d _ NN

SR, U T, S S e ROV PR A AV, P, W S .

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-174

STAN-CS-72-303

CORRECTNESS OF TRANSLATIONS OF PROGRAMMING LANGUAGES
-- AN ALGEBRAIC APPROACH

BY

FRANCIS LOCKWOOD MORRIS

AD-A954 771

SUPPORTED BY
" NATIONAL SCIENCE FOUNDATION
AND
° ADVANCED RESEARCH PROJECTS AGENCY
~ ARPA ORDER NO. 457

AUGUST 1972

®
E APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION 15 UNLIMITED (A)

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

® -

Q.

S STANFORD UNIVERSITY

) = E-_LECT E
e ! 1985

= N1 T

E

m 5. &

.-""'_1\\
¥ e / L AT \
] STANFORD ARTIFICIAL INTELLIGENCE PROJECT AUGUST 1972 : roe,

; MEMO AIM-17h N \ Movg,,
A .i'._'__..-f'
P, COMPUTER SCIENCE DEPARTMENT Accession For
] REPORT CS-303 NTIS GRALI
@ DTIC TAB
' Unannounecsd
: Justification. ___ _ __ |
: CORRECTNESS OF TRANSLATIONS OF PROGRAMMING LANGUAGES By
T -- AN ALGEBRAIC APPROACH Distribution/
: . Availability Codes
- Avail and/or
Dist Special
Francis Lockwood Morris ,4
® [J
‘ %g BIBIAAIIAINTIN
1 TVANINUUNGUET
] | Abstract
\
]

; . Programming languages and their sets of meanings can be modelled
'Y by general operator algebras; semantic functions and compiling functions
¢ by homomorphisms of operator algebras. A restricted class of individual
programs, machines, and computations can be modelled in a uniform
manner by binary relational algebras. These two applications of algebra
to computing are compatible: the semantic function provided by
interpreting (runningﬁy one binary relational algebra on another is a
® homomorphism on an operator algebra whose elements are binary
relational algebras.

Wi Re St

Using these mathemati al tools, proofs can be provided systematically
k of the correctness of compilers for fragmentary programming languages,
each embodying a single language "feature". Exemplary proofs are given

: for statement sequences, arithmetic expressions, Boolean expressions,

| @ assignment statements, an&‘while statements. Moreover, proofs of this

d sort can be combined to provide (synthetic) proofs for, in principle,

[many different complete programming languages. One example of such a

> synthesis is given.

ﬂ

This research is supported in part by the National Science Foundation
under grant number NSF GJ-776 and in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).

The views and conclusions contained in this document are those of the

TN - e W W o

¢ author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
E Projects Agency of the U.S. Government.
Reproduced in the U.S.A. Aveilable from the National Technical
Information Service. Springfield, Virginia 22151.
. i
4
N e T 2o O A B A B R R A I P YRS TR

Table of Contents

DA AR T
%.l";"i"} iri‘rl iy &. ;ﬁ"r et

o

e
0. Introduction, Notation, and Organization R
I. Modelling Computing Devices and Computations by
® Binary Relational Algebras
II. Simulation and Categories v ¢ v . . .
ITTI. The Relation Computed by a BRA
° IV. GSemantics of Programming Languages
V. Compilers are Homomorphisms . . « « . &« « . . . g 3 :
VI. Semantics of BRAs is a Homomorphism
e VII. The Compiler Composition Theorem
VIII. The General Plan for Simple Proofs of Compiler
COFrecCtness . « « « v v« o 5 ¢ s o 5 5§ 6 s 6 5 & 4
IX. Proofs for Examples SS, BE, AE . . . « « « «
y X. OStores and Assigmment 9 I
XI. While Statements ¢« ¢ ¢ v v v v v o v o
XII. An Exemplary Synthesis
» XIIT. Conclusion . . ¢ ¢ ¢ v 4 v 6 4 o o v v o o v o o o o o u
References . . « ¢ + ¢ v v v ¢t o o o v o v v s o o W
@
(=
<
ii
c

TN ol e S gy

16
26
29
36
45
54

65
69
81
9k
100

16

124

A T

¢

&

0. Introduction, Notation, and Organization

The aim of this work is to contribute to the mathematical theory
of programming language semantics and of translations from one programming
language to another, and in particular to bring within nearer reach the
feasibility of proving the correctness of rules (compilers) for performing
such translations.

McCarthy [McC 62] appears to have been the first to have drawn
attention to the possibility and desirability of making such proofs, and
the approach to be followed here agrees with the essential points of
that which he proposed: that a program should be regarded as denoting
a partial function; that a compiler is a program-valued function of
progrems whose responsibility is to give a result denoting the same
partial function as did its argument ("same", that is, after making
allowance for any necessary encoding of program data and decoding of
progrem results); and that in all reasonable cases both the denotations
of programs and the effects of compilers can be given by definitions
which follow the abstract syntactic structure of the source language
progrems, yielding the denotation or translation of a complex program by
some operation on the denotations (respectively translations) of its
syntactic constituents.

The development of general techniques for proving properties of
algorithms, in particular the equivalence of two algorithms, as initiated
by McCarthy [McC 63] and carried on by Floyd, Manna, and many others,
has provided us with a sufficiently powerful theory to make us expect
that if we are given an algorithm for compiling from one language to

another, together with algorithms (interpreters) for finding the result

e N e L M € T X A

of a program applied to data in both languages, and algorithms for

b G e Y

4

transforming between source and target data representations, we should =
in principle be able to find a proof of the correctness of the compiler

(supposing it to be in fact correct). Such a proof was actually carried

o X s Ly

out by Painter [Paint 67] for a small language. Encouraging as his G?
result is, it may be said that it also provides a warning that the bane

of computecr programming -- the natural incomprehensibility of large and

i o e

even medium-sized programs -- carries over in full force to proofs about
programs.

It is natural to hope that if we can find more structure in the

e Sl S ot e

compiler-correctness problem than in the general equivalence-of-algorithms
problem, we may be able to give to compiler verification the characteristics

of a typical area of applied mathematics, in which small results with

v S0 S SN BN

intuitive content are proved once and applied many times, and to liberate
it from the incomprehensibility and duplication of effort so characteristic

of programming. The main goal of this thesis is to demonstrate that this

B S S,

hogt can to a considerable extent be realized.

ok O

gl P

In the author's opinion, the essential first step in structuring

(8
0}

the compiler-correctness is to reject the view that the semantics of a

IR e

programming language may be given by any algorithm for getting a result

I
)'_*42 .

from program and data together, and instead to demand the literal

- :;_“tLv’ 1';

assignment of meanings of whatever mathematical type may be appropriate

-- generally functions or relations of some kind -~ directly to programs

8

)
%. and program constituents. Having madc this decision, then even

regarding a language and the associated meanings merely as sets, we

hre T Su

ki

have that proving a compiler correct is always proving the commutativity

of a square diagram of the form:

R PE

N
=
.-;
h,
3
‘.

5'7-

“: 'I‘.*i%."i;;\ -] ‘i.“l.? {"‘-
!

P RN sy .‘ﬂ’r 'r'u e TR i D R ,}aﬂ’\???‘ TN 2309
Wa’“, ~Jei i e L i .. i A 1 o TRIEIE

h

R R R R N N TR T, TSRy S, DG r gy, (W, Sy

source ., target
lanmage 7 lanpuage
compiling
Funclion
souree Largel,
semantic semantic
function function
v &
source target
meanings ¢ meanings
decoding
function

Insofar as possible, we would like to consider the mathematical
properties of the functions indicated by the four arrows, rather than
properties of any particular programs for computing them. To succeed
in this aim we will have to be able to give mathematical descriptions,
rather than descriptions by programs, of these functions. (And indeed,
in applications where the correctness of an actual compiling program
must be proved, an additional step, ignored in this thesis, will be
needed: a verification that the compiler does compute the compiling
function which we have discovered to be correct.)

We can do better than to regard the corners of the above diagram
merely as sets. We shall make extensive application of the idea of
Burstall and Landin [Burs 69], that it is possible to recognize an
algebraic structure in the source language, and to impose corresponding

structure on the other corners of the diagram, in such a way that the

arrows become not merely functions but homomorphisms, and many results
depending on an induction on the structure of programs can be obtained
in a uniform way as applications of basic results of (universal) algebra

about the existence and uniqueness of homorphisms.

TR R

- 7

TR R T I T T T e T Ve e e Vs R T ey sy e T '

A second application of algebra to the theory of computation of
which hcavy use will be made in what follows comes from Landin [Land 70].
The idea here is that each single program can be regarded as an algebra,
of which the operations may be taken as partial functions, or somewhat.
more generally as relations; likewise any suitable interpreting machine
for a language can be regarded as an algebra of the same sort. The
possible computations of a given program on a given machine then become
a product algebra derived from the program- and machine-algebras.

Landin's idea will be developed here only for the case that all
operations of’ program- and machine-algebras can be taken to be binary
relations (or unary functions). So restricted, its applicability is

certainly much more limited than is that of the programming-language-as-

algebra model; nevertheless, it makes possible a uniform treatment of a

surprisingly large class of examples. (Our terminology will be to

apply the abbreviation "BRA" -- for binary relational algebra -- to
these program- and machine-algebras, and the phrase '"operator algebra'
to general language- and meaning-algebras.)

The specific techniques of compiler verification we shall develop
will be primarily applicable to a situation in which the source language
is an arbitrary operator algebra, but the target language, as well as
being in its entirety an operator algebra, will also have its individual
programs be binary relational algebras. It is not claimed that all
instances of compiling can be adequately modelled by this scheme; rather
our restriction on target language-algebras biases us towards modelling

compilation into low-level languages. The modelling of target programs

by BRAs has a claim to be called natural to the extent to which we

e i A L e L S L0 L LA T O

believe that the ultimate fate of any program is to be obeyed by a

sequential machine (a concept which does not exclude the sort of
non-deterministic machine underlying Dijkstra's concept of co-operating
sequential processes).

The development here of some properties of binary relational
algebras will be cast in the framework of very elementary category
theory. The exposition of those elements of category theory we shall
need is intended to be completely self-contained, and in any case does
not go beyond, or even up to, the limits of what is contained in
[MacL 67]. It is perhaps necessary to defend the introduction of
terminolngy from an area of mathematics which may be unfamiliar to
most readers. The author is convinced that the concepts of simulation
and of running a program-algebra on a machine-algebra are essentially
category-theoretic notions (an insight which he owes to [deB 69] and
which also appears in somewhat disguised form in [Burs 72]) and
believes that recognition of this fact will make them better understandable.
All the same, the reader who prefers to skip Chapter II, from Definition
I1.2 onwards, and to ignore all mention of categories and functors
thereafter should find all the results of later chapters stated in
"plain language" and, except in Chapter VI, should still be able to

follow the proofs.

Notation
A great deal of the notation used in what follows is adapted from

MacLane and Birkhoff, Algebra [MacL 67].

R R A T R T

P Sl N/
Ty >

praed S

i
“'.!
X

iy
[T

"l"r"’ 5 f‘r

-_f.l

oh 3y
.t 3

. a4
Pl el S
s

-
A
o

i #
5

‘an - ®
@

¥y
T

-
i

. Ve W ¥ |
‘1215*:5
T T e

Sets: Upper-case Roman and Greek letters are used for names of
sets. For set constants, we use curly brackets and commas to give a !
set in extension, as {1,2,5} » and curly brackets with a vertical bar
separating bound variable from characteristic property to give a set

in intension, as f{x |0 <x <4} .

Operations on sets: The signs N, U, -, and C denote set

intersection, union, difference, and inclusion, respectively. We also
use 1, U, ¢ between relations of the same type, meaning that the
set operation is to be performed on their graphs. Set membership is
written ¢ . Cartesian product and disjoint union of sets are denoted

respectively by x ..d4 (.

Logical operations: Within formulas, we denote the usual truth-

functional operations by the underlined words and, or, not, implies,

iff, quantification by for all, for some, and truth values by true,

false.

Functions: By either of f: A -B or A g B we express that f

i1s a function with domain A and codomain B . Note that two functions

are to be considered as equal if and only if they have the same domain,
same codomain, and same graph.

We also use the notations f: A =B and A & B when A and B
are objects in any cetegory and f is a morphism between them (a situation

which includes the ordinary notion of a homomorphism between operator

algebras) .

Partial functions: By f: A 5 B we express that f is a partial

function with domain A and codomain B .

e " ik ey
A e N L e e
LA, T LS| y LA

L e ! DN . & . S)

R . L R T e A N TS TR ot ae

vication: If f is a function or partial function, we
denote the result of its application to the argument x by f£(x) ,

f , or even, if no confusion can arise, by simply f x .

X (However,

subscripts, together with primes, tildes, and the like, are also

sometimes used merely as distinguishing marks.)

Relations: By f: A -x B , we express that f is a binary
relationon A to B, i.e., that it has domain A , codomain B,
and graph any subset of the Cartesian product A xB .

We may also use the notation (A - B) (similarly (A > B) ,

(A X B)) in isolation to denote the set of all functions (similarly,
partial functions, relations) on A to B . It follows that the
sign : , as used so far (but beware, not subsequently) could be
displaced in favor of the sign ¢ .

We consider that (A - B) c (A = B) c (A - B) . The notation
described in the following paragraphs as being for relations therefore
applies equally to partial functions and functions.

1f f: A~ B, acA, beB, then we express by

f: awb
that f relates a to b, i.e., that the pair (a,b) is an element
of the graph of f , or what can be also expressed, if f is at least

a partial function, by f(a) =D .

Composition: If f: XX Y, g:Y -« Z, then we denote by
either gof or f;g indifferently the composite defined by
f38 : XX 2

with

e T T T e e = e s .
> AR SO RAARCE AT R SR I ATa S LTty s L LT TRV ER PRI B S T L s T e
Sod Il Cid LT T T L Jadto e {op ALt AL

TV T

Lo

o .\“’L‘

- s
N

28 FLELI PPNt il O

0t S ol

S W
»

P il A%

o R

"’.)

-

& W

8
€

f;g: xr z iff for some ye¥, f: X » y and g: ypPz
If f and g are partial functions we have

gof(x) = g(£(x)) = (f3e)(x)

Iteration and converse: If f: A A, then fk denotes the

k-fold composition of f with itself. This notation is consistently
extended to all integral powers by taking fo to be the identity
relation on A , and f-k to be the relational converse of fk B
ie., " ia'wma iff £: ara' . The notation £ L to denote

the converse of f is also used for relations with arbitrary (possibly

different) domain and codomain.

Insertions: With every instance of sel inclusion, such as
A € B, there is associated a unique function i: A - B with i: a e a 3
this is called the insertion of A into B . We may name the insertion

in passing by writing, e.g., it AcB.

Restriction: If i: Ac B, and f: B - C , we dendote hy f1 A
the composite fei , and call this the restriction of £ to A .
Conversely, if D c C , we denote (f_1'1 D)_l more briefly by f | D,
and call this the cut-down of f to D . Moreover we shall write
T j D as shorthand for (f 1 D) J D ; when no confusion can arise we

also refer to this combined restriction and cut-down simply as restriction.

Special sets and functions:

N denotes the natural numbers {0,1,2,...7 .

k denotes a standard set of k elements, namely {0,1,...,k-1} ;

in particular, 1 denotes {0} . Exception: at some places the

S 8 N T L S S g e Y e = .
e :
EATATACERL CRVE ATt

L o R NS A L TR T T

explicit convention will be made that 2 denotes the set
{Lrue, false} .

The identity function (equality relation) on a set A to itself
is denoted by 1

A "

Other alphabets: Underlined Roman capitals (as, A) will be used

for general cperator algebras; underlined curly capitals (as, g) for
binary relational algebras (BRAs). Plain curly capitals will be used
for categories and functors (as, ¢), except for the following five
special functors (defined in Chapters II and III): ® , ®, 2L ,

dnc , ac .

Functions and homomorphisms will be denoted by lower-case letters,
generally Roman for the former and Greek for the latter. Note, however,
that our definition of an algebra will make it a function from its set
of operators to its set of operations, so that an applicative notation
such as for example AU) will indicate the operation which the
operator & denotes in A .

Unanalyzed set elements will be named by any convenient symbols,

for example x, S, w, + .

Organization

The first halt of the thesis, Chapters I-VII, is theory; the second

half is application.

In particular, Chapters I-III develop the theory of binary relational

algebras as models for the concepts of program, machine, and computation.

Chapters 1V, V, and VI introduce thc¢ concept of operator algebra as a

9

- ‘-',}»r}ﬁ\'

o S R SR

\!ﬁ:}[;i 7 .t

W e T T

A LIPS ol o o W S W o o e R e S

T

=
Fy

k oy
c_.‘a«'o"“
S TR

,5.‘.

~

x p
Cc o s

WORMOMAALTD P
o,

o.:l :-l 4
G-

L2 -.;]
N
- . -
et v
(CLEE

ey

common model for a programming language and its set of meanings, and
present examples of modelling both progremming language semantics and
compilers (in Chapters IV and V respectively) by homomorphisms of
operator algebras. Chapter VI assimilates the notion of the meaning
of a program obtained by regarding it as a BRA to the notion of
Semar. > homomorphism. ZIin Chapter Vil a theorem is prove® whizh will
allow a correcct compiler for a complex language to be assembled from
compilers for simple languages each of which embodies only a single
"feature".

The second half of the thesis, Chapters VIII -XII, is devoted to
exemplary proofs of compiler correctness. Chapter VIII may be considered
a second introduction; it sets out the method to be followed in the
applications. There are three proofs in Chapter IX, one each in X
and XI -- all these for simple, one-feature languages -- , and in
Chapter XII the theorem from VII is applied to obtain a correctness
proof for a (somewhat) complex language.

The languages considered in Chapter IX are referred to as Examples
55, AF, and BI; they will already have been introduced under these names, and
their semantics and compilers defined, to illustrate the development in
Chapters IV and V.

The following is a suggested strategy for a first reading of the
thesis: Skim Chapters I - VII very lightly, attending only to the
informal exposition and the examples. Read Chapter VIII as soon as

possible; then study one or more of the proofs in Chapters IX -XI,

referring back to Chapters I - VI for explanations of concepts as the

need for them becomes apparent. Defer Chapters VII and XII until last.

10

@

I. Modelling Computing Devices and Computations

by Binary Relational Algebras

The present chapter will give the basic definitions, with examples,

of .he algebraic model of computation due to Landin [Land 70].

Definition I.1: A Binary Relaticnal Algebra (BRA) 4 1is a function

a: T - (lg] % |g|) associating with each element (operator) of a set T

a binary relation (operation) on a set |g| (the carrier of a).

To get hold of the right end of the stick, one may dc well to keep
in mind from the start the informal notion of a computation of g as

being a sequence (finite or infinite) a.o v 8, » a, + .., such

that gy ta;bka

. i1
i

Evample I.1: A finite-state machine (not that the restriction to

finitude has any particular significance for us) is normally taken to

be a function M: IxQ - Q with Q the set of states and I the alphabet.
We can just as well view this as a BRA 7t I - (Q - Q) . The relations
here are special in two ways: by being (partial) functions, and by

being total. We distinguish the first of these special properties by

its own name: a unary function algebra (UFA) is a BRA of which all the

relations are partial functions.

Example I.2: A flowchart is ordinarily written as a graph with labeled
nodes: some nodes (function boxes) with one exit edge; others (predicate

boxes) with two labeled exits; others still (halts) with none. We wish,

11

MR CA AL A AL e T

following a device of Karp's [Karp 59], to keep the same shaped graph,

but transfer the labels from the nodes to their outgoing edges (from

{' f each predicate =x we must somehow derive :wo distinct labels, say =
B e -
1 l: and n , for the two departing edges). We then have a BRA, with the
J‘“ set of nodes &s carrier, mapping each label to the set of ordered pairs
‘_'\."
Iﬁ%ﬁ of nodes connected by a so-labelled edge. It will by its construction
&N
;%: observe the rule that each node is related to at most two others, and
if to as many as two, then by virtue of a pair of complementary predicate
A
55 labels.
el
{§¥ There is, as observed by Landin [Land 70}, a one-to-one cnrrespondence
ié between BRAs and edge-labelled directed graphs without duplicate edges.
b
i In fact, by taking some liberties with the "barred arrow" notation by
Al
o R
£$} which x by indicates that y = f(x) , we can claim edge-labelled
oy directed graphs, with the edges drawn as barred arrows, as ready-made
5oy
%Ei notation for presenting small finite BRAs. E.g., if we write:
i
) 0
t"
)
o Y I&::l
-
& E F = 1 M_Lh
L3
L n=0 n=0 8:i=axn
2 2

we indicate that F 1is a BRA with carrier 5 , and with at least the

set of operators {n =0, a :=1, n=0, a :=axn, n :=n-1} each
denoting a relation : 5-X 5 -- as it happens each of these operations
relates only one pair of carrier elements -- and possibly with other

operators as well, all denoting the empty relation.

12

PR T WS WY, W\ T e T Y
R AR
" ekl "o antt b

s Y,

VG .-‘_"m'

Runnin(_; one BRA on another:

@ Given BRAs which in some way model a program and a machine, one
would expect them to determine the computations obtainable by running
the program on the machine. We shall make the seemingly over-general

© definition of an operation ® for producing from two BRAs a third
which, as will be seen, has a claim to be called their Cartesian
product.

® We first define the Cartesian product of two relations: if
R: A—xC , S: B~ D, then RxS: a,b-xec,d iff R: awc and
S: brd . I.e., if we consider the graphs (denoted here by an over-bar)

© of the relations: R = {(a,c) |R: abc}; § = {(b,d) |S: b d}, then
the graph of R xS is just the set-theoretic Cartesian product of the

two graphs, with each ccmponent quadruple rearranged: whereas

2]]
|

X

.?
Th

= {(<a:c>:<b:d>>| (a,c)eﬁ and (b:d>€§})

{((a,b),(c,d>) |(a,c)eﬁ and (b’d>€§} .

=

XS

We are now ready to define a product on BRA's

Definition I.2: If @ and fB are each BRAs with operator set I ,

L]
then 2% 5: T = (|2 x|l = |2l x|3) is givenvy (29A), =g x5 »

for ycl' .

Intuitively, the computations of g ® § are just those common to

d and B : the product can do whatever both its factors can do.

()
Example I.3: Finite state machines as above; take an input sequence,
r
e.g., the string par , to be an UFA » B o it (we use dots to
indicate arbitrary, distinct carrier elements when there is no occasion
<
to name them); then the product of a string with a machine gives all
€ 13

.W‘

B R OO

- & 1
FRPRFIFS s (PRl

alia PR S s

3w e N

Fa

S i B |

the computation sequences generated by presenting the string to the

various states of the machine.

Example I.k: Flowcharts and their interpretations. An interpretation
I is an assignment of unary functions and predicates over a domain
(of EEEEEE) to function and predicate labels; take an UFA 4 with
the domain as carrier, d: ' If 5
8: D~ {xrx|not Ip(x)} . Then if @ 1is a flowchart UFA, as above,

J: p-o{xr-'xllp(x)} ;

the product P ® § relates each (node,state) pair to its successor

pair.

The products in Examples % and 4 have a property stronger than
being UFA's: each element of the carrier is related to ah most one
other element, even considering all the relations togethér. We may make
the definitions:

Definition I.3: 2 g= U a, for any BRA ¢ with operator set T .
vel

Definition I.4: A BRA ¢ is monogenic iff 2.g 1is a partial function,

i.e., iff Laze(lg = lal)

Generally speaking, the idea of deterministic computation will be
modelled by monogenic BRAs; however, most of the theory will apply
equally to mono- and poly-genic BRAs, and so may throw some light on

(one notion of) non-deterministic computation.

Example T.5: Turing Machines. Define EF s> the Turing machine-BRA

wilh alphabet F , to be an UFA, IF: F xF x {left,right} - (Tape = Tape) ,

1k

)

&)

S A R g T Ty T T AT e T Ao AT T T S e T

<

where Tape = (N--F) xFx (N~F) , as follows:

ﬂ',g,left‘ £,8 + a00,2(0),Bep U {0 + g}

Il;,g,right: @, 158 - Qop U {O Lad g},ﬁ(o),6°0‘
where

o: N-N: nw~ntl
and

p: N>N: ntl +n

A (nondeterministic) program pF for :rF is an arbitrary finite

UFA EF= FxFx {left,right} - (Q Q) , with Q a finite set of

states.

A product s_)F ® IF is then a particular non-deterministic Turing

machine with alphabet F as ordinarily defined.

15

L e T T N B L T T A T T R R s S B R

‘s,

e

BTETR NI

Rk al

IT. Simulation and Categories

In keeping with our idea that a BRA defines the class of computation

sequences it can perform, we want a notion that of two BRAs d and R,

B simulates g if B can perform any computation that @ can.

Formally we define:

Definition IT.1: A simulation of a BRA g by a BRA B with common

set of operators I is a function ¢: |g| - || with the property,

for all yel ,

QJY;QJ < ¢5f_3,7

or equivalently,
g0
32 3P < @7
or equivalently,

-1
d, S 989

(these equivalences because @ is a function, and so we have

‘P-l;‘P c l| | and l|a| S(P;(p-l .

B

We hasten to observe that there are some very silly simulations,

e.g., the BRA 1P sy with

111 = o3 1;:0-»0

simulates all BRAs with operator set T .

Depending on the parti-ular spplication, we shall generally want

to prove more than just simulation, for example, that ¢ is invertible

and [1is monogenic, before we think we have a simulation in the

intuitive, useful sense that the simulating object will really "do the

work" of the simulated one.

16

T T T L T L e o R L T DR At S T LR TS T MR TR T M N T

OR T

abminiy .

I o

R Rt

&

el

2 arada

W I A——— .

T g e — R

:
3
:

)
1=

i ‘
<o

- .AI)..‘..

P e

Categories:

4

We next introduce a few of the notions of category theory, in order

to facilitate the development of the theory of BRAs and simulations.

y ‘!.*»"-ﬂ_"l-“f o)
= ‘l"‘.ﬂ"fl‘__f‘/ 5

Tl

Definition IT.2: A concrete category ¢ 1is a class of objects Obj(c)

together with two maps: one, UC'/ » associating with each X e Obj(e)

T

a set (the underlying set, or carrier) UG(X) , and a second, Mor, ,

¥

associating with each pair of objects X,Y of ¢ a set of functions

o

?,
A
£

(the morphisms) with domain UG(X) and codomain UG(Y) » (briefly,

1
9y
‘ﬁ‘ Morc(X,Y) c (UG(X) aUﬂ(Y)), and satisfying the following two axioms:
N o
CCl: TFor all XeObj(e) , lU(X) eMorc(X,X) "
CC2: For all X,Y,ZeObj(e) , if cpeMorc(X,Y) and weMorc(Y,z)
e then yop eMor,(X,2) .
_::3{ We extend the ordinary notation ror functionality by writing ¢: X - Y
! to express that cpeMorc(X,Y) , and we denote]'U(X) by 1, . The
) simplest example of a category is, of course, the category éens of sets,
o where U is simply the identity function, and Mor(X,Y) is the set

of all functions from X to Y . Another easy example is the category
fReln of binary relations on sets to themselves. If R: A~ A 1is such
a relation, we take Uﬂeln(R) = A, and MorReln(R,S) (supposing

U(S) = B) to be the set of all functions ¢: A » B satisfying

R:9 c ;S (or equivalently, since ¢ is a function, satisfying either

of cp_l;R;cp C8 or Rg cp;S;q)-l).

The axioms for a concrete category are easily verified for eln .

: i

B P A R e e U S) T o ¥y S P e 0 Sy e e S O e B (e [I S R

Our aim is to discover that the BRAs with any given set ' of
operators form a category, Br'ar with simulations as morphisms.
However, to facilitate the subsequent development, we shall allow this
fact to emerge as a special case of the following general construction

for building new categories from old:

Proposition II.l. If n 1is a concrete category, and S 1is a set,

then G[S] is a concrete category, where G[S] is defined as follows:

The objects of c[s] are functions A: 5 - Obj(c) » with the special

property that for all s,teS , U(A(s)) = U(A(t)) = (by definition) u(4a) ;

i.e., an admissible function has for all the objects in its range of
values the same underlying set. The morphisms of G[S] between two
objects A and B are all those functions @: U(A) -~ U(B) with the
property that for all seS , EeMora(_}}(s),_Zq(s)) . c[S] is readily

verified to be a category.

The category [-}rar of all BRAs with operator set I' , and with
simulations as morphisms, is now seen to be exactly the category
aelnT] |

We next define the important notion of a functor, which is

essentially a homomorphism of categories.

Definition I1.3: A (covariant) functor %: @ - p from a category ¢

to a category Jp consists of two mappings (the same letter % is by

convention used for both), one (called the object function of &)

giving for each XeObj(C) an %(X) e 0bj(B) , and the other (the

mapping function) giving for each @: X =Y an %(@): %(X) - F(Y) ,

such that the following two axioms are satisfied:

18

TR L L T T R T M T T b o R PO NN 5 i S W N P R PR P T S e B T T N T TR TR TR T A A AL T

T L T S e

e

Ty

BT i e

R

o R e Y B
W, TR Dy o

= * --1
- BEeG

s7a’a

LA

i

F1: sz(JX) = 13(}()\

F2: F(yo@) = F(§)-F(Q) .

Pictorially, the axioms require that any instance of the following

diagram should commute:

F(P) #(1y)
F(X) —> :-'(;D

Fyop F(y)
%(2)

The following easily verified proposition will provide a convenient

method for obtaining functors from a category of BRAs to itself.

Proposition II.2: Any functor %: @ - 5 yields a functor
581, HI8] _ 8]

given by F°1(X)(s) = H(x(s)) and #°1(p) = %(o) .

We shall want functors of more than one argument, and for this
purpose we introduce the Cartesian product of categories. Intuitively
(and even formally in the theory of abstract categories, which bear
Just the same relation to concrete categories as abstract groups do to
permutation groups) the product CxJ8 of categories ¢ and S has for
objects ordered pairs (C,D) of an object C from ¢ and an object D
from f , and for morphisms ordered pairs (P4): ‘2,D) - (C',D') , where
@: C -C' and y: D - D' , and with the obvious component-wise
composition. To get an isomorphic concrete category, we must fiddle with

this construction slightly; it is good enough to take the disjoint union

19

-
-
.f'}'-f L T o G e A e R e N e G S T e T e L R R L e E T T L T LI rr

B g g B g B R ey T T T Ty U Oy eSS 5 ¢

3
F 2
e N

‘:,'s.

et

. . o

. T

U(C) W U(D) for U({C,D)) , and if U(C) Z U((C,D)) Q-U(D) are the %
tem

injections into the disjoint union, i' , j' similarly for C"D') 5 “E:-
then instead of the ordered pair of functions (®,y) , we may take as ha
N

R

a substitute concrete morphism that function in (U({C,D)) - U((C',D"))) t:xj
LW

[

) .~1 . .~1 .
with graph (i ;931') U (§ “5¢33') -
A bifunctor, or functor of two arguments is now an ordinary functor
defined on a Cartesian product category.

It is easy to check the following distributive law:

sl .8]

Proposition II.3: (C”/xﬁ)[S] 2 G[X 5

(To be pedantic, isomorphism (=) of two categories may be
defined as the existence of an invertible functor between them.) From

this we have immediately that the statement analogous to Proposition II.2

is valid for bifunctors. el

We shall have occasion to define a number of functors on concrete |
categories. Most of them will be related to functors on the category
of sets, in such a way that the labor of proving them functors can be

greatly reduced by the use of the following proposition:

Proposition II.4: Let %: €ns - g€ns be a functor on the category of

sets to itself. Let @, B be concrete categories, and suppose %

is a function: Obj(e¢) - Obj(BH) with the properties

(1) U(H(x)) = F(u(x))
(ii) For @: X -Y in ¢, F@): LX) - HY) in 5.

Then 4 (with the mapping function of % as mapping function) is a

functor on ¢ to B/ ; we choose to call % a specialization of % .

20

b3

L
l-l"?"

g .
:,‘.L

s

R

=
s e

P

Proof': (ii), with the definition of &'s mapping function, gives us

that X9): XX) - KY) whenever @: X -Y . So we have only to check
(8) K1) =1y, end
(0) Hvd) = Kv) HP) .

e A =) = s~ i) g »
Hvo) = F(v9) = 5(y)oF(9) = Hv)oHo) . |

For a first application of Proposition II.lL, we define the bifunctor

® : RelnxReln - Reln as a specialization of the Cartesian product
functor on sets. (Following [MacL 67], the mapping function of the
Cartesian product functor x: eénsxéns - €ns is given by: If

®: A~A', {: B ~B', then @xy: AxB - A' xB': (a,b) — (pa,yb) .)
We have, then, only to specify R ® S: U(R) xU(S) =« U(R) xU(S) . We
shall simply generalize the definition of the Cartesian product mapping

function to read for relations (rather than exclusively for functions):

Definition II.h: If R: A< A', S: B-xB', then

RxS: AxB % A' xB' = {(a,b) » (a',b") |R: awa'and S: brb'},
and then use this to define the object function of our bifunctor ® on

fleln , namely:

Definition IT1.5: R ® S =

dexS]

V2 have now to verify that if ¢@: R - R' , ¥: S - S' , then
?® V(=3 PxV¥): R®S ~R' ® §' . That is, given that R;® < Q;R' ,
S;¥ € ¥3S' , we must show (RxS);(Pxy) < (®xv);(R' xS') . But, as
is easily seen, (RxS);(®xV¥) = (R;®) x (S;¥) and similarly for the

right-hand side, and moreover x is monotone for C , hence finally
RxS;@x¥ =(R;®) x(S5%) < (P3R') x(¥38') = oxwsR' xs8' . |}

21

B e o w1 a4 % i S i e b e T o4 S o Mmoo b o

‘'ne functor Q[P] » Which we also write ® , may be seen to be Jjust
the operation of running one BRA on another.

A second bifunctor we shall be wanting is a specialization of the
disjoint union of sets; we shall write it @ . Supposing
i: U(R) -U(R) D U(S) and j: U(S) - U(R) U U(S) are the injections
which copy U(R) and U(S) into their disjoint union, then we specify

R ®5S: U(R) " U(s) X U(R) U U(S) by

Definition II.5: R®S = i'l;R;i U j'l;S;J'

The proof that if @: R - R' and ¢: S - S' then
PUV: R®S -R' ®S' and that therefore ® 1is a bifunctor on Reln
(and so by Proposition II.2 on Bz'aP) is dual to that given for ® .

We may observe that Brar has an initial object, i.e., one

simulated in a unique way by every object, namely the BRA ¢ whose

underlying set is empty. Equally, there is a terminal object, one which

simulates every object in a unique way; it is the BRA j_ whose under-
lying set is a singleton, say {0} , and which maps every operator of I
to the universal (and also identity) relation {0 07} .
We may also observe that there are natural isomorphisms for any BRA ¢ :
o 4=g®1 , gd=geo , G=ge¢0 ,
and that up to natural isomorphism, @® and ® are commutative and

associative operations, with ® distributive over @ .

It is now easy to show that the functors ® and @® have distinguished

(and dual) properties; namely a4 ® R provides a product object, and

d® B a coproduct object, in the sense of category theory. The property, that

d® 3 is a product object, may be simply stated as follows: any diagram

A A A

22

e

(TP TR B L M T lug e TR e Lo e 0 g R e e S mR T @ e € sk N A R e Tl | LI Ly

Z
]
P ‘g \d
v
21—5— Qgg_q—)ﬁ

where p and q are the projection functions p: (a,b)+ a ,

g: {a,b) »b , can be filled in by a unique morphism at ¢ so as to
commute. Since we are working with concrete categories, most of this

is already proved for us; it is an elementary result (see, e.g.

[MacL 67]) that the Cartesian product is the categorical product in the
category of sets, that is we know the function ¢g: x & (Px,¢yx) is the
one and only way to make the diagram commute as a diagram of functions.
All we have to check is that the functionc p, q , and o actually are
morphisms (i.e., simulations) in /,'-xrar . This is not hard, using that
® 1is a functor. Take 1 _: /F-pB, t:g-41, and i: B®1 =245 .

B

(L:bw»b, t:amO0, and i: (b,0) b .) Then q=i°(t®la);

5
hence q: g® B - . Similarly, p: g® 8 -4 . To establish ¢ as
a morphism, consider A: Z-Z®Z, A: zw (2,z) which is readily
seen to be a morphism. Then ¢ = (¢ ® y)eA ; hence g: Z+gZ® B .
The proof that g ® B gives a coproduct object, that is that

the diagram

LN
JH
[N
®
[}
A
[}

=)
o
-

I $mm

25

R R R A R T R R AR RN T Ty (OGS IR T S T s O T

.

RS il =T

i
F)

.
-3 -

can be filled in uniquely at p so as to commute (where i and j are

the injections into the disjoint union) is dual to that for g® @3

=0 aill £ 308

given above. t:i
The product and coproduct properties have an obvious potential :]{
§ 3

for proofs of the existence of a simulation of one ERA by another: if

s

—

3

we want to show that a product 7 ® F simulates a BRA Z , we need

5 ,{'

only find simulations of Z by the factors of d ® B separately; this
might be easier, since d and [individually will each be less
deterministic than their product. Dually, to simulate a coproduct BRA,
it is enough to find a BRA which simulates both of its cofactors.

We shall here parenthetically indicate the connection between our
notion of BRA and Burstall's [Burs 72] category-theoretic model of
progrems.

It turns out that there are two fairly natural ways of regarding
an individu.l BRA as a functor, although these entail departing from the

convention which we observe elsewhere of dealing only with concrete

categories. First of all, corresponding to any alphabet I' , there is
a category & with one object (say O) such that § is isomorphic
to I‘* » the free monoid with generating set I' . The morphisms of 4
(necessarily all ;: 0 -0) correspond to the elements of 1"* ,» that is,
to the finite strings of elements of T ; composition of morphisms
corresponds to concatenation of strings. Also, there is a category
Ensrel with its objects all sets, but with relations for its morphisms
(rather than functions, as with é&ns)3 composition of morphisms is
relational composition. Now it may be seen that to any I'-BRA [there

+ .
corresponds bi-uniquely a functor /5 : & - ensrel , with object function

2k

/‘L
vt

A

-~

"
,?.‘-j;-‘--ﬁuxq

yAs\y LA

given by B+: 0w ‘@l » and with mapping function uniquely determined
by the requirement that B+: 7+ @7 for vyel .

On the other hand, any unlabelled directed graph H can be made
to correspond bi-uniquely to a category % whose objects are the nodes
of H , and whose morphisms are the finite paths in H . A I'-BRA §f
may be regarded as a labelling of the edges of some directed graph H
with labels from TI' ; hence [may equally well be regarded as a
functor B : ¥ -~ & s i1.e., as a labelling of the paths in H with words
from I‘* .

Our method, when we have a program-BRA d interpreted by (runing
on) a machine-BRA B, will be to model the situation by forming the
product g® B . Burstall, less symmetrically, models the interpreted

progrem by the composite functor g od .

25

S N T e T A s e TR s

L AR
» N
R
P U

IIT. The Relation Computed by a BRA

Informally, what we would like to say is that the relation computed

by a BRA is (some suitable restriction of) its accessibility relation,

which relates two elements of the BRA's carrier just in case the second
can be reached from the first in some finite number of steps, by the
use of any of the operations. To develop this notion formally, we
first observe that the "fuse operators" function ¥ defined above
(Definition I.3) is a functor £: Bral - geln , indeed a specialization
of the identity functor. To verify this, we need only check that

for all 7yer , a,% < 983

implies

which it does, because relational composition distributes over union,
and union is monotone with respect to c.

We next define a functor ¢nc: Reln - Reln (for ancestral),
a specialization of the identity functor, by:

Definition III.1l: ¢me(R) = U R(l) .
i>0

To show that ¢hc is a functor, suppose ®: Q=R in Reln with
Qt: A-x A, R: B B i.e., QC__‘CP;R;CP-l - Then for each k >0,
(k) -1, (k) . oT
we have Q c (P3R39) by the monotonicity of composition for
€ and because, ¢ being a function, for k = 0 we have lA c cp;l.B;qfl C
But since @ is a function, also qfl;q) € 1; , hence

(k) -1

o™ c 0™ 07 . 50 by the definition of gne , and the monotonicity

of U for ¢, we have ¢mnc(Q) c @;anc(R) ;cp-l » that is @: mc(Q) - gc(R) .

26

S IRl e e i e B B B o o M e B e

As ¢hc always produces a transitive and reflexive relation, we
could just as well say that it is a functor on Reln to JTreln ,
where Jreln is the full subcategory of Reln got by restricting
the class of objects to transitive and reflexive relations only.

We now define the functor ac: /3rar - Jrein (for accessibility)

as the composition:

Definition III.2: ac = ¢hcoy .

We also give:

Definition III.3: If g is a BRA, withsets Sc gl , Tc ld »

then ac(q) 15 | T is called the relation computed by g from §

to T (or, if S =T, the relation computed by ¢ on S).

We are now ready to state an almost obvious result.

Proposition III.1: 1If a BRA ¢ is monogenic, with Scla|, Tcl|g| ,

and in addition T£g 4 T = 0 (we are here using O ambiguously to
denote any empty relation. The equation simply says that the elements
of T are all "dead ends".), then the relation computed by a from S

to T ie a partial function.

Proof': Let i: Sc A and j: T c A be the insertions, and let
L4 - The hypothesis on T/ T now reads jjq = O . Then since

q =
4 1is monogenic, qk is a partial function for each k >0 . Let

1

r = ijac(g);j ~ , then we have to show r-l;r cly -

-1 ., -m .=-1 ., n .-
§ r ;r = U U Jsa 51 “3isq 3]
3 n>0 m>0
$:
f .. =m n .-1
. c u U Jdsq 34 5J
{ n>0 m>0
o
y et
-

T .
"').'\Lj.“r\.:\.'(‘»;‘LF.‘-V\'.* ¥

RS TR TR RN CATA A

If m=n, j;q-m;qn;j-l c j;j-l (since q" a partial function) h

d—l

.. =m_ n .-l . n I
If m<n, Jjsq 3q;] c Jsq34 5d

!
3
1
[
]
[
el

. P SR A

L S

¥
- A

. ~m n ,~1 ., _~=mn+l =1 -1
If m>n, Jsa ;3q;J Jsa 3Q 3

c ’ ’ t
~mtn+1 ‘
= Js 350 = 0

Hence, r-l;r c U U 1, = 1, » as required. |
n>0 m>0

28

T I o e b D 3 ST T BB T e e T e

AR

™

-

Iv. Semantics of Programming Languages

The purpose of this chapter is to announce the intention, and
Justify it with some examples, to model programming languages by
operator algebras, and to give their semantics by homomorphisms to

other operator algebras.

Definition IV.1l: An Q-algebra, or operator algebra of signature ,

is a function A: Q- U Iélk - |A] , associating with each operator
k>0

@ in a set Q0 a k-ary function or operation (k is called the arity

of w) ona set |A] (called the carrier of A) to itself.

Without formally complicating this definition, we shall assume
that the signature of an algebra somehow carries the arities along with
it, so that when we speak of two (l-algebras, we shall always assume
that each operator in () denctes operations of the same arity in both.
If we were to be perfectly rigorous, we might adopt some such device

as making the signature a function which assigned arities to cperators.

Defintion IV.2: A homomorphism @: A-> B, where A, B are {}-algebras,

is a function @: |A| - |B| with the property, for each wef) of arity k ,
(p(fw(al 2 ak)) = pw(tpal A5 q>ak) . We will sometimes say, especially
when introducing a homomorphism and its target algebra simultaneocusly,

that @ carries each operation % to the corresponding Ea) .

Plainly for each Q (with bullt-in arities) the Q-algebras form a
concrete category with homomorphisms as morphisms, although we shall

not exploit this fact.

29

DRI

b

L e — e S e R W T R L L TR LRI WL Ve VALY e e T e
v,

Definition IV.3: Of twou (l-algebras A and B, B 1is a subalgebra

of A (B<4A) if |B| ¢ |A]l , B is closed under the operations

of A, and for all wef} , §w=£‘w1 |_B_|kJ |B| » where k is the

arity of w .

Definition TV.4: A set X c |A| generates an algebra A if the

elements of |é| are just the finite combinations of elements of X
under the operations of A . It is readily shown that any X = lél
generates the smallest subalgebra of A containing X , that is, the

intersection of all such subalgebras of A .

Definition IV.5: An d-algebra is the word algebra, or free anarchic

algebra, on a set X (symbolized by EQ(X)) if HQ(X) is generated
by X and moreover every element of HQ(X) has a unique expression

as a finite combination of elements of X .

In effect, the elements of HQ(X) are just the expressions built
on X with the operators in , and may conveniently be taeken as some

standard set of strings over X U, e.g. the Polish postfix expressions.

We now present a basic result of universal algebra, which plays the

role of an induction principle in reasoning about algebras and homomorphisms.

I

Proposition IV.1l: (Unique Extension Lemma, Part I.) If f: X - !_@l

Ii L W &
R

=

.
vy

w4
o

is a function, with B an (l-algebra, then there exists a unique

homomorphism t: WQ(X) - B with %‘1 X=1°.

R P,

Proof'. Suppressing explicit use of induction (as indeed was done in the

e o

A4

definition of the word algebra) we see that the unique expression for

=zl

AP

30

ok

T T o e P IR e S A e I L T T e i

e

ey

W e
TR e)

cach element w of HQ(X) as a combinaticn of elements of X gives,

S

via rcpeated use of the Property of T > that it must be a homomorphi sm,
a unique way in which we must compute f(w) as a combination of images
of elements of X wunder f . Because we are never required to compute
P(w) in two ways, the function ¥ certainly exists.

Proposition IV.2: (Unique Extension Lemma, Part II.) If A and B

are {-algebras, X generates A, and f: X - |_}§| » then there is at

most one homomorphism £ A-> B with f"] X=1f.

Proof. Consider the diagram:

Wo (%)

..... »B

(Here L s T are as asserted to exist by Proposition IV.1.) First,
any T must satisfy 'f‘o'ix =¥ s because 'f‘oklx: V_VQ(X) - B is a homomorphism
agreeing with f on X, and ¥ is the unique such homomorphism. Second,

ix is a surjection, because X generates A , hence ix is right

cancellable, hence 'f'oix unique yields £ (if it exists) unique. ﬂ

Now for some examples of Programming language fragments, with their
semantics given by homomorphisms. These examples will be carried on in

later chapters.

Example SS: Language SS(V) (for "statement sequences") is the free
semigroup over the vocabulary V , with one binary operation, concatena-

tion, denoted by the operator [J . The algebra of meanings consists of

31

R N T NN TN RTINS TN TN S TR ot LT R oy i Y

functions (we could if we chose take partial functions or even relations)
on a set Q to itself, with the operation of functional composition.
Given any "interpretation" i: Vo (Q - Q) of the individual statements
as functions on Q to itself, we take for the meanings of arbitrary
sequences values of the unique extension i of i toa homomorphism of
semigroups. The basic property of the free semigroup, analogous to

that of the free anarchic algebra, is that this extension is always

possible.

Example AE: Language AE (for "arithmetic expressions") is simply

EQ(X) for any set of operators §) and set X of what we call
"variables". The meanings may be in an arbitrary (l-algebra A , and
the meaning homomorphism is of course uniquely specified by requiring it
to extend a given map or "enviromment" 1i: X -5 |é| . To call these
arithmetic expressions merely follows the example of Burstall and
Landin [Burs 69], and reflects the prograiming tradition that operations

of arbitrary arity are commonly available only for use with numbers.

Example BE ("Boolean expressions'"): This is Jjust a special case of
Example AE which we will want to consider later, got by taking

2= {A,v,D,} . There are two possible meaning algebras for BE
which we shall find of interest. The first is just the two-element
Boolean algebra B2, that is the set {EEEE’ fg;gg} furnished with

the classical truth-functions and, or, implies, not. The second is

McCarthy's three-valued logic B3 , with carrier {true, false, undef} ,

whose truth functions are most perspicuously defined by first giving a

1
*

truth table for the conditional operator:

4
Eaw
.

T oA N
b "- » ’
. BREL N
- - R
PR -

R =
',

2
l'l

£ n_5 8
P e

ol RN

32

» ie

%
Lx.

.

L

s
‘r" =

T WS TN TR 2 ~. TN e . %m0
RS T R oy >

5 .';‘"-k‘.f IR .— % n, . --,,' oY "‘.,
A e AT o o e L L T L e T

. !

P if p then q else r

true q
false
undef undef

and then defining the more traditional connectives as follows:

T
L

PAQ =af if p then q else false

PVa =3, if p then true else q

PN it Sl e

P2a =4 if p then g else true

—q =4 If p then false else true

In either case, the construction of a meaning homomorphism procedes

Just as in Example AE.

An objection which has been raised to algebraic semantics as
presented in [Burs 69] is that it is unsatisfying to have the meaning
of a program available only conditionally, only after an interpretation
for the free variables has been supplied. One would like to find
meanings which may be assigned to programs and their parts in isolation ﬁi
from interpretations, enviromments, or the like -- formal replacements

for the idea of "just what we understand by a (piece of) program". This

- -
X NT o
ERR

e
Fo ot o

want can indeed be supplied, and that without abandoning the algebraic
approach to semantics, as we shall now show.

Given any set X and any {l-algebra A , we may define an algebra %
of functions F (depending on X and A) with carrier ((X - |A|) - |A)) i

and operations given "pointwise" by Em(fl ...fk): i F’éhﬁfi(i) ...fk(i))

33

3’
P

S ’VT' i b/' P T T T TS 3 T AR A WR W e -
{ J\fv i "F. ‘}"w f.\‘ m '\\:“J JY.T'/ ".’r'«"'".:"‘g"j.\:“-‘:}l’}. _E_,z“}_\ ¢

2% AR 'ﬂ NL«1£ }

e i S i L Lo Ll o i e o L B

There is a natural homomorphism §: Wn(X) —» F , namely the

unique extension to a homomorphism of the mapping ¢: X —» |F| defined
by
Q(x): i i(x)
We may also define, for each i: X » |!_\.| » an "application" function
|F| » |A| , given by epp;: £ f(i) . We then have the

following easy proposition.

Proposition IV.3: Any homomorphism «: Wo(X) — A factors through F :

namely = = appﬂ,] X°§

Proof. First, it is immediate that app, is a homomorphism : F - A ;

we have:

app,: F (fy ... k) }-g‘w(fl fk)(i)

= ﬁ\.w(fl(i) ...fk(i)) b

by definition of F . Second, app“,\xoé agrees with « on X :

F2)
3 .. . ppﬂ,| h
x w» {i Hlx} e (X
But n is the unique homomorphism that agrees with = on X ; the

composition of homomorphisms appﬂ,‘ Xo@ must be the same as =xn . I

Observe that in the case of languages which permit binding of
variables, we may not have the option of supplying a "parameterized"
meaning homomorphism for each environment, but may be forced to take
functions of enviromments for meanings if we are to assign a meaning

to every phrase.

e AR e A e RN T X X U i a T a al

€

Tt 1.."".

SN

S >

J..': RS ._'*.._;\

LA T

%=

An informal sketch of a possible algebraic semantics for the

A-calculus will provide an example of this situation. We take for
granted the existence of a suitable domain D°° of denotations for
closed \-expressions, as constructed by Scott [Scott 69]. The aim
here is to present this denotation mapping as a restriction of a
woromerphism & which assigns meanings to all \-expressions, closed
or with free variables. We take A(X) , the \-expressions with
variables from the set X , to be a word algebra, with one binary
operation "apply" and a separate unary operation "abstract on x "
for each xeX . The algebra of meanings has carrier (x —-Dm) —oD°° .
As in Proposition IV.3 § , the meaning homomorphism, will be the
unique extension of the funection @: X - ((X - Dm) "Da) given by
p(x): i =i . Also, as one would expesct, the application operation
in the algebra of meanings is obtained pointwise from application

in D_ : f(g): i r-fi(gi) . For the abstraction operations, however,
we require an effect which depends crucially on environments, namely
abstractx(f): img, where g: d + f;, for deD , and finélly i
is an enviromment like i except that d has been bound to x s that
is:

i': yp if y = x then d else iy

We note that § carries closed)\-expressions to constant funetions in
(x "Dm) -D_, i.e., effectively to elements of D_, and so we have

our original denotations back again.

35

SR

Y S Y NN A S \waﬁ" L N

i TR B L L T e R e g g g g ———

—~

2 ¥y I FEES R W R

fi ey iy €07 g ek

PR

.

e i e e e B i e B B iy L o oo o M 8

V. Compilers are Homomorphisms

We shall model compilers by homomorphisms from one programming
language, qua operator algebra, tc another. It follows that we shall
take no interest in compilers-as-programs; we shall from the beginning
be satisfied with a mathematical description of the function to be
computed by a compiler, which will ordinarily take the form of a
specifi ~.‘on of the translation for a generating set of the source
language. This together with the requirement that the translation be
a homomorphism will by the unique extension lemma specify it completely.

The translation functions we shall consider will be of quite a
special form. Each will produce, given any element of the source
operator algebra (which is to say any phrase of the source language)

a result which is a BRA -- intuitively speaking a flowchart for computing
on a suitable machine whatever relation is the meaning of the phrase.
This means that our target operator algebra will be in every case one
whose elements are BRAs. The bulk of this chapter will be devoted to
describing a class of operations for building big BRAs from little ones,
from which we will be able to select suitable operations for the target
algebras of the examples of compilation we shall wish to study.

The example compilers we shall model will all be straightforward
and non-optimizing; the operations we require for target operator
algebras are intuitively all of a very simple sort: namely, to take
all the operands (flowchart fragments compiled from subphrases) and
"patch them together", perhaps with an additional constant fragment
peculiar to the operation, to give a bigger flowchart fragment as the

result of compiling the whole phrase.

36

A o

ST TR e SR AT T 1 0 LU T WS T B T T T e T S o I W AN e B 100
Retigoadatitaiag, }2XK}; BT e SRl N T ML

(RN 5

——

VW) i 3

D e &

B I

PRl S5 SR S

| T

A gk g ar s on? i

S o T e e

—
S s

S T R 1
ﬂ‘ﬁ"c" "-«31 1 d

Let us take up Example SS again to show what is meant. Our idea

- -

is that the compiler for statement sequences should simply carry out

L
,kE the modelling of sequences by straight-line BRAs informaliy described
ﬂ% in Example I.5 . That is, we want a compiling function w which
_' produces from, e.g., the unit statement sequence f , a BRA which looks (
v' like ':l’f . Similarly, we want x(g) = ':Ig and w(fOg) = (- & - & 2)

But since we want » to be a homomorphism, we need to construct a i

P
target algebra, call it $S: {0} - (DxD = D) , where

:"{ Dc Ob,j(f-lra.{f’g""}) , such that é\gm: (’;f, ‘;’g) - (E: -1)

?ﬁ Note that the right-hand sides of these equations do not as yet
;y denote specific BRAs because we have not said what the carriers are.
%i; Intuitively this really does not matter -- we are only interested in
iﬁ what BRA we have up to isomorphism. However, as a technical device

to assist in defining the requisite operations, we shall, as will be

P4

e S R

seen shortly, make fixed choices for the "entry and exit" carrier

,7'_]

a0

,%% elements -- i.e., those which will serve as points of attachment to
)

Yo other BRAs.

i

Eé For another example of what we want to get compilers to do, let

. »{t

ibﬁ us take Example AE, our language of arithmetic expressions, i.e., the

i

32) algebra AE = E{+ }({x,y,n,.}) . Our idea is to compile in effect

e Y

¢$§ Polish postfix code for a stack machine, that is we want a homomorphism
o

E:l..ﬂ AN AN O

L) w': AE - AE , where AE: {+,...} - U (D'(l) -D') , with

N i>0

I‘:ﬁl}l
B

D' Obj(mral® IR Ny | pere I stands for "load to the top

of the stack"; + or the like is an operator both in the algebra of

-1l
>

o T X
-“1“1{}‘

el X

[e ng
L &
S PP

57

ok |

~~
BRAc AE and in the individual BRAs which are its elements; in the

latter uce it will turn out ‘o mean, as we might expect, "remove the
top two elements of the stack, add them, and replace their sum on the

stack". We want »'(x) = ?Lx y w'(y) = iLy , and

w' (x+y) = (- o t.-) » SO We need an operation
A . 0
A5 ,:D'xD' - D' such that AE (TIx, Twy) = - & . W . %,

(and similarly, of course, for any other pair of operands).

In every operator algebra of BRAs which we define, we shall require
that each of the elements (BRAs) shall possess, as a subset of its
carrier, a certain fixed et (that is, the same for all elements.
for all operator algebras) of "distinguished nodes" which will provide
the necessary points of attachments to other BRAs.

Intuitively speaking, an operation in such an alg:<ira which dces
nothing but patch its arguments together can be completely specified
by telling the fate of all the distinguished nodes in the argumints --
that is, what sets of distinguished nodes are to coalesce into single
nodes and, of these latter, which are to become the distinguished nodes
of the result, and which are to be "undistinguished". If A 1is the
set of distinguished nodes, B is A together with as many new
undistinguished nodes as are needed for the resulting BRA, and k 1is
the arity of the operation, then we can convey just the informaticn we
need by giving a function p: AU ... JA - B . (Note that we must

—_
k times
have A c B to ensure that the result of the operation possesses all

distinguished nodes.)

38

BT *._ .;-\.--- ._‘f:f:‘:"-l.‘.::\rf,":l ,]. .‘{T“" < - .-.‘:. .

o -'.IE\

.
a_r
A A K.

'..4,
ST

4

T
‘

e U —
B 5 .

T

4,:-!
' I
i
)t’:\‘n
% A~
-3% Thus, for the algebra SS , we take for distinguished nodes the
'_ set {S,H} (meant to suggest "start", "halt"), we take I to be an ‘
A AN
,{g undistinguished node, and we expect to be able to characterize §§E]
? S by a suitably chosen function p: {S,H} U {S,H} - {s,1,H} . To be
k able to distinguish the two copies of {S,H} we give names to the 1
,“..»’
'*i injections into their disjoint union..
2
P.'F
4 i ; i
: {s,H} = {s,H} U {s,H]} {s,H}
Cﬁi and we can no+ define 5 to have the effect it should by:
e
’th
iS = S
1\¢ . iH » I
o p:
%ﬁ S w» I
"\ H » H
i f This is cumbersome notation; we have had to invent the names 5 s 1,3, 1
28
r ﬁ for objects which are of no interest in themselves. We hasten to
I) introduce a more pictorial notation, which specifies the same operation
i‘]
{m §§EJ by:
) =
3 A TN " e 0 poR
e 58 (P,Q) = \§/.——{ : >——¢)\H- ’s/ oH |
5 S H

-

e r r 'A; 2.
=P R R

(Note that P and Q are dummy variables, and stand for any BRAs

o
iLF__8

P
in 88 .) This style of definition we call a construction diagram.

A~
Having defined the algebra SS , we can now define the compiler

A~
n: 88 - S8 by its effect on the generating set {f,g,...} ; this

effect should of course be:

59

A ST S &
LR AT

T

R R R R R R R RS T TR W W s e ot
e e e e e — 2

« o

:

A
4
Ky

g

ST

X

L4

(SR

R

hLE

S kﬂq

u: ' + TT 4 % ,
H

A patching-together operation on BRAs with set A of distinguished
nodes, which incorporates in its result not only its argument BRAs

but also a constant (i.e., characteristic of the operation) BRA)

may similarly be determined by a function
p: el AU ... 04 - B

We will of course also use construction diograms to describe operaticns

P
ol Lthis gort. In particular, taking + to pe a typical operator of AR ,

0 r - A
we deldine the operatjon AE+_ by:

i 77 N e FAT N 4 &
R e O (D0,
5 H

We can immediately read off from this diagram that the set of distinguished

-~
nodes for AE is again {8,11} , and that the constant BRA involved

. + i . .
1s b - . However, the diagram suppresses information of no

+
intercst, namely what is the carrier of * ¥ + , and what are the

two undistinguished nodes introduced by the operation.

-

We complete the definition of the compiler ': AE

(=)

by
requiring, for xeX »

wW': X +m TIx

4o

We shall give the name of "constructions" to the class of
operations in algebras of BRAs of which we have just seen two examples.
Although we have a convenient notation for describing constructionms,
we lack as yet an explicit definition of what it is for an operation
on BRAs to be a construction. We now prepare the ground for that
definition.

It will turn out that for the technical development, especially

in Chapter VI, the following property of constructions will be important:

The result of a construction simulates each of its arguments (and also

the constant BRA, if any, which it involves). By the characteristic
property of the coproduct, @ , in any category of BRAs, we see that

an instance of a construction which combines a constant BRA ¢ with
arguments El’ o .,_Qk sy yielding a result which simulates each of them,
may be factored into simulations of _5'31, i ".’Ek and ¢ by

cCoOR & ... 08 , followed by a simulation of (_',@El@ ERNY by
that result. This latter simulation is of a kind we shall call a
"projection"; considered as a function it merely collapses the appropriate
cotlections of nodes to single nodes. As a morphism of BRAs, it will
have the property that the simulating BRA possesses no relation-instances
beyond those necessary to make it simulate the coproduct; that is, every

relation-instance will be attributable to an antecedent either in c

or in one of the gl . This last requirement, together with the

1]

choice of ¢ and of the projection function, will suffice to determine

the result of the construction uniquely.

Thus we are motivated to define:

v Cinit
ov e a1 _u e

‘l'

e &

L
&

R A

L1

------ - - . "

N R L L e R R T P R T e b e R D T B T
[y Spde g L e e Ly e L S e L e 1 }Ji_‘}‘ﬁﬁifk

- 5
o

y

oy

e N

2y
-

B

ST L e etet i gt ere | o

derived from 5 and if and only if the effect of o on arguments

Py --- P, 1is given by the following diagram of morphisms (simulations)

in Brar

where each ij is the injection into the disjoint union:

plegl - el O legl 0 0l s

| — R T TR NS w, = 3TSF kb S e S L B L e e
Definition V.1: A simulation p: g - £ in [-h‘ar is a projection
: 3 N oL
if p 1is a surjection and for all 7yel' , /_37 =p 54751’ g
We are now able to define "construction" and some related terms:
Definition V.2: Given sets AcC B, a I'BRA (¢, a function
p: |¢] UA " ... DA , and a set L of ['-BRAs with the property
—_—
k times
AC h’_)l for all PcL , then an operation o: Lk - L 1is the construction
r and where p: || U |El‘ e o ‘Ekl - (|El‘-A) UREYR (‘Ek‘-A) UB
G
;

is the projection (depending on the EJ.'S as well as on f) and Q)

whose effect is:
p: arp(a) for aele| UAU ... UA ,

P: X b X for xe(lgj\-A)

ho

R e L T L

o x"x

. .
R S el e]
a -

5

U

;4
Ry

_
-l

+
)
P

1
ot
o

A

=

In the case where ¢ is absent -- i.e., we have a pure patching-

together operation -- we still call o a construction, and say that
it is derived from p . In both cases we also call p the kernel
of o .

Example BE provides a more interesting application for our method
of defining constructions than those just given. The idea is to compute
the value of a Boolean expression in the Lisp (as distinct from Algol)
fashion by a series of jumps, one for each occurrence of a variable in

N
the expression. We want a compiler x": _ﬁ(X) - BE . The

W

={As v, o,
o

BRAs in BE will have the operator set {JTx,JFx |xeX} (standing for

"Jump if x is true", "jump if x is false"). We specify the effect

of x" on the generating set by

Zr

w'(X) = S .
%F
Note that the BRAs we are compiling have three distinguished nodes:
a start node, a true exit, and a false exit. The following construction
”N
diagrams give the effect of the operations in BE , and so complete

the definition of the compiler y"

L3

L] B B e A & _yﬁ".\-:.;‘ N N A, T = e T ¥a PR e e i e 3 o=t o .]
DUt D T L D T T N N B 0 M

e e e

s
Bg (P,Q) =

L
o
BE (P’Q) b
L
. BE_(p,0) -
o
BE (P) =
® \
{8} ’
s =) ’
Y
[~
e
&
Ly

le

T A e e LA

"'".*;- =

VI. Semantics of BRAs is a Homomorphism

It has been asserted in Chapter IV that the semantics of programming
languages can be given by homomorphisms. In the case of the operator
algebras of BRAs which will serve as the target languages for our
compilers, a potential conflict arises, because we already have a
natural way of arriving at the function (or, in general, relation)
computed by a BRA (program) under a given interpretation: first run
(®) the program on the BRA which is the interpretation; second,
take the accessibility relation of the product; third, restrict the
relation so obtained to whatever set of starting and finishing states
we are interested in. The purpose of this section is to set our fears
at rest, by showing that each of these three steps, and hence their
composition, induces a homomorphism which preserves whatever consuructions
may have been defined in an algebra of BRAs. What is proved here is
similar in content to the main result of Landin's "Program-Machine

Symmetric Automata Theory". [Land 70].

Proposition VI.l: If o 1is a k-ary construction (on [P-BRAs with set

of distinguished nodes A) derived from p: AU ... JA - B, and m
is any ['-BRA, then the functor P w P ® M provides a homomorphism
carrying o to the construction o' (on I'-BRAs with set of

distinguished nodes A x |7) derived from P xl,”z .

Proof. P P® 7, being a functor (it is trivial that fixing one

argument of a bifunctor such as ® does yield a functor), carries

every diagram

DO ol ROt el jare | S8 3 2

.
y

T
e)
et

g

e —— TR TR RN RN WA STWOER AW TR TR W R TR WP T GemTane L DT T T O
.

to a diagram

Recalling the natural isomorphism

e
Ly i T
X,
™

o
Y

@@ - ®q)®M = 4, MO ... ®G OM >

we see that the latter diagram is an instance of the construction

derived from P x1, , and indeed giving the result o(_al, ib .,ak) M

1
7
for the arguments —“1 @ My «-- ’—ak ® M , so that we have a homomorphism

of constructions. l

We may define constructions on relations exactly as on BRAs.
(Reln is of course isomorphic to Bra{o} » So that we may always if
we wish regard relations as a special case of BRAs.) A projection
p: R = 8 of relations ’s simply a surjection p: \Rl - ‘S\ such
that S = p-l;R;.Jj» s, and again we have that an instance of a construction
can be diagrammed as coproduct followed by projection.
In either of the categories Reln and /SraP » When we have a

diagram of the form

R I S | Ti il i o S B S i e G | el i e

i
=
o s

-

3
LS Rt Lid

O(Xl, ’ Xk)

% il DOLET R

with 1 .»1, the natural injections intc the coproduct, p

2 =

a projection, we will for brevity denote the composites

poil,...,poik by pl,...,pk =
We now have the terminology we need to state and prove the

remaining two propositions of this chapter.

Proposition VI.2: If o is a construction on I'-BRAs derived from the

kernel function P , and o" is the construction on relations derived
from P, then ac , the accessibility functor, acts as a homomorphism
of' operator algebras carrying o to the operation on relations

quceo" .

Proof. Recall that ac = gnce ; we shall show first that 2. acts as
a homomorphism of constructions carrying o to o" . This is easy;
because 7. 1is a functor whose mapping function is the identity, every
diagram in Emar of an instance of o applied to argument BRAs

Ql,...,gk 5

L N e T R A

a Lg, - Tg |

\?)"‘) . .
‘E lx “e e /lk l]\ c o /ik
e

@ ®...04 yields a diagram in Reln: E(g @---@Q) ‘

5 1 k 1 k
i
o Jf 2 B IP

.~_L:q
J“ O(g,oo.,g) Z(O(g,.",g))

1 k 1 k

“ :_;:
:;::.
d::'. and from the obvious equality of binary relations on

i

() @ U O g

2
. J)‘. -
30 (g ®...0q) =27 0...05g

2

we conclude that the latter diagram in fact displays an instance of o" ,

100

"'-, and hence we have the necessary homomorphism property for 2 :
‘ -) Z(o.(gl,...,gk)) = o'(Z}gl,...,Z‘,Qk)
i We have now to derive the homomorphism property for ac , namely:
50
3o !
-
i' ac(o(gl, B .,Qk)) = (hcoo"(ae dys--+» 8C Qk)
s 1

\.'\.
} This equation is easily established in one direction:
T
s
B aC(O(Ql,---,Qk)) = mC(Z'(O(gl,---,gk)))

- ae(o"(Zgp - 2a)

- K (r)
r>0 [1<j<k 9 .

r (1)
-1, (s)).
U py (U [2g]),pj]

r>0 | 1<j<k § >0

n
c

= ¢ncoo"(ac dys---r88 Qk)

Yl T ST T arele sy B e Tt e Ay
L el e L A s ok
P I e R R e

AETRHIETETETRARLAE-RLTETe L R T U EL AT e T e Lw L LT T W

?
T

© ;
E

':z

To go the other way, we need to use the fact that the ancestral h

o

trives the least reflexive and transitive extension of any relation; E
hence if we can show: :
L

)

(*) o'"(ac Ql)---)ac Qk) c dnc(o"(fgl,---, ka)) E;
K

we will have, because the right-hand side of (¥) is reflexive and

transitive and extends the left-hand side, our desired conclusion:

anc(o"(ac Ays--->8C Qk)) = mc(o"(?gl,---,zgk))

ac(o(gl; L] ',Zk))

But. (¥) is just the inequality:

-1, (s) (x)
ety U () spy u U Za,p s
1<j<kl? s>0 r>ol1<i<k *3

and this is true by virtue of the inequality:

(*%) pgl;(zgj) (S);pj c [pgl;ZQj;pj](s)

which holds for every pair of values of s and j . Finally, (%*) is
a consequence of I’,j being a function, so that pJ.;pJTl D lg (this
J

establishes the case s >0) and also pgl;p (this

. 1
§ = Toldgys e rdy)

establishes the case s =0). [}

In the compiler correctness proofs which will follow in Chapterc
VIIT - XTI, to obtain the relation computed by a BRA £ in an operator

I algebra of BRAs with a given set A of distinguished nodes, we shall

&
always take the restriction of the accessibility relation of £ to a
relation on the set of distinguished nodes to itself, that is (ac £) { A .
i
e 9

-.*1

ek

(In the ordinary case that B 1is the product of a program @ and a
machine 7, then A will be the Cartesian product of the set of
distinguished nodes of @ with the carrier of 7 .) This will not
always give a result in accordance with our intuitive notion of the
relation or function computed -- note especially that (ac gﬁq A

must be reflexive -- but it will turn out that by the choice of a
suitable decoding homomorphism (from the algebra of relations computed
by target language programs back to the algebra of source language
meanings) we will be able to obtain the correetness results we expect.
Taking this uniform view of what is the relation computed by a BRA
will allow the application of the following proposition as the final

step in obtaining target language semantic homomorphisms.

Proposition VI.3: If we have an operation ¢hceco on reflexive and

transitive relations, where o is the construction derived from
P: AU ... UA =B, then restriction to A , that is the mapping of
relations R + R]!X , acts as a homomorphism carrying ¢hceo to tne

operation (3 A)egnceo .

Proof. The required homomorphism property of (q A) , for an arbitrary

instance of ¢hcoo which we may display as the diagram in Treln

\ A

1 . @

S T 2
'
,.'(' o -\- -
.) >

S e e e o B o o o o

R T T T

is the equality:

(amceo(Ry,..,R)) JA = (ancoo(leA,...,Rij))jA

MAPr: | el e

Y

The inequality O is immediate, because

y =

o(Rl]A,...,Rij) = o(Rl,...,Rk)jB ;

and, since restricting after forming the ancestral rather than before
can only produce an enlarged relatinn, we re
anc(o(Ry, - 5R) |B) < (ac(o(Rys-.-5R))) {B ;

therefora

i

(anc(o(Ry5.--,R,) | B)) | A

" Hish TRTREAINE Mt | Sl R i =

(mcoo(Rl]A,...,Rij)) 14

S (amec(o(Ry,-.-»R))) {B]A

(@nceo(®y, - -R)) {4

In the other direction we have to show:

i i
u AR 2L T I) A
i> L1<j<k 9

T N ——
E o e e el ade g

i ,
-1

= U U - YN FAFICIE PORICE PO I B P :

i>0 L1<i<k i
& &
] 1]
Because p 1is a projection, and so can neither coalesce & node in any h

-

|RJ.|-A with any other node, nor map it into B , we can have i

- (p.;pgl): a b a' only if either a,a'c¢A or else i=j and a = a' '
Hence for b,b" B , we can have f.

[]

i

-1 -1 ’
P, Ri P, P, R, o gl

7] br——3 a+—=p o' —13y b, J)a"l Ji«:"‘ Jab" :
5

"'-

i

51 ‘_

@ -
P 0
=

T D L D Tt e A MM

only if «,a"' el . and either a',a"e¢A and b'eB as well, or else
i=J and a' = a" , in which latter case, since Ri is transitive,
it must already be the case that Ri: awra"' . What we have just shown

is that:
(p;l;Ri;pi;pgl;Rj) B ¢ [:(p;l 18)5(r; 18)5(p,18); (pglJ 8)3(R;4)3(ps14)

-1
U (p.

1

JA);(RiQA);(pi'\A)] (E

An analogous computation may be made for as long a composition of any

of the k relations (pgl;Rj;pj) as we like; hence for each m >0

we have:

[

—l . . i
O<§_J<m[lsljjsk (PJ JA)s(leA)s(Pj1A)] JB ’

hence the same thing with "] A " in place of "jiB ", (since AcB),

and hence, taking the union over all non-negative m , the desired

inequality. l

In the above propositions and procfs, constructions derived also
from a constant BRA ¢ have been left out of account, but this was
purely for notational convenience. The proofs dealt solely with single
operation instances, and it is plain that nothing changes if one of

the g% or R. 1is made a constant characteristic of the operation,

rather than an argument to it. Combining this observation with

o Propositions VI.1,2,3 we may assert the
|
Result: If o 1is a construction on I'-BRAs derived from

P: |l UAU...0A~B and ¢, and if 9 is a I'-BRA, then the

o
mapping P v (ac(P® M (Ax|7m|) is a homomorphism of operator
algebras carrying o to the operation (ij |7]) e Moot , where o
° is the construction on relations derived from P xllml and ac(C ® 7_7() s |
In some of the applications of this result which follow, in
particular in the proof of the compiler composition theorem in the
@ next chapter, we shall assume that we always have A c |Q| » and that
P: ckhec for celcl-A
Letting
®
P =4 D](AUAU...04) ,
we see that our k-ary construction o is exactly that yielded by the
® (k+1) -ary construction derived from P on fixing its first argument
to be @ . In this case we shall say loosely that o is derived from
P and ¢ , and it will be strictly correct to say that o is carried
e to the operation
(JAax|m])emeoor
& where o" is the construction on relations derived from 5- Xllml and
(ac(cem)) (ax|ml)
55
€
e ey L T T e A e D e S LR o T e

VII. The Compiler Composition Theorem

The theorem to be proved in this chapter provides the essential
tool for compounding simple results about compiler correctness into
.‘i complex ones. Intuitively, it amounts merely to the observation that
if we can compile each of the individual operations of one machine into
a program for a second machine (or even, what is a weaker assumption in
o general, compile each element of the generating set of an algebra of
programs for the first machine into a program for the second, and also
the program fragments from which the constructions of the first algebra
@ arc derived) then we can compile any program (belonging to the algebra)
for the first machine into a program for the second.
We consider an arbitrary (J-algebra L of the sort that might be
® the target algebra of a compiler, that is an algebra of BRAs, say with
|£| c Obj(ﬁrar) with a generating set X = {Ei| ieI} for some indexing

set T , and with each k-ary operation L~ (for wxef)) being a

» construction derived from a kernel ihf AU...UA-B, and from a

k+l

constant ['-BRA C® . (We are here assuming A c |Cw| ; this turns
C out to be no restriction in practice. Recall that A is the set of
distinguished nodes some of which may be identified from the several
operands as specified by ﬁw in the process of "patching together" the
S argument BRAs of QD to form the result. The set B contains all
of A, in order to tell us which are the distinguished nodes of the
result; B may also contain some other elements, used fgr images
@ under ﬁh) of collections of nodes which are simultaneously to be

identified and to become undistinguished.)

5k

o T A O P o N AT 1 G b A LR S CR A AT T ERT AR R R TR
RN e, ,”ﬁ%{}"hfudi .x ly‘ffiia‘fﬁs‘f‘f‘ﬂ}‘**? AT T T
o ¥ L e 2By al b Ml =1 s L v o x > ' o 2 . o A p. b

4,<'
]
:é.u

e = A By 2

i

el o

S P~

4

Thet]
e g
P

'S

Iy
e
A

k-
i
ki

¥

AL -
e |

SR W
it

et

1t
3 ":';
i

gt A

We recall that the effect of l"w on operands El’ oo "Ek is

given by the diagram

N

Cwep O... 0p

Ly(Pys -+ s8))

with p a projection, and (p{A U ... U A)|B = 5&)

We suppose, as is our standard practice, that the semantics of L

are given by running its programs on a machine 2, with |?_7l| =M

that is, we have a semantic homomorphism @: L - S , where

¢: P+ (ac(P® M)] (AxM) (cf. Propositions VI.1,2,3). § , the
semantic algebra, has as elements relations : AxM =X AxM , and receives
an induced {J-algebraic structure as demonstrated in Chapter VI.

We shall now assume the existence of a correct compiler w applicable
to the SN and to the CW , producing A-BRAs (i.e., BRAs having an
arbitrary and in general different operator set A) and will prove,
subject to a number of hypotheses, that u» can be extended to a correct
compiler (homomorphism) from L to a language (Q-algebra) K of
A-BRAs; we denote the extension by extend(s,L) . The hypotheses are
somewhat lengthy; we shall therefore expound them separately before
getting down to the statement of the theorem.

The first two hypotheses are mainly a matter of convenience; a

spuriocusly more general theorem could be had by replacing the set

25

=T = e > e

RN IY SN A S YR S e "REAY SR A E T Y N R R S S ML
L L L A S o L T A S LI L A)

inclusions which they call for by suitable mappings. The first

) asserts that the results of s contain the right carrier elements
to permit them to be patched together by the iw .
Hypothesis 1: For each P.eX, AcC |u(gi)| s and for each wefl ,
@
Ac |ncw)]
The second will make the states of our translated programs directly
® comparable to those of the originals: we may suppose that our A-BRAs
will be given their semantics by running on a particular A-BRA (machine)
Mm', with M' =, |m'| , and we require that M be a subset of M' ;
@ i.e., to give the inclusion mapping a name:
Hypothesis 2: pe Mc M
@ We also make the abbreviation:
=. ; . 1
@ =3¢ lep.. AxM c AxM
@ We may define a semantic function ¢ for A-BRAs,
y: Obj(Ara®) - (AxM' =% AxM') , by
y: Bwac(Bom') 1 (A xM')
<
Moreover, thanks to Hypothesis 2, there is an obvious way of "decoding"
relations on A xM' as relations on AxM , namely restricting them;
e we therefore define the mapping 6: (AxXM' =X AxM') - (AxM-X AxM
8: P P (AxM)
We may now state the main hypothesis, which asserts that u correctly
¢
translates the bits and pleces of which L-prc’rams are built.
56
=
i A T D T T D A S R b

e ——

i® WA W D 2%

ey

L
b

R R I A S L. S W . S S TR Tt . VarCE WL

Hypothesis 3: The diagram

X U {cw| we} —23 obj(aral)

l- |

AxM-x AxM (—Q— AxM' =% AxM

commutes.

Unfortunately, Hypothesis 3 does not claim as much as we need; it
might be that some of our relations yow(P) relate elements of A xM
to elements of A x(M'-M) in such a way that when these relations are
compounded, '"too much" gets computed even from A xM to itself. We

therefore require that all our relations should map A xM into itself:

Hypothesis 4: For PeX Uy {cw},

Yeu(R) 1 (AxM) = (yen(R) | (AxM));0

or, to say the same thing in more uniform notation:

Qsyn(p) = G;ﬂrou(g);e'l;e .

We may take advantage of Hypothesis 1 to define our {i-algebra K

j of A-BRAs in a natural way: K is generated by the set {u(u’_’i) | ie1} ,

v
SR
.

J@h

and each operation 5» s for wefl , is the construction derived from

5&) and x(Cw) . Informzlly, we will build up each K-program in "Jjust

e i
i

_—
‘Y

N

i ol |

the same way" as its corresponding L-program. The unique extension of

u,’l X +to a homomorphism extend(u,g): L - K evidently exists; it is

,ﬁj~

the function which carries out the just-described correspondence (but

see the remark at the end of this chapter). Having made an -algebra

- e
" e

SR LR CCEVATE R f il a"}"
< -}f&n\m\‘tﬁl\‘?ﬁ}ﬁ}{} ST -\\Ix‘ 0

out of our A-BRAs, the semantic function becomes, from the result

of Chapter VI, a homomorphism, inducing an 2-algebraic structure on
its codomain; we denote this latter (-algebra of relations
: AxM'"-X AxM' by R .

We are now in position to state the result of the present chapter,

which asserts the correctness of extend(n,g) .

Proposition VII.l. (Compiler Composition Theorem): Given Hypotheses

1, 2, 3, and 4, the diagram

- extend(u,L)

1=

|tn
s

N

commutes.

Proof. What we have to prove is (i) that the diagram commutes for
the generating set X and (ii) that & is indeed a homomorphism
of Q-algebras (we already know that ¢ , ¥ , and extend(x,L) are).
But (i) is just part of Hypothesis 3; only (ii) remains.

To prove (ii) we assume, for arbitrary we? of arity k , that

§: Rj k»Sj (1 < j <k) , and endeavor to show:

(%) §: (Rl, ...,Rk) [§w(sl’ ""Sk)

é‘x’

£ it turns out, in order to prove (¥) we need additionally that the
property which Hypothesis U4 claims for the generating set of R holds
for all R‘3‘3| » hamely:

(x%) O3R = e;R;e'l;e

58

N T N L i e N N Tl e N T Ny T N T b Sl e e
e T L o S B A S

4

-
- A

Ta e T AET T

v
. '
s I

il « SR

N B
N N S AN N SNy

- B W L 3 it
o o e

b

b

e R'!;":("' ;

—

e R RSN TR AN s Er LW e s g o

Hypothesis L4 gives us the base for our inductive proof of this
property. The induction step can proceed simultaneously with the
proof of (¥); that is, we may additionally assume that (**) holds for
each of R.,.. .,Rk > provided we can then additionally prove that it

1

holds for B(D(Rl, ,Rk)

As we recall from Chapter VI, we have:

R (R

By(Rys--oR) = (ac(od)(Rl,...,Rk)))j(AxM')

where od) is the construction on relations derived from ﬁwx lM' and

(ac(n(Cw) @ M'))] (AxM') . If we make the abbreviation:

Ry =q¢ (ac(n(cw) @ 7m')) I (AxM')

then we may diagram this instance of Bw as:

A%

ROGDR @...@R

(] (A xM')) sacop’

B(D(R, g .,Rk)

where the projection p' is in fact the kernel of od) :
' = pwlec
We write as usual for the composite of p' with an injection:

t - |°"
Py Zar P °%y

and we define:

SR e

go that we can write:

R (R

_(L) l,lll,R

»

]
(@
e &
=
G
~
b
bed
=
N

i>| o<j<k Y

Similarly we may write:

s (5 8,) U u sy .] (A xM)
\Dq9 ey = . X)
el : i> \ 0<j<k !

o = L N .
with 8, = ac(cw @ M | (AxNM) , 8 =P, 38,5p; , and p; ‘the j-th

component of p =4f ﬁwylM :

Hypothesis 3, in its application to Cw , simply tells us that
6 RO - SO , and Hypothesis 4 in its application to C®w simply asserts
(*¥x) for R, ; hence we see that we have completely assimilated R,

to the other RJ.'s » and need not give it any further special treatment.

For conciseness in what follows, we make the abbreviations:

*
U = U R.
arf 0<j<k J
and
W =af U U(l) ’
i>0

and we also give names to two more inclusion mappings:

i

MmACB ,

and

Vo Sgp lep,:BngBxM s

.‘a -7])".1‘ r '}fﬁ"r’- W 1— ; :. :, :‘_I'}' i 2[ﬂ.a \‘? \S" 3 “::*’"".:“Ww—\';:““"r H.‘\,‘N\“f'{.-: k."‘k,.y.,-.'iﬁ. ‘){}‘ "e N

"\3::1?%\ 1=

s R N I T W O T B i L GO E R L QO TNy s g ! o g

so that we have

(Rpy--oR) = WY (AxM) = (MxL,,)sWs(T ™ x1,,)

BplBys o

The crucial part of the proof cnnsists in showing that an analogue

of (**) holds for W , namely:
-1
(%) HUHYRHEREH |

*
It is easy to show the desired property for the individual Rj

(0 < j <Kk)
*. -l. L] '
\),RJ-’V sV = \)sPJ- sR.PLISV 5y

-1

= P.j ;G;RJ. ,G’p

= p7i65R, D! | (by (¥¥))
J J7d

= \);R

The property trivially distributes over union to give:

Tr

Y
viUsw "3 = wiU

and then we may calculate, for each 1 >0 :

v;U(l);v-l;v v;(U;v-l;v)(l) (We are entitled to
insert (v-l;v)'s
progressively from

left to right.)

v;U(i) £ (We may knock out all
the (v'13v)'s ,
including the last one,
from right to left.)

and uniting over all values of i , we have as desired:

61

* R, "?.vw;'\-g\ r- ¥ "\-.\, » ALY "Ry
s { Y *

) t.'\x"\."- \

L.‘;.._ Ld&

- J‘" '\-‘\\w. 'u L\ " > &':.V':"‘\Y.A"“)' Ny \"
L L T o, L I s e T e A

viW

-1
viWsy T3V

Having proved (**¥), we can immedialely pay off our debt to the
inductive hypothesis by showing that (¥%) holds for B(D(Rl, g ..,Rk) ’

that is:

..l.

-+sR,) 30 O;(ﬂxlw);w;(T\'liM.);G'l,@

(Mx L) swiWsy v (17T x Iyt

(ﬂxJW[);v;W;(Tl'liw) (by (%*%))

O3B \(Rys« - +sRy)

Now at last we can compute:
8(R(Rys -+ sRy)) = W) (AxM')] (AxM)
=W] (AxM)

Wi (BxM)] (AxM)

=[v; U U(i);v-l]:l(AxM)
1>0

]

[U (\);U;\)-l)(i)]](A xM) (inserting (\)-l;\))'s

1>0 from left to right,
as before)
-[v (v (R 1 (BxM)))(i)] 3 (axm)
| i>0 \0<j<k
[U (U j (R, 1(AxM)),p) 1)] {(axm)
L i>0 | 6<i<k

§,(8(R))5 -+ 6(R,)

62

‘-.'-‘-

P AN TR W W R AR R R W o R ST L\ Tk e
a7 '_’f, ":\"" “-;'-*'n.;_ Ji' " 4 o Ji] ‘3:' - -L nJ‘X ." iy

W T W T S e i e e Ty i 7 bt o g -

X%

FRTSNLT F e

e e i e el e il i i s R e s e o A o

We have proved (*), hence the theorem. |

A typical application of what has been proved in this chapter
will of course be to a situation in which L is the target language
corresponding to some source language, N say, and in which we have
already a correct compiler \: N - L, in addition to w satisfying
Hypotheses 1-4. We will then be able to assert the correctness of

extend(w,L)eA: N - K . Hence the name, "compiler composition theorem".

Remark: It is not strictly true that the homomorphism extend(w,L)
must always exist. What is required is that in the diagram of

homomorphisms

where & extends the insertion : Xc |L| and B extends the function
% 1 X , the dotted arrow should exist; that is, the homomorphism B

should factor as
B = extend(n,L) ot

This is to say that for any w,,w, €|HQ(X)| we must have:

x(w)) = a(wy) implies B(w) = B(w)

or, less formally, that all equations (of terms built up from elements
of X with the operators in)) which hold in L must also hold in X

(with, for each P;€X , the substitution of n(gi) for @,).

63

O O R B R i U AT W ra

BTN ETNT Lk

This will be the case if the various Ei and Cw are all

sufficiently distinct so that all the equations which hold in L

do so by virtue of the structure of ithe kernels iw (which determine
the operations in both L and K), a condition which it does not
appear difficult to ensure in practice when selecting a generating
set for L . For example, the equations which are instances of the

A~
associative law in SS , and which we may depict as follows:

T, ~
Y~ ~N
PR
\%/
\
!]
w0
LI
Pd
-~ N
ARGl
\ /J
=T
\ - !
\%‘
P A
{ o
~ 7
ja o]

/
_ \\ ”
% (o a /
As;——-{ : —5 | s))
& = = H

are of this sort (although it may require some care in the precise

specification of how disjoint union is to act on sets to guarantee

that they actually do hold).

6l

e
l. \
h e

TN Lo I N I Lo T L ik e L ORI o L S A 'Sr

‘v'r:., AT _'.3,_'.
ATty

e R R R P R N RNy, S SR, S S

e

VIII. The CGeneral Plan for Simple Proofs

® of Compiler Ccrrectness

Chapters IX, X, and XI will cconsist of example proofs of compiler i
correctness. These will be simple in the sense that each compiler will

be for a language with only a single feature; hence there will be as

-

vet (but see Chapter XII, in which these results will be combined) no

o

compounding of compilers, nor any appeal to the compiler composition
theorem. The purpcse of the present chapter is to set forth the schema
which all these proofs will follow, and to introduce some uniform
abbreviations in order to make the formulas less tedious.

Given a source language (fl-algebra) L , a semantic homomorphism ¢
to an {l-algebra § of meanings (in general of relations, but usually of
at least partial functions), and a compiling homomorphism u to a target
language _f: which is an Q-algebra of BRAs with constructions as its
operations (we shall always take the algebra L to be exactly the image
of L under u), we may list as follows the steps which must be taken

to prove the compiler correct:

(i) Specify the target machine -- i.e., the BRA 9 on which
@ compiled programs are to run. This will, by the result of Chapter VI,
Jetermine the target semantic homomorphism + with the effect
y: p - (ac(pem) §D
(< where the domain D is the Cartesian product of the set of distinguished
nodes of i-programs with the carrier of . The image of ; under
is R , the Q-algebra of relations computed by L-programs; the elements
(2 of R are reflexive and transitive relations : D X D .

From step (i) we have a three-sided diagram:

65

B B T L T 0 L S o B A Y M e 2L 890 0 R N

.“E

x5

e

s

o

==

i 3
v x o }
. i -

o slie 4 o Tk S

o

@

o«

PR

2y

e

compiler

A 4

I ———— I

target
semantics

source
semantics

Ity €———— |

What remains is to supply a fourth side for the diagram and prove its

commutativity.

(ii) Specify a "decoding" function &: R - S from relations

computed to source meanings.
(iii) Prove 8 a homomorphism.

(iv) Prove that the resulting closed diagram commutes for a

generating set of the source language.

we may then -- after completing steps (i -iv) -- conclude, by
Part II of the unique extension lemma, that the diagram commutes for
the whole source language; i.e., that the compiler is correct.

In choosing & , we shall demand more than just any arbitrary
homomorphism : R - S ; we want one which will tell us how to use a
compiled program to do the work of the corresponding source program.
We may suppose that S has for its carrier a set of relations of some
type, say a subset of (El x E2) for some sets El and E2 . The
carrier of R , the f-algebra of relations computed by target language

programs, is a subset of (D <€ D) . What we want then is to specify &

by a pair of mappings (e,d) where e: El - D tells us how to "encode",

that is to choose an initial state for the compiled program and its

66

A S S D R i 100 o
i e e

-

‘‘‘‘

.
v

-.‘_-A.'\‘.’»:-:}* ‘5,)‘.‘*‘ L‘-‘,\A -\:;‘.‘:1’.{\" « P)

machine, iziven the argument of the source program, and d: D = E

2
tells us how to "decode" -- what sense tc make of a state in which the

compiled program halts (d is partial because halt states are in
seneral a proper subset of D). The effect of & is then of course
€: r p doree , or equivalently if r is a function, &(r)(b) = d(r(e(b)))
To prove & a homomorphism will be to prove for alli wefl and all
rl,...,rké;\gl that
§w(d°rloe,...,d°rkoe) = d°5w(rl””’rk)°e

(It seems likely that for some proofs of compiler correctness, more
advanced than any in the present work, it may be necessary to allow
that d and e be general relations. Indeed they might be quite
complicated relations, so that it would become a subproblem of the
compiler veritication to demonstrate the correctness of a method for
computing d and e .)

For some source languages it will be the case that the result of a
source program does not depend on any argument, so that it would be
most natural to take the set of meanings (i.e., the carrier of S) as
some set E not a space of relations. 1In such a case, computations of
target language programs will start always from some fixed element of D .
For uniformity's sake it will be most convenient to pick out this initial
computation state by means of a function d: 1 - D . Therefore we shall
somewhat artificially enforce that source meanings are relations by
choosing for |§| either (1 - E) or (1 3 E) . The former choice
is, of course, isomorphic to E ; the latter, which contains additionally
the empty partial function, provides a convenient alternative to enlarging

E by an artificial "undefined" element in cases where our intuitive idea

67

\“-

L A N S L O A A O]

I

“-_t*-rx oA

.\Jmun ?}l;c 3;"

E—
5 2t LN - i

£ 4

e
T n

E

X

A

LT ey
—feg®- "
= R . B.. L

B Al

R P ORRLPRE S i o ik

L S o sy |

g e SR N AT e e e AT

of the meaning function is that it is partial, although we are
compelled to define a total function to be the semantic homomorphism.
Here in detail is the diagram whose commutativity is the correctness

of the compiler =« :

() v ac

(-_— poac Oj'[)
4 3 ~»Q 1D

A
12 €
L,

&

B: Q v deQoe

The vertices of the diagram are all ()-algebras; the arrows are
(or, in the case of & , must be proved to be) homomorphisms. Although
in the correctness proofs to follow, the source and target languages will
have their own specific names, the letters w , ® , v, xn, Ms p, D,
R,8, 8%, d, and e will be used without remark to indicate the
entities pictured here.

An additional notational convention: recalling that each operation
Ew is the composite of restriction to D with accessability with a
construction, we shall occasionally write E; for the construction,

so that we have

B = (jD)°ac°B.<I)

68

B L B L L AL L AT LT T S S 60504)45

IX. Proof's for Examples SS, BE, AR

L
Following the plan laid out in Chapter VIII, the present chapter
will prove the correctness of the compilers defined in Chapter V for
‘. the languages SS, BE, and AE.
Example SS: We recall that the language S8 1s the free semigroup
_ generated by a set (of "commands") X . We use [for the operator
) N
denoting concatenation in SS . S8 1is the semigroup (i.e., the
associative {[J}-algebra) of X-BRAs generated from the image of the
set X wunder the action of the compiler u , namely for each feX s
L
S
n: ' ow 1'[B
H
~
® by the operation @D » for which we have the construction diagram:
AN bl N — — - -
! I ~ ?
B,k - o 21§ —()—4)
- S H
C
A~
(It may be supposed that we always take for result of S—SD a standard
representative from the appropriate isomorphism class, e.g. a BRA with
@ -
carrier {S,1,2,3,...,H} , in order to make _S_S: an agsociative
operation.)
We recall further that we assume an interpretation i: X - (A =% A)
@ of the generators of §5 as relations on a set A , and that we take
cpi » the semantic homomorphism, to be the unique extension of i1 to a
homomorphism : S§ - S , where § it the semigroup of relations on A
@ to itself under the operation of relational composition
.S_D =
¢ &

e
héa
Ty

A T N A T T T A T T S
N RIS AR Sl L L T P P

ST TS BT

A
E'S

I

,;4

Ty
x
v

s
o te ey

1 'r‘r'v)""r;";/c" s
F

h

[
™

(]
L]

,rl {l

:f'_

=y
B 2%

A4
g RISt

N
‘1“7,;‘-

2
wt-

We have now to specify the machine, that is the BRA, on which
compiled programs are to be run. For this we can take i itself,
since i is an X-BRA, with l1| =A .

A\
The set of distinguished nodes of SS-programs is {S,H} ;

- ~
therefore for ‘l!i » the semantic homomorphism : SS - R , we have:
\!fi: P (ac(p® i) j {S,H} x'A

The carrier of R is the image of |§_§| under ¥, . D is the
set {S,H} xA ; the elements of R are reflexive and transitive
relations : D -x D .

No relation in R has any instance of the form H,a w S,b , nor,
except as required by reflexivity, of the fdm X,a v» X,b . This
follows from the fact that the BRAs in /S_E have no edges either
arriving at S or departing from H .

We have the decomposition

R~ = (]D) *ac°R

=0

h
where BD

the family of construction diagrams, one for every a,b,ceA :

is a construction on relations which may be represented by

/—\ — — rd N
= \ m g -~ !
R.r = { S,ar » H,b S,b | :}——)Hc'
q”‘U \\,/’ w S my L \\”/
Sa H,c

7~
Letting e denote the undistinguished node created by _S_S_D , We may

express Br_-] explicitly by:

TO

v.,_trh,'-{‘

. . ‘f_ 'L n"‘\'n

e !
| E
:
F.
- }
QR 1{8,.,}1”A U{S,are,b | q:SawH,b} E
o :
U{e,bwH,c | r: S,b+rH,c} &
’
Then :\';
;
e -
ac(qB 1) = (AR5 1) U {S,awH,c | q: S,a = H,b and 71 §,b wE,c} h
o
il.
and :
]
® - e
QR r = (ac(qga r))] D ﬁ
4
= ZLD U {S,a » H,c \ q: S,a +» H,b and r: S,b v H,c} y
(=
= lD U {s,av8S,a}5a; {(H,bw 8,0} ;57 ; {H,c »H,c)
Define e: A -D and d: D = A by:
e: am S,a and d: H,a ~ a 5
and define 56: R - S as always by
@
B: r + ejr;d
To prove © a homomorphism, we calculate:
@
8(aR4) = e;(aRyqT);d
= {awm S;a}E{S;a + S,al};q; {H,b e S)b}5r5{H)C HH:C}§{H:C e}
[= {awS,a};q;{H,bw bl};{br 5,b};r;{H,c mc}
= ej3qidje;rid
&
- 7

EE LT T LT AT TR > ,\‘-’-"}n, \ -.}; TR M - [R e S PR T T
DT S e YUCRIINS o Y g - 3 -, - .“, .J':‘} ; 2; s
- ‘ L. WS {‘l’ ,\’ A J n.‘_"\‘. “l.g". \‘3’. _‘ k‘ t w ™ . w n { ‘ x’\‘h N 1\‘ J'.‘r_) *ﬁ\y ‘)\‘J

To check qu(f) = so\llion(f) for f in the generating set X

o we compute:

.:,; q’i
£ f—i(f)
Pl

and

; V.
o — 1, U ({s »H}x 1(£))

{ i —2> 3 {a v S,a};({S » H} x i(£)) 3 {H,a v a]

= i(f)

K{ This completes the proof of the correctness of wu . l

Example BE: For example BE we have BE = (X)

W
=N, Vv, 2}

~
20, (- is unary, the others binary), and BE generated from . {u(x) | xeX} ,

pi 10}
e where for xeX , n: X - JT}/s \JFX s with the BE-operations
o T F

as given by the construction diagrams in Chapter V (p. 44). BE , then,
is an algebra of {JTx,JFx,JTy,JFy,...}-BRAs , where {x,y,...} =X .

For the semantics of BE we confine ourselves at present to the

three-valued case, and (letting 2 denote the set {true, false}), we

assume an interpretation

72

J -\-.
8 Mo ety & e < N R ki 3 . .

R e L B e T A T, 3 AT L T T R s T TR T 5 T
ke’ .- » : ""ﬁ"' - LS 'T"."(','"- "‘v'q(_" .}_\‘ .l}'_/ be .)'.E }.‘ ’;‘:-“e e _\ <. ..\ L > et _‘L j“r_;- AN - _\\ ‘_- ,.;.“r-‘.,',y\x D '.:}',.--’.F; . "':Jr‘ P .L",\

it X =2
As explained in Chapter VIII, we take for the carrier of S the
three partial functions : 1 =2 , which we name ff (: O+ false) ,
tt (: Ow true) , and uu (the empty partial function). We take
the operations in § to be given by McCarthy's truth tables (Chapter IV,
p. 33).

If we define the isomorphism k: X - (1 -X) by
k(x) : Opx
then we may define the semantic homomorphism cpi to be the unique
homomorphism : BE -5 agreeing on X with

@, (x) = io(k(x))

Its task will be to allow only those "jumps" to be executed which conform
to the facts as represented by 1 ; since the facts do not change in the

course of execution, our machine need only have one state. Thus we take
mi: {JTx,J¥x,...} - (L >1)

with, for xeX ,

. ¢ JIX . . ¥ . true
mi ({ D : 0wO iff i: XH{false} s

that 1is,

F e

T T T A S LR T D
T \'..;F 7‘.\'} ““&::3'
] ! 2 : -\

- o T o
[AN
2N oY ; &Z’szu&l*'.

We shall choose a target machine i dependent on the interpretation.

DS

>l

T

o Tk 3

3

[gix ol el J
A B

v "t

1

1

FRVAS NS o8
X e x|

) (A

) 4 ; e

i\ For each compiled program pe |@| we have |p®Mi| = |p|x1 = 2| ;
for notational convenience we shall pretend that the isomorphism ic

(‘g an equality; that is, we shall write § instead of (5,0) and so on.

f{; For the target semantic homomorphism, \J/i : I/B_B - R , we have

d '-

|‘ V.t Prac(emi) | {s,T,F}

", i
Ny ~
iy | It is readily verified that for any Pe [BE| , P® i is monogenic,

and that Proposition II1.1 applies to give:

CERY
\::;\j P®Mi computes a partial function from {8} to {T,F}
- .
i Since |R| is just the image of |BE| under ¥, » this says that for
R
‘_-;‘:.{ any Qe |§| s We have at most one of
P
Py o
M‘ Q: Sw T
SN
and
19
: ‘\% Q: SpF
' Hence defining
J
b/
ol : . T = true :
@.~=' Gk W& d: {F»-false} » B3 Qrdegoe
N
Y
; makes & : |R| - |S| well defined; we may calculate its effect as:
Et
[}-‘*3, 8: Qrtt iff Q: SwT ,
%
7] 8: Qr» ff iff Q: S+ F ,
9 —
::% 8: Q »uu otherwise
ﬁ:ﬁl-:
[-‘_""’ Proving 8 a homomorphism is a matter of details. It is immediate

Pl
from the construction diagram for BE that B_j(Q) : ST iff Q: S+ F

-

€

G,

and that R (Q): 8 = F iff Q: S - T ; from this it follows that &
a_ S8

is a homomorphism of — . We consider A , vV, D in parallel, since

they are isomorphic under suitable interchanging of truth values. By

considering the construction diagrams we perceive that

T T
R (P,Q): S »(F Yiff |[P: Sw(F Yand Q: S + {
— /\ — —
F T
\
and that
F F T F
R (PQ): S »(T Yiff P: Sw(T)or | P: Sw(F yand Q: S (T
LJ T F T \ 7
v
If neither of the iff conditions is met, the result of the
operation must be the identity relation l{S T,F]) ° Applying what we
PP
know about B8 , we may restate the above results:
Tt tt tt
E(PR/\Q) = (ff) iff 8(P) = { ff) and 5(Q) = (ff 5
‘{‘ £t £t £f
\Y ‘
>
£t £ tt £t
8(PR. Q) =(tt) iff 8(P) = (tt) or (8(P) = (ff) and 8(Q) = (tt
C} tt £f tt tt
=)
5(PR Q) = uu otherwise, that is iff
\
=
tt
8(P) =uwu or | 5(P) = (£ff) and 8(Q) = uu .
tt

5

P I
A T Y AR

o

L S S A

LA

et atatalyl

% 55 Rl o

P T i S

-

4
2
4
£
4
X
'

L

S i g e o 9 4

s
g

Comparison with the tables (p. 33) for the S-operations shows that

what we have just obtained can be summarized precisely by

8(PR ., Q) = 8(®) 5. . 8(Q) ;
&
) >

that is, we have proven & a homomorphism.

The final step, to check commutativity for an arbitrary xeX , is
as usual trivial. We have the three cases ir x P true , i: x +~ false ,
i not defined at x ; these yield respectively ¢i: X vttt , ¢i: X b ff,

®,: X b uu . In any case we have both u(x)__ : S+ T and n(x)JFX: S -F,

JTx
but in x(x) ® Mi we have respectively only the first, only the
second, and neither of these. It follows on computing the (essentially
null) effects of ac , p, and 8 that we get in the three cases of

i(x) respectively BoVow: X b tt , BoYou: X + £f , and BoVom: X b U g

that is, we have commutativity of the diagram, and we are done. i

Example BE -- 2-valued semantics: If i is required to be total, the

foregcing proof is not affected. It only needs to be checked, as has
often been done, that McCarthy's truth functions, restricted to

{true, false] » are the classical not, and, or, implies . l

Example AE: This we recall is the general case of a word algebra as

source language, AE = Q(X) » with the compiler producing "Polish
postfix code" for a stack machine. For notational simplicity we assume

a single binary operator, say = {+ } , but it will be seen that the

76

R L A s o T e L O T e
A e e R LR T

\L“‘ "-l n :"

NP T Na e -
i{'qh’ﬂv N4 "'-»_\.?\.'r)‘ \'\. < .' it ’-Q \ V\ﬁ \f"

proof is applicable to any number of operators of arbitrary non-negative

]
~
arity. We have, for xeX , “: X b= ILX » and the operation in AE
H

is given by:

-~ ’-\ - == —\\ P N /‘\\
AE,(P,Q) = sy o H_s B—(a)—5H o D)
: /

=)

is generated by the set {u(x) | xeX}

For the semantics of AE we may take the meaning of " + " as given

by any {+ }-algebra A , with carrier some set (of "arithmetic values")

A , and we assume an interpretation of the variables i: X - A . We take
S to be an algebra isomorphic to A , but with carrier (1 - A) , and

operation

§+(Sl,82) : 0 t—»_}_\.+(sl(0),sg(0)) ;

We may explicitly define an isomorphism h: § - A by
h: s v s(0)

The semantic homomorphism cpi may then be defined as the unique

homomorphism : AE - 8 such that

elx = n"tei

We now construct our machine i . Its states will be "stacks",
i.e., finite sequences of elements of A . Denocting the set of all such

*
sequences by A , we will have:

* o~ *
{+,Lx,Ly,...} » (A4 = A4)

T

SN

")-.

AR AL A
J & la (i

W
N
é
2
5
;3
g
y
3
¥
E‘
3
:
5
fy

J The effect of any of the various operations mLx will of course
g
be to extend the current stack by one element, and the effect of m+ o

will be to replace the top two elements by a result (for a k-ary

2 operation this would be the top k elements); the precise effect of
3 the /i -operations must naturally be chosen to reflect the semantics o
. of AE as follows: 3

1 For xeX , Mi;. : (al...am) - (i(x),al,...,am)

@,
" (m >0; i.e., -m—i-Lx is total)
i
:5 _m_j'.+ : <al,a2, 3.5; o .)am> [ad <é+(a2,al),a5, 0 .,am)
-4_ (m >2; i.e., Mi is not defined on empty or unit stacks;. e
L
!
N . . Pln & -~
[< Our choice of i and the set {S,H} of distinguished nodes for AE
)

~
gives for the homomorphism \Jli : AE - R

V. : P r (ac(P® Mi))]({S,H}xA*)

1

L

|R| is the image of |X_E_| under ¥,

~
For any Pe |A_E_| » the product P ® i is monogenic, and

LIS e

Proposition III.1 applies to give:

20y T Vet AR

* *
P ® Mi computes a partial function from {S} xA to {H} XA

IR Dl i 50y

L
0

This fact and the construction diagram for ﬁ+ enable us to give an

explicit expression for _13+

Ry(PsQ) = leg iy, ax UPB(H = STx1) :Q5(H »H} XML,

=

78

g

SRR .}: L Sy T M A R I S e .‘:
oLy DI G AR e e
ol {‘ H'L,LJ‘ o i "E'.‘_L

We may define the decoding function & by

e: 0w (S,{)) ({) is the empty stack),
d: #H,{a)) »a ({(a) is any one-element stack),
H: Q v deQoe

We encounter an interesting difficulty, however, when we try to

prove & a homomorphism: that B: Pe s $: Q » s, does not by

S, 2
itself suffice to prove 8: R, (P,Q) v §+(Sl’52) ; the mapping &
throws away information which is in fact essential to the correctness
of the compilation, namely that for we |AE| , u(w) ® ;i , started
with any initial stack (not just the empty one) will halt with
q)i(w)(o) adjoined to the top of that stack. Hence we must first

prove inductively:

Lemma: For we |AE| , and Qq = wiou(w) e |R|
@ (S,(al,ae,...,am» - (H,(bo,bl,...,bn)>

i_ff, <a‘l)"')a'm> = <bl,"',bn> ﬂl_(_l_ bo =¢i(W)(O)

S
Proof': For weX we have immediately, by un: w + ILW and the
H

construction of i ,

(s, (al, o= .,am>) - (H, (i(w),al, e .,am>)

= (H, (qu(W) (O))al: .. -:am>>

9

LT 000 L b b P L A L A L A T L L LT A e BT R N

i
'P.}_ Now suppose the lemma holds for u,ve |AEI » with P = Wion(u) s
.11 -

Q= \l!ion(v) > and w = AE_(u,v) , so that Wion(w) =R, (P,Q) . Then

'ti we have:
2:\ E,,_(P:Q) 2 (5, <al’ ""am>> "E') H, @i(u)(o):al: ""am>>
) @ ws)xl,
L:{ . (S, <q)i(u)(o)’al"”’am>>
=
s, @; () (0),9, () (0),a5 -+ +r2_))
e H XM,
. — ; <H’ (A_,_(‘Pi(u) (O),q)i(v) (O)),al,"‘)am>>

£ - @0 (0),ay,)

o and our lemma is proved.

o
% The lemma essentially completes our correctness proof; for

wWc |@| we have

8oV, o (W) es(V; on(w));d

=5
i

{0k &N} (W) {H, (@) »a) .

,-‘*3 Therefore,

2]

oz
g

t%: By, on(w): O % (S,()) M H, (@, (w)(0))) - ®;(w)(0) 3
3

:\t that is,

&' Gollliou = 9

3"&,1_:‘

I

t..; (and it is straightforward to verify from this that & is indeed a
e

:1:.': homomorphism) . |

. 80

~-5

e T T S e

-8
>]

. b A e L N S e L L S A N 2 T Ot R LRGN CROES
BN P L N s L T G M L T RO e

G

X. Stores and Assignment

In this chapter we will consider a simple form of the problem of
languages with assignment. The simplifications we make to the problem
are as follows: we suppose that our "variables" (in the programmer's
sense) are both simple and static -- i.e., we neither consider arrays
or structures, nor do we allow any declaration mechanismj; all occurrences
of the same identifier will refer to the same store location. We will
also simplify the solution by confining ourselves narrowly to a "language"
in which single assignment statements are the only programs; the compiler
composition theorem will allow us to apply the result of this chapter to
languages in which higher-order program structures are built up using
assignment statements as constituents. Unfortunately, the compiler
composition theorem will not be adequate to give us our assignment
statement compiler on the assumption that we have already a compiler
for right-hand-side expressions. We will indeed assume that the
problem of compiling right-hand-sides has already been solved, but we
will need for our proof some specific assumptions about the form of
that solution which will become clear as we go on.

The present chapter will be divided into two parts: first, by
assuming a target machine with just the operations we need, and by
describing a trivial compiler, we will prove essentially the triviality

that an assignment statement may be executed by first evaluating the
right-hand-side and then storing its value; second, we will make the
existence of this target machine more plausible by showing that it can

be modified (and that a further compiler can be composed with the first

81

-g‘_‘}}tf%\&x:f?:*’\. \."-‘LI P _i-:":ﬂ\.?.» ,\..

A

R CkS

T ER 0 PR AL A A,
' b X K

T LY YV _W_ v e m e e B

A A, L, By

EETETL %,

EIRTAT e u‘

PR p 00 S S R S S

R

e,

x

PLES e

LR

Chat et 3ol L0 | LR PR Y

~

.

to obtain equivalent effects on the modified machine) in such a way

that it factors into two components which are recognizable as a store
and an arithmetic unit. Furthermore, the store component will be seen
to factor into individual "location machines".

For the first part of our discussion, then, we assume the
existence of an Q-algebra L of "pight-hand-side" expressions,
generated by a set X of variables and taking values in a set A 5
and we suppose that we have obtained a compiler x which yields a
family of commutative diagrams, one for each interpretation

i: X - A, as follows:

J

"
=
I &—— |t
o
'™ &—— |
<
=

4

We may suppose that
sl = -8 ,
and that each wi is the unique homomorphism satisfying, for all xeX ,

9, (x)(0) = i(x)

We further suppose that i is an Q-algebra of T'-BRAs (for some
set T) with set of distinguished nodes {S,H} ; to indicate this fact

we depict the effect of x schematically by

82

A A IS AR
DI b R

£ R, O e MWL YN
3 \.T'.‘-(g \;\\.\'} W '\“\ ‘.‘- 2

|
R

P
¢ a4 _a ¢

Each Wi is determined by a machine (T-BRA) Mi ; we make the

”

assumption that all the Mi have the same carrier M , so that we

have:
Vi P (ac(Pemi))] ({s;H}xM) . i

The homomorphism & 1is of course determined by functions ?

0

e: 1 - {S,H} xM and d: {S,H} xM = A ; we assume that i

e: O S,m Lo
(o] 1

for some fixed initial state mOeM » and that d 1is defined only for

arguments of the form H,m . We may write the effect of & as

5: R + doR(S,mO)

Our hypothesis of commutativity now appears as:
[de(¥; on(w))1(8,m)) = @, (w)(0)

It appears that these assumptions typically do hold, or can easily
be made to hold, for languages of expressions whose values depend on an P
interpretation of the generating set but not on a choice of initial state;
note particularly that they hold for Examples AE and EE.

We now define the language L' of assignment statements to be
simply the set of pairs x :=w , with xeX and we|L| . L' is -
trivially an algebra: it has no operations. (Note that we write i

" x i=w " merely as a suggestive syntactic alternative to " (x,w) ".)

We have now to construct a commutative diagram:

83

S Y S e o T o e i e g

4 b K v 3 K 3 &

-.’g. A ‘-‘?: A ,‘.y_.‘.-;_“..’. PSR .,J.l;\::._y_". ‘,J'-L,f"-j’;'f YIRE
. N A 2\ d IR, o Lo L b

LT _'___H_}il
{pll irl
' '
L

RF

with @' an acceptable semantic function for assignment statements;
é;- w' will then be our desired correct cumpiler for assignments. Note
that because L' has no operations, to require that the arrows of the
primed diagram be homomorphisms is merely to require that they be

ﬂ: functions. Likewise we need not bother to distinguish between the

trivial algebras in the primed diagram and the sets which are their

carriers.
»%'i
{;5 ir definition of the semantics of L' will be conventional:
P

we regard the meaning of an assignment statement as being a transforma-
tion on states, and we identify "state'" with "interpretation of the

-'E variables", so that we have §' = (X - A) - (X = A) . The effect of an
assignment X := w should of course be to modify the value of the
state at x so that it assumes the previous value of w ; therefore

il we naturally define @' by (for i: X - A and yeX):

®'(x 1= W)(1)(y) = if y=x then o, (w)(0) else 1(y)

yﬁ As an abbreviation we may define a function, "assign", by:
%
a\'s
1At assign(x,a,i)(y) = if y =x then a else i(y) ,
| S

and then write:

Q'(x:=w): i k-assign(x,¢i(w)(0),i)

8L

R A R T T R W ST T | Ny T, O e ST e T 0 S) e
A LR T AR T ST A T T

SPHIATAT I LT e

R

The compiler we will need, x' , is trivial, as was promised:
S S

given that wu: w » » We define «': X :=W + 5

STx
H .N_’H

we see that the operator set of our new target programs (and hence of
the new target machine, ') must be T U {STx | xeX} . We shall
define V' in the standard way by V' = p'eacen' , with
M:PPrPRM and p': R HRﬂ ({S;HYx |m'|) . Even before the
action of ' has been defined, we can see the essential property
of w' (the argument was gone throuh in detail for Fxample SS and

need not be repeated): we will have for every statement x:=w ¢ L' ’

() Wrent(x2=w) = Leg g g U Sm e Simb (W en ()3 (B XM o) -

The way to our desired result is now clear: we need to combine
all the Mi into M', by taking |M'| = Mx (X - A) , and defining

the action of ' for 7yel' by

217. ml,l ng,lﬁmy.mlhmE 3

this will evidently give us, for the evaluation of a right-hand-side

(%) Vion(w): (S,myi) H, [{H,m ""m}°(‘yi°”(w))](s’m)’i>

We then define the operations 'Tx for xeX 1in such a way as to
store in the appropriate "location" of the (X - A)-component that
element of A represented by the state of the M-component we have

arrived at; that is, we define:

85

AR ATATE TRl Y

PO R i
A R M R

- _x "
i Loy
=

a
L i

o) -7

vy
L

L 4

Tl

Pas
[}

t
Ao RN

L
> x ,'{
ofatatx ul w

-

E%i (*%*) ZK:STX: mi v mo,assign(x,d(H,m),i)

e

i:" (It will be convenient when, for example, we come to compounding

o

kg&; assignment statements, that the execution of a store operation

RNy

%Sy returns the M-component to its initial state. If we had been more

_:; specific about the structure of M., we might have been able to

::;;.\:: specify the action of m—'STx on M more conservatively, for example

?§§§ to remove only the top element of a stack.)

- The correct definition for &' is now evident: 8': R » d'cRoe!' ,

» where e': iw (Sm,i) and d': (m 1) o1 .

tﬂg The correctness of x' , that is the commutativity condition

_ Btoyloy' = @' , is now easily checked. We have by definition:

S

iii: Q' (X :=w): i » assign(x,¢i(w)(0),i)

A% But,

g ? Bloylon'(x t=w): i w [d'o(Y'on'(x u:w))](S,mo,i)

&

~ = LA ((V (W) 5 (1 ~H) x ' gr) (S,m_, 1) (by (%))
E':Ei = [d'e({H HH}Xm_'STx)](H:[{H:m Hm}°(Wi°u(W))](S,mo),i) (by (**))
L

L: = a'(H,m,assign(x, [do(¥; n(w)) 1(S,m), 1)) (by (%))
3

':ﬁ = d'(H,mo,assign(x,¢i(w)(O),i)) (by assumed correctness of x)
=

o = assign(x,wi(w)(o),i) .

With an eye to the application in Chapter XII, in which we shall

want assignment to both arithmetic and Boolean variables, in the latter

Ly

case coercing arithmetic values to truth values, we note the following

TG

P g
g

86

e G R 10 o R R A P R R AR S o
P '.flf-""“-"g’.'ﬁ".'.“v r:\'-":r—.‘--"' Atk -'Z'J.-L; o LT

b &4

e —

el ek R Bine b L s L

evident generalization (by no means as general as possible) of the
result just proved: Suppose that we have an additional set of
variables Y , disjoint from X , which we wish to take values in a
set B , in general different from A , and that we have a function
rep: A > B which allows at least some of the values in A to stand
as representatives of the values in Bv." Then we may define an

augmented language E+ =L U {y :=w ‘er and We|£|} , an augmented

set of state transformations §f (X =A) x(Y -B) > (X =4)x(Y -B) ,

+
and if we define a modified assign function, assign , by:

if xcX then assign+(x,a,i)(z) = if z = x then a else i(z)
if y(Y and rep: a » b then
A .
assign (y,a,1)(2z) = if z =y then rep(a) else i(z)

+
(assign undefined otherwise)

.

+
then we may for our semantic homomorphism @ write as before:

m+(x =W 1l e assign+(x,¢(i1.x),i)

It is evident that by taking a suitably augmented target machine
+ . + + + 6
M __ we can define % , Vv , and § as before, and again get a
commutative diagram. The necessary change to the target machine is

simply to take |M | = Mx (X = A) x(Y = B) , and to provide 7

with additional operations ZKTSTy for yeY , defined by:

n % ik g
M gpyt M1 = m,assign (y,a(H,m), i)

whenever the latter is defined.
The store operations of the machine ' are similar in effect

to instructions of many real digital computers; in the synthetic example

87

‘o.‘ o« b
| P

I

et i it o

e e e

g

_)
" B2

.

TETESN T X
L = X

3 ‘e
-

e 3 '
oSl L ¥

PR o o)

z

.

P e Ve
e 2

{0

¥y Ay Ko Rab

%

o

W o i e s

3

v

L.
2 e

?
1
|
l\
.
bt

| A

e =
= ™

) S

:,}

"
\
i
%
‘.

Y.

T
s

;

L

)

N

PP w
RO

E e e e e il il bl Rt B B Bop Ple oo o o diam oogl om0

of Chapter XII they will be assumed to be executable, together with
load operations like those introduced in Example AE, by the final
target machine. The remainder of this chapter, which will carry the
compilation of assignment statements one step farther, forms an example
of modelling machines by BRAs, but is perhaps not directly relevant to
practical compiler-correctness proofs.

The machine 7' which we have just developed, although its
operator set is analogous to the instruction set of a typical digital
computer, is theoretically unsatisfactory because its structure -- of
a store combined with an "arithmetic unit" -- is not apparent. Moreover,
the assign function used in the definition of Mm' is mathematically
rather complicated (although familiar to programmers); we would like
to not only isolate a store component but analyze it as an assemblage of
"locations".

We proceed to meet these two criticisms by introducing a modified
machine 7" , and a compiler " which carries programs for n'
into programs for M" ; once we have shown w" correct, u'"ox'
will be a correct compiler for L' with m" as target machine, and
M" will be defined as a product of meaningful factors -- "arithmetic
unit" and "locations". The proof about x" will be simpler than a
general compiler proof, because we will have |M"| = |m'| and also
for all L'-programs P , |u"(R)| = |p| , and we will be able to show
that 2 (w"(p) @ M") = Z(@P® M') , so that no argument will need to
be made about e (recall that ac = ¢ncey.), restriction, or

decoding.

P A ol oL X e T e L L g AN
LA R RS L A b e) S A R ATRY

“R

Xy

bV

3
L APl Al ol o’ | i ol Sk o

Before we start we must make some further assumptions about the

tﬁ

L

family of machines 7{i : 4in essence that they really do only differ
according to the values their respective interpretations give to the
variables in X , that they treat all variables alike, and that at most
one variable is "read" by a single operation (these restrictions are
met Ly, for example, the machines for Examples AE and BE; in more
complicated situations in which not all the restrictions were met, one
would expect to ne=d a more complicated construction than the one we

shall give here). Formally, we assume (recalling Mi: T - (M - M))

(i r=r_u{Lx | xex} (L for "load") ;
(11) Wi, = mj ~for yer and for i,J: X =4 ;
(iii) there is a function £: A - (M - M) such that for any i: X - A,

My, = 1(i(x)

(Tt will be evident how the construction which follows could be
extended trivially in case there were many load instructions for each
variabls rather than one. On the other hand, it is also clear that one
tind of load instruction is enough: we could adjoin a "memory buffer
register" -- i.,e., make the carrier of the mi be AxM rather

than ¥ -- and then split each variety of load operation into "load
memory bulfer register" follrwed Ty a suitable new Fo-operation.)

The ide¢a behind tne construction of 7" 1is very simple: it is to
split each operation 1 inte a family of operations Ixa , one for
each acfA , each IxXa i be capable of loading only the specific value
a from location x ; and similarly to split each operation STx into a

family of operations ©STxa . Even this intuitive description makes it

AT T T ST T

e e b o o Dl s oy e B e goe M s o e A 2

" Y A g
o - b L) gz s o g

clear how we want u" to behave: it has simply to split each
operation-instance of Ix (respectively STx) occurring in a program
into a bundle of operation-instances for the various elements of A .

We may picture the process of compiling with x" as follows:

"

(IM)M(MGDM)

(and a similar diagram for STx). More rigorously, if not very

transparently, we can define u"(p) for any L'-program p by
@] = gl »

u"(E)7 = E’,y for 7yel [

1" _

" (g)an = P, for xeX, acA, and

R

" -
w'(R)grga = Popxy for xeX , achA .

Now we see that if we can define m" so that
1}]
(+) m', = m, for yer ,

U m ol ﬂ_’ ’ and
ach Lxa Lx

U R o = M am s
e STxa STx

T

SR)
=

then we will have at once our desired resalit:

=

7 “';r
e

~
~

T

el

it

P
i
L

A
LY

aoE

2 (w"(R) ® m") U x'(B), x
® ycr, U {STxa, Lxa}

U g ox M |
yel'u {sTx} 7 7

I

= 2Z(pem') ;
all we need observe is that (+) and the definition of x" imply:
o
P®Mi, + pm b p'ym' iff for some aeh, x"(P) ® Z’L"an‘ p,m - p',m'
and the analogous biconditional for STx and STxa . But it turns out that
@ we will get exactly the " we need by defining it as the following product:
M- fies , where || =M, |gl = (X-8) ;
o 227 = 7’2_1_7 for 7€l s ZRan: me L(a)(m) ,
ESTxa: meom iff d: Hymwra
® y = for yer S :iwiiff i: x+a, and
3 = .a o 7 dxa L ’
Sapyat T ¥ assign(x,a,i)
v
To verify (+), we simply check:
= = e .
(Red), = &, xly = M for yer, ;
e and
U me® Sxat Wik 2(a)(m),i iff i: x = a ,
ach
. that is,
U M® g, s mi b £(i(x))(m),i ;
ach
& 91

B L L T T] Dy

(S

L A R T N e e B T T e s T T
[

and
U @@%mgmﬁla%ﬁme&mﬂigd:mmwa,
acA :
that is,
l_lA '/:7(® Iopyg’ Wi b m, assign(x,d(H,m),i) . |}
ac

We r.ow have our two factors of m" : § the "store" and m
the "arithmetic unit". We claim, moreover, that 3 1is the product of
one factor for each element of X , which it may be appropriate to

call a "location machine", namely:

4 = ® & ,
xeX
where
E
&, = lA for 7ero "
By QELya = if y = x then {a wa} else 1,
?ﬁ% and
ifg QESTla = if y = x then {br a} else L -
é%f The verification of this decomposition is a trivial exercise (making,
W\
E}f of course, the necessary identification of the Cartesian product
el

T A with (X - 4)).

xeX
It is evident that we can carry through this second part of our
construction in essentially the same way in the case where we have an

additional set Y of B-valued variables, to get an augmented version

PR CR L AT AN NC G ST SO S CR AR e s oy cpvgr gl

(_.

G R
ik

R b

I + ~+

of M" which factorsas N ® 4 . Here 7N is defined the same

way as %, but with the operations

ﬁSTxa: memn iff d: Hymea

+
now existing for all xeXUY ; and § is defined the same way as 3y

except that |§+| = (X »A) x(Y -B) , and now

& : P— A
Soryg: I b assign (x,a,1)

for any xeXUY .

+
Furthermore, § decomposes into all the factors of ¢§ , one for

each xeX

(with the trivial modification that the additional operators

STya , yeY , each denote the identity operation lA) and into

+
additional factors Jy , one for each yeY , each of which has

lc_ﬂfl = B , all operations the identity lB except for:

+
%Tya: b rep(a)

(note that this is the empty relation if rep is undefined at a).

;—P"- “p
"\

Sp

T T R 8 e

o« WETTRTYR W

Lot S an

e | il T

-

T

L

k=g

[

MO0 g R

v owe
.

T

« i

w

Vo N

(R U S g = e

3

W F T w weor
, 2* o

D TP

i

N N T T IS R T e TE SR . LRy SPNE e O L Bak e $a8 Sa jufe Sotr d >

XI. While Statements

The purpose of this section is to show by example that the style
of compilers we allow -- BRA-producing homomorphisms -- easily and
naturally handles (as we should expect) the sort of programming language
construct which is customarily defined by a rule for replacing each
instance of it by a system of tests and branches. A typical instance
® of this sort of construct, and probably the simplest, is the while
statement (familiar to students of Algol-like languages, even though
not exhibited in its pure form in Algol 60). 'Note that whereas the

® ordinary theoretical treatment of whiles (see, for example, [Hoare 69])
takes the equivalence of the while statement to a loop as given and

proceeds to derive the consequence that the function denoted by a while

) statement satisfies a recursive inequality, we shall be proving the
same thing for an ostensibly different reason -- i.e., we shall take
the recursive semantics of whiles as given and proceed to show that the

() compilation of whiles as loops is ccrrect.

The present context may also serve to exemplify two other points

of possible significance. The first is that there need be no incompat-
© ability between an algebraic semantics and an axiomatic one. That is,
we may give axioms for a semantic algebra without determining it
completely, and prove from them properties which must be true of any
'Y algebra satisfying the axioms. (This is, of course, standard
mathematical practice; we lay stress on it here only because most of
our algebras have been explicitly defined.) The second is that even

® without use of the cumpiler composition theorem we may in certain

oL

S
T
%

et Rl et R R e Bt B Tt W P S A T

circumstances claim that correct compilers for two la.néuages
automatically yield a correct compiler for the omnibus language which
combines their "features" -- namely in the case that the two compilers
are sufficiently compatible, in a sense which will become apparent.

We take then L = H{while p do, while q do, “.}(X) , Where

X = {x,y,...] 1is a set of elementary -statements, and P = {p,q,...} |
is a set of predicate expressions.

We want § , the semantic algebra, to be one of relations on
a set A to itself. We assume an interpretation i: X - (A xA) of
the elementary statements as relations on A ; and an interpretation
J: P - (A -2) of the predicate expressions as predicates on A . We
specify the operations of § incompletely by laying down for each peP

an axiom, namely the following recursive inequality:

() Sunize p aolf) 2 laranot J@)(a)} U ({ara]d@)(e)1E58,110 5 aolf)

and we require @ , the source semantic homomorphism, to be the extension
of i to a homomorphism : L =S .

Forseeing that we shall expect the target machine to be able to
evaluate the elementary statements and predicates directly, and knowing
the shape of while loops, it is easy to specify the action of the

compiler on X :
S
n: X - Ix >
H

and to give the operations in i by the following diagram for each peP :

N 95

; STt e iy c ALY DT R T R AR R A L TR UL e Tl O L B e T e o o e T e e S T CELL.
A T T G B L 2 D N R e 3 A g S A T R A AT BESSS

W 5 > (-

7

AR !

~

l'=while p do

(B) =

Evidently the target BRAs (hence also the target machine) are to
have operator set X U P U {p|peP} .

We may now describe the target machine % . Naturally we take
|7_7‘| =A, and for xX, M, = i(x) . We use the device described in
Example I.2 for modelling predicates by partial identity functions

("Karping"), and require, for peP ,
m, = fere|i@@) , mg = (era|not 3BT

For D , the domain of the relations computed, we have
{S,H} xA , and this suggests the already-familiar choice of B8: r p derce
given by d: (H,a) »a , e: ap (S,a) . & is evidently an isomorphism

from R to an algebra §S' whose operations are given by

-1 -1
(£) =d°(B-whilepgg(d ofoe "))ece

S'
=while p do

S Dbeing only specified as satisfying the axioms (*), all we need prove for

the penultimate step of our correctness proof (closure of the diagram) is
that S' satisfies (*), and hence is a suitable S . But this turns out
surprisingly easy to prove, once we make the observation that for any
BRA R we have the simulation o: 8" - B' , where F' is

o i " " .
Lihile D @_(_@) and 3 is the same loop "unrolled" once, i.e.,

96

R e T D TR -~ T n = A = N R n ,
At oy !‘ﬁ. -,a,':"p R e R TV E""‘,Q’*Q"*.-.?"-DQ- -"-n Iu‘:.t :rl'.lu \"U":‘Ilf'l\‘“ ! ‘l.

Pt et

ke o tah N e ar SR

vy ¥ ,r v

P oad”; W7

P

AL

'."4_'?‘

-

I
5

¢

=y

e &

-
-
A

oy

where o acts as indicated by the dotted arrows, and in addition, of
course, coalesces the two coples of A into one.
It is easily seen that if we follow the execution and decoding

morphisms around to S' , we will obtain for the relation computed

by gl' ’

Boy(B") = {ara|not j(p)(a)} U ({a ka|i(p)(a)}:Bey(p);:tey(5)) .

=5

Lt

o
=

However, decomposing the target semantic homomorphism as § = peacex ,
0 and recaniné that & and ac are functors, and hence preserve
't}'_% simulations, we see that from the simulation of flow diagrams noted

above follows

oxl,: ac(B"®M) - ac(B M)
i.e., (by the definition of simulation)

ac(B" @ M)3(oxly) ¢ (ox1,)s8c(s" ® M)

But, as can be seen from our definition of o,

R N T T A T T T T R T T N T T O T T T o T T i T T a8 8 N e e e o o e i g e
! oy q‘,}' X bl UL T o' o i o -ﬂ ek _Q »e‘ﬁ'fq i"*.“i:’i‘;? SR IR

we

(0x1,) 1(s,H} xA = l{S,H}xA

hence we obtain in fact

¥(RP") = ac(B" ® M)](S,H]} xA _,‘

c ac(f o m) J{s:HIxA = §(B")

and following & from R to 8' we at last have Bey(B") < Boy(5')
which is just what we wanted to prove; we are justified in taking §' :
to be S , and we have our closed diagram of homomorphisms.

The last step of proving correctness of our while statement
compiler has been done already in example SS; it consists simply in
observing that @(x) = i(x) = Beyox(x) for xeX . |

In fact the similarity between the current example and example St

has more far-reaching consequences than merely to save us redoing a
step of a proof. Every pair of corresponding homomorphisms in the two
examples are extensions to homomorphisms of the same function on the
generating set; moreover the two target machines agree on their common
operators; in short, thers is nothing to stop us claiming that we have
given a (disconnected) proof of the correctness of a single compiler
for a language which has as its operations the formation of both
compound statements and while statements. It is this combined language
which will be meant by references below to "the language of Chapter XI".
What we may conclude in general is that when there is no conflict
in the compilation of two algebras {action of the compilers the same
on generating sets; compatible mechinee, same restriction, same
decoding in both cases) then simply from the fact that a proof about

homomorphisms for multi-operation algebras is just a proof for each

operation separately, we have for free a compiler for the combination

of the algebras. In more programming-language-oriented terms, under

S these conditions we obtain automatically a compiler for a language in

-

which mutual recursion between two constructs is allowed, although

we have apparently only proved compiler correctness assuming that either

. 2

of the constructs could be used in isolation.

O e e oo
i e e
;'ﬁ'ﬂl';"f’_..’__‘.’

iy
w q":m; -

x A&
o ok
¢ SR e

H

: o -

L
¥ Vel el T el

ek

7

1@

L
.“ -

ot

e

3 9

L 2 DO U e

TR TR T
B Pet

XITI. An Exemplary Synthesis

The aim of the present chapter is to illustrate the utility of what
has gone before by using the compiler composition theorem to tie
together most of the previous examples of "single-feature" languages
into a demonstration of the correctness of a compiler for a somewhat
"realistic" language -- very loosely, a language "with the features"
of whiles, sequencing, gotos, assignment to simple variables, Boolean
and arithmetic expressions. It cannot be over-emphasized that the
achievement of this one proof is not to be considered as the total
accomplishment of the present work; rather the synthesis to be performed
in this chapter should be understood as an advertisement for our
algebraic approach; it is meant to exemplify a class of possible
syntheces which could be made easily and naturally with the tools we
have developed. (Admittedly, we have in our examples treated only a
very small set of language fragments, and will here assemble essentially
all of them; it is not evident that a synthesis interestingly different
from the one we shall show could be performed without first inventing
some new "single-feature" languages as raw materials.)

We proceed forthwith to an informal description of the language
Lsynth with which we shall deal. The following parameters of the
language will be left unspecified: the choice of a domain A of
"arithmetic" operands; the choice of a family of "arithmetic" operations
on A and of a set Q of operators to denote them, the choice of a
(partial or total) function rep: A 5»{3222,29159} by which certain

arithmetic values may be used to represent truth values, and the choice

of a set V of arithmetic variables and of a set U (disjoint from V)

100

A A N o o Lo L T o L AR i o e T P LR

Dpi . | il SR R R TR o o anl ek PR

"
.
v
e
»
o
r2
-

e

2=

e ke

s s an b

mw:ﬁwm N, S T R IS A AT PO LY LRI D PR N s A Wy ANty P Rt

i e e b L L R L

of Boolean variables. (For brevity we shall henceforth throughout
this chapter denote the set {true,false} by 2 .)

Programs of Lsynth will be fini"te, multi-entrance, multi-exi't.
(Karped) flowcharts. The tests will be of the form W ,
where p is any Boolean expression (as in example BE) built from
variables in U . The commands of. Lsy'nth will be arbitrary nests
of while and conpound statements built up from assignment statements
of the form x := e , where x is a variable in VU, and e
is an expression built up, as in example AE, by "arithmetic" operators
from the variables in V . The while statements are to admit the same
set of Boolean expressions as may appear in the top-level tests of
Lsy'nth)

To restate the foregoing somewhat more formally, and in the

bottom-up direction, we define the following languages:

Lorith = V_IQ(V) » that instance of the language of example AE got by

taking the particular sets of operators and V of arithmetic

variables;

Logsig =[x i=e | xeUUV and ee |Lypstn |} » that instance of the
"avgmented" assignment language of Chapter X got by taking

-I='e, rith 28 the language of right-hand-side expressions, and

U as the set of "extra" assignable variables s

Loool = v_q{_” Ny sl (U) , that ;nsta.nce of example BE got by taking

U for the generating set;

L, = E[D}U{while p do | pe|£.bool|}@assig) » an instance of the

language of Chapter XI;

101

5.
L% - m\f P

]J(w
=0y

are

For

For

For

R R R R R R R ORI T—————"

nth

= an algebra of ‘Ewc‘ U ll‘booll U {p| pc ‘L‘bool” -BRAs , with
cuitable construction operations for building up flowcharts -- the
choice of these constructions turns out to be a rather special

problem, whose discussion we defer.

The semantic homomorphisms for the yarious intermediate languages

the appropriate instances of the ones we developed earlier:

L, itp Ve have for each function i: (V-4)x(@U -2) a homo-

morphism @, - A, agreeing with i on V , where A

1V —a.rlth
is the Q-algebra with carrier A whose operations are whatever

"arithmetic" operations we may have chosen.

Lbool we have, as defined in example BE, a homomorphism

P4y’ Lpoop B2 for each i: (V-A)x(U->2) , agreeing with i

on U, where B2 is the {~,A,Vv,D}-algebra of truth values

with the classical operations not, and, or, implies.
Eassig we have a semantic function
Pseng® espip (¥ ~A)x(U =2) 3(V=4)x(U~-2) given by
q’assig(x i=e): i b assign+(x,q>i1v(e),i) , Where
r‘for xeV , assign+(x,a,i): ¥y » if y = x then a else i(y) ,
for xeU , if rep: a i+ b then

assign+(x,a,i): y » if y = x then b else i(y) ,

(assign+(x, a,i) undefined otherwise),

\
and where rep is a (partial) function which interprets certain

arithmetic values as representations for truth values -- e.g. we

0 - fali
might have rep: jﬁ}
1 - true

102
N TR E A e e T R e TR e S T L AT e e, RN
% A S L S Ay e P o g o L L D o . V"-'

w‘r N

d s)

vy

PRy

=gl S, Nty

R N A N - LW S T IO vl “ Bt s T e i e R Pl o S eh G i i i et i i £ SRR g gk kieind gl gl

(The idea is that an operation such as <, which we would

naturally think of as operating on two arithmetic values to yield
a truth value, will here be thought of as yielding another
arithmetic value; the latter will be appropriately interpreted

by rep on assignment to a Boolean variable. This device allows
us to assimilate predicates to the ordinary operations of our
arithmetic algebra A , and in the implementation whose correctness
we shall prove, it will model faithfully the commonly existing
situation in which representations of truth values, as held on the
stack, are indistinguishable from representations of numbers. All
the same, the necessity to introduce rep is displeasing and
suggests that our algebraic notions are too rigid; this problem and

the possibility of its solution will be discussed in the conclusion.)

For Lwc we require a semantic homomorphism (pwc to an algebrs of
partial functions on (V - A) x (U - 2) to itself. This will
simply be an instance of the development in Chapter XI, where
the semantic homomorphism for a general language of while and
compound statements is defined (or rather partly defined and
partly axiomatized) in terms of interpretations for elementary
statements and for Boolean expressions. We have already an
interpretation of the correct type for our elementary statements,
namely:

? ~ (V=R x(U=2) 2 (V-8) x(U~2) .)

assig: Lassig

We need also an interpretation:

3t Lpooy = ((V=8) x (U =2) ~2) ;

103

we may cobtain the function we want by interchanging the arguments of

the semantic homomorphism for L‘bool ; that is, we define:

j(p): i'—'(p(i1U) (p) for each pe\Lbooll ;

Finally (since Lsyn is to be an algebra of BRAs) we may describe

th

the semantic homomorphism for L

=synth ’ ¢

-S, as a

syn'bh: Lsynth

composition ¢ cacont , even though the constructions of Ls

synth - P ynth

(and hence as well the operations of §) are as yet undecided. We

define the source machine, o , for Es by taking

ynth
2l = (v-a)x(@U -2,

Z.t 1o (s)(1) for selec|

and

dp = U ilo (@] , 5= (irilnte, @) (1)]

for pe ‘Lbool | -

We then have = defined as usual, for pe|L | » oy n: PpRy .

synth
Since we wish to allow our flowcharts to have an unbounded number

of entries and exits, we define a set Sh = {So,Sl, e} U {Ho,Hl, woe

containing infinitely many distinguished start and halt nodes,

and we shall insist that for EC‘L

_Synth| » we have SH c |e| . It is

then natural to take for our restriction homomorphism:
p: B RY(SHx |#]) -

Evidently the semantic algebra S will be one of relations on
SHx(V - A) x(U -2) to itself.
We have now to show that we can construct a correct compiler,

s for LS by compounding our previous fragmentary results.

& synth ynth

10k

St Dy St L B A e T

:
MENLIRY. A deal st U0 R SGr o uh gun SN SR AREET N b ame e ol U

(R LS SPe ol ARG RN S Y SN nind W)

We have immediately that Mg ? the compiler for arithmetic
expressions developed in example AE, is a suitable compiler for right-
hand-side expressions which may be plugged in to the ("augmented")

construction of Chapter X. This will give us a correct compiler

uassig defined by
]
“’assig: =ie 1= m '
8Tx
H

The target machine for Lassig

carrier |Mma| = A x (V- A) x (U - 2) , operator set

» Which we may call /ja , will have

QU {Ix | xev} U {STx | x e VUU} , and operations as

defined in Chapter X and in example AE. We must, of course, suppose

that the operations mm for we(do indeed apply }_\.w (recall A

is the source semantic algebra for Lorith) to the top k elements of

the stack (k being the arity of) and replace them with the result.
We have also, from example BE, (and with no further specialization

than taking the generating set to be U) a compiler « taking the

bool
expressions of Lo into {oTx,JFx | xeU} - BRAS .

We now define a compiler ®ab (to be a candidate for forming
extend(na_b,;wc)) which acts on, and produces, certain BRAs with

set of distinguished nodes {S,H,T,F} as follows:

105

AR S ‘»W"‘-%ﬁd-: T T T T o o i T T o
L h&mﬁﬁ; Sl Eﬂ. PR -“&'ﬁfﬁd&vﬁu{1‘.;.'?5.1‘"»:&4_1:.-;-.F: Lo b F

For pe u’-bool l s

s
S
wot YR Choa®D
T F
H T F
H
and for Scl'-I-'assig‘ y
5
S
“a-b' Is ; ’ *assig!®) !
T F -»
H ;
T F L
The set of BRAs to which x is applicable are suitable to 3

a=b
be run on the machine J{AB , where AB = |£‘bool| U {p ‘pelébool‘} U |Lassig| " £
and we may take Pyp ? the semantic function for the set, to be given Y
by
P, 2+ ac(ee A8} ({S,H,T,F) x (V = A) x (U = 2)) .
We can work this out more explicitly, using the definition of o,

as fcollows:

Db Tx:=e : XipY,it iff (X =SandY =H

T e =
. 7 and i' = assign (x,qaiw(e),l) i
or X = Y E}E i = i') ’ E
L
S I
? V\{ : Xpi b Y,i' iff (X =S end i = i' and
E
(3
| T F (Y = T and @,,,,(p) _

H
or Y = F and not @4,,(p))

or X =Yand i=i')

106

The target machine, ab , for M, 15 the same as Mg (the

target machine for ») except that it has the additional operators

Yy assig
{JTx,JFx | xeU} whose effect is defined by (for meA" , i: (VA)x(U=2)):

ya

'j"} med o :mibmi iff i X pe true

2 ma‘bJFx: mibmi Iiff i: x p false . |
ﬁf': As might be expected, the target semantic function, *a-b s is

Ry _

¥ given by

Yaup? B & 8c(R ® Mab) J({S,H,1,F) x A" x (V = 4) x (U = 2))

b
LAl

}:-U: and the decoding function by:

3" ba-b: R b deRece ,

27

g where

0

ANy e: X,i -’X, (),i and Ad: X, (),i -'X,i

‘I:

N (for Xe{S,H,T,F}, i: (V-+A)x(U -2) , and () denoting the empty
: stack) .

We proceed to show that g (with Pop ? Vop » 80d 8 o)

satisfies hypotheses 1-I for the compiler composition theorem:

& 7
L 1. Wehave {S,T,FH}c |x, _ Is | and
' H
T F
S
{s,T,FH} < |u, 4 y‘\f‘, | , so Hypothesis 1 is satisfied.

H

2. By identifying X,i with X,{),i (() the empty stack), we have
* 3
|#] = (Vv +4) x(U -2) c |mab] =A" x(V=4)x(U -2) , so Hypothesis

2 is satisfied.

TSR TR SRR GRS v o TAGD R M e Loe E AR A s e s G T Ve & AR R Sy Y L
S i R T T e G s M

Pt

Q
For P = Ix t=e , it is clear that
H

5.1 ° Vaob O"‘a-b(g) = cpa_b(g) ; this is only a slightly disguised

form of the statement of correctness for It may be

assig ’
noted that the operators JTx, JFx of Mab are never obeyed,

as they do not occur in na_b(g) 5 we have in fact that:

Ba-b *Vaup “Hap(®): Xoi L1t AFF (X1 =Y,i' or

X =Sand ¥ -Hand i' - assign’ (x,;q,(€),1)),

which is exactly the behaviour of q)a_b(g) .

S
For P = 1/ ¥ » We have somevwhat more of an argument

T F
H

to make, because in example BE we took as target machine only a

one-state machine, modelling a single interpretation of the Boolean
variables. However, we may note that in /ab all the operators

JTx,JFx denote partial identity functions (even total identities

except on the (U - 2) state component) so that, as far as the
evaluation of Boolean expressions is concerned, Mab merely

unites a number of non-interacting machines of the sort defined
in example BE; it follows from the proof of that example that we

will have:

. 108

R O I g L e e e T M T ras ¥ iyt Sy olil S
i e R G L LML SO (o A
(o s A ot = L™ B Y ¥ O . ¥ if

e AP AN T L T

ol
ol

%

o e

| At SRt

| e i ¢

B ST [l SNSRI |

G > T

-

dx

".i

o
: wa_b°na_b(£):x,m,i—-Y,m',i' iff m=m' and i = i° and

A

: (X=Yor
i
;35 X=52ndY=TandQ.,) o

a4

3 X=5andY =F and not 9,4,(p)).
b 7o

o P o - e Y. 4 s 1
) 5.1 Similarly, ba-b "‘a-b "’a-b’ Xt P Y,i' under the same
i conditions (omitting mention of m), and this is exactly the
) l""*j
A behavior of q>a_b(g) . Hence we have satisfiei Hypothesis 3.
o
Vit 4. For Hypothesis 4 we have to show that, if Voob™g b(E): X,myip Y,m',i'
W - o
é: with X and Y both elements of {S,H,T,F} and m,iec L._Il , then
P

¥ also m',i'e || ; that is, if m is the empty stack, so is m' .
k;‘!:i\;::!
e S

s =
A0 For p= 1] __o this is immediate, since we must have
]
o T F
H

0
.._ m',i' =myi . For P = Ix = e we have only to recall from
589

1. H

R ! 9 ¥

i3

'.i example AE that it was shown that the evaluation of an arithmetic
By ‘ Y
!:!l expression starting with an empty stack yielded a one-element

¥
';,,. stack, and from Chapter X that we defined the store operations so

.-

ﬂd.n

as to remove the top stack element. Hence Hypothesis 4 is satisfied

Ao
S LR S

b
e

as well.

«
o

-

We may now assert by the compiler composition theorem that our

PRa G S S S

Ay Ty

s
4
¥

disgram of q’a-b’"’a-ﬁ g p®gp extends to a commutative diegram of

homomorphisms, yielding a correct compiler extend(na_b,:fim) for the

109\

s E“‘
i wfl S

[

g v, e.v,'r;p-j;;?(}v—r}-\-‘ e

algebra Ew " of AB-BRAs , with generating set

-

xeVUU , ee |L .. | :

1]

and, for pe l£‘bool| "

8
(§H. J :
Y . A - €y) z
Lwc(whlle pdo): Q P P P ‘TIT \F/F ; o
¥
e R B
\FH‘ T g) 5
- 7 ~ 7 f‘
H g

(Images under the just-given constructions of isolated T s F, and H
nodes were chosen rather arbitrarily. These nodes plainly serve no
purpose other than to render the compiler composition theorem slightly
less cumbersome to state.)

We now need a compiler LY gw g ™ -1-'wc with which we can compose ‘ ’e

the extend(ua_b,iwc) we have just developed. In essence, the required

" is just an instance of the general compiler for whiles and compounds \

developed in Chapter XI, with |L . sig‘ taken for the generating set, .

i »
F and {while p do |pe|L, .|} taken as the set of while-statement building 33
%

I

110 i

- o e T
T,

e T B G O T T N GV P A S P S N O A SO

e operators. To make the co-domain of Mgy COome out to be exactly

A
L a
¢ L. Wwe must adjoin the isolated nodes T and F to the BRAs
"‘n S

N
% u,wh(x 1= e) = Ix := e , and the isolated node H to the BRAs

S

- —— ;f \é » but doing *so plainly will not have the
-7 F

slightest effect on the proof of correctness given in Chapter XI.

ri‘f Composing, we may now assert that we have a correct compiler
'..‘.4

o = I L, '

:E 7 L eXtend(”a-b’karc) Moih for L c ? producing programs for our

final target machine 2ab .

We now have to obtain from x we & compiler for L . This

=synth

will be done by an atypical application of the compiler composition

theorem, in that no composition will occur: Lsynth is already an

will be ‘simply

.é algebra of BRAs , and our final compiler Hy ynth

extend(nv'r » but modified to

" c’Lsy'nth
‘ ' act on suitable BRAs . (One could easily imagine removing this

where x' is essentially .
) we e

3\. ‘ anomaly by meking -L-synth the target algebra of a compiler for a

:n‘\.; more conventional programming language in which programs were linear
_.!*' strings containing labels and goto statements.) Still postponing a

5_1 decision on just what algebra Lsynth is to be, we will proceed to

:§q show that the compiler composition theorem must be applicable, assuming
:“ only that all the BRAs in the generating set of I‘-sy'nth s together
with any constant BRAS ¢, it msy employ in its constructions, are
‘éé of one of the forms:

- .Eﬁ‘-.‘&.“_ﬁ‘{:‘ .,L» .(.?:;Cw.\‘:rr'r~r :: i r

o,

P S R R T A e A W T R R K N TR

W TR T

e e Si e e SO e e Si e v e
s or 7/ \f)
HJ e e HO e o0 HJ e oo Hk s e

with selL | , pe |Ly ooy | » and without eny implication that k > j .

We denote this set of BRAs by xsynth s

We specify "w'rc in the obvious way by:

i
LN HJ * e Hk * o

Our target semantic function will of course be given by:

Vo i P b ac® @ mab) J(SHxA x (V- A)x(U ~2))

LJ;
and our decoding function by:

8 ymtn’ R FRYSEX(V = A)x (U -2))

(keeping in mind our convention that {i v (),1i}: |¥| c |meb| -

We recall that Pyntn’ B ac(P®) J(SHx (V = A) x(U - 2)) .

A AT LN L G T Y I S L p TR B R e, MV ¥ L 0 ¥ V. 5 e A R 0 B AT A FN ' WL YR ST SRR T ey

We may now verify Hypotheses 1-4:

Hypothesis 1, that SH C [/ (B)| for Pex vty ° 18 imediste

. ; .
by definition of Koo

Hypothesis 2, that |#| < |mab| , holds as before by identification

of i with (),i .

H!EOtheSis 5, that ¢synth(g) = ssynth o wsynth °“§:,c(‘_’) for Eexsynth ’

is easily seen to follow from the correctness of Kere 2 together with

S
what we proved about x,_, If ‘\f) to establish Hypothesis 3 in
T F
H

the foregoing proof for Mo 5 all that has changed is that we are
allowing the role of S to be played by an arbitrary S g2 and those

of T,F,and H by arbitrary H, and H_ .

Finally, Hypothesis 4, that rela.tions vsynth ou_",c(g) » if applied to
states with empty stack, yield only states with empty stack, comes as a
by-product of the application of the compiler composition theorem to

Kb (recall that the inductive part of the proof of that theorem extends
not only Hypothesis 3 to the whole algebra, but Hypothesis L as well),

together with the already proved satisfaction of Hypothesis 4 by

S
Ya-b **a-b Ij ¥
T F

H

113

We may conclude, by the compiler composition theorem, that once

we settleon L

= ' s .
Zsynth ’ *synth emend("‘wc’l‘-synth) will exist and

be correct.

It remains to specify a set of constructions which will, from our
generating set for Lsynth , yield all and only the multi-entrance,
multi-exit deterministic flowcharts, where by "deterministic" we mean
that at most either one arc labelled with a statement from éwc s Or &

pair of arcs labelled with p and p , where pe‘ébool| , is allowed

to depart from any one node. (The restriction to determinism is quite
unnecessary to the success of our correctness proof, and is made in the
interests of realism: that is, we imagine that the "real" machine
modelled by Mab is only able to execute deterministic programs --
it may easily be checked that it will only be called upon to do so,
provided we keept the Lsynth-programs deterministic.) It appears that
the following set of constructions will do as well as any: We take

for the operations of Esynth all binary constructions derived from

kernels of the form:

q: SH U SH, = SH U {I,I,...}

such that
(1) every S, has at most one inverse image under § in (one
component of) SH {J SH , which is of the form Sk $

(ii) every Ii has either empty inverse image, or inverse image

consisting of exactly one S, and one or more H, ,H. ,...
k Jl Jo

(iii) every Hi has inverse image under a consisting of zero or

more H,. ,H.
dp 2

11k

I Ay —— e
A D S N R A A o o N R T T T T S o e 0 T T N b o N M N g N A 8 A S S 7.y el e e s

RS hats A
R o e

Ty K
oo

»

T
A

g

- 4

" T F ETE S E W

RTAT

YA W P

RS

0
_g :
5 The idea is that we only allow arcs to depart from S-nodes and I-nodes

end we prevent these from coalescing.

e
The generating set of L'-synth we naturally take to be xsynth C

Having finally fixed on Lsynth s we may say that

u:-‘@ eXtend(“v'rc’Lsynth) is a correct cmrip:g}er for L'-synth sy yielding

programs for /Mab ; our synthesis is finished. l

e,
I e
S5l S o S

o 5 ol 4
T WP .

o ap e Ay

,"
X,

Y

(Y M

>

%
e

A
-

A a ﬁféﬁ;féi

s
S ae]

)

15

U Y er® I W A% B, Gt U Wt $a | " [l 8.0 .l A » - ur N : L I RV I e pu-ay ey

XIII. Conclusion

We may ask how well this thesis has conformed to the aim; announced
in the introduction, of bringing mathematical order as well as mathematical
rigor to a part of the theory of computation. A partial affirmative
answer is given by the fact that a very short list of well-defined ideas
provides the basis for the examples of correctness proofs which we have

seen; the fertility of these ideas appears far from exhausted:

1) The diagram of operator-algebraic homomorphisms as a model for the

compiler correctness problem, taken from [Burs 69].

The category of BRAs, obtained by combining the concept of the &
operation from [Land 70] with the idea that interpretation of a

program scheme is a functor from [deB 69].

The result of Chapter VI, that the semantics of BRAs acts as a

homomorphism on & construction-algebrea of BRAs.

The compiler composition theorem.

Miscellaneous Observations

The algebra Ls which we chose, for want of a better, in

ynth
Chapter XII did not impose any natural structure on flowcharts; indeed

the idea of multi- (rather than single-) entrance flowcharts, which wcs

forced on us because there appears to be no way to break up a : ngie-

116

entrance flowchart into single-entrance pieces, is itself somewhat
unnatural. However, in [Cooper T1l] it is shown that every flowchart
simulates (although the notionlof simulation does not appear there
explicitly) a flowchart in what is there called "block form" -- i.e.,

a tree form, except that an arc may lead back from any leaf to one of
its ancestors -- and "reasonable", i.e., tree-structure-reflecting,
algebraic operations are given for generating the block-form flowcharts.
It seems probable, therefore, that a more perspicuous approach to the
algebraic treatment of the compilation of flowcharts would be to define
first a compiler (homomorphism) for block-form flowcharts, and then to
show that it can be extended to a functor between two categories of
BRAs, i.e., that it can be extended to arbitrary flowcharts in such a
way as to preserve simulations. The potential of this approach remains
to be investigated.

It is a question of some importance whether optimizing compilers,
which, particularly when they use global information about the source
brogram, are superficially very unlike homomorphisms, can be rendered
amenable to algebraic description. The author speculates that many
cases of optimization will allow description as an underlying non-deter-
ministic compiler (i.e., one computing a relation between source and
target language programs rather than a function) under the control of a
"black box" which selects one of the many possible compiling functions.
If we could prove the underlying compiler correct for all its possible
outputs, then we could claim correctness for the optimizing compiler

without ever concerning ourselves with the contents of the black box.

117

As we have defined it, a homomorphism is of course

required to be a function. It seems very probable, however, that the
following‘property, if required of compiling relations, would make them
sufficiently like homomorphisms to allow analogous results to those of
this thesis to be obtained -- (a property of a relation p , for
particular Q-algebras A and B with p: |A| % |B| and for all wefd

of any arity k):

o gw(al,...,ak) + b iff for some bl,...,bk[p: a5 Hbj (L<j<k)

ﬂd.- b = E‘)(bl,...,bk)]

This notion is a special case of that of "pseudohom" defined by Lloyd
in {Llo 72}, for which he is able to prove a unique extension lemma.

The following remarks develop informally the claim made in the
introduction that Dijkstra's co-operating sequential processes [Dijk 68]
can be naturally modelled by BRAs. We may define an operation)'2 on

BRAs by:

N
€
.
n
Y
>
&

(

N

iB)y: a,b - a',b! Egzy: a - a' _°_r@,7= b - b

It is readily verified that ;'(is a bifunctor; it appears to play a
natural role in the assembly of machines from components. (Had we

troubled to define ;'(earlier, we might have been spared some of the
tediousness of assigning identity relations to "extraneous' operators

in the analysis of the machine in Chapter X into stack and location

components.)

It appears that if we have two programs modelled by BRAs g7 & B

then the BRA which models their concurrent operation is simply Z‘;(ﬁ;

118

_,__

5"

%
" .

A
Ly

LA

iy

_53 Moreover, a semaphore o/ is just a component (under §) of a machine,
e
10 with |,1| =N » and operators Vs , Ps having the effects:
Wiy
-f%i g%s: nentl ,
Rt g%s' L
?@} The preceding explication follows Dijkstra's concept in an ugly but
.ij perhaps essential characteristic, that what are the possible computations
il
st of a set of programs running concurrently is crucially dependent on just
:}% what is taken to be an atomic act of computation. (For example, if one
‘(‘r'
!
lﬁ% supposed that accessing the value of a variable decomposed into
L0
L
'”3 destructive readout followed by restore, then programs which Dijkstra
ﬁ% considers to have determinate outcomes would cease to do so.) This
;2?; property is reflected in the BRA-model by the fact that the operation ¥
v:')
ot does not commute with compilation.
Lo
)
154
1)
. Prognosis
An attempt will here be made to evaluate the practical applicability
of the algebraic methods which have been developed in the foregoing
chapters.
First of all it is plain that the "stratified" kind of semantics
to which we have been limited, and according to which all the constructs

(at the top level) of a language-algebra must be of the same type, is a
serious obstacle to the treatment of "realistic" languages. However, the
work of Birkhoff [Birk T7O] and [Birk 71], which the author saw too late

for it to be reflected in the development above, seems to hold out hope

119

for a great amelioration of this difficulty. Birkhoff introduces the

notion of a "heterogeneous algebra", essentially an algebra with several
carrier sets, which is to say several types of element; each operation
has not only a numerical arity, but as well a characteristic type for
each argument and for its result. E.g., a language containing both

expressions and statements, and aliowing each to be embedded in the

other, could be modelled as a single heterogeneous algebra, as could

its set of meanings which correspondingly would contain functions of

diverse types.

It appears that the notions of generating set and homomorphism are
extended to heterogeneous algebreas in such a way that the elementary
theorems of universal algebra, and in particular the unique extension
lemma, are preserved. It seems reasonable to expect, therefore, that
the methods for proving compiler correctness which we have developed
will remain valid in the heterogeneous context. Birkhoff also has some
general insights about derived operations, of which the constructions we
have defined are a special case (at least if we regaré 21l BRAs as
originally forming an operator algebra, say with ® and @ as operations).
Homomorphisms such as our compilers for which the target algebra
operations arc not given in advance but created to "go with'" the
homomorphism seem to be what Birkhoff calls "cryptomorphisms".

There is also the question whether some particular kind of
sophisticated programming language feature will cause algebraic methods
of description to break down, or at best become terribly unwieldy. The
author's expectation is that the modelling of arrays and other data

structures will not present any great difficulty; he further conjectv rs

120

B T A G R\ e s N L R A T R R S A Y A P) a5y

that at least a limited form of closed subroutine facility can, with

some ingenuity, be modelled directly in BRAs. Languages in which bound
variables play an essenfial role (e.g. those having dynamic declarations,
or procedures with formal parameters) may present graver difficulties.

It appears that the best prospect of coping with these is to take the
meanings of program phrases to be appropriate functions of enviromments,
as outlined in the remarks on)-calculus semantics given above in

Chapter IV.

It is clear that the attempt to produce an wlgebraic proof for a
typical existing compiler will get nowhere; even if a homomorphism is
vhat is "really" being computed, that fact is usually well hidden. The
author expects that practical application of the methods developed here
willl come, if at all, within the frémework of a "verifying compiler-
compiler" -- i.e., a compiler-writing system which accepts algebraic
descriptions of source and target languages and a definition of the
compiling function as a homomorphism (or rather, like our ”synth ’
as a complex edifice built by extension and composition from
homomorphisms) and which produces a compiling progrem. The system
envisioned here would further accept algebraic specifications of source
and target language semantics, and be able to verify assertions
accompanying the compiling specificétion which would constitute a proof
of the produced compiler's correctness.

This thesis plainly contains only a part of the groundwork which
must be done before a verifying compiler-compiler can be produced.

A significant part of the effort entailed in creating it would be the

devising of heuristic techniques for generating an efficient structure

121

T S TRRUSRNTEL et Macttl e S Gum B M 0" teaae W s, v
o VoA Y AN T '2,..‘ Pt S P <7
s e T ht e R Rkt b 0 o A

IR ;
"‘:- i&_,}. ia It e bt £

R S A R R R A R N e N O A W LR R it LRI s L T VR 0, G RN

of passes and phases in the produced compiler from the numerous fragments
of the compiling function specified by the user. Incorporated in this
structure there would of course have to be an automatically generated
parser, similar to those produced by existing compiler-compilers, which
would produce from a concrete (string-of-characters) source program,
elements of the source language algebra corresponding to each of its
phrases.

Birkhoff's generalized notion of (heterogeneous) algebra should
almost certainly be the one incorporated in the verifying compiler-
compiler. Furthermore, the restriction that the target of any compiling
homomorphism must be an algebra of BRAs should certainly not be made;
even if this were generally true of the final target algebra, it would
probably be appropriate for most higher-level languages that the first
several steps of compilation should be into intermediate languages in
which the sequential nature of the ultimate computation was still
partially hidden. Indeed, for a language some of whose features were
definitional extensions to a kernel sub-language, the first steps of
compilation might well be endomorphisms.

A problem which has been totally ignored in this thesis, but whose
solution is essential to the verification of a real-world compiler, is
that of making the transition at the output end of compilation from BRAs,
however machine-language-like they may appear, to progrems for some
real-world machine. Problems of memory allocation arise here, e.g. of
assigning parts of a homogeneous store to program, variable values,
and stack. Also, some device must be found by which we may accept as

correct a target program which does its best within the limits of

122

e ——

available memory, but comes to an error stop when space is exhausted.
The author expects that this part of the compiling problem will not
prove intractable, but on no other than intuitive grounds.

Finally, of course, a verifying compiler-compiler would have to
incorporate a proof checker capable of appreciating the reasoning about
algebras, relations, and functions on which the correctness of compilers
might depend. The most promising work in this area with which the author
is acquainted is the ongoing development by Milner [Miln 72] of the
ICF system, an implementation of a logic for computable functions due

to Dana Scott.

123

I E AR 2 -'T-‘"’ S CA TRV Eé R e YL
gl te e S Tty Y b3S PR FrEely)

References

[Birk 70] G. Birkhoff and J. D. Lipsom, "Heterogeneous Algebras,"

Journal of Combinatorial Theory 8, pp. 115-133, 1970.

[Birk T1] G. Birkhoff, "The Role of Algebra in Computing,” in

T .

Computers in Algebra and Number Theory, vol. IV, SIAM-AMS

Proceedings, American Mathematical Society, 1971.

[Burs 69] R. M. Burstall and P. J. Lendin, "Programs and their

Proofs: an Algebraic Approach," in Machine Intelligence L,

(B. Meltzer and D. Michie, eds.), Edinburgh University Press, 1969.

M s RO Nons s gt g - o B el e 2w sl s

[Burs 72] R. M. Burstall, "An Algebraic Description of Programs with

Assertions, Verification, and Simulation," in Proceedings of an

ACM Conference on Proving Assertions About Programs, SIGPLAN

Notices 7, 1, Association for Computing Machinery, 1972.

[Cooper 71] D. C. Cooper, "Programs for Mechanical Program

Verification," in Machine Intelligence 6, (B. Meltzer and

D. Michie, eds.), Edinburgh University Press, 1971.

[deB 69] J. W. deBakker and D. Scott, "A Theory of Programs,"

(mimeographed notes), IBM Seminar, Vienna, August 1969.

[Dijk 68] E. W. Dijkstra, "Co-operating Sequential Processes,"

in Programming Languages, (F. Genuys, ed.), NATO Advanced Study

Institute, Villard-de-Lans, 1966, Academic Press, London and

New York, 1968.

12k

L L N N o L o T M o D o

R R R R TS R TR - e Al s N TS M I

[Hoare 69] C. A. R. Hoare, "An Axiomatic Basis for Computer

Programming, " Communications of the ACM 12, 10, October 1969.

[Karp 59] Richard Karp, "Some Applications of Logical Syntax to
Digital Computer Programming,"” Ph.D. Thesis, Harvard University,
1959.

[Land 70] P. J. Landin, "A Program Machine Symmetric Automata

Theory," in Machine Intelligence 5, (B. Meltzer and D. Michie, eds.),

Edinburgh University Press, 1970.

[Llo 72] C. Lloyd, "Some Concepts of Universal Algebra and their
Application to Computing Science,"” Computing Science Working

Paper: CSWP-1, University of Essex, February 1972.

[MacL 67] S. MacLane and G. Birkhoff, Algebra, Macmillan,
New York, 1967.

[McC 62] J. McCarthy, "Towards a Mathematical Science of Computation,"

Proceedings of the ICIP, 1962.

[McC 63] J. McCarthy, "A Basis for a Mathematical Theory of

Computation," in Computer Programming and Formel Systems,
(P. Braffort and D. Hirschberg, eds.), North-Holland, Amsterdam,
1963.

[Miln 72] R. Milner, "Logic for Computable Functions: Description
of a Machine Implementation," Stanford University Artificial

Intelligence Project Memo AIM-169, Stanford University, 1972.

oy o A R IS W R B

1R SRR G SEATE R o

[Paint 67] J. A. Painter, "Semantic Correctness of 2 Compiler for an

Algol-like Language," Ph.D. Thesis, Stanford University, 1967.

[Scott 69] D. Scott, "A Construction of a Model for the A-Calculus, "

(mimeographed notes), Oxford Seminar, November 1969.

126

LT
Lo e

- | :q

TR ST
PHOREse

44 R o L T A

