
PB-218 875

FOLDS, A DECLARATIVE FORMAL LANGUAGE
DEFINITION SYSTEM

[su Fang

Stanford University

Prepared for:

Agency for International Development

December 1972

DISTRIBUTED BY:

National Technical informationService
U. S. DEPARTMENT OF COMMERCE

PB 218 875

FOLDS, A DECLARATIVE FORMAL LANGUAGE DEFINITION SYSTEM

BY

ISU FANG

STAN-CS-72-329

DECEMBER 1972

INFORM ATICNSERVICE
COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

SESING

iE) Oe =

FOLDS, A DECLARATIVE FORMAL LANGUAGE DEFINITION SYSTEM

by Isu Fang

Abctract

This thesis adaescribes FOLDS, a declarative formal language definition

system. The system implements and extends Knuth's method for the

specification of the semantics of context-free languages. The system

provides 2 language (SPINDLE) and data structures to define the syntax

andi semantics >f a language. It also incluces a machine (MUTILATE) that

from the definition campiles programs of the defined language. Both the

consistency and the correctness of the definition can be checked in this

way. The language imposes very few restrictions on definitions while

preserving the declarative nature of Knuth's method; i.e , the compilation

process is transparent in the definition. In addition, the system

provides a means for semantically resolving syntactic ambiguities. FOLDS

is intended primarily for the language designer, giving him the

oppurtunity of realizing his definition with very little concern about

implementation details. A definition of SIMULA 67 in SPINDLE and a sel

of SIMULA 67 progranc, as compiled by the definition, are included to

illustrate the capabilities of the system.

This recearch was supported in part by the Facullade de Economia e
fdministraca da Universidade de Sao Paulo, Agen:cs for [nternational

Development - State Department and Fundacao de f:aparo a Pesquisa do
Estado de 3uo Faulo; by IBM Corporation; and by Xerox Corpcration.

ik

SHEET STAI-CS- 72-309 -
» itie and >utitie eport Date

Folds, A Declarative tormal Lanjuage Definition System c
7. Author(s) 8. Performing Organization Repe.

9. Performing Organization Name and Address 10. Project/Teask/Work Unit No.

Stantord University 0 Proect/ Tork Mork Bait fo:
Computer Science Department 11. Contract /Gram No.

Stantord, Cali.'ornia Y'30% ne——
12 Sponsoring Crzanization Name and Address 13. Type of Report & Period

Faculdade de Foonomia e Administraca de Univercidade de Sac PafuloSovered
Agency for International Development-State Department and Fundueas technical

de Amparo a Pesquisa do Estado de Cac Paulc (Brazil) .

18. Abstraces

Tnis thesis describes FOLDS, 8s declarative formal language definition system.

The system implements and extends Xnuth'®s method ur the speed Fioation of tle
semantics of context-tree languages. 'me system provides a language (SPINDLE)
and data structures to define the syntax and sementics of a language. It also

includes a machin> (MUTILATE) that from the defirition compiles programs of the
derined language. Both the consistency and the correctness of the definition can

bc checked in this way. The language imposes very few restrictions on deflinitiociig

while preserving the declarative nature of Knuth's method; i.e., the compilation
process is transparent in the definition, In addition, the system provides a

means for semantically rescelving syntactic ambiguities. FOLDS is intended

primarily for the language designer, giving him the opportunity of realizing
his definition with very little concern about implementation details. A

definition of SIMULA €7 in SPINDLE a~d a set of SIMULA 67 programs, as compiled

7+ Key Words and Document Analysis. 176. Descriptors by the definition, are included to illustrate the
capabilities ot the system.

17. Identifiers /Open-Ended Terms

17c. COSATI Field/Group a

18. Availability Statement 19. Security Class (This
Report)

\ h ’ ’ > :

FORM NTiS-18 (10-70) UBCOMNM-OC 40328. P7

Preface

[would like to express my deepect gratitude to my thesis advicor,

Protecsor Donald F. Knuth, for ~urpesting the topic of this thesis ana

providing guidance and encouragement during its preparation. I alco
wish to thank Dr. James G. litchell and Professor Jerome A. Feldman for

their constructive criticism, their advice and help in the preparation

of this manuscript.

[also wish to thank Richard Sites, my fellow student, for many

stimulating and helpful discussions and Richard E. Sweet without whose

~xpertise and ood will thic thesis would never be printed.
1 welecee ‘his upportunity to thank a number of persons who through

their cupport made thic thesis possible: Professor Flavio F. Manzoli,

Professor Miguel Coluassudno, Professor Affonso C. Pastore, Professor

Sylvio Bormes Reis, Vicente Paolillo and Arthur E. Angel.

This work was cupported by the Faculdade de Economia e Administracao

da Universidade de Cao Paulo, Agency tor International Development - State

hepartmen® und lundacao de Amparo & Pesquisa ro Estado de Sao Pauly.

Computer time was partially provided by the Advanced Research Projects

Asency of the Office of the Secretary of Defense (SD-167) and Th

Corporation. Preparation and publication of this paper was partially

supported by iBM Corporation and by the Xerox Corporation.
I dedicate this work to my wife Sara whose love, patience,

.ncouragement and dedication nade it all possible.

ii

ss

TABLE OF CONTENTS

CHAPTER SECTION PAGE

INTRODUCTION 1

1 REVIEW AND OVERVIEW a

11 FORMAL LANGUAGE DEFINITION METHODS 4

1. 2 IRONS® METHOD 5

1.3 KNUTH'S METHOD 6

1. 4 A SIMULA 67 DEFINITION 13

1.5 FOLDS 15

1.5.1 SPINDLE - THE FOLDS LANGUAGE 18

1,5, 2 THE SPINDLE COMPILER 24

1.5.3 MUTILATE - THE FOLDS MACHINE 25

2 SPINDLE 33

2.1 VALUES AND CONSTANTS 36

2.2 SYNTAX DEFINITION 37

2.2.1 TERMINALS 37

2.2.2 NONTERMINALS AND START SYMBOL 40

2.2.3 SYNTACTIC PRODUCTIONS : a1

2.3 ATTRIBUTES 42

2.3.1 ATTRIBUTE DECLARATION 46

2. 4 EXPRESSIONS 50

2.4.1 SIMPLE EXPRESSIONS 50

2.4.1.1 FUNCTION CALLS 52

2.4.1.2 ATTRIBUTE DESIGNATION 53

2.4.1.3 BLOCK EXPRESSIONS 55

2.4.2 INTEGER EXPRESSIONS 55

2.4.3 BOOLEAN EXPRESSIONS 57

iii |

<. 4.3.1 RELATIONS 58

2.4.4 CONDITIONAL XPRESSIONS 59

de d STATEMENTS 60

2.5.1 UNCONDITIONAL STATEMENTS 62

2.5.1.1 ASSIGNMENT STATEMENTS 63

2.5.1. 1.1 OTHER RHS 68

2.5.1.1.2 MULTIPLE ASSIGNMENTS 71

2.5.2 CONDITIONAL STATEMENTS 73

2.5.3 WHILE STATEMENTS 713

2. 0 OTHER EXPRESSIONS : 74

2.6.1 ASSIGNMENT EXPRESSION 74

2.6.2 PUTIN EXPRESSIONS 75

2.6.3 FIND EXPRESSION 77

2.7 STANDARD FUNCTIONS 78

2.7.1 PREDICATES 79

2.7.2 LIST FUNCTIONS 80

2¢ 7.3 MISCELLANEOUS FUNCTIONS 85

2.8 USER DEFINED FUNCTIONS AND PROCEDURES 86

2.9 OTHER STATEMENTS 88

2.9.1 WRITE STATEMENT 89

2.9.1.1 FORMATED OUTPUT 90

2.9.2 ERROR STATEMENT 93

2.9.3 DISAMBIGUATION STATEMENT G5

2.10 SEMANTIC RULES G7

<. 11 WRITING AND RUNNING A SPINDLE PROGRAM 99

2.12 THE DEFINITION OF TURINGOL 100

3 MUTI LATE 104

3.1 LEXICAL ANALYZER AND PARSER 108

3.2 INTERPRETER 107

iv

3.3 THE INSTRUCTION SET OF MUTILATE 113

3.3.1 CONSTRUCT MANIPULATION INSTRUCTIONS 115

3.3.1.1 PLA § GET 115

3.3.1. 2 PLAN 117

3.3.1.3 GETN 117

3.3.1. 4 FIND 118

3.3.1.5 FMT | 118

3.3.1.6 REP 119

3.3.2 LiST MANIPULATION INSTRUCTIONS 119

3.3.2.1 CAR 120

3.3.2.2 CDR 120

3.3.2.3 CONS | 121

3.3.2. 4 LIST | 122

| 3.3.2.5 APEND | 122

3.3.2.6 RVRS 123

3.3.3 STACK MANIPULATION INSTRUCTIONS 123

3.3.3.1 PCP 123

3.3.3.2 DBL 124

3.3.3.3 FLIP 124

3.3.4 CONTROL INSTRUCTIONS 125

3.3.4.1 JUMP 125

3.3.4.2 JUMPF § JUMPT 125

3.3.4.3 PAR §& PARN 126

3.3.4.4 CALL 126

3.3.4.5 RET 127

3.3.4.6 HLT 128
3.3.4.7 ERROR | 128

3.3.5 VALUE MANIPULATION INSTRUCTIONS 129

3.3.5.1 ASS 129

Vv

3.3.5.2 TRANS 130

3.3.5.3 VALC 130

3.3.5. 4 ASS] 131 |

3.3.5.5 VAL 131

3.3.5.6 STO 132

3.3.5.7 LOAD 133

3.3.5.8 AR 133

3.3.5.9 LOG 134

3.3.5.10 TEST 134
3.3.5.11 COMP 135

3.3.5.12 NAME 135

1.3.5.13 GEN 136

3.3.5.14 COPY 136

3.3.6 OUTPUT INSTRUCTIONS 137

3.3.6. 1 OUT § OUTF 137

3.3.6.2 OUTC 138

3.3.7 THE DISAMBIGUATION INSTRUCTION - DAM3 139

3.3.8 INDEX OF OPCODES 141

4 A DEFINITION OF SIMULA 147

4,) DEFINITION 14S

a. 2 ANALYSIS OF THE DEFINITION 211

4.2.1 AMBIGUITIES 212

a. 2.2 QUALTB | 213

5.2.3 VIRTUALS 213

a. 2.4 CLASS CONCATENATION 214

4.2.5 FUNCTION INVDELTA 214

4. 2.6 CODz | 215

a. 2.7 ARRAY DECLARATIONS | 215 |

a.2.8 LABELLED BLOCKS | 216

vi

42.9 PROCEDURE AND CLASS HEADINGS 216

4.2.10 PROCEDURE DECLARATIONS 217

4 2.11 ST1 217

4.2.12 OTHER MODIFICATIONS C218

5 CONCLUSION | 219

BIBLIOGRAPHY | 228

APPENDIX 1 231

APPENDIX 2 237

APPENDIX 3 239

APPENDIX 4 248

vii

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

1.1 Grammar for BNI 9

1. 2 Parse tree for the string 1101 | | 9
1.3 Definition of BNI | 11

1.4 Decorated parse tree for the string 1011 | 12

1.5 FOLDS | 17

1. 6 Definition of ENI in SPINDLE 23

1.7 Initial state of the machine 28

1. 8 Processes to be executed 29

1.9 State 1 of the machine 30

1.10 State 2 of the machine 30

1.11 Decorated parse tree for -I0 31

2.1 Examples of elementary attributes 43

2. 2 Examples of composite attributes 44

2. 3 Tree representation of attributes 45

2. 4 Attribute cdeclaratioas C47

2.95 The attribute MATRIX 48 :

2.0 The attribute E(PROCDECL) | 49

2.7 Declaration of attributes 66

2. 8 Effect of executing assignment statements 67

2.9 Attributes after the assignments 68

2.10 Effect of the copy operator 70

2.11 Effect 2f CAR, CDR and CONS 81

2.12 Examples of the use of LIST functions 83

2.13 Effect of APEND 84

2. 14 Effect of RVRS 84

viii

b,

2.15 Example of block expression 86

2.16 Examples of output statements 91

2.17 Definition using the error stat:meat 94

ix

INTRODUCTION |

This thesis describes FOLDS, a declarative formal language

definition system. The system implements and extends Knuth's method

[Kn 68a) for the specification of the semantics of context-free

languages: given the syntax of a language, attributes are associated

with each nonterminal and the "meaning" oZ a string of the language

is given by the values of the attriputes associated with the

nonterminals in the parse tree; the serantics establish, for each

syntactic production, che relationships that must exist between the

attributes of the nonterminals involved {an the production. The

system also incorporates Wilner's extensions [Wi 71] to Knuth's

method. |

The system provides a language (SPINDLE) and data structures to
define the syntax and semantics of a language. It also includes a

machine (MUTILATE) which compiles programs of the defined language

using the definition. Both the consistency and the correctness of the

definition can be checked in this way.

The language imposes very few restrictions on def/nitions while

preserving the declarative nature of Knuth's method; 1i.e., the |

compilation process is transparent in the definition. In addition the

system provides a means for semantically resolving syntactic |

ambiguities. The syntax is specifled by neans df productions and the

semantics by means of an ALGOL-like language which serves both to

relate the attributes of nonterrinals as functions of other

attributes and to describe the functions.

1

The data structure schexe is derived from the "objects" of the

Vienna Definition Language [We 72] which allows great flexibility in

the choice of data structures for the attributes.

The system is intended primarily for the language designer. It

gives him the opportunity of realizing kis definition with very

little concern about implementation. With the use of MUTILATE,

programs in the defined language can be compiled directly from the

definition.

A large subset of SIMULA 67 has been defined in SPINDLE, bota

as a test for the system and as a demonstration of its capabilities;

a series of SIMULA 67 programs have opecn compiled fiom this

definition, the largest one being approximately 70 lines long and

generating a parse tree with approximately 2000 nodes.

This thesis has been organized so that the reader can minimize

the amount cf reading necessary to achieve a certain depth of

understanding about the system; each chapter may contain backward

references but contains no forward references. The appendices are an

integral part of the thesis and are used to illustrate the text. |
Chapter 1 gives a general description of the system: it

contains a review of formal language definition methods, with

emphasis on those directly relevant to this work and an overview of

FOLDS. Some simple examples illustrate the material covered. This -

chapter should be enough for those who only want to understand the |

main features and principles involved in the system.

Chapter 2 presents a description of SPINDLE, the FOLDS |
language. It describes the syntax and semantics of SPINDLE and gives

numerous exaupies to illustrate its different features. A complete

SPINDLE definition of a simple language is presented in Appendix 1.

5

This chapter should be read by those desiring a deeper understanding

of the capabilitie: of the system and also by those who want to

program in SPINDLE.

Chapter 3 describes the FOLDS machine, MUTILATE. It is

essenticlly a terse description of the relevant aspects of the

machine implementation. Appendices 2 and 3 illustrate the |

descriptions given in the text of the chapter. The chapter should be

read only by those who want to know how some particular SPINDLE

features are implemented and by those who want to implement a similar

system.

Chapter 4 {s a definition of a subset of SIMULA 67; it is an

implementation of Wilner's definition of SIMULA 67 [Wi 71]. It

illustrates both the capabilities of FOLDS and a series of SPINDLE

programming techniques. Appendix 4 contains a set of SIMULA 67

programs and the target code g:nerated for them by MUTILATE from the

definition. This chapter is intended both as a demonstration to the

nonbeliever of the capabilities of the system anc to illustrate a

series of programming techniques which may be useful for the

definition of other languages. Chapter 4 presupposes an understanding

of Chapter 2 but no understanding of Chapter 3.

J

CHAPTER 1

REVIEW AND OVERVIEW

This chapter contains a review of formal language definition

methods, with emphasis on those directly relevant to this work and an

overview of the FOrmal Language Definition System (FOLDS). Some

simple examples will illustrate the use of the materiai covered. |

1.1 FORMAL LANGUAGE DEFINITION METHODS

A language definition is composed of two hierarchically related

sets of specifications called the syntax and semantics of the

language. The syntactic component aetermines the set of strings that |

belong to the language while the semantic component attaches

"meaning" to a string of the language. In particular the syntax of a

programming language describes the set of valid programs and the

semantics supplies the meaning of these valid programs. Much

attention has been given to the problem of defining the syntax. As a

result, it is well understood and has several established solutions

(see for example Hopcroft & Ullman (HU 68]).

Two approaches heve been used for semantic specification:

interpreter-oriented and compiler-oriented. The interpreter-oriented

approach defines a partial function which maps a statement and a

4

state vector onto a new state vector. The compiler-oriented approach,

on the other hand, defines a partial function which maps a statement

in the language onto a statement in another language, assumed

understood.

The interpreter-oriented scheme is described by Wegner (We 72)

with a detailed presentation of the Vienna Definition Language (VDL),

currently the most sophisticated such method. Examples of the

compiler-oriented approach appear in Irons(Ir 63], Brooker §

Morris (BM 62], Wirth & Weber (WW 661, Feldman(Fe 66] and

Knuth (Kn 68a}.

1. 2 IRONS*' METHOD

Irons (Ir 63) defines the semantics of a context-free language

by associating & single attribute with each non-terminal, namely its

translation, and associating a semantic rule with each syntactic

production. The semantic rule expressesthe value of the attribute

of the left hand side nonterminal (LHN) of the associated syntactic

production as a function of the values of the attributes of the right

hand side nonterminals (RHNs). In terms of the parse tree, a node's

attribute value is determined by applying its associated semantic

rule to the attribute values of {its directly descendant nodes. The

meaning of a string S is the attribute value attachedto the root

node of {ts parse tree , PT(5). The value of an attribute 1s

"synthesized" from values of attributes lower in the tree. A number

of compliler-compilers were based on this idea, notably McClure's

(MC1 06S5]}.

5

1.3 KNUTH'S METHOD |

Knuth [Kn 68a) extends Irons' {deas by {introducing two new

concepts:

(1) Multiple attributes associated with each nonterminal.

(2) Synthesized and inherited attributes.

Now the meaning of a string S is the set of values of the

attributes of the root node of PT(S). The meaning of a phrase of 3S 1s

the set of values of the attributes of the node from which it 1s

derived. Synthesized attributes pass from a noce to its ancestors

while inherited attributes go from a node to its descendants. There

are now two sets of semantic rules associated with each syntactic

production. The first set establishes the values of 4&ll synthesized

attributes of the LHN of the production as functions of the

attributes of the RHNs together with the other attributes of the LHN.

The second set establishes the values of all the inherited attributes

of the RHNs of the production as a function of the attributes of the

LHN and the other attributes of the RHNs. Each attribute attached to

a node in the parse tree is associated with a semantic rule that

establishes the attribute's value as a function of the attribute

values of the surrounding nodes (ancestor, direct descendants and

siblings).

The concept of multiple attributes greatly expands the meaning

that can be associated with a phrase (or string). Not only the

translation but any other property of a phrase (e.g. length, position

on the string, etc.) can be expressed by associating attributes with

the nonterminal that generates it.

6

Synthesized attributes are essentially like Irons' attributes.

As for inherited attributes, Knuth shows that they are not essential

since they can always be replaced by an equivalent set of synthesized

! attributes. But they greatly enhance comprehension by allowing a

more natural representation, since the interplay between inherited

and synthesized attributes is the way one generally thinks about such

processes. Expressing language features such as labelled statements

and block structure using purely synthesized attributes is

complicated. Inherited attributes enable one to describe such

features much more easily. In ALGOL 60, for example, the nesting

depth of a block and the information about the variables which are

global to it would be inherited attributes while the target code

generated for the hlock would be a synthesized attribute. Loosely,

inherited attributes represent that nortion of the meaning imparted

Dy the surrounding context of a phrase. Synthesized attributes

correspond to the portion derived from the phrase itself.

Knuth introduces another concept, that of global attributes,

which are attributes of the start symbol that are accessible from any

production. A global attribute is equivalent to (can always be

replaced by) a pair of attributes defined on all nonterminals, one

synthesized and the other inherited. The synthesized attribute

collects information necessary to form the value that is then

propagated through the tree by the inherited attribute. This concept

though not increasing the power of the method, does make the

definitions written in it more concise.

One of the most important characteristics of this method is its

declarative nature. The parsing method 1s transparent to a language

definition. There is no explicit statement in a definition about the

7

order in which values are assigned to attributes. The semantic rules

merely state how the values of the attributes of neighbouring nodes

relate to each other. This contrasts with, for example, Wirth §&

Weber's definition of EULER which is essentially an algorithmic

description.

The locality of definitions is a very important aspect cf this

method. The semantics of a syntactic production refer only to the

values of the attributes of nonterminals involved in the production.

The interdepencdencies between the various parts of the language are

expressed only in terms of the att-ibute values passed between then.

Besides making for more understandable and concise definitions it

facilitates the addition and removal of features from the language.

As a simple example of this method we will define the binary

notation for integers (BNI). The meaning of a string of O's and 1's

ts its value expressed as a decimal integer. In other words we are

defining the translation of binary integers to their decimal

equivalents.

The grammar in figure 1.1 expresses the syntax of BNI. This

grammar associates a parse. tree P.i(5) with any string S of BNI. The |
parse tree PT(1i01), for the string 1101, 1s shown in figure 1.2.

pnz way of understanding binary notation is by associating

vaiues that are powers of 2 with each of the 0's and 1's. The value

of the string is then the sum of the values associated with the 1's

in the string. Formally:

8 |

NONTERMINALS N,L, 8,0

TERMINALS 01 -

PRODUCT [ONS (1) Bite 0

(2) Bie 1

(3) L::t=sBd

(¢ Li: LB

($) Nite SL |

(6) Sie . .

MM Sits =

8) S t:eq

START SYMBOL N

COMMENTS- The nontersinals N, L, B and S stand respectively for number, 11st

of bits, bits and sign. The symbol « stands for the empty string

and will de used throighout the report with this meaning.

Figure 1.1

Grapmar for BNI

N

/ \

/ \
/ \

5 L
| / \

/ \

(] / \
L »
/\ i

/ \

/ \ 1
L []

a J \ | :
/ \

/ \ 0

L B :
| |
{

| H
[-
|

|

Figure 1.2

Parse tree for the string 1101

9

For N=b b RP
k k-1 0

| k k-1 0
Value(N)= g =2 + "2 + tee. +3 w2,

Kk k-1 0

where g = if (b = "1") then 1 else 0.

| J J

In other words, the value associated with each bit in the |

string depends on the its location {in the string. The integer

attributes VALUE and SCALE associated with the nonterminal B

represent respectively the value and position of a bit. Thes¢ sake

attributes are asscciated with the nonterminal L: in this case VALUE

stands for the sum of the values of the bits in the list of bits

derived from L; SCALE for the position of the rightmost bit in the

list. VALUE is also associated with N. Finally the boolean attribute

NEGATIVE is associated with S, serving to convey {information about

the sign of the integer. VALUE and NEGATIVE are synthesized

attributes, end SCALE is inherited.

With the attributes defined, semantic rules are then associated

with the grammar, to express the relations between the attributes of

the nonterminals of each production. This completes the definition.

The rules in figure 1.3 give such a definition for BNI.

The semantic rules assume that a series of primitive notions

(such as Integers, Booleans and the operations +, -, =, TRUE, FALSE

and JF-THEN-ELSE) and their composition rules are well understood. In

other words we are using a language which is supposedly understood to

express the semantics.

The definition in figure 1.3 associates with any string 3S of

BNI a decorated parse tree DPT(S) whose nodes have attributes with

values assigned to them. The value of the attribute VALUE of the head

10

TERMINALS: 01 « -

ATTRIBUTES:

NAME TYPE KIND

VALUE INTEGER SYNTHESIZED
SCALE INTEGER INHERITED
NECATIVE BOOLEAN SYNTHESIZED

NONTERMINALS:

NAME ATTRIBUTES * |

N YALUE
L YALUE, SCALE

| VALUE, SCALE
S NEGATIVE

START_SYMBOL: N |

PRODUCT IONS:

NUMBER SYNTAX SEMANTICS
(1) Die © VALUE(D) := 0

| SCALB(B)
Q) Bite} VALUE(D) t= 2 |

3) L::=B VALUE(L) :s VALUE (B);
SCALE(B) :»= SCALE(L)

(8) LitelL B® VALUECL) t= VALUE(Le) o VALUL(D);
STALE(Le) :e SCALE(L) + 1}
SCALE(B) i+ SCALE(L)

(Ss) Niza SL SCALE(L) := 03
YALUE(N) :« 1F NEGATIVE(S)

THEN -VALUB(L)
BLSE VALUE(L)

(6) § iim 0 NEGATIVE(5) :e FALSE

(7) Stile = NEGATIVE(S) : = TRUE

(8) S stew NEGATIVE(S) : = FALSE

 } . *

|))
COMMENTS- AT(NT) stands for atrribute AT of noaterninal NT. An

asterisk after a nontureinal identifies which occurrence of

the sontersinal in the syntactic production is wsant. From
"left to right, no asterisk corresponds to the first

occurrence, oae for the second, two for the third and so

on.

Figure 1.3

Definition of BNI

{1

H

node is the meaning of the string. An example of a decorated tree,

DPT(1101), appears in figure 1.4.

N (VALUE=13)
/\

/ \

/ \

/ / \ \
5S (NEGATIVESFALSE) L (VALUE-1))
| / \(SCALB«O)

/ \
t / \ .

/ \

L (VALUEs12) 8 (VALUE)

) ALU LU (SCALE=0)
‘. / \ A

/ \
. L (VALUE=12) B (VALUE=O0)

, / V(3CALE=D) I (SCALB=}1)
/ \ |
L (VALUE-8) B (VALUE-4)

(SCALE=3) | (SCALRe2)

| |
B (VALUE.?)

! | (SCALE-J)

| a.

Figure 1.4

Decorated parse tree for the string 1011

The semantic rules do not define an algorithm to calculate the

values of the attribute but they imply one: the attribute for the

lef: hand side of any semantic rule can always be defined once the

values that are necessary on the right hand side are all determined.

It should be noted that a string S may be syntactically correct

but still have no meaning associated with 1it, i.e. PT(S) may exist

but not DPr(S). For instance in figure 1.3 if the expozentiation

function is stated to be defined only for values of the exponent that

are less than 3 no meaning can be associated w. th strings of length

greater than 3. A string S with which the definition can associate a

PT(5) but not a DPT(S) Is called malformed; if a DPT(S) can be

associated it is called well-formed. It is the concept of well-formed

12

strings that allows the method to be applied to langusges that are

not context-free.

1. 4 A SIMULA 67 DEFINITION

Using and extending Knuth's methods, Wilner (Wi 71) defines

SIMULA 67. He demonstrates the method's applicability to large and

complex languages by obtaining a compact and reasonably readable

definition. It {is only reasonably readable because the same thing

happens with the SIMULA report, a reflection of the complexity of the

language.

The principal extensions introduced by Wilner are called

"reduction techniques". They reduce the number of semantic rules that

have to be exrlicitly stated to da=fine the language. The elimination

of identity rules is the most important of the reduction techniques.

| A majority of the semant‘c rules are identity rules of the form

a (NT)=a (NT), where a is an attribute of both nonterminals and NT
1 2 1

and NT belong to different sides of the associated syntactic
2

production. Wilner poctulates, in an informal way, that these rules

| do not have to be explicitly stated; they are called implicit

semantic rules. The fact that a is an attribute of both NT and NT»1

with no explicit semantic rule assigning a value to a(NT), implies
1

the existence of rule a(NT) = a(NT). Rules of this type do not -
1 2

13

BR

really contribute to the understanding of the semantics of a

production; little is lost by not explicitly stating them, and a

great conciscness of definition is gained. Wilner reports a 58%

reductivz in the number of rules for SIMULA 67 using this technique.

Applying it, for instance, to the definition in figure 1.3 would
leave production (3) with no explicit semantics and would eliminate

the rule SCALE (B)=SCALE(L)from production (4). | |

It is interesting to observe that Wilner uses inherited and

synthesized attributes but no global attributes. He argues

effectively that they detract from the locality of the method and

contribute very little to {ts conciseness, since the reduction

techniques eliminate explicit rules for propagating the inherited

component of the globai attributes. Alsc the formation rules for

global attributes can be very complicated, and they are easier to

understand when stated step by step as synthesized attributes.

Some interesting insights into Knuth's method can be obtained

from Wilner's SIMULA dofinition:

~ Established programming language concepts sucl. as tyabol

tables for block structured languages can be implemented :

in a very natural way; {.e., the attributes that embody

these concepts and their functions reflect very clossly

the way one thinks about them.

~ Language features which are difficult to express

concisely in this method, making necessary the use of a

wealth of attributes and functions for their definition

(e.g., the VIRTUAL feature of SIMULA), are usually also

diffic..t to understand and implement.

- Extensions to the language are facilitated by the

14

method's characteristic of locality of definition and the

fact that attributes provide well defined interfaces

between parts of the language (e.g. Wilner added the FOR

construct to the SIMULA definition as an appendix).

The definition of SIMULA demonstrated the power of the

| technique but also showed that without a formal basis for the
description of the semantics (i.e. N programming language) and the
means to automatically check definitions it could not be considered a

practical tool. The lack of a programming language to express data

| structures and a precise and systematic description of functions on
| those structures led to some ambiguous and/or incorrect definitions.

(Wilner uses any convenient data structure and many of his functions

are described in natural language.) Also, "hand checking" the

definition proved to be an extremely painful task, due to its size

and complexity. A programming language definition is an exact

description of many interrelated concepts, and sose mechanical
checking procedure is almost mandatory because humans are notoriously

bad at verifying such meticulous details.

| 1.5 FOLDS

The development of FOLDS wakes Knuth's method a practicai tool

| for language definition. It is a first step towards the development

of compilers directly from a declarative formal definition. FOLDS

provides a language (SPINDLEe) and data structures to define the

« Semantic Preparatory INput Description Language (says D. Knuth)

15

syntax and semantics of a language. It also provides a machine

(MUTILATE«) that generates trees from this definition and fills out

the associated attributes for strings of the defined language. Both

the consistency and correctness of the definition can be checked in

this way.

SPINDLE, the FOLDS language, imposes very few restrictions on

cefinitions while preserving the advantages of Knuth's methods and

Wilner's extensions. Both the parsing and the decoration of parse

trees are completely transparent in the definition, thus preserving

the declarative nature of the method.

[n addition the system provides a means for semantically

resolving syntactic ambiguities. It also performs syntactic checks on

the definition and provides run-time error detection for easier

diagnosis of definition errors.

Global attributes, as proposed by Knuth, are not provided: as

noted before, Wilner does not use them because his extensions provide

a viable alternative. However, the real reason for avoiding global

attributes is that very few attributes are global to the whole tree

in block structured languages. 10 be useful, the concept should be

extended to resemble the global variables of ALGOL 60. An extended

globai would be an attribute of any nonterminal, not just the start

symbol. It would be defined over any subtree derived from the

nonterninal except for those subtrees where it is redefined. The |

inclusion of such an extended global attribute was considered, but

the idea was rejected. Although more powerful than simple globals,

extended globals retain some of the disadvantages which are pointed

out Dy Wilner; furthermore the gain in conciseness could not by

itself justify the significant cost of including the feature.

» Machine Underlying The Interpretive Language To be Executed (says
D. Knuth)

ry
| L DEFINED IN SPINDLE |

|WU
]
t
v

ye eer
SPINDLE COMPILER !
0

|
v

_ 1 - .
/ \

! DESCRIPTION OF L IN 1

| JWTILATE ORDER coos 1
[3 -

|

UUJ,
| i I |
| i ro
b i IN
lb LA | 1 To |

— ————— i BN | 4 | | | JR
/ \ XR OA LR [{

| STRINGS OF L leve>e=f 1 L ¢:> R ==> P |ee=y-c| MEANING OF L |
Ne I CY | S i R | \ |

iI AS | § | E | |UE—|
| LE I RB 1 T

| rR | § |
| [1 RO

| JOUR PUUNIUIOUI PES ’

| MUTILATE
oo

Figure 1.5

FOLDS

FOLDS 1is intended primarily for the language designer. It

gives hia the opportunity of realizing his definitions with very

little concern about implementation. (While a compiler for the

language is generated there need be no preocupation with efficient

compilation at definition time.) It also gives him the opportunity to

judge the complexity and "cost™ of proposed language features.

The main benefit of the system is that the definition of a

language can be stated in a well defined form. As such it can serve

as a standard for the language and be understood by the users.

Although not all SIMULA users will be able to understand {its FOLDS

17

definition , those users who are capable of writing compilers will

certainly be able to do so. For them it provides a precise standard

against which other definitions (such as a compiler for the ianguage)

can be evaluated. Most of a.l, a sytem such as FOLDS imposes a

discipline on the language designer that has been mostly absent in

the past, making for so many unbappy language implementers.

Figure 1.5 presents a schematic view of FOLDS. The SPINDLE

compiler accepts a description of 4 language L and complles this

description into a program in the order code of MUTILATE. This

program rurning on MUTILATE will generate a& decorated parse tree for

any well-formed string of L. The following sections present brief

descriptions of the comporents of the system.

1.5.1 SPINDLE - THE FOLDS LANGUAGE | |

The language is designed to give considerable flexibility to

the user. It relies on a data structure representa-ion which {is

derived from the objects proposed in [LLS 68), with data-types

| associated with ther. In such an environment, composing data-types is

very simple, thus facilitating the use of complex data structures.

Syntax rules are given as productions with few {imposed

limitations. Right and left recursion, empty strings and syntactic

ambiguity are all allowed.

The syntax presupposes the existence of a lexical analyzer to

handle reserved words, terminal symbols, ALGOL-like identifiers, |

integers, and string constants. This analyzer is a restriction on the

18

generality of FOLDS, but it is justified by the efficiency it brings

to the system. It could of course be made more general, as in the AED

system [Jo 68], with its parameters being part of the definition.

With each syntactic production is associated a number of

semantic rules that manipulate the attributes of the nonterminals

involved in the production. Besides the inherited and synthesized

attributes, a new kind of attribute, called local attribute, is used.

This attribute, whose function is to hold intermediate values, is an

attribute of the head node of the corresponding production (the node

of the tree associated to the LHN), It is only accessible from the

semantic rules oF the production. Local attributes appear both in

Knuth and Wilaer's work, but are used informally as an abbreviation.

Implicit semantic rules (see 1,4) do not have to be stated,

being automatically generated by the system.

The language has an ALGOL flavor and incorporates features such

as conditional statements and expressions, while statements, go_to

statements, assignment statements, compound statements and recursive

procedures.

One of the most original features of FOLDS appears in its

contro. structure embodied in the concept of a parallel statement. A

SPINDLE statement (SST) is either sequential (ST) or parallel, which

is a sequence of SPINDLE statements enclosed in $/ and /§, i.e.

$/ SST : SST ;...; SST ¢ SST ; SST ;...; SST /§, n 2l.
1 2 i-1 i 1+1 n

SST is executed after SST if SST is sequential, in
i i-1 i-1

parallel otherwise. For example, lf we have a sequence of statements

$/ ST ; §/ ST; ST /$; ST /$; ST
i 3 id 2 S |

19 |

it will start by executing 1, and ST complete the execution of

ST» start 7, and go on immediately to execute ST, The execution of
ST (and then ST) goes on in parallel with the execution of ST ; ST

3 4 2 5

{s executed in parallel with ail the others.

It should be noted that this is an unusual control structure :

and notation for parallelism. Usually statements are grouped to

indicate that each of them is to be executed in parallel with all the

others in the group; here they are grouped to indicate that they

constitute an independent sequence that is to be executed in parallel

with all the other statements in the program.

A process is a dynamic instance of a parallel statement. Once
activated a process executes until it terminates or until {t tries to

access an undefined value. In the latter case the process 1s

interrupted and passivated; it will be reactivated if and when the
value is defined. All active processes run concurrently.

with each syntactic production is associated eset fof gprallel
statements that embody the explicit semantic rules Blus an fhpiicit |
parallel statement to handle fmplicit rules (if any exist).

At run-time each node of the parse tree possesses a set of

processes corresponding to the parallel statements of the production
represented by the node. These processes are all activated
simul taneously, possibly generating other processes. The computation

ends when there are no more active processes in the system.
It should be noted that as a consequence of this structure

circularities ir. the definition will cause the passivation of

processes, that will never be reactivated since the undefined values
causing the passivation depend on each other.

20

Another original feature of the language is the ability to

resolve syntactic ambiguities by semantically "disambiguatirg" them.

Glven an ambiguous node of the tree, the proper parsing 1s selected

by stating, in the semantic rules, the conditions which identify a

particular parsing as the correct one (and all others as incorrect).

This means that all possible ambiguities have to be treated by the

language designer. The situation {is not ideal since ambiguity is

undecidable for context-free languages. On the other hand, while it

is expensive, the ambiguities can be detected in practical languages.

If one is present but not detected any tree which contains it will

have passivated processes that will never terminate, pointing out the .

existence of the ambiguity. Furthermore it is not a bad idea for a

language designer to be forcibly aware just how ambiguous the

language being defined is and what the semantic implications of these

ambiguities are. While {t is widely realized that ALGOL 60 is

syntactically ambiguous, the extent of .his ambiguity is very often

underestimated.

When the parsing tree 1s ambiguous the control structure

operates in a slightly different fashion. A process trying to assign

& value to a synthesized attribute of an ambiguous node (a node with

more than one parse subtree) is passivated. If an ambiguous subtree

is found to be the correct one its root node 1s flagged. If it is |

found to be incorrect it is purged; all its nodes, attributes and

processes are discarded. When an ambiguous node is found to have one

and only one correct subtree the node is disambiguated; no more

processes are interrupted when trying to assign to its synthesized

attributes and the ones passivated for this reason are reactivated.

This control structure helps prevent the information originating from

21

an incorrect parsing from poisoning the rest of the parse tree, while

attributes can still be synthesized and inherited in the subtrees of

an ambiguous node. This is tis reason why a subtree, found

incorrect, can be discarded without regard to the rest of the tree.

It should be noted that some recent general purpose languages,

such as NEW SAIL (Fe 72], QA4 [Di 72) and PLANNER [He 71],

incorporate control structures which are somewhat similar to the ones
found in SPINDLE.

A Ccmputation is well-formed if it ends with no passivated

processes. Jotice that a well-formed computation implies that all

ambiguities have been resolved since «nr unresolved ambiguity would

result in pacsivated processes. A detinition ie well-formed if no

string will cause a computation to enter an infinite loop. Given a

string S, a well-formed definition wil: derierate a well-formed

computation if SS is a well-formed string of the defined language;

otherwise it will generate a malformed computation. Notice that the

definition may incorporate error recovery provisions. In this case ¢&

string containing errors would be a well formed string of the

language whose meaning would be a set of messages indicating the
errors found.

[t 1s SPINDLE's unusual control structure that allows it to

preserve the declarative nature of Knuth's method. Semantic rules

ctate only how attributes should relate to one another without

mentioning in what order values are assigned to them. They state the

conditions for choosing the proper parsing without specifying the :

mechanism for doing it. However, SPINDLE cannot be expected to

provide as primitives all the necessary functions. Auxiliary

functions can be defined using the imperative elements of the

22

TERMINALS ARE o -

RESERVED WORDS ARE O, 1

ATTRIBUTES ARE

VALUE « INTEGER

SCALE = INTEGER
COUNTER « INTEGER
PRODUCT = INTEGER

NEGATIVE = BOCLEAN

NONTERMINALS ARE

N @ S{VAL!'D

L = S77 ALUE , 1 (SCALE)
B = 5(VALUE),i (SCALE) ry
S « S(NECATIVE)

COMMENT N STANDS FOR NUMBER, L FOR LIST OF BITS, ® FOR BIT AND
S FOR SION;

START SYMBOL NWN

$P1 B ::= 0
$/ V4 UE(B) := 0 /%

$P2 B ::: 1
§/ COUNTER :« SCALE(B); PRODUCT :« 1;

WHILE COUNTER » 0 DC

BEGIN

g PRODUCT :« 2# PRODUCT; COUNTER :+ COUNTER -1NJ;
VALUE(B) :« PRODUCT /%

SPI L °:= B
COMMENT NO EXPLICIT RFLES;

SP4) ::¢ L B

$/ VALUE(L) := YALUE(Le) « VALUE(D) /%
$/ SCALE(Le) :n SCALEC.) » t /%
COMMENT SCALE(B) :e SCALE(L)Y 1S IMPLICIT.

NOTICE THAT ALL Y ASSIGNMENTS ARE BXECUTED 'N PARALLEL;

$PS N ::. SL
$/ SCALE(L) :« 0 /%

$/ VALUE(N) :s IF NECATIVE(S) THEN -VALUE(L) ELSE VALUB(L);
WRITE ("VALUE 1S", VALUE(N:) /%

COMMENT NOTICE THAT IN THE SECOND PARALLEL STATEMENT THE
ASSIGNMENT VALUE(N) :« ... AND THE WRITE ARB EXECUTED
SEQUENTIALLY;

$P6 S 2a

$/ NEGATIVE(S) : e+ FALSE /$:

$P7 S tm - .

$/ NEGATIVE(S, : = TRUE /$

$P8 5S i: |
$/ KREGATIVE(S) : + FALSE /% .

“igure 1.6

Definition of BNI in SPINDLE

23

language with local attributes performing the role of the variables

of conventional languages.

A simple example of the language appears in figure 1.6. It is |

the definition {in figure 1.3 restated in SPINDLE. The defined

language uses the characters | and O (separated by blanks) instead of

1 and 0 due to the limitations of the lexical analyser. Notice that

exponentiation is defined by means of a user defined function using
the local attributes COUNTER and PRODUCT. To illustrate the control

structure of SPINDLE, an example based on the definition in

figure 1.0 is presented at the end of 1.5.13.

1.5.2 THE SPINDLE COMPILER

The coapiler takes the definition of a language as input and
produces a series of tables plus "object code®™ for the semantic rules

and procedures in the order code of MUTILATE. The compiler checks the

syntax, fills in implicit rules and checks for missing and illegal

rules. Checks are also made to guarantee that synthesized and

inherited attributes are used in the proper way and that the semantic

rules of a productici. refer only to attributes defined for the

nonterminals involved in that production.

24

1.5.3 MUTILATE - THE FCLDS MACHINE

when loaded with the code and tables genera‘ed by the compiler

the machine reads strings of the defined language and generates the

corresponding decorated parse trees (provided that the definition and
strings are well-formed). It has three major parts:

- A lexical analyzer that recognizes integers, string

constants (delimited by double quotes), punctuation

aarks, reserved words (of the defined language) and

ALGOL-1ike identifiers. [It skips over comments (which

begin with the word COMMENT and end with a semicolon) and

over any identifier following the reserved word END.

- A parser which interacts with the lexical analyser to

build a PT(S) from an input string S. In case of

ambiguity the «collection of all possible PT(S)s {is

compactly specified.

- An interpreter which decorates PT(S) to produce DPT (5).

If there is more than one PT(S) the interpreter will

select the correct one using the semantic rules.

The parser is based on one presented by Fisher (Fi 70], which

was liself based on Earley's (Ea 68) scheme. * has been expanded to

handle strings ccntaining empty substrings, provided that <tnere is

only a finite number of empty substrirgs.

This parsing scheme was chosen because it will handle any

context-free language, with the exception noted above, Besides, it is

efficient in the sense that, given a string of length n, in the worst

3

case lt will parse {in time proportional ton (ambiguous grammars),

25 | |

proportional to n’ for unamoiguous grammars and proportional to n for
certain classes including LR (k).

It should be noced that the constant of proportionality for

this scheme {is quite high and that other parsers can be more

efficient. However, since their increased perf.rmance is obtained by

restricting the class of grammars that they can accept they are

unsuitable for FOLDS; they go against he basic philosophy of

independence otf definition and parsing scheme. Also, features such as

syntactic ambiguity, left and right recursion, empty strings, etc.,

while rot essential are conveniences which should be available to the

user.

The interpreter mantains a multiple stack environment, 2ne

stack per process. The parallel control is implemented in a pseudo-

parallel fashion with exactly one active process (called the current

process) being executed at any time. A list called PROCESS

(implemented as a stack) contains pointers to all other active

processes. Each undefined attribute (one to whom no assignment has

been made) has an associated list (implemented as a stack and called

its interrupt stack), which contains pointers to those processes

which have been passivated as a result of trying to access 1{it. This

1ist is transferred to PROCESS if and when the attribute is assigned

a value. The current process may stop either because it terminated or

was passivated. In the latter case, a pointer to it is placed in the

interrupt stack of the attribute that caused the deactivation. The

process pointed to by the top el=ment of PROCESS is made current and

the top element removed from PROCESS. When PROCESS is empty (no

active processes in the system) a function DEVELOP is called and

returns a node of the tree. All processes associated with this node

26 |

are then placed in PROCESS. The process pointed to by the top element

is then made current and the element popped from PROCESS. On the

first call DEVELOP returns the root node and in each successive call

a different node, the order being a depth first traversal of the tree

from left to right. When all nodes of the tree have been returned a

call to DEVELOP stops the machine.

This mechanism and the control structure of SPINDLE can be

illustrated by examining how the machine would handle the string

- 10, given the definition in figure 1.6. The description that

follows, while actually describing the mechani sm, gives only the

essential details and ignores allocation strategies. |

Figure 1.7 indicates the state of the machine before the

interpreter starts running and after the parsing of the string is

compieted. The tree is shown with all {ts attributes undefined and

interrupt stacks empty. Also shown are the status of PROCESS (empty),

and of LARD (LAst Returned by Develop), undefined.

In figure 1.8 each of the processes to be executed {is

identified, with x standing for process j of node x:
The first action performed is a call to DEVELOP. A pointer to

N is returned, then N and N are placed in PROCESS. N is then
1 11 12 12

removed from PROCESS and executed. SCALE(L) is assigned the value
zero, {ts interrupt stack (empty) is placed in PROCESS (wh.ch

remains unchanged) and Ns is terminated. Next, NS is taken from
PROCESS and executed. It is passivated while trying to access

NEGATIVE), which is undefined; so it is placed in the NEGATIVES)

27

N1 (VALUEsU, STACKs())
/\

/ \
| / \

/ \

y! ‘\
$1 (NFGATIVE-U, L1 (VALUE-U, STACK«=())

. } STACK=()) / \ (SCALEB<U, STACK=())

(,! N
- / \

,’ ‘y
L.2 (VALUE«U, STACK ()) Ba (VALUE«U, STACK {())

{SCALE=U, STACK ()) (SCALRBeU, STACK=())

0

Bl (VALUE=U, STACK. ())
I (SCALEsl; STACK: ())
{ (COUNTERsU, STACK=())

l (PRODUCT«U, STACKs (;)

PROCESS « ()

LARD vw U

Figure 1.7

Initial state of thc machine

interrupt stack. PROCESS is emptv so DEVELOP is called, S is
1

returned, and >. is placed in PROCESS, taken out, and executed.
NEGATIVE(S) 1s assigned the value TRUE, its stack (containing N)

1 11

is placed in PROCESS (which was empty) and S is terminated. N is
11 11

taken out of PROCESS, executed, again passivated (this time trying to

access VALUE(L)) and placed in VALUE(L)'s stack. Since PROCESS is
1 1

empty, DEVELOP is called and L , L and L - are placed in PROCESS.
1i 12 13

Figure 1.9shows the state of the machine at this point. L and L
13 12

are then executed and terminated. L is executed, passivated (trying
11

28

PROCESS DESCRIPTION

N VALUB(N) :o IF NEGATIVE(S) THEN -VALUB(L)
11 1 1 1

ELSE LEQ) WRITE ("VALUE 15°, VALUE >
N SCALE(L) := 0
12 |

s NEGATIVE(S) :« TRUE
A § | | .

i VALUBCL) :e VALUE(L) «+ VALUE(B)
11 1 p 4

L SCALE(L) te SCALE(L) «i
12 2 1

L SCALE(B) 1 SCALE(L)
13 4 1

L VALUE(L) :e VALUE(B)
a1 4 i

L SCALE(D) :e SCALE(L)
42 | pi

’ COUNTER :» SCALE(D); PRODUCT :e 1:

WHILE COUNTER : © 30
BEGIN

pr PEST i» Je PRODUCT; COUNTER :« COUNTER -§
VALUE) :« PRODUCT
VALUE(B) := 0

21 2

Figure 1.8

| Processes to be executed

to access VALUE(L)) and placed in the interrupt stack. Next DEVELOP
| 2

| is called, L is returned and the execution of L (terminated) and
2 22

L (passivated) takes place. B is then returned and B executed.
21 1 11

During the execution, COUNTER assumes the values 1 and 0 and PRODUCT

the values 1 ind 2. The execution terminates after VALUE(B) {is
: 1

assigned the value 2. The state of the machine at this point is shown |

29

|

N1 (VALUEeU, STACK«()) ,
/\

/ \

/ \ CL]
/ \ SI Co |

/ SN
/ \

S1 (NEGATIVE=-TRUE) L1 (VALUE«U, STACKe (N11))
| / \ (SCALED)

| / \
/ \

- / \
/ \

/ \

L2 (VALUEsU, STACK«()) Be (VALUE«U, STACK= (})
i (SCALEsU, STACKs()) | (SCALE=U, STACK=(})
| |
I
| 0

81 (VALUESU, STACK=())
| (SCALEsU, ST2Ch=())
t (COUNTERa=U,' TACK=())

: (PRODUCT =Y, . TACK=())

PROCESS ~» (L13,L12,L11)
LARD s L1

Figure 1.9

State 1 of the machine

N1 (VALUEsU, STACK=())
/ \

/ \

/ \ oo
/ \

/ \
/ \

S1 (NEGAT]VE=TRUE) L1 (VALUEsU, STACK= (N11))
| / \ (SCALED)
) / \ .

/ \

- / \

/ \

/ \

L2 (VALUE«U, STACKe(L11)) 82 (VALUBeU, STACKe ())

(SCALE»1) : (SCALE=D)
t

| 0
Bl (VALUE«2)

| (SCALE=1)

{ (COUNTER»D)
(PRODUCT +2)

PROCESS = (L211)
LARD e Bi)

Figure 1.10

State 2 of the machine

30

in figure 1.10. L ls reactivated and terminated. L is
11 21

reactivated and passivated again, trying to access VALUE(B). DEVELOP
2

is «called, B is returned and B , L and L are executed and
2 21 21 11

terminated. Finally N ls executed, VALUE(N) is assigned, and this
11 1 |

is foilowed by the printing of the message "WALUE IS - 2" and the

process is terminated. DEVELOP is called and the machine halts.

Since no passivated processes remain the computation is well-formed.

Figure 1.11 shows the decorated parse tree.

Ni (VALUEa-2)
/ \

7 \

/ \
r ' \ ’ .

/ \
/ \

$1 (NEGATIVE=TRUE) Ll (VALUE=2)
| / \ (SCALE=0)

/ \
/ \

- / \

/ \
/ \

LZ (VALUE?) B2 (VALUE.OQ) .
(SCALE=1) (SCALE=0)

|
] 0 :
B1 (VALUE?)
! (SCALE=1)
I (COUNTER«O)

l (PRODUCT » 2}

PROCESS « ()

LARD « B2

Figure 1,11

Decorated parse tree for -I0

It is very important to notice that the order in which active

processes are executed is entirely arbitrary. Any order can be chosen

(e.g. L , S ,B ,L ,B ,L ,L , N,N) and the same basic
11 11 21 21 11 13 12 12 11

31

mechanism will work successfully. The DEVELOP procedure is used only

to keep the stacks from being large initially since most definitions

have a left to right bias.

All that was said above is still true for ambiguous parsings;

however, for implementaticn reasons, the order in which DEVELOP

returns the nodes of the tree is not exactly the same. (For more

details about the implementation of DEVELOP, see Chapter 3.)

32

CHAPTER 2

SPINDLE

This chapter presents a description of SPINDLE, the FOLDS

language. It describes the syntax and semantics of SPINDLE and gives

numerous examples to illustrate its different features. It also shows

how definitions are written in SPINDLE, using TURINGOL (Kn 68a] in

Appendix 1 as an example. The syntax is described using standard BNF

with ¢ standing for the empty string.

SPINDLE is & metalanguage used to define languages according to

Knuth's method of semantic definition. A SPINDLE program is a

definition of a language according to Knuth's method; it defines the

valid strings of the language and the meanings associated with them.

A program when run, will recognize the well-formed strings of the

defined language and associate meaning with them.

As explained in Chapter 1, the definition associates with each

well-formed string 5 of the language a decorated parse tree DPT(S).

The meaning of the string is embodied in the attributes of DPT(S)'s

root node. The definition consists of a grammar plus a set of

semantic rules. The graamar associates with a string S of the

language a nonempty set of PT(S)s. The set is represented as a single

tree with ambiguous nodes, i.e. nodes from which more than one

subtree is derived. The semantic rules choose one of the PT(S)s and

decorate it if 5S is semantically correct. In other words a string S$

can be syntactically correct and not be semantically correct; if

33 |

this {is the case S {is not a weli-formed string of the defin~d

language. This means that the method can define more than context-

free languages. As shown by Floyd [Fl 62], ALGOL-60 is not a context-

free language and neither is SIMULA, which is defined in Chapter 4.

The definition associates with each nonterminal a set of

inherited and synthesized attributes. A node, which is a dynamic

instance of a nonterminal, will then be decorated by the attributes |

associated with the nonterminal.

With each production of the syntax is assoclated & set of

semantic rules that operate on the attributes of the nonterminals

involved in the production. These rules serve four distinct purposes:

(1) To establish the relationship tliat must exist between

all the inherited and synthesized attributes of the

nonterminals involved in the associated production.

(2) To establish the conditicans for the string to be

semantically correct.

(3) To choose the right PT(S, among the set generated by

the graanar. |

(4) To output the values of the attributes.

The first purpose 1s accomplished by defining attributes as

functions of other attributes; the second and third by defining

predicates on the attributes; the fourth by the use of the WRITE

statement. These functions and predicates are described using

SPINDLE's exprcssions and statements, and local attributes to hold

temporary values.

The scope of a local attribute consists of the semantic rules

34

associated with a production. Dynamically a local attribute is an

attribute of the rode associated with the LHN of the production. It

can be manipulated only by the semantic rules associated with the

node. A local attribute |s attached to a node by being referenced in

a semantic rule associated with the node. For example in figure 1.6

the attributes COUNTER and PRODUCT are associated with the

noaterminal B of production P2 but nov with the nonterminal B of

production Pl. This can be verified by looking at the attributes that

decorate nodes Bl and £2 in figure 1.10.

The scope of the inherited and synthesized attributes

assoclated with a node consists of the semantic rules associatec with

the node plus the semantic rules associated with the ancestor node.

The node's sezantic rules assign values to its synthesized attributes

while the ancestor's rules assign values to the node's inherited

attributes. | |

The inherited, synthesized and local attributes asscciated with

a node are said to belong to the node.

Comments are allowed anywhere in a SPINDLE program. They begin

with the reserved word COMMENT and end with a semicolon. After the

reserved word END a comment may appear without the word COMMENT but

may not include reserved words END, DO, or ELSE or the sequence of

special characters /§. |

|

35

2.1 VALUES AND CONSTANTS

The following are the primitive values of SPINDLE:

INTEGERS Co
STRINGS- a string of characters, enclosed in double quotes.

IDENTIFIERS- a string of letters and digits where the first

character is a letter (the ALGOL identifier).

S-IDENTIFIERS- the same as IDENTIFIER but with a different

internal representation.

BOOLEANS- TRUE or FALSE.

POINTERS- which are references to attributes.

COMPOSITE ATTRIBUTE VALUES- which are sets of attributes and are

described in section 2.3.

TITLE- the union of STRINGS, IDENTIFIERS and S-1DENTIFIERS.

Certain of these values can be expressed by constants. The

value of a constant is determined by its denotation. The syntax for

constant is:

<CONSTANT> ::= <INTEGER> | <TITLE CONSTANT> | <BOOLEAN> |
| <POINTER CONSTANT> | «COMPOSITE ATTRIBUTE CONSTANT)

| <INTEGER» ::= <DIGIT> | <INTEGER> «DIGIT»
<DIGIT> 2:= 0 | 1 1 2 | vous | 81 9

<STRING> ::= " ¢,., sequence of characters where a double quc:e is
denoted by a pair of double quotes...» "

CIDENTIFIER CONSTANT> ::= | <IDENTIFIER>

<IDENTIFIER> ::= ¢LETTER> | ¢IDENTIFIER> <LETTER> |
<IDENTIFIER> «DIGIT»

36

¢LETTER>:¢= A I! BIC... | X1lY!l2Z

<S-ICENTIFIER> ::= & <IDENTIFIER>

<TITLE CONSTANT» ::= «<S5-IDENTIFIER> | <STRING> |
<IDENTIFIER CONSTANT»

<BOOLEAN> ::= TRUE | FALSE

¢POINTER CONSTANT» ::= NIL |

«COMPOSITE ATTRIBUTE CONSTANT» ::= NULL

NULL denotes an empty composite attribute value. NIL denotes a

reference to a composite attribute whose value {is NULL, whose

selector is undefined and is called the null attribute.

2.2 SYNTAX DEFINITION

The syntax of the defined language is specified by defining the

terminals, the .onterminals, the start synbol and the set of

syntactic productions.

2.2.1 TERMINALS

The syntax pressuposes a lexical analyzer that recognises thle

following types of terminals: special characters, reserved words,

ALGOL-1ike identifiers, integers and strings of characters delimited

by double quotes; blanks are used as delimiters. Tha lexical analyzer

37

3

will skip over strings beginning with the word COMMENT and ending

with a semicolon. It will ignore an identifier which follows the

reserved word END. The word COMMENT may not be used elther as a

reserved word or as an identifier. In the defined language

identifiers cannot have the same spelling as reserved words.

The following syntax is used to declare special characters and
reserved words:

<SPECIAL CHARACTER DECLARATION> ::= ¢ | TERMINALS ARE | |
(SPECIAL CHARACTER LIST»

<SPECIAL CHARACTER LIST» ::= «SPECIAL CHARACTER» |
<¢SPECIAL CHARACTER» <SPECIAL CHARACTER LIST»

<SPECIAL CHARACTER» ::s= <...any special character with the
exception of double quotes...»

¢<RESERVED WORD DECLARATION> ::= ¢ | RESERVED WORDS ARE
<RESERVED WORD LIST»

¢<RESERVED WORD LIST> ::s «RESERVED WORD> |

| «RESERVED WORD> , <RESERVED WORD LIST» |
¢<RESERVED WORD> ::= <IDENTIFIER>

Terminals, other then special characters and reserved words,

are handled by a SPINDLE entity called a structured terminal (S-

terminal). An S-terminal is a terminal with an associated attribute; |

this attribute decorates all terminal nodes that are instances of the

S-terminal. identifiers, .ntegers and strings are recognized by

different S-terminals. The syntax for declaring S-terminals is:

<S-TERMINALS> ::= <IDENTIFIER DECLARATION> | <INTESER DECLARATION> |
«STRING DECLARATION:

¢IDENTIFIER DECLARATION» ::s ¢ | IDENTIFIERS ARE <NAME AND ATTRIBUTE»

¢INTEGER DECLARATION> ::= €¢ | INTEGERS ARE «NAME AND ATTRIBUTE»

<STRING DECLARATION> ::= ¢ | STRINGS ARE «NAME AND ATTRIBUTE»

38

<NAME AND ATTRIBUTE> ::= <S-TERMINAL IDENTIFIER> WITH ATTRIBUTE
<ATTRIBUTE IDENTIFIER»

<S~TERMINAL IDENTIFIER)» ::= ¢IDENTIFIER>

<ATTRIBUTE IDENTIFIER) ::= IDENTIFIER)

An example of an S-terminal declaration is:

IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP
INTEGERS ARE NU WITH ATTRIBUTE VALUE
STRINGS ARE LAMBDA WITH ATTRIBUTE STRINGK

In this case an identifier, in tha input string, corresponds,

in the parse tree, to a node labelled SIGMA, decorated by the

attribute SP whose value, in this case, is the spelling of the

identifier (represented as an S-identifier value); én integer

corresponds to a ncde NU, decorated by the attribute VALUE whose

value, in this case, is the value denoted by the integer; a string

corresponds to a node LAMBDA with attribute STRINGK with the string
as its value.

Attribute identifiers associated | with S-terminals are

implicitly declared to be of kind synthesized. Attribute identifiers

must be of type TITLE for identifiers and strings, and INTEGER for

integers. Section 2.1 shows how to declare the attribute identifiers

which will be associated with nonterminals and how to associate types |

with then. :

39 |

2.2.2 NONTERMINALS AND START SYMBOL |

The declaration of a nonterminal serves three purposes: to

identify the nonterminal; to associate with it a set of inherited and

a set of synthezised attribute identifiers; to associate a kind with
the attribute identifier (inherited or synthesized). The syntax for

nonterminal declaration is:

<NONTERMINAL DESCRIPTION> ::= NONTERMINALS ARE
<NONTERMINAL DECLARATION LIST»

<NONTERMINAL DECLARATION LIST> ::= <NONTERMINAL DECLAKATION>|

¢(NONTERMINAL DECLARATION> ¢NONTERMINAL DECLARATION LIST»

<NONTERMIMAL DECLARATION> ::a <«NONTERMINAL IDENTIFIER> =
<ASSOCIATED ATTRIBUTES»

<NONTERMINAL IDENTIFIER> ::s <]DENTIFIER>

<ASSOCIATED ATTRIBUTES» ::a <«S-LIST> , «I1-LIST> | «S-LIST» |
¢]-L1ST> , «S-LIST> | <«I-LIST»

<S-LIST> =:: S (<ATTRIBUTE LIST»)

<I-LI1IST> =: 1 (<ATTRIBUTE LIST»)

<ATTRIBUTE LIST» ::= <ATTRIBUTE IDENTIFIER» |

<ATTRIBUTE IDENTIFIER> , <ATTRIBUTE LIST»

An attribute identifier is declared to be of kind inheritec or

synthesized by appearing in an attribute list headed by an I or an 3

respectively.

The syntax for declaring the start symbol is: |

«START SYMBOL DECLARATION> ::s START SYMBOL

<NONTERMINAL IDENTIFIER»

40

2.2.3 SYNTACTIC PRODUCTIONS |

The syntax for syntax is:

¢SYNTACTIC PRODUCTION> ::= <«NONTERMINAL IDENTIFIER» ::=
<RIGHT HAND SIDE»

¢RIGHT HAND SIDE» ::2 ¢ | <RHS LIST»

<RHS LIST) ::= ¢RHS ELEMENT> | <RHS ELEMENT: <RHS LIST»

<RHS ELEMENT) ::s «SPECIAL CHARACTER» | <¢RESERVED WORD» | |

<S-TERMINAL IDENTIFIER» | <NONTERMINAL IDENTIFIER»

All special characters and identifiers apnearing in a syntactic

production must have been declared as such. A restriction of SPINDLE

is that a right hand side of the form 3$/8/%8, where g is a possibly

empty sequence of RHS elements, is not allowed. An example of a

syntactic production {is

PROCHEAD:: = IDTYPE PROCEDURE SIGMA

where given the following declarations

RESERVED WORDS ARE PROCEDURE

IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP
NONTERMINALS ARE

PROCHEAD = S$ (E)

IDTYPE = S (GENUS)

the production states that the string parsed from PROCHEAD 1s the

concatenation of the string parsed from IDTYPE, followed by the

reserved word PROCEDURE, and an identifier.

41

2.3 ATTRIBUTES

The attribute is the basic concept of SPINDLE's data structure.

It is patterned after the VDL (We 72] "object™ and Fisher's TFi 70]

"construct".

An attribute has a selector and a value. An attribute can then

be characterized by a pair <S:V> where S {is the selector and V the

value. The selector names the attribute and can be either & title or

an 1iateger. If the selector is an identifier it must have been

declaied as an attribute identifier. For example in figure 1.11 the

attributes of node L1 are <«VALUE:2> and «SCALE:0>. Up to this point

all attributes presented belonged to a node. But an attribute may

belong to another attribute called its ancestor; i.e an attribute may
have other attributes as its value. An attribute that belongs to a

: node is called a node attribute; if it belongs to another attribute

it is called a component attribute or component for short.

Attributes may be composite or elementary. Composite attributes

are those whose values are sets of attributes. Elemeniary attributes

are those whose values are not attributes. An attribute has a type

associated with it that defines its range oi values. Elementary

attributes can be of type INTEGER, BOOLEAN, TITLE and POINTER. In

| figure 2.1 are some examples of elementary attributes. é
R Composite attributes have sets of attributes as values. Each

attribute in the set is a component that belongs to the ancestor |

attribute. An attribute S with components <S :V >, <<S :V >, ...,
1 1 2 2

<S :V >, N20 is represented by: .
N N

42

ATTRIBUTE COMMENTS

<SCALE: 2» type integer; selector ‘s an identifier.

¢"POLITICIAN": FALSE> type boolear; selector 1s a string.

<4X: DAVID) type title; selector is an S-identifier; value

is an identifier.

<5: "SOLOMON" type title; selector is integer; value 1s a

string. . .

<P: 0SCALE> t pe poin cr; Belector is an integer; value is

a reference to the attribute whose selector is

the identifier SCALE.

Figure 2.1

Examples of e'.pmentary attributes

S13 Vo; SV r...¢8:V HH)
1 1 2 2 N N

Composite attributes can be either of type LIST or type

CONSTRUCT. The value of a construct attribute is a set of attributes

with a different selector for each component. In a construct,

components are referred to by their selectors. The value of a list

attribute is an ordered sequence of attributes where the components

nave undefined selectors. In a list, components are referred to by

their position in the sequence. List attributes behave exactly like

their LISP [MCa 65] counterparts and are manipulated by a similar set

of functions (CAR, CUR, (ONS, etc.). When describing the value of a

list, the components have for a selector the ordinal (parenthesized)

that represent their position in the list. For example a list L with
N components is described by

CL (CCDSV 0) «(DV uu <DIV 3)»
1 2 N |

An empty attribute is a composite attribute whose value 1s the

enpty set; it is represented by <C: ()>, where C is any selector. An

undefined attribute is an attribute whese value is undefined; it is

represented here by <A:u> where A {s any selector,

As an example of a copposite attribute we may identify a /360

ASSEMBLER RX instruction with the construct INSTRUCTION with

components OPCODE (title), R! (integer) and OPERAND (construct).

OPERAND has components D2 (title),X2 (integer) and B2 (integer). |

Figure 2.2a represents the instruction "A 1, LOC(2, 14)".

Figure 2.2b Shows the same instruction, but now associated with a
list (LINSTRUCTION) instead of a construct.

«INSTRUCTION : (¢OPCODE:A>; «Rl: 1»; «OPERANDS:

(<D2: LOC»; «X21 2>; <B2:14>}>)>

(a)

CLINSTRUCTION : (<1):Ar; «(2: 15; «(3): («D:10C>; <X2:2>; <B2:14>)>)>

(b) | | |

Figure 2.2

Examples of composite attributes

Attributes can be conveniently represented as binary trees, the

nodes representing the attributes and the edges their composition.

| Figure 2.3 shows the attributes defined in figures 2.1 and 2.2 in

binary tree representation. An attribute {is represented by a

rectangle containing its value and labeled by {its selector. A

vertical edge connects a nonempty attribute to one of its components,

called FIRST. Other components of the same attribute appear to the

right of FIRST, connected by horizontal edges; the rightmost one in

44

———_ SCALE "POLITICIAN" me UX
2 | FALSE | DAYID |

J | |J | |

SE —_——?
1 | i |
| "SOLOMON" | i @SCALE i

|| |

——— INSTRUCTION
1) _ |

|

——— Ri —— OPCODB
<i. OPERANDS |) |)
leelomrmmeemcacce} 1 |ewccccemceee| A}

i — [———

—_— x2 — D2 I
| | | | | a
I 2 lemesceeeioaf LOC foecccocoacac| 14 |
J P—— |

— INSTRUCTION B |
— |

f

— co———aen

{ — |
I SE EE RS ndPo

| |J

—t ee. X2 —_— D2 —_ hn
' }) | | |

|) ; |-=e=e] LOC Joee-=| 14 1
J lee ee|

Figure 2.3

Tree representation of attributes |

the sequence is called LAST. If the composite attribute is a list

the order of the components from left to right reflects their

position in the list; if it is a construct the order is immaterial.

Node attributes are referred to by their selectors. If the

attribute is inherited or synthesized the nonterminal identifier

labeling the node, parenthesized, follows the selector. For instance,

INSTRUCTION refers to a local attribute with selector INSTRUCTION

while GSCALE(B) refers to an attribute with selector SCALE that

belongs to the node B. The components of a composite attribute are

45 ;

referenced through their ancestors. If the ancestor is a construct a

component is referenced by prefixing its selector with a reference

to the ancestor, followed by a "." . For instance, A(B).C.D refers to

the component [of the component C of the attribute A which belongs

to tie node B. In figure 2.2a INSTRUCTICN. OPERANDS. X2 is a reference

to the attribute «X2:2>. If the ancestor is a list, a component is

referenced by applying a composition of CAR's and CDR's to a

reference to the ancestor attribute. In figure 2. 2b,

CAR (LINSTRUCTION) refers to the attribute <(1):A> and

CAR (CDR (CDR (LINSTRUCTION))).X2 refers to «¥2:2>.

2.3.1 ATTRIBUTE DECLARATION

Every attribute identifier has a type. The type of an attribute

whose selector {s an attribute identifier 's the attribute

iden<ifier's type. An attribute identifier whose type is a construct
may have an undertype. The type of a component whose selector is not

an attribute identifier is its ancestor's undertype. A construct with

no andertype may only have components whose selectors are attribute

identifiers.

Attribute identifiers' declarations associate a type and
undertype with them. Their syntax is: |

¢ATTRIBUTE DESCRIPTION» ::= ATTRIBUTES ARE
<ATTRIBUTE DECLARATION LIST»

(ATTRIBUTE DECLARATION LIST» ::= <ATTRIBUTE DECLARATION> |
<ATTRIBUTE DECLARATION»

<ATTRIBUTE DECLARATION LIST»

46

<ATTRIBUTE DECLARATION» ::s <ATTRIBUTE IDENTIFIER» = <ATTRIBUTE TYPE>

<ATTRIBUTE ICENTIFIER> ::= <ILENTIFIER>

<ATTRIBUTE TYPE» ::= <TYPE> | CONSTRUCT , <UNDERTYPE>

<UNDERTYPE> ::= (TYPE>

<TYPE> ::= INTEGER | BOOLEAN | TITLE | POINTER | LIST | CONSTRUCT |
CATTRIBUTE IDENTIFIER»

When <TYPE> is an attribute identifier the type (and undertype)

rcferred to is the type (and undertype) of the attribute identifier.

ATTRIBUTES ARE

ENV « CONSTRUCT, CONSTRUCT |

Ee ENV

KIND « TITLE

TYPE « TITLE

CALL « TITLE
NFORMALS « INTEGER

CODE« POINTER

PARAMETER « LIST

RULE = LIST

INSTRUCTION « CONSTRUCT
MATRIX= CONSTRUCT, B

» © CONSTRUCT, C
C = CONSTRUCT, INTEGER

P « POINTER

Figure 2.4

Attribute declarations

Figure 2.4 exemplifies attribute declarations. Figures 2.5 and

2.6 show examples of attributes built according to the declarations

in figure 2.4. The local attribute MATRIX in FIGURE 2.5 shows how a

J-dimensional matrix can be represented as a construct and shows how

components like P can be mixed with components whose tvpe is the

4? :

—MATRIX
ho

|

“ot 3 —
‘ Vado mmr oehemeeccaan| ATRIX. *. 2

! 2 I
aa a

| / i

§ Lo,
Co EAE aSE

| Na

Se PA
| I

| 1 2
EE

Figure 2.5

The attribute MATRIY

undertype of MATRIX. The attribute E(PROCDECL) in figure 2.6 could

for example represent the symbol table built from parsing from the

node PROCDECL the ALGOL procedure |

REAL PROCEDURE MUM (X,Y); VALUE X, Y;
INTEGER X; REAL Y;

BEGIN

REAL 2;
Zi:= XarY; X:sVeY;
MUM:= 2+X

END;

It 1s a consequence of this scheme for associating type with

attributes that node attributes must have attribute identifiers as

selectors; otherwise no type could be associated with them. For

instance, in figure 2.1 only SCALE and P can be node attributes.

As seen in 2.2.2, the synthesized and inherited node attributes

are defined by mnmeans of the nonterminal declarations. Attribute

48

eve B(FROCDECL)
bot

|

i

=!
| — NFORMaALS ———eeeeme— KIND
A. 3 .. PARAMETERS | ! | !
bo heel}esecmeemenaa] 2 |-ce=mwes=c] *PROCEDURE* |---cl2

y | fl boo

; ' — J,C008: | a

f | :{geee-=l ®REAL® |-~=-<~-| RULE {PROCDECL |
| | [J [UES |
{ I

| ——} —— A ——
J |] i |}
J x t----| 8Y 1

I DR| (1
}
|

=I_ &Y — 82 J) §
EI PS apy up Jag

})]
} }) |
} } —t ee KIND ———e IMD
! Po { | }
| { { “SIMPLE®* {---——~----{ "INTEGER" |

bo ee bon|
]

| |

| cera) aoe KIND — TY?S
!)) Vo
i 1 *SIMPLE® 1-------~-1 "REAL" |
i |JER | [|

\
—— F meme TOPE| .

{ “SIMPLE® f--==vev==| "REAL" |

Figure 2.6

The attribute E(PROCDECL)

49

identifiers that do not appear in these declarations are by default

of kind local.

2. & EXPRESSIONS

SPINDLE expressions are the means for referencing attributes

and manipulating their values. When evaluated, expressions return a

value, The evaluation of an expression may involve the evaluation of

other expressions or the execution of statements. The execution of an

expression that {involves an access to é&i undefined value will

passivate the process to which the expression belongs; the process is

reactivated {if and when the value is defined. Their syntax is:

<EXPRESSION> ::= «SIMPLE EXPRESSION» { <INTEGER EXPRESSION» |
<BOOLEAN EXPRESSION> | <CONDITIONAL EXPRESSION»

2. 4.1 SIMPLE EXPRESSIONS

| The syntax fcr simple expression is:

<SIMPLE EXPRESSION» ::= <¢CONSTANT> | (<EXPRESSION>) |

(¢cEXPRESSION>] [| «FUNCTION CALL> |
<ATTRIBUTE DESIGNATION» | <BLOCK EXPRESSION»

SO

The evaluation of a constant returns the value denoted by the

constant.

Parentheses enclosing an expression serve only to indicate

precedence for the application of operators. The value of the

parenthesized expression is the value of the express‘on itself.

The value resulting from the application of the bracket

operator to an expression depends on the expression's value : if the

expression's value is a reference to an elementary attribute, the

| value returned is the value of the referenced attribute; otherwise

the value returned is the value of the expression (see 2.5.1.1 for :

further explanations). The execution of a bracketing operation will

cause a passivation if the value of the operand expression is a

reference to an undefined attritute.

For example, if E is an expression whose value is a reference

to the attribute <SCALE:2>, the value of [E] is 2 and the value of

([E]] 1s also 2. If the value of E is a reference to the attribute P

in figure 2.5 the value of both [El] and ((E!] is a reference to |

MATRIX. 1.2, because this is not a reference to an elementary |
attribute. If the value of E is NULL the value of (E) is NULL and {it

it is NIL the value is NIL.

51

| 2.4.1.1 FUNCTION CALLS

| A function call 1s composed of a function identifier and its

| arguments. The arguments are evaluated in sequence, from left to

right; the function {s then applied to the arguments and returns a

value. Functions can be system defined or user defined. System

defined functions are called standard functions and are described .n

detall in section 2.7 . The syntax for function call is:

| <FUNCTION CALL> ::= <STANDARD FUNCTION CALL> | <USER FUNCTION CALL»
| <USER FUNCTION CALL> ::= <FUNCTION IDENTIFIER» | |

<tCTUAL PARAMETER PART»

<FUNCTION IDENTIFIER> ::s <IDENTIFIER>» |

(ACTUAL PARAMETER PART» ::s ¢ | (<¢ACTUAL PARAMETER LIST>)

(ACTUAL PARAMETER LIST» ::s (ACTUAL PARAMETER) |
¢<ACTUAL PARAMETER LIST» , <ACTUAL PARAMETER»

<ACTUAL PARAMETER» ::= <¢EXPRESSION»

Section 2.8 describes the evaluation of function calls and the

declaration and execution of user declared functions.

CAR(LINSTRUCTION) is an example of a function call. It applies the

standard function CAR to the local attribute LINSTRUCTION.

S2

2.4.1.2 ATTRIBUTE DESIGNATION

The value of an attribute designation is a reference to an

attribute. Its syntax is:

<ATTRIBUTE DESIGNATION> i:= (NODE ATTRIBUTE DESIGNATION> |
¢COMPONENT DESIGNATION»

<NODE ATTRIBUTE DESIGNATION> ::= <ATTRIBUTE IDENTIFIER> |

<ATTRIBUTE IDENTIFIER»

(<NONTERMINAL DESIGNATION»)

<NONTERMINAL DESIGNATION> ::s <NONTERMINAL IDENTIFIER» |

<NONTERMINAL DESIGNATION> =»

<COMPONENT DESIGNATION» ::= (ATTRIBUTE DESIGNATION» . <COMPONENT>

<COMPONENT> ::= <ATTRIBUTE IDENTIFIER> | «TITLE CONSTANT» |

<INTEGER> | [<EXPRESSION>] | «FUNCTION CALL»

The value of a node attribute designation is a reference to the

node attribute whose selector {is the attribute identifier. If the

attribute identifier is followed by a parenthesized nonterminal

designation, the attribute belongs to the designated node otherwise

it {is a local attribute. The asterisks following the nonterminal

serve to distinguish between occurrences of the same nonterminal in a

production. From left to right, no asterisk corresponds to the first

occurrence, one for the second, two for the third and so on. If A {is

an attribute and NT a nonterminal, A(NT) implies that A has been

declared an inherited or synthesized attribute of NT. If this {is not

true an error occurs. An error will alse occur if NT designates a

node that is not In the associated syntactic production. The

attribute designation A implies that A is a local attribute, i.e, it |

has not been declared as either inherited or synthesized for the LHN. |

The definition in tigure 1.6 has examples of all the varieties

of node attribute designation. The evaluation of a node attribute

designation will never cause a passivation since all the attributes
belonging to a node are attached to it before the processes are

started. Initially all node attributes are undefined.

The value of a component designation is a reference to a

component attribute whose selector is the value of <COMPONENT> and

whose ancestor {is the attribute referenced by the value of

<ATTRIBUTE DESIGNATION>. The value of <ATTRIBUTE DESIGNATION» should

be a reference to a construct (but not NIL); furthermore if the value

of <COMPONENT> {is not an attribute identifier the referenced
construct should have an undertype. Also the value of <COMPONENT>

should be either a title or an integer value. If the above conditions

do not hold, an error occurs. If <COMPONENT> is an ~ttribute

identifier its value is the identifier denoted by the attribute

identifier. A component designation will passivate the process

associated with its execution if the ancestor does not have an

attribute whose selector is the value of <COMPONENT»> except when on

the left hand side of an assignement (see section 2.5.1.1). The

process is reactivated once the component is placed in the ancestor.

The following examples, are attribute designations in the

context of the attributes represented in figures 2.5 and 2.6:

ATTRIBUTE DESIGNATION REFERENCED ATTRIBUTE

E (PRODECL).§MUM. NFORMALS «NFORMALS:2>

E (PRODECL).§MUM. E.
[CAR (CDR (E (PROCDECL).

MUM. PARAMETERS))). TYPE «TYPE: "REAL™>

MATRIX. 1.2.1 <1: &>

[MATRIX.P). 1 <1: &

S4

2.4.1.3 BLOCK EXPRESSIONS

Block expressions are patterned after the ALGOL W (Si 71] block

expressions. Their syntax is: |

<BLCCK EXPRESSION» ::= BEGIN <COMPOUND STATEMENT>; <EXPRESSION> END

The value of a block expression is the value of its component

expression. A block expression is executed by executing first its

compound statement and then evaluating its expression.

As an example of the use of block expression, in figure 1.6,

the semantic rule of production P2 can be rewritten as

$§/VALUE(B) ¢=s BEGIN
COUNTER := SCALE (B); PRODUCT :w= 1;
WHILE COUNTER >» 0 DO

BEGIN

PRODUCT := 2« PRODUCT;
COUNTER : = COUNTER -1

END;
PRODUCT

END/S$

Zo 4. 2 INTEGER EXPRESSIONS

Integer expressions are functions from integer values to an

integer value. Their syntax is:

<INTEGER EXPRESSION» ::s «SIMPLE INTEGER EXPRESSION»
<INTEGER OPERATOR» «SIMPLE EXPRESSION» |
- <SIMPLE EXPRESSION»

<SIMPLE INTEGER EXPRESSION» ::= <INTEGER EXPRESSION» |

55

<SIMPLE EXPRESSION»

< INTEGER OPERATOR) ::® « | = | = | / | REM

Integer expressions are evaluated from left to right; operators

have no precedence over other operators, precedence is indicated by

the use of parentheses. The operands of an integer operator (and of

the unary -) are implicity bracketed, i.e., operands whose values are

references to attributes are coerced to return the value of the

attribute. Integer expressions operate on integer values ; if the |

coercion of an operand does not result in an integer value, an error

occurs. The evaluation of an integer expression will cause a

passivation if the value of an operand is & reference to an undefined

attribute.

Integer operators have their usual meanings with "/" standing

for integer division and REM for remainder of the integer division of

the left operand by the right operand. i. oo
Examples of integer expressions can be found in figure 1.6, in

productions P2 and P4. Notice that in P4, due to the implicit

bracketing, the evaluation of SCALE(L) in ‘the expression SCALE(L) +1

returns ict a reference to the attribute but its value.

56

2.4.3 BOOLEAN EXPRESSIONS |

Boolean expressions are the counterparts of integer expressions

for boolean values. Their syntax is:

<BOOLEAN EXPRESSION> ::= «SIMPLE BOOLEAN EXPRESSION»
«BOOLEAN OPERATOR» «SIMPLE EXPRESSION> |
~ «SIMPLE EXPRESSION» | «RELATION»

¢SIMPLE BOOLEAN EXPRESSION» ::= <¢BOOLEAN EXPPESSION> |
<SIMPLE EXPRESSION»

«BOOLEAN OPERATOR» ::= AND | OR

Boolean expressions are evaluated fron left to right with no

precedence for operators. Operands are implicitly bracketed and

should have boolean values, otherwise an error occurs. If the

operator is AND and the value of the left operator is FALSE the right

operand is not evaluated; similarly if the operator 1s OR and the

left operand 1s TRUE. A passivation occurs when the value of an

operand (before the implicit brackets are applied) is & reference to

an undefined boolean attribute. The oparator "=" {s the negation

operator.

57

2.4.3.1 RELATIONS | |

Relations are predicates that take two arguments and return a

boolean value. Their syntax is:

<RELATION> ::= (SIMPLE EXPRESSION> «RELATION OPERATOR)>
«SIMPLE EXPRESSION»

<RELATION OPERATOR» ::s= <REFERENCE RELATION OPERATOR» | |
<SIMPLE RELATION OPERATOR»

<REFERENCE RELATION OPERATOR) (iw os | =»/=

<SIMPLE RELATION OPERATOR) tia = | as ! >» [| 2 | < |

Relation: are evaluated by evaluating first the left operand,

then the right operand and then applying the operator. If the

operator is a simple relational operator the operands are implicitly

bracketed. Reference relation operators are used primarily to test

if two references refer to the same object (ss) or not (=/=). However

| it should noted that they can be applied to any other values since

| the only difference between them and relation operators is that their

operators are not implicitly bracketed. Relation operators compare

the values of the operands; the values should be of the same type

otherwise an error ocurrs. While not an error, it is meaningless to

Co apply the operators 2, 5, >, < to operands that are not integer

values; the value returned, while always the same, is implementation

dependent.

For the attributes represented in figures 2.5 and 2.6 we could

have:

RELATION VALUE

58

(E(PROCDECL).§MUM. NFORMALS + 1) >» 2 TRUE

E (PROCDECL).§MUM. KIND == "PROCEDURE" FALSE

MATRIX.P as MATRIX. 1.2 FALSE

(MATRIX.P] =a MATRIX. 1.2 TRUE

MATRIX.P = MATRIX. 1.2 TRUE

2.4.4 CONDITIONAL EXPRESSIONS

Their syntax is: |

<CONDITIONAL EXPRESSION» ::= <IF-CLAUSE> <EXPRESSION> | |
ELSE <¢EXPRESSION»

<IF-CLAUSE> ::a IF <EXPRESSION> THEN

The value of an if-clause is the bracketed value of its

expression. This value should be boolean, otherwise an error occurs.

If the expression's value is a reference to an undefined attribute

the associated process is passivated. Production PS in figure 1.6

contains an example of a conditional expression.

59

2s 5 STATEMENTS

A statement 1s & unit of action. The executlon of a statement

is the performance of a unit of action. The execution of a statement

may involve smaller units of action such as the evaluation of an

expression or the execution of other statements. The syntax for

statement is:

¢PARALLEL STATEMENT» ::= §/ «SEQUENCE OF STATEMENTS> /§

«SEQUENCE OF STATEMENTS» ::= «STATEMENT» |
<SEQUENCE OF STATEMENTS» ; «STATEMENT»

¢STATEMENT> ::= «PARALLEL STATEMENT» |
<LABEL> : <PARALLEL STATEMENT» |
<UNCONDITIONAL STATEMENT» | <CONDITIONAL STATEMENT> |
<WHILE STATEMENT)

<LABEL> ::= <IDENTIFIER>

As explained in chapter 1, SPINDLE has parallel statements,

besid::s the usual control structures of ALGGL-like languages. All

SPINDLE statements that are not parallel statements are enclosed in a

parallel statement. The execution of a parallel process involves two

steps: first & process associated with it is created and activated;

| second the created process is executed. An active process will run -
| until it is terminated or passivated. A process is passivated while

tying to evaluate an expression involving undefined values; or while
executing a function call or a procedure statement (see section 2.8); =

or while trying to assign a value to a synthesized attribute of an)
ambiguous node (see section 2.9.3). A process is reactivated if and

when te value 1s defined; or the execution of the function or
procedure is terminated; or the node is di sambiguated, respectively. |

60 | |

lf a parallel statement PST contains a parallel statement PST1 pi

a process associated with PST will be created during the execution
2

of a process associated with PST . In the context of PST 's process
| l 1

the execution of PST is finished once the process associated with
2 .

PST is created and activated. The execution of PST can g0 on
2 2

without regard to the execution of PST 's process. If PST is part of1 2

a loop in PST , a new process is created and activated every tine
1

PST is executed. The execution of a sequence 5¢ statements is then
2

similar to the execution of a sequence of statements in ALGOL. The
execution of a parallel statement id the sequence is finished once

the asscciated process has been created and activated; the next
statement in the sequence can then be executed. For example, given

the sequence

ST ; $/ST ; ST /%; ST
1 2 3 4

where ST and ST are not go-to statements, its execution will begin
1 4

with ST 's execution followed DY the creation «.. activation of the
1

process associated with $/ST ; ST /$ and followed bY ST 's execution.2 3 4

The execution of the sequence will end once ST 's execution is4

finished; the execution of the process associated with the parallel
statement may or may not have terminated. For instance the process

could have been passivated while executing ST and this would have no
- é

61

bearing in the execution of ST . If ST were a parallel statement the
4 4

sequence would be terminated once the process associated with ST had
4

been created.

Label identifiers are declared by appearing as a label of a

statement, The scope of labei is the smal.est parallel statement,

block expression, or procedure declaration that containsit. |

2.5.1 UNCONDITIONAL STATEMENTS

Their syntax is:

(UNCONDITIONAL STATEMENT> ::s (LABEL> : <UNCONDITIONAL STATEMENT» |
GO TO ¢LABEL> | «COMPOUND STATEMENT> |
$ ¢EXPRESSION> | «PROCEDURE CALL> |
¢ | ¢ASSIGNMENT STATEMENT)»

<LABEL> ::= <IDENTIFIER>

¢COMPOUND STATEMENT> ::= BEGIN ¢SEQUENCE OF STATEMENTS» END

«PROCEDURE CALL> ::= <PROCEDURE IDENTIFIER> <ACTUAL PARAMETER PART>

Go-to statements change the flow of control; the statement

labeled by its label is the next to be executed. The go-to statement

gust te in the scope of the declaration of its label or an error

occurs.

The compound statement is similar to its ALGOL counterpart. Its

purpose is to parenthesizzs a sequence of statements.

The operator "t" allows the use of an expression as a

6

statement. The expression is evaluated for possible side effects and

its value discarded.

A procedure call is similar to a user function call with the

difference that it does not return a value. Procedures are all user

defined; no system defined procedures exist. Section 2.8 describes

the declaration and execution of procedures and the execution of

procedure calls.

2.5. 1.1 ASSIGNMENT STATEMENTS

An assignment operator is applied to two operands; the L-

operand (for left hand side) and the R-operand (for right hand side).

The L-operand must always be a reference to an attribute, called the

L-attribute; this attribute may not be the null attribute. The R-

operand 1s either a reference to an attribute, called the R-

attribute, or some other value. the assignment can take three forms

depending on the type and values of the operands:

- If the R-operand is NIL or a non pointer value, it is

copied into the value field of the L-attribute.

- If the R-operand is a pointer value and the L-attribute is

a pointer, the R-operand is copied into the value field of |

the L-attribute.

- If the value of th R-operand is a non NIL pointer and the

L-attribute is not a pointer, the value of the L-attribute

is indirectly the value of the R-attribute which means that

63

the L-attribute's value is not a copy of the R-attribute's

value but exactly the same value. There 1s no implicit

copying; if desired, copying is handled explicitly (see

section 2.5.1.1.1).

An attribute whose value is indirect is called an indirect

attribute; otherwise it is called a direct attribute. An indirect

attribute may be indirect to another indirect attribute and form a

| chain of indirects; at the end of an indirect chain is always a

direct attribute cailed the (final attribute. [If the R-attribute is

indirect the L-attribute 1s assigned indirectly the value of the

final attribute of the R-attribute. [In all cases, if the L-attribute

was undefined before the statement's execution, once the assignment

is complete, all processes that were passivated trying to access its

value are reactivated. If the value was defined, the previous value

is erased.

If the R-operand is not a pointer value, its type should be the

same as the type of the L-attribute; {if the L-attribute is a pointer

the R-operand should be a pointer value; otherwise the type and

undertype of the L-attribute and the R-attribute should be the same.

If the above conditions are violated an error occurs.

The main reason for choosing this form of assignment operator

is to avoid copying. Since many of the attributes used in the

definition of languages are large and complex composite attributes

(e.g. symbol tables) that are passed from node to node, it would not .
be feasible to copy the entire value of these attributes each time an

assignment is made.

As a consequence of this scheme, if the value of an attribute

04

changes, all indirect attributes to whose indirect chains the

attribute belongs, will also change. This is in a way a weakness of

the SPINDLE language. Ideally the value of other inherited and |

synthesized attributes once assigned, should never change. This can

only be accomplished by the extensive use of copying.

An indirect value {is represented here by "{AD" where AD {is a

reference to the final attribute. For example, if the L-attribute is
¢A:u> and the R-attribute <B:u> the assignment will change the L-

attribute to <A:iB>.

NOTE- Section 2.4.1. states that if an expression's value references

a composite attribute the bracketing of the expression returns the

same value. This is not true if the corunposite attribute "is an

indirect attribute; in this case the bracketing returns as a value a

reference to the final attribute of the composite attribute.

NOTE- An attribute designation which 1s part of a component

designation (see section 2.4.1.2) is {mplicitly bracketed: if the

value of the ancestor attribute is indirect the component referred to

is the component of its final attribute.

The syntax for assignment statements is

<ASSIGNMENT STATEMENT» i:= <LHS> i= <RHS

<LHS> ::a <ATTRIBUTE DESIGNATION)

<RHS> ::= (ASSIGNMENT STATEMENT» | <¢EXPRESSION> | <OTHER RHS»> |
<MULTIPLE ASSIGNMENT»

65

An assignment statement {s executed by first evaluating <LHS>

and ther. <RHS>. The value of an assignment statement is the value of

its <LHS>. If «RHS> is an assignment statement or an expression, the

assignment operator is applied to the value of <LHS> (L-operand) and

to the vaiue of «RHS> (R-operand).

ATTRIBUTES ARE

A = INTEGER

Al =» A

T « TITLE

TI = T |

C = CONSTRUCT, D

CYC

C2. Ct

D « CONSTRICT, INTEGER

PD} =D

P = POINTER

Pi « P

B « BOOLEAN .

R = CONSTRUCT, §

$ = CONSTRUCT, R ’

rigure 2.7

Declaration of attributes

The only difference between the evaluation of an attribute

designation which is a <LHS> and one which is an expression 1s that

the former will «create components where the latter would cause a

passivation. The difference occurs in a component designation where

the ancestor either has an undefined value or has no component whose

selector is the value of (COMPONENT»>; if the attribute designation is

an eipression a passivation occurs; {if it is a <LHS> a component is

Created whose selector is the value of <COMPONENT> and whose value is

undefined. After the assignment, all processes passivated trying to

66

\

(a) (bv) |

\ §$/ Are 2; <A: D>
T :e T1 eo "BRUNO"; «<T:$T1>, «Ti: "BRUNO")»

C.TY1 := T,; «C [«T1:1T1>)>

C.T1 ;: « "BOR"; <C: (<T1:"BOB*">)>

Cl :« C; «C1: 1C»

x D. (C.TL) 1s A +}; <«D: («<"BOB™: I>)»
C := NULL; oo... C(O)

Ci. "FRIENDS" : = D; «C: («"FRIENDS™: 10>)»

Cl. "FRIENDS"."PAT" 1a 7; «J (<"BOB":3»; «"PAT™: DH)»

C2 := LC; «C2:1C>

: C1 :=» NULL; «Cl: {)>
P te D. "808" <P: 8D. "ROB"™>»

B :e [P] we C2. "FRIENDS". "BOB"; «Bb: TRUE»

(P) :o 4; «0: (<"BOB™:&4>; ("PAT": >)»

A ie Al <A IALl:, <Al*'w

/$ |

Figure 2.8

Effect of =xecuting assignment statements

access this component are reactivated; if the ancestor was undefined

it is now aefined. Due to the implicit bracketing of the attribute

designation-part of a component designation, if an ancestor is an

indirect attr:bute the new component is added to its final attribute.

The ex=acution of the parallel statement in Figure Z. 8a

- exempiifies <-he rules stated above. Figure 2.7 contains the
declaration of all the attribute identifiers used in this and

subsequent examples in section 2.5.1.1. Figure 2.8b shows how

) attributes are affected by the execution of each statement of

figure 2.8a and figure 2.9 shows the status of all attributes at the

end of the execution. Notice that {if the last statement of

i figure 2.8a were A:= [Al] the process would be passivated and that
instead of <A: i1Al> we would have <A: 2»,

67

cA: §Al>

<Al: ww)

<TIITD

<T1: "BRUNO®™) |
<B: TRUE,

¢C: («"FRIENDS*:{D> >

«C1: (>

$€2:10 .
<D: (<"BOB™:4); "PAT": HO)»

<P: 4D. "30B")>

Figure 2.9

Attributes after the assignments

|

2.5.1.1.1 OTHER RHS

The syntax for assignment statenm2nts continues as foilows:

<OTHER RHS) ::= # <EXPRESSION> | = <¢EXPRESSION> |
«CONDITIONAL ASSIGNMENT»

CONDITIONAL ASSIGNMENT» ::= <IF CLAUSE> <RHS> ELSE <RHS»

The "#" is the copy operator. The expression is implicitly

bracketed and the value of the bracketed expression is the R-operand.

If the L-attribute is not a composite attribute or the value of the

R-operand is NULL the normal SPINDLE assignment takes place.

Otherwise the following takes place: the value NULL is assigned to

the L-attribute; then for each component of the R-attribute a

68

component of the same type and undertype and with the same selector

and in the same order 1s attached to the L-attribute; then each

component of the R-arttribute 1s assigned ‘without copying) to the

corresponding component of the L-attribute.

Notice that the expression may retura a reference to the L-

attribute as its value; if the L-attribute {is indirect (due to the

implicit bracketing of the expression) the indirectness is eliminated
and the value of the final attribute copled: if the attribute {is not

indirect the operation has no effect on the attributes. It should

also be noted that for composite attributes, while the components of

the attribute are copied, if the components are themselves coirposite

attributes, their values are not copied. It should finally be noted |

that for elementary attributes the bracketing of the right hand side

expression has the same effect as the application of the # operator.

As an example of the copy operator the parallel statement in

figure 2.10a when executed starting with the attribute in figure 2.9

will cause the changes shown in figure 2.100.

The "«" operator creates a component of the L-attribute that is

a copy of the R-attribute (same type, undertype and selector) and :

assigns the R-attribute to this component. For example the execution

of the statement C."FRIENDS" :s# B would affect the attributes in

figure 2.9 in the following way:

«Cs (¢<"FRIENDS": iD>}> |
<D: (<"BOB":4)>; <«"PAT":7»; «B:iB>}>

For an assignment involving a » operator the L-attribute should

be a construct; the R-operand should be a reference to an attribute

whose selector is defined; {if the selector is not an attribue

69

$/ 01 :« 8D; D."ANDY® :+ 9; DI. "HEATHER" :e J; D."BOB" :a J;

C2 :e #C; C."FRIENDS® := #C. "FRIENDS";

C. *FRIENDS". "ANDY" : = 10 /§

(a)

<C: (¢"PRIENDS®: (<"BOB": 1D. "BOB">; <™ANDY®": 10>; <("PAT*: 1D. *PAT™>))>)>

«C2: (<*FRIENDS": 1D>})>

¢D: (<"BOB™":3); (CANDY™:95; ("PAT": 1H)

CD12 (<"DOB®: 45; <«"PAT": 75>; <"NEATHER™: 1})>

(b)

Figure 2.10

Effect of the copy operator

identifier, the type of the R-attribute must be the same as the

undertype of the L-attribute. [f the above conditions are not

satisfied an error occurs.

The conditional assignment chooses one of its <RHS> to be the

<RHS> of the assignment statement. If the value of the if-clause is

TRUE the leftmost <RHS> is used, otherwise the rightmost one is used.

70

2. 5.1.1.2 MULTIPLE ASSIGNMENTS

The multiple assignment operator "$" is SPINDLE's counterpart

of VDL's

-operator. It allows a single statement to assign values to

different components of an attribute. Its syntax is:

<MULTIPLE ASSIGNMENT» ::=a § (¢COMPONENT ASSIGNMENT SEQUENCE»)

<COMPONENT ASSIGNMENT SEQUENCE» ::= <COMPONENT ASSIGNMENT» !
<COMPONENT ASSIGNMENT SEQUENCE» ; <COMPONENT ASSIGNMENT»

<COMPONENT ASSIGNMENT> ::.= <COMPOUND COMPON:ENTS:= <RHS»> |
«PARALLEL COMPONENT ASSIGNMENT)» |
<CONDITIONAL COMPONENT ASSIGNMENT»

<COMPOUND COMPONENT)» ::s= (COMPONENT |

<COMPOUND COMPONENT> . <COMPONENT>

«PARALLEL COMPONENT ASSIGNMENT: ::a §/ «COMPONENT ASSIGNMENT» /$

<CONCi TIONAL COMPONENT ASSIGNMENT» ::a «IF CLAUSE»

<COMPONENT ASSIGNMENT»
ELSE <COMPONENT ASSIGNMENT)»

The effect of executing a4 component assignment

<COMPONENT PART» := <RHS.

which is part of A nultiple assignrent

<LHS> i= $C...)

is the same as the effect of executing the assignment statement

<LHS>. <COMPONENT PART» : = <RHS>.

For example, the multiple assignment statement

R. "KELSON" := $("RUTH".A := 23;
"DORIS" tea $(A := 20; T :2 "JOE"))

and the sequence of statements

71

R. "FELSON". "RUTH". A :=s 23; R."KELSON". "DORIS". A: «20;

when executed have exactly. the same effect upon the environment. The |

parallel component assignment allows the execution of the component

assignment as a separate process , {.e. in parallel with the rest of

the multiple assignment. It is equivalent to the associated

assignment statement being a parallel statement. The multiple

assignment is executed from left to right in exactly the same order

that the associated compound statement would be executed. For

example, given the attribute <R:u>, the execution of the statement

$/R. "KELSON" :s $("RUTH".A := R."KELSON". "DORIS". A + J;
"DORIS".A :20)/§

would cause the associated process to passivate trying to evaluate

R. "KELSON". "DORIS". A and result in the attribute :

¢R: {¢<"KELSON":{(<"RUTH": (<A ud} >}>}>.

1£ no other parallel statement assigns a value to

R. "XELSON". "DORIS". A the process will never be reactivated. On the

other hand, under the same circumstances, the execution of

$/R. "KELSON" := $($/"RUTH".A := R."KELSON". "DORIS".A +3/8§;
"DORIS".A := 20)/§

would generate two process that when terminated would result in the

attribute

72

¢R: (¢KELSON: (<RUTH: (<A: 23>)3 ¢<DORIS: “<A: 20>)») >)»

2.5.2 CONDITIONAL STATEMENTS

¢CONDITIONAL STATEMENT» ::= <LABEL> «CONDITIONAL STATEMENT> |
<IF STATEMENT» |
¢<IF STATEMENT> ELSE «STATEMENT»

<{F STATEMENT)» ::as <¢IF CLAUSE» <UNCONDITIONAL STATEMENT»

The conditional statement has exactly the same control

structure as its ALGOL counterpart, As in the ALGOL conditicnal

statement, it is possibile to execute the unconditional statement

without evaluating the if-clause by using the GO TO statement.

2.5.3 WHILE STATEMENTS |

(WHILE STATEMENT> ::= <LABEL> : <WHILE STATEMENT» |
WHILE <EXPRESSION> DO «STATEMENT»

The control structure of the WHILE statement is similar to its

ALGOL W counterpart. The expression {s implicitly bracketed and

returns a boolean value. Unlike ALGOL W, it is possible not to

evaluate the expression the first time around by transfering directly |

73

to the statement by means of a GO TO statement. In figure 1.6, the

semantic rule of production P2 contains an example of a while

statenent.

2.6 OTHER EXPRESSIONS

Section 2.4 presents an incomplete syntax for SPINDLE

expressions. The following are the missing forms:

| <EXPRESSION> ::= <¢ASSIGNMENT EXPRESSION»

«SIMPLE EXPRESSION» ::= (PUTIN EXPRESSION» | <¢FIND EXPRESSION»

2. 6.1 ASSIGNMENT EXPRESSION

The assignment expression Is a fcrm of <EXPRESSION> not

mentioned in section 2.4. Its syntax is:

¢ASSIGNMENT EXPRESSION» ::= (ATTRIBUTE IDENTIFIER> as ¢RHS»

The only difference between the execution of an assignment :

stateuent and the evaluation of an assignment expression is in the

evaluation of the left hand side. In the assignment expression, the

74

L-attribute is a new attribute, called an isolated attribute, that
does not belong to a node or an attribute; the attribute identifier

establishes the type and seiector of the isolated attribute. The

expression's value {is a reference to the isolated attribute. Notice

that since the ({solated attribute is not a node attribute or a

component, the only way to refer to it is by means of the reference

returned by the evaluation of the expression. For exauple, the

execution of the parallel statement

$§/ A i= 2; Pl is A =a 3;
Al := A x3 A + (P1] +4; A := Al (PY /S

results in the local attributes <A: 12>, <Al:iA > and <Pl:@a > and in
2 1 |

the isolated attributes <A :3> and <A :9>.
1 p.

Assignment expressions are extremely useful inside iterative

statements where for each {iteration a new attribute has to be

created. An example of this use is shown in section 2.7. 2.

2. 0.2 PUTIN EXPRESSIONS

The purpose of the PUTIN expression is to insert new components

into a construct. Its syntax is:

<PUTIN EXPRESSION» ::= PUTIN (<ATTRIBUTE DESIGNATION» :

<COMPONENT ASSIGNMENT SEQUENCE»)

75

The execution of & PUTIN expression {s equivalent to the

execution of the assignment statement

<ATTRIBUTE DESIGNATION> := $(<COMPONENT ASSIGNMENT SEQUENCE»)

with the following differences:

- The attribute designation is evaluated as an expression,

not as & LHS.

| - The value of a PUTIN expression 1s a reference to the

attribute referred to by the simple attribute designation

part of the attribute designation. |

For example, given the attribute |

<R: (¢<"KELSON" : (<"RUTH":(<A: 2D)»)}>»

the cxecution of

PUTIN (R.,"KELSON", “DCRIS".A := 20 ; "BRUNO".A i= 17)

would return as a value a reference to the attribute

¢R: (<"KELSON": {<"RUTH":(<A: 23>)>; <“BRUNO": {<A:17>}>;
<"DORIS"™:(<A: 20>) >) >)»

It should be noted that the equivalent assignment statement

R. "KELSON" := $("BRUNO".A:=17 ; "DORIS". Ais. 20)

76

wouid return as a value a reference to the attribute "KELSON" (If it

were the RHS of another assignment). Also notice in the above

example that {f R were undefined, the PUTIN expression would

passivate while the equivaient assignment statement would not. In

other words PUTIN only adds to attributes already defined. Finally

it should be notec that If the <coaponent assignment sequence has

parallel parts they g0 on asynchronously; i.e., PUTIN may be done

before they are finished. The attribute designation part of the

PUTIN expression should return a reference to a construct (but not a

NIL value) or an error occurs.

2.6.3 FIND EXPRESSION

A fird expression is used to check the presence of a certain

component in a construct. [ts syntax is:

(FIND EXPRESSION> ::s FIND (<¢EXPRESSION» , <COMPONENT>)

The value of <¢EXPRESSION> should be a reference to a construct

or NIL (which is a reference to a construct with value NULL),

otherwise an error occurs. [If a construct has a component whose

selector is the value of <COMPONE.T> the expression's value {is a

reference to the component; otherwise the value is NIL. As a

consequence, if the expression's va.ue is NIL the value of FIND is

NIL. The evaluation of the FIND expression will cause a passivation

if the construct 1s undefined. For example, given «Riu», the

execution of the parallel. statement |

77

$/ R. "KELSON" :s $S("RUTH".A := 23; "DORIS".A :s 20):
P := FIND(R."KELSON", "DORIS");
P1 := FIND(R."KELSON", "BRUNO")/S

results in

<R: (¢<"KELSON": (<"RUTH": {<A: 23>)»; <"DORIS":(<A: 20>}>} >)»
<P: 8R."KELSON"."DORIS">

<PL:NIL>

However, {it should be noted that given the parallel statements

$/ R. "KELSON" := §("RUTH".A := 23; "DORIS".A :s=s 20) /§
$/ P := FIND(R."KELSON", "DORIS") /§

after both are executed and terminated the value of the attribute P

is either ©&R."KELSON"."DOaIS" or NIL. This can be avoided by

replacing the first parallel statement by

$/ R := R1,"KELSON" i= §. ...) /§

In this case R i: undefined until the complete construct is

assigned and P will always be assigned the value @R."KELSON". "DORIS".

2.7 STANDARD FUNCTIONS

Standard functions are system defined functions that complement

the op:rators furnished by the language. A standard function is

evaluated by first evaluating its arguments from left to right and

78

then applying the function to the values returned by the arguments.

The value returned by a standard function varies from function to

function. Their syntax is:

«STANDARD FUNCTION» ::= <PREDICATES> | <LIST FUNCTIONS» |
<MISCELANEOUS FUNCTIONS»

2.7.1 PREDICATES

A predicate's value is always boolean. Their syntax is:

<PREDICATES> ::= NULLR (<¢EXPRESSION>) |
NULLB (¢EXPRESSION>)

The value of NULLR is TRUE 1f the value returned by the

expression is either FALSE, 0, NULL, or NIL; otherwise 1t is FALSE.
The value of NULLB is TRUE if the expression's value is either FALSE,

0, NULL, NIL or if it is a reference to an attribute whose value is
either FALSE, 0, NIL, or “ULL; otherwise it is FALSE. NULLB will

cause a passivation if the value of the expression is a reference to
an undefined attribute. For example, given the attribute <C: (}> the

value of NULLR(C) is FALSE while the value of NULLB(C) is TRUE.

79 |

2. 7.2 LIST FUNCTIONS

List functions are used to manipulate lists. The value of a

list function is either a reference to & list component or a special

kind of list called a value-list. A value-list is a 1ist whose

selector is undefined and that does not belong either to a node or to

another attribute. When a value list {is the R-operand of an

assignment, the value assigned to the L-attribute (which must be a

list) is directly the value of the value-list. If the R-operand werc

a reference tc a list and if the L-attribute were also a list the L-

attribute's value would indirectly be the value of the R-attribute.

Notice that if the L-attribute is a pointer and the R-operand a value

list, an error occurs. The value 1ist is & list and not a reference

to a list. The syntax for list functioa is:

<LIST FUNCT!ION> ::s3 CAR (<¢EXPRESSION>) |
CDR (<EXPRESSION>) |

CONS (<EXPRESSION> , <EXPRESSION>) |
LIST (<¢EXPRESSION>) |

APEND («EXPRESSION» , <EXPRESSION») |
RVRS (<¢EXPRESSION>)

The functions CAR, CDR, CONS, and LIST correspond exactly to |

their LISP counterparts and work essentially in the same way. As in |

LISP, the list components are not copied and the application of these

functions to a list does not change its value.

CAR takes a value-list or a reference to a list as an argument

and returns a reference to its first component. An error occurs if

the expression's value is not a a value-list or a reference to a list

or if the list or the value list {s empty. For example, given the

list «Ll; (¢(1):3>; <(2):4>)>, CAR(L) r=2turns a reference tn <¢(1): 3».

80

CDR takes a value-list or a reference to a list ac an argument

and returns a value-list whose components are all the components of

the argument list but the first, [f the value of the argument list is

NULL an error occurs. For example, figure 2.11 shows the list L and

Ll before and after the execution of the statement LI := CDR (L).

Notice that the value of L1 {s direct and that no copy was performed.

— 1 |
J

|

J DU ———
i | | |

03 deemmeeeel 4

PRN PE

(8)

— L — Li
I I—

| | :

J JJ
! ’ | |

t AI EE td 4 |
J —

(db)

eae LI we L | JE |
| 1__1 J

| | |

— ae — SE FE
t | | | | I

I J EyI SE DOed IL
bee be] [—

12
1 [

|
J PE l

| l |

| 2 Jene-

I

(c)

Figure 2.11

Effect of CAR, CDR and CONS

The application of the CONS function creates a new attribute

whose type and value are determined by the value of the first

argument : if the argument has a nonreference value or is not NULL or

NIL the new attribute has the appropiate type to receive the value;

81

if it is a reference to an attribute, the new attribute has the same :

type and undertype as this attribute; if it fs NIL or NULL it is a

pointer with value NIL. In all cases the new attribute has an

undefined selector. After the creation of the new attribute an

assignment is performed witl the new attribute as the L-attribute and

the first argument as the R-operand. The second argument is a value

list or a reference to a list. The value of CONS is a value-list

whose first component is the new attribute and whose other components

are those of the second argument's list. For example the execution |
of the sequence of statements |

L2 := CONS(2,L1) ; L3 := CONS(CAR(L1) + CAR(L2) , L)

transforms the attributes in figure 2.11b into the attributes in |

figure 2.11c.

The execution of the function LIST(ARG) is aivays equivelent to

the execution of CONS (ARG, Lx=sX\ULL).

Figure 2.12 is an example of the use of the list functions.

The execution of the compound statement (a) transforms the attributes

(b) into the attributes fc). Observe that in line 5S of the compound

statement, the attribute designation COUNTER 1s bracketed; if not,

the value of ADDRESS would be {COUNTER in both INSTRUCTION, and 3
INSTRUCTION .

2

The functions APEND and RAVRS differ from the other list

functions in that they change the value of the list upon which they

are applied. They correspond to the LISP functions APPEND and REVERSE

with the difference that the LISP functions do not change the values

82

BEGIN

L2 t= NULL; COUNTER :s 1; Li :elj ' :

WHILE -~NULLB(L1) DO ' ’

' BEGIN

L2 tw CONS(INSTRUCTION as $(ADDRESS : = CAR(L1);
OP1 :« (COUNTER), L2);

L1 te CDR(L1); COUNTER := COUNTER 1

END . N | J - * a
END :

(a)

cl: (¢(1):31y «Q):dD>)»

®

«Li: {)>

cL: (¢(1): 30; <¢(A: 4D)

<INSTRUCTION : (<OP1: 1CAR(L) >»: <ADDRESS: I>)»

<INSTRUCTION : (<OF 1: 1CARCCDP (L))>»; <ADDRESS: 2>}>
«L2: (¢ (1)! LINSTRUCTION i (2): 1INSTRUCTION >) >

(c)

Figure 2.12

Examples of the use of LIST functions

of their argument lists. The reason for using APEND and RVRS is their

greater efficiency,both timewise (no sequence of CARs and CDRs as ip

APPEND) and spacewise (no new attributes are created). The arguments

of both APEND and RVRS should be either value-lists or references to

lists (but not NIL) or an error occurs.

The value of APEND is a value-list whose components are the

components of the first argument followed by the componeats <i the

second argument. The components of the second argument &lso follow '

83

th: components of all lists whose last component was the last

cemponent nf the first argument. For example, figure 2.13 shows the

resa' of executing the statement LS := CONS(7, APEND(L,L4)) given the

attribu:es in figure 2.1Ic and <L4: (<(1):6>}>. APEND should be used

with extreme care since it can form circular lists which can then

cause a process to enter an infinite loop.

—— L3 ——- Lb — Li — Le
b___1 J | oma!

{ | ' |
| | | |

_—l JI PR —t oe — em
! [| [[

| S freceneae| J EL ELTETTY 4 EXT TELE Y 6
| | | | |PE be

} I

[

— LS I — L2 { .
___| 1 I. | '

[[|
Vo. | |

——t | —_—l | oF
[! ' ! | | }

| 7 frm ! 2 |we=-
UR DE|

Figure ¢.15

Effect of APEND

The value of RVRS is a4 value-list whose components are in the

reverse order in which they were in the argument; the reversal |

affects all lists to which this components belong. Figure 2.14 shows

the result of executing L3 := RVRS(L) given the attribute in

figure 2.11¢c.

—— L2 —— b3 — I _—L
| i I—_t —

! | US |

| [

—_ —_— SE
| i | | i |
i 2 feccccecaf A Jeceeecema] 3 |
be 1 bod J

Figure 2,14

Effect of RVRS

£4 |

A list function will «cause a passivation if any of {its

arguments is a reference to an unaefined list.

2.7.3 MISCELLANEOUS FUNCTIONS

<MISCELLANEQUS FUNCTIONS> ::+ NEWINTEGER | |
SELECTOR (<EXPRESSION>) |
FIRST (<EXPRESS!ION>) |
NEXT (<EXPRESSION) .

The function NEWINTEGER returns a different integer value for

each cali on the function.

The argument of SELECTOR should be a reference to an attribute

whose selector is defined, otherwise an error occurs. The value of

the function is an integer if the selector is an integer, otherwise

it is a title value. For example, given the attributes <A:S> and

<P: @A> the value of SELECTOR(P) is P and of SELECTOR((P)) is A.

The argument of the fuuction FIRST should be a reference to a

construct, otherwise an error occurs. If the construct is undefined a

passivation occurs. The value of the function is a reference to the

component FIRST (see section 2.3). [If the construct is empty the

value of the function is NIL. | :

The argument of the function NEXT should be a reference to an

attribute, otherwise an error occurs. If the referenced attribute is

a component the value of NEXT is a reference to the component that

follows the one referenced by the argument; if the referenced

85

component is LAST then the value of NEXT is NIL. If the referenced

attribute is a node attribute, the value of NEXT depends on the

implementation.(On MUTILATE, NEXT will return a reference to another

attribute of the same node (or NIL)). |

The block expression in figure 2.15 illustrates the use of

these functions. Given C, a construct, and P, a pointer, the block

expression returns the same value as FIND(C, &§X).

BEGIN

? 1s FIRST(C);

WMILE -NULLB(P) DO | .

IF SELECTORC(P)) « &X THEN GO TO EXIT ELSE ? 1» NEXT((P)); |

EXIT: ' .

(J)

END

Figure 2.15

Exanple of block expression

2.8 USER DEFINED FUNCTIONS AND PROCEDURES |

The declaration of user defined functions and procedures

follows the syntax: | |

<PROCEDURE DESCRIPTION» ::= ¢ | <PROCEDURE DECLARATION> |
<PROCEDURE DECLARATION» ; <PROCEDURE DESCRIPTION»

<PROCEDURE DECLARATION» ::m= FUNCTION <¢FUNCTION IDENTIFIER»
¢<FORMAL PARAMETER PART> ; <EXPRESSION> |

PROCEDURE <PROCEDURE IDENTIFIER»
¢FORMAL PARAMETER PART> ; «STATEMENT»

¢FUNCTION IDENTIFIER> ::= ¢IDENTIFIER> |

<PROCEDURE IDENTIFIER» ::s <IDENTIFIER>

86

<FORMAL PARAMETER PART» ::= ¢ | (<FORMAL PARAMETERS))

«FORMAL PARAMETERS> ::as ¢ATTRIBUTE IDENTIFIER» |
<FORMAL PARAMETERS» , <ATTRIBUTE IDENTIFIER»

A function or procedure call is executed as follows:

(1) The actual parameters are evaluated from left to right.
(2) A node is created and attributes whcse selectors are

the forcal parameters are attached te .¢.

(3) Each actual parameter (R-operand) 1s assigned to the

attribute whose selector is the cor-esponding formal

parameter (L-attribute). If ths number of formal and

actual parameters is not the same, an error occurs.

(4) The process from wich the call was made is passivated

and a process, corresponding to the body of the

function or procedure, is created and activated.

(5) Once the process is terminated the calling process is

reactivated and if call was a function call the value

of the expression is returned.

All the node attributes used in the procedure or function body

belong to the node associated with the procedure or function, thus

they must all be local. The procedure body is implicitly parallel so

that the scope nf all the labels declared in it is the body itself.

For example in figure 1.6 the exponentiation could have been |

declared as: |

87

FUNCTION EXP (COUNTER):
BEGIN

PRODUCT := 1;
WHILE COUNTER >» 0 DO
BEGIN

PRODUCT :e« 2 « PRODUCT;
COUNTER : = COUNTER - }

END;
PRODUCT

END;

The semantic rule ¢f production P2 would then be

$/ VALUE(B) := EXP (SCALE(B)) /$

2.9 OTHER STATEMENTS

Besides the statements shown in 2.5, SPINDLE has three other

types of statements:

<STATEMENT> ::= «WRITE STATEMENT> | <ERROR STATEMENT» |
<DISAMBIGUATION STATEMENT)

88

2.9.1 WRITE STATEMENT

| The write statement is the means for autputing values in
. SPINDLE. Its syntax is: | |

<WRITE STATEMENT> ::= <LABEL> : «WRITE STATEMENT) |
WRITE («OUTPUT LIST»

<OUTPUT LIST» ::= <QUTPUT ELEMENT> | «OUTPUT LIST» ; <OUTPUT ELEMENT)

<QUTPUT ELEMENT)» ::s=s ¢EXPRESSION> | /

The statement is executed by evaluating, in sequence, from left |
to right, each output element. “he implementation of the system

guarantees that values that follow one another in the output list

will follow one another in the printed output, unless the evaluation

of an output element causes a passivation. No passivation occurs {if

the output element is an expression that references an undefined |

attribute, The implementation also guarantess that an attribute

containing an undefined value {is printed either when the value is

defined or when the computation terminates (no more active

processes). The jmplementation also guarantees that if the execution

Of a write statement follows the execution of another write statement

(with other types of statemsnts possibly being executed in between),

the printed output of the former immediately follows the printed

output of the latter. No sequencing is possible among the output

lists generated 5y different processes. In chapter 3 it can be seen

how this was implemented in MUTILATE.

| Values are printed following one another in the sane output

line until the line is full. Once full, a line is -rinted and a new

89

| one ;s started. The control character "/" forces the printing of the

line currentiy being filled and starts a new one.

If the output element is an expression, {it is implicitly

bracketed and the value returned determines what !s to be printed: if

the value is a non pointer value or NIL the value is printed;

otherwise the selector (if defined) and value of the referenced

attribute are printed.

Integers are printed in left justified form. Strings are

printed without the surrounding double quotes. If the value of a

pointer attribute is not NIL the selector of the referenced attridute

preceded by the character "#" is printed; otherwise NIL is printed.

Composite attributes are printed by printing each of {ts components;

the components are separated by commas and the whole list is enclosed

in parenthesis. Figure 2.16 shows a series of examples of write

statements and the resulting output. Notice that the components of a

construct are printed in the same order they are internally stored

(which depends on the implementation). | |

2.9.1.1 FORMATED OUTPUT

Constructs can be printed in a "nicer" way than described

above, {f they have a format attribute as a component. Format

attributes are title attributes whose selector is FORMAT and whose

value is a format identifier. The construct to which the format

attribute belongs is printed according to the format associated with

the format identifier. Formats are associated with format identifiers

90

STATEMENT:

WRITE ("VALUE 1S «*, COr5(6, CONS (as, CONS(2, 1187¢0)))))

QUTPUT:

VALUE 1S «(t, §, 2, 0)

STATENENT: . :

$/ 11a 3; Bie 4TITLE

C:n $(A:23 Bl tab; Cti:e SCTYPE :- ®|NTEGER®;
KAND te "ARRAY"));

WRITE(S, C, 1) /§

OUTPUT:

ps TITLE Ce (Ble TITLE, Cle (TYPI- INTEGER, KINDe ARRAY), Ae 3)

fe3

Figure 2.106

Examples of output statements

by means of declarations. Format attributes are attached to

constructs by means of format assignsents. A format assignment 1s a

form of component assignment. Its syntax is:

CCOMPONENT ASSIGNMENT» ::= <FORMAT ASSIGNMENT»

«FORMAT ASSISNMENT> ::= FORMAT :s ¢FORMAT IDENTIFIER»

Formats can also be attached as any other component. For

example, the three following statements have exactly the same effect:

Ci:» 3 (FORMAT := FJ)
Ci:= $ (FORMAT := 1 F3)
C. FORMAT := | F3

The syntax for format declaration is:

91

<FORMAT DESCRIPTION> ::s ¢ | FORMATS ARE (FORMAT DESCRIPTION LIST»

<FORMAT DESCRIPTION LIST> ::s ¢FORMAT DECLARATION> |
< FORMAT DECLARATION»

<FORMAT DESCRIPTION LIST,

<FORMAT DECLARATION) ::e (FORMAT IDENTIFIER) =
(<FORMAT ELEMENT LIST>)

<FORMAT IDENTIFIER» ::= <IDENTIFIER> :

<FORMAT ELEMENT LIST> ::s <¢FORMAT ELEMENT> |
«FORMAT ELEMENT> , «FORMAT ELEMENT LIST»

(FORMAT ELEMENT» ::= / | <ATTRIBUTE IDENTIFIER> ' <STRING>

An example of a format declaration is:

F4= (OPER," (",OP1,",", 0P2,")",/, "GO-TO (**, LABEL, ")")

The format controls the printing by executing in succession,

from left to right, each of the fcrmat elements; if the format

element is a string the string is printed. If it is a */", the line

being filled is printed; if it is an attribute identifier, the value

of the component whose selector is the identifier is printed; if no

Such compon2nt exists nothing is printed. The selector of the

composite attribute to which the format attribute belongs is not

printed. As an example, with F4 declared as above, the parallel

statement

$/ Ci= § (OPER := "ADD"; OPl := 1; OP2 :s S;
TYPE :« "RR"; FORMAT := F4; LABEL := "EXIT";

WRITE (C) /$

will print

ADD(1,5)
GO-TO (EXIT)

92

/

/

The same statement without the format assignment would print

C= (OPER = ADD, OP2 = 5, OPI = 1, LABEL = EXIT, TYPE = RR)

2.9.2 ERROR STATEMENT

The error statement is one of the means by which malformed

strings are detected in SPINDLE. Its syntax is: | |

(ERROR STATEMENT> ::= ERROR (<OUTPUT LIST>) | | |
<LABEL> : <ERROR STATEMENT»

The error statement prints the output list and then passivates

all active processes. ending the computation.
}

The definition in figure 2.17 shows an example of the use of

the error statement. Given a base, a sign and an integer number in

this base (represented by a string of integers), the definition will |

output the decimal value of the number. Notice that if the base is

greater than 9 or if the number contains an improper digit the string

is malformed.

33

TERMINALS ARE + -

ATTRIBUTES ARE

VALUE INTEGER
SCALE » INTEGER

BASE « INTEGER

COUNTER = INTEGER
PRODUCT = INTEGER

NEGATIVE « BOOLEAN

INTEGERS ARE NU WITH ATTRIBUTE VALUE

NONTERMiNALS ARE
N o S(YALVE)

L = S(VALUE),I (SCALE) :
S « S(NEGATIVE)

START SYMBOL N

FUNCTION EXP (BASE, COUNTER, VALUE)
BEGIN

IF VALUE 2 BASE THEN

ERROR (VALVE, * IS NOT VALID FUR NUMBERS BASE", BASH);
PRODUCT : + 1;
WHILE COUNTER > 0 DO

BEGIN

PRODUCT :s PRODUCT o BASE;
COUNTER : = COUNTER -1

END;
PRODUCT o VALUE

END

PL st: NU

$/VALUE(L) := BXP(BASE(L), SCALE(L), VALUSOW)) /%

§P2 L i: L NU
$/ VALUE(L) :» VALUE (Le) o

EXP(BASE(L), SCALE(L), VALUEDW)) /8
$7 SCALE(Le) 31s SCALE(L) « | /8

SPI WM i: NU SL
$/ SCALE(L) :« 0 /8
$/ BASE{L) :« VALUE (NU) /%
$/ IF VALUN(NU) > 9 THEN .

ERROR (VALUE (NU), "IS NOT A PROPER BASE");
VALUE(N) :e IF NEGATIVE(S) THEN -VALUE(L) ELSE VALUB(L);
WRITE ("VALUE 15°, VALUE(N)) /$ ' ,

$P4 S 1: . i
$/ NEGATJVE(S) :e PALSE /8

PS S t1s -
g/ NEGATIVE(S) :e TRUE /8

Figure 2.17

Definition using the error statement

94

2.9.3 DISAMBIGUATION STATEMENT

The disanbiguation statement is the neans for handling |

ambiguities in SPINDLE. its syntax is: :

<DISAMBIGUATION STATEMENT) ::= (LABEL> : «DISAMBIGUATION STATEMENT» |
DAMB (<EXPRESSION> . <NODE»)

¢<NODE»> ::= <INTEGER> | <«NONTERMINAL IDENTIFIER»

Every process is associated with a nonterminal node of the

parsing tree called the process's node. For function and procedure

bodies this node is the node associated with the calling process. An

anbiguous node sprouts more than one parsing subtree. An ambiguous

node is disambiguated if one and only one of its subtrees is correct.

The function of the disambiguation statement, as the name

implies, is to check for correct parsings. The expression in the

first operand is implicitly bracketed and returns a boolean value (or

an error occurs). If the value is TRUE the subtree to which the

current node belongs ard whose root is the node designated by the

second operand is the correct parsing; if it is FALSE it is an

incorrect one. If the second operand is an integer the designated

th

node is the { ambiguous node in the ancestor line of the process's

node, starting with the process's node itself. For example, 1f the

process's node is ambiguous, a "1" for the second operand refers to

the process's node and a "2" to its first ambiguous ancestor. If the

integer in the second operand designates a nonexistent ambiguous node

an error occurs. [f the second operand is a nonterminal identifier,

the designated node is the first ambiguous node in the ancestor line,

95

starting with the process's node, that is labelled by the identifier;

if no such node exists an error occurs. |

The synthesized attributes of an ambiguous node can only be

assigned values after the node is disambiguated; processes trying to

assign values to the node before disambiguation are passivated. If a

subtree is found incorrect it is discarded together with all its |

attributes and processes. If a subtree is found correct, it is kept.

After all parsings of a node have been checked, if more than oue

correct parsing is found an error occurs; if only one is correct, the

node is disambiguated and all passivated processes trying to assign

to its synthesized attributes are reactivated. If no parsing is

correct then:

(1) if the ambiguous node has no ambiguous ancestor an |

error occurs;

(2) if it has ambiguous ancestors the subtree s&attached to

| the nearest ancestor that contains this node is marked

incorrect.

Notice that if an aubiguous node is not detected or if one of

the possible subtrees of an ambiguous node is not recognized as such,

the processes trying to assign to the synthesized attributes of the

node will be passivated and will never terainste.

The use of the disambiguation statement is illustrated in

section 2.12 when the definition of TURINGOL is discussed.

96

2. 10 SEMANTIC RULES

As explained in Chapter 1, a set of semantic rules is

associated with each syntactic production. The :zeaantic rules

operate on the attributes of the nodes involved in the production.

Certajn semantic rules are implied, i.« they do not have to be

explicitly stated, being automatically genersted by the system. It is

a characteristic of this method of semantic definition that the

semantic rules of a production can only assign to the synthesized

attributes of the LHN, the inherited attributes of the RHNs and to

local attributes. It is an error to assign to an inherited attribute

of the LHN or a synthesized attribute of a RHN. SPINDLE {introduces

the restriction that no inherited or synthesized attribute of a node

can appear in the left hand side of an assighment statement more than

once in the semantic rules associated with a production; {if this

happens, an error occurs. For example, in prcduction PS of figure

1.6, it would be an error to write

IF NEGATIVE(S) THEN VALUE (N) := =VALUE (L) |

ELSE VALUE (N) := VALUE (L); | |

and it would also be wrong to write |

$/ 'F NEGATIVE(S) THEN VALUE (N\) := VALUE (L) / §
$/ 1F ~NEGATIVE(S) THEN VALUE (N) :s VALUE (L) / §

Implicit semantic rules are always of the form ANT) = A(NT)
1 2

where A is an attribte and NT and NT nonterminals on opposite .
1 p

sides of a production. Given the production

97

L::t«aRR...R...R
1 2 i n

if an inherited attribute I, belonging to R does not appear as a
left hand side of any assignment in the associated semantic rules,

and if I also belongs to L, the rule TR) te I(L) 1s automatically
generated; if I is not an attribute of L an error occurs. If a

synthesized attribute S of L does not appear as a left hand side of

any assignment in any of the associated semantic rules, and {if S is

an attribute of R, the semantic rule S(L) := SR? is generated; if S
ls an attribute of more than one RHN or of none of them, an error

occurs.

Semantic rules are organized into parallel statements. Semantic

rules whose values depend on one another, have to be either in

different parallel statements or, in a sequence of statements, the

dependent one has to come after the one it depends on. For instance,

the semantic rules of production P4 in figure 1.6 could have been

written as

$/ SCALE (Lw=) := SCALE (L) + 1;
VALUE (L) := VALUE (Le} + VALUE (B) /§$

However, if the order of the statements in this parallel

statement were reversed, the process would never termingte. Therefore

separate parallel statements should ordinarily be used for each |

attribute.

Productions and their associated semantic rules are described

by the following syntax:

98

«PRODUCTION DESCRIPTION> ::= <PRODUCTION> | |
<PRODUCTION> «PRODUCTION DESCRIPTION»

«PRODUCTION» ::=s § <LABEL> <SYNTACTIC PRODUCTION» <SEMANTIC RULES»

«SEMANTIC RULES» ::= ¢ | <PARALLEL STATEMENT LIST

(PARALLEL STATEMENT LIST> ::= (PARALLEL STATEMENT) |
<PARALLEL STATEMENT> «PARALLEL STATEMENT LIST»

2.11 WRITING AND RUNNING A SPINDLE PROGRAM

The previous sections descrioed the components of a SPINDLE

program. This section shows how a program is put together and how it

runs as a whole. The syntax of a SPINDLE program is:

<SPINDLE PROGRAM> ::= «SPECIAL CHARACTER DECLARATION»
«RESERVED WORD DECLARATION»
<ATTRIBUTE DESCRIPTION»
<S-TERMINALS»

C(NONTERMINAL DESCRIPTION»
«START SYMBOL DECLARATION»
«PROCEDURE DESCRIPTION»

<PRODUCTION DESCRIPTION»

Given a string of the language, a parse tree is built from the

syntactic part of the definition. In the tree, ambiguous nodes have

more than one subtree sprouting from them; S-terminal nodes have the

corresponding attribute with the proper value filled in; nonterminal

nodes have undefined attributes that correspond to the attribute

identifiers associated with the nonterminal. Each nonterminal node is

associated with a set of parallel statements. For each parallel

99

statement a process is created and activated. The execution of a

process may create and activate other processes. A process may be

passivated by the existence of a certain condition (e.g aL undefined

value); it is reactivated if and when the condition disappears. A

process runs until {it either passivates or terainates. The

computation ends when there are no more active processes in the

system. A computation that ends with no passive processes is said to

be well-formed. If a computation is well-formed the following are all

true: |

- all ambiguities have been resolved and each node sprouts at

most one subtree;

- all inherited and synthesized attributes are defined.

If a computation is mal forzed a list of passive processes is printed, |
showing the cause and location of the passivation. Notice that

errors, unresolved ambiguities and circularities will all result in

passivated processes.

2.12 THE DEFINITION OF TURINGOL

TURINGOL is a simple language that describes Turing machine

programs. It was introduced, in a slightly different version, in

Knuth [Kn 68a]. The following example gives the (flavor of the

language: it is a program designed to add unity to the binary integer |
that snpears just left of the initially scanned square:

100

TAPE ALPHABET IS BLANK; ONE; ZERO; POINT;
PRINT 'POINT’;
GO TO CARRY;
TEST: IF THE TAPE SYMBOL IS 'ONE' THEN

(PRINT 'ZERO';
CARRY: MOVE LEFT ONE SQUARZ;, GO TO TEST);

PRINT ‘ONE’;
REALIGN: MOVE RIGHT ONE SQUARE;
1F THE TAPE SYMBOL 1S 'ZERO' THEN GO TO REALIGN.

The SP;NDLE program in APPENDIX I defines the language. Given a

well-formed utring of TURINGCL, it will print (its translation in

TL/i. TL/1 was introduced in Knuth [Kn 71), and is a machine-1ike

language consisting essentially of sequential instructions whose

operation codes are PRINT, MOVE, IF, JUMP and STOP. For example, for

the TURINGOL program shown above, the SPINDLE program would print:

(1: PRINT,4) |
(2: JUMP,5)
{ 3: 1F, 2,7)
(4: PRINT,3)
(S: MOVE, LEFT)
(6: JUMP, J) |
(7: PRINT,2)
(8: MOVE, RIGHT)
(9: IF, 3,11)
(10: JUMP, 8)
(11: STGP)

The difference between ths version of TURINGOL and Knuth's

original precposal is that, due to the introduction of empty

declarations and the existence of eupty statements, this version 1s

ambiguous. For instance there are two possible parsings for the

program:

TAPE ALPHABET 1S A;; PRINT ‘A,

101

The modification was introduced to show how the disambiguation

statement works. Notice that all parsings give the same mcaning;

however, since only one can be the correct one the definition states

that: if the last declaration is empty the parsing is ambiguous and

incorrect; if the first statement is empty but the last declaration

ls not the parsing is ambiguous and correct; otherwise the parsing 1s

not ambiguous. This is an arbitrary choice imposed by SPINDLE's

restriction that only one of the subtrees of an ambiguous node can be

correct. The attribute EMPTY registers the existence of an empty last

declaration or first statement. The disambiguation decision 1s made

in the production for P because of the way the attributes were chosen

and not because P is the possibly ambiguous node. By using an

inherited attribute the information about the declaration being empty

could be passed down the tree and then the disambiguation decision

could be taken at some other node.

The binding of labels to addresses deserves a closer

examination since essentially the same technique is used in the

definition of SIMULA in Chapter 4. The present scheme is different

from the one used by Knuth. The object programm OBJPROG is a list of

instructions and pseudo-instructions. A label zenerates a pseudo-

instruction that {s placed in front of the labelled instruction. The

pseudo-instruction has a component TAG to which is assigned a unique

integer, the label-value. This label-value stands for the label;

references to the labelled instruction are handled by assigning the

label -value to a LABEL coaponent. After CBJPROG (P) is defined the

procedure OUTPUT builds a table that associates each label with an

address and substitutes in the component LABEL of an instruction the

label-value by the corresponding address. It should be noted that the

102

building of the table MAP and the assignment of addresses tc the

LABEL components could not be done in one pass without the use of the

procedure PLACE with a parallel statement for procedure body.

A fact that should be noted is that the definition states that

TURINGOL programs containing undeclared identifiers are malformed,

since a [process trying to access the identifier in ENV will rever
terminate; however no explicit error message is printed. This way of

indicating malformed programs while not wrong is not good programming |

practice: semantic errors should be explicitly stated. In the
TURINGOL definition this could be accomplished by adding to the

productions P21, P22, P23, P24 and P31 the parallel stateuent |

3/ IF NULLR (FIND (FIND (ENV (S), ISP(SIGMA)}), SYMBOL)) THEN

ERROR (SP (SIGMA), "HAS NOT BEEN DECLARED") /§$:

and to PJ2 the same statement but with LABEL in place of SYMBOL.

It should be also noted that the printed output is an aspect of |

the meaning, not the whole meaning of the program since only part of

OBJPRCG is printed. However, since it can be presumed that the output

reflects the essential aspects of the meaning, it is convenient to

define the meaning associated by a SPINDLE definition with a string, |

as the printed output resulting from inputting the string.

Finally, {it should be noted that since the application of the

functions APEND and JOINE change the values of attributes lower in

the tree, the {final decorated tree does not correspond to the

definition; the values of the attributes are not as stated in the

definition. This can be avoided by using the # operator to copy at

every stage. However, since one is only interested in the attributes

of P, there is no harm in altering the values of the attributes of

the other nodes of the parse tree.

103

CHAPTER 3

MUTILATE

This chapter describes the "FOLDS machine MUTILATE. 1It is
essentially a terse description of the relevant aspects of the

machine implementation; the general concepts involved were explained

in the preceding chapters.

MUTILATE is composed of two independent parts: the first

comprises the parser and lexical analyzer; the . second the

interpreter. The first part reads in a string S and, if S belongs to |

the defined language, outputs a set {(PT(S)). The second part reads in

(PT(S)) and, if S is well-formed and the definition is well-formed,

selects a PT(S) from the set and produces DPT(S). The main reason for

this two level desirn is the particular nature of Earley's parsing

algorithm [Ea 68), which is used 1a the parser for the reasons

explained in Chapter 1. In Earley's scheme, the parsing of a string

S is paced by the elements E of the string; i.e, the parsing develops

by scanning the string from left to right and for each E building all

possible partial parsing trees up to E. The trees are built in an

extremely compact fashion with no duplication of nodes; i.e., a

subtree representing the parsing of a substring coemon to two or more

parsings is shared by the trees represencing the parsings. While the

parsing usually proceeds in a top down fashion, the parsing of left

recursions is bottom up, It is difficult to recognize, at midparsing,

subtrees that belong to the final parsing tree. While the parsing

104

usually proceeds from top to bottom, the subtrees are built on the

way up. The combination of these characteristics makes the filling in |
or the semantics, while the parsing is going on, quite complicated.

Thus it was decided that the advantages gained by developing the

syntax and semantics at the same time would be couffset by the

complexity of the mechanisms necessary to carry out the task; it was

considered more profitable, in a first stage, to develop the two

tasks separately. This facilitated the development of the mechanisms

for decorating the parse tree which was the main job at hand. Perhaps

now that the semantic nechanisms are well understood, a one level

process could be developed; but the complications are much more

substantial then one would guess at first.

3.1 LEXICAL ANALYZER AND PARSER

The parser in MUTILATE is a straightforward implementation of

Fisher's (Fi 70) version of CEarley's algorithm, modified to accept

empty substrings; the modification {is a simple extension of the |

original algorithm. A table is used to speed up the parsing; it

relates to each ncnterminal the set of all the terminals that can be |

"seen from the nonterminal. A terminal is seen from a nonterminal if

either the terminal can be the first one in a string derived froma the |

nonterminal or if there is a string of the language in which an empty | :
substring that {is followed by the terminal is derived from the

nonterminal. | |

105 |

For each element of tne string scanned, the parser calls the

lexical analyzer. As described in Chapter 1 the analyzer recognizes

special characters, reserved words. ALGOL-like identifiers, integers, |
and strings enclosed in double quotes, using blanks as separators. It

also skips comments (beginning with the reserved word COMMENT and

finishing with a semicolon) and an identifier following the reserved

word END. When called, the lexical analyzer returns a token that
identifies the recognized element; if the element is an S-terminal,

it also returns the value to be assigned to the attribute associated

with the node in the tree.

The parse tree is constituted of nonterminal and S-terminal

nodes, organized as a left linked binary tree (Kn 68b]. Terminal

nodes are ignored because they have no semantic consequence. A

nonterminal node is divided into the fields SON, BROTHER, AMBIGUOUS,

PRODUCTION and SELECTOR. SO) contains a pointer to its rightmost son

(that is not a terminal).BROTHER contains a pointer to {its left

brother. If the node 1s ambiguous, AMBIGUOUS points to another

version of the same node (with a different subtree sprouting from

iv). PRODUCTION contains the label of the production associated

with the node. SELECTOR contains the nonterminal identifier that

labels the node. An S-terminal node is divided into the fields

BROTHER, VALUE and SELECTOR. BROTHER is the same as for nonterminal,

VALUE contains the value tn be assigned to the attribute associated

with the S-terminal and SELECTOR contains the S-terminal identifier

that labels the node.

As an example, appendix 2 shows a TURINGOL program (the one

presented in 2.12, with an empty declaration inserted) and the

parsing tree generated from it.

106 |

Notice that common subtrees belonging toc alternative ambiguous

parsings are represented by a unique subtree; i.e, in an ambiguous

subtree a node may belong to more than one parsing..

3.2 INTERPRETER

The interpreter is a multiple stack machine with four types of

storage: byte addressed, linked, table and string. The byte addressed

memory contains the instructions, the format descriptors and the

nonterminal descriptors fa list of the symbol table entries for the

attributes associated with a nonterminal). The linked storage |

contains nodes, attributes, stacks, etc., and is managed by an

underlying garbage collection mechanism. The table storage contains a

symbol table; there is one entry for each identifier (nonterminal, S-

terminal, attribute or format), S-identifier and string in the

definition of the language. [ne table also contains the S-identifiers

and strings recognized by tae parser. Each entry consists of a

pointer to the spelling of the title in string storage, plus

information about the "kind" of the entry (either attribute,

nonterminal, S-terminal, former, S-identifier or string). If the

entry corresponds to a nonterminal or a format, {it contains the

address of the respective description in byte addressed storage; if

it corresponds to an S-terminal, it contains the symbol table address

of the attribute associated with it; {if (it corresponds to an

attribute, it contains the type and undertype of the attribute. In

MUTILATE, a title value is represented by the address of its symbol

table entry.

107 |

A MUTILATE segment is a sequence of MUTILATE instructions

occupying contiguous positions in byte addressed storage; the address

of a segment is tne address of its first instruction. Each segment

in storage corresponds to a parallel statement, procedure or function

in the SPINDLE definition. A process is a dynamic instance of a

segment and it is associated with a stack and a node. To execute a

process is to interpret the instructions of its segment, starting
with the first one; the instructions operate on the associated stack

and the attributes of the associated node and its direct descendants.

A process is represented by an element of linked storage called a

Process Status Word (PSW) divided into the fields HEAD, STACK,

VERSION, ID, LOC, and LINK. HEAD and STACK contain pointers to the

associated node and stack respectively. VERSION and ID are used for

disambiguation purposes; VERSION contains an integer and ID a

pointer. LOC contains the address of an instruction: either the

address of the segment or the address of an instruction that caused

the passivation of the process. LINK contains a pointer and is used

to link PSW's together in various lists asdescribed below.

The interpreter operates in a pseudo parallel fashion with

exactly one of the active processes (called the current process)

being executed at any time; the register CURRENT pointsto its PSW. |

the PSWs of the remaining active processes are organized as a stack,

called the PROCESS stack; the register PROCESS points to the top

el:ment of the stack. When the current process terminates its PSW is

Glscarded; when it passivates, its PSV is transferred somewhere else.

When a process is first activated, a PSW is created with its

segment's address in the LOC field. When a process is reactivated its

PSW is transferred to the PROCESS stack; the PSW's LOC field contains :

the address of the instruction that caused the passivation.

108

when the current process terminates or passivates, the one

whose PSW is at the top of the stack is made current; CURRENT points

to the POSW, which {is removed fiom PROCESS. The MUTILATE registers

LOC, HEAD and A are loaded with the contents of LOC (CURRENT),

HEAD (CURRENT), and STACK (CURRENT) respectively. The MUTILATE

register is tlien loaded with a pointer to the second element of the

stack (if any). The process is then executed using the stack

referenced by A and the node (and its direct descendants) referenced

by HEAD. When a process passivates, the interpreter immediately

stores the contents of LOC and A in LOC(CURRENT) and STACK (CURRENT)

respectively and remcves its PSW from CURRENT. In MANAGEMENT mode,

the interpreter will make another process current. While a process

is being executed the interpreter is in EXECUTE mode. When a process

is terminated, the PSW pointed to by CURRENT is discarded and the

interpreter switches to MANAGEMENT mode.

An attribute is represented as an element of linked storage

divided into the fields TYPE, UNDERTYrE, SELECTOR, UND, IND, VALUE

and LINK. TYPE and UNDERTYPE contain respectively the type and

undertype &ssociated with the attribute. SELECTOR contains the

selector: if it is an integer, its negative value is stored; if it is

a title, the address of its symbol table entry is stored. UND is a

bit; if its value is 1, the attribute is undefined. Associated with |

every undefined attribute is a linked list formed by the PSWs of the

processes passivated trying to access {ts value. The list {is

organized as a stack (using the LINK fields of the PSWs) and is

called the interrupt stack. In an undefined attribute, VALUE contains

a pointer to the associated interrupt stack. If the value of the bit

field IND is 1, the attribute is indirect and VALUE contains a

109 | |

pointer to another attribute. An attribute cannot be both undefined

and indirect, thus UND and IND cannot both be 1. If UND and IND are

both 0, VALUE contains the value of the attribute. If the attribute

ls elementary the field contains a value of the proper type. If the

attribute is composite, its components form a linear list (using the

LINK field) and VALUE contains a pointer to the first element of the

linear list. If the attribute is of type LIST the components are
ordered according to their position in the list; i.e, given a list

attribute A, the first element in the linear list formed by the

components is CAR(A), the second CAR(CDR(A)) and s¢ on. If the

attribute is of type CONSTRUCT the linear list is ordered in :

ascending order of the values of the SELECTOR field of the

components. As a consequence a component whose selector is an

integer always precedes a component whose selector is a title; a

component whose selector is N (a positive integer) always follows a

component whose selector is Nek (where k is a positive integer),

because -N and -(N+k) are actually stored.

The processes' stacks are formed by attributes and PSWs linked

through the PSWs' LINK fields. The attributes in the stack are always

defined, direct and have an undefined SELECTOR field. The presence

of a PSW in the stack indicates, as will be seen in section 3.3, tlat

the stack is associated with a process which is a dynamic instance of

a procedure or a function.

Nodes are represented as an element of linked storage divided

into the fields SON, LEFTB, VALUE, SELECTOR, S-TERM, SEMANTICS, AMB,

AMBIGUOUS, ONCE, CORRECT and DISAMB. SON contains a pointer to the

rightmost direct descendant of the node. LEFTB contains a pointer to

the sibling to the left of the node in the tree. The attributes

110

| belonging to the node are vrganized as the components of a construct,
and VALUE points to the first attribute in the linear 1ist. SELECTOR

contains the symbol table address of the entry that corresponds to

the nonterminal or S-terminal identifier that labels the node.

SEMANTICS is the address of the segment associated with the node.

Only one segment is associated with a node; if the SPINDLE definition

specifies more than one parallel statement for a node, the compiler

| encloses them in a parallel statement which {is then the one

associated with the node. For example, {f the semantic rules of a

production are embodied in the exnrlicit parallel statements PST, and

PST, and the implicit parallel statement PST. the compiler will
associate with the production the segment generated for the parallel

statement §/ PST 3 PST ; PST /5. AMB {s a bit and if its value is 1 |
the node is ambiguous. In this case the field AMBIG..US contain: a

pointer to another version of the ambiguous node; otherwise AMBIGUOUS

points to the node's nearest ambiguous ancestor. If the value of the

bit feld ONCE is 1 the node is ambiguous, and the subtree sprouting

from it has been tested. If the value of the bit field CORRECT is 1, |
the node is ambiguous and the subtree has been tested and found

correct. If the value of the bit field DISAMB is 1 the node is |
ambiguous but has been found to have only one correct subtree which a.

is the one sprouting from the node.

Notice that an ambiguous node is represented by a set of nodes,

chained through the AMBIGUOUS field. The node at the head of the

chain is called the (main) ambiguous node; the others are called |
versions of the node. In particular, the second node in the chain is

called the auxiliary node of the main one. Only the main ambiguous

111

node belongs to the tree in the sense that ancestors and siblings
point to it and not to its versions.

The interpreter initiates a run by loading the definition

generated by the compiler into the various storages and building the

tree produced by the parser in the linked storage. At the same time,

AMBTABLE is built {in the table storage; 1t associates an integer

value (initially zero) with each main ambiguous node. AMBTABLE is

used to purge from PROCESS those PSWs created while testing a subtree

of an ambiguous node, once the testing is complete. Contrary to what

was stated in Chapter 1, initially the nonterminal tree nodes have no

attributes attached to them; attributes are created "on demand”, by

the execution of instructions. The tree is traversed depth-first,

left to right, using a function and stack called DEVELOP. The stack

contains pointers to tne nodes of the tree; initially the stack

contains a pointer to the root node. when DEVELOP is «called it

returns as a value, the pointer at the top of the stack; it also

removes the top elemnt of the stack and inserts pointers to the

descendants of the node referenced by the removed pointer. A call to

DEVELOP when the stack is empty ends the run. When the node

referenced by the value returned by DEVELOP, called the developing

node, is ambiguous, a register AAMB is set to point to the node;

otherwise AAMB is not touched. Then, each of the direct descendents D

of the developing node is examined: if UND(D) = 0, set

AMBIGUOUS(D) « AAMB; otherwise set VALUE (AMBIGUOUS(D)) « AAMB. This

establishes the ancestor line of ambiguous nodes; each node points to

its nearest ambiguous ancestor. If the node is not {itself ambiguous

the linking {is done through the AMBIGUOUS field; otherwise through
the value fleld of its auxiliary node. Initially the value of AAMB is

NIL. |

112

DEVELOP is called whenever the PROCESS stack is empty; it |

returns a pointer to the developing node. A PSY is then created,

(which is a dynamic instance of the segment astclaied with the

node), inserted in PROCESS and the run goes on. "1 the PSW, HEAD

points to the node, STACK is NIL, and LOC contains the address of the

associated segment obtained from the SEMANTICS fieid of the node. If

the node is ambiguous ID is set to point to it, otherwise it is set
to the same value as the field AMBIGUOUS of the node. VERSION is set

to the same value as the entry in AMBTABLE corresponding to the

pointer in ID.

When a PSW gets to the top of PROCESS, its VERSION and ID field

are examined. If the value in VERSION 1s less than the value {in

AMBTABLE corresponding to the value in IN, the PSV is removed from

the stack and discarded.

In addition to the tables mentioned above, the interpreter

maintains a taoie, INTABLE, whose entries point to undefined nodes

and main ambiguous nodes for which DISAMB=0. At the end of a run, if

INTABLE {is nc+ empty, {its contents are printed for diagnostic

purposes.

3.3 THE INSTRUCTION SET OF MUTILATE

This section descrioes the instruction set of MUTILATE,

basically a "Polish postfix" code analogous to Burroughs computers.

The Instructions are grouped according to their functions and a brief

description of each one is presented. The description of their

113 |

execution by the interpreter follows the lines used by Knuth (Kn 68a]
to describe algorithms. The definition of TURINGOL in MUTILATE

assembly language, shown {in appendix 3, illustrates the use of the

instructions.

In addition to the registers menticned in the previous sections

(A, B, LOC, HEAD, and STACK), MUTILATE possesses registers X, Y, Z,

OPCODE, OP1i, and OP2. HereX, Y and Z are general purpose registers, |

OPCODE contains the desigaation of the instruction being executed and |
OP1 and OP2 its operands (if any).

The description of the executions utilizes an auxiliary

procedure and an auxiliary function. The procedure, called PASSIVATE,

takes one argument, a pointer to an undefined attribute Us; when

executed the procedure passivates the current processs, inserts its

PSW into the interrupt stack of U and switches the interpreter to

MANAGEMENT mode. The function, called FINAL, takes one argument, a

pointer P to an attribute I; its execution can be described by the

algorithm:

1. if IND(P)=0 return P.

2. Set P « LINK(P) and go to I. |

The function returns the final attribute of I.

For instructions that do not belong to the "control" group (see
section 3.3.4), when the execution is completed the instruction's

length 1s added to the register LOC; notice that an instruction that

causes a passivation does not complete its execution. For all

instructions, when the machine {is in EXECUTE mode, the next

instruction to be executed is the one whose address is in LOC.

Section 3.3.8 contains an index with the opcodes of MUTILATE

crossreferenced to the section number that explain thes. ,

114

3.3.1 CONSTRUCT MANIPULATION INSTRUCTIONS

3.3.1.1 PLA § GET (Place and Get)

OPERANDS- OP1 {is either an attribute identifier or empty; OP2 is

either a node designation or empty. If OPl 15 empty so 1s OPZ

but the reverse .ay rot be true.

STACK- If OP2 is not empty the stack does not matter. If OP1 is not

empty but OP: is, A is a poinier to a construct. [If both OP1

anc OP2 are empty A is either a title or an integer ané¢ B is a

pointer to a construct.

DESCRIPTION- The instructions look for attributes in either a node or

a construct, create them if they are not present and leave a

pointer in the stack to the looked for attribute. A PLA

instruction looking for a component in an undefined attribute

will create a new attribute; under the same circunstances a

GET instruction would cause a passivation. A PLA instruction

looking for an attribute in an ambiguous node causes a |

passivation while a GET does not. Under all other |

circunstances, the two instructions behave in exactly the san
way.

EXECUTION-

1. If OP2 is empty go to S. Set X « "pointer to the node

designated by 0OP2". If AMB=1 and DISAMB=0 and OPCODEsPLA,

passivate the current process and discard its PSW.

) 115 |

2. Insert an attribute in the stack. Set TYPE(A) « POINTER.

3. Look for the attribute whose selector is OP1, among the

attributes of the node X; if the attribute is there, set

VALUE (A) to point to it and END.

4. Create an attribute with the type and undertype associated

with OP1 and set Y to point to it; set UND(Y) « 1,
VALUE(A) « Y; make the attribute Y part of the linked list

formed by the other attributes of the node X; END.

S. If OPl1 is empty, set X « FINAL(VALUE(B)); otherwise set

X « FINAL(VALUE(A)). If UND(X)s1 and OPCODE«PLA transfer

the {interrupt stack of X to PROCESS.

6. If OP1 1s empty, set Z « VALUE(A) and remove A from the

| stack; otherwise set Z « OPI.

7. Look for the attribute whose selector is 2, among the

components of X: if the attribute is there, set VALUE(A) to

point to it and END.

8. Create an attribute. If Z 1s an attribute identifier the

attribute has the type and undertype associated with Z;

otherwise the undertype of X determines the type and

undertype. Set Y to point to the attribute, UND(Y) « 1,

VALUE(A) « Y; make the attribute Y part of the linked list

formed by the other components of the attribute X.

9. END. |

116

3.3.1. 2. PLAN (Place New) :

OPERANDS- OP1, an attribute identifier. |

DESCRIPTION- This instruction creates a new attribute and leaves a

pointer to it at the top of the stack. It is used to implement

SPINDLE's assighment expression,

EXECUTION-

1. Insert a new element in the stack; set TYPE(A) « POINTER. |

2. Create an attribute whose type and undertyns are the ones

associated with OP1 and set Y to point to the attribute.

Set UND(Y) « 1, VALUE(A) « Y. oo

3. END.

3.3.1.3 GETN (Get Next)

OPERANDS - None.

STACK- A pointer to an attribute.

DESCRIPTION- The instruction returns a pointer to the attribute

that follows the one initially pointed at.

EXECUTION-

1. Set VALUE (A) « LINK(VALUE(A)).

2. END.

117

3.3.1.4 FIND (Find)

OPERANDS- OP1 is either empty or is an attribute identifier. x
STACK- If OP1 is empty A contains either a title or an integer and B

ils a pointer; otherwise A is a pointer.

DESCRIPTION- The instruction looks in a linked list for an attribute
whose selector is given and leaves at the top of stack a

pointer to it; if the linked list is empty or the attribute is

not there, a NULL pointer is left at the top of the stack.

This instruction is used to imp)ement SPINDLE's function FIND.

EXECUTION-

1. If OP1 is empty, set Z « VALUE(A) and remove A from the

stack; otherwise set Z « OP1. :

2. If VALUE(A)=NIL, END.

3. Set X « VALUE(A). | |

4. If SELECTOR (X)=2, set VALUE(A) « X and END. |

5. 1f SELECTOR(X)»Z, set X « LINK(X) and go to 4: otherwise

set VALUE (A) « NIL.

0. END.

3.3.1.5 FMT (Format)

OPERANDS- OP1, a format identifier.

STACK- A is a pointer to a construct. |

118 |

DESCRIPTION AND EXECUTION- The instruction places a component FORMAT

in a construct and assigns OP1 to it. The instruction 1s used

to {ipplement SPINDLE's <format assignment. Its execution {is

equivalent to the execution of the sequence of MUTILATE

instructions {(PLA (FORMAT), ASSI(1OP1) }. |

J. '.6 REP (Reproduce)

OPERANDS~- None.

STACK- A is any attribute and B is aconstruct.

DESCRIPTION AND EXECUTION- The {instruction implements the "="

operator of SPINDLE. The execution {is equivalent to the

execution of the sequence of MUTILATE instructions (NAME,

PLA).

2¢ 3.2 LIST MANIPULATION INSTRUCTIONS

The auxiliary procedure FIXLIST {is used to describe the

execution of list manipulation instructions. Its specification is:

ARGUMENTS- R, a regi.ster, ei~her the A orB register.

DESCRIPTION- Ths procedure checks the attribute to whicn the register

points. If it is a list sttribute nothing happens. If {it {s a

pointer to a list attribute then the pointer is substituted by

a list with the same components as the list attribute

referenced by R.

EXECUTION- |

2. Set X « VALUER). If UND(X)=1, PASSIVATE(X).

3. Set TYPE(R) « LIST, VALUE(R) « VALUE (X).

4. RETURN.

3.3.2.1 CAR (Car)

OPERANDS- None.

STACK- A is either a list attribute or a pointer to one.

DESCRIPTION- A pointer to the first component of the list is left in

the stack.

EXECUTION-

1. Execute FIXLIST(A). If VALUE(A)=NIL this 1s an error.

3. END.

3.3.2.2 CDR (Cdr)

OPERANDS- None.

STACK- A is either a list attribute or a pointer to one.

120

DESCRIPTION- A new 1list is left in the stack, composed of all

elements of the {nitial list but the first. .

EX: .CUTION-

1. Execute FIXLIST(A). If VALUE(A)aNIL this is an error.

2. Set VALUE(A) « LINK(VALUE(A)).

3. END. | |

3.3.2.3 CONS (Cons) |

OPERANDS- None.

STACK- A is any attribute; B is either a list attribute or a pointer

to one.

DESCRIPTION- The instruction inserts a new element at the front of

the list in B.

EXECUTION- |

1. Execute FIXLIST(B). Set X « A, Remove A from the stack. |

2. If TYPE(X)#POINTER or VALUE(X)s=NIL, set LINK(X) « VALUE(A),

VALUE(A) « X and END. -
3. Set X « FINAL(VALUE(X)). Make a copy of the attribute

referenced by X and piace a pointer to the copy in Y. Set |

IND(Y) « 1, VALUE(Y) « X, LINK(Y) « VALUE(A), VALUE(A)« Y.

4, END.

121

3.3.2.4 LIST (List)

OPERANDS- None.

DESCRIPTION- A null list is inserted in the stack.

EXECUTION- }
1. Insert a new attribute in the stack.

2. Set TYPE(A) « LIST, VALUE(A) « NIL.

3. END.

3.3.2.5 APEND (Append)

OPERANDS- None.

STACK- A is either a list attribute or a pointer to one; and so is B.

DESCRIPTION- The components of the list in A are appended to the list

attribute in B by changing the link of the last component of

B.

EXECUTION-

1. Exacute FIXLIST (A), FIXLIST(B). :

2. If VALUE (A)sNIL, go to 5. If VALUE(B)=NIL, set

VALUE(B) « VALUE(A), go to 5. Set X « VALUE (B).

3. If LINK(X)sNIL, set LINK(X) « VALUE(A), go to S. |

4. Set X « LINX(X), go to 3. :

S. Remove A from stack.

6. END.

122

3.3.2.6 RVRS (Reverse)

OPERANDS- None.

STACK- A 1s a 1ist attribute or a pointer to one.

DESCRIPTION- The instruction reverses the order of the components of

the list.

EXECUTION-

1. Execute FIXLIST(A). If VALUE (A)sNIL or LINK(VALUE(A))=sNIL,

END; otherwise set X « VALUE(A), Z « NIL.

2. Set Y e« LINK(X), LINK(X) « 2, 2 « X, X « VY,

3. 1£f XsNIL go to 2. Set VALUE(A) « Z.

4. END.

3.3.3 STACK MANIPULATION INSTRUCTIONS

3.3.3. 1 POP (Pop)

OPERANDS- None.

STACK- A 1s any attribute. |

DESCRIPTION AND EXECUTION- Remove the top element from the stack.

123

3.3.3.2 DBL (Double)

OPERANDS- None.

STACK- A is any attribute,

DESCRIPTION AND EXECUTIOM- A copy of the top element of the stack is

inserted in the stack.

3.3.3.3 FLIP (Flip)

OPERANDS- None. |

STACK- A and B are any attributes. :

DESCRIPTION- The two top elements of the stack are interchanged. |
EXECUTION- :

1. Set X « LINK(B), LINK(B) « A, LINK(A) « X, A « B,

B « LINK(A). |

2. END. |

3.3.4 CONTROL INSTRUCTIONS

124

3.3.4.1 JUMP (Jump)

OPERANDS- OP1, the address of an instruction.

DESCRIPTION- Transfers control <*o the instruction whose address is

OP1.

EXECUTION-

1. Set LOC « OP1.

2. END.

3.3.4.2 JUMPF & JUMPT (Jump False and Jump True)

OPERANDS- OP1, the address of an instruction.

STACK- A is any attribute. |

OESCRIPTION- Transfers control to the instruction whose address is

OP1 if A contains the proper value. (TRUE if JUMPT or FALSE if

JUMPF). |

EXECUTION-

1. If VALUE(A) «FALSE or VALUE(A)=0 or VALUE(A)=NIL, set

X « FALSE; otherwise set X « TRUE.

2, If XsTRUE and OPCODE=JUMPT, set LOC + OP1 and END.

3. If X«FALSE and OPCODE=JUMPF, set LOC « OP1 and END.

4. Set LOC « LOC + L (where L 1s the length of the

instruction).

5. END.

125 |

3.3.4.3 PAR §& PARN (Parallel and Parallel New)

OPERAND- OP! is the address of an instruction.

STACK- If OPCODEsPAR, A is any attribute,

DESCRIPTION- These instructions create a new PSW and insert it in

PROCESS. PARN associates an empty stack with the new process;

PAR associates a stack containing a copy of the top element of

the current stack.

EXECUTION

l. Create a new PSW with a pointer to it in X.

2. Set LOC (X) «~ OP}, HEAD (X) « HEAD (CURRENT),

ID(X) « JD(CURRENT), VERSION(X) « VERSION (CURRENT).

3. If OPCODEePARN, set STACK(X) « NIL; otherwise create a copy

of the attribute in A and associate this one element stack

with the new PSW. |

4. Insert the new PSW in PROCESS.

COMMENTS- PAD 1s used to implement parallel compound assignments.

OP1 1s the address of a segment.

3.3.4.4 CALL (call)

OPERANDS- OP1, an instruction address.

126

DESCRIPTION- This inst:uction effecis a procedure call. It passivates

the current process and creates and activates a new one

associated with the procedure.

EXECUTION-

1. Set LOC « LOC « L (where L {is the length of the

instruction). |
2. Create a new PSW, with a pointer to it placed in X. Set

ID(X) « ID (CURRENT), VERSION(X) « VERSION (CURRENT),
LOC(X) « OP1. Create a new node and place a pointer to {it

in HEAD(X). Associate the current stack with the new PSW,. |

3. Passivate the current process and insert its PSW in the

stack of the new process.

4, Make the new process current.

3. END.

3.3.4.5 RET (Return)

OPERANDS- None.

STACK- A or B is a PSW.

DESCRIPTION- This instruction returns control to the process that

invoked the procedure,

EXECUTION-

1. If A is not a PSW, execute the MUTILATE instruction FLIP.

2. Remove the top element of A (a PSW), and leave a pointer to

it in X. Set STACK{X) + A.

127

3. Terminate the current process and make the X PSW current.

4. END.

3.3.4.6 HLT (Halt)

OPERANDS- None.

DESCRIPTION AND EXECUTION- The current process terminates, its PSW is

removed from CURRENT and discarded. If the error condition is

set the run terminates, otherwise the interpreter enters

MANAGEMENT mode.

3.3.4.7 ERROR (Error)

OPERNADS- None.

DESCRIPTION AND EXECUTION- The error condition is set. As a |
consequence the first execution of a HLT instruction will

terminate the run. Also any output instruction executed after

this one, will never cause a passivation.

128

3.3.5 VALUE MANIPULATION INSTRUCTIONS

3.3.5.1 ASS (Assign)

OPERANDS- None,

STACK- A is any attribute: B is a pointer.

DESCRIPTION- This is the assignment instruction with the form B :a A.
EXECUTION

1. Set X « VALUE(B). If UND(X)s1l, save the interrupt stack of

X. Set UND(X) « 0, IND(X) « O.

2. If TYPE (A) #POINTER, set VALUE (X) « VALUE (A)

(TYPE(X) =TYPE(A) must be true) and go to 6.

3. If VALUE(A) «NIL, set VALUE(X) « NIL (TYPE(X) must “Se either

; CONSTRUCT, LIST or POINTER) and go to 6.

| 4. 1f TYPE(X)=POINTER, set VALUE(X) « VALUE(A) and go to 6.
| 5. Set Y « FINAL(VALUE(A)), IND(X) « 1, VALUE(X) « VALUE(Y).
| If UND(Y)={, insert the interrupt stack saved in step 1 (if

any) into the interrupt stack of Y and go to 7.

6. Insert the interrupt stack saved in step 1 (if any) into
the PROCESS stack.

7. Remove A and B. |

: 8. END. |

129

3.3.5.2 TRANS (Transfer)

OPERANDS- OP1 OP2 ... OPN, N22. OP1 contains the total number of |

operands, N, of the instruction; each of the following

operands is a triple of the form (AT, NT, NT), where AT is
’ 1 2

an attribute identifier and the NTs node designations.

DESCRIPTION AND EXECUTION- Triples are executed in succession from

left to right; the execution of each triple corresponds to the

execution of the sequence of MUTILATE instructions

(PLA(AT,NT), GET (AT,NT), ASS). The execution of a triple
1 2

where NT 1s an ambiguous node with DISAMB=0, passivates the
1

current process and its PSW is discarded.

COMMENTS- TRANS is used to implement the generation of implied

semantic rules. For ambiguous nodes, those triples which refer

to inherited attributes should precede those that refer to

synthesized attributes to guarantee that the inherited ones

get assigned.

3.3.5.3 VALC (Value of a Constant)

OPERANDS- OP1, a constant.

DESCRIPTION- An attribute with value OP1 is inserted at the top of

the stack.

130 |

EXECUTION

1. Insert an attribute in the stack whose type is the sane as

the type of OP.

2. Set VALUE(A) « OP1. :

3. END.

3.3.5.4 ASS] (Assign Inmediate)

OPERAND- OP1, a constant.

STACK- A points to an attribute.

DESCRIPTION- Or1 is assigned to the attribute referenced by VALUE (A).

EXECUTION |

1. Execute the sequence of MUTILATE instructions {(VALC(OP1),

ASS). |

2. END. |

3.3.5.5 VAL (Value)

OPERANDS- OP1 is either empty or [.

STACK- A is any attribute.

DESCRIPTION- This instruction with operand "(" implements the

bracketing operator of SPINDLE; with no operands it is used to

implement the SPINDLE function FIRST, in conjuction wita TEST

131

to implement the function NULLB, and in conjuction with COMP

to implement the relation operator. Notice that unless A

points to a composite attribute the operand is irrelevant.

EXECUTION-

1, If TYPE(A) «POINTER or VALUE(A)s=NIL, END.

2. Set X « FINAL(VALUE(A)). If UND(X)=1, PASSIVATE(X).

3. If TYPE(X)=CONSTRUCT or TYPE(X)sLIST, 1f OP1#[, set

TYPE(A) « POINTER, g0 to 4; otherwise END.

4, Set VALUE (A) « VALUE(X).

5. END.

3.3.5.6 STO (Store)

OPERANDS- CPi, an &ttribute identifier.

STACK- A is any attribute.

DESCRIPTION- The instruction assigns the value in A to the local

attribute whose selector is OPi. If the attribute is not

found, one is created. |

EXECUTION-

1. Execute the sequence of MUTILATE instructions

{PLA (OP1, LOCAL), FLIP, ASS).

2. END.

132

3.3.5.7 LOAD (Load)

~ OPERANDS- OP1, an attribute identifier.

DESCRIPTION AND EXECUTION- The instruction "loads® the local

attribute OP1 into the stack. If necessary an attribute is

created. |

EXECUTION-

1. Execute the sequence of MUTI LATE instructions

(GET (OP1, LOCAL), VAL). |

2. END.

3.3.5.8 AR (Arithmetic)

OPERANDS- OP1, either ABS, NEG, ONEP (i.e. 1+), ONEM (i.e. -1+¢), +,

-, #, /, REM.

STACK- A is an integer; B, if OP1 is a binary operator, is an

integer.

DESCRIPTION- This is the arithmetic instruction. It performs the

operation specified by OP1.

EXECUTION-

1. I& OP1 is either ABS, NEG, ONEP or ONEM, set

VALUE(A) « OP1 VALUE(A) and END.

2. Set VALUE(B) « VALUE(B) OP1 VALUE(A); remove A.

3. END.

133

3.3.5.9 LOG (Logicai) |

OPERANDS- OP1 is either NEG, AND or OR.

STACK- A is a boolean; B, if OP1 is either AND or OR, is a boolean.

DESCRIPTION=- This instruction performs the logical operation

specified by OPl.

EXECUT]ON- |

1. 1f OP1aNEG, set VALUE (A) « NEG VALUE (A) and END.

2. Set VALUE (B) « VALUE(B) OP1 VALUE(A); remove A.

3. END.

3.3.5.10 TEST (Test)

OPERANDS- None.

STACK- A is any attribute.

DESCRIPTION- This instruction implements the SPINDLE functions NULLR

and NULLB.

EXECUTION-

1. Set TYPE(A) « BOOLEAN. If VALUE(A)=0 or VALU {A)=FALSE or

VALUE (A) =NIL, set VALUE(A) « TRUE; otherwise set

VALUE (A) « FALSE.

2. END. |

134

3.3.5. 11 COMP (Compare)

OPERANDS- OPl, either =, 4, >, 2, 5 ¢

STACK- A and B are any attributes.

DESCRIPTION- This instruction implements SPINDLE's relations.

EXECUTION-

1, If the relation VALUE(B) OP1 VALUE(A) 4s TRUE, set

VALUE (B) « TRUE; otherwise set VALUE(B) « FALSE. Set

TYPE(B) « BOOLEAN. Remove A.

2. END. |

COMMENTS- TYPE (A) must be the same as TYPE(B). |

3.3.5.12 NAME (Name)

OPERANDS~ None.

STACK- A Is a non-NIL pointer to an attribute whose selector is

defined.

DESCRIPTION- This instruction implements the SPINDLE function

SELECTOR.

EXECUTION-

i. Set X « SELECTOR (VALUE(A)). :

2. If X<0, set VALUE(A) « -X, TYPE(A) « INTEGER; otherwise set

VALUE(A) « X, TYPE(A) « TITLE.

135

3. END.

3.3.5.13 GEN (Generate Numeric)

OPERANDS- None.

DESCRIPTION- Each time a GEN instruction is executed a unique integer

is generated and placed in the stack.

EXECUTION-

l. Insert an attribute in the stack. Set TYPE(A) « INTEGER,

VALUE(A) « new generated value.

2. END.

3.3.5.14 COPY (Copy)

OPERANDS- None.

STACK- A and B point to attributes with the same type and undertype.

DESCRIPTION- This instruction implements SPINDLE's copy operator.

EXECUTION- |

1. Set Y « FINAL(VALUE(A)). If UND(Y)s=1, PASSIVATE(Y).

2. Set X « VALUE(B). If UND(X)=1, set UND(X) « 0 and transfer

the interrupt stack of X to FROCESS. Set IND(X) « 0. Remove

A and B.

3. If TYPE (X) #CONSTRUCT and TYPE (X) LIST, set

VALUE (X) « VALUE(Y) and END. | |

136

4. Set VALUE(X) « NIL. For each component of Y an identical

component is created, placed in X and the component of Y is |

indirectly assigned to the component of X.

S. END.

3.3.6 OUTPUT INSTRUCTIONS

MUTILATE maintains an output queue (OUTPUT) which is printed

only when the run ends; this guarantees that for well-formed input

strings, no undefined attributes are printed. The queue 1s composed

of attributes placed in the queue by the output instructions. Each

element of the queue corresponds to an output element of SPINDLE. The

printing of each type of value and attribute was described in section

2.9.1. If UNDsl for an attribute of the printing queue, the current

line is printed and a new one started; such an attribute corresponds

to the output element "/". If IND=1 for an attribute of the printing

queue, the output for this element is unformatted; i.e, the FORMAT

component 1s considered as just another component. This is used for

tracing purposes.

3.3.6.1 OUT & OUTF (Qutput and Output with Format)

OPERANDS- None.

137

STACK- A is any attribute.

DESCRIPTION- A is removed from the stack and placed in the printing

queue.

EXECUTION

1. 1f OPCODE=0UT and the error condition is not set and there

is an ambiguous node in the ancestor line of the current

process node for which DISAMBa0, passivate the current

process, discardits PSW and enter MANAGEMENT mode.

5. 1f OPCODEsOUT and if TYPE(A)POINTER or TYPE(A)=LIST, set

IND(A) « 1.

3. Remove A and place it in the printing queue.

4. END.

3.3.6.2 OUTC (Output Control)

OPERANDS- None.

DESCRIPTION- The instruction puts a "/" operator in the printing

queue,

EXECUTION- |

1, If the error condition is not set and there is an ambiguous

node in the ancestor line of the current process node for

which DISAMB=0, passivate the current process, discard its

PSW and enter MANAGEMENT mode.

2. Insert an attribute in the stack, set TYPE(B) « POINTER and
UND (A) - 1.

138

: 3. Remove A and place it in the printing queue.

4. END.

3.3.7 THE DISAMBIGUATION INSTRUCTION - DAMB

OPERANDS- OP1 is either a nonterminal identifier or an integer.

STACK- A isa boolean attribute.

DESCRIPTION- This {instruction implements the instruction DAMB of |

SPINDLE.

| EXECUT ION-

1. Set X « [D(CURRENT).(ID points to the nearest ambiguous

node in the ancestor line of the process' node.) If OP1 is

an integer, set Z « 1 and go to 4.

2. If SELECTOR (X)=OP1 go to 6.

3. Set X ~ VALUE(AMBIGUOUS(X)) (get the nearest ambiguous

ancestor of the node which is in the value field of its

auxiliary node); go to 2.

4. If OPli=Z, go to 6.

5. Set Z « Z +1, X + VALUE (AMBIGUOUS (X)) and go to 4.

6. Set Z « VALUE(A); remove A from the stack; ifDISAMB(X)=1, |

END. (If the node is already disambiguated the instruction |

has no effect.) | |

7. Increase hy 1 the value corresponding to X in AMBTABLE.

Eliminate the LOCAL attributes of X.

8. Go through the subtree originating from X and for all

developed nodes that are not S-terminals set the VALUE “ y

139

field to NIL. For those nodes that are not ambiguous set

AMBIGUOUS to NIL. For an ambiguous node increase the
corresponding entry in AMBTABLE by i; set the bits ONCE and

CORRECT in all the versions of the node to 0; set VALUE of

its auxiliary node to NIL. (The tree must be cleared

because one node may belong to more than one ambiguous

subtree.) Eliminate fron the DEVELOP stack any element that
points to one of the nodes of the subtree.

9. If Z=FALSE, set CORRECT(X) « 0; otherwise set

CORRECT(X) ~ 1. (If 2Z<TRUE and one of the versions of X

has CORRECT=1, an error oc:urs.)

10. Go through all the versions of X and look for one whose

bit ONCE has value CO. If none is found go to 12; otherwise

set Y to point to the one found.

11. (Another parsing i: tested.) Set CORRECT(Y) « CORRECT (X),

ONCE(Y) « 1, Z « SON(X), SON(X) « SON(Y), SON(Y) « Z, and

go to 14.

12. (All parsings have been tried.) If CORRECT(X)=0 and for

all versions Vv of X, CORRECT (V) =0, set

X « VALUE (AMBIGUOUS(X)) and go to 7. (All parsings are

incorrect so try the nearest ambiguous node in the ancestor

line.)

13. (There {is one correct parsing.) Set DISAMB(X)=1. If

CORRECT (X)#1, set Y to point to the version fcr which

CORRECT is 1, Z « SON(X), SON(X) « SON(Y), SON(Y) « Z.

14. Insert a pointer to X in DEVELOP. Passivate the current

process and discard its PSW. Enter MANAGEMENT mode.

15. END. |

140

COMMENT- The existing implementation of MUTILATE has a different DAMB

than the one described here. As implemented - now, oncs a

correct parsing is found, the other parsings are not tested;

the PSWs corresponding to the processes interrupted trying to

"PLA" the synthesized attributes of the node (that are saved

instead of being discarded) are inserted in PROCESS, DISAMB is

set to 1 and the current process continues.

3.3.8 INDEX OF OPCODES

OPCODE SECTION

APEND 3.3.2.5

AR 3.2.5.8

ASS 3.3.5.1

ASS] 3.3.5.4

CALL 3.3.4.4

CAR 3.3.2.1

COR Je 30 20 2

COMP 3.3.5.11

CONS 3.3.2.3

COPY 3.3. 5.14

DAMB 3.3.7

DBL 3.3.3.2

ERROR 3.3.4.7

FIND 3.3.1.4

FLIP 3.3.3.3

FMT 3.3.1.5

GEN 3.3.5.13

GET 3.3.1.1

GETN 3.3.1.3

HLT 3.3.4.6

JUMP 3.3.4.1

JUMPF' 3.3.4.2

JUMPT 3.3.4.2

LIST 3.3.2.4

LOAD 3.3.5.7

LOG 3.3.5.9

NAME 3.3.5.12

ouT 3.3.6.1

ouTC 3.3.6.2

: OUTF 3.3.6.1

PAR 3.3.4.3

141

PARN 3.3.4.3
PLA L311
PLAN 3.3.1.2
POP 3.3.3.1
REP 3.3.1.6
RET 3.3.4.5
RVRS 3.3.2.6
STO 3.3.5.6
TEST 3.3.5. 10
TRANS 3.3.5.2
VAL 3.3.5.5
VALC 3.3.5.3

142

CHAPTER 4

A JEFINITION OF SIMULA

This chapter contains the SPINDLE defintion of a subset of the
SIMULA 67 Common Base Language (DMN 70) . The definition 1s closely

patterned after Wilner's definition of SIMULA (Wi 71); it 1s

intended to show t': viability of FOLDS for the definition of large

programming languages. The definition also serves as an example of a

variety of SPINDLE features and programming techniques.

The definition is essentially an implementation of Wilner's

definitions. Modifications were introduced mainly where errors were

found and where they simplified the definition without changing its

character. Whenever possible, the attributes' names and structures

were processed as in Wilner's specification. However, the present

definition does differ from Wilner's in three {important aspects.

First, the present definition takes into account the existence of

SPINDLE's lexical analyzer. Second, labels are handled here as in

TURINGOL, contrary to the technique used by Wilner which resembles

Knuth's technique in TURINGOL; the implementation of Wilner's scheme

in SPINDLE would be very costly in terms of the number of semantic

rules necessary to process the two attributes he called a and 2. The

third difference is in the way the target language program is

handled. In this definition, a program is a set of pairs, each

consisting of a segment and its designation; each segment stands for

a sequence of instructions. Wilner uses an attribute R which

143

collects such pairs throughout the tree and carries thee to the root

node. In the present definition instead of collecting the segments,

they are printed by the functiou OUTPUT at each node where they

occur. This simplifies the definition by doing away with the

attribute R which would otherwise occur throughout the tree. The

code generated from the present definition runs in the machine

defined by Wilner [Wi 71) modified as follows:

- The instruction CHE has an additional field CLASS,

containing a boolean value. | |

- The instruction MAK has an additional field COPIES, :

containing an integer value.

- The instruction GEN, after creating the new object and

transferring the actual 's to its stack, creates a new stack
w

level by placing a ret and a mark in the stack.
| w w

~ The instruction CHE in a first step, if the CLASS field is

TRUE, copies to the top of the stack the actual which is in |
w

the next lower level in the stack and whose stack

displacement is given by the field D of the instruction.

- Step 3 in the execution of both VAL and ADDR is modified so

that the address left in the stack is not a pointer to the

lowest mark in the stack of the remote object but to the
W ,

one above the lowest.

- The last step in the execution of MAK is modified so that

before "fin", a number of array s (equal to the value in the So
w

14.

COPIES field), are placed in the stack. For each new array
Ww

a copy of the structure pointed to by the array at the top
Ww

of the stack is created with the new array pointing to the
w

new structure,

These modifications are necessitated due to chaizes made ip Wilner's

definition to correct tie mechanism for concatenating class segments

and to correct the mechanism for creating arrays declared in the same

array segnent,

This chapter has two sections: the first contains the definiton

of SIMULA in SPINDLE, the second a comparison of the definition with

Wilner's definition. Appendix 4 contains a set of SIMULA programs and

the target language generated from them by the definition running in

MUTI LATE.

4,1 DEFINITION |

TERMINALS ARE + == / (1) []) . , =~ <=>: 3

RESERVED WORDS ARE AND, ARRAY, BEGIN, BOOLEAN, CLASS, DETACH, DIV,
DO, ELSE, END, EQUIV, FALSE, GO, IF, IMPLIES, IN,
INNER, INSPECT, INTEGER, [S, LABEL, NAME, NEW,
NONE, OR, OTHERWISE, PROCEDURE, QUA, REAL, REF, |
RESUME, SWITCH, THEN, THIS, TO, TRUE, VALUE,
VIRTUAL, WHEN, WHILE

ATTRIBUTES ARE

ADDR = CONSTRUCT |
AEMDEC = BOOLEAN

145

ALSO = BOOLEAN
APA = INTEGER

ARULE = RULE

ATTR = [INTEGER

BEGUN = BOOLEAN

CDECL = LIST

CL = INTEGER

CLASSN = POINTER

CODE = RULE

COND = BOOLEAN

D0 = INTEGER

D = DO

DAR = BOOLEAN

DISP = INTEGER
DN = INTEGER

E = CONSTRUCT, PL
El = E

EMDEC = BOOLEAN

ENV = E

ENV1 a ENV

ENVA = ENV

FIRSTST = BOOLEAN

FJUMP = LABELI

FORMALE = E

GENUS = CONSTRUCT

GENUS1 = GENUS

GENUSZ2 = GENUS
INSTR s CONSTRUCT

ITEM = LIST

JLABEL = INTEGER
. KIND s TITLE

L = INTEGER
LABEL] = INTEGER

LEGIT = INTEGER
LEVEL = INTEGER

LL = INTEGER
LN = INTEGER

LOCALE = E

MAP = CONSTRUCT, INTEGER
MARK = TITLE

MARK1 = TITLE

MAT « CONSTRUCT, MATVEC
MATRIX = MAT

MATVEC = CONSTRUCT :
MOAMB « BOOLEAN

MODE « TITLE

N s INTEGER

Ni « N

N2 = N

NAMETB = NTB

NEXT1 = POINTER

NEXT2 = NEXT1

NEXT3 = NEXT1

NFORMALS s INTEGER

NLOCALS = INTEGER

NOLABEL = BOOLEAN

NTB = CONSTRUCT, INTEGER
NUMDEC = INTEGER

146

O = OPEN

OBJECT = INTEGER
OPEN = TITLE

OPER = TITLE

ORIG = INTEGER

OUTERMOST = BOOLEAN

PL = CONSTRUCT

PL1 = PL

PLACE = TITLE

PPL = PL

PREF = INTEGER

PREFIX = POINTER

QTEVEC = CONSTRUCT
QUAL = INTEGER

QUAL1 = QUAL
QUALZ2 = QUAL

QUALTB = CONSTRUCT, QTBVEC
RULE = LIST

RULE1 = RULE

RULE2 a RULE
SEGMENT = INTEGER

SID = BOOLEAN

SL = S\N |
SM = SN

SN = INTEGER

SP = TITLE

SPEC = GENUS

START = BOOLEAN

T = TITLE :

TYPD = GENUS

TYPDS = TYPD ;
TYPE = TITLE
TYPE1 = TYPE

TYPE2 = TYPE |
TJUMP = LABELI
UNDECL = RULE

USE = TITLE

V = [NTEGER

VALENCE = INTEGER

VIRDECL = CONSTRUCT, INSTR
VIRDECL! = VIRDECL

VIRTUALE = E

XX = CONSTRUCT

COMMENT

THE ATTRIBUTES E AND ENV REPRESENT THE SYMBOL TABLE: E COLLECTS

THE DECLARATIONS TEAT ARE SPREAD THROUGH THE TREE BY ENV. EACH ENTLY

147

OF THE SYMBOL TABLE IS A CONSTRUCT OF TYPE PL (FOR PROPERTY LIST)

WITH THE SELECTOR CONTAINING THE SPELLING, AND WITH THE COMPONENTS OF

THE ENTRY REPRESENTING THE PROPERTIES OF THE IDENTIFIER. PL MAY HAVE

COMPONENTS GENUS, ADDR, ATTR, N, NFORMALS, NLOCALS, LOCALE, FORMALE,

VIRTUALE, SEGMENT, PREF, OBJECT AND CODE. GENUS CONTAINS THE TYPE AND

KIND OF AN IDENTIFIER: WHEN THE TYPE IS "REF" IT ALSO CONTAINS A

COMPONENT QUAL, WHOSE VALUE 1S THE SEGMENT DESIGNATION OF THE CLASS

THAT QUALIFIES THE REFERENCE. ADDR 1S THE STACK ADDRESS OF THE

INSTRUCTION CORRESPONDING TO THE DECLARATION OF THE IDENTIFIER: IT

HAS COMPONENTS LN, THE STACK LEVEL, AND DN, THE STACK DEPTH. FOR

IDENTIFIERS THAT ARE CLASS ATTRIBUTES (ATTRIBUTES HERE IN THE SIMULA

SENSE) ATTR CONTAINS THE SEGMENT DESIGNATION OF THE CLASS, OTHERWISE

IT CONTAINS A 0. N GIVES THE NUMBER OF DIMENSIONS ASSOCIATED WITH

ARRAY IDENTIFIERS AND THE LENGTH OF THE SWITCH LIST ASSOCIATED WITH A

SWITCH IDENTIFIER. NFORMALS GIVES THE NUMBER OF FORMAL PARAMETERS

FOR CLASSES AND PROCEDURE IDENTIFIERS. THE REMAINING COMPONENTS OF PL |

ARE ASSOCIATED ONLY WITH CLASS IDENTIFIERS. NLOCALS CONTAINS THE

NUMBER OF ATTRIBUTES (IN THE SIMULA SENSE) OF A CLASS. LOCALE IS A

SYMBOL TABLE WHOSE ENTRIES ARE THE ATTRIBUTES OF THE CLASS. FORMALE

1S THE SYMBOL TABLE FOR THE FORMAL PARAMETERS. VIRTUALE IS THE SYMBOL |

TABLE FOR THE VIRTUAL ATTRIBUTES OF THE CLASS IDENTIFIER. SEGMENT

CONTAINS THE SEGMENT DESIGNATION OF THE CLASS WHICH IS THE

DESIGNATION NUMBER OF THE SEGMENT ASSOCIATED WITH THE CLASS. PREF

CONTAINS THE SEGMENT DESIGNATION OF THE PREFIX CLASS. OBJECT CONTAINS

THE SEGMENT DESIGNATION OF THE PROTOTYPE ASSOCIATED WITH THE CLASS

IDENTIFIER. CODE CONTAINS THE RULE THAT STANDS FOR THE SEGMENT

ASSOCIATED WITH THE CLASS.

PL IS ALSO USED TO CONVEY THE PROPERTY LIST OF EXPRESSIONS AND

148 |

THEIR COMPONENTS. PPL IS USED TO PASS TO THE MAIN PART OF A CLASS

DECLARATION THE PROPERTY LIST ASSOCIATED WITH THE PREFIX.

RULE STANDS FOR A SEQUENCE OF INSTRUCTIONS IN THE TARGET

LANGUAGE: IT [IS OF TYPE LIST WITH COMPONENTS OF TYPE INSTR. RULE

CONTAINS BOTH TARGET LANGUAGE INSTRUCTIONS AND PSEUDO-INSTRUCTIONS:

TARGET LANGUAGE INSTRUCTIONS HAVE A COMPONENT FORMAT, PSEUDO-

INSTRUCTIONS DO NOT. A PSEUDO-INSTRUCTION WITH COMPONENT LABELI

STANDS FOR A LABEL WITH LABEL! CONTAINING THE UNIQUE INTEGER

ASSOCIATED WITH THE LABEL. A COMPONENT MARK IDENTIFIES THE PSEUDO-

INSTRUCTIONS THAT MARK THE POSITIONS OF "INIT" AND "INNER" IN THE

SEGMENT ASSOCIATED WITH A CLASS. A COMPONENT MARK! IDENTIFIES THE

PSEUDO-INSTRUCTIONS THAT ENCLOSE THE SEQUENCE OF INSTRUCTIONS

CORRESPONDING TO THE CALCULATION OF ARRAY BOUNDS. (SEE THE FUNCTION

VIRMERGE FOR AN EXPLANATION OF THE USE OF THOSE MARKERS).

INSTRUCTIONS THAT REFER TO LABELS CONTAIN A COMPONENT JLABEL WHOSE

VALUE IS THE UNIQUE INTEGER ASSOCIATED WITH THE LABEL. THE PROCEDURE

OUTPUT BINDS LABELS TO ADDRESSES AND ASSOCIATES THE ADDRESS

ASSOCIATED WITH THE LABEL IN JLABEL WITH THE COMPONENT DISP OF THESE

INSTRUCTIONS. THE COMPONENT OPER 1S USED IN VARIOUS INSTRUCTIONS TO

HOLD AN OPERAND FOR THE INSTRUCTIONS.

UNDECL IS A LIST OF THE SAME NATURE AS RULE AND IS USED TO

COLLECT THE INSTRUCTIONS RESULTING FROM THE DECLARATION OF LABELS. |

VIRDECL IS A CONSTRUCT WHOSE COMPONENTS ARE INSTRUCTIONS |

RESULTING FROM THE "REDECLARATION" OF VIRTUAL CLASS ATTRIBUTES. THESE

INSTRUCTIONS REPLACE THE INSTRUCTIONS ASSOCIATED WITH THE PREVIOUS

DECLARATIONS OF THE CLASS ATTRIBUTES: THE FUNCTION VIRMERGE REPLACES

THE INSTRUCTIONS ASSOCIATED WITH THE PREVIOUS DECLARATION BY THE

INSTRUCTIONS IN VIRDECL. |

149

ENV1 IS USED TO PROPAGATE THE VIRTUALE OF A CLASS SO THAT THE

REDEFINITION OF VIRTUAL IDENTIFIERS CAN BE PERFORMED.

ENVA IS USED TO CARRY THE OUTER ENVIRONMENT OF A PROCEDURE OR A

CLASS (PLUS THE FORMAL PARAMETERS) TO THE EXPRESSION THAT CALCULATES

THE BOUNDS OF AN ARRAY WHICH HAS BEEN DECLARED EITHER IN A PROCEDURE

OR A CLASS BODY. |

CL IS USED TO CONVEY THE SEGMENT DESIGNATION OF A CLASS TO THE

DECLARATION OF ITS ATTRIBUTES.

DO AND D ARE USED TO CALCULATE THE STACK DISPLACEMENT

CORRESPONDING TO AN IDENTIFIER DECLARATION. D CAN ALSO BE VIEWED AS

THE NUMBER OF IDENTIFIERS DECLARED PRIOR TO THE IDENTIFIER

DECLARATION. |

LL INDICATES THE LEXICOGRAPHICAL LEVEL OF AN IDENTIFIER AND

ALSO THE STACK LEVEL ASSOCIATED WITH IT.

L INDICATES THE LENGTH OF A LIST SUCH AS A FORMAL PARAMETER

LIST.

OUTERMOST IS USED TO DISTINGUISH A STATEMENT WHICH IS A CLASS’

OUTER BLOCK.

TYPD AND TYPDS ARE USED TO CONVEY GENUS IN A DECLARATION. TYPDS

GETS THE GENUS FROM THE SPECIFIER AND TYPD TAKES IT TO THE VARIABLES

IN THE DECLARATION. ’

USE CONVEYS THE USE OF AN EXPRESSION: FOR ITS VALUE, FOR ITS

ADDRESS, OR FOR LATER EXECUTION (AS A PARAMETER CALLED BY NAME).

VALENCE CLASSIFIES "+" OR "-" AS EITHER UNARY OR BINARY.

| NOLABEL IS USED TO AVOID RECOGNIZING A LABELLED BLOCK MORE THAN

ONCE.

BEGUN IS USEC TO IDENTIFY BLOCKS THAT ARE EITHER A CLASS OR

PROCEDURE BODY.

150

EJUMP AND TJUMP ARE USED TO PASS THE LABEL OF AN INSTRUCTION IN

A CONDITIONAL OR CONNECTION STATEMENT.

V AND SP ARE ATTRIBUTES ASSOCIATED WITH STRUCTURED TERMINALS: V

CONTAINS THE VALUE OF AN INTEGER AND SP THE SPELLING OF AN

IDENTIFIER.

ORIG CONTAINS THE SEGMENT DESIGNATION OF THE SEGMENT WHICH

CONTAINS THE FIRST INSTRUCTION OF A SIMULA PROGRAM.
ALSO IS USED TO RECOGNIZE AN ASSIGNMENT STATEMENT WHICH IS

ITSELF A RIGHT HAND SIDE OF AN ASSIGNMENT STATEMENT.

LEGIT SERVES TO INDICATE WHETHER A SPECIFICATION PART BELONGS
TO A PROCEDURE OR A CLASS. |

PLACE IDENTIFIES THE CONTEXT OF AN IDENTIFIER LIST:

SPECIFICATION PART, NAME PART, VALUE PART OR VIRTUAL PART.
QUALTB 1S A TABLE, IN WHICH EACH ENTRY CORRESPONDS TO A CLASS.

EACH COMPONENT OF QUALTB IS A CONSTRUCT WHOSE SELECTOR IS THE SEGMENT

DESIGNATION OF THE CLASS AND WHOSE COMPONENTS ARE PREFIX, CLASSN AND

LEVEL. PREFIX CONTAINS A POINTER TO THE QUALTB ENTRY CORRESPONDING

TO THE PREFIX CLASS. CLASSN CONTAINS A POINTER TO THE SYMBOL TABLE

ENTRY CORRESPONDING TO THE CLASS. LEVEL CONTAINS THE NUMBER OF

CLASSES IN THE PREFIX SEQUENCE OF THE CLASS.

COECL IS A LIST OF POINTERS TO THE SYMBOL TABLE ENTRIES

CORRESPONDING TO THE CLASSES DECLARED IN A BLOCK. IT 1S USED BY THE

FUNCTION UPDQUALTB TO CREATE NEw ENTRIES IN QUALTS.

NTB AND NAMETB ARE CONSTRUCTS THAT ESTABLISH THE CORRESPONDENCE

BETWEEN FORMAL PARAMETERS AND THEIR POSITION IN THE STACK: THEIR

COMPONENTS ARE INTEGERS WHOSE SELECTORS ARE THE SPELLING OF THE

FORMAL PARAMETERS AND WHOSE VALUES ARE THEIR STACK DISPLACEMENT.
MAT AND MATRIX ARE CONSTRUCTS USED TO ESTABLISH THE

151

CORRESPONDENCE BETWEEN FORMAL PARAMETERS AND THEIR PROPERTIES. EACH

COMPONENT IS A CONSTRUCT WHOSE SELECTOR IS THE STACK DISPLACEMENT OF

THE FORMAL PARAMETER AND WHOSE COMPONENTS ARE MODE AND SPEC. MODE

CONTAINS THE MODE OF TRANSMISSION OF THE PARAMETER AND SPEC ITS

GENUS.

ITEM IS A LIST OF CONSTRUCTS, EACH CORRESPONDING TO A CLASS

ASSOCIATED WITH AN ENCLOSING CONNECTION BLOCK. THE COMPONENTS XX OF

ITEM CONTAIN COMPONENTS ADDR AND QUAL. QUAL CONTAINS THE SEGMENT

DESIGNATION OF THE CLASS AND ADDR THE STACK DESIGNATION OF A

REFERENCE TO THE CONNECTED OBJECT.

MAP IS USED, AS IN TURINGOL, TO BIND LABELS AND ADDRESSES.

SM, SN AND SL CONTAIN SEGMENT DESIGNATIONS OR THE UNIQUE

INTEGERS THAT REPRESENT LABELS.

APA, COND, DAR, AND SID ARE USED FOR DISAMBIGUATION PURPOSES.

THEY SERVE TO DETECT AND RESOLVE AMBIGUITIES ARISING FROM ACTUAL

PARAMETERS AND LEFT HAND SIDE OF VALUE ASSIGNMENTS WHEN THEY PARSE TO |

A SINGLE ENTITY. A SINGLE ENTITY IS EITHER AN IDENTIFIER (POSSIBLY

REMOTE), OR AN IDENTIFIER FOLLOWED BY AN EXPRESSION ENCLOSED IN

SQUARE BRACKETS, OR A FUNCTION DESIGNATOR, OR A CONDITIONAL

EXPRESSION WHOSE THEN AND ELSE PARTS ARE BOTH SINGLE ENTITIES, OR A

SINGLE ENTITY ENCLOSED IN PARENTHESIS. THEY ALSO SERVE TO DETECT THE

AMBIGUITY ARISING FROM A PRIMARY THAT PARSES TO AN IDENTIFIER. | ,
FIRSTST, EMDEC, AEMDEC, AND NUMDEC ARE USED TO RESOLVE THE

AMBIGUITIES ARISING FROM COMPOUND STATEMENTS WHERE THE FIRST |

STATEMENT IS EMPTY AND FROM UNLABELLED BLGCXS WHERE THE FIRST
STATEMENT OF THE COMPOUND TAIL IS EMPTY. FIRSTST AND EMDEC IN

CONJUCTION WITH START ARE USED TO DISAMBIGUATE INITIAL OPERATIONS

WHOSE FIRST STATEMENT IS EMPTY. | |

152 |

OPEN AND O ARE USED TO RESOLVE THE AMBIGUITY ARISING FROM AN

INSPECT STATEMENT WITH A MATCHING OTHERWISE CLAUSE WHICH IS INSIDE

ANOTHER INSPECT STATEMENT WITHOUT A MATCHING OTHERWISE CLAUSE; |

FOLLOWING IS A GLOSSARY OF THE ATTRIBUTE IDENTIFIERS USED IN

THIS DEFINITION:

ADDR - STACK ADDRESS. USUALY A COMPONENT A SYMBOL TABLE ENTRY.

AEMDEC -USED FOR DISAMBIGUATION. TRUE IF ALL THE DECLARATIONS IN A

BLOCK ARE EMPTY.

ALSO - DETECTS MULTIPLE LEFT-HAND SIDES IN AN ASSIGNMENT STATEMENT.

APA - USED FOR DISAMBIGUATION PURPOSES

ARULE - THE RULE GENERATED BY TiE DECLARATION PART OF A SPLIT BODY.

ATTR - FOR CLASS ATTRIBUTES, THE SEGMENT DESIGNATION OF ThE CLASS. A

COMPONENT OF A SYMBOL TABLE ENTRY.

BEGUN - DETECTS A BLOCK AS A CLASS BODY, PROCEDURE BLOCK OR

CONNECTION BLOCK.

CDECL - LIST OF POINTERS TO THE SYMBOL TABLE ENTRIES CORRESPONDING TO

CLASS DECLARATIONS IN A BLOCK.

CL - CARRIES THE SEGMENT DESIGNATION OF A CLASS 70 THE CLASS

ATTRIBUTE'S DECLARATIOQ.

CLASSN - POINTER TO A SYMBOL TABLE ENTRY FOR A CLASS. A COMPONENT OF

A QUALTB ENTRY.

CODE ~- THE RULE ASSOCIATED WITH A CLASS. A COMPONENT OF A SYMBOL

| TABLE ENTRY FOR A CLASS IDENTIFIER.

153

COND - A PARAMETER FOK THE PROCEDURES DISAMV AND DISAMF.

D AND DO -USED TO CALCULATE THE STACK DISPLACEMNT ASSOCIATED WITH

IDENTIFIERS.

DAR - USED FOR DISAMBIGUATION PURPOSES. TRUE IF A VARIABLE IS AN

ARRAY ELEMENT, FALSE OTHERWISE. | |
DISP - DISPLACEMENT OF AN [INSTRUCTION IN A SEGMENT. USUALLY A

COMPONENT OF INSTR.

DN - STACK DISPLACEMENT OF A VARIABLE. USUALLY A COMPONENT OF

ADDR.

E - COLLECTS SYMBOL TABLE ENTRIES.

EMDEC - USED FOR DISAMBIGUATION PURPOSES. IT 1S TRUE IF THE LAST

DECLARATION IN A BLOCK HEAD IS EMPTY.

ENV - THE SYMBOL TABLE: THE ENVIRONMENT.

ENV1 - A SYMBOL TABLE FOR VIRTUAL ATTRIBUTES.

ENVA - A SYMBOL TABLE FOR USE BY THE BOUNDS IN AN ARRAY DECLARATION. |

FIRSTST - DETECTS AN EMPTY FIRST STATEMENT.

FJUMP - UNIQUE INTEGER THAT LABELS THE INSTRUCTION FOLLOWING THE

INSTRUCTIONS TO BE SKIPPED IN A CONDITIONAL STATEMENT. |

FORMALE - SYMBOL TABLE FORMFD BY THE FORMAL PARAMETERS OF A CLASS. A

COMPONENT OF A SYMBOL TABLE ENTRY.

GENUS - THE PROPERTIES OF AN IDENTIFIER: TYPE, KIND AND CLASS

QUALIFICATION. |
INSTR = AN INSTRUCTION OF THE TARGET LANGUAGE. USUALLY A COMPONENT OF

RULE, UNDECL OR VIRDECL.

ITEM - LIST USED FOR REFERENCING OBJECTS ENCLOSING A CONNECTION |

BLOCK. COMPONENTS ARE CONSTRUCTS WITH COMPONENTS QUAL AND

ADCR. QUAL IS THE QUALIFICATION OF THE OBJECT AND ADDR THE

STACK ADDRESS OF A POINTER TO THE OBJECT.

154

JLABEL - THE UNIQUE INTEGER ASSOCIATED WITH THE LABEL OF AN

INSTRUCTION. USUALLY A COMPONENT OF INSTR.

KIND - THE KIND OF AN IDENTIFIER (IN THE ALGOL SENSE).

L - LENGTH OF A LIST SUCH AS SUBSCRIPT LIST, PARAMETER LIST, AND
ETC..

LABELI - UNIQUE INTEGER ASSOCIATED WITH A LABEL. A COMPONENT OF A

PSEUDO-INSTRUCTION WHICH CORRESPONDS TO A LABEL.

LEGIT - MARKS A SPECIFICATION PART AS BELONGING TO A PROCEDURE, A
CLASS HEADING OR A VIRTUAL PART.

LEVEL - THE PREFIX LEVEL OF A CLASS. A COMPONENT OF A QUALTB ENTRY.
LL - THE LEXICOGRAPHICAL LEVEL: THE STACK LEVEL.

LN - THE STACK LEVEL OF A VARIABLE. USUALLY A COMPONENT OF ADDR.

LOCALE - SYMBOL TABLE FORMED BY THE ATTRIBUTES OF A CLASS. A

COMPONENT OF A SYMBOL TABLE ENTRY.

MAP - TABLE THAT RELATES THE UNIQUE INTEGERS REPRESENTING LABELS TO

THE ACTUAL ADDRESSES ASSOCIATED WITH THE LABELS.

MARK - COMPONENT OF PSEUDO-INSTRUCTION MARKING THE LOCATION OF

"INIT" OR "INNER" IN THE RULE CORRESPONDING TO A CLASS BODY.

MARK] - COMPONENT OF A PSEUDC-INSTRUCTION MARKING THE BOUNDARIES OF
THE BOUND SPECIFICATIONS IN AN ARRAY DECLARATION.

MAT - MATRIX OF FORMAL PARAMETERS (REPRESENTED BY THEIR STACK :

DISPLACEMENT) AND THEIR PROPERTIES.

MATRIX - SAM AS MAT.

MATVEC - AN ENTRY OF MAT OR MATRIX.

MOAMB - USED TO DETECT THE AMBIGUITY ARISING FROM AN EMPTY MODE PART

AND/OR AN EMPTY VALUE PART

MODE - THE MODE OF TRANSMISSION CF A FORMAL PARAMETER.

N - NUMBER OF DIMENSIONS OF AN ARRAY, LENGTH OF A SWITCH LIST. A

COMPONENT OF A SYM30L TABLE ENTRY.

155

NAMETB - TABLE RELATING THE SPELLING OF FORMAL PARAMETERS TO THEIR

STACK DISPLACEMENT.

NFORMALS - NUMBER OF FORMAL PARAMETERS. A COMPONENT OF A SYMBOL TABLE

ENTRY.

NLOCALS - NUMBER OF ATTRIBUTES OF A CLASS. A COMPONENT OF A SYMBOL

TABLE ENTRY.

NOLABEL - DETECTS A MULTILABELLED BLOCK.

NTB - COLLECTS THE ENTRIES FOR NTB.

NUMDEC - USED FOR DISAMBIGUATION PURPOSES. COUNTS THE NUMBER OF EMPTY

DECLARATIONS IN A BLOCK HEAD.

0 - USED FOR DISAMBIGUATION PURPOSES. USED TO DETECT EMPTY

OTHERWISE CLAUSES

OBJECT - SEGMENT DESIGNATION OF THE OBJECT WHICH IS THE CLASS

PROTOTYPE. A COMPONENT OF A SYMBOL TABLE ENTRY.

OPEN - SAME AS O

OPER - CONTAINS OPERANDS. A COMPONENT OF INSTR.

ORIG - SEGMENT THAT CONTAINS THE FIRST INSTRUCTION OF A SIMULA

| | PROGRAM.

OUTERMOST - MARKS A STATEMENT AS THE BODY OF A CLASS.

PL - THE PROPERTY LIST ASSOCIATED WITH AN IDENTIFIER OR

EXPRESSION. HAS THE SAME STRUCTURE AS A SYMBOL TABLE ENTRY.

| PLACE - GIVES THE CONTEXT OF AN IDENTIFIER LIST. i
| PPL - PROPERTY LIST OF A PREFIX CLASS IN A CLASS DECLARATION.

PREF - SEGMENT DESIGNATION OF THE PREEIX CLASS. A COMPONENT OF A

CLASS' SYMBOL TABLE ENTRY.

PREFIX - A COMPONENT OF AN ENTRY OF QUALTB. POINTS TO THE QUALTB'S

ENTRY CORRESPONDING TO THE CLASS' PREFIX.

QTBVEC - AN ENTRY OF QUALTB.

156 |

QUAL - THE SEGMENT DESIGNATION OF THE CLASS THAT QQUALIFIES A |

REFERENCE. USUALLY A COMPONENT OF GENUS.

QUALTB - A TABL GIVING THE PREIX SEQUENCE OF CLASSES, EACH ENTRY

CORRESPONLING TO A CLASS AND CHARACTERIZED BY THE SEGMENT

LESIGNATION OF THE CLASS.

RULE - A LIST OF INSTRS. THE OBJECT CODE GENERATED FOR THE STRING

DERIVED FROM A NONTERMINAL.

: SEGMENT - THE SEGMENT DESIGNATION OF A CLASS. USUALLY A COMPONENT OF

A SYMBOL TABLE ENTRY.

SID - USED TO DISAMBIGUATE ACTUAL PARAMETERS, ETC.. IDENTIFIES AN

EXPRESSION AS A SINGLE ENTITY. |
SL, SM, SN - HOLD EITHER A SEGMENT DESIGNATION OR THE UNTQUE INTEGER

ASSOCIATED WITH A LABEL. |

SP - THE SPELLING OF AN IDENTIFIER.

SPEC - THE GENUS ASSOCIATED WITH AN IDENTIFIER IN AN IDENTIFIER

LIST.

START - USED TO LISAMBIGUATE SPLIT BODIES WHOSE FIRST STATEMENT IS

EMPTY.

T - THE TYPE OF THE PRODUCT IN A MULTIPLICATION.

TYPD - THE GENUS OF AN IDENTIFIER BEING DECLARED.

TYPDS - THE GENUS OF A SPECIFIER.

TYPE - THE TYPE OF AN IDENTIFIER. |

TJUMP - SIMILAR TO FJUMP. |
UNDECL - SAME STRUCTURE AS RULE. COLLECTS THE INSTRUCTIONS GENERATED |

BY THE DECLARATION OF LABELS.

USE - USE OF AN EXPRESSION: FOR ITS VALUE, ITS LOCATION OR FOR

LATER EXECUTION.

V - THE VALUE OF AN INTEGER.

157

VALENCE - CLASSIFIES "+" OR "-" AS EITHER A UNARY OR BINARY OPERATOR.

VIRDECL - COLLECTS THE INSTRS THAT REPLACE THE VIRTUAL ATTRIBUTES

THAT HAVE BEEN REDECLARED.

VIRTUALE - SYMBOL TABLE FORMED BY THE VIRTUAL ATTRIBUTES OF A CLASS.

A COMPONENT OF A SYMBOL TABLE ENTRY.

XX - A COMPONENT OF ITEM.

IDENTIFIERS ARE SIGMA WITH ATTRIBUTESP

INTEGERS ARE NU WITH ATTRIBUTE V

COMMENT THE FOLLOWING IS A LIST OF THE ABBREVIATIONS USED FOR THE
NONTERMINAL IDENTIFIERS AND THE PRODUCTION WHICH FIRST
FINDS THEM ON THE LEFT HAND SIDE: |

ABBREVIATION NONTERMINAL PRODUCTION

AP ACTUAL PARAMETER P95
APLIST ACTUAL PARAMETER LIST P93
APPART ACTUAL PARAMETER PART P91
AOP ADDING OPERATOR P12
ARITEXPR ARITHMETIC EXPRESSION P7
ARDECL ARRAY DECLARATION P206
ARID ARRAY IDENTIFIER P212
ARID1 ARRAY IDENTIFIER P85
ARLTST ARRAY LIST P208
ARS EG ARRAY SEGMENT P210 |
ASSST ASSIGNMENT STATEMENT P283 |
ATTRID ATTRIBUTE IDENTIFIER P84
BASICST BASIC STATEMENT P273
BLOCK BLOCK P174
BLOCKHEAD BLOCK HEAD P184
BLOCKPRE BLOCK PREFIX P181
BEXPR BOOLEAN EXPRESSION P103
BFAC BCOLEAN FACTOR P111 |
BPRIM BOOLEAN PRIMARY P115
BSEC BOOLEAN SECONDARY P113 :
BTERM BCGOLEAN TERM P109
BOUND BOUND | P216
EOUNDP BOUND PAIR P215
BOUNDPLIST BOUND PAIR LIST P213

158

P256LEODY CLASS BODY

Corel CLASS DECLARATION 250,CLID CLASS IDENTIFIER pussCLID! CLASS IDENTIFIER! Pis8
CLID2 CL4SS IDENTIFIER’ Pi?
CCMPST CCMPOUND STATEMENT P71\ COMPOUND TAIL | 264aT CCNGITIONAL STATEMENT P2906VNB LOCK] CONNECTION BLOCK!
CONE LOCK NNECTION BLOCK' P314
CoNCL0 COWECTION CLAUSE P312
CONNPART CCMNECTION PART 3 P310COSNST CONNECTION STATEMENT P307C. 1ARATION

DESI GEXPR DES NATIONAL EXPRESSION P16]DUMMY STATEMENT

DUMMYST AY STAT p2
i FACTOR P19
ETvops FINAL OPERATIONS P262FP FORMAL PARAMETER p229
FPLIST FORMAL PARAMETER LIST P22
FPPART FORMAL PARAMETER PART p22
FUNC FUNCTION DESIGNATOR PeoGOTOST GO TO STATEMENT 28

IDENTIFIER szIDLIST IDENTIFIER LIST 234
IF CLAUSE P304EST IF STATEMENT P303

IMPL IMPLICATION y P107
INITOPS INITIAL OPERATIO! Pass.
LABEL; TAREL oF
PE LOCAL OBJECT P159
LOGVAL LOGICAL VALUE P120
MBLOCK MAIN BLOCK P182
NH VOD PART P230
op! MULTIPLICATION OPERATOR Plo.: NAME PART

BIER OBJECT EXPRESSION 14s
OBJGEN OBJECT GENERATOR Pis7
OBJREF OBJECT REFERENCE | 200
OBJREFREL OBJECT REFERENCE RELATION P13¢
OBJREL OBJECT RELATION P13]
OTCL OTHERWISE CLAUSE P31

PREF! X | pas
PRODECL! PROCEDURE DECLARATION P222
PRODECL P222
PROCHEAD PROCEDURE HEADING 223
PROCID PROCEDURE IDENTIFIER p22
PROCID1 PROCEDURE IDENTIFIER! P90
PROCID2 ~ PROCEDURE IDENTIFIER' P287
PROCST PROCEDURE STATEMENT | pag?
PROGRAM PROGRAM | P169 |
QUALIF QUAL] FICATION P201
QUALOBJ QUALIFIED OBJECT P160REL RELATION |

159 | |
Reprod d |best avails ble os, O

RELQOP RELATIONAL OPERATOR P126
REFASS REFERENCE ASSINGMENT P290

REFCOM? REFERENCE COMPARATOR P137
REFEXPR REFERENCE EXPRESSION P147
Ritur. REFERENCE LEFT PART P291
REFRPART REFERENCE RIGHT PART P293
REFREL REFERENCE RELATION P135
REFTYPE REFERENCE TYPE P199

RID REMOTE IDENTIFIER P83 :
SARITEXPR SIMPLE ARITHMETIC EXPRESSION P9

SECOL SIMPLE BOOLEAN P10S

SDESIGEXPR SIMPLE DESIGNATIONAL EXPRESSION P163

SOBJEXPR SIMPLE OBJECT EXPRESSION P150
SPPART SPECIFICATION PART P238
SPECIFIER SPECIFIER P240
SPLITBODY SPLIT BODY P258

ST STATEMENT P265A
ST1 STATEMENT! P266
SUBEXPR SUBSCRIPT EXPRESSION P38

SUSLIST SUBSCRIPT LIST P86
SWDECL SWITCH DECLARATION P218
SWDESIG SWITCH DESIGNATOR P167

SWID SWITCH IDENTIFIER P218A

SwW1D1 SWITCH IDENTIFIER' P168
SWLIST SWITCH LIST P219

TERM TERM P14

TYPEN TYPE P1932
TYPEP PROCEDURE TYPE P221A
TYPEDECL TYPE DECLARATION P1§2

TYPELIST TYPE LIST P202
UNCONDST UNCONDITIONAL STATEMENT P270

UNLBASICST UNLABELLED BASIC STATEMENT P275

UNLBLOCK UNLABELLED BLOCK P179
UNLCOMP UNLABELLzD COMPOUND P173

UNLPREBLOCK UNLABELLED PREFIXED BLOCK P180

VALASS VALUE ASSIGNMENT P385

VALEXPR VALUE EXPRESSION P4

VALLPART VALUE LEFT PART P286
VALPART VALUE PART P232

VALRPART VALUE RIGHT PART P288
VALTYPE VALUE TYPE P195

VAR VARIABLE P48
ViRPART VIRTUAL PART P254

WHILEST WHILE STATEMENT P305;

NONTERMINALS ARE

AP = S(RULE), I(ENV, ITEM, QUALTB, LL)
APLIST = S5(L, RULE), I(ENV, ITEM, QUALTB, LL)
APPART = 5(L, RULE), I[(ENV, ITEM, QUALTB, LL)

160

AOP = S (RULE), 1(VALE\CE)
ARITEXPR = S(PL, RULE, SID), I(ENY, QUALTB, ITEM, LL, USE, APA)
ARDECL = S(D, E, RULE), I(ENVA, QUALTB, CL, DO, ITEM, LL, ENV)
ARID = S (SP) |

ARIDLI = SPL, RULE, SP), I (ENV, USE, ITEM, LL, APA, QUALTB)
ARLIST = S(D, E, RULE), 1(DO, EXVA, ITEM LL, TYPD, QUALTB, CL)
ARSEG = SD, E, L, RULD),

I (CL, DO, ENVA, ITEM, LL, TYP], QUALTB)
ASSST = S (RULE), I (ENV, ITEM, LL, QUALTB)
ATTRID = S(PL, SP), I (ENV)
BASICST = 5¢(D, E, RULE, UNDECL, VIRDECL, rIRSTST),

1 (LL, DO, ENV, ITEM, ENV], QUALTB, CL)
BLOCK = S(D, E, RULE, UNDECL, VIRDECL, NOLABEL),

1 (CL, DO, ENV, eNVi, ENVA, ITEM, LL, BEGUN, QUALTB)
BLOCNHEAD a S(D, E, RULE, NUMDEC, AEMDEC, EMDEC, VIRDECL, CDECL),

1 (CL, D0, ENV, ENVI1, ENVA, ITEM, LL, QUALTB)
BLOCKPRE = S(PL, RULE), I(ENV, ITEM, LL, QUALTR)
BEXPR = S(PL, RULE, S:D), I (ENV, ITEM, LL, QUALTB, USE, APA)
BFAC = S(PL, RULE, SID), TC(ENV, ITEM, LL, QUALTB, USE, APA)
BOUND = S (RULE), 1 (ENVA, ITEM, QUALTB, LL)
BPRIM = S(PL, RULE, SID), I (ENV, ITEM, Li, QUALTB, USE, APA)
BSEC = S(PL, RULE, SiD), I (ENV, ITEM, LL, QUALTB, USE, APA)
BTERM = S(PL, RULE), I (ENV, ITEM, LL, QUALTB, USE, APA)
BOUNDP = S(RULE), I (ENVA, ITEs, LL, QUALTB)
BOUNDPLIST = S(L,RULE), I(ENVA, ITEM, LL, QUALTB)
CLRODY = 5(D, E, RULE, UNDECL, VIRDECL),

1 (CL, DO, EXV, ENV, ENVA, ITEM, LL, QUALTB)
CLDECL = S(D, E, RULE), I(CL, DG, ENV, ITEM, QUALTB, LL)
CLID = SP)

CLID1 = S(PL, SP), [(ENV)
CLID2 = S(PL, RULE, SP), I (ENV, ITEM, QUALTS, LL, USE)
COMPST = S(E, RULE, UNDECL, VIRDECL, D),

1 (DO, ITEM, ENVI, ENV, LL, QUALTB, CL)
COMPT = S(E, RULE, UNDECL, VIRDECL, D, FIRSTST),

I (QUALTB, ENV, EXV1, 00, LL, ITEM, CL)
CONDST = S(D, E, OPEN, RULE, UNXDECL, VIRDECL),

1 (LL, DC, ENV, ENV], ITEM, QUALTB, CL)
CONNBLOCK1 = S(D, E, OPEN, RULE, UNDECL),

1 (DO, ENV, ITEM, LL, BEGUN, QUALTB) .
CONNBLOCK2 = S(D, E, OPEN, RULE, UNDECL),

1 (DO, ENV, ITEM, LL, BEGUN, QUALTB)
CONNCL = S(OPEN, RULE), I(ENV, ITEM, LL, FJUMP, TJUMP, QUALTB)
CONVPART = S(OPEN, RULE), I(ENV, ITEM, LL, FJUMP, TJUMP, QUALTB)
CONNST = S(D, E, OPEN, RULE, UNDECL, VIRDECL),

1 (DO, ENV, ENVI, ITEM, LL, QUALTB, CL)
DECL = S(D, E, RULE, VIRDzCL, CDECL, EMDEQ),

[(CL, DO, ENV. ITEM, LL, ENV], QUALTB, ENVA)
: DESIGEXPR = S(RILE), 1(ENV, ITEM, QUALTB, APA, LL)

DUMMYST = S (RULE)

EXPR = S (PL, RULE), T(ENV, ITE, LL, QUALTB, APA, USE)
FAC = S{PL, RULE, Siu), I (ENV, ITEM, LL, QUALTB. APA, USE)
FINJDPS = S(E, RULE, UNDECL, VIRJECL, D),

I (LL, DO, ENV, ENV1, ITEM, QUALTB, CL)
FP = S(SP)

FPLIST = S(D, \NTB), (DO)
FPPART = S(D, NNTB), 1(DO)
FUNC = S(L, PL, RULE, SP), I(ENV, ITE, QUALTB, LL, APA)
GOTOST = S(RULE), I(EnwV, ITEM, QUALTS, LL)

cduced from
161

ID = S(SP)

ID1 = S(PL, RULE, SP), I(ENV, ITEM, QUALTB, LL, USE)
IDLIST = S(MATRIX, L, E),

1(CL, ENV, MAT, NAMETB, LL, DO, TYPD, PLACE)
IFCL = S(RULE), (ENV, ITEM, QUALTB, LL, FJUMP)
IFST « S(D, E, RULE, UNDECL, VIRDECL),

I (ENV, ITEM, QUALTB, LL, DO, ENV1, FJUMP)
IMPL = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)
INITOPS = S(D, E, RULE, UNDECL, VIRDECL, START, ARULE, EMDEC),

(CL, DO, ENV, ENV1, ENVA, ITEM, QUALTB, LL)
LABELO = S(SP)

LABEL1 = S(SP, PL, RULE), I (ENV, APA)
LOCOBJ = S(PL, RULE), I(E\V)
LOGVAL = S (RULE)

MBLOCK = S(D, E, RULE, UNDECL, VIRDECL),
[(CL, ENV, ENVA, ENV, ITEM, QUALTB, LL, DO, BEGUN)

MPART = S(E, PL, RULE, VIRDECL, SP),
I (CL, E\V, ITEM, QUALTB, PPL, LL)

MOPART = SMATRIX), MAT, NAMETB)
MOP = S(PL, RULE), 1(7)
NAMEPART = S(MATRIX, MOAMB), I(MAT, NAMETB)
OBJEXPR = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)

| OBJGEN = S(PL, RULE), [(ENV, ITEM, QUALTB, LL, USE)
OBJREF = S(TYPDS), I(E\V)
OBJREFREL = S(RULE), I (ENV, ITEM, QUALTB, LL, USE)

| OBJREL = S(RULE), I(ENV, ITEM, QUALTB, LL, USE)
OTCL = S(OPEN, RULE, UNDECL, VIRDECL, DO, E),

I (LL, DO, ENV, ENVi, ITEM, QUALTB, CL, 0)
PRE = S(PL), I(ENV, LL)
PRIM = 5(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)
PROCBODY = S (RULE, UNDECL, E),

1(D0, ENV, ENVA, ENV1, ITEM, LL, QUALTB)
PROCDECL = S(D, E, RULE, VIRDECL),

1 (CL, DO, ENV, ENV1, ITEM, QUALTB, LL)
PROCHEAD = S(D, E, RULE, SP), I(IYPD, LL, ENV)
PROCID = S(SP)

PROCID1 = S(PL, SP, RULE), [I(ENV, ITEM, QUALTB, LL, USE, APA)
PROCID2 = S(PL, SP), I (ENV
PROCST = S(RULE), I(ENV, ITEM, QUALTB, LL)
PROGRAM = S (ORIG)

QUALIF = S(PL), I (ENV)

QUALCBJ « S(PL, RULE), I(ENV, QUALTB, ITEM, LL, USE) |
REL = S(RULE, I(ENV, ITEM, QUALTB, LL, USE)
RELOP = S (RULE)

REFASS = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, ALSO)
REFCOMP = S(RULE) |
REFEXPR = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, USE, APA)
REFLPART = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, USE)
REFRPART = S(PL, RULE), I(ENV, ITEM, QUALTB, LL, USE, ALSO)
REFREL = S(RULE), I(ENV, ITEM, QUALTB, LL, USE) iy
REFTYPE = S(TYPDS), I (ENV)
RID = S(PL, RULE, SP), I(ENV, ITEM, QUALTB, LL, USE) |
SARITEXPR = 5(PL, RULE, SID), (ENV, ITEM, QUALTB, LL, USE, APA)
SBOCL = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, USE, APA)
SDESIGEXPR = S(RULE), I (ENV, ITEM, QUALTB, LL, APA) |
SOBJEXPR = S(PL, RULE, SID), I(ENV, ITEM, QUALTB, LL, APA, USE) |
SPPART = S(E, L, RULE, MATRIX), 3

I (NAMETB, CL, DO, ENV1, LL, LEGIT, PLACE)

162

SPECIFIER = S(TYPDS), 1 (ENV)
SPLITBODY = SD, E, RULE, UNDECL, VIRDECL),

1 (CL, DJ, ENV, ENV1, ENVA, ITEM, QUALTB, LL)
ST = S(D, E, OPeX, RULE, UNDECL, VIRDECL, FIRSTST),

1 (DO, ENV, ENV], ITEM, LL, QUALTB, CL)
ST1 = S{(D, E, OPEN, RULE, UNDECL, VIRDECL, FIRSTST),

1 (CL, DO, ENV, ENVI1, ENVA, ITEM, OUTERMOST, QUALTB, LL, BEGUN)
SUBEXPR = S(RULE), I(ENV, ITEN, LL, QUALTB, USE)
SUBLIST = S(L, RULE), I(ENV, ITEM, LL, QUALTB)
SWDECL = S(D, E, RULE, VIRDIECL),

I (CL, DO, ENV, ENV1, ITEM, LL, QUALTB)
SWDESIG = S(RULE), I(ENV, ITEM, QUALTB, LL, APA)
SWID = S (SP)

SWID1 = S(PL, RULE, SP), I (ENV, APA)
SWLIST = S(L, RULE), i (ENV, ITEM, LL, QUALTB)
TERM = S(PL, RULE, SID), [I (ENV, ITEM, LL, QUALTB, USE, APA)
TYPEN = S(TYPDS), 1 (2NV)
TYPEP = S(TYPDS), I (ENV)
TYPEDECL - S(D, E, RULE), I(CL, DO, ENV, LL)
TYPELIST = S(D, BE), 1(CL, DO, TYPZ, LL)
UNCONDST = S(D, E, RULE, UNDECL, VIRDECL, FIRSTST),

1 (CL, DO, ENV, ENV1, ENVA, ITEM, OUTERMOST, QUALTB, LL,
BEGUN)

: UNLBASICST = S{(RULE, FIRSTST), I(ENV, ITEM, LL, QUALTB, CL)
UNLBLOCK = S(D, E, RULE, UNDECL, VIRDECL),

1 (CL, DC, ENV, ENV1, ENVA, ITEM, QUALTB, LL, BEGUN)
UNLCOMP = S(D, E, RULE, UNDECL, VIRDECL),

1(DO, ENV, ENV1, ITeM, QUALTB, LL, CL)
UNLPREBLOCK = S(D, E, RULE, UNDECL, VIRDECL),

+ IT (ENV, ITEM, LL, QUALTB)
| VALASS = (PL, RULE), I[(ENV, ITEM, QUALTB, LL, ALSO)

VALEXPR = S(PL, RULE), ! (ENV, ITEM, QUALTB, LL, USE, APA)
VALLPART = S(PL, RULE), [(ENV, ITEM, QUALTB, LL, USE)
VALPART = S(MATRIX, MOAMB), I (MAT, NAMETB)
VALRPART = S(PL, RULE), 1(E\V, ITEM, QUALTB, LL, USE, ALSQ)
VALTYPE = S(TYPDS)

VAR = S(PL, RULE, S?, DAR), I(ENV, ITEM, QUALTB, LL, USE, APA)
VIRTPART = S(E, L, RULE), I(CL, DO, ENV, LL)
WHILEST = S(D, E, OPZN, RULE, UNDECL, VIRDECL),

1 (LL, DO, ENV, ENV1, ITEM, QUALTB, CL)

START SYMBOL PROGRAM

FORMATS ARE

- FL = ("GO(", DISP, ")"™)
F2 = ("AR(", OPER, ")")
F3 = ("C(INTEGER(VALUE=", V, "))")
F4 = ("INX(", USE, "™")
7S = ("VAL(ADOR=(", ADDR, "), REM")
FO = ("ADR(ADDR=(", ADDR, "), REM")

: F7 = ("VAL(ADDR=(", ADDR, "))")
F€ = ("ADR(ADDR=(", ADDR, "))™)
F9 = ("C(", OPER, ")")

163

[|

F10 = ("ENT")
Fil = ("MARK") |

Fil2 = ("RET")
F13 = ("C(ACTUAL (BODYs", SN, *, LEVEL", LL, ",QUAL=", QUAL, :

*, UNDERTYPEs"™, TYPE, "))")
F14 « ("LOG(", OPER, ")") : :
F15 = ("C(BOOLEAN(VALUE=", OPER, "))")
F160 = ("COMP (", OPER, m")
F17 = ("1FJ(", DISP, mm")
F18 = ("C(REF(QUAL=", QUAL, ", VALUE=",OPER, "))")
F19 = ("GEN (", NFORMALS,")*)
F20 = ("C(LABEL (SEGMENT=",SN,",DISP«",DISP,"))")
F21 = ("LN=",LN,",DNs", DN)
F22 = ("ENT (LEVELe",LL,",BODYs", SN,")")
F23 = ("MAK (GENUS=(", GENUS, "), N=", L, "COPI1ESa",D,")")
F24 = ("C(SWITCHLISTs",SN,", LENGTH«",L,™")
F25 = ("DEL")
F206 = ("RES")
F27 = ("DET")

F28 = ("STO(",ALSO,™™")
F29 = ("GO")
F3C = ("C(RET)")

F31 = ("NEW OBJECT (EODY=", SN, "1S5=", SM, ", PREFIX", OBJECT, ")")
F32 = ("C(CLASS (PROTOTYPE=",SN, ", LEVEL=", LL, ™)")
F33 = ("C(PROCEDURE{LZVeL=",LL", SEGMENT=", SN, "))")
F34 = ("CilE(v=", D, ", GENUS= (", GENUS, "), MODE=", MODE, ", CLASS=", ALSO, ") *)
F35 = ("DET (TER)") |
F36 = ("KIND=",KIND,",TYPE=", TYPE, ", QUAL=", QUAL)

PROCEDURE AUX (CLASSN, QUALTE);
COMMENT THIS PROCEDURE DOES THE WORK FOR UPDQUALTB BY ACTUALLY 3

INSERTING THE NEW ENTRIES;

§/ QUAL := (CLASSN). PREF;
tPUTIN(QUALTB.[[CLASSN]. SEGMENT}: CLASSN :s CLASSN:

PREFIX := IF QUAL = 0 THEN NIL ELSE QUALTB. [QUAL];

LEVEL :» IF QUAL = 0 THEN C ELSE QUALTB. [QUAL).LEVEL+1) /§$: ‘)

FUNCTION BACTUAL (GENUS, LL, SN);
BEGIN COMMENT THIS FUNCTION WILL BUILD AND RETURN A RULE WITH AN

INSTRUCTION C(ACTUAL) WITH THE PROPER OPERANDS:

INSTR : = S(FORMAT := F13; SN := SN; LL :sLL + {;
| TYPE : = GENUS.TYPE);

LIST(IF NULLR (FIND (GENUS, QUAL)) THEN INSTR ELSE
PUTIN (INSTR : QUAL := GENUS.QUAL))

END;

164

FUNCTION BUILDVC (KIND, LV;
BEGIN COMMENT THIS PRODUCES A LIST OF L C-INSTRUCTIONS, ALL OF KIND

“XIND", FOR P239;

RULE := NULL:
WHILE L>0 DO

BEGIN

RULE : = CONS (INSTR = S(FORMAT := F9; OPER :s= KIND), RULE);
L:=L ~-1

END:
RULE

END;

FUNCTION CHECKIDENTIFIER (ITEM, QUALTB, ATTR):
BEGIN COMMENT .HIS CHECKS TO SEE IF ANY OF THE COMPONENTS XX OF

ITEM CONTAIN A QUALIFICATION SUCH THAT XX.QUAL IN ATTR. IF
TRUE THE ADDR OF THE CORRESPONDING XX 1S RETURNED OTHERWISE
NULL 1S RETURNED. THIS FUNCTION IS USED TO LOCATE VARIABLES
THAT ARE IN THE STACK OF ANCTHER OBJECT TO WHICH THE PRESENT
OBJECT IS CONNECTED. THE LIST ITEM CONTAINS THE ADDR OF
WORDS IN THE STACK THAT REFERENCES OBJECTS CONNECTED TO THIS
ONE;

IF ATTR = 0 OR NULL2 (ITEM) THEN NULL ELSEGIN

NEXT1 := QUALTB. [ATTR]; LEVEL := (NEXT1). LEVEL;
XX := CARCUTEM);
WHILE =NULLB(XX) DO |
BEGIN

NEXT2 := QUALTb. [XX.QUAL]; N1 := [NEXT2).LEVEL- LEVEL;
IF Ni >= 0 THEN
BEGIN |

WHILE N1 > 0 DO

BEGIN

NEXT2 t= [[NEXT2).PREFIX); N i= N-l
END;
IF NEXT1 = NEXT2 THEN GO TO FINISH

END;

i (ITEM := CORCITEM); XX := CAR (ITEMND;
FINISH : ; XX. ADDR

END

END;

FUNCTION CHECKKIND (GENUS);
BEGIN COMMENT THIS FUNCTION IS USED TO CHECK IF FORMAL PARAMETERS

HAVE THE PROPER MODE. THE RESULT 1S A BOOLEAN:

KIND := GENUS KIND:
KIND = "LABEL" OR KIND = "SWITCH" OR KIND = "PROCEDURE"

END;

165

PROCEDURE CHECKSPEC (MATRIX,D):
BEGIN COMMENT THIS PROCEDURE WILL CHECK TO SEE IF ALL D FORMAL

PARAMETERS OF MATRIX HAVE BEEN SPECIFIED;
NEXT1 := FIRST (MATRIX);
WHILE -NULLB(NEXT1) DO
BEGIN NEXT1 := NEXT ([NEXT1]); D := CG - 1 END;
IF D >= 0 THEN

ERROR ("PROCEDURE OR CLASS HAS UNSPECIFIED FORMAL PARAMETERS")H

FUNCTION CHECKVIRT (ENV1, SP, OPER);
BEGIN COMMENT THIS CHECKS IF SP IS AN ENTRY IN VIRTUALE: IF TRUE

IT RETURNS ADDR. DN, IF NOT ZERO;

NEXT1 : = FIND(ENV1, [SP));
IF NULLB(NEXT1) THEN DN :e 0 ELSE
IF [NEXT1). GENUS. KIND = OPER THEN DN := (NEXT1].ADDR.DN ELSE
ERROR (SP, " HAS BEEN DECLARED TWICE, ONCE AS A VIRTUAL");
DN;

END;

FUNCTION CHERULES (MATRIX, ALSO, D, DO);
BEGIN COMMENT THIS WILL BUILD THE SEQUENCE OF CHE INSTRUCTIONS

THAT HEAD THE RULE FOR A PROCEDURE OR A CLASS;

RULE : = NULL: NEXT1 := FINDOMMATRIX, (D));
WHILE -NULLB(NEXT1) DO
BEGIN

RULE : = CONS (INSTR x= §$ (FORMAT := F34; ALSO := ALSO;
GENUS : = [NEXT1}.SPEC := $ (FORMAT := F36);
D:e D -DO; MODE :s [NEXT1l.MODE), RULE);

D := D-1; NEXT1 := FIND(MATRIX, [D)) |
END;
RULE |

END;

FUNCTION COMBTYPE (PL, PL1); -
BEGIN COMMENT THIS WILL EXAMINE THE TYPE OF BOTH PLtS AND IF BOTH

ARE NOT "INTEGER" IT RETURNS "REAL" OTHERWISE THE VALUE OF
THE COMPONENT TYPE OF PL1 IS RETURNED. THE VALUES ARE
EITHER "INTEGER" OR "REAL";

IF PL. GENUS. TYPE -~= "INTEGER" THEN "REAL" ELSE PL1.GENUS. TYPE

END: |

FUNCTION CONCATENATE (RULE1, RULE2); |
BEGIN COMMENT THIS WILL CONCATENATE TWO RULES, ONE REPRESENTING THE

PREFIX PART AND THE OTHER THE MAIN PART OF A CLASS BODY.

166

THE CONCATENATION 1S DONE IN THE FOLLOWING FORM (USING
VTLNER'S, NOTATION): CHE(P) C(P) CHEOM COW) INIT 1(P) 1M)
NER FM) F(P). WHILE THE LIST RULE2 IS USED DIRECTLY,
RULED 1S COPIED EY BUILDING THE NECESSARY NEW LISTS;

COMMENT FIRST BUILD A COPY OF CHE(P) AND C(P) PARTS OF RULE.
THE FIRST PSEUDO-INSTRUCTION MARK FOUND 1S THE INIT OF RULEL;

RULE := NULL;
WHILE NULLR (FIND (CAR (RULED), MARK)) DO
BEGIN

RULE : a CONS (CAR(RULE1), RULE); RULE := CDR(RULE1)
END;

COMMMENT NOW WE COPY CHEM; AND COM);

WHILE NULLR (FIND (CAR (RULE2), MARK)) DO
BEGIN

RULE := CONS (CAR(RULE2Z), RULE); RULE2 := CDR(RULE2)
END;
COVMENT INSER™ INIT IN THE NEW RULE; -

RULE : = CONS(CAR (RULED RULE); RULE1 := CDR(RULE1);
COMMENT COPY THE !(P). THE END OF I(P) 1S MARKED BY A MARK

PSELDO- INSTRUCTION;

WHILE -NULLR (FIND (CAR (RULED), MARK)) DG
BEGIN

BULE := CONS(CAR(RULEL), RULE); RULE := CDR(RULED);
END;
COMMENT NOW WE FEVERSE RULE AND APPEND 100) INNER FON WHICH 15
OL COR (RULE3) (VE HAVE TQ ELIMINATE THE INIT) AND THEN REVERSE
IT. AGAIN TAKE THE COR (TO ELIMINATE THE DET INSTRUCTION AT THE
EXD OF RULE2) AND THEN COPY F(P). THE REASON WE HAVE TO COPY F(P)
TWD CANNOT SIMPLY APPEND IT IS THAT THE JUMP INSTRUCTIONS
(50 & 1EJ) WILL HAVE DIFFERENT DISPLACEMENT VALUES DEPENDING ON
THE CODE SEGMENT;

RULE : = CDR (RVRS (APEND(RVRS(RULE), CDR(RULE2))));
RULEL t= COR(RULED);
WHILE -NULLB(RULEL) 20
EEGIN

SULE :- CONS (CAR(RULEL). RULE); RULE1 := CDR(RULE1)
END;
RVRS (RULE)

END;

FUNCTION CONDQUAL (QUALTS, QUALL, QUAL2);
BEGIN COLMINT THIS TAKES THE QUALIFICATIONS OF THO CLASSES

‘VD OUTPUTS THE QUALIFICATION OF THE CLASS WHICH IS
SUE LAST Ix THER PREFIX SEQUENCE THAT 1S COMMON TO
BOTH;

COMMENT IF OVE OF THEM 1S "NONE" THE RESULT 1S THE QUALIFICATION
OF THE OTHER;

IF QUAL1 . 0 THEN QUAi2 ELSE 3 tom (2< Ron bonod hble copy.
167

IF QUAL? ¢ 0 THEN QUAL! ELSE
NEXT1 := QUALTB. [QUAL1): NEXT2 := QUALTB. (QUAL2):
N1 := [NEXT1).LEVEL; N2 := [NEXT2).LEVEL;
COMMENT NOW IF N1 > N2 WE INVERT THE TWO AND ALSO NEXT;

IF NI > N2 THEN
BEGIN

N t= [N1): N1 :a [N2): N2 := (N);

Lo NEXT := [(NEXT1]; NEXT! := [NEXT2z}; NEXT2 := [NEXT3)
COMMENT NOW IF N1 # N2 WE TAKE THE ANCESTOR OF NEXT2 UNTIL
WHILE N1 -= N2 DO

BEGIN |

gp EXT2 te [[NEXT2).PREFIX]; N2 := N2 -1 |
COMMENT NOW WE LOOK FOR THE COMMON ANCESTOR |

WHILE NEXT1 -= NEXT2 DO | |
BEGIN

NEXT! := ((NEXT1).PREFIX); NEXT2 := [(NEXT2}.PREFIX); |

IF NULLB (NEXT1) THEN ERROR("NO COMMON ANCESTOR")END;

SELECTOR((NEXT1))
END

END;

PROCEDURE DISAMV (SP, DAR, COND, PL, APA):
BEGIN COMMENT THIS CHECKS FOR AMBIGUITIES AND DISAMBIGUATES NODES.

IT 1S CALLED BY P22 AND P116. THE AMBIGUITIES RESULT FROM
ACTUAL PARAMETERS THAT PARSE TO A SINGLE ENTITY. AMBIGUITIES
ALSO ARISE WHEN THE RHS OF A VALUE ASSIGNMENT PARSES TO A
A SINGLE ENTITY AND WHEN A PRIMARY PARSES TO AN IDENTIFIER;

TYPE := PL.GENUS.TYPZ: KIND := PL.GENUS. KIND:
IF APA = 4 THEN DAMB (KIND -~= "PROCEDURE", PRIM) ELSE
IF = DAR THEN

BEGIN COMMENT THIS IS NOT AN ARRAY;

IF APA = 0 THEN Co
BEGIN COMMENT THIS 1S AMBIGUOUS BECAUSE EVERY PRIMARY CAN BE A

VARIABLE OR A FUNCTION DESIGNATOR WITH NO PARAMETERS: |

IF KIND = "SIMPLE" THEN
BEGIN

IF -~ COND THEN DAMB (TRUE, PRIM) ELSE
ERROR (SP, " IS OF THE WRONG TYPE™)

END ELSE

IF KIND = "PROCEDURE" THEN DAMB(FALSE, PRIM) ELSE
ERROR (SP, " 1S OF THE WRONG KIND")

END ELSE

IF APA = 1 THEN

BEGIN COMMENT THIS 1S THE AMBIGUITY DUE TO THE RIGHT HAND SIDE |
OF A VALUE ASSIGNMENT; |

168

iF KIND = "SIWPLE"™ THEN
BEGIN

1F COND THEN
BEG!

IF TYPE ~a "REF" THEN DAMB (FALSE, VALEXPR) ELSE
ERROR (SP, " 1S OF THE WRONG TYPE")

END ELSE

BEGIN DAMS (TRUE, PRIM); DAMB (TRUE, VALEXPR) END
END ELSE

IF KIND « "PROCEDURE" THEN DAMB (FALSE, PRIM) ELSE
ERROR (SP, " 15 OF THE WRONG-KIND")

END ELSE

IF APA = 3 THEN

BEGIN ' COMMENT THIS IS AN ACTUAL PARAMETER AMBIGUITY;

IF KIND -~= "SIMPLE" THEN
BEGIN

IF KiND = "LABEL" THEN DAMB (FALSE, EXPR)
ELSE DAMB (FALSE, AP)

END ELSE

[FE COND THEN

BEGIN

[F TYPE ~= "REF" THEN DAMB (FALSE, VALEXPR)
ELSE DAME (FALSE, EXPR)

ENDL ELSE

BEGIN

DAMB (TRUE, PRIM); DAMB (TRUE, VALEXPR); DAMB (TRUE, EXPR):
DAMB (TRUE, AP)

END

END ELSE

COMMENT THIS 1S AN ACTUAL PARAMETER WHICH IS ENCLOSED IN
PARENTHESES:

IF KIND = "LABEL®™ THEN DAMB (FALSE, EXPR) ELSE

IF KIND - SI TOR OR KIND = "ARRAY" THENERROR (SP, " 1S OF MME WRONG KIND") ELSE
IF COND THEN

BEGIN |

iF TYPE = "REF" THEN DAME (FALSE, EXPR)
ELSE DAME (FALSE, VALEXPR)

END ELSE

IF K'ND = "PROCEDURE" THEN DAMB (FALSE, PRIM) ELSE
BEGIN DAMB (TRUE, PRIM); DAMB (TRUE, VALEXPR); DAMB (TRUE, EXPR)
END

END ELSE

COMMENT IT IS AN ARRAY; |

IF APA = 0 THEN

BEGIN COMMENT NO AMBIGUITY HERE; |

IF COND OR KIND ~= "ARRAY THEN
ERROR (SP, " HAS WRONG TYPE OR KIND")

END ELSE

IF APA = 1 THEN

BEGIN COMMENT THIS IS THE RIGHT HAND SIDE AMBIGUITY;

IF KIND = "ARRAY" THEN DAME (~COND, VALEXPR) ELSE

169

ERROR (SP, " IS OF THE WRONG KIND")
END ELSE

COMMENT THIS 1S THE ACTUAL PARAMETER AMBIGUITY;

IF KIND -~= "ARRAY" THEN
BEGIN

IF KIND = "SWITCH" THEN DAMB(FALSE, EXPR) ELSE
ERROR(SP, " IS OF THE WRONG KIND")

END ELSE
IF COND THEN
BEGIN

IF TYPE ~= "REF" THEN DAMB (FALSE, VALEXPR)
ELSE DAMB (FALSE, EXPR)

END ELSE

BEGIN DAMB (TRUE, VALEXPR); DAMB (TRUE, EXPR) END
END;

PROCEDURE DISAMF (SP, COND, APA, L);
BEGIN COMMENT THIS IS SIMILAR TO DISAMV BUT HERE THE ARRAY PROBLEM

DOES NOT ARISE;

KIND := PL.GENUS.KIND; TYPE := PL.GENUS. TYPE;
IF APA = 4 THEN DAMB (KIND == "SIMPLE", PRIM)
[FL = 0 THEN

BEGIN COMMENT PROCEDURE WITH NO PARAMETERS;

IF APA = 0 THEN

BEGIN COMMENT THIS IS THE AMBIGUITY CF THE PRIMARY;

IF KIND == "PROCEDURE" THEN
BEGIN

IF KIND = "SIMPLE" THEN DAMB{FALSE, PRIM) ELSE
ERROR(SP, " IS OF WRONG KIND")

END ELSE

IF -COND THEN DAMB (TRUE, PRIM) ELSE
ERROR (SP, " 1S OF WRONG TYPE")

END ELSE

IF APA = 1 THEN

BEGIN COMMENT THIS IS AMBIGUITY FROM VALUE RIGHT HAND SIDE;

IF KIND +s "PROCEDURE" THEN
BEGIN

IF KIND « "SIMPLE" THEN DAMB (FALSE, PRIM) ELSE
ERROR(SP, " 1S OF THE WRONG KIND™

END ELSE

IF ~COND THEN

BEGIN

DAMB (TRUE, PRIM); DAMB(TRUE, VALEXPR)
END ELSE

IF TYPE ~= "REF" THEN DAMB (FALSE, VALEXPR) ELSE
ERROR (SP, " IS OF THE WRONG TYPE")

END ELSE

IF APA = 2 THEN

BEGIN COMMENT THIS IS THE ACTUAL PARAMETER AMBIGUITY:

IF KIND ~= "SIMPLE" THEN DAMB (FALSE, AP) ELSE |

170

IF -COVD THEN DAMB (FALSE, PRIM) ELSE
IF TYPE == "REF" THEN LAMB (FALSE, VALEXPR)

ELSE DAMB (FALSE, EXPR)
END ELSE
COMMENT THIS 15 AN ACTUAL PARAMETER ENCLOSED IN PARETHESIS;

[F KIND = "LABEL" THEN DAMB(FALSE, EXPR) ELSE |
[F KIND = "SWITCH" OR KIND = "ARRAY" THEN
ERROR (SP, "™ IS OF THE WRONG KIND") ELSE :
1F COND THEN

BEGIN]

IF TYPE = "REF" THEN DAMB (FALSE, EXPR)
ELSE DAMB (FALSE, VALEXPR)

END ELSE

IF KIND = "SIMPLE" THEN DAMB(FALSE, PRIM) ELSE

Dold DAMB (TRUE, PRIN); DAMB(TRUE, VALEXPR); DAMB (TRUE, EXPR)}

END ELSE

‘ COMMENT THIS IS A PROCEDURE WITH PARAMETERS;

EF EID ~= "PROCEDURE™ THEN ERROR(SP, " 1S OF THE WRONG KIND")LSE

IF APA = QO THEN

BEGIN

IF COND THEN ERROR(SP, " IS OF THE WRONG TYPE") |
END ELSE
IF APA = 1 THEN

BEGIN

IF ~COND THEN DAMB (TRUE, VALEXPR) ELSE
IF TYPE =~s REF THEN DAMB (FALSE, VALEXPR) ELSE
ERROR(SP, "™ IS OF THE WRONG TYPE")

END ELSE

COMMENT THIS IS THE AP AMBIGUITY;

IF ~COND THEN BEGIN DAMB (TRUE, VALEXPR): DAMB (TRUE, EXPR) END ELSE

END: © TYPE -~= "REF" THEN DAMB (FALSE, VALEXPR) ELSE DAMB (FALSE, EXPR)

FUNCTION FIXCOND (RULE, SM, SN);
BEGIN COMMENT THIS WILL HANDLE THE ATTACHMENT OF THE LABEL PSEUDO-

INSTRUCTIONS AND THE GO INSTRUCTION TO THE RULE
CORR&SFONDING TO THE ELSE PART OF A CONDITIONAL EXPRESSION.
SM STANDS FOR THE LA2EL OF THE INSTRUCTION FOLLOWING THE
CONDITIONAL AND SN FOR THE LABEL OF THE RULE ASSOCIATED
WITH THE ELSE. THE AUGMENTED RULE IS RETURNED;

CONS (INSTR xs YT (FORMAT :s= Fl; JLABEL :s=s SM),
CONS {INSTR == S(LAZELI := 5N),

APEND (RULE, LIST(INSTR a= §$(LABELI := SV)))))
END;

best available copy.

FUNCTION INVDELTA (ENV, BE) -
BEGIN COMMENT THIS PROCEDURE MERGES TWO SYMBOL TABLES, ENV

171

REPRESENTING THE GLOBAL ENVIRONMENT AND E THE LOCAL ONE.
THE ALGOL RENAMING RULES ARE FOLLOWED. THE RESULTING
TABLE 1S RETURNED. NOTICE THAT E 1S MODIFIED BUT NOT ENV;

NEXT1 :s FIRST (ENV);
WHILE -~NULLB(NEXT1) DO

BEGIN

OPER : = SELECTOR ((NEXT1));
IF NULLR(FIND(E, (OPER)}}) THEN E := = [NEXT1]);
NEXT1 : = NEXT ((NEXT1})

END;
E

END; |

PROCEDURE OUTPUT (SN, RULE);
BEGIN COMMENT THIS PROCEDURE HANDLES THE OUTPUT OF THE LIST RULE.

ADDITIONALLY IT BINDS LABELS AND ADDRESSES THROUGH A TABLE
MAP (IMPLEMENTED AS A CONSTRUCT). THE LABELLING AND
BINJING MECHANISM ARE THE SAME AS THE ONE USED FOR
TURINGOL. INSTRUCTIONS WITH A COMPONENT JLABEL ARE COPIED
TO AVOID THE PROBLEM THAT ARISES WHEN AN INSTRUCTION
BELONGING TO A CLASS SEGMENT 1S ALSO PART OF THE CLASS
SEGMENT OF A CLASS HAVING THE FIRST ONF AS A PREFIX;

D:« 1: WRITE(/, SN);
WHILE -NULLB (RULE) DO
BEGIN

NEXT1 : = CAR (RULE);
IF ~NULLR(FIND([NEXT1}, FORMAT)) THEN
BEGIN COMMENT THIS 1S AN INSTRUCTION SINCE ONLY INSTRUCTIONS

HAVE A FORMAT COMPONENT. OTHERWISE IT IS A PSEUDO-
INSTRUCTION. THE INSTRUCTION IS COPIED, THE LABEL IN
JLABEL 1S BOUND TO AN ADDRESS AND THE SEGMENT NUMBER

: 1S INCLUDED. THE LABEL IS BOUND IN PARALLEL WITH THE
PROCEDURE PLACE TO AVOID PASSIVATIONS DUE TO FORWARD

‘ JUMPS; |

: Dek D + 1; IF ~NULLR(FIND([NEXT1), JLABEL)) THEN| BEGIN
[(NEXT1) := #[NEXT1}; (NEXT1].SN :e SN;
PLACE ([NEXT1), MAP)

END;
WRITE(/, (NEXT1)])

END ELSE

IF ~NULLR(FIND ([NEXT1), LABELI)) THEN
COMMENT THIS 1S A LABEL PSEUDO-INSTRUCTION. UPDATE MAP;

MAP. [[NEXT1). LABELI) := [J};
RULE : = CDR (RULE)

END

END;

PROCEDURE PLACE (NEXT1, MAP);
COMMENT THIS PROCEDURE WILL BIND A LABEL WITH AN ADDRESS IN

172

PARALLEL;

$/ [NEXT1).DISP :s MAP. [[NEXT1].JLABEL] /§

FUNCTION PUTII (RULE, COND);
BEGIN COMMENT THIS WILL PLACE MARKERS FOR INIT AND INNER AT THE

BEGINNING AND AT THE END OF A RULE, IF COND IS TRUE. THE
MARKERS ARE PSEUDO-INSTRUCTIONS WITH A COMPONENT MARK: IT
1S USED TO PUT MARKERS IN THE RULE OF CLASS BODY WHEN IT IS
NEITHER A SPLIT BODY OR A BLOCK;

IF COND THEN CONS (INSTR == { (MARK :s= "INIT"),
APEND (RULE, LIST(INSTR w»= §(MARK := "INNER"))))

| ELSE RULE
] END;

PROCEDURE SUBORDINATE (QUALTB, GENUSI, GENUS2);
BEGIN COMMENT THIS PROCEDURE CHECKS TO SEE IF THE SIMULA

SUBORDINATION RULES ARE RESPECTED;

TYPE : = GENUSI1. TYPE;
IF TYPE -= "U" THEN

BEGIN

TYPE1l : = GENUS2. TYPE;
1F TYPE1 ~= TYPE2 THEN ERROR ("SUBORDINATION RULES VIOLATED")
ELSE

IF TYPE2 = "REF" THEN
BEGIN

ATTR : = GENUSI.QUAL;
NEXT1 : = QUALTB. [ATTR); LEVEL i= (NEXT1]). LEVEL;
NEXT2 : = QUALTB. [GENUSZ. QUAL];
LEVEL := [NEXT2).LEVEL - LEVEL;
IF LEVEL < 0 THEN ERRCR ("SUBORDINATION RULES VIOLATED")
ELSE

WHILE LEVEL >» 0 DO
EEGIN

NEXT2 := ((NEXT2).PREFIX]; LEVEL := LEVEL - i
END;
IF NEXT1 == NEXT2 THEN
ERROR ("SUBORDINATION RULES VIOLATED")

END

END

END;

FUNCTION UN!ONDOT (E, El);
BEGIN COMMENT THIS FUNCTION WILL JGIN TWO SYMBOL TABLES AND IF

THERE ARE COMMON NAMES AMONG THE COMPONENTS AN ERROR HE)
NOTED. E CHANGES BUT NOT El;

NEXT! := FIRST(ED); |
WHILE ~NULLB(NEXT1) DO
BEGIN

173

OPER : = SELECTCR([NEXTI1));
IF NULLR(FIND(E, ([OPER))) THEN E := = [NEXT1) ELSE
ERROR (OPER, " HAS BEEN DECLARED TWICE");
NEXT1 : = NEXT ((NEXT1))

END;
E

END;

FUNCTION 'INIONR (VIRDECL, VIRDECL1);
BEGIN COMMENT THIS FUNCTION WILL TAKE TWO CONSTRUCTS AND MERGE THEM

WITH THE FIRST ONE BEING RETURNED MODIFIED AND THE SECCND
ONE REMAINING UNCHANGED;

NEXT1 : = FIRST(VIRDECL1);
WHILE -NULL(NEXT1) DO

BEGIN VIRDECL := =» (NEXT1]; NEXT1 := NEXT ([NEXT1)) END;
VIRDECL :

END;

FUNCTION UPDQUALTB (QUALTB, CDECL);
BEGIN COMMENT THIS PROCEDURE WILL UPDATE QUALTB BY INTRODUCING°

ENTRIES CORRESPONDING TO THE CLASSES REPRESENTED IN CDECL.

EACH ENTRY IN QUALTB CORRESFONDS TO A CLASS, AND IS A
CONSTRUCLY iin WHICH THE COMPONENT PREFIX IS A POINTER TO THE

| QUALTB COMPONENT CORRESPONDING TO THE PREFIX CLASS, CLASSN
IS A POINTER TO THE SYMBOL TABLE ENTRY FOR THE CLASS, AND
LEVEL THE NUMBER OF CLASSES IN THE PREFIX SEQUENCE OF THE
CLASS. CDECL IS A LIST OF POINTERS TO THE SYMBOL TABLE
ENTRIES OF THE CLASSES DECLARED IN A BLOCK. EACH INSERTION

IN QUALTB, IS MADE IN PARALLEL (USING THE PROCEDURE AUX)
TO AVOID ORDERING CDECL. NOTICE THAT THE INSERTIONS CANNOT
BE MADE SEQUENTIALLY WITHOUT ORDERING CDECL SINCE IF A
CLASS WERE DECLARED BEFORE ITS PREFIX, THE FUNCTION WGCULD
HANG UP TRYING TO FIND THE PREFIX CLASS AND WOULD NEVER
DEFINE THE PREFIX;

WHILE SNULLB(CDECL) DO
BEGIN

expr UX [CAR (CDECL) 1, QUALTB); CDECL := CDR(CDECL)Vy

QUALTB
END;

FUNCTION VIRMERGE (RULE, VIRDECL);
BEGIN COMMENT THE INITIAL PART OF A RULE IS COMPOSED OF A SEQUENCE

OF JYSTRACT IONS CORRESPONDING TO THE DECLARATIONS: TO AN
ARR Y DECLARATICX CORRESPONDS A SEQUENCE OF INSTRUCTIONSDEFINING THE ARQAY'S BOUNDS FOLLOWED BY A MAK INSTRUCTION
THAT BUILDS A SEGMENT ASSOCIATED WITH THE ARRAY AND INSERTS

A REFERENCE TO IT IN THE STACK; TO ANY OTHER DECLARATION
CORRESPONDS ONE C-INSTRUCTION. IF THE INSTRUCTIONS

DEFINING THE BOUNDARIES ARE IGNORED, THE N(TH) INSTRUCTION

174

IN THE INITIAL SEQUENCE, PLACES IN THE STACK A WORD WHOSE
STACK DEPTH IS N. VIRMERGE REPLACES IN RULE THOSE
INSTRUCTIONS THAT CORRESPOND TO VIRTUAL DECLARATIONS AND
THAT HAVE BEEN REDEFINED. VIRMERGE IS A CONSTRUCT WHOSE
COMPONENTS ARE THE NEW INSTRUCTIONS: THE COMPONENTS
SELECTORS ARE INTEGERS AND CORRESPOND TO THE SEQUENCE
NUMBER (IGNORING THE BGUNDARY DEFINITION INSTRUCTIONS) OF
THE INSTRUCTION TO BE REPLACED. BOUNDARY DEFINITION
INSTRUCTIONS ARE DELIMITED BY PSEUDO-INSTRUCTIONS WITH
COMPONENT MARK1:

NEXT1 := FIRST(VIRDECL); D := SELECTOR ((NEXT1]);
WHILE -NULLB(NEXT1) DO

BEGIN |
RULE1 : = RULE:
WHILE D > 1 DO
BEGIN

IF -NULLR(FIND(CAR(RULE!), MARK1)) DO
BEGIN COMMENT THIS IS THE BEGINNING OF A SEQUENCE OF

BOUNDARY DEFINITION INSTRUCTIONS. SKIP OVER THE
INSTRUCTIONS UNTIL ANOTHER ONE WITH COMPONENT

MARK1 IS FOUND; |

RULE! : = CDR(RULE1);

WHILE NULLR (FIND (CAR (RULE1), MARK1)) DO |
RULEL := CDR (RULE); |
RULE1 := CDR(CDR(RULE1))

END ELSE |
RULE1 :« CDR (RULE);
D:2 0-14

END;

CAR(RULE1) := [NEXT1); NEXT! := NEXT (INEXT1l)
END;
RULE

END;

$P1 EXPR ::= VALEXPR |

$P2 EXPR ::= REFEXPR

$P3 EXPR ::= DESIGEXPR

$/PL(EXPR). GENUS. TYPE : = "LABEL" /$

$P4 VALEXPR ::= ARITEXPR

$PS5 VALEXPR ::s= BEXPR |

$P7 ARITEXPR +:= SARITEXPR

175

$P8 ARITEXPR ::« IFCL SARITEXPR ELSE ARITEXPR

$/ SN := NEWINTEGER; SM := NEWINTEGER;
FJUMP(IFCL) : a SN;
RULE(ARITEXPR) := APEND (RULE(IFCL), APEND (RULE (SARITEXPR),

FIXCOND (RULE(ARITEXPR#), SM, SN)))/$
$/ PL(ARITEXPR).GENUS.TYPE : = COMBTYPE(PL (SARITEXPR),

PL(ARITEXPR#))/$
| $/ APA (SARITEXPR) := IF APA(ARITEXPR)=0 THEN 0 ELSE 4;

APA (ARITEXPR#) := IF ~SID(SARITEXPR) THEN 0
ELSE APA(ARITEXPR):

IF SID(SARITEXPR) AND APA(SARITEXPR)=4 THEN\

TYPE : = PL(ARITEXPR).GENUS. TYPE;
IF TYPE ~= "INTEGER" AND TYPE -~= "REAL" THEN
ERROR ("CONDITIONAL ARITHMETIC EXPRESSION HAS OPERAND OF

TYPE ", TYPE)
END /$

$/ SID(ARITEXPR) := SID(SARITEXPR) AND SID(ARITEXPRs) /$

$P9 SARITEXPR ::= TERM

$P10 SARITEXPR ::« AOP TERM

$/ VALENCE(AOP) :s 1; USE(TERM) :s "VALUE";
RULE (SARITEXPR) := APEND (RULE (TERM), RULE (AOP)) /$

$/ SID(SARITEXPR) := FALSE /§

$P11 SARITEXPR ::= SARITEXPR AOP TERM

$/ VALENCE(AOP) := 2; USE(SARITEXPR*) :s USE(TERM) := "VALUE";
APA (SARITEXPR#) := APA(TERM) : = 0;
RULE (SARITEXPR) : = APEND (RULE (SARITEXPRw),

APEND (RULE (TERM), RULE (AOP))) /§$.
$/ PL(SARITEXPR).GENUS.TYPE : = COMBTYPE(PL (SARITEXPR&),

PL(TERM)) /$
$/ SID(SARITEXPR) :« FALSE /$

$P12 AQP ::= + |

$/RULECAOP) := IF VALENCE(AOP) = 1 THEN NULL ELSE
LIST(INSTR == $(FORMAT ts F2; OPER := "+")) /§

$P13 AOP ::= - |

$/RULE(AOP) t= LIST(INSTR w= $ (FORMAT := F2;
OPER := IF VALENCE(AOP) = :2 THEN "-" ELSE "NEG")) /$

$P14 TERM ::s FAC |

$P15 TERM ::= TERM MOP FAC .
| 176

$/ USE(TERM«) := USE(FAC) := "VALUE"; SID(TERM) :« FALSE;
APA (TERM) :s APA(FAC) := 0;
RULE (TERM) :a APEND (RULE (TERM#),

APEND (RULE (FAC), RULEMOP))) /§
$/ PL(TERM) := PL (MOP);

T(MOP) := COMBTYPE(PL (TSRM=), PL (FAC)) /$

SP16 MOP ::s= = |

$/ RULE(MOP) := LIST(INSTR #= §$(FORMAT := F2; OPER t= "%"));
PL (MOP). GENUS. TYPE := T (MOP) /$

$P17 MOP ::= /

$§/ RULE(MOP) := LIST(INSTR == § (FORMAT :e F2; OPER := n/n))s
PL (MOP). GENUS. TYPE : = "REAL" /$

$P18 MOP ::= DIV

$§/ RULE(MOP):= LIST(INSTR x= $ (FORMAT : = F2; OPER := "DIV"));
PL (MOP). GENUS. TYPE := "INTEGER":
IF T(MOP) == "INTEGER" THEN
ERROR ("MIXED TYPES IN ""DIV"" OPERATION") /$

$P19 FAC ::= PRIM

$P20 FAC ::= FAC =x PRIM

$/ PL(FAC). GENUS. TYPE := "REAL"; APA(FACx) := APA(PRIM) := 0;
USE (FACw) := USE(PRIM) := "VALUE"; SID(FAC) := FALSE;
RULE (FAC) := APEND(RULE(FAC»), APEND (RULE (PRIM),

LISTCINSTR »= $(FORMAT : a F2; OPER := "#a")))) /$

$P21 PRIM ::= NU

$/ PL(PRIM). GENUS. TYPE := "INTEGER"; SID(PRIM) := FALSE;
RULE(PRIM) :a= LIST(INSTR w#= §$ (FORMAT := F3; Vis V(NU))) /§

$P22 PRIM ::= VAR

$/ SID(PRIM) :a TRUE /§
$/ TYPE := PL (VAR).GENUS.TYPE;
DISAMV(SP (VAR), DAR(VAR), TYPE -~= "INTEGER" AND

TYPE -~= "REAL", PL(VAR), APA(PRIM)) /$

$P23 PRIM ::= FUNC

$/ SID(PRIM) := TRUE /$
$/ TYPE : = PL (FUNC). GENUS. TYPE;
DISAMF(SP (FUNC), TYPE == "INTEGER" AND TYPE -= "REAL,

177

| PL (FUNC), APA (PRIM), L(FINC)) /$

$P24 PRIM ::= (ARITEXPR)

$/ USE(ARITEXPR) : = "VALUE":
APA (ARITEXPR) : = IF APA (PRIM)=2 THEN 3 ELSE APA (PRIM) /S$

SP48 VAR ::= {DI |

$/ DAR(VAR) :s FALSE /$ | |

$P49 VAR ::= ARID1 [SUBLIST] |

$/ DAR(VAR) := TRUE; USE(ARID1) := "VALUE":
RULE (VAR) := APEND(RULE (ARID1), APEND (RULE (SUBLIST),

LIST(INSTR~» § (FORMAT := F4: USE := USE(VAR))))) /$

$PS2 ID1 ::= SIGMA

$/ NEXT1 := FIND(ENV(ID1), (SP(SIGMA)]):
[F ~NULLB(NENT1) THEN PL(ID1) := [NEXT1] ELSE
ERROR ("UNDEFINED IDENTIFIER", SP(SIGMA)) /$

$/ ADDR := CHECKIDENTIFIER(ITEM(ID1), QUALTB(ID1), PL(ID1)):
RULE (ID1) := IF NULLB (ADDR) THEN

CONS {INSTR #= § (FORMAT := F7; ADDR := ADDR),
LIST (INSTR ws § (ADDR : = PL(ID1).ADDR: |
IF USE(ID1) THEN FORMAT :s F5 ELSE FORMAT := F6)))

ELSE

LIST (INSTR #= § (ADDR := PL(ID1).ADDR:
IF USE(ID1) THEN FORMAT :« F7 ELSE FORMAT := F8) /$

$P53 IDi ::= RID

$/ IF PL(RID). GENUS. KIND = "CLASS* THEN :
ERROR(SP (RID), * CLASS IDENT. USED IN REMOTE IDENTIFIER") /S$

$P83 RID ::a= SOBJEXPR . ATTRID |

$/ USE(SOBJEXPR) := "VALUE"; APA (SOBJEXPR) := 0
RULE (RID) : = APEND (RULE (SOBJEXPR), LIST (INSTR w= $(IF

USE(RID) = "VALUE" THEN FORMAT = FS ELSE FORMAT := Fé;
ADDR : = PL(ATTRID).ADDR))) /$

$/ PL(RID) := PL(ATTRID) /$

$/ ENV(ATTRID) := (QUALTB (RID). [PL(SOBJEXPR).GENUS.QUAL].
CLASSN]. LOCALE;

COMMENT CHECK TO SEE [F ENV CONTAINS CLASS DECLARATIONS.
IF YES, REMOTE ACCESS IS ILLEGAL:

NEXT1 :« FIRST (ENV(ATTRID)); ’ So
WHILE -NULLB(NEXT1) DO
BEGIN

IF [NEXT1). GENUS. KIND = "CLASS" THEN

178

ERROR ("REMOTE 1D. ACCESSES CLASS WHICH HAS CLASSES AS ATT

RIBUTES"): NEXT! := NEXT ([NEXT1)) /$

§P84 ATTRID ::= SIGMA

$/ NEXT1 := FIND(ENV(ATTRID), [SP(SIGMA)]);
IF -NULLB(NEXT1) THEN PL(ATTRID) := (NEXT1) ELSE

ERROR ("UNDEFINED ATTRIBUTE IDENTIFIER ", SP(SIGMA))/$

$P85 ARID1 ::= IDI - -

$/ 1F APA(ARID1) = 0 THEN
BEGIN

IF PL(ID1).GENUS.KIND ~= "ARRAY" THEN

ERROR ("ARRAY IDENTIFIER EXPECTED AND NOT FOUND *,
SP (ID1))

END /§$

$P80C SUBLIST ::= SUBEXPR

$/ L(SUBLIST) := 1; USE(SUBEXPR) := "VALUE" /$

$P87 SUBLIST ::= SUBLIST , SUBEXPR

$/ USE (SUBEXPR) := "VALUE": L(SUBLIST) := L(SUBLIST#) + 1 /$
$/ RULE(SUBLIST) := APEND (RULE (SUBLISTw), CONS (INSTR w=

§ (FORMAT := F4; USE := "VALUE"), RULE(SUBEXPR)) /§

§P88 SUBEXPR ::= ARITEXFR |

$/ APA(ARITEXPR) := 0 /$ | |

$P89 FUNC ::= PROCID1 APPART | |

$/ USE (PROCID1) := "VALUE":
RULE (FUNC) : = CONS(INSTR w= § (FORMAT := F11),

CONS (INSTR w= § (FORMAT := F9; OPER := "RET"), :
CONS (INSTR ws $ (FORMAT := FO:

OPER : = PL(PROCID1).GENUS. TYPE),
APEND(RULE (APPART), APEND (RULE (PROCID1),

LIST(INSTR »= $ (FORMAT := F10))))))) /$

$P90 PROCIDI ::= IDI | | |

$/ IF APA = 0 THEN |
BEGIN IF PL(ID1).GENUS.KIND ~= "PRCEDURE" THEN

ERROR ("PROCEDURE IDENTIFIER EAS WRONG KIND ", SP(ID1))
END /$

$P91 APPART ::= |

179 |

$/ RULE(APPART) :s NULL; LC(APPART) := 0 /$

$P92 APPART ::s (APLIST)

$P93 APLIST ::= AP

$/ L(APLIST) :=1 /$

$P94 APLIST ::= APLIST , AP

$/ L(APLIST} := L(APLIST®) + 1 /$
$/ RULE(APLIST) := APEND(RULE(APLISTw), RULE (AP)) /$

$P9S AP ::= EXPR

$/ SN t« NEWINTEGER; USE(EXPR) := "NAME"; APA (EXPR) : = 2;
QUTPUT (APEND (RULE (EXPR),

LIST(INSTR ws $ (FORMAT :« F12))), SN) /$
$/ RULE(AP) := BACTUAL (PL (EXPR).GENUS.LL (AP), SN) /$
$/ LL(EXPR) := LL(AP) + 1 /%

$P96 AP ::=s ARID1

$/5N : = NEWINTEGER; USE(ARID1) :a= "NAM:"; APA(ARID1) := 2:
OUTPUT (APEND (RULE (ARID),

LIST (INSTR »s $ (FORMAT :a F12))), SN) /$
$/ RULE(AP) ::= BACTUAL (PL (ARID1). GENUS, LL (AP), SN) /$
$/ DAMB (PL (ARID1).GENUS. KIND = "ARRAY", AP) /$

$P97 AP ::s= SWIDI{

$/ SN i= NEWINTEGER; APA(SWIDiN :s 1;
OUTPUT (APEND (RULE (SWID1),

LIST (INSTR == $ (FORMAT :as F12))), SN) /$
$/ RULE(AP) := BACTUAL (PL(SWI1D1). GENUS, LL (AP), SN) /$

$P98 AP ::= PROCIDI

$/ SN := NEWINTEGER; YUSE(PROCID1) := "NAME"; APA(PROCID1) := 2;
OUTPUT (APEND (RULE (PROCI D1),

| LIST (INSTR == § (FORMAT := F12))), SN) /$
$/ RULE(AP) := BACTUAL (PL(PROCID1). GENUS, LL(AP), SN) /$ |
$/ DAMB (PL (PROCID1).GENUS. KIND = "PROCEDURE", AP) /§

$P103 BEXPR ::= SBOOL

$P104 BEXPR ::s IFCL SBOOL ELSE BEXPR

180

§/ SX := NEWINTEGER; SM :s= NEWINTEGER; FJUMP(IFCL) i= SN;
PL(BEXPR) : = APEND (RULE (IFCL), APEND (RULE (SBOOL),

FIXCOND(RULE (BEXPR®), SM, SN))) /§
§/ SID(BEXPR) := SID(SBOOL) AND SID(BEXPR) /$
$/ APA(SBOOL) := IF APA(BEAPR)=0 THEN 0 ELSE 4;

APA (BEXPR#) := [F ~S1D(SBOOL) THEN 0 ELSE APA(BEXPR);
COMMENT THE FOLLOWING TEST 1S PERFORMED WHEN THE BEXPR 1S

PART OF AN AMBIGUITY SINCE IN THIS CASE THE TYPE OF SBOOL
HAS NOT BEEN TESTED. THE CLAUSE (SID(BEXPRs) OR
~SID(BEXPR)) IS IN TO GUARANTEE THAT THE TEST 1S
PERFORMED ONLY AFTER THE AMBIGUTIES IN BEXPRw HAVE BEEN
ALL RESOLVED; ah

[F SID(SBOGL) AND APA(SBOOL)=4 AND (SID(BEXPRw) OR
\SI1D(BEXPRa)) AND PL(SBOOL). GENUS. TYPE ~= "BOOLEAN" THEN

ERROR ("CONDITIONAL BOOLEAN EXPRESSION HAS OPERAND WITH TYPE"
, PL(SBOOL).GENUS.TYPE) /$

§P105 SBOOL ::= [MPL

$P106 SBOOL ::= SBOOL EQUIV IMPL

$/ PL(SBOOL) := PL(SBOOL#); APA(SBOOLw) := APA(IMPL) := O;
USE (SBOOL#) := USE(IMPL) := "VALUE"; SID(SBOOL) := FALSE; |
RULE (SBOOL) i= APEND(RULE(SBOOLw), APEND(RULE(IMPL),

LIST (INSTR «= §(FORMAT := F14;
OPER := "EQUIV™))) §/

$P107 IMPL ::= BTERM |

§P108 IMPL ::= IMPL IMPLIES BTERM

§/ PLCIMPL) := PLCIMPLa); USE(IMPLs) t= USE(BTERM) := "VALUE";
APA (IMPL®) := APA(BTERM) := 0; SID(IMPL) := FALSE;
RULE (IMPL) : = APEND (RULE (I:1PLx), APEND (RULE (BTERM),

" LIST(INSTR #= (FORMAT :s F14; OPER := "IMPLY")))} /§

$P109 BTERM ::= BFAC |

§P110 BTERM ::= BTERM OR BFAC

$/ PL(BTERM) := PL(BTERM»); APA(RTERM#) := APA(BFAC) := 0;
USE (BTERM#) := USE(BFAC) := "VALUE"; SID(BTERM) := FALSE;
RULE (BTER'W) := APE!D(RULE(BTERMw), APEND(RULE (BFAC),

LIST (INSTR a= § (FORMAT := F14; OPER := "OR™))) /$

$P111 BFAC ::= BSEC

$P112 BFAC ::= BFAC AND BSEC

181

$/ PL(BFAC) :a PL(BFAC#); USE(BFAC#) := USE(BSEC) := "VALUE":
APA (BFAC) := APA(BSEC) := 0; SID(BFAC) := FALSE:
RULE (BFAC) : = APEND(RULE (BFACw), APEND (RULE (BSEC),

LIST(INSTR w= § (FORMAT := F14; OPER := MAND"))))/S

$P113 BSEC ::« BPRIM

$P114 BSEC ::= ~ BPRIM |

$/ USE(BPRIM) :s "VALUE"; APA(BPRIM) :s 0; SID(BSEC) := FALSE;
RULE (BSEC) : = APEND(RULE (BPRIM),

LIST(INSTR := $(FORMAT := Fi4, OPER t= "-"))) /$

$SP115 BPRIM ::= LOGVAL

$/ PL(BPRIM). GENUS : = $(KIND :« "SIMPLE"; TYPE := “BOOLEAN");
SID(BPRIM) := FALSE /3

$P116 EPRIM ::= VAR

$/ SID(BPRIM) := TRUE /$

$/ DISAMV(SP(VAR), DAR(VAR), PL(VAR).GENUS.TYPE ~= BOOLEAN,
PL(VAR), APA (BPRIM)) /$

$P117 BPRIM ::= FUNC |

$/ SID(BPRIM) := TRUE /$ |

$/ DISAMF(SP (FUNC), PL (FUNC). GENUS. TYPE ~= "BOOLEAN", PL (FUNC),
APA (BPRIM), L(FUNC)) /$ |

$P118 BPRIM ::= REL

$/ USE(REL) := "VALUE"; SID(BPRIM) :s= FALSE:
PL (BPRIM). GENUS := $(KIND : = "SIMPLE";

TYPE :« "BOOLEAN ") /$

$P119 BPRIM ::= (BEXPR) |
$/ USE (BEXPR) := "VALUE":

APA (BEXPR) := IF APA(BPRIM)=2 THEN 3 ELSE APA (BPRIM) /$

$P120 LOGVAL ::= TRUE

$/ RULE(LOGVAL) := LIST(INSTR w= § (FORMAT := F15;
OPER : = "TRUE")) /$

$P121 LOGVAL ::= FALSE |

$/ RULE(LOGVAL) :s LIST(INSTR w= §(FORMAT := FiS; |
OPER := "FALSE"™)) /$

| 182

§P122 REL ::« SARITEXPR RELOP SARITEXPR

§/ APA(SARITEXPR) := APA(SARITEXPRe) := 0;
RULE (REL) := APEND(RULE(SARITEXPR), APEND(RULE (SARITEXPRw),

RULE (RELOP))) /§

$P124 REL ::= OBJREL

$§P125 REL ::s REFREL

$P1206 RELOP ::= «

$/ RULECRELOP) := LIST(INSTR == $ (FORMAT :s= F16;
OPER := "¢")) /§

$P127 RELOP ::= (=

$/ RULE(RELOP) := LIST(INSTR == J (FORMAT := F106;
OPER := "(a")) /$

$P128 RELOP ::= =

$/ RULE(RELOP) := LIST(INSTR «= $ (FORMAT :s= F16;
OPER t= "a")) /§

$P129 RELOP ::= >=

$/ RULE(RELOP) :a LIST(INSTR w= § (FORMAT :« F16;
OPER := ">=")) /$

$P130 RELOP ::= >

$/ RULE(RELOP) :a LIST(INSTR a= § (FORMAT :s F16;
OPER := ">")) /§

$P131 RELOP ::= a=

$/ RULE(RELOP) := LIST(INSTR «= $(FORMAT := F16;
: OPER : a "-=")) /§

$§P133 OBJREL ::= SOBJEXPR IS CLID1

$/ APA (SOBJEXPR) :s OQ
RULE(OBJREL) :s= APEND(RULE (SOBJEXPR), APEND(RULE(CLID1),

LIST(INSTR «= $ (FORMAT :« F16; OPER := "15")))) /$

183

$P134 OBJREL ::= SOBJEXPR IN CLID1

$/ APA (SOBJEXPR) := 0;
RULE (OBJREL) : = APEND(RULE (SOBJEXPR), APEND(RULE(CLID1),

LIST(INSTR e= $ (FORMAT := F16; OPER := "IN")))) /$

$P13S REFREL ::= OBJREFREL

$P136 OBJREEFREL ::= SOBJEXPR REFCOMP SOBJEXPR

$/ APA (SOBJEXPR) := APA(SOBJEXPR#) := O;
RULE (OBJREFREL) : = APEND(RULE (SOBJEXPR),

APEND (RULE (SOBJEXPRe), RULE(REFCOMP))) /$

$P137 REFCOMP ::a =a

$/ RULE(REFCOMP) :a LIST(INSTR a= §$ (FORMAT := F16;
OPER := "==")) /$

$P138 REFCOMP ::= =/=

$/ RULE(REFCOMP) :a LIST(INSTR as $ (FORMAT := P16;
OPER := "u/=")) /$

$P147 REFEXPR ::s OBJEXPR

$P148 OBJEXPR ::= SOBJEXPR

$P149 OBJEXPR ::= [IF BEXPR THEN SOBJEXPR ELSE OBJEXPR |

$/ SM = NEWINTEGER; Si := NEWINTEGER; USE(BEXPR) := "VALUE":
APA (BEXPR) := 0:
RULE (CBJEXPR) := APEND (RULE (BEXPR), APEND(

| CONS (INSTR »= $ (FORMAT := F17; JLABEL := SN),
| RULE (SOBJEXPR)), FIXCOND(RULE(OBJEXPR), SM, SN))) /S$

$/ PL(OBJEXPR).GENUS := §(TYPE := "REi"; QUAL :=
: CONDQUAL (PL (SOBJEXPR).GENUS. QUAL,

PL (OBJEXPR«).GENUS. QUAL)) /$
$/ APA (SOBJEXPR) :=]F APA(OBJEXPR)=0 THEN 0 ELSE 4;

APA (OBJEXPRw) := [F ~SID(OBJEXPR) THEN 0 ELSE APA (OBJEXPR);
IF PL(SOBJEXPR).GENUS. TYPE ~= PL (OBJEXPRe). GENUS. TYPE THEN
ERROR ("CONDITIONAL OBJFCT EXPRESSION HAS OPERAND OF TYPE ",

PL (SOBJEXPR).GENUS. TYPE) /%£

$/ SID(OBJEXPR) r= SID{SO7.'EXPR) AND Sit (OBJEXPRx) /§%

$P1S0 SOBJEXPR ::s NONE |

$/ PL(SUBJEXPR). GENUS : « $S(TYPE := "REF"; QUAL := -1);
SID(SOBJEXPR) := FALSE:
RULE (SOBJEXPR) :s LIST (INSTR as $ (FORMAT := F18;

184 |

QUAL := -1)) /§

$P151 SOBJEXPR ::= VAR

$/ SID(SOBJEXPR) := TRUE /§
$/ NEXT1 := PL (VAR). GENUS;

TYPE : = (NEXT1).TYPE; K'ND :s(NEXT1).KIND,
IF APA(SOBJEXPR) = 4 THEN DPAMB‘KIND -~= "PROCEDURE") ELSE
IF -DAR (VAR) THEN

BEGIN

IF APA(SOBJEXPR) = 3 THEN
BEGIN

IF KIND ~= "SIMPLE" THEN

BEGIN

IF XIND = "LABEL" THEN DAMB (FALSE, EXPR) ELSE
!F XIND ~= "PROCEDURE" THEN

ERROR(SP (VAR), " 1S OF THE WRONG KIND") ELSc
1F COND THEN DAMB (FALSE, EXPR)

ELSE DAMB (FALSE, PRIM)
END ELSE

IF COND THEN DAMB/EXPR, FALSE) ELSE |
BEGIN DAMB(TRUE, PRIM); DAMB (TRUE, EXPR) END

END ELSE

IF APA(SOBJEXPR) = 2 THEN
BEGIN

| IF KIND <= "SIMPLE" THEN
BEGIN

IF XIND -= "LABEL" THEN DAMB (FALSE, AP)

) ELSE DAMB (FALSE, EXPR)
END ELSE

THOME ~= "REF" THEN DAMB (FALSE, EXPR) ELSEBEGIN

DAMB (TRUE, SOBJEXPR); DAMB (TRUE, EXPR);
DAMB (TRUE, AP)

. END
END £LSE

IF KIND ~= "SIMPLE" THEN

BEGIN

IF XIND = "PROCEDURE" THEN DAMB (FALSE, SOBJEXPR) ELSE
ERROR(SP (VAR), " IS OF THE WRONG KIND")

END ELSE

8 IF TYPE = "REF" THEN DAMB (TRUE, SOBJEXPR) ELSE
] ERROR(SP (VAR), " 1S OF THE WRONG TYPE")

END ELSE

IF APA (SOBJEXPR) = 2 OR APA(SOBJEXPR) = 3 THEN
BEGIN

IF KIND ~= "ARRAY" THEN
BEGIN

IF KIND = "SWITCH" THEN DAMB (FALSE, EXPR) ELSE
ERROR (SP(VAR), " 1S OF THE WRONG KIND")

END ELSE

DAMB (TYPE = "REF", EXPR)
END ELSE

IF TYPE ~= "REF" OR KIND ~= "ARRAY" THEN
ERROR(SP (VAR), " HAS WRONG TYPE OR KIND) /§

185

$P152 SOBJEXPR ::s FUNC

$/ SID(SOBJEXPR) := TRUE /$
§/ NEXT1 := PL (FUNC). GENUS;

TYPE :» (NEXT1).TYP& KIND :s (NEXT). KIND;
IF APA(SOBJEXPR) = 4 THEN DAMB(KIND == "SIMPLE") ELSE
IF L(FUNC) = 0 THEN
BEGIN

IP APA(SOBJEXPR) = 3 THEN
BEGIN

IF KIND ~= "PROCEDURE" THEN
BEGIN

IF KIND ="LABEL" THEN DAMP (FALSE, EXPR) ELSE
IF KIND ~e "SIMPLE" THEN

ERROR (SP (SOBJEXPR), " 15 OF THE WRONG KIND") ELSE
IF COND THEN DAMB (FALSE, EXPR)

ELSE DAMB (FALSE, PRIM)
END ELSE

IF COND THEN DAMB (FALSE, EXPR) ELSE
BEGIN DAMB(TRUE, PRIM); DAMB (TRUE, EXPR) END

END ELSE

IF APA (SOBJEXPR) = 2 THEN
BEGIN

IF KIND = "PROCEDURE" THEN DAMB (FALSE, AP)
ELSE DAMB (FALSE, SOBJEXPR)-

END ELSE
IF TYPE -~« "REF" THEN

ERROR(SP (FUNC), " 1S OF THE WRONG TYPE") ELSE
IF KIND = "PROCEDURE" THEN DAMB (TRUE, SOBJEXPR) ELSE
IF KIND =» "SIMPLE" THEN DAMB (FALSE, SOBJEXPR) ELSE
ERROR(SP (FUNC), " IS OF THE WRONG KIND")

END ELSE

IF APA (SOBJEXPR) = 2 THEN
BEGIN

IF KIND = "PROCEDURE" THEN DAMB (TYPE = "KEP", EXPR) ELSE
ERROR(SP (FUNC), * IS OF THE WRONG KIND")

END ELSE
IF KIND ~= "PROCEDURE" OR TYPE -~= "PEF" THEN
ERROR(SP (FUNC), * 1S OF THE WRONG KIND“) /§

$P153 SOBJEXPR ::= OBJGEN
§/ SID(SOBJEXPR) := FALSE /$

$P154 SOBJEXPR ::= LOCOBJ
§/ SID(SOBJEXPR) := FALSE /$

$P155 SOBJEXPR ::e QUALOBJ
| $/ SID(SOBJEXPR) :e FALSE /$

§P156 SOBJEXPR ::s (OBJEXPR)

§/ USE(OBJEXPR) t= "VALUE";
APA (OBJEXPR) := IF APA(SOBJEXPR)=2 THEN 3

ELSE APA (SOBJEXPR) /§

186

$P157 OBJGEN ::= NEW CLID2 APPART

$/ RULE(OBJGEN) :s APEND(CONS (INSTR ss $ (FORMAT := F11),
RULE (APPART)), APEND(RULE(CLID2),

CONS (INSTR #= $ (FORMAT := F19;
NFORMALS := PL(CLID2). NFORMALS),

LIST (INSTR ss $ (FORMAT := F12))))) /$

$/ PL(OBJGEN).GENUS :s $(TYPE := "REF";
QUAL := PL(CLID2).SEGMENT) /$

$/ IF PL{CLID2).NFORMALS -= L(APPART) THEN

ERROR ("WRONG NUMBER OF PARAMETERS IN CLASS ™, SP(CLID2)) /$

$P1STA CLID2 ::= ID1

$/ IF PL(ID1).GENUS.KIND -= "CLASS" THEN

ERROR(SP (1D1), " NOT A CLASS IDENTIFIER") /$

$P158 CLIDL ::« SIGMA |

$/ NEXT1 := FIND(ENV(CLID1), (SP(SIGMA)]);
IF ~NULLB(NEXT1) THEN PL(CLID1) := (NEXT1] ELSE
ERROR(SP (SIGMA), "™ UNDECLARED CLASS IDENTIFIER") /$

$/ IF PL(CLID1). GENUS. KIND ~= "CLASS" THEN

ERROR(SP (SIGMA), ® NOT A CLASS IDENTIFIER") /$

$P159 LOCOBJ ::= THIS CLIDI

$/ RULE(LOCOBJ) : = LIST(INSTR a= § (FORMAT := F18;
OPER := "THIS"; QUAL :s PL(CLID1).SEGMENT)) /§

$/ PL(LOCOBJ).GENUS := (TYPE := "REF"; KIND := "SIMPLE";
QUAL := PL(CLID1). SEGMENT) /$

$P160 QUALOBJ ::= SOBJEXPR QUA CLID1

$/ APA (SOBJEXPR) := 0;
PL (QUALOBJ). GENUS := $ (TYPE := "REF"; KIND := "SIMPLE";

QUAL : = PL(CLID1).SEGMENT) /$

$P161 DESIGEXPR ::= SDESIGEXPR

$F162 DESIGEXPR ::= IFCL SDESioEXPR ELSE DESIGEXPR

§/ SM := NEWINTEGER; SN := NEWINTEGER; FJUMP (IFCL) := SN
RULE (DESIGEXPR) := APEND(RULE(IFCL), APEND (RULE (SDESIGEXPR),

FIXCOND(RULE (DESIGEXPRe), SM, SN))) /$
$/ APA(SDESIGEXPR) :s IF APA(SDESIGEXPR)=0 THEN 0 ELSE 4;

1¥ PL(SDESIGEXPR). GENUS. TYPE ~s PL (DESIGEXPR#).GENUS. TYPE
ERROR("CONDITIONAL DESIGNATIONAL EXPRESSION HAS OPERAND OF T

YPE ", PL(SDESIGEXPR).GENUS.TYPE) /$

187

$P163 SDESIGEXPR ::s LABEL1

$P164 SDESIGEXPR ::= SWDESIG

$P165 SDESIGEXPR ::= (DESIGEXPR)
$/ APA(DESIGEXPR) :« IF APA(SDESIGEXPR)=2 THEN 3

ELSE APA (SDESIGEXPR) /§

$P166 LABEL! ::« SIGMA

$/ RULE(LABEL1) := LIST(INSTR «= § (FORMAT := F7;
ADDR := PL(LABEL1).ADDR)) /§

$/ NEXT1 :s FIND (ENV(LABEL!), (SP(SIGMA)]);
IF -NULLB (NEXT1) THEN PL(LABEL1) := [NGXT1]) ELSE
ERROR (SP(SIGMA), " UNDECLARED LABEL") /§$

$/ KIND : = PL(LABEL1).GENUS.KIND;
IF APA(LABEL1) = 3 THEN DAMB (KIND = "LABEL", EXPR) ELSE
IF APA (LABEL1) = 2 THEN
BEGIN

IF KIND ~= "LABEL" THEN

BEGIN

IF KIND ~= "SIMPLE" THEN DAMB (FALSE, AP)
ELSE DAMB (FALSE, EXPR)

END ELSE

BEGIN DAMB (TRUE, EXPR); DAMB (TRUE, AP) END
END ELSE

IF APA (LABEL1)=0 AND KIND -= “"LABEL" THEN
ERROR(SP (SIGMA), " NOT A LABEL") /$§

$P167 SWDESIG ::= SWID1 ([SUBEXPR]

$/ USE (SUBEXPR) := "VALUE";
RULE (SWDES1G) :e APEND(KULE(SWID1), APEND(RULE(SUBEXPR),

LIST(INSTR as $ (FORMAT := Fd; USE := VALUE)))) /§$
$/ PL(SWDESIG) := IF PL(SWID1),GENUS.KIND « "SWITCH" THEN

$ (GENUS. KIND : = "LABEL") ELSE PL(SWID1) /§

$P168 SWID1 ::=« SIGMA |

$/ RULE(SWID1) := LIST(INSTR e= $(FORMAT := F7;
ADDR := PL(SWID1).ADDR)) /§

$/ NEXT1 := FIND(ENV(SWID1), (SP(SIGMA)]});
IF -NULLB(NEXT1) THEN PL(SWID1) :« (NEXT1) ELSE

ERROR(SP (SIGMA), " UNDECLARED SWITCH IDENTIFIER") /§
$/ KIND : = PL(SWID1).GENUS.KIND; :

IF APA(SWID1) = 2 OR APA(SWID1) = 3 THEN
BEGIN

IF KIND = "SWITCH" THEN DAMB (TRUE, EXPR) ELSE
IF KIND = "ARRAY" THEN DAMB (FALSE, EXPR) ELSE
ERROR(SP(SIGMA), * IS OF THE WRONG KIND") |

END ELSE :

188

IF APA(SWID1) = { THEN DAMB(KIND = "SWITCH", AP) ELSE
IF APA(SWID1) = 0 AND KINU == "SWITCH" THEN
ERROR(SP (SIGMA), "NOT A SWITCH IDENTIFIER") /§

$P169 PROGRAM ::= BLOCK

$/ SN := NEWINTEGER; LL(BLOCK) := 4; DO(BLOCK) := 1 3;
CL (BLOCK) := 0; ITEM(BLOCK) := NULL; ENV1 (BLOCK) := NULL;
ENVA (BLOCK) := NULL; QUALTB (BLOCK) := NULL;
BEGUN (BLOCK) := TRUE; ENV (BLOCK) := E(BLOCK);
WRITE ("ORIGIN =", SN, /);
OUTPUT (APEND (UNDECL (BLOCK, APEND (RULE (BLOCK),

LIST (INSTR as $ (FORMAT := F12)))), SN) /§

$P170 PROGRAM ::= COMPST

$/ SN : = NEWINTEGER; LL (COMPST) := 4; DC(COMPST) := 1;
CL(COMPST) := 0; ITEM(COMPST) := NULL; ENV1(COMPST) := NULL;
ENV (COMPST) : = E(COMPST); QUALTB(COMPST) := NULL;
WRITE("ORIGIN 2",SN, /);
OUTPUT (APEND (UNDECL (COMPST). APEND (RULE (COMPST) ,

LIST(INSTR «= $ (FORMAT :s F12)))), SN) /§$

$P171 COMPST ::= UNLCOMP

$P172 COMPST ::= LABELO : COMPST

$/ DN := CHECKVIRT(ENV1(COMPST), SP(LABELO), "LABEL") /§
$/ SN : = NEWINTEGER;

RULE (COMPST) := CONS (INSTR a= $(LABELI := 5N),
RULE (COMPST=)) /§$

$/ INSTR := $ (FORMAT := F20; JLABEL := SN) /§
$/ UNDECL (COMPST) := [IF DN -~= 0 THEN UNDECL(COMPSTe) ELSE

CONS (INSTR, UNDECL (COMPST=)) /§
$/ VIRDECL (COMPST) := IF DN = 0 THEN VIRDECL (COMPST«) ELSE

PUTIN (VIRDECL (COMPST#=) : [DN] := INSTR) /§
$/ D(COMPST) := IF DN = 0 TEN D(COMPST#) +1 ELSE D(COMPSTe) /§
$/ DO(COMPST«) := IF DN = 0 THEN DC (COMPST) + 1

ELSE DO (COMPST) /§

$/ E(COMPST) := IF DN -= 0 THEN E(COMPST«) ELSE
UNIONDOT(E (COMPSTe), El as $(([(SP(LABELO)) :=

$ (GENUS := $(KIND :s "LABEL"; TYPE :~ "LABEL");
ADDR := $(FORMAT := F21; LN := LL (COMPST);

DN : = DO(COMPST)))))) /$

$P172A LABELO ::= SIGMA |

$P173 U'LCOMP ::= BEGIN COMPT

$/ IF FIRSTST (COMPT) THEN DAMB (TRUE, 1) /$

189

| $P174 BLOCK ::= UNLBLOCK

$/ NOLABEL (BLOCK) := TRUB ,¢

$P175 BLOCK ::= LABELO : BLOCK

$/ SM := NEWINTEGER; SN := NEWINTEGER; NOLABEL (BLOCK) := FALSE;
INSTR :« $ (FORMAT :« F20; JLABEL := SM);
COND : = BEGUN (BLOCK) AND NOLABEL (BLOCK#) /§$

$/ DN : = CHECKVIRT(ENV1 (BLOCK), SP(LABELM), "LABEL") /$
$/ RULE(BLOCK) := CONS(INSTR #= $(LABELI := SM),

IF ~COND THEN RULE (BLOCK)ELSE

CONS (INSTR «= $ (FORMAT := F11),
" LIST(INSTR a= $ (FORMAT := F22;

SN :s SN; LEVEL := LL(BLOCK) + 1))) /$
$/ IF COND THEN OUTPUT (APEND (RULE (BLOCKe),

LIST(INSTR := $ (FORMAT := F12))), SN) /§$
$/ DO(BLOCKe) :« IP COND THEN i ELSE IF DN « 0 THEN

DO (BLOCK) + : ELSE DO(BLOCK) /$
$/ CL(BLOCK#) := IF COND THEN 0 ELSE CL (BLOCK);

ENV1 (BLOCK) :s IF COND THEN NULL ELSE ENV1 (BLOCK);
ENVA (BLOCKe) :s IF COND THEN NULL ELSE ENVA (BLOCK);
E(BLOCK) := IP COND THEN Ei ELSE UNIONDOT(E (BLOCK#), E1) /§$

$/ LL(BLOCKe) := IF COND THEN LL(BLOCK) + 1 ELSE LL (BLOCK) /§$
$/ D(BLOCK) :« IF DN = 0 THEN D(BLOCKe) + 1 ELSE D(BLOCKe) /$%
$/ UNDECL(BLOCK) := IF DN = 0 THEN CONS(INSTR, UNDECL (BLOCKw)

ELSE UNDECL (BLOCKs) /§$
$/ VIRDECL(BLOCX) :« IP DN « 0 THEN VIRDECL (BLOCKe) ELSE

PUTIN (VIRDECL(BLOCKs) : [DN} := INSTR) /$
$/ E1 := IF DN ~= 0 THEN NULL ELSE $(([SP(LABELO)] := :

$ (GENUS := $(KIND : = "LABEL"; TYPE :e "LABEL";
ADDR :s $ (FORMAT :s F21; LN := LL (BLOCK);

DN :« DO(BLOCK)))) °

$/ ENV(BLOCKe) := IF ~s COND THEN ENV (BLOCK) ELSE
INVDELTA(ENV (BLOCK), E(BLOCK#)) /$

$P176 BLOCK ::= UNLPREBLOCK .

$/ NOLABEL (BLOCK) := TRUE /$

$P179 UNLBLOCK ::= BLOCKHEAD ; COMPT

$/ SN := NEWINTEGER;
IF -BEGUN (UNLBLOCK THEN OUTPUT (APEND (RULE1,

LISTCINSTR «= $ (FORMAT := F12))), SN) /$
$/ RULE1 : = APEND(RULE(BLOCKHEAD), APEND (UNDECL (COMPT),

PUTII (RULE (COMPT), TRUE))) /$
$/ RULE (UNLBLOCK) := IF BEGUN (UNLBLOCK) THEN RULE1 ELSE

CONS (INSTR #= $ (FORMAT := F11), LIST(INSTR =
$ (FORMAT := F22: LL :a LL(COMPT); SN :=« SN))) /§$

$/ E(UNLBLOCK) := IF -BEGUN(UNLBLOCK) THEN NULL BLSE
UNIONDOT(E (BLOCKHEAD), ECOMPT)) /$

$/ D(UNLBLOCK) := IF <~BEGUN(UNLBLOCK) THEN 0 ELSE
D (BLOCKHEADY + D(COMPT) /$

$/ DO (BLOCKHEAD) :s IF -BEGUN(UNLBLOCK) THEN 1

190

ELSE DO (UNLBLOCK);
DO(COMPT) := DO (BLOCKHEAD) + D(BLOCKHEAD) /$

$/ LL(BLOCKHEAD) := LL(COMPT) :s IF BEGUN (BLOCKHEAD) THEN
LL (UNLBLOCK)ELSE LL (UNLBLOCK) +1 /$

$/ UNDECL (UNLBLOCK) := NULL;
ENVA (BLOCKHEAD) := IF BEGUN (UNLBLOCK) THEN ENVA (UNLBLOUCK)

ELSE ENV (UNLBLOCK);
ENV1 (BLOCKHEAD) : = ENV: (COMPT) := IF -~BEGUN (UNLBLOCK) THEN

NULL ELSE ENV1 (UNLBLOCK);
ENV (BLCCKHEAD) := ENV(COMPT) := IF BEGUN (UNLBLOCK) THEN

ENV (UNLBLOCK) ELSE INVDELTA(ENV (UNLBLOCK),
UNIONDOT (E (BLOCKHEAD), E (COMPT))) /§

$/ VIRDECL(UNLBLOCK) := IF -BEGUN (UNLBLOCK) THEN NULL ELSE
UNIONR (VIRDECL (BLOCKHEAD), VIRDECL (COMPT)) /$

$/ CL(BLOCKHEAD) := IF -BEGUN(UNLBLOCK) THEN 0 ELSE
CL (UNLBLOCK) /$

$/ QUALTB (BLOCK{EAD) := QUALTB(COMPT) : =
UPDQUALTB(QUALTB (UNLBLOCK), CDECL (BLOCKHEAD)) /$

$/ 17 AEMDEC (BLOCKHEAD) THENGIN

IF NUMDEC (BLOCKHEAD) = 1 THEN DAMB (FALSE, 1) ELSE
DAMB (FALSE, 2)

END ELSE

IF EMDEC (BLOCKHEAD) THEN DAMB (FALSE, 1) ELSE
IF FIRSTST(COMPT) THEN DAMB (TRUE, 1) /§

$P180 UNLPREBLOCK ::= BLOCKPRE MBLOCK

$/ UNDECL (UNPREBLOCK) :s= NULL; VIRDECL (UNLPREBLOCK) := NULL;
D (UNLPREBLOCK) := 0; CL (MBLOCK) := SN:
BEGUN (MBLOCK) :« TRUE; E(UNLPREBLOCK) := NULL:
SN := NEWINTEGER; SM : = NEWINTEGER;
OUTPUT (LIST(INSTR n= $(FORMAT := F31; SN :a= SN; SM := SM;

OBJECT : = PL(BLOCKPRE).OBJECT), SM);
OUTPUT (VIRMERGE (CONCATENATE (PL (BLOCKPRE) . CODE,

APEND (UNDECL (MBLOCK), RULE (MBLOCK))),
VIRDECL (MBLOCK)), SN) /$

$/ RULE (UNLPREBLOCK) := CONS (INSTR as $ (FORMAT := F11),
APEND (RULE (BLOCKPRE), CONS (INSTR a= $ (FORMAT : = F32;
SN := SM; LL := LL(UNLPREBLOCK) + 1), CONS(INSTR n=
$ (FORMAT : = F19; NFORMALS := PL (BLOCKPRE).NFORMALS),
CONS (INSTR a= $ (FORMAT := F12), | |
LIST(INSTR «= (FORMAT := F27)))))) /$

$/ ENV(MBLOCK) := INVDELTA(ENV (UNLPREBLOCK), |
[NVDELTA(PL (BLOCKPRE). LOCALE,
INVDELTA(ENV1 (MBLCCK), E(MBLOCK)))) /$

$/ ENV1 (MBLOCK) := #PL(BLOCKPRE).VIRTUALE /$ |
$/ ENVA (MBLOCK) := INVDELTA(ENV (MBLOCK),

El »= PL(BLOCKPRE). FORMALE) /§
$/ DO(MBLOCK) :s PL(BLOCKPRE).NLOCALS + 1 /$
$/ LL(MBLOCK) := LL(UNLPREBLOCK) + 2 /§

$P181 BLOCKPRE ::= CLID1 APPART

$/ RULE (BLOCKPRE) := RULE (APPART);

191

IP LL(BLOCKPRE) == PL(CLID1).ADDR.LN THEN
BRROR ("BLOCK PREFIX IS NOT AT THE SAME LBVEL AS BLOCK™);
IF L(APPART) «= PL(CLID1).NFORMALS THEN
ERROR ("DIFFERENT NIMBER OF FORMAL AND ACTUAL PARAMETERS") /$

$P182 MBLOCK ::= UNLBLOCK |

$P183 MBLOCK ::= UNLCOMP

$/ RULE MBLOCK) :« PUTTI (RULE(UNLCOMP), TRUE) /$

$P184 BLOCKHEAD ::= BEGIN DECL

$/ NUMDEC (BLOCKKEAD) := 1; AEMDEC (BLOCKHBAD) :« BMDEC(DECL) /$

$P185 BLOCKHEAD ::= BLOCKHEAD ; DECL

$/ RULE (BLOCKHEADL) : = APEND (RULE (BLOCKHEADe), RULE(DECL)) /§$
: $/ VIRDECL (BLOCKHEAD) := UNIONR (VIRDECL (BLOCKHEAD®),

VIRDBCL (DECL,) /%

$/ E(BLOCKHEAD) := UNIONDOT (E(BLOCKHEADe), E(DECL)) /§
$/ D(BLOCKHEAD) := D(BLOCKnZADs) + D(DECL) /$

) $/ NUMDEC (BLOCKHEAD) := NUMDEC (BLOCKHEAD) + 1 /§
$/ AEMDEC (BLOCKHEAD) := AEMDEC (BLOCKHEADa) AND AEMDEC (DECL) /$
$/ DO(DECL) := DO (BLOCKHEAD) + D(BLOCKHEAD) /$
$/ CDECL (BLOCKHEAD) := APEND(CDECL (BLOCKHEADs), CDBCL(DECL)) /§$

$P186 DECL ::= TYPEDECL

$/ CDECL(DECL) :s= NULL; VIRD:zCL(DECL) := NULL;

EMDEC (DECL) :s= FALSE /$

$P187 DECL ::s ARDECL

$/ CDECL/DECL) := NULL; VIRDECL(DECL) := NULL; |
EMDEC (DECL) :s FALSE /$

$P188 DECL ::s SWDECL

$/ CDECL(DECL) := NULL; EMDEC(DECL) : = FALSE /§

$P189 DECL ::= PROCDECL

$/ CDECL(DECL) := NULL; EMDEC(DECL) := FALSE /$ |

$P190 DECL ::= CLDECL

$/ EMDEC (DECL) := FALSE, VIRDECL (DECL) := NULL;
CDECL (DBCL) := LIST(FIRST(E(CLDECL))) /§%

| 192

$P191 DECL ::= | |

$/ RULE(DECL) := NULL; E(DECL) := NULL; VIRDECL(DECL) := NULL:
EMDEC (DECL) : = TRUE; CDECL(DECL) := NULL; D(DECL) := 0 /$

$P192 TYPEDECL ::= TYPEN TYPELIST

$/ INSTR := IF NULLR (FIND (TYPDS (TYPEN),QUAL)
THEN $ (FORMAT := F9; OPER := TYPDS(TYPEN). TYPE)
ELSE $ (FORMAT : = F18; QUAL := TYPDS(TYPEN). TYPE)

DN := D(TYPELIST); RULE! := NULL;
WHILE DN > 0 DO

BEGIN RULE! := CONS(INSTR, RULE1); DN := DN - 1 END /$
$/ TYPD(TYPELIST) := TYPDS(TYPEN) /$

$P19Y TYPEN ::= VALTYPE

$P194 TYPEN ::s REFTYPE

$P19S VALTYPE ::a= REAL

$/ TY?DS := $(KIND :s "SIMPLE"; TYPE := "REAL") /$

$P196 VALTYPE ::= INTEGER |

$/ TYPDS := $(KIND : = "SIMPLE"; TYPE :a= "INTEGER") /$

$P197 VALTYPE ::s BOOLEAN :

$/ TYPDS := $(KIND := "SIMPLE"; TYPE := "BOOLEAN") /$

$P199 REFTYPE ::= OBJREF

$P200 OBJREF ::= xEF (QUALIF)

$/ TYPDS := $(XKIND := "SIMPLE"; TYPE := "REEF";
QUAL := PL(QUALIF). SEGMENT) /§$

$P201 QUALIF ::= SIGMA

$/ NEXT1 := FIND(ENV(QUALIF), ([SP(SIGMA)});
IF ~-NULLB(NEXT1) THEN PL(QUALIF) := (NEXT1} ELSE
ERROR(5P (SIGMA), " UNDECLA®ZD CLASS IDENTIFIER");
IF PL(QUALIF). GENUS. KIND ~= "CLASS" THEN
ERROR (SP(SIGMA), " NOT A CLASS IDENTIFIER") /$

i93

$P202 TYPELIST ::= SIGMA

$/ D(TYPELIST) :« i;
B(TYPELIST). (SP(SIGMA)) := $(GENUS :e TYPD(TYPELIST);

ATTR := CL(TYPELIST); ADDR := $ (FORMAT := F21;
DN :s DO(TYPBLIST); LN :e« LL(TYPELIST))) /$

$P203 TYPELIST ::« SIGMA , TYPELIST

§/ E(TYPELIST) := UNIONDOT (E(TYPELISTa), Ei a= ({SP(SIGMA)] :=
$ (GENUS : = TYPDS(TYPELIST); ATTR :s CL(TYPELIST);

ADDR : = $ (FORMAT := P21; DN := DO(TYPELIST);
LN : = LL(TYPELIST)))) /$

$/ D(TYPELIST) := D(TYPELIST#) + 1 /$
$/ DO(TYPELISTa) := DOCTYPELIST) + 1 /§

$P206 ARDECL ::= ARRAY ARLIST

$/ TYPD(ARLIST) := $(KIND : = "ARRAY"; TYPE :e "REAL") /$

$P207 ARDECL ::s TYPEN ARRAY LIST

$/ TYPD(ARLIST) := PUTIN(TYPDS(TYPEN) : KIND := "ARRAY™) /$

$P208 ARLIST ::= ARSEG | | |

$/ RULE (ARLIST) := APEND (RULE (ARSEG), LIST(INSTR te
'$ (FORMAT := F23; GENUS :s TYPD(ARSEG);

D :« D(ARSEG)-1; L := L(ARSEG)))) /§

$P209 ARLIST ::= ARLIST , ARSEG

$/ RULE (ARLIST) :s= APEND(RULE(ARLIST«), APEND(RULE (ARSEG),
LIST (INSTR a= $ (FORMAT := F23; L := L(ARSEG);

D := D(ARSEG)-1; GENUS := TYPD(ARLIST))))) /$
$/ E(ARLIST) := UNIONDOT (E(ARLISTe), E(ARSEG)) /$
$/ D(ARLIST) := D(ARLISTa) + D(ARSEG) /$
$/ DO(ARSEG) := DO(ARLIST) + D(ARLISTe) /$

$P210 ARSEG ::s ARID ([BOUNDPLIST }

$/ RULE (ARSEG) := CONS (INSTR a= $(MARK1 := "IGNORE™),
APEND (RULE (BOUNDPLIST),

LIST(INSTR ¢= $(MARK1 := "END IGNORE")))) /$
$/ D(ARSEG) := 1;

E(ARSEG). (SP(ARID)) := $(GENUS := TYPD (ARSEG);
ATTR := CL(ARSEG); N:= L(BOUNDPLIST); ADDR :=
$ (FORMAT : = F21; DN := DO(ARSEG); LN :e LL(ARSEG))) /§

$P211 ARSEG := ARID , 'ARSEG :

194

$/ ECARSEG) := UNIONDOT(E (ARSEG#), E1 as $((SP(ARID] : =
$ (GENUS : = TYPD(ARSEG); N := L(ARSEG#);

ATTR : = CL(ARSEG); ADDR := §(PORMAT := F21;
DN := DO(ARSEG); LN := LL(ARSEG))))) /§$

$/ D(ARSEG) := D(ARSEGe) + 1 /§
$/ DO (ARSEGe) := DO(ARSEG) + 1 /$

$P212 ARID ::= SIGMA

$P213 BOUNDPLIST ::= BOUNDP oo

$/ L(BOUNDPLIST) := 1 /§ |

y $P214 BOUNDPLIST ::= BOUNDPLIST , BOUNDP

$/ RULE (BOUNDPLIST) := APEND (RULE (BOUNDPLISTs), RULE (BOUNDP))/$
$/ L(BOUNDPLIST) := L(BOUNDPLISTs) + 1 /$

$P215 BOUNDP ::= BOUND : BOUND

$/ RULE (BOUNDP) := APEND(RULE (BOUND), RULE (BOUNDe)) /$

$P216 BOUND ::= ARITEXPR

$/ APA(ARITEXPR) := 0; USE(ARITEXPR) := "VALUE";
ENV (ARITEXPR) := ENVA (BOUND) /$

$P218 SWDECL ::= SWITCH SWID := SWLIST

i $/ SN := NEWINTEGER;
- INSTR (= $(FORMAT := F24; SN := SN; L := L(SWLIST)) /§$

$/ DN := CHECKVIRT (ENV1(SWDECL), SP(SWID), "SWITCH") /$
$/ OUTPUT(RULE (SWLIST), SN) /$
$/ RULE(SWDECL) := IF DN == 0 THEN NULL ELSE LIST(INSTR) /$
$/ VIRDECL (SWDECL) := IF DN = O THEN NULL ELSE

$(IDN] := INSTR) /$
$/ D(SWDECL) := IF DN = 0 THEN 1 ELSE 0 /$

| $/ El. [SP(SWID)] := $(GENUS := $(KIND := "SWITCH";
TYPE := "SWITCH"); N := L(SWLIST);

ATTR : = CL(SWDECL); ADDR := $ (FORMAT : = F21;
LN := LL(SWDECL);
DN := IF DN = O THEN DO(SWDECL) ELSE DN));

E(SWDECL) := IF DN = 0 THEN Et ELSE
- BEGIN

SPUTIN(ENV (SWDECL): (SP(SWID)] := FIRST(E1)); NULL
END /$

$P218A SWID ::= SIGMA

$P219 SWLIST ::= DESIGEXPR : |

195

$/ SN : = NEWINTEGER; L(SWLIST) := 1; APA(DESIGEXPR) := 0;
OUTPUT (APEND (RULE (DESISEXPR),

LIST(INSTR #= $ (FORMAT := F12))), SN) /$
§/ RULE(SWLIST) :e LIST(INSTR »= $ (FORMAT := F13; SN : = SN;

LL := LL(SWLIST) + 1 : TYPB := "LABEL")) /§$.

$P220 SWLIST ::= SWLIST , DESIGEXPR

$/ SN := NEWINTEGER; APA (DESIGEXPR) := 0;
OUTPUT (APEND (RULE (DESIGEXPR), oo

LIST (INSTR a= $(FORMAT := F12))), SN) /$
$/ RULE (SWLIST) := APEND(RULE(SWLIST#), LIST(INSTK #=

$ (FORMAT : a F13; LL : «LL(SWLIST) + 1; .
TYPE := "LABEL"; SN := SN))) /$

$; L(SWLIST) := L(SWLIST#) + 1 /$

$P221 PROCDECL ::= TYPEP PROCEDURE PROCHEAD PROCBODY

$/ SN : = NEWINTEGER;
INSTR := $(FORMAT := F33; SN :s SN; LL := LL (PROCBODY));
DN := CHECKVIRT (ENV1(PROCDECL), SP (PROCHEAD), "PROCEDURB")/$

$/ OUTPUT (APEND (RULE (PROCHEAD), APEND (UNDECL (PROCBODY),
LISTCINSTR «= $ (FORMAT := F12))))), SN)) /§%

$/ ENVA(PROCBODY) := INVDELTA(ENV (PRODECL), E(PROCHEAD)) /$
§/ ENV (PROCBODY := iNVDELTA(ENVA (PROCBODY), E(PROCBODY)) /S$
§/ ENV1 (PROCBODY) := NULL; .

LL (PROCBODY) := LL (PROCHEAD) := LL(PROCDECL) + 1 /$
$/ RULE (PROCDECL) := IF DN -= 0 THEN NULL ELSE LIST (INSTR)

VIRDECL (PRODECL) := IF DN = 0 THEN NULL
ELSE $([DN) := INSTR);

D(PRODECL) := IF DN = 0 THEN 1 ELSE 0;
TYPD (PROCHEAD) : = PUTIN(TYPDS (TYPEP) :

KIND : « "PROCEDURE") /§

$/ E1. {SP (PROCHEAD)) := $(GENUS := TYPDS (TYPEP);
ATTR : = CL(PROCDECL); NFORMALS := D(PROCHEAD);

SEGMENT : = SN; ADDR := $(PORMAT :s F21;
LN : = LL(PRODECL);
DN := IF DN = 0 THEN DO(PRODECL) ELSE DN))) /§$

$/ E(PRODECL) : = IF DN = 0 THEN Ei ELSE
BEGIN

Co $PUT IN (ENV1 (PROCDECL) :
(SP (FROCHEAD)] :w FIRST(BE1));

NULL

END;
IF DN -~= 0 THEN

SUBORDINATE(QUALTB (PROCDECL) ,
ENV1 (PPOCDECL).[SP (PROCHEAD) 1. GENUS,

TYPD3 (TYPEP)) /$

$/ DO (PROCBODY) := D(PROCHEAD) + 2 /$

$P221A TYPEP ::= TYPEN

$P2213 TYPEP::=

196

$/ TYPDS (TYPEP).TYPE :» "U" /3

§P223 PROCHEAD ::= PROCID FPPART ; MOPART SSPART

$/ LEGIT (SPPART) := 0; CL(SPPART) := 0; DO(SPPART) :e 1;
PLACE (SPPART) := “SPECIFICATION®; DO(FPPART) := 2;
NAMETB (MOPART) i= NAMETB(SPPART) := NTB(FPPART);
ENV1 (SPPART) := ENV (PROCHEAD);
CHECKSPEC(MATRIX (SPPART), D (FPPART);
MAT (MOPART) : = MATRIX (SPPART) /$ |

$/ RULE (PROCHEAD) := CHERULES (MATRIX (MOPART), FALSE,
D(FPPART), 0) /$

§P224 PROCID ::= SIGMA

$P225 FPFART ::s |

§/ L(FPPART) := 0; NTB(FPPART) := NULL /$

$P226 FPPART ::= (FPLIST)

§P227 FPLIST ::= FP

$/ D(FPLIST) := 1; NTB(FPLIST). [SP(FP)] := DO(FPLIST) /$

$P228 FPLIST ::= FPLIST , FP

§/ D(FPLIST) := D(FPLIST#) + 1 /$
$7 NTB(FPLIST) := PUTIN(NTB(FPLISTe): [SP(FP)] := DO(FPLIST) + |

D(FPLISTe)) /$

$P229 FP ::a SIGMA

§P230 MOPART ::= VALPART NAMEPART |
§/ MAT (VALPART) := MATRIX (NAMEPART);
MATRIX(MOPART) := MATRIX (VALPART) /$ |

$/ IF MOAMS (NAMEPART) AND MOAMB(VALPART) THEN
DAMB (TRUE, MOPART) ELSE

IF MOAMB (NAMEPART) THEN DAMB (TRUE, MOPART) BLSE
IF MOAMB (VALPART) THEN DAMB (FALSE, MOPART)/ §

§P231 MOPART ::= NAMEPART VALPART

§/ MAT (VALPART) :e MATRIX (NAMEPART) ;
MATRIX (MOPART) := MATRIX(VALPART) /%

$/ IF MOAMB (NAMEPART) AND MOAMB (VALPART) THEN |DAMB (FALSE, MOPART) ELSE

197

IF MOAMB (NAMEPART) THEN DAMB (FALSE, MOPART) ELSE
IF MOAMB (VALPART) THEN DAMB (TRUE, MOPART) /$

$P232 VALPART ::e VALUE IDLIST ;

$/ MOAMB (VALPART) : = FALSE; ENV1i(IDLIST) :s NULL;
LL(IDLIST) :« 0; PLACE(IDLIST) := "VALUB";
TYPD(IDLIST) := NULL, DOCIDLIST) :e 0; CL(IDLIST) := © /$

$P233 VALPART ::=

$/ MOAMB (VALPART) :s= TRUE; MATRIX (VALPART) : = MAT (VALPART) /$

$P234 IDLIST ::= SIGMA

$ /LCDLIST) :s |;

H PLACECIDLIST) : a "VIRTUAL" THEN SN :« 0 ELSEBEGIN

NEXT1 := FIND (NAMETB(IDLIST), (SP(SIGMA)]);
IF -NULLB (NEXT1) THEN SN := [NEXT1} ELSE

£ ERROR(SP (SIGMA), " NOT A FORMAL PARAMETER")ND /§$

$/ MATRIX (IDLIST) :« IF SN s0 THEN NULL BLSE
$(SN = IF PLACE(IDLIST) -= "SPECIFICATION" THEN

$ MODE :s PLACE(IDLIST)) ELSE
$ (SPEC :=» TYPD(IDLIST); MODE:=

IF TYPD(IDLIST).KIND « "SIMPLE" AND
NULLR (FIND (TYPD (IDLIST),QUAL)) THEN "VALUE"

BLSE "REFERBNCE")) /§
$/ 1F PLACE(JDLIST) « "VALUE" THEN

BEGIN
SPEC : = MAT(IDLIST).(SN). SPEC;
IF CHECKKIND (SPEC) OR SPEC. TYPE = "REF" THEN
ERROR(SP (SIGMA), ™ HAT IMPROPER MODE")

END /§ |

$/ BECIDLIST) := IF PLACE(IDLIST) = "VALUE" OR
PLACE(IDLIST) = "NAME® THEN NULL ELSE

$([SP(SIGMA)]} := $(GENUS := TYPD(IDLIST);
ATTR := CL(IDLIST);
ADDR := §(FORMAT := P21; LN :« LL(IDLIST); ..
DN := IF SN = 0 THEN DO(CIDLIST) ELSE SN))) /§$ te

$P23S IDLIST := IDLIST , SIGMA

$/ 1F PLACE(IDLIST) = "VIRTUAL®™ THEN SN :=« 0 S%LSE
BEGIN

NEXT! : = FIND(NAMETB(IDLIST), (SP(SIGMA)});
IF ~NULLB(NEXT1) THEN SN := [NEXT1] ELSE }
ERROR(SP (SIGMA), " NOT A FORMAL PARAMETER")

END /$

$/ MATRIX (IDLIST) := IP SN = 0 THEN MULL ELSE
PUTIN MATRIX (IDLIST»): :

[SN] := IF PLACE(IDLIST) -~= "SPECIFICATION" THEN

$ (MODE := PLACEC(CIDLIST)) ELSE |
198

S$ (SPEC : = TYPD(IDLIST);
MODE : = IF TYPD(IDLIST).KIND = "SIMPLE" AND

NULLR (FIND(TYPD(1DLIST), QUAL)) THEN ’
"VALUE" ELSE REPERENCE)) /}§

$/ IF PLACE(IDLIST) = "VALUE" THEN
BEGIN

SPEC := MAT (IDLIST).(SN]. SPEC;
IF CHECKKIND (SPEC) OR SPEC. TYPE = "REF" THEN

Eng ERROR (SP (STGHAY., " HAS IMPROPER MODE")/$

$/ EC(IDLIST) := IF PLACE(IDLIST) = "VALUE" OR
PLACE(CIDLIST) = "NAME™ THEN NULL ELSE

UNIONDOT(E(IDLIST=), El 2s $({SP(SIGMA)] i=
$ (GENUS := TYPX(IDLIST); ATIR := CL(IDLIST);
ADDR : = $ (FORMAT := F21; LN := LL(IDLIST);
ON := IF SN = 0 THEN DO(IDLIST) ELSE SN)))) /§%

$/ L(IDLIS") := LC(IDLIST») + 1 /§%
$/ DO(IDLYSiw) := DOCIDLIST) + 1 /§

$P236 NAMEPART ::s NAME IDLIST ;

$/MOAMB (NAMEPART) : = FALSE; ENV1I(IDLIST) := NULL;
PLACE (IDLIST) := "NAME"; TYPD(IDLIST) := NULL;
00 (IDLIST) :s 0; CL(IDLIST) := 0; LL(IDLIST) := 0 /$

$P237 NAMEPART :: =

$/ MATRIX (NAMEPART) := MAT (NAMEPART);
MOAMB (NAMEPART) := TRUE /§

$P238 SPPART .:=

$/RULE (SPPART) := NULL; L(SPPART) := 0; E (SPPART) :« NULL;
MATRIX (SPPART) := NULL /§

$P239 SPPART ::= SPPART SPECIFIER IDLIST 3

$/ ENV(SPECIFIER) :s ENV1(SPPART);
RULE (SPPART) := IF PLACE (SPPART) ~= "VIRTUAL" THEN NULL ELSE

APEND (RULE (SPPART»),
BUILDVC (TYPDS (SPECIFIER).KIND, L(IDLIST)) /§

$/ IF PLACE (SPPART) = "VIRTUAL" THEN
BEGIN IF ~CHECKXIND(TYPDS (SPECIFIER)) THEN
ERROR ("INVALID SPECIFIER IN A VIRTUAL DECLARATIONY) END /%

$/ IF LEGIT (SPPART) = 1 THEN
BEGIN

IF CHECKKIND(TYPDS (SPECIFIER)) THEN

np RROR ("INVALID SPECIFIER FOR A CLASS FORMAL PARAMETER")/

$/ TYPO(IDLIST) := TYPDS(SPECIFIER);
MATRIX (SPPART) :s MATRIX(IDLIST);
MAT (IDLIST) : = MATRIX (SPPART»);
L (SPPART) := L(SPPART«) + L(IDLIST) /§%

¢$/ DOCIDLIST) := L(SPPARTe) + DO(SPPART) /§%

199

$/ E(SPPART) := UNIONDOT(E(SPPARTe), B(IDLIST)) /$

$P240 SPECIFIER ::s TYPEN

$P241 SPECIFIER :1+ ARRAY | |

$/ TYPDS(SPECIFIER) := $S(KIND := "ARRAY"; TYPE:= "REAL") /§ |

$P242 SPECIFIER ::« TYPEN ARRAY |

$/ TYPDS (SPECIFIER) := PUTIN(CTYPDS (TYPEN): KIND := "ARRAY") /$

$P243 SPECIFIER :: = LABEL |

$/ TYPDS (SPECIFIER).KIND : = "LABEL" /$

$P244 SPECIFIER ::= SWITCH

| $/ TYPDS(SPECIFIER).KIND := "SWITCH" /$

$P245 SPECIFIER ::= PROCEDURE

$/ TYPDS(SPECIFIER) :e $(KIND := "PROCEDURE"; TYPE t= "U") /$§

$P246 SPECIFIER ::= TYPEN PROCEDURE) |
$/ TYPDS(SPECIFIER) := PUTIN(CTYPDS (TYPEN) :

KIND : = "PROCEDURE™) /§

§P247 PROCBODY ::= STi oo

$/ BEGUN(ST1) := TRUE; OUTERMOST (STi) := FALSE; CL(ST1) 1= 0 /§

§P250 CLDECL ::e« PRE MPART |

¢/ SN := NEWINTEGER; SM : = NEWINTEGER; D(CLDECL) := 1;
PPL (MPART) : = PL (PRE);
IF PL(PRE).ADDR. LN ~= LL(CLDECL) THEN ERROR
("PREFIX AND CLASS DECLARAATIONS AT DIFFERENT LEVELS") /$

$/ LL (APART) := LL(CLDECL) + 2;
$/ RULE(CLDECL) := LISTC(INSTR #= S(FORMAT := F32; SN := SM;

| LL := LL(CLDECL) + 1)) /$
$/ RULE := VIRMERGE(IF PL (MPART). SEGMENT = 0 THEN RULE (MPART)

ELSE CONCATENATE (PL (PRE). CODB, RULE(MPART)),
VIRDECL (MPART)) /$

$/ OUTPUT (LIST (INSTR = $(FORMAT := F31; SN := SN; SM t= SM;
OBJECT := PL(PRE). OBJECT), SW);

OUTPUT (RULE, SN) /$.
$/ B(CLDECL).SP (MPART) 1= PUTIN(PLOMPART) : ADDR :s=

200

§ (FORMAT := F21; LN := LL(CLDECL); DN = DO(CLDECL));
ATTR : =CL(CLDECL;; CQDE := RULE; SEGMENT := SN;

3 OBJECT := SM) /$

$P251 PRE ::=

§/ PL(PRE) :» $(ADDR.LN := LL(PRE); LOCALE := NULL;
NFORMALS : = 0; FORMALE := NULL; NLOCALS := 0;
VIRTUALE : = NULL; SEGMENT :+ 0; OBJECT : = 0 /$

§P253 MPART ::= CLASS CLID FPPART; VALPART SPPART VIRTPART CLBODY

$/ LEGIT (SPPART) := 1; PLACE(SPPART) := "SPECIFICATION";
ENVL(SPPART) := ENV1(VIRTPART) := ENV(MPART);
DO (SPPART) : = 0;
RULE (MPART) := APEND(CHERULES(MATRIX (VALPART), TRUE,

DO (VIRTPART) -1, FPL (MPART).NLOCALS -
PPL (MPART). NFORMALS) ,

APEND (UNDECL (CLBODY), APEND(RULE (CLBODY),
LIST (INSTR «= § (FORMAT := F35)))))) /$

$/ E(MPART) := UMIONDOT (E(CLBODY), E(SPPART)) /$
$/ ENV(CLBODY) := INVDELTA(ENV (MPART),

E «= #(PL(MPART). LOCALE) /$
§/ ENV1(CLBODY) := PL(MPART).VIRTUALE /§
§/ NAMETAB (SPPART) : = NAMETB (VALPART) : = NTB(FPPART);

MAT (VALPART) : = MATRIX (SPPART);
CHECKSPEC (MATRIX (SPPART), D(FPPART)) /§

$/ DO(FPPART) := PPL(MPART).NLOCALS + 1;
DO (VIRTPART) := DO(FPPART) + D(FPPART);
DO (CLBODY) : = DO(VIRTPART) + L(VIRTPART) /%

$/ PL(MPART) := §(GENUS.KIND := "CLASS";
$/ NFORMALS := D(FPPART) + PPL(MPART).NFORMALS /$;
$/ NLOCALS :+ D(CLBODY) + L(VIRTPART) + D(FPPART)

+ PPL(MPART).NLOCALS /S$;

$/ LOCALE : = INVDELTA(PPL (MPART), LOCALE, INVDELTA(|
| PL (MPART) . VIRTUALE,E MPART))) /§;

§/ FORMALE : = INVDELTA(PPL (MPART). FORMALE,
E «= # E(SPPART)) /3;

$/ VIRTUALE := UNIONDOT(E (VIRTPART),
PPL (MPART). VIRTUALE) /$) /$

§P254 VIRTPART ::=

$/ RULE(VIRTPART) := NULL; E(VIRTPART) := NULL;
L(VIRTPART) := 0 /$

§P255 VIRTPART ::s VIRTUAL : SPPART

$/ PLACE (SPPART) := "VIRTUAL"; LEGIT (SPPART) := 2;
NAMETB (SPPART) : = NULL /$

$P255A CLID ::= SIGMA

201

$P256 CLBODY ::= STI

$/ BEGUN (ST1) := TRUE; OUTERMOST (ST1) := TRUE /$

$P257 CLBODY ::= SPLITBODY

$P258 SPLITBODY ::= INITOPS INNER : FINOPS

$/ RULE(SPLITBODY) : = APEND(ARULE(INITOPS),
APEND (UNDECL (INITOPS), APEND(UNDECL (FINOPS),

CONS (INSTR a= $(MARK := "INIT";
APEND (RULE (INITOPS), CONS (INSTR a=

$ (MARK : = "INNER"), RULE (FINOPS$)))))))/$
$/ VIRDECL (SPLITBODY) := UNIONR(VIRDECL (INITOPS),

VIRDECL (RINOPS)) /§
$/ E(SPLITBODY) := UNIONDOT (ECINITOPS), B(FINOPS)) /$
$/ D(SPLITBODY) := D(INITOPS) + D(FINOPS) /$
$/ DO (FINOPS) := DO(SPLITBODY) + D(INITOPS) /$
$/ UNDECL (SPLITBODY) := NULL /$

$P259 INITOPS ::= BEGIN

$/START (INITOPS) := TRUE; D(INITOPS) := 0; B(INITOPS) :e NULL}
RULE (INITOPS) := NULL; ARULE(CINITOPS) :s NULL;
UNDECL(INITOPS) := NULL; VIRDECL(INITOPS) :e NULL:
EMDEC (INITOPS) := FALSE /$

$P260 INITOPS := BLOCKHEAD ;

$/ START(INITOPS) := TRUE; UNDECL(INITOPS) :s NULL;
RULE (INITOPS) := NULL; ARULE(INITOPS) := RULE(BLOCKHEAD) /$

$/ IF EMDEC (BLOCKHEAD) THEN DAMB (FALSE, 1) /$

$P261 INITOPS ::= INITOPS ST ;

$/ RULE(INITOPS) :e APEND (RULE (INITOPS#), RULB(ST)) /§$.
$/ UNDECL (INITOPS) := APEND(UNDECL (INITOPSe), RULE(ST)) /$ |
$/ VIRDECL (INITOPS) := UNIONR (VIRDECL(INITOPS#), VIRDECL(ST))/$
$/ ECINITOPS) := UNIONDOT (E(INITOPS#), B(5T)) /$
$/ D(INITOPS) := D(INITOPSe) + D(ST) /$
§/ DO(ST) :« DOCINITOPS) + D(INITOPSe) /$
§/ START C(INITOPS) := START (INITOPSe) AND ~BMDBC (INITOPSe) AND

FIRSTST (ST);
IF START (INITOPS) THEN DAMB (TRUE, 1) /$

$P262 FINOPS ::- END |

$/ RULE (FINOPS) := NULL; E(FINOPS) := NULL; D(FINOPS) := 0;
VIRDECL (FINOPS) := NULL; UNDECL(FINOPS) :e NULL /$

202

$P263 FINOPS ::s= ; COMPT

SP264 COMPT ::= ST END
$/ FIRSTST (COMPT) := FALSE /$

$P26S COMPT ::= ST ; COMPT

$/ FIRSTST(COMPT) := FIRSTST (ST);
UNDECL (COMPT) : = APEND (UNDECL (ST), UNDECL (COMPTs)) /§$

$/ VIRDECL (COMPT) := UNIONR(VIRDECL(ST), VIRDFCL (COMPTe)) /§$
$/ RULE (COMPT) := APEND(RULE(ST), RULE (COMPT#)) /§
$/ E(COMPT) := UNIONDOT(E (ST), E(COMPTa))
$/ D(COMPT) := D(ST) + D(COMPT#) /$
$/ DO (COMPT#) := DO(COMPT) + D(ST) /$

$P26SA ST ::= STI

$/ BEGIN(ST1) := FALSE; ENVA(ST1) := NULL;
OUTERMOST (5T1) := FALSE /§

$P266 ST1 ::= UNCONDST

$/ OPEN(ST1) := "NONE" /§

$P267 ST1 ::= CONDST

$/ FIRSTST(ST1) :s= FALSE;
RULE(ST1) := PUTII (RULE (CONDST), OUTERMOST (ST1)) /¢

$P268 STI ::= CONNST

$/ FIRSTST(ST1) := FALSE;
RULE(ST1) := PUTII (RULE (CONNST), OUTERMOST (ST1) /§$

$P269 ST1 ::= WHILEST

$/ FIRSTST(ST1) := FALSE
RULE (5T1) := PUTII (RULE (WHILEST).OUTERMOST(ST1)) /$

$P270 UNCONDST ::= BASICST

$/ RULE (UNCONDST) := PUTII (RULE(BASICST),
OUTERMOST (UNCONDST)) /$

$P271 UNCONDST ::= COMPST

$/ RULE (UNCONDST) := PUTII (RULE (COMPST), OUTERMOST (UNCONDST))/$
$/ FIRSTST (UNCONDST) := FALSE /§

203

$P272 UNCONDST ::s BLOCK

$/ FIRSTST (UNCONDST) :« FALSE /$

$P273 BASICST ::= UNLBASICST

$/ VIRDECL(BASICST) := NULL; UNDECL (BASICST);
E(BASICST) := NULL; D(BASICST) := 0 /$

$P274 BASICST ::= LABELO : BASICST | | |
$/ FIRSTST(BASICST) := FALSE; SN := NEWINTEGER;

INSTR := $(FORMAT := F21; JLABEL := SN);
DN : = CHECKVIRT(ENV1 (BASICST), SP(LABELO), "“LABEL") /$ |

$/ RULE(BASICST) := CONS (INSTR #= $(LABELI := SN),
RULE (BASICST#)) /$

$/ UNDECL(BASICST) := IF DN ~= 0 THEN UNDECL(BASICST#) BLSE |
. CONS (INSTR, UNDECL (BASICST#)) /$

$/ VIRDECL(BASICST) := IF DN « 0 THEN VIRDECL(BASICST#) BLSE
PUTIN (VIRDECL (BASICST#) : (DN) := INSTR)/S

$/ E(BASICST) := IF DN —=0 THEN E(BASICST#) ELSE SE
UNIONDOT (E(BASICST#), Bi w= ({SP(LABELO)) :s
$(GENUS := $(KIND := "LABEL"; TYPE t=. "LABEL");

ADDR :« $(PORMAT := F215; LN := LL(BASICST); |
DN := DO(BASICST))))) /$

$/ D(BASICST) :e IF DN <= 0 THEN D(BASICSTe) |
ELSE D(BASICSTs) + 1 /8

$/ DO(BASICST#) ta IF DN ~= 0 THEN DO(BASICSTe)
ELSE DO(BASICSTe) + 1 /8 |

$/ PIRSTST (BASICST) :e FALSE / §

$P275 UNLBASICST ::s= ASSST

$/ FIRSTST (UNLBASICST) :e« FALSE /$

$P276 UNLBASICST ::s GOTOST

$/ FIRSTST (UNLBASICST) t= PALSE /§

$P277 UNLBASICST ::= DUMMYST

$/ FIRSTST (UNLBASICST) := TRUE /$

$P278 UNLBASICST ::s PROCST

$/ FIRSTST (UNLBASICST) := FALSE /$

$P280 UNLBASICST ::= OBJGEN

204

$/ USE(OBJGEN) := "VALUE"; FIRSTST (UNLBASICST) : = FALSE;
RULE (UNLBASICST) : = APEND (RULE (OBJGEN),

LIST(INSTR «= $ (FORMAT :s= F25))) /$

$P281 UNLBASICST ::= RESUME (OBJEXPR)

$/ USE(OBJEXPR) := "ADDR"; APA(OBJEXPR® : = 0;
FIRSTST (UNLBASICT) := FALSE;
RULE (UNLBASICST) : = APEND (RULE (OBJEXPR),

LIST(INSTR «= $ (FORMAT := F26))) /§$

$P282 UNLBASICST : - DETACH

$/ RULE (UNLBASICST) := LIST(INSTR a= § (FORMAT : = F27);
FIRSTST (UNLBASICST) : = FALSE;
IF CL(UNLBASICST) = 0 THEN

ERROR ("DETACH STATEMENT IN i NON OBJECT BLOCK") /$

$P283 ASSST ::s=s VALASS

$/ ALSO(VALASS) := FALSE /$

$P284 ASSST ::= REFASS

$/ ALSO(REFASS) := FALSE /$ |

$P285 VALASS ::= VALLPART := VALRPART |

$/ USE(VALLPART) := "ADDR"; USE (VALRPAKT) := "VALUE";
ALSO (VALRPART) := TRUE; PL(VALASS) := PL(VALLPART);
RULE (VALASS) :s APEND (RULE (VALLPART), APEND (RULE (VALRPART),

LIST (INSTR «= $ (FORMAT : = F28;
ALSO : = ALSO (VALASS))))) /$

$/ TYPE] := PL (VALLPART). GENUS. TYPE;
TYPE2 := PL (VALRPART).GENUS. TYPE;
IF ~(((TYPE1 = "INTEGER" OR TYPE 1 = "REAL") AND

(TYPE 2 = "INTEGER" OR TYPE2 = "REAL")) OR
(TYPE 1 = "BOOLEAN" AND TYPE2 = "BOOLEAN")) THEN

ERROR ("TYPE INCOMPATIBILITY IN A VALUE ASSIGNMENT") /$

$P286 VALLPART ::= VAR |

$/ APA(VAR) := 0; KIND : = PL (VAR). GENUS. KIND;
IF KIND -= "ARRAY" THEN DAMB (KIND = "SIMPLE", 1) /$

$P287 VALLPART ::= PROCID2 |

$/ DAMB (PL (PROCID2).GENUS. KIND = "PROCEDURE", 1); .
RULE (VALLPART) := LIST(INSTR a= $ (FORMAT:= F8;

ADDR := $(FORMAT :s F21; DN := 1;
LN := PL(PROCIDZ2).ADDR.LN + 1))) /$

20S |

§P287A PROCID2 ::+ SIGMA

$/ NEXT1 :« FIND(ENV(PROCID2), [SP (SIGMA)]); LL
IF ~NULLB (NEXT1) THEN PL(PROCID2) := [NEXT1] ELSE
ERROR (SP (SIGMA), " UNDECLARED IDENTIFIER") /§

$P288 VALRPART ::= VALEXPR |

$/ APA (VALEXPR) := 1/8 | |

$P289 VALPPART ::= VALASS

§P290 REFASS ::= REFLPART := REFRPART

$/ USE (REFLPART) := "ADDR": USE(REFRPART) := "VALUE";
PL (REFASS) := PL(REFLPART); ALSO (REFRPART) := TRUE;
RULE (REFASS) := APEND(RULE(REFLPART), APEND (RULE (REFRPART),

LIST(INSTR ss $ (FORMAT : = F28;
ALSO : = ALSO (REEx $))))) /$

$/ GENUS1 := PL (REFLPART).GENUS; GENUS2 :s PL(REFRPART). GENUS;
IF -(GENUS1.TYPE = "REEF" AND GENUS 2.TYPE = "REF") THEN

ERROR ("TYPE INCOMPABILITY IN A REFERENCE ASSIGNMENT") ELSE
IF GENUS1.QUAL = -1 THEN
ERROR ("LHS OF A REFERENCE ASSIGNMENT IS NONE") BLSE
IF GENUS2. QUAL ~= -1 THEN
COMMENT IF THE TWO QUALS HAVE NO COMMON ANCESTOR THB

FUNCTION CONDQUAL REGISTERS THE ERROR;

SCONDQUAL(QUALTB (REFASS), GENUS1.QUAL, GENUS2. QUAL) /$

$P291 REFLPART ::= VAR

§/ APA(VAR) :« 0; KIND := PL(VAR). GENUS. KIND;
iF KIND -= "ARRAY" THEN DAMB(XIND = "SIMPLE", 1) /$

$P292 REFLPART ::= PROCID2 |

$/ DAMB (PL (PROCID2). GENUS. KIND = "PROCEDURE", 1);
RULE (REFLPART) := LISTCINSTR #= § (FORMAT = F8;

| ADDR : = $(FORMAT := P21; DN := 1;
LN : = PL(PROCID2).ADDR.LN + 1))) /$

$P293 REFRPART ::= REFEXPR

$/ APA (REFEXPR) := 0 /$

$P294 REFRPART ::s= REFASS

206

$P295 GOTOST ::= GO TO DESIGEXPR

$/APA (DESIGEXPR) : = 0;
RULE (GOTOST) : = APEND (RULE (DESIGEXPR).

LIST(INSTR : = $(FOKMAT := F29))) /$

§P296 DUMMYST ::=

$/ RULE (DUMMYST) := NULL /$ |

| $P297 PROCST ::= PROCID! APPART |

$/ APA(PROCID1) := 0; USE(PROCID1) := "VALUE":
TYPE : = PL(PROCID1).GENUS. TYPE:
IF TYPE="U" THEN TYPE : = "INTEGER":
RULE (PROCST) := CONS (INSTR #= § (FORMAT : = F11),

CONS (INSTR = $ (FORMAT : = F30),
CONS (INSTR #= § (FORMAT := F9; OPER := TYPE),
APEND (RULE (APPART), APEND (RULE (PROCID1),

CONS (INSTR : = § (FORMAT : = F10),
LIST (INSTR »= $ (FORMAT : = F25)))))))) /$

$P298 CONDST ::= IEST

$/ SN := NEWINTEGER; OPEN (CONDST) := "NONE":
FJUMP (IFST) := SN |
RULE (CONDST) : = APEND(RULE (IFST),

LIST (INSTR #= $(LABELI := SN))) /§

$P299 CONDST ::= IFST ELSE ST

$/ SN := NEWINTEGER; SM := NEWINTEGER; FJUMP(IEST) := SN;
OPEN (CONDST) : = OPEN (ST);
RULE (CONDST) : = APEND(RULE(IFST), :

FIXCOND (RULE(ST), SM, SN)) /$
§/ D(CONDST) := D(IFST® + D(ST) /$
$/ DO(ST) := D(IFST) + DO(CONDST) /$
$/ UNDECL (CONDST) := APEND (UNDECL (IEST), UNDECL(ST)) /$
$/ VIRDECL (CONDST) := UNIONR(VIRDECL (IFST), VIRDECL(ST)) /$
$/ E(CONDST) := UNIONDOT(E(IFST), E(ST)) /§

$P300 CONDST ::= IFCL CONN3T

| $/ SN := NEWINTEGER; FJUMP (IFCL) := SN:
RULE (CONDST) := APEND(RULE(IFCL), APEND .RULE(CONNST),

LIST (INSTR == $(LABELI := SN)))) /$

$P301 CONDST ::= IFCL WHILEST

$/ SN := NEWINTEGER; FJUMP(IFCL) := SN:
RULE (CONDST) : = APEND(RULE(IFCL), APEND (RULE (WHILEST),

LIST(INSTR #= §(LABELI := SN))) /§

207

$P302 CONDST ::= LABELO : CONDST

$/ SN :« NEWINTEGER; INSTR := $ (FORMAT :e P20; JLABBL := SN);
DN : = CHECKVIRT (ENV1(CONDST), SP(LABELO), "LABEL") /§

§/ RULE (CONDST) := CONS(INSTR ss §(LABELI := SN),
RULE (CONDSTe)) /§

$/ D(CONDST) :« IF DN -~= 0 THEN D(CONDST#)
ELSE D(CONDSTs) + 1 /§

$/ DO(CONDSTe) := IF DN -~= 0 THEN DO(CONDST)
ELSE DO(CONDST) + 1 /§$

$/ UNDECL(CONDST) := IF DN -~= 0 THEN UNDECL (CONDSTe) ELSE
CONS (INSTR, UNDECL (CONDSTe)) / §

$/ VIRDECL(CONDST) := IF DN = 0 THEN VIRDECL(CONDSTe) ELSE
PUTIN (VIRDECL (CONDST#) : [DN] := INSTR) /§

$/ E(CONDST) := IF DN ~= 0 THEN E(CONDSTs) ELSE |
UNTONDOT(E (CONDSTs), El s= $({SP(LABELO)) :=

$ (GENUS :« $ (KIND:= "LABEL"; TYPE := “"LABEL"); |
ADDR :e« $(FORMAT := P21; LN := LL(CONDST)}

DN : = DO(CONDST))))) /$

$P303 IFST ::= IFCL UNCONDST

$/ ENVA (UNCONDST) := NULL; BEGUN (UNCONDST) := FALSE;
CL (UNCONDST) := 0; OUTERMOST (UNCONDST) := FALSE;
RULE (IFST) :s APEND(RULE(IFCL), RULB(UNCONDST)) /§

$P304 IFCL ::= IF BEXPR THEN |

$/ USE (BEXPR) :e "VALUE"; APA (BEXPR) := 0;
_ RULE (IPCL) := APEND(RULE (BEXPR), LIST(INSTR e« §(PORMAT :e=

F17; JLABEL := FJUMP(IFCL)))) /§

$P30S WHILEST ::s WHILE BEXPR DO ST

$/ APA(BEXPR) := 0; USE(BEXPR) :s "VALUE";
SM := NEWINTEGER; SN := NEWINTEGER
RULE(WHILEST) = CONS (INSTR s= §(LABELI :s= 5N),

APEND (RULE (BEXPR), .
CONS (INSTR a= $ (FORMAT :s F17; JLABEL := SM),
APEND (RULE (ST),
CONS (INSTR @= $ (FORMAT :s Fi; JLABEL := 5N),
LIST(INSTR a= $(LABELI := SM))))))) /§

$P306 WHILEST ::= LABELO : WHILEST

$/ SN := NEWINTEGER; INSTR := § (FORMAT := P20; JLABEL := SN);
DN : = CHECKVIRT(ENV1 (WHILEST), SP(LABELO), "LABEL") /$

$/ RULE(WHILEST) := CONS (INSTR «= $(LABELI := SN),
RULE(WHILESTe)) /§$

$/ D(WHILEST) :» IF DN -~= 0 THEN D(WHILESTe)
ELSE D(WHILESTs) + 1 /8$

$/ DO(WHILESTe) IF DN -~s O THEN DO(WHILEST)

208

ELSE DO(WHILEST) + 1 /§

$/ UNDECL (WHILEST) := IF DN == 0 THEN UNDECL(WHILEST=) ELSE
CONS (INSTR, UNDECL(WHILEST#)) /§%

$/ VIRDECL(WHILEST) := IF DN = 0 THEN VIRDECL (WHILEST») ELSE
PUTIN(VIRDECL(WHILEST«) : [DN] := INSTR) /§

$/ E(WHILEST) := IF DN ~= 0 THEN E(WHILEST«) ELSE

UNIONDOT(E (WHILEST«), E1 «= $((SP(LABELO)) :=
$ (GENUS := $(KIND:= "LABEL"; TYPE : = "LABEL");

ADDR := $(FORMAT := F21; LN := LL(WHILEST);
DN : = DO(WHILEST))))) /§

$P307 CONNST ::= INSPECT OBJEYrR CONNPART (TCL

$/ SM : = NEWINTEGER; SN := NEV.INTEGER;
D (CONNST) := L(OTCL), + 1 /%

$/ UNDECL (CONNST) := CONS(INSTR a= $ (FORMAT := F9;
OPER := "REF"), UNDECL(OTCL)) /§%

$/ O(OTCL) := OPEN(CON\NPART); OPEN (CONNST) := OPEN(OTCL) /§$
$/ USE (OBJEXPR) := "VALUE"; FEJUMP (CONNPART) := SN;

TJUMP (CONNPART) := 3M; APA(OBJEXPR) := 0;
DO(OTCL) : = DO(CONNST) + 1 /§

$/ RULE (CONNST) := CONS (INSTR == S$ (FORMAT := F8;
ADDR : = $(FORMAT := F21; LN := LL (CONST);

DN : = DO(CONNST))), APEND(RULE(OBJEXPR),
CONS (INSTR «= $ (FORMAT : = F28; ALSO : = FALSE),
APEND (RULE (CONNPART), CONS (INSTR a= $(LABELI := SN),
APEND (RULE (OTCL),

LIST(INSTR »= $(LABELI := SM))))}))) /§

$PJ0B CONNST ::= INSPECT OBJEXPR DO CONNBLOCKZ OTCL

$/ SN := NEWINTEGER; SM :- NEWINTEGER; SL := INTEGER
D (CONNST) := D(OTCL) + 1 /§

$/ UNDECL (CONNST) : 2 CONS(INSTR «= § (FORMAT : = FO;
OPER := "REF"), UNDECL(OTCL)) /§

$§/ OUTPUT (APEND(UNDECL (CONNBLOCK2), APEND(RULE (CONNBLOCKZ2),
LIST(INSTR «= $ (FORMAT := F12)))), SL) /§$

$/ O(OTCL) := OPEN(CONNBLOCK2); OPEN(CONNST) := OPEN(OTCL) /%
$/ USE(OBJEXPR) := "VALUE"; APA(OBJEXPR) := 0;

BEGUN (CONNBLOCK2) : = TRUE; DO (CONNBLOCKZ2) := 1;
DO (OTCL) : = DO(CONNST) + 1 /§

$/ LL (CONNBLOCK2) := LL(CONNST) + 1 /%§

$/ EF (CONNST) :: E(OTCL) ’/§
$/ ENV (CONNBLOCKZ2) := INVDELTA(ENV (CONNST),

INVDELTA ([QUALTS (CONNST). [PL(OBJEXPR). GENUS.QUAL].
CLASSN). LOCALE), E(CCNNBLOCKZ2))) /%$

$/ ADDR := $ (FORMAT := F21; LN ¢= LL(CONNST);
DN : = DO(CONNST)) /§$

$/ ITEM (CONNBLOCK2) := CONS(XX 2= §(QUAL : =
PL (OBJEXPR).GENUS. QUAL; ADDR :s ADDR), ITEM((CONNST)) /§

$/ RULE (CONNST) : = CONS(INSTR «= $(FORMAT := F2; ADDR := ADDR),
APEND(RULE (OBJEXPR),
CONS (INSTR «= §$ (FORMAT := F28; ALSO := TRUE),
CONS (INSTR == $§ (FORMAT := F16; CPER :as "=/=%),
CONS (INSTR == S$ (FORMAT := F17; JLABEL := SN),
CONS (INSTR «= $ (FORMAT := Fl1),

209

CONS (INSTR a= $ (FORMAT : = F2¢2;
LN : = LL(CONNBLOCK2); SN :e Sl),

CONS (INSTR os $(FORMAT := F1; JLABEL :e SM),
CONS (INSTR os $ (LABEL : = SN), APEND (RULE (OTCL),
LIST (INSTR a= $(LABELI :« SM))))))))))))) /§

$P309 CONNST ::a= LABELQG : CONNST

§/ SN := NEWINTEGER; INSTR := § (FORMAT := F20; JLABEL :s SN);
RULE (CONNST) := CONS (INSTR «= $(LABELI := 3N),.

RULE (CONNSTs)) /§$

¢/ DN := CHECKVIRT(ENV) (CONNST), S¢(LABELO), "LABEL") /§
$/ UNDECL (CONNST) := IF DN ~= 0 THEN UNDECL (CONNST») ELSE

CONS (INSTR, UNDECL (CONNSTe)) /§$
$/ VIRDECL (CONNST) := IF DN -~= 0 THEN VIRDECL (CONNSTe) ELSE

PUTIN (VIRDECL (CCNNST) : (DN) :« INSTR) /§% ,
$/ D(CONNST) := IF DN ~= 0 THEN D(CONN5Tw)

ELSE D(CONNSTe) + 1 /§

$/ DO(CONNST#) := IF DN == 0 THEN DO (CONNST)
ELSE DO (CONNST) + 1 /§

$/ B(CONNST) := IF DN ~« 0 THEN E(CONNSTe) ELSE
UNIONDOT(E (CONNSTe), E1 ee $([SP(LABELO)) := ,

$ (GENUS := $(KIND :e "LABEL"; TYPE := "LABEL");
ADDR : +» $(FORMAT := F21; LN :s LL (CONNST);

DN :« DO(CONNST)))) /$

$P310 CONNPART : = CONNCL

$P311 CONNPART ::s= CONNPART CONNCL

$/ SN :e NEWINTEGER; FJUMP (CONNPARTe) := SN;
RULE (CONNPART) : = APEND (RULE (CONNPART®),'CONS (INSTR o=

$ (LABEL1 :s SN), RULE(CONNCL)) /§
$/ OPEN (CONNPART) : = OPEN(CONNCL) /$

$P312 CONNCL ::= WHEN CLID1 DO CONNBLOCK1

$/ SN :s NEWINTEGER; BEGUN (CONNBLOCK1) := TRUE;
DO (CONNBLOCK1) := 1;
ADDR :« $(FORMAT :« F21; LN :e« LL(CONNCL);

DN : «= DO (CONNCL));

ITEM (CONNBLOCK1) := CONS (XX es $(QUAL := PL(CLiD1). SEGMENT;
ADDR :« ADDR), ITEM(CONNCL)) /§$

$/ RULE (CONNCL) := CONS (INSTR as § (FORMAT :» F8: ADDR := ADDR),
CONS (INSTR == $ (FORMAT := F8; ADDR := PL(CLID1).ADDR),
CONS (INSTR «= $ (FORMAT := F16; OPER := "IN-WHEN"),
CONS (INSTR w#= (FORMAT := F17; JLABEL : = FJUMP(CONNCL)),
CONS (INSTR ea $ (FORMAT :e F11);

CONS (INSTR a= S$ (FORMAT :s F22; Ll i= LL (CONNBLOCKL):« = »

: LIST(INSiR »s § (FORMAT :s Fi;
JLABEL : = TJUMP(CONNCL))))))))) /§

$/ OUTPUT (APEND (UNDECL (CONNBLOCK1), APEND (RULE (CONNBLOCK1),
LIST(INSTR «= $ (FORMAT := F12)))), SN) /§

210

$/ LL(CONNBLOCK1) := LL(CONNCL) + 1 /§
$/ ENV(CONNBLOCK1) := INVDELTA(ENV (CONNCL),

INVDELTA(PL (CLID1). LOCALE, E(CONNBLOCK1))) /%

$P313 CONNBLOCK! ::= ST1

$/ ENV1(ST1) := NULL; ENVA(ST1) := ENV (CONNBLOCK1);
OUTERMOST (5T1) : = FALSE; CL(5T1) t= 0 /§

$2314 CONNBLOCKZ2 := STI

$/ ENVI(ST1) := NULL; ENVA(ST1) := ENV (CONNBLOCK2);
OUTERMOST (ST1) := FALSE; CL(ST1) := 0; /$

$P315 OTCL ::= |

$/ RULE(OTCL) := NULL; UNDECL(OTCL) := NULL;
VIRDECL (OTCL) := NULL; D(OTCL) := 0; E(OTCL) := NULL;
OPEN (OTCL) := IF O(CTCL) = "CLOSED" OR

0 (OTCL) = "OPENDISAMB" THEN "OPENDISAMB"

ELSE "OPEN";
IF OPEN(OTCL) = "OPENDISAMB" THEN DAMB (TRUE, 1) /§$

$P316 OTCL ::= OTHERWISE S57 |

$/ IF O(OTCL) = "OPEN" OR O(OTCL) = “OPENDISAMB" THEN
DAMB (FALSE, 1) /§

$/ OPEN(OTCL) := IF OPEN(ST) = "OPENDISAMB™ THEN "OPEN" ELSE |
IF OPEN(ST) = "NONE" THEN "CLOSED"

ELSE OPEN(ST) /§

4.2 ANALYSIS OF THE DEFINITION

This section analyses the differences between Wilner's and the |

present definition. Only major differences are analysed in detall;

differences arising fron minor errors or omissions are noted but not

commented. It should be noted that the r-z:c:at definition implements

only a subset of Wilner's definition. The productions for real

211

nuasbers, characters and simulation were left out. The reason for this

omission is not any limitation imposed by FOLDS; it simply reflects

an individual desire to restrict as much as possible the amount of

work to be done. It also should be noted that the input-output rules

are missing; they were not included because they would involve the

hand coding of a large set of target language instructions which did

not seem to be very relevant to the purposes of the present

definition.

4.2.1 AMBIGUITIES

In Wilner's definition, ambiguities are handled in essentially

the same fashion as errors. The definition had thus to be changed to

adapt it to SPINDLE's formalismfor handling ambiguities; a number

of new attributes were {introduced (APA, DAR, EMDEC, AEMDEC, NUMDEC,

START, SID), one was eliminated (OUTER), and another modified

(FIRSTST, from inherited to synthesized). Furthermore, some

| embiguities were detected that had not been noted by Wilner: one

| arising from an empty name part and/or value part in a procedure

heading; one arising from the first statement in the compound tail of

a block being empty; &'% one arising from the first statement in

INITIAL OPERATIONS being empty. | |

| 212 | |

4.2.2 QUALTB

The attribute QUALTB maps the segment designation of a class

into the symbol table entry for the class and into the class's prefix

class. [It is introduced to simplfy the implementation of a series of

functions specified by Wilner (e.g.CONDQUAL). As a consequence of

its introduction, Wilner's functions CPL and IDSP are not implemented

since the values they would return can be directly obtained from

QUALT3.

4, 2.3 VIRTUALS

A number of modifications were introduced due to errors fcund

in Wilner's scheme for handling virtual (SIMULA) attributes. The

attribute ENV1 was introduced tc avoid the following circularity

arising in VWilner's definition: when checking if an identifier is

virtual in an identifier declaration the attribute ENV is used to

check 1f the {identifier is virtual; however, ENV depends on the

attribute E whose value depends on the test on the attribute ENV. In

the modified scheme the test is made upon ENV1 which does not depend

on E. The function VIRMERGE had to be modified since the original

version does not work when the attributes of a class include an

array. The object code generated from procedure statements was also

modified. In Wilner's definition, different rules are generated if

the procedure is a proper or a typed procedure; thus, a virtual

213

proper procedure which is redefined as a typed procedure, will cause

execution errors for all procedure statements that call the procedure

from the body of the prefix class. As modified, the procedure

stat. ment always generates the same object code. The final

sudification was the introductionof the function SUBORDINATE, which

checks the subordination rules for the redefinition of virtual

procedures; it is missing ia Wilner's definition.

4, 2.4 CLASS CONCATENATION

The class concatenation mechanism proposed by Wilner does not

work when a <class has formal parameters and is prefixed. The

implementation of a valid mechanism, besides changing the definition,

required some of the changes in Wilner's machine which were explained

at the beginning of this chapter.

4.2.5 FUNCTION INVDELTA

This function is a modified version of Wilner's - function.

While not wrong, Wilner's function was w»ure complicated than

necessary. INVDELTA simply implements the ALGOL rules for renaming

global variables inside a block.

214

4.2.6 CODE

As proposed by Wilner the CODE function does not work. Instead

of implement.ng a function, an attribute CODE is included in the

symbol table entry of a class: its value is the rule generated for

the class.

4.2.7 ARRAY DECLARATIONS

According to the SIMULA definition [DMN 70), the array bounds

in an array declaration may contain variables (or procedures) that

are global to the block to which the array belongs, plus formal

paraneters, if the array is declared in a class or procedure body.

The attribute ENVA was introduced to implement this feature, which is

ignored by Wilner.

As defined by Wilner, an array segment having more than one

array identifier will not generate the proper code. The correction of

this error necessitated the changes in the machine instruction MAK

) which were explained at the beginning of the current chapter. |

215

4.2.8 LABBLLED BLOCKS

Production P175 {is significantly different from the

corresponding production {in Wilner's definition which had a

substantial number of errors. The attribute NOLABEL, had to be
introduced to detect the leftmost label when more than one label :

appeared on a block.

Production 177 and 178 were dropped and 176 replaced by

BLOCK ::= UNLABELLED PREFIXED BLOCK

& labelled prefixed block causes an ambiguity and nothing {is lost,

sepantically, by changing the grammar.

4.2.9 PROCEDURE AND CLASS HEADINGS

The mechanisas proposed by Wilner for headings (using the

| attributes MAT, MATRIX and VECT and the function e), while not wrong,

| would have been cumbersome to implement in SPINDLE. A similar but

simpler mechanism is implemented using the attributes MAT, MATRIX,

NAMETB and NTB, and no special functions.

216

4.2.10 PROCEDURE DECLARATIONS

To simplify the definition, productions

221: PROCDECL ::= PROCEDURE PROCHEAD PROCBODY

222: PROCDECL ::= TYPEN PROCEDURE PROCHEAD PROCBODY

were replaced by productions

P221: PROCDECL ::= TYPEP PROCEDURE PROCHEAD PROCBODY

P221A: TYPEP ::= TYPEN |
P221B: TYPEP ::=

This modification does not alter the content of the definition

but serves to point out how a proper choice of the grammar can result

in a more compact SPINDLE definition.

4.2.11 ST1

Tne introduction of the nonterminal ST! is another modification

done for the purpose of having a more compact definition. The use of

both ST1 and ST decreases the number of semantic rules necessary in

the definition. Thus a number of attributes of ST! have values

assigned to them in P265A; if only ST were used, those values would

nave to be assigned in every production in which ST were a RAHN.

217

4.2.12 OTHER MODIFICATIONS

Besides the productions noted above, the following productions

had to be modified due to errors or omissions in Wilner's definition:

P3, P49, P83, P89, P90, P1S9, P160, p169, P170, P179, P180, P181,

P183, P210, P211, P218, P219, P221, P223, P232, P234, P23S, P236, Co

P239, Pa45, P250, P251, P253, P2se, P258, P2S9, P261, P262, P26S,

P267, P268, P269, P270, P271, P285, P290, P299, P303, P307, P308,
P312, P314, F315, Pl16.

218

CHAPTER 5

CONCLUSION

The preceding chapters presented a description of FOLDS and of |

its applications. The current chapter reviews the systen, describing

its present implementation status and pointing out needed

improvements; it also indicates some areas for further research.

The system implements and extends Knuth's method for the formal

definition of semantics, incorporating Wilner's extensions to the

method. The declarative nature of the method is preserved by the use

of a special control structure wich permits a nearly complete

dissociation between language defirition and compilation. A

formalism for the semantic resolution of syntactic ambiguities {is

introduced together with appropriate control mechanisms to carry out

the disambiguation processes The actual disambiguation mechanism is

transparent in the definition as is the compilation carried out from

it. The system provides a language, SPINDLE, for writing the

definitions and a machine, MUTILATE, to compile strings of the

language directly from the definition. The language incorporates a

flexible data structure representation; a syntax specification

mechanism imposing practically no restrictions on the user; a set of

semantic primitives necessary for specifying the semantic rules |

associated with each production. The language provides the necessary

Composition rules so that new semantic operators can be built from

the primitives provided by the system.

219

As shown by the definition of SIMULA in Chapter 4, MUTILATE is

capable of handling the definition of large languages and the

compilation of sizeable programs in the defined languages. Further

on, a series of improvements are suggested to increase the capacity

of the system. However, in its present stage, the size of the

programs it is capable of compiling 1s quite adequate for the primary

purpose of the machine, which is to check the correction of

definitions. A series of debugging aids are incorporated in the

mechanism and have proved adequate in the debugging of the SIMULA

definition: however this is a biased opinion since the debugging of

the systena wis carried out in parallel with the debugging of the
definition and no other user besides the author has used the system.

The system is currently implemented on an IBM 360/67 and

occupies 280K bytes of sterage. It consists of the MUTILATE assembler

i | and the MUTILATE machine, both written in PL/360 (Ma 71). The SPINDLE
compiler has not yet been implemented; SPINDLE programs are hand-

compiled into MUTILATE assembler code. The assembler incorporates

most of the important features of the compiler (e.g., the generation

of implied semantic rules), so the hand compilation is very
straightfoward. The SIMULA definition compiles into approximately | :

8000 assembler instructions which take 0.13 minutes of CPU time to
assemble. The machine is implemented as two separate programs: the |
first implements the parser and the lexical analyzer while the second

implements the MUTILATE interpreter. The SIMULA definition occupies
approximately 30K of byte addressed memory, out of a maximum of 64K

which indicates that there are no practical limitations on the size

_ of languages that can be defined and run in FOLDS. One real

limitation is the size of the programs of the defined language that |

| 220 |

can be counpiled by MUTILATE; while compilation time does not seem to

be a constraint ‘see the timings that accompany the SIMULA programs

in Appendix 4), space definitely is; with the present storage (280K

bytes), the largest SIMULA program that can be compiled is about 30%

larger than program X in Appendix 4. However, this size of program is

more than adequate for the pursoses of the system, which is to test

the definition of languages; it is certainly not adequate for a

production compiler.

The experience with the system is somewhat iimited since the

only pracuical language defined in {it {is SIMULA 67. Also the

restrictions imposed upon the SIMULA definition (that {t should

follow the SIMULA 67 grammar and approximate Wilner's definition)

makes it difficult to generalize from the present experiment.

Inasmuch as SIMULA is representative of a large class of programming

languages, the system seems perfectly adequate for their definition.

However much more experience is needed before definitive conclusions

can be drawn about the adequacy of the system for a broader class of

languages.

Despite the disclaimers, initial experience with the system has

been very encouraging. The discipline involved in writing a

definition formally has paid off handsomely in avoiding and detecting

dozens of errors and inconsistencies in the previous definition of

SIMULA. There have been many advantages in having a working syystem

since many of the errors in Wilner's definition could hardly have

been noticed by hand since humans are not so demanding in precision.

Although space is limited, in fac the limitation was not so severe as

exnected. since programs nearly a 100 lines long can be handled; this

is almost an order of magnitude better than was expected. The

221

running speed 1s also quite satisfactory. FOLDS has proved its power

and Zlexibility vith the definition of SIMULA. Finally, the

inovations introduced in FOLDS, such as parallel statements and the

disambiguation mechanisms, seems to be working rather well.

Further research is needed to establish SPINDLE programming

techniques. The SIMULA definition has what seems to be very adequate
techniques for the handling of labels and symbol tables but the
handling of ambiguities seems to be a bit cumbersome. A further study |

of the attributes used in the definition should also reveal areas for

‘mwprovement such as a reduction in the number of attributes and a

simplification of the user-defined functions by the utilization of

more adequate attributes. An example of this type of simplification

is the introduction of QUALTB on Wilner's definition of SIMULA.

Another ares for research is the balance between syntax and |
semantics. In the present definition the syntax was mostly fixed by

the decision to stick to the official SIMULA grammar. While it served

to show the power of the method it complicated the definition and

made {it harder to understand. A joint design of the syntax and |

semantics would obviously yleld simpler and more readable

definitions. As of now the SIMULA definition seems to be somewhat

hard to understand for someone not familiar with the SIMULA language;

lf indeed this is true, a better choice of syntax and better SPINDLE |

programming techniques should help. Also a more liberal use of

comments would certainly improve the readability of the definition.

It should be noted that in the SIMULA definition a significant

amount amount of the code is dedicated to error and ambiguity

handl ing. Since this por:ion of the code is a result of the design of
the syntax, it is easy to see how a better syntax design can decrease

the complexity of definitions.

222 |

Ancther ared for further research is the choice of the target

language. In the SIMULA definition, Wilner chose as target language

the order code of a machine similar to the one defined by Randell §

Russell [RR 04] for ALGOL $0. In a sense this is unfortundte since

the machine is complicated cnough to make understanding it

. nontrivial, thus obscuring some aspects of the definition. However,

as pointed out by Knuth [Kn 71], the target language should be of a

high enough level so that the issues involved in the definition are

not obscured by the level of detail made necessary by the low level

nf the target language. There are tradeoffs in the choice of the

target language anc further researcn is needed to establish criteria

for a proper choice. One possible choice {is to compile directly into

some mathematical formalism, such as the one proposed by Scott

(SS 71], which then directly gives the meaning of the strings of the | |

defined language. An additional advantage of this choice is that |

proofs about the programs can then be worked out directly. The

disadvantage of this choice of target language is that i! is not very

relevant to the compiler writer, who should be one of the main users

of a language definition.

It shculd be noted that since the target language, from the

point of view of the language designer, 1s essentially debugging

informaticn, it should be made as symbolic as pous:cible. For instance,

in the definition of SIMULA, it would have been very helpfull to link

the source statements to the target language they generate; while

| this involves changing the definition, it involves only minor changes

and should be possible to effect with relative ease. |

| As described in Chapter 32, the parsing and filling in of the

semantics are perforred in two separate steps; this approach was

223

chosen for its simplicity and because at the time the decision was

reached the processes involved in the filling of the semantics were

not completly understood. But a one step approach (parsing and

filling in if semantics simulataneously), if successful, could both

reduce the compilation time and increase the size of programs that

can be compiled by the system; the amount of backtracking and the

number of ambiguous subtrees generated could both be reduced. A new

parsing scheme will probably have to be chosen since Earley's, as

analysed in Chapter 4, does not seem to adapt itself well to a one

step scheme.

Another aspect of the system tha: deserves further study is the

DEVELOP function vhich traverses the parse tres, returning a

different node for each call. A garbage collection mechanisr collects

all those nodes for which all associated parallel processes have

terminated and those attributes whose values are not relevant to any

other attributes. Thus, the order in which the nodes are developed 's .

~~ Critical for efficient space management. As now implemented, DEVELOP

traverses the tree in a top-down, left to right order, which reflects

the bias of most programming languages. But in SIMULA, for instance, |

a procedure body may use & variable whose declaration comes to the

right of the proceaure declaration; this shows that the left to right

bias is not all-pervasive. In terms of the definition in Chapter 4, g
the ENV attribute for the procedure body will be defined only after

all the declarations at the same level have been processed. In this

case it would clearly be more sfficient to postpone the development |

of the subtree corresponding to the procedure body until

ENV(PROCDECL) had been defined. As can be perceived, a "smarter"

DEVELGP function can increase the size of programs that can be

compiled by the system.

224 | |

Another necessary improvement to the system is the introduction

of the data types REAL and STRING and the necessary functions for

their manipulation. While not essential, these features should

increase the flexibility of the system. The system was designed with

these data types in mind and so their inclusion will result in

additions to the system, but not many changes.

In the present implementation all the output is performed at

the end of a run: this guarantees that all attributes are defined

before they are printed. This results in a great waste of space; a

control structure that would output attributes as soon as they are

defined, while preserving the output rules stated in 2.9.1, could

greatly improve the capacity of MUTILATE.

The power of FOLDS could be great.y increased by the use of a

more powerful scheme for the description of the syntax. For example,

either the scheme proposed by Galler §& Perlis [GP 70) or the one used

by Floyd to describe the syntax of ALGOL Ww [Si 71) would be

cenvenient. Such schemes, besides permitting a more compact

description of the syntax of a language, generate shallower parse

trees for any giver string of the language, and thereby minimize the

number of attributes passed from node to node. The use of a simple

sroduction -cheme for the grammar necessitates the use of

intermediary ionterminals which also increase the size of the tree.

The use of & more powerful syntax scheme should also reduce the

number of attributes by decreasing the amount of information to be

circulated through the tree. However, the adoption of these more

powerful syntax schemes is not trivial since a set of semantic

operators will have to be created for the manipulation of attributes.

Research is needed to choose the appropiate syntax scheme and to

225

choose and develop the associated semantic operators. The adopt: n

of a new syntax specification method lmplies a large overhaul of the

present system which should, however, serve as the basis for the

improved systen.

The checking of definitions 1s another area for further

research. Given a language and its definition, how should a set of

programs in the language be chosen to assure that the definition is

well formed and that it actually reflects the language designer's |

concepts about the language? It must be possible, given the

definition of a particular language to devise a systematic approach,

so that {if not ali, at least nearly all possible elementary

constructs of the language can be checked out. The exparience

acquired with SIMULA seems to indicate that FOLDS 1s capable of

compiling programs long enough to test the definition and that the

debugging aids in the system seem adequate enough for the task. But,

although a large number of tests have been performed the definition

probably still contains some undetacted errors. The experience also

shows that the tests should be performed with the programs as small

as possible; in a language as large as SIMULA, even small programs
generate large parse trees and a great number of attributes. It is

thus very hard to keep track of all that is going on during a |

MUTILATE run.

Another area for further research is in the development of

production compilers directly from a SPINDLE definition. While the

stress in FOLDS is towards generality, definitions could be

classified according to their semantic and syntactic characteristics,

and efficient compilers could be generated for certain categories.

Local code optimization can be easily achieved with the use of

226

appropriate attributes, and a special category of rules could be

introduced to help generate efficient compilers. Ideally, it should

be possible to gencrate an efficient compiler directly from the

definition, without any further information; however, this does not

seem realistic, at least at the moment. It should be noted that a

| nondeterminisc approach such as this is bound to be inherently less
efficient than deterministic approaches.

227

BIBLIOGRAPHY

(AJ 71) Aho, A.V. and Ullman, J.D., "Translations on a context free

grammar.”, info. and Control 19, § (Dec. 1971), 439-475

(BM ¢2]) Brooker,R.A, and Morris,D., "A general translation program

for phrase structured languages.", Jo ACM 9, 1 (Jan. 1962),
1-10

(DH 72) Dahl, 0. -J. and Hoare, C.A.R., "Hierarchical program

structures.”, in Sructured Programming, by O.-J. Dahl,

E.W. Dijkstra and C.A.R. Hoare, Academic Press, London,

1972, pp-175-220.

a1 72] Dirksen,J.A., "Tie QA4 Priwmer.", SRI project 8721 DRAFT

memo 15 June 1572

(OMN 70) Dahl,O.-J.,, \Myhrhaug,2. and \Nygaard,K., SIMULA 67 Common

Base Language, Publication No. S$-22, Norwegian Computing

Center, October 1970

(Ea (8) Earley,J., "An efficient context free parsing algorithm. ",

Comm. ACM 13, 2(Feb. 1970), 94-102

(Fe 00] Feldman,J. A., "A formal semantics for computer languages

and its application to compiler-compilers.", Comm. ACM 9, 1

(Jan. 1966), 3-9

(Fe 72] Feldman,J. A, et al, "Recent developments in SAIL, an Algol-

based language for artificial intelligence. ", Proc.

FJCC (1972)

(Fi 70) Fisher, D. A. "Control structures for programning

languages."”, Ph.D. thesis, Carnegie-Melion University, May
1970

228

(F1 62) Floyd,R.W., "On the nonexistence of a phrase structure

grammar for ALGOL 60.", Comm. ACM 5, 9 (Sep. 1962), 483-484 |

(GP 70) Galler,B.A. and Perlis, A.J., A View of Prcgramming |

Languages, Addison-Wesley, Reading, Mass., 1970

(He 71) Hewitt,C., "Procedural Embedding of knowledge in Planner.",

Proc. Second [JCAI, September 1971, pp. 167-182

{HU 69] Hopcroft,J, and Ullman,J., Formal Languages and Their

Relation to Automata, Addison-Wesley, Reading, Mass., 1969

{IM 72) Ichbiah,J.D. and Morse,S.?., "General concepts of the

SIMULA 67 programming language.", Annual Review {in

Automatic Programming, V.7, Part 1, 1972, pp. 65-93

(Ir 63) Irons, E. T., "Towards more versatile mechanical

transiators.", Proc. Sympos. Applied Math., 1963, .V.15,

pp. 41-50 |
(Jo 68] Johnson,W.L. et al, “Automatic ‘generation of efficient

lexical processors using finite state techniques. ", Comm.
ACM 11, 12 (Dec. 1968), 805-813

(Kn 68a) Knuth,D.E., "Semantics of context free languages."

Mathematical Systems Theory J. 2, 2 (1968), 127-145

(Kn 68b) Knuth,D.E., The Art of Computer Programming, vol. 1:

Fundamental Algorithms, Addison-Wesley, Reading, Mass. 1969

{Xn 71) Knuth,D. E., "Examples of formal semantics.”, in Symposium

on Semantics of Algorithmic Languages, Spring-Verlag, New

York, 1971, pp.212-23§

(LLS 68) Lucas,P., Lauer,P. and Stigleitner,H., "Method and notation

for the formal definition of programming languages. ",

TR25.087, IBM Lab. Vienna, 1968

(Ma 71] Malcolm, M.A., "PL360 (Revised)- A programming language for

229

| the [BM /360.", Technical Report No.215, Computer Science
Department, Stanford University (May 1971)

(MCa 065) McCarthy,J. et al, The LISP 11.5 Programming Manual, MIT |

Press, Cambridge, Mass., 1965 :

(MC1 65) McClure, R.M., "TMG- A syntax directed compiler.", Proc. ACM

Nat. Conf., 1965, V.20, pp.262-274

(RR 04) Randell,B. and Russell,L.J., ALGOL 60 Implementation,

Academic Press, London, 1964

(Si 71) Sites,R.L., "Algol VW Reference Manual.", Technical Report

No. 230, Computer Sciences Department, Stanford University

(August 1971) |

(SS 71] Scott,D. and Strachey,C., "Toward a mathematical semantics

for computer languages.", Proc. of the Symposium on

Computers and Automata, Microwave Research Institute

Syposium Series Vol.21, Polytechnic Institute of Brooklin,

1971

[Ve 72) Wegner,P., "The Vienna Definition Language.", ACMComputing |
Surveys 4, 1 (Mar. 1972), 5-63 |

(Wi 71) Wilner,W.T., "A declarative semantic definition."™, Ph.D.

thesis, Computer Science Department, Stanford University,

1971

(Wi 72) Wilner, W.T., "Formal sexantic definition using synthesized

and inherited attributes.", in Formal Semantics of

Prograaming Languages, Prentice Hall, Englewood Cliffs, New

Jersey, 1972, pp. 25-40

(WWW 60) Wirth, N., and Weber,H., "EULER: A generalization of Algol

and its formal definition part I.", Comm. ACM 9, 1 (Jan.

1966), 13-23; "Part ii{.", Comm. ACM 9, 2 (Feb. 1966), 89-99

230 |

APPENDIX 1

COMMENT THIS IS A DESCRIPTION OF TURINGOL IN SPINDLE. THE LIST

ATTRIBUTE OBJPROG HOLDS A LIST OF CONSTRUCTS THAT ARE

TRANSFORMED INTO A TL/i PROGRAM BY THE PROCEDURE OUTPUT.

LABELS ARE HANDLED BY MEANS OF LABEL-VALUES. TO EACH LABEL

IS ASSOCIATED A UNIQUZ [NTEGER, THE LABEL VALUE, AND A

PSEUDO~ INSTRUCTION (WITH COMPONENT TAG) IS INSERTED IN FRONT

OF A LABELED INSTRUCTION. THE VALUE OF TAG IS THE LABEL-

VALUE. THE OUTPUT PROCEDURE THEN BINDS LABEL-VALUES AND

ADORESSES BY MEANS OF THE MAP ATTRIBUTE. PSEUDO INSTRUCTIONS

ARE NOT PRINTED. THE SYMBOL TABLE 1S REPRESENTED BY THE

CONSTRUCTS E AND ENV, E COLLECTING THE INFORMATION AND ENV

SPREADING IT. EACH SYMEOL TABLE ENTRY HAS ONE COMPONENT,

EITHER LABEL OR SYMEOL WHICH DEFINES THE KIND OF THE

IDENTIFIER. THE ATTRIBUTE EMPTY HANDLES THE SYNTACTIC

AMBIGUITY THAT ARISES WHEN THE FIRST STATEMENT IS EMPTY. THE

PARSING IN WHICH THE LAST DECLARATION IS NOT EMPTY 1S THE

RIGHT ONE;

TERMINALS ARE. 3 (1)!

RESERVED WORFS ARE TAPz, ALPHABET, 1S, PRINT, MOVE, LEFT, RIGHT, ONE,
SQUARE, IF, THE, SYMBOL, THEN, GO, TO

ATTRIBUTES ARE

DIRECTION = TITLE

INDEX = INTEGER

E = CONSTRUCT, CONSTRUCT

ENV = E |

231

El = E

E2 = E
OBJPROG = LIST

SP = TITLE

MAP = CONSTRUCT, INTEGER
INSTR = CONSTRUCT
TAG = INTEGER

LOC = INTEGER

SYMBOL = INTEGER

MOVE = TITLE

LABEL = INTEGER

P1 = POINTER

P2 = Pl |
M = INTEGER

EMPTY = BOOLEAN

IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP

NONTERMINALS ARE

P = S(OBJPROG)

S = S(OBJPROG, E, EMPTY), 1 (ENV)
L = S(OBJPROG, E, EMPTY), I (ENV)
D = S(INDEX, E, EMPTY)
O = S(DIRECTION) |

START SYMBOL P

FORMATS ARE

Fl = ("(", LOC, ": PRINT, ", SYMBOL, ")"™)
F2 = ("(", LOC, ": MOVE, ", MOVE, ")")
F3 = ("(", LOC, ": JUMP, "“, LABEL,™)")
F4 = ("(", LOC, ": IF,", SYMBOL, ",", LABEL,")")
FS = ("(*, LOC, ": STOP)")

FUNCTION JOINE (Ei, E2); p

BEGIN COMMENT THIS PROCEDURE JOINS TWO SYMBUL TABLES AND CHECKS FOR

DUPLICATE ENTRIES;

P1 : = FIRST (E2);
TF NULLB(E1) THEN E2 ELSE
BEGIN

WHILE -NULLB(P1) DO
BEGIN

IF -NJLLR(FIND(E1, SELECTOR((P1)))) THEN
ERROR (SELECTOR ({P1)), " DECLARED TWICE");
El := «[P1); P1 := NEXT((P1))

END;

232

El

END

END;

PROCEDURE OUTPUT (OBJPRQG);

BEGIN COMMENT THIS PROCEDURE TAKES THE OBJECT PROGRAM LIST AND PRINTS

ITS INSTRUCTIONS. IN THE PROCESS IIT PLACES THE ADDRESS OF

THE INSTRUCTION IN THE COMPONENT LOC AND BINDS LABELS TO

ADDRESSES. PSEUDO-INSTRUCTIONS (INSTRUCTION WITH COMPONENT

TAG) ARE NOT PRINTED AND ARE USED TO BUILD THE MAP TABLE

THAT GIVES THE CORRESPONDENCE BETWEEN VALUE-LABELS AND

ADDRESS. THE BINDING IS DONE BY SUBSTITUTING IN THE

COMPONENT "LABEL" THE LABEL-VALUE BY THE ADDRESS ASSOCIATED

WITH IT IN MAP. THE BINDING IS DONE IN PARALLEL, USING THE

PROCEDURE PLACE, SO THAT FORWARD REFERENCES CAN BE HANDLED

WITHOUT WORRYING ABOUT PASSIVATIONS OCCURRING;

M:= 1;
WHILE -NULLB (OBJPROG) DO
BEGIN

Pl := CAR(OBJPROG); P2 := FIND((P1l], TAG);
IF NULLB(P2; THEN
BEGIN COMMENT THIS IS AN INSTRUCTION. CHECK TO SEE IF THERE 1S

A LABEL COMPONENT: IF THERE 1S, RETRIEVE IT FROM
MAP AND ASSIGN IT;

(P1).LOC := (M); P2 := FIND((P1], LABEL);
IF -NULLB(P2) THEN PLACE([P2], MAP);
WRITE ((P1), /); M i= MM «1;

END ELSE

COMMENT THIS 1S A PSEUDO-INSTRUCTION. UPDATE MAP:

MAP. [[P2]] := [MI]; :
OBJPROG : = CDR (OBJPROG)

END

END;

PROCEDURE PLACE (P2, MAP);

COMMENT THIS PROCEDURE WILL ASSIGN, IN PARALLEL, AN ADDRESS TO THE

233

COMPONENT LABEL. THIS WAY THE PROCEDURE OUTPUT 1S

| REACTIVATED IMMEDIATELY, EVEN IF THIS IS A FORWARD JUMP. THE

| REASON A PROCEDURE IS CALLED INSTEAD OF JUST PLACING THE

PARALLEL STATEMENT IN THE BODY OF THE CALLING PROGRAM IS

THAT THE VALUE OF P2 WHEN THE CALL IS MADE HAS TO BE

PRESERVED AND THE PROCEDURE PRODUCES A COPY OF IT. A

PARALLEL PROCESS BY ITSELF DOES NOT PRODUCE NEW NODES AND AS

THE VALUE OF P2 IS CONTINUALLY CHANGING THERE IS NO

ASSURANCE (SINCE THE PROCESSES RUN ASYNCHRONOUSLY) THAT IT .

WOULD HAVE THE PROPER VALUE EVERY TIME;

$/ [P2) := MAP. ([P2)] /$

234

$P1} D ::= TAPE ALPHABET 1S SIGMA
$/ INDEX(D) := 1; EMPTY(D) := FALSE;

E(D), [SP(SIGMA)] 1a 1 /} :

$P12 D ::= D ; SIGMA
$/ EMPTY (D) := FALSE; INDEX (0) := INDEX(Ds) «1 /$
$/ E(D)Y := JOINE(E(D=*),

E »= F([SP(SIGMA)]). SYMBOL := INDEX(D))) /%

§P13 D ::=D ;
$/ EMPTY (LU) := TRUE /%

$P21 5 i= PRINT ' SIGMA

$/ E(S) := NULL;

OBJPROG(S) := LIST(INSTR x= T(FORMAT := F1;
SYM2OL : = ENV(S). (SP(SIGMA)]).SYMBOL)) /%

$/ EMPTY (S) := FALSE /%

§P22 S ::= MOVE O ONE SQUARE
$/ E(S) := NULL

OBJPROG(S) := LIST(INSTR »= S$ (FORMAT := F2;
MOVE := DIRECTION(@Q))) /§$

$/ EMPTY (S) := FALSE 7/3

P2221 O ::= LEFT

$/ DIRECTION) := "LEFT" /§

$P222 0 1:= RIGHT

t/ DIRECTION(O, := "RIGHT" /3

P23 0S ::= GO TO SIGMA

§/ E(5) := NULL;
OBJPROG(S) := LIST(IWSTR ws 5 (FORMAT := F3;

LABEL : = ENV\S). [SP(SIGMA)]}.LABEL)) /%$
2/ EMPTY (S) := FALSE /3%

$P24 5S 1:=

§/ E(S) += NULL; OBJPROG(S) := NULL /%
§/ EMPTY (S) := TRUE /3§

P23 S :i:= IF THE TAPE SYMBOL iS '" SIGMA ' THEN 3S

§/ \ = NEWINTEGER;
CBJPROG(S) : = CONS(INSTR x= S(FORMAT := F4; LABEL := M;

SYMBOL = ENV(S). [SP(SIGMA)]. SYMBQL),
APEND(G5J PROG (Sx),

LISTC(INSTR w= $(TAG := M)))) /%

$/ EMPTY (S) :¢= FALSE 7/3

225

$P32 S ::= SIGMA : S

$/ M : = NEWINTEGER;
E(S) := JOINE(E(S=), E as $((SP(SIGMA)].LABEL := M)) /$

$/ UBJPROG(S) := CONS(INSTR == §(TAG = M), OBJPROG(Sw)) /$
$/ EAPTY(S) := FALSE /$

$P33 S ::= (L) : |

$/ EMPTY (S) := FALSE /$

$P41 L ::= §

$P42 L ::= L 3 S
$/ E(L) := JOINE(CE(L2),E(S)) /$
$/ OBJPROG(L) := APEND(OBJPROG(Lx), OBJPROG(S)) /§$
$/ EMPTY (L) :s EMPTY (Le) /S

$PS P::=D; L
$/ OBJPROG(P) := APEND(OBJPROG(L),

LIST(INSTR es $ (FORMAT := FS))):
OUTPUT (OBJPROG(P)) /$

$/ ENV(L) := JOINECE(D), E(L)) /§
$/ IF EMPTY (D) THEN DAMB (FALSE, 1) ELSE

IF EMPTY (L) THEN DAMB (TRUE, 1) /$

236

TAPE ALPHABET |S BLANK; UNO: ERGs POINTS,

PRINT *PUOINT*;

old Tu CARRY

TedU: LF THE TAPE SYMBUL 1S 'utdl® THEN

IPRINT CLERC?

CARRY: MUVE LEFT CANE SWwUARE: uu YU TEST)

PRINT PuN(Ce;

WEALIUNS MUVE RIGHT CAE SwWUARE:

§F ThE TAPE SYMBCL 1S "2eRU® THEN VO TG REALIGN.

PARSING TREE

LUCATILN AMB IGUUUS BRLTHER SON SEMANTICS SCLECTGRJ{PROGLUCTICN OR VALUE)

J LY ¢ 1 112% PP HPS

1 0 317 Z 104d OL SPQ
2 0 o 3 166 *S,8P131

3 0 5 4 656 *Y,4P213

4 0 ()) 0 4130 *SIuMA,REALIGN
5 0 " J 54 32 ¢STuMAL(ERU

6 0 0 7 10648 eL SP.
{ 0 li 8 glo sS,8P32

a3 0 10 9 Shé €S dP 2
9 0 Q 0 ole s),3P 222

iJ VU ” 0) 4l 30 OS IUMALREALIGN
il 0 y 12 1048 lL ,8P&2

| 04 0 l& 13 «92 $5,8P21
13 C 0 J Ble ¢S LMA, UND

16 0 ¥ 15 10643 SLoSPG2
15 0 3i 16 874d eS .8P 32
lo 0 3C 17 166 *S.P 11

» > [> 4

” I $93 § 5 £3234 %o "= =Ww <q Rv < =} (& J "M 3 od
[- J) ~N Dm S| a E 9 rd p= 2

MNT sNANNNAN cctaloa ¢ a YN olcd oaMY O7Y 6 Gat» Nd NNNa NNN NaN
TEINIIONNAEINVA LACE INGE INA AA ACoA AN PMN PAPNTA GFN NPN =e
Gab Xraco0axroeoarvrIaisracarsararazxaxassssaaaasacacaaa
AAAI AAAADAAI II AAI AR IDB IATA ITA IAAAAAA ADA ARDS DSS
PSA -dihdodi ddr drd dirddd didi dd dad EE EE A A A A A Ar Rr Br re
VAN IAN II IBN NA IAN SANDRA DINANDANA JAA UA JASN SALAD ’
COV OOOO LIRAIOEENBROENROIOROONOERNRNIBRIBIROEIAGEOEARBROOIOLBDRARNREDSS

I em aN Sra tegen renceTENE ODPM PANIVNCPH POND IDMDNVNADNT OIC CO Cro P PP toy
COVA DNIVALLPDOO0IIIDLICMNIMENDMIE dO IVOLPODO IOC ~m
- Q- O=% NI H~ ® B® AN 0 Nd wm «ot ot = 4 oa

-t - -s =

ER CNR ICON NOOONNINGO0RRO0=ON0ONONTMOBNMLIIIANIO00-t =p PN NNN NN Ln J ~ La Jag] 4 4 L 4 L AK 4 wh NANA NMP -

NORCO ON000000004I0000000NICIOVNC=FIO~“TMONOrORIAgNN NN Ly ¢ <r ee OF AN A" 0" A" Nn

0000000000000 00000000000000000000D000RTO0O0TO

SEA PEE E Rac iia ed SA SSE Sl I ie SA SE Re dr df SF LB EX 2MANCONNANNNNNNNNANNANANAANNAN API PP PIL TP LTR AOAANA NAAN o

238

AEFRLIIN OZ

i1gl

19¢ ¢

U3 & THI> 1S TuriInNGOL

104 ©

105 =

. 108 bet Tes

& 110 bef Tel

[N 111 DEF T,!
11d ®

[N 113 DEF n,TAPE
4 ilo LiF Re ALPHABET
- l15 Left Reld
“ lle vif KePKEINT

4“ lilo 1] 3 4 KoLEFT
“ liv vef RoR IGHTY
° 1<U OL# Ro CNE

i. “ 121 utEF Re SwUAKE
hh ° 122 utF RIF
i “ 143 ck Ay THE

4 124 OEF Ke SYMUOL
° 145 ULF Re THEN
) 1206 UEF ReGU
4 127 OtF ReTO

120 ©

4 LLY VEF LedIGMA,SP
Liv *

] 131 OEF NePeSIUBJPRLO)
id 13Z CEF Nee SICBJPRUGEHEMPPTY LIEN?
2% 133 DEF NeLoSIEILBIPRLLGIEMPTIYDil ENV)
Jo l 3b ULF NoUoS(INCEXJE EMPTY)
wb 135 LeF NeUeSIDIRLITION)

Li6 ¢

Ld 117 vEF S,P
Lid ©

63 Liv DEF AJDIRECTIUN,TITLE
J L4y DEF A INDEX, INTEGER
“2 Le) OtF Ast yKLNIRYY
Sa 142 DEF AJENTRYpCO
Ye led LEFr AgtluV,y€E
Yh lab DEF Astlyt

24% 1645 vocF Aost20t
56 146 OEF AsLBJPRCG,LLISY
Se 147 DEF ASP, TITLE

S54 148 (V13 AgMAP ,<INTEGERD
69 169 LEF Ar INSTR. CD .

["J

-

hd

CY uwLL x
-- Qo

® = a
-y i” [™ 9[|

- ol &. -l (% -w

> 8 ¥ 2® «J
- -

Loi 3 |og=~ @

-9 ee <

3 LN | ("Jods A -ow ld AN»>>a «ld ivLu A~N 8 oD ow»T 4 o oo
ff & ao — 2«3J AS

Py -J |w aa

: | ow = K —& PA > -
ww =- a 06 on os sa |

L = 4 [8 JN BN AN | QA -b o>- (L] hy rr Perr az we (& } -d- Ww w (87 J - -y -Wa us aso rl o8533Y -— J 0POR dw 3 ddd dd A 4 - <iY EYE = ob - eo ® W Ady - OQ—t sane F (CR IE BN WN | pa 4 lL aF 4 J eo» - aN» - wa a we Ww -d ww 4 -d Ty ¥==3 Od) = > 289 8 8 a JD « p- < le)ouESDbe x - wr wp ww - 4 | pS za>» 0D » aan « a oso [YY] (vv) po | -S¥=33 =~ rs tad AE A, 4g 2 «J b 4 B v0 -b ot aLL LEY IX EE [TW VIR V Wy FIV « — - = [4 - J << o®» 68 aoe a «a a ® pe wx oO N aN -t A = ew 0 = Q -t =p - -t I _
ddddddaas [VO Sy VT La “> ow wa A WWW Q = ya Og a 9 wa a & WW 5.=~ 4 . - QF

dv 83332323%.--3839¥aflgeses.22 8. 33LL ALY ET A YS Se Me Wb Wb (*Y] - - — | J =
E41 Ww) WW YET RTT YY YY) ck £2373353355353353258333 5383522558 3a2838383388 sH334y TL AureanIIoeIILITLILTISAFEOYS 88 R39 £3

ol]A x [* N~—-l WA) - Webb ZTE= a J b bn =~ of «
>>» [YY]® LIE IN JX 3 WW WN Ww - L J 3 WW

rd IBA RR EE FELL LLY) MOBOPO=NSN AL BOO YIN EN ad. LO E- EL EX XK. CPO NNNPASN IPEE EE EE RE rE RE FE LE LL FY LA PPP TITttts td drm mee ea aos QR LR R222 222333833%232

[,] L LL)
[nN 4)
~ ~ ~hy -

N ONNOON NIN 00 ~N ¢ qn ~ N=9=n Qn Y wn wn » ,) | La) aN nN re
~~ NAAN me ™ > J! ~N - 3A “A MN$» SVN Oe >) Ll] - n oY Nn LJ-t - - -t - -t -t

ul-Sudrdod Arfudrb Ard Sedod A BE ed LE EY IL EL IF,uP POPPING CPA ANI ANN GgOPNON—PRSN

2Q 999% EN EX 4 OLN V Im II ADA CC PU PM DPMP Bat NN GDM3333333%2 oer @ FIV VONMNANNNNNAMN ALP PIP LNNAN GIGS 0% m =
0 mm wl tt lt dt al wl tml fot od mt wt mS =D nd mt mt wt = =a

-d
uid

|

-

[

ic)
[J

)

A

a

oo
(=
Q

’ ww

. 4-
&
2
-

vy

: "
9 - «
< o

: 9 3 3. -d
-d -d of o ld p> |
- | L | - < <

9 3 2 | v 9 > > J— Qo h 4 =] o I 9 — ou |
=2 x gag | (FY) ud 4 [{ x 2 1 ww -[- 9 [9 - Ww w - CX® [- = [9 a, ~» J -
-— bn in J 4h J ‘9 " (= b-- | -— - ww ng 1 “* be JL « - 4 a2 E - Dw BD ad « N= OQ ad < NING P~ x [ev] rN ® oo ud FY) -d « Ag = ~
(= Dm OuwdD [- § LJ] awh 4X LY J 4a Taxa t dint AF 4 OX N £ Q JD 3 & to a xX arf

& " 3: — a32 (™ =] > ad 2 Q | = DIDO @ 2 [=] 3 ~ (3 - 3 [- 9 F 4 Q=O 2088 L222 2408 8237 532535535555 MEd JCC APE IITX J DQ of = QeXE oad b= SCDd= =IIJ IA] =Dw= DJ 4aODD Er Dd ECE YdOAWNOD= IJ WW | X d= Jd WOW
ARAN IANL IID ADIUODONY IL dd PAD AI OVP IOLENAIGA IPI IED VD AD x AAR ANAL X JID

A

. . —-

z w A b 4
- -— od - - —
9 - N nt P 4
yr] = -4 w —a -
[--] 3B wo b 4 w dee o

CANM EAI NDP IANANCAINDLORNALNALOI™NBEP INN EAORAPOANMLAL™ DO IA INL NO™ DOte tt mt NNN NNN NNN ARAM AN ANAARP LILLIE PITLAANANANNANIDODI000009
NNNNNNNNNNNNNNNGANNNNANNYVNVNANNNNNN INN VNNNN YIN NINN NNNYNYNNNNN NNN

(")] Q on nn oO wn "
wn C [,) wn "
Ly ~ ~ ~N ~- ~ ~ ~ - ~~

AAR aK ~N © SINDI NN OQ DOBDOODN =] OOD | 4 ' 4 oO 0 29BN DD] "n 9 ~N NDZ un o ~ te O ww DN D oN - a D> <° ~ ~N 0
38% - m Tn Mea Mm ~~ oN Wt A 8 9 -s iN 4 = MN ad - WN 0NPR @ MN MM NN Nee Nn PF NN VE * * oN > Ba @ 2 =~ ~ 8

- ot = asl ol -l - Ld -t$

MBP Re Pam NBDANBAN IAN DAND LS <n AR IBINIE BRR NS BND QL MDAD OTLE ZR RAR ad PNP 2 PAP OE NPR PP ALPTINI NEN IPQ 4 v ny el ak 2 0 EK

BOO NND SLD? IAL Bad ™maPONDIANNRIINIPITNAIRMINNINAR QAI ID LIND IPNNOO
~~ BO OPEC IVIIVOD == NNNANNANAAPEINNANNSOH==™~ 0020232 F7F 2 PFT I29292
oy ll] ah mf md wh = dN NY NY NNYN NANANNNN VN YINNNNNYN INV NNYNNNNNNYNNYN NNN YN S

-

v1

[J .
"

[

[J .
J .

w

is
= i 3
3 3 S “-

a OO OO 2 7] 2 od 2 [-] [- oh
ow od > [] (v] [2 o > ® (v] ol ® - pv|

“ 2 aja" = a ~ 1388 * PY “ £3 ome5ne «a -» LJ] -l
LY) 2 poll sd ol - 1 t.3d3 F 3 eo sat § >» Q 5 ¥
& PD O88 =uMAN ND = ALGER= OO WN WW Nas 5H Oa We -

-p [.

[-d -d -d
ow - - - & es - 4 > Ww -- 3. Hindi EAC NSn 2823 ®» dA dete trie Eel Ia Ri EF Bede 252%SF FF +4 - tt PEF ot od WN “i ~-F 4 wdP Ig = avdbgbigqad>dand lw OA JALAL CSAVIIdEIOAVAIVDIFALINgUYITIW ada IW

* 3
T -

Y[J

CJ -

[3 J ee [| LN

Dar ERO BPI NA PN PBC DINALNEDS MAME AO BPO NAC NOrBOO Ns enol
Llaadiad abot edntintint-S BL EXE EER EB RE EE N- 0 5 JN 2 8 222222 28 2 mmm a anaNN NN NN -
MN NANNY NYY NNN NANNY NNN PENNY NN J -

PJ
Q -
oo

5 ~
o - = aN 00 a 0 - ~N O00 -t 2 -

~ [1]
a - J DLO INS - N- XJ °g222 ~N Ny OD ° 223 2 oN . 4 Qo~N VEE ORR nN "nNOD - -t lp ~~ » @ =o 4
wn OP ANM™ oH > LOG nN *° > -t LL OQ ~NO
~ - gre -y NN A Pe ol NYS -t od "nN “ow =

-t -l -f ob -t wf -g

fo i «tt oh WH 3-08 5 2202TR NNN AIFINnEnN -X XY ()*NG -d no SONG ON NONOSUNYA JON AYNPI ES WN = @ WN = LJ

mere mt LE X EE .X KK J ed AX a Bal wk A K 2. K | rw PP RO wd P NS PNT Bry :

p33 1 P-£- BR PIS Sri RA ~ans2re33353535oIN850702¢ TL .EK X 3LEY Lk CL lal hn LL LY) CEL IL NI I A A I I A A I A I J I A a J a ET oro 9

Ii) 1 252% 210 LOA PQ
Jie 28 2171 VAL
JLT el [+ 0 12 GET
él S PEE} ASS
322 15 le IN

2715 eo

lc & Ire PRUVUCT IUNS UF TURINGUL
FREE

3H ele PRUU DoTAPEALPHABET15.51 LNA
Jso PRA] LAdtL PII
3s 60 11900 1 430 PLA INVER LU
J&Z 9d uch dol ASS) |
345% 6u 3960 | 82 PLA ENPIY,OD
3e9 5% i658 {03 ASI FALSE
31% 60 2512 i 206 PLA €.0
3% ol ali Ps £85 GET SP: SIGMA
00 28 PETA VAL
Joi ov Cc 0 col PLA
305 VU llsav 0 2db PLA SYMBOL
J69 958 2626 2849 ASS l
372 15 vv HLT
31s 291 LNOP

eV ©

iv) oo

33 vk PRUV UUs; eSIGMA
Jue 475 LAGRL PILZ
Jose Se c/ 296 PARKN Xx}

~ Jo? oU 3900 1 297 PLA ENPTY,L
= Ivs 58 24% iv8 ASSL FALSE
Aa 396 69 (1%6U | 2459 PLA INDEX, D

uy tl 11900 A 300 GET INDEX , De
6J6 Jo 3di VAL
40% Jo 4 Jue AR ONEP
LI'F J 5 JI AdS
40s 15 Joe mt
«C9 60 2512 i ICS xi PLA £,0
dl ¢l 251¢ 8 | Ile CET E.De
17 51 elué Jat PLAN tI
620 12 ice L3L

“cl El 4738 2 129 GET SP.SIGHaA
425 46 310 VAL
“6 60 [7 C Jil PLA
430 60 L1680 0 Jie PLA SYMBOL
43 61 11960 | Jl LET INOLX 0
438 - dls ASS
“39 57 130 315 CALL JCINE
49¢] Ji6 ASS
43 15 117 (19
4646 Jib END?

Ji9 e

30 »

L TTY EPN PROUD Dees
52 RPP, LABEL Pil)
456 #0 3960 | 32) PLA EMPTIV,O
e584 58 2912 Je ASST TRut
461 15 345 LJ|
LY V4 320 ENDP

COUE GENERATED FOR THE ImPLIED SEMAMTIC RULES
te 6) PJ

11960 l 2 INDEX)

ww

y 3[J

3

[L a
- ow
A x oO Q

- 9 i” K- za» | J

. TS - J o eg o (8- > » « (L [) »N -
£ oO od - - w o - - - =
- x = QW = = >» WW > « [J Le >» WJ “w oY -
[- 4 & - Jd t] - Wh 4 a — TY YT) - YE REYQ~ VID SH » = = 3 nN WY A » a * - idCRM4 om @ X = >EZO ~ < tN emB ££ NN Ow P| oo
NAR WED == § HN » wb ALM WEDQ = ww EO WwW oan

> | 3 ldQWE - - x ad - a fw | F 4 - =x oh - & 34 -
ODM AANA ANGI JE gram NA TNA O3%sas2s3sasuagansanLg p- BrAEA NA SOE DINAN ENNAIANIG INIT re TPT FE af -d20 08€08 020000 JI>O0V0CVYEIASNIW A J004a448JA QLD AVEIYWIEIA™IGCEI WN Jaq

-l wal

lL IX » LIN J » LN J

A FER EE PES Erb Ear E Ed dnd SAE Srl 2rdh Bil Sil Sir SS ddd al a 3-3NANA AANARAAARMNP IIIT LETITIA NNANTANADDODEOI9 BG Bre tuoi tn Puitih nis | XN
MAA RRA RAR RAN AAA AA RNANAMAM MAAR ARMAANMANMAAAARAMAMAMNAMAMEA NMA

Ww

~

- - a O=mN OO = - - oN - -t

“- -
~N NO ONAN © nN O66 OO 29 QNNEe @ b 1 a0 Qe ow-4 a Nn -t 9 L » Qn oD OWN -t 9 | LK 4 $NA rN
C4 LX 4 ah ndhad. 5 > @ ™ Fo a - 3 2 WN Pe & - p 4 - 4 pb Jd~ ~N ow ”~ ~ - MA a - - re NETH ™ -t un a re ~

-—t i -f =o od od wf) [J

nan Y.-F E-L LELEEERE RE EEN B-N JN N-3 J 0 BOP NONOGANONRADOWN -N
-t ‘0 8 NOAA DPA N OO OINOU = =OHA= NPASPA2A dP = =PHPAN= oN

a Ka EP E RAE EA EEE. EL ELELE EELIE G&GSd NCOPODN EGDa CE Ee al SY X-K J~~ FB Sod i §- Sod As Bu SA Bie J Jr Joi Gr Jr niles err E3039062S td NN
rR A COICO AANAAAANANARAVANARN ANN NVNAAAANANANAAANINMNAANAN SOS OSS XE KE XK

A
[J

F 4

-

®

[J

-

9
-l

L,
[J

’ LJ

[J

»
[]

[J

-f

Q
D
x
»

7]
[

L ow
x [9

Q 9 <
[J] — [L]PF 4 wn A v a CX,J | | J - L | - wd - ®

- -- 8 (-] 9 x A 1 Ly p « 29po - — 9 9 - - [~ 203 WX - a x -d = - > oh ag >» - xT &
- enya 9 po | a - Ww Nn od - a - ow a a b=
a WX ~~ 2" LU" J By el D> a - : 3 TE Ea I" -— bd hn Bh | A- Y= Of ey am®D £ - CW JS od x & se D-=¥ « aN 3p x24a 7s Nau TZD - -d WV - ad MA MUMITOZ Ww * N-SJ TOO -

-d | - |a ow ~ a (=~ T 4 - - A -— a QW - -y am a -~S wx -F
-0 Qoeun=g DOANE NA de JE de ESAS CEA AEA =D DDD XZOdAdr-N4A—- x of & JNJ of € - A dm JB EX DRIER RT RCTRT BLN WR RV. I 4 Add NAAN ad Nd FE KE BLE TErw QQ 40 €@ L ww AR J230€2 J320DAVOIG>ODCJEITACIW bt JACM dCdOL CET WV GG JEG IAI

«ul

20 oe of [JX J LN J

MIN On B IAIN ALAIN DEI INAT AIR II= NENA OINT ELAINE ITNRIRRRR5227DDOVPMDODOOPOPRIPPOEEIPIPIPI00000 DOD ttt mt bt tos AM NNNNNNNNNNANMAR MARANA SE EEli JAR A Aa A A Aaah 4-4 I Sr SSE IFFY IE EE EA A EE RE RE RE EE RE A A RS AA AAAS A

- - -t Q ery [~ Re -t vd - - -t fy

- -
oo DNNP * ~N OSD 00 od NNLNON Q QPL e -
Fr - AB | - NN = ~ o Nn a NON O= XN ©
~ al Ng) o Pe fa a ~~ oe Ar Re Pp oOMNmMm °nN ~ eRe re rs *™m DO < - on EA K E.R T8® ~~
wd -l -t [J LC]

,] DDN OO TOP A NDVYVQ = = Qt a NON ADBA -% JN-1X N-N N, OP DV P =- O Nn NDA PN A=P OO NBO - -t OO NHN ~~ SN gO WN = Net FO OTWN

~ 0 Lt I AF-Ne NWN J LL OP APDOMP™ Dad ADIPAL BNA EI AND ING COD Prt Pp Dy ~N OS D=NYNNDM IH~N wv Nes SNA Arr, DBD IPTPIDD IDI ad NNN EP QL OQ mr PWo 0 Sd 80 908 0 30 2590050030000 3mm Po Sy Fo Sp fe fe Se te Pe Re So te Be fe te fy be fe

Ny

he,

L J

v
- a

- AN

«4 ww - « oe
4 " ow < 4 it Ri .

oa 9 i» - 4 x QU
« -d Qu= 9 » Wu = 3S - ol ow }- ww oN = WA 4 -n ® a Ww F 4 a

<9 » | E>» 4 $d AN » NA [» - >3H< b 4 ¢ « >a >» VJ eM = 0 oom a | 9 $3
- x - Ww - Xx NaN wn Ww = Aa EWWww WwW ox - {= Xo

g 3 -Q AER a wm - a ex: 3 0 4 b 4
dESNT NE Ie JA qUu Imm ym mn ZN EA -3T 34%x04«> dr dS NdAm<=qRAJIO2I 2x2 rE Fad tt tt Tek ob «€ 4 Wes JW JW SJ 23aIiwddOCA JECEVEEALOLDAICEDALII IFVOICICIOLCI WA 480AVMAVALAOIDI>ALICEIYEIAVOA

[=]
ob
-l

2
| - wl

x oe »

NCR OBI I NACNOR SPI NMACNO~BOOT ado i Bod fd FB G3 Se 3." Sd udCPP POPP OCA ANANAANNANARAND OD IID OI LLL YY LY ERY RN NNN >

AAAS FREE ER RA A RRNI A A A A
ww »

P 4

(=] Ww Ww
oh

— -—a .
<

« .
[-] J OQem®m OO -y 2 nN -y & - OO -sNy

2» -%
”» 0 L 4 L 4 QO -X XN [~~ J -R | wd oN (-X 0 ONNO 49 O00 Oo Lee
o% * ® NBO BH res L oN Q Maw NS Bedat OD WN ~NDO OO nDOY

~~ 4 9 NN =~) Q tM r oo SONAR Wr ON ANN ~~ ~ 9 - lu- ~ L LR 4 - M9 -y Ls Rad (s) mN TNNNGS - ee PH™
-l) —y -y -f

NOP OARMNDNOTRNND AaB Eat NO AMANO BN -» non FE RA X- EE EEN N-K- 1 NX J 8 N N-R RB
- OH ¢ MEE LLL. E EK -“- OP SVNY VY -t ot & JN ww @® . =n FY. EEE ERLE LE ENE; N -t JO 0 =

POE VDP IAPR RPANNGgaEnP PP O=.N PQ [=] - RK J LY X-E.X LA. EX-Ed ELE LEX. EE LEE & | | 5)Bric i Jou GoJo Di Sodvl+5 of BS SA Jit Jia n EN |] 3-45-21 F $3 FF Pobie SPP AP FH
TTY YY TEX FAEREXKEEEEILIIYN ERNE YEN BE R RB @® xX X | "YT ERX EERE NE NK NNN _K NN JBN _N KJ

*
ul of

v. A A » * ®
vi vy) - w A A vi - J QS
[- a [3 | -f - eo oo 20
> ud > - > wg 2 2 os J uw xX a
- [4 - I, ("4 «® 'S tm be [Y Zz a a

3 Sh 4 - na J WN =n - a Oo od od NH = 2 |xX « I'S) em « Ww eo ') og =~T IX e » oid CX
- x [TY RV N - Vv A WW - NN = ol & XX wh owd [TYRVTV TRL QO ,[1

1 - z 4 3=] A - Qa a WwW - a «4 ed ir JET 4 -dN Zvmdn=rE ODE =0OX 23: 0X Tre Admin JA-w IN AA DAD ATW 3 JER J gy vY] x « 7] Eq JA JNM AEN JIN
JEJE IOGQI uN dQ 0A €gCET WN Oh oid A A JAG IONA I2IWVAIND

(| 2 Q
ow [Vv ud
-n - -_—
- 4 pl
a Ca -
4 x x

~ oud La] -— Cd
» [IN LX J L JX »

Nd LJ uw
EVD PFI ~ 4d FNL DDO ~~N™Mm SNH Je DIX ODay POPP O NH SP
PRR TID IDIDOO™ PT IND af wn 3 — om wt ou a b= 9 “a ANY NN NNN NNN NY AERA
SFP IHN AVN FEA EE Ra AR 2 o NAAN ND (ms MAAN AANANAANANANANRANRN

x x a = zm»
J J a 9 a =
ww >» ww >» ww > 94

F 4 Fa 20X
Q ow po] Ww Ow (=] WOWw Ww
w FY] w
— -g - -t Og NY — NNN
< 4 <
= o =
rv | [*] wd

o = Zz ~ -t Z 0 «t= z A) tf ~4 -- - nN -t
7 | on 7VY)
i 9 (LJ ~

®Q = J | od] wo Q 9 ot CX A) LN] w SPOON o2)> NNND rR
< © o“ N [=] Po on BD Q JN - fo TH 2D Q - 0 O —- Oo 0 - en dD 0 PD
~~ 2 4 oD ~~ - J « JE 4 J" mAAN OP Qf ™AQN > ANCA ~ »
- 9 hala d [. “ ~~ t= J "NDN (™ } aAOmMmN "mA yy NN =» ®

lt - ag

O= NO AN DIDT NM - WwW ov Oo Dn - non a) 2) OOD 2 AO mmr NAD
a -t - Qu =. @» == Qn = o - hn 9 -4 NOD 0 O0O0ON ~0w0

IND ELA HG™ PN A NA LEE-NAENS Nm 9 oes 2 o ~ OMAN A NDDIBPM
LTE BE JE J JKC RY RY RY n LE -] O™~ DODD ° 2309 CQ = ~4 ~4 - aN PrPAAND OOM mamE
COIPOIDOOPIPOO J be JV - J Orr > - J 29092 200 te os | 2 IIIDOO0IONTVDODOwf md «i ol off == - LJ ol ol on) =f af i) =f bd wi] cf oul] wl of =p

ally

1047 61 8334 Fd $35 GET 00JPR0LG,S
vol 2» $36 APEND
1092 5 $37 ASS
1393 15 $36 [178J
Luvéd 539 t NDP

CUDt GENERATED POA THE IMPLIED SEMANTIC RULES
105¢ ¢&) 4

13178) iL EnV
13776 2 1 Env

119¢ 15

Lio S56 1094
lve 952 1050

560 ©

Se) ©

Ail 542 PROD PoDetolre
1124 5) LABEL PS
L1d> 96 o/ 544 PAKN XI)
Lic? 56 gf 545% PARN X2
1132 ol 3960 3 S46 GET EMPIY,D
1136 (48 547 VAL
1437 54 ge/ 548 . JURPF TR
Ll«0 59 7456 549 VALC FALSE
led 44 llo12 550 DANS P
1160 61 13960 Fd 551 TR GET ENPTY, L

nN 1150 <b 552 VAL

= 1151 S¢ c/ 553 JUMPF EXIT115% 99 2912 554 vALC TRUE
1i>1 «6 llol2 55% DANY P
fleu 15 550 E£Xx17 HLT
1161 69 6384 [| 557 Xi PLA 08JPROG,P
116% 12 $508 (11.1%
1Lée6 ¢1 834 Fd 55¢ LET Q8JPRUG SL
1170 4&9 560 LIST
1875 S51 1664 Sel PLAN [INSIR
isle 12 Sol obL
L477 S50 118CH 56) (3.11 (3 J
1140 10 564 CONS
iil 23 565 APEND
1182 S 566 ASS
Lleéd 97 178 27 CALL OUTPUT
11d6 15 TY TR
1187 60 LiT7e F § 569 x2 PLA ENV.L
11910 &l1 3512 a $710 LET Eek
119% ol 2312 3 S71 [YJ EO
1199 57 100 512 CALL JOIN
1202 : $7) ASS
1203 19% 574 mt
1204 515% END?
1204 LY End

NO EARORS OE TECTED

® OF INSTRUCTIGN CARULS PALCESSED= 318

-_

ow

>
|

-
>

|

a

4
Q
- =

. ~ 4
J oo 2 ~~ Q r « © ® NNN
3 > ™ ~ ma, LL) e* m~ =» - OO

- . = a - ~N ~~ ve NY ~ a ~N 9 ~ a -- "¢(Lk 2 4 bo | - ¥ 0 ¢ QV ea TA Ww a nd a = aa -
| JD [- 4 Aw 9 Oe DNVAQL WS » Qo » LK NJ on

BDI a AB oYEA DD OB ANA oh ox @ — - a - ‘ID eo» -
22S —-— eo KAWOO ean iw a FO «ww Ary -_— a -_— 0D ~N oq - Y= aEX w x EB JAY Are cud aX XA 3 =a mm FdNe=U J DAR
4X % fo € J «a NA DAA anNCALX UBC BW qdDJ ra eT A Y=" oa

. Jani — xX of Jom dF = NANA X= ow @ ~~ 4 QA Peg y =“ wT(] QIIAS » Jom UNC L Abe =X eX PF JUL oe el Udo
- a - ad Dd nd Ee 3 JA d ddA T J) ee I VE SF BK Na IE. G- WT NS

1 AW w ~~ XIE)LLANELLICDE XI mAOJ > > am
MOem we WM ABW OIAS ID IAP AN™ dad >To NDP ADO rm Am

Lt J%> - vi ®¢ E00 ODEN OPEN GLEE Esa eRPEEESS
1 Low

- F
£3 Kw
lo] FY <n 4 I

- - J

Be v K 3 - -— DOV OITDIIAONDOCEINNDIVDOODODISNINIIINO®A, <0 - = OD ANOOAQE~DDNIPINNMADISL™rss o00NnNId2esADOON
1 - 0 J OAIJIPNALPANGIG Dad MAP aM P Da QF OANNP § =

“~ 2 4dax = € NAITANMAAMILIPLARNNNLAAINIANLSOITANCITS
wa KE bo tat wm NNN NINN NY NN ~N - rd ag = ld
2. 32 3WwW oe — A
MH eiD
dX wa
Fr APS SN.NN

—x>2*3& Dw 3 INARA IDI DIANNA PAINDO ID" DAS AINDIDOON“ie sxx eS en Sp at wt = = = NN NNN Ng” -y& no oA wi v
qed de>

p— -—
- NBD)ee TY =

- - Ed WY

-- - x = = ud CJ
- >» ODO Wag a ww .

-e XL IT uN [4
«Dem wd Ld «4

Ewe Zax HM D009 00000I30200000D0003AA0DODDBAIO~EO
>? oe T Ww a 9 L ~N - ~~> -w Joa £ Z -
ws qx - L -- Le
RB dD dN n x
-— 0 = Ww 2 & b 4 J
rw ll ue «

- vm ff WX | a
- Vv} x =F ad Ld
-. vi = p- |
- a eu - i |

"I no po J D300 000927°9033AMNDIIDNNDIODIIDNNANATIAAD
: LEA A | -- o—

x LEZ ad DOD D
-3 4 4 x

. Qde LD =~ ud \ Pp & <
: Xe 2 Xr 2 2
‘ IDE => a
. -—

4 Fo
= - 2

F 4 — Da NAL NOI™ VDP ODANDPADIN AI TI YN PAO O00 De
ad £ — ad mf mh mh bh hat ta PY AG AG AGN Ag NY YN RY. b 4 — <
x .- 3
(® | Ld 2
J : -

F
4 -
-. jd .
LY -
» -
= |

4 »
- “

3 3
® -

2

. -3
Ww ~
gE eo

~ =
%
: 5s

ro

om
(

wd

x a ,
® Ww

ah

wh

"in

25

zz
ax

- -

° ne
- BJ

|
- J

= v
-t = --
QO = [J

J Ee a

b 2
<3 <

- zd “
a»

- op ww = [1]

jigi
x S383 I
9 I ZX $l |
= po: Sud oger «

250

ti

COMMENT IN THIS EXAPPLE IT 15 INTERESTING TO OBSERVE THe NUMBER OF
AMBILULITIES VENERATED bY AN ACTUAL PARAMETER whiCH 1S A
SINGLE [OENTIFIENS

JEGIN

INTEGER 1,4;

REAM PHRUCLOURE PIX); INTEGER K; P te xo®2}
J i= 25 | i= Pl} -

END

PARSING TREE

.- LUCAT JUN ARBIGUCLS BRCINER SCN SEMANTICS SELECTUHIPRUILCTION OQ VALUE)

pul 0 2 0 i 12658 *PHLGRAN, $P 169 ,
1 v 0 < L3sz6 ToL UCK, SPL 74
Pp i) 0 J dude PUNLULUCK »8PLTY
3 0 iLO ¢ 23u0% sCumMPl, P2065
LJ 0 8% $ £2926 SLCHPT P00
5 0 0 ® 2320s *S5T,8P206%A
6 0 0 ? £23300 *Stl.3P C00
7 0 0] 23660 SUNCUNDST 8P270
} 0 0 v £3910 SHASICHT P20)
9 N) 0 1d dein SUNLEASILOYT P2275

10 0 0 il 24050 SAS55T,3PL203
11 Q 0 12 24 166 SVALASS,8P28%
12 0 81 13 25106 SVALAPART ,$P288
13 7) 14 503 SVALEAPR y3P 4%
14] 0 15 5122 CAR TEXAPH,8P]
15 0 Q 16 5352 OSALLIEXPR, PY
16 0 0 11 %600 OTcuM,dP ls
17 J J 13 Svde SFAL,8P1S
18 Q 0 i9 63vs dL LISI FE
19 J Jd lJ Is1C OF UNC » bP OY
2) J 69 Zl IS EY CAPPANT (3P92
2i U v 22 1112 SAPLIST 89S
22 26 0 <3 ald SAP, Sy
3 9 0 24 llod SARiUl, PES
ie .0 0 ‘io 6052 Jule d#52
25 v 0 Vv old eSIuMA, J
26 29 (V) er gles CAP PY]
27 J 0 Fy) 2519 *S5nill.8P 68
PY J J J oud sSiLMA,J
PL 32 0 30 0d SAP, MPH
i TV) v 0 LIN 16249 *PRLC ILL, P90
3 0 Q ZY 0652 *lDL, PY;
3c u v 33 tA TP4 SAY, 3P95 '
33 57? C 34 4890 SL APR,SPIL

Lu) [")- 9 ~
9 = -g NN ~ 4 <9 Qo Ww

eo - a ~an " ®r = "a
Ld S *%3 EP ~ ~~ ? ~ND ~ Nefan ~“~P OMAN [J] oo ™ a - =n 3 a "mn >» ~~ aN a AN om

| FALADOEOD Mm - - ry = [J -* % AON Qu -” a -* YOR |o» =x 9 ~ MPA RP D wan DO === -t O° xaa xX a Dad cd eb ded dP OD . UE EE XECXQA MPN BN NDSD » cA ~A~—a&BAaDMNAXS Neaf DED oN 0 0 Ma 2 Dre » =BN Nor oyYPl
saa esfnNna lb cd A BAR AQLOR LALLY *NA LIA LLATALYAAAAALADALLN=L IN =ONAE =A
Axum eat aarOR cls add 03 SWUAWI= sh QANAXXADIA of* cd add ad sqal eNL2Ne,,Hae cA ® » ag "NE J OA * APL ¢o20= gd oxXX J" som dd {LJ Oo] ® 02 cA wad ANCA NL IEgrm
Wee a W eX PF URSWUVWAVUSEWYWID = o= JE = ALE RXLHWT «TY PE WA J JEU II IIE do elD so J @WN
er NE PE Fr PE LEN FE FE EF EE EE rt EE EEE EEE Er ERE ETT EEEdee wad 49% Ax WNDImG 2A I] Mw Od = wDIAdOIN OO = quWDE uu AALDA Y= CO =>» -¥ $41dA eu PoC IPN D HD> SWAN TdAWNE DAP ALAS ADPDA SD EVDUL PAA IANNIS 4

' 0 ert 000 eet li 00000080000 0acNtiicsocsecent ernest nsstonnecs te
1

CNNOODINIOBIDDOBOCNIILOBINNDLOIEIOIONIBDOIBSINLO00DAICINICIIZND
ER EE LR RE FE Fr EE NE Ft EI EE ER EE FES EE RY ELE - &Om SPN OM Pre HOM AND ~N = PORN P arg DONE 1-4 FETE EES YF Qa APO NIDARAN NS OD ICR NROPOSIOPT OIE NN COOVG mm "TITXTIIIEIXXEI EZ LEXA NEE NEE JDL. B84- a = -y mt —f - ~~ ~ NNNNNN

AON DOO CAMPO BOON P= eDPO—OMPINE+DIO=OMPNINICOONAOAR ARO OZR &MENA PENNIES MRP ECOENNARAANNITNENWN JO QQ 000 Orr Po Po fate pete fe @ ND D 5299 NN NN JR

0000000000 NC0000000000000000000000000995000DD300000000B00GA0AD
T

20000303900000000099002403300933,0039905839999592000020993809

HAD DIP NATTA GESB RD ~NT NODE IardNPADEBREIANASLASITDP O ANAPAIDRImNMLr I EP PE RE PE RET PF EE EEE FR RE FE EE FLEE EEE EE EE 2 IE Ey

oN

wn nd Oo
[J ~ gq a LJ -t J] Ny D ~ of 9 LL *
- [« | D r= «© a ~N <$ Lo Jas I, 8 E- D H *™~ [a"] ~ (*}

nay ~ a vv ® ~~ a. ~~ Nr A NN ~ Oo 2 ~N 9 ~ Ne a I Ne
a 4 aw a - LN. aN nN eT LL TAS - O° a ~ a a MW CR I Be Ba]
NBL, BD wn [- Pr oom oD UNA DUW oa > Q LJ _» NN o> a YY
nev ex? - - - DD es eA NV BeFTF = ~N meas Ld - sn Q X= AQ OQ
Wer 6 Qh OP; - oe - nN gm ge Or JAW~ =X 2A ~=~ON NBN NDR er = Ll - Ba] - Pe Wa caw

SE-B Tod-rg- EVE PN NVI JDDIN Ar ad or TOA sa NVA wl FANE AA Sam NAY PNAS eA SS» dua ea dD sand old UTQG DIANAV. eT | LM Ww A * 3% Hew QR TD ALL BYyrr vl SQ Pw
NOE Mus os@ A wd OE «oo IDB L Od ~~ YUA Ym oR a rH BE ee eADl wd PAG] TY Nd >>
4 EE =X ed Vd DE Jee VDI YT 4 dena X oF NN oY sed XT Yd * JAD Jey I=Jug
dd dw A LIE mJ YI IY =I DDI) 4 ou Jee EL mee Jet fm Dam LA Ig.DD YX Ww DUA DIMA S4AIN
ACA Y 1 dM YDIDEL wd J Dew Jd ETF] * nS ITY ADE IT CEYE Y= JAC IAL ~~ I=L ADA >qa)
>» > Bg Nm ALT r0 NEPA IIL ABA ID IE A rN LA dP NALEA DAN Pa AL Ne AA AL
'WEEEEEEEEEEEX NE NN I I I EE BE BE BN BN BE ICE BN NE SE EE BN BIE BE BJ BBX NCB IY BE BE BE BE JN BE BE BU BN JN BE BE BN JB BN J J

OC ENNIDQOODODD IE vDIODONDIDINDIGLINNILIIINDENANLEININOGDILLINIOTDANNDINGS
DANN ID IDL LP IDIINIIINNQI300~0 NP dDANNOM EE DAOAQIOINNDRMONVN EI OoOIN Incr" DINE JO
eat Jom JP PPD ODP LINE NWT AGT ND a QM QO PINT OE T IOI mD PDA PH NO
SM AVIA Ng ETN r 00 NAA DIDIANARAMN QPL ENA NDOO ONS IANO eNO DIOLEDPOPPNDOODOR
NN -t Ny ~ -— wd 8 "Y NN NNN -— - ~ ~ NY mt NY mt tt A bd

NOM ®P Dad NO NI DC I NALTAI™ DED =NY PANO IPA ANOLADNNNIIDIINALOINDOOD DE
202» 3202320 O22 003 et tt tt a bd NNYN NNN AMM - " "ean 9 CE Lee TY, wn

—-) = - -—f oy lh wl on) i) oh ond ol) ol a wh wth od of ol od od wd of of =f od ol od -t oul = ob oul «bd wef of oud 4 - oud -l

OMA DO0AOCIDIDDIODDONDBDINODROCIOIDIANNDIIINODDIAID00DDIVI0CAOICODONMA”AITONODOOS
-] 9 4 -y BR) - F- ER 4 [4] a)
- - - — od -d ol = - -

9300350030247 027730337622223223009007%02300039909390393397923939390302
- -t - od

nF SEA Sail Sap Sed BAS Salih Bld Hi fad SCH Raia SI A HE CI AF Sms Jot db SrA Jo-S Ar oth SEED BE A Sg .or CP COMAUIDIUOUMNDD IO ct dotted deed ed JY NOYNNNYNNY NN ANAM ARMA AN PLP PIPETTE INANNNN v
tl) at ol) of wt onl) ul] a wh ol) i tl) wh af wh tl) wd A uf) A) nh A ul] uf] wh wh wt) wf wh ol) wf wf wh ol wh ol =) mh wh wh wh ot) wh = wf oh wh wh wh oh oh 2 a “w

IC £
~2./

1%¢ 0 159 0 202462 SNANEPART P2237
1% [+] 0 0 19312 SYALPART 8023)
1% a 159 9? 19194 SHOPARS ,3P2 3)
197 +] 198 (\ 19372 SYALPART 8023)
194 +] [+] 0 20242 ONANEPART(3 P2307
159 +] 163 16V 18940 OFPPART ,3PL 26
1860 0 0 ITY 16970 OFPLIST,, 8P227
lel 0 0 le2 1901 SFP 4P229
162 0 6 0 12432 SIGMA,NX
16) 0 0 Leb 18904 PUCCIO, #PI2e
164 0 0 0 YY eSiCRA,P
165 0 1H] 166 e772 sTYPEP SP 221A
Loe C 0 167 led de sTYPEN, PLY)
Le? 0 0 Q 16)ce GvALTVYPE,SP19S
168 0 0 169 19212 OlCLRHEAD,:IPLBA
169 0 0 110 155%¢ DECL SPIO
170 0 0 17) 19964 oTVYPEDECL,BP192
171 0 17s 172 16480 oTYPELIST,,8P203
IQ 24 0 17¢ 173 16400 oTYPELIST 8P202
in 0 Qo [1] 08 2516NRA,J
176 0 0 0 4160 316A, 1
175 [+] 0 176 16128 a TYPEN, P10)

n> 176 0 0 (] Lel92 SYALIVYPE ,3P 100 -
WN
=

OR1GINe |

3

CHEE C=2 GENUS=(RIND=STNPLE ; IVPE= INTEGER, QUAL®) , MUDESVALUE »CLASS=FALSE)
ACRLAVUR= [LAnS,CA=l))
VALLADUR= (LN=25,0As2))
CIINTEGERIVALUES2))
Aliso)

SIO FALSE)

RET

i

CLINTEGERD

CeANTEGERR)

CUPACCEVVRE(LEVEL®S ,SEGRENTe 3))
ACAR(AUORs{LAs4 Chn2))
CUINTEGER(VALUE=2))

STALFALSE}

ACR{ACUR= {LA=%,0he]1))
MAAR

CinET)

CIREAL)

CUACTUAL (oU0Yn ToL EVELAS QUAL ,UACERTYPE= INTEGER))
VALI ADOR= {LN24yCh=3)]}
Ent

STOL FAL SE)

RET

7

ACRIADOR={LA=4,0M=2)) :
REY)

od

Xx
wl

ut

[=

ll

«
B

A

A

-—

po|
y 4

J
hd w=

XE
- 3
[5)

Sw
-X
- =

Dm

>
[YT Ti

xa
Ww)

w A

od wr

po

22
£X
-l =n

as

On

80
[J

lo Ja

L]
|

wa

>
-l

-

N
[J

[J

4
[=

*,

[+]

>
be |

T
a
4

L

=<

250

z
-

[=

-

-
8

oh

a
-_

-

x

ah

£5L

- 0
-

«-. zo
So
— ou

-« Dm
Lg (*wD
‘9 x&
- we

J NA AH
(&] Ww WwYY -

NW . 22
- w ' 4% 1
- ow 4 - «sn
-- AN ud ax
-s -l
~~ FY CN

~ -O
- p= [
£ - 00

F - an -p
Ww I -y -
b oy ~~ ~N - !- NB ¢ 9 -
— aa a

(v.) | ND AN A ~ -_— - - - - oN
ow JN - -—- ~~ - - - - (™ J
JD =~ QI -— - NK - - -— ~~ ~m -f ~ -_

: on 0 = - = C4 CI [IN | -— - p [| 3 -—oe NMI ZO - a " ££ Zs £ & - ~N 4 &£ v
@q| WIA WN LE t NIN [5 BS J n n Qa (J -h -l -l
££ AX & -— <3 Ld SY =] - =» FY) [VV] - = - oa LJ
EE LN Se | Zz & J ZA 2D CARS] = > wn)) £ <4 |
- 2D — 2 - ad | «nod na «4 ov | .) [| |] -
SN SN A - t 4 - t GF A | & 4 << « 4 x &£ 4 n

. YS JY | 22 A i J > -t d >» » -d -d -l od
| ox £ VY FYE [|] -— em oh) rw Ap - - an - - - »
A i | N A) AA - XEN ZT uns x ow ae J ” [] 4— BD yuwd DIN - V) Mw yd NT wh WY . 4 a «x

w JN EE - » Fa » DD Wd JN I ID= 23328 2- 3 ee of 4 £ oN oJ NY Wad dt Jd YINVAWALAI OO - &wzz309w< — oD 4 -— JUG) de Medea ww
oe DE Dw ZI 3. | od of of = FARE Ee KE ERE 4 I 4 NN J J NN ww -t po |
a 9 QQ -— a dE = UD dX BIR wd Vows J dd - od - = <
- z of - eq IW www) ww dL w mm qdu IOCNAOW ®
wD wl = - Jw EL VK PP UII AU VAI mPOA DPa9

25

-h

-

wh

UJ|

o9

Q aq 4%
- “w 0

|
Q YX,
ow Ad
A aq J
= -l

~e - *

od - <> uJ
4 - wD
«< of TX J

Y qq «
) - — zZ>»
- =» - hr |I]

- of NYY - -

F. vl . [] Qo ry =]v |< [+ 4 < 22 " od
- [J L * = [YY] ow

-r ba J - «= - an -p -—

- [* 4 ~ | I} x 3— < - wl od

w 4 Lg a dq «4 ("J (®
x - [(*V] 33 [S Ps
« | [¥ J FT ~ —

hy -—y -— e =» 2 []» ~N 2 x xX F 4- ol bd (YYRY - PS
a -—p - (LHL |] - -—
- 9 [} - a od » >»po | — o «

- i > | ~ Q ew b 2 4 of a
» £L co <4 — bn a - -n « 1- - A » - - LI | <4
- B= - ae wl wd [] []

Ow | = oo 1-9 - 8 Q =]
ot £ re Ld |] -- » Be r 4 p 4
-d J -d od - 0B [- -
“2 « ke ¢] - | * * of L
w & ow > an Ww Ww

>] 4 2 Q - a A of of
wad < P 4 (& - WW) a A
£ » 4 2D > - AH TE a «
- x > VID -- - - Ww Ww

LD se A wi A ae -— i om ey ww = - - =
- J - > - o£ QO ®ve am AMY NN ~N - rN -—

v of « += A J 0 o£ f= unm Puen nn n -~ [I | -
0 - X 4 ad b J J en LL mm LLL - ££ &£ £ 2D ZL -4£L wd Le 4 A - LL AD nt J QQAI | JIE Sa | sn |S NS] |}
<< nd 4 a - ed wn .0 weerbl) SUNoe soe Ww * a ow CS jp
« a se (J Dr a (v,] 8 DON DINAN a nN DD No 2

w J x xX & == A & IW 8 ip n ta > mn | J | (I wdon - aN 2X = vr — DICEA Am LP ® mgs La Ls <«
‘Mad xX 23 WU? ca OD — BED UPR ww Dog - dd - > -l >»Tr x | ll A, AYy J AW Wp wr BB ww op was Bw [a

Pe | ro Q X= DIA XTEZTDA EN An 8 unNY LI VOR.
Ww EZEZDODL WY £ (7s oY WM JDL L (L IX X NX wv TX 2X

[= ~ --F BD UV IRL J I . NA IDS 9 3S 2D DIF ~ID GOD
b 4 Jt 24™ F 4 ny Dw uD Je edIvigeasy2Ww LX Wd LE dd w= - DOr C= Sd d= dud > dd >>Pe-«
b 4 - 0 BO W“ ¥ a L | wer Four PL oor otdwwr pm ww Pil wowowwlw
4 3 QQ - Whom J men Dd dE J) d= DV dg =
0 (7 b 4 x LIS vwvowdd<d xdaLAwdw Ju SAdZ=F
(W}] FV (= ADI PUIDEDP> PAT ADA JJ > > =

[8

LT

ow
to
-—

-

|__J]

J

<
»

ww

|
|__J

-

to

L_

.

-
(0

ay

on a

«= Sw
ow -x
JI = ems
Ww Ww Do
- (®J
2 4 wD
un wa » a
K w
NTRS]

aa AHN
t IB ww
XK — b=
es « D2
w ZX
(ES | ~- =n
4 £ Ak

- 2
- ® Fr ~~

- : | J | ~O
] od (3)

yr: 33 +. 3
a *® |
1) nn [}
ow Ts

- om - ay = -— = Lr.) od =f = NH- = - an on -y ~~ a Wl Af =~ (®
NN - - oman - NN - - - "2 a > ~
{ I) - on qa aN - LI - = |] Waa -&£ £ a =~ ETE L£X os of &£ == - oy 4 od ub £ "4[N= | . [] WDA [] DD A [] [] Tl es aD ot> ® (VY) a a) on - wu fo | & » 9 oe -IR 4 > > nn ho | rd > | ob [I I 4 «<® 8 -l > | CL) | es J -d «4 4 | BI -Zz ££ < -« £ ZL « LLC «< L | - 2AQ =X YJJr | >» - dd > dd» - » & 332- wr a en - em am wr wp -— Ey up br —-- - -- - EF 4 - ~ o| JETINVVIN SEN 4 wt 8. -— aw ® 0X Fy 4 I~ 4 2 wes § =]LX Dd Eat NX XA of WWWX XL N - LY) (ITE3293 ADIAN 2049 23 - > 3 J wh - vd «d
Dad wx EI DD dng IF Fe o« - Iv o LX | -_ DI £«> gdmise bg >ud 4 - ah © — ont -—- vw POR wm ew dw www T | wr £ 4 EW WE |dd Mrs Hd OD d add OX d= J - ll LAE XE =— bP of bmCC Lo Rw LL === LOW wh - wep www wd BM [4
PP Ym OVA IIA IINEAIPILLE AN IS rx DIX ~YUUIVUUVWYWLU>wWwOD a

53

-_

Ww - = - my
- La! oo = -™
|] | ol ol WW4
- [v7 WJ b--t ae ®
- - ad --g
L - ot ol aod

- @ LIN | wa
2 - an Ww oN aw| ~ ae >a

« >» >» bo
» ® - tm a -

o hu fr® ad um uu Ww
» £ LK J 4 & > &£
- > <q . J | 2D

p ee CY

é zd () 2°4 od od i
- e AW «a <4 33[|]

A Qo9 33 +3
® < NN TK

«< x 33 as ~ No ~ - ol od Ww 4 - - - -
< - -~ wd Md » - - - -
wy % ZEN >> w > ~~ - - ~

Ww Ww w- VTY] TY i= A |] [|[|) se - od =P es Jd -on ww I “253 LI Oe (SN | QQ 3 3
- Fd AD¢ - ® Wd - hg >

- 2 of .e vw » » = 0 [) . %-~ MEM o ny - 29 p] F x x
-~ oJ J 23 y- - > | - -4 ‘hm ff wen» oD : - wp am - — -

ww os 2 Q - we ~ exw ™ 0 8
oJ XTX “we td ob | Bd a x
Ww - ad Negpataa @ [SS << QDJee 9 - . 4 > 223 ERFar 4 | Ww (> J ~ - - tm "= qe >»

LL = => «=< o - 4 < dox= d Po of = icWw A 4 q b 4 -« - os - - oy XT O4qw < Ww pv
° - "-] A WW 2D? MOY PUY >I g - >» of > x "> [0]

259

CULINTELER)

CiSalliniLIdi=Beo LENGCTN=)

CLLABcLISEuMeNT=TLL iSPe]))

ACRLAUUKs (LAx9,(CAs}])) '
CUINBEGERIVALUE=)Y))

STCUFALSE)

ALRLAJUR= {(N=S,Cha}))

VALEADUR=| Nay ,LAn]})})

CULINTLOUEALVALLER]L})

AR{-)

SICLFALSE)

VALEADUR® (LAS, CA=])})

CUINTEVER (VALUE))

CCP i=)

LFILL1)

VALIAJODR={LheS,LN22)})

CliInNTEOUERIVaALUER]L})

INXE vAL LL)

GC

Guilt)

VALLADUR={LAsS5,DA=}1})

CUINTEGER (vALUES=Q)

CimpPis)

IF IENY]

NEN VALLALDOK=[LAS CNs2))
= VAL LAULKE (LASS, LAL))
- CUINTRUERIVALLE®L)

AR(e)

INA VAL UE

GC

VAMLLADDR= tL hse CN2))

CIINTEGER (vaALutesg)

ITNXEVAL uc)

wl

RET

1

CLINTELER) .

CISmETCMILIST=3,LENGTH=2)
CILABEL {SEuURENT =] LSPS)

CLLABELISEUAENTR] ,LISPeT))

MARK

ENTILEVEL"S,8CLY"T)

ACRIAVDDR= (LNseoCAh=]]))

COINTEGER(VALLE=OD))

STOIFAL SE)

RET

RALPH JOB STATISTICS = OQe.22 MINUTES EXECUTION TINE
0.06 RIMUTES CPU TINE O10 NINVIES nAlT TINE

oy

«
-

|
]
A

<{
> |
(¥
*

»

:
*

-

e

3
-

=
Ww .
(1)
(**]

[J

- z .
- - .
>) o o [) owz . 1 » : =

4 < per] ow $ wed- P ol «of
. a a Ly & Ww»

- hod - - QO g>w

«Oo us - An3Te =so - - - Arr ~we - . pd P'S a 0 ue |

-.23 . » » » wrrdo® =Dea OLN > J Q {=] a>>48 <9oLa S¥¢ - o o AIO o8 J]A nw Ta = - 9 255%% %
A A <4 | XW - —- - Piao =awd @ Wer W—h - - ~~ — pe Seca rt -- dd w ZA < d sO- « Ensazd o - 3 ~ 4 x rar -T - “=

®- 4 se 2 3 wx 2 43 Jaa 2 3ww - o2 - ft 8 oO 32 2 J + de<c a=
Ww 2 a LC ow = Wd [~ WT - wd Cw wwdd Ww We Ww* - ™v BB €€ XZ GUD =Z SUD AJYVDUII>OEWO

)

- £
-

J

2 -
x -

[«
| 2
v.

% J A
« - od

—

oo, 2
- E

on -l
b> | 9
po |

« ~~
» =
[] XEo
w vO

-— o>} —

x F z
wl » ow
9 w— - x
(7¥) [] —
- i») FM
F 4 « >
— 2 (VY Ru|
| 2? = a

(VY) - WwW
[- 9 x
> vY] A «0
— 9 - Ww

* al A -
hd Ld 23D

- = | £ TX
+ 4 — -t es- . TX
4 - wi.

- - a - ~N O
“w - d == = an a ~ OQ
w -— <n po am Po 0
x [7] 3° oP Nn (= N ~(- 9 LJ -4 6d
- - - od A -

~ wl Wn > A W> x !— J [JY] X >>w ow
] Ud -d 4 ~- 4 -~ «
7 - ad ® IJIWY LY - - on - - a A
— - > ry ND ~~ -— LL) - ey q -~ - en «a J
- - hd DC > Beli ¥ 4 ~ Cal 4 wd 9 CI -~~)) | -< 8 4 NN WT) [] | LC] po | li NSA [d
- wn ad - - AD £ £ &£ £ -d [FLZTO A
» » Q ng I - 8 € OQ 4 [= (& - QQ -< t ag -
b a k -t Po — Pm Pw fg - - a a > f=] oe» = 4 |
0 fo’ — Noe CI o o 0 0 - QQ 8B ID -<
- -d 2 » 2 ADD n n LN = a LI J | —
: -] 4 — po pr BL en £ r £ ££ ' - £ LL 9 ow»
- » D 223 Rae Ir NX | > | -d -d ~~ od dD»
-— - x Dx - CY I - — - een um am ® - ww -ty -
- Kd a -— aad " J] - wR « au -d Ne Na 17] (=]
w Ww. -— oo - Ladi J | x 3 4 NAT xXxWIDE o -~ a Xo wd [) -
- 9 A << NH - AY 3 a dT IDPVPN~ > [4 202A= 4
n uw A DA = HA Aw =D D- € IVY =p ww ~ a QJ vv p 4Q o— | ~ af weg yaa an |i - < oq = ws Wh Q

b 4 - WD - od od iw Ew -ear ws YA we ww ove Xow 3= - = UX JI Ze adm WUD YI YI ZrO JOEY VE > ow wy.SEEA-1
~N Ww m o- wg -— wer owe UMW A - ll www wil WAM Oe YUL CR TOW BRI) wg [4
-- o£ -~ 4) x ~ JX IO YOx ~~ JUVE 5x NGPA Ime udn i I B BENE RTE 4

- nS
<. rd.

"e

w
A
5

; <
4 “

LJ

= wo»

L J A
®
~ YY)

ses Q -~
- LJ of
-] -
- & «
a z o

- ® »
-s 0 *» of

op -_ [|] -
» x had pswo « w ht

w =I = -
a ww 9 - ¢

- ve - ww ~ - »
- a - Od L hy- eo z Vv -a 3
-— il) we - vy -) rn ~

-d band = *
- VT) a w» = = 3- dw D so ~ (8 J 0 = ®
>» w NY a - °- -g moe us ve WJ 8 - 4

2% £ x z - 20 PH =- -—

bd 2 33 g “4 z © | £ . brYY 1 *e wy - -a - 0 8 Ww- 4 - -» -_ ” oF og ng «
€ = TL = J o> o = re

uh - ee Ed (& J f= | a rt be >
> Q J - & oe po | L Ww 9 D4
2 < . a se od .
Qd »I “ = AJ +3 3 = -» at = x Xx 3 £ e - . - - -4 2 3 ee < od gow bo ~ = Ps
wn NO - WOM do - S v . :
T4 J - oq = - a -t 3 2 2 2- Qa XE oP OM © 4 2 | — 3~ a x nD a«€ XK - - x - © on >- “eV =a J = = > -
Cw 2 A dd x -oce uo o 5 pot « x
« «x A 222 PTT RE % - rv re =wDSEZ uw «zZwiS~u ~- 3 - re ryNee =r of GL =® odo B J = se | 0 £ 2 <> 3 je 3
<a 2 O'S 3S (To J - . 4 @ od IY2523 ved Ww at wd - - [J od |—->»0 “ <@ Ww Xan Ww * od x z 2

- 2 Zz 2D = Ww Pew Ow “=u] wl w F 4 (= * & - 2 ve oN wx NU ®

7

AIRY!

2d

CtinTLuermivaLuLETd))

“ET

23

ClinTEuER LvALLE®G)}

Red

24

ClENTERUEKR VALUES)

Rel

[Wy

Lr ElC22 ob dUSTIAINUESSIHMPLE TYPERINTEGER, QUAL Ds MODE os NANE,CLASS=F AL SE)

ACR{AOUHzILANaT LN=}})

CUiINTELER(VALUE=2]))

YALLAOUR=LLNS Ty (CNs2))

Adie]

pI LFAL 2)

RET

2%

CiINTeuenivALLES]))

RET

1d

New UBJEL Tle 0Y=z9, 152 lUePhEFIXng)

5

Cred Lod sn ENUS2LAINLUSIMPLE TYPE = INTEGER, QUAL Jy MODE~VALUE ,CLASS=FALSE)

AUREADIR=LNs YgCAN=]))

VALIAJURe{Ne ,CAs2))

STCUFAL 5K)

RET

3

CHECC=L pL ENUISIRINDSSIMPLE »TYPE= INTEGER QQUAL®) ¢MUVESVALUE pCLASS=TRULE)
CHELC=C sENUSSIRIND2SIMPLEs TYPE INTEGER, QUAL) oy MO0E=VALUE yCLASS TRUE)
CILANELLISCcUMEANT=3,015P=6))

CUPFROCLUURELLEVELEToSEGPENTSS))

CIREAL)

LILABEL LScuMENT=3,0I5P=9))
VAL(AUUNS (LN=bgCN=3))

od

FLrR{RJURE(LA =0e UN®3))

MARK
CIRET)

CIREAL}

CLALTUALIBULY228, LEVELS] qQUALS (URCERTYPE= INTEGER)

VALIAUWNE ILASb4LA=%))

ENT

STGIFALSE)

DETLTER)

cd

AQRIAUDA= (LN3b6oCN=2})

RET

9

CELL] GeNUS=IKINDuSIMPLELTYPE=INTCLER,QUAL= Jy MODE*VYALUE «CLASS=IRUE)

w——y

VY]

2 -
oa

”- Ww
[] >
id of
[v.] re
L | [|
-d A
() A
- <q

Ww -d
> ("
- [J

| ww
> >

" pr]
VY) «Q >» -i - ap a
2 9 - - an an(V7) « BX 3- ow ud AF WM
-— 9 RT XI" w w hh
- - - = bu
« - 2 FB 4
> [') = =p uy
> | ® ae
- J ey

- 4 & & &
wh » > In Pe
8 » - =
Ld [|— d tr] (VV Y YY]
; 3 3 152LJ

| —-~ " 5 23rv - od [_] es 8 &
a ~ a [|] - aed
b J - » - amy[[|] — F - 433
-» - = -~a = => wa 2333Ww =r - Ww -— oo a [e- MW 1 | ~ -~ - «ld > ee
a A ~N a — - ~~ To NAN
xX «9 [I 4 " [|] > Ww TI 80- A a = a ww -d (VY dd wd
ERY, HA VI - - an any - on - » -p an - -_ - wl - ~~ - Wo bh WM =
“ -- a --- i -—y ou ay a= om an an - a wl -y oy -n -— - » =» 8 "= a -— >> P=
hays NJ 23 2m WY DH ~ ww - - « "he 9 J n° - LL ~38 m oA WYL 8 - -n nae «a= ne - ow» a] [] 3 - 8 LI JRVY RY | odd @— rd I 4 X2aLL LBRO fL L o £ & . 4 eo dL ow at DD 4 ESIL] LI 4 "CD IJ IQ -w Je hs [|] [] (= NS] [2] (& ow Qt dd (V] QO =
— pm - we - oe a & «a oa - ® [FY] vy - eo [3 L * NN = >» ag | [- YN =
[JP JT) Ln zr oO O¥ a ® 0D 4 ID SD 0 J oO @ «8 -- n>» 4 (EK 4A Mad ud ~ on «en "a J ew - -d an [] [1]] >» 8 20 & = [|] >» @
DY = ED XE £2 Fa & 4 L £4 & &£ -< - ££ 4 <£ £ («4 = NOR 4 QI L
ZY N 5 I 2 9 od dd FE ol > > - d ri «4 ~~ J 20% -l 2382Ww MX FY REY IC JY I -d we - wr we - -_ - an ap - - - - LH = ~~ La - ut [+] -
A - IiIJZ Aan ate we Px (J | 4 wan | "] - § (vY] a - | Zs - aw. - of - ¥ LE 2 Ax aw 2 x (V7 | qdAXX x + 4 « XR wh =~ -— DD qa od od od
Nd De Ygay PpD 33 Es Nal BR _ Jo Re | i wI3330~8% 3 oe - a 7) - BBA TIN <q aqLTV ES J RY I I I i | 3332 f322vy3232 We fg II VY™ -— [a] 332% <u 2% 333 232OUD OoOWDDg q4 gg =u Am my fam wr IgE mndg oq « od - Ne pm qq 9: (=~
SE FF AVE EK att | ew POA www OTANI ww hve »N w of WMS - on dawdwae CGY
WA XA D ad Kd Ad "OX ANA Vd dom A >D Dd E Vad - od HUES 40m wo YX a -
Iw www i wed049dE Welw dbdd Tw Y= dad d<004d0l tw vel lm ww wat ww www
RD IIVVUIPIEPPAANRAIYU DP IAUI TIUNIDPIUOSIVOIPOCIVVYWGIWAD SY WwW Ww IE EDGY DD

~L

2h5

GEND)

“eT

ST CtraL SE)

ALRIAVULUR= (LNG, [N=4))
MARSA

CUACTUAL EEL LY=22,LEVELRS , QUAL 2 qUNLERTYPE® INTEGER]
CUACTUALIOULY3250 LEVEL® Sy UAL 2g LANUERTY PES INTEGER])
CLACTUAL leu urs24, LEVFLES (UAL =, UNCERTYPE= INTEGER])
VALIAQURs {LN=4,CARZ))
Winht3)

RET

STCUFALSE)

ALRTADUR=(Neg ,CN=5)
MANA

C(RET)

CiRE AL)

CUBLTURL (0 LY = 5, LEVEL25,QUAL® ,UNCERTYPE= INTEGER))
VALI ADUK = Asn Ahx3))

VALTADUR(LAG, LAG) HLM)
tied

STCLFALSL}

ALRIAUUR=(LN=430N=b)])

VALIALUR={ hse uhx1))

VALIAJUR=§(A330, LA=6) REM)
a STUILFALSE)

= VALLAUUR= (N24 yuh))
= ACRIAUURE LLiezu LNT Y) REM)

VALIALONS {LA=4,LAng})

BURKIACurztLnmu,O0N2Y9)REM)
MARA

CIRET)

Cinta)

CLAM TIALICUUY® 32, LEVEL®S5,QUAL= 4 UNCERTYPE=REAL })
VAL(AGJRS[LA=4 ,LA2&))

YALIADUR= (A N=6 Chas) REM)
Eni

STU(TRUE)

STO(FALSE)

RET

32

ACRIADURa (_N®4yDN=5))

RET .

RALPH JUS STATISTICS -— 0.30 MINUTES EXECUTION Ting
0.13 PINUIES CPU TINE O.17 MINUTES WAIT TINE

aly

("|
A

3
(*

<4
- |
- (¥
- »

-y

~ E |
z d
« »

= [J
LJ

- :
4 - ”e ®
« -a -< -
Q - & [|]

B oe - -d |b 4 - <
- ol -~] wl 2

w Xx - - «= L» |
[4 3 -y -
< FYE =] -4 «8 «

Aa Tew = KX & 9 3a 0 ve -

- - p= Sg h 4 oo- [J (" - | J
-— - >» J - | J -— ~N b 4
~ - Li KT - hj ee PF 4 4 - ny
» = [TY] - WN - | > -» »
- wl LE XN LR 4 : € Ww oO]

- L va » YO « LJ &
- IY » uh - SD eo nN _]

o XX = - - x mm -- [*)

z «| ul > a - ££ nay (YN -<4 PD - Ew =~ ~» diatnd | WwWw NYRY XC « BJ Xr oe -d

~~ =o ut XX de Wh = - nd @ [9 T- - = Af == Bg = th we eg
- Eq od Rd we 4 -
~ - tt = FF » » EE << LC] - Wma a

>» on ee DD vv = oe if 3 [| - - - gj =m» -
ALCS W T= LATE] - - J Q [] ® 00 |

© L - Jw vo af 2) we eo - b= ~N -y -y < LE XX 3 -14 o of i ld Wo a DA [|]] 8 (=] b JS Nog]
< i NYT SPIE -) ww ww b U UC - -— ee ® e -
4 w Idx BN =~ Lf w Q - _ ® ar-ar~ 4

3 aA De aq XX -- - QQ = | od [| 2322 3J VN - — wre hdd wEBSE wd 2 <| « 2 2 Z&«® “PW EX ® — aw J - » » «4 -od <b oF =
a Ee 8 — | » v£L Dd [- - - [TYR Rr -

BS. DK = 3 v < « [| GEe swe WwW
ARE WW ZN p< » Ww ("] [FV] 3 eX DX HN- A=QD ve q ~~ | - 2 2 v3I3333 34 LL) 2 p- ® 4 kd nd od 2 [] oWw BIW At - Qo od od Quad gE an

bo - i) BD ow |<KXTX 9 | 4 = - mnws wn Ny wp
gE 9 3 - 2 - ou «© = WEIII9 [V7] [3 w * -w nN - now NITOSAEsg™
vw © w 0 €& wy «Ux —=4Cd<x =JgddPDedqgN ‘

247

- =m

Ww

- 2 ~~

[- 3-3 wad
- [v.|

a a -l

vA <4

v_v.] v'.
4 <]

-d A
(VJ A
- » «

(ST VY] -

23 S-d *
Ww = [VY]

Jv 3J -b

. he WJ - 4
w J o >»

<7 |[| vh "|
ol ud3 = 3
oJ | a x
gL J Q .
- of [™ -
- 3) »] }
t. 2D — -d
-l * |) <4
ad x = 3 .= Ww -
pr JS) ~~ -
® > .

wd « d '
LI 4 x Ud
WW x x .
a » < -~ L]
| BY] 5 ™ = ud
wl © D~ NN @
a > & OD ~~ p J -
» -_ ap - -
~ a or - - L wr
® wi ££ Ww o
» J TE | -= -
aa a A a - Ww

x XK a > J x 8 >»
a = WwW ad -— uo bY
4 A -— AA ww -y - ay a A -n om aa oa -n oh - a= -d
. 9 - ud =» [7] ah = -_ An an dt -y sip - ou -n =p - oh [J -

33 - re Pe Se a “~N N=. - <4 oN A ry Mm > Aa - en - > =» =£ dL £ LL) a 0" -~ - “8 - FE] 4 8 = nN Nm - FEE-
- QD Lowy Id - EZ LL &=] L Ln 4 £ LL 2 d= ~~ uJ) ey om
dd x | JSS BE RV Iv | § ad 2 Q da. ” QO 8 - 2 (= WS ay (BE Ny) |] [-
-~t ww uw ws >» >» - - = » eo GW piv} * » 3 - » a =A) ® ou ww b JIT]
nw. PD 0G ww » ~ 9 ~ 0 ~ 2 2 ~~ 5 - oD o 02 > - DD
A AN - > d Iv, nh LI I | -l | J | 1: LR an Jd > | 2 wd =
5 Bi | q Emo F ££ &£ LL ££ £ 2 < Z Ew £ £L CT « LL LA < -qaZz > dw WM - dda » - > J od» -t ud > > FI>d@>
PYERTEE ICR BR 3 4 Md = - wt = -— - -— wt wb -_ -r w= -r wr aw -_p en wr ww a -— -— AS a J
J Ix 3 "YD Ja nn LE IL 4 A b 4 nex TT} 2 "a=. tx FYRTTIN IN 7) ot ax
CIE IAF VIRPV IL, Gu J IS BE) LE VE Ji 4 £ X X WJ 2 < £L X of U4) XZ XT XEN DNAX XM wv oY - ul oa
“rnd 90 Za MX NYDN AQ == 221) = w=2322 po | 233332 dD -l 9 eR NLLI BIE VYING J NV) Mn WOVEN IDINYN QV = gg ud < O92 + | € DOW « ww MW
EN Ae BSN PIT EERE EEEEETEY EN-EBEE-TN 3 Sa BN EK EI INS EB EK — <Q r= =
wow FL FP eww XX fw wT ww) wow ww FT @ wl) www F OA w ww ww www oF ow bo he f=— (FV I I” 4 - GN - Mos J dX Vd odd ow E wT VE IPQ) jdm JE dene J - tm - a

ad d Twa iu Towadd guddS wgdld lod 0RwEw Jd LIA + X Lwi)dw Xow Ow Ww - wp ww
- -AYJIIDIEIE IUD CUVOU DP IUmIS:IDI PA =U IVa PUSAAOD P2232 0m Pun - J x - ddd

|
t 4
L_

-»

~

. =.
<q

B

ww

wl

3
-

4

|

°

- 0
- - - -

- - -= = otS - = = 8.
e - Jb 3 os
wn F Rd ww us - aWw > = - =
-— wx | = (|

3 og -- - -— -DCI [| [|] "na
(¥ ww Ao oi [Y] we
- ah a a
- » Io » » AN

3 vg o- ™- ww
. 3] < & 33
= $2 1 3 2-—p

-< 5s x s BK
a Crs e -

% se e o 3 . .13 | 3 iy
$ 33 3 3 Sd
- * = oe = * -

] nN WN a 4 = x }| I [J] ww [ws
-d A -- & ld ®

- am Ww. yg = = - WwW e= eo (*
- -— > > -~ » =m = -— > ae wy [&)
<a =m OM- (YR I) 4 w™me -
w wl) -- ® - "a « - fd N [5
xD £ a. od 4£ < (xX X 3 ("J
LJ | J aK AS LE I -b DIDO -
w - -t ed © -~ a eo » - eo eo =
a» 4 | IIE ave <* LI 2 J -«<
» eo 3 =» 8 = 8 9 [] = an ~»~~ N 23x Q&X & PrN ¥ 3 wn- - 2 a 22 4 222I - DQ w - - - -. - we on 2

A od 0 - oo 0 - FE" [) - 0 § Ww 2-- & od dX (*] WIESE x - xX N
XE ?2=9 oq a | PDI maa pv |
$43 DO Y= & «24D ~2222 <4 F 3“ a b—t dN HN mmmda - of = -
id a) wf JA) = = EET Sr w XX dM) ew - |MEX EAE JL Xe d= EE XALR Dd
duwwdDqdoewidie ror ddlihiJdtSoeoowecddy 4
ESEWwWweIWVUUIPOENWEJYJIWPIPIWOATIII» PUNEK

[J "ne

[=] Q
4 P 4

UJ 1"

> >

J []
- L,

|] LJ
- -

-s -—t -—t

 ; *® > - ve= 4 gE =~

ww -» L es @
3 -—- - 8 a Fw. =>

b 1 - TY re Ey -
LJ a 77]

b 4 [] - - >a« » - -t ve

w 8 b 4 ® id Pp> - 4 4 »
4 « - - Ww B- ee b=] L ve EZ Ww
[J] - -~ Iw a a Ww b 4

-— ve ft WO nN F 4 .
- » TY) of ou . [|] -t ud Ww
Le J (7Y) A wm eo LT - ve « p NY. >

2 on WD ("8 Lr | «
= vo - by 3 vandg L =» Tv} =- o Dm - - [} le}
& BP 4 b 4 - oe @ WW 4 - od [|
pe Xx 22D 3 FYRY W-] - p— e ”»-— wa wif ce vAZ = a wda 2 (* J = oe bo - (J ”» - -Q « ~ oo»

- L=- WwW X =-— x - 0 X = wd NT] Q L J 4
=f - ld VW I N= = E Nea a uh en x - <Q
nd xX +e Ld ul Ss £ = Ww oe 2JI® QQ 4
- wa -t = 3, 2 oq vw » a - D3 ~ *e Q

LD) [FYI BE I | vo xX ~ £& ww f£ jon INV I | >» sa (=]
-“ o£ oJ Lem A) — - LZ w= ZL = « co rg == - 2
- ee - <q LO J ~- owl Nae a I FE | vy1
& = of vo X WO Q £ 8 Nx Q wai —X LA A - =- w sw LX fen 2D <r oq - “wia-JO0 - na 5]

4 QO oe Ud ee 1D ee BH " wd [] - ud = - Q =»
a - ag AG - J nw | od Wb ee WD id ve Bal XK - KE - —

-. Zoro AE AL =D ~~ - 4 [- 4 VE ENTS - X a a oJ
- Ww <q 4X 222 237 Q ZF == 1 WM Wo XT Ww
<< Le JAW jn Jan FQ -t ‘ad = IL o> al |
- JX wm Jw DO 4 Z - aL —- wd & wd dw BB) oo wn A -
x ‘a2 xX - is tne - oy) e= - \) w= J LL [|] 4 & Jza A wb th Kem) Q - TD 3 JD -a Ke “ EK <x W]

af OBR LZ TM zr VI XW eK AY) ZK w==X ol =e a
Ww XxX Ja UX Pes 2D ww [EY | Qam MIZELL A J£L£E = J ow
a ou V4 a [- 9 4S £ 4 QQ ‘3
Ua, NEW P 4 wr Ww &£ 9 - | b 4 i wd a «
x as vi 0 - " XE - ve pK - (1% ve i ww os OB wh al o
<r «3X 2 2 = 3 49 QQ Eu = A TX xx 2 -w #2 o b 4 x WJ x WwW 4 ~ WI a x Zz 2 «— ODD b] w - 0 ud - wd “bX ww FD w <€ - x 9

- 4 J
AZ [=] FY) 9

13 3, 2 zRB Ld =
RB 49 2 & X x
- i) nD wid -t B ’ ¥]
9 Q -
vv) & 4
[J wd Ww

RAR
fo

-y

Ww

p= |
«®
-

[
(* J

(*]

<
-d
SJ
[

>»
a

3 .
»

-_n

- - - []
wn or <* -d
r~ 9 r~ <
4 L 4 - 3

<
[J [J [
oS Oo - ow
& ~~ "nn (x
[)) =" < oo[

-_ - - x

o - -] [J] - -
Ld Ld wn - - []] - |
*« LJ ~ 9 Q | ng 4 ~ Ww4 L 4 < [] - - = [] a
) ~~ *" ol | “ - “» fo] »- -l ond od &8 - [1
- 2B = BE = [N ow 3 3 2 o e
a QoQ [(= | [] wl Ww - a a & od -- a - OO « « - = - - > « od
oo - Ww od [vv] a » 4 w < o LJ a :- Wo = Ov wm [' ow = ~ ~ ~~ IS

w w 9 <* ~~ = *®] e [|] - on
us > ww - od |) |] - o - a w Nh » [WH) = = --d wl -f -d J J - om oD -- -— ng A | adn -
ld 2 (& -d - - - - ~N Ny = - - - -t - Sr) -y® J (J oo ® ” - - aa 15 ~ > n - as [|iY PY ry ~ 9 -- =) ££ & a ~ - -’ » ~s4 BR(* od J J J J « (= WF] n J | J a o° I 4)
[* 1 wv» b 4 wv » bd w wn - oe eo ® » = » od - ee -> = -d 3 D b= | LK LA. J > oo =] Q KR »| LL] > ’ | -d & 8 ct 3 Oo Q = | F 233 3ww & [4 od -t EJ < < Z £L & [J -] ° = L£(vy (® <| - - » > od of od - - - - ZT hdd of(TJ = - -- - -’ ar - - - -— Ld - - -»
X % EY (® J J of [4 88 an wv (= ("| J 3808 9» §'d 9 DO wl wl Ww wl af xg v7] w o Ww sX234 z » “> J > 2 (~] po “> -> -» =a 3
= = = ws < 4 | a ‘A 3 - 3 ® oD ° 3 |[4 « -- Qo - - <e - QQ Q [-] =) <| ww [J Ww [| 9 b 4 bo ast wp a - -— oP oP «uP ww»

3 - z - 5 -— | 2 - - - p= add VDP OS = - J | pb w23dsd= F 4 [4 w ue ¢ - Cem SdRAudOowOw Ww Ow 0 ow rT < zz Ww us = (= 2 4 ~ &£ ng Y "mus -e»Ppwdbagla NZX ~N XxX - & [- J 4 SUPP =mD

|

-tpy

-tpy

x
wid

LJ
UY
-

F 4
LJ

[|]

ad

&®
»
3

x

Wl .
(>

4
>
[

[

-— -l
- <4

w 2

[>»
of -
wd nh
>» LJ
WM d -

ld -—y i ~~ -— -— any — an -— guy -l wap -n amy ay —— —y -y «in
- _— >» == ”" a yp amy em - ou -— =n -— ay -— -— an am -y ay -y amy
> a Wh = J wn alin BE 4 ~N 9 N = ng = = ~ MN ny = NN = an
» ™ 8 he ~” CIE LI oN = LE " CI LI] LI

(VW) &£ - £ of n £ £ £ £ £ LEE ~ El = 4 LLL Fa 4 EL
Q (& [+ JES -< = 6 Jah Ja | SJE [A NS Wy | ya Ry | J [8 J I. | [8 J J Qa
» » Ne » po * & » * & "a Ws ® oud [- oo © » ® - oe 4
-— « nn < - o) 0 © © LI J oo? 9 Ww DO 9 oO © Qo ® DI
(&]] » -t F +) "ELE na [JE an J [] PC "8 nN4d
— F 4 QL |] » 2 &£ ls £ £ ELK EZ EZS Zz Ld A 4 xT L£ Ld2 =
J - po J | [| n i I I | - dd» - > J vp py | i | EE

ao ~ L — B Q® = - a MA ys N Ra FYNTTRN I I 4 -— 0 J [J J RPV ROT I NE I SN I BC 4 wl
A a — of <x WwW 3JN IY ALA DAY XAXYM Ina xu xXx XX 2IINANXYTA AX GW dD
J a (| i | aT DD TFN- >» DIT LD d4DDTAINDS od IID QM 4 MOD ddIDIIINS -4
«< ad MN -D DA =~ £ =p 8 N- MDA Y)yIDVDIINDN 4 JQ 272 1 DT VAC IDIOM <4
ww. band <q Gy <4 — af —, we 4 - O 4d 4< >» i dE 4S ~DdDiudgr ~q4 4 Li 4 qv {aa€ | go= =D
— - od wef) me me - 3 0 ww YW w= ad - eer wl wr wr wl wd es OO ww J was ap an FS wh ad at wt wn a ond ot upon PP am
po IR JE EX XEC JL THX LTITE -r XE dowd dd dN d= ND dud gg I~ AL wd od MJ dad ™ odd ow
— ad - wl) WM — JL ~N ICCA Lm gC IZA Tr Ae ECW t- EeI BE Ed SR BE SF AK BE RCN SF o
“a2 JUVE JPIFOXNOOU=T uv SX MED Dm ADI BIPIIOLeADDIDYULg mV] —“ > P= ADIsJaw

3

{

LJ

-

w
- J
® -
™

» %
nN
"XK¢
oa Jd
A
(Wr
® a

1%
> %
[JTS

vy)

8%[]Fr
[J

-3
sx
of®
oq =

2°J
»

£3uw

1 Re|
on

"= oh
2 MN
-—p

kJ |
wd Aad

a a

>»
=

a

Wd

ol of

a a -

XxX py .
- wn - NA -— = - w - - a - on a - - -
- on = | I | - == - 2 - - on -— - - a -— -N = = -~ QQ =. - x% & - @ =o ~» *e®~ @ =m. [,] ~
..- [] L £ (3) [] Ce " -~ il” - | CI 0 -] }LL ~ < — TL = 8 £L = 2 E- aL £& = BE= <£
(Ty | Q of X (ENS « [] (SN | [oF NY | 2 SON ‘SN ob -
eo WW LJ] - wr > = - (*7] * &o eo a AJ) - eo ol a ow [3 ™
oa D ° LN < ® J 2 22 > WD - o> ®D 290 L a
8 84 LU] A an [|] 4 . J 84 [| 8 NJ "es [|] } 3< 2X £ Je ££ F 4 | Z <a IZ Ld <£ L4 & < ££ 4K F 4
-d a> - Far 4] - J > | » - > old > - i - A> -]on wr ww - -— oy ow MY > -w - a - - eas ay wr WE op sn wg -r wp ww - - we -y -_ ow -r

w 8 § a = 3 ‘5.5 DY 0 8 =n Wy F 4 Aw 8 xX x 0 ax (TY) [BL 4 C7 x 8 JAHA XJ ox oe OJ UWI XTAZXAN << X WINE W - Ww a [X " x a» A >» [4
-00Q fo Jhon J mau33232334 w=994339% a ~ 2 0939 - 2233 4 >) ia 20 o = EP LELR” Fe = 3 rE Vn - dO (oo = oD Ww - & 2Ww € €r ~ <4 Wu oJ af « of - DN ge ud | ew A — — of FE EEE EE Lok 0" —-
IEE SE CE) - ow XT XE www ww FRE Sadek 28 3-5. Bo -wew FO wat n F | =f WNT -Qu dw JO WWD da gD DE mt Odd mm ENE dn JY Jum) wd d= IX Ewin N=Paap Rp YF X= RTT) LT wvwddr mel wm ddr Ton dvr d PUNO r= drm dWwwdWww
ADJA >A BIOVUUIP I= INIOUmdUN>I>>P>P dl wT OUP WOORARP UANUEPJIENTUIDDP>WOICEO

2777s

TITRE

UET(FER)

15

CHECC=LoGENUS=IXIND=SIMPLE,TYPE = INTEGER, WUAL®), MUDE=VALUE , CLASS BALE)
CREA ToL oubivuSE (KIAD=SINPLE 9 TYPESREF eQUALSO) JMODES REFERENCE (CLASS = TRUE)

CPKCCLOURE(LEVEL =Y o SECPERT=18))

CUINTLGER) |

VALLADUR= (Lh=6,LN=2))

VALLADUR=(LA=8,CN1D)

INK CAUUR)

VALEACON= (LAB, LN=1))

STOUFALSE)D

et

CLROLLEANIVALUE="TRUE™]})

1FIL510

ACR [AUDR= (LAs8¢CAs4))

CUINTELER(VALUE=L))

STCUFAL SE)

VALLAJURS (LN=8,DNs4))

VALLADUR® (LN=8,Ch=1))

CUINTEGER (VALUE=L)) .
AR(-}

COMP I<) .
"2 LF 3035)

~ MARK
CARET)

CUINTEGER)

VAL{AJUR={LN=8+CNe3))

ENT

DEL

OEY

ACR(AJOA= (LN=8,DAse))

VALIAQUR=(LN=8,DA=4))

CUINTEGER (VALUE=1))
AR(®)
STC(FALSE)

Galle) - .
AORCADOA=ILN=8,CN=4))

VALEAUUA= (LN=8,0N=1))

CUINTEGER (VALUESL))

R(~)

STUlFALSE)

NARK

C(ReR)
CUINTECER)

VALIAJUR= (LN=84CA=3))

ENT

DEL

CET

ACR LAQUR* [LA=8,0N=2))

RES

OEY

euil ll)

BETITER)

19

CHECC=1owENuS=ERIND=SINPLE» FYPE= INTEGER) QUAL® } ,MUDE=YALUE ,CLASS= TRUE)

CHEL Dd sGEMUS® (KIADSSIMPLE, TYPESREF yQUAL®6) ¢MODE "REFERENCE CLASS = TRUE)
CUPRLCE DURE (LEVEL 9 SEGPENT=22))

-

w }
J
«€
[J

)
wn
»

3
* »

»
|

®

-

4
»

o

2
-

xz
-

[]
w
&
»
-
® .

L

po | -
- & -
- 4 |
| | on-y -— ‘ob - -— a -— - 4a - an - - CX -— -d

on -™ - 2 - - a - - =n on =y -y -— 8 ™ m= - -Ne = € = gFm=~ ~ EE Eda - ~ ey -- ed
32 J - 8 =» [I [] *31= 2 - [" 3 |) is£ x J £4 4£&4=- <£ & & = -- £ & - o£ £8 %oJ ~ [J (3 NY | (- NN | = OQ 8 > [J Q = OY OU «oo - TF] CRY) e &W - * ® o> WW - - - 6 6 ed >»o © LJ 3 99 e923 Ld ced 282 | a nae® +3
am] -l $3 "VJ [$23 BP 2 ¢ nea 2 tZa £ 4 4& 249% 4 x & - dd a 32% aolbd J » A> dAdD 4 ad d> ad d> of odd of - >

- as wr -- "= -- - uy MR ww wp a -_ - wr - - wf a NR a wr - w - - -’ en -w wp BN
xX ® 5g = ew £ XK X EEE x" [I 4 «i eat | a 8 |) 8 §=8 J 8-3-4
324843 3.532253 3. 35 333 2.38% 7 33 : 53333 33233 « s2327384 vv WN ug Zo5 3-383 3 ~33 - A es 33 33 d—-gdqqd<a -Ng = Qo aes m= CFE 1 mah wg - p= Wea (7 whEr > tr Ow Pwww? | Ow WT we2owauel | mW Z - - - Te a an we - -
ot PEE EI rE ted 1 1-2 1-2-1 1 ew di JA ww pean WESSEX LXwddideweslbllondGe un ge WWD» OJ wEnmdoodZBLaNOWANOW LPR EFEX EX EEE J JUP PeING Ime INP P YELL=E PUP WOO IUANIA>P ANTI UL>PWOO0Cx00O NY PDP uDDAOOCTUSN

[]

'

p-}
- J
-

a

wv
wv

L |
po J

(J
LJ

|2 3
>»

bd .-_—

3 3 = 2
g a « o. v] « ev- Ww (FV]

" w ube

2 8 5 vw:
& -—

3 oz- " ve

x 3 by 3
oy ® » °°
(| - - -
- >» 4 ow
: i 3 cs
a =
FT)] ®
a (= - ay on [
p J Po -_— ey =n ay d— — -_ ay Po Po Pa

- 4 ~re aq 88 Pe
ed aN dd = J
of -l WW LJ]
YS YRFYES Ib 3 J ”~
x (- 4 >» > ww [|

-— - - a <0 WN dod - -t -- -— -— - - - a) - 9 - = * & & ma Ww = -— a - my ay- - QQ - s | [J [] - ss 2a DOW =0O >» = -— -— QD =~
| ”y — (g] -— ol CY an sm pus Lo JK BREE LY I - MN =f am , ml Fy ay -] % nN " 9 - —-nL 5 «4 BB RB LUN ~ 8 nN o- yo- 2:3 ~N
<£ 4 4 £2 £ £ nl, ad wid WNW DE TK 4 LL < == £ ™~v “aN ~(® (3] a] (> wd > JEL J AaGaANn Ju + oo oon - ® (a WW IY | [|. . . . - » - - wd ud >» mh wad - - - Ww * wi eo OW WwWo J J o O Q nn Jaa pm = BD "9 LJ Je | + J J ow 2 p=
[[| L} n |] " Cal BLED of OWI an > 0 nnd |-- 4 9% J ud&£ £ <£ £ £ < DX L- - rw tm OL 2 L £L Lu « PLZ «<wd ol - «f 4 4 Z # od. DI IIIDNI nd -d > 4 >» -d dD» p J- - - - -- - PYRITE EE IN JF A A 4 ER TD - -~ wr ww ap - > ww - er -
J [[o [] " Sy" Axyaadaaan - 0 we nx -~N 1 ue x 4. - 4 - - 4 = xX (4 4 UE Dud ww ww IK - NX XW AX J Xx XL owa =] (=] (= (=] 3 D> ~ ADL AW AHANANTD <2 432) ITN I We Re RE NRL

re) 2 q =| 2 bey | 2 HN MD add dAPDAAN DSTO - « JDM XI DAVNQO uD-— < < < Ded dm df adaq a 44a - ag wd =ddrrwoh@ggr ==- - - - ~- - — ot Doom ff) of dah ed dw MN] -w ow FT| www OL
— [og J XX = x [a X = Wm ad mA OUD LOI LE LOX dm J dL IX dweWw Dw e (1%) DIM LD we Ow POW Lwddewwewwwewwldeduumlde twdesrybdd-X-QQ wax & of x wh of oC vf ww aq a Nd MOU ZUNMUUDUUUS IUIPUEVE PUAN YPUIUAIIRCTY

Cyr,
‘©

-p

=n

-

-

<
»

Nn

w

3
-p

4

J

- TY .
- O

- - - -

L -— LJ

o 4 < 3WW = ww on Ww = FY
dD ~ 3 = SD = -
Wu [TTR J a x
be LJ = A) on WM poJJ
x2 x rF 4 4 t J
Ww Ww J] oA
wd Ww a oa Ww WJ
a >» a >» a»
>» b= > = >» = "NJ
- al - at ox od Ww
ol [X o - te
re Pp; Q oe #
£2 2D xD fy- P- A > © EER
od od YY-)

| J {I | aw nN
43 33 od od +4 @ lo2 Oo33 33 33
> ® LJ] > ©»

Po Pe re fe LL - 1
"ee ne an - 1
od dd -~ i [

Ld wd od = od WN = -p ay - a A ~~ - (¥]- >» > = > em - = D >» > = pl. | R (.|
™ ow Ne YER "MA - - Www > x --
| od 48 Rp ay | Na =~ |] «ft 0 0 = -
£ > eo L eo oo & gd & = b 4 eo of £8 A
[¥] = 33 “dA NTN X} fo J ve Ld
> A oe NN ee * ad - MN = - a -
 d a8 IC | a8 Ld LB LB <
» > >» 8 0 [|] >» & ze -~2 IAL QO XR LL F 4 242 P J A
~ | 232 934 Rp a > ir I we- -— F] - - up ww - - Dw oy w= wp = -

[] - ows ® - ww we x v1 " - ow @ were 2
4 33 od 4 & NE XW a RR XAATA «4 9 qT - 2d - | Dd 4 <q 9) elnA pe Je Je -~ 202C = -« YD qe=D) = hs Be BJ «33 uw F 3- q - » - em gy -y ro to of VY ow of mh Nf - oe dN Y od ob to
> wf DI nZI2=: Pfc E-§ £Y wr) oan dww JE ELV] IEE q LEVEE Ses Je XX qQJEQQDO
AVL Cw eS WWIS wed wwe OL wx = Ide = o«
APUSAUUI TT LZUOE IDI ICN E DP ANIA LIIIPOEVNEIAN

(1J]

L
-py

~

[
as rl J ve [2 J Bh

pb 4 | » -e » otJ Le] ~— | -_ -pa w - xX & [YY]
- - -d J > | d| 0 (--} -— - [1 oo

= «4 « o < - «<
wd > -— - ® - ¥ -
v_) - % [4 | od [4 & xx <4 ww « Ww - <
h wid >» » ry >» x p 4 at p J

[=] - - od - ow (a --w - - h x “w4 Ad ow wl -— FY) [1 pour | » wl
x « [- 4 [4 [. 4 - 4 wld 4

3 2D a => yy 4SS TY .® - Fd oe = af ag fie - -e
-—t wud - es» oo - (TY) - -» = 3) [. 4 - on wmnD J = O - ow XT - » wo mm 3 wy ™ a bv > = wf
} § 3 - al - Bd [w - “wl BM a | - ud ¥ =(VU) >» uM « » X Q (v7] >» X —->0 - > a ww»— a o> -— Mo -— p= WJ [4 of - am Jp em J Tv) } -— -- I» =.

-— [3 a ‘Dd x P 4 (TY x F = gw 2 a oN =e IX-» &£ -- Ww (*¥] FY TVR ~~ >» ow [TNE "JV IVY - A (¥.] [7 w of-— - ot > | 0 — - -— - - SSVIRS Ib GEV X =» Q x NOa. < £ a) ' - «a ew aa a a
[% . id ww «€ al wh € ee (1 5 Ww ww ow X == a & WW w WwW sex Ww = 4 = xX [4 A=Iax dd NL « x | Si 4oq -— D a ‘- Jax <4 « - p= | - de? =O WW - = 2 =%\?A - e Dw ~~ Ha - -— x - X Ud ~~ aL N = wy o Q Eo -)
a wl - wD Q NY 4 Ww LE. JV S 4 ow - A Ja x A 4 UJ -— JI 5 vv’ - J - — of Oo 4 -4 :
a4 ve - =D - Qn =2 od fun | - |} - 4 |- — aL ve ud oz -- Fe x xX ve +0 | {] o a == es
 o -< - - a = - a I | ee Fv [-% 8 oe «“ e- a Q«< D3 < L - > r= 0 -— ee LL ¥) -t - | TY > - uMod -— = - L=dLE << 0X - ¥ WwWIKw« > ~~ wo of HINATY x i) v. ax < ~— an » >» rc 5 4 - Q > - x “w & -—- — NY PJ o A = x wW a = - of - 4 » “w of 8 oJ & “w 4 Ww x ox
=® >» (& o) i 2D -< a a x - « - Ww EE Ua nw w i ce -— Ww JL waa& -~ wo ~ & > - oad WN WX a Lg -eny JO fo} b 2 woof 4J&ce x VN - ' (mn J Je BE w 2 jo J | w
wn - td a AZ 9 po | 7. JP SAVY IVR -d > A NE WM ZN NE WW- - p 8 w« ce oI 4 VY = v] » Aw BD dt v=o DOT J - w x og 'S ~ « a < « >| <5- oD wl - a od Bd - z - ud ra RY)t w = - BD ud J [TV] “0 Jo w J 0D

= AF La

p= nN Vl x x nt o of> 4 « d -) Q - 0) — rantwd & Nn £ 4 £ - ~ << <49 - A - gu ww F 1) Ww - a [
x J « 2

J Ww od ow
J oJ [J

J

DELTA 3- IF RPRINE ®» 2ERO THEN
LPRINE

ELSE

Netw DIFFILPRINC ,APRINE

JERIY t= DELTA

end ob IV

CAD C!ITFG

ReFICUNSTANT JLERUCLNE

CCMMENT TmE INITIAL OPEXATIONS OF THE CLASS SYMBOL
AE The FOLLLEINGS

deny 2= NEw CUNSTANTIO)
UNE = hE CCANSTANTLLYG
dtRU1;c LTA 3 GANE.LELTA = ZERD;

ENO SYMBOL

SYMIOL BEGIN

REFIVARIABLEAY sd

REFLEAPRUY pk oF
X 3= NEw VARLISOBLE(L)} ¥ = NEw VARLABLE(Z):
U $= hem SUMILX,aY) .
I 3= hEw VARISBLELI)
d t= NEw LIFFULshER CUNSTANT(4)); . ’

rn c $= Nen CIFFlu,V):

NS) F 3- EJCERIVIR)END

END

ENTERING GARBDALE COLLECTION

NUNBER OF CELLS CCLLECTED=L 3247, 46, $23)

ENTERING VARDAGE CULLLECTION

NUNBER UF CELLS CCLLECTED=(3091, 582+ 4508)

ENTERING GARUAGE CLCLLECTICM

NUMBER OF CELLS CCLLECTED=: 35120, 9%68, 425)

ENTERING GARBAGE CCLLECTION

NUMBER OF CELLS CCLLECTED=(3%6¢235: 0350, 0%)

-p = - on -y =p
-

Ww Ww Ww Ww M
23 35 25 ow
- « x x X po
en LN [J [4
ne | I | an -
A HH AH »
AN VX, AN wm
o « <q << aq dq A
- «J -d of | «a
- JF (SX (| -
eo ® oe - = (® J

2% oN Ww w on -
: Ww Ww ow WwW Ww d[3 os & to

. ww Ww [TRYY) FY RTY) »
wo» w wo ’ [J .
WwW wl FYReY) ww od od
« « ud xX Tax o
(I en ne jo

w W TY) ow =-»
Q -88 25 3

LE 2X x]
| JN ® - ® -d
- a. amy «a ally any «

. < @ ae oO 8 p-
= "aa ee an i J

-d of pp | -d of °
<4 gq <4 « 13 =22 23 p- | ww>> = 4 FS 39
a» *- - ® ww

Lae -— we Ue be WW [3
| J - FY vY) (TY VS WwW -~ £
~ ~ x % Gg x x [J] -- - . [) LL [] -] - ns [- ou

~ LJ ~ ~ = ol Wa ~~ ow - wd Ad » - ow
a L — - = aa aa ™ aQ - @ a
= =n “> "8 [TH = Po oN = me “w -
- CC od od oh ne be — | — Ww [] [TS
ow [TS x x [3 eo = — e eo - ae a & = -
ww uw a a a ow > 4 wh P 4 YR] a £ [VY|
« o n - ® - oF Ww -t] dl = -» - «4
LS [N [) re =] a a a ay a a a L 4 a | 9
. * ~ ~N ~ LE (3 TE | TX -t 9 =

LJ [[1] [] L — = “wh -— oy ww — — [| od ~-
| } | - [7] J [",] - MN BN A - ANA A= AN (%,] = A
oH A -— -— -— — - a» . a= 8g 8 es N 9 - LI |

- -- |] - -~ - - - i 3 ot QQ *>rL29 - ga[- wh - - N 4 -t on (VY) 2 wl L nw &£ ~ CI4
ha 4 p> | QQ Ld ~~ ~N nd oo -d J) m= ol D on iad - 3D
» LJ -d J LJ L] | LJ -t XX xX AM df BK CL IIE 38 4 q [VV 4

>= «< ow YY)) » b Gh ww b J ER > dws » PI NJ
Q [= » > > 0 (= Q EN I | WwW» ae SVN I I 2 w >
Q | - « > 9 m AW -“ *AN J eS A o - oA

— } - - 9 <4 <4 | 2 Lg <] - 02D -a 3 2 -g JD L] 92—-— - Ww = » >» - - - Wwe 2X ww 8 252 wee >>> - we
a "- [| - - - [. - J YR EJ VY I | X dw! A - Bd
i) oJ 29% x Xx | “J I] 3 95 S«& 5 9 2%22 9 349(YY) (YV] [oJ BY od (¥7] wd ww od - De DJ ew em DD eo sm Fv] 33

[| 5 -S TV iy 4 5 > - - > MPN GY e-y X Wy—mry Xx - (Vie NJ
P 4 a « WF ww WW ow w oo -] o (SE I YY) Ww & § uf Argh Be] WJ8- [=] (% ET— - [(@ | " Q J OU Du OA = Uw uo — QQ QW2D
- | a2 [A - - a 2 . = AX WwW -=- [Wy JEVERVY Rg GS X Wk » ox
[4 *¥] - ww BW wr Ww a - GW Nu ~N Ww Qu Pww fp TW at es wo LT LW Op Ld rw Aww ww» L
| > £ L- JS EVN - | Io ron Lal 3 ~N £ vw £ - dP UID ND JSS DD Lh NU NE JW A -e & LK” NS NE J

1}

30

C7 - -

ow ww wl
wh " (%)

d 3 <

- -> wh 19
[] [] f

w wv [v.] A
p-J A wv »
- < « <

- - 3 o[] (V |A [3 [2
p- (>Y | hr "|
9 ("7 | M w
- « of o
w wl LJ w
- - wh jo 'Y
oY | wl u &
< LJ of of

> | [|] . | LL]

LY

3 ¥ EO 4 w[S S ov - ¥® - - [= -
- - - -e) 7)

[] -y - 0 -9 a
- ’ . or ’ »< e.8 -

d 3 QO ~ «
3 3 > > 9 ww- QQ BD >
- PS - oN -
< - “w — »
ut w - Qn Ww -

- = « < 0g 4 =r~ - " o_o . --
] -— C w uw CT " :
o ~N a a a a of .
- -y | od » | < :
» | - "- > —— 3 :. [Y¥) -— - - L - |
a &£ oF w oJ - *Y - ;
a Ww - 4 4 - > "J i
- a a [8 a A @ -t :
a 9 KE z E = 4 8
-t Fr) — - — p -s]
» A a A Vm om I = tw - mm wn - = -~ - - A mm 77}

U7,] - om = ay a =n -_ my any -_ ey a -— - - # = o_o » .
- - J Ne oD = NP OQ ™N wl - 0) WB a Ng ~ ~ - 2: [I] Ww- { JVI 4 £ a 0 8 £L su J a0 a (I |] []) WW a > |
a - DD - EE EI - dd £ LL & ££ £ & -<£ pr 4 &£ - 3) DL -
[] Ww ow X EE RLp wa DOW QW O (¥ > 2 EY eR --
> » 4 - -_— > Ee -— oe» - eo a - a a - - - - dd aq = =»
QQ Ww >a "> L0 [I J NX [NI] J a» oe ">»Do »
| -d ® nA een A Am CI | ae 6] " . ws +p |
- -w 0D DL LL bo I LLX ' ¥ & 1 £ £ £ 2002
- TYRE I 4 J a a E 40 ood | 4 | 4 Te08 J- & dN dw en wl an am - - - wd wh a Mn - wt wr am -— -- -— Md dw |
» D9 Os en oY) ng [J J [77] "ee ur [] .] JEN --— wut QD om * XX XL dN gx J - AXE NN AE XENA « [4 - «92% of |

x “2 Ww Jy-o NIDIDJ NDIA IODDI GLO ID J o [=] 2 ~NITO <
w a Wo a rie FEB, ANGIE II IX 3 q | ww) ama) |- 3 [5 J Ws y= o € ff r= wh wg dmb vqg@qgoqg=d Dew dg be hy bo

e » Q@ x We [TTR 3 JF RA Re KJ WT IRE SOO JDO x = $n 5 diaWwW Ow - ew TW NTOLQOQE MSW O [QC Jue DD Gwe Ww - QW * tI Ww = (7) Pe L ww Qd ow w |
0 =g PYUUID mpd IZQIIVAX SY PUV I ugg PANIITIPANYE NaEX nga nex MIVILIEIYID

i

i

-—p .
-l
ww

of

<

ww

A

<
= |

J
»

2
wd

x
oh

9
od
=
[|

op -.

oh -_ =. ay
= - a 0)
ow We 4 Y

[4 ow Ad - ¥|] og « -
ow as - wd
[uf Wad - a
» i 8 [|] »
- >» = 2 (« -— «
ry «x - CY]

Wl WJ = J

22 Py
- ’ I ow -L) [BC x ~
- oo I] vl
[LM ol [
wl - = a - |p | 3S 4= - J

P J wR J [(8 J
- a a wi »

-~ oS - QO -l [- -
4 - 4 -t == a -s x
w L] ow ae 4 [[TY]
lL 4 -l J of oF ~— -) lL 4

- ow - N= eo ay == on - FYRFVE - a - - - - A a oon - ow - a
- =n -— > - = -_ my ay — Fo -— - - — -n -— = a. >»= mm
» L 4 U8 ~N Pr La ow - Ny L 4 ~N ~ ~ a 0m RE
ae 3 <8 nu "ne gq a dd : 3 . . |) a £ aw oesV4 4 sk & 4 4 z LY £ F 4 2 FV 4 « —- DDL od&(CXS [8] IID 2 J ~» OW QQ (% (=] (¥ td € JJ "na 0
- a - ft eo >» a a - rr. BR - ® - [J Ld - -w df 4 9 » =

<o ® oo (I. NN..] > O = an 0 - J - - - » .>»»Q LAI
"eo n = an . uu] >» > 8 aw |] J a - HN eo = § >»0 8
" 4 z QTL TLL 4 ‘DDL Z | 4 £L FV 4 £ 00x 3Z<pr - 322 ol od YD - od 4 or of -d ur Jd - oJ- - we LN -_ ee wh - DD - wb qf an - - - - FY J pr a Bw ww
an PY | -aa ee Wes =u u - ow % wa 8 Ww [| [|] a [[LN A) -8 8
48 ng ol X NAYX E> x ot od AU HEA x x - 4 of Le i I 4 XXX
3 29 <3 wd DIY N =P LB. Ir] i | - (=] 2 2 ~~7?T70 LL Eo I]
- <d - a) QTIID0 N29 p-B Ro I ng | < E | 3 a LIE J] ir Be X=« %w - ye qq hdd of Ng WN - te q Ng [" "» Owuq m»aummqae

ddOY REAR GI» IE I ICY IEE JE IE ID xq - «€- x - xX WETIA AEE Jd
QA id vw or dEeaPZPr9dd Jud dosed uUdesldsw Jw mow OI SD w PL weoad§
PPMNALDAET VDWIDP PINE PU EYL DPN IDNR dd x vax ddg Ha nx NO IVS EJIIIDIPDW

282

in LJ

-y ly -

[4 - ww ww
oJ ww 1] 3
4 oo) Ww ww[2K 4 - -
Ww CN] J F 4
a wd -- -
3 a a " [|

> >» 3g w[4 oo &
- of : J

: 3% :b= | vv] Ww
® 2D Q 3

-m - eo 4 5- * @ >

|} eo 8 [] [
po | -d oF - fp af) & aN |} [|

>5 - Po Pe Pu Pu Py

(e] FB ~ an 080 3 2[' [J S dad dd
Q - oD ad obi WW A AW - ®
- 4 tt =f wD od ~
[[TY] e 8 p NYVEIY RVR RTT] [[

« -d of [YT RR J J Jp J J -
-_ wd *» = -—p ay oy -y -ty a= - wid MJ - -_y amp -— -f = a BB 6 Oa aa od = -— -_
- >» = on - on = mn - - - > > = -— a -— ce QT ONA == » a - y=
+ wl P ~N ~~ L 4 *™~ - FERVV RY) -t 0 J Pn et all IND BR < ~ (J ow NN
u - @ 8 LB | LJ an J od 4 ® "=n " "BF & 0 WS 8 [) PUR|
< of £ ££ L £ & £ £ - of t 4 WwW WWW IDOL oo B F 4 - 4
($20 DOW 2 (KE R4 [5] Ue BY 220 (&] aac dss [Je] (A] 43
- $d v= - ne - - = » ore » - & [J] » wh hbagad o * » - * =
o "a B) LN) oc >e >» Tes XK J [- J meeps PrP NS o 0S
[] >a nn [} * 3 » > pe 8 33 [] SODIVPO = «08 >» 4 [] 4£ EL ELE < <&£ QL & £ [gy a. 2 IP 4 o& F 4 Q
od je JV NS J a | J - ow > lo J -t oF - DDI IDEN 23 > | Qo-y NH we» - ww wp we - - - D Bw - wr ew wm - A EX ZTE X of ow - - wr :KJ

FTN - 8 wa an J "ne LJ ~~ ow § wa YW [| A323 04<Cqgn - 8 Ww -
Ha -l XX AEE X= = - & of -d ACEN = enum wt ew 3) DK -d & LI - 8
- Q LL By | dD DIN (or R= BIE Je | qq) J3%27 be AAA A AN I TIO <2 +0 «doD -—-= 3D wk FEE YF rt FIA STOO = « 3 ANAT AN wD po JJ lL =] > -—“wed warm dd GEA NGg dq AG =r=dqdV wdda dddge tung d= “Wg gu

wr of a WY - lh ap wt (tnt Pour wr) www PI) ew -— wa -> hhh rE ry u-5 rkOFT TTX JIS IX ILL V1 Jw JIT smxXAR ATION SO™ a r= VdJOUX ox a d Er IX izro Of www ddr Od O04 49D lL FT E-% EWN STEER ty NOD WwW -—eap wr apr wr vr WEE aw Be DE ad
NAL DULY IPP WALID DUI PUTUPUULPOAANALSCIPAE aA NW ILDUG IIE LDP» ACE YY»)

-p

. -—
2 s
Q hr

EQ w
9 =| 4

-—e -

v2 o
9.2 &
1% RE . »
39 -
° 2 a

27 4-—

* Q3 £

; oF: 2»"ol - 2 a
1" - -* =~ = 3
3 wn [] 38 | -d

ay - - pv | Ww [
4 4 » Ww >» -
ow (7) L 4 >» Ww []
[4 « 9 a od -l - -

- Gah mm v_] - - uw == -— - -
-y amy my am oy -y - [» on - - -y
(WY NL) - FJ & - - - - + 0 rr wd ~
a 8B a AN re o] - - - - <3] []]Far 3% 3 1 L 4 ow Ww — ~ ~ + - £ £ 4DIO JIW [|] a a [] [] [] a - (8) 4]
-« & & & a b >» >» wid - “MM w Be ® - -
oP OoO®O = | [d [nd 2 =2 P| p- | LR J J J 9(EEL Q @ OO - 4 -d 4 - []) 1
IE EEX D - = < < <4 < 32 = £ &[IF QE J RS ap | - > J » >» > » -d 4 | J

- WP PW ww Ww ey ay - ; 4 =x -- - - - 0 -» - - -
AMF gt R09 "] LV] a & 1 « [4 « - 8 . [a
NMEZEX LVAD NY] - - FY] Ww Ww ™ -t af x %AdDDIIDIVIIV IR - | wy a > 93 9 aq Q
233733 =3 ° A A = uw oa oT] o 22= 2 Q- “a = oh be Q « q0 — -— = -— = - <
- AP wt wr ww wd ww wd a od x 2 b 4 2 Xd=3 - - -

—-0Jdx SX JO00™ [3 WALL mg - - = - pw - b= 2x BE a af = oWen dodOKWu ® Wu wq wl Pwd Ned Dow otewdf Od-0WwWWwWH ODW O0Ww NOW Nn
EA PE IPAPAND SX =YEVUVIAOE =~UE PUY SUT BU PIUSVUIE wax Peg ex ©

281

- - -

po - - =« « red
w pr TY So} 9 - www W - -fred = &z x z &rt - - .. []

4 - > o
» >> of > >

- - a [4
% ob w 4hor

s : 3 S 5
» [J » hy-~ - om a [} [] J

op Po Pon Po Po Pa

~eno ul 3 3 3 3dd dd pd - - - ®
WW . ay = = r ~VEN EN an Ww Ww e aSYLLEY aa M 5 « « < ~ o -

~ ~ *A¥O VN=== >a ® wn ~~ * wm ~~ wm ~3 - LETTCR ® w “DP NGS W ® J ot) CC RCE NL EEE SWwWN wy - 8 .2 Tae scd > & 2 re]

2 4 BEE rddr>PPddad> £0 : rf 020% Q o° "ae 8 Ne 9® @ mmm mm dD» see PIS §@ * 3 wg ti-gg- nN me 8 wma 0
. . OOAA os 2 rr 2 zZ<c®L a 2 O¢ 2 2 2: < Srard i-S 4h Ania oll SB IE SS E 1 jr Rr Rp ur 4 22 o - -y
- - REEL X Ld Jd dd ddd d= Dew - ww Qe ps ° o ™
" . GtraaagiddSIId <a — w “4 Baris us - we -a J«< “www www IID 299 ol BE 3 - 2 a a 2439 <n ~ 42
: 3239232222 202220F 38: 39 33- 383833233 53; 33 38: 33- "4 - Ww - -ddd Dd NWN= ww ww Wasap Sonsl ozo I-32
5 el Err EE EE RPE RP ET FEF FREE RETA EEEAFEIEEL31 4 CUUVWDVULUUVU UYU WNUUWWE LUPUS NAEE UIP UANDP EAI EAI ANNEIYPOINECEYP IS

285

’

°
£8 ¢
o -
-_9 -

-

a or0.2 |
5's v

v2 -
o -
as 2
$3 -[4 9

~

Er.
-DQ

- ”~
- aa

- oa of - - X- wn pre -_ a - wn ww 4
- (LJ " == , - TY) -
ow Ww [7] ol wh o* x — we- of — a Ww Ww Dmae x (4 « of w .
[TY vY] = vv (J a Ww 9aa] & Ww ow WwW » » A
» >» ow > a aa — w= 8 ow» >> of
x of » aL ow - = w ANa» - ow af - &. 4 ow
23 4 3a - -w 0 20 23
2 4] > & 4 £ [2
® eo 3 [| 2D ~N - =- "m -m a a -t ax

-l 3 I -d (> oO [
| I | [] eo 4 .N 0
| - 4 | db rN<4 « o « o« « [I- 2 22 33 > o0JF = > D » -
[I - * ® |J] (-—

| SS [~ fo Pe Po . x |
UN] J an *s -d bd
-d - po | -~ od - db - Ww = ofwu - ~~ Ww - -— [YY VY - SYRTVRL J -— > - o - wv
»> >» - >» = ~ » > = 4 » > - nN ww - -— Jww Mn - ee ™ ~ wD - Wwo - -l = 4 C —pw ay | " ot § [] ad 4 [] Ja ay [| - 8 #] (» uf £2 eo & P 4 eo of 4 = od & NL EL £ Av-RN E (3 [J | (3] ~ 2D WD - (0 KS > | Q 20 -yDH - - > PD a >» LI I [J - eo » [J —
CRC r] LI ° LE I o ato o "To ° -= A » » 8 [] > mn [] m= 8 q >> an] -—
SL £ 3&L P 4 233% pV 4 3% L F 4 A & LZ Zz NIDI « D «4 Sod oo DN 5 Dd od -d0 DOW - DD —- - D3 -- - 2 I Bd -— Dw w ~~ - [
-— ew 0 ow -~ Bn MN -— ww WN FY IRS - we # PY IR | - BN +& [] Q- dX Ax - X ia bd «Xx MN - od X AX -w xX X NH x i |
<< 2 <0 oD -D rE - QQ 147 ED | £33 PE o
DV = < 23 <n BSD gD) TOV. Kf - =D QQ <w | FS— ne | NY 4 4 [nd “ « - ew LY - 4 os of Ng oq El a
YS 2X93 1 Sarl ww MJ De - er ff Ad ML) ww - ww - 3qt IE D..X dL JX XR AL > 3XqA CE a P= IEEE ETE SIO ~ aL =
i Sr IS I uA Ir RV ati J p- Svv i agi BI TES - Batudndie diel re QO Dw «€

a VIOT AQK I>» Ox AAT VOU PD LTANAT UD PITACITI VII >PPWWMDI ~~ 4 of

[4

8

