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3 i Abstract

Rk |

4 Programming languages and their sets of meanings can be modelled
4 o by general operator algebras; semantic functions and compiling functions
| by homomorphisms of operator algebras. A restricted class of individual |

programs, machines, and computations can be modelled in a uniform ]
o manner by binary relational algebras. These two applications of algebra

A to computing are compatible: the semantic function provided by: interpreting ( running”) one binary relational algebra on another is a
l © homomorphism on an operator algebra whose elements are binary

relational algebras.

; Using these mathematial tools, proofs can be provided systematically
; of the correctness of compilers for fragmentary programming languages,

each embodying a single language "feature". Exemplary proofs are given
; for statement sequences, arithmetic expressions, Boolean expressions,
| @ assignment statements, andi{while statements. Moreover, proofs of this

. sort can be combined to provide (synthetic) proofs for, in Principle,
! many different complete programming languages. One example of such a
> synthesis is given.
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0. Introduction, Notation, and Organization

The aim of this work is to contribute to the mathematical theory

of programming language semantics and of translations from one programming

language to another, and in particular to bring within nearer reach the

. feasibility of proving the correctness of rules (compilers) for performing
such translations.

McCarthy [McC 62] appears to have been the first to have drawn

: attention to the possibility and desirability of making such proofs, and
the approach to be followed here agrees with the essential points of

| that which he proposed: that a program should be regarded as denoting
© a partial function; that a compiler is a program-valued function of

programs whose responsibility is to give a result denoting the same

partial function as did its argument ("same", that is, after making

. allowance for any necessary encoding of program data and decoding of
program results); and that in all reasonable cases both the denotations

of programs and the effects of compilers can be given by definitions

> which follow the abstract syntactic structure of the source language
programs, yielding the denotation or translation of a complex program by

” some operation on the denotations (respectively translations) of its
syntactic constituents.

The development of general techniques for proving properties of

C algorithms, in particular the equivalence of two algorithms, as initiated
| by McCarthy [McC 63] and carried on by Floyd, Manna, and many others,

has provided us with a sufficiently powerful theory to make us expect

C that if we are given an algorithm for compiling from one language to
another, together with algorithms (interpreters) for finding the result

1
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po of a program applied to data in both languages, and algorithms for

E transforming between source and target data representations, we should Q

: in principle be able to find a proof of the correctness of the rompiler
; (supposing it to be in fact correct). Such a proof was actually carried

’ out by Painter [Paint 67] for a small language. Encouraging as his Ke
# result is, it may be said that it also provides a warning that the bane

5 of computer programming -- the natural incomprehensibility of large and |: even medium-sized programs -- carries over in full force to proofs about |

: programs.
} It is natural to hope that if we can find more structure in the

| compiler-correctness problem than in the general equivalence-of-algorithms

) problem, we may be able to give to compiler verification the characteristics
; of a typical area of applied mathematics, in which small results with

intuitive content are proved once and applied many times, and to liberate o

; it from the incomprehensibility and duplication of effort so characteristic
h of programming. The main goal of this thesis is to demonstrate that this |
; hogt can to a considerable extent be realized. -/

p In the author's opinion, the essential first step in structuring

; the compiler-correctness is to reject the view that the semantics of a |
3 programming language may be given by any algorithm for getting a result -

from program and data together, and instead to demand the literal

3 assignment of meanings of whatever mathematical type may be appropriate |

4 -- generally functions or relations of some kind -- directly to programs =
;

and program constituents. Having mad~ this decision, then even |

y regarding a language and the associated meanings merely as sets, we ]
; have that proving a compiler correct is always proving the commutativity 9
g of a square diagram of the form:



©

]

: source target
language ? language

compiling:
Fauncel ion

: Source Largel,
. semantic semantic

: function function
@

source target
{ meanings &——————————————————— neanings

decoding

- function

Insofar as possible, we would like to consider the mathematical

ec

properties of the functions indicated by the four arrows, rather than

properties of any particular programs for computing them. To succeed

. in this aim we will have to be able to give mathematical descriptions,
| @

rather than descriptions by programs, of these functions. (And indeed,

in applications where the correctness of an actual compiling program |

must be proved, an additional step, ignored in this thesis, will be
£3

needed: a verification that the compiler does compute the compiling

; function which we have discovered to be correct.) |

We can do better than to regard the corners of the above diagram
eC

merely as sets. We shall make extensive application of the idea of

Burstall and Landin [Burs 69], that it is possible to recognize an

algebraic structure in the source language, and to impose corresponding
Cc

structure on the other corners of the diagram, in such a way that the

| arrows become not merely functions but homomorphisms, and many results

| depending on an induction on the structure of programs can be obtained
| oF

in a uniform way as applications of basic results of (universal) algebra

about the existence and uniqueness of homorphisms.

& b
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oe A second application of algebra to the theory of computation of

i which hcavy use will be made in what follows comes from Landin [Land 70 1 |
5 The idea here is that each single program can be regarded as an algebra, |ET |

5 of which the operations may be taken as partial functions, or somewhat
| more generally as relations; likewise any suitable interpreting machine

bY: for a language can be regarded as an algebra of the same sort. The |
0% possible computations of a given program on a given machine then become |

a product algebra derived from the program- and machine-algebras. |

AS Landin's idea will be developed here only for the case that all
oa operations oi’ program- and machine-algebras can be taken to be binary |
CaN

3 relations (or unary functions). So restricted, its applicability is |

2 certainly much more limited than is that of the programming -language-as-
Ll algebra model; nevertheless, it makes possible a uniform treatment of a

\ surprisingly large class of examples. (Our terminology will be to |
i apply the abbreviation "BRA" -- for binary relational algebra -- to |
on these program- and machine-algebras, and the phrase "operator algebra |
% to general language- and meaning-algebras.) |
a | The specific techniques of compiler verification we shall develop
oh will be primarily applicable to a situation in which the source language |
. is an arbitrary operator algebra, but the target language, as well as
153 being in its entirety an operator algebra, will also have its individual :
2: programs be binary relational algebras. It is not claimed that all
A

9. instances of compiling can be adequately modelled by this scheme; rather |
To our restriction on target language-algebras biases us towards modelling
Ses compilation into low-level languages. The modelling of target programs |
[8 by BRAs has a claim to be called natural to the extent to which we

Re
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believe that the ultimate fate of any program is to be obeyed by a

@ sequential machine (a concept which does not exclude the sort of

non-deterministic machine underlying Dijkstra's concept of co-operating

sequential processes).

© The development here of some properties of binary relational

algebras will be cast in the framework of very elementary category

theory. The exposition of those elements of category theory we shall

" need is intended to be completely self-contained, and in any case does

not go beyond, or even up to, the limits of what is contained in

[MacL 67]. It is perhaps necessary to defend the introduction of

> terminolngy from an area of mathematics which may be unfamiliar to

most readers. The author is convinced that the concepts of simulation

and of running a program-algebra on a machine-algebra are essentially

® category-theoretic notions (an insight which he owes to [deB 69] and

which also appears in somewhat disguised form in [Burs 72]) and

believes that recognition of this fact will make them better understandable.

® All the same, the reader who prefers to skip Chapter II, from Definition

II.2 onwards, and to ignore all mention of categories and functors

thereafter should find all the results of later chapters stated in

© "plain language" and, except in Chapter VI, should still be able to

| follow the proofs.

Notation

A great deal of the notation used in what follows is adapted from

¢ MacLane and Birkhoff, Algebra [MacL 67].

p
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Zn Sets: Upper-case Roman and Greek letters are used for names ofhy! ee

: 3 sets. For set constants, we use curly brackets and commas to give a
= set in extension, as {1,2,3} , and curly brackets with a vertical bar
2'.y

SI separating bound variable from characteristic property to give a setwh, 5

in intension, as {x |0 <x <4} .
“=.

an

3 Operations on sets: The signs N, U, - , and C denote set
~~ intersection, union, difference, and inclusion, respectively. We also |

use , U, C between relations of the same type, meaning that the |wo

'

or set operation is to be performed on their graphs. Set membership is |=,

ol written e . Cartesian product and disjoint union of sets are denoted
= respectively by x ..4 U . |

tad Logical operations: Within formulas, we denote the usual truth-

a functional operations by the underlined words and, or, not, implies,
3 iff, quantification by for all, for some, and truth values by true,
~ ;
oh false.

“ Functions: By either of f: A -B or A 5 B we express that f
EAN

2 is a function with domain A and codomain B . Note that two functions
no are to be considered as equal if and only if they have the same domain,

3

ls same codomain, and same graph. |

le We also use the notations f: A -B and A > B when A and B

0 are objects in any category and f is a morphism between them (a situation |2 AT “

Ld which includes the ordinary notion of a homomorphism between operator“wl!
Hy

algebras) .

2“wl ~

Fy Partial functions: By f: A = B we express that f is a partial

. function with domain A and codomain B .=,

3
A |bel 6 iLA

|



5
., ication: If f is a function or partial function, we

; denote the result of its application to the argument x by f(x) , ;
£ » or even, if no confusion can arise, by simply f x . (However,

subscripts, together with primes, tildes, and the like, are also :
sometimes used merely as distinguishing marks.)

Relations: By f: AX B, we express that f is a binary 3
relation on A to B, i.e., that it has domain A , codomain B, ¢

and graph any subset of the Cartesian product A xB . 3
We may also use the notation (A = B) (similarly (A = B) , ;

(A X B) ) in isolation to denote the set of all functions (similarly, 3

partial functions, relations) on A to B . It follows that the ;.
sign : , as used so far (but beware, not subsequently) could be 2

displaced in favor of the sign ¢ . ;
We consider that (A -B) c (A = B) c (A <x B) . The notation ¥

described in the following paragraphs as being for relations therefore

applies equally to partial functions and functions. :

If ft: Ax B, acA, becB , then we express by .
f: arb

that f relates a to b, i.e., that the pair (a,b) is an element |

of the graph of f , or what can be also expressed, if f is at least .
a partial function, by f(a) =b . :

Composition: If f: XX Y, g:Y &« Z , then we denote by :
either geof or f;g indifferently the composite defined by Hd

£38 : X x 2 %
2 with &
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JA 5g: xm z iff for some ye¥Y, f: Xx »yand g: yp z .
- - I

A If f and g are partial functions we have

} gof(x) = g(£(x)) = (f3e)(x) .
aN

Iteration and converse: If f: Ax A, then eX denotes the
ht

238 k-fold composition of f with itself. This notation is consistently |}

I extended to all integral powers by taking £0 to be the identity

relation on A , and gk to be the relational converse of £5 ’
wh . ~~k y . eK . 1thet i1.e., ff: a'm»a iff : awra' . The notation ff to denote
oh
os the converse of f is also used for relations with arbitrary (possibly
he!

[J different) domain and codomain. i

p) Insertions: With every instance of set inclusion, such as

My A C B, there is associated a unique function i: A = B with i: a + a z ]

No this is called the insertion of A into B . We may name the insertionkha 1

:: in passing by writing, e.g., i: ACB.
) Restriction: If i: Ac B, and f: BX C , we den-te hy f A

ol the composite fei , and call this the restriction of f to A . |
fle - -—
a Conversely, if Dc C , we denote (f 1:4 D) 1 more briefly by f£ D ,

i and call this the cut-down of f to D . Moreover we shall write

far £9 D as shorthand for (f 1 D) | D ; when no confusion can arise we
Sak

Se also refer to this combined restriction and cut-down simply as restriction.

ty Special sets and functions: |
A 4
oh N denotes the natural numbers {0,1,2,.. 3.
3 |
Se

Fr kK denotes a standard set of k elements, namely {0,1, .eoyk=1} 5

re) in particular, 1 denotes {0} . Exception: at some places the

3 8
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explicit convention will be made thal 2 denotes the set %

The identity function (equality relation) on a set A to itself >

is denoted by 1, : :
Other alphabets: Underlined Roman capitals (as, A ) will be used }

for general cperator algebras; underlined curly capitals (as, a ) for ;
binary relational algebras (BRAs). Plain curly capitals will be used ;for categories and functors (as, ¢ ), except for the following five %
special functors (defined in Chapters II and III): ® , @, 2 , :

[Funciions and homomorphisms will be denoted by lower-case letters, 1
generally Roman for the former and Greek for the latter. Note, however, 4
that our definition of an algebra will make it a function from its set .

of operators to its set of operations, so that an applicative notation

| such as for example A, will indicate the operation which the !
operator & denotes in A . 1

Unanalyzed set elements will be named by any convenient symbols, :
for example x , 5S , Ww, + .

Organization 4
| The first halt of the thesis, Chapters I-VII, is theory; the second

half is application. h
In particular, Chapters I-III develop the theory of binary relational

o algebras as models for the concepts of program, machine, and computation. :
Chapters IV, V, and VI introduce thc concept of operator algebra as a 3

ER re LgLL a TH bh Ey vn
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- common model for a programming language and its set of meanings, and

| | present examples of modelling both programming language semantics and
NS compilers (in Chapters IV and V respectively) by homomorphisms of
» operator algebras. Chapter VI assimilates the notion of the meaning

| of a program obtained by regarding it as a BRA to the notion of
2) semar. > homomorphism. 3In Chapter Vil a theorem is proved whizh will
3 allow a correct compiler for a complex language to be assembled from |

compilers for simple languages each of which embodies only a single |

Lr "feature".

Ls The second half of the thesis, Chapters VIII - XII, is devoted to
exemplary proofs of compiler correctness. Chapter VIII may be considered

i a second introduction; it sets out the method to be followed in the
| 2 applications. There are three proofs in Chapter IX, one each in X

| and XI -- all these for simple, one-feature languages -- , and in |
i: Chapter XII the theorem from VII is applied to obtain a correctness |
3 proof for a (somewhat) complex language.
) The languages considered in Chapter IX are referred to as Examples |
2 55, AF, and Bl; they will already have been introduced under these nemes » and
Ee their semantics and compilers defined, to illustrate the development in
) Chapters IV and V.
wy The following is a suggested strategy for a first reading of the
i thesis: Skim Chapters I - VII very lightly, attending only to the 1

) informal exposition and the examples. Read Chapter VIII as soon as
4 possible; then study one or more of the proofs in Chapters IX - XI,
‘ referring back to Chapters I - VI for explanations of concepts as the
(} need for them becomes apparent. Defer Chapters VII and XII until last.

5 10
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I. Modelling Computing Devices and Computations ot

{ by Binary Relational Algebras

The present chapter will give the basic definitions, with examples, ;
of .he algebraic model of computation due to Landin [Land 70].

| Definition I.1: A Binary Relaticnal Algebra (BRA) 7 is a function ;
a: T = (lal % |g) associating with each element (operator) of a set T 3
a binary relation (operation) on a set |g] (the carrier of a).

To get hold of the right end of the stick, one may dc well to keep 3

- in mind from the start the informal notion of a computation of g as 3

being a sequence (finite or infinite) a 7 aq 7 a, + ... , such
that @g : a, pa, ‘ ]

ys 1 itl

Evample I.1: A finite-state machine (not that the restriction to i

finitude has any particular significance for us) is normally taken to :
be a function M: IxQ -Q with Q the set of states and I the alphabet.

: We can just as well view this as a BRA mI - (Q -Q) . The relations 1
here are special in two ways: by being (partial) functions, and by &

ho being total. We distinguish the first of these special properties by
| oy:

its own name: a unary function algebra (UFA) is a BRA of which all the RB

relations are partial functions. 3

Example 1.2: A flowchart is ordinarily written as a graph with labeled :
nodes: some nodes (function boxes) with one exit edge; others (predicate :

& boxes) with two labeled exits; others still (halts) with none. We wish, :

5
Ee EDRT a ar oT
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ep following a device of Karp's [Karp 59], to keep the same shaped graph,
Aw

) | but transfer the labels from the nodes to their outgoing edges (from

on each predicate =x we must somehow derive .wo distinct labels, say =
Be =
5 iN and =n , for the two departing edges). We then have a BRA, with the :

! ) set of nodes &s carrier, mapping each label to the set of ordered pairs |CY

§ 3 of nodes connected by a so-labelled edge. It will by its construction |“HL

ne observe the rule that each node is related to at most two others, and

| if to as many as two, then by virtue of a pair of complementary predicate
; Rr
a labels.

i There is, as observed by Landin [Land 70], a one-to-one correspondence

Ld between BRAs and edge-labelled directed graphs without duplicate edges.

wh In fact, by taking some liberties with the "barred arrow" notation by

f~" " . : 3
nL which x by indicates that y = f(x) , we can claim edge-labelled

3? directed graphs, with the edges drawn as barred arrows, as ready-made
notation for presenting small finite BRAs. E.g., if we write: 1

) 0

SH |

: a:=1 iYY :

W n:=n- |

oe F = lL yk |

Lo . n=0 n=0 Bi=axn
E4 Bp? ;
nh

oe 2 3
i

£30 we indicate that F 1s a BRA with carrier 5 , and with at least the
% rl!

» set of operators {n=0, a t=1, n=0, a :=axn, n :=n-1} eachIN

{Sn denoting a relation : 5-X 5 -- as it happens each of these operations
eo relates only one pair of carrier elements -- and possibly with other

operators as well, all denoting the empty relation.

pr
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Running one BRA on another: ;
@ Given BRAs which in some way model a program and a machine, one ;

| would expect them to determine the computations obtainable by running )

| the program on the machine. We shall make the seemingly over-general .
ik

© definition of an operation ® for producing from two BRAs a third

which, as will be seen, has a claim to be called their Cartesian !
)

product. )

® We first define the Cartesian product of two relations: if -

R: A—XC, 5S: Bx D, then RxS: a,b~xc,d iff R: a +» c and i
(

| S: brd . I.e., if we consider the graphs (denoted here by an over-bar) A

© of the relations: R = {(a,c) |R: abc}; § = {(b,d) |S: bd}, then |

the graph of R xS is just the set-theoretic Cartesian product of the 3

two graphs, with each ccmponent quadruple rearranged: whereas i

* RxS = {{(a,c), (b,d)) | (a,c)eR and (b,d)eS} , :

| RxS = {({a,b),{c,d)) | (a,c)eR and (b,a)e§} . ;
We are now ready to define a product on BRA's: :

»
Definition I.2: If g and f are each BRAs with operator set I , :

ha ) . A
then 223: T = (|lz]x|a8l =x |z]l x |A]) is given by (g® B, =a x8, :

| ,

for yc . )
&@

| Intuitively, the computations of g ® B are just those common to

d and pR : the product can do whatever both its factors can do.

&

Example I.5: Finite state machines as above; take an input sequence, |
r 'y

e.g., the string par , to be an UFA & » oS e+e (we use dots to :
indicate arbitrary, distinct carrier elements when there is no occasion )

to name them); then the product of a string with a machine gives all

h

!
,
t

€ 13 |
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of

;
” the computation sequences generated by presenting the string to the

= various states of the machine. <
L~

5 Example I.4: Flowcharts and their interpretations. An interpretation

a I is an assignment of unary functions and predicates over a domain
@

; (of states) to function and predicate labels; take an UFA $ with

¢ the domain as carrier, §: fp Io 3; 91D - {XX | 1,02) } 3
) 3: p - {x bx | not I(x)] . Then if © 1s a flowchart UFA, as above,

o

| the product P ® § relates each (node,state) pair to its successor

< pair.

4 The products in Examples % and U4 have a property stronger than <3

3 being UFA's: each element of the carrier is related to at most one

- other element, even considering all the relations together. We may make |
: the definitions: =)

J Definition I.3: 2g = U4, , for any BRA ad with operator set TI .
vel y

eo

Definition I.4: A BRA d is monogenic iff 2) is a partial function,

} i.e., iff 2 ge (lal = lal) .

i L) » L) ] - LJ Ld Lo- Generally speaking, the idea of deterministic computation will be

i modelled by monogenic BRAs; however, most of the theory will apply |
«

y equally to mono- and poly-genic BRAs, and so may throw some light on
in A=
4 (one notion of) non-deterministic computation. ~
v I

3 Example I.5: Turing Machines. Define a » the Turing machine-BRA
A ;

with alphabet F , to be an UFA, 7 FxF x {left, right} —~ (Tape = Tape) , ~

} 14

3 |
%
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| ©

{ where Tape = (N--F) xFx(N-F) , as follows:

kA T £ || if,g, lest’ PTB + @°0,3(0),800 U {0 + g}

10,0: right’ % £8 + acpU {0 w g},8(0),Be0
© where

0: N-N: nr ntl

and

® p: NN: ml en . |

f A (nondeterministic) program oF for 7 is an arbitrary finite
© UFA §': FxFx {left right] - (@ =Q) , with Q a finite set of

states.

: A product PP Q J 1s then a particular aon-deterministic Turing
% machine with alphabet F as ordinarily defined.

A

| ©

|
FC

C

:
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IT. Simulation and Categories

In keeping with our idea that a BRA defines the class of computation :
| sequences it can perform, we want a notion that of two BRAs d and pf,

he

A simulates g if JB can perform any computation that (7 can. i
® ;

Formally we define: A

| Definition II.1: A simulation of a BRA 4g by a BRA f with common ]

@® set of operators TI is a function ¢: |7| = |B| with the property,
| for all yell ,

: . CC . ;

“ or equivalently,

| -1 y
[ ] J CC :| P sdPC 2, y

h
or equivalently,

® i
c . . %

(these equivalences because ¢@ is a function, and so we have g

o Lio cl and 1, | © ps0 t
. =a lgl ="% ’

| We hasten to observe that there are some very silly simulations ’ ;|
| e.g., the BRA 4' , with y

© r r s
11] = {0} , 1,: 0 #0 :

: simulates all BRAs with operat set T .

G Depending on the particular application, we shall generally want E
to prove more than just simulation, for example, that @ is invertible

. Id

| and [8 is monogenic, before we think we have a simulation in the 1
V

| intuitive, useful sense that the simulating object will really "do the A
= 2

| work" of the simulated one. :

)
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ie Categories:
L] e.g i —-

! We next introduce a few of the notions of category theory, in order 3

iL Lo facilitate the development of the theory of BRAs and simulations.

poh Definition II.2: A concrete category (¢ is a class of objects Obj(c)

5 together with two maps: one, Un, » associating with each Xe Obj(e)
i a set (the underlying set, or carrier) U,(X) , and a second, Mor, ,ue

x associating with each pair of objects X,Y of (@ a set of functions

4 (the morphisms) with domain U(X) and codomain U,(Y) , (briefly, ia

rt Moz, (X,Y) - (Un (X) = U,(Y) ), and satislying the following two axioms:

a CCl: For all XeObj(e) , L(x) e Mor ,(X, X) )

5 cca: For all X,Y,ZeObj(e) , if P € Mor, (X,Y) and y € Mor, (Y,2)

a then {oq € Mor ,(X, 2) :
Xe We extend the ordinary notation ror functionality by writing ¢: X -Y

i to express that P Mor (X,Y) , and we denote Sux) by he . The
) simplest example of a category is, of course, the category ens of sets,

> where U is simply the identity function, and Mor(X,Y) is the set

of all functions from X to Y . Another easy example is the category
all

* Reln of binary relations on sets to themselves. If R: A- A is such
= a relation, we take Uoe1n(R) A, and Morqe1n(BsS) (supposing
Sr

i U(S) = B ) to be the set of all functions ¢: A - B satisfying
9 R:@ c @;S (or equivalently, since @ is a function, satisfying either

0 of o LR; CS or Rc 0:80 T ).

4 The axioms for a concrete category are easily verified for eln .

ert]

5

1a 2 A STET HH AMA LA TN Sar A A SERAC



I yg
Our aim is to discover that the BRAs with any given set [' of :

operators form a category, Bra’ with simulations as morphisms. 3
However, to facilitate the subsequent development, we shall allow this :‘

| fact to emerge as a special case of the following general construction :
| for building new categories from old: i$

Proposition IT.l. If 7 is a concrete category, and 8S is a set, by

then lS] is a concrete category, where als] is defined as follows: 3
The objects of lS] are functions A: S - 0bj(@) , with the special : t
property that for all s,teS , U(A(s)) = U(A(t)) = (by definition) U(A) ; g

| i.e., an admissible function has for all the objects in its range of 3
values the same underlying set. The morphisms of al5] between two ”

| objects A and B are all those functions @: U(A) - U(B) with the +3

| property that for all seS , E e Mor, (A(s),B(s)) . als] is readily i
h verified to be a category. -

| The category Bra’ of all BRAs with operator set TI y and with 4
simulations as morphisms, is now seen to be exactly the category ]

cenlT] :
| We next define the important notion of a functor, which is

essentially a homomorphism of categories.

| Definition II.3: A (covariant) functor %: ¢ - p from a category 5
| to a category B/ consists of two mappings (the same letter % is by +
= convention used for both), one (called the object function of % ) -

-— x

| giving for each Xe Obj(C) an %(X) e0bj(h) , and the other (the oH

mapping function) giving for each @: X =-Y an F(@): FX) - FY) , :
: such that the following two axioms are satisfied: *

VA
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or Fr F(y0) = (450) | |

a Pictorially, the axioms require that any instance of the following |

: diagram should commute: |
>

Ko F(®) “" #ly)2 F(X) ————————> FY)
a io )

7 Fo F(¢) :
hy ¥2)

Lo The following easily verified proposition will provide a convenient |

ag method for obtaining functors from a category of BRAs to itself.

SS Proposition II.2: Any functor %: @ —- p yields a functor

er] S S S S Sne 75): 18 LS] given vy 8x)(5) = m(x(s)) ana #5)(p) = wo)
JR

J We shall want functors of more than one argument, and for this
an

NL purpose we introduce the Cartesian product of categories. Intuitively |

a (and even formally in the theory of abstract categories, which bear
I

3 Just the same relation to concrete categories as abstract groups do toRY

2 permutation groups) the product Cex of categories ¢ and BH has fora0 )

: objects ordered pairs (C,D) of an object C from (¢ and an object D |AA

. from fp , and for morphisms ordered pairs (,y): ’2,D) — (C',D') , where

3 @: C -C' and ¢: D -D' , and with the obvious component-wise |
i: composition. To get an isomorphic concrete category, we must fiddle with
L this construction slightly; it is good enough to take the disjoint union

“i
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u(c) Bn u(d) for U({C,D)) , and if U(C) 3 U(LC,D)) LU(D) are the =

injections into the disjoint union, i' , j' similarly for LD »
then instead of the ordered pair of functions (@P,4) , we may take as no

a
i

a substitute concrete morphism that function in (U({C,D)) - U((C',D"))) orLW)

pls oll x

with graph (1 T5031') U (J “5¢33') - =»
| A bifunctor, or functor of two arguments is now an ordinary functor oh

x

defined on a Cartesian product category. ihe's
It is easy to check the following distributive law: Ly

roProposition II.3: (exp) Ls! = lS p81] : Sg
la

(To be pedantic, isomorphism (=) of two categories may be r

defined as the existence of an invertible functor between them.) From 3
this we have immediately that the statement analogous to Proposition II.2 ER
is valid for bifunctors. 2

| :

| We shall have occasion to define a number of functors on concrete 0
categories. Most of them will be related to functors on the category : ,
of sets, in such a way that the labor of proving them functors can be pd

We

; greatly reduced by the use of the following proposition: 5
| Proposition IT.4k: Let F: ens - éns be a functor on the category of o

sets to itself. Let C , fp be concrete categories, and suppose %

is a function: Obj(e) - Obj(BH) with the properties 28
ey

(1) U(X) = FU(X)) oY

| (ii) For @: X -»Y in cc, Fo): LX) - HY) in 5. 3
Then 4 (with the mapping function of % as mapping function) is a 3
functor on C to JS ; we choose to call 4 a specialization of % . -

20 . !
ad

4
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oN
uy Proof: (ii), with the definition of 4's mapping function, gives us

A that HX): XX) - HY) whenever @: X -Y . So we have only to check

Hs (a) HL) =1 and
i X= Lyx)

ba (0) Hv®) = Hv) Ho) .

. But =F = 1 = = |

Es Hi) =F) = aux) = Tuan) = Lax) 2 od |
A 1

: Hi) = F(yop) = F(¥)oF(®) =v) Ho) . [|
| For a first application of Proposition II.4, we define the bifunctor

oy ® : Rpeln xReln —» Reln as a specialization of the Cartesian product
nd

(1 functor on sets. (Following [MacL 67], the mapping function of the
LJ Cartesian product functor x: e€nsxéns — ens is given by: If

eT ®: AA", vy:B -B', then : AxB = A' xB': (a,b) —ehl ’ Px¥: Ax xB': (a,b) - (@a,yb) .) |

X J We have, then, only to specify R ® S: U(R) xU(S) = U(R) xU(S) . We
| shall simply generalize the definition of the Cartesian product mappin
5 Pp mapping
WS function to read for relations (rather than exclusively for functions):

g)

Ja Definition IT.k: If R: A A', S: B-xB', then
) Tf—

oh RxS:AxB =x A' xB' = {(a,b)» (a',b') | R: awra'andS: bed},
>

Fo and then use this to define the object function of our bifunctor ® on
WX) fReln , namely:
E.;

br Sts . _

oO Definition II.5: R®S =3f RS .

. ¥2 have now to verify that if @: R -R', +: S = S', then

2 ?® ¥(=3¢ PxV): R®S »R' ® S' . That 1s, given that R;@ c Q;R' , |to]
0) S;v © ¥38' , we must show (RxS);(@xvy) < (9 x¥);(R' xS') . But, as
A

3 is easily seen, (RxS);(® xv) = (R;®) x (S;¥) and similarly for the
right-hand side, and moreover is monotone for c » hence finally

a

4 RxS;@x¥ =(R;@) x (S59) © (P3R') x (¥38') = @xysR' xs' . |SR

=
21
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''me functor iT] » which we also write ® , may be seen to be just :
r the operation of running: one BRA on another. 3
| A second bifunctor we shall be wanting is a specialization of the

disjoint union of sets; we shall write it @® . Supposing 3
| i: UR) -U(R) (J) U(S) and j: U(S) —- UR) U) U(S) are the injections

which copy U(R) and U(S) into their disjoint union, then we specify (

R@®S: UR) "1 U(S) xX U(R) 0) U(S) by :
| Definition II.5: R@®S = 1"L5Rs4 U ATTY :

The proof that if @: R -R' and ¢: S - S' then KX

Uy: R®S =R' ®S' and that therefore ® is a bifunctor on Reln ]

(and so by Proposition II.2 on Bra! ) is dual to that given for ® . §
We may observe that ral has an initial object, i.e., one 3

simulated in a unique way by every object, namely the BRA Q whose

underlying set is empty. Equally, there is a terminal object, one which I

| simulates every object in a unique way; it is the BRA 1 whose under- :
2 lying set is a singleton, say {0} , and which maps every operator of TI 2

| to the universal (and also identity) relation {0 + 0} . i

J We may also observe that there are natural isomorphisms for any BRA a: $
g 4=d®1 , gd=geQ, 0=geg,

and that up to natural isomorphism, @® and ® are commutative and :
associative operations, with ® distributive over ®@ . :

= It is now easy to show that the functors ® and @ have distinguished

(and dual) properties; namely 4 ® [ provides a product object, and ;
d ® FB a coproduct object, in the sense of category theory. The property, that 7
d® [F 1s a product object, may be simply stated as follows: any diagram :

: 22 :
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¥ a v
§ v

3 de——d®8—— 8 |
@

X. where p and q are the projection functions p: (a,b) + a , |

a gq: (a,b) »b , can be filled in by a unique morphism at o so as to
commute. ©Since we are working with concrete categories, most of this oS

5 is already proved for us; it is an elementary result (see, e.g. |

x [MacL 67]) that the Cartesian product is the categorical product in the
™ |

? category of sets, that is we know the function g: x + @x,yx) is the .

P- one and only way to make the diagram commute as a diagram of functions.
,

FL All we have to check is that the functions p, gq, and go actually are
5
Wi

morphisms (i.e., simulations) in gral . This is not hard, using that o

C: ® 1s a functor. Take lot BB t: @-1, and i: ®1=43.
- (1g bb, t: a» 0, and i: (b,0) kb .) Then q =ie(t®1) ; |

hence q: g® 8-8 . Similarly, p: 4® 84g .- To establish og as >

z a morphism, consider A: Z-Z®Z, A: zw (2,2) which is readily

, seen to be a morphism. Then ¢ = (® ® y)oA ; hence og: Z-g® FB .

i The proof that g @® B gives a coproduct object, that is that &

5 the diagram

A 1 i
p dedD Be——2F8
iF , oy

|

; P | P LJ
i

|  .

Z
p —]

>
wl

&

fl
5 23
¥
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can be filled in uniquely at p so as to commute (where i and j are ;
the injections into the disjoint union) is dual to that for aes Y
¢7iven above.

The product and coproduct properties have an obvious potential 3
for proofs of the existence of a simulation of one BRA by another: if v
we want to show that a product d® EF simulates a BRA Z , we need 2}

only find simulations of Z by the factors of d ® [3 separately; this :
might be easier, since d and [8 individually will each be less >
deterministic than their product. Dually, to simulate a coproduct BRA, A

it is enough to find a BRA which simulates both of its cofactors. 3
We shall here parenthetically indicate the connection between our 5

notion of BRA and Burstall's [Burs 72] category-theoretic model of |

programs. :
It turns out that there are two fairly natural ways of regarding *

an individu.l BRA as a functor, although these entail departing from the :convention which we observe elsewhere of dealing only with concrete 3
categories. First of all, corresponding to any alphabet TI' , there is I

a category 4 with one object (say © ) such that & is isomorphic N

to rr » the free monoid with generating set I' . The morphisms of 4 %
(necessarily all : 0 = 0 ) correspond to the elements of rr s» that is, #8

| to the finite strings of elements of TI ; composition of morphisms ;
corresponds to concatenation of strings. Also, there is a category 3

= €nsrel with its objects all sets, but with relations for its morphisms 2

(rather than functions, as with é&ns )3 composition of morphisms is Rs
hy

relational composition. Now it may be seen that to any I'-BRA B there :
i corresponds bi-uniquely a functor 5: 4 — Ensrel , with object function =

:
2
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2

3
et +
<0 given by 8: 0 + |B] , and with mapping function uniquely determined |

M +

——_— by the requirement that /F : 7 B, for yell .
7 On the other hand, any unlabelled directed graph H can be made |
thor

0G to correspond bi-uniquely to a category #% whose objects are the nodes |

wt of H , and whose morphisms are the finite paths in H . A I'-BRA B |

iE may be regarded as a labelling of the edges of some directed graph H |
i with labels from [I ; hence [B may equally well be regarded as a

functor fF: ¥ - 4%, i.e., as a labelling of the paths in H with words
orl *
bo from Ir .
Re

Te Our method, when we have a program-BRA ¢ interpreted by (runing
Thr on) a machine-BRA pB , will be to model the situation by forming the
150 - |

ou | product Z® B . Burstall, less symmetrically, models the interpreted
JT + = |
all progrem by the composite functor B o7 .
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III. The Relation Computed by a BRA ;
:

:®

Informally, what we would like to say is that the relation computed :

by a BRA is (some suitable restriction of) its accessibility relation,
f

which relates two elements of the BRA's carrier just in case the second
13 :

can be reached from the first in some finite number of steps, by the

use of any of the operations. To develop this notion formally, we |
{

first observe that the "fuse operators" function ¥ defined above i
A

(Definition I.3) is a functor I: @ra’ - geln , indeed a specialization :
of the identity functor. To verify this, we need only check that

for all yell P CC QP; ?
G all 7 ’ dP C P38,

implies 2
{

(Ug)< o5(U B) ,
vel 7 143% i !

:

® which it does, because relational composition distributes over union,
and union is monotone with respect to Cc . j

1

We next define a functor nc: Reln - Reln (for ancestral), :

® a specialization of the identity functor, by: S
!
t

Tie (i) :
Definition IIT.1: ¢mc(R) = U R . {

i>0 \

To show that hc is a functor, suppose ®: Q =»R in Reln with "

Q: Ax A, R: BX B; i.e., Q c sR; - Then for each k > 0, ;
(k) -1 (k)

C we have Q‘/ c (P;R;9 ~) by the monotonicity of composition for :

C and because, @ being a function, for k = 0 we have 1, a ®31550 ‘
-

But since @ is a function, also @ lo a In s hence
(x) (k) 1 |i Q C P;R 3  . So by the definition of (nc , and the monotonicity

-1

of U for c, we have ¢mc(Q) c ¢;anc(R);9 ~ , that is o: anc(Q) -— nc(R) .

26 :
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+ As (hc always produces a transitive and reflexive relation, we

i could just as well say that it is a functor on Reln to Treln , “

o where Treln is the full subcategory of feln got by restricting |
5 the class of objects to transitive and reflexive relations only. |

- We now define the functor ac: gral — Trein (for accessibility)
nN as the composition: -

A |

Definition III.2: ac = (hcey . -

2 We also give:

Definition III.3: If g is a BRA, with sets Sc lgl , Tc lg , ”

R then ac(g) 1 S J T is called the relation computed by ¢ from §
wh ) Lo ESS = -_ =

- to T (or, if 8 =T , the relation computed by ¢ on S ).

v We are now ready to state an almost obvious result. >
ty

By Proposition III.1: If a BRA ¢ is monogenic, with Sc la| , Tc dl , |

$ and in addition Tg 1 T = 0 (we are here using 0 ambiguously to

- denote any empty relation. The equation simply says that the elements !

A»

& of T are all "dead ends".), then the relation computed by g from S |
hb; |
>) to T ie a partial function.

) Proof: Let i: SCA and j: Tc A be the insertions, and let |h J

2 qQ =24 . The hypothesis on zal T now reads j3q =O . Then since |

Fr 4 1s monogenic, g is a partial function for each k > 0 . Let

Lh = izac(g);it » then we have to show rir Cc i :

1 1VD -1 s,m. ,~L. nn .-

r ;r = U U Jsa 31 3i3q 3J £4
. n>0 m>0

.. =m n .-1

c U Uda 3a 5d , |
n>0 m>0 |

- .

; oll
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1 1 X.,.=Mm n_.- a : m : . 5

If m=n, Jjsq 3:9 3J Cc JJ (since q a partial function) R

1  } 1 ;., =m nn .- : n-m-1 .- :

If m<n, Jj3q 3073] < jsasq Hy ok

n 1 1 3-m~1l .-

= 03q Hh =0 . x
N.,. mn .~1 coomntl =1  -1 }

If m>n, ja 39:33 < ja He BN os
LT
\?

. _~min+l i= Js4 30 = 0 =

3
1 3=L, . "t

Hence, rr r ¢ U ha A or s 88 required. a hi
n>0 m>0 hy

hl
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IV. Semantics of Programming Languages bo

The purpose of this chapter is to announce the intention, and 0.
oe

Justify it with some examples, to model programming languages by te

operator algebras, and to give their semantics by homomorphisms to xd

other operator algebras. iA

Definition IV.1l: An {J-algebra, or operator algebra of signature R , L

is a function A: Qo |a|® — |A]| , associating with each operator |]
k>0 GH

od
Ww in a set {! a k-ary function or operation (k is called the arity v1]

of w) ona set |A| (called the carrier of A ) to itself. x
— F

Without formally complicating this definition, we shall assume 3
that the signature of an algebra somehow carries the arities along with ys!

it, so that when we speak of two (l-algebras, we shall always assume »
vm

| that each operator in {1 denotes operations of the same arity in both. i
1

If we were to be perfectly rigorous, we might adopt some such device i]

as making the signature a function which assigned arities to operators. u
Ky

Defintion IV.2: A homomorphism @: A->B , where A, B are {l-algebras, ue
wT

is a function @: |A] - |B| with the property, for each wef} of arity k ,

P(A, (ay : of a. )) = B (Pa, Th Pa, ) . We will sometimes say, especially 3when introducing a homomorphism and its target algebra simultaneously, ah
: that @ carries each operation A = to the corresponding B, . bd

Plainly for each 0 (with built-in arities) the Q-algebras form a xconcrete category with homomorphisms as morphisms, although we shall [2
'

not exploit this fact. ey
ES

25
29 it

ha
" {

~)



aI a a nd a AR a TRTR a a

..)

hs

5 Definition IV.53: Of two (l-algebras A and B, B is a subalgebra
wy, of A (B < A) if |B] - |A| » B is closed under the operations
0 k :

of A, and for all wef} , B =A," BI” | |B| , where k is the

4 arity of  . |
bl Definition TV.4: A set X c |A| generates an algebra A if the
183

3g elements of |A| are just the finite combinations of elements of X

under the operations of A . It is readily shown that any X c |A|

i generates the smallest subalgebra of A containing X , that is, thea

Se intersection of all such subalgebras of A .

4 Definition IV.5: An {l-algebra is the word algebra, or free anarchic
Ep
“ad

i algebra, on a set X (symbolized by W(X) ) if Wo (X) is generated
",

by X and moreover every element of Ho (X) has a unique expression

3 as a finite combination of elements of X .

3 In effect, the elements of Ho (X) are just the expressions built
J

; on X with the operators in {} , and may conveniently be taken as some
oe
n

3 standard set of strings over X U§l , e.g. the Polish postfix expressions.
BLY

ot We now present a basic result of universal algebra, which plays the
F

a role of an induction principle in reasoning ebout algebras and homomorphisms.

oy Proposition IV.1l: (Unique Extension Lemma, Part I.) If f: X - |B|
(7
pie!

£ ) is a function, with B an (-algebra, then there exists a unique

5 homomorphism f: Wo (X) - B with £1 X=1.
Proof. Suppressing explicit use of induction (as indeed was done in the

definition of the word algebra) we see that the unique expression for

4)

iA 30
2
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cach element w of Wo (X) as a4 combinaticn of elements of X gives, %
o L

- via rcpeated use of the Property of f , that it must be a homomorphism, J

a unique way in which we must compute T(w) as a combination of images -
1

of elements of X under f . Because we are never required to compute

(3 Bw) in two ways, the function *¥ certainly exists.
k
ke

Proposition IV.2: (Unique Extension Lemma, Part II.) If A and B |

i» are (J~algebras, X generates A, and f: X —» |B] » then there is at .
= " }

most one homomorphism f: A > B with £4 X=1. 4
x

Proof. Consider the diagram: 4
aL |

Wo (X)

) ad |

i
x~ A I

(Here 1, » £ are as asserted to exist by Proposition IV.1l.) First, :
- ~ A A ~ A V

t — o 2 3 g" any f must satisfy fol, f , because f L W(X) - B is a homomorphism :
agreeing with £f on X, and f is the unique such homomorphism. Second, w)

1 1s a surjection, because X generates A , hence 5 is right .
e cancellable, hence fol, unique yields f (if it exists) unique. a .

: v

Now for some examples of programming language fragments, with their k
semantics given by homomorphisms. These examples will be carried on in

C later chapters.

Example 55: Language SS(V) (for "statement sequences") is the free )
=

A semigroup over the vocabulary V , with one binary operation, concatena-~

tion, denoted by the operator J . The algebra of meanings consists of :

. i

re



r 3 |

2 functions (we could if we chose take partial functions or even relations) |
: ty on a set Q to itself, with the operation of functional composition.
i Given any "interpretation" i: Vo (Q@ -Q) of the individual statements |
re as functions on Q to itself, we take for the meanings of arbitrary |

ow sequences values of the unique extension i of i to a homomorphism of |
semigroups. The basic property of the free semigroup, analogous to

A that of the free anarchic algebra, is that this extension is always |

ait possible. |

Ee ExampleAE: Ianguage AE (for "arithmetic expressions") is simply )
Wo(X) for any set of operators { and set X of what we call |

a "variables'. The meanings may be in an arbitrary {l-algebra A, and
3 the meaning homomorphism is of course uniquely specified by requiring it
eo to extend a given map or "environment" i: X - |A] . To call these

a arithmetic expressions merely follows the example of Burstall and |

2 Landin [Burs 69], and reflects the programing tradition that operations
s ) of arbitrary arity are commonly available only for use with numbers. |

3% Example BE ("Boolean expressions"): This is Just a special case of |
o Example AE which we will want to consider later, got by taking

: B= Ing Vibe —} . There are two possible meaning algebras for BE
3 which we shall find of interest. The first is just the two-element |
(2 Boolean algebra B2 , that is the set {true, false} furnished with

0 the classical truth-functions and, or, implies, not. The second is
3 McCarthy's three-valued logic BS , with carrier {true, false, undef} ’
= whose truth functions are most perspicuously defined by first giving a |

truth table for the conditional operator: |

ow
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i
hoe

p if p then q else r i
ae We

— he

true q byfalse r X

undef undef :Aas pass ;

and then defining the more traditional connectives as follows: ;

PAG =40 if p then q else false hl,

PVA = if p then true else gq 1
I

PDOQq =3f if p then q else true
;

41 » Ia 2] \

a SP if p then false else true . %
i

In either case, the construction of a meaning homomorphism procedes i
just as in Example AE.

An objection which has been raised to algebraic semantics as ta
hy

presented in [Burs 69] is that it is unsatisfying to have the meaning N

of a program available only conditionally, only after an interpretation
3

for the free variables has been supplied. One would like to find 5

meanings which may be assigned to programs and their parts in isolation oe
bs ky

from interpretations, environments, or the like -- formal replacements K
i

for the idea of "just what we understand by a (piece of) program". This :o
want can indeed be supplied, and that without abandoning the algebraic 4
approach to semantics, as we shall now show. |

Given any set X and any sl-algebra A , we may define an algebra hE
‘

of functions F (depending on X and A ) with carrier ((X - |A]) - |A]) 2
$ 1" : : 1" s 3 1 fo

and operations given "pointwise" by F, (fy TI f.) 2 it A£1(1) TT £,.(1)) : 1

& :

| | ob
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: There is a natural homomorphism &: W(X) — F , namely the i
tty

unique extension to a homomorphism of the mapping ¢: X » |F| defined it

: by |
) |

We may also define, for each i: X -o |A| , an "application" function ©

; app, : IF| » |A| , given by app,: fp» £(i) . We then have the

, following easy proposition.
-’

- Proposition IV.3: Any homomorphism =x: Wo (X) —~ A factors through F :
i

{ namely =n = SFP, 4 x°2 . |
o

A Proof. First, it is immediate that app, is a homomorphism : F =A ;

2 we have: i

app,: F,(f, ... fy) Pe F(Ty Ce f,.) (1) n

by definition of F . Second, 8PPy 1 x°2 agrees with nt on X :

app

2’ 5 xx& x + {i +i} —_——a n(x)
ls

3 But nn is the unique homomorphism that agrees with =n on X ; the
composition of homomorphisms 87D, 1 x°? must be the same as =n . il

]

3
q Observe that in the case of languages which permit binding of i
A variables, we may not have the option of supplying a "parameterized"
" |

: meaning homomorphism for each environment, but may be forced to take
( functions of environments for meanings if we are to assign a meaning ~
9)

: to every phrase.
: 3
. Ar



An informal sketch of a possible algebraic semantics for the

WW A-calculus will provide an example of this situation. We take for

granted the existence of a suitable domain D_ of denotations for

closed \-expressions, as constructed by Scott [Scott 69]. The aim
)

i. here is to present this denotation mapping as a restriction of a

zoremerphism  §@ which assigns meanings to all A-expressions, closed

or with free variables. We take A(X) , the A-expressions with

#» variables from the set X , to be a word algebra, with one binary

operation "apply" and a separate unary operation "abstract on x "

for each xeX . The algebra of meanings has carrier (X ~D) -D_ .
@ As in Proposition IV.3 § , the meaning homomorphism, will be the

unique extension of the function ¢@: X — ((X - D) —r D) given by

P(x): iw i, + Also, as one would expect, the application operation

ie in the algebra of meanings is obtained pointwise from application j
in D_: f(g): im £.(8;) . For the abstraction operations, however,

we require an effect which depends crucially on environments y namely ]

@® abstract_(f): irg, where g: 4d + £. for deD y and finally i! ”
is an environment like i except that 4d has been bound to x y that

is: 3

C Fry ell v= hen 4 felee i;

We note that § carries closed )\-expressions to constant functions in X

| (X - D) = D_ » 1.e., effectively to elements of D_ , and so we have ]
je our original denotations back again. ;

¢ ’

Fr
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V. Compilersare Homomorphisms

. :
We shall model compilers by homomorphisms from one programming i

language, qua operator algebra, tc another. It follows that we shall :
® take no interest in compilers-as-programs;we shall from the beginning

be satisfied with a mathematical description of the function to be :
computed by a compiler, which will ordinarily take the form of a ;

® specifi =. ‘on of the translation for a generating set of the source
language. This together with the requirement that the translation be :

a homomorphismwill by the unique extension lemma specify it completely. >

¢ The translation functions we shall consider will be of quite a )

special form. Each will produce, given any element of the source ;
operator algebra (which is to say any phrase of the source language) ;

® a result which is a BRA -- intuitively speaking a flowchart for computing :
on a suitable machine whatever relation is the meaning of the phrase. ¥

| This means that our target operator algebra will be in every case one ]
© whose elements are BRAs. The bulk of this chapter will be devoted to ;

describing a class of operations for building big BRAs from little ones, :

from which we will be able to select suitable operations for the target :
e algebras of the examples of compilation we shall wish to study. !

The example compilers we shall model will all be straightforward

and non-optimizing; the operations we require for target operator

C algebras are intuitively all of a very simple sort: namely, to take ¢

| all the operands (flowchart fragments compiled from subphrases) and i
"patch them together", perhaps with an additional constant fragment A

© peculiar to the operation, to give a bigger flowchart fragment as the :

| result of compiling the whole phrase. ;
5
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Se Let us take up Example SS again to show what is meant. Our idea

MN is that the compiler for statement sequences should simply carry out
LH
LL

a the modelling of sequences by straight-line BRAs informaliy described
dh in Example I.5 . That is, we want a compiling function us which

] produces from, e.g., the unit statement sequence f , a BRA which looks

oa like Tf . Similarly, we want w(g) = Tg and u(fOg) = (- 5.8 .)ug [] .
“a

uy But since we want wu to be a homomorphism, we need to construct a
ire *

A

target algebra, call it SS: {O00} -» (D xD =D) , where
“
AS . Po . .

pi Dc Obj (ara T7682 + h , such that 88 (If, Te) vw (- iL. 8 ) |
) Note that the right-hand sides of these equations do not as yet

AL denote specific BRAs because we have not said what the carriers are. |

on Intuitively this really does not matter -- we are only interested in |
be :

- what BRA we have up to isomorphism. However, as a technical device

0 to assist in defining the requisite operations, we shall, as will be
Le seen shortly, make fixed choices for the "entry and exit" carrier
a

elements -- i.e., those which will serve as points of attachment to ]

)

nk other BRAS. |
be

a For another example of what we want to get compilers to do, let
uh us take Example AE, our language of arithmetic expressions, i.e., the

0 algebra AE = Wes (Bs ..+}) . Our idea is to compile in effect

=: Polish postfix code for a stack machine, that is we want a homomorphism.

2 AN AN@® n't: AE =» AE , where AE: f+,...1 = U (p+ (1) -D') , with

i i>0 |
3 B' © obj (ara cee LX, Ly, ++ hy . Here L stands for "load to the topI,

- of the stack"; + or the like is an operator both in the algebra of

1
. >

ws 37
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BRAS AE and in the individual BFAs which are its elements; in the :
latter use it will turn out to mean, as we might expect, "remove the Ln

top two elements of the stack, add them, and replace their sum oi the ;
stack". We want x'(x) = TLx , w'(y) = TLy , and ;oy
nw! (x+y) = (- 2. Be - +) , so we need an operation -

AE, :D xD' = D' such that AR ( TLx, TLy) = 1x . 1. &.
(and similarly, of course, for any other pair of operands) . 3

In every operator algebra of BRAs which we define, we shall require :
that each of the elements (BRAs) shall possess, as a subset of its

] carrier, a certain fixed tet (that is, the same for all elements. © ~ rN

for all operator algebras) of "distinguished nodes" which will provide :
the necessary points of attachments to other BRAs. 3

| Intuitively speaking, an operation in such an alg:<ira which dces 3
nothing but patch its arguments together car be completely specified .

by telling the fate of all the distinguished nodes in the argumiants -- gs
i that is, what sets of distinguished nodes are to coalesce into single N

nodes and, of these latter, which are to become the distinguished nodes | :

of the result, and which are to be "undistinguished". If A is the :i set of distinguished nodes, B is A together with as many new "

| undistinguished nodes as are needed for the resulting BRA, and k is

the arity of the operation, then we can convey just the information we &
need by giving a function p: AU... UA - B. (Note that we must ]

—_——— =
k times

have A Cc B to ensure that the result of the operation possesses all ]N distinguished nodes.) %

!
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hy

a AN
ol Thus, for the algebra SS , we take for distinguished nodes the
ig set {S,H} (meant to suggest "start", "halt"), we take I to be an ‘
's a

ol undistinguished node, and we expect to be able to characterize 55
i» by a suitably chosen function p: {S,H} 0 {S,H} = {S,I,H} . To be
> able to distinguish the two copies of {S,H}] we give names to the (
hid
a injections into their disjoint union:.
ed

i i i

ol and we can nos define Dp to have the effect it should by:
A
i: iS » S

UN 5 iH » I
p: :

=» jS +» I
oN JH » H

r This is cumbersome notation; we have had to invent the names p , i, j, I

> for objects which are of no interest in themselves. We hasten to

Y introduce a more pictorial notation, which specifies the same operation
An
ei SS by:
£3 —d
A - |
- AN ¢ TN EE lw
&y 250 (P,Q) = \ 5% { a 48 52 (3; Li |
3 S H |
a (Note that P and Q are dummy variables, and stand for any BRAs

9 in $8§8 .) This style of definition we calla construction diagram.

Having defined the algebra SS , we can now define the compiler |
0) A
) “ns: SS -» S8 by its effect on the generating set {f,g,...} ; this

J effect should of course be:

S8
<u
rr Em aTr ALT RT RB A ATe A te LT I TN TR TT om TA TR SL A RR TR RB Rm (RC NT OR
PE ABP TT 3
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A patching-together operation on BRAs with set A of distinguished is
nodes, which incorporates in its result not only its argument BRAs Fes
but also a constant (i.e., characteristic of the operation) BRA Cc, os
may similarly be determined by a function oY

ne

Pp: gl ay...04 - 5 bd
Kurs

We will of course also use construction diagrams to describe operaticns ak
ol' this gort. In particular, taking + to be ga typical operator of AE , B» . - “N\ inwe delline Lhe operat jon AL | by: 5

SRY

y ra} Naat oe f= r™ "

We can immediately read off from this diagram that the set of distinguished fan:
“NN 1| nodes for AE is again {S,11} , and that the constant BRA involved resTo HE+ . . . J18 P+. However, the diagram suppresses information of no 2

LAY

interest, namely what is the carrier of " ¥» +, and what are the Bly
hb. ;two undistinguished nodes introduced by the operation. nll

We complete the definition of the compiler x': AE AE by ha_ Sak
3

requiring, for xecX ’ 253%
m': Xe TIx 4

id

FE

7

5=
ho 3,
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r- We shall give the name of "constructions" to the class of |

i" operations in algebras of BRAs of which we have just seen two examples. 5
: Although we have a convenient notation for describing constructions,

we lack as yet an explicit definition of what it is for an operation

, on BRAs to be a construction. We now prepare the ground for that >

3 definition. 4 "oT

3 It will turn out that for the technical development, especially |
; in Chapter VI, the following property of constructions will be important: “
y The result of a construction simulates each of its arguments (and also
¥

J ~ the constant BRA, if any, which it involves). By the characteristic

5 property of the coproduct, @ , in any category of BRAs, we see that .
: an instance of a construction which combines a constant BRA ¢ with
2 arguments Py» “s $20 y yielding a result which simulates each of them,
5 may be factored into simulations of Py . Py and ¢ by hy
: COR ®... ®pP, , followed by a simulation of cep, ®... 28, by |
g that result. This latter simulation is of a kind we shall call a

AZ "projection"; considered as a function it merely collapses the appropriate bi
x coirlections of nodes to single nodes. As a morphism of BRAs, it will |

- have the property that the simulating BRA possesses no relation-instances ;

§ beyond those necessary to make it simulate the coproduct; that is, every ¥
3 relation-instance will be attributable to an antecedent either in _

& or in one of the e. . This last requirement, together with the o)
5 choice of C and of the projection function, will suffice to determine "]
3 the result of the construction uniquely.

Thus we are motivated to define: v
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Definition V.1l: A simulation p: 7 -£ in rral 1s a projection %
if p 1s a surjection and for all vel , B =P La sp x

=7 i 4

+,

We are now able to define "construction" and some related terms: Z
;av

Definition V.2: Given sets Ac B, a I'-BRA  , a function EJYer ruiheainigs = x E
p: |e] UA ... UA , and a set IL of -BRAs with the property

—
k times 4

AC |p| for all cL , then an operation o: Lk - I, is the construction =

derived from Pp and ® 1if and only if the effect of o on arguments 3

Py AV PO) is given by the following diagram of morphisms (simulations) i
in Aral : i

at
ml

cB. By x

K E Il [ :
COR @... OF b

P

where each i, 1s the injection into the disjoint union: ;3

h

and where p: |] U [Ry] U ... U |g| = (|e;}-a) U ... U (|g |-2) UB :
Ls " |

is the projection (depending on the P's as well as on p and C)
whose effect is: hi

| - | ] LJ [ ] A
| p: ar pla) for aele| UAV... 0A ,

Dp: Xb X for xe (|e;|-a) ,
&

ho :

E i

ry ad £0 | ENS Te or Bani EL SACRA Oh RE TR Sy SNE ye NT ET WT Ha yt yy Ts ar TT re iNTdd A a TR A A ATTMe rar



N >, “

A
13h
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a3 In the case where ¢ is absent -- i.e., we have a pure patching-
ol together operation -- we still call o a construction, and say that

3 | it is derived from p . In both cases we also call p the kernel
et of o .

hy - Example BE provides a more interesting application for our method
NT of defining constructions than those just given. The idea is to compute
1, A i

oe the value of a Boolean expression in the Lisp (as distinct from Algol)

Fo fashion by a series of jumps, one for each occurrence of a variable innd AN |
AR the expression. We want a compiler x": W X) -» BE . The |

a Fe
el BRAs in BE will have the operator set {JTx,JFx | xeX} (standing for

SA "jump if x is true", "jump if x is false"). We specify the effect |
A

er
Sr of x" on the generating set by
rh ]

had JET
5 w'(X) = 8

HE Note that the BRAs we are compiling have three distinguished nodes:
2 a start node, a true exit, and a false exit. The following construction
“oy x.

oy ~~

{% diagrams give the effect of the operations in BE , and so completeoN
au the definition of the compiler 4" .

] 1s

SA {
kd

le i
nT".

a
o

hoa
AA

w Py:
wilh 43
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-

» 7) ;
— . a F 3

lg

\ |

é !

3

i,

e

,

G :

k

| :
| i

| €



J

¥
he

ge
lk
ty

h
VI. Semantics of BRAs is a Homomorphism +

&

It has been asserted in Chapter IV that the semantics of programming :
languages can be given by homomorphisms. In the case of the operator 0

} algebras of BRAs which will serve as the target languages for our <

compilers, a potential conflict arises, because we already have a
J

natural way of arriving at the function (or, in general, relation) 4
computed by a BRA (program) under a given interpretation: first run 5

| (®) the program on the BRA which is the interpretation; second, bs

take the accessibility relation of the product; third, restrict the :
relation so obtained to whatever set of starting and finishing states i

we are interested in. The purpose of this section is to set our fears gk
i.at rest, by showing that each of these three steps, and hence their 6
LN
Oud

composition, induces a homomorphism which preserves whatever conswuructions fy

may have been defined in an algebra of BRAs. What is proved here is ow

similar in content to the main result of Landin's "Program-Machine ~
i

Symmetric Automata Theory". [Land 70]. »

>

Proposition VI.1l: If o is a k-ary construction (on I'-BRAs with set

of distinguished nodes A ) derived from Pp: AU ... JA +B, and Nm i
is any I'-BRA, then the functor § + P ® M provides a homomorphism #

carrying o to the construction o' (on [-BRAs with set of 0
~ i

distinguished nodes A x |7] ) derived from p X Ly . if
1 1 ha

Proof. PrP ® 7, being a functor (it is trivial that fixing one A

argument of a bifunctor such as ® does yield a functor), carries 2
every diagram -

nA

ru

| 15 2

(:



CA

£2 dy ++ & a, ®M... a BM
R \

+f a. ®...04g ad, ®...0a)®M
-, to a diagram

1

gd fo.

pe o(dy > T +3) - o(dy; T 3a) ® M :

= Recalling the natural isomorphism
LV 1
be (a ®---08)@8M = 4, 8M .-- OG OM

yy we see that the latter diagram is an instance of the construction

pi derived from p X Ly , and indeed giving the result o(d s oie Nn Q Mm
-_ for the arguments a, ® Ms + ’ ® M , so that we have a homomorphism

es of constructions. 0

a |
: i We may define constructions on relations exactly as on BRAs.

2 (Reln is of course isomorphic to Bra 0} » so that we may always ifhy

a we wish regard relations as a special case of BRAs.) A projection
he P: R = S of relations is simply a surjection p: |r| — 1s] such

i J

io that S = p~L:R :1m , and again we have that an instance of a construction
.

al : can be diagrammed as coproduct followed by projection.
Ba In either of the categories Reln and Brat , when we have a

diagram of the form

i

) “

kd 46
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x, . x :
:

x, ® ¢ oe ® Xp f
\
8

Ty
o(X» F 5X) ~

n

A

with SEEERTE the natural injections intc the coproduct, p y

a projection, we will for brevity denote the composites ;

Dely,...,pely by Pys esp

We now have the terminology we need to state and prove the :
N,

remaining two propositions of this chapter.
| i

Proposition VI.2: If o is a construction on I'-BRAs derived from the HS
~ bg

kernel function p , and 0" is the construction on relations derived A

from Pp , then ac , the accessibility functor, acts as a homomorphism 3

of" operator algebras carrying o to the operation on relations ¢
anceo" Pd

A

" J
Proof. Recall that ac = gmc ; we shall show first that J, acts as EE

X

a homomorphism of constructions carrying o to o" . This is easy; Xx
Fie

because ,. is a functor whose mapping function is the identity, every :
diagram in gral of an instance of o applied to argument BRAc ]

3

| dys 2

h7 0)
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an

’ > ® 8 * 9 8 {
in “ % “4 “4
+) } . . » .

4 YN or [x = Yk

ga Al elds a dj . :
2,6...04 yields lagram in Reln Sg e.. oq)

ni

ou k ob &hS

poo and from the obvious equality of binary relations on
\

St

hn . : 3

Tg

fe

we conclude that the latter diagram in fact displays an instance of o" ,

po and hence we have the necessary homomorphism property for 2: .

- 2 (o{@s 5d) = ogy Lg)

448 We have now to derive the homomorphism property for ac , namely:
Eh fn
Le

i

hy

22 This equation is easily established in one direction: |
hb

ad)
ps ac(o(dys +s) = ane( 2 (o(@ys +» @)))
r )

hx = ane (o" (2a, » Sy 2a.)
ahh
wo 1 (r)
& = 1 U By 2d 5p;fy r >0 1<j<k

~ -1 S (r)

4 c u U py U (2g, ss, ]+1 r>0 | 1<j<k s >0
w — — — —

= = dnceo" (ac Aq 5 eso 0y8C a) .
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To go the other way, we need to use the fact that the ancestral 3
ha’

® ("ives the least reflexive and transitive extension of any relation; L
hence if we can show: iy

3

(%) o" (ac dys -++r80 a) - anc(o"(2'dys» 24.) a

Ry

we will have, because the right-hand side of (%*) is reflexive and ,
?|

transitive and extends the left-hand side, our desired conclusion: ;
anc (o"(ac Ais+++58C )) C anc(o"(X'g 250 3 old ))

1 k Li k -
:
)

= ac(o(g, » .o 94,)) . :
@

But. (¥) is just the inequality:

v
-1 5 21 (x) ')

1<j<k s >0 r>0L1<j<k

and this is true by virtue of the inequality: :

-1 (s) -1 (s) 's
( ) P, 5 ( a) >P — (2, ’ 5D, |

which holds for every pair of values of s and Jj . Finally, (%*) is

a. consequence of 1p. being a function, so that ppt D1 (this
G J J 7d = ds N

establishes the case s > 0 ) and also p:lip. c 1 (this 3
Ji = Told) bs

establishes the case s = 0). [I !
%

=

In the compiler correctness proofs which will follow in Chapter: rs
ni

VIIT - XII, to obtain the relation computed by a BRA /£ in an operator o
i

| algebra of BRAs with a given set A of distinguished nodes, we shall ol
6 od

always take the restriction of the accessibility relation of FB to a ,
,

To

relation on the set of distinguished nodes to itself, that is (ac 8) ] A . 5
2)

Tae

8
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i,

o> |
x

3

v (In the ordinary case that [B is the product of a program @ and a

26 machine 7M, then A will be the Cartesian product of the set of
1, }

> distinguished nodes of { with the carrier of 7.) This will not
"

or always give a result in accordance with our intuitive notion of the

oe relation or function computed -- note especially that (ac B) 1 A |
ee ]

- must be reflexive -- but it will turn out that by the choice of a |

v suitable decoding homomorphism (from the algebra of relations computed

Lv, by target language programs back to the algebra of source language

ge meanings) we will be able to obtain the corrcelness results we expect.
oe

¢ Taking this uniform view of what is the relation computed by a BRA
eh |

fa will allow the application of the following proposition as the final

Se) step in obtaining target language semantic homomorphisms.
|

£5 Proposition VI.3: If we have an operation ¢hceco on reflexive and

3: transitive relations, where o 1s the construction derived from
i p: AU ... UA =» B, then restriction to A y» that is the mapping of

" relations R + R]A » acts as a homomorphism carrying hceo to tne

LN operation ( ] A) egmcoo
4

. Proof. The required homomorphism property of (34) y for an arbitrary

2 instance of ¢Mmcoo which we may display as the diagram in Treln

My
ty R ma RB
Ll 1 JS

a5 \ /
Wr

Lv.

Fo anc op
@

Wh

w o «oe
on anc=o(Ry; -«+sR)wy

“=

0
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§
is the equality: 3

(anceo(Rys-.5R,)) JA = (anceo(Ry § A;...,R, {4)) {A : x
i

The inequality oo is immediate, because -
i ~

o(Ry 14, ...,R, | A) = o(Rys++ +sR;) 13 ; :
and, since restricting after forming the ancestral rather than before :

py
can only produce an enlarged relation, we re

/ . y “

ls

therefor.a §
(anc eo(R, } As. osRy { A)) 1 A = (anc (o(R,, . sR) ] B)) ] A

4
i

- (ac (o(Ry,---5R)))) {BA 3
»

= (anc oo(R, ; oh sR, )) 1a. t
§

| In the other direction we have to show: $:

“1 1 IY

| UI |! P: ;R.;P. | 3i> Ll<j<k ¢ 974 -

.1 i 1

C U U (p, J) 3(R, 8) 5(p, 18) ]a : ;1>0 | 1<j<k ¢
& - == bd

| 3Because Pp 1s a projection, and so can neither coalesce a node in any By
’

IR, |-A with any other node, nor map it into B , we can have j

a (p;37])3 a bk a' only if either a,a'cA or else i = J and a = a' . ;
Hence for b,b" eB , we can have i

hi-1 -1

& br——y ar a' —3 b'—2pa" dy dy pn
fo
h
Pp
Na

oO

by
= +
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pi |¥ ]

252 only if «,a"' eA . and either a',;a"ec¢A and b'eB as well, or else
fT i=] and a' =a" , in which latter case, since R, is transitive, |

& it must already be the case that R,t ara" . What we have just shown
is that: |

[¢] -1. . . -1, . -2 . . [] -1 . .

U (pi) 8)3(R; 1 4)5(p, 14) | 1Boe B. v AJR; s\Py .
we

"5
nM

x An analogous computation may be made for as long a composition of any

; of the k relations (p;3R, Dy) as we like; hence for each m > 0 :
“ah we have: |

wl ]

| UNE Yar ¥5 00 I I§-: |Al 1<j<k |

a 4

| 0<i<mUl 1<j<k

A |

2 hence the same thing with 1a " in place of " (RB: " , (since ACB), |
ho!
2 and hence, taking the union over all non-negative m , the desired

gs inequality. 1

= In the above propositions and procfs, constructions derived also
LB from a constant BRA ¢ have been left out of account, but this was
TAL

i purely for notational convenience. The proofs dealt solely with singleAL
,

= operation instances, and it is plain that nothing changes if one of2% YY

{ the ¢g. or R. is made a constant characteristic of the operation,



—

rather than an argument to it. Combining this observation with

® Propositions VI.1,2,5 we may assert the

Result: If o is a construction on I'-BRAs derived from

. p: |] UAU...0A-B and ¢, and if 9 is a T'-BRA, then the
mapping P vw (ac(POM . (Ax ||) is a homomorphism of operator

algebras carrying o to the operation (]Ax m|) e mcoor , where o' |
° is the construction on relations derived from 7 * Lig) and ac(C ® NM) -

In some of the applications of this result which follow, in

particular in the proof of the compiler composition theorem in the :

@ next chapter, we shall assume that we always have A C lc] , and that

P: ChC for celc|-aA : |

® Letting |

P =, PI(AVUAU...04) ,

we see that our k-ary construction o is exactly that yielded by the

® (k+1)-ary construction derived from Pp on fixing its first argument

to be @ . In this case we shall say loosely that o is derived from ,

Dp and ¢ , and it will be strictly correct to say that o is carried

& to the operation SE

(Jax |m|)e mee"

& where o" is the construction on relations derived from Tp Lion | and
(accom) J (Ax |ml|) - .

| i
3

Bs
¢
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VII. The Compiler Composition Theorem
| @

The theorem to be proved in this chapter provides the essential

tool for compounding simple results about compiler correctness into

 ® complex ones. Intuitively, it amounts merely to the observation that

1f we can compile each of the individual operations of one machine into |

a program for a second machine (or even, what is a weaker assumption in

oO general, compile each element of the generating set of an algebra of

programs for the first machine into a program for the second, and also |

the program fragments from which the constructions of the first algebra |

@ arc derived) then we can compile any program (belonging to the algebra)

Tor the first machine into a program for the second.

We consider an arbitrary (l-algebra L of the sort that might be |

Go the target algebra of a compiler, that is an algebra of BRAs, say with

|L| c Obj(paral) with a generating set X = e, | ieI} for some indexing | ;
set I , and with each k-ary operation L, (for wef) ) being a

JEM construction derived from a kernel Dy: AJ... UA-B, and from a
—

kt

constant I-BRA Cw. (We are here assuming Ac cw] 3 this turns :
C out to be no restriction in practice. Recall that A is the set of

distinguished nodes some of which may be identified from the several :

operands as specified by B, in the process of "patching together" the i
C argument BRAs of L, to form the result. The set B contains all ;

! of A , in order to tell us which are the distinguished nodes of the j
»

result; B may also contain some other elements, used for images i

og under b, of collections of nodes which are simultaneously to be |
identified and to become undistinguished.) ;

e& a ;



u

p>
i

1% We recall that the effect of L, on operands £5 P= TIN is :
oe] given by the diagram
-

i Cw Pp, @... @P, . |

D
4 u :

| L(Py5 .o 58)
ho? |

I< with p a projection, and (plAU... UA)|B=3, . |

BA We suppuse, as is our standard practice, that the semantics of L |
‘I =

oe are given by running its programs on a machine 7, with | 7 = M 3 :

AY that is, we have a semantic homomorphism @: L =» S , where

y : : Pr (ac(P® m) (AxM) (cf. Propositions VI.1,2,3). S , the :
] semantic algebra, has as elements relations : AxM =X AxM , and receives |
Ww,

0 an induced {l-algebraic structure as demonstrated in Chapter VI. |

Re) We shall now assume the existence of a correct compiler wx applicable
ES to the PR; and to the CW , producing A-BRAs (i.e., BRAs having an
i J

i arbitrary and in general different operator set A ) and will prove,SEN

io subject to a number of hypotheses, that x can be extended to a correct

5 compiler (homomorphism) from L to a language (f2-algebra) K of
7 A-BRAs; we denote the extension by extend(u,L) . The hypotheses are |

oy somewhat lengthy; we shall therefore expound them separately before
a"?

: getting down to the statement of the theorem.

2 The first two hypotheses are mainly a matter of convenience; a
i spuriously more general theorem could be had by replacing the set
Sal
%

: pp
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inclusions which they call for by suitable mappings. The first

Ww asserts that the results of x contain the right carrier elements

to permit them to be patched together by the D, .
‘

Hypothesis 1: For each P.eX , AC n(e,) | » and for each wef ,We

Ac new) -

The second will make the states of our translated programs directly |
i

iE comparable to those of the originals: we may suppose that our A-BRAs :

will be given their semantics by running on a particular A-BRA (machine)
:

m', with M' =, |m'| , and we require that M be a subset of M' ;

As i.e., to give the inclusion mapping a name: |

Hypothesis 2: py: Mc M' .

@ We also make the abbreviation:

=; ’ a 1 1

8 =i 1, Xp: AxMc AxM .

a

& We may define a semantic function for A-BRAs, 1

NE obj (Ara’) = (AxM' =x AxM') , by :

i f
Moreover, thanks to Hypothesis 2, there is an obvious way of "decoding"

| relations on A xM' as relations on A xM ; namely restricting them; ;

| e we therefore define the mapping 6: (AxM' =X AxM') =» (AxM-X AxM) by

| 51 Pr Pl (AxM) .

We may now state the main hypothesis, which asserts that x correctly
&

translates the bits and pleces of which L-prourams are built. ;

56 .

& :
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1

p Hypothesis 3: The diagram |

" | |) . A
: XU {ew| we} —= 0bj(Ara”)

ie

AxM-X AxM gn AxM'xX AxM'
- |

it commutes. |

bo Unfortunately, Hypothesis 3 does not claim as much as we need; it |

pe might be that some of our relations you(P) relate elements of A xM

. to elements of Ax (M'-M) in such a way that when these relations are a

bl compounded, "too much" gets computed even from A xM to itself. We

0 therefore require that all our relations should map AxM into itself:

"I Hypothesis 4: For pPeX Uy {cw},

3 ven(R)1 (AxM) = (yex(p) | (AxM));6BY)
my

i or, to say the same thing in more uniform notation: .

y 3

os O5yon(R) = 0syen(R)i0 "30
WN

. We may take advantage of Hypothesis 1 to define our {i-algebra K
% of A-BRAs in a natural way: K is generated by the set {n(g;) | ie1} ,
a

% and each operation Kis , for well , is the construction derived from |
E | ~~ 3 1 |
7 p, and (Cw) . Informally, we will build up each K-program in "just
: )
Po the same way" as its corresponding L-program. The unique extension of |

3 % X to a homomorphism extend(m,L): L - K evidently exists; it is |
the function which carries out the just-described correspondence (but

9) see the remark at the end of this chapter). Having made an §)-algebra
:

5
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out of our A-BRAs, the semantic function + becomes, from the result ;

ig

2 of Chapter VI, a homomorphism, inducing an fl-algebraic structure on 2

its codomain; we denote this lalter [l-algebra of relations :
: AxM'=X AxM' by R. :

.!We are now in position to state the result of the present chapter, :
which asserts the correctness of extend (u,L) v x

“)

Proposition VII.1l. (Compiler Composition Theorem): Given Hypotheses i
l, 2, 3, and 4, the diagram bd

kL

tend(u,L) 3
L exten Hyls K -

I
Wo

P v 1

id = k

- commutes. i

Proof. What we have to prove is (i) that the diagram commutes for 3
the generating set X and (ii) that §& is indeed a homomorphism N

of Q-algebras (we already know that ¢ , { , and extend(u,L) are). »

But (i) is just part of Hypothesis 3; only (ii) remains.

To prove (ii) we assume, for arbitrary wef? of arity k , that ]
6: Ry Bs (1 <j <k) , and endeavor to show: %

he

As it turns out, in order to prove (¥) we need additionally that the ~
] MA

property which Hypothesis 4 claims for the generating set of R holds ; :
I

for all Rc |R| , namely: ig
at

: I
-1 ds

(%%) 8;R = O3;R3;6 "36 |

58 i
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Tf 3 |

J Hypothesis 4 gives us the base for our inductive proof of this

oN property. The induction step can proceed simultaneously with the

ro proof of (*); that is, we may additionally assume that (¥*) holds for

EY. each of Ry, 33 <3 Ry » Provided we can then additionally prove that it
hb

a holds for R (Ry =T sR) :
wh As we recall from Chapter VI, we have:

— t t

Fg)

ly where Os is the construction on relations derived from Dy, X Lue andHI
‘hap

bs (ac(n(Cw) ® M')) ] (AxM') . If we make the abbreviation:

- _ : :
3 Ry =q¢ (ac(u(cw) @ m')) J (AxM')

AEN then we may diagram this instance of R =~ as:

PN ®t

a st 3 t K

Tg,
5

) Ry ® Ry & ... ® BR,

3 (1 (A xH")) oacop
oa)
po)

a

; A) where the projection p' is in fact the kernel of Ol -
L) — = :

he
ay We write as usual for the composite of p' with an injection:

ht p! a p'oi!
p j Taf j

hu and we define:

a 59
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By "ap By iB; 5!

so that we can write: =

(ps os) “V1 ar 5R sy ++ sR = U U R. A xM! . LY
Bali : i>0| o<j<k 9 1)

bd

Similarly we may write: | 2

8 (8.5...,8) = U U OS, 1 (a xm) 3 h
al ke i> \ 0<ji<k Ez

. 1 — — ~~ 3 : . ht
with 54 ac(CW ® m 1 (AxM) , By P; 55 55D y and P; the j-th i

= 7 iycomponent of p af Dy, X Ly .

Hypothesis 3, in its application to @w , simply tells us that 7
i

34 Ry + So , and Hypothesis LI in its application to Cw simply asserts 42ad ¢
(*%) for R, 3 hence we see that we have completely assimilated R, -

J}

to the other R's » and need not give it any further special treatment. 3
For conciseness in what follows, we make the abbreviations: 4: .

7 , o &

and ha!
(1) i

W =4f U U ’ h

he
and we also give names to two more inclusion mappings: by

nm ACB |
on

and i

V =3e 1p xp: BxM oC Bx BY

aot

Wn)
60 NN
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: so that we have ~

: -1

N R,(Rys--sRy) = WI (AxM) = (Mx,,)sWs(n~xL,,) -

4 The crucial part of the proof cnnsists in showing that an analogue

- of (¥*) holds for W , namely: ”

£1 1 :
{ (3%) YH HV IHRE IRVH SE |

* .

x It is easy to show the desired property for the individual R, hE
. (0<3<Kk):

» *  -1 =i 1 |
ViR.3v T3v = wip: 3R.PL3v Tv ~

{ J J JJ -
-1 -1 |

i = P; 303830 395P |
= DIT303R.3D. | (by (**))

A J JJ

*

« = wv3R,
n J

a The property trivially distributes over union to give: 5
. Eu

-1 tof
viUsv v= wil

g and then we may calculate, for each i > 0 :

§ osu). 1. = 0; (Uv Ly) (BD) (We are entitled to 3
" insert (v0) 1s |
3 progressively from |

5 left to right.)

= Vv (1) ) (We may knock out all
i -1

3 the (v “3v)'s,
oe

§ including the last one,
x |

r from right to left.)

3 and uniting over all values of i , we have as desired:

boy ow

A 61
>
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b

h

1
viv T3v = wi. )

¢
flaving proved (*¥*), we can immedialely pay off our debt to the :

inductive hypothesis by showing that (¥¥) holds for R (Rs ++ +sR,) ’ ;i

. that is:
i
m

S:R (R R )56~ 1:6 = 0; ( oJ e -1 01. ;EMC ERR EWE 3 = ’ Mx Ly.) Ws (7 x Lye) HE
: en

-1 = ;

. = (Mx) 5v3W5v T5v3(M x Ly) ;-1

= (MxLy)svsWs(M “x 1,,) (by (*%x)) 1

= O3R (R go «sR ) . .
=) WL k

4

Now at last we can compute: 3]
?

® 6(R,(Rys++ +»R,)) = WY] (AxM')] (A xm) ui

= WJ (AxM) 1

® =WJ (BxM) ] (AxM) A

(1) -1 {
=[v; U U5v 717 (AxNM)

| i>0

-1 y : -

= | U  (viUsv )®) ] (AxM) (inserting (v Lo) 's :120 from left to right,

as before) 3
{

= U U (R, 1 (BxM)) W) 1 (A x M) Ei>0 \0<j<k A

-1 i :

: =| U U Pp; 3(R, (AxM));D, JC© i>0 | C<ji<k ’
| :

RS

(& 62
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We have proved (*), hence the theorem. i :

5 A typical application of what has been proved in this chapter

. will of course be to a situation in which L is the target language

corresponding to some source language, N say, and in which we have

Ps already a correct compiler A: N -» IL , in addition to wu satisfying
RW * *

0 Hypotheses 1-4. We will then be able to assert the correctness of

- extend(u,L)eA: N —» K . Hence the name, "compiler composition theorem".

40
2, Remark: It is not strictly true that the homomorphism extend(,L)
Me)!

3 must always exist. What is required is that in the diagram of

re homomorphisms

" Ho (X)

: o B

be L ------>K
5 |
a)

4) where a extends the insertion : X C |L| and PB extends the function
2. Hn 1 X , the dotted arrow should exist; that is, the homomorphism B
a should factor as
Lo

5 B = extend(w,L)ea .

® This is to say that for any WoW, € Wo (x) | we must have:
T-

% x(w,) = o(w,) implies B(w,) = B(w,)
o! or, less formally, that all equations (of terms built up from elements
or of X with the operators in {l ) which hold in I must also hold in K
4 = =

: (with, for each PR; eX , the substitution of n(R,) for P. ).
5, 635

oh
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A) «
Fa.

“A

AY
This will be the case if the various PR. and CW are all i

|

sufficiently distinct so that all the equations which hold in I. w
hes

do so by virtue of the structure of the kernels Pp, (which determine “a
the operations in both L and K ), a condition which it does not WE

appear difficult to ensure in practice when selecting a generating .
set for L . For example, the equations which are instances of the iy— LY

associative law in SS , and which we may depict as follows: Ten
Fon rg

— - TT ~~ ™/ ’ \ 77 A
pg 7 ~~ SL al a‘sg { osnw5 y; Ri s ——(R)—4 a nn

LA
“~~ oe i lw - lt

/ ’ \ 7 \ KWL: p— (Dh 3. N= > IL ’ i 3
\ Sh ( } \o Hos) HE) i”

"Oy
L38
oy
hi

are of this sort (although it may require some care in the precise 7s

specification of how disjoint union is to act on sets to guarantee iy
23that they actually do hold).
Lg

) hy

Po.

Re

= My

hat]
hd
LA
bo)

585

N..| i

er
"

hz

| {me

PETRI or Ra a Ty hn Tn Ro oF SO es, x IA TT al th 0 or "J nM ty NJ Wo) LL v Ps TY aRTW wWNNT I ’; FE ™a!EERE lya CR NR CE ACa Sr SO aE CEEh



a a ae Nr Re ar Tn Te ET TE TT,

=

|

VIII. The General Plan for Simple Proofs

i of Compiler Ccrrectness |
Chapters IX, X, and XI will ccnsist of example proofs of compiler

" correctness. These will be simple in the sense that each compiler will :

be for a language with only a single feature; hence there will be as :

yet (but see Chapter XII, in which these results will be combined) no

compounding of compilers, nor any appeal to the compiler composition

u theorem. The purpose of the present chapter is to set forth the schema |
i

which all these proofs will follow, and to introduce some uniform
;

” abbreviations in order to make the formulas less tedious. :
Given a source language ({l-algebra) L , a semantic homomorphism

to an {l-algebra S of meanings (in general of relations, but usually of

. al least partial functions), and a compiling homomorphism wu to a target
language i, which is an Q-algebra of BRAs with constructions as its ,

operations (we shall always take the algebra pr to be exactly the image 3

® of L under x ), we may list as follows the steps which must be taken N
to prove the compiler correct: :

(i) Specify the target machine -- i.e., the BRA 7 on which

% compiled programs are to ran. This will, by the result of Chapter VI, :
determine the target semantic homomorphism + with the effect

vip (ac@eem)4D

y where the domain D is the Cartesian product of the set of distinguished ;

nodes of L-programs with the carrier of % . The image of 1 under :

is R , the {l-algebra of relations computed by L-programs; the elements :
¢ of R are reflexive and transitive relations : D xX D .

| From step (i) we have a three-sided diagram: ]

Bd on SL A A Eb) 00800 1) AT ER



pi:
PH
MAY

tig!
Lod compiler -

L — 2 51

Ls
wh source target

iN semantics | semantics
958 S R

- B

rl

i What remains is to supply a fourth side for the diagram and prove its
Xo

nN commutativity. |

a6

2: (ii) Specify a "decoding" function 6: R - S from relations
Se computed to source meanings.a

sn (iii) Prove & a homomorphism.

BS
k (iv) Prove that the resulting closed diagram commutes for a

| generating set of the source language.
"

2 ve may then -- after completing steps (i -iv) -- conclude, by

A 1 Part II of the unique extension lemma, that the diagram commutes for
uh the whole source language; i.e., that the compiler is correct.
"a?

oe In choosing & , we shall demand more than just any arbitrary
RL

Ll homomorphism : R - S ; we want one which will tell us how to use a

ON compiled program to do the work of the corresponding source program.

Ro We may suppose that §S has for its carrier a set of relations of some |
® ype, saya subset of (Eq x E,) for some sets Ey and E, The

he . carrier of R , the (-algebra of relations computed by target language
& programs, is a subset of (D X D) . What we want then is to specify &Wh

bats by a pair of mappings (e,d) where e: Eq -»D tells us how to "encode",

3 that is to choose an initial state for the compiled program and its-

ip
Fay ;
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machine, piven the argument of the source prog-am, and d: D = E, :
; tells us how to "decode" ~- what sense tc make of a state in which the e.

compiled program halts ( d is partial because halt states are in :
| seneral a proper subset of D ). The effect of ® is then of course ¢

| €: r pr deree , or equivalently if r is a function, &(r)(b) = d(r(e(b))) . &
To prove & a homomorphism will be to prove for ali ef} and all %

ht

ry.€ |R| that 3}
S(deryee;... der, ce) = doR (ry5.-.,T) ce - vha

; (It seems likely that for some proofs of compiler correctness, more ve
advanced than any in the present work, it may be necessary to allow

that d and e be general relations. Indeed they might be quite -complicated relations, so that it would become a subproblem of the 4

compiler verification to demonstrate the correctness of a method for i
computing d and e .) :

For some source languages it will be the case that the result of a ;
source program does not depend on any argument, so that it would be

most natural to take the set of meanings (i.e., the carrier of S ) as Po

some set E not a space of relations. In such a case, computations of 3
| target language programs will start always from some fixed element of D . 3

For uniformity's sake it will be most convenient to pick out this initial .
computation state by means of a function d:1 -D . Therefore we shall 23
somewhat artificially enforce that source meanings are relations by Bi

: choosing for |S| either (1 -E) or (1 > E) . The former choice "
| is, of course, isomorphic to E ; the latter, which contains additionally

| the empty partial function, provides a convenient alternative to enlarging pi
E by an artificial "undefined" element in cases where our intuitive idea »

a
iY
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4 of the meaning function is that it is partial, although we are o
compelled to define a total function to be the semantic homomorphism.

; Here in detail is the diagram whose commutativity is the correctness |
3 |
y of the compiler u : o

: = ~ NE »P OM eC

$ ] ac
;! ? (= peacen)

; :Q + Q
3 Se g&°
: B: Q +» deQee |

eo

|

; The vertices of the diagram are all (J-algebras; the arrows are |
.

: (or, in the case of & , must be proved to be) homomorphisms. Although
iw)

in the correctness proofs to follow, the source and target languages will

! have their own specific names, the letters x , @ , Vs, My p> D,

\ R, SS, 5%, d, and e will be used without remark to indicate the
i <

. entities pictured here.

: An additional notational convention: recalling that each operation
J

\ R, is the composite of restriction to D with accessability with a

: construction, we shall occasionally write R, for the construction,y

: so that we have

| -— .

: Bo = (ID)eaceR, ©
}

£8 CS
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| IX. Proofs for Examples SS, BE, AR 3
Following the plan laid out in Chapter VIII, the present chapter

| will prove the correctness of the compilers defined in Chapter V for :
® the languages S§, BE, and AE. :

Example S55: We recall that the language SS is the free semigroup ¢
|

generated by a set (of "commands") X . We use [J for the operator v

denoting concatenation in S88 . SS is the semigroup (i.e., the :
associative {[J}-algebra) of X-BRAs generated from the image of the "

set X under the action of the compiler u , namely for each feX , :
i | vy

we ow 100, :
H Md

I
¢

NN |]
® by the operation 58 » Tor which we have the construction diagram: f

a " N -— - 8/ - ’

! 85(P,Q) = sp)—3 HS (0)—K)- S H |
LC :

AN J

(It may be supposed that we always take for result of S85 a standard it

representative from the appropriate isomorphism class, e.g. a BRA with A
carrier {S,1,2,3,...,H} , in order to make 58 an associative :

operation.) x

We recall further that we assume an interpretation i: X — (A -% A) 3

© of the generators of SS as relations on a set A , and that we take |
Ps » the semantic homomorphism, to be the unique extension of i to a :

I"
homomorphism : SS = 5 , where § ic the semigroup of relations on A [

© to itself under the operation of relational composition
po

—-[] - J ¥ [4
b

!
€ 69
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v A
RS

0
NR, We have now to specify the machine, that is the BRA, on which
b>

a C compiled programs are to be run. For this we can take i itself,

wae since i is an X-BRA, with |i] =A .
as Js
7 The set of distinguished nodes of SS-programs is {S,H} ;-. Ay
a 7

Ri therefore for vs » the semantic homomorphism : SS - R , we have:\ oe = h
~

an vy Pr (ac(p ® i) 1 {SH} xA .

\" x The carrier of R is the image of |ss| under vs . D is the
me set {S,H}xA ; the elements of R are reflexive and transitive
®e Lm

i relations : D -x D .

\ oy No relation in R has any instance of the form H,a » S,b , nor,

7 except as required by reflexivity, of the form X,a vw X,b . This;

; A

ia follows from the fact that the BRAs in SS have no edges either
A

177 arriving at S or departing from H .

GON We have the decomposition

hi n

: Ry = (]D)eaceRy
)

de where Re is a construction on relations which may be represented by

22 the family of construction diagrams, one for every a,b,cecA :
iy
a 7s TN - = TT “7A

Ie Ror = (85,ar Zy H,b S,bwm SH, c |A i ge Tl. 2 wi |4 Se =

i . Sa HycC
au Letting e denote the undistinguished node created by 58 y We may |p -
I express R explicitly by:wo -=1]
ay
ah

.,
oe Ly

Leu!

>
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| ;
-— oy

=

IR.T = big anim U{S,are,b | a: S;a vw» H,b} y
4]

@

J{e,bvH,c| r: S,brH,c} . :

Then .

. -

ac(qR-, 2) m= (aR r) U {S,a+H,c | q: S,a +» H,b and r: S,b +» H,c} , "
y.

and

aRTr = (ac(a Ro r)) ] D :
= 1, {S,avH,c | q: S,a »H,b and r: S,b + H,c} g

G :
= i. U {S,a +» S,a} 5a; {H,bw S,b};r; {Hc ~ H,c} . ’

Define e: A -D and d: D = A by:

| e: ak Sa and d: Hawa |, it

| and define b: R -S as always by gf

te i
B: r + ejr;d . -

| To prove © a homomorphism, we calculate: iN
N

8(aRq 1) = e3(aRo1);d ”

= {aw S,a};{S,a » S,a};q;{H,b + S,b};r;{H,c rp H,c};{H,c vc}
&

G = {aw S,a};q;{H,b +» b};{b + S,b};r;{H,c » c)} &

= ejqjdje;jr;d :

@ :

ul
s

TERENEDADAIS IAI DAN SRRNS TST ENS BINS MARL RENS rR lyn fle tath Mb NANA ISCAS FT pS TR



of
i

248 To check P. (f) = Boy, on(f) for f in the generating set X
nl
-" we compute:

Rs ff—i(£)

Ci and

Od A

58 — 1 U ({S +H} xi(f))~
yy

Lh —3 {a + S,a};({8 + H} x i(£)) ; {H,a + a) |
a 3
iS

& This completes the proof of the correctness of x . i |

)
wl Example BE: For example BE we have BE =W Xthee sup = (yA, v, 0}
A .
ay ( = is unary, the others binary), and BE generated from . {u(x) | xeX} ,

r

a : where for xeX , Ke X = ne/\ » with the BE-operations
wel T F

he as given by the construction diagrams in Chapter V (p. 44). BE , then,

8. is an algebra of {JTx,JFx,JTy,JFY, ...}-BRAs , where {x,y, vo jm Xl
ely For the semantics of BE we confine ourselves at present to the
ie”, oo

a: three-valued case, and (letting 2 denote the set {true, false} ), we

- assume an interpretation

. |

A .- Ew rw i a 7g  S = i". = ill gs “a ™ wo eB A Be 3 ow = 1 SWE ti ; a oy ]
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hl

As explained in Chapter VIII, we take for the carrier of S the -| -
a

three partial functions : 1 -2 , which we name ff (: O false) , 33

| tt (: Ow true) , and uu (the empty partial function). We take 3a
the operations in S to be given by McCarthy's truth tables (Chapter IV, bdPe

x
If we define the isomorphism k: X - (1 =» X) by

= td

k(x) : Ox fs
oo

then we may define the semantic homomorphism ?. to be the unique :

homomorphism : BE = 5 agreeing on X with

@,(x) = io(k(x)) 3
bl
b,

We shall choose a target machine i dependent on the interpretation. p

Its task will be to allow only those "jumps" to be executed which conform -

to the facts as represented by i ; since the facts do not change in the 2r
course of execution, our machine need only have one state. Thus we take {a

% Bi
mi: {JIX,J¥x,...} - (1-1) »

[

: with, for xeX , hy

I
; po JTHan : y , true hy

mi ({ 5p, 3) OwO0O iff i: xe { ==] , il
ol

that is, =

3
PYiff x rm» {8 ; eh

cr 3. ff -

2 .

oo)

J

fo,
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2 For each compiled program pe |BE| we have Is 03 mi | = Id Xl = Id ;
ar for notational convenience we shall pretend that the isomorphism i:

og an equality; that is, we shall write § instead of (S,0) and so on.“, A

RE For the target semantic homomorphism, vs : BE = R , we have
d os

Eo vs : Pr oac(P® mi) 1 {s,T,F} '
Vt | It is readily verified that for any Pe |BE| , P® Zi is monogenic,

% |

and that Proposition II1.l applies to give:

A 2

fs P®Mi computes a partial function from {8} to {T,F} .

Ui Since |R| is just the image of |BE| under Vv; » this says that for
{=~

3 any Qe IR| » We have at most one of

| and |
io

Di Hence defining
J
130 0

he : , (TI = true .
Ws. ¢: Ow5 , di ly on Foiee r 81 Qhagse
rh
EN
: makes 8: |R| - |S| well defined; we may calculate its effect as:

i 8: Qr tt iff QQ: SwT ,

a 8:Q mr» ff iff Q: Sw»F ,

we 5: Q »uu otherwise .
i

ou:
~~ Proving 8 a homomorphism is a matter of details. It is immediate
(3 ~
3, from the construction diagram for BE that R (Q) : Sw T iff Q: Se Fola — — RR —

3
io Th



: and that R (QQ): S =F iff Q: S = T ; from this it follows that §
— Fe

® is a homomorphism of — . We consider A , V , © in parallel, since

| they are isomorphic under suitable interchanging of truth values. By

considering the construction diagrams we perceive that

. 7 T T
| RB, (PR): § w F iff |P: Sw ( F and Q: Sew { F
| V F T F

D

®

and that

F F T (F
R, (PQ): S m»(T Yyiff P: Sw(T Yor | P: Sw(F Yand Q: S +(T :

" (v} T F T r

If neither of the iff conditions is met, the result of the
4

operation must be the identity relation Les T,F} Applying what we2+)

know about 8 , we may restate the above results:

® tL tt tt

5(PR,,Q) = ( ff ) iff 8(P) = ( ff ) and 8(Q) = ( ff ;

18) tt tt ££Vv
>)

Ww

ff ff tt ff
(PR... Q) =¢( tt ) iff 8(P) = (tt )or [8(P)= ( ff ) and 8(Q) = ( tt :

v} tt ££ tt tt2

i &

5(P R A Q) = uu otherwise, that is iff
Vv

pee

“ tt

¢ 8(P) =u or | &(P) = ( ff ) and 8(Q) = uu .
tt

Ss [
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“u

“»

& Comparison with the tables (p. 33) for the S-operations shows that |

by what we have just obtained can be summarized precisely by oO

¥ BPR \\R) = 8(P) 8, 8(Q) ; |
5 D -.

8

that is, we have proven 8 a homomorphism.
X

: The final step, to check commutativity for an arbitrary =xeX , is

as usual trivial. We have the three cases i: x» true , i: x +» false , @

5 1 not defined at x ; these yield respectively ?,: Xv tt, .: XW ff, |
ig |

: ¢,: Xb uu In any case we have both H(%) rm ST and #(X) 1m S -F, |
i but in x(x) ® Mi we have respectively only the first y only the ©
3 second, and neither of these. It follows on computing the (essentially
3 null) effects of ac , p>» and B that we get in the three cases of ]

i(x) respectively Bolen: xb tt , BoVou: x + ff » and Boon: x uu ; ©

that is, we have commutativity of the diagram, and we are done. A

o

4 Example BE -- 2-valued semantics: If i is required to be total, the |

. Toregcing proof is not affected. It only needs to be checked, as has |

§ often been done, that McCarthy's truth functions, restricted to a
{true, false} , are the classical not, and, or, implies . =

: >] Example AE: This we recall is the general case of a word algebra as
5 source language, AE = W(X) » With the compiler producing "Polish
- postfix code" for a stack machine. For notational simplicity we assume |
ry

a single binary operator, say § = {+}, but it will be seen that the OS
{
| |
%

y 76
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>
|

3

)

2
proof is applicable to any number of operators of arbitrary non-negative

arity. We have, for xeX , Hn: X Vo Ix , and the operation in AE J
b

is given by: iy

ry so) , TT TS TT T= + '" 3sy ¥AE (P,Q) = Mis => HS—(—=n Led ;
8 H ;

0)

| AE is generated by the set {u(x) | xeX} . v

For the semantics of AE we may take the meaning of " + " as given ie
MN]

G by any {+ }-algebra A , with carrier some set (of "arithmetic values")

A , and we assume an interpretation of the variables i: X = A . We take )

S to be an algebra isomorphic to A , but with carrier (1 - A) , and ! 1

4 operation .

j . $

S
hq

\ We may explicitly define an isomorphism h: S§ - A by ot

8

h: s + s(0) . (4
»

& The semantic homomorphism Ps may then be defined as the unique 5

homomorphism : AE -» 8 such that :~
1x = nti i

(po pl

We now construct our machine Mi . Its states will be "stacks", :

]
i.e., finite sequences of elements of A . Denoting the set of all such A

hy

*

sequences by A , we will have: '
G

¥ ~~ ¥ "

ma: {+,Lx,Ly,...} = (A - A) . ;
- Ti :

Fa Js heSRyteel%5EE aE oadi STaCLUES5$53wT“2Eh,»As - 5 BEN rd CE i oF SY oe nA aUW al He<a oly "ad oe AVE ASTN os or ie, .“h ae We i Wil hy Po " , he fr SN > FN Ay io in : ~My | x :



J The effect of any of the various operations Mi. will of course

be to extend the current stack by one element, and the effect of mi+ o
; will be to replace the top two elements by a result (for a k-ary

operation this would be the top k elements); the precise effect of ;

E the Mi -operations must naturally be chosen to reflect the semantics ol
(- of AE as follows: A

: For xeX , Mir,: (8; --- a) i“ (i(x),a,,...5a )
&

if (m >0; i.e., Mi; is total) ;

- mi, : (a)s85,855 2258) po (A, (ay8,),85, 08) |
> (m >2; i.e., Mi is not defined on empty or unit stacks. ©
3

[| Our choice of i and the set {S,H} of distinguished nodes for AE

gives for the homomorphism Vv. : AE -R o
bh

: . * 5

Vv. Pw (ac(P® Mi) 1({s,H} xa") . |

. L] on ' |
|IR| is the image of |AE| under v. o

i a

p For any Qe | AE » the product P ® Mi is monogenic, and
\

) Proposition III.1 applies to give: |
J 3

: ok
= RU ¥ |
~ P ® Mi computes a partial function from {S} xA to {H}xA : |
Y

a. This fact and the construction diagram for AE " enable us to give an
g =]

explicit expression for R, : |

; R, (P,Q) = Lis, H1 xa* UP; (HH + S)x1 4) :Q;({H »H}xMi,) §

”

Ce 1
~
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. 3

We may define the decoding function & by Re

| e: 0 vw (S5,( )) ({ ) is the empty stack),

Y

| d: {H,{a)) +» a ({(a) is any one-element stack), ;
B: Q wv deQoe : .

te
4

We encounter an interesting difficulty, however, when we try to ;
*

prove & a homomorphism: that 8: Pe Sy : Q +» S, does not by a

itself suffice to prove &: R (P,Q) » 8. (sp 55) ; the mapping &

| throws away information which is in fact essential to the correctness a

of the compilation, namely that for we |AE| ’ w(w) ® mi , started Lo

| with any initial stack (not just the empty one) will halt with i
P, (w) (0) adjoined to the top of that stack. Hence we must first 3

A
prove inductively: J)

Lemma: For we |AE| , and Q = Vs on (w) e |R| , 4f
| h]

ha

A

;
: h

3 Proof’: For weX we have immediately, by x: w » [ w and the Be

| construction of 727i , gy

Q: 8, (85-258 ))  (H, (1(W)s815+0258 )) :

= {H, @;(w)(0)say5:-252 )) : Ay

Ng

YW

lsor LET LN RU i TR TO SR ST ns et EE TI EsEG SUNORTGTR TR SAT ey



; {

=» Now suppose the lemma holds for u,ve |AE | y with P = Von (u) )
£4

“a Q = von (v) , and Ww = AE , (u,v) , so that V, on (w) = R, (P,Q) . Then
we have:

3
WY

?

2 R, (P,Q) : (5, (a,, . £28 )) — (H, @, (u) (0)sa5 oo £28 ))

~ {H » 8} XL, x

Lz |
” > (EH, @, (v)(0),0,(u) (0) a5 ++ +r3 ))
La 1 i ) m

Lo? {H mH} xi,
- —— (5 (2, (9,(2)(0),8,(v)(0) 8,5. .aY)

3
: = (H, (@; (w) (0),8,, veer )) ’

a and our lemma is proved.
ye

) The lemma essentially completes our correctness proof; for
i wc |AE| we have

oi Bov.on(w) = e;(V.on(w));d

2 = 0k (85 (Ys 0H, m(W))5 (GH, (a) ma)

Ne Therefore,

3: e Vs on (w) d i2 Boy om(w): 0» (5,( )) r—— {H@,(W)(0))) +» o@.(w)(0) ;
i
Ne

i Bevyon = 9
g.
} (and it is straightforward to verify from this that B® is indeed a
Nd

homomorphism). |
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;

X. Stores andAssignment ;- - A
® oe

| In this chapter we will consider a simple form of the problem of ;
languages with assignment. The simplifications we make to the problem ]

® are as follows: we suppose that our "variables" (in the programmer's

sense) are both simple and static -- 1.e., we neither consider arrays ¢

or structures, nor do we allow any declaration mechanism; all occurrences :

" of the same identifier will refer to the same store location. We will _

also simplify the solution by confining ourselves narrowly to a "language" :
in which single assignment statements are the only programs; the compiler \

© composition theorem will allow us to apply the result of this chapter to ;
| languages in which higher-order program structures are built up using 5

assignment statements as constituents. Unfortunately, the compiler ]
® composition theorem will not be adequate to give us our assignment

statement compiler on the assumption that we have already a compiler ;
for right-hand-side expressions. We will indeed assume that the ;

PS problem of compiling right-hand-sides has already been solved, but we :

will need for our proof some specific assumptions about the form of :
that solution which will become clear as we go on. A

% The present chapter will be divided into two parts: first, by p
assuming a target machine with just the operations we need, and by ge

5

describing a trivial compiler, we will prove essentially the triviality

G that an assignment statement may be exesvied by first evaluating the 2

right-hand-side and then storing its value; second, we will make the 3

existence of this target machine more plausible by showing that it can 1

Po be modified (and that a further compiler can be composed with the first

o

81 3
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2 a

Le to obtain equivalent effects on the modified machine) in such a way
ho,

1% that it factors into two components which are recognizable as a store |

4 and an arithmetic unit. Furthermore, the store component will be seen |
a to factor into individual "location machines".
Ce

= For the first part of our discussion, then, we assume the

L- existence of an (Q-algebra IL of "right-hand-side" expressions,
al _- |

oa generated by a set X of variables and taking values in a set A ;

- and we suppose that we have obtained a compiler x which yields a ol
. family of commutative diagrams, one for each interpretation

nd i: X -+ A , as follows:

Hn a “i
2 L —=— 51

-

k- |
| We may suppose that oo
)

5

Is] = (1-4)
"11

and that each P. 1s the unique homomorphism satisfying, for all xeX ,

N We further suppose that L is an Q-algebra of I'-BRAs (for some

3 set I ) with set of distinguished nodes {s,H} ; to indicate this fact

we depict the effect of x schematically by
:

:
% ER gr— : :
-,
W
ol

: Hg 82
he



b

Each Vs 1s determined by a machine (T-BRA) Mi 3 we make the 2
. assumption that all the Mi have the same carrier M , so that we X

have: x

Vi: Be (ac(P ® Mi)) ] ({S,H} xM) . 3

| The homomorphism & is of course determined by functions ¥

e: 1 » {S,H} xM and a: {S,H}xM = A ; we assume that 0

e: Or S,m x
O 1

for some fixed initial state m_eM » and that 4d is defined only for hy
Pe

arguments of the form H,m . We may write the effect of & as :

Si R - doR(S,m ) . L;

Our hypothesis of commutativity now appears as:

[do(¥,en(w)) (Sm) = @(w)(0) -

.

| It appears that these assumptions typically do hold, or can easily :
be made to hold, for languages of expressions whose values depend on an be

| interpretation of the generating set but not on a choice of initial state; ;\
i note particularly that they hold for Examples AE and BE. :

We now define the language L' of assignment statements to be

simply the set of pairs x :=w , with xeX and we |L| . L' is .
I

trivially an algebra: it has no operations. (Note that we write 3\
"x i= w " merely as a suggestive syntactic alternative to " (x,w) ".) y

| We have now to construct a commutative diagram:

hs

83 |



We ol
o

a — pm—

nd a

- ?' v

oh with @' an acceptable semantic function for assignment statements 3

yOu x' will then be our desired correct cumpiler for assignments. Note
ly

Soh that because L' has no operations, to require that the arrows of the

s primed diagram be homomorphisms is merely to require that they be

pl functions. Likewise we need not bother to distinguish between the

Wi trivial algebras in the primed diagram and the sets which are their

: carriers. |
® LL" ]

3 Our definition of the semantics of L' will be conventional:
on

iis) we regard the meaning of an assignment statement as being a transforma-

Tk tion on states, and we identify "state" with "interpretation of the |

i variables", so that we have S§' = (X = A) = (X =A) . The effect of anoo |
on) assignment Xx :=w should of course be to modify the value of the

or state at Xx so that it assumes the previous value of w ; therefore
wy

i we naturally define @' by (for i: X = A and yeX ):

®'(x :=w)(i)(y) = if y=x then @ (w)(0) else i(y) .
& 2 :

! bs AS an abbreviation we may define a function, "assign", by: ]

1A assign(x,a,1)(y) = if y =x then a else i(y) ,

Eos and then write:
‘

ol @'(x :=w): iw assign(x,@,(vw) (0),1) . |

>: 8

A eT STAR AE Ls mmm RE er rl
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> 3

-

or

The compiler we will need, x' , is trivial, as was promised: is

given that x: w » y We define u': X:=Ww + : 3
oe

STx i
AY

| we see that the operator set of our new target programs (and hence of . :
3

the new target machine, ' ) must be T U {STx | xeX} . We shall 3S
| '\

define V¥' in the standard way by V' = p'eaces' , with -

": PrP®M and p': Re R ({S;H}x |Mm'|) . Even before the oF

action of 7' has been defined, we can see the essential property

of u' (the argument was gone throuh in detail for Fxample SS and oN

need not be repeated): we will have for every statement x :=w ¢ L', Ld

¥ 1 t . = = . to . t , N-d

(*) Viey'(X t1=W) Les,H) 7 Im | U {S,m e+ S,m};(V w(w));(H +H} XM apse) 3
| The way to our desired result is now clear: we need to combine 4

all the Mi into M', by taking |M'| = Mx(X » A) , and defining pit
THM

J

the action of m' for Yel" by iat

My: my,l bk om,,i iff 73, - m, bm, : we
ry

S this will evidently give us, for the evaluation of a right-hand-side Ny
on 7' , =

te
(9) Ven): (Smid) ke [Em ee mbe(vy ok) 1(s,m),1) 3

We then define the operations TM amy for XeX in such a way as to =

store in the appropriate "location" of the (X — A)-component that ]

X element of A represented by the state of the M-component we have ol
arrived at; that is, we define: 5

=
85 <

hah

3
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35ry

A (3%) Mamet Mi vm ,assign(x,d(H,m),i) .ad

8 (It will be convenient when, for example, we come to compounding

[3 assignment statements, that the execution of a store operation0

wh

I returns the M-component to its initial state. If we had been more

) specific about the structure of M » Wwe might have been able to
> ~

3 specify the action of Romy on M more conservatively, for example |
\ “ to remove only the top element of a stack.)

wivitp The correct definition for 8' is now evident: 5': R + d'oRoe’ ’
iN

WN where e': i vw (Sym _,1) and d4d': (Hm _,1) a
8 The correctness of x' , that is the commutativity conditionor

3 'oy'on' = @' , is now easily checked. We have by definition:

P'(Xx:=wW): i + assign(x,®,(w)(0), 1) ;

a But,

$ ! Broy'on'{x t=w): i w» [d'o(Y'on'(x i=w)) 1(8,m_,1)
i
Ane = [are((von(w))5({H =H} x gy) 1(S5m_, 1) (by (¥)))

2 = [are( mH}xn) JH, [Hom = m}o(v,k(W) 1(S,m ),1) (by (*%))0

= = a' (Hm ,assign(x, [de(¥, on (w)) 1(S,m ),1)) (by (*%x))* E

: o = d'(H,m ,assign(x,®, (w) (0),1)) (by assumed correctness of n)Lh

2
BLN! = assign(x,Q, () (0),1) . 1B

: With an eye to the application in Chapter XII, in which we shallJu

i want assignment to both arithmetic and Boolean variables, in the latter
3 case coercing arithmetic values to truth values » We note the following
a8 86 |



N

FL

i
evident generalization (by no means as general as possible) of the io

al

result just proved: Suppose that we have an additional set of ot
1

variables Y , disjoint from X , which we wish to take values in a (=
ib

set B , in general different from A , and that we have a function

rep: A = B which allows at least some of the values in A to stand h

as representatives of the values in B®." Then we may define an pi
augmented language L =1L' {ly :=w | yeY and we 1L| , an augmented i

hl
ie ~ "

sel of state transformations § = (X =A) x(Y -B) = (X =4) x(Y -B),
Ea

i

and if we define a modified assign function, assign , by: iy
*

+ Ny

if xcX then assign (x,a,i)(z) = if z = x then a else i(z) &

if y(Y and rep: a » b then ,
LE A

assign (y,a,i)(z) = if z =y then rep(a) else i(z) I.
* Nod

(assign undefined otherwise) pe

, |
then we may for our semantic homomorphism ¢@ write as before:

+ +

¢ (x :=w): 1 + assign (x9 (31 5)° 1) i i

It is evident that by taking a suitably augmented target machine :

+ . 4 + ie \
mm we can define » , Vv , and & as before, and again get a

commutative diagram. The necessary change to the target machine is =
: + . + Fe

simply to take | | = Mx(X =A) x(Y =» B) , and to provide m_ un
i ky

+ Wn

with additional operations 7 ST for yeY , defined by: 2)

| mt :myl om ,assign (y,d(H,m),1) | »
— OTy O ;

iy
whenever the latter is defined.

& The store operations of the machine 7' are similar in effect -
2

to instructions of many real digital computers; in the synthetic example 3

r f Ke
Ia
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i of Chapter XII they will be assumed to be executable, together with :
E- load operations like those introduced in Example AE, by the final
34 target machine. The remainder of this chapter, which will carry the
0 compilation of assignment statements one step farther, forms an example
3 of modelling machines by BRAS, but is perhaps not directly relevant to
oN practical compiler-correctness proofs.

3 The machine 7' which we have just developed, although its
# operator set is analogous to the instruction set of a typical digital
oH computer, is theoretically unsatisfactory because its structure -- of
aMa

Eo a store combined with an "arithmetic unit" -- is not apparent. Moreover,
2 the assign function used in the definition of M' is mathematically
Fy rather complicated (although familiar to programmers); we would like

or to not only isolate a store component but analyze it as an assemblage of
2 "locations".

> We proceed to meet these two criticisms by introducing a modified

* machine NM" , and a compiler x" which carries programs for m'wi

2 into programs for |" ; once we have shown x" correct, "ox!

& will be a correct compiler for L' with 7M" as target machine, and
i Mm" will be defined as a product of meaningful factors -- "arithmetic
3 unit” and "locations". The proof about x" will be simpler than a
4% general compiler proof, because we will have |" | = |m'| and also
* for all L'-programs P , |w"(R)| = |@| , and we will be able to show
E that 2 (x"(R) @ WM") = Z(P® M') , so that no argument will need to
2 be made about mc (recall that ac = ghee): ), restriction, or
i decoding. |

2 88

RO IATA EoLeA Tn LR Ta oe foee D1 0h MDJ RE



- :

Before we start we must make some further assumptions about the ;

. family of machines i : in essence that they really do only differ :
according to the values their respective interpretations give to the y

variables in X , that they treat all variables alike, and that at most :
e one variable is "read" by a single operation (these restrictions are ;

met by, for example, the machines for Examples AE and BE; in more

complicated situations in which not all the restrictions were met, one

oe would expect to ne=d a more complicated construction than the one we

shall give here). Formally, we assume (recalling Mi: T -» (M » M) ) :

(3) r=r u {Ix | xeX} (IL for "load") ; :

| (ii) Ri, = nd, for ver and for i,j: X — A ;
(iii) there is a function £: A = (M = M) such that for any i: X - A, 1

x

GC mio, = H{i(x)) :

(It will be evident how the construction which follows could be §

”m extended trivially in case there were many load instructions for each
variabls rather than one. On the other hand, it is also clear that one

Pind of load instruction is enough: we could adjoin a "memory buffer ¢

G regiéter” -- 1.e., make the carrier of the mi be AxM rather

than ¥ -- and then split each variety of load operation into "load :
‘a

memory ou{fer register" follrwed ty a suitable new I' -operation.) :
= The idea behind the construction of 7M" is very simple: it is to

split each operation 1» into a family of operations Ixa , one for

| eacti acA , each IXa tbe capable of loading only the specific value ;
= ga from location x ; and similarly to split each operation STx into a p

family of operations ©STxa . Even this intuitive description makes it ¢

:
= 89 .

)

02SDLTLed



8 5 peA a a aa a a a a oe LN TL a i IL WIL NN re Ry Tr Ee A Le PL a.

JOR

or

5 clear how we want x" to behave: it has simply to split each
operation-instance of Ix (respectively STx ) occurring in a program

cy

Je into a bundle of operation-instances for the various elements of A .
Ing! Hod : "hey We may picture the process of compiling with x" as follows:
or r

= ® )
hn n'

HX
Std ]

al (and a similar diagram for STx ). More rigorously, if not very
w

En transparently, we can define u"(p) for any L'-program p by

as '@| = lel»

ee! " _
Jo w'(R), =P for erod ®), = &, o ’

. i io for xeX , acA , and
” Ve) p

“i w' (rn = for xeX , ach .

“s (2) STxa Porx ’
a Now we see that if we can define NM" so that

le + m" =n’ for vyeltL ( ) 7 y O 2
Re,"

EN Na. Ixa Rx >» and
os achk, 5, p
| ww

gy

oe U 1" i m!J5Y I sxe = Mong ?
® ach

*\"

y: then we will have at once our derived result:

RL

a

a0
ae
Jal 0
A
ae
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" v
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Zo (w"(R) ® mM") = U x" (RP) x mn,® yc U {STxa,Lxa] 7
|

. U Pox Mm
yeU {STx} 7 7

®

= 2 (PM)

all we need observe is that (+) and the definition of x" imply: ]
®

POM, pom b p'ym' iff for some ach, u"(P) ® Mixa’ p,m +» p',m' |

and the analogous biconditional for STx and STxa . But it turns out that

& we will get exactly the J" we need by defining it as the following product: |

© m, = AEN for yer, , Mia me f(a)(m) ,

Marya ar 1, iff 4d: Hm» a

® Jd. = for vel J. 1m i iff i: Xa and
= x - A o ’ =Ixa° oe —— . ) |

Sapyg 1 +b assign(x,a,i) .

w

To verify (+), we simply check: :

7 — m _ ' ‘ §
(Mm & 3), = Mm, x1 ,, = Mm, for yer 3; :

. and J

U ROS... m,i L(a)(m),i iff i: x + a y
ach :

. that is,

U Te Ixa mi +» 2(i(x))(m),i ;
ach

© 01 |
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A |
2 and |-

~ Uu ne Japyg: M1 bk m_,assign(x,a, i) iff d: Hym » a
ach |

0 that is,

1” 0 M® Sapyn? Mi b m_, assign(x,d(H,m),i) . |}
ach

0)

did We r.ow have our two factors of nm" : & the "store" and m

the "arithmetic unit". We claim, moreover, that d 1s the product of

ns one factor for each element of X , which it may be appropriate to

4 call a "location machine", namely:

‘ 4 = ® &K
Ha xeX
ee

ily where

% a i Ly tor vel, 2 |
= Xr va = if y = x then {a wa} else 1a ’
vi and

ily Fema = if y = x then {b + a} else 1 .

oo The verification of this decomposition is a trivial exercise (making,
WA

0) of course, the necessary identification of the Cartesian product

a xXeX
« F .

ae It is evident that we can carry through this second part of our

i” construction in essentially the same way in the case where we have an

5 additional set Y of B-valued variables, to get an augmented version:
i: 92a
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of MM" which factors as NM ® § . Here NM is defined the same :

© way as 7, but with the operations :
;

Mor: iff a: :
yp mem iff 4: Hm a §

3

now existing for all xeXUY ; and g is defined the same way as J , L
+ 3

except that |8 | = (X = A) x (Y = B) , and now ;

+ : i :

PY Sapygg: 1b assign (x,a,i) 3

i

| for any xeXUY . :]

+ "]

" Furthermore, 4 decomposes into all the factors of § , one for i
each xeX (with the trivial modification that the additional operators

| STya , yeY , each denote the identity operation Ly ) and into 2
additional factors Jy , one for each yeY , each of which has :

+

| sy = B , all operations the identity 14 except for: .

Hgrya b + rep(a) 3

(note that this is the empty relation if rep is undefined at a ). “

: 3

f

/
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XI. While Statements
ow

The purpose of this section is to show by example that the style

of compilers we allow -- BRA-producing homomorphisms -- easily and

® naturally handles (as we should expect) the sort of programming language

construct which is customarily defined by a rule for replacing each

instance of it by a system of tests and branches. A typical instance

w of this sort of construct, and probably the simplest, is the while

statement (familiar to students of Algol-like languages, even though

not exhibited in its pure form in Algol 60). Note that whereas the

® ordinary theoretical treatment of whiles (see, for example, [Hoare 69])

takes the equivalence of the while statement to a loop as given and

proceeds to derive the consequence that the function denoted by a while

© statement satisfies a recursive inequality, we shall be proving the

same thing for an ostensibly different reason -- i.e., we shall take

the recursive semantics of whiles as given and proceed to show that the

» compilation of whiles as loops is ccrrect.

The present context may also serve to exemplify two other points

of possible significance. The first is that there need be no incompat-

© ability between an algebraic semantics and an axiomatic one. That is,

we may give axioms for a semantic algebra without determining it

completely, and prove from them properties which must be true of any

'Y algebra satisfying the axioms. (This is, of course, standard

mathematical practice; we lay stress on it here only because most of

our algebras have been explicitly defined.) The second is that even

{4 without use of the cumnpiler composition theorem we may in certain

ol
©
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i) circumstances claim that correct compilers for two languages

L N automatically yield a correct compiler for the omnibus language which

3 combines their "features" -- namely in the case that the two compilers
3%

he, are sufficiently compatible, in a sense which will become apparent. |
Ey =

a We take then L W while p do, while q do, ..}%) , Where |
5h X = {X,y,...} is a set of elementary ‘statements, and P = {p,q,...} |
Lh
fd is a set of predicate expressions.

iil We want S , the semantic algebra, to be one of relations on

2 a set A to itself. We assume an interpretation i: X =» (A x A) of
Te

i the elementary statements as relations on A ; and an interpretation

_ j: P+ (A -2) of the predicate expressions as predicates on A . We |

a specify the operations of S incompletely by laying down for each peP |1

ek © an axiom, namely the following recursive inequality: |

25 (*) Bpprepac(D2faralnt EIU (la raliP) (ify, p gol |

rl and we require ¢@ , the source semantic homomorphism, to be the extension |

of i to a homomorphism : L -S .

28 Forseeing that we shall expect the target machine to be able to |
we evaluate the elementary statements and predicates directly, and knowingLal ,
2. the shape of while loops, it is easy to specify the action of the |

5 compiler on X : 1Jig S

Rigt w: x - |x ,

» and to give the operations in L by the following diagram for each peP : |
)

a

oY

3 95
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oy
Lihile p do(®) =F ( ® \ \

\ 8 J! ;

H hk

Evidently the target BRAs (hence also the target machine) are to :

have operator set X U PU {p |peP} .

We may now describe the target machine m Naturally we take

71 = A, and for XxX , JU = i(x) . We use the device described in :
L

Example I.2 for modelling predicates by partial identity functions :

("Karping"), and require, for peP, {

m, ={arealiP(a)} , By ={area]nt j(p)(a)} . >

For D , the domain of the relations computed, we have

| {s,H} XxA , and this suggests the already-familiar choice of 8: r p derce :

given by d: (H,a) +a , e: ap (S,a) . & is evidently an isomorphism 1]
i

from R to an algebra S' whose operations are given by :

-1 -1 3
f = o 0 0 o -] |funtte p 20{® =~ "Cui p af? T° Ve

hy

S being only specified as satisfying the axioms (*), all we need prove for ul

the penultimate step of our correctness proof (closure of the diagram) is y

b that S' satisfies (*), and hence is a suitable S . But this turns out
M

surprisingly easy to prove, once we make the observation that for any hn
Py

BRA [2 we have the simulation o: 8" = B' , where RB' is 3> I~ 5 »
DD J : " " : bs

Loonie p do(A) and pB is the same loop "unrolled" once, i.e.,

96 3
4
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i,

2 PF -EENa oo - - J |

or 0: - |% + - = - |

) Y hPL : separ 5 aH

ov  — el —_—

Rs
rig

i: where o acts as indicated by the dotted arrows, and in addition, of
- a course, coalesces the two copies of SB into one. \

Tr It is easily seen that if we follow the execution and decoding |
/

ot 4 1

ht : morphisms around to S' , we will obtain for the relation computed |Xa J

™ |
A by B" , :

A :

wg Boy(5") = {ara|not j(p)(a)} U ({a mali(p)(a)}sbey(p);top(a)) |
We ; 3

Lily However, decomposing the target semantic homomorphism as § = poacoex ,
) ;

BiG and recalling that x and ac are functors, and hence preserve

os simulations, we see that from the simulation of flow diagrams noted |
2), above follows |

SIR
Ri oxl,: ac(B" ® M) ~ ec(B ®M)
a

ALAS i.e., (by the definition of simulation) |

ac(B" ® M);(oxl,) c (ox1,))sec(p @ Mm) - |

ye But, as can be seen from our definition of o , |

oh
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(ox1,) J{8,H}xa = les, uia

hence we obtain in fact |

| WF") = esc(B" ® M)](S,H}xA |

c ac(@ ®m) {SH} xA = ¢(B)

| and following & from R to S' we at last have Boy(B") C Boy (5') |
| which is just what we wanted to prove; we are justified in taking S'

to be S , and we have our closed diagram of homomorphisms.

| The last step of proving correctness of our while statement :
compiler has been done already in example SS; it consists simply in

observing that @(x) = i(x) = Beyox(x) for xeX . |

| In fact the similarity between the current example and example St :
| has more far-reaching consequences than merely to save us redoing a

| step of a proof. Every pair of corresponding homomorphisms in the two |

| examples are extensions to homomorphisms of the same function on the :

| generating set; moreover the two target machines agree on their common

operators; in short, thers is nothing to stop us claiming that we have

~ given a (disconnected) proof of the correctness of a single compiler

2 for a language which has as its operations the formation of both |

compound statements and while statements. It is this combined language i
which will be meant by references below to "the language of Chapter XI".

& What we may conclude in general is that when there is no conflict ;
in the compilation of two algebras {action of the compilers the seme :
on generating sets; compatible machines, same restriction, same ¢

G decoding in both cases) then simply from the fact that a proof about )
homomorphisms for multi-operation algebras is just a proof for each

"

< = :

ET
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| . . | ] []a5 operation separately, we have for free a compiler for the combination |

WM, of the algebras. In more programming-language-oriented terms » under |

a these conditions we obtain automatically a compiler for a language inWA

ol which mutual recursion between two constructs is allowed, although
od we have apparently only proved compiler correctness assuming that either
x; of the constructs could be used in isolation. |
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XII. An Exemplary Synthesis 0

The aim of the present chapter is to illustrate the utility of what :
has gone before by using the compiler composition theorem to tie :
together most of the previous examples of "single-feature" languages 2

into a demonstration of the correctness of a compiler for a somewhat ;
"realistic" language -- very loosely, a language "with the features" 3

of whiles, sequencing, gotos, assignment to simple variables, Boolean z
and arithmetic expressions. It cannot be over-emphasized that the

achievement of this one proof is not to be considered as the total dh

| accomplishment of the present work; rather the synthesis to be performed ;
in this chapter should be understood as an advertisement for our |

algebraic approach; it is meant to exemplify a class of possible :
syntheces which could be made easily and naturally with the tools we v

have developed. (Admittedly, we have in our examples treated only a .,
| very small set of language fragments, and will here assemble essentially \;

| all of them; it is not evident that a synthesis interestingly different 3
from the one we shall show could be performed without first inventing *

some new "single-feature'" languages as raw materials.) ;
We proceed forthwith to an informal description of the language 5

‘ Loyntn with which we shall deal. The following parameters of the
language will be left unspecified: the choice of a domain A of hy

-

"arithmetic" operands; the choice of a family of "arithmetic" operations

: on A and of a set (Q of operators to denote them, the choice of a 0
(partial or total) function rep: A = {true,false} by which certain 4
arithmetic values may be used to represent truth values, and the choice “

' of a set V of arithmetic variables and of a set U (disjoint from V)

:

100 i
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2
iy of Boolean variables. (For brevity we shall henceforth throughout

i this chapter denote the set {true, false} by 2 «) d
x Programs of Loyntn will be finite, multi-entrance, multi-exit |Sa]

” (Karped) flowcharts. The tests will be of the form p/\F ’
2 where p is any Boolean expression (as in example BE) built from p

variables in U . The commands of. Loyntn will be arbitrary nests |1%) 1
# of while and conpound statements built up from assignment statements
BY of the form x := e , where x is a variable in VyU, and e

1s an expression built up, as in example AE, by "arithmetic" operators |N

N from the variables in V . The while statements are to admit the same

: set of Boolean expressions as may appear in the top-level tests of |: Lsyntn |
To restate the foregoing somewhat more formally, and in the

o bottom-up direction, we define the following languages: |

Lorith = WA (V) » that instance of the language of example AE got by

3 taking the particular sets of operators and V of arithmetic |
variables;

; Lussig = {x := e | xeUUV and ec Lyin | , that instance of the |
; "augmented" assignment language of Chapter X got by taking |

; Lpith 25 the language of right-hand-side expressions, and |
; U as the set of "extra" assignable variables;

y Liool = We | As Ys) (U) , that instance of example BE got by taking §
: U for the generating set;
‘ L W i ) inst f th |= . an instance o B |

=we ~ ={0}U {while p do | pe Ly oq | 3 -essig’ |
language of Chapter XI;

| 101
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L. nth = an algebra of IL. | U LY U {p | Pc L001! - BRAs , with |
cuilable construction operations for building up flowcharts -- the

choice of these constructions turns out to be a rather special

problem, whose discussion we defer.

The semantic homomorphisms for the various intermediate languages :

are the appropriate instances of the ones we developed earlier: |

For L...., We have for each function i: (V-A)x(U -2) a homo-

morphism Pv Lorith —- A, agreeing with i on V , where A :
is the (-algebra with carrier A whose operations are whatever J

® "arithmetic" operations we may have chosen.

}

For L q We have, as defined in example BE, a homomorphism {

Psy Loop —B2 for each i: (VA) x(U~-2) , agreeing with i

| on U , where B2 is the {=,A,Vv,>]}-algebra of truth values

with the classical operations not, and, or, implies.

For L . we have a semantic function
=assig

asain Rogeip = TV A) x (U 22) (V=4)x({U =2)) given by

Passipl :=e): 1 + assign (x59, ,(€)s1) , where
[) .
| for xeV , assign (x,a,i): y +» if y = x then a else i(y) ,

for xeU , if rep: a + Db then L

eB

assign (x,a,i): y = if y = x then b else i(y) , §
a =f -+ -

(assign (x,a,i) undefined otherwise), :

¢

and where rep is a (partial) function which interprets certain )

Sh arithmetic values as representations for truth values -- e.g. we :

O - false f

might have rep: fakss :1 — true X

w 102
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: L, (The idea is that an operation such as < , which we would
1 =p

% naturally think of as operating on two arithmetic values to yield

Si a truth value, will here be thought of as yielding another
i

arithmetic value; the latter will be appropriately interpreted |

: by rep on assignment to a Boolean variable. This device allows |
a us to assimilate predicates to the ordinary operations of our |

A arithmetic algebra A , and in the implementation whose correctness |
i) |

a we shall prove, it will model faithfully the commonly existing

By situation in which representations of truth values, as held on the |

stack, are indistinguishable from representations of numbers. All
“ 3

4 the same, the necessity to introduce rep is displeasing and

suggests that our algebraic notions are too rigid; this problem and |

2 the possibility of its solution will be discussed in the conclusion.) |

For Lo we require a semantic homomorphism Porn to an algebra of

3 partial functions on (V - A) x (U = 2) to itself. This will |
simply be an instance of the development in Chapter XI, where

the semantic homomorphism for a general language of while ang

0 compound statements is defined (or rather partly defined and ]

| partly axiomatized) in terms of interpretations for elementary

P statements and for Boolean expressions. We have already an

: interpretation of the correct type for our elementary statements,$Y

namely:

3 Passia’ Lassig = (VA x(U +2) = (V4) x(U ~ 2)
5 We need also an interpretation: |

§t Lyogg = (V8)x (U =2) =2) ; |

Ir) ]
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we may obtain the function we want by interchanging the arguments of £

the semantic homomorphism for Lool ; that is, we define:

jp): 1 = ® 590) (p) for each pec Loo! : :
Finally (since Levnth is to be an algebra of BRAs) we may describe :

i

the semantic homomorphism for Lsynin , Psynth’ ksuntn +S, as a

composition Pili = peacen , even though the constructions of Leynth ;
| (and hence as well the operations of S }) are as yet undecided. We :

M
. . . A

| define the source machine, J , for Lsynth by taking

Z| = (V4) x(U -2), :
Zire (s)(i) for se|L |

@ and

== [] L] [] 8 aie . [] [] ¥
dp = ir ile, @@)]) , Zo=(iri|mte  ((@)(i)]

for pe|l | :
. 5

We then have = defined as usual, for pe Lsyntn| » by mm PPR . :
A

Since we wish to allow our flowcharts to have an unbounded number ;
of entries and exits, we define a set Sh = {S),8;,...} U {Hy,H;,-..] 7

| containing infinitely many distinguished start and halt nodes,

and we shall insist that for gc |Lsyntn| » we have SH C Is) ov It is ;
® then natural to take for our restriction homomorphism: g

p: Rb RI(SHx |&|) -
i

G Evidently the semantic algebra S will be one of relations on :

SH x (V =» A) x (U = 2) to itself. :
b

We have now to show that we can construct a correct compiler, 5
:

% pm , for Leynth by compounding our previous fragmentary results
i

b

a

: 104 h

|

.
:

I dTbd Bd I A Lo Tm a SATR TA To DoLR A aAECER I A oTErCAa aGE EO SO Cl Dsl BER RATARRSMia!



“

i We have immediately that age 2 the compiler for arithmetic
oo expressions developed in example AE, is a suitable compiler for right-

ny hand-side expressions which may be plugged in to the ("augmented")

hd construction of Chapter X. This will give us a correct compiler
pi

5 :

2 Ne% |Wel
2

" H

oe The target machine for L,ssig ’ which we may call a , will havehed . *

i carrier | ma | =A x(V-A)x(U->2), operator set
QU {Ix | xev} U {STx | xe VUU} , and operations as

al |

3 defined in Chapter X and in example AE. We must, of course, suppose0%

r : :

pe that the operations na for we do indeed apply A (recall A
is the source semantic algebra for Lith ) to the top k elements of |

os the stack (k being the arity of @ ) and replace them with the result.

A We have also, from example BE, (and with no further specialization
5" then taking the generating set to be U) a compiler x,_. taking the

i expressions of L _. into {JTx,JFx | xeU} - BRAS .
3% We now define a compiler un__, (to be a candidate for formingLe ”

) extend(x_ _,,L_.) ) which acts on, and produces, certain BRAs with

“ set of distinguished nodes {S,H,T,F} as follows: |

hed 105

cgi
ad

A EOS Le ERA ST Tr Rp SU Te etA TLE Te Td A A A PM Tior Pym PS aA CaTo oa JnOS9cL,b2404ono{fhts.:ixirRa+2 74{ IJ+NEoh LL a Er a RI Lr ETF)RahJeblll



| For pe Emon} ; ;
:

S C

an YR bo Clea PO
T F ‘

H T F

" :

and for 5¢ | Lysis) . 3
: :

S 1

T F

H :

| 1

The set of BRAs to which Mob is applicable are suitable to ;

be run on the machine AB , where AB = |L .| U {p | Pell, 11] U Lessig 4 :
and we may take Pp ? the semantic function for the set, to be given

by

| ®,_: 0 + ac(e® 4B) 1({S,H,T,F) x (V ~ A) x (U = 2)) .

We can work this out more explicitly, using the definition of : 4

| as follows: .

Pts J imi : Xi pY,i' iff (X =SandY=H t
H RB Tae . i
TF and 1' = assign’ (x,0;4,(e),3) |

orX =Y and 4 =1'), :

S L

| JT VA : Xi Y,i' iff (X =S and i = i' and
| T " F (Y = T and @,,,(p) ;

orY =F and not @.4,(p)) "

or X =Y and i =i") . 2
]
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ON 0A ADOOfiter



|

ha
Ny The target machine, fab , for nop, 15 the same as Mg (the

Ge target machine for x... ) except that it has the additional operators
% |

ts! {JTx,JFx | xeU} whose effect is defined by (for meA” , i: (V =A) x(U -2) ):

2 mab.. : mimi iff i: xp true,

2 nab ro. : mibkmni iff i: x p false . |
Eo As might be expected, the target semantic function, Voi y 18

given by |

+ op: + ac(p ® Mab) If {S,H,T,F} xA x (V =A) x (U =» 2))

9) and the decoding function by: |

We SHR R b deRee , |
ag where

Ay e: X,i -X,{),1i and 4d: X,{),i = X,i j

Sh
Lo (for Xe{S,H,T,F}, i: (V-A)x(U =2) , and () denoting the empty |

ae stack) . |

5 We proceed to show that Rob (with Pop * Voop » 20d 8B ) |

1 satisfies hypotheses 1-4 for the compiler composition theorem:
5 5 |

Li l. We have {S,T,F,H} CC I“, [e | and ;
To H

“La J
fhe! S

i (s,T,F,H} c In , |
Pn ?HIEIR) = asp A; | , so Hypothesis 1 is satisfied.
Bh H

Lo 2. By identifying X,i with X,{(),i ( () the empty stack), we have 5

28 |#] = (VA)x(U ~-2) c |mab|] =A x(V =A) x(U -2) , so Hypothesis |
2 1s satisfied. | |

”
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5

Be For p = [x t= e , 1t is clear that !g

5 P F

| ®t ° Vout °n, (PR) = ¢ (2 ; this is only a slightly disguised

form of the statement of correctness for hossig ° It may be

| noted that the operators JTx, JFx of Mab are never obeyed,
[ 5

| as they do not occur in I) ; we have in fact that: }

8,1 “Vay ° ng (0): im Y,it iff (Xi =Y,i' or )
| il = :

X =S and Y =H and i' = assign (2,9; 4y(€) 51) Ys k

| which is exactly the behaviour of ?_ (2) : jv.

For © = y/\p , We have somewhat more of an argument §
H %

| to make, because in example BE we took as target machine only a 3

| one-state machine, modelling a single interpretation of the Boolean g

i variables. However, we may note that in Jab all the operators

| JT%,JFx denote partial identity functions (even total identities i

except on the (U — 2) state component) so that, as far as the
t

| evaluation of Boolean expressions is concerned, 7ab merely 4

unites a number of non-interacting machines of the sort defined BY

, in example BE; it follows from the proof of that example that we ;
will have: Ie

: o
w

i
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(11: Voto “%g p(B): Xom,i ~¥Y,m',i' iff m=m' andi = i' and
el |

- (X=Y or

Ls $=5amaY=Tand@., or |%

3 X =5and¥ =F and not 9, (p) )-
Fh. on |

; Similarly, Bab Ye is Rob’ Xt bP Y,i' under the same

re conditions (omitting mention of m ), and this is exactly the :

la behavior of ?,1(P) . Hence we have satisfiei Hypothesis 3. |

ha 4. For Hypothesis 4 we have to show that, if Vo pgp (RD): X,myip> Y,m',i’ |

2 with X and Y both elements of {S,H,T,F} and m,ice 12 s» then
J also m',i'e || ; that is, if m is the empty stack, so is m' . |

nd S |
A it

LCR For Pp = »/\p this is immediate, since we must haveTd
Ln = T F

H

wd

bel m',i' =myi . For Pp = IE := e we have only to recall from
id H
ee T F
La

3 example AE that it was shown that the evaluation of an arithmetic
pv \ ¥ ]

et expression starting with an empty stack yielded a one-element
:

3 stack, and from Chapter X that we defined the store operations so.

lee

43h as to remove the top stack element. Hence Hypothesis 4 is satisfied<0
RAN

2 as well.

oF We may now assert by the compiler composition theorem that our
*J

os diagram of Py _p™ gtWeb’ %ab extends to a Somtetive diagram of
2 homomorphisms, yielding a correct compiler extend(x, L.) for theAy

i!4{A DoT TR sR ET LRT RR Ty aT a ce A ET ERS 5,



algebra Le of AB -BRAs , with generating set :

| l ‘=e | xeVUU , ec }—_— ’ |H
T F :

and operations oo

Lye (0): PQ s LoCo S-(0)er) .

(IT) ( FF_ !

and, for pe L001! i ’

wid (SH id N
1 (while p do): Q Pp p P ‘1p \ rp) g 3| Lyc (While p do): \ sp NF hs

FL / 3
\ B KH) vT 8 3
“ 7 ~ 7 :

(Images under the just-given constructions of isolated T , F , and H :

nodes were chosen rather arbitrarily. These nodes plainly serve no 5

purpose other than to render the compiler composition theorem slightly 3

less cumbersome to state.)

We now need a compiler Mor * L,a Lo with which we can compose | $
) the extend(x I) we have just developed. In essence, the required

Ho is just an instance of the general compiler for whiles and compounds aa ee ny

| developed in Chapter XI, with Logsig! taken for the generating set, 2
and {while p do pel, ol} taken as the set of while-statement building %:Nz

| ih
110 :
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hee

oe operators. To make the co-domain of Wg, Come out to be exactly

he Lo. we must adjoin the isolated nodes T and F to the BRAs

Te na (X =e) = |x := e , and the isolated node H to the ERAs

S

; Cinile p do = y/\; , but doing *so plainly will not have the

slightest effect on the proof of correctness given in Chapter XI.

ho Composing, we may now assert that we have a correct compiler
at
re) _ Sy ;
:2 J extend(n__ ,L_.) ng for L.. , producing programs for our
v final target machine Mab . |

i We now have to obtain from x_, a compiler for Leynth . This
Fer will be done by an atypical application of the compiler composition J

| theorem, in that no composition will occur: Lsynth is already an
fis

& algebra of BRAs , and our final compiler x,ynth will be simply |Sh ' ! i i ; 1

9 extend (% (Leen) where »' is essentially Are ? but modified to |
[i act on suitable BRAs . (One could easily imagine removing this |

ot anomaly by making Lsmtn the target algebra of a compiler for a
FE more conventional programming language in which programs were linear
Up |

> strings containing labels and goto statements.) Still postponing a J

3 X decision on just what algebra Leynth is to be, we will proceed to
3 show that the compiler composition theorem must be applicable, assuming

X only that all the BRAs in the generating set of Loyntn » together
Pd with any constant TRAs Cu it may employ in its constructions, are |

5 of one of the forms: ;
BX, |

AD
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i

5s *o en Sy I 5, en S, ewe

S or D

H, ee ® H, eo 0 Hy "ses Hy eo ® Hy ee

®

with sell| , pelL ,| » and without any implication that k >j .

We denote this set of BRAs by X svnth :

® We specify Moro in the obvious way by:

* 8 0 5, LN BN] ae BH BE Sy LBJ

eo eo H : eo" 0

J

and

® LIE] 5 [I I]

i

Mare i \ — 1007(P)
9 ee 0 H, ews H, eo eo R B

I | hy I k Ee 0

Our target semantic function will of course be given by:

@® J
Voynen Bb ac(® @ mab) J(SH XA x (V = 4) x(U 2) ,

and our decoding function by:

B eynth’ RI RYSHX(V=A) x (U = 2)) |

(keeping in mind our convention that {i + (),i}: || |mab| )-

on We recall that Psyntn’ ac(P ® A) J(SHx (V = 4) x(U =» 2) .

112
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poy

3 hsa We may now verify Hypotheses 1-4:
pe

a Hypothesis 1, that SH C |u!(P)| for PeX_ynty » 1s immediate
%

k by definition of x'_ .
we

Y
hyLP

oe Hypothesis 2, that || c |mab| , holds as before by identification
of i with {),i .

DY |Hhh% 1

" : . |

; y Hypothesis 3, that Psynth = 8 synth Vaynth “ae (©) for CeXgmtn 3
ao is easily seen to follow from the correctness of Mo » together with

7 what we proved about Hab y/ \? to establish Hypothesis 3 in |

the foregoing proof for unwh ; all that has changed is that we are

& allowing the role of S to be played by an arbitrary Si, and those |
( of T, F, and H by arbitrary H, and Hy .

alle TT

0 Finally, Hypothesis 4, that relations | J— too (B) , if applied to |
ike states with empty stack, yield only states with empty stack, comes as a |

by-product of the application of the compiler composition theorem to

2 Hab (recall that the inductive part of the proof of that theorem extends
ne not only Hypothesis 3 to the whole algebra, but Hypothesis Lt as well),

together with the already proved satisfaction of Hypothesis U4 by ;

2) Va-b ° *a-b of \p )
Lr T F

a |

J ~ :

385
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de
We may conclude, by the compiler composition theorem, that once

we settle on Lsynth » Mgynth = extend ( Moe? Lent) will exist and
be correct. é

| It remains to specify a set of constructions which will, from our i

generating set for Lsynth , yield all and only the multi-entrance,
| multi-exit deterministic flowcharts, where by "deterministic" we mean J

;

| that at most either one arc labelled with a statement from L_. , or a J

pair of arcs labelled with p and p , where pe L001 | , is allowed >

to depart from any one node. (The restriction to determinism is quite i

unnecessary to the success of our correctness proof, and is made in the

interests of realism: that is, we imagine that the "real" machine

modelled by Mab is only able to execute deterministic programs -- "

| it may easily be checked that it will only be called upcn to do so, i:
provided we keept the Dgyntn ProsTans deterministic.) It appears that ju

| the following set of constructions will do as well as any: We take 7
Ae

for the operations of Lg. ., all binary constructions derived from hao
kernels of the form: -

"a,
such that hy

(i) every S; has at most one inverse image under §@ in (one 1

| component of) SH (J) SH , which is of the form 8, : -

(ii) every I. has either empty inverse image, or inverse image o
consisting of exactly one S, and one or more H, ,H. ,... q

K Ji’ do ol
. i

(iii) every H, has inverse image under gq consisting of zero or Gh
more H, ,H. ,... « i

We Ni

2
i

11h Eh
; =

gi

BAa te atom pt om cc a a a AP



Bh The idea is that we only allow arcs to depart from S-nodes and I-nodes
o end we prevent these from coalescing. |

: The generating set of L. ., Wwe naturally take to be Xsynth °
4 Having finally fixed on Leynth , we may say that

5 extend(nl Lop) is a correct campiler for Leynth , yielding
or programs for Mab ; our synthesis is finished. i |

es

2
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We may ask how well this thesis has conformed to the aim; announced i
in the introduction, of bringing mathematical order as well as mathematical 8
rigor to a part of the theory of computation. A partial affirmative ’

| answer is given by the fact that a very short list of well-defined ideas 3
| provides the basis for the examples of correctness proofs which we have 3

seen; the fertility of these ideas appears far from exhausted: :
1) The diagram of operator-algebraic homomorphisms as a model for the ;

compiler correctness problem, taken from [Burs 69]. ;

| 2) The category of BRAS, obtained by combining the concept of the & k
operation from [Land 70] with the idea that interpretation of a y

| program scheme is a functor from [deB 69].

3) The result of Chapter VI, that the semantics of BRAs acts as a A

| homomorphism on a construction-algebra of BRAs.

4) The compiler composition theorem. :

2

| Miscellaneous Observations

The algebra Lovntn which we chose, for want of a better, in y
| Chapter XII did not impose any natural structure on flowcharts; indeed 5

the idea of multi- (rather than single- ) entrance flowcharts, which we:

| forced on us because there appears to be no way to break up a { ngie- !

)



3

328 entrance flowchart into single-entrance pieces, is itself somewhat
os unnatural. However, in [Cooper Tl] it is shown that every flowchart |
} simulates (although the notion of simulation does not appear there |

5 explicitly) a flowchart in what is there called "block form" =-- i.e.
Ls a tree form, except that an arc may lead back from any leaf to one of
§ 2: its ancestors -- and "reasonable", i.e., tree-structure-reflecting, |
5 algebraic operations are given for generating the block-form flowcharts. |
we It seems probable, therefore, that a more perspicuous approach to the

Lo algebraic treatment of the compilation of flowcharts would be to define

te first a compiler (homomorphism) for block-form flowcharts, and then to |
' g show that it can be extended to a functor between two categories of

7 BRAs, i.e., that it can be extended to arbitrary flowcharts in such a
a way as to preserve simulations. The potential of this approach remains
- to be investigated.

Y : It is a question of some importance whether optimizing compilers, ;
: 5 which, particularly when they use global information about the source |
& program, are superficially very unlike homomorphisms, can be rendered
i amenable to algebraic description. The author speculates that many
a cases of optimization will allow description as an underlying non-deter-
~ ministic compiler (i.e., one computing a relation between source and

: 3 target language programs rather than a function) under the control of a J
on "black box" which selects one of the many possible compiling functions.
2 If we could prove the underlying compiler correct for all its possible |
8 outputs, then we could claim correctness for the optimizing compiler

: without ever concerning ourselves with the contents of the black box.
a



x

As we have defined it, a homomorphism is of course ha
x

required to be a function. It seems very probable, however, that the »
: following property, if required of compiling relations, would make them 2

sufficiently like homomorphisms to allow analogous results to those of ot

this thesis to be obtained -- (a property of a relation p , for E
particular (J-algebras A and B with op: |A] =X |B] and for all Well 3

| of any arity k ): 3
0 A (as ceesay) +b iff for some bys esp: a Hb, (1 <j <k) by

i
LE" A

This notion is a special case of that of "pseudohom" defined by Lloyd Bd

| in {Llo 72}, for which he is able to prove a unique extension lemma. »

| The following remarks develop informally the claim made in the \

introduction that Dijkstra's co-operating sequential processes [Dijk 68] "
| can be naturally modelled by BRAs. We may define an operation X on oy

BRAs by:

;
laxsl = lal x|8l =

v A
: ayb -a',bt iff 7: a —-a' or B: b -Db' . {(@xB),: a ,! ff g, x 5, 0

A

It is readily verified that X is a bifunctor; it appears to play a F

natural role in the assembly of machines from components. (Had we i
troubled to define X earlier, we might have been spared some of the or

{ tediousness of assigning identity relations to "extraneous operators

in the analysis of the machine in Chapter X into stack and location 2]
oo :

components.) 55

It appears that if we have two programs modelled by BRAs 7 a J ‘

then the BRA which models their concurrent operation is simply ax i
of

118 | oA



3

a Moreover, a semaphore oJ is just a component (under X ) of a machine,
oe

Oh with || =N » and operators Vs , Ps having the effects:

38 dys Bl,
Co, Zpg ntl en .

2) The preceding explication follows Dijkstra's concept in an ugly but
io perhaps essential characteristic, that what are the possible computations
a of a set of programs running concurrently is crucially dependent on just

; » what is taken to be an atomic act of computation. (For example, if one{ wi
Ve!

i supposed that accessing the value of a variable decomposed intowv,
Fa

ie destructive readout followed by restore, then programs which Dijkstra
od considers to have determinate outcomes would cease to do so.) This

7 property is reflected in the BRA~-model by the fact that the operation ¥
Cl does not commute with compilation.

2
4 a) |
Lr

hia Prognosis

We An attempt will here be made to evaluate the practical applicability

5 of the algebraic methods which have been developed in the foregoing

% chapters.

Al First of all it is plain that the "stratified" kind of semantics |
’

¢ n to which we have been limited, and according to which all the constructs
LY
fl } (at the top level) of a language-algebra must be of the same type, is a

serious obstacle to the treatment of "realistic" languages. However, the

0 work of Birkhoff [Birk 70] and [Birk 71], which the author saw too late
{ ¥ for it to be reflected in the development above, seems to hold out hope



nw

for a great amelioration of this difficulty. Birkhoff introduces the

» notion of a "heterogeneous algebra", essentially an algebra with several |
carrier sets, which is to say several types of element; each operation

has not only a numerical arity, but as well a characteristic type for |
each argument and for its result. E.g., a language containing both :

expressions and statements, and aliowing each to be embedded in the

other, could be modelled as a single heterogeneous algebra, as could

O its set of meanings which correspondingly would contain functions of

diverse types.

| It appears that the notions of generating set and homomorphism are

® extended to heterogeneous algebras in such a way that the elementary

theorems of universal algebra, and in particular the unique extension

lemma, are preserved. It seems reasonable to expect, therefore, that

| the methods for proving compiler correctness which we have developed

will remain valid in the heterogeneous context. Birkhoff also has some

general insights about derived operations, of which the constructions we i

have defined are a special case (at least if we regaré 2ll BRAs as

originally forming an operator algebra, say with ® and @® as operations). |

Homomorphisms such as our compilers for which the target algebra

@ operations arc not given in advance but created to "go with' the

homomorphism seem to be what Birkhoff calls "cryptomorphisms”.

There is also the question whether some particular kind of

hor A sophisticated programming language feature will cause algebraic methods

| of description to break down, or at best become terribly unwieldy. The

| author's expectation 1s that the modelling of arrays and other data

@ structures will not present any great difficulty; he further conjectunc y

120
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iy that at least a limited form of closed subroutine facility can, with
: - some ingenuity, be modelled directly in BRAs. Languages in which bound
i variables play an essential role (e.g. those having dynamic declarations,
a or procedures with formal parameters) may present graver difficulties.
. It appears that the best prospect of coping with these is to take the

meanings of program phrases to be appropriate functions of enviromments,

br as outlined in the remarks on )-calculus semantics given above in

8 Chapter IV. |
2: It is clear that the attempt to produce an wlgebraic proof for a
i typical existing compiler will get nowhere; even if a homomorphism is

5 what is "really" being computed, that fact is usually well hidden. The

3 author expects that practical application of the methods developed here |
be will come, if at all, within the Sranavork of a "verifying compiler-

id compiler" -- i.e., a compiler-writing system which accepts algebraic

0 descriptions of source and target languages and a definition of the |
compiling function as a homomorphism (or rather, like OUT_ Mgunth ’

py as a complex edifice built by extension and composition from

2 homomorphisms) and which produces a compiling program. The system
a : envisioned here would further accept algebraic specifications of source |
h and target language semantics, and te able to verify assertions
aig

3 accompanying the compiling specification which would constitute a proof
+ of the produced compiler's correctness.

:a This thesis plainly contains only a part of the groundwork which
Gi must be done before a verifying compiler-compiler can be produced.
ie A significant part of the effort entailed in creating it would be the

= devising of heuristic techniques for generating an efficient structure
i
3
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;

of passes and phases in the produced compiler from the numerous fragments ;
of the compiling function specified by the user. Incorporated in this :
structure there would of course have to be an automatically generated 7
parser, similar to those produced by existing compiler-compilers, which 3
would produce from a concrete (string-of-characters) source program,

elements of the source language algebra corresponding to each of its 5

phrases. 3

Birkhoff's generalized notion of (heterogeneous) algebra should :
almost certainly be the one incorporated in the verifying compiler- 3

compiler. Furthermore, the restriction that the target of any compiling

homomorphism must be an algebra of BRAs should certainly not be made; J
| even if this were generally true of the final target algebra, it would :

| probably be appropriate for most higher-level languages that the first \
several steps of compilation should be into intermediate languages in i

which the sequential nature of the ultimate computation was still

partially hidden. Indeed, for a language some of whose features were ;
definitional extensions to a kernel sub-language, the first steps of i
compilation might well be endomorphisms. X

A problem which has been totally ignored in this thesis, but whose ;

h solution is essential to the verification of a real-world compiler, is ;
that of making the transition at the output end of compilation from BRAs, :

however machine-language-like they may appear, to progrems for some :
v real-world machine. Problems of memory allocation arise here, e.g. of

assigning parts of a homogeneous store to program, variable values, b
and stack. Also, some device must be found by which we may accept as i

» correct a target program which does its best within the limits of i



LOW

A available memory, but comes to an error stop when space is exhausted. |
J-
fo The author expects that this part of the compiling problem will not

h prove intractable, but on no other than intuitive grounds. |
Li

aS

3 Finally, of course, a verifying compiler-compiler would have to |
hd incorporate a proof checker capable of appreciating the reasoning about

& algebras, relations, and functions on which the correctness of compilers

2k might depend. The most promising work in this area with which the author
“oe is acquainted is the ongoing development by Milner [Miln 72] of the

ng ICF system, an implementation of a logic for computable functions due

3 : to Dana Scott.

. |

|

'% :

a

»

, 123
4



References

[Birk 70] G. Birkhoff and J. D. Lipsom, "Heterogeneous Algebras,"

Journal of Combinatorial Theory 8, pp. 115-133, 1970. |
[Birk 71] G. Birkhoff, "The Role of Algebra in Computing," in :

Computers in Algebra and Number Theory, vol. IV, SIAM-AMS |

Proceedings, American Mathematical Society, 1971. :

[Burs 69] R. M. Burstall and P. J. Landin, "Programs and their

Proofs: an Algebraic Approach," in Machine Intelligence kL, !
}

(B. Meltzer and D. Michie, eds.), Edinburgh University Press, 1969. .

[Burs 72] R. M. Burstall, "An Algebraic Description of Programs with '

Assertions, Verification, and Simulation," in Proceedings of an z
y

ACM Conference on Proving Assertions About Progrems, SIGPLAN

Notices 7, 1, Association for Computing Machinery, 1972. ]
[Cooper 71] D. C. Cooper, "Programs for Mechanical Program )

Verification," in Machine Intelligence 6, (B. Meltzer and 4

D. Michie, eds.), Edinburgh University Press, 1971. y

[deB 69] J. W. deBakker and D. Scott, "A Theory of Programs," :

| (mimeographed notes), IBM Seminar, Vienna, August 1969. h

1 [Dijk 68] E. W. Dijkstra, "Co-operating Sequential Processes," 3
| in Programming Languages, (F. Genuys, ed.), NATO Advanced Study 4
| i

| Institute, Villard-de-Lans, 1966, Academic Press, London and y
0)

i New York, 1968. h

2

| 12) )
t 4

LLET NLSi ML ATHl



iy

ey

aly [Hoare 69] C. A. R. Hoare, "An Axiomatic Basis for Computer |

Gon Programming," Communications of the ACM 12, 10, October 1969.

he [Karp 59] Richard Karp, "Some Applications of Logical Syntax to |

y Digital Computer Programming,” Ph.D. Thesis, Harvard University,
lk

2 1959. |
i,"

es [Land 70] P. J. Lendin, "A Program Machine Symmetric Automata

oil Theory," in Machine Intelligence 5, (B. Meltzer and D. Michie, eds.),
wm! y

~ Edinburgh University Press, 1970.

[Llo 72] C. Lloyd, "Some Concepts of Universal Algebra and their

2. Application to Computing Science," Computing Science Working

& Paper: CSWP-1l, University of Essex, February 1972. |

[MacL 67] S. MacLane and G. Birkhoff, Algebra, Macmillan,

:. ) [McC 62] J. McCarthy, "Towards a Mathematical Science of Computation," |

Y Proceedings of the ICIP, 1962. |
.

(15 [McC 63] J. McCarthy, "A Basis for a Mathematical Theory of |

25 Computation," in Computer Programming and Formal Systems,ak |
if (P. Braffort and D. Hirschberg, eds.), North-Holland, Amsterdam,

Ing 1963.

" [Miln 72] R. Milner, "Logic for Computable Functions: Description
¢ of a Machine Implementation," Stanford University Artificial |
© Intelligence Project Memo AIM-169, Stanford University, 1972.

2
125$

ET



©“ ; :

[Paint 67] J. A. Painter, "Semantic Correctness of = Compiler for an

® Algol-like Language," Ph.D. Thesis, Stanford University, 1967.

[Scott 69] D. Scott, "A Construction of a Model for the A-Calculus,"

* (mimeographed notes), Oxford Seminar, November 1969.

&

a

0

$

®

¢

126
€

a 4 HE Hn TN KE TR S353,


