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L Introduction. advance if the zero is simple, if the initial approximation is sufficiently

~ Consider the problem of finding an approximate zero or minimum of good To ensure convergence, or what the effect of rounding errors will be.

a function ol one real variable, using limit ed-precisicn arithmetic on a InChapter 4 we describe an algorithm which, by combining some of

sequential digital computer. The function f may not be differentiable, the desirable features of bisection and successive linear interpolation,

cr the derivative {7 may be dilficult 1o ccmpute, s0 a method which does come close to satisfying our requirements: it is puaranteed to

uses only computed values of f is desirable. Since an evaluation of | converge (i.e., halt) after a reasonably small number of function
I may be very expensive In terms of computer time, a good method should evaluations, and the rate of convergence for well-behaved functions

cuarantee to find a correct solution, to within some prescribed tolerance, is so fast that a less reliable algorithm is unlikely to be preferred

using only.a small number of function evaluations. Hence, we study on grounds of speed.

algorithms which depend on evaluating f abt a small number of points, An analogous algorithm, which finds a local minimum of a function

"and for which certain desirable properties are guaranteed, even in the of one variable by a combination of golden section search and successive

presence of rounding errors. parabolic interpolation, is described in Chapter 5. This algorithm

Slow, safe algorithms are seldom preferred in practice to fast fails to completely satisfy one of our requirements: in certain

algorithms which may occasionally fail. Thus, we want algorithms which applications where repeated one-dimensional minimizatione arc required,

are guaranteed to succeed in a reasonable time even for the most "difficult" and where accuracy is not very important, a faster (though less reliable)

functions, yet are as fast as commonly used algorithms for “easy” method is preferable. One such application, finding local minima of -

functions. For example, blsectlion is a safe method for finding a zero functions of several variables without calculating derivatives, is

of a function which changes sign in a given interval, but from our point discussed in Chapter 7. Note that, wherever we consider minima, we

of view it is not an acceptable method, because if is just as slow for could equally well consider maxima.

any function, no matter how well behaved, as it is in the worst possible Most algorithms for minimizing a nonlinear function of one or nore

cese (ignoring the possibilitythat an exact zero mayoccasionally be variables [ind, at best, 2 local minimum. For a function with several

found by chance}. As a contrasting example, consider the method of local minima, there is no guarantee that the local minimum found is the

successive linear interpolation, which converges superlinearly to a global (i.e., true or lowest) minimum. Since it is the global minimum
:

simple zero of a ct function, provided that the initial approximation which is of interest in most applications, this is a serious practical
is goed and rounding errors are unimportant. This method is not disadvantage of most minimization algorithms, and our algorithm given

acceptable cither, for, in practice, we may have no way of knowing in in Chapter 5 is no exception. The usual remedy is to try several

2 3 -



: 1.1 1.1

different starting points and, perhaps, vary some of the parameters of algorithms which nearly always give correct results for the functions

the minimization procedure, in the hope that the lowest local minimum likely to arise in practical applications.

found is the global minimum. This approach is inefficient, as the same As suggested by the length of our bibliography, there has recently

local minimum may be found several times, and it is also unreliable, for, been considerable interest in the unconstrained minimization problem.

no matter how many starting points are tried, it is 1mpossiblie to be ''hus, we can hardly expect to find a good method which is completely |

quite sure that the global minimum has been found. unrelated to the known ones. In Chapter 7 we take one of the better

In Chapter 6we discuss the problem of finding the global minimum methods which does not use derivatives, that of Powell (196k), and modify

to within a prescribed tolerance. ' It is possible to give an algorithm it to try to overcome some of the difficulties observed in

for solving this problem, provided that a little a priori information the literature. Numerical tests suggest that cur proposed method is

about the function to be minimized is known. We describe an efficient faster than Powell's original method, and just as reliable. It also

algorithm, applicable if an upper bound on ff" is known, and we show compares quite well with a different method proposed by Stewart (1967),
how this algorithm can be used recursivelyto find the global minimum at least for functions of less than ten variables. (We have no numerical

of a function of several variables. Unfortunately, because the amount results for non-quadratic functions of more than ten variables.)

: of computation involved increases exponentially with the number of ATGOL implementations of all the above algorithms are given. Most

variables, this is practically useful only for functions of less than testing was done with ALGOL W (Wirth and Hoare ([1966)) on IBM 360/67 and

four variables. For functions of more variables, we still have to 360/91 computers. As AIGOL W is not widely used, we give ALGOL 60

resort to the unreliable "trial and error method, unless special procedures (Naur (1963), except for the n-dimensional minimization

information about the function to be minimized is available. algorithm. FORTRAN subroutines for the one-dimensional zero-finding

Thus, we are led to consider practical methods for finding local and local minimization algorithms are alsc available.

{(uncongtrained) minima of functions of several variables. As hefore, we To recapitulate, we describe algorithms, and give ALGOL procedures,

consider methods which depend on evaluating the function at a small for solving the following problems efficiently, using only function (not
number of points. Unfortunately, without imposing very strict conditions derivative) evaluations:

on the functions to be minimized, it is not possible to guarantee that 1. Finding a zero of a function of one variable if an interval in which
an n-dimensional minimization algorithm produces results which are correct | the function changes sign is given;

to within some prescribed tolerance, or that the effect of rounding errors o. Finding a local minimum of a function of one variable, defined on a

has completely been taken into account. We have to be satisfied with given interval;

4 D



1.2 1.0

3. I'inding, to within a prescribed tolerance, the global minimm of derivalives, we only assume that p(n) is Lipschitz continuous, and

a function of one or more variables, given upper bounds on the the term (+L) in the classical results is replaced by a number

second derivatives; bounded in absolute value by a Lipschitz constant. For example,

hb. Finding a local minimum of a function of several variables. Lemmas 2.5.1, 2.3.2, 2.4.1, and 2.5.1 are of this nature. Since a

For the first three algorithms, rigorous bounds on the error and the Lipschitz continuous function is differentiable almost everywhere,

number of function evaluations required are established, talking the these results are not surprising, although they have not been found in

effect of rounding errors into account. Some results concerning the the literature, except where references are given. (Sometimes Lipschitz

order of convergence of the Tirst two algorithms, and preliminary conditions are imposed on the derivatives of functions of several

resulls on interpolation and divided differences, are also of interest. variables: see, for example, Armijo (1966) and McCormick (1969).) The
proofs are mostly similar to those for the classical results.

Theorem 2.6.1 is a slight generalization of some resulls of

p. Summary Ralston (1963, 1965) on differentiating the error in Lagrangian

-. In this section we swmarize the main results of the following interpolation. It 1s included both for its independent interest, and

chapters. A more detailed discussion is given at the appropriate because it may be used to prove a slightly weaker form of Lemma 5.6.1

places in each chapter. This summary is intended to serve as a puide for the important case q = 2 . (A similar proof is skclehed in

to the reader who is intercsled in some of our results, but not in Kowalik and Osborne (1968).)

others. To assist such a reader, an attempt has been made to keep each An interesting resull of Chapter 2 is Theorem 2.6.2, which gives

chapler as self-contained as possible. an expression for the derivative of the error in lagrangian interpolation

at the points of interpolation. Awell-known wcaker result is that the

Chapler 2 conclusion of Theorem 2.0.2 holds if f has n+l continuous derivatives,

In Chapter 2 we ccllect some results on Taylor series, Lagrangian but Theorem 2.6.2 shows that it is sufficient for f to have n

interpolation, and divided differences. Most of these results are needed continuous derivatives.

in Chapter 3, and the casual reader might prefer to skip Chapter 2 and Theorem 2.5.1, which gives an expansion of divided differences, may

refer back to it when necessary. Some of the results are similar to be regarded as a gencralizaetion of Taylor's theorem. TT is used several

classical ones, but instead of assuming that f hes ntl continuous times in Chapter 3: for example, see Theorem 3.l.1 and Lemma 3.6.1.

Theorem 2.5.1 1s usciul for the analysis of inlcrpolation processes

6 7



1.2 1.2

whenever the coefficients of the interpolation polynomials can conveniently weaker than those of previous authors, e.g., Ostrowski (1966) and

be expressed in terms of divided differences. Jarratt (1967, 1968).

From a mathematical point of vicw, the most interesting result

Chapter 5 of Chapter 3 is Theorem 3.7.1. The result for gq 1 18 given in

Tn Chepter J we prove some theorems which provide a theoretical Ostrowski (1966), except for cur slightly weaker assumption about the

foundation for the algorithms described in Chapters 4 and 5. In smoothness of f . For gq = 2 , our result that convergence to f with

particular, we show when the algorithms will converge superlinearly, order at least 1.378... is possible, even if NENTS 2 0 , appears to

and what the order (i.e., rate) of convergence will be. Of course, for be new. Jarratt (1967) and Kowalik and Osborne (1668) assume that

these results the effect of rounding errors is ignored. The reader |x “t]- n+l

whose main interest is the practical applications of ou esults ht -£] !1 1 1 ep 1 Cell 10m r regu mig fn — oo Xn

omit Chapter 3, except for the numerical examples (Section 3.9) and the
and then, from Lemme 3.5.1, the order of convergence is 1.320... .

summary (Section 3.10).
- However, even for such a simple function as

So that results concerning successive linear interpolation for

finding zeros (used in Chapter hy, and successive parabolic interpolation {x) = Dy? t x= , (2.2)

for finding turning points (used in Chapter %), can be given together,

(q-1) there are starting points Xy 2 Xq and Xn such that (2.1) feils Lowe consider a more general process for finding a zero of f 4 , for : ‘x
hold, and then the order may be at least 1.378... . We should point

any fixed gq > 1 . Successive linear interpolation and successive

out that this exceptional case is unlikely to occur: an interesting
parabolic interpolation are just the special cases gq =1 and gq = 2 .

conjecture is that the set of starting points for which it occurs has
Another case which is of some practical interest is gq = 3 , for finding

| measure zero.

inflexion points. As the proofs for general ¢ are essentially no more
The practical conclusion to be drawn from Theorem 3.7.1 is that,

difficult than for gq = 2 , most of our results are for general q .

if" convergence is to be accelerated, Lhen the result of Lemma 35.6.1
For the applications in Chapters 4 and 5, the most important

should be used. In Section %.8 we give one of the many ways in which
results are Theorem 3.4.1, which gives conditions under which convergence

this may be done. Finally, some mumerical examples illustrating hoth the
is superlinear, and Theorem 3.5.1, which shows when the order is at least

accelerated and unaccelerated processes are given in Section 3.9.
1.618... [for gq =1) or 1.324... (for g = 2) . These numbers are

well-known, but cur assumptions about the differentiability of f are

8 9
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1.2 1.2

Chapter h Chapter 5

In Chapter LL we describe an algorithmfor finding a zero of a An algorithm lor Finding a local minimum of a lunction of one

function which changes sign in a given interval. The algorithm is variable is described in Chapter 5. The algorithm combines golden

based on a combination of succegsive linear interpolation and bisection, scchion scarch (Bellman (1957), Kieler (1953), Wilde (1964), Witzgall

in much the same way as "Dekker's algorithm” (van Wijngaarden, Zonneveld (19£9)) and successive parabolic interpolation (the case q - 2 of the

and Dijkstra (1963), Wilkinson (1967) , Peters andWilkinson (1969), process analysed in Chapter 3), in Lhe same way as biscetion and successive
Dekker (1969). Cur algorithm never converges much slower than bisection, linear interpolation are combined in the zero-finding algorithm of

whereas Dekker's algorithm may converge extremely slowly in certain cases, Chapter Lk. (Convergence in a reasonable number of function evaluations

(Examples are given in Section 4.2.) is guaranteed (see Section 5.5), and, for a af function with positive
Tt is well-known that bisection is the optimal Lyoritin, in a curvature at the minimum, the results of Chapter 5 show that convergence

minimax sense, for finding zeros of functions which change sign In an 1s superlinear, if we ignore rounding errors and suppose that the minimum |

interval. [We only consider sequential algorithms: see Robbins (1952), is at an interior point of the interval. Other algorithms given in the

Wilde (196k) and Section h.5.) The mobivation for both our algorithm and literature either rail to have these two desirable propertics, or, when

Dekker's is that bisection is not optimal if the class of allowable convergence is strictly superlinear, the order of convergence is less

functions is suitably restricled. For example, it is not optimal for than for our algorithm (sec Scetions 5.4 and 5.5).

convex functions (Bellman and Dreyfus (1962), Gross and Johnson (1959)), In Sections 5.2 and 5.2 we consider the effect of rounding errors.

or for ol Iunctions with simple zeros. Section 5.2 contains an analysis of the limitations, imposed by rounding

Both our algorithm and Dekker's exhibit superlinear convergence to errors, on the attainable accuracy of any algorithm which is based

a simple zero of a ct function, for eventually only linear intcrpolations entirely on function evaluations, and this section should be studied

are performed, and the theorems of Chapter 3 are applicable. Thus, by the reader who intends to use the ALGOL procedure given in Section 5.8.

convergence is usually much faster than for bisection. Our algorithm If f is unimodal, then our algorithm will find the unique minimum,

incorporates inverse quadratic interpolation as well as linear interpolation, provided there are no rounding errors. To study the effect of rounding

so it is often slightly faster than Dekker's algorithm on well-behaved errors, we define " d-unimodal” functions. A unimedal function is H-unimodal

functions (sce Secetion 4.1). for all & > 0 , but a computed approximation to a unimodal function can

nol be unimodal: il will be d-unimodal for some positive & , depending

on the function and on the precision of computation. (6 - 0 as the

10 11



1.2 1.2 |

precision increases indefinitely.) We prove some theorems about 8-unimodal Tn Section 6.4, we try Lo obtain some insight into the hehaviour

functions, and give a bound for the error in the approximate minimum found of our algorithm by considering some tractable special cases. Then, in

by our algorithm when applied Lo a b-unimodel function. In this way we Sections 6.5 and 6.6, we show that no algorithm which uses only function

can justify the use of cur algorithm in the presence of rounding errors, evaluations and an upper bound on f{" could be much faster than our

and account for their effect. Our motivation is ralher similar to that algorithm. [inally, a generalization to funclions of several variables

of Richman (1968) in developing the €-calculus, but we are not concerned is given in Section 6.8. The conditions on f are much weaker than

with properties that hold as € — CO . The reader who is not very unimodality (Newman {1865)). The generalization is not practically useful
interestedin the effect ol rounding errors might prefer to skip for functions of more than three variables, and it is an open question

Section 5.5. whether a significantly better algorithm is possible.

Chapter 6 Chapter 7

In Chapter & we consider the problem of finding an approximation In Chapter 7 we describe a modification of Powell's (1964) algorithm

to the global minimumof a funetion ff , defined on a finite interval, lor finding a local minumum of a function of several variables, without

if some a priori information about f is known. This interesting problem : calculating derivatives. The modification is designed to ensure

does not seem to have received much attention, although there have been quadratic convergence, and to avoid the difficulties with Powell's

some empirical investjigalions, e.g., see Magee (1660). In Section 6.1, criterion for accepting new search directions. :

we show why some a priori information is necessary, and discuss some of First, a brief introduction to the problem and a survey of the

Lhe possibilities. In the remainder of the chapter we restrict our recent literatureare given in Section 7.1. The effecl of rounding errors

attention to the case where an upper bound on fF" is known. cn the limiting accuracy attainable is discussed in Section 7.2. Powell's

An algorithm for global minimization of a function of one variable, algorithm is described in Section 7.3, and our main modification is given

applicable when such an upper bound on the second derivative is lmowm, is in Section 7.4. The idea of the modification (finding the principal axes

described in Section 6.5. The basic idea of this algorithm is used by of an approximating quadratic form) is not new: for example, it is used

Rivlin (1970) to find bounds on a polynomial in a given interval. We by Greenstadt (1967) in his quasi-Newton method. Unlike Greenstadt,

pay particular attention to the problem of giving guaranteed bounds in though, we do not use an explicit approximation to the Ilessian matrix.

the presence of rounding errors, and the casual reader may find the An interesting feature of our modification is that it is posible to avoid

details in the last half of Section 0.3 rather indigestible. squaring the condition number of the eigenvalue problem by using a singular

value decomposition: see Section 7.4 for the details.

12 13
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1.2

In Scebions 7.5 and 7.6 we describe some additional features of our

algorithm. Then, in Section 7.7, we give the results of some numerical

experiments, and compare our method with those of Powell (1964), Davies,

Swann and Campey {Swann (1964)), and Stewart (1967). For the comparison Chapter 2.
we have used numerical results obtained by Fletcher (1965) and Stewart

(1967). The numerical results suggest that our algorithm is competitive Some Useful Results on Taylor Series, Divided Differences,

with the currently used algorithms which do not reguire the uscr Lo | and Lagrangian Interpolation
compute derivatives, albhough it is difficult to reach a definite

conclusion without more practical expericnce.

Finally,we give a bibliography of the recent literature on | :
nonlinear minimization, with the emphasis being on methods for solving

unconstrained problems. |
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2.1
2.2

1. Introduction \
. This is well-known if f has n+l continuous derivatives, but Theorem 6.2

In this chapter we collect some results which are needed in Chapters shows Lhal iL is sufficient for f to have n continuous derivatives.

5 and 6. The reader who is mainly interested in the practical applications

described in Chapters Nl to 7 might prefer to skip this chapter, except for

Section 2, and refer back to it when necessary. 2. Notation and definitions

Classical expressions Tor the error in truncated Taylor series and
Throughout this chapter [a,b] is a nonempty, finite, closed

Lagrangian interpolation often involve a term p01) py , where £ is an
interval, and [I is a rcal-valued function defined on [a,b] . n is

unknown point in some interval. For such expressions to be valid, TI must
: a nomegative integer, M a nonnegative real number, and & & number

have ntl derivatives. Several of the results of this chapter give ] (0,1]] in 3 .

expressions which are valid if (1) satisfies a (possibly one-sided)
; : py (n+l) : DefinitionsLipschitz condition. In these results, the term fT (£) is replaced beiinit ions

by a number which is bounded by a Lipschitz constant. Tt seems unlikely The modulus of continuity w(f;8) of f (in [a,b]) is defined by

that these results are new, but they have nob been found in the literature
w(1;8) = sup (x) -£(y)] (2.1)

except where references are given. x,y c[a,b]
yl <6

The results of Chapter 2 depend heavily on Theorem 5.1, which gives

an expansion of the divided difference {xs ork] (see Section 2) near for all 8 >0 .

the origin. This theorem, and the less cumbersome Corollary 5.1, are If f has a continuous n-th derivative on la,b] , then we write
nn _ . Cy - (n) _ . .

useful for the analysis of interpolation processes, for the coefficients feCla,b] . If, in addition, TV clip, @, i.e.,

of the interpolating polynomials can be expressed in terms of divided (1) ox
wif" 38) < MB (2.2)

differences (see Chapter %).

Finally, in Section ©, we extend some results of Ralstcn (1963) on for alt & > 0 , then we write fe¢IC [a,b;M,a]. (This notation is not

the derivative of the error term in Lagrangian interpolation. These standard, but it is convenient if we want to mention the constants M
<a n : .

results are relevant to Chapter >, although they are given mainly for and « explicitly.) If feIC[a,b;M,1] then we write simply

"a,b;their independent interest. Perhaps the most Interesting result is fell [a,bM] .

Theorem 6.2, which shows thet, if we are only concerned with the points If Xoo. 5%, are distinct points in [a,b] , then TP(£3%,, «= 00%)

of interpolation, then we can differentiate the classical expression Tor is the Loagranglun interpolation polynomial, i.e., the unique polynomial

the error (equation (6.L)), regarding the term £7 (x) as constant. of degree n or less which coincides with f at Xyree-rX «The
16 17
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2.2 2.3

divided difference IES «+.s%] is defined by and

: > P(x) = flx J+ (x-x)flxx] +...

2 £(x,) 0 0 071[x 3-43 ] = - - (2.7) ~; n - (x - ce . 6

0 In {Zo 7 x x) + (x Xe) -- (x x) flxgs sX (2.6): J i
1 =0

it]

(There are many other notations: see for example, Milne (1949), : }
: pp Truncated Laylor series

Milne-Thomson (19%%), and Traub (196h).) Note that, although we suppose i
In this section we give some lorms of Taylor's theorem. Lemma 3.1

for simplicity that Xyr=w-3X are distinct, nearly all the results given
| is needed in. Chapter 6, and applies if p(n) satisfies a onc-sided

here and in Chapter 3 hold if scme of Koyo =v ea Xo coincide- (We then have
Tipschitz condition.

Hermite inberpolation and confluent divided differcnces: see Traub (1964).)

For the statement of these results, the word "distinct" is enclosed in Lemma 5.1

parentheses. Suppose that f eC'10,b) for some b > 0 , and that there is a

conshant M such that, for all ye[0,b] ,
Newton's identities

(n) (n) 3
For future reference, we note the following useful identities (see | f (v) -£7 (0) < My . (3.1)

Cauchy (1840), Isaacson and Keller (1966), or Traub (1964)). The first
Then, for all xe {C,b] ,

is often used as the definition of the divided difference lx. SEFE SN A
n Ir (1) Ltd |

while the second gives an explicit representation of the interpolating f(x) = 3 = f (0) + —— n(x) , (3.2)
r=0 T° (n+1)!

polynomial and remainder.

where :

1. fix, | = £(x2,) mx) <M . (3.2)

and, for n > 1, _

lx, .. Xo 4] - fix, Ce HX) Remarks |
fxg ever X | -x-x (2.4) ~

O n The proof is by induction on n , and is omitted. The corresponding

two-sided result is immediate, and is generalized in Lemma 5.2 below. In

2. If P= TP(5% 0, eer) , then
Lemma 3.2, fractional factorials are defined in the usual way, 50

Tl

T(x) = p(x) + ( | | xox) alr eax sx] , (2.5)i=0 (n+) t/ar = (1+a)(2+a)...(n+a) . (5.4)

18 19



2.3 2.

Lemma 3.2 | 4. Lagrangian interpolation
n

b; -

Tr felttab;M,a] and xyelabl, then The following lemma, used in Chapter 6, gives a one-sided bound on

I Tr the error in Lagrangian interpolation, if Ta satisfies a one-sidedY- +

roe) =) Ee py ey| man (ea), (3.9)
r=0 Lipschitz condition. Thus, it corresponds to Lemma 5.1. The corresponding

where two-sided result follows from Theorem 3 of Baker (1970), but the proof

Im(x,v) | <M . (5.6) given here is simpler, and similar to the usual proof ofl the classical
+ +

result that, if fect a,b] , then m(x) = p(n Be (x) , lor some

Remarks t(x) e [a,b] - (See, for example, Isaacson and Keller (1966), pg. 190.)

The result is trivial if n =O, and for n > 1 it [follows from
Lemma 4.1

Taylor's theorem with the integral form for the remainder, using the I
Suppose that fe C'la,b] ; Xooe+ epX are (distinct) points in

integral n

[2,61 5 P= IP(Exys--5x) 3 and, for all xyelab) with x >y,
Px) nto ’
) Ae at = x at/ (nota) t (3.7) (n) (n)
0 £75) - (vy) < M(x-y) (4-1)

for x >0 . Then, for all xela,b] ,

Note that the bound (3.6) is sharp, as can be seen from the example _.
m( x

: f(x) = P(x) «(Tl (x - x ) a, 5 (4.2)fx) = x5% (3.8) re r (rt1)1

where

with y = 0 and M = (nta)!/at . Since, for n >1,

n! < (nta)ifor (3.9)

the bound obtained from the classical result Proof

Suppose that n > 0 and x Fx for any r = 0,...,n, for
n-1 r n

. x- Na X- Wil

(x) = {xy) it (yy + L2H (Wey (3.10) otherwisethe result is trivial. Let
n

| w(x) = TT (x-x) (1.1)
for some £ between x and y , is not sharp. r—0

and write
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f(x) = P(x) +w(x)s(x) . (4.5) Lama 5.1

Regarding x as Tixed, define Suppose that fcIC |a,b;M] and that XoyeersX are (distinct)

points in [a,b] . Then
F(z) = f(z) - P{z) -w(z)3{x) (4.6)

Tle ,-vax 1 =m/(m2)! (5.1)
for zecla,b] . 0 ntl

Thus FcC [a,h] , and 1'(z) vanishes at the n+2 distinct points where

X,X,,-++,X - Applying Rolle's theorem n times shows that there are m| < (5.2)
two distinci points Foc (a,b such that +

F “07f1 (a,b) Furthermore, if fel Hea, , then
(n) (n)I = F 0 . h. " |(5) (£,) (4.7) a = 5D (5) (5-3)

Differentiating (4.6) n times gives
Tor some Ecla,b] .

Fl 5) 2 2M) © me)is)ut ex) x)
Theorem 5.1

2 oo rec™ am]; : ob ; andwhere c¢{(x) is independent of =z . Thus, from (L.7), Suppose thet k,n >0 ; LeC a,b] 5 a <0; >0; an

KX. ,.ee,%x are (distinct) points in [a,b] . Then | Co
(n) (n) J n

£37 (8,) = £7 (8)

0) = mor [TT | (1:9) (n) (+1)E 5-6 n ep!

) 0<r,<n 1
so the result follows from condition (4.1). :

+ LeeX COE + R ,
CLry sr, 5+» ST, 50 1 k

5. Divided differences (5.4)

Lemma 5.1 and Theorem 5.1 are necded in Chapter 3. The firsl part where

of Lemma 5.1 follows immediately from Lemma l.1 and the identity (2.5) 1 n+k n+k

R= (nt+Xk)! Ea ty Let , JR )-£¢ (0)
(we state the two-sided result for variety), while the second part is Perjsrps...srpsn lL k + k

well-known, and follows similarly. Theorem 5.1 is more interesting, and (5.5)
most of the results of Chapter 7 depend on it. If may be regarded as a

for some € in the interval spammed by xX ,...,x% and OQ .
generalization of Taylor's theorem (the special case nn = 0) . Liseeenty ry Ty
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2.5 2.6

Corollary 5.1 Corollary 5.1 is immediale, once we note that there are exaclly
3 I

1f, in Theorem 5.1, . ok): terms in the sum (5.5).
5 = max |x | , (5.6)r

T=0,...,1n

then

6. Differentiating the error
K

e (nt+k)
R LC 0 wf ; . . Cg| | — nik! 8) (5:7) The two theorems in this section are concerned with dilferentiating

the error term for Lagrangian Interpolation. These theorems are nol

Proof of Theorem 5.1 needed later, but are included for their independent interest, and also

The result for k =0 is lusediate from the second part of Lema 5.1, because they may be used Lo give alternative proofs of some ol Lhe results

80 suppose that k > 0 . Take points NACRTEFS which are digtlinet, and of Chapter 3 (See Kowalik and Osborne (1968), pp. 18-20).
disti “eo . : : : = : +
Azginey from 0? Xp Then Theorem 6.1 is given by Ralston (1963, 1665) if rect Yep] . We

state the result under the slightly weaker assumption that fe TC a,b 3M]
ENTITIES - lyse eoy | :

for some M +: the only difference in the conclusion is that Ralston's

al (n+l) .
term f x is replaced by m(x where {m{x)}| <M . The proof

= L EAR ICEPRFE SS SORE SEE ERIE ERRTL SRT SERERFIAN (nt )) P y ( ) ’ | ( | —
- is similar to that given by Ralston (1963), and is also similar to the proof

(5.8)
of Lemma 6.2 below, so it is omithed.

n Theorem €.2 gives an expression for the derivative of the error at

= 3 (x. -y fly, eos sy sees, ] » (5.9) n
T=0 the points of inmlerpolotion. If felC [a,b;M] then the result follows

- - n .

by the identity (2.4). immediately from Theorem 6.1, but Theorem 6.2 shows that feC [a,b] is

We may suppose, by induction on ¥ , that the theorem holds if k sufficient. This result may be of some independent interest.

is replaced by k-1 and n by ntl. Use this result to expand cach TH 6.1eorem O.

term in - and consider the limit as “en tend to 0 . I | a |

(5-9), bok *In (a) y Suppose thal n > 1 ; elt [a,b;M] 3 KgrerX4 are (distinct)n

the second part of Lemma 5.1 f “es tends t f 0 H g . ]

k 2-15 RAY "Vp SHES Le (0}/nt ; so points in [a,b] ; w(x) = (=x) +o (=x 1) ; P= IP(f;%y eeesX 4) ;
the result follows. (Strictly, to show the existence of the points and f(x) = P(x)+ R(x) Then there are functions ¢: [a,b] — la,b]= a a - -y —b a

| -. 1, - 1 1 +t i

ENTS , we must add to the inductive hypothesis the result that and m: [a,b] — [-M,M] , such that
+

p(n ®) (¢ - ) dis a continuous function of xX ,...,%x  .)
Ty» REESE ry Tr

2h 25
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2.6 :
2.6

1. f t(x)) dis a continucus function of xecla,b] althoug E(x

is not necessarily conlinuous); xela,b]

2. m(x) dis continuous on [a,b] , except possibly at Xr wrea® and :

5. Lor all xela,b] , 5 = max x, -x. 1. (6.7)
(n) 0<i<j<n * J

R(x) = w(x)f*/ (£(x))/n! (6.1)

and "hen, for all xela,b] ,

R' (x) = ar (x) 2 (2(x))/n: + wix)m(x)/ (+1) (6.2) n
fx) = P(x) + IT (x -x) 5(x) (6.8)

and r=0

L, if x £ x, for r =0,...,n-1 , then where

d .(n) ] Comix 20 -
ax © (=) - nie (6.3) 5) < 557 (6.9)

Theorem 6.2 Proof |
[i “, - n " a a
Suppose that n >1 ; fecC'la,b] ; Xs erer¥4 are (distinct) IT x = x, for some ¥ = Q,...,n , then we can Lake 8{x) = 0 .

points in [a,b] 5 w(x) = (ex).e (xx 1) 5 P= IP(Dxg,.-0x0) 5 Otherwise, by the identity (2.5),

and f(x) = P(x) +R(x) . Then there is a function Et: [a,b] - [a,b] , .
S(x) = Flix, cee X sx] . (6.10)

such that p(n (E(x)) is a continuous function of xefla,b] ; for all

xe lab], Write Xo for x , and reorder TARE RY (if neccessary) so that,
if the reordered points are x!,...,x' then

R(x) = w() £9 (£(x)) /n ; (6.4) : F 077" 7 ntl

and for rT = 0, e...1i-1 ) x! - x2. = max |x: - xt | => O - (6.11)
’ 3 2 3 {J ntl 0<i<j<n+l 1 J

R(x) = a ( )£ (6(x )) nt . (6.5)
From (6.10) and the identity (2.4),

. Before proving Theorem 6.2, we need some lemmas. Note the similarity |
fleet, vee,xt]= Oxf, ex" |

between Lemma 6.2 and Theorem H.1. S5(x) =0 nT TTndl , (6.12)x! - x!
0 n+l

Lemma 6.1
— so, by Lemma 5.1,

Suppose that n > 1 ; fe a,b) 3 XgreeerX, are distinct points (n)
b] 2 :) 0’ “hel n(x} = Trl

2 .6 27



2.6 2.6

* for some & and &' in {a,b] . Tn view of (6.6) and (6.11), the for r = 0,...,n . Then, from (6.1h) and the identity

resull follows. k-1 fx )w, (x)
P(X) = LL mmowEY (6.19)

Lemma (5.7 r=0 EN

Suppose that n > 2 rec a,b] 3 XgpeseosX4 are distinct we have

points in [a,b] ; A = max 1207) (x) | 3; b= max |x. -=x_| ; £0) (0) {x n-l £(x..)
xela,b] 0<i<j<n J ni B a L, (xx Jwi(x : (6.20)n r= rr nr

P = IP(f3x grea X ) 3 w_ (x) = (x-%.)...(x-x ) ; and
. 0 n-1 = J n-17 ~ Since the right side of (6.20) is continuously differentiable at x , =o
f(x) — P (x) + R(x) . Then there is a function &: [a,b] —[a,b] such

(n) is the left side, and
that, for all xc[a,b] , ff‘ /(t(x)) is wu continuous function of x ,

: n-1 F(x_)
1 dd In d f(x Tr .

(n) 2a Jen) - = SL fl (6.21)
R(x) =w (x) (&(x))/nt (6.14) n r=0 (x-x) w(x)

2|w_(x)|a Define S(x,x) by
[RY (x) - at (02M (8x) fmt < — , (6.15) | n

f(x) =P. (x) + w__ (x)S(x,x) . (6.22)

and, if x # x, for r =0Cy...yn-1, then nhl hd =
Since

d n 240

Pe) s Bo | (6.16)
wo (x) if r=n,

wh1 (ny) = (6.25)
(xx Jw! (x) if r =0,...,n-1,

Proof

Let x, be a point in [a,b], distinct from X and x,...,x equation (6.19) gives

For k =n or ntl, deline P(x) n-1 f(x) f(x)
= 5 + = , (6.2h)w(x) (xx Y(x_-x_Yuwt(x_) (x-x yw (x_}

. i : n+l r=0 rr n’ nr n" nn
P, = TP(f5x 5.0%) (6.17)

and 50

w, (x) = (x25) ee (xx 1) : (6.13) fix) Fe)
> w(x) Tw (x) n-1 £(x,)

EETr a Mil c= | cae rt ca RL
By the classical result corresponding to Lemma 4.1, there is a function n r-0O rn rr n'r

¢ such that (6.14) holds. Suppose, until further notice, that x £ x,

28
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2.6 2.6

As xX, XS the right side of (6.25) tends to the right side of (6.21) R(x) = fix) - f(x) and w(x) - KX, it is casy to sec Lhab |
Thus, there exists equations (6.4) and (G.5) are satisfied. Thus, the theorem holds for

lim 3(2, x) = = Tx 2 Je (0)) , (6.96) all n >1 |
X OX

n

and, {rom the definition (6.22) and Lemma 6.1, this proves (6.16). Now,

by differentiating the right side of (6.14) by parts, we see that (6.15)

holds, in fact :

ad .

at (02 (800) + w(x) 1(20)
RY (x)TT (6.27) :

provided that x £ x, for T =0,...,n-1. Consider (6.27) near one

of the points x, , r =0,...,n-1. R(x} is continuous at Xx,
d n .

w(x) - 0, w! (x) £0, and, by (6.16), = el ) (ex) is bounded
Tor x £ x, « Thus ef ex) has, at worst, a removable discontinuity
at Xs and, by the continuity of (1) (gy as a function of E ,
a sultable redefinition of 6 (x) will ensure that om rey is a
continuous function of x , and that

w(x) = w(x) 1(ex )) me (6.28) |
Ir ny r’'" Tr | ’

This completes the proof of the lemma.

Proof of Theorem 6.2 : :

If n >2 then the result follows immediately from Lemma 6.2. IT

n - 1, choose &(X) so that E(x) = %, and, for x # x,

Fx) - lx)
EER) = (6.29)

0

Then £'(E(x)} is a coniinmuous function of xcla,b] , and, as
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3.1

i 1. Introduction

Suppose that gq >1 and feel Ha bp] . Given (distinct) points

Xoo = aX in [a,b] , a sequence (x) may be defined in the following

Chapter 3. way: if KyreeosX are already defined, let P- TP(F3% sea Xy,

be the g-th degree polynomial which c¢oinedides with ff at Xr ¥g ’

Bh The Use of Duccessive Interpolation for Finding Simple and. choose gil 50 that
-1

zeros of a Function and its Derivatives pla ) (x ) =0 (1.1)
In ntqg+.l

Under certain conditions the sequence (x) is well-defined by (1.1),
-1

lies in [a,b] , and convergestoa zero (¢ of -(a ) . In this chapter
we give sufficient conditions for convergence, and estimate the asymptotic

rate of convergence, making various assumptions abouf the differentiability

of f

Since P is a polynomial of degree ¢ , (1.1) is a lincar equakion

in Xr] . If

A £0 (1.2)

then Lemms 5.1 shows that the unique solution is

. - - . - } .

n+q+1 of = n+i EE TIE

and this might be used as an alternative definition. From Section 4 on,

our assumptions ensure that ET are sufficiently clese to a
simple zero fol g(a-1) y so (1.2) holds. In Seclion 3, the assumplion

that (D4 £ 0 is unnecessary: all that is required is that Xorgrl
is a (not necessarily unique} solution of (1.1).

The cases of most practical interest are q = 1, 2 and 3. For q =1,

our successive interpolation process reduces to the familiar method of

33

| | J



3.1 3.1

successive linear interpolation for finding a zero of [ , and some ol our A preview of the resulls
results are well-known (see Collatz (1964), Householder (1971), Ortega and The definition of "order of convergence" is discussed in Section 2,

Rheimboldt (1970), Ostrowski (1906), Schrdder (1870), Traub (190k, 1967) and in Section 3 we show that, if a sequence (x) satisfies (1.1) and
etc.). For gq - 2 , Wwe have a process of successive parabolic interpolation converges to f , then ela p) = 0 (Theorem 3.1).

for finding a turning point, and, for ¢ = 3 , a process lor finding an In Sections 4 to 7, we consider the rate of convergence to a simple
inflexion point. These two cases are discussed separately by Jarratt (1967, zero ¢ of gta) » making Increasingly stronger assumptions abeut the
1968), who 5 SLES that I ig analytic near ¢ . By using (1.3) and smoothness of f . For practical applications, the most important result

Theorem 2.5.1,we show that much milder assumptions on the smoothness of f is probably Theorem h.1, which shows that convergence is superlinear if

suffice (see Theorems 4.1, 5.1 and 7.1). Also, most of cur results hold rec? and the starting values are sufficiently pood. As in similar results

for any q > 1 , and the proofs are no more difficult than those for the for Newton's method (Collatz (196k), Kantorovich and Akilov (1959),

special cases q 2 and gq = 5 . Ortega (1968), Ortega and Rheinboldt (1970) ete.), it is possible to say

precigely what "sufficiently good" means. Theorem 5.1 is an easy
] rs

Some simplifying assumptions consequence of lhecrem 4.1 and the theary of linear difference equations

Practical alporithms for finding zeros and extrema, using the results (Nordlund (195k)), and gives a lower bound on the order of convergence ir

of this chapter, are discussed in Chapters L and 5. Until then we ignore | pl is Lipschitz continuous.
the problem of rounding errors, and usually suppose that the initial The question of when the order of convergence is cqual to the lower

approximations Xgree ea%, are sufficiently good. bound given by Theorem 5.1 is the subject of Sections 6 and 7. Although
For the sake of simplicity, we assume thal any gt+l consecutive the results are interesting, they are not of much practical Importance,

points Xoseeen¥ Bre distinct. (This is always true in the applications for in practical problems it is merely a pleasant surprise if the iterative
described in Chapters 4 and 5.) Thus, r is just the Lagrunge process converges faster than expected! Thus, the reader whose main

interpolation polynomial, and the results of Chapter 2 are applicable. interest is practical applications might prefer to skip Sections 6 and T
As in Chapter 2, the assumption of distinct points is not necessary, and (and also Theorem 3.1), except for Lemma 6.1.

the same results hold without this assumption if PB is the appropriate Tn Section 8, we consider the interesting problem of accelerating the
llermite interpolation polynomial. rate of convergence, and Theorem 8.1 shows how this may be done. We make

use of Lemma 6.1, which gives a recurrence relalion for Lhe error in

successive approximations to f , and is a generalization of results of

Ostrowski (1966) and Jarratt (1967, 1968).
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3.2 ap
Finally, in Section 9 the theoretical results are illustrated by

and Ortega and Rheinboldt (1970) give some more possibilities ( for

some numerical examples, and a brief gummary of the main theorems is Co - ;
example, we may take the supremum of p such that the limit K in (2.1)

given in Section 10. The reader may find it worthwhile to glance at CL
exists and is zero, or the infimumof p such that K is infinite). See

this suwunary occasionally in order to see Lhe pattern of the results. .
also Schroder (1870). For our purposes it is convenicnl to use (2.1) and

(2.4), so we make the following definitions.

2. The definition of order Definition2.1

We say x - § with strong order p and asymphotic constant K
Suppose that  1im LS { . There are many reasonable definitions n -

n—wo if x — { as n -o and (2.1) holds.
of the "order of convergence" of the sequence (x ) . For example, we

n We say x — £ with weak order p if x, { as n - oo and
could say that the order of convergence is p if any one of (2.1) to (2.4)

(2.4) helds. (IT X= £ for all sufficiently large n then we say
. holdg:

that x - { with weak order o .)

EEE: n+ 1 N , : /
lim ———— = K>0 , (2.1) Definition 2.2
n-m B: - ¢|P : —_—n

Let

. 1/n
loglx -t | ¢ = lim sup |x, - . (2.5)

Lim orl = 5 (2.2) n=wlog |x - 4 ?
n—w n

We say x - { sublinearly (or less than linearly) if xX, { and

c =1. Wesay x -—f linearly if 0 <c¢ <1 . We say x =-§
. 1/n : n _ n

lin(-toglx- (NT =o , (2.3) | Co |
n on : superlinearly if c¢ = 0 . We say x — 3 Strictly superlinearly if

| x ~+ { with weak order p > 1 . :

| Lim inf(-loglx - enrol (2.1)
n—w

Examples

These conditions are in decreasing order of strength, i.e., Some remarks and examples may help to clarify the definitions. If

(2.1) o (2.2) o (2.3)o (2.4), and none of them are equivalent. (2.1) is p>1 and x_ = exp(-o")(1+ 0(1)) as n -w® , then x — 0 with strong

used by Ostrowski (1966), Jarrett (1967) and Traub (1964, 1967), while order p and asymptotic constant 1 . If g >1 and x = exp(-o™) (2+ (-1)F

(2.2) is used by Wall (1950), Tornheim (1964) and Jarratt (1968). voigh (1969) then x - 0 with weak order o , but not with any sirong order, for the

36 37
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3.3 ’

limit in (?.1) does not exist if p = g , is zero if p <g , and is (4-1)
Co | | PAT (x) = (a0) {lx ex)

infinite if p > oo . Thus, convergence with strong order p implies n nrgq-t
q-1

convergence With weak order p , bub not conversely. = 5 (%, -x)) fl, cox, 1 . (3.3)
: i-0

IT the limit in (2.1) or (2.4) exists, and x = £ , then p >1 .

Tf the limit (2.1) exists with p = 1, and x - €, then K<1 Thus, the result follows from (1.1).

(K <1 for linear convergence, and K = 1 for sublinear convergence). Co

Exemples of sublinear, linear, superlincar, and strictly superlinear Yheorem 2.1
- _ oh q-1 . ha i :

convergence are x_ - x LN 2 respectively. Suppose that feC™ [a,b] ; thal a sequence (x) satisfying
i (1.1) is defined (see Section 1) in [a,b] ; and that there exists

-1

| Lim x =. Then as! (6) 0.
n re

4. Convergence to a zero

In this section we show that, if the sequence (x) defined by (1.1) ’ Proof
converges, then it must convergo to a zero of pla-1) , assuming only Suppose, by way of contradiclion, that

that fecal a,b] . Tirst, we need a lemma which gives a relation (2-1) gy / oO . oo (3.14)
between the points x ,...,x .

P n’ "near : For 0 <r <q , the identity (2.2.4) shows that

Lemma 5.1

oo | | > SI Korg) Cy Xp] = lx, oe Xie] -
Tf NE SIC RTTL are (distinct) points in [a,b] , and ny gb1 0 5.5)X yeeayX X cee, X : :

satisfies (1.1), then n’*" Tntr-17 Tntr+1’ *“nt+q

q-1 Thus, from Lemme 3.1,

CL Ps ghey DR AE SURTRFL = lxeee 0a] (5.3) i nyner Fig Hn, r ] (%1 5 = Fg) d (3.6)
1=0

Proof wiieroe

the identity (2.2.6 .
By identity ( )s EL WIPE SAVY TEFEN ]

TE aIE (3.7)
P f + £ + nr fx, te 9 Xpigo1!2%) = [x] (x-x) (x x] —.

+ (xx )- lex)fix , . Kg] ’ (3-2) Both divided diflcrences in (3.7) tend to £21 6) /(q-1) a8 n — © ,
80 so there is no loss of generality in assuming that the denominator
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FLEX gan] 1s nonzero for all =n (on the assumption (3.4), are distinct, then we may argue as follows: on the assumption (3.4),

and we have the right side of (2.1) is nonzero for all sufficiently large n , and

1im - = 0 . (3.8) thus at least two consecutive points fram XE gl are distinct.
n-—m

Taking these two points in place of Xo-1 and *a , we get a contradicticn

Summing (3.6) over r = 0,...,9-1 and rearranging terms gives in the same way as from (5.13).)

bl - = t — - .

CI. LN) th Fg Xprqrl) ! (5.9)
T=0

where | Li. Superlinear convergence

If f has one more continuous derivative than required in
r a

1. v " } Theorem 3.1, then Theorem 4.1 shows that convergence tec a simple zero
r=0 7° (g-1)

of is superlinear, in the sense of Definition 2.2, provided the

and, by (3.8), there is nc loss of generalityin assuming that the starting values are sufficiently good. The theorem makes precise what

denominator in (25.10) is nonzero for all n > 0 . From (3.0), with we mean by "sufficiently good". (In equation (4.1), w is the modulus

r = q-1, and {3.9), we have of continuity: see Section 2.2.) Convergence to a multiple zero of

gla-1) is not usually superlinear, even if gq = 1 (see Section L.2),
x “x, =p (x =x ) (3.11)

so mrq-1 nrg ntntq ontgtl and Theorem 7.1 above is the only theorem in this chapter for which we

where do not need to assume that the zero is simple. Thus, there is no reason

_ , (3.12) to expect that the algorithms described in Chapters 4 and 5 will converge
Mp © Hn, q-1tn ] (q-1)

any faster than linearly to multiple zeros of f .

The repeated application of (3.11) gives
| Theorem L.1

9-17 %q N Boh «= oH (Xo =X) ? (5.13) Suppose that fet a,b] : bLela,b] Xr wee ¥y are (distinct)
. -1)i : oints in [a,b] ; 5. = max X_ = ; £(a = 0 3

and, by (5.8), (3.10) and (3.12), . +0 as n —+ =» , so the right pos in [a,b]; 0 co | i | ? (8) ?Sy eee

side of (3.13) tends to zero as n — = . This contradicts the assumption t -80,4+8,] (a,b] ; and
that X 1 £ xy , so (3.4) must be false, and the proof is complete. (If

A (a), (2)

we do not wish to assume that any q+1 consecutive points Xr eso¥nig w(t 385) < | (8) * (h.1)

Wo hl

_ bo _ ] ! | |



3.4 3.4

Then a seguencc (x) is uniquely defined by (1.1), and x - € where

superlinearly as n — o , Furthermore, if, for n >0 , 7, | <w(2¥35)/1£ YU (0) | _ Aol 3 < 1/3, (4.9)

5 = max |x .- El (4.2)
0 1=0,...,9 nel 50

Ry
= |—= ¢ 2 HIand | IE | a < ale <2. (4.10)

Ny = sue 5 37109 (0) ’ (h.3)
| (Note that the assumption (4.1) ensures that ixgr eax) £0.)

then the sequence (5) is monotonic decreasing, and From (4.5), (2.8), and Lemma 3.1 (with x, and x interchanged),

5 < AB : (4.14) :mg+tl — "nn+l q (a) qd (a)
(V(r me) To (x) Eg (4.11). 1 g+l q: . i q! hy
1- i=1

Prool

Without loss of generality, assume that { = 0 . Let 5 and LS. where

be as in the statement of the theorem (equations (4.2) and (L.3)). R, - B( : %.) £(9) (o) +R (1+ Ry) (4.12)a. i q- 1 )
- =1

Since gla Lo) = 0, Corollary 2.5.1 to Theorem 2.5.1 (with :

k=15 n=g-1) gives From (4.6), (L.7) and (%.10), cquation (4.12) gives

of l= (3 x) (0)/ar va, (1.5) EVO] p60)0) | .Kpreeeaty l= Ly *y (0)/a: 1’ +2 Ry, | < 2.(gq-1)¢ MEN CE r ’ (h.15)

where so, irom (4.3) and (W.7),

{R. | AT VICE (L.6)
1 = : ao 154 (0)

: . ho1h

BY = max |x|< 5 (4.7)
1=1, ...,q Now, from (4.11), we have

Similarly . -
’ [gan | < Aa® - (4.15)

Flags -oex, | Tq (L+R,) = at (T+E, > (L.8) By the assumption (L.1)}, LS <1, so Xqt1 lies in [a,b] , Bb, and Ay
are well-defined, oq = 51 <8, 3 Ay < Lo , and
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| < Aabq - (4.16) qg = 1 , the sequence (fx, - £1) is monotonic decreasing, except perhaps
for the first term. In fact, the proof shows that, for q = 1 and

In the same way, we see that 6&6 >58, >06. >... ,
O=-"1="2= n> 1,

1 >. >k >A >... , and, for n >0 ,

c= "1= "2 = = EW - dq
) Te - Et < Nya - 0 a8 nn — (4.02)

gen S AMP (k.17) n

: (provided x £ ¢) . This is a common definition of "superlinear
Thus, the inequality (4.4) holds, and it only remains to show that n

convergence’, stronger Lhan our Definition 2.2.

x — 0 superlinearly. From (4.4) and the above,
If gq > 2, the sequence (|= -t]) need not be eventually

k

OLq+l < fora AM x-1)¢P1 < Ay 5, 3 (4.18) monotonic decreasing: monotonicity would follow from strong superlinear
couvergence with order greater than 1 , but more conditions are necessary

and Ag <1 by assumption (L.l1), so 5 —0 as noe. Thus, by
(q) to ensure this sort of convergence (see Sections £ and 7).

the continuity of f and the definition (4.3), A, 20 as n —w.

Take any € > 0 . For all sufficiently large n , |

Wm SE (4.19) | | -
5. Strict superlinear convergence

so, from (h.L), Assuming slightly more than in Theorem 4.1, Theorem 5.1 shows that

, (q-1) . :
convergence to a simple zero of f is strictly superlinear

Lim sup s/n < €e . (4.20) ’
n—« according to Definition 2.2. Before stating the theorem, we define some

As & is arbitrarily small, this shows that constants By, and Le which are needed here and in Sections & and 7.

1im |x |" = lim g/m = 0 . (4.21) Declinition 5.1
For 94 >1 and a >0 , let the roots of :

! -— = i ~ ig +Thus, x £ = 0 superlinearly, and the proof is complete. JL (5.1)

i : : 1) (a)be uli) for i =0,... with n(®) > ul > tea. > |u 1 .Remarks q,a ’ a | 2,0 > | 0a — > | a0!
_ : Then the constants and are defined b

The proof of Theorem 4.1 shows thet, for n >0 , ge El is Ba, La y
no greater than the second-largest of |x -§|,..., |x -{| . Thus, ifESN PREPPY nq ; B - (0) end y= [ult | |

qs sie aq, QQ,
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340

3.2

Since the case a = 1 often occurs, we write simply By for
ad ; Table 5.1: The constants and for = 1(1)10 to 12DBg,1 2 and 7g for v4 Table 5.1 Py Yq q = 1(1)

— — _ - F—- — | _—— ——_—— = ——— ee —_ _ Bn ’Remarks E : Py | Tq |
B or ig just the positive real root of (5.1), and it is easy to o } ol EE BtnEX | 1 1.6180%3988750 0.618033988750

see that, for 0 <a <1, | |

oe 1.32h727957248 0.868656561833 |

2 1 | 5 1.2207H084606 | 1.0633356938821oq+l q . | |
(+a) < By < (1FQ) (5.2) Lh 1.167303978261 1.0990003151h6

5 1.134h700138h02 1.099174913506
i

We are only interested in the constants 7a, when 0 =1. If : a 1.112775684279 | 1.091953305766
®@ =1 and q > 2 then there are exactly two complex conjugate roots | 7 1.096981557799 1.083743696285

- - _ A ; :

of (5.1) with modulus Tq If g=1 or 2 then 7q < 1, but, for 8 1.085070245491 1.076133134033

122 9 1.075766066087 1.060LL8AY2721.
. < . | -

L <7; <8 : | 10 1.068297188921 1.063666938L0k |
This may be proved byapplying the Lehmer-Schur test to show that, for

suitable © > 0 , exactly g-2 roots of see Dclinition 5.1 and the remarks above for a description of

+1 the constants and .
x1 = x+1 (5.3) Pa 7a

lie in the circle |x| < 1+¢& . The details are omitted, for all cases

of practical inlerest are covered by Table 5.1, which gives By and 7q
to 12 decimal places for gq = 1,...,10 . The table was computedby

finding all roots of (5.2) with the program of Jenkins (1969), and the

cntries are the correctly rounded values of Bq and 74 il Jenkin's

a posteriori error bounds are correct.
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3.3 3.2

Theorem 5.1 . 5, / 0 for all n > 0 (and thus, from (5.6), M > 0 ). Let

Suppose that fe 109 a, bm, a] (zee Section 2.7); Cc (a,b) ;

(q-1} (a) a ZM 1 a | ;
i =0 ; and TT 0 . f x.,...,x are (distinet and = =log(® -

(£) ; (€) £ If xp, -.0ky (di ) I. gd Wp ) (5.7)
sufficiently close to € , then a sequence (x) is uniquely defined :

by (1.1), and xo { with weak order at least By + the positive (not the same A, as in Theorem 4.1). From condition (5.4) and the factr

+

real rool of x2 Lo x+qa . that (8) is monotonic decreasing, 0 < Ao < A < Ao < +... , and, from
equation (5.6),

Remark
puliiebindmrinalialel + - .Mrgrl > Apel Thy (5.8)

If 5 = J |x, - ¢ , then, from Theorem 4.1, Xp? ees
RCI Since B oy >1 , we have AY

are "sufficiently close" to § if 5, < {-a, 8, <0 -f , and + \
n-=q

IN & 1 o> .Mo, < £0 ey . (5.4) M2 A Pe, (5.9)

If these conditions are satisfied, then an upper bound on |x - q for n=0,...,9 . Thus, from (5.8) and the definition of By a? the. J Y
bain

follows from eguation (5.10) below. inequality (5.9) holds for all n > 0, by induction on n . Hence, for

all n >0,

Proof of Theorem 5.1

Se eee A n-qg 1 OM
-lo xX - > =1 0) + = —_— . .For n >0, let g |x, £) 2 og n Zo Pq,a q 108 Eom (5.10)

5, = max EI i I (5.5) C
1i=0,...,q Since Ay 0 and By o 1 equation (5.10) shows that2?

Suppose that Xo» <..yX_ are so close toc { Lhat the conditions 1/n
a iim inl {-log |x, - t]) > By (5.11)

mentioned in the remark above are satisfied. Then Theorem Lk.l shows n — w 1

that (5) 1s monotonic decreasing to zero, and which completes the proof.

IM x Note that, in the important case « = 1 , there is a simple proof of5 < o_ Db . .6 ? d

ntgtl -— 1240 (g) | n ntl (5-6) Theorem 5.1 which does not depend on ''heorcms 2.5.1 and 4.1. Also, this

If eventually 5 = 0 , then the result follows immediately: by proof shows that, instead of (5.4), the condition

our definition, x { with weak order o . Hence, suppose that (a)
wn, < 2|rl (| (5.12)
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3.6 3.6 |

is sufficient. The idea is this: by applying Rolle's Theorem q-1 Before proving Theorem 6.1, we need two lemmas. Lemma 6.2 is
a q-1) Cy : :times, we see that pl (x) ccincides wilh f at points tn and tn concerned with the solution of a certain difference equation, and is

say, with le -¢l = 6 and |e: - t= & = the second largest of closely related to Theorem 12.1 of Ostrowski (1666). (The lemma could

ES Pl LL : thus, from Lemma 2.4.1, easily be generalized, but we only need the result stated.) Temma 6.1
-1 1 gives a recurrence relation for the error x -~§ . Special cases of this

BS (0) < SMB Bl. (5.13) n
lemma have been given by Ostrowski (1966) and Jarratt (1967, 1968).

On the other hand, equations (1.1) and (3.3) chow that Ostrowski essentially gives the case g = 1 , and Jarratt gives weaker

pla-1) (ey results for q =2 and gq = 3, {Qur bound on the remainder BR is
n

Xagbl — 0 Tix ow 1 (5.1%)nq ATLA pr hig sharper than Jarratt's, and we do not assume that is analytic.) In

Section 8, we show how the result of Temma 6.1 may be used to accelerate

S50 We can bound ESSE ; and then the result follows in much the
convergence of the sequence (x) .

same way as above. n

Lemme 6.1

Suppose that rect a,b] ; Cela,b]l ; +a Ley =0 ;

G6. The exact order of convergence lad op £0 ; Xr neg are (disbinet) points in [a,b] ; and
Theorem 5.1 gives conditions under which x - f with weak order at ral satisfies equation (1.1). Tet 8 be the largest of

least By » It 1s natural to ask 1 the order is exactly By . In general, EI PE ed ; and SM the second largest. Then
this is true, but some conditions are necessary to ensure that the rate (

Sas L1

of convergence is not too fast: [for example, the successive linear Erg = S = Lh a= (pg =O 8) + BR ’
| alar)££ {€) 0<i<ji<a | ~

interpolalion process (gq = 1) converges to a simple zero § wilh weak (6.1)
orderat least 2 (> By - 1.618 ...) if it happens that f"(f) = 0, for where :

then linear interpolation is more accurate than would normally be expected. 4

R= o(s 8! [5_+w(el 1) 321) (6.2)
Theorem 6.1 gives sufficient conditions for the order to be exactly By .

“+p 43 {qt1) SR : | as © -0 .Apart from the condition [ (€) £ 0, il is necessary to impose some Oy

conditions on the initial points Kasra Xy (These extra conditions are
superfluous if ¢ = 1 : see Section 7 .) Proof

Without loss of generality, assume that n = 0 and { - 0 . Rearrange

pr
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3.6 3.6

gr ees¥y » IT necessary, so that |x, | < |x, | < vee < |x| . From where
Lemma 3.1, . . (a+) -

: |r, | < as), | + 7s] = OB BAw(t 3807) (6.9)

q-1 :
LXer Flys ooo | = (L xi) Elxgy oe erx | - Tl, crea Xo gp] . (6.3) as 3, 0 , 80 the result follows.

Thus, as ela-1) 4) = 0 £ {4 (0) » Theorem 2.5.1 gives
Remarks

A) From the bounds on r.,.--,¥r; , it is easy to derive an explicitq.X (1+1,) 1 L
gt qt 1

bound on |& for sufficiently small 6, . For our purposes, though,
- + i

_ A yr Wo) + ( 5 x.) pla 1) 0) , 2) the relation (0.2) is adequate. A simple corollary of (6.2) is that,1 i/ {gr1):
in 1 q i=o 1 ql 2 iy Sar) Co tne

Py =o ‘

q-1 (a) (q+1)T 0 f

- (( x.) £0), ( 3 X.x.) Lyon), R= o(st"® 51) (6.10)i gl 10] q+l)! 2 1 n n
i=0 0<i<j<q

(6.4) as o&_ —-0 .
n

where

w(z gp) Lemma 6.2
nl © my = 0a) (6.5) BE

| £ (0) | Suppose that A ote as n —- oo, and, for n >0,

(a+1} \ (a+1) |
| [rl < wir p)/ar = od w(f 3550) (6.6)

where

and x = 0s") (6.12)
Ba wl 84) 2 (gal)

lvl © =r = oly wre) (6:7) |
] ag n -—w, s a constant. If 74 <8 < By then

BS Bp QO - Coa = By + o(s") | (6.13)
The right side of (6.4) is just

as n - wo , and if k = o(s") as n — = then
earl) "

(LL mx) fm (6-5) n, on
O<i<j<a A, = cB, + os") (6.14)
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3.6
3.6

as n — o . It 0 <s << Then |
— q for i =21,2,...,0 , and

n Vv n

M =c¢c.p + O(n. 6.1

i! il 7g) (6.15) bx ~¢] > 6lr(x,-O(x, -0| > o , (6.18)
q — 0 1 :

as nn — w , Where
where

0 if q=1 , ‘1 |

K = : ; (6.19)
1 if g>1 , q{qtl)+ (8)

and cis a nonnegative constant. then a sequence (,) is uniquely defined by (1.1), and X= £ with

weak order exactly Ba . Tn fact, if gq =1 or 2 then x { with
p_-1

Proot slrong order Bq and asymplotic constant |K| 4 , and if g > 3 then
The restriction uw, | < 1 in Theorem 12.1 of Ostrowski (1966) is

-loglx -£| = c.g" + ofln.y) (6.20)
unnecessary, ror we can choose any A with lu, | <A < lu, | and n q q :

consider SE y instead of A s in Ostrowski's proof. Thus, in view as 0 — = , for some positive constant c¢ .

of the remarks after Definition 5.1, (6.13) and (6.15) follow from

Ostrowskits Theorem 12.1. (6.11) does not follow directly in the same Remarks

way, but the proof of Ostrowski's Theorem 12.1 goes through, assuming Condition (6.17) ensures that Xr wens, approach { sufficiently
Nn } rn . .

k= o(s’) instead of k = 0(s') , and giving a result Crom which (6.14) fast, while (6.18) makes sure that they do not approach { too fast.

follows. The only difficulty is in proving the modified form of These conditions could be weakened, but Theorem 7.1 shows that some such

Ostrowski's Lemma 12.1, bul this follows from the Tocplitz Lemma: il conditions are necessary if q > 2 . If gq = 1 then the conditions

kE —~0, le] <1, and z, =k tk,E+...+kiE , then z -0 as are superfluous: see Corollary 7.1.

n +» (sce Ortega and Rheinboldt (1970), pg. 399). Equation (6.20) implies that (2.2) holds with o¢ = B, » but (2.1)
docs not necessarily hold, lor Tq >1 if g > 35.

theorem 6.1

+1 -1

Suppose fect [a,b] 5 §c (a,b) ; #d dit) = 0 ; #9) (1) #0; Proof of Theorem 6.1
R

and #(d 1) (ry 2 QO if |%,-t | is sufficiently small, Let vy = | %{x _ 2) | . } (6.21)
: “n n

ES - ¢| Zz x, - 6) (6.17) From the assumptions (6.17) and (6.18) we have, at least for n =0 ,
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. 3.6 3.6

Veriol = BY es (6.22) Let |

A = -log Y, (6.29)
for 1 =1,2,...,4 , and .

and

Vo. = by y > 0. (6.23) oo _ _ :
nl-q ntl kk = | Al A, : (6.30)

We shall show ti 6.22 d (6.2 df il = 0.shal w that | ) and (6.23) hold for all n > 0 Suppose, as From (6.25) and (6.27),
inductive hypothesis, that they hold for all n <m . Then, by taking ]

|x | < log 2 (6.31)
EN -t| eufriciently small (independent of m) , we may suppose that the

remainder R_ of Lemma 6.1 satisfies so we may apply Lemma 6.2 with s - 1 . If gq > 3 then 74 >1, so

1 n I
ll —_— = - 1 . H.H2IR] 33 Yn (6.24) hy = cB tony) (6.32)

for 211 n <m . Thus, from Lemma 6.1, as n — oo . From Theorem 5.1, c¢ > 0 , so the result for gq > 3 follows.

| . Asli 2.2.3, 2 If g=1 or 2 then Yq SLs sO

; A cB, + 0(1) (6.33)
= 3 Vly (6.25)

as n -m . Irom (6.29), (6.30), (6.33) and Lemma 6.1, Wwe now sce that

Fram (6.23) with n =m , this gives

k= o(l) (6.34)
or

Vmtq > "qi 1 i (6.26)
as n -» =o , So, by equation (6.14) with s =1,

Similarly,

n

1 2 2 3 1 A =c.p. + ol) (6.55)
: mq L > ViVi ( I 2 RE Ra ter E n q

1 as n -o . Thus, there exists
f— 2 J

2 5 Ym | (6.27)
Y
n+l Co

lim ~—= = 1 , (6.36)
> pepe (6.28) n-= Pq

Yn

Also, from (6.27), Yq] > 0, so the right side of (6.28) is positive so the result follows from equation (6.21). (Note that, if pla 1) e Lip, v7
26 Le , Ja ~ . = I -

From (6.26) and (6.28), we see thal (6.22) and (6.23) hold for n = ml, for any M and « > O , then (6.34) may be replaced by k = o(s™) lor
so they hold for all n > 0 , by induction. Thus (6.25) and {6.27) hold any s 0, so (6.15) holds, and
for all m > 0 .

56 >
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3-7 3.7 :

= - tl 5,1ntl “1 n Remarks

ELT eed (6.57) | |
|x - &l a Ostrowski (1966) gives Corollary 7.1 with the stronger assumption
n

that #e0”[a,b] . He also shows that, if fea [a,b] and the
as Nn — wo .)

conditions of Corollary 7.1 are satisfied, then

|x = q t B,-1+ T 1 hn, ‘

Te Stronger results for gq =1 and 2 ‘| 1 ?— : |x. -

In this section we restrict our attention to the two cases of the As we remarked st the end of the proof of Theorem 6.1. theas n —= x» . a

greatest practical interest, gq = 1 (successive linear interpolation) relation (7 2) holds provided that fe 10° (a, 03M, O] for some M andL - ’ L -

and aq = 2 (successive parabolic interpolation for finding an extreme (see equation (6.37) For an even weaker condition, see (7.7) and (7.8)
point). Corollary 7.1 shows that the conditions (€.17) and (6.18) of elelow.
Th 6.1 if = 1 . Cc -

ecren b.L are unnecessary ii q The following theorem removes the rather artificial restrictions

(6.17) and (6.18) of Theorem 06.1, if plarl) is Lipschitz continucus
Corollary 7.1 :{ and g = 1 or 2 . The proof does not extend to gq > 3 , because it

2
Suppose that =1; feC[a,b] : e (a,b) ; TT = 0 ;

Pp “ ’ 01s Lead) 5 £8) ’ depends on the assumption that Tq © 1, which is only true for gq =1
1 . ql 4 . . .

fr(§) £0; and f(f) £0 . If x,» %, and { are distinct and and q — 2 (see Table 5.1).
sufficiently close together, then a scguence (x) 1s uniquely defined /

by (1.1), and x —- { with strong order f£. = 1 (1+/5) and asymptotic :
n 2 Theorem 7.1

ore) [Pa | py ream 5 Leah);constant [ori] a5 nN — ow . Suppose that gq = 1 or ; ¢ la,b;M] ; c (a,b) ;

Proof sufficiently close to { , then a sequence (x) is uniquely defined

From Lemma 6.1, by (1.1), and either

: - ith strong order and asymptotic constant

5,8 = serEy (5-8)0 - (24 e()) (7.1) Lr x, ~ 0 with strong Pq I
| a+) 81

as max{ |x, -t1; 1-61) - 0. Thus, Theorem ©.1 is applicable to the i , in factgw _ NS q(q+r1)7 (6)sequence (x? y where x0 = X47 @ Provide x and x are sufficiently

close to § .
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3.7 3.7
so x —C =0 with weak order /2. Similarly, if

ES - ¢ | atl) Bet q-1 n } n ¢ Yo»
i etvive I Cas (7.3)Pa ala+1) £3 (L) h Lis. /5
ES - tl y = 5(5+V/5) ~ 2.618 ..., (7.5)

as n - =o (recall that By ~ 1.618 , B, ~ 1.325 , 74 =~ 0.618 , then there are starting values such that
and ~ 0.869) ; 1

nd 7,~ 0.869) ; xg ~ exp(=r)n

or x ~ exp(-(7-1)7") ’
ntl (7.6)

2: x —+ ¢ with weak order al least 2 if gq =1, or and.
1 n+l

(2522) ~ 1.5378 if q =2. nt2

so x 0 with weak order YE = 1.378 ... . The proof is omitted,
Remarks but the reader may easily verily that (7.4) and (7.6) are compatible

If gq = 1 ‘then, by Corollary 7.1, case 2 of Theorem 7.1 is with Lemma 7.3 below (this depends on the relation 2y-1 = y(y-1)) .

possible only if f"({) = 0 (or if one of X, and x, coincides with £5 I'or the sake of simplicity, we have not stated Theorem 7.1 in
+

when the weak order is «= ). the sharpest possible form. If pla L) (ey = 0 , then xX, = { with
—_ 1 LSBE oo 3 = H = ~ = (q+1) C= -

If gq = 2 then case 2? is possible, although unlikely, even if weak order at least By Try © Bq , provided that f «Lip, & fora

9 +

ENTS £0 and x / € for all n . All that is necessary is that some M and « >0 . If gla 1) ee) £ 0 , then the theorem holds
+

the terms in relation (7.28) repeatedly nearly cancel out. Jarrabtl (1967) provided that f CY a,b . Equation (7.3) may no longer hold, hut if

and Kowalik and Osborne (1968) assume that such cancellationwill eventually there is an © > 0 such that

die out, so the order will be B, . The conditions (6.17) and (6.18) .
La lat) « R = 0o(l1 5 = /aw( 8) = O(log 8] 77) (7.7)

are sufficient for this to be true, but without some such conditions there

is a remote possibility thal cancellationwill continue indefinitely. as B® —- 0 , then

For example, with f(x) = eo I , there are starting values x , Xx :
0 1 g-1.n i

O(n 1” if ee >1,
and X such that

2 bx, - tl Ala+1) BL qn |
| i mi kl = {oD if oe _1,Y(7.8)

Xp, ~ exp(-2") PREEIE q(aq+1}7 (E)n ne :

and (7-1) 0(7g ) if e€ <1,

x ~ -exp(-2")
ont 1 as n —-o . (A condition like (7.7) occurs in some variants of Jackson's

theorem: see Meinardus (1967).)
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EE3.7 f
Proof

Before proving Theorem 7.1, we need three rather technical lemmas. -

TEX, £ 0 for infinitely many n then, by Lemma 7.1, x £0 for

@ll n >0 . TI this is so, deline A_ = -log|lx | and
Lemma 7.1 — n Il

kK =X ,2=A_.--A_. From eguation (7.11) kis bounded, so
Suppose that, for n > 0 , n m3 nfl on ’ n

2) Lemma 6.2 with s = 1 gives nN = cp, + 0(1) as n - o . By
— + ' .3 nel 1 nee * nna ¥ m5. ’ (7-9)

Lemma 7.1, AN =+ «, 80 ¢>0 . Thus, from (7.9),
eg 3 t rawhere 5 is the largest of ES , ES and ES. , and 6t is Ce i

the second largest. If there 1s ea positive constant I, such that : = -

1

151 2 EN > 3x) > 9x | > 27 |x| s» and as n — » (this is not necessarily true in the proof of Theorem 6.1).

Now, Lemma 6.2 with s < Yo gives
Im| < T (7.10)nt! = :

n n

| N= cB, + 0(ny,) (7.1%)for all n > 0 , then l= | > lx for all n > 0 . “ == n' — ntl =

’ as n - o , and the result follows from the definition of MN .
Proof

As in the proof of Theorem 6.1, it follows by induction on n that Lemma 7.3

on on Suppose that (7.9) and (7.10) hold. Then there are constants K

LEY 2 LS ne! 2 0 ESL Ea 5, ? (7.11)
‘and N (depending on IL) such that if, for some n >N ,

for 811 n > 0 . 1
= > x| > nlx, (7.10)

and

Lemme T.2

+ 1Tf the conditions of Lemma 7.1 are satisfied, then either x = 0 n = Ea 2 nlx LS (7.15)
for all sufficiently large n , or

then

a n x = x. x_ (1+ v, ) (7.16)
— a = 1+ 0(ny,) m3 n ntl 1,n ! }
x, ©
" = 2 (1+ y+ KX 1+ ) (7.17)lh © Fn Yoon ml n+l Yz,n/ :

as n — = . 5
= + .

| X45 x x (1 + Vin) XX en (L + Ven) , (7.18)
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and for all n > 0 , where A 1s some positive constant. If some x = 0
2.0 2

6 xx (1+ Von! RE SUSN Vn) ’ (7-19) then x _, =x =... =0, and we arc finished (weak order =) .
Otherwise, there is nc loss of generality in assuming that

where

a: Alx |< exp(-2™) (7-29)Iv, al <3 (7-20) | ol z

for i =1,.:.,7 . for n=0 and n = 1 . From (7.24), equation (7.25) holds for all

n>0Q, by induction en n . Thus, the weak order of convergence is at

Proof least 2 , and the proof for q = 1 1s complete.

The lemma Tollows by repeated use of Lhe recurrence relation (7.9) From now on, suppose that q = 2 . By Lemma 6.1,

and the inequalities (7.10), (7.14) and (7.15). (3) 5
’ x. = i = Y (x x + xX .X +x x) + 0055") (7.26)

nt > of" (0 n ntl nl 1 nt2 n nt+2 nn

Proof of Theorem 7.1 as n +o . If £5) (0) = 0 then the weak order of convergence is at

Without loss of generality assume that § = 0 . First suppose that least B., ~ the positive real root of x = x+2 , by a proof likeja - _ '-

q.=1. If £"(0) f/ 0 then the theorem holds, by Corollary 7.1. If that above for gq = 1 , and the theorem holds as B, , = 1.52 ... . Lo>

£'(C} = 0 then, by Lemma 6.1 |
’ ’ If £7) (0) # 0, then we may as well suppose that

- . B 2 . g
x. = 056!) (7.21) +3) o

a = 1 , (7.27)
as 5, - 0 , where & and b, are as in Lemma 6.1. If X, end XxX;

) by a change of scale, as in the proof of Theorem 6.1. Thus, we mush
. are sufficiently small, equation (7.21) implies that

study the interesting recurrence relation

6 = |x| (7.27) 2 ,= “+ + + .43 Tn 7 nel nee mee 03, 9, ? (7.206)
and

and, by Thecrem 5.1, we can assume that x —-0 with weak order at
SME EL (7-23) n1 ntl

least Bo .

for all n >1 . Thus x -0 as n =o, and First suppose that there is an infinite sequence N = (ngomys--)
0D with the property that, for every i >0 and n =n, , either

2, < A xx | (7.24) i
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1: I YR 2

1: Mivy 0 . (7-29) of W satisfy (7.31), and Lben the next 5 > 1 salisly (7.29). Then

and repealed use of the inequalities (7.233) to (7.56) gives

" 2 x: . xX . -

alae < lrg) © 2byal (7.20) max ( ) < max( 0(z8) | (7.28)Ft 32s” Int 3m 284 1 = AY Yay! ? i}

or | where

0: n, . = ntl (7.21) ; 2 =itl 8-1 A/h+ 20,5 + Jo Js 22,3 - fo T

: Pris) = 27 T=) (757) + Sava A ] - (‘7 -39)/Y 3 =
and

P . Let

ES < bnlx x | . (7.32) CT
¥(rys) = ars) . (‘7 -ho)

Ir either (7.50) or (7.32) holds, then Lemma 7.5 is applicable for all

ror fixed s > 1 5) is ad i ith limi

sufficiently larpe n = ny in Lhe sequence N . To avoid confusion For Iixe 52 ? ¥(r,s) is a decreasing function of r , with limit
1

with subscripts, write m for mn, (so m =? or nts). If + JE
i+1 c= (215; 2" = inf (r,s) (7.41)

n =n, is sufficiently lerge, and (7.29) and (7.30) hold, then r,s >1

ES < Plex | (7-23) as r ~«. Thes, x —0 with weak order at least c¢ , so case 2 of CC
Lhe theorem holds.

and, by Lemma 7.7,

Now suppose that there is ne infinite sequence N as above. By the

X < 2x x . 3h NP
| _ — | ql wy (7 ) superlinear convergence of (x) y Lemma 7.5 is applicable for infinitely

10(7.51) and (7.72) hold then, similarly, many n . Choose such an n (sufficiently large). There are only
- three possibilities:

|x | < 2fx x | (7.35) | |
1. [Bguation (7.30) holds;

and 2. Equation (7.32) holds; or
3

1 ce Ly . {, = J ,- .|x 1 < exc . (7.30) 3. Neither (7.30) nor (7.32) holds, sa

Let } x al > 2x Gb (7.42)

- Yn 7 21x, ] (7-20) In the first case, Lemma 7.2 shows that we can replace n by n+? , and

After a fixed 1 _ n. in N , suppose that Lhe next r > 1 elements continue with one of the three cases (il is crucial to note that Lemma 7.9 is
5 2
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Till cable). -th : . i

still applicable) In-the second case, Lemma 7.3 shows that we can i.e., Yy, is just the next approximation generated by our usual
b + 5 d ti . i > i ini i

replace n by ntl and continue. Since no infinite sequence N with interpolation process. From Lemma 3.1, v, is given explicitly by
the above properties exists, the third case must eventually arise. Then,

. | : i q lx yea,x ]
from (7.42) and Lemma 7.3, we see that Lemma 7.2 is applicable to the 1,¢ n+ 1 nq a.Na = (2 X . —- ) . ( .2)

n q ‘by nid Pix, SETIr roo - ' i. =sequence (x7) , where x! = Xrns By Lemma 7.2, (x) converges
1 5 de ic tant S x . .

With slrong order Pa and asymptotic constan 1. and hence, so doe ( n’ Instead of Laking I as the ncxt approximation Xgl » We use
n vi t i . this ¢ tes © of.

In view of the assumption (7.27), 1s completes the proo Lemma 6.1 to compute a correction to Y, 7 and take the corrected value
as the next approximation. Formally, we define X rq] by

8. Accelerating convergence Fix _qaeroX, J
—_— x = oy oe Td. 5 , (8.3)

: nt+atl n q.f[x_,...,X + ] n
If a very accurate solution is required, and high-precision evaluations n nq

of f are expensive, then it may be worthwhile to try to increase the where

order of convergence of the successive approximations by some acceleration ySR NE CEATCE A I (8.4)
technique. For example, we can use Lemma 6.1 to improve the current 0<i<]<q

approximation at each step of the iterative process. Jarratt (1967) suggests For a Justification of equations (8.3) and (8.4), see the proof of Theorem

one way of doing this if q = 2 , but the method which we are about to : 8.1 below. This theorem shows that, under suitable conditions, the

describe seems easier to justify (see Theorem 8.1), and applies for sequence (x) is well-defined, and x ~ §{ with weak order appreciably

any q>1 , greater than By s Which ie the usual order of convergence of the
Suppose that Xgr--sXgyq BFE approximations to a simple zero { unaccelerated process {see Sections 5 to 7). Note that there is very

of (lat) . For example, they could be the last qt+2 approximations little extra work involved in computing X tq] from equations (8.3)
generated by the successive interpolation process discussed above. We and (8.4) if y, 18 computed via (8.2), for TS and

may define Xr? Kuz? oo in the following way: if n > 1 and SEE TEENIE SRE. (except al the first iteration) will already be
Xgr + ¥ 4g are already defined, let P = [RACE SRELFE ND , and Known .

choose y ~~ such that Before stating Theorem 8.1, we define some constants BY which
take the place of the constants 8 (see Definition 5.1) if the-1

PONG) <0, (8.1) 2 |
accelerated process is used.

To I aN LA . — K i ' ) TT } , — i . . , . — -— mma _ —
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Definition &.1
Table 3.1: The constants BA' for q = 1(1)10 to 12D

For gq > 1, Bq is the posifive real root of 4

qt o 3 (8.5) CT od N 8 Jios prx = xX + xX + . . : ' 0 Of

q Pa | Pa | g of 108 a,
C1 1.83908675501h 1.6180 0.7897 |

Barat C2 L.65571231877 i l.gely 0.7357
Tt is easy to see that Pq > By , and, corresponding to the bound Ea 1.394717957215 1.2207 0.7093 |

(5.2), we have  h © 1.2hoB5158886h © 1.1675 0.60%6
. 1 |
po p l . AE x) , .
34 1 " B ” 29 (8.6) 5 1.2022160355148 | 11540 0.6832 :

LB 1.171321856385 © 1.1128 0.6757

If " { with weak order Bp 1 then, by the definition © Co 1811597353 1.0970 0.6707 :
!

order (see Section 2), for any = > 0 we eventually have 8 1.150h5957186k | 1.0851 0.6658
n | C9) 1.116575158368 | 1.0738 0.6623 |

ogle - tb] > (8 - (8.7) 7 Ata |
{10 | 1.10536 (3229kg | 1.068% 0.6595 |

''hus, the number of function evaluations required to reduce |x, - q :

below a very small positive tolerance is inversely proporlional to log B

(assuming that approximate equality holds in (8.7)), and the ratio See Definition 8.1, and the remarks above, for a description
log B log B

Tos 6 suggests how much we gain by using Lhe accelerated process, of the constants By and thie significance of Lhe ratio Ton Br .g q q

rather than the unaccelerated process, if very high accuracy 1s required. The constants By are given to 12D in Table 5.1.
From the bounds (5.2) and (8.6),

log B

log B! 2
qe qa

so there is a 37 percent saving for large aq . Of course, the only

practical interest is in small values of gq , and in Table 8.1 the
log @

values of B' +» B and ——3 are given for gq =1,2,...,10 . The .
q qQ log pa

entries for By are correctly roumded to 12 decimal places, and the
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. 2
. - L] 2} -— — -—- -— bd + t [other entries are given to 4 places (they are given for comparison (x 4 vy.) (5 vy.) (xs §) (% pe 5 £) 0(5 8") (8.13)

only: see Table 5.1 lor the A_ to 12 places). The tahle suggests

d 5 5 4 o 85 EN —+ {J
that BS = B, , and this is true, for x’ -X -x~1= (x7 -x-1)(x"+1) . (a)

: | Tf bo is sufficiently small then, since f'0 (8) £0 , we have
fx ,-..,x_. 1] £0, and, by Theorem 2.5.1,

Theorem 8.1 = nq

. + -

Suppose that Perc? La, vim] 3; fef(a,b); #(a 1) ey =0 ; Flo Ly eeanX ]
n-1 nt+g 2

(a) ps ae Tix ox] kro) (8.14)
YE) £0; and Xys+-es%y,q 8TE (distinct) points in [a,b] . If n’ "nig

[LI i 1 i8 ~FX X01 are sufficiently close to { , then a sequence (x) 1 as § LO.
n

uniquely defined by equations (8.2) tc (8.4), and x - with weak
2 nd yo (8-2) )s n : If sis as in (8.4), then (8.13) and (8.14) give

order at least By (see Definition 8.1) as n == ,
fix cea X ]

n-17 J n+q ~
. - - “EY + 0(5 1 1sQ-TIX_y..3% N ] ®h RIN (pe 1 (xy; £) 0s 5.5") (8.15

Proof : In nrq s1<J5q

> be the largest of I I ¥S  I « ]For n>1, lect S, re e rges ES ¢| s | rq G| : as 5 +0 . Thus, from (8.3) and (8.10),
let bo’ be the second-largest; and let :

- - 3 .) | | Xgl € 0(5,8 5!) (8.16)
5 - max(d |x _1- Eh. | (8.9) =

as 8 -» 0 +. This shows that, provided 94 is sulficiently small, the
] i i . . 6.1 5 that

If y, is defined by equation (8.2), then Lemma 6.1 shows tha sequence (x) is uniquely defined, lies in [a,b] , and x Lt as
2 I+ ® .

Ya-b =k LL (ey 00g, =) + 083) (8.10) ”
Dol<dz=q From equation (8.15), there is a positive constant A such that,

as 5 —» 0 , where for all n >1,

pla+d) ¢ |x -¢l =< A 6 5 5! (8.17)K = ~L— . (8.11) mgtl = nnn Ta{q+1)£47 (L)

: and, if 6, is sufficiently small, then
Tn particular, {8.10) implies that

n

-log(alx_ -L|) > pg? (8.18)
I v 8.12 n - qayt - 05 5) (8.12) |

for n -0,...,qt1l . From equation (8.17) and the definition of B' , we

as 5, —0 - Thus, for 0 <1 <3 <q, q
see that (8.18) holds for all n > 0 , by induction on n . Thus

[& 73
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Akh inf(~loglx_ - 61) = Pq > (6.19) by the accelerated interpolation process described in Section 8, with
n —+ om

starting values xi =x, for i =0,...,q+1 . As predicted by Theorem 8.1

i.e., the weak carder of convergence is at least By y So the proof is and Table 8.1, the accelerated sequences converge appreciably faster than
complete. the unacceleraled ones.

To verify relations (8.12) and (8.16), the table also gives

*n

9. none numerical examples n *n-q n-q-1

To illustrate the theoretical results obtained in Sections 4 to 8, 4an

we give the following examples: xX! |
n

a 3 rn = xt xt xt ’ (9.2)
1. q=1, f(x) =x+x +x” y X= ea X, = 1; n-q n-q-1 n-q-2

2 DL f(x) = 8+ GxC eltBx _ _ _ : airmid- qd - = (x) = XFHOFTOX, Ky Te XS 1, Xn = 0.2; when they are defined. With a few exceptions near the beginning of some

4. q=23, fx) = 1+ LOx + 10K° + 55 + 3x” yxy m2. x = 1, of the sequences, both (= () and ERD are monotonic decreasing, so
. ] t

L, = 0.5 , %; = 0.25 ; and rh and rl should be bounded. From Lemma 6.1, we expect tha
~ ]

Lh, gqg==4, rx) =1+2x+4Lox NTL x, =2, x, =1, ~la'l)
0 1 lim r= a ’ (9.3)

x. =0.5, x, =0.29, x =0.125 . n-+e algti) (6)2 5 L

is is just —r £ example Similarly, from the
Tn all these examples § = 0 , and the iterative process defined and this is Jus qo (qtl) or our smpres: 7

by (1.1) converges, even though the initial values are not very close : proof of Theorem 8.1, we expect Lhat

‘to ££ . Apart from constant factors, the polynomials are obtained by a+?)
Tim r! = - Te CYR ; (9.4)differentiating the last one (for q =") L-g times, so we are solving fw D g{gtl)(g+2)f E! (E)

the same problem in four different ways.
-6 Cy

i and this is just - . The results support these prediclions.
| Table 9.1 gives the sequences (x) produced by the successive a(q+l) (g+2)

interpolation process, for the functions and starting values glven above. able 9.1 was computed on an IBM 260/91 computer, with 14 digit

To illustrate the superlinear convergence, the entries are given until truncated floating-point erithmetic to base 16. To minimize the effecl

x | < 107, although such high precision would seldom be required in of rounding errors, we took advantage of the fact that n-th divided
- _

practical problems. The fable also gives the sequences (x!) produced differences of L,X,X vee, X0 1 vanish identically when computing the

Th (
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divided differences in equations (8.2) and (8.3). Without this device, | Table 9.1: Numerical results for gq - 1, 2, 3 and

it ig not possible to reduce |= _| or |=! | to 10” without using : q : . oo « Co | oo or I’ ; FETE
higher precision arithmetic, because of the effect of rounding errors Tyi ) I | B SR
(except for g = 1) - | 1 1.000 1.000 | | |

Por q = 2 , our example is the same as that used by Jarratt (1967), | © 7.2730 -1 | [RIE 0.3636
: 3 4 3.980'-1 , 2.100%-1 0.5473 | 0.1k4L |

and our results agree with his Tor n <9 . For n = 10 and il our | | hi 1.9837-1 4.389 -p 0.6851 | 0.287L :
results differ slightly, presumably because of rounding errors. The | 5 | 6.727" -2 | -1.8h6"-3 0.852% | -0.2755 |
example given by Jarratt (1968) for q = 5 hes slso been verified. | 6 1.276"-2 i 1.2211-5 0.9563 -0.7178 |

7 0 8.5h3t-k 0 1.0357-9 . 0.9949: -1.0455

: C8 7 1.0907-5 | o, B00 17 0.9998 | -1.0066
C9. 9.31k'-9 1 2.g982v-3l 1.0000  -1.0039

0 10 1.015'-13 © 1.0000 |
11 9.5722 1.0000

2 0 2.000 2.000 |
| | C1 2.000 1.000 |

. 2 1 5.000'-1 5.0007-1 |

| | | 5 + 5.1627-1 i 5.162'-1 0.2581 | |
CN] 2.6811 | 1.219'-1 | 0.5362 | 0.1219

| C5, 1.366'-1 | 3.271'-2 0 0.5201 © 0.1267 |

: Log 6.978*-2 . 5.618'-3 0.50h2 0.1786 |
| CT 2.05312 ~3.363¢ =] | 0.5607 * -0.163k |

: C8 0 b.shyr-3 0 S3.8hiog D 0bgT2 f-0.1556
| 0 6.5kt-h - 1.325'-8 0.4296 © -0.21hL |

i 10 3.651'-5  -1.708'-12 0.3800 © -0.2625
11 9.956'-7 | -5.84kr_18 | 0.3558 0.2477

| 10 CC T.6667-g 1 -2.008'-26 © 0.3430  -0.2518 |

| 13 1.e15'-11 0.3360 © -
i 1 2.54815 © 0.3339 | |
| C16 1.032'-26 0.3335 | } |
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Table 0.1 (continued)

B 10.  Sumnsnry

So N . The main results of this chapter for q - 1 (successive linear inter-

> ? =o fa polation for finding a mero) and gq = 2 (successive parabolic interpolation
: e) _ r_

Fp . 20 1 for linding a turning point) are summarized below.Ea - - - '

Yoo 3.0775-1 3.7751 -1 0.1887
5 1.81hr-1 6.00er-2 0.2628 0.0088 Theorem 3.1
6H B.57hr-2 1.567'-2 0.6860 © 0.1253
7 h.olhtr.o . 3.97213 O..hh65 Lo 0.0757 q = 1: If f<C and x - 3 then r(€) = 0 .

| 8 2.2680 (.eR2r-4 0.3313 © 0.1112 : 7
i J 5.5801-3 -3.649t-5 © 0.3588 © -0.0970 q=7: If IC and x —§, then £1({) =0 .

10 l.207r-3 -5.0h7-T 0.3395  -0.0921
C11 2.3471 -h -7.8931-g 0.2455 © -0.0716

: 12 2.8097-y 8.6%07-12 0.2219 - -0.0847 Theorem L.1

: 13 L.4h1v-A -1.0677-15 0.2105 |, ~0.1055 1
1% + 5.518'-8 k.009'-21 0.1917 © -0.0989 q - 1: If fe”, f'(f) #0, and a good start, then superlinear convergence.

| 15 1.16ht-9 0.1766 5
| 16 7.021 -10 0.1735 | q =P: 1f Te, I"{f) £0, and a good start, then superlinear convergence.

1 L.a5hro1l 0.1703 |
; 18 1.077t-17 0.1677

C19: 1.365.210 0.1670 Theorem 5.1

EE gq = 1: If rere’ , TE) £0, and a good start, then weak order at
0 i 2.000 . 2.000

1 : 1.000 . 1.000 least B= 1.618 ...
| 2 5.000'-1 5.0001 =
: C3 2.500'-1 7 2.500'-1 q = 2: If fe” , £9(¢) £0, and a good start, then weak order at

hoo l.e50'-1 0 1.250'-1 |
: 5 © 2.8hko'-1 - 2.8hkor-1 0.1420 least 8, = L.72k ...
6 i 1.258'-1 0 3.887'-2 - 0.2517 © 0.0389 = -
EY EI SSAt 7.0307-3 0.4362 © 0.0562

8 | 2.4g2r-2 0 1.4611-3 0.7975 @ 0.0935 Theorem 7.1 :

Gg  L.erhr-2 0 h.hhgr-k 0.3588 © 0.0501 5 .
10 © 7.507'-3 0 1.1608'-L 0 0.2101 + 0.0846 | q =1: If felC- , £r(L) #0, and a good start, then either strong
C11 1.56hr-4 lh 55hr-6 0.2279  -0.0558 )
J Fe 5.2270-4 | -2.3001-8 0.0374 -0.0598 order By 1.018... or weak order at least 2 .
> 1 0 0.87115 -PLATO'-10 0 0.2164 0.0519 "
1h 3.3007, -2,5000-12 0.1423 © -0.032G q = 2: If fe”, ["(L) £0, and a good start, then either strong

L150 L.585'-6 1 9.0277-15 0.1316 : -0.0k01 1/3| 16 6.639'-8  . -6.291'-19 © 0.1316  -0.0520 | 1 zm) 2+ /5 ~
C17 aulig | olohzroh o.oo 0.0506 order 8. = 1.3720... or weak order at least ( 5 ) = 1.378... -
C18 1.067'-10 . C.11ke

C19 2.20712 0.1050 B.1
C20. 1.0730-1h 0.1056 theorem ©.)
; Pl. NN C0. .2

Cy | on hs 01010 q=1: 1f fC” , t'(&) £0, and a good start, then the accelerated
~ 2 = | ;

Ce 2.3071 -23 : } | ©1002 Co sequence converges with weak order at least pf) - 1.839...
q = 2: If fel¢” , £'(C) £ 0, and a good start, then the accelerated

sequence converges with weak order at least B. = 1.465...
13
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1. Tntroduction

Let ff be a real-valued function, defined on the interval [a,b] ,

with f{a)f{b} <0 . [ need not be continuous on [a,b] : for

Chapter hy, example, f might be a limited-precision approximation to some continuous

| funclion {see Forsythe (1969)). We wank to find an approximation Eto

An Algoritim with Guaranteed Convergence for Finding a a zero £ of ff , to within a given positive tolerance 28 , by evaluating

vera of a Function f at a small number of points. Of course, there may be no zero in [a,b]

] if £ is discontinuous, so we shall he satisfied if f takes both |

nonnegative and nonpositive values in [t - 28, E+ 25] Nn la,b] . |

| | Clearly, such a t may &lways be found by bisection in ebout
| log, (b-a)/5] steps, and this is the best that we can do for arbitrary Tf .

| In 1his chapter we describe sn algorithm which is never much slower than
| | bisection (see Section 3), but which has the advantage of superlinear

convergence to a simple zero of a contimiously differentiable function, if

the effect of rounding errors is negligible. This means that, in practice,

| convergence 1s often much faster than for bisection (see Dection hy.

. There is no contradiction here: bisection is the oplimal algorithm (in a

minimex sense) for the class of all functions which change sign on [a,b] ,

| but it is not optimal for other classcs of Punetions: Colley ol anctions
: | with simple zeros, or convex functions (see Gross and Johnson (1959),

: Bellman and Dreyfus (1962), and Chernousko (1970)) .

Dekker's algorithm

The algorithm described here is similar to one, which we call Dekker's

algorithm for short, veriants of which have been given by van Wijngaarden,

Zonncveld and Dijkstra {1963), Wilkinson (1967), Peters and Wilkinson (1969),

: d1
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confusjon if we omit subscripts, b is the best approximation so far

and Dekker (1969). We wish to emphasize Lhal, although these variants of
to {, a is the previous value of b , and { must lic between b

Dekker's algorithm have proved satisfactory in most practical cases, none
and c . {Initially a =-c¢ .)

of them guarantees convergence in less than about (b-a)/& function
If f(b) = 0 then we are finished. The ALGOL procedure given by

evaluations. An example for which this bound is attained is given in
Dekker (1969) does not recognize this case, and can take a large number of °

Section 2. On the other hand, our algorithm must converge within about

5 small steps if f vanishes on an interval, which may happen because of
(log,[(b-a)/8])" function evaluations (see Section 3). Typical values .

- 10 12 underflow. This occurred with f(x) = x? on an LBM 300 computer . |
are b-a =1 and 5% = 10 » giving 10 and 1000 function evaluations

If f(b) £0, let m = (c-b)/2 . We prefer not to return with
respectively. Our point of view is that 1000 is a reasonable number, but ~ :

10 tb = 3 (btc) as soon as |m|< 2% , for if supcerlincur convergence has set
10 might as well be « , for a computer program which attempts to

10 in then b , the most recent approximation, is probably a much better
evaluate a function 10 times is almost corlLain Lo run out of time. 1 a

approximation to § than aloe) is . Instead,we return with § = b
On well-behaved functions, e.g., polynomials of moderate degree with

if lm | <8 (so the error is no more than 8 if, as is often true, f is
well-separated zeros, both our algorithm and Dekker's are much faster than

nearly linear between b and c¢) , and otherwise interpolate or extrapolate
bisection. Our algorithm is at leasl as l'asl as Dekker's, and often slightly

linearly between a and b , giving a new point i. (3ee later for
faster (see Section L4), so the only price to pay for the improvement in the

inverse quadratic interpolation.) To avoid the possibility of overflow
guaranteed rate of convergence is a slight increase in ithe complexity of

or divisicn by zero, we find 1 as b+ p/q , and the division is not
the algorithm.

performed if 2|p|> 3|m.q| , for then i is not needed anyway. The

reason why the simpler criterion lp} > \m.q] 1s not used is explained

| later. Since 0 < |f(b)} < |f(a)| (sec later), we can safely compute
2. The algorithm

s = f(b)/f(a) , bp =+(a-b)s , and q = +(1-s) .
The algorithm is defined precisely by the ALGOL 60 procedure zero

ca : : . pb) "a .

given in Section 6. Here we describe the algorithm, but the ALGOL procedure Define bY = i if 1 lies between © and b+om ("interpolation"),
should be referred to for points of detail. For the motivation behind both btm otherwise ("bisection"),

our algorithm and Dekker's algorithm, see Dekker (1969) or Wilkinson (1967). bp" if |b-b"| >,
and b' =

At a typical step we have three points a , b and c¢ such that b+ 8.sign(m) otherwise (a "step of & ").

£(b) £(c) 9. ROE 1£{e) | » and a may coincide with ¢ . ‘The Dekker's algorithm takes b' as the next point al whieh ff is

points a , b and ¢ change during the algoritiun, bul there should be no evaluated, forms a new set fa,b,c] from the old set {b,c,b'} , and
contimies. Unfortunately, it is easy Lo conslruct a function ff for which
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steps of ® are taken every time, so about (b-a)/8 function evaluations iteration

are required for convergence. For example, let 2 _ 2(z ) (7.4)
| x/8 co

2 for a+ <x <b, where

-8- bh

(x) = ¢ (2220 °° for x-a, (2.1) n-18 l -z -
gz) = —m—— » (2.5)

lL - =

arbitrary for a <x < a+b .

| has fixed point =z = BI and :
The first linear interpolation gives the point b-d , the next (an

extrapolation) gives h-28 , the next b-3% , and so on. le (z)] <1 (2.6)

Even if steps of © are avoided, the asymptotic rate of convergence |
for =e{0,1) , the result follows from Ostrowski (1966), Theorem 22.1.

of successive linear interpolation may be very siow if f has a zero of
An example for which convergence is sublinear (see Definition 3.2.2)

sufficiently high mulliplicity. (Note that none of the theorems of
is

Chapter 3%, apart from Theorem 3.3.1, apply for a multiple zero.) Suppose :

(0-1) 0 if x =0 ,I A - ]

that feC [a,b], n>1, Ctela,b), FE) £9) =... = £7) =0, fx) = 5 (2.7)
(n) x.exp{-x ©) if x £0 ,

and £7 (¢) £0 (i.e., ft is a root of multiplicity n >1 ). If
x, -

E>0, (==) e (e,1-¢) , and Xo is sufficiently close to § , on an interval containing the origin. This is an extreme case, for ff and[§] = -

then successive linear interpolation gives a sequence (x) which converges all its derivatives vanish at the origin.(As a function of a complex

linearly to  . In fact, equation (3.2.1) holds with p 1 and variable, I has an essential singularity at the origin,) If
- : +

K =p Yl , where the constants pB NPEEAG 1) are defined in Definition
n= ! 0 <x Cxy <2, (2.8)

3.5.1. The proof is simple: if | :

Xr - oo then (x) is a positive, monotonic decreasing sequence, and, by Theorem
a (7.2)

m 5.%.1, its limit must be 0 . Thus, successive linear interpolation does

is the ratio of successive errors, then ea Taylor series expansion of f converge, bul very slowly.

about € gives Some of The examples above are rather artificial, and unless an

1 - yh extended exponent range is used (see later) we may be suved byunderflow,
Vay = (Tp) (1+ 0(1)) (2.3)

1 - Y i.e., the algorithm may terminate with a "zero" as soon as underflow occurs.

as xX = { , provided y, remains bounded away from 1 . Since the
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Tven so, it 1s clear that convergence may occasionally be very slow if problem: [it y as a function of the form p(x)/q(x) , where p and g

Dekker's slgoritim is used. are polynomials and p has degree one. A third possibility is to use the

Our main modification of Dekker's algorithm crnsures that a bisecltion scceleration technique described in Section 3.8. (See also Ostrowski (1956),

is donc al least once in every 2.1og,({b-c} / 8) consecutive steps. | Chapter 11.)
The modification is this: let e be the value of p/a at the step before Care must be taken to avoid cverllow or division by Zero when computing

the last one. If le <6 or v/a > 3 le] then we do a bisection, the new point i . Since b is the most recent upproximation ta the root ( ,
otherwise we do either & bisection or an interpolation jusl as in Dekker's and EB is the previous value of © , we do a bisection if (£(o) | >| fla) ] .

algorithm. Thus, lel decreases by at least a Taclor of two on every Otherwise we have £(b) | ” | £(a) | < Lr(e) | , 50 a safe way to find i is

second step, and when le] <5 a bisection must be done. (After a to compute r, = £{a)/ (ec) , r, = f(b) / fe) ’ rs = £(p)/ (a) ’
bisection we take e =m for the next step.) This is why our algorithm, p= r,((e-b)x, (x) -x,) (0-8) (7-1) Cand q = 1 (r,-1) (r,=1) (5-1)
unlike Dekker's, ig never much slower than bisection. Then i - o+plg , bub as before we do uot perform Lhe division unless it

’ A simpler idea is to take e as the value of p/q at the last step, is pale to do so. (If a bisection is to be done then 1 1s not needed

but practical tests show that this slows down convergence for well-behaved anyway.) When inverse quadratic interpolation is used it is natural to

functions by causing unnecessary bisections. With the better choice of e , accept the point 1 if it lies between b and ¢ and up to three-quarters

our experience has been that convergence iz always at least as fast as of the way from b to c: consider the limiting case where the

tor Deidkerts algorithm (see Section h). interpolating parabola has a vertical tangent at ¢ and f(b) = -f(c) -

y | Thus, 1 will be rejected if 2|p} > 3152) a » which explains the
Inverse quadratic interpolation criterion discussed ove.

If the three current points a , b and c¢ are distinct, we can find

the point i by inverse quadratic interpolation, i.e., fitting x as a The tolerance
quadratic in y , instead of bylinear interpolation using just a and ©b . Ag in Peters and Wilkinson [(1G59), the tolerance (28) is a

Experiments show that, for well-behaved functions,this device suves about combinalion of a relakbive tolerance (IE) and an absolute tolerance (et) .

0.5 function evaluations per zero on the average {see Section LY. Inverse At each step we take :

interpolation is used because with direct quadratic interpoletion we have 5 2efb| +t , (2.9)
to solve a quadratic equation for i , and there is the problem of which

where Bb is the current best approximation to § , E = macheps is

root, should be accepted. Cox (1970) gives another way of avoiding this 1-7 oo
the relative machine precision (B for 1-digit truncated floating-point
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arithmetic with hase B , and half this for rounded arithmetic), and t tc m and tol , where { lies between b = 4 and oc , and lhe algorithm

is a positive absolute tolerance. Since © depends on b , which could terminates only when

lie anywhere in the given interval, we should replace & by its positive Hl < tol (2.14)
minimum over the interval in the upper bound for the number of function a

(unless f(b) =0 , when £ =f =b ). Our assumptions (2.10) and (2.11)
eveluations required. In the ALGCOL procedures the variable tol is used

: give
for & . :

|m]| >5 (|e-b| -e(|b[+|e]))(1-€) , (2.15)

The effect of rounding errors and, similarly,

. . - - a n .

The ALGOL procedures given in Seclion 6 have been written so tha rl < (2efb] +t) (re) (2.16)
rounding errors in the computation of i , m ete. can not prevent |

o J 1 1

convergence with the abcve choice of B® . The number 26 in (2.9) so (2.14) implies thet

may be increased if a higher relative error is acceptable, but it should eb] < (22) (22 |b + 1) (Lrg) + e([o} le) ] (2.17)
nol be decreased, for then rounding errors might. prevent convergence.

The bound for |f-{| has to be increased slightly if we take Since |{-{] < [e-b| and b= { , this gives |
: di rrors into account. 8 ose that, for floeting-point numbers a
rounding erro a upp 3 g~PpO k: -t] < Belt] + et (2.18)
x and y , the computed arithmetic operations satisfy

neglecting terms of order €t and “|e | . Ususlly the error is less
Fl{xxy) = x.y(1+ £)) (2.10)

than half this bound (see above).
and :

Of course, it is the user's responsibility to consider the effect of

Co fl(x+y) = x(1+e)+y(l+ £3) , (2.11)
’ rounding errors in the computation of [ . The ALGOL procedures only

where |e. | <e for 1 =1,28,5 (see Wilkinson (1963)). Also suppose } guarantee to find a zerc { of the computed function f to an accuracy
that  £L(|x]|) = |x| exactly, for any floating-point number x . The given by(2.18), and { may be nowhere near a root of the mathematically

algorithm computes approximations defined function that the user is really interested in!

m = £1{(0.5 x (c-h)) (2.12) |

and .

tol = f1(2 x £ x |b] +1) (2.13)
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Extended exponent range minimizing | £] is probably within 5 of the zero, and certainly

In some applications the range of ff may be larger than is allowed within 2 ). It 1s easy to see that this process terminates after

for standard [floating-point numbers. For example, I(x) might be exactly k+1 function evaluations unless, by good fortune, f happens

det(A -xI) , where A is a matrix whose eigenvalues are to be found. to vanishat one of the points of evaluation .

In Section© we give an ALGOL procedure (zero?) which accepts f(x) Now consider procedure zero or zero2. If k = 1 then the procedure
. zx

represented as a pair (y(x),z(x)) , where f(x) vix).2 (x) (y real, terminates after 2 function evaluations, one at each end-point of the
z integer). Thus, zero? will accept functions in the same representation initial interval, just like bisection. If %X = 2 then there are 2

as is assumed by Peters and Wilkinson (1969), although zero? does nol initial evaluations, and after no more than 4 more evaluations a bisection

require that 1/16 < |y(x)| <1 or y(x) = 0, and could be simplified must be done, for the reason described in Seclion 2. After this bisection,

slightly il this assumplion were made. which requires one more function evaluation, the procedure must terminate.

- : ] Thus, al most 2+5 = evaluations are required. Similarly, for k > 1 ,

the maximum number of function evaluations reguired is

3. Convergence cperties . S
EEAall Sr (5+T+9%... + (21) = (1)Z-2 (3.0)

If the initial interval is [a,b] , assume that ] X
Since Dekker’s algorithm may take up to 2 function evaluations (see

b-a > 0 (3.1) Section 2), this justifies Lhe remarks made in Scetion1. Also, although

| the upper. bound (3.4) is attainable, it is clear that it is unlikely to
and let - oo

~ be attained except for very conlrived examples, and in practical tests our
| k = [ log,((b-a)/3} | , | | (3.2)

algorithm has never taken more than 3(k+1l) function evaluations (see

where & = is the minimum over [a,b] ol the tolerance | Section 4). This justifies the claim that our algorithm is never much

5(x) = 2.macheps. |x| + t (3.3) slower than bisection. . : :

Superlinear convergence
(see Section 2), and | x | means the least integer y >x . By

: Ignoring the effect of rounding errors and the tolerance & , we see,
assumption (3.1), k > 0. {If k = 0, procedure zero takes only two

as in Dekker (1969), that the algorithm will eventually stop doing bisections
function evalual ions. )

. ] when it is upproaching a simple zero € of a ct tunction.. Thus,
First consider the bisection process, terminating when the

oo temporarily ignoring the improvement described in Section 2, the theorems
interval known Lo contain a zero has length < 26 (so the endpoint

: ol' Chapter 3 are applicable (with gq = 1 ). In particular, convergence 1s
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superlinear, in Lhe sense that lim sup jo - | n = 0 , provided Tf f changes sign in I. = = t+28] Nn {a,b} , where B = eft] +t P
Nn -—-

ie pl near the simple zero ¢ (Theorem 3.4.1). If f' is Lipschitz and the number nn ol’ times that Tf is evaluated does not exceed :

continuous near ¢ , then the weak order of convergence is at least (e+1) "2 , where k is given by equation (3.2). Also, if £cC™la,b]

Z(1+/3) = 1.618 ... (Pheorum 3.5.1). For a summary of the obher | has a unique simplc zero §e{a,b) , then | NINA —~ 0 as macheps
results of Chapter 3, see Section 3.10. and t - 0 . Finally, if arithmetic is approximate, but satisfies (2.10)

If (' is Lipschitz continuous near the simple zero & , then, even and (2.11) with € < 1077 , then the algorithm still converges, and
with the inverse parabolic interpolation modification described in Section 2, returns ¢ such that fT changes sign in To ’ where B' = 1.01(3¢ [5] +4)
the weak order of convergence is still gt least 2(1+./5) - The idea of | (The factor 1.01 takes care of terms of order he and “IE | Do
the proof ies that, by Lemma 2.5.1, the curvature at ft of the approximating |

parabolas is bounded, so the ineguality (3.5.13) still holds for some M .

(no longer the Lipschitz constant) and sufficiently small & “4. Practical tesbs
Thus, our procedure always converges in a reasonable number of The ALGOL procedures zero (for standerd floating-point numbers) and

steps and, under the conditions mentioned above, convergence is superlinear zero? (for floating-pointwith an extended exponent range) have been

with order at least 1.618 ... . Tt is well-known that, since | tested using ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968))
(1.618...)° = 2.618... >? , this compares favorably with Newton's method on an IBM 360/67 and a 360/91 with machine precision 16717 . The number
1f an evaluation of ['' is as expensive as an evaluation of f . In of function evaluations for convergence has never been greater than three

practice, convergence for well-behaved functions is fast, and the stopping times Lhe number required for bisection, even for the functions mentioned

criterion is usually satisfled in a few steps once superlinear convergence in Section 2, and for the functions given by (2.1) and (2.7) Dekker's

sets in. algorithm takes more than 10° function evaluations. Zero2 has been

tested extensively with eigenvalue routines, and in this application it

Summary : usually takes the same or one less function evaluation per eigenvalue than

The results ofl Scelions 2 and 3 above may be summarized in the following Dekker's algorithm, and considerably less than bisection.

"theorem" : Tn Table 4.1, we give the number of function evaluations required

If a <b, e =macheps >0 , tt >0, I is defined on [a,b] , for convergence with procedure zero? and functions 7 p x » £40) ,
f(a)f(b) <0 , and arithmetic is exact, then the algorithm defined by and, f(x) , Where

procedure zero (see Section 6) converges, and returns {ela,b] such that
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: : ~i
0 if |x| <3.8x10 ’ Table 4.1: The number of function evaluations for convergence with

r(x) = | (4.1)

and

: 5 SE ee

fl{expl{x)) if x >» -10", Te I. f |F(x) = 4 6.0 (k.2) {x) E 0b L | E -E ‘function evals.
fl{exp(-107) - (x+107)7) otherwise. : —— :

= | -1.0 . +1.1 | 1'-9 h.9gv-10 81 |1 l :

The parameters a , b and t of procedure zero? are given in the ; |

F ’ P S x | -1.0 1 hoo 7 1v-20 © hogerezd 189 |
table. In all cases macheps = 167% . 19 |

x | -1.6 +4.0 1r-20 L.817-21 195; . ]

Tn Table 4.2, we compare the procedure given by Dekker (1969) with : : : ¥
P r(x) | “1.0 #40 11-20 | © 53 |

procedure zero (proccdure zero? gives identical results as no underllow | ;

£,(x) | -1001200 0 © 1-20 + 1'-9 | 79 |or overflow occurs) for a typical application: finding the eigenvalues — eben l T

of a symmelric band matrix by repeated determinant evaluation. Tet A ~

* fF -2,17'-k and £,.(8) =0 .
be the n byn 5-diagonal matrix defined by .

P-r if 1i=3=1 or n, For a definition of’ fy ’ Ly etc., and a discussion, see above.

P if i - J # 1 or n,

a... ={ 2¢ if l|i-j| = 1, (5.3)
1)

r if |i-J| = 2,

0 if |i-j} »>2

Por n>2, A hus eigenvalues

kr 2k |
- p- —2) + ==Ao =P hq.cos Sy. 2r.cos (a1) (4.4)

for k = 1,2,...,n (see Fhrlich (1971)). Table L.2 gives the eigenvalues

Me , the number I of function evaluations per eigenvalue for Dekker's

procedure, and the number n, of function evaluations for procedure zero.
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Teble 4.2: Comparison of Dekker's procedure with procedure zero For each eigenvalue, the tolerances for Dekker's procedure and for procedure

elCo zero were the same. (The tolerance was adjustedby the eigenvalue program

Lo Ck CL ER | Z to ensure that the computed eigenvalues had a relative error of less
1 | 1.05838256968867 10 | 10 | than 5.107" .) Tests were run for several values of no, p, gq and r :
2 1.23995005300754 | 10 | 9 ; the table gives a typical set of results for n=15, p=7, q =17/4,

| > | 1.5623961h 6h 727 10 | 10 and r = 1/2 . To obtain the same accuracy with bisection, at least 40
| by : 2.05%025253169417 10 | 10 | funetion evaluations per eigenvalue would be required, so both our procedure
| 2 | 2.72832Lk936L9769 11 | 10 and Dekker's are at least four times as fast as bisection for this application.

6 § 3.61k10919225782 11 10 Some more experimental results are given in Chapter 5. (For an
T . 4.71048821%57581 | 10 10 illustration of the superlinear convergence, sce the examples given in

| 8 6..00000000000000 9 9 Section 3.9.)
| 9 T.LL175272160161 10 | 9

10 8.97167724536908 | 10 10 |

11 10. 5063081987721 10 10 | |
! :

| 12, 11.9497h74683058 | 10 9 5. Conclusion
| 15 °° 13.202970713h827y 10 o : Our algorithm appears to be at least as fast as Dekker’s on well-
1h 1h. 17k2655087655 | 10 | 9 behaved functions, and, unlike Dekker's, it is guaranteedto converge in a

| 15 14.789376495333 | q 8 reasonable number of steps for any function. The ALGOL procedures zero
J and zero2 given in Section 6 have been written to avoid problems with

For a definition of A, , n, and n, , see above. The A_ have a rounding errors or overflow, and floating-point underflow is not harmful

relative error of less than 5'-14. as long as the result is set to zero.

Before giving Lhc ALGOL procedures zero and zero2, we briefly discuss

| some possible extensions.
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Cox's algorithm and superlinear convergence with order greater than 2 is likely for

A recent paper by Cox (1970) gives an algorithm which combines well-behaved functions.

bisection with interpolation, using both f and f' . This algorithm

may fall to converge in a reasonable number of steps in the same way Searching op ordered ¥ile |

as Dekker's. A simple modi fication, exactly like the one that we have given A problem which is commonly solved by a binary search {i.e., bisection)

in Section 2 for Dekker's slgoritim, will remedy this defect without method is that of locating an element in a large ordered file. The problem

slowing the rate of convergence for well-behaved functions. may be formalized in the following way. Let 8S be a (finite or infinite)
| totally ordered set, and 9: 3 = R an crder-preserving mapping from 35

parallel algorithms | ] h into the real numbers. Suppose that T = (tyr tps mena] is a finite
In this chapter we have considered only serial algorithms. It is subset of 5 , with ty <b, Soe © ty + Given ce [et ),p(t )] y WE

well-known (see, for example, Traub (196h}) that all serial methods which may define a monctonic function f on [O,n] by

use only function evaluations and Legrangian interpolation polynomiels f(x) = Pty) -c s (5.1)

have weak order less than 2 , unless certain relations hold between the N
- where xe[0Q,n] and i = [ x - = . Thus, finding an index i such

derivatives of at § . (Winograd has recently shown that no serial =

that o@(t.) = ¢ is equivalent to finding a zero of f in [O,n] , and
method, using only function evaluations, can have order greater than 2 1

our zero-finding algorithm could be used instead of the usual bisection
for all analytic functions with simple zeros.) Thus, nothing much can te ¥

algorithm. It might be worthwhile to modify our algorithm slightly, so
gained by going beyond linear or quadratic interpolation. However,

as to take the discrete nature of the problem into account. A related
Miranker (1969) has shown that, if a parallel computer is available, a

: application of our algorithm is in finding the median (or other percentiles)
class of algorithms using Lagrangian interpolation polynomials gives

.- : of a list of numbers, but there are faster ways of doing this.
superlinear convergence with weak order greater than 2 under certain B

conditions. Also, it is clearly possible to generalize the bisection .

6. ALGOL G0 procedures
process to "(r+1)-gection” with advantage if a parallel computer with r

independent processors is available. See, for example, Wilde (1064) . The ALGOL procedures zero (for stendard floating-point numbers) and

There does nok appear to be any fundamental difficulty in combining zero? (for floating-point with an extended exponent range) ere given below.

generalized bisection with one of Miranker's parallel algorithms so that Tor a description of the idea of the algorithm, see Section 2. Some
. } ] I. o - . - bl

convergence in a reasonable number of steps is guaranteed for any function, test cases and numerical results are deseribed in Section 4.
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h.6

Procedure zero q := fa/fc; r := Th/fc; .
real procedure zero (a, b, macheps, ©, TT}; :reds proverire (a; ps, 5 1) p :=sx(2xmxqgx(g-r) -(b-a) x (r-1));
value a, b, macheps, t; real a, b, macheps, t;

» 0) Ps, 1; > D0, Ps, TU, q := (g-1) x (r-1) x (8-1)
real procedure fT;
—_— end;

begin comment: :
—_— ifp > 0 then gq := -q else p = -p;

Zero returns a zero x of the function f in the given interval [a,b], ; 4 |=e; e :=d;

to within a tolerance 6.macheps. |x|+2.t, where macheps is the relative
| if 2xp < 3xmxg-abs(tolxq) A p < abs{0.5xsxqg)then

machine precision and t 1s a positive tolerance. The procedure assumes
. d := n/a else d :=e :=m |

that f(a) and f(b) heave different signs; end.
2

real ¢, 4, e, fa, fb, fc, tol, m, p, q, r, 8; a i= b; fa i= fh;
Tf = . = (Db -& f(a); fb f(b); : b := b+ (if abs(d) > tol then 4 else ifm > C then.

int : E:T r= ; I= := b-a;

int C a; fc fa; a e a3 tol else tol);
ext: if abs(fe) < abs(fb) then ]if abs(fe) (£b) fb := f(b); |

1 :=b; bb := cc; t= 8a; :

begina := 1b; ©> BEES go to if fb > 0 = fe > 0 then int else ext

fa t= fb; 1b := fc; fc := fa end; -

end; zero :=b
“= + . = . - .tol := 2 x macheps x abs(b) + 1; m := 0.5 x (c-b); | end zero;

if abs(m) > tol A fb # O then

begin comment: See if a bisection is forced; Procedure zerod

1 b t bs(f bs(fb) th d := r= 1

if abs{e) < tol v abs(fa) < abs(fb) then © m else real procedure zero? (a, b, macheps, t, f);
begin 8 := fb/fa; if a = c then Co
Deglh © / 8; ir @ ptt . value a, b, macheps, t; real a, D, macheps, t; procedure fj;

: begin comment: Linear interpolaticn;
—=no TLE begin comment:

Pp :=2 xmy s&s; q := 1-8 CT
ZerozZ finds a zero of the function f in the same way as procedure

end . -
=: zero, except that the procedure (x,y,z) returns y (real) and z (integer)

else ~

— : so that f(x) = v.22. Thus underflow and overflow can be avoided with
begin comment: Inverse quadratic interpolation;
Degin comment 4 P ? a very large function range;
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L.6

real procedure pwr? (x,n); value x, nj; real x; integer nj

n r := pwrP(fb, eb-ec)/fc;
comment: The procedure is machine-dependent. It computes x.2 for

p= sx (2xmxax{q-r)- (b-a) x (r-1));
n <0, avoiding underflow in the intermediate resulls;

gq := (g-1) x (r-1} x (s-1)
pwr? i= 1f n > -200 then x x2 tn else

end;

if n > -h00 then (xx 21 (-200))x? t (nt200) else
: a ifp > 0 then q := -g elsc p := -p; 8 =e; e :=d;

if n > -600 then ((x x21 (-200)) x21 (-200)) x 2 1 (n+40Q) else 0;
if 2xp < 3xmxqg-abs(tolxa) A p < abs(0.5xs5xg) then

integer ea, eb, ec; :

d: p/gelsed:=e =m
real ¢, 4, e, fa, fb, fc, tol, my, p, q, T, 8;

: end;

f(a,fayea); T(b,fo,eb);
a :=Db; fa := fb; ea := eb;

int: c¢ :=a; fc := fa; ec := ea; d :=e :- b-a;

b := b+ (ifabs(d) > tol then d else ifm > O then
ext: if (ec < eb A pwr2(abs(fc), ec-cb) < abs(ib)) j

tol else -tol);
v (ec > eb A pwr2(abs(fb)}, eb-ec) > abs(fc)) then

f(b, fb, eb);
begin a ;= b; fa := fb; ea := eb;

go to if fb > 0 = fc > 0 then int else ext
b :=¢; fb := fe; eb := ec;

] end;
¢c :— a; fc := fa; ec := es

zero2 := b

end;

end zero;
tol := 2 xmachepsx abs(b) +t; m := 0.5% (c-b);

if abs{m) > tol A fb # O then

beginif abs(e) < tol v

(ea< eb A pur?(abs{fa), ea-eb) <abs(ib)) v |

(ea > eb A pwr2(abs(fb), eb-ea) > abs(fa)) then

d =e :=m else |

begin s : pwr2{fob, eb-ea)/fa; if a = c then ) |

begin p :=2xmyxs; q := 1-s end

else

begin q := pwr2(fa, ea-ec)/ic;
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5.1 :

| 1. Introduction

A common computational problem is finding an approximation to the Co

minimum or maximum of a real-valued function f in some interval [a,b] .

Chapter 5 This problem may arise directly or indirectly. For example, many methods
for minimizing functions g(x) of scveral variables need to minimize

An Algorithm with Guaranteed Convergence for Finding a functions of one variable of the form
Minimum of a Function of One Variable

: | | | r(A) = g(x, + Xs) (1.1)

where X and s are fixed (a "one-dimensional search" from x, in |
| | the direction 5 Y. In this chapter, we give an algorithm which finds

an approximate local minimumof ff by evaluating ff at a small number

of points. There is a clear analogy between this algorithm and the

| algorithm described in Chapter 4 for root-finding (see Diagram 4.1).

Unless f is unimodal (Section 7), the local minimum may not be the global

: minimum of f in [a,b] , and the problem of finding global minima is

left until Chapter 6.

: The algorithm described in this chapter could be used te solve the

| problem (1.1), but, for this application, it may be more economical to

| use special algorithms which make use of any extra information which is
| available (e.g., estimates of the second derivative of » }, and which do

’ not attempt to find the minimum very accurately. This is discussed in

Chapter 7. Thus, a more likely practical use for our algorithm is to find

| accurate minima of naturally arising functions of one variable.
In Section 2 we consider the effect of rounding errors on any

minimization algorithm based entirely on function evaluations. Unimodality

is defined in Section >, and we also define "S6-unimodality” in an attempt
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5.1 5.1
t lain wi thods like golden section search work ev for functions
© crpratn why he HE BP . + aE =H . seems more natural, and could be preferred for the following reasons:

which are uot quite unimodal (because of rounding errors in their )
1. It may be difficult to approximate {'f¥ accuralely because of

computation, for example). In Sections 4 and 5 we describe a minimization
- rounding errors;

algorithm analogous to the zero-finding algorithm of Chapter 4, and same
2. A method which does not need f' may be more efficient (see below);

numerical results are given in Section 6. Finally, some possible extensions
: and

are described in Section 7, and an ALGOL 60 procedure is given in

3. Whether fv can be computed directly or not, a method which avoids
Section 8.

: difficulty with maxims and inflexion points is clearly desirable.

Reduction to a zero-finding problem

Jarratt's method

Ir { is differcntiable in [a,b] , a necessary condition for f j

Jarratt (1967) suggests a melhod, using successive parabolic
to have a. local minimumat an interior point we (a,b) is

interpolation, which is a special case of the iteration analyzed in

f1{u) = 0 (1.2) :
: Chapter 2. With arbitrary starting points Jarrattts method may diverge,

There is also the possibility that the minimum is al a or b : for or converge to a maximumor inflexion point, bul this need nol be fatal if

exemple, this is true if ff does not change sign on f{a,b] . If we the method is used in combination with a safe method such as golden section

are prepared to check for this possibility, one approach is to look for search, in the same way as, in Chapter , we used a combination of

zeros of f' . If I* has different signs at a and b , then the successive linear interpolation and biscetion for finding a zero. Theorem

algorithm of Chapter lI might be used to approximate a point p satisfying 3.5.1 shows that, if I has a Lipschitz continuous second derivative which

(1.2). is positive at an interior minimum up , then Jarratt!s method gives

Since f' vanishes at any stationary point of I, it is possible superlinear convergence to pu with weak order at least B, = 1.3247...

that the point found 1s a maximum, Or even an inflexion point, rather than (sce Definitions 3.2.1 and 3.5.1), provided the initial approximation is

a minimum. ‘thus, it is necessary to check whether the point found is a good and vounding errors are negligible.

true minimum, and continue the search in some way if it is not. Let us compare Jarratt's method with one of the alternatives:

If it is difficult or impossible to compute f' directly, we could estimating f' by finite differcnces, and then using successive linear

}

for a zero of 11 as above. However, g method which does nol need {7 or converge to a maximum. ) Suppose that {mn (uw) > 0 and #3) (pn) £ 0 , +o
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5.2 5.2

avoid exceptional cases (sce Sections 3.06, 5.7 and 4.2). Since at least truncated to single-precision.

two function evaluations are needed to estimate f£' at any point, and Tet ©® be the largest number such that, according to eguations

V1.618... = 1.272... < 1.524... , Jarratt's method has a slightly (2.2) and (2.3), it is possible that

higher order of convergence. (The comparison is similar to that between £1(£(u+5)) <r, (2.4)
Newton's method and successive linear interpolation if an evaluetion of

. : BH = Cr - .
£1 ig as expensive as an evaluation of f : see Colab (1966) or 1t is unreascnable to expect any minimization procedure, based on

Ostrowski (1966).) | -single-precision evaluations of f , to return an approximation p to
yu with a guaranteed upper bound for I -u less than © . This is

50, regardless of whether the conpuled values of {' are used directly,

- . Cr - . - ’

o damental limitalions because of rounding errors as in Jarratt's method, or indirectly, as in the other method suggested
A : in Bection 1. The reason is simply that the minimum of the computed :

Suppose that £<10%[a,b;M] has a minimum at pe {a,b) . Since
function f1(f(x)) may lie up to & from the minimum up of L(x) :

fru) = 0, Lemma 2.3.1 gives, for xc[a,bl],
sce Diagram 2.1.

m

1 2 x 3- + = - + - 2.

Px) =5, +5 pew)” + Fe)” (2.1)

where Im | <M, 5 = f(u) , and ra = '(p) . Because of rounding \
errors, the best that can be expected if single-precision floating-point : £1(£)

“ a

numbers are used is that the computed value fl(f(x)) of f(x) satisfies PE
| £

the (nearly attainable) bound
\

- ~ -

f1(f(x)) = f(x) (+e) s (2.2) Ny- - ~~

where : VR 7

\ 5
el <e (2.5) | | | |

and € is the relative machine precision (see Section 4.2). The error
Diagram 2.1: The effect of rounding errors

bound is unlikely to be ms good as this unless Tf is a very simple

function, or is evaluated using double-precision, and then rounded or oo
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5.2 2.3 :

If £0 > 0 , equations (2.1) to (2.4) give ve define "6-unimodality" to circumvent this difficulty.

) From now on, we consider Lhe problem of approximabing the minimum

2{f, |e ME ( of the computed function, or, equivalently, we ignore rounding errors5 > (|—— | 1-8 - . 2.5

0 0 in the computation of Tf . The user should bear in mind that the minimum

MS ol" the computed function may differ from the minimum that he is really
Thus, if p £ 0 and the term reo is negligible, an upper bound

A 0 21f |e interested in by as much as & (see equation (2.5) above). In particular,
for the relative error rd could hardly be less than Lh. p i . . . ] Lo. Lo¥ nor there is no point in wasting function evaluations by finding the minimum

Q

and full single-precision accuracy in f is unlikely unless of the computed function to excessive accuracy, and our procedure localmin

1£,) | A (Sectlon 8) should not be called with the parameter "eps” much less than
—5— is of order € or less, although {11(f(u)) may agree with £{u) ANP ;Fn imi .

Hl |

to full single-precision accuracy. (See also Pike, Hill, and James (1967). H £5

If f' has a simple analytic representation, then it may be easy to

ft . 5 2 .

compute accurately. For example, perhap 3. Unimodality end S-unimodality

£1001 (x) = £1 (x(1+ £1) (1 cr) (2.6) There are several different definitions of a unimodal function in the
literature. One source of confusion 1s that the definition may depend on

Is! Ef] «< a ge" t t "ind , A . Awhere | xl = & an | xl < € » SL We Can expec © Lind a zero ol whether the funetion is supposed to have a unique minimum or a unique
ith lati or b db e 1a t 66 twikia re ive error bounded by ¢ (sce Lancaster (1966) and Ostrowski maximum (we always consider minima). Xowalik and Osborne {(19G38) =zay that
1967b)). If (2.6) holds it might be worthwhile to a j }

( 267 )) 1 ( ) 1t migh worthwhil use the algorithm f is unimodal on [a,b] if f£ has only one (no more than one?) stationary
described in Chapter 4 to search for a zero of. f! or at least use it to

2 ? value on [a,b] . This definition has two disadvantages: first, it is
refine the approximation iven by a procedure using only evaluations :

PP kB yam = J meaningless unless f dis differentiable on [a,b] , but we would like to
of f . However, this is not so if ' has to be spproximated by . ] .

say that |x| is unimodal on (-1,1] . Second, functions which have
differences, for then (2.6) can not be expected to hold. i ] ]

inflexion poinls with a horizontal tangent arc prohibited, but we would

Tven if f(x) 1is & unimecdal function, the computed approximation . 6H. 9(x) ’ put PP like to say that f(x} = x str x is unimodal on [=2,2] (here
ffx will not he unimodal, because of rounding errors. Note that

(f(x) : ’ & £r{+1) - £'(+1) = 0).
£f1{f{x mast be constant over small intervals of real numbers XxX which ; } }(£(x)) + M © t + Wilde (1964) gives another definition: f is unimodal on [a,b] if,

¢ Co : . ] ;

have the same floating-point approximation fi1(x) In the next section P— x,5x, ¢ La, b]
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i ;

* i x - 1] .
xy < X, > (x, <K OD fx) > £(x,)) A (x, > x > f(x) < f(x) , (3.1) Definition 3.1

f is unimodal on [a,b] if, for all Xo» Xp and x, lab] 5
X

where x is a point al which © altains its lcast value in [a,b] .

1 - ] -7 2 : hs ny

(We have reversed some of Wilde's inequalities as he considers maxima xX. <x, AK, <x. (f(x) < £(x,) > £lx ) < £{x.)) A
Q 1 1 pa of — 1 1 2

rather than minima.} Wilde's definition dees not assume differentiability,

| (£(x,) > f(x.)» f(x) > {x }) . (5.2)
or even continuity, but to verify that a function Tf satisfies (3:1) we

»*

need to know the point x (and such a point must exist). Hence, we ]
~~ Lemma 5.1

prefer the following definition, which i& nearly eguivalent to Wilde's se

x If a point x at which f attains its minimum in [a,b] exists,
(see Lemma 3.1), but avoids any reference to the point x . The

then Wilde's definition of -unimodalityend Definition 3.1 are equivalent.

definition is not as complicated as 1f locks: it merely says that ff can

not have a "hump" between any two points x and X, in [a,b] . Two
. Proof

possible configurations of the points Xp Xp Xs and x in (3.1) and
Suppose that [ is unimodal according to Definition 5.1. If xy < X,

(5.2) are illustrated in Diagram 3.1. | . x
and x, <%X , take x = xq 3 x] =x, , and x! =x . Since fT attains

: *

ils least value at x ,

x

: f(x}) > f(x) = £(x}) , (3.3)

' ™ : so equation (3.2) with primed variables gives
R i - - - a -

; RY f(x") > f(x) , (3.4).; : 0 1 :
’ \ / |X X : : : :

7 2 SL / | and thus | |
[ ~ / ’ . - i

*o | Co 2x.) > f(x.) (3.5)- 1 , 2 a -

Xy | oo . :
*o Similarly, if xy < X, and Xy >X equation (3.2) gives

x* X- : :

x f(x,) < f(x,) . | (3.6)

Diagram 3.1: Unimodal functions
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- . ¥-

Thus, from (3.5) and (3.6), equation (3.1) holds. is unimodal on [-1,1]1 by our definition, but not by Wilde's, for x

Conversely, suppose that (3.1) holds and x, << xy < xy if aN does not exist.

t'(x,) < (xy) then there are three possibilities, depending on Lhe The following theorem gives a simple characterization of unimodality.
a.

position of x There is no assumption that ff is continuous. Since a strietly monotonic

. function (e.g., x”) may have stationary points, the theorem shows that
1. © x, »>x . Thus, by (3.1) ,

both cur definition and Wilde's are essentially different {rom Kowalik

f(x, ) < £(x,) . (5.7) and Osborne's, even if f is continuously differentiable. (Although ;

| x 1 this point is obvious, it is sometimes overlooked! See-alsc Corollary 3.3.)
_= . T = — + R t = a2. XK, =X Take x] = 7 (x, Xs) , and xh =X, |

3

Since x <x} <x! , cquation (3.1) with primed variables gives Theorem 3.1

: f is upimodal on [a,b] (according to Definition 3.1) iff, for some
20x) « T(x) (3.8) | |

= (unique) pela,bl , either T is strictly monotonic decreasing in [a,p)

SO and strictly monotonic increasing in [u,b] , or f is strictly monotonic

« decreasing in ({a,u] and strictly monotonic increasing in (u,b) .

x) = fx) < £(x}) < £{x}) = f(x.) ] (3.9)
- The theorem is a special case of Theorem 3.7 below, so the proof is

De. ¥; <x . Take Xj = Xj, and x} = Xx; . Since x) <Xi <X omitled. The following corollaries are immediate.

equation (3.1) gives £(x}) >» f(x!) , contradicting the assumption that[a

fx) < f(x) . Hence case 3 is impossible, and, by (3.7) and (3.9), we Corollary 3.1 : | :

always have f(xy) < £(x,) . Similarly, it (x) > lx) then If ff is unimodal on [a,b] , then f attains its least value at

f(x.) > T(x) , 80 equation (3.2) holds, and the proof is complete. most once on [a,b] . (Lf f attains its least value, then it must

A simple corollary of Lemma 3.1 is that, if f is continuous, then altain it ab the point p given byTheorem 5.1.)

Wilde's definition ofunimodality and ours are equivalent. For arbitrary

f the definitions are not eguivalent. Tor example, Corollary 5.2

If { is unimodal and continuous on [a,b] , then If attains its
i-x if x <0 ,

I(x) = (3.10) least value exactly once on [a,b] .
x if x =>0
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Corollary 3.3 Proof

If fecla,b) then f is unimodal iff, for some pela,b] , If xX, <H then, by Theorem 5.1, £(x,) > f(x) . Thus, if
f' <0 almost everywhere on {a,pn] and f' >0 almost everywhere f(x) < (x, then p < x, I'he other half follows similarly.

on [0,0] . (Note that f' may vanish at a finite number of points.) If the reader is prepared to ignore the problem of computing !

"unimodal" functions using limited-precision arithmetic, he may skip the

rest of this section.

I'ibonacci and golden section search

If f is unimodal on [a,b] , then the minimum of f (or, if &-unimodality

| the minimum is not attained, lhe point p given by Theorem 3.1) can be As was pointed out at the end of Section 2, functions computed using

located to any desired accuracy by the well-known methods of Fibonacci limited-precision arithmetic will not be unimodal because of rounding

search or golden section search. The reader is referred to Wilde (1954) errors. Thus, lhe theoretical basis for Fibonacci search, golden section

for an excellent description of these methods. (See alsv Boothroyd search, and similar methods, is irrelevant, and it is not clear that these

(1965a, b}, Johnson (1955), Krolak (1968), Newman (1965), Pike and Pixner " melhods will give even approximalely correct results in the presence of

(1967), and Witzgall (1969).) Care should be taken to ensure that the rounding errors. To analyze this problem, we generalize the idea of

coordinates ol the points at which ff. is evaluated are computed in a unimodality to &-unimodality. Intuitively, ©& is a nonnegative number

numerically stable way {see Overholt (1965)). Fibonacci and golden section such that Fibonacci or golden section search will give correct results,

search, as well as similar but less efficient methods, are based on the even though f is not necessarily unimodal (unless & = 0) , provided

following result, which shows how the interval known to contain pu may that the distance between poinls at which ff 1is evaluated is always

be reduced in size. + greater than & . The results of Section 2 indicate how large & is

’ | | likely to be in practice. (Qur aim differs from that of Richtmen (1968) in
Corollary 3.4 | defining the e-calculus, for he is interested in properties that hold as

Suppose that f is unimodal on {a,b] , is the point given by e = 0 .) For another approach to the problem of rounding errors, sce

Theorem 3.1, end a <x, <X, <b . If fx) < f(x) then pu <x, > Overholt (1967) . |
and if f(x) > f(x.) then u >x, . In the rcmainder of this section, © is a fixed nonnegative number.

As well as d-unimodality, we need to define H-monotonicity. If 8 = 0

| then &-unimodality and &-monctonicity reduce to unimodality (Definition 3.1)
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2-3 5.3

and monotonicity. [a,b] , then there is a unique interval IFN = [a,b] such that

Lhe points pp with the above properties are precisely the elements of

Definition 3.2 Lig, ms] » and jp, < hy +d .
Leb I be an interval and f a real-valued function on I . We

say that I 1s strictly B-monotonic increasing on I if, for all Proof

X,%,¢el, Suppose pn cxists so thal ff is 5-1 on [a,u) and B-1t on [u,b] .

x40 <x, DTG) < fx) (3.11) Take eny X,, X,, ¥, in [a,b] with x +8 <x, and x+5 <x, . If
£(x,) < f(x.) then, since £ is 5-4 on f{a,n) , gu <x, . As f is

As an abbreviation, we shall write simply " f is 8-1 on I ".
5-t on [p,b) , it follows that f(x) < r(x) . The other cases are

Strictly O-monotonic decreasing functions (abbreviated 5-1) are defined oo
similar, so F is O-unimodal.

In the obvious way. : .
Conversely, suppose that f is S-unimodal on [a,b] . Let

Definition 3.3 uw, = infi{xela,b] | f is &-1 on [x,bl} , (3.15)

Let I be an interval and ff a real-valued function on I . We :
(so np, < max(a,b-5)) , and1 _

say that [ is §-unimodal on I if, for all Xa XX, cI ,

: TI sup{xela,b]| £ is 8-1 on [a,x1} , } (3.14)

Xg+h <p A XD SX, > (f(x) < f(x) © Plx,) < T(x,))
(so pu, >mnin(atd,b)) .

oo A (D(x) > (x) 5 £(x.) > {x : 5.12(I i == ) ( 0) ( 1) ) Tt is immediate from the definitions (3.13) and (3.14) that f is

5-t on (u.,b] and ff is B-f on (a,p,) . We shall show thatThe following theorem gives a characterization of &-unimodal functions. i!

It reduces to Theorem 3.1 if 3 = 0 . Hy Shy oo | (3.15)

Suppose, by way of contradiction, that

Theorem 3.7

f is B-unimodal on [a,b] iff there exists ucl[a,b] such that Hq > Hy . (5.16)

either f is &-y on la,n}) and &-t on. [p,b] , or f is 6-1 |
This implies that p, >a and uu, <b , so, from the definitions of pn

1 A 1

on [a,p] and 8-1 on (u,b] . Iurthermore, if { is S-unimodal on
i and Ho there are points x' and x" with
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Ho +H 2h)1 te fly,) <u) (3.2

by, < x" < ( 5 = xt <p, (3.17) 2
Thus, the points Yo 2 By and Yq contradict the S-unimodality of 1,

such that f is not &-t on [x',b] and f is not &-y on [a,x"] . sec f is either &-1 on [a,p] or B-t on [u,b] . This completes

Thus, there are points y' , y" , 2' , 2" in [a,b] such that the proof of the first part of the theorem.

Finally, by the definitions (3.13) and (3.14), the set of points u
zB Cy" <x" <x' <y' <zt-p (3.18)

satisfying the conditions of the theorem is precisely [iy s0,] . Since

f(z") < f(y") , (3.19) f is both &-1 and &-, on (185) , we have pu, <u th , and the
and proof 1s complete.

fly") > f(z") . (3.20) |

Remarks

Let xy = z'" , X, = z' , and —
The interval kysk,] depends on © . Suppose that ff attains its

y! if ly") > ry") oo, minimum in {a,b] at pn . By Theorem 3.2, f is ©®-t on (usb)
x, = - (3.21) | :
1 vy" otherwise . and 5-4 on Lass) y SO we lpy-8,p 18] , an interval of length at

most 20 .

From relations (3.18) to (3.21), the points x, x, and x. contradict0 a As an example, consider
S-unimodality (equation (3.12)). Thus (3.16) is impossible, (3.15) must

) 2

hold, and [hysusl is nonempty. f(x) = x" + e.g(x) (3.25)

Choose any J in lush) . From the definitions of pn and pd. |
1 a - on [-1,1] , where g is any function (not necessarily continuous) with

f is 8-1 on [a,u) and 8-t on (u,b) . Suppose, by way of contradiction,re) ’ 7 ’ le(x)] <1, and © > 0 . Since f(x) is bounded above and below by the
that f is neither &-} on [a,p] nor 8-1 on [u,b] . Then there Do o

unimodal functions x +e and x -&€ , we see that ff is H-unimodal if

are points y. and y, in [a,b] such that oo
1 2 ’ 5 > Vv2e . In a practical case & might be {a small multiple of) the

yt <p < yq-8 , (3.22) relative machine precision, and the fact that the least 8 for which IT
. is 6-unimodal is of order 2 , rather than £ , is to be expected from

£{y;) < ru) (3.23) the discussion in Section 2.

and
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The following theorem is a generalization of Corollary 3.4 (which Lwo function evalualions giving I were at points separated by more
is just the special case © - 0) , and shows why methods like Fibonacef than Sy The smallest such interval T. has length no greater thani J

search and golden scclion scarch work on S-unimodal funciions while the (2+/5)8, , 80
distance between points at which f is evaluated is greater than & .

l-l < 3+/5)8, ~ H-2368, . (2.26)

Theorem 35.95 .
Thus, golden seclion search gives an approximation p which is nearly

Suppose that f is d-unimedal on [a,b} , = and L, are the ~.
as good as could be expected if we knew Ory . This may be regarded as

points given by Theorem 5.2, x, and x, are in la,b] , and x +0 < Ky
“ a juslilication for using golden section (or Fibonacci) search to approximate

If fx) < f(x,) then p, <x, , and if (x) > f(x) then p, >x, .
minima of functions which, because of rounding errors, are only "approximately"

unimodal.

Proof

If x, <u, then f(x) > (x) for, by Theorem 3.2 with 1 =p, , :

ff is ©®-4 on [asn,) . Hence, if fx) < f(x) then p, <x, . The
} h. An algorithm analogous to Dekker's algorithm

second hall is similer. :

For finding a zero of a function fF , the bisection process has the

advantage that linear convergence is guaranteed, as the interval known to

contain a zero is halved at cach evaluation of ff alter the Tirst.
Remarks

However, if f is sufficient smooth and we have a good initial
Theorems 5.2 and 5.2 show that, provided & is known, methods like >t : ently sm 6 He

approximation to a simple zero, then a process with superlinear convergence
Fibonacci search and golden secctlon search can locate the interval PF P I P . P 5

will be much faster than bisection. This is the motivation for the

[ks bs ] in an interval of length as close to © as desired. Since the
. —- - algorithm, described in Chapter 4, which combines bisection and successive

minimum pe [p,-0, Hy+5] {see the remarks above), this mcans that pu & ’ P ? :
Co on i : retains th res b .

can be located in an interval of length as close to 30 as desired, tinea interpolation in a way which retain ¢ advantages of both

In practice f may be S-unimodal for all & > 5, , but a sharp There is a clear analogy between methods for finding a minimum and
upper bound for 8, may be dilficult to obtein. If Lhe usual golden for finding a zero. The Fibonacci and golden section search methods have

section search method is used, giving a nested sequence of intervals 1; guaranteed linear convergence, and correspond to bisection. Processes
. 5] FP : ie . but

with limit p , hen Theorem 3.3 shows that (hpoiy) © 1, as long as the like successive parabolic interpolation, which do not always converge, bu
under certain conditions converge superlinearly, correspond to successive
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5.4 5:4 |

linear inlerpolation. Tn this section we describe an algorithm which (see Section 5). Note that we do not claim that our algorithm is

combines golden secl.lon search and successive parabolic interpolation guiteble.for nge in en n-dimensional minimization procedure: an "ed hoo”
in a way which retains the advantages of both. The analogy with the algorithm may be more efficient (see Sections 1 and 7.1).

algorithm of Chapler 4 is illustrated in Diagram 4.1. : |
| Adescriptionof the algorithm oo

Zeros Extrema Co Here we give an outline which should make the main ideas of the

Linear convergence Bisection — Golden section search algorithm clear. Tor quest ions of detail the reader should refer to
| | Section 8, where the algorithm is described formally by ihe ALGOL 60

© Pbuperlinear convergence successive linear <—» Successive parabolic
interpolation inl.erpolation procedure localmin.

| he algorithm finds an approximation to the minimum of =a function fT

Diagram h.1: Feri Seiden tor defined on the interval la,b] . Unless a is very close to b , f is
| never evalualcd at the endpoints a and b , so I' need only be defined

Many more or less "ad hoc" algorithms have been proposed for one- on (a,b) , and if the minimumis actually at a or b then an interior
dimensional winimizstion, particularly as components of n-dimensional | point distent no more than 2.tol from a or b will be returned,

minimization elgorithms. See Box, Davies and Swann (1969), Flanagan, where tol is a tolerance (see equation (4.2) below). The minimum found

Vitale and Mendelsohn (1959), Fletcher and Reeves (1964), Jacoby, : ‘may be local, but non-global, unless f is 5-unimodal for some & <tol .

Kowalik and Pizzo (1971), Kowalik and Osborne (1968), Pierre (1969), AT e typical step there are six significant points a, b, u, v, Ww,
Powell (1964), cle. The algorithm presented here might be regarded as end x , not all distinct. The positions of these points change during

an unwarranted addition to this list, but it seems to us to be more ] | the algorithm, but there should be no confusion if we omit subscripts.

natural than these algorithms, which involve arbitrary prescriptions like Initially, (a,b) is the interval on which I is defined, and
"if ... fails then halve the step-size and try again". Of course, our | | | |

v=w=X-=a+ 25) (v-a) . (4.1)
algorithm 1s nol quite free of arbitrary prescriptions either, so a more

objective criticism of the "ad hoc" algorithms is that for many of them | (The magic number 3 = _ 0.381966... is rather arbitrarily chosen so
convergence Lo e local minimum in a reasonable number of function evaluations thal lhe first step is the same 2s for a golden scclion search.)

can not be guaranteed, and, for the exceptions, the asymptotic rate of A the start of & oyele (1abel "loop" of procedure localmin) the
convergence if ff is sufficiently smooth is less than for our algorithm points a, b . Cv, Y and x always serve as follows: a local
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minimum lies in [a,b] ; of all Lhe points at which £ has been evaluated,
t should be positive in case the minimum is at 0 . Tt is possible that

x 1s the one with the least value of f , or the point of the most recent
the error may exceed 2Z.tol +8 because of the effect of rounding errors

evaluation if there is a tie; w is the point with the next lowest value ] oo . ] oo Co
in determining if the stopping criterion is satisfied, but the additional

of fT ; v 18 the previous value of w ; and uu is the last poinl ab . oo B ]
error ia of order e |x| ; which ig negligible if tol is of order

which f has been evaluated (undefined the firslL time). One possible 1/2
E |x| or greater.

configuration is shown in Diagram L.2, : 1
Let m = 5 (aD) be the midpoint of the interval known to contain

the minimum. If |x-m| < 2.01 - = (b-a) , 1.e., if max(x-a, b-x) < 2.tol ,
then the procedure terminates with x as the approximate position of Lhe

Lo minimum. Otherwise, numbers p and gq {gq > 0) are computed so that

= x+p/q is the turning point of the parabola passing through (v,f(v)) ,

| (w,f(w)) , and {x,f(x)) . . If two or more of these points coincide, or ii’
rd the parabola degenerates to a straight line, then q = 0 .

-

p and q are given by

’ £ 0 .
a u fn b p = + (x-v) (L(x) -£(w)) ~ (x-w)" (£(x)-C(v))] (4.3)
Ww x v

| + (=v) (3=w) (wv) [(x=w) flv, ws) + £lw,x] (4.1)

Diagram h.2: A possible configuration
and

q = Fel (x-v) (f(x) -£(w)} - (x-w) (£(x)-F(v})] (4.5)
As in procedure zero {Chapter 4), the tolerance is a combination of

a relative and an absolute tolerance. If = ¥2(x-v)(x-w) (w-v) flv,w,x] . (4.6)

tol = eps. jx|+t , (4.2) From (4.4) and (4.6), the correction p/q should be small if x is close

te a minimum where the second derivative is positive, so the effect of
then the point x returned approximates a minimum to an accuracy of vend POsLELYEs :

rounding errors in compulin and is minimized. Golub and Smith
2.401 +8 < 3.401 , if f is H-unimodal near x and B® < tol . The & = puting p a mn (Golu "

. 1 }
1967) compute a correction to =(vtw) Tor the same reason.

uscr must provide Lhe positive paramcters eps and © . In view of the (1967) P 2! ) : )
i CL As in ocedure zero, let e be the val f t the secaond-lastdiscussion in Section 2, it is generally unreasonable to take eps much BY ] ’ vastus © p/q & © .

| 1
cycle. f < tol = 0 + b > = thless than 1/2 , where £ ig the machine-precision (see Section 4.2). yele. 1 le} = Ls 4 , x+pfaf (asd), or [v/a] = ale] ’ a

126 127



5.4

2:5

a "golden section" step is performed, i-e., the next value of u ig :

| RE — re
/5 - 1 5-5 : J
(Fx | (a if x >m , | Vi

y

; - 7 Co

JERR + (2, if x <m . ~~

(An optimal choice in the limit: see Witzgall (1969).) Otherwise u is “~ a |

taken as x+p/q (a "parabolic interpolation" step), except that | 2 a x b
UWa— ey

the distances lu-x|, u-a2 and b-u must be at least tol . Then f tol tol

is evaluated at the new point uw , the points a , b, v , w and x
Diagram 4.3: A typical situation after terminalion

ere updated as necessary, and the cycle is repeated (the procedure |

returns to the label "locp"). We see that f is never evalueled at

two points closer together than tol , so &-unimodality for some 8 < tol

is enough to ensure that the global minimum is found to an accuracy cf
5. Convergence properties

2.t0l+d (see Theorem 3.3 and the following remarks).

There cen not be more than about 2.1og,((b-a)/tod) consecutive
Typically the algorithm terminates in the following way: XxX =b-%tol

parabolic interpolation steps (with the current a end b , and the

(or, symmetrically, a+ tol) after a parabolic interpolation step has been
minimum of tol over the interval), for while parabolic interpolation

performed with the condition |u-x| > Lol enforced. The next parabolic
steps are being performed |p/q] decreases by a factor of at least two

interpolation point lies very close to x and b , so u is forced to |
: on every second cycle of the algorithm, and when le| < tol a golden

be x-tocl . If f(u) > f(x} then a moves to u , b-a becomes 2.tol ,
section step is performed. (In this scction, "about" means we are not

and the termination criterion is satisfied (see Diagram 4.3). Wote that
distinguishing between a real number and its integer part.) A golden

two consecutive steps of tol are done just before termination. If a
] section step does not necessarily decrease b-a significantly, e.g.,

golden section search were done whenever the last, rather than second-last,
if x =b-tol and f{(u) < £{x) , then b-a is only decreased by tol ,

value of |p/q| was tol or less, then termination with two consecutive
but two golden section steps must decrease b-a by a factor of at least

steps of tol would be prevented, and unnecessary golden section steps : /1+v5 . i
would be performed. 5 = 1.618... . As in Section h.%, we see that convergence can not

require more than about
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2.5

bog. . 2 converges with strong order pg, = 1.3247... [(sulficient conditions for[a el -

this are given in Sections 3.6 and 3.7).

function evaluations, where For most of the "ad hoe” methods given in the literature, convergence

with a guaranteed error bound of order tol in the number of steps given

kK = 1/10g (259) 2 1.uy.. (5.2)
2 2 by (5.1) is not certain, and, even if convergence does occur, the order

is no greater than for our algorithm. For example, the algorithm of
By comparison, a golden section or Fibonacci search would require about .

Davies, Swann and Campey (see Rox, Davies and Swann (1963)) evaluates f

b-a vat two or more points for each parabolic il, so the order of convergence

K.log, (157) (5.3) Pp b ’ &
is at most /8, = 1.150... (excluding exceptional cases).

function evaluations, and a brute-force search about Sra . : :
The analogy with procedure zero of Chapter L should be clear, and

tiall h h i : .essentially the same remarks apply here as were made in Chapter 4. In 6.  Prectical tests
tical test

praciica ests convergence has never been more than 5 percent slower The ALGOT, procedure localmin given in Section 8 has heen tested using
than for a Fibonacci search (see Section 6).

+ ( ection 6) ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968)) on an
Tn derivi 1 have 3 d the effect of ; ins; -

n deriving (5.1) we have ignore ¢ effect of rounding errors inside ITEM 360/67 and a 360/91 with a machine precision of 16 13 . Although it
the procedure, but it is easy to see (as in Section 4.2) that they can not

p ? Jy ( ) vy might be possible to contrive an example where the bound (5.1) on the
revent convergence If floating-point operations satisf 4.2.10) and (L.2.11

Pp & t GrROLIL Op . vA ) and { )s nunber of funetlion evaluations 1s nearly attained, for cur test cases
provided the parameter eps of procedure localmin is at least 2¢ , )

convergence never requires as many as 5 percent more function evaluations

than would be needed to guarantee the same accuracy using Fibonacci search.

superlinear convergence
In most practical cases superlinear convergence sets in after a few golden

If f is af near an interior minimum up with f"(p) >0 , then ] . :
section steps, and the procedure is much Taster than Fibonacci search.

Theorem 3.4.1 shows that, while rounding errors are negligible, convergence
’ 8 gL181 ? VETS As an example, in Table 6.1 we give Lhe number of function evaluations

will he superlinegr. Usually the algorithm stops doin olden section steps
AP v SOL ps GPLIE Soden t Be required to find the minima of the function

and eventually does only parabolic interpolation steps, with f(x) decreasing
20 2

yz _

at each step, until the tolerance comes into play just before termination. fx) = y (2) . (6.1)i=1\ x-i"

This 1s certainly true if the successSive parabolic interpolation proccess
2 2

This function has poles at x - 1°, ;-++,20 . Restricted toc the open

130 131



5.6 5.6

: 2g, i cr : : .
interval (i ,(i+1)°) for i =1,2,...,19 it is unimodal (ignoring Table 6.1: Comparison of procédures localmin and zero

rounding errors) with an interior minimum. The fourth column of Table 6.1 --- i SL ee

gives the mmber rn of function evaluations required to find this 1 |
| minimum By » using procedure localmin with eps = 1671 and t = 10” 1 3.0229153 3. 6766990169 | 12 1h

{so the error bound is less than 3%.tol , where tol = 1677 |x| 1 10720 ). | oa £.68357556 1.1118500100 11 8 |

The last column of the table gives the number n, of function 5 11.2387017 1.2182217637 1% 1h

cvaluations required to find the zero of | IL 19. 760001 2. 1621105109 | 10 12

| 0 op : } 5 © 29.8282273 3.0322905193 | 11 12
£1{x) = 2. y (21-5) _ (6.2) : i

2 (x -iD) © 6 7 L1.9061162 3.7583856477 | 11 0 11i=1 (x-1") : | |

, , C7 55.0535958  k.355M103836 | 10 11- - : f H

in the interval [i +10 7, (i+1)~ - 10 21 , using procedure zero (Section - bo |
3 71.98456656 L4.8L8pg50563 1 10 11

L.6) with mecheps = 1677 and t - 10719 , 50 the guaranteed accuracy is ; 50.0088685 5.2587585400 i 0 : 10 |
nearly the same ag for localmin. Of course, in practical cases we would 10 1100065327 5. 6036524205 16 1 |Het PRIOR :

seldom be lucky enough Lo have such a simple analytic expression for I' , : : :
. 11 i 132.ch0s5517 5.8956037976 | 10 + 10

s0 procedure zero could not easily be used to find minime of f in this ; 15 © 156.0521144 6. 1438861 5h | 5 10
TL oo AE : :

manner. Also, procedure zero could find a maximum rather than a minimum. oo : :
2.062 . L |

Table 6.1 shows that th ber of functi Tuat edb | 1 0R.002080% 1 6:3550764593 7 | naable 6.1 shows tha e number o wwtion evaluations required by ) SE | ]
| 1h 210.0711010 | 6.5333662007% 9 | 1 |

procedure localmin compares favorably with the number required by procedure 15 © oko .0B00LB3 6 6803650849 9 | 10
| : pot | =zero. Both are much faster than Fibonacci search, which would require bL ;

] ’ E > 16 CL 272.0902669 © 6.7938538305 9 | 10
: : ; J

function evalugtions to find the minimum for 1 = 10 to the same accuracy. J

| 17 0 306.1051253  6.863498105% 0 0
For some numerical results illustrating the superlinear convergence | :; | =) |

| 18 Fhe .136945h 6.85390246%1 9 9 |
of the successive parabolic interpolation process, see Section 3.9. i 19° 380.2687097 : 6. 60084TOLE1 | 9 9J . DOU. .

SN SE A EE LC Co

| For a discussion and definition of the terms, see above.
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'f. Conclusion Parallel algorithms |

The algorithm given in this chapter nas the same advantages as the So far we have considered only serial {(i.e., sequential) algorithms

algorithm described in Chapter bh for finding zeros: convergence in a for finding minima. If a parallel computer is available, more efficient

reasonable number of steps is guaranteed for any function (see equation algorithms which take advantage of the parallelism are possible, JjuslL as

(5.1)}, and eon well-behaved functions convergence is superlinear, -with in the analogous mero-finding problem (see Section L.5). Karp and

order at least 1.3247... , and thus much faster than Fibonacci search. Miranker (1968) give a parallel search method which is a generalization of

There is no contradiction here: Fibonacci search is the fastest method Fihonacei search (and optimal in the same sense, if a sufficiently parallel

for the worst possible function, but cur algorithm is faster on a large Processor is available). See also Wilde (195l) and Avriel and Wilde (1966).

class of functions (including, for example, ¢® functions with positive Miranker (1969) gives parallel methods for approximating the root of a

second derivatives at interior minima). | function, and these could be used to ind a root of f' (or parallel

| methods for finding a root of f' , using only evaluations of I , could

A similar algorithm using derivatives be used). These parallel methods could be combined, in much the same way

We pointed out in Section 4.5 that bisection could be combined with as we have combined golden section search and successive parabolic

interpolation formulas which use both f and {' . We could combine interpolation, to give a parallel melhod with guaranteed convergence,

golden section search with an interpolation method using both I and I and often superlinear convergence with a higher order than for our serial

in a similar way. Davidon (1999) suggests fitting a cubic polynomial to method.

agree with fT and py at two points, and taking a turning point of the }

cubic as the next approximation. (See also Johnson and Myers (1967).) This

method, which gives the possibility of superlinear convergence, could well a. An ALGOL 0 procedure :

replace successive parabolic interpolation (using f at three points) in The ALGOL procedure localmin for linding a local minimum of a function

our algorithm if f' is easy to compute. Tf the cubic has no real turning of one variable is given below. The algorithm and some numerical results

point, or if the turning point which is a local minimum lies outside the are described in Sections % to 6.

interval known to contain a minimum of f , then we can resort to golden
Procedure localmin |

section search.

real procedure locelmin (a, b, eps, bt, I, x);

value a, b, eps, t; real &, b, eps, t, x; real procedure I; ]
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5.8

begin comment: )-8

Lf the function f is defined in the interval (a,b), then localmin comment: Check stopping criterion;
finds an approximation x Lo the point at which f attains its minimum if abs (x-m) > t2-0.5x (b-a) then

(or the appropriate limit point), and returns the value of f at x. begin p i= q := 1 := 0;

t and eps define a tolerance tol = eps. \x|+t, and Tf is never evaluated if abs(e) > tol then

at two points closer together than tol. Tf f is H-unimedal (see begin comment: Fit parabola; |

Definition 3.3), for some & < tol, then x approximates the global ros (aw) x (fx-£v)5 qo (xv) x (fx-fur) | |
minimum of f with an error of less than 3.tol (see Section kh). If DP := (x-v) xa-(x-w) xv; gq = 2x (q-r);

f is not H-unimodal on (a,b), then x may approximate a local, but | if q > 0 then p := -p else q := -q;

non-global, minimum. eps should be no smaller than 2.macheps, and : r:=e; e:=d

preferably not much less than sqrt(macheps), where macheps is the end;

relative machine precision (Section Lk.2). +t should be positive. For if abs(p) < abs(0.5xaxr) Ap >ax (ax) Ap <qx (b-x) then

further details, see Section 2. begin comment: A "parabolic interpolation step:

The method used is a combination of golden section search and d := p/a; u i= xid;

succession parabolic interpolation. Convergence is never much slower comment: f must not be evaluated too close to a or b;
than for a Fibonacci search (see Sections 5 and 6). If f has a continuous if u-a <2 v b-u <t2 then d := if x <m then tol else -tol

second derivative which is positive at the minimum {not at a or b) then, end

ignoring rounding errors, convergence 1s superlinear, and usuelly the else

order is at least 1.3207... begin comment: A "golden seclion” step;

real c, d, e, m, Pp, Gq; r, tol, t2, u, v, w, fu, fv, Iw, Tx; e := (if x <m then b else a)-x; 4d :=cxe
ce is 0.381966011250105151795413165634; comment: c = (3 -sart(5))/2; god;

V = W =X :=a+tcx (b-a); e := 03 cominent : ff must not be evaluated teoo close to x; | :
fv i= fw i= fx i= T(x); u i= xt (if abs(d) > tol then d else if 4 > O then tol else -tol);

comment: Main loop; fu i= (un); :
loop: m := 0.5X (ath); | | comment: Update a, b, v, w and x; :

tol := eps x abs(x)+t; t2 = 2 y tol; Af fu < fx then -
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5.8

begin if u <x then b := x else a := x;

v i=wy fv i= fwy; wi=x; fw =x; x =u; fx : {fu | |

end

else Chapter 6.

| begin if u < x then a =u else b := uj

21 fu ZY ¥=x ren Global Mininization Given anUpper Bound on ihe

begin v :=w; dv i= fw; ow oi=wi fw i= fu end Second Derivative

else if fu< fv vv =x vv =Ww then

begin v =u; fv = {u

end |

end;

go to loop

Jocalmin := fx X

end localmin;
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6.1 Some fundamental limitations : |

1. Introduction : If feCla,b] , let

Minimization procedures like the one described in Chapter 5 can

©, = inf (£02)| xela,v1) (1.2)
only guarantee to find & local, not necessarily global, minimum of a

function feCle,b] . If f happens to be unimodal then a local and

minimam must be the global minimum in (a,b] , but in practical problems fe = int {xela,ol | £(x) = Ped . (1.3)

it often happens that f is not unimodal, or that unimodality is difficult
Bven if f satisfies very stringent smoothness conditions; the problem

to prove. In this chapter we investigate the problem of finding a good

of finding Ho is improperly posed, in the sense that He is not a
approximation to the global minimum, given weaker conditions on f than

continuous function of f (with the uniform topology on Cla,b] ).
unimodality. As usual, we consider methods which depend on the sequential

For example, consider
evaluation of f at a finitc number of points, and our aim is to reduce,

ag far as possibie, the number of function evaluations required to give : f, (x) = cos{mx)- Bx (1.14)
an answer which is guaranteed to be accurate to within some prescribed }

: on [-2,2] . If ® >0 then pu. ~1, but if 8 <0 then pn, ~ -1,
tolerance. ff - - f=

CL gp a very small change in 1 can cause a large change in H, -
Tn Sections 2 to 6 we describe an efficient algorithm for tL

. ] Instead of trying to approximete pn. , we should seek to approximate
approximating the global minimum of a function of one variable, given an f

@,. = f(u,) . Since
upper bound on the second derivative. There are many obvious applications T {

for this algorithm. Vor example, when finding a posteriori error bounds - } |r thi g or ple, fin ing a posteriori erro un | 9. ?| < lf all. (1.5)
- for the approximate solution of elliptic partial differential equations,

: for all f and g in Cfa,b], ©. is acontinuous function on C[a,b] , so
we may need to find the maximumof |f(x)| (rox, Henrieci and Moler-(1967)). fr

the problem of finding ®,. is properly posed. However, given + >0,
Instead of working with |f(x)| , which may have discontinuous derivatives,

it is still impossible to find 9 such that
it 1s probably better to use the relation -

| Cece << to (1.6max |f(x)| = -min(min(£(x)), min(-f(x))) . (1.1) | el = )
x xX X N

with a finite number Ny of function evaluations, unless we have some

In Sections 7 and 8 we show how to extend the method to functions of a priori informetion sbout f .

several variables, and ATGOL €0 procedures are given in Section 10. | _
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1 6.1

_Ppriori conditions on f Thus, a quite weak condition on f , enabling us to approximate ©7
If feCla,b) , the modulus of continuity -w({;3) is defined (as with a finite number of evaluations of f , is that we have a bound

mn Section 2.2) by W(®) , satisfying (1.8), on the modulus of continuity w(f;8) of f .

] : For example, if rec a,b] and
w(f;8) = su | {x} - £(y)| (1.7)

}x-y] <® |
' 1

x,yela,b] | WEL <M , (1.14)

: : - : then we can take
for & >» 0 . Suppose that a function W(B) is given such that

wis) = Mx . (1.15)

lin WB) =0 , (1.8)
5 0+

Unfortunately, the procedure suggesied above will be very slow if

and oo | t is small: in fact, about (b-a)M/(2t) function evaluations will be

w(f;5) < W(5) (1.9) required. I[n the worst case, though, it is impossible to do much better :
than this without knowing more about f . To sce this, consider

for all © >O0 . Given t > 0 , choose 5 > 0 such that
’ minimizing ea function which is known to be in the class no

Wid) <t | (1.10)

Lf, (x) = min (1.01t, M{x-c|) | cela,b]} . (1.16)
(always possible by (1.8)), and evaluate f at points Ks voorX in : :

If

la,b] such that | | :
5 = 1.01t/ M ; (1.17)

max min [x-x.| < & . (1.11) |
xcla,b] O<i<n ~ ]

and © ig computed [rom (1.12) for some set of points Xs -enp%, 5 then

(For example, we might choose X, = ath , * = ati , X, = 85% , etc.) there is a choice of cela,b] for which @ fails to satisfy (1.13)
If : unless (1.11) holds, so at least [ (b-a)M/ (2.02%)| function evaluations

~ are required. In some cases less function evaluations will be required:
Pp min fx.) (1.12) |

O<i<n . : .
Sd : for example, if

then, [rom (1.7), (1.9), (1.10) and (1.11), | f(x) =mx , | | oo (1.18)

. then it is enough to evaluate f at a and b . (See also Section 5.)
PDIP (1.15) :
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Tnstead of having an a priori bound on Esai y we could have a polynomial P, (x) ig linear. If r > 2 +ihen we can bound | (x) |

bound in (a.,8,, 4] , and apply the procedure for r = 2 to minimize P(x) .
r

net ML <M (1.19) (This idea for finding bounds on polynomials in an interval was suggested

(x) | by Rivlin (1970).) Because successive intervals laa. ] are adjacent,on ||f r | , for some r >1 . We show below that, with such a bound, i771
| A the number of function evaluations required to find ¢ satisfying (1.13)

the maximum number of function evaluations required to find |

1/r does not exceed .
satisfying (1.13) is of order (M/t) .

The cese r = 1 is discussed ubove, so suppose r > 2 , and lel N = (r-1l)n+2 ’ (1.23)

j 1 where n 1s given by (1.20). :
- T

: b - LM . 1

n = Ca (E) . (1.20) since N is of order (M/t) / , the method described above is )cos(== )
er

not likely to be practical for small t unless r >2 . On the other

Define S = Bek , a, = a+is for i= 0,.e.,n (80 a = b) , and hand, in practical problems it is usually difficult ta obtain good hounds
on the third or higher derivatives of f (if they exist). Thus, in the

1

5 cos((3 -gw'x) t of this chapt that r = 2 t t that
a. . =a. tx 1 - — (1.21) rest o 1s chapter we suppose that r = 2 . It urns ou hat a one-
Ls J cos(5 n/ x) ] .

. sided bound

for 1 =0,...,n-3 and J = 1,...,r (so a1 = a; 3 2 1 = 2509) ] (x) <M (1.74)
t P. = IP(f;a. cv. @, be Lhe polynomial of degree r-1 which ooLe i (1; 1,177 ix) Poy is suflicient, instead of the two-sided bound (1.19). If f"(x) has a
incides with f at a. .,...,a. _ . Then, Lemma 2.4.1 and the bound ~

coLneLges i,1? Ti, ? physical interpretation (e.g., as an acceleration), then a bound of the
. show that, for all =xela,,a, :

(1.19) ’ ni 141] ’ form (1.24) can sometimes be obtained from physical considerations.
- al

|£(x) -P, (x) | < |Ge-ay ))e-(x asp | Mfr: (1.22)

3 fou
The right side of (1.22) is no greater than EEN —-1 ° 0 The bhasic theorems

2 cos (5-) rie
lhe zglobal minimization algorithm which is described in the next

and, by (1.20) and the choice of © , this is no greater then t/2 . ‘hus,
section depends on the simple Theorems 2.1, 2.2 and ?.3. Theorem 2.1 is :

we need only find the minimum of each polynomial P. (x) in la 2, |
related to the maximum principle for elliptic difference operators, and

to within a tolerance t/2 . This is easy if r = 2 , for then each Co |
also to some results in Davis (1965). We assume that feC [a,b] , and
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fix) - '(y) < M{x-y) , (2.1) Theorem ©.2

for all x,y in. [a,b] with x >y . (Weaker conditions suffice: Suppose (2.1) holds, M >0, a <c <b, f(a) > fc) , and
7

see Section 7.) If feC" [a,b] then the one-sided Lipschitz condition f'(e) = 0 . Then

(2.1) ie equivalent to fon

| | ca» [HEE 2.6
| | 5 M

(x) < M (2.2)

: Proof
for all xela,b] . — | |

) Applying Lemma 2.1 with a suitable translation of the origin gives

Theorem 2.1 :

EE 0 - ft{c). < f(a)=¢) _ = Mac) ’ (2.7)
Suppose (2.1) holds. Then, for all xela,b] , : :

SO

(b=) £(a) +(x-a)i(b) 1 | 1 2 :
tx) > va - 5 M{x-a) (bx) (2-3) f(a) - f(c) <3 Mlc-a)" (2.8)

and the result follows.

Proof

The proof is imnadiate from Temma 2.h.1. Tomma 2.0

: | Suppose (2.1) holds, M>0, and a <0 <b < -f'(0)/M . Then
Lemma 2.1 —- —

frp) <0 .
Suppose (2.1) holds and a <0 <b . Then = ] |

~ Proof

© fro) <. fa) = 70) ~- : Ma . . (2.h) —_—
| By condition (2.1),

£1(b) < £1(0) + Mb 2.CI | (b) < #1 (0) +) (2.9)

Applying Lemma 2.%.1 Lo ©{-x) , we have and, as

1 2 b <-fr(o)/Mm , (2.10)
fla) << {0} + af'(0} + 5 Ma”, (2.5) |

the result follows.

so the result follows.

i) *

146
147



6.2 6.3

Theorem 2.3 3. An algorithm for global minimization

o 2.1) holds, M > 0 a<c <b, and
Suppose ) ’ ’ = Suppose that fcC [a,b] and, for all xe[a,b] ,

. atc fla)-f(c ) (2.11) . .¢ <x =< min (b,5 - Tyra. ) rx) <M . (3.1)

Then We want to find nela,b] and o = £1) satisfying

f(x) <0 (2.12) B-0. <t (5.2)

where t 1s a given positive tolerance, and
Proof

There is no loss of generality in assuming that ¢ =0 and b =X . . Pp = min f(x) . (3.3)
xela,b]

By condition (2.11),
Tf M <0 the problem is quite trivial, for Theorem 2.1 says that f(x)

f - £(0 1f f(a) - T(O 1

- b = x <x a - f(a) - £(0) = L(Lartio) = va ) 2 (2.13) can nol lie below the straight line interpolating ff at a and b , so
Pp, = min (f(a),f(b)) (3.4)

so, by Lemma 2.1, we have -

b < -£ (0) (2.14) If M > 0 the problem is not trivial, although we saw in Section 1 that
: there does exist an algorithm to solve it.

Now the resull follows from T.emma 2.2. |

The basic algorithm

Remarks | The algorithm described in this section is an elaboration and
2.1, 2.2 and 2.5 are sha as can easily be seen by

Theorems ’ > Ps 1 oo refinement of the following basic algorithm. (The notation is consistent
] itable parabola with leading term 5 Mx~ . The

taking fx) gs a sui P 2 with that of the AIGOL procedure glomin (Section 10), except that weP g

lized in Section and the proofs glven there show : . _ |
theorems are generatized in I F write M for m, pp for x, ¢ for y (= glomin), and ££ for

1 ded to justi our minimization algorithm follows
that everything neede o Justify g mecheps.)
from the fundamental inequality (P.3). The proofs given in this section | B

are, however, simpler and more intuitive than those in Section T. 1. Set © «min (f(a),f(b))} ,
Le if @ = f(a) then a else b ,

and a, — a .
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iN - t+2. If M <0 or a, >b then halt. COCtherwise set a, « some point ta,) rt
= 2 2 3 po-a, > |—S—— (3.7)

in (a.,b] (e.g., Db: see below for a better choice). Zl

3. If flaz)<® then set [1 - a, and § - f(a) A Thus, at step 2 it is safe to take a, = al , wher
L. If the parabola y = P(x) , with P"(x) =M , P(a,) = f(a,) ,

a) = 57 5 j | | f(a) -P+tand Pax) = f(a) , satisfies P(x) >0-t for all x in ENE , | at ~min{b, a, + ° (5.8)
then go on to 5 . Otherwise set fxg -2 (a, + ay) and go back to 5 . 2 H

‘ Set a. « a, and go back to 2 . . .

Z he 2 3 S and with this choice there is no risk that ay will have to be reduced
1/2

We shall see shortly that (wilh a sensible choice of a, at. at step 4. Since the right side of (3.7) is at least (2t/M)7 7, the
step 2) the basic algorithm must terminate in a finite number of steps. basic algorithm must converge in a finite number ol steps if, in step 2,

- -. | -

In view of Theorem 2.1 and step 4, it is clear that, when the algorithm we choose any 23 in the range laz,D] :

terminates, it does so with ¢ satisfying (3.2). If +f is decreasing rapidly at as then heorem 2.2 may give a

. better bound than (3.7). . Apply Theorem 2.5 with c¢ replaced by a

Refinements of the basic algorithm and a replaced by a point a, -dy (with d, > 0) where f has

The crux of the problem is how to make a good choice of as at already been evaluated. (This is not possible if a, = 4a .} Combining
. - . —- 1

step 2 of the basic algorithn. We want to choose a, as large as the result with (3.8), we see that it is safe to choose Az = ar at
- : ~ .

possible, but not so large that it has to be reduced at step b. step =, where

Theorems 2.2 and 2.3 provide useful lower bounds. If the global minimum ra) - Flu) +t
: ) al = min|b, max a, ER — ’

ho lies outside (a,b) , or if Po. >P-t, then the algorithm may - 7 5M
halt, for © already satisfies (3.2). Otherwise :

- ~ + 2.

| NE f(a,) f(a, ds) Ole 5.9]
fr{k,) - 0 (3.5) o = 31% 1 Af = M.d

2 0

and

£(1.) <P-t , (3.6) Here e 1s a positive tolerance, and the term 2.0le is introduced
to combat the effect of rounding errors (see equations (3.41) and (3.52)).

so, from Theorem 2.2 with a replaced by a, and c¢ by pH. , i . oo
2 r The choice aj = af is safc, bub it is possible Lo speed up the

algorithm by sometimes choosing a > az - Because we want to avoid
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heving to decrease a t step 4, the b i :
. 3 a ep 4, the best cholce would be to take the last three points at which 1 has been evaluated. To avoid

a, = min (b,aX where a¥ 1s the absc] j . :

5 (v, 5) ry WHE Hy 18 Lhe abstissa of the point to the right overstepping af too often, because of the inadequacy of the parabolic
of a, where the ¢ e = f(x) int ts t rab it

2 arve y (x) intersects the parabola P , with approximation to [ , the procedure uses a heuristic "safety factor”

second derivative M , which passes through (a, fay) and attains nc(0,1) . If
ils minimwn value P'-t to the right of &y - Here

a; = min (b, a, + hay - a) (3.11)
9" = min (9, faz) (3.10) |

: then at step 2 we choose

is the value of @ after step > has been executed, and we can extend

a, = max (a’,8,) (3.12)
the domain of f by defining f(x) = £(b) for x >b if Lhis is 2 273

necessary. A typical situation is illustrated in Diagram 3.1. and if it necessary to reduce bs at step in then we set
ew 1 A

Ay — max (as, 3 (a, + 85) . Procedure glomin also makes a rather
| primitive attempt to adjust h , the adjustment depending on the outcome

- : of step kL.

f

Some details of procedure glomin

\" / The ALGOL 60 procedure glomin given in Section 10 uses the basic
. - i” . algorithm with the refinements suggested above. From equation (3.8)H a :

2 5

: and the criterion in step 4 of the basic algorithm, it is clear that,

to speed up convergence, we want to find a rough approximation to the

Diagram 3.1: The points An and aX " glopal minimum as sScon as possible. In other words, © should be

nearly at its final value as soon as possible. For this reason, procedure

Tt is not practicalto choose az = af , for, although aX exists, glomin incerporates several strategies which are designed to reduce ®
several function evaluations are needed to approximate il accurately. quickly. We emphasize that the global minimum would he found without

Procedure glomin (Section 10) finds a rough approximstion ay to ay ’ ~ using these strategies: the strategies merely reduce the number of
without any extra function evaluations, by assuming that f can be : function evaluations required (see Sections 5 and 6).

approximated sufficiently well by the parabola which interpolates f at The first strategy for reducing @ quickly is a pseudo-random
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search. About 10 percent of the function evaluations are used to Finally, the user may be able to make a good guess at the global

evaluate I at "random" points uniformly distributedin (a,b) . minimum. For example, he may know a local miniwum which is likely

(f is not evaluated at the random point a, if Theorem 2.1, with a to be the global minimum, or he may Imow the global minlmum of a

replaced by a, and x by ay , indicates that f(a) >¢-t , for slightly different function (see the application discussed in Section 8).
such an evaluation would be a waste of time.) AL worst, this strategy Thus, procedure glomin has an Inpul parameter c¢ which may be scl by

wastes 10 percent of the function evaluations, but in practice the the user at the suspected position of the global minimum, and on entry

saving in function evaluations caused hy quickly finding a zood value the procedure evaluates T at c¢ in an attempt Lo reduce ? + 1f the

of is often much more than 10 percent. (The choice of 10 percent user knows nothing about the likely position of the global minimum, he

is, of course, rather arbitrary.) can geb ¢ =a or ©. |

By comparison with the random search strategy, the second strategy We can now summarize procedure glomin (for points of detail, see

is a nighly "non-random" search. f is evaluated at the minimum 3 Section 10) - Step 1 ol Lhe basic algoriltm is performed, and the |
of the parabola which interpolates f at the last three points at which algorithm terminates immediately unless M >0 and a <b . Before

r nas been evaluated, provided that this point a lies in (8,51) choosing age(a,;b] at step 2, the strategies described above are used
and Theorem 2.1 does not show that the evaluation is futile for the purpose to try to reduce ? + Then az 15 chosen, and perhaps reduced at |
of reducing @ . The details are similar to those of procedure localmin step 4, as described above.

(see Chapter 5). Thiz strategy helps to locale the local minima of f The reader who is not very interestedin the murky details of

which are in the interior of [a,b], and, unless the glebal minimum is procedure glomin, or in the eirect of rounding errors, would be well

all a or b , one of Lhese local minima is Lhe global minimum. A bonus advised to skip the rest of this sectlon.

is that, if f is sufficiently well-behaved near the global minimum Some of the formulas used by procedure glomin need an explanation.

(see Chapter 5 for more precise conditions), then the minimum will be When either the random or non-random search strategy is performed, w.

found more accurately than would be expected with the basic algorithm. have numbers q and r , and wish to determine if the relation -

The numerical examples given in Sections © and 8 illustrate this. To
a £0A (a, <aj+r/q <1) A

avoid wasting function cvaluations by repeatedly finding the same local ’

minimum, this strategy is only need about once in every tenth cycle, (b-(a, + r/a))£(a,,) + (r/q) 2(b) . )
although it is always used if @ = f(a) , for then there is a good bea, TT C2 M{r/q) (b-(a, + r/q)) <P-t (5.13)
chance that faz) <P .
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is true. IT m, = 5 M>0, zy = b-a, >0, Yy, = f(b) , and where
Vo = t(a,) , then (3.13) is equivalent to p' =pters (3.19)

1

A q' =r+z5 a. (3.20)

| r = dddm, (3.21)
which is Lhe condition tested after label "retry" of procedure glomin.

: and

(If q = 0 then (3.14) is false, and it is also false if a,, + r/q bt- ha _—
in 0

lies outside (a,b) » since m, >0 and ¢-t <min (¥50 7) 2) 8 = Tm, ‘ (3.22)
To approximate al , we need the point ag* where the parabola

vy = P(x) , passing through (e.,y.) lor i = 0,1,2 , intersects Lhc Tinally, there is the inspection of the lower bound on f in
i'vi

parabola (a, az) given by the parabola

| x » (a,-x)y, + (x-~a,)y oo

: y =m, | X-a,- |———— | t¢-1 . (3.15) a : >
f=. nl =) -

where m, : M >0 and
(In procedure glomin we use c¢ in place of aq to save a storage - :

ocation.) Le Zo = Vo Yq 2 By TVp=Vqos Gy =a,-8, d, = a,-8, ;

and d_, = By= 8y - In the non-random scarch we have already computed If
numbers p and gq (r and q above) with : Yo = oo oo

s p=, (3.25)
- md, }

P= dy7; —dpE (3-16) |
then the parabola (3.23) is monotonic increasing or decreasing in

and

(a,,a,) provided :
= - 2775

a, = 2(dyzy 4,2.) | (3.17)

| lp} 24, - | (3.26)
in order to find the turning point a, +p/a of P(x) . By forming

the quadratic equation for. af , and dividing out the unwanted root a, Otherwise, thc parabola (35.23) attains its minimum in (a, a) 5 and
Co . 1 1 2 2y 1

ve find thet the minimum value is 3 (v5 + v2) - fF my(dy +p) at x =3 (2, +a; +p) .
Thus, at step 4 of the basic algorithm, =a, must be reduced if

af* = ay +p/al (5-18) ’
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1 1 2 2 ~ _

Ip] <a, ng (v*vs) - pod +p) <0 -t , (3.27) Cl{x+y) =x(1+5) + y(1+8,)0 cd fh 2 20

where (3.51)

1.e., 1f ]
=H < E for 1 = 1,2 .

1.,.2 2 ~ ~ | | tT
|p| <d, A Md +P) > (vp mh + (yg -@) +2 (3.28)

With these machines it seems difficult fo be sure that rounding errors

) committed inside procedure glomin are harmless. At any rate, our

The effect of rounding errors analysis depends heavily on relation (3.29). (See equation (3.52) and

So fur we have ignored the effect of rounding errors, which the following analysis.)

actually occur both in the computation of f(x) and in the internal We also suppose that square roots are computed with a small relative

computations of procedurc glomin. Now we show how these rounding errors error, say ’

can be accounted for. f1(sqrt(x)) = /=(1+ 38) ,

Let €¢ be the relubive machine precision (parameter macheps of where (3.52)

procedure zlomin}), i.e., 15) <e .

1-1 H . _
= (truncated arithmetic), (Any good square root routine should satisfy (3.32) very easily. The

FE =
1 1-1 : :

5) B {rounded arithmetic), library roulines for Lhe IBM 760 certainly do: see Clark, Cody, HillsLrom

SE and Thieleker (1967).)
for 1-digit floating-point arithmetic to base 8 . We suppose,

Let us first consider the effect of rounding errors in the computation
following Wilkinson {19%3), that

of f , supposing Tor the moment that the internal computations of

f{x4y) = (xfy)(1td) 5.29)
’ ) procedure glemin are done exactly. The user has Lo provide procedure

where 4 stands for any of the arithmetic operations +, -, x, / , olomin with a positive tolerance e which gives a hound on the absolute

and . error in computing £f . More precisely, we assume that, for all © and

16] SE (3.30) x with Io} < Ee and x , x(1+8) in [a,b] , we have

On machines without guard digits, the relations (3.29) and (3.30) may 110 (e(1+ 5)  £(x) | ce | | (3.35)
fail to hold for addition and subtraction: we may only have the weaker

where f(x) is the exact mathematical function (satisfying condition
relation

| (P.1}}, and f1(f(x)) is its computed Tloating-point approximation. Lhe
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reason for condition (3.33) will be apparent later: at present we only and

need the special case with 5 = 0, i.e. (z. + 2.0le)

21.0 cm, d
[TL(f(x)) - f(x)| <e (3.34) N

| : | where4d. =8.-8. 5, ZZ. = Ya -V2» Mm. - = M, p = £L{£(p)) ,
for all xcfa,b] . D 2 1 0 2 “1 2 2 |

) d , = f1{f{a, for 1 = 1,2 . ThusWe have seen that, without rounding errors, procedure glomin would a Iq (£ 1) ?

return @ (or y = glomin) and p- {or x) satisfying f(a) - £11) + (t+ 2e)
s< |——m—m———— : | (3.140)

~ n ) : : = mn :
Pp <® = fn) <O.vE (3.35) SA

: : | so, as far as the computation of 8s is concerned, everything said
With rounding errors, (3.35) no longer holds, but we shall show that : ? Pe

above holds if +t is replaced by t+ 2e . (Remember that we are

Pe = £1) < Pptttae (3.36) regarding all computations inside the procedure as exact.) We are only

and | oo interested in r when d, >0 and m, >0 , and as

) Pp -€ S® = £f1(f{n)) Se tte (3.37) z, ¥ 2.0le > z, + 2e > f(a) - fa) ’

If the error e in computing f is much less than the tolerance +t , we have
x : : f(a,) - f(a.)

then (3.36) and (3.37) are much the same as (3.35), so rounding errors SE re tlag 21 (3.41)
= 210 dm, i

have little effect on the accuracy of ¢ . : oe

The left hand inequality in (3.36) is obvious from the definition (The reason for the extra 0.0le will be apparent later.) Thus, the

of ¢, - Ta prove the right hand inequality, we must look closely at computed a will not exceed the correct valuc given by (3.9), if +
the "eritical”" sections of procedure glomin, i.e., the sections where is replaced by +t +2e .

rounding errors could make an essenbial difference. (Examples of non- : The other point where rounding errors in the computation

critical sections are the randem and non-random searches.) of f are critical is when we determine whether the parabola v = P{x) ,

In computing the safe choice ax for az according to equation with P'(x) = M , F(a) =¥5 and plas) = Vso lies above the line

(3.9), we compute y = @ -t in the interval (ay, 85) . Let y = Q(x) be the parabola

Vy - P+ t with Q"(x) = M , (a) = f(a) , and Q(az) = flay) . Since
SE (7.38)

2
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6.3
6.3 1

these terms may be accounhed Tor if € <yzs . From (3.h5) and the
vy; = (f(a) < fla) te for i=2,3,

assumption (3.29), we certainly have

it is clear that )

m, > : (1+ 15E)M (3.46)
P(x)< Q(x) +e (3.42)

] 1 . occdure plomin

in (8,505) . Thug, if In the computation of a} according to (5.9), pr ure g
actually computes

P(x) >0 - t (3.13) ) 1

: g = f1| ——— ’ (5.47)

in (&,,a:) , then Ms

> -t-e » £1)-t -2 2%. hh
x) = v2 (is) =¢ & ) and os errors in the computation of f have already been accounted for,

oo . | 5 ing-poi bers. F

t+2e . This completes the proof of (5.36). The left inequality in (3.6) and the assumptions (3.29) and (3.52),
1

(3.37) is obvious, and the right inequality follows from the above . 2
Ayn (yo -@) (245) +t) (1+ 3) (1+3;)

argument if we note that it is sufficient to replace t by tiet(£{u)-o) . I< (1+38,)Pa y (3.48)
= M(1+ 15¢€)

Now, let us consider the effect of rounding errors committed inside -

procedure glomin. We shall show that (3.36) and (3.37) still hold, where 5. | < e for 1 =1,...,0 . Since yO and t are both
provided some minor modifications are made in the algorithm. These nonnegative,

modiflicalions are included in procedure glomin, but, to avoid confusion, (v,-) (Lr E) +4 < (v, +t) (1+e) , (3.49)
they were not mentioned in the description above. The most important

1 50 L

modification is thal, instead of having m, =3 M , procedure glomin has ) =

1 p To 91 (3.50)<g =| ————— . De

m,, = L1(5(1+ 16e)M) , (3.45) 558 1,
2

+ is i :

where the factor 1+16e is introduced purelyto nullify the effect Thus, the slight modification ol' m, has ensured that the computed s

of rounding errors. is no greater than the exact s . Note that, in the derivation of
2

. Co i c : . _

For the sake of simplicity, terms of order are ignored in the (5.50), it was essential that Yo = ® was compuled with a small relative
t of thi tion. 3B 1 Lt lack in so Tr our i alities

test © 18 section ceause @ 10 BAEK In Some Ol OUT Aneqri litle, error, So the assumption (3.29) was necessary: (3.31) would not be encugh.
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6.3 : 6.3

Similarly, to find az ,» we actually compute As before, Lhe computed T is no greater than the correct r ». The
ame is not true for a” , the computed val f a" but at 3

] . (v, _y,) + 2.0 same 1s no e for a; , e puted value o ny , but az is
r=1ll-3 (a, ~a,) + (a, -a,)m, ? (5.51) cither b , r1(a, + r) , or l(a, + s) . BSuppose, for example, thal

_ ex = f(a +s) . (3.57)
where e¢ >0, m, >0, and a, > ay We are only interested in rr ~

if »>0, so Then |

0 > f(y,-y,) +2.0le) ri(£(al)) = £1(£((a, +s) (1+ 5))) (3.58)

> ((y, =v (1+ £}) +2.01le(l-€))(1+¢) where |B] <e , so, from (3.33),
= ER 2 r— —

> (vy-yp*2e) (1+) (5.52) £123) - fla +B) | < e . (3.59)

1 | Li ired <5) t > OH). Sassuming that € < — . {The reason for the extra 0.0le in (2.49) ia (This is why we require (2 52) instead of the weaker (3 oh) ) Thus,
the error in computing &.+s or a +71 cen be ignored, for it has

now clear.) Thus 2 2

1 been absorbed into the assumption (3.33) on e .
r = £f1(- 5 (ryt r;)) , (3.53)

Finally, we have to consider the effect of rounding errors when

where testing lhe condition (3.28). First

: - - - + 5h

0 < (aya) (1-6) <1; < (a ma) (1%e) (3.54) ] a -
p = fl Fo (3.60)

and HM (a h a)

0>r, >——F—" . (3.55) is computed. It is important to note that we use sM , not the
= Mla, -a,)

c e 1 slightly different m,, (givenby (3.45)) here. Thus

Since r > 0 , (3.53) shows that |r, | < |r, | , so, from (3.53) to oy : |
~ Yo TJ

(3.55) p I (1438) (3.61)
N YA -y, tT 2c .

r<r<-=- 5 (a, -a,) + a . (3.56) and
5M (ey - ay)
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6.3 6.4

where 15. | <e for i=1,2. : We should mention a remote possibility that rounding errors can

The test actually made by procedure glomin is whether prevent convergence. This is only possible if fi{a, + 5) = a, , and,

N _ . 5p as s > (1 - 1he) (2t/m 2 » there is no chance of it happening provided
jp < r1((1+9€)d,) A £1( sma(dy FP) > fly,-@)+ (vo -0)+251 , (3.03)

c 2

t > Me” max(a,b°) (3.68)
and we shall show that (3.63) is true whenever the condition (3.28) is

true. First, 1p | < dry implies that le < d,(1+5e) , and thus Thus, convergence can only be prevented by rounding errors if +t is
. unreasonably small.

Bl < r1((1+9e)d)) (3.61) : ;
Tn conclusion, procedure glomin is guaranteed to return ¢@ and p

Similarly, if |p| < d., and satisying the bounds (3.36) and (3.37), provided the input parameters

1 o a . macheps, tt and e are set correctly.

pM{dg+p) > (v,-9)+ (ys -0) + 2t (3.65) |
then : |

I . |
d, +p > (a, + p)(1 - BEY (3.66) 4. The rate of convergence in some special cases

so It is difi{icult to say much in general about the number of function

1 m2 ~p 1.,.,.2 ire ithm ; in Sects .
£1(Z m, (a7 + PY) > M(d + p%) (1 + he) evaluations required by the algorithm described in Section 3 In the

next section we compare the algorithm with the best possible one for

-O + —

| ~ (v5 P) (v5 PB) + 2t)(1 + Se) given M and +t . In this seclion, we try to gain some insight into the ]
~ ~ dependence of the number of function evaluetions on the boundM and

> f(y, - Po)+ (v5 -@) + 2t) .- (3.67) P |
the tolerance +L , by looking at some simple special cases.

(Note the importance of grouping the terms: since Vv, -¢ s yg =P and |
- a - . \ or _ R ] ' .

t are all nonnegative, their sum can be computed with a small relative The worst case
error.) 3 , ] 3

As pointed out above (equation (7.4)), two funciion evaluations
From (5.064 a (5. i Suils ir ~ ~

rom (3.064) and (5.67), the inexact fest (3.63) resulls in a; being are enough to determine p and Pp if M <Q , so suppose that M > 0 ,

reduced whenever the exact test (3.28) says that it must be. as may and let | .

occasionally be reduced winecessarily because of rounding errors, but | ot
this does not invalidate the bounds (3.36) and (3.37), it merely causes ! :

some unnecessary function evaluations.
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We showed above that, if the last function evaluation was at a,cla,b) , A straight line

we could safely chocse Tf the global minimum of f occurs at an endpoint yu a or b,

a BN min(b,e, + 5) (1.2) and I'{p) 2 0 , we can gain an insight into the behaviour ol the
algorithm near | by considering the linear approximation fw) + (x-p) fr {u)

for the next evaluation (step 2 of the basic algorithm). With this

to f(x) . Suppose, for example, that
simple choice of az , about (b-a)/8 function evaluations would be
required. Procedure glomin tries to do better than this, and is nearly f(x) = k(x -a) +1 (4.5)

~elways successful (see Section 6), but the worst that can happen is for some kX > 0 , so u = a . Ignoring the random searches, the

that 8 will be chosen to be bh , and then 8 will be reduced several algorithm will evaluate 1 at the points a , b, c, and then at

‘times at step 4 of the basic algorithm. As 83-2, is halved at each points x, < Ey CX, Cee. Hggo BEY where Xx, = & <x, xy >b,

- such reduction of a, , there can be at most and the points (x, 0(x_)) end (=, p(x 1) lie on the parabola

| b-a | y = P (x) which touches the line y =O and has Pi(x) =M .. (See
~ b-a (1.3) nlog, |—= < | log. | 2=2 .

Eo | 75 = o| TE Diagram 4.1.) If P (x) touches y = 0 sat x =a , then

consecutive reductions of as at step 4. Thus, at worst, about p(x) = =M (x - ye , (1.6)n n

| b-a b-a 50 -

= Joss : ) (4.4) |
. n

: _ = - _ - lz ~a) +t) . (hk.functicn evaluetions will be required. We have ignored the random and : @y ~ x + M (k(x a) +t) = Xora M (lx, 4 a) +t) . (&.7)
nonrandom searches, but these can only add about JE extra function .I
evaluations. ) :

| 2 = [x - a+ t/x , (4.8)
If & is given by (4.1), the term Tog, (252) . in (4.4%) varies : : |

only slowly with M end t+ , so the upper bound is roughly proportional then (4.7) gives

to (b-a) (1/4) 2 . In particular, the upper bound is roughly proportional SEE | =x , | (4.9)n+ 4]

to /M , and it seems to be a good general rule that the number of function SE
EO

evgluations is roughly proportional to /M s even when the upper bound :

(4.4) is not attained (see below and Section 6). n kK M

Thus
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6.4 6.4

x = a Fn Ex 2 - (2 , (4.11) effect of rounding errors, but these should not be important if +t
satisfies the weak condition (3.68).)

and as N 1s the least positive n such that x >b , this gives :
n-— If k is very small, so that k(b-a) << t , then (4.12) gives

{3 rrr . |N = ~~ k(b-a) +t - | t . (4.12) N~ 5 (b-a)/8 (L.1h)

(4.12) shows that WN is essentially proportional to Mo. and the algorithm proceeds in steps of size about 2&6 , where & is

given by (4.1).

v1 -[ A parabola
_ , 4 I{ the global minimum of I occurs at an interior point p , then

/ |

Co : 7 | fru) = 0, so if f(y) £0 we may analyse the behaviour of the

y = f(x) ) ! | algorithm near pn by considering the parabolic approximation
: : / | (1) += £1 (11) (mp1) © to f(x) . Thus, suppose that

j ro

/ | M>m >0 (4.15)
) } and

{IN | | 3 2 | /. ! f(x) = = mlx-p)°+t (4.16)

0 oy Uy Os x. a > ”
) 2 £ where ue{a,b) . The nonrandom search will quickly locate up , so we

may suppose that mn = pu , and, without loss of generality, pL = 0 . The
Diagram 4.1: A straight line; f(x) = k(x-a)+t (for NW = 6)

. algorithm will call for the evaluation of f al points to the left, and

CL | then to the right, of |. . As these two cases are similar, let us
Two limiting cases of (4.12) are interesting. If + is small and .

define x, =u = 0, and study the points x _,x_,... delined above,
k not too small, so that k(b -a} >t , then 0 1 2

except that now f is given by (4.16) instead of by (4.5). In place

N ~~ M(b - a) ol (4.7), we find that
= 2K ’ (h.13)

m , ° 2 mo, 2 2t
cL a a = + — + = = - — + . 1which is independent of £ . (In this section we arc neglecting the a =x \ 5 (x + To) LI | MV Ca =) (4.17)

|
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6.4

6.5

t does not seemto b ible to gi simple ¢ i lik

1 n ~ © be pussy SLVe & SIapLe cxpression Life 5. A lower bound on the number of function evaluations required
(4.211) for x, defined by the recurrence relation (4.17), but we may CL

n Suppose that a positive tolerance t and bound M are given,

solve [or x in terms of x obtainin .

n+l n’ & that [I attains its global minimum ¢, in [a,b] at up » and that

Mm 2M | m , 2, oh f(x) <M (5.1)= | == + | == = + =) .Xoq (4) x (2) 7 (x =) (h.18) |
for all xef[a,b] . (Similar results to those below hold if equality is

If

/ allowed, but the definitions and proofs have to be modified slightly.)1/2

© ( / ) ’ ] ( 9) First, we need a lemma.

this may be written as |
Lemma 5.1

x I Aa x + 2p <= + 2b x . (14.20) "Tf x'ela,b) , then there is at most cone point x"c{x',b] , such that
n+l p=lj n aol n m Js!

the parabola y = P(x) , with P"(x) =M, P(x') = f(x") , and touching

Suppose that po is close to 1, i.e., M is not much larger the line y =¢.-t , satisfies P(x") = f(x") .

than m = f"{p) . Then(1) Proof oo :

x, = =] at ] (Lk.21) Suppose, by way of contradiction, that two such distinct points x"m
-1 :

° - - and x"' exist. Then

For n >1, the first term in (%.20) dominates the second, and M = 2f[xt,x", x" ] = £7(E) (5.2)

Xo = (24) x rotten) as p —1 . (Lk.22) for some &c[x',b] (see Chapter 2), contradicting |
| oo f"(E) <M . 5.3Thus, if p is clecse to 1 , then : )

. oo

x, =~ (55) IE (b.23) Definition5.1n—| p-1 m

For x‘c¢[a,b) , define :

for n>1, and, as the factor ol is large, only a few function
- Pp x" if the point x" of Lemma 5.1 exists,

evaluations will be required. s{x®) =
b otherwise.
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6.5 2
Leona 5.2 Lemna 5.2 shows that N is finite, in [act

17%

If xc[a,b) and s(x) £b , then : | N< 1+ [ (p-a)(/(8t)) / 1 (5.5)

a(x) - x > | ge . (5.0) The following lemma shows that, in order to prove that f(x) > Pp-tfor all xcla,b] , given only condition (5.1), it is sufficient to

Proof evaluate [ at X10 Ep eaXo
This follows by considering the parabola, with second derivative M , Lemma 5.3

which passes through (x,f(x)) and (s(x), f(s{x))) , and touches the ' 5If geCla,b]l , g"(x) <M [lor all xea,b , and

line vy = ¢,-t , since f(x) > 0; and [(s(x)) >P,
= .6a(x) = f(x) (5-6)

Definition 5.2 for n =1,?,...,N and the points x defined above, then

An integer Nand points a =X; < X, < Xo < Lao < Xy = b are

defined thus: ?, Pp -t (5.7)

x TE | |

and, for n > 2 and xq <b , Prool

x = s(x, 4) (Gee Diagram 5,1.) The lemma follows immediately [rom the JeTinds ons and Theorem 2.1.
(Clearly, weaker conditions on g , €.8- condition (2.1), are sullicient.)

Our interest in the points x ere Ky stems from Lhe following

theorem, which complemenls Lemma 5.5.

f | I" Theorem 5.1
Let x] < x5 < une SE be any Vv points lu [a,b] , with v <WN .

; }

| “| / Then there is a function g c"[a,b] , satisfyingi g(x) <M ] (5.8)
CA = Ww OWE NTTU |

1 2 X_ X Xx X b=x2 5 6 7 3 9 10 for all xefa,b] , and

Hp

Diagram 5.1: The points Xys nenaXp (for N = 10)
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6.5 6.5

g(x!) = r(x) (5.9) then it would be sure to fail for either ff or for g, for f and g
n n :

are indistinguishable on the basis of the V function evaluations,

for n= 1,2y...,V¥ , such that : . .

yet e tT < Ps . Of course, we are only considering algorithms which

Ye <Po-t . (5.10) sequentially evaluate f at a finite number of points.
Conversely, Lemma 5.3 implics that N+1 function evaluations are

Proof” : sufficient {just evaluate f at Ho and Ks ee ns®y) , and possibly N

. Suppose, by way of contradiction, that are sulTicient. (See Diagram 5.1.) Unfortunately, Lemme 5.7% does not

: » So. -t : (5.11) : give us an effective algorithm for approximating Pe , for we do not
P29 :

: : know N or the points Kos eoesXy in advance, and a large number of
for all such g . Then x! = a , for ctherwise -g(a) can be Co

1 function evaluations is usually needed to approximate them.

arbitrarily large, snd, similarly, x =b . Since Vv <N , there is
V vo r . hus : -

an n, 1<n<V, such that n= and Xo > Xo Thus, | Efficiency
the parsbola y = P(x) , with P"(x) -M, P(x') = f(x') , and

n n oo : Suppose that an algorithm requires N' Tunction evaluations to

P(x',.}) = (x' .) , is such that - R ne ~
n+l n+l : find @ = f(u) such that © SQ tt is guaranteed. We could define

nin P(x) < 9-1 . oo (5.12) | the efficiency E of the algoritim by |
1 [4 R

nel, x! J] | | |
Co : E = N/N' (5.13)

Since there is a Tunction g as sbove which is arbitrarily close to (Note that E depends on f,M, +t, a and b, as well as on the

P(x) in xx!) » this contradicts (5.11), so the theorem holds. : algorithm.) -We have shown that |

: . E<1 | Co (5.1L)
Consequences of the theorem oo |

: for any correct (i.e., guaranteed) algorithm, so, if an algorithm has
Theorem 5.1 says that, if all that is known a priori about f is

) 5 an efficiency close to 1 , then we are justified in saying that the
that feC“ [a,b] and satisfies condition (5.1), then any algorithm,

. . : algorithm is nearly optimal (for that f , M, t etc.}. In the next
which is guaranteed to find p so that Tp) Lott, must require |

section we give numericel results which show that, for practical examples,
at least N evaluations of f . This is so because, if an algorithm

oo the algorithm described in Section 3 is often nearly optimal.

required only V < N evaluations at points xq << x5 << van < x y 58Y
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6.6

6. Practical tests .
— Table 6.1: Numerical results for procedure glomin

The AILGOL procedure glomin given in Section 10 was tested using

ATGOE W {Wirth and Hoare (1966), Bauer, Becker and Graham (1958)) on an
] oo 21% 0 2 2 2 1.00

TBM 360/91 computer with machine precision 16 ~~ . Some representative ]
; fy 100 15 15 11 0.75

numerical results are summarized in Table 6.1. For all of these 10000 106 106 101 0.95

results the parameters e and macheps were set ab 10" and 16717 o h n 0 0.50
respectively. | 2.1 8 11 8 0.75

| 2.2 13 0.6¢
The table gives the upper bound M (parameter m of glomin) on ff", £ J 4 J

2 8 25 Bl 29 0.85

and the total number of function evaluations required by procedure glomin: 70 4A 56 a0 0.88
- -19 _N' with tolerance tt = 10 8 , and W' with tolerance t = 10 eo The 128 95 141} 120 0.89

lower bound WN defined in Section 5 is also given for t = 10 Le, 1h 58 51 a7 0.75
] i f > 48 65 5 0.79

(Recall that no algorithm which is guaranteed to succeed can take less 3 ‘ -
| | 56 oT 98 | 76 0.78

than N function evaluations.) WN and the points SERRREE (see
Section 5) were computed in the obvious way from Definition 5.2, using -

iy 2 h56 Lo | hb 0.81procedure zero of Chapler b to solve the nonlinear eguation PR ! ’ > 1

P(x)= f(x) , (6.1) The symbols are explained above. The functions are:
| B | f(x) =2 - x on 9 in all cases | = D =where P(x) is the parabola of Iemma 5.1. Iinally, the efficiency 1 ) 17,9] (in a * h=9 ®=T),

2 _ Fa ~~

E = N/N' (equation (5.13)) is given. f(x) =x" on [-1,2] (in all cases p = = 0) ,

; 23 1 12 _ A i
For some more numerical results, see Section B. £, (x) =x" +x on [-3, 2] (for t= 10 20 < 7.10710 , 19] < 6.10 20,

- - _ = o . oh
f(x) = (x+sin(x))exp(x") on [-10,10] (pn = -0.6795786599525 ,

: | ¢ = -0.8°M2%9398476077) , and

: r(x) = (x - sin(x))exp(-x") on [-10,10]

© (po -1.1051366M1665 , ¢ = -0.0634905280364399) |



6.7 6.7

Comments on Table 6.1 for a <y <x <b . Condition (7.2) was necessary to prove the basic

The results for the simple functions f(x) =2-x and f(x) =x Theorem 2.1. For the application discussed in Section 8 (global

verify the predictions made in Section lh. For example, the values N = 11 minimization of a function of several variables), we need to find the

and N = 101 Tor Ty are exactly as predicted: one more than the zlobal minimum of a function which is continuous, but not necessarily

right side of equation (L.12). WN , N' and N" are roughly proportional differentiable. We can justify using procedure glomin, even though f

to YM if M >> 1'(n) (see also the results for £.) » but this rule may not be differentiable, because of the following Theorems 7.1 to 7.3,

breaks down if M ~f"(p) , as expected from equation (k.23). (See the which generalize Theorems 2.1 to 2.3. (If the reader is prepared to

~ results for £5 with M = 2, 2.1, 2.2.) | accept the fact that Theorems 2.1 to 2.3 can be generalized in the

Co -It appears that the number of function evaluations does not depend | _ appropriate way, he may skip this section.)
strongly on t : comparing NW" with N' , we see that the average oo ] |

number of function evaluations required is only about 20 percent more - : Theorem 7.1

for t = 1072 than f t= 107 so |
or = an lor = Let -feCla,b] , and suppose that there is a constant M such

Finally, the efficiency E of the glgorithm is feirly high, even that, for all sufficiently small h > 0 ,

for the difficult functions fy and f_ . This means that no correct 2 |
2 : oC f(uth) - 2f(u) + £(u-h) < Mh (7.3)

algorithm based entirely on function evaluations could do very much better CL

then ours, at least on these examples. This is not too surprising, in for all ue [ath,b-h} . Then, for all xec[a,b] ,

view of the results of Section S. | . - ols L :- + -

£(x) 5 {(b=x) (a) + (x-8) f(b) - =M (x-2) (b-x) . (7.4)
: — b-a 2

: Proof : :

7. Same extensions and generalizations -

i. There 1s no loss of generality in assuming that
S50 far we have assumed thet feC [a,b] and :

| . f(a) = £(b) = 0. 7.5

- | and

for all xela,b] , or at least that fcc a,b] and M= 0 , (7.6)

£r(x) - £'(y) < M(x-y) (7-2) for we can consider f(x) -P(x) , where P(x) is the right side of

(7.4), instead of f(x) . Thus,we have to show that
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6.7 | 6.0
> 0 y

Pr — ? (7-7) - hypothesis that rie) = I'le,) gives, aller some simplification,

where P. is the least value of f on [a,b] . Suppose, by way of fla) - fc.)
. 1 .

contradiction, that (eq -a)(e, -a) ZT ly BE (1.13)
: 2

Pp <O (7.8) |
arid the result follows as c, -a > cq ~ a >0 .

and let

u = sup{xcla,b] | f(x) = Pp} . (7.9) Theorem 7.5 oo

Suppose that (7.3) holds, M >0 , a <c¢ <b , and the interval

By the continuity of ff, f{(u) = ¢p <0, 50 u £a or b . Thus,
3 ate f(a) - £(c) I B

for sufficiently smell h >0 , uelath, b-h] , and, from the I =Tle,p] les = a I has positive length. Then f(x)
definition of u , is strictly monotonic decreasing on T .

| f(u-h) > fu) (7.10)

and | Proof.

Pluth) > Pw) . (7.11) Suppose  X,,X, cl with xy < Xx, We have to show that

Because of the assumption (7.6), this contradicts (7.3), so (7.8) is f(xy) > fy) " (7.18)
impossible, and the result follows. Note the close cor bi 1th - :
P ’ ) ( © @ connection with Apply Theorem 7.1, first with x replaced by ¢ and bb by xq ,

the maximum principle for elliptic difference operators.) then with & replaced by c Xx by x. and b by xX The two’ ? ; 1 2

: resulting inequalities give, after some simplification,

Theorem 7.2
f(x.) - f(x.) x. |x

A 1 2 atc fla) - {(c 1 2 -

Suppose that (7.3) holds, M >0 , a < ¢ < C, <b, and W(x, TE) > = -a-—5 - (7.15)
f(a) > fle) ~ f{e,) . Then

] xq +X,

| f(a) - (ey) Since ——%— <x, , the right side of (7.15) is positive, so (7.14)
Co” 8 7 1 (7.12) holds.

—-M
2 .

 Eroof — |

Apply Theorem 7.1 with x replaced by €1 and bby Co - The Theorems 7.1 to 7.35 generalize Theorems 2.1 to 2.3 respectively.
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6.8 | 6.8

Since the algorithm described in Section 3 is based entirely on Thus, we huve reduced Lhe minimization of f(x,y) , a function of two

Theorems 2.1 to 2.3%, it is clear that condition (7 3) is sufficient for variables, to the minimization of functions of one variable. Procedurea [] 3» - - -

the algorithm to find a correct approximalion to the global minimum glomin (see Sections % and 10) can be used to evaluate ©®(y) for a

of f . This is not surprising, for condition (7.3) is equivalent to given vy , using condition (8.1), TI we could show that
. 1 ? :

(7.2) if TeC [a,b] , and is equivalent Lo (7.1) if (eC [a,b] . In the o" (v) <M , (8.5)
next section, we use this result to develop an algorithm for finding the

then procedure glomin could be used again (recursively) to minimize
global minimum of a function f of several variables. The conditions )

®(y) , and thus, from (8.4), f(x,y) - Unfortunately, examples show
on f are much weaker than those required by Newman (1965), Sugie (195k),

that o©(y) need not be differentiable everywhere in [a ,b ] , so
or Krolak and Cooper (196%). (See also Kaupe (1964) and Kiefer {1957).) yy

Co (8.5) may be meaningless (wc shall see below that (8.5) holds when

P"(y) exists). For example, consider

8. An algorithm for global minimization of a function of several variables f(x,y) = xy (8.6)
} 3 B ;

Suppose that D - [a,b Ix [ab] is a rectangle in RR , on D=1[-1,1]x[-1,1] . Then
f: D -=R has continuous second derivatives on D ’ and constants Mo @(y) = min (y,-y) = -|¥| , (8.7)

- and M_ are known such that

J which is not differentiable at y = 0 , and we can nct expect to prove
f(x <M 8.1
wt Y) - X : (8.1) (8.5). The samc problem may arise if the minimum in (8.3) occurs at an

and : interior point of ©D : one example is

ff (x <M 8.2
yy oY) Sy (8-2) f(xy) = (© - 3x)sin(y) (8.5)

for all (%,y)eD . Let us define @: [a,b ] = R b

L(y) Pel yy od on D=1[{+3,/31x[-10,10] . (£, (%5v) vanishes for x =+ 1,

oy) = ik Flow) . (8.3) so @(y) = -2|sin(y)| , which is not differentiable at 0 , + 7 , etc.)xela ,b
x xX

Fortunately, the following theorem shows that o(y) does satisfy

Clearly @(y) is continucus, &nd | a condition like (7.3), so the results of Section 7 show that procedure

min f(x,y) = min @(y) . (8.14) glomin can be uscd to find the global minimum of @(y) , just as if (8.5)
X,¥)eD ela _,b
(x3) yelay, byl held.
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Theorem 8.1

and

Let f(x,y) and 9(y) be as above. Then, for all h > 0 and o
f(x rhe.) ~2f(x) + f(x ~he.) <M.h (8.14)

ycla +h, b -nhl , ~ ot ~ - rT 2
y ¥Y

Plyrh) -29(y) + 9(y-h) Mb . : (8-9) for all sufficiently small hh >C , all xe RTL such that x, Xt he, cD »
and i =1,2,...,n+1 . Let D' =I X...xI , and define @: D' +R by

Proof oo

From the definition (8.3) of oly) , thereis a function n(vy) Ply) - wer L{yys onnsy ox) ’ (8.15)
LC ntl

from la, ,D J into lab, ] (not necessarily continuous), such that
: Then ¢@ is continuous on D' , }

o(y) = Tuly),y) (8.10)

: : : min f(x) = min 9(y) , (8.16)
Thus xeD ~ yeD ! ~

p(y +h) s f(p{y),y +h) ’ | : (8.11) and
| 2

co | Ply +hel) -2p(y) +oly -hel) < Mh (8.17)

P(yth) - 29(y) + @(y-r) < f(p(y),y+h) ~2f(u(y),y) + f(uly),y-h) , (8.12) n
for all sufficiently small h >0 , yeR such that Voy rhel el! P

rr . . : +1

and the result follows from condition (8.2). and j = 1,2,...,n . (Here ¢, is a unit vector in Rr , and el
| is a unit vector in R& .)

Corollary 8.1 |

1 " -
For all vela ,o 1 at which o@"(y) exists, Front

@" (¥) <M . (8.13) The proof is a straight-forward generalization of the proof of
| Theorem 3.1, so the details are omitted. Co a

Functions of n variables | oo :
Theorem 2.2 shows that it is possible to use procedure glomin to

Theorem 5.2 generalizes Theorem 8.1 to functions of any finite

find the global minimum of a function F(X eee) of any finite
number of variables.

mummuer n > 1 of variables, provided upper bounds are knovm for the

Theorem 3.2 partiel derivatives f (x) (i=1,...,0)7. Tt is interesting that
i%y

Suppose that n > 1, I.. is a nonempty compact set in R [lor no bounds on the cross derivatives Fox (x) (i # Jj) are necessary.
* n+l Lar

i=1,...,n1, D- I XxTy%x-eax® 4 C&R ,. f+:Oh +R is continuous,
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6.0 6.8

1f a one-dimensional minimization using procedure glomin requires : Procedure glomin?d was tested on an IBM 360/91 computer (using

about X function evaluations, then we would expect that about i ATGOL W), and some numerical results are summarized in Table 8.1. In

function evaluations would be required for an n-dimensional minimization. all cases shown in the table the parameters macheps , e and t were

Since K is likely to be in the range 10 < K < 100 in practice (see set at 16-0 , 107 and 10710 respectively. (Thus ¢,-207 <P
Section 6), the computation involved is likely to he excessive for <9 + 1.0002 x 107° is guaranteed, here ©, is the true minimm of f
n >35 . Thus, for functions of more than three variables, wa probably and ¢ is the value returned by the procedure.) In the table we give

must be satisfied with methods which find local, but not necessarily the upper bounds M_ and M, (sce equations (B.1) and (8.2)), the total
global, minima (see Chapter 7). It should be noted, however, that the number of function evaluations N , and the approximate global minimum @

theorems of Section 5 do not extend to functions of more than one (always very close Lo the \rue global minimum Pp) .
variable, so we do not know how far our procedure is from the best

possible (given only upper bounds on — for 1 =1,...,n ). Thus,
there is a chance that a much better method for finding the global

minimim of a function of several variables exists. It is also possible |

that slightly stronger a priori conditions on f (e.g., both upper :

and lower bounds on certain derivatives) might enable us te find the - |

global minimum much more efficiently.

Minimization of g function of two variables: procedure glominzd

In Section 10 we give an ALGOL ©0 procedure (zlomin?d) for Finding Co oe

: the global minimum of a function f(x,y) of two variables, using the Co | |

method suggested above. Note that glomin2d uses procedure glaomin in a | |

recursive manner, for glomin 1s required both to evaluate and to |

minimize @ . The error bounds given in the initial comment of procedure | | SE

glomin2d are easily derived from the error bounds (3.36) and (3.37) for : :

procedure glomin. | :

- 188 | | 189



6.8 6.8

Table 3.1; Numerical results for procedure glomin?d Comments on Table B.1

: The resilts for the simple functions £5 and fs are not very
f M_ M N P

: yoo : | sarprising. As expected from the behaviour of procedure glomin on

0 | 0 1] -1 functions of one variable (see Sections $ and OD), the number of function

1 } Lo g “1 | |
Lo evaluations (IN) increases with M_ and My .

0 - a 2) )

2 I 51 0 : £5 (2,7) : 100(y x-)° + (1 - x)“ is the well-known Rosenbrock
7 2 10 116 0 |
2 10 L hE EET function (Rosenbrock (1960)), and it has a steep curved valley along: :

10 10 956 Lc | the parabola v = x. f(x,y) = L(x) is just the Rosenbrock function
- J A in dissuise, and it is interesting that only 1815 function evaluations

f 22 21 - =5 10 200 13220 18
: _. were required to minimize fy, , compared to 123520 for fs . Thus, it can

2210 : 1815 make a large difference whether we minimize first over x (with vy fixed)

: ~ and then over vy , or vice verss, but it is difficult to give a reliable
fe 4 4 15954 <0 .396652951085471 :

: : : rule as Lo which should be done first. Of course, even the lower figure
" I 4 100336 ~0.7290652961085468
6 i A 130196 -0.39665205108543k of 1815 function evaluations is very high by comparison with 100 or less

) for methods which seek local minima (see Chapter T), but perhaps this is

The symbols are explained above. The functions are: the price which must be paid to guarantee that we do have the global

£. (x,y) = 133 + 99x - 35y on [-1,1] x [-1,1] ; minimum. (This is only a conjecture, for the results of Section 5 have
" - > not been extended to functions of several variables.)[i

£,(%y) =X tb Xy tf ey on [-1,2] x [-2,h] >
: The functions ts and fe are the same, but the domain of fe is

3 : 2 n I :

£,(%y) =300(y -x 1)" + (1-x) on [-1.2,1.2] x [-1.2,1.2] four times as large as the domain of fg . For this [function the size
f), (X77) - £5 (3%) on the same domain; of the domain has much more influence on N than do the bounds M_

} 2 2 : | and M +: increasing the size of the domain by a factor of four increased
f(xy) = sin(x)eos(y)exp(-(x"+y7)) ‘on [-1,2) x [-1,2] ; y ° ne |
— | N by a factor of about 50, but doubling M_ and M only increased N

re(xy) = £000) on [2,4] x [2,4] | ’ |
: : by about 30 percent. Wilh a different funclion, though, we could easily

reach the opposite conclusion. (f, is one example.)
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6.9 6.10

To summarize: 1f it is possible to give upper bounds M, and M one variable are used to give an algorithm for finding the global
on the partial second derivatives rf ., and Ty » then procedure minimum of a function of several variables (practically useful for two
glomin2d will find a zuaranleed good approximation to the zlobal minimum, or three variables), and ALGOL procedures arc given in Scetion 10. 'The

but the number of function evaluations required may be considerable, ALGOL procedures are guaranteed to give correct results, provided the

especially if the domain of f is large or if lhe bounds M_ and M, basic arilhmetic operations arc performed with a small relative c¢rror

are weak. As for one-dimensional minimization, the size of the tolerance (see the remark following equation (3.30)). |

t has a fairly small influence on the total number of function evaluations For practical problems,the main difficulty in using the results of

required. : this chapter lies in finding the necessary bounds on second derivatives.

Finally, we should note that we have restricted ourselves to One intriguing idea is that, if f(x} were expressed in terms of

rectangular domains merely for the sake of simplicity: there is no elementary functions, then the second derivatives conld be computed

real difficulty in dealing with nonrectangular domains. | | symbolically, and upper bounds <~opuld then be obtained [rom the symbolic

second derivatives by using simple inequalities. Thus, the entire

Co process of finding the global minimm could be automated... In some cases

9. Summary and conclusions functions defined on infinite domains could also be dealt with

In Section 1 we saw that the problem of finding the global minimum automatically by using suitable elementary transformations. |
Pp = fu) of a function f defined on a compact set is well-posed, | :
whereas the problem of finding Hp is not well-posed. ‘1'o be sure to - ] |
find the global minimum, some a priori conditions on f are necessary, 10. ALGOL 00 procedures |
and several possible conditions were discussed in Section 1. We | The ALGOL procedures glomin (for global minimization of a function

concentrated our attention mainly on one such condition, a given upper | of one variable) and glomin?d {for global minimization of a function of
bound on f" , and small variations of this condition. : two variables) are given helow. The algorithms and some numerical results

An efficient algorithm for one-dimensional global minimization, | . are described in Sections 3to 6 and 8. |

| based on theorems in Sections 2 and 7, is described in Section 3. The
effect of rounding errors, and the number of function evaluations | | | )

required, are discussed in Seclions 3 to 5, and numerical resilts are :

given in Section 6. rinally, in Section 8 the results for functions of |
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6.10 | | 6.10

Procedure glomin begin comment: Nontrivial case (m > 0, a < b);

real procedure glomin (a, b, ¢, my, macheps, e, t, Tf, x}; m2 := 0.5 x (11 16 x macheps) x mj |

valuea, b, ¢, m, macheps, e, t; ife<ave >D thence =0.5 x (arb);

real a, b, ¢, m, macheps, e, t, x; real procedure f; vl := fc); k := 3; a0 :=a-ec; h := 9/11; |

bezin comment: | | if y1 <y then |

Glomin returns the global minimum Vv at XxX of the function | begin x =e; y := yl end;

f(x) defined on [a,b] . The procedure assumes that rect® a,b] coment: Main loop

and f(x) <m for all =xec[a,b] (weaker conditions are sufficient: next: dl := a2 - a0; d2 :=c¢ - ad; |

see the text). e and Tt are positive tolcrances: wc assume that z2 = Db - a?; z0 :=y2 - yl; 21 = y2 - yO;

f(x) is computed with an absolute error bounded by e ; i.e., that P:=1r := dl x d1 x 20 = 80 x dO x zl;

| fL(f(x(1+ macheps))) - f(x) | < e , where macheps is the relative q c= gs r= 2 yx (dO x z1 - dl x z0);

machine precisicn. Then x and y = glomin are returned so that conment: Try to find a lower value of f using quadratic interpolation;

min(f) < f(x) <min(f)+1+2e and | if k > 100000 A y < y2 then go to skip;
min(f) -e <y = F1(£(x)) <min(f)+t+e . retry: if q x (r x (yb-32) + 22 x a x ((y2-y)+t))

¢ is an initial cuess at x {a or b will do). ‘lhe number of < 22 x m2 x r x {22 x q - r) then

function evaluations required is usually close Lo the leasl possible, begin a3 : al + rfq; y3 := f(a3);

and considerably less than (b-a) (m/e) 2 y provided t is not ir v7 <y then
unreasonably small (see Seclions 3 to 5); | | | begin x := a3; y := ¥3 |
integer k; real a0, a2, a3, d0, dl, d2, h, m?, p, q, 48, Tr, S, ¥, end

v0, ¥1, ¥2, v3, vb, 20, zl, 22; | end; |

comment: Initialization; R | comment: With probability about 0.1 da a random search for a lower

x i= 80 io by ad i= aj So | value of f{ . Any reasonable random number generator can be used in

} yb i= yO := P(b); ¥ i= yP c= f(a); place of the one here (it need not be very good) ;
if y0 <3 then y i= yO else x := a: oo skip: k := 1611 x k; k := k - 1048576 x (kx = 1048576);
ifm > 0 A a <b then qQ := 1; rt := (b-a) x (k/300000);

| if r-< z2 then go to retry;
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comment : Prepare to step as far as possible;
- begin comment: Prepare for the next step;

r:i=m2 x dO x dl x d2; s := sart(((y?-y)+t)/m2);
al i= cy c¢ = a2; a2 := aj;

h := 0.9 x {1th); =
. yo := yl; yl :=y2;5 ¥y2 :=yJ;

P:i=hx (p+2 xr xs); gq :=1r+0.5x q5;
> qs s go £0 next

r := =0.5 x {d0 + (20 + 2.01 x e)/(d0 x m2));
end

r :=a2+ (if r <8 v d0 < O then s else r);
— TT end

comment: Tt is safe to step tc r , but we may try to step further;
- glomin := y

a3 := if p x q > 0 then a? + p/q else r;
end zlomin;

inner: if a5 < r then a3 := r;

if a5 > Db then : :

~ begin a) :=b; yy)? := yb end
‘ Procedure glomin2d

else y3 := f(a3);
real procedure glominzd {ax, ay, bx, by, mx, my, macheps, e, tt, f, x, y);

if y2 < vy then
To value ax, ay, bx, by, mx, my, machcps, e, ©;

begin x := a3; y := y2 end; :
- — real ax, ay, bx, by, mx, my, macheps, e, t, x, ¥;

do := a3 - a2; :
real procedure Tj

if a> > r then

— - begin comment:
begin comment: Inspect the parabolic lower bound on f in (a2,a3); oo
-_— : Glomin2d returns the global minimum z = f(x,y) of the function

p:=2 x (y2 - y3)/(m x 80); |/ ’ f(x,y) defired on the rectangle [ax,bx] x [ay,by] . mx and my
if abs(p) < (1 + 9 x macheps} x dO ] }
— : are upper bounds on the second partial derivatives of ff : we

AO.5 xm2 x (dD xy AO + p xp) > (y2-y)+ (y3-y)+ 2 x t then :

) — assume that £ (XY) <mx and f(y) < my in the rectangle. :
begin comment: Halve the step and try again; oo
-— 0 e and t are positive tolerances: f must be evaluated to an

a3 := 0.5 x {a2 + a3); h := 0.9 x h; go to inner :
CT accuracy of +e , and on return :

end .
— : min(f) < f(x,y) <min(f) +t + 3e and

end; : :
— min(f) - e <z = f1(f(x,y)) <min(f) + t + 2e .

if a5 <b then : :

To macheps is the relative machine precision, and procedure glamin (for

one-dimensional minimization) is assumed to be global;
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real procedure phi (y); value v3; real vy;

begin comment: Returns min f(x,y) over x (y fixed), and may

alter the global variables first, x= and zm;

real procedure fx (x); value x; reul X;
: , Chapter 7.

begin fx := f(x,y) end fx;

real ym;

A New Algorithm for Minimizing a Tunction of Several Variebles
ym := glomin (ax, bx, xs, mx, macheps, e, tl, fx, xs); :

Without Caleulating Derivatives
if first v ym < zm then

begin first := false; 7m := ym; X := xs end; }

phi := ym oo

end phi; |

real t1, xs, zm; Boolean first: ] Co -

first := true; zm := 0; |

tl := 0.9 x tt; Xs := ax; |

glomin?d := glomin (ay, by, sy, my, macheps, tl + e, tl, phi, y)

end glominZd; |
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7.1 fl

1. Introduction and survey of the literature with such constraints can be reduced to unconstrained problems by a

In this chapter we consider the general unconstrained minimization transformation of variables (see Box (1960)). oo

problem: given a function ££: BR" — R » ind an approximate local minimum More general constraints may be of the form

of 1 . There is no need to emphasize the practical importance of this g, (%) = 0 (an equality constraint)

problem, and the recent literature cn the subject is quite extensive. - or | Ji (1.2)
Here we give only a brief introduction, and no attempt is made to duplicate g(x) > 0 (an inequality constraint) , J
the survey articles by Box (1966), Fletcher (1965, 196Ge¢), and Powell

I : . . .

where g.: D. CR —~R is some given function, for i =1,...,m .
(1970a, e), or the books by Beale (1968), Box, Davies and Swann (1969), i.

g. (x) may be linear, say
Jacoby, Kowelik and Pizzo (1971), Kowalik and Osborne {1968), Wilde (1964), to

and Wilde and Beightler (1967). : g {x) = alx +c. (1.3)
: its pers i

> In practical problems the global minimum, not a mere local minimum,
R ) ‘ n i

‘is usually of interest. Methods for finding global minima are discussed for Some a; ek and C.eR » OT g; (x) may be nonlinear, and perhaps

- in Chapter 6, but for functions of a moderate or large number of variables quite difficult to congute. From the point OF view of efficiency, it is

the methods of Chapter 6 are impractical. Usually the best that we can probably best to deal with linear constraints directly, but this is

. do, in the absence of any special knowledge about ‘ff , is to use a good difficult for nonlinear constraints. Direct methods for linear constraints

local minimizer and try several different combinations of starting : are given in Fletcher (1968b), Goldfarb (1959a), and Rosen (1960). (See

positions, steplengths etc., in the hope that the best local minimum also Bartels (1968), Bartels and Golub (1959), Bartels, ‘Golub and

found is the global minimum. | : Saunders (1970), Gill and Murray (1970), Goldfarb and Lapidus {1968},

| .- Hanson (1970), and Shanno (1965, 1g70b).) |

Constrained problems : Problems with nonlinear constraints can be reduced to a sequence of

It often happens that we want to minimize f(x) subject to the unconstrained problems by the use of penalty or barrier functions. (See

constraint that x is in some subset D of R" . (Sometimes fF is ) Carroll (1961), Fiacco (1961, 1907, 1969), Fiacco and Jones (1969),

only defined on D .) Simple upper and/or lower bounds, of the form + Fiacco and McCormick (1968), Fletcher (1969b), Fletcher and McCann (1969),
Jones end McCormick (1969), Kowelik, Osborne and Ryan (1969), Lootsma

By SX; S04 (1.1) | |
(1968, 1970), Murray (1969a, bt), Osborne and Ryan (1970, 1971),

on the components x, of x , are particulerly common, and problems ~~ Pietrzykowski (1969), and Zangwill (1967b).) Attempts have also been made
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to deal wibh nonlinear constraints directly. (See Allran and Johnsen and Levy (1959), Davidon (1948, 1969), Davies (1968), Fletcher (1966,

(1970), Box (1955), Haarhoff and Buys (1970), Kalfon, Ribiere and 1970), Goldfarb (1956, 1969b, 1970), Goldfeld, Quandt and Trotter (1968),

Sogno (1948), Luenberger (1970), Mitehell and Kaplan (1968), Murtagh Greenstadt (1957, 1970), Hestenes (1969), Kelley and Myers (1967),

and Sargent (1969), Powell (19594), Rosen (1941), and Zoutendijk (1960, Luenberger (1959), McCormick and Pearson (1969), Miele and Cantrell

1970) .) (1969, 1970), Myers (1968), Pearson (1069), Powell (19(9b, c, 1970h, c, d),

Ramsay (1970), Shanno (1969a, b), Shanno and Kettler (19459), Sorensen

Methods using derivatives (1969), Takahashi [1965), Tokumaru, Adachi and Goto (1970), Vercoustre

Many methods {or the constrained or unconstrained minimization of (1970), coldstein and Price (1967), and Wells (1965) .)

f: D » R explicitly use the partial derivatives Of) om. » Tor In many practical problems, it is difficult or impossible to find

i=1,...,n, and some methods also use the sccond partial derivatives the partial derivatives of f(x) dircctly. One possibility is to

of f . (Methods for congtrained minimization may also use the partial compute derivatives numerically, e.g., by finite differences, and then

derivatives of the constraint functions g, +) For example, the use one of the methods requiring derivatives. Stewart (1967) has
classical method of steepest descent (Akaike (1959), Cauchy (1847), successfully modified the variable metric method so that difference

Curry (194k), Forsythe (1668), Goldstein (1962, 1965), and Ostrowski approximations to derivatives can be used. The difficulty is in -
(1966, 1967a)) repeatedly minimizes f in the direction “8 > where balancing the influence of rounding errors and truncation errors when

dfx, | using finite differences to estimate derivatives, For a computer program, -

| ) oo { ) (1.5) see Lill (1970).arf | ]
: Co Methods not using derivatives

is the gradient of f . Perhaps the most successful methods using Although Stewart's medification of ‘the variable metric method |
derivatives are the Davidon-Fletcher-powell "variable metric" method appears to work well in most practical cases (see Stewart (1967),

(Davidon (1959), Fletcherand Powell {19663), Huang (1970), and Powell (1970a), and Section 7), it is more natural to use a method which

McCormick (1969)), and the conjugate gradient method of Fletcher and does not need derivatives, if derivatives can only be found numerically.

Reeves (1954), which is slower but requires less storage then the Possibly such methods could be more efficient than methods which approximale
variable metric method, (¥or other methods using derivatives, and related derivatives numerically, although this is less clear in n dimensions than

topics, see Bard (1968, 1970), Broyden (1970a, b), Cantrell (1969), Cragg in one dimension {for which see Chapter 5).
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Several methods which do not use derivatives have been compared in is a good approximation to f{x) . Thus, any minimization method, having

the survey papers of Box (1900), Fletcher (1955, 1969c¢), Powell (1970a, e), ultimzbe fast convergence for a general fimction f(x) with continuous

and Spang (1952). (See also Bell and Pike (1966), Berman (1969), Box second derivatives, must have last convergence for a positive definite

(1357), Chazan and Miranker (1970), Hooke and Jeeves (1901), Kowalik quadratic form, and we might expect the converse to hold too. This

and Osborne (1968), Nelder and Mead (1965), Smith (1962), Spendley (1969), observation has led to the investigation of methods which have guadratic

Spendley, llext and Himsworth (1962), Swann (1964), and Winfield (1967) .) convergence, i.e., which find the minimum of & positive definite quadratic

Fxcluding Stewart's method, the most successful methed, especially for form in a finite number of function and/or derivative evaluations, apart

functions of more than three or four variables, appears to be that of from the effect of rounding errors. Examples of methods with quadratic

Powell (196k) (see Section 3). The main object of this chapter is to convergence are those of Davidon-Fletcher-Powell, Fletcher and Reeves,

present some modifications which improve the speed and reliability of and Powell (1954) (this is not quite true: see Section 3). The method

Powell's method. The modifications are discussed in Sections I to 6, + of steepest descent exhibits only linear convergence on a quadratic form,

and sume numerical results are given in Scction 7. | so it is not quadratically convergent.

| A few methods are not quadratically convergent, for exact convergence

Quadratic convergence : requires an infinite number of steps, but they do exhibit superlinear

Suppose that f(x) has continuous second derivatives convergence on quadratic forms. Examples are the methods of Rosenbrock,

Ps | | as modified by Davies, Swann and Campey (see Swann (1964)), of Goldstein
LJ xy *3 and Price (1967), and of Greenstadt (1970). There is no apparent reason

| why such methods should Tail to perform as well as quadratically convergent
for i,j =1,...,n , in a neighbourhood N of a local minimum p .

: ~ methods on general (nonguadratic) functions. Thus, quadratic convergence
Since pis a minimum, the gradient of f vanishes at pn , and the

~ ~ is a desirable property, but it is neither necessary nor sufficient for

Hessian matrix }
a good minimization method.

A=1(f . 1. So(£,) (1.7)
+ Stability: the descent property :

is positive definite or semi-definite. Wear p , the quadratic form oT

” ~ In many methods for unconslrained minimization, f(x} has been

. 1 T 18
Q(x) ] £(k) t 35 (x = 1) A(x -u) (1.8) evaluated at xy the current best estimate of the position of the

] ¥

minimum of f(x) . A new estimate, x, , is made on the basis of the
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values of f at x. and a small number of other points (previous best CL : : - Cs

0 be monotonic increasing or decreasing, or have a maximum but no minimum.

estimates, or points close to =x . Additional informati built
HALES, pot ~0 ) + t EL AOI BEALL UP Box (1966) gives examples where an attempt to minimize (A) too accurately

from previous iterations, e.g., an approximation to the Hessian matrix | : - :
P ? &s 2 * prevents a minimization procedure from {inding the desired minimum. TI%

f ff at x ay also b sed. i dict ay be liabl

° “ 0 my © bE e prediction 1 id © rest © 1€ sometimes stated that the quadratic convergence propertyof certain
and it may happen that

Ay Rapp methods depends on @{A) being minimized exactly, but all that is really
«

£(x;) > (x) . (1.9) required for these methods is that Lhe one-dimensional minimization

- ] | procedure minimizes a quadratic function of A exactly. Thus, for
For example, this often occurs if xo is not close to a local minimum, .

- quadratic convergence, it is sufficient to fit a parabola P(A) to (A) ,
- and an inadequate quadratic approximation to f(x) is used. M -

- and take A = A_ , Where No minimizes P(A) . Because of the dangerTo avoid the possibility of instability, most procedures do not 0
” ol instability, this simple procedure is not acceptable, but it is reasonable

accept xq as the next approximation to the minimum. Instead, they ] x
~ % ) to take A. = A. provided that

perform a "linear search" in the direction X) =X, i.e., they take 0 v |
. *

the point P(N) < o(0) , (1.141)

+ 2 ( x ) (1.10)Xx, = X X, - X -

21.0 n\Z1 0 wirich ensures that (1.12) holds. (Powell (1970e) gives some reasons

for requiring rather more than (1.1l).) See also Sections € and 7.

a8 the next approximation, where My is chosen to minimize the function

* .

PA) = T(x, + Mx, - x5) (1.11) Sums of squares i

A very common unconstrained minimization problem is to minimize a

of one variable. This ensures that : ]
function f(x) of the form

< 12

r(x,) < fx) (1.12) i ) |
r(x) = YL {f.(0} (1.15)

so the successive polnts generated must lie in the "level set” i=1

n for some (generally ncnlinear) functions f,(x) . For example, this
S = {xek | T(x) < f(x) - (1.13) ie

~ - problem arises when parameters Xysee,X are fitted, by the method of

In practice, it is not worthwhile te try to minimize the function least squares, using m observations. An important special case arises

p(X) very accurately. In fact, the minimun may not even exist: (XA) may when the minimum value of f(x) is zero: then we have a solution of the
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system of equations need to evaluate f(x) at n+l points, or evaluate £. (x) and the

f(x) =0 |, (1.16) n components of its gradient at one point. Thus, after the same amount
i.

of work as is required for n+l evaluations of f(x) , or one evaluation

for i-=1,... .

. on of f(x) and its gradient, the solution of a linear least squares problem
Applying a general function minimizer to f(x) may not be the most / i
PREVANE & 8 (x) v gives an approximation to the minimum. This approximation is usually good

efficient way to minimize (1.15). Methods which make use of the individual
y (1.15) if the minimum value of f(x) is small (see Powell (1955)), unless the

residuals f, (x) are likely to be considerably more efficient than Co . ]
+ linear protlem is very ill-conditioned. On the other hand, if the special

methods which merely try to minimize f(x) without considering the

or (x) + lh form (1.15) of f(x) is disregarded, then jt is necessary to evaluate
individual residuals, at least if th ini 1s Tr f 15 close to ]one vraEas TERIGHATS ' © mim vate © (x) ' © T(x) at = (nel) (12) points to find an approximating quadratic form.
ZETO., ethods which make use of th id d ib i

] er M Hen m 4 ¢ residuals are described in Barnes (Alternatively, f and its gradient must be evaluated at 2 (n+2) |
(1965), Box (1966), B d is (1968, 1970, 197la, b), Broyden {196(1965), (1966), Brown and Dennis (1968, 1970, 197la, b), Broyden (1967, or more points.) This suggests that methods which disregard the special

95 is (196 b, ¢ letch 19681969), Dennis (1968, 1969a, b, c), Fletcher (1950a), Gauss (1809), form of f(x) are likely to be much slower than methods which use the
Hartl 1961), Jones (1970), Levenbergz (1944), Marquardt (196rtley (1961), Jones (1970), Lev zg (1944), “ (1963), individual residuals, at least if n is large. Empirical evidence

tth i a (1970Matthews and Davies (1969), Morrison (1968), Ortega (1970), Ortega and supports this conclusion (see particularly Table 3 of Box (1966) for
inboldt (1 kham (1970), Powell (1965, 1968b, 1969a |Raednbo (1970), Peckham (1970), Powe (1965, 19 » 19693), n = 20 ), although some of the present methods which make use of the

Rabinowitz (196 Rall (1966, 196 Schubert (1970), Shanno (1970a -adi (1969), Ra (1966, 1969), ubert (1970), (19702), residuals appear to be rather unreliable.
ath (196 i 6 1fe (1 d Zeleznik (1958). GoodSpath (1967), Voigt (1969), Wolfe (1959), end Zelemnik (1990) © Despite our conclusion, most of the numerical examples given in

ical methods for solving linear least squares problems are also |
mer . vine 4 ? Section7 are of the form (1.15). This is because a particularly simple
el ark jorck (1967, b, 1968), Businger and Golub (196 | .resevat see Bjorek (1957a, b, 1960), Hie ub (1965), way to construct test functions with bounded level sets is to use functions
Golub (1965, 1948), Golub and Reinsch (1970), Golub and Saunders (195 | :

(1955, 19€0), - (1970), (1959), of the form (1.1%), and most of the test functions given in the literature
Golub and Wilkinson (1956), Jordan (1968), Khabaza (1963), Maddison (1956), |

have this form.

and Powell and Reid (1968). |

Tet us see why it may be worthwhile to use the residuals. Suppose oo
Some additional references

that we have & good initiel approximation to the minimum of * f{x) , so the \ . CL. oo ‘
~ The following general references on function minimization and related

functions f.(x) can be closely represented by linear approximations in; (0) Jv TEP 4 PpTe topics have not been mentioned above: Abadie (1970), Balakrishnan (1970),
the region of interest. To find a linear approximation to I, (x we -

Eg * * : PP 1 (2) ? Bennett (1965), Bennett and Green (1966), Colville (1968), Davies (1969),
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7.2 7.2

1 He - 5 i r IaDavies and Swann (1959), Dold and Eckmann (1970a, b), Evans and Gould f(x) = (pn) + = (x ~ i) A(x - 3) + R(x) , (2.2)

(1970), Fletcher (19%9a), Hadley (195h), King (1966), Kunzi, Tzschach
: where

and Zehnder (1968), Lavi and Vogl (1966), Leon (1966), Luenberger {1969a),

‘ : A= (Lf, (1) (2.3)
Mangasarian (1959), Murtagh (1959), Murtagh and Sargent (1970), Powell td

(19456, 19%9e), Ralston and Wilf (1960), Rice (1970), Rosen and Suzuki ig Lhe Hessian matrix of f(x) at pu , and

(1965), Shah, Buehler and Kempthorne (1964), Wolfe (1963, 1959), Zadeh 5
| 1 re . | 00| <u - ul? (2.4)

(1949), Zangwill (1969a, b), and Zoutendijk (19460). | =~ Se = Co

: for some constant M depending on n , the norm used, and the

Lipschitz constants M5 .
2. The effect ofroundingerrors As in Section 5.2, the best that can be expected is that the computed

Rounding errors in the computation of f(x) limit the accuracy value T1(f(x)) of ((x) satisfies the nearly attainable bound

attainable with any minimization method using only the computed values

: £1(£(x)) = f(x).(1 + ¢€ ] (2.5)
of f(x) . In this section, we generalize the results of Section 5.2, ~ ~ x

where Lhe same problem is considered (or functions ol cne variable. As where -

in Section 5.2, the results of this section do not necessarily apply to 1, | < E ’ : (2.6)

“methods which use the gradient of f , computed analytically. (They do to :

. . and € is the relative machine precision (see Section 4.2). If f is
apply if the gradient is computed by finite differences.) |

| computed using single-precision arithmetic, the error bound will probably
Suppose that, in a neighbourhood N of a local minimum up , the : :

. | A i be considerably worse than this.
partial derivatives F(x) are Lipschitz continuous, i.e., for all

tT Let 8 be the largest number such that, according to equations
X,yelN , . Co

) (2.2) to (2.6), it is possible that

f(x) - T..(»] < Mx - vy | 2.1)I ETE PEA NE La I £1(£(u + Bu) < £(w) -, (2.7)

where M.. 1is a Lipschitz constant (3, = 1,...,n) , and any of the : - :
Ld for some unit vector wu . Then it is unreasonable to expect any

usual vector norms may be used. Since the gradient of f(x) vanishes oo
~ minimization procedure, based on single-precision evaluations of ff , to

al. KL , a simple extension of Lemma 2.5.1 shows that, for xeN , _
~ ~ return an appro¥Ximation p to p with a guaranteed upper bound for

ll - ml less than B . |
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7.2 7-3

Tet the eigenvalues of A be A >A, > ‘ea >A , with a set of Scaling

corresponding normalized eigenvectors UysUos nee, . Since 1s a A change of scale along the coordinate axes has the effect of

local minimum of f(x) , certainly replacing the Hessian matrix A by SAS , where 35 is a positive

A >0 (2.8) diagonal matrix. The problem of choosing S to minimize the condition, .
n —

number of SAS is difficult, even if A is known explicitly. (See

op I : o oo Coand we suppose that 4 > 0 (The position of the minimum ls worse Forsythe and Moler (1967) for the problem of minimizing the condition
Mb : .

i = . — 11 d to unit and

determined if Mn 0.) If My 18 small compare bi number of SAS, >» where A is not necessarily symmetric.) A good
we teke u =u, then (2.7) is possible for general rule is that SAS should be roughly row (and hence column)

. 21204) |= equilibrated (see Wilkinson (195%, 1965&)). In practical minimization3,

2 — —— . oc.

Ra ° = A (2-9) problems, one difficulty is that little is known about the Hessian )
matrix A until a reasonable approximation to the minimum

Thus, an upper bound on ||i - p|| can hardly be less than the right side
~ ~ has been found. This suggests that a general function minimizer which

of (2.9). :
] 1s scale-dependent could incorporate an automatic scaling procedure,

using current information about A to determine the scaling. One way

The condition number of doing this is described in Section L.

With the assumptions above, and & given by (2.9),

Plu + Buy) ~ fp) +n elf} (2.10)
” 3. Powell's algorithm

where In this section we briefly describe Powell's algorithm for minimization

1 pn without calculating derivatives. The algorithm is described more fully

ig the usuel condition number of A . We shall say that x is the in Powell (196M), and a small error in this paper is pointed oul by

condition number of the minimization problem (for the local minimum p ). Zengwill (1967a). Numerical results are given in Fletcher (1965),

The condition number determines the rate of convergence of some minimization Box (1966), and Kowalik and Osborne (1968). A modified algorithm, which

methods (e.g., steepest descent), end it is also important because rounding is suitable for use on a parallel computer, and which converges for
. 2 . . : :

errors make it difficult to solve problems with condition numbers of the strictly convex C~ functions with bounded level sets, is described by

order of £1 or greater (see below). Chazan and Miranker (1970).
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Powell's method is a modification of a quadratically convergent Remark
- . . - [ [] LJ rn

method proposed by Smith (1962). Both methods ensure convergence in a If (us -esu is any set of nonzero conjugate directions in R ,

finite number of steps, for a positive definite guadratic form, by then u;,...,u are linearly independent. Thus m <n, and m =n iff
- Il

making use of some properties of conjugate directions. Ugr---yu ~~ Span R

Conjugate directions ~ Theorem 3.1

If A is positive definite and symmetric, then minimizing the If A is positive definite symmetric, AX = b » and fu, neon 3

quadratic function is a set of nonzero conjugate directions, then

- 'T - _ :

wax -obtx = (x-A 0) A(x - aT) Sta (3.1) | I

i=1\ ulAu, ~

is equivalent to solving the system of linear equations : ~1 ~2

Ax = b . ] (3.2) is conjugate to each of Uys --eol .

If the matrix A is known explicitly, then, instead of minimizing Proof

(3.1), we can solve (3.2) by any suitable method: for example, by forming If 1 <j <m, then, from (3.h),

the Cholesky decamposition of A. Tn the applications of interest here ;

op ’ a Ax = (Ax -b) = 0 . (3.5)
A is the Hessian matrix of a certain function, and is not known explicitly, eT ” ” ~

but the equivalence of the problems (3.1) and (3.2) is still useful. |
Corollary 3.1

Definition 5.1 If m =n in Theorem 5.1, then xT" =0 , SO

Two vectors u and v are said to be conjugate with respect to

the positive definite symmebric matrix A if n Wo

~ . T ~1
T i=11 u_ Au.
u Av =O. ) | . (3.3) ~1 1

When there is no risk of’ confusion, we shall simply say that u Returning to the minimization problem, Theorem 5.1 and the equivalence

and v are conjugate. By a set of conjugate directions, we mean a set of problems (3.1) and (3.2) give the following result.

of vectors which are pairwise conjugate. ;
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Theorem 3.2 Proof

If A 1s positive definite symmetric, This follows immediately from equation (3.9).

£(x) = Lax _ obly roe (3.7) From Theorems 5.2 and 5.5, Wwe see thal Lhe minimum of Lhe quadratic
form f(x) can be found by n one-dimensional minimizations along nonzero

n . a -
: “os t of nonzero ¢ ugate :

tor some bed and ccR , and ak 2S 15 & sc Of aon JnduE conjugate directions fo LE , and the order of the one-dimensional
] ) = EE ‘n th db esl

directions, then the An ol £(x) © Space spans y ou ? om minimizations 1s irrelevant. To use this resull,we have tc be able to
. i . 71 I

occurs at the point LA » Waste generate sets of conjugate directions. Doth Powell's method and Smith's
: I method do this by using the following theorem, given in Powell (1964).

ToulAuL
~t ~1 Theorem 3.4

If the minimum of f(x) {given by (3.7)) in the direction u from
Prool ~ . he

- the point x, is at Xs os for i = 0,1, then Xo. =X, is conjugate
This follows from Theorem 3.1, or, alternatively, from the relation - ~ 1

to wu.

T. (2

m m m (u,b)2 T i

¥ ). Qu. f= ) (c, -p,) u.fu, +c - 2. T (2.9) Proof.
io 1-1 os REE MEE = woAu Ethie

oT For 1 =0 and 1, ~~ i.

i caus jugacy o RED I - I
(cross terms vanish because of the conjugacy f hn ? mn ) 2 f(x, + Mu) - 0 at A=0 (3.11)

The usefulness of Theorem 3.2 slems from the following result, -

which shows how we can calculate the B, of (5.8) using function 0, irom (3.7). REE |
evaluations, even if A , b and ¢ are not known explicitly. u' (Ax, - b) =0 i -_ (3.12)

subtracting egqualions 3,12) for 1 =0 and 1 ivesTheorem 5.0 & 3 ( ) g

i ; fio A.2, a fixed "satis yin 1 <j <n
With the notation of Theorem 3.2, i 3 fying <J<mnm, ula x; _ x) 0 (3.13)

and fixed ET RRRE ES EL VEE REEL, , the minimum of
which completes the proof.

m (fa) = °F au, 3.10
v,(.) L iY |

occurs at oO, = PB. -
J J
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i re. b i linearly dependent, and
Powell's basic procedure resulls in the directions uy an ecoming linearly dep 5

We can now describe the basic idea of Powell's algorithm. Tet x from then on the procedure can only find the minimumof f(x) over aOWE . X, ~
n : _ .

be the initial approximation to the minimum,and let Wyse pl Le proper subspace of RR . The same 1s, of course, true for non-quadratic
K K i though it i 11ikely that will vanish exactl

the columns of the identity matrix. One iteration of the basic procedure functions, and even though it is unlikely Py J

consists of the Tollowing steps: Powell discovered thal the directions u.,...,u. often become nearly
linearly dependent. Thus, he suggests that the new direction X~X,

l. For i=1,...,n, compute £. to minimize f(x. L tBu) ,
+ ~1s 1-1 should be used, and one of the old uj,...,u discarded, only if this

and define x. = x, 1 FB . ~ ~
: ~1 l= Ll does not decrease the value of |det (vy ce vl , wherc

. - 1 = PS iB 3 . 1.

2 For 1 1, »n-1 , replace ue by Seq . -3 \
v. = (a, fu, ) u. (3.14)

5. Replace u by Xn Xp

4. Compute B to minimize £(x + pu) , and replace x by Xt pu - for i = 1,...,0n . With this modification the algorithm is quite successful
(see Fletcher (1965) and Box (1966) for a comparison with other methods),

For a general (non-gquedrabic) function, we just repeat the iteration
but the desirable property of guadratic convergence is lost, for a complete

until some stopping criterion is satisfied. Buppose that 1 <k <n,
set of conjugate directions may never be built up. In the next section, ~

and consider the situation after Lhe k-th iteration. If [I' is guadratic
we describe a different way of avoiding the problem of linear dependence

then we can show, by induction on k , that UW_pqreresY, are conjugate.
| ~ ~ of the search directions. The numerical results given in Section 7

this follows from the choice of uw at step 3, and Theorem 3.4: see
~i suggest that our method of ensuring linear independence may be preferable

Powell (1954). After n iterations, we have minimized along n
to Powell's.

conjugate directions Upreey 5 SO, by Theorems 3.2 and 5.5%, the

minimum will have been reached if the u, are all nonzero. This is :

true if, at each iteration, PB, # 0 , for then the directions wu ,...,u
1 A i .  -

h. The main modification

can not become linearly dependent.

The simplest way to avoid linear dependence of the search directions

with Powell's basic procedure, and retain quadratic convergence if By # oO,
The problem of linear dependence :

: 18 to reset the search directions Hyseeesll to the columns of the
Unfortunately, as pointed out by Zengwill (1957a), even for a = ~

| identity matrix after, say, every n iterations. A similar "restarting"
quadratic function Tf one of the iterations may have Bq = 0 , which
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device is suggested by Fletcher and Reeves (1984) for their conjugate about fn” muitiplications, and a similar number of additions, if done

gradient method. Unfortunately, restarting tends to slow down convergence as suggested below. Since the principal axes are found only once for

for approximately quadratic functions, hecause any information built up every n= linear minimizations, and a linear minimization requires about

about the function is periodically Lhrown away. (Perhaps this is why 2.25 function evaluations on the average (see Secticn 7), the extra

the Fletcher-Reeves algorithm is generally slower than the Davidon- computation is less than 3n multiplications per function evaluation.

Fletcher-Powell algorithm.) We can expect the evaluation of a nontrivial function of n variables to
Ca : : - . 0

Instead of resetting U = RIERRRELSY to the identity matrix, we require considerably more than 3n multiplications, and possibly order n°” ,

~ could equally well reset U to any orthogonal matrix 7 . To avoid so the overhead caused by our modification is not excessive. Also, it

discarding useful information about f , we could choose GQ so that, ‘may be worth paying a little for the principal axis reduction, for the

il’ T is quadratic, Upyeeesl remain conjugate. This suggests that extra information about { is often of interest. For example, it

principal vectors SEERERER should be computed on Lhe assumption that shows the sensitivity of f(x) to slight changes in x near the minimum.

f 1s quadratic, and U should be reset to Q = la,5---5q | . The The principal axes and eigenvalues may be of interest in statistical

motivation for this procedure may be summarized thus: problems when f is minus the log-likelihood, for then the inverse of

1. If the quedralic approximation to f is good, then the new search the Hessian at the minimum is the sample variance-covariance mabrix of

directions should be conjugate with respect to a matrix which is close the maximum likelihood estimates: see Nelder and Mead (1965).

to the Hessian matrix of ff at the minimum, and thus subsequent

iterations should give fast convergence. baling

} Powell's modification of his basic procedure has one feature which
2. Regardless of the validity of the quadratic approximation, the new : :

ours lacks: his determinantal criterion is independent of a linear
search directions are orthogonal, so the search for a minimum can never

transformation of the independent variable space (an importanl special
become restricted to a subspace.

case is a change of scale for the independent variables). This feature

) } is certainly desirable, for when a function of, say, temperature and
The exbra compulation involved

pressure is to be minimized, there is ne natural way to scale the variables.
We show below that finding principal axes dees not require any

We should note, though, (hat Powell's algorithm is not completely
extra function evaluations, but 1t does involve finding an orthogonal

independent of linear transformations of the variable space, or even of
set of eigenvectors for a symmetric matrix H of order n . This requires
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scale changes, for these influence both the initial choice of the CHCANEAEN = wl Au = d. , : (4.5)~1l1 i

vectors ES RRETL Sa and the stopping criterion.
~ ~ : gs0 the diagonal elements de of DID are known without any extra

computation. (If the quadratic approximation to P.(Q) is bad we may
indi he incipal : .

Finding the principal vectors have UH ENT < 0 , and then we arbitrarily set ds to a small
Suppose that positive number.)

. T |

(x) = x"Ax - 2b'x + ¢ (4.1) Let 3
i oT oT =

V = UD (4.6)
is a positive definite quadratic form, although A , b and ¢ may not

be ix wit umn .. (5.
be known explicitly. Tf n iterations of Powell's basic procedure are © the matrix with columns v1 »V, even by (3.14), and let

} i -1

performed as described above, and at cach iteration fg; £0, then we H=A : (4.7)
: . . . + _ )

obtain n monzero conjugate directions Uy dee Let U Lay Gy J Since UU is nonsingular, equation (1.2) gives
By the conjugacy of wu ,...,u ,~L ~ -

n H = up ul = who. (4.8)

UA =D (4.2) .
The matrix V is casily computed from U in n multiplications and

here D 1s a diagonal trix with positive diagonal elements 4. .
wh i iagonal ma P g i n square roots, but the computation of a is more expensive, and can

During the last (i.e. n-th iteration, we have perlormed one-
THe : SE yi ’ F be avoided: see below. :

dimensi 1 minimizations in the directions 1u,,...,u . Consider a Co. . Lo ] |
He or + . tome tr 1 7.on . Our aim is tc find The principal axes of the quadratic form f ,
a i £ sot directs or .

minimization from the point XK, 1» in he direction u, , for i.e., to find an orthogonal matrix § euch Lbeb

1 <i <n. We minimize the function T
QM =n (L-9)

50) = £(x;4 + ou) (4.3)
where §j = diag(h,) is diagonal. Thus, the columns a. of @ are just

= a ut Au + 2a (ub Ax - ub Vb (x Ax - 2x’ b +c) . (4.4) the eigenvectors of A , with corresponding eigenvalues A RY and
~1 oa i ei=1l Jia ~i=l70i-1 Lil ro } - ” i’""" Mn?

we can assume that A >a. > r . The obvicus way to find and A
inimi Ct fit arabola, which necessitates computing theTo minimize 9; ) we Tit a parabola, whi eust = & is to compute H = vt explicitly, and then find Q and A such that

second difference Pp, [aty, 0,0, for three distinct points ay , x, , 7 1

and a, . From equation (4.4),
by finding the eigensystem of H .
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Use of the singular value decomposition to find 4 and A singular value decomposilion of the bidiagonal matrix by a variant of

If the condition number x = Ta 18 of order et y Where §E& 1s the QR algorithm.
the relative machine precision (see Section 4.2), then rounding errors Let us compare the amount of computationalwork involved in

- ; .

may lead to disastrous errors in lhe computed small eigenvalues computing 3 and A via

SERNA of H , and in the corresponding eigenvectors 4,4,-- | 1. The singular value decomposition (SVD) of V as described |
even if they are well-determined by V . Thus, it may be necessary to above, and

compute H , and find its eigensystem, using double precision arithmetic. 2. Finding the matrix H and its eigensystem, using Householder's

This difficulty can be avoided if, instead of forming H = wi, we work reduction tc tridiagonal [orm and then the QR algorithm. (See

directly with V . Suppose thal we find the singular value decomposition Bowdler, Martin, Reinsch and Wilkinson (1968), Francis (1962),

of V, i.e., find orthogonal matrices § and Q' such that Householder (196k), Kublanovskaya {1951), Martin, Reinsch and

iT Wilkinson (1908), and Wilkinson (19%5a, b, 1963).)
QW = , (l.11)

For purposes of comparison, we count only multiplications, and

where 2 = diag(o,) is a diagonal matrix. (See Golub and Kahan (1963), ignore terms of order 0” , sa our conclusions may not be valid for very

and Kogbetliantz (1955).) Then small n . Suppose that, in each case, the QR process requires pn

-1 T T T 7 0 iterations, for some modest humber gp .

AT =QHe= (@W)(ATWRY)T =E7, (4.12) 5
For method 1, the Householder reduction requires hn [3 mueltiplica-

so Q is the desired matrix of eigenvectors of A , and the cigenvalues tions, accumulation of the (left-hand) trensformabtions requires another

A are given by hin” /3 multiplications, and the QR process with accumulation of the

> _ or ] (4.13) transformations requires Zon multiplications, if neo splitling occurs.
Thus, method1 requires (8+ 6p)n”/3 multiplications in all.

Note that the matrix Q' 1s not required, and it 1s not necessary to ] 3 oo .
For method 2, the Householder reduction requires 2n”/3 multiplications

compute Te .
(only half as much as for method 1 because of symmetry), accumulation of

Since it is desirable that the computed matrix § should be close i 5 .
the transformations requires 2n”"/3 multiplications, and the QR process

to an orthogonal matrix, we suggest that Q and XL should be found by 3 z :
requires 2pn” , giving (b+ 6p)n”/3 altogether. This could be reduced

the method of Golub and Reinsch (1970). This involves reducing V to 3 o
: to un [3 y Still ignoring terms of order n , if inverse iteralion were

bidiagonal form by Householder transformations, and then computing the
used to compute the eigenveclors of the tridiagonal matrix, but then it
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would be difficult to guarantee orthogonality of eigenvectors corresponding scbd should be fairly small (say about 10) unless the axes are very

i 1 3 a .

to close or multiple eigenvalues. Another = n° multiplications are badly scaled initially. The automatic scaling is worthwhile, but its

needed to compute H = VV© by the usual method (but taking advantage of effecl is not dramatic, and it is rather unreliable, which is the reason

. 2 «ma . :
symmetry), making (11+ 12p)n"/6 multiplications in all. for introducing scbd . Thus, it is still worthwhile for the user to

The ratio of the work invelved for methods 1 and 2 is thus try to scalc his problem as well as possible.

16 + 120 16
= {= Lk 1k

SE FUE T-P Rb (4.1%)
Another modification

and for a typicel value of p = 1.6 we have r = 1.17 . Thus, method 1 Yor Powell's basic procedure to minimize a positive definite

can be expected to be cnly about 20 percent slower than the numerically quadratic form in un iterations, steps 1 io 5 of the first iteration

inferior method 2. Doth methcds can be done in place, and require are unnecessary. Thus, our algorithm omits steps 1 to 3 on the first

temporary storage for only a few n-vectors, apart from the n by n iteration, and, subsequently, after cach singular value decomposition

there are exactly |

Scaling 1+ (n-1){n+1) = n° (4.16)
We menlioned in Section 1 that a gencral minimization procedure

linear minimizations, instead of n{n+l) , between each singular value
might incorporate automatic scaling of the independent variables, in an :

| decomposition. This modification is not important for large n , but
attempt to reduce the condition number of Lhe problem. Scaling has the

- numerical results suggest that it is worthwhile for small n .
effect of replacing the matrix V above by 8 | where S is a

positive diagonal matrix (as in Section 1). The ALGOL procedure "praxis"

given in Section § chooses § automatically to try to reduce the condition

- - 5. The "reseluticn ridge” problemnunber of’ S$ Yy . S is chosen so that 8 Ly is row-egquilibrated, with
Suppose temporarily that we are trying to maximize a function I(x ,x.)the constraint that F — ee :

of two variables by an ascent method. Wilde (1994) points out thet

L <s,. <scbd , (h.15)
- tT rounding errors in the computation of f may lead to premature termination

where scbd is a bound which may be set to 1 if no scaling is desired. because of the "resolution ridge" problem illustrated in Diagram 5.1.

Numerical experiments on the examples described in Section 7 suggest that
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7.5 1-3

N Section 2). Let Xp Ky Seq y Xo = Xo - bey y Ky = x,t be, , and
Xq =X, - be, - As shown in the diagram, it may happen that f(x) 18

KE : greater than each of fx) , f(x) , r(x) and Px) so . iy

== 6 within the tolerance & of local maxima in both of the search directions,o B= even though X, may be a long way from the true maximum,which could be
x0 t=4 reached by climbing up the ridge. The same problem can arise with

7, f = 3 functions of more than two variables, or when we are looking for a
IS 7 Ff = 2 minimum rather than a maximwn (then we might speak of a "resolution

fs \ Pe — £1 valley" problem). .
| x \ AE It is clear from Lhe diagram that, if we know another point x}

4 . u . on the ridge, then a linear search in the direction X, - x4 will give
7 : y a poinl x with f(x) > f(x) s unless the ridge is sharply curved.

/ Ac \ . This is the motivation for the method suggested by Rosenbrock (1940),
ra \ ri and improved by Davies, Swann and Campey. (See Swann (1964), and also :

/ x \ Andrews (1959), Baer (196°), pletcher (1965, 1969e, d), Osborne (1969),
£0 — — = — Xp . :

~1 Palmer (1959), Powell (1948a), Rice (19%6), and Section 7.)

Diagram 5.1: A resolution ridge

Regarding the surface defined by f(x, x) as a hill, we may reach Finding another point on the ridge

a point xX, ; Situated on a narrow ridge, and then try to proceed to a 71" linear searches from the point *o fail to give a higher point,
higher point by performing linear searches in certain directions. and a resolution ridge is suspected, then the following strategy may be

Suppose, for exemple, that we attempt linear searches in the EW and KS successful: take a step of length, say 105 , in a random direction

directions. The point Xn May not be at the true minimum of f in both from Xo reaching the point R Then perform one or more linear
| these directions hut, because of the effect of rounding errors in searches, starting at *R and reaching the point *o + As The diagram

evaluating f , our one-dimensional search procedure will only attempt to shows, the point 0 is likely to te on the ridge, so a linear search in

locate the position of maxima Lo within some positive tolerance © (see the direction a } oe may be successiul.
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{+5 1-5 : |

Although he does not refer to the resolution ridge problem, good approximation to the minimum is found for very ill-conditioned
i : . i } ] rob 8. G L i inimiziPowell (1961) incorporates such a strategy in his stopping criterion. problem For example, consider minimizing

We propose to use this stretegy during the regular iterations as well. T(x) = Ax 5 (5.2)

where A is a 10 by 10 Hilbert matrix (i.e., 2; 5 = 1/(i+j-1)
Li d t into Powell's basic cedure : . i

incorporating a random step into Powell's basic procedure for 1 <i, j<10), with a condition number of 1.6x 1077 Using

Suppose that we arc commencing iteration k of Powell's basic long real on an IBM 360 computer (machine precision 16712) , and

procedure, counting eilher from the start or from the last singular starting from (1,1, ...,1)7" » our algorithm successfully found the

value decomposition, and 2 <k <n . To ensure quadratic convergence, position of the minimum of f(x) Lo within the specified tolerence

we must search along the directions NEP ETRTLW in step 1 of of 1077 » but it failed without the random step strategy. (For further
iteration k , but the searches along directions Uppers oq are not details, sce Section 7.)

necessary for gquadralic convergence. (They are desirable for other

reasons: see Fletcher (1965) for & comparison of Powell's method and Pxtrapolation along the ridge

Smith's method.) The quadratic convergence property still holds if, If the function minimizer has been climbing a ridge for several

at step 1, we move to any point complete cycles, so the quadratic approximation to f is obviously

n inadequate (or the maximum would already have been found), then it may
x = x + J Bru, (5.1)
_n-ktl _0 : Tal - : . |

i=1 be worthwhile to try an extrapolation along the ridge. Suppcse that

immediately before three successive singular value decompositions, the best
with FL # 0 , before performing linear searches in. the directions

approximations to the maximum are x' , x" , and x" , with

ANEEYEERFLN Thus, before performing linear searches in directions ~ ol ~
~ ~ dy et =x >0 and 4, = EES >0 . Numerical tests indicate
Uqy eens at step 1 of iteration k , we may try the random step strategy ~ ~ =~ ~
~ ~ that curved ridges are often approximated fairly well by the space-curve
as described above. Procedure praxis does this if the problem appears to ,

: given parametrically by
be ill=-conditioned, or if the procedure is about to terminate (i.e., if

, D (i.e; Mad) (Md) (M-d,) AA)
. . . . . . N) = — Xl oe —— = yh nmrevious linear searches have failedto find a better approximation to x( d {d +d) x i. {a +d) x » (5.3)

the minimum).

which is chosen because x{-d.} = x', x(C) =x" , and x(d,) = x™ .
Thies modification ie not necessary for well-conditioned problems, ~ 0 ~ - ~ 1 —

Hence, before the 3rd, Yih, 5th ... singular value decompositions,
but numerical resulls show Lhat it 1s essential in order to ensure that a
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procedure praxis (see Section 9) moves to the point x(x) , where Ny lack of a better criterion, we choose to discard the direction, from

is chosen to approximately minimize f(x{A)) . MN, 1s computed by the Upyeeeydq » to maximize the resulting determinant (6.1).

same procedure that performs linear searches. Suppose that the new direction x-x. =u  , satisfies

u n ol+ :

~rtd = ¥ a ~d (6.2)
(ut Au 31/2 1 ( Ts y1/2ntl _ntl - iat

6. Some further details

In this section we give some more details of the ALGOL procedure Then, the effect of discarding u, and replacing it by ug (and then

given In Section 9. The criterion for discarding search directions, the renumbering the directions) is to multiplythe determinant (6.1) by lo, | ,i

linear search procedure, and the stopping criterion are described briefly. so our criterion is to choose i , with 1 < i < n-kt1 , so that |- — 1

(For the sake of clarity, some unimportant details are omitted.) is at its maximum. IT Bse- esp are as in the description of Powell's: n

basic procedure (see Section 3), and the linear minimization with step

The discarding criterion Bu, decreases f(x) by an amount 4; 5 then, from (5.7),
Suppose for the moment that f(x) is the quadratic form given by

~ 2

] A. = Bout Au, ’ (6.3)
equation (3.7). In steps 2 and ® of Powell's basic procedure (see Section 3), 1 1.1 1

we effectively discard the search direction uy and replace it by mo 1/2
~ 50 [a / 1g; may be used ms an estimate of (hu) . {Ir g, =0

x - xy The algorithm suggested by Powell does not necessarily discard =
~~ then we use the result of a previous iteration.)

ug instead, as mentioned in Section 3, it discards one of Uyseeesd
~ ~ ~0 Suppose that the random step procedure described in Section 5 moves
u =X -X_, so as toc maximize

ntl Tn 0 from xX, to
| |aet(v, ... v.)| (6.1) n~1 ~~ ’ _n Xe t Lov (6.4)

i=1

where Vv. 1s given by equation (3.14), after renumbering the remaining

n directions. We wish to retain convergence for a quadratic form in before the linear searches in the directions UgseseyU are performed.

n iterations, so we are not free to discard any one of Ups moosgq Then
- ~~ ] n .

At the k-th iterati fo 2 <k << can discard a one of _ _

iteration, Tr <k <n, we n di T ny e ua _ x _ x — L (B; +7), , (6.5)
Us emopW hq without losing quadratic convergence (see Section 5). For

. and the B: of equation (5.1) are given by
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} ] available, and the computed value of @(X\) at another point, or at two
B17 if 1 <i <n-ktl ,

B; = \ : : ] (6.6) points if there is no estimale of @"(A). 1f P(A) has a minimum at7s 1’ n-k+2 <1 <n .ASE .

A= A , and @(A) <@(C) , then 2 is accepted as a value of AN to
X *

From (6.2), (6.3) and (6.5), approximately minimize (6.9). Otherwise A is replaced by XN /2,
0

T 1/2 @(A ) is re-evaluated, and the test is reneated. (After a number of
= + or(912%) a] (8; 73) Ia / ls, ? (6.7) |

unsuccessful tries, the procedure returns with A = 0 .)

so we must discard direction u. 1 <i <n-ktl, to maximize the

modulus of the right side of (6.7). Blnce this does not explicitly | The stopping criterion

depend on the matrix A , the same criterion is used even if f is not The user of procedure praxis provides two parameters: t (a positive

necessarily a quadratic form. Note thal our criterion reduces to Powell's, absolute tolerance), and € (i.e., macheps , the machine precision);

apart from our restriction that i < n-ktl , if there are no random steps, and the procedure allempts to return x satisfying

l.e., il 7, = O Tor i =1y...,n . Quadratic convergence is guaranteed
1/2

’ oul, < MEN, (6.10)
(apart from the effect of rounding errors) unless, for some k - 2,...,n , ~ 2 ~ 2

Bl = B., E nna B! rl = 0 (6.8) where 4 is the posilion of the Lrue local minimum near x . Then- ~~ ~

exact form of the right side of (6.10) is not important, and could
at iteration k .

easily be changed if desired. It was chosen because of the analogy with

| the one-dimensional case (see Chapter 5).
The linear Search

It is impossible to guarantee that (6.10) will hold for all

Our linear search procedure is similar to that suggested by Powell 5
functions f , or cven for f which are C near p » Our stopping

(1964). we wish to find a value of A which approximately minimizes } ~
criterion is, however, rather cautious, and (6.10) is satisfied for all

P(N) = f(x, N Mu) ’ (6.9) numerical examples discussed in Section 7, with the sole excepticn of

the ext 111 -conditi d bl

where the initial point X and direction u £ 0 wre given, and @ extremely jll-conditioned problem
p(0) = r(x) is already known. If a linear search in the direction u f(x) = Xx Ax , (6,11)
has already been performed, or if u resulted from a singular value

~ where A is a 12 by 12 Hilbert matrix, with a condition number

decompesition, then an estimate of @"(0) is available. A parabola 16 1 15
: wo ~ 17x10" »>¢ ~ ~Lx1077 . In most cases the stopping criterion

P(N) is fitted to @(A) , using P(C) , the estimate of ¢@"(0) if
is over-caulious, and some unnecessary function evaluations are performed.
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77 7-f

Let us remark, as docs Powell (1964), that the stopping criterion is (machine precision 0203 . The parameter-fitting problem is described

not an essential part of cur algorithm, so an improved criterion could in Sobel (1970). |

easily be incorporated. Table 7.1 summarizes the performance of procedure praxis on the

Let x! be the current best approximation to the minimum before an test functions described below. In all cases the tolerance t = 107
iteration of the basic procedure, and let x" be the best approximation : and macheps = 16717 . The table gives the number of variables, n ;

after the iteration, i.e., n linear searches later. We test if the initial step-size (a rough estimate of the distance to the minimum),

— ” 2m] xt (6.12) h ; and the starting point, Xy - 5¢ that the results can be compared
ToT ~ with those of methods with a different stopping criterion, we give the

The stopping criterion is simply to stop, and return the approximation number np of function evaluations, and the number ny of linear
xt, if (6.12) is satisfied for a prescribed number of consecutive gearches (including any parebolic extrapolations), required to reduce

iterations. The number of consecutive iterations depends on how cautious f(x)- £f(p) below 1510 , where f{p) is the true minimum of f .

we wish to be: 2 is reasonable, and was used for the examples As f(x) was only printed out after each iteration of the basic procedure,
described in Scclion 7. Because ol the random step strategy described i.e., after every n linear minimizations, the number of function

in Section 5, and always adoptedif (6.12) was satisfied on the previous evaluations required to reduce f(x)- £{u) to 10~10 is often slightly

iteration, there is no need for a mere complicated criterion, such as ) less than n. , so we also give the actual value of f(x)- f(p) after
the one used by Powell (1964). | n. function evaluations. Finally, the table gives x , the estimated

| condition number of the problem. Except for the few cases where it is

. | easily found analytically, wn is estimated from the computed singular

7. Numerical results and comparison with other methods values, and may be rather inaccurate.

The ALGOL W procedure “praxis”, given in Section 9, has been tested For those examples marked with an asterisk, the random step strates
on IBM 300/67 and 300/91 computers with machine precision 167 . In was used Irom the start. (In the initialization phase of procedure
this section we summarize the results of the numerical tests, and compare praxis, the variable "ille" was set to true.) For the other examples

them with results for other wethods reported in the literature. Our the procedure was used as given in Section O (with "ille" set to false

procedure has also been translated into SATL (an extension of ALGOL: initially). Although the automatic scaling feature (see Section L4) |

see Swinchart and Sproull (1970)) and used to solve least-squares reduces n. by about 25 percent for some of the badly scaled problems,
parameter-fitting problems with up to 16 variables on & FDP 10 computer this feature was swilched off for the examples given in the table. (The

bound "scbd" of equation (4.15) was set to 1 .)
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i i 1968, 1969), Goldstein and Price (1967), and Powell (1970e)},Definitions of Lhe test functions, and comments on the results Davidon (1908, 1909), ( !

; ds could presumably be adapted fo accept differencesummarized in Table 7.1, are given after the table. and these metho Db Y pt

approximations to derivatives. Thus, we prefer to compare methods on

the basis of the number of function evaluations required, and regardA cautionary note :

8 h procedure, if an as an integral part of cach method.When comparing different minimization methods, such as ours, the linear search p ’ Yo

Powell's end Stewart's, the reader should not forget that the numerical : :

b .1: Results for various test functionsresults reported for the methods may have been obtained om different Table 7.1 -

computers (with different word-lengths), and with different linear Search n
Function n h x De ny £x)-£(p)procedures. The effect of different word-lengths should only be ~

significant in the final stages of the search, when rounding errors Rosenbrock | 2 1] (-1.2,1) 120 47) 6.61r-18 2508
: brock | 3.3% 110 hel B.531'-17 2508determine the limiting accuracy attainable, except Cor ill-conditioned Rosenoro 51 (3:3) |
L Rosenbrock | 2 12 | (8,8) 181 671 9.711'-18 2508

problems (say wu > 10) . This is another reason why we prefer to Cube o 1] (-1.2,-1) 177 68] 7.187-18 10018
consider the number of function evaluations required to reduce f(x)- £(u) Beale 0 Ll | (0.10.1) Sh oo | 2.00t-15 162

| - j ” 1ix 3 1 -1,0,0 155- 67 1.75'-11 500
$0 & reasonable threshold (say 10 10, s rather than the number required Helix (-1,0,0) oPowell 3 1 (0,1,2) 55 251 1.99'-11 2

for convergence. | Box¥ ] 20 | (©,10,20) 100 Fl 2.37'-13 8300
Because apparently minor differences in the linear search procedures Singular¥ ht 1 (3,-1,0,1) 250 106] g9.76'-11 @®

: * hy 10 | -(3,1,51 L552 191| 6.06'-14 1400can be quite important, Fletcher (1965) prefers to consider the number Wood (3,1,3,1)

Chebyquad 2 [0.1 x. =1i/(n+1) 31 121 7.89'-20 1.3
of linear searches, n, » instead of the number of function evaluations, Chebyquad by jo. x, =1if (n+l) Th Z| r.80r-11 7
Ne This approach discriminates against methods, such as Powell's, Chebyquad 6 0.1 x, =1i/(n+1) Do3 101 7.00'=13 50

0.1 | x, -i/ (n+l 326 1h7| 6.32r-11 2007
which use most of the search directions several times, and can thus use Chebyquad 8 1 i ) =

Wat son# 6 1 0 316 145) 2.85r-12 856000

second derivative estimates to reduce the number of function evaluations wat sont g 1 oT 118) sl 187-11 1.719
required for the second and later searches in each direction. Note that, :

for the examples given in Table 7.1, n./ng lies between 2.1 and 2.7 ,

but it would be at least 3.0 for methods which do not use second * FOr these results we set ille := true in the lnitialization

derivative information, il the linear search involves fitting a parabola phase of procedure praxis, und the random number generator wus

and evaluating f at the minimum of the parabola. Also, there are initialized by calling raninlt(2) in procedure test.

promising methods which do not use linear searches at all (see Broyden (1967),
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Definitions of the test functions and comments on Table 7.1
Table 7.1 continued _TP :

. of £1) Rosenbrock (Rosenbrock (1960}):Function n h x n n (x)=f {1 ol —_—0 f 1 ~ ~

2, 2 2
f(x) =100(x,-x)" + {1-x.) . : (7.1)Tridiag h 8 or 27 11 0 29.3 ~ 2 71 1

1% }

Tridiag 651 12 0 ol 22 0 oh.9 This 1s a well-known function with a parabolic valley. Descent methods
T

Tridiag 8 16 0 126 20 O 15 tend to fall into the valley, and then follow it around to the minimum
T :

Tridiag 101 20 Q 201 89 | 1.561-15 115 at (1,1) . Details of the progress of the algorithm, for the starting :
T c

Tridiag 121 24 0 259 118 | 2.23'-15 250 point (-1.2, 1} , are given in Table 7.2. In Diagram 7.1 we compare
T z

Tridiag 16 | 32 0 438 222 | 1.26'-13 458 these results with those reported for Stewart's method (Stewart (1967)),
T x

+ Tridiag 20 LO O 805 579 0 617 Powell's method, and the method of Davies, Swann and Campey (as reported

Hilbert 21 10 (1, v.51) 11 L | 3.987-15 19 by Fletcher (1965)). The graph shows that our methed compares favourably
Hilbert 1 10 (15.0451) 20 22 6.11'-15 1.5% with the other methods. Although the function (7.1) is rather artificial,
Hilvert 61 10 (1,...,1) 133 58 | 1.50"-11 1.577 similar curved valleys often arise when penalty function methods are used

Hilbert 8 10 (1y...51) 262 119 | 8.1kr-11 1.5'10 to reduce constrained problems to unconstrained problems: consider

Hilbert” 10 10 | (3,...,1) | 592 | 267 | 7.84-11 1.6715 minimizing (1-x)° » with the constraint that x, = x: , by a simple-
Hilbert* 12 | 16 (1500451) T31 328 | 1.987-11 1.7116 minded penalty function method.

Cube (Leon (1966)):

+ For these results the stopping criterionwas more conservative: 5 0 ,
f(x) = 100(x,, =x) + (ox) . (7.2)we sct ktm := 4 in the initialization phase of procedure praxis. ~

This function is similar to Rosenbrock's, and much the same remarks

: apply. Here the valley follows the curve X, = x2 .

Beale (Beale (1958)): : :

po] | 10.2
f(x) = 3 (ec, -x,(1L-x)) , (7.3)R 1 i 2

1=1
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11 (196k)):

where Cy = 1.5 , c, = 2.25 , Cy = 2.625 . This function has a valley Powell (Powell (1964) |
approaching the line x_ = 1 , and has a minimum of © at (3, LT .

2 2 3 x tx, 2
] — - -— - i — - 8 - —_— = pa . :

Kowalik and Osborne (1968) report that the Davidon-Fletcher-Powell fx) 2 1+ (x, -x : sin{z Xs) a x, (7.7)
12

algorithm reduced ff to 2.18x 10H in 2C function and gradient

evaluations (equivalent to 60 function evaluations if the usual (rmr+1) For a description of this function, see Powell (1964). Perhaps by good

weighting factor is used), and Powell's method required 86 function luck, our procedure had no difficulty with this function: it found the
: -8

evaluations to reduce ff to 2.94 x 10 . Thus, our méthod compares true minimum quickly and did not stop prematurely.

favourably on this example.

Rox {Box (19656)):

Helix (Fletcher and Powell (1963)): 2
10 (exp(-ix,/10) - exp(-ix,./10))

00x) = 100((x, - 100)2+ (x - 1)?)+ x2 (7.1) (x) = ) : oo (19)
- 3 5 7 ) = i=1 -x3(exp(-1/10) - exp(=i})

where

SN 2.1/2 This function has minime of 0 at (1, 10, nT, and also along the
r = (x) + x2) (7.5)

: line (AA, 07) . (Our procedure found the first minimum.) Kowalik
a |

an : and Osborne (1968) report that Powell's method took 205 function

| | arctan(x,/x,) if x, >0 , evaluations to reduce f to 3.09 x 1077 , so our method is about twice
ene = (7.6)

: T+ arctan(x,/x,) if x; <0 es fast. Cur method took 79 function evaluations to reduce f to
5.99 x 1071 , so 1t is faster, in this example, than any of the methods

This function of three variables has a helical valley, and a minimum
compared by Box (1966), with the exception of Powell's method for sums

at (1,0,0) . The results are given in more detail in Table [.3 and
of squares (Powell (1965)). See Lhe comment in Seclion 1 about special

Diagram 7.2. For Lhis example our method is faster than Powell's
methods for minimizing sums of squares! :

method, but slightly slower than Stewart's.

- Singular (Powell (1962)):

| f(x) = (x, + 10x 1 4 5(x%. - X YZ + (x ox Vi 10(x, - x yi (7.9)
~ 1 2 5 7h A: 3 1h
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This function is difficult to minimize, and provides a severe test of Chebyquad (Fletcher (1965)):

the stopping criterion, because the Hessian matrix at Lhe minimum f(x) is defined by the ALGOL procedure given by Fletcher (1965) .

(x = 0) is doubly singular. The function varies very slowly near O As the minimization problem is still valid, we have not corrected a

in the two-dimensional subspace (Ion, ASE As rot] . Table 7.L small error in this procedure. (The procedure dees nol compute exactly
and Diagram 7.3 suggest that the algorithm converges only lincarly, “what Fletcher intended.) In contrast to most of our other test functions,

as does Powell's algorithm. It is interesting to note that the output which are designed to be difficult to minimize, this function is fairly

fram our procedure would strongly suggest the singularity, if we did not + easy to minimize. For n = 1{1)7 and 9 the minimum is O , for other

know it in advance: after 21% function evaluations, with n it is nonzero. {For n = 8 it is approximately 0.00351687% (2568 .)

f(x) = 7.67 x 107 , the-computed eigenvalues were 101.0 , 9.999 , The results given in Table 7.5, and illustrated in Diegrams 7.4% to 7.7,

0.003790 , and 0.00101% . (The exact eigenvalues at 0 are 101 » 10, show Lhat our method is faster than those of Powell or of Davies, Swann

0, and 0 .) After 384 function evaluations, with f(x) reduced to and Campey, but a little slower than Stewart's.

1.02 x 10° , the two smallest eigenvalues were 1.56% 10°" and

5.98 x 10° . Thus, our procedure should enable singularity of the Watson (see Kowalik and Osborne (1968)): oo

Hessian matrix to be detected, in the unlikely event that it occurred | 5 5 5
f(x) = x]+ (x, -x] -1)" +

in a practical problem. (For one example, see Freudenstein and Roth -

i=2 | j=P - j=l

Wood (see Colville (1968)): : :
Here a polynomial

2 f - |

£(x) = 100(x, -x)° + (1-%)% + 90x, - x3)" + (1-3%5)° + i.
~ : p(t) = SIRE I ETE | (7.12)
-10.1{ (x, -1)° + (x), -1)°] + 19.8(x,, - 1) (x) -1) . (7.10) :

is fitted, by least squares,to approximate a sclution of the

. - - - r - rs ©

This function is rather like Rosenbrock’s, but wilh four variables differential egualion .

instead of two. Procedures with an inadequate stopping criterion may ”
dz/at = 1+ z° , (7.13)

terminate prematurely on this function (see McCormick and Pearson (1969)), :

but our procedure did find the minimum at © = (1,1,1,1) . with z(0) = 0, for tel0,1] . (The exact solution is z = tan(t) .)
} -1

Because ofB bad choice of basis functions (1,8, ...,t" } , the
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minimization problem is Ill-conditioned, and rather difficult to solve. The results given in Table 7.1 show thal, as expected, the minimum is- ] 3

_ . . - z -2
For n =6 , the minimum is fw) ~ 2-P8767005355 x 10 > ab found in n° or less linear minimizations. The eigenvalues of A are

© ~ (0.015725, 1.012435, -0.232992, 1.260430, -1.513729, 0.992096)" . 0 in
= _6 just A. = 4 cos (5277) for Jj =1,...,0 .
For n= 9, fu) ~ 1399760138x 107 , and yu ~ (-0.000015, 0.999790, J

0.0176, 0.1L6342, 1.000821, -2.6177%1, L.10kho3, -3.143612, 1.050627)" .
Hilbert

(We do not claim that all the figures given are significant.)
T

Kowalik and Osborne (1968) report that, after TOO function [(x) = XA (7.17)

evaluations, Powell's methodhad only reduced f to 2.434 x 1077 where A is an n by n Hilbert ratrix JebJ lalJ

(for n = 6) , so our methed is at least twice as fast here. The

| a... = 1/(i+3-1) (7.18)
Watson problem for n = 9 is very ill-conditioned, and seems to be a td

good test for a minimization procedure. for 1 <i, Jj<n. f(x) can be computed directly wilhout storing

the matrix A . Like (7.18), (7.17) is a positive definite quadratic

Tridiag (see Gregory and Karney (1969), pp. 41 and 74): form, but the condition number increases rapidly with n . Because of

P(x) = x Lax _ Px , (7.14) the effect of rounding errors, more than n linear minimizations were
required to reduce f to 10710 , except for n = 2 . The procedure

where

successfully found the minimum p = 0 , tec within the prescribed

: tod O tolerance, for n < 10 . Tor n - 12 , some components of the computed-1 2  -1

1 5 a1 minimum were greater than 0.1 , even though ff was reduced to

b= -1 2 -1 (7.15) 2.76% 10717 . This illustrates how ill-conditioned the problem is!

1 2

This function is useful for testing the quadratic convergence property. Some more detailed results

The minimum f(p) = -n occurs when up is the first column of at , i.e., Tables 7.2 to 7.5 give more details of Lhe progress of our procedurc

it (B) on the Rosenbrock, Helix, Singular, and Chebyquad functions. In
p= (n, n-1, 0-2, -.., 2, 1) . (7.16)
~ Diagrams 7.1 to 7.7, we plot
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7 7.7

b= logy, (£(x) - £(u)) (7-19) Teble 7.5: Hellx

against n. , the number of function evaluations. Using the results I 2 I TN
given by Fletcher (1965) and Stewart (1967), the corresponding graphs | ) 5 2.507% 1 000000 5 000000 > oooooa

for the methods of Davies, Swann and Campey (D), Powell (P), and bos | orn © cota | 000 000000
Stewart (S), are also given, for purposes of comparison. os ° 1.1810 0.563832 1.950025 1.750403 |

| 36 14 | 5.2210 | 0.311857 | 1.000020 | 2.09612k
—seem | hh 18 | k.okro 0.30553h | 0.967190 1.987145

n. n, £(x) f x, X, | 57 | 0% | 3.7870 0.347506 | 0.007981 1.922708
1 o | oun © -1.200000 { 1.000000 65 | 27 | 5.0110 | 0.8L7973 | 0.724103 1.074595

11 ) Lao | -1.03k611 1.071270 B2 | 33 9.46'-1 | 0.816717 0.566910 | 0.969820

01 | 8 | 3 Log | -0.811598 | 0.621199 | gl 57 3.661-1 0.965754 | 0.342023 0.548844 |
oa | 1» | 2.5000 | -0.5b9031 | 0.258076 ws | 26-1 | d.ookéeh © 0.23948 | 0.364506| ws log 1.6710 -0.268211 0.046503 115 h7 2.8412 0.995843 0.091699 0.153178

| 58 | 22 | 1.070 0.028125 | ~0.010783 126 53 | 6.35'-3 | 1.002319 | 0.05726 | 0.072132
| 72 | o7 | 3.717 -1 | 0.482692 0.20089L | 134 57 8.01'-4 1.002726 | 0.002305 | 0.002966
| gh 32 | 2.79"~3 | 0.947251 | 0.897130 | 1h 63 | 8.66 -6 0.999996 : 0.001853 | 0.002942

a8 37 5.897 -l | 0.996384 0.990382 155 | 67 | 1.75'=-11 1.000000 | 8.hgr-9 opr100 | ue | 6.69'-9 | 0.999991 0.999974 : L169 | 73 1 1.2020 1.000000 | -6.457-11 | -g.g2r-11
| 120 WT | 6.61'-18 1.000000 | 1.000000 178 | TT | 1.99" -2h 1.000000 -1.69'-13 | -2.477-13 |
132 52 | 1.131-23 1.000000 1.000000 | 20 8 | 1.94v-2h 1.000000 -1.607-13 | -2.53"-13
355 57 I Lh. pe-2h 1.000000 1.000000 Co ST mn en mmm

oL8 og |



Ta 7 7-7

Table 7.4: Singular Table 7.5: Chebyqued

TET - 3 aa hw] LL oe

19 6 | 1.18'1 | 2h) | 111 | 2.031-10 RA Rn Ee | | : | —
2 11 7.960 | 25h + 136 b.110-13 ae! 0 He | | | =
| 216 0 1.750 | 269 125. 2.617-1h | ale | L 4.531-3 17 6 | L.h30-2
| 58 | ZINK SO 279 128 © 6.430-15 | 2 1 8 LED | =f | Ho L59368. or. 9.861 | 289 | 133 | 8.881-16 | IE | 7.897 -20 oo SEE 1.007 =k
| 78. 30 lash 308 140 7.35'-16 | is Si He oH | = | bet
on 78 | 6.92" -3 | 519 hs 3.871-16 | oe | ora | o | ol | 1-061-8

104 43 1.1813 | 750 | 150;  9.92°-17 2 | | T | 2 7-897-11
j ; | Po | | hoo= (0.21132h9, 0.7886751) bar boas 177s

| LE MG sess o58 1 as7 fo guger-ly | bo |129 | 55 | 8.257-6 | | 373 162 1.65% =-17 | ER | 43 0 1.881-16 |
159 £0 | 2.15'-6 384 167 1.021 -17 7 - (0.1006728, 0.%062037,

Sef 6 edoter | Mok [oath 9.950-18 0.595703, 0.8973272)

| 164 | 72 7.91'-8 | h21 | 179, 6.02'-23 | n=6 © n= 6 (continued)
| | 17h 7 2.958 | | 436 | 18h 5.89153| HEE EN B SEEN EE |

104 iG | 3.90" -8 | | i | 191 5.8923 | I, IR bhp NE hos |1 i | 7-90" -8 | _ 46 | 196 5891-25 | | 25 1 8 | 2.5512 his | 65 | Laks
| 209 a 5.89'-8 37 | 15 | 1.8012 | | 159 | 72 | 2.71" -6

a. 66 | 29 5.69" -3 | 195 | 87 1 6.59'-10
io (-9.73x 2070 9.73x 1070 , 5.51x107 , 5.31x120°1) , lying a | = p07 | | p00 3 | 1.38710
approximately in the subspace [(10h, A}, hy, hol}, es expected. 10% | Ll, 9.89'-5 | p23 101 7.007 -13
* See the comment under Table 7.1. | 7 Cal es 258] 108) 37a

oo | re = (0.066877, 0.288741, 0.366682, 0.633318, 0.711259, 0.933123)
250 2h)



1.7 7

Table 7.5 continued Diagram 7.1: Rosenbrcck

Key: B: Our methad,
n = 8 :

IEE Cer em - : Ca D: The method of Davies, Swann and Campey,
n,n, | £(x) | I F(x) |
£ 1 ~ ! f \ 1 | ~ | as given by Fletcher (1965),
1 0 0.0386176982859 | : 208 92 0.00352699087 47 P: Powell's (1964) method, as given by Fletcher (1965),

29 10 © 0.0171124413075 ; P20 | 101 | 0.0035191392k9k 1 S: Stewart's method, as given by Stewart (1967).
br v0 19 0 0.0109123181597h i 2kh © 110 | 0.0035180637576 | A. b= logy, (f(x) - £(u))
65 | 28 © 0.0102860269896 | 262 | 119 | 0.0035176364629 .

: | | |

85 1 37  0.0093337335931 | | 280 7 128 | 0.003517196k5h1 |
102 | WG © 0.0071908595069 | 308 ¢ 138 | 0.00351687437h5 em

124 55 0.004995248159% | | 226 147 0.003%5168737800 i —
14% | oh 1 0.00LkL32513L63 245 1 156 1 0.0035168737250 =
172 | 74 | 0.00379L0k16125 | [ 36h | 165 | 0.0035168737288 -
190 | 83 | 0.0035390720159 |

BE Ta B "8 | D

17 (0.043153, 0.193091, 0.266379, 0.500000, ©.500000, 0.733671, = _ |

0.806910, 0.956847)

: 3

=1 oT

-1

| -2

a |

-D
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7.7

Diagram 7.2: Helix
Diagram 7.5: Singular (Powell's function of four variables

Lo Kcy: B: Our method, : ] Key: B: Qur method,
D: The method of Davies, Swann and Campey, as given D: The method of Davies, Swann and Campey, as

by Fletcher (1965), given by Fletcher (1965),
P: Towcll's (190k) method, as given by Fletcher (1964), B: Powell's (1964) method, as given by Fletcher (1965),
S: Stewart's method, as given by Stewart (1967). | A 5: Stewart's method, as given by Stewart (1967).

J

5 = log, (E(x) - £2) |
10 | a = log (f(x) -£())

Na

NTT

P

- 5] « P

\ oP

D B

3 H P -1

-13

1 \ |

-1 NL
i a

-2

-2

3 — be bo

| 249 100 bc ot doo dp +
TE UY Vi S— —-——

-243 0 150 150 ado Tok Th ny

25) 259



7-71

7.7 Diagram 7.5: Chebyquad, n = I

Diagram 7.4: Chebyquad — Key: H: (ur method,
=age”0 Nes, BEE D: The method of Davies, Swann and Campey, as given

Key: RB: Our method, by Fletcher (1965) ,
P: Powell's (1904) method, as given by Fletcher (1965),

D: The method of Davies, Swann and Campey, as given S: Stewart's method, as given by Stewart (1967).
by Fletcher (1965), A :

P: Towell's (1964) method, as given by Fletcher (1965), | A = log, (r(x) - £(n))
§: Stewart's method, as given by Stewart (1967).

b= Logo (£lx) - £()) Ne
= © “ON

| NGS
A

So hd Se

' RN
~.

S : P ) A RES
~—— \ ~

i — ] "
N
\

= \

=1 : : )

-1 |

. \
Y

-1 y

- p :

-1

9 : : |
0 10 20 30 40 50 ne

-1 :

256 0 2 50 5 100 125 ng
: 257
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Diagram 7.6: Chebyquad, n = 6 Diagram 7.7: Chebyquad, n = 8

- Key: DB: Our method, . —y :
D: The melhod of Davies, Swann and Campey, as given (Results for Stewart's method not available.)

by Fletcher (1965),
P: Powell's (1964) method, as given by Fletcher (1965), Rey: B: Our method,
S: Stewart's method, as given by Stewart (1967). D: The method of Davies, Swann and Campey, as given

A = tog, ,(£(x) _ £(}) by Fletcher (1965),
~ ~ P: Powcll's (1964) method, as given by Fletcher (1965).

: Fa

I NY A = Tog (£(x) - (1)
~_] ~ ~

NN) :

- NS ANS ~~
_ } ~. i

Se Se

| ~ B P |
-1

3 B D
\ -1 |

-1

-1

-1

- EE — de

143 130 200 300 400 500 The
-16 - fmm fr pep} f

0 100 200 300 400 500 ng
259 259



7.8 | 7-9 }

8. Conclusion (unique) minimum for all functions f which are c” » strictly convex,
Powell (196L) observes that, with his determinantal criterion for and satisfy

accepting new search directions (see Section 3), Lhere is a tendency for lim P(e) = + w (8.1)
the new directions to be accepted less often as the number of variables hoe i :

increases, and the quadratic convergence property of his basic procedure for all nonzero vectors e . Of course, this result is of little

is lest. Our aim was to avoid this difficulty, keep the quadratic practical interest, for in practice rounding crrors may be very

EOAVErgEnte property, and ensure that the search directions continue to important: see Section 5.

span lhe whole space, while using basicelly the same method as Powell It is plausible that, if the Hessian matrix of f is strictly

(and Smith (1962)) to generate conjugate directions. positive definite at the minimum, then our algorithm will converge

| The numerical results given in Section T suggest that our algorithm superlinearly. McCormick (1969) shows that this is true for the reset

is lasler Lhan Powell's, and comparable to Stewart's, if the criterion Davidon-Fletcher-Powell algorithm, provided a Lipschitz condition is

is the number of function evaluations required to reduce (x) to a satisfied. Figures 7.1, 7.2, and 7.4 to 7.7 certainly suggest that |
certain threshold. Also, our algorithm seems to be reliable even for | convergence is superlinear until rounding errors become importent. We
very ill-conditioned problems like Watson (n = 9) and Hilbert (n = 10) , do not have a proof of this conjecture though: perhaps additional

while Stewart's method breaks down because of numerical difficulties on conditions on f , or a slight modification of the algorithm, are

some functions, e.g., the Rosenbrock and Singular functions (see necessary.

Stewart (1967)). However, we should not try to conclude too much from | }

the numerical results: see the warning in Section 7. .

G. An ALGOL W procedurc and test program

Theoretical convergence results The procedure praxis, plus a driver program and Lest functions,

Suppose that all arithmetic is exact (i.e., there are no rounding is piven below. The language is ATGOL W (Wirth and Hoare (1966),

errors), and consider cur algorithm with the stopping criterion removed. Bauer, Becker and Graham (1968)), but none of the special features

Jince the algorithm keeps on performing linear searches along n of ALGOL W bave been used, so translation into another dialect of

orthogonal directions, the same conditions that ensure convergence of ATGOL should be straightforward. |
the method of coordinate searchto a local minimum will ensure convergence

of our mlgorithm. In particular, the algorithm will converge to the

260 : 26]



BEGIN COMMENT: LONG REAL C,F,G,H,S5.X,Y.,Z: :
| - TEST PROGRAM FOR PROCEDURE PRAXIS. LONG REAL ARRAY E(1::MN);

ARERR GA RET ARERR Ah Add hh hhh b dk hhh dh COMMENT: HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM;

G := X := 0;
LONG REAL PROCEDURE PRAXIS (LONG REAL VALUE T, MACHEPS, H: FOR 1 := 1 UNTIL N DO

INTEGER VALUE N, PRIN; BEGIN

LONG REAL ARRAY X(#); LONG REAL PROCEDURE F, RANDOM); E(I) := G; S := 0; L := 1+];
BEGIN COMMENT; FOR J := | UNTIL N DO S := S+AB(J,1)ea=2;

IF S<TOL THEN G := 0 ELSE

THIS PROCEDURE MINIMIZES THE FUNCTION F(X, N) OF N BEGIN

VARIABLES X(1), ... X(N), USING THE PRINCIPAL AX!S METHOD, F := AB(I,1); G := |IF F<0 THEN LONGSQRT(S)
ON ENTRY X HOLDS A GUESS, ON RETURN IT HOLDS THE ESTIMATED ELSE -LONGSQRT(S);
POINT OF MINIMUIA, WITH (HOPEFULLY) |ERROR| ¢ H := F*G-5; AB(1,1) := F-G;
SORT(MACHEPS)*|X] + T, WHERE MACHEPS 1S THE MACHINE FOR J := L UNTIL N DO
PRECISION, THE SMALLEST NUMBER SUCH THAT 1 + MACHEPS > 1, BEGIN F := 0;
T IS A TOLERANCE, AND |.| 1S THE 2-NORM. H IS THE MAXIMUM FOR K := | UNTIL N DO F := F + AB(K, 1)#sAB(K,J);
STEP SIZE: SET TO ABOUT THE MAXIMUM EXPECTED DISTANCE FROM F = F/H;
THE GUESS TO THE MINIMUM (1F H 1S SET TOO SMALL OR TOO FOR K := | UNTIL N DO AB(K,J) := AB(K,d) + F+AB(K,I)
LARGE THEN THE INITIAL RATE OF CONVERGENCE WILL BE SLOW). END J

THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS END S;
AFTER PROCEDURE QUAD. Q{l) := G; 5 := 0;

PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS. IF 1<{=N THEN FOR J := L UNTIL N DO
IF PRIN = 0, NO RESULTS ARE PRINTED. S :1=S + AB(I1,Jd)==2;
IF PRIN = 1, F 1S PRINTED AFTER EVERY N+1 OR N+2 LINEAR IF S<TOL THEN G := 0D ELSE
MINIMIZATIONS, AND FINAL X 1S PRINTED, BUT INTERMEDIATE BEGIN

X ONLY IF N {= 4, F := AB(I,1+1); G := |IF F<0 THEN LONGSQRT(S)
IF PRIN = 2, EIGENVALUES OF A AND SCALE FACTORS ARE ALSO ELSE =-LONGSQRT(S);

PRINTED. H := F«G-S: AB(l1,1+1) := F-G:
tF PRIN = 3, F AND X ARE PRINTED AFTER EVERY FEW LINEAR FOR J := L UNTIL N DO E(J) := AB(},J)/H;
MINIM|I ZATIONS, FOR J := L UNTIL N DO

IF PRIN = 4, EIGENVECTORS ARE ALSO PRINTED. BEGIN S := 0; :
FMIN |S A GLOBAL VARIABLE: SEE PROCEDURE PRINT. FOR K := L UNTIL N DO S := S + AB(J,K)*AB(],K);
RANDOM IS A PARAMETERLESS LONG REAL PROCEDURE WHICH RETURMS FOR K := L UNTIL N DO AB(J,K) := AB(J,K) + S+E(K)

A RANDOM NUMBER UNIFORMLY DISTRIBUTED IN (0, 1). ANY END J
INITIALIZATION MUST BE DONE BEFORE THE CALL TO PRAXIS. END §;
THE PROCEDURE 1S MACHINE-INDEPENDENT, APART FROM THE OUTPUT Y := ABS(Q(1}) + ABSCE(1)); IF ¥Y >X THEN X := Y

STATEMENTS AND THE SPECIFICATION OF MACHEPS. WE ASSUME THAT END 1;
MACHEPS#»#(-4) DOES NOT OVERFLOW (IF IT DOES THEN MACHEPS MUST

BE INCREASED), AND THAT ON FLOATING-POINT UNDERFLOW THE COMMENT: ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS;
RESULT IS SET TO Z2ERD; FOR | := N STEP =-1 UNTIL 1 DO

BEGIN

PROCEDURE MINFIT (INTEGER VALUE N; LONG REAL VALUE EPS, TOL; IF G™=0 THEN.
LONG REAL ARRAY AB(», =); LONG REAL ARRAY Q(=%)); BEGIN
BEGIN COMMENT: AN IMPROVED VERSION OF MINFIT, SEE GOLUB & H := AB(I,1+1)*G;

REINSCH (1969), RESTRICTED TO M = N, P = 0. FOR J := L UNTIL N DO AB{(J,I1) := AB(1,J)/H;
THE SINGULAR VALUES OF THE ARRAY AB ARE FOR J := L UNTIL N DO
RETURNED IN OQ, AND AB 1S OVERWRITTEN WITH BEGIN SS := 0;
THE ORTHOGONAL MATRIX V SUCH THAT FOR K := L UNTIL N DO § :=S + AB{Il,K)*AB(K,J);
U.DIAG(Q) = AB.V, FOR K := L UNTIL N DO AB(K,J) := AB(K,J) + S#«AB(K,1|)
WHERE U IS ANOTHER ORTHOGONAL MATRIX: ~ END J

INTEGER L, KT; END G; )

| 262 263



FOR J := L UNTIL N DO AB(I,J) := AB(J,I1) := 0; ECI-1) := 7 := IF ABS(F) < ABS(H) THEN
AB(1,1) := 1: G := E(1}; L := | ABS(H)#*LONGSQRT(1 + (F/H)*#2) ELSE IF F "= 0 THEN
END I; “ABS(F)*LONGSQRT(1 + (H/F)#*%2) ELSE 0;

IF Z = 0 THEN Z := F := 1:

COMMENT: DIAGOWALIZATION OF THE BIDIAGONAL FORM; C := F/LZ; 5S := H/L:;
EPS := EPS*X: F 1= X#C + G*S; GG := -X«5 +G*C; H := Y¥Y=35;
FOR K := N STEP -1 UNTIL 1 DO Y 13 Y*C;

BEGIN KT := 0; FOR J := 1 UNTIL N DO
~ TESTFSPLITTING: BEGIN
KT := KT + 1; IF KT > 30 THEN : : X := AB(J,I1-1); Z := AB(J, |);

BEGIN E(K) := OL; AB(J, 1-1) := X#C + Z*S; AB(J,I) :1= =-X#§ + I+C
WRITE ("QR FAILED") | END J;
END; Q(1-1) := Z := IF ABS(F) < ABS(H) THEN ABS(H)+

FOR L2?2 == K STEP -1 UNTIL 1 DO LONGSQRT(1 + (F/H)=#=+2) ELSE IF F “= 0 THEN
BEGIN ABS(F)*LONGSQRT(1 + (H/F)*+2) ELSE 0;
L = L2; IF 2 = 0 THEN Z := F := 1;
IF ABS(E(L))<=EPS THEN GOTO TESTFCOMVERGENCE; C= F/Z; S = WI;
IF ABS(Q{L-1))<=EPS THEN GOTO CANCELLATION F := CG + SHY; X := -§#G + C»Y
END L2; END I;

: E(L) := 0; E(K) := F; Q(K) := X; |

COMMENT: CANCELLATION OF E(L) IF L>1: GO TO TESTFSPLITTING;
CANCELLATION: |

FOR t := L UNTIL K DO 'F 2<0 THEN |
BEGIN BEGIN COMMENT: Q(X) IS MADE NON-NEG;
F o:= SxE(1); E(1) := C+E(1}; | QeK} = 1;
IF ABS(F)<=EPS THEN GOTO TESTFCONVERGENCE: FOR J := 1 UNTIL N DO AB(J,K) := -AB(J,K)

| G := Q(1); QCl) z= H := IF ABS(F) < ABS(G) THEN END Z
ABS(G)*LONGSQRT(1 + (F/G)##2) ELSE IF F ~= 0 THEN END K
ABS(F}*LONGSQRT(1 + (G/F)»%2) ELSE 0; END MINFIT;
IF H=0 THEN G :=H := 1;

COMMENT: THE ABOVE REPLACES Q(1):=H:=LONGSQRT(G*G+F=F) PROCEDURE SORT;
WHICH MAY GIVE INCORRECT RESULTS IF THE BEGIN COMMENT: SORTS THE ELEMENTS OF D AND CORRESPONDING

: SQUARES UNDERFLOW OR IF F = G = 0; COLUMNS OF V INTO DESCENDING ORDER;

END I; LONG REAL S;
FOR | := 1 UNTIL N - 1 DO

- TESTFCONVERGENCE: BEGIN K z= I; S :=D(1); FOR J := 1 + 1 UNTIL N DO
Z := Q(K); IF L=K THEN GOTO CONVERGENCE; IF D{J) > S THEN

BEGIN K := J; § := D(J) END;

COMMENT: SHIFT FROM BOTTOM 2#2 MINOR; IF K > | THEN
X :=Q(L); Y := Q(K-1); G := E(K-1); H := E(K); BEGIN D(K) := D(1); DCI) := S; FOR J := 1 UNTIL N DO
F oe= ((Y-Z)*(Y+Z) + (G-H)*(G+H))/ (2xH*Y); BEGIN S := V(J,1); V(J,1) z= VJ,,K): V{J,K) = §
G := LONGSQRT(F*F+1); END

F i= ((X-Z)e(X+Z)+H*(Y/(IF FCO THEN F-G ELSE F+G)-H))}/X: np

COMMENT NEXT QR TRANSFORMATION; ~ END SORT;:= 5 := 1; .
FOR | := L+1 UNTIL K DO PROCEDURE PRINT;
BEGIN COMMENT: THE VARIABLE FMIN 1S GLOBAL, AND ESTIMATES THE
G := ECCI): Y :=QC1); H := 52G; G := G=*C; VALUE OF F AT THE MINIMUM: USED ONLY FOR :
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PRINTING LOG(FX - FMIN);

BEGIN INTEGER SVINT; SVINT := INTFIELDSI|ZE; USES Hl, N, T, M2, ML, LDT, DMIN, MACHEPS;
INTFIELDSIZE := 10;

WRITE (NL, NF. FX). LONG REAL PROCEDURE FLIN (LONG REAL VALUE L);
COMMENT: IF THE NEXT TWO LINES ARE OMITTED THEN FMIN 1S COMAENT: THE FUNCTION OF ONE VARIABLE L WHICH 13

NOT REQUIRED; MINIMIZED BY PROCEDURE MIN;
IF FX <= FMIN THEN WRITEON (" UNDEFINED ") ELSE BEGIN LONG REAL ARRAY T(1::N);
WRITEON (RDUNDTOREAL (LONGLOG (FX - FMIN))); \F oJ 2 0 THEN
COMMENT: "IOCONTROL(2)" MOVES TO THE NEXT LINE; BEGIN COMMENT: LINEAR SEARCH;
IF N > 4 THEN IOCONTROL(2); FOR | := 1 UNTIL N DO TOY := XCF) + LeV(I,Jd)
IF (N <= 4) QR (PRIN > 2) THEN END
FOR | := 1 UNTIL N DO WRITEON(ROUNDTOREAL(X(1))); ELSE
|OCONTROL(2); INTFIELDSIZE = SVINT BEGIN COMMENT: SEARCH ALONG A PARABOLIC SPACE~-CURVE;
END PRINT: QA := L«(L =- QD1)/(QD0*¢0ODO0 + QD1l});

QB := (L + QDO)#*(QD1 - L)/(QD0+QD1);

PROCEDURE MATPRINT (STRING(30) VALUE S; LONG REAL ARRAY QC i= Lx(L + QD0)/(QO1x(QDO + QD1));
V(e,e); INTEGER VALUE M, N) ; FOR T z= 1 UNTIL N DO T(1) == NA*XQO(1 )+QB+X (1 Y+QC»Ql (1)
BEGIN COMMENT: PRINTS M X N MATRIX V COLUMN BY COLUMN; ERD;
WRITE (5) COMMENT: INCREMENT FUNCTION EVALUATION COUNTER:
FOR K := 1 UNTIL (N-+ 7) DIV 8 DO NF _:= NF + 1;

BEGIN FOR | := 1 UNTIL M DO F(T, N)
BEGIN 10CONTROL(2); END FLIN; |
FOR J := 8aK - 7 UNTIL (!F N ¢ (8~K) THEN N ELSE B8+K)
DO WRITEON (ROUNDTOREAL (V (1,J))) (INTEGER KR; BOOLEAN DZ; ~
END ; LONG REAL X2, XM, FO, F2, FM, D1, T2, S, SF1, SXI1;

WRITE (" "); 1OCONTROL(2) SFl := Fl; SX1 := Xl;
END K t= 0; XM := 0; FO := FM = FX; DZ := (D2 < MACHEPS}:

END MATPRINT; COMMENT : FIND STEP S17ZE;
S z= 0; FOR I :=1 UNTIL NDO S t= 5 + X(1)w#x2;

PROCEDURE VECPRINT (STRING(32) VALUE S$; LONG REAL ARRAY V(%); 5 := LONGSQRT(S);
INTEGER VALUE N); : T2:= Mu«LONGSQRT(ABS(FX)/(IF DZ THEN DMIN ELSE D2)
BEGIN COMMENT: PRINTS THE HEADING S AND N-VECTOR V; * S=LDT) + M2+LDT;
WRITE(S); S i= MixS + T;
FOR 1 := 1 UNTIL N DO WRITEON(ROUNDTOREAL(V(I))) IF DZ AND (T2 > S) THEN T2 := S;
END VECPRINT; IF T2 < SMALL THEN T2 := SMALL;

IF T2 > (0.01%H) THEN T2 := 0,01+H;

PROCEDURE MIN (INTEGER VALUE J, NITS; LONG REAL VALUE IF FK AND (F1 <= FM) THEN BEGIN XM := X1; FM := F1 END;
RESULT D2, X1; LONG REAL VALUE Fl; BOOLEAN VALUE FK); IE __EK OR (ABS(X1) < 72) THEW
BEGIN COMMENT: BEGIN X1 := IF X1 >= OL THEN T2 ELSE -T12;

. MINIMIZES F FROM X IN THE DIRECTION V(+,J) F1 z= FLIN(X1)
UNLESS J<1, WHEN A QUADRATIC SEARCH 1S DONE END;

D2 AN APPROXIMATION TO HALF F'' (OR ZERO), LO: IF DZ THEN |
XI AN ESTIMATE OF DISTANCE TO MINIM, BEGIN COMMENT: EVALUATE FLIN AT ANOTHER POINT AND
RETURNED AS THE DISTANCE FOUMD. ESTIMATE THE SECOND DERIVATIVE;
IF FK = TRUE THEN F1 IS FLIN(X1), OTHERWISE X2 := IF FO < F1 THEN -X1 ELSE 2#X1; F2 := FLIN(X2);
X1 AND F1 ARE IGNDRED OM ENTRY UNLESS FINAL IF F2 <= FM THEN BEGIN XM := XZ; FM := F2 END;
FX > F1. NITS CONTROLS THE NUMBER OF TIMES DZ := (XZ2#(Fl - FO) - X1#(F2 - FO0))/(X1#X22(X1 - X2))
AN ATTEMPT IS MADE TO HALVE THE INTERVAL. END; -

SIDE EFFECTS: USES AND ALTERS X, FX, NF, NL, COMMENT : ESTIMATE FIRST DERIVATIVE AT 0;
Dl := (F1 - FO)/X1 = X1#D2Z2; DZ := TRUE;
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COMMENT: PREDICT MINIMUM; LONG REAL S, SL, DN, DMIN, FX, F1, LDS, LDT, SF, DF, ’
X2 := IF D2 <= SMALL THEN (IF D1 < 0 THEN H ELSE -H) ELSE QFl, abo, Qbl, QA, QB, QC,

-0.5L+D1/D2; M2, M4, SMALL, VSMALL, LARGE, VLARGE, SCBD, LDFAC, T2; _
IF ABS(X2) > H THEN X2 := IF X2 > 0 THEN H ELSE -H; LONG REAL ARRAY D, Y, Z, QO0, Ql (1::N);
COMMENT: EVALUATE F AT THE PREDICTED MINIMUM; LONG REAL ARRAY V (1l::N, 1l::N);
Ll: F2 := FLIN(X2):

IF (K < NITS) AND (F2 > FO) THEN COMMENT: INITIALIZATION;
BEGIN COMMENT: NO SUCCESS SO TRY AGAIN; K := K + 1; COMMENT: MACHINE DEPENDENT NUMBERS;
IF (FO < F1) AND ({(X1=X2) > 0) THEN GO TO LO; SMALL := MACHEPS#*=»2: VSMALL := SMALL=*»2;
X2 := 0.5L«X2; GO TO LI LARGE := 1L/SMALL; VLARGE := 1L/VSMALL;
END; M2 := LONGSQRT(MACHEPS); M4 := LONGSQRT(M2);

COMMENT: INCREMENT ONE-DIMENSIONAL SEARCH COUNTER;
NL ¢= NL + 1; COMMENT: HEURISTIC NUMBERS
IF F2 > FM THEN X2 := XM ELSE FM := F2; TRE k UAE AA hk ERR Tbk

- COMMENT: GET NEW ESTIMATE OF SECOND DERIVATIVE;

D2 := IF ABS{X2*(X2 - X1)) » SMALL THEN IF AXES MAY BE BADLY SCALED (WHICH 5 TO BE AVOIDED IF

(X2%«(F1 ~ FO) ~ X1»(FM - FO))/(X1l=X2%(X1 - X2)) POSSIBLE) THEN SET SCBD := 10, OTHERWISE 1. i

ELSE IF K > 0 THEN 0 ELSE D2; IF THE PROBLEM 1S KNOWN TO BE ILLCONDITIONED SET
IF D2 (= SMALL THEN D2 := SMALL; ILLC := TRUE, OTHERWISE FALSE.
X1 = X2; FX := FM; KTM+1 |S THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE
IF SF1 <¢ FX THEN BEGIN FX := SF1; X1 := SX1 END; THE ALGORITHM TERMINATES (SEE SECTION 61). KTM = 4 |S VERY

COMMENT: UPDATE X FOR LINEAR SEARCH BUT NOT FOR PARABOLIC CAUTIOUS: USUALLY KTM = 1 IS SATISFACTORY;
PARABOLIC SEARCH;

IF J > 0 THEN FOR | := 1 UNTIL N DO X(I) := X(1l) + X1«V{1,d) SCBD := 1; |ILLC := FALSE; KTM := 1;
END MIN;

LDFAC := JF ILLC THEN 0.1 ELSE 0.01;

PROCEDURE QUAD; KT 2= NL := 0; NF := 1; QF1l := FX := F(X,N);
BEGIN COMMENT: LOOKS FOR THE MINIMUM ALONG A CURVE T := T2 := SMALL + ABS(T); DMIN := SMALL;

DEFINED BY QO, Ql AND X: IF H < (100+*T) THEN H := 100=+T; LDT := H;

LONG REAL L, S$; FOR | := 1 UNTIL N DO FOR J := 1 UNTIL N DO
S t= FX; FX := QFl; QFl1l := 8; QD1 := 0; v(il,J) = IF | = J THEN 1L ELSE OL;
FOR | := 1 UNTIL N DO D(1) := QDO := 0; FOR | := 1 UNTIL-N DO Ql(l) := X(I};

BEGIN S.:= X(1); X(1) :=L = Q1(V); QlCl) := §5; PRINT;
QD1 := QD1 + (S = L)w=2
END; COMMENT: MAIN LOOP;

L := QD1 := LONGSQRT(QD1l); S := 0; LO: SF := D(1l); D(l) := SS := 0;
IF (QDO0 > 0) AND (QD1 > 0) AND (NL >= (3=N=N)) THEN COMMENT: MINIMIZE ALONG FIRST DIRECTION;

BEGIN MIN (0, 2, S, L, QF1, TRUE): MIN (1, 2, D(1), S$, FX, FALSE);
QA := L*(L - QD1)/(QDO»(QDO0 + QD1)): IF S ¢= 0 THEN FOR | := 1 UNTIL N DO V(I,1) = =V(1,1};
QB := (L + QDO)»(QDLl - L)/(QDO«QD1); IF (SF <= (0.9*D(1))) OR ((0.9«SF) >= D(1)) THEN

QC := L=(L-+ QDO)Y/(QD1+={(QDO0 + QD1)) FOR 1 := 2 UNTIL N DO D(1) := 0;
END ce FOR K := 2 UNTIL N DO

ELSE BEGIN FX := QFl; QA := QB := 0; QC := 1 END; BEGIN FOR | := 1 UNTIL N DO Y(1) := X(1); SF := FX;
“ QD0 := QD1; FOR | := 1 UNTIL N DO ILLC := ILLC OR (KT > 0);

BEGIN § := Q0(1); Q0Cl1) := X(1); L1: kL := K; DF := 0; 1F ILLC THEN

-X(1) := QA+*S + QB«X(I1) + QC=Q1(1) BEGIN COMMENT: RANDOM STEP TO GET OFF RESOLUTION VALLEY;
END FOR | := 1 UNTIL N DO |

END QUAD; BEGIN S = Z(l) := (0.1+LDT + T2+10+2KT)*«{(RANDOM-0.5L);
COMMENT: PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM

BOOLEAN LLC; NUMBER UMIFORMLY DISTRIBUTED IN (0, 1) AND
INTEGER NL, NF, KL, KT, KTM; THAT ANY INITIALIZATION OF THE RANDOM NUMBER
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GENERATOR HAS ALREADY BEEN DONE: COMMENT: TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE STUCK
FOR J := 1 UNTIL N DO X({(J) := X(J) + S5&y(J,1) : IN A CURVED VALLEY;

N END; QUAD;
FX := F(X, N); NF := NF + 1 : DN := 0; FOR | := 1 UNTIL N DO
END; BEGIN D(1) := 1/LONGSQRT(D(1)):

FOR K2 := K UNTIL N DO IF DN < D(I1) THEN DN := D(I)

BEGIN SL := FX; 5 = 0; END;
COMMENT: MINIMIZE ALONG "NON-CONJUGATE'" DIRECTIOQNS; IF PRIN > 3 THEN MATPRINT ('"'NEW DIRECTIONS", V, N, NJ;
MIN (K2, 2, D(K2), S, FX, FALSE); FOR J := 1 UNTIL N DO
S i= IF ILLC THEN D(K2)=(S + Z(K2))*+2 ELSE SL - FX; BEGIN S := D{(J)/DN;
IF DF < S THEN FOR | := 1 UNTIL N DO V(1,Jd) := S*V({l,J)
BEGIN DF := §; KL := K2 END;

END IF SCBD > 1 THEN ,
END; BEGIN COMMENT: SCALE AXES TO TRY TO REDUCE CONDITION

IF "ILLC AND (DF ¢ ABS(100+«MACHEPS=*FX)) THEN NUMBER;
BEGIN COMMENT: NO.SUGCESS ILLC = FALSE SO TRY OMCE S := VLARGE; FOR | := 1 UNTIL N DO

WITH LLC = TRUE; BEGIN SL := 0; FOR J := 1 UNTIL N DO SL := SL+V{I,J)#+2;
ILLC := TRUE; GO TO LI Z{1) := LONGSQRT{SL):
END: IF Z{1l) < ML THEN Z(1) := M4; IF S > Z(1) THEN S§ := Z(1l)

IF (K = 2) AND (PRIN > 1) THEN VECPRINT (“NEW D", D, N): END;
FOR K2 := 1 UNTIL K = 1 DO FOR | := 1 UNTIL N DO

BEGIN COMMENT: MINIMIZE ALONG "CONJUGATE" DIRECTIONS; BEGIN SL := S/Z{1); Z(¢l1) := 1/SL; IF Z(1) > SCBD THEN
S := Q; MIN (K2, 2, D(K2), S, FX, FALSE) BEGIN SL := 1/SCBD; Z(1) := SCBD
END; END;

~ Fl t= FX; FX := SF; LDS := 0; FOR J := 1 UNTIL N DO V(I1,J) z= SLe«V(IJ)
FOR I := 1 UNTIL N DO END

BEGIN SL := X(1); X(1) := Y(1); SL := Y(1) := 5L = Y(1); END;
LDS := LDS + SL=SL COMMENT: TRANSPOSE V FOR MINFIT;
END; FOR 1 := 2 UNTIL N DO FOR J := 1 UNTIL I - 1 DO

LDS := LONGSQRT(LDS); tF LDS > SMALL THEN BEGIN S = Vv(I,J);: V(1,J) := Vv{J,1); V(J,1) :=S END;
BEGIN COMMENT: THROW AWAY DIRECTION KL AND MINIMIZE COMMENT: FIND THE SINGULAR VALUE DECOMPOSITION OF V.- THIS

ALONG THE NEW "CONJUGATE" DIRECTION; GIVES THE EIGEMVALUES AND PRINCIPAL AXES OF THE
FOR | := KL = 1 STEP -1 UNTIL K DD ~ APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE
BEGIN FOR J := 1 UNTIL N DO V{J,! + 1) := V(J,1); CONDITION NUMBER;
DCI + 1) := D(1) MINFIT (N, MACHEPS, VSMALL, V, D):

END; IF SCBD > 1 THEN |
D(K) := 0; FOR I = 1 UNTIL N DO V(I,K) := Y(1)/LDS; BEGIN COMMENT: UNSCALING; FOR 1 := 1 UNTIL N DO
MIN (K, 4, D(K), LDS, Fl, TRUE); BEGIN S := Z{1);
IF LDS <= 0 THEN FOR J := 1 UNTIL N DO V(I,d) := S*V(Il,Jd)
BEGIN LDS := -LDS; END;

FOR | := 1 UNTIL N DO V(I,K) := =V(I,K) FOR | := 1 UNTIL N DO
END BEGIN S := 0; FOR J := 1 UNTIL NDO S :=5 + V{J,|)ww2:

: END; S := LONGSQRT(S); D(1) := S5*D(1); S := 1/5;
LDT := LDFAC®=LDT; IF LDT < LDS THEN LDT := LDS; FOR J := 1 UNTIL N DO V({J,1) := S=«V(J,1)
PRINT; END
T2 := 0; FOR I := 1 UNTIL N DO T2 := T2 + X(1)*%2: END;
T2 := M2*LOMNGSQRT(T2) + T; FOR | := 1 UNTIL N DO

COMMENT: SEE IF STEP LENGTH EXCEEDS HALF THE TOLERANCE: BEGIN D(I) := IF (DN=D(I1)) > LARGE THEN VSMALL ELSE
KT := IF LDT > (0.5#T2) THEN 0 ELSE KT + 1: IF (DN#D(1)) < SMALL THEN VLARGE ELSE (DN=D(l))*=(-2)

IF KT > KTM THEN GO TO L2 END;
END; COMMENT: SORT NEW EIGENVALUES AND EIGENVECTORS:
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SORT; COMMENT: TEST FUNCTIONS |
DMIN := D(N); IF DMIN ¢ SMALL THEN DMIN := SMALL; CERRRERE RR RRA
ILLC = (M2«D(1)) > DMIN;

IF (PRIN > 1) AND (SCBD > 1) THEN LONG REAL PROCEDURE ROS (LONG REAL ARRAY X(=); INTEGER VALUE NJ);
VECPRINT ("SCALE FACTORS", 2, N); COMMENT: SEE ROSENBROCK (1960);
IF PRIN > 1 THEN VECPRINT ("EIGENVALUES OF A", D, N): : LOOLw((X(2) = X(L)w#2)#%%2) + (1L = X{1))#w2;
IF PRIN > 3 THEN MATPRINT ("EIGENVECTORSOF A", V, N, NJ);

COMMENT: GO BACK TO MAIN LOOP; LONG REAL PROCEDURE SING(LONG REAL ARRAY X(w»);INTEGER VALUE N);

GO TO LO; i COMMENT: SEE POWELL (1962);
L2: 1F PRIN > 0 THEN VECPRINT ("X 1S", X, NJ); (X(1) + 10L*X(2))w2e2 + SLa(X(3)=X(U4))#*a2 + (X(2)=2L*X(3))n=x}h
FX + I0L*#(X(1) = X(u))wwh;
END PRAXIS;

| LONG REAL PROCEDURE HELIX(LONG REAL ARRAY X{(*):INTEGER VALUE N);
COMMENT: RANDOM NUMBER GENERATOR COMMENT: SEE FLETCHER & POWELL (1963);

hE A EAA Ahk hdd xbth dk kid dkii BEGIN LONG REAL R, T; .
R t= LONGSQRT (X(1)w*w2 + X(2)=x%2);

PROCEDURE RANDOM RETURNS A LONG REAL RANDOM NUMBER UNIFORMLY T := IF X(1) = 0 THEN 0.25L ELSE LONGARCTAN (X(2)/X(1))/(2Lw
DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1). 3.14159265358970L);

RANINIT(R) WITH R ANY INTEGER MUST BF CALLED FOR ’ IF X(1) ¢ 0 THEN T := T + 0.5L;
INITIALIZATION BEFORE THE FIRST CALL TO RANDOM, AND THE 100L*{(X(3) - 10L*T)*#2 + (R = 1L)**2) + X(3)=x2
DECLARATIONS OF RAN1, RAN2 AND RAN3 MUST BE GLOBAL. END HELIX;

THE ALGORITHM RETURNS X(NJ)/2#=%56, WHERE

X(N) = X{N-1) + X(N-127) (MOD 2*%56G). LONG REAL PROCEDURE CUBE({LONG REAL ARRAY X(#);INTEGER VALUE N);
SINCE 1 + X + X*%127 |S PRIMITIVE (MOD 2), THE PERIOD IS AT COMMENT: SEE LEON (1966):
LEAST 2#%127 - 1 > 10#%#38, SEE KNUTH (1965S), PP. 2&6, 34, uLb4. 100L*(X(2) = X(1)*#3)w+2 + {1L = X(1))»=x2:

X(N) tS STORED IN A LOMG REAL WORD AS

RAN = X(N)/2«+56 - 1/2, AND ALL FLOATING POINT ARITHMETIC LONG REAL PROCEDURE BEALE(LONG REAL ARRAY X(=); INTEGER VALUE NJ;
15 EXACT; COMMENT: SEE BEALE (1958):

NE (1.5L = X{1)*(1L = X(2)))»%2 +

LONG REAL RANL:; INTEGER RAN2; LONG REAL ARTAY RAN3 (0::126): (2.250 = X(1)*(1L = X(2)*&2))an? +
(2.625L = X(L)#(1L - X{(2)%%3))%=x2;PROCEDURE RANIMIT (INTEGER VALUE R): (2)

BEGIN R := ABS(R} REM 8190 + 1; LONG REAL PROCEDURE WATSON (LONG REAL ARRAY X(*);
RAN2 := 127: WHILE RAN2 > 0 DO INTEGER VALUL N);

BEGIN RAN2 := RAN2 = 1; RANL := -2L#*#*55; COMMENT: SEE KOWALIK & OSBORNE (1968);
FOR | := 1 UNTIL 7 DO BEGIN LONG REAL S, T, U, Y:

BEGIN R := (1756*R) REM 8191; S = X(1)w#*2 + (X(2) = X{(1)#**2 = 1L)*=2;
RAN1 := (RAN1l + (R DIV 32))x(1/250G); FOR | := 2 UNTIL 30 DO
END; BEGIN Y := (1 = 1)/29; T := X(N);

RAN3 (RANZ) := RAN1 FOR J := N =~ 1 STEP =1 UNTIL 1 DO T := X(J) + Y*T;
END U := (N = 1)*X(N);

END RANINIT; FOR J := N - 1 STEP -1 UNTIL 2 DO U := (J = 1)«X(J) + Y=*U;
S :1= SG + (U = TaT = 1L)#%2"-

LONG REAL PROCEDURE RANDOM; END;
BEGIN RANZ := [F RAN2 = 0 THEN 126 ELSE RAN2 - 1; 5
RAN1 := RAN1 + RAN3 (RAN2); END WATSOMN; :
RAN3 (RAN2) := RAN1l := IF RAN1 <¢ OL THEN RAN1 + 0.5L |

ELSE RAN1 - 0.5L; LONG REAL PROCEDURE CHEBYQUAD (LONG REAL ARRAY X(=);
RAN1 + 0.5L INTEGER VALUE N);
END RANDOM; COMMENT: SEE FLETCHER (1965);

: BEGIN
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LONG REAL F, DELTA, TPLUS; LONG REAL PROCEDURE TRIDIAG (LONG REAL ARRAY X(%);
BOOLEAN EVEN: INTEGER VALUE N);
LONG REAL ARRAY Y, TI, TMINUS (Ll::N); COMMENT: COMPUTES XT.A.X - 2E1T.X, WHERE N > 1,

DELTA := OL: | (1-1 0 0... 0)
FOR J := 1 UNTIL N DO (-1 2-1 0... 0)

BEGIN Y(J) := ZLaX{(J) - 1L; : (0-1 2-1... 0)
DELTA := DELTA + Y(J); A = (ere ev eeenonnssanel
TI(J) := Y(JI;: TMINUS(J) := 1L (0 ... =-1 2-1)
END; (0 ... 0-1 2),

F := DELTA#+2; EVEN := FALSE:
FOR 1 := 2 UNTIL N DO AND EIT = (1, 0, ... , 0).
‘BEGIN EVEN := "EVEN; DELTA := OL:
FOR J :=1 UNTIL N DO SEE GREGORY & KARNEY (1969), PP. 41, 74;

| BEGIN TPLUS := 2L*Y(J)*TI(J) - TMINUS(J): BEGIN LONG REAL S; -
DELTA := DELTA + TPLUS; | S = X(1L)=(X(1) - X(2));

 TMINUS(J) = TI(J); FOR I := 2 UNTIL N - 1 DO
TI(J) := TPLUS / S = S + XCI)w((XCI) = XC = 1)) + (XC1) = X(1 + 1)));
END; S + X(N)*(2«X(N) - X(N - 1)) - 2#X(1)

‘DELTA := DELTA/N - (IF EVEN THEN 1/(1 - 1=[) ELSE 0); - END TRIDIAG;
" F 1= F + DELTA==2

END: LONG REAL PROCEDURE BOX (LOMG REAL ARRAY X(%);INTEGER VALUF N);
F COMMENT: SEE BOX (1956) OR BROWN & DENNIS (1970);
END CHEBYQUAD: BEGIN LONG REAL P, §;

| | S := 0; FOR I := 1 UNTIL 10 DO
LONG REAL PROCEDURE POWELL (LONG REAL ARRAY X(#+): BEGIN P := -1/10;

INTEGER VALUE N); S = S$ + ((LONGEXP(PxX(1)) - (IF (P=X(2)) < (-40) THEN 0
~ COMMENT: SEE POWELL (1964): ELSE LONGEXP(P»X(2)))) -
IL = 1L/C1IL + (X(1) - X(2))#x2) - X(3)2{LOHNGEXP{(P) = LONGEXP(10%P)))w+2
LONGSIN(0.5L*3.14159265358979L«X(2)% X(3))=-(IF X(2) = 0 THEN END;

COL ELSE LONGEXP(=-({(X(1)+X{3))/X(2) = 2L)*%2)); S
oo Co END BOX;
LONG REAL PROCEDURE WOOD(LONG REAL ARRAY X(#):INTEGER VALUE N);
COMMENT: SEE MCCORMICK & PEARSON (1969) OR COLVILLE (1968); COMMENT: GENERAL TESTING PROCEDURE

C100Le(X(2) - X(1)xw2)x=2 + (1L - X(1))#»=%2 + gOL*(X(h) - A ERR E SES ERLE EERE EERE ES SE
X(3)*#2)aw2 + (IL = X(3))we2 + 10.1L+{(X(2) = 1L)*22 + {(X(4)

= 1L)Y##2) + 19.8L*(X(2) = 1L)#*(X(4) - 1L); PROCEDURE TEST (STRING (830) VALUE S; LONG REAL VALUE H:
: LONG REAL PROCEDURE F; [INTEGER VALUE N);

LONG REAL PROCEDURE HILBERT (LONG REAL ARRAY X(=*): BEGIN LONG REAL FMIN; INTEGER TIM;
INTEGER VALUE N): WRITEC(" "); WRITE(" "); WRITE(S):;
COMMENT: COMPUTES XT.A.X, WHERE A IS THE N BY N HILBERT WRITE("N =", N, " 4 =", ROUNDTOREAL(H)): WRITE(M "),

MATRIX, SEE GREGORY & KARNEY (1969), PP. 33, 66; COMMENT: INITIALIZE RANDOM NUMBER GENERATOR; RANINIT(L);
BEGIN LONG REAL 5, T; COMMENT: TIME(2) RETURNS CLOCK TIMLC IN UNITS OF 26 MICROSEC:
S = OL; FOR | := 1 UNTIL N DO TIA = TIME(2);
BEGIN T := OL: FOR J := 1 UNTIL N DO FMIN := PRAXIS (1'-5, 16+%(-13), H, N, 1, X, F, RANDOM);
T :=T + X(J)/(1 + J = 1); WRITE ("TIME (MILLISEC) =", ROUND{(TIME(2) - TIM)/38.4));
S$ := 5 + TxX{1) WRITE(" ")
END; END TEST:

S

END HILBERT: COMMENT: TESTING PROGRAM
: RRR AEN ERE RAT N A
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BEGIN FOR | := 1 UNTIL N DO X(1) := OL: FMIN := -N; |
LONG REAL FMIN, LAM; TEST ("“TRIDIAG", 2«N, TRIDIAG, N)
COMMENT: [INCREASE DIMENSIONS FOR N > 20: END;

LONG REAL ARRAY X(1::20);

COMMENT: INTFIELDSIZE COMTROLS THE OUTPUT FORMAT OF INTEGERS: FMIN := 0; FORM N := 2 STEP 2 UNTIL 12 DO
INTFI1ELDSIZE := 7; BEGIN FOR 1 := 1 UNTIL N DO X(1) := 1:

TEST ("HILBERT", 10, HILBERT, N)
X(1) := -1.2L; X{(2) := 1L; FMIN := 0: END }
TEST (“ROSENBROCK'S FUNCTION WITH A PARABOLIC VALLEY",1,ROS,2): END,

X(1) := X(2) := 3;

TEST (“ROSENBROCK'S FUNCTION “, 3, ROS, 2):

X(1) := X(2) := 8; |
TEST ("ROSENBROCK'S FUNCTION", 12, ROS, 2); |

XC1) := =1: X(2)} = X(3) := 0:
TEST (“HELIX", 1, HELIX, 3):

X(1) := -1,2L; X(2) := -1; | |
TEST ("CUBE", 1, CUBE, 2); |

X(L) := X%X(2) := 0.1L;
TEST ("BEALE"™, 1, BEALE, 2):

XC1) := 0: X(2) := 1; X(3) := 2:

TEST ("POWELL", 1, POWELL, 3); |

FMIN := 0; X(1) ¢= 0: X{(2) := 10; X(3) := 20:
TEST ("BOX", 20, BOX, 3): -

X(1) := 3L; X(2) := -1L; X(3) := OL; X(4) := 1L; |
TEST ("POWELL'S FUNCTION WITH A SINGULAR JACOBIAN",1,SING,U4);

FMIN = 0; X(1) := X(3) := =3; X{(2) := X(4) := -1; ]
TEST (WOODY, 10, WOOD, 4):

FOR N t= 2 STEP 2 UNTIL 8 DO

BEGIN FOR | := 1 UNTIL N DO X{1) := 1/(N + 1);

FMIN z= IF N < 8 THEN OL ELSE 0.0035168737256779L:

TEST ("CHEBYQUAD", 0.1, CHEBYQUAD, N)
END;

FOR N := 6 STEP 3 UNTIL 9 DO |

BEGIN FOR | := 1 UNTIL N DO X(1)} := 0;
FMIN := IF N = 6 THEN 0.00228767005355L ELSE :

IF N = 9 THEN 1.399760138098"'-6L ELSE OL;

TEST ("WATSON", 1, WATSON, MN)
END; :

FOR N := 4, 6, 8, 10, 12, 16, 20 DO
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