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SHELLSORT AND SORTING NETWORKS

by Vaughan R. Pratt

| Abstract

Shellsort is a particular method of sorting data on digital computers.

Associated with each variant of Shellsort is a sequence of integers that

Characterizes that variant. In this paperwe answer some open questions

about the speed of Shellsort with certain characteristic sequences, and

suggest a novel application of Shellsort, namely to sorting networkr.

Shellsor® with any characteristic sequence that approximates a

geometric progression and that has short coprime subsequences throughout

takes on”! 2) units of time. For any sequence that approximates a
geometric progression with an integer common ratio, this bound is the

best possible. (The notion of "sorting template" is used to prove this.)

However, if the sequence consists of the descending sequence ofpositive

integers less than n and having only 2 and 3 as prime factors,

then Shellsort takes only O(n log” n) units of time. Sort ing networks -
based on Shellsort with this sequence operate approximately 1.5 times oo
as fasl as with previous methods.

This research was supported in part by the National Science Foundation
under grant number GJ 992, and the Office of Naval Research under grant
number N-0001k-(7-A-0112-0057 NR ObL-L02. Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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Chapter 1

Introduction to Shellsort

| The problem is to sort the elements of the array

A AILALD), ee Aln] into ascending order, riven some total ordering

on the possible values of the elements of A . The high cost of

random-access memory together with the speed of in-core sorting

| motivates the consideration of algorithms that sort arrays "in their

own length", with little or no auxiliary storage requirements beyond

what is needed to hold the array. A number of such algorithms are

known, and all but Shellsort [Sheli, 1959] have proved more or less

| amenable to an analysis of bounds on their running time, as a function
of n . Chapter 2 shows that on?) units of time is the best
possible upper bound on the more conventional variations of Shellsort.

To discuss Shellsort requires some terminology. A p-chain of A

is a sequence of elements of A occurring at intervals of p . For

instance, if n = 8, then A has three 3-chains, {A[1],A74],A[7]},

then {A[2],A[5],A[8]) , and then {A[3],A[6]} . In general, A has

min(n,p) p-chains, each of length [5] or L5 .
When A's p-chains are in ascending order, A is defined to be

p-ordered. To p-sort A is to sort A's p-chains.

ohellsort works by repeatedly p-sorting A for a characteristic

sequence (abbreviated to "sequence" hereafter) of p's , with the last p

being 1. This last value ensures that A is sorted by this process, since

a l-ordered array must be ordered. Furthermore, Shellsort prescribes a

particular technique for sorting each p-chain, namely insertion sorting.

Insertion sorting is a technique whereby one starts with an array |

of no elements, and some source of n entries, and progressively builds

1
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up a sorted array starting with A[1],A[2],... by (i) determining for each

entry where in the array so far constructed it should go in order to

keep the array sorted, (ii) moving tue appropriate array elements up one

place to make room for it, and (111i) inserting it. Since the space consumed

by the partially constructed array and that consumed by the remaining

uninserted entries is just n items, this method can be used to sort

in place, requiring almost no auxiliary storage, by combining all the

operations for each entry into the one loop, as follows:

procedure insertionsort(A);

for i := 2 until length(A) do

forj := 1 step -1 until 2 while A[J-1) > A[]] do

swap (A[J-1],A04]);

The while clause signifies that the iteration is to be terminated if

the expression following the "while" becomes false. The procedure "swap"

exchanges the contents of the locations named by its arguments. The

expression " length(A) " is supposed to be what it says. The variables

i and J are assumed to be declared implicitly, as in ALGOL W, by being

named as the controlled variable of a for loop.

The outer loop of the procedure cycles through the source of entries.

A[1l] 1s not processed since the destination of its contents must be All] .

The inner loop takes each entry and shuffles it backwards through the

array to its proper place. After each execution of the body of the

outer .oop, but before i is incremented, the array A[1l:i] is ordered.

Let us define an inversion in an array A to be a pair of elements,

A{i] and A[J] , such that i<j but A[1i] >A[J) . Thus A is ordered

2



if and only if there are no inversions in A . Define an adjacent

inversion to be one whose elements are adjacent. Then the insertion

sort above can be seen to eliminate adjacent inversions. No other

inversions appear or disappear because every other pair of elements

maintain their relative positions after the exchange. Thus each exchange

reduces the number of inversions in A by one. Since A can have up

to (5) inversions (when A is in descending order, i.e., Ali-1] > Ali]

everywhere in A ), this technique may take up to (5) exchanges to sort A,
or 0(n°) exchanges.

The idea underlying Shellsort is that moving elements of A long

3 distances at each swap in the early stages, then shorter distances later,

may reduce this 0(n°) bound.

An algorithm for Shellsort using the procedure "insertionsort" is

3 not easy in AILGOL. We might write, in near-ALGOL:

procedure Shellsort (A,P,m)

for i := 1 until m do

for j := 1 until Pi] do

insertionsort (A[*xP[i]+]]);

The expression A[*xptj] denotes simply the j-th p-chain of A .

The more usual way to write Shellsort carries out the insertion

sort on a time-shared basis, ‘hus:

procedure Shellsort (A,P,m);

for i := 1 untal m do

for j := P[i]+1 until length(A) uo

for k := j step ~P[1i] until P[1]+1 while A[k-P{1]] > Alk] dc

swap (A[k-P[1]],A[k]);

’ 3



Because Shellsort works by correcting inversions within p-chains,

it is convenient to call such inversions p-inversions.

The time spent by Shellsort is made up of what it would do with an

ordered array, plus an amount of time at most proportional to the number

of exchanges it must do to sort the array. Since the former time is n

times the number of passes, and since the number of passes considered in

the next chapter is always O(log n) , we shall measure the time required

by Shellsort in units of the number of exchanges performed. To convert

this figure to seconds, multiply it by the number of seconds required for

an exchange, a decrement of k , a test for k > P[i]+1 and a subsequent

comparison, and add the time required to Shellsort an ordered array of

the same size. Since the dominant term in the expressions derived in

Chapter 2 is o(n>/2) , the time for exchanges asymptotically dominates

the O(n log n) time for Shellsorting an ordered array, which is why

the number of exchanges 1s an adequate measure in that chapter.

Let us now summarize the remainder of the thesis. In Chapter 2, we

show that Shellsort takes time proportional to n>e in the worst

case. Prior to this, only Papernov and Stasevich's [1965] upper

bound of on?) for Shellsort with Hibbard's sequence was known. In

Chapter 3%, we describe a considerably faster Shellsort that operates

with only O(n log"n) units of time, and in Chapter 4 we show that under

quite reasonable conditions this version of Shellsort can be used to build

a sorting network that requires 0.3 log n units of delay, about 1.5 times

as fast as was previously possible. [Batcher, 1968].

Further proiogue relevant to Chapter 2 may be found in section 2.1 of

that chapter. Chapter 5 presents a more detailed summary and unification

of the results of Chapters 2 to 4, and also suggests problems for further

research,

L



Chapter 2

Least Upper Bounds for Most Shellsorts

2.1 Discussion

A natural characteristic sequence to follow when Shellsorting is a

, geometric progression. If one thinks of Shellsorting as progressively

bringing each element closer to its final position, in jumps of decreasing

8ize, it is "natural" to arrange that these jumps decrease geometrically;

this is what happens in a binary search, for example. Possibly some such

consideration has motivated the choice of a {usually slightly perturbed)

geometric progression for almost all Shellsorts.

If a sequence of even numbers, followed by 1, is used, Shellsort

may take up to n(n-2)/& exchanges when l-sorting. This would happen

if one 2-chain were 1,2, ...,n/2 and the other were 5+ 1, 3+ 2y se.yn
Since this array is 2-sorted, it is 2k-sorted for all k > 0 . Thus at

the last pass, the original array is being l-sorted, that is, it is simply

being insertion-sorted, which is readily seen to take

1+2+3+ ,..+ (3 - 1) = n(n-2)/8 exchanges, for even n , an 0(n°)
figure.

Shell [1959] originally suggested the sequence

L351, Ltd s--e | ox | cess Lo If n is a power of 2, this is
readily seen to be a sequence dealt with in the previous paragraph. This

problem was recognized by Lazarus and Frank [1960], who proposed that

the even elements in Shell's sequence be incremented by one. Thus every

element can be expressed as 2k+l, and its successor must be either k

or k+l, depending on whether k is odd or even respectively. Now k|2k

p
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and k+1{2k+2 , so (2ktl,k) = (2k+1l,k+t1l) = 1 ; that is, every consecutive

pair of elements in the sequence is coprime. We shall see shortly that

o(n’/ 2) , not 0(n°) » 1s the (least) upper bound for Lazarus and Frank's
sequence, mainly because of this coprimeness property.

Hibbard [1963] suggested the descending sequence of all numbers of

the form 25-1 <n » integer k >1 . When n is one less than a power
of 2 , this sequence coincides with both Shell's sequence and Lazarus

and Frank's sequence. Many other sequences have been suggested [cf.

Knuth 1972], almost all of them having in common that they form "fuzzy"

geometric progressions, with every element relatively prime to at least one of

its nearby predecessors. (It is interesting to note that both of these

guidelines are ignored in the sequence of Chapter 3 for the O(n log® n)

Shellsort.)

The next part of this chapter will prove a theorem enabling us to

show that the above Shellsorts take at most o(n’/2) units of time,

provided their sequences have the coprimeness property. The last part

will prove a theorem applicable to Shellsorts whose sequences are fuzzy

geometric progressions with integer common ratios, enabling us to prove

that the 0(n’/2) figure cannot be improved in such a case.

6



2.2 An Upper Bound For Most Shellsorts

The first result is essentially a generalization of Papernov and

Stasevich's theorem [1965] that Shellsort with Hibbard's sequence takes

at most o(n>/?) units of time. The basic properties we shall impose
on the class of sequences covered by the result are that they approximate

geometric sequences and that every d consecutive elements in the latter

part of the sequence form a coprime set of integers, for some 4 ,

We shall need in advance some auxiliary lemmas. The first is the

"non-messing-up" theorem for p-sorting and g-sorting.

Lemma 2.1. Given positive integers p and q , and a p-ordered array A

with n elements, g-sorting A leaves it p-ordered.

Proof. (This is a slight modification of a proof in [Boerner, 1955, pl37].)

Let J be such that A[j-p]> A[Jj] after g-sorting. We shall give

one method of g-sorting which contradicts this, whence it follows that all

methods contradict this, since the outcome of a-sorting is unique.

Let A[j-p], A[j] belong to q-chains B and C respectively. Now

B and C must be distinct, otherwise A[j-p] < A[Jj] because each
q-chain is ordered.

Call the least element of A y =® , and the greatest, o ,

sort all the g-chains except B and C . Now put B and C into

correspondence, with A[j-p] corresponding to A[j], Al j-q-p] to

Alj-al, Al[j+q-p] to A[j+q} , ete. If necessary, extend B and C to

’



ensure that every element has a mate, using - o for B and © for C .

Call the extended q-chains B' and C' . We now have the situation of

Figure 2.1, as the reader may check. (Here (a,c) and (b,d) are two

instances of corresponding elements. Lower valued subscripts of A

correspond to elements closer to the top of the figure.)

- <

| :
a < ¢

B b < 4

< ®

B' Cc!

Figure 2.1

Corresponding q-chains B' and C' .

Now sort B' and C' thus:

l. Use a sorting algorithm which sorts every array of a given size n

by using a fixed sequence of paire (i,J) depending only on n and

drawn from [1,n] x [(1,n] . For each such pair, it puts A[i] and

Alj] in order. The insertion sort of Chapter 1, with the while

condition deleted, is such an algorithm.

2. For each pair (A[1],A[j]) in B' ordered by this algorithm,

simultaneously order the corresponding elements (A[i+p],A[j+p])

in C' . Thus B' and C' are sorted in parallel.

8
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Let a,b in B' and c,d in C' be four elements participating

in one step of this algorithm, with a,b,c,d in the order shown in

Figure 2.1. Suppose before the step, we had a <c and b<d. We

claim that after the step, the two resulting corresponding pairs will

still be ordered. This is trivially true if neither or both of (a,b)

and (c,d) are swapped. If only (a,b) is swapped, we must have had

b<a<c<d before, and if only (c,d) is swapped, then we had

8 <b<d<c ; in both cases, both elements of B are less than or

equal to both clements of C , proving the claim.

Since corresponding pairs are ordered at the start, they must

therefore be ordered at the end, by induction on the steps of the

algorithm. Now the extensions clearly cannot have moved, so they may

be removed. The result is just as if we had q-sorted B and C . But

now A[J-p] <A[j) . This contradiction completes the proof.

An immediate corollary is that if ar array is p,-sorted, then

p,-sorted, and so on up ‘ro Py > it is then p;-ordered for i=12,...,k .
If the diophantine equation

PX; + Px, * ce +p x -q , all p; >0 , (1)

has non-negative solutions in the Xs then an array p, -ordered for

these p's is also q-ordered, by the transitivity of the ordering

relation, since the solution indicates the existence of a sequence

ALJ} < Aldtpy) < Alg*2p] < oo. <ALG+xDP, ] 2 AlJ+x,p,+p,] < os
S ALJtpyx*e. tp x | = A[j+q)] , for all j .

9



Lemma 2.2. When ged(py,Pose++sP) =1, and aq 2p (Py+Py*e««+P, -P)

for some p_ , equation (1) always has non-negative integer solutions

in the Xg

Proof. It is well known that when ged(pysPys eve ’Py) = 1, the

diophantine equation (1) always has a solution in  SYRETTE Sa The

set of possible solutions must be closed under the operation of simultan-

eously adding p3 to Xx, and subtracting Ps from Xx3 since this adds

(psp3 «DpPy) = 0 to the left-hand side of the equation. Thus there must

be a solution in which for all ifm, O<x <r , since each x,

other than x can be adjusted by increments of P, > at a cost to X

But now we have

p((Py*Pytee Py) =P) > (PX *P x*.oetpx, )-p x >» (i fm>Dx, <p)

= a-p, (equation (1))

> p(Py*p*e-otpPp )-p x, (Hypothesis)

from which it follows that x > 0 in this particular solution.

Q.E.D.

We may infer from Lemma 2.2 that if an array A is py -ordered

for pyse..»P, » and cd(Pys>Pos +++} ) =1, A is p-ordered for all
- 1 ]

Pp > p (P1*Pot eo o*Py P) » where p is any one of the p, ,'s . Thus
an upper bound on the number of elements of a p-chain B which may

precede and be greater than a giver. element of B is

p (Py#*P*.+++P, -p )/P since the elements of a p-chain are spaced p apart.

10
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Hence to p-sort A requires at most np, (Py*Pyte. «+p, -p )/p exchanges.
Call this the first upper bound. |

Within a p-chain (of at most |>] elements), the average element

can participate in at most =( [271-1 exchanges during p-sorting.
So the total number of exchanges required is at most 5 n( [37-0 .
Hence n°/2p is also a (larger) upper bound, the second upper bound.

Before proceeding with the formalism of the main result, let us

provide some insight into what is going on. The two upper bounds we

heve just derived are about to be used to bound the time reyuired by
Shellsort using a characteristic sequence having properties shared by

most of the suggested sequences, excluding those for which Shellsort is

clearly an 0(n°) algorithm. The properties we require of a sequence §
are (for the moment): that there is a sequence 3' such that to each

element P of S there corresponds an element p' of §!' » with fixed

bounds on P-P' ("additive fuzziness", namely -a < p-p'< b , for fixed

a,b ): and that each clement of S' is between r and s times its

successor, for fixed r, s> 1] . That is, S' is a sloppy decreasing

reometrie progression ("multiplicative fuzziness").

These conditions are general enough to cover most sequence: that

could be called "fuzzy" geometric progressions.

We also impose a coprimeness condition on neighboring elements of

the sequence, to satisfy the conditions required for the first upper bounds.

For som” integer d independent of n, every d consecutive elements must be

relatively prime.

vic shall vse the first upper bound to bound the time spent ly

Shellscrt when p-sorting for small p . The second upper bound is for

large po. While the latter remark makes sense (n" Jp is small for

| large |), the former may seem not to, at first, since p appears in

11



the denominator of the first upper bound also. Illowever, the numerator

ic an o{p") expression, and the p,'s will be just those elements in
the sequence thal immediately precede po Our conditions ensure that

these decrease in approximate proportion to p , so tne first upper bound

is really an O(p) expression rather than an 0(1/p) one.

Because we do not need the first upper bound for large elements

of S , we shall actually restrict the condition that S be a fuzzy

ccprime geometric progression to the small elements of ¢ . We impose

a much weaker condition on the large elements of 5 , that the sum of

their reciprocals be un 0(1//n) quantity. (This condition is readily

seen to hold for the first half of a fuzzy geometric progression with

all elements less than n , since the smallest element in that half is

itself an 0(/n) quantity.)

We now proceed with the formalism.

Theorem 2.4. Let r,s,t,u,v be reals, with r,s >1 and t,u,v >0 .

Let a,b,d be integers, with a,b >0, d>2.

To each array size n , suppose there corresponds a sequence

PysPys-+e»P and an index ¢ (denotinr the cut-off point P.)
such that

(i) P, 1 (to ensure that {iellsort really sorts)

(ii) 3 1 cu (the larpe p, for the second upper hount)
1<j<c Py 7 /n :

(iii) ¢c >d (co that the first upper bound is usable for

¢lements PosPoyy?t**1Posgan )

12
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(iv) p, < tn (to keep small those elements covered by

the first upper bound, in conjunction with

condition (vii))

(v) j >c¢ implies ged(py ys +++sPy 4) = 1 (for the first
upper bound)

(vi) There is a sequence S' = 139% JURPRTRF Ji in which

(vii) In S*, p!> rpi,, » for i=c,..m-1.

(viii) In S*, pf < SP{.q » for 1 =cy.ee,m=1 .

Then with these conditions, Shellsort takes 0(n’/2) units of time.

Proof. Applying the second upper bound is easy. The total time

required for pj-sorting, for j<c, is at most

n
5p (using the second upper bound)

1<j<ec J

< Lon’/? (by condition (ii))

The remainder of the sequence requires a little more work. However,

the underlying idea remains simple, that the first upper bound decreases

approximately geometrically as Shellsort progresses through the sequence,

and hence the total time required is proportional to that required for

p,-sorting alone.

13
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First note that

P; <pj+b (condition (vi))

< spl, +b , k>0 (condition (viii))
. k k

NM Pp; <sp,.,.+5 a+b (condition (vi)) (2)i- i+k

and

F; 2D -a (condition (vi))

> pt, -& , k>0 (condition (vii))

S Poy > rKv =a (condition (vi)) (3)
Also

Py S (y+a)/r" +b (condition (vi))  (k)

' Then the total time required for Psorting, for Jj >c , is at most

.2 mpy_y (Ps n+ cos *Py_g) / py (the first upper bound,
== and conditions (iii), (v))

. )} 2 1, y y d dn(sP.+sath)[(cp +5 a+b)+(5 p.tsatb)+...+(s p.+s atb) ] /p.Tee iem J Ny J J J

(Ly inequality (2))

< (55+... +sH)n ). (: + et) (p.+a+h) (since s > 1)c<j<m ®; !

< (s+. +s)n ). (sp. +sa+b+(2sa+b) (a+b)) (since p, > 1 ;- 1<p,<t/n J J ~
-% also note use of

condition (iv))

4+

< (5%. +s)n )} / Gs + ‘)1erfe Lvn+a r
= v

(K = (s(catl)+b)(atb)) ; 5 > | ;
and using inequalities (2), (h))

1k
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= (5%... +sHn ). / (ar vK)n

atl < r < ty ta
Vv - \'

A + +

< (55+. . +37)n (sstefoca) + K log edea]) (summing ther-l ri v
geometric

progression)

2 df r 3/2 [t/a]= ts 00 —— é + — .= (s+ (5 s(t n an) + K log| — n
Hence the total time reonived for Shellsort is less than

u 2 d, rst \_3/2~a EN —(3 (s+...45") st In

2 d\[ rsa (s(2a+1)+Db) (a+b) (Lfnsecoe —_— + —m—— .+ (87+...+5 (z= log, (208, - ))-
This completes the proof of the o(n’/2) upper bound result for

Shellsort with this class of characteristics sequences.

The reader may readily calculate the values of r, s (both 2 in

the sequences of Chapter 1), u (a function of t , clearly, as well

as of »~, s, a and b), a, b and v for various sequences, and

may amuse himself detemining the value of t that minimizes the bound

in cach case.

For the case of Hibbard's sequence, for example, where

log, nf =3+1 take r =s=t =v=4d=2, u=a=1,p, = 2 ’
i

b-0, c= Loe, nj - 1 log, n . Condition (i) is satisfied since
Hibbard's sequence contains 1 . Condition (ii) is satisfied since

P. = V /n-1 >'n (for n >1), and p; = “Psp td . Condition (iii)

holds for n > “7” , Condition (iv) holds since P, = 2/n-1 (sce above).

Condition (v) holds since (PrP, 1) = 1 trivially. Conditions (vi) to

15



(viii) hold if Pi 1s taken to be P;+1 . Thus our theorem is true
for all n > 32 . Making the substitutions, the dominant term of our

upper bound is 32.5 n/2 . 3

16



2.5 Optimality of the 0(n>/2) Bound
In this section we shall construct errays that take time proportional

to n’/2 to sort using Shellsort with sequences that approximate a |

geometric progression with integer common ratio. Most of the proposed

sequences to date have this property.

The basic tool for the construction is a sorting template.

(visualize this as a strip of cardboard with some holes in a straight

line; the elements of the template are the hole locations, numbered

right to left.)

Definition 2.1. A sorting template is a set of natural numbers

containing O and closed under addition.

Definition 2.2. The sorting template generated by a set is the least

sorting template containing that set.

For example, the sorting template generated by {1} is the set N |

of natural numbers, while that generated by {2,5} is N-{1,3} .

Definition 2.3. An array element A(i] is visible through a sorting

template T at j when j-i is in T .

(Visualize A as being written on a sheet of paper underneath T ,

with subscripts numbered from left to right. The zero hole of T is

over Alj] .)

17
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Definition 2.4. An array A is constructed under a sorting template T
at a sequence q[l],...,q[(m] thus: .

! := 0;

for 1 := 1 until m do

forJ := 1 until n do

if A[J] is undefined and Alj] is visible through T at q[i]

then begin £ := +1; A[Jj] := ¢ end;

Note that each element of A is initially undefined, and becomes

defined by assigning ¢ to it, after which it is defined.

Intuitively, we put the template down with the zero hole of the

template on A[q[1]] ; then we move the template to A(q{2])] and so on.

At each position, we fill in all the visible but as yet undefined

elements of A , using ever-increasing numbers. Some of the language

we employ later assumes that this intuitive view has been grasped.

Lemma2.5. If pcT , then an array A constructed under the sorting

template T is p-ordered. (Hence the name sorting template.)

Proof. Say A[J] becomes defined when T is at q . Then q-jeT .

50 q-(j-p) ¢T also, since pT and T is closed under addition.

Thus A[j-p] rust be assigned its value before Alj] , whence

Alj-p] < ALJ] .

Q.E.D.

Let us use the notation [a,b] to denote (the set of integers in) | -

the interval from a to b inclusive. By the length of [a,b] we

shall mean b-a+tl . By A <I, for intervals A and BR y We

shall mean every element of A is less than cvery clement of EB .

12
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Let us now give an informal preview of the formalities to foilow.

Our goal is to be able to construct arrays that take time J! to
Shellsort.

As the preceding section showed, p-sorting for p near the be-

ginning and end of sequences takes only linear time; only near the

middle can an additional factor of /n creep in to spoil things. Thus

if we arc going to find arrays that take time n>? we should arrange
things so that Shellsort finds the going toughest halfway through the

sequence. To do this, we shall construct arrays that look as if Shell-

sort is already halfway through sorting them, and yet that have many

inversions. Thus when sorting these arrays, Shellsort will zip through

the first half of the sequence finding nothing to do, and then suddenly

hit a brick wall, and take time n>? in a single p-sorting pass. We

do not much care what happens for the rest of the sequence.

The preceding, definitions and lemmas established the basic tools

for the construction. The following lemras establish some quantitat

results of use in the analysis of the actual construction, which is

deseribed in the first paragraph of the Proof of Theorem 2.11.

19



Lemma 2.6. The sorting template T generatedby [a,b] is UU [ka,kb] .
k>0

Proof. The union certainly contains {0} and [a,b] . To see that the

union is closed under addition, take myn rch that k,a <m< k,b

end kya <n <k,b . Then (ky + k,)a < m+n < (ky +ky)b . Thus the
union is a sorting template containing [a,b] .

To see that it is the least such sorting template, suppose m is

the least integer which is in the above union, but is not in every other

sorting template containing [a,b] . Then (ktl)a < m < (k+l)b for

some k >1 . But every number in this range is expressible as the sum of

two numbers from [a,b] and [ka,kb] respectively. This contradicts

the closure property of the templiute lacking m .

Lemma 2.7. If T is generated by [a,b] and a <b, then 1ieT

for all 1 > a°/(b-a) .

Proof. The complement of T, T , is the set [1,a-1] Uy [b+1,2a-1] Uy ...

I) [kbtl,(k+1)a-1] UJ ... , by Lemma 2.6. When ib+l > (ktl)a , these

intervals vanish. This happens for k > (a-1)/(b-a) . Thus the largest

possible element of T is ((a-1)/(b-a))a-1 , which is certainly less

than a°/(b-a) .

Lemma 2.8. If T is generated by [a,b], a <b, then for any non-

negative integer p < a there is an interval I of length Pp in T

such that T has exactly [== intervals of the form [ka,kbj ,
K > 0, which are less than I .

20



Proof. Choose I of length p and lying in (RR -1)b41, [ER 1].
This latter interval lies in T since it is of the form [kb+l,(k+l)a-1]

(see proof of Lemma 2.7), and is of length (E=E] (a-b)+b-1), which is
certainly not less than p. Now take the Eo intervals of T to be

(0,0) , [a,b] , [28,20] , ... , [(FE=E-1)a, (E221 -1)0] , all of which
are clearly less than I.

Lenma 2.9. With T,I as in Lemma 2.8, the number of elements of T

which are less than any element of I are at least > (a-p) (2 -1) .

Proof. We shall sum just the complete intervals [ka,kb] of T
a=

for k to Ell :

_ 1 (pa) FEROTER.L

L k(b-a) = 3 (b-a)[ 3% [5% 1]
1 a-p

Lemma 2.10. Let ceT and let A be constructed under T at

¢,2¢,3C,...,mc , for some m . Then if sone A[j] 1s visible through

T at ic, it is visible through T at je for all j> i. That is,

once visible, always visible. Conversely, every invisible element must

be undefined.

21
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Proof. If A[j] 1s visible through T at ic , the ic-jeT .

But ¢cT , whence je=jeT » by closure of T under addition. Thus

Ali] 1is visible through T at je.

We are now ready for the main theorem.

Theorem 2.11. Let r,s be reals greater than 1 . Let a,b be

non-negative integers. Then there exist non-negative reals

| t,u,e, with rt <u, such that

if for every array size n Shellsort uses a sequence

S_ = Py se sP with the properties that

(i) there is some clement p in S, such that t/n< p< wn

and for all P. preceding, p , there is an integer m

for which m(p-a) < Pp, < m(p+b) ; and
(1i) the successor of p in Ss a, satisfies

r(q-b)-a < p < s(q+a)+b and also q < p-a;

then Shellsort takes at lease end? units of time on some arrays
of length n .

Proof’, Construct A under the sorting tenj.iate T generated by the

integers in [p-a,p+b] at the sequence Py2P,3Py+..,8P, where g is

large enough to ensure that A is completely defined. By Lemma 2.7,

every element of A is visible through T beyond n+(p-a)°/(atb)

whence it suffices to take g=n+(p-a)°/(a+h)] .

We now show that A takes en’! 2 units to Shellsort.

22



) For the Py in S, up to and including p , the conditions of
the theorem ensure that Py is in T . Thus after p, -sorting, for all
P, preceding q , A is left unchanged (Lemma 2.5). So the number of

q-inversions in the original A gives a lower bound on how fast A will

be sorted. We shall give a lower bound on the number of these inversions.

Initially T is at p in the construction, whence the first interval

of T "covers" some of the first Pp elements of A. As T advances

by p units each time, exactly one new interval of T (which of course

must move as T does) appears, to cover elements of A . Eventually

the I of Lemma 2.8 (of length q in this case) appears. There are

LsJ] disjoint contiguous sequences of elements of A of length p such
that as T progresses, I will partly cover each such sequence in turn.

Hence there must be at least L5- positions of T during this construc-
tion for which q elements of A are covered by I.

| During this process there is an f such that when T is at fp ,

interval I covers some contiguous set V of elements of A within

All} to Alp] . By Lemma 2.10, “he elements of V must be undefined

at this time. By the construction, the set D of those elements of A

visible through T at fp and that lie to the right of V must be or

become defined at thic time. llence the value of each element d in D

must be less than that of cach element of V (since the latter becomes

defined later) and in particular less than one that is in d's q-chain,

since every q-chain must have a representative in any interval of length gq .

Thus there are at least |p| inversions within the q-chains of A .

I'rom this time on, as T is advanced, new elements of A become

covered by I, resulting in [P| more g-inversions by the same argument.

Eventually T will be at some point beyond n , and the number of inversions

contributed in this way for T at each subsequent position will start to



decrease. Aiter LsJ such advances of T , I "falls off" the right
hand end of A .

We might start to count the number of q-inversions in A by

multiplying |D| by Lo] since the q-inversions are all distinct
(because T moves further than q places each time). However, this

would then include those q-inversions whose right-hand members lie

outside A . So we need an upper bound on the number of those q-inversions,

J which we shall then subtract from |D]. 15] to give a lower bound on the
number of q-inversions in A .

At the first position of T at which we start to lose qQ-inversions

to this effect, we lose g-inversions corresponding to just that element

in the first interval of T , namely the zero element. At the next

position we lose at most those q-inversions corresponding to the zero,

and the interval [p-a,p+b] , a total of 1+(b+ta+l) . At the k-th

position, we .ose a number of q-inversions bounded by

) (j(b+a)+l) .
0 <,j<Kk

"his process clops as coon ag the interval I of T leaves the array.

Illecnce k may be bounded by the result of Lemma 2.8. 3o the subtraction

term is at most

24



3 Y. (J(b+a)+1)
=f) =

1k [Bras] 0<J<k

1 < E= y (5(atb)k +k+ 1) , where k = (k(k-1)...(k-i+1)
=f) -

1sk< [55]

. s 2 |T5%5] Yo 1p= Z (a+b) k™+ 3k+ 6k , since k' is 3 [(k 1]
1 a<k<b

ptb-q

< 2 (a+b) K+ 5k | &P
’ 0

= F(a) (B25)? + 2ezcdly

Now |D| 4s given by Lemma 2.9, namely 2 (p-a-q) (Bd - 1) . Henze

the number of inversions in g-chains is at least

-q- - % -

22 0)(pa-a) (BEER - 0) - 7 (an) (REID) + 5 BCD)

t a
- (r-1) Vn + — +b-a

> 2 (tn - 1)( % (r-1) /n + 24 oo Hd -1
u b > u b

1 " Ss (5-1) /n+ 3 -at+b S (s-1) n+ 3 -a+bh- 7 (a+b) YTS + 5— .
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There is a term in n>’? in the above, namely

& c (£(r-1))°/ (asd) - 2 won 2,
This coefficient is not always positive. (Consider arbitrarily

large u .) However, the two main terms of the coefficient are always

positive, since r,s >1 . The first term is proportional to t/u ,

the second to u’ - Thus one can choose suitably small t and u tc

ensure that the first term exceeds the second, so that their difference

is then positive.

This completes the proof.

In the case of Shellsort with Hibbard's sequence, the parameters

arc r ss =2, a=0, b-1,

To verify that !llibbard's sequence satisfies the conditions of the

lemma with these parameters, note that for any pi in the sequence, the
interval (p,-a,p +b] is [2%-1,2%) for some k , and thus every larger
element oly is contained in the interval [m(2K-1),m2¥] where

m - 2°" | Indeed, this condition will be satisfied for any "fuzzy"
eometric progression with r being an integer >1 and s =r . The

other cond tions are easily verified.

2f,



Chapter 3

An n log” n Shellsort

We show in this chapter that, using the sequence oP34 <n,

P,Q non-negative integers, Shellsort takes 2 n(log, n) (log, n) steps,
and also admits of a simplification in which the innermost loop can be

replaced by one instruction.

Let us establish some properties of arrays that are both 2-ordered

and 3-ordered.

Lemma 5.2. If p> 1, then p is representable as a sum of 2's

and 5's ; that is, there are non-negative integers r,8 , with

= = o(P=2Proof. If p is even, then p = 2(p/2) . Otherwise, p = 2( 5 )+3

Corollary 3.5. If A is 2-ordered and 3-ordered, it is p-ordered for

all p>1.

Proof. Follows from Lemma 3.2 and the transitivity of <.

Lemma 3.4. If A is 2-ordered then for all | satisfying 1 < j <n,

cither Alj-1] <Alj] or Alj] < A[j+1] .

27
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Proof. If not, then A[j-1] > A[j) > A[J+1) , a ccatradiction.

An immediate corollary is that if A is p-ordered for all p >1,

no element A[j] may be a member of more than one inversion, and every

inversion must involve two adjacent elements. Thus to sort a 2-ordered

and >-ordered array, it suffices to swap the inverted adjacent pairs,

which can be done in one pass, during which each of the n-1 adjacent

pairs are compared and exchanged ir necessary.

All of the above applies equally well to the pP-chains of an array.

In particular, when A is 2p-ordered and Op-ordered, its p-chains are

2-ordered and >-ordered, which means we can p-sort as above, and only
take n-p comparisons and exchanges.

Applying all this to Shellsort, we then deduce that any sequence

will serv: our purposes if (a) it contains 1 , and (b) if p is in

the sequence p is preceded by 2p and 3p . Furthermore, we only need

use those elements less than n . The smallest such sequence contains

cvery number of the form Py <n, for integer p,q > 0 «. The inequality

PA ‘n can be written as p/ log, n+ q/1og, n < 1, an inequality
lincar in p and q .

kstimatins the leng'h I of this smallest sequence is made easy

using a geometric argument. In Figure 3.1, associate the lattice point

(pa) with the element P14 + The three bounds p 20, q9>0 and

p/ loi, n + q/ log, n <1 define the three sides of a triangle.

28
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4 Wikis n + 9/1og, n=1
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% T= n = 54 in this figure
2 1 2 3 LL 5 &

Pp =—b

Figure 3.1. A triangular array of elements of (2P3%p,q > 0} .

In Figure 3.1, the p and qQ intercepts of the sloping line are

log, n and log, n respectively, whence the area of the triangle is

z log, n log, n , a first approximation to I which we improve thus:
We cla’m that the interior of the triangle is completely covered

by those unit squares whose lower left vertices are lattice points in or

on the triangle (other than on its hypotenuse). For suppose (x.y) is

in the triangle. Then (x,y) is covered by the square whose lower left

vertex is (| x_|,| vy |) . But (Lx_|, L¥_]) is easily seen to be in

or on the triangle but not on the hypotenuse (since (x,y) is nct on

the hypotenuse). This proves the claim.

But those lattice points in the claim correspond exactly to the

elements of our sequence. Hence there are at least > (log, n) (log, n)
clements in the sequence, since the area of the squares corresponding to

these elements exceeds the area of the triangle. So our first approximation
turned out to be in fact a lower bound.

29
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This bound is far from attainable, since the boundary of the squares

is very ragred near the hypotenuse, as in Figure 3.2 (a).

*

y <<]n

2 of

»

|

i

i) , fl

Figure 3.2(a). A triangle covered by squares.

(b). A triangular extension.

One way to improve the bound is to give the triangle a more ragged

hypotenuse. Take copies of the triangle of Figure 3.2(b) and paste

them over the dark regions of Figure 3.2(a). We need | 1oe, n_| such
triangles, each of area A Log, 5 5 giving a total area of more than
1 . 1
= (ors, n - 1) log, > , which is more than 5 loz, n - 0.8 .

To see that the interior of these triangles are all covered by the

squares, note that if (x,y) is in some small triengle t , then

(Lx_,Ly_]) must be on the horizontal lattice line passing through the

lower right vertex v of t, and must be to the left of v , and hence

inside the main triansle.

Hence the area of the squares, and thus the number of elements of the

sequence, is bounded below by > log, n(log, n+ 1l).-0.8.
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To get an upper bound we use a very similar argument. First

replace the hypotenuse by one almost parallel to it:

p/log,(n-1) + 9/10g5(n-1) =1 .

(This uses the fact that P34 <n-l, and simply gives us a marginally
tighter upper bound.) Now associate with each lattice point p in the
new triangle or on its hypotenuse (but not on the P or q axes, and

hence not on the endpoints of the hypotenuse) the unit square whose upper

right vertex is p . These squares are all clearly inside “he triangle.

I'S We left out _ | og,(n-1) + | Logs (n-1) _|+1 points on the axes (the "1"
is the origin). Hence there are less than

1

5 log,(n-1) log, (n-1) + | 1og,(n-1) + | logs (n-1) |+1 elements in the
sequence.

The reader may check that the earlier "ragged" argument still works,

this time using the reflection NG of the triangle of Figure 3.2(b),
and removing copies of this triangle from the main triangle. (The

hypotenuses of the small triangles still coincide with the hypotenuse of

the main triangle.) Hence we may subtract 5 log, n - 0.8 from our
upper bound.

In conclusion, we may bound the length L of our sequence by

1 1

5 log, n(log, n+1l1l) -08 <I < 3 log, (n-1) (log, (n-1) +1+2 log, 2) +1.8

where 2 log. 2 is about 1.26 . The width of this bound is about

log, n (note that log,(n-1) = log. n - n~1 log, e) . Soy 2 2 2

1 2 2
5 log, 2(1og,, n)- , or C.315(1og, n)~ , is a good approximation to L .
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It follows immediately that 0.315 n(log, n)? 1s a good estimate
of the best-case, worst-case and average number of comparisons required

by Shellsort using this sequence. This is of interest in that, at least

asymptotically, it is the fastest known way to Shellsort, in the sense

that the other Shellsorts we could analyze take time proportional to

n’/ 2 on some arrays. However, it is of more interest for a reason we

will pursue in Chapter 4. Here we shall confine ourselves to some

remarks about this particular Shellsort.

There are many orders in which the sequence may be generated and yet

have 2p and Jp precede p . One computationally convenient sequence

senerates all 2P31 for ptq = | log,(n-~1) |, then a11 2P3% for
ptq = | log (n-1) 1-1, and so on until p+q vanishes. Thus

2.2P1 L oP*'1:Q ong 7.0P3% | oPa*l 4h of which are in the set

preceding the one containing P34 . Within a set for which ptq = 1,

start with 21 , then multiply by 3/2 until the result is odd or >n.
Expressing this in near-ALGOL, we have

fori :=21+ | 24 (n-1) |,i+2whilei >1 do

forj := 1, (3 x.) + 2 while jmod 2 = 0 and j <n do

fork := 1 step 1 until n-j do

if Alk] > Alk+j] then swap (A[k],Alk+j]);

Here a | b is an abbreviation for lop t , which is an abbreviation

for 1n(b)/1n(a) , and | a | is an abbreviation for entier(a) . The

reader is asked to believe that mod 2 = 1 if Jj was odd before

deing 1 :- (2x.§) + 2, otherwise it is 0 (an inelegant jump over a

Lhardle of ALGOL +0).
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An interesting improvement to the algorithm capitalizes on

N Lemma 3.4, by avoiding a test following an exchange.

fori:=21t | 214 (n-1) |,1 + 2whilei>1 do

for§ := i, (3xJ) + 2 while §mod 3 =0 and j <n do

for k := 1 step 1 until j-1 do

forI := k step J until n-j do

if Al£] > A[2+§] then begin swap (A[L],A[2+]]);

L := 2+]

end

Whereas before we simply corrected all p-inversions, starting at the

lett, we now correct all the inversions of one p-chain before going on to

the next. This change is necessary if we are to take advantage of

~ Lemma 3.4,

Suppose the body of the inner loop takes 1 unit of time if

A(2] < A[t+j] and 2 otherwise and that all other operations are negligible,

. Then the timing of this version of the algorithm becomes remarkably

independent of how well ordered the initial array was, since for all but

the last two elements of each p-chain, if the body ever takes 2

A units, this increase is offset by skipping the next comparison. Thus

each pass will require between n-p and n units of time (depending on

how many p-chains had their last two elements inverted) which is quite a

small range for most p's in the sequence, in comparison with n , for

reasonably large n .

The numbers 2 and > are not the only possible choice for this

algorithm. In fact, any set Xpp eens X will do if their greatest common
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divisor is . , by Lemma 2.2. The corresponding sequence is the set of

numbers less than n that have only SE cee2 as factors, in

descending order, say, giving a timing of O(n log" n) . The Shellsort

of Chupter 1 must be used, since we now need thc inner loop again. !

Preliminary investigation of various sets seems to indicate that {2,3}

is the best choice, as far as the upper bound is concerned. However,

other sets with two elements may conceivably give a faster running time

on the average.
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Chapter Lu

: A Shell Sorting Network

4.1 Sorting networks

The most interesting feature of the algorithm of Chapter 3 is that

it suggests a fast sorting network. A sorting network is a set of

comparators wired such that when an array of numbers is presentzd to

the input terminals of the network, the same numbers rearranged in

ascending order are presented at the output terminals. A comparator is

a two-input two-output sorting network wheih may be treated as a black

box for the purpose of deaigning sorting networks with them as the basic

building blocks. The basic difference between a sorting network and a

general-purpose computer programmed to read, sort and output arrays is

that whereas the control structure of the computer is inherently serial,

forcing comparisons and exchanges to be done one at a time, the network's

control structure is defined by the comparators alone and can be made

highly parallel; all that is required in the wey of control is that a

| comparator start work just when it has received both of its inputs.

By way of example, the illustrated network of Figure L.1 will sort

four numbers with 3 units of delay.

: & J All]

: a MAK = [a] (7) Al2]
"0 MAX MAX D Alb]

igure 4.1, Sorting Network for four elements.
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To show that this particular network indeed sorts, note that output L

must get the maximum of the inputs, and output 1 the minimum. Hence

All] < A[2] , and A[3] < A[4] . The last comparator guarantees

A[2] < A[3] , and these three relations then mean that the array is
sorted.

A convenient representation for a comparator and its wiring is as in

Figure 4.2:

Figure L.2. An abbreviated comparator.

where the vertical line denotes the comparator and the arrow denotes the

. direction the larger number goes. Thus our previous example would be

drawn as in Figure 1.5%,

1 .
C11 oo
o Al(3]

ol i"
Figure 4.2. Ar abbreviated sorting network for four elements.

Note that the inputs to the final comparator as drawn here are inverted

with respect to the corresponding inputs in the other diagram. This does

hot affect its operation; indeed the two inputs to a comparator never need

be distinguished, since max and min are commutative functions.
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The important thing about sorting networks is that they permit

considerable parallelism, since up to n/2 comparators can be working
simultaneously on n lines. One might deduce from this that, since there
exist serial algorithms taking time n log n , one could do n/2 of

these steps at a time in a sorting network, taking O(log n) units of

time. This deduction breaks down because it is not necessarily possible

to predict which n/2 comparisons to do at any given time without knowing

in advance the outcome of some of those same comparisons. So far, the

best asymptotic timing to date has been Batcher's algorithm [Batcher 1968],

which takes 5 log, n units of delay asymptotically (where a unit is the

time to compare and exchange two elements) and uses r log n comparators
asymptotically. (See also Van Voorhis [1971].)

Further discussion of sorting networks can be found in Floyd and

Knuth [1970].

L.2 Shellsort with standard comparators

In the algorithm of Chapter 3, where an array was sorted by being

P44 - sorted for all integers p,q > 0 with oP34 <n, it was noted

that for each p and q , the corresponding oF33 _ sorting involved only

correcting a small number, L5 J , of adjacent inversions. It is
possible to do all of this work in two stages of parallelism, by first

simultaneously comparing every even-numbered location (numbering the

elements of a p-chain 1,2,3,... ) with its predecessor, and then doing

the same for odd-numbered elements. For a single p-chain with 6 elements

we would have Figure L4.bL.
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A 1
'

J

B - 2
|

c '
: 3
]

D : L
)

E 5
'

F n 6

Figure 4.4. A sorting network for a 6 element p-chain
that is already 2- and 3-ordered.

Since the p-chains are independent for a fixed p , we can

extend this parallelism to the whole array. Thus if the above example

were of a single 3-chain in an array of 16 elements, the whole

5>-sorting stage would involve the network of Figure 4.5:

A Rl —. 1
A, —_— 2
A, a ' 2
1 _ NEE L

B, BB 6
Cy e | —_— fi
oo 3
ct I 9
D; 11 10
D a 11
% CT 12
Fi ' , 1 15
ES NR 1h
E, I 15
Fy 16

3a ' 3b

Figure L.5

where Ja and 3b denote the first and second stages of 3=-sorting

respec‘ively.
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A complete sorting network for 8 elements would use the characteristic

sequence 6, 4, %, 2, 1 , as in Figure L.6.

A ' ’ | 1

NE BER DRT EEBL >
o HEHE EE EEE Ha 3
ON I El EE EEEBEEEE EN .
I EE NE EEE A RY EEENE 5
Sl I HE Bi FE NE A EY EE bE ¢
A KEE I CEH BBEBET 7

RE HH NE FE 8
6+ 4 ' 3g *3p "2a ‘20 "1a! 1

Figure L.6

From the analysis of Chapter 5, we know that there are ahout

: (log, n) (log, n) elements in the sequence, whence we need at most
(log, n) ( log, n) stages of parallelism, each renuiring one unit of delay.

1 2 ] .
So this network takes about 1.58 log, n units, slover than Batcher's
algorithm by a factor of 1.26 .

4.3 A faster network

| In the above network, for each p in the characteristic sequence,

we had to partition into two groups those comparators responsible for

p-sorting, in order to avoid having two comparators workiag on the same

line simultaneously. But Lemma 3.k tells us that two such comparators may

not both swap their inputs. This suggests a conjecture, that the comparators

can operate in parallel anyway, perhaps with some modification to the design

of the comparators. were this possible with nc increase in delay of a
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comparator, our network would then function with : log, n log; n units
of delay asymptotically, which would represent an improvement of a factor

of log, 3 = 1.585 over the networks described by Batcher [1968].

Unfortunately, there is no universally applicable way of doing this.

For if there were, we could apply it to the particular case where the

quantities to be sorted may take on only the values 0 and 1, and the

only available components are two-input AND and OR gates, each with a

delay of 1 unit. Now we may readily build a comparator for this domain

8 in Figures 4.7 and 4.8.

a

= == fh
i

ERE NeOe

J

Figure 4.7. A comparator for zeroes Figure 4.8. Notation.
and ones.

since our conjecture refers only to that part of a sorting network

corresponding to a sinytle element of the P51 sequence, we need only

consider, in isolation, the realization of this part as AND and OR rates.

Moreover, within that part, we only need consider a single oP31 - chain

as in Figure 4.9, since chains are not connected to each other within

that part.

hO
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(a) (b)

Figure 4.9. (a) A sorting netwcrk for one p-chain (as in Figure L.k,
minus one input).

(b) Implementation of Figure 4.9(a) using Figure 4.8.

The delay of this stage of the sorting network as implemented in

Figure h.9(b) is just 2 units. In order to improve on this we must reduce

the delay to 1 unit. But then output 3 of Figure 4.9(a) would have to be

the output of some gate with two inputs chosen from the inputs B , C y D

and E (the only inputs that could affect output 3), since only 2-input

gates are available. But output > is a non-trivial function of B , C

and D , even under the condition that the input is p-ordered for all

P>1. (Consider BCD = 001 vs. 101 (for B ), 001 vs 011 (for C ),

and 010 vs 011 (for D ).) Hence it is not possible to reduce the delay

4)
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of this stage to 1 unit. (The reader may readily extend this result to

the case when multiple-input AND and OR (and even NAND and NOR) gates
are available.)

So the best we can hope for is that under some conditions we may

be able to take advantage of Lemma 3.4. To show that our conjecture is

not completely without grounds we shall give in detail an example of a

situation much closer to real-life problems and state-of-the-art

technology than the foregoing somewhat artificial one, and show that in

this situation we mey come closer to realizing the desired factor-of-two
speed-up.

A more common domain for sorting purposes is that of the integers.

A common representation for this domain is the familiar binary notation.

Let us assume that we want to sort n words of w obits each, and that

each word represents an unsignec binary number.

One way to implement a sorting network for this situation is to have

each comparator process all w bits of each of its two inputs in

parallel before outputting anything. This is fast but expensive, since

each bil requires some hardware of its own. At first sight, serial
processin.: (most sifnificant hit 'irst) would seem to involve a speed

decreave of a fac.or of about w . However, it should be clear that

as soon as a comparator has inspected a bit from each of its inputs, it

“ZY pass those bits on to the next comparator before it has seen any mors.
of its input. (A proolem that can arise here is that a comparator may

not know at some time which of its inputs is the maximum. But in this

case, all pairs of bits seen so far must have been equal, so that it

doesn't matter which way it routes its output.) So the time required for

Lo
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a serial network is really Just that required by a parallel network,

i. plus (rather than times) the time required to pass w bits (to be precise,
w-1 ) through a comparator. Hence serial organization would appear to

be economically sound here, and we shall assume it for our example.
Finally, let us assume that we have available NAND gates and NOR

gates with any number of inputs, and flipflops. While this restricted

repertoire does an injustice to the present state of the art of integrated
circuits (where the effect of parasitic lead capacitances on timing

dominates that of AND-OR-INVERT gate propagation delays in same cases),
it will at least take advantage of the reader's Presumed familiarity with

the elements of traditional (and rather idealized) switching theory.

With our assumptions formulated, we shall exhibit an implementation
of Figure L4.9(a) under these assumptions.

Since the input to the netwoik of Figure L.9(a) is p-ordered for

all p >1, and since the output is completely ordered, it follows that

each output is just the median of its three closest inputs; e.L.

output 2 is the median of A » B and C , output 3 is the median of

B, C and D, and so on. Hence it suffices to implement Figure L.9(a)
as in Figure 4.10(a), where the output of each box labelled M' is the

median of its inputs. (The 0 and 1 inputs at the top and bottom are

fixed at those values throughout the operation, and tlus correspond in

their effect to values of -o and + respectively.)

3,
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Figure 4.10 {a) Implementation of Figure 4.9(a) using median-finders.

(b) Same as (a) (some detail omitted) with registers R added.

The device M' must keep track of the relations between its inputs.

Because of our serial orpranization, these relations are a function of

time, in that they depend on how much of the incoming three words has

been seen. Tt suffices to remember (say for the M! connected to output 2)

whether A<B, A=B or A>B, and whether B<C, B=C or B >C .

Thus it would seem that each M' must be able to distinguish nine cases

(three of which cannot arise, as we shall see later, leaving six cases).

“his ig wasteful since two adjacent M' s could share the information

about “heir two common inputs. This immediately suggests Figure k4.10(b)

us a more economical oryanization. The connections of Figure 4.10(a) are

Wy



preserved (although their detail is omitted for clarity in Figure L4.10(b)).

Box M' is now replaced by bcx M , which no longer has the responsibility

of remembering what happens from one bit to the next. Instead, this

responsibility is delegated to the R boxes. Box M now consults its

three inputs and two R boxes as each new set of 3 bits, A, B, C ,

arrives. The output from an R box is 3-valued, viz. <, = or >,

corresponding to whether R thinks that A <B, A=B or A>B.

There are two approaches to the timing of M . Either M may wait

until the R boxes have decoded their inputs before deciding which of

A,B and C is now the median, or M may decide to go ahead with the

new A, b and C bits but using the old states of the boxes R, ’
corresponding to the situation up to the previous A, B and C bits.

That is, M may anticipate the next states of the R boxes, without

waiting on them. The merit of this approach is that the delay of the

whole stage is then reduced by an amount possibly as great as the delay

of R . We shall adopt this second strategy.

We may build R boxes as in Figure 4.11.

- Notation
. A ¢

set X X

set Y ¢ > Y

where X = Y

B

Figure 4.11. Implementation of an R box, with 2 gates, 2 flipflops.
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Note that the complemented inputs A and B may be derived from A , B

respectively ucing inverters (single input NAND or NOR gates). lowcver, 2
it is highly likely that a practical design will interpose a flipflop

between the output of a median finder and the next stage in order to

control the movement of bits through the network, both to avoid one bit

catching up with its predecessor and to ensure that the three inputs all

arrive simultaneously at a median finder. Inherent in the design of

flipflops made of NOR gates (the usual strategy) is the accessibility

of both the flipflop's output and its complement. Thus the inverters

would then not be needed.

The two AND gates may independently be replaced by NOR gates, with

the appropriate changes to their inputs (that is, use the complemented

value of each input instead). This follows from De Morgan's Law that

AB = A+B . We used AND gates to aid the reader's understanding of the

circuit's operation.

The notation for flipflops should be sclf-explanatory. It was

supgrested to ue by li. Otone and sidesterps the irrelevant issue of whether

Lo uge the Q or the Q cutput (a designation quite arbitrarily

acsipned by each flipflop's manufacturer, with R (reset) and S (set)

inputs then named to correspond to this arbitrary choice) to denote

some variable. Fach half of the flipflop represents a buffer that

"remembers" any logic level of 1 that arrives at its input. The

juxtaposition of the two halves represents the fact that the buffer is

made to "forset" (i.e., return to state O ) if a level of 1 arrives

at the other ovuffer'c input.

Le



In the operation of the R box, input G (go) is momentarily set

to 1 prior to starting to sort, and then returns to O for the

remainder of the sorting operation. Thus every R box initially

supposes that both A <B and A>B, that is, A =B.

By inspection of the circuit, as long a8 A = B at the inputs, the

state nf R will be undisturbed. Suppose A =0 and B =1 at some

time. If A =B before this, then we must have A <E , and R digests

this fact by complementing the upper flipflop. The dual situation

obtains if A=1 and B =0 .

Once one of the flipflops has been complemented, it is clear that

no further change of state of R is possible. The complemented flipflop

will never see ancther 1 at its G input, and the other flipflop's

input has heen turned off by the complementing. So cnly three states

of R are possible, corresponding to A=B, A<B and A >B, as

desired. These states are communicated to the outside world by four

outputs (abbreviated to one in Figure 4.10(b)) labelled <, >, <

and > respectively.

Let us now proceed to a circuit for the M boxes, given by Figure

4.12. We use AND and OR gates for pedagogical reasons; an equivalent

circuit may be obtained by replacing every gate with a NAND gate; recall

De Morgan's Law that A+B = AB .
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Figure 4.12. An implementation of a median finder M .

The unprimed inequalities labeling the input terminals denote the

appropriate outputs of the R box that is to be connected between A

and B . Call this R box simply R . The primed inequalities are

for the R box between B and C . Call this box R' .

To verify that this circuit works, it suffices to enumerate the

possible pairs of states of R and R' . The details are encapsulated

in Figure 4.13.
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Three cases, (>,>') , (>,=') and (=, >') are not shown

because they cannot occur. Each of these cases implies that A >C ,

contradicting Lemma 3.4. This remark is independent of what bits are

seen later, even if eventually (>, =') becomes (>, <') , say. The

explanation in this case is that if there is 80 far no way to distinguish

B from C, yet R can tell that A > B for some reason, then we

must deduce that A > C for the same reason.

The figure shows those inputs that are set to 1 for each of the 6

possible cases. By eliminating those AND gates of Figure 4.12 that have

a O input, and then simplif ing the remaining circuit, it is easy to
arrive at the equivalaut circuits shown for each case.

To verify that the equivalent circuits arn the desired ones, note

that we have essentially reduced the problem to the case when the data to

be sorted can have only the two values 0 and 1 . The median finder's

responsibility is simply to decide which of three bits is the output.

It is the responsibility of R and R' to decide which equivalent circuit

iz required for any particular set of 5 bits.

For the case (-, ') , we clearly want the fullblown circuit of

Fiprure h.o(b). Inspecting output 2 of that cir:mit shows that we have

the correct equivalent circuit.

For the case (=,<') , C cannot be the m-dian, so we want

max(A,B) . Figure 4.8 verifies this equivalent circuit.

In the case (<, =') , A cannot be the median, so we want

min(B,C) . Again Figure 4.8 confirms the circuit.

The remaining cases correspond to B < A < C » A<B<C and

A<C <B respectively, giving medians A y B and C respectively. So
the circuit of Figure 4.12 does indeed work.
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Note that if R is in state «< » the output of M is independent

of input A , and similarly for input C when R' ig in state <', as
can be seen from Figure 4.13.

It follows that in Figure 4.10(b) the top input of the top M box

need not be set to 0 as in Figure 4.10(a), and similarly for the very
bottom input. Thus these two inputs may be tied to any convenient

terminal in practice, provided the terminal's voltage does not interfere

with the otherwise correct functioning of the gates thereby attached.

The crucial question now is that of speed. In particular, how does

this circuit compare with the fastest possible circuit for a standard
comparator for use in Batcher's network? Any answer to this will almost
Certainly have to depend on a detailed knowledg~ of the relative speeds
of the available devices for building comparators.

Figure 4.1h exhibits a possible implementation of a comparator.

The principle of operation. of the structure in Figure L.1ll(a) is the

same as that of Figure 4.10(b). The only difference is that in place

of the three-argument median finders, we now have max and min {inders,
each with only two arguments. The circuits for MIN ard MAX are

analogous to that of Fipfure 4.12, and the style of argument represented
by Fifure 4.1% carries over to these circuits quite trivially. As

before, NAND gates may be used throughout. It is interesting to note

that although the circuit for M was developed independently of those

for MIN and MAX, the MAX circuit is obtainable directly from the M

circuit by removing the tottom three AND gates of M and the <' input
of the second AND gate (that is, everything to do with input C ). The

MIN circuit is almost as easily obtained (together with some simplification)
by suppressing anything to do with input A.
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Figure L.14 (a) Structure of a camparator.

(b),(c) MIN, MAX circuits.

We conjecture that the circuit of Figure 4.1L is very close to the

fastest possible for a standard comparator, using the existing technology

based on NAND and NOR gates. In support of this, we can prove that the

two-gate delay of this circuit cannot be reduced to a one-gate delay.

For if it could, each gate (necessarily one for each output) would have

to be a NAND or NOR gate. But neither these nor AND nor OR gates are

suitable. Consider the MIN output. This cannot be the AND or NAND of

the inputs A and B, since there are occasions when one of A or B

is O yet a 1 output is required (e.g. when R knows A < B, the

current A bit is 1 and the B bit is 0 ) ora © output is requirad
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(e.g. both A and B are simultaneously O at some time). A dual

argument says that the MIN output cannot be the OR or NOR of the inputs

A aad B . A fortiori, the MIN output cannot be a single-gate function

of A, B and the state of R .

Hence the question of optimality of the circuits of Figure k4.1lh

involves mostly very technology-dependent issues such as the effect of

fan-in and fan-out on gate propagation delays, the ratio of turn-on

to turn-off delays (quite significant with bipolar transistor TTL

technology) and whether it is possible to wire-OR gate output (as with

tri-state logic for example; this gives the effect of having OR gates

¢ with no delay). Each gate in Figure L.lh has a fan-in of at most 3 ,

and a fan-out of at most 4 . It would seem unlikely that this could be

significantly improved, especially in view of the fact that the delay of

' currently available gates as quoted by their manufacturers is independent

of the fan-in for up to about six inputs, and increases by about 5 percent

(for fast gates) for each extra device loading the output, up to a fan-out

t of about 10 .

If wired-OR is possible, this gives all our circuits (except for R )

the cffect of one gate of delay, so the issue of the availability of

wired-OR logic would not appear to significantly damage our conjecture.

The issue of turn-on/‘urn-off delays is probably too transistor-dependent

to be worth discussion here. The reader is challenged (if he is

interested in technolosy-dependent arguments) to try to show constructively

that the ratio of turn-on to turn-off delays (within reasonable limits)

affects our conjecture.
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Of course, none of this is very relevant if the delay of R

exceeds that of the other devices. In this case, our median-finder

is as fast as our comparator (ignoring the fan-out of R for the moment), .

and our comparator in turn is probably close to optimal, in view of the

triviality of the circuit for R . Taking the fan-out of R into

consideration, this is at most 2 for each output from R in Figure L.1k

(counting the connections within R ), and at most 3 in Figure L.12

(provided we are using NOR gates in R ; with AND gates as shown, the

fan-out of the < and > outputs becomes 4 ). So a delay of at most

5 percent that of a gate (we can build flipflops from NOR gates), and

hence less than 3 percent of the whole circuit, is about the main

difference in timing between these circuits.

In the event that R turns out to be faster than our median finder,

we need to show that the latter is not much slower than our MAX and MIN

circuits. The only significant difference is that the fan-out of the

output of M is 5 more than that for our comparator outputs (6 if

we don't, have flipflops at the output, for then R will require two

inverters). To get around thic disparity, wc can "move the fan-out back

a rate", by duplicating or triplicating the circuitry for the OR gate in

cach of our circuits, at the cost of increasing the fan-out of the AND

gates. The optimum appears to be triplication for M and duplication

for each of MIN and MAX, independen’.ly of whether we use flipflops

between stages. (Tne flipflops if they are present must be duplicated

along with the OK gates.) Without flipflops, the optimized "accumulated 4
fan-out" (maximum fan-out of any AND gate plus maximum fan-out of any OR

cate) is 7 for M (3 for the ANDs, L for the ORs) and 5 for
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MIN/MAX (2 for ANDs, 3 for ORs). With flipflops, it is 6 for M

| (3 for the ANDs, 3 for the ORs) and U4 for MIN/MAX (2 for ANDs,

2 for ORs). The situation for M with flipflops is shown in Figure L.15.

In both cases the difference between M and MIN/MAX is 2 , corresponding

to a difference in delay of about 10 percent of a gate, or at most

> percent of a comparator without flipflops, even less for one with

flipflops.

— 3

— 3

5+5+3 = 9 = total ioad of next

, 3 stage

| '

i

/

Figure 4.15. M with triplicated OR rates and flipflop buffers.
(Not all AND gates shown.)

In conclusion, there seems little reason to doubt that with

state-of-the-art technology. we can build median-finders whose speed is

within 5 percent of the speed of the best comparators. Thus, using our

oP network, we may improve on Batcher's network by a factor of between
1.5 and 1.585 .
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Chapter 5

Epilogue

5.1. Summary and Suggested Problems.

For each chapter, we shall summarize its result= and suggest

problems associated with that chapter.

In Chapter 2, we gave an upper bound (namely on’ %yy on the worst-
case time for Shellsorts that use "fuzzy" geometric progressions with

short coprime subsequences throughout. In addition we showed that when

these progressions had an integer common ratio, the upper bound could

not be improved other than to within a constant factor. This leaves

open the following problems,

1. What is the constant factor (as a function of the given

characteristic sequence) for the worst case of Shellsort with the

integer-common-ratio sequences?

2. Can the on?) bound be improved if the ratio {s not an

integer, but, say, /2?

J. What other properties do Shellsorts with geometric sequences

have? For cxample, what is the mean and the variance of the time for

Shellsort with Hibbard's sequence, given some frequency distribution

for the data?

In Chapter 3, we showed that on’? is certainly not the ultimate

fate of Shellsort. We did this by exhibiting one sequence for which

Shellsort takes time O(n log 2 n). Some problems this raises are:
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4. What is the ultimate speed of which Shellsort is capable?

(Is O(n log Zn) the best possible?).

5. What is the average time for Shellsort using sequences of the

form 2P59, etc.? 1s it better or worse than that for the 2P39 sequence?

In Chapter 4, we converted the serial algorithm of Chapter 3

into a highly parallel one. Our arguments were, unfortunately, based

on the state-of-the-art of the electronics industry. We showed that

there was no universal way to eliminate this dependency, by describing

a rather trivial environment where our method failed to compete with

Batcher's method. This raises these questions.

6. What environments less trivial than the domain {0,1} ale

handicap our method?

7. Are there environments for which our method is stil: better

than Batcher's, but only by, say, a factor of 1.2?

8. What is the advantage of our method when we can afford to

build parallel comparators? (This costs many times more, with a

disproportionately small return on the investment, making this question

of interest mainly to the very rich.)

9. 1s it a coincidence that all attempts to build faster sorting

networks have resulted in networks that take time 0(1log? n), or is this

the asymptotic lower bound?
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5.2. Conclusions and Perspective.

The unifying basis for this thesis is the sorting technique

described by Shell [1959], generalized of course to consider a larger

class of characteristic sequences for Shellsort than the one considered

in Shell's original paper. The sequences we considered in detail could

be classified respectively as first- and second-order geometric progressions,

where an m-th order progression has m distinct ways of generating new

elements of the progression from old ones (e.g. multiplying by either 2

or 3, as in the second-order geometric progression of Chapter 3).

The behavior of Shellsort is strikingly different for first-order

geometric progressions as opposed to higher order ones. In the former

case, as remarked in Section 2.1, Shellsort takes time o(n3/?) using
perturbed progressions, but time 0(n°) using an unperturbed sequence

of, say, powers of two. The theorems and remarks of Chapter 5 depend

tor their proof on the higher-order sequences remaining unperturbed.

The questicns answered in Chapters 2 and 3 are of academic interest

only, since there already exist sorting techniques which, on theoretical

rrounds alone are as good as Shellsort, and which on empirical evidence

are much better for almost all applications. Chapter 4 gives a most

interesting exception to this rule, in that we show that in practice

3hellsort is the best method to use for sorting networks, at least

from the point of view of speed. This is n>t to say that Shellsort

will always be better than Batcher's method; a way of building

considerably faster comparators,which does not apply to our median-finders,

could upset this claim. But the arguments presented in Chapter I seem to

indicate that a different technology would be required for this to happen.
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