to be a problem

reducer. |t tries to reduce the complexity of the image from 60000

points to about 1A8 regions. The resulting regions are assumed to be

subparts of the regions with which we want to terminate. That is, we |

assume that only very few and minor false merges occur in this phase, |
| and if errors do occur they will be both tolerable, and anticipated :
: hy the next phases of the system which utilizes the problem semantics :

(e,g the semantic world model is generated by working experimentally :
on real typical images of the probiem domain and hence false merges |

| occur while training the system and hence stored in its semantic

base). To minimize the risk of erroneous merges, this region grower |
is stopped with veru conservative stopping criteria. This level is

more efficient computationally than the run with the semantic model

hecause of a simpler decision mechanism. On the other hand, it is

much less reliable and for that reason it has to be stopped quite |
early, before the decision as to which region to merge becomes

unreliable in the world model sense.

| |
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\ The aspects of the system that will be described here are:

1) Placement of sample points.

2) The local measurements at each sample point.

3) Evaluation of boundary strength.

4) Evaluation of a given partition.

S) The information on regions and boundaries carried with the grower

algorithm,

These details are not essential to understand the subsequent sections |

so the reader may skip points that are too technical to be

interesting.

3.1 PLACEMENT OF THE SAMPLE POINTS

The initialization of the region growing algorithm is done by |

placement of the sample points. Each of these sample points is
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considered on initialization representative of a different region. |

| There are two conflicting goals here. On the one hand we want to 3

have as few sample points as possible so that the computational load ]
will be reduced. On the other hand we want dense sampling so that

the finer details nf the picture will not be lost. The density of

the sampling should satisfy the following two conditions: first, from

each region that we want to terminate with, at least one sample will

| be taken. Second, every "bottle neck" in a region will be sampled,
meaning that a connected region will not appear disconnected. In many

but not all classes of scenes we can find a satisfactory dens! ty,

which is also sparse.

To ease the computation effort, a fast way of eliminating redundant

sample points is provided. This will effectively allow us to increase

] the sampling density and still keep the number of samples low. We

assume that two adjacent sample points are in the same region if the

differences between their property vectors is less than some

threshold. This implies that a sample point for which the difference

between its feature vector and feature vectors of all neighboring |sample points is less than that threshold will always be inside a

region and not on a boundary. Such points are not interesting for us

and we can ignore them, and connect their neighboring points into one |
region immediately. This way we reduce the number of samples. As a
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| result samples from the center of big homogeneous regions are

| ignored, In the current system it was found to be effective to set :

| this threshold as .05 of the maximum possible difference between the

property vectors of two sample points as computed by the histogram of :

| tight intensity over the grid. Using a higher value caused failures
by collapsing into one region sample points that should belong to

different regions. This sample point reduction is faster

computationally than the region grower. Because this reduction is

taster than the melting procedure it allows effectively denser

samriing, Most of the simple region growing systems use versions of

this path-wise connectivity criterion as the major tool in their

region growing algorithm. This clustering mechanism is extremely

sensitive to noise and causes severe errors very early. That is why

we stop it with a very conservative stopping criterion. Ideally with

a more efficient implementation of the weakes:-boundary-first region

| grower this stage could be avoided completely. Note that the

elimination of points from center of regions is more conservative

than the path connectivity, because in 3 sense we demand "wide" path

connectivity.

lt some prior approximation to the location of boundaries isgiven,

| then ne will place the samples mainly in thg neighborhood of the |

boundaries. This way with fewer sample points we still get a good
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description of the regions and boundaries (this will be very

effective in multi-picture processing where we have slowly varying

pictures). In the case where no prior information was available, the

most effective initial placement of the sample points is done by

| placing the points so that initially all regions will be equal
| regular hexagons. In this case, the smal!est region or bottle neck

detected is twice the radius of the hexagon. The advantage of the

renqular hexagon cover over square or equilateral triangular covers of

the picture area is the symmetry of its boundary structure. If

squares or equilateral triangles are used as the basic units of the

cover, there are pairs of regions that have only a single vertex in

common, These vertices make the two covers based on equilateral

triangle and on square units ambiguous, because it is not clear |

uhether tuo regions that have only one common boundary point (vertex) :

in common should be considered adjacent. We ignore the single vertex

boundaries for the rectangle cover. |

If ne chcse any of the special structure covers of the plane (like

the one which is composed of equal squares), the initialization of

the boundary and region structure becomes trivial, because the |

special stircture conveys directly the structure of the regions and |

bouncaries. lhe uistance between the sample points will be called \

te quantization factor, which in the current application is a number |
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betueen 5 and 28. This number reflects the quality of the

description of the shape of the regions and boundaries tha: we want

to get. The full size picture frame is a rectangle of 200x308 points

so we have 2408 to 15) sample points (depending on the sampling

density). In simple scenes ( composed of a few relatively homogeneous i

regions ) the use of the initial point reduction reduces the number

of regions in the denser case to about 500. :

3.2 LOCAL FEATURE DETECTORS |

The information associated with each sample point depends on the

harcduare available. In passive input devices it is the local light

intensity which reaches the image plane of the videcon at each of the

grid points. In our case ue measure the intensity through three

filters (red, green and blue), to get color information. In active

input devices where the source of light is available (mainly laser

beams), depth information and 3-d surface orientation are also

available. (For the capabilities of an active light system see

GJA 1). laser light for scanning over the scene.

In the current application, only color and light intensity
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information was used. The color was used only to find the dominant :

color around the sample point. A problem arises when the sample |

point directly hits an edge between tuo regions. Dealing effectively

With such cases will require application of "structure operators". :

These operators will try to find a compact description for the light |
! intensity and color as a three valued function in a two dimensional

neighborhood of the sample point. [f we had such structure operators

they would have recognized the edge. Currently though we do not

apply them. To reduce the confusion resulting from such a case the |

dominant color is taken to be the most frequent color, not the

average color. This way, in most cases, the properties of one of the

regions near that point will be associated With the point,

More elaboration will he needed to effectively use sensitive input

devices (more than the current 16 gray level input for each color) to i

detect gradual changes and texture. Gradual change can be detected | ]

easily by approximation of a planar fit to each of the color

components in some neighborhood of the sample point, instead of just

finding the dominant color. Detection of edges has been investigated

(quite thoroughly and a few good edge detectors and operators are |

available [ HUEC GRIF J. Detection of texture is extremely hard, and

largely an unsolved problem. It is likely that texture and edge

detection will be tried in cases where the planar fit for the |ight

|
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intensity is insufficient. We anticipate that in that case a

| sequential and conditional application of texture classification
operators Will be called to classify the texture. One such class of

operators correlates the local intensity (color) with itself shifted :

in different directions. These operators will detect directionality
and frequency in the local texture. Another approach is to locally |

partition the picture into small regions (using threshold or local

clustering) to detect the local shape of the small regions which |

compose the texture. The most powerful system for texture :
recognition known to the author was implemented by [ RBJ J, and is i

hased on local! Fourier analysis. It is probable that sequential |
classification of texture of the same statistical nature as the

classification of objects for the world model ( see Subsection 7.3) |
will be very helpful in texture recognition. There are many other

local measurements which may prove useful in certain scenes. The

unclerstanding of which measurements distinguish obiects in scenes is

a central problem in machine perception. A major advantage of the |

system described here is that new operators can be incorporated

| easily as they are developed. |
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STRENGTH 3.3 |

3.3 BOUNDARY STRENGTH EVALUATION |

The evaluation of the boundary strength depends on the context of the :

scene Which is being analyzed. This strength should reflect the |

probability that the boundary is 'real® in the semantic sense. In

the description that follows we try to present some general

parameters that can be considered in the evaluation of boundary

strength. None of these schemes uses the world model. Only direct

use of the boundary properties is utilized. No attempt ie made to

understand what each boundary means in the world mode! semantics. On

the other hand the semantics of the world can be used to help

evaluate the weights of the different criteria used in evaluating the |

boundary strength. MWe will return to this point in the descriptions

of the semantic boundary evaluation. |

The first factor in evaluating the boundary strength ie the

difference between the values of properties of the sample points at f

each pair along the houndary. A strong boundary will usually be one |

where the differences across it are high and consistent along the

boundary line. This is quite standard, although no previous work

known to the author utilizes multi-property differences. All of them |

lorked with a single property for evaluating boundary strength.
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Let (x(i) , yi) ) be the feature vectors of the pairs of sample
i=1,N

-»

| points along the boundary. x(i) is the value of the measurements at

+

the i-th point on one side and y(i) the value of the measurements at |

the point on the other side.

| The average difference in properties along the boundaries will then

he

- ->

| (ei) -gtin) | /n
im},

i

| In our system we have a 3-vecior associated with each sample point.

This 3-vector is derived from the three readings of the dominant

intensity of each color components in a small neighborhood of the

sample point. 1f (r,g,b) are the light intensities through the red,

green and blue filters, then

|

vil) er+g+ |

v(2)e«(-r+cos(2xn/3) x (g+b)) /v(1)

v(3)e(sin(2xn/3)%k(b-g))/v(l)
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vil) is the intensity, v(2) and v(3) are the X,y coordinates in the

| color plane.
:

: It is reasonable to assume that in general we want to give different

| Heights to different components in the feature vector. The values of

the weights are not obvious. We may want to scale each property so

that the maximum difference will be at most 1, and this is done in

our current implementation. It may turn out to be useful to reduce

| the weight of a property when the variance of the differences of that
property along the boundary is high. A high variance of 3 property

inside each region may also decrease the weight of the ditiarences of

| that property. We also tried to give very high weight to the tuo

color components as compared to intensity, under the assumption that |
color is a function of the material of the region and hence less |

sensitive to lighting conditions (shadows and orientation), but it

turned out in those limited experiments not to be of any help.

In the future when more structure than just the dominant color at

each sample point will be used, the consistency of the features of

the two regions will be more complicated to evaluate. There Will be

more involved structure in the properties that will be compared.

Such a property is, for instance, local variance of the color around

the point which we want to match. If it is high we may want to |
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compare distribution structure on the two sides and not just the mean

or histogram peak. Gradual changes would be detected by the slope of

the 2-d linear fit to the property in a 2-d neighborhood of the

point. If such a fit is done, then the inconsistency between the

| fits in the two sample points will be the measurement of the boundary

strength. More elaborate matching evaluation Will be needed if

texture detection in areas around sample points is computed.

The size and shape of the houndary and the regions should be used in

the boundary strength evaluation. In general the shorter the boundary

relative to the area of the regions defining it, the stronger we

require it to be.

In the current implementation the following scaling is used.

Let:

5  _sqrtlsize of l-st region) + sqrt(size of 2-nd reqion)
= ,

length of boundary

then:

(eq 8)

| - (KZ +a] where K2<K3
strength of boundary = average differencesx K3+a
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In cases where the sampling is fine enough to reflect the shape of

the boundary, the strength of a jagged boundary is likely to be

decreased. This will be especially true when the surfaces of our

objects have smooth edges. In this case jagged boundaries will |

usually result from some gradual lighting change on a smooth surface. |

The jaggedness is not trivial to compute because of the noise effect |

of the quantization of the picture which results from application of |
the sampling. It can be measured as the local deviation from 3

| smooth approximation (like straight line or low order polynomial) :
scaled by the quantization size. This principle was considered in |

[ 8F ) to evaluate reliably the boundary strength. Other

considerations in boundary strength evaluation may involve more shape

evaluation and broader context. These considerations are not

incorporated, though they can be used, mainly because they are left

for the semantic region growers uhich makes better use of many

additional properties.

3.4 BOUNDARY STRENGTH EVALUATION THROUGH EDGE FOLLOWING |

There is another possible approach to the evaluation of the boundary

strength. One could scan the picture frame along the |ine segment
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connecting the pair of sample points and look for edge structure
across this line. The use of an edge detection operator |ike the

Hueckel operator [ HUE J could help to evaluate the probability that

there is an edge line between the tuo sample points and that they

therefore belong to different regions. This option was used in early |
versions of the system. It was dropped in favor of denser sampling |

because of the complexity it added to the program structure. When

this option is used, the scan is done once on initialization.

Scanning is effective mainly for dealing with gradual changes and

reducing the requirement on the density of the initlal sampling. The

strength of the boundary between two adjacent sample points is taken

| as the strength of the strongest edge structure which intersects the
straight line segment connecting the two sample points using some

edge detector, In case a new region is detected, a new sample point

will be placed and a new region will be generated.

The tireatment of a new region discovered by the scan between sample

points is relatively easy. For the sake of uniform treatment a new

sample point is taken from the new region. The implied region and

implied boundaries of the new point are generated, in the same manner |as for the initial sample points. For pairs of implied regions whose

common boundary is changed by the new sample point, the boundary :
structure is updated. An intricate case may arise if the new region
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is very thin and hence a line of some sort. Then we want to invoke a

line following routine and avoid disconnecting the regions.

Currently there is no treatment of this case in the system. But it i
should be included if a world model that includes |ine shapes (like

characters) uere added to the system. It turned out to be very useful

immediately on creation of the neu sample point to check if its i

boundary strength with neighboring points is less than the lowest i

value of current implied boundaries. In this case it is immediately

collapsed into the nearest region. In order to make sure that we do

not generate too many new sample points there should be a threshold

that prevents generation of new sample points if the strength of the

boundary of the new point (region) with one of the two points that |

defined this point is less than this threshold. This threshold will

be set to he greater than or equal to the value of the veakest

existing implied boundary, and will be increased over that value as

there are more sample points generated so as to promise termination

and simplicity.

3.5 STATE EVALUATION

The evaluation of the quality of a partitioning of the picture
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vithout using the semantics can be done only on the basis of a

simplicity criterion, Two such effective decision criteria are

available:

to maximize |

_sur__of strength of boundaries

total number of regions

or to maximize

cum_over regions of the region's average houndary strengths

total number of regions

exc lucling the outside of the picture and the external boundaries.

These simplicity criteria try to minimize the complexity (the number

| of regions) and maximize the confidence (strength of boundary). It

ras found that in a few experiments that the optimal partition with

respect to these simplicity criteria was very near to the optimal |

partition in the world model sense.

It should be mentioned in connection with these quality criteria that |

the strength of the weakest boundary does not necessarily increase as |
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the region grower is carried further. If a mistaken unification

happens, the differences along the boundary may be inconsistent and |

result in a weaker boundary (recall that the boundary strength is

computed hy using the absolute sum of the difierences and not the sum

of their absolute values along the boundary and scaling them hy their

length relative to the area of the regions defining them).

| These state evaluation functions are not used in the current system.

This phase of region growing is used as a problem reducer for the

semantic region grower, Currently ue stop the merging by threshold.

| That is, once the weakest boundary is stronger than some threshold we

quit. The threshold chosen is relatively conservative and was taken

| to he .15 of the maximum possible boundary strength for road scenes

and 2808 regions for the angiograms. MWe chose a conservative stopping

criterion so as to reduce the problem and still keep the risk of

erroneous region merges lou.

3.6 MAINTENANCE OF REGION AND BOUNDARY PROPERTIES

Throughout the run of the algorithm the basic proverties of regions

and boundaries need to be maintained. The current portion does not

Page SO

.



UPDATE 3.6

make thorough use of them but the semantics controlled part does.

Most of the needed features except shape are easy to maintain, mainly

hecause the measurements are derived from various integrations. On

initialization each region is given its basic color, size and

position (the same as the sample point that constitutes it). When

tio regions are collapsed, the tuo feature vectors are just added

correspondingly and associated with the new region. This sum is used

to compute the average of the property over the region, but ue need

to remember that the average is not always what we want. lf the

variance of some property is required, then the sum of squares of

that property is kept and the variance is easily obtainable. The

same holds true for the length of the boundaries. For the

differences along the boundary for different color components and

different directions, the direction of the differences is im ~.tant.

A convention based on the clockwise and counter-clockuise convention

of the regions and boundaries structure is used to decide whether to

] add or subtract properties of the tuo growing boundaries. It should

be noted also that in the current implementation we have a very rich

representation of the structure. We do not make any attempt to

compact the data. The reason is that this is an experimental system

lihere we wanted to have maximum convenience of access to information

nhen needed. Thus the finer details of compacting data were

completely ignored. A substantial saving in compute time and storage
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requirement is achievable by compact approximation to properties and

description of regions and boundaries instead of keeping them in the

raw form that we are using currently.

If in addition to features derived from integrations, we have other

broper ties, then updating of properties will become more complicated.

For example such properties are shape descriptors which require |

keeping extreme points in various directions (extrema of a linear

| functional along the boundary path as function of the length) and

cross section length.

2.7 FINAL COMMENTS ON THE NON SEMANTIC REGION GROWER

We can compare this part of our system With other region analysis :

algorithns., First, this algorithn, which uses sampling over the

arid, is substantially more efficient than other algorithms that use

exhaustive search on the whole picture and treat all grid points,

Our approach in a sense allows us to concentrate our attention very

rapidly on the important portions of picture, the boundaries between

regions. Secondly we do not collapse regions in random order as long

as the boundary is weaker than some a given priori threshold. We
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| first merge the globally weakest boundary on the whole picture. This

m~kes the region grower much more reliable (see illustration A ), and

enables us to use more sophisticated stopping criteria.

The major gain resulting from ordering the merges is that doubtful

| merges will occur after obvious merges. The result is very often that |
| a long boundary that has a local weak part will not be destroyed,

since often by performing more obvious merges, the boundary will grou

to its full length and then the strength computed by the average

differences will be high. A stopping criterion which is more general

and uses state evaluation can be applied to stop and back up to an

optimal state. The optimality can be determined using general

criteria on the types of regions and their anticipated inter-

relations or complexity.

It is possible to keep with each region a binary tree which will

trace how a region was generated (the pairs of regions whose merge

generated that region). Such a tree can be used further by higher

level processing, eitiver to get finer resolution on parts of the

regions or to decrease the number of regions by reunification. ;

Some of the simple region growing heuristics used in the past have

aross difficulties. Consider the following simnle example. Assume
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that ue grou regions by melting all boundaries with a value less than |

some threshold independent of order. Thie is usually done by

starting with a point and trying to grow around it the region of all

points which satisfy the following property: there is a path of |

adjacent points with property differences less than some given

threshold connecting them to the first point. Often the threshold is

not an effective criterion as shown in the following example:

11106086

2228808

3330688

Here we consider a 6x3 grid where the distance between nodes is just

the absolute difference between the values in the grid points. 1f we |

give a threshold of less than l it will end with 4 regions but any |

threshold greater than 1 will result in a single region which will be |
the uhole grid with an external boundary, On the other hand, our |

technique use the weakest boundary firet, with the boundary

evaluation as in eq. 8. The result is that going down from 4

regions the areas with values 1, 2 and ? uw!ll always be merged first

before collapsing them into the 8 region ( remember that we also |
count the length of boundary relative to size of region in boundary ]

strength evaluation). This means that we have a more reliable

mechanism to overcome smooth changes where piecee of the boundary are |

Page 54 |



END 3.7

| obscured, a situation very common in real pictures where shading

causes loss of some pieces of edges. |

|
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| SECTION 4 |

WORLD MODEL

4.1 THE STATISTICAL PROBLEM DEFINITION

The world model is statistical in nature, and in order to define it

more rigorously we need to define statistically the problem that we

face. In abstract terms we have A(i) » the possible meanings of
i=],

a grid point, uhere A(i) is the name of the object in the real world

for which this grid point is part of the image. Assume that we have a |
-» ->

grid of x(i,j) points, where x(i,j) is the feature vector
i=1,N, j=1,M

of that point ( in our case x,y coordinate and r.g,b of the three

measured color components). An interpretation of the scene will be ;

an assignment of some A(i) to each point, that is, identifying image

points with objects. OQur task is to find a good assignment. We will

adopt the maximum likelihood principle. That is, we want an

assignment

I: NxM = 2
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(Where 1(i,j) is one of the A(k) which is assumed to be the
kel, L |

-»

meaning of the (i, j)-th point which has feature vector x(i,j)}), such

i that the total joint probability of

->)

P (x(i,;) )
I i=l,N j=l,M

is maximized over ail possible I.

Unfor tunately this probability measure in that space is extremely

hard to approximate, and even if We had it in terms of this raw

assignment function, finding the optimal assignment would require a

horrendous amount of search. We are interested in image domaine

uhere there is a variety of changes between images. It may be easy

to compute some probauilities like

-d

P (x)

Ak) ;

f =>

that is, the probability that the point has property x if it is of |

meaning A(i)., However it is extremely difficult to extend this to

the joint probability of all features of points in a scene, since |
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| there is a high degree of dependence between properties and meaning
of different points. Our attempt is to reduce the dimensionality of

the possible assignment by grouping points into domains (regions) |

where ue constrain all points in the domain to be of the same

meaning. By this reduction we gain two things: first, the number of |

possible choices is reduced significantly, and secondly we claim that :

| it is much easier to express the structure (and hence to approximate
the joint probability function) in terms of the domains and their

properties. The problem is then transformed into the problem of

segmenting the global scene into regions so that all points in a |

single region will be of the same meaning,and trying to find maximal

segments. That is, we do not want to be left With two adjacent

domains of the same meaning. In the initialization process, which

was described in the previous sections, ue assumed that adjacent

points that have about the same local features are of the same

meaning independent of what the meaning is. The clustering process

Has carried out using this assumption to reduce the problem. However

to play safe we had to use a very conservative criterion for

) similarity which left us with about 188 regions and more reduction is )
desirable,
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4.2 THE BASIC ASSUMPTION

In this section we try to represent a probabilistic model with the

following claims: First, it is a good approximation to the real

probabilistic structure for many picture domains. Secondly, it may be |
used effectively in reducing the problem by allowing reliable 3

clustering which is far more advanced than the one based directly on

the feature vectors. For region analysis, we define the utility to
be:

Plalobal_interpretation | context,values of measurements) |
|

This expression actually stands for

- =)

Pix(i, j) ) x P (1) / P ( (x(i, j)) )
l i=]N jal,M a priori a priori i=]1,N, jel ,M

where x(i,j) are all the measurements in all points and 1(i,j) is the

meaning assigned to point (i,j), which will be its interpretation.

The context here means the underlying probability space of the

picture domain, which ue collect experimentally (see section 7 on

learning). The probability space is defined for each problem domain

by the variations in the scenes that are in that problem domain. We |
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will keep the conditionality on context to remind the reader of the |

special probability space which is problem dependent, and perhaps

also variable. lle should also note that our discussion is immediately

extendable to more complex utility functions than the |inear utility

hich is identical in this case to the maximum |ikelihood principle. |

An interpretation divides the image into regions and attaches a |

meaning to each region. One choice of the overall interpretation :
evaluation Would be attained by considering each region |

independently. 1f for a given partition of the image into regions ue
+ |.

have R(i) regions, then the interpretation assigns label INT(i) |i=1,N t
|

to region R(i). The values of INT(i) will be sky, grass, road, etc., |
depending on the context and goals. If we assume independence |
between region features, ue want to maximize the expression

4 |

JX PU RG) is INT(i) | coniext,values of measurements on R(i) ]
H(i)

over all partitions of the image into regions and assignments of

labels to regions. This is quite conventional so far and is, in

fact, too simple for our purposes. We want to account for two

additional considerations. First we must use the mcdel to get a good

segmentation of the image into regions. For example, we might want
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to merge green, yellow and brown patches to create the whole area

that we call grass. Secondly we want to use additional semantic

constraints (like the grass is belou the sky) to influence the total :

probability that an analysis of the scene is correct. |

| In an attempt to enrich the semantic structure to support more of the

problem knowledge and to provide for 2 control mechanism on the |

region growing algorithm, the semantic structure was allowed to have

also a "first order structure". In addition to the properties of

each individual region, we have, for each pair of adjacent regions of

some interpretation, expected relative properties and some expected

| features of their common boundary line. For instance, if we have two |
adjacent regions, one of which is named "sky" and the other "hill",

then ue expect that the sky is above the hill, is a brighter blue

than the hills, and that the boundary is usually a more or less |

horizontal, smooth line. The relative properties are usually more |

: significant than the absolute properties since they are less

censitive to variation between pictures, This semantic mode! is too

limited to describe all that is known of a scene, but many classes of 1

scenes can be segmented properly with first order methods. The model |

1s limited to first order to avoid the combinatorial explosion in the

number of terms that have to he considered.
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Remember that we want to get a partition of the input and

interpretation for the regions (segments) and boundaries so as to |
maximize the |ikelihood of having the right interpretation. Let R(i) i

he the i-th region, B(i,j) the boundary between region R{i) and R(j)

(if it exists) and the label of R(i) be INT(i), Then with our first

order assumption, the expression that we want to maximize is: :

eq. | |
P[ global interpretation | values of measurements ] = |

TT ro R(i) is INT(i) | values of measurements on R(i) ] |
R(i) |

| x TT P{B(i,j) is between INT(i) and INT(j)
B(i,))

B(i,j)'s measurements)

I

The use of eq. 1 represents more than just our belief that

properties of individual regions and houndaries will suffice for our

semantics. |t also entails an assumption that the probability can be

factored into the product above. This amounts to assuming that the

probabilities of interpretations of each region (boundary) are

dependent on the local properties of the individual region (boundary) |

| and are independent of ail other measurements. The interpretations of

regions and boundaries are tied only by the consistency constraint, {
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| that is, a boundary B!i,j}] which is the boundary between R(i) and
| R(j) must be evaluated as a boundary between INT(i) and INT(j), where
| R(i) is labeled INT(i) and R(j) is labeled INT(j}. For example, if

INT(i) is "sky" and INT(j) is "hill", the evaluation of the common

boundary of Ri) and R(j} will include factors involving the expected

direction, smoothness, etc. of a boundary betwen sky and hill, These

: tactors are assumed to be independent of the particular color etc. of

the sky and hill, This assumption that we can find local properties |

| for regions that will be independent of both the relative properties
of the regions and the boundaries® properties is essential in mak ing

our approach feasible. Assuming independence, we do not need to

consider all cross combinations of the two classes of features. For

! instance if we have sky that may be cloudy or bright then we will use

boundary properties of the sky with the hill which are independent of

the particular type of sky. However, if such properties are |

insufficient to classify the sky boundaries, we will have to use two

separate objects cloudy sky and bright sky each as separate possible |

interpretations. If the independence assumption seems to be

unreasonable, consider the ol lowing argument:
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. Pq |

P [ interpretation | values of meacurement,context ) =

Pl values of measurements | interpretation, context)

#P (interpretation a priori | context) ]

/P (values of measurements | context)

| Now

PI values of measurements on R{i} | R(i} is INT(i}, context )] |

ancl

Pl values of measurements on B(i,j} | R{i} is INT(i) and R(j) is

INT(j), context )

are plausibly considered independent of each other. A similar

argument can be used for the factorization of the other two terms in

the expression on the right of eq 1.
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4.2 THE TASK OF THE WORLD MODEL

For a given utility function (in our case the maximum |ikelihood eq.

1 } there are standard techniques in decision theory for finding the

max i mum utility. Unfortunately, the general techniques are too slow

and much of our effort has gone into developing algorithms for

efficiently computing an approximately optimal partition. The region

growing algorithm starts with many small regions, and on each

Iteration, merges two adjacent regions (regions With a common

boundary) . The two basic decisions are which pair of regions to

| nerge on each iteration and when to stop the algorithm. These two

decisions can be controlled directly by the |imited probabilistic |

semantic world model that we have. In general, on each iteration of |

the ueakest-boundary-first region growing, the pair of regions whose

common boundary is the ueakest in the current image partition will be

merged. Hence the control of the region growing algorithm is by

evaluation of the boundary strength. We will show how our semantic

representation can be used directly to compute the boundary strength. |
Alternatively, we can grow regions based directly on assignment |

procedures [see Subsection 6.2].

The second task of the semantics is to produce the stopping

criterion. In our case we want to maximize:
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Pl interpretation | measurement values. context J}. ]

Ideal ly, the optimal partition will be the one that has the

| interpretation which maximizes this likelihood estimate over al] 5
| partitions and all possible interpretations of partitions. In order |

to have an effective nay to determine that probability, we need a

relatively fast way to compute or estimate for 2a given partition the

value of its optimal interpretation. In the next section, we will

describe relatively fast methods for computing upper and lower bounds

on the optimal value of the probability of a given partition. These

bounds will be used as follows: The algorithm will collapse regions,

and generate a sequence of image partitions. For each partition

generated, the bounds on the possible value of the best

interpretation will be evaluated, Then, when the region collapsing J
has been carried too far (as observed by a strong decline of the :

possible state value) the system will back-up to the most promising

partitions observed while growing the regions (as indicated by the

loner and upper bounds estimates of the quality of the partition

observed). Next ue uill search for the best interpretation for the |

partitions observed whose bounds were high enough to make it possible ]
that they are the best partitions observed. The current algorithm

will simply choose the Jest of these, but more sophisticated
procedures can he used if necessary.
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[t turned out that maximizing the utility (eq. 1} for a gl ven

partition frequently yields the best global interpretation. However

to compare different partitions we need some modifications that are |

not available in our current implementation. The major modification

required is teaching the system about properties of false nerges,

that is, what are the properties of a region resulting from merging

tio regions that should not be merged. In the current implementation |

the system is taught on false boundaries (that is, boundaries between

sub-regions of the same terminal region like a boundary between part

of a hill and anotrer part of a hill}. When evaluating the quality |

of a partition ue should not allow any region ta be interpreted as a |

merge of two regions of different meaning , and no boundary should be

interpreted as a boundary betueen tio regions of the same meaning.

Currently we use a different approach. We allow false boundaries in

the interpretation. 1f any of the bourdaries is interpreted as false

for the best interpretation found for the current structure, then we |

continue merging. Otherwise ue stop. The assignment procedure used

is tescribed in Subsection 6.1.

| 4.4 EXTENSIONS OF MODEL. TO 3-0 |
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The simplified structure of first order relations between objects is

| just an approxin2'ion of the real world. It is clear that more |

involved relations between regions and boundaries hold. One group of |

such relations is the relation whose terms are the regions and

boundaries meeting at a vertex. These relations were found to be key :

relations in analyzing plane surfaced objects [ WAL GG )J, mainly, as

constraints on the 3-d structure of the surfaces and boundaries on

that vertex. [f 3-d structure analysis were added to the “mode | then

| the vertices would be essential. In this case we would have three

classes of objects: regions, boundaries between regions, and vertices
(intersections of several boundary lines). For each class of objects |

each object can take one of a few possible meanings which will be its |

interpretation.

The interpretation for a region Will be the name of the 3-d surface

for uhich the region is part of the image. (We say part to provide |

for partial occlusions or for the early stages of the region growing

algorithm, uhes the regions are only portions of what they should

be }. Some such interpretations are: hill, road, horizontal face of

| cube, or the x-ray image of a rib, In addition to naming regions,
some assumption about their 3-d structure Will be made (like |

orientation, distance, etc.}.
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The houndaries will be named as boundaries between tuo regions of |

some meaning e,g the boundary between sky and hill, In addition, |
each boundary will have its oun interpretation, which is the 3-d |

structure associated with it. If a boundary is the common boundary of

regions X and Y then it may happen tha‘:

1} X occludes Y.

2) Y occludes X.

| 3) X and Y create a convex corner.

4) X and Y create a concave corner.

(concave or convex relative to the included

solid volume ) |

5) X and Y surfaces are smoothly continuous. |

|

(There may be other more complex 3-d structures which we will ignore 1
currently).

Vertices are the intersections of several ULoundary lines. The

ver tices were found to he extremely important in processing scenes of

planar surface objects, Their main use was to constrain the 5

geometrical structure associated with the boundaries. In scenes of

curved surface objects their role may diminish, but it seems that |
they are going to be an important tool. In our current |
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interpretation they are not used, mainly because we are not trying to ]

solve explicitly for the 3-d structure. An important extension of

the current system would cope with the 3-d structure achievable |

through the use of the vertex and boundary 3-d structure.

In addition to being potentially useful in 3-d analysis, vertex r if

properties may turn out to be useful for adding edge following

information to the region grower. That is, we can check to what |

extent the regions and boundaries meeting at the vertex centinue each

| other. Hence vertex properties may aid in boundary strength
evaluation and the interpretation procedures.

4.5 EXTENSION OF MOOEL TO INCLUDE GLOBAL CONTEXT PARAMETERS

One major deficiency of our system is the lack of global parameters |

hich are changeable as information is collected. One such parameter i

could he the domain from which the current image is drawn. That is ]

| having the system also define the class of pictures from which the |

current image was draun. For instance interpreting a region as a

telephone or part of telephone will increase the probability that we |

have an indoor scene, while interpreting a region as a tree (or part
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of tree) increases the probability that the observed scene Is an out-

| door image. It is likely that such capabilities can be added and tied
easily to the tree search for optimal assignment as additional

variables that are updated on each assignment of meaning to a region

(see Subsection 6.1). Other parameters of this nature are ;

orientation and position of the camera which observed the image.

These parameters may scale all the features to normalize to standard

observer orientation, In general uhen these parameters are used the |
context parameters will ve additional variables that we will want to

use in optimizing.

4.6 EXTENDED FIRST ORDER |

lhe relations betueen regions that the current system observes are

relations between pairs of adjacent regions. We may extend this to‘

relations between any pair of regions. All the current structure and

algorithms will remain valid with minor modification, Lut the

combinatorics will grow prohibitively. If before we had, for N |
2

regions, approximat:ty 4xN relations, now we wjl| have N relations

to be co _idered in the various algorithms, There are Hays to reduce |

the number of relations by restricting the classes of relations of
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non adjacent regions. For instance, we might allow only relations

betwezn non-adjacent regions of specific meaning or of special |

| relative properties.
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5.0

SLCTION &

WEAKEST -BOUNDARY-FIRST REGION GROWER BASED ON SEMANTICS

S.1 SEMANTICS BOUNDARY STRENGTH EVALUATION

le return here to the description of the system. The initialization

levels were used to reduce the problem to about 180 regions. Our

next step is to try to evaluate the boundary strength based on the

mor ld model, This part of the algorithm first computes additional

properties (like shape) of the regions and bou-daries resulting from

the initialization. It then assigns probabilities to the alternative

interpretations of the regions, i.e. computes

P{ R(i) is X | values of measurement on R(i) ).

The boundary strength may be evaluated by tuo related methods: 1) The

probability that the boundary is a real boundary (a boundary between

different objects in our semantic world model), and 2) the change in

the value (probability of correctness) of the interpretation as a

result of eliminating the boundary. We will describe here the first
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| SEMANTICS BOUNDARY STRENGTH EVALUATION H.1

of these which is the one currently used for the weakest boundary

| melted first region grower. The second method has some advantages |

and will he discussed below, |

We approximate the probability of the boundary to be real as follows. ]

The estimate of the probability that the boundary B(i,j) which is {

hetueen RGi) and R(j) should not be there (false boundary), is :

re |
P Be oy
false  Acint

Pl B(i,;} is a boundary between two subregions of XK |

measurement values on G(i,j) 1

x PL R(1) is X | measurement values on R{(i) )

x #[ R(j) is X | measurement values on R(j) 1.
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SEMANTICS BOUNDARY STRENGTH EVALUATION 5.1

The estimate of the probability that boundary B(i,)) is real is:

J—-4
real X,Y XaY

P{ B(i,j) is a boundary betueen X and Y | |

measurement values on B(i,j) 1]

x Pl R(i)is X | measurement values on R{i) ]

x PL R(j) is Y | measurements’ values on R(j) 1].

| This is the Bayesian probability (which is in our case the utility)

that, given the properties of the boundary and two regions defining

it, the boundary is a boundary between sub-parts of images of

) chi f ferent objects.

The strength of the boundary is then computed to be

Preal

Preal+Pfalse

( Preal+Pfalse may be different from 1 since the independency

assumption is only approximation of the reality ). |
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SEMANTIC STOPPING CRITERIA 5.2 ,

S.2 SEMANTIC STOPPING CRITERIA

We may apply three possible stopping criteria. The simplest one is

the threshold stopping criterion, that is once the strength of the

rneakest boundary in the segmentation is above a certain threshold we

quit merging. The second stopping criterion is to look for a good

interpretation for the current segmentation and if there is no |

boundary which is interpreted as a false boundary then quit merging,

othernuise continue merging (see Subsection 6.1 for the assignment

algorithm ). Alternatively we can use the state evaluation for

backup and hence avoid using a stopping criterion. That is, back up :

to the segmentation with the highest state value observed while the }

region grower is working. The current interpretation provides for J
utilizing the first tuo options, or a combination of the two. ;

i

!
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6.0

SECTION 6

STATE EVALUATION FOR A GIVEN IMAGE SEGMENTATION :
]

State evaluation is required for effectively recognizing the most

promising state of image segmentation. Evaluating an image partition

| will also involve a search for the best interpretation for all
regions simultaneously, and hence will effectively provide a wuay for

really understanding the scene. Currently, We use the state

| evaluation only as a procedure to assign meaning to all regions (and

| hence houndaries). The assignment procedure is used to verify that
|

the system really understands the segmented image, and to provide for

a stopping criterion for the region grower. The difference in state

value could also be used in region merging as criterion for melting

houndaries, though it is not being used this Way in the current j

implementation. i

1

|

hol INTERPRETATION OF THE SCENE - LOWER BOUND EVALUATION {

A loner bound on the value of an image partition is computed by

actually finding a good global interpretation using a simple fast 1!

i
]
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meaning assignment doaoriton, Beverly, ue take the region of highest

confidence interpretation and assign to it its most jmrobable

mterpretation, Next, using the boundary features of the newly

assigned region, the probabilities of different interpretations of

Adjacent regions of the newly interpreted region is updated. Then

; the region of highest confidence from all un-interpreted regions is

assigned, etc. This is essentially a depth first search of the + ee |

of region interpretations and yields a value for the partition which

is the desired lower bound. Extending this search to a full tree

search would yield the optimal interpretation. More details on the :

| sequential assignment process are given below.

Recall that we want to approximate the maximum possible value of the

expression iE

eq 1 :

v8

/ PL RG) 1s INT(i) | values of measurements on R(i) ] x
R(i)

JL el boundary Blk,|) between R(k) and R(!) is a boundary
| Blk,1)

between INT(k) and INT(I) | Bik,I) features)
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over all possible values of INT(,) for a given picture partition.

The assignment algorithm that we use to estimate the best possible

| } assignment of [NT(i) for all R(i) for a given image partition is as

| fol lous:

( 1 1 Compute for each region the ratio (based just on local |

measurements of the region) between the most likely

| interpretation and the next most likely interpretation. This ;

ratio will be called the CONFI (REG). Let x1 be such that

pl Ri) is x1 | vatues of measurements on R(i)

is maximized for R and let x2 be such that

\ P{ R(i) is x2 | values of measurements on R(i) )

is the next highest. Then

confi(R{i))=P(R{i) is x measurementsof Ri) )
P[{ R(i) is x2 | measurements of R(i)

( .. }] Sort the regions by their confidence ratio.

 {
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INTERPRETATION 6.1

L 3 1 Assign the region with highest confidence (the one with highest

| ratio) its most likely interpretation.

( 4] Update probabilities for various interpretations of regions

that are not currently assigned meaning, assuming that the iast

assignment is true. Let the region assigned most recently be |

R(l1) and its interpretation be INT(l), Now if R(i) has

boundary B(1,i) with R(1), then for any interpretation x of

R{i) in evaluating eq 1 above, there will be a term of the form

Pl Rti) is x | values of measurement on R(i) ) }

from the first product and one of the form

PL B(L,i) is boundary betueen INT(1) and x | B(l,i)'s featuras ]

from the second product. Since both terms have only one

variable x now, a better approximation of the probability of

R(i) being x, assuming that R(l) is INT(l), is

Preul R(i) is x J = Poldl R(i) is x )x x

PL B(L,i) is a boundary between x and INT(i) |

B(l,i)’s features ] |
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Thus ue use the neu information to find upcated probabilities

for the different possible assignments for R(i}, by counting
the neunly interpreted region R(1).

We do that updating to all possible interpretations for all

adjacent regions of R(l).

[ 5) Compute the neu confidence ratio and sort the regions by the
new confidence ratios,

(6) If any region is still unassigned goto [ 3) else exit.

This process of assigning interpretations iteratively provides a good

auesc About the possible best interpretation, but It does not

Guarantee the totdl maximization of our product. MWe can extend the

corrent algorithm into a full tree search ( undoing some assignments

md trying alternative ones J to get the best interpretation, This

all he a depth firet search in the tree of all possible assignments.

Each node in the tree will stand ‘or the assignment of an

Interpretation to a region. In all sons of such a node the assignment

done in that node will be assumed to be true. The terminal nodes will

stand for a totally interpreted scene. For efficiency purposes we

Lan use various pruning and tree search techniques [ NILSSON ch 3)
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to reduce the number of terminal nodes needed to he oho ved te

secure optimality, Our current algorithm is the portion ot depth

first tree search of the assignment tree up to the point where we get

to the first terminal node (first global assignment). |

One <chould also note that the same sequential assignment and ,

extension into tree search can be applied to the extended first order

vor ld model described, uhere we allow relatior5 between any two

regions (not rccessarily adjacent) if we continue to assume |

independence. The only difference is that ‘he probabilities and

confidence ratio of not only the adjacent regions of the newly

interpreted region, but of all related regions, will have to be

updated,

Working on extended models, uhere relations involving more then two

variable assignments exist, Will cause only minor changes. Whenever a

| region is interpreted, all the relations in which it appears will be

reduced by one degree. That is, an n-ary relation will become an n-1

-ary relation, If there is an n-1 -ary relation already existing

With the same variables, the two will be united (by multiplication).

Except for that difference, everything will stay the same,
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| REGION GROWING BY ASSIGMMENT 6.2
5.2 REGION GROWING BASED ON ASSIGNMENT

We use the assignment procedure described in the last section as a

region grower hy taking all pairs of adjacent regions that were

Assi ned the same meaning and merging them. To avoid false merging,

ne consider all regions which were assigned meaning after the first

assignment of a meaning to a region With low confidence level

meaningless and hence not mergeable into other regions. This

approach may be extended by adding into the meaning assignment
algorithm another step [ 3.5 ).

( 3.5) If any adjacent region of the newly interpreted region is

already assigned a meaning identical with the meaning assigned

to the neuly interpreted region, then merge the tuo together, :

Undo the effect of the two small regions on their neighbors

interpretations. From this point on, the unified region will

be considered in updating probabilities of other, not yet

interpreted regions. |

We can use the two extentions merging while assigning meaning, and

full depth first tree search) together. This Will generate a very

reliable meaning assignment concurrent with a region growing

procedure which has backup capabilities. It will, however, be
relatively slow.
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6.3 UPPER BOUND FOR STATE VALUE

| The upper bound could be computed by relaxing the consistency

constraint. This condition means that a boundary between two regions

of kncun interpretation has to be counted in as a boundary between :
those ‘Wo interpretations. We could relax this condition by breaking |

the product (eq.l) into local sub-producis and finding the best local

interpretation for the terms involved in this subproduct. We would

take the best possible value for each sub-product separately, and

multiply them, with proper scaling of common terms, This would

result tn an upper bound on the value of the best global |

interpretation. For example such relaxation is to consider all

regions and boundaries independently and to assign for each the best |

possible interpretation considering only its our. properties. The

product of all these probabilities is an upper bound on the value of

eq 1. It is this sort of estimate which could be used to approximate

the single step improvement in the second method of boundary

evaluation mentioned ahove. An exact computation of the change in

interpretation value would he too time consuming. We do not yet know

ihe ther this boundary stirength computation will be better than the

one described in subsection b.1.

The local upper bound estimation may be used also to get more

t
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UPPER BOUND 6.3

reliable evaluation of the meaning of a region, by considering also

ite neighbors in evaluating the probabilities of different

interpretations for that region. This is analogous to various graph

isomorphism algorithms, uhich use deeper structure around a node for

finer node type classification.

I
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SECTION 7

THE PROBABILITY SYSTEM IMPLEMENTATION

7.1 GENERAL CONSIDERATION

Up to nou we were dealing uith our probabilities in abstract terms :

without worrying about how to get these probabilities, or which

mexsurements (features) to consider. This problem is actually one

that appears generally in pattern recognition problems and decision

analysis. The general problem is to try to develop a classification

cystem for the objects which will be able to indicate often and with

high probability the real meaning of the object. This section

describes the structure of the probability model implementation in

gencral terms. The next section describes the specific measurements |

applied to our two classes of objects: regions and boundaries. :

The thing that makes our case somewhal special is the fact that the |

probabilities are dependent upon themselves. In the region grower

algorithms the decision as to which pair of regions to merge is based :

an the probabilietic world model. We are working With probabilities |
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| GENERAL CONSIDERATION 7.1
of events produced by the algorithm (remember that

pl interpretation | measurement J means the probability that an

vhject with those measurements will be produced by the region grower

Maorithm as part of an object of that interpretation). For that

| reason We should be careful about generating “steady state"

probabiiities. In practice the recursive effect was ignored with the

| assumption that the model Will be stabilized after a few learning
| cycles, However, this effect should be modeled theoreticallu to see

the effect of the recursive relation. |
Another difficulty is the effect of the state of the algorithm. There

are good reasons to assume that the probabilities of occurrences of

| events depend on the state of the algorithm. In the early stages of
the algorithm there will be quite a feu small regions which are

portions of the regions With which we want to terminate. In an |

Advanced state of the algorithm most of the regions will be bigger

and near the wuhole terminating region. For this reason it is

desirable to break the model into sub-mocdels. each of them applied in

different stages of the algorithm. An indicator for the state of the 1]

algorithe 1s the number of regions. In our practical implementation

the process was broken into only two phases: the initialization,

where no attempt to assign meaning was done, and the second portion |
| which exploited the world model. In the initialization we used only |
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a uniformly applied procedure for boundary strength evaluation

[section 3). In the second portion, the probability model is used,

| and all the probabilities are counted oniy over that portion of the

region grower.

The system has to provide for experimental collecting of the

: probabilities. We need to coiiect the probabilities of measurements

: exper imental ty. lt turned out that in most cases we did not have a

good a priori idea of the distribution of the measurements and the

program hau to learn them experimentally. Apparentiy, in most cases |
our conscious knowledge of the visual world provides only a very

rough idea of the distribution of measurements.

7.2 THE PROBABILITY APPROXIMATION TECHNIQUE

At present we use a simple form of learning in which tha Cchputer

only helps in updating the probability estimates inside a given

classification scheme. This is a version of the traditional non-

parametric adjustment of the probability density function. In the

future we intend to use a more advanced learning phase in which the :

program will keep a compiete historical list of objects observed in
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the past along with their real interpretations, and will use it to

improve the existing classification scheme. In both cases the
: : |

learning will be supervised (since the intended meaning of the

training objects will be given manually).

The probabilistic model that we have is as follows: we have

ali) i:1,N possible parameters (meaning of the object}. Picking an

ohiect randomly, it will be of type ali) with a priori probability

Pp (i). We are given a set X(j) j=1,M of random variables
a priori

-)

which are our measurements, We try to estimate P ( X) (that is
afi)

the probability that an object of type ali) will have properties X )

-)

Ue do that by estimating P  [S) where S is a subset of X space (the
ali)

features space). Once these tuo terms are available (approximated)

ue can compute the Bayesian probability (likelihood) that ar unknown

object uhose measurements fell into S is drawn from afi) as:

P (S) xP (i)

| cri) a priori

Z__P ISI ()
j oflj) a priori
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We use sequential classification estimates to generate a good cell

structure. Our task is to estimate the joint probability of the

random variables in this space. This is done by breaking the random

| variable space into cells S(i) (not necessarily Cartesian) and

assuming that the densities {of each of the probability density

| functinns) are uniform on the subcell. Using training runs, we count

the number of objects of each meaning whose measurements fall into a |

cell. This gives us an effective way of estimating the Bayesian

probability (likelihood) that an object is of some meaning if its

measurements fell into a cell. This estimate is the standard

Bauesian probability estimate and in our case is

plobject is ali) | measurements fall into the cell)s=

#l_ of objectsof meaning ali) uh n rements fell i e |

total # of objects observed whose measurements fe!l into that cell |

Our task is to break the random variable space (that is the space of

all possible combinations of measurements) into cells that will

enable us to get an effective classification. That is, given that the

values of the measurements of an object fall into some cell, we

frequently want to have a high probability estimate for the real
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| TECHNIQUE 7:2

meaning of the object. Given such a fixed partition of the random

: variable space into cells, learning the probabilities of different

| interpretations of objects whose measurement values fall into a cell

| till he done automatically. This is done by simply keeping, for each

cell and for each possibie interpretation, the count of how many

times in the past the value of the measurements of objects of that |

interpretation fell into this cell, The real meaning of the objects

is indicated manually (supervised learning), and the learning is

applied for both regions and boundaries.

7.3 THE CLASSIFICATION TREE

This brings us to the classification tree structure which tries to

gencrate a cell structure with as few cells as possible while

attaining a good classification among the possible interpretations.

It 1s critical to keep the number of cells down. Otherwise the whole

approach becomes impractical. For this purpose we utilize an

augmented decision tree whose leaves correspond to the cells into

which we broke the space of all possible combinations of

measurements. This structure, which is a version of sequential :

classification, enables us to treat in a special way special sub- :

Page S1



TREE 7.3

spaces and hence to apply very special-purpose classirying procedures

uhen necessary. The option to use an augmented tree allows us also to

| utilize, if known, the independency of some measurements and thus

reduce the number of terminal nodes.

The classification tree is quite standard. It corresponds to

sequential application of measurements. In each call the current

measurement called depends on the values returned by the previous

measurement. This way Wwe may apply very specialized measurements if

necessary to classify objects, and still keep the classification

inexpensive since the special measurements will be used only when

needed, as indicated by results of already evaluated measurements.

By calling only on very effective features the number of terminal

nodes is minimized, and this way we still have an effective way of j

computing the probabilities (keeping the counts for each terminal ;

nocle) . |

The tree siructure is as follows. There are three types of nodes:

terminal nodes, parallel branch nodes and function call nodes. A

terminal node stands for a subspace of the random variable space.

With each terminal node we keep counters of how many times in the

past the measurements of objects of some interpretation fell into |

this subspace, A function cal! has an integer function associated
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with it. This function can return a number from 1 ton where n is 1

the number of sons of that node. This function is a function of the

i measurements of the object. Each of the sons corresponds to part of |
the subspace associated with tne father node which includes all

| points of the father's subspace for which the function returns that

value. That is, if a function has n values we break the subspace

ascociated with the node into n subspaces, one for each possible

answer. Obviously the root of the tree has the whole space

ascociated with it (all possible combinations of measurements). We :

allow also for branch nodes where we allow several independent

branches to propagate from then ov in parallel, and the value

propagated from that node back up Will be the product of each of the |

sons multiplied, and scaled to one (see below), The parallel branch

nodes were allowed in order to reduce the number of terminal nodes |
when it is known that some features may be treated independently. For

instance, we may want to treat color ‘eatures independently from

shape features of a region. Suppose that the color feature space Was

broken into n cells (equivalent to having n terminal nodes for :

classification based only on color), and suppose that the shape

features give us m terminals. Then, treating them without assuming

independence, if ue consider all possible combinations, there will be |
nm terminals, Treating them assuming independence will produce n+m

terminal nodes. |
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TREE 7:3

7.4 PROBABILITY COMPUTATION

Computing the probability vector (the probability for each

interpretation) for a given object for a fixed tree structure is done

hy a recursive procedure described below. In the description the

value returned is always a vector of all the probabilities of each

interpretation for that object. All these values will be non-

negative. By scaling such a vector to one we mean that we sum all

those non-negative numbers and divide each of the numbers by the sum

«0 the rew sum will be one. The product (division) of two such

vectors means here the pointuise multiplication (division) of the |
elements of the vectors which results in 2 vector and not the scalar

-»

product. P is the vector which for each interpretation has
a priori !

the probability that an object picked at random will be of that

interpretation.

The probability vector returned is: :
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ansuer=i (top_node) xP
| a priori

scaled tc one.

| 4

| (P is the vector resulting from scaling to one the vector
| a priori

whose i-th element is the total # of objects of type i observed).

]

f (node)=

if node is a terminal then the returned vector is:

( count of occurences of obijl in that node

‘otal number of counts of objl

|

total number of counts of obj2

|

counts of occurences of objn in that node

| total number of counts of objn )
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| COMPUTATION 7.4

|

| scaled to one.

|
lf the node is a function call then

| f (node)=f (i-th son of node)

where:

| is the value returned for the current

object by function associated :

Wi th the node. :

lf the node is a parallel branch node then

f (node) = 2 f (son) scaled to one.
son :

7.5 LEARNING: PROBABILITY ADJUSTMENT

Keeping the counts of occurrences of each interpretation for each

| terminal node is done hy pointing at an object and indicating its

intended meaning (the meaning the user likes it to have). The program

then increments the count associated with this interpretation in all
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terminals into which the properties of the current object lead. We

may have several such because of parallel branch nodes where we have

one terminal for each parallel! branch. To ease the chore of naming :

regions (and hence boundaries) we developed an interactive graphic

system. The system displays one region at a time by drawing its

boundaries over the original image on a television monitor and asks

for its meaning. Once all regions are interpreted, there is an option

to have a training run in which the region grower makes use of what

it knows on the real meaning of regions in order to increment the

counts associated with the real meaning of the object every time an

object is observed, while growing the regions in all terminal nodes

into which the properties of the sbject lead (an object is either

region or houndary).

7.6 LEARNING: TREE GENERATION

At present, generating the tree and increasing its effectiveness are

tone interactively. The user may look at terminal nodes that cause

errors in the region grower (in the training runs, these errors are

detected automatically by the system), or at terminal nodes where the

classification is not reliable. The latter are terminal nodes where |
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there are relatively many occurrences of objects which are not of the }
meaning which is the most frequent meaning in that terminal cell.

| What the user can do in this case is to change the terminal node into

a non-terminal node, hence replace the cell associated with that node |
by finer sub-cells such that in each of the smaller cells the |

classification will be more reliable. h

In the future we intend to use an automatic system to generate the

classification tree. For an automatic generation of a sub-optimal
classification tree the system will keep a historical list which

contains objects observed in the past, their properties and their !

real meanings. Based on this history the system could try to order |
the application of measurements so as to get good and cheap |
classification, by creating as feu as possible cells (leaves), and |

still keeping the good classification probability high. It will be |
able to point out cells that are not sufficientiy discriminating so

that they may he worked on interactively (as it is now or |

automatically (mainly breaking each such cell into finer subcells |

such that, for each subcell the classification is more reliable). |

Techniques for organizing the classification tree so as to get near-

optimal sequential classification are described in [ SR]. In [ SR)

the tree generation is considered as a game With nature where the

score is a quality measure of the classification. Game (a-f) type

tree search is utilized in creating the decision tree.
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These types of learning are general to many pattern recognition and

sequential decision problems. A vast amount of research, both |
theoretical and experimental, has been done in this area. [FU] is |
a good description of the theory and [ DH ] is a good introduction to |g

the various applicable techniques. [ SR ] which was mentioned above |

is an interesting example of trying practical automatic generation of

a sub-optimal classification tree.

: 7.7 LEARNING: GENERATING NEW CLASS.~IERS

One additional phase of learning is generating the discriminating |

| procedure. This may be both setting thresholds for already available

| real-valued functions ( to get integer answers), and the generating 1B

of the functions themselves. There are some standard techniques for |
generating such functions, mainly various linear discrimination

procedures (see DH). It is not reasonable to assume though, that

this level will be automatic in the near future and it is likely that |
generation of discriminating functions will rely on human intuition.
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7.8 NEAREST NEIGHBOR CONSIOERATIONS |

It is interesting to compare our technique with the nearest neighbor

classification which is investigatad in various papers [ COV J. This

| principle is to take for a new unknoun occurrence of an object the

interpretation of the object observed in the past uhoee features are

| nearest to the features of the new object. There are tuo

deficiencies in this approach. First, only rarely is there an obvious |

metric on the space of values of measurements, and hence only rarely |
is it clear exactly hou to measure distance bstueen the feature |

| vectors of two objects. Secondly, it is very hard to search for the

nearest object observed in the past (unless ue are in one dimension)

since We have to compute the distance from all examples observed to

get the minimal distance. An effective way of reducing the search

time will zall for breaking the space into celis the way we do. That

is, locating first the cell into which the measurements of the new

object fall and then searching for the nearest one only among knoun

objects uhose measurements fall into that cell (and stored

associatively with that cell), ignoring objects which fall into other

cel ls. Thirdly, the answer returned Is just one possible |

interpretation and not a list of different possible interpretations

with various probabilities. Extending the nearest neighbor principle

to find the n- nearest objects and computing the probabilitiee of
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different interpretations based on them will make the computation

even less efficient because of search time and will force even more

reliance on space partitioning than the method we currently use.

It seems that when the historical list is added to our system to
|

allow automatic generation of the classification tree, then we will i

4 have associated with each cell the properties and meaning of objects

which fell into the cell, In this case it may be worthwhile to use

versions of nearest neighbor classification or some continuous

parameter probability adjustment procedures for each cell to improve

the classification,

!
| 5

Ww ;

+
4 A
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SECTION 8

|
RESULTS

| 8.1 PROBLEM DOMAINS

We applied our software system to two picture domains. The first

domain was road scenes as they may be seen while driving a car. The

second domain was left ventricular angiograms ( x-ray images of the :

left ventricle made visible by injection of a radio-opaque dye).

These angiograms are useful for various cardiologic applications

since they allow obeervation of myocardial movement. In the first |
domain the system was taught about existence and properties of

regions which are whole or parts of images of the following objects:

| sky, tree, road, car, shadow of cars and roadside vegetation. The
semantics used in the second domain described the heart interior,

chest cavity background and the dark frame border. Illustrations |

| given at the end of this section indicate the results of the

exper iments. All the pictures are taken from a computer graphic

terminal with gray level capabilities. There are six bits available

per image point. Five bits are used for displaying the original
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picture, and the high order bit is used for the overlay of the

| houndary |ines between regions.

| The library of integer value procedures currently available for |
genei‘ating the classification tree nodes for regions and boundaries

; is still quite limited. We have only crude estimates of the features

of regions ard boundaries, and there is still a long way to go before

a good description system is available. Our attempt was mainly to

| implement the iceas presented in this thesis on the A.l. laboratory |
harcduare-softuare system to prove the feasibility and effectiveness

of our approach. MWe consider the result a positive indication of the

feasibility of getting an automatic analysis of real world images by

compu ter,

bh

The properties which are currently available in the system are

described below. Before getting into their detailed description |

would like to make the following general comment. It turned out that

individual region properties are very much special purpose mainly

hecause of the weakness of the shape descriptor. Variations between |
pictures, and the necessity of classifying sub-regions of the

terminal regions (as produced by the region growing algorithms) are

mainly responsible for the weakness of any classification based on

region properties alone. The weakness of classification based solely
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on regions features is very significant near initialization when

| almost only local (point-wise! properties (light intensity color and

position) are available, However when we consider boundaries and |
; relative properties of regions the description becomes much more |

general and less sensitive to variations between pictures.

8.2 REGION PROPERTIES

The region properties available are:

[ 1) The size, computed as size of region relative to the whole |

picture area ( five degrees (ranges) logarithmically).

[ 2) Vertical position of center of gravity of the region in the

picture frame ( five degrees ).

[ 3) Horizontal position of center of gravity of the region in |

picture frame ( five degrees ). |

[ 4] Does the region touch top of picture frame? (yes/no)

[ 5S) Does the region touch bottom of picture frams? (yes/no).
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| [ 6] Length of boundary with bottom of picture ( four degrees).

[ 7] Average light intensity of the region relative to the histogram

of the lignt intensity in the entire image (four degrees).

[ 8 ) Color saturation (4 degrees).

| [ 3] Color hue (eight degrees)

; [ 18 ) Does the region touch the frame of the picture on the side?
(yes/ncl.,

[ 11 ] Ratio of height to width of the minimal upright rectangle

which bounds the region. This rectangle has vertical and

horizontal sides.

[ 12] Position of center of gravity of the region relative to the

Center of the minimal upright rectangle which bounds the

region.
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8.3 BOUNDARY FEATURES

The boundary properties available are: |

(1) Light intensity differences between the two regions defining

the boundaries (six degrees).

[ 2 } Shape of boundary based on breaking into four sets the pairs of

sample points which define the boundary. The four clagses of

pairs of pcints are defined by the position of the sample

point from the reference region relative to the other sample

point in the pair it may be below, above, left or right. For

each of the four sets we compute whether it is null, and if it

is not the average location of the points in the cet. See

Figure 8.1 for the twenty one basic boundary types which this

procedure recognizes. (21 degrees).

[ 3] Relative size of the two regions (6 degrees).

( 4] Boundary length relative to the length of the whole image

perimeter ( 5 degrees).

( 5] Relative position of the two minimal upright rectangles that

1
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bound the tuo regions defining the boundaries [ 4 functions

with 5 possible classes for each ).

| [ 6 ) Location of center of gravity of boundary in picture frame ( 5
|
| horizontal degrees and 5 vertical ).

[ 7) Some quantitative measurements on the relative length of the

boundary in the four directions defined in [ 2].

[ 8 ) Color differences between the tuo regions ( 4 functions with 3
/

degrees each ).

4
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f

8.4 RESULTS |

In the first problem domain, the road scenes, the interpretation for

regions can be road, tree, sky, roadside vegetation, car and shadow |

of car, The possible boundary interpretations are all the 6x6

combinations possible (remember that boundary propertis are |

asummetric with respect to the reference region). The learning

! (collecting the probabilities and interactively refining and

extending the classification tree) was done by training the system on ;

five pictures and then the collected probability estimates were -
applied to another five pictures and worked successfully. (See :

| illust: ations below for some sample runs). The non-semantic weakest-

boundary-first region grouer threshold was set to .13 of the maximum

Possible boundary strength, or 188 regions, whichever came first,

The semantic weakest-boundary-first region grower wae stopped with

strength threshold 8.1. From that point on the region grower derived |

from the sequential assignment was used until no two adjacent regions

were interpreted as parts of the same object. The total computing y
time for processing one picture is about five minutes. We believe it
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:

can be speeded up on the current hardware by a factor of 188 by 3

| | optimizing the code and data structures. :
| ’

i

| Illustration C is a good demonstration of some of the limitations of

the system. First, notice that the small car on the top right part of

the road is considered to be part of the roadside vegetation, lf ue

used the relative position of the two we would have done better. The

major difficulty is that in this case we nsed more involved relations

than the purely first order ojes available now. We may need to

consider the road, the small car and the roadside vegetation, in :
| order to distinguish the small car from similar structure of roadeide

vegetation and road on the bottom left part of the picture. Also

better shape descriptors are needed in order to recognize more

accurately the boundary between the car and its shadow. |

The assignment algorithm is driven by the confidence values of

regions ( the ratio between the probability of the most likely |

interpretation and the probability of the next most likely

interpretation). The recognition of the bigger regions like the sky, |

road and the bigger parts of the trees and roadside vegetation

usually have unique interpretations even on the basis of local region

properties alone, and hence the assignrent usually starts by

assigning them their correct meaning. For instance the bigger part
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of the sky is unique because there is only the sky which is big, is

| very bright, touches the top of the picture along a long line and has
| i: nearly blue color. The bigger part of the road is also unique because

only it can touch the bottom of the picture with a long line and be

relatively bright and almost colorless and horizontally near the |

center. The bigger parts of the tree are usually unique because they

are big, very dark and near the top of the image (see an exampie of

classification for demonstration). Only later are regions which are |

parts of the car or its shadow interpreted, based on their local g
properties and the structure of their boundaries with the road and

the bigger roadside vegetation areas. Later still smaller parts of

\ the roadside vegetation and trees are interpreted, mainly because it

; is usually unclear which of the two interpretations to assign to i

them. In cases where ue are looking for the road, we may use a

utility that assigns a very low price to a confusion between a tree

and roadside vegetation, because such confusion has only a minor

effect on the analysis of the road. Currently though, we assign equal
virlue for all errors.

In the problem domain of the left ventricular angiograms, no color

| nas available. As a result light intensity, position and shape are
the major recognition tools. In addition the non-semantic region

| grower had to stop at a relatively early stage because of noise and
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lack of high contrast border. The number of regions on termination of ;

the non-semantic region grower Was two hundred. From that point on

. the sequential assignment region grower was used (see illustration).

The run time was again around five minutes per image. It is

encouraging that the adjustment to the second domain was very easy.

lle hope that in the future a general and rich library of feature

extracting routines with the capability of working on many models

will be dev: lowed.

8.5 CONCLUSIONS

The successful application of the system to two problem domains is

very encouraging. Especially so, —— it is clear that we can do
much better on each of the components of the system. The author

knows of no previous system able to work on such complex images

successfully. Our system is also based on a general structure that

provicdes hooks for incorporating sophisticated subsystems for each of

| the components. This paper suggests in many places ways of improving

the current implementation. The author believes that major

improvements may be achieved by the following developments: first,

aut natically generating a sub-optimal classification tree; second,
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| improving the available shape classifiers ( which will require the
option to pass from the sample point description to the finer grid |

point description); and third, adding options for more complex

relations in the semantics representation.

To conclude, the generality of the ideas behind the system provides

for ways of incorporating improvements and special knowledge in every |

one of the components. The author hopes that the generality of the

system will enable researchers to concentrate on each of the

components separately of the system, hence allowing this young . |

exper imental research field to mature as an unified research field.

|
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