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1. INTRODUCTION

1.1 Statement of Problem

We intend to deal in this thesis with techniques for computer

understanding of scenes with texture. We consider examples of outdoor

scenes, although textured surfaces appear in almost every sort of scene,

and we show some examples of isolated and artificial textures. Studies

in computer vision are motivated by a wide range of applications. Those

involving texture include agricultural survey and analysis of earth

resources satellite pictures. Planetary exploration by remotely controlled

| vehicles will demand some autonomous vision because of long delay times.

The social benefits of computer-controlled cars have been described by

McCarthy. Industrial robots will soon acquire vision. Texture synthesis,

for which we feel our techniques are applicable, is useful in computer

aided design and computer aided art. Interpretation of scanning electron

microscope pictures e.g. for metallurgy may be of interest. We are also

interested in constructing a model of human perception. Finally, vision

is one of the more interesting problem areas within artificial intelligence,

and contributes to the advance in our understanding of intelligent systems.

Without undertaking a complete review of the literature, we wauld

like to broadly contrast the work we have done with that of other work in

computer vision. Several small groups have studied perception of polyhedra.

Their work has been concerned with three-dimensional objects with plane,

uniform faces. The limited success of these efforts has depended to a

large extent upon large homogeneous areas and isolated edges. A number of

prediction-vezification techniques have arisen, some of which are special

to the simple cases considered there. Others are more general and useful

to our work. Because of the compiexity of textured scenes, we feel that

1
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the prediction-verification approach to perceptual systems is even more

important for our work.

Some work has been done with image processing, which is intended

for improving the ease of human interpretation of images of particular |

value. [Quam, others]. Other work has been directed toward crop

| identification and other statistical summaries of the earth surface.

These studies have also made limited progress and are mentioned in a

survey below. However, there is much room for fuprovement of texture

description, and those studies completely ignore scenes where the three-

dimensional character is important.

It should be clear what we are really after in an interpretation of :

a scene. The goal is not only to get a map of colored and textured

regions. We are not merely after identification of some image as a

member of a class. That is, we are not out to identify the letter A. ‘

Nor du we wish to identify some region of the image as some previously

seen element, although this might help us to achieve our goal. We have

in mind a system with a task, to navigate, for example, and execution of $

the task requires understanding of the structure of the space portrayed

by the image.

€

1.2 Outline of Thesis

In Chapter 1, after the statement of our problem, we present

@ review of literature that we think is relevant to an analysis C
of visual texture. The literature covered in this review comes from three

different sources: psychology, neurophysiology and computer science.

By no means {is this review exhaustive. However, we hope to show the

reader, through the psychological and neurophysiological review, which

2
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| features in grouping are important, and thus justify the features that
; we use for texture description. The computer science review includes

pattern recognition, linguistic and analytic approaches.

. In the second chapter, instead of presenting some formal
definition of a texture, which we do not believe is possible in general,

we describe two concrete scenes with textured and colored regions. With

» these examples, we describe our representation of texture and of a real
scene.

| The third chapter presents the implementation of procedures

: which give us texture descriptors. We discuss operators in the spatial
| domain, that is edge and region operators. We discuss some of the

techniques possible and problems to be encountered in extending these

techniques to textured scenes. Then we discuss texture descriptors

derived in the Fourier domain. Directionality turns out to be one of the

most useful features, easily detectable in the Fourier domain. We find

> that the Fourier technique has many problems, and we analyze the advantages
and limitations of these descriptors. We show how to compute the size of

| texture elements and their contrast; these analytic expressions are

¥ > evaluated for several examples and appear quite useful.
Chapter four describes a region growing algorithm applied to

forming textured regions and colored regions. We present a sheaf-theoretic

> point of view which provides precise specification of conditions for
continuity of textured or colored structures.

Chapter five is devoted to the problem of interpretation of out-

’ door sceries. We describe our earlier work using a pattern recognition

approach to the classification of texture samples. Then we

| b
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present an analysis of the use of texture gradient in determining the o
crientation of surfaces and relative depth. A simple world model is

presented for outdoor scenes. A discussion is made of higher level

; procedures which make interpretation of two examples of outdoor scenes. . 6
This higher level program has not been implemented, but gives a good

persepective to evaluate the modules developed, and is the target for

which we aimed.

O
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| 1.3 Previous Results

3 During the past five years or so, a great deal of work has been
done in the area of computer-based visual perception, computer

: recognition, and computer identification of visual scenes and patterns.

Several results have been obtained in computer analysis of two-

dimensional images, interpreted as projections of geometrically simple

real objects. See particularly, Guzman (1968), Brice and Fennema (1970),

; Pingle (1969), and Falk (1970).
; Polyhedra and collections of polyhedra are recognized from single

view projections. First the meaningful edges are recognized, then the

a main regions and from these, finally, in combination with the world-

: model, the identification of the objects is inferred.

Much less attention has been paid to computer analysis of two-

| 8 dimensional pictures which depict real-world scenes. What we mean here

! are scenes such as forest, grass, water, and their combinations. The

| separate regions, formed by, say, grass and bushes, do not differ in

2 contrast of light intensity, nor ir color (as both are usually green),
but rather in their texture.

A primary problem in texture is how we perceive a textured surface

x as uniform in a nontrivial way. Intuitively speaking, there are many
levels on which one can perceive texture. In one situation we may look

at the pattern showing how bricks are distributed on the wall and call

© that a texture. In another situation we may have a closer look at the

same wall from the same distance and see the texture of the individual
bricks and ignore the texture given by tha architectural structure of

| 2 bricks. |

Flock (1965) and Freeman (1970), reporting about various

D
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| experiments in connection with testing aspects of visual perception

Pattern into components each of which is in some way internally
uniform (Werthelmer (1912)).

| 1.3.1 Neurophysiological Studies Relevant to Feature Extraction in
Visual Perception

In what follows we shall present a review of certain experimental

results dealing with visual feature detection in animals. The general scheme

of experimentation is as follows. The set of stimuli consists of geometric
entities such as slits, edges, bars, and corners, Recordings are made from

Le E— or a small number of cells in a sequence along the direction |
of insertion of an electrode in the visual system of animals (mostly cats |

and monkeys). The conclusion is that there are special neurophysiological
units, identifiable in well-defined parts of the brain, capable of detecting
motion, orientations, and other features of the visual stimuli,

: For instance, Kuffler (1953), placing microelectrodes near retinal :

ganglion cells of cats, found that certain areas of the retina, when stimulated |
by spots of light, caused the ganglion cells to fire, while other areas

| inhibited firing. ‘The shape of the excitatory areas for retinal ganglion

cells was a small disk, surrounded by an inhibitory annulus or vice versa. c
The retinal areas, exhibiting the firing, are known as receptive fields.

Concentric receptive fields have been found also in the optic nerve

and in the LN (Lateral Geniculate Nucleus) of cats and monkeys (Hubel (1960) c
and Wiesel and Hubel (1960)). The only difference between retinal ganglion
cells and LGN cells is that the receptive fields in the LGN are smaller,

Also, the receptive fields in the LGN of monkeys are smaller than those in cats, C
The concentric receptive fields have a characteristic temporal behavior: If

_ 3 ; |
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E » the center of the field fires for "on" responses, then the annulus fires
; for "off" responses or vice versa.
( Only spatial changes evoke responses, while homogeneous illumination,

bh 2 however strong, influences very little the firing of these units. In
4 functional terms these are ''discontinuity detectors. Of course, there

are "Ganzfeld detectors’ in the retina, responsive to average brightness

- of a large region, which regulate the pupillary mechanism through the
: supericr colliculus, but we are only interested in neural units that
. participate in processing patterned stimuli.
: » A revolutionary discovery was the description of the relation be-

tween recept ive field geometry and the cytoarchitecture of the cortex.

 Mountcastle (1957) discovered the columnar organization of the cat's

4 somatosensory cortex. This vertical modular arrangement in the somesthetic
cortex means that units along a column perpendicular to the cortical

sur face all give rise to the same sensory discharge. In the monkey,

! cells along one column respond to skin touch-pressure, and the

cells along another column to joint rotation. (Powell and

] Mountcastle, (1959)). The interesting feature of this correlation between

kk » cortical organization and functional organization became fully apparent in
h the findings of Hubel and Wiesel (1960, 1962) in the visual cortex of the cat.

| They found feature extractors of hierarchically increasing complexity.
9 However, as one goes from the so-called simple units, having elongated

| receptive fields with antagonistic surroundings = also called slit or edge
| detectors to complex and hypercomplex units that respond to highly special
| ’ features (like movement in a certain direction, or the end of a line), one
| notices that despite their diversity, all of these feature extractors have

T
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a common characteristic: they all respond optimally to a certain

orientation. In a vertical module (column) perpendicular to the cortical b
surface of the cat and the monkey (Hubel and Wiesel 1960, 1962, 1968)

there are several types of units from the simple and complex or even 0
hypercomplex kind. But in a given column, all detectors have the same

preferred direction. In addition to this mapping of the orientation

information, the retinal position is also maintained and units with oO
receptive fields in neighboring retinal positions tend tn lie in close

proximity.

Another remarkable finding by Hubel and Wiesel is the hierarchy of z
feature extraction. Each unit in the hierarchy results from the outputs

of units of lower complexity using both excitatory and inhibitory connections.

The simple units of slit or edge detector type are built from the so-called 0
Kuffler-units in the LGN by "summing'' several adjacent Kuffler units that

fall on a line of a given orientation. This summation results in ¢ narrow

elongated receptive field having elongated elliptical excitatory (.nhibitory) C
area surrounded by an antagonistic neighboriinod. Such cortical units fire

optimally for those line segments (slits or edge) that fall on the proper

location on the retina and have the preferred orientation. These simple C
units are the only ones (in addition to Kuffler - units) whose receptive

fields can be plotted by luminous dots and segregated into inhibitory and

t xcitatory areas. The complex and hypercomplex units, on the other hand, C
respond to such complex features as movement of an edge in a certain

orientation and direction or the perpendicularity of two intersecting line

segments. Here it seems that the noticns of straightness, orientation, 0
velocity, position, parallelism, perpendicularity, abrupt ending of a line,

8 |
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. corners, and so on, appear as features.

The primary visual problem, how this i-formation is used at latex

stages, is still untouched.

T 1.%.2 Psychophysical Experiments Suggesting the Existence of
Visual Frequency Analyzers

In this section we give a brief survey of experiments concerning the

alleged existence of spatial frequency analyzers, located in the neural

’ system of human subjects. The set of stimuli cousists of simple line patterns
with differing orientations, contrast, and spatial frequency.

The human subjects involved in experiments are asked to respond to

the threshold contrast of the stimuli. Certain aspects of response are used

| as arguments for and against the existence of a frequency analyzer in the
subject. Enroth-Cugel and Robson (1966) and Campbell and Robson (1968)

| ’ claim to have found neurophysiological evidence for a spatial frequency
analyzer. Several experiments have been done to determine the properties

(such as the transfer function) of the hypothetical analyzer using masking

y methods. For example, Pollehn and Roehing (1970) used filtered two-dimensional
visual noise and spatial sinusoidal gratings. Julesz and Stromeyer (1970)

used one-dimensional filtered noise for masking. The noise consisted of

’ vertical strips whose amplitude along the horizontal axis of a CRT monitor
was determined by a Gaussian process. The visibility of a sinusoidal

grating is strongly dependent on the frequency of the grating. 1f the grating

| # frequency overlapped the noise band, it was masked. However, the rejection
| band had to be at least an octave wide on either side (Blakemore and Campbell

(1969) and Julesz (1971)). The frequency analyzers have such a shallow

3 characteristic that the anal.gy to Fourier analysis is rather remote.
Historically, the first hint of spatial frequency analysis was made

9
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by Campbell and Kulikowski (1966) who investigated the visibility 0
threshold of a test grating as a function of the orientation of a masking

grating. They briefly mentioned that maximum threshold increase occurs

when the masking and test gratings have similar geometry. That spectral C
analysis actually occurs fn the visual system was suggested by Pantle and

Sekuler (1968) using adaptation and test grat ngs of different frequencies

and by Campbell and Robson (1968) who noted that a square grating appears C
as a sinusoidal grating until the higher harmonics reach their visibility

thresholds.

A recent study by Nachmias et al. (1969) showed that at the threshold

of visibility the various spatial frequency analyzers are statistically

independent of each other (a: long as the varfous spectral components

have frequency ratios in excess of S:i). The finding by Nachmias et al. C
1969) indicetes that at threshold the phase of visual or auditory signals

is not detected by the perceptual system, However, for perception above

the threshold level, the phase informaiion {s used in higher processors. (
After all, both the {mpulse function and white noise have the same flat

ampl {tude spectrum, but very different phase spectra. The fact that they

are heard and seen as being very different shows that ultimately the phase (
information is utilized.

1.55 Psychological Studies in Pattern Grouping

The topic of this section is a discussion of the psychologica). C

literature on texture grouping. The grouping process depends heavily

on criteria of similarity of {tems. Although it has been known for

some time that similarity {s one of the most important features of <

perceptual grouping, only recently, (n the work of Julesz (1971), |10
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a Beck (1967), and Attneave and Olson (1970), has {t been made clear

explicitly what kinds of similarities arc effective in this respect.

Beck (1967) has studied perceptual groupings produced by

» line figures. He showed that the overall orientation was essential

for cluster formation, while more corplex properties such as rated

similarity or familiavity of figures were irrelevant. Example: T and

S tilted T are more similar than T and 4 . However, as a texture,

T and tilted T form a more distinguishable texture than T and 4 .

This has been confirmed by Attneave and Glson (1970) who have done
" similar and more extensive study, with differant shapes such as L,

Jd, A, Vv, lines of different lengths, and orientations. Directioralicy
was important in grouping. We might expect curvature to be important

P also, but curved lines were grouped with straight lines vhich had the
same direction.

Grouping was dependent also on orientation of the vhole image.

’ In ger cal, grouping and complementary segregation is based on certain
descriptors, some of vhich represent relacionships of elements of the

stimulus array to an internal Cartesian reference system,

’ Julesz (1952) has studied the clustering problem on random dot
textures (stereograms). He described textures and predf:oted their

| # Properties by specifying their higher order statistics.
| The usual joint probability distribution is an {nadequa: 2

descriptor in perception, since it dees not describe the shape of

4 clusters. There are at least two vays to handle this difficuley,

(One vay is to define certain information rules for single clusters and

11
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parametrize them (orientation, compactness, etc.). The trouble with

this solution Is the arbitrariness of the selection of cluster

parameters.) The second way fis to use constructs of random geometry,
Novikoff (1002) was the first to suggest such a solution.

The clustering process is dependent on the similarity and

the proximity of elements. The similarity relation {s rel tivized

to brightness, color, geometrical descriptors and other parameters. (
The proximity relation is based on a distance measure. Nonmerric

wulti-dimensfonal scaling techniques (Shepard (19:2), Kruskal (196k ))

and hierarchial cluster-seeking algorithms are useful tools for handling
similarity problems. The methods proposed by Shepard and Kruskal,

however, are appropriate only for linear or multilinear cases. In a

nonlinear situation an fterative algorithe fs applied on small local C
regions in order to find an {ntrinsic dimensionality (Shepard and Carroll
1X6), Bennet (1959), Fukunaga and Olsen (197!)), Applying

sulti-disensional scaling to discrimination of textures composed of

random © x © arrays, Julesz (1971) found that the most important factors

for texture discrimination were brightness and orfentation.

(

12
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1.3.4 Texture in Machine Recognition

g We have seen scveral aspects of visual textures, mostly from the
point of view of puychology and psychiophysfology. Now, we shall examine

the characteristics aml parameters of a texture with respect to some of

" the approaches that have been used fn machine recognition of textures.
The best review paper about the current state of texture extraction

technology is that of Hawkins (1970). According to him, there are four

i. types of approaches that have been taken to texture classification:
(1) Spatial frequency content, (2) Gray level content, (4) Local shape

| content, and (4) Nigher order measures. Most of the carly machine

a texture recognition was related to analysis of aerial photographs. As
| an example the vork of landaris (1970) can be mentioned. Lendaris

analyzed pictures of aerial photographs of agricultural landscapes as

3 vell as of urban areas. For recognition purposes he used the power
spectrum of the brightness function over some vindows of constant sire.

The power spectrum is analyzed in tae following way: first, two funct one

2 are formed; one the energies alonp different directions; then the energins
along different frequencies. Then, from these two functions, feature

vectors ate created. The features are the number of peaks and the

x strength of the peaks in both functions. These feature vectors are used
for classification of the area. Me distinguishes four classes:

man-nade areas (cities)

. agricultural areas
8 simgie road

intersection of tvo roads.

e Another vay of describing repetitive patterns is tO use some

statistical features of the brightness function forming the pattern.

15
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This has been used with some advantage in analyzing biological material

(Lipkin et al. 1966, Prewitt and Mendelson (19(3)), cloud oattern

classification (Darling and Joseph (14.)')), and the discrimination of

strategic amd tactical targets aml terrain classification. The statistical

features, though sometimes useful, have nome limits, Thus the variance

of a salt and pepper scene is the sam as that of a white scene with a

uniform dark area. The size of connected areas (think of clouds, for

instance) can take a wide spectrim. The mmber of changes (zero crossings)

is informative again only within a certain context, when combined with

other features such as direction, etc. listograms are useful (n

estimating light distribution (n the pleture and setting up the threshold

values lor measurements.

Shape measures used (n texture analysis have Involved applying a

particular local "matched ({iter"” to covery point (n the image area, and

count ing the nusher of points that match above some threshold. This has

been applied to the previously noted examples of classifying biolopical

material (Prewitt and Mendelson (17%.3)), te clowd classification, and

to targets and terrain classifications (Hawkins (7/0)). A more analytic

approach to shape description of chromosomes is taken in terms of conic

sections. An {dividual chromosome (3s defined as a non-negative function

on the real plane. wb sct to certain constraints on position, size,

orientation, etc. lediey ot al. (149) suppested a simple method of

measuring concavity and convexity. Integral geometry measures (Julese

(1271) and their extensions amount to calculating the number of occuriences

of n-tuples of specially arranged local pointe in all orientations over

the image area.

1%
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2 Matched (filters allow one to descrihy practically any shape.
However, the matching process, due to the computation of a» large

nuaber of correlations and the need of hundreds of patterns, is rather

a slov, The similarity relation can be defined in a straightforward
fashion in terms of the threshold values.

Simple descriptors such as conver .ty, length of the boundary/area,

3 etc., require small computation time, but similarity relations based on
these simple descriptors are not usually sufficient for sharp decisions.

Another set of simple descriptors has been suggested and implemented by

s Rosenfeld and Thurston (1971). They use, in parallel, several local
averaging operators applied in different directions and on various sizes

of windows. All results obtained from these local operators are evaluated

1 and eventually a texture boundary is found. Though this method finds
some texture boundaries, the operators are too trivial for handling

a wide class of real textures. Besidcs, they do not provide any description

® of a texture, they only detect the texture differences.
All the approaches discussed above are pattern classification

techniques. Thesc techniques are not satisfactory for a description of

® real textures for the following reasons:
(1) Pattern classification techniques have concentrated on linear

decizion procedures, and domain independent formulations. Context appears

2 as a set of nu.berical coefficients {in a linear function, and {in the

choice of features. U2 have better models in terms of context dependent

decision trees vhich provide a better basis for generalization and

2 learning.

(2) Structural! relationshipec and segmentation are part of the

15
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desired analysis. We discuss this further in our analysis. The point

has bren made repeatedly by picture linpuists.

PICTIRE LINGUISTIC FORMALISM

In what follows we shall review the so-called linguistic approach;

"picture linguists" take as their principal aim to analyze discrete

pictures such as bubble chamber photographs, biomedical pictures of

neurons, blood cells, and chromosores, machine-printed, and hand-printed {

characters, fingerprints and the like. Thev argue rather convincingly

that such pictures cannot be identified Ly means of classical receptor/

cateporizer devices. What one is after in this situation is not just a

classification, but rather an articulated (discursive) deseription or

explication, capturing the structured subparts of a picture and the

relations between them (Miller and Shaw (1958), Narasimhan (1970), (

Clowes (17/0)).

One has to assume that certain pieces of information have already

been extracted from the picture by means of nonlinguistic techniques i

texture elements and their possible structuring Is known). We combine

this prior kaowledge with the data about the analyzed picture and then

“deduce” {ts structural description. The "deduction" is accompl {shed by L

a gramar. Due to the fact that we cannot describe a picture in terms

of strings of subpictures, phrase-structure grammars cannot be used

directly. The rewriting rules must act on more general entities such

as arrays, dravings, labeled graphs ‘webs), multigraphs, etc. For example,

Kirsch (1'%4) an! Dacey (197) designed a graemar for two-dimensional

languages, vhere the generating rules act on arrays. Pfaltz

16
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0 and Rosenfeld (1969) used for picture description the so-calledweb

grammars in which the rules act on labeled directed graphs. Simply,

in picture grammars one tries to replace the total ordering of strings

O by a pirtial ordering of graph structures so that the parsing can still

work. ~ -

The language of the graph grammar is nothing but a collection

& of graphs that can be derived from initial graphs by iterated application

of the rewriting rules.

For instance, one can construct a grammar for directed two-

c terminal series-parallel networks or neural networks (Pfaltz (1970)).

d It is believed that the organization of textured reginns in scenes would

be another promising field of application, particularly, when the number

$ of different textured regions occurring in a scene is small and when

their organization is such that a moderate set of rewriting rules can

do the job.

$ Methodical scanning of the picture with a prescribed system

of rules, which may be feasible when the variety of possible texture

elements and their interconnections is small, becomes rapidly uneconomical

where many varieties of wanted textures msy exist, embedded in a

| background containing many similar forms which do not belong precisely

to the required category.

' The intricacy of textured pliture recognition is associated

not only with the presence of an incredibly large number of elementary

texture elements,but also with the placement rules which scem to have

| ¥ extremely complicated grammatical structure.
17
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To sum up, the linguistic method is suitable for such classes

of pictures that contain a small number of primitive objects. The

primitives have to be found with accuracy, otherwise the parsing process

will terminate in misrecognition. The picture must be recursive

in nature, so that a small number of rewriting rules can be used.

Picture languiges are inappropriate in situations where the

number of primitives is large and the geometrical relationships {
between these primitives are random. This is the casc of wost of the

scenes such as fabrics, aerial photographs (large number of primitives),

cloud covers, grass, bushes (random relationships), shading of smooth

objects, textured surface of three dimensional objects (continuity),

and similar natural or artificial scenes with strong aspects of

repetitiveness, continuity, and regioning, and with intricate changes

in gray levels and colors. On the other hand, descriptions of modes

and scene elements are graphs, and there is a broad analogy to picture

language in other approaches.

ANALYTIC FUNCTION APPROACH

A (real (wo-dimensional discrete rectangular) picture is

represented by a pair < I X I, Pp », where I, and I, are
non“empty finite intervals of integers and p is an arbitrary real-valued

function p: I x I, — Reals. If X = I X I, is fixed, one can
identify the picture with p.

The definition itself is empty. We may proceed to try to

approximate the picture function by analytic functions defined on

subsets of the image plane. About the only useful analytic properties |
18 |
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0 are those based on periodicity. These constraints are inspired by |

pictures in which the regions gre generated from texture elements by

a more or less straightforward family of analytic rules. A

A sample of special cases of deterministically textured pictures

is listed below:

o | (a) If p (is spatially periodic on a connected region

S CX, i.e.,

p(x + v,y) = p(x,y)
&

p(x, y +w) = p(x,y),

where x,y € S and <y,w> is the spatial period,

3 and if p|S cannot be extended to a larger connected region S’ (Sc 8’)
| without losing the periodicity of pls’, then <§,p>is calleda

periodically textured region. |
i

A picture decomposable into a family of periodically textured

regions (R,]1 <i <k} with spatial periods ww, > (X to UR, and

8s RMR, = 0, when i # j), is called a periodically textured picture,

Simple visual patterns, such as a rectangle covered bv a mosaic

of squares, triangles, circles, etc., are examples of periodically
h 4

; textured pictures. Brick wall, honey-comb herring bone and many other

ornamental or mosaic patterns also belong to this class of pictures.

1 Note that in this case only two texture elements are involved

19
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| (black and white squares, etc.) and the whole Picture is described by
a finite group of translations in two direct ions (direct product of two

translatinn groups of integers modulo I, x I). Thus textured pictures
of this kind can be defined in terms of their texture elements and an

appropriate finite group of translations. Only a small degree of
complication arises when the textured picture is decomposable into

periodically textured regions. (
(b) If p is partially periodic (periodic in one of its arguments )

on a connected region SCX, i.e.,

| (1) p(x + v,y) = p(x,y) (Periodic in the first coordinate) a
(ii) p(x, y +w) = P(x,y) (Periodic in the second coordinate)

where x,y € S$ and v (w) is the period, and if p|s

cannot be extended to a larger connected region S’ (8 cs’) GQ
without losing the partial Periodicity of pls’, then

| <S,p> is called a partially periodic textured region.
| A picture decomposable into a family of spatially

periodic textured regions {R, 1 <i<k} with periods

{v,] or {w.}, is called a partially periodic textured

| picture. | C
(¢) If p is partially almost periodic on a maximal connected

region S, we obtain a new class of analytically characterized textured

pietdies. Here "almost periodic" means: For any € > 0 there exists a C
function p’: L xX 1, — R of the form |

p’ (x,y) = synsym(c, e"(?y As by).
| 0

such that |p(x,y)-p’ (x,y)|< €, |

| 20
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& | where a, 8 €ER, 0<i<n,and 0 <j <m.
The function p’ is not periodic in general, though it has periodic

components c tm" + by) and the absolute difference
G |p’(x + v,y + w)-p’(x,y)| is an arbitrarily small number for a suitable

pair <v,w>. Co

Assuming that the pictures under consideration are composed of

: periodic, partially periodic, or almost periodic textured regions, we can3

utilize features like expansion of the picture function Pp over a textured

region S into periodic orthogonal series such as Fourier, Hadamard-

Pe Walsh etc. In fortunate cases the orthogonal series-features compress
: the information hidden in the textured region into a few dominant

componeats. This is followed by pattem classification (Rosenfeld (1962),

' 3 Julesz (1962), and Bajcsy (1970)). If the periodicity or repetitiveness
3 is not the most relevant aspect of the picture in question, an orthogonal

: expansion may scramble the information content so that no simplification
Is occurs,
: A typical case a, »ears when the phase spectrum happens to be

relevant in a Fourier expansion of a 'honperiodic' picture a'd we restrict

| 8 ourselves only to the power spectrum. Here the information content is
£ not only degraded, but also mixed in such a way that the Fourier features

| are no more relevant (Lendaris and Stanley (1970) ).

2

iW,
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1.4 The Contribution of This Research

We feel that theoretical and experimental advances have been

made in programs for understanding textured scenes. These are:

1. A sheaf-theoretic formalism for describing textured and

colored regions.

2. Symbolic structured description of textures.

5. Implementation of descriptors in terms of Fourier descriptors. O
Analytic expression of spacing, size and contrast of texture elements,

and their approximate location.

L. Forming of color regions.

5. Forming of textured regions.

6. Spatial interpretation of regions in terms of texture

gradient. G
fT. Description of a higher level procedure and world model for

outdoor scenes.

22
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2. TEXTURE DESCRIPTIONS

o In this chapter we discuss qualitative descriptions of visual

textures in order to suggest the corresponding implementation in

procedures. Our aim will not be detailed descriptions; in a Borgese

o story, a project to make perfect maps lead to maps the full size of the

countries mapped. Instead, we want to characterize textures in a compact

symbolic representation which suggests correspondences with our models,

O and simplifies human communication and debugging. We feel that everyday

texture descriptions are good models for these purposes. At a low level,

\ we want to work with those descriptions to propose plausible colored and

$ textured regions. At a higher level, our aim is a description in object

{ space, not an image space map. Many interpretations and hypotheses shoul!

be in terms of objects and properties of the object space. An example is

$ the interpretation of texture gradient in the image as distance gradient

in space. Another interpretation is that overlapping reginng correspond

to foreground and background.

%

R

:
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I
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:
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2.1 Examples of Outdoor Scenes

In the scene shown in Figure 1, we find three clements: grass,

water, and rocks. The grass lies on an approximately level surface. The

rock is in front of the water and behind the grass. We do not describe

the image itself, but its {interpretations as objects. In describing

this scene, we emphasize its segmentation into elements which «re objects

and regions in object space. This structural description characterizes

the relationships among objects and regions. For example, a tree stands

above the ground and {in front of the sky. The structure allows us to

talk about complex scenes in terms of simple elements. To move about,
we must know where the grass extends, where to walk around rocks, and

where the water is. These spatial relations are essential; even if we

were able to store and recognize whole scenes, we would need a mechanism

to discover where we walk and what we can pick up.

Crass, rocks and water correspond roughly to three regions in the

image. But these simple elements are not directly the sort of regions

which come from existing edge or region finding programs. The elements

we see are high level abstractions which do not coincide with color or

texture regions. In the first approximation, color is the most relevant

feature that distinguishes these regions. However, a closer look at the

picture suggests that the color boundaries do nor correspond exactly to

the regions we see. Consider the white waves near the rocks or the dark

arcas inside the grass region. Our texture region growing also defines

a set of regions. Directionality is importaat in the grass region, yet

that property is not uniform over the regi.n. Thus the regions aef ined |

by our texture descriptors do not coincide with the grass region we sen.

2h
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1 Yet there is a continuity over the region (n some of the properties of

color, sire and density of grass stalks. The fact that we have similar

stalks of grass over the vhole (feld (wometimes with different direction

* of vith different coler) makec f(t possible to propose the field as an

element. This complexity makes ft impractical to attempt to {dent ify

local elements vith local prototypes for grass, sky, or water, or to

» attempt to identify the lov level regions from our programs .

In a second example In Flgure 2 ve have four elements: grass,

trees, clouds, and sky. Again, color separates the thy, clouds, grass,

> trunks of trees, and in sore aArcas, separates the crovns of trees.

Texture, on the other hand, separates the trees fron RTass.

In the object space description, the sky and trees are distiect. We

» could arbitrarily define image regions as disjoint. Proximity of regions

of like color is ere basis for proposing a connectivity among tree branches

ant among fragments of sky. Those conmnectivities reflect the object

| space descriptions of trees as cmnected and sky as connected. The regions

based on proximity in the {mage are unconnected and overlapping. That

description allows an Inference (vhiich ray not always be valid) that the

} trees are In froat of the sky, Arbitrarily defining dis jolnt regicns

rejects these hypotheses of object space connectivity and the cnclusion

of interposition from overlap.

Although the trees are approximately of the same helght, and the

grass stalks are also roughly of constant height, their apparent size in

the [rage decreases toward the center rear of the picture. The slze of

4 the grass stalks nearest us Is the same ag that of the trees farthest from

] us, Gibson [1970] has emphasized that perception relies heavily on the
J "
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interpretation of systematic variation of apparent alze vith (mage
0

position (texture gradient) as a variation of distance from the observer.

For most purposes, the relative depth of elements in the vorld is

sufficient. Assuming that ve know the positica of the observer, the
{

gradient allows us to determine the absolute distance of objects. The

measurenent of observer or camera position and angles, and calibration

of the image device (Sobel (1770) are essential.
C

{

C

C

{

£

C
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G The examples (rom the previous section demonstrated a structural
description of (eages by sepmentatlon into elements of object space.

We further structure these textured regions In terms of texture elements

Po) andl thelr spatial relationships. In Table | ve shov sowe examples of

texture elements and thelr relationships as they appear in object space

and image space.

G Texture clements cannc: be determimmd (n isolation. A Some element
may be unrelated to the texture. The relationships are frequently orly

h~ | approximate. In a texture of pebbles, the size similarity may be

a important even though the sizes vary significantly; still, there is o

uniformity vithin a factor of 10 or so. Similarities of other properties

such as contrast, shape and spatial distributions may also be only

C approximate.

In practical Implementations ve can describe only simple relation-

shipe: lincar, periodic, regular but aperiodic, continuous, symmetric,

c and the like. Likevisce, shape descriptors must be relatively simple.

One may question the elfectiveness of simple relationships and thelr

descriptora; it f(s reasonable to think that 8 more complex description of

a texture elements and their relationships is necessary for adequate

descrijtion of textures. The psychological experiments cited in Chapter |

indicate that human differentiatfon of textures depends heavily on a few

= simple descriptors such as contrast and directionality, and ignores even

curvature In making texture groupings. Although we cannot estisate the

computat ional complexity of descriptors, ve have an intuitive feeling

2 that ln terms of time, or In terms of complexity of viring for parallel

| systens, that simple descriptors such as directionality are clearly preferred,
29
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| Table 1

ame of Region ater pores
® —————————————LL ——u——— |

Texture leaves, blades water waves (a) Eyerp.een:
elements of grass trees

(b) peciduous: C
fruit trees

Texture width: 1/L" videly variable Midth/hefght: 1/2
¢ lesant length: 2-10 {in length: 65-20 ft.
size

©
«| Spatial dense, roughly quite parallel |(a) vertical and

i relation- parallel and waves or con parallelships vertical, and cetric ciccular |,
between partial covering | waves (b) Jove isa] andel)

o ¢lesents partial covering
£ amm————

© green, yellow blue, dark blue (a) crown of trees
or brown dark green, {s green and the

silver gray trunk of trees
fs dark brown.

(b) crown: green, (
brown, yellow or
red; trunk:
light brown

Boundaries fuzzy, smooth fuzzy, smooth |[sharp, not smooth
of elements {

Ceometric linear and linear, direct- trunks of trees:
description]]| directional ional, con- linear texture

of elements centric circles am I.
$ blob-1ike texture (3 A——

“1 Expected very low very low high (trees with sky)|
& contrast
[+

a

| c
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. Table 1 (Continued)

G
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Texture homogeneous a cloud bricks pebbles
clements :

& Texture 1/h=2 miles | width: 3-4 diameter:
element length: 8-15 | 1-3 {inches
size inches

o
5 width/length
n 1/2

$ &d
u| Spatial homogeneous [pattern horizontal randomly
ry relationships depends on rows distributed
O | between weather

clements,

. Color blue white, gray | gray, red, any color
red brown, yellow

Boundaries sharp fuzzy but sharp and sharp and
of elements irregular |contrasting | smooth smooth

(horizon)
»

Geomztric homogeneous |blob-1ike or | bidirectional | blob-1ike
description directional
oi elements

1

®| Expected depends on low or high,
® “wi contrast the back- depending on

. ground the back-

2 low or high ground.

®

]

»
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+5 Textured Repions nb Their Ovpanization

In the previ elt ( 5 tnapes in a part whole structure:

scenc-regions=-clenents, The regions uo cents were primarily in object

space. A texture may bao blew laver frarchical structure; in

Fig. 4, the surlaces of the bricks have a rough texture. The regions

formed bv the bricks aire elements of the brick wall texture.
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0 of homogeneity, the regions of a common property correspond to the .
regions of homogeneity from a segton growing operation. The related
operation of finding discontinuity in texture properties is analogous

G to edge-finding between homogeneous regions. Rosenfeld (1970) has

discussed the problem of finding texture boundaries as that of finding

gradients in the average values of statistical measures (which are

GC assumed to be any suitable operator) . While this is suggestive, it

unnecessarily eighaslizes statistical measures as opposed to structured

descriptions which would be more suitable for patterned textures.

& Let us approach the question of the organization of textured regions.

In the simplest case, the picture to be described is partitioned into a

disjoint covering of textured »~gions.

3 A somewhat more complex system of regions can be described by a

| tree structure. It may be used to represent the topological organization

of brightness contours (Krakauer (1970)). While this may seem a great

8 generalization, a tree does not well describe the system of regions

from a number of descriptors. Even for a single descriptor, the tree is

rigidly heirarchical. The nodes of the representing network are used

3 for regions and the arrows correspond to the spatial relationships between |

the regions. Systems of features lead to several networks of regions.

A single feature may give rise to a non-dis joint network of regions.

8 For an operator to give disjoint regions (a partition) one must assume

an equivalence relation (reflexive, symmetric, and transitive).

| Quantization would be an example leading to an equivalence relation.

2 Gradient thresholding would be another example. Selection of typical |

values, followed by thresholding within an interval, would not lead to a

| | 33 |



equivalences, so that it would not lead to a partition. |
It is not necessary to fully expand the whole network or family [

of networks. Rather, instead of thinking of comparing several networks

derived from different features, we use some simple hypotheses derived |
#

from a subnetwork of some particular network and supported by evidence “

from features which might imply another network (which may never exist

as such). |
{

We must deal with texture boundaries as well as textured regions.

The boundary problem is dual to the grouping problem. Therefore the

difficulties encountered in a grouping have their analogs in boundary

detection. Take as an example the scene in Fig. 1. The objects in this

scene (grass, water, and rocks) are separated by physical or virtual

boundaries. Some of them are visible while others are hidden (grass covers

the boundary between water and rocks). In the identification process

it is not clear whether one should follow the boundaries defined by

individual texture elements (look at the individual straws near the rocks)

or whether one should look for some kind of average boundary or perhaps

keep a spatial gap between two different textures.

Region growing operators use certain similarity criteria. These | 1
are applied in patching local structures into global ones. Whenever we

meet a dissimilarity, a boundary point or segment is proposed. In the

first approximation, a region is formed by patching continuous structures

over connected areas. In this case the corresponding boundaries are also

connected. There may also be internal, unclosed boundaries. When local

discontinuities occur within a region, proximity criteria are used for

bridging the gaps. The proximity here is used as an extension of continuity. |

3h
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o The same is true with interrupted boundaries. Proximity and continuity
of boundary segments suggest continuation.

In the past it has been customary to think of regions as a disjoint

G covering of the image. The examples in Fig. 1 and Fig. 2 have shown that

1 this conception is too simple to be useful. An equally simplistic noint

of view is that boundaries of regions are always closed curves.

8
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> PROCEDURES FOR TEXTURE DESCRIPTORS

C In the previous chapter we discussed the description of texture in

object and image space. In this chapter we shall specify the implementation

of these descriptions. Specifically, we shall study texture descriptions

O in the spatial domain and in the Fourier domain. Algorithms for concrete

descriptors will also be presented. Although the descriptors will be

derived in the Fourier domain from the power spectrum, they actually refer
’ | to textural properties in the spatial domain.

We will find it useful to distinguish scalar, topological, and

| geometric features (shape, area, size, boundary, connectivity, thinness
O ratio) from relational features (spatial distribution, organization,

gradient).

5.1 Texture Descriptors Derived in the Spatial Domain

¢ Since descriptors refer to properties of objects represented in the

image space, it is natural to Look for operators acting directly in the
spatial domain. The skeleton of this section is this: Procedures isolating

- the image elements, geometric description of image elements, and clustering
of elements based on Proximity and their spatial organization.

In the process of isolating the image elements the most important

{ features are the following topological Properties: connectivity, continuity,
and proximity. These Properties, applied to brightness or color, are used

in all region finders (Fenema and Brice (1970)). Discontinuity is the

t basic property to be used in edge and line operators (Binford (1970),
Hueckel (1971)). Current edge and line operators are designed for de- |

tecting discontinuities between two large homogeneous regions and they do

f not operate satisfactorily on small regions. The textured elements that

one finds in outdoor scenes are too small in size and too large in number

| | 36
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and therefore cannot be processed usefully by any of the above operators.

However, under poor resolution conditions in the image, where the texture E

¢lements are smeared (so that the homogeneity stands out more than usual),

one may be successful even with the above mentioned operators.

After completing the isolation of image elements - figures, we shall 8
| describe them. We select those descriptors which enable clustering,

i.e., based on proximity those which will find the nearby elements.

We had already a chance to note that color and brightness are among the 2
most important descriptors in natural scenes. Image elements cannot be

taken separately from their background. In fact, the common background

of the elements is a strong clue for their clustering. The relationship

between the background and color is expressed in terms of contrast, and

therefore it can be used as another descriptor. |

The descriptors corresponding to spatial relations depend on

| proximity relations just as cluster processes depend on proximity. Typically,
| we want to define colored regions by proximity, rather than only

connectivity. Grass and trees are regions broken into many fragments

defined by connectivity. But other like regions are nearby. This

proximity in space and color can be phrased as a problem of proximity in Oo
4 dimensions, using the multi-entry technique outlined by Binford in the

| Stanford Progress Report of January 1971. Likewise, super regions can be

defined by brightness, co.trast, size and shape descriptors clustered 5:
on the basis of proximity. Spatial relations, the intervals between

elements and directions of these iutervals, can be defined also among

elements linked by proximity. 0
As an expedient which is suitable for linear textures, one can

57
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O project the elements into several directions. Each projection will

actually be a one-dimensional function of pray levels or color. Since

this function {x still too complicated for practical implementation,

( it is simplified by uring a square wave approximation. The square

waves arc described either by edge detection operators or by magnitude

and the distance between two consecutive zero crossings. Since the

y distances between zero crossings are intervals in which the approximating

gray levels are constant, the nethod is called interval analysis. That

technique has been used with some success to describe regular linear

‘ textures in an MIT term paper by Peter Wolfe, (1970).

Since the shape of a two or three-dimensional object In a general

situation could be extremely complicated, we cannot hope and, in fact,

0 we do not want to describe it in detail. Instead, complex shapes are

decomposed into simpler ones which are (hopefully) easier to describe.

A typical example is a tree which may be decomposed into its trunk and

crown, where the trunk is geometrically linear while the crown is blob-

| like. In shape analysis of outdoor scenes we find directicnality among
the most useful features. One can see this immediately in Table 1.

Directionality, combined with length/width ratio and length along the

preferred dircctionality make up a lirear element description of shapes

or parts of shapes. These are all directly implementable descriptors.

In ourdoor scenes, the shapes of texture element are quite important,

while the shapes of the important regions of object space (sky, grass,

trees, water) are not very important.

The apparent size of an object in an image is not relevant if

considered in fsolation. This fact was already noted in Fig. 2. There

38



the apparent size of grass was the same as the apparent size of tiees,

tocated further Irom the observer. However, the size of region could he Y
relevant, particularly in the (nitial stage of a scene analysis vhen one

is scarching for large connected regions. Despite the importance of

descriptors derived ia the spatial domain, ve shall not use thea in this S
work. Currently available edge finders amd region {inders are tailored

for large homogeneous regions. In natural scenes, textured areas are

composed of small texture elements. Even tc the extent that the boundar.es ‘
of small regions are determined, the data structures require unreasonably

large memory, since the boundary descriptions are no longer economical.

The next steps of description of elements and clustering elements of

similar direction, size, color, or brightness, scem prohibitively time

consuming and difficult for grass, pebbles, sand, etc. The one-

dimensional futerval analysis might have some utility but is very limited;

combined with other methods such as Fourier description, interval analysis

is potentinlly useful.

5,2 Texture Descriptors Derived io the Fourier Joasie

In what follows ve shall need some elamsntary and well-knesn notions

of Fourier analysis. They will be reviewed presently.

Consider a real picture function of two variables in a matrix fore

g(x,y), vhere x and y ave variables (rom fixed intervals of natural

nusbers 1, = 0, 1. seep p,-1). The two-dimensional discrete finite
Four fer transform of the function g(x,y) is thea given by

p-1 p-1

F(n,m) = > > elx.y)exp(-2ri(xneym)/p), (1)
po x=0 y=0

vhere p = Il and { {is the usual imaginary unit.
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In general, F(n,m) is a complex function, given uniquely by fs

s pover spectrum P(n,m) and phase spectrum PSl(n,m):

Pin ,m) = SQRT(F. (n,m) + ron),

PSt(nm) = ARCTAK(F, _(n,m)/F  (n,m)).
8

From the elementary properties of the Fuvrier operator ft follows

that any real periodic function has a symmetric Fourfer image vith respect

to the origin. An equally well-known but someshial more Interesting fact

y is that the pover spectrum is favariant with respect “o translation in
the spatial domain, but not with respect to rotation. A trivial

consequency of this property fs that the directionality of a pattern in

’ the picture is preserved in the pover spectrum but the phase of the trans.
form {s not.

If a functiovn is periodic, partially periodic, or almost perindic,

' then its Fourfer transforma compresses the data considerably without great
i088 of information and the relational features derived from the Fourfer

. image form a pood description of periodic or almost periodic pattarns.
As ve have pointed out above, the pover spectrums contains the

information about the fore of a periodic picture function restricted to

o a windov. The phase spectrums, on the other hard, represents by and large
the locational (positional) Information in a window.

Ye safd also that directionality (oc preserved in the power spectrum,

> This fact allows us to fnfer some gross shape properties. We are able
to distinguish direct ional and non-directional components of texture.

For this reason, it {a veeful to tramform the pover spectrum ftom a

’ cartes lan coordinate systems <n,m> (nto 4 polar coordinate system
“<r, ® >>» Then In each direction © , one can regard Pir, @) as a
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onedlimnsional function FP _ (r). Similarly, for each frequency r,

function © @) {s a one-dimensional function. Thus, the description 8
of the texture depends in this method on the form of the pair of functions

“p_(r)s r (9)>.

Function P (9) determines whether there is o directional or non- :
directional component. If function Fis) is flat then the corresponding

texture is nondirectional. (ff ft has few distinguished peaks, the texture

is directional. One peak leads to a munodirectional texture. Tvo peaks :
under certain constraints lead to a bidirectional texture.

The nondirectional texture could be homogeneous, noisy or blob-like.

Funct ion P(r) distinguishes between noisy and blob-like texture.

The noisy texture corresponds to a flat nonzero function rr). Whereas

in the case of the blob-like texture, function Flr) will have some
peaks. The homogeneous texture corresponds to an slwost constant function

P(r) for >) aed with a large value for F.(0). In the case of

a directional texture function P(r) will have peaks similar to the

| case of blob-like texture. The frequency In the maxims of Pax)
will roughly correspond to the distance between two parallel stripes (in

the case of directional texture) and to the distance betveen two blobs in

the case of a blob-like texture.

We have shown the interpretation of function Pl). Now we vant

to analyze a further possible (nterpretation of function P(r). Consider

a wonodirectional pattern that appears as a one-dimensional (in the

particular direction) square wave function shown in Fig. kk
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| Denote the replicative sysbol w(x) and the wave form by ((x). The
periodic function In Fig. V {ys expressed as a convolution of ((x) and
w(x), thus

Fix) = f(x) * gx).

The Yourier transfors of F(x)

Z(F(x)) = 2(t(x.v)) + 7iw(x.1)) |
= yinc x ¢ (yx).

Vv {

Applying the vindov function of the width Vv, appears as a convolution
in the Fourier domain.

JR(xw) « Fix)) » slnc x * (sine X wiz).
v v I :

a2
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This function displayed graphically is seen in Fig. > .

|

{a
Ng T

ww

Fig. 5

It is clear that we can measure - | in the power spectrum
fron the function P(r), for every directionality and vindov size w.

Consequently ve can estimate (how well, depends on the brightness function)
the vavelength 1, as before and, {n ad’ition, the size of the

smallest element, vo v and ¢ will be parameters associated with each

description. Examples of functions Fle), P(r) of texture samples will

be presented next. The size of samples is 30 x 2 points. The points

on the y axis have the corresponding values of the functions Pw) and

P(r) respectively. The points © (on the x axis) in the graph for function

Pi®) represent the valve (x-1) ‘Hy for x= 1,2, .,.., 16. The points
16

(on the x axis) in the graph for function of P(r) have Just the

actual values of frequency r= 1, ,..., 16.
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0 Each pair of functions <P(®), P(r)> will be described by some

parameters, listed In a table. #elow is the list of the parameters

and thelr description,

( MAME: The natural language names of the texture samples.

DESCRIPTOR: A hypothetical description of the sample according to

soa¢ criteria (thresholds) applied on functions <P(®), P(r)>.

( MAX P(¥): The maximal value of P(9).

Oo.’ 18 such © that PO...) = max P(®),

WIDTH: The distance between 9: 9, where oS 9... Se, end

¢ Plo,) « MIN Plo), the left side with respect to Pleo.) P@,) = MIN

Plo.) (the right side with respect to PO)

DIR: 1f the descriptor is directional, first perform a fan filtering

0 in such a vay that the fan filter is centered in ® an and then find
. x Pax

MAX P(i.,m) = Pn Max) and thus compute DIR = arctg d . If the
max

a descriptor is nondirectional then just find

MAX P(n,m) “P(A ® ax)
and compute DIR as above.

c RO: Is the wavelength computed [rom the maximal point energy.D

l V4

RO = window size/ / Max + Poax
N: is the man value of function Pp).

| Vo is the variance of P(e).

MAX P(r): {is the maximal value of P(r).

tony: 18 such r that P(r.) = MAX P(r).

WIDTH r: 1s the distance between the center of P(r) and the

threshold wi lue of the envelope of P(r).

Lk
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M : is the mean value of P(r).
‘ 0

v.: {is the variance of P(r).

vi is the element size, = window size/width r of the envelope.

!: is the spacing between elements.

O
= window size/ frequency of the first peak.

In the case of bidirectional texture a pair of values is listed

for the following parameters: Q

MAX P(yp), Oma,’ Width @, DIR and RO.

The texture names are on the top of each picture displaying the

corresponding function P(p) and P(r). The actual samples of texture-

lines, wood, circle, and sand - are in Figures 14, 15, 20, and 21,

The texture water is a sample from the upper left corner of the picture

in Fig. 1.

Fig. 6 and Fig. 7a display functions P(p) and P(r) of textures,

parallel )ines and water, followed by Table of Parameters. For the

identification of parameter v we have used the directional part of the

water picture. The filtered alternative of functions P(r) and P(e)

fo: water is in Fig. 7b. O

oO

3)
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3 TABLE2

NAME LINES | WATER
| DESCRIPTION ~~ MONODIRECTIOMAL HONG DIRECTIONAT——

) MAX P(qp) 242,12 13.5

a Prax | 1g 0
| WIDTH ¢ | k 6

i DIR 1.57 1.57
© RO 2.9 16

M 39.8 5.08®

Vo 14 22 | 0.64
= MAX P(r) 105.2 | 6.96

roan 11 | Lh

O WIDTH r 16 | 16

M_ 37.9 k 86 |

vo 7.42 0.364

/ 3 8

4 1 1

( COMMENTS: Both textures, lines and water are described by the Program

as monodirectional (they have one signficant peak in P(p) form,

geometrically speaking, rl lines). That is why Orax’ and
DIR in both cases are the same, e.g. M/2. The contrast in the picture
of lines is much higher than in the picture ‘of water as indicated

by the values of P(v) and P(r). The regular pattern of lines shows
higher values of the directional Component vs the nondirectional |
component than the texture of water. (Compare for instance the values
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of MAX P(v) and Mo ). The water waves are broken and thus they form
parallel broken lines organized in random fashion. This shows up in
the function P(r) of water texture. That is rather flat in comparison
with P(r) of the texture of lines.

In Fig.8 we display a sample of grass from the scene in Fig. 1.

The upper left window in Fig.8 is the original sample, the upper right
window is its corresponding power Spectrum, the lower left window is

ky the power spectrum after a high pass filter and the lower right window
is the resynthesized original picture after the high pass filter.

This example is presented in order to demonstrate the necessity
for separating the slow changes from the real texture pattern. The

rationale for this is that most of the objects (texture elements) tend

to have the same reflectivity and the lighting varies smoothly, thus
shading in the Fourier domain generates a low frequency component,

Functions P(®) and P(r) of textures grass, wood and canvas

are displayed in Figs. Ga, 10a, and 1lla respectively, The analyzed samples
from grass are in Fig. 8, from wood in Fig. 1%, and on canvas in Fig. 14,

For the sake of consideringthe main directionality and thus to be able

| to determine / and v we display the filtered alternatives in Fig. Ob ;
: for grass, Fig. 10b for wood, and Fig. 1llb, and llc for canvas (for one |

directionality), The table of their corresponding parameters is below:
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.

: TAME5

KAN CRASS Woon CANVAS
DESCRIPTOR BIDIRECTIONAL MONOD IRECT10MAL BIDIRECTIONAL
EE Gh ide

. MAX P(9) <B.35, 7.5 th <108, 8
oN $F. 1 1% <i, »

WIDTH © Db, b> 5 Gh, >

i DIR <D.L63, 2.0% 2.59 <l.57, ®

RO <iv.31, 16> 8.87 <16, ©

Me h.76 32.6 AG.3
N | Ve 0.534 3.76 9.66

MAX P(r) 5.62 hk .8 120. %
y bs 3 a

9 WIDTH r 16 16 9

MN k,.52 M.h6 7.14

| v 0.324 2.5% 7.64

’ t 3,165 10 <16, &
an é 8

V for MAX DIR 1 | 1.8
?

COMMENTS: First of all, notice that grass is described as bidirectional,

contrary to what would be expected. The reason {s that even after high

. pass filtering, there is still signficant slow change left
(wavelength = 16) which forms the second peak. One needs to know more

about the scene ({ts {lluminat fon, continuity, context) in order to

’ remove this kind of slow change. It is impossible without further
knowledge about the area to handle this situation appropriately,

: SiA



———— EE a

(

hecause the same component (wavelength = 16) which in the case of grass

is undesirable, in the case of the canvas texture is an essential part q
of its description.

Function P(r) in case of grass and wood shows similarities which

suppests that both of these textures have some noisy, irregular backgrounds.

On the other hand the canvas texture displays signlicant peaks in low

froirncy and decreasing pover {na higher frequencies.

For more detailed analyses of P(r), one has to separate the

different directionalities. This is vhat ve have followed up in Figures
9b, 10b and 11b and lle.

The last tvo examples of texture of blobs and sand demonstrate

the differences between nondirectional textures. In Fig. 12 and 13 are

functions P(®) and P(r) of samples of texture recorded in Fig. 20

and Fig. 1 respectively. Table 6 contains their corresponding parameters.

The P(®) is a flat function in both textures as to be expected.

Pir) in the case of blobs has one signficant peak, vhereas {n the case

of sand P(r) f(s approximately flat.

2
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JABLE&
C

MAME BLOBS SAND
DESCRIPTOR BLOB - LIKE NOISY
EE ——. —————————————————————————————————————————————a

MX Plo) 82.26 7%.74
(

an 13 1%

WIDTH © 3 )

RO 11.51 5

H, 60.2 52.8

V . J2.72 2.h8

v., 3 6

WIDTH r 6 12

Mr 61.70 Sk 4

Vr 6.52 3.18

& 10 5

v 2.5 1.%

We must make some comments about the differences between

continuous and finite discrete Fourier transforas. The continuous

Fourier transform exists for every function with finite energy, while the

finite discrete Fourier transform exists for aay function. ‘Ovr interpretations

vill be based on the continuous transform and the actual computations on the

discrete transform (fast Fourier transform). The discrete transform is

really a Fourier series. A continuous Fourier transform {s rotationally
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a: invariant (except for windowing effects) while a discrete transform has
distinguished axes along the coordinate axis and the diagonals. Thus

a directional image has a continuous Fourier transform in a very narrow

PS band, while tha discrete transform has a narrow band transform only for
directions along the preferred axis. There is a corresponding difficulty

in defining fan filters which we have not succeeded in soiving. The

Py difficulty with narrow fan filters is demonstrated in the following
example, a line with directionality © = 22 1/2° {n digitized form,

with a window size of 8 x 8 points. Due to the sampling problem the

r line is represented by only four points instead of the desired 8 points.

The values of the corresponding power spectrum are in matrix 2. From

inspecting the values in matrix 2 it is clear that there is a spread

8 of energies in different directions besides the expected direction

a’ = 112 1/29. This effect is due to poor sampling. For more details

see Huang (1970).

® MATRIX1 f(x,y) MATRIX2 P(n,m)

0 ]0 Jo |O 10 {0 JO JO] ojlojus}jojojoc oO

O JO JO (O ojJojo ji 1}|2.611}1]1|1 |2.6]2.6

s ololojo [ofr]ofol2a]1]lololu]o|o]o |u

o loo l1 [o]o]ofo]1 2.6] 1]1l2.d2.6]1 |1 [2.6
Ol]l1}]0}]O0 JO]JOojJolo]JC}]o]Jojolo]lk |JO]lO |O

OlJojJojo |OoO]Jo]O joOo]-1 |2.6]2.6]1] 1]2.6]2.41|1

’ OjJ]Ool]O]JO JOJO JO ]0O0]-2 ojs]o]jojo | Jo |O
°

“4 -3 2 -1 0 1 2 3

é All the real values in F(n,m) have tov be divided by coefficient 6h.
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Onc should make a note of a fairly important though elementary |
mathematical fact, namely that the Fourier transform does not preserve {
functional restriction. More specifically, if g(x,y)|w denotes the

restriction of the image function g(x,y) to a window W (so that

g(x,y) is truncated outside W), then (
Flg(x,y)|W) = Flg(x,y)]|w

is true for every W only when g(x,y) is periodic with period equal

to the size of W. Thus a Fourier image of a truncated function, (
truncated outside a window, will in general depend also on the part of

the function g(x,y) whose domain is outside W. What this means

practically is that certain texture elements could be split in half by

windowing and as a consequence, an improper interpretation would be

derived. This problem can be partly compensated for by overlapping windowing.

Human perception allows us to discount smooth changes in shading.

This fact allows us to separate shading from edges. The Fourier transform,

or the contrary, reflects not only edges, but also slow changes which

are ignored in human visual perception. Perhaps the simplest way of

| demonstrating this is by recalling the basic dictionary of the Fourier

transform. We find that a rectangular impulse is transformed into a

sinc function, a triangular impulse into a sinc function, and a cosine

signal is transformed ir.:o two impulses. We are accustomed to regarding

images in terms of homogeneous regions with sharp boundaries, and to

describe elements by brightness and color contrast and outline shape.

In the Fourier domain, these become jumbled in a way that is only

approximately resolved by our heuristics; thus they are not always
usefully described.

29
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Tn addition, the texture elements (their shape) and their

organization are also jumbled together in the Fourier domain. So, for

instance, dots and small segments of lines organized in parallel lined

a fashion, will be described equally as monodirectional texture. Thus

they are not described in full details. As we said be fore, for more

detail, one has to apply the spatial, local operators.

o For areas of a scene for which homogeneous regions are too small

| for use of usual edge-finding and region-growing techniques, the Fourier
transform provides useful and compact descriptors. Many of the examples

” of textured reginus showed linear texture elements, crudely aligned,

1 and with roughly uniform size and spacing. These shape descriptors

have natural counterparts in the Fourier domain. Directionality in the

© spatial domain corresponds to a directional transform, and uniform spacing

corresponds roughly to dominant frequencies in the Fourier domain. However,

a much more common uniformity in the spatial domain, cons’ nt size

py elements randomly distributed, does not have a clear counterpart. There

has been much oversimplification of the use of the frequency spectrum.

In reality, it appears as though it has very restricted utility, however

: that utility corresponds to a few descriptors which have primary
| importance in human perception. Since most descriptors are spatial

demain descriptors not directly related to the transform, frequency

go domain techniques are quite limited. Nevertheless, the proper combination

of the Fourier descriptor together with the spatial domain technique is

the suggested approach for a texture identifier. The Fourier technique

° will compactly describe large areas with repetitive features. The

description will contain some characteristics of the shape of the elements
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and their organization as directional opposed to nondirectional. It

will fail to detect some detailed description of the shapes of elements;

as well the Fourier technique cannot be very local. So the spatial

technique can complement the Fourier technique, being more local and

therefore more accurate in some sense. | )

All this concerns black and white pictures. In colored Pictures,

each point is represented by at least a three-dimensional real vector;

the coordinates could represent either the brightness through red, 3

green and blue filters (possible other filters), or their normalized

values (R/R+ G+ B, G/R+ G+ B, B/R+ G+ B), or perhaps the

chomatic triple (hue, brightness, saturation).

It appears that color is a local property, meaning that the color

is determined by local contrast (with global constancy judgment). The

Fourier transofrm is an integral operator, that mixes up different

local properties consequently. Direct application of the Fourier texture

operator on an area is not useful for color in the general case, however,

under certain constraints, one can suggest some applications of the

Fourier operator on colored textures.

The simplest case is when the color is constant and the texture

is encoded in the brightness function. Examples are grass, water, brick

wall, etc. In this case the Fourier operator is used in the same way as

in the black and white picture. |

The second case is when the texture is formed by only two |

alternating colors. Here, let us assume the depredentation of the color

of a point as a vector whose coordinates will contain the brightness

of the point taken through red, green and blue filters respectively.

el |



O Since we have only two colors, clearly, the brightness functions will

be correlated or anti-correlated with each other. Fourier analysis of

functions could give a reasonably good description of the texture in

{ terms of the contrast of the color components. This is analogous to

spatial domain analysis.

| This discussion points out a crucial weakness of Fourier transform

( techniques in dealing with color. |

CJ
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5.3 Concrete Texture Descriptors: Local Descriptors

| According to our theme, a texture is characterized by a structure

of texture elements and their spatial distribution. Each descriptor is
H associated with a procedure and a set of geometric measures.

The descriptors may be derived from parameters that come from the

spatial and/or Fourier domain. In fact, often we will have to deal

} with two different measurements of the same parameters (e.g., length,

width, direction), one performed in the spatial domain and the other in

the Fourier domain. Here we seek a common interpretation of these

measurements.

The input data from which we derive the local Fourier parameters

| is the power spectrum of the picture over every window. Since we are
able to describe only what we measure, the technique that we implement

will determine the system of descriptors we can use. In particular, the

technique of Fourier analysis leads to the following system of descriptors:

menodirectional, bidirectional, blob-like, homogeneous, and random. Using

the input data of a local area one may expect to have more than just

| one descriptor.
Next we discuss the particular types of local descriptors we shall

be using in our work.

(a) Monodirectional Texture

In the spatial domain, a monodirectional texture is approximately

invariant along some direction. An example of monodirectional texture

Is a system of parallel stripes. In the Fourier domain the spectrum

is approximately zero along the direction of near invariance, and is

concentrated along the direction normal to that. We take this description
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) to be adequate for spatial domain elements with some curvature or

b superimposed on a non-directional background. It makes sense to describe
as directional a spectrum in which the dominant energy is along one

| direction, and where the directional peak is narrow.

© Next we proceed to give a qualitative description of an algorithm
that provides monodirectional descriptors. As alluded to above, this

" algorithm is based on the assumption that the texture will show concentration
of energy in a certain direction of the Fourier domain. Thus we want to

| find a peak in the function of energy vs angle. This function is a

& sum of energies over a fan with a certain angle y and direction P.
Remember that the data structure is a matrix, and thus only four

directionalities (horizontal, vertical, and the diagonals) coincide with

" the matrix unit invariant direction. The fan technique permits one to
include also the points near the investigated direction. The peaks of

the function are defined as its local maxima, greater than the average

s value of the directional energy function. The width of a peak is defined

| as the distance between two consecutive zero crossings of the directional

| energy function minus the average value. The algorithm used two additional
z parameters, namely, vy and Eis , where the latter must be greater

| E = Bair -
: or equal to 2, while the former should not be greater than ——. The

angle y is the measure of width of the peak and its nvRtH value

' corresponds to the limit of a useful directional description. Eis is
the energy in the angular stripe (fan) and E is the total energy. Its

threshold corresponds to the condition that the ratio length/wuidth must
»

| be at least two.
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The algorithm determining the descriptor derived in the Fourier

domain is given below: :

Algorithm Monodirectjonal:
WD/2

(1) Form a function P(@) - 5 P(r,p), where WD is the window :
size. i

(2) Find the number n of peaks of the function P (0).

(3) 1f n= 1, then check the magnitude of the peak

Ma (P.(9)) = Egy»
and go to step (4) else mark the window by message: "There is more

than one direction, do further analysis", and go to the end.

(4) If Ei (E-E,,..) > 2, then check the width of the peak which
corresponds to the angular strip y and continue in step (5) else mark

the window by the message: 'There could be blpb-like or a noisy texture

here, do further analysis', and go to the ond}
(5) If y <Mm/10, then mark the window: 'Monodirectional texture"

and go to the end else mark the window: "It is a monodirectional

texture with nondirectional components’ and go to the end.

(6) End.

The power spectrum along the direction of maximum power is the 3

power spectrum normal to the invariant direction. In the spatial

domain humans characterize these profiles by step functions.

In the Fourier domain we can find the approximate wave length

of parallel strips (distance between two neighboring stripes), and

the width of stripes from our previous analysis. One way of identifying

width in the spatial domain would be to use one-dimensional interval
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: analysis along a <irection. This technique could be used also for mo:>

precise localization of monodirectiona! textured cdpes than one car

achieve in the Fourier domain. The {nterval analysis method has not

s yet been implemented.

The above algorithm has been implemented and tested on examples.

A sample is shown in Fig. 14 and Fig. 15.

®
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»

0

»

d
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in Fig. 14 we have a texture of parallel lines and in Fig. 15 we

have a texture of parallel strips (wood grain). In both figures the ‘
upper left pictures show the original textures, divided into four

windows (each window is of size 32 by 3” points). The pictures in the

upper ight corner are resynthesized textures, produced according to |

the dercription. The pictures in the lower left corner show the power

spectrum of the original textures. Note the two different directional ities

in the lower quadrants of the picture. Here the diagonal directionality |

corresponds to wood grain pattern and the vertical directionality

represents the shading effect (slow changes in brightness).

(b) Bidirectional Texture

| The descriptor 'bidirectional' is associated with two sets of

monodirectional stripes, described in the monodirectional texture. This

description belongs to the spatial domain and does not have a unique

Fourier counterpart. In terms of the power function vs. angle P (9)

it corresponds to two distinguished peaks of P (0), while the converse
is not true.

If function P (0) for ¢ from <O,T> has two distinguished peaks,

then it could represent at least one of the following two cases in the

picture (its window):

(0) two different directional textured subregions are algacent

(are next to each other) in one window, or

(B) two different directional regions are superimposed (one is

on the top of the other).

The problems discussed above are shown in Fig. 10 and Fig. 17 and 18

where the pictures in Fig. 16 show the case (a) and the picture in

SY
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o Fig. 17 and 18 exhibits the case (p).
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ho. Column | Description of Pictures in Fig. 1)
Four windows, where each contains horizontal

and/or vertical stripes. :

|! Picture <l1,1> after directional filtering
process, performed in every window separately.

vs | The "complement" of <1,2>.

BEE The power spectrum of <l,1>.
oy 2 The phase spectrum of <l,1>. Here the phase is

transformed from the range <-11,7> to <0,2T™>.

2 3 The absolute values of the phase spectrum of the (

picture <l1,1>,

3 1 The power spectrum of picture <1,1> parametrized

! by the absolute value of the phase in range <0,1/3>.

3 The same as in <3,1> but this time with range

1/3, en/3>. (

3 3 The same as in picture <3,2> but with range

<2m/3,m>.
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8 The description of pictures in Fig. 17. is the same as that of

pictures in Fig. 18, except in Row 1 and Column 1, where we have four

windows, cach containing a superposition ot horizontal and vertical ines.

8 Let us concentrate for a moment on the windows ol the first and

third quadrant of picture <1,1> in Fig. 17. Each of the windows

is a composition of horizontal line textures and vertical line textures.

8 It is impossible to distinguish the cases of separate (on) from overlap

| (B) in the power spectrum. Using the phase spectrum one waild hope to

separate the region containing the horizontal lines from the region

® containing the vertical lines, or one would at least hope to be able

| to identify their positional relationships. Unfortunately, it is not

known at present how to carry out the separation. To our knowledge, no

» one has yet used the phase spectrum in a meaningful way.
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; s The figures in Fig. 19 show the vector display of the complex
l function F(n,m) in a direction ); in our casc it is in horizontal

and vertical direction for each <n,m>. The direction of the vector is

: 0 | equal to the phase, and the length of the vector corresponds to the
4 value of the power. As one can see from the pictures, there is no

| evident distinctive feature which would describe the relationship Left-

® Right or Right-Left.

1 We have shown above that in spite of the nonuniqueness of the

representation of bidirectional textures in the power spectrum, using

* > decomposition techniques, one can construct a suitable algorithm for

identification purposes.

i We shall soon give such an algorithm. However, before we do that,

| ) we want to point out that the domain of validity of the parameters
i associated with this descriptor is given by the domain of validity of

the parameters used for monodirectional textures, except that the lower

1 » and upper boundary of d is now changed from <O,> to <y,T -y>.
3 Moreover, the peaks are defined in the same way as was done in the
X monodirect ional algorithm,

: » Bidirectional Algorithm:

; (1) Find the number of peaks (n) of function P (9). If
; n =2, then find the corresponding directions 0, and 0, for each

Fr peak, else write the measage: 'This is not a bidirectional texture,

do further analysis, and go to the end.

(2) If 9 m/10 > Abs (, - o,) > T/10, then go to step (3),
} else write the message: 'This is a deformed monodirectional texture"

{ and go to the end.
76
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(3) Partition region R into four equally large subwindows

Ry» R,, R, >» and R, « |
(4) Check cach subwindow R, for i=1,...,4, whether it is a

bidirectional textured region or not, using the algorithm "Bidirectional.

If the answer is yes, then set MR, On, otherwise set MR. Off. |
(5) If MR, are On for all i=l,...,4 then describe the given

window (region R) as a "bidirectional texture" and go to the end, else

go to step (6).

(6) If MR, are Off for all i=1,...,4 and all the subwindows

are monodirectional, then describe the corresponding region as "Two

monodirectional textures with different directions are adjacent" and

go to the end, else issue the message: ''Further texture localization

is necessary" and go to the end.

END.

(¢) Blob-like Texture

This descriptor is associated with blobs and nonlinear

distribution. 1t should be noted that these two components go together

to the effect that it is not sufficient to have blobs as texture

| elements for inferring a blob-like description. For instance, blobs on
| a grid would show a directional texture, and the 'bloblikeness' will be

very weak.

In the Fourier domain, blobs are represented by a concentric

energy distribution. An annulus with the greatest energy value is the

peak annulus.In the implementation of the description (sce the algorithm

below) we approximate areas of the transform by circles. The radius of

the approximating circle is inversely proportional to the radius of the

[i
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2 approximating circle in the spatial domain.
It would seem logical to pass from mono- and bidirectional

| textures to tri-, tetra-, ..., n-directional textures, before turning

ay to blobs. However, it is very hard to interpret these higher order |
directionalities in the spatial domain.

The blob-like algorithm describes blobs and their nonlinear

| & distribution. It is based on the assumption that patterns which do not
have directionality, noise, nor homogeneity, are some sort of blob-like

textures. In the Fourier domain this assumption corresponds to two

2 conditions. 1lirst, P (9) is constant and, second, id is not
constant ,

A Algorithm Blob-like:
WD/2

. ® 1. Form functions P (ep) = S P(r,p) and
1 r=1

7 P(r) = >  P(r,p)

3 and then compute their respective mean values
A 2 lf

2 M_ = 0 P_(9) and,
= 0

Ag 2  WD/2
1 Moo=— > P(r) ,
4 \ Wp T=1 ©

| > where WD is the window size.
Next compute their variations

! . 2

v. “WD > 0 (P (¢) = M) and

} » 5 wD/2 5
& v li (P(r) -M)
3 $ WD r = 1 ) 5

i
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2. If M_ >CN and i >CN, then go to step 3 else print
the message: 'The structure is on the level of the camera noise" |

and go to the END.

3. If v_ > CN, then go to step 7 else print the message:

"All energies are equally distributed in every direction", and go to

step 4.

L, If 7 > CN, then go to step 5 else print the message: ''It
is a noisy texture' and go to the END.

5. Find Max Jn wn Den

If r < 2, then print the message: '"There is only one texture

element"; go to step (6).

6. Form a new discrete function I(i) from P(t) in the
following way:

Assume that Po (T) is a combination of sinc(r,p) type functions.

Find all the local maxima and all the minima of the function MEL
For every local maximum Iax i’ there are two surrounding minima Tyso

ry such that

| rs < Loox i < INE where
I(i) = Li P(r).

12

If I(i) is a convex function, then print the message: 'Texture elements

are blob-like" and go to step 7, else print the message: ''There is an

unidentifiable texture" and go to END. |

7. Assume that P(e) is a combination of sinc functions. Find all

the local maxima of the function P_ (ep) and if their number is greater
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than2 , issuc the megs: LC ( aw me directional

features”. else print th 3: MM like texture.

. END.
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(d) Noisy (Random) Texture

The spatial case:

A random distribution of dots (pepper and salt pattern) forms

a model of noisy texture. This model describes the random spatial

organization of dot - texture elements versus periodic or regular

distribution of texture elements.

Fourier Case:

The texture in this model corresponds to a homogeneous

distribution of energies in the power spectrum.

Descriptor "noisy" is associated with certain parameters

(obeying some threshold constraints), explained below:

ELL will denote the ratio of the size of the one-dot-texture

element and the size of a real texture element. The inequality

EL < WD/4 + CN ‘means that a texture element with area of two dots

| and WD (window size) of 8 x 8 points will still be a dot-texture element.
ED is the parameter of random distribution. ED is the ratio

of

i EM and M_, where 2 y
Bi = MAX Abs (P (0) - M) and M_ = — > P (0).

© =0

The value of ED is set to be ED < 0.1 + ON.

CN is the noise of the TV camera.

Algorithm Random:

1. Form functions P (0), Bor) M_, Ms v_, and 7s as they
were described in the algorithm blob-like.

2. If M_<CNor ¥ < CN, then write the message: 'The texture

81
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L structure is on the TV camera noise level, check if it is a homogeneous

texture' and go to END, else go to step 3.

3. If wv > ED, then write the message: ''There is no random

{ distribution" and go to END, else go to step 4.

hb, If % > EL, then write the message: ''There might be a blob-
like texture' and go to END, else write the message: 'The texture is a

§ randomly distributed dot pattern’.

END.

The algorithm has been tested by an example shown in Fig. 21 . The

gt picture in the left upper corner is a texture of sand; the picture in

the right upper corner is the resynthesized image of the original, according

to the description. Finally, the left lower corner shows the power

I © spectrum of the original.

| :
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(e) Homogeneous Texture.

| A homogeneous region of uniform brightness (in black and white !
| picture), color (in colored picture) forms a model of a homogeneous

texture, |

| The Fourier counterpart is represented by a Dirac function yi

with its center in the zero point of the coordinate system,

The only threshold parameter in this model is the level of

the TV camera noise (CN).

| Algorithm Homogeneous

| 1. Form a function
m wD/2

noise (r,p) = 2 > > P(r,p) - P(0,0)
¢ = 0 r= J

| P(0,0) is also called the DC value.

If noise (r,n)<CN then write the message: '‘The texture is homogeneous"

| else write the message: ''The texture is not homogeneous".

END.

An additional parameter - the average value of the intensity

of light over a particular window is associated with every description

of a homogeneous texture.

{
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The following table summarizes the texture descriptors we haveLY

implemented:

Table 5

© DESCRIPTORS PARAMETERS

—

Monodirectional DIR - direction of lines

| O Ww - distance between two parallel lines

Y =~ a measure of straightness of a line

Epir/ (B-Eppgp) = t

& t = a measure of "thickness" of a line|

| em rere

Bidirectional DIR,, DIR, - |
directions of lines 1, l,, respectively.4

| WW, wi,

distances between two parallel lines in two

different directions DIR and DIR _, |j 3 1 2

measures of straightness of lines 1,5 1,.
ty» t, - measure of "thickness" of lines3s 1° 2

1, 1, respectively.

d = DIR, = DIR,

Comment: lines 1, and 1, are assumed to be8
: nonparallel.i

Bloblike R - the distance between two texture elements in
> | direction DIR.

] - ee
|

8l4
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Table 5 (Continued)
w

DESCRIPTORS PARAMETERS

Feytara

Random (Noisy) EL - a measure of 'dotness'" of the pattern. |
()

ED - a measure of random distribution

M+2 - the mean value of "constantly"
distributed energies. '.

Homogeneous noise (r,p) - a measure of the degree of variation

of the "homogeneous' area.
. {

DC - the average value of the intensity of light

over window W. | | |

C

(
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4. COLORED AND TEXTURED REGIONS

0 In the previous chapter, we discussed procedures for texture descriptors.
This chiaptet describes the determination of textured and colored regions
and introduces a mathematical description, topological sheafs, to formalize

the region-forming process. The texture descriptors are used to form

¢ regions with similar descriptors. The region~growing is low-level in
that it does not use the context of a world model. It is intended as a

: tool for higher level routines. The proposed regions function as initial

guesses about important areas of the image. Thus, the routines favor

large regions at the expense of smaller regions, a sort of "law of the

| fishes", the big ones eat the smaller. Since there are few useful

| texture descriptors and organization procedures, this attention to low
level modules was a necessary focus for our research.

a The informal distinction between low-level and high-level processes

refers to the context which the process takes into account. Roughly, we

mean low-level when the context is local and based on the image, and by |

high-level we mean an object space interpretation which depends on several

levels of abstraction and relations (global). We would like a larger

armament of texture descriptors and low-level organization mechanisms.

| However, it is important to have a balance be tween the low-level and
higher-level systems, and to design for their communication.

We emphasize that we use a technique where we start from large windows

and take smaller windows at boundaries. This approach has a limitation

of missing substructure. The microscopic approach of starting from small

windows and trying to piece together global structure has a complementary

weakness of missing global order. Overall, we think this points up the

need for a range of sizes for local organization. For texture, we prefer
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our approach to the microscopic one. |)

As the scanner traverses across the picture in a television-like raster

scan, the local texture descriptors (these descriptors might be spatial,

or histogram, etc., in addition to those we use) over each window

are sent to the program which detects the appearance of similarities or

dissimilarities of the structures, over the given pair of windows. The |

knowledge of the existence of similarities is retained together with |
locations. All the windows with similar structures are joined together

by a two-way list which is constructed during the scanning process. The

program also detects the break of similarities between two structures and

gives a command to the scanner to scan with windows of smaller size.

when two windows are joined or split apart, different texture names

are assigned to them. Each structure associated with a window is tested

to determine its similari.y with other structures or its proper association

with the existing similarity classes.

| Region boundaries do not usually coincide with the grid windows, and

hence there occurs both merging of two adjacent areas, amd the splitting

of an area into at least two portions.

In this work a set of real life and artificial pictures was scanned ”&

and processed by our program to demonstrate the capability of the implemented

Fourier method. The results of testing indicate that our method is

capable of decomposing pictures into regions, where each region corresponds »“

to a different texture or color.

In our implementation of region growers, the emphasis was on testing

some of the ideas and not on the efficiency of programming. However, for .

illustration we present in Table 6 the average time and memory load for our E
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O programs. The programs have been implemented on a PDP-17, at the

Artificial Intelligence Project, Stanford University,

B

Table 6

NAME AND FUNCTION SIZE OF THE CPU TIME (min) CORE (k)
OF THE PROGRAM » | PICTURE

{

FANAL.SAI 256 x 128 h.15 39
AST FOURIER TRANSFORM

AND SEGMENTATION

TEXTUR.SAI 256 x 128 2.07 3h
f EXTURE ANALYSES

ONWINDOWS (32 x 32)
POINTS

] IKROA .SAT 256 x 128 12.8 27 |LOCALIZATION TEXTURE

( ANALYSIS OF WINDOWS
(8 x 8) |

REE .SAI 256 x 128 8.0 36
EXTURE REGION GROWER

| COLOR.SAI
COLOR REGION GROWER 192 x 128 2.0 22

(

3
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| 4.1 An Algorithm for Finding Regions
The process of localization of structures was described in detail in ©

Section %.%. Here we shall focus our attention on finding the connections

| between local structures in terms of continuity, discontinuity, and

proximity. The actual job to this effect is carried out by a region grower ©

that we shall describe momentarily. The region grower can be used both for

continuous textured regions and continuous colored regions. The algorithms

| for our region grower use the principle of local constancy whose content ©is summarized in the phrase: ''Unite connected locally similar areas into

one global one." Our algorithm uses the notion of a cell which is nothing

but an a-hitrary window of the smallest possible size, carrying meaningful

information.

Algorithm "Region Finder"

1. Set regional index i to 1 and produce a mark R,-

2. Take the first untested cell and call it the first pilot cell

| (which thereby is also a pilot cell).
| 5. Set XSIDE to be RIGHT SIDE, YSIDE to be LEFT SIDE, and XADJ to be

RIGHT ADJACENT.

4. If the pilot cell has been tested for its XADJ cell, then go to

step 8, otherwise mark the pilot cell by a mark signifying the fact that it

has been tested on its XSIDE, and continue in step 5.

5. Find the next XADJ cell. Ask whether this new cell does not exceed

| the size of the picture and has not been tested on its YSIDE. If the |

answer is NO, continue in step 6, else go to step 8.

6. If the pilot cell and the adjacent cell are similar, then continue i

in step 7, else mark the pilot cell on its XSIDE, indicating that it has k

been tested, and go to step 8.
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(. Join the two cells (pilot cell and the new cell), mark the ney
- cell by a mark R, and indicate the fact that it has been joined on its

YSIDE. Store the new cell in an array of new cells. Make the cell a pilot
| cell and go to step 8.

8 8. If XSIDE is the RIGHT SIDE, then set XSIDE to be LEFT SIDE, YSIDE
to be RIGHT SIDE, and XADJ to be LEFT AD.JACENT and BO tO step 9. If XSIDE
is the LEFT SIDE, then XSIDE is set to be the UPPER SIDE, YSIDE is set to

. be LOWER SIDE, and XADJ is set to be UPPER ADJACENT, and 80 to step 9. If
XSIDE is the UPPER SIDE, then set XSIDE to be LOWER SIDE, YSIDE to be UPPER

] SIDE, and XADJ to LOWER ADJACENT, and go to step 10.

5 9. Set the pilot cell to be the first pilot cell and gO to step 4,
10. Take the array of new cells. Take the index j (initially j =0)

0 and increase it by 1. If } exceeds the number of all new cells, then go
to step 11, else take the element n from the array of new cells and make it
the first pilot cell and 80 to step 3,

a ll. Zero the array of new cells. If there is any cell in the picture
’ that has not been yet tested, then increase the index of regions i by 1,

make a new mark R, and go to step 2, else go to the end.
J
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4.2 Texture Regions

This algorithm has been tested on textured regions as well as on colored

regions. The scanning process is, for instance, shown in Fig. 22 with

white squares, each representing windows- ef Jetx 52points. Fig. 22

displays the boundaries of different textured regions of the picture

shown in Fig. 23, after the first pass. Onc can sce the different sizes

of windows.

Over every window there are several descriptors and parameters.

Since we used several window sizes (32, 16, 8) and some of the parameters

aie size dependent, we reduced all descriptors and parameters to the

smallest window size (8). Then the criteria of similarity had to be set.

i

Fig. |

11
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| $ The criteria of similarity are set by the higher level program. In
| our work we used two approaches, not exclusive but rather complementary.

| One approach used only black and white pictures and did not assume

A any previous knowledge about the scene. The similarity criteria were

determined by the camera noise and expected error of the method. The

whole region growing was based only on the similarities of certain

9 geometric properties described by the Fourier texture operator. The

| results of this approach are displayed in Fig. ol, and 26, where one can

see that while this approach is sufficient for separating regions on

| » simple, more or less artificial scenes (the rastered cube on Fig. 23,
the cube on a grid surface in Fig. 25, it is not adequate for finding

boundaries of regions of real outdoor scenes. In the latter case one

» needs to know more about the scene and thus conduct a directed texture

region growing or texture boundary detection.

The directed texture region growing aud/or boundary detection is

Sy the other approach that we used. It uses information gained through a

color region grower. This information directs the application of the

| | textured operator for two purposes:
One is to look for a common texture where the colors are the same or

proximal. The other is to look for texture differences where there are

> colored boundaries.
This approach identifies more efficiently the real regions and their

boundaries. The example in Figure 27 shows the different textured regions

) of the original picture displayed in Fig. 1. Most of the grass region
came out as directional texture. Only two areas (one on the left side and

x



the other on the right side) within the grass region were identified as

noisy texture, though with the same direction as the directional textures.

It requires further verification of the continuity in those two textures

in order to remove the boundaries. | |

The main difference between the two approaches is that in the latter

we use the texture operator in a directed way. This means that as well as

applying the texture operator only in certain areas (not all over the picture),

we also have the choice of as%ing for continuity and proximity in several

descriptors and parameters independently.
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4.3 Color Regions
Oo

Similarly, as for textured regions, the region growing algorithm has

been used for colored regions. The colored picture consigts of three

files, each representing the brightness through red, green and blue filters,

- | We use the normalized values of color for each point (e.g. R/R + G + B,
B/R + G + B) where R,B,G are the intensities through the red, blue and

| green filters respectively. As in the texture region grower, here we use
i again windows over which the average values of R/R+ G+ Band B/K+ C + B

are computed. The size of the windows depends on the structure of the

} A Picture we have chosen (8 x 8). The windows are overlapped, so that

| continuity is checked strictly. The threshold value that determines the
similarity criterion depends on the resolution of the picture as well as

a on the window size. In our case, it is set to 2, provided that we deal

’ with 6 bit pictures. The example in Fig. 4k shows the result of the above
described color region grower, applied ot the picture in Fig. 1. The original

h Picture is only 4 bits resolution, so the threshold has to be different

(0.75). Otherwise every thing is the same.

| ¢ '
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hi A_Sheaf-Theoretic Point of View of Finding Regions

The geometric analysis of pictures, in particular, partition of a "

Picture into regions, caa be neatly presented in the language of sheaves

(for details see the APPEND:X). From a sheaf-theoretic point of view,
the region identification Process is based on an assignment of

Structures to windows (the local structure) and on passing from LOCAL

STRUCTURES (over windows, to GLOBAL ONES (regions). Thus, each region is

specified by one sheaf. Over every window, we can have several different |

descriptors, thereby different structures. Each of these structures will

partition the picture in a different way. These different partitionings

of the picture, described by different sheaves, correspond to the different

layers of description of the picture. Naturally, the sheaves could be

interconnected through some connecting mappings. The difficulty in making

use of the structure of sheaves in scene analysis is that we usually do not

know the connecting mappings between two differer.t sheaves.

The sheaves constitute a vehicle for checking the continuity and

proximity of structures with respect to some well defined connected mapping.

In a concrete application of a texture region grower, this mathematical

tool has the following limitations: )
(1) 1f the structure is a texture, then it will find the continuity

in the texture, but it will find discontinuity in the texture element.

Thus the smallest window size must be restricted to the size of the texture ol
elements. |

(11) The sheaf-theory assumes that the structures over every two

windows, which are in inclusion relationship, are related by a connected

mapping. However, in reality the different positions of windows may cause
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false continuities or discontinuities. One has to do several

N different overlapped windowing in order to overcome this error.
The contribution of the sheaf point of view to region growing is

that it defines Precisely the conditions for continuity and discontinuity

» of a structure with respect to some connected mapping. The sheaf theory
shows that if the structures from two (overlapped) windows and their

O over lapped part are connected by the mapping, then the union of these two

windows is continuous with respect to the structure and the mapping. It

1s interesting that the sheaf conditions are similar to natural continuity
g conditions for use of the Fourier power spectrum, |

: In most of our applications (texture or color region grower), the|

connected mapping is the local similarity relationship (it must be an

e equivalence relation). Naturally, the theory allows much more complicated
| mappings as well as structures.

After this discussion let ug present the sheaf-theory more formally.

c The topology we shall use is discrete and is induced by certain norms,

taken from the structure to integers. Once the topology is fixed, we

introduce a convenient system of neighborhoods, called windows. We think

| of windows as a system partially ordered by inclusion. Procedures which

evaluate the data over the windows assign to every window a structure of

descriptors. When two wirdows, say v and w, are in inclusion relation-

ship v Cw, the corresponding networks of descriptors N, and N, are
related by a connecting mapping

BL i: N — N
\ w \

which essentially restricts the network over the bigger window to a network
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~ on the smaller window. Since the process of restriction is transitive,

one obtains by this formalization a PRESHEAF associated with the image

| function

\

N = Nib

| Sheaves are presheaves satisfying additional axioms. A definition of

a sheaf in its full generality requires several additional technicalities.

A more direct definition of a sheaf with a fairly clear picture-theoretic

B interpretation is given below.

| Thus, loosely speaking, a sheaf is a system of structures over a
|

yl

lattice of windows, where each structure represents one particular texture. |

Consider a presheaf S = (8, B v) of structures over a cellular space
X, i.e., on the lattice of subsets <Sub(X),€ >. Then S is a sheaf over

X precisely when for any family {v, |i€1] of subsets of X with V = Vis
i

the following two conditions are satisfied:

(1) Uniqueness axiom: vi[gY (s’/) = By (s’’)] = s’ = 8s’;4
i i

(2) Existence axiom: Vi iY i (s,) = 8 j~ (s.)] =>
= Si J 0 | A | V."N, "J

1] 1]
Vv |

sVk [By (s) = 5.1,
k

where s,8',8"7€5,,8,€5, ,s.€5, , 5, ES, , and i,j,kel.
i j k

The condition (1) says that if the structure elements s are locally

identical, then they are also globally identical. That is elements are

uniquely determined by local data.

The condition (2) says that if we have local data which are compatible,

they actually "patch together' to form global data.

The geometric meaning of axioms (1) and (2) is displayed below in Fig.

28 and Fig. 29.
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2+ INTERPRETATION OF OUTDOOR SCENES.

! The main issue in this chapter is how to recognize and interpret
| - | real outdoor scenes of grass, water, sky , etc.

5.1. Pattern Recognition Approach.

" In an early stage of our research, we tried to recognize texture

- using a pattern recognition met hod (Bajcsy, 1970). We computed a function
of energy (E) along the frequencies (f) and derived a feature vector from this

function. The features were the number of Peaks, their energies, their
: width and their corresponding frequencies. In addition, we characterized

the function as flat or with peaks. These features were used for clas-

. sification of the texture into classes: grass, water, regular pattern

° (like blobs, brick wall) and unidentified. As an exampie, the grass and
water had more flat function than the regular patterns. Samples of the

0 function of the energy and the frequency of textures of grass, water,
brick wall and blobs is displayed in Figs. 30 - 33.

{.

)

{
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1 Each picture consists of two graphs. One is the function (energy,

frequency) computed in the window without any preprocessing (indexed by

(a)), and the other is the same function as above computed from the data,
which was preprocessed (indexed by (b)). Preprocessing, in the cage

| of grass and water, was a high pass filtering. The purpose of the
Preprocessing was to eliminate the effects of shadows on grass or water.

For the regular patterns, the Preprocessing consisted of a low pass

filtering. The purpose of this filtering was to enhance the main fre-

quency components of a regular patterr and suppress the noise.

By this method we could distinguish well the regular patterns (or |
man made patterns) from the natural textures encountered in outdoor |

scenes. It was more difficult to distinguish the water from the grass

unless the main frequency component was sufficiently different. The

training feature vector was extremely sensitive to differences in how

the picture was taken, in particular, the distance between the observar

| and the scene, and the orientation of the observer (whether he is on the
ground or in an airplane) with respect to the scene. This method did

not consider any corrections for texture gradient. It simply classified

Some areas of a scene into some given classes of textures. c| We could have improved the feature vector using further features
similar to Lendaris' and thus enlarged and refined the classification

Proc »dure of texture. We did not do it for the following reasons: ¢
(1) Feature vectors offer very specific and rigid description of

a texture, which is an obstacle in finding continuity of

textured regions unless the texture is a very regular pattern )
without any features such as texture gradient. Naturally, one
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can construct feature vectors less specific, but then the

g sensitivity for the differences between two different textures
vill be lessened, which in general {8 not desirsble. To sum

UP, in the texture region finder one needs to have a flexi-

bility in choosing features fo; grouping or discriminatory
purposes. One also wants to have symbolic descriptions with

§Ome parameters as opposed to only numeric description (as in

| the feature vector). The symbolic description (Lf properly
chosen) is invarfant with respect to several metric (scalar)

| features and thus {t represents a certain abstraction which
is useful for recognition purposes.

| (11) The classification process of textures into some classes besides
feature vectors uses some distance measurements between the

| training feature vector and the sample feature vector. This
process does not consider any topological properties of windows,

namely connectivity, continuity and proximity. Furthermore,
metric description of a real texture {s not sufficient for

identification purposes. For instance, grass is identified

48 grass not only because of its color or the geometry of {te

texture but also through {te spatial relationship with other

objects on the scene (e.g. grass is alvays on the ground,
below a sky, etc.).

A different approach had to be sought for describing textures; an

approach that would give symbolic descriptions of a texture together with
some parameters and would find continuous regions with respect to their

descriptions. In Chapter 3 we have described the texture oupersicr that

12=A



produces such a description. This Operator can function on different

vindow sizes. The large windows capture the global textures, whereas

the small windows are used for recognition of fine texture that in the

large vindow 1s not noticed. The continuity and proximity of some struc-

tures are the basic properties used in ao veglon grower. So far, we talked

mostly about the texture structure. However, the structure that forms

8 region could depend on many propertics, such as color, shape, size,
and othera.

2¢2. Texture Cradient.

Many elements of the world are made up of texture elements of a»

constant size, (grass, brick walls, vheat, water vaves). The apparent

size of texture clements depends upon distance. Although ther 1s a

chance for mistake, it {s natural to interpret consistent variation in

apparent alze of texture elements as a measure of relative distance.

If there 1s little variation, the interpretation Ls that the surface {s

everywhere approximately at the same distance from the sbucrver. Such

surfaces are n.arly perpendicular to the line of sight and are called

frontal surfaces. 1f there is a systematic variation of apparent size

of texture elements, smaller elements are assumed further away. Such

8 texture gradient suggests that Lhe surface is longitudinal, that fs,

along the line of sight. The presence or absence of a systematic tex

ture gradient gives a rough Indication of the argle, curvature, and

relative distance of objecta. The role of texture gradient in human

Perception of depth has been described by Gibson (1950).
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In Figure * , rurfece AB 19 o longitudinal surfece ond surfece BC

lo) ie a frontel surfece. In the image there exists o gredient of texture,

from coarse to fine along ad, whereas In the image, no such gredient

occurs along bc, end the texture fs uniform throughout.

GC The texture gradient cen be used os & sessuring stick vhose scale

ve don't know, but which gives us relative depth estimates:

3 is tvice as far es A.

9] For femiliar surfeces for which ve know the texture <lement sine, the

scale of the measuring stick Ls known, and we hav, an estimate of abs~lute

distance (provided we have an estimate of the susfece angle vith regard

C to the observer's image plane - ve shall show soon that ve can determine

(hat angle). Since the observer “nsss his orfentation with regard to

10,
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gravity, by assuming a level ground plane, he can estimate the distance

of areas near his feet with reasonable accuracy. This helps in estab- E

lishing absolute size of grass and other textures on the ground.

There is one tmasonablenecs condition on texture gradients. The

apparent size of texture clemantr should decrease toward the horizon. -

That is, ve don't expect large n2acly level overhangs, above '.s, and

for opaque surfaces below the horizon, ve must see decreasing apparent

element size toward the horizon.

The projection of a longitudinal or slanted surface on a picture

plane is obtained by perspective geometry. The principles governing

such a projection are as follows (See Fig. 9).

Inage Plane
PE FI

EE  — v Tinci

J Nyy
\ |

Fl

blanted furince

Fig. 35
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decog og = 8,
\v Ry ———

fd

cos 0
l

| de.cos -

en LS. for small 0, 0,
fd/cos 0, - _

coa 0, ® COp 0, o |]
R

hl
s K

Fim the similarity of two trianglea follows

fd°( tan % - tan 0) 3 {d+cos 0
8 A

For small @,-0), R. *R, + dR

dR = gg: tang =( tan0, - ten 0, ) R, tan ¢

Now let us define a fractional (Cradient)

¢ o fractional change in element size (image)
Baseline in image

8, - 8

€ = ! ; ’
Je 8 + ., (d (tan e, - tan 9)

vhere 8,5 ore texture element sizes in the (mage.

After some approximation we oStain formula:

¢ = . 120g.
id

Rephrasing the formula (n terms of angles (on retira) instead of lergch
on retina, ve get:

¢! ®* « LAND oe

Thus, ve cen calculate the angle vith respect to observer.

Since the observer knows his angles with respect to gravity and he
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knows the angle with respect to the olsurver, he thus knows the
0

angle of the surface with respect to gravity.

Then, the texture clement in the object space can be computed as

followa:

R 6) (
d a eer

fd«cos ¢o

How sensitive are estimates of the distance to the assumption that

the ground is levely

Consider Pig.36 .

—— | —— : —— — Ee a @-llorizon

~ ia

Se.

h dod
—
—

Ground Plane

Fig. 56 |

We want to calculate the distance from observer to the ground for

level and non-level cases. & {9 the angle between the horizon and the

observer view. And o is the angle of the sianted surface.
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Then S| = 5

is the rstio between the distance 3 and the distance So» which is

o the distance to the level surface. Tie formula shows that there is a

fairly strong dependence on go, except for small distances.

As an example of the texture gradient snd its recognition, we

c present a picture of the ocean (See rig. 57); without recording the

texture gradient we find a partition of the picture into several regions

(See Fig. 38). All regions are described as monodirect ional textured

a regions, with the same directional’ty but with different weve lengths.

However the wave length changes lincarly in a vertical direction across

the picture. (From the bottom of the Picture the wavelength = 32 to the

3 top of the picture where the wvaveleagth = 8), Thus, by recognizing the

texture gradient, we recognize the whole picture ss one textured region,

displayed in Fig. 29,
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" 5.5. The World Model
In chapter 2 we looked closely at elements of an outdoor scene,

involving grass, sky, clouds, water, and trees. On of our purposes

i” was to introduce the sort of texture descriptors whch we have imple-
mented. The other was to lead the way into a discussion of our world

model. We saw a great range of variation for sizes, colors and other

 & properties of texture elements in these outdoor scenes. Grass ranges
in color through greens, browns, and yellows. Trees range from a few

feet to a few hundred feet in height. Because of this variation and the

a variation of apparent size of objects at different distances from the

} observer, it appears that no immediate identification of image textures
with elements of the world is reliable. In some cases, the understandings

4 depend on perhaps unconscious reasoning: the spray on rocks is not very
] similar in appearance to the ocean around it. In many cases, the identi-

fications are simply resolved by considering relations between image

 . regions; motion obscuration identifies trees in front of clouds, shadows
: identify trees as standing above ground, obscuration implies a background.
: Relative depth determines that the ground is roughly level and that trees
 « stand above the ground.
: It is reasonable to question whether a model which must allow as
3 ~ much flexibility as to allow the range of sizes for objects, and the
i

2 variation in relations, is of any use at all. There are several ways
in which it is useful. The first is that certain relations are reasonably

stable. The sky is bright against the horizon. The proportions of grass

and. trees are roughly independent of size. Certain regular shapes are

. usually man-made. The second is that much of the variation is connected
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with subsidiary conditions. If trees appear different colors, they are )
different species, and have other identifiable properties. If the grass -
is yellow, then it must be dry. An apparent size gradient probably means

a distance gradient, |
However, the usual mode of perception is continuous perception. 8

In scene analysis, we often think of showing a single picture with no

context and expect the observer to understand it. Indeed, humans can

do just that usually. But the bulk of perceptual activity is involved ]

in moving ir a world in which changes happen slowly and locally. Most

of the world is nearly unchanged from one moment to the next. Most of

the recent perceptual understanding are useful at any instant; the system

knows a great deal about the environment and makes incremental changes

to its model. The making of the changes to the model is aided by the
)

detail of the knowledge already available.

‘That does not mean that we can do without the ability to actually

build up the mouel, either from the picture shown out of context, or

guided by an already detailed model. But it does mean that a large

Part of perceptual activity is guided by detailed models.

Another aspect of the world model is that it contains the information -
about the observer's point of view. The observer's motion provides a

depth sense equivalent to stereo, but much more useful for distant ob-

jects. Distance estimates using motion parallax depend on the observer's

estimate of his motion. Stereo distance AEaSUT GENTS depend upon a model

for the convergence position of the two eyes, the eye separation, and

correspondence of the coordinate systems of the two eyes. An equivalent

observer model has been implemented at this laboratory in the work of
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| Sobel (1970), Tenenbaum (1970), and the use of observer's motion for depth
N perception has been implemented by Nevatia (unpublished). Formally, the

model has two levels:

) (a) Regions in the object space, objects and collections of

; — called ‘the elepnts of the model; :
(b) Structured RR yy) of the elements in the object space,

These descriptions are almost directly interpretable in a
| Program as procedures.

A world model is a dynamic structure that changes during the

P identification process. The description of the elements of the model
is carried out in the cbiect space and, wherever it is possible, with
counterpdrts in the image Space. Not all descriptors in the object

© space have a meaningful counterpart in image space. An example is the
size of objects, which can be interpreted from distance estimates and

| apparent sizes.

c The properties of grass, sky, water and trees have been described

in Table 1. All these descriptions are included in the world model and
Some new ones are included in Table Th

c | All objects in the model, except rocks and unnamed objects, have
broken boundaries.

One may wonder what other descriptors (besides texture descriptors
: and color descriptors) could be relevant in the model, Unlike in the

case of grass blades, ati waves, and trees, where their size plays
an important role, the size of rocks varies so much that it ig hardly
a useful feature for them. On the other hand, the shape of rocks

(tloblike), is signficant because it can be contrasted with the linear

114 |



aa SE —— Ee Eeee RE 5g
!

shapes of grass leaves or water waves. However, the only rocks of
{

interest are those which are big enough to stick far out of the ground

(might impede navigation). Here we worry about the relevance of size

and shape of texture elements. What about the size and shape of regions?
i

Size and shape is not significant for regions of grass, ocean, forest,
and ensembles of rocks.

(

1
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Regions in Color Spatial
Object Space Attributes | Relationships

&

Usually green, Located on ground, under
sometimes yellow the sky and trues.
or light brown,
uever blue,

C. Blue or green, Located at the ground plane
sometimes gray below sky and trees. In the
with silver waves, image space, ocean and grass,
never red trees or rocks could form over-

lapping regions.

3 Light blue, the Sky is the farthest region in
brightest area the scene and it {gs alvays
in the scene. above any element of the world

model. In the image space ft
Objects in the sky.| can form over lapping regions vith

3 grass, trees, and rocks.

The crown {s Trees are below the sky, ard
usually green, above grass or ocean.
sometimes yellow,
brown or red.

3 The trunk {f dark
brown.

Al) shades of grsy,| Rocks are always below sky and
brown or red. on the ground. They could be

a scattered in grass and water.

unnamed On ground, below sky.
objects

®

 .

|
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Wh The Nigher level Program

We discuss briefly a sugpested hipher level program vhich we

simulate. Wc concentrate on the tvo scenes In (igures and 57, Fle.

contains three pictures taken of the scene in Vig. | through filters,

red, green and blue, The names SCENE], SCENE. and SCEM rrespond to

red, green and blue filtered scenes. Figure contains four pictures

of a scene In Fig. il. The top tvo and the bottom left pictures correspond

to the red, green, and blue ({ltered plctures, respectively, The bottoms

right plcture is the brightness function of the scene in Fig. Ll.

_ -

=

Fig.
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O bet us call the scenes in Fig. AO and h WATER and ROSES respectively,
There are three gross parts of this process of interpreting the structure
of the scenes, these might be called:

O crganization of regions having continuous properties
determination of spatial relations

identification of elements (a object space:

o They are not strictly hbefrarchical, since tdentificatfon detercines nev

spatiel relations, and suggests other low level organizations.

Some of the mechanisms for organization of continuous regions vere

. previously discussed. The regicas based on continuity in color and seme

texture descriptors are metural starting places. Proximity provides the

basis for the suggestion of texture super-regions vhich are disconnected,
O but may de usefully consfdered as ao unit. In this operation, ve group

together meardy region: of like color or like textural! properties. The

next mechanism (9 that of hypothesis verification: a particular color or

oC texture region (0 a hypothests of continuity. If the region has suue
physical continuity, ve should find that other properties are continuous
ever the region. If the boundaries are false, then there should be

eo textural properties which coitinue across the boundary, frem vhich ve
vould assume a continuity which vould he tested by looking (or other

contimiity. 1f the boundaries correspond to physical boundaries, we wil]

C ususlly be able to find a discontinuity in some texturs) property.
Ue can fnfer a fev spotial relations from the texture gradient,

from guesses about interposition (which object is (a front of vhich) and
GC from the observer orfentatien and pesition, combined with the ground plane

hypothesis. 1n a conplete *ysten, ve could call on depth perception by
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stereo and motion parallsx. Our inferences would be a good guide to

’ economical use of these modules.

Identification, in our suggested system, proceeds both from the

vorld model and from the data. Some elements of the worl. model are

. better starting places than others. We assume thst the sky would be
easily estsblished in most cases. Other image elements should be

approached after finding the important structural elements in object

space, {.e., sky, ground plane, and trees. We are assuming that a full

variety of properties and relations aid us in making initial and tentative

identifications of sky, etc.

y In Figure 50, which ve call WATER, we have two ma jor regions which
correspond to grass, a region which corresponds to the rock, and two

| regions which correspond to the water. In the scene called ROSES, the’ sky appears as one large region and seversl small regions; there are three
regions of the bush, and several small regions which correspond to roses.

In the analysis of these two sceres based only on texture analysis

g without guidance, the scene WATER is described partly adequately. After the
texture gradient suggests further continuities, the grassy regions merge,

ard there remain three main image elements which correspond to grass,

| q rock, and vater; see Fig. L3.
This texture organization is suitable for providing hypotheses of

continuity for regions vhich are broken by color organization for WATER:

y see Fig. Lh, The similarity ir color of the Joined color regions confirms
the texture continufty. In ROSES, the sky {is adequately described by

texture, vhile the bush and flower regions are chaotic, as one can seve in

’ Fig. 55. This reflects one of the inadequacies of the Fourier transform,
122
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the weakness with feature sizes approaching the window size. This is

p normally accomplished by subdividing regions with slow changes which
correspond to probable region boundaries. That was suppressed in this

C version of the program.

The region-growing does not succeed in isolating the flowers by

cutting up windows containing flowers to partition off smaller cells of

: adjoining areas of the bush. This is the worst performance of the

texture region finding process, but it is instructive. On the whole, the

unaugmented texture region analysis is unable to aid in proposing useful

! alternative hypotheses for organization. However, texture boundaries for

the sky coincide with color boundaries (the color boundaries of the roses

are displayed in Fig. 46), and a slight relaxation of the criteria for

C continuity, verified by continuity in contrast among the color components,

does provide a set of larger texture regions among the bush and flowers.

Even in that worst case, the jumbled areas of color correspond to regions

O of moderate size under texture, so that there are no large regions of
the picture which appear entirely chaotic under both aspects. The texturc

descriptors are useful for analyzing the color regions, and have more

utility used in that directed mode. The element size and contrast are

meaningful when restricted to the bush; in the unaided texture analysis,
| these descriptors mix the flowers and bush.

In evaluating our higher level procedures, it is usual that we re-

evaluate the quality of the lower level modules. We find significant ways

in which they couid be improved, and in ways which would best be done at

that level. In general, it is better to proceed to a fully developed

system then to put disproportionate work at the low level. We will later

12h
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specify what improvements we would make in thei level modules.

"Let us make the preliminary organization of the two scenes. With

ROSES, we begin with proximity of color regions. The bush regions and

the flower regions are alike in color; for example in two areas of the
|

bush, the color coordinates r/(r+g+b) and g/(r+g+b) are:

Sample 1 (46, 43)

Sample 2 (.b7, 40) |
thus we can conjecture these as a super~-region. Let us compare contrast

and dominant wavelength for these two color regions which we conjecture

to be similar. Compare the two color regions in Fig. 46 with the Tables

8, 9, and 10 of average intensity, wavelength, and contrast, over 8 x 8

windows. We see that the dominant wavelength is short over much of these

two color regions. In fact, if we define a region from the small |
wavelengths (< 4) the region spreads over most of the bush. In the scene, |

the sky is a region under color and all texture descriptors. The sky

boundary in color is reinforced by the existence of texture boundaries. |
As we have indicated, textural properties are probably adequate to confirm

continuity of the regions suggested by color for bushes and flowers, and

to show discontinuities of frequency. In WATER, the two regions correspond- |

ing to water are joined by proximity in color and continuity in texture.

The water boundary shows up strongly as a change in color and in texture,

directional to homogeneous for the water-rock boundary, and different

directionalities with distinctly different color at the water-grass

boundary. The grass is continous in directionality, size, and color.

We can now make correspondence with the world model. Since the sky is |

often prominent in outdoor scenes, we attempt {o find the sky. We look
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Oo at white and blue regions which are near or above the horizon. In

WATER, we might try the region which is really water. The color is

acceptable, but the directionality is very unlikely for sky, and the

0 contrast and size of texture elementsis also unlikely. (This estimate
is based on a few months of sporadic sky watching. (Of CHESS, there

are directional clouds, "mackerel sky", but it seems quite infrequent.

O Also, the clouds seem to have much lower frequency.) The water region is .

below the horizon. If there were a significant view, we could goo
| texture gradient and thus substantiate that the surface ig flat. Also,

O in continuous perception, we would find that the water motion is very
different from cloud motion. Motion would also allow interpretation of

the breakers around the rock as part of the water. The region correspond-
Oo a ing to grass is directional, low contrast, and has a texture gradient,

| implying that it is horizontal. The color is consistent with grass,

which lies on the ground plane. From the ground plane assumption, we

O can estimate the size of the elements of the grass:
image size*angular resolution*distance |

= 2%(1/666/*%300 cm = .9cm | |

Nb where we estimated the image size previously, the camera parameters are
known, and the distance is obtained from a crude guess, but is known .in

principle from the observer position and orientation. The size is also

consistent with grass blades. For the rock, neither color nor homogeneity

tell us very much. Since the rock is convex downward on its boundary with
water, we assume that the rock is in front of the horizontal water surface.

C - We assume thus that it is an object which sticks up from the surface,

| and calculate the vertical height and length along the ground. From the
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oo image, the texture gradient tells us that the distance at the rock is about

L times that at the front of the picture. Thus, the above expression |

gives: |

18*(1/666)*1200cm = 36cm |

while the width of the rock is approximately 300cm. These are only - EB

approximate values which depend on our guesses about the ground plane

and texture gradient. On the other hand, the conclusions depend most

strongly on relative size conclusions. Grass elements are small; rocks |

are often big compared to grass. We can make the comparison between
the rock and grass near the base of the rock. In the Tagdl The rock is |

big, and from all assumptions about objects in the image being further

away as they recede in apparent position toward the horizon, the rock is

much bigger than the elements of the grass. These give some strength to |

the assumption. Co .

In ROSES, we begin by attempting to find the sky. The only region

of acceptable color is the sky itself. The color is IT, indicating |
clouds, with low contrast as seen in Table 8. The texture is homogeneous. |
As a verification, we might find blue patches, find motion, and find that

the distance of this region is very great. The region is far above the .

horizon, and is very bright; see the brightness in Table 6. From the |

concave downward boundary with the other regions, we assume that it is |

behind the green elements. With the identification sky; we find that

the green elements are in front of the sky, thus probably approximately

vertical and are frontal (they show no systematic texture gradient , also 5

indicating that they are vertical). The texture is blob-like; the blob |

size is interesting. 1f we can guess that these are leaves + lE0ar TER :
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is leaf clusters or branches, then we can cstimate the distance to the bush,
y Finding the stems would aid in that. Because the bush is probably

vertical, it is not grass. . If we include leaf clements, fruits and

1 T flowers in our descriptions of trees and bushes, then by guessing that
| the flowers are really associated with the bush which surrounds them, we

4 | can guess the scale of the leaves relative to the flowers, and thus

A s establish that the texture clements arc leaves and establish approaimate
b distance. Of course, at any level, we could establish relatively

4 unique elements to correspond in two views, and determine distance by
| : stereo or motion,

9»
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| 6. CONCLUSIONS

We presented a representation of textured scenes which was not a two-

* dimensional representation of the projected image, but a three-dimensional
represcatation of the elements and spatial relations in object space. We

feel that the representation of spatial relation: such as 'grass is found on

* the ground planeand the nearly infinite distance of the sky are charact-
eristic of these elements, and help more than any other properties to

identify them and to orient the observer. Our representation is effective,
Le also, in that it is segmented into distinct elements, which are described

by a heirarchy of texture regions and textured elements. Textured regions

may be texture elements of a super texture, or texture elements may be

’ textured regions of a sub-texture. This is not only a formal nicety, but
a usual part of our description of ourdoor scenes; for example, in trees,

the leaves are texture elements of leaf clusters or branches, which are

® texture elements of a tree, which is a texture element of tree clusters.
The description of shape of texture elements depends heavily on a linear

approximation to shape, and describes directionality, width of texture

» elements, and spacings. We argue from psychological evidence that these
are the most important of descriptors, and further, that they are natural

for computer implementation. These descriptors are most useful for

» directional textures. The representacion is included in a world model for
which an example was given, but whici awaits implementation with the

high level procedures.

A simple color region analysis was very useful in texture analysis.

The normalized color coordinates, r/(r+g+b) and g/ (r+g+b) were

compared for continuity, and regions were defined by neighbors of

continuous color. There are some potential problems in an analysis
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of color in outdoor scenes, since many of the texture elements are very

small. Typically, the regions are leaves or blades of grass, As an

expedient to find larger regions, we have averaged over a small window,

and compared colors of adjacent windows. As a consequence, we sacrificed

localization of edges. The expedient is only partially successful however.

We notice that the averaging works best among clusters of leaves where the

color {is uniform to begin with. Where the leaves are isolated against tle

sky, the color contrast is large, and continuity of the averages are only

by chance. Thus, the averaging is not very successful. A better mechanisa

to define larger regions of color is perhaps to gc to the computationally

more difficult opemtion of finding like colors within windows, that is

to implement color regions based on proximity rather than continuity.

The obvious velue of defining color regions which ignore the brightness

fluctuations of individual leaves should not lead us to ignore brightness

edges and consider only color edges. We also make use of the size of the

brightness regions, the leaves in this casc.

A sheaf-theoretic description formalizes the process of region-growing

and gives an exact account of the shift from local to global and vice

versa. One must be cautious about interpreting the sheaf-theoretic

notions in the context of color and texture regions. Due to sampling we

have a finite scale of window sizes and the definition must include a

least window sfze, the size of texture elements. No such discreteness

conditions are embedded in sheaf theory.

In the implementation of texture descriptors, ve were able to translate

those spatial domain descriptors that we found important from Fourier

transforms over windows of various sizes. Directional and non~directional
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components vere separable to a useful extenc. These reflected shapes

v of texture ¢lemeats aml their spatial relations, or statist ical propert jes
of irregular textures. We argued that the human description of an image
makes use of a step function approximation; ve often descrive In terms of

- regions of constant intensity. We obtain analytic expressions for the
contrast, the element size and spacing, and some location informat fon;

o these vere based on a spatial domain model of pulses ol equal amplitude,
width and spacing, on a uvalform background level. The implementation of

Fourier transforms descriptors had sme minor implementation di ficulties

vhich are usually overlooked. They are consequences of the fact that

¢ the Fast Fourier Transform is really a Fourier series and not a Four fer
transform. A Fourier transform has no preferred directions, while the

a Fourier series has preferred axes along the x and y coordinate ~xws.

This introduces a non-isotropy in the fon filter. Ve have used only a

straight forvard fan filter and have nant Altempted to compensate for the

c peculiariiies of the Fourier series. There are also spurious Lroadening
of peaks which are consequences of the Fourier series. Despite these

difficulties, the spectra show uselul directionalicy properties, and ve
: have been able to work with thes.

The more serious problems with the Fourier transforms are conceptual
difficuleies which are true of any orthogonal expansion and of the (rue

2 Fourier transform. Interpretation is based on the poser spectnm and

Fhase information is (gnored. These transforms are non-local, and give
very poor edge and position information. To an extent, ve have tried to

s get around this by an expedient of using local windows. This provides a

crude localization, vhich was not adequate for many purpeoses. The usefulness
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of the tranafoms vas very dependent on the scale of (he vindows, The
descriptors vere most useful vhen the vindow sfze vas such as to exclude
other regions ard to Include some fepetition of texture elements uithin the
vindov., This eeant that a ange of window _lses wag necessary, and that
ve could not always have vindovs mall enough or large enough. To a certain
Extent, we could probably get positional information from our analy:fc

expression using the phase of the tranafomn. However, that Is useful only }
for uniformly spaced teature elements. In most useful cases, the spacing
is quite irregular. The non-local mature of the transfom {a a severe

disadvantage tn using color information. As in other cases, ve can wake
examples vhere the averaged quant ities are useful In smearing cut amd

heidping local boundaries. This hae limited utility. There are a fev
simple cases for vhich the color contrasts can be extracted from the

Fourler transform of separate intensities through three filters. Ye have
fot yet incorporated these Into our descriptors.

There are some Incremental inprovements to be sade to our Fourier
descriptor scheme. One of these in 10 ure Interval ana lysia for deternining
vidiha aml locations of discontinuitios In directional textures. {a some

Caeser. owrlapped vindowing vould be useful meer boundaries, Including
Vout ier color conpocents was rent toned above. We should jac lude edge and
feplion operators (perhaps on tiltered directional components) to find the

extent to linear elements and to [ind boundar jes of fuasi-homogensous
rep ions,

fextured regions vere obtained on the sis of the texture descriptors.
Ve fn.ad that a fange of vindow sise: wags RECes sary. our strategy vas not
adequate to use the viadow dlaes as well as (tt might have. The choice of
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0 vindov siaes vould be better left to higher level choice anong suggested

teg.ons. The actual program vhich gave textured fegloas claselified the

descriptors according to mono-directional, bi-directional, dlob-like,

C homogeneous, and notsy. Then adjacent regl Yas vere merged Lato continuous

regions based on continuity of the descriptors. A change of scale was used

: Il there vas i strong frequency | component (that (i, there probably was

an edpe (n the vindow) er II there vas » bi-directional texture which

could arise from a boundary of tvo directions] textures. A second regions

| K-oving pass relanes the criteria and ignores classifications to ertend

| large regions by including acceptable sll neighboring regions vader
relaned criteria.

| A guided program determined textured regions based on informction
0 passed down from above. This program vas pulded by the user, but the

advice could equally vell have come from other programa, The gulded

programs determined texture regions vithin speclf{sd areas and according

o to specified simtlaricy criteria, for example, frequency and contrast,

Continuity could be explcred on the basis of scpaTaAte parameters.

Ue see some lncremw natal inrrovements to the teglon-groving based

o on Fourier descriptors We would odd an altermate tactic for vindove vith

long wavelengths; nov ve subdivide based on the possibility of an edge in

the vindew. We vould also increase vindew siee to look for o repeated

feature of a larger sire. Ve vould elininate the classi fication step Aowv

used. There (a some argument in favor of the classification. There ate

actuslly emny natural objects which fall into one or another of these

classes. But the classification in the early stages introduce artificial

boundaries and [gnores the multiple descriptors which are avaliable. Only
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later does It relan these clasace. A further and more significant
addition vould be an inplementation of proximity of ibe descriptors oa
nearly vindovs for testur~ super=regions.

Ne presented an outline for a higher level procedure to mike

Correspondence between the lnage elemsnts and the vor ld madel., This

eutline vas not inplemented but simulated In (vo examples. The striking
conclusions from the simulation vere that iaterpretation of the three

dinens ional structure of the FCEAP VAS neceasary Lo make the identification, |
This contraats vith the work done In (nterpretation of aerial photographs,
for which the vorld is effectively on » locally flat surface, and depth
considerattons are uainportant. A perceptus) system begins to have inter-

CLINE structure when IY can word vith sore than » single property. Our

nade] deale with oultiple properties by a hypothesis -ver( (ication paradipn
(of proposing baundaries and reglons., Continuity in a physical surface

can be hypothesized on the basis of ene of the properties. Often, the

region description fron sone one property vill be Particularly simple and

uselul. lt is not clear that ve can always pick in advance vihiich property
It ie: with sullicient content ve 231d vss lly nate a good choice. Bast
ve Can try several different cholces as hrpotheses of meaningful surfaces,

and test that camtinuitly In that Properly corresponds (0 continuity in
other properties; discoatinuity (a physical surfaces often reflects diss

cmtinmvitics In severs) Propecties. lo these examples, color feel ve vere |
Joined into coler super-regions of Jide calor. Textura) properties of

dominant [frequency and contrast showed continuity of these properties over

the color euper-region. AL (hie point, the lower-level madules could "
function In a gulded mode to expand the region corresponding to theo |
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o typical descriptors and include nearby areas of the image vhich vere

not well-described in the earlier andiysis vith little context.

The regions vhich come forth do not make a neat image. They overlap

| and do net cover the vhole image. Still, ve are aiming to Lnterpret those

Paris of ft that are simple to understand. Inferences of spatial relations

are important herv. Texture gradient gove estimates of surface orientation,

( The grourd plane assumption gave & local coordinate systen when combined

| vith the assumption that objects stand out from the ground. These
relations depended primarily on relative distance and relative size

C estimates vhich were not greatly scasitive to the sssumptions. In some

cases it vag possible to guess which object vas in froa* of another,

either becouse of concavity, or from identification of the sky or water.

0 In identifying elements and structure of the vorld model, our

simulation attempted first to establish the sky. Based on color

brightness, contrast with the horizon, and its position (above the

0 horizon estimated by gravity), this is assumed a simple match. We can also

then determine the sky line and guess valch objects stand out from the

round plane. Sizes of texture clesrents were of considerable use; kacwledpe

o of size is much more useful here than in the blocks world vhere context

is limited. The knowledge of the size of grass blades 1s wore useful

than the knowledge of the size of one particular block.

Ve have mentioned some Incremental improvements to texture local

description and to forming texture regtions. The primary vesknesses at

this level are the crude localleation and 1inited use of proximity in

establishing super-regions. Improvement of the color region-finder is of

primary inportance. Since must of the interpretation depended upon
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inference separate from strictly textural properties of areas of the

image, ve feel that the most significant next stage fs to embed these

elements tn a complete visual system. This would (avolve more than just

ioplementatfon of the simulated higher level program. The typical system n
vould navigate in an outdoor or planetary exploration environment. The

navigation goals make explicit which problems the system needs to solve

at any time. The situation fs one of continuous perception vhich allows ;
the model built up at one instant to be used fn subsequent problem-solving .

Continuous perception also allows us to tell vhich objects are moving,

vhich is of use in outdoor scenes. The complete system would have

stereo and motion parallax for depth at small and great distances. To

A certain extent, the system would avoid finding solutions which could

be found purely from single projections, but such a system appears

feasible within the current state of computer vision, vhile a system

which ignores so such {nformation does not appear to be achievable soon.
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$ APPENDIX

Topological Models

In thin section we give a brief account of a possible approach to

J the topology of pictures and then explain the sheaf-

theoretic model of textured scenes, involving several different structure

sheaves.

* The topology we shall use is discrete and is induced by certain

norms, transplanted from the atructure of integers. Needless to say,

the purpose of this topology is to make precise the use of such notions

Ri as continuity and proximity.

Once the topology is fixed, we introduce a convenient system of

neighborhoods, called windows. These will be used throughout this work.

» Given a textured picture with the discrete topology as indicated

above, we assign to every window over the picture a gtructure of some

sort, depending on the picture under the window and, perhaps, on some

» fragment of prior knowledge concerning the picture. The structure in
question can be something very simple such as a set of descriptions or

something more involved such as a vector space, generated by the

. attribute vectors of the picture under the window. We emphasize the

degree of generality involved fn the specific choice of structures.

In the implementation of our picture identification program we use a

v structure induced by the Fourf{er image of the picture function.

After the species of structures has been selected, we reduce the

degree of freedom in the set of =:ructures by assuming that the structures

’ over any pair of windows standing in an fnclusion relationship are
closely related. That is, one of the structures can be transformed

137



O

into the other precisely when the picture function under the two windows

is continuous. The transformation, which in a general situation is v
called a homomorphism, depends on the picture function and possibly on

a prior knowledge relevant to the picture. If we imagine that the

structures carry the local picture information, then the corresponding -
homomorphisms tell us how this information changes as we move from one

window to another. Thus the question as to when and how to join two c
locations on the picture is answered by the homomorphisms, interrelating

some of the structures.

Topology and Metric of Digitized Pictures

One of the most efficient ways of arriving at the topological model

of a digitized picture is to consider the picture as a set of cells X

and coordinatize cr parametrize it by the finite normed two-dimensional

space of integers modulo <n,m>:

=, =2 x 2/«,mn
More specificelly, if A : X - 2° is a gelected coordinatization

function, we put
AANA

(1) x+y=2 iff x+y =z; (Vector addition)

(11) Ix = y iff §* } = 8 (Scalar multiplication)
(iii) x <y iff : <>; (Partial ordering)

(iv) |x| | = |i] + | 3]; (Sum norm) 0

(v) <<x>> = Max(|1],]3]), (Max norm)

Where x,y € X, 2 = <{,j>, and i,j € 2.

The structure {X,+,*,<, || ||, << >>} is called the cellular

space, where the conceptual ingredients are, respectively, vector addition,
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® scalar multiplication, partial ordering, sum=-norm (city block norm), and
mix -norm, |

Both norms induce a discrete topology in the cellular space X.

The intended interpretation of the elements of X is the retina point,
a geometric location of the Point information, which is of interest in

input data. Geometrically we can think of X as a finite, rectangular,
( two-dimensional array of congruent Squares, whose coordinates are given

by a grid of pairs of integers, located at their midpoints. The advantage
of defining X in this way lies in the Possibility of using a coordinate-

C free (topological) language, and when NEéceéssary, we can carry over the
concepts of vector calculus to X,

When several coordinization functions (sampling) are given, one
Q can order them Partially by the fineness or coarseness relation. The

finest coordinization 1s usually that which is suitable for capturing
the ultimately relevant local information concerning the gray level shape

G or color change. Clearly, a finer coordinization function leads (at
least potentially) to a more complete description of a picture.

The subsets of X are subjected to generalized vector operations
0 such as

Algebraic sum:

A+ B= {a+ blacA and bes},

where A,B C Xx.

We shall not use these operations in this work since other

operations will play a far more important role. The horizontal and |
vertical rectangular subsets of X (i.e., planar intervals) are called

windows: :
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A 1s a window iff A=1{aeX| x<acgy}, where x and y are

some cells in X. Thus, windows are essentially two-dimensional intervals. i
The empty window is denoted by O. The set of all windows Wind

1s partially ordered by inclusion. In fact, it forms a finite distributive

lattice with zero element O, unit element X and with operations: | k
Intersection: 1

AANB=AN B;

C

AVB=N{CeWind| ACcCABCC}, |

where A,B € Wind. | |
(

The window A V B denotes the smallest rectangle containing A and

B. The lattice < Wind, 0, x, V, A > will be the basic structure in

picture identification. (A similar lattice is obtained by taking the

convex subsets of X.)

The choice of norms in X induces a special system of neighborhoods,

suitable for developing the basic properties of continuous and
proximal functions on X. )

For every natural number p we define the p- neighborhood (von

Neuman template) of a cell x by | gq
N(x;p)= {y| ||x- y|| <p}. |

If we neglect the effect of the picture boundary, a p- neighbor-

hood forms a diamond shape cluster of cells about x. a
Another system of p-neighborhoods (Moore templates) is defined

by the max-norm: | | |

M(x;p)= {y| <x - y>> <p}. E
These neighborhoods form square windows about x, if we forge:
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© | about the effect of the picture boundary. |
As pointed out in the introduction, our main interest will be

in pictorial relationships such as neighboring, inside near, equidistant,
© perpendicular, overlap, above, etc., and in pictorial objects such as

figure boundaries, regions, and the like. These are certain metric-

| topological entities, definable in terms ‘of the Primitives of the :fo cellular space X. Theoretically one may think of n broader class of

i geometric entities (projective, affine, metrical, and topological), but
| this is an auxilliary issue now. We shall totally disregard at present

I the semantic relationships and semantic objects, induced by a particular
: object-world model. |

: The starting point of a picture representation is a picture function

o P: x » R, whose values are called gray levels. In the case of colored

| Pictures, the values p(x) for x € X are vectors, representing the
i intensity of light for a fixed system of colors.

B The difficulty with the picture function lies in the fact that iti 1s a point function, as opposed to an area or set function. We need a

| data structure, where the point information is usefully transformed into
| & a local or areal information which is the only one we are interested in,

won.

In order to achieve this, we associate with every restriction |

0 p|A of the picture function p, where A is a window in X, a structure,

carrying the desired local information. But before we explain how can

this be done, we shall review some of the sheai-theoretic notions.

£ Presheaves of Pictorial Structures of a Given Species

What are presheaves and what are they good for? These are the
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quest ions we intend.to answer in this section. As for the theoreticai
details, the reader may consult Bredon (1967). First, we state the

geferal definition of a presheaf and then we give a number of concrete
examples of presheaves relevant to Picture theory.

Let <E, <> be a partially ordered ser. Then by a presheafof
structures of specics JGMA on E we shall mean a pair of sets

S=<{s,| ack}, {p)| a<b}> | )
such that for all a,b,c «~ E the properties displayed below are valid:

(1) S, is a structure of species SIGMA and p> for a <b is

a SIGMA-homomorphism 8° :Sp- Su called the connecting (transition) ;
mapping from Sy to S.-

(2) 8, 1S, - S_ is the identity SIGMA ~homomor phism (automorphism)

on S. | c
(3) a<bAb<c => 82 = 8. o 6. |

A presheaf on E will conveniently be denoted by § = (s, 8.)
| The species SIGMA Pears to the type of a structure which could be

just a plain set, a set endowed with certain relations and/or operations,
or anything that resembles a mathematical structure (GrolB, vettor

Space, automaton, etc.). The only point to be realized is that the

structures in question should be of the same sort or type. The SIGMA-

homomorphism may be defined in various ways, the simplest, perhaps,

being the structure Preserving mapping from the domain of one structure C
into the domain of the other.

Be fore we launch ourselves into a more specialized study of sheaves,

it seems useful to illustrate the definition of a presheaf by a couple |

of intended interpretations. This will hopefully help us to envisage
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the picture - theoretic applications.

- One of the simplest preshcaves is the constant presheaf of sets.
Here Sy =S is a fixed set of elements and 8° is the identity
mapping on the fixed set S.

(a) Presheaf of continuous functions

Let X be a topological space. For each VCX let S,
be the set of all continuous real-valued functions f:V—- R, and for

| WCV let Bi :S — Sy be the mapping which assigns to each f € Sy
its domain restriction flw. Then, of course, fw € Su? since a

y restriction of a continuous mapping is again continuous. This con-

| struction gives a presheaf (sy:8;) on the set of all subsets of X,
partially ordered by inclusion. We call it the presheaf of continuous

Q real-valued functions on X.

| If the topological attribute "continuous" is replaced by "uniformly

] continuous”, "proximally continuous", "differentiable", "analytic", etc.,
0 we get a whole family of new presheaves on the same space. Moreover,

we get some other presheaves on X when we consider only a system of

neighborhoods, e.g., N = {N(x;p)] Xx € X, p20}, rather than the set
of all subsets of X.

(b) Presheaf of Histograms

Consider a picture function P: X =» XK together with the

lattice cf all windows < Wind & > of the cellular space X. Assign to

every window W a set of histograms Sy or more precisely, a set of

distribution functions corresponding to a family of random variables,
characterizing certain features of the picture p.

As connecting mappings BY , choose for VC W an appropriate
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stochastic transformation, (stochastic matrix) transforming the elements

Sy into the clements of Sy The presheaf axioms are readily verified.

The structure (5,8) fa a presheaf, called the presheaf of histograms.
Again, we can take the system of square windows M = (M(x;p)] x € X, p> 0}
and consider another presheaf of histograms.

lc) Presheaf of Geometric Models

let p: XR be a picture function together with the lattice

of windows <Wind, C >of the space X. Assign to every window a

geometric model Sy induced by the picture over W. The geometric

model is essentially a set of figures (lines, circles, etc.) together

with the figure attributes and their placement rules.

The connecting transformations a: Sy = $y, are restrictions or
in a more general sftuation, they are certain similarity fuuctions,

assigning to every element Sy a most similar element from 5. In the
case of pictures with local gradients, some other homomorphisms may be
of interest.

C

(d) Presheaf of Feature Spaces

Let p: X wR be a picture function and let <Con,C > be

the lattice of convex subsets of X. Define Sy for W C Con as 0
the linear space generated by the feature vectors associated with p/w

via measurement, and identify cach M for WCV with a linear
transformation. Then (S,: B} is a model for the presheafl axioms. 0

Several other scene analysis concepts turn out to have a

sheaf - theoretic interpretation.

Simply, a presheaf is a formal device which assigns to

certain local areas of a topological space a specific structure in
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such a vay that vhenevertvo areas are in inclusion relationship,

the assigned structures are in homomorphisms relationship.

The reader should see by nov the connection between presheaves

and picture structure identification by vindoving. Often a presheal

Son <E, <>has a relatively simple structure "locally" about every

point a C E,

A suggest ive picture of a presheaf over a window in a

cellular space fs given below, in Fig. 47. It {s important not to

confuse the presheaf structure with the picture function.
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Vrequently ve are not (interested in all windows of a cellular

space but rather in a subset of vindows., This ls the case vhen the |

texture elements are large caough and ve do rot want to enter into thelr

structure. In situations llke this, the (olloving notion appears to

be relevant.

let E' CE be a partially ordered subset of < E, <>.

Then the presheal

< (sla cr’), (8, | asbae, bet’)>
is called the pestriction of S go F° and Is donoted S)%°.

Thus, the preshea! structure is considered only over some points of EK.

Often several presheaves are of interest on the same base [.

In sftuations |ike that ve vant to know how to relate thes.

let § = (s, 8°) and T = (1: A) vo presheaves on §
of the same species SICHA,

Then by a homomorphisn

0:5 -=7T

of one presheaf into another we shall wean a family of SIGHA homomorphisms

o = (a| a € E) such that for all a,b ¢ KE:

a<hbh “>9, 08, =) 0o0,.
The condition above Is explained suggestively by stating that

the following diagram of functions is commutative for all a <b:

a

a a

hsLI"
a

Ii:
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¢ In less formal terms, the way the structures In 5 are

related can be modeled In terms of the structures in T. Thi: notion

is important in the semantics of picture identification. We take S$

. 4% 4 "geometric" presheafl and T as a “semantic” or "Vorld-wode]”

| presheal and translate the geometric information of © into a verld-
node] informction of T.

s As pointed out, in plcture-theoretic applications presheaves

are casencially families of structures of certain species, interconnected

by transfermations, expressing continuity.

s With every presheal § of species SIGMA on & base < £E, €>

| ve associate tvo faportant structures of the same species SICA,

provided that certain existence conditions are met. Before ve show how

® this is done, two auxiliary notions are in order.

Namely, the direct product bred S, and th: direct sum
Sum § . If S are plain sets, than Prod § (s Just the Cartesian
a ct’ a acE 9

® product of the sets S, and Sum S, Is the disjoint union of these sets.
act

Clven a presheal S of species SIGMA then by the section

* Projective or faverse limit) of S§ we mean the structure Sect (S$) =

[serrods | yablagvasp (o) es].aCE

Thus, Sect(S) of a substructure of the direct product

’ Prod % (provided that {t exists).

’ Civen a presheal S of species SIGMA then by the ¢osection
(inductive or direct limit) of S we understand the structure

’ Cosect(S) » Sum s,/ %
a

Wer
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vhere aun $,* (<a> #S_] denotes the direct sum of the
family (s,) for ack and = fs the sallest equivalence relation

on the direct sum, containing the binary relation #;

Cas ECHL > > Jesami(gle)=s (v) },
vith SL and tes, .

Thus, Couect(S) is o quotient struciure of the direct sum

Son §_ (provided that ft exists). :
' Given a presheal S, (t can be shown that {f "o" {(s a figs
clement of K, then the {somorphisn

S$ T Sect(s)
¢

holds and algo

0:8 =» 7T => Gy 038-0 LA

In other vords, the structure Sect/S) can be {dent ified vith the structure

S.o assigned to the first element e¢ (n KE. In applications, Sect (S$)

corresponds to the structure of particular texture elements,

ually, {I e’ 1s a last element of E, then

Ser Cosect (S)

and

0:5 = T => o, Se Tye |

Again, CosectS) can be fdentified with the structure J assigned

to the last element ¢’ (n E. In applications, Cosect(S) corresponds |
to the structure of the textured region.

Sheaves are presheaves satisfying additional axioms. A

definition of a sheaf {n fts full generality requires several additional

1.8



GO

o technicalities. We shall present therefore such a definition vhich fs
free of abstract conceptual constructions, general enough, and yet

still relevant in picture analysis.

y Let < Wind, GC > be the lattice of windows over the cellular
space X. Consider a presheaf (Sy. A) over the vindow system
<Wind, >. Then this presheaf is called a gheaf if for any family

’ of vindous (VJ |, such ther W gw ve (v)"
“the following isomorphism is valid:

S v = Sect (S|(v.}).
& i

Thus, loosely speaking, a sheaf is a system of structures over

8 lattice of vindove, vhere each structure represents one particular

8 texture.

Dually, we call presheai (Sy. A) a gogheaf {f for any

family of windows (v,) «] SUch Liat WGW (v5 <i
$ the following {eomorphism is valid:

S,u = Cosect (sj(w.)}.
{ i

§ A more direct definition of a sheaf with a fairly clear picture-

theoretic interpretation {s given below.

Consider a presheaf § = (sy: 5) of structures over a
fo cellular space X, {.e., on the lattice of subsets < Sudb(X), c >.

Then S 1s a gheef over X precisely whan for any family Lv, | tei)

of subsets of X with Vey Vio the following two conditions are
satisfied:
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(1) Uniqueness Axiom:

Yi Vv {a Vv tat? ’ ’ éBy (87) =p, (87) =>8’ = og’;
{ i

) Existence Axiom:

Vi v Vv .
vi, 8, Vv s,) ” By) nv (8,01 “> sYk [8 (s) . 5.)iN}

k

’ '

vhere r,s’,s €Sy.8,CS, '84€Sy, , ’,€5, »$4, ES, ;
{ J k

The condition (1) says that {f the structure elesents s are

legally identical, then they are also Llobally identical. That fs,

elements are uniquely determined by local daca.

The condition (2) says that {f we have local data which are

cospatible, they actually "patch together" to fore global data.

This might appear as a perhaps unduly sophisticated way of looking

at the vindowing process in which by overlapping windowing we are

capable to reccver the unique structure of the picture from several

local structures. The definition of a sheaf will turn out to be a test

method for texture region f{deatification.

The picture - theoretic substance of sheaves is this. A sheaf (

is essentially a system of "local coefficient”. In picture ~theoretic

applications we start by assuming that a pictute has certain local

pictorial properties which are captured by a structure Sy of certain
species. We then express these properties in terms of the properties

of the structure gheaf S over a picture region. Finally, we app'y

the theory of sheaves to deduce certain global properties of the picture.

Consequently, the importance of sheaves in scene analysis is simply
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” in giving relations between local and global properties ot a scene.
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