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I. In the Beginning



1. Introduction

Graph theory is an endless source of easily stated yet very hard
problems. Many of these problems require algorithms; given a graph, one
may ask if the graph has a certain property, and an algorithm is to
provide the answer. Since graphs are widely used as models of real
phenomena, it is important to discover efficient algorithms for answering
some graph-theoretic questions.

This work presents an algorithm for determining whether an arbitrary
graph G can be embedded (without any crossing edges) in the plane. If
V is the number of vertices and E the number o edges in the graph G ,
‘then the method requires amounts of space and time bounded by a linear
function of V and E . The algoritim is optimal (to within a constant
factor), because it is possible to show within a suitable theoretical
framework that each edge of a graph must be examined at least once to
resolve the planarity question.

The planarity algorithm is based upon a depth-first search, or
backtracking, -echnique for exploring a graph. Backtracking has been
widely used for finding solutions to problems in combinatorial theory
and aitificial intelligence [Gol 65, Nil 71]. Analysis reveals that by
depth-first examination of a graph, we may simplify the g aph and collect
enough information to determine planarity rapidly. Besides planarity,
several other problems have been solved using depth-first search.

In order to analyze the efficiency of an algorithm, we use a
random-access computer model. Data storage and retrieval, arithmetic

operations, comparisons, and logical operations are assumed to require



fixed times. A memory cell is allowed to hold integers whose absolute
value is bounded by k max(V,E) , where V is the number of vertices
and E is the number of edges of the graph being processed, and k 1is
some constant. An exact computer model will not be specified; see Cook
[Coo 7T1]. To express the' time and space bounds of algorithms, we shall
use an extended version of the hig O notation. Of functions of

X seeeXy We say f is O(fl,...,fn) if, for some constants k. ,

\f(xl,...,xm)| < ko+kl|fl(xl,...,xm) | + ...+kn|fn(xl,...,xm)| for

all values of Xi .



2. Previous Research on Planarity Algorithms

Embedding a graph in a plane has several applications. The design
of integrated circuits requires knowing when a circuit may be embedded
in a plane. Determining isomorphism of chemical structures is simplified
if the structures are planar [Led 65, Hop Tlb, Wei 65a, 65b, 66]. The
importance of the problem is suggested by the number of published
planarity algorithms. Examples include [Aus 61, Bru 70, Chu 70, Fis 66,
Gold 63, Hop 7lc, Lem 67, Mei 70, Mon 71, Shi 69, Tut 63, Win 66, You 63].
Surprisingly little work has been directed toward a rigorous analysis of
their running times, however, and algorithms continue to appear which
are obviously inferior to previously published ones. We shall examine
several of the best algorithms here; a more complete history of the
planarity problem may be found in Shirey's dissertation [Shi 69], which
contains an extensive bibliography.

The earliest characterization of planar graphs was given by
Kuratowski [Kur 30]. He proved that every non-planar graph contains a
subgraph which upon removal of degree two vertices is isomorphic either
to the complete graph on five vertices or to a complete bipartite graph
on six vertices. (See Figure 2.1.) Conversely, no planar graph contains
either of these graphs. Although elegant. Kuratowski's condition is
useless as a practical test of planarity; testing for such subgraphs
directly mey require an amount of time proportional to at least V6 5
if not much worse, where V is the number of vertices in the graph.

The best approacr to the planarity problem seems to be an attenpt
to actually draw the graph in the plane. If such a drawing can be

completed, then the graph is planar; if not, then the graph is non-planar .



Figure 2.1:

The Kuratowski subgraphs.



The first such algorithm was proposed by Auslander and Parter [Aus 61].
First, a cycle is found in the graph. When this cycle is removed, the
graph falls into several pieces. The algorithm is called recursively

to embed each piece in the plane with the original cycle. Then the
embeddings of the pieces are combined, if possible, to give an embedding
of the entire graph. Unfortunately, Auslander and Parter's paper contains
an error; the proposed method may ioop indefinitely. Coldstein [Gold 63]
correctly formulated the algorithm, using iteration instzad of recursion.
Shirey [Shi 69] implemented this method using a list structure represen-
tation for graphs, and proved an asymptotic time bound of O(V5) for
his variation of the algoritim.

Lempel, Even, and Cederbaum [Lem 67] have presented another method
for building a graph in the plane. They start with a single vertex, and
add ali edges incident to that vertex. They then add all edges incident
to one of the new vertices, and continue in this way until the entire
graph is constructed. Vertices must be selected in a special order if
the algorithm is to work correctly. Lempel, Even, and Cederbaum give no
implementation or time bound for their method; however, Tarjan [Tar 69]
has implemented the algorithm in a way which requires O(V) space and
o(V®) time.

Mondshein [Mon 71] has recently proposed another constructive
algorithm. He adds one vertex at a time until the entire graph is
constructed. The order of vertex selection is again crucial. Mondshein's
inplementation requires O(VE) time. Hopcroft end Tarjan [Hop Tlc],
using depth-first search in a complicated program, have devised a variant
of Goldstein's algorithm with a time bound of 0o(V log V) . This method,

although ponderous, is asymptotically the most efficient previously known.

6



A few algorithms deserve mention because of their novel approach.
Fisher [Fis 66] gives an algorithm which works directly from the
incidence matrix of a grapr. This method, however, is not very efficient,
nor is any method which uses incidence matrices. (See Chapter L.)

Bruno, Steiglitz, and Weinberg [Bru 70] present an algorithm based on
some theorems of Tutte relating to tricomnected planar graphs. Instead
of constructing a graph in the plane, they reduce it to simpler and
simpler graphs. Although they give no explicit time bound, the algorithm

does not compare favorably with those mentioned above.



3. Definitions from Graph Theory

This chapter outlines the graph-theoretic concepts needed tc under-
stand the planarity algorithm. We use definitions similar to those found
in any text on graph theory; for instance [Ber 64, Bus 65, Har 69, Ore 62].
We shall also introduce some special terminology. Proofs are omitted in
this chapter; the results are either obvious or are standard in the

literature of graph theory.

Definition 3.1: A graph G = (V,€) is an ordered pair, consisting of

a finite set Vv of vertices and a finite set € of edges.

We shall deal with the properties of finite graphs only; we are
concerned with constructive characterization of certain properties of

graphs, and computers cannot manipulate infinite objects. The

vertices of a graph may also be called points or nodes. The edges of a

graph may also be called arcs or links. For the moment we have left

undefined the nabture of the edges of a graph; there are two kinds of

graphs which we shail study, with two different types of edges.

Definition 3.2: An undirected graph G = (V,&) consists of a set of

vertices and a set of edges. Each edge is an unordered pair {v,w}
of distinct vertices of G . The vertices v and w are said to
be incident to v and w ; v and w are said to be incident to
{viw} . Vertices v and w are said to be adjacent if f{v,w} is
an edge of G . The relation v = w holds if and only if {v,w}

is an edge of G .



Definition 3.3: A directed graph 3d-= (v,€) consists of a set of

vertices and a set of edges. Each edge is a directed pair (v,w)

of distinct vertices of @ . The vertex v is said to be the tail
of the edge (v,w) . Vertex w is said to be the head of the

edge (v,w) . Incidence and adjacency are defined as for undirected
graphs. A directed graph is really only an irreflexive relation; as
with undirected graphs, we use the notation v = w to mean that v

and w satisfy the relation " (v,w) is an edge of @ ".

Notice that we do not allow loops (edges whose two endpoints are
identical). Neither do we allow several identical edges. An object
resembling a graph but which contains multiple edges will be called a
multigraph. We shall use capital letters ("G") +to denote undirected
graphs and capital letters with an arrow ("@’") to denote directed
graphs. A capital letter with a tilde ("6") will denote a graph,
either directed or undirected.

Let us consider the relationship between directed graphs and
undirected graphs. Given an undefined graph G , we may convert it to
a directed graph in one of two ways. —First , we may convert each
undirected edge {v,w} of G into two directed edges, (v,w) and

(w,v) .

Definition 3.4: ILet G = (V,€) be an undirected graph. Then

= (¥,€&') is the directed graph such that g' = {(r,w)|{v,wiee) .

is called the doubly directed version of G .

The computer representations of an undirected graph G and of the

doubly directed version G of G will be indistinguishable; each edge



\
will appear twice in the representation, once for each of its possible

directions. \

Ancther way to convert an undirected graph G into a directed
graph is to convert each edge {v,w} of G into a single directed edge
(v,w) . This will give a directed graph 8 with the same number of
edges as G , in which each edge of G is assigned one of the two
possible directions.

Conversely, suppose we have a directed graph Q= (V.€) . We may
conver: G into an undirected graph by ignoring the direction of the
edges. (We may have to delete multiple copies of the same undir-cted

edge; otherwise a multigraph will result.)

Definition 5.5: The function u maps directed graphs into undirected

graphs. If T = (v,&) is a directed graph, u(e) = (V,&') is
the undirected graph formed by ignoring the directions of all the
edges of T e = {(v,w)|(v,w) €€} . The inverse function is
multivalued. If G = (V,&') is an undirected graph,

u-l(G) = (¥,&) will denote any directed graph formed by giving

each edge of G a direction.

Henceforth, we shall use " (v,w) " to denote an edge of any graph,
either directed or undirected. We then have (v,w) = (w,v) in an
undirected graph but not in a directed graph. The following definitions

apply to both directed and undirected graphs.

~

Definition 3.6: Let G = (V,€) and GC' = (V',&') be graphs. IF

V'cV and €' c &, then G' is a subgraph of G . G' is

called a proper subgraph of G if G # G .
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Definition 5.7: Let a = (v,€) be a graph. A sequence of vertices Vi s

1<i<n, such that e, = (vi,v is an edge in G for

i)
1<i<n, is ca.;.led a path of G . If all the vertices on the
path are distinct'l, the path is called a simple path. If vy =V,
all the vertices Vs 1<i<n, are distinct, and all the
edges e > ‘l < i'vh< n , are distinct, then the path is called a
cycle. The vertex Wy
The vertex vy is caJELed the Minish vertex of the path. Vertices

is called the start vertex of the path.

Vi

the path is called 'oroper. The length of a path is the number of

apd v, are called the endpoints of the path. If n ,J: 1,

edges it contains.

Although a path may be concepﬂua_.lized as a subgraph, the order of
‘the vertices in the path is important. We shall generally identify a
path by listing its sequence of poi.nts;t'tye edges of the path are uniquely
determined by this sequence. Note ‘that a path may contain no edges.
Paths will be denoted by the small letter " p " with or without
subscripts. The small letter " c¢ ¥ will occasionally be used to denote a
cycle. We assert the existence of a path from vy to v_ , and name

n
the path p , by writing bp: vy ; v, - The notation vy = v, means that
there exists a path of length‘,_"one or greater between vy and v, o (In
general, if R is any binary .'E'elation and I is the identity ~elation,
R+ denotes the transitive clo;:*ure of R, and R* denctes the reflexive

\

transitive closure of R .) \

Lemma 3.1: Let -G’ be a directed graph. Then any path (simple path,

-3
cycle) of T is a path (simple path, cycle) of G = u( G) -



The converse of this lemma is not true. However:

Lemma 3.2: Let G be an undirected graph. Then any path (simple path,
cycle) of G corresponds tc a path (simple path. cvele) of G >
the doubly ¢irected version of G . Conversely, any path (simple
patla, cycle of length greater than two) of g corresponds to a

path (simple path, cycle of length greater than two) of G .

Definition 3.8: TLet G = (V,&) be an undirected graph. Suppose that

for each pair of vertices v and w in G , there exists z pain
* . : = -1 = .
p: v=w . Then G is connected. If G =u (G) , G is

called connected if and only if G 1is connected.

Lemma 3.5: Let G = (v,8) be.a graph. Then G may be.uﬁiquely
partitioned into a set of pairwise vertex- and edge-disjoint
subgraphs; cacu oi which is connected, and each o which is not
properly contained in a connected subgraph of G . These maximal

connected subgraphs are called the connected components of G .

Proof: See [Ore 62].

Definition 3.9: Let G = (V,€) be an undirected graph. Suppose that

for each triple of distinct vertices wv,w,a in VvV , there is a
path p: v i w such that a is not on th¢ path p . Then G is
biconnected. If, on the other hand, there is a triple of distinct
vertices v,w,a in ¥ such that a is on any path p: v _f: W oy
and there exists at least one such path, then a is called an

articulation point of G . If et ='u—l(G) , then @ 1is called

biconnected if and only if G is biconnected. If a is an

12



articulation point of G , then a is also said to be an

articulation point of d.

Lemma 3.4: Let G = (V. #) bz & graph. We may define an equivalence
relation on the set of edges as follows: two edges are equivalent
if 'and only if +they belong to a common cycle. Let the distinct
equivalence classes under this relation be 8‘1 ; 1<i<n, and
let E—i = ("vi, &i) , vhere Vi is the set of vertices incident to
the edges of € : WV, = {vlﬁw((v,w)eai)} . Then:

(1) E}i is biconnected, for each 1<i <n .

(ii) DNo Ei is a proper subgrzph of a biccnnected subgraph
of G .

(iii) Each articulation point of G occurs more than once
aanong the V. 1 <i<n . Each non-articulation
point of G occurs exactly once among the Vi )
1<i<n.

(iv) The set Vi n Vj contains at most one point, for any
1<i,j <n . Buch a point of intersection is an

~

articulation point of the graph. The subgraphs Gi

of G are called the biconnected components of G -

Proof: See [Har 69].

Definition 3.10: TLet G = (V,€) Dbe an undirected graph. Suppose that

for each quadruple of distinct vertices v,w,a,b in Vv , there is
*

a path p: v = w such that neither a nor b is on the path p .

Then G is triconnected. If there is a quadruple of distinct

¥
vertices v,w,a,b in V¥ such that there is a path p: v=Ww,

13



and any such path contains either a or b , then

-
a and b are a biarticulation point pair in G . If G is a

e
directed version of G , then G is called triconnected if and only
if G is tricomnected. If a and b are a biarticulation point

pair in G , they are also said tc be a biarticulation point pair

. -
in G .

The tricomnected components of a graph may be defined in several
ways (see for instance [Tut 66]). each giving an analogy to Lemmas 3.3
and 3.4. We shall not need to use triccnnected components in our study
of planarity. However, with a suitable definition of triconnected
components, a graph is planar if and only if' its triconnected components
are planar, and a triconnected plenar graph has an essentially unique

representation in the plane.

Definition 3.11: Let G = (V,€) be a graph. Suppose that G may be

embedded in a plane (or equivalently, in the surface of a sphere).
That is, suppose there is a mapping of the edges of the graph into
the plane in such a way that each edge (v,w) is mapped into a

simple curve, with the points v and w mapped into the endpoints
of the curve. Mappings of two different edges may have only their

common endpoints in common. If such a mapping exists, the graph

G is called planar. If nm(G) is the image of G in the plane,
and if m('(.",;)C is the complement of this set relative to the plane,
then the connected sets of points in m(a)C are called the faces

% of G (relative to the mapping m ).

1k



Lemma 3.5 (Euler's Theorem): Let V be the number of vertices,
E the number of edges, and F the number of faces in a planar

embedding of a connected graph G. Then V+F =E+2 .
Proof: See [Har 69].

The most useful property of the plane related to grapns is the

Jordan Curve Theorem:

Lemma 3.6: Let c¢ be a simple closed curve in the plane. Removal of
¢ from the plane divides the remaining points into exactly two
topologically connected sets, called the inside and the outside

of ¢ .

Proof: Difficult. See [Hal 55, Thr 53]. However, for our purposes we
need this result only for piecewise linear closed curves ¢ . This

special case is not too difficult to derive.

If G is a planar graph and ¢ 1is a cycle in G , then the image
of ¢ under a planar embedding of G is a simple closed curve. (In
fact, G may be embedded so that all edges of c¢ are piecewise linear.
See [Bus 65].) Thus, if c¢ is removed from G , the remaining vertices
and edges fall into two sets: those embedded on the inside of the image
of ¢ and those embedded on the outside of tﬂe image of ¢ . We base
our planarity algorithm on this observation and its corollaries, all of
which follow from the Jordan Curve Theorem. In particular, we need the

following result:

15
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Lemma 35.7: Let c: X 2 Xy 2 e xn-l = xl be a cycle in a graph
G which is embedded in the plane. Let (v,xi) s (w,xj) be two
edges not on the cycle. Guppose the order of edges clockwise
around vertex x. is (xi_l,xi) ; (v,xi) ’ (xi’xi+l) , and that
the order of edges clockwise around Xj is (xj—l’xj) s (w,xj) 5
(xj,xj+,) . Then (v,xi) and (w,xj) are on the same side of c .

If the order of edges clockwise around Xj is (xj-l’xj) s

(Xj’xj+l) B (w,xj) , then (v,xi) and (w,xj) are on opposite

sides of c¢ .

Proof: A rigorous proof of this theorem requires knowledge of
topology (see [Hal 55, Thr 53]), but the idea is simple. Suppose
the order of edges clockwise around x5 is (xj-l’xj) 5 (w,xj) )

(xj,x ) . Then edges (v,xi) and (w,xj) may be connected

Jtl
by a path which follows the cycle but does not cross it, as in
Figure 3.1. Thus the two edges are on the same side of the

cycle.

Suppose the order of edges clockwise around xj is (Xj-l’xj) s

(x W,Xj) . Every vertex in the plane may be joined by

,j"x,j'*'l) J (
a simple path to one of the vertices on the cycle. If (v,xi)

and (w,xj) were on the same side of the cycle then the remark
above and the first part of the Lemma would imply that every point

in the plane is on one side of the cycle, contrary to Lemma 3.6.

Thus the second part of the Lemma is true.

We shall need to use two special classes of directed graphs, one

standard, the other new.

16



Figure 3.1: Two edges on the same side of a cycle.
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Definition 3.12: Let ‘¥ be a directed graph. Suppose T satisfies

tha following properties:
. -
(i T is connected.
(ii) There is a unique point in T which is the head of
no edges. This point is called the root.
-
(iii) ALL other points of T are the head of exactly one

edge.

=
Then T is called a directed rooted tree.

Since we shall deal only with trees which are directed rooted trees,
we shall refer to them simply as trees. There may be simpler definitions

of trees, but the one above is the most useful for our purposes.

- -
Lemma 3.7: Let T be a tree. Then u(T) contains no cycles.

Proof: An exercise for the reader.

Lemma 3.8: Let v and w Dbe vertices in a tree T . Then there exists

either exactly one path p whose endpoints are v and W or nc

such path.

Proof: An exercise for the reader.

Definition 3.13: A path in a tree ?[" is called a branch of T .

—
Definition 3.14: Let T be a tree and let v and w be vertices of '¥.

If (v,w) 1is an edge of 7 , then w is called-a son of v , and

v is called the father of w . If there is a path p: Vv > W,

then W 1is called a descendant of v , and v is called an

18



ancestor of w . If such a path is proper (v ;é w) , then w is

called a proper descendant of v , and v 1is called a proper

ancestor of w .

We use single-shafted arrows to dencte arcs of trees, since we shall
study trees which are a subgraph of a directed graph, and it will be
necessary to distinguish between the tree arcs and arcs in the larger
graph. We use v % w to denote the (unique) branch from v to w in
a tree, and also to indicate the fact that such a path exists. (Vertices
v and w satisfy the relation " v 1is an ancestor of w in 7 ")

The meaning will be clear from the context.

Definition 3.15: Let "f be a tree and let v a vertex of -f . The

subtree of T rooted at v is the tree i?v = (v',e&') whose

vertices V' are all the descendants of v and whose edges are
*

all those edges with tails in V' : V' = {wlv-ow} ;

e = {(vwlvaweverd.

s
Definition 3.16: ILet G = (V,&) be a directed graph. A spanning tree

- - -

T of G is a subgraph of G which is a tree and which contains
-

all the vertices of G . If G = (V',&') is an undirected graph,

any spanning tree of the doubly directed version G of G is also

a spanning tree of G .

We now present a new class of directed graphs, upon which the

planarity algorithm is based. .

Definition 3.17: TLet ? = (V,€&) be a directed graph, consisting of two

disjoint sets of edges, dencted by v-w and Vv --» W respectively.

19
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Suppose P satisfies the following properties:
(1) The subgraph containing the edges v - w is a tree g
which contains all the vertices of _15) , called the

spanning tree of T‘lg .

(ii) We have --c (ﬁ) , where " --" and " -'" denote the
relations defined by the corresponding sets of edges.
That is, each edge which is not in the spanning tree ?
of 3 connects a vertex with one of its ancestors in -'f') .
Then -13’ is called a palm tree. The arcs v --w are called the

-
fronds of P .

Figure 3.2 shows a palm tree and its fronds. Since the notion of
a palm tree is non-standard, we shall not develop its properties until
we discover the context in which it arises. Tree palms are in reality
more nearly comparable in structure to overgrown cornstalks than to true

trees.

20



Figure 3.2: A palm tree. Fronds are dotted.

21



ITI. The Technique of Depth-first Search
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k. Data Structures Representing Graphs

Good algorithms require an appropriate data structure; we therefore
look with some care at how a graph may be represented in a computer. We
need a representation which will preserve the adjacency properties of
the graph, which will be economical of storage, and which may easily be
constructed from the original list of vertices and edges which defing

the graph.

Definition 4.1: Let G = (v,€) be a graph with vertices {1,2,...,V} .

The adjacency matrix A

(aij) of G is a VxV matrix of zeros

and ones such that 25 1 if (i,3)ee, 8y = o if (i,3)fe .

The adjacency matrix of a graph is a common representation. If G
is undirected and contains no loops, A will be symmetric and will have
zeros on the main diagonal. IT G is directed, then A may be asymmetric.

Figure 4.1 gives an example of a greph and its adjacency matrix.

The adjacency matrix of a graph has several useful features. Certain

simple matrix operations correspond to simple graphical manipulations.

1,

For instance, if (bijz = A% , then bij gives the number of paths of
length k between vertices i and Jj . The zeros and ones of the
adjacency matrix may be packed into machine words to save storage space;
word operations such as addition and logical operations may be used to
manipulate the det> w bits at a time if w is the word size of the
given machine. This saving is scmewhat illusory, however. The amount
of storage space required by an adjacency matrix is kV2 , and we may

prove rigorously of most interesting graph problems that they require

23
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examination of every bit in the matrix and thus have a computation time
proportional to at least V2k [Hol 70]. When the graph is large enough,
the gain obtained by packing bits becomes insufficient. If the matrix
is sparse (E << V2) we must use a representation which is not as
wasteful as the adjacency matrix. A list structure representation of

the graph is a good choice.

Definition 4.2: Let G = (v,e) be a graph. For each vertex ieV , we

may construct a list Li containing all vertices j such that

(i,j)e€ . Such a list is called an adjacency list for vertex 1 .

A set of such lists, one for each vertex in G » 1s called an

adjacency structure for G .

Figure 4.2 gives a graph and its adjacency structure.

A single graph G may have many adjacency structures; each ordering
of the edges around the vertices of G gives a unique adjacency
structure, and each adjacency structure corresponds to a uniqueoordering
of the edges at each vertex. (An adjacency structure for an undirected
graph G corresponds to an embedding of G in some orientable surface;
see [You 63].)

If G 4is undirected, each edge (i,J) 1is represented twice in an
adjacency structure; once for i and once for j . If G is directed,
each edge (i,j) is represented exactly once; vertex j appears in the
adjacency list of vertex 1 . An adjacency structure requires an amount

of storage space linear in V and E . The enormous value of an

edjacency structure of G is that we may use if effectively to perform
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searches of G ; that is, to traverse the edges of ¢ in some systematic

way. Such a search will require O(V,E) steps.

e



5. Searches, Spanning Trees, and Finding Connectec Components

Suppose G is a connected undirected graph which we wich to explore.
Consider the following procedure. Initially all the vertices of G are
unexplored. We start from some vertex of G and choose an edge to
follow. Traversing the edge leads to a new vertex. We continue in this
way; at each step we select an unexplored edge from a vertex already
reached and we traverse this edge. The edge leads to some vertex, eithef
new or already reached. Eventually we will traverse all the edges of G,
each exactly once. Such a process is called a search of G .

Any search of G imposes an orientation on the edges in G,
according to tue direction in which they are traversed. Thus a search
converts G into a directed graph 'g . FYor any starting point in G,
there may be many possible searches depending upon how the edges to
explore are selected. Each search generates a (possibly) different
directed version .6 of G . Any search also prodauces a spanning tree
Ei; given by the set of edges which when traversed during the search
lead to & new vertex. A graph and the results of two possible searches
are illustrated in Figure 5.1.

Notice that the edges of '8 which do not form part of the spanning
tree ﬁi} mey interconnect the branches of the tree. (See the examples
in Figure 5.1.) For one type of search, however, this is not true.
Suppose we use the following rule for selecting an edge to traverse:
Always choose an edge emanating from the vertex most recently reached
which still has unexplored edges. We call a search whick uses this rule

a depth-first search. The set of old vertices with possibly unexplored

edges may be stored on a stack; thus the search may be easily programmed
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either iteratively or recursively. The program given below carries
out a depth-first search of a graph G , starting at vertex s . The
procedure constructs the directed graph generated by the search, and

uses an adjacency structure of the graph G .

begin
integer 1i;

- procedure DFS(v,u); comment v is the current vertex, and u
is the father of v in the spanning tree generated by the
search;

NUMBER(V) := i := i+l;
for w in the adjacency list of v do
begin
if w is not yet numbered then
begin
construct arc v - w in P;
DFS(w,v);
" else if NUMBER(W) < NUMBER(v) apd W # u then

construct arc v -—» w in P;

end;
end;
i:= 03
DFS(s,0);

end;

Figure 5.2 gives an example of the directed graph generated by a
depth-first search.

An adjacency structure gives a unique depth-first search for any
starting vertex; edge selection order is fixed by the order of the
adjacency lists. The search requires O(V,E} steps, where V is the
number of vertices and E the number of edges of the graph. Let us

characterize the directed graphs generated by depth-first searches.
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Figure 5.2: Depth-first search of a graph. (a) Craph. (D) Search order.

(¢c) Generated palm tree (spanning tree indicated by solid arcs).

(d) Adjacency structure of palm tree.
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- ,
Recall the definition of a palm tree given in Chapter 3: P is a palm
D d
tree if P is a connected directed graph with a directed rooted spaming
e d .. ) =) . L% . -
tree T and 2ll arcs (i,j) ¢P-T satisfy j-—-i in T . The edges of

_P’-"f are called the fronds of the palm.

-
Theorem 5.1: Let G be the directed graph generated by a depth-first
-
search of a connected graph G . Then G 1is a palm tree. Conversely,
5 .
let G be any palm tree. Then G. is generated by some depth-first

-
search of G , the undirectcd version of G .

Proof:  Suppose T = (v,&) 1is the directed graph generated by a depth-
first search of some connected graph G , and assume that the search
begins at vertex s . Examine the procedure DFS. The algorithm
clearly terminates because each vertex becomes Vv only once and is
numbered then. Furthermore, each edge in the graph is examined |
exactly twice. Therefore the time required by the search is linear
in ¥ and €& .

For any vertices v and w , let ld(v,w} be the length of
the shortest path between v and w in G . Since G 1is connected,
all distances are finite. Suppose that some vertex remains unnumbered
by the search. Let v be an unnumbered vertex such that d(s,v) is
minimal. Then there is a vertex w such that w is adjacent to v
and a(s,w) <d(s,v) . Thus w is numbered. But v will also be
numbered, since it is adjacent tec w . This means that all vertices
are numbered during the search.

The vertex s is The head of no edge w-— s . Each other
vertex v is the head of exactly one edge W -V . The subgraph

- -
T of G defined by the edges v - w 1is obvicusly connected, since

oY)
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there is a path in _f from the root s to any vertex. This may
be proved by induction. Thus f is a spanning tree of g .

Each arc of the original graph is directed in at least one
direction; if (v,w) does not become an arc of the spanning tree
E‘) s elther v --w or w -—- v must be constructed, since both v
and w are numbered whenever edge (v,w) is inspected and either
NUMBER(v) < NUMBER(w) or NUMBER(V) > NUMBER(w) -

The arcs v -» w run from smaller numbered points to larger
numbered points. The arcs v --w run from larger numbered points
to smaller numbered points. If arc v --»w is constructed, arc
w— Vv 1s not constructed later because both v and w are numbered.
If arc w- v is constructed, arc v --»w is not later constructed,
because of the test " w # u " in procedure DFS. Thus each edge in
the original graph is directed in one and only one direction.

Consider an arc v --w . We have NUMBER(w) < NUMBER(v) .
Thus w is numbered before v . Since Vv --»w is constructed and
not v-ow, v must be numbered before edge (w,v) is inspected.
Thus v must be numbered during execution of DFS(w, ) . But all
vertices numbered during execution of DFS(W,_) are descendants
of w . This means tnat w i v, and G is a palm tree.

To prove the converse part of the theorem, suppose that —B
is a palm tree, with spanning tree E) and undirected version P .
Construct an adjacency structure of P in which all the edges of
? appear vefore the other edges of P in ithe adjacency lists.
Star‘biné with the root of E‘) , perform a depth-first search using
this adjacency structure. The search will traverse the edges of —T“>

-
preferentially and will generate the palm tree P ; it is easy to
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see that each edge is directed correctly. This completes the proof

of the theorem.

From Theorem 5.1 we have the following interesting result:

Corollary 5.2: Let G be any undirected graph. Then G can be

converted into a palm tree by directing its edges in a suitable

manner.

A simple application of the concept of search is a well-known
algorithm for determining the connected components of a graph G .
We choose an arbitrary initial vertex and search. The search gives one
connected component. We then choose some new vertex and search again.
After a suitable number of searches the graph will be completely explored
and all its connected components will be found. The program below will

carry out these searches.

integer 1i;
procedure CONNECT (v,u) 3
NUMBER(v) := i := i+l;
for w in the adjacency list of v do
if w is not yet numbered then
add edge (v,w) to current connected component;
CONNECT (W, V) 5
end
else if NUMBER(w) < NUMBER(v) and w # u ther
add edge (v,w) to current component ;
end;
end;
1 :=0;

for x in v if x is not yet numbered then



start new connected component;
CONNECT(x,0) ;
end;

end;

Depth-first search is convenient but not neceesary for this algowrithm;
any search method will do. It is easy to verify that the space and time
requirements of the algorithm are linear in V and E .

As we shall see, depth-first search is an extremely useful teéhnique.
In the algorithms that follow we perform one depth-first search of a
graph G 1o generate a palm tree '3 and a corresponding adjacency
structure. In some cases we may reorder the lists of this adjacency
structure to give a new depth-first search. The new search is performed
on the directed graph -; ; thus the edges are traversed in the same
direction as during the first search but explored in a different order.
The test to avoid traversing edges in the wrong direction is unnecessary,
and the palm tree does not change after the initial search. We save
enough information during the later search to enable us to answer

—-)
interesting questions about G , aided by the simple structure of P .



6. TFinding Biconnected Components Using Depth-first Search

We have seen how to use a search to find the connected component s
of a graph. The simple structure of palm trees enables us to answer
more complicated connectivity questions in linear time. Assume for
example that a comnected graph G has an articulation point a as
i1lustrated in Figure 6.1. Suppose we begin a depth-first search in
region G-R and enter region R by passing through vertex a . We
must eventually back up through vertex a ; that is the only way to
leave region R during the search. This observation allows us to

efficiently calculate the biconnected components of G .

Figure 6.1: Vertex a separates region R from the rest of the graph.
-
Let P be the palm tree generated by a depth-first search of G

-
and let T be its spanning tree. The procedure DFS numbers the vertices

-
of P from 1 to V so that the numbering corresponds to the order in
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which they have been reached during the searchi. We may refer to a
vertex by its number. Then an ancestor j in —T-) of any vertex 1 has
j<i. If i is any vertex of B , iet LOWPT1(i) Dbe the smallest
vertex in the set 8§, = (i1 U j} - If S, is empby, let

LOWPTL(i) = += . The following results form the basis of an algorithm
for finding biconnected components. This algorithm was discovered by
Hopcroft and Tarjan [Hop 71ld]. Paton [Pat 71] describes a similar

algorithm.

Lemma 6.1: Let G be an undirected graph and let P be a palm tree
formed by directing the edges of G . Let T be the spanning tree
of P . Suppose Pp: V i w is any path in G . Then p contains
a point which is an ancestor of both v and w in T .

Il

Proof: Let fu. with igc;t u be the smallest subtree of T containing
all vertices on the path p . If u=v or u=¥W the lemma is
jmmediate. Otherwise, let 'f'ul and 'I"ue be two subtrees containing
points on p such that u - uy and u - Uy - If only one such
subtree exists tuen u is on D since ’.'f'u is minimal. If two

—

such subtrees exist, path p can only get from fu to Tu .

1 2
by passing through vertex u , since no point in one of these trees
is an ancestor of any point in the other, while both - and --

connect only ancustors in a palm tree. Since u is an ancestor

of both v and w , the lemma holds. 4

Lemma 6.2: Let & Dbe a connected undirected graph. Let P be a palm

tree formed by directing the edges of G, and let T be the



-
spanning tree of P . Suppose a, v, w are distinct vertices of G
-y
such that (a,v)eT , and suppose Ww is not a descendant of v
- * -
in T . (That is, —(v-w) in T .) I{ LOWPTl(v) >a then a
-
is an articulation point of P and removal of a disconnects
v and w . Conversely, if a is an articulation point of G
then there exist vertices v and w which satisfy the properties

above.

Proof: If a - v and LOWPT1l(v) > a , then any path from v not passing
through a remains in the sg.btree -TJ'V , and this subtree does not
contain the point w . This gives the first part of the Lemma.

To prove the converse, let a be an articulation point of G .
If a is the root of G then at least two tree arcs must emanate
from a . Let v Dbe the head of one such arc and let w be the
head of another such arc. Then a - v, LOWPTL(v) >a , and w
is not a descendant of v . If a is aot the root of 3 , consider
the connected components formed hy deleting a from G . One
component must be a cubtree of T whose root v is a son of a .
If w is any proper ancestor of & , then a - v, LOWPT1(v) >a ,
and w 1is not a descendant of v . Thus the converse part of the

Lemma, is true.

Figure 6.2 shows & graph, its ILOWPT1 values, articulation points,
and biconnected components. The LOWPT1 values of all the vertices of
a palm tree 3 may be calculated during a single depth-first search,
since LOWPT1(v) = min({IOWPT1(w) |v — w] , {NUMBER(W) |v ~-w}) .

On the basis of such a calculation, the articulation points and the
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Figure 6.2: A graph and its biconnected components.
(a) Graph.
(b) A palm tree with LOWPOINT values in [ ], articulation
points marked with *.

(¢) Biconnected components.



biconnected components may be determi: :d, all during ones search. The
biconnectivity algorithm is presented below. The program will compute

the biconnected components of a graph G , starting from vertex s .

begin
integer 1i;
procedure BICONNECT(v,u) ;
begin
NUMBER(v) := i := i+l;
LOWPTL(V) := + o;
for w in the adjacency list of v do
begin
if w is not yet numbered then
begin
add (v,w) to stack of edges;
BICONNECT (w, V) 3
LOWPTL(v) := min(LOWPT1(v),TZOWPTL(w));
if LOWPT1(w) > NUMBER(v) then
begin
start new biconnected component;
for (ul,ug) on edge stack with
NUMBER(ul) > NUMBER(v) do
delete (ul,uz) from edge stack
and add it to current component;
delete (v,w) from edge stack and add it
to current component;
end;
end
elce if NUMBER(W) < NUMBER(v) and w # u then
add (v,w) to edge stack;
LOWPTL(v) := min(LOWPT1(v),NUMBER(W));
end;
end;

end;



: -2 05
empty the edge stack;
for x in V do if x is not yet numbered then BICONNECT(x,0);

end;

The edges of ‘3 are placed on a stack as éhey are traversed; when
an articulation point is Zound the corresponding edges are all on top of
the stack. (If (v,w)eT and LOWPT1(w) > v , then the ccrresponding
biconnected component contains the edges ‘in
{(ul,uz) fw 3 ul} U {(v,w)}] which are still on the edge stack.)

A single search on each connected component of a graph G will give

us all the bicormected components of G .

Theorem 6.3: The biconnectivity algorithm requires 0(V,E) space and

time when applied to a graph with V vertices and E edges.

Proof: The algorithm clearly requires space linear in V and E . The

algorithm is similar to the connectivity algorithm, except that
LOWPT1l values are calculated and each edge is placed on the edge
stack once and removed from the edge stack once. The amount of
extra time required by these operations is proportional to E .

Thus BICONNECT has z time bound linear in V and E .

Theorem 6.4: The biconnectivity algorithm correctly gives the biconnected

comronents of any undirected graph G .

Proof: The actual depth-first search undertaken by the algorithm depends

on the adjacency structure chosen to represent G ; we shall prove

that the algorithm is correct for all adjacency structures. Notice
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first that the bicomnectivity algorithm contains as 2 part the
algorithm presented in Chapﬁer 4 for finding congecpéd components.
Each connected component is gnalyzed separately tb find its
biconnected components. Thus we need only prove that the
biconnectivity algorithm works correctly on connected graphs’ G .

The correctness proof is by inductioq on the number of edges
in G . Suppese G is connected and contains no edges. G either
is empty or consists of a single point. The algorithm wili terminate
after examining G and listing no components. Thus the élgorithm
operates correctly in this case. Now suppose that the aigorithm
works correctly on all connected graphs with E-1 or ﬁﬁwer edges.
Consider applying the algorithm to a connected graph ﬁ- with E
edges. ; ,/

Each edge placed on the stack of edges is evenyﬁally removed
and added to a component since everything on the g%ge stack is

/

removed whenever the search returns to the root gé the palm tree
of G . Consider the situation when the first/éomponent G' is
formed. Suppose that this component does not include all the edges
of G . Then the vertex v currently being examined is an
articulation point cf the graph and separates the edges in the
component from the other edges in the graph by Lemma 6.2.

Consider only the set of edges in the component. If
BICONNECT (v,0) is executed, using the graph G' as data, the
steps taken by the algorithm are the same as those taken during the

analysis of the edges of G' when the data consists of the entire

greph G . Since G!' contains fewer edges than G , the algorithn
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operates correctly on G' , and G' must be biconnected. If we
delete the edges of G' from G , we get another subgraph G"
with fewer edges than G since G' is not empty. The algorithm
operates correctly on G" by the induction assumption. The
behavior of the algorithm on G is simply a composite of its
behavior on G' and on G" ; thus the algorithm must operate
correctly on G . -

Now assume that only one component is found. We want to
show that in this case G is biconnected. Suppose that G 1is
not bicomnected. Then G has an articulation point a . By
Lemma 6.2, LOWPTL(v) >a for some son v of a . But the
articulation point test in the program will succeed when the edge
(a,v) is examined, and more than cne biconnected component will
be generated. This contradiction shows that G is biconnected,
and the algorithm works correctly in this case.

By induction, the biconnectivity algorithm gives the correct

components when applied to any connected graph, and hence when

applied tc any graph.
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III. A Linear Planarity Algorithm



7. Gencral Description

We wish to decide whether or not a given graph G can be embedded
in the plane. We can answer this guestion using an algorithm whose space
and time bounds are linear in V , the number of vertices in the graph G .
An intuitive description of the algorithm is presented here; later thz
various operations necessary wili be discussed in detail. Figure 7.1l
gives a flowchart of the overall process.

Suppose a connected graph G 1s embedded in a plane. When the
set of points representing ihe edges and vertices of G is deleted
.from the plane, certain regions remain; these are the called the faces
of G . EFEuler proved a relationship between the number of vertices V ,
faces F , and edges E of a connected planar graph: V+F =E+ 2

(Lemma 3.5). A consequence of this fact is:

Lemma 7.1l: If G is a planar graph with three or more vertices then

E<3V-6.

Proof': If G is not connected, w2 may connect it by adding additional
edges. Since G is not a multigraph the boundary of each face
must contain at least three edges. Thus 3F < 2E ; every edge is
counted twice if we sum over the facial boundaries. Tt follows that

3E = 3V+3F-6 <3V+2E-6 , and E <3V-6 .

Because of LemmaA 7.1, we may hope to determine planarity in time
which is proportionsl to the number of vertices. The first step of the
algorithm is to count the number of edges in the graph G . If the count ever
exceeds 3V -6 , we stop and declare the graph non-planar. Next we may

divide the graph into biconnected components, using the algorithm described

),; 5
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(E>3V-6?J\

iNo
Optional Find biconnected
step | components of graph Ge.

Perform first depth-first search.
Construct a palm tree P for G .
Calculate lowpoint information for vertices.

..
Reorder edges using

radix sort.

Perform second search. Renumber
vertices in search order.

L

Perform third search. Construct paths
and subgraph of dependency graph.

" Is 2-coloring of dependency No
< subgraph possible?

Yes

&

" Does 2-coloring give a planar No
embedding without crossing edges?

Figure 7.1l: Flowchart for planarity testing algorithm.
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in Chapter 6. (This step is not actually necessary, but it will simplify

the presentation.)

Lemma 7.2: A graph is planar if and only if all its biconnected

camponents are planar.
Proof: Standard. See [Ber 62].

Consider one of the biconnected compornents. We know ‘that such a
component may be converted into a palm tree 3 using a depth-first
search. Suppose that ? is embedded in the plane. Without loss of
generality 1;) may be embedded so that the branches of its spanning tree
point "up" in the plane, and none of the fronds cross under the root
of the tree. Let u be a vertex in the component, and let
(u,vl),(u,vz), ...,(u,vn) be the tree arcs emanating from u , in the
order they cccur around u in the planar embedding. Let Tl’ TE’ ’Tn
be the subtrees whose roots are VioVpr eV s respectively. Various
fronds emanate from fhese subtrees and connect to ancestors of u , as
illustrated in Figure T.2.

For tree Ti , the lowest point of connection is LOWPIl(vi) .

The highest point of connection (below u ) we may call HIGHP].‘(vi) .
Every subtree Ti except one (T2 in Figure 7.2) must have all of
its fronds descending on the same side of the branch 1 i u in the
planar embedding. The subtrees Tl’TE’ ,Tn must be arranged so that
Ty and T have the highest intervals [LOWPI’l(vi),HIGHPT(vi)] and

these intervals are non-decreasing as we move in the sequence of subtrees

toward the tree (if one exists) whose fronds descend on both sides of
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Figure T.2: Relationship of subtrees adjacent to a single

vertex in a planar embedding.
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the branch 15w . Two subtrees (such as T, and T, in Figure 7.2)
whosc intervals overlap by more than one point cannot have their fronds
descending on the same side of the branch l:i u .

The value HIGHPT(v) is not easy to calculate, unfortunately, so
we must resort to a bit cof legerdemain to actually determine the proper
arrangement of the various subtrees of a bicoﬁnected component. Instead
of using subtrees, we examine paths. Each path is of the form
p: s ot - £ . If (s,v) is the first edge on such a path p and s - v
is a tree arc, then the interval associated with p dis the same as that
associated with TV , the subtree rooted at v . If (s,v) is a frond
(p is of length one), then the interval associated with p is [v,v] .
We do not completely calculate these intervals but we do determine
something about them; in particular we compute the lowest point of eachn
interval and we determine which intervals consist of more than one point.

Using this information, we chuose paths with the lowest intervals
first. As the paths are selected, we may imagine adding them to a
planar embedding which contains all the previously selected paths. If
paths P1sPps -+ -5Py pass through vertex s , then their ordering around
s is restricted in the same way as the ordering of the corresponding
subtrees Tl’T2"°"Tn , where Ti has root v vi is on path P; >
and S - vy Thus each new path p: s i £ has at most a two-fold
ambiguity in its placement; p must ﬁe placed either at the left end or
at the right end of the sequence of paths around vertex s . See

Figure 7.3. We call one of these possibilities the left embedding and

the other the right embedding.
Using some additional information about the paths, we develop a

dependency relation between paths: two paths may either constrain each
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Figure T.35: The two possible embeddings of new path p .
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other to have the same embedding, or they may constrain each other to
have opposite embeddings, or they mey not restrict each other at all.
The relation consists of a set of equalities and inequalities which
must be satisfied over a two-element domain. We shall see that a graph

is planar if and only if its dependency relation is satisfiable.

We may construct a graph corresponding to the dependency relation.
The vertices in this graph are the paths in the original graph. Two
paths are joined by an ELINK if they must have equal embeddings, and two
paths are joined by an ILINK if they must have unequal embeddings. The

resulting graph is called a dependency graph D ; this graph is colorable

using two colors if and only if the original graph G is planar. In
order to test planarity, then, we convert each biconnected component of
the graph into a palm tree, we partition each palm tree into a set of
edge-disjoint paths, we construct the corresponding dependency graph D ,
and we attempt to color D wusing two colors.

In order to get a fast algorithm, we must use another bit of
cleverness. We shall see that the number of paths generated is E-W#1 .
The dependency graph may a priori cortain up to (E-V+1) (E-V)/2 edges.
We do not actually find all links in the dependency graph, but only
enough to connect the connected components of this graph. Since a
two-coloring of any connected component is essentially unique, the
selected links provide enough information to give only one coloring.

(We may permute colors in the variocus connected components arbitr#rily.)
We then test this coloring to see if it is a coloring of the entire
dependency graph. If so, the original graph is planar and the coloring

gives a planar embedding. If not, the graph is non-planar.
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Each step of this process may be carried out in time proportioral
to the number of vertices. (The subgraph of the dependency graph which
is actually constructed contains a number of links linear in V .)

The storage space required is also proportional to the number of
vertices. Thus the planarity algorithm is linear in V in both time
and space; furthemoi'e, +he algorithm is optimal to within a constant
factor, since any correct planarity algorithm must examine each edge of
the graph at least once. Figure 7.k gives an example of the algorithm's
application. The example illustrates the general steps involved in
determining planarity. In the next sections we develop the details of

these steps.
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Figure 7.1{2 Application of the planarity algoritim. (a) Graph.

(b)  Generated palm tree. (c) Paths. (d) Dependency

subgraph with 2-coloring in [ ]. (e) Planar embedding
corresponding to 2-coloring.

53



8. Pathfinding

Assume that G 1is a biconnected graph with E < 3V-6 . In order
t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>