
PB 214 612

STAN-CS-72-324 SU-SEL-72-0%57

Subproblem of the m x n
Sequencing Problem

by

Henry Raymond Bauer

November 1972

Technical Report No. 48

This work was supported by the
Nevonal Science Foundation

under Grant GJ 1180

BIGITRL SYSTEMS LABORATORY

STANFORD ELECTRONIC: LABORATORIES

STARFORD BRIVERSITY STRRFORD, CALIFORAIN
NATIONAL TECHNICAL

| BIBLIOGRAPHIC DATA '!- Report No. 3. Regpient’s Accession Na.
SHEET STAN-CS-72-324 PAAR
. Lite and Subtitle S. Report dete

Subproblem of tre m x n Sequencing Problem November 1972
6.

7. Author(s) 8. Performing Organization Rep.

Henry Raymond Bauer No. oTAN-CS-T2-3%4
9. Derforming Organization Name and Address 10. Project/Tas /Work Ur. No.

Stanford University

Computer Science Department 11. Contract ‘Gram No.
Stanford, Calircrnia 30’ 94305 GJ 1180

12. Sponsoring Organization Name and Address 13. Type o Report & PeriodCoveic

National Sclence Foundation .
. technical

Washington, D. c. =

15. Supplementary Notes

18. Absrracts

(attached)

| 17. Key Yords and Document Analysis. 17e. Descriptors

none listed

17b. ldentifiers ‘Open-Ended Terms

17¢. COSATI Fie ld/Graup

18. Availability Statement 19. pecurity Class (This 2). No. of Pages
Distribution Unlimited. CL ASE LE 6 2

0. Securny Class (This 22. Price -
' Page! UNCLASSIFIED #3 Xu

FORM NTISTS (REV. 372 THIS FORM MAY BE REPRODUCED USCoMM-OC 14882-P72

|

Subproblems of the mm X n Sequencing Problem

ABSTRACT

Assuni that a set of n tasks is to be scheduled on m processors.

bach task is {nétvisivie, and each processor may be concerned with only one

task at a time, Then the nm Xn sequenciny problem is to find the schedule

in which the total completion time for all tasks is minimal, In addition,

we scck an algorithmic solution which is efficient; that is, the computation

aust grow algebraically with the size of the problem rather than combinatori-

ally.

The results presented concern three separate families of subproblems,

The first problem is an extension of the problems of Hu, and Coffman and

Graham. Here we develop an algorithm for the optimal sequencing of n l-unit

and 2-unit tasks with tree precedence on two Processors,

The seccnd family of problems concerns the sequencing of tasks on two

processors where the tasks consist of chains of operations with known lengths.

Furthermore, the operations of each task are to be performed alternistely on the

two processors. The new results, including knapsack solutions, are algorithms |

for tasks which consist of: |

a, three opcrations with 1-unit and 2-unit lengths. or

b. three operations each of whose adjacent operations dit’<r in length by

l-unit, or

¢. three operations each of whose adjacent operations differ in length

by k-units, or

d. three operations in which the first and last have identical lengths, or

e. four opcrations in which the first and last have identical lengths and

‘4

the second and third have Aientical lengths,

The algorithms for the third family of protlems follow the work of

Arth.anari and Mukhopadhyay, and Szwarc. In our case, we treat m, m 2 Li, proce:

sors and tasks formed by chains of m operations. Each of the operations curre-

sponds to each of the processors, in order. The results include:

a. a case in which the identical task order on adjacent processors yiela.

an uptimal schedule, and

D. the svlution of a constrained four processor problem by solving n two

processor problems, and

c. the reductiun of a constrained four processor problem to the solution

of a three processor problem, |

Scie systems programming problems from computer science have character-

istics similar to our subproblems. -

1a |

|

STAN-CS-72-324 SEL 72-057

SUBPROBLEM OF THE m x n SEQUENCING PROBLEM

by

Henry Raymond Bauer

.Zechnical Report no. 48

November 1972

DIGITAL SYSTEMS LABORATORY

Department of Electrical Engineering Department of Computer Science

Stanford University

Stanford, California

This work was supported by the National Science Foundation under grant GJ 1180,

1h

Subproblems of the m X n Sequencing Problem

ABSTRACT

Assume that a set of " tasks is to be scheduled on m processors.

rach task is indivisible, and each processor may be concerned with only one

task at a time. Then the m X n sequencing problem is to find the schedule

in which the total completion time for all iasks is minimal, In addition,

we sect an algorithmic solution which is efficient; that is, the computation

must grow algebraically with the size of the problem rather than combinatori-

ally.

The results presented concern three separate families of subproblems.

The first problem is an extension of the problems of Hu, and Coffman and

Graham. Here we develop an algorithm for the optimal sequencing of n l1-unit

and 2-unit tasks with tree precedence on two processors,

The second family of problems concerns the sequencing of tasks on two

processors vhere the tasks consist of chains of operations with known lengths.

Furthermore, thc operations of each task are to be performed alternately on the

two processors. The new 1esults, including knapsack solutions, are algorithms

for tasks which consist of:

a2. three operations with l-unit and Z2-unit lengths, or

b. three operations each of whose adjacent operations differ in length by

l-unijt, or

c. three operations each of whose adjacent operations differ in length

by k-units, or

d. three operations in which the first and last have identical lengths, or

e. four opcrations in which tke first and last have identical lengths and

Ia

the second and third have identical lengths,

The algorithms for the third family of problems follow the work of

Arthanari and Mukhopadhyay, and Szwarc. In our case, we treat m, m 2 4, proces-

sors and tasks fo.med by chains of m operations. Each of the operations corre-

sponds to each of the processors, in order. The results include:

a. a case in which the identical task order on adjacent processors yields

an optimal schedule, and

b. the solution of a constrained four processor problem by solving n two

processor problems, and

¢. the reduction of a constrained four processor problem to the solution

c{ a three processor problen.

Some systems programming problems from computer science have character-

istics similar to our subproblems,

TY

Acknowledgements

The preparation of a dissertation requires cooperation, :

encouragement, and criticism from many persons. This dissertation |
1s no exception. I thank all those f. ends who have made my work

at Stanford pleasurable and rewarding. In particular, there are |

several who deserve special recognition. Cne is my adviser,

Professor Harold Stone, whose stimulating suggestions, constructive

criticism, and profuse patience encouraged me to complete this

project, Also I thank Professors Forest Baskett and Thomas Bredt

for their careful readings of the manuscript.

My appreciation is alsc extended to Louise Hazlett and

Joyce Vought who typed the final draft.

| This research was supported in part by the National

Science Foundation under grant number GJ-1180. Reproduction in

whole or in part is permitted for any purpose of the United States

| Government,

iii |

TABLE OF OONTENTS

CHAPTER PAGE

1. THE m X n SEQUENCING PROBLEM . . . + . ¢ o « os ¢ » o o os o o o 1

1.1. The Problem Statcment , , . ,. . . +... ¢ ¢ «0 4 oo . 1

1.2. The Contents +. & « ¢ 4 ¢ eo ¢ o « os o os os os o 5

©. HISTORICAL PERSPECTIVE © +. ¢ ¢ oo os oa o 2 a os os o « 4 6

c.1. General Discussion ¢. v + 4 o +s « + o so + & o & 6

Sic. Johnson's ReSULt . ., 4 4 ¢ os ¢ os o os 0 o + 0 o 7

2.3. Identical Order on m Processors 10

2.4. "Cutting the Longest Queue Algorithms 12

2.5. One Unit Tasks with Acyclic Procedure 1£

2.6. Two Observations +. + « + v « « « +» « + . 18

3. ONE-UNIT AND TWO-UNIT TASKS &. + o « + « 2 0 os ¢ +. 21

3.1. The Provlem Statement « « ¢ ¢ ¢ o « +s o o 21

3.2. Developmeat of the Solution to the Chain Precedence

Problem . , . . , . . ¢ i ¢ ¢« ¢ to ¢ os es so so 0 ae. 5

3.2.1. Algorithm 3.1 =-Labellilg . . « « + « « + « oo « 25

3.2.2. Algorithm 3.2 -- Indivioual Level Scheduling . . 25

3.2.3. Solution to the Chain Precedence Problem 32

3.3. Solution to the Tree Precedence Problem AUT

3.5.1. Analysis of Algorithms 3.4 and 3.5 61

3.4. A Solution to the Tree-Restricted Acyclic Precedence

Problem 4 4 4 4 4 ss es a 4 ee ee es 63

3.5. Alook Ahead , tt i 4 es se ree eee. 65

iv

|

4. SEGMENTED PROCESSOR SCHEDULING . « « « « ©» « o 0 so oo o oo 66

4.1. The Segmented Scheduling Problem « « « « + + =» 66

4.2. Segmented Scheduling Problem + « . + . + ¢ 69

L.2.1. A Foundation for New Results « « « . T°

4.2.2. A Special Segmented Problem . . . « « o «oo + 7%

4.2.3. A More General Core Problem « . To

L.2.4. A Problem with a Knapsack Solution 86

4.2.5. Extension to the Four Stage Problem 91

4.3. Other Subproblems « « « = « + « = oc oso en 93

©. THE FOUR PROCESSOR PROBLEM . . . + « + « « ov ooo + ooo» OH
5.1. The Four Processor Problem « + « « « ¢ oc «+ Ql

5,2, Problem Definition . . . ¢ + + oc oe ee ee sen ol

4.3. Restrictions on Permutations p and Q@ « « « « + ¢ 5 + +» 0 ID

5.4. Extension of Szwarc's Results . . +. + o o + so + o o + =o 9¢

5.5. ID SUMBATY + + o « o oo oo = 0 oc 0s 0000 ee 102

6. FUTURE DIRECTIONS . . « « « « = o os os oo o a oo ooo «oo 27

BIBLIOGRAPHY . © o « « o o o o s so a so so ov ooo oo noses MN

A 4

LIST OF TABLES

3.1, Assignment of Forme + 4s ¢ +o ¢ o 5» ¢ os » a o oo 35

vi

LIST OF FIGURES

PAGE

1.1. Gantt Chart Example . . . : o o ¢ o o ¢ os o a 5 os oo + o a = 2

2.1. Identical Order is Not Always Ontimal « « . + + 11

© 2. Arthanarl and Mukhopadhyay Notation + «o os « « oo 13

2.3. Hu's "Cutting the Longest Queue’ Algorithm 15

2.4. Hu's Algorithm for Unequal Task Lengths 17

2.5. Coffman and Graham Algorithm Example . . . « . « « . « . 19

3.1. Example of Set G in Problem 3.1 +. « « + « ¢ +» = « 22

3.2. Example of Set G in Problem 3.2 . . « « + + « «+ oo 0 0 os ce

3.3. Example of Set G in Chain Precedence Problem 24

3.4. Chains and TFEES . . . « « «+ + + o « o = oa = « 5 o oo + = 26

3.5, Example of the Labelling Algorithm. . . . « « + + « « «oo

3.6. Level Notation + . « « « os «oo 0 see eos 28

5.7. Use of Algori.hm 3.2 in Example of Figure 30.000 00 30

3.5%. Form A, Form B, and Form C . . . + + « « « « « + so « oo © 36

2,0, Modifications « «oc se see see ese eo 38-39

3.10. 1-Unit Tasks in Algorithm 3.3 . « « « « ¢ + vo vv vo v L2

3.11. Examples of Definitions . . . + + « « « ¢ «oc ov 0 0 0 vo Ly

...1. Forms of the Special Segmented Problem «. 68

L.:. No Solution to Problem ..l in Form II 70

..”?, No Solution to Problem B.l in Form I . . . « « + « o « o T1

..h. Example of Algorithm 4,1 . ¢ + « ¢ ¢ «os « so so 0 bo» ge

4... Problem 4,3 and Algorithm Bel i he he eh ee ee ee es 51

, +. “roblem 4.4 and Algorithm 4,2 . , . + « ¢ ¢ 0 « « oo « o 81

4.7. First Form of Problem 4.5 Solution ., . . « « « « « » + © © 87

vii

4.8. Second Form of Problem L.5 Solution 87

4.9. Example of Algorithm 4.3 , . . . , ¢¢ + oe... 89

5.1. Example of Theorem 5.1 * | J v L J J J | J L J [J | J J LJ LJ . | | a J LJ 101

5.2. Example of Theorem 5.2 . ,. . . +. ¢ ¢ ¢ + o « « + os « « « « 102

viii

Chapter 1

The a X n Sequencing Problem

A classic problem of operations research and management science

is the optimal sequencing of n jobs on m processors. In computer rLcience

the area of systems programming again involves the same problem. In all

cases the solution must be embodied in an efficient algorithm. The solu-

tions of complicated sequencing problems often depend upon efficient

algorithms for the less complex problems of scheduling. This work continues

the development of these algorithms.

Since algorithms for the m X n sequencing problem exist, what are

the efficient algorithms we seek?

Definition 1.1, An efficient algorithm produces an optimal solution to a

problem using a computaticn whose size grows algebraically with the

size of the problen,

First, efficient algorithms differ from those procedures that examine all

possible solutions. These enumerative computations often grow combinatori-

ally with the size of the problem. Second, efficient algorithms differ

from those procedures that reduce an inherently combinatorial enumeration

heuristically. Heuristic computations do not necessarily produce optimal

solutions,

1.1. The Problem Statement

The general probles which concerns us is the m Xn sequencing

problem. Its defirition below names the form of its solution a schedule.

Authors differ, however, on the notation of their schedules. Here each

schedule is denoted by a Gantt chart [Clark 1947]. As Figure 1.1 shows,

-1 -

t t t

P, —l—4 + 1 42 2 2

t t

P, p—pp—F+
2 1 3

t t

Py ay fy by £0111 3

Pigure 1.1. Gantt chart example

- 2 =

one of the set of horizontal, parallel time bars corresponds to each pro-

cessor. Time intervals on each time bar are delimited by vertical bars.

During a time interval a task may be executed on the specific processor,

The task's name then appears above the time bar, and the task's length

appears below the time bar. ¢ represents an idle time interval. In each

problem an optimal schedule is a schedule in which all tasks complete

execution in a minimum time. Definition 1.2 describes the general m X n

sequencing problem.

Definition 1.2. The m X n Sequencing Problem

A set of n tasks is to be scheduled on m processors. Each task

is indivisible and may have to be processed before or after other

tasks. Each processor may be concerned with only one task at a

time. The m X 1. 3jequencing problem is to find the schedule in which

the total completion time for all tasks is minimal.

This basic definition is frequently modified to produce a trac-

table problem. For example, the number of processors may have identical

characteristics or may perform specialized operations, Alternatively, it

may be desirable to find the minimum number of machines, m, required to

attain the minimal total completion time of all tasks. Or the character-

istics of the tasks may be varied so that, for example, they may be

executed only in a special order,

The research results here concern three distinct classes of

problems, The first class concerns l-unit and 2-unit length tasks to be

sequenced on two processors (m = 2), In one subproblem the tasks have at

most one predecessor and at most one successor, A second subproblem con-

cerns tasks with many predecessors but with at most one successor. Sets

of these tasks are then maximally connected to similar sets of tasks in

a third problem, The general problem of sequencing l-unit and 2-unit

tasks with an arbitrary number of predecessors and successors remains unsolved.

This first class of problems includes those treated by Hu [1961]

- 3 -

and by Coffman and Graham {1y72]. Hu's problem concerns only l-unit tasks

with many predecessors but with at most one successor to be sequenced on

m processors Coffman and Graham considered l-unit tasks with an arbitrary

number of predecessors and successors to be sequenced on two processors

(m = 2). Our results maintain the O(n) computational complexity estab-

lished by Hu for his solution,

The second class of problems concerns a specific two processor

sequencing problem. The work extends the results of Johnson [1y54] and

Bauer and Stone [1370]. In the latter work tasks consist of three operations

(stages) to be performed on processor one, processor two, and processor one,

respectively. The time interval for processing these tasks is given. Bauer

and Stone succeed in isolating the difficult core of this problem, Here

we present new results on the problem in which tasks consist of

a, three operations with l-unit and 2-unit lengths, or

b. three operations each of whose adjacent operations differ in length

by l-unit, or

c. three operations each of whose adjacent operations differ in length

by k-units, or

d. three operations in which the first and last have identical lengths,

or

e. four operations in which the first and last have identical lengths

and the second and third have identical lengths.

The third class of problems concerns tasks of varying length to

be sequenced on four processors, The published results of Szwarc [1968], |

and Arthanari and Mukhopadhyay [1971] considered three processors, Our

work extends these results to four processors and, in one case, to m proces-

sors, The results include

a. a case in which the identical task order on adjacent processors

yields an optimal schedule, and

- 4 -

b. the solution of a constrained four processor problem by n app ica-

tions of Johnson5 method, and

c. the reduction of = constrained four processor problem to the solu-

tion of a three stage problem, |

1.2. The Contents

In this dissertation Chapter 2 presents the history of the prob-

lem. Instead of repeating references to the many tangentially relevant

papers, we cite more complete surveys of the literature. Only work which

has influenced the present work directly is included here. In addition, we

discuss the importance to computer science of this classical problem from

operations research,

Chapter 3 presents the results concerning the first class of

problems. The three problems appear together with their algorithmic solu-

tions,

Chapter 4 defines the specific two processor sequencing problem

of the second class of problems. Each subproblem appears individually with

the discussion of its solution,

Chapter - extends the work of Szwarc, and Arthanari and Mukhopadhvayv

reviewed in Chapter 2, These results correspond to the third class of

problems discussed above.

The last chapter contains a discussion of the significance of the

work and the possible extensions in future research,

Chapter 2

Historical Perspective

<.1l. General Discussion

Scheduling and sequencing research is a general name applied to

numerous problems, Day and Hottenstein (1970) defined a schema for classi-

fying sequencing problems. Using the Day-Hottenstein schema, we answer

several questions,

What is the nature of job arrivals? In all cases we treat a

batch with a fixed size, We do not treat the problem in which jobs contin-

uously arrive satisfying some probability density function. Our problem

restriction is reasonable for some computer systems. In such systems tasks

may be accumulated with accurate time estimates, Then the assumption of a

fixed, known-in-advance, batch size is correct. une example is a set of

programs in a student environment to be scheduled for compilation, execution,

and printer output, These tasks may be set aside and run as a large bach

to improve the system performance by reducing overhead costs,

How many machines are involved? Each case concerns a multi-

machine situation. In Chapters 3 and 4 the number of processors is limited

to two (mm = 2). In Chapter 5 four machines (m = L) are discussed. However,

we are primarily interested in the two processor problem, The results of

Hu [1961] and Coffman and Graham [1972] indicate that two processor problems

are perhaps the most amenable to efficient solution.

What is the nature of the job route? Here we treat two distinct

situations. In Chapter 3 the tasks may be assigned to either processor,

The order of the tasks is the only constraint, In Chapter 4 the order of

the jobs is again constrained, and, in addition, each task must be assigned

- 6 =

to a specific processor.

Again several examples in computer science exhibit these restric-

tions, A complete job may consist of many tasks, one or several of which

are to be completed before another may start. Tasks may be executed on any

processor, but the order of execution is important. A second example involves

processors dedicated to specific tasks, This case exists in a previous

example when one processor compile: a program, a second executes the program,

and a third prints the output, Alternatively, the input-output channel

processor may perform the input, the central processor may perfor. the

execution of the program, and the input-output channel processor, again,

may then do the output.

The wealth of papers dealing with m X n sequencing is impressive,

The scarcity of efficient algorithmic solutions is likewise remarkable.

These facts attest to the relevance of the problem and to its difficulty,

The reader may find several surveys of this subject in the literature

{Bellman 195, Conway, et. al. 1967, Day and Hottenstein 1970]. Here we

use combinatorial approaches rather than solution methods using ma*hematical

programming or heuristic programming.

Combinatorial solutions are those solutions which are based on

finding the optimal permutation by changing from one task ordering to

another, The objective is to find the optimal permut. tion but «co avoid

complete enumeration over the e.,tire solution space. The families of papers

discussed below have 1rfluenced research in this area considerably.

<.2. Johnso.'s Results

The first major results in the problem are by Johnson [1994],

Johnson considered the production schedule of n tasks with two operations

each. The first operation is performed on the first machine, and the

- 7 -

second operation is performed on the second machine. There are only two

machines. The second operation may not begin before the first operation

is completed. Two of Johnson's results ares Theorem 2.1 and Theorems 2.2,

below. These theorems are the basis for the first efficient algorithms

for the general sequencing problem,

Theorem 2.1, The order of the production sequence on two machines may be

made the same without loss of time. [Johnson 1954]

Theorem -,2. Johnson's Rule

Let tasks i, 4 = 1, 2,..., n, consist of the pair of operations 8 b>

where a, i =1, 2,,.., Nn, are the lengths of the operations to be

processed on the first machine and bs i=1 2,..., Nn, are the lengths

of the succeeding operations to be processed on the second machine.

An optimal ordering is given by the rule:

Item j precedes item j+1 if

min (a, by) < min (a,,y b,)
This ordering is unique except for ties, [Johnson 1954]

Johnson generalized Theorem 2.1 for n tasks, each with m operations

to be performed on m machines, m 2 2, Theorem 2,5 states the result which

we use later.

Theorem 2.3. The order of the production sequence msy be made the same on

processor 1 and processor 2 and may be made the same on processor m-1

and processor m without loss of time. (Johnson 1954]

An additional Johnson result concerns n tasks with three opéra-

tions each. The operations are assigned, respectively, to three processo's |

(m = 3). |
- 8B =-

Theorem 2.4. Let tasks i, 1 = 1, 2,..., n, consist of the triplet of

operations LN by cy where IY, b,» and Cy» 1 =1, 2,..., n, are the

lengths of the operations to be processed on machines 1, 2, and 3,

1espectively, Assume that all first operations are not less than any

second operations, man a 2 ny by Task {i precedes task Jj {if
min (a +0, ALY < min CR c, +b) ‘

The only complete solution [Jackson 1956] for the general m X n

sequencing problem for which the computatioael complexity is algebraic

rather than exponential in n is for two processors (m = 2). Jackson

produces Theorem 2.5. Later we use concepts from this result in our work,

Theorem 2.5. Let

{A} be the set of jobs with only one operation to be performed

on machine one,

{B] be the set of jobs with only one operation to be performed

on machine two,

{AB] be the set of jobs which have two operations, the first to

be performed on machine one and the second on machine two,

and {BA} be the set of jobs which have two operations, the first to

be performed on machine two and the second on machine one.

Then determine the sequence of tasks in {AB} and {BA} by Johnson's

rule, and, using these orderings, assign the tasks to machine one and

machine two as follows:

Machine One: tasks in {AB}, followed by tacks in {A}, followed

by tasks in {BA}

Machine Two: tasks in {BA}, followed by tasks in {B}, followed

| by tasks in {AB}

- 9 -

where the order of tasks in {A} and {B] does not matter. [Jackson

195C]

Bauer and Stone [1970] used similar results for a somewhat

different problem, Results of that research are in Chapter 4.

2.3. Identical Order on m Processors

A second family of results concerns the m X n sequencing problem

with an identical processing order required on each machine. In general,

the solution of this problem does not necessarily lead to the solution of

the problem in which the processing order of tasks is not required to be

identical. Figure 2.1 shows an example in which the optimal solution to

the general m X n sequencing problem differs from the solution to the prob-

lem wit) .dentical task ordering. However, because of the complexity ol

improving the sciution for the general case, the problem with identical

task ordering is often deemed practical.

The principle results for the problem with identical task order-

ing are those of Dudek and Teuton [1264], Karush [1965], Smith and Dudek

(1966, 1969), Szwarc [1966], and Arthanari and Mukhopadhyay [1971]. All

the results have the characteristic of providing a decision rule for the

ordering of tasks. The complexity of these rules is evidence. by half of

the references listed being corrections of the other half,

Arthanari and Mukhopadhyay [1971] extended Szwarc's results [1968]

to reduce the 3 X n problem to repeated applications of Johnson's result,

Theorem 2.2. The Arthanari and Mukhopadhyay problem is stated in Problem

2.1. No efficient algorithm is known for the 3 X n sequencing problem

without restrictions upon the size of the tasks. This method of problem

reduction is the basis of work described in Chapter 5.

- 10 -

Optimal schedule —— time = 44 unite | es80T _
t,t, t t t : . P, Pp Py Py, Py Pg
12 3 4 5

tyty % t t t 1 2 15 1% 2 1
1"¢” 3° 4 +, 2 3 1 1 3 2

t t .

3 13 15 i 3

4 22 XKX 15 ty s 6 1 1 6 5
P ts 3 3 t, t, t, .5 | 23 ' Fp 2

29 5 4 ,

!

11inimal identical order schedule — time = 57 units

P eM Hi hd I.PE Pigure 2.1.1 27s 1 4 "3

p t, t t, t, t Identical order
2 E: lj 2 6 F 5 4 SE is not always

3 | 5 H 1] Ke 15 A)
P t t,o | 6 3 6 “A 15 15 A
» t, t t,t, 4s 73+ ++— — rs
P t, t 3 te t6 | 8 JF ME — | 21 thf — a

Problem c.1.

Find the optimal schedule for the 3 X n sequencing problem in

which each of the n tasks consists of three operations 8» b> and

Cs i =1, 2,..., n. These operations are to be execut3d on proces-
sors 1, 2, and 3, respectively. Assume for all tasks that either

Lek sn Cus Les

x 1 ck x n x = 1 Ce n By

In the situation in which ne a < men bys they found that the
schedule on machine two and machine three ras most critical. Let some

| task { be the first task assigned, and let all other tasks on machine two

and machine three be scheduled using Johnson's method from Theorem 2.2.

Then call the idle time on the third processor I for the partial schedule

obtained by Johnson's method for processors two and three, When all three

processors are considered, the total idle time, D,» on machine three is

D, =a, +b - oc +max (cg, I)
where task 1 is the first task executed, The solution then is simply to find

the minimum value of D, for all i, 1 = 1, 2,..., n. The n applications of
Johnson's algorithm will locate the optimal sequence, The situation for

i <, < mer b has a similar solution, Figure 2.2 depicts the various
quantities discussed above.

Extensions to these results appear in Chapter 4.

2.4, "Cutting the Longest Queue’ Algorithms

A third family of sequencing problems concerns the m Xn sequencing

problem in which the processing order of the tasks is restricted. We recail

several definitions from graph theory and then define the sequencing

problems in these terms,

- 12 -

a a a

aPy FT

b b b

P, Fe—1 +2 3,2 3 3 2

3) 5 2 2
Cena med

1

I, = 3 units

D, = 2+ 3-1 + max (1, 3) = 7 units

Figure 2.2. Arthanari and Mukhopadhyay notation

- 13 -

Definition2.1. Given two tasks x and y, x < y (read, x precedes y) if x

must be processed before y may begin to be processed. Similarly,

XxX >y (read, x succeeds y) if y must be processed before x begins to

be processed. Iu particular, x << y (read, x directly precedes y)

(or x » y (read, x directly succeeds y)] if x <y [x » y] and there

exists no operation z such that x <z <y [x >» 2 > y].

Definition 2.2. The partial ordering between tasks given by the binary

relationship « is called precedence.

Definition 2.3. Given two tasks x and y, x ~y if x and y may be executed

independently, That is, x # y, x A y, and x » y.

Definition 2.4. (Tree Precedence) The precedence of all tasks is called

a tree if

1. There exists one and only one task x such that for all tasks

y, X #y, ¥y < x. The task x is called the root task (x is

the last task).

and 2. For each task y where y is not the root task, there exists

one and only one task z such that y << z, (Each task except

the last task has one and only one successor.)

Hu [1961, cf. Hsu 1966] developed the solution to a special m X n

sequencing subproblem., For ten years, his algorithm remained the only

major contribution to this area. The Hu problem is described in Problem 2.2.

Figure 2.3 shows an example of the tasks. Algorithm 2.1 states Hu's

“cutting the longest queue’ procedure for two processors (m = 2).

Problem 2.2. Hu's Problem

Find the optimal schedule for the m X n sequencing problem in

which all tasks have l-un:t length and tree precedence.

- 14 -

18 1-unit tasks with tree precedence

tig tyq ti2 ta tg t3 TF
r, ————t tt

t t t

P, | 17, 154 144 tg , ¥7 ty d

P | *18, “13, tg *10, ts —3 | |

Figure 2.3. Hu's "cutting the longest queue" algorithm

Algorithm 2.1. Hu's solution to Problem 2.2 form = 2

1. For each task in the tree precedence, calculate its distance from

the root task.

©. At each instant that a new task is sought by a processor, assign

the task farthest from the root task with all preceding tasks

completed. Ties are broken at random. [Hu 1961]

Figure 2.4 shc.: that Hu's algorithm is not extendable to tasks

of arbitrary length with tree precedence.

Before continuing the discussion of related results, a definition

of a more complex kind of precedence is needed.

Definition 2.5. The precedence of all tasks is called acyclic if for all

tasks, possibly with a partial ordering <, there is no task x such

that x < Xx,

Chandy, Dickson, and Ramamoorthy (1972a, 1972b] observed that at

least one of the many solutions which Hu's algorithm yields by breaking ties

in different ways is indeed an optimal solution when all tasks are of l=unit

length with acyclic precedence and there are two processors (m = 2). They

call the algorithm the Highest Level First (HLF) algorithm, Its significance,

however, is diminished by a lack of a decision ruie for determining efficiently

the optimal solution from this still large set of possible solutions. Also

we find Chandy's result to be a corollary of the concurrent work by Coffman

and Graham [1972] which is described below.

c.5. One Unit Tasks with Acyclic Precedence

An algorithm by Coffman and Graham is most relevant to the work

presented here, Their result is an algorithm which is at once effective

and efficient. They have limited their scope to Problem 2.3.

- 16 =

6 1-unit and 2-unit tasks with tree precedence

Solution Hu's algorithmt oy ¢ t
5 2 4 1

P, RA TU Jt YA S——1 2 2 1

> i: t3 —22
1 2 3

Optimal schedule

> ts tg i, t,! ¥ ERT: E

o to sy 22 —tGtG
2 2 1

Figure 2.4. Hu's algorithm for unequal task lengths

- 17 -

Problem 2.3.

Find the optimal schedule for the 2 x n sequencing problem in which

all tasks have l-unit length and acyclic precedence,

Figure 2.5 shows an example of the tasks in Problem 2.3 and a

schedule from the Coffman-Graham algorithm. The strategy of the algorithm

is straightforward. Initially, a task with no successors is assigned the

label 1. Then after k-1 tasks are assigned labels 1, 2,...,k-1, a task is

labelled k if

1. all its successors have received labels, and

2. the set of decreasing integer labels of the immediate successors

of x is less than or equal to the set of decreasing integer labels

of the immediate successors of all other tasks. (Ties are broken

arbitrarily.)

The schedule is formed by selecting at each instant the task with the largest

label with all predecessors completed.

If we denote the list produced by the Coffman-Graham algorithm by

L* and the length of time to complete the schedule generated with list L by

®(L), Theorem 2.6 from Coffman and Graham holds.

X Theorem 2.6. For a set of one unit tasks with acyclic precedence, W(L*) < o(L)
for all lists L. [Coffman and Graham 1972]

2.6. Two Observations

The ideas reviewed in the previous section are the initial results

needed to solve efficiently the general m X n sequencing problems with

an arbitrary number of processors and an arbitrary number of tasks, The

methods of solution are varied, Yet the resulting algorithms are efficient,

Efficient extensions to these ideas will be another step in the direction

of a complete solution to the m X n sequencing problem,

- 18-

19 1-unit tasks with acyclic precedence

> 19,517 f16%18 T12 tio %g ¥7 5 to1 .

> t18 Y6 t15 t13 V9 ty tg gg t3 tyA SUCHIN MLL SELL SHCHL
Pigure 2.5. Coffman and Graham algorithm example [1972]

- 19 -

In addition, researchers are attempting to show that some sub-

problems of the m X n sequencing problem have only solutions which grow

exponentially with the size of the problem. There are no published results

from this research. But such work in the inherent complex’'ty of a problem

may prove useful in bounding the algorithmic complexity limits which the

sequence problem researcher may expect.

- 20 =

Chapter 3

One-Unit and Two-Unit Tasks

3.1. The Problem Statement

The work of Hu [1961] and Coffman and Graham [1972] provide

solutions to problems composed entirely of l-unit tasks. In our work we

define a problem composed instead of 1l-unit tasks and 2-unit tasks. Our

nroblem, like Coffman and Graham's, involves only two processors (m = 2).

Problem 3.1 and Problem 3,2 define the problems solved here, Figure 3.1

and Figure 3.2 show examples of these problems,

Problem 3.1. Tree Precedence Problem

Find an optimal schedule on two processors (m = 2) for a set G of n

tasks with l-unit and 2-unit lengths and tree precedence.

Before stating Problem 3.2 we define several concepts concerning

the precedence of the tasks, These ideas are demonstrated in Figure 3.2.

Definition 3.1. A task x “n a set of tasks G is called an initial task if

there exists no task y such that y « x.

Definition 3.2. A task x in a set of tasks G is called a terminal task if

there exists no task y such that x < y.

Definition 3.3. A set or sets of tasks with tree precedence, A, is maximally

connected to another set or sets of tasks with tree precedence, B, if

each terminal task of A is a predecessor of each initial task of B.

Definition 3.4. A set of tasks G with acyclic precedence hasp tree-restric-

ted acyclic precedence if G consists of p sets of tasks with tree

precedence, As Anyeeey Ay such that Ai 4 is maximally connected to
- 21 -

Figure 3.1. Example of set G in Problem 3.1
(tree precedence)

- r. inal Y <erm tree 1

@ ® ®

maximally ~~)
connected ®

3 /

® ® @ @ |

initial

J tasks (1 ® tree 2

® ®

®

maximally
connected

® ® ®

| tree J@

Pigure 3.2. Example of set G in Problem 3.2
(3 tree-restricted acyclic precedence)

- 22

As 1 =2, 3,..., P.

Problem 3.2. The Tree-restricted Acyclic Precedence Problem

Find an optimal two processor schedule for a set G of n tasks with

l-unit and 2-unit lengths and p tree-restricted acyclic precedence.

The algorithm to solve the tree precedence problem is developed

in two steps. We do this both for simplification and for clarification of

the algorithmic strategy. The algorithm for the solution of the tree-

restricted acyclic precedence problem is closely related to that for the

tree precedence problem, Before introducing the intermediate problem in

Problem 3.3 we require two definitions about precedence.

Definition 3.5. A chain is a set of tasks ty Loree t such that

ty << lp <<...» << t..

Definition3.6. The tasks of G are said to have chain precedence if ‘ach

task in G is a member of one and only one chain (not necessarily the

same chain),

Problem 3.3. The Chain Precedence Problem

Find an optimal two processor schedule for a set G of n 1l-unit and

2-unit tasks with chain precedence.

Figure 3.3 shows an example of the chain orecedence problem,

We solve the tree precedence problem and the trec-restricted

acyclic precedence problem, Algorithm 3.1 is a task labeling procedure

which is used by the succeeding al: rithms, Algorithm 3.2, Algorithm

3.3 and Algorithm 3.4 treat the chain precedence problem, the inter-

mediate problem, First, Algorithm 3,2 is a procedure for scheduling

the tasks with the same label. Algorithm 3,3 then combines the schedule

rroduced by Algorithm 3.2, However, the solution is not necessarily

- 23 -

|

Pigure 3.3. Example of set G in the chain preceder.ce problem

- 24 =

optimal, The cases that lead to nonoptimal solutions are treated by Algorithm

3.4. Algorithm 3.3 and Algorithm 3.4 then combine with Algorithm 3.5 to

solve the tree precedence problem, Finally, Algorithm 3.6 solves the tree-

restricted acyclic precedence problem.

4.2. Development of the Solution to the Chain Precedence Problem

The situation posed in the chain precedence problem concerns only

chains of tasks and is a subproblem of the tree precedence problem, Figure

3.4 is an example of how a set of chains may be modified to become a tree

of tasks with one root task. A nonexistent root task is added which has as

its predecessor all terminal tasks of the chains,

The development of the algorithm for the chain precedence problem

is a series of three basic algorithms which lead to a possibly nonoptimal

solution, A fourth algorithm modifies the nonoptimai solution to an optimal

solution. Since the chain precedence p.oblem is a subproblem of the {ee

precedence problem, the proof of the solution to the chain precedence prob-

lem is omitted. Only the proof of the solution to the tree precedence prob-

lem is stated.

3.2.1. Algorithm 3,l1--Labelling

Algorithm 3.1 is a procedure for accomplishing the labelling of the

tasks. This algoritha is applicable to tasks with tree precedence as well

us chain precedence aud is similar to Hu's algorithm. The algorithm begins

by labelling each initial task with the label 1. All other tasks receive

an integer label one greater than the largest label of its predecessors.

Algorithm 3.1. Labelling

1. Label each initial task with level number 1,

2. For each task for which each of its immediate predecessors has

- 25 -

| 2

|

Ly
ly .
I /

N | /

EN NN NN | /
Sa SN

RO
Figure 3.4. Chains and trees

- 26-

been assigned level numbers, label the task with the maximum level

number of its predecessors plus one,

3. Repeat Step 2 until each tack has been assigned a level number.

Figure 3.5 shows an example of the labels produced by Algorithm

3.1. Throughout this chapter the largest level number assigned by the labelling

procedure is called M,

In an analysis of Algorithm 3.1 each task must be visited once for

labelling. However, when labelling a specific task x ill immediate prede-

cessors of x must be examined. Since each task in a tree is an immediate

predecessor of at most one task, cach task except the terminal tasks must

be visited only twice. Therefore, for n tasks approximately 2n operations

are required. The computation for Algorithm 3.1 is, therefore, of order n,

J(n).

Having touard level num ,ers for each task by Algorithm 3.1 we then

may refer to the number of tasks at a given level or merely to the level

number itself. The following definitions are helpful.

Definition3.7. For each task x in G, L(x) is the level number or label

of task x.

Definition3.8. For level k in G, N(k) 1s the number of tasks at level k

remaining to be scheduled.

Using Figure 3.6, the concepts of Definition 3,7 and 3.8 are clear.

For example, L(t) = 2 and N(3) = 2.
Corollary 3.1 is immediately apparent from the labelling algorithm

and Definition 3,7. The corollary states that the predecessors of a task

have smaller level numbers,

-27 -

(2 ! (1) 1 (1) 1 Q, 1 1

(1 2 (2 2 (1) 2 2

PD: OO: O°

(2) 4 (2) 4 (2) 4 M=4

Figure 3.5. Example of the labelling algorithm

© (2) © ts level 1

(%) © level 3

Figurs 3.6. Level notation
- 28 -

i

Corollary 3.1. For tasks x, y in G and x < y, L(x) < L(y).

The value of N(k) for each level k in G changes as a scheduling

algorithm progresses. For example, if level j has six tasks initially and

one task is assigned before the remaining five tasks, N(J) = 5 after the

single task is assigned.

3.2.2. Algorithm 3.2--Individual level Scheduling

The second algorithm, Algorithm 3.2, schedules tasks with the

same level number without consideration of the tasks from other levels. We

then characterize the individual schedules to observe their form before

incorporating them into a complete schedule in Algorithm 3.3.

In Algorithm 3,2 all 2-unit tasks are assigned before l-unit

tasks. A task is assigned when a processor calls for a new task, Figure

3.7 shows an example of the use of the algorithm,

Algorithm 3.2. Individual Level Scheduling

let the two processors be P, and P,. For a given level,

1. Order the tasks into a list L so that Z-unit tasks precede

l1-unit tasks,

2. When a processor needs a task, assign the next unassigned task

in list L. If both processors need a task simultaneously,

assign the next unassigned task in list L to P, and the

second unassigned task in list L to P,.

Algorithm 3.2 schedules the N(K) tasks of each level k. The order-

ing of Step 1 is a simple procedure; all 2-unit tasks must precede l-unit

tasks. The ordering is accomplished by creating a double-ended queue, or

deque, in which one end is for 2-unit tasks and one end is for l-unit tasks,

- 29 -

Two Processors

P Er rE E—1 2 1 1
level 1

P ET SE Sr EE ——2 2 1

P —t—1 2 1

level 2

Pp Ft t+—"m

PF, Ft
level 3

P, p—t——2 yy

P, b——t——t—
level 4

FP, 2 -—

Figure 3.7. Use of Algorithm 3.2 in example of Figure 3.4

- 30-

Each task is visited once during Step 1 for N(K) operations, In Step 2 each

task is again visited to create the level's schedule; again there are N(K)

operations, The total number of operations for a given level k is 2N(K)

Algorithm 3.2 is then also of order n, O(n),

Algorithm 3.2 treats only l-unit and 2-uni: tasks on two proces-

sors, The algorithm is applicable to two processors which begin simul-

taneously as well as to processors which do not, With the condition that

execution on processors P, and P, begins simultaneously several observa-

tions about the individual level schedules become apparent.

Corollary 3.2. If processors P and P, begin execution simultaneously,

Algorithm 3.2 produces a schedule in which processor P, completes all

tasks either C, 1, or 2 units before processor 2%

Corollary 3.3. If processors P and P, begin execution simultaneously,

Algorithm 3.2 produces a schecul2 in which at most one task is executed

on processor P, when P, become: idle.

With the condition that processor P, begins execution before proces-

sor P, we make two additional observations. In particular, we are concerned

with the cases where processor P, begins execution one unit cr two units before

processor P,-

Corollary 3.4. If processor P, begins execution 1 or 2 units before proces-

sor Py Algorithm 3.2 produces a schedule in which one processor completes

all tasks U, 1, or 2 units before the other processor,

Corollary 3.5. If processor P, begins execution two units before processor

Pos Algorithm 3.2 produces a schedule in which at most two tasks .egin

execution on processor P, before processor P, begins execution.
- 31 -

| 3.2.3 Solution to the Chain Precedence Problem

Using the labeling procedure of Algorithm 3.1 and the schedules

of the individual levels produced by Algorithm 3.2, Algorithm 3,3 produces

8 schedule for the tasks in the chain precedence problem. However, Algorithm

3.3 does not always produce an optimal schedule. The discussion following

the algorithm points out the failures. Algorithm 3.4 then summarizes the

modifications required in Algorithm 3.3, But in order to make Algorithm

3.4 applicable to the tree precedence problem also, new definitions are

needed. Algorithm 3.3 and Algorithm 3.4 together produce an optimal solu-

tion to the chain precedence problem,

Algorithm 3.3 has three distinct sections. Steps 1, 2, and 3 use

Algorithm 3.1 and Algorithm 3.2 to provide the initial labelling of the tasks

and the schedules of individual levels, Scheduling begins with the termi-

nal tasks and progress back to the initial tasks, Step 4 is used when the

level to be scheduled and all the levels of predecessors have at least

three tasks, The construction of the complete schedule from partial

schedules of Algorithm 3,2 is summarized by Table 3.1 following Algorithm 3.3,

Steps 5, 6, 7, and 3 treat the case when the level to be scheduled

has less then 3 tasks. Then no level scheduled earlier has had 3 or more

tasks. Step 5 schedules all remaining tasks when only a single chain of

tasks remains to be assigned. Step € schedules tasks when the level to be

scheduled has less than three tasks. The processors are dedicated to the

longest and second longest chains, respectively, These chains, exclusively,

are assigned to these processors unless other chains equal the shorter

chain in number of levels and the length of the queue on the processor is

two or more units less than the other queue, Then a chain other than the

dedicated chain may be scheduled. Essentially, the queues are maintained

nearly equal in length until the level to be scheduled has more than two

= - 32 -

tasks or all tasks are scheduled, Steps 7 and 8 detect the termination

conditions and provide the iterative structure of the algorithm.

Algorithm 3.3. Basic Scheduling Algorithm for Problem 3.3

1, Using Algorithm 3,1 assign a level number to each task,

2, Schedule level M using Algorithm 3.2 with both processors begin-

ning simultaneously.

3. Set the current level to level M-1,

L, If N(level) = 3,

4A, For level = level, level - 1, .., , 1:

LA.1. Note the number of units U a processor is idle in the

current schedule while the other processor executes

some tasks.

LA,2, Schedule the current level using Algorithm 3.2 with

processor P, beginning execution U uniis before

processor P,.

LA.3. Rearrange the tasks in the schedule of the current

level so that no task performed on processor P, in

the first U units is a successor of the last task(s)

performed in the current schedule.

4LA.4, Combine the current schedule and the schedule of the

current level,

LB, The schedule is complete. Stop.

5. If N(k) = 1 for k = level, level-1, ..,, , 1, assign all tasks in

order. Schedule is complete, Stop.

6. If N(level) < 3,

6A. Assign a queue to the longest chain and the second queue to

the next longest chain, Call these dedicated queues, Break

- 33 -

ties arbitrarily.

6B. Assign current level tasks to the preassigned queues,

6C. DefiueDQ , the deficiency of queue i, as the number of units

queue 1 lags the other queue,

6p. If DQ, < 3 and N(1level-1) > 3, go to Step 8.

6B. If DQ, = 0, go to Step B.

€F. Let next level be greatest level number of the tasks available

to be assigned but not dedicated to the longer queue,

6F.1. If a task in next level is from the chain dedicated to

queue i,

6F.1A, If the tash's length is less than or equal to DQ,

assign the task to queue i and repeat Step OF.

6F.1B, Otherwise, go to Step 8.

6F.2. If a task in next level is not from the chain dedicated

to queue 1,

6F.2A., If DQ, 2 2, and if by assigning the task DQ, remains

DQ, $ 1, then assign the task and repeat Step 6F.
6F.2B., Otherwise, go to Step 8.

7. 1f N(level-1) = O or N(k) = 1 for k = level-1, level-2, ... , 1,

assign all tasks to the dedicated queue. Schedule is complete, Stop.

8. Let level equal level - 1. If N(level) 2 3, go to Step 4. Otherwise

go to Step OB,

In the schedules produced by Algorithm 3.2 and in some of the

schedules produced by Algorithm 3.3 no processor is idle while the other

processor is executing except at the end of the assignment. In these

compacted schedules we are interested in three possible forms of the

assignment or partial assignment. Figure 3.8 shows examples of Form A,

Form B, and Form C‘described in Definiticn 3.9.

- 34 -

Definition 3.9. An assignment or partial assigament in which both pro-

cessors begin simultaneously and in which one processor completes

execution two units, one unit, or zero units before the second

processor is said to be of Form A, Form B, or Forw C, respectively.

The forms described in Definition 3.3 are convenient for

summarizing the assignments made in Step LA of Algorithm 3.3, Table 3.1

provides this summary which is easily verified by case analysis. Here,

X is the partial assignment called current schedule, Y is the assignment

of the current ievel as found in Algorithm 3,2 with both processors’

beginning execution simultaneously, Later we refer to the operation

of Table 3.1 as the °« operation,

° X Form A Form B Form C

Form A Cc B A or C#

Foim B B Cc B Table 3.1,

Form C A B C Assigmment of Forms

(Form A)-(Form C) = Form A if Form C contains

no 1-unit tasks or only contains three tasks with

the 2-unit task a predecessor of the last task in

Form A. In all other cases (Form A)‘ (Form C) =

Form C,

One observation is immediately apparent about a complete

assignment of 1-unit and 2-unit tasks which has no idle time on either

processor except possibly at the end of the assignment,

Corollary 3.6. A complete assignment of l-unit and 2-unit tasks which

is of Form B or Form C is optimal,

- 35 -

Form A:

Pp, ———————+
\arygmmsed

p=2

P, freee

Form B:

Py rf
nga)
p=1

Ferm Ce

P, p——

P,a ———_

Figure 3.8. Form A, Form B, and Form C

- 36 -

|

A complete ursignment which is of Form A Bay or may not be
.

optimal, Corollary 3,7 describes a case that is clearly optimal since

only c-unit tasks are involved. The discussion following the corollary

outlines the shortcomings of Algorithm 3.3 and the means for their

elimination,

Corollary 3.7. A complete assignment of 2-unit tasks which is of Form

A or Form C is optimal,

In the analysis of Algorithm 3.3, we first focus on Step 4,

Indeed, if N(k) > 3, no succeeding steps of the algorithm are used, For

convenience in understanding the affect of Step 4, we refer to Table 3.1

throughout the discussion, Using the terminology of this table we note

that it is possible for an assignment to end in Form A and not be optimal,

Figure 3.0 shows four situations in which a nonoptimal Fors A assignment

occurs. Later we show that only these four kinds of situations occur if

a level k with N(k) 2 3 contains l-unit tasks, The shortcomings of

Algorithm 3,3 follow:

1. The first situation, depicted in Figure 3.3(A), is such

that the last level assigned with l-unit tasks (level 2) is of Form B by

Algorithes 3.2. The partial assignment after level 3 is assigned also is

of Form B. Instead of the Form C obtained by the : operation after the

assignment of level 2 we desire to obtain Form A. To accomplish this

result in general where level i has the last l-unit task, the last l-unit

task in level i should be moved to the other processor. If a conflict

with level i+l occurs, it must be resolved by rearrangement of tasks,

Also although one processor executes for two units while the other is

idle, no conflict occurs at level i-1, Since N(1-1) => 3 and level i-1

has all 2-unit tasks, at least one task of level i-1 may be found to

- 37 -

|

p. 1% Fo, ts ty tg

1 2 "1 2 2 2 & Gu &
p t tg t, t

ETO © @
optimal schedule:

> ty tot, 5 te 2 2 ts)VE TT 2

t t t t ’

P,= Figure 3.9(A)

P, ts ts t ty
2 2 2 2

t. tConfetti, 69 6D) G211 1% 2

optimal schedule: (12/2 t/) o/)
3 t; ts t, t,

Cr 7) Ge)
’, tgtgty t, t,HA

.

P, t, t, ¢ t t

tat, t,t.~ t

Pp, :

EEOeaEa YO YO Ye
optimal schedule:

Eee. QEP, bmg 1 12,
2 2 1 1 V4 2

’ tat, t t t t | Pigure 3.9(B)2 FHA ea |
- 38-

t t t

P, —6 4d to B102 2 2 2

P, = AAA A t1/2 D2 (/)2 11 11

P, t tg t t,
Co 7) 0) (3

| 2 2 + xn
Pigure 3.9(C)

t t t t t
p 4 3 2 1 8
1 2 To tp tt

Pp, ts te tq ts L2Te
2 1 1 2 2

P, TZ EI HN A EPye te 0 & &V4 2 1° 2 2

2 1 1 l 2

Figure 3.9(D)

Figure 3.9. Modifications

- 39 -

execute during the two units even if the two units “epresent two tasks.

II. The second situation, depicted in rigure 3.9(B), is such

that the last level with l-unit tasks in level i (1 = 2 in both cases of

Figure 3.9(B)) 1s of Form C. Then either N(i) > 3 and the partial assign-

ment throvgh level i+l is of Porm A or Form C, or N(i) = 3 and the partial

assignment through level i+l1 is of Form C. In both cases, the remedy is

the same as that described in I above.

III. In the third situation, shown in Figure 3.9(C), level 1 is

of Form C and N(1) = 3 and the partial assignment through level 2 is of

Form A. Level 1 is the last level with 1-unit tasks. In general the

last level with l-unit tasks is cf Form C with N(i) = 3 and the partial

assignment through level i+l is of Form A. We then want to back up and

find a level J, Jj 2 1, of Form CC and N(J) = 3. In the figure, J = 2.

If N(J+1) > 3, one of the three tasks in level j+1 does rot conflict with

the 2-unit task of level j. This nonconflicting task should be assigned

last in level j. Level j through level i are assigred by the usua' -

operation. In Figure 3.3(C), then, level 3 is rearraziged sc that

task te is assigned last. Levels 2 and 1 are assigned in the usual
way. :

IV. In some cases no level j may be found auch that N(Jj+1) > 3

and N(J) = 3. This situation occurs in the example shown in Figure 3.9(D).

In the figure level 2 is of Form C, N(2) = 3, N(1) = 4 and the partial

assignment through level 2 1s of Form A, In general, some level 1 is of

Form C, N(1) = 3, N(i-1) 2 3, and the partisl assigument through level i

is of Form A. One of the 1-unit tasks of level i is placed before the o-

unit task of level 1. Ome of the 2-unit tasks of level i-1 does not con-

flict and may be assigned following the second l-unit task of level 1

followed itself by the predecessor of the first l-unit task of level 1,

The remainder of the assignment of level 1 proceeds as in Algorithm 3.2

If no l-unit tasks exist in a level k such that N(k) >» 3, 1t is

possible that l-unit tasks exist in some other level j where N(J) < 3.

Again we may transform the schedule. One gueue will be longer than the

other, We use here and prove later in relation to Algorithm 3,5 that all

tasks in the longer queue are related (Lemma 3.1), Figure 3.10 shows two

typical cases which need transformation.

V. In Figure 3,10 a l-unit task occurs in the longer queue

(P|) or in the shorter queue (P,). Find the last 1l-unit task assigned
and call it task D. When task D was assigned, a task F either started

execution on the other processor or was midway through executicn. Either

D or F was on the shorter queue, and a task E was available for assignmen-

in its place, 1f tasks D and F begin execution simultaneously, plece D

in the other queue before F, Otherwise, place D on the other queue alter

F. Replace D with task E,

E may have been assigned before level k where N(k) > 3 and

assigned to the shorter queue. In this case replace it with E', which is

either a task from level k or a predecessor of T. Repeat this process

until level k is assigned. Assign level k so that no conflict occurs,

In the case when E is from level j, j = k, k-1, ... , 1,

replace E with a task from level k. Assign level k so that no conflict

occurs,

As is shawn in Theorem 3,1, level k may be assigned since

N(k) > 3. The structure of the partial assignment is changed either from

Form A to Form C or from Form C to Form A,

These corrections a:. performed by Algorithm 3.4, Algorithm

3.3 and Algorithm 3,4 produce the solution to the chain precedence pro-

blem. This fact is stated without proof since this problem is a special

case of the tree precedence problem,

- 31-

ousas asa aNO BNO QP; betta Zz Q
optimal schedule: (2) (2)
Py betta1 17 2 2 2 2 (1)

Sl Oo2 2 "17 2 2 2

P ttt

—t—t— eeeFa 1717 2

optimal schedule:

P ppp e—e—T HTT

P tt2 772

Figure 3.10. 1-unit tasks in Algorithm 3.3

- 42-

Before stating Algorithm 3.4 for chain precedence, we extend

the modifications slightly for tree precedence, This extension avoids

the repetition of the algorithm later, To accomplish this we present

three definitions, Figure 3.11 shows examples of the situations of

Definitions 3.11, 3.12, and 3,13,

Definition 3.10. The longer queue is the queue dedicated to the subtree

with the highest level number or simply the queue with more time

units assigned.

Definition 3.11, An assignment break occurs at time T if

1. the longer queue completes execution of a task x

at time t,

and 2, insufficient tasks y, y ~ x, remain to be assigned to

the second queue to extend beyond time T,

Definition 3.12. An assignment stop occurs at time T if

1. the longer queue completes execution of a task x

at time T,

and 2. x is in level k such that N(k) = 1,

and 3. N(k-1) = 2 such that both tasks are predecessors

of x,

Definition 3.13. An assignment fork occurs at time T if

1. the longer queue completes execution of a task x

at time T,

and 2, x is in level k such that N(k) < 2,

and 3. insufficient tasks y, y ~ x, remain to be assigned

to a second processor to extend beyond time T+1,

and 4. an assignment break did not occur at time T or T+1l.

- 43 -

Assignment Break

Assignment Stop

0 0 P, a
g

F2 b+ 7

(1 Assignment Fork

Pigure 3.11. Examples of definitions

J |

Algorithm 3.4 corrects the failures of Algorithm 3.3 but uses

the terminology of tasks with tree precedence above, The algorithm is

applicable to both the chain precedence problem and the tree precedence

problem, The strategy of Algorithm 5.4 parallels the five points made in

the discussion of Algorithm 3.3's shortcomings.

Algorithm 3.4.

1. If the schedule is not of Form A, or if the schedule does not

contain l-unit tasks, or if the schedule is equal in length to

the longest chain, or if no 1-unit tasks appear after the last

assignment fork or assignment break, Algorithm 3.4 does not

apply. The current schedule is optimal,

2. Find the largest numbered level k such that N(k) > 3 when

assigned in the current schedule,

3. If at least one l-unit task occurs in levels k-1, k-2, ... , or

1, find the smallest value i such that level i contains a l-unit

task.

3A. If level i is of Form B by Algorithm 3.2, thon by Table 3.1

the partial assignment k, k-1, ... , i+1 18 of Form B, Take

the last l-unit task assigned in level i, and assign it to

the other processor.

38. If level 1 1s of Form C by Algorithm 3.2 and if N(i) > 3,

or if level 3 is of Form C by Algorithm 3.2 and if N(i) = 3

and if the partial assignment of levels k, k-1, ... , i+]

is of Form C, take the last 1-unit task assigned in level

i and assign it to the other processor.

3C. If level ; is of Form C by Algorithm 3.2 and 1f N(1) = 3

- 45 -

and if the partial assigmment of levels k, k-1, ... , 1i+l

is of Form A, find the largest number j such that level J

is of Form C by Algcrithm 3.2, N(j) = 3 and k > J 2 4. If

such a J exists, select one task from the last three tasks

assigned in level j+l1 which does not conflict with the

2-unit task of level j. Assign the nonconflicting task

from level j+1 last, Assign levels Jj, j-1, ... , 1 by the

+ operation,

3D. If level i is of Form C by Algorithm 3.2, and if N(1) = 3,

and if N(i-1) > 3, and if the partial assignuent of levels

k, k-1 ... , 1 is of Form A, place the l-unit task of level

i before the 2-unit task of level i on the longer queue,

Place one of the nonconflicting tasks from level i-1 on the

second queue followed by a task which does not conflict

| with the 2-unit task of level 1.

In all cases complete the assignment by assigning levels i-1,

i-2, ... , 1 by the ° operation,

L. If no 1-unit tasks occur in levels k, k=1, ... , or 1 and a

1-unit task occurs in levels M, N-1, ... , or k+l after the last ’

assignment fork or assignment bieak,

4A. Find the last 1-unit task assigned and call it task D.

When task D was assigned, a task F was either starting

execution on the other processor or was midway through

execution, Place D on the other queue to start before F

if they had begun execution simultaneously or, otheiwise,

immediately after task F, Either task D or task F was not

on the longer queue and another task E could have been

assigned in its place. Replace task D with task E. If E

- 46 -

|

had already been assigned to the shorter queue, replace E

with its predecessor, Continue this replacement until

either no more predecessors of E have been assigned to the

shorter queue before level i or a predecessor of E may be

replaced by a task from level 1,

A proof of the correctness of Algorithms 3.3 and 3.4 is

required here. However, the solution of the chain precedence problem is

merely a subcase of the solution to the tree precedence problem which

follows. Therefore, we defer a proof of the algorithm until Algorithm 3.5

is stated.

3.3. Solution to the Tree Precedence Problem

In this section we extend the solution of the chain precedence

problem to the tree precedence problem. Instead of considering only tasks

with chain precedence, we permit tasks to be related with tree precedence.

The resulting algorithms for the solution to the new problem is Algorithm

3.4 and Algorithm 3.5. Its form is very similar to that of Algorithm 3.3,

However, the situations which involve assignment stops and assignment

forks complicgte the algorithm,

Steps 1 and 2 of Algorithm 3.5 use Algorithm 3.1 to label the

tasks, Step 3, which corresponds to Step 4 of Algorithm 3.3, treats a

level and all later levels having three or more tasks. All other steps

treat the situations where a level with 3 or more tasks has not yet been

located. Step L detects the case where only one subtree remains from

the original tree. In this case the partial solution may be set aside,

and the set of tasks in the subtree may be considered to be a new problem,

Steps 5 through 13 isolate and treat the special cases where the

number of tasks in the level to be scheduled is less than three. We call

- 47 -

|

a subtree of unassigned tasks with the largest level number the longest

subtree. Similarly, we call a subtree of unassigned tasks with the

second largest level number the second longest subtree, Step 5 then

assigns the two processors to the longest and second longest subtrees,

Steps 6, 7, 8, and 9 then assign tasks from these two dedicated subtrees

so that the processor queues remain within two units of each other, If

other subtrees have the same length as the shorter dedicated subtree,

Step OU selects tasks from these subtrees. Step 7 detects the time when

the number of tasks to be scheduled in the next level is three or greater.

Then the queues are ready for the use of Step 3. Steps 10 and 11 detect

the termination conditions for the algorithm or the existence of only one

subtree, Step 12 detects an assignement stop within the schedule. The

elimination of time gaps within the queue schedule is handled in Step TA

and OB,1, Steps 12C and 13 provide the iteration mechanism until Step 2

is applicable,

Algorithm 3.5.

1. Using Algorithm 3.1 assign a level number to each task.

c¢. Let the current level be equal to M, the largest level number.

3. If N(M) > 3,

3A. Schedule level M by Algorithm 3.2.

38. Set level = level - 1.

3C. For level = level, level-1l, ... , 1,

3C.1. Note the number of units, U, a processor is idle in

the current schedule while the second processor

executes some tasks,

3C.2. Schedule the current level using Algorithm 3.2 with

processor P, beginning execution U units before

- L8-

processor Pp,

3C.3. Rearrange tasks of the current level in the schedule

of Step 3C.2 so that no task performed on processor

P, in the first U units is a successor of the last

tasks performed in the current schedule,

3C.4. Combine the current schedule and the schedule of the

current level,

3D. Go to Algorithm 3,4,

L. If only one subtree exists, schedule a single task on longer

queue, Set aside the partial solution and delete the assigned

task from the tree, Begin Algorithm 3,5 at Step 2 with the

revised set of tasks.

>. If N(M) < 3, assign a queue to the subtree with the larzest

level number and the second queue to the subtree with the next

largest level number. Break ties arbitrarily. Call these queues

dedicated queues,

¢, If N(level) < 3, assign the current level tasks to the dedicated

queues.

[. If DQ S 2 and N(level-1) > 3,

fA. If a previous stop gap remains unfilled (see Step 12B),

match the longer queues together and fill the gap. If

N(level-1) < 3, go to Step §.

7B, Assign tasks to the deficient queue so that DQ, = 0, If

this is impossible, assign tasks so that DQ, =1, If

neither is possible, an assignment break exists,

7C. If N(level-1) .. 3, set level equal to level-1 and go to

Step 3B.

- 49 -

TD. If N(level-1) < 3, assign level-1 to the dedicated queues.

Set level equal to level-1.

| TE. If N(Level-1) < 3, assign level-l to the dedicated queu:s

and set level equal to level-1,

TF. If no subtree remains, the assignment is complete, Other-

wise, set level equal to level-1l and go to Step 3B.

8. If DQ =O, go to Step 12,

9. Let the next level be the greatest level number of the tasks

available to be assigned but not dedicated to the longer queue,

9A, If a task in the next level is from the subtree dedicated

to queue 1,

QA.1. If its length is less than or equal to DQ,, assign

it to queue i, Repeat Step JG.

9A.2. Otherwise, go to Step 12.

9B, If the task in the next level is not from the tasks dedi-

cated to queue i and if DQ, 2 2 and if assigning the task

level leaves DQ, 2 1,

9B.1. If a previous unfilled stop gap exists (see Step 12B),

match the longer queues together and fill the gap.

Repeat Step 9.

9B.2, Otherwise, assign the task to the second processor,

Repeat Step GC,

10. If no subtree remains, the assignment is complete, Stop.

11. If one subtree remains to be assigned, we have an assignment

break. Set aside the schedule and begin Algorithm 3.5 at Step 2

with the subtree,

12. If an assignment stop has occurred,

12 A. If an assignment gap remains unfilled, match the longer

- 50 =

queues together and fill the gap.

12B. Assign tasks to the second queue not to exceed the

length of the longer queue, This creates a possible

assignment stop gap.

12C, Set level equal to level-l. Go to Step ©.

13. Set level equal to level-1. Go to Step 6.

The complete schedule consists of the successive partial

schedules derived in Algorithm 3.H,

Now we must verify that Algorithms 3.4 and 3.5 do indeed pro-

duce an optimal schedule for Problem 3.1.

Theorem 3.1. Algorithm 3,5 and 3,4 find an optimal schedule for

Problem 3.1.

Proof.

The strategy of the proof is to divide the schedule into

segments each of which is independent of earlier segments and later

segments, In this way no task from one segment may be assigned in

an earlier segment,

Algorithm 3.5 concludes portions of the schedule in

several places, These are Step 4, Step TF, Step 10, and Step 11.

Step 3D calls upon Algorithm 3.4 to correct the schedule if possible.

We show that schedules achieved at each termination are optimal.

Step 4 is executed only when the current level is level M,

In this step a single subtree exists in which there is only one task,

t, such that for all tasks x € G, x Zt, x <t, Since task t is

indivisible, only one processor may execute t while the second pro-

cessor remains idle. We call the queue to which t 1s assigned the

longer queue, The partial optimal schedule consisting only of t is

- 51 -

set aside, After removing t from the set of tasks the algorithms is

reentered at Step 2 to find the schedule of the remaining tasks.

Step TF, Step 10, and Step 11 sre similar. In all these Steps

an assignment break occurs before a current level is encountered

which has three or more tasks. In Step 10 the assignment is com-

plete; in Step 11 all remaining tasks form a single subtree con-

sisting of a task t and tasks x, x « t.

Lemma 3.1. At time T, t is executed on processor 1, t, is executed on

processor 2, and L(t,) <L(t,). At time T', T' >T, t; is executed

on processor 1, t; is executed on processor 2, and L(y) > L(t,).

Then at some time T', T < T" < T', t, is executed on processor 1,

t} is executed on processor 2, L(t) = L(t,).
Proof.

Assume that the lemma is not true. Then at some time

T, L(t,) < L(t.) and at time T+1, L(t]) > L(t)).

Algorithm 3.5 requires that L(t)) < L(t).

A. Assume that L(t.) = L(t).

From the assumptions, L(t]) -12 L(t5) and L(t,) +1< L(t,).

Then L(t) + 1 < L(t.) = L(t}) 2 L(t)) - 1,

This implies L(t,) +2< L(t,).

B. Assume that L(t.) = L(t}) + 1,

From the assumptions, L(t)) > L(t.) + 1 and L(t,) + 1% L(t,).

Then L(t,) + 1s L(t.) = L(t,) + 1s L(t).

This implies L(t,) < L(t;) which contradicts the fact that

L(t]) < L(t).

- 52 -

Lemma 3.c. If an assignment break or an assignment stop occurs at time

T, each task in the longer queue is either a predecessor or a

successcr of each other task,

Proof.

Let to to cee te be the tasks sssigned to the longer queue,

Let te tos cee t, be the tasks assigned to the second queue,

Suppose at some first time T', ta ”™ t- t >» t, > Lo.» ti > t,.

t, must have been assigned during Step 9 of Algorithm 3.5 and

L(t) m L(t, _,)- If ty is the task assigned to the second processor

at time T', L(t) < L(t). Since L(t,) = L(t, ,), the condition

L(t,) . L(t}) would require that L(t) = L(t, ,) = L(t). This situ-

ation would have been detected as N(L(t})) = 3 in Step 7 of Algorithm
3.5.

Since an assignment break occurs at time T, at least one task

remains to be assigned. L(t) > 1 and L(t.) = 1. Therefore,

Let) > L(t).

By Lemma 3.1, at some T"', T' <T" < T, L(t) = L(t").

A. If ty » t, then since in Step O tasks from the dedicated chain

are assigned first, there exists a task t*, t* « t for which

L(t*) = L(t) = L(t’). Hence we again have N(L(t)) = 3 which

Step 7 of Algorithm 3.5 would have detected.

B, If t ~t, thent is the last task at L(t). If there were more,

we again would have N(L(t)) > 3. How many tasks are in level

L(t) - 1? There are at least a predecessor of t,, a predecessor

of t, and a predecessor of t'. Also there may be no tasks at

level L(t) - 1. Since there is an assignment break occurring

later, both situations lead to a contradiction,

- 53 -

Lemma 3.3. If an assignment break occurs in a partial assignment which

contains assignment stops, each task in the longer queue is either

a predecessor or a successor of each other task,

Proof,

In Step 12 of Algorithm 3.5 the assignment stop is detected.

All tasks in the longer queue are related by Lemma 3.2. Step 7B,

Step OB.l, and Step 12A unite subsequent portions of the schedule at

the assignment stop by matching longer queues, Since the first task

of each queue in the subsequent portion is related to the tasks in

the longer queue at the assignment stop, the tasks in the lounger

queue of the united portions are related. ’

The set of tasks up to the assignment hreak begins on both pro-

cessors simultaneously. No idle tims occu:s on one processor while

the second is executing some tasks except at the »ud. Since all

tasks in the longer queue are related, no shorter time for completion

of this set of tasks is possible, Since all succeeding tasks, if

any, are predecessors of the last task assigned to the longer queue,

no tasks left unassigned may be included in this portion of the

schedule,

Step 3D calls upon Algorithm 3.4 to complete each schedule in

which some current level has three or more tasks, By Lemma 3.1 a

schedule in which no current level has three or more tasks is such

that each task in the longer ruecue 1s a predecessor or successor of

each other task. Therefore, no shorter schedule is possible,

Unless N(M) > 3, Step 7 detects that a level with three or more

tasks is next to be scheduled and the longer queue is processing tasks

- 54 =

while the other processor is idle for no more than two units. First,

a stop gap may remain unfilled. Since : stop had occurred and not

an assignment break, the situation is the seme as in Lemma 3.1. If

N(level-1) < 3 after the stop gap is f.lleod, the algorithm continues

as 1f N(level-1) had never been greater than or equal to 3.

If no stop gap remained or if N(level-1) > 3 after the stop gap

was filled, Steps 7B through TF are used. Since an ussignment break

does not exist, sufficien: tasks exist to satisfy Step 7B, If levels

(level-1) or (level-2) have less than 3 tasks after Step 7B, or both,

one queue may receive one set and the second queue the other. At

most two units of deficiency exist. Then execution goes to Step 3B.

Step 3 is entered in two ways. If N(M) > 3, Step 3 is entered

directly from Step 2. Steps 4 through 13 are never executed. Other-

wise, Step 3B follows Step (. In either case Step 3B is entered in

the following situation.

a. Form A: Either level M wars of Form A or Step TE left

Form A, In both cases, the last task assigned to both

queues is from the previous level, The current level has

three or more tasks,

b. Form B: Form B may be the form of level M or Form B may

be lef. by Steps 7B, 7D, or TE, In all cases, the current

level has three or more tasks.

c. Form C: Form C may be the form of level M or Form C may

be left by Steps 7B, [/D, or 7E, In all cases the current

level has three or more tasks.

For this discussion if N(M) > 3, level k is level M, Otherwise,

level k refers to the current level in ¢, b, and c¢, above, which is

- 55 =

the first level with three or more tasks. Given the partial assign-

ment through level k, each additional level is added using Algorithm

3.2 by Steps 3C.2 through 3C.4. The results of these assignments

are summarized in Table 3.1 which is easily verified by case

analysis, Consequently the resulting schedule at Step 3D may be of

Form A, Form B, or Form C,

Lemma 3.4. No idle time occurs in a partial schedule by Algorithm 3.

except possibly on one processor at the end of the schedule.

Proof.

Tasks in Algorithm 3.2 and in Algorithm 3.5 at Steps 2, 5, 7,

and QO are scheduled without delay between tasks. In Step lc of

Algorithm 3.5 a stop gap 1s allowed to exist. However, by definition

sufficient tasks are available to fill the gap. The tasks are

assigned when the lounger queues are matched in Step (A, B.1, and

12A.

- Since no idle time occurs in the partial assignment by Lemma

3.4, schedules of Form B and Form C are optimal by Corollary 2.5.

Therefore, only assignments of Form A must be shown to be optimal or

transformed to Form C by Algorithm 3.1L,

a. If the length of the longest queue is equal to the length

of the longest path in the subtree, the Form A is optimal,

b. If the assignment contains no l-unit tasks, there are an

odd number of 2-unit tasks, No better schedule may be

obtained,

The l-unit tasks occur either in levels M, M-1, ... , k+l or

in levels k, k-1, ,., , 1 where k is the largest numbered level such

that N(k) > 3 found in Step 2.

- 56=

¢. If a l-unit task occurs in levels k, k-1, ... , 1,

| Step 3 finds the smallest value i such that level 1 con-

tains a l-unit task,

1. k 2 i, the partial assignment up to level i+l is of

Form B and level 1 is of Form B by Algorithm 3.2: By

Table 3.1, (Form B).(Form B) gives Fors C. By moving

one l-unit task from one processor to the next in

Step 3A, the form becomes Form A, By Table 3.1 the

assignment of levels of Form C and Form A which before

created Form A now creates Form C., Since all remaining

levels have only 2-unit tasks, a complete assignment

which before was Form A now becomes Form C by Table 3.1.

2. k > i, the partial assignment up to level i+l is of

Form C and level i is of Form C by Algorithm 3.2: Again

one of the 1-unit tasks can be moved from one processor

to the second or done in Step 3B. The form which was

(Form C).(Form C) = Form C now becomes Form A, By

Table 3.1 and the fact that no l-unit tasks occur later,

the assignment is completed as Form C,

3. k > 1, the partial assignment up to level i+l is of

Form A, and level i is of Form C by Algorithm 3.2 with

N(1) > 3. Since N(1) > 3, there are more than one task

other than the two l-unit tasks. At least one of these

tasks may be assigned during the partial assignment

deficit. This leaves at least one l-unit task which

may be moved to the other processor to create Form A

instead of Form C as in Step 3B.

- 57 =

|

4, k > 1, level i is of Form C by Algorithm 3.2 with

N(i) = 3 and the partial assignment up to level i+l is

of Form A, Step 1C finds the largest number j such that

k > Jj, N(J) = 3, and level j is of Form C by Algorithm

3.2. If Jj does not exist, the assignment length equals

the length of the longest path in the tree. The last

tasks assigned in level j+l are unrelated, and two do

not conflict with the 2-unit task of level j. By

assigning one of these two tasks last in level j+1, as

in Step 3C, the partial assignment up to level j

becomes Form C instead of Form A,

: 5. k2 1, level i is of Form C by Algorithm 3.2,

N(1) = 3, N(i-1) > 3, and the partial assignment up to

level 1 is of Form A. Level i-1 contains only Z-unit

tasks. Two of which, respectively, are predecessors

of the l-unit tasks of level i, As in Step 3D, by

placing a 1-unit task t of level 1 before the 2-unit

task of level i, the predecessors of the other l-unit

task t' of level i may be assigned in place of t. Then

the predecessor of t is assigned after that, All other

tasks of level i-1 are assigned as usual. If the

original form of the partial assignment was Form A, or

Form C, it now becomes Form C or Form A, respectively.

By Table 3.1, the complete assignment becomes Form C,

6. No l-unit tasks exist in levels k, k-1, ... , 1. We

desire to change the Form A or Form C of the partial

assignment of levels M, M-1, ,.,. , k to Form C or Form A,

- 58 -

respectively. This operation is accomplished by moving

a 1-unit task from one queue to the other,

6A. In Step 4A, a last assigned l-unit task D exists

which is not in the longer queue. At the same

time a task F is executing on the longer queue,

Also since N(k) 2 3, there exists a task E,

E~D, E~F, Eis a 2-unit task, D is replaced

by E, and D is placed before F if F begins execu-

tion at the same time as D. Otherwise, D 1s

placed immediately after F. Since D, in its new

place, does not begin execution earlier than

before, it has no conflict with earlier tasks,

Since no task related to D is executed while D is

executed, no conflict exists there. If E had

already been assigned to the second queue, all

tasks assigned before it begin no earlier than

they had before. This creates no problems since

no assigmment fork occurred, Scheduling the tasks

of level i creates a different form than before.

6B. In Step 4B, one extra unit is again assigned to

the longer queue with the same results as in

Step OA.

d. Now it must be shown that all possible occurrences of non-

optimal schedules have been corrected.

1. A schedule which ends in Form A and whose last level i

with l-unit tasks is of Form B, has a partial schedule

through level i+1 of Form B, Otherwise, a Form B would

- 59 -

result after assigument of ievel 1 which could not be

changed to Form A by the tasks in succeeding levels of

Form A and Form C, This case is taken care of in para-

graph 1 of c¢ above,

2. A schedule which ends in Form A and whose last level i

with 1l-unit tasks is of Form C may have a partial

schedule through level i+l of Form A or Form C. Form B

may not exist if the whole schedule ends in Form A,

These cases are found in 2, 3, 4 and 9 of c¢ above,

3. The last level with 1l-unit tasks may not be of Form A

by definition.

4. The procedure of paragraph 6 in c¢ above succeeds only if no

assignment fork occurred after the l-unit task. Suppose a

change may be made before the assignment fork at time F. Then

we must increase the longer queue by one unit ana decrease the

shorter queue by oue unit, It is impossible to decrease

the longer queue since all its tasks are reluted.

Originally, the last task t in the longer queue termin-

ated at time T, and no tasks were assignable to the

shorter queue after time T+l, Hence, a predecessor t'

of t had to be assigned at time T or T+1 on the shorter

| queue if it were available. By increasing the longer

queue by l-unit the last task s, s # t, in general, ends

at time T+1l on the longer queue, t' then must be

assigned at time T-1 if £¢ # t or at time T if s = t. In

both cases t, the successor of t', has not been com-

pleted, and the assigumentis nt possible,

- 60 -

|

3.3.1. Analysis of Algorithms 3.4 and 3.5

The analysis of Algorithms 3.4 and 3.5 is more involved than

for Algorithm 3,1 and 3,2, But the description below shows that the

solution to the tree precedence problem requires O(n) operations. We

begin with Algorithm 3.5,

In Step 1 the use of Algorithm 3,1 ome time requires O(n)

operations, Its use is never repeated throughout the algorithm. Step 2

requires at most one operation per level to keep track of the current

level number, In general, much less than n operations is required.

Step 3 is a complicated step which in some cases may perform

the whole sequencing operation, As shown earlier the use of Algorithm

3.2 in Step 3A and Step 3C.2 is an operation which requires on the order

of the number of tasks in the level for completion, The repeated use

through each level would give O(n) operations. Steps 3B and 3C combine,

again, to require O(M) operations (M << n, in general). The inspection

of the current schedule needed in Step 3C.1 at each level also means O(M)

operations. Step 3C.3 means that each task in a level may have to be

scanned to rearrange the current level schedule. In general, not all

tasks must be visited here, Yet the step when repeated for each level

gives O(n) operations. The total number of operations in all for Step 3

is of O(n).

The examination of Step 4 is a process which may require

looking at two terminal tasks in the yet unscheduled tree. However, in

practice the number of tasks remaining at given levels is a value the

implementer would probably maintain in a separate table. In either case

the number of operations for inspection is 0(n) through the whole

procedure, If the assignment is performed by Step 4 1t is of the

- 61 -

simplest nature and requires one operation for each use.

Step 5 is similar to Step 4 in that at most two tasks must be

scanned each time the step is encountered which may be M times. But

again this requires O(n) operations. In Step 6 we have the same analysis.

Step 7 has many options. In Step 7A some mechanisa is required

to retain the fact that a stop gap is unfilled. Several, perhaps all,

currently assignable tasks may be visited, In the worst case this may be

nearly all n tasks. However, Step 7 may be used only once during an

assignment. A practical implementation on the other hand may apply Step

1 of Algorithm 3,2 to all levels before going beyond Step 3 to facilitate

these searches, Step 7B is similar to Step 7A and may use information

obtained by its search so as not to repeat unsuccessful attempts, Step 7C

is a test and level count update 1f used. Step [D, 7E, and TF perform

simple two task assignments. Then either the assignment is complete or

Step 3 is entered. For Step 7 the number of operations is of O(n) for

its single use.

Steps § through 13 are lengthy to describe but computationally

simple. Step 8 requires a simple test of a variable constantly updated.

Step O may be repeated several times at each use. However, the value of

next level would be constantly maintained in an implementation to facili-

tate its u<e. Although the step may be repeated more than once, it is

not repeated more than the number of levels. Usually the number is much

less than M. The searches in both 9A and 9B mav require looking at

nearly all tasks. From the complete algorithm the number of operations

is about Mn,

Step 10 and Step 11 inspect the remaining subtree and require

knowing the number of tasks awaiting assignment in the next highest level.

- 62 -

Step 12A is analyzed in the same manner as 7A, Step 12A and 12B may

require looking at the small number of tasks awaiting execution, Steps

12C snd 13 require merely bookkeeping for the level count. The number of

operations is much less than n.

Algorithm 3.4 is applied in certain cases to the resulting

schedule after Step 3 of Algorithm 3.5 is used, Step 2 requires locating

a special level which is easily maintained in sn implementation of

Algorithm 3.5.

In Ster, 3 the scan of the levels cannot require looking at more

than each task once. However, again an implementation may simplify this

procesg by some bookkeeping. Steps 3A, 3B, 3C, and 3D are local fixups

\ and require looking at a few tasks in at most two levels or finding

another specific level, Again no task must be looked at more than ounce,

To complete the optimal schedule Step 3 of Algorithm 3.5 as embodied in

Table 3.1 must be applied. In all the number of operations is O(n).

The analysis of Step 4 is similar to that for Step 3. Again a

search for specific tasks looks at each task at most once. The transfor-

mation is local although several tasks assigned later may be inspected.

Again the optimal schedule is completed using Table 3.1. In all the

number of operations is O(n).

The practical use of the algorithm occurs when M << n, In

these cases the number of operations when summed throughout the algorithm

is of N(n).

2,4, A Solution to the Tree-restricted Acyclic Precedence Problem

A more difficult problem is an extension of the tree precedence

problem to l-unit and 2-unit tasks with acyclic precedence, Its solution

would be a major step forward in scheduling research, Unfortunately, we

- 63-

|

have been unable to find an efficient solution, Instead, the special

case defined by Problem 3,2, the tree-restricted acyclic precedence

problem, is considered here, First, we repeat the problem statement from

Section 3.1,

Problem 3.2. The Tree-restricted Acyclic Precedence Problem

Find an optimal two-processor schedule for a set G of n l-unit and

2-unit tasks with p tree-restricted acyclic precedence,

Al8orithm 3.6 presents a procedure to solve the tree-restricted

acyclic precedence problem. The method is repeated applications of the

solution to the tree precedence problem. This process is successful

because each tree in a set G must be completed before any tasks in the

successive tree may begin.

Algorithm 3.0,

1. Locate the p sets of tasks with tree-precedence, A» As cee

Ay such that Aj is maximally connected to Aj» 1 =2,3, ... , P.
2. Schedule each set of tasks with tree-precedence, Ay Ay vers A

using Algorithms 3.4 and 3.5.

3. Execute the sets of tasks in order A» Ay ces A

Theorem 3.2. Algorithm 3.6 produces an optimal schedule for n l-unit and

2-unit tasks with p tree-restricted acyclic precedence on two

processors (m = 2),

Proof.

By Theorem 3.1 each set of tasks, A, i=1, 2, ... , p with

tree precedence is scheduled optimally by Algorithms 3.4 and 3.5,

For all tasks x in Aq and all tasks y in A, x < y, for

i-=2,3, ... , p, by Definitions 3.1 and 3.2. All tasks in Aq

- 64 -

must be completed before any task in A may begin execution, Since

for all i, A, is scheduled optimally, the whole schedule is optimal,

3.5. A Look Ahead

The central result presented in this chapter is an algorithm

for the optimal scheduling on two processors of l-unit and 2-unit tasks

with tree precedence, Our work has not produced an extension of these

results to the problem for two processors and l-unit and 2-unit tasks

with acyclic precedence. However, in the latter problem the technique of

sut schedules may be applicable. Also the structuring of schedules so that

al’ tasks ir one section must be completed before any other task begins

has been successful here and in the Coffman and Graham solution. This

technique may also facilitate the solution of the general problem,

In addition to the problem suggested in the previous paragraph

the problem of finding an optimal schedule on three or more processors

for l-unit tasks with acyclic precedence remains unsolved. We feel that

both these problems should be studied at this time. This area suffered

eleven years without major results between Hu's solution and the Coffman

anc Graham solution. The repetition of eleven years with no results, we

feel, is unlikely.

- 65 -

Chapter 4

Segmented Processor Scheduling

4.1, The Segmented Scheduling Problem

This chapter presents work concerning special cases of the two

machine (m = 2) problem with n tasks. The problem 1s formally presented

in Problem 4.1. Informally, however, the reasonableness of the restric-

tions are readily apparent,

In computer scheduling it is sometime advantageous to queue a

group of tasks (programs) which use the same facility (compiler) which is

serially reuseable (core resident), In this case intermixing a queue of

dissimilar tasks would cause set up delays of disproportionate length.

Similarly, the processing (execution) of these tasks on a second machine

may also require special facilities (run time administration) which are

also serially reuseable. Finally, the completion of the task processing

(output) may again be performed by the first processor with advantages of

grouping. Problem 4,1 establishes these requirements,

Problem 4.1, Segmented Scheduling Problem

Find a schedule for n tasks composed of three operations. The

first and third operations of each task must be performed on Machine

One and the second operation must be performed on Machine Two (m = 1).

Using Jackson's notation of Section 2.2, the tasks are divided into

two sets: (ABA) and {BAB}. The form of the solution is

restricted as described below to a schedule with no idle time.

Machine One: The initial operations of the set [(ABA!, followed hy

the second operations of the set (BAB}, and followed

by the third operations of the set [ABA!,

- 66=

Machine Two: The initial operations of the set (BAB), followed

by the second operations of the set (ABA), and followed

by the third operations of the set (BAB).

The segmented scheduling problem restricts the solution to one

of the four forms illustrated in the Gantt charts [Clark 1947] of Figure

4.1, In these charts the time on each processor is divided into segments

and labelled with the set tasks to be assigned in that segment. An under-

line within the brackets indicates the operations for the set of tasks,

which is to be performed in the particular segment. For example, (ABA)

indicates that the third operations of the tasks in the set {ABA} are

processed,

By the symmetry of Machine One with respect to Machine Two,

Gantt charts II and III are similar, and Gantt charts I and IV are simi-

lar. The discussion will be limited, therefore, to forms I and II,

The following sections of this chapter contain results of

several subproblems of the segmented scheduling problem, First, in

Section L,2 we limit our consideration of the problem to those cases

which have the Zorm of Gantt chart II. We call this restricted problem

the "special segmented problem”. Then by limiting the operation lengths

of the tasks in this new problem we define and solve new subproblems,

These problems are:

a. The special segmented problem with tasks having l-unit and

2-unit operations. (Section 4.2.2)

b. The special. segmented problem with tasks having successive

operations that differ by one unit in length and that differ

by k units ia length. (Section b.2.3)

- 67 -

ABA) {BAB} {ABA}P, HC EEE EE _ | EE.
1

B (ABA) {BAB}p, RaEL_, CaoOA),

{ABA} {BAB} {ABA}Fy —tt

II

{BAB} {ABA) {BAB}Pp b—m—m—mt———

| on} {3A5} (EV
i 111

(BAE) {ABA} {BAR}
BV —tt

{ABA} {BAB} {ABA}
P, —_tr

IV

BAB} {ABA} {BAR}p, pbWBN

Figure 4.1. Yorms of the Special Segmented Problem

- 68 -

c. The special segmented problem with tasks having first and third

operations of equal length. (Section 4.2.4)

Finally, the special segmented protlem is extended to four segments. we

then solve the new problem when the tasks have first and last operations

of equal length and have second and third operations of equal length,

(Section L.,2.5)

Before we proceed, however, it is worthwhile to consider the
relationship of our problem to the general m X n sequencing problem. As

mentioned above, the segmented scheduling problem reflects certain

constraints found in some computer scheduling problems. But the solution

to tlie problem as restricted by these conditions is not necessarily an

optimal solution for the general m X n sequencing problem, Figures 4,2

and +.3 show examples in which no solution satisfying the conditions of

the segmented scheduling problem may be found.

4.2. Segmented Scheduling Problem

When we consider problems which have the form of Gantt chart I,

the problems have a .ery simple solution, The reason for the ease of

solution is that the operations are decoupled.

Definition La, Two successive operations in a set of tasks in the

segmented scheduling problem are decoupled if all of the first

operations of all the tasks in the set can be completed before any

of the successor operations of any of the tasks in the set may be

init‘ated,

In an assignment of the type of Gantt chart I, two pairs cf

operations are decoupled: the first and second operations of the set

"pAB) and the seccnd and third operations o1 the set (ABA]. The order

in which the "irs: operations of the set [BAB] are performed, therefore,

- 69-

Given the four tasks

| {ABA} = {t, = (7+3,4), ts = (1,8,6)}

{BAH} = {, = (4,2,1), ts = (2,2,5)}
an assignment may be found which contains no idle time

and is completed in 23 time units,

L H- 7 = 6 RE
(A)

. t, t, i, t, t, t;2 ra 8 3 4 5h

The ordering requirement on each processor may not be

maintained without adding idle time. The best solution

| that satisfies the ordering condition on both processors

is an assignment of length 24.

5 t, t, ty ty g t, t,
ra 7 FREER) 8 —

(B)

p ty ty 12 t, ty ty
2 8 Sh

Figure 4.2. No solution to Problem 4.1 in Form II

- 70-

Given the four tasks

{ABA} = fe, = (2,3,6), 1, = (11,8,2)}
{BAB} = {t, = (4,8,8), \7 = (2,4,8)}

we obtain the minimal solution of length 33.

t, ¢

P, |le—iny 7 ts t, %
2 4 11 8 6 2

A

t, t, t t t t la)
2 4 3 8 8 8

The ordering requirement on each processor may not be

maintained without adding idle time. The best solution

that satisfies the ordering condition on both processors

is an assignment of length 37.

t t.

p, P4—2 i SE SP A 3
2 11 4 8 6 2

(B)

2 4 3 4 8 8 8

Figure 4.3. No solution to Problem 4.1 in Form 1

-T1 -

is arbitrary, Likewise, the order in which the third operations of the

set ABA’ are perfurmed is also arbitrary, The remaining operations

may be assigned using Johnson's method if a feasible assignment is at all

possible with this form.

The form of the problem cnaracterized by Gantt chart II poses

a more challenging problem, Clearly, the operations of {BAB} may be

performed without any regard to their relative order since both pairs of

successive operations are decoupled, We are then concerned only with the

assignment order of the operations of tasks in set (ABA). To facilitate

later discussion we define this problem as the Special Segmented Problem.

Definition 4.2. The Special Segmented Problem is that special case of

Problem 4.1 which is characterized by Gantt chart II.

«.2,1. A Foundation for New Results

The results of Bauer and Stone [1970] show that several

subproblems have efficient solutions. However, one core problem remains

unsolved. In this section these solutions are given as background for

new results, First a few basic definitions are required,

Definition “.3. A stage i of a given machine is a segment of time in

which the i-th operations, and only the i-th operations, of all

tasks are scheduled.

Definition 4.4, A delay, bys go is the difference between the time a
task's j-th operation is initjated and its i-th operation is

initiated,

Definition 4.5, The gap is the segment of time after the first stage

terminates and the third stage initiates,

Each task, te k=1, Sy, .+.. 5 n, consists of three operations

as bs and c, to be scheduled in stages 1, 2, and 3, respectively. Then

- 72 -

|

we may define the contribution a task makes to the delay,

Definition 4.6. Let Xs Yq be a pair of successive operations of a task

t,. Then the contribu<ion C(x, ,y,) of task t is the difference

yg = X,-

It is important to know if a task is assignable without causing

delays in the schedule during which no operation may be executed. The

following definition determines the condition of assignability,

Definition 4,7. A task t, is immcdiately assignable if

a, FS bp ,2 and b, < bs 3

If for each task to k=1,¢, ... , n, a < b, < Cyr then the

contributions C(a,,b,) and c(t, ,c,) are nonnegative, As soon as a task

becomes immediately assignable, it may be assigned. In no case may the

task reduce the values of the delays, 8,2 and 8, If a task or group
of tasks never becomes immediately assignable, the problem has no solution.

The second problem consists of tasks “K? k=1, 2, ... , n,

where a, 2 b 2c. The problem is identical to that described in I when

the following transformation is performed.

Definition 4.8. The mirror image problem is the problem obtained by two

transformations of the original problem,

1. The precedence among the three operations is reversed. For

example, with a < b. < 29 in the original problem,

c. > b > a in the mirror image problean,

2. The initial delays 8,2 and Bs 3 in the original problem

become 83 2 and 8517 respectively,

The third problem consists of tasks to k=1,2, ... , n,

such that a 2 bo and c. 2 b,- This problem has the same characteristics

as its nirror image problem, In brief, Bauer and Stone give a solution

- 73 -

consisting of a functional equation, The solution depends upon the fact

that the tasks may be divided into two groups, In each group one opera-

tion of all the tasks are decoupled {rom the other two operations. The

tasks of each group of tasks are found in the order they must be assigned.

They are selected from a list of tasks arranged by the increasing size of

the second task.

The problem consisting nf tasks to k=1,2, ... , n, such

that a < b and cL < b is unsolved by an efficient solution, We call

this the core problem. In succeeding sections special cases of this

problem are discussed.

L,2.2. A Special Segmented Problem

Problem 4.2,

Find a schedule for n tasks composed of three operations, The

first and third operations must be performed on Machine One, and

the second operation must be performed on Machine Two (m = 2), The

length of each operation is 1-unit or 2-units, The form of the

schedule is restricted to the Special Segmented Problem with no idle

time,

The restriction upon the length of each operation in Problem

4.2 leaves only eight possible task forms.

111 112 121 122

211 212 221 222

The contributions (a,b,) and c(b, ,c,) may equal only -1, 0, or +1 for
each task k, k = 1, 2, .,.. , n, Algorithm 4,1 schedules the tasks in an

order which assures a correct assignment if one exists, Xf no optimal

assignment exists for Problem 14.2, the algorithm fails,

- Ts =

The main strategy of Algorithm 4.1 depends upon the delay

between successive operations, One delay is usually too small to accommo-

date the task with the maximum size operation corresponding to that delay.

Hence, it is desirable to build up the value of the delay to accommodate

this maximum task by assigning immediately assignable tasks with the

largest contributions to offset the deficient delay. This process is

repeated upon the delay that is deficient until all tasks are assigned,

if that is possible,

Algorithm 4.1.

1. Divide the tasks into four sets

Set I = {tasks of forms 111, 112, 122, 222]

Set II = {tasks of form 212)

Set III = (tasks of form 121)

Set IV = (tasks of fowms 211, 221)

2. Calculate initial values of 8,2 bs 3 83 os and 8s 4-
3. Assign all unassigned tasks from Set I which are assignable.

Update values of A and A, _. If Set II = ¢@ and Set III = 9,
1,2 2,3

go to Step 12.

L, If 4, > 2 and 4, 32 1 and Set II # ¢, assign task from Set II.b }

Update 4,2 and 85 4 Go to Step 3.

5. If 8, 5 2 2 and a, 3 2 1 and Set II = ¢, assign task from Set III.J)

Update 81,2 and bs 3 Go to Step ll.
€. If A = 2 and A = 1, assign task from Set II. Update

1,2 2,3

t

8) 2 and Bs 5 Go to Step 3,

7. fA ,=1 and a, 3 > 2 and Set III # §, assign task from Set2 J ’

. to St .
I11. Update 4) 2 and 8 4 Go to Step 3

1,2 2,3 > 2 and Set III # @, assign tasks from
- 5 -

Set III. Update 8,2 and bo 3 Go to Step 3.

9, If 8,2 = & and 3 3 > 2 and Set III = @, assign task from
Set 11. Update by 2 and 85 3° Go to Step 11,

1C. Assignment fails,

11. If Set IX # ¢ or Set III # @, assignment fails,

12. Assign all unassigned tasks from Set I which are assignable.

Update values of 8, 2 and By 5 If Set 1 # ¢, assignment fails.
13. Reverse time, If Set IV = §, assignment is complete,

14. Assign all unassigned tasks from Set IV which are assignable.

Update bq,2 and bor
15. It Set IV # ¢, assignment is complete.

1¥. If tasks exist which were assigned before, assign last task

assigned, If not, assignment fails.

1/. Go to 1k,

The algorithm is quite straightforward, However, a proof that

its output is indeed the optimal solution desired is required. Theoren

4.1 provides such a proof as well as a discussion of the algorithm step

by step.

Theorem 4,1, Algorithm L.1 provides an optimal solution to Problem 4.2,

if one exists,

Proof.

Assume that a feasible assignment is possible but that

Algorithm 4.1 fails. Failure may only occur at Steps 10, 11, 12,

or 16,

A. Failure occurs at Step 10 or Step 11. Assume that Set IV = ¢

since Set IV # ¢ can only make the situation worse,

- 76-

A.1. Suppose Set II # @ and Set III # ¢ and Set III # ¢, If

8,2 > 0 and 82,3 > 0 initially, Steps 4 through 9 do not

allow 8,2 or 8, 3 to become O while Set II is empty (Step 5).

If either A,2 = 0 or 8; 4 = 0 initially, no assignment was
possible. Then when failure occurs at Step 10 or Step 11,

4,2 = 85 5 = 1 since either equaling 2 would allow a task to
be assigned. Step 3 assigned all tasks of forw 112 which were

available. No condition in Step 4 through O was ever satis-

fied since this would have increased either 8,2 or Bs 3
The latter means one was zero which contradicts the existence

of a feasible assignment,

A.2. Suppose Set II # ® and Set III = ¢§. When failure occurs at

Step 10 or Step 11, either 8,2 < 2 or 85 3 <1l, Since Steps

4 through 9 do not permit either 8,2 or 82 5 to be zero, only

4,2 = 1 and 85 3 2 1 is permissible if a feasible assignment
exists, If more than one task is in Set II, all contributions

would reduce 4,2 to negative,
A task in Set II cannot be assigned last; if a feasible

assignment exists, a task in Set III must be assigned last.

Assume a task from Set III is left until last and all other

tasks in Set II and Set I were assigned. The resulting values

of 4.2 and 85 3 would change to 8,2 = 8,2 - 2 and 85 3

= 85.3 + 2. Since 8.2 = 1, 8,2 = -1 which means an assign-
ment may not leave either a member of Set II or Set II to be

assigned las: from the two sets. No assignment was feasible.

A.3. Suppose Set II = 9 and Set III # @. By similar reasoning to

those in part A.2, a contradiction to the existence of a

- 77 -

| feasible assignment is found,

B. Failure at Step 12. Again Set IV may be disregarded and

| assumed empty. Since tasks in Set I are assigned as soon as

they are feasible, either

1. 8,2 =0 or 8; 3 = 0, initially

2, 4,2 = 1 and 85 3 >1 or

8,2 > 1 and 85 3 = 1, always, and a task
of form 222 remains

or 3. 4,2 = 1 and 4,4 = 1, always, and tasks of forms 122
or 222 remain.

B.1. 4 = 0 or 4 = 0, initially, No feasible assignment
1, 2,3

) is possible,

B.2. 8,2 = 1 and 85.4 > 1 or 8,2 > 1 and 85 5 = 1, always,
and a task of form 222 remains. Then the case never

h . =
occurred when 8,2 2 2 and 82,3 2 2. Either 8,2 l1 or

A, 3 = 1 at all times. This forced the assignment to be’

from Set 1II or Set 1I, respectively, in order that neither

becomes QO, Since both Set II and Set III are empty, and

only tasks of form 222 remain in Set I, no assignment is

feasible,

B.3. 4 5 = 1 and a, = 1 and tasks of form 122 and 222 remain,’ »3

It was never the case that A =1 and A 2 2 or that
1,2 2,3

A 2 2 and A 2 2 occurred. No task other than 111
1,2 2,3

was ever assigned since at some time either A or 4
1,2 2,3

would have been zero. No assignaeunt is feasible,

C. Failure at Step 16,

C.1. If 211 tasks remain to be assigned, then either a, 5 = 0J

- 78-

or 821 = O initislly. Then no feasible assignment was
possible,

C.2. All 211 tasks have been assigned, but some 221 tasks

remain, It has never occurred that 83 2 2 1 and 8512 2.
Then no task from Set II or Set III aas even been

assigned, No 211, 122, or 221 tasks have been assigned.

Only 111 and 112 tasks have been assigned, and 84 2 = 1
at all times. No feasible assigument was possible.

Figure 4.4 shows the use of Algorithm 4.1 to solve an example

of Problem 4.2,

4.2.3. AMure General Core Problem

To extend the result of the previous section we introduce a

problem which relaxes the constraint on the length of the tasks. In

Problem 4.3 below the lengths of successive operations are required only

to differ by one unit,

Problem 4.3.

Find a schedule for n tasks composed of three operations. The

first and third operations must be performed on Machine One, and

the second operation must be performed on Machine Two (m = 2). The

first and third operations have identical length, and the second

operation has length one less or one greater than the first and

third operations, The form of the schedule is restricted to the

Special Segmented Problem with no idle time.

The solution to Problem 4.3 is similar to that for Problem 4.2,

Algorithm 4.2 gives the details of the solution method while Figure 4.5

shows an example of its use,

- 179 - |

Tasks

t = (2 1 1)

2 $t Set I = {t,, t,}
ty = (1,2,1)

Set III = {t,, t., t.}3* "6 "7

Set IV = {t,}
ts » (1,2,1)

ta = (1,2,1)

. MAZE t tet t, t, te ts to tetats
T "17171 2 "171 211 27172 11

. t, t, ty tg te t, t
a AAA =

Figure 4.4. Example of Algorithm 4.1

- 80-

| Tasks

t, = (4,5,4) t, = (4,5,4)

ty = (5,6,5) t, = (5,6,5)

| ts = (6,7,6) tg = (6,7,6)
t, = (7,8,7) tg = (7,8,7)

tg = (8,9,8)

. titatoty tgtgtotty tity tg to tg tg tat,tsnear 8 7TA CRIA

’, IRACRIATIR ATAFS S 67 8 9 8 7 65

Figure 4.5. Problem 4.3 and Algorithm 4.2

If the tasks are: Scale tasks by 2:

t, = (8,10,8) ty = (4,5,4)

t, = (8,10,8) ty = (4,5,4)

ty = (10,12,10) ty = (5,6,5)

| ty = (10,12,10) ty = (5,6,5)

ts = (12,14,12) ty = (6,7,6)
te = (12,14,12) tt = (6,7,6)

t, = (14,16,14) ty = (7,8,7)

tg = (14,16,14) tg = (7,8,7)

tg = (16,18,16) ty = (8,9,8)

Figure 4.6. Problem 4.4 and Algorithm 4.2

- 81 -

Algorithm 4.2.

i. Divide the tasks into two sets according to whether the contri-

bution from the first and second operations is +1 or -1:

Set17 = {XYX | X+1 = Y}

Set II = {XYX | X-1 = Y}

2. Define M to be equal to the largest first operction,

Define M, to be equal to the largest second operation,

3. Calculate Ao and Bs 3
4, If Set II = @ and Set III = @, the optimal schedule is complete,

5. If for some 1, 1 = 1 or Zz, M, > by 141? assign task with the
largest valued second operation from Set I if { = 1 or from

Set II if 1 = 2, Update values of M,., M,, 8) 2 and Bs 5 Go
to Step 4. If no task may be found to assign, the assignment

fails.

6, For some 1, 1 = 1 or Z and j, ji, J =1 or 2, M, = 8 141 and

M3 = 84,501,

tA, If all tasks t with the i-th operation equal to M, are in

Set JI, assign each task t in Set JI alternately with tasks

with the largest operations from Set I until all t are

assigned. Update the values of M,, M,, 8) 2 and bs 3 Go
to Step 4,

6B, If all tasks t with the i-th operation equal to M, are in

Set I, assign each task t in Set] alternately with tasks

with the largest operations from Set II until all t ere

assigned. Update LN M., SY and 8, 3 Go to Step 4.

tC, If tasks t with the i-th operation equal to M, are in both

Set 1 and Set II, assign each task t in Set I fcllowed by

- 82 -

a task t from Set II until all t's are assigned fom either

Set I or Set II. Update the values of M,, MN, 8,00 and
Ls 3 Go to Step 4.

7. If bo = M, and 85 3 2 M,,

‘A, While 8,2 2 M, and 4; 5 > N, assign tasks with the
largest first operation from Set I alternately with tasks

with the largest first operation from Set Il. Update the

values of M, M,, 8,2, and 8; 5 Check the condition
after each assignment, When the condition fails or both

sets are empty, go to Step &4.

As in the case of the previous algorithm, the detailed discus-

sion of Algorithm 4,2 is contained in the proof of a theorem. Theorem

+.2 shows that Algorithm 4.2 does produce an optimal solution for

Probi~m 4.3,

Theorem <.-. Algorithm L.2 provides an optimal solution for Problem 4.3

if one exists,

Proof.

Assume that a feasible solution is possible to Problem L,3, but

that Algorithm 4,2 fails. Failure may only occur at Step 5. Then

for all tasks XYX in Set I and Set II either

X > 81 2 or Y > 85 3

A. X > 8,2 and Y > bs 3 A solution was possible under the condi-

tion that M, < By 141 for 1 = 1 or 2, then for j £1, j = 1 or

© 8gaa™My SM = Aygl

B, X - SI >1oryY~ 85 5 > 1. Then the algorithm was operating
in Step 5 for the first time while attempting to build up to the

- 83 =

maximum task size but failed, An insufficient contribution was

available to make the large task feasible, A feasible solution

was not possible,

C. X-4 =1orY-4 = 1, Either Lhe algorithm was opera-
1,2 2,3

ting in Step © for the first time as in B, or the algorithm in

Step © assigned a task which reduced 8, ,, or A, 2 by 1 to create~)

this situation. The first possibility lesds to the same contra-

diction as in part B. The second possibility divides into two

cases,

1. X.Y w Ss d st wit .1 1X1 as assigned la ith Yy < Xy
|

No X_Y X was available with Y_ > X .
e 2c < c

or 2. X,Y, %, was assigned last with Y >. Xy-

No X YX, was available with Y, < Xs.

In either case, no task remained to make up the deficit, Hence,

the wrong task was left until last, Tasks remained only in

Set I or only in Set II, not bo:h.

Cl. X-4, _.=1and¥ -Y -1 (Set II)
l,c

Suppose at some stage this task srould have been assigned

instead of another task, Whenever it was nossible a task

vith a larger or equal length first operation was assigned.

Cl1.A. No task with a smaller len,tl. first operation was

assigned from Set II. When z task in Set II with a

smaller leng:h first operation was assigned, XYX

could not have been assigned. Assigning XYX instead

of an equal »r larger length task would have left

that task unassigned. No switch could be made, and

- OL -

the assignment was not feasible,

| Ci.B, If a task from Set I was replaced by XYX, 8,2 would
| have decreased by 2. Then another task with a + con-

tribution would have been needed to make up the

deficit, But there were no tasks in Set II with a

| smaller length first operation to fill this need.

All were used to enable tasks with a larger or equal

length first operation to be assigned. Hence, XYX

could not have been used to replace a task from Set I.

c2. Y-08,;=1andY-X=1 (Set I)
Arguments analagous to that in Cl,

The solution to Problem 4.3 also provides a solution to 2

related problem, This new problem is stated in Problem 4.4. Tl.s time

the constraint upon the length of the tasks operations is relaxed to

include tasks with successive pairs of operations whose lengths differ by

a constant. An example of the use of Algorithm 4.2 to solve this |

problem is in Figure 4.6,

Problem 4 Lb,

Find a schedule for n tasks composed of three operations a

b,, €,5, 1 = 1, 2, ... yn, The first and third operation must be

performed on Machine One, and the second operation must be performed

on Machine Two (m = 2), The length of each operation is arbitrary,

but the contribution between adjacent operations within each task

must be C(a,b) = k, C(b,,c,) = -k or C(a ,b,) = =k, C(b,,c) =

k, 1=1,2, ... ,n (k is constant), The form of the schedule is

restricted to the Special Segmented Problem with no idle time,

- 85-

Corallary L.1, Algorithm 4,2 provides the method of solution for Problem
h.h Lf a solution exi ts,

Proof.

Scale each task in Problem 4.4 by dividing the length of each

operation by k, That is, if a task has operations of length iji

where j = 1 £ k, transform the task to :, gx 1, 5. The contribution
of each prir of operations after transformation is +1 or -1, Since

the proof of Theorem 4.2 does not require operations of integral

length, Algorithm 4.2 is also the method of solution for Problem 4.L

if a solution exists,

L.,2.4, A Problem with a Knapsack Solution

We continue with another variation of the central problea

presented earlier, The solution method differs, however, from the last

several examples. In Problem 4,5, below, the constraint upon the lengths

of operations is further relaxed. Here the first and third operations

must have identical lengths.

Problem L.5,

Find a schedule for n tasks composed of three operations. The

first and third operations must be performed on Machine One, and

the second operation must be performed on Machine Two (m = 2). The

first and third operations have identical length, and the second

operation has a different length. The form of the schedule is

restricted to the Special Segmertad Problem with no idle time,

The form of the solution to Problem 4.5 has two possibilities,

References are made to terminology defined in Section 4.2.1. In one case,

a decoupling point, D, occurs during the gap, G. Figure 4,7 shows a

- 86 -

|

|

P, : GaplG |
|

|

|

|
[]

P, a i -b5/zL:Loboosphoo..[b.s
|

D

Figure 4.7. Pirst form of Problem 4.5 solution

P, | Gap | |

S

tt

Figure 4.8. Second form of Problem 4.5 solution

- 87 -

characterization of this solution form, In the second case, a secoud

operation S begins before the ¢ip, G, aad ends after the gap, G, Figure

L.8 shows the characterization for the second solution form,

The operations uf each task are known to be in identical order

on each of the three processors by Johnson's result, The set of tasks

R occurring before the decoupling point, D, or before task S in the

respective forms is decoupled between stages 2 snd 5. The set of tasks

T occurring after the decoupling point D or the task S, in the respective

cases, is decoupled b tween stage 1 and 2, Hence, the R tasks may be

Johnson ordered between stages 1 and 2, and the T tasks may be Johnson

ordered between stages 3 and 2. However, we do not know a priori what

tasks form sets R and T or even which task is task S.

Note immediately that the first and third operations of each

task are identical in length, Consequeutly, tho contribution (a, ,b,)

equals the contribution C(c,,b,). This symmetry suggests the use of a
two-dimensional knapsack solution described in Algorithm 4.3, Figure 4,9

shows an example of the use of Algorithm 4,3,

Algorithm 4.3,

1. Separate the tasks into two sets:

Set I = {all tasks such that C(a,,b,) 2 0)

Set II = {all tasks such that C(a,,b, < 0}

2. Trausform Sets I and II into the following ordered set:

Set III = (Set I in order of increasing size of the first

operation aud increasing contribution followed by

Set II in order of decreasing size of the first

operation and decreasing contribution loss.)

Set 84 5 equal to the initial length from the end of stage 2 to
the end of stage 3.

- 88 =

Tasks

Ph—t—
t, = (1,3,1) 13 1 13

t, = (1,4,1) P, |
ty = (2,3,2) 2 6 14 7

tg= (51,5) A, ,=6 Ay,=T

After t, and tye After tr to and ty:

a, ay
I {

, ¢ | 10 Cel
. TTT . H

| '

t)

;

10 by © 10 h,

After all five tasks:

|
(!

tt
| | '
| ! |

° I ! I° |

roe
¢ {| ® |

e 3 ® @ | | :
° d » ' ° |

le 0 1a
| | !

® | oo . | 0 |

EEEa
ye : |

[J | »

*
' | |

© 5 10 L,

Figure 4.9. Example 5f Algorithm 4.3

- 89=

3. Set L, «qual tc O -- the total length assigned to stage 1.

Set 8, 2 to the initial length of time from start of stage 1
to the start of stage 2.

Se! TL equal to O -- the total length of the first operation

assigned.

Set TC equai to 0 -- the total contribution C(a,,b,) assigned.
L. Establish the first quadrant of a two-dimeusiounal Cartesian

coordinate system, €, with the values of L, and 8,,2 represented
by the abscissa and ordinate, respectively, Mark initial values

of (L,, 8,2)

5. For each task, a,, b,, €,» in the ordered Set 111, for each

point (x,y) in €,

SA. it y > 8,, indicate a new point (x+a, ,y+C(a ,b,)).
Go to 5B.

| 5B. if 83 2 + (TC-y) < a,, delete (x,y). Go to 5C.

5C. set TL = TL + a,

set TC = TC + C(a,,b,)

6. Select the solution corresponding to the point (x,y)

where a, Sx+ysg : a, + G. If such a point (x,y) exists,
i-1 1=1

the corresponding solution is optimal. If not, go to Step 7.

| [. For each task in Set II] such that b, 2G + 2,
7A. Form Set III' by deleting abc from Set III,

TB. Repeat Steps 3 through 5 for Set III' instead of III.

TC. Select the solution corresponding to the point (i,y) where

: 8, - (by -(G-1)) sx +yx : a, - 1
1=1 1=1

If such a point (x,y) exists, the optimal solution is of

- 90 -

: the second form with S = a, bcs. Stop. If such a point

(x,y) does not exist, continue with Step 7 iteration.

&. No solution is possible.

Theorem 4.3. Algorithm L, 3 provides an optimal solution to Problem L.5,
if one exists.

Proof,

Assume a feasible optimal solution exists, but Algorithm '.5

fails. Failure occurs only at Step 8, Neither of the two solution

forms could be found, Johnson's theorem requires that a specific

order of tasks forms a feasible solution in Set R and Set T, if a

solution exists. The pre-ordering of tasks in Set III in Steps 1

and 2 of Algorithm 4.3 arranges the tasks in the order they become

| candidates to be assigned in Set R and Set T. Based on the defini-
tions of Step 3 and the initial point in Step 4, Step 5 decides

whether a task may be assigned in Set KR, in Set T, or in both sets,

For each decision, a new point is reached in the graph. After each

task in Set III has been tried, Step 6 and Step 7C find if any point

in the graph represents a feasible solution. The feasible solution

is that solution which satisfies one of the two basic forms. The.

points on the graph always represent feasible solutions because

others are deleted at Step SB, Since all attempts are made to satisfy

one of the two basic forms, the algerithm's failure means no solution,

A contradiction.

4.2.7. Extension to the Four Stage Problem

In this section we discuss a four stage problem which parallels

the Special Segmented Problem of an earlier section, Although the

- 91 -

extension from the three stage problem is straightforward, Problem 4.6

formally describes the new situation,

Problem 4.6,

Find a schedule for un tasks composed of four operations. The

first and third operations must be perfcrmed on Machine One, and

the second and fourth operations must be performed on Machine Two

(m = 2). Using Jackson's notation of Section 2.2 the tasks are

divided into two sets: (ABAB} and {BABA}. The form of the

solution is restricted as described below to a schedule with no idle

time.

Machine One: The first operations of the set (ABAB],

| followed by the second operations of the set (BABA),

followed by the third operations of the set (ABAB},

and followed by the fourth nperations of the set (BABA).

Machine Two: The firat operations of the set (BABA), followed

by the second operations of the set (ABAB}, followed by

the third operations of the set [BABA) and followed by

the ‘ourth operations of the set [ABAB;,

If the tasks in Problem 4.6 are limited to those whose first

and fourth operations are equal and whose second and third operations are

equal, the knapsack solution of Problem 4.5 is again applicable. From

the Johnson result the processing order of the tasks is the same on each

processor. Since no contribution is made by the second and third

operations, all second operations must be feasible initially from the end

of stage 3. The extra operation, therefore, does not wake the problem

different from Problem 4.5, Algorithm L, 3 may he applied.

- 92 -

+, Other Subproblems

The results presented iu this chapter strongly restrict the

size of the operations of the tasks we ccnsider., The operations must

differ in length by a constant or pairs of operations must have identical

length. The results do not apply for tasks with operations of arbitrary

lengths. We, however, have expsnded the list of solved subproblems,

These sclutions may be incorporated into solutions of more complex

problems,

New problems may have solutions which apply several ideas we

described earlier. For example, one attack on new problems may be to

find a canonical form for the m, m > 4, segment problem and to apply the

knapsack solution method to portions of the problem, Significant use

also may be made of the decoupling phenomenon in conjunction with these

canonical forms, In any event, it appears likely that research in quest

of efficient algorithms for scheduling subproblems will go on long into

the future,

- 93 =

Chapter 5

The Four Processor Problem

5.1. The Four Processor Problema

Szwarc's work { 1068] was described in Section 2.3, He |

considered a three processor problem and tasks consisting of a chain of |

three operations, In this section the results are extensions of Szwarc's
,

work to the 4 X n sequencing problem. In Section 5.2 ve define the

problem so that we are seeking the miimal completion time for all tasks

on all machines. Th~1 Section 5.3 develops a condition on the operations

so that the order of tasks is identical on adjacent processors and the

total completion time is minimal. Section 5.4 follows Sgwarc's objective

and reduces the 4 X n sequencing problem. Under two explicit conditions

the 4 X n sequencing problem is reduced to n 2 X n sequencing problemas

and a 3 X n sequencing problem, respectively, (Theorem 5.2 and

Theorem 5.3)

%.2. Problem Definition

Before discussing the new -esults we first present the

definition of the four processor problem and the notation we use through-

out the chapter,

Problem 5.1, The Four Processor Problem

Each of n tasks is composed of four operations a, b, Cy and

a, to be executed on four processors, A, B, C, and D, respectively

(m = 4). Find the schedule which minimizes the total completion

time.

From Johnson's result in Theorem 2.3 we know that two permutations

- oly -

of the tasks are sufficient to assign the n tasks to the four processors.

Let us call the permutations p and q where

p = (pl, Po, ... , pi, pi+l, ... , pn)

qQ = (ql, q2, .. , qi, qi+l, ... , qn)

Each pj and qj, J = 1, 2, ... , n, represents one of the n tasks, In

general, pj # qj for § = 1, 2, ,.. , n, The permutation p represents the

vermutation of tasks on the first two processors, A and B; permutaticn gq

represents the permutation of tasks on the last two prccesgsors, C and D.

A schedule is respectively AB.C.D. For example, if p = (1,3,2) and

q :- (2,1,3) the schedule represented by 4 oBoCePq on processors A, B, C,
and D would be

A: a, a, a,

B: b, ba b,

C: C5 cs C3

D: d, J d,

2.3. Restri<tions on Permutations p and q

In some cases it is possible to consider four processor

schedules in which the order of tasks on each processor is the same. That

is, p equals q. The result of Theorem 5.1, however, is more general.

This theorem describes a case when two adjacent processors in the m X n

sequencing problem may process tasks in identical order without loss of

optimality,

Theorem !.1, If hy te s me 8, where the operation s on machine S
immediately precedes the operation 29 on machine T in the m X n

sequencing problem, then one optimal schedule is one in which the

permutation p of operations on machine S is identical to the

- 95 -

permutation q of operations on machine T.

Proof.

p = (pl, P2, ... , pn) is the permutation of operations on

machine S and q = (ql, q2, ... , qu) is the permutation of operations

on machine T in an optimal schedule. Assume for some minimal {,

pi # qi. Processor T is idle while 5141 is executed on processor S.

Since 8141 2 toi? by assumption, toi may be executed on processor T

while 8hi+1 is executed, No task on processor T completes later in
this new schedule than it did in the original feasible schedule.

Hence, the new schedule is also feasible. Since this process may be

repeated until p = q, one optimal schedule is one in which p = q.

Corollary 5.1. In Problem 5.1 if vy <. s me b> the permutation of
operations on each processor is identical,

Proof.

By Johnson's result which was restated in Theorem 2.3 the

permutation of operations is identical on processors A and B and

is also identical on processors C and D. By Theorem 5.1 and the

hypothesis the permutation of operations is identical on processors

B and C. Hence, the permutation of operations is identical on all

processors,

5.4. Extension of Szwarc's Results

The 3 % n sequencing problem results in Section 3.2 were by

Wlodzimierz Szwarc, and T. S. Arthanari and A. C. Mukhopadhyay. The

4 y n sequencing problem results here use a similar formulation, In all

cases the total idle time on the last processor is to be minimized.

To discuss this work on the four processor problem we must

- 96 -

consider three quantities. Assuming the two permutations p and q are

p =~ (pl,p2, ... ,pn)

q - (ql1,q2, eu ,qn) ’

we may examine the values of

x, =" idle time on the second processor after assigning task pk

y, ~~ idle time on the third processor after agsigning task gk

z - idle time on the fourth processor after assigning task qk

After assigning tasks pl and ql to the respective four machines,

x, as

v, = max (b,x, LIAL

| lr cq
hd {-1

where Rj ’ 0 x, + 2 Bes when pl - qd.
{, £-1

Consequently, RS = Se x, + 2 boi

This term represents the possibility that p and q are not identical.

Then tasks on the third processor may not begin execution immediately

after the first task is completed on the second processor,

After assigning tasks p2 and q2 to the respective four machines,

X., max (a), tas cx - bo , ©)

Yo © max (R. * boo” (vy, + Cq1) » Roo * Ppp - (vy + qt) y ©)

z, = max (vy, + LP + €al + €q2 - z, - da » v)
In general, after assigning tasks pk and qk, k 1, 2, ... , n,

to the respective four machines the idle times are:

k k-1 k-1

x, = max (= 8" = x, - Ra bs , 0)
: k-1 k-1

Yi i max (Rok + bk - = yy ~ = Cal R

- 97 ~

k-1 k-1

R, +b - ZT y - ZL c_,0)
pk pk at a @
k k k-1 k-1

z max (Z y,+ ZT ¢ ~~ TL z - LL d_, 0)
k CE TIL LPISRL YS

However, what we must minimize is the total idle time on the

fourth processor. The total idle time on the fourth processor is z -

n n n n-1 n-1

Z =F z, =max{(£ y, + L ¢.,- L£ da , IT =z.)
nga! CEERITL PRT CERI

Similarly, we may obtain the total idle time on the second processor,

LS and the total idle time on the third processor, Yo
n n n n-1

X = £ x, =max(£ a ,- ZL b_ , IL x)
LI sp Pog PE?

n n-1

Y = LL vy, =—max(R_ +b - IT =,
RE | 1 an LA qi

n-1 n-1

R +b - LZ ¢,, vy,)
LAT LE TS

| To simplify the expression for X we define the quantity K,-

| u u-1

K = 2X a,- 2 Db

u i=1 pi i=1 pi
u

X, = p> x,
ial

max

x = max (Ky ’ Kn-1) “1<us ut XK.

Similarly to simplify Yo we first expand the expression for

Y which becomes
£ £-1 n-1

Y =max (£L x, + T b_-~- IT cc ,
" jap Vga Pog @

n n n-1 n-1

jo VV ooggq PYogn wd

- 98 -

where of - qn

n n £ n n

Yo = mex re TS A SA Ta CT
L n-1

’ ‘En "pt oo “at,
n n n-1 n-1

he 7 0) "pt or “at ’ 5 1)

where of = qn.

Now H and G, are defined for substitution in Yo

v v=1

fo” i "pt oo “at
n £ v £

G, = TRE - Zp bos + EF boi where pl = QV.
¥, =m (6, +H + 1 us a fur Bal ta cus a Ru ,

Gop * Hoi * tl cusnl Rafa “120s nif

cee

G +H +R)

LI (0, ta cus n Ry + "ax (c, » 0),

Ho-1 * wr Sn Ry t max (Gyr » 0),

Cy

H +R + max (G , 0))

Y oz evga (H +E +mex(G ,0))

By defining Fo» z may likewise be simplified.
w w-1

ETP TEA

- 99 -

nax

Z = max (l<u<vsn (BH, +R + max (G, » 0)) + F_,
max

1<usg veal (H, * Ry TRAX (Gy 0)) + Fa-1?

qa 99 J

H, +R, + max (6, y 0) + F,) Equation 5.1

In order to make it obvious that Zz. , the idle time on processor

D, depends on the permutations p and q, we rename Z to be g(p,q).

From these equations and following Arthanari and Mukhopadhyay,

two results for the four machine problem arise in Theorems 5.2 and 5.3.

Figure 5,1 shows an example of the use of Theorem 5.2 while Figure 5.2.

shows an example of Theorem 5.3.

Theorem 5.2. If n tasks, each composed of four operations, 8» LA Cy»

| and d , are to be executed, respectively, ou four processors (m = L)
| max min RAX min

and k b < K Cy and x 2k < K bs the four machine problem is
solved by solving n two-machine problems,

Proof.

Let the permutations of tasks on the first two processors be

P and on the last two processors be q. For each t, 1 < t < n-1,

nax min

since K b, < x Sk?
t t-1

H = L b=, = IT oc
toga Poa 9

_ t+l t
R = pO De = ¥ C=
t+1 i=1 pi i=1 qi

BR -He, =- bot+l teqt b

He = Hea

- 100 - |

ob>AT |

ty - (1,02) Figure 5.1. Example of Theorew 5.1
t = (ody, T)
I! = (3,3,4,0)

our possibilities of a solution
+

“1

P ——LAE

Pp Pl —————— «=

3 | rE 6 — :

s | 10 FIR 6 7 =

% .
2

P EreaaaLEB

A. PP TS ETD¢ 2 4

P, —2 *2 : t3 DU EE SU“43 6 , 4 6 4

P TE EE SE SE Fi Su4 11 7 6 2 2

3

2 | EER

p, j—2 ty t2 t a3 6 4 5 &
t t t t

2 1 4

r, b—ff———

P P—1h
t 2, = 284

1 4 .

. g ty ts t, t,
3 5 ‘ ‘ 5 5

t t t t

9 2 Pd 6 7 2

Optimal permutation is (3,2,1,4)

- 101 =-

Tasks

t, = (2,4,3,6)

\2! = (3,6,1,4)

AZ! = (4.5,3,2)

p t, t, tsre 4 3

2 EP EPR. EE2 4 5 6

t, t t
py, pt Bh6 3 2 3 3 L

t t

g — 1 3g2P« — 6 21 4

Figure 5.2. Example of Theorem 5.2

- 102-

Therefore,

max - -

1“ t<n H, - H

| Similarly, for each t, 1 < t =< n-1, sirce a WE: min b ,2 k k k

_ t t-1
K, = ZT a=, - TT Db

t ya Pon, HM
_ t+1 t
K = £ @-, = ZT b=

tly, PL, WM

Ke “Key =~ Spa YP Ope 2 ©

EK, < Ker

Therefore, |
max - —

1s tsa =

By Theorem 9,1 and Corollary 5.1 and the fact that

max min max min -
< <k b, k Sk and kK *k K b,, the permutation p is identical to

the permutation q. Then

G, = forv=1, 2, ... , n

Using equation 5.1 above

-- nax — —_ -
(9,8) =) cg oq (Fy +H +K))=

- - max I

- H, + K, + lsw<an (F,)
max = =

=H + K+ oq (eqpemtegdnrFy oo F,)
max wv w-1

=H +K te "4? max(d 5 sweat. a" a.)1=2)$9

Equation 5...

Our goal is to minimize g(q,q) over all possible sequences q

designated by the set Q . For a fixed i = ql,
min max v v1
= JM (2 oy - E 6))
i aq ¢ Q 2swsn {0 qi 4-0 qi

- 103 -

I, is the minimum idle time on the last machine D from the two machine
problem with machines C and D where the set of tasks is all un tasks

except task {i = ql. Call this optimal permutation 8, Letting D, and

8, (q,q) be the idle time on machine D whem task i is task ql, from
Equation 5.2

D, = 6, (3,3) = ay + boy + ogy - ogy + max (ogy, Ig)

The problem thus is to find 1, and an optimal permutations Sy
0

such that % = 4 Sa n g, (2,9). The complete optimal permutation is
(1, 8,).-

0

Theorem 5.3. If n tasks each composed of four operations 8 bs Cy»

and d, are to be executed, respectively, on four processors

A, B, Cand D (m = 4), and ry d < man c., then the four machine
problem reduces to a three machine problem in which permutation p

is not necessarily the same as permutation q.

Proof.

Since ry d < ma Cc? for each t, 1 £ t £ n-1,
_ t t-1

Tt } 5 “a1] 2 “a1
_ t+l t

fer TE Sa TG “a

FoF qt %e*0

Fin z F,

Therefore,

1 cw < n F, =F,
- 104 -

From Equation 4,2 and definitions eof H , K and Fo here and in

Theorem *, .2,

— — max - - - -

€(Ps9) =, c ucvcwsn (Fg tH, +oax(G,0)+K)
nax - max - - -

= + “.

l<sw<n (F, l<susvsw (H, Tomax CH >t kK)

Let (p,q) be the time for a complete schedule using permut.uliou.

p and q. Then

n

5(p,q) = g(p,q) + z d=,q
| i=1

Tain)= 5 cp5 eq IED
mint"? PEP, qEQ ’

min [n= — - e(p,q)+ £ o=,|]
PEP, aeq 11 @

n n-1 n
min - +

= — - [Ze - £ a. + Z d&
PEP, AEC yet 4, at 3.1

max - —

l<us<vs<n (1, T max (G,» °) + Ke)
n

min
= I ee, += - [8- +

max —- —
lcsusven (B +max (G, 0) +K) .

From the above the idle time on processor C is exactly

max (H + max (G , C) + K)lsu<svsn vy v’ u

Hence, J y1n(Pra) is found by finding the solution to the thrce

processor problem of machines A, B, and C with P # q in gencral.

“5.5%. In Summary

As we pointed out several times in earlier chapters the

significance of results for simplified subproblems is that thev may

later be incorporated in the solutions of larger problems, Our resul:s

and those of Szwarc demonstrate this significance most vividly, We have

taken the more complex 4 X n sequencing problem and shown that in certain

- 105 -

instances only less complex problems need to be solved.

However, the work in this area is far from complete, The

general four processor problem is not solved efficiently, In addition,

little reduction has been made to the m, m > 4, processor problem. Future

researchers may, nevertheless, use the same methods in the more

complicated problems.

- 106 -

Chapter 6

Future Directions

The results in m X n sequencing research has had three fruitful

periods, the mid 1950,s, the early 1960's, and the esrly 1370's. The

: problems are noted for their simple formulation and the elusiveness cf

efficient algorithms,

| We believe that one of the most important contributicans of the |
earlier results and those presented here 1s to the understanding and |

analysis of more complex problems. The realistic problems of computer |

scheduling bear only minimal resemblance to the problemas presented. But

before the more complex scheduling problems may be nandled satisfactorily,

we must know the fundamental results of m X n sequencing.

To predict the future successes in this area is a risky, if

enjoyable, job, Yet several problems seem ripe for solution in the near

future, First, the recent Coffman and Graham results lend hope that the

sequencing of l-unit tasks with tree precedence or perhaps acyclic

precedence oun more than two processors may have an efficient solution.

Likewise, the work here gives hope for an efficient, complete solution

of the sequencing problem with 1-unit and 2-unit tasks with acyclic

precedence,

Second, the Special Segmented Problem is closely related to the

three processor problem, It may be possible also to find significant

solutions to this set of problems, The concept of decoupling between

sets of tasks may be a powerful key to these efficient solutions,

No computer scientist, however, may ignore the work in the

field of computational complexity, Although no probles with sgn inherently

- 107 -

exponential solution is %nown, such problems may be found, Although

disappointing, these results would be useful in bounding the area for

future researchers,

- 108 -

BIBLIOGRAPHY

LArthanari 1971] Arthanari, T. S. and Mukhopadhyay, A. C,,

"A Note on a Paper by W, Szwarc, Naval Research Jogistics

Quarterly, 18, No. 1, March 1971, pp. 135-138.

[Bauer 1970] Bauer, H. auc Stone, H., "The Scheduling of N Tasks

with M Operations on Two Processors," Report No. STAN-CS-T70-16%,

Computer Science Department, Stanford University, July 1970.

[Bellman 1956] Bellman, R., "Mathematical Aspects of Scheduling

Theory,” Journal of SIAM, 4, No. 3, September 1956, pp. 168-185.

{Chandy 1972a] Chandy, K, M., Dickson, J. R.,, and Ramamoorthy,

C. V., "Optimal Real-Time Basic Scheduling of Two Processors,’

Fifth Annual Hawai. International Conference on Systems Sciences,

January 1972, pp. 216-218.

[Chandy 1972b] Chandy, K. M., Dickson, J. R., and Ramamcorthy, C. V.,

"Optimal Scheduling Disciplines for Two-Processor Systems,’

Research Report, Department of Computer Sciences, University of

| Texas at Austin, 1972,

[Clark 1947] Clark, W., The Gantt Chart. London: Pitman and Sons, 1947.

[Coffman 1972] Coffman, E. G., Jr., and Graham, R. L., "Optimal

Scheduling for Two-Processor Systems," ACTA Informatica,1, No. 3,

February 1972, pp. 200-213.

[Conway 1967] Conway, R. W., Maxwell, W, L., and Miller, L. W.,

Theoryof Scheduling. Reading, Massachusetts: Addison-Wesley

Publishing Company, 1967.

LDay 1970] Day, J. E. and Hottenstein, M P., "Review of Sequencing

Research,” Naval Research Logistics Quarterly, 17, No. 1,

March 1970, pp. 11-39,

- 109 -

L Dudek 1964] Dudek, R. A. and Teuton, O. F., Jr., "Development of

M-Stage Decision kule for Scheduling n Jobs through M Machines,”

"Operations Research, 12, No. 3, May 1964, pp. 471-497.

[Hsu 1966] Hsu, N, C., "Elementary Proof of Hu's Theorem on Isotone

Mappings," Proceedingsof American Mathematical Society,

February 1966, pp. 111-11k,

[Hu 1961] Hu, T. C., "Parallel Sequencing and Ass2mbly Line Problems,”

Operations Research, g, No. 6, November 1961, pp. 841-848.

[Jackson 1956] Jackson, J. R., "An Extension of Johnson's Result on

Job-Lot Scheduling,” Naval Research Logistics Quarterly,3, No. 3,

September 1956, pp. 201-203.

[Johnson 1954] Johnson, S, M,, "Optimal Two- and Three-Stage Production

Schedules with Setup Times Included,” Naval Research Logistics

Quarterly, 1, No. 1, March 1954, pp. 61-08,

[Karush 1965] Karush, W,, "A Counterexample to a Proposed Algorithm

for Optimal Sequencing of Jobs,” Operations Research,13, No. 2,

March 1965, pp. 323-325.

| [Smith 1966] Smith, R. D. and Dudek, R. A., "A General Algorithm for

Solution of the n-Job, M-Machine Sequencing Problem of the Flow

Shop," Operations Research, 15, No. 1, December 1966, pp. 71-82.

[smith 1969] smith, R, D. und Dudek, R. A,, "Errata,” Operations

Research, 17, No. 4, July 1909, p. 759.

[Szwarc 1968] Szwarc, W., "On Some Sequencing Problems,”

Naval Research Logistics Quarterly, 15, No. 2, June 1968,

pp. 127-155.

- 110 -

