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ABSTRACT

In this dissertation we describe algorithms that use graph properties

and dynamic programming techniques to generate the optimal partition of an

arbitrary graph. In particular, let G be a graph with weighted nodes and

weighted edges. We consider algorithms that solve the problem of part-

itioning G into clusters of nodes such that the sum of the node weights in

any cluster does not exceed a given maximum W and the weights of the inter-

cluster edges are minimized. An interesting application of such an

algorithm is the assignment of a program's subroutines and data to pages

in a paged memory system so as to minimize paging faults,

The concepts of dynamic programming and, in particular, those

techniques appropriate to the solution of the "knapsack'' problem, are

employed in an algorithm that generates the optimal partition of an

arbitrary graph. An upper bound on the algorithm's growth in computation

time and storage to partition an n node graph is

n

e

where e is the base of the natural logarithms. We use the following graph

properties to reduce this growth rate:

(1) the degree of the graph;

(2) the existence of cutpoints in the graph.

The first property bounds the growth in time and storage of the

algorithm tc less than

e
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where x is.a function of the degree of the graph, The value of x is

independent of the number of nodes in the graph; however, the degree of a

graph may grow as n, A graph whose nodes are adjacent to few others has

a value of x << n and, for a small value of W, can be partitioned very

efficiently.

If any a node graph G ccntains one Or more cutpoints, we show that G

can be partitioned by partitioning the blocks of G and combining these

partitions, A considerable reduction in time and storage to partition the

graph results if the number of nodes in each block of G is small compared

to n.

A very efficient variation of the general algorithm results if the

graph to be partitioned is a tree. We show that trees can be partitioned

in a time proportional to the number of nodes in the graph.
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CHAPTER 1

INTRCOUCTION

Consider a graph G whose nodes have nonnegative integer weights and

whose edges have positive values. A familiar combinatorial problem is the

partitioning of G into subgraphs such that the sum of the node weights in
any subgraph does not exceed a given maximum and the sum of the values of

the edges joining different subgraphs is minimal,

An interesting example of this partitioning problem is that of part-

itioning a program to be run on a computer with a paged nomory system into

pages so that paging faults are minimized [ Kernighan, 1971]. Here the

graph is the program and the nodes are collections of instructions (such as

subroutines) or data (such as arinys) making up that program. The edges

are the transitions that might occur from one subroutine to other sub-

routines and data, for example,

Before describing previous investigations of partitioning problems,

we define partition in the sense used here,

A. PROBLEM DEFINITION AND RESTRICTIONS

Given a graph G=(V,E) with node set V and edge set E, a partition of G

is a collection of k clusters of nodes {c.} (i=1,2,...,k) such that

k

(1) U c;=V,
i=1

(2) c, N c;=¢ for all iFj .

A nonnegative integer weight LA is associated with each node i and a positive

value Vij with each edge (i,j). A weight constraint is imposed upon each
cluster of a partition. Given a positive, integer weight constraint ¥, the
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sum of the node weights in any cluster uf a partition must not exceed W,

An edge (a,b) is cut by a partition if nodes a and b are in different

clusters. Fig. 1.1 illustrates a partition of the given graph where the

weight constraint is two,

| An optimal partition is defined as some partition of G, p.(opt)=

{eyscosenscyd, with the property that each cluster C, satisfies the weight
constraint,

2 LL
j€e,

and |

> v.. is minimal (£f,g=1,2,...,k).
i€c, =
and | figj€e,

An equivalent property is that each cluster satisfies the weight constraint

| and

| > Vi is maximal (f=1,2,...,k),
i,J3€c,

since the sum of the edges in clusters plus the sum of the edges cut by the

partition equals the sum of the values of G's edges.

We impose several restrictions on the problem investigated here. The

first is that the nodes of the graph must have nonnegative integer weights,

The only restriction placed upon the values of the edges, however, is that

they are positive. Another restriction is that the graph be connected. .

Given a disconnected graph G, each connected subgraph of G is partitioned

¥ A connected graph has a path from any node in the graph to all other

nodes in the graph,
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(2 Co
a 7 C

v={A,B,C,D,E}

E={a,b,c,d,e}

weight constraint = CZ 211 nodes have unit weight

partition = {eys¢pse5)

4 = (A,B)

Co = (C)
c_ = (D,E

Figure 1.1 —- A partition of the graph G=(V,E)



independently -- i.e., each cluster consists of nodes from the same oo

connected subgraph, This restriction does not affect the optimality of the

solution to the partitioning problem -- a proof of this fact is given in

Chapter II.

The final restriction is that a multigrap! must be transformed into a

graph by the following modification. If more than one edge exists between

two nodes 1 and j, then the several edges joining i and j are replaced by

one with a value Vi equal to the sum of the values of those edges.

B. HISTORY

The partitioning problem defined above is one of several found in the

literature on optimal partitioning. Two others frequently investigated

are the following:

(1) Partition a graph with weighted nodes into clusters so that each

cluster does not exceed a given weight constraint and the number

of clusters is a minimum,

(2) Partition a directed graph with weighted nodes and edges with

values that are zero if the edge is in a cluster and positive if

cut by the partition. The objective in this problem is to

minimize the value of the worst-case directed path by clustering

the given network under both weight and pin constraints .

An example of the first problem is that of packaging a logic design

with the objective of minimizing the number of clusters required. The

second problem occurs in the packaging of a logic design when the objective

is co minimize the delay associated with intercluster wiring. |

* A pin constraint is a restriction placed on the number of edges cut by

each cluster of a partition.
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The literature on optimal partitioning generally falls into the three

categories above, Lawler [1962], Luccio and Sami [1968], and Kernighan

[1971] have investigated restricted problems of the type considered here,

Stone [1970] has investigated the problem of minimizing the number of

modules required to partition a logic network. Lawler, Levitt, and Turner

[1969] and Jensen [1970] have investigated the problem of partitioning a

directed acvclic graph with the objective of minimizing the maximum-delay

path.

Cc. A COMBINATORIAL APPROACH TO THE PARTITIONING PROBLEM
In this thesis we describe combinatorial algorithms that use graph

properties and a dynamic programming procedure to generate the optimal

partition of a connected graph.

The dynamic programming procedure generates 'feasible' partitions, i.e.

those partitions of a graph G whose clusters satisfy the weight constraint

and form connected subgraphs of G. The number of feasible partitions of a

k node graph grows exponentially in k, consequently we use certain graph

properties to reduce the number of feasible partitions generated on each

stage of the dynamic programming procedure. These properties are:

(1) the number of nodes adjacent to each node of the graph;

(2) the existence of cutpoints in the graph,

| The first property limits the number of partitions generated on the kth

stage of the dynamic programming procedure, Py» to

x

Pp < ge K »o

where Xp is a function of the degree of the graph, e is the base of the

natural logarithms, and W is the weight constraint. Note that Xo is

independent of the number of nodes in the graph.
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The growth in computation time for the kth step of the partitioning

algorithm is proportional to

n(p, (log, p,)]

where n is the number of graph nodes. The computation time is proportional

to

<
n Pp, log. p
a k
k=1 x e

therefore it grows asymptotically as

ne 10 . ne 2 (2)P 80 P - X oe

where

X

p = xIxW
e

and

X = max {2 } .
1<k<n

The storage requirements grow asymptotically as

np=nx (xi) .e

We show that an algorithm that generates all feasible partitions of an

n node graph G has an asymptotic growth in computation time of

n° p log, Pp = a" (aw)’e

where

n

p=(n)(n¥W)" .
I=

A comparison of the partitioning algorithm developed in this thesis and an

algorithm that generates all feasible partitions shows a reduction in the

growth in computation time and storage of

n-Xx
n .
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If each node of G is adjacent to few others, the value of x is much less

than n resulting in a significant reduction in computation time over a

procedure that simply generates all feasible partitions,

A graph with cutpoints can be partitioned by first partitioning the

blocks of the graph, then combining these partitions to form the optimal

partition of the entire graph. The maximum number of partitions generated

on a step of the partitioning process is a function of the number of nodes

in a block of the graph, not the graph itself,

The special properties of a graph in the form of a tree are used to

create an algorithm for tree-partitioning. This algorithm has a growth in

computation time and storage requirements that varies linearly with the

number of graph nodes.
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CHAPTER II |

A GENERAL GRAPH PARTITIONING ALGORITHM

In this chapter we describe a partitioning algorithm that has as its

basis a dynamic programming procedure similar to that used in the solution :

of the one-dimensional knapsack problem [¢ilmore, Gomory, 1966]. The

similarity between that problem and the partitioning problem becomes

apparent when their properties are compared.

The one-dimensional knapsack problem cau be posed as the problem

faced by a mountain climber who has a knapsack that can carry a maximum

weight of W pounds and a number of different items he wishes to carry in

the knapsack. Each item has a weight and value associated with it, and the

sum of the weights of the items exceeds W. A mathematical statement of

this problem is the following:

1-dimensional knapsack problem

Let w, = weight of item 1

v, = value of item i

W = capacity of knapsack
n

Maximize D vx, subject to the constraints
i=1

LFS Ww
i=1

1 if item i is in knapsack

*3 =
0 otherwise,

The mathematical statement of the partitioning problem, given below,

is seen to be an extension of the one-dimensional knapsack problem to the

distribution of interconnected, weighted items into many "knapsacks' or

clusters, each of capacity W:
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Partitioning problem

let wv, = weight of node i

Vig = value of edge (i,j) (i,3=1,2,...,n)
W = weight constraint

n nn i

Maximize > D Vy Ea subject to the constraints
i=1 j=1 :

1

Own, SW (k=1,2,... number of clusters in
i=1 vartition)

1 if node 1 is in cluster k

Mik © 5 otherwise,
A problem amenable to solution using dynamic programming must have the

following characteristics [Hillier and Lieberman, 1967]:

(1) The problem is divisible into stages with a policy decision

rcguired at each stage.

(2) Each stage has a number of states associated with it. |

(3) The policy decision translates a state associated with the

present stage into a state associated with the next stage.

(4) Given the current state, an optimal policy for the remaining

stages is independent of how the current state 1s reached.

We now show that the partitioning problem satisfies these characteristics.

In order tc pose the partitioning problem as one suitable for solution

by dynamic programming, the graph is first labeled. A labeling is the

assignment of i unique integer to each node of the graph; the node

associated with some integer k by the labeling is then referred to as

"node k." The kth step, or stage, of the partitioning process generates

| the feasible partitions of the subgraph consisting cf those nodes with
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labels =< k, These partitions correspond to the states of the kth stage.

The partitions of the subgraph consisting of those nodes with labels no

greater than k are created from the partitions of the k-1 st step by

adding node k to these partitions within the limitations imposed by the
weight constraint. The policy decision is the determination of which

partitions of step k-1 can have node k added to one of their clusters to
generate partitions of step k. Consequently, it is apparent that the

partitioning problem can be solved with a dynamic programming procedure,

Before describing the basic partitioning process, we give the following
definitions.

A. DEFINITIONS

The nodal representation of ga partition is an unordered collection of

lists where each list represents a cluster and the contents of the list are

the nodes in that cluster. For example, a cluster with nodes 1,3,5, and 6

1s represented by the list (1,3,5,6), where the order in which the nodes

appear in the list is not important. An example of a nodal representation

of a partition with this cluster is (1,3,5,6)(2,4)(7). The set of partitions

generated on the kth step of the partitioning process are denoted by Pp _. A
partition in Py is denoted by Pi x and represents a partition of the sub-

graph consisting of nodes with labels less than or equal to k. The value

of some partition Pi x 1s defined zs the sum of the values of the edges

within the clusters of Pi x’ The weight of a cluster is defined as the sum

of the weights of the nodes in that cluster. The cost of a partition equals

the sum of the values of the intercluster edges. The cost plus the value of

a partition equals the sum of the values of all edges in the graph for which

that partition is generated, Fig. 2.1 illustrates several of these

definitions,
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oO cluster: (1,3,5,6)

partition: (1,3,5,6)(2,4)(7)

(a) Nodal representation of a partition

Figure 2.1 -- Examples of definitions
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partition p: }

7
a

VALUE(p) = 6 + 4 + 5 = 15

cosT(p) =3 +1 =U

(b) Value and cost of a partition

Figure 2.1 ~- Examples of definitions
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(+ a 2-adjacency of node kL:
(1,2) (3,4)

D

another 2Z2-adjacency

of node kL:

(c) A k-adjacency of node J

Figure 2.1 -- Examples of definitions
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A k-adjacency of node j is defined as a partition Pi j with a cluster

containing node j whose weight is k. An example of a 2-adjacency of ncde 4

is shown in Fig. 2.1. A k~adjacency of a node is not unique, as is also

shown in Fig. 2.1. |

In Chapter I a weight constraint is imposed upon each cluster of a |

partition. The following theorem further constrains the properties of the

nodes in a cluster.

Connectivity Theorem

An optimal pelicy for a connected graph G is to cluster only those

nodes that ultimately form a connected subgraph of G.

Let there exist a cluster of an optimal partition of G that contains

two or more disjoint connected subgraphs, S1s855 e585, - Since the graph G

is connected, some subgraph SS can be removed from the cluster in which it

presently cxists and added to a cluster in which there is at least one

node adjacent to some node of S, - If the sum of the nodes in the newly

formed luster does not exceed the weight constraint, an edge that was cut

by the partition {there may be more than one) is now within the newly

formed cluster. Since all edge values are positive, the original partition

is not optimal, contrary to the given condition; this contradiction proves

the theorem,

If the subgraph S, cannot be added to a cluster containing a node

acjacent to some node of S, without violating the weight limitation, then

it can be clustered by itself with no increase in the cost of the partition.

Consequently, all clusters in an optimal partition of a connected graph G |

can form connected subgraphs of G. A partition cf G can, however, have

clusters containing disjoint connected subgraphs with a cost that is equal
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to that of the optimal partition generated using this policy, and, in fact,

may require fewer clusters, The point of the theorem is that the connect-

ivity limitation does not cause the deletion of an optimal partition. Jj

A feasible partition of a graph G is defined as a partition whose

clusters each satisfy the following properties: :

(1) The sum of the weights of the nodes in a cluster must not

exceed W, the weight constraint.

(2) The ncdes in a cluster must form a connected subgraph of G.

In the process of partitioning a connected graph G the only partitions

that need to be generated are those whose clusters have a weight not

exceeding the weight constraint and that contain nodes that may form a

connected subgraph of G. In generating the set of partitions Po on step Kk,

the weight constraint is easily tested by adding node k to each cluster of

some partition in PL 4 and rejecting the resulting partitions with a

cluster whose weight exceeds W. A newly created element of Py must not only

have clusters that satisfy the weight constraint, but its clusters must also

contain nodes that presently form . _unnected subgraph, or form a connected

subgraph with the addition of one or more nodes with labels greater than Kk.

Let this restriction be called the connectivity constraint, In order to

recognize some cluster of an element of Le to which node k can be added

without violating the connectivity constraint, we introduce the concent of

the connected set,

The connected set for a node k is defined as that set of nodes that, if

one or more of them appears in a cluster of a partition in Py’ guarantees

that the addition cof node k to that cluster may on some step j « k form a

connected subgraph. The properties of a node i in the connected set for

node k, denoted by CONN(k), are:
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(1) i < k; |

(2) node i | |

(a) is adjacent to node k, or

(b) lies on a path iyJy53ps+e+5Jd,.,k where |

> WEIGHT[y] < W
y €{i,3,5000,K]

Jp > ¥ for m=1,2,...,r.

The second property guarantees that a partition with a cluster containing

two nodes i and k that are presently disconnected, but become connected if

nodes J123ps eed, are added to that cluster, is generated on step Kk.

| An illustration of the connected set associated with each node of the

given graph is shown in Fig, 2.2.

B. DYNAMIC PROGRAMMING PROCEDURE

We now descrire the dynamic programming procedure that forms the basis

of the partitioning algorithm, A labeling is assumed to have been impressed

upon the graph. The particular labeling used affects the partitioning

process. Chapter IV discusses the problem of labeling a graph.

The kth step of the partitioning algorithm has as its states the

partitions of the subgraph consisting of those nodes with labels < k, |

denoted by Py We then add node k+l to all partitions in Pl with a cluster
satisfying the criteria:

(1) the addition of node k+l does not cause the cluster weight to

exceed the weight constraint;

(2) there exists a node in CONN(k+1), the connected set for node

k+l, in the cluster.

The resulting partitions are the states of k+l, Pi
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1

IN

Co Wo=3

all nodes

unit weight

CONN(1) = ¢

CONN(2) = {1}

CONN(3) = {1,2}

CONN(5) = {4}

Figure 2.2 -~ Illustration of connected set



The value of each partition equals the summation of the edges within

clusters of the partition. This is expressed as follows: :

VALUELD, ,] mo 2, VAIL edge(r,+1)] + VALUELp, |]
where

VALUE[p, ,] = value of a partition in PP, k |
y € CONN(k+1)' where CONN(k+1)' is the subset of CONN(k+1)

Present in the cluster of Pp, I to which
node k+l was added. ?

The dynamic programming process is outlined below:

STEP 1

For each node k find the connected set, CONN(k).

STEP Z

j=0, P=¢

STEP 3

J=j+1

Let the weight of node j be denoted by Wie P, consists of the
following partitions:

(a) Form the -adjacencies for kw.
Each such k-adjacency is formed by adding a cluster containing

node j alone to the set of clusters of a partition in Pica

(b) For k=w +15... ,W, form the k-adjacencies of node j, Only

those partitions in Pia with at least one cluster containing
a node in CONN(j) can generate these partitions,

STEP 4

Go to step 3 until j=n for an n node graph.

STEP 5

Select the maximal-valued partition in P_. This is the optimal-

valued partition of the graph.
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We prove the optimality of the dynamic programming procedure by the

following argument. The Connectivity Theorem shows that no partition of

an n node graph G can have a value greater than a partition each of whose

clusters forms a connected subgraph of G. We must then show that the

above algorithm generates all such partitiomns. :

On step k of the algorithm node k is added to the clusters in each

partition in WY such that neither the weight nor the connectivity

constraint is violated, The algorithm may, however, fail to generate an

optimal partition of G if on some step k the addition of node k to a

cluster violating either the weight or the connectivity constraint results

in a feasible partition of G.

If node k is added to a cluster of some partition in Pq and the

resulting partition Pj x contains a cluster that violates the weight

constraint, it is clear that all partitions derived from Pj k also have a
cluster that violates the weight constraint, This result follows from the

fact that a node is never removed from a cluster on some step of the

algorithm, and each node has a nonnegative weight,

Let node k be added to a (nonvoid) cluster c of a partition in P_ ..

If the set of nodes in c is (115150051 1, then the addition of node k to

¢ violates the connectivity constraint if:

(1) no node in c is adjacent to kj;

(2) given any node i in ¢, there is no path i,J,,...,J,k such that

> wezerrly) < W
y

where

Jy, > k for h=l1l,2,...,%

y €{1,3;5.00,3,,k}
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Let the partition in Py generated by adding node k to cluster c¢ he

denoted by Pj k* Then, every partition of G derived from Pj x has sa

cluster contalning nodes Kylisdpyenesl, in which there is no path (within |

the cluster) from node k to any of the nodes 1,,i,500051. As a

consequence, that cluster cannot form a connected subgraph of G. ) |

In conclusion, the addition of some node k to a cluster violating

either the weight or the connectivity constraint cannot result in a

partition of G whose clusters satisfy the weight constraint and form

connected subgraphs of G, The algorithm described above therefore

generates the optimal partition of graph G.

An example of the use of this algorithm is given in Fig. 2.3. The

results of each step of the algorithm are contained in a tabular form,

Each row of this table corresponds to a step of the procedure; the kth

coiumn and jth row of the table contain the k-adjacencies of node Jj.

Cc. GROWTH RATE FOR DYNAMIC PROGRAMMING PROCEDURE

Although the dynamic programming procedure just described generates an

optimal partition of a graph without resorting to total enumeration, the

question arises as to the number of feasible partitions possible for a

connected graph, In Appendix B we show that the growth in computation time

varies as

4

2 np,[ log, p,|]
and the storage requirements vary as np, , where n equals the number of graph

nodes and Pp, the number of partitions in the set P generated on the kth

step of the dynamic programming procedure,
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label

5 3
NODE LONNECTED SET

3 .o 1 | @ :varne—2 4 2) {1}
* 3 {1,2}

2 4 {2,3}

all nodes unit weight 5 {4}
W=23

k-adjacencies

STEP 1 2 3
[me
2 (1)(2) = 0 (1,2) =5

3 (1)(2)(3) = 0 (1,3)(2) = 3 (1,2,3) = 8
(1,2)(3) = 5 (1)(2,3) = 0

(1)(2)(3) (4) = 0 (1)(2,4)(3) = 1 (1,2,4)(3) = 6

ly (1,2)(3) (4) =5 (1)(2)(3,4) = 6 (1,3,4)(2) = 9
(1,3)(2)(4) = 3 (1,3)(2,4) = 4 (1)(2,3,4) =T
(1,2,3)(k4) = 8 (1,2)(3,4) = 11

(1)(2)3)(4)(5) (1)(2)(3) (4,5) (1)(2,4,2)(3)
; (2,2)(3) (4) (5) (1,2)(3) (4,5) (1)(2)(3,%,5)

= 5 = Q = 10

R,33E145) 4302304,3) (2,3) (28,5)
(1,2,3)(4)(5) (1,2,3) (4,5) (1,2)(3,4,5)

= 8 = 12 = 15

| (1)(2,4) (3) (5)
(1)(2)(3,4)(5)
(1,3)(2,4)(5) thus optimal partition is

=U

(1,2)(3,4) (5) (2,2) (3,45)

1,20 E06) VALUE = 15
(1,3,4)(2) (5)
(1)(2,3,4)(5)

= 7 :

Figure 2.3 -- Example of the dynamic programming procedure
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Consider first the growth in the cardinality of P for total |

enumeration, To generate this number we assume that the graph is complete

so that no combination of nodes in some cluster is disconnected, Also, no

weight constraint is imposed upon the clusters, The upper bound con the

size of PsP 1s the number of ways in which k distinct objects can be

distributed in i nondistinct cells, where i varies from one to k. The |

Stirling number of the second kind, S(k,1), enumerates the ways in which k

distinct objects can be distributed into i nondistinct cells, where no cell

| is left empty. Thus

K

p, < > S(k,i) .
i=1

A closed form for this summation does not appear to exist, but an upper

bound results from the recurrence relationship:

pp < (Ite) Py en] where
This relationship is derived from the fact that Po is made up of two

subsets:

(1) the l-adjacencies of P,, of which there are p,__.;

(2) the k-adjacencies of P,_, where k >1.

The size of the latter set is bounded by ¢,Py_q since each node in CONN(k)

can generate no more than Pr_1 partitions of Pre

For the complete graph, | conn(k) | = k-1, therefore |

p, < k. . |

* A complete graph has every pair of its nodes adjacent,
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Consequently, an upper bound on the number of partitions generated on the

kth step of the partitioning process is k..

To derive a lower hound on the number of feasible partitions, consider |

the two trees of Fig. 2.4. The size of CONN(k) for k > 1 is one for both

of these trees, The tree of Fig. 2.4(a) has the property that CONN(K) is

the same for all k, whereas that of Fig. 2.4(b) has no two CONN(k) equal.

Since every connected graph has a spanning tree. (Liu, 1968], there is

at least one labeling of G such that |CONN(k)| 2 1 for each node k > 1.

This result follows from the fact that a spanning tree can always be

labeled so that the label of a branch node is less than those of its sons.

The number of feasible partitions generated on the kth step of the dynamic

programming procedure increases with the size of CONN(k). Also, the number

of feasible partitions for a cyclic graph is always greater than the number

of feasible partitions of one of its spanning trees -- a result proved in

Appendix A. Consequertly we can set a lower bound on the number of feasible

partitions for a connected graph by finding the number of feasible partitions

for the trees of Fig. 2.4. Fig. 2.4(a) represents the minimum-level k node

tree and that of Fig. 2.4(b) the maximum-level k node tree.

In Appendix A we show that the number of feasible partitions of the

minimum-level k node tree varies as [£(w)]¥ where 1 < £(W)< 2 and £(W) is

an increasing function of the weight constraint W., The minimum number of

partitions of a tree of the form shown in Fig. 2.4(b) is F_~ 1.6" and

occurs for a weight constraint of two. Here Fy is the kth Fibonacci number,

An increase in the weight constraint results in an increase in the number of

feasible partitions.

* A spanning tree of a graph G is a subgraph of G which is a tree that

contains all nodes of G.
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Oo

© ®--- C oo
(a) Minimum-level k node tree

(b) Maximum-level k node tree

Figure 2.4 ~~ Minimum- and maximum-level k node trees
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In conclusion, a k node connected graph has a number of feasible |

partitions that grows exponentially in Kk, |

D. THE USE OF GRAPH PROPERTIES IN PARTITIONING

The computation and storage requirements of the dynamic programming

procedure grow exponentially in k, limiting the utility of this procedure

if it simply generates all feasible partitions. In this section we

introduce several concepts that take advantage of properties of graphs.

These properties significantly reduce the computation time and storage

requirements for certain classes of graphs.

The first concept discussed is that of the isolated set. Using this

| concept we show that the growth in the number of partitions generated on

step k of the partitioning process is dependent only on the degree of the

nodes and not on the number of nodes k., The second concept takes into

account the existence of cutpoints and blocks in a graph. In Chapter III

we show that these two concepts form the basis of an efficient tree-

partitioning algorithm,

A node i is defined to be an element of the isolated set for node Kk,

denoted ISOL(k), if it satisfies the following properties:

(1) The label i is less than Kk.

(2) Node i is not adjacent to any node with label = k, Fig. 2.5

illustrates this definition.

Several properties of the isolated set result from this definition,

(1) The size of ISOL(k) is independent of the weight constraint.

(2) The connected set and the isolated set for any node k are

mutually exclusive, This property follows from the definition

of each set.
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ISOL(1) = ¢

ISOL(2) = ¢

ISOL(3) = ¢

ISOL(L) = {1}

ISOL(5) = {1,2,3]

Figure 2.5 ~~ Illustration of isolated set
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(3) Let CONN(k) denote the set of nodes with labels less than k

that are not elements of ISOL(k). Then

|comn (x) ___|=(k-1)-]|1s0L(k)]

and is independent of the weight constraint.

(4) Given that CONN(k) represents the connected set of node k and
ISOL(k) the isolated set,

~1son(k) < {1,2,...,k-1},

conN(k) < {1,2,...,k-1}.

Here {1,2,...,k-1} represents the set of nodes with labels less

than Kk.

(5) | conn (x) | 2 |conN(k)| for every weight constraint W. Note

that |CONN(k)| is a function of W and |conn(k) | is not.

The growth in the size of ISOL(k) is a nondecreasing function of Kk,

as we show in the next theorem:

Theorem

| 1soL(k)| = |ISOL(k+1)]

Proof

Assume that ISOL(k) ¢ ISOL(k+l). Then there exists at least one

node i that is in ISOL(k) but not in ISOL(k+l). By definition, i is

adjacent to no node with label greater than Kk, consequently it is adjacent

to no node with label greater than k+l, contrary to the assumption,

Therefore, ISOL(k)& ISOL(k+l). The value of k is finite, thus

|1soL(k)| s |IsoL(k+1)|.

We now show that the concept of the isolated set can be used to modify

the rertiticoning pirucess so that only a subset of the feasible partitions

of a step of the process must be generated on that step.
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Let the set of partitions of step k-1 be denoted by Pq and let the |
isolated set of node k be denoted by ISOL(k). The nodes in (1,2,...,k-1}

not in ISCL(k) are denoted by CONN(k) The set Po_1 can then be

separated into disjoint subsets where the partitions in a given subset

have the property below: -

Let p and q be two partitions in the same subset of Pi IZ (esp)

(for i=1,2,.0050 ) denctes the n, clusters of partition p and les]
(for 3=1,25 +0050) the n_ clusters of partition g, then for each cluster

ip that contains nodes in CONN(K) _ » there is a cluster ®iq with equal
weight that contains the same nodes of CONN(k) An example of two

partitions with this property is

p=(1,2)(4)(3,5) and a=/1){3)(4)(2,5)

where CONN(6)__ = {4,5} and all nodes are of unit weight.
If a partition in a subset formed by this property has a cluster |

containing one or more nodes i,,i,,...,1, each of which is in CONN (k)
then every other partition in the subset has a cluster of equal weight

containing nodes iisioseee, pe

Any two partitions in the same subset are defined as similar

partitions. We define the dominant partition of a set of similar |

partitions as that partition of maximal value. If two or more partitions

are similar, and have equal maximal values, then one is arbitrarily chosen

as the dominant partition. The dominant partition is then said to |
"dominate those partitions similar to it.

The reason for separating Py _1 into sets of similar partitions is that

all but the dominant partition can be deleted from each subset of PLq-

we show in Section E that this result reduces the upper bound on the number .

of feasible partitions generated on step k from
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—, k
ki:= 20k (5)

to

X

Jerx, > ® (2) ‘ ’e

where X= |conn(k) |. For small values of W and x, this result represents
a significant reduction in the number of partitions that must be generated

on the kth step of the partitioning process. We now prove that all but the

dominant partitions of step k-~1 can be deleted from Pq

Isolated Set Theorem

The only partitions of step k-1 necessary in generating the partitions

of step k are the dominant partitions,

Let G be an n node graph. A partition p generated on some step k in

the process of partitioning G can be represented by a sequence of pairs

L1,( )1,02,¢,),13,¢5)5 005 Lk, 0, :

where the first entry of a pair represents the node with label i and the

second entry the cluster to which node 1 is added on step i. The advantage

of this notation over the nodal representation is that it describes

precisely how p is generated. An example of this notation is C1,( )],

[2,( )],03,(2)3,04,(1)1,05,(2,3)], where "( )" denotes the empty cluster.

This representation is equivalent to the nodal representation p=(1,4)(2,3,5).

Let P, be the set of partitions generated on step i of the partitioning |
process. We then define a derivation of a partition p from a partition q,

where p is in P,_ and q is in Py (j < k), as the sequence

[3+1,e,,,3503%, 04 0050 0h Ls 0 I
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This notation is a variation of the above representation of p that ignores

the steps leading up to the generation of partition q.

Let two partitions f and g generated on step k-1 be similar and let f£

dominate g. Assume that there exists a partition of G, 8; derived from g

that has a greater value than any partition of G derived from f. We now

show that this assumption is false.

Let a derivation of g from g be RFC PIE SS PENI PRREPIR LE Since
f and g are similar, there is a partition f derived from f with the

derivation [k,¢c,,(k+1,e 1,0 050n5e ] such that for i=k,k+l,...,n, ¢,

and c, have the same weight and the nodes in Cs differ from those in ¢,
only if they are in I1SOL(k). Note that the nodes in the isolated set of

node k share no edge with a node whose label is greater than k-1., As a

consequence, the values of partitions generated on steps k,k+l,...,n are

independent of the nodes in ISOL(k) that appear in a cluster together with

nodes in CONN(k)

Since clusters cg and cg (i=k,k+1,...,n) have nodes that differ only
if they are in ISOL(k), the sum of the values of the edges in c, and c,

can differ by the sum of the values of those edges between nodes in ISOL(k)

contained in each cluster. Since f dominates g, the sum of the values of

edges in c, is equal to or greater than the sum of the edges in cs and £
dominates g Consequently, the value of T is greater than or equal to

the value of 8. contrary to the assumption made above. It is therefore
not contrary to an optimal policy to delete all partitions of Po

dominated by another partition. [IB

An illustration of the results of this theorem is given in Fig. 2.6.

In Section i w= generalize the reduction in growth of computation

time and storage possible with the use of the Isolated Set Theorem,
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p 3

SPS -1s0L(5) = {1,2,3}conN(5) = {4}

1 (1) 6 max
4

From Fig. 2.3, the sets of similar partitions in p, are:

Sy | So

(1)(2)(3)(4)  VALUE=O (1)(3)(2,4) VALUE=l

(1,2)(3)(4)  VALUE=S (1)(2) (3,4) VALUE=

(1,3)(2) (4) VALUE=3 (1,3)(2,4) VALUE=

(1,2,3) (4) VALUE=8 (1,2)(3,4) VALUE=11

3

(3)(1,2,4) VALUE=6

(2)(%,3,4) VALUE=

(1)(2,3,%) VALUE=T

The dominant partitions of P are: |

set dominant partition

5 (1,2,3)(4)  VALUE=8

5, (1,2)(3,4) VALUE=11 |

5 (2)(1,3,4) VALUE=9

Figure 2.6 -- Application of Isolated Set Theorem
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The size oi the isolated set for the nodes of a graph is a function

of the labeling assigned to the graph. An analysis of the relationship

between the labeling and the size of the isolated set is given in

Chapter 1V.

A cutpoint of a connected graph G=(V,E) is defined as a node c¢ such

that V-{c} is the node set of a nontrivial disconnected graph G'. A non-

separable graph is connected, nontrivial and has no cutpoints, A block

of a graph G is a maximal nonseparable subgraph of G. An illustration of

these definitions is given in Fig. 2.7.

If a connected graph G has more than one block, the following theorem

proves that it is valid to find the optimal partitions of each block in

any order and then combine these partitions to generate an optimal

partition of G.

Theorem (Block Independence Theorem)

If a graph G has q blocks, where q > 1, then the optimal partition of

G, p(opt), can be created by first partitioning the blocks independently,

then combining the resulting partitions,

Consider the nodal representation of p(opt):

CC )eee CDI )eee(DT ee aD Dee (DALE Denn( 1]

Ne, NC, NC, C

Here, NC; represents a (possibly empty ) set of clusters whose nodes are

not cutpoints and are all from the same block, By. The set C consists of

clusters each of which contains at least one cutpoint.

The nodal representation of p(upt) assumes this form because of the

special picperties of a graph with one or more cutpoints. Since the only



33

1

[ 2 3

—cutpcint ]

"splitting" node 4 results in two blocks

block # 2

Figure 2.7 -- Example of a graph with a cutpoint
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node in a block By adjacent to nodes not in By is a cutpoint, a cluster

that contains nodes from B.s but no cutpoint, must only contain nodes from

By as a result of the Connectivity Theorem. This property justifies the
collection of clusters into sets NC, for block B, in the nodal represent-

ation above, )

Fach cluster ¢ € C contains two types of nodes:

(1) a set of cutpoints LI SPRINT

(2) a set of nodes EIS SUPPPIE SOF IPR PPRRRVR RRS § none of which
are cutpoints.

The latter set can be partitioned into subsets by the equivalence

relationship BLOCK, where u BLOCK v if u and v are nodes in the same block

B,. if the restriction on duplication oi nodes implicit in the partition-
ing problem is removed, then the cluster c¢ can be replaced by a sei of

clusters, {e)5¢5, 00050), where these clusters have the following
properties:

(1} each cluster c, contains the union of the set of nodes of c¢ from

some block B, created by the equivalence relation BLOCK and the
set of cutpoints of c¢ also in block Bi
a

(2) > vawus(e,] = VALUE[ c], where VALUE{c, ] equals the sum of the
values of edges contained in cluster Cs»

Note that some cutpoint k may appear in several of the clusters

making up the set {eiseneensc,)

When we perform the process above on each cluster in C, the nodal

representation of p(opt) is transformed to

[( Yen DD eee TC )ee (IT )eee (NY ue D0). (01

NC, NC, Cy C,
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where C; =a set of clusters of nodes from block By including at least one |

cutpoint of By in each cluster, The value of the cover: p(opt)' given
by this nodal representation equals that of p(opt), and is made up of

sets of clusters (NC, ,C; ) representing a partition of block By. No edge

exists from a cluster in the set (Ne.,cC,) to a cluster in the set (¥C5,C)
for i# 3 because of the duplication of cutpoints.

In conclusion we can reverse the process of decomposing p(opt) into

the cover p(opt)' and generate p{opt) by first findiry the partitions of

each block, and then combining these partitions. [

An {mplementation of the results of this theorem is given in

Apnendix C. 3}

E. GROWTH RATE FOR GENERAL GRAPH PARTITIONING ALGORITHM | !

The following theorem develops an upper bound on the number of .

feasible partitions generated on the kth step of the partitioning process

when modified to include the concept of the isolated set. |

Theorem

Let CONN(k) = the set of nodes with labels less than k not in

ISOL(k), i.e. |

CONN(k)__ = {1,2,...,k-1} - ISOL(k),
and let

x, = |conn(k)_ |.

For a weight constraint of W there are no more than

x (5,1) (0 Fn ox, 32 = Tk©

* A cover differs from a partition in that the intersection of the node

sets of two clusters need not be empty.
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| partitions generated on step k of the partitioning process.

Proof

The nartitions of step k-1 can be separated into disjoint subsets

by the property that all partitions in a given subset have the same dis-

tribution of the nodes in CONN(k) in their clusters. If, for example,

the set of partitions of step L is P, ={(1)(2)(3,4), (1,2)(3.4), (1,3)(2,4),

and (1,2,3)(4)} and CONN(5)={3,4}, then the subsets of P, satisfying the

above property are {(3,2)(3,4), (1)(2)(3,4)} and {(3,3)(2,4), (1,2,3)(%)}.

Note that no limitation is placed upon the nodes in ISOL(k) in a cluster,

We now show that any subset of Pq so formed has no more than |
yw K

partitions in it, where W is the weight constraint and Xp is the maximum |
| size of CONN(k) for any weight constraint.

Let Pq be a set of partitions of step k-1 each of which has the |
seme distribution of nodes in CONN(k) in its clusters. If a partition in

Py_, has a cluster containing nodes 1515,400,1 that are in CONN(k), then

every other partition in Py q also has a cluster containing nodes 1,515

...»y1. No restriction is placed, however, on the nodes in ISOL(k) in a
cluster containing this subset of CONN(k). Consequently, the weight of a

cluster of a partition in Pl containing nodes 1035s eed need not be

the same for each partition in Pr 1° There are a maximum of x, nodes in |

CONN(k), consequently we can distribute the nodes of CONN(k) into no more

than Xo distinct clusters. Any given cluster can assume a welght that

varies from one to W. Assume then that every partition in Pr has x

clusters that contain a node in CONN(k) and that every such cluster can |

have a weight that varies from one to W. The number of partitions in Pi

is then no greater than

wk
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since this number represents the number of different combinations of no

clusters, where each cluster can assume a weight from one to W, This

result follows from the Isolated Set Theorem, as we now show,

Assume that two partitions in Pr 17 p and q, have clusters such that

for every cluster of p containing a set of nodes in CONN(k), the cluster

of gq containing the same set of nodes in CONN (k ) has equal weight. Also,

azsume that the value of p is greater than or equal to that of gq. The

Isolated Set Theorem then proves that gq can be deleted from Pr 1

We now prove that an upper bound on the number of partitions of step k

generated from the set Pq is given by

Th
where for simplicity we assume that W < x)»

Assume that each partition in the set Pq has r clusters that contain

at least one node in the set CONN(k). Also, let each node have unit weight,

Node k can then be added to each of the r clusters of a partition in Py
if the weight of the cluster to which k is added is less than W., Let P(i)

denote the set of partitions in Pr 1 whose ith cluster, of those clusters

that contain a node in CONN(k), has weight less than W. The number of

feasible partitions of step k generated by adding node k to a cluster of a

partition of Pr 1 is then given by |
Tr

>. le)] -
i=1

The upper bound on |p(i)] is given by

|P(L)]sv (v-1),

and the maximum value of r is Xs therefore no more than
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ew E (41)
partitions of step k can result from adding node k to the clusters of the

partitions in Pq There are Wk l-adjacencies of step k derived from
the partitions in Pr 19 hence

x (LW K + wk

partitions are generated from the subset Pr_1° If we assume that W < xX,

then

x (1K 4 wk < WE.
From Section C there are less than x, - possible wes to distribute

the nodes in CONN(k) in clusters, hence the set Pl 1 can be separated into

no more than Xo subsets. Therefore the upper bound on the number of

partitions generated on step k of the partitioning algorithm 1s

X

x, (x, 0 )W K ,

where Xo is independent of the weight constraint.

If the dynamic programming procedure were not modified to take into

account the existence of isolated nodes, the growth in the size of Py is

exponential, ranging from yr where 1 < y < 2, for the simple trees of

Fig. 2.4 to k! for total enumeration. The growth in P, for an algorithm

consisting of the dynamic programming procedure and a procedure for

deleting suboptimal partitions based upon the concept of the isolated set

has an upper bound of

*k
x, f(x, )W where 1 < f(x_) <x! .

(The lower bound of f(x,! occurs for the graph of Fig. 2.8). If x, and W

are small, a significant reduction in the size of Pe results from the use

of the concept of the isolated set.
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To illustrate the effectiveness of the isolated set in reducing the

partitions generated on each step of the partitioning process, we now

examine several graph types that readily lend themselves to analysis.

A dramatic example of the reduction in computation time and storage

is the following. In Section C we show that the minimum number of )

partitions generated on the kth step for the simple k node tree of Fig.

2.4(b) is greater than 1.6. Using the analysis above inis bound is

reduced to the following:

Tk
P| < x, (x, 2 )W where x, =1 for all k > 1

thus

|?| = w.

| Another graph whose value of xy 1s independent of k is that of Fig.
2.8. For a width parameter h, ISOL(k)={i|i has label < k-h}. Thus

x, =h for all k and |

|p| = n(n)" |

A more careful analysis results in the upper bound |

|p,| < We |

A graph with a constant fan-out f is the fully developed tree, an

example of which is shown in Fig. 2.9. Lawler, Levitt, and Turner

LGoldberg, et al.,, 1967] have shown that the growth for W=2 in the number

of feasible partitions for a fully-developed k node tree with fan-out of f

is bounded by

|p, (W=2)| < ot e1)E,

Irn the following theorem we show that this bound can be reduced by

employing the concept of the isolated set.
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| h = width parameter

Figure 2.8 -- Graph with constant-size connected set
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Figure 2.9 ~- Fully-developed tree
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Theorem

A fully-developed k node tree with fan-out of f£ has an upper bound

of

(£+1)%/%

feasible partitions for a weight constraint of two. -

Proof

Assume that the tree is labeled such that node 1 is the root, nodes
\

2935.0.,f+l are at level 1, nodes f+2,f+3,...,2f+1 are at level 2, etc.

Given any node j at level x of the tree, all nodes at levels 1,2,...,x-2

are in ISOL(k). A partition of step kX then assumes the form

LCC Dee CI0CIC Dee (0D)
— ee —

A B

where "( )"' denotes a cluster of the partition. Set A comprises clusters

all of whose nodes are in ISOL(k). Set B consists of clusters containing

C- nodes at levels x-1 and x. The number of feasible partitions of the tree

is then the number of possible distributions of nodes in clusters in the

set B.

For W=2 a feasible cluster in set B contains either a single node at

level x~1 or x, or a node at level x and its predecessor at level x-1,

Separate the nodes at levels x and x-1 into subsets 5125094055, where
the nodes in the same subset consist of:

(1) the nodes at level x with the same predecessor node i, and

(2) the common predecessor node i.

| The number of subsets y equals the number of nodes at level x-~1, therefore

y=£*"2,

Each subset Sy contains f+l1 nodes, These nodes can form no more

than f+1 feasible partitions for W=2 since a cluster of a feasible
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partition that contains more than one node must contain the node in S; at

level x~1, The distribution of the f+l1 nodes in each of the y subsets

S.35,5.0.,S_ 1s independent of the distribution in the other subsets,1 27 J y

consequently there are : ’

(£11)Y

possible ways to cluster the nodes at levels x and x-1. The value of k

is related to the level x by

|
BN f-1

therefore

- k

f f f

The upper bound on the number of feasible partitions for the tree is

therefore

k .

P| < (f+1) I for w=2. @

In Chapter III we show that any tree can be partitioned with a total

number of operations directly proportional to the number of nodes in the

tree, -

In conclusion, the introduction of the concept of the isolated set

bounds the number of partitions generated on the kth step of the dynamic

programming procedure to a maximua of

*x
|P, | < x, £(x, )W where

x, =| conN(k) |

=(k-1)-|ISOL(k)| and

< |1 < f(x) <x!
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An implementation of the result of the Block Independence Theorem

is given in Appendix C. We show there that the maximum number of

vartitions generated on any step is directly proportional to the number

of partitions generated if each block were partitioned independently. In

| many cases this reduces the growth in the cardinality of Po from an :

exponential in k to an exponential in k', where k' << Kk.

F. THE GENERAL GRAPH PARTITIONING ALGORITHM

The concepts of block independence and the isolated set introduced

in Section D can bc combined with the dynamic programming procedure to

form an algorithm for partitioning a general graph with a substantial

improvement in the growth in computational and storage requirements,

Section E has shown this improvement,

The general partitioning algorithm is summarized in Figs. 2.10 and

2.11. These flow charts consistof three procedures:

(1) A procedure that determines the blocks in a graph and then

| generates the partitions of these blocks, combining them with

partitions of other blocks of the graph.

(2) A basic partitioning algorithm consisting of two subprocedures:

(a) A dynamic programming procedure that generates feasible

partitions.

(b) A procedure, based upon the concept of the isolated set,

that deletes all but the dominant partitions on each step

of the dynamic programming procedure, |

The flow chart shown in Fig, 2.10 contains a procedure {A) to find

the blocks of a given graph. This algorithm is outlined in Hopcroft and

Tarjan [1971]. If no cutpoints exist in the graph to be partitioned,
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START

Find b blocks of

n node graph G

os
y=s Partition graph G

X

El Select max
Partition block B, valued

1 partition

generated by
procecure B

|

Combine partitions
STOP

Figure 2.10 -- Flowchart of general graph partitioning process
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PROCEDURE B

ENTER

Label

graph

Find connected and

isolated set for

each node of graph

programming procedure
to generate feasible no
partitions of step

k >
Use isolated set yes
concept to delete :
all but dominant

partitions of step
K EXIT

Figure 2,11 -- Flowchart of basic partitioning algorithm
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then the basic partitioning algorithm (procedure B) is performed and the

resulting maximal-valued partition is the optimal partition of the graph.

If more than one block exists in the graph each block is partitioned

and the results combined with the partitions of other blocks to form the

optimal partition of the graph. An implementation of procedure C that.

performs this task is given in Appendix C.

An implementation of the basic partitioning algorithm is given in

Appendix B, The procedure (D) for labeling the graph is the subject of

Chapter 1V.

An example of the use of the basic partitioning algorithm is given

in Fig. 2.12, It is instructive to compare the number of partitions

generated here with the number generated using the dynamic programming

procedure alone (Fig. 2.3). We see that significantly fewer partitions

are generated on each step by the general partitioning algorithm, We have

not made use of the Block Independence Theorem, although the graph has two

blocks. An example of the use of this theorem is given in Appendix C.
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k CONN ({k) ISOL(k) |
1 |

5 (2 3 ’ ’
cL No

) ¢ 3 | {1,2} ¢

oO | 23 |
| values ly p, {4} | {1,2,3}

all nodes unit weight

W=23 k-adjacencies

STEP 1 2 3

3 (1)(2)(3) = 0 (1,3)(2) = 3 (1,2,3) = 8(1,2)(3) =5 (1)(2,3) =O

h (1,2,3)(4) = 8 (1)(2,4)(3) (1,2,4)(3)
(1)(2)(3,4) (2,354) (2)
(1,2)(3,%) (1)(2,3,%)

= 11 = 7

5 (1,2) (3,4) (5) (1,2,3) (4,5) (1,2)(3,4,5)
= 11 = 12 = 15

optimal partition is (1,2)(3,4,5) with VALUE = 15

Figure 2.12 ~- Example of graph partitioning algorithm
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CHAPTER 111

AN EFFICIENT TREE-PARTITIONING ALGORITHM

A very efficient variation of the general algorithm described in

Chapter II results if the graph to be partitioned is a tree. The concepts

of the isolated set and block independence, combined with the property

that a tree has no cycles, result in a partitioning algorithm whose growth

in computation time is directly proportional to the number of nodes in the |

tree,

Before describing this algorithm, we note that the ability to partition

a tree with integer-weighted nodes and multi-valued edges has not been

considered in the literature. Kernighan [1669] describes an algorithm that

partitions a tree with a growth in computation of n(log,n) for an n node
tree. The edges of this tree must, however, assume a restricted set of values.

A. INTRODUCTION |

A rooted tree is a directed graph T with node set V containing one or

more nodes such that:

(1) there is a specially designated node of V called the root of T,

and

(2) the remaining nodes in V can be separated into m 2 O disjoint

subsets VioVoseeen Vo such that each vy is the node set of a rooted

tree T, (i=1,2,...,m). The trees T,»Toy...,T are called the
subtrees of the root.

If the relative order cf the subtrees ToT eee Ty is important, the tree

is an ordered tree. The degree of a node of the rooted tree equals the

number of subtrees of that node. A leaf has degree zero and a branch node

has degree greater than zero. The roots of the subtrees of a branch node k

are the sons of node k.
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The tree partitioning algorithm of Section B can only partition an

ordered tree. We show in Sections B and C that the particular ordered

tree employed has no effect upon the growth in computation time and

storage space requirements of the algorithm, The graph to be partitioned

G is therefore transformed into an ordered tree G' by the following

procedure:

(1) Assign a unique label to each node in G.

(2) Form a rooted tree by selecting any node of G as root.

(3) Order the subtrees of a branch node k by increasing label of

their roots.

Whereas the growth in computation time and storage of the general graph

partitioning algorithm is a function of the labeling, such is not the

case for the algorithm described here; the labels assigned to nodes in

step 1 above are merely identifiers. An example of the transformation of

a tree G to an ordered tree G' is shown in Fig. 3.1. Before describing

the tree-partitioning algorithm, we introduce the following notation. In

this notation small letters represent partitions and capital letters

represent subgraphs. In particular, the letter q represents a partition

of a subtree of the ordered graph G', p represents a partition of a sub-

graph of G'y, and S represents a subgraph of G'. We also use the shorter

term "subtree k" to mean the subtree of G' whose root is the node with

label k.

q(k,w) and q(k):

The maximal-valued partition of subtree k whose cluster containing

node k is of weight w is denoted by q(k,w). The maximal-valued partition

of subtree k for all weights is denoted by q(k). Fig. 3.2 illustrates

these definitions,
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1

2 1 |
In all nodes unit weight

2 8 W=3
3

6

at
edge

values

(a) Graph to be partitioned, G

€ 8

3) (©

(b) A unique label is assigned tc each node of G

SOs
5 {2 :
OO 0, Q, ©

i 6

(c) Ordered tree G'

Figure 3.1 -- Transformation of tree G into ordered tree G'
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NNO
bY

subtree 2 N\

hE \
\

| ?/
/

| /
CRO

(a) An illustration of the notation "subtree k'

subtree 2:

2
) let all nodes have

5 o 3 unit weight and W = 3

0 © ©

Then q(2,1)=(1)(2)(3)(6) VALUE=0

q(2,2)=(1,2)(3)(6) VALUES a(2)=q(2,3)

a(2,3)=(1,2,6)(3) VALUE=08

(b) An illustration of the notation g(k,w)

Figure 3.2 --- Illustration of notation
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5,(k):

let 5, (k) denote the subgraph of G' with the following properties:
(1) The node set of 8; (k) consists of the branch ncde k and the

nodes in the first i subtrees of node k.

(2) The edge set of 5, (k) consists of the edges from node k to the |
first 1 sons of k and the edges in the first i subtrees of

node Kk. |

p, (k,w):

The tree-partitioning algorithm iteratively generates partitions of

8; .q(k) by combining the partitions of s, (k) with the partitions of ithe
i+l st subtree of node k. The maximal-valued partition of Ss; (k) whose

cluster containing node k is of weight w is denoted by p, (k,w). Fig. 3.3

illustrates this notation.

Lp,(k,%,),a(3,%,)]and [p, (k,w)]la(d)]:

If subtree j is the i+l st subtree of branch node k, denote by

(py (kywq)ya(3,w5)]

the partition of S; 1 (K) whose cluster containing node k is of weight

WH. The set of clusters of the partition so represented contains one

cluster created by merging the cluster of p (k,w,) containing node k and

the cluster of a(3,¥,) containing node j. The other clusters nf

Lp, (k,wy),a(d,%5)] are made up of the remaining (unmodified) clusters of

p, (k,w,) and q(3,%,).
Denote by

Cp,(k,%)1[a(3)]

the partition of 8 41 (k) whose cluster containing node k has weight w
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5; (4): ©

5, (4): i
85(k): (1)

HoT
(a) An illustration of the notation s. (k)

(%) if each node has unit weightand W=3 then

1

e p,(4,1)=(1,2,6)(3)(4) VALUES
5 3 p, (4,2)=(2,4)(1)(3)(6) VALUE=)

HG © p, (4,3)=(1,2,4)(3)(6) VALUES

(b) An illustration of the notation p, (k,¥)

Figure 3.3 =~ Illustrations of notation



S55 |

created by concatenating the unmodified clusters of p, (k,w) and g(Jj). |
Fig. 3.4 illustrates the use of this notation.

B. ALGORITHM

STEP 1

Form an ordered tree G' using the method given in Section A.

SIEP2

Initialize every leaf k of G' such that

a(k,w)=(k) and VALUE[q(k,w)]=0.

“Also

a(k)=(k) and VALUE[q(k)]=O0.

STEP 3

Find a branch node k all of whose sons are leaf nodes, If no such

node exists, go to step 5.

STEP 4

If node k has m sons with labels Jys3pseeesdpys find the partitions

of subtree k as follows (for w=WEIGHT[k], WEIGHT[k]+1l,...,W):

(a) Let i=l and Py (k,w)=(k) if w=WEIGHT{k] where VALUE[p, (k,w)]=0.

(0) [py (k,w)1la(3;)] if w=WEIGHT[k], or

EATif w > WEIGHT|k]

where Ww, =WEIGHT[k] and W,=W~WEIGHTk]

such that w, WEIGHTL J, 1.

VALUE[ p, (k,w)]= VALUE[q(J,)] if w=WEIGHT[k], or

A ————
if WAWEIGHT[k].

Delete partitions of subtree Jq from storage.
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| 1 8 W=3

all nodes unit weight

: £
°/ L 6

3CG De ONC
1f q(5,1)=(5)(8)(9) and py (%,1)=(4)(1,2,6)(3)

a(5,2)=(5,9)(8) p, (4,2)=(2,4)(1)(3)(6)

a(5,3)=(5,8,9) p, (4,3)=(1,2,4)(3)(6)

q(5)=a(5,3)

then

[p, (4,2),a(5,1)1=(2,%,5) (8) (9) (2) (3) (6)
and |

[p, (4,3)1(a(5)1=(1,2,4)(3)(6)(5,8,9)

Figure 3.4 -- Illustration of notation
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(c) 1i=1+41

p, (k,w) — maximal-valued partition of the collection:

| Cp, _; (k,)1(3(4,)] and
[py 4 (kywy),a(3 vp) with

w, =WEIGHT[k],WEIGHT[k]+1,...,w-WEIGHTL J, ]

and w,=w-w, such that w, 2 WEIGHT[J,].
Here

vALUE{[p, _, (k,w)][a(d,)]] = VALUE[p, _, (k,%)] |

+ VALUE[q(3,)],

and

| vatve{[p, ,(k,w;),a(d;,¥,)]] = VALUE[p,, (k,¥ )]

+ VALUE[q(J,,¥,)] + VALUE[edge (k, J, )].

(d) Delete the partitions of subtree j, from storage.

(e) If i=m then:

(1) a(k,w)=p_(k,w)

(11) ‘a(k)=p_(k,w) such that VALUE[p_(k,w)] is maximal for

w=WEIGHT[ k],WEIGHT[k]+1l,...,W.

(iii) Prune nodes jo,Jyy...,J, from G'.

(iv) Store all q(k,w), q(k), and go to step 3.

If i#m go to (c).

STEP 5 :

If r is the label of the root node, then q(r) is the optimal-valued

partition of the given tree G.

The efficiency of the tree-partitioning algorithm is due to the

ability to perform global optimization through local operations. The

algorithm is based upon the following theorem,
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Let a set of feasible partitions of subgraph s, (k) be separated into

disjoint subsets where all partitions in the same subset have a cluster

of the same weight that contains node k., Then, all but a maximal-valued

partition from each subset can be deleted. The resulting maximal-valued

partition, whose ciuster containing node k is of weight Ww, 1s denoted by

py (kaw), where w=WEIGHT[k],WEIGHT[k]+1,...,W,.

All nodes of 8, (k), with the exception of node k, are adjacent to no

node in the subgraph of G' yet to be partitioned. As a consequence, the

connectivity constraint dictates that the only cluster of a partition of

8, (k) modified in future steps of the partitioning process is that

containing node k. We can use an argument identical to that used in the

proof of the Isolated Set Theorem to show that, of the set nf partitions

of 8, (k) with a cluster of weight w containing node k, all but the

maximal-valued partition can be deleted from further consideration in the

partitioning proccess. RR

Corollary |

Given a set of feasible partitions of subtree k, all but the maximal-

valued partitions with a cluster containing node k of weight w for

w=WEIGHT[k], WEIGHT[k]+l,....W can be deleted from further consideration

in the partitioning process. The maximal-valued partition of subtree k

whose cluster containing node k is of weight w is denoted by q(k,w).

Since s_(k) represents subtree k if node k has m sons, and q(k,w)=

p (k,w), this result is a special case of the above theorem. [i

We now prove the optimality of the tree-partitioning algorithm.
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Theorem

The tree-partitioning algorithm generates the optimal-valued

partition of the given tree, G.

let G' be the ordered tree to which tree G is transformed in step 1

of the algorithm, The Block Independence Theorem proves that the optimal-

valued partition of a graph with more than one block can be created by

generating the partitions of each block independently and then combining

these partitions, We can extend this result to the practice of generating

the partitions of disjoint subgraphs containing more than one block and

then combining the resulting partitions to form the optimal partitions of

the graph. Since every subtree of the ordered tree G' represents a

collection of blocks of G, the generation of the optimal partition of G'

can be performed by first generating the partition of each subtree whose

root is a son of a branch node k, and then combining these partitions in

any order to create the feasible partitions of subtree k, Note that this

result justifies the assumption that the order in which the subtrees of

each branch node k are combined is unimportant. In Section C we further

show that the particular rooted tree used to form G' from G has no effect

upon the partitioning algorithm.

We now show that the method used to generate the optimal-valued

partitions of each subtree is correct.

The previous theorem and its corollary prove that all but a maximal-

valued representative of the partitions of subgraph Sy. (Kk) whose cluster

containing node k has weight w can be deleted. The proof of this theorem

is based upon the fact that the only cluster of a partition of 8, _1(k)

modified when that partition is combined with partitions of other sub~-
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graphs is the cluster containing node k. Consequently, when ferming the

partitions of 5, (k) we need only consider the possiblz combinations of

the cluster of a partition of subtree J; containing node Ji and the

cluster of a partition of subgraph 8; _q(k) containing node k. Here node

Ji is the ith son of node k. The collection

[p,_,(k,w)1[4(3,)] and

[py 1 (kw) {dy ,w,)]

with wy =WEIGHTLk],WEIGHT  k]+1,...,w-WEIGHT[ j, ]

and W,=w-w, such that w, 2 WEIGHT J, ]

then enumerates the ways in which two clusters, one containing node k and

the other node Ji can be combined to result in a cluster of weight w

containing node k. 8

C. COMPUTATIONAL AND STORAGE GROWTH RATES

Consider a step in which the partition p, (k,w) is generated. There

are a maximum of w ways to form p; (k,w) since the collection of partitions

from which Pp; (k,w) is selected is enumerated by

[p,_,(x,w)Ila(3;)] and

(py; kswy),a(d;,w,)] where w, ranges from a minimum of

to a maximum of w-1 and Wo =W-W, such that ws =1.
min

Since w can range from one to W, there are W(W+1)/2 partitions geiierated

on each iteration of the step that combines the partitions of S;_1(k) and

the partitions of the ith subtree of k, subtree Jie For a root with p sons,

there are p iterations of this step, hence

w(w+1)p/2

operations per root node. The sum of the number of sons for all roots in
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any rooted tree is equal to (n-1) for an n node tree, therefore the growth

in computational complexity for this algorithm is

w(w+1)(n-1) ~ Wen.
2

Note that this growth rate is dependent only on the number of nodes in the

tree, not the particular rooted tree used to represent the tree.

At any point in the partitioning process, the maximum amount of

storage required occurs if some node has p subtrees and each subtree has

W partitions, hence a maximum of less than nWM words of storage are

required, where M represents the number of words of storage required to

store a partition,

In conclusion, the storage and computational requirements of the

tree~-partitioning algorithm are linear in the number of nodes in the tree.

D. EXAMPLE

We now illustrate the use of the algorithm by partitioning the graph

of Fig. 3.1(a). |

STEP 1

The transformation of the graph of Fig. 3.1(a) to an ordered tree is

outlined in Fig. 3.1.

STEP 2

Initialize: q(k)=q(k,1)=(k)

VALUE=0

where k=1,3,6,7,8,9

STEP 3 (iteration 1)

Select branch node 2 with sons 1,3, and 6.
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STEP L (iteration 1)

(a) 1=1 and Po(2,1)=(2) VALUE=0

(p) py(2,1)=lpy(2,1)10a(1)]=(1)(2)  VALUE=O

py (2,2)=lpy(2,1),a(1,1)]

=(1,2) VALUE=5

p,(2,3) does not exist

Delete partitions of subtree 1,

(c) 10

Select p,(2,1) from: *

| (p(2,1)10a(3)1=(1)(2)(3)  vALUE=O |
Select P,(2,2) from:

| [p,(2,2)10a(3)1=(2,2)(3) VALUES | -
. [p,(2,1),a(3,1)]=(2,3)(1) VALUE=2

Select p,(2,3) from: |

[p, (2,3)10a(3)] does not exist

| (p,(2,2):a(3,1)]=(1,2,3) VALUE=T |
Lp, (2,1),a(3,2)]=does not exist

(d) Delete partitions of subtree 3.

(e) i#3, therefore go to (c)

(£) i=3

Select Po(2,1) from;

[p,(2,1)]la(6)]=(1)(3)(2)(6)  VALUE=O

¥ Boxed partition is maximal~valued partition in collection.
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Select pa(2,2) from:

[rp(2,1),a(6,1)]=(1,6)(2)(3)  VALUE=3

| Select P,(2,3) from:
[p,(2,3)1[a(6)]=(1,2,3)(6)  VALUE=T

[p,(2,1),q(6,2)]=does not exist

(d,e) Delete partitions of subtree 6.

Since i=3, let

a(2,1)=p,(2,1)=(1)(2)(3)(6) VALUE=0

| a(2,2)=p,(2,2)=(1,2)(3)(6) VALUE=5

a(2)=a(2,3)=p,(2,3)=(1,2,6)(3) VALUE=8
Prune nodes 1,3, and 6 from G'.

STEP3 (iteration 2)

Select branch node 5 with sons 8 and 9.

STEP 4(iteration 2)

A summary of the results of step 4 is:

a(5,1)=(5)(8)(9)  VALUE=O

a(5,2)=(5,9)(8) VALUE=S |

a(5,3)=(5,8,9)  VALUE=10

a(5)=a(5,3) |

STEP3 (iteration 3)

Select root node 4 with sons 2,5, and 7.

STEPL (iteration 3)

(a) 1i=1 and Po (k,1)=(k) VALUE=0
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(b) py (4,1)=lpy(4,1)Ila(2)]=(%)(2,2,6)(3) VALUE=G

p, (4,2)=Lpy(4,1),q(2,1)1=(1)(2,4)(3)(6) VALUE=1

py (4,3)=lpy(%,1),a(2,2)]1=(1,2,4)(3)(6)  VALUE=6

Delete partitions of subtree 2 from storage.

(¢) i=

Select p,,(%,1) from:

Select Pp, (4,2) from: |

[py (%,2)10a(5)1=(-)(2,4)(3)(6)(5,8,9)  VALUE=11

| Ley (4,1),a(5,1)1=(4,5)(8)(9)(2,2,6)(3) VALUE=15 |
Select P,(%,3) from:

[py (4,3)10a(5)1=(1,2,4)(3)(6)(5,8,9) VALUE=16

[py (4,2),a(5,1)1=(2)(2,4,5)(8)(9)(3)(6)  VALUE=D

(e) i#3, therefore go to step (c)

(c,d,e) Summary of these steps:

a(k,1)=(1,2,6)(3)(5,8,9)(4)(7) VALUE=18

a(4,2)=(1,2,6)(3)(4,5)(8,9)(7) VALUE=16

a(k,3)=(1,2,6)(3)(8)(4,5,9)(7) VALUE=22

STEP 3,5

Maximal-valued partition of tree is q(4)=q(4,3). This partition is

shown in Fig. 3.5.
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Figure 3.5 —-- Partition of tree of Fig. 3.1(a)
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CHAPTER 1IV

GRAPH LABELING

The labeling of a graph is an important part of the partitioning

process since the maximum number of partitions generated on each step of

this process is a function of the labeling. The time to partition an n

node graph is proportional to np, (log, P), where Py is the number of
partitions generated on step k of the partitioning algorithm, The storage

requirements of the algorithm vary as np,. Consequently, the cardinality

of Ps the set of partitions generated on step k, should be kept as small |
as possible for maximum efficiency.

In this chapter we show the relationship of the labeling of the graph

and the size of Pye An ad hoc lakzling algorithm with a computational

complexity related algebraically to the number of graph nodes is also

described,

A. RET.ATIONSHIP BETWEEN LABELING AND SIZE OF P,

In Section E of Chapter II we show that

X

pp SX (E(x WE,
where

py =| P, | =number of partitions generated on step k of the
partitioning algorithm |

x, =| CONN(k) __|=(k-1) - i,

i, =| ISOL(k)|

W=welght constraint

f(x, )J=number of ways in which nodes in CONN(k) are

distributed in clusters,
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In Appendix B we show that the number of operations performed on

step k of the partitioning algorithm has an upper bound proportional to

0nip, (log, p,)]

for an n node graph G. As a consequence, the sum

n

n 2. p, (log, p,)K=1

is directly proportional to the computation time required to partition G.

We also show in Appendix B that the growth in storage requirements

for the kth step of the algorithm varies as

n(p, ),
therefore

1

2 Dp
k=1 k

can be used as a measure of the growth in the average storage requirements

of the algorithm,

In order to compare the effectiveness of the many possible labelings

of a given graph, we use the sum

S =S= / Z ,
k=1

where Z is a constant whose value is much greater than one. We now

justify the use of this sum in measuring the effect of a given labeling

upon the growth in computation time and storage for a given graph.

“x
Since p, < x, (x, 0 )W , the worst-case value of p_ grows asymptotically

Fk
as 24 , where

Z=CWX, 3
—_— /

e
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e=base of natural logarithms, |

1/ (2x, ) |
c=] 2lx 37 Kaa,

k

The value of (p, ) (log, p, ) can then be approximated by

x, tl a”
Z =Z

since

*k
(p,) (10g, B,) < (z )(x,) (Log, 2)

and we assume that |

7

x, (log, Z) < Z.

Therefore the growth in both computation time and the average storage

requirements to partition an n node graph G is proportional to

> kein)z K.
k=1

We use the sum above to compare different labelings of the same graph,

- . therefore the value of n carries no added information and can be omitted.

To further simplify the measure, the value of Z is assumed to be

independent of k. |

The objective in labeling is then to minimize

k-iS = Dz
k=1

by maximizing for each node the size of ISOL(k),1,.

A feature of this summation is made clearer by a change in notation:

Let A =i -1, 5 and 1,=0. Then

1-4, 1-4, 1-24 1-4
Ss =2 “[1+2z (1 +z [...[1 +2 J...1].

Given two different labelings A and B, it is apparent that labeling A with

a value of A; > 84 may result in a smaller value of S than labeling B
A B
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with Eig b5 where j > i. If a plot of i, versus k 1s made to compare
two different labelings of a graph, two situations can occur:

(1) Labeling A has a consistently higher value of 1, than labeling

B (Fig. 4.1(a)). The value of S(A) for labeling A therefore is

always less than that of S(B) for labeling B.

(2) Tne curves of i, versus k for labeling A and labeling B cross
at one or more points (Fig. 4.1(b)). The only method of

comparing tl.: two labelings is to evaluate S(A) and S(B) and

choose the labeling with the smallest value. |

Note that a curve of i, versus k is monotonically nondecreasing.

This is a result of the theorem of Chapter II that proves that | 1soL(k) |<

| 1sOL (k+1) |.

The usefulness of the global evaluation of a labeling L given by

< k-i(L),s(L) = > 2
k=1

js limited to those situations where the labeling L already exists. 1t

is assumed here that the graph is unlabeled.

A nonenumerative algorithm that generates a globally optimal labeling

has not been found. However, we now describe a locally optimal algorithm

with algebraic growth in computation time,

B. LABELING ALGORITHM |

In Section A we develop the sun

S d-iy(L)
s(L) =/,2

j=1

to measure the labeling L of a graph G, where i,(L) is the size of ISOL(J)
for labeling L., The labeling of G with the minimum value of S requires
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1=|1s0L(k)| © :

labeling A |

ya

y /1 ,’ |
k /

. = ¥ 1abeling B
pd

,
: ”’

”

_7
--

~~

7

k

(a) Example in which labeling A 1s consistently
better than labeling B

rr
/’/

7a—

i / ANk

ya \ labeling B
”

, labeling A

ww

k

(b) Example in which it is not possible to know which
labeling is the best without evaluating both

" Figure 4.1 -- Curves of cardinality of ISOL(k) versus k
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| the least storage space and computation time to partition G. Since a

graph with n nodes can have n'! labelings impressed upon it, a labeling

procedure that consists of generating a labeling L and using S(L) to

measure its effectiveness is impractical, We therefore resort to the

generation of a labeling jteratively by assigning the labels in ascending

order and use the increment in the partial value of S caused by the

assignment of labels to unlabeled nodes to compare the effectiveness of

different assignments.

If we assign labels kk +l, 005K, to a set of unlabeled nodes, the |
effect on the value of S can be measured by observing the term

Kk.

J-i.

As(k,,k,) = 5 z J.
J=k,

The value of S is then given by

S = AS (1k, )+AS (Kk +1, Ky +o. +0S(K +1,0).

The basis of the labeling algorithm is to minimize the increments in the

values of S, AS(ky 5k), and thereby attempt to minimize the global value
of S. Note that although each value of AS(ky,k) is minimal, the value

of S may not be minimal. Section D investigates this point further. In

order to find the set of unlabeled nodes whose labeling causes the

minimum increment in the values of S, we develop the following rules.

The increase in the value of S is minimized by assigning labels to

the nodes of the graph so that each value of 1s the size of ISOL(j), is
maximal for j=1,2,...,n., In order to become a member of the isolated of

some node m, a node with label j can be adjacent to no node with label

greater than or equal to m. Since nodes are assigned in ascending order,

a node with label j adjacent to r unlabeled nodes can become a member of
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some ISOL{m) only if the r unlabeled nodes are assigned labels less than

m but greater than j, Assume that the largest label previously assigned

is k; to minimize m we must then assign labels k+l,k+2,...,k+r to the r

unlabeled nodes, To minimize the increment in the value of S, we then

try to find that set of unlabeled nodes whose labeling allows the largest

number of previously labeled nodes to become members of ISOL(m),ISOL(m+1),

...,ISOL(n) for as small a value of m as possible. To determine that set,

we perform the following analysis,

Consider a step in the labeling of a graph where a number of the

nodes have been labeled. Let the set of labeled nodes, each of which is

adjacent to an unlabeled node, be denoted by L and the set of unlabeled

nodes by U. With each labeled node i associate a subset of U, denoted by

Us» with the property that each node in u, is unlabeled and adjacent to

node i, If the largest label assigned to a node in U, is m, then node i

is a member of the isolated set of every node with label greater than m.

Some set U, associated with a node whose label is j may be contained

within U,. For this case we define the relationship RELEASES, where i

RELEASES j if:

(1) u, <u

(2) U;=U; and label i < label J.

If the nodes in us are labeled such that the greatest label assigned to a

node of U; is m, then both nodes i and j are 'released' to become members

of the isolated set of those nodes with labels greater than m,

We then form the sets Fite ty of those labeled nodes adjacent
to one or more unlabeled nodes using the relationship RELEASES such that

L,={j|j is a node in L and i RELEASES j}. |
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Fig. 4.2 illustrates the definition of L, and U,, where u,=|U,| and

Given the collection of sets of unlabeled nodes Uy yU. REFN and
1 2 r

their associated sets of labeled nodes Ls Ly geeesly formed by the
1 2 r

relation RELEASES, we then select some set u, from this collection for

labeling, Let the last label assigned to a node be k., The criterion

used to select the set u, is as follows:

(1) For all pairs of sets in the collection U, ,U. ,...,U., , findi i i
1 2 r

the increment in the value of S caused by assigning labels

ktl, kta, oo ku to UN and then assigning labels ktu +1,

ktu +2,...,k+u_+u, to U,.

(2) Compare the results of (1) with the increase in S caused Dy

assigning labels ktl,k+2,... ku to vu, and then assigning

x + * & @ *labels ktu, +1, k+u 2, sktu tu to u

We then label the set in the collection that car ‘es the smallest increment

in the value of 3. This practice may fail to yield a value of S that is

minimal because the assumptions are made that:

(1) The only sets of unlabeled nodes adjacent to labeled nodes

after u, is labeled are those in the collection U.>» where

I=1j515,c0051 This ignores the fact that newly created sets
of unlabeled nodes adjacent to labeled nodes may be created by

labeling u,-

(2) The sets U, ,U, ,...,U., are not modified by the labeling of U .i i i a
1 2 r

This may not be true,

We have found no efficient method to detect the modification of existing

sets U, (i=1y,i5, 00051), or the creation of new sets U, ,U,  ,..., due
r+1 r+2

to the labeling of U,-
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labeled nodes

\/

| unlabeled nodes

ONEORNONN.

v={i,3,k,1} 1<j<k<l

U={m,n,o]}

U,={m, n} 0 ={m, n}

U, ={n,o]} u,={o}

Therefore:

L={x,1] u,={n,0} 1, =2 u, =2
L,={1} U,={o} 1,=1 u,=1
L. = U.= 1.=1 =eJ {3 J {m,n} J "3

Figure 4.2 -- Illustration of definitions
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with these rules we calculate the effect on the value of S of

labeling the nodes in some set u, by comparing the increase in S caused

by first labeling U_ and then labeling U,, where b=i,,i,,...,1, and a¥b.

If we denote the change in the value of S caused by first labeling u, and

then labeling Uy by aS _,» the value of as, is given by
k+u +

“a a, 1
AS = N Z J

ab Lt
j=k+1

where

ES
1 k <3 R+u

i=
i +1 k+u ] £ kt+u +uTk a a < J a b

This increment in the value of S is then compared to that caused by first

labeling u, and then labeling U_»

ktu +a ii
OS, = > z J

j=k+1

where

A Co
1, k < J ku,

i= . Loi +1 k+u,  < J k+u_+u

The values of AS, and as, can be simplified by forming the terms
u u

a b
. j+u -1

58.0 SD de Dz a a
k-1 j=1 j=1

7 k

a u a,~1
tz%+2

and

u u +u -1
. bASpy zz Pasig? PB

k-1
k

Z
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The labeling of U,» and then Uy,» then results in a smaller increase in

the value of S than the labeling of Us and then U_s if

u | u +u -1 u u +u -1
b “b72422 P 30, 52 b

Let

u u +u =-1 u u +u, ~1
b

224722 2, ¢g _gzPig2 b
ab

Then

cpamf 1 1 11 \ab ~ u 1 u 1,
z% z% \z z "/

and the labeling of u, and then uy, results in a lower increment in S than

the labeling of U, and then U if K . >O,.
b a ab

In general, given the sets u, »Us sees Us and L, sD yeeesly y We
1 2 r 1 "2 r

use the following procedure to find that set us such that Kj = 0 for

j=iy,i,...,i, and ji.

(1) For k=i,is,...,1 form the differences u-1, and separate the

sets U, into three disjoint sets:

(a) set I ={y|u -1 <0}

(b) Set II = {u, fu - 1, = 0}

(¢) set III = {uu -1,_>0}.

(2) If sets I and II are vacuous, then lahel the element of set III,

U;, such that 1, is maximum, If two or more elements of set III

satisfy this criterion, then label the element of set III

satisfying the criteria of maximum 1; and minimum u, .

(3) If set I is empty, then K,=K_,. Use criterion listed in (5)
below,

(L) If set I is not empty, then choose that element of set I such

that u, is minimum. If several elements of set I have minimal

values, select that element with minimum uy and maximum 1;.
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(5) If two or more elements are equivalent from the standpoint of

the above tests, then label that set uy sharing the most

elements with the other sets u, for k#i. This practice

minimizes the number of unlabeled nodes in the graph adjacent

to labeled nodes, allowing the labeled nodes to become nodes

in the isolated set ISOL(j) for lower labels j.

To initiate the labeling process we select some node as the node with

label 1, A candidate for label 1 can be selected by:

(1) choosing that node adjacent to the least number of nodes in the

graph;

(2) letting each node of the graph be node 1 in turn and performing

the labeling algorithm n times for an n node graph.

The first alternative is based upon the fact that labeling the node with

the least number of adjacent nodes allows node 1 to become a node in some

ISOL(j) where j is minimal,

| The labeling algorithm is summarized in the flow chart of Fig. L.3.
The computational growth rate of this algorithm is summarized in

Table 4.1. This table shows that the growth in computation time varies as

nd, where n is the number of graph nodes,

An implementation of the partitioning of a graph with cutpoints is

described in Appendix C, This implementation reduces the growth in

computation for the labeling process to c(n')3, where n' is the number of

nodes in the largest block of the graph and ¢ is a constant.

C. EXAMPLE

We present an example of the labeling algorithm for the graph of

Fig. k.4(a):



7.

START

1 Choose a node with label Find the set U, such
l. k=1 5 that K, 3 =z O where

J=Jsdpsecesd, but iFi

Form the set of labeled more

5 nodes adjacent to one no than one
or more unlabeled nodes. U.

Denote by L. .

yes

yes

Label that set U, (of :
those sets such that

STOP 6 K.. are equal) that
no shires the largest

| number of nodes with
other U, for

K=3. , 3 k ;

————————eeee

For each node in L, i,

3 form the set Us ~ the
set of unlabeled nodes Assign labels k+l,
adjacent to node i, T k+2,...,k+u. to

| nodes in set Us

Form the sets L. for

in 3=0y5dps ees dhere
L ={k]3 RELEASES k)

©

| i

© o

Figure 4,3 -- Flowchart of labeling algorithm
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Table 4.1 -- Operations required to label an n node graph

* *¥

STEP OPERATIONS/STEP TOTAL OPERATIONS

1 Cc n° C n®
1 1

2 con ca”
2 3

cn c.n3 3 3
2 3

ly cn ©). n
_ 3

c_n c_n2 5 5

7 cn C n°
7 7

8 Cs cgh

* Refer to Fig. 4.3 for step number

*% The constants C1sCpse--Cg are dependent upon the particular

implementation used for the algorithm
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(a) Given graph

_k ISOL(k)

(2) OE2 @

; 3)
6 {1,3,4]

(b) Resulting labeling

Figure 4.4 —- Example of labeling process
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(1) Since nodes A,C,E, and F each have the minimum number of adjacent

ncdes, select A arbitrarily as the node with label 1,

(2) L = {1) u={B,C,D,E,F}

Thus

u,={B,c} subsets of L: L,={1}

| u,={B,C}

Let node B have label 2 and node C label 3,

(3) 1={2,3} u={E,D,F}

Thus

U,={E,D] subsets of L: L,={2,3]}

u,={D} U,={E,D] |

L.={3]

U,={D}

Ky3=Kso therefore let D have label L,

(4) 1={2,4}  U={E,F}

Thus

u,={E} subsets of L: L={2}

U, ={F} U,={E}

Ly ={k4}

U,={F}

Ko, =K) 0 therefore node F has label 5,

(5) Node E has label 6 since it is the only node left,

Fig. 4.4(b) shows the resulting labeled graph.
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D. COMMENTS ON THE OPTIMALITY OF THE LABELING ALGORITHM :

A counterexample of the optimality of the algorithm above 1s shown

in Fig. 4.5. Fig. 4.5(a) shows the labeling that results from the |

labeling algorithm and Fig. L.5(b) another labeling that deliberately

defies the criterion employed in the algorithm. A comparison of the

values of S for each labeling shows that the second labeling results in

a lower value,

This phenomenon occurs because the labeling algorithm only examines |

iocal data, One method of partially overcoming this problem is the

simple "lookahead' strategy now described.

Given a situation in which L has been separated into subsets Lys Lo,

cessl, allow the nodes in each subset Ls; to become isolated nodes by

labeling the set u- Then, perform the local labeling algorithm for a |

few steps. The set Uy resulting in the best overall value of S is then |
labeled first. This practice avoids the problem of Fig. 4.5 while

increasing the computation time moderately.
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| © A(k )=1SOL(k)-ISOL(k~1)

ofio aL 1
6 2

Af Gy QE) SE.10 5
1h 3

6" (7 (8) (9) (11 15 10,11,12,13
207°

(a) Labeling produced by labeling
algorithm

k Ak

SRE CT8 3
9 L,5,6,7

(19 (OL 5O Ol® 3
15 10

(22; (33, (1) (8 sa7®
AN

ND,

(bh) Labeling that defies labeling criterion used in
labeling algorithm

Figure 4.5 -- Counterexample to local labeling criterion
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CHAPTER V
CONCLUSIONS |

A, SUMMARY OF RESULTS |

In this thesis we investigate the problem of partitioning the

integer weighted nodes of a graph into clusters so that the values of the |

edges cut are minimized. |

Chapter II describes a dynamic programming procedure that generates

"feasible'' partitions of an n node graph G. A partition is feasible if

each of its clusters satisfies the following restrictions:

(1) The sum of the node weights in the cluster is equal to or |

less than a given weight constraint,

(2) The cluster nodes form a connected subgraph of G.

The nodes of G are first assigned unique labels 1,2,...,n. Then stage k

of the dynamic programming procedure generates feasible partitions of

those nodes with labels < Kk.

The number of feasible partitions for a cyclic k node graph grows

exponentially in k, Since the growth in computation time is proportional

to

n

>
n Z p, (log, Pp)

where pb, is the number of partitions generated on the kth step of the |
partitioning process, the use of the dynamic programming procedure to

generate all feasible partiticns is quite inefficient.

We then introduce the coiicéft uf the isolated set. This concept is }

based upon the connectivity requirements of each cluster of a feasible

partition and limits the number of partitions generated on the kth step of
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the dynamic programming procedure to less than

x, |
x, E(x, JW where 1 < £(x, ) <

Here Xp is the number of nodes of the graph with labels less than k that

can be clustered with node k. If xy is much less than k for k=1,2,...,n

and W<<n, the number of partitions that must be generated by the dynamic

programming procedure is substantially less than the number of feasible

partitions.

A graph with cutpoints can be partitioned by first partitioning the

blocks of the graph, then combining these partitions to generate an

optimal partition of the entire graph, The maximum number of partitions

generated on a step of the partitioning process *s a function of the

number of nodes in a block and not the graph itself.

In Chapter III the results of Chaoater I are apolied to the
partitioning of a tree. The special pioperties of the tree result in an

algorithm whose computation time and storage requirements grow linearly

with the number of graph nodes,

A basic requirement of the partitioning algorithm is the assignment

of a unique integer label to each node, In Chapter IV we show the

relationship between the labeling impressed upon the graph and the growth

in the number of partitions generated on each step of the partitioning

algorithm. An ad hoc labeling algorithm is also described.

B. FUTURE RESEARCH

We have investigated the problem of partitioning a connected graph G

into disjoint clusters with the objective of minimizing the value of the

edges cut by the pdrtition. A logical extension of the partitioning

problem is the investigation of the problem of finding a minimum~-valued
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cover of G. A cover differs from a partition in that a cover is the

distribution of the nodes of G into clusters {ec} (i=1,2,...,k) where
| Cy N cs need not be empty. A cover can often result in a lower value of

the intercluster edges than a partition of G [Kernighan, 1969].

An algorithm that solves the covering problem can be used to cluster -

| logic gates onto integrated circuit modules. The objective here is to

minimize the number of intermodule connections at the expense of

duplicating gates. This problem is discussed extensively in the article

by Oden, Russo, and Wolff [1971].

The labeling algorithm developed in this thesis is locally optimal.

Therefore, an investigation of algorithms to efficiently generate a |

globally optimal labeling is warranted.

The tree partitioning algorithm, because of its efficiency, can form

the basis of a partitioning algorithm for cyclic graphs, This algorithm

can efficiently generate a partition whose value may not be optimal but is

within a given bound,
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APPENDIX A

AN ANALYSIS OF THE LOWER BOUND ON THE NUMBER OF

FEASIRLE PARTITIONS FOR A CONNECTED k NODE GRAPH

A. LOWER BOUND ON NUMBER OF FEASIBLE PARTITIONS IGNORING WEIGHT

CONSTRAINT

Let the e edges of a graph G be assigned unique integer labels

l,2y...,e. A binary variable e, can then be associated with the edge :

with label k and represents the condition of edge k in a partition of

G-- 1i.e,:

{ if edge k is within a cluster of the partitione,=
0 if edge k is cut by the partition.

We can then represent a partition of G bya binary sequence of |

length e, where the kth bit of the sequence represents the condition of

edge k. This representation is unique, as we now show.

Assume that two binary sequences S, and S, represent the same

partition of G, If Sq 1s not equal to So» there must be at least one bit,
e;, that is a 1 in one sequence and a O in the other, This situation
cannot possibly occur since an edge cannot be both cut and contained in a
cluster of the same partition, thus 5,=5,. |

A graph with k nodes has from k-1 to kik-1)/2 edges. If each binary

sequence representsa partition, a graph with e edges has no more than 0°

feasible partitions. There are not, however, n® feacible partitions of

an e edge cyclic graph because certain combinations «f bits in an e bit

binary sequence represent no partition of G. An illustration of this

fact is given in Fig. A.1. In particular, let an arbitrary labeling be

impressed upon the edges of the graph G. Assume that a cycle of G, whose
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node label

/ edge label
1 > a

3

SNES

5 6

partition: (1,2)(3)(4,5,6) :

valid representation: 1000111

invalid representation: 1000110

Figure A.l -- Illustration of an invalid partition representation
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length is c¢, contains the set of edges with labels (1,150.01), Any e

bit sequence representing a partition of G cannot contain a combination of

the bits e, ,e, EERFL MY in which one of these bits is a zero and the
1 to C

rest are ones, Any other combination of the bits €; 284 sees is valid
1 2 Cc |

if no cycle is contained within this cycle,

The lower bound on the number of feasible partitions of a k node

: k-1
cyclic graph is 2 , as we now show,

Let a spanning tree st(G) of a graph G be formed. Let G have k nodes,

e edges, and let G be connected and cyclic, There are k-1 edges and no

cycles in st(G), therefore st(G) has 2*1 feasible partitions. Each

feasible partition of st(G) is also a feasible partition of G. This

follows from the fact that a feasible partition of st(G) can always be

transformed to a feasible partition of G by adding edge (i,j) to a cluster

of a partition of st(G) if nodes i and j are in the same cluster and edge

(i,j) is contained in G, but not st(G). Note that this is true regardless

of the weight constraint. Also, there are feasible partitions of G that

are not feasible partitions of st(G). For example, if edge (1,3) is an

edge of G not in st(G), then a partition with a cluster containing nodes i

and j alone is feasible for G but not for st(G).

If P denotes the set of feasible partiticns for a k node connected

graph, then |

ke

IP, | = 2°71 for the tre
© max

and

k-1 k~- k2 << P| < of 1)(k/2) for a cyclic graph.
max
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B. LOWER BOUND ON NUMBER OF FEASIBLE PARTITIONS FOR A WEIGHT

CONSTRAINT OF W

We have shown that a k node tree has the fewest feasible partitions

of any connected k node graph, ignoring the weight constraint. Since the

feasible partitions of the spanning tree of a graph G are a subset of the

partitions of G, we can find a lower bound on the feasible partitions of

a connected graph by analyzing the two tree types shown in Fig. A.2.

These trces represent the two extremes in spanning trees of a k node

graph, The tree of Fig. A.2(a) has the fewest levels of any k node tree

and each connected set contains the same ncde. The tree of Fig. A.2(b)

has the maximum number of levels for a k node tree, and each connected set

is one element contained in no other connected set.

The number of feasible partitions of the tree of Fig. A.2(a) is given

by the summation

w-1 |

Kk :
7, | ~ 2. (4) :i=1

We derive this number by noting that no cluster of a feasible partition can

contain more than one node unless node 1 is in that cluster. A lower bound

for this summation is given by

K k)
W-1 = kK. for W-1 < k/2.

(k-W+1): (W-1).

Letting x = W-1, and using Stirling's approximation,
k

x k

1X)EN > (Ex :
(1-x)

Letting the term
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IN
(a) Minimum-level tree

(b) Maximum-level tree

Figure A.2 ~- Minimum- and maximum-level spanning trees
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x

1-x
ps = f(x) ,

=
we can show that 1 < f(x) <2 for 0 <x < %.

A recurrence relationship for the number of feasible partitions of

the tree of Fig. A.2(b) can be derived from the fact that no more than

W nodes, hence W-1 edges, can appear together in a single cluster for a

weight constraint of W. Consequently, a blnary sequence representing a

fensible partition of this tree cannot have a consecutive sequence on W

Or more ones,

The number of binary sequences representing feasible partitions for

a weight constraint W is given by

EA 2" - P17

where

b,=2b , + prW=1 bo wl

with initial conditions

b,=b,=...=b, ,=0 and b=1.

The solution to this recurrence relationship for W=2 is

P| = LW ’

where Fo is the kth Fibonacci number. The following theorem proves that
this is the minimum number of partitions for a nontrivial weight constraint.

Theorem

1f B(k,W) denotes the set of k bit binary sequences with no subsequence

of W or more adjacent ones, and if d, (W)=|B(k,W)|, then

d, (x) < d, (v) if x < y.
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B(k,W)  B(k,W+l) since all sequences in B(k,W) are sequences in

B(k,w+1). B(k,W+1) properly contains B(k,W) since a k bit sequence with

a subsequence of W adjacent ones is a sequence in B(k,W+l1) and not in

B(k,W); yet, all sequences in B(k,W) are sequences in B(k,W+1). Since

B(k,W) < B(k,W+1), d(W) < d(W+1) < d, (W+2)..., thus d(x) <d(y) if
x<Yy.

The sequences in the set B(k,W) are in one-to-one correspondence to

the partitions in Pq for the simple tree of Fig. A.2(b). Therefore,

the number of partitions for this tree increases from Fy for w=2 to ok-1
for Ww 2 k. I}
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IMPLEMENTATION OF BASIC PARTITIONING ALGORITHM

Much of the analysis of Chapters II, III, and IV is based upon the

assumption that the computational and storage requirements associated with

some step of the partitioning algorithm are directly proportional to

where n is the number of graph nodes and p is the number of partitions

generated on step k. To support this assumption, an implementation of the

basic partitioning algorithm outlined in Fig. 2.11 is now described.

A. DATA STRUCTURE

Let Po be the set of partitions associated with step k of the part-

itioning algorithm, The information associated with each partition in the

set of partitions Py is shown in Fig. B.l. The fields of the two data

types are summarized below:

(1) HEADER (one per partition)

(a) DFLAG: a flag used to signal the existence of a partition

to be deleted.

(b) VAL: value of partition |

(2) BODY (one entry per graph node)

(a) CC-FLAG: Warns that the cluster containing this node has

been used previously to form a new partition,

(b) REP: The n REP entries form a unique representation of a

partition. This representation is used in conjunction

with the WT entries to detect the dominant partitions

of each step.
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HEADER

mew]
BODY (1:n)

1

c

| | | | | |

+] | | | | | |

: | | | | | |

’ EEE EE

Figure B.l -- Data structure for a partition
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| (c) PTR: Used to link the BODY elements of nodes in the same

cluster,

(d) WT: Weight associated with the cluster in which this

node exists.

(e) NEWP: Contains pointer to a partition previously created

from this partition. This entry allows the value

of a partition with a cluster that has two or more

elements of CONN(k) to be updated correctly.

(£f) HNODE: Contains the highest-numbered node on the path

from node j to node k, where j € CONN(k) and the

path is that path that results in j being an

element of CONN(:). The purpose of this entry is

to handle situations where a cluster violates the

connectivity constraint locally, but does not do so

globally, When HNODE < k, the unconnected cluster

containing k and j never becomes connected by the

addition of a node with label > k, Consequently,

the partition can be deleted.

Each partition has a unique representation consisting of the n-tuple

formed by the REP entries of the BODY data associated with that partition.

This representation is used to detect the dominant partitions of Py The
Isolated Set Theorem proves that all but the dominant partitions can be

deleted from Py before performing step k+1,

A cluster of a partition is uniquely identified by assigning the same

integer i to each REP entry associated with the non-isolated nodes in that

cluster. The integer i is the labzl of that node in the cluster that
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becomes a member of some A{j)=ISOL.j;}-ISOL,j-1) for a maximum value of j.

If two or more nodes in a clustcr belong to the same A{j), then choose as

identifier that node with the smallest label. The reason for selecting

this form of identification for a cluster is explained below,

The REP ¢ .tries associated with isolated nodes are zeroed, We then

use the representation, as well as the weights of those clusters containing

a node in CONN(k) to find similar partitions. 7Two partitions are

| similar if:

(1) their representations are equal,

(2) the weight of a cluster with identifier i, where i > 0, of the

first partition equals that of cluster i of the second partition,

We use the node r that is an element of 4(j) for the largest label j

to identify the cluster in which it exists because this avoids changing

the cluster identification until a new node is added to the cluster. A

cluster's identification changes for the following reasons:

(1) All nodes in the cluster become isolated nodes, in which case

all REP entries become zero.

(2) The cluster is modified by the inclusion of node k, in which

case the cluster identification is updated if required,

The use of the partition representation is illustrated i: Fig. B.Z2.

B. ALGORITHM

(1) Label graph.

(2) Find CONN(k) and ISOL{k) for all nodes k. Also create a matrix

HI(j,k), where j € CONN(k) and j is not adjacent to k. Here the

entry in the matrix is the largest label of a node on the path from
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REP PTR WT

1 0 pod 0

2 2 1 6

31°29) 31° 150L(5)={1,3,4)
b 0 5 0

& | of 61 0 5 € A(8)

71 c | 71 oO

8 0 8 0

| (a) Partition (1,2)(3)(4,5)

Fy 6=(1,2)(3)(4,,5)

P c=i1)(2){%)(352,6)Js

ISOL(6)={1,3,2,4}

Pi,6 | P3,6
REP PTR WT REP PTR WT

1 0 2 0 1 0 1 1

2 0 1 2 2 ¢ 2 1

3 0 3 1 3 0; 5 0)

L 0 5 0 i 0 L 1

5 6 6 0 9 6 6 0

6 6 Uy 3 6 6 3 3

(b) Equivalent partitions

Figure B.2 -- Examples of partition representations
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node j to node k that results in node J being in the set CONN(k).

Also, find A(k)=ISOL(k) - ISOL(k-1), where ISOL(O)=g.

(3) P={(1)}, k=1.

(4) k=k+l. If k > n, then exit.

(5) If CONN(k) is empty, go to (7). Else, select a node in CONN(k) --

let it be j ~~ and delete j from CONN(k).

(6) Form new partitions:

(a) For i=1 to P| let 4=P; k-1 ~— 1i.e. create a new partition

| of Po whose data is initialized to the contents of Pi, k-1’ the
ith partition in Pr

(b) Let Tl=q.REP(j).

(c) If q.CC~FLAG(T1)=1, then cluster Tl has been previously modified

by the inclusion of some other node in CONN{k), Update the

value of the partition previously created by adding the value

of edge(j,k) to VAL of the partition pointed to by q.NEWP(T1).

Go to (6a).

(¢) If q.WI(T1)+WEIGHT(k) > W, then go to (6a). Else, q.WT(T1)=

q.WI'(T1)+WEIGHT(k).

(e) q.VAL=q.VAL+VALUE[ edge(j,k)]. |

(f) If q.HNODE(T1)=k, then Pj k-1-PFLAG=L.
(g) If VALUE[edge(j,k)]=0, then enter HI(j,k) in q.HNODE(T1).

(h) 74 T1 is a node in A(a) and k is a node in A(b), then replace

all REP entries whose identifier is Tl with k if a < b and set

q.REP(k)=k. Else, q.REP(k)=T1.

(i) T2=PTR(j), PTR(j)=k, PTR(k)=T2.

(3) Pj k-1-NEWP(T1)=pointer to storage space associated with q,
(k) Go to (6a).
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(7) 1f A(k+l) is empty, go to (0). Else, select a node in A(k+l) --

let it be x —-- and delete x from A(k+1). |

(8) zero all REP(x) entries associated with the partitions in P_, and

P.. Go to (7).

(9) Create l-adjacencies of P_ by taking each partition in P,_, whose

DFLAG entry is zero and entering k in REP{k). This is equivalent to

creating a partition with node k clustered alone. Delete all

partitions in Pq

(10) Determine those partitions of P, that are dominant and delete all

other partitions. We can implement this step by using the concept

of the AVL tree [Adel'son-Vel'skii, Landis, 196Z] [Foster, 1965].

An AVL tree is defined as follows:

For every node of an AVL tree, the length of the longest path

in the left subtree differs from the length of the longest path in

the right subtree by no more than one branch. Fig. B.3 illustrates

an AVL tree,

A full description of the data structures associated with AVL

trees, and searching and inserting data using AVL trees, is given in

Stone [1972].

An AVL tree has the advantage that the asymptotic growth to

search or insert data into the tree grows as log,{r), where r is the

number of nodes in the tree, The maximum number of nodes in the AVL |

tree used to find the dominant partitions of Py is p, =P, |. We can

therefore find the dominant partitions of Po in a number of

operations whose upper bound is proportional to P1108, P,.) times the

number of operations associated with the comparison of two partitions.
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Figure B.3 —-- An example of an AVL tree
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We now describe how the AVL tree is used to find the dominant

partitions of Pp

In Section D of Chapter 11 we define two partitions as

similar partitions if: |

(1) they have equal distributions of the nodes in CONN(k) in

their clusters,

(2) clusters containing the same subset of CONN(k) have the |

same weight in both partitions. |

When translated into the data structure of Fig. B.1l, two partitions

p and q are similar if:

(1) they have equal representations, i.e. p.REP(i)=q.REP(i)

for i=1,2,...,n;

(2) p.wr(j)=q.Wr(j) where j is a nonzero cluster identifier.

The partition p dominates partition q if:

(1) p and gq are similar;

(2) p.VAL = q. VAL.

To find the dominant partitions of Po we select some partitions

P in P that has not yet been inserted in the AVL tree and search the

tree for a similar partition. If a partition similar to p is found,

then the partition of greater value is left in the tree, and the

partition of lesser value is deleted from Pp If two similar

partitions have equal value, then the partition being inserted, p, 1s

deleted from Pe If no partition in the AVL tree is similar to p,

then p is inserted in the tree,

% If two partitions have equal values, one is arbitrarily chosen as *he

dominant partition, |
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The data associated with each node of the tree consists of the

n REP entries associated with a partition and a maximum of n WT

entries, one for each cluster containing a node in CONN(k)___.- A

comparison of two partitions then takes a number of operations

proportional to n for an n node graph.

(11) Go to (4).

C. GROWTH RATE |

A summary of the number of operations required to perform steps 4

through 11 of the algorithm (these steps are performed once per partition)

is given in Table B.1l. We see that step 10 dominates the growth in

computation time, Therefore the worst-case growth in computation time

varies asymptotically as

| n[p, (log, p,)]

where PL equals the number of partitions generated on step k and n equals

the number of nodes in the graph. Stone [1972] shows that the number of

words of storage required to use an AVL tree grows as the number of nodes

in the tree; there are no more than Py nodes in the tree. The data

outlined in Fig. B.l, however, is proportional to n(p,), consequently the

storage requirements of the kth step of the algorithm grow as

n(p, ).
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Table B.l -- Number of operations required to form

| partitions generated on step k of the

partitioning algorithm, |

STEP OPERATIONS
We

4,5,6,11 (e+e W)py
*¥

7,8 (kt1)egPy

Q2 c, (Py)

10 og (np, ) (10g; p)

. Notes:

¥ Step 6, may require up to c,W operations for each partition,
where W is the weight constraint.

x |o(k+1)| <x

p, =number of partitions generated on step k of algorithm
n= number of graph nodes

€15Cp3C39€) 5 Cs are constants dependent upon implementation of
operations,
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APPENDIX C

AN IMPLEMENTATION OF THE GRAPH PARTITIONING

PROCESS FOR A GRAPH WITH CUTPOINTS

The Block Independence Theorem proves that an optimal partition of

a graph G with one or more cutpoints can be created by generating the

partitions of each block of G independently, and combining these

partitions.

The only nodes of a block B contained in other blocks of G are cut-

points, This means that there can be a maximum of x(x! )W partitions of a

block with x cutpoints since all other nodes in the block are "isolated"

nodes, i.e. are adjacent to no node in another block. If some block of G

has xy cutpoints and another blcck has X53 then the process of combining
X x

the partitions of these blocks may take up to [x, (x;W/e) Mx, (x07 e) 1
steps.

We derive a partitioning algorithm here whose computation time grows

asymptotically as

n(3 %)(p 10g, p)

and whose storage requirements grow as

Wp.

Here W is the weight constraint, n is the number of nodes in the graph G,

n is the number of nodes in the largest block of G, and p is the largest

| number of partitions generated in partitioning a block of G. If the

| blocks of G have substantially fewer nodes than G, a large reduction in

computation time and storage space is possible, |
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A. PARTITIONING ALGORITHM |

If a connected graph G has a nonvoid set of cutpoints le] and an

associated set of blocks {B,}, the block-cutpoint graph of G, denoted by

bc(G), is a tree with node set v={B, } u {ce} [Harary, 1969]. Here a node

By is associated with block B, and a node cj With cutpoint Cys Two nodes

are adjacent if one node corresponds to a block BS and the other to a

cutpoint Cy and © is in B,. Note that be(G) is also a bigraph. Fig.
C.l illustrates the block-cutpoint tree for the given graph.

The block-cutpoint tree is used to order the sequence in which the |

partitions of a block are combined with the partitions of blocks

previously partitioned. This sequence is dictated by the following rule:

a block By is eligible for partitioning if at most one cutpoint of B, is

an element of the node set of some unpartitioned block. We base this

rule on the following result.

The nodes in a partitioned block Bs» with the possible exception of |

cutpoint <, of B.:, are contained in no unpartitioned block, We refer to
these nodes as "isolated nodes' since a cluster consisting entirely of

these nodes is never modified in future steps of the partitioning process.

As a result, the Isolated Set Theorem states that we can select the

optimal-valued partition whose cluster containing node C, is of weight w,

where w=WEIGHT[ c], WEIGHT[ c J+1,...,W. Therefore a maximum of W of the
partitions generated in the partitioning of B. must be kept for future use

in the partitioning process. These partitions represent the optimal-

valued partitions of the subgraph whose nodes are in the plocks previously

partitioned, We now describe the procedure used to generate and combine

partitions:
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ntI)
(a) Graph with cutpoints C,F, and H

BL (A) & B2
LO” <b B6
oe

BS

(b) Blocks of graph

(c} Block-cutpoint tree of graph

Figure C.1 -- The block-cutpoint tree
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(1) Assign each node of the graph to be partitioned a unique identifier.

(2) Create the block~-cutpoint graph be(G).

(3) Choose some node of bc(G) that corresponds to a block as root, Form

the directed tree be'(G).

(4) Select a branch node c, of bc'(G) all of whose sons are leaf nodes.

(a) Select some son of Cp * This node corresponds to a block of G,

Bs with cutpoint C, in its node set,

(b) Label the nodes of B; with integer labels 1,2,...,n, using the

labeling algorithm developed in Chapter IV. Here n, equals the

number of nodes in B.. Note that this labeling is independent

of the labeling employed in partitioning another block of G.

| (¢) Partition B, with the basic partitioning algorithm (Fig. 2011)

with one modification: If some node with label k is a cutpoint

Cy upon completion of step k find if previously-partitioned

blecks also contained node ey If so, then there are a
maximum of W optimal partitions of the subgraph consisting of

the nodes in these blocks, Let this set of partitions be

denoted by P. The partitions ina Ps the set of partitions

generated on the kth step of the partitioning of block B., are
then combined with the partitions in set P, -

The combination of Pe. and Po results oe a set denoted by
Ppt Since all nodes in clusters of the partitions of Po are
isolated nodes, except Cs the maximum Size of conn ()
remains unchanged and Pr | ac = Py | ac

We now describe the process of combining the partitions in

the sets P and Te!
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(1) Let an x-adjacency of node k be denoted by Py k where :

Py k € Pr The partition in Pe, with a cluster of weight |
y containing node C5 is denoted by Pyse;’

(11) Combine Py x and Pye. by concatenating the clusters of |

each partition. The A is a partition Py, k! with
clusters consisting of the unmodified clusters of Py k

and Pyye,” with the exception of the two clusters
containing node c, and node k. These two clusters are
merged into one whose weight is given by

2=x+y-WELGHT[ c_].

The set of nodes in the merged cluster includes the union

of the set of nodes in both clusters containing node © |

(node k) with the identifier of node ¢ replaced by its
local label Kk,

(iii) VALUELp, \.]=VALUELp,  J+VALUE[p 1
(d) When B, is partitioned, delete the Labels for each node of By

and replace them with the identifier assigned in step (1).

(e) Delete B, from be'(G). If the number of nodes in B, equals n_,

then Fe, 7m,’ If B, was the last son of branch node Cy then
delete c,_ from bc'(G) also and select another branch node of

be' (G) whose sons are leaf nodes. |

(f) Go to (a) until only the root B, remains. Partition B_ using |
steps (a) through (d) above. Choose the optimal partition of

those associated with B_. This is the optimal partition of the

graph. |
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B. GROWTH RATE

The growth in computation time is summarized in Table C.l. The

number of operations is dominated by the operations required to partition

a block of the graph (step Lec). The growth rate of the computation time

to partition a graph G therefore varies asymptotically as

n(n 2) (p log, Pp)

where p is the maximum number of partitions generated in partitioning a

block of the graph G andn is the maximum number of nodes in a block of G.

The maximum storage requirements of the algorithm occur during steps

he(i), be(ii), and Lhe(iiil) since Wp partitions may be generated during

these steps. The growth in storage is therefore proportional to Wp.

C. EXAMPLE

We now give an exampie of the above procedure, The graph to be

partitioned is shown in Fig. C.2(a).

STEP 1

Assign unique identifiers to nodes (Fig. C.2(b)).

STEP 2

Find bc(G) (Fig. C.1).

STEP 3

Form rooted tree bec'(G) by selecting node B; as root (Fig. C.3).

STEP 4 |

Select branch C since sons B15Bys Bg are all leaf nodes.

(a) select B, for partitioning.

(b) Label B, (Fig. C.h(a)).

(c) Partition B, with algorithm outlined in Fig. 2.11:
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Table C.1 ~- Number of operations to partition

an n node graph with k cutpoints

a. |

STEP OPERATIONS/ STEP TOTAL OPERATIONS

1 cn c,n

2 z

2 cn cn

cn cn
3 3 3

La cn c, kn

4b c ~ c_kn
p 2

—2 ¥ —2

he Cc n (p log, p) cgkn (p log, p)

Le(i,ii, and iii) cn Wp cn Wp

Ld cgD cgkn
2 po

Le c.n c kn
9 9

Yf 10 ke.

* n=maximum number of nodes in a block of the graph

¥¥  p=maximum number of partitions generated in creating partitions of

a block of the graph

¥%¥%¥ The constants C13CpreeesCyy Bre implementation dependent
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1 8 4 6

11 2

3 L

8 2

2 9

(a) Graph to be partitioned

=~
(b) Nodes of graph are assigned identifiers

Figure C.2 -- Example of partitioning process for

oo graph with cutpoints
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Figure C.,3 -- Rooted tree be'(G) derived from block-

cutpoint graph bc(G) | |
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J

1

1 8 1 8
ren

G——C GC
(a) Labeling of Bl

L 6 — 4 6

2

—2 (=
fh

(b) Labeling of B2

Figure C.4 -- Examples of block labeling
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1 4 " 6

=, SENAt
7 3 h

Figure C.5 -~- Resulting partition of graph of Fig. C.2
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Results --~

P_=3={P1, 37P2,3773,3)
Pp, ,=(1,2)(3) VALUE=1
1,3

Pp, ,=(2,3)(1) VALUE=11
253

p, .=(1,2,3) VALUE=20.
3,3

(ad) Delete labels and replace with node identifiers:

p={ry Pp ¢rP3,c)

py o=(4,B)(C) VALUE=1
Py =(A)(C,B) VALUE=11,C

p, .=(4,B,C) VALUE=20.
3,C

(e) Delete B, from tree.

Iteration 2:

(a) Select son B, of branch node C.

(b) Label B, (Fig. c.u(b)).

(ec) Partition B,:

P= }371P1,37P2,3°F3,3°
py 2=(1,2)(3) VALUE=6
1,3 |

P, =(2)(1,3) VALUE=.y3

rp. ,=(1,2,3) VALUE=12.
3,3

Since node 3=node C, and node C is a cutpoint contained in a

previously partitioned block By combine Ps with Ps

combine P13 and Pct (A,B)(3)(1,2)
VALUE=T
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p

2:3
i A

combine P13 and Py (1,2)(3,B)(A)
VALUE=17

combine and p + (A,B)(1 2 |

VALUE=5

P
3,3

combine P13 and Py cf (4,B,3)(1,2)
VALUE=26

. ‘2Y(A)

combine Ps 4 and Py of (1,3,B){2)!A)
VALUE=15

combine P33 and Py c (1,2,3)(A,B)
VALUE=13.

After deleting suboptimal partitions:

P v= P ~ 1 1 Pp3={Py 300P2,300P3 3.)

Py 3:=(4,B)(3)(1,2) VALUE=T |

P, 30=11,2)(3,B)(A) VALUE=17’

py 3.=(4,8,3)(1,2) VALUE=26
(d) Delete labels:

Pelp) Pp ooP3, ch
Py -~(4,B)(D,E}(C) VALUE=T

J

P, o~(4)(B,C)(D,E) VALUE=17
J)

Ps ;=(4,B,C) {DE VALUE=26.J)

(e) Delete B, from be' (G).

Iteration 3:

(a) B, is the remaining son of C.
(b,c,d) The generation of these partitions is similar to the above,

hence:
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Pe=lPy¢rPp P53,

Py = (4B) (D,E)(C)(I) VALUE=T

Py =(B,C)(4)(D,E)(J) VALUE=17

Ps o=(4,B,€)(D,E)(J) VALUE=26

(e) Delete B. and C.
Iteration 4:

(a) Select node F since it has one son that is a leaf node, By, .

(b,c,d) Resulting partitions:

Py 5=(4;B,€)(D,E) (J) (F) VALUE=26

py y=(8,B)(D,E)(C,F)(J) VALUE=11

py =(B,C,F)(8)(D,E)(J) VALUE=21
(e) Delete nodes B, and F.

Iteration 5:

(a) Select node H since it has son By :
(b,c,d) Késults:

py p= (6) (H) VALUE=0

Py y=(G,H) VALUE=2

| (e) Delete nodes By and H.
Iteration 6: |

The only node of be'(G) left is the root, Be. It is partitioned with

the result that the optimal partition of ; is

(a,B,C)(D,E)(J)(F,1,H)(G) VALUE=3Y. |

Fig. C.5 shows this partition impressed upon the graph of Fig. C.Z.
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