
STAN-CS-T71-251 SEL-T1-063

. AN EFFICIENT PARALLEL ALGORITHM FOR THE SOLUTION

OF A TRIDIAGONAL LINEAR SYSTEM OF EQUATIONS

by

*

Harold S. Stone

NASA Ames Research Center, and

DIGITAL SYSTEMS LABORATORY

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California

December 1971

Technical Report no. 19

* ASEE fellow, Summer 1971

This work was supported by the NASA Ames Research Center, by the Joint

Services Electronics Program under contract N-0001L4-67-A-0112-00LL,
and by the National Science Foundation under grant GJ-1180.



nd e R i ' u - : -

IH Al , | : LA | T

ge Lh | a 3 hi .
pa | : : a. T] et

iy =r N | ile od |

R.r of E- | I oo

r Ii okt LE bik Jal IT
! . ) E NB |



An efficient parallel algorithm for the solution

) of a tridiagonal linear system of equations

by

Harold S. Stone

*

NASA Ames Research Center and

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Abstract

Tridiagonal linear systems of equations can be solved on conventional

: serial machines in a time proportional to N, where N is the number of

equations. The conventional algorithms do not lend themselves directly to |

parallel computation on computers of the ILLIAC IV class, in the sense that

they appear to be inherently serial. An efficient parallel algorithm is

presented in which computation time grows as log, N. The algorithm is

based on recursive doubling solutions of linear recurrence relations, and

can be used to solve recurrence relations of all orders.

*

ASEE fellow, summer, 1971



rE 112 A I SR= ER ‘FER ea Cg PE geld os LTE

: : “ .5 '_ RB Soy Ed

= © I.ii

Rf =e o EI CTR Ca | pe EE=

RE x "JUIN. FE ee.or

SEE IEEE HR Cp
ad i] rol FL alle REE a i
cr ISLE TERE Ee tt RL | be Fr Ja 5pEL iE = if. Rabies a : - al oo



!

- 1 -

1 introduction

The trend in large-scale high-speed computers today clearly points to

- the use of internal parallelism to obtain significant increases in speed.

| For example, the ILLIAC IV computer can perform N simultaneous computations
where N = 64, 128, 256, or 512. We expect that highly efficient computations

performed on a computer of the ILLIAC IV class will execute N times faster

than on a serial computer of the same inherent speed. Actually,

inefficiencies due to overhead and constraints on data communication among

processors will reduce the speed increase to kN where k lies in the interval

(; < k < 1. Efficient algorithms have k near unity.

Unfortunately, many parallel algorithms do not lend themselves to

efficient parallel computation. We can exhibit examples of algorithms for

which computation time decreases rather slowly as we increase the number of

processors, and for some pathological examples the computation time is

independent of the number of processors. An efficient parallel algorithm

has the property that computation time decreases proportionally to 1/N as N,

the parallelism factor, increases.

In this paper we examine the solution of tridiagonal systems of linear

equations. It is well known that such systems can be solved using a

conventional serial computer in a time proportional to N where N is the

number of equations. We present an algorithm for solving the equations in

a time proportional to log, N by using a computer with N-fold parallelism,
Computation in this case grows as (log, N)/N which is proportional to NEE
for any € > O when N is sufficiently large. A different parallel algorithm

| for this problem which exhibits a similar time behavior has been developed

by Buneman [1967], and analyzed in the literature [Buzbee, et al., 1970].



'

In Section II, we state the problen and indicate conventional serial
methods for solution. These methods are inherently serial in that each

computation depends on the result of the immediately preceding computation.

In Section III we show how to perform a forward and backward sweep in

log, N steps when given the LU decomposition of the original matrix. In '
Section IV we show how to obtain the LU decomposition in log, N steps.

This particular computation is of general interest because it is an

efficient method for evaluating partial fraction expansions and linear

difference equations in parallel.

II Statement of the problem

We wish to solve the tridiagonal system of equations

Ala =2

where

dy £

€, d, tf,

e, d, i, |
A = '

wm > we

ex-1 9n-1 Tn-1

° x |

In the remainder of this paper we assume that N is a power of 2, but

this is not an essential assumption,

There are a number of related methods for solving this system serially

in a time proportional to N. The parallel algorithm presented here is

based upon one such algorithm, the LU decomposition, (cf. Forsythe and

Moler, 1967] In this algorithm we find two matrices,L, andU, such that |



- 3 - :

(1) Ww=A4A

(ii) Lis a lower bidiagonal matrix with 1's on its principal diagonal.

(iii) JL is an upper bidiagonal matrix.

When A 1s non-singular, its LU decomposition is unique, In fact, it

is easily shown that

u, tf,

u f
2 2

u f
3 3

U =
WA es ee

Uno Ixel
u

N

where £5 1 <i < N-1, is the upper diagonal of A, and

uy = dy
e. fT. .

u, = d, - i “i-1, for i > 1. (1)
“4-1

The lower bidiagonal matrix, L, is then given by

1

m 1
2

m 1

L = 3
. ra

1
N-1

m 1

| N
where

m, = 4 , for i > 2
* d - f m

i-1 i-2 i~-1

= Si , for i =z 2
u

i-1



TW

After computing L and U, it is relatively straight forward to solve

the system of equations, The solution is a two-step process.

Letting y = Ux, we have :

ApelYn =Ly=)h

The equation L y = b is easily solved for y since |
y, = by (3)

yi = b, - mY.1 for 2 <i <N

Then we solve Ux =1y for x. This equation is solved by a backward sweep

since

Xy = YU

®s = = X08 (4)
By

Note that the recurrence formulae (1), (2), (3) and (4) constitute a

complete algorithm for the solution of A x = b. Since each computation in

this algorithm depends on the results of the previous computation, the

algorithm is satisfactory for serial computation but quite unsatisfactory

for parallel computation, In the following sections we derive equivalent

formulae that are well-suited for parallel computation,

III Parallel evaluation of the forward and backward sweeps

| The model of a parallel processor that lies behind the development of

these parallel algorithms is based upon the ILLIAC IV computer. In this

computer there are N processors with independent memories, but only one

instruction stream, All of the processors operate synchronously, executing

the same instruction on N different operand pairs, where N can be 64, 1206,

256, or 512. For added flexibility, there is a mask associated with each

processor that enables or disables the processor. Hence, if a processor's

; mask is on, the processor executes the current instruction, otherwise the

processor remains idle,



- 5 —

Data can be communicated among the processors in one of two ways.

One datum can be broadcast to all processors simultaneously, or a vector

- of N items can be shifted cyclically among the processors. As an example

| of the latter case, suppose that the vectorb = (Pysbosboy by) is stored

with by in the he processor, Then the vector can be shifted j places

cyclically so that b, is routed to processor (i+j) mod N for all i.

In this section, we shall show how to solve (3) by a technique called

recursive doubling. The idea is to rewrite (3) so that Yoi is a function

of Ys Thus, in successive iterations we can compute Y11Y05Y),5¥g> etc.,

and y_ can be computed in log, N iterations. Since (4) is of the same

form as (3), the backward sweep can be done using the same algorithm, and

it also requires log, N iterations,

To begin the derivation, we rewrite (3) in the form

y1 70

vg = yt (mys 5
| This change is necessary because we shall make use of the associativity of

addition. |

Substituting for y , in (3') we find

yp = by + (omy)-By (s5)
| Ys = b, + (-m3) =D, + (-my)(-my) by

i i

yg = by I (-m,)
j=1 k=j+1

where a vacuous product of m Ss is interpreted as the constant 1,

The last formula in (5) shows the explicit dependence of y. on each of

the coefficients of m and Db. Our goal is to derive a recurrence in which

Yoi is a function of Ye To anticipate the answer, momentarily consider



- 6 =

what happens when all of the components of m are equal to -1, In this

case y, is the sum of the first i components ofb. Then if SALLY 17°)

bi +1 is defined to be the sum of b, through b. _i41? we have

b b_ “ee = “co

Voi (PpysPpyysenesPy) = ¥y(byisbyy 5eansbyy) + (6)
yi (byob 15000,by)

Equation (6) holds for all i 2 1, This recurrence has the recursive

doubling form that we seek, and therefore is the basis for a parallel

algorithm, The recursive doubling relation above suggests that we look for

a general solution in terms of functions Yi, Yo, cen Yy where each Yy is a

function of i components of bandm. We shall use the notation Y. (3) as an

abbreviation for the more cumbersome notation

That is, Y. (3) is a function of i consecutive components of bandm, with

the 3th component being the highest component,

The following theorem establishes the relation we desire.

Theorem 1: Let Y. (3) satisfy the recurrence relation |
Y= : (1). (2 i> 1 :¥,10) = Y,03) + ¥,(3-1)- (-m,) for i, J (7)

with the boundary conditions

= P=

¥, (3) b, for j 2 1

YJ) =0 forjso0

Y, (J) = 0 for i <0

Then

(i) for s 2 2, Y, (3) satisfies the recurrence relation
i

Y,,g(3) = Y(3) + ¥,; (3-8) Los! m ) for y J (8)



- 7 -

. J J
(11) Y. (3) = LX Y, (k) II (-m_) for i= j= 1 (9)

k=1 s=k+1

(iii) for i 2 j= 1, Y. (3) = Yi where Y; is the jb component of the
unique solution of (3).

Proof:

To prove part (i), we use induction on s, |

Basis step, s = 2.

From (7) we have

¥;,003) =, (3) + v; (3-1) (-m,)

= ¥y(3) + ¥ (3-1) (-my) + ¥, (3-2) (-m)- (=m, _,)

But using (7) again we also have

¥,(3) = ¥, (3) + ¥ (3-1) (=m)
Hence,

Yo0(3) = ¥,(3) + ¥, (3-2) (-m)« (=m, _,)
which is recurrence relation (8) with s = 2. This proves the basis step.

: Induction step. We assume that (8) hold for all s in the interval

2 <s < n-1, and we show it holds for s = n. |

From the induction hypothesis we have

J
. _ . : Ne -

Ys nld) - 103) * Yi rd a ( m)

(3) ( ) (=m): = Y j) + Y. (j-n+l)- I] ~

) : (-m, )

But from the induction hypothesis it follows that

J

Y(3) = (3) + ¥,(4-nr1)s NT (-m)
k=j=-n+2



- 8 -

Hence,

(3) (3) (j-n) : )Y J) =Y (J) + ¥.,(j-n)- Mn (=
i+n n i K=j-n+1 i"

which is the same recurrence as (8) with s replaced by n. This proves

part (i).

To prove part (ii), we use induction on i.

Basis step. From the theorem hypothesis we have

Y,(3) = (3) + Y, (3-1) (-m,), for j 2 1

Then applying the boundary condition Y,(0) = 0, we obtain

v,(1) = v, (1)

Y,(2) = Y,(2) + ¥, (1) (-m,)

These equations satisfy (9), thus proving the basis step.

Induction step: We assume that (9) holds for all i in the interval

2 <i < n-1, and we prove that it holds for i = n. Using (8) we have

Y(3) = v,(3) +v_,(3-1) (-m,)

Using the induction hypothesis to substitute for Y, 1(3-1) yields |
j-1 a :

Y (3) = Y, (3) + Y, (k) I (-m_) + (-my) for 2 < j <n

J J

= Zz Y, (k) I (-m) for 2 <j <n (10)
k=1 s=k+1

The interval 2 < j < n for which the equations above are valid arises from

the application of the induction hypothesis to Y _,(3-1) for 1 < j-1 < n-1,

Since (10) has the same form as (9), it is only necessary to show the

validity of (10) for j = 1 to complete the proof. From the theorem

hypothesis,

Since the same result is obtained by setting j = 1 in (10), the interval

| in (10) may be changed to 1 < j < n. This proves part (ii) of the theorem,



- 9 -

Part (iii) is a direct consequence of the fact that with the boundary

condition Y. (J) = b (10) is identical to the solution to (3). This
completes the proof of the theorem,

Corollary:

| 0,3) = Y,(3) + ¥,(-1)- 0 (-m) fori, 31 (12)
k=j=-i+1l

Proof: Follows directly from part (i) of Theorem 1 by replacing s

by i.

The corollary of Theorem 1 provides the recursive doubling algorithm

for the solution of (3). The product term in (11) appears to be difficult

to evaluate because the number of factors in the product doubles with each

iteration. Fortunately, we can also use recursive doubling to compute the

product term,

Let M, (J) be defined to be
J

M(3) = 0 (-m) for j z i
k=j=i+l

3 (12)
= my) or j <i |

Then (11) can be rewritten as

Y,.(J) = v,(3) + v,(3-1)-M,(J) for i,j =z 1 (13)

The recursive doubling computation of M, (3) is provided by the formula

M,, (3) = M, (3)-M, (3-1) for i,j 2 1 (14)

with the boundary conditions

| Mm (3) = I, for j = 1
M, (3) =1 for j < O

M, (5) = 1 for i <0



- 10 =

The parallel algorithm for the solution of (3) is simply the iterative

application of (13) and (14). It is given below in an ALGOL-like language.

In the program, when an interval of the form (1 < j < N) appears after a |

statement, that statement is assumed to be executed simultaneously for all

indices in the interval, }

begin

real array Y[1:N], M[2:N];

real array b[1:N], m[2:N];

comment Y and M are the arrays in which equations (13) and (14)

are evaluated, Arrays b and m are the arrays that give the

coefficients of (3). These arrays may utilize the same

storage space as the arrays Y and M, respectively;

initialize:

v3] : = [3], (2 = J sN);

M[3] : = -m[3], (1 <j =< N);

for i = 1 gtep i until N/2 do .
begin :

v[3] : = ¥[3] + vl3-1] x M[j], (i+1l <j < N); |

M3] : = M[J] xX M[j-1], (i+l < j < N);

end;

| At the completion of each iteration, the array Y contains Y. (3), and

M contains M, (Jj). From Theorem 1, vo(3) = y; for 1 <j <N, so that Y is

the solution to (3). Since i doubles during each iteration, log, N

iterations are required for the computation. The vector operations |

indicated in the program are easily carried out in an ILLIAC IV type of

computer since masking operations can be used to establish the interval



- 11 =

for the index j, and cyclic shifting of components of a vector can be used

to align Y[j] with Y[j-i]. The parallel algorithm is also suitable for

. efficient operation in vector processors of the pipeline class such as the

CDC STAR computer.

| For the solution of the backward sweep, Equation (4), the body of the

iteration should be modified as indicated below:

yogi

v[3]: = ¥[3] + ¥[j+i] x M3], (AQ =<j=<N-1i);

M{j): = M[3] x M[j+i], (1<j<N-=-i);

CL

IV Calculation of the LU decomposition by recursive doubling

We now focus attention on the efficient calculation of (1) and (2).

Again we use recursive doubling to compute the coefficients u = (ugstpyeeeyuy)

and m = (mpymay eee ymy). The approach we use is to solve (1) by recursive
doubling, then compute m, = e./u; , simultaneously for 2 < i < N to solve (2).

: Since (1) is a partial fraction expansion, it is convenient to cast it
into a linear form which is suitable for a recursive doubling algorithm. It

is well known [cf. Wall, 1948] that every partial fraction expansion is

associated with a linear second order recurrence relation. In particular,

if we define the quantities a; 5 0 <i < N, by the recurrence relation

| 4; = 9,9) - &%a%.0 Lx 2 (25)
with the boundary conditions

a = 1 |

4 =%

then it is easily shown that

u, = 4/8 for i = 1 (16)



- 12 -

or equivalently,

i

q, = [I wu.

Ego J

To solve (1) efficiently, we have only to solve (15) efficiently,

because after calculating qa» 0 <i < N, we can evaluate (16) in a single .

operation carried out simultaneously on N processors. Equation (15) is

somewhat more difficult to solve than (3) because it is of second order,

whereas (3) is of first order. However, we can make use of an artifice to

reformulate (15) as a matrix recurrence relation of first order. In

particular, it follows from (15) that

9 8 fia} Ya 9-1
= = As (16)

a N 0 q i q
i-1 i-2 i-2

Note that we can substitute A (q q )T for (q q )T in (16)
—i-1 'Fi-2 fi=3 i-1 "i-2 ’

and can continue this substitution repeatedly until we obtain

q q
i 1

= diff (17)
9-1 qd;

This formulation of the problem is ideal for recursive doubling. Since

matrix multiplication is associative, we can evaluate the product

Ail 1d in exactly the same way that we evaluate a product of scalars,

In fact, we have encountered this problem before in (12), and the recursive

doubling solution is the schema of (14). Then to solve (15) for all a,
th

simultaneously, requires log, N iterations, in which thei iteration

involves the al simultaneous calculations of the product of two 2 X Z

matrices.



- 13 -

It is rather interesting to investigate the properties of the functions

qa, because it is possible to exploit their characteristics and obtain a

parallel algorithm slightly more efficient than the solution to (17)

described above. Fortunately, a great deal is known about these functions.

One important property is well illustrated by the first few a; -

q, = 1

qa = 9

q, = 8,4, ~ ef,

9; = tr - de fy - eid,

q, = d),d;d.d, - djdje tf, - dy e,I.d,

- a + 8 fae ty

Knuth [1971] attributes to Euler [1748] the observation that a,

contains the term dd; 4---9d;, together with every term that can be

constructed by replacing ion by 8 E31 for all possible combinations of

such pairs, This property follows directly from the recurrence relation

(15). The first product in (15), d.q,,, creates terms in q; for which

| adjacent d-pairs are deleted from among only the coefficients d;, d,, ce ey

d; 4 in all possible ways, and thus produces every possible way there can

be terms containing d,. The second product in (15) replaces dd,_, by

—e tf 15 and combines this with every possible way d-pairs can be eliminated

among the coefficients dy, d,, cee d; _o- This produces every possible term

without d,. |
| We can obtain factorizations of the a functions that correspond to the

intermediate results in the evaluation of (17). To arrive at these

factorizations, let us define Q, (3) for j 2 i to be the function q, ‘with the

subscripts of its arguments increased systematically so that the leading

: subscript is j. For j <i,we define Q; (J) = Q, (3) Some examples of Q; (J)



- 14-

should clarify ambiguities in the definition,

Q(1) =d,

Q(1) = d, |

(3! = dydyd)-dje tf -e 2d,
Q5(4) = dydgdy-d ef -e fd, |
(2) = Q,(2) = dd -e f,

Frem this definition it now follows directly that the Q functions
satisfy the recurrence

Qis(d) = Q(3)Q (3-5) -e, 11, Q,(3)Q;_;(3-s-1) (18)
for jes, i21

with the boundary conditions

Q, (J) = d, for j 21

Q, (J) = 1 for J 20, is0

Qi) =1 for j <0, i 2 0

© 41%; = 0 for j <0

This recurrence formulation is also well-known, with citations in the

literature at least as early as 1853. (Sylvester, 1653; Perron, 1913]. |

The validity of (18) can be verified by an intuitive argument. To

find all possible ways of eliminating adjacent d-pairs in a sequence of

i+s coefficients, combine every possible way of eliminating pairs in the

first s coefficients with every possible way of eliminating pairs in the

last i coefficients, This accounts for the first term of (18). However,

one d pair contains the last coefficient from the set of s coefficients and

the first coefficient from the set of i.coefficients, The first term in

(18) does not account for any of the ways this pair can be eliminated. We

see that the second term in (186) accounts for all such ways, because

| og MT replaces the pair and this replacement is combined with every



- 15 =

possible way of eliminating pairs in the first s-1 coefficients and in the

last i-1 coefficients. From (18) we obtain the recursive doubling formulae.

| Theorem 2: Q (3) satisfies the recurrence relations

| Q; (3) = Q;(3)Q; (3-1) + (we _s41f5-1)9-103)Q; (3-1-1)
Qu; (3) = (3)Q_y (3-1) + (mej; Fs 109 1 (3)Qpl3-i-1) 15)

Quy p(3) = @_;(3)Q; (5-141) + (me sipdsoi01)-p(3)Q_p(3-1)

Proof: These formulae follow directly from (18).

The first of the equations in the corollary above is a recursive

doubling formula which shows that Qj depends on both Q; and Q_q Hence,

to compute Q we need to compute both U4 and Qi 1 To compute Qi we

have to compute QU or Since Qj on depends on the same quantities as Qj

and Q,;_;, We need only the three equations (19) in a recursive doubling
algorithm, Since we have to compute Qi_q and 0 anyway, it is slightly

more efficient to compute Wy by the formula

| Qu, (3) = BQ (3) + (-eyfy100 5(3-2).
The complete algorithm to compute q 1 <i < N is given below in an

| ALGOL~1ike language. The initial conditions establish the values of Qs Qy >

and Q- The first iteration computes Qs > and Q the second iteration
computes Q» Qs and Qa» and the last iteration computes Q. -, Q-1’ and Q-

begin
ye

real array E[(2:N], F[1:N-1], D[1:Nl, EF[ 1:N],
| TEMP{1:N], QI[1:N]}, QIM1[ 0:N], QIM2[-1:N];

comment the arrays hold the quantities indicated below.
| E The lower diagonal of the tridiagonal matrix A.

F The upper diagonal of A.

D The major diagonal of A.

EF This holds products of the form -e.f.,.



- 16 =

TEMP A temporary array.

QI Holds Q, (J).

QIM1 Holds Q, .(Jj).i-1

QIM2 Holds Q,_,(J). |
The computation begins by initializing EF, QI, QIMl, and QIMZ2;

initialize:

EF(i] := - E[i]xF[i-1], (2 <1 < N);

QIM2[1i] := 1, (1 = i < N);

QIM1[i] := D[i], (1 < i < N);

QI[i] := D[4]xp[i-1] + EF[1], (2 < i < N);

QI[1] := p[1];

comment the last three lines initialize the arrays to Qs > and Qs
respectively;

for i := 2 step i until N/2 do
—— a— AA A=

begin
A~

TEMP[j) := QIM1[jIxQIM1[j-i+1] + EF[ j-i+2]xQIM2[ j JxQIM2[ j-1],

(i-1 < j < N);

comment TEMP contains QL . It cannot be written over Q yet

since Q_» is needed in the next line;

QIMI[j] := QI[JIxQIMI1[j-i] + EF[j-i+1]xQIM1[jIxQIM2[j-1-1],

(i <j <N);

QIM2[j] := TEMP(j], (i-1 < j < N);

QILj] := DLJj]xQIM1[j-1] + EF[j]xQIM2[j-2], (i+l s j < N);

gd;

At the termination of the algorithm, QI[i] will contain a for

1 <i<N., We use (16) to compute the diagonal of Ufrom the q.'s. This

clearly can be done in parallel by dividing the vector QI by a shift of



- 17 -

itself. Finally, to compute the subdiagonal of 1L, we note that (2) indicates

that this computation can be done by one parallel division.

In executing the algorithm on an ILLIAC IV class of computer, the

vector alignment required for the calculation is done by cyclically shifting

vectors among the processors. Since the algorithm requires that QI[j] =

QIM1[ j] = QIM2[ j] = 1 for j <£ O, we can avoid storing these quantities by

changing the cyclic shift of these vectors to an end-off shift in which the

integer 1 is shifted into element 1 of each of these vectors. Similarly,

EF[j] = O for j < 1, so that O's are always shifted into EF[2] when the EF

vector is aligned.

The ranges indicated for each statement in the basic iteration show the

positions of the vectors which change when that statement is executed. The

algorithm will work correctly when all ranges are replaced by the full

range 1 < i < N since values that do not change are recomputed at each step.

It is somewhat more efficient to use the full range for a calculation than

the ranges given, although redundant recomputation of values may be

accompanied by greater round-off error.

The serial solution of a tridiagonal system of equations, when done as

outlined in Section II, requires 3(N-1) of each of the operations division,

multiplication, and subtraction. The parallel computation has three loops,

gach executed log, N times. The loop that computes the LU decomposition
requires eight multiplications and three additions per iteration, whereas

; the forward and back substitutions each require two multiplication and one

addition per iteration. Apart from the computations within loops, there

are at least four divisions, two multiplications and one addition applied

to N elements simultaneously.



- 18 -

Hence the operation count for the parallel algorithm (exclusive of

overhead computations) is

12 log, N + 2 multiplications

5 log, N + 1 additions

L divisions.

The reduction in the number of divisions is particularly important for

computers which take much longer to divide than to multiply. (On the

ILLIAC IV computer division is approximately five times longer than

multiplication).

At this writing the stability of the algorithm has not been thoroughly

investigated. Clearly, the algorithm is unstable if any qa, vanishes.
:

Since q = [1 Y, ay vanishes if and only 1f one of the uy coefficients
j=1

vanishes, However, if the A matrix is diagonally dominant and non-singular,

every u, is bounded away from zero [Isaacson and Keller, 1966].
Weconjecture that the error bounds for the parallel algorithm are

comparable to those of the serial algorithm,



- 19 -

Summary and conclusions

The parallel algorithm for the solution of tridiagonal systems of

. linear equations really consists of two different algorithms. One

algorithm is the parallel evaluation of first order difference equations

of the form

X, = bx, 1 + Cc,

where the b, and Cc; are constants,

The second algorithm solves second order equations of the form

Xp =P X51 tT 6X50 (20)

Since partial fraction expansions are associated with second order

difference equations, the second algorithm may also be used to compute

partial fraction expansions, The form of the solution obviously general-

izes to linear recurrence relations of arbitrary mtP order, still requiring

log, N iterations, where each iteration involves simultaneous multiplications

of m X m matrices.

| It is well known that a straightforward serial evaluation of (20) can

be unstable [Gautschi, 1967], although it is not unstable when the

coefficients are obtained from diagonally dominant matrices. The stability

of the parallel algorithm in such cases has not been investigated, but it

too is undoubtedly unstable. Since (20) can be solved by backward

recursion when forward recursion is unstable, we expect that backward

parallel recursion would also be stable.



= 90 =

Acknowledgment

The author expresses his appreciation to William Jones and |

David Galant of NASA Ames Research Center for their many conversations,

comments, and criticisms which materially aided the research, He is also

grateful to Donald Knuth of Stanford University for pointing out the early

contributions to the factorization of second order recurrence relations.

The recursive doubling algorithm for solving first order recurrence

relations was discovered independently by Harvard Lomax of NASA Ames

Research Center and by Robert Downs of Systems Control, Inc. Gene Golub

of Stanford University pointed out Buneman's algorithm as an alternative

method for solving tridiagonal systems in a time proportional to log, N.



- 2 =

References

Buneman, Oscar, 1969. "A compact non-iterative Poisson solver,"
Report 294, Stanford University Institute for Plasma Research,
Stanford, California, 1969.

Buzbee, B, L., G. H. Golub, and C. W, Nielson, 1970. "On direct methods
for solving Poisson's equations,” SIAM J. Numer. Anal., Vol.7,
No. 4, December 1970.

Euler, Leonhard, 1748. Introductio in Analysin Infinitorum, Lausanne,
Section 359, 17.48. ET

Forsythe, G. E. and C. B. Moler, 1967. Computer Solution of Linear
Algebraic Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

Gautschi, Walter, 1967. 'Computational aspects of three-term recurrence
relations," SIAM Review, Vol. 9, No. 1, pp. 24-82, Jan. 1967.

Isaacson, E., and H. B. Keller, 1966. Analysis of Numerical Methods,
John Wiley and Sons, New York, 1966.

Knuth, D. E., 1971. '"Mathematical analysis of algorithms,” Report
Stan-CS-71-206, Stanford Computer Science Department, March 1971.

Perron, O., 1913, Die Lehre von den Kettenbruchen, Leipzig, 1913.

Sylvester, J. J., 1853. Philosophical Magazine, 6, pp. 297-299, 1853.

wall, H. S., 1948. Analytic Theory of Continued Fractions, Van Nostrand,
Princeton, N. J., 1943.



kT Se | =. | oo = SET = a ge yr

til rt : alk NT aTN SAE

Jaf EE,
i) pr fondle peinlied
Enna a o
MET SE Hy EE Aes, ll
yh rfAO SAH SL + cE

en aHE 115: EERE

ye i LR Irmoi ald i


