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ABSTRACT

| This reportsthe simulation.of a parallel processing system based
on a directed graph representation of parallel computations. The

L graph representation is based on the model developed by Duane Adams in
which programs are written as directed graphs whose nodes represent
operations and whose edges represent data flow. The first part of the

L report describes a simulator which interprets these graph programs.The second part describes the use of the simulator in a hypothetical
environment which has anunlimited number of processors and an unlimited
amount of memory. Three programs, a trapezoidal quadrature, a sort and

1 a matrix multiplication, were used to study the effect of varying the
relative speed of primitive operations on computation time with problem

| size. The system was able to achieve a high degree of parallelism. For

L example, the simulator multiplied two n by n matrices in a simulatedtime proportional to n. | |
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¥ INTRODUCTION
L

Many approaches have been taken to the problem of parallel computation.

L One set of approaches, characterized by ILLIAC IV, allows only one instruc-

{ tion stream, but allows each instruction to be carried out on many data

- items simultaneously. This approach does not lead to serious problems of
tT sequencing, but it is suitable principally for problems using large arrays.

To take advantage of the fact that most problems require many operations |

L which are independent and can, therefore,be carried out simultaneously
requires one to use several independent instruction streams. This leads

= to sequencing problems, however, since concurrently executing sections of

L code may refer to the same piece of data in an indeterminate order. One
approach to these problems has been to require the programmer to specify

_ where parallel execution may occur and to leave to him the problemof ma-
] king sure that no conflict may occur between concurrently executing sections

- of code. This approach is typified by the FORK and JOIN statements pro-

3 posed for ALGOL. A similar approachis to attempt to isolate the data
items which are referred to by more than one piece of concurrently exe-

L cuting code and then to provide semi-automatic protection for these. This
| is the approach taken by Dijkstra's semaphore system.

h These approaches suffer from the fact that the burden of providing

i parallel execution is on the programmer. The sequencing problem arising in
multiple instruction stream parallelismwill thus become a source of pro-

8 gramming bugs since the programmer will not always use the interlocks

| correctly. Furthermore, because of the additional programming required to
use interlocks etc., the programmer will not take full advantage of the |

1 .
i

-



opportunities for parallelism inherent in an algorithm, particularly at a

very local (i.e., intrastatement) level.

. An approach less prone to error is one which provides for multiple

instruction streams where the sequencing, and thus the degree of parallel-

ism, is specified implicitly rather than explicitly. This requires that

the programbe written in a different representation than that provided by

* conventional programming languages, since the sequencing implicit in these

| does not distinguish between those cases in which one operation must logi-

cally follow another and those in which there is no such logical necessity.

In other words, it is desirable to have a representation in which operations

are implicitly simultaneous unless they are logically dependent on one another.

Directed graphs provide one such representation. In this representation,

~ the nodes of the graph represent operations performed on data stored on

edges directed into the node. A data item has no permanent location in

this representation, but rather "travels" along the edges of the graph to
the operations which are performed on it. An example of this approach is

the computation graph model of Duane Adams. Adams' model allows one to

program sophisticated algorithms, such as matrix inversion, in a way which |
allows both the single instruction stream type of parallelism and multiple

instruction stream parallelism down to a very low level.

A program in Adams' model consists of a set of directed graphs called

graph procedures. Graph procedures consist of two types of nodes, primitive :

nodes and procedure nodes. Primitive nodes represent the basic operations

performed by the system (addition, multiplication, etc.). Procedure nodes

cause invocation of another graph procedure, i.e., they specify that |

the computation to be performed by that node is the one represented by the

ii | |
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i named graph procedure. Edges specify the sequencing of the operations |
performed by the nodes; if there 1s an edge directed from node i to node j, |

8 then the result of the operation specified by node i is an input to the
operation specified by node j. The edges act as first-in first-out queues,

L i.e, the data items are operated on by node j in the order in which they |
L were output by node i. There are two types of primitive nodes, p-nodes

| and s-nodes. P-nodes can execute when there is at least one data item on

L each edge directed into the node. If there is more than one data item on
each input edge, the operation may be performed simultaneously on each set

L of input items. This allows the single instruction stream type of parallel- |
ism to be performed within the model. In orderto insure that multiple in-

= stances of an operation terminate in the same order in which they initiated,
1 the model specifies that there be an initiation queue associated with each
, node. An identifier is placed on the initiation queue for each instance of |
L the operation which is initiated, and that instance does not terminate until
| its identifier is at the head of the initiation queue.

- The other type of primitive node is the s-node. Associated with each

i edge directed into an s-node 1s a status bit whih specifies that the edge
is either locked or unlocked. An s-node can initiate when there is at

- least one data item on each unlocked input edge, regardless of whether or

L not there is data on any of the locked edges. The values of the edge sta-
tus bits are reset at the end of the operation specified by the node. The |

L new values are a function of the old status values and of the data input to
the node from the unlocked edges. ©Since the conditions for the initiation

- of an s-node depend on the results of the last operation performed by that

L node, only one instance of the operation specified by an s-node can be
) |

-
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carried out at a time. | .

Procedure nodes specify that the named directed graph is to be exe-

cuted using the values on the input edges to the procedure node. They are

initiated as p-nodes, so that more than one instance of a given graph pro-

cedure may be executed concurrently. Also, the graph procedure named by sa

procedure node may be the one in which the node is contained so that re-

cursive execution of graph procedures is possible.

° This report describes a simulator which interprets Adams's graph

programs, carrying out the computations specified by a set of graph pro-

cedures and keeping statistics on the timing and resource usage, and it

describes experiments performed with the simulator. Simulations were run

on a number of small programs, including a matrix multiply program, a |

quadrature program, and a sort program. The programs were run using varying N
. amounts of data, various speeds for the primitive operations, also with and

without allowing multiple instances of a p-node to execute simultaneously.

All of the simulations described here were run using the assumption that the

machine specified by the simulator had an unlimited number of processors to
carry out the operations specified by the primitive nodes and an unlimited

amount of memory. Of course, this is an unrealistic assumption. These

simulations were run in an attempt to discover the "inherent' resource

usage characteristic of the programs and to discover the effect of vary-

ing the relative speed of primitive operations independently of effects due |

to different algorithms for allocating Processors in an environment with a

finite number of processors. These effects can then be controlled during

simulations run in the more realistic enviromment of a finite machine. Co

iv



] Experiments conducted to discover efficient algorithms for allocating
- & LJ Ld -

| processors in a finite environment will be described in a subsequent re- |
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i THE GRAPH PROGRAM SIMULATOR

_ The simulator described here may be thought of as a parallel computer,
although it was not my intention to simulate any particular machine archi-

i tecture. As such, it has the following components:
oo Storage for graph procedures

_ Storage for data (edges). initiation queues, and the status of

i nodes and edges in an executing graph procedure
A pool of processors with input and output registers

. Logic for performing the operations specified by the primitive
| nodes |

— Control logic for determining which nodes are ready to execute, :

L assigning processors to those nodes, recognizing that a
processor is done, and putting the results on the output

_ | edges in the order dictated by the initiation queue. |
The first type of storage is static during the execution of a graph pro-

L gram, while the second is dynamic. Besides the above components, the simu-

0 lator also has the code necessary to gather statistics on the simulation, |
provide a trace, etc.

3 - Two distinct machine models are possible for the simulator, one in
which each processor is a specialized functional unit, able to execute only

L a single type of primitive node and one in which the processors are all

| general processors so that each can execute all of the primitive nodes. I

g will call the first the functional unit model and the second the multi-
L processor model. In terms of an actual implementation, the functional

unit model has the advantage that it is not necessary to duplicate the

L decoding and control circuitry required to decode operations in each

1
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processor. It has the disadvantage of limiting the flexibility of proces-

sor allocation algorithms. In addition, if the mix of functional units

available on the machine does not closely match that required by a given |

program, many of the functional units -will be idle much of the time. The |

savings gained by not duplicating control circuitry may thus be lost to | |
increased inefficiency. The distinction between the two models is not too

B important in the unlimited resource enviromment, since it makes no sense |

| to ask what the optimum ratio of adders to multipliers is, for example, if

one has an infinite supply of both. In the finite enviromment, however,

the simulator can be used to determine the cost in functional unit idle-

ness of the funetional unit model, and these costs could then be weighed

agalnst the costs of duplicating control circuitry.

Each processor in the simulator contains three input registers and

| three output registers by means of which data is gated from and to the

edges. A gating bit is associated with each of the registers. For the

input registers, these indicate whether the corresponding edge was locked

or unlocked and, thus, whether there is data in the register. For the |
output edges, the gate bits indicate whether or not the processor produced |

. output in that register so that the control circuitry will know whether to

gate the contents of the register onto the corresponding output edge. This

allows a processor to produce output conditionally. Each processor also

has a completion bit and a timer associated with it. The timer is ga

simulator expedient which allows the processor to execute for a particular

number of cycles. A block diagram of a processor is shown in Figure le.

Figure lb shows how the processors would be arranged in the functional

unit model. The availability queues indicate whether a processor is free

or assigned to some node. -If it is assigned, they indicate to which node.

2
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BN Program storage can be divided into two parts: that which is static

L during execution of the program and that which is dynamic. The static
{ storage contains the graph procedure definition and the dynamic storage

L contains the edges, initiation queues, and node and edge status flags.
| For each graph procedure, three arrays are needed. Two are one dimen-

sional arrays with one entry for each node in the procedure. One gives

{ the type of each node (i.e. the operation code), and the other identifies
the graph procedure named by the node if it is a procedure node.

L The graph itself 1s represented by a connection matrix whose i, 5th
{ entry is non-zero only if there is an edge directed from node i to node

L in the graph program. If the entry in the connection matrix is non-zero
L it is an integer which identifies the edge connecting the two nodes. The |

| static storage is shown in Figure 3. |

L The dynamic storage consists of node and edge status flags, pointers

| to edges and initiation queues, the edges and initiation queues, and
storage for structured operands. These are shown in Figures 3, 4, and 5.

L Only the status bits and edge initiation queue pointers (Figure 3) are
| copied when a new procedure is initiated.

L The status bits for a node indicate whether it is idle, ready to

L | initiate, or executing. P-nodes may be both executing and ready to ini-
tiate at the beginning of .the same simulator cycle, since more than one

L copy of the node may execute on that cycle. The status bit associated
with an edge indicates whether it is locked or unlocked. If the edge

L is directed into a p~-node, its status is always unlocked. |

[ The basic data structure of the graph model is the first-in first-
out queue. Queues are used as a basic ordering device to maintain the

i }
| 5
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| GRAPH PROCEDURE 1 PROCEDURE |
L A PROCEDURE

1
NODE)

L BN NODE |
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| One block of this storage is allocated for each: procedure definition in the Granh Program.

i | Fig. 2
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MAIN | FIRST |
PROCEDURE | PROCEDURE | NODE STATUS BITS

| |
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Fig. 3
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i | | |
sequence of operations during a computation. Their use in the edges

u provides implicitly the array structures which are specified explicitly

| by indexing in conventional programs. The programming of the simulator is
thus facilitated by a programing language which allows queues as a data

L structure. The resulting simulator is also a better description of the
graph model since the ordering provided by queues is implicit as in the

L model. Queues can be programmed in PL/I by using structures and compile

i time macros.
| Edge and initiation queues are represented by PL/I structures

| | having four parameters which determine the access to the queue and an array
which holds the values in the queue. The four parameters are: (1) the

L index of the array element which holds the head of the queue; (2) the

I : index of the element holding the tail; (3) the number of elements currently
‘stored in the queue; and (4) the maximum number of elements which the

L Igueue can hold. A PL/I compile time procedure is used to define QUEUE
as a data type in the simulator, i.e., to produce the proper structure

i declaration when a simulator variable is declared to be of type QUEUE. |
Special access procedures are used for entering and deleting values | :

. which treat the array associated with the queue as a circular buffer.
- These procedures, together with the compile time macros have the effect

of making QUEUE a basic data type within the simulator.

| Edges are then represented as an array of queues as are initiation
queues. Both arrays have an associated allocation list whose entries

L indicate whether the corresponding queue is allocated and if so, to which
i node or edge. When the simulator wishes to allocate an edge, it searches

the allocation list until it finds an entry which is zero. The edge

i .

1 9



number is then put in this entry, and the edge pointer is set to the |

corresponding queue. The allocation list entry is reset to zero when

the edge is released. When no edge resources have been allocated to an

edge, the pointer is zero. Initiation queues are allocated for all nodes |

in a graph procedure when the procedure is called.

Representation of structured data in the simulator differs from that

3 in the Adams model in two respects. First, structured elements are not

stored directly on the edges in the simulator. Instead, they are stored

| in a separate array and pointers to the location of the structure within

the array are kept on the edges in their place. At most, one instance of

a given pointer may be on the edges at one time so that the pointer

"represents" the bracketed data structure on the edge. Second, rather

than use a special bracket symbolat the beginning and end of the structure,

the starting location (denoted by the pointer value) and a count of the

number of items is used. Items may themselves be pointers, so the |

structure is recursive just as Adams bracket notation is. The format

of structuresis: (length) (item)* where (length) is an integer and

the number of (item)s must be equal to the value of (length). It is

easy to show that the pointer-count representation allows exactly the

same structures as does the bracket notation (*), However, having the

. length explicitly available simplifies storage allocation for the simulator

and also avoids the problems of setting aside a special value for the

bracket character and of examining each element in the structure to find

. the closing bracket. Pointers are not explicitly distinguished from data

in the simulator. Rather it is assumed that each type of primitive node :

knows what type of data to expect and that graph programs will use the

correct primitive nodes. "This requires different primitive node types

| 10
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] for the same operation on scalar and structured data, but it has the
:

. advantage that the edge access procedures do not have to examine each

1 item so that the same queue access procedures can be used for all queues
. in the simulator. In a hardware implementation this advantage would be

_ outweighed by the flexibility gained by using a single bit to distinguish
between pointers and data.

|

= Simulations take place in three stages. First, machine character-

i istics (number and speeds of processors, amount of storage, etc.) are
read in followed by the graph program definition and the simulator is

L initialized. Second, successive machine cycles are simulated until a
cycle occurs during which no node executes. This indicates the program

— has terminated. Finally, the memory and processor use is printed in bar

L graph form together with some statistics on the simulation. Figures 6-10
| show the simulator flowchart.

8 The simulation of a single machine cycle is done in three stages. |
In the first stage all those nodes which are ready to initiate are marked.

x This 1 done by examining all the non-zero entries in the row of the con-
L nection matrix which corresponds to the node in question, i.e., all the

input edges for that node. If any edge is both unlocked and empty then

_ the node is not ready to initiate. Otherwise, it is ready to initiate.

i A p-node may be marked ready to initiate even though it is already execu-

= ting if data has arrived which permits a second copy of the node to ini-
| | tiate. |
—

Allocation of processors among those nodes which are ready to initiate

. is done by a self-contained procedure so that the allocation algorithm
can be readily changed. This procedure puts the processor identifier in

— the nodes initiation queue and changes the node status from ready to exe- |

u cuting. It is also responsible for determining whether multiple copies



ADAMS GRAPH SIMULATOR - FLOWCHART
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i SIMULATOR FLOWCHART
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SIMULATOR FLOWCHART
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SIMULATOR FLOWCHART
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| executing. It is also responsible for determining whether multiple copies
of the node should be initiated. Each processor has a unique number

\ assigned to it and entered into theavailability queue when the simulator
is initialized. The size of each queue determines the number of processors

L which are available for the corresponding node type. When a unit is
a! assigned to a node the processor number is removed from the proper pro-

= cessor available queue and put onto the initiation queue for that node.
| One data item is then removed from each input edge and put into "input

; registers" assoclated with the processor. If the node is a p~node and
“- there is still data on each input edge, another processor is taken from

L the available queue and put onto the initiation queue of the node.
This process is repeated until some input edge has no data. The process

L provides the vcetor parallelism reguired by the graph progran model.
Associated with each unit is a timer. When the unit is taken from

L the unit pool this variable is set to zero. After the ready nodes have
{ been initiated, the timer of each executing processor is incremented and

L compared against the time required for that type of node. When the two
| ) are equal, i.e., when the node has executed the required number of time

steps, the simulator transfers to code which carries out the actual oper-

L ation. The transfer is by means of a switch on the node type. If the
{ | processor identifier is now first on the initiation queue of the node, the
- results are put on the output edges and the processor identifier is re-

| moved from the initation queue and placed on the proper unit pool queue.
If another processor is first on the initiation queue, this processor is

L not terminated, but if that processor subsequently terminates in the same

| time step, the simulator looks again at the initiation queue and
—
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terminates this one without waiting for the next time step. Thus, the

order imposed by the initation queue is maintained, but the simulator

carries out as many terminations at atime as it can.

When a procedure node is encountered, a copy must be made of the

defining graph. The nodes and edges in this copy must be renamed so as

Ks to te distinguishable from cthcecr corlies cxecuving concurrently. In

addition, the initial data on the edges must be present each time the

graph procedure is called. The creation of a copy is accomplished by

adding a new level of naming to the PL/I structures containing the edges

and the node date. Thus, the array of queue EDGES is actually the |

fully qualified name COPY (I,J) * EDGES. This is the jade call of graph

procedure I. COPY (I,0) is the definiton of the graph procedure I,

while for J>0 COPY (I,J) is the copy which is actually execnted.

When procedure I is called its edges can then be initial

executing the structure assignment statement.

COPY (I,J) - EDGES = COPY (I,f) ° EDGES

Initially, the simulator assigns COPY (1,0) and executes the graph

‘ procedure consisting of COPY (1,1). When a procedure node is encountered, |

I is reset to the name of the procedure and a copy of the node is exe-

cuted for one time step (i.e. each node in the procedure is executed one
time step). If the procedure has not terminated at the end of the time

step, control returns to the calling procedure but the node remains in

execute status. When the node terminates, it is taken out of execute

status and this indicates to the simulator that control is not to be

passed to the node on subsequent time steps. The edge initialization

only takes place when the node is in the ready-to-initiate state.

| i8
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| | |
In simulating a given type of node the actual execution takes place

L on the last of the n cycles specified for the execution time of that node.

| The first n-1 cycles are simply delay cycles and no action takes placeduring them. Procedure nodes must be specified as a procedure call

L operator whose argument is the name of the procedure to be invoked.
The procedure operator itself has an execution time of n cycles,

| which represents the setup time (resetting pointers, allocating
storage, etc.) necessary for that invocation of the graph procedure,

L ~ and the invoked procedure does not begin to execute until the last
g of these cycles, so that the total time required for a procedure :

| node is the time required for the procedure call operator plus the

L time required to execute the constituent nodes.
: Although execution takes place only on the last cycle of the node's

L execution, aata 1s taken off the input edges prior to initiation and the

l processor is allocated to the node throughout the execution period.
Thus, the simulator acts externally as if the processor were executing for

L n cycles. When the node is initiated, a processor is assigned to it by
removing the processor number from the appropriate availability queue and

L placing it in the node's initiation queue. The data from each unlocked

L input edge is transferred to the corresponding input register in the
assigned preccessor and the gate bits of all input registers are set to

L reflect the edge-status bits. If the node is an s node, the processor
| resets the gate bit at the end of execution. The gate bit is then used

L to reset the edge-status bit.

L | The execution of a node is carried out by two procedures, EXECUTE
and HARDWARE, EXECUTE determines which nodes are ready to initiate,

L calls the processor allocation algorithm, transfers the data from edges

! Li
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| to registers and sets the gate bit. After a delay which represents the

execution time of the node, it calls HARDWARE to apply the functions

associated with the node. HARDWARE operates only on the registers of the

assigned processor; it does not know the edge connections of the node to

which the processor is assigned. When control is returned to it, EXE-

CUTE resets the edge status bits according to the processor gate bits,

P and transfers data from the output registers to the output edges. In

some cases, the processor may return a null result in one or more out-

| put registers so that the value in the register is undefined. The pro-

cessor flag RRF indicates to EXECUTE whether or not the corresponding

output register value is to be put onto an output edge. |

EXECUTE also has the task of assuring that results are put onto the

output edges in the order dictated by the initiation queue. This is

accomplished by checking whether the first processor in the initiation

queue has completed. If not, no other Processors in the queue are |
checked on that cycle. Otherwise, the data from that processor is put

onto the cutput edges and the process is repeated for the next item in
the initiation queue. Completion is indicated by the processor flag

i DONE. In this version of the simulator all nodes of a given type are |

constrained to have the same execution time. The order of initiation

- and termination would thus remain constant even without the initiation

| queue mechanism. | |

Allocation of edge resources is done by the procedure M-ALLOCATE.

This procedure is called by EXECUTE before it transfers output from

processor registers to an edge. It is also called by the procedure call

operator in order to allocate storage for initial values to be placed on

20 |



|
the procedure's edges before initiation. The current version of

L M-ALLOCATE allocates edge resources in fixed size blocks. In the
unlimited resources model 15 edge-resources are allocated for each

L edge when M-ALLOCATE is called. This has proven ample for all of the

1 programs which have been simulated.

{ |

L

L

L |

L

| :

L |

L

| |

L

| .
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SIMULATOR INPUT AND OUTPUT

The simulator first reads in a set of graph procedures defining the

program to be simulated. It then simulates each time step of the pro-
| gram's execution until no nodes are able to execute. Simulation of sg

time step consist in first marking all the nodes in the graph which are

a ready to initiate, then allocating processors to these nodes, and

finally, executing all the nodes which are able to execute on that time

- step. The number of processors used during the time step is recorded

-for each node type, as well as the number of edge resources in use at

the beginningof the cycle. This information is printed at the end of
the simulation.

The input to a simulation consists of two parts, machine charac-

| teristics and the graph program. The first part specifies three types |

of parameters: (1) whether the execution is to have vector parallelism;

(2) the execution time for each primitive node type; and (3) the number

of processors for each primitive node type. Parallelism is specified by

a bit constant - 'l'B for vector parallel mode, 'O'B for concurrency

} only mode. In the latter mode only one copy of a p-node can execute at

a time. This bit is followed by a list of pairs of integers giving the

time in cycles that each processor type requires to execute and the num-

: ber of processors of that type.

The graph program is read in as a set of graph procedures. The format

for the input of the graph program is best described by a bnf syntax.

(graph program) tt = 0
| | (graph procedure) (graph program)

(graph procedure) :: = (name) (procedure definition) (ini-
tial data)

| 22
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4 |
(name) :: = (positive integer)

| (procedure definition) :: = (node count) (node list) (con-
nection matrix)

\ (node count) | ~ ~:: = (integer)
(node list) :: = (op list) (name list)

| (op list) :: = {list of integers}

{ (name list) 1: = {list of integers] || (connection matrix) 1: = {list of integers}
{ (initial data) rr = 0
L | (edge information) (initial

| data)

L (edge information) 1: = (edge number) (status bit)
(data list) |

L (edge number) :: = (positive integer)
| (status bit) t= '1'B /¥locked*/

L | '0'B  /*unlocked*/
(data list) :: = (count) (data)

L ( count) 1: = (non-negative integer)
(data) 1: = {list of floating point numbers}

L | (empty)
Zeros terminate both the data list and the set of graph procedures.

L The integer (name) identifies the graph procedure being defined

| while those in the (name list) identify those procedure nodes which are |
constituents of that procedure. Procedures can be read in anv order and

L may contain nodes naming procedures not yet read in. The main procedure
must have the name 1, and execution begins with this procedure.

L The number of entries in (op list) and (name list) must be equal

[ to (count), while the (connection matrix) must have {count)2 entries.

L
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Only those edges specified by an edge number are initialized. If

an edge is initialized its initial status setting must be given. Edges

leading into p-nodes are set to unlocked. The status of all edges

which are not explicitly initialized are set to unlocked before the sim-

ulation begins.

Simulator Storage Parameters

: The following parameters can be varied to adjust the storage used

by the simulator in order to fit the requirements of the graph being

interpreted. M#T is the maximum number of time steps the computation |

will run. Simulation results are storedin a MFT by NT#+1 array, where
NT# is the number of primitive node types. ERM is the maximum number of

edges and IQM the maximum number of initiation Queues which can be

allocated. IQM must be >= the number of procedures executing at one

time times the number of nodes in each. The arrays used are of size:

ERM by EGLNMX+4; IQM by EGLNMX+4; ERM; and IQM. EGLNMX is the maximum

number of data items which can be held on an edge at one time. EGMX

and NDMX refer to storage of graph procedure definitions. NDMX is the
. maximum number of nodes in any one procedure (excluding copies), and

EGMX is the maximum number of edges in any one procedure. The major

arrays used are: 2 of size PROCM by NDMX; 1 of length PROCM by NDMX+1

by NDMX+1lj; 1 of length PROCM by EGMX by EGINMX+2; 2 of length GMAX by

EGMX, where PROCM is the number of graph procedures in the graph pro-

gram being simulated and GMAX is the maximum number of procedures which

can be active at one time, including multiple calls to the same proce- | |

dure. (Hence this parameter limits the depth of recursion).

24



Certain of these parameters (M#T, PROCM, ERM, IQM, EGMX, GMAX,

1 and NDMX) are read in by the simulator at the start of each run. They

( are read in DATA format, and so may be entered in any order. They are
- the first data read in by the simulator.

There are two types of output from the simulator, trace output

- and resource use summary output. Trace output is printed during the
i+ simulation and consists of identification of nodes in execution, pro-

cedures which have been invoked, input and output register contents,

. etc. It is primarily useful in debugging graph programs. The resource

use summary 1s printed at the end of the simulation. For each type of
= resource, including edge resources, the following information in prin-

L ted: (1) A bar graph showing the number of resources of that type
used at each time step of the simulated computation; (2) The total

L number of resource cycles used for that type of resource; (3) the
: percent utilization of that type of resource; (4) the average number

= of resources used per time step; and (5) the maximum number of resources

1 used at any time step. The same information is also summarized for all
processor resources. The total number of resource cycles provides a

L measure of the "cost" of the computation, the percent utilization |
| measures the efficiency with which resources are being used, and the

average resources used per time step gives an estimate of the degree |

L of parallelism attained. |
Representation of structured data in the simulator differs from

L that in the Adams model in two respects. First, structured elements

i are not stored directly on the edges in the simulator. Instead, they
| are stored in a separate array, and pointers to the location of the

) |

-
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structure within the array are kept on the edges in their place. At |
most, one instance of a given pointer may be on the edges at one time co
that the pointer "represents" the bracketed data structure on the edge. |

Second, rather than use a special bracket symbol at the beginning and

end of the structure the starting location (denoted by the pointer

value) and a count of the number of items is used. Items may themselves |
- be pointers so the structure is recursive Just ns Adams bracket no-
| tation is. The format of structures is: (length) {(item)* where |

| (length) is an integer and the number of (item)s must be equal to the

value of (length). It is easy to show that the pointer -count repre-

sentation allows exactly the same structures as does the bracket nota
tion. However, having the length explicitly available simplifies
storage allocation for the simulator and also avoids tae problems of

| setting aside a special value for the bracket character and of axerining

each element in the structure to find the closing bracket. Pointers

are not explicitly distinguished from data in the simulator. Rather

it is assumed that each type of primitive node knows what type of data
to expect and that graph programs will use the correct primitive nodes.

. This requires different primitive node types for the same operation on

scalar and structured data, but it has the advantage that the edge access
procedures do not have to examine each item so that the same queue access

procedures can be used for all queues in the simulator. In a hardware |

implementation this advantage world be outweighted by the flexibility
gained by using a single bit to distinguish between pointers and data.

26 |
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PRIMITIVE NODES

L The choice of which operations were to be implemented in the simul-
t ator was somewhat arbitrary. Since no hardware constraints or cost

considerations were available as a guide, primitive nodes were chosen |

| primarily because they were convenient for writing the programs to be

L simulated. Any hardware implementation of this model would include: primitive nodes similar to those implemented here, although they would

L undoubtedly differ in some details. |
- The following table lists the twenty-~eight primitive node types

L in the simulator. The first column gives the operation code used by the
simulator, the second the name of the node type together with the symbol

L used in drawing the graph procedures, the third and fourth the data types
| | of inputs and outputs, and fifth gives the functions which determine

edge status settings for s-nodes. Only two s-nodes were needed, but

L these were used frequently. Loop control, type 11, selects its first
( input on the first execution and the second on all subsequent execu-

L tions of the same node. Select route, type 12, selects either its

L } second or its third input depending on the value of its first input,
which is boolean. If the first input is true, the second input is

L selected, otherwise the third.
| The arithmetic and boolean operations (zero test, negation, plus,

- increment, decrement, multiply, subtract, divide, less than, GTEQ, AND,

OR) work in the obvious way. The equivalent of branchlng in a conven-

- tional computer is provided by the conditional route and branch route |
1 nodes. The conditional route node has two inputs, the first of which

is a boolean value. If the value of the boolean is true, the second

L
27
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TABLE 1 —PRIMITIVENODES

CODE NAME INPUTS OUTPUTS EDGE STATUS |

1 Procedure Call Any | Any P-node

2 Zero Test (=0) Float_ Boolean P-node

3 Negation (=) Boolean Boolean P-node

4 Plus (+) Float, Float Float P-node

. 5 Increment (+1) Float Float P-node

| 6 Decrement (-1) Float Float P-node

7 Multiply (*) Float, Float Float P-node

8 Two Copies (2) Scalar Scalar, Scalar P-node

9 Conditional Route (Cond) Bool, Float Float ~ P-node

10 Branch Route (BR) Bool, Float Float, Float P-node

11 Loop Control (1c) Float, Float Float U,L-L,U;
| L,U-L,U

12 Select Route (SR) Bool, Float. Float True, U,L,T— ]
Float LUL, F,ULL —LU

LUL— ULL, LLU-ULL

13 Subtract (-) Float, Float Float P-node

14 Divide (a) Float, Float Float P-node

15 Less Than (<) Float, Float Boolean P-node

C16 First Vector Float P-node

17 Rest Vector Vector P-node

18. First - Rest Vector Float, Vector P-node

19 Null Test Vector Vector, Boolean P-node

20 Length Vector Vector, Float P-node

21 Unbracket Vector Float P-node

22 Split | Vector Vector, Vector  P-node

23 GTEQ (>=) Float, Float Boolean P-node |

28
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] | -
ol And (A) Boolean,Boolean Boolean P-node

L 25 Or (V) Boolean,Boolean Boolean P-node
| 26 Insert Vector, Float Vector P-node

L 27 Two Copies-Vector (2) Vector Vector, Vector P-node

L 28 Identity TD Any | Any P-node

L input is placed on the output edge. Otherwise, there is not output.
L Branch route has two inputs and two outputs. The first input is a

boolean. If it is true, the second input is placed on the first output

L edge and nothingis placed on the second output edge. Otherwise there is
no output on the first edge and the second input is placed on the second

L input edge.
L | The TWO COPIES node takes one input and puts it onto the two output

edges. This is by far the most commonly occurring node in the graph programs

L which I have written. Because the implementation of structured operands re-
quires that there be one and only one copy of a pointer to a vector, a special

L node type is needed to copy vectors. The vector itself is copied to a new |
_ . location in structured operand storage, and a pointer to the new location is

output together with the pointer to the original location.

_ The UNBRACKET node causes a vector of lengthn to be split into its
components. The n components are put onto the output edge. This is the

- only primitive node which puts more than one item on a single output edge

so that it must be treated as a special case by the execution logic. Rather

- than putting the contents of the processor output register onto the output
L edges, the register is used as a pointer and the contents of the structured

operand storage pointed at are put on the output edge.
i

-
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FIRST, REST, FIRST-REST, and SPLIT all operate on vectors. FIRST puts

out the first component of the vector. REST decrements the length field of

the vector, moves the length field to the position occupied by the first com-

ponent of the vector and outputs a pointer to the new vector thus created.

FIRST-REST combines these operations, outputting the first component and a

pointer to a vector containing the remaining components. SPLIT outputs

g pointers to two vectors containing the first half and second half of the com-

ponents of the input vector. If length of the input is odd, the first half is

one longer. |

Length inputs a vector and outputs the original vector and its length.

NULL TEST inputs a vector and outputs the vector and a boolean whose value

is true if the vector is NULL (has a length field equalto zero) and false

| Otherwise. INSERT inputs a vector and a scalar and outputs a new vector of

| length n+l which has th: scalar as its last component.

~The PROCEDURE CALL node requires the most complex logic of the primi-

tive nodes. It must allocate space for the named graph procedure, transfer

the contents of the processor input registers to the input edges of the

- procedure, detect termination of the procedure and transfer the contentsof

the output edges to its output registers, bracketing if necessary. Bracketing

is done by creating a new vector in structured operand storage and putting a

| pointer to this vector in the output register. Finally, the space allocated

to the graph procedure must be freed.

30



| USE OF THE SIMULATOR

L
This section describes three graph programs which

L were written for the simulator and the results of simulations

L run using them. The programs area trapezoidal rule quadrature,
| } a sort, and a matrix multiplication. The simulations show

L how the computation time, processor use and degree of parallelism
vary vith the amount of data, the effect of changing the relative

L speed of primitive node types, and, in one case, the dependence

L of computation time on data values. Each program, and the
simulations run with it, is described separately and the results

L are summarized in the conclusion.

L

{

L

L

8 |
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TRAPEZOIDAL RULE QUADRATURE

In order to determine what processor speeds should be used for sim-

ulation, the time required for various.operations on several existing com-

puters were compared. The results are shown in the following table. In the

| second half of the table the times are normalized so that integer addition

- equals one. The time for floating point addition then ranges from 1.33 to

J slightly over 2 and the time for floating point division from 5.0 to 17.1.
- From the studies of varying processor speeds done on the sort and

trapezoidal quadrature program, it appears that the main effect of changing

processor speeds from a uniform execution time of one cycle to a varied set

of times falling within the range of existing computers is to scale the time

required for the computation by an amount equal to the mean execution time of

the nodes in the program. Second order effects, caused by delays in the exe-

cution of nodes which depend on the output of slower nodes, are not signifi-

cant unless the variance in processor speeds is higher than that in existing

computers; e.g. unless one node is much slower than the others.

The trapezoidal quadrature program calculates the polynomial
(b-a)/h

. h¥* Zo f(a+ih) - (f(a) + £(b))/2). The values of h, a, and b are inputs

to the procedure, and the function to be integrated is specified by supplying

a. graph procedure which computes the value of that function. Successive

values of a+ih are generated by adding h to the previous value. This loop

is terminated when the value of a+ih equal to b has been generated. These

values are fed into the procedure node for f(x), and the output of that node oo

is fed into a summation loop. Generation of the last value of x causes the

value in the summuation loop to be fed into a subtract node which subtracts

| 52 |



. | the value (f(a) + f(b) )/2, calculated from the initial values, from the sum.
_ The resulting difference is multiplied by h to give the valueof the integral.

_

:

.
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| TABLE 2

REPRESENTATIVE EXECUTION TIMES FOR SOME EXISTING COMPUTERS

| EXECUTION TIMES

6600 PDP10O 360/91 360/75 360/40 7600
FP + LOOns L4.4k6u 2cy .83 14.3 hey

| FP - LOOns 4.64u 2cy .83 1h, 3 heye

: I + 300ns 2.53u lcy =60ns .39 7.5 2cy

~~ FP x 1000ns 10.29u cy 2.05 76.3 5cy

FP + 2900ns 1h4.lu Icy 3.80 128.1 20cy

A 300ns  2.35u 1 .59 7.5 2cyc

| — 300ns 1.5u 1 .39 7.5 2cyc

Br 1500ns 1.36 6+ 1.10 5.02 11

| BC 1500ns  1.68u T+ .39+1.10 7T.5c 11 | :

| Subrout.

Branch 2.21 .99 6.88 13
lcy=27 .5ns

Ratios add (integer)=1 |
F+ 1.33 1.76 2.00 2.13 1.91 2.00

) F- 1.33 1.76 2.00 2.1% 1.91 2.00

I+ 1.00 1.00 1.00 1.00 1.00 1.00

. FPX 3.33 4.07 3.00 5.26 10.2 2.50

- FP# 9.67 5.58 9.00 9.75 17.1 5.00

A 1.00 0.93 1.00 1.51 1.00 1.00

= 1.00 0.5% 1.00 1.00 1.00 1.00

BR 5.00 0.54 6.00 2.82 5.50

BC 5.00 0.664 7.00 3.82 1.00 5.50

Sub- 2.52 6.50
routine ’

Branch
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Since the values of atih are generated bya sequential loop, the time

L to perform the quadrature is at best proportional to the number of points

: used. For functions which require little calculation, this loop will do-

. minate the quadrature time. However, if f(x) is sufficiently complex, the

u | time required to compute 1t will be much larger than the time required to
compute all the a+ih. The computation of f(a+ih) will then proceed approx-

NE imately in paraliel Tor gil values of 1. 1n this case, the computation time

still has the form ky n + Kos where n is the number of points, but ky will

. be much larger than ky so that the k,n term will not be significant except
for very large n. :

_

—

L

-
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| Square Root Procedure

L This graph procedure calculates the square root of a positive floating

point number by Newton's method. The initial approximation is provided

— from the polynomial (x7-5x°+15%+5)/16. This is derived from the 4 term

8 Taylor series expansion for (l+y)l/2 =1 + y/2 - v°/8 + 3/16 by setting
y =x = 1l. This polynomial is computed by nodes 1 through 17. The remain- |

| ing nodes compute the approximation I +l = (Y, + x/Y 1/2 to y= x and test
: for an error below a specified limit. The iteration stops when |v, - Yel <E
. where € 1s the constant placed on the edge between nodes 32 and 33, in this
| case 10™°. The test is computed by nodes 26, to 32-35, and the resultant

: boolean is distributed by nodes 36, 27, and 18 to the gating nodes which

L either enable another iteration or halt the computation and gate the result
to the output edge of the procedure through node 39.

. Fig. (15a) shows the processor resource usage for SQRT (2.0) under the
Lo assumption that all processors executed in equal times. Fig. (15b) shows

| - the same computation with processor times which assume gating and similar
_ operations take 1 cycle, additon, subtraction, logical operations and
| compares 2 cycles, multiplication 4 cycles, and division 6 cycles.
. Newton's method is inherently sequential, . so there is little overlap |

| | in the execution of this graph procedure. The maximum number of processors |

= executing in any cycle was four. The time for execution was 133 cycles,

. but the total of processor cycles used was 200 so that 67 cycles were over-
lapped or 1/3 of the total. To put it another way, with strictly sequential |

f

L execution the computation would have taken 1/3 longer.

—

; ] |
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SUQRT(2.0) ~- UNIFORM PROCESSOR SPEEDS

TOTAL PROCESSOR RESOURCE USAGE
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| 'SQRT (2.0) - Varied Processor Speeds
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113:4

121 nik
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12304
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126: 4 BS

127: # |
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- TOTAL RESOURCE CYCLES USED = 200 2 UTILIZATION = 1
AVERAGE RESOURCES USEC PER TIME STEP = 1 MAXIMUM = 4
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FUTAL PRGCESDUR RESUURCE USAGE SJ vx ax h=.1
i Letu# 1

| 2ihARNBBRARNH
ds hhhhiaBhn

Gfitnbhhbhuna
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\ 2.0

TUTAL PROCESSOR RESOURCE USAGE [YX ax h=.1
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— CO HARSHRUNE AHA AN HEH |

CTHAHNNBERF RARARBH AE

] CR:UHBANRBAH BARA BUNA
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LTO: AANAHUR NERA
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- 219 HANARAE H¥
220 HBURHAEN |
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225 HHH SHIH
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239 HAKHMN |
240: HANNH

241 HANK |

242 HH#RH

| 243 HHH |
244 HHH | N

245 HAH |

24621 # |

247: HAH Coe

248 HANRH

| 249: 4 4 |
250k#
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252 # |
3 253: # |
: 254: # oo
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256:#
257:#

2582 #
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261: # ~ |

262:#

263:4
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TOTAL RESOURCE CYCLES USED = 3340 X UTILIZATION = 7
| AVERAGE RESOURCES USED PER TIME STEP = 14 MAXIMUM = 32
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Variation of Relative Processor Speeds

f

— The trapezoidal quadrature program was run with all processors exe-

{ cuting in one cycle (Fig. 18) and with the times for different processors
L Co.

varied from one cycle for simple gating nodes to 6 cycles for divide (Fig. 19)

19); with uniform times the computation took 70 cycles and with varied exe-
-

cution times it took 122 cycles. In order to compare the two cases meaning-
Ey

- fully, the uniform execution run must be scaled so that the common processor

{ speed is equal to the mean of the speeds of the nodes in the graph program

under the varied execution case. Otherwise, the first case just represents

a run with faster hardware than the second. Not counting dummy nodes which do
— -

do not execute, the 69 nodes in the graph program for [V/xdx represent a to-
: :

ye. tal of 121 cycles using the timings of the varied processor speed simulation.

: This gives a mean execution time of 121/69 = 1.75 cycles. Hence we have

— the following: | |

Tvaried = 122 cycles
-

| Tuniform = 7TO¥1.75 cycles = 122.5 cycles

L In order to test the effect of slowing down a single processor type
|

to the point where it could cause significant delays, we re-ran the simu-

- lation of varied processor times with the divide slowed down to 16 cycles

: ~ and other times the same (Fig. 20). This is a slower divide, relative to
Co

- other operations, than is found in current large scale computers. Norma-

| lized to fixed point add, one finds divide times ranging from 5.00 (CDC 7600) S—

| to 9.75 (IBM 360%/75).% The computation took 172 cycles with the slow divide.

— The total number of cycles represented by the nodes in the graph program is

: 161 when divide = 16, so that the mean time for a node to execute is 2.33
|.

cycles giving

—
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Tuniform = 2.33 x 70 cycles = 163.1 cycles

Tslow divide - 172 cycles |

Putting in a very slow divide unit thus results in a slower computa-

tion than increasing the mean processor execution time by a corresponding

amount. Thus there are probably significant delays when other nodes are

idle waiting for the result of a divide. However, the increase in execu-

. tion time is only 5.6 percent even in this case where one node type is four
| times slower than the next slowest node, the multiply. In the case where the

"divide time is more nearly comparable to other processor speeds, the difference

between varied processor speeds and a uniform execution time, which keeps

the mean processor execution time constant, is negligible.

Trapezoidal Runs

The trapezoidal quadrature program was run using SGQRT (x) and SIN (x)

as the functions to be integrated. These functions are complex enough so

that they will execute concurrently for several values of x. Further more, |
the execution of SQRT(x) is data dependent since it is an iterative approx-

imation program whose initial approximation becomes worse as X moves away

from 7.0. This dependence is illustrated in figs. 2la-2le, which show the

_ processor usage for SQRT(x), x=2,3,4,5,and 10. The computation took from

133 to 308 cycles and from 200 to 470 processor cycles were used. None of

the other programs simulated is data dependent in the sense that the amount

of computation depends on the value of the data used.

As a result, the time required to compute /xds is not simply a func-

tion of the number of points used in the quadrature. Rather, it has the |

form t = f(n) + g(a,b), where n is the number of points used and (a, b) is

the interval over which/x is integrated.

#The IBM 360/40, however, has a relative divide speed of 17.1.
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176:4

— 177:#

| 79

—



178: 4 |

179:#4

180: #4 |
181: # |

182: #%
183:#4

184:#

| 186: # | | |
186: # I

187: # | | |

188:#

189:#

| 1904#

191s 44H

; 192:4 ¥#

193: 444 .
194: 444

195: ##

196:#

197: #
198: # | |

199:#

200: 44 ~ |
CCLH UMN

202: # |

PA ERE |
204:

2065:

TOTAL RESOURCE CYCLES USED = 308,00 2 UTILIZATION = Qe 64%

AVERAGE RESOURCES USED PER TIME STEP = 1.5Q MAXIMUM = 4 |

‘ 80



L SWRT (10) VARIED PRUCESSUR TIMES |TOTAL PROCESSUR RESGURCE USAGE

Ls: ##u
Bi 23h#

1 XE 1.1
4 HRR |

g 52 HHk
Cd bik
1a 7:4 Co -
| 8: # | |

i 93 #| 10: ##

Re 11:##
12: #4

| 132 ##i 14:0
15: # |

wr 16: #
| 17: #
Ne 18: # |
| : 19:#
1 20: #
Ht 21: #
| 22: # = |
|, 23:#

| u 243 #
| 25: 4
| 26: #

- 27s # | oo
| » 283 #
| 29: # |
lL 30:4
. 31:44
ne 32:4
| 33:#

. 34:435:#

| - 36: #
| 37:4
CC . 38:#
Ce 39:#
| 403 # | |

- 41:#
oo 423#
Ce : 43: # |
| : 4434

45 3 # |

a. bos # |
| 47: # |

48%#

- 49:#
- 503 ##

| S51: H#N
. 52: HHH
Cy S33 HH
— S43 HRN
| 553 h#

- S6:# -

. 57:#

|



58:#
59: # | |

60: ##k | |
6ls H#nk

62: HMHN

63:##

04:#

65: # | |

66 RHA | Co.
6leu

63:#

69:#

710:#

TL:#

72:#

to 73: #

14 2: #4
752#

76:#

17:4

78:#
719:#%

80: # |
Bl: # ~.

823M

83: #4 |
84s#

852 ## |
S36: ##R

RT: daha

38: #HM# |
894M

90: KH

9l:#

2M

93#

4:#

PLEX

962 Hithn

QT SH MBH

i 983 KM

993 #

100:#

C101 :HM

102:#

© 103:# |
104: # |

105:#

106:#

107:#

103:#

109:

110: # oo
1112 # |

112:4%

113: 4 ‘

114:#

115: # ’

l1lo:#

117:#

82



L 118: # | |119:4

1202 #4

121: K#R

| 122: 484123: #4m

| 124: #utH

| | 125: ##|| 126: # Co.
127:#4

. 128:#
129:#

L 130: #4
131:Wnus

Coq Lo2s#nitk So

HE 133: 44 |
| 135: # |

| 136: ##
138:#

| . 13934
| L 140: &141 :# —

142:4

r 143:#

Lo 144: #
145:#

l46:#

. 167: #148: # oo

149: #4 |
150: #

! 151:4
- 152:#

153:4

154: #%
155: ##

h L562: ##it
LST: din

. L588: #44

I. 159: #hn
160: ## |
lol:#4

: 162:4

— Lo3:4
164: # |

: LoS s## |

- Leos #kni |
LOT: whup

, lod: #sy

169: 4

- 170: & |

171 sn

L72:4

; 173:#
ht 174:4

| 175:#
| 176: 4 |
- 177:4

83
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oo]

17834 | |
: 179: # |

180:#

181: # |
182: #

183:#

, 134:#

185:#

186: #

187: # Lo

188: # |

189: # |
190: 4##

19) inp

192: ### Co |

a LO3: ##é
1942 #i#

195: ## | |
196:#

: 197: # |

198:#

199:#

200: ##

201 shin

202: 0¥A8 |
2033 ## |

206:#

205:#

206: ##

207: # oo Co

208: #

209:#

210:#

211:#

212:#

213: # |

214:#

215: # |

216:#

217: # |

. 218:#

219:#

220: #

221 :# |

: c22#

223:#

C224#
225: 4# |

226: #it# |
22THit

228H MN

229 HNN

230: #4

231:#4 |
232: #4
233:4

2343

2353 ## ]
"236: HHNR

23TsH#MN )

. a: |



[ 4
[ 238: Hi |239:#

240: # :
. 241: 44

L 242: 4y 243:#

: 244: H#
245:#

| 246: # | oo.
247:#

| 248: # |

i 249: #250:#

251:#

252:4

{ 253: # TT Bh254:#

255:#

L 2563 #257:#

258:#

259: # | N

L 260: ##261: Hith ~. |
262 *Hki#
263 4#4#

| 264: nH
265: 4# |

206:#

L 267: #268: # |
269:#

T 2TO:##

L CTLs htt
212: Hite

2T3:4%#

L 274: #275: # |
2T6: 4##

277: # |

L } 278 #
279:¥

280:#

L 281:4282:#4

- 283# |
284: # :

L 285: # |
2865 # |

287:#

L 268: #289:

290: #4 |
291: # |

\ 292: # |293:#4

294:#

. 295: k# -296: hin

29THHH

1 85



298: ##u oo
299:hk ##

300 :#4K |
301»

302:#

303:#

304: # |
305: #4 |

306: #Hith# oo | |
307: # | |

308:#

309:

310:

FTUTAL RESUURCE CYCLES USED = 470.00 2 UTILIZATION = 0.65

. AVERAGE RESUURCES USED PEK TIME STEP = le52 MAX IMUM = 4

&



|

L SORT PROGRAM .
The SORT program was written by Duane Adams. The version used for

L simulation differs from his in two respects. First, the primitive node set
| is different for certain vector (record) operations. For certain operations,

L such as length or null, one almost always wants to use the operand later, as
L well as the result of the operation. Thus, in Adams' program, length is pro-

ceeded by a two copies node, one output of which is fed into the length

1 node. Since making a copy of a vector or record is bound to be a time con-
r suming operation, in this version the primitive node length outputs both the

L length of the vector and the vector itself. Thus, there is no need to make
L a second copy of the vector. The relevant primitive nodes are shown below:

L 1 vector | vector |

ou RIL V, = length (v,) v=) = |
« then true else false

i vector 2 3 integer vector 2 3 boolean
.

¢ The second respect in which my program differs from Adams’ is that

- the procedure ROUTE SELECT was rewritten to allow for more parallelism. In
| . Adams' version, shown in Figure 3a, comparison of the first element of the two |

two records must wait until the determination of whether either record is

1 null. In mine, it proceeds simultaneously with the null check, and the
conditional output nodes (4 and 5 in figure 3a) is moved to the bottom

- of the graph. This has the disadvantage that the procedure may take the

1 first of a null record, which works in my implementation but gives a mean-
ingless result. The result of a meaningless comparison is never output, |

} however, and the procedure works much faster for the common case where
neither record is null (6 cycles vs. 11 cycles).

g



PROCEDURE: SORT PROGRAM SORT

'BRANCH

ROUTE

CL

a)

Fig. 22

| 88



L PROCEDURE: MERGE 1 PROGRAM: SORT D
null. null. .

(re) rf
3

L .
UNBRACK UNBRACK

L U
u | L 4

L o 1

[ | L
L

: af yD
__¥on) amROUTE BRANCH

[ 9 \ ROUTE

\ 8 6

L I<

( | | 11

| Fig. 23 »
89 |



| PROCEDURE: ROUTE SELECT PROGRAM: SORT

of ()
:

. i2

(~J
| / 13

| ’ Fig. 24 oo

90 | g
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PROCEDURE: ROUTE SELECT PROGRAM: SORT

| ADAMS' VERSION

) (=)
| |

SROUTE

- ()
| - J)(re 10

| O-

L (2)

] OT
oof

|-—

- (=)

. © ©.
1

18

i.

ol |

-



i TT

Since the only data type implemented in the simulator is floating

point, a record is identical to a vector. A file is just a vector each

of whose elements is a record (vector). If a file contains m records |

each of length n, its representation is identical to that of an m by n

matrix. oo

Variation of kxecution Time with File Size

~ The processor usage for sorts of various length files are shown.

: The sort program can be considered as having two parts, the first of
~ which recursively splits the file into subfiles, and the second of which

merges the subflies together again. The merge is not initiated until the

split has reached the lowest level. The number of stages required to split

the original file into subfiles of length 1 is equal to [log nl, where n is
the number of records in the file. There will then be a similar number of

: merge stages. at each of which the subfiles are merged pairwise. The time |

taken by the merge procedure to merge two files of length ny and n, respec~

tively will be proportional to ny + n, since each comparison results in one

‘record being put on the output edge and there are n, + n, records in the
cutput file. Since the merging of a subfile pair at any stage proceeds

in parallel with that of all other pairs at the same stage, the time for |

) each merge stage is determined by the length of the longest subfile pro-

duced by this stage. The total merge time is the sum of the times taken by

each stage, and will thus be proportional to the sum of the lengths of the
longest file produced at each stage. The last stage produces one file of

length n, the next-to-last stage produces the longest of the two inputs to the

the last stage, i.e. a file of length [n/21, the stage before that a file of

length [n/41 etc. The time to merge is thus proportional to

[log.n1 =1 |
n+ [n/2 + n/bl +...42 = ye (n/2%]

; i=0

pr



y If we then write time taken by the sort as T= const. + tg + to

L where t is the time to split the file into subfiles and t the time toS

| merge the subfiles, then we have
log," i

; = + +LC (1) T =k, k,[log,n] k, Ly [n/2 ]

iL When n is a power of 2, n = ot the series in the last term is equal to
{ 2n-2, i.e.

1 [log 2M] -1 m=1 :
| 2 mai _ i_ ml 5 _ _. Zo emt = goem/2t = 2 2 = on - 2

| + __ a _ + —Giving T = k_ + k; log,n k,(2n 2)

| Oth 1i erwise

| log.n]log. .ni|-1 .

— on-2 < 3° [n/2%] < 2n + [log.nl - 2
i=0 - 2

|

-

The. right side follows from

- [log ni-1 i [log nl-1 i [log nl-1 i [log nl-1
< + =Zo [m/l <0 LZ] (n/27+1) Io (meh) + 30 1

i

—

| : [1log,nl-1 9
¢ =

; 120 (1/27) + [log nl
(-

I EEE ail BRN
— 1-(1/2) So

( |: _,llog, nl

— =n SE —=r2 + [log nl
| 2 ~O8

-

| | 93

—



| my |

_ (plogyn-llogonly logon] oy N [log,n]

-

<peplOB2R _ oy [log,nl since otogon - llogpn] <1

=2n - 2 + [log nl

: The sort program was run for files of length 3,L,5,A,7 with all processor

types executing in one cycle. The resulting elapsed times fit EQN 1 exactly

with k,=5, k;=19, and k,=13. |

TABLE 3

[log nl-1 i
N [log,n] Zo [n/27 1 T CALCULATED T OBSERVED

3 2 5 5+38+65=108 108

4 2 6 5+38+78=121 121

p 3 10 5+5T+130=192 192

6 3 11 S+57+143=205 205

7 3 13 5+57+169=231 231

9 4 19 5+75+24T=328 328

. The time taken by this sort is independent of the original order of the

records in the file since neither the number of subfiles produced nor the

number of comparisons required to merge two files depends on the contents of

the records.

ht



- |

| SORT~ 3 Record File |

- TOTAL PROCESSCR RESCURCE USAGE
1: #

2:4 I

\ 3:4 }
|. G3 HH |

5H

biHHHA

THAH#K

— BsH#H#
CEEYT ITY

10 HEAH oo
ES BRE T1113,

k — 12: 44% ##
13H&% HH

! las iAnttiti#
| 15: HE4##

~— 16: HEH |
174444

: 18: /h##44 :
19:444

~~ Ne hdN ~
21: Hin Rn

: 22H NYERER
23 HuBUAH
24 hHAHR &

26s HHH 4 #

26 HHH ,
{ 2T iu #4

= 28: HHH Co
| 29: HHH#

ZOHHARUY

: IL HURRAY

= 32: HMR | | |
LERS 3.3
34 HHHAH

— ISL HUBEARY
36: HHH

BT HUHUA

; ) 3B HANAN
— (CREST

HOT HEH

Gls His

L2H HAH

— GI THHAHAH |
: Gh4 HUH H | |

4S THRE H## |
| 46H |
- GTI HAKHY

LB SHHEHRHKRY

| GOTRURRUH

| S50: HUH H#
fe ST s#A##H#

SRI HHRHH

S3hHE

54:4#

— 56 3 ##

563 # |

57s #A# ;

SB #HH
|S—

Fig. 26a
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SA: HHH |

6C LHR

6liH44KH

62 SHARK RHY | oo | |

ERE EEX ¥ oo |
64 HAs H

LEE ELE |

REE 1; _
67:84 |

68:44

| 69: 44H | |
[GSRE:2 12 3 |
Tl: HARRY |
T2 sii |

! T3244 p
| T4144 |

THs HAddS¥ |

THSHER GH
TT:H44%

TAY is

TOI HHH |

RO: ## _ |
BlsH# | |
B22: Hid |
CERES TXT |
BH HHA HH

R534 #4
BO: 4##

B7:444%

BOs hain

BITHNIHAY
ANT HUN H# |
Il 2 HA}Y

SYS¥ TT
93:44 | |

Q4: db | | |
6: HHH | |
Q6 HRW

OT:R44Y |
QR: HY 4H |

QQ si## |
132: 4444

10) cdHuugd
172: 84444
173 4H # |

104 hKu#H

10S: &##¥ oo
106 #4 |

107:#4

108: #4

1573: |

119: | |
TOTAL RESOURCE CYCLES USED = 423 FT UTILIZATION = 1
AVERAGE RESOURCES USFLC PER TIME STEP = 4 MAXIMUM = T |

9% :



|

be

: SORT - U4 Record File

— TOTAL PROCESSOR RESOURCE USAGE
1:#

2:#

3: 4 a.
— LIU

Ss#

63 HEH
! Thies

— Bs HREM
Is KHARNEN |

BR LOs Hin#

aa LL: #uARERARRS
Ha L2: HAHA NERRAN

| L3SKHHARBANRIR

\ Laz hubikuibtdnidd »

" LS: kth btiv iid
16 8u#nd

L7:6habdnhi

LBs hhanbnnk |

- CHITTY 111.
2D HEHARRAW :

ARRY11111111 EE :

| 22 HARRARARERERRE

- D3ASHAHBHHNBRANR
24fibhhbh iin

2H Runhnkai

20: hURHAHAN

2TIHRARARN

2B HUAN HH Co

| 2OSHHNRMRREH
IOS HHRBUARRHEGH

- JL:AHHRRRBREHR
YEE 11331131

Co 33 RNHAEH
34 HNRHHUBHUN

- 35: HARA KRARRARER
36S HhRABKRRREHRR

IT: hanUARBANN |

. 38 HRENHRERIRK

~— ZV Hh RRBHIH

GUS hh it#

| GlIHEdHEY
G2 HBRHESRH#

— GIIRAKRRKAHRRR Y

: Gaz HURRHNENERE

| | AS: RERB HARRI
YEE YIY1Y |

— GT HARRHRARHEY

GBLHAUMEHBHBRABRAE »

: GO HRRRARRARAAN

| SCRINBHEBBER

- S12 hu hRAHBEH

SQ HERBUNRH |

SIHAEBKEM
S54: hEk#

~— SSeHHRA |
SG: H#

| ST: Hik j
S58: kk

- |

Fig. 26b
|
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|

SY HER | |
60k HR

6ls#HRriM

YEE X1XX1. |
632 H#REH

AGHA

65: #hn# |

66 RAR

6Ts## | Co.

683#H#%

69: H¥H

TO HERNH |

Tl hinun

T22H##M

T3s HH

1 Tas HENHK
TS HERA RE

TOS #HKAN | |

. TT: Huns

T8sAMkH |

TO: #hk
80: ##

S8lith

B2:H##k ~.
B33 HMNNS

BL HHi#M |
85: HENNE

86: 4M

BT:ub#k

BB: RRHAERS

BO HANNE |

QO HHH

| IL: kuin |
92: hihn |
93: HH |

94 HR |

OSs Huh

YO HENHH |

CRE Y TTX |
QB::nik |

CT 99: 4H

10D: wits

1012 ARunnd

102: nntint

103: nitph

104: Bni#

1052 nH |

106s k#

ICT nd | |
1B: un |

109: HMM

110: 8404

111sinan

112: 4k |

113:dki4n

114s nung

11S #ifnH

L16:in#p ’

11T7:hieN | |
118: 4a »

98



— 121: 4
122:

123: |

| TOTAL RESOURCE CYCLES USED = 678 2 UTILIZATION = 2

AVERAGE RESCGURCES USED PER TIME STEP = 6 MAXIMUM = 14

-

\
-

t
- -

- |

I. R

—

—



SORT - € Record File

\.
TOTAL PROCESSOR RESOURCE USAGE

1: # |

2:4

3:4 a

Lik¥

53H

3111 |

THAN

BsHNNM

Qs HHHMHH

: LO Huns
; SRS 113123312,

| 12: HNRARNNENN

L3sHUNERNNENAN

. ICR XI 1131111.

| 1S HARNURERNN

LEHUREENENNNRRNN
ONT HHREUNS RNR

CR 212123732221.
LOCHRNHENNNKNNERENN |

2VNANSHNHRUBNY .
2LHNRNANNY

22: NMRAIN

EEXYI I11221

24 HNNNRRAUNN

25 HNNUNBENMN

26: HURUARUNNNNE

QT HANBERNENNNAUIRN

: 28 HBNRUNANNNNNRS
29: KNBRURNRENNY

| SO:HNNBUNRNNNAN

BL HNUANNRENAN

32:HHNNRNNN

I HNRMNRAN

34: HRURNRRINY

ELYE III11382%111

XE213313221331,

STSHNRRARANANY |
- IB HMNNRERH

IO HNNMNNNNENUN

QOHUNRANNNNMARRNNN |
GLIHUNRERNNANRNRY

ES 3111213 828],
GINUKNRRNNANNE |

GOzHNNNNRRNNN

GS HERRRERN |

INS2231213111 |
GTHNRNNENRAN
GRINNNBURENENRNNS
LOSHNUNRNNRUNNENY

SO: HNNRHANANINN
SLsMNRMRREM

S2:HNNNNARUNNAN

SAHEMENNRNNNRENENS |
SLIUHNURKRURUNNNNER

SSHRNNRANANIIN

SOIHNNRANRANNUN

STI HUMHANRRNN ’
SBuNNNURHN

Fig. 26¢
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L SOs HH¥NAHR60: HHHANY

61 :HHBH#

62: HHHAHRHAY

| 63HANABE AY
SEET TIEYY.

| 65: HUHHBERH |

| COI HNRRRUABUHEET: HUUANEAARNIHBE oo

CB IHHUABAABURAS

CO RHUAUAAAESY

L TO: HHRHURRHBHE
TL:HUBRRBRY

| T2:4ANEHE

{ TI: HHMU#HTG HRUHUBRH

TS HUBARBHAHBY

TO HUBHBRRAHH

L TT: HRHARARREH
TS: 4BHHIY |
TQ HAMRHERAH

BO: HUHARHARRARADH |

L BL:WNHARANRYANS |
B2 HANSA RHNRH |

BIHAURAABNAH

L Blt hHNARN HH8S HHEHAH

BOHHUMNANY |
BT: HURRUARH

L BB HNRRUHAHALHH
BOIHNHAAHARUARN

QO HMHANR#H

L OL: HHKHUM |QO HNKNAANNNH |

GI HARBHURNBHARNY |

QU RUNBHURBHUAY

| IS I HANHHHABEYQb: HHUKHHAHHHN |
QT: HARRUNHAN

) QB HHH HHH |
QOIHHEAUHMH

LOD: HAMANN EN

LOL SHAKHBARUNREN |

L LOZ HHBHABENBARYCLO: HRNRREES

CO10G HERR B#H

LOS: HUERHHNNIN

L LOG HHAUBRANNNRSNY
LOT HHAREANRUHIAN

LOB HUNHRBBHAY |

L LOG: HNRHUNRAAN |M10: RUHHEHRNAN
L11 cHAMRHH

: 112: #488

| 113: HAHN
lla: 4%

115: #44

L 116: ### y117: R44

118: # 4H

. 101



| |

119:# #44

L200:# kk HNN

L21 shun ik |

122 4444

| 123: uA 4

1242 #4H4 |
125: 44 -

126: %# CT |
127: # 4H |

123: Huuuu

129: KRG HH

13DcH HH

131: 44

1324444

i 133 8NNRAN
BEYSEIIXT

135: ian

136:4#KMH

137: #4

138: ##

139: 44

14C HH #M : |
| Lael sHHuNN -

BYYEE ITY |
1434MH H

1445 44

L4S Huh 4

lab: H8uunN

laT:Rl MY

L481 Hiu#H :

L4Q: Hal |
150s uk

151s #4

152: 4#

153: H4k4

LS4 suki

155:# ing

156: #Kk#

157:##

158: 484%

) 159: Mu sny |
160: HMNMH |

LoL Hung

L662 sHMkH |
163 HEN
. 16444

165: 44 |

166: ¥a¥ |

16T Hkh kH

6B: #NN#N

16Fs#kk

17D: 4K

1T1sHR4R Co

LT2:HH0MNN

173z#nuul

174: #4K4

17S:W#44

176: 644

17744 ’

178: 44

| 102



|

L : | | :
oo | »

| | |
IL | |

| 179: ### |
| 1BOSH#MAN |{ 181: #N##H |182 s### |

| 183 : #4 oo

L 184: #444 oo| 185: HMNNRN ” |
| 186: Hk ## |

| 187: H#NH | |
| 188: ##KH ]
— 189: #4

190 s ## |

I 191 s## | »
He 192: #4#
| 193 ##N##

194: Hi#H

A 195: #4 oo }
1a 196: ##

197: kkk # | |

! 198: NNR ARH
|} 199: H##NNM

“ 200: HHH # - |
2012 H¥4¥

| 202: H## |1 203: #4 :
i 204: # |205: #

B 206:
I. 207:

TOTAL RESOURCE CYCLES USED = 1400 % UTILIZATION = 2

’ AVERAGE RESOURCES USED PER TIME STEP = 7 MAXIMUM = 16
.

I
- |

Bb : |
~

’

|
| . |

|!

| | |
KE h
tL

pe |

~
! | 103 |
-



SORT - 7 Record File

TOTAL PROCESSOR RESOURCE USAGE |

124%

2:4

3:4

SE 3

5:#%

XE 233: Co - |
TS HERES |
8SHNNHK

CRE ¥ 3333 :
10: ##4N

LLs##RRERENNS

L222 HEMANRERKN

. LAS HERURINERN
LA HBANNEUNBHERANY

1S HENHUNRKAN

LOS HHNNERNNRHR ENMRHN

TLTS RARE RRB B RUAN N |

LES HHNNHANRUGRNNENHN
| LORMAN KERRRHNBRABAERANRARH

QO: HNN UNRRARNBRAREN oo
CLE HRENRRRHUANY |
22S HUNERBRUNABAAN .
LIAS HHNUHNNMEUNRBRUY

SRZHRUERERNERARRS | |
COS HHANRRURBRRRSANM

QO HUNBRUANRRARUEREN

: YEAR 111X323 31323333%;

COS HURUMRREHNBERANERERN

COS HURRUNRRRRERIERERE

BOSHUEHHNRENBENRRHNNN | | |
BL RUHARRURRGBRARY

J2:HNERHNNNRUN

OBI HRRMAURERRA

BLAHMHEARRUREANNREN

BOC HENRENNERARREERUNSES

BOC HNURNMNGHENUNBNINAN
ITS HRNRUNANRENRURN

BB HUNHKERULHRN

- BOC HNNBRANTBERNNRRNAY
QOSHREUNNRNANBNNENNNNNNNSN
GLEHHRERNRRRABHRARER E
L2SHHNNNENRAERANEREY

QASHRNMNUNNNARNBREIN

Gaz HNINNNSENLEERAN

GOS HNANNRRANEY

LOESHRENNRAERRN | |
LT: HNRRANNHEBER IH |
LOI HHBRABERABHNSRRARRIS
GAS RNRNHNRSHERRERENEH

SO: NWRENNNUEREBUNNAE
SLEENRANRERREN

S2: NUHNNNBRANAUREAAN

S3SHRAHNIREIRHBURNRR ER BERNY
SGI HRUNERNEREANBRUAANNN

SOL RERRRURRHBAERURAN

SOLHMHBANENENRENGHAN

STL REBNHHBRHRHERNH -
SO: HNARKNUNNRYE
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|

| | |

| SO: HERENY
60: HUMKHANHA

- SLI HMMHH
62 RUBHNRIN |

L 63 HRURRELH
| O4 HRRUANBE |
| O65: RANA HAH

COI HUNNRUBRH

OT: HUNKNNRANRARAR oo oT |

EB HNERRNEURANRH
| COL HNNEHRHUAHY

L TO HERKRAHH HH || TLE HNHEANRHA

| T2: REGHEH |

: 13: kHRRAH
5 Taz RERHRERH

- TSI RBRHANERRERH
TO HHRHANBR URN |

L TT #ERERRRRYTO: HM HH

TO: HHARNANN HH |

f BOSHUHNURUBHBRBAY |

L BL: RNREAUAAARRY
| VAR 1231333311
| BI HNAURRENRH | |

| Bus HEAURRHR
- 85: HNNHUN |

BOT HMHH AH

| STS RHRNANRNLC SO HURNURUMRERA
| SIT HMENKNNSHAH

QO: HHNNRNHHH

f QL: HHAHHHY

I. G2 RANHHHRAHY |
| OI HUHBRRHBRHRBHH
y Qu RERHHHBAARANY
} ISS HNNHNNKRHN
“ 6: HHARENNHEAY

QT: HERKUEY

i ) QB: HMHHHN
g QO: HMR HH

| LOO: HANK HR NH
J LOL: HHNGNNRNRHHUN
| | LO HHNRHRHRANE

— LOB: HERNUNHEH
| : LOG HMEHNHN
| LOS: HNRRABEE RE

L LOGS HRNRFMMEHBHIAN |
LOT: HNRERNNBHRY

] LOB HERR URGHIH
| LOO: HHRRANMEHHY
— LIO: ##AHBRAN |
| L1L: MMH EH

’ LIZ: #uih# |
1 L13: HNNHAN
~ Llas #HNREHN
| 11S: #uM#NN

i 116: #u## : |
L1T7:H#N

118: HNMHH
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|

L199: SH ENNERH
120: #¥EN KR | |
L221: #R##

L222 #MNH

123: #in#
124: #445 |
1252 ## :

126: ##

127: # | .
128: ###

L299: ### |
130: ##4#4 | |
L31s ###

132s HKun

L333: HENS

134: KUNE # | oo
L355: ###4

136: ##4¥

- 137: #4

138: ## oo : |

C139##

140: ##4 :

141 kRui# |

142: ¥WNNE | |
143: #44

144: ##

145: ##uN

LaG HMHHRN

: LaT H#AEHN

Lad: HMiN

| L4O nn
150: ###

151: ## |

152: ##% |
L533: ##4

Lo4: H#M4#

LOS: ###NH |

156: ###

LOT ##

158: ###n

i L599: #MuNis

LOo0 #H#N#

L612 #¥n¥

LO 2:HMRH |
163: MH

© 164: ##
L653 ##

166: ### |

LOT: ¥u#nn

LOB: #¥#MH

L699: ##¥

LTO: ## |

L711: ##4N

LT2: HEN #4

L733 HAN :
174: MH

LTS: ####

176: #¥## -
L777: ##
178: ## |
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| | :
i pe

L L179: ###180: HEHRH

| 181s HNN
| L822: HMW#

L | 183: ##| 184: HHt#H
| LBS: HER EH |

L LBO HHu#EH187: hit oo

188: ##n# |

| 189:# aH

L 190: ##
191: ## |

| 192: 4##4

{ 193: #nps#194: ###H

| 195: #### |
¥ 196: ## |

1 197: HHH
| L198: KMHNIA

199: HEHE #4

L 200: #H## | | || 201: H¥u# _
| 202 ###
| 203: ##

L 204: ##
| 205: #44
| | 2006: HEHKHH

1 207: KiuH| 208: ##un
| 209: ##
f 210:Hit #¥
1 2L1: HURRAH

212: HANEY

213: HE#¥

L 2las H#tuH215: H##

I 216: ## |
| LT: HH

L | 2LB HAH
219: Hus H

220: HENKH

L 221: #éd- 222 H#

| 223: 4H#4u
224 H#knKUH | ]

| 225: HHH #
| 226 HHH

y 227: #Eng
L 228: HHH| 229: 44

| 230: # |

| 231:41 232: |
233:

| TOTAL RESOURCE CYCLES USED = 1716 3 UTILIZATION = 3

1 AVERAGE RESOURCES USED PER TIME STEP= 7 MAXIMUM = 23 |
107

a
1



SORT - 9 Record File

TOTAL PROCESSOR RFSOURCFE 1JSAGE

1:4 |

SSH :

3: 4 a

G44 |

5:4

ER. 1.13.

TIH44N

Ss H4H4#H
JI HARYHN

LO HHHM

Eo LL: HHABKHARRHAR
12s uddiuRuing

132 HHHARUAHNN

14s RUHR UHNA RE HKNASY

h 1S HNRARNAEHN

LOCHARGHNRBIAURURRHRYHHH

- YT2UHERBUHNRBBHHRHTBARNN AYHY

1SsHSUHGHRNUBHUHBARHHERHHYH

VV HABA UNHBUH NABH REI RA ASEH HUN RY

2YSHHERINBARHABHURHHURHY HY
CYIHBUBHRHREHRGHESHHH

P2IARHNSHANEWRAL RUSH

CALHGHUNGHAR URYARUHHRHN

P2HIAHHRAURUA RUHR BY HUH

COIHAHARRURHHBHARHEY HAH

RN I22232228 3223817

STHBHRHHHUARUEHEURES BNL

CUOCHKBEIRAUNNBR ARAB RANRIR UNH
CASHGHARENARHRRYRHBA RG RA

AIIHBURRBAEHYIAHBE pUHIRGY HY

A) sh BudnHUHNHNUR NH

ROH BURR RERE BURY RB HRY HY

IVFHBaNGRARARANRARRYY

3G THANE BRERA HEAR BE HRYY

AH: UdBRAGRERRAERBERERYANH HGH

3H HSHSHHHBANANNHE SHI HI HAHA |

AT IHRGHBUBHHRUNERHAYHY

. ELE ER ET TEX EER SEY

IH HNAARGAESHR d 8

SEEN FEET EEEESEES ESSERE ERIE ELLE

BREFEZIFTESEIEIEYENE LE NEESER

GP iRARAHBIURENHERYU BEng ot

. SPE EFE IITLESSEEANE LET

GO HERBRAREYHBHUNHUUAAGH

GOSHHERBURBHUNARUHESIH BUY
GO: HENRHHRHABRAKBAREY

GT iAbHUBGHEHIHGN

GAH Halal ianligady

GAL AEANSHEHHIN HE ERA BES Y

Sled ad gh ENA SH ESHER 2H

STI hERRRREHNERHE HRY

Slut bia bhhlnbdlighibigadyd

SAL RA BHAS NEAR RRNA Hs dad hid
EEEEZTEEEEETERERT ESSERE YY

SS turn uddsunfigebdfiiynh

PSE ENTE EY EEE EES EEE EEE

STeitinnapnonbil 856484

SRMghtahd BANEN dL yd

Fig. 26e
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SOI HHRNARRRIHEHEHY

= srrrnnmnmnT
ClLHAURUASHEBY

E2IHHEHRARRANY
. CALHALKARA EH |

Chin HBR RAY

SST HEHBARGH

66 RHRKRRAH | . |
— ET: HHBALAB HHUA oC

GRIHRUBBAHSHUY

| EO: HARNBHRHNH

_ TO HHRHARRAKY
TL HARRBRAHHE

TO HEHRBERRNRA

i T3:HARABHRENHB The HARRARBRAH
TS: HAHBHHHBHRYY

TO: HBRBHERBHY

TT:HARHHHREH |

- TRH Hbns#H
TO HAN REREHYH

BILHUAGHEUAAHGH SY

- BLIRHARHRBAN HHH
RO2:HAu4nURTRIY

| RI: UHNERHBYY
BL sHHuRAIEHNY

- BSc HHARRREBHNYH
BOI HABHHRHUHNY

( BT: HANEARNEEH

L BATH HKARKRENGAY
SISHHARRUHRPUG

Ch EN'Y EYFYSE"

V1: 48H4H4HHH

L EERE LYS Y ERY
FI: HARRAHERY

JO HEHRUHRHUBHEH

OSs UHHAHKNHH

— INI HABYHHRHY
STI 4HRAHNRARY

: SRIHHSHABRHBIHY

L : QI: HHHAABURRY
ICO HRHRRHEANY

IEE1121232221.

| COLD HARRAHREA
. COLD HBHRHRRRE

. IDG HARARE

LNB IHHURBARENAY
: ISO URHRRBEBHERAYH
— IVT HHBGEHHAREY

INS chadll#

: 1 PHAR R HY |

L LID shoud nan
lll cH HbduEFY ub |

| VIP b4kUuuGEHY

: Lil3:Hanubabahial |
- lla:HREHNA

IB E EEE FY REERE

L164 HBRERHH ; |

| V1 7:88 K%44
— VIR: 4#patund
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119: HAGA RAHHY |
120: HHRBRERUKH |

V2) sHRREUHAHN

L222 HAKKARARN

123 HA4HHBUHEN

124 HRRNEHEH

125 HHRHRHEHAY

L126 8 HHHEKAY
127: RANSHH |

128: 4k n#

129: h#HY |

122: HK#

131 :44#

1324444

; 133: hkbniH
134: 447804
135: 4444

136: #4 |

RENEE TIT

133: 4884444

139: 48a Htinn

14D: 44684

14) chit 4H ‘ |
142 t #44 # -

143: Hid

144: 444

14524444

146: 444 HRH

: 14T Huntin

148: Hund

149th4H

157 HHH HE

LO1 2H 8 unlnH

LO2 Hu #UH |

153d Mudd

154: 48484 HK

155: #444 |

156444

1957: Hi#

| 15R 4 Hig |

i LSS hain

167s HRY

161 s Hi 44

163: #4%u44

104 HHHANRH
155: H 88 4uH |

166: 44444

16T HHA HRY

168: 4444

169:yh#

170: 484

171 Huns

L724845 43H

173: HEH BRH |

174 :44%4

L175: rA#

174: #4 ;

LT7 4844884

173: HRA
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L 17: 4up diVRS HHHRE

181 44kH

1R22 #4

L 133: 444 |
1R4: #iti#

1365:#HHERA

L 186: 4 HH HE167: 48/ut 7

1RI HAH

180s4H hy

L 1930: 4 RA 4HHER101: HB 414

192: 4484p

A 133 #864 K |
1 EEE ITY"
| 195: Ha# |

196s 4 #

L 197 t 4 #4199: #

123: #44

[ 2" Hpk |

L 21 HHH
207 tH iH - |

B MERE. ¥.1.¥:

L 24 HARKS oo205s 44nd |
206 hu H

2IT:H4H#4H

3 2IR: Huh |
209 sh # |

21): 44

: 211 Hw

L AYRLIIT
213: 48444 |

lat 4d#

. 215: 44 |216: #kH#
217 HHH RA#

. 219s Huw iH | |
- 213: 4444

220s hk #

221:4 ##

222 #4

- L223:h 4

224t HEH

{ 225 cia HA |
L | Don HUNH

227 HUH H

| P22: HH

| 229 :H#kd |
- DAN AHRHHH |

23 hRH4H

; 2321 #44
233 su kb it

(. 7234 TRH
235: 44

| 23:44 ’

L 2A Ts # hs
23s 4nuay
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23 HER KH | oo
240sH 4 #

241 tk #

2L22H B4H

2431 HHBAAA )

244 HHH HY
24S sRHKK

246 4Hu# |
247: HUH ooo

248it#

249: 4 # |
25D Hhith

P51 shia is

2S? Hak #

. 253 HHH
- 254 tH#

255: Hip i

25H HHERRUH

C25 THNEH

2S: HHEN | |

259 tH #4 #

26D: 444

261 HEE
262 14% -

2h HHH

26646 HHS HR | |
265itn ##

266: HHH

26T 144 |
268s 4444

260HHH HRH

2THB80 AR

PTL RUKH

272: ##4#

2713: 4#4

2T4 HE

275144

2TH5:044

217: Hbnnn

. PTR: HHAY

2T0: #44 #

2RO HH

PRL HEHE

DR2 HHA HRY |
PARKER LIN I:

284 HUEY |
285 HEH |

286 HAN

287 ##

288: 44

2RQcH Hg

2A HANAN

2S) SHMBAN

292LH MH

293:4 #4

2340ch 46H

ASL HRHHAY )
296 HHAHRK |
23 T#4444

29R HAHN 112



|

i 2093s HHH300244

301 44

: LIVER 2.T: |

8 AV: HH H#H
AD4 HHH

INS HHGH |

INE 4H

| ADT EHH | Co
BIRIHUNBHY

EREREXT. 3 3

L 31C #84
311: disk |
312cH HH

{ 3134

L 314: 44
315444
316: Ahuul

. IT sHHEHBL: HERR oo

3G ##

320 HHBAH | |
L 321 HAHHHHH

R22 Hid HH =

3231 H4AnH

| 304: HEHE |325: #44

A327:#

L A288: #
323:

333:

L TOTAL RESOURCE CYCLES USED = 2512 %¥ UTILIZATINN = 3AVERAGE RESGURCFES USFD PER TIME STEP = 3 MAXIMUM = 3N

.
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It is interesting to compare the time required for a parallel sort

with time which world be required to run the same sort sequentially. At

the oli stage of the initial process of splitting the file into subfiles,

there are pt-l files to be split. However, some of these are already of |
length 1 and thus are not split. To simplify, we consider the case where

n=o". Then

id 11 = pS = otogan=l _ JM 1 = 41 stages.
| At any given merge stage the subfile pairs must be merged sequentially, | |
and the time taken for all these merges is proportional to the sum of the

lengths of the merged subfile pairs, i.e., to the length of the original

file. Since there are log, n merge stages, the time taken merging is

. proportional to nlog,n, i.e.

Tsequential = X, + ky (n-1) + i n log,n
If we assume that the proportionality constants are the same for both |

sequentialand parallel operation we can compare times for files of

length 4, 8, and 16.

. N Tpar Tseq

L 121 166

8 LL 450

16 L8h | 1122

It should be noted “hat the assumption that the proportionality

constants are equal for sequential and parallel cases implies either that

the sequential machine has a faster cycle time or that the sequential pro-

gram is coded more effeciently, since the constants k_ LE and k, themselves

represent considerable concurrent operation.
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L
Sort - Comparison of Relative Processor Speeds

L When all processor speeds were equal the time to sort a four record
| file was 121 cycles. 678 processor cycles were used. When the relative

processor speeds were varied in a ratio reflecting the speeds of correspon-

L ding operations on existing computers, the same computation took 159 cycles,
1 using a total of 807 processor cycles. In the first case the execution time

L for all processors was one cycle. In the second, the fastest processor |

i operated at one cycle while others were slower. To obtain a true comparison
of the two cases, one ought to set the execution time in the first case to

L the mean of all the execution times in the second computation. An approxi-
mation to this is obtained by averaging the execution times for each node in

L the graph program (rather than for each node executed). The sverage will be

L off by the degree to which the mean execution time of nodes executed repead-
edly weighted by number of repititions differs from the mean time for nodes |

L in the graph.
| The mean execution time of nodes in the sort program (based on pro-

_ cessor speeds used in the second case) is 1.275 cycles. It is not necessary

t . to rerun the program with all processor speeds equal to 1.275, since the same
effect can be achieved by scaling the case of all processor times = 1 cycle.

. . The equal processor speed case then gives a time of 121 x 1.275 = 15L cycles
and a total number of processor cycles used of 678 x 1.275 = 860 cycles.

_

u

L

8
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Summary |

| To understand the effects of relative processor speeds we must com-

pare cases where the relative speeds of different operations vary to cases

where they are all the same. For a precise comparison we should set the

processor execution time in the second case to the weighted mean of the

execution times in the first case

: = no where LW = execution time of node niT= — _

. | alec Vn, Yn; = # times node n, 1s executed
during the computation

To simplify we make the assumption that the above mean is well approximated

by the unweighted mean .
n’eG Hy

- [25 where N = number of nodes in graph program
Certain nodes are "dummy" nodes (i.e. they never execute)

always nodes with time = 1 we exclude them in calculating Td . (in MERGE

nodes 1, 2, e.g) Then for the sort program

| = u = 1.297
Using this to scale a run where T, = 1 all n.eG we have

i

Constant Speed Varied Speed

Time 121 x 1.297 = 157 cycles 159 cycles

Total Cycles 678 x 1.297 = 879 cycles 897 cycles

This indicates that relative processor speeds are not too important.

| As a further experiment a new set of relative processor speeds ©n,)
was chosen so that the unweighted mean would be the same as for the first

set, i.e. such that ]
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1

> TIT. _ XL. .O
L n, eG n, = n. eG n.

- However, the set o_ was such that the variance was slightly larger i.e.i

11.81 for {o_ }

7.41 for {tT}

This was done by reducing the time for A, length from two cycles to one and

- ~ increasing Vv —to three cycles to compensate for the possibility that v
| and— (route select .T7 and route select .11) were executed more often

_ | than A and length, the change was reversed, i.e.,

i As length = 3 |
ve — =1

| | The variance is 11.81 for this case also.
| For the first case the time was 156 cycles and the total processor

i cycles used was 893.

0 In the second case the computation took 162 cycles using 901 processor cycles
TABLE 4

i i TIME PROCESSOR CYCLES
157 879 Constant speed

i . 159 897 Variable speed |
156 893 Var. speed - higher var. I

| 162 901 Var. speed - higher var. II162 - 156 = 6/159 = 3.77 percent 901 - 879 = 22/990 = 2.22 percent

183 992 Var = 49.60

L 183 992 Var = 49.60
| 183 992 Var = 49.60 |
L 183 - 156 = 27/169 = 17 percent 992 - 879 = 113/936 = 12.1 percent
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SORT - 4 Record File Variable Processor Speeds

TOTAL PKOCESSUR RESUURCE USAGE 5
1:w

2: # .

3H -
43H .

St#

REN

T:4

Bs kink .

QINNRE

LO: hhtkH

' 11: 44n3

122 #8un | y

lA aktnbhé

lakhs
Louwnndhbntina | |
L6s bbb RE HARRY .

LT hikntknnnnhi

LBs abitMiR

LOS nan dunink |

SUR AKSRERHRAREYR j :

21: nhbnrupnny |

22 HUBRENH |
2A hHRHRHERA

24 hhttnwitng g
2OS HautH

| 26HHHHBHKN

CT hNERRRKHY |
28 HANG RINRH

ZOE RRHUNRRGN

INH hRAEHRHHEEBRRER

Sle whkhihitnnann#

S2HARRHRRURRAAH oC
EEREEES ESTE 28

IG hHHRARRYUN

35S HNKHB RAH

36: hht hihi
BT hnhnkk

- ELERE 222 23!

39: hhnuhtnh
| MEE TTI YIEIITY

GlshhnhphARRERE
G2 hAHBBRARY

GA: hint ithn il | )
GOI hHNRAN |

45: hhnbranrinn :
GOL HRHNERR HAR

GT hBntnkninanting
G3 hhnhb HR ARRAN |

GO: HARKERR RARE

SOHN BERRARH |
SL: hhibbnnunks Co
S2: hHfkuni Nk
SAIHNRERuRUH

ShiMhhnnn

S55 hin #AH
SC6shAnrARBHN

ST: hhh hai Rnkin - |

SBLAUNNBREARKH

Fig. 27a
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i SY hhbHGHIAAY60: dh HERR

6l crua#

G2: hhbtinnntttan

_ 63 hlinbannashCLsibhiebitnd

| 65: hha tdlERR
’ bb: hhrbH hat nant

OT hHHAHRE RAR | .

— 6B: hhhabHbihun
OI HAFHERAR

THs hApbiUuB#H

i TL:hnhtink
T2: 44k #

\ IEREX ET

i T4: kh15: 484% |
T6 aH

: TT: hik

g 18: Huk :
19: hh

RO shhh

Bl:aann

L B2suhuhtn -.
B83shidguu |

' Bat hint#
BS: nit i :

BHTHhAnH |
Bl: hun

i 38: HR
L 89: #4 |

SHER E |
: Gls hid

92: Hany H

— SENET TET

GG:hhHt

GH: Khan
i SHIHHY

— GT:dunp |
IB HBAY

. GOs hipdhini

L 100 sah HH |
Il hhnas

LCP #44 %

1T3snnng

— 104: the
1C5cnhk | | |

1C 6: ##

“" LCT: ka |
108: Hn

LOQs putin

11s HREH

— 111: Huh |
112s hi# | |

: 11324
» 114: hhh

115: 44d#4

lTlOS pw tittinics .
117: hints

- 118: wit ke |
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L192 #Huus | | |
127 hr #

1212 HER

1222 unt

| L23:h#

124:4 #4

125: HHH |

126tH #ithi

127: inp ht Co.
128: a##

| 1298nH
13N24n

131:HARN

132 nbn

~ 1333Kkpkhnn
N 134: Htntili

| 1353 hb#und

136:HHKY

EYEE TET:

138:4h4 |

139: #4

140: kk

l4l:hn N
14214R

14304844

144 Hin ht

145: wiih |

146: upu
147: th

148: #444
149: un é |

150s asttsidn

191: atu |

LS2:unnké

153: hike

1S4c nian

155: 14u

156: #44

. 157: #4

158:#

159%4

160:

161: | |
TOTAL RESOURCE CYCLES USED = 897 ¥T UTILIZATION = 2 |
AVERAGE RESCURCFES USED PER TIME STEP = 6 MAXIMUM = 14
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: SORT - 4 Record File Variance I
}

ne. TOTAL PRROCESSUR RESOURCE USAGE
| 1: #4

Cy cid
ERE Co -

— hs#

Sc 44

: 6:#

: Te hhuk

- 32 HHH
QI RiH

i IN: HHEH |
Pl 11 2 #kd 4nd

- 12:444%
13s HURAHEHRES

LAs HEuRUBHERN

15 HHBERAHAHHH

— Los Hit linhintihh |
LT: 8HEHABHIIRAARY

1 LBsusuEHY

C CREEL LY
DVS HUBHEEHRA | |
21 HEHABRHEH

22 HHRHANKH

L 2IHHHUNNAGH
QL HHRBEBUN

| DSI RUHBHR AHN
26 HABHUSAHAY

- QT HHAUuRHBHUHARH
DRIHBARUAARKHRS

2OTEHBUYHRHBEAH

! ID HERRUREHRN
AER IT FEIT ERY |
I) SHHBREHRHHH

33: AHHH LGEY

3aHHbAGY

L ISIHURARH
36: HARRAH

ITI HARARARHHUHR

. ERREE ET EETIFTY

- IVs HBM BUHHH
GY SHARURBHN

: H1:HHndas
| LOTHHHBRURAYY

- : LASHUAHEHRBHE
GOS HHHGHRHRhREBHH
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MATRIX MULTIPLICATION PROGRAM E
L The matrix multiply program consists of eight graph procedures. The
{ program is written as a procedure to be called from another graph program.

L In the simulations which were run, a dummy procedure, whose only active node |
was the matrix multiply procedure, represented the other program.

“

| The basic algorithm used is to split off each row of the first matrix

L and to take the scalar product of this row with each column of the second m

1 matrix. Thus, if we are multiplying a m by 1 matrix by a 1 by n matrix,

L each row of the first matrix must enter into a scalar product with n co-

i lumns of the second. Furthermore, each column enters into a scalar product
m times. The procedure was written to execute with the maximum amount of

P parallelism at the expense of storage for row and column vectors. Hence,
the row vectors are each copied n times rather than being recycled after

L each multiplication. The same is done for column vectors, they are copied
| rather than looped around the graph.

— The row vectors are split off the first matrix by the first-rest node.

| The null test and not nodes provide a boolean which causes a copy of the
| second matrix to be made for each row except the last (since the rest of
1 the matrix is null for the last row). In order to provide m rather than
: ) m-1 copies of the second matrix, the edge linking node 4 to node 9 ig ini-

L tialized to true. The value true thus appears m times on this edge. Each

3 . copy of the second matrix is converted from row form to column form by the
procedure COLS. At the same time n copies of the corresponding row vector

1 are produced by the procedure N COPIES. Since the n rows and columns
appear on the input edges to the scalar product procedure at the same time, |

L the n x 1 multiplications of the scalar product can be done in parallel.

| For n x n matrices then, the number of operations per step is proportional
| .

-
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: 1

| :
to ne while the time to execute the procedure is proportional to n, or in

| general, to the number of rows in the first matrix.
Since both COLS and N COPIES bracket their outputs, the inputs to

L SCALAR PRODUCT are both matrices. These are unbracketed into their con-

i stituent vectors by SCALAR PRODUCT which then uses two subprocedures to
compute the scalar product of each pair of vectors. SPA unbrackets each

| vector and multiplies the elements of each pair together. The output is
bracketed to produce a vector whose elements are the products of the ele-

3 ments of the input vectors. The elements of this vector are summed by
] SPE l.e., SFA produces the vector (a> b, 8. b, 5 Cees %1,°,3) and

| 2

| SPB produces the scalar 21 25% x from this vector.
SCALAR PRODUCT invokes n copies of SPA simultaneously, once for each

| vector pair whose scalar product is to be computed. Each copy of SPA per-
forms its % multiplications in parallel. Thus, for an n by n matrix, n°

L multiplications are performed in parallel

| The procedure COLS turns a matrix stored in row form into a matrix of
columns. The input is an m by n row matrix. The subprocedure COLS 1 un-

| i brackets the matrix to form m row vectors. It then splits off the first
element of each row vector and puts it on the first output edge. The

L remainder of each vector is put on the second output edge. Bracketing orf
| the outputs produces a vector of length m on the first edge and a m by n-1

= matrix on the second edge. The matrix is recycled through COLS1 by COLS |

| until the last element is taken from each row vector. This results in no
output on the second edge of COLS1l, and thus terminates COLS with n column

L vectors of length mon its output edge. Bracketing of these vectors pro-
| duces an n by m matrix of columns.

133

L



MATRIX MULTIPLY CALLING PROCEDURE
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PROCEDURE SPB (SCALAR PRODUCT SUMMATION)
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| Fig. 3Ib
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EL |

| Since the first element can be split off each row vector in parallel,

3 the execution time for COLS depends only on the number of invocations of

! COLSL and thus proportional to m, the column length.

. The procedure N COPIES produces n copies of a vector, where n is a
| parameter to the procedure. The length of time taken for its execution

= is directly proportional to n.
| The procedure TWO COPIES MATRIX is necessary since use of the

| primitive node for copying a vector on a matrix would simply produce tvo

L copies of the pointer vector whose elements point to the row vector of the
| matrix and would not duplicate the rows themselves. Since the row vectors

are duplicated in parallel, the procedure takes a fixed time independent

| of the size of the matrix. (Provided that the time to execute the primi-
tive node for two copies vector is independent of vector size).

| Simulation Results
| The matrix multiply program was run on n by n matrices ranging in
|

} size from 2 by 2 to 6 by 6. There are n multiplications required, and
: the program does n° of them at a time. This can be seen very dramatically
i in the figures 36-38 which show multiply processor usage for 2x2, 3x3, and

Lxlh matrices. Multiplication executes in one cycle so there are exactly n

| cycles during which mltiplication occurs. :

The total processor usage for the matrices on which the program was

run 1s shown in figures 39-L3. In these runs the execution time for sll

processors is one cycle. As can be seen, the time required for the pro-

gram is proportional to n, while the amount of computation per cycle

increases approximately as ©. The results of these runs are shown in

Table 5. If t is the time required for the computation, then t=k, n+k
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PROCEDURE: N COPIES (OF A VECTOR)
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[ BN

3 From the times required we have k,=19,k =1k, so that the time required to |
multiply two n by n matrices is given by

A (1) t = 19n + 1k cycles |
The program was run on the same matrices with a four cycle multiplica-

. rl

— tion time and all other processors executing in onecycle. The multiplier

| and total processor use for the 3x3 matrix is shown in figures L&4 and L5.
-

The effect of four cycle multiplication on all the matrix sizes is summa-=

rized in Table 5. In this case, we can calculate the new ky and LY and

we get

- . t = 19n + 17 cycles

The value of Ky is unchanged because the n multiplication steps are

independent, i.e., the initiation of the second set of n° multiplications

1 does not depend on the termination of the first set.

In an earlier version of the matrix multiplication program, TWO COPIES

:s MATRIX used a loop control node rather than an identity node. That version

of the procedure is shown in the following graph. Since loop control is an

BN s~node, only one copy of the node can execute at a time, so that the exe-

a cution time for the procedure was proportional to the number of rows in the

| ) matrix being copied. And since this procedure is in a loop whose execution

- time is proportional to n, the execution time for the earlier version of

: . the program was proportional to ne. The execution times were:

- n £ At ACt

g 2 5)

5 [ 23

— 4 102 25 2

| > 129 27 2
-

6 158 29 2

Nn 11



| |

which give the equation

(2) t = n° + 19n + 14 | | |
Both identity and loop control executed in one cycle; the only

difference was that the first node could execute in parallel. Equations

(1) and (2) illustrate the kind of major differences in program behavior N

4 which are brought about by essentially trivial programming changes.
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RESCURCE USAGE OF TYPE MATRIX MULTIPLICATION |

5: 2 X 2 MATRICES MULTIPLIER USAGE
3:

43 | -

62 |

73 |

8: .- oo

4 | |

10: |

}

12:

13:

; 14:
15:

C16

17:

18:

19:2

203

21: |

22:

23: = | |

24:

25:

26: |

27: To
28:2 |

29:

30: | _
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32: oo
33:

34: |
35:2
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37: | |

38:

. 39:3

40: | |
41:
42:

43:

44:

452

46: oo
47:

48:

49:

50:

51: .

522 | ;

53:

54:

TOTAL RESCURCE CYCLES USED = 8 %2 UTILIZATION = 1 |
AVERAGE RESOURCES USED PEF TIME STEP = 0 MAXIMUM = 4
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RESUURCE USAGE CF TYPE MULTIPLY PROCESSOR USE

2: 3 X 3 MATRIX MULTIPLY
33

L 43
bo I

Os

73 3

L 32 |
9:

| 10: |

LL | 11:
12:

13:

Lo 15:
lo:

| | 17:
18:

- 193 |

21: |

- 22:3 -.
23:
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26:

| 21:
28:

| 29:

31:

| 323
- 33:

34:

35:

| 36:
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38 HHHARUHAN

. 39:

L 4(:
41:

| “42 |BE FETE ZEEE

— . 44:

403

- 47:
48:
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592 N

602 |

61:

62:

O33

64: oo

65:

606:

67: | EE

6bd3 | |
69:

103

71:

72:

13:

r TOTAL RESOURCE CYCLES USED = 217 2 UTILILATIUN = 5
AVLRACE RESUURCES USED PER TIME STEP = 0 MAXIMUM = 9
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RESUURCE USAGE UF TYPE MULTIPLY PROCESSOR USE

L b 4 X 4 MATRIX MULTIPLY

— 52

6:

LL 8B:
9:2
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11:

- 12:

13: |

1! 14:
g 15:

—- 16:
17:
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- 19: |
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27:
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i 29:30:
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: | 33:
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L ) 402
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- : 44:3 |
; 45 HRAARAB HH SH SEH 13
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51:

Le 52:
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| |

593 |
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67: | a. |
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83:
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89: |
90:
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TOTAL RESOUKCE CYCLES USED = 64 Z UTILIZATION = 3
AVEKAGE RFSUOURCES USED PER TIME STEP = 1 MAX IMUM = 16

148



| TOTAL PROCES SUR RESOURCE USAGE MATRIX MULTIPLICATION « 2 X 2 MATRICES N
8 ANY ALI PROCESSORS EXECUTE IN ONE CYCLE
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64:
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71: |
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‘ 14:
15:

16:

TOTAL RESQURCE CYCLES USED = 108 2 UTILIZATION = 5 |

: AVERAGE RESCURCES USEC PER TIME STEP = 1 MAXIMUM = 9
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— TGTAL PROCESSOR KESCURCE USAGE 3 X 3 MATRIX MULTIPLICATION
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CO HARBAURRBUGHURARRNAUHHH
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CLHE EE EE REZ SSF 3
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- TOTAL RESOUKCE CYCLES USED = 1234 2 UTILIZATICN = 5

AVERAGE RESCURCES USEC PER TIME STEP = 16 MAXIMUM = 31
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| . TABLE 5
MATRIX MULTIPLY PROGRAM RUN WITH N x N MATRICES

_ All processors execute in 1 cycle except multiply processor

1 N T mult Time Total Processor Cycles Average MAX
Do 1 52 cycles L66 9 (8.97) 15

L 3 1 71 cycles 1114 15 (15.7) 31
I 1 90 cycles 2196 2h (2k .4) 57

i 5 1 109 3826 34h (35.05) O91
6 1 128 6178 39 104

t=k n+k k=19 kg = Lh

L 2 it 55 cy 511 9 15
| | 5 74 ey 1234 16 51
| I 4 93 cy 2451 26 57

5 I 112 cy L29k 33 91

1 6k 131 cy 6895 52 133

i kK, = 19 ko = 17

{
:
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—

L

|
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Total Resource Usage Calculation oo

Since n multiplications are required to do a matrix multiplication,

the total number of processor resource cycles used is at least proportional Co

to wr. If we assume that the total processor cycles is given by

(1) Tot = k_n> + 2 41
= 5 k,n kin + ky

then we can use the results of simulations for four different values of n

to find Ks Ks Kis and X by solving the linear system of equations

nk +1 %k +n. k + kx = Tot |
1 3 1 2 11 0 1

n Jk + nk +nK. + k = Tot
” 23 3 2 2 21 0 2

nk, + nk. + nk + = Tot
5,5 52 31D 3

| ny Ke mk, ny ky ky Tot),

derived by using the values found for total processor resource cycles for :

the four values of n.

The values of the preceeding table for n=2,3,4,5 were used to |

calculate the kK - Ky for the case where multiply time = 4. The valves
of the constants were

k = 22, k, = Lo, k, = 60, ky = 19

| ~ These values also satisfy the fifth equation for the case n=0, i.e..

3 2

k3.6 + k,-6 + k,.6 + ky = 20.016 + 49.36 + 60.6 + 19 = 6895

Thus, the total processor cycles for multiplication of two n by n matrices

when multiply takes four cycles is given by

(2) Tot = 22n> + L9n° + 60n + 19
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| ee
_

i Using the values of total processor cycles observed when multiplication
| is one cycle gives
|

- kl 210, k = U6, k. = 57, k. = 16
3 > 72 > 71 > 70

L So that in this case

3 2
| (3) Tot = 19n~ + 46n~ + 60n + 16
|

-

-

|
—
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a. FREQUENCY OF EXECUTION OF PRIMITIVE NODES

i So far we have only discussed combined processor useage of all rode

types. The simulator output also provides separate statistics for each

a processor type. These statisticscan be used as a guide in setting up a
| | system with a finite number of processors to determine how many processors
|

= of each type to provide. Table 6 shows the number of processor cycles

| used by each primitive node type for the trapezoidal quadrature program.
Since each processor executed in one cycle on this run, the table also

_ represents the number of executions of each node type except the proce-

dure node. The number of cycles entered for the procedure processor is

~ the number of cycles the invoked graph procedure requires to complete, so

8 the figure given in this case is only valid for a system in which the pro-
cedure processor is reserved throughout the computation of the invoked

_ procedure. For this reason the largest number of cycles is that used [o3a
| the procedure processor. The second largest node type is the two copies

— node. |
The breakdown into individual node types shown in table 6 is not as

| useful as a less detailed breakdown for three reasons: 1) Since only three

L graph programs were investigated the statistics gathered from them are not

| representative at that level of detail; 2) Since the primitive nodes im-

= plemented in the simulator were chosen arbitrarily, they are not necessarily
representative of the primitive operations which might be implemented in an

—

| actual system;3) A breakdown into individual operations 1s useful onl: Tor

L a pure "functional unit" model where separate processors are used ror each

type of operation. In practice it is unlikely that different processors

— would be used for addition and subtraction, for example. It is more likely

166
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TABLE 6 |

PRIMITIVE NODE EXECUTIONS IN TRAPEZOIDAL QUADRATURE PROGRAM =

NODE NUMBER OF CYCLES PERCENTAGE OF TOTAL

1 270 | | 40.7% a
2 0 0.0% |

3 12 1.8% -

: A 32 4.8%
5 0 0.0% B

| 6 0 0.0%

: 7 33 | 5.0% |
: 8 | 15k 23.2% |

9 Ls 6.8% |

10 7 9 1.4% |

11 35 5.3%

12 18 2.7% -
| 13 9 1.4%

1h 25 3.8%

15 21 3.2%

16 0 0.0% y

17 0 0.0%

18 0 * 0.0%

19 0 0.0% |

. 20 0 0.0%

21 0 0.0% N

22 0 0.0%

23 0 0.0%

ol 0 | 0.0%

25 0 0.0%
26 0 0.0%

21 0 | 0.0%

28 0 0.0% -

TOTAL 663 99.4%
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] that certain primitive operations would be grouped together to be executed
by an arithmetic unit, a data routing unit, etc.

= For these reasons 1 have grouped the primitive nodes into six classes,

1 the procedure node, arithmetic and “logical nodes, compare nodes, data rou-
ting nodes, vector manipulation nodes, and vector testing nodes. Table 7

a gives the percentage of node executions falling into each class for the

; | trapezoidal quadrature program, a 2 by 2 matrix multiplication, a 6 by ©

= matrix multiplicationand the sort program. It also gives the mean ard |

~ | | standard deviation in each class for the four programs. The results are
“shown graphically in fig. 46. The largest number of processor cycles is

- used by the procedure node for the reason given above. The procedure

] ncde was put into its own class since the execution logic for a procedure

- call is sufficiently more complicated than that for the other nodes to
a | justify dedicating a special processor to procedures. Procedure processors
| might also be used as control processors to direct the execution of nodes

- in the invoked graph procedure.

| The second largest number of executions fall into the data routing

= class, which accounts for more than 1/4 of the executions on the average.

i The arithmetic and logical nodes and the two classes of vector operations

| taken together cach account for about 11% of the executions, while the
_ comparison nodes are the least used class.

—

| |
(-
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TABLE 7

PERCENTAGE OF EXECUTIONS IN SIX CLASSES OF PRIMITIVE NODES N

Co TRAPEZOIDAL. 2 BY 2 6 BY 6 |
QUADRATURE MATRIX MATRIX SORT MEAN o]

Procedure (1) 40.7% 54.8 43.3 49.0 46.95 5.7

4 Arithmetic, 16.8% 9.4 15.4 5.1 11.675 L.T
Logical |

(3,4,5,6,7,13,14,24,25)

Compare (2,15,23) 3.2% 1.3 0.7 2.8 2.0 1.0

Route (8,9,10,11,12,28) 39.4% 20.6 23.3 29,7 28.25 7.2

Vector ~ 0.0% 9.5 10.3 8.9 7.175 1.9

Manipulation

(16,17,18,21,22,26,27)

Vector Testing (19,20) 0.0% h.3 7.2 k.5 4.0 2.6 N
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fl
3 CONCLUSIONS

| The simulator and the graph programs described nere snow first of
-

all that Adams' graphs are a feasible representation in which parallel

- algorithms can actually be programmed and that a CPU could be constructed

| which uses such a representation. Writing down agraph program is roughly

= equivalent in difficulty to machine language programming for a conventional

i computer, however, and the problem of designing asuitable higher level

= language which can be translated into an efficient computation graph repre-
8 sentation is still open.

The simulations also show that the graph representation is able to

L take advantage of opportunities for parallelism at several levels witrout

3 conscious effort on the part of the programmer. The square root program
| and the matrix multiply are instructive extremes in this regard. Newton's

8 method for finding the square root is inherently sequential, yet even for
this algorithm a small amount of overlapped execution is possible, and the

|

- computation graph representation produces it. Matrix multiplication, on

| the other hand, is capable of highly parallel execution, and straightforward

= programming of this algorithm as a computation graph produces parallelism on

3 ) the order of n°, reducing computation time to the order of n. Besides the
three programs described here, a number of other programs were written for

L the simulator including recursive and iterative factorial programs, SIN
| | and COS routines and a number of polynomial evaluations. All resulted in
- some degree of parallel execution, although no special efforts were made

to produce parallel execution.

The actual speed which could be obtained on an implementation of

C this model could depend very heavily on the amount of overhead or

1
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bookkeeping required for control of the system. Three sources of overhead oo

can be distinguished: 1) The computations required to keep track of the N

status of nodes in the executing graph, to determine whether they are ready »

to execute and to initiate and terminate their execution; 2) The overread

resulting from the organization of memory into QUEUES; 3) The overhead oo

caused by the execution of algorithms to allocate shared resources such as

processors and memory. No attempt is made to refect these costs in the N

: output statistics of the simulator because they are very dependent on

specific hardware implementations. For example, the implementation of

queues used in the simulator requires two memory references to fetch a | x
data item, one to get the pointer to the head of tha queue and one to get

the data itself. However, if the head and tail pointers were kept in |

registers or in fast storage, the time could be reduced to one memor; B

: cycle.

The major portion of the execution time of the simulator itself is Ce

spent checking each node to see whether it is ready to execute. If the

model were implemented with a single control processor, it would have to N

be much faster than the primitive node processors to provide any degree |

of parallelism. However, an implementation which used the procedure

processor to control execution of the nodes in the graph procedure wiich

it initiated could distribute the overhead considerably to allow a greater |

degree of parallelism. The overhead can also be reduced by an efficient |

representation of the node edge connectivity of the graph. The connection |

matrix representation used here is inefficient in this regard since it

requires the control logic to scan the matrix to find the edges directed _

into a node before it can check whether those edges have data on them. An |

edge list representation of the graph would be more efficient in this regard. |
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i Two main questions were studied in the three programs described in |
this report: first the dependence on problem size of computation time and

. amount of parallelism in execution, and second, the dependence of these

g measures on relative processor speeds.
The Trapezoidal Quadrature program, the Sort program, and the Matrix

§ Multiplication program differ widely in the amount of parallelism which
they allow. The time required to execute the trapezoidal quadrature pro-

L gram 1s proportional to the number of points used. However, the dependence

8 lies in the generation of the n points for which f(x) is calculated, not
in the calculation of f(x), so that increasing the complexity of the func-

3 tion being integrated does not increase the coefficient of n in the time
requirel for the quadrature. Rather, it increases the number of values

_ f(x) which are being calculated concurrently. The square root procedure
| | used in the quadrature program is inherently sequential, and its computation

- time depends on the value of x. The average number 2>f nodes in execution

1 during the square root calculation is 1.7. However, since the quadrature
| program calculated several values of the square root concurrently, it exe-

_ cuted from 8 to 14 nodes on the average.

| The sort program executes in a time proportional to n, the number of

- items in the file being sorted. ©Since the number of operations required is

1 proportional to n log, n, the average number of nodes in execution in this
| : program is on the order of log mn. The matrix multiplication program, on
N the other hand, is highly parallel. Although nw operations are required

| to multiply two n by n matrices, the program executes in a time proportional

- to n. Of course, the number of processors required to achieve this time is

1 on the order of =, but the algorithm itself is inherently parallel, whereas

5 | |

| | 173 |
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| |
|

the sort program increases sequentially faster than it increases its Co

parallelism in the ratio n/log,n, and the trapezoidal quadrature is in- .
herently sequential, though it allows overlap in the calculation of f(x).

One of the major questions which can be posed in an infinite resource

environment is the degree to which variations in relative processor speeds

affect the computation. In a sequential computation, the time to execute :
a program is just the sum of the times to perform each type of operation

. weighted by the number of times that operation 1% executed by the program.
In a parallel program we might expect a secondary effect due to delays in oo

the initiation of a node which is waiting for output from one of its |

predecessors. This effect did not show up in mr simulations, however.

The effects of different sets of varied processor speeds and of uniform |

processor speeds equal to the mean of the varied speeds over tne nodes in

the graph program are virtually identical. Moreover, this held even though or

| the node execution times are not weighted by the number of times the node

is executed in calculating the mean. | | | |

This conclusion should be takenas very tentative, since the number |

of programs investigated was small. In order to draw even the modest

conclusions that relative QTOTEREOT speeds are unimportant if the mean

: execution time is constant for many (not most) programs, one should

investigate a large number of programs written by different programmers |

under many different timings. Because of the strong dependence of |

program behavior on small variations of coding, even this investigation

would not be completely generalizable. Several people have exhibited

programs whose execution time is strongly dependent on small changes

in processor speed. ®) oo a | |

If the results found here hold more generally, however, they suggest |

a method for determining processor speeds in a hardware implementation.

17h



i First, a large sample of actual programs should be collected and the
distribution of primitive node types in this sample should be determined.

| L Then, in balancing processor speed against the per unit cost of the logic

8 required, one should attempt to minimize the mean execution time over that
distribution.
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(1) E.G. Paul Richards "Parallel Programming" Report No. TO-Ro0-27, Teciini-
L cal Operations Inc., Burlington, Mass. 1960
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