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ABSTRACT

The work of Adams, Karp and Miller, Luconi, and Rodriguez on
formal models for parallel computations and computer systems is
reviewed. A general definition of a parallel schema is given so that
the similarities and differences of the models can be discussed.
Primary emphasis is on the control structures used to achieve parallel
operation and on properties of the models such as determinacy and

equivalence. Decidable and undecidable properties are summarized.
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INTRODUCTION

In recent years, a number of articles have appeared in the litera-
ture which may be grouped under the classification, models of parallel
computing., These papers represent efforts to formalize intuitive notions

of parallel computer systems, such as multiprocessor systems and systems

with multiple functional units, and also parallel computations, which

represent algorithms for solving mathematical problems such as the
multiplication of two matrices. Of particular interest in these studies
are the nature of the control structures which determine when operations
in a system or computation are performed and the properties and char-

acteristics of the models which result in correct operation.

The operation of a parallel computer system or the execution
of a parallel computation can be characterized in the following way.
First the system or computation must be defined and the initial
conditions given. Operators produce changes in a data base. More
than one operator may be being executed at a given time. When the
execution of each operator is completed, it may be possible to execute
other operators. A computation or system terminates its operation
when the execution of all operators that are capable of being executed
is completed. The time required to execute each operator is assumed
to be unbounded but finite.

In this paper, only a portion of the current research in parallel
computing is discussed in any detail. We consider the work of Adams
[1, 2], Karp and Miller [ 13, 14, 15 ], Luconi [ 16, 17, 18 ], and

Rodrigues [ 34 ]. Adams' work is an extension of the model of Karp



and Miller described in [ 13 ]. Adams' model is intended to describe
parallel computations and not computer systems. The work of Karp and
Miller on parallel program schemata extends work of Ianov [ 11, 12, 35 ]
on sequential schemata to the parallel‘éase. The emphasis here is also
on the description of parallel computations. Rodriguez' work uses
concepts from Muller's theory of speed independent circuits [ 30,31 ]
to develop a model for parallel computations. Luconi's model extends
the work of Rodriguez and earlier work by Van Horn [ 39 ] and emphasizes
the description of computer systems.

Early contributions to the theory of parallel computation are the
work of Holt [ 8 J, Petri [ 32, 33 ], and McNaughton [ 28 ]. Petri's
work, in particular his concept of Petri nets, has strongly influenced
more recent work by Holt [ 9 ], Patil [ 3la ], and Shapiro [ 37 J.

The work of Karp and Miller on program schemata has been extended by
Slutz [ 38 ]. Rutledge [ 36 ] has developed a model which is another
extension of the work by Ianov., Estrin, Martin and others at the
University of California at Los Angeles [ 4, 23, 24,25, 26, 27 ] have
developed a model which is used mainly for the determination of schedules
for computations in a multiprocessor environment. Bredt and McCluskey

[ 5 ] have applied flow tables introduced by Huffman [ 10 ] to describe
the control of parallel processes and in particular the control require-
ments for the mutual exclusion or interlock problem. Ashcroft and
Manna [ 3 ] have defined a model for parallel computations which applies
proof procedures of formal logic and is based on earlier work by Floyd

[ 6 ] and Manna [ 19, 20, 21, 22 ]. It is hoped that in a future version



of this paper an integrated description of the papers mentioned in this

paragraph can be given,

BASIC CONCEPTS

Consider the data base for a computation as a set of variables.
By a computation, we mean the operation of a computer system or the
execution of a parallel algorithm. A computation is said to be

determinate or completely functional if the sequence of values assoc-

iated with each variable in the data base is unique. Determinate comp-
utations are considered desirable although intuitively it is possible
to have a correct result even though the intermediate value sequences
are not unique., Two computations with the same data base are said to
be equivalent if both result in the same set of value sequences for
each variable in the data base.

There have been two fundamentally different approaches taken in
the study of parallel computing. The first defines a model in which
it can be proved that gxgzz_computation which is represented in the
model is determinate. This approach is used by Karp and Miller [ 13 ]
and Adams [ 1,2 ]. Adams proves that every computable function
(every function which can be computed by a Turing machine) can be
represented in his model. This is not true for the model of Karp and
Miller in which data-dependent decisions or conditional branches

based on the values of variables in the data base are not allowed.

»
- tm



The second approach used is based on the definition of a model or
schema in which not all computations are determinate. (One theoretical
result is the determination of a set of conditions which are sufficient
to guarantee that a given computation will be determinate. In addition
it can also be shown that under certain conditions either it is or it is
not possible to give procedures to test if an arbitrary computation is
determinate or if two arbitrary computations are equivalent.

One might well ask why there is interest in such theoretical proper-
ties of these models. One reason is that the conditions either implicit
in the definition of the model itself or imposed to achieve determinate
operation may give valuable insight which can be used in the design of
future systems. Control techniques used to enable operations may also
be of interest and questions about equivalence are important when trans-
forming representations of computations in the interest of economization

or optimization,.

GENERAL DEFINITION OF A PROGRAM SCHEMA

In this section, a general definition of a model for parallel

computation called a program schema is given, This definition is

then modified and extended to describe the models of Adams, Karp and

Miller, Luconi, and Rodriguez,




Definition 1:

A program schema or_schema 4 is defined by a triple

§ =(M A C)

where

=
|

{xl,xz,...,xn} a set of variables

>
|

{a,b,...,c} a set of operators (operations)

C (to be defined) a control

Each operator a has an input set Ia’ Ia c M, and an output set Oa’

0O C M
a—

Associated with each schema is an interpretation defined as

follows.

Definition 2:

An interpretation is defined by

1, For each variable x,, a domain D, of values which

i i

the variable may assume,
2. For each operator a, two functions

Fa: a computation function which maps values associated

with the variables in the input set Ia into values

for the variables in the output set Oa'



Ga: a decision-making function (not explicit in all

models), The output of this function is used by
the control portion of the schema to determine

which operations may be performed next.
3. The initial variable values.

A partial interpretation is defined by 1 and 2 above, but not 3.

Definition 3:

A variable history hi is defined to be the sequence of

values associated with the variable x1 during a computation.

Definition 4:

A schema history H is the n-tuple <h_,h ""’hn>

1’72

consisting of the variable histories for variables Xyse eesX o

Using these definitions, it is possible to give a more precise
definition of determinacy. First, we define the term as it is used by

Karp and Miller in their papers on parallel program schemata [ 14, 15 7.

Definition 5:
A schema A is said to be determinate if and only if each

interpretation results in a unique schema history,



The following definition will also be used. The phrase "partially
interpreted schema" refers to a schema together with a partial interp-

retation,

Definition 6:
A partially interpreted schema 4 is said to be

determinate (completely functional) if and only if each

set of initial variable values results in a unique schema
history.

In the work of Karp and Miller on schemata, the results of a
computation must be determinate in the sense of Definition 5. fpig
is directly analogous to mathematical logic where theorems which are
are valid must be true under every possible interpretation [ 29 ].
Definition 6 corresponds more to our intuitive notion of a computation
in which not only the structure of the computation is known but also
the functions whiéh define the operations in the computation as well,

To illustrate these concepts, let us consider a few simple examples
expressed, not in terms of schemas, but in terms of ALGOL-like programs
with which most readers should be more familiar. A sequential program
is shown in Table 1. 1If the initial value for variables u, x, and y
is0Oand the initial value for v is 3, the variable histories for u, v,

X, and y during the execution of this program are



iy

Table 1. Example of a Sequential Program

begin integer u, v, x, y;

X 1= U;

y :=v;
iter: x := x + 1;

y =y - 1;

if y # u then go to iter

end .



h =<0>

u
hv=<3>
hx=<0,1,2,3,>

h = < 0,3,2,1, 0 >

In general if o, B, Yy, and § are arbitrary integers which represent

the initial values for variables u, v, x, and y, respectively, then

hu =< o>
B h =<p>
and, if o < B, then
h =<y, q 0+l, ..., -1, p >
hy=<6,[3,(5-1,...,a+1,a>
but, if o > B, then
h o= < v, Q, O#l,0H2,... >
hy = < &, B, B~1, p-2, ... >

That is, if 0 < B, all variable histories are finite and if o > 8,
the variable histories for x and y are infinite and the execution of
the program never terminates. However, in each case, the variable
histories are unique and the execution of the program can be said to

be determinate.
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A second example is shown in Table 2. The reserved words '"parbegin'
and "'parend’ designate blocks of statements exactly as do '"begin' and
"end" ; however, all statements within a-block defined by ''parbegin’' and
"parend’' may be executed concurrently. This extension to ALGOL has been

proposed by Dijkstra [ 5a ]. 1In this program, the statements x := u

and y v may be executed concurrently and the statements x := x + 1

]

and y := y - 1 may also be executed concurrently. In both cases, the
execution of one statement cannot affect the execution of the other,
The execution of the program in Table 2 is also determinate for all
possible initial values for the variables and the variable histories
are the same as those for the program of Table 1. In the sense that
every possible set of initial values results in identical variable
histories for the two programs, these programs can be said to be
equivalent.

A third example is shown in Table 3. The execution of this
program is not determinate if the initial value for u is less than
the initial value for v. This follows because the variable history hx
depends on the rate at which the statements in block b2 are executed.

Suppose u, x, and y are initially O and v has the value 2. Some of the

poséible variable histories for x are:

1]

h =<0, 1> h <o0,1,2,3>

X X

h <0,1,2,3,4>

it

<0,1, 2, > h
X X

If the time to execute the statements in b2 is unbounded, the number of

possible histories for the variable x is also unbounded.




Table 2, Example of a Program With Concurrent Statement

begin integer u, v, x, y;

parbegin
X 1= U;
y = v;

parend;

iter: parbegin

X 1= X + 1;
y =y - 1;
- parend;

if y # u then go to iter

end .

Execution

11



Table 3.

Another Ex

begin

ample

integer u, v, x, y;

parbegin

pa

X 1= u;
y 1= V5

rend;

parbegin

bl: begin
iterl: x := x + 1;
if y # u then go to iterl
end;
b2: begin
iter2: y = y - 1;
if y # u then go to iter2

end

parend

end .

12

253
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These three examples represent ''partially interpreted' programs
in the sense that the operations performed by each statement are
specified. An "uninterpreted' program for the example of Table 2 is
shown in Table 4. The symbol p1 represents a predicate function which
gives the value "true" or "false'. 1In the sense of Definition5,
determinate operation requires that unique variable histories must be
obtained for every possible choice of the functions fl, f2, f3, fh’ and

the predicate .
CONTROL STRUCTURES

In this section, we consider the form of the control used to
permit the initiation and termination of the operations in a schema.
For the present, let us consider the variables in a schema to be cells

in a memory or register.

Rodriguez

Rodriguez [3h ] assocliates status information with each variable.
The status information specifies whether a variable is 1912_(0),
ready (1), disabled (-1), or blocked (2). the function
Ga of Definition 2 may be considered to map the status values associated
with the input set and output set for an operator a intonew status

values. An example is shown in Fig. 1 where square boxes represent




Table 4. Uninterpreted Version of the Program in Table 2

begin integer u, v, x, &;

parbegin
X :w fl(u);
y := fe(v);
parend;

iter: parbegin

X := f3(x);
y := 1§, (v);
Pparend;

p,(u,y en go to iter
if p,(u,y) th to it

end .

14




1 1

X ] X
]

< 7

~. \

0
I\
3 i—_] [J X),

1= {xy5 xa} o, ={x3, %) }

G : xX.,X. X X
a

172737}
1100-—=0011

Figure 1. Example of a change in status information.
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variables and circles represent operators. In this example, status
values for the input variables are changed to O and the status values
for the output variables are changed té 1 when operator a is executed.
This is not a coincidence. In fact, with the exception of data-
dependent decisions, this is the mechanism used to determine waen
a particular operation is eligible for initiation, That is, the
status of all input variables must be 1 (ready) and the status of all
output variables must be O (idle). When the operation is performed,
the status of all input variables is changed to O and the status of
output variables to 1. Thus an operation may not be performed a second
time until other operations are performed which change the status values
of the variables in the input set to 1 and the status of variables in
the output set to O. This control technique has been borrowed from
Petri [ 32,33 ]. The 1 status values correspond to the "stones" or
"tokens'" which determine when the events in a Petri net may occur.

In the Rodriguez model, operators must be chosen from several
basic operator types. Computations with data-dependent decisions
and iteration can be represented but procedures and recursion cannot
be described, Some but not all of the operator types Rodriguez has

proposed will now be described.

had



1y

Input Operator

The functions F and G are not defined for this operator. It
is used only to provide input data for the model, The status
of a variable which is only in the output set of input
operators is assumed to be initially equal to 1 to indicate

that the variable is ready for use,

Output Operator

-

ouT

The function F is not defined for an output operator. The

function G changes the status values as defined below,

G:
10

-1—-»=0
Thus, if ready or disabled status is associated with an

input variable, the status is changed to idle.
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3. Function Operator X X,

If all input variables have ready status and the output
variable has idle status, the function F operates on the
values for the input variables.xi and xj to produce a
new value for the output variable xk, The G function

changes status values for Xis xj, and x, 8s defined below,

G: x x.X
ijk
110— 001
1-1 0 — 0 Q-1
-110 — 0 0-1
-1-1 0 —= 0 0-1

The function operator may have many input variables but

only one output variable.

k., Identity Operator X

(1)

X i X

J

If the input variable has ready status and all output

k

variables have idle status, the value of the input variable
is copied by the function F to the output variables. The

G function is defined below. G: xixjxk

100~—=011
-1 0 0= 0-1-1
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Selector Operator [f;J
(SEL
F T
2
xj xk

Each selector operator has an associated predicate function p
which tests the input variable values., A selector operator
may have more than one input variable, The F function copies

*
the input value to x if p is false.

if p is true and x

k J

The G function is defined below,

G: xixjxk

0-1 1 if p(xi) is true
100~—
0 1-1 if p(xi) is false

-100— O0-1-1

6. Loop Junction Operator

s

The loop junction operator is used to initiate an iterative
computation., The input variable with line labelled I supplies
the initial value for the iteration, The variable with line
labelled S supplies the value on subsequent or 'feedback"

iterations. The output variable with label LO must be the

* This is not how Rodriguez defined his selector operator, His
operator does not copy the data values. The above form is used

to simplify the description of the iteration example which follows,
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input to a loop output operator. The F function associated
with the loop junction operator takes the value present for
the I or S variable and passes it to the output variable Xy
if proper status values are present, The status transitions

for a loop junction operator are given below.

G: X X X X F:
Pqrs
1000—=2021 X =X
S p
1100—=2121 X =X
S P
1-1 0 0—=2121 X 1= X
S p
-3 00 0~—=2 0 2-1
h -1100—21 2-1
-1-1 0 00— 2-1 2-1
2100—=2 0-1 1 X =X
S q
2-1 0 0—= 0010

Loop Output Operator

The input variable with line labelled LO must be the LO

output of a loop junction operator.

G: x:,LxJ.xk F:
110—001 X 1= X
1-1 0 —= 0 0-1 ko3
-110—200
-1-1 0 —— 200
210—~010
2-1 0 —=0~1 0
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To illustrate the use of these operators, an example of a simple
iterative computation, shown in Fig. 2, will be described. The two
ALGOL statements describe the coﬁputation performed. In Fig. 3,
operators are joined directly by arcs and the boxes representing variables
are omitted for clarity. Status values are given by the labels on each
arc. The initial status values are shown in Fig. 3a. Fig. 3b shows
the status values after the first execution of the loop junction operator.
The status of the initial value variable has been changed to 2, which
blocks further entry to the loop junction until the iteration is complete.
The loop jahction operator copies the initial data value, in this case 1,
into the variable which is the input to the function operator. The
function operator is executed next. It subtracts one from the input
variable value and places the new value in its output variable., The
selector operator may now be executed., The status values after the
execution of the selector are shown in Fig.3c. The selector operator
readies the feedback input to the loop junction and disables the input
variable for the loop output operator. The loop output operator must
be executed next and the status values obtained are shown in Fig. 3d.
The loop junction is now executed giving the status values of Fig. 3e.
Both the function and loop output operators may now be executed con-
currently; the status values obtained are shown in Fig. 3f. The
selector operator is now ready to be executed. This time, the test

fails and the feedback input to the loop junction is disabled and




@ (initially x is 1)

X 1=x - 1;

iter: if x = O then

begin
X :=x - 1;
go to iter

end

Figure 2, Iteration example in the Rodriguez model,

22



a) initial ' b) after LJ

OUT

c) after FUN and SEL d) after LOP

Figurc 3.

Status value transitions for the examplce of Fig. 2.

23



e) after LJ f) after FUN and LOP

g) after SEL h) after LOP and LJ

Figure 3. (continued)
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the input to the loop output is readied. The status values are shown
in Fig. 3g. The loop output is executed next which allows the loop
junction to be executed unblocking the initial value input to the
iteration. The status values are shown in Fig. 3h. The computation
terminates with the execution of the loop output operator followed by
an execution of the output operator. At termination (not shown) all
variables have idle (O) status values.

Using these techniques for controlling the execution of operations,

Rodriguez is able to prove the following theorem.

Theorem 1:

If a computation in the Rodriguez model terminates, it

is determinate.

In this theorem, determinate operation implies that the variable
histories and the status histories as well are unique. The data

functions, F, associated with function operators may be arbitrary.

Rodriguez' results are actually not stated in the above form.
His results are based on Muller's definitions of speed independence and
use the concept of state of the model as defined by the current variable
values rather than the variable histories defined earlier., The fact

that once operators are ready to be executed they may not be disabled
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corresponds in essence to Muller's concept of semi-modularity [ 31 J.
It can be shown that the operation of the Rodriguez model is determinate

in the sense that the variable histories are unique¥*. Rodriguez gives

necessary and sufficient conditions for a computation to terminate.

These conditions are related to the absence of hang-up states. A

hang-up state is entered if the computation terminates such that no
operator may be executed and some variable does not have idle status.

Rodriguez states an equivalence problem for his model and proves that

it is decidable.

Luconi

The work of Luconi [ 16, 17, 18 ] differs from that of Rodriguez
in the following way. A model corresponding to a partially interpreted
schema with variables corresponding to memory or register cells is
defined. However, no status information is associated with the variables,
Instead, some variables contain data which serves only to determine
when operators may be executed. When an operation is performed, the
transformation defined by the F and G functions is carried out. TLuconi
assumes that the output values produced propagate instantaneously
(1ine delays are zero).

The following two conditions are defined which relate to the

well-formedness of Luconi schemas.

¥ Private communication from F. L. Luconi.



27

Definition 7:

Two operators a and b are said to be conflict-free if and

only if whenever a and b may be executed concurrently, any
common output variable must receive the same value from each

operation,

A slightly stronger condition is that O n O, = ¢, where ¢ is

the empty set.

Definition 8:

Two operators a and b are said to be transformation-lossless

if and only if whenever a and b may be executed concurrently,
the execution of operator a does not affect the results to be

produced by operator b and vice versa.

A slightly stronger condition is that 0a n Ib = ¢ and 0b n Ia = @.

A partially interpreted schema is said to be conflict-free if all pairs
of operators are conflict-free; it is said to be transformation-lossless
if all pairs of operators are transformation-lossless, Luconi proves

the following theorem,

Theorem 2:
Every schema in the Luconi model which is both conflict-
free and transformation-lossless is determinate in the sense of

Definition 6.
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The conflict-free and transformation-lossless conditions are "local'
in the sense that they may be tested by examining pairs of operators
which may be executed concurrently. Luconi's transformation-lossless
condition is essentially the same as the semi-modularity condition of
Muller if the variables are interpreted as values on interconnecting
lines rather than memory cells. Muller can have no conflicts because

the output line for each operator is unique and not shared with other

operators.

Luconi proves that there is no procedure to determine if an

arbitrary, partially interpreted schema is determinate., That is, the
decision problem for determinacy is unsolvable.

In Fig. 4, an example of the Luconi model is given which
represents the computation for the program in Table 2. The dashed
lines indicate portions of the schema the primary function of which
is to control when operations may be performed. The initial variable
values are shown inside the square boxes. In this example, the
control variables (dashed boxes) have their values changed in a
manner similar to that used by Rodriguez. That is, before an operator

|

may be executed, certain "input" variables must have the value 1 and

certain "output" variables must have the value O. During the execution

1

of the operator, the "input" values are changed to O and the "output"

values are changed to 1. We will represent the changes in control



Use of the Luconi model to represent the computation

Figure L.

of Table 2.
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variable valués using the G function and the change in data values
using the F function. These functions are defined in Table 5. This
example satisfies both the conflict-free and transformation-lossless
conditions and is determinate.

In the second part of his thesis, Luconi views the control,
which determines when operators may be executed, as being separate
from the rest of the schema but still defined as a schema. A schema

in this form is called a structural schema and is composed of two

parts, an Interpretation-schema (I-schema) and a Control-schema

(C-schema). The I-schema performs the computation and the C-schema
determines when the operators in the I-schema are enabled.
Associated with each operator in the I-schema is an operator in
the C~schema., These operators share a common control variable. Before
an operator in the I-schema is eligible to be initiated, the control
variable must have the value O. When the I-schema operator is
eligible to be initiated, the value of the control variable is set to
1 by the C-schema operator. When the I-schema operator terminates
its execution, it sets the value of the control variable to 2.
Fig. 5 shows the interconnection between an I-schema operator and
a  C-schema operator.
Luconi defines C-schema operators corresponding to Rodriguez'
selector, loop junction, loop output, and other operator types. The

status values are kept in variables which are part of the C-schema.



Table 5.

Function Transitions for the Example of TFig. L

X. X

10—=01

X X

27
10—=01

10—= 01

10— 01

if y # u then
X, XX
7879
100—011

X X X
567
110~—=001

X3X)XgXg
1100—=0011

null

null

u
v
x +1
y -1
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Figure 5.
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I-schema C-schema

Interconnection of an I-schema operator with

a C~-schema operator,

W)



33

A structural schema for the iteration example of Fig. 2 is shown in
Fig. 6. The computation proceeds as before except that the function
operator (FUN) in the C-schema is responsible for monitoring the
execution of the I-schema operator which subtracts one from the
current value of the variable x. Notice that data values are no

longer passed from operator to operator as in the Rodriguez model.

QUEUES

FIFO {First-In, First-Out) queues have played an important role in
the models of Adams [ 1, 2 ] and Karp and Miller [ 13, 14, 15 ].
They have been used in two different ways. In the first approach,
used by Adams and in the Karp and Miller program graph model [ 13 ],
each variable is considered to be a FIFO queue rather than a simple
memory cell, It is required that each queue receive output data from
exactly one operator and provide input data for exactly one operator.
Adams allows complex data structures as queue entries and associates
with each queue status information, which is used for the same purpose
as in the Rodriguez model, to control data-dependent branches. 1In the
Adams and Karp and Miller models, operators are ready to be executed
when their input queues are non-empty, assuming appropriate status
values in the case of Adams. Karp and Miller do not need status
information because they do not allow data-dependent decisions in

their model.




l‘

(initially x is 1)
X :=x ~1;

iter : if x = O then

begin
X::X-—l;
go to iter
end

Figure 6. A structural schema for the iteration example of

Fig. 2 .

3l|.
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Karp and Miller have proved the following theorem.

Theorem 3:
Every computation described in the program graph model

is determinate.

Karp and Miller investigate termination properties of their model and
also the determination of bounds on the lengths of the queues,

Adams' model is a programming language for describing parallel
computations. He allows graph procedures which may be recursive. In
addition if, when an operation is initiated, there are sufficient
entries in the input queues to permit the operator to be performed
more than once, copies of the operator may be created and executed in

parallel, Adams proves the following theorem,

Theorem U
Every computation described in the Adams model is

determinate.

The second way in which queues have been used is in the program
schema model proposed by Karp and Miller [ 14, 15 ]. Each operator a
has an associated queue pu(a). To aid in understanding how these queues
are used, the control structure for the Karp and Miller schema model

must be described. The control is a transition system which under-

goes changes in control state as the result of the initiation and
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termination of operator executions. Suppose that after operator a is
executed, operator b is ready to be executed. The function G produces
a

a symbol, say a., which causes a contrpl-state transition into a state

1
from which operator b may be enabled. This control situation is illus-

trated by a form of transition diagram shown in Fig, 7. The a, outcome

1
from operator a causes the control to enter state q . The enabling of
an operator, in this case operator b, is indicated by a transition to
another control state. The arc joining the two control states is
given a label consisting of the operator name with an overbar, in this
case b. After operator b is enabled, the control enters control state
q' from which, in this example, it is possible to enable operator a
once more.

The phrase '"enable operator b"' has the following meaning, Take
the values of all input variables (memory cells) for operator b and
make these values the next entry in the FIFO queue u(b) associated
with operator b, The actual execution of operator b is now accomplished
in some unspecified manner. When operator b terminates its execution,
the queue entry is removed and the output values as determined by the
function Fb are assumed to be assigned to the variables in the output
set Op. In addition, the output of the decision-making function G,

causes a control-state transition., A formal definition of the control

portion of the Karp and Miller schema model is given below.




a; (operator a terminates)

(operator b is enabled)

(operator a is enabled

‘ again)

Figure'?i Diagram of control to enable operator b on

termination of operator a.
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Definition 9:
The control C of a Karp and Miller schema is defined by

a quadruple

C = (Q ,qo,z,'f)
where

Q is a set of control states

qO is the initial control state

T = agA{ R ) }  the control
alphabet

T: QXY —= Q the transition function

The transition 7(q,a) specifies the control state entered when
operator a is enabled and the queue entry is made for operator a.
Transitions T(q,ai), i=1,2,..., K(a), specify the control state
entered when the execution of operator a is complete. K(a) is the
number of data-dependent outcomes for the operator a. Karp and Miller
require that T(q,ai), i=1, ..., K(a), be defined for all q ¢ Q and
for all a ¢ A. It is assumed that when an operator is enabled, the
operator is executed in a finite but unbounded time.

We now define the state of a schema.
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Definition 10:

The state 0@ of a schema is defined by the triple

o = (variable values, q, u)

where the variable values are the present values of all the
variables in M, q is the present control state, and .

represents all queues associated with schema operators.

A Karp and Miller schema for the iteration example of Fig. 2

*
is shown in Fig. 8. An illustration of a Karp and Miller schema

*
for the program of Table 2 is shown in Fig. 9.

The equivalence of schemata is defined as follows.

Definition 11:

Given schemata *1 and 62

5, = (0, 4, C))

"“2 = (M’ A, C2)
31 and A2 are equivalent if and only if for each interpretation,

the set of schema histories for Jl is equal to the set of schema

histories for 52.

Control transitions which return to the same state are omitted

for clarity.



Lo

A= (M, A, C)

{x}

M

I

A= {a}
¢ = ({agraysan} » 9gr {Bappap} s 1)
T(qO,a) = ql
T(qo’al) = T(qo’ag) = qo
T(ql’al) = qo
T(ql)ag) = q2
T(qgial) = T(qz}aa) = q2
B Interpretation
D_: integers ( x is initially 1)
F :x:=x -1
a
Ga: if x = O then al else a2
. (4,)
1 —
a
l B

T
e

Figure 8. Karp and Miller schema for the iteration example

of Fig. 2.
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eg
u x \ y v
of | v|[s!]e
!
1
S OO
M = u v,x, y
A= a, b, c, d, e

Fa: x = u

Ga: a,

Fb: y 1=V

Gb: b1

Fc: X :=x + 1

Gc: c1

Fd: 9 =y - 1 i
Gd: d1

¢ null
e

F
G : if y # u then e else e,

control

Figure 9, 1Illustration of a Karp and Miller schema for

the program of Table 2,



L2

Notice that this definition requires that 51 and 4. have identical

2
variables and operators, only the control may be different. Also,

if a schema is determinate the set of schema histories has exactly
one member.
Another property of schemata is the boundedness of the operator

queues,

Definition 12:

If

T [ length of p(a) ] < K
acA

for some integer K, at every stage in the execution of a
schema, the schema is said to be bounded. 1¢ g _ 1, the

schema is serial.

In order to specify the class of schemata which is determinate,
restrictions on schemata are introduced. 1Ipn this discussion ¢ and 7

represent arbitrary symbols in the control alphabet Z.

Restriction 1: (persistence)
If T(q,0) and T(q,n) are defined, then T(q,on) and

T(q,n0) must be defined.
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- The persistence restriction requires that once an operator is ready

to be initiated, it must remain ready to be initiated.

Restriction 2: (commutativity)

If 7(q,0n) and T(q,n0) are defined, then T(q,on) = T(q,n0).

The effect of commutativity on the control transition diagram is

illustrated in Fig. 10.

Restriction 3: (lossless)

The output set 0a of every operator a must be nonempty

. (o, £ @.

Let us define a next-state function . which is a function of

the present state X and one of the control alphabet symbols defined

for the present control state. We write

0. a next state entered after operator a is
enabled.
a . a, next state entered after operator a

terminates (1 < i < K(a)).

Restriction L:

If ¢ . ox and @ . 5o are defined, then @ . o = O . no.



Figure 10.

- c

vy

Effect of commutativity on the control transition

diagram,

L
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Given these restrictions, it is possible to prove the following

theorem,

Theorem 4:

Every Karp and Miller schema that satisfies
Restrictions 1 - 4 is determinate in the sense of

Definition 5.

The schema illustrated in Fig. 8 is a determinate schema. The
schema of Fig. 9 is also determinate but it is not lossless
(Restriction 3) since 0e = ¢. Therefore, Theorem 4 cannot be
applied to this example,
The precise statement of the Karp and Miller theorem is
slightly different. They prove that a persistent, commutative, and
lossless schema is determinate if and only if Restriction 4 holds
for every interpretation.
The following two restrictions are useful in establishing further

properties of schemata.

Restriction 5: (repetition-free)

If an operator a is executed twice, each variable in
its input set must appear in the output set of an operator

that is executed between the two executions Of operator a.
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Restriction 6: - (finite-state)

The number of control states in @ is finite.

The following two theorems summarize some of the decidability results

for the Karp and Miller model.

Theorem 5:
It is decidable whether
1. A finite-state schema is repetition-free.
2. A finite-state, repetition-free schema is bounded (serial).
3. A given operator a in a finite-state, repetition-free schema
is performed a finite number of times in each computation.
4. A persistent, commutative, lossless, repetition-free, finite-

state schema is determinate in the sense of Definition 5.

Theorenm 6 :

It is undecidable whether
1. Two persistent, finite-state schemata are equivalent.

2. Two serial, finite-state schemata are equivalent.

e ”gi
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CONCLUSIONS

Richard Hamming has said ''the purpose of computing is insight "

L 7 J. We might paraphrase this statement in the following way ''the
purpose of theory is insight". In this paper, we have attempted to
bring together some of the work on the theory of parallel computing
with the hope of furthering the insight derived. One general conclu-
sion is that in all these models, by determinate operation, it is either
implicit or explicitly required that an operator which is enabled and
ready to be executed must not be disabled by the execution of some other
operator. We understand that Slutz [ 38 | has been able to weaken this
restriction to allow an operator to be disabled if it must eventually be
re-enabled, We do not yet understand the details of his result.

In our study of solutions to the mutual exclusion problem | 5 7,
we have found examples of systems which were not determinate but which
do operate correctly in the sense that the mutual exclusion problem can
be solved. This suggests the need for investigation of models which are
correct but not necessarily determinate. The work of Ashcroft and
Manna [ 3 7 is relevant here.

One difficulty with these models, at least with respect to their
application in the study of computer systems, is their inadequacy in
describing how one operator can prevent another operator, which is being
executed at the same time from producing any results. Such an "interrupt"
capability exists in most systems and is desirable to prevent time being
wasted on the execution of operators when their results are known to be

meaningless. For example, a divide by zero should cause the execution




of all operators used in the computation of an arithmetic expression

to be terminated.

48
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