AD 740110

SHELLSORT AND SORTING NETWORKS

BY

VAUGHAN R. PRATT

STAN-CS-72-260
FEBRUARY 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Reproduced by
NATIONAL TECHNICAL

INFORMATION SERVICE
Springfield, Va. 22151




D alo bR L s

Unclassified
s-'cnm= Clasnification
DOCUMENT CONTROL DATA-R& D

(Security classilication of title, body of absirect and indexing annetation must be entered when the eversll repert I3 classified)

| OMIGINATING ACTIVITY (Corperale auther) 20. AEPORT SECURITY CLASSIFICATION
Unclassified
Stanford University 2s. omous
I RMFPORT TITLE
SHELLSORT AND SORTING NETWORKS
4 OLSCRIPYIVE NOTES (Type of report and inclusive detes)
Technical Report - February 1972
S AUTHORIS) (Firat neme, middie initiel, lastl neme)
Vaughan R. Pratt
6 REPORT DATE 78. TOTAL NO OF PAGES 78. NO. OF REFS
February 1972 63 10
8. CONTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMBER(S)
ONR N-0001L-67-A-0112-0057
b PROJECT NO STAN-CS-'?Q-Q&
NSF GJ 992 .
c. 0d. OTHER REPORY NOIS) (Any other numbere that mey be sssigned
thie repert)
d None
10 OISTRIBUTION STATEMENT
Approved for public release; distribution unlimited.
1 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research, Pasadena Bra.nclﬂ

'Y A®STRACTY

Shellsort is a particular method of sorting data on digital ccmputers.
Associated with each variant of Shellsort is & sequence of integers that
characterizes that variant. In this paper we answer some open questions about
the speed of Shellsort with certain characteristic sequences, and suggest a
noveli application of Shellsort, namely to sorting networks.

Shellsort with any characteristic sequence that approximates a geometric

progression and that has short coprime subsequences through takes O(n3 / 2)
units of time. For any sequencc that approximates a geometric progression with
an integer common ratio, this bound is the best possible. (The notion of
"sorting template" us used to prove this.) However, if the sequence consists
of the descending sequence of positive integers less than n and having only 2

and 3 as prime factors, then Shellsort takes only O(n log2 n) units of time.

Sorting networks based on Shellsort with this sequence operate approximetely 1.5
times as fast as with previous methods.

‘“
DD ."3%..1473 (pace 1) Unclassified

S/N 0101.807-680) Becurlty Classiflcation




e ST SO R O Y e mers o

v - - — L, o . v

Unclassified
Tacurlty Classllicailon

REY WORDS

DD -’:.-‘473 (BACK) Unclassified
(PAGE 2) Security Classification




SHELLSORT AND SORTING NETWORKS

by Vaughan R. Pratt

Abstract
Shellsort is a particular method of sorting data on digital computers.
Associated with each variant of Shellsort is a sequence of integers that
characterizes that variant. 1In this raper we answer some open questions
about the speed of Shellsort with certain characteristic sequences, and
suggest a novel application of Shellsort, namely to sorting networke.
Shellsor”. with any characteristic sequence that approximates a
geometric progression and that has short coprime subsequences throughout
takes O(nj/e) units of time. For any sequence that approximates a
geometric progression with an integer common ratio, this bound is the
best possible. (The notion of "sorting template" is used to prove this.)
However, if the sequence consists of the descending sequence of positive
integers less than n and havingonly 2 and 3 as prime factors,
then Shellsort takes only O(n log2 n) units of time. Sorting networks -
based on Shellsort with this sequence operate approximately 1.5 times

as fast as with previous methods.
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Chapter 1
Introduction to Shellsort

The problem is to sort the elements of the array
A AMILAMY, e 0An into ascending order, jriven some total ordering
on the possible values of the elements of A . The high cost of
random-access memory together with the speed of in-core sorting
motivates the consideration of algorithms that sort arrays "in their
own length", with little or no auxiliary storage requirements beyond
what is needed to hold the array. A number of such algorithms are
known, and all but Shellsort [Sheli, 1959] have proved more or less
amenable to an analysis of bounds on their rumning time, as a function
of n . Chapter 2 shows that O(n5/2) units of time is the best
possible upper bound on the more conventional variations of Shellsort.

To discuss Shellsort requires some terminology. A p-chain of A
is a sequence of elements of A occurring at intervals of p . For
instance, if n =08, then A has three 3-chains, {A[1],A74],A[7]],
then {A[2],A[5],A[8]} , and then {A[31,A[6]} . In general, A has
min(n,p) p-chains, each of length r%-l or [_%_l .

When A's p-chains are in ascending order, A is defined to be
p-ordered. To p-sort A is to sort A's p-chains.

Shellsort works by repeatedly p-sorting A for a characteristic

sequence (abbreviated to "sequence" hereaf‘ter} of p's , with the last p
being 1. This last value ensures that A is sorted by this process, since
8 l-ordered array must be ordered. Furthermore, Shellsort prescribes a
particular technique for sorting each p-chain, namely insertion sorting.

Insertion sorting is a technique whereby one starts with an array

of no elements, and some source of n entries, and progressively builds



up a sorted array starting with A[1],A[2],... by (1) determining for each
entry where in the array so far constructed it should go in order to

keep the array sorted, (ii) moving tue appropriate array elements up one
place to make room for it, and (1ii) inserting it. Since the space consumed
by the partially constructed array and that consumed by the remalning
uninserted entries is just n items, this method can be used to sort

in place, requiring almost no auxiliary storage, by combining all the

operations for each entry into the one loop, as follows:

procedure insertionsort(A);
for i := 2 until length(A) do

for j := i step -1 until 2 while A[J-1) > A[J] do

swap (A[J-1],A(4]);

The while clause signifies that the iteration is to be terminated if
the expression following the "while" becomes false. The procedure "swap"
exchanges the contents of the locations named by its arguments. The
expression " length(A) " is supposed to be what it says. The variables
i and J are assumed to be declared implicitly, as in ALGOL W, by being
named as the controlled variable of a for loop.

The outer loop of the procedure cycles through the source of entries.
A[1] 1s not processed since the destination of its contents must be All) .
The inner loop takes each entry and shuffles it backwards through the
array to its proper place. After each execution of the body of the
outer .oop, but before 1 is incremented, the array A[1l:i] 1is ordered.

Let us define an inversion in an array A to be a pair of elements,

A[i]) and A[J] , such that i < Jj but A[1) >A[j] . Thus A 1is ordered
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if and only if there are no inversions in A . Define an adjacent
inversion to be one whose elements are adjacent. Then the insertion
sort above can be seen to eliminate adjacent inversions. No other
inversions appear or disappear because every other pair of elements
maintain their relative positions after the exchange. Thus each exchange
reduces the number of inversions in A by one. Since A can have up

to (g) inversions (whea A 1is in descending order, i.e., A[1i-1] > A[i]

everywhere in A ), this technique may take up to (g) exchanges to sort A,

or 0(n2) exchanges .

The idea underlying Shellsort is that moving elements of A long
distances at each swap in the early stages, then shorter distances later,
may reduce this O(n2) bound.

An algorithm for Shellsort using the procedure "insertionsort" is

not easy in AIGOL. We might write, in near-ALGOL:

procedure Shellsort (A,P,m)
for i := 1 until m do
for j :=1 until P[1] do

insertionsort (A[*xP[1]+3]);

The expression A[*xp+tj] denotes simply the j-th p-chain of A .
The more usual way to write Shellsort carries out the insertion

sort on a time-shared basis, ‘hus:

procedure Shellsort (A,P,m);
for i := 1 until m do

for j := P[1]+1 until length(A) do

for k := j step -P[1] until P[i]+1 while A[k-P[1]}] > A[k] d

swap (Alk-P(1]1,A[k]);



Because Shellsort works by correcting inversions within p-chains,
it is convenient to call such inversions p-inversions.

The time spent by Shellsort is made up of what it would do with an
ordered array, plus an amount of time at most proportional to the number
of exchanges it must do to sort the array. Since the former time is n
times the number of passes, and since the number of passes considered in
the next chapter is always O(log n) , we shall measure the time required

by Shellsort in units of the number of exchanges performed. To convert

this figure to seconds, multiply it by the number of seconds required for
an exchange, a decrement of k , a test for k > P[i]+1 and a subsequent
comparison, and add the time required to Shellsort an ordered array of
the same size. Since the dominant term in the expressions derived in
Chapter 2 is O(n3/ 2) , the time for exchanges asymptotically dominates
the O(n log n) time for Shellsorting an ordered array, which is why
the number of exchanges is an adequate measure in that chapter.

Let us now summarize the remainder of the thesis. In Chapter 2, we
show that Shellsort takes time proportional to n3/2 in the worst
case. Prior to this, only Papernov and Stasevich's [1965] upper
bound of O(nj/e) for Shellsort with Hibbard's sequence was known. In
Chapter 3, we describe a considerably faster Shellsort that operates
with only O(n logen) units of time, and in Chapter 4 we show that under
quite reasonable conditions this version of Shellsort can be used tc¢ build
a sorting network that requires 0,3 logen units of delay, about 1.5 times
as fast as was previously possible. [Batcher, 1968].

Further proiogue relevant to Chapter 2 may be found in section 2.1 of
that chapter. Chapter 5 presents a more detailed summary and unification

of the results of Chapters 2 to 4, and also suggests problems for further

research.
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Chapter 2

Least Upper Bounds for Most Shellsorts

2.1 Discussion

A natural characteristic sequence to follow when Shellsorting is a
geometric progression. If one thinks of Shellsorting as progressively
bringing each element closer to its final position, in jumps of decreasing
size, it is "natural" to arrange that these jumps decrease geometrically;
this is what happens in a binary search, for example. Possibly some such
consideration has motivated the choice of a (usually slightly perturbed)
geometric progression for almost all Shellsorts.

If a sequence of even numbers, followed by 1, is used, Shellsort
may take up to n(n-2)/& exchanges when l-sorting. This would happen
if one 2-chain were 1,2,...,n/2 and the other were %+ 1, g+ 2y ee.yn .
Since this array is 2-sorted, it is 2k-sorted for all k >0 . Thus at
the last pass, the original array is being l-sorted, that is, it is simply
being insertion-sorted, which is readily seen to take
1+2+3+ ...+ (% - 1) =n(n-2)/8 exchanges, for even n , an O(ne)
figure.

Shell [1959] originally suggested the sequence

L5], Led seees Lglk_l ceeey 1. If n is a power of 2, this is

readily seen to be a sequence dealt with in the previous paragraph. This
problem was recognized by Lazarus and Frank [1960], who proposed that
the even elements in Shell's sequence be incremented by one. Thus every
element can be expressed as 2k+1 , and its successor must be either k

or k+l , depending »n whether k is odd or even respectively. Now k|2k



and k+1{2k+2 , 8o (2ktl,k) = (2kt1l,ktl) = 1 ; that is, every consecutive
pair of elements in the sequence is coprime. We shall see shortly that
0(n*?) , not 0(n?) , 1s the (least) upper bound for Lazarus and Frank's
sequence, mainly because of this coprimeness property.

Hibbard [1963] suggested the descending sequence of all numbers of
the form 2%-1 <n s> integer k >1 . When n is one less than a power
of 2, this sequence coincides with both Shell's sequence and Lazarus
and Frank's sequence. Many other sequences have been suggested [cf.

Knuth 1972], almost all of them having in common that they form "fuzzy"
geometric progressions, with every element relatively prime to at least one of
its nearby predecessors. (It is interesting to note that both ot these
guidelines are ignored in the sequence of Chapter 3 for the 0(n log2 n)
Shellsort.)

The next part of this chapter will prove a theorem enabling us to
show that the above Shellsorts take at most 0(n5/2) units of time,
provided their sequences have the coprimeness property. The last part
will prove a theorem applicable to Shellsorts whose sequences are fuzzy
geometric progressions with integer common ratios, enabling us to prove

that the O(n5/2) figure cannot be improved in such a case.
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2.2 An Upper Bound For Most Shellsorts

The first result is essentially a generalization of Papernov and
Stasevich's theorem [1965] that Shellsort with Hibbard's sequence takes
at most O(n3/2) units of time. The basic properties we shall impose
on the class of sequences covered by the result are that they approximate
geometric sequences and that every d consecutive elements in the latter
part of the sequence form a coprime set of integers, for some A4 .

We shall need in advance some auxiliary lemmas. The first is the

"non-messing-up" theorem for p-sorting and q-sorting.

Lemma 2.1, Given positive integers p and q, and a p~ordered array A

with n elements, g-sorting A leaves it p-ordered.

Proof. (This is a slight modification of a proof in [Boerner, 1955, p137].)
Let j be such that A[j-p] > A[j] after q-sorting. We shall give
one method of g-sorting which contradicts this, whence it follows that all
methods contradict this, since the outcome of g-sorting is unique.
Let A[j-p], A[j] belong to q-chains B and C respectively. Now
B and C must be distinct, otherwise A[ j-p] < A[j] because each
q-chain is ordered.
Call the least element of A, -o » and the greatest, o ,
Sort all the g-chains except B and C . Now put B and C into
correspondence, with A[j-p] corresponding to Alj), Alj-q-p] to

Alj=ql, Alj+q-p] to Al j+q} , ete. 1Ir necessary, extend B and ¢ to



ensure that every element has a mate, using - o for B and o for C .
Call the extended q-chains B' and C' . We now have the situation of
Figure 2.1, as the reader may check. (Here (a,c) and (b,d) are two
instances of corresponding elements. Lower valued subscripts of A

correspond to elements closer to the top of the figure.)

- S 3

T o e §
IA IA

In

IA

e 8 e A e
A\

B! c'

Figure 2.1

Corresponding q-chains B' and C* .

Now sort B' and C' thus:

1. Use a sorting algorithm which sorts every array of a given size n
by using a fixed sequence of paire (i,J) depending only on n and
drawn from [1,n] x [1,n] . For each such pair, it puts A[i] and
A[J] 1in order. The insertion sort of Chapter 1, with the while
condition deleted, is such an algorithm.

2. For each pair (A[1],A[j]) in B' ordered by this algorithm,
simultaneously order the corresponding elements (A[i+p],A(j+p])

in C' . Thus B' and C' are sorted in parallel.



Let a,b in B' and c,d in C' be four elements participating
in one step of this algorithm, with a,b,c,d in the order shown in
Figure 2.1. Suppose before the step, we had a <c and b<d. We
claim that after the step,the two resulting corresponding pairs will
still be ordered. This is trivially true if neither or both of (a,b)
and (c,d) are swapped. If only (a,b) is swapped, we must have had
b<a<c<d before, and if only (c,d) is swapped, then we had
a <b<d<c ; in both cases, both elements of B are less than or
equal to both clements of C , proving the claim.

Since corresponding pairs are ordered at the start, they must
therefore be ordered at the end, by induction on the steps of the
algorithm. Now the extensions clearly cannot have moved, so they may
be removed. The result is just as if we had q-sorted B and C . But

now A[J-p] <A[j) . This contradiction completes the proof.

An immediate corollary is that if ar array is pl-sorted, then
p2-sorted, and so on up ‘o Py » it is then pi-ordered for i =12,...,k .

If the diophantine equation
DXy +PyX,t .ot p X - q , all p; >0 , (1)

has non-negative solutions in the xi ; then an array pi-ordered for
these pi's is also q-ordered, by the transitivity of the ordering
relation, since the solution indicates the existence of a sequence
A3} < Al+py] < AlS*2p,) < oo0 < ALG*xyP) ] < AlJ*+x,py*p,] < ...



Lemma 2.2. When ged(p ,Pys-++sP) =1, and @ >p (Py+Py*e.+p,-P)
for some Py ? equation (1) alwayc has non-negative integer solutions
in the Xy .
Proof. It is well known that when gcd(pl,pa, ...,pk) =1, the
diophantine equation (1) always has a solution in XyseeosXy o The

set of possible solutions must be closed under the operation of simultan-

eously adding p‘j to x, and subtracting Py from x.j s 5ince this adds

i
(pip 5 -p jpi) = 0 to the left-hand side of the equation. Thus there must
be a solution in which for all i #m, O < X, <, » since each x,

other than x ~can be adjusted by increments of P, ? at a cost to X

But now we have
P ((Py*Ps*e- 4D ) =P ) > (PyX #P %t etp X )-p X » (1 fmOx, <p)

=q-pX (equation (1))

> P (Py*P,*e-+p - )-p X » (Hypothesis)

from which it follows that X > 0 in this particular solution.
Q.E.D.

We may infer from Lemma 2.2 that if an array A 1is pi-ordered
for pyseeesPy and gcd(pl,pg,...,pk) =1, A is p-ordered for all
P 2pm(pl+p2+...+pk-pm) » where p is any one of the pi's . Thus
an upper bound on the number of elements of a p-chain B which may
precede and be greater than a giver. element of B is

pm(pl*'p2 ...+py-pm)/p since the elements of a p-chain are spaced p apart.

10
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Hence to p-sort A requires at most npm(pl+p2+...+pk-pm)/p exchanges .
Call this the first upper bound.

Within a p-chain (of at most r %"] elements), the average element
can participate in at most %( ]—%_]-1) exchanges during p-sorting.

So the total number of exchanges required is at most % n( r%q-l) .
Hence n2/2p is also a (larger) upper bound, the second upper bound.

Before proceeding with the formalism of the main result, let us
provide some insight into what is going on. The two upper bounds we
heve just derived are about to be used to bound the time requir'ed by
Shellsort ucing a characteristic sequence having properties shared by
most of the suggested sequences, excluding those for which Shellsort is
clearly an O(n2) algorithm. The properties we require of a sequence §
are (for the moment): that there is a sequence 3' such that to each
element P of S there corresponds an element p' of §' » with fixed
bounds on P-p' ("additive fuzziness", namely -a < p-p'< b , for fixed
a,b ); and that each clcment of S' is between r and s times its
successor, for fixed r, s> 1 . That is, S' 1is a sloppy decreasing
reometric progression  ("multiplicative fuzziness"),

These conditions are general cnough to cover most sequences; that
could be called "fuzzy" geometric progressions.

We also impose a coprimeness condition on neighboring elements of
the sequence, to satisfy the conditions required for the first upper bounds.
For som» integer d independent of n, every d consccutive elements must be
relatively prime.

Wie shall uvse the first upper bound to bouni the time spent by
Sheliscert when p-sorting for small p . The second upper bound is for
large p oo While the latter remark makes senge (n;_)/L’p is small for
large 1 ), the former may seem not to, at first, since p appears in

11
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the denominator of the first upper bound also. liowever, the numerator
is an O(pe) expression, and the pi's will be just those elements in
the sequence thal immediately precede p o Our conditions ensure that
these decrease in approximate proportion to p , so tne first upper bound
is really an O(p) expression rather than an 0(1/p) one.

Because we do not need the first upper bound for large elements
of § , we shall actually restrict the condition that S be a fuzzy
ccprime geometric progression to the small elements of & . We impose
& much weaker condition on the large elemens of 5 , that the sum of
their reciprocals be un 0(1//n) quantity. (This condition is readily
seen to hold for the first half of a fuzzy geometric progression with
all elements less than n , since the smallest element in that half is
itself an 0(/n) quantity.)

We now proceed with the formalism.

Theorem 2.4, Let r,s,t,u,v be reals, with r,s >1 and t,u,v >0 .
Let a,b,d be integers, with a,b >0, d>2.
To each array size n , suppose there corresponds a sequen:e

PysPps--+»P and an index ¢ (denotinr the cut-off point pc)

such that
(1) p, 1 (to ensure that {iellsort really sorts)
(1) z = < - (the larpe p. Cor the second upper bound)
1<j<c Pj /n J
(1ii) c >d (co that the first upper bound is usable for

clements 199 JCTREES) JUPI )

12



(iv) P, <t%/n  (to keep small those elements covered by

the first upper bound, in conjunction with
condition (vii))

(v) J >c implies gcd(pj_l,...,pj_d) =1 (for the first
upper bound)
(vi) There is a sequence S!' = P::’Pé+1""’px;x in which

-8 Spi-p]!. -<_ b ] fOI' i = C, uoc,m-l an.d p];l 2 V .

(Vii) In S' ) pi 2 fO!‘ i = C,ooo,m'l .

m;."'l 2

(viii) In S', p! <sp!,,, for i=cy.ee,m-1.
i-=""i+1

Then with these conditions, Shellsort takes O(nj/ 2.) units of time.

Proof. Applying the second upper bound is easy. The total time

required for p j-sorting, for j<c , is at most

2
Z_ -2—;7 (using the second upper bound)
1<j<e J
< %uny 2 (by condition (ii))

The remainder of the sequence requires a little more work. However,

the underlying idea remains simple, that the first upper bound decreases

approximately geometrically as Shellsort progresses through the sequence,

and hence the total time required is proportional to that required for

P, -sorting alone.

13



and

Also

First note that

P; <Pj+D (condition (vi))

< skp:'l+k+b , k>0 (condition (viii))
P, < skp + ska.+b (condition (vi)) (2)

i- i+k
By 2P -8 (condition (vi))
k R

2T P8 5, k>0 (condition (vii))
Pook > r’v-a (condition (vi)) (3)
Py S (py+a)/rF 4 (condition (vi)) (L)

Then the total time required for pJ-sorting, for j >c , is at most

Z "pJ-l(p.j-2+ +pJ._d) /pJ (the first upper bound,
e<j<m and conditions (iii), (v))

8 ) 4 4
< n(s pi+ sa+b) [ (="p i+s“o.+b)+ (s"pim')a* b)+.. .+(sdp i+sda+b) 1/ v,

¢ _’ |Sm
(by inequality (2))
< (::2+...+ ( a+b> p +a+b) (since s > 1)
c <,) <m
ST .
< (s™+...45)n (spj+sa.+b+(2sa+b)(a+b)) (since P, >1;

also note use of
condition (iv))

1<p; <t/n

+
l<rk<tna

< (s2+...+sd)n (M )

(K = (s(ea+l)+b)(a+b)) 5 5> 1 ;
and using inequalities (3), (h))

14



= (52+...+sd)n Z (srkwx)
l_<_ n+a.
< (s 2. __(__rs t/n+a) log [——tfn +a] (summing the
r| v
geametric
progresesion)
2 4| r 3/2 [t/n+a]
= (s7+..458") -l s(t n”/ “+an) +K log [~— | |n .

Hence the total time reonived for Shellsort is less than

(-‘23 + (54,489 %)nj/z

ot i ()

This completes the proof of the O(nj/e) upper bound result for

Shellsort with this class of characteristics sequences.

The reader may readily calculate the values of r , s (both 2 in
the sequences of Chapter 1), u (a function of t , clearly, as well
as of », s, a and b), a, b and v for various sequences, and
may amuse himself detemining the value of t that minimizes the bound
in ecach case.

For the case of Hibbard's sequence, for example, where
[_log2 nj =i+l

- O
pi &

-1, take r=8=t =v=d4d=2, u=a=1,

b-0, c¢c- |_log;2 nj - % :Log,2 n . Condition (i) is satisfied since
Hibbard's sequence contains 1 . Condition (ii) is satisfied since

P, - ©/n-1>'n (for n>1), and P, = 2p,,;*1 . Condition (iii)
holds for n > ‘" ., Condition (iv) holds since P, = 2/n-1 (sce above).

Condition (v) holds since (pi’pi+l) = 1 trivially. Conditions (vi) to

15



(viii) hold if p:'l is taken to be p1+1 . Thus our theorem is true

for all n > 32 . Making the substitutions, the dominant term of our
upper bound is 32.5 n5/2 .

16



2.3 Optimality of the 0(n>/2) Bound

In this section we shall construct errays that take time proportional
to n5 /2 to sort using Shellsort with sequences that approximate a
geometric progression with integer common ratio. Most of the proposed
sequences to date have this property.

The basic tool for the construction is a sorting template.
(visualize this as a strip of cardboard with some holes in a straight
line; the elements of the template are the hole locations, numbered

right to left.)

Definition 2.1. A sorting template is a set of natural numbers

containing O and closed under addition.

Definition 2.2. The sorting template generated by a set is the least

sorting template containing that set.

For example, the sorting template generated by {1} is the set N

of natural numbers, while that ¢enerated by {2,5} 1is N-f1,3} .

Definition 2.3. An array element A[i] 1is visible through a sorting

template T at j when j-i isin T .

(Visualize A as being written on a sheet of paper underneath T ,
with subscripts numbered from left to right. The zero hole of T is

over Alj] .)

17



Definition 2.k. An array A 1is constructed under a sorting template T

at a sequence q(l],...,q(m]} thus:

1 := 1 until m do

for § :=1untiln do

if A(Jj] is undefined and A[j] is visible through T at q[i]
then begin £ := 1415 A[j] := L end;

Note that each element of A 1is initially undefined, and becomes

defined by assigning ¢ to it, after which it is defined.

Intuitively, we put the template down with the zero hole of the
template on A[q[1]] ; then we move the template to A(q[2]] and so on.
At each position, we fill in all the visible but as yet undefined
elements of A , using ever-increasing numbers. Some of the language

we employ later assumes that this intuitive view has been grasped.

Lemma 2.5. If pcT , then an array A constructed under the sorting

template T is p-ordered. (Hence the name sorting template.)

Proof. Say A[J] becomes defined when T is at q . Then q-jeT .
S0 q-(J-p) ¢T also, since peT and T is closed under addition.
Thus A[j-p] rust be assigned its value before A[j] , whence
Alj-p] < AlJ) .
Q.E.D.

Let us use the notation [a,b] to denote (the set of integers in)
the interval from a to b inclusive. By the length of [a,b] we
chall mean b-atl . By A <D, for intervals A and B y We

shall mean every element of A 1is less than cvery clement of B .
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Let us now give an informal preview of the formalities to foilow.
Our goal is to be able to construct arrays that take time n3/2 to
Shellsort.

As the preceding section showed, p-sorting for p near the be-
ginning and end of sequences takes only linear time; only near the
middle can an additional factor of /n creep in to spoil things. Thus
if we arc going to find arrays that take time n3/2, we should arrange
things so that Shellsort finds the going toughest halfway through the
sequence. To do this, we shall construct arrays that look as if Shell-
sort is already halfway through sorting them, and yet that have many
inversions. Thus when sorting these arrays, Shellsort will zip through
the first half of the scquence finding nothing to do, and then suddenly
hit a brick wall, and take time n5/2 in a single p-sorting pass. We
do not much care what happens for the rest of the seqguence.

The preceding definitions and lemmas established the basic tools
for the construction. The following lemr.as establish some quantitat ™ -
results of use in the analysis of the actual construction, which is

described in the first paragraph of the Proof of Theorem 2.11.
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Lemma 2.6. The sorting template T generated by [a,b] is U [ka,kb] .
- k>0
Proof. The union certainly contains {0} and [a,b] . To see that the
union is closed under addition, take m,n nuch that kla <m< klb
and k,a <n < k)b . Then (kl+ k2)a. <m+n < (kl+k2)b . Thus the
union is a sorting template containing [a,b] .

To see that it is the least such sorting template, suppose m is
the least integer which is in the above union, but is not in every other
sorting iemplate containing [a,b] . Then (k+l)a < m < (k+tl)b for
some k > 1 . DBut every number in this range is expressible as the sum of

two numbers from [a,b] and [ka,kb) respectively. This contradicts

the closure property of the templute lacking m .

Lemma 2.7. If T 1is genecrated by [a,b] and a <b , then 1ieT

for all i > ag/(b-a) .

Proof. The complement of T, T, is the set [l,a-1] U [b+1,2a-1] y ...
1) [kb+1,(k+1)a-1] 1) ... , by Lemma 2.6. When .b+l > (ktl)a , these
intervals vanish. This happens for k > (a-1)/(b-a) . Thus the largest
possible element of T ic ((a-1)/(b-a))a-1 , which is certainly less

than a2/(b-a) .

Lemma 2.8, If T is generated by [a,b] , a <b, then for any non-
negative integer p < a there is an interval I of length p in T
such that T has exactly r:—::s—] intervals of the form [ka,kbj ,

K >0, which are less than I .



Proof. Choose I of length p and lying in [(%9-1)1&1,[%55]&-1].

This latter interval lies in T sgince it is of the form [kb+l,(k+l)a.-l]
(see proof of Lemma 2.7), and is of length (l’-;—jg (a-b)+b-1), which is
certainly not less than p. Now take the f%f-gl intervals of T to be

(0,0] , [a,b] , [28,2b] , ... , [(l’%—}El-l)a,(l‘%—_’_—E]-l)b] , all of which

are clearly less than I.

Lerma 2.9. With T,I as in Lemma 2.8, the number of elements of T

which are less than any element of I are at least % (a-p) (%—:E -1) .

Proof. We shall sum just the complete intervals [ka,kb] of T
a-
for k to rb—_E_] .

L o) » 30 [S2IMER -2
o<k< 327
> %(a-p)(g—}g -1) .

Lemma 2.10. Let ceT and let A be constructed under T at

c,2¢y3Cy.s.,me , for some m ., Then if sone Al j)] 1is visible through
T at 1ic, it is visible through T at Jjec for all j> i. That is,
once visible, always visible. Conversely, every invisible element must

be undefined.
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Proof. If A[j] 1s visible through T at ic » the 1ic-je?T .
But ¢cT , whence Jec-jeT » by closure of T under addition. Thus

Alj] 1is visible through T at jec.
We are now ready for the main theorem.

Theorem 2.11. Let r,s be reals greater than 1 . Let a,b be
non-negative iategers. Then there exist non-negative reals
t,u,e¢, with rt <u, such that
if for every array size n Shellsort uses a sequence
Sn = pl,.:.,pm with the properties that
(i) there is some clement p in S, such that t/n< p< wh
and f'or all pj preceding, p , there is an integer m
for which m(p-a) < P < m(p+b) ; and
(11) the successor of p in S,» 4, satisfies
r(q-b)-a < p < s(qta)+b and also q < p-a;
then Shellsort takes at lease cn3/2 units of time on some arrays

of length n .,

Proof, Construct A under the sorting tenj.inte T generated by the
integers in [p-a,p+b] at the sequence P»2P,3P,...,8P, where g is
large cnough to ensure that A is completely defined. By Lemma 2.7,
cvery clement of A is visible through T beyond n+(p-a)2/(a+b),

whenee it suffices to take g:fn+(p-a)2/(a+h)1 .

2

r4
We now show that A takes cn)/ units to Shellsort.
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For the Py in Sn up to and including p , the conditions of
the theorem ensure that Py is in T . Thus after pk-sorting, for all
Py preceding q , A 1is left unchanged (Lemma 2.5). So the number of
q-inversions in the original A gives a lower bound on how fast A will
be sorted. We shall give a lower bound on the number of these inversions.

Initially T is at p in the construction, whence the first interval
of T "covers" some of the first P elements of A . As T advances
by p units each time, exactly one new interval of T {(which of course
must move as T does) appears, to cover elements of A . Eventually
the I of Lemma 2.8 (of length q in this case) appears. There are
L%J disjoint contiguous sequences of elements of A of length p such
that as T progresses, I will partly cover each such sequence in turn.
Hence there must be at least ng positions of T during this construc-
tion for which q elements of A are covered by I .

During this process there is an f such that when T is at fy,
interval I covers some contiguous set V of elements of A within
A[1] to A[p] . By Lemma 2.10, *he elements of V must be undefined
at this time. By the construction, the set D of those elements of A
visible through T at fp and that lie to the right of V must be or
become defined at this time. lience the value of each element d in D
must be less than that of cach element of V (since the latter becomes
defined later) and in particular less than one that is in d's q-chain,
since every q-chain must have a representative in any interval of length q .
Thus therc arec at least |D| inversions within the q-chains of A .

I'rom this time on, as T is advanced, new elaments of A become
covered by I , resultiny in |D| more g-inversions by the same arpgument.
kEventually T will be at some point beyond n , and the number of inversions

contributed in this way for T at each subsequent position will start to

N
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decrease. Aiter L% J such advances of T , I "falls off" the right
hand end of A .

We might start to count the number of q-inversions in A by
multiplying [D| by [_%_J since the q-inversions are all distinct
(because T moves further than q places eech time). However, this
would then include those q-inversions whose right-hand members lie
outside A . So we need an upper bound on the number of those q-inversions,
which we shall then subtract from |D|-[_§_J to give a lower bound on the
number of q-inversions in A .

At the first position of T at which we start to lose q-inversions
to this effect, we lose gq-inversions corresponding to just that element
in the first interval of T , namely the zero element. At the next
position we lose at most those q-inversions corresponding to the zero,
and the interval (p-a,p+b] , a total of 1+(bta+l) . At the k-th
position, we iose a number of q-inversions bounded by

Z (j(b+a)+1) .
0<i<k
‘'his process clops as coon as the interval I of T leaves the array.
ltence k may be bounded by the result of Lemma 2.8. 3Jo the subtraction

term is at most
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is given by Lemma 2.9, namely

, where k =

2 (p-a-a)(B22 - 1) .

the number of inversions in q-chains is at least

L2 () (BER - 1) - 3 (e (B 4 5

%(/T“ - 1(E(r-1)/n + 2+ b-a)

- 7 (a+D) (
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3/2

There is a term in n in the above, namely

, ) .
E% C(£(r-1)7/ (av) - 3 (avv) (5L >)n)/2 :

This coefficient is not always positive. (Consider arbitrarily
large u .) However, the two main terms of the coefficient are always
positive, since r,s >1 . The first term is proportional to t2/u »
the second to u3 - Thus one can choose suitably small t and u tc
ensure that the first term exceeds the second, so that their difference
is then positive.

This completes the proof.

In the case of Shellsort with Hibbard's sequence, the parameters
arc r = s=2, a=0, b1,

To verify that Hibbard's sequence satisfies the conditions of the
lemma with these parameters, note that for any p 5 in the sequence, the
interval [pJ-a,pJ+b] is [2k-l,2k] for some k , and thus every larger
element 21-1 is contained in the interval [m(ek-l),m2k] where
m . o7k Indeed, this condition will be satisfied for any "fuzzy"

reometric progression with r being an integer >1 and s =r . Th=

other cond .tions are easily verified.
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Chapter 3

An n log2 n Shellsort

We show in this chapter that, using the sequence 2p5q <n,
P»q non-negative integers, Shellsort takes %n(logg n)(log3 n) steps,
and also admits of a simplification in which the innermost loop can be
replaced by one instruction.

Let us establish some properties of arrays that are both 2-ordered

and >-ordered.

Lemma 5.2. If p>1, then p is representable as a sum of 2's
and 3's ; that is, there are non-negative integers r,s , with

p = 2I‘+ 38 .

Proof. If p is even, then p = 2(p/2) . Otherwise, p = 2(Pé—j)+3 .

Corollary 3.3. If A 1is 2-ordered and 3-ordered, it is p-ordered for

all p>1.

Proof. Follows from Lemma 3.2 and the transitivity of <.

Lemma 3.4. If A is 2-ordered then for all | satisfying 1< j<n,

cither A[j-1] <Alj] or A[j] <A[j+1) .
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Proof. If not, then A[j-1] > A[J) > A[J*1), a ccatradiction.

An immediate corollary is that if A is p-ordered for all p >1,
no element A[j] may be a member of more than one inversion, and every
inversion must involve two adjacent elements. Thus to sort a 2-ordered
and 3-ordered array, it suffices to swap the inverted adjacent pairs,
which can be done in one pass, during which each of the n-1 adjacent
pairs are compared and exchanged if necessary.

All of the above applies equally well to the p-chains of an array.
In particular, when A is 2p-ordered and Jp-ordered, its p-chains are

2-ordered and 3-ordered, which means we can p-sort as above, and only

take n-p comparisons and exchanges.

Applying all this to Shellsort, we then deduce that any sequence
wili serv: our purposes if (a) it contains 1 , and (b) if p is in
the sequence p is preceded by 2p and 3p . Furthermore, we only need
use thosc elements less than n . The smallest such sequence contains
cvery number of the form Qp'jq <n, for integer p,q >0 . The inequality
#P5V 2 n can be written as p/log2 n+ q/log3 n < 1, an inequality
linecar in p and q .

kEstimating the leng’'h L of this smallest sequence is made easy
using a geometric argument. In Figure 3.1, associate the lattice point
(pya) with the element 2P5% | The three bounds P>0, q>0 and

p/lo;;g n+ q/log, n <1 define the three sides of a triangle.
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L
qT 3 gp/loge n+ q,/log5 n=1
2
3 kt= n = 54 in this figure
¢ 1 2 3 L 5 &

Figure 3.1. A triangular array of elements of {2P3%p,q >0} .

In Figure 3.1, the p and q 1intercepts of the sloping lire are

log, n and 1log, n respectively, whence the area of the triangle is
2 3

% 1og2 n log5 n, a first approximation to I which we improve thus:

We cla’m that the interior of the triangle is completely covered
by those unit squares whose lower left vertices are lattice points in or
on the triangle (other than on its hypotenuse). For suppose (x.y) is
in the triangle. Then (x,y) is covered by the square whose lower left
vertex is (| x _|,|y_]) . But (Lx_], Ly_]) is easi'y seen to be in
or on the triangle but not on the hypotenuse (since (x,y) is nct on
the hypotenuse). This proves the claim.

But those lattice pojnts in the claim correspond exactly to the
elements of our sequence. Hence there are at least % (log2 n)(log3 n)
clements in the sequence, since the area of the squares corresponding to
these elements exceeds the area of the triangle. So our first approximat ion

turned out to be in fact a lower bound.
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This bound is far from attainable, since the boundary of the squares

is very ragred near the hypotenuse, as in Figure 3.2 (a).

»

r-l'

")

Figure 3.2(a). A triangle covered by squares.

(b). A triangular extension.

One way to improve the bound is to give the triangle a more ragged
hypotenuse. Take copies of the triangle of Figure 3.2(b) and paste
them over the dark regions of Figure 3.2(a). We need l_log3 n_| such

trianpgles, each of areca % lugg 5 , giving a total area of more than
1 - 1
= (10”5 n - l)-log? 3> , which is more than 5 loz, n - 0.8 .

To see that the interior of these triangles are all covered by the
squares, note that if (x,y) is in some small triengle t , then
(Lx_,Ly_]) must be on the horizontal lattice line passing through the
lower right vertex v of t, and must be to the left of v , and hence
inside the main triangle.

Hence the area of the squares, and thus the number of elements of the

sequence, is bounded below by % 1032 n(log3 n+1).-0.8.
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To get an upper bound we use a very similar argument. First

replace the hypotenuse by one almost parallel to it:

p/1log,(n-1) + 9/logg(n-1) =1 .

(This uses the fact that 2P3d <n-l1, and simply gives us a marginally
tighter upper bound.) Now associate with each lattice point p in the
new triangle or on its hypotenuse (but not on the P or q axes, and
hence not on the endpoints of the hypotenuse) the unit square whose upper
right vertex is p . These squares are all clearly inside “he triangle.
We left out _ Llogz(n-l) 1+ Llogj(n-l) _|+1 points on the axes (the "1"

is the origin). Hence there are less than

% log,(n-1) log5(n-l) + Lloge(n-l) |+ Llog3(n-l) |+1 elements in the
sequence.

The reader may check that the earlier "ragged" argument still works,
this time using the reflection u of the triangle of Figure 3.2(b),
and removing copies of this triangle from the main triangle. (The
hypotenuses of the small triangles still coincide with the hypotenuse of
the main triangle.) Hence we may subtract -;- log, n - 0.8 from our
upper bound.

In conclusion, we may bound the length L of our sequence by

1 1l
5 log, n(logZg n+1) -0.8 < L < 3 loge(n-l)(logj(n-l) +1+2 log3 2) +1.8

where 2 log, 2 is about 1.26 . The width of this bound is about

-1
log5 n (note that logg(n-l) - 1og2 n -n" log, e) . So

o=

o]
log5 2(log2 n)“, or C.315(1032 n)2 » is a good approximation to L .
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It follows immediately that 0.315 rx(log2 n)2 is & good estimate
of the best-case, worst-case and average number of camparisons required
by Shellsort using this sequenée. This is of interest in that, at least
asymptotically, it is the fastest known way to Shellsort, in the sense
that the other Shellsorts we could analyze take time proportional to
n3 / @ on same arrays. However, it is of more interest for a reason we
wvill pursue in Chapter 4. Here we shall confine ourselves to same

remarks about this particular Shellsort.

There are many orders in which the sequence may be generated and yet
have 2p and 3p precede p . One computationally convenient sequence
penerates all 2P3d rop ptq = Lloge(n-l) ], then all oPzd  pop
p*q = Llogg(n-l) _l-l » and so on until p+tq vanishes. Thus
2.2P8 - P12 g 3.oP33 | o381l poeh of which are in the set
preceding the one containing equ . Within a set for which ptq =1,
start with 2! » then multiply by 3/2 until the result is odd or >n .

Expressing this in near-ALGOL, we have

for i :=21t |24 (n-1) |,1i+2whilei >1do

for j :=1, (3xj) + 2 while jmod > =0 and j <n do

i

for k := 1 step 1 until n-j do

if Alk] > Alr+j] then swap (Alk],Alk+j]);

Here a | b is an abbreviation for loga t , which is an abbreviation
for 1In(b)/1n(a) , and  a_| is an abbreviation for entier(a) . The
reader is asked to believec that j mod 7 =1 if j was odd before

deing i :- (3xJ3) = 2, otherwise it is 0 (an inelegant jump over a

Lurdle of ALGOL *0).



An interesting improvement to the algorithm capitalizes on

Lemma 3.4, by avoiding a test following an exchange.

for i :=2 ¢t | 24 (n-1) |,1 +2while i >1 do
for j :=4, (3xJ) + 2 while jmod 3 =0 and j <n do
for k := 1 step 1 until j-1 do
for t := k step J until n-j do
if A[£] > A[£+]] then begin swap (A[£],A(2+]]);
L = 1+]

end

Whereas before we simply corrected all p-inversions, starting at the
lett, we now correct all the inversions of one p-chain before going on to
the next. This change is necessary if we are to take advantage of
Lemma 3.4,

Suppose the body of the inner loop takes 1 wunit of time if
A(1] < A[2+j] and 2 otherwise and that all other operations are negligible.
Then the timing of this version of the algorithm becomes remarkably
independent of how well ordered the initial array was, since for all but
the last two elements of each p-chain, if the body ever takes 2
units, this increase is offset by skipping the next comparison. Thus
each pass will require between n-p and n wunits of time (depending on
how many p-chains had their last twc elements inverted) which is quite a
small range for most p's in the sequence, in comparison with n , for
reasonably large n .

The numbers 2 and 3 are not the only possible choice for this

algorithm. In fact, any set xl,...,xm will do if their greatest common
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divisor is . , by Lemma 2.2. The corresponding sequence is the set of
numbers less than n that have only xl,...,xm as factors, in
descendingg order, say, giving a timing of O(n logm n) . The'Shellsort
of Chupter 1 must be used, since we now need thc inner loop again.
Preliminary investigation of various sets seems to indicate that {2,3}
is the best choice, as far as the upper bound is concerned. However,
other sets with two elements may conceivably give a faster running time

on the average.
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Chapter 4

A Shell Sorting Network

L.1 Sorting networks

The most interesting feature of the algorithm of Chapter 3 is that
it suggeats a fast sorting network. A sorting network is a set of
comparators wired such that when an array of numbers is presented to
the input terminals of the network, the same numbers rearranged in
ascending order are presented at the output terminals. A comparator is
& two-input two-output sorting network wheih may be treated as a black
box for the purpose of designing sorting networks with them as the basic
building blocks. The basic difference between a sorting network and a
general-purpose computer programmed to read, sort and output arrays is
that whereas the control structure of the computer is inherently serial,
forcing comparisons and exchanges to be done one at a time, the network's
control structure is defined by the comparators alone and can be made
highly parallel; all that is required in the weay of control is that a
comparator start work just when it has received both of its inputs.

By way of example, the illustrated network of Figure L.l will sort

four numbers with 3 units of delay.

I w O A1)

:F]' MAX —{) 4l2]

Y

T MIN ——0 Al3]
s O ay)

“igure b.1. Sorting Network for four clements.
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To show that this particular network indeed sorts, note that output L
must get the maximum of the inputs, and output 1 the minimum. Hence
A[1) < A[2] , and A[3] < A[4] . The last comparator guarantees
Af2] < A[3] , and these three relations then mean that the array is
sorted.

A convenient representation for a comparator and its wiring is as in

Figure 4,2:

B

Figure L4.2. An abbreviated comparator.

where the vertical line denotes the comparator and the arrow denotes the
direction the larger number goes. Thus our previous example would be

drawn as in Figqure 4.3,

O— —» Al1]
O— I T —) (2]

I -» A[3]
O— J— —y All]

Figure L4.Z. Ar abbreviated sorting network for four elements.

Note that the inputs to the final comparator as drawn here are inverted
with respect to the corresponding inputs in the other diagram. This does
not affect its operation; indeed the two inputs to a comparator never need

be distinguished, since max and min are commutative functions.
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The important thing about sorting networks is that they permit
considerable pﬂrallelism, since up to n/2 comparators can be working
aimult;neoualy on n lines. One might deduce from this that, since there
exist serial algorithms taking time n log n , one could do n/2 of
these steps at a time in a sorting network, taking 0(log n) units of
time. This deduction breaks down because it is not necessarily possible
to predict which n/2 comparisons to do at any given time without knowing
in advance the outcome of some of those same comparisons. So far, the
best asymptotic timing to date has been Batcher's algorithm [Batcher 1968],
which takes % logg n units of delay asymptotically (where a unit is the
time to compare and exchange two elements) and uses % logg n comparators
asymptotically. (See also Van Voorhis [1971].)

Further discussion of sorting networks can be iound in Floyd and

Knuth [1970].

k.2 Shellsort with standard comparators

In the algorithm of Chapter 3, where an array was sorted by being
epﬁq-sorted for all integers p,q >0 with 2p3q <n, it was noted
that for each p and q , the corresponding 2p3q'-sorting involved only

correcting a small number, L SIJ » of adjacent inversions. It is

possible to do all of this work in two stages of parallelism, by first
simultaneously comparing every even-numbered location (numbering the
elements of a p-chain 1,2,3,... ) with its predecessor, and then doing
the same for odd-numbered elements. For a single p-chain with € elements

we would have Figure L. k.



A : 1
:

B | 2

¢ - 5

ol L,

E Ei 5

F L' 6

Figure L.4. A sorting network for a 6 element p-chain
that is already 2- and 3-ordered.

Since the p-chains are independent for a fixed p , we can
extend this parallelism to the whole array. Thus if the above example
were of a single 3-chain in an array of 16 elements, the whole

3-sorting stage would involve the network of Figure 4.5:

Al .L 1l
A , 2
A, < : 3
By N L
B, ' Y
B, L . 6
o 1 . 7
Cs N 1 8
c3 2 9
D : 10
D, N 1
D3 x 1 12
Fy , 13
s J _L 14
E5 : 15
Fl I 16

3a ' 3b

Figure L.5

where ’a and 3b denote the first and second stages of >-gsorting

respec*ively.



A complete sorting network for 8 elements would use the characteristic

sequence 6, 4, %, 2, 1 , as in Figure L4.6.

A : ! i [} 1 ‘ll 1
] ’ , ; ' H [}
. : + v 2
g H H ' ) 1 ' : | 3
] ) [ 1 ' |l|
D 4 + 4 r l L
E ' ! ‘ ' ! ——l 5
F : : : ' ! jll 6
! ' X K | oo ]
G M v T ' ] | 1
H ' ' ' H 1 114 8
v v T np
6 ¢+ 4 ' 3a ‘35 ' oa '2p ‘1! 1
Figure L.6

From the analysis of Chapter 3, we know that there are ahout
% (log2 n)(log3 n) elements in the sequence, whence we need at most
(log2 n)(log3 n) stages of parallelism, each requiring one unit of delay.
So this network takes about -—}--B-log2 n units, slover than Batcher's
1.5 2

algorithm by a factor of 1.26 .

4.3 A faster network

In the above network, for each p in the characteristic sequence,
we had to partition into two groups those comparators responsible for
p-sorting, in order to avoid having two comparators workiag on the same
line simultaneously. DBut Lemma 3.l tells us that two such comparators may
not both swap their inputs. This suggests a conjecture, that the comparators
can operate in parallel anyway, perhaps with some modification to the design

of the comparators. wWere this possible with nc increase in delay of a
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comparator, our network would then function with % log2 n log5 n units
of delsy asymptotically, which would represent an improvement of a factor
of log2 3 £ 1.585 over the networks described by Batcher [1968].
Unfortunately, there is no universally applicable way of doing this.
For if there were, we could apply it to the particular case where the
quantities to be sorted may take on only the values O and 1, and the
only available components are two-input AND and OR gates, each with a
delay of 1 unit. Now we may readily build a comparator for this domain

8 in Figures L.7 and 4.8.

TT O S0
L1 = xby
L —s

Figure L.7. A comparator for zeroes Figure L4.8. Notation.
and ones.

7

Jince our conjecture refers only to that part of a sorting network
corresponding o a sinitle element of the T?qu' sequence, we need only
consider, in isolation, the realization of this part as AND and OR rates.
Moreover, within that part, we only need consider a single 2p3q - chain
as in Figure 4.9, since chains are not connected to each other within

that part.

Lo
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3

Figure 4.9. (a) A sorting netwcrk for one p-chain (as in Figure L.k,

minus one input).

(b) Implementation of Figure 4.9(a) using Figure 4.8,

The delay of this stage of the sorting network as implemented in
Figure h.9(b) is just 2 units. In order to improve on this we must reduce
the delay to 1 unit. But then output 3 of Figure 4.9(a) would have to be
the output of some gate with two inputs chosen from the inputs B, C, D
and E (the only inputs that could affect output 3), since only 2-input
gates are available. But output > is a non-trivial function of B , C
and D , even under the condition that the input is p-ordered for all
P>1. (Consider BCD = 001 vs. 101 (for B ), 001 vs 011 (for C ),

and 010 vs O0l1 (for D ).) Hence it is not possible to reduce the delay
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of this stage to 1 unit. (The reader may readily extend this result to
the case when multiple-input AND and OR (and even NAND and NOR) gates
are available.)

So the best we can hope for is that under some conditions we may
be able to take advantage of Lemma 3.4. To show that our conjecture is
not completely without grounds we shall give in detail an example of a
situation much closer to real-life problems and state-of-the-art
technology than the foregoing somewhat artificial one, and show that in
this situation we mey come closer to realizing the desired factor-of-two
speed-~-up.

A more common domain for sorting purposes is that of the integers.
A common representation for this domain is the familiar binary notation.
Let us assume that we want to sort n words of w obits each, and that
each word represents an unsigned binary number.

One way to implement a sorting network for this situation is to have
each comparator process all w bits of each of its two inputs in
parallel before outputting anything. This is fast but expensive, since
each bil requires some hardware of its own. At first sight, serial
processing (most sirnificant bit first) would seem to involve a speed
decreave of a fac.or of about w . However, it should be clear that
8s soon as a comparator has inspected a bit from each of its inputs, it

may pass those bits on to the next comparator before it has seen any mor~.

of its input. (A proolem that can arise here is that a comparator may
not know at some time which of its inputs is the maximum. But in this
case, all pairs of vits seen so far must have been equal, so that it

doesn't matter which way it routes its output.) So the time required for



& serial network is really just that required by a parallel network,
Plus (rather than times) the time required to pass w bits (to be precise,
w-1 ) through a comparator. Hence serial organization would appear to
be economically sound here, and we shall assume it for our example.
Finally, let us assume that we have available NAND gates and NOR
gates with any number of inputs, and flipflops. While this restricted
repertoire does an injustice to the present state of the art of integrated
circuits (where the effect of parasitic lead capacitances on timing
dominates that of AND-OR-INVERT gate propagation delays in some cases),
it will at least take advantage of the reader's presumed familiarity with
the elements of traditional (and rather idealized) switching theory.
With our assumptions formulated, we shall exhibit an implementation
of Figure L4.9(a) under these assumptions.
Since the input to the netwoik of Figure 4.9(a) is p-ordered for
all p >1, and since the output is completely ordered, it follows that
each output is just the medien of its three closest inputs; e.g.
output 2 is the median of A » B and C , output > is the median of
B, C and D, and so on. Hence it suffices to implement Figure L.9(a)
as in lFigure lJ.lO(a.), where the output of each box labelled M' 1is the
median of its inputs. (The 0 and 1 inputs at the top and bottom are
fixed at those values throughout the operation, and tlus correspond in

their effect to values of - and + e respectively.)
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A M'f——0 1
B M b—— 2
C o—+ —y M' — 3
D MY [ b
® o JM' —0 5

I'icure 4.10 {a)

(b)

The device M!

Implementation of Figure L4.9(a) using median-finders.

Same as (a) (some detail omitted) with registers R added.

must keep track of the relations between its inputs.

lecause of our serial orpranization, these relations are a function of

time, in that they depend on how much of the incoming three words has

been seen. Tt suffices to remember (say for the M' connected to output 2)

whether A <B,

Thus it would seem that each M!

A=B or A>B, and whether B<C, B=C or B>C .

must be able to distinguish nine cases

(three of which cannot arise, as we shall see later, leaving six cases) .

“"nis is wacteful since two adjacent M' s could share the information

apout *“heir two common inputs.

This immediately suggests Figure L4.10(b)

us a more economical oryvanization.

A

The connections of Figure 4.10(a) are



preserved (although their detail is omitted for clarity in Figure 4.10(b)).
Box M' 1is now replaced by bcx M , which no longer has the responsibility
of remembering what happens from one bit to the next. Instead, this
responsibility is delegated to the R boxes. Box M now consults its
three inputs and two R boxes as each new set of 3 bits, A, B, C ’
arrives. The output from an R box is 3-valued, viz. <, = or > »
corresponding to whether R thinks that A <B, A =B or A>B.
There are two approaches to the timing of M . Either M may wait
until the R boxes have decoded their inputs before deciding which of
A, B and C 1is now the median, or M may decide to go ahead with the
new A, b and C bits but using the 0ld states of the boxes RA )
corresponding to the situation up to the previous A, B and C bits.
That is, M may anticipate the next states of the R boxes, without
waiting on them. The merit of this approach is that the delay of the
whole stage is then reduced by an amount possibly as great as the delay
of R . We shall adopt this second strategy.

We may build R boxes as in Figure 4.11.

Notation
set X XpP—o X
set Y YooY

where X = i

Figure L.11. Implementation of an R box, with 2 gates, 2 flipflops.
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Note that the complemented inputs A and B may be derived from A, B
respectively ucing inverters (single input NAND or NOR gates). lowcver,
it is highly likely that a practical design will interpose a flipflop
between the output of a median finder and the next stage in order to
control the movement of bits through the network, both to avoid one bit
catching up with its predecessor and to ensure that whe three inputs all
arrive simultaneously at a median finder. Inherent in the design of
flipflops irade of NOR gates (the usual strategy) is the accessibility
of both the flipflop's output and its complement. Thus the inverters
would then not be needed.

The two AND gates may independently be replaced by NOR gates, with
the appropriate changes to their inputs (that is, use the complemented

value of each input instecad). This follows from De Morgan's Law that

AB = A+B . We used AND gates to aid the reader's understanding of the
circuit's operation.

The notation for flipflops should be seclf-explanatory. It was
suyprrested to us by li. Stone and sidesters the irrelevant icsue of whether
Lo ngce the Q@ or the Q cutput (a designation quitc arbitrarily
assirned by cach flipflop's manufacturer, with R (reset) and S (set)
inputs then named to correspond to this arbitrary choice) to denote
some variable. Fach half of the flipflop represents a buffer that
"remembers" any logic level of 1 that arrives at its input. The
Juxtaposition of the two halves represents the fact that the buffer is

made to "forcset" (i.e., return to state O ) if a level of 1 arrives

at the oither wuffer'c input.

Le



In the operation of the R box, input G (go) is momentarily set
to 1 prior to starting to sort, and then returns to O for the
remainder of the sorting operation. Thus every R box initially
supposes that both A <B and A >B, that is, A =B .

By inspection of the circuit, as long a8 A = B at the inputs, the
state nf R will be undisturbed. Suppose A =0 and B =1 at some
time. If A =B before this, then we must have A <E , and R digests
this fact by complementing the upper flipflop. The dual situation
obtains if A=1 and B=0.

Once one of the flipflops has been complemented, it is clear that
no further change of state of R is possible. The complemented flipflop
will never see ancther 1 at its G input, and the other flipflop's
input has been turned off by the complementing. So cnly three states
of R are possible, corresponding to A =B, A<B and A>B, as
desired. These states are communicated to the outside world by four
outputs (abbreviated to one in Figure 4.10(b)) labelled <, >, <
and > respectively.

Let us now proceed to a circuit for the M boxes, given by Figure
4.12. We uce AND and OR gates for pedagogical reasons; an equivalent
circuit may be obtained by replacing every gate with a NAND gate; recall

De Morgan's Law that A+ B = AB .

Ly
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Figure 4.12. An implementation of a median finder M .

The unprimed inequalities labeling the input terminals denote the
appropriate outputs of the R box that is to be connected between A
and B . Call this R box simply R . The primed inequalities are
for the R box between B and C . Call this box R' .

To verify that this circuit works, it suffices to enumerate the

pocsible pairs of states of R and R' . The details are encapsulated

in Figure 4.13.
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Three cases, (>,>') , (>,=') and (=, >') are not shown
because they cannot occur. Each of these cases implies that A >cC ,
contradicting Lemma >.4. This remark is independent of what bits are
seen later, even if eventually (>, =') becomes (>, <') , say. The
explanation in this case is that if there is 80 far no way to distinguish
B from C, yet R can tell that A > B for some reason, then we
must deduce that A >C for the same reason.

The figure shows those inputs that are set to 1 for each of the 6
possible cases. By eliminating those AND gates of Figure L4.12 that have
a 0O input, and then simplifYy ing the remaining circuit, it is easy to
arrive at the equivalcat circuits shown for each case.

To verify that the equivalent circuits arc the desired ones, note )
that we have essentially reduced the problem to the case when the data to
be sorted can have only the two values O and 1 . The median finder's
responsibility is simply to decide which of three bits is the output.

It is the responsibility of R and R' to decide which equivalent circuit
ic required for any particular set of 5 bits.

For the case ( , '), we clearly want the fullblown circuit of
Fijure h.9(b). Inspecting: output 2 of that cir:uit shows that we have
the correct cquivalent circuit.

For the case (=,<') , C cannot be the m-dian, so we want
max(A,B) . Figure 4.8 verifies this equivalent circuit.

In the case (<, =') , A cannot be the median, so we want
min(B,C) . Again Figure 4.8 confirms the circuit.

The remaining cases correspond to B<A<C, A<B<C and
A <C < B rcspectively, giving medians A » B and C respectively. So

the circuit of Figure L.12 does indeed work.



Note that if R is in state < » the output of M is independent
of input A, and similarly for input C when R' is in state <', as
can be seen from Figure 4,13,

It follows that in Figure L.10(b) the top input of the top M box
need not be set to 0 as in Figure 4.10(a), and similarly for the very
bottom input. Thus these two inputs may be tied to any convenient
terminal in Practice, provided the terminal's voltage does not interfere
with the otherwise correct functioning of the gates thereby attached.

The crucial question now is that of speed. 1In particular, how does
this circuit compare with the fastest possible circuit for a standard
comparator for use in Batcher's network? Any answer to this will almost
certainly have to depend on a detailed knowledg~ of the relative speeds
of the available devices for building comparators.

Figure 4.1k exhibits a possible implementation of a comparator.

The principle of operation of the structure in Figure 4.14(a) is the

same as that of Figure L.10(b). The only difference is that in place

of the three-argument median finders, we now have max and min {inders,
each with only two arguments. The circuits for MIN ard MAX are
analogous to that of Fipure 4.12, and the style of argument represented
by Fisure h.13 carries over 1o these circuits quite trivially. As
before, NAND gates may be used throughout. It is interesting to note
that although the circuit for M was developed independently of those
for MIN and MAX, the MAX circuit is obtainable directly from the M
circuit by removing the tottom three AND cates of M and the <! input
of the second AND pate (that is, everything to do with input C ). The
MIN circuit is almost as easily obtained (together with some simplification)

by suppressing anything to do with input A .
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Figure 4.14 (a) Structure of a camparator.

(v),(c) MIN, MAX circuits.

We conjecture that the circuit of Figure 4.1k is very close to the
fastest possible for a standard comparator, using the existing technology
based on NAND and NOR gates. 1In support of this, we can prove that the
two-gate delay of this circuit cannot be reduced to a one-gate delay.
For if it could, each gate (necessarily one for each output) would have
to be a NAND or NOR gate. But neither these nor AND nor OR gates are
suitable. Consider the MIN output. This cannot be the AND or NAND of
the inputs A and B, since there are occasions when one of A or B
is O yet a 1 output is required (e.g. when R knows A < B, the

current A bit is 1 and the B bit is 0 ) or a O output is requirad
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(e.g. both A and B are simultaneously O at some time). A dual
argument says that the MIN output cannot be the OR or NOR of the inputs
A and B . A fortiori, the MIN output cannot be a single-gate function
of A, B and the state of R .

Hence the question of optimality of the circuits of Figure 4.1k
involves mostly very technology-dependent issues such as the effect of
fan-in and fan-out on gate propagation delays, the ratio of turn-on
to turn-off delays (quite significant with bipolar transistor TTL
technology) and whether it is possible to wire-OR gate output (as with
tri-state logic for example; this gives the effect of having OR gates
with no delay). Each gate in Figure L.l has a fan-in of at most 3 ,
and a fan-out of at most U4 . It would seem unlikely that this could be
significantly improved, especially in view of the fact that the delay of
currently available gates as quoted by their manufacturers is independent
of the fan-in for up to about six inputs, &nd increases by about 5 percent
(for fast gates) for each extra device loading the output, up to a fan-out
of about 10 .

If wired-OR is possible, this gives all our circuits (except for R )
the cffect of one gate of delay, so the issue of the availability of
wired-OR loyic would not appear to significantly damage our con.jecture.
The issue of turn-on/‘urn-off delays is probably too transistor-dependent
to be worth discussion here. The reader is challenged (if he is
interested in technolosy-dependent arguments) to try to show constructively
that the ratio of turn-on to turn-off delays (within reasonable limits)

affects our conjecture.



Of course, none of this is very relevant if the delay of R
exceeds that of the other devices. In this case, our median-finder
is as fast as our comparator (ignoring the fan-out of R for the moment),
and our camparator in turn is probably close to optimal, in view of the
triviality of the circuit for R . Taking the fan-out of R into
consideration, this is at most 2 for each output from R in Figure 4.1k
(counting the connections within R ), and at most 3 in Figure k.12
(provided we are using NOR gates in R ; with AND gates as shown, the
fan-out of the < and > outputs becomes 4 ). So a delay of at most
5 percent that of a gate (we can build flipflops from NOR gates), and
hence less than 3 percent of the whole circuit, is about the main
difference in timing between these circuits.

In the event that R turns out to be faster than our median finder,
we need to show that the latter is not much slower than our MAX and MIN
circuits. The only significant difference is that the fan-out of the
output of M is 5 more than that for our camparator outputs (6 1if
we don't, have flipflopc at the output, for then R will require two
inverters). To get around thic disparity, wec can "move the fan-out back
a gate", by duplicating or triplicating the circuitry for the OR gate in
each of our circuits, at the cost of increasing the fan-out of the AND
gates. The optimum appears to be triplication for M and duplication
for each of MIN and MAX, independen’.ly of whether we use flipflops
between stages. (Tne flipflops if they are present must be duplicated
along with the Ok gates.) Without flipflops, the optimized "accumulated
fan-out" (maximum fan-out of any AND gate plus maximum fan-out of any OR

cate) is 7 for M (3 for the ANDs, 4 for the ORs) and 5 for
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MIN/MAX (2 for ANDs, 3 for ORs). With flipflops, it is 6 for M

(3 for the ANDs, 5 for the ORs) and 4 for MIN/MAX (2 for ANDs,

2 for ORs). The situation for M with flipflops is shown in Figure 4.15.
In both cases the difference between M and MIN/MAX is 2, corresponding
to a difference in delay of about 10 percent of a gate, or at most

5 percent of a comparator without flipflops, even less for one with
flipflops.

D>
5+3+3 =9 = total ioad of next
iE 3 stage

=

Figure 4.15. M with triplicated OR rates and flipflop buffers.
(Not all AND gates shown.)

In conclusion, there seems little reason to doubt that with
state-of-the-art technology. we can build median-finders whose speed is
within 5 percent of the speed of the best comparators. Thus, using our

oP 5q network, we may improve on Batcher's network by a factor of between

1.5 and 1.585 .
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Chapter 5
Epilogue
5.1, Summary and Suggested Problems.

For each chapter, we shall summarize its result= and suggest
problems associated with that chapter.

In Chapter 2, we gave an upper bound (namely 0(n3/2)) on the worst-
case time for Shellsorts that use "fuzzy" geometric progressions with
short coprime subsequences throughout. In addition we showed that when
these progressions had an integer common ratio, the upper bound could
not be improved other than to within a constant factor. This leaves
open the following problems,

1. What is the counstant factor (as a function of the given
characteristic sequence) for the worst case of Shellsort with the
integer-common-ratio sequences?

2. Can the 0(n3/2) bound be improved if the ratio is not an
integer, but, say, /2?

3. What other properties do Shellsorts with geometric sequences
have? For cxample, what is the mean and the variance of the time for
Shellsort with Hibbard's sequence, given some frequency distribution
for the data?

In Chapter 3, we showed that 0(n3/2) is certainly not the ultimate
fate of Shellsort. We did this by exhibiting one sequence for which

Shellsort takes time O(n log2 n). Some problems this raises are:

56



4. What is the ultimate speed of which Shellsort is cspable?
(Is O(n logzn) the best possible?).

5. What is the average time for Shellsort using sequences of the
form 2P59, etc.? 1Is 1t better or worse than that for the 2P39 sequence?

In Chapter 4, we converted the serial algorithm of Chapter 3
into a highly parallel one. Our arguments were, unfortunately, based
on the state-of-the-art of the electronics industry. We showed that
there was no universal way to eliminate this dependency, by describing
a rather trivial environment where our method failed to compete with
Batcher's method. This raises these questions.

6. What environments less trivial than the domain {0,1} aleo
handicap our method?

7. Are there environments for which our method is stil. better
than Batcher's, but only by, say, a factor of 1.2?

8. What is the advantage of our method when we can afford to
build parallel comparators? (This costs many times more, with a
disproportionately small return on the investment, making this question
of interest mainly to the very rich.)

9. 1Is it a coincidence that all attempts to build faster sorting
networks have resulted in networks that take time O(Iogz n), or is this

the asymptotic lower bound?
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5.2. Conclusions and Perspective.

The unifying basis for this thesis is the sorting technique
described by Shell [1959], generalized of course to consider a larger
class of characteristic sequences for Shellsort than the one considered
in Shell's original paper. The sequences we considered in detail could
be classified respectively as first- and second-order geometric progressions,
where an m-th order progression has m distinct ways of generating new
elements of the progression from old ones (e.g. multiplying by either 2
or 3, as in the second-order geometric progressicu of Chapter 3).

The behavior of Shellsort is strikingly different for first-order
geometric progressions as opposed to higher order ones. 1In the former
case, as remarked in Section 2.1, Shellsort takes time 0(n3/2) using
perturbed progressions, but time O(n2) using an unperturbed sequence
of, say, powers of two. The theorems and remarks of Chapter 3 depend
for their proof on the higher-order sequences remaining unperturbed.

The questicns answered in Chapters 2 and 3 are of academic interest
only, since there already exist sorting techniques which, on theoretical
prounds alone are as good as Shellsort, and which on empirical evidence
are much better for almost all applications. Chapter L gives a most
interesting exception to this rule, in that we show that in practice
Shellsort is the best method to use for sorting networks, at least
from the point of view of speed. This is n t to say that Shellsort
will always be better than Batcher's method; a way of building
considerably faster comparators,which does not apply to our median-finders,
could upset this claim., But the arguments presented in Chapter 4 seem to

indicate that a different technology would be required for this to happen.
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