PB-218 875

FOLDS, A DECLARATIVE FORMAL LANGUAGE
DEFINITION SYSTEM

[su Fang

Stanford University

Prepared for:

Agency for International Development

December 1972

DISTRIBUTED BY:

Natienal Techaical information Service
U. S. DEPARTMENT OF COMMERCE

PB 218 875

FOLDS, A DECLARATIVE FORMAL LANGUAGE DEFINITION SYSTEM

BY

ISU FANG

STAN-CS-72-329
DECEMBER 1972

Reproduced by

NATIONAL TECHN] '
|NF3mAno~ ssa\gl?:le

artment of C
Springfield vA :?2",\';1.“.

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

S,
¢
\,
e
R

SR
AR
= N

/
411561/"\

FOILDS, A DECLARATIVE FORMAL LANGUAGE DEFINITION SYSTHEM

by Isu Fang

Abctract

This thesis describes FOLDS, a declarative formal language definition
system. The system implements and extends Knuth's method for the
specification of the semantics of context-free languages. The system
provides a2 language (SPINDLE) and date structures to define the syntlax
and semantics >f a language. It also uncluces a machine (MUTILATE) that
from the definition campiles programs of the defined language. Both the
consistency and the correciness of the defintion can be checked in this
way. The language imposes very few restrictions on definitions while
preserving the declarative nature of Knuth's method; i.e , the compilation
process is transparent in the definition. In addition, thLe system
provides a means for semantically resolving syntactic ambiguities. FOLDS
is intended primarily for the language designer, giving him the
orpurtunity of realizing his definition with very little concern about
implementation details. A definition of SIMULA 67 in SPINDLE and a et
of SIMULA 67 prograns, as compiled by tne definition, are included to

illustra*e the capabilities of the system.

This recsearch was supported in part by the Facullade de Economia e
fdministraca da Universidade de Sfao Paulo, Agen:vs for [nternational
Development - State Department and Fundacao de f;paro a Pesquisa do
Estado de Suo Faulo; by IBM Corporation; and by Xerox Corpcration.

1k

SIBLIOGRAPHIC DATA 1. Report No 2 3. Recipient’s Accession No.
SHEET STAT-CS- 72 =34 B '
4. Title and Subcitle " Keport Date
December 197
Folds, A Declarative lrormal Language Definition System 6.
7. Awhor(s) 8. Performing Ovganization Repe.
Isu Fang No. 5TAN-CS- 72-329
9. Performing Organization Name and Address 10. Project/Task /Work Unit No.
Stantord University
Computer Science Department 11, Contract/Grant No.
Stantford, Cali:'ornia 4'30%
12 Sponsoring Creanization Name and Address 13. Type of Report & Period
Faculdade de Kconomia e Administraca de Univercidade de Sao Pahlo$°'""
Agency for International Development-State Department and Fundacao technical
de Amparo a Pesquisa do Estado de Cao Paulc (Brazil) .

15. Supplementary Notes

18. Abstracts
Tnis thesis describes FOLDS, 8 declarative formal language definition system.
The system implements and extends Xnuth's method .ur the specification of ttre
semantics of context-tree languages. 'The system provides a language (SPINDLE)
and data structures to define the syntax and sementics of a language. It also
includes a machin> (MUTILATE) that from the defirition compiles programs of the
defined language. Both the consistency and the correctness of the definition can
be checked in this way. 'The language imposes very few resirictions on definitiocig
while preserving the declarative nature of Knuth's method; i.e., the compilation
process is transparent Iin the definition. In addition, the system provides a
means for semantically resolving syntactic ambiguities. FOLDS is intended
primarily for the language designer, giving him the opportunity of realizing
his definition with very 1ittle concern about implementation details. A
definition of SIMULA €7 in SPINDLE a~d a set of SIMULA 67 programs, as compiled
H’Ty"oﬂ’l and Document Analysis. 17e. Descriptors

by the definition, are included to illustratc the
capabilities ot the system.

1. identifiers/Open-Ended Terms

17¢. COSAT! Field/Group

. VL«. L. ——
18. Availability Statement 19. Security Claas (This 21. No. of Pages
Report)
0. Securicy éiu- “En 77, E.u '
Pnﬁ
NCLASSIFIED

FORM NTIS-18 (10-70) UBCOMM-DC 40329-P 71

Preface

[would like to express my deepect gratitude to my thesis advicor,
Protersor Donald F. kKnuth, for ayrpesting the topie of this thesis ana
pruviding guidance and encouragement during its preparation. T also
wish to thank Dr. James G. Mitchell and Professor Jerome A. Feldman for
their construstive criticism, their advice and help in the preparstion
of this manuscript.

[also wish to thank Richard Siter, my fellow student, for many
stimulating and helpful discussions and Richard E. Sweet without whose
cxpertise and ,-ood will thic thesis would never be printed.

1 welcome 'uis uppurtunity to thank a number of persons who through
their cupport made thic thesis possible: Professor Flavio F. Manzoli,
profecsor Miruel ColuasSsuono, Professor Affonso C. Pastore, Professor
Sylvio Bormes Reis, Jicente Paolillo and Arthur E. Angel.

This work was cupported by the Faculdade de Economia e Aaministracao
da Universidude de Cao Paulo, Agency tor International Development - State
hepartment und Fundacao de Amparo & Pesquisa do Estado de S5a0 Paulo.
Conputer time was partially provided by the Advanced Research Projects
Apency of the Office of the Secretary of Defense (SD-167) and 1LM
Corporation. Preparation and publication of this paper was partlally
supported by iBM Corpovation and by the Xerox Corporation.

I dedicate this work to my wife Sara whose love, patience,

.nconragement and derication nmade it all possible.

ii

CHAPTER

TABLE OF CONTENTS

SECTION
INTRODUCTION
REVIEW AND OVERVIEW

11 FORMAL LANGUAGE DEFINITION METHODS

1.2 IRONS® METHOD

1.3 KNUTH'S METHOD

1.4 A SIMULA 67 DEFINITION

1.5 FOLDS

1.5.1 SPINDLE - THE FOLDS LANGUAGE

1.5.2 THE SPINDLE COMPILER

1.5.3 MUTILATE - THE FOLDS MACHINE
SPINDLE

2.1 VALUES AND CONSTANTS

2.2 SYNTAX DEFINITION

2.2.1 TERMINALS

2.2.2 NONTERMINALS AND START SYMBOL

2.2.3 SYNTACTIC PRODUCTIONS

2.3 ATTRIBUTES

2.3.1 ATTRIBUTE DECLARATION

2.4 EXPRESSIONS

2401 SIMPLE EXPRESSIONS

2.4.1.1 FUNCTION CALLS

2.4.1.2 ATTRIBUTE DESIGNATION

2.4.1.3 BLOCK EXPRESSIONS

2.4.2 INTEGER EXPRESSIONS

2.4.3 BOOLEAN EXPRESSIONS

PAGE

o n s

13
15
18
24
25
33
36
37
37
40
41
42
46
50
50
52
53
55
55
57

. 4.3.1
2.4.4
2.5
2.5.1
2.5.1.1
2.5. 1. 1.1
2.5.1.1.2
2.5.2
2.5.3
2.0

2. 6.1
2.6.2
2.6.3
2.7

2. 7.1
2.7.2
2.7.3
2. 8

2.9
2.9.1
2.9.1.1
2.9.2
2.9.3
2. 10
.11
2.12

3.1
3.2

RELATIONS

CONDITIONAL XPRESSIONS
STATEMENTS

UNCONDITIONAL STATEMENTS
ASSIGNMENT STATEMENTS
OTHER RHS

MULTIPLE ASSIGNMENTS
CONDITIONAL STATEMENTS
WHILE STATEMENTS

OTHER EXPRESSIONS
ASSIGNMENT EXPRESSION
PUTIN EXPRESSIONS

FIND EXPRESSION

STAXDARD FUXNCTIONS
PREDICATES

LIST FUNCTIONS
MISCELLANEOUS FUNCTIONS
USER DEFINED FUNCTIONS AND PROCEDURES
OTHER STATEMENTS

WRITE STATEMENT

FORMATED OUTPUT

ERROR STATEMENT
DISAMBIGUATION STATEMENT
SEMANTIC RULES

WRITING AND RUNNING A SPINDLE PROGRAM
THE DEFINITION OF TURINGOL

MUTILATE

LEXICAL ANALYZER AND PARSER
INTERPRETER

iv

58
59
60
62
63
68
71
73
73
74
74
75
77
78
79
80
85
86
88
89
90
93
g5
S7
99
100
104
108
107

3.3
3.3.1
3.3 1.1
3.3 1.2
3.3, 1.3
3.3. 1.4
3.3. 1.8
3.3.1.6
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3. 2.4
3.3.2.5
3.3. 2.6
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.4
3.3.4.1
J.3.4.2
3.3.4.3
3.3.4.4
3.3.4.5
3.3.4.6
3.3.4.7
3.3.5
3.3.5.1

THE INSTRUCTION SET OF MUTILATE

CONSTRUCT MANIPULATION INSTRUCTIONS

PLA § GET

PLAN

GETN

FIND

FMT

REP

LiST MANIPULATION INSTRUCTIONS
CAR

CDR

CONS

LIST

APEND

RVRS

STACK MANIPULATION INSTRUCTIONS
4404

DBL

FLIP

CONTROL INSTRUCTIONS

JUWp

JUMPF & JUMPT

PAR & PARN

CALL

RET

HLT

ERRCR

VALUE MANTPULATION INSTRUCTIONS
ASS

113
115
115
117
117
118
118
119
119
120
120
121
122
122
123
123
123
124
124
125
125
125
126
126
127
128
128
129
129

3.3.5.2
3.3.5.3
3.3.5.4
3.3.5.5
3.3.5.06
3.3.5.7
3.3.5.8
3.3.5.9
3.3.5.10
3.3.5.11
3.3.5.12
3.3.5.13
3.3.5. 14
3.3.6

3.3.6.1
3.3.6.2
3.3.7

3.3.8

4.1

4,2

4.2.1
4, 2.2
4. 2.3
4. 2.4
4.2.5
4. 2.6
4. 2.7
4.2.8

TRANS

VALC

ASSI

VAL

STO

LOAD

AR

LOG

TEST

coyp

NAME

GEN

CoPY

OUTPUT INSTRUCTIONS
OUT & OUTF

ouUTC

THE DISAMBIGUATION INSTRUCTION - DAM3
[NDEX OF OPCODES
DEFINITION OF SIMULA
DEFINITION

ANALYSIS OF THE DEFINITION
AMBIGUITIES

QUALTB

VIRTUALS

CLASS CONCATENATION
FUNCTION INVDELTA
Cobs

ARRAY DECLARATIONS
LABELLED BLOCKS

vi

4. 2.9
4,2.10
4.2.11
4.2.12

PROCEDURE AND CLASS MEADINGS
PROCEDURE CECLARATIONS
ST1
OTHER MODIFICATIONS
CONCLUSION
BIBLIOGRAPHY
APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4

vii

210
217
217
218
219
228
231
237
239
248

FIGURE

1.10
1. 11
2.1
2.2
2.3
2.4
2.5
2.0
2.7
2.8
2.9
2.10
2. 11
2. 12
2. 13
2. 14

LIST OF ILLUSTRATIONS

TITLE

Grammar for BNI

Parse tree for the string 1101
Definition of BNI ’
Decorated parse tree for the string 1011
FOLDS

Definition of ENI in SPINDLE

Initial state of the machine
Processes to be executed

State 1 of the machine

State 2 of the machine

Decorated parse tree for -10
Examples of elementary attributes
Examples of composite attributes
Tree representation of attributes
Attribute ceclaratioas

The attribute MATRIX

The attribute E(PROCDECL)

Declaration of attributes

Effect of executing assignment statemerts
Attributes after the assignments
Effect of the copy operator

Effect »f CAR, CDR and CONS

Examples of the use of LIST functions
Effect of APEND

Effect of RVRS

viii

PAGE

1
12
17
23
28
29
30
30
31
43
44
45
47
48
49
66
67
68
70
81
83
84
84

2. 15
2. 16
2.17

Example of block expression

Examples of output statements

Definition using the error stat:ment

ix

3

80
91
94

INTRODUCTION

This thesis describes FOLDS, a declarative formal language
cefinition system. The system implements and extends Knuth's method
[Kn 68a) for the specification of the semantics of context-free
languages: given the syntax of a language, attributes are associated
with each nonterminal and the *"meaning"” o7 & string of the language
is given by the values of the attriputes associated with the
nonterminals ian the parse tree; the serantics establish, for each
syntactic production, tche relationships that must exist between the
attributes of the nonterminals involved in the production; The
system also incorporates Wilner's extensions [Wi 71] to Knuth's
method,

The system provides a language (SPINDLE) and data structufes to
define the syntax and semantics of a 1language. It also 1includes a
machine (MUTILATE) which compiles programs of the defined language
using the definition. Both the consistency and the correctness of the
definition can be checked in this way.

The language imposes very few restrictions on definitions while
preserving the declarative nature of Knuth's method; 1i.e., the
compilation process is transparent in the definition. In addition the
system provides a means for semantically resolving syntactic
ambiguities. The syntax is specifled by means of productions and the
semantics by means of an ALGOL-like language which serves both to
relate the attributes of nonterrinals as functions of other

attributes and to describe the functions.

The cdata structure scheme is derived from the "objects" of the
Vienna Definition Language [We 72] which allows great flexibility in
the choice of data structures for the attributes.

The system is intended primarily for the language designer. It
gives him the opportunity of realizing kis definition with very
little concern about implementation. With the use of MUTILATE,
prograns in the defined language can be compiled directly from the
definition.

A large subset of SIMULA 67 has been defined in SPINDLE, both
as a test for the system and as a demonstration of its capabilities;
a series of SIMULA 67 programs have pecn compiled fiom this
definition, the largest one being approximately 70 lines 1long and
generating a parse tree with approximately 2000 nodes.

This thesis has been organized so that the reader can minimize
the amount cf reading necessary to achieve a certain depth of
understanding about the system; each chapter may contain backward
references but contains no forward references. The appendices are an
integral part of the thesis and are used to illustrate the text.

Chapter 1 gives a general description of the system: it
contains a review of formal language definition methods, with
emphasis on those directly relevant to tuls work and an overview of
FOLDS. Some simple examples illustrate the material covered. This
chapter should be enough for those who only want to understand the
main features and principles involved in the system.

Chabter 2 presents a description of SPINDLE, the FOLDS
language. It describes the syntax and semantics of SPINDLE and gives
numerous exaupies to illustrate its different features. A complete

SPINDLE definition of a simple language is presented in Appendix 1.

This chapter should be read by those desiring a deeper understancding
of the capabilitie: of the system and also by those who want to
program in SPINDLE.

Chapter 3 describes the FOLDS machine, MUTILATE. It is
essentiully a terse description of the relevant aspects of the
machine implementation. Appendices 2 and 3 illustrate the
descriptions given in the text of the chapter. The chapter should be
read only by those who want to know how some particular SPINDLE
features are 1mplemented and by those who want to inplement a similar
systen.

Chapter 4 is a definition of a subset of SIMULA 67; it 1is an
implementation of Wilner's definition of SIMULA 67 (Wi 71]. It
illustrates both the capabllities of FOLDS and a series of SPINDLE
programming techniques. Appendix 4 contains a set of SIMULA 67
programs and the target code g:nerated for them by MUTILATE from the
definition. This chapter is 1intended both as a demonstration to the
nonbeliever of the capibilities of the system ancd to illustrate a
series of programming techniques which may be wuseful for the
definition of other languages. Chapter 4 presupposes an understanding

of Chapter 2 but no understanding of Chapter 3.

CHAPTER 1

REVIEW AND OVERVIEW

This chapter contains a review of formal language definition
methods, with emphasis on those directly relevant to this work and an
overview of the FOrmal Language Definition Sysfel (FOLDS). Some

simple examples will illustrate the use of the materiai covered.

1.1 FORMAL LANGUAGE DEFINITION METHODS

A language definition is composed of two hierarchically related
sets of specifications cilled the syntax and semantics of the
language. The syntactic component aetermines the set of strings that
beleng to the language while the semantic component attaches
"meaning” to a string of the language. In particular the syntax of a
programming language describes the set of valid programs and the
semantics supplies the meaning of these valid progranms. Much
attention has been given to the problem of defining the syntax. As a
result, it is well understood and has several established solutions
(se¢ for example Hopcroft & Ullman(HU 681).

Two approackes heve been used for semantic specification:
interpreter-oriented and compiler-oriented. The interpreter-oriented

approach defines a partial function which maps a statement and a

state vector onto a new state vector. The compiler-oriented approach,
on the other hand, defines a partial function which maps a statement
in the language onto a statement in Jnother language, assumed
understood.

The interpreter-oriented scheme is described by Wegner (We 72)
with a detailed presentation of the Vienna Definition Language (VDL),
currently the most sophisticated such method. Examples of the
compiler-oriented approach appear in Irons(Ir 63)], Brooker §
Morris (BM 62], Wirth § Weber (WW 661, Feldman (Fe 66] and
Knuth (Kn 68a}.

1.2 IRONS' METHOD

Irons (Ir 63) defines the semantics of a context-free language
by associating & single attribute with each non-terminal, namely its
translation, and associating a semantic rule with each syntactic
production. The semantic rule expresses the value of the attribute
of the left hand side nonterminal (LHN) of the associated syntactic
production as a function of the values of the attributes of the right
hand side nonterminals (RHNs). In teras of the parse tree, a node's
attribute value is determined by applying its associated semantic
rule to the attribute values of 1its directly descendant nodes. The
meaning of a string S is the attribute value attached to the root
node of {ts parse tree , PT(S). The value of an attribute 1s
"synthesized" from values of attributes lower in the tree. A number
of compiler-compilers were based on this idea, notably McClure's

(MC1 6S].

1.3 KNUTH'S METHOD

Knuth [Kn 68a) extends Irons' {deas by introducing two new

concept S
(1) Multiple attributes associated with each nonterminal.
(2) Synthesized and inherited attributes.

Now the =meaning of a string S is the set of values of the
attributes of the root node of PT(S). The meaning of a phrase of S 1s
the set of values of the attributes of the node from which it is
derived. Synthesized attributes pass from a noce to 1its ancestors
while inherited attributes go from & node to its descendants. There
are now two sets of semantic rules associated with each syntactic
production. The first set establishes the values of all synthesized
attributes of the LHN of the production as functions of the
attributes of the RHNs together with the other attributes of the LHN.
The second set establishes the values of all the inherited attributes
of the RHNs of the production as a function of the attributes of the
LHN and the other attributes of the RHNs. Each attribute attached to
a node in the parse tree Is associated with a semantic rule that
establishes the attribute's value as & function of the attribute
values of the surrounding nodes <(ancestor, direct descendants and
siblings).

The concept of multiple attributes greatly expands the meaning
that can be associated with a phrase (or string). Not only the
translation but any other property of a phrase (e.g. length, position
on the string, etc.) can be expressed by associating attributes with

the nonterminal that generates it.

Synthesized attributes are essentially like Irons' attributes.
As for inherited attributes, Knuth shows that they are not essential
since they can always be replaced by an equivalent set of synthesized
attributes. But they greatly enhance comprehension by allowing &
more natural representation, since the interplay between inherited
and synthesized attributes is the way one generally thinks about such
processes. Expressing language features such as labelled statements
and block structure using purely synthesized attributes 1is
complicated. Inherited attributes enable one to describe such
features ouch more easily. In ALGOL 60, for example, the nesting
depth of a block and the information about the variables which are
global to it would be inherited attributes while the target code
generated for the hblock would be a synthesized attribute. Loosely,
inherited attributes represent that nortion of the meaning imparted
by the surrounding context of a phrase. Synthesized attributes
correspond to the portion derived from the phrase itself.

Knuth intrcduces another concept, that of global attributes,
which are attributes of the start symbol that are accessible from any
production. A global attribute is equivalent to (can always be
replaced by) a pair of attributes defined on all nonterminals, one
synthesized and the other inherited. The synthesized attribute
collects information necessary to form the value that 1is then
propagated through the tree by the inherited attribute. This concept
though not 1increasing the power of the method, does make the
definitions written in it more concise.

One of the most important characteristics of this method is its
declarative nature. The parsing method is transparent to a language

definition. There is no explicit statement in a definition about the

order in which values are assigned to attributes. The semantic rules
merely state how the values of the attributes of neighbouring nodes
relate to each other. This contrasts with, for example, Wirth &
Weber's definition of EULER which 1is essentially an algorithmic
description.

The locality of definitions is a very important aspect cf this
method. The semantics of a syntactic production refer only to the
values of the attributes of nonterminals involved in the production.
The interdepencencies between the various parts of the language are
expressed only in terms of the att-ibute values passed between them.
Besides making for more understandable and concise definitions it
facilitates the addition and removal of features from the language.

As a simple example of this method we will define the binary
notation for integers (BN!). The meaning of a string of 0's and 1's
ts its value expressed as a decimal integer. In other words we are
defining the translation of binary integers to their decimal
equivalents.

The grammar in figure 1.1 expresses the syntax of BNI. This
grammar associates a parse tree Pi(S) with any string S of BNI. The
parse tree PT(1101), for the string 1101, is shown in figure 1. 2.

nnz way of understanding binary notatlon it by associating
voiues that are powers of 2 with each of the 0's and 1's. The value
of the string is then the sum of the values associated with the 1's

in the string. Formally:

NONTERM!INALS
TERMINALS
PRODUCT IONS

NyLy B, 3
01 -

(3}]

(&)]
(8))
(O]
$)
(%)
m
()]
START SYMBOL N

COMMENTS- The nontesrainals N,

of bits, bits

L, B and S stand
and sign. The symbol

Biie 0
Bied
L::eB
Lits L B
Nite$
Siie e
Sx::-

respectively for number, list

« stands for the empty string

and will be used throighout the report with this seaning.

Figure 1.1

Grammar for BNI

N
7\
/7 \
/ \
5 L
1 /Z\
/ \
[] / \
L]
I\ 1
/ \
/ \ 1
L »
/\ 1
/ \
/ \ °
L Y
| |
{
| 1
[
I
1
Figure 1.2

Parse tree for the string 1101

For N=b b NP
k k-1 0
Kk k-1 0
Value(N)= g8 22 =+ g w2 i + 03 w2,
k k-1 0

where g = {f (b = "1") then 1 else 0.
J J

In other words, the value associated with each bit in the
string depends on the 1its location in the string. The integer
attributes VALUE and SCALE associated with the nonterminal B
represent respectively the value and position of a bit. Thes¢ same
attributes are asscciated with the nonterminal L: in this case VALUE
stands for the sum of the values of the bits in the 1ist of bits
derived from L; SCALE for the positiun of the rightmost bit 1in the
list. VALUE is also associated with N. Finally the boolean attribute
NEGATIVE i{s associated with S, serving to convey information about
the sign of the integer. VALUE and NEGATIVE are synthesized
attributes, end SCALE is inherited.

With the attributes defined, semantic rules are then associated
with the grammar, to express the relations between the attributes of
the nonterminals of each production. This completes the definition.
The rules in figure 1.3 give such a definition for BNI.

The semantic rules assume that a series of primitive notions
(such as Integers, Booleans and the operations +, -, =, TRUE, FALSE
and IF-THEN-ELSE) and their composition rules are well understood. In
other words we are using a language which is supposedly understood to
express the semantics.

The definition in figure 1.3 associates with any string S of
BNI a decorated parse tree DPT(S) whose nodes have attributes with

values assigned to them. The value of the attribute VALUE of the head

10

TERMINALS: 0 1 « -

ATTRIBUTES:
NAME TYPE KIND
VALUE INTEGER SYNTHES1ZED
SCALE INTEGER INHERITED
NECATIVE BOOLEAN SYNTHES1ZED
NONTERMINALS:
NAME ATTRIBUTES
N YALUE
L VALUE, SCALE
] VALUE, SCALE
H NEGATIVE
START_SYMBOL: N
PRODUCTIONS:
NUMBER SYNTAX SEMANTICS
m B1:e 0 VALUE(B) := 0
: SCALE(B)
@) Bitel VALUE(B) t= 2
(&) Li:e B VALUE(L) := VALUE(B);
SCALE(B) := SCALE(L)
) Li:e L B VALUE(L) :» VALUE(Le) o VALUL(B);
SCALE(Ls) :e SCALECL) « 13
SCALE(B) :e SCALE()
(£ 2] NizeSL SCALE(L) := 03
YALUE(N) :+ 1F NEGATIVE(S)
THEN -VALUB(L)
BLSE VALUE(L)
®) S iimoe MEGATIVE(S) :e FALSE
7 §tie - NEGATIVE(S) : = TRUE
(8 Siten NEGATIVE(S) : = FALSE

)

\

COMMENTS- AT (ND)

stands for attribute AT of noatersinal

asterisk after a nonturminal identifies which occurrence of

t'b'o nonterminal in the syatactic production is weant. From

left to right, no asterlsk corresponds to the first

eccurrence, oae for

the second, tvo for the third and so

Figure 1.3
Definition of BNI

11

node is the meaning of the string. An example of a decorated tree,

DPT(1101), appears in figure 1.4.

N (VALUG=13)
/7 \
4 \
/ \
/ \

/ \
5 (NEGATIVESFALSE) L (VALUE-1))
| /7 \ (zCALI-O)

Y
t / \
/ \
L (VALUE=Y2) B (VALUE-1)
' . , ! \(:CALI-I) | (SCALR=0)
. / \ 1
. / \
L (VALUE=12) B (VALUE=0)
p / \({CAIJ-Z) | (SCALE=1)
’ ’ \\ o’
(VALVE-8) B (VALUE«4)
(SCALE=3) | (SCALRe2)
g
(VALUE.3)
(SCALE-J)

- g -

Figure 1.4

Decorated parse tree for the string 1011

The semantic rules do not define an algoritha to calculate the
values of the attribute but they imply one: the attribute for the
lef: hand side of any semantic rule can always be defined once the
values that are necessary on the right hand side are all determined.

It should be noted that a string S may be syntactically correct
but still have no meaning associated with {it, i.e. PT(S) may exist
but not DPT(S). For instance in figure 1.3 1if the expoentiation
function is stated to be defined only for values of the exponent that
are less than 3 no meaning can be associated w.th ;trings of length
greater than 3. A string S with which the definition can assuciate a
PT(5) but not a DPT(S) 1s called malformed; if a DPT(S) can be

associated it is called well-formed. It is the concept of well-formed

12

strings that allows the method to be applied to langusges that are

not context-free.

1.4 A SIMULA 67 DEFINITION

Using and extending Knuth's methods, Wilner (Wi 71) defines
SIMULA 67. He demonstrates the method's applicablility to large and
complex languages by obtaining a compact and reasonably readable
definition. It 1is only reasonably readable because the same thing
happens with the SIMULA report, a reflection of the complexity of the
language.

The principal extensions introduced by Wilner are called
"reduction techaiques". They reduce the number of semantic rules that
have to be exrl!icitly stated to dafine the language. The elimination
of identity rules is the most important of the reduction techniques.
A majority of the semant‘c rules are identity rules of the form

a (NT)=a(NT), vwhere a is an attribute of both nonterminals and NT
1 2 1
and NT belong to different sides of the associated syntactic
2

production. Wilner poctulates, in an informal way, that these rules

do not have to be explicitly stated; they are called implicit

semantic rules. The fact that a is an attribute of both NT and NT2,
1

with no explicit semantic rule assigning a value to a(NT), implies
1

the existence of rule a(NT) = a(NT). Rules of this type do not
1 2

13

really contribute to the understandtnﬁ of the semantics of a
production; 1little is lost by not explicitly stating them, and a
great conciscness of definition is gained. Wilner reports a 58%
reductic: in the number of rules for SIMULA 67 using this technique.
Applying it, for instance, to the defiﬂttlon in ~ figure 1.3 would
leave production (3) with no explicit semantics and wohld eliminate
the rule SCALE(B)=SCALE(L) from production (4.

It is interesting to observe that Wilner uses inhertted and
synthesized attributes but no global attributes. He argues
effectively that they detract from the locality of the method and
contribute very little to its conciseness, since the reduction
techniques eliminate explicit rules for propagating the inherited
component of the globai attributes. Alsc the formation rules for
global attributes can be very complicated, and they are easier to
understand when stated step by step as synthesized attributes.

Some interesting insights into Knuth's method can be obtained
from Wilner's SIMULA dofinition:

~ Established programming language concepts such as 2yabsol
tables for block structured languages can be implemented
in a very natural way; {.e., the attributes that embody
these concepts and their functions reflect very clossly
the way one thinks about then.

- Language features which are difficult to express
concisely in this method, making necessary the use of a
wealth of attributes and functions for their definition
(e.g., the VIRTUAL feature of SIMULA), are usually also
diffic..t to understand and implement.

- Extensions to the language are facilitated by the

14

method's characteristic of locality of definition and the
fact that attributes provide well defined interfaces
between parts of the language (e.g. Wilner added the FOR
construct to the SIMULA definition as an appendix).

The definition of SIMULA demonstrated the power of the
technique but also showed that without a formal basis for the
description of the semantics (i.e. ; programsing language) and the
means to automatically check definitions it could not be considered a
practical tool. The lack of a programming language to express data
structures and a precise and systematic description of functions on
those structures led to some ambiguous and/or incorrect definitions.
(Wilner uses any convenient data structure and many of his functions
are described in natural language.) Also, "hand checking" the
definition proved to be an extremely painful task, due to 1its size
and complexity. A programaing language definition is an exact
description of many interrelated concépts. and some mechanical
checking procedure is almost mandatory because humans are notoriously

bad at verifying such meticulous details.

1.5 FOLDS

The development of FOLDS makes Knuth's method a practical tool
for language definition. It is a first step towards the development
of compilers directly from a declarative formal definition. FOLDS

provides a language (SPINDLEs) and data structures to define the

« Semantic Preparatory INput Description Language (says D. Xnuth)
15

syntax and semantics of a language. It also provides a machine
(MUTILATEs) that generates trees from this definition and fills out
the associated attributes for strings of the defined language. Both
the consistency and correctness of the definition can be checked in
this way.

SPINDLE, the FOLDS language, imposes very few restrictions on
cefinitions while preserving the'a&vantages of Knuth's methods and
Wilner's extensions. Both the parsing and tne decoration of parse
trees are completely transparent in the definition, thus preserving
the declarative nature of the method.

In addition the system provides & neans for semantically
resolving syntactic ambiguities. It also performs syntactic checks on
the definition and provides run-time error detection for easier
diagnosis of definition errors.

Global attributes, as proposed by Knuth, are not provided: as
noted before, Wilner does not use them because his extensions provide
a viable alternative. However, the real reason for avoiding global
attributes is that very few attributes are global to the whole tree
in block structured languages. 70 be useful, the concept should be
extended to resemble the global variables of ALGOL 60. An extended
global would be an attribute of any nonterminal, not just the start
symbol. It would be defined over any subtree derived from the
nonterninal except for those subtrees where it is redefined. The
inclusion of such an extended global attribute was considered, but
the idea was rejected. Although more powerful than simple globals,
extended globals retain some of the disadvantages which are pointed
out by Wilner; furthermore the gain in conciseness could not by
itself justify the significant cost of including the feature.

* Machine Underlying The Interpretive Language To be Executed (zays
D. Knuth)

16

/ \
I\L DEFINED IN SPINDLlII

| |
: SPINDLE COMPILER |

|
|
v
—~I

/ \
! DESCRIPTION OF L IN 1|
l\wnun ORDER CODE 1

—
] . -

[}
v
1

/ \
| STRINGS OF L l«ce)>--

| i
---)--I\NIANING oF L :
| VR |

rAa—mxar
MU <e-» >
-
-
e
1]
-
LT LT I T T8

Figure 1.5
FOLDS

FOLDS 1is intended primarily for the language designer. It
gives hin the opportunity of realizing his definitions with very
little concern about implementation. (While a compiler for the
language is generated there need be no preocupation with efficient
compilation at definition time.) It also gives him the opportunity to
judge the complexity and "cost” of proposed language features.

The main benefit of the system is that the definition of a
language can be stated in a well defined form. As such it can serve
as a standard for the language and be understood by the users.

Although not all SIMULA users will be able to understand 1its FOLDS

17

definition , those users who are capable of writing compilers will
certainly be able to do so. For them it provides a precise standard
against which other definitions (such as a compiler for the ianguage)
can be evaluated. Most of a:l, a sytem such as FOLDS imposes a
discipline on the language designer that has been mostly absent in
the past, making for so many unbappy language implementers.

Figure 1.5 presents a schematic view of FOLDS. The SPINDLE
compiler accepts a description of a language L and complles this
description into & program in the order code of MUTILATE. This
program rurning on MUTILATE will generate & decorated parse tree for
any well-formed string of L. The following sections present brief

descriptions of the components of the system.

1.5.1 SPINDLE ~ THE FOLDS LANGUAGE

The language is designed to give considerable flexibility to
the wuser. It relies on a data structure representazion which is
derived from the objects proposed in [LLS 68), with data-types
associated with ther. In such an environment, composing data-types is
very simple, thus facilitating the use of complex data structures.

Syntax rules are given as productions with few {mposed
limitations. Right and left recursion, empty strings and syntactic
ambiguity are all allowed.

The syntax presupposes the existence of a lexical analyzer to
handle reserved words, terminal symbols, ALGOL-like identifiers,

integers, and string constants. This analyzer is a restriction on the

18

generality of FOLDS, but it is justified by the efficiency it brings
to the system. It could of course be made more general, as in the AED
system [Jo 68], with its parameters being part of the definition.

With each syntactic production is associated a number of
semantic rules that wmanipulate the attributes of the nonterminals
involved in the production. Besides the inherited and synthesized
attributes, a new kind of attribute, called local attribute, is used.
This attribute, whose function is to hold intermediate values, 1is an
attribute of the head node of the corresponding production (the node
of the tree associated to the LHN), It is only accessible from the
semantic rules of the production. Local attributes appear both in
Knuth and Wilaer's work, but are used informally as an abbreviation.

Implicit semantic rules (see 1,4) do not have to be stated,
being automatically generated by the systen.

The language has an ALGOL flaver and incorporates features such
as conditional statements and expressions, while statements, go_to
statements, assignment statements, compound statements and recursive
procedures,

One of the most original features of FOLDS appears 1in its
contro. structure embodied in the concept of a parallel statemeat. A
SPINDLE statement (SST) is either sequential (ST) or parallel, which
is a sequence of SPINDLE statemets enclosed in $/ and /§, i.e.

$/ SST ; SST ;...; SST 3 SST; SST ;...; SST /§, n 2l.

1 2 i-1 i 1+1 n

SST is executed after SST 1f SST is sequential, in
1 i-1 i-1

parallel otherwise. For exampls, Lif we have a sequence of statements

$/ ST ; §/ ST ; ST /$; ST /8 ST
1 3 4 2 S

19

it will s.art by executing ST and ST, complete the execution of
1 5
ST , start ST and go on immediately to execute ST . The execution of
1 3 2

ST (and then ST) goes on in parallel with the execution of ST ; ST5
3 4 2

is executsd in parallel with ail the others.

It should be noted that this is an unusual control structure
and notation for parallelism. Usually statements are grouped to
indicate that each of them is to be executed in parallel with all the
others in the group; here they are grouped to indicate that they
constitute an independent sequence that is to be executed in parallel
with all the other statements in the program.

A process is a dynamic instance of a parallel statement. Once
activated a process executes until it terminates or until it tries to
access an undefined value. In the latter case the process is
interrupted and passivated; it will be reactivated if and when the
value is defined. All active processes run concurrently.

with each syntactic production is associated & set i of %?rallel
statements that embody the explicit semantic rules $lus ' an&plicit
parallel statement 10 nandle implicit rules (if any exist).

At run-time each node of the parse tree possesses a set of
processes corresponding to the parallel statements of the production
represented by the node. These proceses are all activated
simultaneously, possibly generating other processes. The computation
ends when there are no more active processes in the system.

It should be noted that as a consequence of this structure
circularities irn the definition will cause the passivation of
processes, that will never be reactivated since the undefined values

causing the passivation depetd on each other.

20

Another original feature of the language is the ability to
resolve syntactic ambiguities by semantically "disambiguatirg" them.
Given an ambiguous node of the tree, the proper parsing 1s selected
by stating, in the semantic rules, the conditions which identify a
particular parsing as the correct one (and all others as incorrect).
This means that all possible ambiguities have to be treated by the
language designer. The situation {is not ideal since ambiguity is
undecidable for context-free languages. On the other hand, while it
is expensive, the ambiguities can be detected in practical languages.
If one is present but not detected any tree which contains it will
have passivated processes that wil! never terminate, pointing out the
existence of the ambiguity. Furthermore it is not a bad idea for a
language designer to be forcibly aware just how ambiguous the
language being defined is and what the semantic implications of these
ambiguities are. Wwhile it 1is widely realized that ALGOL 60 is
syntactically ambiguous, the extent of .his ambiguity is very often
underestimated.

When the parsing tree 1is ambiguous the control structure
operates in a slightly different fashion. A process trying to assign
& value to a synthesized attribute of an ambiguous node (a node with
more than ona2 parse subtree) is passivated. If an ambiguous subtree
i1s found to be the correct one its root node 1is flagged. If 1t is
found to be incorrect it is purged; all its nodes, attributes and
processes are discarded. When an ambiguous node is found to have one
and only one correct subtree the node is disambiguated; no more
processes are interrupted when trying to assign to its synthesized
attributes and the ones passivated for this reason are reactivated.

This control structure helps prevent the information originating from

21

an incorrect parsing from poisoning the rest of the parse tree, while
attributes can still be synthesized and inherited in the subtrees of
an ambiguous ncde. This is tiLs reason why a subtree, found
incorrect, can be discarded without regard to the rest of the tree.

It should be noted that some recent general purpose languages,
such as NEW SAlL (Fe 72], QA4 (Di 72) and PLANNER ([He 71},
incorporate control structures whicﬁ are somewhat similar to the ones
found in SPIDLE.

A ccmputation is well-formed if it ends with no passivated
processes. fotxce that a well-formed computation implies that all
ambiguities have been resolved since «n unresolved ambiguity would
result in pacsivated processes. A detinition ie well-formed if no
string will cause a computation to enter an infinite loop. Given a
string S, a well-formed definition wil} sernerate a well-formed
computation if S is a well-formed string of the defined language;
otherwise it will generate a malformed computation. Notice that the
definition may incorporate error recovery provisions. In this case ¢
string containing errors would be a well formed string of the
language whose meaning would be a set of messages 1indicating the
errors found.

[t 1s SPINDLE's unusual control structure that allows it to
preserve the declarative nature of Knuth's method. Semantic rules
<tate only how at:tributes should relate to one another without
mentioning in what order values are assigned to them. They state the
conditions for choosing the proper parsing without specifying the
mechanism for doing it. However, SPINDLE cannot be expected to
provide as primitives all the necessary functions. Auxiliary

functions can be defined using the 1imperative elements of the

22

TERMINALS ARE o -
RESERVED WORDS ARE 0,1

ATTRIBUTES ARE
VALUE « INTEGER
SCALE = INTEGER
COUNTER « INTEGER
PRODUCT = INTEGER
NEGATIVE = BOOLEAN

NONTERMINALS ARE
N o« S(VALID
L = SZALUE , 1 {SCALE)
B = S(VALUE), 1 (SCALE)
S « S(NECATIVE) *

CMMENT N STANOS FOR NUMBER, L FOR LIST OF BITS, % FOR BIT AND
S FOR SIGN;

START SYMBOL N

$P1 B ::= 0
$/ V4 UE(B) := 0 /8

$P2 B ::: |
§/ COUNTER :» SCALE(B); PRODUCT :e };
WHILE COUNTER » 0 DG
BEGIN
PRODUCT : = 2« PRODUCT; COUNTER : = COUNTER -1
NS,

VALUE(B) :s PRODUCT /§

SPI L =:- B
COMMENT NO EXPLICIT RHLES;

$P4) ::e L B
$/ VALUE(L) := YALUE(Le) « VALUE(®) /%
$/ SCALE(Le) :a SCALE(.) + 1 /8§
COMMENT SCALE(B) :e SCALE(L) IS IMPLICIT.
NOTICE THAT ALL ¥ ASSIGNMENTS ARE EXECUTED IN PARALLEL;

$PS N ::. S L
$/ SCALE(L) :e O /%
$/ VALUE(N) :s IF NECGATIVE(S) THEN -VALUE(L) ELSE VALUB(L);
WRITE ("VALUE 15", VALUE(N)) /%
COMMENT NOTICE THAT IN THE SECOND PARALLEL STATEMENT THE
ASSIGNMENT VALUE(N) : - ... AND THE WRITE ARB EXECUTED
SEQUENTIALLY;

$P6 S e o
$/ NEGATIVE(S) : ¢ FALSE /§

$P7 S ::m -
$/ NEGATIVE(S; :« TRUE /$

$P8 S i
$/ KEGATIVE(S) :+ FALSE /%

Tigure 1.6
Definition of BNI in SPINDLE

23

language with local attributes performing the role of the variables
of conventional languages.

A simple example of the language appears in figure 1.6. It is
the definition {in figure 1.3 restated {in SPINDLE. The defined
language uses the characters | and O (separated by blanks) instead of
1 and 0 due to the limitations of the lexical analyser. Notice that
exponentiation is defined by meaﬁsrof a user defined function using
the local attributes COUNTER and PRODUCT. To illustrate the control
structure of SPINDLE, an example based on the definition 1in

figure 1.0 is presented at the end of 1.5.3.

1.5.2 THE SPINDLE COMPILER

The coapiler takes the definition of & language as input and
produces a series of tables plus "object code® for the semantic rules
and procedures in the order code of MUTILATE. The compiler checks the
syntax, fills in implicit rules and checks for missing and illegal
rules. Checks are also made to guarantee that synthesized and
inherited attributes are used in the proper way and that the semantic
rules of a productici: refer only to attributes defined for the

nonterminals involved i{n that production.

24

1.5.3 MUTILATE - THE FCLDS MACHKINE

wWhen loaded with the code and tables generated by the compiler
the machine reads strings of the defined language and generates the
corresponding decorated parse trees (prgvided that the definition and
strings are well-formed). It has three major parts:

- A lexical analyzer that recognizes integers, string
constants <(delimited by double quotes), punctuation
zarks, reserved words (of the defined language) and
ALGOL-1like identifiers. It skips over coxments (which
begin with the word COMMENT and end with a semicolon) and
over any identifier following the reserved word END.

- A parser which interacts with the lexical analyser to
build a PT(S) from an input string S. In case of
ambiguity the collection of all possible PT(S)s 1is
compactly specified.

- An interpreter which decorates PT(S) to produce DPT(S).
1f there is more than one PT(S) the interpreter will
select the correct one using the semantic rules.

The parser is based on one presented by Fisher (Fi 70], which
was i:self based on Earley's (Ea 68] scheme. .* has been expanded to
handle strings ccntaining empty substrings, provided that tiiere is
only a finite number of empty substrirgs.

This parsing scheme was chosen because it will handle any
context-free language, with the exception noted above, Besides, it is
efficient in the sense that, given a string of length n, in the worst

3
case It will parse in time proportional to n (ambiguous grammars),

25

2
proportional to n for unamoiguous grammars and proportional to n for

certain classes including LR(k).

It should be noced that the coustant of proportionality for
this scheme {s quite high and that other parsers can be more
efficient. However, since their increased perf.rmance is obtained by
restricting the class of grazmars that th2y can accept they are
unsuitable for FOLDS; they go against +he basic philosophy of
independence of definition and parsing scheme. Also, features such as
syntactic ambiguity, left and right recursion, empty strings, etc.,
while rot essential are conveniences which should be available to the
user.

The interpreter mantains a multiple stack environment, one
stack per process. The parallel control is implemented in a pseudo-
parallel fashion with exactly one active process (called the current
process) being executed at any time. A 1list called PROCESS
(implemented as a stack) contains pointers to all other active
processes. Each wundefined attribute (one to whom no assignment has
been made) has an associated list (implemented as a stack and called
its 1interrupt stack), which contains pointers to those processes -
which have been passivated as a result of trying to access 1it. This
1list is transferred to PROCESS if and when the attribute 1is assigned
a value. The current process may stop either because it terminated or
was passivated. In the latter case, a pointer to it is placed in the
interrupt stack of the attribute that caused the deactivaticn. The
process pointed to by the top el=ment of PROCESS is made current and
the top element removed from PROCESS. .When PROCESS is ewmpty (no
active processes in the system) a function DEVELOP? is <called and

returns a node of the tree. All processes associated with this node

26

are then placed in PROCESS. The process pointed to by the top element
is then made current and the element popped from PROCESS. On the
first call DEVELOP returns the root node and in each successive call
a different node, the order being a depth first traversal of the tree
from left to right. When all nodes of the tree have been returned a
call to DEVELOP stops the machine.

This mechanism and the control structure of SPINDLE can be
illustrated by examining how the machine would handle the string
- 10, given the definition in figure 1.6. The description that
follows, while actually describing the neéhanism, gives only the
essential details and ignores allocation strategies.

Figure 1.7 indicates the state of the machine before the
interpreter starts running and after the parsing of the string is
completed. The tree {is shown with all i{ts attributes undefined and
interrupt stacks empty. Also shown are the status of PROCESS (empty),
and of LARD (LAst Returned by Develop), undefined.

In figure 1.8 each of the processes to be executed s
identified, with xij standing for process j of node xi.

The first action performed is a call to DEVELOP. A pointer to

N is returned, then N and N are placed in PROCESS. N is then
1 11 12 12

removed from PROCESS and executed. SCALE(L) is assigned the value
1

zero, f{ts interrupt stack (empty) is placed in PROCESS (wh.ch

remains unchanged) and N is terminated. Next, N is taken from
12 11

PROCESS and executed. It is passivated while trying to access

NEGATIVE(S), which is undefined; so it is placed in the NEGATIVE(S)
1 1

27

l{ (VALUE=U, STACKs ())
/

v/ \

/ \
$1 (NEGATIVEsU, LI (VALUE=U, STACK«())
! STACK= () / \ (SCALB+U, STACKs)
/ \

|
/ \
- / \
/ \

/ \
1.2 (VALUEeU, STACK=()) B2 (VALUEsU, STACK=())
{SCALE»U, STACK=()) : (SCALReU, STACK=0))

(]
(VALUE=U, STACKe ()
(SCALEsU, STACKs)
(COUNTEReU, STACK=())
(PRODUCT U, STACK= (;)

- - e -
-

PROCESS =« O
LARD U

Figure 1.7

Initial state of the machine

interrupt stack. PROCESS s emptv so DEVELOP 1is called, S 1is
1
returned, and S is placed in PROCESS, taken out, and executed.
11

NEGATIVE(S) is assigned the value TRUE, its stack (containing N)
1 11

is placed in PROCESS (which was empty) and S is terminatec. N is
11 1

taken out of PROCESS, executed, again passivated (this time trying to

access VALUE(L)) and placed in VALUE{L)'s stack. Since PROCESS is
1 1

empty, DEVELOP is called and L , L

and L - are placed in PROCESS.
11 12 13

Figure 1.9shows the state of the machine at this point. L and L ’
13 1

are then executed and terminated. L is executed, passivated (trying
11

28

PROCESS DESCRIPTION

N" VALUI(N’) te IF NEGATIVE(S) THEN -VALUB(L)
1 1

BLSE VALUE(L); WRITE ("VALUB 15", VALUE(N ;
} 1

N SCALE(L) :» 0
12 1
s NEGATIVE(S) :» TRUE
AT 1
L VALUE(L) := VALUE(L) « VALUE(B)
1 1 2 2
L SCALE(L) te SCALE(.) i
12 2 1
L SCALE(S) 1+ SCALE(L)
13 2 1
L VALUE(L) :« VALUE(B)
21 2 1
L SCALE(D) :e SCALE(L)
22 1 2
., COUNTER := SCALE(M); PRODUCT :e
1
WHILE COUNTER > 0 DO
BEGIN
o/ RODUCT : = 20 PRODUCT COUNTER : « COUNTER -1
anb:(ul) s« PRODUCT
) VALUE(B) :o 0
21 2

Figure 1.8

Processes to be executed

to access VALUE(L)) and placed in the interrupt stack. Next DEVELOP
2

is called, L is returned and the execution of L (terminated) and
2 22

L (passivated) takes place. B is then returned and B executed.
21 1 11

During the execution, COUNTER assumes the values 1 And 0 and PRODUCT

the values 1 ind 2. The execution terminates after VALUE(B) 1is
: 1

assigned the value 2. The state of the machine at this point is shown

29

N1 (VALUE.U, STACK« ()}
/' \

/
‘ \ .
’ \ ’
/ N
/ \
S1 (NEGATIVE=TRUE) L1 (VALUEsU, STACKe (N11))
| / \ (SCALEsD)
' / \
/ \
- / \
/ \

/ \
L2 (VALUE=U, STACK=()) B2 (VALUEeU, STACK= (})
(SCALEsU, STACKs ()) | (SCALEsU, STACKs= ())
I

1 (VALUE-U, STACK= ()
(SCALEsU, STACA=())
{COUNTER=U, ' TACK=())
(PRODUCT=Y, . TATK-0))

PROCESS - (L13,L12,L11)
LARD . L1

Figure 1.9

State 1 of the machine

N1 (VALUEsU, STACK= ()
/' \

/
/ \ T
/ \
/ ' \
/ \
1 (NEGATIVE=TRUE) L1 (VALUEsU, STACK= (N11))
P /\ {SCALE-D)

/ \
/ \
/ \

/ \
L2 (VALUE«U, STACKe(L11)) 82 (VALUB=Y, STACK=())
(SCALE«0)

S
|
J

(SCALE»1) .

(]
{VALUE.2)
(SCALE=1)
(COUNTER»0)
(PRODUCT»2)

PROCESS = (L21)
LARD e B)

Figure 1.10

State 2 of the machine

30

in figure 1,10, L {s reactivated and terminated. L is
11 21

reactivated and passivated again, trying to access VALUE(B). DEVELOP
) 2

, L and L are executed and

is «called, B is returned and B
2 21 21 11

terminated. Finally N is executed, VALUE(N) is assigned, and this
11 1

is foilowed by the printing of the ;essage "VALUE IS - 2" and the

process is terminated. DEVELOP 1is called and the machine halts.

Since no passivated processes remain the computation is well-formed.

Figure 1.11 shows the decorated parse tree.

N1 (VALUE=-2)
/\

/ \

/ ' \
7 \
/ \
$1 (NEGATIVE=TRUE) L1l (VALUE=2)
| / \ (SCALE«0)
| / \
/ \
- / \
/ \
/ \
L2 (VALUE.2) B2 (VALUE.O)
1 (SCALE=1) : (SCALE=0)
1
|
| o
B1 (VALUE=2)
I (SCALE=D)
| (COUNTEReO)
¢ (PRODUCT2)

PROCESS = ()
LARD . B2

Figure 1.11

Dec>rated parse tree for -I0

It is very important to notice that the order in which active
processes are executed is entirely arbitrary. ALy order can be chosen

(¢e.g. L , S , B ,L ,B ,L ,L , N, N) and the same basic
11 11 21 21 11 13 12 12 11

31

mechanism will work successfully. The DEVELOP procedure is used only
to keep the stacks from being large initially since most definitions
have a left to right bias.

All that was said above is still true for ambiguous parsings;
however, for implementaticn reasons, the order in which DEVELOP
returns the nodes of the tree is not exactly the same. (For more

details about the implementation of DEVELOP, see Chapter 3.)

32

CRAPTER 2

SPINDLE

This chapter presents a de;cription of SPINDLE, the FOLDS
language. [t describes the syntax and semantics of SPINDLE and gives
numerous examples to illustrate its different features. It also shows
how definitions are written in SPINDLE, using TURINGOL (Kn 68a) in
Appendix 1 as an example. The syntax is described using standard BNF
with ¢ standing for the empty string.

SPINDLE is & metalanguage used to define languages according to
Knuth's method of semantic definition. A SPINDLE program is a
definition of a language according to Knuth's method; it defines the
valid strings of the language and the meanings associated with them.
A program when run, will recognize the well-formed strings of the
defined language and associate meaning with them.

As explained in Chapter 1, the definition associates with each
well-formed string 5 of the ianguage a decorated parse tree DPT(S).
The meaning of the string {s embodied in the attributes of DPT(S)'s
root node. The definition consists of a grammar plus a set of
semantic rules., The grammar associates with a string S of the
language a nonempty set of PT(S)s. The set is represented as a single
tree with ambiguous nodes, i.e. nodes from which more than one
subtree is derived. The semantic rules choose one of the PT(S)s and
decorate it if S |s semantically correct. In other words a string §

can be syntactically correct and not be semartically correct; |if

13

this {s <the case S is not a weli-formed string of the defin~d
language. This means that the method can define more than context-
free languages. As shown by Floyd (Fl 62], ALGOL-60 is not a context-
free language and neither is SIMULA, which is defined in Chapter 4.

The definition associates with each nonterminal a set of
inherited and synthesized attributes. A node, which 1is a dynanmic
instance of a nonterminal, will then be decorated by the attributes
assocliated with the ronterminal.

With each production of the syntax 1is assoclated & set of
semantic rules that operate on the attributes of the nonterminals

involved in the production. These rules serve four distinct purposes:

(1) To establish the relationship tl.at must exist between
all the inherited and synthesized attributes of the
nonterminals involved in the associated production.

(2) To establish the conditicas for the string to be
semantically correct.

(3) To choose the right PT(S, among the set generated by
the grammar.

(4) To output the values of the attributes.

The first purpose 1s accomplished by defining attributes as
functions of other attributes; the second and third by defining
predicates on the attributes; the fourth by the use of the WRITE
statement. These functions and predicates are described using
SPINDLE's exprcssions and statements, and local attributes to hold
temporary values.

The scope of a local attribute consists of the semantic rules

34

associated with a production. Dynamically a 1local attribute is an
attribute of the rode associated with the LEN of the production. It
can be manipulated only by the semantic rules associated with the
node. A local attribute i{s attached to a node by being referenced in
a semantic rule associated with the node. For example in figure 1.6
the attributes COUNTER and PRODUCT are assoclated with the
nonterminal B of production P2 Bui nov with the nonterminal B of
production P1. This can be verified by looking at the attributes that
decorate nodes Bl and 22 in figure 1.10.

The scope of the inherited and synthesized attributes
associated with a node consists of the semantic rules associatec with
the node plus the semantic rules assoclated with the ancestor node.
The node's sesantic rules assign values to its synthesized attributes
while the ancestor's rules assign values to the node's inherited
attributes.

The inherited, synthesized and local attributes asscciated with
a node are said to belong to the node.

Comments are allowed anywhere in a SPINDLE program. They begin
with the reserved word COMMENT and end with a semicolon. After the
reserved word END a comment =may appear without the word COMMENT but
may not include reserved words END, DO, or ELSE or the sequence of

special characters /§.

35

2.1

VALUES AND CONSTANTS

The following are the primitive values of SPINDLE:

INTEGERS .
STRINGS- a string of characters, enclosed in double quotes.
IDENTIFIERS- a string of letters and digits where the first
character is a letter (the ALGOL identifier).
S-IDENTIFIERS- the same as IDENTIFIER but with a different
internal representation.

BOOLEANS- TRUE or FALSE.

POINTERS- which are references to attributes.

COMPOSITE ATTRIBUTE VALUES- which are sets of attributes and are
described in section 2.3,

TITLE- the union of STRINGS, IDENTIFIERS and S-IDENTIFIERS.

Certain of these values can be expressed by constants. The

value of a constant is determined by its denotation. The syntax for

constant is:

<CONSTANT> ::= <INTEGER> | <TITLE CONSTANT> | <¢BOOLEAN> |

<POINTER CONSTANT> | <COMPOSITE ATTRIBUTE CONSTANT>

¢INTEGER> ::= <DIGIT> | <INTEGER> <DIGIT>

<DIGIT> ¢:= 0 J 21 21 ..o, | 819

<STRING> ::= " ¢,., sequence of characters where a double quc:e s

denoted by a pair of double quotes...> "

<IDENTIFIER CONSTANT> ::= | <IDENTIFIER>
CIDENTIFIER> ::= ¢LETTER> | ¢IDENTIFIER> <LETTER> |

<IDENTIFIER> <DIGIT»

36

CLETTER> 2= A Il B I Ct . 1 X 1YL 2
<S-ILENTIFIER> ::= & <IDENTIFIER»

CTITLE CONSTANT» ::= <S-IDENTIFIER> | <STRING> |
<1DENTIFIER CONSTANT>

<BOOLEAN> ::= TRUE | FALSE
<POINTER CONSTANT> ::= NIL
<COMPOSITE ATTRIBUTE CONSTANT> ::= NULL

NULL denotes an empty composite attribute value. NIL denotes a
reference ta a composite attribute whose value |is NULL, whose

selectar is undefined and is called the null attribute.

2.2 SYNTAX DEFINITION

The syntax of the defined language is specified by defining the
terminals, the .onterminals, the start symbol and the set of

syntactic productions.

2.2.1 TERMINALS

The syntax pressuposes a lexical analyzer that recognises the
following types of terminals: special characters, reserved words,
ALGOL-1ike identifiers, integers and strings of characters delimited

by double quotes; blanks are used as delimiters. Tha lexical analyzer

37

will skip over strings beginning with the word COMMENT and ending
with a semicolon. It will ignore an identifier which follows the
reserved word END. The word COVMENT may not be used elther as a
reserved word or as an identifier. In the defined language
fdentifiers cannot have the same spelling as reserved words.

The following syntax is used ;o‘declare special characters and

reserved words:

¢SPECIAL CHARACTER DECLARATION> ::= ¢ | TERMINALS ARE
<SPECIAL CHARACTER LIST>

<SPECIAL CHARACTER LIST» ::s= <SPECIAL CHARACTER> |
<SPECIAL CHARACTER> <SPECIAL CHARACTER LIST>

¢SPECIAL CHARACTER> ::s= <...any special character with the
exception of double quotes...»>

<RESERVED WORD DECLARATION> ::= ¢ | RESERVED WORDS ARE
<RESERVED WORD LIST>

¢<RESERVED WORD LIST> ::= <RESERVED WORD> |
. «(RESERVED WORD»> , <RESERVED WORD LIST>

<RESERVED WORD> ::= ¢IDENTIFIER>

Terminals, other then special characters and reserved yords.
are handled by a SPINDLE entity called a structured terminal (S-
terminal). An S-terminal is a terminal with an associated attribute;
this attribute decorates all terminal nodes that are instances of the
S-terminal. Identifiers, .ntegers and strings are recognized by

different S-terminals. The syntax for declaring S-terminals 1is:

<S-TERMINALS> ::= <IDENTIFIER DECLARATION> | <INTESER DECLARATION> |
<STRING DECLARATION>

<IDENTIFIER DECLARATION> ::= ¢ | IDENTIFIERS ARE <NAME AND ATTRIBUTE>
<INTEGER DECLARATION> ::= ¢ | INTEGERS ARE <«NAME AND ATTRIBUTE>
<STRING DECLARATION> ::= ¢ | STRINGS ARE «NAME AND ATTRIBUTE>

38

<NAME AND ATTRIBUTE> ::= <S-TERMINAL IDENTIFIER> WITH ATTRIBUTE
<ATTRIBUTE IDENTIFIER>

<S~-TERMINAL IDENTIFIER> ::s ¢IDENTIFIER>
<ATTRIBUTE IDENTIFIER> ::= <IDENTIFIER>

An example of an S-terminal declaration is:

- -

IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP
INTEGERS ARE NU WITH ATTRIBUTE VALUE
STRINGS ARE LAMBDA WITH ATTRIBUTE STRINGK

In this case an identifier, in ths input string, corresponds,
in the parse tree, to a node labelled SIGMA, decorated by the
attribute SP whose value, 1in this case, 1s :he spelling of the
identifier (represented as an S-identifier value); en 1integer
corresponds to a ncde NU, decorated by the attribute VALUE whose
value, in this case, is the value denoted by the integer; a string
corresponds to a node LAMBDA with attribute STRINGK with the string
as its value.

Attribute identiffers associated | with S-terminals are
implicitly declared to be of kind synthesized. Attribute ideniifiers
must be of type TITLE for identifiers and strings, and INTEGER for
integers. Section 2.l shows how to declare the attribute identifiers
which will be associated with nonterminals and how to associate types

with then.

39

2.2.2 NONTERMINALS AND START SYMBOL

The declaration of a nonterminal serves three purposes: to
identify the nonterminal; to associate with it a set of inherited and
4 set of synthezised attribute identlfiiys; to associate a kind with
the attribute identifier (inherited or synthesized). The syntax for

nonterminal declaration is:

<NONTERMINAL DESCRIPTION> ::= NONTERMINALS ARE
<NONTERMINAL DECLARATION LIST>

<NONTERMINAL DECLARATION LIST> ::= «NONTERMINAL DECLARATION> |
¢(NONTERMINAL DECLARATION> ¢NONTERMINAL DECLARATION LIST>

<NONTERMIMAL DECLARATION> ::= <NONTERMINAL IDENTIFIER> =
<ASSOCIATED ATTRIBUTES»>

<NONTERMINAL IDENTIFIER> ::w= <¢]DENTIFIER>

¢ASSOCIATED ATTRIBUTES> ::s «S-LIST> , «1-LIST> | <S-LIST> |
«I-L1ST> , «¢S-LIST> | <I-LIST»

<S-LIST> =:: S (<ATTRIBUTE LIST>)
<I-LIST> =:: | (¢ATTRIBUTE LIST»)

¢ATTRIBUTE LIST> ::= ¢ATTRIBUTE IDENTIFIER> |
¢ATTRIBUTE IDENTIFIER> , <ATTRIBUTE LIST»

An attribute identifier is declared to be of kind inheritel or
synthesized by appearing in an attribute list headed by an I or an §
respectively.

The syntax for declaring the start symbol is:

<START SYMBOL DECLARATION> ::= START SYMBOL
<NONTERMINAL IDENTIFIER>

40

2.2.3 SYNTACTIC PRODUCTIONS

The syntax for syntax is:

<SYNTACTIC PRODUCTION> ::= «NONTERMINAL IDENTIFIER> :: =
<RIGHT HAND SIDE>

<RIGHT HAND SIDE> t:=2 ¢ | <RHS LIST»
<RHS LIST> ::= <¢RHS ELEMENT> | <RHS ELEMENT: <RHS LIST»

<RHS ELEMENT> ::= <SPECIAL CHARACTER> | ¢RESERVED WORD»> |
<S5-TERMINAL IDENTIFIER> | <NONTERMINAL IDENTIFIER>

All special characters and identifiers apoearing in a syntactic
production must have been declared as such. A restriction of SPINDLE
is that a right hand side of the form p$/p/$8, where g is a possibly
empty sequence of RHS elements, is not allowed. An example of a

syntactic production is
PROCHEAD: : = IDTYPE PROCEDURE SIGMA
where given the following declarations

RESERVED WORDS ARE PROCEDURE
IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP
NONTERMINALS ARE

PROCHEAD = 5 (E)

IDTYPE = S (GENUS)

the production states that the string parsed from PROCHEAD 1is the

concatenation of the string parsed from IDTYPE, followed by the
reserved word PROCEDURE, and an identifier.

41

2.3 ATTRIBUTES

The attribute is the basic concept of SPINDLE's data structure.
It is patterned after the VDL (We 72] "object”™ and Fisher's fFi 70]

"construct".

An attribute has a selector and a value. An attribute <can then

be characterized by a pair <S:V> where S is the selector and V the
value. The selector names the attribute and can be either & title or
an jateger. If the selector is an identifier it must have been
declaied as an attribute identifier. For example in figure 1.11 the
attributes of node L1 are <VALUE:2> and <SCALE:0>. Up to this point
&ll attributes presented belonged to a node. But an attribute may
belong to another attribute called its ancestor; 1.g an attribute may
have other attributes as its value. An attribute that belongs to a

node is called a node attribute; if it belongs to another attribute

it is called a component aitribute or component for short.

Attribuves may be composite or elementary. Composite attributes
are those whose values are sets of attributes. Elemeniary attributes
are those whose values are not attributes. An attribute has a type
associated wi*h it that defines 1its range oi values. Elementary
attributes can be of type INTEGER, BOOLEAN, TITLE and POINTER. In
figure 2.1 are some examples of elementary attributes. &

Composite attribtutes have sets of attributes as values. Each
attribute in the set is a component that belongs to the ancestor

attribute. An attribute S with components <SS :V >, <SS :V >, ‘.o,
1 1 2 2

¢S :V >, N20 is reptesented by:
N N

42

ATTRIBUTE COMMENTS

<SCALE: 2» type integer; selector ‘s an identiiler.
«"POLITICIAN": FALSE> type boolear; selector 1s a string.
<4X: DAVID> type title; selector 1s an S-identifier; value

is an identifler.

<5: "SOLOMON")» type title; selector is integer; value is a
string. . .
«P: 0SCALE> t'pe poin cr; 3elector is an integer; value is

a reference to the attribute whose selector 1s

the identifier SCALE.

Figure 2.1

Examples of e'.mentary attributes

S¢S Vo> SV os3,..¢5:V)
1 1 2 2 N N

Composite attributes can be either of type LIST or type
CONSTRUCT. The value cof a construct attribute is & set of attriobutes
with a different selector for each component. In a construct,
components are referred to by their selectors. The value of a list
attribute is an ¢rdered sequence of attributes where the components
nave undefined selectars. In a list, components are referred to by
their position {n the sequence. List attributes behave exactly like
their LISP [MCa 65] counterparts and are manipulated by a similar set
of functions (CAR, CDR, (O\S, etc.). When describing the value of a
list, the components have for a selector the ordinal (parenthesized)

that represent their position in the 1ist. For example a 1ist L with

N components is described by

AWV o <V wuag <NV 3)>
1 2 N

An empty attribute is a composite attribute whose value 1s the

enpty set; it is represented by <C: ()>, where C is any selector. An

undefined attribute is an attribute whese value is undefined; it is

represented here by <A:u> where A {s any selector,

As an example of a composite attribute we may identify a /360
ASSEMBLER RX instruction with the construct INSTRUCTION. with
components OPCODE (title), R1 (integer) and OPERAND (construct).
OPERAND has components D2 (title),X2 (integer) and B2 (integer).
Figure 2.2a represents the instruction "A 1, LOC(2, 14) ",
Figure 2.2b sho:s the same 1instcuction, but now associated with a

1ist (LINSTRUCTION) instead of a construct.

CINSTRUCTION : (¢OPCODE: A>; «R1:1>; <OPERANDS:
(¢D2: LOC>; <«X2:12>; «B2:14>)}>)>

(a)

CLINSTRUCTION : (< (1)1 Ay; «{:1>; «(3): («B:10C>; <«X2: 253 <B2:114>)>)»
()]
Figure 2.2

Examples of composite attributes

Attributes can be conveniently represented as binary trees, the
nodes representing the attributes and the edges their composition.
Figure 2.3 shows the attributes defined in figures 2.1 and 2.2 in
binary tree representation. An attribute {is represented by a
rectangle containing 1its value and labeled by 1its selector. A
vertical edge connects a nonempty attribute to one of its components,
called FIRST. Other components of the same attribute appear to the

right of FIRST, connected by horizontal edges; the rightmost one in

44

e eew— SCALE | |'NLITICIAN' '__'GX
]
| 2] | FALSE | | DAYID |
| B] | ' | JR————
__________ H [4
1 |] 1
| "SOLOMON" | 1 @SCALB :
|
— INSTRUCTION
T-
[} R1 orcobl
- OPERANDS [} [}
D B e [T T [Y
| [pR— | | pR— |
[}
—t . X2 D2 32
| | [} } | 1
[B B EETEPER SRR i LOC Jee-eccccacan [V|
————-l | PR—— | | DU— |
«— LINSTRUCTION
T
t
—_ ———
| [}) | J—
| S EEEES [S PR 1—1
[} [} | | :
—_—l X2 D2 B2
' ! | | |
[B PR | LC |----- [U
| PO |] [} |
Figure 2.3

Tree representation of attributes

the sequence is called LAST. [f the composite attribute is a list
the order of the components from left to right reflects their
position in the list; if it is a construct the order is immaterial.
Node attributes are referred to by their selectors. If the
attribute 1is inherited or synthesized the nonterminal identifier
labeling the node, parenthesized, follows the selector. For instance,
INSTRUCTION refers to a local attribute with selector INSTRUCTION
while ESCALE(B) refers to an attribute with selector SCALE that

belongs to the node B. The components of a composite attribute are

45

referenced through their ancestors. If the ancestor is a construct a
component is referenced by prefixing its selector with a reference
to the ancestor, followed by a "." . For instance, A(B).C.D refers to
the component [of the cosmponent C of the attribute A which belongs
to tie node B. In figure 2.2a INSTRUCTICN.OPERANDS. X2 is a reference
to the attribute «X2:2>. If the ancestor is a list, & component is
referenced by applying a composition of CAR's and CDR's to a
reference to the ancestor attribute. In figure 2. 2b,
CAR (LINSTRUCTION) refers to the attribute <(1):A> and
CAR (CDR(CDR(LINSTRUCTION))). X2 refers to <¥2:2>.

2.3.1 ATTRIBUTE DECLARATION

Every attribute identifier has a type. The type of an attribute
whose selector is an attribute identifier 's the attribute
iden<ifier's type. An attribute identifigr whose £;pe is a construct
may have an undertype. The type of a component whose selector is not
an attribute identifier is its ancestor's undertype. A construct with
no indertype may only have components whose selectors are attribute
identifiers.)

Attribute identifiers' declarations assoclite a type and

undertype with them. Their syntax is:

CATTRIBUTE DESCRIPTION> ::= ATTRIBUTES ARE
<ATTRIBUTE DECLARATION LIST>

¢(ATTRIBUTE DECLARATION LIST> ::= <¢ATTRIBUTE DECLARATION> |

¢ATTRIBUTE DECLARATION>
<ATTRIBUTE DECLARATION LIST>

46

<ATTRIBUTE DECLARATION> ::s ¢ATTRIBUTE IDENTIFIER> = <ATTRIBUTE TYPE>
<ATTRIBUTE ILENTIFIER> ::= <ILENTIFIER>

<ATTRIBUTE TYPE> ::= <TYPE> | CONSTRUCT , <UNDERTYPE>

<UNDERTYPE> ::= <TYPE>

<TYPE> ::= INTEGER | BOOLEAN | TITLE | POINTER | LIST | CONSTRUCT |
<ATTRIBUTE IDENTIF{ER>

wWhen <TYPE> is an attribute identifier the type (and undertype)
rcferred to is the type (and undertype) of the attribute identifier.

ATTRIBUTES ARE

ENV « CONSTRUCT, CONSTRUCT
Ee BNV

KIND « TITLE

TYPE « TITLE

CALL « TITLE

NFORMALS « INTEGER
CODE « POINTER
PARAMETER » LIST

RULE = LIST
INSTRUCTION « CONSTRUCT
MATRIX- CONSTRUCT, B

B « CONSTRUCT, C

C - CONSTRUCT, INTEGER
P « POINTER

Figure 2.4

Attribute declarations

Figure 2.4 exemplifies attribute declarations. Figures 2.5 and
2.6 show examples of attributes built according to the declarations
in figure 2.4. The local attribute MATRIX in FIGURE 2.5 shows how a
3-dimensional matrix can be represented as a construct and shows how

components like P can be mixed with components whose tvpe 1is the

47

o MATRIX

|

v

'

]

]

.

[]

‘

]
[
'

]
’
'
[
'
1
[
'
[]
-

-t

»

-

>4

~

| 1
| 1
! b2 —
! T [
[}]]
| | !
’ —l_2 U1 —_—
! ! [[|2
| [N | I3 feaas [B
! | I——— | P | i |
I
1
-3 —_2
lomloenanens I—-l
[)
: |
—la —_—ter1 ——
Pos o 3
b & geeel 2)
R — —_—l [|
Figure 2.5

The atiribute MATRIY

undertype of MATRIX. The attribute E(PROCDECL) in figure 2.6 could
for example represent the symbol table built from parsing from the

node PROCDECL the ALGOL procedure

REAL PROCEDURE MUM (X, Y); VALUE X, Y;
INTEGER X; REAL Y;
BEGIN

REAL 2;
Z:= XaxY; X:sVeY;

MUM: & 24X
END;

It s a caoisequence of this scheme for associating type with
attributes that node attributes must have attribute identifiers as
selectors; otherwise no type could be associated with them. For
instance, in figure 2.1 only SCALE and P can be node attributes.

As seen in 2.2.2, the synthesized and inherited node attributes

are defined by means of the nonterminal declarations. Attribute

48

———

—— B(PROCDECL)

)
'T'
] NFORMALS KIND
Ao B .. PARANETERS |] [} }
Venal==ltomevncacanan] 2 f=ememva «==} "PROCEDURE")---cl3
[}] | J.])
[} t
| |
: 1 ____.I'ﬂ" !______._._.____,____ CODE
| 4
: : ipeea-~ I *REAL" : ------- : fRULE (PROCDECL :
]
! 1
1 — ——
[|]]]
[I | W f-e--l !
| I P [|
]
]
Iy) | — &2 — 8K
R PR R Y
] } !
1 }]
] t —t e KIND e
' P i 1 '
! i { "SIMPLE* {---——~--- | ®"INTEGER" |
| |] -] }
|]
1 [}
: '.._._l_.__ KIND ._,__.___ TYPS
]
i 1 “SIMPLE®)------- ~=1 “REAL® |
' 1] —
]
]
.__..i.._‘llllb I""
[}
{ OSIMPLE"™ |--=~vev-- I "REAL" |
[}]] !
Figure 2.6

The attribute E(PROCDECL)

49

identifiers that do not appear in these declarations are by default
of kind local.

2. & EXPRESSIONS

SPINDLE expressions are the means for referencing attributes
and manipulating their values. When evaluated, expressions return a
value, The evaluation of an expression may involve the evaluation of
other expressions or the execution of statements. The execution of an
expression that 1involves an access to e&i undefined value will
passivate the process to which the expression belongs; the process 1is

reactivated {f and when the value is defined. Their syntax 1is:

<EXPRESSION> ::= <«SIMPLE EXPRESSION> | <INTEGER EXPRESSION> |
<BOOLEAN EXPRESSION> | <CONDITIONAL EXPRESSION>

2.4.1 SIMPLE EXPRESSIONS

The syntax fcr simple expression is:

<SIMPLE EXPRESSION> ::= <¢CONSTANT> | (<EXPRESSION>) |
{ ¢EXPRESSION>] | <FUNCTION CALL> |
<ATTRIBUTE DESIGNATION> | <BLOCK EXPRESSION>

50

The evaluation of a constant returns the value denoted by the
constant.

Parentheses enclosing an espression serve only to indicate
precedence for the application of operators. The value of the
parenthesized expression is the value of the express‘on itself.

The value resulting from the application of the bracket
operator to an expression depends on the expression's value : if the
expression's value is a reference to an elementary attribute, the
value returned 1is the value of the referenced attribute; otherwise
the value returned is the value of the expression (see 2.5.1.1 for
further explanations). The execution of a bracketing operation will
cause 4a passivation if the value of the operand expression. is a
reference to an undefined attritute.

For example, if E is an expression whose value is a reference
to the attribute <SCALE: 2>, the value of [E] 1s 2 and the value of
{[E]J] is also 2. If the value of E is & reference to the attribute P
in figure 2.5 the value of both [E] and [(E!] 1s a reference to
MATRIX. 1.2, because this 1is not a reference to an elementary
attribute. If the value of E is NULL the value of (E) is NULL and it
it is NIL the value is NIL.

s1

2.4.1.1 FUNCTION CALLS

A function call 1is composed of a function identifier and its
argunents. The arguments are evaluated in sequence, from left to
right; the function 1is then applied to the arguments and returns a
value. Functions can be system defined or user cdefined. Systen

defined functions are called standard functions and are described :n

detall in section 2.7 . The syntax for tunction call is:

<FUNCTION CALL> ::a= <STANDARD FUNCTION CALL> | <USER FUNCTION CALL>

¢USER FUNCTION CALL> ::s <FUNCTION IDENTIFIER>
' </.CTUAL PARAMETER PART>

<FUNCTION IDENTIFIER> ::= ¢IDENTIFIER>
<ACTUAL PARAMETER PART> ::a ¢ | (¢ACTUAL PARAMETER LIST>)

<ACTUAL PARAMETER LIST»> ::s <ACTUAL PARAMETER> |
<ACTUAL PARAMETER LIST> , <ACTUAL PARAMETER>

<ACTUAL PARAMETER> ::= <EXPRESSION»

Section 2.8 describes the evaluation of function calls and the
declaration and execution of user declared functiomns.
CAR(LINSTRUCTION) is an example of a function call. It applies the
standard function CAR to the local attribute LINSTRUCTION.

52

2.4.1.2 ATTRIBUTE DESIGNATION

The value of an attribute designation is a reference to an

attribute. [Jts syntax is:

<ATTRIBUTE DESIGNATION> ::= (NODE ATTRIBUTE DESIGNATION> |
<COMPONENT DESIGNATION>

<NODE ATTRIBUTE DESIGNATION> ::= <ATTRIBUTE IDENTIFIER> |
<ATTRIBUTE IDENTIFIER>
(<NONTERMINAL DESIGNATION>)

<NONTERMINAL DESIGNATION> ::s <NONTERMINAL IDENTIFIER> |
<NONTERMINAL DESIGNATION> =

<COMPONENT DESSIGNATION> ::= <ATTRIBUTE DESIGNATION> . <COMPONENT>

<COMPONENT> :: = <ATTRIBUTE IDENTIFIER> | <TITLE CONSTANT> |
<INTEGER> | [<EXPRESSION>] | <FUNCTION CALL>

The value of a node attribute designation is a reference to the
node attribute whose selector 1is the attribute identifier. If the
attribute \identifier 1is followed by a parenthesized nonterminal
designation, the attribute Dbelongs to the designated node otherwise
it is a 1local attribute. The asterisks following the nonterminal
serve to distinguish between occurrences of the same nonterminal in a
production. From left to right, no asterisk corresponds tc thes first
occurrence, one for the second, two for the third and so on. If A is
an attribute a&and NT a nonterminal, A((NT) implies that A has been
declared an inherited or synthesized attribute of NT. If this {s not
true an error occurs. An error will alse occur if NT designates a
node that is not in the associated syntactic production. The
attribute designation A implies that A is a local attribute, i.e, it

has not been declared as either inherited or synthesized'for the LHN.

53

The definition in figure 1.6 has examples of all the varieties
of node attribute designation. The evaluation of a node attribute
designation will never cause a passivation since all the attributes
belonging to a node are attached to it before the processes are
started. Initially all node attributes are undefined.

The value of a component designation is a reference to a
component attribute whose selector is the value of <COMPONENT> and
whose ancestor is the attribute referenced by the value of
¢ATTRIBUTE DESIGNATION>. The value of <ATTRIBUTE DESIGNATION> should
be a reference to a construct (but not NIL); furthermore if the value
of <COMPONENT> is not an attribute iden;ifier the referenced
construct should have an undertype. Also the value of <COMPONENT>
should be either a title or an integer value. If the above conditions
do not hold, an error occurs. If <COMPONENT> is an nttribute
identifier 1its value is the identifier denoted by the attribute
identifier. A component designation will passivate the process
associated with its execution {if the ancestor does not have an
attribute whose selector is the value of ¢<COMPONENT> except when on
the left hand side of an assignement (see section 2.5.1.1). The
process is reactivated once the component is placed in the ancestor.

The following examples, are attribute designations in the

context of the attributes represented in figures 2.5 and 2. 6:

ATTRiIBUTE DESIGNATION REFERENCED ATTR]BUTE
E (PRODECL). §MUM. NFORMALS «NFORMALS: 2>

E (PRODECL). §MUM. E.
(CAR (CDR (E (PROCDECL).

§MUM. PARAMETERS))). TYPE <TYPE: "REAL™>
MATRIX. 1. 2.1 <1: 4>
[MATRIX.P). 1 cl: &

S4

2.4.1.3 BLOCK EXPRESSIONS

Block expressions are patterned after the ALGOL W (51 71] block

expressions. Their syntax is:

<BLCCK EXPRESSION> ::= BEGIN <COM§06ND STATEMENT>; <EXPRESSION> END
The value of a block expression is the value of 1its component
expression. A Dblock expression is executed by executing first its
compound statement and then evaluating its expression.
As an example of the use of block expression, in figure 1.6,

the semantic rule of production P2 can be rewritten as

$/VALUE(B) := BEGIN
COUNTER := SCALE (B); PRODUCT :e 1;
WHILE COUNTER > 0 DO
BEGIN
PRODUCT := 2« PRODUCT;
COUNTER : = COUNTER -1
END;
PRODUCT
END/S$

2.4.2 INTEGER EXPRESSIONS

Integer expressions are functions from integer values to an

integer value. Their syntax {s:

¢INTEGER EXPRESSION> ::s= <SIMPLE INTEGER EXPRESSION>
<INTEGER OPERATOR> <SIMPLE EXPRESSION> |
- <SIMPLE EXPRESSION»>

<SIMPLE INTEGER EXPRESSION> :: = <INTEGER EXPRESSION> |

55

<SIMPLE EXPRESSION>
<INTEGER OPERATOR> ::e ¢« | = | = | / | REM

Integer expressions are evaluated from left to right; operators
have no precedence over other operators, precedence is indicated by
the use of parentheses. The operands of an integer operator (and of
the unary ~) are implicity bracketed, i.e., operands whose values are
references to attributes are coerced to return the value of the
attribute. Integer expressions operate on integer values ; if the
coercion of an operand does not result in an integer value, an error
occurs. The evaluation of an integer expression will cause a
passivation if the value of an operand is & reference to an undefined
attribute.

Integer operators have their usual meanings with "/" standing
for integer division and REM for remainder of the integer division of
the left operand by the right operand. ‘5'

Examples of integer expressions can be found in figure 1.6, in
productions P2 and P4. Notice that in P4, due to the implicit
bracketing, the evaluation of SCALE(L) in ‘the expression SCALE(L) +1

returns ot a reference to the attribute but its value.

56

2.4.3 BOOLEAN EXPRESSIONS

Boolean expressions are the counterparts of integer expressions

for boolean values. Their syntax is:

<BOOLEAN EXPRESSION> ::s <SIMPLE BOOLEAN EXPRESSiON>
<BOOLEAN OPERATCR> <SIMPLE EXPRESSION> |
~ <SIMPLE EXPRESSION> | <RELATION>

¢SIMPLE BOOLEAN EXPRESSION> ::= <BOOLEAN EXPPESSION> |
<SIMPLE EXPRESSION>

<BOOLEAN OPERATOR> ::= AND | OR

Boolean expressions are evaluated fron left to right with no
precedernce for operators. Operands are implicitly bracketed and
should have boolean values, otherwise an error occurs. If the
operator is AND and the value of the left operator is FALSE the right
operand is not evaluated; similarly if the operator 1is OR and the
left operand 1is TRUE. A passivation occurs when the value of an
operand (before the implicit brackets are applied) is & reference to
an undefined boolean attribute. The oparator "a" is the negation

operator.

57

2.4.3.1 RELATIONS

Relations are predicates that take two arguments and return &

boolean value. Their syntax is:

<RELATION> ::= (SIMPLE EXPRESSION> <RELATION OPERATOR)>
<SIMPLE EXPRESSION>

<RELATION OPERATOR> ::s= <REFERENCE RELATION OPERATOR> |
<SIMPLE RELATION OPERATOR>

<REFERENCE RELATION OPERATOR> !:m s | =/=
<SIMPLE RELATION OPERATOR> ::a = | ~= ! » | 2| < | ¢

Relation: are evaluated by evaluating first the left operand,
then the right operand and then applying the operator. If the
operator is a simple relational operator the operands are implicitly
bracketed. Reference relation operators are used primarily to test
if two references refer to the same object (=s) or not (=/=). However
it should noted that they can be applied to any other values since
the only difference between them and relation operators is that their
operators are not implicitly bracketed. Relation operators compare
the values of the operands; the values should be of the same type
otherwise an error ocurrs. While not an error, it is meaningless to
apply the operators 2, 5, >, < to operands that are not integer
values; the value returned, while always the same, 1is implementation
dependent.

For the attributes represented in figures 2.5 and 2.6 we could

have:

RELATION VALUE

58

(E(PROCDECL). §MUM. NFORMALS + 1) » 2 TRUE

E (PROCDECL). §MUM. KIND -~= "PROCEDURE" FALSE
MATRIX. P a= MATRIX. 1.2 FALSE
(MATRIX.P] == MATRIX.1.2 TRUE
MATRIX. P = MATRIX. 1.2 TRUE

2.4.4 CONDITIONAL EXPRESSIONS

Their syntax is:

<CONDITIONAL EXPRESSION> ::s <I1F-CLAUSE> <EXPRESSION»>
ELSE <EXPRESSION»

<IF-CLAUSE> ::= IF <EXPRESSION> THEN

The value of an if-clause is the bracketed value of its
expression. This value should be boolean, otherwise an error occurs.
If the expression's value is & reference to an undefined attribute
the associated process i{s passivated. Production PS5 in figure 1.6

contains an example of a conditional expression.

59

2.5 STATEMENTS

A statement 1s a unit of action. The execution of a statement
is the performance of a unit of action. The execution of a statement
may involve smaller units of action such as the evaluation of an

expression or the execution of other statements. The syntax for

statement is:

¢PARALLEL STATEMENT> ::= $§/ <SEQUENCE OF STATEMENTS> /§

<SEQUENCE OF STATEMENTS> ::= <STATEMENT> |
<SEQUENCE OF STATEMENTS»> ; <STATEMENT>
¢STATEMENT> ::= <PARALLEL STATEMENT> |
<LABEL> : <PARALLEL STATEMENT> |
<UNCONDITIONAL STATEMENT> | <CONDITIONAL STATEMENT> |
<WHILE STATEMENT>

<LABEL> ::= <IDENTIFIER>

As explained in chapter 1, SPINDLE has parallel statements,
besid:s the usual control structures of ALGGL-like languages. All
SPINDLE statements that are not parallel statements are enclosed in a
parallel statement. The execution of a parallel process involves two
steps: first a process associated with it is created and activated;
second the created process is executed. An active process will run
until it is terminated or passivated. A process is passivated while
t-ying to evaluate an expression 1nv01v1n§ undefined values; or while
executing a function call or a procedure statement (see section 2.8);
or while trying to assign a value to a synthesized attribute of an
ambiguo:s node (see section 2.9.3). A process is reactivated 1f and
when tie value 1s defined; or the exécution of the function or

procedure is terminated; or the node is disambiguated, respectively.

60

1f a parallel statement PST contains a parallel statement PST
1
a process associated with PST will be created during the execution
2
of a process associated with PST . In the context of PST 's process
1 1

the execution of PST 1is finisned once the process associated with
2

PST is created and activated. The execution of PST can g0 on
2 2 ,

without regard to the execution of PST 's process. If PST is part of
1 2
a loop in PST, & new process {s created and activated every tine
1

PST 1is executed. The execution of a sequence 5¢ statements 1is then
2

cimilar to the execution of a sequence of statements in ALGOL. The
execution of a parallei statement ia the sequence is finished once
the associated process has been created and activated; the next
statement in the sequence can then be executed. For example, given

the sequence

ST ; $/ST ; ST /§; ST
1 2 3 4

where ST and ST are not go-to statements, its execution will begin
i 4
with ST 's execution followed Dby the creation ... activation of the
1
process associated with $/5T ; ST /$ and followed by ST 's execution.
2 3 4

The execution of the sequence will end once ST 's execution is
4

finished; the execution of the process associated with the parellel

statement may or may not have terminated. For instance the process

-

could have been passivated while executing ST and this would have no
2

61

bearing in the execution of ST . If ST were a parallel statement the
4 4

sequence would be terminated once the process associated with ST had
4

been created.
Label identifiers are declared by appearing as a label of a
statement. The scope of labei is the smal.est parallel statement,

block expression, or procedure declaration that conuains it.

2.5.1 UNCONDITIONAL STATEMENTS

Their syntax is:

<UNCONDITIONAL STATEMENT> ::= <LABEL> : <UNCONDITIONAL STATEMENT> |
GO TO ¢LABEL> | <COMPOUND STATEMENT> |
$ ¢EXPRESSION> | <PROCEDURE CALL> |
¢ | ¢ASSIGNMENT STATEMENT>

<LABEL> ::= <IDENTIFIER>

<COMPOUND STATEMENT> ::= BEGIN <¢SEQUENCE OF STATEMENTS> END

<PROCEDURE CALL> ::= <PROCEDURE IDENTIFIER> <ACTUAL PARAMETER PART>

Go-to statements change the flow of control; the statement
labeled by its label is the next to be erecuted. The go-to stafement
must te in the scope of the declaration of its label or &n error
occurs.

The compound statement is similar to its ALGOL counterpart. Its
purpose is to parenthesizz a sequence of statements.

The operator "$" allows the use of an expression as a

62

statement. The expression is evaluated for possible side effects and
its value discarded.

A procedure call is similar to a user function call with the
difference that it does not return a value. Procedures are all user
defined; no system defined procedures exist. Section 2.8 describes
the declaration and execution of procedures and the execution of

procedure calls.

2.5.1.1 ASSIGNMENT STATEMENTS

An assignment operator is applied to two operands; the L-
operand (for left hand side) and the R-operand (for right hand side).
The L-operand must always be a reference to an attribute, called the
L-attribute; this attribute may not be the null attribute. The R-
operand s either a reference to an attribute, called the R-
attribute, or some other value. the assignment can take three forms

depending on the type and values of the operands:

- If the R-operand is NIL or a non pointer value, it is
copied into the value field of the L-attribute.

- If the R-operand is a pointer value and the L-attribute is
a pointer, the R-operand is coplied into the value field of
the L-attribute.

- If the value of th R-operand is & ncn NIL pointer and the
L-attribute is not a pointer, the value of the L-attribute

is indirectly the value of the R-attribute which means that

63

the L-attribute's value is not a copy of the R-attribute's

value but exactly the same value. There 1is no implicit

copying; if desired, copying is handled explicitly (see
section 2.5.1.1.1).

An attribute whése value {s indirect is called an indirect

ttribute; otherwise it is called a direct attribute. An indirect

attribute may be indirect to another indirect attribute and form a
chain of indirects; at the end of an indirect chain is always a

direct attribute cailed the final attribute. If the R-attribute is

indirect the L-attribute 1is assigned indirectly the value of the
final attribute of the R-attribute. In all cases, if the L-attribute
was undefined before the statement's execution, once the assignment
is complete, all processes that were passivated trying to access its
value are reactivated. If the value was defined, the previous value
is erased.

If the R-operand is not a pointer value, its type should be the
same as the type of the L-attribute; if the L-attribute is a pointer
the R-operand should be a pointer value; otherwise the type and
undertype of the L-attribute and the R-attribute should be the same.
1f the above conditions are violated an error occurs.

The main reason for choosing this form of assignment operator
is to avoid copying. Since many of the attributes used in the
definition of languages are large and complex composite attributes
(e.g. symbol tables) tﬁat are passed from node to node, it would not
be feasible to copy the entire value of these attributes each time an
assignment is made.

As a consequence of this scheme, if the value of an attribute

64

changes, all indirect attributes to whose indirect chains the
attribute belongs, will also change. This is in a way a weakness of
the SPINDLE 1language. Ideally the value of other {nherited and
synthesized attributes once assigned, should never change. This can
only be accomplished by the extensive use of copying.

An indirect value 1{s represented here by "{AD" where AD 1is a
reference to the final attribute. F;r exanple, if the L-attribute is
<A:u> and the R-attribute «B:u> the assignment will change the L-

attribute to <A:iB».

NOTE- Section 2.4.1. states that if an expression's value references
a composite attribute the bracketing of the expression returns the
same value. This is pot true {if the composite attribute 'is an
indirect attribute; in this case the bracketing returns as a value a

reference to the final attribute of the composite attribute.

NOTE- An attribute designation which 1{s part of a4 component
designation (see section 2.4.1.2) is implicitly bracketed: 1if the
value of the ancestor attribute is indirect the component referred to

is the component of its final attribute.
The syntax for assignment statements is
CASSIGNMENT STATEMENT> ::= <LHS» := <RHS

<LHS> ::a ¢ATTRIBUTE DESIGNATION)

<RHS> ::= ¢ASSIGNMENT STATEMENT> | <EXPRESSION> | <OTHER RHS> |
C(MULTIPLE ASSIGNMENT>

65

An assignment statement {s executed by first evaluating <LHS>
and ther. <RHS>. The value of an assignment statement is the value of
its <LHS>. If <RHS> is an assignment statement or an expression, the
assignment operator is applied to the value of <LHS»> (L-operand) and

to the vaiue of <RHS> (R-operand).

ATTRIBUTES AME

A = INTEGER

Al = A

T « TITLE

T - T

C = CONSTRUCT, D
cYe'C

€2 .-C1

D « CONSTRUCT, INTEGER
01 « D

P = POINTER

Pl « P

B « BOOLEAN

R = CONSTRUCT, 5§
S = CONSTRUCT, R

Figure 2.7

Declaration of attributes

The only difference between the evaluation of an attribute
designation which is a <LHS> and one which is an expression 1{s that
the former will «create components where the latter would cause a
passivation. The difference occurs in a component designation where
the ancestor either has an undefined value or has no component whose
selector is the value of <«COMPONENT»>; if the attribute designation is
an eipression a passivation occurs; {if it is a <LHS> a component is
Created whose selector is the value of <COMPONENT> and whose value is

undefined. After the assignment, all processes passivated trying to

66

(a) w)

$/ Are 2} <Al 2>

T :e T1 :e "BRUNO™; «T:1T1>, «T4: "BRUNO")»
CTlL:eT, «C LTHIT)

C.T1 ;= "BOB"; <C: («<T1:"BOB">)>

Ci :e C «C1: 10>

D. (C.TL) :o A oY} «D: (<"BOB™: 3>)>

C t= NULL; e G ()

C1."FRIENDS® := D; «C: («"FRIENDS™: {1D>)>
C1.®FRIENDS™. "PAT" :a 7; O (<"BOB": 3>; <«"PAT™: h)>
C2 := L «C2: 10>

C1 :e NULL; «Cl: ()>

P te D."g0OB" <P: 8D, "ROB™>

B := [P] we C2. "FRIENDS®. "BOB"; «B: TRUE>

(P} :o 4; <D: (<"BOB™: &>; (*PAT": 1>)>
Ate Al <At IALl:, <Al*w
/%
Figure 2.8

Effect of =xecuting assignment statements

access this component are reactivated; if the ancestor was undefined
it is now defined. Due to the implicit bracketing of the attribute
designation-part of a component designation, if an ancestor is an
indirect attr: bute the new component is added to its final attribute.

The ex=cution of the parallel statement in Figure 2. 8a
exempiifies =he rules stated above., Figure 2.7 contains the
declaration of a&ll <the attribute identifiers used in this and
subsequent examples in section 2.5.1.1. Figure 2.8b shows how
attributes are affected by the execution of each statement of
figure 2.8a and figure 2.9 shows the status of all attributes at the
end of the execwtion. Notice that {f the last statement of
figure 2.8a were A:= [(Al]l the process would be passivated and that

instead of <A:1Al> we would have <A: 2>,

67

<A: 1A1>»

<Al:w>

<T14TY»

<T1; "BRUNO®)»

«B: TRUE>

«C: («<"FRIENDS®: 1D>)>

«C1t ()»

¢C2: 10>

:D: (<®BOB™: 4>; <"PAT": H))>
<P: 4D. "dOB">

Figure 2.9
Attributes after the assignments

2.5.1.1.1 OTHER RHS

The syntax for assignment statem2nts continues as foilows:

<OTHER RHS> ::= # ¢EXPRESSION> | = (EXPRESSION> |
<CONDTTIONAL ASSIGNMENT>

<CONDITIONAL ASSIGNMENT> ::= <IF CLAUSE> <RHS> ELSE <RHS»>

The "#" is the copy operator. The expression is implicitly
bracketed and the value of the bracketed expression is the R-operand.
If the L-attribute is not a composite attribute or the value of the
R-operand is NULL the uormal SPINDLE assignment takes place.
Otherwise the following takes place: the value NULL is assigned to

the L-attribute; then for each component of the R-attribute a

68

component of the same type and undertype and with the same selector
and in the same order 1is attached to the L-attribute; then each
component of the R-attribute 1s assigned ‘without copying) to the
corresponding component of the L-attribute.

Notice that the expression may retura a reference to the L-
attribute as its value; if the L-attribute {is indirect (due to the
implicit bracketing of the expressioﬂ) the indirectness is eliminated
and the value of the final attribute copled; if the attribute {s not
indirect the operation has no effect on the attributes. It should
also be noted that for composite attributes, while the components of
the attribute are copied, if the compoueats are themselves cowposite
attributes, their values are not copied. It should finally be noted
that for elementary attributes the bracketing of the right hand side
expression has the same effect as the application of the # operator.

As an example of the copy operator the parallel statement in
figure 2.10a when executed starting with the attribute in figure 2.9
will cause the changes shown in figure 2.10b.

The "«" operator creates a component of the L-attribute that is
a copy of the R-attribute (same type, undertype and selector) and
assigns the R-attribute to this component. For example the execution
of the statement C."FRIENDS" :s# B would affect the attributes in

figure 2.9 in the following way:

<C: (¢<"FRIENDS": iD>}>
<D: (<"BOB":4>; <"PAT":7>; «B:iB>}>»

For an assignment involving a = operator the L-attribute should
be a construct; the R-operand should be a reference to an attribute

whose selector {s defined; if the selector is not an attribu-e

69

$/ D1 :« #D; D."ANDY® :e 9; DI1."HEATHER" :s }; D."BOB" :a J;
C2 :» #C; C."FRIEND5® := 0C."FRIENDS";
C. *FRIENDS®. "ANDY" : = 10 /%

(a)

<C: (¢"FRIENDS®: (<"BOB": 1D."BOB">; <™ANDY®:10>; <"PAT®: iD. "PAT™>)>)>
«C2: (<*FRIENDS®: 1D>)>

<D (<"BOB™: 3>; <TANDY™: 9>; <"PAT": 1H)>

<D1 (<"DOB®: 435 «"PAT": 7>; <"NEATHER™: 1))

()

Figure 2.10
Effect of the copy operator

identifier, the type of the R-attribute must be the same &as the
undertype of the L-attribute. [f the above conditions are not
satisfied an error occurs.

The conditional assignment chooses one of its <RHS> to be the
<RHS> of the assignment statement. If thé value of the if-clause is

TRUE the leftmost <RHS; {s used, otherwise the rightmost one is used.

70

2.5.1.1.2 MULTIPLE ASSIGNMENTS

The multiple assignment operator "$" is SPINDLE's counterpart

of VDL's

-operator. It allows a single statement to assign values to

different components of an attribute. Its syntax is:

<MULTIPLE ASSIGNMENT> ::= § (¢COMPONENT ASSIGNMENT SEQUENCE>)

<COMPONENT ASGIGNMENT SEQUENCE> ::s <COMPONENT ASSIGNMENT> |
<COMPONENT ASSIGNMENT SEQUENCE> ; <COMPONENT ASSIGNMENT>

<COMPONENT ASSIGNMENT> :: s <COMPOUND COMPON:NTS: s <RHS» |
<PARALLEL COMPONENT ASSIGNMENT> |
<CONDITIONAL COMPONENT ASSIGNMENT)>

<COMPOUND COMPONENT> ::s= C(COMPONENT> |
<COMPOUND COMPONENT> . <COMPONENT>

<PARALLEL COMPONENT ASSIGNMENT: ::= §/ <COMPONENT ASSIGNMENT> /$
<CONCi TIONAL COMPONENT ASSIGNMENT> ::s «IF CLAUSE>

<COMPONENT ASSIGNMENT>
ELSE <COMPONENT ASSIGNMENT>

The effect of executing a component assignment

<COMPONENT PART»> := <RH3.

which is part of a multiple assignoent

<LHS> = $(..)

is the same as the effect of executing the assignment statement
<LHS>. ¢<COMPONENT PART> : = <¢RHS».

For example, the multiple assignment statement

R. "KELSON" := $("RUTH".A :=z 23;
"DORIS" := $(A := 20; T := "JOE"))

and the sequence of statements

71

R."LELSON". "RUTH". A := 23; R."KELSON". "DORIS". A:«20;
. “XZLSON. "DORIS".T:« “JOE"

when executed have exactly. the same effect upon the environment. The
parallel component assignment allows the execution of the component
assignment as a separate process , i.e. in parallel with the rest of
the multiple assignment, It is equivalent to the associated
assignment statement being a parallel statenment. The multiple
assignment is executed from left to right in exactly the same order
that the associated compound statement would be executed. For

example, given the attribute <R:u>, the execution of the statement

$/R. "KELSON" := $("RUTH".A := R."KELSON". "DORIS".A + 3;
"DORIS". A :«20)/%

would cause the associated process to passivate trying to evaluate
R."KELSON"."DORIS". A and result in the attribtute

¢R: {¢"KELSON": {<"RUTH": (<At ud)>}>)>,
1£ no other parallel statement assigns a value to
R. "KELSON". "DCRIS". A the process will never be reactivated. On the

other hand, under the same circumstances, the execution of

$/R. "KELSON" : = $($/"RUTH".A :s= R."KELSON"."DORIS".A +3/§;
"DORIS".A := 20)/§

would generate two process that when terminated would result 1in the

attribute

72

¢R: (¢KELSON: (<RUTH: (<A: 23>}; ¢DORIS: “cA: 202)>)»>)>

2.5.2 CONDITIONAL STATEMENTS

¢CONDITIONAL STATEMENT> ::= <LABEL> : <CONDITIONAL STATEMENT> |
<1F STATEMENT> |
<IF STATEMENT> ELSE <STATEMENT>

<1F STATEMENT> ::a <IF CLAUSE> <UNCONDITIONAL STATEMENT>

The conditional statement has exactly the same control
structure as 1its ALGOL counterpart. As in the ALGOL conditicnal
statement, 1t i3 possibie to execute the unconditional statement

without evaiuating the if-clause by using the GO TO statement.

2.5.3 WHILE STATEMENTS

C(WHILE STATEMENT> ::= <LABEL: : <WHILE STATEMENT> |
WHILE <(EXPRESSION> DO <STATEMENT»

The control structure of the WHILE statement is similar to its
ALGOL W counterpart. The expression {s implicitly bracketed and
returns a boolean value. Unlike ALGOL W, it is possible not to

evaluate the expression the first time around by transfering direccly

73

to the statement by means of a GO TO statement. In figure 1.6, the
semantic rule of production P2 contains an example of a while

statement.

2.6 QTHER EXPRESSIONS

Section 2.4 presents an incomplete syntax for SPINDLE

expressions. The following are the missing forams:

<EXPRESSION> ::= <ASSIGNMENT EXPRESSION>
<SIMPLE EXPRESSION» ::s <PUTIN EXPRESSION> | <PFIND EXPRESSION»>

2. 6.1 ASSIGNMENT EXPRESSION

The assignment expression is a ferm of <EXPRESSION> not

mentioned in section 2.4. Its syntax is:

¢ASSIGNMENT EXPRESSION> ::= (ATTRIBUTE IDENTIFIER> as ¢RHS»

The only difference between the execution of an assignment

stateuent and the evaluation of an assignment expression is 1in the

evaluation of the left hand side. In the assignment expression, the

74

L-attribute is a new attribute, called an isolated attribute, tha:

does not belong to a node or an attribute; the attribute identifier
establishes the type and selector of the isolated attribute. The
expression's value is a reference to the isolated attribute. Notice
that since the {solated attribute is not a node attribute or a
component, the only way to refer to it is by means of the reference
returned by the evaluation of the‘expression. For exauple, the

execution of the parallel statement

$/ A= 27 Pl s A xs 3
Al := A s A « (P1) +4; A := Al - [P} /&

results in the local attributes <A: 12>, <Al:iA > and <Pl:@a > and in
2 .

the isolated attributes <A :3> and <A :9>.
1 2

Assignment expressions are extrzemely useful inside iterative
statements where for each {teration a mnew attribute has to be

created. An example of this use is shown in section 2.7, 2.

2. 0.2 PUTIN EXPRESSIONS

The purpose of the PUTIN expression is to insert new components

into a construct. Its syntax is:

<PUTIN EXPRESSION> ::= PUTIN (<ATTRIBUTE DESIGNATION> :
<COMPONENT ASSIGNMENT SEQUENCE>)

75

The execution of & PUTIN expression {s equivalent to the

execution of the assignment statement
¢ATTRIBUTE DESIGNATION> := $(<COMPONENT ASSIGNMENT SEQUENCE>)
with the following differences:

- The attribute designation is évaluated as an expression,
not as & LHS.

- The valus of a PUTIN expression 1is a reference to the
attribute referred to by the simple attribute designation

part of the attribute designation.
For example, given the attribute

<R: (<"KELSON" : (<"RUTH": {(<A: 23>}>}»>)>

the cxecution of

PUTIN (R."KELSON", “DCRIS".A := 20 ; “BRUNO".A := 17)
would return as a value a reference to the attribute

<R: (<"KELSON": ({<"RUTH": (<A:23>)>; <"BRUNO"™: {<A:17>)>;
<"DORIS": (<A: 20>)>)>)>

1t should be noted that the equivalent assignment statemeqt

R. "KELSON" := $("BRUNO".A: =17 ; "DORIS". A:e 20)

76

wouid return as a value a reference to the attribute "KELSON" ({f {t
were the RHS of another assignment). Also notice {in the above
example that 1If R were undefined, the PUTIN expression would
passivate while the equivaient assignment statement would not. In
other words PUTIN only adds to attributes already defined. Finally
{t should be notec that {f the <coaponent asslgnment sequence has
parallel parfs they go on asynchronously; i.e., PUTIN may be done
before they are finished. The attribtute designation part of the
PUTIN expression should return a reference to a construct (but not a

NIL value) or an error occurs.

2.6.3 FIND EXPRESSION

A fird expression 1is used to check the presence of a certain

component in a construct. Its syntax is:
<FIND EXPRESSION> ::= FIND (¢EXPRESSION»> , <COMPONENT>)

The value of <¢EXPRESSION»> should be a reference to a construct
or NIL (which is a reference to a construct with value NULL),
otherwise an error occurs. If a construct has a component whose
selector is the value of <COMPONE“.T> the expression's value {s a
refercnce to the component; otherwise the value s NIL. As a
consequence, {f the expression's va.ue is NIL the .value of FIND is
NIL. The evaluation of the FIND expression will cause a passivation
{if the construct 1is wundefined. For example, given <R:u>, the
executipn of the paralle. statement

77

s/ R."KELSON" :s $("RUTH".A := 23; "DORIS".A :s 20);
P := FIND(R."KELSOX", "DORIS");
P1 := FIND(R."KELSON", "BRUNO")/S

results in

<Rt (¢<"KELSON": (<"RUTH": {<A:23>)>; <"DORIS": (cA:20>}>)>)}>
<P: @8R."KELSON"."DORIS">
<PL:NIL>

However, it should be noted that given the parallel statements

s/ R."KELSON" = §("RUTH".A := 23; "DORIS".A := 20) /%
s/ P : = FIND(R."KELSON", "DORIS") /$§

after both are executed and terminated the value of the attribute P

is either Z2R."KELSON"."DOaIS" or NIL. This can be avoided by

replacing the first parallel statement by

$/ R := RIL."KELSON" :=2 §. ...) /§

In this case R i: undefined until the compiete construct is

assigned and P will always be assigned the value @R."KELSON". "DORIS".

2.7 STANDARD FUNCTIONS

Standard functions are system defined functions that complement
the opzrators furnished by the language. A standard function {s

evaluated by first evaluating its arguments from left to right and

then applying the function to the values‘returned by the arguments.
The value returned by a standard function varies from function to

function. Their syntax is:

<STANDARD FUNCTION> ::= <PREDICATES> | «LIST FUNCTIONS»> |
<MISCELANEOUS FUNCTIONS> '

2. 7.1 PREDICATES

A predicate's value is always boolean. Their syntax is:

¢PREDICATES> ::= NULLR (¢EXPRESSION>) |
NULLB (<EXPRESSION>)

The value of NULLR is TRUE 1if the value returned by the
expression is elither FALSE, 0, NULL, or NIL; otherwise 1t 1is FALSE.
The value of NULLB is TRUE if the expression’'s value is either FALSE,

0, NULL, NIL or if it is a reference to an attribute whose value i

[

either FALSE, 0, NIL, or “ULL; otherwise i1t 1is FALSE. NULLB will
cause a passivation if the value of the expression is a reference to
an undefined attribute. For exanmple, given the attribute <C:§)> the

value of NULLR(C) is FALSE while the value of NULLB(C) is TRUE.

79

2.7.2 LIST FUNCTIONS

List functions are used to manipulate lists. The value of a
list function is either a reference to & list component or a special
kind of list called a value-list. A value-list is a 1ist whose
selector is undefined and that does nrot belong either to a node or to
another attribute. When & value 1list is the R-operand of an
assignment, the value assigned to the L-attribute (which must be a
list) is directly the value of the value-list. If the R-operand werc
a reference to & list and if the L-attribute were also a list the L-
attribute's value would indirectly be the value of the R-attribute.
Notice that if the L-attribute is a pointer and the R-operand a value
list, an error occuvs. The value 1list is & list and not a reference

to & list. The syntax for list functioa is:

<LIST FUNCTION> ::= CAR (¢EXPRESSION>) |
CDR (<EXPRESSION>) |
CONS (<EXPRESSION> , <EXPRESSION>) |
LIST (<EXPRESSION») |
APEND (<EXPRESSION> , <EXPRESSION») |
RVRS (<EXPRESSION>)

The functions CAR, CDR, CONS, and LIST correspond exactly to
their LISP counterparts and work essentially in the same way. As in
LISP, the list components are not copied and the appllcaiion of these
functions to a 1ist does not change its value.

CAR takes a value-list or a reference to a list as an argument
and returns & reference to its first component. An error occurs if
the expression's value is not a a value-list or a reference to a list
or if the list or the value list 4{s empty. For example, given the
1ist «L; (<(1):3>; <(2):4>)>, CAR(L) r=2turns a reference tn <(1):3>.

80

CDR takes a value-list or a reference to a list ac an argument
and returns a value-list whose components are all the components of
the argument list but the first, [f the value of the argument list is
NULL an error occurs. For example, figure 2.11 shows the 1ist L and
L1 before and after the execution of the statement L1 := CDR(L).

Notice that the value of L1 {s direct and that no copy was performed.

Figure 2.11
Effect of CAR, CDR and CONS

The application of the CONS function creates a new attribute
wkose type and value are determined by the value of the first
argument : if the argument has a nonreference value or is not NULL or

NIL the new attribute has the appropiate type to receive the value;

81

if it is a reference to an attribute, the new attribute has the same
type and undertype as this attribute; if it is NIL or NULL it is &
pointer with value NIL. In ail cases the new attribute has an
undefined selector. After the creation of the new attribute an
assignment {s performed witl. the new attribute as the L-attribute and
the first argument as the R-operand. The second argument is a value
list or a reference to a list. The value of CONS is a value-list
whose first component is the new attribute and whose other components
are those of the second argument's list. For example the execution

of the sequence of statements
L2 := CONS(2,L1) ; L3 := CONS(CAR(L1) + CAR(L2) , L)

transforms the attributes in figure 2.11b. into the attributes in
figure 2.11lc.

The execution of the function LIST(ARG) is aivays equivelent to
the execution of CONS (ARG, LxsXNULL).

Figure 2.12 is an example of the use of the 1list functions.
The execution of the compound statement (a) transforms the attributes
(b) into the attributes f{c). Observe that in line S of the compound
statement, the attribute designation COUNTER 1is bracketed; if not,

the value of ADDRESS would be {COUNTER in both INSTRUCTION and
1

INSTRUCTION .
2

The functions APEND and RVRS differ from the other list
functions in that they change the value of the list upon which they
are applied. They correspond to the LISP functions APPEND and REVERSE

with the difference that the LISP functions do not change the values

82

BEGIN
L2 t« NULL; COUNTER :e 1; L1 :el}
WHILE -NULLB(L1) DO
BEGIN

L2 1« CONS(INSTRUCTION ee S(CADDRESS := CAR(LD); '
OP1 :« [COUNTER)), L2)}

L1 te COR(LL); COUNTER : = COUNTER o1
END
END
(a)

<L (< (130 (4D

®)

<Li: {)>
cLs {c(1): 31 <(D:4D)>
<lNS‘l’lU€Tlonl: (<OP1: 1CAR(L)>»; <ADDRESS: 1>)>

CINSTRUCTION : (<OF1: 1CARCCDP (L)) >; <¢ADDRESS: 2>})>
2

«L2: (¢(1): 1INSTRUCTION »; < (2): HNSTIUCTION;) >
1 .

©)

Figure 2.12

Examples of the use of LIST functions

of their argument lists. The reason for using APEND and RVRS is their
greater efficiency,both timewise (no sequence of CARs and CDRs as in
APPEND) and spacewise (no new attributes are created). The arguments
of both APEND and RVRS should be either value-lists or references to
1ists (but not NIL) or an error occurs.

The value of APEND is a value-list whose components are the
components of the first argument followed by the componeats ¢f the

second argument. The components of the second argument also follow

83

th: components of all 1lists whose last component was the last
cemponent of the first argument. For example, figure 2.13 shows the
resa ' of executing the statement LS := CONS(7 APEND(L,L4)) given the
attribuv:es in figure 2.17c and «L4: (<(1):6>)>. APEND should be used
with extreme care since it can form circular lists which can then

cause a process to enter an infinite loop.

Effect of APEND

The value of RVRS Is a4 value-list whose components are in the
reverse oruder in which they were in the argument; the reversal
affects all lists to which this components belong. Figure 2.14 shows
the result of executing L3 := RVRS(L) given the attribute 1in

figure 2.1lc.

Figure 2,14
Effect of RVRS

g4

A list function will cause a passivation 1if any of its

arguments is a reference to an unaefined list.

2.7.3 MISCELLANEOUS FUNCTIONS

<MISCELLANEQUS FUNCTIONS> ::s NEWINTEGER |
SELECTOR (<EXPRESSION>) |
FIRST (<EXPRESSION>) |
NEXT (<EXPRESSION»> |

The function NEWINTEGER returns a different integer value for
each cali on the function.

The argument of SELECTOR should be a reference to an attribute
whose selector is defined, otherwise an error occurs. The value of
the function is an inieger if the selector is an integer, otherwise
it is a title value. For example, given the attributes <A:S> and
<P: @A> the value of SELECTOR(P) is P and of SELECTOR({P)) is A.

The argumert of the fuuction FIRST should be a reference to a
construct, otherwise an error occurs. If the construct is undefined a
passivation occurs. The value of the function is a reference to the
component FIRST (see section 2.3). If the construct is empty the
value of the function is NIL.

The argument of the function NEXT should be a reference to an
attribute, otherwise an error occurs. If the referenced attribute is
a component the value of NEXT is a reference to the component that

follows the one referenced by the argument; if the referenced

85

component is LAST then the value of NEXT is NIL. If the referenced
attribute is a node attribute, the value of NEXT depends on the
implementation. (On MUTILATE, NEXT will.return a reference to another
attribute of the same node (or NIL)).

The block expression in figure 2.15 illustrates the use of
these functions. Given C, a construct, and P, a pointer, the block

expression returns the same value as FIND(C, &X).

BEGIN

? 1= FIRST(C);

WMILE -~NULLB(P) DO

IF SELECTORC(P)) « &X THEN GO TO EXIT ELSE P 1= NEXT((P))} .
EXIT: 3

(1))
END

Figure 2.1S

Exanple of block expression

2.8 USER DEFINED FUNCTIONS AND PROCEDURES

The declaration of user defined functions and procedures

follows the syntax:

<PROCEDURE DESCRIPTION> ::= ¢ | <PROCEDURE DECLARATION> |
<PROCEDURE DECLARATION> ; <PROCEDURE DESCRIPTION>

<PROCEDURE DECLARATION> ::= FUNCTION ¢FUNCTION IDENTIFIER>
¢FORMAL PARAMETER PART> ; <EXPRESSION> |
PROCEDURE <PROCEDURE IDENTIFIER>
¢<FORMAL PARAMETER PART> ; <STATEMENT>
¢<FUNCTION IDENTIFIER> ::= <IDENTIFIER>
<PROCEDURE IDENTIFIER> ::s <IDENTIFIER>

86

<FORMAL PARAMETER PART> ::= ¢ | (<FORMAL PARAMETERS>)

<FORMAL PARAMETERS> ::s ¢ATTRIBUTE IDENTIFIER> |

¢FORMAL PARAMETERS»> , <¢ATTRIBUTE IDENTIFIER>

A function or procedure call is executed as follows:

1)

€))

(4)

(5

All the
belong to the

they must all

The actual parameters are evaluated from left to right.
A node is created and attributes whcse selectors are
the foroal parameters are attached te - ¢.

Each actual parameter (R-operand) 1s assigned to the
attribute whose selector s the cor-esponding formal
parameter (L-attribute). 1If ths number of formal and
actual parameters is not the same, an error occurs.

The process from wich the call was made 1is passivated
and a process, corresponding to the body of the
function or procedure, is created and activated.

Once the process is terminated the calling process is
reactivated and if call was a function call the value

of the expression is returned,

node attributes used in the procedure or function body
node assoclated with the procedure or function, thus

be local. The procedure body is implicitly parallel so

that the scope nf all the labels declared in it is the body itself.

For example in figure 1.6 the exponentiation c¢ould have been

declared as:

87

FUNCTION EXP (COUNTER):
BEGIN
PRODUCT := 1;
WHILE COUNTER > 0 DO
BEGIN
PRODUCT :e 2 « PRODUCT;
COUNTER : = COUNTER - 1}
END;
PRODUCT
END;

The semantic rule cf production P2 would then be

$/ VALUE(B) := EXP(SCALE(B)) /$

2.9 OTHER STATEMENTS

Besides the statements shown in 2.5, SPINDLE has threa other

types of statements:

<STATEMENT»> ::= <«WRITE STATEMENT> | <ERROR STATEMENT> |
<DISAMBIGUATION STATEMENT>

2.9.1 WRITE STATEMENT

The write statement 1is the nmeans for Jutputing values in

SPINDLE. Its syntax is:

<WRITE STATEMENT> ::= <LABEL> : <WRITE STATEMENT) |
WRITE (<OUTPUT LIST>)

<OUTPUT LIST> ::= <CUTPUT ELEMENT> | <OUTPUT LIST» . <OUTPUT ELEMENT)>
<OUTPUT ELEMENT)> ::s= <¢EXPRESSION> | /

The statement is executed by evaluating, in sequence, from left
to right, each output element. “he implementation of the system
guarantees that values that follow one another in the output list
will follow one another in the printed output, unless the evaluation
of an output element causes a passivation. No passivation occurs if
the output element is an expression that references an undefined
attribute. The implementation also guarantess that an attribute
containing an undefined value is printed either when the value is
defined or when the computation terminates (no more active
processes). The implementation also guarantees that if the execution
of a write statement follows the execution of another write statement
(with other types of statemsnts possibly being executed in between),
the printed output of the former immediately follows the printed
output of the latter. No sequencing is possible apong the output
lists generated %y different processes. In chapter 3 it can be seen
how this was implemented in MUTILATE.

Values are printed following one another in the sanme output

line until the line is full. Once full, a 1ine is -rinted and a new

89

one .s started. The control character "/" forces the printing of the
line currentiy being filled and starts a new one.

If the output element is an expression, it is implicitly
bracketed and the value returned determines what !s to be printed: if
the value is a nen pointer value or NIL the value 1s printed;
otherwise the selector (if defined) and value of the referenced
attribute are printed.

Integers are printed in left justified form. Strings are
printed without the surrounding double quotes. If the value of a
pointer attribute is not NIL the selector of the referenced attribute
preceded by the character "#" is printed; otherwise NIL is printed.
Composite attributes are printed by print;ng each of {ts components;
the components are separated by commas and the whole list is enclosed
in parenthesis. Figure 2.16 shows a series of examples of write
statenents and the resulting output. Notice that the components of a
construct are printed in the same order they are internally stored

(which depends on the imp'ementation).

2.9.1.1 FORMATED OUTPUT

Constructs can be printed in a "nicer”™ way than described

above, if they have a format attribute as a component. Format

attributes are title attributes whose selector is FORMAT and whose
value is a format identifier. The construct to which the format
attribute belongs is printed according to the format associated with

the format identifier. Formats are associated with format identifiers

90

STATEMENT:

WRITE ("VALUE 1S =, COxS(6, CONS(s, CONS(2, L1ST(0)))))
QuUTIUT:
VALUE 15 =8, &, 2, O

STATENENT: .
$/ 11e3; Bie $TITLE

C:e$(A:e3 B1taB; Ct:e $CTYPE:- "INTEGER®;
KAND : « "ARRAY"))}
WRITE(E, C, 1) /%

OUTPUT:
s TITLE Ce+ (Ble TITLE, Cle(TYPEs INTEGER, KINDe ARRAY), Ae 3)
1e 3

Figure 2.10

Exagples of output statements
by means of declarations. Format attributes are attached to
constructs by means of foimat assignsents. A format assignment 1is &

form of component assignment. Its syntax is:

¢COMPONENT ASSIGNMENT> ::= <FORMAT ASSIGNMENT>
<FORMAT ASSIGNMENT> ::= FORMAT := (FORMAT IDENTIFIER>

Formats can also be attache¢ as any other component. For

example, the three following statements have exactly the same effect:

Ci = J(FORMAT := FJ)
C:s $(FORMAT := ! F3)
C. FORMAT := { F3

The syntax for format declaration is:

91

<FORMAT DESCRIPTION> ::= ¢ | FORMATS ARE <FORMAT DESCRIPTION LIST>
<FORMAT DESCRIPTION LIST> ::a ¢FORMAT DECLARATION> |
<FORMAT DECLARATION>
<FORMAT DESCRIPTION LIST.

<FORMAT DECLARATION> ::= (FORMAT IDENTJFIER> =
: (<FORMAT ELEMENT LIST>)

<FORMAT IDENTIFIER> ::s <IDENTIFIER>

<FORMAT ELEMENT LIST> ::= ¢FORMAT ELEMENT> |
' <FORMAT ELEMENT> , <FORMAT ELEMENT LIST»

<FORMAT ELEQENT> sis / | <ATTRIBUTE IDENTIFIER> ' <¢STRING>
An example of a format declaration is:

Fd= (OPER,"(",0P1,",",0P2,"™)",/, "GO-TO(", LABEL, ")")

The format controls the printing by executing in succession,
from left to right, each of the fcrmat elements; if the format
element is a string the string 1is printed. If it is a */", the line
being filled'is printed; if it is an attribite identifier, the value
of the component whose selector is the identifier is printed; if no
such compon2ant exists nothing is printed. The selector of the
composite attribute to which the format attribute belongs is not
printed. As an example, with F4 declared as above, the parallel

statement

$/ Ci= § (OPER := "ADD"; OP! :s 1; OP2 :s §;
TYPE : = "RR"; FORMAT := F4; LABEL := "EXIT");
WRITE (C) /$

will print

ADD(1, 5)
GO-TO (EXIT)

92

The same statement without the format assignment would print

C= (OPER = ADD, OP2Z = S, OPi = 1, LABEL = EXIT, TYPE = RR)

2.9.2 ERROR STATEMENT

The errvor statement 1is one of thé means by which malformed

strings are detected in SPINDLE. Its syntax is:

<ERROR STATEMENT> ::= ERROR (<OUTPUT LIST>) |
<LABEL> : <ERROR STATEMENT>

The error statement prints the output list and then passivates
all active processes. ending the computation,

Tke definition in figure 2.17 shows an example of the wuse of
the error statement. Given a base, a sign and an integer number in
this base (represented by & string of integers), the definition will
output the decimal value of the number. Notice that if the base is
greater than 9 or if the number contains an improper digit the string

is malformed.

93

TERMINALS ARE + -

ATTRIBUTES ARE
VALUE ¢ INTEGER
SCALE » INTEGER
BASE « INTEGER
COUNTER = INTEGER
PRODUCT = INTEGER
NEGATIVE « BOOLEAN

INTEGERS ARE NU WITH ATTRIBUTE VALUE

NONTERMiNALS ARE
N o S(VALUE)
L = S(VALUE), I (SCALE)
S « S(NEGATIVE)

START SYMBOL N

:Iil:f;lﬂl EXP (BASE, COUNTER, VALUE)
IF VALUE 2 BASE THEN
ERROR (VALVE, " IS NOT VALID FUR NUMBERS BASE", BASD)}
PRODUCT :» 1
WHILE COUNTER » 0 DO
BEGIN
PRODUCT : s PRODUCT o lASE.
COUNTEA : = COUNTER -

END;
PRODUCT o VALUE
END

1L
SIVALUE(L) 1= EXP(BASE(L), SCALE(L), VALUBOW)) /%

$P2 L ::e L NU
$/ VM.UE(L) ts VALUE(Le) o
EXP(BASE(L), SCALE(L), VALUEDW)) /8
$/ SCALE(Le) :e SCALE(L) + } /8

$PI N i:e NUSL
$/ SCALE(L) :« 0 /8
8/ BASE(L) :« VALUE(NU) /%
8/ IF YALUR(NU) > 9 THEN
ERROR (VALUE(NU), 1S NOT A PROPER IASI'H
VALUE(N) :e« IF NEGATIVE(S) THEN VAI.UI(L) LS VM.Ul(LH
WRITE ("VALUE I5®, VALUE(N)) /%

P4 S 110 o .
$/ NEGATJVE(S) :e PALSE /8

PSS i:s - .
2/ NEGATIVE(S) :e TRUE /3

Figure 2.17

Definltion'using the error statement

94

2.9.3 DISAMBIGUATION STATEMENT

The disaabjguation statement is the neans for handling

ambiguities in SPINDLE. Its syntax is:

<DISAMBIGUATION STATEMENT> ::= <(LABEL> : <DISAMBIGUATION STATEMENT> |
DAMB (<EXPRESSION> . <NODE>)

<NODE> ::= <INTEGER> | <NONTERMINAL IDENTIFIER>

Every process is associated with a nonierminal node of the
parsing tree called the process’'s node. For function and procedure
bodies this node is the node associated with the calling process. An
anbiguous node sprouts more than one parsing subtree. An ambjiguous
node is disambiguated if one and only one of its subtrees is correct.

The function of the disambiguation statement, as the name
implies, 1is to check for correct parsings. The expression in the
first operand is implicitly bracketed and returns a boolean value (or
an error occurs). If the value is TRUE the subtree to which the
current rode belongs ard whose root is the node designated by the
second operand is the correct parsing; if it is FALSE, it 1is an
incorrect one. If the second operand is an integer the designated

th
node is the | ambiguous node in the ancestor line of the process's

node, starting with the process's node 1itself. For example, 1f the
process's node is ambiguous, a "1" for the second operand refers to
the process's node and a "2" to its first ambiguous ancestor. If the
integer in the second operand designates a nonexistent ambiguous node
an error occurs. [f the second operand is a nonterminal identifier,

the designated node is the first ambiguous node in the ancestor line,

95

starting with the process's node, that is labelled by the identifier;
if no such node exists an error occurs.

The synthesized attributes of an ambiguous node can only be
assigned values after the node is disambiguated; processes trying to
assign values to the node before disambiguation are passivated. If a
subtree 1is found incorrect it is discarded together with all its
attributes and processes. If a subtree is found correct, it is kept.
After all parsings of a node have been checked, 1f more than oue
correct parsing is found an error occurs; if only one is correct, the
node is disambiguated and all passivated processes trying to assign
to its synthesized attributes are reactivated. If no parsing is

correct then:

(1) if the ambiguous node has no ambiguous ancestor an
error occurs;

(2) 1f it has ambiguous ancestors the subtree attached to
the nearest ancestor that contains this node is marked

incorrect.

Notice that if an aubiguous node is not detected or if one of
the possible subtrees of an ambiguous node is not recognized as such,
the processes trying to assign to the synthesized attributes of the
node will be passivated and will never terminsate.

The use of the disambiguation statement is illustrated in
section 2.12 when the definition of TURINGOL is discussed.

96

2.10 SEMANTIC RULES

As explained in Chapter 1, a set of semantic rules s
associated with each syntactic production. The zemantic rules
operate on the attributes of the nodes involved in the production.
Certain semantic rules are implied, i.« they do not have to be
explicitly stated, being automatically geners:ied by the system. It is
a characteristic of this method of semantic definition that the
semantic rules of a production can only assign to the synthesized
~attributes of the LHN, the inherited attributes of the RHNs and to
local attributes. It is an error to assign to an inherited #ttribute
of the LHN or a synthesized attribute of a RHN. SPINDLE {ntroduces
the restriction that no inherited or synthesized attribute of a node
can appear in the left hand side of an assignment statement more than
once in the semantic rules associated with a production; if this
happens, an error occurs. For example, 1in prcduction PS5 of figure

1.6, it would be an error to write

IF NEGATIVE(S) THEN VALUE (N) :s =VALUE (L)
ELSE VALUE (N) := VALUE (L);

and it would also be wrong to write

$/ 'F NEGATIVE(S) THEN VALUE (\) := VALUE (L) / §
$/ 1F -~NEGATIVE(S) THEN VALUE (N) := VALUE (L) / §

Implicit semantic rules are always of the form A(NT) = A(NTZ)
1

where A is an attrihte and NT and NT nonterminals on opposite
1 2

sides of a production. Given the production

97

L HE] R R l.lRll..R

12 n

if an inherited attribute I, belonging to R, does not appear as a
i

left hand side of any assignment in the associated semantic rules,

and {f I also belongs to L, the rule I(R) :=s I(L) 1is automatically
1

generated; if 1 is not an attribute of L an error occurs. I1f a
synthesized attribute S of L does not appear as a left hand side of
any assignment in any of the associated semaatic rules, and {f S is

an attribute of R the semantic rule S(L) := S(R) 1s generated; if S
i i

is an attribute of more than one RHN or of none of them, an error
occurs.

Semantic rules are organized into parallel statements. Semantic
rules whose values depend on one another, have to be either in
different parallel statements or, in a sequence of statements, the
dependent one has to come after the one it depends on. For instance,
the semantic rules of production P4 in figure 1.6 could have been

written as

$/ SCALE (L») := SCALE (L) + 1 ;
VALUE (L) := VALUE (L»} + VALUE (B) /§

However, if the order of the statements in this parallel
statement were reversed, the process would never termingte. Therefore
separate parallel statements should ordinarily be used for each
attribute.

Productions and their associated semantic rules are described

by the following syntax:

98

<PRODUCTION DESCRIPTION> ::= <PRODUCTION> |
<PRODUCTION> <PRODUCTION DESCRIPTION>

<PRODUCTION> ::= § <LABEL> <SYNTACTIC PRODUCTION> <SEMANTIC RULES>
<SEMANTIC RULES»> ::= ¢ | <PARALLEL STATEMENT LIST>

(PARALLEL STATEMENT LIST> ::= (PARALLEL STATEMENT> |
<PARALLEL STATEMENT> <PARALLEL STATEMENT LIST>

2.11 WRITING AND RUNNING A SPINDLE PROGRAM

The previous sections described the components of a SPINDLE
program. This section shows how a program is put together and how it

runs as a whole. The syntax of a SPINDLE program is:

<SPINDLE PROGRAM> ::= <SPECIAL CHARACTER DECLARATION>
<RESERVED WORD DECLARATION>
<ATTRIBUTE DESCRIPTION>
<S-TERMINALS>
<NONTERMINAL DESCRIPTION>
<«START SYMBOL DECLARATION>
<PROCEDURE DESCRIPTION>
<PRODUCTION DESCRIPTION>

Given a string of the language, a parse tree is built from the
syntactic part of the definition. In the tree, ambiguous nddes have
more than one subtree sprouting from them; S-terminal nodes have the
corresponding attribute with the proper value filled in; nonterminal
nodes have undefined attributes that correspond to the attribute
identifiers associated with the nonterminal. Each nonterminal node is

associated with a set of parsllel statements. For each parallel

99

statement a process is created and activated. The execution ot a
process may create and activate other processes. A process may be
passivated by the existence of a certain condition (e.g arn undefined
value); it 1is reactivated 1f and when the condition disappears. A
process runs until it either passivates or terainates. The
computation ends when there are no more active processes 1in the
system. A computation that ends with no passive processes is said to
be well-formed. If a computation is well-formed the following are all

true:

- all ambiguities have been resolved and each node sprouts at
most one subtree;

- all inherited and synthesized attributes are defined.

1f a computation is malforzed a list of passive processei is printed,
showing the cause and location of the passivntlon.. Notice that
errors, unresolved ambiguities and circularities will all result in

passivated processes.

2.12 THE DEFINITION OF TURINGOL

TURINGOL \s a simple language that describes Turing machine
programs. It was introduced, in a slightly different versiqn. in
Knuth [Kn 68a]. The following example gives the flavor of the
language: it is a program designed to add unity to the binary integer

that anpears just left of the initially scanned square:

100

TAPE ALPHABET IS BLANK; ONE; ZERO; POINT;
PRINT 'POINT';
GO TO CARRY;
TEST: IF THE TAPE SYMBOL IS 'ONE' THEN
(PRINT 'ZERO';
CARRY: MOVE LEFT ONE SQUARZ; GO TO TEST);
PRINT 'ONE"';
REALI1GN: MOVE RIGHT ONE SQUARE;
IF THE TAPE SYMBOL IS 'ZERO' THEN GO TO REALIGN.

The SP/NDLE progran in APPENDI* . defines the language. Given &
well-formed utring of TURINGCL, it will print {ts transiation in
TL/i. TL/I was introduced in Knuth [Kn 71), and is a machine-1ike
langrage consisting essentially of sequential instructions whose
operation codes are PRINT, MOVE, IF, JUMP and STOP. For example, for
the TURINGOL program shown above, the SPINDLE program would print:

1: PRINT, 4)

2: JUMP, 5)

: 1F, 2, 7)

: PRINT,3)
MOVE, LEFT)
: JUMP, 3)

7: PRINT, 2)

8: MOVE, RIGHT)
9: 1F, 3,11
(10: JUMP, 8)
(11: STCP)

P e T e R e L
.o

The difference between this version of TURINGOL and Knuth's
original prcposal 1is that, due to the iatroduction of empty
declarations and the existence of eupty stateaments, this version s
ambiguous. For instance there are two‘possiblo parsings for the

prograa:

TAPE ALPHABET 1S A;; PRINT 'A',

101

The modification was introduced to show how the disambiguation
statement works. Notice that all parsings give the same mecaning;
however, since only one can be the correct one the definition states
that: if the last declaration 1is empty the parsing is ambiguous and
incorrect; if the first statement is empty but the last declaration
is not the parsing is ambiguous and correct; otherwise the parsing 1is
not ambiguous. This is an arbitrary choiée imposed by SPINDLE's
restriction that only one of the subtrees of an ambiguous node can be
correct. The attribute EMPTY registers the existence of an empty last
declaration or first statement. The disambiguation decision 1s made
in the production for P because of the way the attributes were chosen
and not because P is the possibly ambiguous node. By wusing an
inherited attribute the information about the declaration being empty
could be passed down the tree and then the disambiguation decision
could be taken at some other node.

The binding of labels to addresses deserves a closer
examination since essentially the same technique is used in the
definition of SIMULA in Chapter 4. The present scheme 1is different
from the one used by Knuth. The object programm OBJPROG is a list of
instructions and pseudo-instructions. A label zenerates a pseudo-
instruction that {s placed in front of the labelled instruction. The
pseudo-instruction has a componert TAG to which is assigned a unique
integer, the label-value. This label-value stands for the label;
references to the labelled 1irnstruction are handled by assigning the
label-value to a LABEL coaponent. After CBJPROG (P) is defined the
procedure OUTPUT builds a table that associates each label with an
address and substitutes in the component LABEL of an instruction the

label-value by the corresponding address. It should be noted that the

102

building of the table MAP and the assignment of addresses tc the
LABEL components could not be done in one pass without the use of the
procedure PLACE with a parallel statement for procedure body.

A fact that should be noted is that the definition states that
TURINGOL programs containing undeclared identifiers are malformed,
since a [process trying to access tge identifier 1in ENV will never
terminate; however no explicit error message is priﬁted. This way of
indicating malformed programs while not wrong is not good programming
practice: semantic errorﬁ should be explicitly stated. In the
TURINGOL definition this could be accomplished by adding to the
productions P21, P22, P23, P24 and P31 the parallel stateuent

$/ IF NULLR (FIND (FIND (ENV(S), ISP(S1GMA)}), SYMBOL)) THEN
ERROR (SP (SIGMA), "HAS NOT BEEN DECLARED") /§

and to P32 the same statement but with LABEL in place of SYMBOL.

It should be also noted that the printed output is an aspect of
the meaning, not the whole meaning of the program since only part of
OBJPRCG is printed. However, since it can be presumed that the output
reflects the essential aspects of the umeaning, it is convenient to
define the meaning associated by a SPINDLE definition with a string,
as the printed output resulting from inputting the string.

Finally, it should be noted that since the application of the
functions APEND and JOINE change the values of attributes lower in
the tree, the {final decorated tree does not correspond to the
definition; the values of the attributes are not as stated 1in the
definition. This can be avoided by using the # operator to copy at
every stage. However, since one is only interested in the attributes
of P, there is no harm in altering the values of the attributes of
the other nodes of the parse tree.

103

CHAPTER 3

MUTILATE

This chapter describes the .¥OLDS machine MUTILATE. It is
essentially a terse description of the relevant aspects of the
machine implementation; the general concepts involved were explained
in the preceding chapters.

MUTILATE 1is composed of two independent parts: the first
comprises the parser and lexical analyzer; the . second the
interpreter. The first part reads in a string S and, if S Dbelongs to
the defined language, outputs a set {PT(S)). The second part reads in
(PT(S)} and, if S 1{s well-formed and the definition {s well-formed,
selects a PT(S) from tlhe set and produces DPT(S). The main reason for
this two level desicn is the particular nature of Earley's parsing
algorithm [Ea 68), which is used 1a the parser for the reasons
explained in Chapter 1. In Earley's scheme, the parsing of a string
S is paced by the elements E of the string; 1.e, the parsing develops
by scanning th2 string from left to right and for each E building all
possible partial parsing trees up to E. The trees are built .1n an
extremely compact fashion with no duplication of nodes; i.e., a
subtree representing the parsing of a substring coemon to two or more
parsings 1s shared by the trees represencing the parsings. While the
parsing usually proceeds in a top down fashion, the parsing of left
recursions is bottom up., It is difficult to recognize, at midparsing,

subtrees that belong to the final parsing tree. While the parsing

104

usually proceeds from top to bottom, the subtrees are built on the
way up. The combination of these characteristics makes the filling in
oI the semantics, while the parsing is going on, quite complicated.
Thus it was decided that the advantages gained by developing the
syntax and semantics at the same time would be ouffset by the
complexity of the mechanisms necessary to carry out the task; it was
considered more profitable, in a first stage, to develop the two
tasks separately. This facilitated the developaent of the mechanisms
for decorating the parse tree which was the main job at hand. Perhaps
now that the semantic mechanisms are well understood, a one level
process could be developed; but the complications are much more

substantial then one would guess at first.

.1 LEXICAL ANALYZER AND PARSER

The parser in MUTILATE is a straightforward implementation of
Fisher's (Fi 70] version of Earley's algorithm, modified to accept
empty substrings; the modification {is 'a simple extension of the
original algorithm. A table is used to speed up the parsing; it
reiates to each nonterminal the set of all the terminals that can be
"seen" froam the nonterminal. A terminal is seen from a nonterminal if
either the terminal can be the first one li a strinﬁ derived from the
nonterminal or if there is a string of the language in which an enpty
substring that s followéd by the terminal |is deriQed from the

nonterminal.

105

For each element of tne string scanned, the parser calls the
lexical analyzer. As described in Chapter 1 the analyzer recognizes
special characters, reserved words, ALGOL-like identifiers, integers,
and strings enclosed in double quotes, using blanks as separators. It
also skips comments (beginning with the reserved word COMMENT and
finishing with a semicolon) and an identifier following the reserved
word END. When «called, the lexicaI analyzer returns a token that
identifies the recognized element; if the element is an S-terminal,
it also returns the value to be assigned to the attribute associated
with the node in the tree.

The parse tree is constituted of nonterminal and S-terminal
nodes, organized as a left linked binary tree (Kn 68bl. Terminal
nodes are 1ignored because they have no semantic consequence. A
nonterminal node is divided into the fields SON, BROTHER, AMBIGUOUS,
PRODUCTION and SELECTOR. SOMN contains a pointer to its rightmost son
(that 1is not a teraminal).BROTHER contains a pointer to its left
brothe:. I1f the node 1is ambiguous, AMBIGUOUS points to another
version of the same node (with a different subtree sprouting from
iv). PRODUCTION contains the label of the production associated
with the node. SELECTOR contains the nonterminal identifier that
labels the node. An S-terminal node is divided into the fields
BROTHER, VALUE and SELECTOR. BROTHER is the same as for nonterminal,
VALUE contains the value tn be assigned to the attribute associated
with the S-terminal and SELECTOR conteins the S-terminal identifier
that labels the node.

As an example, appendix 2 shows a TURINGOL program (the one
presented in 2.12, with an empty declaration inserted) and the

parsing tree generated from it.

106

Notice that common subtrees belonging to alternative ambiguous
parsings are represented by a unique subtree; i.e, in an ambiguous

subtree a node may belong to more than one parsing. .

3.2 INTERPRETER

The interpreter is a multiple stack machine with four types of
storage: byte addressed, linked, table and string. The byte addressed
memory contains the instructions, the format descriptors and the
nonterminal descriptors fa list of the symbol table entries for the
attributes associated with a nonterminal). The linked storage
contains nodes, attributes, stacks, etc., and is managed by an
underlying garbage collection mechanism. The table storage contains a
symbol table; there is one entry for each identifier (nonternlnil, 5-
terminal, attribute or format), S-xdentitier and string in the
definition of the language. Tue table also contains the S-identifiers
and strings recognized by tae parser. Each entry consists. of a
pointer to the spelling of the title in string storage, plus
information about the "kind" of the entry (either attribute,
nonterminal, S-terminal, formefr, S-identifier or string). If the
entry corresponds to & nonterminal or a f{ormat, it contains the
address of the respective description in byte addressed storage; if
it corresponds to an S-terminal, it contains the symbol table address
of the attribute associated with it; if (it carrespondg to an
attribute, it contains the type and undertype of the attribute. In
MUTILATE, a title value is represented by the address of 1its symbol
table entry.

107

A MUTILATE segment is a sequence of MUTILATE instructions
occupying contiguous positions in byte addressed storage; the address
of a segment is tne address of its first instruction. Each segment
in storage corresponds to a parallel statement, procedure or function
in the SPINDLE definition. A process is a dynamic instance of a
segment and it is associated with a stack and a node. To execute a
process is to interpret the instructions of its segment, starting-
with the first one; the instructions opcrate on the associated stack
and the attributes of the associated node and its direct descendants.
A process 1is represented by an element of linked storage called a
Process 5Status Word (PSW) divided into the fields HEAD, STACK,
VERSION, 1D, LOC, and LINK. HEAD and STACK contain pointers to the
associated node and stack respectively. VERSION and ID are used for
disambiguation purposes; VERSION contains an integer and ID a
pointer. LOC contains the address of an instruction: either the
address of the segment or the address of an instruction that caused
the passivation of the process. LINK contains a pointer and is used
to link PSW's together in various lists as described below.

The interpreter operates in a pseudo parallel fashion with
exactly one of the active processes (called the current process)
being executed at any time; the register CURRENT points to 1its PSW.
The PSWs of the remaining active processes are organized as a stack,
called the PROCESS stack; the register PROCESS points to the top
el:ment of the stack. When the current process terminates its PSW is
discarded; when it passivates, its PSW is transferred somewhere else.
When a process 1is first activated, a PSW is created with its
segment's address in the LOC field. When a process is reactivated its
PSW is transferred to the PROCESS stack; the PSW's LOC field contains

the address of the instruction that caused the passivation.

108

When the current process terminates or passivates, the one
whose PSW i{s at the top of the stack is made current; CURRENT points
to the PSW, which 1is removed fiom PROCESS. The MUTILATE registers
LOC, HEAD and A are loaded with the contents of LOC(CURRENT),
HEAD (CURRENT), and STACK (CURRENT) respectively. The MUTILATE
register is tlien loaded with a pointer to the second element of the
stack (if any). The process is then executed using the stack
referenced by A and the node (and its direct descendants) referenced
by HEAD. When a process passivates, the interpreter immediately
stores the contents of LOC and A in LOC (CURRENT) and STACK (CURRENT)
respectively and remcves its PSW from CURRENT. In MANAGEMENT mode,
the interpreter will make another process current. While a process
is being erxecuted the interpreter is in EXECUTE mode. When a process
is iterminated, the PSW pointed to by CURRENT is discarded and the
i{nterpreter switches to MANAGEMENT mode.

An attribute is represented as an element of linked storage
divided into the fields TYPE, UNDERTYrE, SELECTOR, UND, IND, VALUE
and LINK. TYPE and UNDERTYPE contain respectively the type and
undertype &ssociated with the attribute. SELECTOR contains the
selector: if it is an integer, its negative value is stored; if it is
a title, the address of its symbol table entry is stored. UND is a
bit; if its value is 1, the attribute is undefined. Associated with ‘
every undefined attribute is a linked l1ist formed by the PSWs of the
processes passivated trying to access {its value. The list 1is
organized as a stack (using the LINK fields of the PSWs) and is
called the interrupt stack. In an undefined attribute, VALUE contains
a pointer to the associated interrupt stack. If the value of the bit
field IND is 1, the attribute is indirect and VALUE contains a

109

pointer to another attribute. An attribute cannot be both undefined
and indirect, thus UND and IND cannot both be 1. [f UND and IND are
both 0, VALUE contains the value of the attribute. If the attribute
is elementary the field contains a value of the proper type. If the
attribute is composite, its components form a linear list (using the
LINK field) and VALUE contains a pointer to the first element of the
linear 1ist. If the attribute is df type LIST the components are
ordered according to their position in the list; i.e, given a list
attribute A, the first element in the linear list formed by the
camponents 1is CAR(A), the second CAR(CDR(A)) and s¢ on. If the
attribute is of type CONSTRUCT the linear list is ordered in
ascending order of the values of the SELECTOR field of the
components. As a consequence a component whose seiector is an
integer always precedes a component whose selector is a title; a
component whose selector is N (a positive integer) always follows a
component whose selector is Nek (where k 1is a positive integer),
because -N and - (N+k) are actually stored.

The processes' stacks are formed by attributes and PSWs linked
through the PSWs' LINK fields. The attributes in the stack are always
defined, direct and have an undefined SELECTOR field. The presence
of a PSW in the stack indicates, as will be seen in section 3.3, tlat
the stack is associated with a process which is a dynamic instances of
4 procedure or a function.

Nodes are represented as an element of linked storage dividad
into the fields SON, LEFTB, VALUE, SELECTOR, S-TERM, SEMANTICS, AMB,
AMBIGUOUS, ONCE, CORRECT and DISAMB. SON contains a pointer to the
rightmost direct descendant of the node. LEFTB contains a pointer to

the sibling to the left of the node in the tree. The attributes

110

belonging to the node are urganized as the components of a construct,
and VALUE points to the first attribute in the linear 1list. SELECTOR
contains the symbol table address of the entry that corresponds to
the nonterminal or S-terminal identifier that labels the node.
SEMANTICS {s the address of the segment associated with the node.
Only one segment is associated with a node; if the SPINDLE definition
specifies more than one parallel statement for a node, the compiler
encloses them in a parallel statement which is then the one
associated with the node. For example, if the semantic rules of a

production are embodied in the exrlicit parallel statements PST and
1

PST and the 1implicit parallel statement PSTJ, the compiler will
2

associate with the production the segment generated for the parallsl

statement §/ PST ; PST ; PST /$. AMB is a bit and if its value is 1
1 2 3 -

the node is ambiguous. In this case the field AMBIG..US contains a
pointer to another version of the ambiguous node; otherwise AMBIGUOUS
points to the node's nearest ambiguous ancestor. If the value of the
bit feld ONCE is 1 the node is ambiguous, and the subtree sprouting
from it has been tested. If the value of the bit field CORRECT is 1,
the node is ambiguous and the subtree has been tested and found
correct. If the value of the bit field DISAMB is 1 the node is
ambiguous but has been found to have only one correct subtree which
1s the one sprouting from the node.

Notice that an ambiguous node is represented by a set of nodes,
chained through the AMBIGUOUS field. The node at the head of the
chain 1is c;lled the (main) ambiguous node; the others are called
versions of the node. In particular, the second node in the chain is

called the auxiliary node of the main one. Only the main ambiguous

111

node belongs to the tree in the sense that ancestors and siblings
point to it and not to its versions.

The interpreter {initiates a run by loading the definition
generated by the compiler into the various storages and building the
tree produced by the parser in the linked storage. At the sawme time,
AMBTABLE 1is built in the table storage; 1t associates an integer
value (initially zero) with each m;in ambiguous node. AMBTABLE i{s
used to purge from PROCESS those PSWs created while testing a subtree
of an ambiguous node, once the testing is complete. Contrary to what
was stated in Chapter 1, irnitially the nonterminal tree nodes have no
attributes attached to them; attributes are created "on demand”, by
the execution of instructions. The tree is traversed depth-first,
left to right, using a function and stack called DEVELOP. The stack
contains pointers to tnhe nodes of the tree; initially the stack
contains a pointer to the root node. wWhen DEVELOP 1is «called it
returns as a value, the pointer at the top of the stack; it also
removes the top elemnt of the stack and inserts pointers to the
descendants of the node referenced by the removed pointer. A call to
DEVELOP when the stack is empty ends the run. When the node
referenced by the value returned by DEVELOP, called the developing
node, is ambiguous, a register AAMB i{s set to point to the node;
otherwise AAMB is not touched. Then, each of the direct descendents D
of the developing node is examinead: if UND(D) = 0, set
AMBIGUOUS (D) « AAMB; otherwise set VALUE(AMBIGUOUS(D)) « AAMB. This
establishes the ancestor line of ambiguous nodes; each node points to
its nearest ambiguous ancestor. If the node is not itself ambiguous
the linking 1is done through the AMBIGUOUS field; 'otherwlse through
the value fleld of its auxiliary node. Initially the value of AAMB is
NIL.

112

DEVELOP is called whenever the PROCESS stack is empty; it
returns & pointer to the developing node. A PSW is then created,
(which is a dynamic instance of the segment astcciaicd with the
node), inserted in PROCESS and the run goes on. I[u the PSW, HEAD
points to the node, STACK is NIL, and LOC contalas the address of the
associated segment obtained from the SEMANTICS fieid of the node. If
the node is ambiguous ID is set to point to it, otherwise it fs set
to the same value as the field AMBIGUOUS of the node. VERSION is set
to the same value as the entry in AMBTABLE corresponding to the
pointer in ID.

When a PSW gets to the top of PROCESS, its VERSION and ID field
are examined. If the value in VERSION 1s less than the value in
AMBTABLE corresponding to the value in I, the PSW is removed from
the stack and discarded.

In addition te the tables mentioned above, the interpreter
maintains a taoie, INTABLE, whose entries point to undefined nodes
and main ambiguous nodes for which DISAMB=0. At the end of & run, if
INTABLE 1s nc+ empty, 1its contents are printed for diagnostic

purposes.

3.3 THE INSTRUCTION SET OF MUTILATE

This section describes the instruction set of MUTILATE,
basically a "Polish postfix"™ code analogous to Burroughs computers.
The Instructions are grouped according to their functions and a brief

description of each one is presented. The description of their

113

execution by the interpreter follows the lines used by Knuth (Kn 68a)
to describe algorithms. The definition of TURINGOL in MUTILATE
assembly language, shown in appendix 3, 1illustrates the use of the
instructions.

In addition to the registers menticned in the previous sections
(A, B, LOC, HEAD, and STACK), MUTILATE possesses registers X, Y, Z,
OPCODE, OP1, and OP2. Here X, Y and Z are general purpose registers,
OPCODE contains the designation of the instruction being executed and
OP1 and OP2 1ts operands (if any).

The description of the executions wutilizes an auxiliary
procedure and an auxiliary function. The procedure, called PASSIVATE,
takes one argument, a pointer to an undefined attribute U; when
executed the procedure passivates the current processs, inserts its
PSW fnto the interrupt stack of U and switches the interpreter to
MANAGEMENT mode. The function, called FINAL, takes one argument, a
pointer P to an attribute [; its execution can be described by the
algorithm:

1. if IND(P)=0 return P,

2. Set P « LINK(P) and go to 1.

The function returns the final attribute of I.

For instructions that do not belong to the "control" greup (see
section 3.3.4), when the execution 1is completed the instruction's
length 1s added to the register LOC; notice taat an instruction that
causes a passivation does not complete its execution. For all
instructions, when the nachine is 1in EXECUTE mode, the next
instruction to be executed is the one whose address is in LOC.

Section 3.3.8 contains an indéx with the opcodes of MUTILATE

crossreferenced to the section number that explain them.

114

3.3.1

CONSTRUCT MANIPULATION INSTRUCTIONS

3.3.1.1 PLA & GET (Place and Get)

OPERANDS- OP1 is either an attribuce {identifier or empty; OP2 is

STACK-

either a node designation or empty. If OP1 L5 empty so s OP2
but the reverse .ay rnot be true.

If OP2 is not empty the stack does not matter. If OP1 1is not
empty but OPc is, A is & pointier to a construct. If both OP1
and OP2 are empty A is either a title or an integer anéd B is a

pointer to a construct.

DESCRIPTION- The instructions look for attributes in either a node or

a construct, create them if they are not present and leave a
pointer in the stack to the looked for sttribute., A PLA
instruction looking for a component in an undefined attribute
will create a new attribute; undér the same circunstances a
GET instruction would cause a passivation. A PLA instruction
looking for an attribute in an ambiguous node causes a
passivation while a GET does not. Under' all other
circunstances, the two instructions behave in exactly the sam

way.

EXECUTION-

1. If OP2 1is empty go to S. Set X « "pointer to the node
designated by OP2". [f AMB=1 and DISAMBa0 and OPCODEsPLA,
passivate the current process and discard its PSW.

115

6.

9.

Insert an attribute in the stack. Set TYPE(A) « POINTER.
Look for the attribute whose selector {s OP1, among the
attributes of the node X; if the attribute is there, set
VALUE(A) to point to it and END.

Create an attribute with the type and undertype assoclated
with OP1 and set Y to‘ point to it; set UND(Y) « i,
VALUE(A) « Y; make the attribute Y part of the 1linked list
formed by the other attributes of the node X; END.

If OP1 Is empty, set X « FINAL(VALUE(B)); otherwise set
X « FINAL(VALUE(A)). If UND(X)s1 and OPCODE«PLA transfer
the interrupt stack of X to PROCESS.

12 OP1 is empty, set Z « VALUE(A) and remove A from the
stack; otherwise set Z « OP1.

Look for the attribute whose selector is 2, among the
components of X: if the attribute is there, set VALUE(A) to
point to it and END.

Create an attribute, If Z 1is an attribute identifier the
attribute has the type and undertype associated with 2;
otherwise the undertype of X determines the type and
undertype. Set Y to point to the attribute, UND(Y) « 1,
VALUE(A) « Y; make the attribute Y part of the 1linked list
formed by the other components of the attribute X.

END.

116

3.3.1. 2. PLAN (Place New)

OPERANDS- OP1, an attribute identifier.

DESCRIPTION- This instruction creates a new attribute and leaves a
pointer to it at the top of the stack. It is used to implement
SPINDLE's assignment expression,

EXECUTION-

1. Insert a new element in the stack; set TYPE(A) « POINTER.

2., Create an attribute whose type and undertyps are the ones
associated with OP1 and set Y to point to the attribute.
Set UND(Y) « 1, VALUE(A) « Y,

3. END.

3.3.1.3 GETN (Get Next)

OPERANDS - None.

STACK- A pointer to an attribute.

DESCRIPTION- The instruction returns a pointer to the attribute
that follows the one initially pointed at.

EXECUTION-
1. Set VALUE(A) « LINK(VALUE(A)).
2. END.

117

3.3.1.4 FIND (Find)

OPERANDS- OP1 is either empty or is an attribute identifier.

STACK- 1f OP1 is empty A contains either a title or an integer and B
is a pointer; otherwise A is a pointer.

DESCRIPTION- The instruction looks i; a linked list for an attribute
whose selector is given and leaves at the top of stack a
pointer to it; if the linked list is empty or the attribute is
not there, a NULL pointer is left at the top of the stack.
This instruction is used to imp)ement SPINDLE's function FIND.

EXECUTION-

1. If OP1 s empty.‘ set Z « VALUE(A) and remove A from the
stack; otherwise set 2Z « OP1,

2. 1f VALUE(A)=NIL, END.

3. Set X « VALUEQA).

4. If SELECTOR(X)=2, set VALUE(A) « X and END.

S. 1f SELECTOR(X)>Z, set X « LINK(X) and go to 4; otherwise
set VALUE(A) « NIL.

0. END.

3.3.1.5 EMT (Format)

OPERANDS- OP1, a format identifier.

STACK- A is & pointer to a construct.

118

DESCRIPTION AND EXECUTION- The instruction places & component FORMAT
in a construct and assigns OP1 to it. The instruction 1s used
to ipplement SPINDLE's <Zormat assignment. Its execution is
equivalent to the execution of the sequence of MUTILATE
instructions (PLA(FORMAT), ASSI(10P1)). '

3.2 1.6 REP (Reproduce)

OPERANDS- None.

STACK- A is any attribute and B is a construct.

DESCRIPTION AND EXECUTION- The instruction implements the "u"
operator of SPINDLE. The execution {s equivalent to the

execution of the sequence of MUTILATE instructions (NAME,

PLA).

2.3.2 LIST MANIPULATION INSTRUCTIONS

The auxiliary procedure FIXLIST {is wused to describe the
execution of 1ist manipulation instructions. Its specification is:
ARGUMENTS- R, a register, ei-her the A or B register.

DESCRIPTION- Ths procedure checks the attribute to whicn the register
points. If it is a list sttribute nothing happens. 1If it is a
pointer to a list attribute then the pointer is substituted by

al9

a list with the same components a&s the list attribute
referenced by R.
EXECUTION-
1. If TYPE(R) = LIST, END.
2. Set X « VALUER). If UND(X)=1, PASSIVATE(X).
3. Set TYPE(R) « LIST, VALUE(%) « VALUE(X).
4. RETURN.

3.3.2.1 CAR (Car)

OPERANDS- None.

STACK- A is elither a list attribute or a pointer to one.

DESCRIPTION- A pointer to the first component of the 1ist is left in
the stack.

EXECUTION-
1. Execute FIXLIST(A). If VALUE(A)sNIL this s an error.

2. Set TYPE(A) « PQINTER.

3. END.

3.3.2.2 CDR (Car)

OPERANDS- None.

STACK- A is either a list attribute or a pointer to one.

120

DESCRIPTION- A new 1list 4is left in the stack, composed of all
elements of the initial list but the first.
EX..CUTION-
1. Execute FIXLIST(A). If VALUE(A)sNIL this is an ervor.
2. Set VALUE(A) « LINK(VALUE(A)).
3. END.

3.3.2.3 CONS (Cons)

OPERANDS- None.
STACK- A is any attribute; B is either a list attribute or a pointer
to one.
DESCRIPTION- The instruction 1inserts a new element at the front of
the 1ist in B.
EXECUTION-
1. Execute FIXLIST(B). Set X « A. Remove A from the stack.
2. If TYPE(X)#POINTER or VALUE(X)=NIL, set LINK(X) « VALUE(A),
VALUE(A) « X and END. _
3. Set X « FINAL(VALUE®)). Make a copy of the attribute
referenced by X and place & pointer to the copy in Y. Set
IND(Y) « 1,VALUE(Y) « X, LINK(Y) « VALUE(A), VALUE(A) « Y.
4. END.

121

3.3.2.4 LIST (List)

OPERANDS- None.
DESCRIPTION- A null list is inserted in the stack.
EXECUTION- .

1. Insert a new attribute in ;he stack.

2. Set TYPE(A) « LIST, VALUE(A) « NIL.

3. END.

3.3.2.5 APEND {Append)

OPERANDS- None.
STACK- A {s either a list attribute or a pointer to one; and
DESCRIPTION- The components of the list in A are appended to

so is B.
the list

attribute in B by changing the link of the last component of

B.
EXECUTION-
1. Ex2cute FIXLIST(A), FIXLIST(B).

2. If VALUE(A)sNIL, go to 5. If VALUE(B)«NIL, set

VALUE(B) « VALUE(A), go to 5. Set X « VALUE(B).
3. 1f LINK(X)=NIL, set LINK(X) « VALUE(A), go to S.
4. Set X « LINK(X), go to 3.
S. Remove A from stack.

6. END.

122

3.3.2.6 RVRS (Reverse)

OPERANDS- None.
STACK- A 1s a 1ist attribute or a pointer to one.
DESCRIPTION- The instruction reverses the order of the components of
the list,
EXECUTION-
1. Execute FIXLIST(A). I[f VALUE(A)sNIL or LINK(VALUE(A))=NIL,
END; otherwise set X « VALUE(A), Z « NIL.
2. Set Y « LINK(X), LINK(X) « 2, 2 « X, X ¢ Y,
3. If XeNIL go to 2. Set VALUE(A) « 2.
4. END.

3.3.3 STACK MANIPULATION INSTRUCTIONS

3.3.3.1 POP (Pop)

OPERANDS- None.
STACK- A is any attribute.
DESCRIPTION AND EXECUTION- Remove the top element from the stack.

123

3.3.3.2 DBL (Double)

OPERANDS- None.
STACK- A is any attribute,
DESCRIPTION AND EXECUTIOM- A copy of the top element of the stack is

inserted in the stack.

3.3.3.3 FLIP (Flip)

OPERANDS- None.
STACK- A and B are any attributes.
DESCRIPTION- The two top elements of the stack are interchanged.
EXECUTION-
1. Set X « LINK(B), LINK(B) « A, LINK(A) « X, A « B,
B « LINK(A).
2. END.

3.3.4 CONTROL INSTRUCTIONS

124

3.3.4.1 JUMP (Juwp)

OPERANDS- OP1, the address of an instruction.
DESCRIPTION- Transfers control <*o the instruction whose
OP1.
EXECUTION-
1. Set LOC « OP1.
2. END.

3.3.4.2 JUMPF & JUMPT (Jump False and Jump True)

OPERANDS- OP1, the address of an instruction.
STACK- A is any attribute.

OESCRIPTION- Transfers control to the instruction whose

address is

address is

OP1 if A contains the proper value. (TRUE if JUMPT or FALSE if

JUMPF).
EXECUTION-

1. If VALUE(A)«FALSE or VALUE(A)=0 or VALUE(A)=NIL, set

X « FALSE; otherwise set X « TRUE.

2. If XsTRUE and OPCODE=JUMPT, set LOC « OP1 and END.
3. If X«FALSE and OPCODE=JUMPF, set LOC « OP1 and END.

4, Set LOC « LOC » L <(where L is the length of the

instruction).

S. END.

125

3.3.4.3 PAR § PARN (Parallel and Parallel New)

OPERAKND- OP1 is the address of an instruction.
STACK- If OPCODEs=PAR, A is any attribute,
DESCRIPTION-‘These instructions <reate a new PSW and insert it in

PROCESS. PARN associates an empty stack with the new process;

PAR assoclates a stack containing a copy of the top element of

the current stack.

EXECUTION

1. Create a new PSW with a pointer to it in X.

2. Set LOC(X) « OP1, HEAD(X) « HEAD (CURRENT),
ID(X) « ID(CURRENT), VERSION(X) « VERSION(CURRENT).

3. If OPCODE«PARN, set STACK(X) « NIL; otherwise create a copy
of the attribute in A and associate this one element stack
with the new PSW.

4. Insert the new PSW in PROCESS.

5. END.

COMMENTS- PAD {s used to implement parallel compound assignments.

OP1 is the address of a segment.

3.3.4.4 CALL (Call)

OPERANDS- OP1, an instruction address.

126

DESCRIPTION- This inst:uction effecis a procedure call. It passivates

the current process and creates and activates a new one

associated with the procedure.
EXECUTION-

1‘

2.
3.
4,
5.
3.3.4.5
OPERANDS-
STACK- A ©

Set LOC « LOC « L (where L 1is the length of the
instruction).

Create a new PSW, with a pSI;ter to it placed in 'x. Set
ID(X) « ID(CURRENT), VERSION(X) « VERSION (CURRENT),
LOC(X) « OP1. <Create a new node and place a pointer to it
in HEAD(X). Associate the current stack with the new PSW.
Passivate the current process and insert 1its PSW in the
stack of the new process.

Make the new process current,

END.

RET (Return)

None.

r Bis a PSW

DESCRIPTION- This instruction returns control to the process that

inv
EXECUTION-

1.

2.

oked the procedure,

If A is not a PSW, execute the MUTILATE instruction FLIP.

Remove the top element of A (a PSW), and leave a pointer to
it in X. Set STACK{X) « A.

127

3. Terminate the current process and make the X PSW current.
4. END.

3.3.4.6 HLT (Halt)

OPERANDS- None.
DESCRIPTION AND EXECUTION- The current process terminates, its PSW is
removed from CURRENT and discarded. If the error condition is

set the run terminates, otherwise the interpreter enters

MANAGEMENT mode.

3.3.4.7 ERROR (Error)

OPERNADS- None.
DESCRIPTION AND EXECUTION- The error condition is set. As a
consequence the first execution of a HLT instruction will

terminate the run. Also any output instruction executed after

this one, will never cause a passivation.

128

3.3.5 VALUE MANIPULATION INSTRUCTIONS

3.3.5.1

OPERANDS-

ASS (Assign)

None.

STACK~ A is any attribute; B is a pointer.

DESCRIPTION- This is the assignment instruction with the form B : = A.

EXECUTION
1.

2.

3.

8.

Set X « VALUE(B). If UND(X)s1l, save the interrupt stack of
X. Set UND(X) « 0, IND(X) « 0.

If TYPE (A) #POINTER, set VALUE(X) « VALUE(A)
(TYPE(X) =TYPE(A) must be true) and 80 to 6.

If VALUE(A) «NIL, set VALUE(X) « NIL (TYPE(X) must e either
CONSTRUCT, LIST or POINTER) and go to 6.

If TYPE(X)=POINTER, set VALUE(X) « VALUE(A) and £§0 to 6.
Set Y « FINAL(VALUE(A)), IND(X) « 1, VALUE(X) « VALUE (Y).
[f UND(Y)={, {nsert the interrupt stack saved in step 1 (if
any) into the interrupt stack of Y and go to 7.

Insert the interrupt stack saved in step 1 (If any) into
the PROCESS stack.

Remove A and B.

END.

129

3.3.5.2 TRANS (Transfer)

OPERANDS- OP1 OP2 ... OPN, N22. OP1 contains the total number of
operands, N, of the f{nstruction; each of the following

operands is a triple of the form (AT, NT, NT), where AT is
: 1 2

an attribute identifier and the NTs node designations.
DESCRIPTION AND EXECUTION- Triples are executed in succession from
left to right; the execution of each triple corresponds to the
execution of the sequence of MUTILATE instructions
(PLA(AT.NTI). GET(AT.NTZ). ASS}). The execution of a triple

where NT 1is an ambiguous node with DISAMB=0, passivates the
1

current process and its PSW is discarded.

COMMENTS- TRANS is used to implement the generation of implied
semantic rules. For ambiguous nodes, those triples which refer
to inherited attributes should precede those that refer to
synthesized attributes to guarantee that the inherited ones

get assigned.

3.3.5.3 VALC (Value of & Constant)

OPERANDS- OP1, a constant.
DESCRIPTION- An attribute with value OP1 is inserted at the top of
the stack.

130

EXECUTION

1. Insert an attribute in the stack whose type is the sane as

the type of OP1.
2. Set VALUE(A) « OP1.
3. END.

3.3.5. 4 ASSI (Assign Immediate)

OPERAND- OP1, a constant.
STACK~ A points to an attribute.

DESCRIPTION- Orl is assigned to the attribute referenced by VALUE(A).

EXECUTION

1. Execute the sequence of MUTILATE instructions (VALC(OP1),

ASS).
2. END.

3.3.5.5 VAL (Value)

OPERANDS- OP1 is either empty or [.
STACK- A is any attribute.
DESCRIPTION- This instruction with operand

"(* implements the

bracketing operator of SPINDLE; with no operands it {s used to

implement the SPINDLE function FIRST, in conjuction wita TEST

131

to

to

implement the function NULLB, and in conjuction with coMmpP

implement the relation operator. Notice that unless A

points to a composite attribute the operand is irrelevant.

EXECUTION-
1.,
2.
3.

5.

3.3,5.6

OPERANDS-

If TYPE(A)wPOINTER or VALUE(A)s=NIL, END.

Set X « FINAL(VALUE(A)). If UND(X)=1, PASSIVATE(X).

If TYPE(X)=CONSTRUCT oé‘ TYPE(X)«LIST, if OQPl#(, set
TYPE(A) « POINTER, go to 4; otherwise END.

Set VALUE(A) « VALUE(X).

END.

STO (Store)

CP1, an &ttribute identifier.

STACK- A is any attribute.

DESCRIPTION- The instruction assigns the value in A to the local

attribute whose selector is OP1. If the attribute 1is not

tound, one is created.
EXECUTION-

1.

2.

Execute the sequence of MUTILATE instructions
{PLA (OP1, LOCAL), FLIP, ASS).
END.

132

3.3.5.7 LOAD (Load)

OPERANDS- OP1, an attribute identifier.

DESCRIPTION AND EXECUTION- The instruction "loads® the

local

attribute OP1 into the stack. If necessary an attribute is

created.

EXECUTION-

1. Execute the sequence of MUTILATE {instructions

(GET (QP1, LOCAL), VAL).
2. END.

3.3.5.8 AR (Arithmetic)

OPERANDS‘ oplg eithel‘ ABS, NEG. OA\EP (1.eo 1’)' ONEM “-0. -1¢)’ *

'] .' /, RE.\L
STACK- A is an integer; B, if OP1 1s a binary operator,

integer.

is an

DESCRIPTION- This 1is the arithmetic instruction. It performs the

operation specified by OP1.
EXECUTION-

1. I& OP1 is either ABS, NEG, ONEP or ONEY,

VALUE(A) « OP1 VALUE{A) and END.
2. Set VALUE(B) « VALUE(B) OP1 VALUE(A); remove A.
3! END.

133

set

3.3.5.9 LOG (Logicai)

OPERANDS- OP1 is either NEG, AND or OR.
STACK- A is a boolean; B, if OP1 is either AND or OR, is a boolean.
DESCRIPTION- This instruction performs the logical operation
specified by OPl.
EXECUTION-
1. 1f OP1aNEG, set VALUE(A) « NEG VALUE(A) and END.
2. Set VALUE(B) « VALUE(B) OP1 VALUE(A); remove A.
3. END.

3.3.5.10 TEST (Test)

OPERANDS- None.
STACK- A i{s any attribute.
DESCRIPTION- This instruction implements the SPINDLE functions NULLR
and NULLB.
EXECUTION-
1. Set TYPE(A) « BOOLEAN. If VALUE(A)=0 or VALUT {A)=FALSE or
VALUE (A) =NIL, set VALUE(A) « TRUE; otherwise set
VALUE (A) « FALSE.
2. END.

134

3.3.6.11 CoMP (Compare)

OPERANDS- OP1, either =, 4, >, 2, § ¢«
STACK- A and B are any attributes.
DESCRIPTION- This instruction implements SPINDLE's relations.
EXECUTION- T
1. 1f the relation VALUE(B) OP1 VALUE(A) {is TRUE, set
VALUE (B) « TRUE; otherwise sgt VALUE (B) « FALSE. Set
TYPE(B) « BOOLEAN. Remove A.
2. END.

COMMENTS- TYPE(A) must be the same as TYPE(B).

3.3.5.12 NAME (Name)

OPERANDS- None. .

STACK- A s a non-NIL pointer to an attribute whose selector is
defined.

DESCRIPTION- This instruction implements the SPINDLE function
SELECTOR.

EXECUTION-
1. Set X « SELECTOR(VALUE(A)).
2. 1f X<0, set VALUE(A) « -X, TYPE(A) « INTEGER; otherwise set

VALUE(A) « X, TYPE(A) « TITLE.

135

3. END.

3.3.5.13 GEN (Cenerate Numeric)

OPERANDS- None.
DESCRIPTION- Each time & GEN instruction is executed a unique integer
is generated and placed in the stack.
EXECUTION-
1. Insert an attribute in the stack. Set TYPE(A) ~ INTEGER,
VALUE(A) « new generated value.
2. END.

3.3.5.14 CoPY (Copy)

OPERANDS- None.
STACK- A and B point to attributes with the same type and undertype.
DESCRIPTION- This instruction implements SPINDLE's copy operator.
EXECUTION- _
1. Set Y « FINAL(VALUE(A)). If UND(Y)s1, PASSIVATE(Y).
2. Set X « VALUE(B). If UND(X)=1, set UND(X) « O and transfer
the interrupt stack of X to FROCESS. Set IND(X) ¢ 0. Remove
A and B. .
3. If TYPE (X) sCONSTRUCT and TYPé(X)tLIST. . set
VALUE(X) «~ VALUE}Y) and END.

136

4. Set VALUE(X) « NIL. For each component of Y an identical
component is created, placed in X and the component of Y is
indirectly assigned to the component of X.

5. END.

3.3.6 OUTPUT INSTRUCTIONS

MUTILATE maintains an output queue (GUTPUT) which 1s printed
only when the run ends; this guarantees that for well-formed input
strings, no undefined attributes are printed. The queue 1is composed
of attributes placed in the queue by the output instructions. Each
element of the queue corresponds to an output element of SPINDLE. The
printing of each type of value and attribute was described in section
2,9.1. If UND=1 for an attribute of the printing queue, the current
line is printed and a new one started; such an attribute corresponds
to the output element "/". [f IND=1 for an attribute of the printing
queue, the output for this element 1is unformatted; i.e, the FORMAT
component 1is considered as just another component. This is used for

tracing purposes.

3.3.6.1 OUT § OUTF (OQutput and Output with Format)

OPERANDS- None.

137

STACK- A is any attrjbute.

DESCRIPTION- A is removed from the stack and placed in the printing

gueue.

EXECUTION

1.

2.

4.

3.3.6.2

1f OPCODE=OUT and the error condition is not set and there
is an ambiguous node in the ancestor line of the current
process node for which beSAMB-D, passivate the curreat
process, discard its PSW and enter MANAGEMENT mode.

If OPCODEsOUT and if TYPE(A)«POINTER or TYPE(A) =LIST, set
IND(A) « 1.,

Remove A and place it in the printing queue.

END.

OUTC (Output Control)

OPERANDS- None.

DESCRIPTION- The instruction puts & n/w operator in the printing

queue,

EXECUTION-

1'

1f the error condition is not set and there is an ambiguous
node in the ancestor line of the current process node for
which DISAMB=0, passivate the current process, discard its
PSW and enter MANAGEMENT mode.

Insert an aftribute in the stack, set TYPE(B) « POINTER and
U&D(A) -« 1,

138

3. Remove A and place it in the printing queue.
4, END.

3.3.7 THE DISAMBIGUATION INSTRUCTION - DAMB

OPERANDS- OP1 {s either a nonterminal identifier or an integer.
STACK- A is a boolean attribute.
DESCRIPTION- This instruction implements the instruction DAMB of
SPINDLE.
EXECUTION-
1., Set X « [D(CURRENT). (ID points to the neares: ambiguous
node in the ancestor line of the process' node.) If OP1 is
an integer, set Z + 1 and go to 4.
2. [f SELECTOR(X)=OP1 go to 6.
3. Set X « VALUE (AMBIGUOUS (X)) (ﬁet the nearest ambiguous
ancestor of the node which is in the value field of its
auxiliary node); go to 2.
4. If OPl=Z, go to 6.
5. Set 2+ Z 1, X ~ VALUE(AMBIGUOUS (X)) and go to 4.
6. Set Z ~ VALUE(A); remove A from the stack; 1£'DISAMB(X)-1.
END. (If the node is already disambiguated the instruction
has no effect.) .
7. Increase by 1 the value corresponding to X in AMBTABLE.
Eliminate the LOCAL attributes of X.
8. Go through the subtree originating from X and for all

developed nodes that are not S-terminals set the VALUE

139

field to NIL. For those nodes that are not aambiguous set
AMBIGUOUS to NIL. For an ambiguous node 1nc;ease the
corresponding entry in AMBTABLE by i; set the bits ONCE and
CORRECT in all the versions of the node to 0; set VALUE of
its auxiliary node to NIL. (The tree =must be cleared
because one node may belong to more than one ambjguous
subtree.) Eliminate from éhe DEVELOP stack any element that
points to one of the nodes of the subtree.

9. If Z=FALSE, set CORRECT (X) « O; otherwise set
CORRECT(X) -~ 1. (If Z=TRUE and one of the versions of X
has CORRECT=1, an error oc:urs.)

10. Go through all the versions of X and look for one whose
bit ONCE has value G. [f none is found go to 12; otherwise
set Y to point to the one found.

11. (Another parsing i: tested,) Set CORRECT(Y) « CORRECT (X),
ONCE(Y) « 1, Z « SON(X), SON(X) « SON(Y), SON(Y) « 2, and
go to 14.

12. (All parsings have been tried.) If CORRECT(X)=0 and for
all versions v of X, CORRECT (V) =0, set
X « VALUE(AMBIGUOUS(X)) and go to 7. (All parsings are
incorrect so try the nearest ambiguous node in the ancestor
line.)

13. (There 1is one correct parsing.) Set DISAMB(X)s=1. If
CORRECT(X)#1, set Y to point to the version fer which
CORRECT is 1, Z « SON(X), SON(X) « SON(Y), SON(Y) « 2.

14. Insert a pointer to X in DEVELOP. Passivate the current
process and discard its PSW. Enter MANAGEMENT mode.

15. END. |

140

COMMENT- The existing implementation of MUTILATE has a different DAMB

1.3.8

than the one described here. As implemented - now, onces a
correct parsing is found, the other parsings are' not tested;
the PSWs corresponding to the processes interrupted trying to
"PLA" the synthesized attributes of the node (that are saved
instead of being discarded) are inserted in PROCESS, DISAMB is

set to 1 and the current process continues.

INDEX OF OPCODES

OPCODE SECTION

APEND 3.3.2.5
AR 3.2.5.8
ASS 3.3.5.1
ASS] 3.3.5.4
CALL 3.3.4. 4
CAR 3.3.21
COR 3.3. 2.2
CoMP .35 11
CONS 3.3.2.3
COPY 3.3.5.14
DAMB 3.3.7
DBL 3.3.3.2
ERROR 3.3.4.7
FIND 3.3. 1.4
FLIP 3.3.3.3
FMT 3.3. 1.5
GEN 3.3.5.13
GET .3.1.1
GETN 3.3.1.3
HLT 3.3.4.6
JUMP 3.3.4.1
JUMPF' J.3.4.2
JUMPT J.3.4.2
LIST J.3.2.4
LOAD 3.3.5.7
LOG 3.3.5.9
NAME 3.3.5.12
ouT 3.3.6.1
ouTC .3, 6.2
OUTF 3.3.6.1
PAR 3.3.4.3

141

o
Mt It OO D~ ANM

oooooooooooo
..........

e e T e e e i e

wv
7”2 v _ 2 O
LT LD O
LA LOM W Il €
bbbl N S

142

CHAPTER 4

A JEFINITION OF SIMULA

-

This chapter contains the SPINDLE defintion of a subset of the
SIMULA 07 Common Base Language {DMN 70] . The definition 1s closely
patterned after VWilner's definition of SIMULA (Wi 71); it 1is
intended to show t': viability of FOLDS for the definition of large
programming languages. The definition also serves as an example of a
variety of SPINDLE features and programming techniques.

The definition is essentially an implementation of Wilner's
definitions. Modifications were introduced mainly where errors were
found and where they simplified the definition without changing its
character. Whenever possible, the attributes' names and structures
were processed as in Wilner's specification. However, the present
definition does differ from Wilner's in three important aspects.
First, the present definition takes into account the existence of
SPINDLE's lexical analyzer. Second, labels are handled here as in
TURINGOL, contrary to the technique used by Wilner which resembles
Knuth's technique in TURINGOL; the implementation of Wilner's scheme
in SPINDLE would be very costly in terms of the number of semantic
rules necessary to process the two attributes he called a and Z. The
third difference is in the way the target language program is
handled. In this definition, a program 1is a set of pairs, each
consisting of a segment and its designation; each segment stands for

a sequence of {instruct.idcas. Wilner uses an attribute R which

143

collects such pairs throughout the tree and carries thes to the root
node. In the present definition instead of collecting the segments,
they are printed by the functiou OUTPUT at each node where they
occur. This simplifies the definition- by doing away with the
attribute R which would otherwise occur throughout the tree. The
code generated from the present definition runs {in the machine

defined by Wilner [Wi 71) modified as follows:

- The 1instruction CHE has an additional field CLASS,
containing a boolean value.

- The instruction MAK has an additional field COPIES,
containing an integer value.

- The instruction GEN, after creating the new object and

transferring the actual 's to its stack, creates a new stack
w

level by placing a ret and a mark in the stack.
w W

~ The instruction CHE in a first step, if the CLASS field is

TRUE, copies to the top of the stack the actual which is in
w

the next lower level in the stack and whose stack
displacement is given by the field D of the instruction.

- Step 3 in the execution of both VAL and ADDR is modified so
that the address left in the stack is not a pointer to the

lowest mark 1in the stack of the remote object but to the
W .

one above the lowest.
- The last step in the execution of MAK is modified so that

before "fin", & number of array s (equal to the value in the
w

14<

COP!ES field), are placed in the stack. For each new array
w

a copy of the structure pointed to by the array at the top
w

of the stacx is created with the new array polinting to the
w

new structure.

These modifications are necessitated due to chaiges made in Wilner's
definition to correct the mechanism for concatenating class segments
and to correct the mechanism for creating arrays declared in the same
array segnent,

This chapter has two sections: the first contains the definiton
of SIMULA in SPINDLE, the second a comparison of the definition with
Wilner's definition. Appendix 4 contains a set of SIMULA programs and
the target language generated from them by the definition running in
MUTILATE.

4.1 DEFINITION

TERMINALS ARE + -« / () [) . , a <=3

RESERVED WORDS ARE AND, ARRAY, BEGIN, BOOLEAN, CLASS, DETACH, DIV,
DO, ELSE, END, EQUIV, FALSE, GO, IF, IMPLIES, IN,
INNER, INSPECT, INTEGER, IS, LABEL, NAME, NEVW,
NONE, OR, OTHERWISE, PROCEDURE, QUA, REAL, REF,
RESUME, SWITCH, THEN, THIS, TO, TRUE, VALUE,
VIRTUAL, WHEN, WHILE '

ATTRIBUTES ARE

ADDR = CONSTRUCT
AEMDEC = BOOLEAN

145

ALSO = BOOLEAN
APA = INTEGER
ARULE = RULE
ATTR = [NTEGER
BEGUN = BOOLEAN
CDECL = LIST

CL = INTEGER
CLASSN = POINTER
CODE = RULE

COND = BOOLEAN

D0 = INTEGER

D = DO

DAR = BOOLEAN
DISP = INTEGER

DN = INTEGER

E = CONSTRUCT, PL
El = E

EMDEC = BOOLEAN
EXV a E

ENV1 = ENV

ENVA = ENV
FIRSTST = BOOLEAN
FJUMP = LABELI
FORMALE = E
GENUS = CONSTRUCT
GENUS1 = GENUS
GENUS2 = GENUS
INSTR s CONSTRUCT
ITEM = LIST
JLABEL = INTEGER
KIND = TITLE

L = INTEGER
LABEL1 = INTEGER
LEGIT = INTEGER
LEVEL = INTEGER
LL = INTEGER

LN = INTEGER
LOCALE = E

MAP = CONSTRUCT, INTEGER
MARK = TITLE
MARK1 = TITLE
MAT = CONSTRUCT, MATVEC
MATRIX = MAT
MATVEC = CONSTRUCT
MOAMB = BOOLEAN
MODE « TITLE

N = INTEGER

Nl « N

N2 « N

NAMETB = NTB
NEXT1 = POINTER
NEXT2 = NEXT1
NEXT3 = NEXT1
NFORMALS s INTEGER
NLOCALS = INTEGER
NOLABEL = BOOLEAN
NTB = CONSTRUCT, INTEGER
NUMDEC = INTEGER

146

O = OPEN

OBJECT = INTEGER
OPEN = TITLE

OPER = TITLE

ORIG = INTEGER
OUTERMOST = BOOLEAN
PL = CONSTRUCT

PL1 = PL
PLACE = TITLEZ
PPL = PL

PREF = INTEGER
PREFIX = POINTER
QTBVEC = CONSTRUCT
QUAL = INTEGER
QUAL1 = QUAL
QUAL2 = QUAL
QUALTB = CONSTRUCT, QTBVEC
RULE = LIST

RULE1 = RULE
RULE2 = RULE
SEGMENT = INTEGER
SID = BOOLEAN

SL = S\

SM = SN
SN = INTEGER

SP = TITLE

SPEC = GENUS

START = BOOLEAN

T = TITLE

TYPD = GENUS

TYPDS = TYPD

TYPE = TITLE

TYPE1 « TYPE
TYPE2 = TYPE

TJUMP = LABELI
UNDECL = RULE

USE = TITLE

V = INTEGER
VALENCE = INTEGER
VIRDECL = CONSTRUCT, INSTR
VIRDECL1 = VIRDECL
VIRTUALE = E

XX = CONSTRUCT

COMMENT

THE ATTRIBUTES E AND ENV REPRESENT THE SYMBOL TABLE: E COLLECTS
THE DECLARATIONS THAT ARE SPREAD THROUGH THE TREE BY ENV. EACH ENTLY

147

OF THE SYMBOL TABLE IS A CONSTRUCT OF TYPE PL (FOR PROPERTY LIST)
WITH THE SELECTOR CONTAINING THE SPELLING, AND WITH THE COMPONENTS OF
THE ENTRY REPRESENTING THE PROPERTIES OF THE IDENTIFIER. PL MAY HAVE
COMPONENTS GENUS, ADDR, ATTR, N, NFORMALS, NLOCALS, LOCALE, FORMALE,
VIRTUALE, SEGMENT, PREF, OBJECT AND CODE. GENUS CONTAINS THE TYPE AND
KIND OF AN IDENTIFIER: WHEN THE TYPE 1S "REF" IT ALSO CONTAINS A
COMPONENT QUAL, WHOSE VALUE 1S THE SEGMENT DESIGNATION OF THE CLASS
THAT QUALIFIES THE REFERENCE. ADDR IS THE STACK ADDRESS OF THE
INSTRUCTION CORRESPONDING TO THE DECLARATION OF THE IDENTIFIiER: IT
HAS COMPONENTS LN, THE STACK LEVEL, AND DN, THE STACK DEPTH. FOR
IDENTIFIERS THAT ARE CLASS ATTRIBUTES (ATTRIBUTES HERE IN THE SIMULA
SENSE) ATTR CONTAINS THE SEGMENT DESIGNATION OF THE CLASS, OTHERWISE
IT CONTAINS A 0. N GIVES THE NUMBER OF DIMENSIONS ASSOCIATED WITH
ARRAY IDENTIFIERS AND THE LENGTH OF THE SWITCH LIST ASSOCIATED WITH A
SWITCH IDENTIFIER. NFORMALS GIVES THE NUMBER OF FORMAL PARAMETERS
FOR CLASSES AND PROCEDURE IDENTIFIERS. THE REMAINING COMPONENTS OF PL
ARE ASSOCIATED ONLY WITH CLASS IDENTIFIERS. NLOCALS CONTAINS THE
NUMBER OF ATTRIBUTES (IN THE SIMULA SENSE) OF A CLASS. LOCALE IS A
SYMBOL TABLE WHOSE ENTRIES ARE THE ATTRIBUTES OF THE CLASS. FORMALE
1S THE SYMBOL TABLE FOR THE FORMAL PARAMETERS. VIRTUALE IS THE SYMBOL
TABLE FOR THE VIRTUAL ATTRIBUTES OF THE CLASS IDENTIFIER. SEGMENT
CONTAINS THE SEGMENT DESIGNATION OF THE CLASS WHICH IS THE
DESIGNATION NUMBER OF THE SEGMENT ASSOCIATED WITH THE CLASS. PREF
CONTAINS THE SEGMENT DESIGNATION OF THE PREFIX CLASS. OBJECT CONTAINS
THE SEGMENT DESIGNATION OF THE PROTOTYPE ASSOCIATED WITH THE CLASS
IDENTIFIER. CODE CONTAINS THE RULE THAT STANDS FOR THE SEGMENT
ASSOCIATED WITH THE CLASS.

PL IS ALSO USED TO CONVEY THE PROPERTY LIST OF EXPRESSIONS AND

148

THEIR COMPONENTS. PPL IS USED TO PASS TO THE MAIN PART OF A CLASS
DECLARATION THE PROPERTY LIST ASSOCIATED WITH THE PREFIX.

RULE STANDS FOR A SEQUENCE OF INSTRUCTIONS IN THE TARGET
LANGUAGE: IT IS OF TYPE LIST WITH COMPONENTS OF TYPE INSTR. RULE
CONTAINS BOTH TARGET LANGUAGE INSTRUCTIONS AND PSEUDO-INSTRUCTIONS:
TARGET LANGUAGE INSTRUCTIONS HAVE A COMPONENT FORMAT, PSEUDO-
INSTRUCTIONS DO NOT. A PSEUDO-INSTRUCTION WITH COMPONENT LABELI
STANDS FOR A LABEL WITH LABELI CONTAINING THE UNIQUE INTEGER
ASSOCIATED WITH THE LABEL. A COMPONENT MARK I1DENTIFIES THE PSEUDO-
INSTRUCTIONS THAT MARK THE POSITIONS OF "INIT"™ AND "INNER" IN THE
SEGMENT ASSOCIATED WITH A CLASS. A COMPONENT MARK1 IDENTIFIES THE
PSEUDO-INSTRUCTIONS THAT ENCLOSE THE SEQUENCE OF INSTRUCTIONS
CORRESPONDING TO THE CALCULATION OF ARRAY BOUNDS. (SEE THE FUNCTION
VIRMERGE FOR AN EXPLANATION OF THE USE OF THOSE MARKERS).
INSTRUCTIONS THAT REFER TO LABELS CONTAIN A COMPONENT JLABEL WHOSE
VALUE IS THE UNIQUE INTEGER ASSOCIATED WITH THE LABEL. THE PROCEDURE
OUTPUT BINDS LABELS TO ADDRESSES AND ASSOCIATES THE ADDRESS
ASSOCIATED WITH THE LABEL IN JLABEL WITH THE COMPONENT DISP OF THESE
INSTRUCTIONS. THE COMPONENT OPER IS USED IN VARIOUS INSTRUCTICNS TO
HOLD AN OPERAND FOR THE INSTRUCTIONS.

UNDECL IS A LIST OF THE SAME NATURE AS RULE AND IS USED TO
COLLECT THE INSTRUCTIONS RESULTING FROM THE DECLARATION OF LABELS.

VIRDECL IS A CONSTRUCT WHOSE COMPONENTS ARE INSTRUCTIONS
RESULTING FROM THE "REDECLARATION" OF VIRTUAL CLASS ATTRIBUTES. THESE
INSTRUCTIONS REPLACE THE INSTRUCTIONS ASSOCIATED WITH THE PREVIOUS
DECLARATIONS OF THE CLASS ATTRIBUTES: THE FUNCTION VIRMERGE REPLACES
THE INSTRUCTIONS ASSOCIATED WITH THE PREVIOUS DECLARATION BY THE
INSTRUCTIONS IN VIRDECL. '

149

ENV1 IS USED TO PROPAGATE THE VIRTUALE OF A CLASS SO THAT THE
REDEFINITION OF VIRTUAL IDENTIFIERS CAN BE PERFORMED.

ENVA IS USED TO CARRY THE OUTER ENVIRONMENT OF A PROCEDURE OR A
CLASS (PLUS THE FORMAL PARAMETERS) TO THE EXPRESSION THAT CALCULATES
THE BOUNDS OF AN ARRAY WHICH HAS BEEN DECLARED EITHER IN A PROCEDURE
OR A CLASS BODY.

CL IS USED TO CONVEY THE SEGMENT DESIGNATION OF A CLASS TO THE
DECLARATION OF ITS ATTRIBUTES.

DO AND D ARE USED TO CALCULATE THE STACK DISPLACEMENT
CORRESPONDING TO AN IDENTIFIER DECLARATION. D CAN ALSO BE VIEWED AS
THE NUMBER OF IDENTIFIERS DECLARED PRIOR TO THE IDENTIFIER
DECLARATION. '

LL INDIZATES THE LEXICOGRAPHICAL LEVEL OF AN IDENTIFIER AND
ALSO THE STACK LEVEL ASSOCIATED WITH IT.

L INDICATES THE LENGTH OF A LIST SUCH AS A FORMAL PARAMETER
LIST.

OUTERMOST IS USED TO DISTINGUISH A STATEMENT WHICH IS A CLASS'
OUTER BLOCK.

TYPD AND TYPDS ARE USED TO CONVEY GENUS IN A DECLARATION. TYPDS
GETS THE GENUS FROM THE SPECIFIER AND TYPD TAKES IT TO THE VARIABLES
IN THE DECLARATION. ’

USE CONVEYS THE USE OF AN EXPRESSION: FOR ITS VALUE, FOR ITS
ADDRESS, OR FOR LATER EXECUTION (AS A PARAMETER CALLED BY NAME).

VALENCE CLASSIFIES "+" OR "-" AS EITHER UNARY OR BINARY.

NOLABEL IS USED TO AVOID RECOGNIZING A LABELLED BLOCK MORE THAN
ONCE.

BEGUN IS USEC TO IDENTIFY BLOCKS THAT ARE EITHER A CLASS OR
PROCEDURE BODY.

150

FJUMP AND TJUM? ARE USED TO PASS THE LABEL OF AN INSTRUCTION IN
A CONDITIONAL OR CONNECTION STATEMENT.

V AND SP ARE ATTRIBUTES ASSOCIATED WITH STRUCTURED TERMINALS: V
CONTAINS THE VALUE OF AN INTEGER AND SP THE SPELLING OF AN
IDENTIFIER.

ORIG CONTAINS THE SEGMENT DESIGNATION OF THE SEGMENT WHICH
CONTAINS THE FIRST INSTRUCTION OF A SIMULA PROGRAM.

ALSO IS USED TO RECOGNIZE AN ASSIGNMENT STATEMENT WHICH IS
ITSELF A RIGHT HAND SIDE OF AX ASSIGNMENT STATEMENT.

LEGIT SERVES TO INDICATE WHETHER A SPECIFICATION PART BELONGS
TO A PROCEDURE OR A CLASS. '

PLACE IDENTIFIES THE CONTEXT OF AN IDENTIFIER LIST:
SPECIFICATION PART, NAME PART, VALUE PART OR VIRTUAL pARi.

QUALTB 1S A TABLE, IN WHICH EACK ENTRY CORRESPONDS TO A CLASS.
EACH COMPONENT OF QUALTB IS A CONSTRUCT WHOSE SELECTOR IS THE SEGMENT
DESIGNATION OF THE CLASS AND WHOSE COMPONENTS ARE PREFIX, CLASSN AND
LEVEL. PREFIX CONTAINS A POINTER TO THE QUALTB ENTRY CORRESPONDING
TO THE PREFIX CLASS. CLASSN CONTAINS A POINTER TO THE SYMBOL TABLE
ENTRY CORRESPONDING TO THE CLASS. LEVEL CONTAINS THE NUMBER OF
CLASSES IN THE PREFIX SEQUENCE OF THE CLASS.

CDECL 1S A LIST OF POINTERS TO THE SYMBOL TABLE ENTRIES
CORRESPONDING TO THE CLASSES DECLARED 1IN A BLOCK. 1T IS USED BY THE
FUNCTION UPDQUALTB TO CREATE NEW ENTRIES IN QUALTB.

NTB AND NAMETB ARE CONSTRUCTS THAT ESTABLISH THE CORRESPONDENCE
BETWEEN FORMAL PARAMETERS AND THEIR POSITION IN THE STACK: THEIR
COMPONENTS ARE INTEGERS WHOSE SELECTORS ARE THE SPELLING OF THE
FORMAL PARAMETERS AXD WHOSE VALUES ARE THEIR STACK DISPLACEMENT.

MAT AND MATRIX ARE CONSTRUCTS USED TO ESTABLISH THE

151

CORRESPONDENCE BETWEEN FORMAL PARAMETERS AND THEIR PROPERTIES. EACH
COMPONENT IS A CONSTRUCT WHOSE SELECTOR IS THE STACK DISPLACEMENT OF
THE FORMAL PARAMETER AND WHOSE COMPONENTS ARE MODE AND SPEC. MODE
CONTAINS THE MODE OF TRANSMISSION OF THE PARAMETER AND SPEC ITS
GENUS.

ITEM IS A LIST OF CONSTRUCTS, EACH CORRESPONDING TO A CLASS
ASSOCIATED WITH AN ENCLOSING CONNECTION BLOCK. THE COMPONENTS XX OF
ITEM CONTAIN COMPONENTS ADOR AND QUAL. QUAL CONTAINS THE SEGMENT
DESIGNATION OF THE CLASS AND ADDR THE STACK DESIGNATION OF A
REFERENCE TO THE CONNECTED OBJECT.

MAP IS USED, AS IN TURINGOL, TO BIND LABELS AND ADDRESSES.

SM, SN AND SL CONTAIN SEGMENT DESIGNATIONS OR THE UNIQUE
INTEGERS THAT REPRESENT LABELS.

APA, COND, DAR, AND SID ARE USED FOR DISAMBIGUATION PURPOSES.
THEY SERVE TO DETECT AND RESOLVE AMBIGUITIES ARISING FROM ACTUAL
PARAMETERS AND LEFT HAND SIDE OF VALUE ASSIGNMENTS WHEN THEY PARSE TO
A SINGLE ENTITY. A SINGLE ENTITY IS EITHER AN IDENTIFIER (POSSIBLY
REMOTE), OR AN IDENTIFIER FOLLOWED BY AN EXPRESSION ENCLOSED IN
SQUARE BRACKETS, OR A FUNCTION DESIGNATOR, OR A CONDITIONAL
EXPRESSION WHOSE THEN AND ELSE PARTS ARE BOTH SINGLE ENTITIES, OR A
SINGLE ENTITY ENCLOSED IN PARENTHESIS. THEY ALSO SERVE TO DETECT THE
AMBIGUITY ARISING FROM A PRIMARY THAT PARSES TO AN IDENTIFIER.

FIRSTST, EMDEC, AEMDEC, AND NUMDEC ARE USED TO RESOLVE THE
AMBIGUITIES ARISING FROM COMPOUND STATEMENTS WHERE THE FIRST
STATEMENT IS EEPTY AND FROM UNLABELLED BLOGCKS WHERE THE FIRST
STATEMENT OF THE COMPOUND TAIL IS EMPTY. FIRSfST AND EMDEC IN
CONJUCTION WITH START ARE USED TO DISAMBIGUATE INIT]AL OPERATIONS
WHOSE FIRST STATEMENT IS EﬁPTY.

152

OPEN AND O ARE USED TO RESOLVE THE AMBIGUITY ARISING FROM AN
INSPECT STATEMELT WITH A MATCHING OTHERWISE CLAUSE WHICH IS INSIDE
ANOTHER INSPECT STATEMENT WITHOUT A MATCHING OTHERWISE CLAUSE; .

FOLLOWING IS A GLOSSARY OF THE ATTRIBUTE iDENTIFIERS USED IN
THIS DEFINITION:

ADDR - STACK ADDRESS. USUALY A COMPONENT A SYMBOL TABLE ENTRY.

AEMDEC -USED FOR DISAMBIGUATION. TRUE IF ALL THE DECLARATIONS 1IN A
BLOCK ARE EMPTY.

ALSO - DETECTS MULTIPLE LEFT-HAND SIDES IN AN ASSIGNMENT STATEMENT.

APA - USED FOR DISAMBIGUATION PURPOSES

ARULE - THE RULE GENERATED BY T{E DECLARATION PART OF A SPLIT BODY.

ATTR - FOR CLASS ATTRIBUTES, THE SEGMENT DESIGNATION OF ThE CLASS. A
COMPONENT OF A SYMBOL TABLE ENTRY.

BEGUN - DETECTS A BLOCK AS A CLASS bODY, PROCEDURE BLOCK OR
CONNECTION BLOCK.

CDECL - LIST OF POINTERS TO THE SYMBOL TABLE ENTRIES CORRESPONDING TO
CLASS DECLARATIONS IN A ELOCK.

CL - CARRIES THE SEGMENT DESIGNATION OF A CLASS 70 THE CLASS
ATTRIBUTE'S DECLARATIOQ:.

CLASSN - POINTER TO A SYMBOL TABLE ENTRY FOR A CLASS. A COMPONENT OF
A QUALTB ENTRY.

CODE - THE RULE ASSOCIATED WITH A CLASS. A COMPONENT OF A SYMBOL
TABLE ENTRY FOR A CLASS IDENTIFIER.

153

COND -

A PARAMETER FOK THE PROCEDURES DISAMV AND DISAMF.

D AND DO -USED TO CALCULATE THE STACK DISPLACEMNT ASSOCIATED WITH

DAR -

DispP -

DN -

E -
EMDEC -

ENV -

ENV1 -

ENVA -

FIRSTST

FJUMP -

FORMALE

GENUS -

INSTR -

ITEM -

IDENTIFIERS.

USED FOR DISAMBIGUATION PURPOSES.. TRUE IF A VARIABLE IS AN
ARRAY ELEMENT, FALSE OTHERWISE. |

DISPLACEMENT OF AN [INSTRUCTION IN A SEGMENT. USUALLY A
COMPONENT OF INSTR.

STACK DISPLACEMENT OF A VAR!IABLE. USUALLY A COMPONENT OF
ADDR.

COLLECTS SYMBOL TABLE ENTRIES.

USED FOR DISAMBIGUATION PURPOSES. IT 1S TRUE IF THE LAST
DECLARATION IN A BLOCK HEAD IS EMPTY.

THE SYMBOL TABLE: THE ENVIRONMENT.

A SYMBOL TABLE FOR VIRTUAL ATTRIBUTES.

A SYMBOL TABLE FOR USE BY THE BOUNDS IN AN ARRAY DECLARATION.
- DETECTS AN EMPTY FIRST STATEMENT.

UNIQUE INTEGER THAT LABELS THE INSTRUCTION FOLLOWING THE
INSTRUCTIONS TO BE SKIPPED IN A CONDITIONAL STATEMENT. .

- SYMBOL TABLE FORMFD BY THE FORMAL PARAMETERS OF A CLASS. A
COMPONENT OF A STMBOL TABLE ENTRY.)

THE PROPERTIES OF AN IDENTIFIER: TYPE, KIND AND CLASS
QUALIFICATION.

AN INSTRUCTION OF THE TARGET LANGUAGE. USUALLY A COMPONENT OF
RULE, UNDECL OR VIRDECL.

LIST USED FOR REFERENCING OBJECTS ENCLOSING A CONNECTION
BLOCK. COMPONENTS ARE CONSTRUCTS WITH COMPONENTS QUAL AND
ADCR. QUAL IS THE QUALIFICATION OF THE OBJECT AND ADDR THE
STACK ADDRESS OF A POINTER TO THE OBJECT.

154

JLABEL - THE UNIQUE INTEGER ASSOCIATED WITH THE LABEL OF AN
INSTRUCTION. USUALLY A COMPONENT OF INSTR.

KIND - THE KIND OF AN IDENTIFIER (IN THE ALGOL SENSE).

L - LENGTH OF A LIST SUCH AS SUBSCRIPT LIST, PARAMETER LIST, AND
ETC..

LABELI - UNIQUE INTEGER ASSOCIATED WITH A LABEL. A COMPONENT OF A
PSEUDO-INSTRUCTION WHICH CORkESPONDS TO A LABEL.

LEGIT - MARKS A SPECIFICATION PART AS BELONGING TO A PROCEDURE, A
CLASS HEADING OR A VIRTUAL PART.

LEVEL - THE PREFIX LEVEL OF A CLASS. A COMPONENT OF A QUALTB ENTRY.

LL - THE LEXICOGRAPHICAL LEVEL: THE STACK LEVEL.

LN - THE STACK LEVEL OF A VARIABLE. USUALLY A COMPONENT OF ADDR.

LOCALE - SYMBOL TABLE FORMED BY THE ATTRIBUTES OF A CLASS. A
COMPONENT OF A SYMBOL TABLE ENTRY.

MAP - TABLE THAT RELATES THE UNIQUE INTEGERS REPRESENTING LABELS TO
THE ACTUAL ADDRESSES ASSOCIATED WITH THE LABELS.

MARK - COMPONENT OF PSEUDO-INSTRUCTION MARKING THE LOCATION OF
"INIT" OR "INNER" IN THE RULE CORRESPONDING TO A CLASS BODY.

MARK1 - COMPONENT OF A PSEUDC-INSTRUCTION MARKING THE BOUNDARIES OF
THE BOUND SPECIFICATIONS IN AN ARRAY DECLARATION.

MAT - MATRIX OF FORMAL PARAMETERS (REPRESENTED BY THEIR STACK
DISPLACEMENT) AND THEIR PROPERTIES.

MATRIX - SAM AS MAT.

MATVEC - AN ENTRY OF MAT OR MATRIX.

MOAMB - USED TO DETECT THE AMBIGUITY ARISING FROM AN EMPTY MODE PART
AND/OR AN EMPTY VALUE PART

MODE - THE MODE OF TRANSMISSION CF A FORMAL PARAMETER.

N - NUMBER OF DIMENSIONS OF AN ARRAY, LENGTH OF A SWITCH LIST. A
COMPONENT OF A SYM20L TABLE ENTRY.

155

NAMETB - TABLE RELATING THE SPELLING OF FORMAL PARAMETERS TO THEIR
STACK DISPLACEMENT,

NFORMALS - NUMBER OF FORMAL PARAMETZRS. A COMPONENT OF A SYMBOL TABLE
ENTRY.

NLOCALS - NUMBER OF ATTRIBUTES OF A CLASS. A COMPONENT OF A SYMBOL
TABLE ENTRY.

NOLABEL - DETECTS A MULTILABELLED BLOCK.

NTB - COLLECTS THE ENTRIES FOR NTB.

NUMDEC - USED FOR DISAMBIGUATION PURPOSES. COUNTS THE NUMBER OF EMPTY
DECLARATIONS IN A BLOCK HEAD.

0 - USED FOR DISAMBIGUATION PURPOSES. USED TO DETECT EMPTY
OTHERWISE CLAUSES

OBJECT - SEGMENT DESIGNATION OF THE OBJECT WHICH IS THE CLASS'
PROTOTYPE. A COMPONENT OF A SYMBOL TABLE ENTRY.

OPEN - SAME AS O

OPER - CONTAINS OPERANDS. A COMPONENT OF INSTR.
ORIG - SEGMENT THAT CONTAINS THE FIRST INSTRUCTION OF A SIMULA
‘ PROGRAM.

OUTERMOST - MARKS A STATEMENT AS THE BODY OF A CLASS.

PL - THE PROPERTY LIST ASSOCIATED WITH AN [IDENTIFIER OR
EXPRESSiON. HAS THE SAME STRUCTURE AS A SYMBOL TABLE ENTRY.

PLACE - GIVES THE CONTEXT OF AN IDENTIFIER LIST.

PPL - PROPERTY LIST OF A PREFIX CLASS IN A CLASS DECLARATION.

PREF - SEGMENT DESIGNATION OF THE PREFIX CLASS. A COMPONENT OF A
CLASS' SYMBOL TABLE ENTRY.

PREFIX - A COMPONENT OF AN ENTRY OF QUALTB. POINTS TO THE QUALTB'S
ENTRY CORRESPONDING TO THE CLASS' PREFIX.

QTBVEC - AN ENTRY OF QUALTB.

156

QUAL - THE SEGMENT DESIGNATION OF THE CLASS THAT QQUALIFIES A
REFERENCE. USUALLY A COMPONENT OF GENUS.

QUALTE - A TABL GIVING THE PREIX SEQUENCE OF CLASSES, EACH ENTRY
CORRESPONLING TO A CLASS AND CHARACTERIZED BY THE SEGMENT
DBESIGNATION OF THE CLASS.

RULE - A LIST OF [INSTRS. THE OBJECT CODE GENERATED FOR THE STRING
DERIVED FROM A NONTERMINAL.

SEGMENT - THE SEGMENT DESIGNATION OF A CLASS. USUALLY A COMPONENT OF
A SYMBOL TABLE ENTRY.

SID - USED TO DISAMBIGUATE ACTUAL PARAMETERS, ETC..IDENTIFIES AN
EXPRESSION AS A SINGLE ENTITY.

SL, SM, SN - HOLD EITHER A SEGMENT DESIGNATION OR THE UNTQUE INTEGER
ASSOCIATED WITH A LABEL.

SP - THE SPELLING OF AN IDENTIFIER.

SPEC - THE GENUS ASSOCIATED WITH AN IDENTIFIER IN AN IDENTIFIER
LIST.

START - USED TO [DISAMBIGUATE SPLIT BODIES WHOSE FIRST STATEMENT IS
EMPTY.

T - THE TYPE OF THE PRODUCT IN A MULTIPLICATION.

TYPD - THE GENUS OF AN IDENTIFIER BEING DECLARED.

TYPDS - THE GENUS OF A SPECIFIER.

TYPE - THE TYPE OF AN IDENTIFIER.

TJUMP - SIMILAR TO FJUMP.

UNDECL - SAME STRUCTURE AS RULE. COLLECTS THE INSTRUCTIONS GENERATED
BY THE JECLARATION OF LABELS.

USE - USE OF AN [EXPRESSION: FOR ITS VALUE, ITS LOCATION OR FOR
LATER EXECUTION.
vV - THE VALUE OF AN INTEGER.

157

VALENCE - CLASSIFIES "+" OR "-" AS EITHER A UNARY OR BINARY OPERATOR.

VIRDECL - COLLECTS THE INSTRS THAT REPLACE THE VIRTUAL ATTRIBUTES
THAT HAVE BEEN REDECLARED.

VIRTUALE - SYMBOL TABLE FORMED BY THE VIRTUAL ATTRIBUTES OF A CLASS.
A COMPONENT OF A SYMBOL TABLE ENTRY.

XX - A COMPONENT OF ITEM.

IDENTIFIERS ARE SIGMA WITH ATTRIBUTE- SP
INTEGERS ARE NU WITH ATTRIBUTE V
COMMENT THE FOLLOWING IS A LIST OF THE ABBREVIATIONS USED FOR THE

NONTERMINAL IDENTIFIERS AND THE PRODUCTION WHICH FIRST
FINDS THEM ON THE LEFT HAND SIDE:

188

PRODUCTION

ABBREVIATION NONTERMINAL

AP ACTUAL PARAMETER P95
APLIST ACTUAL PARAMETER LIST P93

APPART ACTUAL PARAMETER PART P91

AQP ADDING OPERATOR P12

ARITEXPR ARITHMETIC EXPRESSION P7

ARDECL ARRAY DECLARATION P206
ARID ARRAY IDENTIFIER P212
ARID1 ARRAY [DENTIFIER' P85

ARLTST ARRAY LIST P208
ARSEG ARRAY SEGMENT P210
ASSST ASSIGNMENT STATEMENT p283
ATTRID ATTRIBUTE IDENTIFIER P84

BASICST BASIC STATEMENT P273
BLOCK BLOCK P174
BLOCKHEAD BLOCK HEAD P184
BELOCKPRE BLOCK PREFIX P18l
BEXPR BOOLEAN EXPRESSION P10l
BFAC BCOLEAN FACTOR P111
BPRIM BOOLEAN PRIMARY P115
BSEC BOOLEAN SECONDARY P113
BTERM BOOLEAN TERM P109
BOUND BOUND . P216
EQUNDP BOUND PAIR p215
BOUNDPLIST BOUND PAIR LIST p213

CLBODY
CLDECL
CLID
CLID1
CLID2
CCLIPST
COMPT
CONDST
CONNBLOCK]
CONNSLOCK2
CONNCL
CGNNPART
CONNST
DECL
DESIGEXPR
DUMMYST
EXPR

FAC
FINOPS
FP
FPLIST
FPPART
FUNC
GOTOST
1D1
IDLIST
TECL
IFST
IMPL
INITOPS
LABELD
LABEL1
LOCOBJ
LOGVAL
MBLOCK
MPART
MOPART
MOP
NAMEPART
OBJEXPR
OBJGEN
OBJREF
OBJREFREL
OBJREL
OTCL

PRE

PRIM
PROCBODY
PRODECL
PROCHEAD
PROCID
PROCID!
PROCID2
PROCST
PROGRAM
QUALIF
QUALOBJ
REL

ﬁ:vrodund from

CLASS BODY

CLASS DECLARATION
CLASS IDENTIFIER
CLASS IDENTIFIER'
CL4SS IDENTIFLER''
COMPOUND STATEMENT
COMPOUND TAIL
CCNDITIONAL STATEMENT
CONMNECTION BLOCK!
CONMNECTION BLOCK'!
CONNECTION CLAUSE
CCNNECTION PART -
CCANNECTION STATEMENT
DECLARATION
DESIGNATIONAL EXPRESSION
DUNMY STATEMENT
EXPRESSION

FACTOR

FINAL OPERATIONS
FORMAL PARAMETER
FORMAL PARAMETER LIST
FORMAL PARAMETER PART
FUNCTION DESIGNATOR
GO TO STATEMENT
IDENTIFIER'
IDENTIFIER LIST

IF CLAUSE

1F STATEMENT
IMPLICATION

INITIAL OPERATIONS
LABEL

LABEL'

LOCAL OBJECT

LOGICAL VALUE

MAIN BLOCK

MAIN PART

MODE PART
MULTIPLICATION OPERATOR
NAME PART

OBJECT EXPRESSION
OBJECT GENERATOR
OBJECT REFERENCE
OBJECT REFERENCE RELATION
OBJECT RELATION
OTHERWISE CLAUSE
PREEIX

PRIMARY

PROCEDURE BODY
PROCEDURE DECLARATION
PROCEDURE HEADING
PROCEDURE IDENTIFIER
PROCECURE IDENTIFIER!'
PROCEDURE IDENTIFIER''
PROCEDURE STATEMENT
PROGRAM

QUALIFICATION
QUALIFIED OBJECT
RELATION

159

st _available copy. Bad

P256
P250
P255A
P158
P157A
P171
P264
P298
P313
P314
P312
P310
P307
P186
P161
P296
P1
P19
P262
P229
P227
P22§
P89
P29S
P52
P234
P304
P303
P107
P259
P172A
P166
P159
P120
P182
P253
P230
P16
P236
P148
P157
P200
P136
P133
P315
P251
P21
P247
P222
P223
P24
P90
P287A
P297

‘P169

pP2d1
P160
P122

RELOP
REFASS
REFCOM?
REFEXPR
Ritie. "%
REFRPART
REFREL
REFTYPE
RID
SARITEXPR
SBCOL
SDESIGEXPR
SOBJEXPR
SPPART
SPECIFIER
SPLITBODY
ST

ST1
SUBEXPR
SUBLIST
SWDECL
SWDESIG
SWID
SW1D1
SWLIST
TERM
TYPEN
TYPEP
TYPEDECL
TYPELIST
UNCONDST
UNLBASICST
UNLBLOCK
UNLCONMP
UNLPREBLOCK
VALASS
VALEXPR
VALLPART
VALPART
VALRPART
VALTYPE
VAR
ViRPART
WHILEST

NONTERMINALS ARE

AP = S(RULDE),

RELATIONAL OPERATOR
REFERENCE ASSINGMENT
REFERENCE COMPARATOR
REFERENCE EXPRESSION
REFERENCE LEFT PART
REFERENCE RIGHT PART
REFERENCE RELATION
REFERENCE TYPE
REMOTE IDENTIFIER

SIMPLE ARITHMETIC EXPRESSION

SIMPLE BOOLEAN

SIMPLE DESIGNATIONAL EXPRESSION

SIMPLE OBJECT EXPRESSION
SPECIFICATION PART
SPECIFIER

SPLIT BODY

STATEMENT

STATEMENT'

SUBSCRIPT EXPRESSION
SUBSCRIPT LIST

SWITCH DECLARATION
SWITCH DESIGNATOR
SWITCH IDENTIFIER
SWITCH IDENTIiFIER'
SWITCH LIST

TERM

TYPE

PROCEDURE TYPE

TYPE DECLARATION

TYPE LIST

UNCONDITIONAL STATEMENT
UNLABELLED BASIC STATEMENT
UNLABELLED BLOCK
UNLABELLEzD COMPOUND
UNLABELLED PREFIXED BLOCK
VALUE ASSIGNMENT

VALUE EXPRESSION

VALUE LEFT PART

VALUE PART

VALUE RIGHT PART

VALUE TYPE

VARIABLE

VIRTUAL PART

WHILE STATEMENT

I (¢ENV, ITEM, QUALTB, LL)
APLIST = S(L, RULE}, I(ENV, ITEM, QUALTB, LL)
APPART = S(L, RULE), IYENV, ITEM, QUALTB, LL)

160

P126
P290
P137
P147
P291
P29$3
P135S
P199
P83
P9
P10S
P163
P150
p238
P240
P258
P265A
P266
P38
P86
P218
P167
P218A
P168
P219
P14
P193
P221A
P192
P202
P270
P275
P179
P173
P180
pP385

P286
p232
P288
P195
P48
P254
P305;

AOP = S(RULE), 1(VALENCE)

ARITEXPR = S(PL, RULE, SID), IKENV, QUALTB,
ARDECL = 5(D, E, RULE), I(ENVA, QUALTB, CL,

ARID = S(SP)

ARIDI = SiPL, RULE, SP), I(ENV, USE, ITEM,
ARLIST = 5(D, E, RULE), 1(D0, EnVA, ITEM.
ARSEG = S(D, E, L, RULE),

ITEM, LL, USE, APA)
D0, ITEM, LL, ENV)

LL, APA, QUALTB)
LL, TYPD, QUALTB, CL)

1(CL, DO, ENVA, ITEM, LL, TYPD, QUALTB)

ASSST = S(RULE), I(ENV, ITEM, LL, QUALTB)
ATTRID = S(PL, SP), I(ENV)

BASICST = 5(D, E, RULE, UNDECL, VIRDECL, FIRSTST),

1(LL, DO, ENV, ITEM, ENV1, QUALTS,

CcL)

BLOCK = S(D, E, RULE, UNDECL, VIRDECL, NOLABEL),

1(CL, DO, ENV, eNV1, ENVA, ITEM, LL,

BEGUN, QUALTB)

BLOCKHEAD = 5(D, E, RULE, NUMDEC, AEMDEC, EMDEC, VIRDECL, CDECL),

1(CL, DO, ENV, EXVI, ENVA, ITEN,

LL, QUALTB)

BLOCKPRE = S(PL, RULE), I(ENV, ITEM, LL, QUALTBE)
BEXFR = S(PL, RULE, SiD), I(E\V, ITEM, LL, QUALTB, USE, APA)
BFAC = S(PL, RULE, SID), I(ENV, ITEY, LL, QUALTB, USE, APA)

BOUSND = S(RULE), I(E.VA, ITEM, QUALTB, LL)

BPRIM = S(PL, RULE, SID), [(ENV, ITEM, LL, QUALTB, USE, APA)
BSEC = S(PL, RULE, SiD), I(ENV, ITEM, LL, QUALTS, USE, APA)
BTERM = S(PL, RULE), I(ENV, ITEM, LL, QUALTB, USE, APA)

BOUNDP = S(RULE), I(ENVA, ITEM, LL, QUALTB)

BOUNDPLIST = S(L,RULE), I(ENVA, ITEM, LL, QUALTE)

CLBODY = 3(D, E, RULE, UNDECL, VIRDECL),
1(CL, DO, EXV, ENV1, ENVA, ITEM,

L, QUALTB)

CLDECL = S(D, E, RULE), I(CL, DO, ENV, ITEN, QUALTB, LL)
CLID = S{5P)

CLID1 = S(PL, SP), I(ENV)

CLID2 = S(PL, RULE, SP), I(ENY, ITEM, QUALTB, LL, USE)

COMPST = S(E, RULE, UNDECL, VIRDECL, D),

1(D0O, ITEM, ENVI, ENV, LL, QUALTB,

CL)

COMPT = S(E, RULE, UNDECL, VIRDECL, D, FIRSTST),

1 (QUALTB, ENV, EXV1, D3, LL, ITEM,

CL)

CONDST = S(D, E, OPEN, RULE, UNDECL, VIRDECL),
1(LL, DC, ENY, ENV1, ITEM, QUALTB, CL)

CONNBLOCK1 = S(D, E, OPEN, RULE, UNDECL),

1(DO, ENV, ITEM, LL, BEGUN, QUALTB®)

CONNBLOCK2 = S(D, E, OPEN, RULE, UNDECL),

1¢DO, ENV, ITEM, LL, BEGUN, QUALTB)
CONNCL = S(OPEN, RULE), I(ENV, ITEM, LL, FJUMP, TJUMP, QUALTB)
CONNPART = S(OPEN, RULE), I(ENV, ITEM, LL, FJUMP, TJUMP, QUALTB)
CONNST = S(D, E, OPEN, RULE, UNDECL, VIRDECL),

1(DO, ENV, ENV1, ITEM, LL, QUALTS,
DECL = S(D, E, RULE, VIRDzCL, CDECL, EMDEQ),

CL)

[(CL, DO, ENV. ITEM, LL, ENV1, QUALTB, ENVA)
DESIGEXPR = S(RULE), 1(EXV, ITEM, QUALTB, APA, LL)

DUMMYST = S(RULE)

EXPR = S(PL, RULE), T(ENV, ITEM, LL, QUALTB, APA, USE)
FAC = S(PL, RULE, SiJ), I(E\V, ITEM, LL, QUALTB., APA, USE)

FINJOP5 = S(E, RULE, UNDECL, VIRDECL, D),

1(LL, DO, ENV, ENV1, ITEM, QUALTB, CL)

FP = S(SP)
FPLIST = S5(D, \NTB), [(DO
FPPART = S(D, \TB), !(DO)

FUNC = S(L, PL, RULE, SP), I(ENV, ITEW, QUALTB, LL, APA)

GOTOST = S(RULE), I(EwV, ITEM, QUALTS, LL)
161

Reproduced from
best «-ailable copy.

ID = S(SP)
ID! = S(PL, RULE, SP), I(E\V, ITEM, QUALTB, LL, USE)
IDLIST = S(MATRIX, L, E),
1(CL, ENVI, MAT, NAMETB, LL, DO, TYPD, PLACE)
IFCL = S(RULE), I(ENV, ITEM, QUALTB, LL, FJUMP)
IFST « S(D, E, RULE, UNDECL, VIRDECL),
1(ENV, ITEM, QUALTB, LL, DO, ENV1, FJUMP)
IMPL = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)
INITOPS = S(D, E, RULE, UNDECL, VIRDECL, START, ARULE, EMDEC),
1(CL, DO, ENV, ENV1, ENVA, ITEM, QUALTB, LL)

LABELO = S(SP)

LABEL1 = S(SP, PL, RULE), I (ENV, APA)
LOCOBJ = S(PL, RYLE), I(E\V)

LOGVAL = S(RULE)

MBLOCK = S(D, E, RULE, UNDECL, VIRDECL),

[(CL, ENV, ENVA, ENV1, ITEM, QUALTB, LL, DO, BEGUN)
MPART = S(E, PL, RULE, VIRDECL, SP),
I(CL, ENV, ITEM, QUALTB, PPL, LL)
MOPART = S(MATRIX), !:MAT, NAMETB)
MOP = S(PL, RULE), 1(%)
NAMEPART = S(MATRIX, MOAMB), [(MAT, NAMETB)
OBJEXPR = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)
OBJGEN = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, USE)
OBJREF = S(TYPDS), I(ENV)
OBJREFREL = S(RULE), I(ENV, ITEM, QUALTB, LL, USE)
OBJREL = S(RULE), I(ENV, ITEM, QUALTB, LL, USE)
OTCL = S(OPEN, RULE, UNDECL, VIRDECL, D, E),
I(LL, DO, ENV, ENVi, ITEM, QUALTB, CL, 0)

PRE = S(PL), I(ENV, LL)
PRIM = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)
PROCBODY = S(RULE, UNDECL, E),

(DO, ENV, ENVA, ENV1, ITEM, LL, QUALTB)
PROCDECL = S(D, E, RULE, VIRDECL),

I(CL, DO, ENV, ENV1, ITEM, QUALTB, LL)
PROCHEAD = S(D, E, RULE, SP), I(TYPD, LL, ENV)
PROCID = S(S5P)
PROCID1 = S(PL, SP, RULE), I(ENV, ITEM, QUALTB, LL, USE, APA)
PROCID2 = S(PL, SP), I(ENV)
PROCST = S(RULE), I(ENV, ITEM, QUALTB, LL)
PROGRAM = S(ORIG)
QUALIF = 5(PL), I(ENV)
QUALCBJ = S(PL, RULE), I(ENV, QUALTB, ITEM, LL, USE)
REL = S(RULE, I(ENV, ITEM, QUALTB, LL, USE)
RELOP = S(RULE)
REFASS = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, ALSO)
REFCOMP = S(RULE) .
REFEXPR = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, USE, APA)
REFLPART = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, USE) :
REFRPART = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, USE, ALSO)
REFREL = S(RULE), I(ENV, ITEM, QUALTB, LL, USE)
REFTYPE = S(TYPDS), I (ENV)
RID = S(PL, RULE, SP), I(ENV, ITEM, QUALTB, LL, USE)
SARITEXPR = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)
SBOCL = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)
SDESIGEXPR = S(RULE), I(E\V, ITEM, QUALTB, LL, APA)
SOBJEXPR = S(PL, RULE, SIiD), I(ENV, ITEM, QUALTB, LL, APA, USE)
SPPART = S(E, L, RULE, MATRIX),

I (NAMETB, CL, DO, ENV1, LL, LEGIT, PLACE)

162

&

SPECIFIER

= S(TYPDS), I (ENV)
SPLITBODY = S(D
1(C

\l
, E, RULE, UNDECL, VIRDECL),
L, D9, ENV, ENVI, ENVA, ITEM, QUALTB, LL)
ST - S(D, E, OPEY, RULE, UNDECL, VIRDECL, FIRSTST),
1(D0, ENV, ENV1, ITEM, LL, QUALTB, CL)
ST1 - S(D, E, OPEN, RULE, UNDECL, VIRDECL, FIRSTST),
1(CL, DO, ENV, ENV1, ENVA, ITEM, OUTERMOST, QUALTB, LL, BEGUN)
SUBEXPR = S(RULE), I(ENV, ITEM, LL, QUALTB, USE)
SUBLIST = S(L, RULE), I(ENV, ITEM, LL, QUALTB)
SWDECL = S(D, E, RULE, VIRDECL),
1(CL, DO, ENV, ENV1, ITEM, LL, QUALTB)

SWDESIG = S(RULE), I(ENV, ITEM, QUALTB, LL, APA)
SVID = S(SP)
SWID1 = S(PL, RULE, SP), I(ENV, APA)
SWLIST = S(L, RULE), :(ENV, ITEM, LL, QUALTB)
TERM = S(PL, RULE, SID), I(ENV, ITEM, LL, QUALTB, USE, APA)
TYPEN = S(TYPDS), I(ENV)
TYPEP = S(TYPDS), I(ENV)
TYPEDECL - S(D, E, RULE), I(CL, DO, ENV, LL)
TYPELIST = S(U, E), 1(CL, DO, TYPD, LL)
UNCONDST = S(D, E, RULE, UNDECL, VIRDECL, FIRSTST),

1(CL, DO, ENV, ENV1, ENVA, ITEM, OUTERMOST, QUALTB, LL,

BEGUN)

UNLBASICST = S(RULE, FIRSTST), I(ENV, ITEM, LL, QUALTB, CL)
UNLBLOCK = S(D, E, RULE, UNDECL, VIRDECL),

1(CL, DO, ENV, ENV1, ENVA, ITEM, QUALTB, LL, BEGUN)
UNLCOMP = S(D, E, RULE, UNDECL, VIRDECL),

1(D0, ENV, ENV1, ITE\, QUALTB, LL, CL)
UNLPREBLOCK = S(D, E, RULE, UNDECL, VIRDECL),

. T(E\V, ITEM, LL, QUALTB)

VALASS = (PL, RULE), I(ENV, ITEM, QUALTB, LL, ALSO)
VALEXPR = S(PL, RULE), !(E\V, ITEM, QUALTB, LL, USE, APA)
VALLPART = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, USE)
VALPART = S(MATRIX, MOAMB), I(MAT, NAMETB)
VALRPART = S(PL, RULE), I(E\V, ITEM, QUALTB, LL, USE, ALSQ)
VALTYPE = S(TYPDS)
VAR = S(PL, RULE, SP, DAR), I(ENV, ITEM, QUALTB, LL, USE, APA)
VIRTPART = S(E, L, RULE), I(CL, DO, ENV!, LL)
WHILEST = S(D, E, OPEN, RULE, UNDECL, VIRDECL),

1(LL, DO, ENV, ENVi, I!TEM, QUALTB, CL)

[}

START SYMBOL PRUGRAM

FORMATS ARE

F1 = (“Go(", DISP, ™)")

F2 = ("AR(", OPER, ")

F3 = ("C(INTEGER(VALUEe", V, "))")
F4 = ("INX(", USE,™™")

rS = ("VAL(ADOR=(", ADDR, "), REM)"™)
F6 = ("ADR(ADDR=(", ADDR, "), REWM"™)
F7 = ("VAL(ADDR=(", ADDR, "))™)

Fe& = ("ADR(ADDR=(", ADDR, "))™)

F9 = ("C(", OPER, ™)")

163

F10 =« ("ENT™)

Fil = ("MARK")

F12 = (“RET")

F13 = ("C(ACTUAL (BODYs", SX, ", LEVEL«", LL, ", QUAL=", QUAL,
", UNDERTYPEs", TYPE, "))")

F14 =« ("LOG(", OPER, "))

F15 = ("C(BOOLEAN(VALUEs", OPER, "))")

F16 = ("COMP (", OPER, Mm)")

F17 = ("IFJ(“, DISP, ™M™

F18 = ("C(REF(QUAL=", QUAL,", VALUEs", OPER,"))")

F19 = ("GEN (", NFORMALS, ") ™)

F20 = ("C(LABEL (SEGMENT=", SN, ", DISP=", DISP,"))")

F21 = ("LN=", LN\, ", DNs", DN)

F22 = ("ENT(LEVEL«",LL,", BODY=", SN,")")

F23 = ("MAK (GENUSs=(", GENUS, "), N=", L, "COPIES=",D,™) ")

F24 = ("C(SWITCHLISTs", SN, ", LENGTH«",L,")")

F25 = ("DEL")

F26 = ("RES™)

F27 = ("DET")

F28 = ("STO(",ALSO,™™)

F29 = ("GO")

F3C = ("C(RET)")

F31 = ("NEW OBJECT(BODY=", SN, "IS=", SM, ", PREFIX«", OBJECT, ") ")

F32 = ("C(CLASS (PROTOTYPE=", SN, *, LEVEL=", LL,"))")

F33 = ("C(PROCEDURE{LZveLs", LL", SEGMENT=", SN, ")) ")

F34 = (“ClEu=", D, ", GENUS= (", GENUS, "), MODE=", MODE, ", CLASS=", ALSO,")")

F35 = ("DET (TER)")

F36 = ("KIND=", KIND,", TYPE=", TYPE, ", QUAL=", QUAL)

PROCEDURE AUX (CLASSN, QUALTE);
COMMENT ~ THIS PROCEDURE DOES THE WORK FOR UPDQUALTB BY ACTUALLY
INSERTING THE NEW ENTRIES;

§/ QUAL := (CLASSN]. PREF;
TPUTIN(QUALTB. [[CLASSN). SEGMENT): CLASSN := CLASSN;
PREFIX := IF QUAL = 0 THEN NIL ELSE QUALTB. [QUAL);
LEVEL :» IF QUAL = 0 THEN C ELSE QUALTB. [QUAL).LEVEL+1) /§;

FUNCTION BACTUAL (GENUS, LL, SN);
BEGIN COMMENT THIS FUNCTION WILL BUILD AND RETURN A RULE WITH AN
INSTRUCTION C(ACTUAL) WITH THE PROPER OPERANDS;

INSTR : = $(FORMAT := F13; SN := SN; LL :allL + 1;
TYPE : = GENUS.TYPE);
LIST(IF NULLR (FIND(GENUS, QUAL)) THEN INSTR ELSE
END PUTIN(CINSTR : QUAL := GENUS.QUAL))
ND;

164

FUNCTION BUILDVC (KIND, L);
BEGIN COMMENT THIS PRODUCES A LIST OF L C-INSTRUCTIONS, ALL OF KIND
“KIND", FOR P239;

RULE := NULL;
RHILE L>0 DO

BEGIN
iULE :» CONSCINSTR #s S(FORMAT :a F9; OFER :a KIND), RULE);
= L -1
END;
RULE
END;

FUNCTION CHECKIDENTIFIER (ITEM, QUALTB, ATTR);

BEGIN COMMENT “HIS CHECKS TO SEE IF ANY CF THE COMPONENTS XX OF
ITEM CONTAIN A QUALIFICATION SUCH THAT XX.QUAL IN ATTR. IF
TRUE THE ADUDR OF THE CORRESPONDING XX IS RETURNED OTHERWISE
NULL 1S RETURNED. THIS FUNCTION IS USED TO LOCATE VARIABLES
THAT ARE IN THE STACK OF ANCTHER OBJECT TO WHICH THE PRESENT
OBJECT IS CONNECTED. THE LIST ITEM CONTAINS THE ADDR OF
WORDS IN THE STACK THAT REFERENCES OBJECTS CONNECTED TO THIS
ONE;

éEG?TTR = 0 OR NULLB(ITEM) THEN NULL ELSE
N
NEXT1 := QUALTB. [ATTR]; LEVEL := ([NEXT1).LEVEL;
XX := CARC(ITEM);
WHILE -NULLB(XX) DO
BEGIN
NEXT2 := QUALTob. (XX.QUAL]; N1 := [NEXT2).LEVEL - LEVEL;
IF N1 >= 0 THEN

BEGIN :

WHILE N1 > 0 DO

BEGIN

NEXT2 :s ((NEXT2).PREFIX]; N := N-1
END;
IF NEXT1 = NEXT2 THEN GO TO FINISH
END;
: Dlrsh := CDR(ITEM); XX := CAR(ITEM)
\D;

FINISH ¢ ; XX. ADDR

END
END;

FUNCTION CHECKKIND (GENUS);
BEGIN COMMENT THIS FUXNCTION IS USED TO CHECK 1F FORMAL PARAMETERS
HAVE THE PROPER MODE. THE RESULT IS A BOOLEAN;

KIND : = GENUS KIND;

KIND = "LAREL" OR KIND = "SWITCH" OR KIND = "PROCEDURE"
END;

165

PROCEDURE CHECKSPEC (MATRIX, D);
BEGIN COMMENT THIS PROCEDURE WILL CHECK TO SEE IF ALL D FORMAL
PARAMETERS OF MATRIX HAVE BEEN SPECIFIED;

NEXT1 := FIRST QMATRIX);
WHILE -NULLB(NEXT1) DO
BEGIN NEXT1 : = NEXT(INEXT1]); D := G - 1 END;
IF D »>= 0 THEN
ENDERROR(“PROCEDURE OR CLASS HAS UNSPECIFIED FORMAL PARAMETERS")
4

FUNCTION CHECKVIRT (FNV1, SP, OPER);
BEGIN COMMENT THIS CHECKS IF SP IS AN ENTRY IN VIRTUALE: IF TRUE
IT RETURNS ADDR. DN, IF NOT ZERO;

NEXT1 : = FIND(ENV1, [5P));
1F NULLB(NEXT1) THEN DN :e 0 ELSE
IF [NEXT1).GENUS.KIND = OPER THEN DN := {NEXT1). ADDR. DN ELSE
ERROR (SP, " HAS BEEN DECLARED TWICE, ONCE AS A VIRTUAL");
DN\;
END;

FUNCTION CHERULES (MATRIX, ALSO, D, DO);
BEGIN COMMENT THIS WILL BUILD THE SEQUENCE OF CHE INSTRUCTIONS
THAT HEAD THE RULE FOR A PROCEDURE OR A CLASS;

RULE : = NULL; NEXT1 := FINDMATRIX, (D]);
WHILE -NULLB(NEXT1) DO
BEGIN
RULE :« CONS(INSTR == §$(FORMAT := F34; ALSO i= ALSO;
GENUS : = [NEXT1).SPEC := $(FORMAT := F36);
D:= D -DO; MODE := ([NEXT1].MODE), RULE);
D := D-1; NEXT1 := FIND(MATRIX, [D})
END;
RULE
END;

FUNCTION COMBTYPE (PL, PL1);

BEGIN COMMENT THIS WILL EXAMINE THE TYPE OF BOTH PLtS AND 1F BOTH
ARE NOT "INTEGER" IT RETURNS "REAL" OTHERWISE THE VALUE OF
THE COMPONENT TYPE OF PL1 IS RETURNED. THE VALUES ARE
EITHER "INTEGER"” OR "REAL";

1F PL.GENUS.TYPE -~= “INTEGER" THEN "REAL" ELSE PL1.GENUS. TYPE
END;

FUNCTION CONCATENATE (RULE1l, RULE2);
BEGIN COMMENT THIS WILL CONCATENATE TWO RULES, ONE REPRESENTING THE
PREFIX PART AND THE OTHER THE MAIN PART OF A CLASS BODY.

166

THE CONCATENATION 1S DONE 1N THE FOLLOWING FORM (USING
WILNER'S NOTATION): CHE(P) C(P) CHEM) C(M) INIT 1(P) 1M
INNER FM) F(P). WHILE THE LIST RULE2 IS USED DIRECTLY,
RULE! 1S COPIED EY BUILDING THE NECESSARY NEW LISTS;

COMMENT FIRST BUILD A COPY OF CHE(?) AND C(P) PARTS OF RULE.
THE FIRST PSEUDC-INSTRUCTION MARK FOUND 1S THE INIT OF RULEL;

RULE := RULL;
WHILE NULLR(FIND(CAR(RULED), MARK)) DO
BEGIN
RULE : = CONS(CAR(RULE1), RULE); RULE := CDR (RULEY)

E\D;
COMQMENT oW WE COPY CHEM; AND C(M);

WHILE NULLR(FIND(CAR(RULE2), MARK)) DO
BEGIN
RULE : = CONS(CAR(RULE2), RULE); RULE2 : a CDR(RULE2Q)
EXND;
COMMENT INSER™ INIT IN THE NEW RULE;

RULE : = CONS(CAR(RULED) RULE); RULEL := CDR (RULE1);
COMMENT COPY THE !'(P). THE END OF 1(P) 1S MARKED BY A MARK
PSEUDO-INSTRUCTION;

WHILE -NULLR (FIND (CAR (RULE1), MARK)) DC
BEGIN

RULE := CONS(CAR(RULE1L), RULE); RULEL := CDR (RULE1);
END;
COMMENT NOW WE REVERSE RULE AND APPEND 1 M) INNER F(M) WHICH 1S
LOW COR (RULE2) (¥E HAVE TQ ELIMINATE THE INIT) AND THEN REVERSE
IT. AGAIN TAKE THE CDR (TO ELIMINATE THE DET INSTRUCTION AT THE
END OF RULE2) AND THEN COPY F(P). THE REASON WE HAVE TO COPY F(P)
AVD CANNOT SIMPLY APPEND IT IS THAT THE JUMP INSTRUCTIONS
(GO & 1FJ) WILL HAVE DIFFERENT DISPLACEMENT VALUES DEPENDING ON
THE CODE SEGMENT;

RULE := CDR{(RVRS (APEND RVRS(RULE), CDR (RULE2))));
RULEL := COR(RULED);
WHILE -NULLB(RULEL) DO
eFGIN
RULE := CONS(CAR(RULE1). RULE); RULEL := CDR (RULE1)
END;
RVRS(RULE)

END;

FUNCTION CONDQUAL (QUALTS, QUALL, QUAL2);
BEGIN COWMENT THIS TAKES THE QUALIFICATIONS OF TLO CLASSES

AND OUTPUTS THE QUALIFICATION OF THE CLASS WHICH 15
THE LAST IN THE:R PREFIX SEQUENCE THAT 1S COMMON TO
BOTH;

COMMENT 1F ONE OF THEM IS "NONE" THE RESULT 1S THE QUALIFICATION
OF THE OTHER;

IF QUALL . O THEN GUAwn2 ELSE d from
< ‘ i ’Q:‘:l' oady:i?abl: copY.
167 B

g;c?gALZ < 0 THEN QUAL1 ELSE
NEXT1 := QUALTB. {QUAL1); NEXT2 := QUALTB. (QUALZ2);
N1 := [NEXT1).LEVEL; N2 := [NEXT2).LEVEL;
COMMENT NOW IF N1 > N2 WE INVERT THE TWO AND ALSO NEXT;

IF N1 > N2 THEN
BEGIN
N t= [N1); N1 :a [N2); N2 := (N];
ENDNEXT3 := [NEXT1); NEXT1 :s ([NEXT2]; NEXT2 := [NEXT3)
CO“ﬂfVT :gw IF N1 2 N2 WE TAKE THE ANCBSTOR OP NEXT2 UNTIL

WHILE N1 -~= N2 DO

BEGIN

EVDNEXTz t= ((NEXTZ2).PREFIX]; N2 := N2 -1
COMMENT NOW WE LOOK FOR THE COMMON ANCESTOR

ggéLs NEXT1 == NEXT2 DO
I
NEXT1 := ((NEXT1).PREFIX]); NEXT2 := [[NEXT2].PREFIX]}
ENDIF NULLB (NEXT1) THEN ERROR(“NO COMMON ANCESTOR"™)
e
SELECTOR([NEXTI])
END
END;

PROCEDURE DISAMV (SP, DAR, COND, PL, APA);

BEGIN COMMENT THIS CHECKS FOR AMBIGUITIES AND DISAMBIGUATES NODES.
IT 1S CALLED BY P22 AND P116. THE AMBIGUITIES RESULT FROM
ACTUAL PARAVETERS THAT PARSE TO A SINGLE ENTITY. AMBIGUITIES
ALSO ARISE WHEN THE RHS OF A VALUE ASSIGNMENT PARSES TO A
A SINGLE ENTITY AND WHEN A PRIMARY PARSES TO AN IDENTIFIER;

TYPE := PL.GENUS.TYPZ; KIND : = PL.GENUS. KIND;

IF APA = 4 THEN DAMB(KIND -~= "PROCEDURE", PRIM) ELSE
IF - DAR THEM

BEGIN COMMENT THIS 15 NOT AN ARRAY;

IF APA = 0 THEN
BEGIN COMMENT THIS 1S AMBIGUOUS BECAUSE EVERY PRIMARY CAN BE A
VARIABLE OR A FUNCTION DESIGNATOR WITH NO PARAMETERS;

IF KIND = "SIMPLE" THEN
BEGIN
IF -~ COND THEN DAMB(TRUE, PRIM) ELSE
ERROR(S?, " IS OF THE WRONG TYPE™)
END ELSE
IF XIND = "PROCEDURE® THEN DAMB(FALSE, PRIM) ELSE
ERROR (5P, " IS OF THE WRONG KIND")
END ELSE
JF APA = 1 THEN
BEGIN COMMENT THIS 1S THE AMBIGUITY DUE TO THE RIGHT HAND SIDE
OF A VALUE ASSIGNMENT;

168

iF KIND = "SINMPLE™ THEN
BEGIN
1F COND THEN
BEG!X
IF TYPE -~a "REF" THEN DAMB(FALSE, VALEXPR) ELSE
ERROR (5P, " 1S OF THE WRONG TYPE™)
END ELSE
SEGIN DAMB(TRUE, PRIM); DAMB(TRUE, VALEXPR) END
END ELSE
IF KIND = "PROCEDURE" THEN DAMB (FALSE, PRIM) ELSE
ERROR(SP, "™ IS5 OF THE WRONG-KIND")
END ELSE
IF APA = 3 THEN
BEGIN "COMMENT THIS IS AN ACTUAL PARAMETER AMBIGUITY;

IF KIND ~= "SIMPLE" THEN
BEGIN
IF KiND = "LABEL"™ THEN DAMB(FALSE, EXPR)
ELSE DAMB(FALSE, AP)
END ELSE

IF COND THEN
BEGIN
I[F TYPE -~= “REF" THEN DAVIB(FALSE, VALEXPR)
ELSE DAMB (FALSE, EXPR)

END ELSE
BEGiN
DAMB (TRUE, PRIM); DAMB (TRUE, VALEXPR); DAMB(TRUE, EXPR);
DAMB (TRUE, AP)
EXD
END ELSE
COMMENT THIS 1S AN ACTUAL PARAMETER WHICH IS ENCLOSED IN
PARENTHESES;
IF KIND = "LABEL® THEN DAMB(FALSE, EXPR) ELSE
IF KIND = "SWITORK.OR KIND = "ARRAY" THEN
ERROR (5P, " 1S OWWME WRONG KIND") ELSE
IF COND THEN
BEGIN

IF TVPE = "REF" THEN DAVB (FALSE, EXPR)
ELSE DAME (FALSE, VALEXPR)
END ELSE

IF KIND = "FROCEDURE" THEN DAMB(FALSE, PRIM) ELSE
BEGIN DAMB(TRUE, PRIM); DAMB(TRUE, VALEXPR); DAMB(TRUE, EXPR)
END

END ELSE

COMMENT IT IS AN ARRAY;

IF APA = 0 THEN
BEGIN COMMENT NO AMBIGUITY HERE;

IF COND OR KIND -~s "ARRAY THEN
ERROR (5P, " HAS WRONG TYPE OR KIND")
END ELSE
IF APA = 1 THEN
EEGIN COMMENT THIS IS THE RIGHT HAND SIDE AMBIGUITY;

IF XIND = "ARRAY" THEN DAME (~COND, VALEXPR) ELSE
169

ERROR(SP, " IS OF THE WRONG KIND")
END ELSE
COMMENT THIS 1S THE ACTUAL PARAMETER AMBIGUITY;

IF KIND ~= "ARRAY" THEN

BEGIN
IF KIND = “SWITCH" THEN DAMB(FALSE, EXPR) ELSE
ERROR(SP, " IS OF THE WRONG KIND")

END ELSE

IF COND THEN

BEGIN
IF TYPE ~= "REF" THEN DAMB (FALSE, VALEXPR)

ELSE DAMB (FALSE, EXPR)
END ELSE

ENDBEGIN DAMB (TRUE, VALEXPR); DAMB (TRUE, EXPR) END
;

PROCEDURE DISAMF (SP, COND, APA, L);
BEGIN COMMENT THIS IS SIMILAR TO DISAMV BUT HERE THE ARRAY PROBLEM
DOES NOT ARISE;

KIND : = PL.GENUS.KIND; TYPE := PL.GENUS. TYPE;
IF APA = 4 THEN DAMB(KIND -= "SIMPLE", PRIM)

IF L = 0 THEN

BEGIN COMMENT PROCEDURE WITH NO PARAMETERS;

IF APA = 0 THEN
BEGIN COMMENT THIS 1S THE AMBIGUITY CF THE PRIMARY;

IF KIND == "PROCEDURE" THEN
BEGIN
IF KIND = "SIMPLE® THEN DAMB{FALSE, PRIM) ELSE
ERROR(SP, " IS OF WRONG KIND™)
END ELSE
IF -COND THEN DAMB(TRUE, PRIM) ELSE
ERROR(SP, " 1S OF WRONG TYPE")
END ELSE
IF APA = 1 THEN
BEGIN COMMENT THIS IS AMBIGUITY FROM VALUE RIGHT HAND SIDE;

[F KIND += "PROCEDURE" THEN
BEGIN
IF XIND « "SIMPLE" THEN DAMB(FALSE, PRIM) ELSE
ERROR(SP, " 1S OF THE WRONG KIND™)
END ELSE
[F ~COND THEN
BEGIYN
DAMB(TRUE, PRIM); DAMB(TRUE, VALEXPR)
END ELSE
IF TYPE ~= "REF" THEN DAMB(FALSE, VALEXPR) ELSE
ERROR (5P, " IS OF THE WRONG TYPE")
END ELSE
1F APA = 2 THEN
BEGIN COMMENT THIS 1S THE ACTUAL PARAMETER AMBIGUITY;

IF KIND ~= "SIMPLE" THEN DAMB(FALSE, AP) ELSE
170

IF ~COND THEN DAMB(FALSE, PRIM) ELSE
IF TYPE == "REF" THEN DAMB(FALSE, VALEXPR)
ELSE DAMB(FALSE, EXPR)
END ELSE

COMMENT THIS 15 AN ACTUAL PARAMETER ENCLOSED IN PARETHESIS;

[F KIND = "LABEL" THEN DAMB(FALSE, EXPR) ELSE
[F KIND = "SWITCH" OR KIND = "ARRAY™ THEN
ERROR (SP, " IS OF THE WRONG KIND") ELSE
1F COND THEN
BEGIN ’

IF TYPE = "REF" THEN DAMB(FALSE, EXPR)

ELSE DAMB(FALSE, VALEXPR)

END ELSE

IF KIND = "SIMPLE" THEN DAMB(FALSE, PRIM) ELSE
gEGXN DAMB (TRUE, PRIM); DAMB(TRUE, VALEXPR); DAMB(TRUE, EXPR)
ND

END ELSE
COMMENT THIS IS A PROCEDURE WITH PARAMETERS;

EFSKIND -~s "PROCEDURE"™ THEN ERROR (SP, ™ 1S OF THE WRONG KIND")
LSE
IF APA = 0 THEN
BEGIN
IF COND THEN ERROR(SP, " IS OF THE WRONG TYPE")
END ELSE :
IF APA = 1 THEN
BEGIN
1F ~COND THEN DAMB(TRUE, VALEXPR) ELSE
1F TYPE =~s REF THEN DAMB(FALSE, VALEXPR) ELSE
ERROR(SP, " 1S OF THE WRONG TYPE")
ENXD ELSE
COMMENT THIS IS THE AP AMBIGUITY;

IF ~COND THEN BEGIN DAMB(TRUE, VALEXPR); bAMB(TRUE. EXPR) END ELSE
E IF TYPE == "REF" THEN DAMB(FALSE, VALEXPR) ELSE DAMB(FALSE, EXPR)
ND;

FUNCTION FIXCOND (RULE, SM, SN);

BEGIN COMMENT THIS WILL HANDLE THE ATTACHMENT OF THE LABEL PSEUDO-
INSTRUCTIONS AND THE GO INSTRUCTION TO THE RULE
CORRESFONDING TO THE ELSE PART OF A CONDITIONAL EXPRESSION.
SM STANDS FOR THE LA2EL OF THE INSTRUCTION FOLLOWING THE
CONDITIONAL AND SN FOR THE LABEL OF THE RULE ASSOCIATED
WITH THE ELSE. THE AUGMENTED RULE IS RETURNED;

CONS (INSTR »= Y (FORMAT := F1; JLABEL := SM),

CONSCINSTR as S(LABELI := 5N,
\D APEND (RULE, LIST(INSTR a= $(LABELI := SM)))))
END;

d from
[ttt
FUNCTION INVDELTA (ENV, E);

BEGIN COMMENT THIS PROCEDURE MERGES TWO SYMBOL TABLES, ENQ
171

REPRESENTING THE GLOBAL ENVIRONMENT AND E THE LOCAL ONE.
THE ALGOL RENAMING RULES ARE FOLLOWED. THE RESULTING
TABLE IS RETURNED. NOTICE THAT E IS MODIFIED BUT NOT ENV;

NEXT1 :s FIRST(ENV);

WHILE -~NULLB(NEXT1) DO

BEGIN
OPER : = SELECTOR (([NEXT1));
IF NULLR(FIND(E, (OPER]}) THEN E := «(NEXT1);
NEXT1 : = NEXT ((NEXT1})

END:

END;

PROCEDURE OUTPUT (SN, RULE);

BEGIN COMMENT TH1S PROCEDURE HANDLES THE OUTPUT OF THE LIST RULE.
ADDITIONALLY IT BINDS LABELS AND ADDRESSES THROUGH A TABLE
MAP (IMPLEMENTED AS A CONSTRUCT). THE LABELLING AND
BINJING MECHANISM ARE THE SAME AS THE ONE USED FOR
TURINGOL. INSTRUCTIONS WITH A COMPONENT JLABEL ARE COPIED
TO AVOID THE PROBLEM THAT ARISES WHEN AN INSTRUCTION
BELONGING TO A CLASS SEGMENT 1S ALSO PART OF THE CLASS
SEGMENT OF A CLASS HAVING THE FIRST ONF AS A PREFIX;

D:=1; WRITE(/,SN);
WHILE -NULLB (RULE)DO
BEGIN
NEXT1 : = CAR(RULE);
IF ~NULLR(FIND([NEXT1], FORMAT)) THEN
BEGIN COMMENT THIS 1S AN INSTRUCTION SINCE ONLY INSTRUCTIONS
HAVE A FORMAT COMPONENT. OTHERWISE IT IS A PSEUDO-
INSTRUCTION. THE INSTRUCTION IS COPIED, THE LABEL IN
JLABEL IS BOUND TO AN ADDRESS AND THE SEGMENT NUMBER
1S INCLUDED. THE LABEL IS BOUND IN PARALLEL WITH THE
SROCEDURE PLACE TO AVOID PASSIVATIONS DUE TO FORWARD
UMPS;

DE:- D « 1; IF ~NULLR(FIND([NEXT1), JLABEL)) THEN
BEGIN
(NEXT1] := #[NEXT1}; (NEXT1].SN := SN;
PLACE ((NEXT1], MAP) .
END;
WRITE(/, [NEXT1])
END ELSE
1F -NULLR (FIND ([NEXT1), LABELI)) THEN
COMMENT THIS 1S A LABEL PSEUDO-INSTRUCTION. UPDATE MAP;

MAP. [[NEXT1).LABELI} := [D};
RULE : = CDR(RULE)
END
END;

PROCEDURE PLACE (NEXT1, MAP);
COMMENT THIS PROCEDURE WILL BIND A LABEL WITH AN ADDRESS IN

172

PARALLEL;

$/ [NEXT1]).DISP :s MAP. [INEXT1].JLABEL] /8§

FUNCTION PUTII (RULE, COND);

BEGIN COM.ENT THIS WILL PLACE MARKERS FOR INIT AND INNER AT THE
BEGINNING aND AT THE END OF A RULE, IF COND 1S TRUE. THE
MARKERS ARE PSEUDO-INSTRUCTIONS WITH A COMPONENT MARK: IT

1S USED TO PUT MARKERS IN THE RULE OF CLASS BODY WHEN IT IS
NEITHER A SPLIT BODY OR A BLOCK;

IF COND THEN CONS(CINSTR w»= J(MARK :s« "INIT™),

APEND(RULE, LIST(INSTR #= §(MARK := "INNER"))))
ELSE RULE
END;

PROCEDURE SUBORDINATE (QUALTB, GENUSI, GENUS2);
BEGIN COMMENT THIS PROCEDURE CHECKS TO SEE IF THE SIMULA
SUBORDINATION RULES ARE RESPECTED;

TYPE : = GENUSI.TYPE;
IF TYPE -= “U" THEN
BEGIN
TYPE1 : = GENUS2. TYPE;
1F TYPE! ~= TYPE2 THEN ERROR ("SUBORDINATION RULES VIOLATED")
ELSE
IF TYPE2 = “REF" THEXN
BEGIN
ATTR : = GENUSI.QUAL;
NEXT1 := QUALTB. [ATTR); LEVEL := (NEXT1).LEVEL;
NEXT2 :a QUALTB. [GENUSZ. QUALI;S
LEVEL := ([NEXT2).LEVEL - LEVEL;
IF LEVEL < 0 THEN ERROR ("SUBORDINATION RULES VIOLATED")

ELSE
WHILE LEVEL > 0 DO
EEGIN
NEXT2 := ((NEXT2).PREFIX]; LEVEL := LEVEL - 1
END;
IF NEXT1 -= NEXT2 THEN
ERROR ("SUBORDINATION RULES VIOLATED™)
END
END
END;

FUNCTION UNIONDOT (E, El);

BEGIN COMMENT THIS FUNCTION WILL JGIN TWO SYMBOL TABLES AND 1F
THERE ARE COMMON NAMES AMONG THE COMPONENTS AN ERROR IS
NOTED. E CHANGES BUT NOT EIl;

NEXT1 := FIRST(ED);

WHILE -NULLB(NEXT1) DO
BEGIN

173

OPER :s SELECTCR([NEXT1));

IF NULLR(FIND(E, [OPER]})) THEN E := w[NEXT1] ELSE
ERROR (OPER, " HAS BEEN DECLARED TWICE");

NEXT1 : = NEXT((NEXT1))

END;
E
END;

FUNCTION UNIONR (VIRDECL, VIRDECLD);
BEGIN COMMENT THIS FUNCTION WILL TAKE TWO CONSTRUCTS AND MERGE THEM

WITH THE FIRST ONE BEING RETURNED MODIFIED AND THE SECOND
ONE REMAINING UNCHANGED;

NEXT1 := FIRST(VIRDECL1);

WHILE -NULL(NEXT1) DO

BEGIN VIRDECL : s »[NEXT1]; NEXT1 := NEXT(INEXT1)) END;
VIRDECL

END;

FUNCTION UPDQUALTB (QUALTB, CDECL);
BEGIN COMMENT THIS PROCEDURE WILL UPDATE QUALTE BY INTRODUCING

ENTRIES CORRESPONDING TO THE CLASSES REPRESENTED IN CDECL.
EACH ENTRY IN QUALTB CORRESFONDS TO A CLASS, AND IS A
CON3TRULY in WHICH THE COMPONENT PREFIX IS A POINTER TO THE
QUALTB COMPONENT CORRESPONDING TO THE PREFIX CLASS, CLASSN
IS A POINTER TO THE SYMBOL TABLE ENTRY FOR THE CLASS, AND
LEVEL THE NUMBER OF CLASSES IN THE PREFIX SEQUENCE OF THE
CLASS. CDECL IS A LIST OF POINTERS TO THE SYMBOL TABLE
ENTRIES OF THE CLASSES DECLARED IN A BLOCK. EACH INSERTION
IN QUALTB, IS MADE IN PARALLEL (USING THE PROCEDURE AUX)
TO AVOID ORDERING CDECL. NOTICE THAT THE INSERTIONS CANNOT
BE MADE SEQUENTIALLY WITHOUT ORDERING CDECL SINCE IF A
CLASS WERE DECLARED BEFORE TS PREFiX, THE FUNCTION WCULD
HANG UP TRYING TO FIND THE PREFIX CLASS AND WOULD NEVER
DEFINE THE FREFIX;

WHILE -NULLB(CDECL) 20

BEGIN

AUX ([CAR(CDECL)], QUALTB); CDECL := CDR(CDECL)

END;

QUALTB

END;

FUNCTION VIRMERGE (RULE, VIRDECL);
BEGIN COMMENT THE INITIAL PART OF A RULE IS COMPOSED OF A SEQUENCE

OF]NSTRUCTIONS CORRESPONDING TO THE DECLARATIONS: TO AN
ARRAY 'DECLARATICN CORRESPONDS A SEQUENCE OF INSTRUCTIONS
DEFINING THE ARQRAY'S BOUNDS FOLLOWED BY A MAK INSTRUCTION
THAT BUILDS A SEGMENT ASSOCIATED WITH THE ARRAY AND INSERTS
A REFERENCE TO IT IN THE STACK; TO ANY OTHER DECLARATION
CORRESPONDS ONE C-INSTRUCTION. IF THE INSTRUCTIONS

DEFINING THE BOUNDARIES ARE IGNORED, THE N(TH) INSTRUCTION

174

END

$P1

$P2

$P3

$P4

$PS

$P7

)

IN THE INITIAL SEQUENCE, PLACES IN THE STACK A WORD WHOSE
STACK DEPTH IS N, VIRMERGE REPLACES IN RULE THOSE
INSTRUCTIONS THAT CORRESPOND TO VIRTUAL DECLARATIONS AND
THAT HAVE BEEN REDEFINED. VIRMERGE IS A CONSTRUCT WHOSE
COMPONENTS ARE THE NEW INSTRUCTIONS; THE COMPONENTS®
SELECTORS ARE INTEGERS AND CORRESPOND TO THE SEQUENCE
NUMBER (IGNORING THE BGUNDARY DEFINITION INSTRUCTIONS) OF
THE INSTRUCTION TO BE REPLACED. BOUNDARY DEFINITION
INSTRUCTIONS ARE DELIMITED BY PSEUDO-INSTRUCTIONS WITH
COMPONENT MARK1;

NEXT1 :=s FIRST(VIRDECL); D := SELECTOR((NEXT1));
WHILE -NULLB(NEXT1) DO
BEGIN
RULE1 : = RULE;
WHILE D > 1 DO
BEGIN
I'F SNULLR (FIND(CAR(RULE1}, MARK1)) DO
BEGIN COMMENT THIS IS THE BEGINNING OF A SEQUENCE OF
BOUNDARY DEFINITION INSTRUCTIONS. SKIP OVER THE
INSTRUCTIONS UNTIL ANOTHER ONE WITH COMPONENT
MARK1 IS FOUND; .

RULEL1 : = CDR(RULE1);
WHILE NULLR(FIND(CAR(RULE1), MARK1)) DO
RULEL : = CDR(RULED);
RULEL1 := CDR(CDR(RULE1))
END ELSE
RULE1 : = CDR(RULE1);
D:2D-1
END; [
CAR(RULE1) := (NEXT1); NEXT1 := NEXT([NEXT1])
END;
RULE

EXPR ::= VALEXPR
EXPR ::= REFEXPR

EXPR ::= DESIGEXPR
$/PL(EXPR).GENUS. TYPE :« "LABEL" /§

VALEXPR ::= ARITEXPR
VALEXPR ::= BEXPR

ARITEXFR $t= SARITEXPR

178

§P8 ARITEXPR ::= IFCL SARITEXPR ELSE ARITEXPR

$/ SN :s NEWINTEGER; SM := NEWINTEGER;
FJUMP (IFCL) : s SN;
RULE(ARITEXPR) := APEND (RULE(IFCL), APEND (RULE (SARITEXPR),
FIXCOND (RULE(ARITEXPR#), SM, SN)))/$
$/ PLCARITEXPR).GENUS. TYPE : = COMBTYPE (PL (SARITEXPR),
PL(ARITEXPR#))/$
§/ APA(SARITEXPR) := IF APA(ARITEXPR)=0 THEN 0 ELSE 4;
APA (ARITEXPR#) := IF -~SID(SARITEXPR) THEN 0
ELSE APA(ARITEXPR);
gEG?KD(SARITEXPR) AND APA(SARITEXPR)=4 THEN
N
TYPE : = PL(ARITEXPR).GENUS. TYPE;
IF TYPE ~= "INTEGER" AND TYPE -~= "REAL"™ THEN
ERROR ("CONDITIONAL ARITHMETIC EXPRESSION HAS OPERAND OF
TYPE ", TYPE)
END /8§
$/ SID(ARITEXPR) := SID(SARITEXPR) AND SID(ARITEXPRs) /$

$P9 SARITEXPR ::= TERM

$P10 SARITEXPR ::= AOP TERM
$/ VALENCE(AOP) :s 1; USE(TERM) :s "VALUE";
RULE (SARITEXPR) := APEND(RULE(TERM), RULEC(AOP)) /$
3/ SlD(SARITEXPR? := FALSE /$
$P11 SARITEXPR ::= SARITEXPR AOP TERM
$/ VALENCE(AOP) := 2; USE(SARITEXPR#) := USE(TERM) :s "VALUE";
APA (SARITEXPR#) := APA(TERM) : = 0;
RUL;(SARITEXPR) ¢ = APEND (RULE (SARITEXPR#),
APEND (RULE (TERM), RULE(AOP))) /$
$/ PL(SARITEXPR).GENUS. TYPE := COMBTYPE (PL(SARITEXPRn),

‘ PL(TERM)) /$
$/ SID(SARITEXPR) := FALSE /$

$P12 AOP ::= +
$/RULECAOP) := IF VALENCE(AOP) = 1 THEN NULL ELSE
LIST(INSTR == S(FORMAT : e F2; OPER := "+")) /$
$P13 AOP ::s -
$/RULE(AOP) s« LIST(INSTR #= $(FORMAT : = F2;
OPER :s [P VALENCE(AOP) = -2 THEN "~® ELSE "NEG")) /S$

$P14 TERM :: = FAC

$P15 TERM ::= TERM MO? FAC
176

$P10

s$P17

$P18

$P19

$P20

$P21

$P22

$P23

$/ USE(TERM#) := USE(FAC) := "VALUE"; SID(TERM) : = FALSE;
APA(TERM#) : = APA(FAC) := 0;
RULE(TERM) :a APEND(RULE(TE<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>