PB 214 612

STAN-CS-72-324 SU-SEL-72-057

Subproblem of the m x n
Sequencing Problem

by

Henry Raymond Bauer

November 1972

Technical Report No. 48

This work was supported by the
Nevional Science Foundation
under Grant GJ 1180

DIGITRL SYSTEMS LABORATORY
STRRFORD ELECTRONIC: LABORATORIES

STARFORD NRIVERSITY - STARFORD, (ALIFORAIA
Reproduccd b .
NATIONAL TECHNICAL
INFORMATION SERVICE

i § bapartment of Commaerce
Springfisld VA 22181

BIBLIOGRAPHIC DATA 'I- Report No. ' v 3. Regipient’s Accession No.
SHEET STAN-CS~72~324 VY SRR
4. T ile and Subtitle s

Subproblem of tie

m x n Sequencing Problem

5. Report Date
November 1972

6.

7. Author(s)
Henry Raymond Bauer

8. Perforning Organization Repe.
No. §TAN-CS-T2-32h

9. Derforming Organization Name and Address
Stanford University
Computer Science Department
Stanford, Calircrnia 94305

10. Project/Tas%/Work Uric No.

11. Contract /Grant No.

GJ 1180

12. Sponsoring Organization Name and Address

National Science Foundation
Washington, D. c.

13. Type ot Report & Period

Coveied

technical

14.

15. Supplementary Notes

16. Absrracts

(attuched)

17. Key Yords and Document Analysis. 17e. Descriptors

none listed

17b. ldentifiers ‘Open-Erded Terms

17e. COSATI Ficld/Graup

18. Availability Statement
Distribution Unlimited.

1y

19. Security Class (This

2). No. of Pages
Report)

/2

. Securny Class (

22. Price
Page
UNCLASSIFIED

£3 00

cORM NTIS$ IS (REV. 3-72)

THIS FORM MAY BE REPRODUCED

USCOMM-OC 14982-FP72

Subproblems of the m X n Sequencing Problem

ABSTRACT

Assumc tihat a set of n tasks is to be scheduled on m processors.

bach task is indivisiuie, and each processor may be concerned with only one

task at a time. Then the m X n sequenciny problem is to find the schedule

in which the total completion time for all tasks is minimal, In addition,

we scck an algorithmic solution which is efficient; that is, the computation
aust grow algebraically with the size of the problem rather than combinatori-
ally.

The results presented concern three separate families of subproblems,
The first problem is an extension of the problems of Hu, and Coff-an’and
Graham. Here we develop an algorithm for the optimal sequencing of n l-unit
and 2-unit tasks with tree precedence on two processors,

The seccnd family of problems concerns the sequencing of tasks on two
processors where the tasks consist of chains of opeirations with known lengths.
Furthermore, the operations of each task are to be performed alternstely on the
twvo processors. The new results, including knapsack solutions, are algorithas
for tasks which consist of:

a. three opcrations with l-unit and 2-unit lengths. or

b. threc operations each of whose adjacent operstions ditf<r in length by
l-unit, or

¢. three operations each of whose adjacent operations differ in length
by k-units, or

d, three operations in w#ich the first and last have identical leungths, or

e. four opcrations in which the first and last have identical lengths and

)

i1

the second and third have atentical lengths.
1‘0 algorithms for the third family of problems follow the work of
Arth.ansri and Mukhopadhyay, and Szwarc. In our case, we treat m, B 2 L, proce:
sors and tasks formed by chains of m operations. Each of the operations corre-
sponds to each of the processors, in order., The results include:
a. @& case in which the identical task order on adjacent prucessors ytelae.
an uptimal schedule, and
D. the svlution of a constrained four processor problem by solving n two
processor problems, and
c. the reductiun of & constrained four processor problem to the solution
of a three processor problenm,

Scise systems programming problems from computer science have character-

istics similar to our subproblems. -

STAN-C5-72-324 SEL 72-057

SUBPROBLEM OF THE m x n SEQUENCING PROBLEM

by

Henry Raymond Bauer

.Technical Report no. 48

November 1972

DIGITAL SYSTEMS LABORATORY
Department of Electrical Engineering Department of Computer Science
Stanford University
Stanford, California

This work was suppurted by the National Science Foundation under grant GJ 1180,

th

Subproblems of the m X n Sequencing Problem

ABSTRACT

Assume that a set of n tasks is to be scheduled on m processors,
rach task is indivisible, and each processor may be concerned with only one

task at a time. Then the m xn sequencing problem is to find the schedule

in which the total completion time for all tasks is minimal, In addition,

we sect an algorithmic solution which is efficient; that is, the computation
must grow algebraically with the size of the problem rather than combinatori-
ally.

The results prescented concern three separate families of subproblems.
The first problem is an extension of the problems of Hu, and Coffmnn—nnd
Graham. Here we develop an algorithm for the optimal sequencing of n l-unit
snd 2-unit tasks with tree precedence on two processors,

The second family of problems concerns the sequencing of tasks on two
processors where the tasks consist of chains of operations with known lengths.
Furthermorc, thc operations of each task are to be performed alternately on the
two processors. The new 1esults, including knapsack solutions, are algorithms
for tasks which consist of :

2. three opcrations with l-unit and 2-unit lengths, or

b. threc operations each of whose adjacent operations differ in length by
l-unit, or

c. three operatiuns each of whose adjacent operations differ in length
by k-units, or

d. three operations in which the first and last have identical lengths, or

e. four opcrations in which the first and last have identical lengths and

la

the second and third have identical lengths,

The algorithms for the third family of problems follow the work of
Arthanari and Mukhopadhyay, and Szwarc. In our case, we treat m, m 2 L4, proces-
sors and tasks fo.med by chains of m operations. Each of the operations corre-
sponds to each of the processors, in order. The results include:

a. & case in which the identical task order on adjacent processors yields

an optimal schedule, and

b. the solution of a constrained four processor problem by solving n two

processor problems, and

¢. the reduction of a constrained four processor problem to the solution

¢! a three processor problem.

Some systems programming problems from computer science have character-

istics similar to our subproblems,

Acknowledgoments

The preparation of a dissertation requires cooperation,
encouragement, and criticism from many persons. This dissertation
1s no exception. I thank all those f.iends who have made my work
at Stanford pleasursble and rewarding. In particular, there are
several who deserve special recognition, Cne is my adviser,
Professor Harold Stone, whose stimulating suggestions, coustructive
criticism, and profuse patience euncouraged me to complote this
project, Also I thank Professors Forest Baskett and Thomas Bredt
for their careful readings of the manuscript.

My appreciation is alsc extended to Louise Hazlett and
Joyce Vought who typed the final draft,

This research was supported in part by the National
Science Foundation under grant number GJ-1180. Reproduction in
whole or in part is permitted for auny purpose of the United States

Government ,

i1

CHAPTER

1.

TABLE OF CONTENTS

THE m X n SEQUENCING PROBLEM & ¢ « & « o o o &

1.1.

1.2,

The Problem Statcment . ., ¢ ¢ o o v « « » .

The Contents & & & 4 ¢ ¢ ¢ o o o o o o o o o

HISTORICAL PERSPECTIVE & & 4« ¢ o o o o s s o + o

c.1.
2.2.
2.3.
2.4.
2.5.

2.6.

General Discussion o ¢ ¢ s ¢ s o o o @
Johnson's ReSuUlt ¢ 4 4 4 s ¢ o o o o o s o
Identical Order on m Processors
"Cutting the Longest Queue' Algorithms
One Unit Tasks with Acyclic Procedure ,

Two Obgervations ¢« ¢« s v o o o + «

ONE-UNIT AND TWO-UNIT TASKS & ¢ o « & « o o o + o

3.1.
3.2.

3.3.

3.4,

3.5.

The Proolem Statement ¢ ¢ ¢ ¢ o o o & &
Developmeut of the Solution to the Chain Precedence
Problem . ., ¢ ¢ ¢« s ¢t o « s o s o o o o
3.2.1. Algorithm 3.1 --Labelling
3.2.2. Algorithm 3.2 -- Indivioual Level Scheduling
3.2.3. Solution to the Chain Precedence Problem . .
Solution to the Tree Precedence Problem
3.3.1. Analysis of Algorithms 3.4 and 3.5
A Solution to the Tree-Restricted Acyclic Precedence
Problem ¢ ¢ o o v o o s o o s o o s

ALook Ahead ., 4 bt i b e e e e e e

iv

PAGE

~N O O\

10

63
65

4. SEGMENTED PROCESSOR SCHEDULING . . « - ¢ + « o+ o

4.1,

L.2.

4.3.

The Segmented Scheduling Problem

Segmented Scheduling Problem

Lh.2.1.
L.2.2.
h.2.3.
L.2.h.

L.2.5.

A Foundation for New Results
A Special Segmented Problem
A More General Core Problem
A Problem with a Knapsack Solution .

Extension to the Four Stage Problem

Other Subproblems ¢ = « + « =

5e THE FOUR PROCESSOR PROBLEM . . . « « ¢ o o ¢ o o ©

5.1.
5.2.
5.3.
5.k.
5.5.

The Four Processor Problem . ., . . + « « =+

Problem Definition . . . « ¢ « o ¢ ¢ o ¢ o -

Restrictions on Permutations p and q

Extension of Szwarc's Results « « -

In SUMBATY + ¢ o « ¢ o o o o s s o o o o = ©

6. FUTURE DIRECTIONS « « = o s o s » o o o o

1C7

-
(o
0

LIST OF TABLES

3.1, Assignment of Forme

vi

3.0.

oo

bol.

‘
PR

LIST OF FIGURES

Gantt Chart Example &

Identical Order is Not Always Opntimal .

Arthanari and Mukhopadhyay Notation . .

. .

Hu's "Cutting the Longest Queue’' Algorithm .

Hu's Algorithm for Unequal Task Lengths

Coffman and Graham Algorithm Example

Example of Set G in Problem 3.1

Example of Set G in Problem 3.2

.

Example of Set G in Chain Precedence Problen

Chains and Trees

Example of the Labelling Algorithm. . .

Level Notation

Use of Algorichm 3.: in Example

Form A, Form B, and Form C .
Modifications
1-Unit Tasks in Algorithm 3.3

Examples of Defimitions . . .

Forms of the Special Segmented Problem
No Solution to Problem l..1 in Form II

No Solution to Problem 4.1 ia Form 1

Example of Algorithm 4.1 . .

.

Problem 4,3 and Algorithm 4.2 .

.

of Figure

-

.

.

m“roblem 4.4 and Algorithm 4.2

First Form of Problem 4.5 Solution

vii

PAGE

2

. 11
. 13
R §
. 17
.Yy
. 22
. 22
.24
.e6
.2
. 28
. 30
. 3
38-39
. k42
.k
. 68
. 70
. 71
.8
.8
81

. B7

Second Form of Problem 4.5 Solution .

Example of Algorithm 4.3
Example of Theorem 5.1

Example of Theorem 5.2

viii

87
89
101

102

Chapter 1
The a X n Sequencing Problem

A classic problem of operations research and management science
is the optimal sequencing of n jobs on = proceassors. In computer .cience
the area of systems programming again involves the same problem. 1In all
cases the solution must be embodied in an efficient algorithm. The solu-
tions of complicated sequencing problems often depend upon efficient
algorithms for the less complex problems of scheduling. This work continues
the development of these algorithms.

Since algorithms for the m X n sequencing problem exist, what are

the efficient algorithms we seek?

Definition 1.1, An efficient algorithm produces an optimal solution to a

problem using a computaticn whose size grows algebraically with the

size of the problem.

First, efficient algorithms differ from those procedures that examine all
possible solutions. These enumerative computations often grow combinatori-
ally with the size of the problem. Second, efficient algorithms differ
from those procedures that reduce an inherently combinatorial enumeration
heuristically. Heuristic computations do not necessarily produce opfimal

solutions.

1.1, The Problem Statement

The general probles which concerns us is the mXa sequencing
problem., Its defivition below names the form of its solution a schedule,.
Authors differ, however, on the notation of their schedules. Here each
schedule is denoted by a Gantt chart {clark 1947]. As Figure 1.1 shows,

-1 -

Ly~

(V9]
E
+.
(=)}

. N
(O] N

Pigure 1.1. Gantt chart example

one of the set of horizontal, parallel time bars corresponds to each pro-
cessor, Time intervals on each time bar are delimited by vertical bars.
During a time interval a task may be executed on the specific processor.
The task's name then appears above the time bar, and the task's length
appears below the time bar. @ represents an idle time interval. In each

problem an optimal schedule is a schedule in which all tasks complete

execution in a minimum time, Definition 1,2 describes the general m X n
sequencing problem.
Definition 1.2. The m X n Sequencing Problem
A set of n tasks is to be scheduled on m processors. Each task
is indivisible and may have to be processed before or after other
tasks. Each processor may be concerned with only one task at a

time. The m X L jequencing problem is to find the schedule in which

the total completion time for all tasks is minimal.

This basic definition is frequently modified to produce a trac-
table problem. For example, the number of processors may have identical
characteristics or may perform specialized operations, Alternatively, it
may be desirable to find the minimum number of machines, m, required to
attain the minimal total completion time of all tasks. Or the character-
istics of the tasks may be varied so that, for example, they may be
executed only in a special order,

The research results here concern three distinct classes of
problems, The first class concerns l-unit and 2-unit length tasks to be
sequenced on two processors (m = 2), In one subproblem the tasks have at
most one predecessor and at most one successor. A second subproblem con-
cerns tasks with many predecessors but with at most one successor. Sets
of these tasks are then maximally connected to similar sets of tasks in
s third problem, The general problem of sequencing l-unit and 2-unit
tasks with an arbitrary number of predecessors and successors remains unsolved.

This first class of problems includes those treated by Hu [1961]

3

and by Coffman and Graham {1y72]. Hu's problem concerns only l-unit tasks
with many predecessors but with at most one successor to be sequenced on

m processors Coffman and Graham considered l-unit tasks with an arbitrary
number of predecessors and successors to be sequenced on two processors

(m = 2). Our results maintain the O(n) computational complexity estab-
lished by Hu for his solution,

The second class of problems concerns a specific two processor
sequencing problem. The work extends the results of Johnson [1954] and
Bauer and Stone [1970]. In the latter work tasks consist of three operations
(stages) to be performed on processor one, processor two, and processor one,
respectively. The time interval for processing these tasks is given. Bauer
and Stone succeed in isolnting the difficult core of this problem., Here
we present new results on the problem in which tasks consist of

a. three operations with l-unit and 2-unit lengths, or

b. three operations each of whose adjacent operations differ in length
by l-unit, or

c. three operations each of whose adjacent operations differ in length
by k-units, or

d. three operations in which the first and last have identical lengths,
or

e, four operations in which the first and last have identical lengths
and the second and third have identical lengths.

The third class of problems concerns tasks of varying length to
be sequenced on four processors. The published results of Szwarc [1968],
and Arthanari and Mukhopadhyay [1971] considered three processors, Our
work extends these results to four processors and, in one case, to m proces-
sors, The results include

a. a case in which the identical task order on adjacent processors

yields an optimal schedule, and

-4 -

b. the solution of a constrained four processor problem by n app ica-
tions of Johnson % method, and
c. the reduction of = constrained four processor problem to the solu-

tion of a three stage problem,

1.2. The Contents

In this dissertation Chapter 2 presents the history of the prob-
lem. Instead of repeating references to the many tangentially relevant
papers, we cite more complete surveys of the literature. Only work which
has influenced the present work directly is included here. In addition, we
discuss the importance to computer science of this classical problem f{rom
operations research.

Chapter 3 presents the results concerning the first class of
problems. The three problems appear together with their algorithmic solu-
tions,

Chapter 4 defines the specific two processor sequencing problem
of the second class of problems. Each subproblem appears individually with
the discussion of its solution,

Chapter - extends the work of Szwarc, and Arthanari and Mukhopadhvav
reviewed in Chapter 2, These results correspond to the third class of
problems discussed above.

The last chapter contains a discussion of the significance of the

work and the possible extensions in future research.

Chapter 2
Historical Perspective

2.1l. General Discussion

Scheduling and sequencing research is a general name applied to
numerous problems, Day and Hottenstein [1970] defined a schema for classi-
fying sequencing problems. Using the Day-Hottenstein schema, we answer
several questions,

What is the nature of job arrivals? In all cases we treat a
batch with a fixed size, We do not treat the problem in which jobs contin-
uously arrive satisfying some probability density function. Our problem
restriction is reasonable for some computer systems. In such systems tasks
may be accumulated with accurate time estimates. Then the assumption of a
fixed, known-in-advance, batch size is correct. Une example is a set of
programs in a student environment to be scheduled for compilation, execution,
and printer output. These tasks may be set aside and run as a large batch
to improve the system performance by reducing overhead costs,

How many machines are involved? Each case concerns a multi-
machine situation. In Chapters 3 and 4 the number of processors is limited
to two (m = 2). In Chapter 5 four machines (m = L) are discussed. However,
we are primarily interested in the two processor problem, The resu1£s of
Hu [1961] and Coffman and Graham [1972] indicate that two processor problems
are perhaps the most amenable to efficient solution.

What is the nature of the job route? Here we treat two distinct
situations. In Chapter 3 the tasks may be assigned to either processor.
The order of the tasks is the only constraint. In Chapter 4 the order of

the jobs is again constrained, and, in addition, each task must be assigned

-6 -

to a specific processor.

Again several examples in computer science exhibit these restric-
tions, A complete job may consist of many tasks, one or several of which
are to be completed before another may start, Tasks may be executed on any
processor, but the order of execution is important. A second example involves
processors dedicated to specific tasks. This case exists in a previous
example when one processor compile: a program, a second executes the program,
and a third prints the output. Alternatively, the input-output channel
processor may perform the input, the central processor may perfor.a the
execution of the program, and the input-output channel processor, again,
may then do the output.

The wealth of papers dealing with m X n sequencing is impressive,
The scarcity of efficient algorithmic solutions is likewise remarkable,
These facts attest to the relevance of the problem and to its difficulty,
The reader may find several surveys of this subject in the literature
{Bellman 199u, Conway, et. al. 1967, Day and Hottenstein 1970]. Here we
use combinatorial approaches rather than solution methods using ma*hematical
programming or heuristic programming.

Combinatorial solutions are those solutinons which are based on
fincing the optimal permutation by changing from one task ordering to
another, The objective is to find the optimal permut. tion but c¢o avoid
complete enumeration over the estire solution space. The families of papers

discussed below have 1rfluenced research in this area considerably.

<.2. Johnso. 's Results

The first major results in the problem are by Johnson [1954],
Johnson considered the production schedule of n tasks with two operations
each. The first operation is performed on the first machine, and the

7

second operation is performed on the second machine. There are only two
machines. The second operation may not begin before the first operation
is completed. Two of Johnson's results are Theorem 2.1 and Theorem 2.2,
below. These theorems are the basis for the first efficient algorithms

for the general sequencing problem,

Theorem 2.1. The order of the production sequence on two machines may be

made the same without loss of time. [Johnson 1954]

Theorem 2,2, Johnson's Rule

Let tasks i, i = 1, 2,..., n, consist of the pair of operations a b

SO O

where a_, 1 = 1, 2,..., N, are the lengths of the operations to be

i’
processed on the first machine and bi' i=1 2,..., n, are the lengths
of the succeeding operations to be processed on the second machine.
An optimal ordering i3 given by the rule:

Item j precedes item j+1 if
min (aJ, bJ+1) < min (‘341’ bj)

This ordering is unique except for ties, [Johnson 1954

Johnson generalized Theorem 2.1 for n tasks, each with m operations
to be performed on m machines, m 2 2, Theorem 2.5 states the result which

we use later.

Theorem 2.3. The order of the production sequence may be made the same on
processor 1 and processor 2 and may be made the ssme on processor m-1

and processor m without loss of time. {Johnson 1954]

An additional Johnson result concerns n tasks with three opera-

tions each. The operations are assigned, respectively, to three processo's

(m = 3).

Theorem 2.4. Llet tasks i, 1 =1, 2,,.., n, consist of the triplet of

operations a5 bi' c, where LIV bi, and ¢ i=1, 2,..., n, are the

i 1’

lengths of the operations to be processed on machines 1, 2, and 3,

1respectively, Assume that all first operations sre not less than any

second operations, -:n .1 2 .;x bj‘

b <
min (.1*01’ e j) min (njvbJ, c

Task i precedes task j 1if

1*hy) -

The only complete solution [Jackson 1956] for the general m X n
sequencing problem for which the computatioael complexity is algebraic
rather than exponential in n is for two procclsorlv(n = 2). Jackson

produces Theorem 2.5. Later we use concepts from this result in our work.

Theorem 2.5. Let
{A}] be the set of jobs with only one operation to be performed
on machine one,
{B}] be the set of jobs with only one operation to be performed
on machine two,
{AB] be the set of jobs which have two operations, the first to
be perfurmed on machine one and the second on machine two,
and {BA] be the set of jobs which have two operations, the first to
be performed on machine two and the second on machine one.
Then determine the sequence of tasks in {AB] and {BA] by Johnsoﬁ'l
rule, and, using these orderings, assign the tasks to machine one and
machine two as follows:
Machine One: tasks in {AB}, followed by tacks in {A}, followed
by tasks in {BA}
Machine Two: tasks in {BA}, followed by tasks in {B}, followed

by tasks in [AB}

-9—

where the order of tasks in {A} and {B} does not matter. [Jackson

195C)

Bauer and Stone [1970] used similar results for a somewiaat

different problem, Results of that research are in Chapter L.

2.3. Ildentical Order on m Processors

A second family of results concerns the m X n sequencing problem
with an identical processing order required on each machine. In general,
the solution of this problem does not necessarily lead to the solution of
the problem in which the processing order of tasks is not required to be
identical. Figure 2.1 shows an example in which the optimal solution to
the general m X n sequencing problem differs from the solution to the prob-
lem wit) .dentical task ordering. However, because of the complexity ol
improving the sciution for the general case, the problem with identical
task ordering is often deemed practical.

The principle results for the problem with identical task order-
ing are those of Dudek and Teuton [1:64], Karush [1965], Smith and Dudek
(1966, 1969], Szwarc [1966], and Arthanari and Mukhopadhyay {1971]. An
the results have the characteristic of providing a decision rule for the
ordering of tasks. The complexity of these rules is evidence. by half of
the references listed being corrections of the other half.

Arthanari and Mukhopadhyay [1971] extended Szwarc's results [1968]
to reduce the 3 X n problem to repeated applications of Johnson's result,
Theorem 2.2. The Arthanari and Mukhopadhyay problem is stated in Problem
2.1, No efficient algorithm is known for the 3 X n sequencing problem
without restrictions upon the size of the tasks, This method of problem
reduction is the basis of work described in Chapter 5.

- 10 -

- T -

Optimal schedule —— time = 44 unite essor
t.t, t, 0t t : O . P, Py P, Py Pg
P r]'_z.._}_._ﬂl b 2 , . 1 2 k) 4 5
1 B st _ tasks
», t"tz % t4: tg ty 1 2 15 1% 2 1
_ il'd' 3' 4 y L] [t, 2 3 1 1 k) 2
. Py Y ..“..:,7 % 3 4 1 v & 3
} 3! 15 v1 3
A 1 4
P | £ SO t . * ¢ 3 2
22 KK 15 ' tg s 6 1 1 6 3
t t, %, t, ¢ .
2 | - —
5 23 ¢ ' 5)
P | g T B I T
e . 29 : —— R

HHinimal identiceal order schedule — time = 57 units

p. P2 ts ¥ ta % Pigure 2.1.
1 2v 5 .v1v- ‘ v.3 v

p. 12.%2.8, %5 4 %4 . 2 Identical order
EROERCEL I 3 ia not always
tr y 4 .t
1 ¢ 2 £ ﬂ A§¢A 1 2 8 2 m’llll
By P 15 Ky
P, | g t2 g te g . t, s
AL M 15 y 15 n
t t t, ¢ %
P l ﬂ r 2A_LA 5 2 .1. ‘ o 3
5]] v 31 4 v 6 L § 2‘ '2' 5 $ ‘—.—
t t s %, t
Pe | g R NI S 1 O P T P
6 { 8 e 9 v 5 v 21 9 ¢ ' & 3

Problem Z.1.
Find the optimal schedule for the 3 X n sequencing problem in
which each of the n tasks consists of three operations LY bi’ and
s 1i=1,2,..., n. These operations are to be executid on proces-
sors 1, 2, and 3, respectively, Assume for all tasks that either

max c min
1lsks<su k 1<sk€£n k

or max . = min
1sk<€sn kK 1<sk<n k

In the situation in which m:x lk < m;n bk’ they found that the
schedule on machine two and machine three ras most critical. Let some
task 1 be the first task assigned, and let all other tasks on machine two
and machine three be scheduled using Johnson's method from Theorem 2.2.
Then call the idle time on the third processor I‘ for the partial schedule
obtained by Johnson's method for processors two and three, When all three
processors are considered, the total idle time, Di' on machine three is

D, =8 *+b -c +max(c, L)
where task i is the first task executed, The solution then 1is simply to find
the minimum value of D1 for all i, 1 =1, 2,..., n. The n applications of
Johnson's algorithm will locate the optimal sequence, The situation for
m:x < < m;n bk has a similar solution, Figure 2.2 depicts the various

quantities discussed above.

Extensions to these results appear in Chapter L.

2.4, “Cutting the longest Queue’ Algorithms

A third family of sequencing problems concerns the m X n sequencing
problem in which the processing order of the tasks is restricted. We recail
several definitions from graph theory and then define the sequencing
problems in these terms.

- 12 -

Py p—£ B, 203,
3 5 1. 2 2 1
w
I,
I1 = 3 units

D, =2+ 3 -1+ max (1, 3) = 7 units

Figure 2.2. Arthanari and Mukhopadhyay notation

-13 -

Definition 2.1, Given two tasks x and y, x < y (read, x precedes y) if x
must be processed before y may begin to be processed. Similarly,
x > y (read, x succeeds y) if y must be processed before x begins to

be processed. Iu particular, x <<y (read, x directly precedes y)

(or x »> y (read, x directly succeeds y)] if x <y [x > y] and there

exists no operation z such that x <z <y [x >z >yl

Definition 2.2. The partial ordering between tasks given by the binary

relationship < is called precedence.

Definition 2.3. Given two tasks x and y, x ~y if x and y may be executed

independently., That is, x #y, x K y, and x) y.

Definition g;&. (Tree Precedence) The precedence of all tasks is called
a tree if
1. There exists one and only ore task x such that for all tasks
¥y, x # ¥, ¥ < x. The task x is called the :22£ task (x is
the last task):
and 2. For each task y where y is not the root task, there exists
one and only one task z such that y << z, (Each task except
the last task has one and only one successor.)

Hu [1961, cf. Hsu 1966] developed the solution to a special m X n
sequencing subproblem. For ten years, his algorithm remained the only
major contribution to this area. The Hu problem is described in Problem 2.2.
Figure 2.3 shows an example of the tasks. Algorithm 2,1 states Hu's

"cutting the longest queue” procedure for two processors (m = 2).

~

Problem 2.2. Hu's Problem
Find the optimal schedule for the m X n sequencing problem in

which all tasks have l-un:t length and tree precedence.

- 14 -

18 1-unit tasks with tree precedence

t t t
B, “13,
Pyt 10y 54 £ 4

Pigure 2.3. Hu's "cutting the longest queue" algorithm

Algorithm E;l. Hu's solution to Problem 2.2 form = 2

1. For each task in the tree precedence, calculate its distance from
the root task.

2. At each instant that a new task is sought by a processor, assign
the task farthest from the root task with all preceding tasks
completed. Ties are broken at random. [Hu 1961]

Figure 2.4 shc.. that Hu's algorithm is not extendable to tasks
of arbitrary length with tree precedence.
Before continuing the discussion of related results, a definition

of a more complex kind of precedence is needed.

Definition 2.2. The precedence of all tasks is called acyclic if for all
tasks, possibly with a partial ordering <, there is no task x such

that x < x,.

Chandy, Dickson, and Ramamoorthy (1972a, 1972b] observed that at
least one of the many solutions which Hu's algorithm yields by breaking ties
in different ways is indeed an optimal solution when all tasks are of l=unit
length with acyclic precedence and there are two processors (m = 2). They
call the algorithm the Highest Level First (HLF) algorithm, Its significance,
however, is diminished by a lack of a decision ruie for determining efficiently
the optimal solution from this still large set of possible solutions. Also
we find Chandy's result to be a corollary of the concurrent work by Coffman

and Graham [1972] which is described below.

c.5. One Unit Tasks with Acyclic Precedence

An algorithm by Coffman and Graham is most relevant to the work
presented here, Their result is an algorithm which is at once effective
and efficient. They have limited their scope to Problem 2.3,

- 16 -

6 1-unit and 2-unit tasks with tree precedence

/1 te/1
t3/2 t4/2
t1/1

Solution by Hu's algorithn

t5 t2 t1
P, =+ —
LI 2 2 1
P, e F
2 7y 2 3

Optimal schedule

<+
-

LI T T 1
% %

Py bt Ly

2 Vo 2 1

Figure 2.4. Hu's algorithm for unequal task lengths

-17 -

Problem Eﬁ;.

Find the optimal schedule for the 2 X n sequencing problem in which

all tasks have l-unit length and acyclic precedence.

Figure 2.5 shows an example of the tasks in Problem 2.3 and a
schedule from the Coffman-Graham algorithm. The strategy of the algorithm
is straightforward. Initially, a task with no successors is assigned the
label 1. Then after k-1 tasks are assigned labels 1, 2,...,k-1, a task is
labelled k 1if

1. all its successors have received labels, and
2. the set of decreasing integer labels of the immediate successors
of x is less than or equul to the set of decreasing integer labels
of the immediate successors of all other tasks. (Ties are broken
arbitrarily.)
The schedule is formed by selecting at each instant the task with the largest
label with all predecessors completed.

If we denote the list produced by the Coffman-Graham algorithm by

L* and the length of time to complete the schedule generated with list L by

®(L), Theorem 2.6 from Coffman and Graham holds.

Theorem 2.6. For a set of one unit tasks with acyclic precedence, w(L*) < o(L)

for all lists L. [Coffman and Graham 1972}

2.6. Two Observations

The ideas reviewed in the previous section are the initial results
needed to solve efficiently the general m X n sequencing problems with
an arbitrary number of processors and an arbitrary number of tasks. The
methods of solution are varied. Yet the resulting algorithms are efficiemnt,
Efficient extensions to these ideas will be another step in the direction

of a complete solution to the m X n sequencing problem.

- 18 -

19 1-unit tasks with acyclic precedence

P

A
v v v

11 v

1018 %6 Y15 %13 Y99 Y tg g E3 f

-t 1
l L L) v 2 4

Py
Pigure 2.5. Coffman and Graham algorithm example [1972]

-19 -

In addition, researchers are attempting to show that some sub-
problems of the m X n sequencing problem have only solutions which grow
exponentially with the size of the problem. There are no published results
from this research., But such work in the inherent complex’ty of a problem
may prove useful in bounding the algorithmic complexity limits which the

sequence problem researcher may expect.

- 20 =

Chapter 3
One-Unit and Two-Unit Tasks

3.1. The Problem Statement

The work of Hu [1961] and Coffman and Graham [1972] provide
solutions to problems composed entirely of l-unit tasks. In our work we
define a problem composed instead of l-unit tasks and 2-unit tasks. Our
problem, like Coffman and Graham's, involves only two processors (m = 2).
Problem 3.1 and Problem 3,2 define the problems solved here. Figure 3.1

and Figure 3,2 show examples of these problems.

Problem 3.1. Tree Precedence Problenm
Find an optimal schedule on two processors (m = 2) for a set G of n

tasks with l-unit and 2-unit lengths and tree precedence.

Before stating Problem 3.2 we define several concepts concerning

the precedence of the tasks., These ideas are demonstrated in Figure 3.2.

Definition 3.1. A task x ‘n a set of tasks G i3 called an initial task if

there exists no task y such that y « x.

Definition 3.2. A task x in a set of tasks G is called a terminal task if

there exists no task y such that x < y.

Definition 3.3. A set or sets of tasks with tree precedence, A, is maximally
connected to another set or sets of tasks with tree precedence, B, if

each terminal task of A is a predecessor of each initial task of B.

Definition 3.4. A set of tasks G with acyclic precedence has p tree-restric-

ted acyclic precedence if G consists of p sets of tasks with tree

precedence, Al, AZ""’ Ap, such that Ai-l is maximally connected to

- 21 -

Pigure 3.1. Example of set G in Problem 3.1
(tree precedence)

tree 1
maximally
connected

tree 2
meximally
connected

Pigure 3.2. Example of set G in Problem 3.2
(3 tree-restricted acyclic precedence)

- 22 -

LY i =2, 3,..., p.

Problem 3.2. The Tree-restricted Acyclic Precedence Problem
Find an optimal two processor schedule for a set G of n tasks with

l1-unit and 2-unit lengths and p tree-restricted acyclic precedence.

The algorithm to solve the tree precedence problem is developed
in two steps. We do this both for simplification and for clarification of
the algorithmic strategy. The algorithm for the solution of the tree-
restricted acyclic precedence problem is closely related to that for the
tree precedence problem. Before introducing the intermediate problem in

Problem 3.3 we require two definitions about precedence.

Definition 3.5. A chain is a set of tasks tl, t2,..., tr such that

tl << t2 <€ ... << tr'

Definition 3.6. The tasks of G are said to have chain precedence if ‘.ach

task in G is a member of one and only one chain (not necessarily the

same chain),

Problem 3.3. The Chain Precedence Problem
Find an optimal two processor schedule for a set G of n l-unit and

2-unit tasks with chain precedence.

Figure 3.3 shows an example of the chain precedence problem,

We solve the tree precedence problem and the trec-restricted
acyclic precedence problem, Algorithm 3.1 is a task labeling procedure
which is used by the succeeding al: rithms, Algoritha 3.2, Algorithm
3.3 and Algorithm 3.4 treat the chain precedence problem, the inter-
mediate problem. First, Algorithm 3.2 is a procedure for scheduling
the tasks with the same label. Algorithm 3.3 then combines the schedule

rroduced by Algorithm 3.2. However, the solution is not necessarily

- 23 -

Pigure 3.3. Example of set G in the chain preceder.ce problem

- 24 -

optimal, The cases that lead to nonoptimal solutions are treated by Algorithm
3.4. Algorithm 3.3 and Algorithm 3.4 then combine with Algorithm 3.5 to
solve the tree precedence problem., Finally, Algorithm 3.6 solves the tree-

restricted acyclic precedence problem,

5.2. Development of the Solution to the Chain Precedence Problem

The situation posed in the chain precedence problem concerns only
chains of tasks and is a subproblem of the tree precedence problem. Figure
3.4 15 an example of how a set of chains may be modified toc become a tree
of tasks with one root task. A nonexistent root task is added which has as
its predecessor all terminal tasks of the chains,

The development of the algorithm for the chain precedence problem
is a series of three basic algorithms which lead to & possibly nonoptimal
solution, A fourth algorithm modifies the nonoptimai solution to an optimal
solution. Since the chain precedence p.oblem is a subproblem of the t.ee
precedence problem, the proof of ithe solution to the chain precedence prob-
lem is omitted. Only the proof of the solution to the tree precedence prob-

lem is stated.

3.2.1. Algorithm 3,1--Labelling

Algorithm 3.1 is a procedure for accomplishing the labelling of the
tasks. This algoritha is applicable to tasks with tree precedence as well
us chain precedence aud is similar to Hu's algorithm., The algorithm begins
by labelling each initial task with the label 1. All other tasks receive

an integer label one greater than the largest label of its preducessors.

Algorithm 3.1. Labelling
1. Label each initial task with level number 1,
2. For each task for which each of its immediate predecessors has

-2 -

Chains and trees

Figure 3.4.

been assigned level numbers, label the task with the maximum level
number of its predecessors plus one,

3. Repeat Step 2 until each tack has been assigned a level aumber.

Figure 3.5 shows an example of the labels produced by Algorithm
3.1. Throughout this chapter the largest level number assigned by the labelling
procedure is called M.

In an analysis of Algorithm 3.1 each task must be visited once for
labelling. However, when labelling a specific task x all immediate prede-
cessors of x must be examined. Since each task in a tree is an immediate
predecessor of at most one task, cach task except the terminal tasks must
be visited only twice. Therefore, for n tasks approximately 2n operations
are required. The computation for Algorithm 3.1 is, therefore, of order n,
o(n).

Having foard level num.ers for each task by Algorithm 3.1 we then
may refer to the number of tasks at a given level or merely to the level

number itself, The following definitions are helpful.

Definition 3.7. For each task x in G, L(x) is the level number or label

of task x.

Definition 3.8. For level k in G, N(k) is the number of tasks at level k

remaining to be scheduled.

Using Figure 3.6, the concepts of Definition 3.7 and 3.8 are clear.
For example, L(t5) = 2 and N(3) = 2.

Corollary 3.1 is immediately apparent from the labelling algorithm
and Definition 3.7. The corollary states that the predecessors of a task

have smaller level numbers,

_27-

H»
>~

[P¥)]

()
(2)
e 3
(2)

[VS)

Figure 3.5. Example of the labelling algorithm

o 9 e t4 level 1
e 0 level 3

Figure 3.6. Level notation
- 28 -

Corollary 3.1. For tasks x, y in G and x < y, L(x) < L(y).

The value of N(k) for each level k in G changes as a scheduling
algorithm progresses. For example, if level j has six tasks initially and
one task is assigned before the remaining five tasks, N(J) = 5 after the

single task is assigned.

3.2.2. Algorithm 3.2--Individual Level Scheduling

The second algorithm, Algorithm 3.2, schedules tasks with the
same level number without consideration of the tasks from other levels. We
then characterize the individual schedules to observe their form before
incorporating them into a complete schedule in Algorithm 3.3.

In Algorithm 3.2 all 2-unit tasks are assigned before l-unit
tasks. A task is assigned when a processor calls for a new task., Figure

3.7 shows an example of the use of the algorithm.

Algorithm 3.2, Individual Level Scheduling
let the two processors be P1 and P2’ For a given level,
1. Order the tasks into a list L so that 2-unit tasks precede
l-unit tasks,
2. When a processor needs a task, assign the next unassigned task
in list L. If both processors need a task simultaneously,

assign the next unassigned task in list L to P, and the

second unassigned task in list L to P2.

Algorithm 3.2 schedules the N(K) tasks of each level k., The order-
ing of Step 1 is a simple procedure; all 2-unit tasks must precede l-unit
tasks. The ordering is accomplished by creating a double-ended queue, or

deque, in which one end is for 2-unit tasks and one end is for 1l-unit tasks.

_29-

Two Processors

P | +—t—t
LI P 1 1
level 1
P, |} > $ r }
P [l 4 %
1T T2 T
level 2
P 1 r e '
2 ' 2 vyt
L
P1 f2 %
level 3
P [' 1
2 r v T
1 1
level 4

Figure 3.7. Use of Algorithm 3.2 in example of Figure 3.4

- 30 -

Each task is visited once during Step 1 for N(K) operations, In Step 2 each
task is again visited to create the level's schedule; again there are N(K)
operations, The total number of operations for a given level k is 2N(K)
Algorithm 3.2 48 then also of order n, O(n),

Algorithm 3.2 treats only l-unit and 2-uni: tasks on two proces-
sors, The algorithm is applicable to two processors which begin simul-
taneously as well as to processors which do not, With the condition that
execution on processors P, and P_ begins simultaneously several observa-

1 2

tions about the individual level schedules become apparent,

~

Corollary 3.&. If processors P1 and P? begin execution simultaneously,

Algorithm 3.2 produces a schedule in which processor P2 completes all

tasks either O, 1, or 2 units before processor P

1

Corollary 3.3. If processors P1 and P2 begin execution simultaneously,
Algorithm 3.2 produces a scheduiz in which at most one task is executed

on processor P, when P2 become:. idle.

1

With the condition that processor P2 begins execution before proces-
sor P1 we make two additional observations, In particular, we are concerned

with the cases where processor P, begins execution one unit cr two units before

2
processor Pl'
Corollary 3.4, If processor P2 begins execution 1 or 2 units before proces-

sor Pl’ Algorithm 3.2 produces a schedule in which one processor completes

all tasks U, 1, or 2 units before the other processor,

Corollary 3.5. If processor P begins execution two units before processor

2
Pl, Algorithm 3.2 produces a schedule in which at most two tasks legin

execution on proucessor P2 before processor P1 begins execution.

- 31 -

3.2.3 Solution to the Chain Precedence Problem

Using the labeling procedure of Algorithm 3.1 and the schedules
of the individual levels produced by Algorithm 3.2, Algorithm 3,3 produces
a schedule for the tasks in the chain precedence problem, However, Algorithm
3.3 does not always produce an optimal schedule. The discussion following
the algorithm points out the failures., Algorithm 3.4 then summarizes the
modifications required in Algorithm 3.3, But in order to make Algorithm
3.4 applicable to the tree precedence problem also, new definitions are
needed., Algorithm 3.3 and Algorithm 3.4 together produce an optimal solu-
tion to the chain precedence problem,

Algorithm 3.3 has three distinct sections. Steps 1, 2, and 3 use
Algorithm 3.1 and Algorithm 3.2 to provide the initial labelling of the tasks
and the schedules of individual levels, Scheduling begins with the termi-
nal tasks and progress back to the initial tasks, Step 4 is used when the
level to be scheduled and all the levels of predecessors have at least
three tasks. The construction of the complete schedule from partial
schedules of Algorithm 3,2 is summarized by Table 3.1 following Algorithm 3.3.

Steps 5, 6, 7, and 3 treat the case when the level to be scheduled
has less then 3 tasks. Then no level scheduled earlier has had 3 or more
tasks. Step 5 schedules all remaining tasks when only a single chain of
tasks remains to be assigned. Step € schedules tasks when the level to be
scheduled has less than three tasks. The processors are dedicated to the
longest and second longest chains, respectively. These chains, exclusively,
are assigned to these processors unless other chains equal the shorter
chain in number of levels and the length of the queue on the processor is
two or more units less than the other queue, Then a chain other than the
dedicated chain may be scheduled. Essentially, the queues are maintained
nearly equal in length until the level to be scheduled has more than two

- 32 -

tasks or all tasks are scheduled, Steps 7 and 8 detect the termination

conditions and provide the iterative structure of the algorithm.

Algorithm 1;3. Basic Scheduling Algorithm for Problem 3,3
1, Using Algorithm 3.1 assign a level number to each task.
2, Schedule level M using Algorithm 3.2 with both processors begin-
ning simultaneously,
3. Set the current level to level M-1,
L. If N(level) = 3,

LA, For level = level, level - 1, ... , 1:

LA.1. Note the number of units U a processor is idle in the

current schedule while the other processor executes

some tasks.

L4LA,2, Schedule the curreant level using Algorithm 3.2 with
processor 92 beginning execution U uniis before
processor Pl.

hA.3. Rearrange the tasks in the schedule of the current
level so that no task performed on processor P2 in

the first U units is a successor of the last task(s)

performed in the current schedule,

LA, 4, Combine the current schedule and the schedule of the

current level.
LB, The schedule is complete., Stop.
5. If N(k) = 1 for k = level, level-1, .., , 1, assign all tasks in
order, Schedule is complete, Stop.
6. If N(level) < 3,
6A. Assign a queue to the longest 22513 and the second queue to

the next longest chain, Call these dedicated queues, Break

-33_

6B.

6D,
6k.
6F.

ties arbitrarily.
Assign current l:x:l tasks to the preassigned queues.
Define Egi’ the deficieucy of queue i, as the number of units
queue i lags the other queue,
If DQ, < 3 and N(1level-1) > 3, go to Step 8.
1f in = 0, go to Step 8.
Let 5353 lgxgl be greatest level number of the tasks available
to be assigned but not dedicated to the longer queue,
€F.1. 1If a task in next level is from the chain dedicated to
queue i,
6F.1A, If the taskh's length is less than or equal to DQi,
assign the task to queue i and repeat Step €F,
6F.1B, Otherwise, go to Step 8.
6F.2.- If a task in next level is not from the chain dedicated
to queue 1,
6F.2A, If DQ, 2 2, and if by assigning the task DQ remains
DQ1 $ 1, then assign the task and repeat Step 6F.

6F.2B, Otherwvise, go to Step 8.

7. 1f N{level-1) = 0 or N(k) = 1 for k = level-1, level-2, ... , 1,

assign all tasks to the dedicated queue. Schedule is complete, Stop.

8. Let level equal level - 1, If N(level) 2 3, g0 to Step L. Otherwise

go to Step 6B,

In the schedules produced by Algorithm 3.2 and in some of the

schedules produced by Algorithm 3.3 no processor is idle while the other

processor is executing except at the end of the assignment. In these

compacted schedules we are interested in three possible forms of the

assignment or partial assignment. Figure 3.8 shows examples of Form A,

Form B, and Form C‘described in Definition 3.9.

- 3 -

Definition 3;2. An assignment or partial assigument in which both pro-
cessors begin simultaneously and in which one processor completes
execution two units, one uunit, or zero units before the second
processor is said to be of Form A, Form B, or Form C, respectively.

The forms described in Definition 3.9 are convenient for

summarizing the assigunments made in Step LA of Algorithm 3,3, Table 3.1

provides this summary which is easily verified by case analysis. Here,

X is the partial assignment called current schedule. Y is the assignment

of the current ievel as found in Algorithm 3,2 with both processors’

beginning execution simultaneously, Later we refer to the operation

of Table 3.1 as the * operation,

° Form B Form C
B A or Cf
C B Table 3.1.
B C Assigmment of Forms

(Form A)-(Form C) = Form A if Form C contains
no l1-unit tasks or only contains three tasks with
the Z2-unit task a predecessor of the last task in
Form A. In all other cases (Form A)‘(Form C) =

Form C,

One observation is immediately apparent about a complete
assignment of l-unit and 2-unit tasks which has no idle time on either

processor except possibly at the end of the assignment.

Corollary 3.6. A complete assignment of l-unit and 2-unit tasks which

is of Form B or Form C is optimal,

-35_

Form A:

P, |- 4 —+

1 L]
w
p=2

L
P, - +
Form B:

P, +—
g
p=1

P, | +

FPecrm C:
P1 } 4'
Pk +

Figure 3.8. Form A, Form B, and Form C

- 36 -

A complete ursignment which is of Form A may or may not be
[]
optimal, Corollary 3.7 describes a case that is clearly optimal since
only Z-unit tasks are involved. The discussion following the corollary

outlines the shortcomings of Algorithm 3.3 and the means for their

elimination,

Coroilary 3.7. A complete assignment of 2-unit tasks which is of Form

A or Form C is optimal,

In the analysis of Algorithm 3.3, we first focus on Step 4,
Indeed, 1f N(k) > 3, no succeeding steps of the algorithm are used, For
convenience in understanding the affect of Step 4, we refer to Table 3.1
throughout the discussion., Using the terminology of this table we note
that it is possible for an assignment to end in Form A and not be optimal.
Figure 3.9 shows four situations in which a nonoptimal Form A assigument
occurs. Later we show that only these four kinds of situations occur if
a level k with N(k) 2 3 contains l-unit tasks. The shortcomings of
Algorithm 3,3 follow:

1. The first situation, depicted in Figure 3.3(A), is such
that the last level assigned with l-unit tasks (lcvol 2) is of Form B by
Algorithes 3.2. The partial assignment after level 3 is assigned also is
of Form B, Instead of the Form C obtained by the - operation after the
assignment of level 2 we desire to obtain Form A. To accomplish this
result in general where level i has the last l-unit task, the last l-unit
task in level i should be moved to the other processor. If a conflict
with level i+l occurs, it must be resolved by rearrangement of tasks.
Also although one processor executes for two units while the other is
idle, no conflict occurs at level i-1, Since N(1-1) 2 3 and level i-1

has all 2-unit tasks, at least one task of level i-1 may be found to

-37-

optimal schedule:

t, tot, t t
p1'_.3..|_9+.24_§_'_1_|,_
2 2

OO
OO
O-O-®

2 111

t, tg ty t '
Jj]l

P2|—2§4,2§.2:2T Figure 3.9(A)

-

to t '
pfasate, () (D @
11 17 2
optimal schedule: @ @ @
P, s 2 Y
o) &) &
RTATR

. .
P, bk 1oy

TR T 60 () () &) 6
Pztt tg tip ty tg

RO D D ©

P, t t, t,t t , to @@
|2'2|1|1I2'2'

-
o
N
o
N
=S

-
-
L 3

N

Lt3 ' ts 351 t1 s

[2 L] 2 11 L { 2 v

I tg A t2 ‘teltht.-,‘

IR ER SRR

Pigure 3.9(C)

Lt4 N t3 L t2 1 t1 M t8 N

r2 T 2 . 2 v 2 v 2 4

17 Jtete %5 | t0,

‘ 2 v11*17 2 L} L4

t

L Y7

t t

4 1 2 '
' 2 ' 2 "1 2

g,

2

r2

1

v L]

1 l

&
2D
G (9

(3

ltén tS & tﬂ :tiﬁj

2“

Figure 3.9(D)

Figure 3.9. Modifications

_39-

execute during the two units even if the two units repregent two tasks,

1I. The second situation, depicted in rigure 3.9(B), is such
that the last level with l-unit tasks in level i (1 = 2 in both cases of
Figure 3.9(B)} is of Form C. Then either N(1) > 3 and the partial assign-
ment throvgh level i+l is of Form A or Form C, or N(1) = 3 and the partial
assignment through level i+l is of Form C. Iin both cases, the remedy is
the same as that described in I above.

JII. 1In the third situation, shown in Figure 3.9(C), level 1 is
of Form C and N(1) = 3 and the partial assignment through level 2 1s of
Form A. Level 1 is the last level with 1-unit tasks. In general the
lust level with l-unit tasks is ¢’ Form C with N(i) = 3 and the partial
assignment through level i+l is of Form A. We then want to back up and
find a level j, J 2 1, of Form C and N(3) = 3. In the figure, Jj = 2.

If N(j+1) 2 3, one of the three tasks in level j+1 does not conflict with

the Z-unit task of level j. This nonconflicting task should be assigned

last in level j. Level j through level i are assigred by the usua’' -
operation. In Figure 3.3(C), then, level 3 is rearraiged so that
task t6 is assigned last. Levels 2 and 1 are assigned in the usual

way. "
IV. In some cases no level j may be found such that N(J+1) > 3

and N(j) = 3. This situation occurs in the example shown im Figure 3.9(D).
In the figure level 2 is of Form C, N(2) = 3, N(1) = 4 aud the partial
assignmeut through level 2 1s of Form A. In geuneral, some level i is of
Form C, N(1) = 3, N(1-1) 2 3, and the partisl assignment through level i
is of Form A. One of the l1-unit tasks of level i is placed before the 2-
unit task of level 1. Ome of the 2-unit tasks of lcvel i-1 does not con-
flict and may be assigned following the second l-unit task of level 1
followed itself by the predecessor of the first l-unit task of level 1,

The remainder of the assignment of level i proceeds as in Algorithm 3.2

R .

1

If no 1-unit tasks exist in a level k such that N(k) » 3, it is
possible that l-unit tasks exist in some other level j where N(J) < 3.
Again we may transform the schedule, One gqueue will be longer than the
other, We use here and prove later in relation to Algorithm 3,5 that all
tasks in the longer gueue are related (Lemma 3.1)., Figure 3,10 shows two
typical cases which need transformation.

V. In Figure 3.10 a l-unit task occurs in the longer queue
(P,) or in the shorter gueue (Pe). Find the last l-unit task assigned
and call it task D. When task D was assigned, a task F either started
executijon on the other processor or was midway through executicn. Either
D or F was on the shorter queue, and a task E was available for assignmen-
in its place. 1f tasks D and F begin execution simultaneously, plece D
in the other queue before F. Otherwise, place D on the other queue alter
F. Replace D with task E.

E may have been assigned before level k where N(k) > 3 and
assigned to the shorter queue. In this case replace it with E', which is
elther a task from level k or a predecessor of T, Repeat this process
until level k is assigned. Assign level k so that no conflict occurs.

In the case when E is from level j, j = k, k-1, ... , 1,
replace E with a task from level k, Assign level k so that no conflict
occurs,

As is shawn in Theorem 3,1, level k may be assigned since
N(k) > 3. The structure of the partial assignment is changed either from
Form A to Form C or from Form C to Form A,

These corrections a:. performed by Algorithm 3.4, Algorithm
3.3 and Algorithm 3.4 produce the solution to the chain precedence pro-
blem. This fact is stated without proof since this problem is a special
case of the tree precedence problem,

-4 -

o) o
- N -
<t
] :
N
o b
(2]
-2
[]
E n)
3 [
Ny
-
~f
-t

i d
nN -
-
- —
-
— -
g
N
- -_
" |
-

optimal schedule:

[l '
v

Figure 3.10. 1-unit tasks in Algorithm 3.3

- 42 -

Before stating Algorithm 3.4 for chain precedence, we extend
the modifications slightly for tree precedence, This extension avoids
the repetition of the algorithm later. To accomplish this we present
three definitious. Figure 3.11 shows examples of the situations of

Definitions 3.11, 3,12, and 3.13,

Definition 3,10, The longer queue is the queue dedicated to thie subtree
with the highest level number or simply the queue with more time
units assigned.

Definition 3.11, An assignment break occurs at time T if

1. the longer queue completes execution of a task x
at time t,
and 2, 1insufficient tasks y, y ~ x, remain to be assigned to
the second queue to extend beyond time T.

Definition 3.12., An assignment stop occurs at time T 1if

1. the longer queue completes execution of a task x
at time T,
and 2. x is in level k such that N(k) =1,
and 3. N(k-1) = 2 such that both tasks are predecessors
of x.

Definition 3.13. An assignment fork occurs at time T if

1. the longer queue completes execution of a task x
at time T,
and 2, x is in level k such that N(k) < 2,
and 3. insufficient tasks y, y ~ x, remain to be assigned
to a second processor to extend beyond time T+1,
and 4. an assignment break did not occur at time T or T+l.

- 43 -

@ Pyt

L.
Py

r1T

Assignment Break

[]
P

Tt

P2|r

Assignment Stop

P1ln 2

) '

OOMONNO
Q &

L,
P2 ey 2 :

0 Assignment Fork

Pigure 3.11. Examples of definitions

Algoritim 3.4 corrects the failures of Algorithm 3.3 but uses

the terminology of tasks with tree precedence above., The algorithm is

applicable to both the chain precedence problem and the tree precedence

problem,

The strategy of Algorithm 5.4 parallels the five points made in

the discussion of Algorithm 3.3's shortcomings.

Algorithm 3.4,

1.

If the schedule is not of Form A, or if the schedule does not
contain l-unit tasks, or if the schedule is equal in length to
the longest chain, or if no l1-unit tasks appear after the last
assignment fork or assignment break, Algorithm 3.4 does not
apply. The current schedule is optimal,

Find the largest numbered level k such that N(k) > 3 when
assigned in the current schedule,

If at least one l-unit task occurs in levels k-1, k-2, ... , or
1, find the smallest value i such that level i contains a l-umnit
task.

3A. 1If level i is of Form B by Algorithm 3.2, thon by Table 3.1
the partial assignment k, k-1, ... , i+l 18 of Form B, Take
the last l-unit task assigned in level i, and assign it to
the other processor.

38, If level 1 1s of Form C by Algorithm 3.2 and if N(i) > 3,
or if level i is of Form C by Algorithm 3.2 and if N(i) = 3
and if the partial assignment of levels k, k-1, ... , i+l
is of Form C, take the last l-unit task assigned in level
1 and ass:gn it to the other processor,

3C. 1If level 5 is of Form C by Algorithm 3.2 and 1f N(1) = 3

-i,,5-

3D.

and 1f the partial assigmment of levels k, k-1, ... , i+l

is of Form A, fiud the largest number j such that level j
is of Form C by Algcrithm 3.2, N(j}) = 3 and k > J 2 §. If
such a j exists, select one task from the last three tasks
assigned in level j+l1 which does not conflict with the
2-unit task of level j. Assign the nonconflicting task
from level Jj+1 last. Assign levels j, j-1, ... , 1 by the
+ operation,

If level i is of Form C by Algorithm 3.2, and if N(i) = 3,
and if N(i-1) > 3, and if the partial assignuent of levels
k, k-1 ... , 1 is of Form A, place the l-unit task of level
i before the 2-unit task of level i on the longer queue,
Place one of the nonconflicting tasks from level i-1 on the
second queue followed by a task which does not conflict

with the 2-unit task of level 1.

In all cases complete the assignment by assigning levels i-1,

i-2, ... , 1 by the ° operation,

L. If no 1-unit tasks occur in levels k, k-1, ... , or 1 and a

1-unit task occurs in levels M, N-1, ... , or k+l after the last

assignment fork or assignment bieak,

LA,

Find the last 1-unit task assigned and call it task D.
When task D was assigned, a task F was either starting
execution on the other processor or was midway through
execution. Place D on the other queue to start before F
if they had begun execution simultaneously or, otheswise,
immediately after task F., Either task D or task F was not
on the longer queue and another task E could have been
assigned in its place. Replace task D with task E. If E
- 46 -

had already been assigned to the shorter queue, replace E
with its predecessor., Continue this replacement until
either no more predecessors of E have been assigned to the
shorter queue before level i or a predecessor of E may be
replaced by a task from level i,
A proof of the correctness of Algorithms 3.3 and 3.4 1s
required here, However, the solution of the chain precedence problem is
merely a subcase of the solution to the tree precedence problem which
follows. Therefore, we defer a proof of the algorithm until Algorithm 3.5

is stated.

3.3. Solution to the Tree Precedence Problem

In this section we extend the solution of the chain precedence
problem to the tree precedence problem, Instead of considering only tasks
with chain precedence, we permit tasks to be related with tree precedence.
The resulting algorithms for the solution to the new problem is Algorithm
3.4 and Algorithm 3.5. 1Its form is very similar to that of Algorithm 3.3,
However, the situations which involve assignment stops and assignment
forks complicate the algorithm,

Steps 1 and 2 of Algorithm 3.5 use Algorithm 3.1 to label the
tasks., Step 3, which corresponds to Step 4 of Algorithm 3.3, treats a
level and all later levels having three or more tasks. All other steps
treat the situations where a level with 3 or more tasks has not yet been
located. Step 4 detects the case where only one subtree remains from
the original tree. 1In this case the partial solution may be set aside,
and the set of tasks in the subtree may be considered to be a new problem,

Steps 5 through 13 isolate and treat the special cases where the
number of tasks in the level to be scheduled is less than three, We call

- b7 -

a subtree of unassigned tasks with the largest level number the longest
subtree., Similarly, we call a subtree of unassigned tasks with the

second largest level number the second longest subtree. Step 5 then

assigns the two processors to the longest and second longest subtrees.
Steps 6, 7, &, and 9 then assign tasks from these two dedicated subtrees
50 that the processor gueues remain within two units of each other, If
other subtrees have the same length as the shorter dedicated subtree,
Step 9 selects tasks from these subtrees. Step 7 detects the time when
the number of tasks to be scheduled in the next level is three or greater,
Then the queues are ready for the use of Step 3. Steps 10 and 11 detect
the termination conditions for the algorithm or the existence of only one
subtree, Step 12 detects an assignement stop within the schedulc. The
elimination of time gaps within the queue schedule is handled in Step TA
and GB,1, Steps 12C and 13 provide the iteration mechanism until Step 2

is applaicable,

Algorithm 3.5.

1. Using Algorithm 3.1 assign a level number to each task,

. Let the current lgz:l be equal to M, the largest level number.
3. If N(M) = 3,

3A. Schedule level M by Algorithm 3.2,

3B. Set level = level - 1.

3C. For level = level, level-l, ... , 1,

3C.1. Note the number of units, U, a processor 1s idle in

the current schedule while the second processor

executes some tasks.

3C.2. Schedule the current level using Algorithm 3.2 with

processor P, beginning execution U units before

2
- 48 -

processor Pl.

3C.3. Rearrange tasks of the current level in the schedule
of Step 3C.2 so that no task performed on processor
P2 in the first U units is a successor of the last

tasks performed in the current schedule,

3C.4. Combine the current schedule and the schedule of the

current level,
3D. Go to Algorithm 3,%,
If only one subtree exists, schedule a single task on longer
queue, Set aside the partial solution and dclete the assigned
task from the tree, Begin Algorithm 3,5 at Step 2 with the
revised set of tasks.
If N(M) < 3, assign a queue to the subtree with the larzest
level number and the second queue to the subtree with the next
largest level number. Break ties arbitrarily. Call these queues

dedicated queues,

If N(level) < 3, assign the current level tasks to the dedicated
queues.
If DQ, S 2 and N(level-1) » 3,
fA. If a previous stop gap remains unfilled (see Step 12B),
match the longer queues together and fill the gap. 1If
N(level-1) < 3, go to Step 8.
7B, Assign tasks to the deficient queue so that DQ1 = 0. If
this is impossible, assign tasks so that DQ1 =1, If
neither is possible, an assignment break exists,
’C. If N(level-1) . 3, set level equal to level-1 and go to
Step 3B.

- 49 -

7D, If N(l:x:l—l) < 3, assign level-1 to the dedicated queues.
Set lsx:l equal to l:z:l—l.

TE, 1f N(i:::l—l) < 3, assign level-1 to the dedicated queuss
and set l:::l equal to l:!:l-l.

TF. 1If no suvtree remains, the assigument is complete, Other-
wise, set level equal to level-l and go to Step 3B.

8. It DR, =0, &° to Step 12,

9. Let the next level be the greatest level number of the tasks
available to be assigned but not dedicated to the longer queue,

9A, If a task in the next l:zgl is from the subtree dedicated
to queue i,
9A.1. If its length is less than or equal to in, assign
it to queue i, Repeat Step 0.
9A.2. Otherwise, go to Step 12.
9B, If the task in the next level is not from the tasks dedi-
cated to queue i and if DQi 2 2 and if assigning the task
level leaves DQ1 21,
9B.1. If a previous unfilled stop gap exists (see Step 12B),
match the longer queues together and fill the gap.
Repeat Step 9.
9B.2, Otherwise, assign the task to the second processor,
Repeat Step O.

10, If no subtree remains, the assignment is complete. Stop.

11. 1If one subtree remains to be assigned, we have an assignment
break. Set aside the schedule and begin Algorithm 3.5 at Step 2
with the subtree,

12. 1f an assignment stop has occurred,

12 A. If an assigument gap remains unfilled, match the longer

- 50 -

queues together and fill the gap.
12B. Assign tasks to the second queue not to exceed the
length of the longer queue, This creates a possible
assignment stop gap.
12C, Set level equal to l:xsl-l. Go to Step 5.
15. Set level equal to level-1. Go to Step 6.
The complete schedule consists of the successive partial
schedules derived in Algorithm 3.9,
Now we must verify that Algorithms 3.4 and 3.5 do indeed pro-

duce an optimal schedule for Problem 3.1.

Theorem §;l' Algorithm 3,5 and 3,4 find an optimal schedule for
Problem 3.1.
Proof .

The strategy of the proof is to divide the schedule into
segments each of which is independent of earlier segments and later
segments, In this way no task from one segment may be assigned in
an earlier segment,

Algorithm 3.5 concludes portions of the schedule in
several places., These are Step 4, Step 7F, Step 10, and Step 11.
Step 3D calls upon Algorithm 3.4 to correct the schedule if possible.
We show that schedules achieved at each termination are optimal,.

Step 4 is executed only when the current level is level M,

In this step a single subtree exists in which there is only one task,
t, such that for all taskhs x € G, x £ t, x <t. Since task t is
indivisible, only one processor may execute t while the second pro-
cessor remains idle. We call the queue to which t is assigned the
longer queue. The partial optimal schedule consisting only of t is

- 51 -

set aside, After removing t from the set of tasks the algorithm is
reentered at Step 2 to find the schedule of the remaining tasks.
Step TF, Step 10, and Step 11 sre similar. 1In all these Steps
an assignment break occurs before a current level is encountered
which has three or more tasks. In Step 10 the assignment is com-
plete; in Step 1l all remaining tasks form a single subtree con-

sisting of a task t and tasks x, x < t.

Lemma 3,1. At time T, t 1is executed on processor 1, t2 is executed on

1

processor 2, and L(tl) < L(tz). At time T', T' > T, t; is executed

on processor 1, t; is executed on processor 2, and L(ti) > L(té).

Then at some time T', T<T'<T', t; is executed on processor 1,

to

is executed on processor 2, L(t]) = L(t}).
Proof.
Assume that the lemma is not true. Then at some time
T, L(tl) < L(ta) and at time T+1, L(ti) > L(té).
Algorithm 3.5 requires that L(ti) < L(té).
A. Assume that L(t2) = L(té).
From the assumptions, L(ti) - 12 L(té) and L(tl) +1s< L(ta).
Then L(t,) + 1 < L(t2) = L(té) 2 L(ti) -1,
This implies L(tl) +2«x L(tl).
B, Assume that L(te) = L(té) + 1,
From the assumptions, L(ti) > L(té) + 1 and L(tl) +1¢x L(t2).
Then L(tl) +1s% L(ta) = L(té) +1s L(ti).

This implies L(tl) < L(ti) which contradicts the fact that

L(ti) < L(tl).

- 52 -

Lemma };2. If an assignment break or an assignment stop occurs at time
T, each task in the longer queue is either a predecessor or a
successcr of each other task,

Proof.

Let t , t_be the tasks assigned to the longer queue,
r

LAY
Let ti, té, ey t; be the tasks assigned to the second queue,

Suppose at some first time T', t t, » t2 > ... > ti—l > ti’

YT Y Y
t’ must have been assigned during Step 9 of Algorithm 3.5 and

L(ti) = L(t If t] is the task assigned to the second processor

1) 1Y

at time T', L(t,) < L(tj). Since L(ti) = L(t the condition

1-1)”

L(,) = L(tj) would require that L(t) = L(ti-l) = L(tj). This situ-

ation would have been detected as N(L(tj)) = 3 in Step 7 of Algorithm

3.5.

Since an assigumernt break occurs at time T, at least one task
remains to be assigned. L(tr) > 1 and L(t;) =1, Therefore,

L(tr) > L(t;).

By Lemma 3.1, at some T, T' < T" < T, L(t) = L(t').

A. If tl » t, then since in Step J tasks from the dedicated chain
are assigned first, there exiats a task t*, t* < ti for which
L(t*) = L(t) = L(t'). Hence we again have N(L(t)) = 3 which
Step 7 of Algorithm 3.5 would have detected,

B. If t. ~t, then t is the last task at L(t). If there were more,
we again would have N(L(t)) > 3. How many tasks are in level
L(t) - 1? There are at least a predecessor of tl’ a predecessor
of t, and a predecessor of t'. Also there may be no tasks at

level L(t) - 1. Since there is an assignment break occurring

later, both situations lead to a contradiction,

-53-

Eg:gg §;§. If an assignment break occurs in a partial assignment which
contains assignment stops, each task in the longer queue is either
a predecessor or a successor of each other task,.

Proof.

In Step 12 of Algorithm 3.5 the assignment stop is detected.
All tasks in the longer queue are related by Lemma 3.2, Step 7B,
Step UB.1, and Step 12A unite subsequent portions of the schedule at
the assignment stop by matching longer queues. Since the first task
of each queue in the subsequent portion is related to the tasks in
the longer queue at the assignment stop, the tasks in the longer
queue of the united portions are related. s

The set of tasks up to the assignment hreak begins on both pro-
cessors simultaneously. No idle timz occu:s on one processor while
the second 1s executing some tasks except at the ~»ud, Since all
tasks in the longer gueue are related, no shorter time for completion
of this set of tasks is possible, Since all succeeding tasks, if
any, are predecessors of the last task assigned to the longer queue,
no tasks left unassigned may be included in this portion of the
schedule.

Step 3D calls upon Algorithm 3.4 to complete each schedule in
which some currcnt level has three or more tasks. By Lemma 3.1 a
schedule in which no current lével has three or more tasks is such
that each task in the longer cueue is a predecessor or successor of
each other task. Therefore, no shorter schedule is possible.

Unless N(M) > 3, Step 7 detects that a level with three or more
tasks is next to be scheduled and the longer queue is processing tasks

..51;-

while the other processor is idle for no more than two units. First,
a stop gap may remain unfilled. Since = stop had occurred and not
an assignment break, the situation is the same as in Lemma 3.1, If
N(level-1) < 3 after the stop gap is filled, the algorithm continues
as if N(lgzgl—l) had never been greater than or equal to 3.

If no stop gap remained or if N(ievel-1) > 3 after the stop gap
was filled, Steps 7B through 7F are used. Since an ussignment break
does not exist, sufficien: tasks exist to satisfy Step 7B. If levels
(level-1) or (level-2) have less than 3 tasks after Step 7B, or both,
one gqueue may receive one set and the second queue the other. At
most two units of deficiency exist. Then execution goes to Step 3B,

Step 3 is entered in two ways. If N(M) > 3, Step 3 is entered
directly from Step 2. Steps 4 through 13 are never executed. Other-
wise, Step 3B follows Step (. In either case Step 3B is entered in
the following situation.

a. Form A: Either level M was of Form A or Step TE left

Form A, 1In both cases, the last task assigned to both
queues is from the previous level. The current level has
three or more tasks,

b. Form B: Form B may be the form of level M or Form B may

be lef. by Steps 7B, 7D, or TE, In all cases, the current
level has three or nore tasks,

c. Form C: Form C may be the form of level M or Form C may

be left by Steps 7B, /D, or 7E, In all cases the current
level has three or more tasks.

For this discussion if N(M) > 3, level k is level M, Otherwise,
level k refers to the current level in e, b, and ¢, above, which is

—55_

the first level with three or more tasks. Given the partial assign-
ment through level k, each additional level is added using Algorithm
3.2 by Steps 3C.2 through 3C.4. The results of these assignments
are summarized in Table 3.1 which is easily verified by case
analysis, Consequently the resulting schedule at Step 3D may be of

Form A, Form B, or Form C,

Lemma 3.4. No idle time occurs in a partial schedule by Algorithm 3.°

except possibly on one processor at the end of the schedule,

Proof.

Tasks in Algorithm 3.2 and in Algorithm 3.5 at Steps 3, 4, 7,
and O are scheduled without delay between tasks, In Step 12 of
Algorithm 3.5 a stop gap is allowed to exist. However, by definition
sufficient tasks are available to fill the gap. The tasks are
assigned when the longer queues are matched in Step 7A, “B.1, and
12A.

Since no idle time occurs in the partial assignment by Lemma
3.4, schedules of Form B and Form C are optimal by Corollary 2.5.
Therefore, only assignments of Form A must be shown to be optimal or
transformed to Form C by Algorithm 3.k,
a. If the length of the longest queue is equal to the length
of the longest path in the subtree, the Form A is optimal.

b. If the assignment contains no l-unit tasks, there are an

odd number of 2-unit tasks, No better schedule may be

obtained,
The l-unit tasks occur either in levels M, M-1, ... , k+l or
in levels k, k-1, .., , 1 where k is the largest numbered level such

that N(k) >z 3 found in Step 2.

- 56 -

If a l-unit task occurs in levels k, k-1, ... , 1,

Step 3 finds the smallest value i such that level i con-

tains a l-unit task,

1. k 2 i, the partial assignment up to level i+l is of
Form B and level 1 is of Form B by Algorithm 3.2: By
Table 3.1, (Form B).(Form B) gives Form C. By moving
one l-unit task from one processor to the next imn
Step 3A, the form becomes Form A, By Table 3.1 the

assignment of levels of Form C and Form A which before

created Form A now creates Form C. Since all remaining

levels have only 2-unit tasks, a complete assignment

which before was Form A now becomes Form C by Table 3.1.

2. k> i, the partial assignment up to level i+l is of

Form C and level i is of Form C by Algorithm 3.2: Again

one of the l-unit tasks can be moved from one processor

to the second or doae in Step 3B, The form which was

(Form C).(Form C) = Form C now becomes Form A. By

Table 3.1 and the fact that uno l-unit tasks occur later,

the assignment is completed as Form C.
3. k > 1, the partiasl assigument up to level i+l is of
Form A, and level 1 is of Form C by Algorithm 3.2 with

N(1) > 3. Since N(i) > 3, there are more than one task

other than the two l-unit tasks. At least one of these

tasks may be assigned during the partial assigument
deficit. This leaves at least one l-unit task which
may be moved to the other processor to create Form A

iustead of Form C as 1in Step 3B,

-57—

L,

k > 1, level 1 is of Form C by Algorithm 3.2 with

N(i) = 3 and the partial assigumeat up to level i+l is
of Form A, Step 1C finds the largest number j such that
k > 3, N(J) = 3, and level j is of Form C by Algorithm
3.2. If j does not exist, the assignment length equals
the length of the longest path in the tree., The last
tasks assigned in level j+l1 are unrelated, and two do
not conflict with the 2-unit task of level j. By
assigning one of these two tasks last imn level j+1, as
in Step 3C, the partial assignment up to level j
becomes Form C instead of Form A,

k 2 1, level i is of Form C by Algorithm 3.2,

N(1) = 3, N(i-1) > 3, and the partial assignment up to
level 1 is of Form A. Level i-1 contains only 2-unit
tasks. Two of which, respectively, are predecessors

of the l-unit tasks of level i, As in Step 3D, by
placing a 1-unit task t of level i before the 2-unit
task of level i, the predecessors of the other l-unit
task t' of level i may be assigned in place of t. Then
the predecessor of t is assigned after that, All other
tacsks of level i-1 are assigned as usual. If the
original form of the partial assigument was Form A, or
Form C, it now becomes Form C or Form A, respectively,
By Table 3.1, the complete assignment becomes Form C,
No l-unit tasks exist in levels k, k-1, ... , 1. We
desire to change the Form A or Form C of the partial

assignment of levels M, M-1, ... , k to Form C or Form A,

- 58 -

respectively, This operation is accomplished by moving
a l1-unit task from one queue to the other,.
6A. In Step YA, a last assigned l-unit task D exists
which is not in the longer queue., At the same
time a task F is executing on the longer queue,
Also since N(k) > 3, there exists a task E,
E~D, E~F, E is a 2-unit task, D is replaced
by E, and D is placed before F if F begins execu-
tion at the same time as D. Otherwise, D is
placed immediately after F. Since D, in its new
place, does not begin execution earlier tham
before, it has no conflict with earlier tasks,
Since no task related to D is executed while D is
executed, no conflict exists there. If E had
already been assigned to the second queue, all
tasks assigned before it begin no earlier than
they had before. This creates no problems since
no assigmment fork occurred., Scheduling the tasks
of level i creates a different form than before.
6B. In Step 4B, one extra unit is again assigned to
the longer queue with the same results as in
Step 6A.
d. Now it must be shown that all possible occurrences of non-
optimal schedules have been corrected.
1. A schedule which ends in Form A aud whose last level 1
with 1-unit tasks is of Form B, has a partial schedule

through level i+l of Form B, Otherwise, a Form B would

-59-

result after assignment of ievel i which could not he
changed to Form A by the tasks in succeeding levels of
Form A and Form C, This case is taken care of in para-
graph 1 of c above,

A schedule which ends in Form A and wvhose last level 1
with 1-unit tasks is of Form C may have a partial
schedule through level i+1 of Form A or Form C. Form B
may not exist if the whole schedule ends in Form A,
These cases are found in 2, 3, 4 and 9 of ¢ above,

The last level with l-unit tasks may not be of Form A

by definition.

The procedure of paragraph 6 in ¢ above succeeds only if no
assignment fork occurred after the l-unit task. Suppose a
change may be made before the assignment fork at time F. Then
we must increase the longer queue by one unit and decrease the
shorter queue by ote unit, It is impossible to decrease

the longer queue since all its tasks are reluted,
Originally, the last task t in the longer queue termin-

ated at time T, and no tasks were assignable to the

shorter queue after time T+l, Hence, a predecessor t'

of t had to be assigned at time T or T+1 on the shorter
queue if it were available. By increasing the longer

queue by l-unit the last task s, s # t, in general, ends

at time T+l on the longer queue, t’' then must be

assigned at time T-1 if ¢ # t or at time T if s = t. In
both cases t, the successor of t', has not been com-

pleted, and the assigument is nnt possible,

- 60 -

3.3.1. Analysis of Algorithms 3.4 and 3.5

The analysis of Algorithms 3.4 and 3.5 is more involved than
for Algorithm 3.1 and 3.2, But the description below shows that the
sclution to the tree precedence problem requires O(n) operations. We
begin with Algorithm 3.5,

In Step 1 the use of Algorithm 3.1 one time requires O(n)
operations, Its use is never repeated throughout the algorithm, Step 2
requires at most one operation per level to keep track of the current
level number., In general, much less than n operations is required.

Step 3 is a complicated step which in some cases may perform
the whole sequencing operation. As shown earlier the use of Algorithm
3.2 in Step 3A and Step 3C.2 is an operation which requires on the order
of the number of tasks in the level for completion, The repeated use
through each level would give O(n) operations. Steps 3B and 3C combine,
again, to require O(M) operations (M << mn, in general). The inspection
of the current schedule needed in Step 3C.1 at each level also means O(M)
operations. Step 3C.3 means that each task in a level may have to be
scanned to rearrange the current level schedule. 1In general, not all
tasks must be visited here, Yet the step when repeated for each level
gives 0(n) operations. The total number of operations in all for Step 3
is of O(n).

The examination of Step 4 is a process which may require
looking at two terminal tasks in the yet umscheduled tree, However, in
practice the number of tasks remaining at given levels is a value the
implementer would probably maintain in a separate table. In either case
the number of operations for inspection :s 0(n) through the whole
procedure. If the assignment is performed by Step 4 it is of the

- 61 -

simplest nature and requires one operation for each use.

Step 5 is similar to Step 4 in that at most two tasks must be
scanned each time the step is encountered which may be M times. But
again this requires O(n) operations. In Step 6 we have the same analysis.

Step 7 has many options. In Step TA some mechanisam is required
to retain the fact that a stop gap is unfilled. Several, perhaps all,
currently assignable tasks may be visited, In the worst case this may be
nearly all n tasks. However, Step 7 may be used only once during an
assignment. A practical implementation on the other hand may apply Step
1 of Algorithm 3.2 to all levels before going beyond Step 3 to facilitate
these searches, Step 7B is similar to Step 7A and may use information
obtained by its search so as not to repeat unsuccessful attempts, Step 7C
is a test and level count update if used, Step D, 7E, and TF perform
simple two task assignments. Then either the assignment is complete or
Step 3 is entered. For Step 7 the number of operations is of 0(n) for
its single use,

Steps 8 through 13 are lengthy to describe but computationally
simple. Step 8 requires a simple test of a variable constantly updated.
Step O may be repeated several times at each use, However, the value of
next level would be constantly maintained in an implementation to facili-
tate its u=e, Although the step may be repeated more than once, it is
not repeated more than the number of levels., Usually the number is much
less than M. The searches in both 9A and 9B may require looking at
nearly all tasks. From the complete algorithm the number of operations
is about Mn,

Step 10 and Step 11 inspect the remaining subtree and require
knowing the number of tasks awaiting assignment in the next highest level,

- 62 -

Step 12A is analyzed in the same manner as TA, Step 12A and 12B may
require looking at the small number of tasks awaiting execution, Steps
12C and 13 require merely bookkeeping for the level count. The number of
operations is much less than n.

Algorithm 3.4 is applied in certain cases to the resulting
schedule after Step 3 of Algorithm 3.5 is used., Step 2 requires locating
a special level which is easily maintained in an implementation of
Algorithm 3.5,

In Ster. 3 the scan of the levels cannot require looking at more
than each task once. However, again an implementation may simplify this
procesg by some bookkeeping. Steps 3A, 3B, 3C, and 3D are local fixups
and require looking at a few tasks in at most two levels or finding
another specific level, Again no task must be looked at more than once.
To complete the optimal schedule Step 3 of Algorithm 3.5 as embodied in
Table 3.1 must be applied. 1In all the number of operations is O(n).

The analysis of Step 4 is similar to that for Step 3. Again a
search for specific tasks looks at each task at most once. The transfor-
mation is local although several tasks assigned later may be inspected.
Again the optimal schedule is completed using Table 3.1. 1In all the
number of operations is O(n).

The practical use of the algorithm occurs when M << n, In
these cases the number of operations when summed throughout the algorithm

is of 7(n).

2.4, A Solution to the Tree-restricted Acyclic Precedence Problem

A more difficult problem is an extension of the tree precedence
problem to l-unit and 2-unit tasks with acyclic precedence, Its solution
would be a major step forward in scheduling research. Unfortunately, we

- 63 -

have been unable to find an efficient solution. Instead, the special
case defined by Problem 3,2, the tree-restricted acyclic precedence
problem, is considered here., First, we repeat the problem statement from

Section 3.1,

Problem é;g. The Tree-restricted Acyclic Precedence Problem
Find an optimal two-processor schedule for a set G of n l-unit and
2-unit tasks with p tree-restricted acyclic precedence,

Algorithm 3.6 presents a procedure to solve the tree-restricted
acyclic precedence problem. The method is repeated applications of the
solution to the tree precedence problem. This process is successful
because each tree in a set G must be completed before any tasks in the

successive tree may begin.

Algorithm 3.5,

1. Locate the p sets of tasks with tree-precedence, Al’ A2’ cee g

Ap, such that Ai- is maximally connected to Ai’ 1=23 ... ,p.

1

2. Schedule each set of tasks with tree-precedence, A s A

l’ Ae’ p’

using Algorithms 3.4 and 3.9,

A

3. Execute the sets of tasks in order A Y REEEE)

1, Apt

Theorem 3;2. Algorithm 3.6 produces an optimal schedule for n l-unit and
2-unit tasks with p tree-restricted acyclic precedence on two
processors (m = 2).

Proof.

By Theorem 3.1 each set of tasks, A,, i =1, 2, ... , p with

1’
tree precedence is scheduled optimally by Algorithms 3.4 and 3.9,

For all tasks x imn Ai-l and all tasks y in Ai’ x <y, for

i=2,3 ..., p, by Definitions 3.1 and 3.2. All tasks in Ai-l

- 64 -

must be completed before any task in A1 may begin execution, Since

for all i, A1 is scheduled optimally, the whole schedule is optimal,

3.5, A Look Ahead

The central result presented in this chapter is an algorithm
for the optimal scheduling on two processors of l-unit and 2-unit tasks
with tree precedence, Our work has not produced an extension of these
results to the problem for two processors and l-unit and 2-unit tasks
with acyclic precedence. However, in the latter problem the technique of
sukschedules may be applicable. Also the structuring of schedules so that
al’ tasks ir one section must be completed before any other task begins
has been successful here and in the Coffman and Graham solution. This
technique may also facilitate the solution of the general problem,

In addition to the problem suggested in the previous paragraph
the problem of tinding an optimal schedule on three or more processors
for l-unit tasks with acyclic precedence remains unsolved. We feel that
both these problems should be studied at this time. This area suffered
eleven years without major results between Hu's solution and the Cof fman
anc Graham solution. The repetition of eleven years with no results, we

feel, is unlikely.

- 65 -

Chapter 4

Segmented Processor Scheduling

4.1, The Segmented Scheduling Problem

This chapter presents work conceruning special cases of the two
machine (u = 2) problem with n tasks, The problem is formally presented
in Problem 4.1. Informally, however, the reasonableness of the restric-
tions are readily apparent,

In computer scheduling it is sometime advantageous to queue a
group of tasks (programs) which use the same facility (compiler) which is
serially reuseable (core resident). In this case intermixing a queue of
dissimilar tasks would cause set up delays of disproportionate length.
Similarly, the processing (execution) of these tasks on a second machine
may also require special facilities (run time administration) which are
also serially reuseable. Finally, the completion of the task processing
(output) may again be performed by the first processor with advantages of

grouping. Problem 4,1 establishes these requirements,

Problem i;l. Segmented Scheduling Problem
Find a schedule for n tasks composed of three operations. The
first and third operations of each task must be performed on Machine
One and the second operation must be performed on Machine Two (m = :).
Using Juckson's notation of Section 2.2, the tasks are divided into
two sets: {ABA) and [BAB). The form of the solution is
restricted as described belov to a schedule with no idle time.
Machine One: The initial operations of the set [ABA!, followed by
the second operations of the set (BAB], and followed

by the third operations of the set [ABAl.

- 66 -

Machine Two: The initial operations of the set [(BAB}, followed
by the second operatious of the set (ABA), and followed
by the third operations of the set (BAB),

The segmented scheduling problem restricts the solution to one
of the four forms 1llustrated in the Gantt charts [Clark 1947] of Figure
4.1, 1In these charts the time on each processor is divided into segments
and labelled with the set tasks to be assigned in that segment., An under-
line within the brackets indicates the operations for the set of tasks.
wvhich is to be performed in the particular segment, For example, {AQQ}
irdicates that the third operations of the tasks in the set {ABA]} are
processed,

By the symmetry of Machine One with respect to Machine Two,

Gantt charts II and IIl are similar, and Gantt charts I and IV are simi-
lar. The discussion will be limited, therefore, to forms I and II,

The following sections of this chapter contain results of
several subproblems of the segmented scheduling problem. First, in
Section 4,2 we limit our consideration of the problem to those cases
which have the Zorm of Gantt chart II. We call this restricted problem
the "special segmented problem”. Then by limiting the operation lengths
of the tasks in this new problem we define and solve new subproblems,
These problems are:

a. The special segmented problem with tasks haviung l-unit and

2-unit operations., (Section 4.,2.2)

b. The special. segmented problem with tasks having successive
operations that differ by one unit in length and that differ
by k units ia length. (Sectien b.2.3)

- 67 -

| -+ 4
1
ABA {BAB}
p, |fEaBL_, G, OB
P, | {ABNY —t (345} N {ABA} .
. 11
P, | 1200 {ABA) . {eap}
. | aB} {BAB} (A34)
1 '7 L J v v
111
P, | {BAE) : (ABA} | {28} .
, f {ABA} — {BAE} ' {ABAY :
v

p, | By (e {map

+

Figure 4.1. Yorms of the Special Segmented Problem

- 68 -

c¢. The special segmented problem with tasks having first and third
operations of equal length. (Section 4.,2.4)
Finally, the special segmented protlem is extended to four segments. We
then solve the new problem when the tasks have first and last operations
of equal length and have second and third operatious of equal length,
(Section L.,2.5)

Before we proceed, however, it is worthwhile to consider the
relationship of our problem to the general m X n sequencing problem. As
mentioned above, the segmented scheduling problem reflects certain
constraints found in some computer scheduling problems. But the solution
to tlie problem as restricted by these conditions is not necessarily an
optimal solution for the general m X n sequencing problem, Figures 4,2
and +.3 show examples in which no solution satisfying the conditions of

the segmented scheduling problem may be found.

4.,2. Segmented Scheduling Problem

When we consider problems which have the form of Gamtt chart I,
the problems have a .ery simple solution, The reasoun for the ease of
solution is that the operations are decoupled.

Definition 3;1. Two successive operations in a set of tasks in the
segmented scheduling problem are decoupled if all of the first
operations of all the tasks in the set can be completed before any
of the successor operations of any of the tasks in the set may be
init‘ated,

In an assignment of the type of Gantt chart I, two pairs of
operations are decoupled: the first and second operations of the set

"pAR] and the seccnd and third operations o1 the set {ABA]. The order

in which the -irs: operations of the set (BAB} arve performed, therefore,

- 69 -

Given the four tasks
0B = {t, = (7,3,4), %, = (1,8,6)}
(BB} = {t; = (4,2,1), t, = (2,3,5)}
an asnignment may be found which contains no idle time

and is completed in 23 time units.

b, b2, % N S S N
t 7 3 6 2 4
(A)
v LI A v L4
2 T2 8 3 4 5
The ordering requirement on each processor may not be
maintained without adding idle time. The best solution
that satisfies the ordering condition on both processors
is an assignment of length 24.
b L2, R UL S A S N
1 ' v v L L v g
1 7 2 3 1 6 4
(B)
P L t3 4‘t4 . i . t1 }3. t4 .
2 ¢ 2 8 3 5t 5 !

Pigure 4.2. No solution to Problem 4.1 in Form II

- 70 -

Given the four tasks
(ABA} = ft, = (2,3,6), t; = (11,8,2)}
(B} = {t; = (4,8,8), t, = (2,4,8)}
we obtain the minimal solution of length 33.

P, 'rt‘; %y | t2 — Yt
2 4 11 8 6 2

(a)
P, FJ.’_E J't1 + t4 4 12 + .
2 4 3 8 8 ; 8

The ordering requirement on each processor may not be
maintained without adding idle time. The best solution

that satisfies the ordering condition on both processors

is an assignment of length 37.

r2 11 v 4 v 8 L | 6 121
(B)
t t
P, }ii—i+t’f A S S L
2 4 3 4 8 8 8

Figure 4.3. No solution to Problem 4.1 in Form I

-7 -

is arbitrary, Likewise, the order in which the third operations of the
set ABA' are perfurmed is also arbitrary, The remaining operations
may be assigned using Johnson's method if a feasible assignment is at all
possible with this form.

The form of the problem cnaracterized by Gantt chart Il poses
a more chsllenging problem, Clearly, the operations of {BAB] may be
performed without any regard to their relative order since both pairs of
successive operations are decoupled, We are then concerned only with the
assignment order of the operations of tasks in set {ABA). To facilitate
later discussion we define this problem as the Special Segmented Problem,

Definition 4.2, The Special Segmented Problem is that special case of

Problem 4.1 which is characterized by Gantt chart II,

«.2,1. A Foundation for New Results

The results of Bauer and Stone [1970] show that several
subproblems have efficient solutions. However, one covre problem remains
unsolved. In this section these solutions are given as background for
new results, First a few basic definitions are required,

Definition :;i. A stage 1 of a given machine is a segment of time in
which the i-th operations, and only the i-th operations, of all
tasks are scheduled.

Definition 3;3. A delay, Ai’J’ is the difference between the time a
task's j-th operation is initiated and its i-th operation is
initiated,

Definition 3;2. The gap is the segment of time after the first stage
terminates and the third stage initiates,

Each task, tk’ k=1,2, ... , n, consists of three operations

b3 b , and c

K to be scheduled in stages 1, 2, and 3, respectively. Then

k
- 72 -

we may define the contribution a task makes to the delay,

Definition 4.6. Let x be a pair of successive operations of a task

1’ Y

t,. Then the contribu<ion c(xi,yi) of task t, is the differeunce

i
Yy T %y
It is important to know if a task is assignable without causing
delays in the schedule during which no operation may he executed. The

following definition determines the condition of assignability,.

Definition 4,7, A task t1 is immcdiately assignable if

3
a, Al,2 and b1 < A2’3.
If for each task tk’ k=1,2¢, ... ,n, LN < bk < Ch? then the

contributions C(ak,bk) and C(bk,ck) are nonnegative., As soon as a task
becomes immediately assignable, it may be assigned. In no case may the

task reduce the values of the delays, Al 2 and A2 .. If a task or group
2

[

of tasks never becomes immediately assignable, the problem has no solution,

The second problem consists of tasks : ., k=1, 2, .., , n,

k!
where a 2 bk 2c. The problem is identical to that described in I when

the following transformation is performed.

Definition 4,8, The mirror image problem is the problem obtained by two

transformations of the original problem,
1. The precedence among the three operations is reversed. For

example, with 'k < bk < ck in the original problem,

ck > bk > .k in the mirror image problem,

n

The initial delays A1 2 and A2 3 in the original problem
’ ’

become A and A2 1» Tespectively.
s

3,2
The third problem consists of tasks tk’ k=1,2, ... , n,

such that a_ > bk and ¢

" 2 bk' This problem has the same characteristics

k

as its nirror image problem. 1In brief, Bauer and Stone give a solution

-73_

consisting of a functional equation. The solution depends upon the fact
that the tasks may be divided into two groups. In each group one opera-
tion of all the tasks are decoupled from the other two operations. The
tasks of each group of tasks are found in the order they must be assigned.
They are selected from a list of tasks arranged by the increasing size of
the second task.

The problem consisting nf tasks t , k=1, 2, ... , n, such

k!

that L < bk and ck < bk is unsolved by an efficient solution, We call
this the core problem. In succeeding sections special cases of this

problem are discussed.
4,2.2. A Special Segmented Problem

Problem 4.z,
Find a schedule for n tasks composed of three operations, The
first and third operations must be performed on Machine One, and
the second operation must be performed on Machine Two (m = 2)., The
length of each operation is 1-unit or 2-units, The form of the
schedule is restricted to the Special Segmented Problem with no idle
time,
The restriction upon the length of each operation in Problem
4.2 leaves only eight possible task forms.

111 112 121 122

a1l 212 221 222
The contributions c(ak’bk) and C(bk,ck) may equal only -1, 0, or +1 for
each task k, k =1, 2, ... , n, Algorithm 4,1 schedules the tasks in an
order which assures a correct assignment if one exists, If no optimal
assignment exists for Problem h.2, the algorithm fails,

- T4 -

The main strategy of Algorithm 4.1 depends upon the delay
between successive operations, One delay is usually too small to accommo-
date the task with the maximum size operation corresponding to that delay.
Hence, it is desirable to build up the value of the delay to accommodate
this maximum task by assigning immediately assignable tasks with the
largest contributions to offset the deficient delay., This process is
repeated upon the delay that is deficient until all tasks are assigned,

if that is possible,
Algorithm 4,1,

1. Divide the tasks into four sets

Set I = ({tasks of forms 111, 112, 122, 222)
Set II = {tasks of form 212)

Set III = (tasks of form 121}

Set IV = (tasks of fowms 211, 221}

2. Calculate initial values of A1’2, A2’3, A3’2, and A2,1.
3. Assign all unassigned tasks from Set I which are assignable.

Update values of Al and A2 If Set II = @ and Set III = @,

,2 13'

go to Step 12.

L, If A1,2

Update A1’2 and A

> 2 and A > 1 and Set II # ¢, assign task from Set II.

2,3
2,3°

23

Go to Step 3.
5. If Al 2> 2 and A 2 1 and Set II = ¢, assign task from Set III,
’

Update 4 and A Go to Step 11,

1,2 2,3
6. If A = 2 and A = 1, assign task from Set II. Update
1,2 2,3
A1,2 and A2,3. Go to Step 3,
7. If A =1 and 4, . > 2 and Set III # ¥, assign task from Set
1’2 2!3 '
t .
I11. Update A1,2 and A2,3. Go to Step 3

1t A1,2 = & and A2’3 > 2 and Set III # @, assign tasks from
-75-

1C.
11.

12.

13.

17.

Set II1., Update A1,2 and A2’3. Go to Step 3.

If A =2 and A > 2 and Set II1 = @, assign task from

1,2 2,3
Set 11, Update A1,2 and A2,3. Go to Step 11,
Assignment fails,

If Set II # ¢ or Set III # @, assignment fails,
Assign all unassigned tasks from Set I which are assignable.

Update values of A and A If Set I # ¢, assignment fails.

1,2 2,3’
Reverse time., If Set IV = ¢, assignment is complete.
Assign all unassigned tasks from Set IV which are assignable,
Update A3’2 and AE,I’
It Set IV # ¢, assignment is complete.
11 tasks exist which were assigued before, assign last task
assigned. If not, assignment fails.

Go to 1k,

The algorithm is quite straightforward, However, a proof that

its output is indeed the optimal solution desired is required, Theorena

4,1 provides such a proof as well as a discussion of the algorithm step

by step.

Theorem 4.1. Algorithm L.l provides an optimal solution to Problem 4.2,

if one exists,

Proof.

Assume that a feasible assignment is possible but that

Algorithm 4.1 fails., Failure may only occur at Steps 10, 11, 12,

or 16,

A,

Failure occurs at Step 10 or Step 11. Assume that Set IV = @
since Set IV # ¢ can only make the situation worse,

- 76 -

A.2.

A.3.

Suppose Set II # @ aund Set III # ¢ and Set III # 9. If
A >0 and A > O initially, Steps 4 through 9 do not
1,2 2,3

allow 4, , or A to become O while Set II is empty (Step 5).
»

2,3
If either A =0ord = 0 initially, no assignment was

1,2 2,3
possible. Then when failure occurs at Step 10 or Step 11,
A =4 = 1 siuce either equaling 2 would allow a task to
1,2 7 92,3
be assigned., Step 3 assigned all tasks of forw 112 which were
available., No condition in Step 4 through O was ever satis-
fied since this would have increased either A or A .
1,2 2,3
The latter means one was zero which contradicts the existence

of a feaaible assignment,

Suppose Set II # ® and Set III = @. When failure occurs at

Step 10 or Step 11, either A <2o0r A < 1l, Since Steps
1,2 2,3
L through 9 do not permit either Al P A2 3 to be zero, only
? ’
A =1 and A 2 1 is permissible if a feasible assignment

1,2 2,3

exists, If more than one task is in Set II, all contributions

would reduce 4 to negative,

1,2
A task in Set II cannot be assigned last; if a feasible
assignment exists, a task in Set III must be assigned last.
Assume a task from Set III is left until last and all other
tasks in Set II and Set I were assigned. The resulting values
of A1,2 and A2,3 would change to Ai,2 = A1,2 - 2 and Aé’3
= A2’3 + 2. Since AI,E =1, Ai,? = -1 which means an assign-
ment may not leave either a member of Set II or Set II to be
assigned las: from the two sets. No sssignment was feasible,
Suppose Set I1 = ¢ and Set III # . By similar reasoning to

those in part A.2, a contradiction to the existence of a

-77-

feasible assignment is found,

B. Failure at Step 12. Again Set IV may be disregarded and

assumed empty. Since tasks in Set I are assigned as soon as

they are feasible, either

1, A1,2 =0 or A2'3 = 0, initially
2. A1,2 =1 and 62’3 >1 or
AI,Z > 1 and A2,3 = 1, always, and a task

of form 222 remains

or 3. A = 1 and 42,3 = 1, always, aud tasks of forms 122

B.1.

B.2.

B.3.

1,2

or 222 remain.

A1,2 =0 or {

is possible,

2,3 = 0, initially. No feasible assignment
?

A =1 and § >lord > 1 and 4, 3= 1, always,
b4

1,2 2,3

and a task of form 222 remains. Then the case never

1,2

occurred when A 2 2 and A2 2 2. Either Al 2= 1 or
2

1,2 '3

A2 3= 1 at all times. This forced the assignment to be
’

from Set 111 or Set 1I, respectively, in order that neither
becomes O, Since both Set II and Set III are empty, and
only tasks of form 222 remain in Set I, no assignment is
feasible.

A =1 and A = 1 and tasks of form 122 and 222 remain,

1,2 2,3

It was never the case that A =1 and A 2 2 or that
1,2 2,3

A 2 2 and 4 2 2 occurred. No task other than 111
1,2 2,3

was ever assigned since at some time either A or A2

1,2

would have been zero. No assignment is feasible,

23

C. Failure at Step 16,

c.1,

If 211 tasks remain to be assigned, then either A =0

3,2
- 78 -

or A2 1 = O initislly, Then no feasible assignment was
H
possible,
C.2. All 211 tasks have been assigned, but some 221 tasks

remain, It has never occurred that 4 21 and 62 12 2.
H

3,2
Then no task from Set II or Set III 1as even been
assigned, No 211, 122, or 221 tasks have been assigned.
Ouly 111 and 112 tasks have been assigned, and A3’2 =1
at all times, No feasible assignment was possible.

Figure 4.4 shows the use of Algorithm 4.1 to solve an example

or Problem L.Z2,

4,2.3. A Mure General Core Problem

To extend the result of the previous section we introduce a
problem which relaxes the constraint on the length of the tasks. In
Problem 4.3 below the lengths of successive operations are required only

to differ by one unit,

Problem 4.3,

Find a schedule for n tasks composed of three operations. The
first and third operations must be performed ou Machine One, and
the second operation must be performed on Machine Two (m = 2). The
first and third operations have identical length, and the second
operation has length one less or one greater than the first and
third operations. The form of the schedule is restricted to the
Special Segmented Problem with no idle time.

The solution to Problem 4.3 is similar to that for Problem L. .2,

Algorithm 4.2 gives the details of the solution method while Figure 4.5
shows an example of its use,

-19 -

Tasks
t1 = (1'1’1)

t = (2,1,1)
2 Set I = {t,, t,}
t3 = (1,2,1)
Set II = {5}
t4 = (1’2'2)
Set III = {t;, tg t73
ts = (2.1p2)
Set IV = {t,}
t6 = (1p2)1)
t7 = (1,2'1)

Figure 4.4. Example of Algorithm 4.1

- 80 -

Tasks

= (4,5,4) t, = (4,5,4)
= (5,6,5) t, = (5,6,5)
tg = (6,7,6) tg = (6,7,6)
= (7,8,7) tg = (7,8,7)
(8,9,8)

4 567 8 7 6 54245 6 7 8 7 654

t7
N

o+
W -
[I

[
<
!

t L] 't6 4'5

: t1‘3‘5 9,
9 8 7605

Y9 s 67"

Figure 4.5. Problem 4.3 and Algorithm 4.2

If the tasks are: Scale tasks by 2:
ty = (8,10,8) t) = (4,5,4)
t, = (8,10,8) ty = (4,5,4)
ty = (10,12,10) 1y = (5,6,5)
t, = (10,12,10) t3 = (5,6,5)
t5 = (12,14,12) ty = (6,7,6)
te = (12,14,12) tg = (6,7,6)
ty = (14,16,14) ty = (7,8,7)
tg = (14,16,14) tg = (7,8,7)
tg = (16,18,16) ty = (8,9,8)

Pigure 4.6. Problem 4.4 and Algorithm 4.2
- 81 -

Algorithm 4,2,

L.

Divide the tasks into two sets according to whether the contri-
bution from the first and second operations is +1 or -1:

Set J

I}

{x¥x | x+1 = ¥}

Set II = {XYX | X-1 = Y}

1

Define “1 to be equal to the largest first operction,

Define M2 to be equal to the largest second operation,

Calculate A1,2 and A2’3.

If Set II = @ and Set III = @, the optimal schedule is complete.

If for some i, 1 = 1 or &, M, > 4 , assign task with the
i i,i+1

largest valued second operation from Set I if {1 = 1 or from

Set II 1f 1 = 2, Update values of Ml, H2, A1’2 and A2’3. Go

to Step 4. If no task may be found to assign, the assignment
fails.

For some i, 1 =1 or 2 and j, j £ 1i, J =1 or 2, “1 = A1,1+1 and

My = 8y,50,

t)A, If all tasks t with the i-th operation equal to Mi are in
Set 11, assign each task t in Set]I alternately with tasks
with the largest operations from Set I until all t are
assigned. Update the values of Ml’ Ha, A1,2, and A2’3. Go
to Step 4,

6B. If all tasks t with the i-th operation equal to M1 are in
Set 1, assign each task t in Set] alternately with tasks
with tge largest operations from Set II un:iil all t ere

Go to Step 4.

assigned. Update Ml’ , and A

Mo 8 2 2,3

6¢C, 1If tasks t with the i-th operation equal to M1 are in both
Set 1 and Set II, assign each task t in Set I fcllowed by

- 82 -

a task t from Set II until all t's are assigned f-om either

Set I or Set II. Update the values of M., M_, A ., and
17 72 11,2

&, ,. Go to Step 4.
2,3 P
r. 1If A1’2 > M1 and A‘?,3 2 M2,
; th
(A, While A1,2 2 Ml and A2,3 > l2, assign tasks wi the

largest first operation from Set I alternately with tasks
with the largest first operation from Set Il1. Update the

A .
values of Ml’ HQ’ 1,2, and A2’3

after each assignment, When the condition fails or both

Check the condition

sets are empty, go to Step L,

As in the case of the previous algorithm, the detailed discus-

sion of Algorithm 4,2 is contained in the proof of a theorem. Theorem

4.2 shows that Algorithm 4.2 does produce an optimal solution for

Proh:~n

“.

]
S

Theorem 4.2, Algorithm 4,2 provides an optimal solution for Problem L.3

if one exists,

Proof .

Assume that a feasible solution is possible to Problem L,3, but

that Algorithm 4,2 fails. Failure may only occur at Step 5. Then

for all tasks XYX in Set I and Set II either

A.

X > Al’2 or Y > A2,3
X > Al 2 and Y > A2 3: A solution was possible under the condi-
2 b
= £ j -
tion that M < A1,1+l for 1 = 1o0or 2, then for jJ £1, j =1 or
2 -M, < -
’A1,1+1 Mi MJ AJ,J+1.

X -4 >loryY-~A > 1. Then the algorithm was operating
1,2 2,3
in Step 5 for the first time while attempting to build up to the

- 83 -

maximum task size but failed, An insufficient contribution was
available to make the large task feasible. A feasible solution
was not possible,

cC. X-24 =1lor Y -4 =1, Either the algorithm was opera-
1,2 2,3

ting in Step Y for the first time as in B, or the algorithm in

o

Step 6 assigned a task which reduced 4, by 1 to create

,, or A
2 O 22,3

3

this situation. The first possibility lesds to the same contra-
diction as in part B. The second possibility divides into two

cases,

1. Xllel was assigned last with Y1 < Xl.

No X_Y X, was available with Y_ > X .
22 e c

or 2. Xllel was assigned last with Y > X

No XY
<

1
2X2 was available with Y2 < Xg'
In either case, no task remained to make up the deficit, Hence,
the wrong task was left until last, Tasks remained ouly in
Set I or only in Set II, not bo:h.
Cl. X - A1,2 =1and ¥ - ¥ =1 (Set II)
Suppose at some stage this task sruould have been assigned
instead of another task, Whenever it was nossible a task
vith a larger or equal length first operation was assigned.
Cl.A. No task with a smaller len,tl. first operation was
assigned from Set II. When 2z task in Set II with a
smaller leng:h first operation was assigned, XYX
could not have been assigned, Assuigning XYX iestead

of an equal »r larger length task would have left

that task unassigned. No switch could be made, and

- &4 -

the assigument was not feasible,

Ci.B, If a task from Set I was replaced by X¥X, A would

1,2
have decreased by 2. Then another task with a + con-
tribution would have been needed to make up the
deficit. But there were no tasks in Set II with a
smaller length first operation to fill this need.

All were used to enable tasks with a larger or equal
length first operation to be assigned, Hence, XYX
could not have been used to replace a task from Set I.

c2., Y =1andY-X=1 (Set I)

-4
2,3
Arguments analagous to that in Cl.

The solution to Problem 4.3 also provides a solution to 2

related protlem, This new problem is stated in Problem 4.4, T).s time

the constraint upon the length of the tasks operations is relaxed to

include tasks with successive pairs of operations whose lengths differ by

a constant. An example of the use of Algorithm 4.2 to solve this

problem 15 in Figure 4.6,

Problem 4 L,

Find a schedule for n tasks composed of three operations a5
b, . i=1,2, ... , u. The first and third operation must be
performed on Machine Oue, and the second operation must be performed
on Machine Two (m = 2), The length of each operation i{s arbitrary,
but the contribution between adjacent operations within each task
must be c(.i,bi) = k, C(bi,ci) = -k or C(ai,bi) = -k, C(bi,ci) =
k,1=1,2, ... ,n (k is constant), The form of the schedule is

restricted to the Special Segmented Problem with no idle time,

-85_

Corallary L.1. Algorfth- 4,2 provides the method of solution for Problem
L.b 2f a solution exi ts,
Proof,

Scale each task in Problem 4.4 by dividing the length of each
operation by k, That is, if a task has operations of length iji
where j = 1 £ k, transform the task to %, é 1, %. The contribution
of each prir of operations after transformation is +1 or -1, Since
the proof of Theorem 4.2 does not require operations of integral

length, Algorithm 4.2 is also the method of solution for Problem 4. L

if a solution exists,

L,2.4, A Problem with a Knapsack Solution

We continue with another variation of the central problea
presented earlier, The solution method differs, however, from the last
several examples. In Problem 4,5, below, the constraint upon the lengths
of operations is further relaxed. Here the first and third operations

must have identical lengthsa.

Problem L.5,
Find a schedule for n tasks composed of three operations. The
first and third operatious must be performed on Machine One, and
the second operation must be performed on Machine Two (m = 2). The
first and third operations have identical length, and the second
operation has a different length, The form of the schedule is
restricted to the Special Segmer*ad Problem with no idle time,
The form of the solution to Problem L.5 has two possibilities,
References are made to terminology defined in Section 4.2.1. In one case,

a decoupling point, D, occurs during the gap, G. Figure 4,7 shows a
- 86 -

11 s ! -
[}
]
|
|
l e [] a
P2} M [i
|
D

Figure 4.7. Pirst form of Problem 4.5 solution

p. | L Gap | 1
LN TG ¥
l | L

P2| | | A | i*

Figure 4.8. Second form of Problem 4.5 solution

- 87 -

characterization of this solution form, In the second case, s secoud
operation S begins before the ¢ip, G, and ends :5::3 the gap, G, Figure
L .8 shows the characterization for the second solutiou form,

The operations uf each task are kacwn to be in identical order
on each of the three processors by Johuson's result, The set of tasks
R occurring before the decoupling point, D, or before task S in the
respective forms is decoupled between stages 2 and 5. The set of tasks
T occurring after the decoupling point D or the tesk S, in the respective
cases, is decoupled b tween stage 1 and 2, Hence, the R tasks may be
Johnson ordered between stages 1 and 2, and the T tasks may be Johnson
ordered between stages 3 and 2, However, we do not know a priori what
tasks form sets R and T or even which task is task S.

Note immediately that the first and third operations of each
task are identical in length, Consequeutly, the contribution C(ai,bi)
equals the contribution C(ci,hi). This symmetry suggests the use of a
two-dimensional knapsack solution described in Algorithm L.3. Figure k,9

shows an example of the use of Algorithm 4,3,

Algorithm 4.3,

1. Separate the tasks into two sets:

Set I {all tasks such that c(‘i’b1> 2 0}

Set II

{all tasks such that c('i’bi < 0}
2. Traunsform Sets I and II into the following ordered set:

Set III = (Set I in order of increasing size of the first
operation aud increasing countribution followed by
Set II in order of decreasing size of the first
operation and decreasing contribution loss.)

Set 4 equal to the initial length from the end of stage 2 to

3,2

the end of stage 3,

Tasks

Py b= ++
t, = (1,3,1) 13 1 13
t, = (1,4,1)
2 " P t +
t3 = (2,3,2) 2 ¥ 6 14
t4 = (4|3'4)
tsg (5,1'5) A1'2- 6 A3'2.7
After t1 and tzz After t1, t2, and t3x
A &
! :
1 . f
¢ ' .o]
.&: -—--r-"- '01.0----7----
J | '
' :
'
J :
10 Ly ° e kN

After all five tasks:

ts#& '
]]
o e an o - e F ————— ? —————— +--
| | !
i | '
° [} : 0
° I
Pt | :
¢ 1 * '
7] STTTPIE SR B 1
] : * e | |
1 ! |
® (] » 1 []
) LI . I o !
') !
®) o])]
e Feosmefmee s ke
o |
[. :
! " |
] 1 |
9 1 1
o 5 10 L,

Figure 4.9. Example of Algorithm 4.3
- 89 -

Set L1 «qual tc O -- the total length assigned to stage 1.

Set Al,2 to the initial length of time from start of stage 1
to the start of stage 2.

Set TL equal to O -- the total length of the first operation
assigned.

Set TC equai to 0 -- the total contribution c(.i’bl) assigned,
Establish the first quadrant of a two-dimeansiounal Cartesian
coordinate system, €, with the values of Ll and A1,2
by the abscissa and ordinate, respectively, MNark initial values

represented

of (L,, AI,E)

For each task, a bi, s in the ordered Set III, for each

i?
point (x,y) in €,

5A. 1f y > a, indicate a new point (x+u1,y+c(nl,b1)).

Go to 5B.
5B. 1if A3,2 + (TC-y) < a , delete (x,y). Go to 5C.
5C. set TL = TL + .1

set TC =

TC + C(.i’bi)

Select the solution corresponding to the point (x,y)

n n
where L a < x+ys< I a +G. If suck a point (x,y) exists,
1-1 1 121

the corresponding solution is optimal, If not, go to Step 7.

For each task in Set III such that b1 26G+ 2,

fA. Form Set III' by deleting aibici from Set III.

7B. Repeat Steps 3 through 5 for Set III' instead of III.

7C. Select the solutior corresponding to the point (x,y) where

n n
L a -(bj-(6G1))sx+ys I s, -1
1=1 i=1

If such a point (x,y) exists, the optimal solutioa is of

- 90 =~

the second form with S = aibici. Stop. If such a point
(x,y) does not exist, continue with Step 7 iteration.

&. No solution is poasible,

Theorem E;Q‘ Algorithm 4 3 provides an optimal solution to Problem L.s,
if one exists,
Proof,

Assume a feasible optimal solutionm exists, but Algorithm .5
fails. Failure occurs only at Step &, Neither of the two solution
forms could be found, Johnson's tieorem requires that a specific
order of tasks forms a feasible solution in Set R and Set T, if a
solution exists. The pre-ordering of tasks in Set III in Steps 1
and 2 of Algorithm 4.3 arranges the tasks in the order they become
candidates to be assigned in Set R and Set T. Based on the defini-~
tions of Step 3 and the initial point in Step 4, Step 5 decides
whether a task may be assigned in Set R, in Set T, or in both sets,
For each decision, a new po:nt is reached in the graph. After each
task in Set III has been tried, Step 6 and Step 7C find if any point
in the graph represents a feasible solution., The feasible solution
is that solution which satisfies one of the two basic forms. The .
points on the graph always represent feasible solutions because
others are deleted at Step 5B, Since all attempts are made to satisfy
one of the two basic forms, the algerithm's failure means no solution,

A contradiction.

+.2.7, Extensior to the Four Stage Problem
In this section we discuss a four stage problem which parallels
the Special Segmented Problem of an earlier section, Although the

-91 -

extension from the three stage problem is straightforward, Problem 4.6

formally describes the new situation,

Problem 4.6,

Find a schedule for n tasks composed of four operations. The
first and third operations must be perfcrmed on Machine One, and
the second snd fourth operations must be performed ou Machine Two
(m = 2). Using Jacksou's notation of Section 2.2 the tasks are
divided into two sets: {ABAB} and {BABA}, The form of the
solution is restricted as described below to a schedule with no idle
time.

Machine One: The first operations of the set (ABAB],

followed by the second operations of the set (BABA]),

followed by the third operations of the set (ABAB},

and followed by the fourth nperations of the set (BABAj.
Machine Two: The first operations of the set {BABA}, followed

by the second operations of the set {ABAB), followed by

the third cperations of the set [BABA} and followed by

the ‘ourth operations of the set (ABAB;.

If the tasks in Problem 4.6 are limited to those whose first
and fourtk operations are equal and whose second and third operations are
equal, the knapsack solution of Problem L.,5 is again applicsble. From
the Johnson result the processing order of the tasrts is the same on each
processor. Since no contribution is made by the second and third
operations, all second operations must be feasible initially from the end
of stage 3. The extra operation, therefore, doss not make the problem
different from Problem 4.5, Algorithm L, 3 may he applied.

- 92 -

“,+ Other Subproblems

The results presented iu this chapter strongly restrict the
s1ze of the operations of the tasks we ccnsider. The operations must
differ in length by a constant or pairs of operations must have identical
length. The results do not apply for tasks with operations of arbitrary
lengths. We, however, have expsnded the list of solved subproblems,
These sclutions may be incorporated into solutions of more complex
problems,

New problems may have solutions which apply several ideas we
described earlier. For example, one attack on new problems may be to
find a canonical form for the m, m > L, segment problem and to apply the
knapsack solution method to portions of the problem, Siguificant use
also may be made of the decoupling phenomenon in conjunction with these
canonical forms, In auy event, it appears likely that research in quest
of efficient algorithms for scheduling subprobleams will go on long into

the future,

-93-

Chapter 5
The Four Processor Problem

5.1. The Four Processor Problem

Szwarc's work [1068] was described in Section 2.3, He
considered a three processor problem and tasks counsisting of a chain of
three operations, In this section the results are extensions of 8zwarc's
work to the 4 X n sequencing problem. In Sectiom 5.2 ;. define the
problem so that we are seeking the miiimal completion time for all tasks
on all machines. Th21 Section 5.3 develops a condition on the operatious
so that the order of tasks is identical on adjacent processors and the
total completion time is minimal. Sectior 5.4 follows Szwarc's objective
and reduces the 4 X n sequencing problem. Under two explicit conditions
the 4 X n sequencing problem is reduced to n 2 X n sequencing problems

and a 3 X n sequencing problem, respectively, (Thooro- 5.2 and

Theorem 5.3)

5.2, Problem Definition
Before discussing the new -esults we first preseunt the
definition of the four processor problem and the notation we use through-

out the chapter,

Problem 5.1, The Four Processor Problem
Each of n tasks is composed of four operations a,, bi’ s and
d1 to be executed on four processors, A, B, C, and D, respectively
(m = 4). Find the schedule which minimizes the total completion
time.

From Johnson's result in Theorem 2.3 we know that two permutations

- 94 -

of the tasks are sufficient to assign the n tasks to the four processors.

Let us call the permutations p and q where

(pl, p?’, vee g Pi, Pi"’l, ceor g pn)

p
q =(ql, @2, .., qi, qi+1, ... , qn)
Each pj and qJ, J =1, 2, ... , n, represents one of the n tasks, In
general, pJ # qJ for J = 1, 2, ... , n, The permutation p represents the
vermutation of tasks on the first two processors, A and B; permutaticn q
represents the permutation of tasks on the last two prccessors, C and D.
A schedule is respectively AbeCqu. For example, if p = (1,3,2) and
q = (2,1,3) the schedule represented by ApoCqu on processors A, B, C,

and D would be

1 93 %2
B: b1 b b2
C c2 cl c
D d2 dl d3

5.3. Restriztions on Permutations p and q

In some cases it is possible to consider four processor
schedules in which the order of tasks on each processor is the same. That
is, p equals q. The result of Theorem 5.1, however, is more general,
This theorem describes a case when two adjacent processors in the m X n

sequencing problem may process tasks in identical order without loss of

optimality,
Theorem %.1, If m:x tk s nin sk where the operation lk oun machine S

immediately precedes the operation tk on machine T in the m X n
sequencing problem, then one optimal schedule is one in which the

permutation p of operations on machine S is identical to the

_95—

permutation q of operations on machine T.

Proof.

P = (pl, P2, ..., pn) is the permutation of operatiouns on

machine S and q = (ql, @2, ... , qu) is the permutation of operations

on machine T in an optimal schedule, Assume for sowme minimal {,

pi # qi. Processor T is idle while s is executed on processor S.

pi+l

Since s

i+l 2 tpi’ by assumption, tpi may be executed on processor T

while s is executed, No task or processor T completes later in

pi+l
this new schedule than it did in the original feasible schedule.

Hence, the new schedule is also feasible. Since this process may be

repeated until p = q, one optimal schedule is one in which p = q.

Corollary 5.1. In Problem 5.1 if m:x ck < min bk’ the permutation of
operations on each processor is identical,
Proof.
By Johnson's result which was restated in Theorem 2.3 the

permutation of operations is identical on processors A and B and

is also identical on processors C and D. By Theorem 5.1 aud the

hypothesis the permutation of operations is identical on processors

B and C. Hence, the permutation of operations is identical on all

processors,

5.4. Extension of Szwarc's Results
The 3 % n sequencing problem results in Section 3.2 were by

Wlodzimierz Szwarc, and T. S. Arthanari and A. C. Mukhopadhyay. The

4 % n sequencing problem results here use a similar formulation., In all

cases the total idle time on the last processor is to be minimized,
To discuss this work on the four processor problem we must

- 96 -

consider three quantities. Assuming the two permutations p and q are

(91:92’ R ,pn)

i

]

(q1,92, ... ,qn) ,

q

we may examine the values of

xk -- idle time on the second processor after assigning task pk
e 7T idle time on the third processor after agsigning task gk
z, - idle time on the fourth processor after assigning task qk

After assigning tasks pl and gl to the respective four machines,
1 ap1

v, - max (bp1+x bq1+R

1, ql)

where R . - L x, + Z b when - .
a3 o ol - aJ

{, 1
Consequently, Rp - x,+ I

41 ¥ g ®

This term represents the possibility that p and q are not identical.
Then tasks on the third processor may not begin execution immediately
after the first task is completed on the second processor,
After assigning tasks p2 and q2 to the respective four machines,
x, max (ap1 tas X - bpl s 0)
y, - max (Rq2 L (y, + cql) s Rop + By = (y1 + cql) s)
zZ_ - max (yl oy, t cql + cq2 -z - dql , U)

1n general, after assigning tasks pk and gk, k . 1, 2, ... , n,

to the respective four machines the idle times are:

k k-1 k-1
x ~max (£ a_ .- £ x - I b_,0)
k 11 Py b g P
. k-1 k-1
y, ~max (R _+b_ - T y - T »
k ok Pk, i, @

k-1 k-1

R.+b - T y, - & c,,0)
Pk ok Gt o, @
K k k-1 k-1
z =max(£ y,+ Z ¢ .- L z, - L d , 0)
k R SR O R

However, what we must minimize is the total idle time on the
fourth processor. The total idle time on the fourth processor is zn.
n-1 n-1

n n n

2 =T z, =max(Z y,+ L e .- L d , L z)

noga d o b g Wy W
Similarly, we may obtain the total idle time on the second processor,

xn, and the total idle time on the third processor, Y

n
n n n n-1
X = £ x, —max(£ a_ - T b, L x)
LN s PLog P g !
n n-1
Y = £ y,-mx(R_+b - I =,
n i=1 i qn pn 42 qi
n-1 n=-1
R _+b - L c,, £ vy)
pn o en Lo, ATt
To simplify the expression for xn we define the guantity Ku.
u u-1
K = L a,- L b
RO PO &
u
X = Z X
u 121 i
max
xn = max (Kn ’ Kn-l) “T1<€usn Ku

Similarly to simplify Yn we first expand the expression for

Yn which becomes

1 41 n-1
Y =max (L x. + £ b - I c ,
n i=1 1 i=1 pi i=1 qi
n n n-l n-1
 x,+ T b L c.,, T vy.)
gl b oga P, Wt

n n '{, n n
Y =mex(I x,+ £ b_.- I x .+ I b - T b
n 121 ' getel P ogp g P g M

& n-1

+ T b - I ¢
i-n P4 4 9,

n n n-1 n-1

LI x. + T b - c s, Ty,)

4.1 3 4o Py @

where p? = qn.

Now Hv and Gv are defined for substitution in Yn.

\Y v=-1
H Z b r c
Vioga Py @
n £ v £
G =- L x + £ x,- £ b, + £ b where pf = qv.
v isf4l i i =v+l 1 1L pl i=v pi
max max

Y = +
n =X (Gn *Htisusafur B ? 1<us ,
max max
Gt "M 1 csusor Pt Y1 cus nafu

’

Gl + Hl + Rl)
nax

Y = max (Hn * l<usn

R+ max (Gn , 0),

| T34
Ha*t1susnfytoex (G ,,0),

’

H + R + max (G1 , 0))

max
Y = cucven (H +K +mex (G ,0))

By defining F', Zn may likewise be simplified.

w w-1

F' = I e i z d 1
ia1 9 11 ¢

Rax

zn = max (l1€u<svsna (“v + Ru + max (Gv ’ O)) * Fn ’

nax

1<usgvsga-l (“v + Itu T max (Gv’)+ l"u-l ’

H, + R, + max (Gl , 0) + F) Equation 5.1
In order to make it obvious that zn , the idle time on processor
D, depends on the permutations p and q, we rename z_l to be g(p,q).
From these equations and following Arthanari and Mukhopadhyay,
two results for the four machine problem arise in Theorems 5.2 and 5.3.

Figure 5.1 shows an example of the use of Theorem 5.2 while Figure 5.2,

shows an example of Theorem 5.3.

Theorem 5.2, If n tasks, each composed of four operations, & bi’ Cy»

and d , are to be executed, respectively, ou four processors (m = 1)

max min RaxX min
and K bk < K ck and K a < k bk’

solved by solving n two-machine problems.

the four machine problem is

Proof.
Let the permutations of tasks on the first two processors be

P and on the last two processors be q. For each t, 1 <t < n-1,

since K bk < k Sk’
t t-1
A =% by, = T ¢
t oy P oy 9
_ t+l t
" = £ b = & c=
w1, P, @
B -H, = b{;’t+1 teqe ® 0
H =H, .,

« 100 -

’

¢y - (i iree) Figure 5.1. Example of Theoreu 5.1
to= (Ged,5,)
t3 = (3,3,4,0)
7.4 = (1,4,4,2)

Lur joussibilities of a solution
[4

P
LD
t
P. W8 1 Zy=29
2" 3 v ‘
N B B B T
L R 6 o4 s &
P L g Y I 2 Y
4 10 T2 27) 7 2
t
2
P '-——.———
v
P lﬂA t2 24328
4
P8 IR T B
3 6 M 5 M 4 M 6 i 4 ;
» g . t2 . % R
4 11 i 7 N 6 T2 2
p1Lt3:
E)
t Z, = 27
P .—-E¢ 34 ‘
2 3
t t t t
P | g —_— 2 1 . 4
3 6 4 5 6 ‘4
t t t, ¢
L " 3 . 2 1;1‘ 4;
e SRR
P }...__t‘
N
Pziﬂ t‘ 24-28
o
P L ﬂ Py t‘ 'y tJA tz ol t‘ e
Jr v v — v v
5 4 4 5 6
P, | £ :t4eL*ﬁ b + t2 —tt
L 9 2 2 6 7 2

Optimal permutation is (3,2,1,4)

- 101 -

Tasks

t1 = (2’40306)
tg = (3v6o1|4)
t3 = (‘-5’3'2)

A T 2N
P1 ‘ : v v
2 4 3
Y I I B S
2 V5 5 6
P —b 88 8
30 6 3 2 3 L
P, |- 4 —r 53 2,
410 9 6 21 4
Figure 5.2. Example of Theorem 5.2

- 102 -

Therefore,

max -— -—

l“tsn“t““l

Similarly, for each t, 1 < t < n-1, sirce naX a < min ,
¥ Tk k k
t t-1

K = T &, - T b
g P oy, P
_ 1+1 t
K .= T a-, - b
=1

1o P M

K -K = -

t t+1 Sta t 2 C

®pt

K - Kn

Therefore,
max b3 =

1st<sn t xl

By Theorem %.l and Corollary 5.1 and the fact that

max min max min -
K bk < k Sk and X ‘k < X bk’ the permutation p is identical to

the permutation q. Then

Ev =0 forvs=1,2, ... ,n

Using equation 5.1 above

#(q,q) = 1<sw%w<a (F, +H + Kl) =
= = max = |
= H1 + K1 + lsw<n (Fv)
max = =
=H 4K+ ST (eqrepteged Ty ot 0 T
max v w-1
=H +K +tegmdnt max(d 10 < w s 152 O B da)d
=

Equation 5..
our goal is to minimize g(q,q) over all possible sequences q

designated by the set Q.. For a fixed i = ql
4 3
w w-1

(2 o=, - £ &.))
joo W 4o @

min max

11=Eeqi GCecwen

- 103 -

I1 is the minimum idle time on the last machine D from the two machine

problem with machines C and D where the set of tasks is all n tasks

except task i = 31. Call this optimal permutation si. Letting D1 and

gi(i,a) be the idle time on machine D wheu task i is task ql, from
Equation 5.2

D = 8,(3,3) = agy + b+ ogy - dgy + max (oG, Ig).

The problem thus is to find 1° and an optimal permutations s1
o

such that D Bin

i =1<i<n gi(q,q). The complete optimal permutation is

(io, Si)‘
o

Theorem 5.3. If n tasks each composed of four operations 8 bi’ © 4

and di are to be executed, respectively, on four processors

nax min
A, B, Cand D (m = 4), and x % £, Cyo them the four machine

problem reduces to a three machine problem in which permutation p

is not necessarily the same as permutation q.

Proof .
nax min !
Since K dk < x Sk’ for each t, 1 < t < n-1,
_ t t-1
F, = £ ¢ - I d
t g g,
t+l t
F,,,= & o, - L d
t+l 1-1 ql i= ql
F - ¥ = - ‘
Fe - Fen cqter T e T 0
Fin 2 Fy
Therefore,
max = =
1<wgn F' = rn

- 104 -

From Equation 4,2 and definitions eof Hv, Ku, and F' here and in

Theorem .2,
(p,q) = (F,

l1susv<wsn +tH 4 max (Gv’ 0) + Ku)

\4

_ nax (— max

= l<ws<n F' tlcusvew (Hv + max (Gv, ") Ku))

Let §(p,q) be the time for a complete schedule using permut.ulion

p and q. Then

$(p,a) = g(p,q) + =

i-1 4
g, (,q) == min 5(5,3)
mn' P4 “pep,qeq TP
1
PR R
1’ 1 121 9
) n n=1 n
main -+
== - [Zec-, - £ d. + T o
PEP,REQ ", hal o a1 1.1 ¥
max - = ,
l1<su<v<n (ﬁv + max (Gv’)+ K) -
n
min
= z [+ - - 4 +
4q 1 PEP,QEQ L qn

max - —
lsusvsen (Hv + max (Gv’ c) + Ku)
From the above the idle time on processor C is exactly

lsu<svsn (Hv + max (Gv’ c) + Ku)

Hence, S-in(i,a) is found by finding the solution to the thrce

processor problem of machines A, B, and C with § # § in genc:ral.

In Summary

As we pointed out several times in earlier chapters the

significance of results for simplified subproblems is that they may

later be incorporated in the solutions of larger problems, Our resul:s

and those of Szwarc demonstrate this significance most vividly, We have

taken the more complex 4 X n sequencing problem and shown that in certain

- 105 -

instances only less complex problems need to be solved.

However, the work in this area is far from complete, The
general four processor problem is not solved efficiently. In addition,
11ttle reduction has been made to the m, m > L, processor problem. Future
researchers may, nevertheless, use the same methods in the more

complicated problems.

- 106 -

Chapter 6

Future Directions

The results in m X n sequencing research has had three fruitful
periods, the mid 1950,s, the early 1960's, and the esrly 1970°'s. The
problems are noted for their simple formulation snd the elusiveness of
efficient algorithams,

We believe that one of the most important contributicns of the
earlier results and those presented here 1is to the understanding and
snalysis of more complex problems. The realistic problems of computer
scheduling bear only minimal resemblance to the problems presented. But
before the more complex scheduling problems may be nandled satisfactorily,
we must know the fundamental results of m X n sequencing.

To predict the future successes in this area is a risky, 1if
enjoyable, job., Yet several problems seem ripe for solution in the near
future. First, the recent Coffman and Graham results leund hope that the
sequencing of l-unit tasks with tree precedence or perhaps acyclic
precedence ou more than two processors may have an efficient solution.
Likewise, the work here gives hope for an efficient, complete solution
of the sequencing problem with l-unit snd 2-unit tasks with acyclic
precedence,

Second, the Special Segmented Problem is closely relsted to the
three processor problem., It may be possible also to find significant
solutions to this set of problems, The concept of decoupling between
sets of tasks may be a powerful key to these efficient solutions,

No computer scientist, however, may ignore the work in the

field of computational complexity, Although no probles with an inherently

-107-

exponential solution is %unown, such problems may be found., Although
disappointing, these results wouid be useful in bounding the area for

future researchers,

- 10§ -

BIBLIOGRAPHY

LArthanari 1971] Arthanari, T. S. and Mukhopadhyay, A. C.,

"A Note on a Paper by W, Szvarc',' Naval Research Jogistics

Quarterly, 18, No. 1, March 1971, pp. 135-138.

[Bauer 1970] Bauer, H. ancd Stone, H., "The Scheduling of N Tasks
with M Operations on Two Processors,” Report No. STAN-CS-T70-16%,
Computer Science Department, Stanford University, July 1970,

[Bellman 1956] Bellman, R., "Mathematical Aspects of Scheduling

Theory," Journal of SIAM, 4, No. 3, September 1956, pp. 168-185.

{chandy 1972a] Chandy, K. M., Dickson, J. R.,, and Ramamoorthy,

C. V., "Optimal Real-Time Basic Scheduling of Two Processors,"
Fifth Annual Hawai. International Conference on Systems Sciences,
January 1972, pp. 216-218.

[Chandy 1972b] Chandy, K. M., Dickson, J. R., and Ramamcorthy, C. V.,
"Optimal Scheduling Disciplines for Two-Processor Systems,’
Research Report, Department of Computer Sciences, University of
Texas at Austin, 1972,

[clark 1947] Clark, W., The Gantt Chart. London: Pitman and Sons, 1947.

{Coffman 1972] Coffman, E. G., Jr., and Graham, R. L., "Optimal

Scheduling for Two-Processor Systems," ACTA Informatica, 1, No. 3,

February 1972, pp. 200-213.
(Conway 1967] Conway, R. W., Maxwell, W, L., and Miller, L. W.,

Theory of Scheduling. Reading, Massachusetts: Addison-Wesley

Publishing Company, 1967.
LDay 1970] Day, J. E. and Hottenstein, M P., "Review of Sequencing

Research,” Naval Research Logistics Quarterly, 17, No. 1,

March 1970, pp. 11-39,

- 109 -

| Dudek 1964] Dudek, R. A, and Teuton, O. F., Jr., "Development of
M-Stage Decision kule for Scheduling n Jobs through M Ilchinel,"

"Operations Research, 1Z, No, 3, May 1964, pp. 4T1-497.

{Hsu 1966] Hsu, N, C., "Elementary Proof of Hu's Theorem on Isotone

Mappings,” Proceedings of American Mathematical Society,

February 1966, pp. 111-11k,
(Hu 1961] Hu, T. C., "Parallel Sequencing and Ass2mbly Line Problems,”

Operations Research, 9, No. 6, November 1961, pp. 841-848.

[Jackson 1956] Jackson, J. R., "An Extension of Johnson's Result on

Job-Lot Scheduling,” Naval Research Logistics Quarterly, 3, No. 3,

September 1956, pp. 201-203.
[Johnson 1954] Johnson, S. M., "Optimal Two- and Three-Stage Production

Schedules with Setup Times Inclided,” Naval Research Logistics

Quarterly, 1, No. 1, March 1954, pp. 61-68,
(Karush 1965] Karush, W., "A Counterexample to a Proposed Algorithm

for Optimal Sequencing of Jobs,” Operations Research, 13, No. 2,

March 1965, pp. 323-325.
[smith 1966] Smith, R. D, and Dudek, R. A., "A General Algorithm for
Solution of the n-Job, M-Machine Sequencing Problem of the Flow

Shop," Operatiuns Research, 15, No, 1, December 1966, pp., 71-82.

[smith 1969] smith, R, D. snd Dudek, R. A., "Errata,” Operations
Research, 17, No. L4, July 1969, p. 759.
[Szwarc 1968] Szwarc, W., "On Some Sequencing Problems,”

Naval Research Logistics Quarterly, 15, No. 2, June 1968,

ppP. 127-155.

- 110 -

