
3 N
AD (38027

AN EFFICIENT PLANARITY ALGORITHM

BY

ROBERT E. TARJAN

STAN-CS-244-71

NOVEMBER, 1971

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

NATIONAL TEGHNICAL

yey3

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY FURNISHED US BY |

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS

ARE ILLEGIBLE, IT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

Unclassified

Security Classification | a - ,
DOCUMENT CONTROL DATA-R& DU

(Security classilication of title, body of abatract and indexing annotation must be entered when the overall report is clasellied
1 ORIGINATING ACTIVITY (Corporate author) 2a. REFORT SECURITY CLASSIFICATION

. . Unclassified |
ee

R} RERCAT TITLE

AN EFFICIENT PLANARITY ALGORITHM

i DESCFIPTIVE NOTES (Type of report and inclusive dates) y :
| Technical, December 1971 . {: ee

s. AUTHOR(S) (Firat name, middle initial, lest name) : i

{| Robert E. Tarjan | yd

£4. REFORT DATE 78. TOTAL NO. CF PAGES 75. NO. OF REFS X :
| December 1971 154 36 -
88. CONTRACT OR GRANT NO. 5 ORIGINATOR'S REPORT NUMBER(S) f :

: ONR 00014-67-A-0112-0057 yd
b. PROJECT NO ! > | : STAN-CS-T1-2hk j

: NR Ohk-LO2 and NSF |
c. 95. GC THER REPORT NO(S) (Any other numbera that may be nazigned | :

) this report) g
5 ' .

| a. | ;

10. DISTRIBUTION STATEMENT | : :

Approved for public release; distribution unlimited. :
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research |

'. . Washington, D. C.
NN :

13. ABSTRACT Co
~~,
\

An efficient algorithm is presented for determining whether a graph G
~an be embedded in the plene. Depth-first search, or backtracking, 1s the

| most important of the techniques used by the algorithm. If G has V vertices, |
the algorithm requires O(V) space and O(V) time when implemented on a
tandom access computer. An implementation on the Stanford IBM 360/67 success- |
fully analyzed graphs with as many es 900 vertices in less than 12 seconds.

TEASIE.ME

FORM E 1DD 1 NOV eo] 473 (PAG) Unclassified
S/N 0101.807.-6801 Security Clusalllcation

Unclassified
Security Classification

Graph, Connectivity, Biconnectivity, -
Search, Backtracking, Depth-first. ;

DD t NOV «1473 (BACK) Unclassified
(PAGE 2) | Security Classification

AN EFFICIENT PLANARTTY ALGORITHM

Robert E. Tarjan

Stanford University

Abstract: An efficient algorithm is presented for determining whether

a graph (G can be embedded in the plane. Depth-first

search, or backtracking, is the most important of the tech-

niques used by the algorithm. If G has V vertices, the

algorithm requires O(V) space and O(V) time when im- :

plemented on a random access computer. An implementation on
the Stanford IBM 260/67 successfully analyzed graphs with as |

many as 900 vertices in less than 12 seconds.

This research was supported by the Office of Naval Research under grant
number N-0001k-6T7-A-0112-0057 NR O44-402. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

I. In the Beginning |

1. Introduction |

Graph theory is an endless source of easily stated yet very hard |
problems. Many of these problems require algorithms; given a graph, one

may ask if the graph has a certain property, and an algorithm is to

provide the answer. Since graphs are widely used as models of real

phenomena, it is important to discover efficient algorithms for answering

some graph-theoretic questions.

This workpresents an algorithm for determining whether an arbitrary |

graph G can be embedded (without any crossing edges) in the plane. If
V is the number of vertices and E the number of edges in the graph GG, |

then the method requires amounts of space and time bounded by a linear |
function of V and E . The algorithmis optimal (to within a constant

factor), because it is possible to show within a suitable theoretical |

framework that each edge of a graph must be examined at least once to

resolve the planarity question.

The planarity algorithm is based upon a depth-first search, or

backtracking, -echnique for exploring a graph. Backtracking has been

widely used for finding solutions to problems in combinatorial theory

and artificial intelligence [Gol 65, Nil 71]. Analysis reveals that by

depth-first examination of a graph, we maysimplify the g: aph and collect |
enough information to determine planarity rapidly. Besides planarity, |

several other problems have been solved using depth-first search.

In order to analyze the efficiency of an algorithm, we ute a |

random-access computer model. Data storage and retrieval, arithmetic |
operations, comparisons, and logical operations are assumed to require |

2

fixed times. A memory cell is allowed to hold integers whose absolute

value is bounded by k max(V,E) , where V is the number of vertices

and E is the number of edges of the graph being processed, and k is

some constant. An exact computer model will not be specified; see Cook

[Coo 71]. To express the time and space bounds of algorithms, we shall

use an extended version of the hig O notation. Of functions of

X5-000X, We say f is O(fys vest) if, for some constants k. ,

|£(x45 .. SX) | < ky + ky [£1 (x55 .e PX) [+ oot k {f(x os 5X) | for
all values of Xs

/

3

2. Previous Research on Planarity Algorithms

Embedding a graph in a plane has several applications. The design

of integrated circuits requires knowing when a circuit may be embedded

in aplane. Determining isomorphism of chemical structures is simplified

if the structures are planar [Led 65, Hop 7lb, Wei 65a, 65b, 66]. The

importance of the problem is suggested by the number of published

planarity algorithms. Examples include [Aus 61, Bru 70, Chu 70, Fis 66,

Gold 63, Hop Tle, Lem 67, Mei 70, Mon Tl, Shi 69, Tut 63, Win 66, You 63].

Surprisingly little work has been directed toward a rigorous analysis of

their running times, however, and algorithms continue to appear which

are obviously inferior to previously published ones. We shall examine

several of the best algorithms here; a more complete history of the

pianarity problem may be found in Shirey's dissertation [Shi 69], which

contains an extensive bibliography.

The earliest characterization ofplanar graphs was given by

Kuratowski [Kur 30]. He proved that every non-planar graph contains a

subgraph which upon removal of degree two vertices is isomorphic either

to the complete graph on five vertices or to a complete bipartite graph

on six vertices. (See Figure 2.1.) Conversely, no planar graph contains

either of these graphs. Although elegant. Kuratowski's condition is

useless as a practical test of planarity; testing for such subgraphs

directly may require an amount of ‘time proportionalto at least v© p

if not much worse, where V is the number of vertices in the graph.

The best approac to the planarity problem seems to be an attenpt

to actually draw the graph in the plane. If such a drawing can be

completed, then the graph is planar; if not, then the graph is non-planar.

by

K
5 “5,3

Figure 2.1: The Kuratowski subgraphs.

2

The first such algorithmwas proposed by Auslander and Parter [Aus 61].

First, a cycle is found in the graph. When this cycle is removed, the

graph falls into several pieces. The algorithm is called recursively

to embed each piece in the plane with the original cycle. Then the

embeddings of the pieces are combined, if possible, to give an embedding

of the entire graph. Unfortunately, Auslander and Parter's paper contains

an error; the proposed method may Loop indefinitely. ¢oldistein [Gold 63]

correctly formulated the algorithm, using iteration insi=zad of recursion.

Shirey [Shi 69] implemented this method using a list structure represen-

tation for graphs, and proved an asymptotic time bound of ov) for

his variation of the algorithm.

Lempel, Even, and Cederbaum [Lem 67] have presented another method

for building a graph in the plane. They start with a single vertex, and

add all edges incident to that vertex. They then add all edges incident

to one of the new vertices, and continue in this way until the entire

graph is constructed. Vertices must be selected in a special order if

the algorithm is to work correctly. Lempel, Even, and Cederbaum give no

implementation or time bound for their method; however, Tarjan [Tar 69]

has implemented the algorithmin a way which requires O(V) space and

0(V®) time.

Mondshein [Mon 71] has recently proposed another constructive

algorithm. He adds one vertex at a time until the entire graph is

constructed. The order of vertex selection is again crucial. Mondshein's

inplementation requires 0(V°) time. Hoperoft and Tarjan [Hop Tlc],
using depth-first search in a complicated program, have devised a variant

of Goldstein's algorithm with a time bound of O(V log V) . This method,

although ponderous, is asymptotically the most efficient previously known.

6

A few algorithms deserve mention because of their novel approach.
Fisher [Fis 66] gives an algorithm which works directly from the

incidence matrix of a graph. This method, however, is not very efficient,

nor is any method which uses incidence matrices. (See Chapter kL.)

Bruno, Steiglitz, and Weinberg [Bru 70] present an algorithm based on

some theorems of Tutte relating to triconnected planar graphs. Instead

of constructing a graph in the plane, they reduce it to simpler and

simpler graphs. Although they give no explicit time bound, the algorithm

does not compare favorably with those mentioned above.

7

5. Definitions from Graph Theory oo

This chapter outlines the graph-theoretic concepts needed tc under-

stand the planarity algorithm. We use definitions similar to those found |

in any text on graph theory; for instance [Ber 6h, Bus 65, Har 69, Ore 62].

We shall also introduce some special terminology. Proofs are omitted in

this chapter; the results are either obvious or are standard in the

literature of graph theory. |

Definition 3.1: A graph G = (V,&) is an ordered pair, consisting of

a finite set Vv of verticesand a finite set ¢& of edges. |

We shall deal with the properties of finite graphs only;we are |

concerned with constructive characterization of certain properties of |

graphs, and computers cannot manipulate infinite objects. The |

vertices of a graph may also be called points or nodes. The edges of a |

graph may also be called arcs or links. For the moment we have left

undefined the nature of the edges of a graph; there are two kinds of

graphs whichwe shail study, with two different types of edges.

Definition 3.2: An undirected graph G = (V,&) consists of a set of

vertices and a set of edges. Each edge is an unordered pair {v,w} |

of distinct vertices of G . The vertices v and Ww are said to |

be incident to v and w ; v and Ww are said to be incident to

{v,w} . Vertices v and w are said to be adjacent if f{v,w} is |
an edge of G . The relation v = w holds if and only if {v,w} |

is an edge of G .

8

Definition 5.3: A directed graph d= (v,€) consists of a set of

vertices and a set of edges. Each edge is a directed pair (v,w)

of distinct vertices of © . The vertex v is said to be the tail

of the edge (v,w) . Vertex w is said to be the head of the

edge (v,w) . Incidence and adjacency are defined as for undirected

graphs. A directed graph is really only an irreflexive relation; as

with undirected graphs, we use the notation v =» w to mean that v

and w satisfy the relation " (v,w) is an edge of Tn.

Notice that we do not allow loops (edges whose two endpoints are

identical). Neither do we allow several identical edges. An object

resembling a graph but which contains multinle edges will be called a

multigraph. We shall use capital letters ("G") +o denote undirected

graphs and capital letters with an arrow ("ME") to denote directed

graphs. A capital letter with a tilde ("G") will denote a graph,

either directed or undirected.

Let us consider the relationship between directed graphs and

undirected graphs. Given an undefined graph G , we may convert it to

a directed graph in one of two ways. First, Wwe may convert each

undirected edge {v,w} of G into two directed edges, (v,w) and

(w,v) .

Definition 3.4: Let G = (V,&) be an undirected graph. Then

G = (v,&') is the directed graph such that &' = {(ryw)|{v,wlee] .

| G is called the doubly directed version of G .

The computer representations of an undirected graph G and of the

doubly directed version G of G will be indistinguishable:; each edge

| 5

will appear twice in the representation, once for each of its possible
directions. |

Another way to convert an undirected graph | G into a directed
graph is to convert each edge I{v,w} of G into a single directed edge |

(vow) . This will give a directed graph d witn the same number of oo
edges as G , in which each edge of G is assigned one of the two

possible directions.

Conversely, suppose we have a directed graph fe! = (V,8) . We may | |

convert G into an undirected graph by ignoring the direction of the | |

edges. (We may have to delete multiple copies of the same undir-cted |

edge; otherwise a multigraph will result.)

Definition 5.5: The function u maps directed graphs into undirected |

graphs. If GQ = (V,€) is a directed graph, u(@) = (v,er) is

the undirected graph formed by ignoring the directions of all the

edges of G : €&' = {(v,w)|(v,w) ee} . The inverse function is

multivalued. If G = (V,€&') is an undirected graph,

ute) = (¥,€&) will denote any directed graph formed by giving

each edge of G a direction.

Henceforth, we shall use " (v,w) " to denote an edge of any graph,

either directed or undirected. We then have (v,w) = (w,v) in an

undirected graph but not in a directed graph. The following definitions

apply to both directed and undirected graphs. |

Definition 3.6: Let G = (vse) and C' = (v',e!) be graphs. IF |

V' cv and €' < &, then G' is a subgraph of G . G' is

called a proper subgraph of G if G' £G .

| 10

Definition %.7: Let G = (v,€) be a graph. A sequence of vertices wv. ,

1<1i<n, such that e, = (Vis Vii) is an edge in G for

1<i<n, is called a path of G . If all the vertices on the

path are distinct, the path is called a simple path. If Vy =v,

all the vertices Vv, , 1<i<n, are distinct, and all the

edges e; 1 < i< n , are distinct, then the path is called a
cycle. The vertex Vy is called the start vertex of the path.

The vertex vo is called the Iinish vertex of the path. Vertices

vy and v, are called the endpoints of the path. If n # 1,
the path is called proper. The length of a path is the number of

: edges it contains. ~

Although a path may be conceptualized as a subgraph, the order of

‘the vertices in the path is important. We shall generally identify a

path by listing its sequence of points; ‘the edges of the path are uniquely
\

determined by this sequence. Note that a path may contain no edges.

Paths will be denoted by the small letter " p " with or without

subscripts. The small letter " c ¥ will occasionally be used to denote a

cycle. We assert the existence of a path from vy to Vy and. name

the path p , oy writing Dp: vy z v, The notation vy 5 v, means that

there exists a path of length’one or greater between v, and Vv_ . (In
general, if R is any binary ‘relation and I is the identity -~elation,
R denotes the transitive closure of R, and R denotes the reflexive

transitive closure of R .) |

Lemma 3.1: Let Ie! be a directed graph. Then any path (simple path,

cycle) of T is a path (simple path, cycle) of G = w(®) .

11

The converse of this lemma is not true. However: :

Lemma 3.2: Let G be an undirected graph. Then any path (simple path, |
cycle) of G corresponds tc a path (simple path. ecvele) of G ’ |

the doubly ¢irected version of G . Conversely, any path (simple oo

pata, cycle of length greater than two) of G corresponds to a | |
path (simple path, cycle of length greater than two) of G .

Definition 3.8: Let G = (V,&) be an undirected graph. Suppose that | |
for each pair of vertices v and w in G , there existe 2 pain

p: v5 Ww. Then G is connected. If G = l(c) , GO is |

called connected if and only if ¢ is connected.

Lemma 3.3: Let G = (v,8) be a graph. Then G may be. uniquely |
partitioned into a set of pairwise vertex- and edge-disjoint |

subgraphs, cacwu of which is connected, and each of which is not |

properly contained in a connected subgraph of G . These maximal

| connected subgraphs are called the connected components of G .

Proof: See [Ore 621.

Definition 5.9: Let G = (V,€) be an undirected graph. Suppose that |

| for each triple of distinct vertices wv,w,a in V , there is a

path p: v Zw such that a is not on the path p . Then GG is

biconnected. If, on the other hand, there is a triple of distinct |

vertices v,w,a in Y¥ such that a is on any path p: vw ,

and there exists at least one such path, then a is called an |

articulation pcint of G . If Ie! - ue) , then @ is called
biconnected if and only if G is biconnected. If a is an |

12

articulation point of G , then a is also said to be an

articulation point of qd.

Lemma 5.4: Let G = (v.f) bc a graph. We may define ar equivalence

relation on the set of edges as follows: two edges are equivalent

if ‘and only if they belong to a common cycle. Let the distinct

equivalence classes under this relation be &: , 1<i<n, and

let G, = (V5 &;) , vhere Vi is the set of vertices incident to

the edges of g, : V, = {v]aw((v,w)ee.)} . Then:

(1) G, is biconnected, for each 1 <i <n .

(ii) No G, is a proper subgraph of a biccnnected subgraph
of G .

(iii) Each articulation point of G occurs more than once

anol the Vs , 1<i<n. Each non-articulation

point of ¢ occurs exactly once among the V. ,

1L<i<n.

(iv) The set vy Nn Vs contains at most one point, for any
1<4i,j <n . Such a point of intersection is an

articulation point of the graph. The subgraphs G,
of G are called the biconnected components of G .

Proof: See [Har 69].

Definition 3.10: Let G = (V,&) be an undirected graph. Suppose that

for each quadruple of distinct vertices v,w,a,b in Vv , there is

a path p: v 2 w such that neither a nor b is on the path p .

Then G is triconnected. If there is a quadruple of distinct

vertices v,w,a,b in V¥ such that there is a path p: v z wo,

13

and any such path contains either a or bv, then

a and b are a biarticulation point pair in G . If [& is a

directed version off G , then [ES is called triconnected if and only

if G is tricomnected. If a and vb are a biarticulation point

pair in G , they are also said tc be a biarticulation point pair

in [eS ‘

The triconnected components of a graph may be defined in several

ways (see for instance {Tut 66]). each giving an analogy to Lemmas 3.3

and 3.4. We shall not need to use triconnected components in our study

of planarity. However, with a suitable definition of triconnected

components, a graph is planar if and only ii its triconnected components

are planar, and a triconnected planar graph has an essentially unique |

representation in the plane. |

Definition 3.11: Let GC = (V,€) be a graph. Suppose that G may be

embedded in a plane (or equivalently, in the surface of a sphere). .

That is, suppose there is a mapping of the edges of the graph into

the plane in such a way that each edge (v,w) is mapped into a

simple curve, with the points Vv and w mapped into the endpoints

of the curve. Mappings of two different edges may have only their

common endpoints in commen. If such a mapping exists, the graph

G is called planar. If n(G) is the image of G in the plane,

and if m(3)° is the complement of this set relative to the plane, |

then the connected sets of points in (3) are called the faces |

% of G (relative to the mapping m). |

1h

Lemma 3.5 (Euler's Theorem): Let V be the number of vertices,

E the number of edges, and F the number of faces in a planar

embedding of a connected graph G. Then V+F =E+2 .

Proof: See [Har 69].

The most useful property of the plane related to grapns is the

Jordan Curve Theorem:

Lemma 3.6: Let c be a simple closed curve in the plane. Removal of

¢ from the plane divides the remaining points into exactly two

topologically connected sets, called the inside and the outside

of c .

Proof: Difficult. See [Hal 55, Thr 53]. However, for our purposes we

need this result only for piecewise linear closed curves C . This

special case is not toc difficult to derive.

If G is a planar graph and c¢ 1s a cycle in G , then the image

of c¢ under a planar embedding of G is a simple closed curve. (In

fact, G may be embedded so that all edges of c¢ are piecewise linear.

See [Bus 65].) Thus, if c¢ 1s removed from G , the remaining vertices

and edges fall into two sets: those embedded on the inside of the image

of c and those embedded on the outside of the image of ¢ . We base

our planarity algorithm on this observation and its corollaries, all of

which follow from the Jordan Curve Theorem. In particular, we need the

following result:

15

Lemma 3.7: Let c: x, =X, = ...=x , =X bea cycle in a graph |

G which is embedded in the plane. Let (vsx,) , (w, x) be two
edges not on the cycle. Guppose the order of edges clochwise

around vertex x, is (2; 15%) ; (v,x,) ’ (5%, 4) , and that

the order of edges clockwise around %y is (x _1%5) , (wx) 5

(%55%04) . Then (v,%.) and (wx) are on the same side of c .

If the order of edges clockwise around x, is (x5 15%) , |
(x55%5,4) 5 (wx) , then (vyx,) and (wx) are on opposite
sides of c . |

Proof: A rigorous proof of this theorem requires knowledge of

topology (see [Hal 55, Thr 53]), but the idea is simple. Suppose

the order of edges clockwise around £s is (515%) 5 (vx) s |

(%5%544) . Then edges (vsx,) and (x) may be connected |
by a path which follows the cycle but does not cross it, as in |
Figure 5.1. Thus the two edges are on the same side of the

cycle.

Suppose the order of edges clockwise around Xs is (255%) , |
(x55, 4) , (vw; x) . Everv vertex in the plane may be joined by
a simple path to one of the vertices on the cycle. If (vsx,)

and (wx) were on the same side of the cycle then the remark
above and the first part of the Lemma would imply that every point |

in the plane is on one side of the cycle, contrary to Lemma 3.6. |

Thus the second part of the Lemma is true.

We shall need to use two special classes of directed graphs, one |

standard, the other new. |

16

*i41

~

f = nd LS.
v “.

\

\

\

\

}

i

|

i

/

/

7’

4

”

r="
’ ¢

104 X.
J

X51

Figure 5.1: Two edges on the same side of a cycle.

1

— -

Definition 3.12: Let T be a directed graph. Suppose T satisfies

the following properties:

. ->

(i, T is connected.

(ii) There is a unique point in T which is the head of

no edges. This point is called the root.
4

(iii) ALL other points of T are the head of exactly one

edge.

—>

Then T is called a directed rooted tree.

Since we shall deal only with trees which are directed rooted trees, |

we shall refer to them simply as trees. There may be simpler definitions

of trees, but the one above is the most useful for our purposes.

- =

Lemma 3.7: Let T be a tree. Then u(T) contains no cycles.

Proof: An exercise for the reader.

Lemma 3.8: Let v and w be vertices in a tree T Then there exists

either exactly one path p whose endpoints are v and WwW Or nc

such path.

Proof: An exercise for the reader.

JY .
Definition 3.13: A path in a tree T is called a branch of T

—_ —3
Definition 3.14: Let T be a tree and let v and w be vertices of T.

If (v,w) is an edge of 7, then w is called-a son of v , and |

v is called the father of w . If there is a path Dp: Vv=W,

then Ww is called a descendant of v , and v is called an |

| 18

ancestor of w . If such a path is proper (v # w) , then w is

called a proper descendant of vv , and v 1s called a proper

ancestor of w .

We use single-shafted arrows to dencte arcs of trees, since we shall

study trees which are a subgraph of a directed graph, and it will be

necessary to distinguish between the tree arcs and arcs in the larger

graph. We use v %w to denote the (unique) branch from v to w in

a tree, and also to indicate the fact that such a path exists. (Vertices

v and w satisfy the relation " v is an ancestor of w in 7 ".)

The meaning will be clear from the context.

Definition 3.15: Let T be a tree and let v a vertex of T . The

subtree of T rooted at v is the tree T = (v',&') whose
vertices V¥' are all the descendants of v and whose edges are

all those edges with tails in V' : V' = fw lv 5 w) 3

er = (vw lvoawegver'l.

Definition 3.16: Let [eS = (V,€) be a directed graph. A spanning tree

7 of fet is a subgraph of [es which is a tree and which contains

all the vertices of G . If G = (v',&') is an undirected graph,

any spanning tree of the doubly directed version G of G 1s also

a spanning tree of G .

We now present a new class of directed graphs, upon which the

| planarity algorithm is based. _

Definition 3.17: Let P= (v,€) be a directed graph, consisting of two

disjoint sets of edges, dencted by v-w and Vv --» Ww respectively.

19

Suppose P satisfies the following properties:

(i) The subgraph containing the edges v > w 1s a tree [if

which contains all the vertices of 3 , called the

spanning tree of 7 .

(ii) We have --c (5)7t , where "--" and "-" denote the

relations defined by the corresponding sets of edges.

That is, each edge which is not in the spanning tree 7

of P connects a vertex with one of its ancestors in 7 .

Then P is called a palm tree. The arcs v -—- w are called the

fronds of P . |

Figure 3.2 shows a palm tree and its fronds. Since the notion of

a palm tree is non-standard, we shall not develop its properties until |

we discover the context in which it arises. Tree palms are in reality

more nearly comparable in structure to overgrown cornstalks than to true

trees.

| 20

9

| ¥ AN
30

A ° \ \
~~ /N |

I 9 UN

h NN 2 [/ Vv /
~_ a) / y

\ 7
=

Figure 3.2: A palm tree. Fronds are dotted.

ITI. The Technique of Depth-first Search

4. Data Structures Representing Graphs |

Good algorithms require an appropriate data structure; we therefore |

look with some care at how a graph may be represented in a computer. We

need a representationwhich will preserve the adjacency properties of

the graph, which will be economical of storage, and which may easilybe

constructed from the original list of vertices and edges which define

the graph.

Definition 4.1: Let G = (v;€) be a graph with vertices {1,2,...,V} . |

The adjacency matrix A = (a; 5) of G is a VxV matrix of zeros

and ones such that a5 = 1 if (1,3) , as 3 =0 if (i,3)fe .

The adjacency matrix of a graph is a common representation. IT G

is undirected and contains no loops, Awill be symmetric and will have |

zeros on the main diagonal. IT G is directed, then A may be asymmetric. |

Figure 4.1 gives an =xample of a graph and its adjacency matrix.

The adjacency matrix of a graph has several useful features. Certain

simple matrix operations correspond to simple graphical manipulations.

For instance, if (bs 5) = AE then Ds gives the number of paths of
length k Dbetween vertices i and Jj . The zeros and ones of the

adjacency matrix may be packed into machine words to save storage space;

word operations such as addition and logical operations may be used to |

manipulate the det: w bits at a time if w is the word size of the |
given machine. This saving is scmewhat illusory, however. The amount |

of storage space required by an adjacency matrix is KV- , and we may

prove rigorously of most interesting graph problems that they require

23

NZ |5 3 Oo 1 01 0 0 OO 1: 1 01 0 0 0 1 O

1 iN oOo 1 0 1 0 1 OO O
A = 10101000

Bh oO 0 01 0 1 0 1
oO 01 01 0 1 0

8 5 oO 1 0 0 0 1 0 11 0 0 01 0 1 O

Figure 4.1: A graph and its adjacency matrix.

2h

examination of every bit in the matrix and thus have a computation time

proportional to at least v [Hol 70]. When the graph is large enough,

the gain obtained by packing bits becomes insufficient. If the matrix

is sparse (E << Ve) we must use a representation which is not as

wasteful as the adjacency matrix. A list structure representation of

the graph is a good choice.

Definition 4.2: Let G = (V,€) be a graph. For each vertex ieV , we

may construct a list Ls containing all vertices Jj such that

(i,j)e€ . Such a list is called an adjacency list for vertex i .

A set of such lists, one for each vertex in G , is called an

adjacency structure for G .

Figure 4.2 gives a graph and its adjacency structure.

A single graph G may have many adjacency structures; each ordering

of the edges around the vertices of G gives a unique adjacency

structure, and each adjacency structure corresponds to a unigueoordering

of the edges at each vertex. (An adjacency structure for an undirected

graph G corresponds to an embedding of G in some orientable surface;

see [You 63].)

If G is undirected, each edge (i,j) is represented twice in an

adjacency structure; once for i and once for j . If G is directed,

each edge (i,j) is represented exactly once; vertex Jj appears in the

adjacency list of vertex 1 . An adjacency structure requires an amount

of storage space linear in V and E . The enormous value of an

adjacency structure of G is that we may use if effectivelyto perform

25

3

a re BNNE

Figure 4.2: An adjacency structure for the graph in Figure 4.1.

26

searches of G ; that is, to traverse the edges of G in some systematic

way. Such a search will require O(V,E) steps.

7

5. Searches, Spanning Trees, and Finding Connectec. Components

Suppose G is a connected undirected graph which we wich to explore.

Consider the following procedure. Initially all the vertices of GCG are

unexplored. We start from some vertex of G and choose an edge to

follow. Traversing the edge leads to a new vertex. We continue in this

way; at each step we select an unexplored edge from a vertex already
reached and we traverse this edge. The edge leads to some vertex, either

new or already reached. Eventually we will traverse all the edges of GG,

each exactly once. Such aprocess is called a search of G .

Any search of G imposes an orientation on the edges in G ,

according to tue direction in which they are traversed. Thus a search

converts G into a directed graph T . For any starting point in G ,

there may be many possible searches depending upon how the edges to

explore are selected. Each search generates a (possibly) different

directed version [eS of G . Any search also proauces a spanning tree

T, given by the set of edges which when traversed during the search
lead to a new vertex. A graph and the results of two possible searches

are illustrated in Figure 5.1.

Notice that the edges of G which do not form part of the spanning

tree T, may interconnect the branches of the tree. (See the examples
in Figure 5.1.) For one type of search, however, this is not true.

Supposewe use the following rule for selecting an edge to traverse:

Always choose an edge emanating from the vertex most recently reached

which still has unexplored edges. We call a search whick uses this rule

a depth-first search. The set of old vertices with possibly unexplored

edges may be stored on a stack; thus the search may be easily programmed

28

(2) 7 6

2 >

1 4

8 ad

(b) (1,2) (1,14) (1,8) (2,3) (2,7) (4,3) (4,5) (8, 5) (8,7) (356) (5,6) (756)

. 6
/ = \
-” - \

5 oY \
(c) 1 " ®\ \

» >
> NN»

2 4 8 |

1

(a) (1,2) (2,3) (3,14) (4,1) (1,8) (8,5) (5,6) (6,7) (7,8) (2,7) (6,3) (4,5)

tN
7 ad mm Ty “

ad py Pr id A)
(e) A nd ad 6. ,/

\ [4 Pe 6 7\ / / 7
v / / €
\ !

\ 2 ¥ 8
\

\

Figure 5.1: Two searches on a graph. (a) Graph. (b),(d) Search orders.
(c),(e) Directed graphs generated by searches. Spanning
trees indicated by solid arcs.

either iteratively or recursively. The program given below carries

out a depth-first search of a graph G , starting at vertex s . The

procedure constructs the directed graph generated by the search, and |

uses an adjacency structure of the graph G .

begin

integer i;

. procedure DFS(v,u); comment v is the current vertex, and u

is the father of v in the spanning tree generated by the

search;

begin

| NUMBER(v) := i := itl; |

for w in the adjacency list of v do |

begin |

ifw is not yet numbered then |

” begin

construct arc v - w in P;

Co . | end |

| else if NUMBER (W) < NUMBER(v) andw # u then |
| | construct arc v -—» w in Pg

end;

end.;

1 := 0;

DFS(s,0) ; |

end;

Figure 5.2 gives an example of the directed graph generated by a

depth-first search.

An adjacency structure gives a unique depth-first search for any

starting vertex; edge selection order is fixed by the order of the

adjacency lists. The search requires O(V,E} steps, where V is the

number of vertices and E the number of edges of the graph. Let us

characterize the directed graphs generated by depth-first searches.

50

(a) T 6

1 4

EN=

(b) (1,8) (8,7) (7,6) (6,3) (3,2) (2,1)(2,7) (3,4) (4,1) (¥,5) (5,8; (5,6)

I\
> ;

al \' / \
/ v .
pov Poa]

\ ’,

SRE A wo [aFL —
\ 6

| \ /
NE (I 0 [31 = ¢ 1
\ /

\ /

ul 4

: 8: L171 L—]

: Figure 5.2: Depth-first search of a graph. (a) Graph. (b) Search order.
(c) Generated palm tree (spanning tree indicated by solid arcs).

| (dA) Adjacency structure of palm tree.

31

Recall the definition of a palm tree given in Chapter 5: ? is 2 palm
tree if P is a cormected directed graph with a directed rooted spanning

tree T and all arcs (i,3) ¢ BT satisfy 3 i in 7 . The edges of

P-T are called the fronds of the palm.

Theorem 5.1: Let [eS be the directed graph generated by a depth-first
search of a connected graph G . Then G is a palm tree. Conversely,

let [ES be any palm tree. Then GG. is generated by some depth-first
search of G , the undirected version of G .

Proof: Suppose GQ = (V,€) is the directed graph generated by a depth-
first search of some connected graph G , and assume that the search

begins at vertex s . Examine the procedure DFS. The algorithm

clearly terminates because each vertex becomes Vv only once and is

numbered then. Furthermore, each edge in the graph is examined |

exactly twice. Therefore the time required by the search is linear

in Vv and E

For any vertices v and Ww , let a(v,w) be the length of
the shortest path between v and w in G . Since G is connected,

all distances are finite. Suppose that some vertex remains unnumbered

by the search. Let v be an unnumbered vertex such that d(s,v) is

minimal. Then there is a vertex w such that Ww is adjacent to Vv

and da(s,w) < d(s,v) . Thus w is numbered. But v will also be

| numbered, since it is adjacent +o Ww . This means that all vertices

are numbered during the search.

The vertex s is the head of no edge w- s . Each other

vertex v is the head of exactly one edge w-o v . The subgraph

7 of GC defined by the edges Vv —» Ww 1s obvicusly connected, since

32

there is a path in T from the root s to any vertex. This may

be proved by induction. Thus T is a spamming tree of G .

Each arc of the original graph is directed in at least one

direction; if (v,w) does not become an arc of the spanning tree

T s either v --»w or Ww -—- v must be constructed, since both +

and Ww are numbered whenever edge (v,w) is inspected and either

NUMBER(v) < NUMBER(w) or NUMBER(v) > NUMBER(w) .

The arcs v -»w run from smaller numbered points to larger

numbered points. The arcs v -—-w run from larger numbered points

to smaller numbered points. If arc v --w is constructed, arc

Ww — Vv is not constructed later because both v and w are numbered.

If arc w= v is constructed, arc Vv --»W is not later constructed,

because of the test " w # u " in procedure DFS. Thus each edge in

the original graph is directed in one and only one direction.

Consider an arc Vv --»w . We have NUMBER(w) < NUMBER(v) .

Thus w is numbered before v . Since Vv --w is constructed and

not vow, v must be numbered before edge (w,v) is inspected.

Thus v must be numbered during execution of DFS(w,) . But all

vertices numbered during execution of DFS(w,) are descendants

of w . This means tnat w 5 Vv, and G is a palm tree.

To prove the converse part of the theorem, suppose that P

is a palm tree, with spanning tree T and undirected version P .

Construct an adjacency structure of P in which all the edges of

T appear vefore the other edges of P in the adjacency lists.

Starting with the root of 7 , perform a depth-first search using

this adjacency structure. The search will traverse the edges of 7

preferentially and will generate the palm tree P 5 it is easy to

55

see that each edge is directed correctly. This completes the proof

of the theorem.

From Theorem 5.1 we have the following interesting result:

Corollary 5.2: Let G be any undirected graph. Then G can be

converted into a palm tree by directing its edges in a suitable

manner.

A simple application of the concept of search is a well-known

algorithmfor determining the connected components of a graph G .

We choose an arbitrary initial vertex and search. The search gives one

connected component. We then choose some new vertex and search again.

After a suitable number of searches the graph will be completely explored

and all its connected components will be found. The program below will

carry out these searches.

begin

integer 1;

procedure CONNECT (v,u)
begin

NUMBER(v) := i := itl;

for w in the adjacency list of v co

begin

ifw is not yet numbered then
begin

add edge (v,w) to current connected component;

CONNECT (VW, V) 3

end

else if NUMBER (w) < NUMBER(v) and w #£ u ther
add edge (v,w) to current component;

end.;

end;

i := 0;

for x in Vv if x is not yet numbered then

3h

start new connected component;

CONNECT (x,0) ;

end;

end;

Depth-first search is convenient but not neceesary for this algorithm;

any search method will do. It is easy to verify that the space and time

requirements of the algorithm are linear in V and E .

As we shall see, depth-first search is an extremely useful technique.

In the algorithms that follow we perform one depth-first search of a

graph G to generate a palm tree T and a corresponding adjacency |

structure. In some cases we may reorder the lists of this adjacency

structure to give a new depth-first search. The new search is performed

on the directed graph P ; thus the edges are traversed in the same

direction as during the first search but explored in a different order.

The test to avoid traversing edges in the wrong direction is unnecessary,

and the palm tree does not change after the initial search. We save

enough information during the later search to enable us to answer

interesting questions about G , aided by the simple structure of ? .

6. Finding Biconnected Components Using Depth-first Search |

We have seen how to use a search to find the connected components EE

of a graph. The simple structure of palm trees enables us to answer oo N

more complicated connectivity questions in linear time. Assume for

example that a connected graph G has an articulation point a as

illustrated in Figure 6.1. Suppose we begin a depth-first search in

region G-R and enter region R by passing through vertex a . We)

must eventually back up through vertex a ; that is the only way to

leave region R during the search. This observation allows us to

efficiently calculate the bicomnected components of G . |

:
Figure 6.1: Vertex a separates region R from the rest of the graph.

-

Let P be the palm tree generated by a depth-first search of G
—

and let T be its spamming tree. The procedure DFS numbers the vertices
—)

of P from 1 to V so that the numbering corresponds to the order in

36

which they have been reached during the search. We may refer to a

vertex by its number. Then an ancestor J in T of any vertex 1 has

<i. If i is any vertex of B, let LOWPPL(i) be the smallest

vertex in the set S, = {ia A j} . If S, is empty, let
LOWPTL(i) = +=. The following results form the basis of an algorithm

for finding biconnected components. This algorithm was discovered by

| Hopcroft and Tarjan [Hop 71d]. Paton [Pat 71] describes a similar

algorithm.

| Lemma 6.1: Let G be an undirected graph and let P be a palm tree

formed by directing the edges of G . Let T be the spanning tree

of P . Suppose Dp: vw is any path in G . Then p contains

a point which is an ancestor of both v and ww in T .

Proof: Let T with root 4 be the smallest subtree of T containing
all vertices on the path p. If u=v or u=Ww the lemma 1s

immediate. Otherwise, let To, and Tos be two subtrees containing
points on Pp such that u - Uy and u - Uy If only one such

subtree exists tuen u is on Dp since T is minimal. If two

such subtrees exist, path p can only get from Ta, to To, :
by passing through vertex u , since no point in one of these trees

is an ancestor of any point in the other, while both —-» and =--

connect only ancustors in a palm tree. ©Since U is an ancestor

. of both v and Ww , the lemma holds. |
Lemma 6.2: Let © be a connected undirected graph. Let P be a palm

| tree formed by directing the edges of G , and let T be the

oT

spanning tree of P. Suppose a, v,w are distinct vertices of G | |
such that (a, Vv) eT , and suppose Ww 1s not a descendant of v

in T . (That is, —(v 35 w) in T .) If LOWPT1l(v) >a then a

is an articulation point of P and removal of a disconnects |

v and w . Conversely, if a is an articulation point of G |

then there exist vertices v and w which satisfy the properties -

above.

Proof: If a - v and LOWPT1l(v) > a , then any path from v not passing |

through a remains in the subtree T, , and this subtree does not |
contain the point w . This gives the first part of the Lemma. |

To prove the converse, let a be an articulation point of G .

If a is the root of G then at least two tree arcs must emanate

from a « Let v be the head of one such arc and lett w be the .

head of another such arc. Then a-v , LOWPTL(v) >a , and Ww .
is not a descendant of v . If a is not the root of by , consider

the connected components formed hy deleting a from G . One

component must be a cubtree of T whose root v isa son of a .

If w is any proper ancestor of a , then a ov, LOWPTl(v) >a ,

and w 1s not a descendant of wv . Thus the converse part of the

Lemma is true. oo

Figure 6.2 shows a graph, its LOWPT1l values, articulation points, |

and biconnected components. The LOWPT1 values of all the vertices of

a palm tree 7 may be calculated during a single depth-first search, oo

since LOWPT1(v) = min({IOWPT1(w) |v — w], {NUMBER(W) |v ~—w}) . |

On the basis of such a calculation, the articulation points and the |

I

b > p)
42] oll]

6 "Note sy !: \ { Vo etry
1 \ \ | /

7 [\ /W,

N \ | /
~) \ ~

8 2001 TT

11 I*

(a) ly (b)

3 8
f

| = 5 L\ 9

! 6
2

1

(ec)

Figure 6.2: A graph and its biconnected components.
(a) Graph.

(b) A palm tree with LOWPOINT values in [], articulation
points marked with *.

(c) Biconnected components.

29

biconnected components may be determi: :d, all during ons search. The

bicommectivity algorithm is presented below. The program will compute

the biconnected camponents of a graph G , starting from vertex s .

begin

integer 1;

procedure BICONNECT(v,u) ;

begin

NUMBER(v) := i := itl;

LOWPTL(v) := + oo;

for w in the adjacency list of v do

if w is not yet numbered then

begin
add (v,w) to stack of edges;

BICONNECT (w, Vv) 3

LOWPTL(v) := min(LOWPT1(v).,TOWPT1l(w));

if LOWPT1l(w) > NUMBER(v) then

begin

start new biconnected component;

for (uy5u5) on edge stack with
NUMBER (u.,) > NUMBER(v) do

delete (uq5u,) from edge stack
and add it to current component;

delete (v,w) from edge stack and add it

to current component;

end;

end

elseif NUMBER(w) < NUMBER(v) and w # u then |

add (v,w) to edge stack;

LOWPTL(v) := min(LOWPTL(v),NUMBER(W));

end; |
end; |

40

Toe= 03

empty the edge stack;

for x in Vv do if x is not yet numbered then BICONNECT(x,0);
end;

5
The edges of P are placed on a stack as they are traversed; when

an articulation point is found the corresponding ecges are all on top of

the stack. (If (v,w)eT and LOWPTLl(w) > v , then the ccrvesponding

biconnected component contains the edges ‘in

¥

(uu) fv = uy} U {(v,w)} which are still on the edge stack.)
A single search on each connected component of a graph G will give

us all the bicormected components of G .

Theorem 6.3: The biconnectivity algorithm requires 0(V,E) space and

time when applied to a graph with V vertices and E edges.

Proof: The algorithm clearly requires space linear in V and E . The

algorithm is similar to the connectivity algorithm, except that

LOWPT1l values are calculated and each edge is placed on the edge

stack once and removed from the edge stack once. The amount of

extra time required bythese operations 1s proportionalto E .

Thus BICONNECT has & time bound linear in V and E .

Theorem 6.4: The biconnectivity algorithm correctly gives the biconnected

comronents of anyundirected graph G .

Proof: The actual depth-first search undertaken by the algorithm depends

on the adjacency structure chosen to represent G ; we shall prove

that the algorithmis correct for all adjacency structures. Notice

41

first that the biconnectivity algorithm contains as a part the |

algorithm presented in Chapter 4 for finding connect ed components.
Each connected component is analyzed separately to find its
biconnected components. Thus we need only prove that the

biconnectivity algorithm works correctly on connected graphs’ G .

The correctness proof is by induction on the number of edges

in G . Suppose G is connected and contains no edges. G either

is empty or consists of a single point. The algorithm will terminate |

after examining G and listing no components. Thus the algorithn
operates correctly in this case. Now suppose that the ai gorithm
works correctly on all connected graphs with E-1 or Paver edges. |
Consider applying the algorithm to a connected graph 5 with E
edges. | /

Each edge placed on the stack of edges is eventually removed |
and added to a component since everything on the cfige stack is
removed whenever the search returns to the root it the palm tree

of G . Consider the situation when the first Somponent G' is
formed. Suppose that this component does not include all the edges

of G . Then the vertex v currently being examined is an

articulation point cf the graph and separates the edges in the

component from the other edges in the graph by Lemma 6.2.

Consider only the set of edges in the component. If

BICONNECT(v,0) is executed, using the graph G' as data, the

steps taken by the algorithm are the same as those taken during the |

analysis of the edges of G! when the data consists of the entirc

graph G . Since G' contains fewer edges than G , the algorithn

42

operates correctly on G' , and G' must be biconnected. If we

delete the edges of G' from G , we get another subgraph GM

with fewer edges than G since G' is not empty. The algorithm

operates correctly on G" by the induction assumption. The

behavior of the algorithm on G is simply a composite of its

behavior on G' and on G" ; thus the algorithm must operate

correctly on G . CT

Now assume that only one component is found. We want to

show that in this case G is biconnected. Suppose that G 1s

not biconnected. Then G has an articulation point a . By

Lemma 6.2, LOWPT1(v)>a for some son v of a . But the

articulation point test in the program will succeed when the cdge

(a,v) is examined, and more than cne biconnected component will

be generated. This contradiction shows that G dis biconnected,

and the algorithm works correctly in this case.

By induction, the biconnectivity algorithm gives the correct

components when appliedto any connected graph, and hence wien

appliedtc any graph.

L3

TIT. A Linear Planarity Algorithm

"w

7. General Description

We wish to decide whether or not a given graph G can be embedded

in the plane. We can answer this gqueshion using an algorithm whose space

and time bounds are linear in V , the number of vertices in the graph G .

An intuitive description of the algorithm is presented here; later tha

various operations necessary wili be discussed in detail. Figare T.1

gives a flowchart of the overall process. |

Suppose a connected graph G is embedded in a plane. When the

set of points representing ithe edges and vertices of G 1s deleted |

.from the plane, certain regions remain; these are the called the faces |
of G . Euler proved a relationship between the number of vertices V, |

faces F , and edges E of a connected planar graph: V+F =E+ 2 |

(Lemma 3.5). A consequence of this fact is: |

Lemma 7.1: If G is a planar graph with three or more vertices then

E<3V-6.

Proof’: If G is not connected, wz may connect it by adding additional

edges. Since G is not a multigraph the boundary of each face

must contain at least three edges. Thus 3F <2E ; every edge is

counted twice if we sum over the facial boundaries. It follows that

3 = 3V+3F-6 <3V+2E-6 , and BE <3V-6. |

Because of Lemma, 7.1, we may hope to determine planarity in time

which is proportional to the number of vertices. The first step of the

algorithm is to count the number of edges in the graph G . If the count evev

exceeds 3V-6 , we stop and declare the graph ncn-planar. Next we may |
divide the graph into biconnected components, using the algorithm described

ks

| START

No

Optional Find biconnected
step |} components of graph Ge.

~ perform first depth-first search.
Construct a palm tree P for G .

| Calculate lowpoint information for vertices.

Reorder edges using
radix sort.

Perform second search. Renumber

vertices in search order.

Perform third search. Construct paths

and subgraph of dependency graph.

Is 2-coloring of dependency No
{ subgraph possible?

Yes

“sopTYE. Yes /° Does 2-coloring give a planar No |] STOP.
1s embedding without crossing edges? G 1s non-

planax. } _ planar.

Figure 7.1: Flowchart for planarity testing algorithm.

L6

in Chapter 6. (This step is not actually necessary, but it will simplify |

the presentation.)

Lemma 7.2: A graph is planar if and only if all its biconnected |

canponents are planar.

Proof: Standard. See [Ber 62j. |

Consider one of the biconnectad components. We know ‘that such a

component may be converted into a palm tree 3 using a depth-first |

search. Suppose that 7 is embedded in the plane. Without loss of |

gensrality P may be embedded so that the branches of its spanning tree

point "up" in the plane, and none of the fronds cross under the root |

of the tree. Tet wu be a vertex in the component, and let

(u,v) 5 (Wy), cons (uv) be the tree arcs emanating from wu , in the |
order they occur around wu in the planar embedding. Let Iq Tp, «oo » Ty

be the subtrees whose roots are UTAZIREE »V respectively. Various

fronds emanate from these subtrees and connect to ancestors of wu , as

illustrated in Figure T.2.

For tree T. , the lowest point of connection is LOWPT1(v,) ‘
The highest point of connection (below u) we may call HIGHPT (V.) .

Every subtree T. except one (T, in Figure 7.2) must have all of
its fronds descending on the same side of the branch 1 5 u in the

planar embedding. The subtrees T15Tss ces > Ty must be arranged so that

T, end T have the highest intervals [ToWPTL(v,) , HIGHPT(V,) | and
these intervals are non-decreasing as we move in the sequence of subtrees

toward the tree (if one exists) whose fronds descend on both sides of

WT

}

ZEN

pr NY; 5 7” T), \ \ \/ ™ | f |
| & /|
Cos, XK
NERNEY\ \ ~9 3 J |

NN
Nw /
~ / yI 14~ /

/ /1 9d
1

Figure 7.2: Relationship of subtrees adjacent to a single

vertex in a planar embedding.

L8

the branch 1 wu . Two subtrees (such as T, and T, in Figure 7.2)
whose intervals overlap by more than one point cannot have their fronds

descending on the same side of the branch 15u .

The value HICHPT(v) is not easy to calculate, unfortunately, so

we must resort to a bit cof legerdemain to actually determine the proper

arrangement of the various subtrees of a bicomected component. Instead
of using subtrees, we examine paths. Each path is of the form

DP: S 5 f . If (s,v) is the first edge on such a path p and sov

is a tree arc, then the interval associated with p is the same as that

associated with T , the subtree rooted at v . If (s,v) is a frond

(p is of length one), then the interval associated with p is [v,v].

We do not completely calculate these intervals but we do determine

something about them; in particular we compute the lowest point of eacn

interval and we determine which intervals consist of more than one point.

Using this information, we choose paths with the lowest intervals

first. As the paths are selected,we may imagine adding them to a

planar embedding which contains all the previously selected paths. If

paths P15Pos «+s Pp pass through vertex s , then thelr ordering around

s is restricted in the same way as the ordering of the corresponding

subtrees T5Th eee Ty , Where T, has root A , vs is on path Pp, 3

and Sov, . Thus each new path Dp: s Z f has at most a two-fold
ambiguity in its placement; Pp must be placed either at the left end or

at the right end of the sequence of paths around vertex s . See

Figure 7.3. We call one of these possibilities the left embedding and

the other the right embedding.

Using some additional information about the paths, we develop a

dependency relation between paths: two paths may either constrain each

Lg

| Ps Py

p ah
1/7 \ py,

/ \

p\ Jp
\ /
~ i ’

f

Figure 7.3: The two possible embeddings of new path Dp .

50

other to have the same embedding, or they may constrain each other to

have opposite embeddings, or they may not restrict each other at all.

The relation consists of a set of equalities and inequalities which

must be satisfied over a two-element domain. We shall see that a graph

is planar if and only if its dependency relation is satisfiable.

We may construct a graph corresponding to the dependency relation.

The vertices in this graph are the paths in the original graph. Two

paths are joined by an ELINK if they must have equal embeddings, and two

paths are joined by an ILINK if they must have unequal embeddings. The

resulting graph is called a dependency graph D ; this graph is colorable

using two colors if and only if the original graph G is planar. In

order to test planarity, then, we convert each biconnected component of

the graph into a palm tree, we partition each palm tree into a set of

edge-disjoint paths,we construct the corresponding dependency graph D ,

and we attempt to color D using two colors.

| In order to get a fast algorithm,we must use another bit of

cleverness. We shall see that the number of paths generated is E-W1 .

The dependency graph may a priori contain up to (E-W+1)(E-V)/2 edges.

We do not actually find all links in the dependency graph, but only

enough to connect the connected components of this graph. Since a

two-coloring of any connected component is essentially unique, the

selected links provide enough information to give only one coloring.

(We maypermute colors in the various connected components arbitrarily.)
We then test this coloring to see if it is a coloring of the entire

dependency graph. If so, the original graph is planar and the coloring

gives aplanar embedding. If not, the graph is non-planar.

51

Each step of this process may be carried out in time proportional

to the number of vertices. (The subgraph of the dependency graph which

is actually constructed contains a number of links linear in V .)

The storage space required is also proportional to the number of

vertices. Thus the planarity algorithm is linear in V in both time |

and space; furthermore, the algorithm is optimal to within a constant

factor, since any correct planarity algorithm must examine each edge of

the graph at least once. Figure 7.4 gives an example of the algorithm's

application. The example illustrates the general steps involved in

determining planarity. In the next sections we develop the details of

these steps.

52

p)— 6
7

| or!
5 [1 7 1\/ i / |

| (, = I |
|/ A /

| | a's !
\ PaNop /

\ | /
AY /

6 4 2

(2) (b)

| ALL]

(e) A: (1,4%,5,2,1)

B: (2,3,1) BIL BE DIL]

Cc: (3,4) ”

D: (3,5) E FIR]

F: (6,4) ein] E gr] ;
G: (6,5)

G[R]

(a)

J
1

(e)

Figure 7.4: Application of the planarity algorithm. (a) Graph.
(b) Generated palm tree. (¢) Paths. (4) Dependency
subgraph with 2-coloring in []. (e) Planar embedding
corresponding to 2-coloring.

52

8. Pathfinding |

Assume that G is a biconnected graph with E < 3V-6 . In order

to decide whether G is planar, we shall perform three depth-first

searches of G . The first search generates a palm tree P by directing

all the edges of G . It also gives information about the fronds of F .

This information is used to construct an adjacency structure A for 3

which determines the last two searches. The second depth-first search

numbers the vertices of 7 . The third search generates paths and

| discovers their interrelationships. In this chapter we shall consider

the three searches and the pathfinding process in detail.

If v is a point in a palm tree P , we wish to know the set of

points S. = {wv 4 -—» w} . The two lowest points in 5S, adequately

represent S., for our purposes. Thus we have the following definition:

Definition 8.1: Let G be a connected undirected graph. Let P be a
palm tree generated by a depth-first search of G . Suppose that

the vertices of 7 are numbered in the order they are reached

during the search. We define two numbers characteristic of a

vertex Vv relative to the palm tree BP . LOWPT1l(v) is the number

of the lowest numbered vertex w, in the set § = {wiv A w} .
LOWPT2(v) is the number of the second lowest numbered vertex w,

in the set S_, if such a vertex w, <v exists. If IS, | =0 ,

LOWPT1(v) = LOWPT2(v) = +o. If ls, | =1, IOWPI2(v) =+w,

Tt is important to realize that LOWPT1(v) # LOWPI2(v) wiless

LOWPTL(v) = LOWPT2(v) = +=. Figure 8.1 gives an example of a palm

tree and two sets of its lowpoint values. The pair

5k

9

/

/ |\

- I 18 \
\ NA

[[| 7 \
\ \ / \\ 10
\ ~~ Vl \ !
\ NV l /
\ 2 A \(/ & /
\ \ \/ yy
N \
~ N Pe

1

(a)

9

a Bt

/ \ . | ;
[§ \ |

\ \

| \ | EELrd \
A’ \ !6 \ vo /

NY > K1
(b) (ec)

Figure 8.1: The meaning of LOWPT1l and LOWPT2.
(a) A palm tree. |
(b) LOWPTL{7) = 1; LOWPT2(7) = 6.

(¢) LOWPTL(3) = 1; IOWPT2(3) = +=.

09

(LOWPTL(v) , LOWPT2(v)) is calculated during the initial depth-first

search of G . The calculation is an extension of that in the

biconnectivity algorithm. A recursive procedure for this calculation

is presented below. It is easy to verify that the program correctly

computes LOWPT1l and LOWPT2 , using a depth-first search which begins

at vertex s .

begin |
integer i;

procedure DFSL(v,u);

NUMBER(V) := i := i+l;

LOWPT1(v) := LOWPT2(V) + oo;

| for w in the adjacency list of v do
begin

if w is not yet numbered then

construct arc v= w in P;

DFS1(w,v);

if LOWPT1(w) < LOWPT1(v) then

LOWPT2(v) := min(LOWPTL{v),LOWPT2(W));

LOWPT1(v) := LOWPT1(w);

end

else if LOWPTL(w) = LOWPT1(v) then
LOWPT2(v) := min(LOWPIZ2(v),LOWPI2(w))

else LOWPT2(v) := mir (LOWPT2(v) , LOWPTL(w)) ; |
otic

else if NUMBEFR(w) < NUMBER(v) and w # u then

begin .
construct arc v -—» w in Pj

if NUMBER(W) < LOWPT1(v) then

56 | |

begin /

LOWPT2(v) := LOWPTL{v);

LOWPT1(v) :=/NUMBER(W);

end

else if NUMBER(w)/ > LOWPT1(v) then

LOWPT2(v) := niin(LOWPT2(v),NUMBER(W)) ;

end;

end;

end;

i := 0;

DFS1(s,0);

end;

Figure 8.2 illustrates why we need lonty consider the two lowest

points in the set S, . Suppose u-Vv) and uv, are two tree arcs
—

in P , and all fronds from I, and | v descend on the left in some
1 2

—

planar embedding of P . If LOWPTL(v.) < LOWPT1(v,) <u, or if

LOWPT1(v,) = LOWPT1(v,) and LOWPT2(v,) <u, then v, must appear

to the left of A in the ordering of points around wu . The algorithm

will attempt to embed T before T .
Vo V1

—

The first search generates apalm tree P . This palm tree has

several possible adjacency structures, each corresponding to an ordering

—

of the edges around the vertices of P . The adjacency structures for

BP have one entry for each of the edges of the originel graph G ; all

the edges are now directed. We use the lowpoint valucs to choose a

particular adjacency structure A , which will be used to determine the

selection of paths in the graph. This adjacency structure is based upon |

the ordering of paths determined by their connections with ancestors of -

their start vertices which was described informally in Chapter 7. The

57

— TN
- N

/ g - 7 TN h
/ ,° ND ad a\ / \

T T T T

/ ’ hi vy Vo / /] vyJ Vo
I IA u / { u

boy | ! -
\ SE BN \ I \
vb \ 1

\ \ \

\ \ \ \ \ \
\ \ A \

N \

) \ I RNSN
NN AN

N

\

1 1

(a) (b)

Figure 8.2: Relationship of subtrees in a planar embedding.

(a) LOWPT1(v,) < LOWPTL(v) <u.

(b) LOWPT1(v,) = LOWPTL(v,) ; LOWET2(v,) <U .

58

ordering is chosen so that a depth-first search using this adjacency

structure will choose paths with lowest frond heads first. The

impiications of the ordering are presented in the lemmas below. We

refer to vertices by the numbers assigned using DFS1 .

Definition 8.2: Let § be the mapping from the edges of a palm tree

P into ([1,v] U {+=}) x {0,1} defined as foliows:

(i) If e=v -»w, P(e) = (w,0) .

(ii) If e=v-w and LOWPI2(w) >v , @§(e) = (LOWPTL(w),0) .

(iii) If e =v ow and LOWPI2(w) <v , @§(e) = (LOWPTL(w),1) .

Definition 8.3: Let A be any adjacency structure for a palm tree P .

A is called acceptable if the edges e in each adjacency list L,

of A are ordered lexicographically according to the value of ple) .

In general, a palm tree P has many acceptable adjacency

structures A . It is easy to construct one by using a single radix

sort. LOWPTL(v) and ILOWPT2(v) are integers in the range [1,V] U {+=}.

Since we may assume G is biconnected, LOWPT1(v) <v for all vertices,

and IOWFT1l is never +o. Thus we need 2V buckets. The following

procedure gives the sorting algorithm. All vertices are identified by

the number assigned to them during the initial search. It is obvious

that the sorting procedure requires time proporticnal to V .

procedure SORT;

begin

for each arc (u,v) of P do
if u -- v then place (u,v) in BUCKET (2%v-1)

else if LOWPT2(v) > u then

place (u,v) in BUCKET (2¥LOWPT1(v)-1)

09

else place (u,v) in BUCKET (2*LOWPT1(Vv)) ; |
for i := 1 until 2%¥V do

for each arc (u,v) in BUCKET(i) do
. place v at end of adjacency list of vertex wu:

| end

Lemma 8.1: Let T be a biconnected palm tree with spanning tree T .
Suppose that the vertices of P are identified by distinct numbers

in such a way that v Sw in 7 implies v <w . Let LOWPT1
and IOWPT2 be defined as in Definition 8.1 using the given

numbering. Then the acceptable adjacency structures are

independent of the numbering chosen.

Proof: Since G is bicomnected, LOWPT1l(v) is always an ancestor

of v . The value of @((x,y)) depends only on the fronds of B

and the numbers of the ancestors of x . The order of the

ancestors of a vertex is identical to the order of their numbers,

by the hypothesis of the lemma, and this order is independent of

the actual numbering selected. The property of being a frond of 7

is also independent of the numbering. Thus the edge order imposed

| by § does not depend upon the numbering.

Lemma 8.1 implies that we may renumber the vertices of P in the

order they are reached during any depth-first search of PB without

changing the adjacency structure A . (The adjacency structure specified

by § is not unique, but the possibilities fer A are independent of

the numbering.) The seconl depth-first search numbers the vertices in a

special way in preparation for pathfinding. This search selects edge

| 60

in the reverse order to that given by the adjacency structure A .

The vertices are renumbered in the order they are reached during the

search. This numbering is such that if vertex v appears before

vertex w in the adjacency list of vertex u and u=->v, uU-=WwW,

then v >w . This backward numbering scheme is necessary in order to

determine the interactions between the paths, as we shall see later.

Henceforth we shall refer to vertices using the number assigned by th=

second depth-first search.

We have so far found a palm tree B for G , constructed an

adjacency structure for P based vpon its lowpoint values, and numbered

the vertices of P. We are ready to undertake the third depth-first

search, which generates paths. The recursive procedure for this c.arch

appears below; PATHFINDER(1) carries out the calculation starting with

the root of the palm tree. The search uses adjacency structure A

(this time in the correct order) and works in the following way. The

initial vertex (number one) is marked as the start vertex of the first

path. The search proceeds until a frond is traversed. The sequence

of edges traversed from the start vertex to this frond is the first

path. When the next edge is traversed during the search, its tail

| vertex is marked as the start of a new path. The new path is completed

when another frond is traversed. This process is repeated until the

third search is completed.

61

procedure PATHFINDER(V);

for w in the adjacency list of vdo oo
begin comment Vertex s is a global variable, the start

vertex of the current path, and is initialized to Oj

if v —» w then

begin

if s = 0 then

begin

S = V;

start new path;

end; |

add (v,w) to current path; |
PATHFINDER(W) 3 |

A: if s # O then delete last edge on current path; |
if s = v then s := 03

end; .

else comment Vv -- W; |

begin

add (v,w) to current path;

output current path;

s := 0;

end;

end;

The paths generated in this way have some very interesting properties

which are crucial to the behavior of the remainder of the planarity

algorithm. |
Fe

In particular, if p: s =» -—»f is a generated path then f is the

lowest vertex reachable via an unused frond from T, . Further, if Vv

is any intermediate vertex on path bp , f is the lowest vertex

reachable via any frond from I, . A little more can te sald because

LOWPT2 is used in path selection. The lemmas below give the important

properties. G is the original biconnected grapn, having V vertices

(2

and E edges. P is the palm tree generated by the first search;

P has spanning tree 7 .

Lemma 8.2: The pathfinding algorithm generates E-V+1 paths.

Proof’: One path is generated for each frond of BP . Since T has
V-1 edges, there are E-V+1 paths.

Theorem 8.3: Let p: s ol f be a cenerated path. Then f is the

lowest vertey reachable via an unused frond from T, . If v is

an intermediate vertex on p , f is the lowest vertex reachable

via any frond from T, . |

Proof: If v is reached during the pathfinding search, then all

ancestors of v have already been reached. A path terminates

as soon as it reaches an ancestor of any vertex on the path. Each

path contains one and only one frond, the last edge of the path.

If p has length one, p consists of an unused frond leading to

the lowest vertex reachable from T, . If Pp has length greater

than one and s — v is the first edge of p , then I, has a

frond leading to the lowest vertex reachable from T, . This

follows from the definition of @ . The theorem follows by induction.

Theorem 8.4: The first path generated by the pathfinding algorithm is

a cycle. Each other path is a simple path having exactly two

vertices (the endpoints of the path) in common and no edges in

common with previously generated paths. |

Proof: If a generated path p is of length one, it is obviously

simple. If p: s —- Vv 5 f , then f = LOWPTLl(v) by Theorem 8.3.

63

Since G is biconnected, f <s unless s = 1 by Lemma 6.2.

Thus the initial path begins at vertex 1 and is a cycle, and 11

other paths are simple.

We

Corollary 8.5: If p: s = f is one of the generated paths, then
» —

fos in T .

Proof: Immediate from the proofabove, since LOWPTl(v) is an

ancestor of v , for every vertex v in G .

8.6: Let Sf and Sf bet ted pat* a [] aLemma 0.0: St Py: Sq = 1 and Dy: S,= I, e two generated paths
JN

such that 5, Sn in T . Suppose that Py is found before Py -

Then fy < £5 N

—

Proof: Since So is a descendant of Sq in T , path Pq cold have

reached fT, , but instead reached f; . By Theorem 8.3, f, < f, -
* *

Lemma 8.7: Let »,: s=1f, and p,: s= f, be two generated paths

which have the same start vertex. Let vy be the second vertex

of Pq > let Vs be the second vertex of Ps > and suppose that

15 is found before Dy - Then we have:

(i) ff,

(ii) Suppose f, =f, . If p, is of length greater than

one and LOWPT2(V,) <s , then p, is of length greater

than one and LOWPT2(v,) < S .

Proof: Vertex v, appears before vertex Vs in the adjacency list of

vertex s , because path Py is generated before path Py The

lemma follows immediately from Definitions 8.2 and 8.3.

on

Lemma 8.8: Let Py: Sy z £, and P,: S, 4 f, be two generated
paths. Suppose that s; <s, and that p, 1s found before Dp,

during the pathfinding process. Then Sq 5 Sy

Proof: This result is immediate. The vertex numbering 1s such that

the only vertices v which are examined after Sq is first

reached during pathfinding and such that v > Sq are the descendants

of 5, Remember, the numbering scheme is backwards.

We now that a single depth-first search of a possibly planar

graph G requires time proportional to V . (Remember, we have checked

that E < 3V-6 .) The machinations performed during the three searches

| necessary to find paths all require only 0(1) time per step of the
search process. Thus the total time spent on the three searches is

0(V) . We have also seen that the sorting used to construct the adjacency
structure A requires O(V) tine. Therefore the complete .path

generation process has a time bound linear in V . The space required
is also obviously linear in V .

Tf G is not biconnected, the paths generated will not all be

simple. In fact, any path passing from one biconnected component to

another cannot possibly be simple. There are two ways in which simple

paths may not be generated. One way is illustrated in Figure 8.35. The

path in the figure consists of a simple path from v to Ww followed

by a cycle which loops at Ww . Vertex w is an articulation pointv of

the craph. ‘The region R is separated from the rest of the graph by
vertex Ww . The planarity testing algorithm will handle paths of the

type "autoratically"; the paths in region R do not interact with those
in the rest of the graph. Figure 8.4 illustrates the only other

65

possibility. Vertex w is a dead end (a vertex of degree one). If

such a vertex is reached during path generation, the edge leading to it

is deleted from the graph and ignored. (This is accomplished by test A

in procedure PATHFINDER.) The presence or absence of the deleted edge

does not affect the planarity of the graph. Although this is only an

intuitive justification for the dispensability of the biconnectivity

assumption, one may easily verify this fact using the results below.

ES

| (finish)
v (start)

Figure 8.3: A non-simple path.

| (dead end)
| v (start of path)

Figure 8.h: A dead-end branch.

57

9. Embedding of Paths

We have learned how to partition a biconnected graph G into a

set of simple paths, such that each path has only its endpoints in common

with previous paths, and each edge occurs in exactly one path. In this

chapter we discover how to embed these paths in the plane. Every path,

when it is placed, has at most two possible embeddings with respect to

paths placed earlier, and we shall characterize these possibilities.

Assume thet the paths found in G are numbered from 1 To

E-V+ 1 in the order they have been generated; path one is the initial

cycle. We may associate a unique path with each vertex; namely the

lowest numbered path to cortaliii that vertex. We shall distinguish three

types of paths; these paths interact in different ways. The first

type of path is the initial cycle; it is unique. The other two types

are given by the following definition.

Definition 9.1: I.et p: s 4 f be a simple path generated by the

pathfinding algorithm. Let Py: Sy 5 Is be the earliest generated
path containing s . If Ly <f, then p is called 2 normal

path. fq = £ then Pp is called a special path. The case

f, > f cannot cccur by Lemna 8.6.

Let us imagine embediing the paths in the plane one au a time in

the order they are senerated. The results which follow give a specifi-

cation of the possible placements of a path, in relation to previously

emvbeddad paths.

63

Theorem 9.1: Let p be a generated path in a biconnected planar

graph G . Suppose the previously generated paths have been

embedded in the plane. Then there are two possible ways to add

P to the embedding, at least one of which may be extended to

glve a planar embedding of the entire graph.

Proof: The theorem does not claim that there are only two possible

ways to insert the path p . It merely asserts that there are

two placements of p to which we may restrict our attention

without affecting the planarity of G . The proof requires consi-

deration of the three different types of paths and follows from the

next three lemmas, which characterize the two embeddings for each

of the three types of paths. Without loss of generality we may

assume that G is embedded in the plane in such a way that the

arcs of the spanning tree 7 of G point "up" in the plane and

no frond passes under the root of T .

Definition 9.2: Let P with root 1 be a palm tree embedded in the

plane, with tree arcs pointing "up" and no frond passing under

vertex 1 . Let (v,w) be a frond of P , With Xx —-w -»y 5 vo.

(If w=1, add an extra tree arc x -» 1 to the embedding, with

vertex x directly Lelow vertex 1.) Frond (v,w) is said to

descend on the right (of branch 1 5 v) if the order of edges

clockwise around w is (x,w), (w,y), (v,w) . Frond (v,w) is

said to descend on the left (of branch 1 5 v) if the order of edges

clockwise around w is (x,w), (v,w) , (Ww,y) . Figure 9.1 illustrates

this definitim.

69

|

v v
~ wt

IN /
\ /
\ /

\ l

\

| \ .
/ \

J / \\
y, DéW

w ok”

| x
(a) (b)

Figure 9.1: Position of fronds in a planar palm tree.

(a) Frond descends on right.

(b) Trond dezcends on left.

70

Lemma 9.2: Let p: 1 5 1 be the initial cycle of G . Then

Theorem 9.1 is true for p .

Proof’: Figure 9.2 illustrates the two possible embeddings for the

initial cycle. If the tree arcs of the cycle are drawn upwards in

the plane, the frond which forms the last arc of the cycle may

descend either on the left side or..on the right side of the tree

arcs, giving respectivelythe left embedding and the right embedding.

Lemma 9.5: Let Dp: s Zr be a normal path of G . Let Pot Sg 2 fo
be the earliest path containing s and suppose that x -—=s . Then

Theorem 9.1 is true for p , and without loss of generality bp

may be inserted into one of the two faces in the partial embedding

having the edge (X,s) on its boundary.

Proof: Let PysPgs == 5D be the paths already embedded which contain
vertex s , in the order they occur clockwise arcund s beginning

from arc Xx -»s . We will show that without loss of generality op

may be embedded either to the left of Py > with its frond descending
on the left of branch 15s or to the righ* of P, , with its
frond descending on the right of 1 5s . Thus suppose we Wish

tc place p so that its frond descends on the right.

Suppose DP : s 5 £ (path 1 starts at s). Let c, De
the cycle formed by P, and the branch £, 5s . If £ < ff and
the frond of p descends on the right, p must be placed to the

right of P, by Lemma 3.7 and Definition 9.2, since the frond of

p and the first edge of p must be on the same side of c

| (Figure 9.3(a)). This argument also shows that p must be to the

71)

(a) (b)

Figure 9.2: Embedding of a cycle.

(a) Left embedding.

(b) Right embedding.

T2

right of Pq in the ordering of paths about =s .

Suppose f =f, Dp: Ss WV oem© , and LOWPT2(v) <s .
Consider a frond e whose tail is a descendant of Vv and whose

head is LOWPT2(v) . If the frond of p descends on the right

then so does e , applying Lemma 3.7 to cycle Cor © and the

frond of p . Applying Lemma 5.7 to c,> © and the first edge

of p shows that p must be placed to the right of Pr in the
ordering cf paths about s (Figure 9.3(b)).

If f = f, and either p has length 1 or p: Ss -V een f
with LOWPT2(v) > s , then either p has length 1 or

PS Vy, AA f with LOWPT2(V,) > s , by Lemma 8.7. In this
case (s,f) is a biarticulation point pair in G , as may be

proved in the same way as Lemma 6.2. Path p may be placed either

to the right or to the left of 1 without affecting the planarity
of G [Har 69]. Without loss of generality we place DP to the

right of (Figure 9.3(c)).

We must still consider what happens when Dp : S, Zs (path

1 finishes at s }. In this case some earlier path

Dy: 5, 8 avs f, has vis, . (If Pp=Dy» Sp = 5; £s .
Otherwise s, = S .) The argument above applies to Pp, - Further,

| if c¢ is the cycle formed by Pp, > the part of Py following
vertex Vv , the branch Vv fl 5. and the branch La 5 s , then
both ends of p must be on the same side of c¢ . Lemma 5.7 shows

that p must be placed to the right of P, in the ordering of

paths about s . (Figure 9.4(d)).

The entire argument presented here 1s symmetric with respect

to left and right, so without loss of generality we may =inbed Pp in

75

S
S

n

b
iY 0

P.17° p

f

f=7F

pS n
n

5

(a) (b) |

” 4
8 3

WN NE
| |

Ak
1 Pp Dye

/

/

f=f_ § /
n y,

Figure 9.3: Embedding of a normal path p with start point cn Py

(2) Interaction with path p , f <f. |

(b) Interaction with path Pp Ty = f, p has two connections.

(c) Interaction with path p_, f = f, p has only one connection.

(d) Interaction with path p , f = s.

Th

one of two places; either at the left end of the sequence of paths

ordered around s R with its frond descending on the left (the

left embedding); or, at the right end of the sequence of paths,

with ics frond descending on the right (the right embedding).

Lemma 9.4: Let p: s ZF bea special path of G . Let Dy: 5, ho
be the earliest path containing s and suppose that x - s . Then

Theorem 9.1 is true for Pp , and without loss of generality p may

be inserted into one of the two faces in the partial embedding

having edge (x,3) on its boundary.

Proof: Assume that path Py is embedded with its frond descending on

the right. An argument similar to the proof of Lemma 9.5 shows

that Dp may be embedded at the left end (the left embedding) or

at the right end (the right embedding) of the sequence of previously

embedded paths ordered clockwise around s beginning from arc

X =» 8S |

The location of the frond of p is not fixed by this “argument ;

we must determine whether it descends on the left side or on the
right side of the branch 1 ns. Figure 9.1 illustrates the three
possibilities. If Pp has the right enbedding its frond descends
on the right, as in Figure 9.4(Db). 154 has the left embedding,

] its frond also descends on the vyas in Figure 9.4(a). If
f = 1, this is true because the” embedding 9.4(c) in which the
frond descends on the left is” topologically equivalent (on the
sphere) to 9.4(a) and may se ignored. An induction argument shcws
that we may choose embedding 9.4(a) instead of 9.4(c) for all
special paths witk finish vertex 1 .

>

If £41, then we must have f »v »s with LOWPTL(v) <f , |

by Lemma 6.2. (G is biconnected.) Thus some path p': sf Zope ,
with s' on Vv x s and f' < f , has already been embedded.

Applying Lemma 3.7 to the cycle So formed by Py and f ul Sy 2
and to the cycle c' formed by p' and If 5 s?! , shows that the

embedding illustrated in Figure 9.4(c) is impossible.

Hence the frond of p descends on the same side as the frond |

of Py > independent of p's embedding. This is the difference
between normal and special paths. |

Definition 9.2: Let G be a biconnected planar graph. Suppose that |
the pathfinding algorithm is applied to G , partitioning it into oo

a set of paths. Consider a planar representation of G such that |

each generated path has the left embedding or the right embedding |

as defined above. Such a representation is called a standard

planar representation of G .

Given this definition, Theorem 9.1 becomes:

Theorem 9.4: Every bicomnected planar graph G has a standard planar |
representation. |

The proofs of the lemmas above depend heavily upon the ordering

determined by @ and used to construct the adjacency structure A .

In particular, paths would not be restricted to only two possible embeddings

if TOWPT2 had not been used in the ordering. Having determined the |

possible path placements, we must determine how paths behave within

these restrictions. This is the subject of the next chapter. |

76

aN - :

S
D

Po
s

Po

Ca Pp

£ | £

(a) (b) |

0 |

IY

v

ve

(e)

Figure 94: Embedding of special path p with start vertex on path pj.

(a) Left embedding.

(b) Right embedding.

(c) FEmbedding equivalent to (a) if £=1 and impossible
otherwise.

Tf

10. Dependence

Each path may be added to the planar representation we are

constructing in at most two different ways. Even within these restric-

tions the placement of paths is not arbitrary; embedding a path in a

certain way may affect the embedding of other paths. In this chapter we

analyze these additional path interactions, which are in fact sufficient

to determine the planarity of the graph.

Figure 10.1 shows the paths generated when the pathfinding algorithm

js applied to one ¢f the Kuratowski subgraphs. Using Lemme 5.7 1t is

easy to show that paths B and C must have different embeddings in

any planar embedding of Ks 3 Similarly, B and D must have different
embeddings, and C and D must have different embeddings. Thus K3 3

cannot possibly be ple wr, since there are only two possible embeddings

for each path. We wish to carry out an analysis of this sort for an

arbitrary graph G .

Lemma 10.1: Let Pi: 5; V 5 £5 and Prt Sg 5 fs be two paths
generated when the pathfinding algorithm is applied to a bicomnected

planar graph G . Suppose path Pr is normal. If wv 5 Sn and
f, < £5 < Sq» then Pq and P, have the same embedding in any
standard planar representation of G .

Proof: Path Py must be generated after Pq > because vertex Sp is

not reached during pathfinding until after Pq is generated

(v 3 S,) . If w is the highest numbered ancestor of S, on the
path Py» V <w . Let Py Sy £ be the earliest path

containing vertex Sy The edge 5; *V and the frond of Ps

must be on the same side of the cycle formed by Py ard the

78

1 2 > 6 NN
AYER

| \ \p

\

TR
wi \

I)
I

z 0

6 5 L n /
PY

2tY
/ /

/7

11%

(a) (b)

A: (1,2,3,4,5,6,1)

B: (5,3)

C: (5,2) |

D: (4,1)

(e)

Figure 10.1: Relationship of paths in Ks .TLR EE Ye ,3

(a) Graph.

(vb) Generated palm tree.

(c) Generated paths.

79

branch £5 5 Sy By Lemma 3.7, Pq and Py must have the
same embedding (Figure 10.2).

Lemma 10.2: Let p.,: s, 2 ff. and p.: s x f. be two generated— 1° 71 1 c 2 2

paths in G . Suppose Py is generated before Ps and. that 123

is normal. If S, is on the branch fy 5 Sq and. Yo < £1 < Sy < Sy 5
then 12] and Ps must have different embeddings in any standard

planar representation of G .

Proof: Let e be the first edge of Ss 35 S; - Edge e and the
frond of Pq must be embedded on the same side of the cycle

formed by Py and Ly 5 S, . Lemma 5.7 implies that Py and Ps
have different embeddings (Figure 10.3).

Lemma 10.5: Let p.: s z fo and p.: s : f., be two normal paths— 1° 1 1 2 2 2

in G generated by the pathfinding algorithm. Suppose Pq is

generated before Py - Let v be the second vertex on the branch

£55) . IT Vv <5, <s, and £, < fy then Py and Ps must
have different embeddings in any standard planar representation

of G .

Proof: The numbers of the descendonts of v form an interval (v,vtk) .

Since vv it 8, and v < So < Sq vr Sy Let w be the highest
numbered commcn ancestor of 84 and Sp If Sy, =W, the lemma

follows from Lemma 10.2. Otherwise, let p: w= x z ff be the

generated path such that x 3 Sy Paths p and Py must have
different embeddings by Iemma 1C.2 and paths p and Po must have

the same embedding by Lemma 10.1. This gives the lemma.

80

~~

\
Ww Sy

IY Wnif 12 So Py

IY

0 os 2,

fo)
fy

y//
#

(a) (b)

Figure 10.2: ELINK relation between a path py 21:d a normal

path Pye

(a) Path p, normal.

(b) Path p, special.

81

e

p

| 1
ge)

Po
ty

£5

~lzurs 0.3: ILINK relation between a normal path Pq and another

path Py

82

Definition 10.1: Let G be a biconnected graph. Suppose the

pathfinding algorithmis applied to G to yield a set of

edge-disjoint paths which contain all the edges of G . Let

tx} be a set of variables, one for each of the paths. Let R

be the smallest set of relations containing " *p, = *p, " for
each pair of paths py , Pp, related as in Lemma 10.1],

containing " *p, £ “. " for each pair of paths Py » Py related
as in Lemma 10.2, and containing " %p, #~ “0, " for each pair of
paths Dp, ; Dy related as in Lemma 10.5. (The inequalities
based on Lemma 10.3 are redundant, but are added for convenience.)

R is called the dependency relation of G . Let D be a graph

having the paths of G as vertices, and having two types of edges

(links). If" “n, = “p, €F then (p45P,) is an ELINK in D .
If"x #x "eR, then (p,,p,) is an ILINK in D . Then D

Pq Py 17-2
is called the dependency graph of G .

Theorem 10.4: Let G be a bicomnected graph with a dependency relation

R and a dependency graph D . If G is planar, then R 1s

satisfiable over a two-element domain. Equivalently, the verticey

of D (the paths in G) may be colored with two colors so that

any two paths joine’ by an ILTNK are colored differently, and any

two paths joined by an ELINK are colored the same.

Proof: This result follows from Theorem 9.4 and ti: three lemmas

above. If G is planar, then GCG has a standaid planar represen-

tation. We color the vertices of D with the colors "left" and

"eight" according to the embeddings of the corresponding paths in

some standard planar representation of G . Lemmas 10.1 and 10.2

83

guarantee that the coloring satisfies the restrictions imposed

by the links in D .

The planarity test is based upon the fact that the converse to

Theorem 10.4 is true; 2-coloring the dependency graph D gives a complete

test for the planarity of the original graph G . Before we verify this

fact, we shall show that the structure of the dependency graph DID 1s

related not only to the planarity of the original graph G but also to

the connectivity properties of G . (Since the proofs below are rather

involved and are not directly related to the planarity algorithm, anyone

interested only in planaritymay skip the remainder of this chapter.)

Our objective 1s to show that the connected components of D are

related in a simple way to the triconnsctivity of G .

| Lemma 10.5: Let G = (V,&) be a triconnected graph. Sippose the

pathfinding algorithm is applied to G , giving a set ofpaths with

a dependency graph D . Let Pit Sy 51 and I So il fy
be two generated paths such that Py is the earliest path containing

verter S5 and Py iz not the initial cycle. Then Pq and Ps

are in the same comnected component of D .

Proof: The proof of this lemma is complicated. Consider Figure 10.L.

If sq > £, > £, 5 (P1505) is an ELINK in D and there is nothing |
to prove. IT £5 2 8; 5 Pp is normal; if £5 = fy > Py is

special. In either of these cases, (py5P,) is rot a link in D .

Let S = {o, } . We prove the lemma by adding paths to S one by

one. Each path added to S will be connected tc Ps in D .

Eventually a path connected to 12 in D 'will be addedto S . We

BL

S, Sq S,

(vd
/

. /

P, 2

Po

S "2
2

FN 3) p
£y £5 £5 = I,

(a) (v) (ce)

Figure 10.4: Connection in dependency graph to be proved.

(a) Second path normal, no link.

(t) Second path linked to first. '

(c) Second path special.

85

use cne extension method if S contains only normal paths and

another extension method if § contains at least one special

path.

Extension method 1 |

Suppose S is a collection of normal paths generated by

extension method 1 fromthe initial set {p,} . Let s, be the

highest numbered endpoint of a path in S and let fy be the

lowest numbered endpoint of a path in S . Beth Sg and. fy lie

on path Pq This may be proved by induction on the paths added

to SS. Let W = Ws u Uses Ys , Where EN = Vy and Vs is on
¥ *

path p, , Wy = wt | vy ~w' & (8, -w')} , and if

Pr 3V Zr ’ LL" = {w"|v 3 w"} . There must be a generated
path Ps: S ol fs with one endpoint in W and the other endpoint
in V-W- {892%} , where V is the set of vertices of G . |
Otherwise G is not tricomnected, since (542%) would be a

biarticulation point pair in G . Either fs is a proper ancestor

of £5 y Or Sz is a proper descendant of Sy

Suppose 3 is a proper ancestor of Tq . Let w be the
first common ancestor of Sz and 8, . We have fy <w< Sg 0

and Ww 1s on the branch I, hi Sy (Vertex 53 cannot lie in any

W, because a path with start vertex in some W, ends at a
descendant of f, by Lemma 8.6.)

We may in Tract assume that Sz = Ww because TT‘: WX 2 te
with x ol S4 has finish vertex at least as low as fs by Lemma 85.6.

We may extend the set of paths S by adding D5 . Path D3

must be joined by an ILINK to some path p already in S , since

86

every point on £5 5 5, except £, and Sq lies between the
start and finish vertices of some path in S . This may be proved

by induction on the paths added to 5 . If £5 > 8 then bs, is

normal, and we may use extension method 1 for the next step. If

fy < £2 < Sy then Ps is joined by an ILINK to 12 and we are
done. IT £3 = £5 » Ps is special, and we use extension method 2
for the next step. oo

Suppose that Sz is a proper descendant of Sq Then vertex

£3 must lie on the branch LS 3 Sq We may assume that Pz is
normal, since some path whose start vertex is an ancestor of S

and whose finish vertex is £, must be normal, and we may select

this path as Ps Such a normal path 1 may be choser so that

5 £ s, « Otherwise G is not triconnzcted, since (500 T) is
a biarticulation point pair in G . Then path Ps must be joined

by an ILINK to some path p in S as in the case above.

Lot w be the highest munbered ancestor of S5 which lies

on py - Let DW 5 £), be the path whose first vertex is Ww and
whose first edge leads ‘to an ancestor of S3 . Then P5 and Py

are joined by an ELINK or are identical. IT £), > S¢ then we may

add PD), to S and apply extension method 1 for the next step
(Figure 10.5(a)). If £, <1) <sq then p) and p; are joined

by an ELINK and we are done (Figure 10.5(b)). If fj =f; then we

add Pz and pj to S and shift to extension method 2 for the
next step (Figure 10.5(c)).

87

Py,

p 45, EN p 51
T yd |

S

f)

bp

| D fy,
g £5 £3 | |

S ’'S |

B\ | \W p ;

Ww |p
1 =

55 £ ig} S fy =%y
1 3 P),

(a) (b) (e)

Figure 10.5: Extension of set via an ILINK with a normal path.

| (a) Path Ps normal, p) normal.
(b) Path p; linked to 10
(¢) Path p) special.

88 ’

Extension methsd 2 :

We Knowhow to extend a collection of normal paths. Suppose
we add a sfecial path to the set S . We use a variation of the
method shove to continue the extension process. Let v > £5 be
the seéond lowest endpoint of a path in 8S . Let
W = Aw |gu(v — u Sw! gu is on a path in S U {p 1} . Then there

is’ some generated path Ds: Sz ol 3 from a point in W to a point
in V-W- {v, f.} . Such a path must terminate on the branch

5 £, Xv. (The point v will always be on the path Pp, .) We may
assume that D5 is normal, since some normal path has finish

vertex £3 and has an ancestor of Ss as its start vertex and we

ma;r choose this path as Pz

Let w be the first ancestor of S lying on one of the

paths in S or on Py - If vertex w 1s on Pq > path P3 will

either be connected with one of the normal paths in © , applying

Lemma 10.3, or with one of the special paths in S , appiying

Lemme. 10.2. In either case, Pz 1s connected

to p, in D (see Figure 10.6(a),(b)). Vertex w cannot be on

one of the normal paths in S . If w is on one of the special

paths p in S , then Ps is connected by an FLINK to p as

illustrated in Figure 10.6(c), and thus 125 is connected to Dp,
in D .

If fs <8; (p15%5) is an ELINK in D and the lemma holds.

If 2 > s, , We may add. D3 to D and apply extension method 2 |
again.

Extension methods 1 and 2 enable us to indefinitely enlarge

| the set S of paths connected to n, in D . Since there are oniy

89

®1 ®1
f

5,

Ps

S3
\

~
“~~

? f
£ -

(a) (b)

f "1
2

Pz

S

3

J «
i

S /]
/

TONE

Pi

f,=1%

(ec)

Figure 10.6: Extension of set containing a special path.

(a) Connection with normal path p < ps. |

(b) Connection wit special path p < Ds

(c) Connection via an ELINK with a special path.

0

a finite number of paths in the graph G , the process must stop.

This can only happen when a connection between 120 and some path

in § is discovered. But then p, and p, are in the same

connected component of D . This completes the proof.

Lemma10.6: Let G be a triconnected graph. Suppose the pathfinding

algorithm is applied to G , giving a set of paths. Let Py and.

Ps be two paths whose start vertices lie on the initial cycle C
Then Py and Ps lie in the same connected component of D ,
the dependency graph of G .

Proof: Figure 10.7 illustrates the possible interrelationships between

paths Dy > Po , and c¢ . We use the extension methods aescribed
in the proof of Lemma 10.5 to give a set S of paths connected to

one of the paths Py Or D5 enlarging the set until a connection

in D between, Pq and Ps is found. |
In Figure 10.7(b),(e) paths p, and Dp, are directly linked

in D . In Figure 10.7(2) we may extend the set {p,} using

extension method 2 until a connection with Pq is formed. In

Figure 10.7(c) we may extend the set {p,} using extension method 1

until either a connection with p, is foundor Figure 10.7(a) is
created; this case we have already handled. In Figure 10.7(d) we

may extend the set ({p,} using extension method 1, until we either

find a connection with p, or we create Figure 10.7(a) (already

discussed). In Figure 10.7(f) we may extend the set {ps}

using extension method 1 until we get a link with py -

In Iigure 10.7(g) we may extend the set {p,} using extension

method 1 until we get a connection with Pp; OF we

91

1

By |

Db

Py 1 Pq

(a) (b) (ec)

D, h Py
Pp, /

| D,

(© (e) (2) (&)

Figure 10.7: Two paths starting on initial cycle.

(a) Paths Ps Py special.

(vb), (¢), (4d) Path p, special, path p, normal.

(e), (£), (g) Paths py> PD, normal.

92

| produce Figure 10.7(c) or 10.7(f) (both already handled). Thus

Pq and p, are connected in D .

Now we can prove our main result, giving a relationship between

| the triconnectivity of a graph G and the connectivity of its dependency
graph D .

Theorem 10.7: Let G be a biconnected graph with four or more

vertices. Suppose the pathfinding process is applied to G to

give a set of paths. Let D be the corresponding dependency graph

of GC. Then G is triconnected if and only if G has no vertices

of degree two and D consists of exactly two connected components.

Proof: Suppose G 1s triconnected. Then G must have no vertices

of degree two. Examine D . The initial cycle forms a connected

component of D ; it is connected to no other paths. Any two paths

with start vertices on the initial cycle are in the same connected

component of D by Lemma 10.6. Iarther, if Dp: s x ff is a path
© whose start vertex s is not on the initial cycle, then p is

connected in D to the earliest path containing s , by Lemma 10.5.

An induction argument shows that p 1s connected in D to some

path with start vertex on the initial cycle. Thus all paths except

the initial cycle form the second and last connected component of D.
Conversely, suppose G is not triconnected. Assume further

that G does not have a vertex of degree two and that removal of

vertices a and b disconnects vertices v and Ww in G. When
2 and b are removed, G falls into several connected pieces.

Let R be the piece containing vertex Vv . We may assume without

95

loss of generality that the first edge of the initial cycle generated

by the pathfinding process does not lie in R . Add the edge (a,b)

to R to form a new graph Gy and add the edge (a,b) to G-R
.. to form a (multi-) graph G, . The construction is illustrated in

Figure 10.8.

It is easy to see that both Gy and Co must be biconnected.

Then the pathfinding process may be applied to graphs Gy and G,

to give a set of paths identical to those in G , with one

exception. The first path found in G which has an edge in Gy

will become two paths, one heing the initial cycle cq in Gy and |

the other being a path in G, containing the edge (a,b) . Since

both Gy and G, have zt least one vertex of degree 5, at least

two paths are generated in each graph. Thus if Dy is the

dependency graph of Gy , it will have at least two connected

components (one being the initiel cycle cg). IT D, is the

dependency graph of Gy it will also have at least two comnected

components. The dependency graph D cf G must then have at

least three connected components, because D 1s isomorphic to |

D, U D, - {eq} . This completes the proof. |

oh

a 8 a

~~

¢ .7 \ 7 | K nner— _—)
\.-° R / G-R |

ad ty _— _—
oo -

e — fy 1) PS

il Ga

(=) (b)

Figure 10.8: Analysis of the dependency graph of a non-triconnected
graph.

(a) The original greph G-

(b) Transformation into two graphs Gg and G, - |

95 |

11. Constructing the Dependency Subgraph :

Since the pathfinding a! oritim generates E-V+1 paths in a
biconnected graph 4G with V vertices and E edges, the gravh D

of dependencies between these paths may contain as many as (E-V+1) (E-V)/2
edges. If the entire planarity algorithm is to have a linear time bound,

the number of dependencies must be restricted somehow. We are interested

in coloring the dependency graph using two colors. If a two-colorable

graph is connected, it has a unique coloring with two colors. This fact

suggests that we construct only a subgraph of the entire dependency

craph. If this subgraph has the same connected components as D , and

if any 2-coloring of D exists, then the possible 2-colorings of the two

graphs are identical. We can thus generate a single 2-coloring of the

~ subgraph and test this coloring to discover if it is a >_coloring of the
entire dependency graph. Such a test requires only o(V) time, as we

shall see. |

Hence our objective is to construct & subgraph Dg of the dependency

graph D such that D, has O(V) edges and Dg has the same

connected components as D . This is not so easy, and a detailed yet

intuitive description of the process is hard to present. The basic

idea is to keep track of groups of paths connected together by various

types of links. Each group of paths is represented by a single path.

These group representatives are stored on stacks and each new path

discovered during pathfinding is =ompared with the top paths on the

stacks to discover whether any new links should be constructed.

Four stacks are used to store paths. One stack (ASTACK) convains

all the paths with an edge on the branch leading to the current vertex

96

being examined during the pathfinding search. The other three stacks

contain paths, each of which represents a connected component in the

dependency subgraph of the paths found so far. Three stacks are used

because three types of links in D are handled separately. Apath on

INSTACK represents a group of normal paths connectedby ILINK's. Apath

on ISSTACK represents a group of normal paths connected together via

ILINK's with special paths and normal paths. Only normal paths are

—

plaved, on ISSTACK and INSTACK. Apath on ESTACK represents & group of

paths conidia Hogether by FLINK's. Procedure PATHFINDER, modified to

construct the eres subgraph as it finds paths, appears below.
procedure PATHFTNDENY) ;
forw in the FN list of v do

if v —» w then No
begin

if 54 = 0 then
begin

ee59 EY

end;

PATHFINDER(W) 3

delete from ASTACK, ESTACK all paths p, with s(py) > Vs
deiete from INSTACK, ISSTACK all paths Py with £(p,) > v3

TH: while (s(HIGHPATH(v)) > s{top of INSTACK)) and

(v < s(top of INSTACK)) and |
(HIGHPATH(v) < top of INSTACK) do

begin

construct ILINK between HIGHPATH(v) and

top of INSTACK;

delete top path on INSTACK;

end;

97

restore last path (if any) deleted from INSTACK by IH;

HIGHPATH(V) := 0;

end

else comment v -- w;

begin

p i= ptl;

s(p) = 543
£(p) := w;

Sq t= 03
add. top path on ASTACK to ESTACK;

if f(top of ASTACK) # w do

begin

El: while w < s(top of ESTACK)

construct ELINK between p and top of ESTACK; |

: | delete top path on ESTACK; |

| ends |
restore last path (il any) removed from ESTACK by El;

IN: while f(p) < f(top of INSTACK) and

s{(p) < s(top of INSTACK) do |

construct ILINK between p and top of INSTACK;

delete top path on INSTACK;

FIX: while f(p) < £(top of ISSTACK) and | i
s(p) < s(top of ISSTACK) do delete top path

ont ISSTACK;
add p to INSTACK;

add p to ISSTACK: |

if s(p) > s(HIGHPATH(w)) then HIGHPATH(w) := p; |

end |

begin comment p is special;

| IS: while f{p) < f(top of ISSTACK) and :
s(p) < s(top of ISSTACK) and |

s(‘top of stack) < s(p) + RANGE(s(p) do

begin

construct ILINK between p and top of ISSTACK;

delete top path on ISSTACK;

end

restore last path (if any) deleted from ISSTACK by IS;

end;

if s(p) < v then add p to ASTACK;

end;

Definition 11.1: Let G be a biconnected graph. Let D be the

dependency graph corresponding to a set of paths in G generated

by the pathfinding algorithm. The subgraph Dg of D which is

constructed by the dependency construction algorithm given above

is called the dependency subgrapn Dg .

Since procedure PATHFINDER has suddenly become reasonably complicated,

a few observations may be useful. Paths are numbered from 1 to E-W1

as they are generated. The only information about a path p which is

necessary to the algorithm is the start vertex s(p) and the finish

vertex f(p) of the path. If v is a vertex, RANGE(v) is the number

of descendants of v in the tree 7 of the generated palm tree. The

descendants of v are all the vertices w such that v<w <v+ RANGE(v) .

The calculation of RANGE(v) is easy and may be done during the first

depth-first search; we have omitted the calculation for simplicity. If

vow and w is an ancestor of the vertex currently being examined by

the search procedure. HIGHPATH(v) is the normal path p with the

highest start vertex s(p) such that w <s(p) <w+ RANGE(w) and p has

finish vertex f(p) =v . HIGHPATH(v) depends not only upon Vv but

99

upon Ww . However, since HIGHPATH(v,W,) and HIGHPATH (v, w,,) are
never used at the same time a single variable may be used to store

both.

Consider ASTACK and ESTACK. If path p, occurs above path Ps

on one of these stacks, £(p,) < (pq) and s(p,) < s(pq) . Paths on
INSTACK and ISSTACK are always in order according to the value of their

finish vertices, highest on top. If two paths on one of these stacks

have the same finish vertex, the one with the larger start vertex is

lower. It is easy to verify these properties.

Statements ITH and IN construct ILINK's between normal paths.

Statement IS constructs ILINK's between normal and special paths.
Statement "El constructs ELINK's. Statement FIX keeps the paths on
ISSTACK in the order described above. The tests indicated in these

statements implement the criteria for path dependence described in

Chapter 10. |

‘Theorem 11.1: Let G Ube a biconnected graph and let Dg be a

dependency subgraph constructed for G based upon some set of

generated paths. Let D be the complete dependency graph of the

same set of paths. Then Dg is a subgraph of D and the connected

components of Dg and D are identical with respect to the

vertices they contain.

Proof: It is easy to verify that Dg is a subgraph of D ; this follows

from the fact that each link constructed in statements IH , IN ,

IS , and El dis indeed a link in D . The second part of the

theorem is a little more troublesome. We must show that given any

link between paths in D , there is a sequence of links joining the

100

two paths in Dg . The three types of links in D are illustrated

in Figure 11.1; the next three lemmas give the proofs for these

cases.

Lemma 11.2: Let Py: 8, ot £s and Pp: Ss Z f be two paths generated
by the pathfinding algorithm such that Py is found before p

and (py2P) is an ELINK in the dependency graph D . Then Dp,

and 7p are connected in the dependency subgraph Dg generated

by PATHFINDER.

Proof: We know that sy =v 5s » where v is the second vertex on
path Py The branch 84 3 s contains edges from several paths.
Let these paths be PysPqs +c +sPy in the order their edges appear

| along 5p > . Let Poy =P - If Pq and p are Joined by an
| - ELINKin D , (p;»p) 1s an ELINKin D for ail 1 <1 <n, since

P 1s normal and s(p,) > So for all 1 <1i<n . When path Piyq

is discovered, path Ps is placed on ESTACK. If an ELINK between

Ps and P:iq is not immediately created by statement Y , then

Psiq is placed just above p; on ESTACK, since the next path placed

on ESTACK is Piyq ° Path p; may subsequently be removed from

ESTACK only if Ps becomes linked to Psiq via an ELINK in Dg .

Consider the situation when p is discovered. Path P, is placed on

top of ESTACK. Let k = min{i lo; is on ESTACK when p is found} .

Then Py must be connected to Pr in Dg . This follows by
induction from the observation above. But an ELINK between Dp and

all paths p; on ESTACK will be constructed by statement Y when

p is found, and this includes p, - Thus a connection between 7p
and Pq exists in Dg . This verifies the lemma.

101 |

S51 1
~~

/
/z

/

/

v Py
S S

0 Py

,°
P , v

/

ys If £
£ So | f1 1

D
2

P
0 Py

oe ts 0

(a) (b) (c)

Figure 11.1: Links in D.

(a) ELINK. Peth p is normal.

(b) ILINK. Paths py, D, are normal.

(¢) ILINK. Path p, 1s normal, path p, special.

102

Lemma 11.5: Let Pit Sq 5 £, and Pr: Sp 5 fs be two normal paths
generated when the pathfinding algorithm is applied to G, such

that (p15P,) is en TLINK in the dependency graph D of G .

Then Py and p, are connected in the dependency subgraph Dg .

Proof: Without loss of generality we may assume that Py < Py - The

proof of this lemma is complicated. We shall use induction on the

number of the path Py - The base of the induction as well as the
induction step will follow from the argument below. Thus suppose

that the lemma holds if Ps <k . Let Py = k . Let v be the

second vertex on fy 5 Sq We may assume that s, occurs on the
branch fy 5 Sq since the links in D resulting from Lemma 10.3
are redundant. |

We shall consider what happens between the time path Pp is

discovered and the time vertex fy is reexamined during the search.

We shall assume that Py and Ps do not become connected in Dg

during this period. (If they do become connected, the lemma is true

for Dy = k .) We shall pay close attention to two paths. One,

called D3 , occurs on INSTACK when Po is discovered and is
connected to Pq in Dg -. The other, called py, » occurs on

INSTACK when vertex £q is reexamined and is connected to Ps

in Dg .

When Pq is discovered it is placed on INSTACK. We may prove

by induction on the path number that when Po is found, there is a

path j= on INSTACK such that Ps is connected to Py in Dg ’

S, 5 s(p5) , and £(ps) < f; - This follows from an examination of
statements IH and IS . If £(p3) > f, , then 5(ps) >s, by

105

Lemme. 8.6, and an ILINK between p, ard Ps will be formed by IN

when p, is discovered. (This fact is easy to prove.) Hence we

may assume that £(ps) <f, -

Path Po is also placed on INSTACK when it is discovered.

We may prove by induction on the path number that when vertex £5

is reexamined Auring the search, there is a path p, on INSTACK

such that py is connected to up, in Dg, V< s(p),) < sq

and £{p),) < f, . Thus let p be a path on INSTACK such that

v < s(p) < S; > f(p) < f, , and DP is connected to p, in Dg .
Any path pt! found between the time p is found and the

time f° is reexamined satisfies v < s(p') < s; - Thus if p
is removed from INSTACK by statement IN during this time, p becomes

connected to a path p' on INSTACK with v < s(p') < s, and

f(p') <£(p) <1, -

Suppose path p is removed from INSTACK by statement TH .

Path p will be connected in Dg to HIGHPATH(w) , for some

vertex w >v . If s(HIGHPATH(w)) < s, » then p must be

connected in Dg to some path Pp! which remains on INSTACK and

which satisfies Vv < s(p') < s, and f(pt) < fp) < fy. If

s (HIGHPATH(w)) > s; » then f(HIGHPATH(w)) must lie on the branch

£5 s, « If path p is found after HIGHPATH(W) , p, and
| HIGHPATH(W) are connected in Dg by the induction hypothesis.

If path p, is found before HIGHPATH(w) , then HIGHPATH(w) must
start at a descendant of s; by Lemma 8.8. Path p; must still

be on INSTACK when HIGHPATH(w) is added, since allvertices examined

between the time p; is found and the time HIGHPATH (vw) is found
are descendants of s, . Thus both p, and HIGHPATH(w) must be

10k

cornected to D3 in Dg , and Pq and r, are connected in Dg .
It follows by induction from the previous paragraphs that

when £4 is reexamined, there is a path py, on INSTACK such

that py is coanected to p, in Dg, Vv < s(py,) <s, and

£(py,) <f, . When f, is again reached during the search, an |

ILINK will be constructed between HIGHPATH(,) and path p) by

statement IH , since s (HIGHPATH(f,)) >8q - (This fact is easy

to prove.) Thus we need only show that Ps and. HIGHPATH(,) are

connected in Dg , since Pp, 5 P) » and HIGHPATH(f) are connected

in Dg , and Pq and P3 are connected in Dg .

If HIGHPATH(T,) =p, ‘the result is immediate. Assume

HIGHPATH(f,) is found after p; . Then s (HIGHPATH(,)) is a

descendant of s, by Lemma 8.8. Path p; must still be on INSTACK

when HIGHPATH(f) is found and added to INSTACK, since all vertices

examined between the time p, is found and the time HIGHPATH(f,)

is found are descendants of s, . Thus p; and HIGHPATH(f,) are

both connected to Ps in Dg and the lemma holds.

Suppose that HIGHPATH (£) is found before p, . If

HIGHPATH (f,) is found after Dz then HIGHPATH(f,) must be

placed on INSTACK while Ds is lower on INSTACK, and Py > D3 ;

and HIGHPATH(f,) must all be connected in Dg . Thus we may

further assume that HIGHPATH(f,) is found before Dp; -

We have two more cases. If 5(Pz) > s (HIGHPATH(Z,)) , 5(p5)

is a descendant of s (HIGHPATH(L,)) by Lemma 8.8. This means that

f, < £(ps) by Lemma 8.6, which is a contradiction. If

5(ps) < s (HIGHPATH(f,)) , then (HIGHPATH(T,), Pz) is an ILINK in D ,
and HIGHPATH(,) and ps; are connected in Dg by the induction

105

hypothesis. Therefore in any case Ps and HIGHPATH(T,) are

connected in Dg , which means that Pq and p, are connected

in Dg . This completes the proof of both the base of the
induction and the induction step, and the lemma is true in general.

Lemma, 11.4: Let Py: Sy 2 £5 be a normal path and Pot Sg 2 £5 be az

special path generated by the pathfinding algorithm. Cuppose that

(p50, is an ILINX in the complete dependency graph DO . Then

Pq and p, are joined by a sequence of links in the dependency |
subgraph Dg . :

Proof: We know that p, <p, by the definition of this type of TLINK
(Lemme 10.2). Any path which starts at a descendant of s, must

finish at a vertex not smaller than £5 ,”’since the first path through

Sy finishes at LN . Any path which starts at a descendant of Sy
and which finishes at fa must be special for the same reason.
When Pq 1s discovered it is placed on ISSTACK. If Pq is removed
from ISSTACK hefore Py is found, Pq will. be linked in Dg to
some other path on ISSTACK with finish vertex greater than £5 and

start vertex greater than s, , as an examination of statements IS

and FIX shows. (If FIX removes paths from ISSTACK, the next path

added to ISSTACK is linked in Dg to the removed paths, by

Lemme. 11.3.) When Dp, is discovered, an ILINK will be formed by

statement IS between DP, and all paths on top of ISSTACK with a

finish vertex greater than f, , ineluding the path on ISSTACK to

which Py is connected in Dg . The lemma follows.

The proof of Theorem 11.1 is immediate from the three lemmas above,

because all the possible links in D have been considered.

106

Theorem 11.5: If G is a biconnected planar graph with V vertices

and E edges, the number of edges in any dependency subgraph Dg

of G is bounded by 9V .

Proof: The number of paths (ignoring the initial cycle) is E-V . Let

N be the number of normal paths and let S be the number of special

paths. Every time a path is found, a path may be added to E3STACK.

Every time more than one ELINK is formed by statement El , a path

is removed from ESTACK. Thus the number of ELINKs in Dg is |

bounded by 2(E-V) < LV . Each normal path is added to INSTACK

once and to ISSTACK once. Each time a vertex is re-examined during

the search one ILINK may be formed by statement TH without

deleting any paths from INSTACK. Each time a special path is found

an ILINK may be formed by statement IS without deleting any paths

from ISSTACK. Thus the number of ILINKs formed is bounded by

oN+ V+S < 2(E-V)+V < SV . Thus the total number of links in Dg

is bounded by 9V .

Theorems 11.1 and 11.5 imply that the dependency subgraph Dg has |
exactly the necessary properties. Now we are almost done; we must still

examine the algorithm used to check a coloring of D , and we must prove

the converse of Theorem 10.k. We attend to these matters in the next

chapter.

107

12. Coloring the Dependency Subgraph

After the dependency subgraph Dg is constructed by the pathfinding

| algorithm, it must still be colored using two colors. This is accomplished
very simply using a depth-first search. A path is chosen and colored

“arbitrarily, either "left" or "right". Each time a new path is reached

by traversing a link in De , the path is colored according to the color
of the path at the other end of the link and the type of link. Each

time a link between two paths already colored 1s traversed, the colors

of the paths are checked to see if they are consistent with the type of

the link. One search on each connected component of Dg will produce

a coloring of Dg if such a coloring exists. A program for this purpose
is presented below.

begin

procedure PATHMARKER(Vv) ;
for w in the adjacency list of v in Dg do

if w is not yet colorec then

begin |

if (v,w) is an ELINK then COLOR(w) := COLOR(V);
els: COLOR(w) := -COLOR(V);

PATHMARKER (W) ; :

| end

else if ((v,w) is an ILINK and COLOR(v) = COLOR(wW))
or ((v,w) is an ELINK and COLOR(V) £ COLOR(w) ;

then ge to nonplanarexit;

for w a vertex in Dg if w is not yet colored then
begir

COLOK(w) := 1;

PATHMARKFR(W) ;

end;

end;

108

If the dependency graph Dq is not colorable using two colors,
then the original graph is not planar. However, the converse is not

necessarily true. Given a coloring of Dg , we must discover if this

coloring satisfies the constraints of the entire dependency graph D .

Our test for this property uses four stacks; ALEFT, ILEFT, ARTGHT, and

IRIGHT. |
Imagine repeating the pathfinding process, now knowing which

embedding the paths will be given as they are found. Consider a path Pp

which is colored "left". We compare this path with the path p, on top

of ARIGHT, which is a previously found path with the right embedding.

Tf p and p, are joined by an EZLINK in D , then D is not colnrable
using two colors. We also compare Pp with the path Pp, on top of

ILEFT. Path Py is a previously found path with the left embedding.

If (p>D,) is an TLINK in D , then D is not colorable using two
colors. Having performed these tests, we place p on top of ALEFT

and TLEFT if it is normal, and on top of only ALEFT if it is special.

Path p is treated similarly if it is colored "right". |

This process is carried out for each path in the order that the

paths were found. Stacks ALEFT and ARIGHT are continuously updated so

that they contain only paths with edges on the tree branch leading to

the start vertex of the next path. Stacks TLEFT and IRIGHT axe

continuously updated so that they contain only paths whose finish vertex

is a proper ancestor of the start vertex of the next path. A program

| for the color checking process appears below.

109

procedure COLORCHECK;

for i := 1 until E-W1 do

delete from ALEFT, ARIGHT all paths p with s(p) > s(i);

delete from ILEFT, IRIGHT all paths p with £(p) > s(i);

if COLOR(i) = 1 then

if i is normal then

if £(i) < s(top of ARIGHT) then go to

nonplanare:it;

if £(i) < f(top of ILEFT) and

s(i) < s(top of ILEFT) then go to
nonplanarexit; :

put 1 on top of ALEFT, ILEFT;

end

else comment i is special;

begin

if £(i) < f(top of ILEFT) and

s(i) < s{top of ILEFT) and

s(i) + RANGE(s(i)) > s(top of ILEFT) then

| go to nonplanarexit;

put i on top of ALERT;

end;

end

else if i is normal then

begin

if f£(i) < s(top of ALEFT) then go to nonplanarexit;

if £(i) < f(top of IRIGHT) and

s(i) < s(top of IRIGHT) then

go to nonplanarexit;

put 1 on top of ARIGHT, IRIGHT;

end

else if 1 is normal then

| 110

begin

if £(i) < s(top of ALEFT) then go to nonplanarexit;

if (i) < f(top of IRIGHT) and
s(i) < s(top of IRIGHT) then

go tc nonplanarexit;

put i on top of ARIGHT, IRIGHT;

end

. else comment 1 is special;

begin

if f£(i) < f(top of IRIGHT) and
s(i) < s(top of IRIGHT) and

| s(i) + RANGE(s(i)) > s(top of ILEFT) then

go to nonplanarexit;

put i on top of ARIGHT;

end;

end;

~ Theorem 12.1: Let GC be a biconnected graph with complete dependency

graph D and dependency subgraph Dg . If D is colorable using

. two colors, then any coloring of Dg will pass the test given by

| COLORCHECK. Conversely, if D is not colorable using two colors,

then any coloring of Dg will fail the test given by COLORCHECK.

Proof: By Theorem 11.1, Dg and D have the same connected components.

If D is colorable using two colors, then the possible two-colorings

of Dg are exactly the same as the possible two-colorings of D.
Thus any two-coloring of Dg must pass the test given by COLORCHECK,
since COLORCHECK merely verifies that c¢olors are consistent across

certain links of D .

Conversely, suppose D is not colorable using two colors.

Suppose a coloring of Dg is given. Then two paths Pq and Ps

111

must be colored compatibly in Dg but incompatibly in D . There

are two cases; Pq and p, may be colored the same or they may be
colored differently.

Suppose (P1575) is an ELINK in D end that p, and p, are

| colored differently. Without loss of generality we may assume that
Py is found before Py > that Py is colored "left®, and that jo
is colored "right". When Pq is found it is placed on ALEFT.

Path Py will still be on ALEFT when Py is found. By the proof

of Lemma 11.2, Po will be joined by an ELINK in D to all paths

above and including p, on ALEFT. Thus the color check will fail

when DP, is tested.

Suppose (py505) is en ILINK ir D and that p, and p, are

colored the same. Without loss of generality we may assume that Pq
is found before Py and that Pq and p, are colored "left". We
prove by induction on the number of paths 2 that the color check

fails. The base step and the induction step follow from the argument

below. Thus suppose that the color check fails if P, < k . Let

Pp, = k . We may assume that s(p,) lies on the branch £(pq) 5 s(pq) 5
©. since the links in D resulting from Lemma 10.35 are redundant.

Path Pq is on ILEFT when path Py is found. Consider the
path p on top of ILEFT when Bp, is tested. Path p must have

s(p,) 5s(p) + If £(p) > (py) then s(p) >s(py) by Lemna 8.6
and (P25) is an ILINK in D . Thus the color check will fail,

since D, is colored "left!.

Hence we may assume that f(r) < £(p,) . If s(p) < s(p,)

then (ps2;) is an ILINK in D and the color check will fail by
the induction hypothesis. If s(p) > s(p,) then s(p) is a

112

descendant of s(p;) by Lemma 8.8. This is impossible since

f(p) < £(p,) < £{2,) and p was found after p, - Thus in any
case the color check fails. By induction the color check fails for

all Dy - Therefore the theorem is true.

Theorem 12.2: Let G be a biconnected graph with a dependency graph D .

If the vertices of D (the paths found in G) may be colored with

two colors consistently with the links in D , then G is planar.

Proof: Suppose a coloring of D with the colors "jeft" and "right"

is given. Consider building an embedding of G in the plane one

path at a time in the order the patis were found, using the left

embedding as defined in Chapter 9 if the path is colored "left"

and the right embedding if the path 1s colored "right". We shall

show that the embedding may be completed satisfactorily to give a

planar embedding of the entire graph G .

Suppose to the contrary that scme path p: s 2 f may not

be added to the embedding without crossing some other path.

Without loss of generality we may assume that p 1s colored "left".

Suppose Pp is a noymal path. Fath p must cross some edge

(v,w) either entering or leaving the branch f 5 Ss . Suppose
(v,w) is on a path p, and leaves the branch fs on the left
as in Figure 12.1. Path Pq is found before path p . Thus there

is some path Py which starts at v and proceeds up the branch

\'s 5 s . Since p is normal, Pp and Ps must be connected by an

115

FLINK in D . But Ps is found after Py and thus JO cannot

have the left embedding, sirice the edge (v,w) is to the left of

the first edge of p, (see Figure 12.1). This contradiction shows

that no such edge (v,w) exists.

Suppose some edge (v,w) on path p, enters the branch

f A s on the left as illustrated in Figure 12.2. We may assume

that Pq is normal, since if Py is special some normal path whose

start vertex is an ancestor of s(p,) must have finish vertex w

and must enter on the left of the branch £ ut s . (See lemma 9.k.)

Vertex s(p,) cannot lie on the branch f 5s by Lemma 8.6.
Thus s(p4) > s(p) . But then (p52y; is an ILINK in D . This

is impossible because Pp and Py have the same color.

Thus every normal path may be successfully embedded. Suppose

. Pp: S z f is a special path whose embedding is blocked. Let

Pot Sg = V z fo be the normal path with highest start vertex such
that ff ut 8 VV al gs . If £=0, let Py be the initial cycle.
Such a path Py must exist since G is biconnected. Without

loss of generality we may assume that both p and Py are

embedded on the left. We know that no path blocked the placement

of Py - Path Pp may only be blocked by a path Pq starting
from a descendant of s and finishing at a vertex on the branch

f ul s as illustrated in Figure 12.3. We may assume that Pq is

normal, since some normal path whose start vertex is a descendant

of s must terminate at =(p9) on the same i3ide of tha branch

1 5 s as Dy - Path Py must have the left embedding. Further,

5(p,) #£#s , since if s(p) =s, p, would have £(p,) <f.

11k

S

Pp? Po

v

Ww

Py

Figure 12.1: Blockage of a normal path p: s =f by a path by
leaving f =F s. |

115

s(p,)

i /

PP? /
/

/
Pr

v "

Ww

f .

Figure 12.2: Blockage of a normal path p: s =* f by a path Pp,

entering f Fos.

116

ee
~~

7

Pp? !

Py

Fo

f

Figure 12.3: Blockage of a special path p: s =* f by a path

entering f os.

117

But (p52) mist be an TLINK in D , which is impossible since DP

and. Py have the same color. Thus the placement of a special path.”
cannot be blocked, and the entire graph G may be embedded in the

plane.

Theorem 12.3: Let G be a biconnected graph. Let Dg be a dependency

subgraph constructed for G . Testing a two-coloring of Dg using

| the color checking algorithm COLORCHECK gives a necessary and

sufficient condition for the planarity of G . This algorithm

requires O(V) +ime and space, if G has V vertices and E edges.

Proof: The correctness of the planarity test follows from Theorem 12.1,
Theorem 12.2, and all the previous results. It is easy to verify

that the entire algorithm requires O(V) time and space, since |
E <3V-6 in a planar graph. A little extra work will show that

the planarity algorithm works correctly even if the graph is not

first divided into biconnected components.

With this result, we have come to the end of the line. For further

enlightenment, Figure 12.4 illustrates an application of the planarity |
algorithm. |

2 6

\

/N\/\ . |7 &
i Nn 7

\ \ L Lv /
\ \ a! /

i ENE 8SI
\ \ x ¢ 1 J\ /

vy of 1 /
\ 2 T //
_|u,
AT 4
1

(a) (b)

A: (1,2,3,1)

B: (3,4,1) F

C: (4,7,1) oA

E: (45,1) NE E G
F: (5,6,1) > £ |

B H

(¢) (d)

Figure 12.4: Application of the planarity algorithm.

(2) Nonplanar graph

(b) Generated palm tree

(c) Paths

(d) Dependency subgraph (not 2-colorable)

119

IV. From Alpha to Omega

| J © |

13. Implementation and Experiments

The connectivity, biconnectivity, and planarity algorithms were

programmed in Algol W, the Stanford University version of Algol [Sit Til],

and Tun on an IBM 360/67. Program listings appear in the appendix.

The programs were extensively tested. The planarity algorithm was

applied to a group of planar and nonplanar graphs to verify that the

implementation was correct. The algorithm was also applied to a series

of randomly generated complete planar graphs, in order to determine the

experimental running time.

The test graphs were generated by starting with a complete graph |
of three vertices (Figure 13.1(a)). At each step, a triangular face

of the graph was selected at random and split into three new triangular |

faces by adding one vertex and three edges, as in Figure 13.1(b). A graph

of this type has the property that V = JE - 6 3; no new edge may be added

without destroying the planarity of the graph. Although not all complete |

planar graphs can be generated by dividing triangular faces in this way

(see Figure 15.2 for instance), the test graphs seemed to give the

planarity program a satisfactory workout . |

The test results are given in Figure 13.3 and plotted in Figure 13.h. |

A least squares fit gave: | |
(1) T = .0125V- .07 |

where T is the time in seconds and V is the number of edges in the

graph. The program indeed requires time linear in the number of vertices |

of the graph. The data may be summarized in another way: the program |

will analyze a graph at the rate of 80 vertices/ second (or faster, if |

E<3V-6). Non-planar eraphs generally require less time than planar |

121

1

5 ¢ > 5

(a)

i

1 4

—

k

k J J

(b)

Figure 13.1: Construction of random complete planar graphs.

(a) Initial graph.

(b) Addition of a vertex by splitting a randomly selected
face.

122

b>

VN
a 1

Figure 15.2: A complete planar graph which cannot be generated by
the process in Figure 15.1.

125

| Time to determine planarity
V (vertices) E (edges) (seconds)

20 s5L 0.22

Ty 11h 0.46

60 17h 0.72

80 23h 0.97

100 20k 1.23

150 Lhh 1.60

200 594 2.58

. 250 Thi 3.03 |

300 89k 3.87

ele) 119k h.62
500 140k 6.07

600 1794 7.25

700 200k 9.02

800 2394 10.28

900 260k 10.95

Figure 15.5: Results of running the planarity program on randomly
generated complete planar graphs (E = 3V-6) .

12k

[LoLan SE f BEM —-— mer - _ -

i Figure 13.h: hoI) 4: Graph of running time of planarity te:ee ity test on . |LoL plete planar graphs. a HEHE Exper . = Ce oo.
— ro fit: T =.0125V-.07 AR IJPR { RX } Town ms smmee—mm—— re a 3 2m me + e—————.. e- - - = - t . . - - R . EE ad PU —_— -* N - -- - -— LE ! i.) oT - + N :| - es | : ’ . ’ i : . = ' ! ! : . “o. . : ’ ’R ce a Ll . } .] i! . - - . . - RX fl] * . cod } .
“Te Tr v ee -- Bee v - . Ed -» i I -y 1 1 :] ' . TT . tem— ht rer Wr 4 —p——— — . * ’ I t i ’ : or ’ ° * ! 2. " : : bd ! : Hdd SE : —_— ee he a _ . . , —— A > A ———— & ~gA ———— — . coos ME I . . . ow. ! oe . . : : . : ¢ .- RR Rd a J ————— an i i. R . : } » f : . . - . . | ' R . oe Co 1) ' j -— J SRO . ’,

i I i Co LL | ; E TTTW T : Saale tall LS } } . Cl, oo Lo \ * - is | - . .- a } CL ~I i : Po LIE IEEE a4 -. . i _ . } . }rH ae mer any PRU SES RU Ll Ca ! vo, ' ct CEE. RE Ce ae. ae. cL N Lo. cee = Ase an me oe . . Ce. a .meio aay LS Eon Lo} ' . }] { TC - 4 ' LL . 1 - .) : TT : i. + a. ee= ee oor. oo! . ome. L 3 i10 To + + tec : | i bo SE oo : \ : : . cd ee ce cee es Ci . 4 - = Cee | oo ;oe re earn et EE ‘ - Tot i Sd I Ce ee LC. . A EE) Vie bee RE . . * .-' i Ee tint 2 na i H . + ’ ET RA ‘ ! 1 RE p 3 or MA foe tr - El _ - i [] 1 M . . ’ tT : g or = aeo- —liad to add : | - J y LL CL oo j X i Tm : | { . _ : : . M : - doopon nt oe “da Coe . P. . ,SE dE DA S— + SO . : . ’ { B ME : seep = ~~ ~¢ .- ——— i te. we ’ TL .) ” JA EE EI. ——— — - —— - ’ ’ ‘). abr dlt ST Cy © ERIE nr eodL CIC BE TE Bi : ’ oo . ELLE oil I ta an att EE SEU ama 3a. Sear fp os mn © ns ry i dre cpYor oT RAR BEd ft NST SD EE ' | ME IEEea Sa chee ame + mes : A TIT - .
_— mde . Te . ; ani Ea FI SE , : TEE EEE SEERA LEAL REPRE J. I J Coen “ean .rtat i. EI TL HE A Sr } RLI SEEFE EEE SR YS SE TA EER Sb Eit dh Bet db tr dL oo HE ot or '
Cy ranbi TEAR Lt SES Coe en t ' DES Slab. | + SE SUS ! Co v hry .)

\N I Coy EatTh Sei SHR SI 1 HS SUR SE vo Co TSTTTT em qu bette ome a , . RE X -o. EEBS Ji to Co EN HE | oon SE A Rs . Cc t HE Hay” beta ———————a a 1 = A : . :oo EAE EE a ak BEE FED SR EEE TE a. : SE TuERIE Snr SEE EE I i Co amet een. . ! ' * . * Toes. im bp— am te ! . N i . PE . ’ H 4 rem nom $- - gs ae = re am . . : . . - . : - :HI ! N ! i : H ! . Vl Te I. a ‘ - y= . —% - . - ' : . * { ’ 1 . . | . i —e——id andad rt. = I H 1) . Nn + ‘ 4 ’ ’ ’ ¥ te = ‘ tT . - PEERX tr a Il stat ISI HE CL ’ EE SHE SERED REYSEE tet ed. 4 EE DU fo { SME cgmdeemd snes Remy =e Tt | ee eee . !fem Smo - — ' . ' . . 3 » ! 1 . =. - FUN Jy ‘ge— . ot . H i . 4 : ' A ,——_ - —— ar = g— IE. .i to SE iv f-- TT Fagen fees md HS SUAS a : ' Po re RR mi em .-d I Co : Co i. ve nme ce Co Ce- afm pms ed nm .. : : i AEE bo! EE Cal eeI IT . . ’ yo, ' Dun Shh linh nenihate fn Cg nd PY . : .
—~t-v: I A Nn ne : Ky $ i HEE i TT . Pr SU SE VU SLA SE TE SE loa i - AE Sa i ——t- Tio Hh bes mea dene . | Tn daliaanes BEER BOt 1 : | ’ ‘ 1) MR cds gm —nt- 4 — J J od + 1 TO H . f : - ’ UUM SE ED EE. . . ’ } ’ : . : ' 1 : . - . . . “oe “ . . aSt ES ad HL Sa 1d co, i 1 T To Tn aatmala »% EE R vo NE at ama . co————————— : .Snnan heStansuit Burfi aul Sl Ra BION HE | EEE RNEERTEREN ofl SUR BR SEL A LLL i naan Th fu at fhStuAUEDA SUPER NUUIN SUSUEPORN DRH N ! LI on peed g--1 Id di 1 : ! H . : ha = $= = —_a mgd AE NE SAE : 1 ; ,] ' Tes , ——e fee Com mb — ot—ts a dogo in | { SEE AN tori j-. GSWL a RE HER Ha fq Ras Stent HEE en Rt Ahin Seta ISTEI URS SURE I SNS SER MR| Sane Rtth ul f= ot I ER EE Sten biiiie> oifsh Sk iRbie Batak Mri SE SETI SE JRRE a 2 A Sn a SAE SR HE Htor i T | ¢ T.75 ~~ i= fm fet li. 1 EN TRA AS Sa +r JEUNE SNE DUN FAPSUONEIUS SE PRR Co : N : Sn TE| } | ' SE. _ | 1 1 i . Lyf i tT dams adit Sa Sa ee [AS EN (RS Co HE i 1 r To EE | im mom JE IE I, oo-i- | : TI1 = += AR AE SUNTJ A SE TT Sin TE tin fa aad aut Gone gore ON PR a Da 'I SA —t—t- - i . - Ss a Su ae me UN JUEPOPR ES [J ‘ EET ' Toast mmm TERY Spm beeen; Lift i r — 5 FRIASI ND OOOAR AG IT ppgert pt be RR)t } 1 I ‘ —— Tr! ed JERR a data ded - = _ —4 — . BN : J i i : ail Snbal har JOO UNDUE Sy SENDERS HSE SS PR | .- | a Ld vo,i boi Lo 1 : ' ; a a fa SE UE. _ 1) : NA FA ' TR JU| lL .) HE 1 + mfr mee — _— La i. 4 { H i { i t i ‘ + N : rf > ‘ ns . { + i : | ' : i * : . : v ta - -4 ET SUNRNS SVL 5i , fo I vo [A smb sme I ER Lit Cd : : me : : Ld i y Dr | : ,I ori aha a a SENS SUSN SER «of I : : mE EEEEeem SETI I: SR a. er me-T | J GE oh f L URE t ' t 1 EAE auch GI cl TS A a = RE SRO po Cody | { TTY Ae —t dd LN SO SUNSEN PS PRR Poe NEE1 : Polo. En Sa-Su Ea “emma — — ooo bot {I voy TTT Ratate SE Sa Si — pt Ad I it po To rt A Sa Brtland +t ier ce —— oo [ET TI yi ids alli the Sf Camm el JO JE | ve] HE t 17 inky allie fa i ERT PL I Eo. . co TORT: Ld vo (I SE—+ {i Be podad 4. SR ! io Sins eundis Sukieunivate Stauth ASAE pe bb gmed ar ab EER EEE ETRE ans Si A ER| SERRE EE amore} —- ebm JIE § | TD at Saath LAR EET aera SUR SUN PE iC TT PT ERAS inne Sand I ean 2 mx tna met. Cor! -. - : : vod , . a kit ak at ahi Sah SSESU Ge SH SH to | (I Co SIRE aiid i [EES SIUC TIN (NR SA SP CU: ' . emt mmm mA TUT— —b 5 I. : . ‘ . 1 i . . ros 1 Te m— URE FO - !] | ‘ : 1 ' } 1 me me pd = EO El a —— — . : . . +~ tra at” : } J Po NE” Co Co N = 3 : ——— = Entel . 4 - RV EURA Co a. FA : i ‘ So ci - rte an TINE SUGAR ol LL oo CL : x ~ 3JS WUE TTS NE WL J . . | H i \ : X N N ’ eS Eat a) ! . : * : . : - HR — ——— i —— SPOUSE I I | Ci a i : . . sept atEE AE TY TTTTT : WP. THE. FN JRE INS SUS SFU SS ; Coe BE A btsa bt FI Co rood ET EAs Sh wm des green Arps 2s nwca mem md bgp ! | : i Co 1 ——— ae= em Ce. ! . . I . . mrp mere re em) HE Ai tor Int ghry” Ji FE PO JSOR X I HEE EE pA An ASN ETIE Pos rE em ret ar mm Sm ie mrSmetriST SOUN Ci VT rT 1 EERE SE lt Bian a FESUETO : NR r at RE A SUSNEPURREES : 1Poi PL C iunt aot nietafin Sulpunts JSF SPURNED PUN SSN J to (I io omntuiali mun Gil St nan Stunt 4 SEEN EE Et Ee emp RE tL cto Ty Toe EE EI IE BE

+ a Lr . Co EE Toa Shr ee JIE | . ib ee p— cm pT Er A EE] : a
J - a al . — a PE ga dp Vein * wp Pade eR Sweep JR SH . JEL SP . . } { EE . Se.)] .. .tit) 00) 300 ede ee | oo| 400 500 600 BE EE)700 80 — :00 00 1

ones, since the algorithm halts as scon as the graph is found to he

non-planar. The planarity program was space-limited rather than time-

limited; a 1000 vertex, 2994 edge graph could not be analyzed in the

space available (417,792 bytes) although no more than 12.5 seconds

would be required for processing such a graph. No special care was

taken in conserving storage space; careful reprogramming or use of

auxiliary storage devices would allow much larger graphs to be analyzed.

It is difficult to compare the experimental running times of

different algorithms, since implementations and machines vary greatly.

However, an algorithm devised by Bruno, Steiglitz, and Weinberg [Bru 70]

required about 30 seconds to process the 28 vertex planar graph in

Figure 15.5, using an IBM 360/ 65. The algorithm presented here required

O.4 seconds to construct a planar representation of the same graph.

The time discrepancy would be much grealer on larger graphs. The

experimental results were quite satisfactory, and they demonstrate that

the planarity algorithm presented here is of significant practical

as well as theoretical value.

126

TN

Figure 13.5: Graph analyzed using the algorithm of Bruno, et. al.,

and using the depth-first search method. |

127

14. Conclusions

The depth-first search process has applications beyond those

presented here. For instance, Theorem 10.7 demonstrates a relationship

between the triconnectivity of a graph G and the connected components

of any dependency graph D of G . Using this result it is easy to

discover in O{(V,E) space and time whether a graph is triconnected.

Given a graph G , a dependency subgraph Dg for G 1s constructed.

The number of connected components of Dg is found, and Theorems 10.7

and 11.1 are appliedto resolve the question. An elaboration of this

procedure gives an algorithm for dividing a graph into triconnected

components, using O(V,E) time and space. Such an algorithm will be

described in detail in a future paper. |

Hopcroft [Hop 7la] has presented an algorithm for determining

whether two triconnected planar graphs are isomorphic. His algorithm

requires O(V log V) time. Combining this algorithm with the comnect-

ivity, biconnectivity, triconnectivity, and planarity algorithms, it is

possible to construct an algorithm which determines in O(V) space ard

0(V log V) time whether two arbitrary planar graphs are isomorphic

[Hop 71b]. This algorithm may be modified to enumerate all planar graphs

of various kinds, or to construct canonical representations of planar

graphs. Th planar isomorphism algorithm promises to be of great value

to chemists, since most molecules may be represented as planar grapins.

A canonical form for molecules, which follows from the isomorphism

 alyorithm, may greatly speed searches of the chemical literature.
| We have so far considered only properties of unairected graphs.

However, directed graphs may also be explored in a depth-first manner.

128

The structure which results, called a jungle, is more complicated than

a palm tree, but it is still very useful. For example, the strongly

connected components of a directed graph may be discovered in o(V,E)

time using depth-first search [Tar 71].

Depth-first search has been widely used by researchers in artificial

intelligence and combinatorics. The algorithms presented here demonstrate

the value of this technique as a systematic method of analyzing graphs.

129 |

V. Bibliography

[Aus 61] Auslendsr, L., Parter, S. V. "On Tmbedding Graphs in the
sphere." Journal of Mathematics and Mechanics. vol. 10,

} No. 3 (May, 1961), 517-525.

[Ber 64] Berge, C. The Theory of Graphs and its Applications.
Translated by Alison Doig; rev. ed. London: Methuen and Co.,

Ltd., 196k.

[Bru 70] Bruno, J., Steiglitz, K., Weinberg, L. "A New Planarity
Test Based on 3-Connectivity." I.E.E.E. Transactions on

Circuit Theory. Vol. CT-17, No. 2 (May, 1970), 197-206.

[Bus 65] Busacker, R., Saaty, T. Finite Graphs and Networks: An
Introduction with Applications. New York: McGraw-Hill, 1965.

(Chu 70] Chung, S. H., Roe, P. H. "plgorithms for Testing the Planarity
| of a Graph." Proceedings of the Thirteenth Midwest Symposium

on Circuit Theory. University of Minnesota, Minneapolis,

Minnesota (Mey 7-8, 1970), VIT.L.1 -VII.Lk.12.

[Coo 71] Cook, S. "Linear Time Simulation of Deterministic Two-Way
pushdown Automata." IFIP Congress Tl: Foundations of

Information Processing. Ljubljana, Yugoslavia (August, 1971) .
Amsterdam: North Holland Publishing Co., 174-179.

[Fis 66] Fisher, G. J. "Computer Recognition and Extracticn of Planar
Graphs from the incidence Matrix." I.E.E.E. Transactions on
Circuit Theory. Vol. CT-13, Ne. 2 (June, 1966), 154-163.

(Gold 63] Goldstein, A. J. man Efficient and Constructive Algorithm for
Testing Whether a Graph Can Be Embedded in a Plane." Graph

and rombinatorics Conference. Office of Naval Res. Logistics
Proj., Contract No. NONR 1858-(21), Dept. of Math., Princeton
University (May 16-18, 1963), 2 unnc. up.

[Gol 65] Golumb, S. W., Beumert, L. D. "Backtrack Programming.’ JACM

[Hal 55] Hall, D. W., Spencer, G. Elementary Topology. New York:
Wiley, 1955.

151

[Har 69] Harary, F. Graph Theory. Reading, Massachusetts: Addison-

Wesley, 1969. |

[Hol 701 Holt, R. C., Reingold, E. M. "On the Time Required to Detect
Cycles and Connectivity in Direcivd Graphs." Technical Report
No. 70-63, Department of Computer Science, Cornell University

(June, 1970).

[Hop 71al Hopcroft, J. "An n logn Algorithm for Isomorphismof
Planar Triply Connected Graphs." Technical Report No. 192,

Computer Science Department, Stanford University (January, 1971) .

[Hop 71b] Hoperoft, J., Tarjan, R. "A Vv Aigorithm for Determining
Tsomorphism of Planar Graphs." Information Processing Letters.

1 (1971), 32-3k.

[Hop 71le] Hoperoft, J., Tarjan. R. "planarity Testing in V log V Steps:
Extended Abstract." IFIP Congress Tl: Foundations of

Information Processing. Ljubljana, Yugoslavia (August, 1971) .
Amsterdam: North Holland Publishing Co., 18-22.

[Hop 71d] Hopcroft, J., Tarjan, R. "Efficient Algorithms for Graph

| Manipulation." Technical Report No. 207, Computer Science
Department, Stanford University (March, 1971).

[Kur 30] Kuratowski, C. "Sur le Probleme des Corbes Gauches en

Topologie-" Fundamenta Mathematicae. Vol. 15 (1930), 271-283.

[Led 65] Lederberg, J. "DENDRAL-6k: A System for Computer Construction
Enumeration, and Notation of Organic Molecules as Tree

Structures and Cyclic Graphs, Part II: Topology of Cyclic

Graphs." Interim Report to the National Aeronautics and
Space Administration, Grant NsG 81-60, NASA CR 68898, STAR No.
N-66-i4074 (December 15, 1965).

(Lem 67] Lempel, 4A., Even, S., Cederbaum, IL. "An Algorithm for
Planarity Testing of Graphs." in P. Rosensteihl, ed.,

Theory of Graphs: International Symposium: Rome, July, 1966.
New York: Gordon and Breach, 1967, 215-252.

1352

[Mei 70] Mei, P., Gibbs, N. "A Planarity Algorithm Based on the
| Kuratowski Theorem." AFIPS Conference Proceedings, Volume

36, 1970, Spring Joint Computer Conference. Atlantic City,
New Jersey (May 5-7, 1970), 91-95.

[Mon 71] Mondshein, L. "Combinatorial Orderings and Embedding of
Graphs." Technical Note 1971-35, Lincoln Laboratory,
Massachusetts Institute of Technology (August, 1971).

[Nil 71] Nilsson, N. Problem-Solving Methods in Artificial Intelligence.
New York: McGraw-Hill, 1971.

[Ore 62] Ore, O. Theory of Graphs. American Mathematical Society
Colloquium Pub., Vol. 38. Providence, Rhode Island: Amer.

Math. Soc., 1962.

[Pat 71] Paton, K. "An Algorithm for the Blecks and Cutnodes of a
Graph." Communications of the ACM. Vol. 1k, No. 7 (July, 1971),
L68-4T5.

[Shi 69] Shirey, R. W. "Implementation and Analysis of Efficient
Graph Planarity Testing Algorithms." Ph.D. Thesis, University
of Wisconsin (June, 1969). | |

[sit 71] Sites, R. L. "Algol W Reference Manual." Technical Report
No. 230, Computer Science Department, Stanford University

(August, 1971).

[Tar 69] Tarjan, R. "Implementation of an Efficient Algorithm for
Planarity Testing of Graphs." (December, 1969), unpublished.

[Tar 71] Tarjan, R. "Depth-First Search and Linear Graph Algorithms."
Conference Record: Twelfth Annual Symposium on Switching and
Automata Theory. (October 15-15, 1971), IEEE Computer Society,
11h-119. |

[Thr 53] Thron, W. J. Introduction to the Theory of Functions of a |

Complex Variable. New York: Wiley, 1955.

[Tut 63] Tutte, W. T. "How to Draw a Graph." Proceedings of the
London Mathematical Society. Series 3; Vol. 15 (1963),

Th3-768.

155

[Tut 66] Tutte, W. T. Connectivity in Graphs. London: Oxford

University Press, 1966.

[Wei 65a] Weinberg, L. "Plane Representations and Codes for Planar

Graphs." Proceedings: Third Annual Allerton Conference on

| Circuit and System Theory. University of Illinois, Allerton

House, Monticello, Illinois (Oct. 20-22, 1965), 733-Thl,

[Wei 65b] Weinberg, L. "Algorithms for Determining Isomorphism Groups

for Planar Graphs." Proceedings: Third Annual Allerton

Conference on Circuit and System Theory. University of Illinois,

Allerton House, Monticello, Illinois (Cet. 20-22, 1965),

915-929.

[Wei 66] Weinberg, L. "A Simple and Efficient Algorithmfor Determining

Isomorphism of Planar Triply Connected Graphs." I.E.E.E.

mransactions on Circuit Theory. Vol. CT-13, No. 2 (June, 1966),

[Win 66] Wing, 0. "On Drawing a Planar Graph." I.E.E.E. Transactions
on Circuit Theory. Vol. CT-13, No. 1 (March, 1966), 112-114,

[You 63] Youngs, J. W. T. "Minimal Imbeddings and the Genus of a

Graph." Journal of Mathematics and Mechanics. Vol. 12,

No. 2 (1963), 305-315.

od

134

| oo a

VI. Appendix: Program Listings

| 4"

This section contains listings of the procedures needed to build

the connectivity and biconnectivity algorithms, and the listing of a :

complete implementation of the planarity algorithm. The programs are

written in Algol W. The reader may notice scme differences between

the programs here and the procedures discussed in the text; these are

mostly a matter of convenience. Further, the comments occurring in

the programs may not be completely lucid. The reader is strongly

urged to implement the algorithms himself, but if he is

lazy, the planarity program accepts data in the following form:

"problem name" (a character string identifying the problem)

V (the number of vertices in the graph)

E (the number of edges in the graph)

vl Ve |

V3 Vk
(pairs of integers denoting the endpoints of

:) the edges of the grapa)

V2E-1 V2E

This sequence may be repeated for each graph to be analyzed.

136

Utility procedures for CONNECT and BICONNECT faced from RP
| best available copY: XiiS

PROCEDURE ACD2 (LFETEGE] VALUE A,u,;itilcGen ARRAY STACK(*) ;
IMIECER VALUE RESULT PTR);

BEGIN |

COMMENT we sk 2 dof ok dof do ok od dod dak of sok 4 30% 4nd of we ok te ok dodo ook doko Xe ok sek Jed sok x
* ~~ FRQCEDUKE TO ADD VALULS A, o TO STACK "STACK" AND
* INCREASE STACK POINT "Plax" BY 2.

Kod de deo kd kk kkk kr kode RR RRR Ae HT A MRR RRR RR HER RR RR REE KEKE KK

PTR: =PTR+2;

STACK(PTR=-1):=4;
STACK (PTR) :=F

LN;

PROCENUFE NEXTLINK (INTEGER VALUE PULNT,VAL);
REGIN

COMPNTFNT % sk d doo dodo ok oof Xk 4 ok a kk ok dk 250% 3% 30 oe oe sc doo dod ook 3% ok doo 3 ok 3k

* PROCLDURE TO ADD DIKECTED woboee (POINT,VAL) TO

hd STRUCTNRAL REPKSSENIALLION OF A GHAPH,.
*

* GLCRAL VARIABLES:

* HEAD (V+1s:V+2*e)NEAT (1::V+2%E): STRUCTURAL
* REPRESENTATLON OF fob GuAPH.

* FREENL XT: CUIRENT LAST ENfrY IN NEXT ARRAY.

Bol oe Ae de ok 2 3k oe oi od ode edo ook ke de doi dk ode ode ode ole ko ae de a de ko kode dk fete dik ok ok oe ode ok kok ko kde

FREENEXT:=FRESNEXT+1;
NEXT {ERYINEXT):=NEXT (POANT)

NEXT (FOINT) :=IKESNEXT;

HEAD(FRETFNEXT) :=ValL
END;

INTEGFR EROCEDURF HIN (INTEGER VALUn A,B);
CCMPENT hokskok ok kode sk do se dood desk ook dol ok ake skoloe de skok od oo so ook sol ok ode de ok
% FROCFDUERT TO COMPUTE [iie uwiNLMNUd OF TWO INTEGERS.
Sod ok hk kkk kek Rk ARE R ARERR RR RE Fok x aR kok kkk kkk REF RRA XK X

ITP AE THEN A ELSE 3;

157

Recursive connectivity procedure

SR0CEDURE CONNECT!INTEGER VALUE V,E; LNIEGER RESULT CPTK;
INTFCER ARRAY EDGELIST,COMPONENTS(*)) |

PEGIN :

COMMENT 3k % of doko ak ak ak 3 a ok a ok ok 3K Kk deo ok de old ok ok kok ok de ke deoiok kok KOR ok Rk x kk
+ PROCEDUKE TO FIND THE CONWECTED COMPONENTS OF A
GRAPH.

x

* PARAMETERS:

* v,E: INPUT NUMBER OF Voki ICES AND EDGES OF THE
* GRAPH. |
* EDGELIST (12:2%E): INPUT LIST OF EDGES OF GRAPH.
* COMPONENTS (1::3%E): OQUIPUT LIST OF EDGES OF
% CCMPONENTS FOUND. rAlCd COMPONENT IS PRECEDED BY
* AN ENTRY GIVING idE NUMBEAR OF EDGES OF THE
* CCMPONENT.

* CPTR: OUTIZUT POINTER TO LAST ENTRY IN COMPONENTS.
* :

GLCBAL VARIABLES:

HEAD (V+1::V¥+2%E),NEXAT (12: V+2*E): STRUCTURAL
* REPRESENTATION Ur THE GnAPH (UNDIRECTED, NO
* CROSS-LINKS) . ,
% FREENEXT: LAST ENTHY LIN nsXT ARRAY. |
x :

* LOCAL VARIABLES: |
> NUMBER (1::V+1) : ARRAY FOR NUMBERING THE VERTICES |
+ DURING DEPTIi-FIRSI SEAkCH.

w CODE: CURWENT HIGhoST VailoX NUMBER.
* POINT: CURRENT POLNL BEING EXAMINED DURLNG SEARCH.
* V2: NLOXT POINT TO BL LXAMINED DURING SEARCH. |
* OLDPTR: POSITION IN COMPONENTS TO PLACE E VALUE OF
* NEXI COMPONENT.

*

* GLOBAL PROCEDURES:

s# ADD2,NEXTLINK,
x

% A RFCURSIVE DEPTH-FLIEST SEARCH PROCEDURE IS USED TO
* EXAMINF CONNECTED COmpPIONENTS OF THE GRAPH.

dee ok og A a deo oo dod a ok ge do ol ok i dk ok dk ok Kok kk Rokk OR RF Rk kkk Rk Rokk kkk RX RE |
INTEGER AERAY NUMBER (1::V+1); -
INTEGER COLCE,DPOINT,VZ2,0LDPIK; | oT
PLOCEDURE CONNECTOR (INTEGER VALUE PULNT, OLDPT); Co
CCMMENT a ok dk dk dk doa 4 ak od de ok od ok ake A ek dk i ok kok kok ok klk ok ok ok ek kok RK %
* RECURSIVE PROCEDURE TO FINU A CONNECTED COMPONENT,
* USING DEPTH-rLRST SEAKC.
*

* PARAMETERS:

* PCINT: STARTPOINL OF SEA&RCu. |
* OLDPT: PKEVIOUS STAkIPOINL.

%*

* GLCP AL VARIABLES:

* SEE CONNECT FOR DesCkLPIION.
x }

138

* GLCFAL PROCEDURES:

* ADDZ.,

*

* TYUANAINE “ACH £JGL Qul Ur PUulNT.
kon ok dh oF ok ok RRR RR FR RR RK RR RRR ROK OR RR RR RRR RR
WEILE NEXT (2UINL)>0 DO

FEGIN

COAMENT de a a ok oo co oF 3 ok A ok a HE HR Rk ok HOR of dkeok XR OR JOR FOR XR
* V2 IS HEAD OF mug. VvELoTE EDGE FROH

, OX STRUCTURAL KEPnoILwialivlN.
de ee aK sol ok dR Rk RR OR ROR ROK RR OR ORR Xk ROR ROE
V2 e=HERD (EXD (POLNT))
NEXT (TCINT) s=NEXL (NEAL (FOLNT)) §
COMMENT de se ok sto ko ok od dk ok tee xd Ke ok oe de ok ok ol RoR RoR XK X6
%* HAS PLE 8DSE Beeld Swarcidd IN THE OTHER
* DIFECTIUN? If 5J, LLUA (OR ANCTHER EDGE.
ol ke ok OR a OK RR oR ORR RRR HORROR RR RRORR ORR EE
I= (NUNSER (V2) NUMBER (POLST)) AND (V2-=0LDPI) THEN

RRGINM

CCUM i ENT i A oe eke eA 6 He A dee ed ok ak kk dalek oof te oe ol kek KORO XC
* ADD BEDE TO CUNrONLENL,

see ok ee x kak oo ROK oR RR KR ok aR RK RR ROR ROR XR RRR RK
ALDZ (POINT, V2, C0Mcunonin,CETR)
CCMADNT Je sol de dk do KA fk do RX ok ded koko dod tok ok oko kok XOX

2 % LaS A NEW Pudi soph FOUND?
TNS deve sk oe A A ok RK xe Xe RR ROR OR SOK a doko fk kk ok RK RK ROR 3

>: IF NUMBER (V2)=0 Taw
£0 FIGIN
o" COXaENT So dk Re a dex HOR 6 ad ok dk oe dk kok ok ok olokolok ROR ORR

~—— R ’ tY *A . '

52 * Toa DOLE Fulani. NU“hER IT.
Ss epeeTET TELS LE LES LEAS bh Sa= ’ -e N . ve Ch) * . - .

EK NUHSER (VZ) 1=CODREs=CUD=+ 1;
bo COnUENT wk % 2 OK A ACR 3 ok on Xk Rok Ok Rok RoR RR ROR RE RRR
0! x ET iwan A Oabtid-FIRST SEARCH FROM THE

** NT. ordinal
¥ % % kk XK Go dou AK 4% RA OR ROKK A dk dol Rok dk do ok Ak oR deo Rok
CONNECTUR {VZ,rOINL) ;

II

“NDS

END;

CAVYTNT dtr A de RRR RR RR ORR SOR ROR RR oo RRR de RRR RK ORK
*® CONSLRUCT Tho SingdCilUnal ALenoS5INTATION OF THE
* sr APH. |
ole do ok de RT KR A RR OR Rk Xe ORR FOR RX ROR OR ROR
FEELNLXT =V;

159

FOF I:=1 UNTLL V DV NEXT (L):2=0;
FOE I:=1 UNTIL £ DO

EEGIN

COMMENT 2 tc ok oo ok kok ok kok kK Rok ok ok Rokk OE ERK
* EACH EDGE OCCUkKS TWICE, ONCE FOR EACH
* ENDPOINT.

od ok oe a OK AOR RRR ROR RRR RR ORR RR TE
NEXTLINK (EDGELIST (2%1-1) ,EDGELLST(2*I)) 3
NEXTLINK (EDGELIST (2%1) ,EDGELIST (2*¥I=1)) 3

END;

COMMENT npn TE ST IIE ELL ES LAS Sh Shhh
* INITTALIZE VARIABLES FOR SEARCH.
oo ok RR RRR RR Rok RR Ok OR RoR
cpir:=0;

EQINT:=1;

FOE I:=1 UNTIL V+1 DO NUMBEK (I) :=0; |
WHILE POINTL=V DO

EEGIN

COMMENT de oak 4 ok A A ok fd doko Rk Fok ok dk dk kok RR RoR Rok oko RR KOK
x FACH EXECUTION OF CONNECYOR SEARCHES A
* CONNECTED COMPONENT, AFTER EACH SEARCH,
* FIND AN UNNUHSERED VEKTEX AND SEARCH AGAIN.
* FEPEAT UNTIL ALL VEKT ICES ARE INVESTIGATED.
eos od ko RR RR RR oR RR lO OR ROR REE
NUMBER (POINT) :=CODE:=1;
OLDPTR :=CPTR:=CPTR+1; |
“CNNECTOR(PUINT,0);
COMMENT te A ok ok kok ok ok dk kok Ak dk ok RK RR Se ok Rk Rk RoR Xk |
* COMPUTE NUMBER OF EDGES QF COMPONENT.
sooo oe oo ok ROK dR OR Rk dk RR Rk ROR RR
COMPONENTS (OLDPTR) := (CPTR-ULDPTR) DIV 23
WILE NUMBER (POINT) -~=U DO POINT:=POINT+1;

END

END;

140

Recursive biconnectivity procedure |

PROCADURT RICONNFCL(INTEGRNX VabUe V,e; INTEGER RESULT BPTh;
INTECE® ARRAY EDGLLIST,UICUNPONESTS(*));

NepsglIN

| RI. de de de deo de BOR A of 3 kk ded a dR ok ok a Rok sok todo doek kok ok dokoR de dk kX
= PROCEDURE TU FIND Tus BICUNHLUTLD COMPONENTS OF A
x SP APH,

*

* EARAMETE1S:

* V,2: INPULY NUMBER UF VuiaTICsS AND EDGES OF THU
* GuApd,

SDGELLSL(1s32%8): slur nisl OF EDGES OF GRAPH.
0 LICCHPONENTS (1::3%w): UULFUL LIST OF EDGES OF
x CCMUOLWENTS FOJNJ. Edo CJUSNPONENT IS PRECEDED BY
x AN ZNTEY GIVING Tui bUdozl OF TDGES OF THE

* CCMPONENT, |

* ELTE: OULPUT POlivicex TU oLaSI ENTRY OF BICOMPONWENTS.

« GLCRAL VAnlA3LES:
* EIAD(VH1soVa2®E) (NLaL(1riVee*E): STRUCTURAL RLEPRi-
* SPUTATION OF THE oikAéd (UNDTRECTE®D, NO CROSS-
* LINAS).

* FREENZXT: LAST He IN JEL ARRAY.3

* LCCAL VARIABLES: |
* MARE (1:2V+1) 2 AngAY Foi SUNBERING THE VERTICES

* DUELING DEETH-FIR3T SEaRC iH.

w CHUB: CUARENT Algona Von LEX NUMBER.% EUGESIACK(12: *E} : 51lCkads FOR LIST OF ZDGES

x Fos EYAIINED DUNING SchRcu.« [BY “eTP: FOINTLE TuluanT Ewiany id EDGFSTACK.
* of POINT: CURRENI pOINi- sm.du LAAYINFD DURING SERKCH.
« |g8 v2: Nzxy POINE T¢ wn EXASLNmU DURING SEARCH.
« [8 NEALCWPT: LOWPOIHT fui BLCUNNECTED PART OF GRAPH
[53 ABCVE AND LNCLUDING VZ.
« {8% OLDPTx: PISITIOMIN JICUMPONEGTS TO PLACE E VALUE
* bE OF VEXT COAPONEN I.

| # [®¥0] 3ICEAL PROCLDURES:

& MTN,ADD2, VEATLlicl
%

* A RECURSIVE UEP iH-Flus] SzaaCn PROCEDURE IS USED TO
* DTVIDE Hi SkaPu. Tdi LOsosi PUINT REACHASLE FROY THE
% CURRENT POLAT WiTHOUL GULNG T.dxOUGH PREVIOUSLY

x SFARCEFY POINTS I5 UALCULaluile THIS INFORMATION
* AT LOWS DSTERMINATIONUF Tur AXLICULATION POINTS AND

* DIVISION OF THE GR&PU.

% vk df de de de Xen jek dese feof feoofede Axe dk A Ye k Fed ok AR FAR Hoax ak xk ol rk dak fk kak fk oR KR KKK EK.

Co 1k

* v2 IS HEAD OF THLE EDGE. wELETE EDGE FROM
% STRUCTURAL REPrLSENTATIUN.
doo eo ok eo oko ROK kk kok OK Kk OR ORK ROKR RR kk kk Rok ok §
V2:=HEAD(NEXT (POINT)) ;
NEXT (PCINT) : =NEXT (NEXT (POINT)) ;
CCMMENT 3 oh ok ak 3 ok ok ok 3 ok ok ok Xoo a kk ok ok kok dK ROK Ak ok kok 30k AK
% HAS THE EDGE BEEN ScARCHED IN THE OTHER
% DIRECTION? Il} SU, LUOK FOR ANOTHER EDGE,
nettTTT TT TET ELE ES EA LE LLL LEE Eh
IF (NUMBER (V2) <NUMBER (POINT)) AND (V2~=0LDPT) THEN

REGIN

COMMENT ac 3k ak ok ok ok 3 ak 3% 5 ko Nok ke ai ok ok ok dk kok ok dol ak Fok kok OX
ok ADD EDGE TO EDGESTACK.

4 2 kd a 6 ok aK Ae Ak a Rk ok dk ok dK oo kk ak dk ok ok ok dk kaodokok kok okoR Rok |
ADD2 (POINT, V2,EDGuSTACK,ErTR)3
CCMMENT 3 ok 2 A A 2% a od dk a ok Rak of ok bk kd dk kook kok kok i ok ok kok kd ok ek
* HAS A NEW POINT BEEN FOUND?
40 kc ee 4c kok ok ok ok A ok ok kk of ok ok dk ak ke dk tok Rokk RRR lok Rokk kx Rk kk Rk
IF NUMBER (V2)=0 THEN

REGIN

COMNENT kk kiokdok kk dx koko kk kkk kr kxk xx
* NEW POINT FOUND. NUMBER IT.
2 ek ok ok kd Ak ok 3 ok ok ok kok Ak Xe dK kok kK kok oR koko Rk ok kk kX

INTECER ARKAY NUMBER ({1::V+1);
INTEGEK ARPAY EDGESTACK(1::2%E),;
INTEGER CODE, EPTR,POINT,V2,NEWLUWPI,OLDPTR;
PROCEDURE BICONNECTOH (INTEGER VALUE RESULT POINT,JLDPT,

ICWPCINT);

COMMENT ge Be Ak ok dk A ok ok dk ok ok ok sok 3 kok Fok ok dk de oko ok ook dokok doko ok ok ok ok kok kk ¥
%* RECURSIVE PROCEDURE TO SEAKCH A CONNECTED COMPONENT
* AND FIND ITS BICONNeCTeD COMPONENTS USING DEPTH-
% FIRST SEARCH.

x

* PARAMETERS:

* ECINT: STARTPOINT OF SEARCH, UNCHANGED DURING
* FX SCUTION.

%* OLDPT: PREVIOUS STARIYOINI, UNCHANGED DURING
* EXECUTION.

LOWPOINY: OUTPUT OF LUWEST POINT REACHABLE ON A
* PATH FOUND DURING S=HARCH FORWARD.
*

%* GLOBAL VARIABLES:
Xx SEE BICONNECT FOR DESCRIPLION.
*

x GLOEAL PRUCEDURES:
% MIN, ADD2.
*

* EXAMINE EACH EDGE OUT OF PUINT.
dk doe ste oe ok ook ok ook ok oe ok oo ok ok ok ok dk dk kok kok ok RR KOR ROR SOR JOR OR ROR Rk
WHILE NEXT (POINT)>0 DO

REGIN

CCMJENT 2 Ad oe ROR RK Ok kok dk kook doko tok ok kk kook Kok

142

NUMBEK (V2) :=CODL:=CODE+1;
COMMENT fo doe xc % oo ake sed oe 0% koe deo kook sok dodo doko ok fk oF i
x I[NITIare a widiu=-FIRST SEARCH FROM THE
x NEW FPFUlN4i.

ed ok dl Ak dk Rk A kk ok kk kok kk kd kok kok kkk kk kk kK

NEWLOwPTe=V+1,;

S3ICONNECTUR (V2,:01nT,NLWLOWPT) ;
CORN ENT fk wok a do oid do ok ok do sede doko doi do do ok FOF
* NUlE [tial awTduUsld GLOBAL VAKLABLE V2
* IS CliANwEb, 14S VALUE 1S RESTORED UPON

X* EXIF YROM THiS PFROCEDUKE. RECALCULATE
* LOAPOLNT.

te oe oe oR dd RRR Ok RRR RR dk RR oR ROR RK
LOWPOINT :=HLN (LOWPOLNT,NEWLOWPT);
COMA ENT wok 4 dk x 3% ok ok do dx ge a de ook dk de dot dk df edo dk dk dk ok Rk XX
% [S PUINT AN ARLICULATION POINT OF THE
* GRAPH?

sok ok i ok A A A RK 3K KR kk de A ee deol sk kk ok detok ok kook kkk o

IF NEWLOWPT>=NUMJER (POINT) THEN
BEGLN

COMABRT #% 0% a dk 330k 3 4 ok ok doko Rokk Rook doko
* POINT I5 aN ARTICULATION POINT,
* OUTPUT wdDGoS OF COMPONENT FROM
* EUGESTACK.,

a0 dk ok dk exe del ok dd kd ok Rok Rok ok Rok kde Rokk kK RR RFRRREK

OLDPIh:=sFThe=bria+1;

Wiliilco MUMBen (LDGE3LACK (EPTR-1)) >NUNBER
(Fuinl) bu

3IBLLN

ADDZ (wDGLESTACK (EPTR-1) ,EDGESTACK

SWZ (sbi) , bICOMPONENTS,BPTR) §
UD “PTas=Lkbln-2

sNDg

i. COMMENT % 5% ok ka xk oko okoiokofor sofokok Sok koko RoR koko
$s * ADU LASL nDGE.
hes 2 do de od ook ok Rok Rk Rokk Rk Rok do okkok ok Rook ek ok Rk RK
8 ADD2 (PULINT ,VZ,81L0NPOUENTS, BPTR) ;
T 3

so EpIR:=EPIa—2;
oof COMMENT %%%%# x dob 4 RoR ROf ARF BRS R RRA

= COACUTL ndsockR OF EDGES OF
* CONPUNENL.

se deo ok A ok ok dole de kk kk dd RR RR RR ROR
BICOMPONEJTS (CLDETR) = (BPTR-OLDPTR) DIV 2;

JUREY)

oND

Fr Sk

COMGRUT de se dk Aa He Ak ok a ok ok od kd ok doko lk dk dk Rok
x Jew POINT ur FOUNU. RFCALCULATE LOWKPOCINT.
TTTTIE EL LLL LEE Eh kh uh tail
LOWPOTNY:=MIN (LuUwPULNT, NUMBER (V2))

FAD

SND

143

COMMENT 2k ok ook x ok dF ok do ok ok de ak Kk kk ok do RR RR RRR RR Rk ER RRR ROKK
* CONSTRUCT THE STRUCTURAL REPRESENTATION OF THE GRAPH.
wf ok ede oko dk kok Kok ok ko Ak ok Xe dk kk ook dk RR OK ek RRR ROK ROK J
FREENEXT:=V; |

FOR I:=1 UNTIL V DO NEXT (L):=0;
FOE I:=1 UNTIL = DO

BEGIN

CCMMENT doo ok ok dk Ak ko ok ok a dk ok a Ak do de ak ok % Xk OK dR ok kok kok ok dk kok kok Ok
* EACH EDGE OCCURS TWICE, ONCE FOR RACH ENDPOINT,
ae od ook ok kok ok ok ak ok fc ROR XC RE ok ak A kk AK K ok kk dk dokok ok ek ok dol kk
NEXTLINK (EDGEL IST (2%1-1) (EDGELISL (2%1)); |
NEXTLINK (DGELISI (2%1I) ; EDGLLISL (¢*I-1))

END;
COMMENT Xd Bxok de dk dof Ge de dk Bok ok ok ok dokok ok sok ok doko Sokokok kor Rokk kok k
* INITIALIZE VARIABLES FOr SEARCH.
4k oo Kok RA ook ol Mok ok x Tak dk dK Ak ok dk dk dokofook dkokok doko Rk ok ok Rokk ok EK
EPTR:2=0;

BPTR:=0;

POINT:=1;

v2:=0;

FOR I:=1 UNTIL V+¢1 DO NUMBER(1) :=U;
WHILE PCINI<=V DO

BFGIN

COMMENT 4c ok ok Re ok a 2 Hk 3 ok ok ok 3 a 0 ke kok do ao ak kok ok a fe de be kk ok ok dk ok ek Xk
* FACE EXECUTION OF BICUNNECTOR SEARCHES A
* CONJECTED COMPONKNT Of THE GRAPH. AFTER EACH
* SEARCH, FIND AN UNNUMBeRED VERTEX AND SEARCH
AGALN. QREPEAT UNTIL ALL VERICES ARE EXAMINED.
2 tokok do ok ok de ok ok ok a i dokok ook ook Ok oR RoR ok kok kok dok Rokk Rok Rok kK
NUMBER (POINTI) :=CNBE2=1;
NEWLOWPT :=V+ 3;

BICONNECTOR(POINT,V2,NEwLOWPT);
WHILE NUMBER (POINT)-=0 DU POINT:=POINT+1

END:

“ND;

hk

Complete program implementing the planarity algorithm

HEGIN

INTEGRE V, 3;

STRING (80) NAME;
NODEXT:

ELADANAME)Y
READ (V,=) :

WRITH (NAME) ;

WRITE ("TIHZ","IME (1)) ;

WRITF ("V=",Vy, %E="_E);
EESIN

INT 2GER FREENEXT; |

TNTLGER AREAY HEAD (VH1::3V42%D)

INTEGER ARRAY NEXT {l::Ve2%p);

FROCEDURE NEXTLINAG (INIEGER VAaLUn BULNT,VAL):
RESIN

COMMENT dk kkk ok ok dk 3x ak 3 Ko x 30% 3 sok ok oe se ak oe ve de ke de ode ole dex ode ede

Ww * PROCEDUXE TO ADJ DIRsCTED wuGE (POINT,VAL) TO
Sp « STRUCTURAL nEPRESENIATION Ur a GRAPH.ZING *)

= * GLOBAL VARIABLES:
ES * He AD (V4 12: V#2%E) NEXT (1::V+2%E): STRUCTURAL
Eo x REPXFESENTATLION OF TiE GRAPi.

°5 * FREENEXT: CURRENT Lasi oiInxi IN NEXT ARRAY.
50 EE EERE ERR EREIESELEREREREESERE ELELHS EP ARR RE HERE EEE TREK LX
on FERNENEXL:=FEFUNEAT+1;
ol NEXT (ERRENEXT)¢e=NZAT (POINT)
pa MEXT (ECT NT) :=FREENEXT:

HFAD(FRTENTAT):=VAL

“ND;

CCMMENT HERR RUEXRERXRRR AN xR KE FRRF Kk k xfer fi kf fk xd xk k

%* CONSTRUCT SIRUCTUnAL nikPRLSusTATION FOR FIRST
* SEARCii.

% ok ok ok dk i ok XR Xe okok Rk RR ok dol dk x de lok Nok ok kok dkok dk okok kok koko ok kok kok k
FEG IV

[MTEGRR V1,V2;
FRFENELT:=V;
FOR T:=1 UNIIL V DUO NEXT (i):=U;

FN L:= 1 INTIL E DU

REGIN

READON(V1,V2);

| NEXTLINK(V1,V2):

NEXTLINK(V2,VY):

ND

WA ILE(YTING AFTER SET Ub", rTINE(1))
END;

145

BEGIN

INTEGER CUR, EDGE;
INTEGER ARRAY PATid,NUMBER(1::V);
INTEGER ARKAY IOWPT1, LUWNPTZ2, RANGEP (1:2 2V)
INTEGER ARRAY COLOEK(1::E-V#1),
INTEGER ARRAY S,F{0::E-V+1);
INTEGER AKRAY EDGESTACK(1::2%E);
BOOLEAN FLAG;

INTEGER V2,CODE, POINT, STARTPOINT,PATANUMBER;
INTEGER APTR,YPTR,XNPTR;

INTEGER EDPTR,STARTPATH,XSPTR;
INTEGER ARPTR, ALPTR,XLPIR,XRPTR;
INTEGER EDGEFREE;S

INTEGER ARRAY NEXTEDGE (1:3 7%E~-5%V+2);
INTZGER ARRAY HEADEDGE (E-V+1::7T*E-5%V+.2);
ROOLEAN AKEAY LINKTYPE (E~V+1::T*E-D*V +2);
ROOLEAN ARRAY NEWNODE(1:2:E-V+2);
PROCEDURE ALD2 (INTEGER VALUE 4,B; INTEGER ARRAY STACK (*) ;

INTEGER VALUE RESULT PTR),

BEGIN SE . Ce eee
COMMENT ac od ol dc oo a ok fo oko de ok ok ak dake ak ok ok fokok ok fel de ok ole ok of ded kof dk de ok X
X PROCFDUXE TO ADD VALUES A, B TO STACK "STACK" AND
* INCREASE STACK POINTEk "PIR" BY 2.
kd ok ok ok ok ok ok Ak kkk dR ok Rok lok ok Rk RRR RR RRR RRR RR RRR RRR Rk
PTR:=FTR+2;

STACK (PTR~1) 2=4;
STACK (PTE) :=E

END;

PROCEDURE EDGELINK (INIEGER VALUE A,B);
BEGIN |

EDGEFR:E:=EDGEFREE+1;

NEXTFUGE (EDGEFREE):=NEXT EDGE (A) ;
NEXTEDGE(A) :=£DGEFREE;
HFADEDGE (EDCGEFREE) :=B;3

“ND;

INTEGER PROCEDURE MIN(INTEGER VALUE a,B);
CCMMENT ge fc 2 oe do Ak KK ok OK ok ok ok de do dk kk oR kok kok Rok oR ok ok ok Xk X
X FROCEDURE TO COMPUTE IdE HINIMNUY OF TWO INTEGERS.
i ok od oko ko ok ok ok Xe fl ok ik Rok dk kok AR Seok ok ok ok ai dok dk Rok ok kok 3
IF A<P THEN A ELSE Bj

INTEGER EROCEDURE MAX (INTEGER VALUL A,B);
IF ADB THEN A ELSE Bj;

PROCEDURE ACD3 (INTESER VALUE A,B,C; INTEGER ARRAY STACK (*) ;
INTEGER VALUE RESULT PTR);

BEGIN

PIR:=PTR+3;

STACK (PTR-2) :=A;
STACK (PTE~1) ==D;
STACK (PTR) :=C;

END;

PROCEDURE XLINK(LNTEGER VALUL L,Y);
BEGIN |

WRITE {"XLINK"Y) ;

GO TO NONPLANAREXITS
END;

PROCEDURE YLINK (INTEGER VALUE X,Y);

146

PEGIN

WEITE("YLINAY) ;

SOC TC NOINPLANAREXTT; :

END ’
PLUCFDURE PRESFARCH(INTEGLK VaiLus RESULT PCINT,OLDPT);

CCYNMENT % Xe dak A od ok ak Ak de A of 3k of ak oak ak Xd i ok ok ak kk ok dk dk dk kok ok ook dk ok rk aki 3 3 ok ok OK
: + DHCCFDURE TO SEARCH CuNNECTsD COMPONENT AND COMPUTE

IOWLCINT VALULS.

* PARAMETELS:

* POIND: CURRENT PULNT,

a OLDPT: PKEVIOUSLY 3EAKCaubD POINT.

. GLO3AL VAWIABLES:

| * HEAD (V41::V42%E), NEAT (1::V+2%E): STRUCTURAL
% PETRESENTATION OF Ghavd (UNDIRECTED, NO CROSS-
* LTNRS)

* V2: NSXT POINT SEARCHER.

- NUMBCR(12::V): CONSLCULIVE SEARCH NUMBER OF A
* ~ VEFTEX.

%* CODE: BIGUWEST CONSECUTIVE SEARCH NUMBER.
% EXTLEHUA(1:2 V) : LUwe3i rUlNT REACHABLE THROUGH
* New EUGES FROM a4 uvlViw PUINT.

* 5LOEAM, PKUCLDURES:

% MLN, AvDZ2.

% THIS PROCEDUR: OFEkalws> AS ANY OTHER DEPTH-FIRST
= SEARCH.

2 xg of ok ok dk dk §: adc deo dk ak dk ok dk fk % 3k vk ok dk ak dk Xela doe Te doko kok koko kk kkk dk Rokk R Xk

PHILE NFYT(POIWT)>0 DO
BEGIN

V2:=HEAD(NEXT (POINT)) ;

NFPXT (POINT) :=NEALT(NLZXT(POLUT)) ;
IT (NUMBER (V2)NUABEW (POIT))AanD (V2-=0LDPT) THEN

nT IN

ADD2 (POLNT, V2,Cu6hLalaCk,uri?)
TT NUMBER(V2)=0 1idIN

RESIN

NURLER({VZ2) :=CUDL:=C0DL+T;
PaBESEARCA(VZ, 2010)

9 IF LOWPTI (Ve) <LUWDPT1(PUINT) THENMy AeG IN

= LUWDPT2(PULNL):=uin (LOWNPT2{V2),

go LOAET1 (elo l))
IEE NO LOAFTY (PUINL) :=LOWET1(V2);

oD END
7 ELSE IF LOWPT1(VZ2)=uLUwPT1(P0INT) THEN
To LOWPT2 (POLa LY) s=nIM(LIAPT2(V2),
a3 LOAPT2 (LOLNL))
oO SLS5 LOwDLT2(PULNI):=BIN(LOWPTI1(V2),

LOWPL2 (PUINT)) 3
£dD

TLS IF NUA3ER (VZ) SLUwPiI1(£DOINT) THEN
FoGIH

LOaPTL2 (POINT) :=LOAPLT(POINT) ;
LOAPTY (POINT) :=NUMBLR(V2);

LiD

1.97 IF NUABUKE (Ve) 2LOwe[1(¢OINT) THEN
IOWPLU2 (POINT) s=all (MJ ABEk (V2) ,LOWPT2 (POINLD)) ;

SMD

ENT;

147

PROCFDURE SECONUSEARCHER (INTEGEK VALUE RESULT POINT);
COMMENT % desok dk deok ok ok kk xk Xe 3 3 oi 2 Xe kak 3k of ak oo ak aie oi 3k ok alo dk od ok oe ake ak ok ok ok ak ak i ak XX
* PROCEDURE TO SEARCH GRAPh IN DESIRED ORDER AND
* RENUMBER VERTICES FUR TRLCONNECTOR. STRUCTURAL
¥ REPRESENTATION OF GgAPH IS IN DIRECTED FORM.
x

* PARAMETERS:

* PCINT: CURRENT POLNT BEING EXAMINED.
Ak J ee xc ok ok de ok sieoke dk ok dk ok ok dk de AR ek kk dk kkk bk kk akok kkk kk kkk kkk kk XE

WHILE NEXT (POINT)>0 DO
EEGIN

V2 :=HEAD (NEXT (POINT)) ;

NEXT (EOINT) :=NEXT (NEXT (POINT)) ;
IF NUMBER (V2)=0 THEN

BEGIN
NOMBER(V2) :=CODb:=CuDs+1;
SECONDSEARCHER (V2) ; :

END; ;
ADD2 (NUMBER (POINT) ,NUMBER (V2) ,EDGESTACK, EPTR)

END;

PRCCEDURF PATHMARKER (INTEGEk VALUE POINT);
WHILE NEXTEDGE(POINT)-~=0 DO |

FEGIN
EDGE:=NEXTEDGE (POINT) ;

V2:=HEADEDGE (EDGE) ;

NEXTEDGE (POINT) : =NEXT EDGE (BELGE) 3
IF COLOR (V2)=0 THEN -

BEGIN

oo IF LINKTYPE (EDGE) THEN COLOR (V2) :-= |
COLOR (POINT) ELSE COLOR{(V2) :=3-COLOR (POINT);

WRITE ("COLOR (",V2,")=",CCLOR(V2))

END

ELSE IF (COLOR(VZ2)=COLUR(PUINT))=-LINKTYPE(EDGE) THEN
REGIN |

WRITE ("CONFLICT IN PATHUMARKEK™);

| G0 TO NONPLANARZ;

END;
IF NEWNUDE (V2) THEN

REGIN

NEWNODE(V2) :=FALSE;

PATHMARKEK{V2) ;
END;

END;

PPOCEDUKE SORT;

148

EEGIN

CCMMENT 2 dk dk ok 3k dk a Re A ok dk XA dol RR x Fok 3 ook ook ok okofok of i kk ok ok ak XR kok kok Xe
%* EEOCEDURE TO S01 kwsenS i0 GIVE ADJACENCY
i STRUCTURE USED BY raliaFLNDING SEARCH.
¥ LUCAL VARIA®DLLS: |

: # KEXTISORT (1::2%V+s): LINKS FOR BUCKET SORT.
* SORTPT1 (2%V+1::2%V+k): TAIL OF EDGE IN
x BUCKET.

* SORLPT2 (2%V+1::2%V+E): HEAD OF EDGE IN
a bUCK 2T.

%* FREESUWAIT: LASSE Ninny oi NEXTSOKT,.
%* SORLYPTR: POlliig usiby 10 EMPTY BUCKETS AFIGR
¥ SOnT. :

3 dk ok de de dk dol ok Ak 3k ok A ok sk deok de ak A x ok de de aod ok of dk dk ok de koko kok de kok dk ROR XR RK

INTEGER FREESOBT,SOnYFTR;

INTEGER AKKAY NZXTS0xy (1:ee*Vel)
INIESFDL AERAY SORLPTI1,5CLivTZ(2%V+1::2%V+E);
CCIMENT sk dd fd Re dk A dk dd dk oi kk Xk dk ok xk kok dk dk dk ek kek i ok dk Rok RoR RoR XR XR
%* INITIALLZE FOn »UaxllMs EDGES ACCORDING TO
* LOAEST POINT HeoACoaBLre FROM HEAD AND FOR
x CONSTRUCTING NEW ADJACENCY STRUCTURE,

: dd 3 oF de oR dk dd ak Re dk de ak do ak a 3% Ne deo kok a ke ode dk ook ok ok el x Rk kk kk Nek RX 3

FRERESOPT :=2%V;
FUTENFET:=2%V;
FOR T:=1 UNTIL 2%V DU NEXiSOKI(I):=0;
COMMENT sc dc do ok dk % ok Ak ok oi a ko dk dk ok lode ek ok de ok ke dk ok oko kok ak de dk ok de Xe Rk

a * INSERT EACH ZDui INTo A BUCKET. EACH BUCKLT
3 I5 4 LIST OF EDGES. CuuICFE OF BUCKET DEPENDS
x PI&5T ON EXDEniiUM VALUE AND SECOND ON WHETHER
% TLoaPr2 Is NUOKRTWIViIAL,

fc do ok odo A deka ak ook Zl ok de Xe ok ok ok sdk dle dod ak dk deol dk dk kk RR ROR RR RORR RR FE §

FOR JTe=2 Step 2 UNTIL 2#%u5 00

REGIN
| FRIESOLLs=FREESOULT+1;

CCMAENT sc 4% dod ok dk dk ak de % dk Kok de Rod kk ded dod ok ak kok dod de do Rk ROK ROR XK
* DLACE EMDRPOLNTS Or wbLSE IN BUCKET.

fe ok 2 2 ok de dk 3k kk ok de cok % de ok ok ok Xk % Ak 3% do dik koko kok ok kd kk kx Xk RK 4

SORTPT1 (FREESORT): =LDGLSTACK (I-11)

D2 V2:=SORTPI2(FRL230RY) :=uDuSTACK (I) 3| IF SUMDER (V2) <NUHBan (50aTril (FREESORT)) THEN
‘ nSGIN

8 COM END kode ook kof dem XokE % 3 ok vo dk doe odede ok oF 6 kok 30k % %
8’ * PATH Tu LUWLESY PULNT IS SINGLE EDGE.
be xc 2% Ak ook 3% AK ek A KX XK Aa 3 AR FoR ok ok dk 3 wk dk ded Rk Rk Rk ROR RFR
So NEXTSORL (FRELSORT) : =NLATSORT (2¥NUMBER (V2) -1) 3
x NEATSURT (2¥NUa Bek (v2)-1) :=FREESORT;
= EinD
«38 TLSE

1k9

REGTN

COMMENT EPS EFT EE EEE IREIS RESELLERLELIELEEEEREEEE RF

* PATH TO LOWLSL! PUINT IS INDIRECT.

ded pk kK RRR RRR RE kk kkk kk kk kk kk kkk kx kgokk kK.

IF _OWPT2(VZ2) >=NUuvER(SORTPT1{FRZESORT)) THEN
BeooIN

NEXTSORT (FEEESOaTl) :=NEXTSORT (2%¥LOWPT 1(V2)
-1)3

NEXISOKT (2*.0wpPT1(V2)~1) :=FREESORT
END |

2LS3

BESIN | |
NEXISORT (FL RELSORT) :=NEXTSORT (2%LOWPT1({V2)

) +

NEXTSORT {(2*L0OW2T1(V2)) :=FREESORT
oD |

END

END;
CCMM ENT *%%xffxXfk kX ER LX KX ESF ERE RER I LTEEEEEER ERE LE RFS

* FM ETY BUCKETS aN COHSTRUCT STRUCTURAL |

% FLPRESSNTATION. &DGeS WILL BE IN REVERSE OF |
DeSIkeD ORDER. THLIS 13 CORRECTED BY NEXT |

* SEARCH.
ded Hc de de ok a de 3 do od dk ok ok de ok kok a oR dk Tk Rl dR a a de dle die deka ke kok dod de ok dk dR ok dk of kok

FOR I:=1 UNTIL 2%V DO |

BEGIN |

SOELPPTR:=NEXLSORT(I);
WHILE SORTPTH~=0 DU |

Re GIN

NEXTLINK (SORL2T1(50R1TETR), SORTPT2 (SORIPTR)) ; |
SORIPIR:=NEXTSURT (SOILPTR)

END | n

END |
LND3

IF E>3%V=-6 TEN GU TO NONPLANAWLALT;
COMMENT #3 ok 2 ook a foxx ok % 3 40k 20k 3 do dak ook sof dk skok ok dodo sok odo ok dol kok kok X |
* INITIALIZE AND KUN FIKST SEankCH TO COMPUTE

* LGWPOINTS, |

dod dd ok de ok Fok dk to 3 do dk dk lok Rok sk ok ded ojo ok kok Rokk kok ok Rook Rok Rok
FOF I:=1 UNLIL V DO

TEGIN |
NITMBEK (I) :=U; |
LOWPTT1 (I) :=LOWPT2(I)::=V+1;

END; :

150

PCINT:=EPTR:=0;

V2:=NUMREL(1) :=CODS:=1
PPESEARCH(V2, POINT) ;
FOE Ts=1 UNTIL V DO IF LOWPT2(L)>=HNUMBER(I) THEN

LOWDPT2(I) :=LOaPTI1(1);
HAST, |
FR Iz:=2 UNTIL V DN NUABER(I) :=0,

EPTR:=0

POINT:=CCCL:=1;

| PATH(1) :=1;

S{0)+=F (0):=0;
STCONDSFARCHER (FCGINT) ;

FIERENEXT:1=V;

FOR T:=1 UNTIL ¥® UO NAXTLINK (eDouSTaun (£*¥I-1),EDSESTACK(2%1));

AEIPs=YETIR:=XNPTEL:=0; Sp |
XSPTR:=0;

STARTECINT:=0;

PATANUMRER:=1;

JEGIN

DROCEDURE PATHFINDER (LN%iEZskn VALUz RESULT POINT);
WHILE NEXT (POINT)-=0 DO

PEGIX |

V2 :=HEAD (NZAT (POINT)) ;
NTYXT (POINT) :=NEAT (VEAL (POLNT)) ; i

ALILE (W20INT IS",ECINT,"VZ IS",V2); |

IF 3TARLPOINT=0 THEW

REGIN feJ Pn
STARTPOINT:=POINT; 50g)
END; 59,580

IF V2>PCINI THLN 61%9%,
PRG IN Co,

RANGER (V2) :=CUD; < 2,
PATH (V2) :=PATHNUMU EK; ING
PATUFINDLER(V2) ;
CliR:=vZ-1;

- STAXLDPOILNL:z=0;

wi TLE POINTL=Y (YPIK) wJ YPIR:=YPTR-2;
WHILE POINT <=A (Arla) VO APTR:=APTR-2;
wATLE POINIK=XN(XNPTK) DO XNPTR:=XNPTR-3;
WHILE POINT <=&S (KSIT«) DO XSPTR:=XSPTR-3;
FLAG:=FALSG;

WHILE (HISHP ATH (2%20Ini-1)>XN(XNPTR-1))AND
(POINTAN (XoPTE=1)) AND
(HIGHP ATH (2% PULNT) <AN (XNPTR-2)) DO

PEGIN

FLAu:=TRJE;

EDGaLINK (lGhrali(<*POINT), XN (XNPLR-2)) ;

WELITE ("4IG8PATL XLINK", K5 (ANPTR=2) ,dIGacaln (2% 0INT)) ;

EDGELLINK (AN (ANPTX~-2) ,HIGHPATH (2%POINT)) ;
_ LINKTYPE (oDGhFaEE-1):=LINKTYPE (EDGEFKEZ)

c:=IALSL;

ANPLIKe=aANPTK-3,

END:

1% FLAG LHEN XNeTaR:=XuvlIn+3;

| HIGIHPATL (2%¥POINT) :=hloiraln (2%POINT-1):=0;
END

RISF

151

BEGIH

¥RITE ("PATHNUMBER IS", PATHNUMBER,"STARTPOINT IS", STARTPOINT, "V2 ISw,V2):

S (PATHNUMBER) :=STARTPOINT;
P (PATHNUMBER) :=V2;

. PLAG:=FALSE;
IF A (APTR)~=0 THEN ADD2 {A (APTR~1) ,A (APTR) , Y, YPTR)

IF F{(A{(APTR-1))~=V2 THEN
BEGIN COMMENT PATH IS NORMALS

WHILE V2 < Y(YPTR) DO
BEGIN

EDGELINK (PATHNUMBER,Y {YPTR~1)) 3 |

WRITE ("YLINK",Y (YPTR-1) ,PATHNUMBER) 3

EDGELINK(Y (YPTR-1) , PATHNUMBER) 3
LINKTYPE (EDGEFREE~1) :=LINKTY PE (BDGEFREE) z=

TRUE;

FLAG:=TRUE;

YPTR:=YPTR-2;

END;

IF FLAG THEN YPTR:=YPTR¢2;
FLAG: =FALSE;

WHILE (V2<XK (XNPTR)) AND (STARTPOINT<XN
(XNPTR-1)) DO
BEGIN

WRITE ("XLINK",PATHNUMBER, XN (XNPTR-2)) ;
EDGELINK (PATHNIMBER, XN (XNPTR=2}) 3
EDGELINK (XN (XKPTR-2) ,PATHRUMBER) ;
LINKTYPE (EDGEFREE-1) :=LINKTYPE (EDGEFREE) ==

FALSE;

XNPTR:=XNPTR-3;

END:

WHILE (V2<XS (XSPTR)) AND (STARTPOINT<XS (XSPTR-1))
DO XSPTR:=XSPTH8-3;

IF STARTPOINT>RIGHPATH (2%¥2-1) THEN
BEGIN

HIGHPATH (2*V2-1) :=STARTPOINT;
HIGHPATH(2*%V2) :=PATHNUMBER;

END;

ADD3 (PATHNUMBER,STARTPOINT,V2,XN,XNPTR) ;
ADD3 (PATHNUMBER, ST ARTPOINT,V2, XS, XSPTR) ;

END

ELSE

: BEGIN COMMENT PATH IS SPECIAL;
WHILE {V2<XS (XSPTR)) AND (STARTPOINT<XS

(XSPTR-1)) AND {XS {(XSPTR-1) <=RANGEP
(STARTPOINT)) DO
BEGIN

- FLAG:=TRUE;

WRITE ("SPECIAL XLINKY", PATHNUMBER, XS (XSPTR-2)) ;
EDGELINK (PATHANUMBER, XS (XSPTR-2)) ;
EDGELINK (XS (XSPTR-2) ,PATHNUMBER) ;
LINKTYPE (EDGEFPREE-1) :=LINKTYPE (EDGEFREE) ==

. PALSE; ©
XSPTR2=XSPTR-3; |

END;
IF FLAG THEN XSPTR:=XSPTR+3;

END;

IF POINT-~=STARTPOINT THEN

152

ADD2 (PATHNUNBER,STARTPOINT,A,APTR);
PATHNUMBER:=PATHNUOMBER®+1;

STARTPOINT:=03
END |

END;

INTEGER ARRAY A,Y(-1::2%E);
INTEGER ARRAY XN ,XS(-2::3%E);

INTEGER ARRAY HIGHPATH(1::2%V;;
Y(-1):=Y(0)s=A(~1)2=A(0) :=XN (~2) :=XH(0) :=0;
KS(~-2):=XS(0):=0;
XN(~1):=XS({~1) :=V+1;
FOR 1:=1 UNTIL 2#V DO HIGHPATH(I):=0;
EDGEFREE:=E~Ve1;
FOR I:=1 UNTIL 7*E-5*V¢2 DO NEXTEDGE(I):=0;
Vai:=1;
CUR :=V; RANGEP(1) :=V;

PATHFINDER{V2) ;
END;

PATHNUMBER: =PATHNUNBER-1;

FOR I:z=1 UONTII B-V+1 DO COLOR{I) :=0;
FOR I:=2 UNTIL PATHNUMBER+1 DO NEWNODE (I):=TRUE;

STARTPATH:=1;
HHILE STARTPATH<S=PATHNUOMBER DO

BEGIN

COLOR {STARTPATH):=1;
NEWNODE (STARTPATH) :=PALSE;

PATHMARKER (STARTPATH) ;

WHILE-~NEWNODE (STARTPATH) DO STARTPATH:=STARTPATH+1;
END;

BEGIN
PROCEDURE COLORCHECK;

FOR I:=1 ONTIL PATHNUMBER DO

BEGIN

POINT:=S(1);

V2:=F (I) ; :
WHILE POINT<=ALEFT (ALPTR) DO ALPTR:=ALPTR-2;
WHILE POINT<=ARIGHT(ARPTR) DO ARPTR:=ARPTR-2;
WHILE POINT<=XLEFT (XLPTR) DO XLPTR:=XLPTR-2;
WHILE POINT<=XRIGHT (XRPTR) DO XRPTR:=XRPTR-2;

IF COLOR(I)=1 THEN
BEGIN

IF (F {PATH (POINT))->=V2) THEN
BEGIN

IF V2<ARIGHT (ARPTR) THEN

BEGIN

WRITE ("CONFLiCT IN ARIGHTY, I, ARIGHT (ARPTR~-1});
GO TO NONPLANAREXIT;

END;
iP V2<XLEFT{XLPTR) THEN

BEGIN

WRITE ("CONFLICT IN XLEFT",I,XLEFT(XLPTR-1));
GO TO NONPLANAREXIT;

END;

ADD2({(I,VZ2,XLEFT,XLPTR) ;
END

ELSE IF {(V2<XLEFT (XLPTR)) AND(S (XLEFT (XLPTR
-1)) <=RANGEP (POINT)) THEN

153

BEGIN

WRITE ("SPECIAL CONFLICT", I,XLEFT(XLPTR-1))3
GO TO NONPLANAREXIT;

END;
| ADD2 ¢(I,POINT,ALEFT,ALPTR);

END

ELSE

~ BEGIN

IF F (PATH (POINT)) ~=V2Z} THEN
BEGIN

IF V2<ALEFT (ALPTR) THEN

BEGIN |
WRITE ("CONFLICT IN ALEFT", I, ALEPT (ALPTR-1));

: GC TO NONPLANAREXIT;

END;
| IF V2<XRIGHT (XRPTR) THER

BEGIN

WRITE ("CONFLICT IN XRIGHT",I,XRIGHT (XRPTR-1));
GO TO NONPLANAREXIT; |

END;

| ADD2 (I,V2,XRIGHT,XRPTR) ;
"END

ELSE IP {V2<XRIGHT (XRPTR))AND { S (XRIGHT
(XRPTR-1)} <=RAFGEP (POINT)) THEN

BEGIN

WRITE ("SPECIAL CONFLICTY,I ,XRIGHT {(XRPTR-1}) 3
" GO TO NONPLANAREXIT;

.END;

| ADD2 (I, POINT, ARIGHT, ARPTR) 3
END;

END; :

INTEGER ARRAY ALEPT,ARIGHT,XLEFT,XRIGHT{-1::2%E);
ARPTR:=ALPTR:=XRPTR:=XLPTR:=03
ALEFT (0) :=ARIGHT (0) :=XLEPT (0) : =XRIGHT (0) :=03
ALEFT (-1) :=ARIGHT (-1) : =XLEFT (-1) :=XRIGHT (= 1) :=03

COLORCHECK;

END;

WRITE ("PLANAR") ;
WRITE ("TIME®,TIME(1));
GO TO DONE;

NONPLANAREXIT: : NONPLANAR2:WRITE{"NONPLANARY)
DONE: GO TO NODEXT;

END;

END.

ish

