Two Papers on the Selection Problem

TIME BOUNDS FOR SELECTION

By

Manual Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

and

EXPECTED TIME BOUNDS FOR SELECTION
By

Robert W. Floyd and Ronald L. Rivest

STAN-CS-73-349
April 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

—-

Time Bounds for Selection

by

Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of
a new selection algorithm -- PICK. Specifically, no more than
5J50§ n comparisons are ever required. This bound is improved for
extreme values of i , and a new lower bound on the requisite number

of comparisons is also proved.

This work was supported by the National Science Foundation under grants
GJ-992 and GJ-33170X.

1. Introduction

In this paper we present a new selection algorithm, PICK, and derive
by an analysis of its efficiency the (surprising) result that the cost
of selection is at most a linear function of the number of input items.
In addition, we prove a new lower bound for the cost of selection.

The selection problem is perhaps best exemplified by the computation
of medians. In general, we may wish to select the i-th smallest of a set
of n distinct numbers, or the element ranking closest to a given
percentile level.

Interest in this problem may be traced to the realm of sports and
the design of (traditionally, tennis) tournaments to select the first
and second-best players. 1In 1883, Lewis Carroll published an article [1]
denouncing the unfair method by which the second-best player is usually
determined in a "knockout tournament" -- the loser of the final match is
often not the second-best! (Any of the players who lost only to the best
player may be second-best.) Around 1930, Hugo Steinhaus brought the
problem into the realm of algorithmic complexity by asking for the
minimum number of matches required to (correctly) select both the first
and second-best players from a field of n contestants. In 1932,

J. Schreier [8] showed that no more than n+ ngzhﬂW -2 matches are
required, and in 1964, S. S. Kislitsin [6] proved this number to be
necessary as well. Schreier's method uses a knockout tournament to
determine the winner, followed by a second knockout tournament among
the (at most) [1og20Q1 players who lost matches to the winner, in

order to select the runner-up.

— r’

— r— r—

For values of i larger than 2 , the minimum number of matches
required to select the i-th best player from n contestants is known
only for small values of n . The best previous general selection
procedure is due to Hadian and Sobel [4], which requires at most
n-i+ (i-1) {logg(n—i+2)1 matches. They create a knockout tournament
of n-i+2 players and then successively eliminate i-1 who are "too

good" to be the i-th best (using replacement selection).

No consistent notation has developed in the literature for the

"i-th best". We shall use the following two operators:
1638 = (read "i-th of 8") the i-th smallest element of S ,
def
for 1 <1i< 8] . Note that the magnitude of i 6 S

increases as 1 1increases. We shall often denote
1S by i 6 when S 1is understood.
Xps = (read "x's rank in 8") the rank of x in S , so that

def
Xp S O3=x.

The minimum worst-case (minimax) cost, that is, the number of binary

comparisons required, to select i® will be denoted by f(i,n) , where

| =n . We also introduce the notation:

f(La(n-1) § +1,n)

F(a) = lim sup

, for O<ax<xl,
def n - « -~

to measure the relative difficulty of computing percentile levels.

In Section 2 we prove our main result, that f(i,n) = @&(n) , by

analysis of the basic selection algorithm, PICK.

In Section 3 PICK is "tuned-up" to provide our tightest results:
max F(@) < 5.4305 (1)
0<a<l
u and
- . .
Fla) < 1+h.b3050/8+10.861 [log,(B/a)la , for 0 <a <, (2)
where B = .203688 . 1In Section 4 we derive the lower bound:
¢
F(a) > l+min(a,1-q) for 0 <a<1l. (3)
There is no evidence to suggest that any of the inequalities (1) -(3)
L_ is the best possible. 1In fact, the authors conjecture that they can be

improved considerably.

2. The New Selection Algorithm, PICK

In this section we present the basic algorithm and prove that
f(i,n) = &(n) . We assume that it is desired to select 16§ , where
ﬁl =n .

PICK operates by successively discarding (that is, removing from S)
subsets of S whose elements are known to be too large or too small to
be i , until only 16 remains. Each subset discarded will
contain at least one-quarter of the remaining elements. PICK is quite
similar to the algorithm FIND (Hoare [5]), except that the element m
about which to partition S is chosen more carefully.

PICK will be described in terms of three auxiliary functions
b(i,n) , c(i,n) , and d(i,n) , which will be chosen later. We will

omit argument lists for these functions in general, as no confusion can

arise. Since we are interested in the asymptotic properties of PICK,

we will also omit details to be given in Section 3 regarding the case

when n mod ¢ # 0

PICK: (Selects 168 , where |S| = n and 1 < i < n)

1. (Select an element meS):
(a) Arrange S into n/c columns of length ¢ , and sort each
column.

(b) Select m = b8T , where T = the set of n/c elements
def

which are the d-th smallest element from each column. yge

PICK recursively if n/c >1

2. (Compute mp8): Compare m to every other element x in S

for which it is not yet known whether m < x or m > x

5. (Discard or halt):
If mps = i , halt (since m = i88), otherwise
if mpS > i , discard D =={x| x >m} and set n P'H—‘% ,
otherwise discard D = (x |x <m} and set n « n-D,

. i-i-ip|-

Return to step 1.
This completes the description of PICK. We are now ready to prove:
Theorem 1. f(i,n) = &(n) .

Proof: We show that a reasonable choice of functions b(i,n) , c(i,n) ,
and d(i,n) result in a linear time selection algorithm. Tet h(c)
denote the cost of sorting ¢ numbers using Ford and Johnson's algorithm

[2]. Tt isknown[3] that:

h(c) = L Mlog,(35/4)1 . (%)
1<j<e

A

The cost of step 1l(a) is n-h(c)/c , making obvious the fact that c(i,n)
must be bounded above 'by a constant in order for PICK to run in linear
time.

Letting P (n) denote the maximum cost of PICK for any i , we can
bound the cost of step 1(b) by POMC) . After step 1, the partial

order determined for S may be represented as in Figure 1:

A 9 »
G
® L
p [3
9 m ~ T = (d-th smallest
s element from
L t B each column)
N A\ /]
N
b-1 columns with n/c -b columns with
d-th smallest <m d-th smallest >m
Figure 1

Here we have the n/c columns of length c portrayed with their

largest elements on top. Since the recursive call to PICK in step 1(b)
determines which elements of T are <m , and which are > m , we
separate the columns as in Figure 1. Every element in box G is clearly
greater than m , while every element in box L is less. Therefore only
those elements in quadrants A and B need to be compared to m in

step 2.

It is easy to show that no elements are ever incorrectly discarded
in step 3: if mpS >1i, m is too large, so that m and all larger
elements may be discarded, and symmetrically for the case mpS < i
Note that at least all of G or all of L will be discarded. Tt is now

obvious that

Py < 22y p(n/c) +n+ B(n - min(|L], |a])) - (5)

To minimize P(n) we choose ¢ =21, d =11, and b = n/2c = n/42
(so that m 1is the median of T , and T is the set of column medians).

This implies

6
P(n) < gln + P(n/21) +n+ P(31n/k2) (6)
since h(21) =-66 . This implies by mathematical induction that
58 n .
P(n) < = = 19.6 n . (7)

The basis for the induction is that, since h(n) <19 n for n < 105,

any small case can be handled by sorting. ©PICK runs in linear time because
a significant fraction of S is discarded on each pass, at a cost pro-
portional to the number of elements discarded on each step. Note, however,

that we must have c 25 for PICK to run in linear time. 0.E.D

3. Improvements to PICK

The main result that f(i,n) = 6¢(n) , has now been proved. We thank
the referee for his comment: "The authors have a right to optimize (if they
don't, someone else will)." This section contains a detailed analysis of
our improved versions of PICK.

We describe two modifications to PICK: PICKl, which yields our best
overall bound for F(@) , and PICK2, which is more efficient than PICK1
for i in the ranges i <gn or i > (1-8)n for B = .203688" . The
description and analysis of PICKlL is relatively detailed and lengthy _—- e
do not expect the average reader to wade through it! The optimized algorithm

is full of red tape, and could not in practice be implemented efficie

7

;___M

but in principle for any particular n could be expanded into a decision
tree without red-tape computation. The basic differences between PICK
and PICKL will be listed shortly. We assume (by arguments of symmetry)

that i < In/21 throughout this section.

Theorem 2. F(@) <5.4305, for 0 <@ <1 .

Proof: By analysis of PICKl, which differs from PICK in the following

respects:

(1) The elements of S are sorted into columns only once, after
which those columns broken by the discard operation are restored
to full length by a (new) merge step at the end of each pass.

(ii) The partitioning step is modified so that the number of comparisons
used is a linear function of the number of elements eventually
discarded.

(1ii) The discard operation breaks no more than half the columns on
each pass, allowing the other modifications to work well.

(iv) The sorting step implicit in the recursive call to select m is
partially replaced by a merge step for the second and subsequent
iterations, since (iii) implies that 2/3 of the set T operated

on at pass j were also in the recursive call at pass j-1

The term "k-column" will be used to denote a sorted column of
length k . The optimal value of the function c , 15 , will be used
explicitly throughout for clarity. The algorithm is presented as three
separate procedures, each of which selects i8S from S , given that
the partial order already determined for S is one of three types.
Procedure PICKl is the outermost procedure, which assumes that no

information is known about the elements of S

-_—___’

n
Procedure PICKl: (Selects i8S from S , where |S| =n and 1 <i< [n/2]).
1. If n <4 , sort S, print i6 , and halt.
i 2. Sort S into Ln/lS_] 15-columns and possibly one (n mod 15)-column.
3. Use procedure PICKla to select i6.
R Procedure PICKla: (Same as PICKl, except that S is already sorted into
15-columns) .
1. If n < b5 | sort S, print i8S , and halt.
L 2. Sort the set T of column medians into 15-columns and possibly

one (In/15] mod 15) -column.

3. Use procedure PICKlb to select i@98 .

P

Procedure PICKlb: (Same as PICKla, except that T is also already sorted

L into 15-columns).
1. Use procedure PICKla to select m , the median of T
-~ 2. Partition A U B of Figure 1 about m as follows, stopping
as soon as it becomes clear that mpS < i or mpS >1i :
(i) Insert m into each T-column of B , using binary
insertion (3 comparisons/column).
(ii) Insert m into each 7-column of A , using a linear
' search technique beginning near each 1l5-column median.
3. If mpS=i,print m (=108), and halt, otherwise
if mpS >i, discard G U {x| xeB and x >m} , otherwise
discard L U {x IxeA and x <m} and decrease i by the
number of elements discarded.
4, Restore S to a set of 15-columns by the following merge
operations. Here |X| will denote the number of elements
inaset X. Let U be the set of columns of lengths < 15

(in fact, each column of U has length < 7). Let Y c U

be the set of shortest columns of U , such that

|v] =|u] /15 , and let V be the set of all 7-colums in

U-Y . Oplit U-(v U Y) into two subsets X and W such

that W contains w columns, W's columns are not shorter

than X's , and |W|+ |X] = 7w . Then

(1) Extend every column in W to length 7 by using binary
insertion to place each element of X into a column of W .

(ii) Now every column in U-Y is a 7-column. Merge them
pairwise to form lk-columns.

(iii) Use binary insertion to place each element of Y into
a lh-column. Now S has been restored to a set of
15-columns.

5. Restore the set T of column medians to 1l5-columns as follows.
Let Z ¢ T be those column medians which were column medians
in step 1. The elements of Z are already sorted into columns
of size 8 or greater, since step 3 of the recursive call at
step 1 discarded Z in strings of those sizes.

(i) Merge the columns of Z together to form 1l5-columns and

some left-overs, treating each column size separately:

8-columns: Merge these pairwise to form 15~-columns
with one element left over. Write this as
2(8): 8+7, 1 leftover.

g-columns: 5(9): 9+6, 96, 9+3+3, no leftovers.

lo-columns: 3(10): 10+5, 10+5, no leftovers.

1l-columns: Set aside 1/45 of the ll-columns and
break them into l-columns, then do
b(11)+1(1): 11+k, 11+h, 11+3+1, no leftovers.

12-columns and larger: set aside some elements for

binary insertion into the remaining columns

Sort the leftovers into 15-columns.

(ii) Sort T-Z into 15-columns.
Now T has been restored to a set of 15-columns.

6. Decrease n by the number of elements discarded in step 5.
If n < 45, sort S, print 1685 and halt, otherwise

return to step 1.

This completes the description of the algorithm. To analyze PICKI, we

introduce the following notation:

Pl(n), Pla(n), Plb(n) = the maximum costs, respectively, of
def
procedures PICKl, PICKla, and PICKlb.
v = the number of comparisons made in step
def
PICKlb (2ii).
d = the number of elements from A U B
def
discarded in step PICKlb (3).
ga,gb = the number of elements from A, B
def
found in step PICKlb (2) to be >m .
La, Ib = the number of elements from A, B
def
found in step PICKlb (2) to be <m .
W,X,y = the number of columns in sets W, X , Y
def
in PICKlb (4).
Since h(15) =42 , we have immediately:
42 n _
Pl(n) < I * Pla(n) = 2.8n + Pla(n) (8)
42 n .
Pla(n) < 555 * Plb(n) = .186n+ Plb(n) . (9)

11

The following lemma demonstrates the tradeoff created in step PICKLb(2)

between v and d
Lemma 1. v <d+n/30 .

Proof: There are two cases to consider, since either L or G is

discarded in step PICK1b(3).

Case 1 (L is discarded): There can clearly be at most one

comparison for every column in A , plus one for each element of A

discarded.

Case 2 (G is discarded): Thus |L|+fa+2b = i+1 < Mn/27+1 <

|L] + |B] _< |T| +gb+b. Thus gb > fa , but fa > v-n/30 as

in case 1, yielding the lemma since d=gb here.
Q.E.D.

The following lemma allows the costs of step PICKIb(4) to be bounded:
Lemma2 : x| < 64/7. (11)

Proof: We have d > T(w+x+y) - \Wl - |X| - lY\ , and Tw - IW‘ = \Xl ’
yielding d > Tx+7y- |¥| > 7x , but éx > |x| , so-that 4 >7|x|/6

Q.E.D.

Step PICK1b(5i) takes, in the worst case, 21/20 comparisons/element
. to merge and sort Z into 15-columns (detailed analysis omitted —-- this
happens when =z contains only 8-columns). Since |2]| = n/30 , this step
takes at most 7 n/200 comparisons. We may now write the following

recurrence for Plb(n) :

12

PIb(n) <Pla(ln/151) + 3(n/30) + (a+n/30\,+ 3(ga/7), +

step 1 step 21 step 2ii step 41

13(7n/3%0 -4d)/15 + \h('?n/50 -d)/lg + Tn/200 +

TN

T

step 4ii step biii step 51

52(7n/30 -d)/225 + Plb(1lln/15 -d)
A J

N ~
step 5ii subsequent iterations
Simplifying vyields
on . 13197 n + 3546 d
Plb(n) < (n+ 5a T 27000 1575) (12)
The right-hand side of (12) is maximum at d = 0 , so that
15197 n e
b 22197 n _
Plb(n) < 57600 2.4k438 n , (13)
Pla(n) < 2.6305 n , (1k)
and
Pl(n) < 5.4305 n (15)
Since
h(c) h(k5)
max = < 5.43 n , 16

the basis for the induction yielding (12) is justified, thus also taking

care of steps PICKi(1), PICKla(l), and PICKIb(6), and yielding our theorem.

Q.E.D.
While PICK]l provides a good uniform bound on F(a) better results

can be achieved for values of & near 0 or 1 . We now present the

algorithm PICK2, which yields the following result.

13

4-——-——-____-—_‘-

Theorem 3. F(a) < 1+14.4305 Ot/5+lO.86.'.L [log, (/@) N, for o <a <B ., (17)
where B = .203688

Proof: By analysis of PICK2, which is essentially the same as PICK

with the functions ©b(i,n) , c(i,n) , and d(i,n) chosen to be i ,
2 , and 1 , respectively, and with the partitioning step eliminated.

In detail:

Procedure PICK?: (Selects 188 , where |S|= n , and i <pgn)

1. Compare the elements of S pairwise to form.Ln/2J pairs and
possibly one left-over.
2. If i <B Ln/2] use procedure PICK2, otherwise use PICKI, to

select m as the i-th smallest element of the set T of

lesser elements of each pair. See Figure 2.

one lef&:i:%i - _
R NI)

S

i-1 pairs pairs with smaller element > m
with smaller
element < m

Figure 2

3. Discard all elements known to be > m , that is, those elements
in the circle G of Figure 2.

4, Use procedure PICK1 to select i®s from S

1k

________ :

This completes the description of procedure PICK2. Note that this
reduces to a simple knockout tournament when i = 1! ysing P2(i,n)
to denote the maximum number of comparisons used by PICK2 to select
16, we may derive:
P2(1,n) <\ n/2)+min(PL(| n/2]),P2(i, Ln/21)) +Pl(2 1) - (18)
step 1 step 2 step b
For particular values of 1 and n , procedure PICK2 is called

t = [log,(pn/i)] times in succession during the recursive calls at

step 2, before procedure PICKl is called. Thus

P2(i,n) < L /29 + P:L(Ln/zt_;)+t P1(2 i) . (19)
0<j<t
This directly implies our theorem. The proper value for B , .203688 ,

is the largest value such that P2([Bnl,n) < Pl(n) .
Q.E.D.

The results of this section are summarized in Figure 3, where
our bounds for F(a) are plotted against @ . It is not unreasonable
. to conjecture that the true curve for F(a) is unimodal and peaks at
@ = 1/2 . The relative complexity of the algorithm PICK1 leads the

authors to conjecture that our upper bound can be significantly improved.

k. A Lower Bound

In this section a lower bound for F(a) is derived through the use
of an "adversary" approach (this technique is called the construction of

an "oracle" by Knuth. See for example [7], Section 5.3.2.) The selection

15

Bounds on F(a)

PICK?2 PICKL
e
/ \ll\(lJ
5.43 |
e ® ¢ v ®
5
F upper bound
. for F(a)
L -
[]
w -
D -
lower bound
for F(a)
H e ————— -
L o
0 .05 .10 .15 20 25
04
Figure 3

,‘—_{—‘E

process may be formulated as a game between the selection algorithm
(player A) , who is trying to find i8S with as few comparisons as
possible, and his adversary (player B), who is trying to force player A
to make as many comparisons as possible. The players take alternate
turns: each play by A consists of posing a "comparison question", such
as "Is x < y ?" (for any X,yeS), to which player B on his turn must
respond with either "Yes" or "No". Player B's responses may be completely

arbitrary, as long as he does not contradict his previous responses to

A's questions. When A has extracted enough information from B to determine

168 , the game is over.

The advantage of this approach is that a non-trivial lower bound for
the length of this game can be found, independent of A's strategy, simply
by supplying a sufficiently clever strategy for B. The length of this
game is of course here the usualminimax cost, that is,

f(i,n) = min max c(A,B) , (20)
def A B

where c(A,B) is the length of the game between particular A and B
strategies.

Player B in this game of course plays the role of the "data'.
A strategy for player B is in effect a rule for calculating a particularly
bad (that is, costly) set of data for A's strategy, since an actual set
of numbers can always be constructed that are consistent with B's replies.
A good strategy for player B is thus a procedure for "bugging" any given
player A strategy.

We will now describe the particular player B strategy which yields
our lower bound. As the game progresses there will of course be many

elements x such that player A has determined enough about x to know

17

‘_

that x # 16, that is either x < i6 or x > i® . Player B will
initially consider all elements xeS to be members of the set U , meaning
that player B (and thus playe;_ A as well) is uncertain as to whether
x<ie, x =10 , or x >10. After a while, though, player A will

be able to force the issue regarding particular elements, that is, force
player B to decide the status of a particular element xeU . If B
decides that x > 16 , he will remove x from U and place it in set G
Similarly if he decides that x < i6 , he will remove x from U and
place it in set L . Both G and L are initially empty. The element
that turns out to be 10 will thus be one (any one) of the elements still
in U , so that as long as ﬁﬂ > 1 the game must continue. Our player B
strategy thus attempts to keep U as large as possible for as long as
possible.

The game must actually consist of two phases as far as B's strategy
is concerned. As long as hd < i-1 and‘G] < n-i , player B has
complete freedom to put an element xeU into either L or G . After one
of L or G fills up, however, B is quite restricted and must play
differently, since he is not allowed to make |L i or |g > n-it1
At that time, however, the game "degenerates" in the sense that player A
has merely to find the minimum (or maximum) element of U

During the first phase, player B will never remove more than one
element x from U on a single turn. This will not cause any complications
as long as x 1is a maximal (or minimal) element of U and player B puts
x into set G (set L). Each element placed in set G (set L) is
assumed to be less than (respectively, greater than) all previous elements
placed in that set, as well as greater than (respectively, less than) any

elements still remaining in U and L (respectively, U and G). This

18

rule completely defines B's responses except when player A wishes to
compare two elements X,yeU . 1In addition, player B will only remove
an element from U when A makes.such a request.

Player B will always restrict membership in U so that every
member xcU is either a maximal or minimal element of U (or both) with
respect to the partial order already fixed on S by B's previous responses.

In fact, B will maintain the even stronger condition that for each element

T e —— ——— —————

or y <x . The partial order for S assumed by B may thus always be

diagrammed:

set G

:} set U

set L

Set U therefore contains only three "element-states", znd we define
0(x) tobe -1, 0, or 1 respectively according to whether x is the

lesser element of a pair, an isolated element, or the greater element of
a pair. B's strategy for a comparison between two elements Xx,yeU is

now easy to state (we assume without loss of generality that a(x) < o(y)):

19

“——_ _—

(1) respond " x is less than y ", and
(ii) if a(x) = 0d(y) = 0 do nothing, otherwise

-1 remove X from U and place it in L ,

if o(x)

otherwise remove vy from U and place it in set G
Essentially B's strategy creates a new pair in U if a(x) = al(y) =0,
otherwise one element is removed from U and the number of pairs in U
decreases by one. Let

¢ = the number of comparisons made so far, and

p = the number of pairs currently in U
It is simple to verify that B's strategy maintains the condition

c-p+2ly] = 2n , (21)
as long as the game is still in the first phase (this is clearly true
atthestart when ¢ =p =0 and |U| =n). at the end of phase one,
either L or G is full, so that

Ul < n-min(i-1, n-i) - (22)
Furthermore, it must take player A at least IU“l'P comparisons to
finish the game during the second phase, since he must at least do the
work of finding the smallest (or largest) element of U , which requires
|U|~l comparisons, of which p have already been made. The total
number of comparisons made is thus at least

f(i,n) > ¢+ |U] -1-p > n+min(i-1,n-i) -1, for 1<i <n (23)

from (21) and (22). Taking the limit as n - » , keeping
i = La(n-1)] +1 , we get

F(a) > l+min(o, 1-a) . (2k)

This bound is also plotted in Figure 3.

20

e —————————————————

5. summary

The most important result of this paper is that selection can be

performed in linear time, in the-worst case. No more than 5.&303 n

comparisons are required to select the i-th smallest of n numbers,
for any 1 , 1 <i<n . This bound can be improved when i is
near the ends of its range.
A general lower bound is also derived which shows, in particular,
that at least 3n/2-2 comparisons are required to compute medians.
The authors believe that the constants of proportionality in both

the upper and lower bounds can be considerably improved.

References

[1] carroll, Lewis. "Lawn Tennis Tournaments," St. James's Gazette

(August 1, 1883), pp 5-6. Reprinted in The Complete Works of

Lewis Carroll. New York Modern Library (1947).

[2] Ford, L. R. and S. M. Johnson. "A tournament problem," The American

Mathematical Montly 66, (May 1959), pp 387-389.

[5] Hadian, Abdollah. "Optimality properties of various procedures for
- ranking n different numbers using only binary comparisons," Technical
Report 117, Dept. of Statistics, Univ. of Minnesota, (May 1969).
(Ph.D. Thesis). 61 pp.

Th] and Milton Sobel. "Selecting the t-th largest using binary
errorless comparisons," Technical Report 121, Dept. of Statistics,
Univ. of Minnesota, (May 1969), 15 pp.

[5] Hoare, C. A. R. "Find (Algorithm 65)," Communications of the ACM
(July 1961), pp 321-322.

[6] Kislitsin, S. S. "On the selection of the k-th element of an ordered
set by pairwise comparisons," Sibirsk Math. Z. 5 (1964), pp.557-56k.
(MR 29, no. 2198). (Russian).

21

(7] Knuth, Donald E. The Art of Computer Programming, Volume IIT,

Sorting and Searching, Addison-Wesley (1973).

[8 3 Schreier Jésef. "0 systemach eliminacjii w turniejach," ("On

elimination systems in tournaments"), Ma-thesis Polska 7 (1932),
pp. 154-160 (Polish).

22

Expected Time Bounds for Selection

by

Robert W. Floyd and Ronald L. Rivest

Expected Time Bounds for Selection

by -
Robert W. Floyd and Ronald L. Rivest
Stanford Computer Science Department
Stanford University

Stanford, California 94305

Abstract

A new selection algorithm is presented which is shown to be very
efficient on the average, both theoretically and practically. The
number of comparisons used to select the i-th smallest of n numbers
is n+min(i,n-i) +o(n) . A lower bound within 9% of the above

formula is also derived.

Keywords and Phrases: selection, computational complexity, medians,

tournaments, quantiles

CR Categories: 5.30, 5.329

This work was supported by the National Science Foundation under
grants GJ-992 and GJ-33170X. ,

4____~

1. Introduction

In this paper we present new bounds (upper and lower) on the expected

time required for selection. The selection problem can be succinctly

stated as follows: given a set X of n distinct numbers and an
integer i1 , 1 <i<n, determine the i-th smallest element of X
with as few comparisons as possible. The j-th smallest element, denoted
by 1i©X , is that element which is larger than exactly i-1 other
elements, so that 16X is the smallest, and neX the largest,

element in X

Let f(i,n) denote the expected number of comparisons required to
select 18X . Since a selection algorithm must determine, for every
teX , t %:iGX , whether t < i6X or i8X <t , we have as a trivial
lower bound

f(i,n) > n-1 , for 1<i<n . (1)

The best previously published selection algorithm is FIND, by
C. A. R. Hoare [1]. Knuth [2] has determined the average number of

comparisons used by FIND, thus proving that

£(in) < 2((n+1)H - (0#3-1)H 5., - (42)H, +n+3) , (2)
where
=1
H = 2 3 . (3)
1<j<n
This yields as special cases
f(1,n) < 2n+o(n) , (L)

and

£(I'n/27,n) < 2n(1+ tn(2))+o(n) <3.39n +o(n) . (5)

No bounds better than (1) or (2) have previously been published.
In Section 2 we present our new selection algorithm, SELECT, and

derive by an analysis of its -efficiency the upper bound
£(i,n) < n+min(i,n-1) +o@?> mY>@)) (6)

A small modification to SELECT is then made, yielding the slightly
improved bound

f(i,n) 5n+min(i,n—i)+@(nl/2) . (7)

An implementation of SELECT is given in Section 3 with timing results
for both SELECT and FIND.

The authors believe that SELECT is asymptotically optimal in the
sense that the function

(@) = lim sup SLEDItLn) o (8)

def now n - -

is bounded below by the analogue of the right-hand side of (7), so that
F(a) > l+min(a,1-a) , for 0 <a<1l . (9)

A lower bound just a little better than 1+.75 min(a,l%ﬁ is derived

in Section 4, within 9% of our conjecture and the performance of SELECT.
In what follows t pX will denote the rank of an element teX ,

so that (t pX)eX =t .E() will denote the expected value of its

argument, and P() will denote the probability of an event.

2. The Algorithm SELECT

The algorithm SELECT utilizes sampling. A small random sample S
of size s = s(n) is drawn from X . Two elements, u and v ,

(w < v) , are selected from S , using SELECT recursively, such that

the interval [u,v] is quite small, yet is expected to contain ieX .
Selecting u and v partitions § into those elements less than u
(set A), those elements between u and v (set B), and those elements
greater than v (set C). The partitioning of X into these three sets
is then completed by comparing each element x in X-S to u and v
If i <[In/21 , x is compared to v first, and then to u only
if x<v . If i >[n/21 , the order of the comparisons is reversed.
With probability approaching 1 (as n -» @), 19X will lie in set B R
and the algorithm is applied recursively to select 316X from B.
(Otherwise SELECT is applied to A or C as appropriate.)

If s{n) , u , and v can be chosen so that s(n) = o(n) ,

E(|B]) = o(n) , and P(10X £B) = o(n-l) , then the total work expected

is:
{s(n)) to select u and v from S ,
+ (n-s(n)) (1+(min(i,n-i)+o(n))/n) to compare each element in X-S
to u, v,
+ o(|B]) to select i0X from B ,
+ o(1) to select 10X from A or C

= n+min (i, n-1)+o (n) comparisons total.

This can in fact be done; the low order term is c)(ng/3 1nl/3(n)) ,
Figure 1 shows a geometric analogy of the procedure SELECT.

It is not hard to show (see [3]) that for any teS we have

Bt %) = (St o §) (10)

/71 N\
/1| \
77 \
/4 /3l c N\
= { P — §\l._s
/ es / u 'lv S@u\\ ample S
Y, ;! \
/ ;] \
/ / / \
/ ;! \
/ / | \
/ / [\
/ / | \
/ A / B / \
. at— S A - S\
1eX u i'Gx v g;(‘—x

Figure 1

_______---.....!!!..-.lll.ll..lll..ll.l.l.l.l::::::::rlllIIIIIIIIIIIIIIIIIIIIEF—F

J (6 08)(s =458 - 1) (1) (n-s).
(s+1)%(s+2)

(11)

o(t px) =

iJ n+l) (n-s
=3 S <

MO =

I
/s
We wish to choose u and v so that E(upX) < i < E(vpX) ,
E(|B]) = E(vpX) -E(upx) is o(n) , and P(1 < upXor i > vpX) _
0(n-l) . To do this we choose up$§ and vpS 4 that

E(u pX)+ 2do(upX)= i = E(v pX) -2 do(v pX) , (12)
where d = d(n) is a slowly growing unbounded function of n . In

fact, since

<]
2- g erf(x)dx < —3 r for some constant c¢ , (13)

we will choose d =+¢n(n) . This ensures that P(i <upX or i > vpX)

= o(n'l) . The above equations mean that
ups = (o n+l)(n -5) s+l ‘s
n+1 "E— - d/s
and
(1k)
VpS = J n+1 (n+1) (n-s) s+1
n+1 =+ d/s

Let g(i,n) denote the expected number of comparisons made by

SELECT. It will be shown inductively that

g(i,n) = n+min(i,n-i)+o(n?> m¥3(n)) | (15)

The above is true for all n less than some fixed N , so the basis for

induction is clearly satisfied. e proceed with the inductive step by
determining the cost of SELECT as a function of s(n) and n , and

then optimizing the choice of s(n)

The cost of selecting u and v can be estimated as follows.
First we apply SELECT recursively to S to select u , then we extract
(Note that

v from those elements of S -which are greater than u

selecting u means determining which elements of S are greater than

u as well.) These two operations cost

g(ups,s)+g(vpS-upS+1,s -ups)
<2s+vpS —u.ps—fc){sg/3 lnl/B(s))
< 2s+2a/s+ (23 Y3 (s)) (16)

comparisons.
The cost of comparing each element in X-S to u and v is easy

to compute. There are n-s(n) elements to compare, and the probability
that two comparisons will be made for an element is just

min(u pS,s+1-up 8)/(stl) , so that the total is

2y (17)

(n-s(n)) (1+min (i, n-1) /n+ds

The cost of finishing up, if 16X falls in B , is at most

g(|Bl/2, |B]) . But

E(|B]) . (vpS-ups)n/s-= 2ans 2 (18)

so that
; -1/2 - -
g(181/2,(B]) = 3ans™Y24 o((ans"Y2)2/3 (pu(ans™/2)) /3y, (19)
On the other hand, if 19X falls in A or C , the expected
cost of finishing up is at most 3n/2 , and the probability that
i6XeA or 10XeC is, from (13), less than ¢/(dn) , so that the

total work expected in this case is less than 3e¢/(2d) , which goes to

Z€ro as n —-» « .,

The total expected cost of SELECT is thus

g(in) < 2s+2d/s+ 0(52/3 lnl/B(S))
+ (n—s)(1+min(i,n—i)/n+ds'l/2)
+2ans Y2, 3c/(24)
< n+min(i,n-i) + s+d/s -min(i,n-i)s/n

+3ans Y2, 3¢/ (2d) + (/> w3 . (20)

The principal increasing and decreasing terms in s in this

expression are s and Bdns-l/2 Choosing s(n) to make them
equal will approximately minimize g(i,n) . Thus we choose
2
s(n) ~ n /3 lnl/B(n) (21)

which, together with (20), yields (15), which was to be proved. This
completes the analysis of SELFCT.

We now introduce a small modification to SELECT in order to reduce

l/2) .Let S,cS.c...cCcS =X

the second-order term to the promised (3(n 1 5 .

be a nested series of random samples from X of sizes g_, g s =
l, 2’-‘-, k

For each sample S.J , let uj and v.J be chosen from Sj as in

(14) so that
d/(n&l)(n s.) s +l
u, p S, =
J J n+l
and (22)
J(n+l)(n- s +l
v.pS, = i+ad
J J n+l

Thus it is very likely, for any J , that g{pXZ<ii <vpX .
- - J
Furthermore, as j approaches k (i.e., as sj gets large), u. and
J

v& surround i0X ever more closely. 1In fact, w =3iex =V, - The

cost of finding

prohibitive for large values of s,

E(u. S. =
j-1P J) (uj_l.ij_

And similarly E(Vj
bound the search for

representation of the

1pS.) >v. pS.
pJ)_Jpj

and Vj directly from s g5 of course
. However, since
J
sj+l
v O B BN €

, We can use . and v
j-1 -1 to
u

J

and v,
J .
modified SELECT.

See Figure 2 for a graphical

\
// \
/ \
u v \
* N 1 Jl (V]
I‘] Y = sl
V4 ’
’) \
/ u. v \
X d-1 §-1 \,
v ’ v v d ~
/ A ! : -—1\\ '9-1
/ j ’/ B, [C. \
Y v R Y S
y / A TS I N
)
/ \
A el kel \
: / N ~ 8
, / , | N kol
oo ‘A¢ Bk l’ C \
e m—— V) ~N —\
10X ’ CT

Figure 2

The modified algorithm runs as follows. Draw a random sample S,

of size 84 from X , and select Uy and vy using this algorithm

recursively (and the ranks given in (22)). Determine the sets By, B, ,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>