
GRAPH PROGRAM SIMULATION

BY

a EDWARD NELSON

STAN-CS-70-185

OCTOBER 1970 |

| COMPUTER SCIENCE DEPARTMENT |
School of Humanities and Sciences |

STANFORD UNIVERSITY

pcEY |

4 a ooCT
Id

r

-

"

“a

i

-

-

:

-

i GRAPH PROGRAM SIMULATION

L Edward Nelson

L Computer Science Department
L | Stanford University

Stanford, California

i This research was supported by the U. S.
Atomic Energy Commission under Contract

i number AT(04-3) 326, PA 23 |

§ P .Be
[vcs
EN

'

i .
| .

«wind ~pe

L J

. *

Pe

fan OA

- .

.

—a od

-”

- a

PE :

ABSTRACT

| This reportsthe simulation.of a parallel processing system based
on a directed graph representation of parallel computations. The

L graph representation is based on the model developed by Duane Adams in
which programs are written as directed graphs whose nodes represent
operations and whose edges represent data flow. The first part of the

L report describes a simulator which interprets these graph programs.The second part describes the use of the simulator in a hypothetical
environment which has anunlimited number of processors and an unlimited
amount of memory. Three programs, a trapezoidal quadrature, a sort and

1 a matrix multiplication, were used to study the effect of varying the
relative speed of primitive operations on computation time with problem

| size. The system was able to achieve a high degree of parallelism. For

L example, the simulator multiplied two n by n matrices in a simulatedtime proportional to n. | |

i

. } 2
So A]

|

-—

-

-

-

. .

i” - :

a A AEAESEERDRT OT

oT TABLE OF CONTENTS

| Introduction oo 1

— The Graph Program Simulator | 1

Simulator Program Structure 1

Simulator Input and Output 22{N_—

Simulator Storage Parameters 24 |I :
| Frimitive Nodes 27
i .

Use of the Simulator 31
L Trapezoidal Quadrature Program 32

. Square Root Procedure L3

| | Varigtion of Relative Processor Speeds 57
Trapezoid Program Runs 58

| Sort Program 87
Variation of Execution Time with File Size 92

| | Comparison of Relative Processor Speeds 115
Summary 116

. Matrix Multiplication Program 138
Simulation Results 14)

| Total Resource Usage Calculation 164h
Frequency of Execution of Primitive Nodes 166

Conclusions 171

. aid

i

hae I

-

-

-

.

CL

| - FIGURES

a £1gure | page
, 1. Processors | ly |

L 2. Static Program Storage - 5

L 2. Dynamic Program Storage é
L. Structured Data Storage 8

| 5. Simulator Flowchart - Basic Simulator Loop 12
| 6. Simulator Flowchart - Initialization 13

L 7. Simulator Flowchart - CYCLE 1h |

1 | 8. Simulator Flowchart - READY : 15
9. Simulator Flowchart - EXECUTE 16 |

L 10. Trapezoidal Rule Quadrature Program 36
| 11. Processor Resource Usage - 37

_ 12. Absolute Value Graph Procedure IT)

| 13. Graph Procedure Sin x 41
14, Square Root by Newton's Method Ie) |

L | 15. Total Processor Resource Usage - Lh
16. Total Processor Resource Usage - Lé

. 17. Total Processor Resource Usage - 49
18. Trapezoidal Quadrature with Uniform Processor Speeds 59

L 19. Trapezoidal Quadrature with Varied Processor Speeds 61

L | 20. Trapezoidal Quadrature with Slow Divide cL
2la-2le Total Frocessor Use - /2, /3, /4, /5, /10 67

L 22. SORT 88 oo
25. SORT ~ Procedure MERGE 89 |

L 24. SORT - Procedure ROUTE SELECT 90 |

L 25. Adam's Version of ROUTE SELECT 91

_

; .

EJ

-

1]

L |
| figure page

L 26a-26e SORT Processor Usage as a Function of File Size 95
27a-2(e SORT Comparison of Relative Processor Speeds 118

L 28. MATRIX MULTIPLY Graph Program 132

i 29. Matrix Multiply Calling Procedure 134
30. SCALAR PRODUCT Procedure 13)

t 31s, Procedure SPA 135
- 31b Procedure SPB 136

L 32,32a Procedures COLS, COLS1l 138

| © 33. Procedure TWO COPIES of a MATRIX 139
34. Procé&dureN COPIES 140

| 35. Sequential Version of TWO COPIES of s MATRIX | 143
| 36. Multiplier Use for 2 x 2 Matrix Multiplication 14k

i 37. Multiplier Use for 3 x 3 Matrix Multiplication 146
38. Multiplier Use for 4 x 4 Matrix Multiplication 1h7

L 59. Total Processor use for 2 x 2 Matrix Multiplication 149
L LO. Total Processor use for 3 x 3 Matrix Multiplication 150

Ll. Total Processor use for 4 x 4 Matrix Multiplication 152

|) L2., Total Processor use for 5 x 5 Matrix Multiplication 15k
L3, Total Processor use for 6 x 6 Matrix Multiplication 156

L Li, MULTIPLIER USE - 3 x 3 Matrix Multiply with 4 Cycle Multiply 159
L | 45. Total Processor Use - 3 x 3 Matrix Multiply with 4 Cycle 161Multiply

i L6. Relative use of Primitive Nodes 170

i

L |

L

r

. i 1s

be

“a

[3

rye

0

-

.

-

[| |
[

| : TABLES

L page
1. Primitive nodes implemented for the simulator 28

| 2. Representative execution times on some extant computers 3h
| 4. Observed and calculated execution times for SORT ol

L L. Effect of Processor speed variations on SORT 117

| 5. Execution times for matrix multiply program 163
6. Primitive node executions in trapezoidal quadrature 167

| Tf. Percentage of executions in six classes of primitive nodes 169 |

[

lL

|

| |

1 |

L

L oo

|

i .

|

b

: ‘

1 ;

ipa ;

- asd

i I;

-

.

-

.

. } ESEHETETETTTETETEE—————_—

1 |
¥ INTRODUCTION
L

Many approaches have been taken to the problem of parallel computation.

L One set of approaches, characterized by ILLIAC IV, allows only one instruc-

{ tion stream, but allows each instruction to be carried out on many data

- items simultaneously. This approach does not lead to serious problems of
tT sequencing, but it is suitable principally for problems using large arrays.

To take advantage of the fact that most problems require many operations |

L which are independent and can, therefore,be carried out simultaneously
requires one to use several independent instruction streams. This leads

= to sequencing problems, however, since concurrently executing sections of

L code may refer to the same piece of data in an indeterminate order. One
approach to these problems has been to require the programmer to specify

_ where parallel execution may occur and to leave to him the problemof ma-
] king sure that no conflict may occur between concurrently executing sections

- of code. This approach is typified by the FORK and JOIN statements pro-

3 posed for ALGOL. A similar approachis to attempt to isolate the data
items which are referred to by more than one piece of concurrently exe-

L cuting code and then to provide semi-automatic protection for these. This
| is the approach taken by Dijkstra's semaphore system.

h These approaches suffer from the fact that the burden of providing

i parallel execution is on the programmer. The sequencing problem arising in
multiple instruction stream parallelismwill thus become a source of pro-

8 gramming bugs since the programmer will not always use the interlocks

| correctly. Furthermore, because of the additional programming required to
use interlocks etc., the programmer will not take full advantage of the |

1 .
i

-

opportunities for parallelism inherent in an algorithm, particularly at a

very local (i.e., intrastatement) level.

. An approach less prone to error is one which provides for multiple

instruction streams where the sequencing, and thus the degree of parallel-

ism, is specified implicitly rather than explicitly. This requires that

the programbe written in a different representation than that provided by

* conventional programming languages, since the sequencing implicit in these

| does not distinguish between those cases in which one operation must logi-

cally follow another and those in which there is no such logical necessity.

In other words, it is desirable to have a representation in which operations

are implicitly simultaneous unless they are logically dependent on one another.

Directed graphs provide one such representation. In this representation,

~ the nodes of the graph represent operations performed on data stored on

edges directed into the node. A data item has no permanent location in

this representation, but rather "travels" along the edges of the graph to
the operations which are performed on it. An example of this approach is

the computation graph model of Duane Adams. Adams' model allows one to

program sophisticated algorithms, such as matrix inversion, in a way which |
allows both the single instruction stream type of parallelism and multiple

instruction stream parallelism down to a very low level.

A program in Adams' model consists of a set of directed graphs called

graph procedures. Graph procedures consist of two types of nodes, primitive :

nodes and procedure nodes. Primitive nodes represent the basic operations

performed by the system (addition, multiplication, etc.). Procedure nodes

cause invocation of another graph procedure, i.e., they specify that |

the computation to be performed by that node is the one represented by the

ii | |

= |

i named graph procedure. Edges specify the sequencing of the operations |
performed by the nodes; if there 1s an edge directed from node i to node j, |

8 then the result of the operation specified by node i is an input to the
operation specified by node j. The edges act as first-in first-out queues,

L i.e, the data items are operated on by node j in the order in which they |
L were output by node i. There are two types of primitive nodes, p-nodes

| and s-nodes. P-nodes can execute when there is at least one data item on

L each edge directed into the node. If there is more than one data item on
each input edge, the operation may be performed simultaneously on each set

L of input items. This allows the single instruction stream type of parallel- |
ism to be performed within the model. In orderto insure that multiple in-

= stances of an operation terminate in the same order in which they initiated,
1 the model specifies that there be an initiation queue associated with each
, node. An identifier is placed on the initiation queue for each instance of |
L the operation which is initiated, and that instance does not terminate until
| its identifier is at the head of the initiation queue.

- The other type of primitive node is the s-node. Associated with each

i edge directed into an s-node 1s a status bit whih specifies that the edge
is either locked or unlocked. An s-node can initiate when there is at

- least one data item on each unlocked input edge, regardless of whether or

L not there is data on any of the locked edges. The values of the edge sta-
tus bits are reset at the end of the operation specified by the node. The |

L new values are a function of the old status values and of the data input to
the node from the unlocked edges. ©Since the conditions for the initiation

- of an s-node depend on the results of the last operation performed by that

L node, only one instance of the operation specified by an s-node can be
) |

-

iii oo

L

carried out at a time. | .

Procedure nodes specify that the named directed graph is to be exe-

cuted using the values on the input edges to the procedure node. They are

initiated as p-nodes, so that more than one instance of a given graph pro-

cedure may be executed concurrently. Also, the graph procedure named by sa

procedure node may be the one in which the node is contained so that re-

cursive execution of graph procedures is possible.

° This report describes a simulator which interprets Adams's graph

programs, carrying out the computations specified by a set of graph pro-

cedures and keeping statistics on the timing and resource usage, and it

describes experiments performed with the simulator. Simulations were run

on a number of small programs, including a matrix multiply program, a |

quadrature program, and a sort program. The programs were run using varying N
. amounts of data, various speeds for the primitive operations, also with and

without allowing multiple instances of a p-node to execute simultaneously.

All of the simulations described here were run using the assumption that the

machine specified by the simulator had an unlimited number of processors to
carry out the operations specified by the primitive nodes and an unlimited

amount of memory. Of course, this is an unrealistic assumption. These

simulations were run in an attempt to discover the "inherent' resource

usage characteristic of the programs and to discover the effect of vary-

ing the relative speed of primitive operations independently of effects due |

to different algorithms for allocating Processors in an environment with a

finite number of processors. These effects can then be controlled during

simulations run in the more realistic enviromment of a finite machine. Co

iv

] Experiments conducted to discover efficient algorithms for allocating
- & LJ Ld -

| processors in a finite environment will be described in a subsequent re- |

a. port.

—

—

5 |

— -

-

-

-

- .

fo

!

)
~ .

—

v

-

by

ee

wre i

aa ak P
I

- te

i

a

.

Pl

:

’ -

”

.

Fl

-

-

‘

LJ

i THE GRAPH PROGRAM SIMULATOR

_ The simulator described here may be thought of as a parallel computer,
although it was not my intention to simulate any particular machine archi-

i tecture. As such, it has the following components:
oo Storage for graph procedures

_ Storage for data (edges). initiation queues, and the status of

i nodes and edges in an executing graph procedure
A pool of processors with input and output registers

. Logic for performing the operations specified by the primitive
| nodes |

— Control logic for determining which nodes are ready to execute, :

L assigning processors to those nodes, recognizing that a
processor is done, and putting the results on the output

_ | edges in the order dictated by the initiation queue. |
The first type of storage is static during the execution of a graph pro-

L gram, while the second is dynamic. Besides the above components, the simu-

0 lator also has the code necessary to gather statistics on the simulation, |
provide a trace, etc.

3 - Two distinct machine models are possible for the simulator, one in
which each processor is a specialized functional unit, able to execute only

L a single type of primitive node and one in which the processors are all

| general processors so that each can execute all of the primitive nodes. I

g will call the first the functional unit model and the second the multi-
L processor model. In terms of an actual implementation, the functional

unit model has the advantage that it is not necessary to duplicate the

L decoding and control circuitry required to decode operations in each

1

L

[oT So]

processor. It has the disadvantage of limiting the flexibility of proces-

sor allocation algorithms. In addition, if the mix of functional units

available on the machine does not closely match that required by a given |

program, many of the functional units -will be idle much of the time. The |

savings gained by not duplicating control circuitry may thus be lost to | |
increased inefficiency. The distinction between the two models is not too

B important in the unlimited resource enviromment, since it makes no sense |

| to ask what the optimum ratio of adders to multipliers is, for example, if

one has an infinite supply of both. In the finite enviromment, however,

the simulator can be used to determine the cost in functional unit idle-

ness of the funetional unit model, and these costs could then be weighed

agalnst the costs of duplicating control circuitry.

Each processor in the simulator contains three input registers and

| three output registers by means of which data is gated from and to the

edges. A gating bit is associated with each of the registers. For the

input registers, these indicate whether the corresponding edge was locked

or unlocked and, thus, whether there is data in the register. For the |
output edges, the gate bits indicate whether or not the processor produced |

. output in that register so that the control circuitry will know whether to

gate the contents of the register onto the corresponding output edge. This

allows a processor to produce output conditionally. Each processor also

has a completion bit and a timer associated with it. The timer is ga

simulator expedient which allows the processor to execute for a particular

number of cycles. A block diagram of a processor is shown in Figure le.

Figure lb shows how the processors would be arranged in the functional

unit model. The availability queues indicate whether a processor is free

or assigned to some node. -If it is assigned, they indicate to which node.

2

| oo]

i
BN Program storage can be divided into two parts: that which is static

L during execution of the program and that which is dynamic. The static
{ storage contains the graph procedure definition and the dynamic storage

L contains the edges, initiation queues, and node and edge status flags.
| For each graph procedure, three arrays are needed. Two are one dimen-

sional arrays with one entry for each node in the procedure. One gives

{ the type of each node (i.e. the operation code), and the other identifies
the graph procedure named by the node if it is a procedure node.

L The graph itself 1s represented by a connection matrix whose i, 5th
{ entry is non-zero only if there is an edge directed from node i to node

L in the graph program. If the entry in the connection matrix is non-zero
L it is an integer which identifies the edge connecting the two nodes. The |

| static storage is shown in Figure 3. |

L The dynamic storage consists of node and edge status flags, pointers

| to edges and initiation queues, the edges and initiation queues, and
storage for structured operands. These are shown in Figures 3, 4, and 5.

L Only the status bits and edge initiation queue pointers (Figure 3) are
| copied when a new procedure is initiated.

L The status bits for a node indicate whether it is idle, ready to

L | initiate, or executing. P-nodes may be both executing and ready to ini-
tiate at the beginning of .the same simulator cycle, since more than one

L copy of the node may execute on that cycle. The status bit associated
with an edge indicates whether it is locked or unlocked. If the edge

L is directed into a p~-node, its status is always unlocked. |

[The basic data structure of the graph model is the first-in first-
out queue. Queues are used as a basic ordering device to maintain the

i }
| 5

L

r TT

GATE BIT - Indicates whether

the corresponding edge is
locked or unlocked

—_—————— — — = = = — == = = = - .
OLE] OEE] OLEREGISTER REGISTER 2] REGISTER 3 |

| |

1] OUTPUT [] OUTPUT |] OUTPUT | |REGISTER REGISTER 2 REGISTER 3 |

| "[] TIMER A

| PROCESSOR REGISTERS AND FLAGS RESULT BIT - (RRF)
| : : This bit is true if
COMPLETION BIT there is a non-null

Fig. la result in this register

TYPE 1 _ TYPE 1 | TYPE 1
PROCESSOR PROCESSOR A PROCESSOR

NUMBER 1 NUMBER 2 NUMBER K

~ [PROCESSOR AVAILABILITY QUEUE i

FOR TYPE 1 PROCESSORS

TYPE 2 TYPE 2 TYPE 2

PROCESSOR PROCESSOR] + * = + PROCESSOR

NUMBER 1 NUMBER 2 NUMBER K

PROCESSOR AVAILABILITY

QUEUE - TYPE 2
- ' i

| |

Lo

i I
) I

YUMEER 1. NUMBER 2| NUMBER K

[PROCESSOR AVAILABILITY QUEUE
PROCESSOR TYPE N

| Fig. 1b

| Fig..1 PROCESSORS

| y

L | | PROCEDURE
| NODE

| ID

L | TEES (USED ONLY IF
MATE (op CopEs) THE NODE IS

| GRAPH PROCEDURE 1 PROCEDURE |
L A PROCEDURE

1
NODE)

L BN NODE |
CONNECTION

| TYPES

| MATRIX || PROCEDURE |
GRAPH PROCEDURE n

i n

| STATIC PROGRAM STORAGE |

| One block of this storage is allocated for each: procedure definition in the Granh Program.

i | Fig. 2

i p

|

MAIN | FIRST |
PROCEDURE | PROCEDURE | NODE STATUS BITS

| |

|

FIRST

PROCEDURE

PROCEDURE FROM

wa | INITIATION QUEUES
| PROCEDURE |

: ABOVE CONTAIN ONE ENTRY FOR EACH NODE IN A GRAPH PROCEDURE

|

won oo EDGE STATUS BIT
| PROCEDURE | (Locked- Unlocked)

|

FIRST | |

| PROCEDURE |
MAIN CALLED
IC = POINTERS TO EDGES

) | MAIN
| PROCEDURE |

|

ABOVE CONTAIN ONE ENTRY FOR EACH EDGE IN GRAPH PROCEDURE |

DYNAMIC PROGRAM STORAGE

One block of this storage is allocated for

each copy of a procedure which is executing.

Fig. 3

6

L

: EDGE RESOURCES
|

]

INITIATION QUEUES

L

]

g Fig. 3b
|

| 3?
| 0 . |

Q

> 5 |

nw a

0 35gS0
rei

7 ERY
Ak

i: 5°
® a ©

gb"
a 8d
or Q

: oS©

iF 5 = n od
: is + CE

| Po © | Pqis) is Mad
| HOBMN

| ERIE
g

| RE

fw ™M

~ § + ~~ Oil ol
§ 1 8 SE

~ | <0 =

B [x]
to & |
ol <q
0 oe

wn

9 3
v | < ©

x : -
EE 3 a £

: =
| o

3 £| 3 2 |
a — «

= 0 is
ro |

il fl 2
s | or ©

oS 8) is
of |

<f < | | ©

+

0) 0) © H+
ri | —~ je oo

nn QO

| kd 4 aS | | Bl 8
8 B11 & | © o
— 9 | | 3 a 8 O

| | +
| | | £&

—~ QO

oO
: mA

| 3

i | | |
sequence of operations during a computation. Their use in the edges

u provides implicitly the array structures which are specified explicitly

| by indexing in conventional programs. The programming of the simulator is
thus facilitated by a programing language which allows queues as a data

L structure. The resulting simulator is also a better description of the
graph model since the ordering provided by queues is implicit as in the

L model. Queues can be programmed in PL/I by using structures and compile

i time macros.
| Edge and initiation queues are represented by PL/I structures

| | having four parameters which determine the access to the queue and an array
which holds the values in the queue. The four parameters are: (1) the

L index of the array element which holds the head of the queue; (2) the

I : index of the element holding the tail; (3) the number of elements currently
‘stored in the queue; and (4) the maximum number of elements which the

L Igueue can hold. A PL/I compile time procedure is used to define QUEUE
as a data type in the simulator, i.e., to produce the proper structure

i declaration when a simulator variable is declared to be of type QUEUE. |
Special access procedures are used for entering and deleting values | :

. which treat the array associated with the queue as a circular buffer.
- These procedures, together with the compile time macros have the effect

of making QUEUE a basic data type within the simulator.

| Edges are then represented as an array of queues as are initiation
queues. Both arrays have an associated allocation list whose entries

L indicate whether the corresponding queue is allocated and if so, to which
i node or edge. When the simulator wishes to allocate an edge, it searches

the allocation list until it finds an entry which is zero. The edge

i .

1 9

number is then put in this entry, and the edge pointer is set to the |

corresponding queue. The allocation list entry is reset to zero when

the edge is released. When no edge resources have been allocated to an

edge, the pointer is zero. Initiation queues are allocated for all nodes |

in a graph procedure when the procedure is called.

Representation of structured data in the simulator differs from that

3 in the Adams model in two respects. First, structured elements are not

stored directly on the edges in the simulator. Instead, they are stored

| in a separate array and pointers to the location of the structure within

the array are kept on the edges in their place. At most, one instance of

a given pointer may be on the edges at one time so that the pointer

"represents" the bracketed data structure on the edge. Second, rather

than use a special bracket symbolat the beginning and end of the structure,

the starting location (denoted by the pointer value) and a count of the

number of items is used. Items may themselves be pointers, so the |

structure is recursive just as Adams bracket notation is. The format

of structuresis: (length) (item)* where (length) is an integer and

the number of (item)s must be equal to the value of (length). It is

easy to show that the pointer-count representation allows exactly the

same structures as does the bracket notation (*), However, having the

. length explicitly available simplifies storage allocation for the simulator

and also avoids the problems of setting aside a special value for the

bracket character and of examining each element in the structure to find

. the closing bracket. Pointers are not explicitly distinguished from data

in the simulator. Rather it is assumed that each type of primitive node :

knows what type of data to expect and that graph programs will use the

correct primitive nodes. "This requires different primitive node types

| 10

:

] for the same operation on scalar and structured data, but it has the
:

. advantage that the edge access procedures do not have to examine each

1 item so that the same queue access procedures can be used for all queues
. in the simulator. In a hardware implementation this advantage would be

_ outweighed by the flexibility gained by using a single bit to distinguish
between pointers and data.

|

= Simulations take place in three stages. First, machine character-

i istics (number and speeds of processors, amount of storage, etc.) are
read in followed by the graph program definition and the simulator is

L initialized. Second, successive machine cycles are simulated until a
cycle occurs during which no node executes. This indicates the program

— has terminated. Finally, the memory and processor use is printed in bar

L graph form together with some statistics on the simulation. Figures 6-10
| show the simulator flowchart.

8 The simulation of a single machine cycle is done in three stages. |
In the first stage all those nodes which are ready to initiate are marked.

x This 1 done by examining all the non-zero entries in the row of the con-
L nection matrix which corresponds to the node in question, i.e., all the

input edges for that node. If any edge is both unlocked and empty then

_ the node is not ready to initiate. Otherwise, it is ready to initiate.

i A p-node may be marked ready to initiate even though it is already execu-

= ting if data has arrived which permits a second copy of the node to ini-
| | tiate. |
—

Allocation of processors among those nodes which are ready to initiate

. is done by a self-contained procedure so that the allocation algorithm
can be readily changed. This procedure puts the processor identifier in

— the nodes initiation queue and changes the node status from ready to exe- |

u cuting. It is also responsible for determining whether multiple copies

ADAMS GRAPH SIMULATOR - FLOWCHART

READ STORAGE PARAMETERS

& ALLOC. MAJOR ARRAYS

INITIALIZATION

INPUT PARAMETERS, PROGRAM |

| | [ALLOCATE STORAGE
FOR MAIN PROCEDURE

COUNT NUMBER OF EDGE

~ RESOURCES IN USE

| CYCLE:

SWEEP THROUGH NODES IN

MAIN PROCEDURE, EXECUTE

IF THEY ARE READY

| | INCREMENT

TIMER oo

“DID \

SOME NODE

EXECUTE

| ?

NO

PRINT OUT RESOURCE USE | |
AND OTHER STATISTICS

Fig. 5 BASIC SIMULATOR LOOP

12

i SIMULATOR FLOWCHART

1 INITIATE:
INITIALIZE

: MISCELLANEOUS |
L CONTROL VARIABLES

INITIALIZATION:

[READ IN MACHINE READ LIST OF
CHARACTERISTICS NODE TYPES,

| PROCEDURE IDs,L AND CONNECTION
| MATRIX

INITIALIZE

L PROCESSOR :
QUEUES

i READ EDGE NUMBER
READ GRAPH

L | PROCEDURE ID IS |
EDGE NUMRER)

L ?
NO

L READ STATUS
YES SETTING & INITIAL

DATA (IF ANY) FOR

| : & THIS EDGE

L
Execution time and number of processors for each processor type.

L Fig. 6

13

rr oo ST

SIMULATOR FLOWCHART oo

DOI =1

TO NUMBER OF NODES | oo

This procedure simulates the

oT execution of a graph procedure

READY for one time cycle. It is called

(SETS NODE-STATUS recursively when a procedure node
TO RDY IF NODE is executed.
CAN EXECUTE)

ALLOCATE

PROCESSORS AMONG |
READY NODES

DOI = t

TO NUMBER OF NODES

IN PROCEDURE

IS

NODE STATUS;
= READY OR EXECUTE

EXECUTING

? |

IS

THIS A

| P-NODE :
?

YES

@ omNODE STATUS

(many = READY
?

NO

| Fig. 7

1h

SIMULATOR FLOWCHART

L READY (node):
DO FOR ALL

INPUT EDGES je

i. TO NODE

This procedure determines whether
— a node can be initiated.

EDGE UNLOCKED

?

.
| YES

IS YES
MARK NODE

EDGE EMPTY NOT READY
L ?

L NGC “=

: ; MARK NODE READY
-

.

| | EXIT | |

‘—

: | . Fig. 8

— |

|

15

SIMULATOR FLOWCHART

EXECUTE:

- ENTER THIS CYCLE ALLOCATE OUTPUT |
IN PROCESSOR EDGES IF THEY

RESOURCE USE TABLE ARE NOT ALLOCATED

| INCREMENT THIS PLACE OUTPUT
PUT PROCESSOR PROCESSOR'S TIMER ON OUTPUT EDGES

1D 14 INITIATION & RESET EDGE STATUS
QUEUE AND SET

TIMER = O

~~ 1s
TIMER = EXECUTE NO | REMOVE

TIME FOR THIS PROCESSOR ID
PUT DATA IN

INPUT REGISTER'S NODE TYPE FROM INITIATIONAND SET GATE BITS

oo YES

SET PROCESSOR

COMPLETION BIT |

AND CALL HARDWARE

- FIRST PROCESSOR

IN INITIATION QUEUE YES
COMPLETED

: NO

Fig. 9 |

| 16

1

| executing. It is also responsible for determining whether multiple copies
of the node should be initiated. Each processor has a unique number

\ assigned to it and entered into theavailability queue when the simulator
is initialized. The size of each queue determines the number of processors

L which are available for the corresponding node type. When a unit is
a! assigned to a node the processor number is removed from the proper pro-

= cessor available queue and put onto the initiation queue for that node.
| One data item is then removed from each input edge and put into "input

; registers" assoclated with the processor. If the node is a p~node and
“- there is still data on each input edge, another processor is taken from

L the available queue and put onto the initiation queue of the node.
This process is repeated until some input edge has no data. The process

L provides the vcetor parallelism reguired by the graph progran model.
Associated with each unit is a timer. When the unit is taken from

L the unit pool this variable is set to zero. After the ready nodes have
{ been initiated, the timer of each executing processor is incremented and

L compared against the time required for that type of node. When the two
|) are equal, i.e., when the node has executed the required number of time

steps, the simulator transfers to code which carries out the actual oper-

L ation. The transfer is by means of a switch on the node type. If the
{ | processor identifier is now first on the initiation queue of the node, the
- results are put on the output edges and the processor identifier is re-

| moved from the initation queue and placed on the proper unit pool queue.
If another processor is first on the initiation queue, this processor is

L not terminated, but if that processor subsequently terminates in the same

| time step, the simulator looks again at the initiation queue and
—

17

1

r h oo

terminates this one without waiting for the next time step. Thus, the

order imposed by the initation queue is maintained, but the simulator

carries out as many terminations at atime as it can.

When a procedure node is encountered, a copy must be made of the

defining graph. The nodes and edges in this copy must be renamed so as

Ks to te distinguishable from cthcecr corlies cxecuving concurrently. In

addition, the initial data on the edges must be present each time the

graph procedure is called. The creation of a copy is accomplished by

adding a new level of naming to the PL/I structures containing the edges

and the node date. Thus, the array of queue EDGES is actually the |

fully qualified name COPY (I,J) * EDGES. This is the jade call of graph

procedure I. COPY (I,0) is the definiton of the graph procedure I,

while for J>0 COPY (I,J) is the copy which is actually execnted.

When procedure I is called its edges can then be initial

executing the structure assignment statement.

COPY (I,J) - EDGES = COPY (I,f) ° EDGES

Initially, the simulator assigns COPY (1,0) and executes the graph

‘ procedure consisting of COPY (1,1). When a procedure node is encountered, |

I is reset to the name of the procedure and a copy of the node is exe-

cuted for one time step (i.e. each node in the procedure is executed one
time step). If the procedure has not terminated at the end of the time

step, control returns to the calling procedure but the node remains in

execute status. When the node terminates, it is taken out of execute

status and this indicates to the simulator that control is not to be

passed to the node on subsequent time steps. The edge initialization

only takes place when the node is in the ready-to-initiate state.

| i8

|

| | |
In simulating a given type of node the actual execution takes place

L on the last of the n cycles specified for the execution time of that node.

| The first n-1 cycles are simply delay cycles and no action takes placeduring them. Procedure nodes must be specified as a procedure call

L operator whose argument is the name of the procedure to be invoked.
The procedure operator itself has an execution time of n cycles,

| which represents the setup time (resetting pointers, allocating
storage, etc.) necessary for that invocation of the graph procedure,

L ~ and the invoked procedure does not begin to execute until the last
g of these cycles, so that the total time required for a procedure :

| node is the time required for the procedure call operator plus the

L time required to execute the constituent nodes.
: Although execution takes place only on the last cycle of the node's

L execution, aata 1s taken off the input edges prior to initiation and the

l processor is allocated to the node throughout the execution period.
Thus, the simulator acts externally as if the processor were executing for

L n cycles. When the node is initiated, a processor is assigned to it by
removing the processor number from the appropriate availability queue and

L placing it in the node's initiation queue. The data from each unlocked

L input edge is transferred to the corresponding input register in the
assigned preccessor and the gate bits of all input registers are set to

L reflect the edge-status bits. If the node is an s node, the processor
| resets the gate bit at the end of execution. The gate bit is then used

L to reset the edge-status bit.

L | The execution of a node is carried out by two procedures, EXECUTE
and HARDWARE, EXECUTE determines which nodes are ready to initiate,

L calls the processor allocation algorithm, transfers the data from edges

! Li
L

al . !

| to registers and sets the gate bit. After a delay which represents the

execution time of the node, it calls HARDWARE to apply the functions

associated with the node. HARDWARE operates only on the registers of the

assigned processor; it does not know the edge connections of the node to

which the processor is assigned. When control is returned to it, EXE-

CUTE resets the edge status bits according to the processor gate bits,

P and transfers data from the output registers to the output edges. In

some cases, the processor may return a null result in one or more out-

| put registers so that the value in the register is undefined. The pro-

cessor flag RRF indicates to EXECUTE whether or not the corresponding

output register value is to be put onto an output edge. |

EXECUTE also has the task of assuring that results are put onto the

output edges in the order dictated by the initiation queue. This is

accomplished by checking whether the first processor in the initiation

queue has completed. If not, no other Processors in the queue are |
checked on that cycle. Otherwise, the data from that processor is put

onto the cutput edges and the process is repeated for the next item in
the initiation queue. Completion is indicated by the processor flag

i DONE. In this version of the simulator all nodes of a given type are |

constrained to have the same execution time. The order of initiation

- and termination would thus remain constant even without the initiation

| queue mechanism. | |

Allocation of edge resources is done by the procedure M-ALLOCATE.

This procedure is called by EXECUTE before it transfers output from

processor registers to an edge. It is also called by the procedure call

operator in order to allocate storage for initial values to be placed on

20 |

|
the procedure's edges before initiation. The current version of

L M-ALLOCATE allocates edge resources in fixed size blocks. In the
unlimited resources model 15 edge-resources are allocated for each

L edge when M-ALLOCATE is called. This has proven ample for all of the

1 programs which have been simulated.

{ |

L

L

L |

L

| :

L |

L

| |

L

| .
21

L

SIMULATOR INPUT AND OUTPUT

The simulator first reads in a set of graph procedures defining the

program to be simulated. It then simulates each time step of the pro-
| gram's execution until no nodes are able to execute. Simulation of sg

time step consist in first marking all the nodes in the graph which are

a ready to initiate, then allocating processors to these nodes, and

finally, executing all the nodes which are able to execute on that time

- step. The number of processors used during the time step is recorded

-for each node type, as well as the number of edge resources in use at

the beginningof the cycle. This information is printed at the end of
the simulation.

The input to a simulation consists of two parts, machine charac-

| teristics and the graph program. The first part specifies three types |

of parameters: (1) whether the execution is to have vector parallelism;

(2) the execution time for each primitive node type; and (3) the number

of processors for each primitive node type. Parallelism is specified by

a bit constant - 'l'B for vector parallel mode, 'O'B for concurrency

} only mode. In the latter mode only one copy of a p-node can execute at

a time. This bit is followed by a list of pairs of integers giving the

time in cycles that each processor type requires to execute and the num-

: ber of processors of that type.

The graph program is read in as a set of graph procedures. The format

for the input of the graph program is best described by a bnf syntax.

(graph program) tt = 0
| | (graph procedure) (graph program)

(graph procedure) :: = (name) (procedure definition) (ini-
tial data)

| 22

- ee

4 |
(name) :: = (positive integer)

| (procedure definition) :: = (node count) (node list) (con-
nection matrix)

\ (node count) | ~ ~:: = (integer)
(node list) :: = (op list) (name list)

| (op list) :: = {list of integers}

{ (name list) 1: = {list of integers] || (connection matrix) 1: = {list of integers}
{ (initial data) rr = 0
L | (edge information) (initial

| data)

L (edge information) 1: = (edge number) (status bit)
(data list) |

L (edge number) :: = (positive integer)
| (status bit) t= '1'B /¥locked*/

L | '0'B /*unlocked*/
(data list) :: = (count) (data)

L (count) 1: = (non-negative integer)
(data) 1: = {list of floating point numbers}

L | (empty)
Zeros terminate both the data list and the set of graph procedures.

L The integer (name) identifies the graph procedure being defined

| while those in the (name list) identify those procedure nodes which are |
constituents of that procedure. Procedures can be read in anv order and

L may contain nodes naming procedures not yet read in. The main procedure
must have the name 1, and execution begins with this procedure.

L The number of entries in (op list) and (name list) must be equal

[to (count), while the (connection matrix) must have {count)2 entries.

L
25

L

Only those edges specified by an edge number are initialized. If

an edge is initialized its initial status setting must be given. Edges

leading into p-nodes are set to unlocked. The status of all edges

which are not explicitly initialized are set to unlocked before the sim-

ulation begins.

Simulator Storage Parameters

: The following parameters can be varied to adjust the storage used

by the simulator in order to fit the requirements of the graph being

interpreted. M#T is the maximum number of time steps the computation |

will run. Simulation results are storedin a MFT by NT#+1 array, where
NT# is the number of primitive node types. ERM is the maximum number of

edges and IQM the maximum number of initiation Queues which can be

allocated. IQM must be >= the number of procedures executing at one

time times the number of nodes in each. The arrays used are of size:

ERM by EGLNMX+4; IQM by EGLNMX+4; ERM; and IQM. EGLNMX is the maximum

number of data items which can be held on an edge at one time. EGMX

and NDMX refer to storage of graph procedure definitions. NDMX is the
. maximum number of nodes in any one procedure (excluding copies), and

EGMX is the maximum number of edges in any one procedure. The major

arrays used are: 2 of size PROCM by NDMX; 1 of length PROCM by NDMX+1

by NDMX+1lj; 1 of length PROCM by EGMX by EGINMX+2; 2 of length GMAX by

EGMX, where PROCM is the number of graph procedures in the graph pro-

gram being simulated and GMAX is the maximum number of procedures which

can be active at one time, including multiple calls to the same proce- | |

dure. (Hence this parameter limits the depth of recursion).

24

Certain of these parameters (M#T, PROCM, ERM, IQM, EGMX, GMAX,

1 and NDMX) are read in by the simulator at the start of each run. They

(are read in DATA format, and so may be entered in any order. They are
- the first data read in by the simulator.

There are two types of output from the simulator, trace output

- and resource use summary output. Trace output is printed during the
i+ simulation and consists of identification of nodes in execution, pro-

cedures which have been invoked, input and output register contents,

. etc. It is primarily useful in debugging graph programs. The resource

use summary 1s printed at the end of the simulation. For each type of
= resource, including edge resources, the following information in prin-

L ted: (1) A bar graph showing the number of resources of that type
used at each time step of the simulated computation; (2) The total

L number of resource cycles used for that type of resource; (3) the
: percent utilization of that type of resource; (4) the average number

= of resources used per time step; and (5) the maximum number of resources

1 used at any time step. The same information is also summarized for all
processor resources. The total number of resource cycles provides a

L measure of the "cost" of the computation, the percent utilization |
| measures the efficiency with which resources are being used, and the

average resources used per time step gives an estimate of the degree |

L of parallelism attained. |
Representation of structured data in the simulator differs from

L that in the Adams model in two respects. First, structured elements

i are not stored directly on the edges in the simulator. Instead, they
| are stored in a separate array, and pointers to the location of the

) |

-

‘ 25

L

|

structure within the array are kept on the edges in their place. At |
most, one instance of a given pointer may be on the edges at one time co
that the pointer "represents" the bracketed data structure on the edge. |

Second, rather than use a special bracket symbol at the beginning and

end of the structure the starting location (denoted by the pointer

value) and a count of the number of items is used. Items may themselves |
- be pointers so the structure is recursive Just ns Adams bracket no-
| tation is. The format of structures is: (length) {(item)* where |

| (length) is an integer and the number of (item)s must be equal to the

value of (length). It is easy to show that the pointer -count repre-

sentation allows exactly the same structures as does the bracket nota
tion. However, having the length explicitly available simplifies
storage allocation for the simulator and also avoids tae problems of

| setting aside a special value for the bracket character and of axerining

each element in the structure to find the closing bracket. Pointers

are not explicitly distinguished from data in the simulator. Rather

it is assumed that each type of primitive node knows what type of data
to expect and that graph programs will use the correct primitive nodes.

. This requires different primitive node types for the same operation on

scalar and structured data, but it has the advantage that the edge access
procedures do not have to examine each item so that the same queue access

procedures can be used for all queues in the simulator. In a hardware |

implementation this advantage world be outweighted by the flexibility
gained by using a single bit to distinguish between pointers and data.

26 |

: | '

PRIMITIVE NODES

L The choice of which operations were to be implemented in the simul-
t ator was somewhat arbitrary. Since no hardware constraints or cost

considerations were available as a guide, primitive nodes were chosen |

| primarily because they were convenient for writing the programs to be

L simulated. Any hardware implementation of this model would include: primitive nodes similar to those implemented here, although they would

L undoubtedly differ in some details. |
- The following table lists the twenty-~eight primitive node types

L in the simulator. The first column gives the operation code used by the
simulator, the second the name of the node type together with the symbol

L used in drawing the graph procedures, the third and fourth the data types
| | of inputs and outputs, and fifth gives the functions which determine

edge status settings for s-nodes. Only two s-nodes were needed, but

L these were used frequently. Loop control, type 11, selects its first
(input on the first execution and the second on all subsequent execu-

L tions of the same node. Select route, type 12, selects either its

L } second or its third input depending on the value of its first input,
which is boolean. If the first input is true, the second input is

L selected, otherwise the third.
| The arithmetic and boolean operations (zero test, negation, plus,

- increment, decrement, multiply, subtract, divide, less than, GTEQ, AND,

OR) work in the obvious way. The equivalent of branchlng in a conven-

- tional computer is provided by the conditional route and branch route |
1 nodes. The conditional route node has two inputs, the first of which

is a boolean value. If the value of the boolean is true, the second

L
27

-

TABLE 1 —PRIMITIVENODES

CODE NAME INPUTS OUTPUTS EDGE STATUS |

1 Procedure Call Any | Any P-node

2 Zero Test (=0) Float_ Boolean P-node

3 Negation (=) Boolean Boolean P-node

4 Plus (+) Float, Float Float P-node

. 5 Increment (+1) Float Float P-node

| 6 Decrement (-1) Float Float P-node

7 Multiply (*) Float, Float Float P-node

8 Two Copies (2) Scalar Scalar, Scalar P-node

9 Conditional Route (Cond) Bool, Float Float ~ P-node

10 Branch Route (BR) Bool, Float Float, Float P-node

11 Loop Control (1c) Float, Float Float U,L-L,U;
| L,U-L,U

12 Select Route (SR) Bool, Float. Float True, U,L,T—]
Float LUL, F,ULL —LU

LUL— ULL, LLU-ULL

13 Subtract (-) Float, Float Float P-node

14 Divide (a) Float, Float Float P-node

15 Less Than (<) Float, Float Boolean P-node

C16 First Vector Float P-node

17 Rest Vector Vector P-node

18. First - Rest Vector Float, Vector P-node

19 Null Test Vector Vector, Boolean P-node

20 Length Vector Vector, Float P-node

21 Unbracket Vector Float P-node

22 Split | Vector Vector, Vector P-node

23 GTEQ (>=) Float, Float Boolean P-node |

28

|

] | -
ol And (A) Boolean,Boolean Boolean P-node

L 25 Or (V) Boolean,Boolean Boolean P-node
| 26 Insert Vector, Float Vector P-node

L 27 Two Copies-Vector (2) Vector Vector, Vector P-node

L 28 Identity TD Any | Any P-node

L input is placed on the output edge. Otherwise, there is not output.
L Branch route has two inputs and two outputs. The first input is a

boolean. If it is true, the second input is placed on the first output

L edge and nothingis placed on the second output edge. Otherwise there is
no output on the first edge and the second input is placed on the second

L input edge.
L | The TWO COPIES node takes one input and puts it onto the two output

edges. This is by far the most commonly occurring node in the graph programs

L which I have written. Because the implementation of structured operands re-
quires that there be one and only one copy of a pointer to a vector, a special

L node type is needed to copy vectors. The vector itself is copied to a new |
_ . location in structured operand storage, and a pointer to the new location is

output together with the pointer to the original location.

_ The UNBRACKET node causes a vector of lengthn to be split into its
components. The n components are put onto the output edge. This is the

- only primitive node which puts more than one item on a single output edge

so that it must be treated as a special case by the execution logic. Rather

- than putting the contents of the processor output register onto the output
L edges, the register is used as a pointer and the contents of the structured

operand storage pointed at are put on the output edge.
i

-

1

FIRST, REST, FIRST-REST, and SPLIT all operate on vectors. FIRST puts

out the first component of the vector. REST decrements the length field of

the vector, moves the length field to the position occupied by the first com-

ponent of the vector and outputs a pointer to the new vector thus created.

FIRST-REST combines these operations, outputting the first component and a

pointer to a vector containing the remaining components. SPLIT outputs

g pointers to two vectors containing the first half and second half of the com-

ponents of the input vector. If length of the input is odd, the first half is

one longer. |

Length inputs a vector and outputs the original vector and its length.

NULL TEST inputs a vector and outputs the vector and a boolean whose value

is true if the vector is NULL (has a length field equalto zero) and false

| Otherwise. INSERT inputs a vector and a scalar and outputs a new vector of

| length n+l which has th: scalar as its last component.

~The PROCEDURE CALL node requires the most complex logic of the primi-

tive nodes. It must allocate space for the named graph procedure, transfer

the contents of the processor input registers to the input edges of the

- procedure, detect termination of the procedure and transfer the contentsof

the output edges to its output registers, bracketing if necessary. Bracketing

is done by creating a new vector in structured operand storage and putting a

| pointer to this vector in the output register. Finally, the space allocated

to the graph procedure must be freed.

30

| USE OF THE SIMULATOR

L
This section describes three graph programs which

L were written for the simulator and the results of simulations

L run using them. The programs area trapezoidal rule quadrature,
| } a sort, and a matrix multiplication. The simulations show

L how the computation time, processor use and degree of parallelism
vary vith the amount of data, the effect of changing the relative

L speed of primitive node types, and, in one case, the dependence

L of computation time on data values. Each program, and the
simulations run with it, is described separately and the results

L are summarized in the conclusion.

L

{

L

L

8 |
31

4

TRAPEZOIDAL RULE QUADRATURE

In order to determine what processor speeds should be used for sim-

ulation, the time required for various.operations on several existing com-

puters were compared. The results are shown in the following table. In the

| second half of the table the times are normalized so that integer addition

- equals one. The time for floating point addition then ranges from 1.33 to

J slightly over 2 and the time for floating point division from 5.0 to 17.1.
- From the studies of varying processor speeds done on the sort and

trapezoidal quadrature program, it appears that the main effect of changing

processor speeds from a uniform execution time of one cycle to a varied set

of times falling within the range of existing computers is to scale the time

required for the computation by an amount equal to the mean execution time of

the nodes in the program. Second order effects, caused by delays in the exe-

cution of nodes which depend on the output of slower nodes, are not signifi-

cant unless the variance in processor speeds is higher than that in existing

computers; e.g. unless one node is much slower than the others.

The trapezoidal quadrature program calculates the polynomial
(b-a)/h

. h¥* Zo f(a+ih) - (f(a) + £(b))/2). The values of h, a, and b are inputs

to the procedure, and the function to be integrated is specified by supplying

a. graph procedure which computes the value of that function. Successive

values of a+ih are generated by adding h to the previous value. This loop

is terminated when the value of a+ih equal to b has been generated. These

values are fed into the procedure node for f(x), and the output of that node oo

is fed into a summation loop. Generation of the last value of x causes the

value in the summuation loop to be fed into a subtract node which subtracts

| 52 |

. | the value (f(a) + f(b))/2, calculated from the initial values, from the sum.
_ The resulting difference is multiplied by h to give the valueof the integral.

_

:

.

_ . |

_ |

~

5%

-

ERE

| TABLE 2

REPRESENTATIVE EXECUTION TIMES FOR SOME EXISTING COMPUTERS

| EXECUTION TIMES

6600 PDP10O 360/91 360/75 360/40 7600
FP + LOOns L4.4k6u 2cy .83 14.3 hey

| FP - LOOns 4.64u 2cy .83 1h, 3 heye

: I + 300ns 2.53u lcy =60ns .39 7.5 2cy

~~ FP x 1000ns 10.29u cy 2.05 76.3 5cy

FP + 2900ns 1h4.lu Icy 3.80 128.1 20cy

A 300ns 2.35u 1 .59 7.5 2cyc

| — 300ns 1.5u 1 .39 7.5 2cyc

Br 1500ns 1.36 6+ 1.10 5.02 11

| BC 1500ns 1.68u T+ .39+1.10 7T.5c 11 | :

| Subrout.

Branch 2.21 .99 6.88 13
lcy=27 .5ns

Ratios add (integer)=1 |
F+ 1.33 1.76 2.00 2.13 1.91 2.00

) F- 1.33 1.76 2.00 2.1% 1.91 2.00

I+ 1.00 1.00 1.00 1.00 1.00 1.00

. FPX 3.33 4.07 3.00 5.26 10.2 2.50

- FP# 9.67 5.58 9.00 9.75 17.1 5.00

A 1.00 0.93 1.00 1.51 1.00 1.00

= 1.00 0.5% 1.00 1.00 1.00 1.00

BR 5.00 0.54 6.00 2.82 5.50

BC 5.00 0.664 7.00 3.82 1.00 5.50

Sub- 2.52 6.50
routine ’

Branch

3h

Since the values of atih are generated bya sequential loop, the time

L to perform the quadrature is at best proportional to the number of points

: used. For functions which require little calculation, this loop will do-

. minate the quadrature time. However, if f(x) is sufficiently complex, the

u | time required to compute 1t will be much larger than the time required to
compute all the a+ih. The computation of f(a+ih) will then proceed approx-

NE imately in paraliel Tor gil values of 1. 1n this case, the computation time

still has the form ky n + Kos where n is the number of points, but ky will

. be much larger than ky so that the k,n term will not be significant except
for very large n. :

_

—

L

-

| | 32

—

7

] (n) () ° 0
COPIES ONTROL

LOOP CORD |
COKTRO oop WOUTE

EN CarROUTE =GING2

COND |
| ROUTE 5

COPIES

j HOMO- 1h |

COPIES

~
COPIES

O “(hes20

2.0

(Oy |

TRAPEZOIDAL RULE QUADRATURE

b b-a :

/ f(x)dx = h * (iE: £(a+ih) - fla) + tC)2

Fig. 10

| 36

2

L TOTAL PROCESSOR RESOURCE USAGE J |x]dx - varied processor times1 s### 1

2IRRBHARN

SHAN URE

L rTTTIIL| SsURHSRHREH B

CIHHBHRRR

THURS |

| 8:##4Qs HHUuH

LO: HH#RAK

f 11: hitka#

{ 12:44 44
13: #uu id |

lbs #nnnund

| 15d piH

L 16: ##nRH
17:444

1BiH MH

L 19: ##FARR 3 1 3 iN :
Pleu#h 4

22:H44

L 2lhHnHPHIRI

25 hinnn

2HIHREAH

L 2TH HH#22:44

20: i #

ADH :

L 3] #4
324444

| 33HHn#

| 34 HHHHE |
L EERE FET

ELRE.31.X3X:

AT: h#dH Ha

L] 213: hHH HK3) HH

4G) HH

GlHH

L 42 HREH- GC3SHKNR

: G4 TH HEH

4S HHH H

L Gb: HHHEAHGT HREHRH

LBHHNEN

4HHH

L 52H #
51: 4#

S244

| S3:HEEH

S54: H4H8KH

SS:HREKH

| S56: HHHRHK)

L ST:HANHHSSc#pgt iin

. 57

J o |

SOTHHNEN |

AYLI R#K# |
6l:H¥

62 h#

CERTL.

64: HER |

65s REH#H# CT
RE XIX

6T:#MuH

6S IHRRIN

69 HNN NKR

IANSJ TX 7

TLIHRNN

£ T20#

TI: HH

T&:##

| T15H#HEMHN
TEs Hind

TT2H#RUH

TR: hMaH

TO HR 44

BY # MS Hnk :

BL H#UNNH -
R2Huui

ERE

BG tH ¥

85:44

BOIHMEH

BT:sMk4#

BR: Muy

BI:#NRY

QIN4H

Ol shMtukn

Q2 IHNHH

| SESS¥ 13

QL #H¥

95s ##

CLEE§-

OT sHHkxy

. QR: MMH H |
FO H#NH

SopRE ¥ TF

LOI SHNNNY ;
AN2:#unkun

BOERNE TTY XT

12hch ENY
105: 44 |

106: #4

INT HK |

103: #u4p

109:# ###

11D: #44

111 2#MaN

112: ¥duds |

113:#Mknisy

114:Hi dk

11S: #uan #4

116:4#)
L1T7:##

113244

38

|

i 119: # uk120: 4# #44 |
121 KWH H

122: 444 4%

8 123##014 |
L224 Runt AY

125: ##

§ 126: 4127: # | oo

123:#

{ 129: #

_ 13234
131: #

. 132:#

- 134: # |

135:4

8 136: #137:4

138:

129: |

8 TOTAL RESOURCE CYCLES USED = 520 ZT UTILIZATION = - 2?
AVERAGE RESOURCES USED PER TIME STEP = 4 MAXIMUM = 9

f

| - |

-

Lo

i Lo

L

39

L

ABS

(x)

| (SELECT)

Fig. 12 |

LQ

|

L (x)

&
ONTRO

: COND

1 COND

- S| \

- 0 (>

| ~~
L

(1 (¢)
he CONTRO

ROUTE

- |

~1.0
; 2

-

2oo O—@
. Y COPIES

COPIES

: -1.0

_ -1.0 |

COPIES

COND)

- Sin X | OUTPUT }

| With Error < ¢€

Fig. 13 a
hl

(x) Co | i

2 3 |
2 2 |

COPIES COPIES
1

2 ho } .

COPIES 15.0 |
2 5

COPIES

INITIAL |
2 11 APPROXIMATION

x 8 COPIES |

| COPIES (+) |
12

11.0 (+)
} L

u u

L wor \2*
CONT CONT

.

19 2
| cop copIEs | 22 |

1 2

23

\ ITERATION

26 x

- Yael © (= M AL

| COND 34
ROUTE

) 28

3 " COND < |

\ 30 .) |
COPIES COPIES

\ 18

2 2 2
COPIES COPIES

\ 39 ®QOr-N
SQUARE ROOT NEWTON'S METHOD

| Yo © (x3 - 5x2 + 15x + 5)/16
- 2 X00 fs vx

Yael (* EA r2)

Fig. 14

Up

_
| Square Root Procedure

L This graph procedure calculates the square root of a positive floating

point number by Newton's method. The initial approximation is provided

— from the polynomial (x7-5x°+15%+5)/16. This is derived from the 4 term

8 Taylor series expansion for (l+y)l/2 =1 + y/2 - v°/8 + 3/16 by setting
y =x = 1l. This polynomial is computed by nodes 1 through 17. The remain- |

| ing nodes compute the approximation I +l = (Y, + x/Y 1/2 to y= x and test
: for an error below a specified limit. The iteration stops when |v, - Yel <E
. where € 1s the constant placed on the edge between nodes 32 and 33, in this
| case 10™°. The test is computed by nodes 26, to 32-35, and the resultant

: boolean is distributed by nodes 36, 27, and 18 to the gating nodes which

L either enable another iteration or halt the computation and gate the result
to the output edge of the procedure through node 39.

. Fig. (15a) shows the processor resource usage for SQRT (2.0) under the
Lo assumption that all processors executed in equal times. Fig. (15b) shows

| - the same computation with processor times which assume gating and similar
_ operations take 1 cycle, additon, subtraction, logical operations and
| compares 2 cycles, multiplication 4 cycles, and division 6 cycles.
. Newton's method is inherently sequential, . so there is little overlap |

| | in the execution of this graph procedure. The maximum number of processors |

= executing in any cycle was four. The time for execution was 133 cycles,

. but the total of processor cycles used was 200 so that 67 cycles were over-
lapped or 1/3 of the total. To put it another way, with strictly sequential |

f

L execution the computation would have taken 1/3 longer.

—

;] |

-

hz

_

SUQRT(2.0) ~- UNIFORM PROCESSOR SPEEDS

TOTAL PROCESSOR RESOURCE USAGE
1s k#4

2HH

3: Mh 4H |
GoM |

SI#K |
6:#

Tz## SR |

Bs # |

ORE

10:#4

11:#

12:% N |

a 13:4
; 14: #k

| 15:#

16:#%

17:#

18:#

~ 19: #4 | :

20H4H

21 HMM
22 HH -

23:4

243#

25:#

26H

2TH¥iER

2BHRHN |

293 #H

304

ERE1:

32:4 |

33:4

34H |

AS:#

36 HH

AT sh k#

. LY. RX.2 1;

RIMM

40: ¥ |
Ll:¥

47:#

CERN¥
C44 HNAS |

GS: #HNN |

LEAH

47:#

LB: KN |

49:4

50: 4 |

51: # |

52:#

S53: i#

S4HME

SS kui ;

56: HW

ST:#

Ly

L | | oo

5324

(| 59: # |

YORE 1:

SET 13T.

622#

| — 63:
CL 642

TOTAL RESJURCE CYCLES USED = 111.00 % UTILIZATION = 0.39
he AVERAGE RESUJURCES USED PER TIMF STEP = 1.73 MAX IMUM = A

a
J

.

—

-

- .

_ }

45

- .

a

| 'SQRT (2.0) - Varied Processor Speeds
TOTAL PROCESSUR RESOURCE USAGE

Lenin

2k

3 HER |
42 HHH

S5:/HHN 7
Sei

1:4

HH |

Fe#

12s ##

. 11:48
12: ##

12:44

14:#

15:#

lo: # |

17:4

h lo:

19:4

20:
21:#

22: # :

| 23:4
24:#

2H:#

2H#

27: #4 :
28:#

29#

30%#

31:44

32:8

43:4

36k |

| 35:4

36H

37:4

- 3HA

33354

402#

41:4

42:#

: 433 4
: 444

45 # :

G46H

Gli

AR

Gdit

IY

51:4 k#4

S52 Hn

PEREZ.I

S42: Hak

55s 8%

563#

S517: # ’
58:#

|
| = 59:4
| Hp

! 61: Hik#

g 67: dHHH
63 H##

54H

- 65: #4
- 663 aH oo

| 67:4

, by:4
6G:#

- 70:4
71:#

: 12:4

& 73:i
Bn 74: 1

5:#

i 16%4
(T7:#

bo TH: #
19:#

BCH |

. 31: #_
82:4 |

: 33: H
! B84:#

- Bo: 44
36% Eh

! STs hit#
: OBL HER

— 373 HAH
| EDEE 3

Lo 91:4
i 92:4

93:4

G4H

95: ##

— 5: HHHEH
STIwbd#

‘ YB: HH
. 99:%

— 100:#4
101s #4

: 1C2:#

. | 103:#
) 104:#

135: #

: 176:#
-— 107:4

18:#

1CI#

: 11ye#
— 1l1:#

112%

, 11324
; las4

— 115: %
1164

1172 # ’

- 113:4

N 47

—

113:4

121 nik

122: ui#

12304

| 124:4 k#

125: 44

126: 4 BS

127: # |

128:#

129: 4

130: 4#

| L31:hitkh

. 132:4
13324

| 134:
135: |

- TOTAL RESOURCE CYCLES USED = 200 2 UTILIZATION = 1
AVERAGE RESOURCES USEC PER TIME STEP = 1 MAXIMUM = 4

48

|

FUTAL PRGCESDUR RESUURCE USAGE SJ vx ax h=.1
i Letu# 1

| 2ihARNBBRARNH
ds hhhhiaBhn

Gfitnbhhbhuna

L SIAASANNABHKY }GC hhRNRREAN |
Tehhhnnihh

dS HANNAH |

L QihbhhhniYsLC: hakANERM

Liz hhhhhhhhana

L2zhhhhuhnbing

ie L3AHARANRBAHAR
Laz hhnAhRhAhAANA

LOzhuMNMERERY

L Los HANMRNA HHLT: hbhhithh

| LBhhnnsn
19: hhhnhhhabhni

20hUNhBARARAN

- 2L:hhRARANAD HHH |
22: hARNBERENKA

23 hAhRANRBINA

L 24s hALuRBRANRY
2S UNRhAAhRARNA

| 20SHUHRBRRBRAHH
| QTC huhnhhhanhh |

L | 2uchhnnhbtdns
29 hhhhhiknnhiH

BOs hahbhhhhhAnARA

| SL hUARRBARARGRYBRL UMAOARRBRAAR HY

33ThMEHARABERIAH

ZL HEARGRRERNRBH

L 35 hhhnhOAnhhnnhSOhAhhhbaRAREaAN

STshhbnbhnhhhinibs

¢] BEARABABANBRARRE
L B3YSHRERUNLHNBARHY

GOS HAARBARAREENN

GL AAANNARNEAANKAHA

L | GRIHRHAERAARE RA RAHG3RbAARADOARBABAEY

: Gas hUNRBRBA BARRA
, G5 hAAANBNABRHRARN

L Go hANRRRARARDABEEGT RANRBANRABRAHARN

GUI ARRHENRNARRRAGRH

GOTHUARAABBADAABANY

L SCH BARNRARNAAHN HA
SLeAARRhARAABAAANASY

S2hAUNMARAABNNRARAARRESN

| SITHAANNARGBANBHARRRRESH |
Sas hAMRRANNBANEARBERRENY

SSIUARMBRBHRRBNAHRES HAH |

SOS hURNHIRRABRENGABAEH

STenhhbhinhhhnntnnug

- SEBLUBRNGHERABBEHRREANN

49

SOIAURRUBIRRINNAARRIRAAN
CO HBMANBANRBRHARRRERRIN

Oleh ddhhhlibnhhbdahnniini
C2 BAARNBARUABABABESARIRRERN

OCB hAARNRENRBHARAREHERR BE H

CL: RAMNMARAERRAARABNNAGN

EOABNNHANRRRNAAINABEY

COAMANNNREBLABRANEH oo

OT: hAANRBABREDINLRARER
COSHNBHBNHENRABRRRRKEY

OSs hhAbdaDRAhanAMNANANNHES

TOZHNARHABRABRAKANLAKEH

TLR hkhhannbBrannnitnn

TLShRhBRANRALIBARES

2 T3hRABARUNNEBBANN
14s hhANARNABIRERN

IS5chhhhhnannabnii

TO hbhNhiNuUERRY

| TI: Abhhdrdhnbtbas

T8hARAhdhinannish

TO KBAR ARNANR RUHR |

BUS Ababa anhbnaas

BLINNNNBNANGABRINH
BLS AARRANBNBN HER RAH |
BIABRANRBHAANRIS |

BGI NNANRARANAHBBERA

EShhhbnnbhnnii

BOShANARBRARANRN

ET hunhhbhabnrAtnh

BRL eARNARAANZIRRZAN

BYShHNBHDBARAROKNR

QOS HAANBNINAnARARERS

QLlebsranhnidnnrbihntsd

QI HBARNAWRAN BENG

| G3shAbhAAAKAARARARR |
Gashinhhhhhnorhhanni

SOSERARALANRANREN

Qo hhhhrdnhnnniy

QU ANARAIRIARNRAEH

QBS ARAM HNRRHANN

- GO: AMAANBRBAARNS

LOU HBANHABNRRAR

LOL AARRMNEL ALAR NA

LOZ hhnhhnhnanhsniti |

1 O0BSARANNRBABANRENR

Cla haAR ARAN AR ARAN
© LOSEMANRREBNANRAEH |

LOOBANNANIBRY

LOT hhhbbBananamh

LCA: HBARHBRRAANA

LO: hahhndhnnnh

LLOASthnnnnsbbn

LLlLzabdhannnuting

L124 hhnbbtrnnrnani
LI3zaNbudunssnbnnbni

L1G hadnnBnnuninnknit |

LIS: hhhabnnmAarARins

LlozShhainhRdhnns

Vl bhdnbhdbhnsin ’

Lid Hana nuhitiinn

50 |

L LIS: hhhnhnihii
120 hhhh ding

121 hunni

8 122: bhhbhhhnnmL23AHARARBERNH CT

129: hadbinhbdnns

L2S5z nhhbhbhnbhann

L L2O6hBRERERE HNL221: hhNAEBAA#N

128 khhhnhhhihi

129: hanhtihdint i

L 130 hahhinsnL3L:nadBnnn

13248080 k#H |
¢ 1332 hhhb hah

L L3G htinfiasL355 hdRans

| L30hanNBBNNHE

137: 4hluBH UR |

{ 138 hub huh #
— L392 hahhnnd |

140 hhhunss .

lelzhnbhes

L 142 hhalas: atahus

laa: Hunm#

r L455: khin#

| 1462 hahhiIYRE FEY EES Y .
148: hanhn#

la: shh iit

i 150: nékié151: hthn#

152: ai #

‘ 193:u8#

L 154: ih1594 Hh

1560:4 #

L y 156: Huu ih159:4 #

¢ l61:#

L 162: 4
1634

: 16a#

165: #

Lo6: #

~ 17:#
168:#

4 169: # | |

lL 170s #
171: # |
172:#

{ 173: #
174°

- 175:

~~ THESOO0I SUBSCRIPTRANGE Ii STATEMENT 00225 AT OFFSET +00812 FROM

51

4 |

\ 2.0

TUTAL PROCESSOR RESOURCE USAGE [YX ax h=.1
12h H# 1
QIHBBEARNRYHN

HAR BAHREAN

LG2ANWNRRERNBH |
SERN HEE HAHAH
OSHNHHURUAN

TIHARANUN |

BeH#d##

QrARNARHENNN

LO ANNHENRA

LLSHANBANKNREHH

. L2hAANRANNEUN
2 L32ANNRNBHUNRRS :

| LG HARRRRBREHRAY

LSS ANSUNRNUHH

lO hHARANNHH |

L72480#4HH

LB: KARHUHNN

LO HABRRNENI HRY | |

SOHHHANRHEREYH
QL HANA RESNEHIN

22HAURNNNAR RY

CAHARBARBR NRHA

2LIHHBAKAAAH HA

COL hHANRUHAIURHAY

26 HANNNRTMNENRH

QT hhkNBARENEHN

RANMAULH RNY

2OHEHSHUNNIH

BOC hAMAARNNEHBBHA

BL ANNHNHANERHEHN

B2HBHABMUREANAHRN

oo 334 MANNNHNENNBH

34 HUHNARBNNNNRA |
ISSHRNANRENARHAY

BOHRA AUSNENR UHRA

BT hAUSHARNENRANH

. AB ANHARHAR NN ENHH | |
BOI AANNNARRHE UAN

LOS HANRNURNIHAH

GLEHARNRNUENHARBARRY |
LG2CHANRURNNERNRHSH |
3 HNANRNRNERRRNBRAN |
QL THRHENENENE BARKER

G5: HANNRRHNNRHHURY

GOTHANNRRRNH BANANA

GTISHNERRER AN NARRHAY |
LBIHHARR NER NE RRH HHA
LGOSHANRAREARAHN IY

SOzHHHRNANUBENHARN

S1:AKAHARYAPHYLBANY

S22 HNRANHBNNIRRHANRRHARES

SALHAPRANBRERHKRRAARIRRN

SG HANNAN KH RUNRULARHREN

SOSHIRHABBASHARHANNBHRAY

SOCHRANENRRNE SHHARNNRNY

ST HAHUARBANABERHA RRR

SBeNRNRHHAH RAR HAH RAN#

{ :

I

SO: HHARAIHHH BUBB RBH HEH
OO: HARRARBABHHBHRAARRAH

OLIHHMUARN NAS HHABAN HHH |

- B22 HHRRBBU RP RAB ABHBAUBHERBH
OR HANBUBRNHABHHRBRBFRBBRHHY

| CLIHANBHERAE BHABHA RBH

\ 65: HRRRABRNS RAR AAAR AY .
— CO HARSHRUNE AHA AN HEH |

CTHAHNNBERF RARARBH AE

] CR:UHBANRBAH BARA BUNA

LC SO HAAHAANNHBHRHRHI RGR REH
TOS HEHUHHRNF RHE AAARR HAS |

TLKHUUAREHE BH BEB BH RE RY

Go T2LhUHBHERNEURAHUIHAY
Ce T3:HABHHBRAERHIABHN |
| Tas RAHRRBSRR SHAH ABH HEH

TS: HAHRAURAEHANHSRE 4H |

: TOLHHUABHRRHARABI BRN HRH
(- TT HARBASRARR AH BRE BH

| TOS HE RABER AN ARHABHBHY

TOHHUANHHBHEHE BH AAU SHB HY

| BOSHANRHRRAF HABAUBRERHBI HY

— BLENAABNUTAE BARAR BUH HRH
SRIHUKRUBARGBH ARARRERYH

BI: HANRNBARAABRUH RE HH

L Bas HHANNAKENB AB HABA BIY
SSSHANHARYHE HRHH BRABUS #

BOT HAANHIHAHRARBBRAABAUS

BT HARRAUBHERGHHAABRNERY

- BA: HUNG HUH RUSH HHARBAHASY

SOLHHARRUBNN RH BHG ABBE HRY

| QOHARKKBRALAHANBAHRABRAHA

QLIHNHRRSHHH RAH HBHHAHBHAHS BB

~ QR: HHKNUNUEAB HHH HHS HURLEY

SIHUHBHAUNE HAH HARE ABA RIE

| QUIHAKRRARRHHAN RUBS HYHY

L OS: HARBHAKAHRNBHUAB R44
SOHUHARBBNE REHBHAH RIES BH

QT HHRRHAE RLRRABBHBESRAB HRRY

; OB HARUANHR AANA AH BAB BURA RI HH

— QOAHHHAHHRH RARBHBRARBIRS
LOO HHYANGHARRBHARAURBRUBE

LOL HANBKABERUABSABHIHBRERARY |

| LO2HUHARRN HAHA BERAAAARBEBIHBRAY |

— LOB:HAUHAHRFNHBRHARARBEBHBHERRH

: L104: KRAANRRABRNHAARBBHARURARANR

a LCS HUNSHAR HH RABRBBHH HARRI H |
LOG AHRAAHR ABR BARNABBBARRHAH AY |

~~ LOT h4HHBIRABHARARBHBRRARRRHAY

LOB HNNRHAR HER AHRAANBRRRRERY

: LOG HAUHREHRAGHANSAAHANBHBY |

o LIOHABKHURERANSN AB BH HRAH SHH
LLL HAHAHA R BE BARRA BSIHAB UHHH

L122 HAHAHA NAAR AERA SSH HH AHA NR

\ LIBHANNHRSERUBARRA BHRBAAAR IAI HA UH
— LLG HRN ARB UR BHAABBE RRB HEA IRHA RHE

LIS: ANNRHHSHRHBBERRHBEBHBRIAAEHH

| L1G: #ARMHARBHEHAHHNNBHBGENHAAY

oo LIT ANUABER RANA HRBB RAHI H ERY |
nt LIB: HAHRURHHBARNBABHEBUIRBIYARH

rr

LLO:HANRARA ARAARNRRARRRRUUR YY
120AANRHHBALRUN BUREN HA AHHH

L2LzAARARAERN ERREBRRARBARI RUN

L22: HHKRRHE RE RRRAR ARERR BRRAUR A

L123: HNHARBBAENEABREHABRARHR URHRN
L24hRHRIRRRANHARRHRBEARAR SINR RH ERY |

LS: ARNAURE RE RRBREREREBRUF RHA IHN

L262 ARASNARBHHUARRRERRAABHARNE -

L2T HURRAH NE RRERRBHRERRBRY4H

128 HARURBH NH NRERRAALRBRIHHY |

129: ANKAHAKKBURBARRRRRAUAS

L30HNARSRENERS NB AREA RNR

LL: ANRBANENRRERE BBE RRR

132: AHAUHRE HH SHAAN SH AHURA HY |
HB 133: HARRURE ARES RABERBH EH |

134: HANSHRH NF ERB AAN RRA R BH

L3SzAHRAARRNGHARARARARIRAIH

136: HAHARBE NE RREREHRRARBRROH

| L137 AHRARRENERERBRRRRRRRIH
138: HANHNNURRNNREHRRAAANS

CC OL3OHAKNERNHER RRAR EAE

140: HALBARE BEAR RARBERH |

Lal: HARNNAERENN ERIENE

LA2= AANHARETHAR RHA H

143: KUNARIRARERRHRHY

L4G HABRNRNARRARARSNS

L4Sz HARRI UNE BRESRUNAH

146: HARSHERRBH RR AHAB ARMY

LATHAHRARSRH RAR HRANRRHAY

L482 HARFARK hi RERGRAB AEF |

La: ANAHNAENHRNRURNA AY

150: HENENKAARRUR BARS |

LS1: HHRBAAK RERERESH

1S2: AHARNNBNRRERIAY

| 153: ANNRRERBHREHR |

154: HARKRNA NRHA |

15S: HHARBHENRRRN HH | |

LSE: HARMNRENNRRR AR RH

LST: AARBURSNE RARIRU HAY

158: HHARNABNG RERHRHRH 4H

. LS: NANHARKNUBHHANH

160:HARSHRYHi fh RHAEAH

LOL HANARAU REMAIN |

LO2: HANRKBANERRAY |

LEB HANRERE NEAR |

© 164RAHRHERNERHE
LOS HANSA ARRAY |

LOO: HURBKARNAN RY

LOT: NIRA UA NE RE RAR |
| LOB: ARUARNRNE HAN EREH

LOD A HAS HHR NA RESRRRAY

LTO HHARAAKNRARRUR HHH

VTL: SHASHAE NE RH BURA

LT2: HANA AE B14 BERRY

LI: HARRARENE AEH

LT42 HANBRHE HE BAH

LT5:44H #HB5 HH #

LTO: HURBHRENE H

LTT HANK H UY

LTB: ARHEARH AEHBRR

: 5

I. oo |

LTO: AANAHUR NERA
180 AHBRMIEHEHURSBH#

- LBL AHHAHBNBRUARERH
— LB2:HHARHAE RENAE

LB3sHANNKBE NHBHAHA

{ LBAHAYHRALRE BER
a LS: hUNMARNRNUBRY oo

L186 HUHAHNARHE

1ST hHUUARRAEH

! LBB HNUNHREARY
— LBHARKUNEINE

LG0: hAKS HIE HR HH

r LOL: HNARNUARE BH REY
H LGR HHuKAHERAE RRRRSH

— 193 HANBARRENEREREH
LOLI HARANRRNARRNBE

(LOS HHRRRNRNL RHEE

L 1962 HHHSHAR RERNERY
LOT HABHUNA NERY

LSB HHHEHIE MERAH |

| 199:AHAB HAR AEH
I. 200: HANBEEEAN# |

2CLHRMUHRENRE

202: HHURRHBHEBEAIS

203 HANMURNREREERULY

C 2CHLHAABHARRBRARHRARY
205: HARRUEH RERUNS

206KHERBHRNH HERBY

L 207 HHARRBRRERNHY
20RSAHSHURENHHY

200: ANNRNIERN#

| 210s HRERBEH BP
— LL ANRHBAN AH

212: hHHRARMRER

| QL HHARRHEAD AH |
214: KUMARI RR RH :

— 215 AANRAAR URNA HH | |
2LOSHRKURNRBAHH

QUT HHARNERHEH

. 218 hHUARANHES

- 219 HANARAE H¥
220 HBURHAEN |

221 HHRNRKHN

C 222 HEHANRY
223 ABHERNR

| 224 ANKE RAE |
225 HHH SHIH

a 226 hAHNHYKHEY
22TIHNHH AEH

| 228 HREHHRHH |

j 229: HHBHHEY
- 230: KHHHARE |

2IL HARMAN

232 HUE HH

233: 4HHH4H

~ 234s HEARN |
| 23S HHH

: 236: HHUHRH
. 23TIHNSRERL HY |

238: HRBHAAY

| 55

239 HAKHMN |
240: HANNH

241 HANK |

242 HH#RH

| 243 HHH |
244 HHH | N

245 HAH |

24621 # |

247: HAH Coe

248 HANRH

| 249: 4 4 |
250k#

251:#4

252 # |
3 253: # |
: 254: # oo

255:#4

256:#
257:#

2582 #
259:4

26C:H#
261: # ~ |

262:#

263:4

2642

265: |

TOTAL RESOURCE CYCLES USED = 3340 X UTILIZATION = 7
| AVERAGE RESOURCES USED PER TIME STEP = 14 MAXIMUM = 32

56

|

Variation of Relative Processor Speeds

f

— The trapezoidal quadrature program was run with all processors exe-

{ cuting in one cycle (Fig. 18) and with the times for different processors
L Co.

varied from one cycle for simple gating nodes to 6 cycles for divide (Fig. 19)

19); with uniform times the computation took 70 cycles and with varied exe-
-

cution times it took 122 cycles. In order to compare the two cases meaning-
Ey

- fully, the uniform execution run must be scaled so that the common processor

{ speed is equal to the mean of the speeds of the nodes in the graph program

under the varied execution case. Otherwise, the first case just represents

a run with faster hardware than the second. Not counting dummy nodes which do
— -

do not execute, the 69 nodes in the graph program for [V/xdx represent a to-
: :

ye. tal of 121 cycles using the timings of the varied processor speed simulation.

: This gives a mean execution time of 121/69 = 1.75 cycles. Hence we have

— the following: | |

Tvaried = 122 cycles
-

| Tuniform = 7TO¥1.75 cycles = 122.5 cycles

L In order to test the effect of slowing down a single processor type
|

to the point where it could cause significant delays, we re-ran the simu-

- lation of varied processor times with the divide slowed down to 16 cycles

: ~ and other times the same (Fig. 20). This is a slower divide, relative to
Co

- other operations, than is found in current large scale computers. Norma-

| lized to fixed point add, one finds divide times ranging from 5.00 (CDC 7600) S—

| to 9.75 (IBM 360%/75).% The computation took 172 cycles with the slow divide.

— The total number of cycles represented by the nodes in the graph program is

: 161 when divide = 16, so that the mean time for a node to execute is 2.33
|.

cycles giving

—

57

-

re |

Tuniform = 2.33 x 70 cycles = 163.1 cycles

Tslow divide - 172 cycles |

Putting in a very slow divide unit thus results in a slower computa-

tion than increasing the mean processor execution time by a corresponding

amount. Thus there are probably significant delays when other nodes are

idle waiting for the result of a divide. However, the increase in execu-

. tion time is only 5.6 percent even in this case where one node type is four
| times slower than the next slowest node, the multiply. In the case where the

"divide time is more nearly comparable to other processor speeds, the difference

between varied processor speeds and a uniform execution time, which keeps

the mean processor execution time constant, is negligible.

Trapezoidal Runs

The trapezoidal quadrature program was run using SGQRT (x) and SIN (x)

as the functions to be integrated. These functions are complex enough so

that they will execute concurrently for several values of x. Further more, |
the execution of SQRT(x) is data dependent since it is an iterative approx-

imation program whose initial approximation becomes worse as X moves away

from 7.0. This dependence is illustrated in figs. 2la-2le, which show the

_ processor usage for SQRT(x), x=2,3,4,5,and 10. The computation took from

133 to 308 cycles and from 200 to 470 processor cycles were used. None of

the other programs simulated is data dependent in the sense that the amount

of computation depends on the value of the data used.

As a result, the time required to compute /xds is not simply a func-

tion of the number of points used in the quadrature. Rather, it has the |

form t = f(n) + g(a,b), where n is the number of points used and (a, b) is

the interval over which/x is integrated.

#The IBM 360/40, however, has a relative divide speed of 17.1.

58 |

3

L444 | one cycle
CI ANAHAREAEEH

SHAUNA HRY

|. AETYTEITIE
StEARHBHHAEH

‘ Ge AhHHBYE

“ T HARGARELY | oo.
SB HRHBAEREHY

GS HUNANAHA

10 SHEESH RUNS Y

- L1s Ahk hanuupay

L2H HUBER LEHY |
yr 13 HRAHREEHY
3 Las HAKUANUAERY
Bo 15: HHAUUARANSHH

lot hhbhantungs

17hhhntifbuuyd

- 18 HANA MREHENY
CRE FI 2]

20: HANRHRUAAG HEY 4 | :
i ARS ISITE ERSTE"

- 22: hAbANHRABKERRABYH
CRAHHUARBAHA Y HH 4

2a HattSAABY

L 25 HUE DHE hAH
DL SHHKBEHE SHREYA Y

CT: OREN ANUSHUBUREREY

| Zethihdunkhdnddonddnn
— OI HALHAANUINNYY

IG hh AHH AE

: S31 HHNRUBHY
| 32th EAHAREAYY
— S33 EAARUANARANEY

BG Hus BERERRYY

AS: hAKHAHAYY

L Ab HEHE GHEY Y
ITE RAB HHE A |
ABT AH AMHER AEH

. BQIHAABHYHERINE4

- LUTKAREHHEL AA dy

Gl: HAHAH BONL ELE |

G2 HRUBH RHA Y |

CHEEEE ES EEN

—~— GLIHHARHBEYHY
LES HHBAHEPE HANEY |

: Lbs EUW HEHEY | |

. GT:RAHANANA
43 AEARYHHBUEY

| GOT hRARNN BREEN Y
SOTHURBENERSH

— Sls hARNUA RY

YAR EIT EY
Gl:gfudyn |

| 4s hhaNGEY |

bs ShsU pulls nd
SET hanesHdd

: ST hhthyuyiniy :
- SHBHHERBYHY

Fig. 18

oo 59

g |

HE REET ZY
COLHUNRY

Cl #MNNH

C2: HANNAN

| 63 sHEMH =
642 HANH |

353.3131%

6H H# |
6T: # -

68 sf

692 #4 | |
| 70+ #

Tl:

722 |
. TOTAL RESQURCE CYCLES USED = 663 2 UTILIZATION = 920 |
2 AVERAGE RESQURCES USED FER TIME STEP = 9 MAXIMUM = 19

60

L TOTAL PROCESSOR RESOURCE USAGE
Ls H## |

. 2:ANARNABHAAA |

1 IA ARANAYRYT IIIIIIL

Ge AAAANNRANAY |

CIHANHHINRY

L TIHANBRHN | Co.
SB: HANNNBHUNY

QIHNUNNNHN

| LOS AABAANNRY| 11: ARANGNANANN

12: HHABREREANNE =

132 AAAAAARAANHAS

L STIILS HNARRBANN

162 AANNHNN |

LTzHANARA AANA |

| 18: ANAARANHANH
10 sAAANANNRANEA

C2CHNAUBHHRAREY |

| 21S AAARHBHNARA22 HANNRNAANNY

2IHANBUBBEGHAH

24 AARANARNANAN

L 2SHAMNRRHAANN26: bARANAANYY

| Th ARARRKARASHHY |
2B HANANUNUHARRN |

| 29: AANAAARNEARAAANA
ZOHAANHANAANANRY

SLHAARUNERARHNS

{ yamm
— BIHAR NRRANARAAY

34s hAANNANAANY

IS ANRANRAAANY

. JOIHANNSNNUARR
IT hALANANUANY

SRIHMAMAUNANASY

L] BOL HNNEBENEHAY || GOT HAAABARAAAN |
GLEAHNNUEHAHY |

| 42 hARAALAANAN

| 4B AAAAAANEAE |© G4 RANERHAAARH

GST ARAARKNAAS

GOSHNUNANANNAHSY
| GT: RANRARARARARRS

4B ANRARARARARASA

GOTHANBURRARANNAR

L SOAAMNNARNAANNALSLINAAANRAAANNY

S2HRANRHANAY
SA: AARANNHNNNNN

L Ss HANNBARNANARS |SSIHANUHRNAARAN

Sos hAiARRARAAANNN

(ST:HANANSNRAANNARRNY-
L SEs AARAANANNNANS

a Fig. 19
| /L G6

SOENAANNAANAN

COHANNEMNNH

ICEEEEEEEE]

C2:RURRNGARNNEN

EZSAREARANANAANN | |

SGI ARNARARANN

OSHENUNENKBN

COS AhAAANAS

6THANNAS |
OB HNEREN

69 dA NAN |

TO hun

TLAAANNNEN

T22hhédihAnhdng

TI3SANRNNHNNARS

ks Tas LANARNNNH
: TSSHRHUREHN

TOHUBARRN

TT: HANREAN

TkdNHMR |

TS hain |
BO AhANuNEN

SLANNNEERUY

B2: AAARARRIAANS
BAsHHANRRAARAS

EASHANNNNKNNH |
B85: hhhnin

BosHinNgA

BT hhAdhluH |
BB sHANRMY |

BOHNNHANN

QO: AALANANNN

Ql:N#NN4H

Q2HHUNAY

93: AANNHN

QL sHNNREHA

COSA hANMAN

CI XB EEE X1.%

STHUKMRERH |
CEHE EERE SE |

. CO SHANNEN | |

LOO: HHH MN

101: AMAR |

102: #4444 |

1030004
104: hhhhny |
1058 NNNENNAN |
106: AihN#s

LOT shang s | -

IRERE 223 3

109: #4#¥

110:##

111: 44 | | |
112: #4 |

113 :#4

1142 a4 4

115 HANNA

116: #4)
117244 oo

118:4%

62

I 119: #
120#

121: 4 | :
| 122:#

| 123: |
— 124:

| TOTAL RESOURCE CYCLES USED = 1062 % UTILIZATION = 61
: AVERAGE RESCURCES USED PER TIME STEP = 8 MAXIMUM = 17

|
—

L oo
|

-

- - |

| -

L

— | |

_

— | | |

—

|

—
6

| TOTAL. PROCESSCR RESOURCE USAGE [vx dx divide = 16 cycles
1s RAH

2 HBHHBHUBENS |

Be ARARHREH |

G4: HAHBARRUAA |
SIHABEHANUAB HH |
b: HANAHRRUY | | Co |
TIHRHAHAH a

BANNER NNY

QO: AHAHSHEY |
LOS HRARNBBEHA |
L1sHahaNNABaHY

L2:khbhARNAHERN

L3SHAHBHRURANRRAH

‘ Las hALNHANEHURN oo oo

1S #ANBHASHAY

16 HRREHRY

CLT HANBARERARN

LO RUAAARKAB IY |
LO: ANAUBRURAUNN

20 HMAAHBAAHAAH | :

CL HAAB HARE A

22: HAE AMUHUAEY

23IHANHHBHUREHY

DASEHMHARURBRAY

25: hAAAYANANNS

COCHANUBAHNAS

| QT hASNENNAANBHERA |
| QESAAANANNAYUARAN

QOTHANRBUNBANHN GH | |
BOT HAANLHANANHRA |

IY UBANNNKANNNA HY |
2: HHRHBHRRARANY

33: ANANANHURANRAAA |
BG HARSH HNAR AY

BEIHARRUBNERS |

BOT HNUANANNARA

BT SHBHBBHNHBAN

S38: AARMHBAHHARY

. ZOHHUARBERHUNNAY
GOSHRUNHHNHEY |
Gls NANNBEENEN |

G2IHHHRBHUNBUN

CGB IHENBESRYHY |

Gat HNRNRRRREY
TC GSIHNHANRRRANS |

INSEE FYTTITELE. |
GT HHBBHUNBEH

LEBHAHBABHAKN

GI: hRANARHNEY

SOSHANRNRNBRY

SLIHANURBRARN
S23 HAHAHNNKNY4

SI HHABURBRIN

SG: AA ANBHRBERH |

SO cHAMUBRUBES

SOTHEUNRHHABRAY)
STL AGAARANAHN

SBIauARAUAHHYE

| | Fig. 20

HY

| 59: hAAHLHHAHH

—- | CGIHREKBRNEUH
| CLA HSH RAUIH |

YARE1132KEE

< C3LHUUYBUNAHY
C4 BAAAUHHRHAH
EST hAUNHHBHAY

: COHTHHUUBREBLY |
be CTHUARBBRNAH oo

63: HAUBHHEHP H

COL RAUHUBRBEH |

L TOI HHHAHB BEY
| TL IHEHHLEBBHH

| T2s hhh tual oo |
; 73: HHANAEHAY
| TG HURHBBURYH

| TS: hhh hub
TOSHANHUBHBERSY

- TT hE AAHBBRI NRE HY |
TB: ANAHUHNNBRHAAY |

TOLHENNHBBAANEANS

] BO: AAAUNANRESERUR :
a Elohhhmauubnnns

| BR2:HUNSHBHBEIRY
(BI: AG hRKBHAAUNN
} Bas HARNBRBUHUNE

he BSLHBHRHNHBBUIH
BG ARAN HRHANHYHY

| ET HALUEBRAUNABANAY

} CR HHHHHRHSHRSH
| BY: HARA ARRA LS

GC sHHAHHMHUAY

Ol: HANNHHHUESY |
— COTHHMABHRAANAH
| QALHBHUHRBAURUYH

V4: hHRAHBNYLY

L OSs UBRAHHHYHEY
Qos HEhHRAEY

ST: hHbaeH

| . OR HAHEIY
- GQ: hEHHRE
| LCC: HAUBHH

LOL: #uasinus

L ClO2c hh hb RERANY| CIC HANHERENARA

SSE NITY |
{ ICS: RABUN HAA | .

- 16 SHUSBHN# Co
| LOT:hh hauky
; ICE Hues

LOSus #sY

- 110: HAHHEH |
BREET TTYIY
L12:hhhhanudy

C L13:hbhhikntt
| 115s haiuns

116: HuuksH y

— L17su updated |

| 118: HUHHAS ‘5

-

[-

L1G HHUHH |
| 120: HAHAH |

121:HH HU#n

122:HHH

123: Hulse

124 H#RARY |

125: RuHH##

126: HHHHAY

127 sH#upy | oo
128 inaddy

12G cH MuiinY oo

L300 HBUMRBEHY |
131: haANHBHEY

L32:HNAREHEN

3 133cHigbpspiy Co | |
: 134s HHRKHAYY

135: h#HH#RY

136 hati hy

137:#u48MH

| 138: #4HHH
139:hi hhHHdH

IRAE EEX 2322
lal hnniay _
142: #h#il

143 HR 4H

144 hhtiny#

145s uUduH%Y

LAO HUNRURY
1472 hhhHfi#l

148: aE ns

143 hbhHuy

150 hhh Hl

1S1s4hinH

1LS52:%8444#4

153ub #H

I1S4: iil H

155: 44 hHuBEgEH

150 #6HRH#H

151d f#yH

-1S5Es Hund Y

159 sh#u#

16): HH

161 cHAN

Le2: 444 |
1632 #4

154 tH 44 |

165: hRN#H |

166: 44

167 :#4#

168:#

164:#

170:4

171: 4 |

172:#4

173:

174: | ’
TOTAL RESOURCE CYCLES USED = 1492 % UTILIZATION = 61

AVEf AGE RESOURCES USED PER TIME STEP = 8 MAXIMUM = 17

66

8 SUrRT (21) VARIED PrJICeSSUR TIMES
TUTAL PRQCESSUR RESUURLE USAGE

Ls ah | |

| 2 Hk3:HAH

G43 Hii

i SIakit :
L 6:44 §

7:4 | |
8:#

L 9: #| 10:44

| 12: n#

15:4

L Lo: #§ 17:4

| 18:4 | |
i 192i| 20: 4

21: 4 ~ |

| 22:#
23:4

'. 243% # |
253 4

¥ 26# oo
| 21:#L 283 k
| 29H
RK 30:4 |
. 31: ad

32:#

| 333 4 |

CS
3H: | | |

| 361#

§ ETRY }
© 38:¥

39:4

, 40:#
} 41:#

1. 423#
| 43:4

x G4 # | |
¥ “53H

~ 462i
y 47:#
g 48:#
1. 49:#

502 # # |

| 51: #h# | |
yr 52: Hh | |- 53: #ith |

| S56 HRH#
| 553 ## ’
- S50:#
| S57:#

I 67

| 58: # oo
59: # |

60:44 |

bliin

62: hik# |

O3H#

64:it

65: # |

66s Ht Co.

HT: # |

o8I #

69:#

10:#

71:#

12:#

£ 73:4
i 141

75: # |

16: # |

11:#

18:4

719#

30:#

al # ~

82:#

83:4

34:#

895s#

. 86 SHAR

BTsinikt |
853s ik |
BY #itH

90:#4 #

91:4

Join

93:#

94 #

Gos Hp

Q6: RHAN

QT : #Hn#

BCERE TC |
99:#

100:#

101 :#n

102: %
103:

104: # | |

105: #

106:#

107: # |
108:#

109:#

110:»

lll: 4 |

l12:# | |
1134

llac#

| ilo # ’ |
1164

a 117: 4 68

118:
119: # |
120: 4# |

| 121: HH

122: #i#

- 123: #iH
124: 4## |

125: ##)
= 1263 # | |
| | 127: # | |
; 128:#
(129:#

| 130: ##
| 131tf ###
i 132: # Co |
~ 133:4

134: |

135: |
. TUTAL RESOURCE CYCLES USED = 200.00 % UTILIZATION = 0.63

AVERAGE RESOURCES USED PER TIME STEP = 1.48 MAXIMUM = 4
|

| |

L

- I |
|

.

. |

-

h-

-—t UU.

WY OULU VMUEREPLD PLL RPEPRPD LR WEE LUWEBEWNRNNNNRNRNNRNNN pp 4
80 6% 80 So Be Ge 0 gu ge 8% bb Ge Be BE BF 44 go 8% 6% ae Be Gs Ge se 80 8% 45 se 0s 48 8 gy Be Bs go Ge Be 00 pa go UO 80 Bo 88 G0 0% pu gq 6 se gp Su 8% BE ge ae [am
FRAIIAPFPRTRIRFTARTIARERRIRARRFTAIX FI AETITIFTFARFTFARET ARR FR RRA ELRE NRRER RE LI Hp Ww
EIR E® 3* BBR R HR WENRR TV—

Cc
CC

ax

: v:
v <

Co»
A XA

7g

/ Cc ©
Cc XxX

x C
aka

mm

9a]

Cv

« C

> X

. : lp

mt

x

J 7a
oO

|

i 58: #59#

60: #H#

| bls us

. 62: #HB4#
63: ni

| bg:#

L 653 #66: a# -

67:4 |

682#

| 69:#
“ 70:#

il:a

: 12:#

L 73:4
T4643 # :

| 15:4

_ T6: #17: # |
78:4 |

719:%

8l:#

822#

L 853k34k

35: #4

[SOS RAH

L ST:rAH
vo: di

89: kkk

| 90: ##| 9]: 4

92:#

(93: 4 |
L 94 2 i

952 ii

62 Ritns

. CFE TTY
- 98: ##

CRE

: 101 ¢ 44 |

- 102:#
103:4

L104: 4 |
. 105:#

106:4%

107:4

108:#

— 109:#
110: # |

{ 111: # |
112:5%

1134

: l14: 4]
115:4

— 11624 |

| | 117:# | 71
{

—

3

118: 4 |
119:4

120: 4 #

121: ahs

122: HH

123 a#n

| L24: hth

LZS: ## |

L126: # | | oo
127: #

128: # :

129:#

13C: 88

131 swnin

rs L32: with
L33:4n |

134:4

135:4
L36: #4 |

137:# |
133:4

139:#

14C # ~ |

l4l1:#

142:#

143:#4

144:#

145%

lab:#

147: #
lag:#

led #

150: # |

151: # :

152:#

153» |

loa:

155: ##t : |
© 150i ukH

157s #a# :

LOB Hits

159: qi
160:# #

161t #

lo2is |

163:#

loa:an

lo5:## | |

166: ius

167: #)

168: # | |

166:

170: | |
TOTAL KESUOURCE CYLLES USED = 254.00 2 UTILIZATION = OeS5%

AVERAGE RESOURCES USEU PER TIME STEP = l1e49 MAXIMUM = 4

. 75

.

L SQRT(4) VARIED PRCCESSCR TIMES
TCTAL PROCESSOR RESOQURCE USAGE

1444

L 2:4W3:4 KH4

Gi HuM

SHIN

L 6:H# Co.
TH

8:#

L 9:410:44

L1sh# |

12:44

{ 13:44
14:4

15:#

16:#

| 174%
18:#

19:#

L 20: #21 #4 -

22:#

| 23:4

| 24 #
25:#

26:#

| 27:428:#

29:#

30H

L 31:4432H

33:4

| 34:H

L 35: #
36: # | |
37:4 |

L) 38: 439: # |
GG SH

41:4

§ : 42 #4
43:4

: L442 Hf |
45: # |

L 46: #
4TH

48: # |

L 4914 |50:4# |

512448 |
S52 sHHKM |

L SIs HNN
S4:HHN

55: ##

L 56: # :57:#

| 13

|

58: # |

59:#4

6Q HH

bls Uih#

G2IHHRHRA
ERLE

64:#

65:#

66: ## a.
6TH | |

68: # :

69:#

TO#

Tl:#

T2:#

+ 73:4

Taz:#

T5:#4

T6:#

TT#

78s # |
- TO:¥

8D:#4

gl :# -

82:#

83:#4

B84:#

BS: 4#

RE H##

BT:dK#

BRIHHHK

BI:4 iH

90: 4 4 |

91:4 |
Q2:# .

93: 4 |
94 : #4 .
95:4#4

O64 H#N

QT HRMN

‘ 98: 4H |
gos#

100:#

101: 4#

102: #

. 103:#

| 104: #

105: #4 |
106:#

107:#4

108:#

109: # -
110:#

111: # | | |
112:#

113:#4

114:%

115: #4 . -
116:#

117:#

Th

!

L 118: #4119:#

120: 44

12124 k#

L 122: 44%123 :4 4k >

1244##

125: 44%

L 126: # SE
127:4

| 128: # |

L 129: 413044

131cd 4u#

3 132: 0K#

{ 133: 44
134: 4

135:#4

L 136: 4#i 137:4

138: #4 |
139:#

| 140: #141: #4 ~
142: #

143:4

| 144: #
145:4

146:#

| 147: #148:4

149:4

150:#

| 151: #4
152: 4)
153:#

| 154: 4 |

| 15S: 4#
156: #44

LST: 4 4# .

| : 158: ##4159:4 ##

1604#4

161 :#

| 162: #
163:#

164: 4 |

| 165: 4#166: HHHlH |
167: H4HK

168: 4#

L 169: #
170: #
171 s## |

| 172:#

L 173: #
174:4

175: 4 .)

| 176: 4%177:4

75

i

178: 4 | |

179:4

180:#4

181: # |

182:#

183:4

184: 4 |

185:#

186: 4# Co.
187:#

188: # |

189: #4 |
190: 4#

191444

. 19224/#
193: #A#

194:4 iH

165 #4

196:#4

197: #

1982 # |

199:#

2004 #¥ N
201s Hui#H

2024

203: 4 ’

2N4

. 205:

TOTAL RESOURCE CYCLES USED = 308,00 TT UTILIZATION = Debé

AVERAGE RESOURCES USEC PER TIME STEP = 1.50 MAXIMUM = 4

| SQRT (5) VARIED PRCCESSCR TIMES
TOTAL PROCESSCR RESOURCE USAGE

1 sH¥H

- 2244IHRM

G SHAH

r StiN#

| 64H .
T:# |

8: # |

9H

_ 10s 4W |
11:44

or 12: 4#
Fi 13:44
— 14:#

15:4

16: #

. 17:4
18: # | |

: 19:4

8 20 #421H ~

22H :

23:4

LL 243 4
25:#

: : 26:4

| 27: 4
- 28:#

29:#

| INH

_ 31:44
: 32:4

33:4

34: 4 |

- 35:4

36:4

37:4

) 38: # |

— 39:#4

| 40:4
| 41 :#

- 42:4
: 43:4

: 442 H |

45:#

— 463#
GT4

oo 48:#
- 49: #4 |

50:4 # | |

S1:4d# |
B2 :HKN |

— S34 i# |

~ | S4:RIHM

| 552 4# : ’
_ S63#

57 :#
71

a . |

[. x

. .

od pt pd pt pd ph fod Dd pad od pd pd Pot fd pt ph pd pest

66 45 60 06 80 96 06 50 OF ob 6b O00 Us 00 05 06 6 08 OF G8 60 66 06 Ue 65 06 Se 00 ss 0 60 06 06 es 00 58 44 SC 6 6D G6 60 BE 64 00 0 GF G0 00 go G0 BF G8 S0 6 G6 68 ob Oe WO

x I WR x= TW r xn x NH >=
x ® x rR >

»x $x

-

(@o)

i

=

Lo

g 118: #
119:4

{ 120: 44

L 121444
122: #44

1234 4#

| 12424 4K)
— 125: it#4 oo

126: # |

: 127:4

u 128: # |129:#4

13D sH##

” 131 cs 44H HM
So 1324844

~ 13344
134:4

135:#

L 136: 44
137: 4 |

, 138: #4 |

139:4# :
- 140: # -

141:#

1 142 : #

| 143: 4
| 145: # |
Co | 146:4

| 147:4

| — 148:4#
149: #

150:#

he 151 ¢#
| 152:#

: 153: #
154:#

— 155:4 #
156:4 #4

. 157: 444
158: 4 #4

— 159:4 wk
160 :4#

| 161:#
- 162:#

16324
| 164: #

165: 44 |

— 166 HHMR

16T:s HARK

168: 44

169:#

— 170:4

171 4%

; 172:4
- 173: #4 |

1744

175: #]
176:4

— 177:#

| 79

—

178: 4 |

179:#4

180: #4 |
181: # |

182: #%
183:#4

184:#

| 186: # | | |
186: # I

187: # | | |

188:#

189:#

| 1904#

191s 44H

; 192:4 ¥#

193: 444 .
194: 444

195: ##

196:#

197: #
198: # | |

199:#

200: 44 ~ |
CCLH UMN

202: # |

PA ERE |
204:

2065:

TOTAL RESOURCE CYCLES USED = 308,00 2 UTILIZATION = Qe 64%

AVERAGE RESOURCES USED PER TIME STEP = 1.5Q MAXIMUM = 4 |

‘ 80

L SWRT (10) VARIED PRUCESSUR TIMES |TOTAL PROCESSUR RESGURCE USAGE

Ls: ##u
Bi 23h#

1 XE 1.1
4 HRR |

g 52 HHk
Cd bik
1a 7:4 Co -
| 8: # | |

i 93 #| 10: ##

Re 11:##
12: #4

| 132 ##i 14:0
15: # |

wr 16: #
| 17: #
Ne 18: # |
| : 19:#
1 20: #
Ht 21: #
| 22: # = |
|, 23:#

| u 243 #
| 25: 4
| 26: #

- 27s # | oo
| » 283 #
| 29: # |
lL 30:4
. 31:44
ne 32:4
| 33:#

. 34:435:#

| - 36: #
| 37:4
CC . 38:#
Ce 39:#
| 403 # | |

- 41:#
oo 423#
Ce : 43: # |
| : 4434

45 3 # |

a. bos # |
| 47: # |

48%#

- 49:#
- 503 ##

| S51: H#N
. 52: HHH
Cy S33 HH
— S43 HRN
| 553 h#

- S6:# -

. 57:#

|

58:#
59: # | |

60: ##k | |
6ls H#nk

62: HMHN

63:##

04:#

65: # | |

66 RHA | Co.
6leu

63:#

69:#

710:#

TL:#

72:#

to 73: #

14 2: #4
752#

76:#

17:4

78:#
719:#%

80: # |
Bl: # ~.

823M

83: #4 |
84s#

852 ## |
S36: ##R

RT: daha

38: #HM# |
894M

90: KH

9l:#

2M

93#

4:#

PLEX

962 Hithn

QT SH MBH

i 983 KM

993 #

100:#

C101 :HM

102:#

© 103:# |
104: # |

105:#

106:#

107:#

103:#

109:

110: # oo
1112 # |

112:4%

113: 4 ‘

114:#

115: # ’

l1lo:#

117:#

82

L 118: # | |119:4

1202 #4

121: K#R

| 122: 484123: #4m

| 124: #utH

| | 125: ##|| 126: # Co.
127:#4

. 128:#
129:#

L 130: #4
131:Wnus

Coq Lo2s#nitk So

HE 133: 44 |
| 135: # |

| 136: ##
138:#

| . 13934
| L 140: &141 :# —

142:4

r 143:#

Lo 144: #
145:#

l46:#

. 167: #148: # oo

149: #4 |
150: #

! 151:4
- 152:#

153:4

154: #%
155: ##

h L562: ##it
LST: din

. L588: #44

I. 159: #hn
160: ## |
lol:#4

: 162:4

— Lo3:4
164: # |

: LoS s## |

- Leos #kni |
LOT: whup

, lod: #sy

169: 4

- 170: & |

171 sn

L72:4

; 173:#
ht 174:4

| 175:#
| 176: 4 |
- 177:4

83

— |

oo]

17834 | |
: 179: # |

180:#

181: # |
182: #

183:#

, 134:#

185:#

186: #

187: # Lo

188: # |

189: # |
190: 4##

19) inp

192: ### Co |

a LO3: ##é
1942 #i#

195: ## | |
196:#

: 197: # |

198:#

199:#

200: ##

201 shin

202: 0¥A8 |
2033 ## |

206:#

205:#

206: ##

207: # oo Co

208: #

209:#

210:#

211:#

212:#

213: # |

214:#

215: # |

216:#

217: # |

. 218:#

219:#

220: #

221 :# |

: c22#

223:#

C224#
225: 4# |

226: #it# |
22THit

228H MN

229 HNN

230: #4

231:#4 |
232: #4
233:4

2343

2353 ##]
"236: HHNR

23TsH#MN)

. a: |

[4
[238: Hi |239:#

240: # :
. 241: 44

L 242: 4y 243:#

: 244: H#
245:#

| 246: # | oo.
247:#

| 248: # |

i 249: #250:#

251:#

252:4

{ 253: # TT Bh254:#

255:#

L 2563 #257:#

258:#

259: # | N

L 260: ##261: Hith ~. |
262 *Hki#
263 4#4#

| 264: nH
265: 4# |

206:#

L 267: #268: # |
269:#

T 2TO:##

L CTLs htt
212: Hite

2T3:4%#

L 274: #275: # |
2T6: 4##

277: # |

L } 278 #
279:¥

280:#

L 281:4282:#4

- 283# |
284: # :

L 285: # |
2865 # |

287:#

L 268: #289:

290: #4 |
291: # |

\ 292: # |293:#4

294:#

. 295: k# -296: hin

29THHH

1 85

298: ##u oo
299:hk ##

300 :#4K |
301»

302:#

303:#

304: # |
305: #4 |

306: #Hith# oo | |
307: # | |

308:#

309:

310:

FTUTAL RESUURCE CYCLES USED = 470.00 2 UTILIZATION = 0.65

. AVERAGE RESUURCES USED PEK TIME STEP = le52 MAX IMUM = 4

&

|

L SORT PROGRAM .
The SORT program was written by Duane Adams. The version used for

L simulation differs from his in two respects. First, the primitive node set
| is different for certain vector (record) operations. For certain operations,

L such as length or null, one almost always wants to use the operand later, as
L well as the result of the operation. Thus, in Adams' program, length is pro-

ceeded by a two copies node, one output of which is fed into the length

1 node. Since making a copy of a vector or record is bound to be a time con-
r suming operation, in this version the primitive node length outputs both the

L length of the vector and the vector itself. Thus, there is no need to make
L a second copy of the vector. The relevant primitive nodes are shown below:

L 1 vector | vector |

ou RIL V, = length (v,) v=) = |
« then true else false

i vector 2 3 integer vector 2 3 boolean
.

¢ The second respect in which my program differs from Adams’ is that

- the procedure ROUTE SELECT was rewritten to allow for more parallelism. In
| . Adams' version, shown in Figure 3a, comparison of the first element of the two |

two records must wait until the determination of whether either record is

1 null. In mine, it proceeds simultaneously with the null check, and the
conditional output nodes (4 and 5 in figure 3a) is moved to the bottom

- of the graph. This has the disadvantage that the procedure may take the

1 first of a null record, which works in my implementation but gives a mean-
ingless result. The result of a meaningless comparison is never output, |

} however, and the procedure works much faster for the common case where
neither record is null (6 cycles vs. 11 cycles).

g

PROCEDURE: SORT PROGRAM SORT

'BRANCH

ROUTE

CL

a)

Fig. 22

| 88

L PROCEDURE: MERGE 1 PROGRAM: SORT D
null. null. .

(re) rf
3

L .
UNBRACK UNBRACK

L U
u | L 4

L o 1

[| L
L

: af yD
__¥on) amROUTE BRANCH

[9 \ ROUTE

\ 8 6

L I<

(| | 11

| Fig. 23 »
89 |

| PROCEDURE: ROUTE SELECT PROGRAM: SORT

of ()
:

. i2

(~J
| / 13

| ’ Fig. 24 oo

90 | g

|

PROCEDURE: ROUTE SELECT PROGRAM: SORT

| ADAMS' VERSION

) (=)
| |

SROUTE

- ()
| - J)(re 10

| O-

L (2)

] OT
oof

|-—

- (=)

. © ©.
1

18

i.

ol |

-

i TT

Since the only data type implemented in the simulator is floating

point, a record is identical to a vector. A file is just a vector each

of whose elements is a record (vector). If a file contains m records |

each of length n, its representation is identical to that of an m by n

matrix. oo

Variation of kxecution Time with File Size

~ The processor usage for sorts of various length files are shown.

: The sort program can be considered as having two parts, the first of
~ which recursively splits the file into subfiles, and the second of which

merges the subflies together again. The merge is not initiated until the

split has reached the lowest level. The number of stages required to split

the original file into subfiles of length 1 is equal to [log nl, where n is
the number of records in the file. There will then be a similar number of

: merge stages. at each of which the subfiles are merged pairwise. The time |

taken by the merge procedure to merge two files of length ny and n, respec~

tively will be proportional to ny + n, since each comparison results in one

‘record being put on the output edge and there are n, + n, records in the
cutput file. Since the merging of a subfile pair at any stage proceeds

in parallel with that of all other pairs at the same stage, the time for |

) each merge stage is determined by the length of the longest subfile pro-

duced by this stage. The total merge time is the sum of the times taken by

each stage, and will thus be proportional to the sum of the lengths of the
longest file produced at each stage. The last stage produces one file of

length n, the next-to-last stage produces the longest of the two inputs to the

the last stage, i.e. a file of length [n/21, the stage before that a file of

length [n/41 etc. The time to merge is thus proportional to

[log.n1 =1 |
n+ [n/2 + n/bl +...42 = ye (n/2%]

; i=0

pr

y If we then write time taken by the sort as T= const. + tg + to

L where t is the time to split the file into subfiles and t the time toS

| merge the subfiles, then we have
log," i

; = + +LC (1) T =k, k,[log,n] k, Ly [n/2]

iL When n is a power of 2, n = ot the series in the last term is equal to
{ 2n-2, i.e.

1 [log 2M] -1 m=1 :
| 2 mai _ i_ ml 5 _ _. Zo emt = goem/2t = 2 2 = on - 2

| + __ a _ + —Giving T = k_ + k; log,n k,(2n 2)

| Oth 1i erwise

| log.n]log. .ni|-1 .

— on-2 < 3° [n/2%] < 2n + [log.nl - 2
i=0 - 2

|

-

The. right side follows from

- [log ni-1 i [log nl-1 i [log nl-1 i [log nl-1
< + =Zo [m/l <0 LZ] (n/27+1) Io (meh) + 30 1

i

—

| : [1log,nl-1 9
¢ =

; 120 (1/27) + [log nl
(-

I EEE ail BRN
— 1-(1/2) So

(|: _,llog, nl

— =n SE —=r2 + [log nl
| 2 ~O8

-

| | 93

—

| my |

_ (plogyn-llogonly logon] oy N [log,n]

-

<peplOB2R _ oy [log,nl since otogon - llogpn] <1

=2n - 2 + [log nl

: The sort program was run for files of length 3,L,5,A,7 with all processor

types executing in one cycle. The resulting elapsed times fit EQN 1 exactly

with k,=5, k;=19, and k,=13. |

TABLE 3

[log nl-1 i
N [log,n] Zo [n/27 1 T CALCULATED T OBSERVED

3 2 5 5+38+65=108 108

4 2 6 5+38+78=121 121

p 3 10 5+5T+130=192 192

6 3 11 S+57+143=205 205

7 3 13 5+57+169=231 231

9 4 19 5+75+24T=328 328

. The time taken by this sort is independent of the original order of the

records in the file since neither the number of subfiles produced nor the

number of comparisons required to merge two files depends on the contents of

the records.

ht

- |

| SORT~ 3 Record File |

- TOTAL PROCESSCR RESCURCE USAGE
1: #

2:4 I

\ 3:4 }
|. G3 HH |

5H

biHHHA

THAH#K

— BsH#H#
CEEYT ITY

10 HEAH oo
ES BRE T1113,

k — 12: 44% ##
13H&% HH

! las iAnttiti#
| 15: HE4##

~— 16: HEH |
174444

: 18: /h##44 :
19:444

~~ Ne hdN ~
21: Hin Rn

: 22H NYERER
23 HuBUAH
24 hHAHR &

26s HHH 4 #

26 HHH ,
{ 2T iu #4

= 28: HHH Co
| 29: HHH#

ZOHHARUY

: IL HURRAY

= 32: HMR | | |
LERS 3.3
34 HHHAH

— ISL HUBEARY
36: HHH

BT HUHUA

;) 3B HANAN
— (CREST

HOT HEH

Gls His

L2H HAH

— GI THHAHAH |
: Gh4 HUH H | |

4S THRE H## |
| 46H |
- GTI HAKHY

LB SHHEHRHKRY

| GOTRURRUH

| S50: HUH H#
fe ST s#A##H#

SRI HHRHH

S3hHE

54:4#

— 56 3 ##

563 # |

57s #A# ;

SB #HH
|S—

Fig. 26a

| 95
S—

SA: HHH |

6C LHR

6liH44KH

62 SHARK RHY | oo | |

ERE EEX ¥ oo |
64 HAs H

LEE ELE |

REE 1; _
67:84 |

68:44

| 69: 44H | |
[GSRE:2 12 3 |
Tl: HARRY |
T2 sii |

! T3244 p
| T4144 |

THs HAddS¥ |

THSHER GH
TT:H44%

TAY is

TOI HHH |

RO: ## _ |
BlsH# | |
B22: Hid |
CERES TXT |
BH HHA HH

R534 #4
BO: 4##

B7:444%

BOs hain

BITHNIHAY
ANT HUN H# |
Il 2 HA}Y

SYS¥ TT
93:44 | |

Q4: db | | |
6: HHH | |
Q6 HRW

OT:R44Y |
QR: HY 4H |

QQ si## |
132: 4444

10) cdHuugd
172: 84444
173 4H # |

104 hKu#H

10S: &##¥ oo
106 #4 |

107:#4

108: #4

1573: |

119: | |
TOTAL RESOURCE CYCLES USED = 423 FT UTILIZATION = 1
AVERAGE RESOURCES USFLC PER TIME STEP = 4 MAXIMUM = T |

9% :

|

be

: SORT - U4 Record File

— TOTAL PROCESSOR RESOURCE USAGE
1:#

2:#

3: 4 a.
— LIU

Ss#

63 HEH
! Thies

— Bs HREM
Is KHARNEN |

BR LOs Hin#

aa LL: #uARERARRS
Ha L2: HAHA NERRAN

| L3SKHHARBANRIR

\ Laz hubikuibtdnidd »

" LS: kth btiv iid
16 8u#nd

L7:6habdnhi

LBs hhanbnnk |

- CHITTY 111.
2D HEHARRAW :

ARRY11111111 EE :

| 22 HARRARARERERRE

- D3ASHAHBHHNBRANR
24fibhhbh iin

2H Runhnkai

20: hURHAHAN

2TIHRARARN

2B HUAN HH Co

| 2OSHHNRMRREH
IOS HHRBUARRHEGH

- JL:AHHRRRBREHR
YEE 11331131

Co 33 RNHAEH
34 HNRHHUBHUN

- 35: HARA KRARRARER
36S HhRABKRRREHRR

IT: hanUARBANN |

. 38 HRENHRERIRK

~— ZV Hh RRBHIH

GUS hh it#

| GlIHEdHEY
G2 HBRHESRH#

— GIIRAKRRKAHRRR Y

: Gaz HURRHNENERE

| | AS: RERB HARRI
YEE YIY1Y |

— GT HARRHRARHEY

GBLHAUMEHBHBRABRAE »

: GO HRRRARRARAAN

| SCRINBHEBBER

- S12 hu hRAHBEH

SQ HERBUNRH |

SIHAEBKEM
S54: hEk#

~— SSeHHRA |
SG: H#

| ST: Hik j
S58: kk

- |

Fig. 26b
|

97
Ses

|

SY HER | |
60k HR

6ls#HRriM

YEE X1XX1. |
632 H#REH

AGHA

65: #hn# |

66 RAR

6Ts## | Co.

683#H#%

69: H¥H

TO HERNH |

Tl hinun

T22H##M

T3s HH

1 Tas HENHK
TS HERA RE

TOS #HKAN | |

. TT: Huns

T8sAMkH |

TO: #hk
80: ##

S8lith

B2:H##k ~.
B33 HMNNS

BL HHi#M |
85: HENNE

86: 4M

BT:ub#k

BB: RRHAERS

BO HANNE |

QO HHH

| IL: kuin |
92: hihn |
93: HH |

94 HR |

OSs Huh

YO HENHH |

CRE Y TTX |
QB::nik |

CT 99: 4H

10D: wits

1012 ARunnd

102: nntint

103: nitph

104: Bni#

1052 nH |

106s k#

ICT nd | |
1B: un |

109: HMM

110: 8404

111sinan

112: 4k |

113:dki4n

114s nung

11S #ifnH

L16:in#p ’

11T7:hieN | |
118: 4a »

98

— 121: 4
122:

123: |

| TOTAL RESOURCE CYCLES USED = 678 2 UTILIZATION = 2

AVERAGE RESCGURCES USED PER TIME STEP = 6 MAXIMUM = 14

-

\
-

t
- -

- |

I. R

—

—

SORT - € Record File

\.
TOTAL PROCESSOR RESOURCE USAGE

1: # |

2:4

3:4 a

Lik¥

53H

3111 |

THAN

BsHNNM

Qs HHHMHH

: LO Huns
; SRS 113123312,

| 12: HNRARNNENN

L3sHUNERNNENAN

. ICR XI 1131111.

| 1S HARNURERNN

LEHUREENENNNRRNN
ONT HHREUNS RNR

CR 212123732221.
LOCHRNHENNNKNNERENN |

2VNANSHNHRUBNY .
2LHNRNANNY

22: NMRAIN

EEXYI I11221

24 HNNNRRAUNN

25 HNNUNBENMN

26: HURUARUNNNNE

QT HANBERNENNNAUIRN

: 28 HBNRUNANNNNNRS
29: KNBRURNRENNY

| SO:HNNBUNRNNNAN

BL HNUANNRENAN

32:HHNNRNNN

I HNRMNRAN

34: HRURNRRINY

ELYE III11382%111

XE213313221331,

STSHNRRARANANY |
- IB HMNNRERH

IO HNNMNNNNENUN

QOHUNRANNNNMARRNNN |
GLIHUNRERNNANRNRY

ES 3111213 828],
GINUKNRRNNANNE |

GOzHNNNNRRNNN

GS HERRRERN |

INS2231213111 |
GTHNRNNENRAN
GRINNNBURENENRNNS
LOSHNUNRNNRUNNENY

SO: HNNRHANANINN
SLsMNRMRREM

S2:HNNNNARUNNAN

SAHEMENNRNNNRENENS |
SLIUHNURKRURUNNNNER

SSHRNNRANANIIN

SOIHNNRANRANNUN

STI HUMHANRRNN ’
SBuNNNURHN

Fig. 26¢

OQ

L SOs HH¥NAHR60: HHHANY

61 :HHBH#

62: HHHAHRHAY

| 63HANABE AY
SEET TIEYY.

| 65: HUHHBERH |

| COI HNRRRUABUHEET: HUUANEAARNIHBE oo

CB IHHUABAABURAS

CO RHUAUAAAESY

L TO: HHRHURRHBHE
TL:HUBRRBRY

| T2:4ANEHE

{ TI: HHMU#HTG HRUHUBRH

TS HUBARBHAHBY

TO HUBHBRRAHH

L TT: HRHARARREH
TS: 4BHHIY |
TQ HAMRHERAH

BO: HUHARHARRARADH |

L BL:WNHARANRYANS |
B2 HANSA RHNRH |

BIHAURAABNAH

L Blt hHNARN HH8S HHEHAH

BOHHUMNANY |
BT: HURRUARH

L BB HNRRUHAHALHH
BOIHNHAAHARUARN

QO HMHANR#H

L OL: HHKHUM |QO HNKNAANNNH |

GI HARBHURNBHARNY |

QU RUNBHURBHUAY

| IS I HANHHHABEYQb: HHUKHHAHHHN |
QT: HARRUNHAN

) QB HHH HHH |
QOIHHEAUHMH

LOD: HAMANN EN

LOL SHAKHBARUNREN |

L LOZ HHBHABENBARYCLO: HRNRREES

CO10G HERR B#H

LOS: HUERHHNNIN

L LOG HHAUBRANNNRSNY
LOT HHAREANRUHIAN

LOB HUNHRBBHAY |

L LOG: HNRHUNRAAN |M10: RUHHEHRNAN
L11 cHAMRHH

: 112: #488

| 113: HAHN
lla: 4%

115: #44

L 116: ### y117: R44

118: # 4H

. 101

| |

119:# #44

L200:# kk HNN

L21 shun ik |

122 4444

| 123: uA 4

1242 #4H4 |
125: 44 -

126: %# CT |
127: # 4H |

123: Huuuu

129: KRG HH

13DcH HH

131: 44

1324444

i 133 8NNRAN
BEYSEIIXT

135: ian

136:4#KMH

137: #4

138: ##

139: 44

14C HH #M : |
| Lael sHHuNN -

BYYEE ITY |
1434MH H

1445 44

L4S Huh 4

lab: H8uunN

laT:Rl MY

L481 Hiu#H :

L4Q: Hal |
150s uk

151s #4

152: 4#

153: H4k4

LS4 suki

155:# ing

156: #Kk#

157:##

158: 484%

) 159: Mu sny |
160: HMNMH |

LoL Hung

L662 sHMkH |
163 HEN
. 16444

165: 44 |

166: ¥a¥ |

16T Hkh kH

6B: #NN#N

16Fs#kk

17D: 4K

1T1sHR4R Co

LT2:HH0MNN

173z#nuul

174: #4K4

17S:W#44

176: 644

17744 ’

178: 44

| 102

|

L : | | :
oo | »

| | |
IL | |

| 179: ### |
| 1BOSH#MAN |{ 181: #N##H |182 s### |

| 183 : #4 oo

L 184: #444 oo| 185: HMNNRN ” |
| 186: Hk ## |

| 187: H#NH | |
| 188: ##KH]
— 189: #4

190 s ## |

I 191 s## | »
He 192: #4#
| 193 ##N##

194: Hi#H

A 195: #4 oo }
1a 196: ##

197: kkk # | |

! 198: NNR ARH
|} 199: H##NNM

“ 200: HHH # - |
2012 H¥4¥

| 202: H## |1 203: #4 :
i 204: # |205: #

B 206:
I. 207:

TOTAL RESOURCE CYCLES USED = 1400 % UTILIZATION = 2

’ AVERAGE RESOURCES USED PER TIME STEP = 7 MAXIMUM = 16
.

I
- |

Bb : |
~

’

|
| . |

|!

| | |
KE h
tL

pe |

~
! | 103 |
-

SORT - 7 Record File

TOTAL PROCESSOR RESOURCE USAGE |

124%

2:4

3:4

SE 3

5:#%

XE 233: Co - |
TS HERES |
8SHNNHK

CRE ¥ 3333 :
10: ##4N

LLs##RRERENNS

L222 HEMANRERKN

. LAS HERURINERN
LA HBANNEUNBHERANY

1S HENHUNRKAN

LOS HHNNERNNRHR ENMRHN

TLTS RARE RRB B RUAN N |

LES HHNNHANRUGRNNENHN
| LORMAN KERRRHNBRABAERANRARH

QO: HNN UNRRARNBRAREN oo
CLE HRENRRRHUANY |
22S HUNERBRUNABAAN .
LIAS HHNUHNNMEUNRBRUY

SRZHRUERERNERARRS | |
COS HHANRRURBRRRSANM

QO HUNBRUANRRARUEREN

: YEAR 111X323 31323333%;

COS HURUMRREHNBERANERERN

COS HURRUNRRRRERIERERE

BOSHUEHHNRENBENRRHNNN | | |
BL RUHARRURRGBRARY

J2:HNERHNNNRUN

OBI HRRMAURERRA

BLAHMHEARRUREANNREN

BOC HENRENNERARREERUNSES

BOC HNURNMNGHENUNBNINAN
ITS HRNRUNANRENRURN

BB HUNHKERULHRN

- BOC HNNBRANTBERNNRRNAY
QOSHREUNNRNANBNNENNNNNNNSN
GLEHHRERNRRRABHRARER E
L2SHHNNNENRAERANEREY

QASHRNMNUNNNARNBREIN

Gaz HNINNNSENLEERAN

GOS HNANNRRANEY

LOESHRENNRAERRN | |
LT: HNRRANNHEBER IH |
LOI HHBRABERABHNSRRARRIS
GAS RNRNHNRSHERRERENEH

SO: NWRENNNUEREBUNNAE
SLEENRANRERREN

S2: NUHNNNBRANAUREAAN

S3SHRAHNIREIRHBURNRR ER BERNY
SGI HRUNERNEREANBRUAANNN

SOL RERRRURRHBAERURAN

SOLHMHBANENENRENGHAN

STL REBNHHBRHRHERNH -
SO: HNARKNUNNRYE

104

|

| | |

| SO: HERENY
60: HUMKHANHA

- SLI HMMHH
62 RUBHNRIN |

L 63 HRURRELH
| O4 HRRUANBE |
| O65: RANA HAH

COI HUNNRUBRH

OT: HUNKNNRANRARAR oo oT |

EB HNERRNEURANRH
| COL HNNEHRHUAHY

L TO HERKRAHH HH || TLE HNHEANRHA

| T2: REGHEH |

: 13: kHRRAH
5 Taz RERHRERH

- TSI RBRHANERRERH
TO HHRHANBR URN |

L TT #ERERRRRYTO: HM HH

TO: HHARNANN HH |

f BOSHUHNURUBHBRBAY |

L BL: RNREAUAAARRY
| VAR 1231333311
| BI HNAURRENRH | |

| Bus HEAURRHR
- 85: HNNHUN |

BOT HMHH AH

| STS RHRNANRNLC SO HURNURUMRERA
| SIT HMENKNNSHAH

QO: HHNNRNHHH

f QL: HHAHHHY

I. G2 RANHHHRAHY |
| OI HUHBRRHBRHRBHH
y Qu RERHHHBAARANY
} ISS HNNHNNKRHN
“ 6: HHARENNHEAY

QT: HERKUEY

i) QB: HMHHHN
g QO: HMR HH

| LOO: HANK HR NH
J LOL: HHNGNNRNRHHUN
| | LO HHNRHRHRANE

— LOB: HERNUNHEH
| : LOG HMEHNHN
| LOS: HNRRABEE RE

L LOGS HRNRFMMEHBHIAN |
LOT: HNRERNNBHRY

] LOB HERR URGHIH
| LOO: HHRRANMEHHY
— LIO: ##AHBRAN |
| L1L: MMH EH

’ LIZ: #uih# |
1 L13: HNNHAN
~ Llas #HNREHN
| 11S: #uM#NN

i 116: #u## : |
L1T7:H#N

118: HNMHH
105

{

~

|

L199: SH ENNERH
120: #¥EN KR | |
L221: #R##

L222 #MNH

123: #in#
124: #445 |
1252 ## :

126: ##

127: # | .
128: ###

L299: ### |
130: ##4#4 | |
L31s ###

132s HKun

L333: HENS

134: KUNE # | oo
L355: ###4

136: ##4¥

- 137: #4

138: ## oo : |

C139##

140: ##4 :

141 kRui# |

142: ¥WNNE | |
143: #44

144: ##

145: ##uN

LaG HMHHRN

: LaT H#AEHN

Lad: HMiN

| L4O nn
150: ###

151: ## |

152: ##% |
L533: ##4

Lo4: H#M4#

LOS: ###NH |

156: ###

LOT ##

158: ###n

i L599: #MuNis

LOo0 #H#N#

L612 #¥n¥

LO 2:HMRH |
163: MH

© 164: ##
L653 ##

166: ### |

LOT: ¥u#nn

LOB: #¥#MH

L699: ##¥

LTO: ## |

L711: ##4N

LT2: HEN #4

L733 HAN :
174: MH

LTS: ####

176: #¥## -
L777: ##
178: ## |

106

| | :
i pe

L L179: ###180: HEHRH

| 181s HNN
| L822: HMW#

L | 183: ##| 184: HHt#H
| LBS: HER EH |

L LBO HHu#EH187: hit oo

188: ##n# |

| 189:# aH

L 190: ##
191: ## |

| 192: 4##4

{ 193: #nps#194: ###H

| 195: #### |
¥ 196: ## |

1 197: HHH
| L198: KMHNIA

199: HEHE #4

L 200: #H## | | || 201: H¥u# _
| 202 ###
| 203: ##

L 204: ##
| 205: #44
| | 2006: HEHKHH

1 207: KiuH| 208: ##un
| 209: ##
f 210:Hit #¥
1 2L1: HURRAH

212: HANEY

213: HE#¥

L 2las H#tuH215: H##

I 216: ## |
| LT: HH

L | 2LB HAH
219: Hus H

220: HENKH

L 221: #éd- 222 H#

| 223: 4H#4u
224 H#knKUH |]

| 225: HHH #
| 226 HHH

y 227: #Eng
L 228: HHH| 229: 44

| 230: # |

| 231:41 232: |
233:

| TOTAL RESOURCE CYCLES USED = 1716 3 UTILIZATION = 3

1 AVERAGE RESOURCES USED PER TIME STEP= 7 MAXIMUM = 23 |
107

a
1

SORT - 9 Record File

TOTAL PROCESSOR RFSOURCFE 1JSAGE

1:4 |

SSH :

3: 4 a

G44 |

5:4

ER. 1.13.

TIH44N

Ss H4H4#H
JI HARYHN

LO HHHM

Eo LL: HHABKHARRHAR
12s uddiuRuing

132 HHHARUAHNN

14s RUHR UHNA RE HKNASY

h 1S HNRARNAEHN

LOCHARGHNRBIAURURRHRYHHH

- YT2UHERBUHNRBBHHRHTBARNN AYHY

1SsHSUHGHRNUBHUHBARHHERHHYH

VV HABA UNHBUH NABH REI RA ASEH HUN RY

2YSHHERINBARHABHURHHURHY HY
CYIHBUBHRHREHRGHESHHH

P2IARHNSHANEWRAL RUSH

CALHGHUNGHAR URYARUHHRHN

P2HIAHHRAURUA RUHR BY HUH

COIHAHARRURHHBHARHEY HAH

RN I22232228 3223817

STHBHRHHHUARUEHEURES BNL

CUOCHKBEIRAUNNBR ARAB RANRIR UNH
CASHGHARENARHRRYRHBA RG RA

AIIHBURRBAEHYIAHBE pUHIRGY HY

A) sh BudnHUHNHNUR NH

ROH BURR RERE BURY RB HRY HY

IVFHBaNGRARARANRARRYY

3G THANE BRERA HEAR BE HRYY

AH: UdBRAGRERRAERBERERYANH HGH

3H HSHSHHHBANANNHE SHI HI HAHA |

AT IHRGHBUBHHRUNERHAYHY

. ELE ER ET TEX EER SEY

IH HNAARGAESHR d 8

SEEN FEET EEEESEES ESSERE ERIE ELLE

BREFEZIFTESEIEIEYENE LE NEESER

GP iRARAHBIURENHERYU BEng ot

. SPE EFE IITLESSEEANE LET

GO HERBRAREYHBHUNHUUAAGH

GOSHHERBURBHUNARUHESIH BUY
GO: HENRHHRHABRAKBAREY

GT iAbHUBGHEHIHGN

GAH Halal ianligady

GAL AEANSHEHHIN HE ERA BES Y

Sled ad gh ENA SH ESHER 2H

STI hERRRREHNERHE HRY

Slut bia bhhlnbdlighibigadyd

SAL RA BHAS NEAR RRNA Hs dad hid
EEEEZTEEEEETERERT ESSERE YY

SS turn uddsunfigebdfiiynh

PSE ENTE EY EEE EES EEE EEE

STeitinnapnonbil 856484

SRMghtahd BANEN dL yd

Fig. 26e

/IO8

|

SOI HHRNARRRIHEHEHY

= srrrnnmnmnT
ClLHAURUASHEBY

E2IHHEHRARRANY
. CALHALKARA EH |

Chin HBR RAY

SST HEHBARGH

66 RHRKRRAH | . |
— ET: HHBALAB HHUA oC

GRIHRUBBAHSHUY

| EO: HARNBHRHNH

_ TO HHRHARRAKY
TL HARRBRAHHE

TO HEHRBERRNRA

i T3:HARABHRENHB The HARRARBRAH
TS: HAHBHHHBHRYY

TO: HBRBHERBHY

TT:HARHHHREH |

- TRH Hbns#H
TO HAN REREHYH

BILHUAGHEUAAHGH SY

- BLIRHARHRBAN HHH
RO2:HAu4nURTRIY

| RI: UHNERHBYY
BL sHHuRAIEHNY

- BSc HHARRREBHNYH
BOI HABHHRHUHNY

(BT: HANEARNEEH

L BATH HKARKRENGAY
SISHHARRUHRPUG

Ch EN'Y EYFYSE"

V1: 48H4H4HHH

L EERE LYS Y ERY
FI: HARRAHERY

JO HEHRUHRHUBHEH

OSs UHHAHKNHH

— INI HABYHHRHY
STI 4HRAHNRARY

: SRIHHSHABRHBIHY

L : QI: HHHAABURRY
ICO HRHRRHEANY

IEE1121232221.

| COLD HARRAHREA
. COLD HBHRHRRRE

. IDG HARARE

LNB IHHURBARENAY
: ISO URHRRBEBHERAYH
— IVT HHBGEHHAREY

INS chadll#

: 1 PHAR R HY |

L LID shoud nan
lll cH HbduEFY ub |

| VIP b4kUuuGEHY

: Lil3:Hanubabahial |
- lla:HREHNA

IB E EEE FY REERE

L164 HBRERHH ; |

| V1 7:88 K%44
— VIR: 4#patund

109

-

119: HAGA RAHHY |
120: HHRBRERUKH |

V2) sHRREUHAHN

L222 HAKKARARN

123 HA4HHBUHEN

124 HRRNEHEH

125 HHRHRHEHAY

L126 8 HHHEKAY
127: RANSHH |

128: 4k n#

129: h#HY |

122: HK#

131 :44#

1324444

; 133: hkbniH
134: 447804
135: 4444

136: #4 |

RENEE TIT

133: 4884444

139: 48a Htinn

14D: 44684

14) chit 4H ‘ |
142 t #44 # -

143: Hid

144: 444

14524444

146: 444 HRH

: 14T Huntin

148: Hund

149th4H

157 HHH HE

LO1 2H 8 unlnH

LO2 Hu #UH |

153d Mudd

154: 48484 HK

155: #444 |

156444

1957: Hi#

| 15R 4 Hig |

i LSS hain

167s HRY

161 s Hi 44

163: #4%u44

104 HHHANRH
155: H 88 4uH |

166: 44444

16T HHA HRY

168: 4444

169:yh#

170: 484

171 Huns

L724845 43H

173: HEH BRH |

174 :44%4

L175: rA#

174: #4 ;

LT7 4844884

173: HRA
110

|

L 17: 4up diVRS HHHRE

181 44kH

1R22 #4

L 133: 444 |
1R4: #iti#

1365:#HHERA

L 186: 4 HH HE167: 48/ut 7

1RI HAH

180s4H hy

L 1930: 4 RA 4HHER101: HB 414

192: 4484p

A 133 #864 K |
1 EEE ITY"
| 195: Ha# |

196s 4 #

L 197 t 4 #4199: #

123: #44

[2" Hpk |

L 21 HHH
207 tH iH - |

B MERE. ¥.1.¥:

L 24 HARKS oo205s 44nd |
206 hu H

2IT:H4H#4H

3 2IR: Huh |
209 sh # |

21): 44

: 211 Hw

L AYRLIIT
213: 48444 |

lat 4d#

. 215: 44 |216: #kH#
217 HHH RA#

. 219s Huw iH | |
- 213: 4444

220s hk #

221:4 ##

222 #4

- L223:h 4

224t HEH

{ 225 cia HA |
L | Don HUNH

227 HUH H

| P22: HH

| 229 :H#kd |
- DAN AHRHHH |

23 hRH4H

; 2321 #44
233 su kb it

(. 7234 TRH
235: 44

| 23:44 ’

L 2A Ts # hs
23s 4nuay

111

{

—

23 HER KH | oo
240sH 4 #

241 tk #

2L22H B4H

2431 HHBAAA)

244 HHH HY
24S sRHKK

246 4Hu# |
247: HUH ooo

248it#

249: 4 # |
25D Hhith

P51 shia is

2S? Hak #

. 253 HHH
- 254 tH#

255: Hip i

25H HHERRUH

C25 THNEH

2S: HHEN | |

259 tH #4 #

26D: 444

261 HEE
262 14% -

2h HHH

26646 HHS HR | |
265itn ##

266: HHH

26T 144 |
268s 4444

260HHH HRH

2THB80 AR

PTL RUKH

272: ##4#

2713: 4#4

2T4 HE

275144

2TH5:044

217: Hbnnn

. PTR: HHAY

2T0: #44 #

2RO HH

PRL HEHE

DR2 HHA HRY |
PARKER LIN I:

284 HUEY |
285 HEH |

286 HAN

287 ##

288: 44

2RQcH Hg

2A HANAN

2S) SHMBAN

292LH MH

293:4 #4

2340ch 46H

ASL HRHHAY)
296 HHAHRK |
23 T#4444

29R HAHN 112

|

i 2093s HHH300244

301 44

: LIVER 2.T: |

8 AV: HH H#H
AD4 HHH

INS HHGH |

INE 4H

| ADT EHH | Co
BIRIHUNBHY

EREREXT. 3 3

L 31C #84
311: disk |
312cH HH

{ 3134

L 314: 44
315444
316: Ahuul

. IT sHHEHBL: HERR oo

3G ##

320 HHBAH | |
L 321 HAHHHHH

R22 Hid HH =

3231 H4AnH

| 304: HEHE |325: #44

A327:#

L A288: #
323:

333:

L TOTAL RESOURCE CYCLES USED = 2512 %¥ UTILIZATINN = 3AVERAGE RESGURCFES USFD PER TIME STEP = 3 MAXIMUM = 3N

.

i 113

|

It is interesting to compare the time required for a parallel sort

with time which world be required to run the same sort sequentially. At

the oli stage of the initial process of splitting the file into subfiles,

there are pt-l files to be split. However, some of these are already of |
length 1 and thus are not split. To simplify, we consider the case where

n=o". Then

id 11 = pS = otogan=l _ JM 1 = 41 stages.
| At any given merge stage the subfile pairs must be merged sequentially, | |
and the time taken for all these merges is proportional to the sum of the

lengths of the merged subfile pairs, i.e., to the length of the original

file. Since there are log, n merge stages, the time taken merging is

. proportional to nlog,n, i.e.

Tsequential = X, + ky (n-1) + i n log,n
If we assume that the proportionality constants are the same for both |

sequentialand parallel operation we can compare times for files of

length 4, 8, and 16.

. N Tpar Tseq

L 121 166

8 LL 450

16 L8h | 1122

It should be noted “hat the assumption that the proportionality

constants are equal for sequential and parallel cases implies either that

the sequential machine has a faster cycle time or that the sequential pro-

gram is coded more effeciently, since the constants k_ LE and k, themselves

represent considerable concurrent operation.

114

0

L
Sort - Comparison of Relative Processor Speeds

L When all processor speeds were equal the time to sort a four record
| file was 121 cycles. 678 processor cycles were used. When the relative

processor speeds were varied in a ratio reflecting the speeds of correspon-

L ding operations on existing computers, the same computation took 159 cycles,
1 using a total of 807 processor cycles. In the first case the execution time

L for all processors was one cycle. In the second, the fastest processor |

i operated at one cycle while others were slower. To obtain a true comparison
of the two cases, one ought to set the execution time in the first case to

L the mean of all the execution times in the second computation. An approxi-
mation to this is obtained by averaging the execution times for each node in

L the graph program (rather than for each node executed). The sverage will be

L off by the degree to which the mean execution time of nodes executed repead-
edly weighted by number of repititions differs from the mean time for nodes |

L in the graph.
| The mean execution time of nodes in the sort program (based on pro-

_ cessor speeds used in the second case) is 1.275 cycles. It is not necessary

t . to rerun the program with all processor speeds equal to 1.275, since the same
effect can be achieved by scaling the case of all processor times = 1 cycle.

. . The equal processor speed case then gives a time of 121 x 1.275 = 15L cycles
and a total number of processor cycles used of 678 x 1.275 = 860 cycles.

_

u

L

8
115

-

Summary |

| To understand the effects of relative processor speeds we must com-

pare cases where the relative speeds of different operations vary to cases

where they are all the same. For a precise comparison we should set the

processor execution time in the second case to the weighted mean of the

execution times in the first case

: = no where LW = execution time of node niT= — _

. | alec Vn, Yn; = # times node n, 1s executed
during the computation

To simplify we make the assumption that the above mean is well approximated

by the unweighted mean .
n’eG Hy

- [25 where N = number of nodes in graph program
Certain nodes are "dummy" nodes (i.e. they never execute)

always nodes with time = 1 we exclude them in calculating Td . (in MERGE

nodes 1, 2, e.g) Then for the sort program

| = u = 1.297
Using this to scale a run where T, = 1 all n.eG we have

i

Constant Speed Varied Speed

Time 121 x 1.297 = 157 cycles 159 cycles

Total Cycles 678 x 1.297 = 879 cycles 897 cycles

This indicates that relative processor speeds are not too important.

| As a further experiment a new set of relative processor speeds ©n,)
was chosen so that the unweighted mean would be the same as for the first

set, i.e. such that]

| 116

oT

1

> TIT. _ XL. .O
L n, eG n, = n. eG n.

- However, the set o_ was such that the variance was slightly larger i.e.i

11.81 for {o_ }

7.41 for {tT}

This was done by reducing the time for A, length from two cycles to one and

- ~ increasing Vv —to three cycles to compensate for the possibility that v
| and— (route select .T7 and route select .11) were executed more often

_ | than A and length, the change was reversed, i.e.,

i As length = 3 |
ve — =1

| | The variance is 11.81 for this case also.
| For the first case the time was 156 cycles and the total processor

i cycles used was 893.

0 In the second case the computation took 162 cycles using 901 processor cycles
TABLE 4

i i TIME PROCESSOR CYCLES
157 879 Constant speed

i . 159 897 Variable speed |
156 893 Var. speed - higher var. I

| 162 901 Var. speed - higher var. II162 - 156 = 6/159 = 3.77 percent 901 - 879 = 22/990 = 2.22 percent

183 992 Var = 49.60

L 183 992 Var = 49.60
| 183 992 Var = 49.60 |
L 183 - 156 = 27/169 = 17 percent 992 - 879 = 113/936 = 12.1 percent

i 117

| x
rd
1

SORT - 4 Record File Variable Processor Speeds

TOTAL PKOCESSUR RESUURCE USAGE 5
1:w

2: # .

3H -
43H .

St#

REN

T:4

Bs kink .

QINNRE

LO: hhtkH

' 11: 44n3

122 #8un | y

lA aktnbhé

lakhs
Louwnndhbntina | |
L6s bbb RE HARRY .

LT hikntknnnnhi

LBs abitMiR

LOS nan dunink |

SUR AKSRERHRAREYR j :

21: nhbnrupnny |

22 HUBRENH |
2A hHRHRHERA

24 hhttnwitng g
2OS HautH

| 26HHHHBHKN

CT hNERRRKHY |
28 HANG RINRH

ZOE RRHUNRRGN

INH hRAEHRHHEEBRRER

Sle whkhihitnnann#

S2HARRHRRURRAAH oC
EEREEES ESTE 28

IG hHHRARRYUN

35S HNKHB RAH

36: hht hihi
BT hnhnkk

- ELERE 222 23!

39: hhnuhtnh
| MEE TTI YIEIITY

GlshhnhphARRERE
G2 hAHBBRARY

GA: hint ithn il |)
GOI hHNRAN |

45: hhnbranrinn :
GOL HRHNERR HAR

GT hBntnkninanting
G3 hhnhb HR ARRAN |

GO: HARKERR RARE

SOHN BERRARH |
SL: hhibbnnunks Co
S2: hHfkuni Nk
SAIHNRERuRUH

ShiMhhnnn

S55 hin #AH
SC6shAnrARBHN

ST: hhh hai Rnkin - |

SBLAUNNBREARKH

Fig. 27a

I] 8

i SY hhbHGHIAAY60: dh HERR

6l crua#

G2: hhbtinnntttan

_ 63 hlinbannashCLsibhiebitnd

| 65: hha tdlERR
’ bb: hhrbH hat nant

OT hHHAHRE RAR | .

— 6B: hhhabHbihun
OI HAFHERAR

THs hApbiUuB#H

i TL:hnhtink
T2: 44k #

\ IEREX ET

i T4: kh15: 484% |
T6 aH

: TT: hik

g 18: Huk :
19: hh

RO shhh

Bl:aann

L B2suhuhtn -.
B83shidguu |

' Bat hint#
BS: nit i :

BHTHhAnH |
Bl: hun

i 38: HR
L 89: #4 |

SHER E |
: Gls hid

92: Hany H

— SENET TET

GG:hhHt

GH: Khan
i SHIHHY

— GT:dunp |
IB HBAY

. GOs hipdhini

L 100 sah HH |
Il hhnas

LCP #44 %

1T3snnng

— 104: the
1C5cnhk | | |

1C 6: ##

“" LCT: ka |
108: Hn

LOQs putin

11s HREH

— 111: Huh |
112s hi# | |

: 11324
» 114: hhh

115: 44d#4

lTlOS pw tittinics .
117: hints

- 118: wit ke |

119

L192 #Huus | | |
127 hr #

1212 HER

1222 unt

| L23:h#

124:4 #4

125: HHH |

126tH #ithi

127: inp ht Co.
128: a##

| 1298nH
13N24n

131:HARN

132 nbn

~ 1333Kkpkhnn
N 134: Htntili

| 1353 hb#und

136:HHKY

EYEE TET:

138:4h4 |

139: #4

140: kk

l4l:hn N
14214R

14304844

144 Hin ht

145: wiih |

146: upu
147: th

148: #444
149: un é |

150s asttsidn

191: atu |

LS2:unnké

153: hike

1S4c nian

155: 14u

156: #44

. 157: #4

158:#

159%4

160:

161: | |
TOTAL RESOURCE CYCLES USED = 897 ¥T UTILIZATION = 2 |
AVERAGE RESCURCFES USED PER TIME STEP = 6 MAXIMUM = 14

120

,

-

: SORT - 4 Record File Variance I
}

ne. TOTAL PRROCESSUR RESOURCE USAGE
| 1: #4

Cy cid
ERE Co -

— hs#

Sc 44

: 6:#

: Te hhuk

- 32 HHH
QI RiH

i IN: HHEH |
Pl 11 2 #kd 4nd

- 12:444%
13s HURAHEHRES

LAs HEuRUBHERN

15 HHBERAHAHHH

— Los Hit linhintihh |
LT: 8HEHABHIIRAARY

1 LBsusuEHY

C CREEL LY
DVS HUBHEEHRA | |
21 HEHABRHEH

22 HHRHANKH

L 2IHHHUNNAGH
QL HHRBEBUN

| DSI RUHBHR AHN
26 HABHUSAHAY

- QT HHAUuRHBHUHARH
DRIHBARUAARKHRS

2OTEHBUYHRHBEAH

! ID HERRUREHRN
AER IT FEIT ERY |
I) SHHBREHRHHH

33: AHHH LGEY

3aHHbAGY

L ISIHURARH
36: HARRAH

ITI HARARARHHUHR

. ERREE ET EETIFTY

- IVs HBM BUHHH
GY SHARURBHN

: H1:HHndas
| LOTHHHBRURAYY

- : LASHUAHEHRBHE
GOS HHHGHRHRhREBHH

: GS THERA RRELRUH |
; LOLHRHAKRARKUKASY

—— GTHAB RAUB HOH

LAITHHHBRUGHUH

AVL hHURHBRIBY

SOB HAHNREH

- SLR dnRH

Y2: uid an

‘ SYA: 88688044
: Shshnbti SRBENYN
- SOs HHALNEREHEY

Shodanhil

ST:dH948unkH -
; SR:4H tKY
- |

Fig. 27b

I A!
-

| |

SITHRRHBHMNNY

EN HANARNBHNY

OCLERHHAKRNHRNIRNNRE

C2 RUARBRHRAURU |

OASHHHNURNNNRUN

CLIBRURHURNNY

OESSHANRBENNNAH

GOHLHHARKHRERHH
ET HBARBRAN oo.

68:HHERRNRA |

69:HH#HH
TO HHK”H
Tl ## oo

T22H#R |

T3: 44%

' TG Hhi#

TS s###

TOs HW# |

| TT:4HHKH

T8: Hui # |

TO: hHlkun#
BOS HHRBHA

Bl: HKEARK

B2:#HM#H -. |
B83: HUAN

BL shui#H

85: ##H

Bos ## :

BT HH

BE: ##H

Rs HANAN | |

QD HHUHHK

91cH AH

Q2 1 HH# .

93: 4H

QL: HME H

O55s HNN #

S66 HUNAN

OT: HHH

OB: HHA MN

y GG HNNH

10C:#uua#

101 s#itu i

102: 448

103: 44 |

10S ### |

106: #¥x HE |
107: 444K

IDB: HEH

109: #44

110: ## |

111 #44 H oT

112: #444 |

LI3:ANMENN

L114: #8AHN

L115: ##n#R

116:##4M -

117:48844 |
11834844

122

| 117 4kn |
_ 120 2 44 |

121 24%

Cl 1222 hky
Ll | 123:ih444
- 12424 40ud

125: #44 |

126: 4#4

Lo 127:4# oT
12%: wid #

: 123 un
| 13D Huit 4nd

R 131: HHH HA
1372 :044 04

i 133 :nin#
— 134: did

135 nin

136: HiH

L 13744
133: 44
1373: 4 #4
165 sHHY HH

- lal safu# ~
147 SHH it

143 Hus

LL Loh: ua |
145: 440%

I 1454 bin147: 46444

Han PEER TTEY
] 146948444 |
I 15s HH#Y |
— 151 shitn
| 152 :6#in

¥ 152: Huh
pe 154 244
| 155: #
wr 15034
» © 157:
Ae 151:
| TCTAL RESOURCE CYCLES USED = 333% UTILIZATION = 2

n AVERAGE RESIJURCES USFD PER TIME STEP = 6 MAXIMUM = 14
—

| ee

_

-
R=

123

SORT = 4 Record File Variance II

TOTAL PROCESSCR RESOURCE USAGE |
1: #

2c#

3:#

43: # a
51#

ATH

Ttid
CRE

Qinkd

10:8444

. 11 sHHukH
12Hbd hl

12: Hips

Las Hin #

: 15:4ud Auk

Lbs HAHAH

VT HBRRHABRAN

18H GHBEGHYY

19: HuRHRAGHYY

2OsHERRRUNYAY

2L HARB RARHHN

27S HUB HY RS HHH

CACHARARUHUNHARAHY Co
2LISHBRHHRERY :

2S HHH BHH

2OCHHUHRNREY

CT HKHHNRAAY

2RIHHRRIHHHY }
PAL nH UH

AVI HRHBHARY

BL RERHRHANRY

BP2LHHRRARRUAA

ERE EEE FTE IEES EY:

BLHHHRNRRENRERY

ISIHBHRLHAHERUEN

BOLRuHHHHANNAY

BT HUN HBHAH

. AHN HHRH

IAIHHHARIUY

GIS HARRAR
Glihpnnus |

G2 CHHKRERRA

: GAKRAHUANRNHRBHRA

: LOS HHUARKHRHHN |

LOT HARHUBUHHY |
GOSHHAKKHAURN oo
GTIHHURNAH

LEIHARRUHUNNNY |
GIT HBHABHANRSNA

SOLHARRUNRUNBURHY

SLHNBRARRBENAN

S2HHHHHRANNREH

VEREEIZT IFT EY

SA: hAdRIRYN

SSTRHHIERERH

SCIHERARNRH

ST2HEBHRHN ’
SRIuikdny

Fig. 27¢

| 4

|

SOs HHAUUREN |

- EN tHHRRERNRBHER

| OLHHHAERRHBHH AN |
| C2 HHNHRNENY

LL OI HARBHEAH
Gs HHHBRY |
OSs HARSHRHEHE

bo UHGRHRHARH |
- CTIHUHRHRAENKHUBHAH

EE1111Y1213%1

r COS HHHGARURHRNY

L TO HUBHBRARHRY
TLSHHRARARN

T2shuhhinbH |

3 TITHANNANHN
Lo Ta: HHRRH#E

TH: HHu#

T6 dh #

TT: HH

- 78:4 4H
TG HUH |

8D: H AEH
- BL:H#HH N

82 s#HK

, B3:ni#u

1 CBG HAHHBSIHAHAY

B86: 4HNHHY

8BT:Hun#H
| BB:IHURH

BG: HHH

) CLARE 3:3
Ql: 444

92 tH #

931 HH

O41 {iY

L 95s HHH HH
QO HHRAH

QTss HHk

i . CERE ET

| 99: ## |
INV 4nn# |
101 Hin E

| SOLVER T1111.
— 103: HHA NE

BOISE TIES

f 105: whit # |
106: #t#

— 107s # #8
) 128: 444

109: 4# |

I. 11D: 4 # |

111 44% |
112: UHHH

L13:nuté

= 114: HEY #

L15: ### J
116: 4%

- LL 7:hnb#
118: 4H4H

125 |

u

L199: R4An#HR |
120: # Hit HH | |

C121 HHH

122s H4HH :

| 123: i4#
124cH ##

125: h#4

126: ## Co.

127: 44% |
128: 4##

| 129: hhh

| 130: #Hk EH

131 44#

. 132s HHH | _
133:44 |

1344444

135: H#ik#

T1362 K4nuné

137: HHERH

138: Huntin

139: kink

140s 4 #4 - |
141: Hun

142:#4#

143: H# oo

144: 44

. laSctHhi#

146: H#uittth

147 Huu # |

14R:HEHY

149:44#

15N td #

1S) HEH H |
152: 44K #

153: #8uHday |
1S4cHiutni

155: #44 1H

- 156:u44#h

157: #44

158: ### |
159s # 4k
160: #4 |
161:#

162: 4
163:

164:

TOTAL RESOURCE CYCLES USFD = ‘901 ¥ UTILIZATION = 2

AVERAGE RESOURCES USER PER TIME STFP = 5 MAXIMUM = 14

126 |

|
i

— SORT - 4 Record File, Processor Speed Variance = 49

: TOTAL PROCESSOR RESOURCE USAGE

L:#

— 2:#

3:4 |

LI #)
S5:# 0

— 6: H#
T:#

Bi###l

QQ: HNMN

~~ 10: #K4K
Ll #uuu

; | 12: Huss
_ LI: Hunuuk

Las HHH

LS: HARBUBRHHY

| LO HANHRRINEY

LT HREBBRBHHN

. LO: HERHBURNHEH

LO: HARRHRHURHS

; 20: HHURKRRBUHRHHUN |
QL HENBRARR HRY |
22 HHREHH

23 HHUHBHRN

Is 24 KARBHNER2SHHRHHH RH

26 Kuk lbing |
i | QT: HAANBHNKY

2B HUNRUHNARY

— 29 HHNHRRHHBRAHANH
BO HHUHHBREHRHHN

BLL HERRHHREHGRE

| 2: RAAB UABREHY

ae 33 HHAHEHRHY
| BL: RURKRERY

35: HA4RARIY

L BOT HERERNAY
IT HAHRERYE

IB HAH HIRN

. 39 HARRHUIY

Lo CQO HENHAY
Ll HHBHREY |

| G2: RAARBEHE

LIT HRBHBUBSHARHY

— LL4SHEHHNBHRABE

: GST HAAR SREY H |
GOT HRREBERY

: 47 HHRHRE

— GBT HAHNERHR HE |
GOS HANRHANRRURHERY

SO: HRRHRHNRRERY

SLE HMURBNNRERER |

S2T HARE RURBHY

S3sHHARARAY |

SGI HHBHURRN |

. S55: HHMHUHEY
SOL HURHBHRS

ST: HERHAHNY)

SB: HHUEHBHY

= Fig. 27d
127

SOS HRANKNNHY |
SO HHAUMA

GL HHENREH |
YAR T1311;

C3: HHUNHUBRHNNS | i
OL HHRHANRREEN -

OS HHNHRNMAY

COS HUNHARRN |

OT HHUNHN | S-

OB: HRHNRNRRAN

COI HBHNURENREERIN

TOL HERR ANENURAN

CTL HAAR ANRRENRR |
TS HARBERUNHN

TRA HAURUNUS

Fo TG HENEHEUR

TOL HENKUHAN

TOS HUNNANEN

- TTH#HBERNRY

TO: HRRRHNRHY

TO: HERKRNAY |
BOL HH#HR#E |
Ble ##M#

B2HHWN ~.

83 H## |

B84: Hitk
85s ###

BOs HHH

BT: HAK

88H MH

SBI HHMAHN

QO #HHHIHAY

QL #H###M SE
G2: RkHnN |

3 HHH

4 HHH

OS: Hu .
96s HHH

GT: HAHN

OB #iN

N 99 ##H

100: ###4 |
101s ##

LO2:##

103: ##u#
104 #HitMH#

10S: #HKUN

106: ##H

LOT ##¥ |

108: ## |
109s ## MH oo
LIOS H#RNAN |
L11:#A4K AE Lo
L12: ##K#HN |
L133 ##N |
114s ###¥

11S: #4 # |
L162 ##4#)
L1T7H#¥

118: #u#

L119: ### | |
L 120: ###

121: ##

122: 4#

123: #i#

— L224: H#RH##
125: HHH |

126: #### |

i L27: #44 7
128: ##

129: #4## |

| 130: #EKKKN
L L3L: RARAH

132: #844 #H

x 133s H#H#

LL 134: #H#
135: ###H |
136: ##8
137: ###

- 138: ###

139 ##4 |
140: #44

lal ##

- 142: ## ~
| 1432 HHH

f l44: HRu#H

L L452 HENAN
146: #44

| L4T: ###

| 148: ##
L 149: HHH

150: #HHHa#

So 151 #Hluy

L 152: KH##H
153: #H##

154 ### |

| 1552#4 #
- 1562 ###

157: #4#

158: ###

i 159: ###

L L602 ### |
161: ##

1 162: 4#
. . 163: ##4

© 164 HURRAH

: LOS: HANK
1662 #K##H |

- 167: Hil
168: #4

LEO: ##u#

L LTO HEHMHHY
L7L: H#NNS
L72:##444

173: #AAH |

- 174: ###
175: ###

176: #n# -

LTT: #ik

wn L788: ##n
{ 129
|

-

179: ### |
180: ###

181: ##

182:4
| 183:#

184:

TOTAL RESOURCE CYCLES USED = = 992 3 UTILIZATION= 2
AVERAGE RESOURCES USED PER TIME STEP = 5 MAXIMUM = 14

| 130

B

MATRIX MULTIPLICATION PROGRAM E
L The matrix multiply program consists of eight graph procedures. The
{ program is written as a procedure to be called from another graph program.

L In the simulations which were run, a dummy procedure, whose only active node |
was the matrix multiply procedure, represented the other program.

“

| The basic algorithm used is to split off each row of the first matrix

L and to take the scalar product of this row with each column of the second m

1 matrix. Thus, if we are multiplying a m by 1 matrix by a 1 by n matrix,

L each row of the first matrix must enter into a scalar product with n co-

i lumns of the second. Furthermore, each column enters into a scalar product
m times. The procedure was written to execute with the maximum amount of

P parallelism at the expense of storage for row and column vectors. Hence,
the row vectors are each copied n times rather than being recycled after

L each multiplication. The same is done for column vectors, they are copied
| rather than looped around the graph.

— The row vectors are split off the first matrix by the first-rest node.

| The null test and not nodes provide a boolean which causes a copy of the
| second matrix to be made for each row except the last (since the rest of
1 the matrix is null for the last row). In order to provide m rather than
:) m-1 copies of the second matrix, the edge linking node 4 to node 9 ig ini-

L tialized to true. The value true thus appears m times on this edge. Each

3 . copy of the second matrix is converted from row form to column form by the
procedure COLS. At the same time n copies of the corresponding row vector

1 are produced by the procedure N COPIES. Since the n rows and columns
appear on the input edges to the scalar product procedure at the same time, |

L the n x 1 multiplications of the scalar product can be done in parallel.

| For n x n matrices then, the number of operations per step is proportional
| .

-

131 |

| MATRIX MULTIPLY (MAIN PROCEDURE) |

, U

LOOP Toop \
CONTROL CONTROL,

. | 8 |

| © 6

4

@ |
; |

2

COPIES

MATRIX

10

| | (im). |

SCALAR
PRODUCT,

| 13

Fig. 28 |

132

: 1

| :
to ne while the time to execute the procedure is proportional to n, or in

| general, to the number of rows in the first matrix.
Since both COLS and N COPIES bracket their outputs, the inputs to

L SCALAR PRODUCT are both matrices. These are unbracketed into their con-

i stituent vectors by SCALAR PRODUCT which then uses two subprocedures to
compute the scalar product of each pair of vectors. SPA unbrackets each

| vector and multiplies the elements of each pair together. The output is
bracketed to produce a vector whose elements are the products of the ele-

3 ments of the input vectors. The elements of this vector are summed by
] SPE l.e., SFA produces the vector (a> b, 8. b, 5 Cees %1,°,3) and

| 2

| SPB produces the scalar 21 25% x from this vector.
SCALAR PRODUCT invokes n copies of SPA simultaneously, once for each

| vector pair whose scalar product is to be computed. Each copy of SPA per-
forms its % multiplications in parallel. Thus, for an n by n matrix, n°

L multiplications are performed in parallel

| The procedure COLS turns a matrix stored in row form into a matrix of
columns. The input is an m by n row matrix. The subprocedure COLS 1 un-

| i brackets the matrix to form m row vectors. It then splits off the first
element of each row vector and puts it on the first output edge. The

L remainder of each vector is put on the second output edge. Bracketing orf
| the outputs produces a vector of length m on the first edge and a m by n-1

= matrix on the second edge. The matrix is recycled through COLS1 by COLS |

| until the last element is taken from each row vector. This results in no
output on the second edge of COLS1l, and thus terminates COLS with n column

L vectors of length mon its output edge. Bracketing of these vectors pro-
| duces an n by m matrix of columns.

133

L

MATRIX MULTIPLY CALLING PROCEDURE

1 2

| ho My,

} 3 | N

| Fig. 29

| SCALAR PRODUCT PROCEDURE

1 2

|

| }

’ Fig. 30 | |

[34 |

_

:
|
—

PROCEDURE SPA (FIRST. HALF OF SCALAR PRODUCT)
—-

L

|
L UNBRACK UNBRAC

L _ 1 2)

|

L

-

L 3

LL |

| Fig. 3la oo

f
A

| |

-

135

-

oo

PROCEDURE SPB (SCALAR PRODUCT SUMMATION)

LOOP

. CONTRO |

COND

| ROUTE
BRANCH

: ROUTE

| Fig. 3Ib

136

EL |

| Since the first element can be split off each row vector in parallel,

3 the execution time for COLS depends only on the number of invocations of

! COLSL and thus proportional to m, the column length.

. The procedure N COPIES produces n copies of a vector, where n is a
| parameter to the procedure. The length of time taken for its execution

= is directly proportional to n.
| The procedure TWO COPIES MATRIX is necessary since use of the

| primitive node for copying a vector on a matrix would simply produce tvo

L copies of the pointer vector whose elements point to the row vector of the
| matrix and would not duplicate the rows themselves. Since the row vectors

are duplicated in parallel, the procedure takes a fixed time independent

| of the size of the matrix. (Provided that the time to execute the primi-
tive node for two copies vector is independent of vector size).

| Simulation Results
| The matrix multiply program was run on n by n matrices ranging in
|

} size from 2 by 2 to 6 by 6. There are n multiplications required, and
: the program does n° of them at a time. This can be seen very dramatically
i in the figures 36-38 which show multiply processor usage for 2x2, 3x3, and

Lxlh matrices. Multiplication executes in one cycle so there are exactly n

| cycles during which mltiplication occurs. :

The total processor usage for the matrices on which the program was

run 1s shown in figures 39-L3. In these runs the execution time for sll

processors is one cycle. As can be seen, the time required for the pro-

gram is proportional to n, while the amount of computation per cycle

increases approximately as ©. The results of these runs are shown in

Table 5. If t is the time required for the computation, then t=k, n+k

137

PROCEDURE: COLS

U

\ L

LOOP™

T(ss)
Fig. 32

| PROCEDURE: COLS 1

|

1

COND 1),
ROUTE

Fig. 32a |

138

[

t

—

— PROCEDURE: TWO COPIES OF A MATRIX

1 | |

-

UNBRACK |

“

1

i |
_

2
\

| COPIES
{a —-

VECTOR

|

(en—

3

-

L Fig. 33

-

\ |
"

-

| 139

—

PROCEDURE: N COPIES (OF A VECTOR)

() (n)

LOOP LOOP

CONTROL CONTROL

> >

6

COND ~a/ COND)
~ \ ROUTE, \ ROUTE

9 |

2

COPIES 10

VECTOR |

140

|

[BN

3 From the times required we have k,=19,k =1k, so that the time required to |
multiply two n by n matrices is given by

A (1) t = 19n + 1k cycles |
The program was run on the same matrices with a four cycle multiplica-

. rl

— tion time and all other processors executing in onecycle. The multiplier

| and total processor use for the 3x3 matrix is shown in figures L&4 and L5.
-

The effect of four cycle multiplication on all the matrix sizes is summa-=

rized in Table 5. In this case, we can calculate the new ky and LY and

we get

- . t = 19n + 17 cycles

The value of Ky is unchanged because the n multiplication steps are

independent, i.e., the initiation of the second set of n° multiplications

1 does not depend on the termination of the first set.

In an earlier version of the matrix multiplication program, TWO COPIES

:s MATRIX used a loop control node rather than an identity node. That version

of the procedure is shown in the following graph. Since loop control is an

BN s~node, only one copy of the node can execute at a time, so that the exe-

a cution time for the procedure was proportional to the number of rows in the

|) matrix being copied. And since this procedure is in a loop whose execution

- time is proportional to n, the execution time for the earlier version of

: . the program was proportional to ne. The execution times were:

- n £ At ACt

g 2 5)

5 [23

— 4 102 25 2

| > 129 27 2
-

6 158 29 2

Nn 11

| |

which give the equation

(2) t = n° + 19n + 14 | | |
Both identity and loop control executed in one cycle; the only

difference was that the first node could execute in parallel. Equations

(1) and (2) illustrate the kind of major differences in program behavior N

4 which are brought about by essentially trivial programming changes.

142

-

= PROCEDURE: TWO COPIES OF A MATRIX

(SEQUENTIALIZED VERSION)
I .~

— UNBRACK

3 1
L

- -.

|

_

I U

| L [| Loop
— CONTROL |

. |

_

Fig. 35

a

- |

|

-

1

143

.

RESCURCE USAGE OF TYPE MATRIX MULTIPLICATION |

5: 2 X 2 MATRICES MULTIPLIER USAGE
3:

43 | -

62 |

73 |

8: .- oo

4 | |

10: |

}

12:

13:

; 14:
15:

C16

17:

18:

19:2

203

21: |

22:

23: = | |

24:

25:

26: |

27: To
28:2 |

29:

30: | _

! 31: 4448 ©
32: oo
33:

34: |
35:2

36: HHH

37: | |

38:

. 39:3

40: | |
41:
42:

43:

44:

452

46: oo
47:

48:

49:

50:

51: .

522 | ;

53:

54:

TOTAL RESCURCE CYCLES USED = 8 %2 UTILIZATION = 1 |
AVERAGE RESOURCES USED PEF TIME STEP = 0 MAXIMUM = 4

1Lk

RESUURCE USAGE CF TYPE MULTIPLY PROCESSOR USE

2: 3 X 3 MATRIX MULTIPLY
33

L 43
bo I

Os

73 3

L 32 |
9:

| 10: |

LL | 11:
12:

13:

Lo 15:
lo:

| | 17:
18:

- 193 |

21: |

- 22:3 -.
23:

(4:
| 25:

26:

| 21:
28:

| 29:

31:

| 323
- 33:

34:

35:

| 36:
317:

38 HHHARUHAN

. 39:

L 4(:
41:

| “42 |BE FETE ZEEE

— . 44:

403

- 47:
48:

GISERARHARHEY

i 50:51:

52: |

oJ 3

| 54:
55:

S503)
i 517:

_ zo:

1 145

592 N

602 |

61:

62:

O33

64: oo

65:

606:

67: | EE

6bd3 | |
69:

103

71:

72:

13:

r TOTAL RESOURCE CYCLES USED = 217 2 UTILILATIUN = 5
AVLRACE RESUURCES USED PER TIME STEP = 0 MAXIMUM = 9

146

RESUURCE USAGE UF TYPE MULTIPLY PROCESSOR USE

L b 4 X 4 MATRIX MULTIPLY

— 52

6:

LL 8B:
9:2

102:
11:

- 12:

13: |

1! 14:
g 15:

—- 16:
17:

| 18&
- 19: |

-. 2D:

zl:

- 252
24:

| 25:
L 26:

27:

: 28:3

i 29:30:

31:

32:

: | 33:

~ 34:
35:

36

_ 37:
38:

: 39%

L) 402
41:

42°: |
43:

- : 44:3 |
; 45 HRAARAB HH SH SEH 13

46:

47:2

— 48:

492

| SO: dn dns nnnniinnd
51:

Le 52:
53:

| 54:55:

SOIEBNABREHARBBNNHEA

57: ’

| 58:

. 147

| |

593 |
60:

61: |

O2:RBRRHVHRARBARARESY

63:2

64:2

65:

662

67: | a. |

68: |

69:

70:3

Tl:

12:

73:

T42

15: |

T63

AE

782 |

Rl:

82: |

83:

84: |

8612 |
RYT:

88: Co
89: |
90:

Ql:

92: |

TOTAL RESOUKCE CYCLES USED = 64 Z UTILIZATION = 3
AVEKAGE RFSUOURCES USED PER TIME STEP = 1 MAX IMUM = 16

148

| TOTAL PROCES SUR RESOURCE USAGE MATRIX MULTIPLICATION « 2 X 2 MATRICES N
8 ANY ALI PROCESSORS EXECUTE IN ONE CYCLE

3: HANH

G:uHRRH |

LL SH#H#H
OHHH

Ts hH## |

| BARARBANN IN
— 9: HHHNREHHE

LO HAHBRREHUAH

| LL AHURA HEHH#

L 122 A AH HH BH a8
13: HAHRBARBAY

Las HHRBHAREKERN H

ln 152 hHUHBK ARIELoz HARB HRA NREL

LT HuRABBERED HH

| 18: HHRRERBHH AH HEY
L LO: bAHUHNKRB RERHY

20 HHHYSHEKHBAEBH

QL HhHdHRE HERS

| 22: HHH SHRRARS

— 23: HUH HER HH
242 hHHBHEE HH

252 Huh HIikn##

L 262 AHHHHHH
QT HHAHABYHH

} 28: HHBHAN
i 29: HHH HHH |
= 30: HHBSHERNEY

| BL HAARERN RH H
¥ 32: HERA H
L IHHBHNAYRE

3G AHR IHBE BRE |

| ISAARAREHHD AERA
BOTHARAARRNIRH YY

. BT HHHS HAD HEA |
| 38HAEHHRRHH BH
¥) 39: HAHHHAB HENAN
1g GO HARANEHHRAHAN
| QL ANAH HBR ARERR H

| GI HHANSHAHRAH HH

i CLIT HURHHRH AE AE BH
| LAT HARRHRA BURY
| 4S: HHHBHBB AR |

§ LO: HHRAHRE HE |
_ LT HHUBEHR

LB: HHUNHBHNSY

| 49 HHBHHY
: 50: int

- 51% #4| 52:4 |
3 53:
| L 54:

TGTAL RESCURCE CYCLES USED = 466 % UTILIZATION = 5

AVERAGE RESOURCES USED PER TIME STEP = 9 MAXIMUM = 15

-

1k9

-

|

Lehn#

Sindh | ALL PROCESSORS EXECUTE IN ONE CYCLE
33hhh#H

GIRBHRAR

SHANK AH |

O:hif |

I&X 211 oT
SehhhnkbH

Gshhnbhtbini |
LOZ hhhunbahnhainn

LIZ ARARHRBERAERRH |
Lichhhhhhnnng

; L3tnpntininntia
Las hhhnhnhuhnhng |

| Los hnhhanhnhAnhmn
LOSANARDRARANRNNARAALH

~ LTshhhhhbhhhhhhhAARRHHHEN

LOSBahnhANRBARANARRAN

LIS hhhnhbhrkAnNAMRR HAH

COLHRNBBHARANBELARNRSHH

CLHNRBRAHBHARRRARNNHR

L2SHRRAABRAAKRANMEARAIN |
CISnbhhunnnhbhhrdanining

CHSHANRRRAANNARANAHABRARRUA

COShABRBUBDOARAARRANARRH AH |

LOSARKBAARRAOUBABARARHAHH -
CISARUBABEHDAARNUHRRRARA

QBS HhARRARAAARRANRAAA

CISARRARBARRARARAARAN

BOS haNnhhanhhnnrabani oo
SLIBARAARARNRANAAAHNNR

32 hhhahnrAANGERANNARA
S3HARANRERAARRIRHY BN
SG HURBABHRANENDH |
BSc hhanAuNnAAA

30 hhhnnnhnhhhhh

BT HRARBRHHALARRONUNNAARS

SE hhhhhahnhhrahhhbhinnnan

. 3IHhRhAANANRALANRAH
GUSHhARRABARANNNIRHEN

GLbhhhANKHRRARRAURIN |
GLIUBARNRRBBHARBANNARBRERIN

GASH hAHARRNHHNNBAARRURRAARN

GLC HAMANN ARARRANNEBRIAN

GH: RANNBHEUD RBA HEA HE

QOS hhhhhnhhbhbhhuansi

GTZARARARBHANBRARARARNRER

GB HRAAHBARNNNBARRARBUNRRNARARS
GOS HAARRAURABHBAARHARABARRARRRRBERAY

SOHBAHRHABAKANNBHARANNRHA

SL:u6abHRANBANNRRARKRNRE

SLARMARBENBIABNEADRGANHAN —
SAIHHABANRHRANBBRARARURRBEBARRARRNR |
SUS HAANRRERARRARANARANLANKNY

OOSHRANHBUNARARBAANARRHANGARANRY

SOTANIBHBRRANBEARBURESRAUNRA

ST3hhhhprnnhAbnhhihntaiin |

SUsHhhhahuRbAhbannthis

150

§ | ,
| SY hhhhhbhutbarhhanitndninn .
| OULAANBARBRAAGANIH |

CLA RnRHRRANRARANIHABHAHR

OC hhbhakahihhhnbnit

| O3ZHBAABHNANHRHA
CA hinuthhbiit

CHIH hARALkRANY

| bo hAnnnnni
Cli hbhhhnnuhiph 5
XIE REL ENE SE |
OCI HKEENRH

| | TU# Hl
11:#

123

13:

a TLTAL ReE>S>UUKCE CYCLES USED = 1114 3 UTILIZATIUN = 7

| AVERAGE RESUURCES USED PER TIME STEP = 15 MAX IMUM = 31

_

L -

L |
|

— |

-
u
|! .

§

i

.

|

fo

-

u

| 151

-

|

TOTAL PrUCESSUR RESCURCE USAGE 4 X 4 MATRIX MULTIPLICATION

SA ALL PROCESSORS EXECUTE IN ONE CYCLE
EXETER

Gr Hundt

Stvahitul

GLE HH

TH HHH

N Brand ind
‘ Qe fihti slit 4H |

102K 4ninnt #ntdisnd

Ll: HAHHGESHu SHAHN

L2H4p Hn nt

- 13:4 unt itiving
| 14s Hud dh HEBERES

1S Hub HEE RL HEB GY

LoarNHB RE HARRI #1
LT: ha SHANA HERBSBERBER

LE wad ffit HE SHH HAL HH |
1s unpubaghntinddiptotak

QUHUAUUNEAN RAH AHA RARER ¥

AREER ETT ET RII EINE TY

223HHAHHBABHL HUH HHS HAUBHB RH AH y
23 EAPBHERNEARBAHAHNARRERI RABY

GIB HB URE HE BE GBRBE BRIA HGH

2S HHURANB HE BHBARUBHRBHFHE BHR H

26 HAF HUE Rn RERBRBHHRREREHB HE #08
QT HAHRBHE RE BUHHABNRBHRRRAE HH

2 HHANHARAE HE BBUBH BABAR HH |

2VLHIA AHERN HH HABA AUARE BARBY

BOQLHHAGUHN KL HAHAHA RB BERN ARA BRAG |
BL HUNRSU BERR AB RE UAT HARE AL HRSA IRR HH

2 EHUBABR BE AHEBBALBBHBRRORENNHHAE

BASHAHHBHHRBNBUNHHBERUB HE SH BRIE

342 hABA ALB HR BHBHBHN AHS HRHEH

| 3S Huan tit b 4 RAEUAHAE RHR HE RRR
Jus Hiatt AL ROBE H ERB HBY HY

. 3ST HAHHHURI BE READ RBHHRPABABHIHA
BB: UHHE SHURE SHUR ASEH GHB SAR u HY

BOL HAKAN HAR RAAF HE ANB NBL HY |

GOS HAL RAHR AR HHBARBBREBHET

GLIHHARNREHHY SERB HAH SHH

GOIHHHBIRR HY Hrd HARE

_ LBrduadApp Hand iAR ARB GH
EE TEETERIE YENI IT RETIRES SYS EY

GO CHPBAFHB HT ARAHRANAEAAEBUG RR SHB RAB BRAWN

LOT HEF dH AEE HRAAR UB AUTRE R

GT: HH pAan HU AAARRA RHE R REA

AOL HBUBHBRRBTHH RIH HI RALH LEH

AUS HHARSH RAY SHHF RBHEFHHEPBSHHRHR BRUENP RH

SUS HUNAHARB HN SRE AGUY RE RHG HERD RBAE ABE HA RR BRIA 8

SLEAHHANRSS Br BU BHARHABHA BID HHI HIY -
S2LHHAHABUAL HH RHHBHAHHBHREN SH HHA
D3: HARAAUT Ht Br HHS AHAE ARE SUARH

SHI HERI RAB RE AH RBUHADHOH VAI RARHP HEY

SOARS SHG BHAAEASBHBEEEANARAGAR ANBRRAE HHA

SOSHUEHHERIL AH RUPE HABA HBHAB ABR HERP HEARS BRA REE RAN

STLAFRAHBRALHAHA SR ABHHB HERO ARR YE HB

SRA Hh BE HAHAHA BEBE S400 an dd

152

— a —————— \

r— fr rr rrr rr rr — rr cr rr rT r r

[]

> 4
< Z

Cr Md OLX NNNNNNOW
TEND CONTULUR LUNN NdOCOVIPOUN SSN dD LUND
hog I™ o¢ uo 28 *80 40 0d 30 44 08 8 8 50 8% 48 ve +¢ 8 8 s§ se 68 4 G8 SD 44 84 G8 48 ap V6 a4 U6 ie a
on FTC OW TE ORM WR ET RRR EE LTE R TOE YOR WHR OR BR
mx SEO OR OTE ROR Ie Bp WIN OR RR OAR ERR ERRMETRER BRERA Rp

an FOR EW OR RE RARE RFT RY EU OY ARR T|R JF [ON RR
x Wn FREE RRR EERE RE ARR AARERR EERE RERER RR
m Ea A Ne SE J JE A A ETE IE A US J J SEP CY
ww Cc EET I SEE - S NETR i ES EE: SE JET ET
Cc =® RSE J i: JE NE J ol RE - - - e
CO TRE REE CR RR REE TRE REE ERS MRR ER
x Mm WO WOW WE EW ME ow FOR TE WW ze Mp RM | Sp oe TW OW Wow Wm
@) HBRRARARATER RABE BREBR EREDAR REE gE
m 3 TEoHE WIFE de FE OTE OH OH FE Ye Fo MW FE oJ WOW OR IE WYO OW BIE
nn <£ = = 3 TOW RY OR RE ERA ECE RBERBRREERERERAR
& = ES EEE A EE EE EEE EE ETE EEE EEE EES

Cr + 3 = TRB EA ARR BBTE RRA RAEARIRA REECE RRRT mR
wm I OCH Oe HE OR TE HOCH OT on TNR WM IRR OW OR WE OR BR
mw» TOME OF OTE OTE ORE PE IE Fowe FLO oe We OTE ow OW OW OW 3 WOW
— ROR U HEHE BERET RE ERR ORR RCE EWR
C ES EEE EE ETEES SE

nw Te EOF OW OT OT TE WOVE OME OVE OR OR OWN oR OW TOME TEE WR
. mm fad TOW OR Oe HW JTW ERR HOW RTT R™R™

nm QO 3 = Wogp NE TE OM OP JW OW YE SEW HOW Nt mR
I A TOE YE FEOF OR WWW WWW oR

— | It = Io Fe WOR TER OWES WORERR
pt FOR WAERBRERBRERERRE RR ERR BR
< “®t * RAERRRARERRSE SEE Y ER
m 3% I= REX RBRREARREERARER RRR RER

SLSE 3 EEE REESE SE EE ES SEE IY
oN EEE EE. EEE ECE CE EE SEE

4 — * TOR REWERRR OR nm
Pod m0 i ERE EEE EE EX 3 3 Tt

wv Oo =: 3 PERI INN NW ER
% ILM WY ME WE WM We PW Ye IWR IE

n £3 REET RB RYERR |
ES EE EF EE EE EE EEE |

29 = * Eo RE IE |
E- EJ I FW Fe FW FET WW RE

Cc 3 E +3 Ht RRR RERRERER
yf | 3 Foe IR 3H owI

BN E+ Fk EE NE SY % 3 WR
Hr : J ® EL - EE IS

pod » ERR EE~
~~ 3 EN EE
>> ®> Rk %
sand : I* C3 3 OW

= I E-3 ER
> 2 2 x »
x Zz = 3 x: wn
pt E- D4 Eo
5. | * *» E
| 0 Fr
4 It

I

i *
»n
*

po =
J + >
~~

. -

VouWhaaoa\WMobl ppd 2O0RLUBWLWLOWLWWWENPNNNNNNNRNR FE ree r= ho
XACT POUNEFIS LN VPUOUNmDODLOETNOVPEUNFR, SOI NITNLPUNFOISILETNITVELALUNMSDS IGT NC ND WN™
0 40 ab 0 00 se CE op 68 8 we He BG. an AG. BE ob 8 8 4g 20 66 e4 PE 00 wg BG Lg 40 2 HE HB Sb ae °8 8% 4g 8 ub 2d ap ow oo 48 38 44 88 9% su BE ob su sé 48 ss 8 se se
TW RT RT RTE xT rR RRL RNE RAE ERR E RERERRER RETROFIT ERLE aT EE Worn PB
eR RW RNR RRR AERRRREHN EY RRP ER ERD RUT ORR BRE an ARR IRR TTR ORT RE RIET
BIT RETR RREBBBRRRET RETR R REY ORR RET RETR RE Rr ERY NT FRR ORES OR FRE ER ERT
FRA RIBLEIRARBFTRA RAYE SRA REAR BRL ARR REE FR ART ALR ARAN RREARERERR ARAL xR VE - oo
FER OR OB WER RoE RT RR ALR BTR AEERY RE RERR RE RERER ECE RR BRBR BER ERR aT Ra SE - 3 ®
HERR E RRB RID RY LELRRRAEARTRBBEY OR HREOC REE TORR OARR ESET AT LER E-Y 3 rT
RIBEIRO RS BRITE DWNT RRB PR RR ARRBERERR RET Ep ENR wR vw
THR ER RRR REI R OER RERERERERERRTREIR OSE TRE RE RE RES RERE SN eR OE TR ROTOR > wn
ES ELE AB BE SE EE TE RE ES TEA NE EE EE EE TE TT TT A TU IV -
BRERA RRBEAIEFRE RAAF AEARERRTERRAER2RRERTRN RARER RARRAR ER REAR RRRARAR xR x
mR OE TR RR RHR RRR RY GRR TROP WRN RH ROW PR HWY RE BET! Ow RR ER Bop
BRIN BFR RE TRE RRIT TRE ORR RBRAERER YE EWR DRT ER ERE ERT RRR ERR BRR x
HU IER RE RERFRRBBRER BERRY BRR ARRERT ERR ARERR REAR ERRBRBRIER EAR R w= B® rt
BHR IRABEIELARARERERT REAR RITRABARARRER ERI BRRARERRER FA RAR ERA R HW BRR 2a RB Eo E13 wn
THOR OR OA WAKE ORE ERB AEAEN RITE R NE CRE ERE REN RE BR OR OR ow Roem Wo HH -
TO WW HE OW WR OCR ORO OW O| OTP OR IER REN 3 IML ORR! OHO WOW OBE HN OW OW o}w ox ow oA HI oy
TR ORR REE RTR ERITREA RE CN CARE REAR RE NCATE RRA EER RRB ER rR A
FRO ROR, HORROR TT OR WRT UW NP WOR RRM CYTE RR RY ORE WRT WRN | cs
TR OH OR OR OR RVR CE RRR RETR EP UR BERREEN ORE R OEE TROT OCHK CH EWR rr
JE | J PE J SETHE EE EE SEA ES J JE ER EE A RE NE J SSE TSR Ty TE OR HR RW
FER BR BERRY OE RETRBREREY OX RR REVERT RE ROYER ROE RR OH ET WR STE SE Co
CBRE TE Sh EEL ETRE eB J SE SE A ER J I SEC SE ET STI POE SE YR = *r wn
TOR OE WOR RET ROR. oe TW IR FOR FIORE RRR OX OP SR TR Lom SJ x >
Fo WHR OR ORR OER OB KR RE OR ARH OR OR RES ETON REE ROR RR we TR Le BB Re ov
RARE AFAARABERLRARRE ARN AEAERBAEAR LAA RRR ERR RBRBREARRIEIERTRE RRR E73 mM
4 TERER BFR EAR EFNARBRAELEERAFE BREA RBRIRBRIRAREARE ARAN ARRTR TERR R 3k :
BRE RITAIARRRBRRBBR IT RRR ER CE LRR ORR RER OK ET ROE RRA RK ARR |
BRT ER BTR ARRIBA REY RARER ERE R RIFE REET RRR CR
TREE RERE ERE EE 2% TR ER BARB AERERRRDERARBEREESR ARARRT REE RR
RRR EJ SY TOWRRR ERE RR ROR ESR
TER B® TE VE RRR BEERRREREREERETEREE RRR b- *® :
polis 2 ® BCR UF TW OT WEN Je WWW} RRR ®t R y
* RR Vr Sp 3 Wo RRR RNA RRR BRR ERR
FRE Hox FERRE BREE RERE ERE RR :
2: J 7 I IH 3 ® Be JE EI EJ J -— - 3 :

ge CY VE “ Xx wR * TWH ESE EY | onri * Rw * * * ™ R IE ® ar
RRR XB 3 * JEW ER I I EH bd
WR * x ES EI 3 ER
NR =» * x * x 2 BERN
2 3 Ho ER 0

Toy on "on * I 2 S
OW 3; gn SS Ha
EE 3 * |
IH OW; *r 3 QO

SV x | 2
w= I+ EH
ou 2 n : HH

2. x Q
= =» >

EK: 3 ® = =
” ® 5
Ly * Q =
bi ="

St

% Q
 .
=

i 7

L
SOI BURAAREBUBAABRAHBBAABHESABAH BABE SH BHABHA
OG: HEBHYHBURBRREAIR RERRRBL ARAB BB HHA RBH

L OL: HHBHAURSH RHRABBBABH BHF HARB IRBA BE RIA RRAIEYC2 HRHBHBUNE BH AR IHBHBHABHH BARBER BBR RAAB HBA RU RRB RRR RHR ER #

OBIHUAHNBH RE HERRAAAREEHH BE AB ERA A RBH BHR BARBII BURR R BREA RUB HEH ARABS RRR RY

ELI HHBHRRE RE BDHHRAR BRB BBUBBIHHRR BREE SETH RB HERR NH

| OS: HHHABAN HEBER ARRHRBHE EHUB AA HABE HSH BRBHR BABAR H

COL UHBRUHE RENT HGRAL HARB EHBRABA BBB BHI BURR HE

OT HHB RUBE RR AB HHBHP AAA BAH EDA UI REHAB BB BHA RAR RI BRR

COL HHAHUERRE RBBB RIBEBNUHBR ARBAB BRBHBRHB BEAR ARBAB RAE RNB

: OO HABAUBE RE RV ESB AHBHUB HE HAA SAH BARRRE RUBBER UR BER RER AR HE RHR HABER RRR HARB #5
E TO: HAHBBRA SE RRANARBIRBRBBESHIRE BAABHRBUNNAR BA ABH HY

TL: BBHAUHBARRABHBEHTIRHBEER AR AR RAR HAP HBB BRR ABH RY

TO: HEHRREH HE HRBURP BEARER EH AARET A BURBRARRRB HAR HRB RYH

~ TA: HudB HAN SH HBHAH BERR BAH BRBIR BAB BHRB BB RBA ARBAB BBA BAP BAER BRR HN

i TO: HHUREAB HE BHAA SUBSE E HARB AAR BHA ABBA UBRAR BARREN BRA RURR BHR ARR #TSBARBHAR RH NH BRB RARBUA HARB HBR UB HBE SHE RHAR RRP BRR BUH RHR ERR RARR

. TO HHBANEE RE RBBB ABURBHARHARP AHAB BRHORBRABA RAR ARERR RBA R BR HRY

TT: hARARBH AGH BBB E RRB RRBH HAR AAA BBB HBAR URAHARA RHR HEA HAR

| TOLHARABHRE RF HP HARARE HE HBR BASHA BBR R HRB RHR AB RRB RR HERR HRYTOL HHEABHRENN HBAALRH An BRB HA SHB BA AURA HABOE ABBR RB HAS RIA BB GOR BRIE BRR BHU RBBAN

BOLHNAANAB RAAB AH GBH GHB BABAR IBY AARRAA HUB RB BE ANB HL BAUR SHIH BRA

BLIKALHBHERHBHAAH A RBH RHE HARRY RERE BARBRA BRR ARH ARR HB EH BB HSU BHAA HE

i BL HHARARH AHS HBAAHAHAL GHANA AYR BABA ERA RLR EHR LARNER ARE HAH R BRGYBA:HAAARBHAANBHAABHARAB H AHP BIE HAH HABER HRA BRA RARA BH BRB na

BL HHRUARGE HU RUSH BRAB RB EHH IR EHH AHR ER BH BU BH NB RR RB HY

BS: AHNARRABBAR BAHAR BEV BRE RAAB AARU BRAG REHAB BRB RE RAB REE BR HBB bY

BOTHARHURR REAR AV RBE ABB BHHABBBAB RABBBUBBHBRRRRRR

L BTIHHURAABR BHHBBHABR RHEE BABAR BE RAO RAAB BERR B BH RRA BARE BHAA ARE BRE
BOL ANEBRAL HE HBARBBHGHE BARBARA RARE BERS AB RY i

BOLHRARNBU HL BHABHA REBE AA BUAR ABE RB HHH RBH

QOS HHARFREE HH RH RBRUBHBHEBHHBBBHRBARA BH

LL GLI HHRBEHBHBERH BB SEAR BHO RFRA RAR ABH BHR BRERA RE HH
2: ARB R HH RH HEHE RARARHA AAT RAR BER BER #

OBI HRARA BE BHRBHRARHBHEB REHASH RHUBRHB BHU B BRR EER

! QL HRNEH AH RF BHARHN BRE BARBRA IH RARE #
OS: RHBAARHAREHBRBARAp AA Rupr #

- Ob: HHMABAR NE REBARAREEEAN BH
QT HHUA SRE RHI HABAAS HEHE RH BSR HERR

OB:HHAHHHBHE HHHERR RFRA HAY

g . OQ: HHH YH HN BA HRRI BHR BRR SH HH HHHLOO RAH SHE HH HR HHUA ABR nH BH :

LOL: HAHAHA HHRHRABHUH EY

LO2: 4ARNAIR HARKS

: INERREISFIT FEIR ETS
L LO4s EHH RHE HRHARY |

. 105: HandAdnARuttt dit

| LOG HHA IH Mn RE Hu#
| 107: ###0E HH

108: 44

— 109:4
110: |

: 111:

u TOTAL RESOURCE CYCLES USED = 3326 $ UTILIZATION = 11 |
AVERAGE RESUUKCES USED PER TIME STEP = 34 MAXIMUM = 91 :

-

|] 155

-

-

|

TUTAL FRULCESSUR REMGURCE LSALL 6 X 6 MATRIX MULTIPLICATION

IRE EX :
2: hhH

ERE. XY. Y,] =
LIRRARHBRRRR
wR NEY

OCIhbhhR a
linsh# oe

Bihhnn .

FLHRAR |
LOS hhh i |

Ll: ahk oC
12: nhu#

¢ L3thabrihng
lat hhhhhnhhin Co.
LoS ununthaRRBEHRREBRARARA

LO hHbhbaRRERHBRERH

i Liznhnnunrennaitivns |
LBs HanhRRbRHRBIARR .

~ 19 HBranEHRRH

SCs hhhhinnnd

linha hinnné

C2SHABRARBRHRRREKRBR | oC
CAIHARRAANABARREH

PUIRRERARBHAARARARRARR |
COCHRRARFARRARRHARHARERRHA |
COS RAWHURBBABRARRARRARBHARHER# or
PI HARRRRRARHRRARIHARARE

CULHURHARHRRHARRARAERR

CILSARARAARRARABBBARARARHRAURRAR)
BOS HARKHABARRARRBAGRIRR

SLIHNHNRBRBARRNHARBRERN

B25 EAPRANBURRIHABURFERIRR

B3LARFAREADRIGRRANELERR x
BL4SHURARBARRRARRBRAIRRR

ASCHURRURBRARADIARRARKBRB IH |
B3OSANRAARRAHBRAGABRIBRAKBRBARERNFH

AT HEAR ARBABRNBARRRUBRBRHRRAARRBRAKRAR
30S HAHRKABRBARBBRARBRHRARERURRY

. BYIARRBRBNBBOBHBRARRABHHARARBANRER
GOS RABUNNRBARARRRARREOHBRERKRARSA

GLE AARRKHRBARRERANERRARHANR
Q2IARRBUBARERRRBARABEHBFRRA

LAB RARBAKAAWRNBRRIRRBRANRRARRRBRA

QU: NRHRHARRRAARBRBABRRAARAAAR KERN .
: GS RANBAHRUBTIREAURBRARRAARHBTERRE

QOS HERRAUHRGHRARHARFWARRIERHBARRAABH AY
GT: HAUHARRBARABRBHBERAAB ABIES

UBSANARBRANHARRERRARRBARHIBAARABRARREAR GRA
LOS HhRRUKNBRHBRANAURRHBRBBE HABER HARES

SOL RMRHRANRBABBBARRBERAHABUAARRAARRAARRARBRA

ELL hRARRAUBBURERRERAARNARRBEGRARAARRRARKARR

SCHAAR BBHUBHRRRRARHBREBRRRAUREARRENH ‘
SAIARBERARRAHRRRBEARHARUHRRBARRRARERH

CLIARBARARKABARHGURRRARFERBARBREEREF

SOL EAAURAHBHRHARRRABNHRRARRHRRER HEA
SO HHRARBRARABAARAANBRBRAHGHERAN I # |
STS ABNRARRHGKERRABARREBANNRARRIRBRFANBRIA
SBS ARENHBHRRIBARARBARARBRKHHARRAHRKRHNBAARRRER

156

| DG LH ANHRRARBRANRRRRGRBARRAA HABA AAR RR ARRARS |EOI HARRARUNBURABHKUNERREBEN AH BERL RAGRRRR

CLIARRAABRARANBANRRBRRRHARHAGAEHHRIHAKRRARARHARRRR

CLBARRARRHRAFRAABHBARBBAARBAANIERREAAHRE ARRAS

i C3: hAhHRREHAUARARRH RBI RAF HRA ARA ARR RRA RARERRN ARR RRR RARCHL hNHNBARRRABBRRIBHWHARIARRAIBRRAAARRRARARARRARRRARRRRNARRACRARNARRURRARN EAER

' EDIHBRBHBRABRRHRRIBRARRARABHARABBA bRARHHRBRER

COS hhh hhBAKARBABRRERHERRERBERRHRANHAHRBRARRRARERR

QT ERRRARHRRARARHEBBERRAGBRHBRERA BUBRABARRARRBERR

: OBLRARHHANRRHARRRARHRRANKARBRHAAKARAAREHARPARRBRRRHRARRARRUERRR
! GI hhANRAERNRARNREAR RI NARA RRR ENTRAR RAN ARRGRRH EN

TO UHRA RR ARABFRARAREHIRBRHARBABARPRRARRERARERRARE RYARN

TL AHAB HARHBRANKRARRAPBARABRARIHRIBRRABHARBRARRNBRARA

[2 RHFBARBRRARAUHHERAHABUBRABENFARBHERHERRIRARABAIBREARRAR

I3IHRRHARARAWHRUBRARARARBEBRNFARBKARRHABERRARRRARRRARERARARBABHARERBRARARRERNR

8 Ta: ARBHHNBRERRABHBARHBRRRBARRARBARKEARARRHRRARARRARBAIRREFERBRRRERABENRRRARH19S hbhbbhRbARRURARAAHRRNARARRBARRARKHRABRRARARRAHARNAIRAN

TO KE BAURHRAHABIHRARRBERKRAARRBARAIBRRAARRARRARRBRNRARARARUABARRRBARARY

: Tl hhhsANRRARHRRAGARRAHHAEARARURERRRN REE RU RARER RIARR A RRRARAR

TOL AHARFERRRARRABRARABARARRABBRANAHRARAHRBRARRRRBBRBAABARRBRUBRARNR

: TY HRNRERRIRHRRRARARARHHRA BARARAARERARARRARRUBRARRE ARH R

BULA RBARRAARRE HARRAHGUBANAHARIRRNRRURRAEANUREERERREBRBRARR ER ARARREN

BlinBAh ARRAFARRANRIARIRARAHFARRRIHRRHRRBHARRABERBEHARHR

EC RANA H HURRAH AREA RARE AAR ARBRRARRRARRERAR BRR RARARRRR
U3 I R4HRARARURARABAFURARGAHAN RURAURHRRARBBARARRKARBHRURAARRRARRAR

EG Hh BHRRRUBRRAHARAARABEAFFEGRAFRARGARRBARRRRRBRABARRARFARERARBBABRBRANAR

BOSARRARRRRANABRABRREINRIARARBRRANK RRARRARRIRRRRAANRRBAARRRGRRENARAERRRARAR
SE HRABAARRBHAHERHRAHBUAAHPARBRARERHRBERBABBRFBHRRARRIBRAARRRBRARANARRRY

CT AUhBARARARARERRARHEPARIRAARNRBANF APH AHRBARHBRARARBBRIRARARBARHABRARERRER

BESARKBRRRRRARRRBRBKRRERAANKUAARAARFRERARARARBRBREBAARRRABHUNARBARRERIR

BILHRRIRRARRARKABRHENFRARARBHRRRBERBARARRARRARBARRARRRERRUNRARERKHARBRER

QOL IRAERRANRRNBHNANRAARRIVUNFHERRAEERRARFVEARFRABRIBARARNRBBBRRAARARIRRIRENR

FL: AAPARNARARBERBRABBARRAANANRANB HRRAAR TR RRIRBARRIRRBBARRIRARRRNARRRRAR

WOLARRRBAREARRARKARAKNAPRARRARHAVDARARRRARARRRARKNRRARIKRARFUBHANRBBRARAREABAR

{ G3: HARHABRARBRARARBRRAERABHARRANRGBRREAHIHBADARBARARAERRIRAARH

| FA hARARARBBARRIBBAARBAABERBUHAB A RREAFNBRHRARARRRBARRARRLHBARBBIRAEAARRRCOLHHRARFRHBARRRARARARRRABABRERERARREARBEIARRABRRARRARARBRRAFBARAREARANNARARARRIURR

FOL RHEE RERBARR ARSE RRR EAH IRR ARRRRERRAR ARF RAR REBHRARFFEARRARRABRIEFRRRERRK

STLARBHBHBRREAKARRERRBARBNBINRANAEHBHUREAABRRRRABBAFHABHBARRADRERURERANN

: CBLENBNRBRRBARKARKERARAARRARBHBR GRIFF TARARRRERRRANERRREHARPARERERRERBEARR

§ SUL HAKEHARRARRRB HEAR AABBRARHAKRRGRARBRRRREARAGRRRAGRHARRABRARUBRARERRFRRACOH RKARR BABAR KAKA RAB ARR ERT ARRNARAARRANRKBRARANRANRRARRABRREBER RURORARR

LOL: HHBHBHRBRRARRHARRABAFRREASRANHFAAREHSARRRURHARARRARARBIRRHAREBBARHRARANS

LOZ csABRARRRARARBANBHEHEADARABREHBETARANEH BRBHEARBRAAKNIPIRRINHARFRARERAERE

LOB HuBHAGNHARAURHARRHEPRRERARETRARANNAHRBERIARRARRBARAHRARMAR

i * LC: AARNNRRRRAARRNARR RAB HAR RRB ARK BRAN BIHAR ARR RARARRIFFRAHLOD CRAB HERR ARBRARBRRARARBUNABRRRARRHBHBRAA ARARRERHARRABIAR

LCO: HARABARNARARARRRARFFAARRHNHAR RIRFRABRABFARRANBHRASEIRARESARABRRAARER

LOT AARBARRERRAGAARDARRHARRHBFABHANARBAB ARANRRRBARRRRACHAARAPBRERIREBEBRRN RAR #

{ LCOS HARA BRRARRARARAGURKAERHBANRRARRERRAARERRARRARREFRARRFANARTFARRABBRERRD

| . LCOS ANBAR URKRRURAREIRKEBANARAARARRAARRARAAABARAARABBEFA BERRA NR BAREIS
- . LIC: ARARRUENRARLAAURI AE AARARARRAARARABERURBRARRAGARRARRRIARRURARE BR

. LIL Bun ARARRRRERABAARRFANTIREBERABFIFNARRARRRUHHHRRRARBAGKRARRERERERARER

LLC: hARUNHARAARANARARAUBRARBARABRARPRAARARARANARRARRRIRRRAR

{ 112: AHKRBRARARRBAAARRARKEARRBARRAN ARR ANBRRABHBRRARARBARRAFRHARRFRRSF
i L142 BpRARRRARRBANAFRABRAARARBUBHHAREARAARBRARAAANRRRRARR

| LILO AAHRHRAARBARANRRARREBEPARRRHABHADBARRRARBARREINFAR
LIC i ARKAHEHHWRRARRAHGHARRARFARHABENIRBRRERARRIRGRT

LIT GRR RREARRRARREBARARFAARAARRBIBAARBFHARNERRABRARHHBRNHI AARARBRBIRAFRS

! LIBS AhHARRRARBAPARRARHRARRRARUBHAARRANGE FARRER ABRRRRRBHEGRANARAR URFIRAERENAD

_ 157

{

: .

N

| |

LLOCRBEHRRBRASRBURBRARBREHAHRRARARANARERHRHRRERERRN ARRAN ARB RA BH
L200: AARRRRBUERRRBARRABRBRANABARRAHRN RRBRRRABABRHRRERN BER ARRAR BR

L2ZL:RADRABRARRBEAINARBHBHRAANBANNAARHHUREBHRRERBIRIRRBHBRRABRER BR oo
L222HRBURRBKUFBARRARIRAVRARRAHEADRARVARBRHNANBRARRUR RUREBR RARBG UNE

L23:hBARARBARANBARUARRERHAABHHRAHHARABRBARRRERRI BRAN RRAAN |
L24CHARRENRHARRRERBAERNUBHURUHABHRRRRABARBHANBRUHENR ER GRBERH
L2O:RARUNBURRARKBHARRNABABEAD BBBRHRKRFANRRBANBRRABAERERH

L2OS hhRAHREARABBUBHHIEUHARBUR RRARARARRBRARRRSRRERRERER

L2THABBRUBRNABRBARHRBBUHRBARRARNERARBERIHARB AN
LAB HARRBARBARRERAAHURREBEAUBHBBABRBHARURRRARRARRRERE

L229 AANRRRERRARBRAHRNARRERBRBERARER H RARER BHN

LIAOHARRRHUNBRIARRRERRAERARKEBANABNABRIRABANHGHBUNR ERR HRAN HEA
LAL:AARRBRENRRERUANHERBRGARARARRARHARRABARRARRRARR ERY
L322hhhnABnhiniaARRARARRBHARAURURABER ARANRRBARHARRUENR RAN

L3B3SARnanbnKRRENABRARRARBRARRARAEINBHRRARR BUUREN |
L3G hARRRBHRROBRERARABBUABAHRAARAR GARE RERRAANF
LASS HARBHRARARHAHRRARRHARHARHERARABAARRIE Co
LIOHARRRARRUABRRRREBRAARBHNNBRRERERERY

LBV hBRAKRBHRRRARBRRBHRARRRAARIARBUHUR

L138: HRHRRBHRRARARABARERARARRARRN |
LAGS RHARARRHBARRHBHRRARARHRRHRNY |
LAC ARRANRRARRAAABHUAUHBREURBARBHRIARAN

Lal: nhnhHAdtihnniniiRARRKRAAREBABEAARRRR

LA2 HHKKRRHARATRRRARRRUKARRBARNRANARERR

LABS hABHNRRHRURRANKBARRBHRHRARBHRBARRIRH

las nhbnnhhBRrARRARANRRAABRAABEIRIRN |
LAS RBA RARAHRRARUBRARRE RHR Co
LAG RARRARANRAANRRBRRARHAREH

| aT hunni ninnnis

lLaBianbrAfnhannnrAEninl

LAS hkhBhHnaunruhas ’
LS0thnMAELBARERBHAR

LS1ihankniRENARRARR

LE2 HRA HAARRARBBARARERR

LOB AAURRGARNRRAAR

LEQ ARRRRARRBARRBUBRRRIAAH

LSS whbhBnnhnnintin

LYoshRnbGRHIAR 7
157: a# :

y L158:#

159:

leu:

TUTAL RESUURCE CYCLES LSED = 61178 # UTILIZATION = 9
AV ERAGE RESUURCES USED PER TIME STepP = 39 MAXIMUM = 104

| 158

i RESOURCE USAGE CF TYPE 3.X3 MATRIX MULTIPLY Co
be (MULTIPLY)
3:

L 4:
5:

62

Te oo

— 8: |
92

: 10: |

| 11:
12:

13¢

| 14:
a 15:
- 16: |

| 17:

| g 18:
— |

20: |

| 22%

— 23: = |
24: ;

] 25:
26° |

L 27:
28:

29°

L 30:
31: :

: 32: | |
| | 33:
—_ 34:

35:

: 36

37: |
be 3B AYHHHHARA

A9LHUUHNREHHH

: . GO HANRNAHEH
- SEETEF ITYT SE

422

QIACHANHANBRAH

LA HHASARERN

- © ASIHANBARNER
: GO HRAANNHAN |

47: |

481

ee GOL HANNANHAN

SOLHEARNARNS
SLLARARURNEH

L S52: HANH AAHEH | |53: |

54:

55:

- 56:
57:

582 -

-

59: oo
60: | |

€l:

62:

63: |

64:

65 a

66: |
67:

£9:

70:

71: |

713:

‘ 14:
15:

16:

TOTAL RESQURCE CYCLES USED = 108 2 UTILIZATION = 5 |

: AVERAGE RESCURCES USEC PER TIME STEP = 1 MAXIMUM = 9

160

[

:
— TGTAL PROCESSOR KESCURCE USAGE 3 X 3 MATRIX MULTIPLICATION

12444

: 2H 44

L 3 HANA
GiHHRRHY

| | ScHYRYHH
6: H##H

L ToHaH# | oT
Be HUBAAUNY

| GHGS HEHEH |

LOS HARHEHBHHAYHHY

- SSRI
12: HARRRNHERY

iy 13: HAUHGREARH HY
3 Las HUMHANRBUBKEH
he 1S: HH URAHARA4H

LO: HHBUHBHBREHBHREREY

| x LTC HAHUHASHAARNAEHRY
. LO HUYRANARaA THY

LO: SAHRA ABY AYR RBH

: 20 HURHHRUKHSHA HARUN AY
QL HURRAH UGHHAG HEB

— 22: HHHHHIAAHOANA RGHY
} 23CHUHUHRH GHA BHU HH |

24 HARE HSH RRA AEARESHIEY

L 2ST HAKHHHASH HURRAY HEYA2OTHHURHANMHHASHABARAHRY

QUIS HANRKUHNEHAENAREHRY

| 2B THHAHKRKGHHA AHRY

u 29: HANRHUURERUSH HI HHH
ZO: HAARHUNBREHRARNY

| SL HRHBHUEARHBHHERS
BOT HANHHUNHARUN UHS GY

L 3A: HHAANERERANBHYY
IGT UBHABHEGRE AH HY |

35: HAHAHAAYGSH

BOSHYHHHHS UREA

- BTL HUABAARNHEHE SRd YG

IE HHH AURA RNENGY

BOI HAGHYHBBRHABASHR HAGAN RA

: GOS HANHHHRAHUDANNBRARERHY

— GLIHHRHHARRHNAHR HAARAR HA

G2 HURRRAHSHRHRUBEHAY

| G3 HHHHNAHSBHAA RH BASRA
GOT HUUHBUSAHRHBARRREHRYAY

. GOHEHRRHUHAUSBARE HE HBB

| GOT HH BHANUSHEHBRHAH UA HREH

GTI HUMH SHER YE HR RAH

- GBT HAKNUBHAGARUHANHAAR UBAR RY

GO HHHKRHUGHHSHHARABHEHAHAH HH

; SOIHHNRHHHRBHRLARH HGAARN ARR Ban
SL: BARKER YHHGAS NEHA HRY EY

he SCLHAHHIHERARSBUNHHUABUNNBER AHH
S53: HUUHHBBUHBUBABBRURBEAHY

‘ SGT HASRHAUHBERAADRYNHAHRH

_ SSI USSU RSHAHS HAHN R THE
Bo: HAUUNUHRHANENRHA HAHARRENHBOY

| STIHHURRAHA HANIA GUTS AAR HH
| SBI USUAHAUB RAR HERA HR HHI HABA RY |

161

.

SOLHARRUUNRBHUNIANS HH HARRY UH |

CO HARBAURRBUGHURARRNAUHHH

CLI ARUAMAAGRENRANEENRH

C2 HRKHRUBREHABRANRRABYHRY |
CAL HUHRBAREREHRUHY

CAI HABHAHAUABAY ANNUAL YH
OS SHAHHHURAUNKARAYH

CLHE EE EE REZ SSF 3

IEEE EEEES SE | S.-
OEBLHRANBURBURHH

COT HANURANGH

TO SNBHHEHNEHEH

TL HUGH HEHNH
T2: HHH

y 13:44 |
: 14 #

15: |
161

- TOTAL RESOUKCE CYCLES USED = 1234 2 UTILIZATICN = 5

AVERAGE RESCURCES USEC PER TIME STEP = 16 MAXIMUM = 31

| 162

| . TABLE 5
MATRIX MULTIPLY PROGRAM RUN WITH N x N MATRICES

_ All processors execute in 1 cycle except multiply processor

1 N T mult Time Total Processor Cycles Average MAX
Do 1 52 cycles L66 9 (8.97) 15

L 3 1 71 cycles 1114 15 (15.7) 31
I 1 90 cycles 2196 2h (2k .4) 57

i 5 1 109 3826 34h (35.05) O91
6 1 128 6178 39 104

t=k n+k k=19 kg = Lh

L 2 it 55 cy 511 9 15
| | 5 74 ey 1234 16 51
| I 4 93 cy 2451 26 57

5 I 112 cy L29k 33 91

1 6k 131 cy 6895 52 133

i kK, = 19 ko = 17

{
:

—

|) .
—

L

|

5 163

Total Resource Usage Calculation oo

Since n multiplications are required to do a matrix multiplication,

the total number of processor resource cycles used is at least proportional Co

to wr. If we assume that the total processor cycles is given by

(1) Tot = k_n> + 2 41
= 5 k,n kin + ky

then we can use the results of simulations for four different values of n

to find Ks Ks Kis and X by solving the linear system of equations

nk +1 %k +n. k + kx = Tot |
1 3 1 2 11 0 1

n Jk + nk +nK. + k = Tot
” 23 3 2 2 21 0 2

nk, + nk. + nk + = Tot
5,5 52 31D 3

| ny Ke mk, ny ky ky Tot),

derived by using the values found for total processor resource cycles for :

the four values of n.

The values of the preceeding table for n=2,3,4,5 were used to |

calculate the kK - Ky for the case where multiply time = 4. The valves
of the constants were

k = 22, k, = Lo, k, = 60, ky = 19

| ~ These values also satisfy the fifth equation for the case n=0, i.e..

3 2

k3.6 + k,-6 + k,.6 + ky = 20.016 + 49.36 + 60.6 + 19 = 6895

Thus, the total processor cycles for multiplication of two n by n matrices

when multiply takes four cycles is given by

(2) Tot = 22n> + L9n° + 60n + 19

164

| ee
_

i Using the values of total processor cycles observed when multiplication
| is one cycle gives
|

- kl 210, k = U6, k. = 57, k. = 16
3 > 72 > 71 > 70

L So that in this case

3 2
| (3) Tot = 19n~ + 46n~ + 60n + 16
|

-

-

|
—

un)

-—

-

165

—

|

Ld

,

“.

’

+

od

FE

aOY

ws nd

FE]

-

‘

-

4

-

-*

a. FREQUENCY OF EXECUTION OF PRIMITIVE NODES

i So far we have only discussed combined processor useage of all rode

types. The simulator output also provides separate statistics for each

a processor type. These statisticscan be used as a guide in setting up a
| | system with a finite number of processors to determine how many processors
|

= of each type to provide. Table 6 shows the number of processor cycles

| used by each primitive node type for the trapezoidal quadrature program.
Since each processor executed in one cycle on this run, the table also

_ represents the number of executions of each node type except the proce-

dure node. The number of cycles entered for the procedure processor is

~ the number of cycles the invoked graph procedure requires to complete, so

8 the figure given in this case is only valid for a system in which the pro-
cedure processor is reserved throughout the computation of the invoked

_ procedure. For this reason the largest number of cycles is that used [o3a
| the procedure processor. The second largest node type is the two copies

— node. |
The breakdown into individual node types shown in table 6 is not as

| useful as a less detailed breakdown for three reasons: 1) Since only three

L graph programs were investigated the statistics gathered from them are not

| representative at that level of detail; 2) Since the primitive nodes im-

= plemented in the simulator were chosen arbitrarily, they are not necessarily
representative of the primitive operations which might be implemented in an

—

| actual system;3) A breakdown into individual operations 1s useful onl: Tor

L a pure "functional unit" model where separate processors are used ror each

type of operation. In practice it is unlikely that different processors

— would be used for addition and subtraction, for example. It is more likely

166

L |

TABLE 6 |

PRIMITIVE NODE EXECUTIONS IN TRAPEZOIDAL QUADRATURE PROGRAM =

NODE NUMBER OF CYCLES PERCENTAGE OF TOTAL

1 270 | | 40.7% a
2 0 0.0% |

3 12 1.8% -

: A 32 4.8%
5 0 0.0% B

| 6 0 0.0%

: 7 33 | 5.0% |
: 8 | 15k 23.2% |

9 Ls 6.8% |

10 7 9 1.4% |

11 35 5.3%

12 18 2.7% -
| 13 9 1.4%

1h 25 3.8%

15 21 3.2%

16 0 0.0% y

17 0 0.0%

18 0 * 0.0%

19 0 0.0% |

. 20 0 0.0%

21 0 0.0% N

22 0 0.0%

23 0 0.0%

ol 0 | 0.0%

25 0 0.0%
26 0 0.0%

21 0 | 0.0%

28 0 0.0% -

TOTAL 663 99.4%

167

|

] that certain primitive operations would be grouped together to be executed
by an arithmetic unit, a data routing unit, etc.

= For these reasons 1 have grouped the primitive nodes into six classes,

1 the procedure node, arithmetic and “logical nodes, compare nodes, data rou-
ting nodes, vector manipulation nodes, and vector testing nodes. Table 7

a gives the percentage of node executions falling into each class for the

; | trapezoidal quadrature program, a 2 by 2 matrix multiplication, a 6 by ©

= matrix multiplicationand the sort program. It also gives the mean ard |

~ | | standard deviation in each class for the four programs. The results are
“shown graphically in fig. 46. The largest number of processor cycles is

- used by the procedure node for the reason given above. The procedure

] ncde was put into its own class since the execution logic for a procedure

- call is sufficiently more complicated than that for the other nodes to
a | justify dedicating a special processor to procedures. Procedure processors
| might also be used as control processors to direct the execution of nodes

- in the invoked graph procedure.

| The second largest number of executions fall into the data routing

= class, which accounts for more than 1/4 of the executions on the average.

i The arithmetic and logical nodes and the two classes of vector operations

| taken together cach account for about 11% of the executions, while the
_ comparison nodes are the least used class.

—

| |
(-

| 168

TABLE 7

PERCENTAGE OF EXECUTIONS IN SIX CLASSES OF PRIMITIVE NODES N

Co TRAPEZOIDAL. 2 BY 2 6 BY 6 |
QUADRATURE MATRIX MATRIX SORT MEAN o]

Procedure (1) 40.7% 54.8 43.3 49.0 46.95 5.7

4 Arithmetic, 16.8% 9.4 15.4 5.1 11.675 L.T
Logical |

(3,4,5,6,7,13,14,24,25)

Compare (2,15,23) 3.2% 1.3 0.7 2.8 2.0 1.0

Route (8,9,10,11,12,28) 39.4% 20.6 23.3 29,7 28.25 7.2

Vector ~ 0.0% 9.5 10.3 8.9 7.175 1.9

Manipulation

(16,17,18,21,22,26,27)

Vector Testing (19,20) 0.0% h.3 7.2 k.5 4.0 2.6 N

169

Cp PRL. 8
SE EE INH IRR EE EEE TE

- EEE EE FERRERS EE ERE Cl EE

- NAM, xR

COENEN INNER |

£3

a «+ [ae aH mE |
£3] mW <q = oO oO Wn

- O HO & a SE B=oO H O OO KH

x; = O ®) x] fr[a] O oa > =

.-

170

—

Pp

. ' 5

-

’

i

~~.

+

a SY

Pa

4

)

-

a

>

|

1

-

' h

fl
3 CONCLUSIONS

| The simulator and the graph programs described nere snow first of
-

all that Adams' graphs are a feasible representation in which parallel

- algorithms can actually be programmed and that a CPU could be constructed

| which uses such a representation. Writing down agraph program is roughly

= equivalent in difficulty to machine language programming for a conventional

i computer, however, and the problem of designing asuitable higher level

= language which can be translated into an efficient computation graph repre-
8 sentation is still open.

The simulations also show that the graph representation is able to

L take advantage of opportunities for parallelism at several levels witrout

3 conscious effort on the part of the programmer. The square root program
| and the matrix multiply are instructive extremes in this regard. Newton's

8 method for finding the square root is inherently sequential, yet even for
this algorithm a small amount of overlapped execution is possible, and the

|

- computation graph representation produces it. Matrix multiplication, on

| the other hand, is capable of highly parallel execution, and straightforward

= programming of this algorithm as a computation graph produces parallelism on

3) the order of n°, reducing computation time to the order of n. Besides the
three programs described here, a number of other programs were written for

L the simulator including recursive and iterative factorial programs, SIN
| | and COS routines and a number of polynomial evaluations. All resulted in
- some degree of parallel execution, although no special efforts were made

to produce parallel execution.

The actual speed which could be obtained on an implementation of

C this model could depend very heavily on the amount of overhead or

1
171

g

bookkeeping required for control of the system. Three sources of overhead oo

can be distinguished: 1) The computations required to keep track of the N

status of nodes in the executing graph, to determine whether they are ready »

to execute and to initiate and terminate their execution; 2) The overread

resulting from the organization of memory into QUEUES; 3) The overhead oo

caused by the execution of algorithms to allocate shared resources such as

processors and memory. No attempt is made to refect these costs in the N

: output statistics of the simulator because they are very dependent on

specific hardware implementations. For example, the implementation of

queues used in the simulator requires two memory references to fetch a | x
data item, one to get the pointer to the head of tha queue and one to get

the data itself. However, if the head and tail pointers were kept in |

registers or in fast storage, the time could be reduced to one memor; B

: cycle.

The major portion of the execution time of the simulator itself is Ce

spent checking each node to see whether it is ready to execute. If the

model were implemented with a single control processor, it would have to N

be much faster than the primitive node processors to provide any degree |

of parallelism. However, an implementation which used the procedure

processor to control execution of the nodes in the graph procedure wiich

it initiated could distribute the overhead considerably to allow a greater |

degree of parallelism. The overhead can also be reduced by an efficient |

representation of the node edge connectivity of the graph. The connection |

matrix representation used here is inefficient in this regard since it

requires the control logic to scan the matrix to find the edges directed _

into a node before it can check whether those edges have data on them. An |

edge list representation of the graph would be more efficient in this regard. |

172 |

rr . X oo a

i Two main questions were studied in the three programs described in |
this report: first the dependence on problem size of computation time and

. amount of parallelism in execution, and second, the dependence of these

g measures on relative processor speeds.
The Trapezoidal Quadrature program, the Sort program, and the Matrix

§ Multiplication program differ widely in the amount of parallelism which
they allow. The time required to execute the trapezoidal quadrature pro-

L gram 1s proportional to the number of points used. However, the dependence

8 lies in the generation of the n points for which f(x) is calculated, not
in the calculation of f(x), so that increasing the complexity of the func-

3 tion being integrated does not increase the coefficient of n in the time
requirel for the quadrature. Rather, it increases the number of values

_ f(x) which are being calculated concurrently. The square root procedure
| | used in the quadrature program is inherently sequential, and its computation

- time depends on the value of x. The average number 2>f nodes in execution

1 during the square root calculation is 1.7. However, since the quadrature
| program calculated several values of the square root concurrently, it exe-

_ cuted from 8 to 14 nodes on the average.

| The sort program executes in a time proportional to n, the number of

- items in the file being sorted. ©Since the number of operations required is

1 proportional to n log, n, the average number of nodes in execution in this
| : program is on the order of log mn. The matrix multiplication program, on
N the other hand, is highly parallel. Although nw operations are required

| to multiply two n by n matrices, the program executes in a time proportional

- to n. Of course, the number of processors required to achieve this time is

1 on the order of =, but the algorithm itself is inherently parallel, whereas

5 | |

| | 173 |
1

| |
|

the sort program increases sequentially faster than it increases its Co

parallelism in the ratio n/log,n, and the trapezoidal quadrature is in- .
herently sequential, though it allows overlap in the calculation of f(x).

One of the major questions which can be posed in an infinite resource

environment is the degree to which variations in relative processor speeds

affect the computation. In a sequential computation, the time to execute :
a program is just the sum of the times to perform each type of operation

. weighted by the number of times that operation 1% executed by the program.
In a parallel program we might expect a secondary effect due to delays in oo

the initiation of a node which is waiting for output from one of its |

predecessors. This effect did not show up in mr simulations, however.

The effects of different sets of varied processor speeds and of uniform |

processor speeds equal to the mean of the varied speeds over tne nodes in

the graph program are virtually identical. Moreover, this held even though or

| the node execution times are not weighted by the number of times the node

is executed in calculating the mean. | | | |

This conclusion should be takenas very tentative, since the number |

of programs investigated was small. In order to draw even the modest

conclusions that relative QTOTEREOT speeds are unimportant if the mean

: execution time is constant for many (not most) programs, one should

investigate a large number of programs written by different programmers |

under many different timings. Because of the strong dependence of |

program behavior on small variations of coding, even this investigation

would not be completely generalizable. Several people have exhibited

programs whose execution time is strongly dependent on small changes

in processor speed. ®) oo a | |

If the results found here hold more generally, however, they suggest |

a method for determining processor speeds in a hardware implementation.

17h

i First, a large sample of actual programs should be collected and the
distribution of primitive node types in this sample should be determined.

| L Then, in balancing processor speed against the per unit cost of the logic

8 required, one should attempt to minimize the mean execution time over that
distribution.

[

-

je

4

L

!

- .

| |

L
| |

L

L

-

(1) E.G. Paul Richards "Parallel Programming" Report No. TO-Ro0-27, Teciini-
L cal Operations Inc., Burlington, Mass. 1960

L

i 175

cman f

A. §

, k

I
Lor

.. : 1

La ,

Ama I

. ~

4 .

r

Tm

4

;

-

)

1

-

!

i

[]

i

|

.

. |
)

!

|

\

