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Preface

The problem of finding numerical approximations to the zeros and
extrema of functions, using hand computation, hes a long history. In
the last few years, considerable progress has been made in the develcpment
of algorithms suitable fcor use on a digital computer. ‘The gim of this
work is to suggest improvements to some of these algorithms, extend the
mathematical theory behind them, and describe some new algorithms for
approximating local and global minima. The unifying thread is that all
the algorithms considered depend entirely on sequential functlion
evaluations: no evaluations of derivatives are required. Such algorithms
are very useful if derivatives are difficult to evaluate, and this is
often true in practical problems.

I am greatly indebted to Trofessors G. E. Forsythe and G. H. Gelub
for their advice and encouragement during my stay at Stanford, and for
their guidance of my research. Thanks are due Lo them and to the other
members of my reading committee, Professors J. G. Herriot, F. Wl Dorr
and C. B. Moler, for their careful reading of various drafts, and for
many helpful suggestions.

Several pecple have contributed to this work. I would particularly
like to thank Dr. T. J. Rivlin for suggesting how to find bounds on
polynomials (Chapter 6), and Dr. J. H. Wilkinson for introducing me to
Dekker's algorithm (Chapter l). Also, thanks to Professor F. Dorr and
Dr. I. Sobel for their help in testing some of the algorithms, to

Michael Malcolm, Michael Saunders and Alan George for many interesting
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discussions, and to Phyllis Winkler for her fast and accurate typing.
I am grateful for the influence ol my teachers V. Grenness, H. Smith,
Drs. D. Faulkner and E. Strzelecki, Professors G. Prestop, J. Miller,
Z. Janko, R. Floyd, T. Knuth, and M. Schiffer, and those mentiocned above.
DccpesL.Lhanks to my wife Erin for her careful proof-reading,
and help in obtaining sohe of the numerical results, testing the
algorithins, plotting graphs, and in many other ways.
Finally, I wish to thank the Commonwealth Scienlific and Industrial
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1.1
Consider the problem of finding an approximate zero or minimum of
a function ol one real variable, using limited-precision arithmetic on a
sequential digital computer. The function f may not be differentiable,
or the derivative f' may be difficult to compute, so a method which
uses only computed values of f is desirable. Since an evaluation of
I may be very expensive in terms of éomputer time, a good method should
guarantee to find a correct solution, to within some prescribed tolerance,
using only.a small number of function evaluations. Hence, we study
algorithms which depend on evaluating f at a small number of points,
"and for which certain desirable properties are guaranteed, even in the
presence of rounding errors.
Slow, safe algorithms are seldom preferred in practice to fast

algorithmse which may occasionally fail. Thus, we want algorithms which

are guaranteed to succeed in & reasonable time even for the most "difficult"
functions, yet are as fast as commonly used algorithms for "easy"

functions. For example, bisection is a safe method for finding a =zero
of a function which changes sign in a given interval, but from our point
of view it is not an acceptable method, because it is Jjust as slow for
any function, nc matter how well behaved, as it is in the worst possible
cese (ignoring the possibility that an exact zero may occasionally be
found by chance). As a contrasting example, congider the method of
successive linear interpolation, which converges superlinearly to a
simple zero of a Cl function, provided that the initial approxim;tion
This method is-not

is goed and rounding errors are unimportant.

acceptable cither, for, in practice, we may have no way of knowing in

AY]
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advance if the zero is simple, if the initial approximation is sufficiently
good to ensure convergence, or what the effect of rounding errcrs will be.

In Chapter Y we describe an algorithm which, by combining scme of
the desirable features of bisecticn and successive linear interpolation,
does come close to satisfying our requirements: it is puaranteed to
converge (i.e., halt) after a reasonably small number of function
evaluations, and the rate of convergence for well-behaved functions
is so fast that a less reliable algorithm is unlikely to be preferred
on grounds of speed.

An analogous algorithm, whieh finds a local minimum of a function
of one variable by a combination of golden section search and successive
parabolic interpolation, is described in Chapter 5. This algorithm
fails to completely satisfy one of our requirements: in certain
applicaticns where repeated one-dimensional minimizations arc required,
and where accuracy is not very important, a faster (though less reliable)
method is preferable. One such applicaticn, finding local minima of -
functions of several variables without calculating derivatives, is
discussed in Cﬁaptef 7. ©Note that, wherever we consider minima, we
could equally well consider maxima.

Most algorithms for minimizing a nonlinear function of one or more
variables [ind, at best, a2 local minimum. For a function with several
local minima, there is no guarantee that the local minimum found is the
global (i.e., true or lowest) minimum. Since it is the global minimum
which is of interest in most applications, this is a serious practical
disadvantage of most minimization algorithms, and our algorithm given

in Chapter 5 is no exception. The usual remedy is to try several



1.1

different starting points and, perhaps, vary some of the parameters of
the minimization procedure, in the hope that the lowest local minimum
found is the global minimum. This approach is inefficient, as the same
local minimum may be found several times, and it is also unreliable, for,
no matter how many starting points are tried, it is impossible to be
quite sure that the global minimum has been found.

In Chapter &6 we discuss the problem of finding the global minimum
to within a prescribed tolerance. ' It is possible to give an algorithm
for sclving this problem, provided that a little a priori information
about the function to be minimized is known. We describe an efficient
algorithm, applicable if an upper bound on f" 1is known, and we show
how this algorithm can be used recursively to find the global minimum
of a function of several variables. Unfortunately, because the amount
of' computation involved increases exponentially with the mumber of
variables, this is practically useful only for functions of less than
four variables. For functions of more variables, we still have to
resort to the unrelisble "trial and error™ method, unless special
information sbout the function to be minimized is available.

Thus, we are led to consider practical methods for finding local
(unconatrained) minima of functions of several variables. As before, we
considgr methods which depend on evaluating the function at a small
number of points. TUrnfortunately, without imposing very strict conditions
on the functions to be minimized, it is not possible to guarantee that
an n-dimensional minimization algorithm produces results which are correct
to within some prescribed tolerance, or that the effect of rounding errors

has completely been taken into account. We have to be satisfied with

1.1
algorithms which nearly always give correct results for the functions
likely to arise in practical applications.

As suggested by the length of our bibllography, there has recently
been considerable interest in the unconstrained minimization problem.
Thus, we can hardly expect to find a good method which is completely
unrelated to the known ones. In Chapter 7 we take one of the better
methods which does not use derivatives, that of Powell (1964), and modify
it to try to overcome some of the difficulties observed in
the literature. Numerical tests suggest that our proposed method is
faster than Powell's original method, and just as reliable. It also
compares guite well with a different method proposed by Stewart (19675,
at least for functions of less than ten variables. (We have no numerical
results for non-quadratic functions of more than ten variables.)

ALGOL implementations of all the above algorithms are given. Most
teating was done with ALGOL W (Wirth and Hoare (1966)) on IBM 360/67 and
360/91 computers. As ALGOL W is not widely used, we give ALGOL €0
procedures (Naur (l§65)), except for the n-dimensional minimization
algorithm. FCRTRAN subroutines for the one-dimensional zero-finding
and local minimization algorithms are alsc available.

To rccapitulate, we describe algorithms, and give ALGOL procedures,
for éolving the following problems efficiently, using only function (not

derivative) evaluations:

1. Finding a zerc of z function of one variable'if an interval in which
the function changes sign is given;
2. Finding a local minimum of a function of one variable, defined on a

given interval;
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5. Tinding, to within a prescribed tclerance, the global minimm of
a function of one or more variables, given upper bounds on the
second derivatives;

k.  Pinding a local minimum of a function of several variables.

For the first three algorithms, rigorous bounds on the error and the
number of function evaluations required are established, taking the
effect of rounding errors into account. Some results concerning the
crder of convergence of the first two algorithms, and preliminary

resulls on interpolation and divided differences, are also of interest.

2. Summary

In this section we summarize the main results of the following
chapters. A more detailed discussion is given at the appropriate
places in each chapter. This sumnary is intended to serve as a puide
to the reader who is interesled in some of our results, but not in
others. To assist such a reader, an attempt has heen made to keep each

chiapter as self-containcd as possible.

Chapler 2

In Chapter 2 we ccllect scme results on Taylor series, Lagrangian
intefpol,ation, and divided differences. Most of thesc results are needed
in Chapter 3, and the casual reader might prefer to skip Chapter 2 and
refer back to it when necessary. Some of the results are similar to

classical ones, but instead of assuming that f has ntl continuous

1.2

derivalives, we only assume that f(n) is Lipschitz continuous, and

the term f(n+l)(§) in the classical results is replaced by a number

‘bounded in absolute value by a Lipschitz constant. For example,

Lemmas ©.3.1, 2.3.2, 2.4.1, and 2.5.1 are of this nature. G8ince a
ILipschitz continuous function is differentiable almost cverywhere,
these results are not surprising, although they have not been found in
the literature, except where references are given. (Sometimes Lipschitz
conditions are imposed on the derivatives of functions of several
variables: see, for example, Armijo (1966) and McCormick (1969).) The
proofs are mostly similar tc those for the classical results.

Theorem 2.6.1 is a slight generalization of some resulls of
Ralston (1963, 1965) on differentiating the error in Lagrangian
interpolation. It 1s included both for its independent intercst, and
because it may be used to prove a slightly weaker form of Lemma 3.6.1
for the important case q = 2 . (A similar proof is skelched in
Kowalik and Osborne (1968).)

An interesting resull of Chapter 2 is Theorem 2.6.2, which gives
an expression for the derivative of the error in Tagrangian interpolation
at the points of interpolation. A well-known wcaker result is that the
conclusion of Theorem 2.0.2 holds if f has n+l continuous derivatives,
but Theorem 2.6.2 shows that it is sufficient for f 4o have n
continuous derivatives.

Theorem 2.5.1, which gives an expansion of divided differences, may
be regarded as a gencralizetion of Taylor's theorcem. Tt is used several
times in Chapter 3: for example, see Theorem 3.k.1 and Lemma 3.6.1.

Theorem 2.5.1 is uscful for the analysis of inlcerpolation processes
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whenever the coefficients of the interpolation polynomials can conveniently

be expressed in terms of divided differences.

Chapter 3

In Chepter 7 we prove somc theorems which provide a theoretical
foundation for the algorithms described in Chapters % and 5. 1In
particular, we show when the algorithms will converge superlinearly,
and what the order (i.e., rate) of convergence will be. Of course, for
these results the effect of rounding errors is ignored. The reader
whose main interest is the practicazl applications of our results might
omit Chapter 3, except for the numerical examples {Section 3.9) and the
summary {Section 3.10).

So that résults concerning successive linear interpolation for
finding zeros (used in Chapter ), and successive parabolic interpolation
for finding turning points (used in Chapter 5), can be given together,
we consider a more general process for finding a zero of f(q_l) , for
any fixed g > 1 - Successive linear interpolation and successive
parabolic interpolation are Jjust the special cases q =1 and q =2 .
Another case which is of some practical interest i1s g = 3 , for finding
inflexion points. As the proofs for general q are essentially no more
difficult than for q = 2 , most of our results are for generzl q .

For the applications in Chapters 4 and 5, the most important
results are Thecrem 3.L.1, which gives conditions under which convergence
is superlinear, and Theorem 3.5.1, which shows when the order is at least

1.618... (for gq =1) or 1.324... (for g = 2) . These numbers are

well-knowm, but cur assumptions about the differentiability of f are

l.2
weaker than those of previous authors, e.g., Ostrowski (1966) and
Jarratt (1967, 1968).

From a mathematical point of view, the most interesting result
of Chapter 3 is Theorem 5.?.1..IThe result for q 1 is given in
Ostrowski (1968), ecxcept for cur slightly weaker assumption about the
smoothness of f . For a = 2 , our result that convergence to [ with
order at least 1.378... is possible, even if f(B)(E) f 0 , appears to
be new. Jarratt (1967) and Kowalik and Osborme (1G68) assume that

|Xn+.l._£|

lim - =0, (2.1)

n—w

and then, from Lemme 3.5.1, the order of convergence is  1.32h... .

However, even for such a simple function as

ox) - 20 1 x5, (2.2)

there are starting points Xy 5 X and X, such that (2.1) feils Lo
hold, and then the ordar may be at least 1.378... . We should point
out that this excepticnal case is unlikely to occur: an interesting
conjecture is that the set of starting points for which it oeccurs has
measure zero.

The practical conclusion to be drawn from Theorem 3.7.1 is that,
if converpence ie to be accelerated, Lhen the result of Lemma 3.6.1
should be used. In Section 3.8 we give one of the many ways in which

this may be done. Finally, some numerical examples illustrating both the

accelerated and unaccelerated processes are given in Section 3.9.
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Chapter b

In Chapter L we describe an algorithm for finding a zero of a
function which changes sign in a given interval. The algorithm is
based on a combination of successive linear interpolation and bisection,
in much the same way as "Dekker's algorithm" (van Wijngaarden, Zonneveld
and Dijkstra (1963), Wilkinson {1967}, Peters and Wilkinson (1969),

Dekker (1969)). Our algorithm never converges much slower than bisection,
whercas Dekker's algorithm may converge oxtremely slowly in certain cases.
(Examples are given in Section 4.2.)

It is well-known that bisection is the optimal alporithm, in a
minimax sense, for finding zeros of functions which change sign in an
interval. (We only consider sequential algorithms: see Robbins (1952),
Wilde (196k) and Section k.5.) The motivation for both our algorithm and
Dekker's is that bisection is not optimal if the class of allowable
functions is suitably restricled. For example, it is not optimal for
convex functions (Bellman and Dreyfus (1962), Gross and Johnson (1959)),
;r for Cl Iunctions with simple zervs.

Both our algorithm and Dekker's exhibit superlinear convergence to
a simple zero of a C:L functicn, for eventually only linear intcrpolations
are performed, and the theorems of Chapter 3 are applicable. Thus,
convergence is usuvally much faster than for bisection. Our algorithm
incorporates inverse guadratic interpolation as well as linear interpolation,
so it is often slightly faster than Dekker's algorithm on well-behaved

functlions (sce Seetion 4.1).

10
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Chapter 5

An algorithm for finding a local minimum of a lunction of one
variable is described in Chapter 5. The algorithm combines golden
section scarch (BelUman (1957}, Kicler (1953), wilde (196k), Witzgall
(1969)) and successive parabolic interpolation (the case q - 2 of the
process analysed in Chapter 3}, in Lhe same way &s bisecction and successive
linear interpolation are combined in the zero-finding algorithm of
Chapter 4. Convergence in a reasonable numbcr of function evaluations
is guaranteed (see Section 5.5), and, for a 02 function with positive
curvature at the minimumn, the results of Chapter » show that convergence
is superlinear, if we ignore rounding errors and suppose that the minimum
is at an interior point of the interval. Other algorithms given in the
literaturc either rail to have these two desirable propertics, or, when
convergence is strictly superlinear, the order of convergence is less
than for our algorithm (sec¢ Sections $.% and 5.5).

In Sections 5.2 and 5.3 we consider the effect of rounding errors.
Section‘5.2 contains an analysis of the limitations, imposed by rounding
errors, on the'attainable accuracy of any algorithm which is based
entirely on function evaluations, and this section should be studied
by the reader who intends to use the ALGOL procedure given in Section 5.8.

If £ is unimondal, then our algorithm will find the unique minimum,
provided there are no rounding errors. To study the effect of rounding
errors, we define " &-unimcdal" functions. A unimedal function is d-unimodal
for all & >0 , but a computed approximation to a unimodal function can
nol be unimodal: 1l will be d-unimodal for some positive & , depending

on the function and on the precision of computation. (& — O as the

11
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precision increases indefinitely.) We prove some theorcms about H-unimodal
functions, and give a bound for the error in the approximate minimum found
by our algorithm when applied Lo a 5-unimodal function. In this way we

can justify the use of cur algorithm in the presence of rounding errors,
and account for their effect. Our motivation is ralher similar to that

of Richman (1968) in developing the €-calculus, but we are not concerned
with properties that hoid as € - 0 . The reader who is not very
interested in the effect of rounding errors might prefer to skip

Section 5.3,

Chapter 6

In Chapter 6 we consider the problem of finding an approximation
to the global minimum of a funetion f , defined on a finite interval,
if some a priori informaticn about f dis known. This interesting problem
does not seem tc have received much attenticn, although there have been
some empiricul investigalions, e.g., see Magee (1960). In Section 6.1,
we show why some a priori information is necessary, and discuss some of
Lhe possibilities. In the remainder of the chapter we restrict our
attention to the case where an upper bound cn " is known.

An alegorithm for global minimization of a function of one variable,
applicable when such an upper bound on the second derivative is knowm, is
deseribed in Section 6.3. The basic idea of this algorithm is used by
Rivlin (1970) to find bounds oh a polynomial in a given interval. We
pay particular attention to the problem of giving guaranteed bounds in
the presence of rounding errors, and the casual reader may find the

details in the last half of Section 6.3 rather indigestible.

12

In Section 6.4, we try Lo obtain some insight into the hehaviour
of our algorithm by considering some.tractable special cases. Then, in
Sections 6.5 and 6.6, we show that no algorithm which uses only function
evaluations and an upper bound on f" could be much faster than our
algorithm. TI'inally, a generalization to funclions of several variables
is given in Section 6.8. The conditions on f are much weaker than
unimodality (Newman (1965)). The generalization is not practically useful
for functions of more than three variables, and it is an open guestion

whether a significantly better algorithm is possible.

Chapter 7

Tn Chapter 7 we describe a modification of Powell's (1964) algorithm
l'or finding & local minumum of a function of several variables, without
calculating derivatives. The modification is designed to ensure
quadratic convergence, and to avoid the difficulties with Powell's
criterion for accepting new search directions.

First, a brief introduction to the problem and a survey of the
recent literatureare given in Section 7.1l. The effecl of rounding errors
on the limiting accuracy attainable is discussed in Seetion 7.2. Powell's
algorithm is described in Secticn 7.3, and our main modification is given
in Section 7.lh. The idea of the modification (finding the principal axes
of an approximating quadratic form) is not new: for example, it is used
by Greenstadt (1967} in his quasi-Rewton method. Unlike Greenstadt,
though, we do not use an explicit approximation to the Ilessian matrix.
An interesting feature of our modification is that it is posible to gvoid
squaring the condition number of the eigenvalue problem by using a singular

value dccomposition: see Section 7.4 Tor thc details.

13
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In Sccbions 7.5 and 7.6 we describe some additional features of our

algorithm. Then, in Section 7.7, we give the results of some numerical

experiments, and compare our method with those of Powell (1964), Davies,

Swann and Campey {Swann (196L)), and Stewart (1967). For the comparison
we have used numerical results obtained by Flelcher (1965) and Stewart
(1967) . The numerical results suggest that our algorithm is competitive
with the currently used algorithms which do not require the uscr Lo
compute derivatives, although it is difficult to reach a definite
conclusion wilhout more practical expericnce.

Finally, we give a bibliography of the recent literature on
nonlinear minimization, with the emphasis being on methods for solving

unconstrained problems.

1k

Chapter 2.

Some Useful Results on Teylor Series, Divided Differences,

and Lagrangian Interpolation



1. Introduction

In this chapter we collect some results which are needed in Chapters
%5 and G. The reader who is mainly interested in the practical applications
described in Chapters N to 7 might prefer to skip this chapter, except for
Section 2, and refer back to it when necessary.

Classical expressions for the error in truncated Taylor series and
Lagrangian interpolation often involve & term f(‘”l)(g) , Wwhere £ is an
unlmown point in some intcerval. For such expressions to be valid, f must
have ntl derivatives. GOeveral of the results of this chapter give
expressions which are valid if £ catisfies a (possibly one-sided)
Lipschitz condition. In these results, the term f'(n+l)(§) is replaced
by a number which is bounded by a Lipschitz constant. I% seems‘u.nlikely
that these results are new, but they have not been found in the literature
except where references are given.

The results of Chapber 3 depend heavily on Theorem 5.1, which gives
an expansion of the divided difference f[x_,. ..,xn] (see Section 2) near
the origin. This theorem, and the less cumbersome Corollary 5.1, are
useful for the analysis of interpolation processes, for the coefficients
of the interpolating polynomials can be expressed in terms of divided
differences {see Chapter 3).

Finally, in Section 6, we extend some results of Ralston (1663) on
the derivative of the error term in Lagrangian interpolation. These
results are relevant to Chapter 3, although they are given mainly for
their independent interest. Perhaps the most interesting result is
‘Theorem £.2, which shows that, if we are only concerned with the points
of interpolation, then we can differentiate the classical expression for
the error (equation (6.L)}, regarding the term f(n)(g(x)) as constant.

16

2.4
This is well-known if f has ntl continuous derivatives, but Theorem (.2

shows Lhal il is sufficient for f to have n continuous derivatives.

2. Notation and definitlicons

Throughout this chapter [e,b] is a ncnempty, finite, closed
interval, and [ is a rcal-valued function defined on [(a,b] . n is
a nonmnmegative integer, M a nonnegative real number, and & a number

in  (0,1] .

Definitions

The modulus of continuity w(f;6) of £ (in [a,b]) is defined by

w(l38) = sup  |2(x) -r(0) |, (2.1)
%,y e [a,b]
lx-y| <6
for all 5 >0 .

If f has a conbinuous n-th derivative on [a,b] , then we write

fec™a,bl] . 1f, in addition, f(n) eLipMCl ; 1.e.,

Q€

we™is) < ue (2.2)

for ali & > 0O , then we write feDCn[a,b;M,ot], (This notation is not
standard, but it is convenient if we want to mention the constants M
end o explicitly.) If f£eIC[a,b;M,1] then we write simply

£ erca,bsM]

If x

g2+« 2%, are distinct points in [a,b] , then IP(f;x ,...,xn)

[¢]

is the Lagrangiun interpolation polynomial, i.e., the unique polynomial

of degree n or less which coincides with f at LSRRI SO The
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2.2

divided difference l'[x.o, .. .,xn] is defined by

Tlx.
Ry
11
(x.-x.)
=0 d !
i3
(There are many cther notations: see for example, Milne (19h49),

Milne-Thomson (1933}, and Traub (196h).) Note that, although we suppose

for simplicity that x.,.. % are distinet, nearly all the results given

0

here and in Chapter 3 hold if some of ESVERRSE N coincide. (We then have

Hermite inberpolation and confluent divided differcnces: see Traub (1964).)

For the statement of these results, the word "distinct" is enclosed in

parentheses.

Newton's identities

For future reference, we note the following useful identities (see
Cauchy (18L40), Isaacson and Keller (1966), or Traub (1g64)). The first
is often used as the definition of the divided difference f[xo, ...,xn]
while the second gives an explicit representation of the interpolating

polynomial and remainder.

1. f[xo] = f(xo)

and, for n>1,

flx ,-..,x ] - flx,..,x )
I E S "o “‘1)'( _xl oo, (2.4)
¢} n

2. If P = '[P(f;xo,...,xn) , then
n
£(x) = p(x) + (II_O (x-xi) .i‘[xo,...,xn,x] s (2.5)

18

2.3

and

N P(x) = f[xO]+(x-x0)f[xo,xl] e

+(X-XO)'“(X—xn~l)flx0,'"’xn] . (2.6)

4.  Truncated Yaylor series

In this section we give some Lorms of Taylor's theorem. TLemma 3.1
is necded in. Chapter 6, and applies if f(n) satisfies a onc-sided

Lipschitz conditicn.

Lemma 5.1

Suppose that feC"[0,b] for some b >0 , and that there is a

consbant M such that, for all ye[0,b] ,
£ -ty < wy ERY

Then, for all xe{0,b] ,

n r X ntl :
tx)y- ¥ 5 e0) ¢+ E——nln) (3.2)
r=0 T° (n+1)!
where
m(x) <M . (3.2)
Remarks

The proof is by induction on n , and is omitted. The corresponding
two-sided result is immediate, and is generalized in Lemma 3.2 below. In

Lemma 5.2, fractional factorials are defined in the usual way, so
(n+a)tfat = (L+a)(2+a)...(n+a) . (3.1

19



2.3
Lemma 3.2

Tf feLCn[a,b;M,u] and ¥A,yela,b] , then
I r
e00) = 3 L o)y ey | o/ ()t (3.9)
r=0 )

where

[mGsv}| < . (3.6)

Remarks

The result is triviel if n =0, and for n > 1 it [ollows from
Taylor's theorem with the integral form for the remainder, using the
integral

x n-1

ta x-t jesqet
; at = x O atf/(n+a)t (3.7)
§ /

for x>0 .

Note that the bound (3.6) is sharp, as can be seen from the example

£lx) = ¢, ' (3.8)
with y =0 and M = (nte)!/at . Since, for n>1,
nt < (ma)ifar (3.9)

the bound obtained from the classical result

n-1 r n V
(09 = ¥ L) () gy 4 L) )y (3.10)

for some £ between x and y , is not sharp.

20

I,  Lagrangian interpolation

The following lemma, used in Chapter 6, gives a one-sided bound on
the error in Lagrangian interpolation, if i‘(n) satisfies a one-sided
Lipschitz condition. Thus, it corresponds to Lemma 3.1. The corresponding
two-sided result follows from Lheorem 3 of Baker (1970), but the proof
given here is simpler, and similar to the usual proof ol the classical
result that, if feCMl[a,b] , then m(x) = 1‘(n+l) (8(x)) , lLor some

£(x) e [a,b] - {See, for example, Isaacson and Keller (1966), pg. 190.)

Lemma 4.1
Suppose that fe Cn[a,b] 5 X weesX o are (distinct) points in
[a,b] 5 P = IP(f;xo,...,xn) ; and, for all x,yela,b) with x>y,
g -ty < oue-y (4-1)

Then, for all xela,b],

) = 2+ TT (x—xr)) Tt T (b-2)

where

m(x) < M . (4.3)

Proof
Suppose that n >0 and x # x, forany r =0,...,n, for
otherwise the result 1s trivial. Let
n

wix) =TT (x-x) (1.)

r=0

and write
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2.5 2.5

T(x) = P(x) +w(x)s(x) . (4.5) Lemma, 5.1
n s
Regarding x as Tixed, define Suppose that fcI1C la,b;M] and that RoypeeosX g are (aistinct)
points in (a,b] . Then
F(z) = £(z) - P{z) -w(z)S(x} (4.6)
Tl vk, 1 = m/ ()} (5.1)
for zecla,b] . OIS ’
Thus ¥ cC'[a,bh] , and #{z) vanishes at the n+2 distinet points " where
P YRRETE S Applying Rolle's theorem n +times shows that there are ‘ml < Mo (5-2)
two distinetl points €_,f. ¢ (a,b such that .
poln orfp € (b)), such thu Furthermore, it feLn Ha,v] , then
(m) {n)
b £ =7 =0 . L. .
(1) =7 e (1) RN 5.3)

Differentiating (4.6) n times gives
- - for some Ecla,b] .

L T L S SR Sy n A o S (4.8)
Theorem 5.1
s n+k R
where c¢(x) is independent of =z . Thus, from (4.7), Suppose thet ko >0 ; LeC fa,b] 5 a<0 3 b>0; and
(n) (n) XgreeesX, o are (distinct) points in [a,b] . Then
o £ ey - ™) e
S(x = .9
(1)t £ - ¢ ? (n) n+l)
o] 1
- £l = 200y ,
n nt n+l
0< r <n
so the result follows from condition (%.1).
+
) s
+ xr ...xr )t + R,
Osrl_\_rgs...grksn 1 k
5. Divided differences (5.1)
Lemma 5.1 and Theorem 5.1 are needed in Chapter ». The firsl parl where
of TLemma 5.1 follows immediately from Lemma ).1 and the identity (2.5) 1 n+k ntk
R= Tonge = ---X.[f( )(F- -)'f( )(0)]
‘ ; ; . ‘\ 0<r,<r < To<r <n L Tk ety
(we state the two-sided result for variety), while the second part is St =405 Sk
well-known, and follows similarly. Theorem 5.1 is more interesting, and (5 5)
most of the results of Chapter 7 depend on it. It mey be regarded as a
for some § in the interval spanned by X ,...,x and O .
generalization of Taylor's theorem (the special case n = 0) . LyoreesTy Ty i
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2.5
Corollary 5.1

If, in Theorem 5.1,

5 = max |xr‘ , {5.6)
r=0,...,n

then

38) . (5-7)

Prcof of Theorem 5.1

The result for k =0 1s lunediate from the second part of Lemma 5.1,
so suppose that k >0 . Take points Vo7 -eov, which are distinct, and

distinct from x.,...,x_ . Then
6] n

f[XOJ . -:xn] = f[yo: e .’yﬂ]

n
= E_:O [f['K'O; .. .Jxr’yl‘i‘l’ .. -:yn] - f[xor .. -Jxr_l)er .- -,yn]}

(5-8)

[a]

= o (xr‘yr)f[xor""xriyrl"':yn] ’ (5'9)

by the identity (2.4).

We may suppose, by induction on k , that the theorem holds if k
is replaced by k-1 and n by nt+l . Use this result to expand cach
term in (5.9), and consider the limit as Yoo -+-s¥, tend to O . Dy
the second part of Lemma 5.1, f[yo,...,yn] tends to f(n)(O)/u'. , 50
the result follows. (Strictly, to show the existence of the points
E , we must add to the inductive hypothesis the result that

R STERETE N

-+
f(n k)(g ) ds a continuous function of x4, ...,x .)
Tyre- .,I‘k ry Ty
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Corollary 5.1 is immediale, once wec note that there are exaclly

(otlk)!

TRt terms in the sun (5.5).

6. Differentiating the error

The two theorcms in this section are concerned with differentiating
the error term for Lagrangian interpolation. These theorems are nol
needed later, but are included for their independent interest, and also
because they may be used Lo give alternative proof's of some of Lhe results
of Chapter 3 (see Kowalik and Osborne (1968), pp. 18-20).

Theorem 6.1 is given by Ralston (1963, 1965) if rec™t

[a,b} . We
state the result under the slightly weaker assumption that fc ]‘Cn[ a,b;M]
for some M : the only difference in the conclusion is that Ralston's
term f(n"']‘) (N(x)) is replaced by m(x) , where |m(x)| <M . The proof
is similar to that given by Ralston {1963), and is also similar to the proof

of Lemma 6.2 below, so it is omithed.

Theorem 6.2 gives an expressicn for the derivative of the error at

“the points of inlcrpolation. IT feLCn[a,'b;M] then the result follows

immediately from Theorem 6.1, but Theorem 6.2 shows that feC™{a,b] 1is

sufficient. This result may be of some independent interest.

Theorem 6.1

Suppose that n > 1 ; reic [a,b;M] Xgp s

points in [a,b] ; w(x) = (x-xo)...(x-xn_l) ; P = IP(f;xO,...,x

X g are (distinet)

n—l) 5
and f(x) = P(x)+R(x) . Then there are functions £: [a,b] — la,b]

and m: [a,b] - [-M,M] , such that
25
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2.6

2.6
(n) R . .
1. f bd is a continuous function of =xe¢la,b althong b:d
(:(2)) | (b1 (arthongn &(x) AU PR 6.5
is not necessarily conlimious); xefa,b]
2. m(x) is continmuous en [a,b] , except possibly at Xyrees® 03 and
3. lor all xecla,b], 5 = max |x. «}(,‘ (6.7)
(n) o<i<j<n T
R(x) = w(x)f "/ (£(x))/n! {6.1)
and ''hen, for all xela,bl,
R = et ()T (E(0)/nt + w(OnG) /() (6.2) : n
f{x) = P(x) + -IT (x-xr) 5(x) (6.8)
and r=0
boooif x £ x, for r =0,...,n-1, then vhere
d .(n),,,. _mix A -
Theorem 6.2 Proof
n N
Suppose that n > 1 ; feC'{a,b] ; Xr oo ¥ 4 are (distinct) Ir x =x for some r = 0,...,n , then we can take S{x) =0 .
points in fa,b] 5 wix) = (x-x)..(xx 1) 5 P = IP(D5xg,e0x ) 5 Otherwise, by the identity (2.5),
and f(x) = P(x) +R(x) . Then there is a function £: [a,b] — [a,b] )
) ! e s(x) = F[XO, ...,xn,x] . (6.10)
such that f(n)(g(x)) is a continuous funchion of xefla,b] ; for all
xela,b], Write x I‘o‘r %y and reorder Koy ...sXo o (iT nceessary) so that,
if the recrdered points are LS &) then
RGO = w(x) €™ (£(0))/nr (6.1) | Feeret o7t Fe
: = Oyenn,n- : x! - x! = max xr - xt] > & . (6.11)
and, for r =0, ,n-1, ] 0 T+ L 0cic]entl iz
n .
R'(x) = w'(xr)f( )(g(xr))/nf . (6.5)

From (6.10) and the identity (2.4),

Before proving Theorem 6.2, we need some lemmas. Nobe the similarity

] flet, vve,xt] - Txt, . e,xt |
between Lemma (.2 and Theorem 0.1, 5(x) = of ' - - s , (6.12)
0 7 Tnil
Lemma, 6.1
50, by Lemma 5.1,
Suppose that n > 1 3 feCn[a,b] H xo, ...,xn are distinct points ( ) (n)
= n

. ) I A (1D .
in el s P = IRy o) 5 | T I Iy (6-12)
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2.6
for some £ and &' in [a,b] . Tn view of (6.6) and (6.11), the

resull follows.

Lemma (.2
Suppose that n >2 ; feC’la,b] ; xg..0x , are distinct
points in [a,b] ; & = max [f(n) (£)| 5 5= max xi-x.| H
xela,b] 0<i<j<n J
P, = IP(f;xO,...,xn_l) ; wn(x) = (x—xo)...(x-xn_l) 5 and

f(x) - Pn(x) +R(x) . Then there is a function §&: [a,b] - [a,b] such

that, for all xcl[a,b], f(n)(E(x)) is a continuous lunction of x ,
R(x) = v ()™ (2@ /m (6.14)

2|wn(x) |a

B 60 - w @™ e /m < S, (6.15)

and, if x fé x, for r=0C,...,n-1, then

L) < 20 , (6.16)

Proof

Let X, be a point in [a,b]| , distinct from x and Hypeer X g o

For k =n or ntl , define

P, = IP(fixg,-e% 1) ‘ (6.17)
and

wk(x) = (x—xo) . (x-xk_'l) . (6.18)

By the classical result corresponding t¢ Lemma 4.1, there is a function

¢ such that (6.14) holds. Suppose, until further notice, that x £ x,

28
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for r =0,...,n . Then, from (6.1%) and the identity

k-1 f(xr)wk(x)

Bl = L ey (62

we have

(n) n-1 £(x.)
U EC)) o fx) r
~ = wn(x) rzz:o -(—5——)-X_Xr w;l()(r . (6.20)

Since the right side of (6.20) is continuously differentiable at x , =o

is the left side, and

1&gl ‘;(

n-1 fx )
wi((%) Y (6.22)

2
n r=0 (x-xr) wl'l(xr)
Define 8(x,x ) by
£(x) = Pn+l(x) + wn+1(x)s(x,xn) . (6.22)
Since

w (x ) if r=n,
wiax)y=( " (6.23)
(x_-x )wi(x) if r =0,...,n-1,
r n’'nr

equation (6.19) gives

P (x) n-1 £(x,) £(x.) .
wn+1EX5 - rgo (x—-xr) (xrhxn)wl'lTxr) + (x_xn)Wn(xn) P (6.24)
so
W (X - W (X n-1 f(x )
_ n n*'n »
S(X:Xn) = P Xn + rgo (x—)(r) (Xn-xr)w;!(xr) - (6-25)
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2.6 2.6

As x - x, the right side of (6.25) tends to the right side of (6.21).

Thus, there exists

equations (6.4) and {6.5) ore satisfied.

. 1
lim 8(xx ) = =
X X
n

4
ax
and, {rom the definition (6.22) and Lemma 6.1, this proves {6.16). Now,
by differentiating the right side of (6.14) by parts, we seec that (6.1%)

holds, in fact

w (02 (500) + v ) 2 1 (e

RY(x) - - , (6.27)

provided that x £ ¥ , for r =0,...,n-1 . Consider (6.27) near one

of the points X,y T = 0y ...sn-1 . R'(x)} is continuous at X,

wn(xr) =0, wr'l(xr) £ 0, and, by {6.16), % f(n)(E(x)) is bounded
for x # x, . ‘Ihus f(n)(ﬁ(x)) has, at worst, a romovable discontinuity
at X, and, by the continuity of f(n)(g) as a function of E ,

a suitable redefinition of E,(xr) will ensure that f(n)(g(x)) is a

continuous function of x , and that
(n)
— ! 1 o,
R'(xr} = wn(xr)f (§(xr))/n. . (6.28)
This completes the proof of the lemma.

Proof of Theorem 6.2

If n >2 then the result follows immediately from Lewma 6.2. If
n - 1, choose E(x) so that g(xo) =%, and, for x # g s

£(x) - £(x,)
TE() = - (6.29)

X—Xo

Then £'(E(x)} is a continucus function of xecla,b] , and, as

EY)

R{x) = f{x) -f(xo) and  w(x)

£ ey (6.76) all n>1 .

= X=X

31

, it is casy to see that
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Chapter 3.

The Use of Successive Tnterpolation for Finding Simple

zeros of g Function and its Derivatives

3.1

1. Introduction

Suppose that q >1 and f.;Cq_lla,b] . Given (distinct) points
Xy in [a,b] , a seguence (xn) may be defined in the following

)

X
Jn+q

be the g-th degrve polynomial which coincides with £ at xn,---,x

are already defined, let Pn - IP(f;xn,...,x

07" n+Q

n+q ’

and choose xn+q4l so that

IﬁQ'l)(x

n+q+l) =0 . {(1.1)

Under certain conditions the sequence (xn) is well-defined by (1.1),

of f(q_l) In this chapter

lies in [a&,b] , and converges toazero {
we give sufficient conditions for convergence, and estimate the asymptotic
rate of convergence, making various assumptions abouf the diffecrentiability
of f .

Since P is & polynomial of degree ¢ , (1.1) is a lincar egquabtion

in xn+q+1 . If

f[xn,...,xn+q] £O0 (1.2)

then Lemms 3.1 shows that the unique solution is

f[xn+1)...,xn+9]

q
X .- 1.
,1);1 n+i f[}(n, .. "Xn+q] ) (1.3)

0 |

X‘n+ qt+l =

and this might be used as an alternative definition. From Section % on,

our assumptions ensure that xﬂ,...,x are sufficiently close to a

ntg
simple zero ¢ ol gla-1) » so (1.2) holds. 1In Seclion 3, thc assumplion
that f(Q)(gj £ 0 is unnecessary: all that is required is that xn+q+1
is a (not necessarily unique) solution of (1.1).

The cases of most practical interest are q =1, 2 and 3. For q =1,

our successive interpolation process reduces to the familiar method of
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3.1

successive linear inﬁerpulation for finding a zero of f , and some qf aur
results are well-known (see Collatz (1964}, Householder (1971), Ortega and
Rheinboldt (1970), Ostrowski (1906), Schrdder (1870), Traub (1904, 1967)
etc.). For q - 2 , we have a process of successive parabolic interpolation
{for finding a burning point, and, for ¢ = 7 , a process for finding an
inflexion point. These two cases are discussed separately by Jarratt (1967,
1968), who assﬁmes Lhat [ is analytic near ¢ . By using (1.3) and
Theorem 2.5.1, we show that much milder assumptions on the smoothness of f
suffice (see Theorems 4.1, 5.1 and 7.1). Also, most of ocur results hold
for any q > 1, and the proofs are no more difficult than those for the

special cases q --2 and g =5 .

Some simplifying assumptions

Practical alporithms for finding zeros and extrema, using the results
of this chapter, are discussed in Chapters 4 and 5. Until then we ignore
the problem of rounding errors, and usually suppose that the initial

approximations x ..,xq are sufficiently good.

0’

For the sake of simplicity, wc assume thal any g+l consecubive

oints X ,...,X%
P n) 2 n+q

described in Chapters 4 and 5.) Thus, Pn is Just the Lagrange

are distinct. (This is always true in the applications

interpolation polynomial, and the results of Chapter 2 are applicable.
As in Chapter 2, the assumption of distinct poinfs is not necessary, and
the same results hold without this assumption if Pn is the appropriate

llermite interpolation polyncmial.

3.1

A preview of the resulls

The definitlion of "order of convergence'" is discussed in Section 2,
and in Seetion 3 we show that, if a sequenco (xn) satisfies (1.1) and
converges to f , then f(q-l)(g) =0 ({Theorem 3.1).

In Sections 4 to 7, we consider the rate of caonvergence to a simple
zero ¢ of f(q~l) » makiné increasingly stronger assumptions abcout the
smoothness of f . For practical applications, the most important result
is probably Theorem 4.1, which shows that convergence is superlinear if
rec?  and the starting values are sufficiently good. As in similar results
for Newton's method (Collatz (196h4), Kantorovich and Akilov {1959),

Ortega (1968), Ortega and Rheinboldt (1970) ete.), it is possible to say
precisely what "sufficiently gcod™ means. Theorem 5.1 is an easy
consequence of Thecrem 4.1 and the theary of linear difference eguations
(Nérlund (195L)), and gives & lower bound on the order of convergence il
f(Q) is Lipschiltz continucus.

The question of when fthe order of convergence is cgual to the lower
bound given by Theorem 5.1 is the subject of Sections 6 and 7. Although
the resulls are interesting, they are not of much practical importance,
for in practical problems it is merely a pleasant surprise if the iterative
process converges faster than expected!  Thus, the reader whose main
interest is practical applicabions mipht prefer to skip Sections 6 and 7
(and also Theorem 3.1), except for Lemma &6.1.

Tn Section 8, we consider the interesting problem of accelerating the
rate of convergence, and Theorem 8.1 shows how this may be done. We make
nse of Lemma 6.1, which gives a recurrence relalion for Lhe error in
successive approximaticns to ¢ , and is a generalization of vesults of

Ostrowski (1966) and Jarratt (1967, 1968).
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3.2

Finally, in Section 9 the theoretical results are illustrated by
some numerical examples, and a briefl summary of the main theorems is
given in Section 10. The reader may find it worthwhile to glance at
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