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oS Time Bounds for Selection

by |

- Manuel Blum, Robert W. Floyd, Vaughan Pratt,
\

Ronald L. Rivest, and Robert E. Tarjan

. Abstract

- The number of comparisons required to select the i-th smallest of

n numbers 1s shown to be at most a linear function of n by analysis of

—

a new selection algorithm —-— PICK. Specifically, no more than

g 5.4305 n comparisons are ever required. This bound 1s improved for
extreme values of 1 , and a new lower bound on the requisite number

L of comparisons 1s also proved.

.
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1. Introduction

In this paper we present a new selection algorithm, PICK, and derive

by an analysis of its efficiency the (surprising) result that the cost

| of selection 1s at most a linear function of the number of input items.
In addition, we prove a new lower bound for the cost of selection.

The selection problem 1s perhaps best exemplified by the computation

. of medians. In general, we may wish to select the i-th smallest of a set
of n distinct numbers, or the element ranking closest to a given

) percentile level.

Interest in this problem may be traced to the realm of sports and

the design of (traditionally, tennis) tournaments to select the first

_ and second-best players. In 1883, Lewis Carroll published an article [1]

denouncing the unfair method by which the second-best player 1s usually

" determined in a "knockout tournament" -- the loser of the final match is

often not the second-best! (Any of the players who lost only to the best

player may be second-best.) Around 1930, Hugo Steinhaus brought the

problem into the realm of algorithmic complexity by asking for the

_ minimum number of matches required to (correctly) select both the first

and second-best players from a field of n contestants. In 1932,

J. Schreier[8] showed that no more than n+ [log,(n)] -2 matches are

required, and in 1964,S. S. Kislitsin [6] proved this number to be

necessary as well. Schreier's method uses a knockout tournament to

determine the winner, followed by a second knockout tournament among

the (at most) (log, (n)] players who lost matches to the winner, in
order to select the runner-up.
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For values of 1 larger than 2 , the minimum number of matches

required to select the i-th best player from n contestants 1s known

| only for small values of n . The best previous general selection

| _ procedure is due to Hadian and Sobel [4], which requires at most

n-i+ (i-1) [ log, (n-i+2) 1 matches. They create a knockout tournament

— of n-1+2 players and then successively eliminate 1-1 who are "too

good" to be the i-th best (using replacement selection).

- No consistent notation has developed in the literature for the

_ "i-th best". We shall use the following two operators:

C i 6 8 = (read "i-th of 8") the i-th smallest element of §S ,
def

for 1 <1i< |S] . Note that the magnitude of i 6 S

i increases as 1 increases. We shall often denote

. iS by 1 6 when S is understood.

- XPS = (read "x's rank in S") the rank of x in S , so that
def

. Xp oOLS =x.
h

| The minimum worst-case (minimax) cost, that is, the number of binary

comparisons required, to select1© will be denoted by f(i,n) , where

| 5 =n . We also introduce the notation:

I F(a) = lim sup f{lafn-1) Jj +1,n) , for O<a<l ,
def n -» © i oT

N to measure the relative difficulty of computing percentile levels.

. In Section 2 we prove our main result, that f(i,n) = &n) , by

| analysis of the basic selection algorithm, PICK.
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In Section 3 PICK is "tuned-up" to provide our tightest results:

i max F(a) < 5.4305 (1)
| O<a<l

| and“ ° *

Fla) < 1+h.43050/B+10.861 log, (B/@) la , for 0 <a <p , (2)

where B = .203688. In Section 4 we derive the lower bound:

LC

F(a) > l+min(a,1-q) for 0 <a <1. (3)

There 1s no evidence to suggest that any of the inequalities (1) -(3)

3 1s the best possible. In fact, the authors conjecture that they can be
improved considerably.

=

1 2. The New Selection Algorithm, PICK

| In this section we present the basic algorithm and prove that
f(i,n) = &(n) . We assume that it is desired to select i688 , where

| = 1 .

PICK operates by successively discarding (that is, removing from S )

subsets of S whose elements are known to be too large or too small to

be 16 , until only i6 remains. Each subset discarded will

contain at least one-quarter of the remaining elements. PICK is quite

similar to the algorithm FIND (Hoare [5]), except that the element m

about which to partition S is chosen more carefully.

PICK will be described 1n terms of three auxiliary functions

b(i,n) , c(i,n) , and d(i,n) , which will be chosen later. We will

omit argument lists for these functions in general, as no confusion can
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arise. Since we are interested in the asymptotic properties of PICK,

we will also omit details to be given in Section 3% regarding the case

when n mod c # 0 .

PICK: (Selects 168 , where |S] =n and 1 < 1 < n)

1. (Select an element meS ):

(a) Arrange S into n/c columns of length ¢ , and sort each

q column.

(b) Select m = b@T, where T = the set of n/c elements
- def

which are the d-th smallest element from each column. yse

n PICK recursively if n/c >1.

. 2. (Compute mp8): Compare m to every other element x 1n S
for which it is not yet known whether m < x or m > x .

= 3. (Discard or halt):

If mp8 = i , halt (since m = 168), otherwise

if mpS > 1 , discard D = {x | x >m} and set n -n-|h ,

otherwise discard D = (x | x <m} and set ne~n-m,

) ie-i-Jp|.

Return to step 1.

This completes the description of PICK. We are now ready to prove:

Theorem 1. f(i,n) = &n) .

Proof: We show that a reasonable choice of functions b(i,n) , c(i,n),

and d(i,n) result in a linear time selection algorithm. Tet h(c)

denote the cost of sorting ¢ numbers using Ford and Johnson's algorithm

[2]. It is known[3%3] that:



h(c) = 2% |Log, (33/4)1 (4)
1<j<c

The cost of step l(a) is n-h(c)/c , making obvious the fact that c(i,n)

must be bounded above 'by a constant in order for PICK to run in linear

\ time.

Letting P(n) denote the maximum cost of PICK for any 1 , we can

bound the cost of step l(b) by P(n/c) . After step 1, the partial

LC order determined for S may be represented as 1n Figure 1:

\ ! | « T = (d-th smallest
\ | element from

L B each column)

ee —
b-1 columns with n/c -b columns with

d-th smallest <m d-th smallest >n

Figure 1

Here we have the n/c columns of length c portrayed with their

largest elements on top. Since the recursive call to PICK in step 1(b)

determines which elements of T are <m , and which are > m , we

separate the columns as in Figure 1. Every element in box G is clearly

greater than m , while every element in box L is less. Therefore only

those elements in quadrants A and B need to be compared to m in

step 2.

6



CC ———————— ——————————

It 1s easy to show that no elements are ever incorrectly discarded

| in step 3: if mpS >i, m is too large, so that m and all larger

| elements may be discarded, and symmetrically for the case mpS < 1 .

| - Note that at least all of G or all of L will be discarded. It is now

| _ obvious that- P(n) < whle) P(n/c)+ n+ P(n -min(|L|,|¢])) - (5)

To minimize P(n) we choose c = 21 , d=11 , and b = n/2c = n/42

CL (so that m is the median of T , and T is the set of column medians).

‘ This implies

— P(n) < iE + P(n/21) +n+ P(31n/42) (6)

ag since h(2l) =-66 . This implies by mathematical induction that

i P(n) < 2a = 19.6 n . (7)
| The basis for the induction 1s that, since h(n) <19 n for n < 10°,

- any small case can be handled by sorting. PICK runs in linear time because

- a significant fraction of S is discarded on each pass, at a cost pro-

' portional to the number of elements discarded on each step. Note, however,

| that we must have c¢ >5 for PICK to run in linear time. 0.E.D.

3. Improvements to PICK

The main result that f£(i,n) = 6(n) , has now been proved. We thank

the referee for his comment: "The authors have a right to optimize (if they

don't, someone else will)." This section contains a detailed analysis of

our improved versions of PICK.

We describe two modifications to PICK: PICKl, which yields our best

overall bound for F(y) , and PICK2, which is more efficient than PICKI

for 1 in the ranges i <gn or i > (1~-8)n for Bp = .203688  . The

description and analysis of PICKl 1s relatively detailed and lengthy __ ye

do not expect the average reader to wade through it! The optimized algorithm

1s full of red tape, and could not in practice be implemented efficie

7
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but in principle for any particular n could be expanded into a decision

. tree without red-tape computation. The basic differences between PICK
and PICK1 will be listed shortly. We assume (by arguments of symmetry)

| thati < In/2] throughout this section.

Theorem 2. F(a) < 5.4305 , for 0 <a <1.

Proof: By analysis of PICK1l, which differs from PICK in the following

C respects:

(1) The elements of S are sorted into columns only once, after

which those columns broken by the discard operation are restored

- to full length by a (new) merge step at the end of each pass.

(11) The partitioning step 1s modified so that the number of comparisons

L used 1s a linear function of the number of elements eventually
discarded.

Lo

(111) The discard operation breaks no more than half the columns on

_ each pass, allowing the other modifications to work well.

(1v) The sorting step implicit in the recursive call to select m 1s

. partially replaced by a merge step for the second and subsequent

] iterations, since (iii) implies that 2/3 of the set T operated

on at pass J were also in the recursive call at pass j-1 .

The term "k-column" will be used to denote a sorted column of

length k . The optimal value of the function c¢ , 15 , will be used

explicitly throughout for clarity. The algorithm is presented as three

separate procedures, each of which selects 168 from S , given that

the partial order already determined for S 1s one of three types.

Procedure PICKl 1s the outermost procedure, which assumes that no

information 1s known about the elements of S .

8
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Procedure PICKl: (Selects 168 from S , where Is] =n and 1<1ic< in/21)

| ) 1. If n <4 , sort Ss, print ie , and halt.
g 2. Sort S into n/15] 15-columns and possibly one (n mod 15)-column.
| 3. Use procedure PICKla to select ie.

\ Procedure PICKla: (Same as PICKl, except that S is already sorted into

15-columns).

1. If n <4 , sort S$, print i6S , and halt.

L 2. Sort the set T of column medians into l5=-columns and possibly

one (Mn/15] mod 15) -column.

3. Use procedure PICKlb to select 16S .

” Procedure PICKlb: (Same as PICKla, except that T is also already sorted

| into 15-columns).
1. Use procedure PICKla to select m , the median of T .

2. Partition A U B of Figure 1 about m as follows, stopping

as soon as it becomes clear that mpS <i or mpS > 1 :

” (i) Insert m into each T7-column of B , using binary

insertion (3 comparisons/column).

(11) Insert m into each 7-column of A , using a linear

| search technique beginning near each l5-column median.

3. If mpS=i,print m ( = i@8 ), and halt, otherwise

if mpS >i, discard Gg U {x xeB and x >m} , otherwise

discard L U {x | xeA and x <m} and decrease i by the

number of elements discarded.

4, Restore S to a set of 15-columns by the following merge

operations. Here I| will denote the number of elements

inaset X. Let U be the set of columns of lengths < 15

(in fact, each column of U has length < 7 ). Let Y c U

9
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be the set of shortest columns of U , such that

|v} = {ul / 15 , and let V be the set of all 7-columns in

U-Y. Oplit U-(v UY) into two subsets X and W such

that W contains w columns, W's columns are not shorter

| than X's , and wl + |X] = Tw . Then
) (1) Extend every column in W to length 7 by using binary

insertion to place each element of X into a column of W .

_ (11) Now every column in U-Y is a 7-column. Merge them

- pairwise to form lh-columns.

(111) Use binary insertion to place each element of Y into

a lh-column. Now S has been restored to a set of

. 15-columns.

i 5. Restore the set T of column medians to 1l5-columns as follows.
Let Z ¢ T be those column medians which were column medians

- in step 1. The elements of Z are already sorted into columns

of size 8 or greater, since step 3 of the recursive call at

" step 1 discarded Z in strings of those sizes.

(1) Merge the columns of Z together to form 1l5-columns and

some left-overs, treating each column size separately:

8-columns: Merge these pairwise to form 15~-columns

with one element left over. Write this as

2(8): 8+7, 1 leftover.

g-columns: 5(9): 9+6, 9+6, H3+3, no leftovers.

lo-columns: 3(10): 10+5, 10+5, no leftovers.

l1-columns: Set aside 1/45 of the ll-columns and

break them into l-columns, then do

L(11)+1(1):11+#k, 11+k4, 1143+], no leftovers.

12-columns and larger: set aside some elements for

binary 1nsertion into the remaining columns



Sort the leftovers into 15-columns.

(ii) Sort T-7Z into 15-columns.

Now T has been restored to a set of 15-columns.

6. Decrease n by the number of elements discarded in step 5.

If n < 45, sort S , print 165 and halt, otherwise

return to step 1.

This completes the description of the algorithm. To analyze PICK1l, we

introduce the following notation:

Pl(n), Pla(n), Plb(n) = the maximum costs, respectively, of
def

procedures PICKl, PICKla, and PICKlb.
\

v= the number of comparisons made in step
def

PICKlb (211).

d = the number of elements from A { B

\ def

discarded in step PICKlb (3).

ga,gb = the number of elements from A, B
def

found in step PICKlb (2) to be >m .

fa, fb = the number of elements from A, B
def

found in step PICKlb (2) to be <m .

W,X,¥ = the number of columns in sets W , X , Y
def

in PICKlb (4).

Since h(15) = 4 , we have immediately:

— Lo n _ 8
C Pl(n) < = t Pla(n) = 2.8n + Pla(n) (8)

42 n .
Pla(n) < —55=— + Plb(n) = .186n+ Plb(n) . (9)—= 225

“_

11
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The following lemma demonstrates the tradeoff created in step PICK1b(2)

between v and d :

Lemma 1. v <d+n/30 .

Proof: There are two cases to consider, since either L or G is

discarded in step PICK1b(3).

Case 1 (L 1s discarded): There can clearly be at most one

comparison for every column in A , plus one for each element of A

discarded.

Case 2 (G 1s discarded): Thus IL| + fa+ 2b = i+1 < n/27+1 <

|IL| + |B]_< || +gb+ tb. Thus gb > fa , but fa > v-n/30 as

in case 1, yielding the lemma since d=gb here.
Q.E.D.

The following lemma allows the costs of step PICK1b (4) to be bounded:

Lemma? : 1X] < éa/7. (11)

Proof: We have d > T(w+x+y) - lw - |x| ~ || , and Tw- lw = |x| /

yielding 4d > 7x+Ty-|Y| > 7x , but 6x > |X| , so-that 4 >7|x|/6 .

i Q.E.D.

Step PICK1b(5i) takes, in the worst case, 21/20 comparisons/element

. to merge and sort Z into 15-columns (detailed analysis omitted -- this

happens when =z contains only 8-columns). Since |Z | = n/30 , this step

takes at most 7 n/200 comparisons. We may now write the following

recurrence for Plb(n) :

12



P1b(n) <Pla(ln/151) + 3(n/30) + (d+ n/30) + 3(6d/7), +\ ; . \ zy tA

step 1 step 21 step 2ii step 41

| 13(Tn/30 -d)/15 + 4(Tn/30 -d)/15 + Tn/200 +
step 4ii step biii step 5i

k2(7n/30 -d)/225 + Plb(lln/15 -d)

step 5ii subsequent iterations

Simplifying yields

on}. 13197 n + 3546 @d| Plb(n) < (+2) T270001575 /. (32)
| The right-hand side of (12) 1s maximum at d = 0 , so that

| 13197 n ’Plb < =n _
_ (n) < 57500 2.4438 n , (13)

- Pla(n) < 2.6305 n , (14)
: and

Pl(n) < 5.4305 pn . (15)
Since

h(c hk

max Ble) o BEB) og yp (16)
1<c<hs

the basis for the induction yielding (12) 1s justified, thus also taking

care of steps PICK1(1l), PICKla(l), and PICKIb( 6), and yielding our theorem.

Q.E.D.

While PICK]l provides a good uniform bound on F(a) , better results

can be achieved for values of @ near 0 or 1 . We now present the

algorithm PICK2, which yields the following result.

13



Theorem 3. F(a) < 1+k4.4305 a/pg+10.861 [log (B/a) la, for o <a <B, (17)

where B = .203688 .

Proof: By analysis of PICK?2, which 1s essentially the same as PICK

with the functions b(i,n) , c(i,n) , and d(i,n) chosen to be i ,

2 , and 1 , respectively, and with the partitioning step eliminated.

In detail:

Procedure PICK?: (Selects 108 , where | 5] =n, and i <fn) .

1. Compare the elements of S pairwise to form Ln/2 | palrs and

| possibly one left-over.

2. If i <B |n/2] use procedure PICK2, otherwise use PICKI, to

select m as the 1-th smallest element of the set T of

lesser elements of each pair. See Figure 2.

one left-over

® ) |

— — —_— En —]
1-1 pairs pairs with smaller element > m

with smaller

element < m

Figure 2

S. Discard all elements known to be > m , that 1s, those elements

in the circle G of Figure 2.

4. Use procedure PICKL to select 308 from S .

1h
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This completes the description of procedure PICKZ2. Note that this

reduces to a simple knockout tournament when 1 = 1! Using P2(i,n)

to denote the maximum number of comparisons used by PICKZ to select

10, we may derive:

| P2(i,n) <| n/2 + min(PL( Ln/21),P2(1i, Ln/2])) +PL(2 i) (19)
step 1 step 2 step Ub

C For particular values of 1 and n , procedure PICK2 is called

t = [1og,(Bn/1)] times in succession during the recursive calls at
step 2, before procedure PICKl 1s called. Thus

P2(i,n) < © Ww/2% + P(e)+t P12 1) (19)

. O<j<t
This directly implies our theorem. The proper value for B , ,20%688  ,

= is the largest value such that P2([Bnl,n)< Pl(n) .
g.-E.D.

The results of this section are summarized in Figure3, where

our bounds for F(Q) are plotted against @ . It is not unreasonable

. to conjecture that the true curve for F(a) is unimodal and peaks at

@= 1/2 . The relative complexity of the algorithm PICK1 leads the

authors to conjecture that our upper bound can be significantly improved.

L. A Lower Bound

In this section a lower bound for F(a) is derived through the use

of an "adversary" approach (this technique is called the construction of

an "oracle" by Knuth. See for example [7], Section 5.3.2.) The selection

15
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process may be formulated as a game between the selection algorithm

(playerA) , who is trying to find i168 with as few comparisons as

possible, and his adversary (player B), who 1s trying to force player A

to make as many comparisons as possible. The players take alternate

turns: each play by A consists of posing a "comparison question", such

as "Is x < y ?" (for any X,yeS ), to which player B on his turn must

respond with either "Yes" or "No". Player B's responses may be completely

arbitrary, as long as he does not contradict his previous responses to

A's questions. When A has extracted enough information from B to determine

16S , the game 1s over.

i The advantage of this approach 1s that a non-trivial lower bound for

_ the length of this game can be found, independentof A's strategy, simply

by supplying a sufficiently clever strategy for B. The length of this

. game 1s of course here the usualminimax cost, that is,

f(i,n) = min max c(A,B), (20)
def A B

where c(A,B) is the length of the game between particular A and B

strategies.

: Player B in this game of course plays the role of the "data".

A strategy for player B 1s 1n effect a rule for calculating a particularly

bad (that 1s, costly) set of data for A's strategy, since an actual set

of numbers can always be constructed that are consistent with B's replies.

A good strategy for player B is thus a procedure for "bugging" any given

player A strategy.

We will now describe the particular player B strategy which yields

our lower bound. As the game progresses there will of course be many

elements x such that player A has determined enough about x to know

17
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that x # 10, that is either x < i® or x > i6 . Player B will

initially consider all elements xeS to be members of the set U , meaning

that player B (and thus player A as well) 1s uncertain as to whether

| Xx<ie, x =10 , or x >10. After a while, though, player A will

| be able to force the issue regarding particular elements, that is, force
player B to decide the status of a particular element xeU . If B

decides that x > 16 , he will remove x from U and place it in set G .

Similarly if he decides that x < i686 , he will remove x from U and

place it in set L . Both G and L are initially empty. The element

that turns out to be 18 will thus be one (any one) of the elements still

in U , so thatas long as U| > 1 the game must continue. Our player B

| strategy thus attempts to keep U as large as possible for as long as
possible.

. The game must actually consist of two phases as far as B's strategy

1s concerned. As long as |L] < 1-1 and [e3 < n-1 , player B has

” complete freedom to put an element xeU into either L or G . After one

of L or G fills up, however, B is quite restricted and must play

differently, since he is not allowed to make |L pi or |g > n-i+l .

At that time, however, the game "degenerates" in the sense that player A

has merely to find the minimum (or maximum) element of U .

During the first phase, player B will never remove more than one

element x fromU on a single turn. This will not cause any complications

as long as x 1s a maximal (or minimal) element of U and player B puts

x into set G (set L ). Each element placed in set G (set L ) is

assumed to be less than (respectively, greater than) all previous elements

placed in that set, as well as greater than (respectively, less than) any

elements still remaining in U and L (respectively, U and G ). This

18



rule completely defines B's responses except when player A wishes to

compare two elements X,yeU . In addition, player B will only remove

an element from U when A makes.such a request.

Player B will always restrict membership in U so that every

member xe 1s either a maximal or minimal element of U (or both) with

respect to the partial order already fixed on S by B's previous responses.

In fact, B will maintain the even stronger condition that for each element

- xeU , there will be at most one yeU for which it is known whether x < vy

or vy <x . The partial order for S assumed by B may thus always be

diagrammed:

-— | set G
) set U

| set L
Set U therefore contains only three "element-states", snd we define

(x) tobe -1, 0, or 1 respectively according to whether x is the

lesser element of a pair, an isolated element, or the greater element of

a palr. B's strategy for a comparison between two elements X,yeU is

now easy to state (we assume without loss of generality that a(x) < o(y)):

19
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(1) respond " x is less than y ", and

(11) 1f a(x) = o(y)= 0 do nothing, otherwise

if o(x)= -1 remove x from U and place it in L ,

| - otherwise remove vy from U and place it in set G .
> Essentially B's strategy creates a new pair in U 1f a(x) = a(y) =o,

otherwise one element 1s removed from U and the number of pairs in U

: decreases by one. Let

- c = the number of comparisons made so far, and

p = the number of palrs currently in U .

It 1s simple to verify that B's strategy maintains the condition

c-p+2|ul = 2n , (21)

_ as long as the game 1s still 1n the first phase (this 1s clearly true

atthestart when ¢ =p =0 and |U]| =n). At the end of phase one,

either L or G is full, so that

Ul < n-min(i-1, n-i) - (22)

Furthermore, it must take player A at least IU} -1-p comparisons to

finish the game during the second phase, since he must at least do the

work of finding the smallest (or largest) element of U , which requires

U|-1 comparisons, of which p have already been made. The total

number of comparisons made 1s thus at least

f(i,n) > c+ |u| -1p > n+min(i-1,n-i) -1, for 1 <i <n (23)

from (21) and (22). Takingthe limit as n - = , keeping

i = [a(n-1)] +1 , we get

F(a) > l+min(a, 1-a) . (24)

This bound 1s also plotted in Figure 3.

20



5. summary

The most important result of this paper 1s that selection can be

performed in linear time, 1n the-worst case. No more than 5.4305 n

comparisons are required to select the i-th smallest of n numbers,

for any 1, 1<i<n . This bound can be improved when i is

near the ends of its range.

A general lower bound is also derived which shows, in particular,

that at least 3n/2 - 2 comparisons are required to compute medians.

The authors believe that the constants of proportionality in both

the upper and lower bounds can be considerably improved.
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1. Introduction

In this paper we present new bounds (upper and lower) on the expected

time required for selection. The selection problem can be succinctly

stated as follows: given a set X of n distinct numbers and an

integer 1 , 1 <i <n , determine the i-th smallest element of X

with as few comparisons as possible. The i-th smallest element, denoted

by 1©X , is that element which is larger than exactly i-1 other

elements, so that 16X is the smallest, and neX the largest,

element in X .

Let f(i,n) denote the expected number of comparisons required to

] select 16X . Since a selection algorithm must determine, for every

| teX , © # 1i©X , whether t < 10X or i8X <t , we have as a trivial

lower bound

= f(i,n) > n-1 , for 1<i<n . (1)

The best previously published selection algorithm is FIND, by

C. A. R. Hoare [1]. Knuth [2] has determined the average number of

. comparisons used by FIND, thus proving that

£(in) < 2((ntl)H  ~ (n#3-1)H 4- (i#2)H, +n+3) , (2)
where

H = it. (3)
1<j<n

This yields as special cases

f{1,n) < 2n+o(n) , (4)

and

£(I'n/27,n) < 2n(1+ fn(2))+o(n) <3.39n +o(n) . (5)
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No bounds better than (1) or (2) have previously been published.

In Section 2 we present our new selection algorithm, SELECT, and

derive by an analysis of 1ts -efficiency the upper bound

| £(i,n) < n+min(i,n-i) + on > m3 (n)) (6)
A small modification to SELECT 1s then made, yielding the slightly

improved bound

£(i,n) < n+min(i,n-i)+p@Y?) . (7)

An implementation of SELECT is given in Section J with timing results

for both SELECT and FIND.

~ The authors believe that SELECT 1s asymptotically optimal in the

sense that the function

-

F(a) = lim cup StL(n-1) J+1,n) » O0<a<gl1l (8)
def now & oT

.

| is bounded below by the analogue of the right-hand side of (7), so that
F(a) > l+min(a,l-a) , for 0 <a<1l . (9)

A lower bound just a little better than 1+.75 min(o,1-00) is derived

) in Section 4, within 9% of our conjecture and the performance of SELECT.

In what follows t pX will denote the rank of an element teX ,

so that (tb pX)eX =t . E() will denote the expected value of its

argument, and P() will denote the probability of an event.

2. The Algorithm SELECT

The algorithm SELECT utilizes sampling. A small random sample S

of size s = s(n) is drawn from X . Two elements, u and Vv ,

(wu< v) , are selected from S , using SELECT recursively, such that

by



the interval [u,v] is quite small, yet is expected to contain ieX .

Selecting u and v partitions S into those elements less than u

(set A), those elements between u and v (set B), and those elements

| greater than v (set C). The partitioning of X into these three sets

] is then completed by comparing each element x in X-S to u and v .
If i <In/21 , x is compared to v first, and then to u only

if x <v . If i >[n/21 , the order of the comparisons is reversed.

) With probability approaching 1 (as n =» o» ), i9X will lie in set B ,
and the algorithm 1s applied recursively to select 16X from B.

(Otherwise SELECT is applied to A or C as appropriate.)

If s(n) , u , and v can be chosen so that s(n) = o(n) ,

1 E(|B]) = o(n) , and P(10X £B) = on™) , then the total work expected
1s:

= Xs(n)) to select u and v from S ,

+ (n-s(n)) (1+ (min(i,n-1i)+o(n))/n) to compare each element in X-S
to uu, v,

+ o(|B]) to select i0X from B ,

+ o(1) to select i6X from A or C .

= n+min(i,n-1)+o (n) comparisons total.

This can in fact be done; the low order term 1s on? 3 n/n) |
Figure 1 shows a geometric analogy of the procedure SELECT.

It is not hard to show (see [3]) that for any teS we have

E(t px) = $56, 5) (10)
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o(t px) = J Go8)(sp8)(s ~tp5-1 ntl) (n-s) (11)
(s+1)“(s+2)

< 1] (m2) (aes) < 1 n
S - 2 /s

We wish to choose u and v so that E(upX) < i < E(vpX) ,

E(|B]) = E(vpX) -E(upx) is o(n) , and P(i < upXor i > vpX) _

o(n™h . To do this we choose upS8S and vpS <, tpat

where d = d(n) is a slowly growing unbounded function of n . In

fact, since

fos) o -q©

2 | erf(x)dx < Fg for some constant c , (13)

we will choose d =+4n(n) . This ensures that P(i <upX or i > vpX)

= o(n™1) . The above equations mean that

ups = i -q. (ntl) (n-s) s+1 i-sP ( ” mi) 2 5 -a/s
and

(1k)

VpS = i+q. (a1) (n-s) s+1 ies
s m1) S tds

Let g(1,n) denote the expected number of comparisons made by

SELECT. It will be shown inductively that

g(i,n) = n+min(i,n-1) + a(n 2 m3(0) : (15)
The above 1s true for all n less than some fixed N , so the basis for

induction 1s clearly satisfied. ye proceed with the inductive step by

determining the cost of SELECT as a function of s(n) and n , and

then optimizing the choice of s(n) .

6
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The cost of selecting u and v can be estimated as follows.

First we apply SELECT recursively to S to select u , then we extract

v from those elements of S -which are greater than u . (Note that

| selecting u means determining which elements of S are greater than
u as well.) These two operations cost

g(upS,s)+g(vpS-upS+1l,s -ups)

2

<2s+vpS-upS+@s /3 m3 (5)
: 2 1/3< 2s +2 dvs + Os /2 In™" 7“ (s)) (16)

comparisons.

. The cost of comparing each element in X-S to u and v 1s easy

to compute. There are n-s(n) elements to compare, and the probability

= that two comparisons will be made for an element 1s just

min(u pS,s+1-up S)/(s+l) , so that the total is

(n-s(n)) (l+min (i, n-1) /n+ds -1/2) . (17)

The cost of finishing up, if i6X falls in B , 1s at most

g( |Bl/2, |B]) . But

(IB]) . (vpS-ups)n/s= 2ans (18)

so that

-1/2 - -

g(181/2,18]) = 3an "24 of(ans™Y2)2/3 (mans V2) 3). (19)
On the other hand, 1f ieX falls in A or C , the expected

cost of finishing up is at most 3n/2 , and the probability that

i60XeA or i@XeC is, from (13), less than ¢/(dn) , so that the

total work expected in this case is less than 3e/(2d) , which goes to

Zero as n - «© .

]



The total expected cost of SELECT 1s thus

g(in) < 2s+2d/s+ o(s> tn>(s))

+ (n-s) (1+min (i,n-i) /n+ds~L/2,

N +2dns 24 3c/ (24)

< n+min(i,n-i)+ s+d/s -min(i,n-i)s/n

~1/2

X +3dns / + 3¢/ (2d) + (52/2 tn 3s) : (20)
The principal increasing and decreasing terms in s 1n this

-1/2
expression are s and 3dns . Choosing s(n) to make them

5 equal willapproximately minimize g(i,n) . Thus we choose

: 2

I s(n) ~ n /3 n/3(n) (21)
| which, together with (20), yields (15), which was to be proved. This

— completes the analysis of SELECT.

We now introduce a small modification to SELECT 1n order to reduce

i the second-order term to the promised a(n 2) . Let SH S, Cc... C S. =X
be a nested series of random samples from X of sizes EE

For each sample Se , let u, and Ve be chosen from 3 as in
(14) so that

(n+l) (n-s.) s.+1
u, p oS, = i-dy —d= J =
J J S. ntl

J

and (22)

(n+l) (n-s.) s,+1
v, pS. = fray —— 30) 25
J J S. n+l

J

Thus 1t 1s very likely, for any j , that us pX <1<vpX .- - J

Furthermore, as J approaches k (i.e., as s 5 gets large), u. andJ

vs surround i0X ever more closely. In fact, Up = 16X =v, The

8
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cost of finding u and vs directly from S is of course
prohibitive for large values of s, . However, since

J

Stl .-— . _— < u. A |

And simlarly Ev, 1 pS) 2 Vs PSs , We can use uy and Vit £0
bound the search for u, and v. See Figure 2 for a graphicalJ J.

representation of the modified SELECT.
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The modified algorithm runs as follows. Draw a random sample S4

of size Sy from X , and select uy and vy using this algorithm

recursively (and the ranks given 1n (22)). Determine the sets A, B_ ,T
2

and C, , a partition of 5, ; by comparing each element in 5,-8, to

R ug and vy (using the same order of comparison strategy as the original
SELECT). Next, determine U, and Vs by applying this algorithm

recursively to B, (in the most likely case; else A, or C, ).

N Extend the partition of 8, determined by u, and v, into a

partition As ’ Bs s Cs of Sz by comparing each element of 53-5,
to Us and v, with the same comparison strategy. Continue in this

= fashion until a partition A B. » C, of the set §_ =X has been
| created. Then use the algorithm recursively once more to extract 10X

from B, (or A, or C, if necessary).
This "bootstrapping" algorithm has the advantage that the expense

of computing a good bounding interval LIS for i©X 1s reduced
by first computing at a fraction of the cost the less tight bounding

nt 1 _ 1/2
interva lu, BE Vv a) . We keep d(n) = In (n) as before, to ensure

that the probability that i6X is not in [u,v] is of order o(n™) .
) The probability that wu, or v. is not in the interval [(U. 4, V.

J J I-17 -1

1s also negligible, since

ih
o(u._, p85.) < —L— (2k)j-1 Pp —_

J 24 8,
J-1

and

: d-(s, -s.)E(u,pS, ~u. , pS.) = hun (25)
JTF 9-173 Js

J=1

10



To compute the cost of the algorithm, we assume inductively, as

before, that

. «fo. . 1/2g(dsm) = m*min(j,m-3)+om’)

| form <n, 1<j<m. (26)

The expected size of By is easily estimated:
S.

E( 1B. = (v, . 4 = .(| sD) SA us 3 pS, )) (=X ) (27)j=-1
\

< 2ds. /s, .: - 31 J=-1

] The cost of selecting UpsVosee only 15Vy 4 from the sets Bs» i Bik
1s just

2 (g(u p B > |B ) + -: : g(v, pB. -u. pB.+1,|B.| -u. pB.2<j<k-1 9 9 3! It BE Ries 131 5 PB3))

< 2 (ds [Vs J +2a4s)) , (28)
2 <j <k-1 JJ J

whereas the cost of selecting uy and vy from 84 is less than

while the cost of selecting uw =v = i0X from B, is at most

5dn /al S71 (30)

The cost of partitioning S55-81585-8,,...,8,-8, about uy and vy ,
u, and Vou oe er Wg and Vip 1S just

A

2 (s.-s, )(l+min(i,n-i)/n+dNs.=) - (31)

Adding these all together, we have

11
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=

g(in) < n+min(i,n-i)+ 22 (5ds [/5_ . S. + d/s.

2<j<k UN A 5

| + S1(1~min(i,n-i)/n) + a/s, - dn/ Spal. (32)

| This sum can be approximately minimized 1f we let |
S12805 00058, increase

2 :
23-2

geometrically with ratio rr , so that s = pd s. , and
J 1

fs \

g(i,n) < n+min(i,n-i)+ (4 = ’ ) | rL ko

re a v*°1 4< n+min(i,n-i) + 24, 1 fl Z ~ 1 2| ned) (= r r-1— JF
f

,

< ntmin(i,n-i)+/n r 24 , 1
- r-1 Ss r . (33)- 1

This 1s approximately minimized when s, _ m2, and mL 32
]

yielding
'

| : fa oe 1/2
g(i,n) < n+min(i,n-1) + o(n 2) (34)

which was to be shown.

5. Implementation and Timing Results

In this section we present an ALGOL implementation of SELECT

(a revised form of the simpler version given in Section 2), and give

timing results that demonstrate that our theoretical results yield

fruit in practice.

We assume that it 1s desired to have the same input-output

relationships as FIND . That is, we are given an array segment

X[L:R] and an integer K such that L < K <R; we wish to rearrange

the values in X[L:R] so that X[K] contains the (K-I#1l)-th smallest

12
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value, L < I< K implies X[I] <X[K] , and K <I <R implies

X[1]> X[K] . An implementation of the complicated version of SELECT

given 1n Section 2 will not be given, since no advantage is obtained

| over the simpler version except for unrealistically large values of n .
- The innermost loop of the algorithm 1s obviously the partitioning

operation. Any reduction in the complexity of partitioning will show

up as a significant increase in the efficiency of the whole algorithm.

" The basic algorithm, however, requires partitioning X about both u

and v simultaneously 1nto the three sets A , B , and C , an inherently

inefficient operation. On the other hand, partitioning X completely

i about one of u , vbefore beginning the partition about the other can

_ be done very fast. We therefore use an improved version of Hoare's

PARTITION algorithm [1] to do the basic partitioning, A further (minor)

difference 1s that after partitioning has been completed about one

element another sample 1s drawn to determine the next element about

which to partition. This permits a very compact control structure at

little extra cost.

) A listing of the procedure as written in ALGOL 60 is given on page 27.

The element T about which to partition 1s first determined. Tt

was found experimentally that sampling was worthwhile only for values

of N (the size of input set) greater than 600 . This is due to the

expense of computing square-roots, logarithms, etc., which cost more

than they are worth for small N! If sampling is performed, the

recursive call to SELECT leaves the desired element T in X[K] ; if

sampling 1s not done, the algorithm partitions about whatever was

in X[K] initially (this'is good if X was already sorted). The

partitioning phase 1s initialized to obviate subscript range checking.
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Note that there is really no good way to avoid re-partitioning the

sample or at least moving most of it later, but having it located

around X[X] probably minimizes the number of exchanges necessary.

Since one of L , R change each iteration, the number of elements

remalning always decreases by at least one, thus ensuring termination.

Timing results were then obtained for FIND (exactly as published)

and SELECT (as given on page 27). The testing was done in SAIL (an

AIGOL dialect) on the PDP-10 at Stanford's Artificial Intelligence

Laboratory. These results are given in the description of the

algorithm on page 27.

SELECT clearly outperforms FIND. This results from a slightly

faster partitioning scheme combined with a large reduction in the

partitioning required due to the effective use of sampling.

14
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4, Lower Bounds for F(a)

In this section we present new lower bounds for the expected number

of comparisons required for selection. Although we believe SELECT to be

(first-order) asymptotically optimal, we have been unable to derive a

lower bound for F(Q) equal to the upper bound of l+min(q,1-q) produced

by our analysis of SELECT. The bounds derived here are within 94 of that

value, for all & , though, and the strength of these results relative

to the weakness of our methods lends support to our conjecture.

We will define a sequence Fi(@) y for 0 < Jj <=», of lower bounds

for F(a) such that Fy(@) <Fipq(@) , for all j > 0 and « ,

O <a<1. The functions Fo) ) F(a) , Fy(@) , and F(a) have

been computed -- the function Fa (a) thus belng our best lower bound
for F(a) . These bounds have been plotted against & in Figure 3. The

value of Fz(Q) at a = .5 is 1.375 , which tapers off as a approaches

0 or 1, essentially becoming identical with 1+min{Q@,1-@) near the

extremes.

We first prove a basic result.

; Theorem 1. Any selection algorithm that has determined 18X to be

some element yeX must also have determined, for any xXxeX , x # Vv

whether x <y or y <x .

Proof. Assume that there exists an x incomparable with y in the

partial order determined by the algorithm. Then there exists a linear

ordering of X , consistent with the partial order determined, in which

x andy are adjacent (since any element required to lie between Xx

and y would imply a relationship between x andy in the partial

order). But then x and y may be interchanged in the linear order

15



without contradicting the partial order —- demonstrating an uncertainty

of at least one in ypX , so that y is not necessarily i6X .

I Q.E.D.

| The following definition provides the basis for the lower bound
computations.

Definition 1. The Xey comparison for af element xeX , 18X | is

defined to be the first comparison X:y such that
L

Yy =18X or x<y<ieX or i8X<y<x. (35)

Note that determining which comparison 1s the key comparison for

. X can in general only be done after all. the comparisons have been made

and i16X has been selected. Each element x , x # 16X , must have
L

a key comparison, otherwise x would be incomparable with i6X ,

| a contradiction by Theorem 1. This proves
.

Lemma 1. A selection algorithm must make exactly n-1 key comparisons

to select 16X , where |X| =n .

We now define two more essential concepts.

Definition 2. A fragment of a partial ordering (X,<) is a maximal

connected component of the partial ordering, that 1s, a maximal subset

S C€ X such that the Hasse diagram of " < " restricted to S is a

connected graph.

Any partial ordering can be uniquely described up to isomorphism as

the union of distinct fragments. A selection algorithm thus begins with

a partial ordering consisting of n fragments of size 1 . To illustrate,

let Fre be the set of all fragments having at most k elements:

16



Fi o= {eo} ,

Fs = ( 5 1] ,

5-DAY] and so on.

Definition J. A Joining comparison 1s any comparison between elements
L

belonging to distinct fragments.

Note that each joining comparison reduces the total number of

fragments by one, implying the following.

Lemma 2. A selection algorithm must make exactly n-1 joining

comparisons to select 18X , where 1X] =n .

Proof. As long as more than one fragment exists, there must be some

element incomparable with 16X , since elements in distinct fragments

are incomparable. The lemma then follows from Theorem 1.

Our lower bounds will be derived from the conflicting requirements

) of lemmas 1 and 2 -- a selection algorithm can not in general have all

of its joining comparisons be key comparisons, or vice versa. Ip fact,

the authors make the following conjecture:

Conjecture. Asymptotically (as n = « ), the average probability that

a joining comparison will turn out to be a key comparison is at most

max (CQ, 1-0) . (36)

We must use the asymptotic average probability, since near the end

of an algorithm, the probability of a particular joining comparison being

17
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a key comparison may easily exceed (36). This happens because near

the end there are often elements with a significant probability of

| actually being 10X , and a comparison with one of these elements
can have a somewhat larger probability of turning out to be key. As

an example, consider the comparison of a previously uncompared element

Xx with an element y which 1s known to be the 1-th smallest of the

remalning n-1 elements. Then

L

P(x:y is key) = P(y = 16X <x) +P(x =16X <7)

= (n-i+1)/n , (37)

which, for a < 1/2, is a little larger than mex(Q,1-q)= 1-0 =

] (n-i+1)/(n+1)

| Unfortunately, we could not find a proof of our conjecture, which
would imply the optimality of Select for all values of a . Our

=~ results stem therefore from an analysis of only those joining comparisons

in which at least one of the fragments being Joined is small. ye are

] left with just a small finite number of cases (i1.e., possible types of

joining comparisons) to consider, since we will not distinguish between

the various kinds of large fragments that might participate in a

joining comparison. We want to estimate, for each type of joining

comparison, the probability that it will turn out to be a key comparison.

These probabilities will then be used in an interesting way to derive e

lower bound for F(a) .

As noted above, the probability that a joining comparison will turn

out to be a key comparison 1s certainly affected by the probability that

one of the elements being compared 1s actually i6X . The following

argument shows that we may treat this latter probability as being

18



. negligible, for large n . Given some €¢ , O<e <1, it is easy to

' see that there exists an integer m such that the maximum probability

that any element XxeX is actually i©X 1s at most € if the largest

fragment has size at most n-m‘'. For if XxX 1s 1ncomparable with m elements

~ from other fragments, then it has a chance of being 16X of at most

Pix — 16%) < (2rma(l-a))2 (38)

. which is less than € for m > (2 ra(l<)es) + . So except for a

finite number of comparisons near the end, the probability that any

element is 106X is at most €e . As n - « , these latter comparisons

form a negligible proportion of the total number of comparisons made, and

their effect on the probability that an average joining comparison will

be a key comparison becomes insignificant. We will therefore assume

| from now on that the probability that either element being compared 1s

i0X is zero. |

To derive F(a) we need to compute the probability that each

joining comparison in which the smaller fragment has at most k elements

will turn out to be a key comparison. These comparisons can be divided

into two types: those for which both fragments belong to Fre , and

those for which only one fragment has k or fewer elements. The first |

case 1s somewhat simpler to handle so we shall treat it first, by means |

of an example.

N Consider the comparison of the smaller of a pair of elements x < z , |

to an isolated element y : |
|

C AY (39)
X

19



As a result of this comparison,we will end up with either

Z Ng Z

X y

The probabilities of these two outcomes are not equal —-- the first

occurs with probability 2/3 while the second occurs with probability

1/3 . This happens because the first outcome 1s consistent with the

two permutations x <y < z and x < z <y , whereas the second

outcome is only consistent with y <x < z . Since each permutation

consistent with the input fragments is equally likely, the probability

of each outcome 1s proportionalto the number of permutations consistent

with that outcome.

We must now consider each permutation consistent with the input

fragments separately, since to determine whether x:y 1s a key compari-

son requires knowing the relative order of X , y , 19X, and all

elements previously compared to either x or y . Let us consider

) the permutation x < y < z first, consistent with the first outcome.

With respect to 168X , these three elements may be 1n one of four

positions. That is, 16X may be greater than from zero to three of

) these three elements. In only two of these cases will X:y turn out

to be a key comparison:

(i) ieX <x <y<z — — this will be a key comparison for y ,

(ii) x <ieX<y<z -— this will not be a key comparison,

(111) x <y<i16X <z - —- this will be a key comparison for x ,

(iv) x<y <z <i6X -— this will not be a key comparison,

since x has already been compared

to z .
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The probability of each of these four cases occurring, given that

x <y <z , follows the binomial distribution with p = @ , so that

case (1) occurs with probability (1-)” and case (iil) occurs with

probability 70 (1-q) . The analysis of all three permutations consis-

tent with (39) can be represented graphically, using horizontal lines

to indicate the relative positions of i08X that make x:y a key

comparison:

Z yy Z

; 2 | Z | x (41)X X y

The total probability that x:y turns out to be a key comparison

is thus the average probability that x:y 1s a key comparison in each

of these three cases. This 1s just (finally!):

P(x:y is key) = (1-aY + 20° (1-0) Ca : (42)
Whenever both fragments are small, the probability of a comparison

joining them turning out to be key can be computed in the above fashion.

This completes our description of the analysis of a comparison joining

two small fragments.

When an element Xx belonging to a small fragment 1s compared to an

element y from an arbitrary fragment having more than k elements,

the analysis can not be done in the above fashion since we essentially

know nothing about y ; 1ts probability distribution and probability

of already having had a key comparison must remain totally unspecified.

It is still possible, however, to derive an upper bound on the probability
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that the comparison x:y will turn out to be a key comparison,since

if x and y fall on different sides of 10X the comparison can

not be a key comparison. It 1s thus easy to see that

P(x:y is key) < max(P(x < 10X),P(x > 10X)) (43)

For example, to comparex of the fragment:

X

\ (hh)
C

against an arbitrary y , the case analysis can be represented graphically

as before, using a horizontal line to indicate the relative position of

\ ieX making a key comparison possible:

X X

§ X { or f X ; (45)
for x < 16X forx >16X

We have then directly from (43) and (45)

oP 2 3 | 2 2P(x:y is key) < max(a’+ 3a (1-0)/2,(1-a)” +3a(l-a)” +3 (1-a)/2) . (46)

This kind of analysis 1s simple to carry out for an x belonging to

any small fragment, so that we now have ways of computing (an upper

bound for) the probability that any comparison joining a small fragment

to another fragment will turn out to be a key comparison.

We will now describe how specific results such as (46) and (42)

above can be combined to derive FQ) _ We will assign a weight to a

partial ordering which 1s a lower bound on the expected number of non-key
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joining comparisons yet to be made in selecting 18X. The total

number of comparisons made on the average is thus bounded below by

n-1 (for the joining comparisons) + the weight of the partial ordering

(to ensure that n-1 key comparisons are made as well). The weight of

a partial ordering 1s defined to be the sum of the weights of its

constituent fragments. The weight of a fragment will be computed from

the specific probability results already calculated by means of a

linear programming technique.

What we want 1s to ensure that the expected weight of a partial

ordering does not decrease as a result of a joining comparison by more

than the--probability that that joining comparison was non-key. This

guarantees that the weight of the initial partial ordering 1s a valid

lower bound for the expected number of non-key joining camparisons made.

Since we only have data for those fragments with k or fewer elements,

only those fragments will be assigned positive weights -- all larger

fragments will have weight zero. (In particular, the weight of the

final partial ordering, in which i6X has been determined, must be

Zero.)

Let us consider the computation of Fo (Q) as an example. Let Wa

be the weight of the fragment e and let Wo be the weight of |
The weight of the initial partial ordering 1s therefore just nw, . We

want to maximize wy subject to the constraints imposed by our previous

he computations about specific kinds of comparisons. For example, a

comparison between two isolated elements is non-key with probability

20(1~-at) , yielding the inequality:

2w, -w, < 20(1-0) (47)
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Comparing an 1solated element against an arbitrary element from a

fragment with more than two elements yields the inequality

wy < min(a, 1-0) . (43)

A computer program was written to generate all the relevant

inequalities like (47) and (48) for a given k . Note that when two

fragments are being joined such that two different outcomes are

possible, both in Fre , the probability of each outcome must be

considered when computing the expected weight of the resultant fragment

after the comparison has been made. The linear programming algorithm

MINIT of Salazar and Sen [4] was used to determine the maximum weight Wy

possible for the isolated element. The value l+w, 1s then our

lower bound for F(a) .

When k= 1 the solution takes a particularly simple form:

F(a) > F(@) = 20(1-0) . (49)

The functions Fo(Q) and F5(Q) are too complicated to give here, but
are as plotted in Figure 3. For the case of computing medians they

reduce to

1 a, |= = 0Fo(5) = 3m (50)
C

and

1 11

F,(3) = gn (51)

which is within 9% of the best possible value of 1.5 n .

This completes the description of our lower bound derivations. The

results show that SELECT 1s at least near-optimal, and we suspect that

. a more powerful combinatorial analysis would demonstrate optimality.

- The weakness in our method lies in the restricted nature of the

— oL
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inequalities derivable for the case of a comparison between a small

fragment and an arbitrary fragment belonging to a large fragment. In

any case these lower bounds are the first non-trivial lower bounds

published for this problem.

%
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The Algorithm SELECT - for finding the i-th smallestof n elements

by Robert W. Floyd and Ronald L. Rivest

wtanford Computer Science Department
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CR Categories: 5.30, 5.39

DESCRIPTION: SELECT will rearrange the values of an array segment

L X[L:R] so that X[K] (for some given K ; 1, <K<R ) will contain
the (K-I#1)-th smallest value, 1, <I < K will imply X[I] < X[K],

and K <I < R will imply X[I] > X[K] . While SELECT is thus functionally

= equivalent to Hoare's algorithm FIND t it is significantly faster on the

| average due to the effective use of sampling to determine the element T
} about which to partition X . The average time over 25 trials required

_ by SELECT and FIND to determine the median of n elements was found

experimentally to be:

n 500 1000 5000 10000

SELECT 89 ms. 141 ms. 493 ms. 877 ms.

FIND 104 ms. 197 ms. 1029 ms. 1964 ms.

The arbitrary constants 600 , .5, and -5 appearing in the algorithm

minimize execution time on the particular machine used. SELECT has been

- shown to run in time asymptotically proportional-to N+min(I,N-I) ,

where N = L-Rt+l and I = K-I#+1 . A lower bound on the running time

within 9% of this value has also been proved. 2
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ALGORITHM:

procedure SELECT(X,L,R,K); value L,R,K; array Xj

. begin integer N,I,J,8,8D,LL,RR,T; real 43
while R > L do begin

if R-L > 600 then begin

L comment Use SELECT recursively on a sample of size S to get an

C estimate for the (K-L+l)-th smallest element into X[K], biased

slightly so that the (K-I#+1l)-th element is expected to lie in

- the smaller set after partitioning;

| N := R-Lt+1;
IT := K-I+1;

1 7 := In(N);

[ S := .5% exp(2¥z/3);
SD i= .5* sqrt (Z*S*(N-S)/N) * sign(I-N/2);

i LL := max(L,K-I*S/N+SD);
RR := min(R,K+(N-I)*S/N+SD);

_ SELECT (X, LL, RR, K)

end;

- T := X[K];

| comment The following code partitions X[L:R] about T. Tt is similar
to PARTITION but will run faster on most machines since subscript

range checking on I and J has been eliminated.;

I :-L;

J = R;
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exchange (X[L],X[K]);

if X[R] > T then exchange (X[R],X[L]);

while I < J do begiy

N exchange (X[1],X[J]) ;
) I := T+1,

- J := J-1;

} while X[I] <T do I := T+l;

while X[J] > T do J := J-1;

L -

3 if ALL] = T then exchange (X[L],X[J])
else begin J .z J+1; exchange (X[J],X[R]) end;

X comment Now adjust L, R gq they surround the subset containing
the (K-I#1)-tp smallest element;

" if J < Ki J+;

if K < J then R := J-1:

end

end SELECT
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