
MPL

'MATHEMAT | CAL PROGRAMM | NG LANGUAGE

Specification Manual for Committee Review

Prepared By: -

Stanley Eisenstat Michael McGrat h

Thomas Magnanti Vincent Nicholson

Steve Maier Christiane Riedl

With Foreword By George B. Dantzig .

. STAN-CS-70-187
NOVEMBER 1970

COMPUTER SCIENCE DEPARTMENT

School of Humanitiesand Sciences

STANFORD UN IVERS ITY

EE

| 2

MPL

MATHEMAT | CAL PROGRAMM | NG LANGUAGE

Specification Manual for Committee Review

Prepared By:

Stanley Eisenstat Michael McGrath

Thomas Magnant |i Vincent Nicholson

Steve Maier Christiane Riedl

With Foreword By George B. Dantzig

Computer Science Department
Stanford University
Stanford, California

Research and reproduction of this report was supported by
the National Science Foundation, Grant GJ 320.

Reproduction in whole or in part is permitted for any purpose
of the United States Government. This document has been approved

for public release and sale; its distribution is unlimited.

*

C___|

|

CONTENTS

FOREWORD on

ABSTRACT - - + «+ «+ oo eee eee eee eee eee

ACKNOWLEDGEMENTS. . . . «+ « + «vw wv ee ee ew 2

THE NEEDFOR MPL . . . + + + + «© & « vv vv vo . . 3

GENERAL FEATURES OF MPL « + + « « +. . . . 5

OVERALL STATUS «+ vv vv a a a a a www ww 8

DETAILED SPECIFICATION REVIEW « «+ + « « « . 9

RESEARCH PROGRAM + + + ow wv vv vv vv vos 12

MPL AS A COMMUNICATION AND PROGRAMMING LANGUAGE . . 12

IMPLEMENTATION CONSIDERATIONS 14

ATTACHMENTS

‘MPL SPECIFICATIONS

TWO EXAMPLES OF MATHEMATICAL PROGRAMMING ALGORITHMS

EE—

+

FOREWORD

Abstract

Mathematical Programming Language (MPL) is intended as a

highly readable, user oriented, programming tool for use in the

writing and testing of mathematical algorithms, in particular

experimental algorithms for solving large-scale linear programs.

It combines the simplicity of standard mathematical notation

with the power of complex data structures. Variables may be

implicitly introduced into a program by their use in the state-

ment In which they first appear. No formal def ining statement

is necessary. Statements of the "let" and “where” type are part

of the language. Included within the allowable data structures

of MPL are matrices, partitioned matrices, and multidimensional

arrays. Ordered sects are included as vectors with their con-

structs closely paralleling those found in set theory. Al location

of storage is dynamic, thereby eliminating the need for a data

manipulating subset of the language, as is characteristic of

most high level scientific programming languages.

This report summarizes the progress that has been made to

date in developing MPL. It contains a specification manual, |

examples of the application of the language, and the future

directions and goals of the project.

A version of MPL, called MPL/70, has been implemented using

PL/1 as a translator. This will be reported separately. Until

fully implemented, MPL is expected to serve primarily as a highly

readable communication language for mathematical algorithms.

- 1 =

Acknowl edgements

Professor David Gries, before he took a new position,

laid out a substantial part of the general framework of the

language and helped guide its detailed specification. Miss

Christiane Riedl, his assistant and also mathematician at

__ SLAC took on an active role after Gries left for Cornell.

Important suggestions have been made by Dr. C. Witzgall and

Dr. R. Bayer of Boeing Scientific Laboratories, Mr. Paul

Davis of Union Carbide, and more recently Professor R. Floyd
of Stanford. Professors Alan Manne and Richard Cottle are

currently not listed as principal investigators (as earlier)

because the coming phase will be concentrating on developing

an efficient compi ler. The work group S. Eisenstat, T.

Magnanti, S. Maier, M,McGrath,V. Nicholson, graduate students

in Operations Research and Computer Science are expected to

continue to contribute to the development.

- 2? -

THE NEED FOR MPL

The purpose of MPL (Mathematical Programming Language)

is to provide a language for writing mathematical

algorithms, expecially mathematical programming algorithms,

that will be easier to write, to read, and to modify than

] those written in currently available languages (e.g.

FORTRAN, ALGOL, PL/1, APL).

The need for a highly readable mathematically based

computer language has been apparent for some time.

Generally speaking, standard mathematical notation in a

suitable algorithmic structure appears best for this

purpose. The reason is that most researchers are famil ier

with the “language” of mathematics having spent years going

to school and taking many courses on this subject. For the

mathematical programming application, the availability of

such a tool is deemed essential.

Mathematical programming codes tend to be complex.

(Some commercial codes have over a hundred thousand

: instructions.) They are developed by persons formally

trained in mathematics using, for the most part, standard

matrix and set notations. Recently, research has been

directed toward structured large-scale systems. These

systems have great practical potential especially for

planning the growth of developing nations, the national

economy, or industry.

- 3 =

To date many methods have been proposed for solving

large-scale systems, but few have been experimentally tested

and compared because of the high cost and the long time it

takes to program them, and because it is difficult to debug

and to modify them quickly after they are written. It is

believed that highly readable programs would greatly

facilitate experimentation with these proposed methods and

would speed up the time when they can be used for finding

optimal growth patterns of developing nations and

industries. Moreover, experimentation is a valuable way to

develop ones Intuition and test conjectures prior to

developing theoretical proofs.

- 4 =

GENERAL FEATURES OF MPL

Research on MPL to date has been directed towards

developing a highly readable language adhering as closely as

possible to standard mathematical notation. Considerable

attention has been given to keeping the definition structure

of MPL as general as possible.

Matrix notation is required for the mathematical

programming applications and this has been given special

emphasis~in MPL including partitioned matrices and matrices

with special structure.

Set notation is universally used in mathematical

proofs. However in statements of algorithms, as found in

theoretical papers, one finds what appears to be set

nhotation, but which turns out to be, on closer examination,

an ordered set concept i.e. there is an assumed underlying

ordering of the elements of a set. A convenient set-like

notation is part of MPL. Typically it is used with the

such-that construct which allows one to restrict or extend

the definition of a set through logical expressions.

Other important features of mathematical notation are

the “let” and “where” concepts. As commonly used, they

serve as either a symbol substituter (macro) or as a short

subroutine whose parameters are evaluated and the results

substituted for the symbol. LET and WHERE constructs are |

also part of MPL..

- 5 =

Generally speaking, the literature of mathematics has

been devoted to proofs of theorems. Algorithms as such,

when they do appear, are often part of a constuctive proof

and have an ad-hoc. organizational structure. MPL has

adopted instead the formal block stucture of ALGOL with

minor variatlons. Alternatives are provided for those who

prefer not to see the words BEGIN and END used as

-punctuation marks for blocks throughout a program. The user

can optionally use less obtrusive special bracket symbols to

conveniently group several statements forming a block or to

group statements which follow and are subject to IF and FOR

clauses. It is also possible in MPL to conveniently

identify by labels parentheses pairs, complex statements and

algebraic expressions and thereby greatly increase

readabi 1 i ty.

In mathematics it is often desirable to change the

meaning of symbols (e.g. variable names). In computer

- languages a formal structure for **declaring” (defining)

symbols is used and also for stating the “scope” (the set of

instructions) where these definitions are to be applied.

Fdr example, in ALGOL names of variables defined within a

block cannot be used outside the block without redefinltton.

In MPL, definition of a symbol can be made anywhere inside

the block up to its first appearance in a statement;

moreover, it can also be implicitly defined by the statement

itself. Implicit definition is an important feature of MPL.

- 6 -

|

Provision Is made for conveniently soec Jing the scope of a X
variable if it extends outside the block. Finally, it is

possible to release the storage space assighed for the

values of a symbol when no longer needed.

In defining a language it is natural to worry about

whether or not it is possible to reasonably implement it.

For example, the present form of MPL uses linear character

strings for exponents, superscripts or summations in place

of two dimensional notation like:

m

j=1

Thus, a: is written a(i). However, one of the members of

our task force group (V. Nicholson) has recently completed

a Ph.D. dissertation on this subject and we plan to

incorporate features of his already implemented two

dimensional notation into MPL.

Except for special functions like sin(X),

mathematicians avoid the use of multiple character variable

names. The reason for this historically appears to b e

two-fold: First, it is easier to visualize algebraic

manipulation of symhols when they appear as single

characters. Second, it avoids possible confusion with

implicit multiplicatione.g. sin(x) meaning s-i<-n-(x).

However, by requiring in MPL the explicit use of the

multiplication symbol, multiple character names are allowed

- 7 =

as in most computer languages.

Overal 1 status:

A draft of the MPL specifications in Backus Naur Form

has recent 1 y been prepared under the general guidance of

George B. Dantzig by our work group with Miss Riedl

serving as general coordinator. This draft is now being

readied for general review by a committee probably

consisting of Rudolf Bayer, Paul Davis, David Gries, Robert

Floyd, Donald Knuth, and Christoph Witzgall.

A preliminary test version of MPL, referred to as

"MPL-McGra th, '"" was at the suggestion of Paul Davis

implemented in 1969 by Michael McGrath using PL/1 as a

translator into PL/1 instructions. This version included

those features of MPL that were easiest to translate into

available PL/1 constructions.

- 8 -

|

DETAILED SPECIFICATION REVIEW

The first goal of the project was to specify the

language in implementable form. The language outlined in

the preliminary proposal to NSF as of May 1968 was

systematically developed; the syntax was more closely

alighed with standard mathematical notation and kept as

general as possible. Many of the earlier constructs were

extended and improved, for example:

- The vector construct was extended to Include set

hotation in the form of ordered sets with logical

qual if lers.

- More complex data structures were introduced, including

mul tidimensional arrays, partttioned matrices and

reference arrays.

- The domain of_numeric constants was made the extended

{Oe, toe)real numbers y |

- In response to user requests, blocks were introduced as

a primary means of defining scope of variables.

- The principle of dynamic allocation of storage was

adopted for all non-scalar quantities.

- Both dynamic and static symbol substitution were

introduced into the language.

- Subscripting was generalized to include subscripting of-

expressions.

- 9 -

- Function Variables which allow a general function name

to be replaced by a specific name were introduced.

- Parameter passing for procedures was (greatly extended

by developing several different types of procedures. In

particular, a function procedure was introduced which

acts exactly as a function in mathematics, (i.e. without

any side effects),

- This phase of the project is nearing completion.

Concurrent with the submission of this ‘proposal, the

language specification will be given to the review

committee. During the fall quarter the language will be

used as a teaching tool to obtain feedback from potential

users. By the end of calendar year 1970 it is hoped that

the specifications can be frozen, so that implementation and

use as a communication language can begin in earnest.

The second goal of the project was to implement these

. specifications. This involved development of a PL/1

translator and made possible evaluation of the language by

Operations Research graduate students and researchers from

bdth the academic and industrial communities.

Originally it was hoped that the compiler-compiler

system under development by David Gries could be used to

implement MPL on any installation on which his system was

made available. Unfortunately, the compiler-compiler was

never completed. Therefore, in order to produce an

- 10 =

vy PL)?
environment free compiler, a translator written in PL/1 was

developed. It was felt that this would provide the widest

possible circulation for MPL, since any installation with a

PL/1 compiler could then be used.

The current version of the MPL/PL1 translator

encompasses many of the unique constructs available within

MPL. The translator was successfully used in a large scale

systems optimization seminar with enthusiastic student

response. Much valuable information was obtained from this

exchange, and it is hoped that this practice can be

contihnue& Of particular note, is that many students found

the language easier to use and less tricky than either

FORTRAN or ALGOL.

The MPL language was presented to the industrial

community through the Stanford “Computer Forum” by M.

McGrath in 1969 and C. Riedl in 1970; to the academic

community through lectures by the proposer; and to the

professional community by R. Bayer and C. Witzgall in talks

on their matrix calculus which is expected to play a role in

the generation and manipulation of special matrix

structures. Some work was also done on using MPL as a tool

in developing new algorithms and in presenting some of the

existing algorithms in the field of Operations Research. It

is hoped that this will become one area of future

concentration in the further development of the MPL

language. This has particular importance in gaining wider

acceptance for the language.

- 11 =

5—

i

Co
\

RESEARCH PROGRAM

MPL as a Communication and Programming Language

To date the primary objective of the MPL project h a s

been the formal language definition. The result of this

effort is the Language Specification Manual written in

Backus Naur Form which should function as a basis for an

implementation. Since this manual is intended for computer

specialists, it is not very suitable for an applied

mathematician not trained in computer science. Accordingly,

a next step for the project (and its proposed continuation)

is the development of an MPL user’s manual. This document

would serve in two capacities:

(i) by giving an introduction to MPL for a wide spectrum

of possible users, and

(iT) by expanding and interpreting the more involved

features of the language found in the MPL

specification manual,

To accommodate both of these objectives, the user’s

manual would endeavor to present MPL in a simplified form

and at a level in which most of its constructs are

explained. In this manner, the reader at the beginning or

intermediate level, knowing only a subset of the language,

would nevertheless be able to write MPL programs compatible-

with the full language.

- 12 =

With a user’s manual available, the project would

proceed into a testing and evaluation phase. An important

contribution to this phase would-be feedback from potential

users. From this feedback we would be able to ascertain

what modifications, if any, are required to give us the

“best” language for the user. It is probable that MPL will

be equally useful for statistical and numerical analysis

appl ications, particularly in conjunction with special

sub-routines useful in these fields. Though we would

encourage investigation of MPL's use in other areas, we

propose to concentrate primarily upon applications to

Mathematical Programming.

Testing MPL as a language for Mathematical Programming

would proceed along two fronts. First, standard algorithms,

such as Generalized Upper Bounding (see attached), would be

programmed using MPL. This would allow us not only to

evaluate MPL as a programming tool but also to assemble a

library of algorithms for use in further research. Second,

MPL would be used to write and test new algorithms,

c&sequent 1y, evaluating its potential as a research tool.

We believe that the language could have a great impact in

this area - especially in academic research where the time

and expense in programming for large scale systems has been

prohibitive in other languages.

As a user’s tool, MPL has been developed to parallel

much of standard mathematical notation. Thus most

- 13 -

algorithms written in mathematics could almost as easily be

written and read in MPL. This aspect of the language makes

it attractive as a standard. communication language for

algorithms. As one further phase of this proposal, we hope

to explore this in greater depth. In particular, we would

investigate whether it would be plausible to use MPL as a

standard vehicle for presenting algorithms in journals

especially for the newly proposed Mathematical Programming

Journal. Not only would this have the beneficial effect of

standardization, but it would also mean that published

algorithms could be easily tested or implemented via MPL,

Some of the objectives outlined above can be partially

met with the current version of the MPL translator. in

order to fully test the language and implement it as a

user’s tool, however, the translator will have to be

expanded or a compiler written. An investigation of these

possibilities constitutes the next major task of the

continuing project.

Implementation Considerations

A complete, “machine-independent” implementation seems

essential in gaining broad acceptance of MPL as a

mathematical programming language. Such an implementation

could take two directions:

(i) Extending the current translator to encompass those

- 14 -

1

MPL concepts not presently handled (e.g. subscripting

as an operator, partitioned data structures,

concatenation, and set generators).

(ii) Writing a full-scale compiler into some ideal machine

language (e.g. three address code or reverse Polish).

The translator would be less work but the more

efficient code produced by a compiler would make the

solution of large scale problems more practical. However,

of -equal, if not greater, importance is a “How to Implement**

manua1, a compendium of suggestions on implementing some of

the more powerful MPL constructs as well as techniques for

handling large scale data structures and codes involving

many thousands of instructions on a computer.

For the most part, the techniques would be machine

independent, i.e., the method of implementation outlined in

the manual should be of help in implementing any large-scale

mathematical programming system.

] Part of the manual would be concerned with the analysis

of an MPL program. Items included would be parsing

techniques, symbol table organization, a precedence grammar

if possible, suggestions for the internal representation of

the program after analysis, and an outline of code emitted

for advanced features of MPL (e.g. function variables,

indexing sets, dynamic LET statements).

Runtime organization which is essentially MPL

independent would require a study of data structures

- 15 =

hecessary for large scale systems, dope vectors, algorithms

for handling the non-first-in-first-out data structures of

MPL. ,

If an easily modifiable translator were written,

experiments could be made with different runtime data

structures, data handling algorithms, and computational

algorithms (such as matrix expression evaluation).

- 16 -

|

MPL

LANGUAGE SPECIFICATION

TABLE OF CONTENTS

Section 0. Notation

Section 1. Basic Concepts
1. The character set of MPL

2. Basic elements of the language
1. Identifiers and reserved words

2. Diglt strings
J. Delimiters

4, Character strings
5. Blanks

6. Comments

3. Structure of a program
1. Insertions and insert statements

2. Programs |

Section 2. Attributes and Values

1. The type attribute
'« Simple types (ARITHMETIC, LOGICAL, CHARACTER)
2. Reference types
3. Procedure types

2. The dinensionality attribute
Je The domain attribute

4, The shape attribute

Section 3. Expressions
1. Operands

1. Constants

1. Arithmetic constants

2. Logical constants
3. Character constants

2. Variables

3 a Vector generators
1. N tuplets
2. Index ranges
+ Sad. generators

4, Procedure calls

5. Relations

6. Synonyms
2. Operators

1. Arithmetic operators
1. Unary operators (+ and =)
2. Rinary operators

1. Addition (*) and subtraction {=)
2. Scalar multiplication (*) and division {/)
3. Exponeniation (%%)
4, Inner product (*¥)

2. Concatenation

Oct, 70, p. 1

ee

3. Logical operators
1. Negation (=)
2. Binary logical operators

1. AND and OR

2. Logical inner product (MULT)
4, Subscripting

3. Expressions :

Section #4. Statements .

1. Blocks and the scope of identifiers
2. Variable control statements

1. Define statements

2. Defining assignment statements
3. Release statement

3. Assignment statements
4. Sequence control statements

1. Labels and GOTO statements

2. RETURN statements
3. Procedure statements

6. Conditional statements

7. Iteration statements
8. LET statement

0. INPUT / OUTPUT statements

Section 5. Procedures

1. Procedure definitions

1. EXTERNAL procedures
2. INLINE procedures
3. The procedure head
4, The procedure body
5. The procedure attributes

1. FUNCTION procedures
2. INDEPENDENT procedures
3. One-line procedures

6. Examples of procedure heads
2. Procedure calls

) 1. VALUE parameters
2. NAME parameters
3. Serial actual parameters
4. The return parameters

3. Library procedures

Oct.70, Pp. 2

SECTION 0. NOTATION

In the following language specification, we useamodification of
BACKUS-NAUR FORM (BNP) to describe the syntactic structure of MPL.

A syntactic rule or production consists of a LEFT PART (a syntactic
class name), followed by a s3:= (read "is defined as"), followed by a
right part (a string of symbols-which define the left part). Syntactic
class names are enclosed 1n angular brackets <,>; MPL symbols stand by
themselves.

Notes:

(I) If a syntactic class 1s defined to be one of several strings of
symbols, the alternates are separated by a | (read "or").

Example: <character> ::= <letter> | <digit> Jj <special character> reads
A character 1s defined to bea letter, a digit, or a special
character.

(II) If part of the right side of a production may be omitted, it 1s
enclesed 1in square brackets {denoted by $,%3 in this document).

Example: <number> ::= <number base> $<exponent>$ 1s equivalent to
<number> ::= <number base> | <number base><exponent>

(ITI) A list of one or more symbols all belonging to the same
syntactic class X 1s denoted by <<KX> LIST>.

Example: <digit string> ::= <<digit> LIST> stands for
<digit string> 2:= <diglt> | <digit string><3igit>

If the symbols in the list must be separated by a delimiter,
then the delimiter directly precedes the word LIST.

Example: <variable LIST> 2:= <<varlable>, LIST> 1s equlvalent to
<variable LIST> ::= <variable> | <variable LIST>, <variable>

(IV) The syntactic class <empty> represents the null string of
symbols.

(V9) The right side of a production may be partly described bya
| comment enclosed in quotes. The comment gives semantic

restrictions on the right part.

Example: <VAexpression> 33= <Vector valued" arithmetic expression>

(VI) Certain delimiters and reserved words may be substituted for
other delimiters or reserved words. If y may be substituted
for x, this is indicated by x <== y at the first occurrence of
x in the language definition. If x <== y and y <== x, this 1is
indicated by x <==> y.

Example: = £== = means that = 1s an alternate assignment symbol
IN <==> means that IN and are interchangeable

Oct. 70, p. 3

SECTION 1. BASIC CONCEPTS

1.1. The Character Set of MPL

The set of characters avallable 1n MPL will depend on the particular
implementation. As this language specification 1s independent of any
implementation, we here define a basic character set which will be used
throughout this manual and suggest possible extensions to it.

<character> 3= <letter> | <digit> | <special character>

<letter> ::= A|BICIDIEIP|IGIHIT|JIKILININIOIPIQIRISITIOIVIVIX|Y1Z]

| alblcidlelfigihiiijikilininjolpigirisitiuivivixiylz

© <aiqgit> ::= 0}1]12131415161718}9

<special character> ss= #|=1*¥|/]1*%%|<bar>|#|<{<={=|~=1>={>):={(])100] ~]
cle do dod PIKLIDDL _L' 1<blank>£1 ¢]
opening rector bracket>|
<closing vector bracket>

<bhar> := |} =

<blank> ::= "one blank space"

<opening vector bracket> ::= (|

<closing vector bracket> s:= I>

Notes:

(I) An implementation may allow the use of any other symbols (e.g.,
the Russian or Greek alphabet) 1n addition to the letters
defined above.

(IT) (,) <=> , 3: 00 <==> INFINITY

1.2. Basic Elements of The Language

1.2.1. Identifiers and reserve words

<identifier> :3= <letter> $<£{idchar> LIST>$ | <identifier>*

<idchard> :2:= <letter> | <digit> | _

. Jdentifiers bare no Inherent meaning, but are used to represent ,
simple variables (see 3.1.2), expressions (see 8.8), labels (see 8.8.1),
and procedures (see 9.1). The scope of 1dentifiers 1s controlled by the
block structure of the "program (see 4.1).

» Jdulantifiers must start with a letter, followed byany combination of
letters, digits, and underscores: they ray end in one or more single ,
primes (apostrophes). Identifiers @may not contain blanks. There is no
restriction on the length of . identifiers.

Oct. 70, p. 4

The following reserved words have special meaning and aay not
be used as identifiers:

AND ELSE LET RETURN

ANSWER EMPTY LOGICAL ROW

ARITHMETIC END LOWER SCALAR

ARRAY EXECUTE y MATRIX SPARSE
BEGIN EXTERNAL MULT THEN
BLOCK FALSE NAME TRIANGULAR

BY FOR NOT TRUE

CHARACTER FUNCTION OR UNDEFINED

COLUNN GIVEN OTHERWISE UPPER

DEPENDENT GO TO PARTITION VALUE

DEF INE IF PROCEDURE VECTOR

DIAGONAL IN PROGRAMY WHERE
DO INDEPENDENT RECTANGULAR WITH

~ DOMAIN INLINE RELEASE

DIMENSIONAL IS RESULT

Examples: CSA, BASIC_VARIABLES, X, X', X'?

1.2.2. Digit strings

<digit string> s:= <<digit> LIST>

Digit strings are used to form arithmetic constants (see 3.1.1.1)
and (enclosed in patentheses) to represent labels (see 4.4.1).

1.2.3. Deliaiters

The following special characters are used as operators,
brackets, and separators:

<del imiter> ::= +|-|*|/1**|<bar>| #|<1<=}=|~=|D>=|>1:=](]) |=]
lst 21 MI<<I>> <blank>{€ |€]
<opening vector bracket>|<closing vector bracket>

1.2.4, Character strings

<character string> :3= <<character> LIST>

: Character 'strings are used in character constants (see 3.1.1.3).

1.2.5. Blanks

A blank space 1s required after an identifier or reserved word which
is followed by an identifier, reserved word, or number. Blanks are not
permitted within identifers. Blank spaces are ignored, except within
character strings.

1e2.6. Comments

Any sequence of characters (excludinga quote {")) enclosed in
quotes (",") 1s treated as a blank space except within character
strings. Such comments ray be used to insert remarks into the program.

oct. 70, p.o

1.3. The Structure Of AProgram

1.3.1. Tnsertionsand insert. statements

A program submitted by a user consists of program text modified by
insertions which yileld the actual MPL program. The insertions and
insert statements (which specify where insertions are to be made) are
editing features and are therefore-; strictly speaking, not part of the
language.

An insertion

SINSERTION <identifier>

"arhitrary text"
$TND <"same” identifier>

will be Aeleted from the program text and the "arbitrary text" will
replace the insert statement.

SINSERT {ident if ier>

wherever it appears in the program text. After each replacement, the
resulting program text is searchedfor further insertions.

Example: PROGRAM SHORTIE;
$INSERTTON ALPHA

ANSWER RESULT; GO TO
$END ALPHA

DEFINE RESULT == 0:
LNOP: IF RESULT>20 THEN BEGIN

$INSERT ALPHA FXIT END;

RESULT := RESULTe+1;

$INSERT ALPHA LOOP;
EXIT: END

will be transformed into

PROGRAM SHORTIF;

DEFINE RESULT z= 0;
LOOP: IF RESULT>»20 THEN BEGIN

ANSWER RESULT, GO TO EXIT END;
RESULT := RESULT+1;

ANSWER RESULT; GO TO LOOP;
EXIT: END

1.3.2. Programs

<program> <:= PROGRAM $<"program" label>;$
<<program unit>; LIST>
END $<"same" label>S$

<program unit> ::= <statement>| <procedure definition>

Oct. 70, p. 6

|

A program consists of a sequence of statements and procedure
definitions. A program acts as a block (see 4.1) and the program label
may be used1n a defining statementto delimit scope (see 4.2.1). A
transfer of control to the program label causes reexecution of the
program.

Oct. 70, p. 7

SFCTION 2. ATTRIBUTES and VALUES

The quantities on which the program operates are each characterized
by a set of attributes and a (set of) value(s). A scalar (SCALAR)
quantity represents a sinyle value; a non-scalar (VECTOR, MATRIX, ARRAY)
quantity represents a set of values, a single value corresponding *o
each element of an underlying ordered domain. The range of possible
values 1s specified by the type attribute, the underlying domain by the
domain attribute,

Attributes are associated with variable names in defining statements
(see 4.2.1). Values are assigned to variables (see 3.1.2) 1n defining
statements and assignment statements (see 4.3). The attributes and
value(s) associated with expressions {see 3) are determine? by the rules
for operators (see 3.2).

attributed : := type attribute> | <dimensionality attribute> |
- <domain attribute) { <shape attribute>

<tvpe attribute> ::= ARITHMETIC {| LOGICAL | CHARACTER |
<reference variable attribute> |

5 <procedure variable attribute>

{reference variable attribute> ::= (<<attribute> LIST) |{

%<type attributed>$ (PARTITION $< (<,LIST>) BY LIST>3})

{procedure variable attributed ::= (<procedure head>)

<dimensionality attribute> ::= SCALAR | VECTOR| <matrix attribute> |
$<digit string>-DIMENSIONALS$ ARRAY

<matrix attribute> : := MATRIX | ROW VECTOR { COLUMN VECTOR

<domain attribute>::= $SWITH DOMAINS < BY LIST>

 t:= EMPTY | <SA expression> | <VA expression> |
DOMAIN (<expression>) | <"{VECTOR) VECTOR" expression>

) <shape attribute> ::= DIAGONAL {| RECTANGULAR | "PPER TRIANGULAR |
LOWER TRIANGULAR | SPARSE

2.1 The Type Attribute

- The type attribute specifies the range of possible values. The
value UNDEFINED used 1n 1nitialization 1s of universal type.

2.1.1. Simple types (ARTTHMETIC, LOGICAL, CHARACTER)

TYPE VALUE CAN BE

ARITHMETIC numeric, +00, -00
LOGICAL TRUE, FALSE (truth values)

CHARACTER any character provided by an implementation

Oct. 70, p. 8

2.1.2. Reference types

The reference variable attribute specifies the range of possible
values as the collection of all quantities whose attributes are
consistent with the attributes specified (or defaulted (see 4.2.1))
in the attribute list.

2.1.3. Procedure types

The procedure variable attribute specifies the range of possible
values as the collection of all procedure definitions (see 5.1) with
procedure head compatible with the specified procedure head. Two
procedure heads are compatible 1f their formal input (return)
parameter(s) agree 1n number and specified attributes.

-2.2. The dimensionality Attribute

The dimensionality attribute specifies the dimension (number of
component domains) of the associated domain for non-scalar quantities.

An ARRAY may have any number of 'dimensions. A VECTOR 1s a
1-DIMENSIONAL ARRAY; a MATRIX IS A 2-DIMENSIONAL ARRAY. A ROW (COLUMN)
VECTOR is treated as a special kind of MATRIX. For completeness, ve
define a SCALAR as a O0-DIMENSIONAL ARRAY.

The components of a REFERENCE ARRAY are themselves arrays. All
components of a reference array must have the same type and
dinensionality but they can differ in size. In order to access the
scalar elements of the components of a reference array two sets of
subscripts must be used (see 3.1.2.1).

APARTITIONED MATRIX is a two-dimensional reference array whose
components are matrices. All components in a row of a partitioned
matrix must have the same number of rows and all components in a column
must have the same number of columns, so that a 2 by 3 partitioned

~ matrix can be represented by a diagram:

| | TT
| l | |

{ P(1,1) | P(V,2) | P(1,3) |

| | l l !
i i | |

P (2,1) ~ | B(2,2) | P(2,3)|

2.3. The Domain Attribute

The domain attribute specifies the associated domain for non-scalar
quantities, Domains are restricted to Cartesian products of component

Oct. 70, p. 9

domains. A component domain may he any finite (possibly empty),
strictly increasing sequence of integers. A component domain of the
form <{1¢soz +NM> 1s sald to be canonical. A domain 1s canonical 1f each
component domain 1s canonical.

The span EMPTY specifies the empty component domain. The span <SA
expression> specifies the component domain <|1,. ..,<SA expression>|>,
The span <VA expression> spacifies the component domain <VA expression>.
The span DOMAIN (<expression>) specifies a sequence of component
domains, namely the component domains associated with the expression.
The span <™(VECTOR) VECTOR" expression> specifies a sequence of
component Romains, namely the vector-valued components of the <" (VECTOR)
VECTORY expression>.

2.4. The Shape Attribute

- The shape attribute 1s used to economize on the space required to
store large data structures and to produce more efficient code to handle
then.-

Oct. 70, p. 10

SECTION 3. EXPRESSIONS

An expression 1s a rule for computing a (set of) value(s) by
executing the indicated operations on the values representedby the
operands ofthe expression. In this section, we shall describe the
basic operands of expressions, the allowable operations on them, and
finally the syntax and manner of evaluation of expressions.

We shall use the following abbreviations to denote special classes
of expressions:

A for arithmetic

L for logical
C for character

R for reference type
P for procedure type
S for "scalar valued"

V for "vector valued"

Thus, the symbol<SA expression> used in the preceding section
abbreviates <"scalar valued” arithmetic expression>.

3.1. Operands

3.1.1. Constants

3.1.1.1. Arithmetic constants

<nuaber> ::= <number base> $<exponentd>$

<number hase> ::= <digit string> | <digit string>. | .<digit string> |
<digit string>.<digit string>

<exponent> ::= BE Wadding operator>$ <digit string>

<adding operator> ::= #|-

Examples: 1970, 3.1415926536, 6.0287E+#23, 6.6254E-27

3.1.1.2. Logical constants

<logical value> ::= TRUE | FALSE

3.1.1.3. Character constants

<character constant> 3::= <opening character quote>
<character string>
<closing character quote> |

| <opening character quote> ::= (KX

<closing character quote> ::= >> |

| Example: <<NOW IS THE TIME POR ALL PARTIES TO COME TO THE AID OF MAN>>

oct, 70, p. 11

A character constant 1s a CHARACTER VECTOR (with canonical domain)
whose componentvaluesare the characters 1n the string. The character
string may not contain the sequences << or >>», Blank spaces are valid
characters.

3.1.2. Variables

<varlable> 21:= <simple varilable> [| <subscripted variable>

<simple variable> ::= <identifier> | <varilable synonym>

<subscripted variable> : := <variable> (<<range>, LIST)

<range> ::= <SA expression>| <VA expression> | *

Examples: A13_B, subvector(*), X (3-3),
. SUBMAT (*,<|3,4,5]>),ARRAY_EL {(6,B/5,U%*X,8),

SUBARRAY (*,*%*,%,3), REFARR(3) (*,5,6)
PART-MATRIX (5,6) {*,<12,8,9,1>)

Variables represent storage locations where values are stored
which may change during execution of the program. At any given time
the value {or the ordered set of values) associated with the wvar-
iable is the last value(s) assigned to the variable.

Note that a variable may be a scalar, vector, matrix, or array.

3.1.3. Vector generators

<vector generator>2:= <N-tuplet> | <index range> | <set generator>

<{N-tuplet> :2:= <opening vector bracket>
<<expression>, LIST>
<closing vector bracket>

<index range> ::= <opening vector bracket>
| <SA expression>, $<SA expression>,$...,<SA expression>

<closing vector bracket>

<set generator> ::= <opening vector bracket>
<expression><FOR phrase>
<closing vector bracket.>

The expressions listed must be scalars or vectors all of the same
type. The n-tuplet is a vector (with canonical domain) of that type
whose set of values 1s the concatenation of the values of the scalars

in the list and the sets of values of the vectors in the list.

Examples:
<] TRUE,A OR B, =D, X<Y|>
<] <KJOED>>, KLKINDD>,LKAGE20> >>

Oct. 70, p. 12

<!1,a-b,-3.5,<1.67E-3,e,12.51>1>is the same as
<{<}j1,2a-b,~3.51>,.678-3 ,e,12.5}> which 1s the same as

<<] {1,2a~b,-3.5,.67E~3,¢e, 12.51>

3.1.3.2. Index ranges

An index 'range 1s an arithmetic vector (with canonical domain).
The set of values generated by the index range

<] VFIRST, VSECOND, ..., VYLAST I>

1s the sequence

VFIRST, VFPIRST+ 1*VSTEP, VPIRST+2*VYSTEP, ... , VPIRST#N*VSTEP

where VSTEP = VSECOND-VPIRST (if VSECOND is omitted, then VSTEP is taken
_ to be one) and

N= sup | n {| ad=0 and (YVPIRST+n*VSTEP-VLAST)*VSTEP <= 0 {.

If (YFIRST-VLAST) *VSTEP > 0, then the set of values generated 1s empty.

Examples: 171,000, 751> = <}71,72,73,74,75}>
€j0e¢71.0:03,000,0.81> = <10.1,0.3,0.5,0.71>
1765400 s=2{> = £17,5,3,1,-11>
€13s0ee,0]> 1s EMPTY.

3.1.3.3. Set generators

A set generator yields a vector having as many components as are
determined by the <POR phrase> (see 4.7). The values of the components
are given by the value of the <SA expression> as modified by the
successive values of the controlled variable of the <FOR phrase>. The
identifier denoting this controlled variable 1s local to the set
generator.

Example:] 1%%2 POR i=C{1,00e,61> 2 1 == 4 |>
: gives <<} 1,4,9,25,36 {> with domain <{1,2,3,5,61>

3.1.4. Procedure calls

~~ A procedure call (see 5.2) may be used as an operand 1n an
expression provided that the procedure has precisely one formal return
parameter. The attributes and value(s) are taken from the actual return
parameter.

3.1.5. Relations

<relation> s3= <A expression><relational operator><& expression> |
<C expression><equality operatord><C expression> |
{S expression> IN £V¥ expression> |
<S expression> NOT IN <V expression> |
<V expression> IS ERPTY |

- <variable> IS UNDEFINED

Oct.70, p., 13

<relational operator> ::= <equalility operator> | < | <=] >= {>

<equalility operator> :1:= ~=| =

x) IN, NOT IN <-->€ ,¢

Examples: 3.5< A+F(B+C), <<HUGO>> =~= <<HUGO >>,
2 TN <18,6,3,-1,21>, X IS UNDEFINED,
<1 10,...,41> IS EMPTY

Relations are operands of logical expressions.
Their values are determined as follows:

(I) The two operands CP1,0P2 of an equality operator may
differ in kind and size.

OP1=0P2 is TRUE if OP1 and 0P2 have the same dimensionality and size
and every pair of corresponding components of them 1s equal, and
FALSE otherwise.

OP1-~=0P2 is TRUE if and only if OP1=0P2 is false.

Note that this implies for character tests that in the example
above, thevalue® of <<HUGO>>== <<HUGO >> is FALSE because of the
unequal length of the character strings.

(IT) If the relational operator 1s not an equality operator, then
the two operands must have the same dimensionality and size. The result

1s TRUE if the relation holds for every pair of corresponding component-s
and FALSE otherwise.

(ITT)<S expression> TN KV expression> is TRUE if the value of the S
expression 1s the valueof at least one of the components of the V
expression, otherwlse 1t 1s FALSE.

Note that the result 1s FALSE 1f the V expression 1s EMPTY.

(IV) <V expression> IS EMPTY 1s TRUE if the result of the V
expression is a vector with no components (i.e, it has the domain

_ attribute EMPTY (see 2.3)) and FALSE otherwise.

(V) <variable> IS UNDEFINED 1s TRUE 1f and only if not all of the
components of the variable have been assigned a value yet,

3.17.6. Synonyms

<synonym> $:= <identifier>8% (<< argument>, LIST>)$

<argument> 3::= <expression>

<variable synonym>::= <synonym> "defined by a let statement to stand
for a variable"

<expression synonym> ::= <synonym> "defined by a let statementto stand
for an expression which 1s not a
variable"

Oct. 70, p. 14

A synonym must be defined by a symbol suhstitutar in a LET
statement or WHERE phrase (see 4.8) before it can be used, and 1s not
defined outside the block containing the LET statement (see also 4.1).

The synonym 1s replaced by the corresponding expression (enclosed in
parentheses). Variable synonyms," 1.e., synonyms that stand for a
variable may also be used on the left side of an assignment statement
(see 4.3). In this case they are not enclosed 1n parentheses when
the substitution 1s made.

If the synonym depends on arguments, they will be substituted
(enclosed in parentheses) for the dummies occuring in the expression.
The modified expression will then replace the synonym.

The result of this replacement must be an allowable operand for the
expression containing the synonym |

Examples © .

LET A(J) := 2%jtloop(]) ; C = D = A(i+3) ;

is the same as C = D = (2% (i+3)+loop(i+3)) ;

LET S = <| £(3j) FOR J IN T : J == 21>;
C = <|2*i+3 FOR 1 IN S}I> ;
1s the same as

C = <) 2%¢i+3 FOR i IN <} £(j) FOR J INT : j=~=2 I>1> ;

3.2. Operators

3.2.1. Arithmetic operators

<arithmetic operator> ::= ¢|=|%]/|%*

The basic arithmetic operators (+,~,%*,/.**¥) are defined for
ARITHMETIC SCALAR operands and have the conventional meaning (addition,
subtract ion, multiplication, division, and exponentiation). The

] arithmetic operators defined for non-scalar arithmetic operands may be
described 1n terms of these basic arithmetic operators.

3.2.1.1. Unary operators (¢+ and =)

The unary operators ¢ and = are defined for all non-scalar
arithmetic operands and are performed componentwise, leaving the
dimensionality and domain of the operand unchanged.

3.2.1.2. Rinary operators

3.2.1.2.1. Addition (#) and Subtraction (=)

The binary operators ¢ and = are defined for all pairs of non-scalar
arithmetic operands with the same dimensionality and domain. The.
indicated operation 1s performed componentwise, leaving dimensionality
and domain unchanged.

Oct. 70, p. 15

3.2.1.2.2. Scalar multiplication(*) and division(/)

One operand (the first for division) may be any arithmetic
operand, whereas the other must be a scalar and in the case of
division not zero.

The dimensionality and domain 04 the result are taken from the
(dimensioned) operand and the value(s) obtained by multiplying
{dividing) each of its elements by the scalar.

3.2.1.2.3. Exponentiation (*%)

If OP1 and OP2 are scalars, then OP1**0P2 1s defined if
(1) oP1> 0
(2) 0PY = 0 and OP2 > 0

(3) oP1< 0 and 0OP2 is an integer.
Tf OP1 1s a square matrix, then OP1**QP2 is defined if 0P2 is a

positive 1nteger ¥ and denotes the result of Nmultiplications of 0OP1by
itself; OP1**Q denotes the identity matrix with the same number rows anti
colunns,

3.2.1.2.4. Inner product (*)

The inner product of two non-scalar operands 1s algebraically a
generalization of matrix multiplication an? the vector inner product.
Let

A p~-DIMENSTONAL ARRAY M(1) BY ... BY M(p)
B g-DIMENSIONAL ARRAY N{1) BY ... BY N(Q)

denote the two operands. Then the result €C = A*B is defined if and only
if M(p) = N(1):

C (p+q-2)-DIMENSIONAL ARRAY

= SUM (AQI{1) geese, T(p=1),k)*B{k,J (2) goees,Jd(3)) FOR k IN M(p))

for all I(i) IN M(i), 1 =1,eeeep~1
J(3) IN N(F), J = 2460409

In -particular, the inner product of two vectors (matrices) reduces to
the vector 1nner product (matrix multiplication). The inner product of
a matrix and a vector or a vector and a matrix 1s a vector.

3.2.2. Concatenation

<concatenating operator> ::= <horizontal concatenating operator> |
<vertical concatenating operator>

<horizontal concatenating operator> ::=|

<vertical concatenating operator> 1:= #%

Oct. 70, p. 16

Concatenation 1s defined for operands of all three types. Both
operands of a concatenating operator must have the same type which will
be the type of the result.

The operands of horizontal and vertical concatenation can be scalars
(interpreted as 1byl matrices) or matrices (including row and column
vectors). The result 1s the matrix (with canonical domain) obtained by
appending the elements of the second operand at the right side (or in
the case of vertical concatenation at the bottom) of the first operand.
The tvo operands of |musthave the same number of rows, the tvo
operands of # must have the same number of columns.

Examples: Let A be the 2 by 3 matrix 1 3 Uj
16 -2 4}

B the 2 by 4 matrix 5 7 9 11]
. 18 6 4 2]

C the rov vector (0 1 0 1)

then A{B 1s the 2 by 7 matrix {11 34579 11)
- (6 2 4 86 4 2]

B#C 1s the J by 4 matrix 15 7 9 11)
18 6 4 24

1010

61C}|8 1s the rov vector 60 1 0 1 8)

3.2.3. Logical operators

The basic logical operators (=~,AND, OR) are defined for LOGICAL
SCALAR operands and have the conventional meaning (negation,
con junction, and disjunction). The logical operators defined for
non-scalar logical operands may be described in terms of these basic
logical operators.

© 3.2.3.1. Negation (-)

The unary operator NOT 1s defined for all non-scalar logical
operands and is performed componentvise, leaving the dimensionality and
domain of the operand unchanged.

*) - {==> NOT

3.2.3.2. Binary logical operators

<logical operator> s:= AND | OR {| NOLT

3.2.3.2.1. AND and OR

The binary operators AND and OR are defined for all pairs of
non-scalar logical operands with the same dimensionality and domain.
The indicated operation 1s performed componentwise, leaving the

Oct.70, p. 17

|

dimensionality and domain unchanged.

Example:
(TRUE, A OR B) AND (FALSE, TRUE)
results TN (FALSE, A or B)

X2.3.2.2. logical 1nner product (MULT)

The logical inner product of two non-scalar logical operands 1s
defined analogously to the (arithmetic) inner product except that
multiplication 1s replaced by AND and summation 1s replaced by OR.

: Examples: SupposeA 1s |TRUE TRUE|
FALSE FALSE]

- and B IS (FALSE, TRUE)

then A MULT B 1s the vector (TRUE,FALSE)

and B MOLT A 1s the vector (FALSE,FALSE),

3.2.8. Subscripting

Subscripting as an operator is defined for all non-scalar operands
(a scalar operand with a non-scalar reference value 1s treated as a
non-scalar operand with the attributes and set of values associated
with the non-scalar reference value). The number of subscripts must
agree with the diaensionality of the operand. A<SA expression>
subscript specifies one element of the corresponding component domain.
A <VA FEXPRESSION> subscript specifies a subdomain of the corresponding
component domain. A * subscript specifies the entire corresponding
component domain. The type of the result 1s the type of the operand.
The domain of the result 1s the Cartesian product of the domains of the
vector subscripts and the component domains corresponding to *
subscripts (1f all subscripts are scalar, then the domain 1s
&dimensional and the result is scalar). The (set of) value(s)
assoclated with the result 1s the specified (subset of) component(s)
of the operand.

3.3. Expressions

<expression> ::= <arithmetic expression> J <logical expression> |
<character expression> | <reference expression> |
<procedure expression>

<arithmetic expression> ::= $<adding operator>$<A operand> |
<A expression><arithmetic operator><A operand> |
<A expressiond><concatenating operator><{A operand>

<A operand> s::= <number> | <simple variable> | <procedure call> |
<vector generator> | <expression synonym> |
(<A expression>) | <A operand> (<<range>, LIST)

Oct. 70, p. 18

<logical expression> :3= <L operand> 1}
<1 expression><logical operator><L operand) |
<1 expression><concatenating operator><L operand>

<I. operand> ::= <logical value> | «simple variable>{ <procedure call> |
<vector generator> {| <relation> {| =<£L operand> |
<expression synonym> } {KL expression>) |
<L operand> (<<range>,LIST>)

<character expression>:3= <C operand> |
<C expression><concatenating operator><C operand>

<C operand> ::= <character constant> |] <simple variable> |
<procedure call> {| <vector generator> |
<expression synonym>| (<character expression>) |
CC operand> (<<range>, LIST>)

<reference expression> :3= Wadding operator>3 <R operand> |
<R expression><arithmetic operator><R operand> |
<R expressiond><logical operator><R operand> |

<BR expression><concatenating operator><R operand>

<{R operand> ::= <simple variable> | <procedure call> |
<vector generator> | <relation> | -<R operand> |
<expression synonym> {| {¢{R operand>) |
{R operand> (<<range>, LIST>)

<procedure expression> ::= <P operand> | |
<P expression><{concatenating operator><P operand>

<P operand> ::= <procedure 1dentifier> | {simple variable> |
<procedure call> {| <'vector generator> |
<expression synonym> | (<P expression>) |
<P operand> (<<range>, LIST>)

Examples: (<13,-7,51>%<]6,8,41>) *%(FU{a,b)~3)
~VAR IS UNDEFINED AND C»0 OR D °

<] <3 LITTLE BEARS>D>,<LLIND>D>,KLKTHED>> ,LLKWOO0DS>> {>

Any simple variable, procedure call, vector generator, or expression
synonym used as an

| L operand | {| logical type |

| C operand | | character type | I
{Aoperand | must have | arithmetic or logical type | «
{ R operand | reference type i
| P operand | | procedure type |

If a logical quantity 1s used as an arithmetic operand, then TRUE is
interpretted as 1 and FALSE as 0.

The sequence of operations within an expression 1s generally
executed from left to right, but the order of evaluation 1s modified by
the following precedence rules:

Oct.70, p. 19

Each operator has an associated precedence number indicating 1ts
binding power. Operators with low precedence numbers take priority over
operators with high precedence numbers:

Operator Precedence

subscripting : first
%,1 second
** third

*,/ fourth

$,- fifth
Ke$=,=,~=,>=,>,IN,NOT IN,IS sixth
MULT seventh

~ eighth
AND ninth

OR tenth

The expression between matching left and right parentheses is
evaluated and the value(s) used in subsequent operations. Thus any
order of execution of operations within an expression can be specified
by appropriate parenthesizing.

Oct. 70, p. 20

SECTION 4, STATEMENTS

The units of operation in NPL are called statements. Statements are
executed in sequence, as written, except when this sequence 1s modified
by sequence control statements or conditional statements.

<statement> s2:= <empty> | <label>: <statement> |
<block> | <compound statement> |
<variable control statement> |

<assignment statement) |
<sequence control statement) |
<procedure statement> S$<WHERE phrased>$ |
<conditional statement> |
<lteration statement) |
<static let statement) |
<dynamic let statement) |

) <input statement> $<WHERE phrase>3} |
<output statement> $<KWHERE phrase>S$

<varlable control statement> :3:= DEFINE statement> |

<defining assignment statement)|
- <RELEASE statement)

{sequence control statement> 313= <GO TO statement> | <RETURN statement)

B.1. Blocks and the Scope of Identifiers

<block> :3= BLOCK $<label>;:$

<<program unit>; LIST>
END $<%"same" label)>$

<compound statement> ::= BEGIN $<£label>;$
<<program unit>; LIST>
END $<"same" label>$

*) BLOCK, END <--> C.] : BEGIN,END <--> LJ
BLOCK <label>; <==> Klabel>: BLOCK

: BEGIN <label>; ==> <label>: BEGIN
END <label> <==> ;<label> END

| Blocks control the scope of identifiers by introducing new levels of
nomenclature: an identifier declared in (local to) a block represents a
unique entity within that block but does not represent that entity
outside the block. An identifier declared in an embracing block 1s said
to be global to the block. If an identifier 1s both local and global to
a block, the global meaning can not be used within the block.

Identifiers may be declared explicitly by defining statements (see
4.2.1) or let statements (see 4.8); or implicitly by their appearance as
labels (see 4.4.1) or procedure identifiers (see 5.1). Certain other
syntactic units also implicitly delimit the scope of some or all of the
identifiers declared within them in the same way as blocks:

oct, 70, p. 21

(1) The conditioned (alternative) statement of a conditional
statement acts as a block with respect to labels (see 4.4.1).

(2) An 1teration statement acts as a block with respect to the
control variable (see 4.7) and labels {see 4.4.1).

(3) A procedure definition acts as a block with respect to
identifiers used as (part of) formal parameters in the procedure
head (see 5.1).

(4) The 1dentifier Aenoting the control variable in a set generator
{see 3.1.3.3) or a serial actual parameter (see 5.2) 1s local to the
set generator or serial actual parameter.

(5) Identifiers denoting dummy arguments in a symbol substituter
are local to the symbol substituter (see 4.8).

(6) Identifiers denoting synonym names 1n a WHERE phrase are
local to the statement qualified hy the where phrase.

If a block is labelled, then the block label may optionally follow
the closing END and may be used in defining statements to delimit
scope (see 4.2.1).

A compound statement 1s used to group together a sequence of
statements and procedure definitions. If the compound statement 1is
labelled, then that label may optionally follow the closing END.

4.2. Variable Control Statements

4.2.1. DEFINE statements

<DEFINE statement> ::= <DEFINE phrase><<defining phrase!>, LIST> {
<DEFINE phrase><defining phrase>{qualifier>

<DEFINE phrase> ::= DEFINE $IN <"block" label)>$

<defining phrase> ::= <<variable name>, LIST> <<attribute> LIST

<variable name> ::= <identifier> | <reference variable name>

Kreference variable name> ::= <variable name>

$< {<subset specification>) <blank> LIST>S
(<¢simple subscript>)

<subset specification> ::= <subspan> | <simple subscript>,<subspand> |
<subset specification>,<range>

<{subspan> ::= <VA expression> | *

<simple subscript> ::= <<{SA expression>, LIST>

Examples: DEFINE A LOGICAL 3 BY 5, B SCALAR
DEPINE C (1,6) 8 BY 8 DIAGONAL

Oct. 70, p. 22

DEFINE statements, defining assignment statements (see #.2.2), and
GIVEN statements (see 4.9) are all defining statements 1n the sense that
they delimit the scope of identifiers, assign attributes to identifiers
and reference variable names, and allocate storage. Defining statements
are executable; an identifier must be defined before it 1s referenced.

The scope of an identifier 1s either the innermost block containing
the defining statement or the embracing block whose block label appears
in the defining statement.

A variable name 1s either an identifier or a reference variable name

| (a single component of a reference variable; e.g., a submatrix of a
partitioned matrix). The attributes to be assoclated with the variable
name may be listed in any order in the defining phrase. The type and
dinensionality attributes must be consistently defined throughout the
scope; the domain and shape my change. Hissing attributes are

. defaulted 1n the following manner:

type: unchanged, 1f specified in another defining statement
ARITHMETIC, otherwise

dinensionality:
unchanged, 1f specified in another defining statement
SCALAR, 1f a domain is not specified
ARRAY (with appropriate number of dimensions) ,otherwise

domain: EMPTY BY ... BY ENPTY, for arrays
unspecified, otherwise

shape: ROY (COLUMN), f or ROW (COLUMN) VECTCARs
RECTANGULAR, otherwise

When a variable name(s) 1s defined, all expressions 1n the defining
phrase are evaluated, the variable name(s) 1s released (thus the
associated value(s) are lost) (see 8.2.3), and storage 1s allocated.
Scalars are 1nitialized with value UNDEFINED; arrays are 1nilitilalized
conponentuise with the value UNDEFINED,

When program control leaves a block, all identifiers defined local
to the block are released (see 4.2.3) and "un-defined" (lose
definition).

DEPINE STATEMENTS BAY BE QUALIFIED BY FOR phrases, IF phrases, and
WHERE phrases (see 4.3).

8.2.2. Defining assignment staterents

<deflning assignment statement> ::=
<DEFINE phrased><<siample defining assignment statement>, LIST> |
<DEPINE phrase><simple defining assignment statement><qualifier>

<simple defining assignment statement> 2:3
<variable name> := <expression> $<{domain specificationd>$|
(<<left side element name>, LIST>) := <procedure call>

Oct.70, Pp. 23

{left side element. name> ::= <variable name> | _

Defining assignment statements serve as def ining statements
(see 4.2.1) as well as assignment statements (see 4.3) .

The first. form of the (simple) defining assignment statement causes
evaluation of an expression. The variable name is defined with the
attributes associated with the expression and assigned the value(s) of
the expression. The domain of the expression may be redefined 1n a
domain specification (see 4.3).

The second form of the (simple) defining assignment statement causes
execution of a procedure. The left side element name(s) 1s defined with
the attributes associated with the corresponding formal return
parameter(s) and assigned the value(s) of the corresponding actual
return parameter(s). An underscore appearing on the left side means
that. the corresponding definition and assignment should be omitted.

Defining assignment statements may be qualified by FOR phrases, IF
phrases, and WHERE phrases (see 4.3).

4.2.3. Release Statement

<RFLEASE statement> ::= RELEASE <<varlable name>, LIST>

Fxample: RELEASE MAT , A, B{(3,6,7)

RELEASE statements serve to deallocate storage. Scalars are
assigned the value UNDEFINED; arrays are redefined vith domain EMPTY BY
... BY EMPTY (with the appropriate number of dimensicns) and shape
RECTANGULAR. The value(s) associated with the variable name(s) 1s lost.

No RELEASE statement 1s required before the terminating END of a
block since the END acts as an implicit RELEASE statement for all
identifiers defined local to the block.

“4.3. Assignment Statements

<assignment statement> ::= <simple assignment statement> $<qualifier>$

<simple assignment statement> ::=
<variable> := <expression> $<£domain specification>$|
(<<left side element>, LTIST>) := <procedure call>

<left side element.> $:= <variable> | _

<domain specification> $:= WITHDOMAIN < BY LIST>

<qualifier> ::= <WHERE phrase> |{
<<qualifying phrase>, LIST> $,<WHERE phrase>$

<qualifying phrase> ::= CPOR phrase> {| <IF phrase>

¥) 17 == =

Oct. 70, p. 24

Examples: (a,b,c)= f (x)
LOGIC (1) := a=e (i) OR 1i>20 POR 1 IN <{10,...,30}1>
PART (4,5) (*,4) := AX? & MAT
A 2= B*C - 3.37 * B + £|2,3,51>
x = ACB OR F IN <]6,8,91>

Assignment statements serve to assign the value(s) of the expression
or procedure call on the right side of the assignment symbol to the
variable(s) on the left side. The variable(s) and the corresponding
value(s) must be assignment compatible:

(1) If the variable is character (logical), then the corresponding,
value must be character (logical), If the variable 1s arithmetic,
then the corresponding value may be arithmetic or logical (see 2.1).

(2) The variable and the corresponding value must have the same
dimensionality, except that a vector may be assigned to a
ROY (COLUMN) VECTOR and vice versa.

(3) The variable and the corresponding valuemust have the same
domain. If their domains differ, a defining assignment statement
(see 8.2.2) must be used.

(4) The variable and corresponding value need not agree in shape.

The first form of the assignment statement causes the evaluation
of an expression and assigns the value(s) to the variable on the left
side. The domain of the expression may be redefined in a domain
specification. The specified domain must be homeonorphic (corresponding
component domains have equal numbers of elements) to the domain of the
expression and compatible with the domain of the left side variable.

The second form of the assignment statement causes the execution of
a procedure and assigns the value(s) of the actual return parameter(s)
to the corresponding (in order from left to right) left side element (s).
The number of left side elements must be the same as the number of

formal return parameters in the procedure definition (see 5.1). All
+ varlable(s) on the left side must be assignment compatible with the

corresponding formal return parameter(s) « An underscore appearing on
the left side means that the corresponding assignment should be omitted.

Examples: (Ret 1, _ , Ret 3,. _) == FO (x-y)
(FOU has 8 return parameters, but only the first and third of
these are of interest).

(Objective value, Basic-variables, Optimal-x,Peasibility) :=
SIMPLEX (Matrix, Costs, RAS, BASIC_YARIABLES)

The effectof a simple assignment statement (DEFINE statement,
defining assignment statement) modified by POR phrases, IF phrases, and
symbol substituters |

<simple assignaent statement> <qualifying phrase "1*> ...
<qualifying phrase "a", WHERE <<symbol substituter>, LIST>

Oct. 70,p. 25

can be described by the following sequence of MPL statements:

LET <<symbol substituter>, LIST>;
<qualifying phrase "a",

| <qualifying phrase "1%,
<simple assignment statement);

except that 1dentifiers denoting synonym names 1n the let statement are
defined locally.

Examples: E := D¢ A WHERE A = (BIC) # (C|D)
X t= X'+1 WHERE x = X?

INCIDENCE {i,y) := TRUE IF i IN ARCS (y)
A (P_ROW,y) := A(P_ROW,y) / A(P_ROW,P_COL)

FOR y IN COL_DIM (A)
. (Y (i), 2 (i)) := FUNCTION(i) FOR i IN S

4,4. Sequence Control Statements

4.8.1. Labels and GO TO statements

<label> ::= <identifier> | (digit string>)

<G0 To statement) ::= GO TO <labeld

A GO TO Statement causes a transfer of control to the statement

immadiately following the label. Since labels are inherently local
(see 8.1), NO CO TO Statement can lead into a block, a procedure
definition, the conditioned (alternative) statement of a conditional
statement, or an iteration statement.

3.4.2. RETURN statements

<RETURN statement) ::= RETURN

A RETURN statement causes a transfer of control from a procedure
back to the main program or procedure calling that procedure. A RETURN
statement may not occur outside a procedure definition.

NO RETURN statement 1s required before the terminating END of a
procedure definition {see 5.1) since the END actsas an implicit RETURN
statement.

4.5. Procedure Stateaents

<procedure statement> ::= EXECUTE <procedure call>

Example: EXECUTE GENERALIZED-UPPER-BOUND (m,n, l1,A,G,b)

A procedure statement causes the execution of a procedure (that
specified in the procedure call (see 5.2)) with noreturn parameters.
A procedure with return parameters may be called in an assignment
statement (see 4.3). ‘

Oct. 70,p. 26

4.6, Conditional Statements

<conditional statement> ::= <simple conditional statement)
SOTHERWISE <alternatioe statement)>$

<simple conditional statement> ::= IF phrase> THEN
<conditioned statement>

<IF phrase> ::= IF (SL expression>

<conditioned statement> ::= <statement>

| (alternative statement> s::= <statement>

*) THEN <=- , ; OTHERWISE <--> ELSE

- Example: IP X(i) = LOWER_BOUND(i) THEN
| _IF GRADIENT(i) > 0, MODIFIED_GRADIENT(i) := O_|

ELSE IP X(1) = UPPER_BOUND({i) THEN
{_IP GRADIENT(i) < 0, MODIFIED_GRADIENT(i) := 0_| |

ELSE MODIPIED_GRADIENT(i) := GRADIENT(i)

A simple conditional stateaent 1s executed as follows:

(1) The <SL expression> 1s evaluated.

(2) If the value of the «SL expression> 1s TRUE, then the
conditioned statement 1s executed; otherwise the conditioned
statement 1s skipped and the next statement 1s execute&k

The effect of a conditional statement of the form

IP <SL expression> THEN <conditioned statement>
ELSE <alternative statement>

can be described by the following sequence of WPL statements:

] IP <<SL expression> THEM GO TO ELSE_LABEL;
{conditioned statement>; GO TO NEXT_STATEMENT;
ELSE-LABEL: <alternative statement);

NEXT_STATEMENT:

‘each BLSE <alternative statement) 1s to be paired with the innermost
unpaired <simple conditional statement). The resulting syntactic
ambiguity, known as the dangling ELSE problem, can be resolved.

Reference: Paul W, Abrahars, "A Final Solution to the Dangling ELSE of
ALGOL 60 and Related Languages," Coma, ACH 9 (Sept. 1966), 679-682.

4,7. Iteration Statements

<iteration statement> ::= {POR phrase> DO <iterated statement>

Oct. 70, p. 27

<FOR phrase> 1::= FOR <control variable> IN <VA expression>
$: <S1L expression>$

<control variable> s::= <identifier>

<lterated statement> ::= <statement>

Xx) DO <-- , i

Examples: FOR 1 IN <§1,.e.48}> 2 1 IN BASIS DO
CMIN := MIN (CMIN , C(i) =- PRICES * A(*,i))

FOR x IN NODES, FOR y IN NODES : y IN SUCCESSOR (x),
CONNECTION (x,y) := TRUE

An 1teration statement causes the 1terated statement to be

repeatedly executed for a sequence of zero or more values of the
control variable in the FOR phrase. The control variable 1s implicitly
declared as an ARITHMETIC SCALAR local to the iteration statement; thus
its value 1s lostonexit unless 1t 1s assigned to a globally define?
variable. The control variable may not be changed by assignment within
the iterated statement.

The sequence of values of the control variable 1s evaluated before
the iterated statement is executed, The effect of an iteration

statement can be described by the following sequence of MPL statements:

LET 1 := <control variable>;
DEFINE S := <} <{i FOR 1 TN <VA expression> $:<SL expression>${> |>;
IF S IS EMPTY, GO TO NEXT-STATEMENT,
DRFIN® COUNT z= 1;

LOOP: DEFINE 1 := S(COUNT); <iterated statement>;
COUNT == COUNT + 1;
IF CCUNT <= LENGTH(S), GO TO LOOP;
NEXT-STATEMENT :

4.8, Let Statements

<dynamic let statement> ::= LET $IN <"block" label>$ <substitution list>

<static let statement) ::= SLET $IN <"block" label>$f <substitution 1list>

{substitution list> ::= <<symbol substituter>, LIST>|
<symbol substitute <WHERE phrase>

{WHERE phrase> ::= WHERE <<symbol substituter>, LIST>

<symbol substituter> ::= <synonym name> := <expression>

<synonym name> ::= <synonym identifer> $ (<<dummy argument>, LIST>)S$

<synonym 1dentifier> s::= <identifier>

<dummy argument> ::= <identifier>

Oct. 70, p. 28

Examples: LET CBV 2= COST(BASIC-YARIABLES)
LET GUB(Kk) 2= <{1G(K)gece,,Gl{k+N)=-1]1>

A (static/dynamic) let statement serves to declare a
(static/dynamic), synonym name. The scope of the synonym identifier is
elther the innermost block containing the let statement or the embracing
block whose block label appears in the let statement.

A static synonym name acts as a complle-time macro: the erpressian
replaces (see 3.1.6) the synonym name in the source text ‘between the let
statement and the end ofthe block or another let statement redeclaring
the synonym name.

A dynamic synonym name acts as an expression variable: the value
(an expression) replaces (see 3.7.6) the synonym nane at each run-time
reference within the scope of the synonym identifier. The dynamic let
statement serves as an assigneent statement for dynamic synonym names.

4.9. INPUT / OUTPUT Statements

<input statement> ::= GIVEN SIN <"block" labeld>$
~ <<defining phrase>, LIST>

<output statement) s2= ANSWER <<expression>, LIST>

Examples: GIVER ® ,n,1 SCALAR, ANMATRIX a by n, G VECTOR let,
b COLUMN VECTOR nm

ANSWER Status, BV, XBY, YBP, s, KV, GUB_BYV

The INPUT/OUTPUT provided in MPL at present 1s rudimentary and
intended merely as a first step toward more powerful concepts.

The GIVER statement serves as a defining stateaent (see 4.2.1) as
well as an input staterent. The variable name(s) 1s definaéa-ana i
assigned the corresponding input value(s). The type and dimensionality
of the variable name(s) must be specified in the defining phrase of the
GIVEN statenent;: the domain and shape ray be specified in the defining

- phrase or vi.ll be taken from the data. The data 1s assumed to be t
labelled with the variable name(s) and to contain information on type,
dimensionality, domain, and shape. These data attributes mst be
consistent with those specified im the defining phrase.

The ANSWER statement produces labelled printed output; 1.e., the
"name® of the expression precedes the value. Thus the statement

ANSWER x, SIN(2%PI*X)

vill produce the printed output

X = S80Rk, SIN(2%PI%X) = S&sssksiiks .

Oct.70, p. 29

SECTION 5. PROCEDURES

Procedures are subprograms that can be defined anywhere in the
program and which are activated each time a procedure call 1s
executed. When the procedure 1s called the formal parameters are
replaced by actual parameters.

5.1. Procedure Definitions ”

<procedure definition> ::= EXTERNAL <procedure heaid> |
S$INLINES (procedure head>; <procedure hody> |
<one-line procedure definition>

<procedure head> ::= $<{procedure attribute>$ PROCEDURE
$<formal return parameters> :=$ <procedure identifier>
$ (<<formal input parameter>, LIST>)3

- $WHERE <<parameter specification>, LIST>$

<procedure attribute> ::= INDEPENDENT | DEPENDENT | FUNCTION

<procedure identifier> :21:= <identifier>

<formal return parameters) ::= <ildentifier> | {<<identifilier>, LIST>)

<formal input parameter> ::= <identifier> | <serial formal parameter>

<Serial formal parameter> ::= <"E"identifier> FOR <bound identifier>
IN <"VA"jdentifier> $:{"SL"identif ier>§

<bound identifier> ::= <identifier>

<parameter specification> :1:=
<<identifier>, LIST><<attribute> LIST><parameter type> |
<<1identifier>, LIST> $<procedure attribute>$ PROCEDURE

<parameter type> ::= VALUE | NAME {| VALUE RESULT { RESULT | <eapty>

{procedure body> ::= <statement>

<one-line procedure definition> 2:= <<attribute> LIST> $INLINES
$<procedure attribute>$ PROCEDURE
<procedure identifier> ${<<formal input parameter>, LIST>)S$
:=Cexpression> SWHERE <<parameter specification>, LIST>S

*) FUNCTION PROCEDURE <== FUNCTION

51.1. EXTERNAL procedures

The attribute EXTERNAL denotes a procedure that has to be fetched
from a library outside the program; the procedure head 1n the program
supplies only the neccessary information on 1ts parameters.

Oct. 70, p. 30

S.1.2. INLINE procedures

A procedure can be specified INLINE so that if the implementation
permits, the statements corresponding to the procedure asmodified by
the actual parameters (see 5.2.) will be inserted at the place where the
procedure call occurs in the program. This enables the programmer to
avoid the overhead associated with procedure calls 1f he desires.
This process should, of course, Plot lead to a recursive situation.

5.1.3. The procedure head

The procedure head contains the name of the procedure and
information (at least type and disensionality) about its parareters. In
order to conform to mathematical function notation, the procedure head
1s written as an explicit assignment to the return parameters. The input
and return parameters are formal parameters 1.e. the identifiers used
here do not represent actual quantities and have to be replaced by
actual parameters each time the procedure is called.

Each formal parameter must be specified in the parameter
specification list. If a formal parameter represents a variable, at
least its type-and dirensionality must be indicated. The effect of the
attribute VALUE is explained in (5.2.1). A serial formal paraaeter
represents a list of actual input parameters depending on a POR phrase.
The <bound identifilier> represents the control variable of the FOR
phrase. In a serial formal parameter only the attributes of the first
identifier need be specified; the attribotes of the cthers are implied
by their position in the FOR phrase(see 5.2.). The scope of the formal
parameters 1n the procedure head 1s the procedure definition. The
default parameter type 1s NAME Independent and independent procedures.

5.1.84. The procedure body

The procedure body consists of the actual statements to be executed
vhen the procedure 1s called (see 5.2.)

The procedure body 1s the scope for all identifiers defined within
the procedure. The scope of identifiers can not be extended outside a
procedure body. Procedure definitions may be nested, 1.e. a procedure
body may contain procedure definitions.

S.t.5. The procedure attributes

The procedure attributes specify subclasses of procedures with
certaln restrictions as to thelr parameters and to the way they
are handled.

The most general case 1s a DEPENDENT procedure. A DEPENDENT
procedure has free access to 1ts environment and can use or change every
quantity defined in the block containing .the procedure definition.
DEPENDENT is the default value for the procedure attribute.

5.1.5.1. POUNCTION procedures

FUNCTION procedures are closely related to the mathematical concept
of a function, i.e. they compute one or more return values from one or

Oct. /0, p. 31

more 1lnput parameters.

(i) They may not refer to any variable or label whose definition
occurs outside the function procedure.

(11) They may reference function procedures only, 1.e. all procedure
parameters of a function and all procedures defined inside a
function or called from within a function must themselves be

function procedures.

(iii) They may not contain any input/output statement except ANSWER
statements (4.9).

(iv) No input parameters may be changed within the body of a
function procedure. All input parameters are treated as 1if
they were VALUE parameters. Assignment of values to input

- parameters 1s illegal.

(v) FONCTION procedures may not have serial formal parameters.

€.1.5.2. INDEPENDENT procedures

INDEPENDENT procedures are identical to FUNCTION procedures except
that they may have NAME parameters and serial formal parameters and may
refer to both FUNCTION and INDEPENDENT procedures.

5J.2.3 One-line procedures

The one-line procedure 1s provided as a short way ofwitting a
procedure which computes an expression (see 3). The value of this
expression is returned to be used as an operand or 1n an assignment
statement. The <<attribute> LIST> specifies the attributes of the
computed expression.

5.1.6. Examples of procedure heads

PROCEDURE (OPT-X, OPT-Z) == SIMPLEX(A,RHS,COSTS) where A
MATRIX, OPT_X,RHS COLUMN VECTOR,
COSTS ROW VECTOR, OPT_Z SCALAR

INLI N-E PROCEDURE RSLT 2= MAXIMUM (Y(1) FOR 1 IN S :L)

where Y{i), RSLT SCALAR

FUNCTION PROCEDURE A= EXP (B) WHERE A,B MATRIX

S.2. Procedure Calls

<procedure call> ::= <procedure identifier>

$ ((<actual parameter>, LIST)$ |

<actual parameter> :3= <expression> | <procedure 1identifier> |
<serial actual parameter) |

"meaning the corresponding actual parameter
is omitted"

Oct. 70, p. 32

<serial actual parameter> ::= <expression><FOR phrase>

A procedure call causes the execution of the statement of the
corresponding procedare body after these statements have been modified
by actual parameters. Por a one-line procedure the expression 1s
considered the body.

Procedure calls may occur 1n the following contexts:

(I) A procedure without formal return parameters may be
called 1n a procedare statement (4.95).

(II) A procedure with one return parameter may be used as an
expression operand (3.1.4). In this case a dummy variable
1s created having the attributes of the return parameter,
and 1t 1s used as an expression operand after the completion

| of the procedure call.

(II?) Procedures with one or more return parameters can be called in
an assignment statement (4.3). In this case the actual return
parameters must he assignment compatible with the
corresponding formal return parameter. Upon completion of the
procedure call, the actual return parameters are assigned the
final values of the corresponding formal parameters. If an
actual return parameter 1s omitted (represented by"_"), then
no assignment is made. If no value has been computed for the
formal return parameter, then the actual return parameter will
be UNDEFINED.

The number of actual parameters (both input and return parameters)
must be the same as the number of formal parameters specified in the
procedure head. Bach actual parameter "replaces" the formal parameter
in the same position and must be compatible with it in terms of its
attributes (see 5.2.1, 5.2.2, S.2.3 for details).

The effect of the execution of a procedure call 1s equivalent to
the effect of executing the statements of the procedure body modified

- as 1llustrated in the rest of this section ("equivalent" because an
implementation may choose any optimization strategy yielding the
sage result). After all modifications are completed, the procedure
body must yield a sequence of valid MPL statements.

5.2.1. VALUE parameters

Input parameters representing a variable may be specified VALUE
in the procedare head.

In general, for each VALUE parameter there 1s an internal
procedure variable having the same attributes as the corresponding
formal parameter. (In certain cases, 1n particular for FUNCTION
PROCEDURES, this may be implemented differently).

Before execution of the procedure body begins, each actual
parameter is evaluated-and the result 1s assignedto the corresponding

oct. 70, p. 33

internal variable. Note, this implies that the internal variable
(whose attributes are given 1n the procedure head) and the actual
parameter must be assignment compatible as defined in 4.2.

If the actual parameter is omitted (i.e. 1t 1s "_", the underscore)
no assignment 1s made and the formal parameter will be UNDEFINED.

Any occurrence of the formal parameter identifier inside the
procedure body will then he replaced hy the corresponding internal
parameter.

If the parameter were to be changed within the procedure body by
assignment, this will affect the internal variable only and not the
actual parameter itself.

5.2.2. NAME parameters

All procedure parameters and those parameters denoting variables
that have not been specified VALUE are called NAME parameters. The way
in which actual name parameters replace any occurrence of the
corresponding formal parameters 1s best described as textual
substitution, i.e, the "name" of the actual parameter (enclosed in
parenthesis wherever this 1s syntactically necessary) replaces the
formal parameter,

Any change made to the formal parameter within the procedure body
is reflected by the same change occurring to the actual parameter
(note the difference from VALUE parameters).

Actual parameters called by name must have their attributes
specified in the parameter specification. Actual procedure parameters
mst agree 1n thelr procedure attributes with the corresponding formal
parameters.

It is possible, but not advisable, to omit a Nav parameter. If
program control reaches a reference to an omitted NAME parameter, then
an execution error will result.

5.2.3. Serial actual parameters and serial formal parameters

A serial actual parameter (SAP) 1s of the form

<expression><POR phrase>

A SAP does not stand for a vector, but rather for a list of
expressions controlled by the POR phrase. The control variable (CV)
of the FOR phrase has as 1ts scope the SAP itself, 1.e. any occurrence
of the CV within the expression represents only the CV and not any
other identifier defined in the embracing block.

The Cv, as well as the other components of the FOR phrase (the VA
expression and the SL expression, see 4,7) are available to the
procedure individually and are accessed by means of the serial formal
parameter. The CV 1s passed by NAME to the <bound identifier>; the

Oct. 70, p. 34

<expression> 1s passed by NAME to the <"E"identifier>; the
<"VA"expression> of the FOR phrase is passed by NAME to the
<"VA"identifier> ; and the <"SL"expression> of the POR phrase 1s passed
by RAME to the <"SL"idientifier>.

5.2.8. The return parameters

All formal return parameters must denote variables, and must be
specified by a defining phrase in the procedure head. (VALUE is not
meaningful for return parameters).

For each formal return parameter there 1s a internal variable
having the attributes specified for the return parameter in the

t procedure head. This internal variable replaces any occurrence of the
formal return parameter within the procedure body.

. After execution of the procedure body the value of the internal
variable 1s assigned to the actual return parameter 1f one exists
(see 4.2.2) or 1s used as an operand.

5.2.5. The RESULT parameters

The RESULT parameter 1s handled 1n exactly the same way as a
return parameter.

S.2.6. The VALUE RESULT parameter

VALUER RESULT parameters are handled like VALUE parameters before
execution of the procedure body and like RESULT parameters, after
execution of the procedure body.

5.3. Library Procedures

This section describes the use of several procedures which are
provided 1n the MPL library. References to these procedures all have
the formP (P) where F represents the name of the procedure and P

represents a list of parameters. Where indicated, these procedures
return values with attributes as described below.

ABS (SCALAR)
SCALAR Any scalar valued arithmetic expression.

~ VALUE The absolute value of 'SCALAR'.

ARGMAX (VECTOR)
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic index of the first occurring

maximum valued element of 'VECTORY,

ARGMIN (VECTOR)

VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic index 'of the first occurring

minimum valued element of *VECTORQ.

Oct.70, p. 35

COLDIM (MATRIX)

MATRT X Any matrix valued expression.
VALUE The scalar arithmetic number of elements in the range

of the second subscript of 'MATRIX*. This function 1s
intended for finding the number of columns 1n a matrix,
so if 'MATRIX' is a column vector, '"VECTOR' := 1,

DIM (VECTOR)
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic number of elements in the range

of 'VECTOR',

IDENTITY (RANK)

RANK The scalar arithmetic rank of the square identity matrix
which is the 'VALOE* of the function.

VALUE An identity matrix with 'RANK' rows and columns.

INVERSE (MATRIX)

MATRIX A square, non-singular, matrix valued arithmetic expression.
VALUF The inverse of 'MATRIX'.

MAX (VECTOR) h
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic value of the minimum valued element

of 'VECTOR'. |

MIN (VECTOR)
VECTOR Any vector valued arithmetic expression. |
VALUE The scalar arithmetic value of the minimum valued element

of 'VECTOR'.

ONES (ROWS, COLUMNS)

ROWS The 1nteger scalar number of rows in 'VALUE'.
COLWMNS The integer scalar number of columns in *'VALUE',
VALU® A matrix of ones with 'RONWS' rows and 'COLUMNS' columns.

ROWDIM (MATRIX)
MATRTX Any matrix valued arithmetic expression.
VALUF The scalar arithmetic number of elements in the range

of the first subscript of *MATRIX'. This function is
intended for finding the number of rows in a matrix,
sO 1f 'MATRIX' is a row vector, 'VALUE® := 1.

SUM (VECTOR)

VECTOR A vector valued arithmetic expression.
VALUE The scalar arithmetic sum of the elements of !' VECTORY.

TRANSPOSE (MATRIX)

MATRIX Any matrix valued arithmetic expression.
VALUE The transpose of "MATRIX'. If 'MATRIX' has m rows and

n columns, then *VALUE®* has n rows and m columns.

Oct. 70, p. 36

TRONCATE (SCALAR)
SCALAR Any scalar valued arithmetic expression,
VALUE sign of 'SCALAR' times largest integer < ABS ('SCALAR').

ZEROES(ROWS ,COLUNNS)
ROWS The integer scalar number of rows in 'VALIE'.
COLUMNS The integer scalar number of columns in 'VALUE®.
VALVE A matrixof zeroes with "ROWS! rows and *COLUNNS' columns.

Oct. 70, p. 37

Two Examples of Mathematical Programming Algorithms

Written In MFL

SIMPLEX ALGORITHM

- GENERALIZED UPPER BOUND

The latter represents an algorithm for solving certain large scale problems.

Systems of this type , encountered in practice, have run over 30,000 equations

and half-million variables « In order to develop efficient codes, it 1s

necessary that experimental programs be highly readable, easy to debug,

so that various versions can be quickly tested and compared.

PROGRAM SIMPLEX -ALGORITHM:

"Pind Max X(1), x(j) > 0 forj in {2,...,n}:

Axx = b, b > 0

where V= {V(l), V(2),...,V(m)}, the index set of

the initial basis, is given with V(1) = 1 corresponding

to objective x(1). It is assumed that

A(v) = Identity(m) ."

Given m, n scalars, A matrixm by n, b column vector m,

V vectorm;

Let I ={1,...,m}; Let J = {1,...,n};

RECYCLE : Define "incoming variablesand § the minimum relative cost”
(s,6) = ARG MIN [A(L)) for je J;j #11;

If §> 0, |Answer -Bounded-, V, b; Go to. FINI];

“otherwise” define "Pivot row tr and level® of incoming variable x(s)."

(r,0)= ARG MIN [b(i)/A(,s)for ie L:AG,s) >0];

If 8 = +=, |Answer <<Unbounded>>, V, b, s , A(x,s) ; Go ta FINI];

“Update” A = PIVOT [A,A,(*,s),r]; b=PIVOT [b,A(%,s),r]l; V(r) = 5s;

‘where PIVOT pivots matrixA on A(r,8) and returns modified A."

Go to RECYCLE;

FINI:- End“program”

GENERALIZED UPPER BOUND

GIVEN A, m xn, FIND MAX xn:

Ax =b, x42 0 for j = {1,...,n-1} |

j ¢ GUB(k)

where :

GUB(K) = [316(Kk) < § < 6(ks1)-1|

INITI ATE: Non- Key Basic Variables: BV

Costs, Values: CBV, XBY

Key Variables: KV

~ Inverse: R

Phase, m_Contro]

Start Mjor Cycle No End Mijor Cycle
Neg_Delta_Control = 0 Did all GUB's price optimally?

0 Yes

Price Out next GUB——__| Lf hone Changeld€S |Feasible? X88 | Phase = 17
wo v Phase

= Find Incomng Var. § ySZ V No] No
, Les ml in GUB?
. Optimal In | answer: Bounded,

) w | No | <<Infeasible>> BV, XBV, KV,
v If none SUB _8YFind Hutgoing Var. r Answer: | | ame || <<Unbounded>> |

Pivot, Update BV, XBV, YBV, KV,|
| Reprice GUB S» GUB_BV

PROGRAM GENERALIZED-UPPER-BOUND:

"The description of this algorithm is written in M.P. L. (Mathe-

matical Programming Language). Commentary such as this on the

algorithm are encl osed in quotes. -~Underlines, not part of the

Zanguage, are to help the reader identify the special (reserved)

words of the Zanguage. "

GIVEN m,n, scalar, Amatrix m by n, G vector Z+1,b column vector m;

"The problem is to find

i Max x(n), x(j) = O forj in {1,...,n-1}

‘subject to

(7) A*x =D

(12) SUM]x(1) for 1 1n GUB(k)] = 1

for kinCl,... J-13 where we"

LET GUB(k) = {G(k),...,G(k+1)-11};

‘which we call a’' GUB'' set. The last variable X(n), 1S to be

maximized. The set X(n-m+1),...,x(n-1)} contains the artificial

variables and the matrix [A(%,n-m+1) ,...,A(*n)] forms an identity

matrix. We also assume that

: G(1) = 1, 6(1) < G(i+1), G(Z+1) = n-m+]

Note that GUB(Z) =1{G(2),...,n-m} are the variables which have

no partial sum conditions (2%) associated with them. "

LET L ={1,...,2}; LET I = {1,...,m};

"Initiate Non key Basic Variables BV. Let the GUB set of the i-th

basic variable BV(1) be denoted by GUB_BV(i)."

DEFINE BVvector m, GUBBVvector m;

Fori inIdo] BV(i)=n-m+i; GUB BV(i) = +1

“Key basic variables are .denoted by KV. In each GUB we initially

select for the key variable the one with lowest cost coef."

DEFINE KV vector 7-1;

KV(k) = Index Mn [A(m,j) forj in GUB(k)]

for kin lL : k XZ;

"phere Index Minis the name OL a function that yields the

index (or argument) where the mintmumie attained. "

"The Inverse of the eolumms corresponding to BV , as modi fied by

‘subtracting OLTL their key colunms, will be denoted by R.

Initially R is given by:"

DEFINE R = Identity (m;

"The modified RHS is denoted by b' . It is formed by setting

key variablee= 1 , substituting into (¢) and subtracting from

-

| DEFINE b' =b = SUM (A(#,J) forj in KV);

For i inl: b'(i) <0 and i ¥ ml b (i) =-b'(1);R(1,1) = -1];

"where we have eorrected R and b' so that the initial baeic

sotution is feasible.”

"BecauseR is an adjusted identity, the values of BV in the

initial basic solution XBV are”

| DEFINE XBV = b' ;

"InPhase = 1 the cost coefficients are all aero except f or

| ji nin-mtl, . . , ,n-1} where the coef.are each one. For jin {1,...,n-m}

the oost coef. remain sero after subtraction of their key

colummsg. Non-key basic cost coef. are denoted by CBV.

Initially”

DEFINE CBVRoWof ones(m); CBV(m) = 0;

"Finally we set up two scalar eontrol parameters, the Phase

control and the m_Control where the tatter, if 1, i8 a signal to

-2-

|

compute new wvalues for the next major or minor cycle. "

DEFINE Phase = 1; DEFINE =Control = 1;

"START MAJOR CYCLE"

MAJOR-CYCLE: DEFINE Neg_Delta_Control= 0;

"where the latter counts the nunber of colwms that price- out

negative. We now get ready to price out the various GUB's k.

FOR kin L do

1 “The FOR loop ends just after RECYCLE Zabel”

MINOR CYCLE: If = Control =1 and Phase = 1,

DEFINE = = -CBV«R;

If = Control = 1 and Phase = 2,

~ DEFINE 7 = R(m,*) ;

"i.e. the above computes the price vector w=. If n_Control=0,it is not

necessary to compute wn and the above steps are skipped. "

"We are now ready to price out next GUB (or reprice the same

GUB). But first we reset"

m_Control = 0;

"PRICE OUT GUB"

DEFINE (s,d) = ARG MIN [m*A(*,j)for j in GUB(k)];

“Where ARG MIN is a function that returns s andd. sis the

smallest argument (index) for which the minimum value d is

attained. Let § be the priced-out value of colums after it is

corrected for the price on its GUB equation (for k<g).”

Ifk <7, define &§ = d-m*A(*,KV(k)):

Itk =17, define s = d;

"PRICE OUT NEXT GUB"

If 620, go to RECYCLE;

‘Where recycle is the label at the end of for loop of the minor

-3 -

cyele, so that k is incremented to kK*1 and prieing starts again

oo with next GUB. However 1 6< 0, then we want to introduce colum

s into the basis and tind (if possible) ecolum 1 (O drop from the

basis. "

"REPRESENT THE INCOMING COLUMN s IN YTEKMS OF BASIS"

If k =1, define YBV = RwA(x,s);

If k <1, define YBV = Rw[A(%,s)-A(%,KV(k))] 3

"DETERMINE COLUMN r TO DROP FROM BASIS"

} "We first apply the usual ratio test £or the non-key basic

colums BY. "

DEFINE (r,8) = ARG MIN [[XBY(1)/YBV(i)] for i in I: ifm and YBV(i)>0];
"If 6 = oo above, it means no pivot oan be found among the

variables BV(1). Thebasicvariable corresponding tor ig BV(r) .

We are now interested in discovering if a key-basso variable j

| witt drop because it has a lower ratio than those of BV(i).

If yes we reset r equal to thieJ and denote Cts GUB set as GUB_r .

Initially we set GUB_r = 0; as tong as it remaing zero it means

r above is stilt the winner. If GUB_r> 0 then by definition

KV(GUBr) = r.”

DEFINE 6UB_r = 0:

"TEST RATIO FOR KEY VARIABLES KV"

Yat thts point we need to know the values of KV(1) which we denote

XKV and the corresponding representation of columm s denoted YKY.

Since GUB 'swith a unique basic variable don't drop their basic

variable under a basis change (except 1 = k possibly) we need to

consider only those GUB'a that have non-key basic variables. We

now Zook for such GUB 's. "

DEFINE a = 0; |

-4 -

f-LOOP: DEFINE ~~ f=MIN[GUB BV(i) for i in I:GUB BV(i)>al;

If f >7, go to LOOPEXITelse a = f;

“The above if iterated will pick up successively the next higher

index f of the GUB's of BV(i)."

LET F={(jfor jinl GUB BV(j) = f} :
DEFINE XKV = 1-SUM[XBV(i)for 11n F];

DEFINE YKV = -SUM[YBV(1)for 11n FJ;

YKV= 1+YKV if f = k;

“Where the latter corrects YKV if the incoming columns is i n

GUB set f i.e. if I = k. Note that the above states that we can

obtain the values of the key variab Zes by plugging in the val ues

of XBV(j) into the set equations (ii). We now do the ratio

test on (XKV/YKV)."

If YKV < O or (XKV/YKV)> 8, go -to f_LOOP;

"otherwise" r = KV(f); 8 = XKV/YKV; GUB r =f;

"We temporarily store the winning XKV and YKV;

DEFINE XTEMP = XKV; DEFINE YTEMP = YKY; Go_to f_L0OP;

‘This completes all the ratio tests except for the possibility

that s reaches its upper bound and becomes the key variable in

place of KV(K) for k41.

LOOP-EXIT: Ifk =7 and 6 = +=, go to UNBOUNDED;

If k <2 and e>1,]| KV(k)=s;XBV=XBV-YBV; Go to_RECYCLE|;

"In the latter case the incoming variables reaches its upper

bound and replaces the key variable in the same GUB. ‘Aecordingly

we reset KV(K) =s and adjust XBV, Then by recycling we go on

to price out next GUB. Otherwise we are ready for the pivot. "

m_Control = 1; Neg DeltaControl = 1;

"SWAP KEY AND NON-KEYBASIC VARIABLES"

-5-

"Swapping is not needed in the following case. "

[f GUBr = 0, go to UPDATE;'

| "If GUB_r> 0, then it is necessary to interchange k ey variable r
with another basic variable t in the same GUB set as r. "

DEFINE t = MIN[i fori inI: GUB BW(i) = GUB r];

"We now swap r and t."

r =t; KYGUB r) = BW(t) ; XBV(r) = XTEMP; YBV(r) = YTEMP;

"We must now fix up the inverse. "

R(r,*) = -SUM[R(i,*) for i in I :GIB BV(i) = GUB BV(r)]

"UPDATE BASIS, PIVOT’

XBV = XBV-YBVx6; XBV(r) = 6;

UPDATE: BV(r) = s; CBV(r) = 0; GUB BV(r) = kj;

R = PIVOT (R, YBV,r); XBY = PIVOT (XBV,YBV,r);

"The function PI VOL pivots in the last colum of the matrix

(R,YBV) on row r and returns the modified R columma. , Having

pivoted we now go back and reprice the GUB and continue doing this

until the GUB prices out optimally before going on to next GUB."

Go to MNOR- CYCLE ;

"When the GUB prices out optimally or s goes to its upper bound we

price out next GUB by going to the recycle label at end of the for loop

whichnow follows. "

. RECYCLE: 1]; "End for k_in L do loop"

“After pricing out all GUB's rhe for statement reaqches its end

desigrated above by 1] and eontrol moves ro the next statement below?"

If Neg Del ta_Control > 0 , go to MOR CYCLE ;
"i.e. starting the pricing over again beginning with the first GUB."

"If Neg_Del ta_Control = 0, <t means we are optimal and we

either initiate Phase = 2 or terminate with the optimal solutions”

"TERMINATE"

If Phase = 1,[2 if SUM[XBV(i)_for i in I:BV(i)>n-m and i$m]>0 then

|3 Answer -Infeasible=; Go to FIN1 3]

else "set" Phase = 2; n_Control = 1; Go_to MAJOR CYCLE 2];

If Phase = 2,)

|4 Answer <<Bounded>>, GUB BV, BV, XBV, KY; Go to FINI 4];

UNBOUNDED: “Phase = 2 and 8 = +="

DEFINE

Answer <<Unbounded>>, BV, XBV, YBV, s, KV, GUB_BV;

FIN] END "Program"

