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PREFACE

Grammatical inference is the process of discovering an accents
grammar for a language, on the basis of finite samples from the

language_ and is an interesting form of inductive inference. One of

the principal tasks of linguists (and, it is widely believed, of

children) is inferring grammars for natural languages. Yet remarkably

little is known about either the actual methods used in grammatical

inference or the possibilities and limitations of various inference

techniques.

. The grammatical inference problem was stated formally by Chomsky

in 1957. Context-free grammars, which Chomsky introduced at the same

time, were quickly adopted by computer scientists for the formal

definition of programming languages, and by now their uses are legion.

But the computing community (with the exception of Solomonoff) seems

to have generally ignored grammatical inference for the next ten years,

perhaps because of Chomsky's negative views on its solvability

(reinforced by those of Shamir and Bar-Hillel). In 1967, Feldman and

Gold proposed radically different solutions tc the problem, and it is

now starting tc receive some of the attention that it deserves.

The present study has been motivated by the twin goals of devising

useful inference procedures and of demonstrating a sound formal basis

for such procedures. - The forr:r has led to the rejection of formally

simple solutions involving restrictions which are unreasonable in

practice; the latter, to the rejection of heuristic "bags of tricks"

whose performance is in general imponderable. part I states the general
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grammatical inference problem for formal languages, reviews previous

work, establishes definitions and notation, and states of position on
evaluation measures. Part IT 1s devoted to a solution for a particular

class of grammatical inference problems, based on an assumed probabilistic

structure. The fundamental results are contained in Chapter V; the

remaining dhabiers discuss extensions and removal of restrictions.

Part III covers a variety of related topics, none of which are treated

in any depth.

I was originally introduced to the grammatical inference problem

by Professor Jerome Feldman, and the present study was begun at his

suggestion. Many of my results were derived to confirm or deny his

conjectures,and I owe a great deal to his suggestions, his prodding,

and his continuing interest. Thanks are also due to Professors David

Huffman, William McKeeman, and William Miller for balanced doses of

criticism and encouragement; to Rod Fredrickson and the Stanford

Computation Center, Campus Facility, for financial support, computer

time, and freedom to pursue the research reported here; to Stephen Reder

for many stimulating discussions; to my wife for her patience; and

especially to Phyllis Winkler for typing above and beyond the call of

duty.
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PART I

PRELIMINARIES



I. STATEMENT OF THE PROBLEM

Introduction |

The strongest requirement that could be placed |
on the relation between a theory of linguistic

: structure and particular grammars is that the
theory must provide a practical and mechanical.
method for actually constructing the grammar, oo
given a corpus of utterances. Let us say that .

such a theory provides us with a discovery
procedure for grammars.

[Chomsky 1957]

This study considers solutions to the problem of inferring a :

grammar for a language on the basis of finite samples from the

language. For example, Feldman [1967], from the sample

b baba

bb abba RE

aa bbaba

aba aabb |

inferred the grammar P

S::=b | bS | aa |

A ::=28 | bA as .

This grammar generates all the strings of the sample (and an infinite

number of other strings), but it is not the only, nor even the shortest,

grammar with this property. Finite samples do not uniquely determine

particular grammars (or even particular languages) from the infinite

2
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classes studied here; we cannot prove that any particular grammar is

correct. Thus we are led from mathematical (demonstrative) reasoning

to what has been called "plausible reasoning” [Polya 1954] or

"non-demonstrative reasoning” [Nagel 1963]. Such methods will not

yield answers which are certainly correct; all will sometimes infer

grammars which further evidence might prove to be incorrect.

Nevertheléss, we are interested in developing and justifying particular .

methods as adequate and, under some conditions, optimal solutions to

the problemof grammatical inference.

Since individual answers cannot be proven correct, it is important

in each case to understand clearly and explicitly what problem is being

solved, what is required of a solution to that problem, the assumptions

under which a proposed solution is valid, and the relation of these

assumptions to conditions which will obtain in potential applications.

By making sufficiently strong assumptions we can make the grammatical

inference problem formally trivial -- although perhaps still computaticnally

laborious. Conversely, the problem can be formulated in such a fashion

as to make the very existence of solutions doubtful. Potential

applications lie at various points between these extremes, and no

single solution is likely to satisfy all of them. Much of this study is

devoted to identifying forms of the grammatical inference problem which

are both solvable and useful; in a few cases we have "solutions

looking for problems,"

The classes of grammars treated in this study are subsets of the

context-free grammars. In even the simplest case (finite-state

grammars), however, we are dealing with an infinite set of grammars.
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Furthermore, the set of possible samples is infinite. This means

that formally simple operaticns which require the enumeration of all grammars

or all samples must be excluded from computationally acceptable

solutions. But it is not sufficient merely to show that each computation

is finite. We cannot, for example, reasonably consider using

agora ish require hy or es computations at the N-th step.
Thus, an important part of this study is the consideration of practical

boundsof applicability of the methods developed. In addition, we

present the results of a computer implementation of one algorithm

for grammatical inference.

Related Problems

The grand aim of all science is to cover the greatest
number of empirical facts by logical deduction from
the smallest possible number of hypotheses or axioms.

[Einstein]

Many aspects of intelligent behavior, whether "artificial"

or "natural," involve plausible reasoning. One large class of

problems stresses the recognition of regularities in data, and

solutions are variously called "pattern classification,” "concept

formation," "data reduction,” "learning," "explanation," or even

"understanding." Another class is aimed at prediction of future

observations or determination of the true state of nature, based on

observational data; solutions may be called "extrapolation,”

L In accord with Church's thesis, we make no distinction among the
terms algorithm, effective procedure, device, and computer program.
Similarly, we use effective and computable as synonyms. [Cf.
Davis 1958.] ’
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"generalization," "statistical estimation," or "inductive inference."

This division is based more upon divergence of viewpoint and emphasis

than upon difference of technique -- we will later show that a certain

inference technique can be justified either on the grounds of most

efficient encodings of data or most probable estimates of the true

grammar -- and there is no necessary conflict between them, They will

lead, however, to rather different statements of the problem, and to

rather different criteria for judging the results. In the first case,

the concern is for the relation of the answer to the observed data:

how well does it fit? how much can it explain? how efficient a

representation does it provide? In the second, primary concern is

for the expected relation of the answer to the true state; the

observational data is important to the degree that it conveys

infarmation about that state,

Grammatical inference may be viewed either way. An inferred

grammar is both a description of observed strings and a prediction of

which other strings are of the same —— This study incorporates

approaches used by both schools of thought. Most of the borrowed results

are not deep mathematically, since the principal difficulties in

grammatical inference spring directly from the infinite, non-parametric

hypothesis space, rather than from any mathematical complexities. We

have most often used the following paradigm for insight into the

inference problem: The inference device is confronted with a state

ofnature which is known (believed) to be represented by some one

hypothesis out of a given set; the state of nature is not directly

observable, but data which depends in some known fashion on the state

2



is available as an infinite sequence of observations; after each

observation the device is to guess the state of nature.

We would certainly hope that our inference strategy would

ultimately have an arbitrarily high probability of settling on the

true state of nature. An optimal strategy is one that picks the true

state more often than any other with the same information does. It

never makes sense to infer at any time a hypothesis which can be

deductively falsified by observations already made. We will later

develop the viewpoint that an inductive inference device should

generally be coupled to a deductive device which pre-screens the

hypotheses for adequacy. Such tests could be built directly into the

inductive device, but a separation appears desirable on two grounds:

deductive inference, with corresponding search-limiting and pruning

techniques is a well-developed field in itself, and as much as possible

should be carried over intact; advanced deductive methods may be

orders of magnitude more efficient than simple screening as an adjunct

to inductive methods.

Why Infer Context-Free Grammars?

Furthermore it [constituent-structiive] is the only
theory of grammar with any linguistic motivation
which is sufficiently simple to permit serious
abstract study.

[Chomsky 1963]

There are two general justifications for studying the application

of inductive methods to a particular problem: either the problem needs

to be solved, i.e., some practical application is envisioned, or the

solution appears formally interesting, i.e., some insight into either

6



the problem itself or into inductive methods is sought. In the case

of grammatical inference, both apply. This study represents a step

(certainly not the final one) in the development of orenediies for
currently known applications; these procedures appear to be

applicable to more general problem areas. |
Grammarsare an interesting and powerful class of concepts. In

the last dozen years context-free grammars have shown themselves

useful in computer science, linguistics, and logic as definitions of
formal languages, as hypotheses about -- or as generalizations of

observations on -- natural languages, and as representations of complex

structures. There are many situations inwhich grammars are

known to be useful, but in which the relevant grammar is not known

a priori, and consequentlymust be inferred from observations of the

language. We present here two to which our study appears relevant.

Picture grammars: Two-dimensional pictures can be mapped into

strings of picture elements, representing line segments, and picture

operators, representing connectivity. Classes of pictures are thus

mapped into sets of strings (i.e., languages) which are representable

by grammars. Particular attention has been devoted to photographs of

nuclear events recorded in bubble chambers; a direct correlation can

be made between the reactions creating sets of pictures and the

grammars representing them. A considerable amount of tedious analysis

of these photographs could be avoided if there were a satisfactory

program for inferring picture grammars. [Shaw 1968] [Miller and Shaw

1968] [George 1968].
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Speech recognition: Some computerized speech recognition systems

operate within the constraints of a fixed context-free grammar at the

morpheme (or word) level. Nevertheless, they must adjust to the

phonetic performance of individual speakers. Systems allowing

sufficient a priori variation to handle all users generally do rather

poorly for particular users. One reasonable representation for an

individual speaker would be a set of low-level grammars representing

his pronunciations of the words or phonemes occurring in the main

grammar. For such a representation to be practical, there must be a

means for the computer to learn these low-level grammars, [Reddy 1966]

[Vicens 1969].

Grammatical inference also seems to be of about the right

difficulty to be formally snteresting It is a non-trivial problem

which forces us to realistically deal with infinite hypothesis and

observation spaces for which we do not have any convenient finite

parameterization. Yet we have enough structure to make the problem

formally tractable. Grammars provide a well-defined characterization

of sets of strings, and the notion of deductive consistency between

hypothesis and data is precise and readily testable. Awell-developed

meta-theory is available, and many important properties of grammars

have already been established. For experimentalwork we have at least

Y rhe task of the linguist attempting to discover grammars for natural
languages is of course incredibly more complex than the one we have set
ourselves. In the first place, the natural languages are much larger
(richer) structures than those studied here; in the second, it is
doubtful that context-free grammars (to which we limit ourselves), even
of great size, are adequate models of natural language [Chomsky 1963];
finally, natural language learning is certainly complicated (although
perhaps assisted) by questions of meaning (semantics) which we do not
treat at all. It shouldbe noted, however, that at least one important
paper on which this study relies [Gold 1967] was motivated by an interest
in the problems of a child (or a linguist) learning a language.
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three controls on the magnitude of the problem: the class of grammars

(e.g., from the hierarchy of finite state, linear, context-free),

and the numbers of terminal and non-terminal symbols. We tend

to feel that experience using grammars in a computer science context

has led to a certain amount of insight into the subject matter which

we could not bring to bear on anarbitrary form of inference. Humans

perform reasonably well in simple forms of the grammatical inference

proband and some heuristic programs have been written [Feldman, et al.
1969]; thus, there are at least rough standardsof comparison available.

Criteria for a Solution

«ss.There are three main tasks in the kind of program
for linguistic theory that we have suggested. First,
it is necessary to state precisely (if possible, with
operational, behavioral tests) the external criteria
of adequacy for grammars. Second, we must characterize
the form of grammars in a general and explicit way so
that we can actually propose grammars of this form for
particular languages. Third, we must analyze and
define the notion of simplicity that we intend to use
in choosing among grammars all of which are of the

proper form.

[Chomsky 1957]

So far we have left open the question of what constitutes a

solution to the grammatical inference problem. In fact we have suggested

that there is no single solution to the problem, since there are

actually many forms of the problem. Most people probably approach the

question with an implicit criterion something like

The device always guesses the answer which I believe

is the best answer based on its data.

Such a criterion poses what John McCarthy has called an "ill-formed

problem,” since it is difficult to determine when (or if) you have

1/
Cf. Chapter XI, pp. 156-160.
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solved it. Artificial intelligence research often depends on finding

well-formed approximations to ill-formed problems. In the present

case,we have a well-formed problem when we have specified:

1) The hypothesis space, i.e., the class of grammars to be

inferred.

2) The observation space, i.e., the form of the data and

anything which is known about its structure.

2) The evaluation measure, i.e., an objective means of

specifying the best hypothesis in a given situation.

4) The required performance, i.e., tie criterion an

acceptable solution must satisfy.

Having specified the first three items, we generally cannot set the

fourth arbitrarily and still have a solution. Often we will have a

fixed requirement, and vary some of the first items so that a solution

is obtainable. Typical requirements are

a) The device must be able to infer a correct grammar for any

language generated by a grammar in the we

b) The device must (infer/approach) the correct grammar for

(all/virtuallyall) valid sequences of observations and

(stop at a finite time with the correct answer/ settle on

the correct answer at a finite time / reject each incorrect

answer at a finite time/ approach unit probability for the

correct answer).

SVEN is generally neither possible nor desirable to strengthen this to
the requirement that the same grammar from which the observations
were derived be inferred.

10



¢) The device must ultimately yield the best grammar for each

language.

d) The device must (make a best guess / must minimize the

probability of guessing an incorrect grammar) at each time.

Several investigations involving various combinations of the above

alternatives have been reported and are summarized in the next chapter;

we present results for other combinations in later chapters.
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II. PREVIOUS WORK AND RESULTS |

One may arrive at a grammar by intuition, guess-work,
all sorts of partial methodological hints, reliance
on past experience, etc. It is no doubt possible to
give an organized account of many useful procedures
of analysis, but it is questionable whether these
can be formulated rigorously, exhaustively and simply
enough to qualify as a practical and mechanical
discovery algorithm,

[Chomsky 1957]

Constructive Methods

From the time that phrase structure grammars were proposed as

models for natural languages there has been interest in the problem

of discovering grammars for languages. Not surprisingly, the

principal generalization that can be drawn from these studies

is that the power of the inference device depends mostly on the

assumptions that can be made about its environment.

Several methods have been proposed which can be classedas

constructive, since sample strings are used systematically to

construct the rules of a grammar. These present interesting heuristic

approaches to grammatical inference, which may be useful in situations

where a quick approximate (or reasonable) inference is more useful than

a computationally laborious best inference. Some of them have been

programmed with "subjectively reasonable" results [Feldman, et al. 1969].

However, they are not generally presented as solutions to well-formed

problems, and it is not even clear that well-formed problems can be

devised for which they would be optimal solutions. Since this approach

12



differs so substantially from our own, we will merely sketch two

of the methods, without attempting proofs or a general development.

A method originally developed for finite-state grammars [Chomsky

and Miller 1957] was generalized by Solomonoff [1959] for context-free

grammars. It is based on the observation that most of the interesting

structure of a grammar (and most of the difficulty in discovering the

grammar) involves the recursive syboled and the rules involved in

the recursions. Consider some recursive symbol A , where

A= OAB , with OB eV]

Now if we have

So BAy— 80y , with 80y ¢ vy

we must also have

+ n

S - 5a’ op ¢ d

for any n > 0. Solomonoff calls (a,B) a cycle, since the generation

process can loop to place an arbitrary number of them in a sentence, His

method depends on the determination of all the cycles in a language.

Solomonoff states the problem as follows:

llcw suppose that we are given a large [enough to contain
examples of all cycles] set of acceptable sentences from
some ..,. language, and we are asked to discover a set of
grammar rules that could generate the set. We are also

1 Throughout this chapter we rely on the reader's prior knowledge of
context-free grammars and related terminology. Some readers may
wish to return to this chapter after reading our formal definitions
in Chapter III.

13



given a teacher. If we have any idea of what the grammar
is, we are permitted to devise a trial string.of symbols,
and ask the teacher if it is an acceptable sentence,
This is the onlypermissable type of question. [Emmhasis

This corresponds to a finite amount of text presentation followedby

a responsive informant. Solomonoff does not mention a measure on

the inferred grammar, but it appears that he wishes to infer a grammar

which generates precisely the unknown language. For each partitioning ir

of each string o¢ in the sample as 0 = 300By with AB £#A he

questions the teacher about the validity of 8O@y . If it is also an

acceptable sentence, he hypothesizes (@,B) as a cycle, which he

: Si rns nn
checks byasking about the validity of Sx egy , sr’ Op y 5 etc,

"for enough tases of repetition to be reasonably certain that an arbitrary

number of such repetitions would leave the sentence acceptable.”

Sentences without detectable cycles are basic, and are retained unchanged;

cycle markers are inserted in the others at the points where cycles

have been detected; the whole process is then repeated until no more

cycles are detected. The cycles which have been obtained are analyzed

in a similar manner.

When, finally, cycles are found from which it is impossible
to extract more cycles, we will have obtained what we call
"basic cycles.” We will be able to generate all the
sentences in the language, when we have obtained an adequate
set ofbasic sentences with all the cycle markers and basic
cycles that may be attached to them, along with an adequate
set of basic cycles with all of the cycle markers and basic

cycles which may be attached to them. ... It can ... be
shown that there always exists at least one finite set of

sentences with their cycle markers, and associated cycles
with their cycle markers, etc., such that this finite set
can generate the entire language.

14



As a last step, the basic cycle form can be convertedto the more T

conventional form of context-free grammar, if it is desired. .

There is no mention of a computer implementation of Solomonoff's i
method. A direct application of the procedure as described would

encounter a number of problems. If the sample set were too small, |

not all recursions would be detected. However, large sample sets |
would result in an incredible barrage of questions to the teacher,

many of which could have been answered by reference to strings already |
in the sample. Although Solomonoff does not touch on the issue of

complexity in this paper, it appears that, in general, large, highly I

redundant grammars would be inferred; simplification procedures like |
those of Feldman and Gips (discussed below) may be in order. Finally, .

Shamir and Bar-Hillel [1962] challenge the adequacy of the method in [
principle for non-sequential context-free languages, or grammars |
with double cycles (e.g. A — CAB and A - BAY ). |

A rather different method for inferring finite-state grammars is !
proposed by Feldman [1967] who states the problem as .

Suppose we are given the problem of finding a non-trivial ]
finite-state grammar for [a set of strings] .... A ¥
non-trivial solution to a grammatical inference problem

must generate an infinite number of strings and must not 1
generate all the strings over the alphabet of the problem. o

Feldman's method involves constructing an ad hocnon-recursive ,

grammar which generates precisely the sample, then using residue

analysis and merging to form a recursive grammar that generates the :

same strings plus an infinite number of others. The method is closely

related to the covering grammars of Reynolds [1968]. Consider any

grammar which generates all the strings in a finite sample. We can ,

15 :



construct a related non-recursive grammar, which also generates the

sample, by replacing recursive occurrences ofmn by new
non-terminals whose definitions are copies of the old, except that

recursive occurrences are replaced by still other non-terminals,

etc. Since all derivations are of finite length, this splitting

process need only be repeated a finite number of times toproduce a

grammar which generates the complete sample. Furthermore, if any

right part in the original grammar was used to derive the sample,

either it or one of its copies will be used in the non-recursive

grammar.

Reversing our viewpoint, any grammar which generates the sample

covers an ad hoc grammar for the sample, and (if it has no unused

right parts) can be constructed from the ad hocgrammar by repeatedly

merging non-terminals, i.e., by replacing all occurrences of one

non-terminal by the other and combining their definitions. But it

is straightforward to construct the standard-form finite-state ad hoc |

grammar for any given sample. Feldman's strategy is to 1) construct

the non-recursive grammar for the sample, 2) make the grammar recursive

by merging each residue non-terminal (a non-terminal which produces only

strings of length one or two) with the non-residue non-terminal which

produces all the same strings "plus as few new (short) strings as

possible," 3) simplify the grammar without further changing the

language by merging equivalent non-terminals (non-terminals which have

identical definitions if one is substituted for the other).

Gips has programmed Feldman's strategy, and sample computer runs

are given by Feldman, et al [1969]. The method does not generalize well

16



beyond finite-state grammars, because even linear languages are not

uniquely deconcatenable -- thus, insteadof one non-recursive grammar

to be merged, there are many ad hoc grammars. Even if a deterministic

merging algorithm is retained (and its rationale weakens as we get away

from finite-state), the grammars derived from the various non-recursive

grammars must be compared somehow. Feldman has proposed modifications

of his strategy to meet these objections.

When Gips generalized his programto pivot grammars (a special

form of operator grammars which lie between linear and general context-

free grammars inpower), he chose not to extend Feldman's method, but

rather to use a simplification of Solomonoff's method, which would work

without a teacher. He makes the following assumptions: all cycles

are on a single non-terminal (which is the distinguished non-terminal

unless all strings start or end with the same symbol); all cycles

appear in the sample with both n =0 and n = 1 ; and no fortuitous

embeddings occur, i.e., n=0 and n = 1 are sufficient evidence

for a cycle. After cycle detection, he simplifies as before by merging

equivalent non-terminals. Computer runs, a more complete discussion,

and suggestions for improvement are given by Feldman, et al. [1969].

Enumerative Methods

The methods of the previous section are effective -- they can be

programmed and they infer grammars. However, it is difficult to say

in what (if any) sense they are optimal or produce a best grammar.

Solomonoff's method is careful, by checking with the teacher, not to

infer a grammar that generates too large a language, but if its sample

17



is too small it will not produce a grammar that generates the language

that it is being taught. No weight is attached to the size of the

grammar itself, and it will -- especially if the sample is large =--

generallybe very large and have many more rules than are necessary.

Feldman's method, on the other hand, attempts to substantially reduce

the number of rules without enlarging the language too much, but the

trade-off is ill-defined. In neither case are we assured that their

behavior will improve (i.e., that their answers will approach a

grammar for the language, or that the probability of answering correctly

grows) as the sample size increases.

Basically, the problem is that for a grammar to be best, it must

be better than all other possible grammars. But the constructive

methods have no way to compare the grammars they produce with all of

those that they don't -- even if we were to supply them with a goodness

measure. Thus there is no reason to believe that they can be easily

modified to infer best grammars, by any reasonable criterion.

The most careful study related to grammatical inference which

we have found in the literature is Gold's "language Identification in

the Limit" [1967]. Gold uses Turing machine programs rather than

grammars as names for languages, and studies a somewhat different class

of inference problems. The power of his results comes both from his

precise statement of the problem and his use of enumerative methods

which guarantee that no relevant answer will be missed. Even though we

have studied different forms of the problem,we are indebted to him

both as a model of clarity and a source of methods.

Gold is interested in languages, not grammars (or Turing machines).

Consequently he uses a binary goodness measure; either a machine
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generates the correct (although unknown) language or it does not.

He also has a fixed requirement on performance, which he terms

identifiability in the limit -- for any language [machine] in the

hypothesis space, and any allowed presentation of that language in the

observation space, there must be a finite time after which the inference

device always yields the same answer, which is correct. Under these

conditions, he is interested in the effect of varying the hypothesis

space and the observation space on the solvability of the inference

problem, i.e., determining the (language class, presentation method)

pairs for which the inference problem is solvable.

Gold's principal result is the strong effect of textpresentation

(in which only valid strings are given) vs. informant presentation

(in which both valid and invalid strings are identified) on the

learnable classes of languages. With ccmplete text presentation not

even the finite-state languages are identifiable in the limit, while

with complete informant presentation even the context-sensitive

languages are identifiable.y As an illustration that the order,

as well as the form, ofpresentation is important, he proves that

presentation by means of a primitive recursive function (anomalous

text) is not only more powerful than complete text, but more powerful

than any of the informant presentations considered.

Many of Gold's proofs involve a special form of guessing rule

which he terms identification by enumeration, and defines as follows;

L In the sequel when we prove identifiability in the limit with text
presentation, it is with a different performance requirement, and a
different condition on the presentation.
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"Enumerate the class of objects [grammars] in any way, perhaps with

repetitions.... At time t guess the unknown object to be the first

object of the enumeration which agrees with the information received so

far." He shows that for his definition of learnability there can be no

other guessing rule which is uniformly better than any identification

by enumeration rule. He does not discuss learning rate or the best

choice at a particular time, except to note that this could only be

meaningful if an a priori probability distribution were defined.

Several of Gold's results are extended in "Grammatical Complexity

and Inference" [Feldman, et al. 1969]. The focus is on text presentation.

By weakening the performance requirement from identifiability in the

limit to approachabilityin the limit (each incorrect grammar is rejected

at a finite time), a form of the grammatical inference problem is

obtained which is solvable with text presentation for any admissable

class of grammars (including context-sensitive, context-free, etec.).

Feldman, et al., also consider the question of learning a best

grammar for a language, and early forms of some of our results occur

in that paper. Goodness is equated with "least complex" and measures

of’ complexity are developed both for grammars, and for sets of strings, |

given grammars. It is argued that a reasonable measure of the best

grammar in a situation must involve both of these complexities. Effective

identification in the limit of the best grammar from any complete

informant presentation is proved for a restricted form of goodness

measure. In accordance with Gold's result (text presentation is
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| inadequate to learna correct grammar) it is shown that complete text

presentation is inadequate to learna best correct grammar with the

goodness measure used (whichwill rate some incorrect grammars as better

than any correct grammar).

The success of all the enumerative methods depends on the fact

that each class of grammars in whichwe are likely to be interested

(e.g., finite-state, context-free) is denumerable; the procedures are

constructed so that at any finite time only a finite number of grammars

(forming a prefix of the enumeration) need to be considered.

Inductive Methods

As Gold notes, to judge among hypotheses which are all consistent

with a given sample requires at least an a priori probability distribution

on the hypotheses and, to make this judgement a plausible function of

the sample, conditional probabilities as well. In this study we use

Bayesean methods presented by Watanabe [1960] and Solomonoff [1964] for

inductive inference without necessarily sharing either of their world

views or endorsing all of their conclusions.

"Information-TheoreticalAspects of Inductive and Deductive

Inference" [Watanabe 1960] is motivated by the belief that

A practical need will be felt more and more acutely in the
future for a well-founded mathematical method of executing
as much as possible of what is called inductive inference,
including hypothesis testing.

The presentation begins with

... ten important features of inductive inference which any
adequate theory of inductive inference should incorporate in
some way or another, and which the present mathematical
model indeed does. Admittedly, these ten conditions may not
be sufficient but they are certainly necessary.
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The bulk of the paper is devoted to the demonstration that Bayes’

theorem -- with a priori anda posteriori "credibility" substituted

for "probability" and "deductive probability" substituted for

"conditional probability" =-- actually meets Watanabe's ten conditions.

Although he requires ni7) Existence of law with objective validity"

he seem reluctant to assign an objective meaning to the "deductive

probabilities." He is also rather casual about the assignment of

"y priori credibilities" (which "can even be altered in the middle of

a series of experiments") since Bayes' theorem guarantees that "the

ultimate conclusion will be free from the subjective pre-judgement.”

Watanabe's results cannot be directly applied to the problem of

grammatical inference, since he explicitly limits himself to finite |

hypothesis and observation spaces, and these limitations are essential

to his development. However, his detailed discussion of the reasonableness

of using Bayes' theorem for the assignment of "eredibilities™ to

hypotheses -- even when objective probabilities are not assumed -- lends
some support to the usefulness of this rule in inductive inference

generally.

"A Formal Theory of Inductive Inference" [Solomonoff 1964] is a more

ambitious treatise, and includes a discussion of grammatical inference.

The problem dealt with is the extrapolation of a very long
sequence of symbols -- presumably containing all of the
information to be used in the induction. Almost all, if not

all, problems in induction can be put in this form.

Few rigorous results are presented.

The third application, using phrase structure grammars, is
least exact of the three. First a formal solution is presented.
Though it appears to have certain deficiencies, it is hoped
that presentation of this admittedly inadequate model will
suggest acceptable improvements in it.
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Solomonoff's viewpoint -- that inductive inference is merely a

form of sequence extrapolation, and that a priori probabilities of

sequences are determined by their likelihood of generation by an

arbitrary universal (Turing) machine -- are not shared by this

author. The acceptability of his reasoning depends on the acceptability

of his premises:

Suppose that all of the sensory observations of a human being
since his birth were coded in some sort of uniform digital
notation and written down as a long sequence of symbols.
Then a model that accounts in an optimum manner for the
creation of this string, including the interaction of the
man with his environment, can be formed by supposing that
the string was created as the output of a universal machine
of random input.

Here "random input" means that the input sequenceis a
Markov chain with the probability of each symbol being a
function of only previous symbols in the finite past. The
input alphabet may be any finite alphabet.

By "optimum manner" it is meant that the model we are
discussing is at least as good as any other model of the
universe in accounting for the sequence in question.

[Emphasis Solomonoff's]

However,we do share his conviction that

It is possible to devise a complete theory of inductive
inference using Bayes' theorem, if we are able to assign
an a priori probability to every conceivable sequence of
symbols.

We are also indebted to him for a number of key 1deas, including the

notions that stochastic grammars provide the appropriate means for

associating conditional probabilities with strings, that the derivations

of a grammar have an essentially simpler structure than their strings (and

provide a useful encoding of the strings), that a priori probabilities may

be assigned to grammars by determining the probabilities of their
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irredundant written forms, and that ordinary grammars can be considered

as stochastic grammars with the probabilities left as free parameters.

Solomonoff equates the problem of finding a grammar which "best

fits" a given set of strings with the problemof finding the grammar

which provides the best encoding in the following sense: the total

probability of strings consisting of the grammar followed by derivetions

of the given set is maximal for that grammar. The probabilities of

(grammar, derivation) strings are evaluated by considering each string

as a set of interleaved Bernoulli sequences and applying approximations

developed on the basis of three-tape Turing machines.

In the previous sectionwe had shown how to obtain a
probability from a given set of strings, a PSG [grammar]
that could have produced those strings, and a set of legal
derivations of the strings from the grammar rules.

Froma formal point of view, this solves the problem of
obtaining a PSG of optimum fit (i.e., highest probability),
since we can order all PSG's and their derivations (if any)
of the set of strings. ...

This is not, however, a practical solution. The problem of
finding a set of PSG's that "fits well” cannot be solved in
any reasonable length of time by ordering all PSG's and sets
of derivations, and testing each PSG in turn.

To remedy this problem, Solomonoff proposes "a method of digital

‘Hill climbing'" starting from an ad hoc grammar and proceeding bya

set of"mutations."

At the present time, a set of mutation types has been
devised that makes it possible to discover certain grammar
types, but the effectiveness of these mutation types for
more general kinds of grammars is uncertain.

Without knowing Scolomonoff's "mutations," of course, it is

difficult to judge their effectiveness; we conjecture that the merging

and splitting rules mentioned in the section on constructive methods
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would provide an adequate base. Of more serious consequence is the

fact that Solomonoff ignores the question of how likely his measure

is to prefer a grammar which is objectively correct. He also omits

any consideration of whether the sequence of grammars selected by his

measure will converge, and if so, whether the limiting choice will

be correct.

In many ways Gold's work and Solomonoff's are complementary.

Gold states a precise problem, and judges a potential solution on its

limiting behavior -- requiring some correct answer but not discriminating

among the correct SHEWETS nor worrying about how soon they are found.

Solomeonoff, in an ill-defined problem space, is concerned with the best

answer on the basis of the current evidence =-- that is, the most

probable explanation, including both the likelihood of the explanation

and its fit to the sample -- but does not worry about correctness (in

any absolute sense) or limiting behavior. In succeeding sections we

shall attempt to combine the strengths of both these approaches.

Unfortunately, this is somewhat at the cost of adopting the complexities

involved in each.
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III. DEFINITIONS AND NOTATION

Rewriting Systems and Context-Free Grammars

In this chapterwe establish definitions and notation which will

be used throughout the sequel. Since the significance of some definitions,
will become apparent only in later chapters, the reader is urged to

refer back here as he reads on. Although we establish basic results

from the literature, nothing new is developed in this chapter. Where

notations vary in the literature, we generally follow McKeeman [1966]

or McKeeman, Horning, and Wortman [1970].

We assume familiarity with basic set theory. We denote sets by

one or more capital letters, possibly subscripted (Ay ee esZyV,PRy un)

or by explicitly naming the elements within braces ( ( }) with f
conditions following the vertical bar ( | ) ; p denotes the enply
set; e¢ denotes set membership; C denotes set containment; U adnotes
set union; N denotes set intersection; - denotes set difference;

and x denotes set product.

We also use the notation of predicate calculus. We denote logical

"and" by A ; logical "or" by V ; logical negation by - ; logical

equivalence by = ; and logical implication by > . (Vx) denotes

"for all x " and (Ex) denotes "there exists an x ."

Def. III.l. Avocabulary lor alphabet) is a finite set of elements
called symbols. We denote symbols by letters (relying on context

to dishirguih them from sets).
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Def. IIT.2. A string is a finite sequence of symbols from a vocabulary.

We denote strings either by lower case Greek letters (Q,B,...,w)

or by the juxtaposition of their symbols (e.g., if bb, C, and d

are symbols, bbb, bCd , and bCbCHC ere strings).

Def, ITT.3. The empty string, denoted A , is the sequence containing

no symbols.

Def. III.4. The operation of catenation, denoted by the juxtaposition

of strings or symbols, forms the string which consists of the

| successive sequences on which it operates (e.g., if @ = bed and

B = dcb, then BOB = dcbbeddecb; and CA = MX = CO y.Y if

tT =v , then © is a head of 7 and V¥ is a tail of 71 .
-r ¢

We use of to denote n-fold catenation of a . Thus a° = A ’

of = al = Pl for n>0.

ref. TI1.5. The length of a string 71 , denoted |7] , is the number

of symbols in the sequence. For any symbol b

lor] = |r] = [7]+1

and °

lov] = lo] + [¥]

If @ isa head of 1 and |p| =n, then @ is the n-head

of 1 , denoted h (1) . Likewise, if V¥ is a tail of 71 and

[| =m, then ¥ is the m-tail of 1 , denoted t (1) "

L Note that catenation is associative (although not commutative). This
is the justification for not requiring an explicit catenation symbol
or scope delimiter.
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Def. III.6. For each vocabulary V , the set of strings over V ,

is denoted by V¥* JY

V¥ = (ole = AV (Tx eV) (FveV*)p = Vx} ‘

; + Bf
Def. III.7. The set of non-empty strings over V is denoted by V ,

+ +

Vv = {plpeV Vv (TeV) (TveV Jo = VX}

Def. III.8. A rewriting system is an ordered pair (v,~) where V is

a vocabulary and —- is a relation on V¥xV¥ , For o,71eV¥ ,

oc -1 is read as o directly produces 7 and 71 directly

reduces to 0c .

Def. III.9. If there exist strings Pree Py such that

P, " P;

Lo TI

Pn-1 ” Pn

for n>1, then Pq produces Pn and ?. reduces to ?,

This relation, denoted oy , is the transitive completion of =,
) 3

and we write Ps ?,

L v# is the free moncid generated by elements of V under the
operation of catenation with A as the identity.

22 Note that V¥* = v u {a}. Vv’ is the free semigroup without
identity generated by the symbols of V under the operation of
catenation.

28



Def. ITT.10. The reflexive transitive completion of — is denoted
»*

by - .

*

[0= 7l=(o~ tVo=r1].

Def. III.1ll. A contextual rewriting system is a rewriting system in

which the relation — can be applied to substrings without

regard for other symbols in the string, i.e., one for which

(VoeV*) (V1eV¥)([o = 1] oD (Voev*) (YVeV*) [pov — ot¥]) .

This is a strong restriction on - ; each pair of strings for

which it is true implies arbitrarily many other pairs for which

it is true.

Def. IIT.12. Acontext-free rewriting system is a contextual

rewriting system for which — is completely specified by its

values with a single symbol on the left, i.e., one for which

(VoeV¥*) (V1eV*) ([o = 1] OD (FAeV) (TweV#*) (HpeV*) (TYeV*)

[o=QAVA T=qQuVA A ~w]) .

Note that this further restriction on -— again makes the rewriting

system easier to specify.

Def. ITI.13. A string o is terminal when it does not directly

produce any string

—(3qt)[o = 1] .

In a context-free rewriting system, this implies that no symbol in
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the string directly produces anything. Thus - partitions V

into two subsets: the non-terminal vocabulary, denoted Ye y

consists of symbols which can be rewritten; the terminal vocabulary,

denoted Ve , of those which cannot.

V, = {A] (Bwev*)[A ~ w]}

V, = V-V_ = {alaev A (VweVv*) ma = w]} .

v¥ is the set of terminal strings. Note that, by definition,

Def. III.1k. A context-free grammars is an ordered quadruple

"i wo G = (VsVys=s8) 2/ where (Vv, U Vs) is a context-free
rewriting system with Vs as its non-terminal vocabulary

and Vy as its terminal vocabulary, and Cev, . S 1s the

sentence symbol or distinguished non-terminal, and is the symbol

which produces the language described by the grammar.

The following table summarizes notational conventions which we will

use (possibly with subscripts) when referring to grammars:

Items Symbols

members of Ve 8,0,C5444,2

members of Ye A,B,C,...

Y We often abbreviate "context-free grammar" to "grammar," where no
confusion can result.

2/ We will write a rather than just = when GG may not
be clear from the context.
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Items (continued) Symbols (continued)

sentence symbol S

arbitrary members of V venyX, ¥,2

members of VE CL ByYs0en

members of V¥ vos y3Py V0

empty string A

Def. III.15. The sentential set of G , denoted SS(G) is the set

of strings (sentential forms) produced by the sentence symbol.

W

ss(@) = {w|s = w}

Def. III.16. The languageof G , denoted L(G) , is the set of its

terminal sentential forms (sentences).

L(G) = S8(G) Nn vi

Grammars are weakly equivalent if they have the same language.

A language is context-free iff it is the language of some

context-free grammar.

"Def. III.17. A derivation for a sentential form o¢ is a finite

sequence Trees T,” such that g T, = 05 and

t,* 1, for i=0,1,...,n-1. Each pair (7,574.1) is
a derivation step. By definition, every sentential form has

at least one derivation.

Def. III.18. Aderivation step is canonical iff it is of the form

(pac, quot) , where AeV and QeV¥ and A ~o . A derivation

is canonical iff each of its steps is canonical.
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Every sentence has at least one canonical derivation. In fact,

we can, without loss of generality, restrict our attention to

canonical derivations, since for every derivation there is an equivalent

canonical derivation which involves rewriting the same non-terminal

symbols in the same way, but possibly in a different order [Ginsburg

1966].

Def. ITI.19. A sentential form is ambiguous with respect to G if it

has more than one canonical derivation, unambiguous otherwise.

G is ambiguous iff some sentential form is ambiguous with

respect to G .

Ambiguity is one of the most intensively studied properties of

context-free grammars. In most applications it is an undesirable

property: an ambiguous sentence is assigned two distinct structures

by the grammar, making interpretation wnsgoarsy when the grammar is

used to assign codes to strings, ambiguous strings do not have unique

codes. But ambiguity is an undecidable property. There is no effective

procedure for determining whether an arbitrary content loees) grammar

is ambiguous [Chomsky 1963] [Ginsburg 1966]. The ambiguity of any string

(hence any finite set of strings) with respect to a grammar is,

however, decidable. In the sequel, we assume -- except where specifically

L Note, however, that natural languages are inherently ambiguous,
and an adequate grammar for a natural language must reflect this

ambiguity.

2/ Or meta-linear, or linear, or any other "interesting' subset of
context-free except finite-state,
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noted -- that unambiguous grammars are desired, and will reject

grammars which make any sample string ambiguous.

Def. III.20. The set ofproductions of G , denoted PR(G) , is the

set of ordered pairs of strings related by —where the left

member is a single symbol.

PR(G) = {(A,w)|A ~ W,AeV_,weV¥} "

Alternatively, we may consider the set of productions as basic,

and derive G(PR,S) = (v, (PR),V, (PR), 5,8) from PR and S by
the following definitions:

Def. IIT.21. V_(PR) = {A|(%w)(A,w)ePR} .

Def. I11.22. V(FR) = {a]| (3A) (30) (3V) (A,pa¥)ePR} - v_ .

Bef. ItI.23.. [o BR 1] = (Gp) (EA) (TV) (Iw) [o = AY A T = quw¥ A (A,w)ePR] .

Various well-known classes of grammars are defined by restrictions

on the forms of productions:

Def. III.24. A production is terminating iff it is of the form

(A,x) for QeV¥ 3 it is erasing iff it is of the form (A,N) .

Grammars with no erasing productions are A-free,

Any context-free language not containing A is generated by a A-free

grammar [Chomsky 1963] [Ginsburg 1966]. A-free grammars are generally

more convenient to handle. We restrict ourselves to A-free grammars in

the sequel.



Def. III.25. A production is linear iff it is of the form (A,QBB)

for Q,PeV¥ and BeV . A linear production is left-linear

iff B =A, right-linear iff a =X . A grammar is

(linear / left-linear / right-linear) iff all its productions are

terminating or (linear / left-linear / right-linear). It is

finite-state (regular) iff it is either left- or right-linear.

The languages generated by linear grammars are linear languages;

those generated by finite-state grammars are finite-state languages

(regular sets).

Def. III.26. A production is in (Greibach) standard (1-) form iff it is

of the form (A,aw) for aeV_  , weV¥ (and |o| <2). A grammar

is (£-) standard iff all its productions are in (Z-) standard form.

A standard grammar is an S-grammar iff for each pair of productions

(A,ap) (A, av) either ¢ =V or =A or V¥ =A.

Def. III.27. A production is in (Chomsky) normal form iff it is of

the form (A,a) for aeV, , or (A,BC) for B,CeV_. A grammar

is normal iff all its productions are in normal form.

RA

Def. III.28. The non-terminal symbol A is recursive iff A — QAY

for some @,VeV¥ . A grammar is recursive iff at least one of

its non-terminal symbols is recursive.

Def. III.29. A grammar is connected if each non-terminal symbol occurs

in some sentential form

®

(VAeV  ) (ZpeV¥*) (FveV¥) S = QAV

A grammar is non-blocking if each non-terminal symbol produces
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some terminal string

+

(VAeV ) (Foe) A= a.

A grammar is reduced if it is connected and non-blocking.

For every non-reduced grammar there is an equivalent (in the sense

of producing the same sentences with the same derivations) reduced

grammar which can be formed merely by removing all productions involving

disconnected or blocking non-terminal symbols. Since the reduced

grammar has all the generative power of the non-reduced grammar, and

is simpler by any reasonable measure, we will further restrict our

attention to reduced grammars.

Def. TTI.50. A meta-language is a language, each of whose sentences

(written grammars) specifies a grammar.

We use a variant of the BNF meta-language [Naur 1960] for our written

grammars. Each grammar takes the form ofa sequence of rules, each of

which consists of a non-terminal symbol (the left part), followed

by the meta-symbol ::= followed by the right part, which is a

sequence of strings (alternatives) separated by the meta-symbol .

Each rule indicates that the relation = holds between the left

part and each of its alterngtives,Y €.g., we interpret

Ani=p | ¥V |... |

as

1/ : : 2 :
It is implicit that A = w is true for those pairs
indicated by the written grammar, and for no others.
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(A,p)ePR , (A,¥)ePR, ... , (A,w)ePR .

A written grammar directly defines PR and, if we impose the convention

that the left part of the first rule is the sentence symbol, defines

G(PR,S) . Thus each written grammar specifies a particular context-free

grammar. However, a single grammar may be specified by many distinct

written grammars, since PR is an unordered set, but the rules and

alternatives are necessarily written in some order. We will use

written grammars extensively, without further remark, but we regard

the underlying rewriting system as the more basic entity.

As usually interpreted, the rewriting systems defined by the

context-free grammars of this section are permissive. Each defines a

set of valid derivations (and thus a set of valid strings) without

making any distinction among them. The predicate f(a) = (S + a) = aeL(G)
is a characteristic function [Davis 1958] of its language. Such a system

fails to provide a direct counterpart to the intuitive notion that some

sentences are more likely than others. In the next sectionwe will

develop an extension of context-free grammars (called stochastic

grammars) to meet this difficulty. When we wish to distinguish the

customary, permissive grammars developed in this section from those

of the next, we will refer to them as characteristic grammars.

Stochastic Grammars and Probabilities of Sentences

We will now define a class of grammars and rewriting systems which

not only specify languages but also provide probability distributions

over the strings in their languages. These definitions are natural

extensions of those in the previous section, and we will use the
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same notation and conventions. In particular, we restrict derivations

to canonical derivations and we specify grammars in terms of their

productions.

Informally, at each step in a canonical derivation the rightmost

non-terminal symbol is rewritten as one of the alternatives in the

rule of which it is the left part. We may specifya derivation (and

hence a string) in terms of the sequence of alternatives selected at

successive steps. If the alternatives of each rule are numbered, the

sequence of alternatives used in its derivation serves as a convenient

digital encoding of a string. For example, consider the grammar Gy :

§ 3:=T | S+T

an Ls O 1

T::=P |T*P

0 1

P::=a | (8)

0 1

The string a%*(a*a + a) has the binary code 0111000100000 , which

may be seen as follows:

sentential form rightmost non-terminal code digit alternative

S S 0 T

T TP 1 T*P

T*P P 1 (Ss)

T#(S) S 1 S4T

T*(S+T) T 0 P
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sentential form rightmost non-terminal code digit alternative

T*(S+P) P 0 a |

T#(S+a) S 0 T

T*(T+a) T 1 T*P

T*(T*P+a) P 0 a

T*(T*a+a) T 0 P

T*(P*a+a) P 0 a

T*(a%a+a ) T 0 P

P*(a¥*a+a) P 0 a

a¥*(a¥*a+a) one

In this examplewe have used only 13 bits of information to encode 5

G-symbol string over a 5-character alphabet, whereas the obvious

technique of using a unique binary code for each character would require

at least 19 bits (plus some means of indicating its length) to encode

the same string. In either case, of course, additional information

is required to specify the grammar or the character codes, respectively.

This is a question of some importance, which we treat at length in the

sequel.

Wnen sets of strings (e.g., arithmetic expressions in programs)

are collected from users of a language, the valid sentences do not ‘all

occur with the same frequency. Although this result is tautological

L Note that we can unambiguously run together (catenate) these digital
codes for strings and later separate (deconcatenate) them, since the
end of a code is signalled by the derivation of a terminal string.
The strings themselves, however, will not generally have this

property of unique deconcatenability.
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for infinite languages and finite samples, it is instructive to consider

WE othe pattern of the frequencies. In general, although the number of
sentences of a given length is an increasing function of length, their

frequency of occurrence is a decreasing function of length (and of

length of derivation). This behavior may be modelled by assuming that

each alternative has a fixed probability of selection whenever its

rule is applied. The probability of a derivation is then just the

product of the probabilities associated with the sequence of alternatives

selected. Individual long derivations will generally be less probable

than short cnes, since each factor in the probability is less than

one, and they have more factors. |

We may extend our meta-language to indicate these probabilities

by following each n-alternative rule with the n-tuple of its alternative

probabilities, e.g., G, :

S::=T | 8+T (2/3, 1/3)

T::=P| T*P (1/2, 1/2)

P::=a | (8) (3/4 , 1/4)

The string a%*(a*a+a) has probability

2 1.1.,1.1_3 Ex ExgxExg =X ow weg3 X 5X X 3 X 5X §X 3 XZXETXFXEXFXE= oT

with respect to G, , and the string a+a has probability

1. 1. 3. 2. 1.3 1
TXERL XXXL ~~ ]

Def. III.31. A stochastic production is an ordered triple, (A,w,p) ,

where A is a symbol, w is a string and p is a number
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O0<p<1l. Astochasticrule for A is a set of stochastic

productions, {(A,0,p,)]1 =1,...} , all having A (the left part)
as the first element, distinct second elements (alternatives), and

with the property “hat the third elements (alternative probabilities

sum to unity. A stochastic grammar is a union of stochastic rules

with distinct left parts, together with a sentence symbol which is

the left part of s me rule.

Def. III.32. For each stochastic grammar G , the corresponding

characteristic grammar, denoted G ; is the grammar formed by

deleting the alternative prcbabilities from each production.

Defs. III.15-19, 2:-29 extend to stochastic grammars in terms

of their corresponding characteristic grammars (e.g., G is

ambiguous iff G -s ambiguous, linear iff G is linear).

Note that G, = G, .

Def. III.33. If (A,w,») 1is a stochastic production of G and @eV¥ ,

QeVy¥ then @Aa d-_rectly produces ux with probability p ,

denoted QA 3 guwA . Every string produces itself with

probability unity Vv = vy . If P, produces Py with probability
Py and Py produces Ps with probability Ps then ?,

produces Ps with probability Py “Ps '

¥ ¥

(Vo_) (Vo, ) (Vo, ) [o, nO Ppl ole, = 9]1 2 Py Po

If 8 produces 1 with probability p , then the probabllity

of 1 with respec. to G , denoted P(1]G) is p ; if 5 does

not produce -~ , the probability of 1 with respect to G 1s zero.
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oince every sentence has a —— canonical derivation, it is produced

with a definite, non-zero probability. It should be clear that

(for non-blocking grammars) the probabilities of its sentences sum

to unity, since eachnon-terminal sentential form directly produces a

set of sentential forms which has an aggregate probability equal to

its own probability, and the sentence symbol has probability one.

Def. ITI.34. Stochastic grammars are stochastically equivalent if

they are weakly equivalent and assign the same probability to

every string in their common language.

In at least some applications, the normative properties of

stochastic grammars are advantageous. The nuclear physicist wishes

to know not only which events are observed in pictures, but how

probable (frequent) the various alternatives are. Similarly, a speech

recognition system attempting to resolve phonetic ambiguities requires

discrimination between probable and improbable (but still possible)

interpretations of a sound. In any case, there seems to be no objection

to inferring stochastic (rather than characteristic) grammars, provided

that this assists in the inference. It is trivial to drop the alternative

probabilities and obtain the corresponding characteristic grammar as a

final step, if probabilities are not desired.

It is not always necessary or desirable to allow complete

generality in the values of alternative probabilities. If we allow

L Recall that we are restricting ourselves to unambiguous (over the
sample) grammars.
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them to be arbitrary real numbers, our hypothesis space is enlarged

from the countably infinite set of characteristic grammars to an

uncountably infinite set. We will see in the sequel that countability

is important for our inference techniques. A more immediate problem

1s that we have nc way to write arbitrary real numbers. However, the

rational numbers are dense in the reals and we can write any rational

‘umber as a fraction. We lose nothing in practice by restricting

¢ lternative probabilities to rational numbers, and we shall do so in

tne sequel when we require a countable hypothesis space.

It is often convenient to establish a one-to-one correspondence

between the characteristic grammars and a subset of the stochastic

¢ rfammars., The simplest assumption leading to such a correspondence

- > that all alternative probabilities in a rule are equal. This

assumption works well for finite-state or linear grammars, and is the

cane implicit in most calculations of limiting entropy. We might expect

| that it would generalize well to context-free grammars. Pohl [1967],

however, has shown that this is false; pathological results are obtained

for simple recursive grammars of the sort used for arithmetic

expressionsin programming languages. For example, consider G, cbtained
from Gy by application cf this rule:

Si:=T | S+T (1/2, 1/2)

T:i:=P| T=*pP (1/2, 1/2)

Pii=a |] (8) (1/2 , 1/2) |

let A denote the weighted average length of strings produced from A .
We see
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ol a ra 4 3A 1
§=3T+3(S+1+T)=T+55+53

km l ,» | ay a ; Me 1
T=8P+5 (T+ 1+P) =P+ BZ +5

- 1 1 A

P=) +530+s+1)=55+32 .

We can solve these equations successively

S=T+585+35=2T+1

-~ ~ 1 ~ 1 ~

IT=P+35T+35=2P+1

=S+ Lk

or

S=28+9

There are no non-infinite positive solutions for £& . This corresponds

to the fact that (with these probabilities) unboundedly long

derivations do not have vanishing probabilities. For £2 , however,

S = 23

T=15

An analysis similar to Pohl's shows that no method of assigning

probabilities based solely on the form of the rules will yield only

well-behaved (i.e., with finite expected length) stochastic grammars.

It this result were limited to obscure or isolated instances, we could

perhaps live with it; after all, no restriction based solely on the form

of rules will yield only reduced grammars. The power of Pohl's result
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springs from the fact that it applies directlyto the best understood |

application of context-free grammars: grammars for arithmetic

expressions in programming languages. A correspondence which fails

in this context must surely be suspect in general.

A quite different approach which retains a one-to-one correspondence

is to assume that the probabilities are not supplied with the grammar at

all, but are parameters which must be learned after (or as) we

identify the correct grammar, i.e., that each characteristic grammar

is just a stochastic grammar form with the alternative probabilities

missing. Parameter estimation is, of course, a well-known topic in

statistical inference. We will show in Chapter VII that an inference

procedure based on this assumption is not substantially more difficult

than one in which the probabilities are assumed to be known a priori

(e.g., equi-probable alternatives in a rule).
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Enumerations and Orderings

In the sequel it will often be necessary to (at least formally)

list the elements (i.e., grammars) of our hypothesis spaces in some

order. This is possible for all finite sets and for countably infinite

sets.

Def, ITI.35. Let X be a set. The sequence E = 81185185944 >
is an enumeration of X iff every element of X occurs in E 3

i.e.;, iff

(VxeX) (3k > Ole, =X .

X is denumerable (countable) iff there is an enumeration

for X.

Def. III.36. Let f(k) be a function of one integer argument. f is

a monotonic function if, for r some one of the relations

<>; =<, 2,and for each j and k, Jj >k implies

£L3Y zr flr) ; if r is < or >, ff is strictly monotonic.

Def. TIII.37. Let E be an enumeration and ge) a function over

it ts. ict d d i _its elements E is (strictly) ordered by g iff f(k) gle, )
is (strictly) monotonic.

Def. III1.38. Let f(k) be a function of one integer argument. |

f is effectively approximately monotonic if for r some one

of the relations <, >,< » 2 5 there is a computable function

T(k) such that for any k and any Jj >T(k)

£(j) r f(x) '
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Def. III.39. Let E be an enumeration and g(e) a function over

its elements. E is effectively approximately ordered (EAO)

by g if f(k) = ge, ) is effectively approximately monotonic.

We will use the EAO property extensively. From an FAO enumeration

we can always effectively construct an ordered enumeration [Feldman 1969],

but in practice this conversion is not usually required. The EAO

property is often much easier to establish than ordering.

As an example, suppose that we are given some A-free grammar

and wish to enumerate its language. We may proceed as follows:

1) let SS = <8>, and k=0.

2) For i=0,1,2,... do step 3).

3) Set SS, to the empty sequence. For each successive

teSS,, do step Ly,

4) Let A be the rightmost non-terminal symbol of 1 . For

each alternative w in the rule for A , do step 5).

5) Let o be the result of substituting w for A in 1 .

If o is terminal do step 6), otherwise do step 7).

6) Enumerate o , i.e., set k to k+l and eto 0.

7) Add o to SS, .

| The i-th repetition of step 3 will cause all sentences derivable

through 1 derivation steps to be enumerated,.and all other

sentential forms resulting from 1 derivation steps to be

placed in SS. . Let N be the number of rules in the grammar, M ,

the maximum number of alternatives in a rule, and L , the length of

L6



the longest alternative. Then a string enumerated on the i-th

repetition cannot be longer than i-J, ; if the grammar is A-free,

reduced, and unambiguous it cannot be shorter than yn JY At

most Mt strings will be enumerated on the i-th repetition. This

enumeration is effectively approximately ordered by length, for

if le, | = 1, , all strings of that length must be enumerated on or

before 1i = IN . Thus at most

be £, cN+1

im M-1

strings will be enumerated before the last string of length <I ‘
But Eo is computable, and M and N are constants, so we may set

yk "
Th) ==-

This is not generally the best T(k) that could be computed, but it

is adequate to establish that the enumeration is EAQO by length.

L For a standard grammar the length is precisely 1 , for a normal
grammar (i+l)/2 for odd i only. In these cases, the procedure
results in an enumeration ordered by length.
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Presentations

We turn now from the hypothesis space to the observation space.

It is necessary to define preciselythe allowable classes of observations.

In much of the sequel we also need probability distributions over our

observatio. spaces. The raw data of grammatical inference are strings,

either indicated to be part of the unknown language or not.

Def. IIT.40. Apositive instance of L(G) is an ordered pair (+,0) ,

where 0eL(G) . A negative instance of L(G) is an ordered

pair (-,0) , where ov, L(G) . Aninstance is a positive or
negative instance.

Def. III.41. An information sequence of a language is a sequence

I =<,,I5...> of instances of the language. If each I, 1s

a positive instance, I is a positive information sequence. If

I, = (+,0,) and the sequence <o,,0,,...> is an enumeration of

v, y I is a complete information sequence. If the

sequence <0,,0,,...> is an enumeration of L(G), I is a

complete positive information sequence. If no instance is

repeated, I 1is irredundant.

Def. III.L2. A presentation of a language is a set of information

sequences of the language. A presentation method is a mapping

from languages into their presentations. A text presentation

is restricted to complete positive information sequences; an

informant presentation to complete information sequences; and

an irredundant presentation to irredundant information sequences.
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We have previously remarked [Chapter II] on the striking difference

between text and informant presentations which was found by Gold.

In the absence of probabilistic information, the requirement of

completeness seems to be necessary for reliable inference. Consider,

for example, the problem of inferring a grammar when strings of even

length are systematically excluded from the information sequence.

We can not, of course, deal directly with infinite information

sequences. But we can consider limiting behavior as successively

larger subsequences are used.

Def. III.43. If I is the information sequence <I;;I,...> then

s, (I) = <I,,I,,...,I,> is a sample of size k .

For stochastic grammars and languages, we can impose a

probabilistic structure on presentations.

Def. TIT.LL. The stochastic text presentation of G is the infinite

sequence X = Ki sKny ee > of independent and identically

distributed random variables (iidrv) with the distribution

given by G, i.e.,

(Voev P(x, = o|X) = P(o|G) .

A stochastic sample of size k from a presentation consists of

values for the first K random variables and has probability

equal to the product of their individual probabilities, If

S, = O505500050,>

then

X

p(s, |G) =TYT?(o,|c)
i=1
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We denote the set of all stochastic samples of size k for G

by s, (G) .

Individual stochastic samples may of course vary widely in their

properties. We can show, however, that as k — the relative

Irequencies of strings converge to the same limit for almost all samples.

Def. III.45. The frequency of 1 in S, denoted £(1,8,) is the

number of times which 1 occurs in the sequence <0) Opens > JY
The relative frequency is £(7,8,)/k ;

We have the formal identity

le (1,5,)xX. f(1,S
k

P(s, |G) = I] P(o,|G) = [T »(|c) :: +i=1 TEV
t

For thy finite k , the infinite product is effectively computable, sinceSE '

only a finite number of factors differ from one. The stochastic

presentation also corresponds formally to the infinite multinomial

expansion

(L P(r]e)x1)E
rev?

where the coefficient associated with each product of strings is the

|

ly Formally, f(t,8,) = f(1,8,,k) where f£(1,5,0) =0 and
. Fi

}] O if Os51 FT
£(1,8,,3+1) = £(1,5,,3) +

1 if C541 = T

for k>0, Jj<k.

50



probability of that collection of strings as a stochastic sample.

We make use of this form to compute expectations over a presentation. In

particular, if we can distinguish some 1 , and are concerned only

with functions involving it, the multinomial reduces to a binomial.

For example, the expected value of £(1,8,) is

Rk k f k-fpl £(1,8.)|6) = Lb £(§)-P(r]6) [1-P(5]G)]k
£=0

We may evaluate this sum by formally differentiating the identity
= f k-f kK |
) (X)p q = (p+q) with respect to p=0

> ky fk-fy 2D k
5 (LT Epa) = (pra)£=0

OL ky fel lef k-1

L fo (Gp a = ke (pra)=0

w ky f k-T k-1
YL (pa = pk (p+a)
f=0

Now setting p = P(7|G) , gq = 1-p

E[£(,S,)|C] = P(1]|G)-k

Dividing by k we find the expected relative frequency

B[£(1,5,)/k|G] = P(t|G) .

This says that, on the average, each string occurs with relative

frequency equal to its probability. We can sharpen this result

somewhat.
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Lemma III.UE. As k — = the relative frequencies of strings in

stochastic samples Sy converge to their probabilities, with

probability one (wpl). More precisely, given any € > 0,

8 >0 , there is a T(8,e) such that for any k >T the total

probability of samples of size k such that

| £(<,8, )/k - P(t|G)| >8& is less than « .

Proof. We use a method which will be important in the sequel. The

total probability of a set is simply the expectation of its |

characteristic function, and we may bound this probability

by taking the expectation of any function which is uniformly

greater than or equal to the characteristic function. In the

present case define

1 if | £(<,5, )/k - P(zl@)| > 0°
c_(8,8,) = |

1 O otherwise

D_(8,k) = E[C,_(8,5,)|G]
f k-f= $ Cc (5,5 )(X)P(1]G) [1-P(7]|G)] .T kf

£=0

It is not easy to place this sum in closed form. However, we

can readily bound C. :

2.2

c_(8,8,) £ [£(z,8, )/x-P(1|G)] /% :

Thus
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2 ui]

E[f(7,8,) le] 2 B[£(1,8,) P(7|G)]|C] e[p(x|c)|G)
D_(8,k) 1ep— - 35 ———*% 5

k +5 k*d 8)

2 2 2

E[£(7,S,) |Gl/x"-P(7|G)
52

But, by a repetition of our formal differentiation, we find

E[£(1,5,)°|C) = (x°-k)P(1|G)° + k-P(1|G)

S80

[ (k°-k)-P(7|G)" + k-P(7|G)]/x°-P(x|G)°
D (Bk) « —m—m—m—m———— oooT - 2

o)

_ P(1]G) - P(x]G)°
Ko 5°

< Bxl0)
= os

Now the aggregate probability of a union of sets is bounded by

the sum of their aggregate probabilities.

D(8,k) < ¥ D,_(8,k) < Y 2d = os '
TeVt 1eVt  k+% kd

t t

Finally, D(8,k) is less than ¢ whenever k is greater

than 0 . Thus we may set T(d,e) = os ’
€+0 £0

Q.E.D.
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Def. III.47. Aninformation sequence I is convergent iff each

string has a limiting relative frequency equal to’ its probability,

Bony '

+

(Vrev,) lim £(v,8, (1))/k = P(7|G)
k= »

In view of Lemma III.LU6, "almost all" information sequences in a

stochastic presentation are convergent. Thus we can form a fair

prediction of the effects of stochastic presentationby studying those

of convergent information sequences.
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IV. EVALUATION MEASURES

"The most simple relations are the most common, and
this is the foundation upon which induction rests.”

[1aplace]

"Nevertheless, it should be fairly clear that under
any reasonable definition of ‘simplicity of grammar,’
most of the decisions about relative complexity that
we reach below will stand.”

[Chomsky 1957]

Complexity and Probability

We now turn to measures for determining the best grammar in a

: situation. We have previously noted that a deductively falsifiable

hypothesis should never be inferred. In the case of grammatical

inference this means that only grammars which generate (at least)

all the positive instances and none of tne negative instances in the

current sample are reasonable answers. We call such grammars

deductively acceptable (DA). For stochastic grammars and presentations

this condition is equivalent to the requirement that the grammar

assign a non-zero probability to the current sample.

We present two motivations for the class of measures we use, one

based on complexity and the other on probability. Either seems to

provide an adequate basis for our methods, and the sequel does not

depend on their conjectured equivalence, but some readers will probably

find one or the other interpretation more satisfying.
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The classical measure used to evaluate an inductive inference

or generalization is its "simplicity." Of all the hypotheses which

are consistent with our observations, the simplest is the preferred

explanation. Practical application of this principle requires some

effective means of evaluating simplicity (or complexity). But the

complexity of an object is not independent of the context inwhich

1+ is viewed. Asingle computer-generated display might be seen

either as a simple algebraic equation, or as a complex series of

vectors and arcs produced by the display hardware. Similarly the

complexity attributed to

glist op> ::= c <seg>

<seg> ::= a <seq> | d <seq> | Yr

will depend on whether one views it (as a typist might) as an arbitrary
sequence of characters or (as the reader probably does) as a grammar.

In the latter case, the complexity will also be a function cf one's

familiarity with (and attitude towards) the BNF meta-language, on the

class of grammarswith which this grammar is being compared, and on the

use for which the grammar is intended. We do not believe that it is

meaningful to define an absolute complexity measure for grammars

independent of these factors. When the unqualified phrase "the

complexity of ..." is used, the qualifier "in the context ...' should |
always be implicit.

The measure of the complexity of an object in a context which

we have chosen for this study ic the minimum amount of information

required to specify (or select) that particular object in the given
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context. For example, the complexity of a derivation (in the context

of a particular stochastic grammar) is the total amount of information

required to specify the alternatives selected at each step. When

applied in various situations this measure yields plausible results |

(e.g., it meets the requirements set by Feldman [1969] for a complexity

measure); we conjecture that it corresponds closely to the intuitive

notion of complexity. In this thesis we formally equate complexity and

amount of information for a very specific reason: Shannon's definition

of a precise measure corresponding to the intuitive use of "information"

has led to a well-developed information theory, whose insights and

methods we wish to apply.

The selection of an object in a context corresponds to the

information-theoretic operation of transmitting a message from an |

ensemble of possible messages. The amount of information used to

transmit the message depends on the encoding which is used. In the

abstract, without knowing the use to which it will be put, we have

very few grounds for judging any particular encoding method. We can

require that it be complete (provide a code for each message in the

ensemble), distinct (provide unique codes for each object), and

irredundant (no code can be shortened without lengthening some other).

But these constraints do not determine the minimum information

required to transmit a particular message.

How much information is required to encede "the number one"?

Twelve letters? Perhaps "the number" can be understood from context

and three letters will suffice. If our code includes digits, "1"

would be more compact. In the IBM System/360 the message is variously
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transmitted using 4, 8, 12, 16, 2h, 32, or 6h bits, depending on

whether it is to be used as a register number, an operation code,

a displacement, a half-word integer, an address, a full word or a

double word number. No one of these answers is absolutely correct,

independent of context.

A basic result of information theory is that the optimum -- inthe

sense of requiring the transmission of the smallest average amount of

information -- encoding method for an ensemble of independently selected

messages depends only on the probabilities with which the individual

messages are transmitted. In addition, the information involved in

optimally coding a particular message is the negative of the Logarithny
of its probability. Thus highly probable messages have short codes,

improbable ones, long codes. Since we have equated complexity with

information, we interpret this to mean that objects (hypotheses, grammars)

which are probable in a context should be considered less complex (in

fiat context) than ones which are improbable. This is a sort of converse

to Occam's Razor, which says that simple hypotheses should be considered

more probable than complex ones. In the sequel we will implicitly assume

that this relationship is valid and that complexity measures and

probability measures are interconvertable . This is mostly a matter

iy Strictly speaking, is proportional to the logarithm to some fixed
base. However, both the constant of proportionality and the base are
customarily absorbed into the unit of information (the bit).

2 Tn many real-life situations, of course, we do not have any effective
means for assigning either probabilities or complexities to
hypotheses. Consider the hypotheses "There is life on Mars," "There
ig life after death," and "There is life after 30." How complex are
they? How probable? "The credence that we place in a conjecture is
bound to depend on our whole background, on the whole scientific
atmosphere of our time." [Polyz 1054]. One advantage of using
grammatical inference to study induction is that our hypothesis
space can be defined objectively and we can {efine and study inference
where objectively correct results are known.



of convenience, allowing us to use whichever terminology seems more

natural to describe a situation, and our development is not dependent .

on this relationship.

Bayes' Theorem and Inference

It might seem that, given a complexity measure for hypotheses, a

general solution to the inference problem would be to order the hypotheses

by complexityand then, at each step, pick the first (i.e., simplest)

deductively acceptable hypothesis. This simple rule is inadequate for

some forms of grammatical inference, in particular, when text presentations

is used [cf. Gold 1967, Feldman et al. 1969]. All the "interesting"

infinite classes of grammars (including the finite-state grammars)

generate all the finite languages as well some infinite languages. Let

L(G) be an infinite language and {n(G,)]1 = 1,2,...} be the (infinite)

set of finite subsets of L(G,) . Now G_ must occur at some finite

point in the enumeration, hence only a finite number of grammars can

precede (i.e., be simpler than) it. Let J be such that L(G) has

no grammar before G, in the enumeration (there must be an infinite

number of such J's ). Now L{G,) = L(G.) so G_ is DA whenever G,

is. Since G, is simpler than G, " Cy can never be inferred, even
when it is correct (i.e., I = 1(c,) } and G, is incorrect.

The method of the previous paragraph fails because it assumes

that the complexity measure is independent of the sample. For positive

samples there are two types of trivisl DA grammars which represent

opposite extremes. An ad hocgrammar produces precisely the current

sample; a universal grammar produces every string over the terminal

vocabulary. In general, these grammars do not represent acceptable

L Althoughwe do not limit ourselves to text presentation (positive
samples), we are particularly interested in conditions under which

it is adequate for inference.
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generalizations or inductions, and we would expect a satisfactory |

measure to rule them out. Informally, we see that ad hoc grammars fit

the data very well, but at the expense of considerable complexity in

the grammar; universal grammars can be quite simple, but will generally

ve a poor fit to the sample. To exclude these (and other similarly

inappropriate) grammars a measure must be a function of both the

grammar and its degree of fit. If it neglects the former it will

sometimes select overly complex grammars which precduce languages that

are "too small" (insufficient generalization); if the latter, it will

sometimes infer overly simple grammars which produce languages that

are "too large" (excessive generalization).

The relation between complexity and probability suggests a method

based on Bayes' theoremto refine probability estimates on the

basis of observations. This "theorem" is actually an elementary

consistency requirement on conditional probabilities [Savage 1962]. :

Suppose we have an exhaustive set of mutually exclusive nypotheses H, 3

i=1,2,3,... and & similar set of observable samples B, ,

3 = 1,2,3,¢04 . Denote Chdoprobability that the i-th hypothesis is
true in context c. oyt P(H, IC) , the probability that the j-th
sample is observed in context C by P(s,lc) , and their joint

probability by P(H, ,S,[C) . Also denote the conditional probability
of the j-th &ample given that the i-th hypothesis is true by

p(s, |H;,C) and the converse by P(H,|s,,C) . For these measures to
make sense we require

P(H,,S,IC) = P(H, |C)-B(8, |H;,C)

P(H,,S,IC) = p(s, lc) p(x, |s5,C) ;
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We can eliminate P(H;,8,1C) and solve for one of the conditional
probabilities, e.g.,

p(H, |C)-P(s,|H,,C)
P(H, [5,,C) =A ai ,

J "

But it must also be the case that exactly one hypothesis is true so

)) 2.P(s;lc) = / P(H;,5,IC) i P(H, [c)-P(s,|H,,C) :
i i

Thus we have

P(H,|C)-P(s,|H,,C)
p(i, |8.,0) =m———J Y p@,lc).-p(s.lH,,C) |

| i I} b Rie

This rule may be used to compute the a posteriori conditional probability

of H, when Ss is observed. It requires only the a priori
probabilities of the rypotieses? and the conditional probabilities of

L Bayesean techniques are sometimes criticized on the grounds that the
required a priori probabilities are, in general, unknown, and the
reader may feel that our suggestions for determination of a priori
probabilities of grammars (given in the next section) are somewhat
artificial. These criticisms have some merit, but we feel that the

Bayesean viewpoint permits the most direct understanding of our
methods, by providing intuitive meaning to what would otherwise be
arbitrary formal operations. Thus much of the presentation will have
a Bayesean flavor. The reader who finds this distasteful may take
comfort in one or more of the following rationalizations:

1. We can obviously construct, for test purposes, situations in
which both the a priori and conditional probabilities are
precisely controlled.

2. In some of the envisioned applications (e.g., speech recognition,
bubble chamber pictures) the a priori probabilities may
actually be known from prior experience.

3, Each inference procedure will actuallybe presented with some
(frequency) distribution. If the Bayesean procedure incorporates
all the advance knowledge that we have about this distribution,
then no other procedure can be constructed which will uniformly
(or even on average) do better.

L. We show in Part II that our procedure will ultimately learn a
correct grammar independent of the particular (non-zero)
a priori probability assigned to the grammar. The worst that
an incorrect assignment can do is delay the learning. However,
without some assignment our procedure is not effective.
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the observed sample, given the various hypotheses. If we must select

one hypothesis on the basis of the sample 55 , we minimize our risk

of error by choosing an H_ such that P(H, |8,,C) is a WETE
For purposes of maximization, the value of the denominator

p(s; lc) is irrelevant. What is important is to maximize the
product p(H, |C) B(s, |H,,C) . The minimum risk requirement, plus a
knowledge of the probabilities involved leads to a precise

jdentirications of the best hypothesis -- in our case the best

grammar -- to be guessed on the basis of a sample.

We may interpret this solution in terms of complexity measures by

taking logarithms. If M(H, | C) is the complexity of H, in the |

context C and M(s,[H,,C) is the complexity of the sample in the
further context of H, , then we are to minimize the sum

M(H [8,C) = M(H, |C) + M(s, | Hy,C) .

This indicates that complexity of explanation has two components, which

we may call the intrinsic complexity of the hypothesis and the relative

complexity of the sample, given the hypothesis. In information-theoretic

terms, we may express this as looking for that representation of the

— sample (i.e., hypothesis) which minimizes the combined information

requirement of the representation and the encoded sample. The

"representation problem" is a classical problem of artificial intelligence;

L This risk, precisely 1-P(H,|5.,C) , is known as the Bayes' risk in
statistical decision theory.

2/ Except, of course, when there is no unique maximum. We than have
a set of equally good guesses.
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here we give it a precise operational meaning by specifying the class

of hypotheses over whichwe are to minimize.

Going one step further, we can treat this result as suggestive,

even for complexity measures which are not motivated by information-

theoretic or probabistic considerations. Feldman [1969] requires a

complexity measure to be anunboundedly increasing function of two

measures, one which indicates how complex the hypothesis is in the

context (independent of the sample), and another which indicates how

complex the sample is in terms of the hypothesis. He shows that these

restrictions are sufficient for a number of decidability results. We

do not further pursue that approach here.

Crammar-Grammars andA Priori Measures

It should now be clearwhy we have devoted so much attention to

stochastic grammars and stochastic presentations. We propose to use

Baves' theorem to incorporate information from the sample. Stochastic

grammars provide the conditional probabilities which Bayes' theorem

requires. Part II is entirely devoted to procedures which use such

measures. No particular form is assumed for the a priori measure on

the grammars -- if an enumeration of the hypothesis space (EAO by

probability or complexity) is WU in the problem statement,the
procedure will work effectively. It remains to be shown that problems

can be stated reasonably, i.e., that there is a finite means for

specifying the probability distribution of an infinite class of grammars,

Before treating any specific measure we note that the complexity

attributed to a grammar by any reasonable measure should increase when
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we unboundedly increase any of

-- the number of rules (non-terminals) in the grammar,

-- the number of alternatives in any particular rule, or

-- the length of any particular alternative,

while holding all other factors fixed. Disagreement about complexity

measures will involve the form and weights of these elements, not

their existence.

Written grammars are strings; any particular class of written

grammars 1s a subset of all the strings over a vocabulary, i.e., is

a language. In fact, it is easy to write grammar-grammars [Schorre 1964] which

generate only written finite-state, or linear, or context-free, or

even context-sensitive grammars. We can include restrictions on the

form of productions (e.g., standard form or normal form) if we wish.

We could have formally defined written grammars in terms of grammar-

grammars, but we wished to avoid an appearance of circularity.

Aclass of grammars may be specified to an inference procedure by

means of a grammar-grammar. If the grammar-grammar 1s 2a stochastic

grammar, it also imposes a probability distribution over its sentences

(grammars). We may take as the a priori probability of a grammar its

probability with respect to the grammar-grammal.

For example, consider the simple grammar-grammar Gy Y,

Ss ::= R | RR (1/2, 1/2)

R ;;=N"::="P (1)

P::=A| P"["A (1/2, 1/2)

L We have an immediate problem in distinguishing symbols of the grammar-
grammar from those of the grammars it is to generate, whichwe
resolve by "quoting" all symbols of the terminal vocabulary of the
grammar-grammar.
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A ::=T]| TN (1/2, 1/2)

T sez Mg" ny" (1/2, 1/2)

N ::= "8" npn (V/2, 1/2)

Gs generates finite-state grammars with one or two rules and a terminal
vocabulary of (at most) "a" and "p" , To the universal grammar G),

S 11= a | b as | bs

it assigns probability P(G, |G) = p12 , or complexity M(G), 1G) = 15 .
To the grammar C,,

S ::=b| bS | ap

A:i=al BA | as |

which appeared at the start of Chapter I, it assigns probability
5 -23 ”

P(Ggl Gs) = 2 , or complexity M(G| G5) = 23 . Now we may compare
~f 1

G), and Gg on the basisof Feldman's sample 510

b baba

bb abba

aa bbaba

baa bbaa

aba aabb

which they both generate. Under the assumption of equal probabilities

for all the alternatives in a rule the complexity of each derivation

step with respect to G, is -log, (1/4) = 2 , and with respect to Gg

L Which, we have previously noted, is reasonable (and customary) for
finite-state grammars.

[
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is -1log, (1/3) = log,(3) ~ 1.58 . Since each derivation step adds
precisely one terminal symbol, the length of a string is equal to the

number of steps in which it was derived. Thus, for either grammar,

32 steps are required to derive S10

M(S,,|Gy,) = 32 x 2 = 6b

M(S,41Gs) = 232 x 1.58 = 50.56 .

Finally,

M(G, 18,05 Cs) " M(G, G5) * M(S,,1G),)
= 15 + 64 = 79

M(G5 | 8,4 Cs) ” M(G1 G5) + M(S;0lGs)

Or, in terms of probability,

P(G 181456 ) 5-73.56 55.46 Lh
P(G, |S = T_79 i ‘
VuTT107 73 2

That is, in the context of the grammar-grammar Gs and our assumption

of equi-probable alternatives, the grammar which Feldman inferred,

Gg , is about L44 times as probable as the universal grammar, G), -
We leave it as an exercise for the reader to show that under these

conditions Cs is in fact more probable than any other grammar

generated by Gs .
The point of this example has not been that Gy is a particularly

good grammar-grammar ( better ones are available) nor that

M(Gl G5) is the correct complexity measure, nor even that Feldman
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inferred the right grammar. Rether, it is that stochastic grammar-

grammars provide an adequate means for specifying a priori probabilities

of grammars. By varying the probabilities associated with the |

alternatives of Gy we can control the weight attached to various
components of the complexity measure (e.g., by increasing the second

probability in the third rule we decrease the bias against rules with

many alternatives, by increasing the first probability of the fourth

rule we indicate that terminating rules are less complex, etc.)

Several grammar-grammars and their associated complexity measures are

given by Feldman, et al [1949].

There are still two minor points to be cleared up. First, we

have restricted ourselves (cf. Chapter III) to reduced, unambiguous

grammars. But our grammar-grammars cannot, in general, enforce this

restriction. Thus only a subset of the language of the grammar-grammar

will be allowable, and the probabilities of the allowable grammars will

not sum to unity. They will sum to a finite value, however, which

(if known) could be used to normalize their probabilities. But when

we compare the probabilities of grammars this normalization constant

cancels, so we do not really need to know its value.

Second,we require our grammar-grammars (like all grammars) to

be finite. Yet they must generate grammars with an unbounded number of

non-terminal ly There are two ways to resolve this conflict:

in Feldman, et al, [1969] a collection (roughly equivalent to the

language of a grammar-grammar-grammar) is defined as an infinite set

of grammar-grammars differing only in the number of non-terminal

applicatign.
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symbols allowed in the grammars they generate; alternatively, we

may note that only a finite set of characters will be used inwritten

grammars, and non-terminals may be denoted by certain strings of these

characters (i.e., that non-terminal names themselves form a language).

We may then add rules to the grammar-grammar to generate, e.g.,

BNF-like, non-terminal names:

N ;:="<' M"> |

M::=L| ML

Lu="A" |e ie |...

Either means of handling an infinite non-terminal vocabulary is

formally adequate. The two are not equivalent, however, and the
method chosen will have some effect on the a priori distribution |

obtained.
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PART II

THE ENUMERATIVE BAYESEAN PROCEDURE

FOR GRAMMATICAL INFERENCE
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Vv. BASIC PROPERTIES OF THE PROCEDURE EB

Tt should be noted of course that proving the
existence of a finite algorithm is only a first

step toward finding a practical algorithm. In
particular, we look at the "finite" algorithm for
testing structural equivalence as presented here
as such a first step. Nevertheless, in an area

replete with theorems beginning 'there is no
finite procedure for ... ,' it is gratifying
to be able to present some more encouraging
results.

[Paull and Unger 1968]

Assumptions |

In this chapter we state a restricted form of the grammatical

inference problem (we assume that all relevant probability distributions

are known), present a solution, and show that this solution has desirable

properties. later chapters discuss means for improving efficiency and

for relaxing various restrictions.

We state the problem as follows:

1) The hypothesis space is a denumerable class of stochastic

grammars; each grammar has a known (computable) a priori
probability of being correct (i.e., of being the source of

the observations); an enumeration effectively approximately

ordered by probability is available.

2) The observation space is the stochastic text presentation

of a grammar in the hypothesis space.
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3) The best hypothesis 1s the (a priori) most prouviey
of the grammars which are stochastically equivalent to

the grammar which is the source of the observations.

4) At each step of any presentation, an acceptable procedure
must’ minimize the probability of guessing other than the

"past hypothesis.

These assumptions provide a well-defined problem in the sense

of Chapter I. In the next section we show that it is solvable,

under the assumption that the given a priori probabilities are

objectively sonreat El We do not specify the form of the a priori
probability fumetion. If it is derived froma grammar-grammar, as

suggested in Chapter IV, any enumeration which is EAO by length will
also be EAO by probability. To incorporate other probability or

complexity measures —— have to produce EAO enumerations.
Assumption 2) is the really strong condition, since it requires

that successive strings in the samples be independent and identically
distributed— variables. For some applications (e.g., bubble

chamber pictures) this is almost certainly a valid assumption; for

others (e.g., speech recognition) it may be a good approximation.

But there are certainly applications [cf. Feldman 1967] for which

By For definiteness, if there is no unique maximum, arbitrarily
define the first occurrence of the maximum to be the best.

2 If they are not, our procedure will not be optimal in the sense
ofrequirement 4), but will still be effective, and will still
identify the best grammar in the limit.
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it does not hold at all -- a topic to which we return in Chapter XI. |

The third assumption should not be controversial. We would

certainly require that the best grammar at least be weakly equivalent

to the grammar which generated the sample. We have no means for

discriminating among stochastically equivalent grammars except a priori

probability, and we in general prefer the most probable (or simplest)

grammar.

The final requirement is also natural (although we will suggest

in Chapter XI that it might perhaps be improved). It merely repeats

our informal suggestion that the optimal procedure is the one which

guesses right most often. Minimizing the probability of guessing vrong

is equivalent to maximizing the probability of guessing right. The

only information (other than the probability distributions themselves)

available is the current sample, so we wish to determine the grammar

with maximuma posteriori probability, given the sample. From

Chapter IV we recall that we are to maximize

PE.15.,8) = Pg |0)-2(5, 16,0)17k p(s, [C)

or, equivalently

P'(G, |8,,C) = p(G, |c) P(8, |G,,C)

which, by our results in Chapter III, may be re-written

K

p'(G,|s,,C) = P(G,|C) TT P(a,|G;)
Jj=1

fi1,5

= P(g,|c) - TT »(|c,) (0:5) .
TeVE
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The Procedure EB

Def. V.1. The enumerative Bayesean procedure. Let the hypothesis

space be <G,,G,,...> with T(5) a computable function

such that i > T(®) implies P(c;|C) < 5 , and let 5S, be the

current sample. The procedure EB consists of the following

four steps:

1) Let t, be the least integer such that G, is DA with
k

respect to Sy ‘

is i2) Let 8 = P'(G, Is, ,C) .
k

3) Let T, =T(3,) .
3 f

4) For each G, , t, <i<T compute P (G,]s,,C) . Let

EB(k) be the first i in this range for which P' (Gs, ,C)

ig maximum. Guess CEB(k) ‘

Lemma V.2. The procedure EB is effective.

Proof. Each step is effective:

1) By assumption the sample is generated by some grammar in the

hypothesis space, which has a finite index. Therefore the

first DA grammar has a finite index.

2) P(G|c) and p(s, |G) are computable and non-zero; so is
their product.

3) By hypothesis T is computable, and since & > 0,

I, is finite.

4) The maximization is over a finite set of computable values.

Q.E.D.
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Theorem V.3. Of ell the grammars in <Gy5Gpp eee” , the procedure

EB guesses a grammar with maximum a posteriori probability, given

the sample Sy .

Proof. Assume not. Then there must be some G, such that

1 f

P (G, |8,,C) > P (Ggp(x) 15k) ‘

We show that assuming any value for 1 leads to a contradiction:

1) 1i< the This contradicts the fact that t, is the least
index of a DA grammar.

2) t <1i<T . This contradicts the fact that P (Gp (x) 152 C)
is the maximum value of P' over this range.

3) i> T, . From

f t

P'(G,|s,,C) > P (Geni) |S)

we have a fortiori :

P'(G, |8,,C) > 8

! »p(G, |C) p(s, |G,) > 8,

and, since 0 < P(S |G.) <1,

P(G,|C) > 0,

But this contradicts the hypothesis that 1 > T(3, ) implies

P(e,fc) < 8B -
Q.E.D.
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Taken together, Lemma V.2 and Theorem V.3 show that the procedure

EB is an effective solution to the grammatical inference problem

stated in the previous section. We now turn to the question of its

limiting behavior. We would like to show that in the 1imit it always

identifies the best grammar, but this is not possible. Astochastic

presentation contains all sorts of perverse information sequences; we

content ourselves with a proof that their aggregate probability is

infinitesimal.

Lemma V.h. If (G13 = 1,2,...} is a set of stochastically equivalent
grammars, the procedure EB will guess at most one of them.

Proof. Any sample will have the same conditional probability with

respect to all the G, . The P' are thus proportional to the
a priori probabilities of the grammars. Thus, at most, the

first G, with maximum a priori probability can ever be guessed
by EB.

Corollary V.5. The procedure EB will never guess any grammar that

is stochastically equivalent to the best grammar, except the

best grammar itself.

Proof. This is immediate from our definition of the best grammar

and Lemma V.kL.

This result does not require that stochastic equivalence be

decidable, or that EB make any special tests for equivalence, Its

practical advantage comes from the fact that we must exclude stocaastically

equivalent grammars from the next theorem.
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For a variety of reasons (including the fact that it computes FP’

rather than P) the procedure EB need not approach a limiting

probabilityof one for the best grammar. However, a weaker condition

is sufficient to assure that the best grammar will be guessed consistently.

Def. V.6. A grammar G is N-preferred over the set {e,|1 og IJ—

with the sample Sy iff its a posteriori probability is at least
N times that of any element in the set, i.e.,

(vi)P' (G|S,,C) > N-P'(G, |5,,C)

Theorem V.7. Let Gg be the best grammar for the stochastic presentation

of G. Iet G= (G; |G; is stochastically inequivalent to G} .
For any N>0, € >0 there is a T(Gg,N,€) such that the

total probability of samples Sy for which Gg is not N-preferred

over G is less than , whenever Kk > T(Gy, N, €) .

Proof. For each J , let C,(N,8,) be the characteristic function of

samples Sy with the property that Gg is not N-preferred over

{G.} . We may readily bound C, :J

o'

[iy |c.(N,S,) < SUC , a>0 ,iv k | P(Ggl5,,C

and thus its expectation D,

D, (N,k) = E[C, (1,5, )|C]

N-P' (G, |S, ,C) ®
P'(Gy[5,,C
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a

L 5(5,16,0) - | rete
s, (G) k P' (Gy S,»C

[vpc.]c)T” [B(s, |e.) 7”
= | se | P(S,lG) « ar.

B 8, (G) k''B

a

N-P(G,|C) y 1-0 Qa

= refer p(s, |G.) p(s |G.) .pes | 5. (6) k!“B x!
Now we partition CG into two sets: a finite set of "probable"

grammars, and an infinite set with low total a priori probability,

and show that the contribution due to each can be bounded.

1) Improbable grammars: There is a finite M = M(Gp, €/ 2N)

such that

€

3, p(G, |C) > 1 - my P(G|C)
i=l

or

on

) P(G.|C) < == + P(Gy|C)
som * 2N B

Setting «a = 1 , we have

) ZED TY ks fey)D,(N,k) < ECAR ; p(s, |G.J P(G,|C ki
B s, (G)

N-P(G.|C)

<FEP(Gy C

Now we can define D. (N,k) as the aggregate probability
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over the improbable grammars.

+2]

D. < Y D. (N,k)
Im soe] * |

y N-P(G, |C)<

iGta F(G[C)
[a]

rr 5 |= . P(G, |C)
PF Gy C avi] i

N €

<7 G5IC) = 2N P(Gg|C)

a =
| - 2 )

2) Probable grammars: Set a = 1/2

N-P(G.|C) ye y’ 1/2. plc

D, (I, k) 2 Ig TIC : jy Cul) P(5,1G5)]
Kk?

npc, |c) TY 2 y 1/2 ¥= |sre : (p(x]eg)-P(x|a, 7"B | TeV,

N-P(G.|C) 1/2 %
= | * KR,

FEO) J
where

R, = Y (B(x]ay)-2(ele, NY 2 <1 Y
J rev J

t

L The inequality follows from stochastic inequivalence, and is the
reason we have treated separately the case of grammars which are
stochastically equivalent to Gy ‘
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Now let

| 1/2

. [| (glo) / |
log |50% * \ ©6160) |

T4(CpsN,¢€) = “Tog (XK.J

If k > 7 (Gp, Ny €) then
€

D, (N, k) Zz 5M

and if

T (Gg, N, €) = max [T, (Gg, N,€)]
i=l ese M

G.eG
i 3

then for k > T(Gg,N,€)
M

Pop S x D; (N,k)
i=1

G, eG

3, (nk)
~& Tt

M €
<L mW

i=1

= £
= 3 )

Finally, combining the two sets

€ € — .
DS<Dpt pp < 3753 £

Q.E.D.
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Def. V.8. An inference procedure converges to a grammar G under a

stochastic presentation iff for any ¢ > 0 there is a T(z)

such that for any k >T(z) the total probability of semples Sy

such that the procedure does not guess G is less than € .

Corollary V.9. The procedure EB converges to the best grarmar under

any stochastic presentation.

Procf. By Corollary V.5 it never guesses a non-best grammar

stochastically equivalent to the test grammar, so we need only

consider inequivalent grammars. But, byTheorem V.7, the best

grammar will ultimately be N-preferred over all the inequivalent

grammars, with probability greater than 1-¢ . We can, for

example, set T(e) = T(Gg,2,e) .

Corollary V.9 assures us that with stochastic presentation the

procedure EB ultimately has arbitarily small probability of guessing

cther than the best grammar. Its proof does not involve any properties

of the z priori probability measure other {han that the enumeration

ig FAO by probability. However, the procedure is not effective without

some probability measure -- it cannot be certain when it is safe to

stop enumerating. If we are given an enumeration but no a pricri

probabilities, we can assign them almost arbitrarily (e.g., let

P(G,|C) a ) without jeopardizing limiting behavior.
Strictly speaking, we do nol need the existence of a stochastic

presentation. A virtually identical proof of Theorem V.7 can be based

on convergence of the information sequence rather than on stochastic

presentation. In the limit, therefore, the successive strings of the
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sample need not be independent, so long as the relative frequencies

converge properly.

Improvements

The procedure EB is deliberately simple, to make its essential

characteristics apparent. Our statement of the problem has uniquely

defined (except for ties) the guesses it must make, but the method

by which it obtains them is not unique. In this sectionwe consider

a variety of changes to EB which leave its guesses unchanged, but

improve its efficiency.

Lemma V.10. The guess EB(k) is unchanged if, at each time k ,

EB considers only grammars which are DA with respect to S,_ .

Proof. If a grammar G, is non-DA, p(s, |G) = 0 and P'(G,|8,,C) =0.
But Gy (at least) has a posteriori probability ©&_ > 0,

k

SO G, does not have the maximum a posteriori probability.
But by Lemma V.3, EB guesses a grammar which does have maximum

a posteriori probability. Therefore G, is not the guess

EB(k) and dropping it from considerationwill not change EB's

guess.

This lemma is important in the next chapter, where we consider

efficient enumerations of DA grammars.

Theorem V.1l. The guess EB(k) is unchanged if in step 2)

"8, = P (Gy 18,0)" is replaced by "® = P' (Gy 18,005 ,
where A = | [£(7,8, )/k] :

TeVy
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Proof. We first-show that 4 is the maximum value of P(s, |G;,C)

for any i . Let (p, | evi} be the set ofprobabilities

P(t|G;,C) which maximize p(s, |G;,C) . We use the method of
laGrange to maximize

TT :
TeVy t ;

subject to the constraint oC

IX p_=1 .
rev

Let

£(1,S.)Kk
L=2A" Loo. + |] Pp, .heTeV TeV

t t |

31 £(7,85,) £(1,8,)
T Pr TeV)

£(1,8,)
=A + ——— « (L-N)

i i
Py

_ , ML
p= £(7,8,) T .

We can determine A from

Lp =1 ’ L, £(r,5) =k »
TeV TeV

t t

yielding

A=L

=k"

p. = £(7,8,)/k x
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Substituting this value into P(S,|G,,C) we have

(1,8 )

max [p(s |G,,C)] < 18
i TeV?

£{7,5, )

= IT tees ym 7"
TeV

+

But this implies

P'(G, |5,,C) = P(G, |c) p(s, |G,,C)

< P(Gg lc).

Thus if P(G,|C) < P' (G, 15,5C)/%

P'(G,|S,,C) < P16, 18,0)

and G, cannot be the guess EB(k) .
Q.E.D.

This theorem permits a significant reduction in the number of

grammars .considered by EB at each step. For example, if the information

sequence is convergent

£(1,8,)/k - P(1]|G)
and

TT f(1,8,)
TeV

t

. TT p(z|g) F716) k
TeVy

| k

TeV
t
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A typical value for the bracketed factor is 1/2 , indicating that a

factor of 2° in the cutoff point is likely.

Lerma V.12. The guess EB(k) is unchanged if, in step 4) of EB,

whenever a G, is found such that P'(G, |S,,C) > PCy 18,C)
t, is replaced by i and steps 2) through L) are repeated.

Proof. Obvious. No grammar better than G, can occur after

T(P'(G,|8,,C)) , so the enumeration on out to the old T,
is superfluous.

Lemma V.13. The grammars up to Gp need not be re-enumerated at
k

time k+l if P'(G,|S,,C) has been recorded for each DA grammar.

Proof. If a grammar is DA at time k+1 , it must have been DA at

time kk . The new conditional probabilities can be computed

by the recursive relation

t — ' L]P'(G,|5,,,,C) =P (6,]8,,C) Plo, 1G)

Bounding A Posteriori Probabilities

In some situations it wouldbe desirable for the procedure EB to

not only guess a grammar, but to estimate the a posteriori probability

that it is the best grammar. To compute P(6, |s,,C) rather than

P'(G, |S, ,C) we require the denominator P(5,|C) which is defined
by an infinite sum

P(s, |C) = L P(G, |C) (5, |G;) = L P (G, |8,,C)
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This sum can be bounded in terms of quantities which EB computes

anyhow.

Lemma V.13. In the procedure EB

), P'(G,]s,,C) < P(s.|C) < zy P'(G,|5,,C) +A (1 - ) P(g]c)) .
i=1 i=1 1=1

Proof. All terms of the sum P(s, |C) - 2, P'(G,|s,,0) are non-negative.
i

The lower bound is simply the first Ty terms of the sum. The

upper bound is attainable iff all the remaining terms have

p(s, |G, ) = A, which Theorem V.11 demonstrated to be maximal.

Both of these bounds will be fairly loose until the best grammar

is enumerated, and fairly tight thereafter.
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VI. DEDUCTIVE CONSIDERATIONS

To imagine that an adequate grammar could be
selected from the infinitude of conceivable
alternatives by some process of pure induction
on a finite corpus of utterances is to misjudge
completely the magnitude of the problem.

Too much faith should not be put in the powers
of induction, even when aided by intelligent
heuristics, to discover the right grammar.
After all, stupid people learn to talk, but
even the brightest apes do not.

[Chomsky 1963]

Reasons for Deductive Preprocessing

We have shown in Lemma V.10 that the procedure EB will make the

same guess independent of whether the enumeration contains all grammars

or merely the deductively adequate (DA) grammars, since non-DA grammars

are assigned a posteriori probabilities of zero. Thus, formally,

there is no need to augment the inductive procedure with a deductive

procedure: all grammars which can be ruled out deductively are

automatically rejectedby Bayes' theorem. In practice, however, there

may be substantial advantage to a procedure that eliminates as many

grammars as it can deductively, using the procedure EB only to

discriminate among DA grammars.

The need for deductive preprocessing arises from the large number

of grammars with similar complexities. Lemma V.2 shows that only a
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finite number of grammars are considered at each step, but does not

bound that number. Informally,we can see that this number is the

number of grammars "not too much" more complex than the grammar

selected at that step. Before the i grammar can be guessed,

the procedure must at least have considerad all other grammars of

equal or lower complexity. We can use the number of such grammars as

a lower bound on the number considered in the inference. But this

number grows exponentiallywith complexity.

We have repeatedly used the grammar Gy, :

S:i=b| vs | aa

A ::= a DA | as |

as an example. Depending on the precise complexity measure used, there

are from several hundred to a few thousand finite-state grammars with

two terminal symbols which are no more complex than this one, and

therefore must be considered by the procedure. Only about 20 of these

are DA, however, given the sample S510 :

b baba

bb abba

aa bbaba

baa bbaa

aba aabb

Only the DA grammars actually contribute in any way to the solution; the

others merely absorb computat ion, and (ideally) should be rejected as

soon as possible. The reason that the constructive methods of Chapter II
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involve less computation than enumerative methods is that only DA

grammars are ever considered. Although this relatively small sample

has yielded an orders of magnitude reduction in the hypothesis space,

it might not appear necessary, since a thousand grammars may be

managed directly (but slowly); however, the million or billion

grammars involved in inferring grammars only two or three times as

complex are clearly——

The principal goal of this study has been to develop adequate

and effective methods for evaluating the DA grammars, once they are

enumerated, leaving the development of deductive techniques and tree-

searching procedures to others [cf. Pohl 1969, Sandewall 1969,

Feldman, et al1969]. For at least some interesting applications

(e.g., bubble chamber picture grammars), the enumeration can be greatly

restricted by application-dependent, extra-grammatical criteria.

However, in the course ofprogramming and testing the general procedure

we have found that some deductive preprocessing is required to make

grammars that we consider at least marginally "interesting," (three or

more non-terminals) inferrable with computational effort which we

consider reasonable (a few minutes of 360/67 CPU time in LISP/360).

The balance of this chapter is devoted to such methods.

L In any case, given any finite amount of computation it is easy to
construct a grammar which will not be enumerated directly with that

amount of computation. Our further results will show that
this need not even be a particularly large grammar.
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Restricting Productions

One method of restricting our hypothesis space (reducing our

enumeration) is to consider only grammars whose productions have some

particular form, e.g., the standard grammars or normal grammars of

Defs. III.26 and III.27. The following theorems assure us that such

restrictions do not reduce the power of our inference procedure.

Theorem [Greibach 1965]. Each context-free language is generated

by a 2-standard grammar.

Theorem [Chomsky 1963]. Each context-free language is generated by

a normal grammar.

The latter theorem can be extended to show that every stochastic

grammar is stochastically equivalent to a normal stochastic grammar.

For each grammar which is not normal (or standard) we can construct an

equivalent grammar which is. Unfortunately, these transformations do

not preserve complexity of grammars. These methods will not generally

yield the simplest equivalent grammar in the given form. In fact,

since weak equivalence is undecidable, it is not decidable which is

the simplest weakly equivalent grammar in a given form; the problem is

general, and not a fault of any particular construction used.

Consider the grammar

which is 2-standard. By Chomsky's construction (whichwe do not detail

here) this grammar can be transformed to a normal grammar by adding two
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new non-terminal symbols.

S ::= a | AB

A ::=D

B ::= 88

: The new rules have only one slbermativer all derivations involving

them are forced. Thus the original probabilistic structure on its

language can be preserved by using the same alternative probabilities

in the first rule. The complexity (or a priori probability) of this

grammar -- by any reasonable measure -- has clearly not been preserved

by the transformation. Finally, Greibach’'s construction can be

applied to re-transform this grammar to a Z2-standard grammar, yielding

S ::=a | ©B

A ::=D

B ::=2aS | bBS

Some languages have very simple grammars in one form, but only

more complex grammars in a second; for other languages the situation

is reversed. Thus the behavior of the inference procedure may be

strongly influenced by the form selected. If a grammar ina particular

form is required by the application, it is generally inefficient to use

another form for the inference and transform afterwards. Although it

is thus inappropriate to pick a single form for the general inference

1 This is generally true for the Chomsky construction.
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procedure, we can reward (through improved performance) problem statements

which containa restriction to a particular form.

A similar restriction which is more generally applicable involves

the use of canonical written grammars. Grammars which differ only by

the systematic substitution of names for the non-terminals are completely

equivalent and cannot conceivably be distinguishedby an inference

procedure, We have implicitly utilized this equivalence by considering

only grammars involving a standard set of non-terminal names (e.g., in

our grammar-grammars). However, we can further restrict our class of

written grammars without loss ofTo

Although the productions of a grammar are an unordered set, they

are of necessity placed in some order in the written grammar. Written

grammars which differ only in the order of their productions represent

precisely the same grammar. We are thus free to order the productions

for our convenience, e.g., by collecting all productions for a given

non-terminal into a single rule. We can reduce to one the number of

written grammars which represent any grammar by introducing a canonical

ordering on productions, and requiring that productions be written in

canonical order. For example, we might order our vocabulary by

placing the distinguished non-terminal first, followed by the other

non-terminals in alphabetical order, and finally by the terminal

symbols in alphabetical order. Strings could be ordered by placing

short strings before long, and ordering strings of equal length by the

L The ideal would be to establish a canonical written form such that
each set of completely equivalent grammars corresponds to precisely
one written grammar in canonical form, but we have been unable to
achieve this goal.
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first symbol in which they differ. Finally, productions could be

ordered by left part, and by right part for equal left parts. Thus,

the productions of the grammar G), would be ordered

(S,0)(S,ah)(S,bS)(A,a)(A,as8)(A,bA)

and the canonical form of the written grammar would be

S ::=b | aA | bs

A ::= a | as | bA

Note that if we have restricted ourselves to particular names

(e.g., S,A, B...) for the non-terminals (to reduce the number of

completely equivalent grammars that we consider) the left parts of

the rules are now redundant in the written form, and can be omitted

without ambiguity

.:=b | aA | pS

i= a aS DA

(although with some loss in readability). This irredundant canonical

written form is the internal form adopted for use in our inference

program; grammars are convertedto more conventional form for output.

Also note that a finite context-free grammar-grammar cannot enforce

canonical ordering of the productions within a rule. Thus if we

measure the probability(or complexity) of a canonical rule with k

alternatives relative to a stochastic grammar-grammar we should

multiply the value by k! (or subtract log(k!) from the complexity)

to account for the k!-1 other equi-probable written rules which it

also represents.
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Our restrictions on written grammars have reduced the number of

completely equivalent grammars which will be considered, without

eliminating all representatives of any equivalenceJ We can
now calculate precisely the number of different canonical written

grammars in a standard form with given numbers (N and T) of

terminal and non-terminal symbols. Let Ro denote the number of

distinct right parts in form F , thei the number of distinct rules is

RRp, = oF
and the number of distinct grammars in form F is

WEN Rp

Now for standard finite-state grammars

Bgg = T+ ¥~ 1

Gpg = NT (14) Rat .
For (Chomsky) normal grammars

Ry = T+ WP

_ SNe (T+3°) NW
Goo = 2 > 2 ’

For (Greibach) 2-standard grammars

L Fach class will now have (N=-1)! canonical written grammars, where
N is the number of non-terminals.
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Rup = T(1 + N + N°)

C= NT (L+H) J oT
Ge

However, if we restrict ourselves to G2 grammars which are

+ also S=-grammars

RR = 2% (LHC)
Ges

q _ NT, o (HP) . oF
Ges

Since T <2F , this represents a substantial reduction.

Simple Restrictions |

Our restriction (imposed in Chapter III) to reduced grammars may

be thought of as a sample-independent reduction of the space of

grammars. There are other restrictions using information from the

sample which further reduce the space.

Up to this point we have tacitly assumed that the appropriate

terminal alphabet for the grammar is known a priori. We can relax

this requirement by the following observations: (1) If a grammar

contains a terminal symbol which has not yet appeared in the sample,

there is a better grammar for the cupid not containing that symbol;

(2) If a grammar does not contain some terminal symbol which has

appeared in the sample, it is not DA for that sample. From this we

conclude that at each step it is only necessary to consider grammars

whose terminal vocabulary is precisely that of the current sample. |

L We know that the grammar obtained by deleting all productions
involving the unused symbol will be simpler. It will also have
simpler (or, at least, no more complex) derivations.
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Tt is often possible to rule out whole classes of grammars as
non-DA on the form of individual rules, i.e., to restrict ourselves

to grammars containing particular rules. The simplest case of this

sort involves strings of length 1 , which (in either a standard

or a normal grammar) must be produced by the rule for the distinguished

non-terminal. Thus if there are k distinct strings of length 1 in

the sample, the number of grammars enumerated can be reduced by a

factor of of merely by considering only grammars of the form

8 1:= alas]. lal...

Similarly, in standard grammars, each symbol a. which is the first

symbolof a sentence of length greater than one must occur in a

. production of the form (5,29) for some @ . This analysis can be

: A extended to rules beyond the distinguished rule, but at substantial

] | complication, and with marginal utility. However, in its simple form

i+ can contribute substantially to the effectiveness of the method

discussed in the next section, for which the distinguished rule is of

particular concern.

Splitting Grammars

As we showed in an earlier section, the number of grammars with N

non-terminals becomes huge for fairly small values of N . Merely

enumerating them (preparatory to determining which few of them are

deductively adequate) is a sizable computational task. It is desirable

to eliminate as many as possible "by class" (e.g., by requiring certain
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productions, as in the previous section) before enumerating them.

In this sectionwe develop a method of enumerating the grammars

with N+1 non-terminals by "splitting" the grammars with N

non-terminals and show that all DA grammars with N+1 non-terminals

result from splits of DA grammars with N non-terminals. Thus we

can exclude (without enumerating them) the grammars resulting from

splits of non-DA grammars.

. ‘ ; 'y z

Def. VI.1l. A grammar G is a split of G on A, and G' is a

merge of G on A, and Aj iff replacing every occurrence

of A, in PR(G) by A, yields PR(G') LY
lemma VI.2. Any merge of a DA grammar is DA.

Proof. If G is DA, every string in the sample has a derivation

in G . But every derivation in G has an image in G'

(obtained by substituting A, for each occurrence of Aj )
which produces the same terminal string. Therefore G'

produces every string in the sample and 1s DA.

Corollary VI.3. Every DA grammar is the split of a DA grammar.

Corollary VI.4, Every split of a non-DA grammar is non-DA.

Remark VI.5. Merging preserves the form of productions. Thus any

(standard/normal) DA grammar is the split of a (standard/normal)

DA grammar. Similarly for reduced grammars. However, the

5 This is a special case of grammatical covering [Reynolds 1968].
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S-grammar property is not preserved; we will have to split

non-S-grammars to obtain some S-grammars.

Def. VI.6. A split or merge is canonical if A, = 3 and A, is

the canonically last non-terminal of G , i.e., if the distinguished

non-terminal is split into the distinguished and last non-terminals.

Lemma VI.7. Each (%*) grammar with N+1 non-terminals, N>0, is

the canonical split of preciselyone (¥) grammar with N

non-terminals.

Proof. The requirement that the distinguished and last non-terminals

be combined uniquely determines the canonical merge of any given

grammar; this is the unique grammar which can be canonically

split to form the given grammar.

Corollary VI.8. The (*¥) grammars with N+1 non-terminals can be

enumerated without repetition by performing all possible cancnical

splits of (%*) grammars with N non-terminals.

Remark VI.9. By Remark VI.S "DA," "standard," "normal," and/or

"reduced" can be substituted for (¥*) in Lemma VI.7 and

Corollary VI.S8.

We have shown that by splitting the (comparatively few) DA

grammars with N non-terminals we obtain all of (but not only) the

DA grammars with N+1 non-terminals. The number of splits can be

quite large (although it will not entail a complete enumeration) and
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many of the resulting grammars will not be DA. We wish to rule out

classes of non-DA grammars as efficiently as possible. For this

purpose the required production test on the distinguished rule,

given in the previous section, is fairly effective.

Def. VI.10. The canonical grammar splitting procedure. Let PR

be the subset of PR(G) with S as left part, let PR, De

the required subset of PRg , and let N be the non-terminal

to be added. The procedure CGS consists of the following

steps.

1) For each T C PR.-PRp do step 2).

2) Let D=TUPR, and L= PR.-T . For each subset

EcD do step 3). |

3) Let M be the result of replacing S$ as a left part by

N in EUL, and let PR, =MU (PR-PRg) . If P is

a production let P be any production obtained from P

by substituting N for zero or more occurrences of S in

the right part of P . Enumerate each G(PR,,) , Where PR,

is obtained from PR, by replacing each PePRy, by one or

more P 's.

If the grammar to be split has a distinguished rule with k

necessary and £ "unnecessary" productions and the distinguished

non-terminal occurs m times, there will be at least

s(k,2,m) = ok . wiki
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canonical splits of the grammar; if the distinguished non-terminal

occurs in the distinguished rule, or more than once in a single

production, there will be somewhat more splits.

Finally, the notion of splitting permits us to organize the

space of grammars as a tree, where the branches from each node

represent splits, and each level represents an additional non-terminal.

when a node is eliminated (non-DA), so are all its dependent nodes.

Branches can be "grown" independently; we need not enumerate all

grammars with N non-terminals before starting on those with N+1 .

In particular, there is a minimum "cost" in complexity involved in

any split, so at any given time we need only perform splits which

could result in grammars which are not more complex than the current

bound, 38, . |
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VII. INFERRING PARAMETERIZED GRAMMARS

Those who believe that "probability" refers
to a state of things, a property of a system
(as proposed by von Mises), might well
consider how they would prove to a skeptic |
that just because a coin comes up heads
twice in a row he should not believe that it

is loaded. If he persists in this belief,
will you insist that he is irrational?
Stupid? If you take this point of view, you
must admit we are talking about states of
knowledge. (The coin could be loaded, you
know!)

[Savage 1962]

Succinctly, how does one go about stating
the distribution of the parameter from
available information? And, what if no

a priori information is available, then
what?

[Aigner 1968]

When the probability of a simple event is |
unknown, we may suppose all values of this
probability between O and 1 as equally
likely.

[ Laplace]

Estimation of Parameters

The deductive methods of Chapter VI (e.g., grammar splitting)

were stated in terms of characteristic grammars rather than stochastic

grammars. A one-to-one correspondence between the two kinds of grammars

is required to combine these methods with those of Chapter V, which

assume stochastic grammars. Chapter III mentioned two means for

establishing this correspondence: all alternatives of a rule may be

considered equi-probable,or the probabilities of alternatives may be

treated as free parameters which must also be learned. There we noted
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inadequacies of the former approach; now we turn to development of the

latter. The proofs in ChapterV in general have analogs for parameterized

grammars. The notation becomes substantially more cumbersome and we

| do not believe that a formal development is particularly enlightening.
Therefore, the presentation in this chapter is mostly informal.

In this sectionwe treat the case where the grammar is fixed and

the probabilities are to be learned. The next section addresses the

more general problem of simultaneously learning both the grammar and

the parameters. Although the application is new, the statistical

methodology is not particularly novel [Tribus 1962] [Savage 1962]

[Aigner 1968]; we sketch it here becausewe have not found it

. presented anywhere in quite this form.
We may treat the hypothesis H, (©) with the free parameter ©

as a set of compound hypotheses H, (0) = ((H;,05)13 = 1,2,3,400) »

i P(e, |H;,C) and P(8, |9,H;,C) are known for each J , Bayes'
theorem can be used just as before to compute a posteriori probabilities

P(S, {e.,H.,C

P(0;8,,;,C) = P(9;]8;,C) -os
7 214’ k!' 221

In the continuous case, © becomes a real variable, P(e, |H;,C) is

replaced by o(e|H,,C) where p is a probability density function

(pdf), [o(0]n,,C)de = 1 , and the summation over I turns intc
integration over © .

o(e]s, ,H;,C) = o(0|H,,C) . _ relen ‘
[ p(e'|H,,C) p(s, |o',H,,C)a0"
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This is the general rule for determining the a posteriori density

function from the a priori density and the sample. In the case of a

parameterized stochastic grammar, with which we are concerned, ©

corresponds to the probability of a particular alternative (or to a

vector of such probabilities), let it be the n-th production.

Now P must have the form

F.(p ,S )Thick +l

p(s, |,,G;,C) = ©, g(S,,G;,C)

where

F,(p,8,) = L £(r,8) * ule)
TeV

1

and u,(p,,7) is the number of uses of pP_ in the
derivation of tT through G, ‘

Since g is independent of ° , it comes out of the integral and

then cancels; leaving

p(6,,18,6;,C) = 0(0,6,,C) RY Pps Sy 1

[ o(e_}c,,C) 0 do’

As usual, the Bayesean denominator is merely a normalizing constant,

and the form of the result is determined by the numerator. Hence the

effect of the sample Sy on the form of the pdf is to multiply it by

° . Similarly, if we have not one free parameter, but a
vector of free parameters, the multi-dimensional pdf will be multiplied
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F.(p,s85,) F.(p_,S,)

by 0," 1’"k ‘ee 0 Lgl . In the absence of any knowledge of
the form of p , this is about all we can say.

To simplify the sequel, we will assume that p itself takes

the particularly simple form of a constant times a power of © Ys
This assumption admits a large class of pdf's (the multi-variate

Beta distributions), which includes some important special cases to

be discussed later, and has two convenient properties: p 1is

completely specified by the exponent for each © (the constant

multiplier is determined by the requirement that p be a pdf); and

the class is closed under Bayesean inference -- the new exponents

again determine the function. If we write F_ for F.(p,,S,) we

find |

Fy Po
B,  B, 0,"...0,

= & _. $ —————————————————————————————————————————————

0(0,..-,0_|8,,G;,C) K+ 0, ...0, 5 TT, SA
fk, “...0  T-0; T...0 T+d9;...dop

B,tF, BrtF
o I *

_ 1 m
- B.+F B +F ’

1 1 ye Mm mM L 1

[eo eS de,...do

To obtain the value of the normalizing constant, we must supply limits

for the integration. I: 9y.--9, were all independent, we could
factor the integral into the product of m integrals, each involving

only one © _ Because of the constraint that for each rule the sum

L The generalization to linear combinations of such functions (and
hence to analytic functions) is straightforward; we do not pursue
it here.

103



of the probabilities of the alternatives must be unity, we obtain

instead one factor for each rule

Lisel BFF B_+F171 rr

I °, ver 9, 8(0,+...+0-1)d0,...d0
Byes +30

In the simple case r = 2 this is the familiar Beta integral

| 1,1 P.+F, PB+F11 J2' "2

[ ©, 0, 8(0,+6,-1)d6, de,
0,0

1 B.+F By+F171 22

= [ o, (1-0) de,
0

(B.+F. )! (B,+F,)! |11 2 "2

= B(B+F +1,B,+F,+1) = mos rar an)T171 e 2 By tPF HF] ;

In the general case we have

B +F
1 n n

1 rik? 3 BytF tly ee, BAF #l I n
8B +F

; es of nN= [(} (BF +1))-1]! |] ICESn=l Rn n=1 PB *F, “

for each rule, independently.

I+ might appear that we have strayed somewha™ from our original

quest, which was to estimate the © 's. But now that we have a

convenient form for the pdf, we can easily estimate ° by taking

its expected value under the a posteriori distribution,
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E[0, |8,] = | o 0(0y,.++59,|8,,6;,C)d0,...d0,

B.+F B +F +1 B +F |
171 nn rr

} B(By+F see esB pF41,000,BF.)
cll BF ys ree BAF eee PF)

_ B +F +1 i B +F +1
a ~ B+F+r

Ln (B_+F +1)m=

where

r I

B=) B. F= YF :
m=1 m=1

Similarly we can compute the variance of the density function

B +F +1 12
(B_ +F +1)(F _+F +2) n n

£[62|S, 1-E[0_|5,1° = — myers © |BEn' k nt k (B+F+r) (B+F+r+1) B+F+r

2

. (B +F +1) (B+F+r) - (B +F +1)
(B+F+r)° (B+F+r+1)

2

lim £[e°]s, ] - Efe |s,1° = lim "nn = 0K—w Kc FP

Thus the estimated values for the probability parameters have a

very simple form in terms of the exponents in the a priori density
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\ 3

function (the B's ) and the observed frequencies of the alternatives

(the F's ). Furthermore, the variance becomes small as the frequencies

increase (i.e., the distribution peaks ever more sharply around the
estimate). Note that the result involves only the sums BF, , not

their individual values. We may interpret this as saying that

a priori bias (B's) and observations (F's) affect the angver in
precisely analogous fashions; at any time we can move observations

into the bias and work froma "new" a priori distribution, without

affecting later results. |
We have not yet discussed how the B's are to be selected. In

general, we might expect "py symmetry" that the = should all have

the same value within a rule (although this might not be the case if

we had some reason for distinguishing amongT_T by
length). Two particular choices are popular in the statistical

literature: If each PB =0, corresponding to a uniform (independent

of the ° ) a priori density, we obtain the famous Laplace rule of
succession

' F +1 | |
E[6,|S,] = F+r

Most "subjectivist" statisticians support this view. If, however, each

Po = -1 , we obtain

: Pu
E[0,|8,] =F

the "maximum ]ikelihood" estimate; most "frequentist” statisticians
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would support this result (since it is an unbiased estimate of e )

but deny the validity of our derivation.

In the limit, of course, any choice of finite values for the

B's will have only infinitesimal effect on the estimate; our earlier

proof that relative frequencies of strings in a stochastic presentation

converge wpl to their probabilities can be carried over directly to

show that E(e_|S,] converges wpl to the probability of its alternative,
independent of the B's 2 Thus we shall not be dogmatic in insisting

that any particular values must be used for the P's . We might hope

that in each application, experience would indicate appropriate

values; we conjecture that small positive values are generally best

and that O will not usually be far wrong.

These results can be made more concrete by means of an example.

Consider the grammar

S ::= t|hS

with probabilities e, and Sy , where 0, +9, = 1. Assume that
we have no a priori reason for preferring either alternative, sO

L This is what Bayeseans mean by the statement that "you can always
overwhelma poor choice of the prior by sufficient evidence."

2/ The reader who easily relates statistics to coin flipping may

interpret t as "tails," h as "heads," a string ht as a
"trial" which obtained a run of n "heads" and then terminated
on appearance of "tails." The expected length of a string is
the expected length of a trial, °, and oy are the probabilities
of "tails" and "heads" on each toss.
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Py = Py . We will compare the answers resulting from three different

choices for the B's :

(a) the "frequentist" -- B, =8 =-1; |

(b) the "indifferentist" -- B. - B, = 0 ;

(c) the "experienced" person who from earlier evidence thinks

a "fair" division is highly probable -- Ps = By = 50 ,

At the start: With S. = [4 , before seeing any strings, each choice
: 1 :

yields E(e,]S_] = Efe |s_] = 5 (although for (a) we require

I'Hospital's rule to compute the value).

After one t : If Sy = <t> , Fo = .1, F =0, F=11

(a) (v) (c)

F, F, +1 F, +50
= o— | = —— I m—E(e,]8,] = 5 E[o,8,] = 555 E[9,15,] = 7100

Jl, _2 _ 51
~1 3 101 ’

On the evidence of a single string, the "frequentist" estimates the

probability of t at unity, the "indifferentist" estimates a 2:1

bias for t and the "experienced" estimates only a slight shift.

After another t : If 5, = <t,t>, F, = 2 , Fo w0, P=21

(a) (v) (c)

F Fo+l F +50
Be, |s,] -F E[e, |8,] * Fo ES, |5,] ~ F+100

_2_, " _ 52 26S27 Bh - 102 T 51 °
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After some h's : If Sy = <t,t,hhht>, F =3, F =3, F= 5 3

(a) (v) (c)

F, F +1 F +50
BO |8;] = 7 50,185] = +z Boy 185] = R100

= 2 =n 4 _1 = ge = =6 2 BT 2 106 2°

Everyone agrees at this point.

After 1000 observations: If F, = 600 , F, = LOO , F = 1000 :

(a) (b) (c)

Fo Fi +1 F +50
E(9; 181000] = F E[9; 151000) = Fr E[0; 51000) = F100

_ 600 _ 601 _ 650
~ 1000 ~ 1002 ~ 1100

= .6000 = .5998 = 3909

All three pretty well agree on the amount of bias for © .

Evaluation of Hypotheses with Free Parameters

We have shown how to estimate the values of the parameters for

a fixed hypothesis. We turn now to the question of picking the best

hypothesis when the parameters are not yet fixed. The general approach

is based on the observation that for the hypothesis to be correct, it

must be correct for some values of its free parameters; in the last

section we developed estimates for the pdf of the values.
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If © is a free real parameter of H, (©)

P(H, (9) |c) « | P(H, |C) : p(e]H,,C)d0

= P(H, |C)

and

p(s, IH, (6),C) = [ p(s, |6,H,,C) K o(0lH,,C) . de

so, by Bayes' theorem

P(H, (0)]s,,C) = P(H, (0) C) . ECA )

Dropping (as usual) the normalizing denominator

P'(,(0)]s,,C) = pH (0)lC) - P(5,|H,(6),C) |

. P(H,|C) 0 p(s, |9,H,,C) . p(olH,,C)do :

~ Now specializing to stochastic grammars, recall
m

P(5,1075+.4,8,,6,,C) = | lo,
n=l

The integral again can be factored into independent integrals for

each rule. Recalling

Te,”
n=1 - :

0(8,5+-450,1G,,C) = 8(0,+...40-1) 3 Bitlse.e,B tt

we have for eacn rule
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r F.(p.,S )+B

I a. + = k on §(0 +o. otO -1)de «e34011 n 1 r 1 Xr
J a gu 5» i. G. C =r{ Lg 4 ” : £4 ) B(B,*1,...,B +1)

_ BBP, (p,,8,)+1,...,B,+F, (pS,)+1)
B(B +1,...,B +1)

1 ) f a - t

_ (B,+F, (p;,85,))! «oo (B#F, (p.,8,))! (B+r 1}!
= — PB.!...B_! « (BP+F+r-1)!Byre- BL B+F+r-1)!

where (as before)

I r |

B= 3B F=) F(p,S) -
n=1 n=1

This result (with all B's set to O ) was derived by

Solomonoff [1964] using a completely different method based on

substantially different assumptions. His method suggests both an

information-theoretic interpretation for the result and an incremental

method for its computation. Suppose that with each alternative we

store the current value of Yn = B +F: (ps5, )+1 and that every time
that alternative is used in a derivation we use the current estimate

of ©
n

7
= —

Efe |s,] = ;

to compute the minimum information (complexity) involved in that step

"n
I = -log (=) = log 7 - log 7

7 n
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and then increment both FY and 7 by one. Now, after Sy has
been completely derived, we find that (for each rule) 7 has taken

on each value from B+r to Pp+F+r-1 precisely once, and each :

has taken on the values B+1 to B +F; (p55) . The sum will be

independent of the order in which alternatives were used, depending

only on their final frequencies, and is the negative of the logarithm

of the integral computed previously

B+F+r-1 r B +F, (p,,S,)

-log(Jp) = y log(J) - ) y log(j)j=p+r n=l J= Re

We note that negative values for the B's (e.g., the

"frequentist” = = -1 ) will in general cause this value to become
infinite. Intuitively, we may see why as follows: if any is

zero (or negative) when 7 is positive, then Efe Is,] is zero

(negative) and an infinite amount of information is required to specify

that alternative. We note this in case (a) of the example in the

previous section, where, on the basis of one observation E[9, |s,] =1,

E[S, |5,] - 0. No additional complexity is involved in further t's ,
but there is infinite complexity in the first h following these t's .

Thea priori probability density function has equal poles at 9, = 0

and 6, =1, (recall L'Hospital's rule was required to evaluate

Efe, 18 _] vefore the first observation). The first observation cancels
one of these poles with a zero, leaving the other to completely dominate.
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Limiting Behavior

In Chapter V we proved that the procedure EB was not only optimal

at each step, but also converged to the best grammar. The proof

involved the fact that each stochastic grammar in the enumeration

had fixed values for each of its alternative probabilities. It can

be shown that the evaluation measure of the previous section also

converges to a correct grammar. But we require a different measure

of best for parameterized grammars.

A characteristic (parameterized) grammar is stochastically

compatible witha stochastic grammar if there is some assignment of

its alternative probabilities © which will make it stochastically

a— The degree of a grammar is the number of productions

minus the number of rules, i.e., the number of alternative probabilities

which can be adjusted independently. We state the following result,

and then sketch its derivation in the case of convergent information

sequences: Using the evaluation measure of the previous section,

the procedure EB will converge to a stochastically compatible grammar

of minimum degree.

For a convergent information sequence of the stochastic

grammar G

lim f(r,5,)/k = p(t|G) .
k=

Let

L Recall that we showed in a previous section that © will converge
to © in the limit. Thus any grammar stochastically compatible
with the true grammar will approach stochastic equivalence with
the true grammar.
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a = lim F, (p»8,)/k
n—

= lim Y. £(1,8,) - u.(p ,1)/kin

k= TEVY

_ L, P(x|G) + u,(p_,7)TE
t

and

m

a = PNA .
n=}

Now consider

1 1 » t

RVC rtplYY TC B,! ...B_{(P+F+r-1)! )

Let

K_ = (B+r-1):
R Byres Br

Now let ’

L Recall that Jp is the contribution to the a posteriori
probability made by a single rule.
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Jo(815+.+,0,|G,,C) - he J (0y5...,0,|Gy,C)
r

f

=K. * lim CT FER ot B+F+r-1)!

r

: . ¥

TT, k)!
= K y - *

R (B+ « k+r-1)!

By Stirling's approximation

X

X! as V2nx (2)

©

Jp(6y,- .50_]G.,C)

B Ha *k

r| | EoI | fen-(B+o -k) * | —
~K, * -

"R B+. k+r=-1

After considerable simplification, this reduces to

=

35(0,5++4,9,16,,C) a Cp + Dplk) Ps

where |
1 1

r-=1 RY 2 Ne + 3
I IRE ra |

; I &® ® # r' B+r - 5
a

l-r

e

Dp (k) = k
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ed ry or
P, = te :

8 4

The factor Pr is precisely the contribution that this rule
would make to the derivational probability if the a priori alternative

probabilities were fixed at their optimum values, e.g., if the grammar is

stochastically compatible then TT#% will be the derivational probability
R

of the stochastically equivalent form. As k—oo this factor

dominates, and in analogy with Theorem V.7 any grammar which is

stochastically compatible to the true grammar will be preferred over

any grammar which is not.

: Among stochastically equivalent grammars, the contributions of

the 2 factors will be equal, so the D_(k) factors will dominate:
-L (1-r)/2

1To,_ x) ak TP . But d "dy (r-1) is precisely the degree
R R

of the grammar. YZ is maximum for minimum degree, so, out of

a set of stochastically equivalent grammars, one of lowest degree

will ultimately be preferred, in fact, the one with maximum

P(G, |C) . 1c; ‘

The constants Cr are sensitive to the B's , and are a function

of the "distance" between the initial approximations B/P and the

limiting values a /o :

It may seem surprising that the evaluation method of the previous

section ultimately prefers grammars of minimum degree, independent of

the apparent complexity of their rules. This may perhaps seem more
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reasonable in light of the remarid that the rules are finite and

discrete, and therefore have bounded complexity, whereas the

parameters may converge to any real number in the open interval

zero to one. To specify any one of these parameters exactly would

require an infinite amount of information. We do not do this,

but rather use the samples to refine the estimates ever more closely.

The more independent estimates which are made (i.e., the higher the

degree) the mcre complexity involved, and this consideration ultimately

outweighs any fixed complexity of rules.

L This argument is admittedly a posteriori, as the author was
surprised by the result when he first derived it.
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VIII. IMPLEMENTATION AND RESULTS

We cannot live and we cannot solve problems

without a modicum of optimism.

[Polya 1954]

Of course, we would have to supply the
language-learning device with some sort

of heuristic principles that would enable
it, given its input data anda range of |
possible grammars, to make a rapid
selection of a few promising alternatives,
which could then be submitted to a process

of evaluation, or that would enable it to
evaluate certain characteristics of the

grammar before others. The necessary

heuristic procedures could be simplified,
however, by providing in advance a narrower
specification of the class of potential
grammars. The proper division of labor

between heuristic methods and specification
of form remains to be decided.

[Chomsky 1963]

Reasons for Implementation

For a variety of reasons, several of the procedures discussed in

the last three chapters have been implemented as running computer

| programs. The discipline involved in actually stating these procedures

as programs has led to greater precision of definition in a number of

cases. The insights gained through running the procedures have

strongly influenced the direction of our research -- the methods of

Chapter VI were developed only after preliminary computer runs indicated
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the essential role of deductive preprocessing. Finally, we felt that

it was desirable to demonstrate that our formally optimal methods

were practically implementable.

The programs have been successful in the sense that they have

verified our methods and contributed to our understanding of the |

problem. They have, however, been disappointing in terms of

computational efficiency, and it is not claimed that in their present

form they are economically justifiable for practical applications.

Tt seems clear that various heuristics could greatly speed the inference

process, probably at small cost in terms of optimality. It is also
evident that in many applications the restrictions on the hypothesis

space are quite stringent, much more so than any general restrictions

that we have proposed for our methods. Economics would probably

dictate the use of both heuristics and extra-grammatical constraints

to prune the hypothesis space in any real application. These topics

are beyond the scope of what was attempted here.

All the programs were written in LISP/ 360 and run under the

ORVYIL time-sharing monitor on the Stanford University Computation

Center, Campus Facility, IBM System 360/67 computer. LISP was chosen

as the only sufficiently powerful language available under that

monitor, rather than for any appropriateness to the problem. Due to
the slowness of the programs, the original goal of extensive

interactionwith running programs was never fully realized, but the

interactive capabilities greatly facilitated debugging. The programs

were slow due to a combination of unfavorable circumstances: as
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indicated in Chapter VI, the enumerative problem is immense, even |

with our improvements; LISP is not the optimal language for this

application; the LISP compiler was not available in the time-shared

system, so all programs were run interpretively; the problem of

garbage-collecting list structures on secondary storage greatly slowed
the syevon. In short, the programs pushed the ORVYL-LISP/360

system far beyond its appropriate operating range.

The important procedures used in the programs have been given

in the preceding three chapters; we do not repeat them here. Neither

do we give program listings, although they are available from the
author on request. The programs exhibit the characteristic

incomprehensibility of large LISP programs, and little point would be

served by repeating them here. We would advise anyone planning

another implementation to work directly from the algorithms previously

given.

Effects of Deductive Preprocessing

"The initial portion of the enumerative Bayesean procedure

selected for implementation was the enumeration itself. Although it

wae straight forward to write a program which enumerated the grammars

in a given form, it socn became apparent that the enumeration process

represented a serious problem. The first program quickly consumed the
available memory for list structure and then began interminable

L This final problem was further complicated by the necessity of
utilizing the structure-modifying pseudo-functions RPIACA and
RPLACD which defeated the LISP system's attempts to concentrate
lists on single pages.
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garbage collections. It had to be abandoned in favor of a more

complicated program which enumerated grammars one at a time and

then immediately tested them, releasing the SEoread assigned to
unsatisfactory grammars.

Even when restricted to reduced grammars, however, the procedure

was rather slow, due to the voluminous nature of the enumeration.

It was tested on two-non-terminal standard finite-state grammars

| with a two-symbol terminal avpuabes. By our results of Chapter VI,

there are gt? such grammars, and a large number of them are reduced.

To progress, it was necessary to eliminate even more grammars. This |
was done by introducing the DA test based on a fixed sample. In a

t ypical run using two minutes of CPU time about a tenth of the

grammars (4LO) were enumerated. of these, 36% were either not
reduced or not DA with respect to the one-string sample <b> . None

of the 77 remaining grammars would have been TA with respect to the

two-string sample <b,bb>. |

This procedure (GRAMMARLIST) was transferred to the batch-

processing system which provided more memory and a compiler, resulting

in at least a factor of six speedup for short enumerations (and

presumably more for longer ones). In the longest run, using the

eleven-string sample

which we began Chapter I.

2/ this figure cannot be linearly extrapolated to the full 4000
grammars, however, since the enumeration slowed down noticeably
as more memory was consumed by the list of acceptable grammars
and as lists became increasingly "scrambled" across page boundaries.
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b bbb

bb bbbb |

: aa abab ,

baa baba ,

aba abba

aab

it determined in one minute's computation that there were 304 reduced

DA grammars. FeldiEn’s grammar, G), :

S ::=1b% | bs | aA |

A:t=a | bA | aS

was not among the first 1000 grammars enumerated, but was the First
reduced DA grammar to be enumerated -- the only such among the first

1800 grammars. Four grammars which were simpler than G, wate
| reduced and DA, but they were all ambiguous. In this case, the

requivenents that a grammar be both reduced and DA cut the hypothesis

space by more than an order of magnitude. Had the additional requirement

of unambiguity over the sample (implemented later) been in effect,

it would have provided another order of magnitude.

A similar test was performed with (Chomsky) normal grammars

rather than finite-state grammars. The run was terminated after one

minute of CPU time, during which 3100 grammars were enumerated and
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360 found to be reduced and mn. The larger number of DA grammars

can be largely attributed to a greater density of universal grammars

among normal gremmars than among finite-state grammars.

By this time, the author was convinced that the computational

cost of enumerating and testing all grammars was excessive. This

led directly to the developmentof the splitting methods of

Chapter VI, which were incorporated into the inference procedure

discussed in the next section.

Although the importance (and effectiveness) of the restrictions

to reduced and to DA grammars grows with the size of the grammars

being enumerated, the following simple example is illustrative:

Consider the standard finite-state grammars with one non-terminal

symbol and two terminal symbols. Eliminating the null grammar, we

have a set of 15 grammars over these vocabularies:

1) S::iza

2) S ::=Dd

3) S::=a |b /

LY S ::= aS

5) S ::=a | aS |

ps an interesting sidelight, it is worth mentioning that the sample
was intended to represent the language with an even number of a's
in each string. The author had inferred the following simple (but
ambiguous) normal grammar

S::=b | 85 | AA J
A::=a | AS | sa |

but the enumeration procedure quickly found two simpler grammars |
for the same language.
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6) S ::=Db | aS

7) S::=a|bp] as |

8) 8S ::=DbS

9) S ::=a | BS :

10) S ::=Db | 1S

11) S::=a| b | bs |

12) S ::=2aS| bs

13) S ::=a| aS | bs

14) Ss ::=b| as | bs

15) S::=al| Db] as|os

We can immediately eliminate 1), 2), 4), 5), 8), and 10) because they

do not have the correct terminal vocabulary, V, = {a,b} . Nine

grammare remain; of these, 12) is not reduced. If the information

sequence is <b,bb,aa,baa,...> , the first sample eliminates 9) and

13); the second, 3), 6), and 7); and the third, 11) and 1k), leaving

only 15) (the universal grammar) as DA. Three strings reduced the

hypothesis space from eight grammars to one. Further strings can not

lead to further deductive learning. Our general observation is that

| the restriction to DA grammars is most effective when (for N |

non-terminal grammars) the sample contains the strings of the language

up to length Z2N .

A Complete Inference Procedure

GRAMMARLIST was followed by EVAIUATER, a program which would

evaluate any fixed list of IBIAS on the basis of samples input |
from the terminal. The results were as predicted,and the only
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particular interest of the program is that it ran very fast (a few

seconds for the largest test case), confirming our belief that the

Bayesean portion of our procedure is not a limiting factor; if the

problem of efficiently enumerating only the DA grammars is solved

our method should be quite practical.

The final implementationwas a complete inference procedure,

INFER, which incorporated grammar splitting, tests for ambiguity, and

parameter learning. It is a rather large (550 lines of LISP) program,

and thus consumes a substantial fraction of the available free

storage itself, further slowing the system. We were able to verify

correct operation of all its components on small grammars, but each

attempt to infer more interesting (i.e., larger) grammars had to be

terminated because of excessive time.

INFER is given an initial hypothesis space (generally the one

non-terminal universal grammar) as a parameter. It accepts sample

strings from the terminal, evaluates the active grammars, determines

which (if any) of them should be split, splits them, and finally

prints out the number of active grammars, the minimum value of

complexity and the value of B, (the split level). If its guess has

changed,it also prints its new guess. We present below a typical

(3 minute) computer run. Input from the terminal is lower case,

and foldows the computer prompts (!), computer output is upper

cased and should be largely self-explanatory. The language consisted

of odd-length strings of A's , the information sequence being

L Due to LISP restrictions we were forced to modify our convention
that terminal symbols are lower case, non-terminal, upper. For

this run, V,_ = {A} , Vv = 8, X, 7.0.44} »
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<A ,AAA ,AAAAA A, A,AAA AAAAAAA A ,A,A,AAA A AAA ,AAAAA,...> .

Pa
4

(A) :

1 ACTIVE GRAMMARS. BEST VALUE: 5.0. SPLIT LEVEL: 5.0

TOTAL COMPLEXITY: 5.0, INTRINSIC: 4.0 UNSPLIT 6.0
Ss ::= A | AS (3 : 21)

. asa

(AAA) |

SPLITTING

TOTAL COMPLEXITY: 8.9, INTRINSIC: 4.0 UNSPLIT 6.0 |

| S ::= A|AS (6 : 3 3) |

TOTAL COMPLEXITY: 15.1, INTRINSIC: 10.0 UNSPLIT 12.2 |

S ::= A|AX (k:22)

X ::= A|AX (4 : 2 2)

TOTAL COMPLEXITY: 16.9, INTRINSIC: 10.3 UNSPLIT 13.2

Ss ::= A|AX]|AS (7 : 313)

X :1:= AX (1:1)

TOTAL COMPLEXITY: 12.6, INTRINSIC: 9.0 UNSPLIT 11.2

S ::= AJAX (5 : 3 2)

X ::= AS (2 : 2)

TOTAL COMPLEXITY: 14.6, INTRINSIC: 10.0 UNSPLIT 12.2

Ss := A|AX (5:32)

X ::= A|AS (3:12)

TOTAL COMPLEXITY: 15.6, INTRINSIC: 11.0 UNSPLIT 13.9

S ::= AlAX (5:32)

X ::= AX | AX (3 : 12)

L The number following UNSPLIT is the minimum intrinsic complexity of
a split of this grammar, i.e., the value the SPLIT LEVEL must exceed
to justify splitting this grammar.
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A

(5 . NEW ACTIVES)
6 ACTIVE GRAMMARS. BEST VALUE: 8.9. SPLIT LEVEL: 6.9

! asaaa

(AAAAA) . |
5 ACTIVE GRAMMARS. BEST VALUE: 13.7. SPLIT LEVEL: 8.7 , |

! a a aga aasaasas

B 5 ACTIVE GRAMMARS. BEST VALUE: 15.2. SPLIT LEVEL: 9.2 |
2 (A)

5 ACTIVE GRAMMARS. BEST VALUE: 16.5. SPLIT LEVEL: 9.7 )
(A AA)

5 ACTIVE GRAMMARS. BEST VALUE: 19.5. SPLIT LEVEL: 10.6 |
(AAAAAAR)
SPLITTING

~ TOTAL COMPLEXITY: ol ,8, INTRINSIC: 9.0 UNSPLIT 11.2
gs ::= AlAX (16: 8 8)

X ::= AS (8 : 8)

TOTAL COMPLEXITY: 32.2, INTRINSIC: 15.9 UNSPLIT 18.0
s ::= AlAX (9:45)

¥ :3= AY (8 : 8)

Y ::= A|AKX (9 : 5 4)

(1 . NEW ACTIVES)
SPLITTING

TOTAL COMPLEXITY: 9.3, 4 INTRINSIC: 9.3 UNSPLIT 11.6
s ::= AlAX|lAas (3:111)

X :1:= A (1:1)

TOTAL COMPLEXITY: 40.6, INTRINSIC: 16.2 UNSPLIT 18.3
s «:= AlAaY|AX (0:L451)

X ::= A (1: 1)

y ::= Al AY (16:5 11)

L The TOTAL COMPLEXITY of an ambiguous grammar is invalid.
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TOTAL COMPLEXITY: 35.k, INTRINSIC: 15.9 UNSPLIT 18.0

S ::= A|AY (9 : 4k 5)
X ::= A (5 : 5)

Y ::= AY| AX (12 : 7 5)

TOTAL COMPLEXITY: 39.5, INTRINSIC: 17.9 UNSPLIT 20.3

S =A| AY | AX (10: 4 51)

X :2:= A (5 : 5)

Y ::= AY | AX (12 + 7 5)

TOTAL COMPLEXITY: 34.0, INTRINSIC: 15.2 UNSPLIT 17.3

Ss ::= AJAY] AX {17 : 88 1)

X :1:= A (1:1) |

Y ::= AS (8 : 8) |

TOTAL COMPLEXITY: 38.0, INTRINSIC: 16.2 UNSPLIT 18.3

s ::= AJAaY|AX (17 :881)

X ::= A (1: 1)

Y ::= A| AS (9 : 18)

(5 . NEW ACTIVES)

11 ACTIVE GRAMMARS. BEST VALUE: 24.8. SPLIT LEVEL: 12.0

TOTAL COMPLEXITY: 24.8, INTRINSIC: 9.0 SPLIT

) Ss ::= A|AX (16:88)
J X ::= AS (8: 8)

! a a a aaa a aaa &aaaasa

(A) |

11 ACTIVE GRAMMARS. BEST VAIUE: 25.8. SPLIT LEVEL: 11.8

(A)

11 ACTIVE GRAMMARS. BEST VAIUE: 26.8. SPLIT LEVEL: 11.9

(A)

11 ACTIVE GRAMMARS. BEST VALUE: 27.6. SPLIT LEVEL: 12.0

(A AA)

11 ACTIVE GRAMMARS. BEST VAIUE: 29.7. SPLIT LEVEL: 11.7
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(A)

| 11 ACTIVE GRAMMARS. BEST VALUE: 30.5. SPLIT LEVEL: 11.5
| (A A A)

11 ACTIVE GRAMMARS. BEST VALUE: 32.7. SPLIT LEVEL: 11.9
(AAAARA)
SPLITTING

TOTAL COMPLEXITY: 47.9, INTRINSIC: 10.0 UNSPLIT 12.2

Ss ::= Al AX (16: 8 8) -
X ::= AJAX (2k:8 16)

(0 . NEW ACTIVES)

SPLITTING :

TOTAL COMPLEXITY: 40.7, INTRINSIC: 10.0 UNSPLIT 12.2

Ss ::=A | AX (27 : 15 12)

X ::= A|AS (13: 1 12)

TOTAL COMPLEXITY: 48.2, INTRINSIC: 16.9 UNSPLIT 19.0

S ::= A | AX (16: 8 8)

X ::= A|AY (13: 1 12)

y :1:= A|AX (13:85)

(1 . NEW ACTIVES)

12 ACTIVE GRAMMARS. BEST VALUE: 36.0 SPLIT LEVEL: 12.5

The longest computer run (45 minutes) with INFER involved an

attempt to "force" it to infer a finite-state grammar with three

non-terminals, using an information sequence of the language (Ao Ly > 0} .
Cn the basis of the sample <A,AAAA A AAAAAAL A AAD the procedure

enumerated the desired grammar
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; 8 ::= A | AX

X 3:= AY

Y ::= AS

but found that it was still 3.7 bits more complex than the

universal grammar. About two more strings would have reversed this

evaluation, but the next string (AAAA) initiated further splitting

which consumed the last two thirds of the run without further

evaluation of the desired grammar.

There are two major flaws in the current splitting algorithm.

First, whenever a grammar is split, all of its splits are immediately |

enumerated; if only the probable ones were initially enumerated the

procedure would be much faster. Second, grammars are split "too

soon." By splitting whenever it is possible that a split could be the

best grammar, we frequently split when the sample is too small for

the DA test to be fully effective. In practice, we have observed

that it is always some time after a grammar is added to the hypothesis

space before it becomes the guess. We conjecture that a good

splitting heuristic would markedly improve performance.
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PART III

FURTHER CONSIDERATIONS ;



IX. LEARNING RATES AND OPTIMAL PRESENTATION

External and Internal Measures

There are many reasons why we might wish to measure how mich an

inference procedure has learned at a particular time: so we could

measure the effect of various modes of presentation or various hypothesis

spaces; so a procedure could evaluate its performance; or so that we

could demonstrate that one procedure was better than another. A measure

based solely on the guesses made by the procedure (its external

behavior) is of necessity gross -- it cannot reflect how close the

procedure is to guessing the right answer; nor how sure the procedure

is of its guess, once it has made the right guess. With Bayesean

procedures, at least, we can do better by basing the measure on the

a posteriori probabilities within the procedure.

Watanabe [1960] has proposed that an "entropy" measure be applied

to hypothesis spaces, and indicates that the expected decrease of this

measure results from learning by the inference procedure. We regard

the suggestion as valid, and present here a generalization which seems

to provide an adequate measure for learning. Its general utility

remains to be evaluated in terms of practical results following from

its use.
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Def. IX.1l. The ignorance of a Bayesean procedure after seeing the

sample S,_, denoted IG(S,,C) , is the amount of information
which would be required to specify the best hypothesis to the

procedure.

IG(S,,C) = -log[P(Hyls,,C)]

Def. IX.2. The effective learning of & Bayesean procedure on the

basis of the sample 5, , denoted EL(S,,C) , is the reduction
in its ignorance.

EL(S, ,C) = IG(p,C) - I1G(S, ,C)

| = log[P(Hyls,,C)/P(HylC)]

= 1og[P(s, |H,C)/P(s, [C)]

The procedure cannot, of course, evaluate its own ignorance or

effective learning without knowing the correct answer,so this measure

must be evaluated externally.

Effective learning is additive, i.e., if Sy = 5454 then

EL(S,,C) = EL(S,,C) * EL(%,8,C) ‘

However, effective learning need not have a positive value. This

corresponds to the common sense notion that a valid observation

may be wisieading.

4 Consider, for example, a "fair" coin that comes up "heads" on the
first three flips, or an information sequence for (hit [n > 0}
which begins with the string hhht .
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A procedure may introspectively estimate the values of its

ignorance and effective learning, on the basis of the a posteriori

probabilities of hypotheses. |

Def. IX.3. The uncertainty= of a Bayesean procedure after seeing |

the sample S, , denoted u(s,,C) , ic the expected value of
its ignorance.

u(s,,C) = - LPH, 15,0) + Log[P(H,Is,,C)]

Def. IX.4. The apparent learning of a Bayesean procedure on the

basis of the sample 8, , denoted AL(S,,C) , is the expected
value of effective learning.

AL(S,,C) = L PH, |5,,0) 1oglP(K, |5,,C)]

- L P(t |5,,)- 108 (2H; [C)] a

Tn contrast to effective learning, apparent learning is always

non-negative. Regardless of what its observations are, the procedure

will never estimate that those observations have been misleading.

Apparent learning is also non-additive and not even monotonic. The

L This is Watanabe's [1960] "entropy" measure.
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value of apparent learning can return to zero after having been

gesttive.

The values of ignorance anduncertainty depend on whether we

"lump" together stochastically equivalent hypotheses or treat them

as separate. Fortunately, however, the values of both effective and

apparent learning are independent of this choice. Such partitioning

affects only the origin of the ignorance and uncertainty scales, and

the learning measures are based on differences.

For anyprocedure which converges to the correct answer in the

limit, both effective and apparent learning will converge to the initial

value of ignorance (with stochastically equivalent hypotheses lumped).

Not all hypothesis spaces have finite uncertainties. We have,

of course,

Lrlc) = 1

and

lim x * log x=20
X=0

but these are not sufficient to guarantee that

2, P(H, Ic) . log[P(H, [C)]
i

VAN simple example of this occurs when testing a coin which is
known a priori to be biased 2/3 to 1/3 . The hypothesis space
consists of H ("heads" favored) and H, ("tails" favored).
A ran of n "heads" causes apparent learning. A run of n "tails"
causes apparent learning. But a run of n "heads" followed by a
run of n "tails" causes no apparent learning.
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converges Convergence will, in general, depend on the particular

probability distribution. In some important cases, e.g., a distribution

defined by an ordered (or a linear) stochastic grammar-grammar)

convergence is assured. The conditions for finite uncertainty of the

language of a stochastic grammar and finite expected length of strings

in the language are closely related [cf. Pohl 1967]. For an unambiguous

stochastic grammar, the uncertainty of the language of any non-terminal

symbol is the sum of the uncertainty of its alternatives and the

weighted sum of the uncertainties of their languages.

Consider the grammar-grammar Gy from Chapter IV:

S ::=R | RR (1/2, 1/2)

R::=N"::="P (1) |

P::=A | P"["A (1/2, 1/2)

A ::=T | TN (1/2, 1/2)

T i1:= "a" | "op" (1/2, 1/2)

N ::="s" | "aA" (1/2, 1/2)

L Consider the case where for each, n there are precisely
o(2%-n) hypotheses with probability o- (2%) . Now

3 2(27-n) 5-2") _ 3 2 21
n=1 n=1

so this is a valid distribution, but

- 3 227m) * (2) . 10g, (2"@ ))) m= y 2 i 3 1
n=1 n=1 n=1

which diverges rapidly.

: | 136



If we use X to denote U(L(X) 1Gs) , we have the system of equations

ho 3 4 bd FS F§=-L.10g[1/2] - %£- log[1/2] +E R+Z- (R+R)2 2 2 2

= 2 F
= 1 + 5 R

i" i" 1 fu

P=1+A+ 5 P .

= Cc + 2A

A = 1 + T + 1 N
2

T =1 |

N=1

In Gs the non-terminal symbols are ordered in the sense that no
non-terminal symbol produces any non-terminal symbol defined by an

earlier rule. For any such udthe matrix of coefficients is

essentially triangular and the (positive) solution of the equations

is readily obtained by back substitution, e.g.,

i We need another condition which almost always holds in practice. If
Pp, = (A,,0 ) let R(p,) be the number of times A occurs in  .T

Now we require that, for each rule, 2, Rey) <1. If thisi=

condition does not hold, each A is expected to produce at least
one more A , and there will not be non-infinite positive solutions
for A.
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N=1

T=1

A es
A ie

P=7

R = 8 :

S = 13

The initial uncertainty of the hypothesis space generated by Gs

is 13 , and the average amount of information which an inference

procedure must obtain from a sample in order to infer the correct

grammar is 15 bits. Y

Optimum Samples and Learning Rates

There are several potential applications for the measures

introducgd in the previous section, none of which have been explored

to any depth.

An optimum sample of size k for a best grammar Gy may be

defined as the S, which maximizes effective learning

EL k,C) = max EL(S, ,C

pr(0) = max [BL(5,0))
kk" k'B ra

= log [ max [p(s |G ,C)/B(S Ic) "
S, eS. (G.) EB K

k™ k' B

L This may be compared with the values for Gy, and Gy , that is, 15
and 23 bits respectively. Both these grammars are somewhal more
complex than average. Note, however, that this average is computed
on the basis of L(Gy) which contains many simple non-reduced
grammars that are not really part of the hypothesis space.
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Informally, this indicates that the optimum sample contains those

strings which the best grammar is much more likely to produce in
combination than is the average grammar in the hypothesis space.

There are actuallytwo components in this computation: deductive

learning springs from the elimination of non-DA grammars from the
hypothesis space

DL(S, ,C) = -log | Y. P(G, [C)]
G, is DA

and pure inductive learning is the balance of the effective learning,
i.e., the learning due to the use of frequency information in Bayes’
theorem to rerine a posteriori probabilities |

PIL(S,,C) = EL(S, ,C) - DL(S,,C) ‘

Initially,we would expect that most of the probable grammars will
not generate L(G) and deductive learning will be the predominant
element. later, however, when all the remaining probableDA grammars

generate L(Gy) , most of the learning will of necessity be pure
inductive wearing

Any of our learning measures can be dividedby k to obtain
learning rate per string. Perhaps of more interest would be the
rate per symbol, obtaining by dividing by the total length of the
sample. It seems likely that for the former measure, optimum samples
will contain mostly long strings, while for the latter they will
almost certainly contain mostly short strings.

1 Universal grammars, for example, are only rejected on the basis
of pure inductive learning, since they are always DA.

159



An interesting open question is whether there exists an effective

procedure for constructing an optimum sample. Another open question

is whether an optimum sample of size k+l always contains an optimum

sample of size k . If so, we are assured of the existence of | |

optimum information sequences. If not, the construction of a

sequence will be affected by the size of sample which we wish to be

opt imum.

We are also interested in the expected value of learning,

given a grammar (or class of grammars) and stochastic presentation.

These expected values are easy to define, but cannot generally be

placed in a closed form for easy evaluation.

E[EL(S,,C) Gg] = 2 JF(8y 10, ®) + EL(S,,C)
k''B .

y p(G_|s. ,C)Bk’ |

: No (FE 0,0) 10gERG0 |k' B

P(S, |G,C)k' “B’= ). P(S, |G,,C) * logk' BB’ ¥ YP(G Ic) - P(S 1G Oo)
8, (Gg) ; L k'L

= 2 JRE, 15,8) log[P(8, |Gp,C)]
k' B

- p(s. |c_,c) + loglL P(G,lc) + B(s |G,,C)]
5.76) k' B 7 1 k' 2
k*'B
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E[EL(S,,C)|C] = } P(G,Ic) « E[EL(S,C)lG,]I i

| | p(s. |G,,C)

« Try) T. 205,100) toglere EAi 5, (G,) 2 P(G, lc) P(s, G,sC)

- Lec, lc) & Bs. l6,,C) * 1oalR(s,la,,C)]i k'"1 ki

i 5, (Gy)i

- Y.p(c.|c) Yr p(s, |G ,C)-10g[ L P(G jc)-»(8, |G,,0)] .i k'i 1 k'1
i 8, (G,) 1| i

In both cases, it is the logl y ] term that is intractable.
i

It depends in a very delicate fashion on how close the languages of

the various grammars are, and not much can be said in general. The

other term may be interpreted as follows

“ 3 JF,12,,) ] 1og[P(s, |G,,C)]
ki

f£(t,S )
- ¥ »sle,c) cL 1oglp(xle,0)  F)

S, (G.) koa TeV? 3k''i t

« L p(s, |G,,C) * Y. #(1,8.) + loglP(1]G,,C)]
S, (G.) iE 1eVT k .Ad | t

= ¥ 10glp(cle,0)] +L £(r,8.) * Bs, l6,,C)
TeV 3 S, (G.) u kL

i k'i

11



= L 10gle(<le,,0)] + P(rle,,C) «x
AM

t

=k * U(L(G,),C) |

where

u(1(G,),C) = y p(z|G,,C) . log[P(7|G,,C)]
TeV

t

which we recognize as the uncertainty of G's language. This

term in the expected value of learning is therefore a constant

per string.
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X. NOISE

Simple Stochastic Noise

To this point, we have assumed (in commonwith previous studies of

grammatical inference) that the information sequence is completely

reliable. This is a highly suspect assumption for real applications,

where noise of some sort is almost always present: keypunchers make

errors, microphones pick upbackground, stray tracks show up in

bubble chambers. Humans can perform at least some inference in the

presence of such noise, rejecting some strings as special cases and |

inferring a hypothesis which covers the others. This —— is
devoted to conditions under which our procedures can function correctly,

even with an information sequence containing errors.

Probably the simplest assumption about noise which models a

realistic situation is that each string in the information sequence

has a known fixed probability of being incorrect, and that the |

distribution of noise strings is known a priori (perhaps itself

specified by a stochastic grammar). If Py denotes the probability

of noise and P(0, | Gy» C) is the probability of 0, asa noise string,
then |

P(0, |G, PysC) - (1-Py) ‘ P(o, |G;,C) # Py P(o, |Gy,C) .
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When P(o, |G, ,Py,C) is substituted for P(o, |G,,C) » stochastically
inequivalent grammars remain stochastically inequivalent if Py <1.

All of our previous results about the procedure EB (Chapters V and

VII) still hold (e.g., the procedure is still effective, still

converges to the best grammar, etc.). As Py, increases, the

conditional probabilities of strings for the various grammars become

progressivelymore similar (identical when Pp =1 ) and the learning

rate will be correspondingly reduced.

If all strings can occur as errors -- and this is generally a

realistic assumption -- the noise grammar will be universal. Furthermore,

we might expect that the probability of noise strings would decrease with

length at least as rapidly as for grammatical strings (eg)

geometrically). The simple one non-terminal finite-state universal

grammar may provide an adequate model for many situations.

If Py is sufficiently small, there will be very little error
introduced by the approximation

. P(o, |G,,C) if P(o, |G, ,C) > 0
P(o, |G, PC) =~ .

EE" P(o, |Gy,C) if P(o, |G;,C) =0 .

This corresponds to encoding a string by means of the grammar being

considered if that is possible, and aig ts universal grammar only
for the exceptional strings.

Allowance for noise strings almost completely defeats the

deductive preprocessing of Chapter VI, since we can no longer require

that a grammar be DA with respect to the sample. In general, different

14k



grammars will identify different subsets of the sample as the error

strings; without knowing the correct grammar the deductive preprocessor

cannot determine which subset to use in testing deductive adequacy.

It might perhaps reject grammars which failed to generate Some fraction
of the sample, but this is no longer a sharp criterion: it will not
reject grammars as quickly (and not nearly as safely) as the DA

requirement.

The efficiency lost by failure of the DA criterion arises as

soon as we admit the possibility of noise, independent of the magnitude

of Py . In other respects, however, our procedure will functicn

nearlyas well as before, if Py <1 . It will learn at nearly the same

rate, converge to the best grammar almost as quickly, etc. This is

probably typical of the noisy situations we envision 2% applications.
Bit what of the extreme situations with low signal-to-noise ratios

(i.e., Py —= 1 )? In the limit (provided the noise distribution is
known precisely) the relatively small deviations from the noise

distribution due to the valid strings will become significant; by the

results of Chapter V, the correct grammar will ultimately be chosen. |

However, it would be futile to place confidence in guesses based on a

small sample. It may be more efficient to first collect a statistically

significant sample, and then merely infer a grammar for those strings

which occur significantly more often than explained by the noise

distribution.
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Estimating the Error Rate

In the previous sectionwe required both the frequency and

distribution of incorrect strings. This is a strong requirement,

which may be difficult to meet in practice. For small samples and low

error rates, of course, the precise value used for Py Will have

1ittle effect on our computation; we may choose to replace it with

a bound (e.g., "less than one percent error strings").

As the sample size grows large, an incorrect value for Py

will introduce a systematic stochastic inequivalence between our

estimated distribution for the best grammar and the sample, ultimately

significant enough to cause the selection ofanother grammar. Bul

the large samples also provide us with the means to refine our

estimate for Py , much as we estimated parameters in Chapter VII.
An exact method can be constructed. However, here we merely sketch

an approximation.

Assume that the noise grammar Cy is known and universal, and

that it is known that the best grammar is not universal. Then for

any allowable candidate grammar there will be some strings generated

by the noise grammar and not by the candidate. If Fy is non-zero,

these will occur in sufficiently large samples. If m of these have

occurred by time k , denote them by I ee dOp their joint frequency
m 1 m

vy Fylk) = x £(ay ,8,) and their joint probability by
J=1 J

m

P(N,k) = 3 Poy Gy» C) _ Now the expected value of Fp (k) is
J=1 J

Pk P(N, k) , and we could use Fp (k)/ (k-P(N,k)) as a maximum
likelihood estimator for Py . However, we do wae some a priori
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knowledge about Py == we know it shouldbe small and wish to reject
grammars which require it to be large (e.g., .99 ) -- so we instead

use Fp (k)/ P(N, k) as an estimator for the total number of error
strings in the current sample, and use this value in the generalized |

Iaplace rule developed in Chapter VII

B. + 1 + F_(x)/P(N,k)

Blo) =grrrEe
1 2

By and Bs will generally be chosen on tne basis of prior experience
in a particular application: By = 0, Bs = 100 is a somewhat more

precise formulation of "less than one percent error strings." As

k —-o this estimate will (for the best grammar) converge to Py

by the assumption that no candidate grammar is universal, all

stochastically inequivalent grammars remain inequivalent, independent

of their particular estimates of Py ; therefore the results of

Chapters V and VII still hold and the inference procedure will converge

to the best grammar.

In any given application, statistics can be kept on the final

value of E[Py|C] for the selected grammar in each run and used to
refine the values of By and Bs . Finally, the strings identified
as error strings over a large number of runs, together with their

frequencies, can be themselves the subject of grammatical inference,

+o determine if there is a better noise grammar than the one previously

assumed.
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Implications of Noise

We have seen that noise of known distribution presents no formal

difficulty to the enumerative Bayesean procedure. On the other hand,

by eliminating the DA criterion, it represents a substantial practical

obstacle. We believe that this is a reflection of the difficulty of

the problem, rather than of any particular inadequacy of the procedure.

In fact, we would argue that the ease with which this procedure may

be extended to handle noise is evidence for its general validity.

Neither the constructive methods of Solomonoff [1959] and Feldman [1967]

nor the enumerative method of Gold [1967] will work in the presence

of noise. Furthermore, since they do not incorporate frequency

information or probabilistic estimates, it is doubtful that they

could be generalized to handle noise realistically. Noise .inescapably

complicates inference, but it seems to complicate our procedure less

| than most.
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XI. CONCIUSIONSAND DIRECTIONS

FOR FURTHER RESEARCH |

It is probably no accident that a theory of
grammatical structure can.be so readily and
naturally generalized as a schema for theories
of other kinds of complicated human behavior.
An organism that is intricate and highly
structured enough to perform the operations
that we have seen to be involved in linguistic

communication does not suddenly lose its

intricacy and structure when it turns to
nonlinguistic activities.

[Miller and Chomsky, 1963]

Summary

The burden of proof falls squarely on those
who champion a quantitative application of
the calculus of probability to plausible
reasoning. All that they have to do is to
produce a class of non-trivial conjectures
A for which the credibility Pr{A} can be
computed by a clear method that leads to
acceptable results in at least some cases.

[Polya 1954]

There are few areas of science in which one

would seriously consider the possibility of
developing a general, practical, mechanical

method for choosing among several theories,
each compatible with the available data.

[Chomsky 1957]

We have stated the grammatical inference problem in a very general

form (Chapter I). By specializing to stochastic grammars and
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presentationswe have established a number of new effectiveness and

decidability results (Part II). The procedure EB provides & complete

formal solution to that grammatical inference problem: it is effective,

it makes the optimal choice at each step, converges to the best

grammar, and tolerates noise of known distribution. The procedure
has been implemented and operates as predicted, although it 1s

computationally expensive, even with the improvementswe have

developed.

The principal obstacle to practical utilization of our results

is the amount of computation involved in enumerating and rejecting

the vast number ofgrammars which are not deductively acceptable. IT

an efficient deductive preprocessor can be devised, evaluation of the

DA grammars by the procedure EB should not prove unduly expensive.

Additionally, the enumerative Bayesean procedure serves - a yardstick
against which heuristic procedures should be judged =-- such a measure

being notably absent from previous proposals for heuristic inference

procedures.

The procedure in its present form (as a LISP program) is too slow

for all but very small grammars; without further search limiting

techniques and recoding into a more efficient language it is probably
not economic for any of the envisioned applications. Yet some

(e.g., grammars for spoken words, Or for bubble chamber pictures)
are not completely beyond its reach. Inference of grammars on the

order of ALGOL 60 will require substantially different techniques,

probably involving the learning of subgrammars for sublanguages.
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Our results not only provide a sound basis for the solution of

an interesting class of grammatical inference problems, but are more

generally applicable. Our general procedure does not rely on unique

properties of grammars. Rather, it is based on the probability
structure which they impose on the observations. Its requirements

are merely an enumeration of the nypothesis space which 1s |
effectively approximately orderedby a priori probability, conditional

probabilities of observations with respect to hypotheses, and

convergence of the samples with probability one. Any inference

problem which meets these conditions can be solved by such a

procedure,and our proof that optimal choices from infinite,

non-parameterized hypothesis spaces can be made effectively should

make our procedure attractive in a wide varietyof applications. :

This study has treated only a few of the many valid formulations

of the grammatical inference problem, and has not exhausted the

interesting questions there. In the balance of this chapter we

discuss a variety of extensions, conjectures, and open questions 3
which we believe deserve further attention.

Strategy and Efficiency Considerations LY
We cannot seriously propose that a child learns

the values of 10” parameters in a childhood
lasting only 10° seconds.

[Miller and Chomsky, 1963]

Although the enumerative Bayesean procedure presented in Chapter V

and refined in later chapters is formally optimal, its Achilles' heel
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is efficiency. As we indicate in Chapter VI, the enumerative problem

is immense; our implementation in Chapter VIII can infer only

grammars of extremely modest proportions within reasonable bounds

on computation. A more realistic theory of inference should include

computational cost in its definition of optimality, reflecting the

fact that in most applications there are trade-offs among the cost of

computation, the cost of further sampling, and the cost of guessing

incorrectly.

Short of developing a general theory of the cost of inference,

one might test various heuristics which lead to nearly optimal solutions

at substantially lower cost. The constructive methods of Chapter II,

for example, may provide a starting point. The residue analysis

method could certainly be refined to base its merging decisions on a

goodness measure, and -- where two choices have similar measures --

to be non-deterministic and produce a small set of grammars for

evaluation. The question of how often these heuristic methods yield

optimal grammars, and how close they average, shouldbe carefully

studied.

1 Heuristic methods may be supplemented by enumerative methods if

d they work well often enough to be attractive, but fail too often to

be completely acceptable. This could be achieved either by enumerating

and testing a few grammars at each step, or by using some criterion to

determine when the heuristic method is not working well enough. We

conjecture that the XZ test provides an adequate criterion: if the

presentation is stochastically equivalent to the candidate grammar, the

expected value of X= is the number of distinct strings in the sample,
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minus one; however, if it is inequivalent, the expected value of X°
" is proportional to the total number of strings in the sample (k) ,

so, for any confidence level, an incorrect grammar would finallybe |
rejected by this test. |

More work is needed on efficient enumeration techniques, particularly

on techniques for enumerating only DA grammars. Additionally,

restrictionsof the classes of grammars appropriate to particular

applications should be determined, so that grammars of practical

importance may be inferred.

Hypotheses can be arranged in hierarchies. Rather than constructing

an inference procedure strictly for finite-state grammars, or for linear

grammars, etc. (or for normal grammars, 1-standard grammars, |
o_standard grammars, etc.),it is reasonable to think of constructing

an inference procedure for context-free grammars, whose meta-hypotheses

are finite-state, linear, etc. (or normal, l-standard, 2-standard), or

even a general inference procedure whose meta-meta-hypotheses are

context-free grammar, Turing machine, etc. This generalization can

be easily incorporated into our formal structure if we are given

a priori probabilities for each of the meta-hypotheses (and if their

dependent hypotheses all meet our general conditions). But this involves

searching all the hypothesis spaces in parallel to find the best

hypothesis in any of them. It would be of interest to develop a

procedure which searched only the most probable space (e.g., finite-state)
until it concluded that it wasn't doing very well (e.g., if the sample

contained only balanced parentheses) and then switched to another space.
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Again, such a procedure would not generally locate the optimum answer

at a given time, but might well be preferable on a total cost Padlis.

Variations of Presentation

From Chapter V onward,we have considered only stochastic text

presentation. Most of the other forms of presentation discussed in

Chapter III can be justified for some applications, and results

analogous to those for stochastic text would be interesting. Both

Gold [1967] and Feldman, et al, [1969] discuss presentations without

an underlying probability structure. Although our results are not

precisely comparable, the situation is roughly that complete text

is much weaker than stochastic text, which is about as powerful as

complete informant presentation. :

A stochastic informant presentation could be incorporated

directly into our enumerative Bayesean scheme. Negative instances

reduce the class of DA grammars, positive instances are treated as

before. There does not seem to be any reasonable way 10 utilize the

frequencies of negative instances, except in the case of noise

(Chapter X), where frequencies play an important role.

Gold [1967] discusses a reactive informant, which classifies

strings proposed by the inference procedure as either sentences or

~ non-sentences. Such an informant does not impose a frequency

distribution on strings, and it seems hard to improve much on Gold's

results for guessing by enumeration; ordering the enumeration of

grammars by a priori probability (Feldman [1969] terms this occam's

enumeration) should improve average behavior, however. Anunreliable

15k



(noisy) informant would seem to indicate a Bayesean analysis. Either

form of reactive informant raises the question of an optimum inquiry

strategy. Probably the best strategy is to maximize at each step

the expected value of apparent learning (Chapter IX) but we have

not found an effective method for this maximization; simplifications

or approximations are called for.

The discovery procedure of Solomonoff [1959] involves both text

and reactive informant presentation. Many different combinations might

be studied. One whichwe conjecture would be of practical interest

allows the alternation of text-like and reactive informant presentations,

i.e., the informant gives a string and its category, then the procedure

proposes a string which the informant categorizes, etc.

The heuristic constructive inference techniques which have been

proposed all assume -- explicitly or implicitly -- that their samples

are in some sense representative, e.g., that they contain all (or most)

of the shortest strings in the language. This intuitively reasonable

assumption can be made precise in terms of an underlying probability

distribution (i.e., a stochastic grammar). However, in cases where

the sample is deliberately constructed, rather than resulting from a

random process, a human is more likely to create a (nearly) irredundant

text, probable strings first, than to repeat strings with frequency

proportional to their probability. This is somewhat analogous to an

urn problem without replacement -- though of a funny sort, since when

a string is drawn, all copies of that string are removed. The statistics

for irredundant samples are formally identical to the Fermi-Dirac
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statistics of statistical mechanics which apply to particles obeying

the Pauli exclusion prineipie. Thus, although the formulae are

more complex, they do relate to an intensively studied class, and it

may be that the relevant transformations or approximations have

already been developed. We present the following conjectures:

(1) a modified enumerative Bayesean procedure will converge to the

best grammar for irredundant (Fermi-Dirac) text, (2) the expected

learning rate per string will be higher for irredundant text than for

stochastic text, (3) an approximate solution, which will converge

to the best grammar, can be obtained by estimating the frequencies

for strings on the basis of their position in the information sequence

and/or their length, and then applying the method of Chapter VII

(grammars with free parameters).

Learning Partial Grammars

Students ofinfants and of language have long
wondered over the fact that a structure of such
enormous formal complexity as language 1s sO
readily learned by organisms whose available
intellectual resources appear in other respects
quite limited.

[Braine 1963]

Vr is tempting, but probably fruitless, to pursue such analogies:
stochastic presentation obeys Maxwell-Boltzmann statistics (can
we find Bose-Einstein presentations?), complexity is analogous to
E/kT (how do we interpret the "temperature" of a presentation?),
we have already discussed the entropy of hypothesis spaces and
presentations (shouldwe, with Watanabe [1960], regard the decrease
in entropy of the hypothesis space during inference as a profound
violation of the Second Iaw of Thermodynamics, Or shouldwe relate
i+ to the increased entropy of the sample?), etc.
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We noted in Chapter VI that the number of N non-terminal

grammars grows roughly as ng . We have hopes that plausible improvements
in deductive methods, restrictions on the form of grammars considered,

etc., will make grammars with several non-terminals (and several

terminal symbols, for that matter) inferrable with reasonable effort.

It is clear, however, that grammars as large as the ALGOL 60 grammar

(i.e., grammars involving scores of non-terminals and scores of terminal

symbols) will not be made attainable simply by improving the deductive

processing. There are too many plausible (and deductively acceptable)

grammars which are simpler, to expect that the ALGOL 60 grammar would

ever be reached in the enumeration; the sample size required to make

that particular grammar preferable is staggering.

On the other side of the coin, there is no reason to believe that

any human ever has (or ever will) successfully inferred a complete

correct grammar for ALGOL 60 solely on the basis of a set of ALGOL 60

programs. Unless we wish to join the White Queen in "believing

impossible things before breakfast,” we need not set such difficult

goals for our inference procedures. Miller [1963, 1966] has given

some evidence that people do rather poorly at inferring even rather

simple grammars. The reader may wish to verify this by seeing how

long it takes him to infer a context-free grammar for the following

sample (numbers in parentheses indicate frequency of occurrence of

the corresponding strings):

"
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ab (256)

babaa (64)

ababbb (16)

bbabaaaa (16)

abababba (8)

bababbbasa (4)
abbabaabb (4)

babaaabbb (4)

abababbbbb (1)

ababbbabbb (1)
babaaababba (2)

abbabaaabba (2)

ababbabaaba (2)

bbbabaaasaa (4)

babababbaasa (2)

For definiteness we provide the following hint, which would not |

normally be given to an inference procedure: There is an unambiguous

one non-terminal stochastic grammar whose language up to strings of

length 11 is precisely this sample, with probabilities proportional

to the given frequencies. Tt is instructive to consider how much the

hint simplifies the problem (in particular, it provides a large number

of negative strings), how one would procede in the absence of the

information in the hint, and how large a sample is needed to justify

selection of this grammar.

Nevertheless, children do acquire natural languages, and it is

widely assumed that they do so by inferring a grammar [Chomsky 1957]

[Gold 1967]. But adequate grammars (be they context-free or

transformational) for natural languages are certainly more complex than
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the AIGOL 60 grammar, and the range of observed natural languages is

sufficiently large to require a rather rich hypothesis space --

probably much richer than anythingwe have considered in this study.
How are we to account for language acquisitionby children?

Or, more to the point, does language acquisition by children suggest
means for improving our grammatical inference procedures? We believe

that it does, and we conjecture that an important distinction between
the child's experience and that we have assumed for our procedures is

this: The child is not initially presented the full adult language he

is ultimately expected to learn. Rather, he is confronted with &a very

limited subset, both in syntax and vocabulary, which is gradually

(albeit haphazardly) expanded as his competence grows. There is

evidence that children's early utterances are representable by very

simple context-free grammars with few non-terminal symbols (Brains
1963] and a small terminal vocabulary.

Foreign languages are not normally taught by confronting the

beginning student with the work of a great prose stylist. Nor is the

student introduced to a programming language by presenting him with

a representative sample of the programs for which that language is

used. On the contrary, particularly simple constructs are introduced

first. Aportion of the vocabulary is established and then used in

simple sentences (or program fragments). After these are firmly

acquired, both vocabulary and syntax are enlarged, hopefully until the

student is fluent in the entire language.

The point of this discourse 1s that we should not expect our

inference procedures to perform well when confronted directly with complex
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languages. We do not know how humans acquire languages, but human

performance suggests the desirebility of progressing from simple

subsets to more complete presentations of a language. There are at

least three ways in which we might simplify the task of the inference

procedure: we could give it some rules which must be incorporated

in its grammar (e.g. subgrammars for <identifier> and <arithmetic

expression> which are common to many programming languages, Or for

<electron track> and <proton track> which are common to many bubble

chamber events); we could expose it to sublanguages (e.g., spoken

repetitions of a particular word), let it build grammars for them

separately and then incorporate them into a larger grammar for the

whole language; or we could incorporate non-terminals into sample

strings (e.g., "He hit <direct object>"). Similarly, a responsive |

informant could answer questions involving non-terminals, or instead

of responding "no" could give the closest valid string.
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