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( 1. INTRODUCTION TO CIL 1 |
8 |

| le INTRCDUCTICN TO CIL

This report is a manual for the proposed Compiler Implementation
- Language, CIL. It is not an expository paper on the subject of |
L compiler writing or compiler-compilers. The language definition may

changye as work progresses on the project.

1.1. Basic_featuresof CIL
— |

The Compiler Implementation Language is designed for writing

i compilers tor the IBM 360 computers. The heart of the system is a
i procedure oriented ALGOL-like lanyuaye with expressions, assignment

Statements, iterative statements, etc. However the basic data types
of the languaje are those of the IBM 360 - byte, halfword integer,

L ‘sequence of 1 to 256 bytes, etc - while the basic operations on
these types of data are also those of the 360. This should allow the

compller writer to have more feeliny for the code generated by the
metaconpiler and thus make it possiple to write more efficient |

— compllers. N

( In addition, the following teatures are provided to facilitate

L compiler writing: Co

r 1. Scanner _definitions. A compiler writer declares the source
language symbols (reserved words, operators, format of |

-- identifiers, etc.) in a scanner definition. From this the
| metacompiler builds an efticient scanner which, at compile-

time, will read a source program, break it up into these
I. symbcls and pass them one at a time to the compiler itself.

: The scanner definition has been designed to handle most of the |
L existing languages. It has however been restricted so that |

efficient scanners can be built. Should it be necessary, the |
ccmpiler writer can inspect the string of characters making up |

- any symbcl and/or switch to a character-by-character scan, in
- which case he may form his own symbols. | |

{ Ze Atoms. A hash-coded internal dictionary of all source language
L symbols is kept current as a source prograk is read by the )

: scanner. This dictionary is used to replace each symbol by a 16
Lit representation called an atom. It is this atom that is

j passed to the compiler by the scanner. The compiler
~~ automatically uses these fixed length atoms instead of the |

| variable-length source language symbols. In this report,
"source language symbol" and "atom" are used synonymously. |

.

3. Production language (PLj. This is a sublanguage for performing |
i the syntax analysis of source programs. It consists of "Floyd

productions", each of which attempts to match certain symbols |
> with the top symbols of a last-in-first-out (LIFO) stack. When
| a match occurs, "actions" in the production change the stack

and cause "semantic routines" to be called in order to process
— the symbols matched.

: 4. Structured types. A programmer can define his own structured
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types; these are sejuences of components, analogous to the
WIRTH and HOARE records. In order to save space, several
alternates can be declared for each component. Once defined,
variables of a structured type can be declared in the same way
as usual variables are declared.-

5. Tables, dicts_and stacks. These are all sequences of records; the
difference is in the way the records are accessed. No upper
bound on the number of records need be given. The records
themselves may have a structured type (see (4) above).

Records of a dict are chained to records of the internal

dictionary (see (2) above) to provide fast searches of records
"based on source language identitiers.

6. Multiple coreloads. A compiler can consist of any aumber of
coreloads, which are executed 1n a fixed order. Thus, both
single-pass compilers and compilers which perform sophisticated
transformations and code optimization can be written.

7. Code__generation. This 1s the most important addition to the
language. Our code gJeneration system (CGS) 1s based on oo
Feldman's “code bracket" scheme {Comm. Of the ACM, Vol. 9, Jan. |

+ 1966] « The purpose is to give the compiler writer a high-level
language for generating IBM 360 machine language. The compiler
writer should be familiar with the IBM 360 data types and the
instruction set. However he can leave register allocation,
storage allocation, generation ot instructions, conversion of
runtime operands, etc. To the systen.

The basic features of this system are:

A. CODEAREAS and DATAAREAS. A compiler writer may generate |
code into any number of CODEAREAS (read-only storage at

- runtime) and may use any number of DATAAREAS (read-vrite
storage). This ability to use different CODEAREAS (one for
each subroutine, say) and DATAAREAS (one for the variables

| associated with each subroutine,say) simplifies the
: compiler writer's task. Most problems connected with
: addressing code or data in these AREAs are handled by CGS.

B. Register descriptions. CGS maintains register
descriptions describing the runtime state of the IBM 360 |
registers after tne last-generated instruction has been
executed. CGS pertorms some local code optimization with
the help of the register descriptions. The descriptions
may also be tested and changed by compiler writer.

C. DESCRIPTORS. DESCRIPTORS are used to describe runtime

variables in terms of the basic data types of the IBM 360,
such as byte, haltword integer and fullword integer. The

| runtime address otf a variable is described by a CODE or
DATAAREA number and an offset into the AREA. The

DESCRIPTOR can also indicate up to two levels of indirect
addressing and/or subscripting. The DESCRIPTOR also
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L

| contains information such as whether the value is in a |register, whetherit is a constant, etc.

y D. Storage allocation and initialization. Primitives exist
L for allocating storage in CODE or DATAAREAS for runtime

variables. Problems or correct alignment and the like are
handled by CGS. In certain cases the allocated storage can
be initialized.

- |

E. Code brackets. In general, any statement or expression

| may appear between tne code brackets “CODE ("® and ")r,This indicates that the statement or expression is to be
executed at runtime. The operands of the statement or

| expression must be DESCRIPTORS (of runtime variables), |

| - constants, or variables declared to be valid at runtime.
For example, suppose D1 and D2 are DESCRIPTORS of an
integer variable and an array element, respectively. Then

\ execution of
© CODE( FOR D1 = 1 UNTIL 10 DO D2(D1) = 5)

| would generate code to set the first 10 elements of the oo
array to 5. |

| When a code-bracket statement is executed, code is |
= generated into the current CODEAREA as specified in the

statements or expressions within the code brackets, and

| the register descriptions for that CODEAREA are changed todescribe the new runtime state of the registers. CGS also
automatically generates code for any necessary conversions

| between data types.
All the additional features or Cil need not be used. For example,

- le An interpreter could pe written without the use of the code
generation system; a first pass could put the program in an
intermediate form and a second pass could then interpret it.

\
: 2. Production language need not be used; any type of syntax

analyzer can be programmed using the normal ALGOL-like

L ccnstructs of the language.

3. The language can be used for writing "aormal" programs.

L Throw out the scanner detinition, PL, and CGS and an ALGOL-like language remains. The basic data types of the language
and the operations on them are those of the IBM 360 computer;

| this high-level language just provides a convenient tool for
{ using then. |

|

. 1.2. How to read thisreport

: The best way to get acjyuainted with the language is to read the |
L
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program examples in Appendix C. You will find that CIL is basically
an ALGCL - like procedural language. Then read Sections 2 through 10
which describe this procedural language and its normal use. Skip
over references to the scanner detinitiocn, PL or CGS. Finally, read
the three additional sections 12 (on the scanner definition), 13 (on
PL) and 14 (on CGS). oT

1.3. Acknowledgements |

Sheldcn Becker, Lee Erman, Gary Goodman, Lockwood Morris, Jim Cook
F and Christiana Riedl have all programmed or are programming parts of

| the system. All of them have contributed to the language and this |
zanual. Thanks also go to Jerry Feldman for his useful thoughts on
the subject.
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- |

L 2. TERMINOLOGY AND NOTATION |
2.1. Derinitions

L Metacompile time 1s the time quping which a compiler =- or any
program written in CIL - 1s peing compiled.

L Compile _time is when a source program is being compiled by acompiler written in CIL.

L huntime is when a compiled source projram is being executed.
| A source_program is a program written in a source language.

\ Source language rerers to the language for which a compiler has been
written in CIL.

L <.Z. Syntax notation
Backus Normal Form (BNF) witn some modifications will be used to

. descrike the syntax of this programming language. Syntactic class |
names (nonterminal symbols) are enclosed in angular brackets "<" and |

~ ">", while the symbols of the 1languaye (terminal symbols) are
represented by themselves. A production consists of a left part,

~ which 1s always a syntactic class name, followed by the metasymbol
| "::=", fcllowed by a right part - one or more syntactic class names

or terminal symbols. It indicates that the syntactic class given by
fe the left part consists of taunose strings of symbols described by the

right part. Thus the groductions

Lo <identifier> ::= <Kletter>
<identiftier> ::= <identitier> <Kletter>

<identifier> ::= <identifier> <digit>

- indicate that an identifier consists of a letter or another
identifier followed by a letter or digit. In other words, an

| identifier is a letter followed by zero or more letters or digits.
L As an abtreviation, the metasymbol "|" is used to write the above

three productions as

L <identifier> ::= <letter> | <identifier> <letter>
|] <identifier> <digit>

Thus "|" is used to separate right parts of productions whose left
- parts are the same. |

L The following modifications to BNF have been introduced to
rrovide a clearer syntactic description. |

1. The right part of a production may be partly described by a |
— comment enclosed in guotes. Thus we write

<string> ::= !' "seguence Of 1 to 256 EBCDIC characters" ?!
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2. In order to prevent misinterpretation, the source symbols "<" and
">" will always be enclosed in yuotes. Thus we write “lL

<relation> ::= <expression> "<<" <Kexpression> |

3. Square brackets are used to enclose optional entities. For
example,

<factor> ::= { <unary op» j <primary>

3 is eguivalent to

<factor> := <primary> } <unary op> <primary>

4. The nonterminal symbol <empty> represents the empty string. |

5. A sequence of one Or more symbols, all belonging to the syntactic
class <x>, can be written as <<x> list>. If they are to be separated
Ly a terminal symbol, then this terminal symbol directly precedes
the word "list". Thus |

<kasic decl> ::= <basic typed <<Kidenptifier> ,list>

1s exactly equivalent to

<tasic decl> ::= <basic type> <id list>
<id 1l1list> ::= <identifier> | <id list> , identifier)

and

<integer> ::= <<digit> list>

is.eguivalent to

<integer> ::3= <digit> | <integer> <digit>

be If .a nonterminal appears more than once in a production, the oo
occurrences may be numbered so that they can be identified in the
semantic discussion. Thus we write

<for 1list> ::= <expressioni> UNTIL <expression2)>

7. The syntactic classes <specfunc> and <specproc> denote special |
function designators and special procedure calls respectively. The
syntax of these <specfunc>s and <specproc>s is always given in
boxes. For example,

fe eee
| PUSH ( <stack identifier { ,<exp>]) |
Lr cr mm mr mm tn nn te tt on in tl 2 tte sn i. iin een an 0 Sa stn a se vo wm we J
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2.3. Syntactic entities <EBCDIC or hex> 12.2
L (with corresponding Section <empty> 2.2

numbers) <end quote> 12.5
<action> 13.9 | <exp> 8.

lL <actual parameter) 9.7 Co. <expr> 8.
<add op> 8e2 expression 8.2
altered valued 8.3 Kfactor> 8.2

alternate selector> 8e3 <tormal parameter seg> 6.3
— <arith type> 5.1 <function designator> 8.1

<assignment runstated> 14.0.2 <global declaration> 4.2
I <assignment statement> 9.2 <go to op> 9.6
| <tasic symbol> 3.1 <hex char> 12.2

| <kasic typed Se 1 <hex integer> Se3
| <tasic type dec> 6.1 <hexit> 3.1

| | <begin quoted 12.5 <identifier> 3.2 |
<bit> 3.1 <indirect reference> 7.1
<bit integer> 5a 3 <int dec> | 13.7

| <bit op> 8a2 <int declaration> 6. U4<btits typed _ 5.1 <int identifier> 3.2
{case statement) 9.5 <integer> 3.2

| {char segquence> 12.2 <label> 3.2

| {char set> 12.3 <label definition> 9. |
<character> 12.3 left part> 13.8 |

~~ <class dec> 13.7 <letter> J.1

\ <class name> 13.5 <long real 5.3
- <classlakt dec> 13.7 <keyword component) 8.3

<closed cond runstate> 14.6.3 <main stack dec> 6.2

{closed cond state> 9.3 <metasymbol)> 13.4
I. <closed iter stated 9.4 <mult op> 8.2

<closed runstate> 14.06 <new valued 8.3
<closed statement 9. {number selector> Te1

<code statement> 14.06 <old value> 8.3
— {component> 5.2 open cond runstate> 14.6.3

component id> 3.2 open cond stated 9.3
. <component selector> 7.1 <open iter state> 9.4

- {component specifier> 8.3 open runstated 14.6
{comgpcanent variable) 7.1 open statement) 9.
<compound runstate> 14.0.1 <pass> 4.3

L <compound statement> 9.1 <pass number> 3.2
<ccnstant> 5.3 <PL declaration> 13.7

<constituent> 52 ~~ <PL identifier> 13.5
<ccntrol runstate> 14.6.5 <PL int> 13.5 |

h <control statement> 9.6 <PL label> 13.5

<corelocad> 4.1 <PL subprogranm> 13.
<coreload description> 4.1 pointer cons> 5.3
<dec integer> 5.3 pointer type> 5.1
<declaration> be <pointo type> 5.1 |
Kdelimiter> 3.1 {positional component> 8.3

: <DESCER destination> 7 {preprocessor> 12.6
~ <destination> 7. <primary> 8.2 |

<dict declaration> 6e2 {procedure body> 6.3
<dict designator> Ta <procedure call> 9.7

- <dict identifier> 3.2 procedure controld> 14.6.8
<digit> 3.1 procedure declaration> 6.3

| <EBCLDIC char> 3.1 {procedure heading> 6.3
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<procedure runcall> 14.647 |
<production> 13.8
<program> 4.
<guote def 12.5
<guote pair> 12.5 -
<real> 5.3 |

{register name> 14.4.1
{register no> 18.4.1
<relational op> 8.2
<reserved def 12.4

3 <reserved word> 12.4
: <right part> 13.8 | |

| <runlabel definition> T4.0.4

<runexg> 14.5.1
{runtactor> 14.5.1

{rungrimary»> 14.5.1 |
<runstate> 14.6 |

{scale factor> 53

{scanner def> - 12. .

<scanner 1id> 3.2

<set definition> 12.3 oe

<s1ign> 5.3
<simple variable) 7.1 oC
{source 1id> 12.4

{source language symbol>3.4
<socurce symbol) 13.3
<stack identifier> 3.2

{stack declaration 6e2

<stack designator> 7.1
<statement> 9. |

{storage alloc> 6.2
<string cons> 5.3
string type> Se ’
<struct exgp> | 8«3
<structure definition> 5.2

{structured type> 3.2 x
<structured type dec> 6.1
<sukbyte designator> 7.1
<substriny designator> 7.1 BN
<symb> 13.8
<symbol> 13.7
<symkol-label> 13.7
<{synonym> 3.2
<synonym def> 12.2
{synonym pair> 12.2
<type dec> 6.1 oo
<table declaration> 62
<table designator> 7<1 |
<table identifier> 3.2

<termind> 12.4
<type> 5.
<type specifier> 6e3
unary og> 8.2 |
<unscaled real> 5.3

<variatle> 7.1
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3. THE BASIC ELEMENTS OF THE LANGUAGE

B 3.1. Basic symbols, comments_and_spaces
Syntax | |
<kasic symbol) ::= Lletter> | <digit> | <delimiter>

<letter> 23=A | BJ C|DJ]E}JFIG|HI]TI| JI] K
A l}' LI A) NJ} O)JPJIQIRYISYT

| FU 1 VI Ww XY 12) 8

| <tit> := 0 1 1 | |
<digit> = 01 V1 2) 3141516171819

| } <hexit> i= <diyit> J A | BJ CJ} D} E| F
 <delimiter> = 4 | ~*~} =] @

| b« 1 1 5 YY (1) 1:
] ng } n> " i 1” <= " i 1" >= n |

| - | M(H } Hoa) n | == |
| LF 1 3 4 /*% | */ | y/7 | *% |
X

|

tL <EBCLIC char> ::= "any EBCDIC character except space"

- Semantics: Letters are use for torming identifiers and reserved
L words. Digits are used in forming numbers and identifiers. Bits and
. hexits are used in forming constants. The meaning of delimiters will

be given at the appropriate place in the sequel.
!

Except in a PL subproyram and a scanner definition, a comment
cof the form

/* "any sequence of characters not including "x/n n x,

may appear anywhere. It is the ejuivalent of a single space,

Changing to a new card or line has no significance. Outside of
strings, spaces have no meaning except for the following rules:

1. At least one Space must separate two adjacent identifiers,
{source language symbold>s (cf Section 3.4), integers or reserved
words. |

Ze A space may not separate two characters of a delimiter,
identifier, integer, reserved word or source language symbol.

This section has defined the characters used in writing a |
compiler in CIL. This does not preclude the use of other characters
or the use of these characters in a different way in a source
language for which a compiler is being written. |

3.2. Identifiers andintegers

Syntax
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<identifier> t:= Lletter> | <identifier> <letter>
| <identifier> <digit>

<integer> 2:7 <<Kdiyit> 1list>

<component id> s:=<identirier>
<dict identifier> ::=<identifier>

<int identifier> ::=<identitier>

<label)> s:=<identifier>
<scanner id> ::=<identitier> |

{stack i1dentiiier>::=<identifier>

{structured type> ::=<identifier>
3 <{synonym> ::=<identifier> |

<takle identirfier>::=<identifier> |

{pass number> ::= <integer> "between 1 and 25"

Semantics: Integers have their conventional meaning as decimal
numbers. Identifiers have no inherent meaning but serve to identify
variables, labels, procedures, structure types, and scanner
detinitions. They may be chosen freely except that they may not also
be reserved words of the lanjuagye (cf Section 3.3). In addition, |
several identifiers are already implicitly declared by the systen. h
They may be declared in a program, but this precludes their use as
system identifiers (cf Appendix B). Note that the letter & may be
used in an identifier. Many system identifiers begin with & and it |
would ke wise to refrain from using & in this way.

The same identifier cannot be used to denote two different
guantities except when these quantities have disjoint scopes as
defined Ly the declarations of the program {cf Sections 6 and 4.2).

The recognition of the detinition of a given identifier (but |
not a component identifier -cf Section 7) is determined by the
following rules.

Step 1. If the identifier is defined by a declaration of a
quantity or structure type, or is standing as a label within a
procedure embracing the occurrence of the identifier, then it
denotes that quantity, structure type, or label. |

Step 2. Otherwise, 1f the identifier is a formal parameter of a
Frocedure embracingthe occurrence of the identifier, then it
stands for that formal parameter.

Step 3. Otherwise, if the identifier is defined by a
declaration of a quantity or structure type or by its standing |
as a label within a pass embracing the occurrence of the
identifier, then it denotes that quantity, structure type, or |
label. |

Ster 4. Otherwise, ‘ir the identifier is defined by a
declaration of a quantity or structure type in a global
declaration valid in the pass (or global declaration) embracing
the occurrence of the identifier, then it stands for that
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-

quantity or structure type. |

= Step 5. Otherwise, if the identifier was declared as a
<synonym> 1n a scanner detinition, then it stands for the

| corresponding source language symbol.
| If any single step could lead to more than one definition, then the

\ identification is undefined. |

1 | 3.3. Beserved words
The following reserved words may not be used as identifiers.

.— ALT ANCL |
BACK BEGIN BITAND BITEXOR BITOR

BYTE BYTES BYTE2 BYTE3 BYTE4

| CASE CCDE CODEAREA CONTENT CORELOAD
DATAAREA DEC DELETE DICT DO DWF DYNAMIC

| ELSE END ENDCASE ENDPASS ENTER
[ FOR FRCM FWF FWI

GO GOIF GOIFNCT GOTO

| ~ HWI
| | IF IN
- LOOK

MAIN

NOT

lL CF OF
| PASS PASSES POINTER POP PROCEDURE PRODLANG PUSH

KEM RETUEN RUNTIME

SCANNEE STACK STATIC STRING STRUCTURE

- SUEBYTE SUBSTR SYNTAX

TABLE TALLY THEN TO

. UNTIL

L_ WHILE

&C

| 3.4. Source language symbols
- Syntax:

{source languaye symbol> ::= <synonym> | |
| 3 <KEBCDIC char> list>

~ Semantics: A source language symbol is a sequence of characters
( defined in a scanner definition to be a delimiter or reserved vord

of the language for which a compiler is being written. One refers to
— the BYTEZ2 atom tor a source language symbol either by preceding it |

by a dollar sign, or by using a synonym for it (cf Section 12.2). No
space may separate the dollar siyn trom the character list or the

- characters 1in the list themselves and a space must follow the last
character.

—
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4. STRUCTURE OF A PROGRAM

Syntax:

<prcgram> i= BEGIN | <<declaration> ;list> |]
| <<statement> ;list> ] END

<prcgram> ::= BEGIN <coreload description>
. <<scanner def> list> ]
. <<jlobal declaration> 1list> ]
<Kpass> list>

a END

Semantics: The first definition of a program is for the usual
ALGOL-like [rogram consistin; of declarations (cf Section 6) and
statements (cf Section 9). Ihe second must be used for programs with
multiple passes or programs which use a scanner or production |
language.

4.1. Ccreload description | |

Syntax: |

<coreload description> ::= <<coreloadd> list) | 0
. <coreload> :2= CORELOAD <Kinteger>

<<pass number> list>

Semantics: The coreload description indicates how storage is to
te allocated to the passes of a compiler. The coreloads must be
numbered (by the <integer>) in ascending order, starting with 1. At
compile time, initially all the passes associated with coreload 1
are in core, and the first pass listed is executed. Upon execution
of a CALLPASS statement (cf Section 9.6) which refers to a pass in a
different coreload, the new coreload is brought into core. The
passes 1n the previous coreioad may not be referred to again.

4.2. Global declarations

Syntax: |
<global declaration) ::= PASSES <integerl> <integer2>

<Ldeclaration> :list>

| PASSES <integer!> RUNTIME
<<declaration> :;list>

| RUNTIME <<declaration> ;list>

Semantics: Aglobal declaration declares identifiers (and their
attributes) which are to be used globally in

a) passes numbered <integer!> tarough <integer2>; |
b) passes <integer!>, <integyert> + 1,..., and at runtime;

~ ¢) at runtime only.

The following restrictions are placed on identifiers declared in a
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| global declaration

a) no identifier may be a reserved word (cf Section 3.3); |
] b) the same identifier may not be declared in two global
. declarations which have a pass in common. Thus

PASSES 1 4 BYTE A,B

PASSES 2 3 BYTE B,C

is illegal; |

a! c¢) an identifier must be declared before it can be used.
a.

| Declarations themselves are discussed in Section 6.

” Examples:
~ PASSES 1 2 BYTE A,B,C; POINTER P

~ PASSES 5S RUNTIME STRING X

RUNTIME BYTE Y; FWI A,B

- hae

L 4.3. Passes |

Syntax:

<pass> ::= PASS <pass number> [<PL subprogramd]
— { <<aeclaration> ;list> ]

[ <Kstatement> ;list> ]
ENDPASS |

| Semantics: A pass is a logical unit - a subprogram. Section 9.6
: discusses the statements which control the order of execution of
Lo passes. When a pass begins, if no PL subprogram is present, the

first statement in the list is executed. If a PL subprogram is
present, execution beyins with the tirst production in it.

!
- |

| |

-

|

-

'

- .
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5. VALUES, TYPES AND CONSTANTS

A variable is a symbolic representation of a quantity that may
assume different values . The vaiue otf a variable is always the one
most recently assigned to it. Each variable has a type which defines
the class of values that the variable may represent. |

Types fall into two classes: pasic_types - which are the basic,
elementary types in the lanyuaje - and structured types - which are
ordered sets of one or more basic types and possibly other

; structured types. Structured types are defined by the programmer in
: a structure definition.

The number of bytes each different type of value uses in the
IBM 360 and the aliynment of these pytes in memory are discussed 1n
Section 11. Section 5.1 describes the basic types in the language,
Section 5.2 structured types and tne structure definition. Constants
are descrited in Section 5.3.

Syntax: i |
<type> ::= <pasic tj pe> | <structured type> |

5.1. Basic _types

Syntax: |
<tasic type> ::= <bits type> | <arith type>

| <pointer type> | <string typed »

<tkits type> ::= BYTE | BYTEZ {| BYTE3 | BYTE4
| BYTES ( <integer> )

<arith type> ::= HWI | PWI | FWF | DWF |] DEC ’
<pointer type> t= POINTER |

. | POINTER ( <<pointo type> listd> )
<string type> ::= STRING ( <integer> )

<pointo type> ::= <bits type> | arith type> | POINTER
| <string type> | <structured typed |

Semantics: The types BYTE, BYTEZ2, BYTE3 and BYTEY are
essentially abbreviations for BYTES(1), BYTES(Z2), BYTES(3) and
BYTES (4) , respectively. Note however the different alignment
properties (cf Section 11). |

The following table lists the values that may be associated
with a variable of each basic type. |

type value

BYTES (<integer>) sejuence of 8*<integer> bits
( 0 € <integer> <= 2590)
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_ |

HWI IBM 360 Haltword Integer: 16 bits |
— ( between —-2%*%15 and 2*%*%15-1)

Ful IBM 360 FullWord Integer: 32 bits
( between -2%¥%*31 and 2%%31-1)

FWRF IBM 360 .-Fullword Floating point number:
| - .32 bits

DWF IBM 360 DoubleWord Floating point number:
} 64 bits
- DEC DECimal number of 1 to 31 digits plus sign

STRING{<integer>) sejuence of <integer> EBCDIC characters
{ { 0  <integer> < 256)
He POINTER reterence to some value (24 bit address)

L a When referring to the value pointed at by a variable declared
as FOINTIER, it is necessary to indicate what type that value has.
This can be done at the point of referral (cf Section 7.3), or in

\ the declaration itself through the list of <pointo typed>s. For
- example, -

~ POINTER A A may point at any value.
L PCINTER (FWF) B B may only point at values

of type FiWFa :

POINTER (FWF HWI)C C may point at values

5 of type FAF and HWI. |

\ Hierarchy_of types. It is sometimes necessary to perform
- automatic conversion of values. For example, if one adds an FWI

value to an FWF value, the FWI value must first be converted to
floating point form. The hierarchy ot type precedences is:

= DWF
FWF

. DEC

—. FWl

| HWl

| BYTES
-

3 5-2. Structuredvalues and types
Syntax:
<structure definition>

- ::= STRUCTURE <structured type>
( <<Kconstituent> ,list> )

. <constituent> :3= <component>
| <constituent> ALT <component)>

{componeant> s:= <type> <component id>
“- | <component id> (<<constituent)> ,listd)
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Semantics: A structure definition defines a new structure named

<structured type>. A structured value is a set of constituents -
which at any instant of runtime are values with basic types and
possibly other structured types. Each constituent consists of a
single component or it consists of a set of alternative components
separated by the reserved word ALT . This is used mainly to save |
space. Only one of the alternative components may be in use at any
time, and it is the responsibility of the programmer to know which
cne 1s being used.

_ The name of each component is the component id. This name is
used to refer to that component of the structured type. The

| component id may be any valid ideatirier which is not a structured |
type; the only rule to pe followed is that, when referring to
components and subcomponents ot a structured value, the metacompiler
must be able to uniguely determine what is meant. See Section 7.2
tor tull details.

Note that a _component may itself contain subcomponents. If a
structured type is used as the type of some component, this
structured type must have been previously (statically) declared.

while not necessary, it maj; be useful for the programmer to oo
know how storage is allocated to components. This is discussed in
Section 11. |

Examples: |

1 STRUCTURE SUBSCKk ( BYTE AREA, BYTE3 OFFSET, POINTER 3S)

A value of type SUBSCR consists of

. a) a BYTE value named AREA , followed by |
b) a BYTE3 value named OFFSET , tollowed by |
c) a POINTER value named 5S.

2. STRUCTURE D1 (BYTE KIND ALT HWI B, C (BYTE C1, POINTER C2), oo
SUBSCR D, SUBSCR E) |

A value of type D1 consists ot

a) EITHER a BYTE value named KIND
or a halfword integer named B, followed by

bk) a value named C. C itsel:r consists of
1) a BYTE value named C1 tollowed by
2) a POINTER value named Cl.
C is followed by |

d) a value, named D, of structured type SUBSCR
e) a value, named E, of structured type SUBSCR
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5.3. Comstants

L |
Syntax:
<constant> ::= <integyer> | <hex 1integer>

. | <pit integer> | <dec integer>
| <real> | <lonyg real>

oo | <loyical cons>
| <stringy cons> | <pointer cons>

- | <synonym> | <int identifier>

| <hex inteyer> ::= X ! <Khexit> 1list> !
HE <tit integer> ::= B !' <K<Kpit> list> '!

<dec integer> ::= <inteyer> D
<real> ::= <unscaled real> [ <scale factor> ]

- <long real> ::= <real> L
~ {string cons> t2= ! Mgegyuence of 1 - 256 EBCDIC |

| = characters" !
<pointer cons> :2= 0

<unscaled real ::= <integer> . <integer> | <integer> .

i |] « <integer>
L <scale tactor> ::= E <sign> <integer>

<sign> 2:= + | -

— Semantics: Integers, «reals and long reals are interpreted
according to the conventional decimal notation. A scale factor
denotes an integral power of 10 which is multiplied by the unscaled

- real preceding it. A dec intejer is an integer of 1 to 31 digits
which will be represented in packed decimal notation.

{

A string constant is a sejuence of 1 to 256 characters,
~ enclosed by the string quote ¥ ¢ "_ Within the sequence, the string

quote itself is to be represented by two adjacent string quotes. The
_ number of characters in the string is called the length of the

— string.

Each hexit in a hex integer represents 4 bits in the usual

_ manner. Both hex integers and pit integers are right adjusted in
their field, with leading zero pits addedif necessary (see below).

| The pointer cons 0 fails to point to a value.
—

A synonym denotes the atom corresponding to the source language
symbol associated to the synonym in a <synonym def> of the scanner

- suktlanguage (cf Section 12.2).

: An int identifier is a BYTEZ2 constant. The actual value 1s
| assigned by the metacompiler (see Section 6.4).
fs

Each constant has a unijue type, as defined by the following
| list. It should be noted that any necessary conversion of constants
— is done at metacompile time when possible.

_ |
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<constant> <typed

<integer> HWlL if less than 65536. FWI otherwise :
<hex integer> BYTES (I), where if there

are J hexits, 2%I >= J > 2%I-2 |
<bit integer> BYTES (I), where if there | |

are J bits, 8%I >= J > 8%I-8 |
<dec integer> DEC :
<real> FWi :
<long real> DWI |
{string cons> STRING (<integer>)
<pointer cons> POINTER |
<synonym> BYTEZ2 |
<int identifier> BYTEZ2

In addition, the following system identifiers for constants can be
used.

TRUE _ BYTE1 (=X'FF?') |
FALSE | BYTE1 (=X'00")

Examples: |

~ <constant> examples |

<integer> 1 23 325678 |

<hex integer> X'0A? X?*B32A" X'FFFFFFFPF?

<bit integer> B'0110¢ B'10010010000?

<dec integer> 320 100D 1357312389)

<real> 3. -50 32.031 3.E-20

© «long real> 2.7182818284590452353L .3E-1L |

<string cons> "STRING?! 10° 1111 jis the string |

oo consisting ot a single apostrophe.
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. 6. DECLARATIONS |
Declarations serve to determine the scope of identifiers and to
define permanent properties of them (type of value that may be

L associated with them, structure). Generally, a number of bytes areallocated to each identifier (depending on the type) to hold the
value associated with it. See Section 11 for full details.

L Syntax:
<declaration> ::= <structure definition>

{| <type dec>

| | <int declaration)
| <table declaration>

| | <dict declaration>

| . i <stack declaration>| <main stack dec>

; | <procedure declaration>

1 6.1. Basic andstructuredtype declarations
Syntax: |

<type dec> ::= <basic type decd

L | <structured type dec)<tasic type dec> ::= <basic typed <<Kidentifier> ,list>
<structured type dec> ::=<structured type> <<Kidentifier> ,list>

L Semantics: Basic and structured type declarations serve to
associate a type with identifiers. Only values of that type may be

L assigned to the identifiers. The structured type must have beenpreviously (statically) declared.

| ) Examples:
| FWI A,B,C : :

L : POINTER (SUBSCR) D (see Section 5.2 for the structure
definition for SUBSCR).

i '  SUBSCR E,F,G |
6.2. lable, dict and stackdeclarations |

(

L Syntax:
<table declaration> ::= <storage alloc> <type> TABLE <integer>

| <table identifier>

L | STRING TABLE <table identifier)= <<Kstring cons> ,list>

( <dict declaration>-  ::= {storage alloc> <type> DICT <integer> |
- <dict identifier>

<stack declaration» ::= <storage allocd> <type> STACK <integer>

| <stack identifier>
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<rain stack dec> ::= MALIN STACK <stack identifier> i

{storage alloc> ::= STATIC | DYNAMIC | <empty> }

Semantics: Table, dict and stack declarations all serve to
associate a sejuence of data records of type <type> with the table,
dict or stack identifier. Tne dirterence is only in the way the |
records are added, deleted or accessed. See Section 10.0 for full
details: |

; A table is a linear se uence c¢f records. Records are |
usually accessed throujh pointers to them and by the operations
LCOK and ENTER. They may however be accessed exactly like a one
‘dimensional ALGOL array. |

A dict is also a seyuence of records, these records are
however list-structured ror fast searches based on source

language symbols. Records may pe added to or deleted from the
dict. They may also pe taken off the chain which 1list-
structures them. The type of the dict records must be a
structured type. Further, the structured type, say T, must
begin as follows:

STRUCTURE T (BYTE NAMS1, POINTER NAMEZ, ...

Here, the «component ids are not important; only the fact that
the first two components are a BYTE and a POINTER. The reason
for this will become clear when Section 10.2 on LOOK and ENTER

is read. |

A stack is a LIFO (last-in-first-out) stack. Records may

| te added and deleted in the customary manner.

<storaye alloc> indicates how storage is to be allocated to the
sequence. It STATIC or <empty», <integer> gives the maximum number
of records in the table, dict or stack. These records will be

contiguous. If DYNAMIC, <integer> defines the number of contiguous
records in a "block". Storaje is initially allocated to one block of
records; extra blocks are added as the need arises while the program
is teing executed.

Each pass which uses production language must have a stack to
| communicate between the production language and semantic language.

This stack is specified by a <main stack dec>. The stack identifier
in the <main stack dec> must be a previously declared STATIC stack.
In addition, the type of the stack records must be a structured
type, say S, which begins as follows: |

STRUCTURE S (BYTE2 NAME1, BYTEZ NAME2, BYTE2 NAME3, ...

Here, the component ids are not important; only the fact that the
first three components are BYTEZ quantities. See Section 13.6..



6. DECLARATIONS 21

L Examples:
SUBSCR TABLE 200 A

CYNAMIC D1 DICT SO B |

L STATIC D1 STACK 100 C
MAIN STACK C

6.3 procedure declarations |

{ Syntax:
| <grocedure declaration> ::= PROCEDURE

<procedure heading> ; <procedure body>

| - | <type> PROCEDURE
{procedure heading> ; <procedure body>

L <rrocedure heading> ::= <identifier>_ iL( <Ktformal parameter seg> ;list>)]
<tormal parameter seg>

::= Ktype specifier> <<identifier> ,list>

L <type specifier> t:= <type> | BYTES | STRING
| <type> TABLE | <type> DICT

| | <type> STACK

L {procedure body> ::= <statement>
| BEGIN | <<type dec> ;list> ]

L iL <<statement> ;list> ] END
Semantics: A procedure declaration associates a procedure body

L with the identifier immediately tollowinyg the symbol PROCEDURE. A
proper [procedure (case 1 above) is invoked by a procedure statement
(ct Section 9.7) and a function ( typed procedure - case 2 above) by

l . a function designator (cf Section 8.1) or a procedure statement.
The procedure heading also describes the formal parameters and

their types. All formal parameter identifiers in a formal parameter
L segment are of the same indicated type. The type specifiers BYTES

and STRING specify formai parameters whose corresponding actual
parameters at a call point are BYTES(I) and STRING(I) for some

L integer I. It is more efficient to indicate the number of bytes if
it is constant for all calls of the procedure or function.

The value to be returned by a function is indicated by
assigning it to the function identifier.

L Examples:
PROCEDURE LOOKLAB (BYTE. ATOM; POINTER P);

L /%¥ 1COK IN SYMBOL TABLE 5SYMB FOR THE SOURCE SYMBOL "ATOM® WHCHIS A LABEL. RETURN THE ADDRESS OF THE RECORD IN P.¥/
BEGIN P = LOOK (SSYMB,ATOH);

L WHILE P -= 0 DO BEGIN IF P.TYPE = LABEL
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THEN RETURN;

P = LOOK (SSYMB,P)
END |

END |

6.4. Intdeclarations

Syntax
<int declaration)» ::= INT <<identifier> ,list>

Semantics: In production language an INT is a nonterminal or |
INTernal symbol used to help parse the program. In order to allow
the semantic portion of a compiier to test the main stack and to
provide more communication petween syntax and semantics, the 1nt
declaration has been provided. Each identifier declared as INT is a
BYTEZ constant =~ the actual value being assigned by the
metacompiler. It may be used anywhere a constant may be used (cf
Secticn 13).
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L

L 7. VARIABLES AND INDIRECT REFERENCES
In Secticn 5 we described tne ditierent types of values possible. In |

| Section 6 we indicated now these types could be associated with
identifiers. We now describehow -one references the value associated

with an identifier - either to use 1t or to change it.

L Syntax:
<destination>. ::2= <variable> | <indirect reference)

| <DESCR destination> ::= <destination> "of type DESCRIPTOR"

L <variable> ::= <simple variable>
| | <component variable)

B <simple variable> t:= Kidentitier>
| j <table designator> |

| <dict designator>
R | <stack designator>

L | <substring designator>
~. | <subbyte designator>

| <component variable>::= <simple variable>.<component selector>
<indirect reference>::= CONTENT( <POINTER expr>

| L <pointo type> ])
| <variable> . <component selector>

L <table designator> ::= <table identifier> ( <expressiond> )<dict designator> ::= <dict identifier> ( <expression> )
<stack designator> ::= <stack identifier> ( <expressiond> )

| LO J LT § L2 ) L3 J] L4 | RO | RT | R2
{substring designator> ::= SUBSTR ( <destination>

, <expression> [ , <expression> ] )
<sukbyte designator>::= SUBBYTE ( <destination>

| - , <expressicn> [ , <expression> ])
| <component selector>::= <<Kcompomnent id> .list>

| <<number selector> .list)
L <number selector> :3= <integer> [ -~ <integer> ]

7-1. Simple variables

L A table designator denotes a record of a table. The expression isevaluated, assigned to an internal integer variable I (say), and the
Ith record is chosen. The value I must be greater than 0 and, if the
tacle is STATIC, less than or egual to the number of records
declared. |

The time necessary to calculate the address of a record T({I) is |

. directly proportional to the number of the block in which the record
resides.

i The usual way of accessing table records is through the LOOK
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and ENTER commands and throujh POINTER variables which point at the
records. It these commands are used, tne following restriction is
placed on the used of table designators: the value of I must always
select an already-existing record; if not, an error may result. This
is not checked at runtime. )

If ENTER, LOOK and DELETE are not used, then the table is
actually a one dimensional array. If it is declared DYNAMIC, then it
may have any number of records. Thus, 1f a value I is used but there .

are not as yet I records in the table, enough blocks of records are
added to yield I of then.

A dict designator denotes a record of a dict. This works oo
exactly like a table designator.

A stack designator references a stack record. The expression is |
evaluated, assigned to an internal integer variable I, and the Ith
record from the top of the stack is chosen. Thus, if S is a stack,
S{0) refers to the top record, 5(1) the first from the top, etc. If oo
a pass has a main stack, then the system identifiers L0,...,L4 refer
tc the top main stack record,..., 4th record from the top of the
main stack, before matching ot the last production began, while oo
RO,R1, AND R2 refer to the current top, 1st and 2nd records of the or
rain stack, respectively.

A substring designator denotes a sequence of characters of the
stringy <destination> the tirst expression is evaluated and assigned
to an internal integer variable I. 1 then selects the position in
the <variable> of the startiny cnaracter of the sequence. The first
character has position 0. Thus we have 0 <= I < declared length of
the string variable. The second expression is evaluated and assigned |
to an internal integer variable J. J is then used as the length of |
the selected sequence. I+Jd must pe less than or equal to the ’
declared length of the string variable. The default value for the |
second expression is (lengtn or string variable -I).

A subbyte designator denotes a sequence of bytes of a BYTES
variable or indirect reference. The semantics are the same as those

of substring designators. |

7.2. Component variables andselectors :

A component variable references a component of some structured |
variatle. The first syntactic entity in a component variable is a
simple variable, which chooses the particular structure from which |
the <ccmponent is to be taken. Tais 1s followed by a period and a
component selector, which picks out the desired component. There are
two methods for this =~ naminy the component, or indicating its
positicn by a sequence of numbers.

A. Namingthe component. The component selector is a sequence
cf component identifiers, separated by periods. The first is
the name of a component of the structure. If there is only one
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| component identifier, then the desired component has been |
— fcund. If there are more, then the first must name a component

which itself has subcomponents. The second name picks out the
| desired subcomponent, etc. As an example, consider the
u declarations

STRUCTURE SUBSCR (BYTE AREA, BYTE3 OFFSET, POINTER SS) |
i STRUCTURE D1 (BYTE KIND ALT HWI B, |

| C (BYTE C1, POINTER C2),
SUBSCk D, SUBSCR E):

3 D1 A;
To pick out component B of A use A.B .
To pick out component C1, use A.C.C1 .

L i To pick out component S ot component D of A, use A.D.S .
| It is not always necessary to give the complete list of

1 component ids. Thus, in tne above examples, A.C1 is equivalentto A.C.Cis The only rule is that the component variable must
unambijuously define a component. A.S Would not be valid, since

| it could be either A.D.S Or A.E.S.
| B. Numberinjthe component. Constituents are numbered from the
| left, starting with 1. within a constituent, the alternate

components are similarly numbered. A number selector I selects
| the first component of the Ith constituent. Thus we have:

4 A.1 equivalent to A.KIND
| A.2 equivalent to A.C

- A. 2.1 eyuivalent to A.C.C1 .

y How would we reference component B? By A. 1-2. Here, the "-2"
: specifies the particular alternate (the second). In general,
| . "I-~J" means, the Jth alternate ror the Ith (sub)constituent. Asillustrated above, A.1 is eyuivalent to Al.-~1.

+ 7-3. Indirect references

A simple reference

CONTENT ( <POINTER expression) )

references the variable “pointed at" by the POINTER expression.
Thus, using the examples of the preceding section, if PP is a
Fointer variable, then executing

PP = @& A.KIND; CONTENT (PP) = 3

sets the component A.KIND to 3 (cf Section 8.2.1). The reserved word
“&C" can be used as an abbreviation for "CONTENT".

It is necessary to indicate what type of value is being pointed
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at, by including a <pointo typed. This may of course be done in the
declaration of a FOINTER variable (ct Section 5.1), in which case it
can te left out here. The above example could be written as

PP = @ A.KIND; CONTENT(PP BYTE) = 3

If a POINTER expression points at some structured type value,
then cone can designate a component or subcomponent of that value
exactly as was explained in Section 7.3.

Again, the <pointo type> may be omitted here if it is possible
| to determine from the component selector which structured type is |

being reterred to. Thus, using the examples of Section 7.2, if there |
is no other structure with a component named C, CONTENT (PP).C could
be used instead of CONTENT(PP D1) .C. :

As a further simplification - one which should be used often -
if the POINTER expression is just a variable, and if the <pointo |
tyre> can be omitted, tnen the contents brackets can also be
omitted. We could thus write PP.C tor CONTENT (PP D1).C and PP.C.C2
for CONTENT {PP D1).C.C2.

7.4. Exagples | .

syntactic entity example

<identifier> A

<table designator> T{(I+J)
<dict designator> D (N)
<stack designator> 5 (0)

. <substring designator> SUBSTR(ST,S)
<sutbyte designator> SUBBYTE(SY,5,1I)
<{comgonent variable> D(N).C.C2

A.S

<indirect reference> CONIENT(P SUBSCR)
CONTENT (P) |
CONTENT (P SUBSCR).AREA

CONTENT(P) . AREA

&C ( &C (P SUBSCR).S BYTE) :
P-AREA

P.S5.S (P points to a SUBSCR)
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| Be EXPRESSIONS

-

Expressions are ruies which specity how new values are computed from
: existing ones. These new values are obtained by performing the
n operations indicated by the operators on the values of the operands.

Expressions fall into two classes: basic expressions - those whose
| values are of some basic type - and structured expressions =~ those
! whose values have some structured type. The former we abbreviate
— simply by the syntactic class <expression> or <expr>, the latter by

{struct exp>.

i Syntax
| <exp> ::= <expression> | <struct exp>

‘ <expr> ::= <expression> |
N <EOINTER expr> $:= <expr> "with type POINTER"

— <STRING expr> ::= <expr> "with type STRING™ |
- <BYIE expr> ::= <expr> "with type BYTEW

| <DESCR exp> ::= <struct exp> "with type DESCRIPTOR"
- - | <POINTER expr> "to a DESCRIPTOR"

<EDLRESS exp> :2= <exp> "with type &DDRESS"™

- : :
8.1. Function designators

Syntax:
— <function designator> ::= <identitier>

{ ( <<actual parameter> ,list> ) ]

|

Semantics: A function designator defines a value which can be
: cbtained as follows; the identitier must identify a function. The
L body of this function is copied, modified by the actual parameters,

and executed exactly as specified in Section 9.7. The value is the
last value assigned to the tunction identifier during this execution

- (undefined if none); its type is the type of the function.
—

Examples: MAX( X**2, Y)

= . YCUNGESTUNCLE( JAMES)

— 8.2. Basic_exrressions

Syntax

- <primary> ::= Lconstant> | <variabled> | @ <variable>
| <indirect reference>

| | <function designator)
| <specfunc)> |

= | ( <expression> )
| <tactor> ::= <primary>

j <primary> ** <Kfactor>
— | | unary op> <factor>

{expression> ::= <factor>
| | <expr> <mult op> <expr>
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|] <exprr, <add op> <expr>
| <expyr> <pit oOfp> <expr>
| <expr> <relational op> <expr> oo
| <expyr> AND <expr>
| <expr> Oa KeXxpr>

{unary op> s:e= + | = |} NOT
<mult op> ::= % { / | // | REM |
<add op> SESE Be
<kit op> :2= BITOR | BLATAND | BITEXOR
{relational op> 12= = | a= | BKM Man THN MOH

Note that the above syntax is ampijuous. Expressions are evaluated
in a left to right manner, using the precedence of operators given
in Section 8.2.2.

Bele l primaries. The primaries <constant>, <variable>,
<indirect reterence> and <tunction designator> have already been oo
discussed. The primary @ <variaple> yields a POINTER value which is
the address of (a pointer to) tne variable. <specfunc> stands for
"special function designator". See Section 2.2.

8.2.2 precedence of operators. Expressions are evaluated in a
left to right manner, according to the following hierarchy of
cperatcr precedences (parentheses may be used to overide then):

unary + unary - NOT
* &

* / // RBH |

binary + ovinary -
BITOR BI1TAND BITEXOR |

- = a= { aK > => |
AND

OR

8.2.3 conversion of operands. The following table indicates how |
values are converted from one basic type to another whem necessary.
Each row I represents the pasic type of a value to be converted,
while each column J represents the type to be converted to. The
table element (I,J) is then a letter of a footnote below which
indicates how the conversion is made. A blank element signifies that
no automatic conversion is pertormed.

RESULT: B H F D F D P S

Y W W E W W 0) T
T I I C F F I R

E N I

S T N

CPERAND E G
R
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BYTES A B C C C C I | |

— | ~ HWI D - E E E E
Fwl D G - x BE E

CEC E E E - E E

| FWF F F F F_ = E
— DWF F F F F F -

| FCINTER | -
STRING J H

|

18 A. It the operand type has fewer bpytes than the resulting type,
leading zero bytes are added; if the operand has more, leading
(lettmost) bytes are discarded until the they bhave the sane

—

Be If the operand 1s BYTE, 1t is considered to be an unsigned
integer. Otherwisethe rigntmost two bytes of the operand are

 ~— consideredto be a halfword integer without any other conversion
| (the lettmost bit is the sign).

. Ce If the operand has 1,2 or 3 bytes, it 1s considered to be an
| unsigned integer and 1s chanjed to FWI format. Conversion then

| proceeds with this new operand. If the operand has 4 or more
oo bytes, the rightmost 4 oytes are considered to be a fullword

h- integer without any real conversion being performed. Conversion
then proceeds with this new operand.

=e D. The HWI (FWI) operand is considered to be a sequence of 16 (32)
bits - that is, a BYTEZ2 (BYTE4) value. The sign bit is just

oo another bit 1in the sejuence. Conversion proceeds with this new
Co operand.
—

E. Normal conversion. Some sigyniticance can be lost in the case FWI
; to FWF and when the operand is DEC.

- |

Fe Normal conversion with truncation. If the result is to be BYTES,

| the operand is first converted to FWI and then to BYTES.

— Ge. The rightmost 2 bytes are considered to be a halfword. If the
~ operand 1s between -2%¥15 and 2**%15-1, the result has the same

| arithmetic value as the operand; otherwise not.

He If the result has fewer characters, use only the leftmost |
| characters of the operand. If the result has more, add blanks to

L the right of the operand characters.

| I. The operand is assumed to pe a string value - each byte 1s a
| character. Conversion H above is then performed.
— :

Je The operand characters are considered to be BYTES and the whole
oferand to be a BYTES value; conversion proceeds from there.

8.2.4 arithmetic operators. The tollowing table defines the
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arithmetic operators:

QFEEATOR MEANING |

+ A A (identity) -
- A sign inversion
A **x B exponentiation of A to the power of B |
A x B multiplication | :
A / B division !
A // B integer division. Defined by

. SGN (A*B) * D (ABS (A), ABS (B))
: where SGN is defined by :

| HWI PROCEDURE SGN( FWI X); :

| IF X < 0 THEN SGN=-1 ELSE SGN=1

and D is defined by
- FWI PROCEDURE D( FWI X,Y);

IF X < Y THEN D=0 ELSE D=D(X-Y,Y)+1

A REM B A - (A//B) ¥* B
A + B addition o
A - B subtraction 3

. With the arithmetic operations, operands of type BYTE, BYTE],
BYTEZ2 are considered as positive integers, while a BYTEY4 operand 1is
a signed integer (the leftmost pit is the sign). Not all basic type
values are valid operands ot arithmetic operators. Appendix A
contains tables which indicate tne valid operands, the automatic
conversions performed, and the type of the result of each
comkination of operator and operands. |

8.2.5 bits operators. The bits operators are BITOR, BITAND and ;
BITEXOK. They perform bitwise operations on the two operands as
follcws:

A B A BITOR B A BITAND B A BITEXOR B |

0. 0 0 J 0

0- 1 1 0 1
1 0 1 0 1

1 1 1 1 0

See Appendix A for a list of valid operands, automatic conversions |
performed, and for the type of the resulting operand. |

8.2.6 relational operators. The relational operators yield the
result TRUE (X'FF) or FALSE (X'00'), depending on whether the
relaticn is true cr not.

If the two operands are arithmetic but have different types,
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the value with the lowest type precedence (cf Section 5.1.2) will
— first be converted to the other type.

If the two operands are of type BYTES but have different
| lengths, leading zero bytes will be added to the shorter one. The
— values are considered to be positive integers for the comparison.

If one operand is BYTES and the other arithmetic. The BYTES
L value will first be converted to type FWI and an arithmetic

comparison will be performed.

3 It the two operands have type POINTER the relation must be = or
| =< The pointers are equal only if they are both zero or if they

| foint at the same record.
If the two operands are string-valued, the comparison is

according to the EBCDIC collatiay sequence. If the lengths of the
| | operands are different, blank characters are appended on the rightOf the shorter until the lengths are the same.

¥ Only those combination of operands suggested above are allowed. | |
!

8.2.7 logical operators. Tne operators NOT, OR and AND have the
tollowing meaning: |

NGT A IF A = 0 THEN TRUE ELSE FALSE
A OR B IF A =~= 0 THEN TRUE ELSE B ~= 0
A AND B IF A = 0 THEN FALSE ELSE B == 0

Note that nct only the BYTE values X'FF' and X'00', but all basic
values except strings may be operands of the logical operators. Zero

~~ means FALSE, anything else means TRUE. Note also that the second
operand, B, is not always evaluated. Thus, constructions like

IF POINTERVARIABLE AND POINTERVARIABLE.COMPONENT = 3 THEN...

Are possible, since if POINTERVARIABLE is zero, the reference to
COMEONENT will not be made.

8.2.8 catenation. The CAT operator produces a string whose
value is the characters or the first string operand followed by
those of the second string operand.

8.3. Structure expressions

Syntax: ‘ |
<struct exp> ::= <o0ild value> | <altered value)

| <new value> | <DESCR exp>
<old value> ::= <destination> |
<altered value> :3= <destination> ( <component specifier> )
<new valued ::= <structured type> ( <companans
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specifier> )

{component specifier> ::= <<Kkeyword component> ,list>
| <<Kpositional component> ,listd>

{keyword component> ::= component selector> = _ |
| <component selector> = <exp>

{positional component> ::= <empty>
| <alternate selector> _ |
| <alternate selector> <exp>

. | <alternate selector»

( <Kpositional componentd> ,listd> )
| alternate selector>::= <empty> | -~ <integer>

Semantics: A structure expression yields a value having sone
structured type. There are tnree ways of writing a structure
expression:

i= The value of an <old value> structure expression 1s just the
current value of the destination. The type must of course be |

~~ structured. No space 1s allocated for the value.

. 2. The value of an <altered value) is found as follows. Space
is allocated for the new value. The current value of the

destination is moved into this space. The components are then |
altered as indicated by the component specifier (see below) to
yield the resulting value. The destination must of course be
structured.

3. The value of a <newvw value> is tound as follows. Space is
allocated for a value of tne structured type. All components

~ are undefined. The components are then altered as indicated by
the component specifier to yield the resulting value.

There are two ways of specifyiny which components are to be altered
- through keyword components and positional components.

1. A keyword component consists of a component selector (cf
Section 7.2) which selects the component to be altered,
followed by an equal siyn, tollowed by an entity to which the
ccmnponent is to be changed. This entity is either

A. The character "_". This indicates that the component is
"empty". The meaniny of this will become clear when

Section 9.2 on assignment statements is read. oo

B. An <exp>. The <exp> must be assignment compatible with
the component selected. It 1s evaluated and assigned to
the component, exactly as in an assignment statement.

The components are altered in the crder in which the keyword
ccmponents appear (left to right).
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2. When positional components are used, the order and number of
Ci positional components must correspond to the order and number

of constituents of the structured type; the Ith positional
component indicates what to-do with the Ith constituent. The

LL | alternate selector indicates which alternate component of the
consituent to use; an empty alternate selector indicates the
first alternate.

4

L The entities "_" and <exp> appearing in a positional component
| have the same meaning as in keyword components (see above). In oo

| addition to these there are two more ways of specifying what is
| to be done with the component:

} A. If the positional component is empty (not there), the
| component is not changed.

) B. If the positional component has the form | |

L alternate selector> ( <<positional component> ,list> )
1 then the corresponding component of the structured type || must have subconstitueats. This new list of positional

components is handled exactly in the same way.

| The reader may have noticed that with <altered valued and <new
value> structure expressions storage must be allocated. Section 9.2

| on assignment statements specities in which cases it is the
prograpmer's responsibility to release this space.

! Examples: We use the structured types |
, SIRUCTURE SUBSCR (BYTE AREA, BYTE3 OFFSET, POINTER 5);

| STRUCTURE D1 (BYTE KIND ALT HWI B,
C (BYTE C1, POINTER C2),
SUBSCR D);

|  SUBSCR V1,V2;
. D1 V3,V4;

The following is an <o0ld valued>: V1

The following are equivalent examples of <altered valueds:
V3( B = _, CuCl = 5, C.C2 = 0)
V3(~2 1 (5.0) ,)

The following are equivalent examples of <new values>
L1{D= SUBSCR (0,0,0))
D1(,,SUBSCR(0,0,0))
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9. STATEMENTS

A statement denotes a unit of action. To execute a statement means
to perform this action. Statements are usually executed in sequence,
except when a control or pass communication statement causes a
change.

Syntax:
<statement> ::= <open statement> | <closed statement

{open statement> ::= <label definitiond> <open statementd>
|] <open iter stated
] <open cond stated

-{closed statement>:i:= <empty> |
] <lapel definition> <closed statement)
} <compound statementd
| <assigyjnment statement)

] |] <closed cond stated |
- ] <closed iter state)

| <case statement)

j <control statement)
| <procedure call> on
] <code statement>
| <spectunc> | <sgecproc>

<label definition> ::= <label> : |

9.1. Compound statements

Syntax:
<compound statement)> ::= BEGIN <<statement> ;list> END

© Semantics: As in ALGOL, the compound statement is used to
bracket a sequence of statements. |

9.2. Assignment statements

Syntax: | |
<assignment statement> ::= <destination> = <exp> |

Semantics: This statement 1s executed as follows: |

1. The address of the <Kdestination> 1s «calculated, if

necessary.

2. The <exp> is evaluated.

3. The result of (2) is converted and stored - according to the
rules given in the table below - at the address calculated in
(1)« Only those combinations of types of the <destination> and
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i <exp> are valid which are indicated in the table below. Those
Fairs of destinations and exps which are valid are called
assignment compatible. |
The following table indicates how values are converted and

~ assigned to a destination. Each row represents a possible type of
the destination; each column a possible type of the <exp>. An
element is either blank - which means the combination is not legal - |

— or is a letter identifying a footnote which explains how the |
| ccnversion and assignment takes place.

L Type of
| | destipation typeof exp

| ) bits arith pointer string structured
bits A A A C

| arith - A A |
| Fointer B E

| - string A B |
Structured C D

A. The conversion is as explained in Section 8.2.3.

B. No conversion necessary.

C. The value of the <exp> as it is in memory is stored in the
<destination> without any conversion (zero bytes are added to the
right of the <exp> if it is too short, or the rightmost bytes are
discarded if it is too long).

D. The <exp> and <destination> must have the same structured type.
The <exp> is evaluated and assigned to the destination. That is,
components of the destination corresponding to "empty® components
in- the structure expression (cf Section 7.2) remain unchanged,

| all others are assigned the value of the corresponding structure
expression component. Any space allocated in evaluating the
structure expression is automatically released.

E. "empty" components become undef ined, and the address of the
resulting value is stored into the destination. If space was |
allocated for the evaluated structure expression, it is now the
programmers responsibility to release this space when no longer
needed (ct Sections 7.3 and 9.10).

Examples: ‘

A = B

P = SUBSCR(A.KIND=5)
CONTENT(P) = SUBSCR (A.KIND=5)
P = CONTENT(P) (A.KIND=3,A.AREA=2,A.0FFSET=)
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9.3. Conditional statements |

Syntax:
<open cond state> ::= IF <expression> THEN

closed statement> ELSE <open statement)
| IF <expression> THEN <statement)

<closed cond state>

s:= IF <expression> THEN <closed statement |
ELSE <closed statement>

| Semantics: These have the same semantics as in ALGOL. | |

~Examples:

IFX = Y THEN GO TO L |
IF X THEN U=0 ELSE IF Y=0 THEN U=YX

9.4. Iterative statements

~~ Syntax: In the following productions, the letter "J" is to be
systematically replaced by the word "open" or the word "closed".

<J iter state> 1:= FOR <destination> = <expri> |
iL STEP <expr?2> ]
UNTIL <expr3> DO <J statement>

|] WHILE <expression> DO <J statement)

] FOR <POINTER destination>
IN <tord identifier>

. i FROM <POINTER expri> TO <POINTER expr2>]
DO <J statement>

| <tord identifier> ::= <table identifier> |
}] <dict ideantifier>

Semantics: The default option for <expr2> is 1. The default
option for <POINTER expr!> and <POINTER expr2> is @a<tord identifier> |
(1) and a<tord identifier> (N) respectively, if the table or dict
has presently N records. |

The statement

FOR I = J STEP K UNTIL iL DO <statement>

where I is a destination and J, K and 1 are expressions 1is

equivalent to the following sequence of statements;

DEST = @I; &C (DEST) = J;

STEPV = K;
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| ENDV = L * SGN (STEPV) ; -
. AGAIN: IF &C (DEST) * SGN (STEPV) <= ENDV

THEN BEGIN <statement>; EC (DES?) =6C (DEST) +STEPV; GO TO AGAIN |

{ END | |
- where DEST is an internal POINTER variable and STEPV and ENDV are

| ~ internal variables having the same types as K and L respectively.

L The statement

{ WHILE <expression> DO <statement)>
is equivalent to |

L - AGAIN: IF <expression> THEN BEGIN <{statement>; GO TO AGAIN END |
The statement | | |

g FOR P IN TAB FROM P1 TO PN DO <statement)
where P,P1, and PN are pointers and TAB is a table, is executed as

L follows:
. DEST = @ P; ENDV = PN; CONTENT (DEST) = P1;
I AGAIN: IF CONTENT (DEST) -~= 0
— THEN BEGIN <STATEMENT>;

IF CONTENT (DEST) == ENDV
THEN BEGIN TALLY (TAB, CONTENT (DEST)):

LL GO TO AGAIN
END

where DEST and ENDV are pointer variables.

| Examples:

L FOR I = 1 UNTIL B*3 DO A(I) = 1
. FOR P.X = 10 STEP - 1 UNTIL 1 DO Y(P.Z) = 5

WHILE PA DO BEGIN PA.D=0; PA = PA.P END |

1 FCR P IN SSYMB DO P.KIND = 0;

L 3.5. Case statements |
Syntax: a

L {case statement> ::= CASE <expression> OF <<statement> ;list> oo
ENDCASE

}

— Semantics: The expression 1s evaluated and assigned to an
internal variable I of type FWI. If I <= 0 or I > (the number of

\ statements in the list), no action is taken. Otherwise, the Ith

- |
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statement in the list is executed. If this statement does not cause

control to leave it, control then passes to the point beyond the
ENCCASE symbol.

Example: oo

CASE N OF

¢ =5;

. FOR I = 1 UNTIL N DO A(I)=0;

: GC TO LAB; |
BEGIN Q = 5; FOR I = 1 UNTIL N DO A{(I)=0 END

-ENDCASE

9.6. Control statements

Syntax: .

<control statement> ::= <yoto op> <labeld>
| RETURN | SYNTAX |] COMPLETE B

| | HALT { ( <integer> ) ]
| CALLPASS ( <pass number> ) |
| BEGINPASS ( <pass number> )

<goto op> s:= G0 J] GO TO |} GOTO

Semantics: Execution of a yoto statement transfers control to
the statement labeled <label>. One «cannot jump into or out of a
rrocedure or into the statement of an iterative statement. |

. The RETURN statement is used only in procedures; it causes the
procedure to return to the point from which it was called. |

The SYNTAX statement is used only if the pass has a syntax
subprogram. It may not be used in procedures. Execution of the
statement causes control to return to the syntax subprogram
following the last EXEC action executed.

Execution of COMPLETE tells CIL that the program is done. If
CGS was used, the object module for the generated program is
completed and written out. Execution then stops.

Execution of HALT ( <inteyer> ) causes the message " HALT |
<integer> " to be printedand execution to halt.

Execution of BEGINPASS causes control to transfer to the

beginning of pass <pass number>, while execution of CALLPASS
transfers control to pass <pass number> at the place where it last
executed a BEGINPASS or CALLPASS (if it had never been executed,
control goes to the beginning of it). The CALLPASS is thus like a
coroutine call.



9. STATEMENTS 39
4

C |

It the pass being called is in another coreload, that coreload

| is brought into core. Passes in the previous coreload may not be
called again.

|

C oo.

S.7 procedure statements

L Syntax: |
<procedure call> ::= <identifier>

| | . ( <<actual parameter> ,1list> ) ]

{ | <specfunc> | <specproc>
actual parameter>::= <expression> | <table identifier>

L - | <dict identifier> | <stack 1identifier>

Semantics: Execution of a procedure statement is equivalent to
the following process:

A copy 1s made of the procedure or function body identified by

| the identifier in the procedure statement. The actual |
parameters of the procedure statement, which Bust agree in

) | number and order with the formal parameters of the procedure or
| function, systematically replace those formal parameters as
- | follows:

1 If the actual parameter is a <destination> whose type
i is the same as the type of the formal parameter, the

address of the <destination> is calculated and assigned to
an 1internal variable, say I, which is different from any

| other variable. The indirect reference "§C(I)" then |replaces every occurrence of the formal parameter
identifier in the copy of the procedure body.

| ) 2. If the actual parameter is a constant, the comstant is
converted to the type of the corresponding formal
parameter (this must be possible) if necessary and the

} | result replaces every occurrence of the formal parameter.
: 3. If the actual parameter is any basic expression not

covered in 1 or 2, it 1s evaluated, assigned to an
- internal variable, say J, whose type is the same as the

type of the corresponding tormal parameter. The variable J
then replaces every occurence of the formal parameter.

- 4. If the actual parameter is a table, dict or stack
identifier, the corresponding formal parameter must be a

| table, dict or stack, respectively, with the same type.
hn The actual parameter replaces every occurrence of the

formal parameter identifier in the copy of the procedure
body. ’

_

The replacement of parameters must yield valid expressions and
SE statements. The modified copy of the procedure body is then |

- | |
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executed.

It a tunction is executed in this manner, the value it produces
is lcst.

<specfunc>s and <specprocd>s are calls on special functions and
special procedures. See Section 2.2.

Examples:

| £JOINREGS(P)

| TIME

LCOKLAB{( A, PP)

~-YCUNGESTUNCLE( JOHN)

© 9.8 scanner statements

The following <specproc>s are used to communicate with the
scanner: |

} |Sa|

SCAN |
| ittl

| CHARMODw |

Er ad |

| NORMODE |

|mmm——— |]

| SCANNER ( <scanner id> ) | |
hrm rar cme cc acem oe — ————— a ————

© Execution of SCAN causes the next symbol to be read from the
source language program being compiled. It is put in location
SCANSYM and on the main stack of the pass in which the SCAN appears
(if applicable). See Section 12.1 tor an exact description.

Execution of the statement CHARMODE causes the scanner to
change its method of scanning the source program to a character by
character scah. See Section 12.1.

Execution of the statement NORMODE causes the scanner to scan

the source program in normal fashion. See Section 12.1. Lo

Execution of SCANNER (<scanner id>) causes the scanner to begin
using the scanner definition named <scanner id> for forming source
language symbols.

9.9. Input-output
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The I/0 provided is quite primitive. More powerful I/0 may be
- added at a later date if necessary.

( 9.9.1. Input. Section 12.6 explains input procedures when the
L normal scanning is performed . (cf Section 9.8). In addition, the |

{Sgecgroc>

L Se ||] &IN |
RE a |

L reads the next card into the system string variable &INLINE.

L oo 9.9.2. Output. Execution of the <specproc>

{ E0UT ( <<expr> ,list> ) | |
— _ ho om em mm nn ce ae a

{ causes the expressions to be added to the current output line.

| Strings are added without conversion. Pointer and bits type
expressions are first «converted using the function GHEXT (see

. below), HWI, FWI and DEC expressions are first converted using the
| function §&DECT, while FHF and DWF expressions are first converted
. using the function S§FLPT. When the current output line is filled up

a new one is started, execution ot the <specproc>

oe
1] &0UT |

{ hme ———)
- causes the current line to be written out (if not empty).

| . Execution of the <specproc>
 -

FTE EEE ESTE EEE EETTTTT TTY

{ | SOUTDESCR ( <DESCR exp> ) |
Ig | Lm an as et ce cm tet rn em te om a in ne nn or am we :

causes the current output line to be written out and the DESCRIPTOR

a to be written out in a readable foram.

{ 9.9.3. Conversion functions. The tollowing <specfunc>s return a
i binary representation of the STRING parameter 5:

. | S can contain only B
L {specfunc> S is the characters result is
TTTETTTT TETTET TTT TTT TTT TY

| 6TBIN(S) | binary 0,1 BYTES |
| | mmm mmm me mem ese mes ms ms meme me
— | 6TOCT (S) | octal Ogecaygl BYTES |
tei ttl
| ETDEC(S) | decimal Dygene,9 FWI i

— |
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|= ee me mr rr rm ee mm mm ee |

| ETHEX(S) | hexadec. 0,eee,9,A,2ee,F BYTES | |
Lor om or mm mm te rt i a r — ——— — —————— A ——_— =n i i 2d A in 2 el Sf So re ls it ete we]

The result is right-adjusted with leading zeroes if necessary. The i
number of bytes 1s the number necessary to represent the string in
binary. An error message is printed if S contains illegal
characters.

The following <specfunc>s perform the same function except that
2 the parameter A is an atom ( BYTEZ2 representation) of the string S: |

ro TTTTT TT |
} |] &TBIN(A) |

|=m Co
| } &TOCT (4) }

| &TDEC (A) |] :

- j= :
| &THEX (A) | |
PES | :

The following <specfuncd>s are used to convert an internal number to
| character form. The result is thus a STRING expression. Below, A

represents an atom { BYTE2 expression). oo

<specfunc> the STRING result is

enon|

| GBINT( <expr> ) | <expr> expressed in binary characters |
|= ee re er re rm mee == |
| &DECT( <expr> ) | <expr> expressed in decimal char. |
=m mr er rr rr mr er mmm me me =

}] SFLPT( <expr> ) | <expr> expressed in floating pt. Char.]|
| =—————— me —— mr —— —— ——————— = cs nmUS — l

© | SHEXT( <expr> ) | <expr> expressed in hex characters. i
j= memmmmm me = |
|] 6CCIT( <expr> ) | <expr> expressed in octal characters. |
f= rr rr rr reem mm ee — |

|" ETEXT( A ) | stringy corresponding to atom A }

No conversion is performed on <expr>; it is changed as it stands in
MEMOLY

Examples:

| SBEINT( B*'11010') is equal to *'11010°
EDECT( B'1101710') is equal to *2b6?
EFLPT( B*11010') is egual to '2.6 E+01!
SHEXT( B'11010') is equal to '1A! |
ECCIT( B*'11010') is equal to *32°
GCECT( -3645001) is equal to '-3645001"
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i 9.10. Releasing storage
-

If an assignment statement

- <POINTER destination> = <struct exp>

(where the <struct exp> is not an <old valued) is executed, CIL

L allocates storage for the <struct exp> and puts its address in the
<FOINTIER destination>. It is then the programmers responsibility to
release this storage when no longer needed (see Section 14.9 for the

A special case of DESCRIPTORS). The <specproc>
‘© |

( | GRELEASE ( <POINTER destination> [ ,<{painto type> ]) |
L " Lm re rr tm tn mr eemm he mm em mm mm mm nam em em me} |

releases the storage pointed at by the POINTER and sets it to zero.
‘The <pointo type> is needed if the declaration of the POINTER did

- not unambigously indicate the data being pointed at.Y P |

- | |

| i
i.
 —_—

{ i
|

.

.

{ ’

-
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10. CPERATIONS ON TABLES, DiCTS AND STACKS |

This section describes how one adds, deletes and searches for
records intables, dicts and stacks. Each <specfunc> described here
yields a POINTER value - either VU or the address of a table, dict or
stack record. Thus they may be used anywhere a function designator
is used. They may also appear separately like procedure statements,
in which case their value 1s lost. |

10.1. Operationson_ tables |

Syntax: The syntax orf tne ENTER, LOOK, TALLY and DELETE |
<specfunc>s 1s

a|

| ENTER ( <table identifier> | , <exp> ]) | |
|ermrm mmm mmm m—m mmmm—————m—————— ]
| LCOK ( <table identirier> | . <component selector> ]|
I , <€expression> | I
J [ FROM <POINTER expressioni> ] }
| [ TCO <POINTER expressionz> J] |
| [ » BACK ]) |

Lm ee mm mem mr ee ems memes es mms mm meee |

| TALLY ( <table identifier> , POINTER expression» ) |
Ll +» BACK ])

[mmm mm mm i

| DELETE ( <table identitifier> , <POINTER expression>) |
LL ene en me et et en ti an A SE Se PE A A A > — — — — — — ———— a vn a ep wn we am ne}

Semantics:

ENTER. A new record is added to the table identified. If the
<exp> is present <exp> (which must be assignment compatible with the
tyre of the table records) is assiyned to this new record; otherwise
its value is undefined. The value ot ENTER is the address of the new
record.

LOOK. If the type of the records of the table is a basic type,
the component selector may hot appear. A subset of the records is
searched for one which is ejual to <expressiond. If the type of the
records is a ‘structured type, a subset of the records is searched
for one whose component selected by the component selector (default
option is "1-1%) is equal to <expression>. The comparison is done
according to the rules of Section 8.2.6.

<PCINTER expression!> must point at a record of the table, say
the Ith (default option 1s tne address of the first record).
<EOINTER expression2> must point at a record of the table, say the
Jth (default option is the address otf the last record).

If BACK 1s missing, the records tested are records I,
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BN I+1,+2=,J, in that order (none if J < I). If BACK appears, records |
Cw J,J-1,.-..,1 are tested, in that order (none if J < I).

If a record is found, the value of LOOK is the address of the

. record. Cthervwise the value is 0O. |

TALLY. The POINTER expression must be 0 or the address of a
- record of the table identified. The value of TALLY has type POINTER

and is given by the following table, assuming the table has N

| records.
~ . |

Value if BACK Value if BACK

| POINTER expression 1s _not_ present is present
0 addr. Of record 1 addr. Of record N

addr. Of record 1 = addr. Of record 2 0

addr. Of record N 0 | addr. Of record N-1

~— addr. Of record J addr. Of record J+1 addr. Of record J-1 |
(1 < J < N) |

L
DELETE. The POINTER expression must be the address of a record

. in the table, say record I. If there are currently N records in the
table, records I, I+1, ... , N are deleted from the table. The value

- of DELETE is the value of the new last record - record I-11 (0 if
table is now empty).

1 |
— .

10.2. Cperationson dicts |

- Syntax: The syntax of these <{specfunc>s ENTER, LOOK, TALLY and
CELETE is

{ .

] ENTER ( <dict identifier> , <BYTEZ2 expression» i

\ [ , <exp> ]) l
! } jm mrmemm me me en A Ie || - }

: | ENTER ( <dict identifier> , <POINTER expression |

arrat et tml

~— ] LOOK ( <dict identifier> , <BYTE2 expression> ) ]
it

| LOOK ( <dict identifier> , <POLINTER expression) ) |
- | === mmm mm ee meme memo |

§ TALLY( <dict identitier> , <POINTER expression> ] |
i { , BACK ]) |
| mmm mm me ee eeemmm mm mm me |

= | DELETE ( <dict identifier> , <POINTER expression> ) |
me on em me rn em omenA emnm em mm me me)

Semantics: As discussed in Section 12 on the scanner

-
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definition, each compiler automatically uses a hash-coded internal
dictionary SINTDIC to aid in changing from source language symbols
to their internal representations called ATOMs. There is one record
in the internal dictionary for each source language symbol

| recognized. By using dicts the compiler writer can use the internal
dictionary to search his own symbol tables efficiently.

In the discussion of dict declarationsit was stated that the
structured type of the records must begin with a BYTE component
followed by a POINTER component. The first component automatically
contains an internal number identifying the dict. The second

i component is used to chain dict records which refer to the same ATOM
to the internal dictionary record tor that ATOM. Thus, in order to
tind the record in a dict for an identifier, one only has to search
the -chain based on the internal dictionary record for that
identifier.

Fig. 1, part A shows the record for an ATOM, I, before any dict
records have been chained to it; the second component of the record
points to the record. In the same part A it is assumed that the
dicts DICT1 and DICTZ are empty; the other parts of figure 1 will be
used to illustrate the operations on dicts.
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FIGURE_1
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ENTER. A nev record is added to the dict identified. If <exp>
is Fpresent, it 1s assigned to the record (it must of course be }
assignment compatible with the recora); otherwise the record value
is undefined. The record is then chained to the internal dictionary,
as follows: oo

1. If the second parameter is a BYTE2 expression, its
value must be an ATOM - that is, the internal representation of
some source language s;mbol. The new record is inserted in the
chain directly after the internal dictionary record for the
atom. As an example, consider rig. 1, part A. Executing

| ENTEK (DICT2,I)

-would yield fig. 1, part B. Further execution of | |

. ENTER (DICT1,I)

weuld yield fig. 1, part C.

2. If the second parameter is a POINTER expression, its
value must pe the address otf some chained dict record (not
necessarily the dict identitied in the ENTER operation.) the i

~ new record is inserted in the chain after the «chained dict
record. For example, consider tig. 1, part C. If P is a POINTER
variable, executing

P = ENTER( DICT1, DICT1(1))

would yield part D. Further execution of | |

ENTEK (DICT2, P) |

would yield part E. | |

LOOK. There are two variations:

1. If the second parameter is a BYTE2 expression, its
value must be an ATOM. The chain based on that ATOM is searched
for a record in the dict. The value of LOOK is the address of

the first one found (0 if none found). Por example, consider
fig. 1 part D. Execution ot

LOOK (DICT2,I)

yields the the address of the record DICT2(1), while execution
of the same statment but witha the configuration of fig. 1 part
E would yield the address of DICT2 (2).

2. If the second parameter is a POINTER expression, its
value must be the address of some chained dict record. The

records after the one addressed and up to the internal |
dictionary record are searched for one in the dict specified.
The value of LOOK is tne address of the first one found (0 if
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- | -

- none found). For example, consider fig. 1 part E. Executing
-

LOOK (DICT1, DICT1(1)) |

1 yields the address of DICT1{2), while executing
LOOK (DICT1, DICT1(Z2)) or LOOK({DICT?1, DICT2(2))

yields the value 0.

} TALLY. This works exactly as the TALLY operation with tables.

| ~~ DELETE. This works exactly as the DELETE operation with tables,
vith the addition that the records are taken off the chain before

— being deleted.-For example, consider fig. 1 part E. Execution of

L P = DELETE( DICT2, DICT2(2)) |
~ yields the address of record DICTZ2(1) in P and the configuration in |

| + tig. 1 part D.

1 10.3. Cperations_on_ stacks |
Syntax: The form of the PUSH and POP <specfuncds is

| PUSH ( <stack identifier> [ , <exp> 1) i
| jm————————————————— 1 >SA — 8 |

L . | POP ( <stack identifier> | , <destination> ]) |Loom om vm mr rn a a a > se te oD A n> i A A ———— —— a —— ate ot 2 vo oon

A
: Semantics:

L PUSH. Executing PUSH adds a new record to the stack identified.
The value of the record is the value of <exp> (which must be
assignment compatible with tne record), if present; otherwise it is

1 undefined. The value of PUSH is the address of the new record.
POP. Executing POP deletes the top record from the stack |

identified. If the destination is present, the top record (which
| must be assignment compatible with the destination) is first |

assigned to the destination. The value of POP is the address of the

new tor stack record (0.if the stack is now empty).

- Care must be taken when PUSHing and POPing the main stack of a
pass; a semantic routine should not PUSH and POP if it later refers

L to the main stack via 10, LI, LZ2, L3, L4, LS5, R11, R2, or R3.
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10.4. The_table SINIDIC. |

E§INTDIC is the hash-coded INTernal Dictionary used to transform
source language symbols into atoms. The following <specfunc>s are
rrovided to allow a compiler writer some access to it.

aaa |

| LOCK (&INTDIC, <STRING expr> ) i
Ett ae |

| ENTER(GINTDIC, <STRING expr> | ,<BYTE expr>] ) |
a |---|

’ | ATOM ( <POINTER expr> ) | | |
| tend

| ATOM ( <STRING expr> ) |

| ETYPE( <EOINTER expr> ) | |
Rae meinTtea

| ETYPE( <STRING expr> ) I |
Lm mm mnnc tn 1 on nn on ee

LCOK returns the address of the EINTDIC record for the STRING oo
expression {or 0 if no record for it).

ENTER 1s executed as follows: If no record exists for the
STRING, one is added to §&INITDIC. Then the value of the BYTE

expression becomes the type of the string for the current scanner
definition (cf Section 12.1). The default option for the BYTE
expression is 0. The value of this <specfunc> is the address of the
EINTLIC record.

ATCM returns a BYTE2 value. In the first case, the POINTER
expression must yield the address of an EINTDIC record or a dict
record. The value returned 1s the atom for the symbol associated
with the recorde In the second case, the value returned is the value

assigned to the BYTEZ2 variable B when the following statements are
executed:

.P = LOOK (EINTDIC, <STRING expr);
IF P

THEN B = ATOM (P) | |
ELSE B = ATOM{ ENTER(EINTDIC, <STRING expr>) ):

&TYPE returns a BYTE value - the type of the symbol (cf Section
12.1) associated with the SINTDIC or dict record pointed at by the
FOINTER expression (case 1) or with the STRING expression (case 2) =-
which must already be in GINTDIC. |
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17. STORAGE ALLOCATION AND ALIGNMENT OF VALUES

L

~ While not necessary, it is often helpful to know how storage is

i allocated. In the IBM 360, data must often begin on a halfword,
fullword or doubleword boundary. We define the alignment factor as

- RAL. ER2REDL
follows:

L data mustbeginon alignment factor is
douktlevord 8

i | fullword 4
halfword 2

| byte ] }

L In other words, if the alignment factor is i then the address of the
leftmost byte of the data must be a multiple of i . The following
table gives the alignment factor and storage requirement for basic

| type values.
Type alignment number of

L ——— | factor bytesused |
| BYTE | 1 1

| BYTE2 2 2
BYTE3 4 (see A below) (see A below)
BYTE4 4 4

| BYTES (I) 1 (see B below) IHWl 2 2

Fil 4 iq

DEC to be deterained later

| FWF 4 4 |
DWF 8 8

EOINTER 4 (see A below) (see A below) |

L : STRING (I) 1 (see B below) I

~~ A. BIYTE3 and POINTER values are contained in the last 3 bytes
( of an IBM 360 fullword. The first byte may or may not be used for

anether value.

B. In certain cases, a BYTES or STRING variable may be given
L four tytes —- one for the length minus 1 and the other three for the

address where the actual value really is.
|

-

The following rules are used to allocate storage for structured

{ type values.

L le The alignment factor for a structured type value is the maximum
of the alignment factors.of all its components and subcomponents.

L

2. The alignment factor for any component with subcomponents is the

i maximum of the alignment factors of those subcomponents.
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3. All components of a constituent use the same space. The number of
bytes allocated to a constituent is the maximum of the number of |
bytes needed for each component of the constituent. )

4. Bytes are allocated to constituents in a left-to-right manner.
The constituents are packed tojether as close as possible, taking
into account their alignment factors.

5 The number of bytes used is a multiple of the alignment factor.

- Examples

STRUCTURES1 (BYTE B, HWI C, BYTE D1 ALT HWI D2);

-STRUCTURE S2 (BYTE E, Fil F, G(BYTE2 G1 ALT BYTE G2), S1 H); a

S1.A1 ; S2 A2; |

A1 will beginon a halfword, A2 on a fullword. They. look as
follows (bytes are numbered starting at 0; the underlining after
each identifier indicates which bytes that component uses):

~ BYTE 0 1 2 3 4 5
Av____
B__ C_____D1_ |

D2____

BYTE oOo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |

AZ __ __
E__ F___———s____9_____

Gi____B__ C_____D1_
G2_ D2__
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| 12« SCANNER DEFINITIONS | |
The scanner is that part of a compiler which reads in the original
source program characters and composes them into atoms -~

L identifiers, integer, single and-double character delimiters, and
reserved words. The scanner definition indicates how these atoms are

| to be formed.

L As indicated in Section 4, several scanner definitions may be
given. Initially, the first one 1is in effect until changed at

{ compile time.

The scanner definition was defined with two conflicting goals
in mind: | | |

L 1. The scanner should be efficient. To accomplish this, the IBM |
~ 360 "translate and test" instructions are used, along with

| three or four 256-byte tables per scanner definition. With |this, for example, sequences of 1 to 256 blanks in the input
source program can be skipped with one instruction.

L | 2. The scanner definition should be flexible enough to
accomodate all existing lanjuages. This of course was not
possible. In order to accomodate more languages, the compiler

L writer can test, insert and delete characters from each cardtefore it 1is actually scanned. He can also switch back and
forth from normal scanning to character —- by - character

{ scanning (in which case he buiids atoms himself).
-

At this point, an example will help to make the next sections
easier to understand. Suppose our source language consists of octal

| expressions using the operators +,-,%¥,/ and **, Parentheses {( and )
are also used. Numbers are octal integers. Identifiers must begin
with $ or one of the letters A through J; the succeeding characters

. must be one of the letters A through J. IDBEG is a reserved word
L used to identify the beginning and end of expressions. Comments

begin vith /* and end with */. Spaces are ignored. The scanner

| definition is
: SCANNER ONE (ONE identifies the scanner def)
| SYN IDBEGSYN IDBEG (IDBEGSYN is a synonym for IDBEG)

DIGIT O 1 2 3 4 5 6 7 (detines digits)
— IDBEG$ A B CD

EFGHTIJ (defines beginning id chars.)
{ IDCHAR A BCD EVFGHTIJ (defines other id chars.)

(_ TERMIN + = * / () (defines single
character delimiters) |

( IGNORE X'40° (spaces are completely ignored) |
L INVIERMIN NONE (this class of symbols is empty)

RES IDBEGSYN *% (defines reserved words and
] 2-character delimiters) |

COMMENTQ /* */ (comments begin with /*
- | and end with */)

ENDSCAN (end of scanner definition)

-
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| Syntax:
<scanner def> 23= SCANNER <scanner id>

[ <<synonym def> list> ]
<<set definition> list)

[ Kreserved-def> list> ]
[ <Kguote def> 1list> ]
[ BEGIN <preprocessor> ] |
ENDSCAN

; 12.1. Scanning and the internaldictionary

When scanning a source program, the scanner proceeds from left to |
right through the program. The end of a line (card) has no |
significance. (the compiler writer may, hovever, have his own |
internal character inserted at the end of each line to give it some
‘significance - cf Section 12.6). In case there are several |
alternatives for the next source language symbol, the scanner always :
Ficks the longest one. Thus if *BEGIN?! and *BEGIN are both reserved
vords and the characters ', B, E, G, I, N and '* are scanned, then
"BEGIN? will be formed. |

Scanning in normal mode(NORMODE) (cf Section 9.8). When a )
source language symbol is formed, it is replaced by a 16-bit number. k
The compiler works exclusively with this number. The word atom is
used both for a source language symbol and its 16-bit
representation.

In order to replace a symbol by its 16-bit representation, the
system uses a hash—-coded internal dictionary, named SINTDIC. SINTDIC
contains a record for each source language symbol scanned. Besides :

| the symbol itself and its internal representation, this record
indicates (for each scanner definition) how the symbol has been

, used. The possibilities are:

type heaning

0. The symbol is undefined (has not been scanned using
this scanner definition).

6 The symbol is an identifier (I).
7 The symbol is a number (N)e.
8 The symbol is a string (S).
9 The symbol is a reserved word or terminator (like + -

BEGIN END) (RB).
| 10 The symbol begins a comment (CQ).

11 The symbol begins a string (SQ).

When an atom is scanned, it is passed to the compiler in
location SCANSYM. SCANSYM contains two BYTE2 components. Just how
the atom is put in SCANSYM depends on its use. If it is a reserved
word or terminator (R), the atom for it is put in SCANSYM.1 (first
component), while SCANSYM.2 becomes undefined. If it is an

identifier (number or stringy), the metasymbol I (N or S) is put in
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he

SCANSYM.1 and the atom for the identifier (number or string) itself
1 is put in SCANSYM.2.

— Scanning_in character mode (CHARMODE) (cf Section 9.8). When in
character mode, the source program characters are put in SCANSYM.1

| as they are scanned. SCANSYM.2 becomes undefined.
(-

| 12.2. Defining synonyms
— Syntax:

<synonym def) $= SYN <<synonym paig> list
- <synonym pair> ::= <synonym> <<EBCDIC char> list)

L | <synonym> <char sequence>

| {char sequence> ::= <EBCDIC or hex>
L ) | <char sequence> CAT <EBCDIC or hex>

| <EBCDIC or hex> ::= <EBCDIC char> | <hex char>

i <hex char> 2:= X ' <hexit> <hexit> ?
| Semantics: A <hex char> may not be X'70'. The <hex char> allows

one to use other 8-bit combinations as characters, besides the
— EBCDIC bit combinations. Note that a space must be represented by

its hex representation, X'40°.

| The synonym definition associates a CIL identifier (the
synonym) with a sequence of characters which form a source language
symbol (the <EBCDIC char> list or the <EBCDIC or hex>s in the <char

| sequence>). The synonym must be used later in a set definition (cf
- Section 12.3) or in a reserved word definitiom (cf Section 12.4), to

indicate hov the source language symbol is used.
| .

. Any source language symbol cam be given a synonym; the
following must have a synonym:

[

L l« Those source language symbols which are scanner definition
reserved vords:

BEGIN
- CAT COMMENTQ

DIGIT |

ENDSCAN

L IDBEG IDCHAR IGNORE INVTERMIN
NONE

RES |

| STRINQ SYN
TERMIN

2. Those source language symbols which contain (or are) a space
- or a character which is not an EBCDIC character.

A synonym may not be a reserved word of a sublanguage im which it is

L
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used {production language or semantic sublanguage or scanner
definition.)

12.3. setdefinitions oo

Syntax:
<set definition> ::= DIGIT <char set> |

| | IDBEG <char set> |
| - | IDCHAR <char set)

t | TEBMIN <char set> |
|] INVTERMIN <char set>

oo } IGNORE <char set> |

<char set> s:= NONE | <<character> list>
<character> ::= <EBCDIC or hex> | <synonym>

Semantics: Setdefinitions serve to describe the use of each
character 1in the source language. Each character must appear in at |
least one set definition. These definitions are used by the scanner
to build the actual source lanjuaye symbols. A set definition with
the <char set> NONE defines an empty set. The sets have the
following meanings:

1. The set of DIGITs are used to form numbers according to the
syntax

{source numbper> ::= <<K4igit> list>. |

When a source number is formed, the metasymbol N is returned in :
SCANYSM.1, while the atom tor the source number itself is put
in SCANSYM.2. Note that no actual conversion of the number is

. performed.

2. The sets IDBEG and IDCHAR are used to foram source {langquage)
identifiers according to the syntax

{source id> ::= <char in set IDBEG>

| [ <<char in set IDCHAR> list> ].

When a source identifier is formed, the nmetasymbol I is
returned in SCANYSM.1, while the atom for the source identifier

itself is put in SCANSYM.Ze

3. The set TERMIN contains the single character symbols of the
source language. Examples from ALGOL and FORTRAN are # - { and
) =~ These characters are called terminators, since they
terminate identifiers or numbers. When scanned, the atom for a
terminator is put in SCANSYM.1 while SCANSYM. 2 becomes
undefined. |

4. The «characters in the set INVTERMIN signal the end of an

atom being formed. For example, in some languages a space
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| following am identifier ends that identifier; A B is two
C identifiers— A and B. However, these characters are INVisible |

—- they are not passed on to the compiler (except in strings).
| |

| 5. The «characters in the set IGNORE are completely ignored
... (except in strings) if they appear in the source program. For

example, in some ALGOL implementations blanks are ignored;A BC |

L is the identifier ABC. |
The default option, in case a set definition for one of the sets is

1 missing, is taken from the tollowing set definitions: |
| DIGIT 0 12 3 4 56 789 |

IDBEG A BC DEF GHIJKLMNOPQRSTUV WXYZ |

L - IDCHAR AB CDEFGHIJKLMNOPQRSTUVHWNIXYZO 1
2345467 8239

~ TERMIN NONE |

L INVTERMIN X?40° |IGNORE NONE

The following restrictions are placed on the sets. The sets IDBEG

L and IDCCHAR may have a nonempty intersection. The sets IDCHAR and
DIGIT may have a nonempty intersection.The intersection of any |

| . other two sets must be empty.
LL |

12.4. Reserved words

L Syntax |
<reserved def> ::= RES <<res word> list>

{res word> ::= <source id>

L | ] <termin> <source id> [ <termin> ]
| <termin> <termin> |

| <synoaym>

L ; <termin> 2:= "a character in the set TERMIN®{source id> 2:= "a source laaguage identifier (cf sets
IDBEG, IDCHAR)"™ |

i | |
Semantics: The reserved detinition declares the reserved words

of the source language. Note that we include double character

. symbols like // and /* here. If a synonym appears here, the source
language symbol it represents must have one of the other forms given |
above.

12.5. String _and_ comment quotes |

3 Syntax
{quote def> 2:= STRINGY <<yuote pair> listd>

| | COMMENT) <<quote pair> list)
.

L <guote pair> ::= <beygin guote> <end quoted |
<begin quoted ::= <termin> |] <res word> } <synonym>

| <end quoted ::= <termin> | <termin>] | <synonym>
I



12. SCANNER DEFINITIONS 58 :

Semantics: The set COMMENTyY contains pairs of beginning and end
quotes for comments. The beyinning quote can be any terminator or
reserved word; the end quote must consist of one or two terminators.
Comments are deleted from the source program.A comment is thus an
invisible terminator (set INVTERMIN).

The set STRINGQ contains pairs of beginning and end quotes for
strings. The beginning quote can be any terminator or reserved word,
while the end quote must consist of one or two terminators. When a
string is detected, the nmetasymbol S is put in SCANYSM.1 and the

| atom for the string (without the quotes) is placed in SCANSYM.2. |

12.6« Processingbefore scanning

Syntax: <preprocessor> ::= <procedure call> " of a procedure
without parameters"

Semantics: Theprocedure must be in core during the time the
scanner definition is used. When reading in a new source program
line, the scanner puts it in the system string variable GINLINE and
executes the procedure call. This procedure can then do any
preprocessing necessary before the scanner actually scans the line.
The result of this preprocessing must be put in the system string
variable £SCLINE. The original line should also be written out using BN
§0UT.

For example, suppose we wish to preprocess a FORTRAN program.
The end of a line means the end of a statement except when column 6 |
of the next card is nonblank. In additiom, columns 1-5,7-72 are
fixed fields. Suppose in the scanner definition we declared the
terminals EOS (end of statement) and EOL to be tvo byte
representations which cannot appear on the input card. The following
procedure then will accomplish what we want:

PROCEDURE PREPROC;

BEGIN &OUT(SEINLINE); &OUIL; /¥ write out the line */
IF SUBBYTE(SINLINE,S5,1) = * ¢

THEN BEGIN /¥ this is not a continuation card*/
ESCLINE = EOS /7¥ put in end of statement,*/

CAT SUBBYTE(&INLINE,O0,5) /* label field,*/
CAT EOL /% end of label, */
CAT SUBBYTE (¢INLINE,6,66) /* rest of card */

END

ELSE BEGIN /*¥ continuation card. */
ESCLINE = SUBBYTE(6INLINE,6,60)
END |

END

If the <preprocessor> is missing from a scanner definition, a
procedure with the following procedure body is automatically invoked oo
before each new line is scanned: |
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. ‘

| BEGIN §OUT( &CLINE, * *, /* line number */
— EINLINE) ; /¥% input line */

&E0UT;

[ &§SCLINE = SUBBYTE (SINLINE,0,72); /* only cols 1 to 72 #/

L END o-

_ The following system indentifiers are used in connection with
the scanner. }

| STRING (80) &SINLINE. Always contains the last source program line.

1 STBING (256) &SCLINE. Current source program line being worked on.
STRING( 5) &CLINE. Contains the number of the current line (with

| leading ktlanks).
- HWI ENLINE. The number of the current line.

4

L

L

§ |

-

- |

L |
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13. ERCDUCTION LANGUAGE (PL)

Prcduction_ language (PL) is a sublanguage of CIL designed for
writing "parsers" or "syntax analyzers"of programs. It consists
primarily ot so-called productions which work with a LIFO stack.
Briefly, as a source program is scanned, the source symbols are
placed on the stack and an attempt is made to match the top stack
symbols with those designated by the current production. If no match
occurs the following production pecomes the current one and a match
is attempted again; this continues until a match occurs. When it

: does, the top of the stack is rearranged and several actions are
performed as indicated by the current production. These actions may |
cause more symbols to be stacked, may cause a portion of the
semantic subprogram to be executed and may also indicate which
production is to become the current production. |

At this point an example might help to make this whole section
clearer. Consider the following production:

IF E THEN © > ICL EXEC SIFCLAUSE GO THENPART

This production has the following meaning: If the top three stack |
records contain the symbols IF, E and THEN, then replace these three
records by a single record containing the symbol ICL, execute that |
portion of the semantic subproyram labeled SIFCLAUSE, make the oo
production labeled THENPART the current production and begin
matching again.

~~ Production language need not bpe used, in which «case the
semantics portion of a pass 1s executed as a program in the usual
manner; statements are executed in the order in which they appear.

If production language 1s used 1in a pass, then it is the
production language subprogram which is in command ~- which drives
the compiler. It causes source language symbols to be scanned and
invokes farts of the semantic sublanguage.

Syntax:
PL subprogram> ::= PRODLANG

{ <<PL declaration> list> ]
PRODUCTIONS <<production> list
ENDSYNTAX |

13.1 commentsand blanks |

A comment in PL is any seguence of characters, not including the
subsequence "::", enclosed in the comment quotes “::" and %"::" , A
comment may appear between declarations and/or productions.

Blanks may appear anywhere except between characters of a <PL
identifier>, <source symbol>, <identifier>, or reserved vord. At
least one blank must separate them if they are adjacent.
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|

13.2 PLl_reserved words
- |

The reserved words of production language are:

| ANY —-
CALL CLASS CLASSLAB

ENDSYNTAX ERROR EXEC

i GGHALT
I IF INT

t PRODLANG PRODUCTIONS
| RETURN

S SCAN SCANNER SCANSYM SIGNAL STAK

| UNSTK
They may not be used as identifiers in a PL subprogran.

- -.

13-3. Source _language_symboals

| Syntax |
{source symbol> ::= "any sequence of 1 to 250 EBCDIC |

characters except win, w:n, "3" and

i space (blank). It may not be a PL reservedword."

| | <source language symbol)

L Semantics: A source symbol is a sequence of characters which
was declared in a scanner definition to be a symbol of the language
to be compiled (cf Section 12.2). Note that in this subprogram only,

| the source symbol may appear without the "3$" in front of it, as long
as it follows the rules given above.

| } Examples:
BEGIN

+

i ~~  $% is the source language symbol "$"
- CLASS is not a source symbol since it is a reserved word.

$CLASS represents the source language symbol CLASS. |

i AND and $AND are equivalent.

. 13.4. Metasymbols
Syntax: <metasymbol> z::= I | N | S | ANY

i The metasymbols I, N, and S represent an identifier, a number
{sequence of digits) and a string of the source language being

| compiled, respectively.ANY represents any source language symbol.
| Their use will be explained later.

: 13.5 PL_identifiers
L
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Syntax
<PL identifier> ::= "any sequence of 1 to 250 EBCDIC

characters except gn, wn nw30_ and oo
space. It may not be a PL reserved word |
or be used as a <source symbol>."

<PL 1label> ::= <PL identifier> |

<PL int> 2:= <PL identifier>

<class name> ::= <PL identifier>

. Semantics: By the symbol <iaentifier> we mean the usual
a identifier (cf Section 1.3) - a sequence of letters and digits, the
| first of which must be a letter. <identifier>s used in a PL

subprogram are declared elsewhere - as a synonym for a source
lanjuage symbol, as a label in the semantic program, etc.

PL identifiers - those declared and used only in a PL
subprogram - are less restricted, as indicated by the above syntax.
A PL identifier may be declared only once in a PL program and must
be different from any identifier or symbol used ina PL subprogranme.

| 13.6. Communicationbetween syntax and semantics E

13.6.1 the main stack |

Production language uses a LIFO stack. This stack serves also
as the ma jor communication between the production language
subprogram and the semantic subprogyram. The stack to be used for
this purpose is defined by a <main stack dec> in the semantic |
sublanguage (cf Section 6.2). It must be STATIC (cf Section 6.2) and
the first three components of the stack records must be of type
BYTE2. Apart from this, the compiler writer is free to define the
structure of the stack record as he chooses. The second component is

called the syntax component of the stack; it is used to store the
(atoms for the) symbols of the language. |

As source language symbols are scanned at compiletime, they are
~~ put in location SCANSYM {cf Section 12.1) and then pushed onto the

stack.as follows:

l« If the symbol is an identifier (number or string), the
metasymbol I (N or S) is put into the second BYTEZ2 component,
and the atom for the identifier (number or string) is put into
the third BYTE2 component. The rirst ccmponent is reserved for
system use. N

2. If the symbol is not an identifier {number or string),
its atom is put in the second BYTE2 component. The first
component is reserved for system use while the third component |
becomes undefined.

For example, suppose the string "A = B PLUS 1" is scanned, where A |
and B are identifiers, PLUS is a reserved word and 1 is a number in
the source language being compiled. Then the stack would be:
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L | |

. stack rec. 1st comp. 2nd _comp. 3rd comp.
0 reserved N 1

1 reserved PLUS undefined

| 2 reserved I - B
3 reserved = undefined

| 4 reserved 1 A
| 13.6.2 location SIGNAL

L BYTE identifier SIGNAL is a system identifier local to a pass
whose value can be changed in the usual manner in the semantic
suklanguage and tested in production language. Its value is

L initially undefined. (cf Section 13.9, action 7).

| 13.7. Declarations_inPL
Syntax
<PL declaration> ::= <int dec> }] <class dec>

| | <classlab dec>

<int dec> :2= INT <<PL int> list>

| <class dec> :== CLASS <class name> <<symbol> list>
<classlab dec> ::2= CLASSLAB <class name>

<{symbol-label> list>

| <symbol label> ::= <symbol> <label)>
<symbol> | ::= <source symbol> } <PL int>| I | N | S

| |] <int identifier>
Semantics: The identifiers declared in an INTernal declaration

| ‘can be thought of as "nonterminal" symbols used to help define the
syntax of the source language. They can be placed in the syntax
portion (second component) of the stack. Each INT identifier is

| represented internally by a 16 bit (BYTE2) integer assigned by CII.
© CLASS and CLASSLAB declarations serve to associate the

<symbol>s with the <class name. This is simply a notational

i convenience; a production containing a class name is equivalent to a
sequence of productions, each with one of the <symbol)>s substituted
for the class name.

L Additionally, a CLASSLAB declaration associates one semantic
label of the semantic sublangjuage with each symbol, providing

| another convenience mentioned later in discussing actions.
INT identifiers and class names must be declared before they

are used. .

L Examples:

| INT PRIMARY FACTOR TERM EXPRESSION
-
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CLASS UNARYOPERATOR + -

CLASSLAB OPERAND I ROUTINEI N ROUTINEN PRIMARY RCUTINEP

13.8. Eroductions oo.

Syntax

<production> ::= <PL label> : <production>
| <lett part> [ <right part> ]
<Kaction,> list>

: <left partd> ::=<<symb> list>
<right part> 2i= WOM <K<symb> list> ]
<action> ::= "see Section 13.9" |

© <symb> ::= <source symbol> | <meta symbol
| <int identifier> | <PL int> |

| | <class name>

A <left part> may contain at most 5 <symb>s in the list.
A <right part> may contain at most 3 <symb>s in the list.

Semantics: The first production to be executed is the first oo
one. Productions are executed in order of occurrence except when |
this is changed by an action. A sejuence of productions may act as a
subroutine. See Section 13.9, actioas 1 and 8.

A production 1s executed as follows:

1. The <symb>s in the left part are compared with the syntax
components (second component) of the top records of the stack. |
A match occurs if one ot the rollowing holds for each <symb> in
the left part:

. A) the <symb> is a <symbol> and the same <symbol> appears
on the syntax component of the corresponding record. -

B) the <symb> is ANY (it matches any symbol on the stack).

C) the <symb> is a class name and the syntax component of
the corresponding stack record is a symbol in the class
<class name> (cf Section 13.7).

If a match occurs yo on to step 2; if no match occurs,
execution is finished.

2. If the right part occurs in the production, then the records
matched 1in (1) are deleted from the stack. Any <symb>s
appearing in the right part are then stacked, in left-to-right
order, as follows: ] |

| A) if the <symb> is ANY, I, S, N or a class name, it must
also have appeared in the left part. The complete stack
record, whose position corresponded to the rightmost
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L occurrence of the <symb> ian the left part, is stacked.
B) if the <symb> is a source symbol, PL int or int

| identifier, a record is added to the stack and its second

L component becomes that symbol.

| 3. The actions are executed.
13.9. Actions

L We now present the possible actions which can occur in a
production.

l 1. CALL__<PL__label> Execute the productions starting at the one
labeled by the <PL label>, and continue until the action RETURN
is executed. This is thus just a subroutine call. It may be

L recursive. Restriction: the action EXEC <class name> may not
appear after a CALL action in a production.

L 2 EBROR_<integer> Print " ERROR <integer>".
3. EXEC_<label> Begin executing the semantic subprogram of the pass

at the statement labeled <label>. When the semantic statement

| SYNTAX 1s executed, return to the action following this one.
The <label> may not be in a procedure or iterative statement of
the pass.

L 4. EXEC <class _name> The class name, which must have been declared
in a CLASSLAB declaration, must also appear in the left part of

any production in which this action appears. Consider the
symbol in the stack corresponding to the topmost occurrence of
the class name in the left part of the production. The semantic
subprogram 1s executed bpeginning at the semantic label

l - associated with this sympol in the declaration of the class
name. Upon execution of the semantic statement SYNTAX, control
returns to the production subprogram at the point following

L this action. Please note the restriction in action 1.
© Example. Suppose we have the declaration

| CLASSLAB SIGN + SPLUS - SMINUS
and that the stack contains

L E ¢# E~- E (top of stack)

i and finally that a match has just occurred using the production
E SIGN E SIGN E EXEC SIGN .

i Then the semantic subprojram will be executed beginning at
label SMINUS.

i 5. GO_<PL_label> The production labeled <PlL 1label> becomes the
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current production and matching begins. Any actions following
the GO action will never be executed.

6. HALT <integer> Print the message "HALT <integer>" and stop the
Frograme. Lo. |

| Jo IF_SIGNALGO <PL_label> If SIGNAL is TRUE (not zero), execute the
GO <PL label> action (cf Section 13.6.2).

8. RETURN Return to the point after the last CALL executed (cf

, action 1).

9. SCAN If this pass is not in parallel with others, build the next |
atom of the source program, put it in SCANSYM (cf Section

"14. 1), and push it onto the stack (cf $section 13.6.1).

10. SCAN _<integer> This 1s equivalent to SCAN SCAN ... SCAN
<integer> times.

1a SCANNER __<identifier)> The identifier nust name a scanner
definition (cf Section 12.). Until another SCANNER action is
executed, the source program will be scanned according to the
scanner definition identified. |

12. STAK__<symbol> The symbol is pushed onto the stack {component 2
of the new record - cf Section 13.6.1).

13« STAK_SCANSYM Push the symbol in SCANSYM onto the stack. (cf
Section 12.1).
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i 14. CCDE GENERATION SYSTEM (CGS)
14.1. CODEAREAS

i 14.1.1 introduction oo
A COLDEAREA is a table for storing code (machine language) as it

i is being generated at compile time. Code gets stored in a CODEAREA
automatically as code bracket statements (cf Section 14.6) and
expressions (cf Section 14.5) are executed. The compiler writer may

{ also enter his own information into a CODEAREA with an ENTERy statement (cf Section 14.1.5). At runtime, the contents of the
| COCDEAREA becomes the program being run. |

| : Any number of CODEAREAs may be used at compile time. They may
contain code, tables of constants, or a mixture of both. Each

, CODEAREA becomes a named section, or CSECT, of the generated object

L module.
We make the following restriction om the use of CODEAREAS: the

bytes ot code for a subroutine snould be contiguous. By a subroutine
we mean a section ot a program which may be "called" from many |
rlaces, and which returns to tne calling point when finished. To

- 1llustrate this, suppose a one-pass ALGOL compiler is compiling a
1 program with the following structure:

BEGIN PROCEDURE B:

| BEGIN PROCEDURE C;BEGIN <.. END; |

| END;
PROCEDURE D;

I | BEGIN ... END;
END

~~ Code for the main program and for procedures B and C must be
generated into different CODEAREAS, while the code for procedure D

| may not be in the same area as the main program code. One possible
L configuration would be:

| CCDEAREA1 2 3

| MAIN | |PROCBj ||
i J PROGRAM { | ===] | PROC C|

| |  IPROC Dj | i

| fo | bo _____1

i The main reason for the above restriction is to keep the code for
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each logjical part of the source program in contiguous bytes. This
facilitates base reyister allocation and branching, which on the IBM
360 are complicated tasks.

The important points to remember about CODEAREAS are:

1. A CODEAREA at compile time is read-only storage at runtime.

2. The information is to be tilled into the CODEAREA at compile
time.

3. Each CODEAREA is a separate physical entity (a named section
in 0S 360 terminology).

| 4. At compile time, there is always one current CODEAREA into
which code is being generated. |

| Se All CODEAREAS are in core during runtime (cf Section 14.9
for multiple coreloads).

The offset of a byte in a CODEAREA is the address of that byte |
in the CODEAREA. The first byte has otfset 0, the second has offset BN
1, etc. Within CGS the address ot any byte in a codearea is given by Lo
the pair (CODEAREA number, offset). CGS takes care of addressability
problems when generating code.

14. 1.2 register descriptions

CGS maintains a set of register descriptions for each CODEAREA.
These register descriptions describe (at compile time) the runtime
contents of the IBM 360 rejisters after the currently last
instruction in the CODEAREA has been executed (at runtime). For

example, suppose the statement

| CODE (§GREG (1) = D)

has just been executed. This statement means "generate code to put
the value of the runtime variable described by the DESCRIPTOR D into
general register 1." The code tor this is generated and put into the
current CODEAREA. Then the register 1 description is changed to
indicate that this value is now in register 1.

Execution of the above statement might also cause other
descriptions to change. For example, if the runtime variable is not
directly addressable, code must ftirst be generated to load a

register with the correct address (this 1s done by CGS
automatically). When this happens, the description of that register
is alsc changed.

A compiler writer may change and/or test register descriptions
himself. All operations on them are explained in Section 14.4.
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3 14.1.3 system variables connected with CODEARFAS

Be variable type meaning
&CODENO BYTE contains the number identifying the current

CODEAREA. |
— &CODELOC BYTES contains tne offset of the next free byte oo

in the current CODEAREA, and thus the
| number of bytes in the CODEAREA so far. |

| 14.1.4 creating and switching CODEAREAS.
Evaluation of the <spectunc)>

B | GCREATECODEAREA |

L nt th LS pp—— | |
- Causes a new CODEAREA to be created. The register descriptions of
1 this new CODEAREA all initially indicate that the registers are

empty. The value of the function designator is a BYTE value - the
Dumber assigned to the new CODEAREA. This number identifies the

| CODEAREA and is used to communicate with CGS.
The <specfunc>

| GUSECODEAREA ( <expressiond ) |
he ne vn ee i ce cm se i a ee i ve ora vn a v———— an]

is evaluated as follows: the <expression> is evaluated, assigned to
an, internal BYTE variable I (say), and CODEAREA I (which must have
already been created) becomes the current CODEAREA. This means that
any code generated before the next USECODEAREA function designator
executed, will be added to this CODEAREA. The value of the function
designator is the BYTE value assigned to the previous current
CODEAREA.

14.1.5 entering data into a CODEAREA

Code is entered into the current CODEAREA as code-bracketed
statements are executed and code is produced. In addition,
<specproc>s of the followiny form can be used:

TTTr er em ————ToTTTTTTTT TTY
| ENTEK ( CODEAREA, [ <expressionl>, ] <expression2> ) |
br re cr rr rr eser rnen=om 20 it oe ra a em ep em ma ——— cn to so a tn in swe mame]

This statement is executed as follows:
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1. If <expressionl!> is missing, then <expression2> is evaluated
and added to the current CODEAREA at the next free byte with
the proper alignment {cf Section 11 for alignment factors for
different basic types). Variable §&CODELOC is changed to the
offset of the first free byte after the added bytes.

2. It <expression!)> is present, it is evaluated and assigned to
an internal BYTE3 variable I (say). Next <expression2> is
evaluated and the result is put in the CODEAREA at the offset |
I.

: If the ENTER instruction is used and the entered data is actually
code, it is the compiler writer's responsibility for updating the |
register descriptions.

Examgle. ENTER( CODEAREA, B)

14.1.6 initial conditions

Initially, CODEAREA 1 is the current CODEAREA and is the only |
one in existence. It may already contain some information; CODELOC |
may not initially be zero.

14.2 DATAAREAS

14.2.1 introduction

A DATAAREA is a runtime table for storing data - values
corresponding to source lanjuage variables, temporary results, etc. |
In. contrast to a CODEAREA which at runtime is read-only storage, a
DATAAREA is read-write storage. Under certain circumstances, a
DATAAREA can be initialized at compile time.

Storage is allocated in a DATAAREA to runtime variables through
the allocate statements (cf Section 14.2.4). The allocated storage
can be initialized at compile time by the &INIT or ENTER statements
(ct Section 14.2.4).

The offset of a byte in a DATAAHREA is the address of that byte
within the DATAAREA. The first byte has offset 0, the second has
offset 1, etc. Within CGS the address of any byte in a DATAAREA is
given by the pair ( DATAAREA number, otrfset within DATAAREA).

Actually, the BYTE numpers which identify DATAAREAS are
different from those identifying CODEAREAS. Therefore a pair

(area number, otiset)

uni.juely addresses a byte or an AKEA ( CODEAREA or DATAAREA).
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. 14.2.2 system variables connected with DATAAREAS
variable type meaniny

| EDATANO BYTE contains tne number identifying the current

| DATAAREA.
&DATALOC BYTES contains the offset of the next free byte

| in the current DATAAREA, and thus the

L number ot bytes in the DATAAREA so far. |

{ 14. 2.3 creating and switching DATAAREAS

[ } The <specfunc>
inhibiiad

| | SCREATEDATAAREA [ ( DYNAMIC ) ] |

| lem mmm mmm mm mem em me eee
creates a nev, enpty DATAAREA. The value of the function designator
is a BYTE value which identifies the DATAAREA and which is used to

communicate with CGS about the DATAAREA. |

| . There are two types of DATAAREAS - STATIC and DYNAMIC.
1. If (DYNAMIC) is missing in the above function designator,
the DATAAREA is STATIC. This means that it is a named section

L (control section) of tne object module being generated; itexists throughout runtime (cf Section 14.9 for multiple
ccreloads.) it may be initialized at compile time. CGS handles

| all problems of addressing STATIC DATAAREAS.
2. If (DYNAMIC) 1s present, the DATAAREA is DYNAMIC. No named
section for it exists in the object module being created and it

L . cannot be initialized. Its function is to describe the formatof a section of storage which may or may not exist at different
stages of runtime. It thus is like a "DSECT" in an 0S 360

L | assembly language program.
One use of a DYNAMIC DATAAREA 1s for the variables and

temporary locations associated with a procedure. At compile

L time storage can be allocated within the DATAAREA and code
generated which uses the DATAAREA (even though no storage
actually exists). At runtime, when the procedure is called, the

| necessary storage corresponding to the DATAAREA must be takentrom free storage and used. Just before the procedure returns
to the calling point, the storage is released again.

i Since DYNAMIC DATAAREAS are not always in core and may also
appear in different locations, CGS needs some help in |
addressing variables in them. Briefly, the compiler writer must

i indicate a variable or register which contains the address ofthe DATAAREA. See Section 14.2.6 for full details.

i The <specfunc>



14. CODE GENERATION SYSTEM (CGS) 72 |

a

| GUSEDATAAREA ( <expression> ) | |
ant lh TTCPS

1s evaluated as follows: tne <expression> 1s evaluated, assigned to |
an internal BYTE variable I (say), and DATAAREA I (which must have
already been created) becomes the current DATAAREA. This means that
any storage aliocated or entered oy an allocate or ENTER statement
(ct Section 14.2.4) is entered into this DATAAREA until the next

| USEDATAAREA runction designator is executed. Also, all storage
oH needed for temporary results by CGS is allocated in the current

CATAAREA. The value of the USEDATAAREA function designator is the
BYTE numker of the previous current DATAAREA.

14.2.4 allocating and initiaiizing DATAAREA storage

Before reading this section glance over Section 14.3. |

14.2.4.1 The _<specproc> GALLOCP allocates storage to one or | |
more runtime variables of tae same type. R

Examples. To build a DESCRIPTOR for a halfword integer and allocate
runtime stcrage for it, use

D = DESCRIPTOR (KIND=tHWI1); SALLOCP (D).

To build a DESCRIPTOR for a POINTEXk and allocate runtime storage in
CATAAREA 3 for six POINTERS, use

L = DESCRIPTOR (KIND=SPOINTER); GALLOCP(D,6,DATAAREA 3) .

The syntax of the EALLOCP <specproc> 1s

a

i SALLOCP ({ <DESCHIPTOK destination> J
| L + <expressioni)> ] |
I [ + DATAAREA <expression2> ]) |
Ls om or mm rm tn a re > vv——— 1 > 1 Tm worn sor em > I}

The default option for <expressiont> is 1. The default option for
~ DATAAREA <expression2> is DATAAREA SDATANO (the current DATAAREA).

The statement accomplishes the following:

1. The DESCRIPTOR <destination> is checked. It must not

describe a label, procedure or be undefined. The address of the |
variable must be completely undefined.

2. DATAAREA <expression?> pecomes the current DATAAREA.
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3. &DATALOC is increased, if necessary, to provide the proper
= alignment for the runtime variable described by the DESCRIPTOR

<destination>. |
{

Lo 4. The address (&EDATANO,E&DATALOC) becomes the basic address of
the DESCRIPTOR <destination>.

{ : } . .

L 5. <expressionl> is evaluated and assigned to an internal HWI
variable I (say); the result must be nonnegative. EDATALOC is
then increased to provide room for I runtime variables of the

| type specified by the DESCiIPTOR <destination> (If I = 0,nothing happens).

3 6. The DATAAREA which was current before this statement was

. executed becomes the current DATAAREA.

L i
14.2.4.2 The GALLOCF <specfunc> builds a DESCRIPTOR and then

i allocates runtime storage for it. The value of the function is theDESCRIFTOR. | B

| - Examples. To build and allocate storage for a halfvword integer, use |
D = GALLOCF (6HWI) .

| To tuild a DESCRIPTOR for a POINTER and allocate storage for 6 of| them in DATAAREA 3, use

i D = £ALLOCF (6 POINTER, 6, DATAAREA 3) .
To just align &DATALOC (current DATAAREA offset) on a doubleword

| boundary, use
~ &ALLOCPF (6DWF,0)

| The syntax of the &HALLOCF <Kspecfunc> 1s
a. ;

: nn

] SALLOCF ( <expressSion?9> |

L i + <expressionl)> ] l
{ +» DATAAREA <expression2> ]) |

Loom ome con am an vi cr ws co Ss TE A AE A AE A A SD = ——— a w=

X
It is evaluated as follows.

{

. 1. <expression®> is evaluated and assigned to an internal BYTE
variable J (say). A new DESCRIPTOR D (say) is then generated
with KIND = J. .

|

= 2. The statement

i §ALLOCP(D [ ,<expression!>) [ ,DATAAREA <expression2>]) |
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is then executed.

3. The value of the function is the DESCRIPTOR D. If its
address is assigned to a POINTER variable, it is the
programmers responsibility to release the storage for D when no
lcnger needed. Othervise the system takes care of it.

14. 2.4.3 The &INIT <specproc> initializes runtime variables in
a STATIC DATAAREA.

Examples. Let D be a DESCRIPTOR of a HWI value. To initialize the
variakle it describes with 0, use |

ELINIT (D,0) . |

To initialize it and three following halfword integers with the
current value of a compile time variapnle I, use

SINIT(D, 4,1) - |

Let PD be a DESCRIPTORof a POINTER. To initialize the variable to .
point to itself, use

SINIT (PD, EADD(PD)) (ct Section 14.3.4.5). |

To initializeit to contain the address of CODEAREA 1, offset U4, use

INIT (PD, EDDRESS(1,4)) (cf Section 14.3.1.1).

The syntax of the SINIT <specproc> is

EINIT ( <DESCRIPTOR destination> }

i L + <expression!> ] | |
} : <expression?2> ) l |

: a ae a Ee EE

| | EINIT { <DESCRIPTOR destination i
[ i + <expressioni> ] }

,<EDDRESS expd> ) |
Lom cm cr on om ee en i co te ancc a sn i nCwnoon re on sn a]

The default option for <expressionl> is 1. The second form is used
if the runtime variable has type POINTER; the value to which it is
initialized is the value of <utDDRESS exp> - cf Section 14.3.1.1).
The first form is used if the runtime variable is not a pointer.

The statement is executed asfollows:

l« The address of the runtime variable defined by the
DESCRIPTOR <destination> is evaluated (at compiletime). It must
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yield an address of the form (area number, offset). (this means
— for example that no indirect addressing may be specified.)

2. <expressiont!> is evaluated and assigned to an internal HWI

{ variable I (say); the result- must be nonnegative.

3. <expression2?2> (or <&tDDRESS exp> in the second case) is

_ evaluated and assigned to an internal variable J (say) whosetype is the same as that given by component KIND of the
DESCRIPTOR <destinationd.

L 4. The value of J is stored in the DATAAREA at the offset
specified by the result of step 1, and in the following I - 1

| . runtime variables of the same KIND.

L 4.2.4.4 The ENTER __DATAAREA <specproc> can be used to enterdata into STATIC DATAAREAS. Its syntax is:

Zt
| | ENTER ( DATAAREA, [ <expressionl)>, ] <expression2> ) |

Lorri cm cm tr cm re cm cm mn nm a —————————— — —— ~~ 1 ——— a nn a am}

L It is executed exactly like the ENTER CODEAREA statement (cf Section
14.1.5), except that a DATAAREA (which must be STATIC) is used

L instead of a CODEAREA.
Example. ENTER( DATAAREA,C)

L : 14.2.5 initial conditions
| Initially, DATAAREA 2 is the current DATAAREA and is the only

{ cone in existence. It is STATIC and may already contain some
L information.

L 14.2.6 addressing DYNAMIC DATAAREAS
since DYNAMIC DATAAREAS are not always in core - and since

— several copies may exist at any one time - CGS needs help in |
addressing them. There are two kinds of statements dealing with this |

| proklem; the first kind tells CGS that a DYNAMIC DATAAREA has been

8 created (at runtime) and gives its location, the second kind tells
CGS that a DATAAREA is no longer available.

.

— 14.2.6. Addressing new _DATAAREAS. The following three
<specfunc>s give CGS the address of a DATAAREA that can be
referenced 1n_the current CODEAREA onlya
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fmm mmeee

| EDYNADD ( <DESCK exp> )
|———————————————————-—  — —— — — tn  —  — ——— |
| EDYNADD ( <DESCR exp> , <&DDRESS exp) ) i
J a as te roime me |
| &EDYNADD ( <register no» , <YDDRESS exp> ) |
Lm rm om tr mr 2 i cr te cm me i i nm — —————————— —— rT > = ro oie om arp sm a ame}

In the first case, the DESCRIPTOR must describe a SPOINTER constant:
| the value of the pointer must be the address (in (area number,
£ offset) form) of the DATAAREA which can now be referenced. In the

second and third cases, the <&DDRESS exp> gives the address of the
CATAAREA, while the actual place where this value resides is either
at the address specified by the <DESCRIPTOR exp> or in register
{register no.

In all three cases the vaiue of the <specfunc> is a pointer to
a DESCEIPTCR of a &POINTER coastant whose value is the address

given. - |

14.2.6.2 releasingthe DATAAREA. The <specproc> .

Jetta at |

|] &RELDYNADD ( <POINTER expr>) |
: Lm com mcm cs cn re om cm cn ie it me am co a ee rr rim ee ei re sm sam

tells CGS that the EPOINTER constant described by the DESCRIPTOR
pointed at by the <&POINTER expr> can no longer be used to reference
data while executing the current CODEAREA.

14.3. TheDESCRIPTOR

DESCRIPTOR 1s a structured type which is declared implicitly by the
system. A variable of type DESCRIPTOR describes a runtime variable
or value in terms of the IBM 360 basic data types. CGS provides
several functions which alter, test and use DESCRIPTORS; the
compiler writer should use these rather than try to perform these
operations himself.

We use the word DESCRIPTOR for the structured type and also for
a quantity of that structured type. When writing programs, the |
identifier "&D" can be used in piace of “DESCRIPTORM. .

During the code generation process, CGS maintains pointers to
DESCRIPTORS which are being used to yenerate code. For example, if a
DESCRIFTOR of a label has been used to generate a branch but the
address of that label is still undefined, CGS records this fact and a
fixes the branch address later. Also, if a value is in a register,
the register description points to a DESCRIPTOR of that value. For
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_ |

this 1tTeason CGS places the following restriction on the use of
L DESCRIFTCRS:

| A__DESCRIPTORbeing used by CGS_should not be
L changed or moved to angtherlocation.

In order to be safe, a compiler writer should work with pointers to |

4 DESCRIPTORS, instead of the DESCRIPTORS themselves.

L 1403.1 structure of the DESCRIPTOK
This section discusses the format of DESCRIPTORS and three

| related structured types.
~~ 14.3.1.1 STRUCTURE &DDRESS (BYTE AREA, BYTE3 OFFSET); |

L &EDDRESS defines the basic _address (BA) of a runtime variable in
terms or a CODE or DATAAREA number (AREA) and an offset of the
variable in the AREA (OFFSET). This is not the whole story on
addressing; the DESCRIPTOR also allows for subscripting and indirect |
addressing.

§ 14.3. 1.2 STRUCTURE DESCRIPTOR (
BYTE KIND,

L BYTE ADDRCONT,BYTE CONTROLS,

BYTE REG ALT BYTE BYTELENG,

| &DDRESS ADDR ALT POINTEE (&6CONST) PC

| | ALT POINTER (£SUBSCR) PS,
Co BYTE4 THEIRS); |

L : Component KIND describes the basic kind of the runtime variable
or quantity. The list below gives system identifiers of constants,
their hex value (which may change; use the identifiers only) and the

_ type of variable they describe: | |
© identifier value meaning— the variable is

&EUNDEF 00 underined

L EBYTE 01 one (8 pit) byte
SBYTEZ2 02 two contiguous (8 bit) bytes
EBYTE3 03 three contijuous (8 bit) bytes

L EBYTER Ou four contiguous (8 bit) bytesSHWI 05 HalfWord Integer
EFWI | 06 FullWword Integer
EFWF 07 FullWword Floating point number

L ECWF 08 DoubleWord Floating point number
&ELCEC 09 DECimal integer
EPCINTER OA address ot something or 0

| EBYTES 0B 1 to 256 contiguous bytes( components
— | BYTELENG, PS, CONTROLS help describe how many

by tes)

| &FROC 10 procedure
-
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6LABEL 20 label |

Note that 1f you delete the first letter "&" from most of the systen
identifiers above, a CIL basic type 1s left (example - EHWI becomes
HWI). In these cases, all attributes (ie. Length, alignment
properties) for the runtime variable are the same as those for a
value of the basic type. |

Component ADDRCONT gives more information about addressing the
runtime variable. It indicates whether the basic address (BA) is

y undefined, whether it is given by component ADDR, or whether it is a
N register. Subscripting and indirect addressing are also indicated.

See 14.3.1.5.

“Component CONTROLS contains miscellaneous bits used for
different purposes. The following table gives system identifiers for
constants, their hex values, and the meaning when an identifier is
"anded" with component CONTROLS.

System hex meaniny when identifier is
identifier value "anded”with CONTROLS

&BL 01 for DESCRIPTORS of EBYTES only. If 0, number oo
| of bytes minus 1 1s given in component

BYTELENG otherwise the number of bytes 1is
described by what PS points to.

ENEG 02 if not 0, neyative of runtime value is
desired.

&ENOSAV 04 if not 0, save DESCRIPTOR, if 0, can be
released atter one use in code generation.

&ORD 08 if not 0, a saved register description points |
to DESCKIPTOR,

&ECURS 10 if not VU, CGS created DESCRIPTOR
3 W/ 20 (only when KIND is BYTES (1,2 or 3) or

. EPOINTER and the value is in a register). If
not 0, leading bytes of the register are 0.

ComponentREG indicates whether the value is in a register or
not (cf Section 14.4.1):

0 = not in a register
1 through F mean general register 1 through 15
10 denotes general register 0

| 11 denotes floating register 0
12 denotes floating register 2
13 denotes floating register 4 |

14 denotes floating register 6

Component BYTELENG is used only if the KIND is &BYTES. It can
contain the number of bytes minus 1 (if constant and less than 257).
See component CONTROLS . ) |

Component ADDR usually defines the basic address of the runtime
variable. In certain cases, however, the basic address is defined by
component ADDR of the quantity pointed at by component PC or PS (see
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a

also component CONTROL.

ComponentPC is used if the value is a constant. It points at a
( quantity of structured type &SUBSCR which gives the constant itself |

and its address. oo
|—

ComponentPS has two uses.

— 1. If the runtime variable is subscripted (cf component
ADDBCONT), PS points at a quantity of structured type ESUBSCR

3! which contains the basic address and a pointer to the subscript
1g DESCRIPTOR.

~ 2. If the runtime variable is of type BYTES and if component
| ccentrol "anded™ with EBL is not 0, then PS points at a quantity
~ of structured type &SUBSCR which contains the basic address and

a pointer to a DESCRIPTOR or the number of bytes minus 1. Such
DESCRIPTORS may not indicate subscripting.

— ~

]

L 14.3.1.3 STRUCTURE ECONST (
BYTE4 VALUE ALT HLDDRESS ADDRVAL, |

EDDRESS ADDR);

- A quantity of type &CONST is used to help describe constants. The
constant is held in component VALUE or ADDRVAL (if the constant is a
relocateable address). The address of the constant is contained in

- ADDR. If ADDER.AREA and ADDR.OFFSET are both zero, the address is
undefined.

i

be

14.3. 1.4 STRUCTURE &SUBSCR{(

| . POINTER (DESCRIPTOR) SUBDCR, &DDRESS ADDR);
—

a quantity of type G&SUBSCR is used to help describe runtime
variables which are subscripted or of type EBYTES (see below).

( Component ADDR contains the base address of the variable. If
subscripting, &SUBSCR points to a DESCRIPTOR of the subscript. If

, not subscripting and the runtime variable is of type &BYTES, &SUBSCR
foints to a DESCRIPTOR of the number ot Lytes minus 1.

|—

14.3. 1.5 address description and format of DESCRIPTORS. This
section describes just how tne etfective address is to be obtained

_ from the basic address. Component ADDACONT plays the key role here.

| In the tables below, BA specities that the basic address is
given Ly component ADDR, while R indicates that the basic address is

— the register given by the number in ADDR.AREA. X specifies a
subscript ~~ its value is jiven by the DESCRIPTOR pointed at by the

| fointer PS.SUBDCR. "*" indicates indirect addressing. The format
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nunber refers to the format of the DESCRIPTOR when ADDRCONT has the

given value. The possible formats are given after the tables. oo

VALUE OF ADDRCONT AND MEANING IF. KIND IS NOT &BYTES

value format effective address_is
0 1 _ (undefined)
1 3 BA (and the value 1s a constant) :
a 1 EA |

a 3 1 *BA

N 4 1 **BA }
5 1 R

6 1 *R

= 7 1 **R

3 2 BA+X | |

9 2 * (BA+X)
A 2 (*BA) +X
B 2 _ * ((%BA)+X) |
C 2 (*¥*R) +X

D p * ((*R) +X) |

. VALUE OF ADDRCONT AND MEANING IF KIND 1S &BYTES

value format effective address_is |
0 4 _ (undefined)
1 1 BA (value is a constant)
2 4 OR 5 BA

3 4 OR 5 *BA |

4 4 OR 5 **BA

5 4 OR 5 R

6 4 OR 5 *R
7 4 OR 5 **R

Format 4 is used if the number of bytes minus 1 is contained in |
component BYTELENG ; otherwise format 5 is used.
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-

i Fossible formats of a DESCRIPTOK
a

i | 1] |KINC JADDRCONT |CONFROLS |REG |L=d j-————-—————————— rrr eS eee ——— |
| ADDR |

: | =———————————— ee crc — - |

i | THEIRS |
| Lomrm om mn ee em me me a nr ee a nmwe nn wn ve

I (TT TTT ee mm mmm mm mmm ——— type &SUBSCR
12] KIND |ADDRCONT |CONTROLS] REG | PD pmm——————n

L Ld j=—-——— mmm mmm mmm mma e | | 1SUBDCR —|-=-=>
y | PS | ptntatnd Ruintetant JERetetettatndetng

Smita | ADDR

ntti describes subscript

r= (TT me, rr cere me ——— type ECONST |
13 | {KIND |{ADDRCONT |CONTROLS} REG | DO pm———————n

L L—d4 | mmm mmm — | { |ADDRVAL | |
| | PC miata hunted A Eatetetebtetebd

| Ea tate bbl | ADDR |

L | THEIRS PRLm cm vm co vm cm ce rn mn i a vn ce cr an a a a on ene ee

rr 2 |Su |

| j 4 | KINL | ACDRCONT |CONTROLS |BYTELENG |© ed Eine iedetdht |

| | ADDR ]

| === er mee mem mmm mee]

JIHEIRS }
. ert -

£3 fT — — — ————— a type &SUBSCR
151 JKIND |ADDRCONT |CONTROLS | | (Dpm——————

| L-d jm——————————————————————————— | | |SUBDCR ~|=--=>I PS intetenll Eninnatetun di titted

|= mmmmmm mmm | | ADDR I

| | THEIRS | PR—
lem m=—————e——————--=-------J describes number of bytes

C .
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14.3.2 generating DESCRIPTORS

The DESCRIPTOR 1s a structured type, and a new quantity of that oo
~~ type can be generated and initializedin the usual manner. However

it is easier and safer to initialize only component KIND and use the
CGS operations to manipulate the rest. To aid in this, the system
sets all components to 0 before initializing a new DESCRIPTOR, since
zero is the natural initial state for its components. For example,
if T is a table of DESCRIPTORS, then

- T (2) = DESCRIPTOR (KIND=&LABEL)

puts in the second element a DESCRIPTOR of a label with an undefined
address. If P is a POINTER variaple, then

P = ED (KLND = EHWI)

allocates space for a new DESCRIPTOR of kind &HWI, sets all other |

components to zero, and puts tne address of the DESCRIPTOR in P.

DESCRIPTORS may also be yenerated using the <specfunc> &ALLOCF
(cf Section 14.2.4.2).

14.3.3 defining the basic address (BA)

Once component KIND is detined, there are several ways of
tilling 1n the basic address. Below, we assume that D is a
PESCERIFTCR.

1. If the DESCRIPTOR defines a label or procedure, use it in
code brackets (cf Sections 14.6.4 and 14.6.7). Example:
CCDE (Dz)

© 2. If the runtime variable is to be in a DATAAREA, use the
<specproc> &ALLOCP or the <specfunc> &ALLOCF. Example:
SALLOCP (D).

3. If the runtime variable is external to the program being
compiled, use the EEXTERN <specproc> (cf Section 14.3.6).
Example: EXTERN (D).

4. If the address to be used 1s already known, use the |
{specproc> &ASSIGNAD (ct Section 4.3.4.3) Example:

| &ASSIGNAD(D,&DDRESS(1,0)) (address of CODEAREA 1).

14.3.4 defining theeffectiveaddress (EA)

Besides the basic address, the DESCRIPTOR can indicate indirect

~ addressing and subscripting. The final address is called the
effective address (EA). This section describes ways of indicating
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i effective addresses. |
It is important to realize that the operations described here

f may generate code. For example, if an operation asks for
L subscripting for a DESCRIPTOR of a &BYTES variable, code must be

generated to calculate the effective address because DESCRIPTORS of
§BYTES variables do not allow subscripting. In general, CGS tries to

| postpone code generation as auch as possible, since this usually
rroduces better code.

{ Section 14.3.1.5 indicates, for each type of runtime variable,what kind of addressing the DESCRIPTOR can describe.

L 14.3.4.1 specifying subscripting. Syntax:
~~ <DESCR exp> ::= <DESCR exp!> ( <DESCR exp2> )

L |] <DESCR expl> ( <expression> )
Semantics: A new DESCRIPTOR is yenerated. All of its components

L except those which help define tne etfective address are identicalto those of <DESCR exp!>. If EA is the effective address of <DESCR
expl>, then the effective address of the new DESCRIPTOR is found as |

| - follows:
Case 1: <DESCR exp2> is present. The effective address is

L EA + (runtime value described by <DESCR exp?>)
Case 2: <expr> is present. <expr> is evaluatedand assigned to

L an internal FWI variable I (say). Then the effective address is |
EA + 1

L - This may cause code to be yenerated. This depends on whether or not
the new effective address can be described in a DESCRIPTOR. If |

<DESCR exp!> is a CGS DESCRIPTOR, it will be released if possible
(cf Section 14.8).

L Examples. D1(D2) - D1(1) . D1(2) {6*¥I) is equivalent to D1(2+6%*I).

( - a - id | - . -
L 14.3.4.2 specifying _ indirect __addressing. The following

<specfunc> is used to specity indirect addressing.

:
! TT TT TT TT TT TTT TT TTT TTT TTT TTT TTT TT TT TT TT TT

er | SINDIR { <DESCR exp>, , <expression> J) |
Lore om vom ir ie nm i cm a"ronow ur

L The value of this function designator is a structured value of type
DESCRIPTOR. All components, except those which have to do with

( addressing, are the same as those of <DESCR exp>. If EA 1s the
L effective address of <descr exp>, the effective address of the new

DESCRIETOR is

i CONTENT (EA) «
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If <expression> 1s present, it 1s assigned to component KIND of the
new CESCRIEFTOR. a.

This may cause code to pe yenerated. This depends on whether or
not the new effective address can be -described in a DESCRIPTOR.

If <descr exp> 1s a Css DESCHEHIPTOR, it will be released if |
possible (cf Section 14.8).

Examples. &INDIEK (DD).
: SINDIR{D)(5) (indirect addressiny tollowed by subscripting).
: GINDIR(D(5)) (subscripting followed by indirect addressing).

~ 14.3.4.3 using an existiny address. The <specproc>

B enom tc me ny

| 6ASSIGNAD ( <destination> , <DESCR exp> ) |

puts the effective address of the DESCKIPTOR <DESCR exp> into the Co
~ DESCRIPTOR <destination>. Onl; the address-describing components of

<destination> are changed. Examples: EASSIGNAD (D1,D2) .
EASSIGNAD (D1, SINDIR (D2) (1)) .

14. 3.4.4 forcing code_to pejenerated. The functions described
in Sections 14.3.4.1 - 14.3.4.3 may cause code to be generated. The
following <specfunc> indicates that code must be generated (if
possible ) to calculate the effective address.

FT TTT TT ETT EET EE TTTE TTT

| SEACALC ( <DESCR exp> ) |
- LL wr tr vate er ree am me a ve = tmmr ar oom}

The resulting value is a DESCRIPTOR which has all the
characteristics of <DESCR exp> except that the EA specifies no
subscripting and at most one level of indirect addressing (the
address 1s in a register or in memory).

14.3.4-5 using an effective address as a value. Execution of
the <specfunc>

:gE

| EEAVAL ( <DESCR expr> ) |
Lor or rem con em ms om mom ae a mm an mn ev en one si cate sn ven

yields a DESCRIPTOR with KIND POINTER. The value it describes is
the effective address of the <DESCR exp>. This may cause code to be
generated.
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L

! The <specfuncd |
-

TTT TTT EET TET EETTT

{ I 6ADD ( <DESCR exp> ) |
| ya

yields an &DDRESS value which is tne address contained in the

: LESCRIPTOR <DESCR exp>.

w 14.3.5 the length of &BYTES variables

i The <specfunc> &LENGTH is used to indicate the number of bytes |
L (minus 1) in a &BYTES runtime variable. Its syntax is

: heed

L | §LENGTH ( <DESCK exp!>, <DESCR exp2> ) |
se indie

| GLENGTH ( <DESCR expld>, <expressiond> ) i
¢ er rr rr me rr rr mr rr rr en > a oe om wn a 3m wm

¢ + It produces a DESCRIPTOR with KIND = £BYTES. The number of bytes
L minus 1 is given by the runtime variable described by <DESCR exp2>

or by the current value of <expression>. All other components are
| the sare as those of <KDESCR expil).

L Examples: SLENGTH(D1,5) |
tlength( &indir(d1), 42) . |

14.3.6 runtime entry points and external references

L : When an 0S 360 object module is being generated, one can
specify entry points — bytes within this object module which may be
referenced by other object modules - and external references -

f references to names which are not in this object module but which
L will te resolved by the 0S linkage editor just before runtime.

| 14. 3.6.1 The GENTRY <specproc> is used to indicate an entry
L Foint. Its syntax is:

ident|

L | GENTRY ( <DESCR destination> , <STRING expr> ) |Lm am mn om i mn mn en cm an a en "rn >2b 72 rn on rm mm sm an vm

It is executed as follows: The DESCRIPTOR destination must have an
L effective address of the form (AREA number, offset). The STRING

expression is evaluated and assiyned to an internal variable S (say)
; of type STRING(8). The value of S then becomes the name of the entry
| point. | |
L |

Example: ENTRY ({D1,'SIN') .
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14. 3.6.2 The GEXTERN <specproc> is used to indicate an external
reference. The syntax is:

gp

| EXTERN ( <DESCR destinationd> , <STRING expr> ) |
Loomot cn ct comom ar mn mn rm i tr iea— — ———— >  —_— — E > ES =v" a mtn w= a]

It 1s executed as follows: The address in the DESCRIPTOR destination

must be undefined. Space is allocated for a POINTER variable in the
. current DATAAREA, if STATIC, or DATAAREA 2 if DYNAMIC. At runtime
. this POINTER will contain the address of the external reference, the

| address of this POINTER becomes the BA of the DESCRIPTOR and

indirect addressing is also indicated. The STRING expression is
evaluated and assigned to a variable S (say) with type STRING (8).
The value of S 1s then the name of the external address. |

14.3.7 generating DESCRIPTORS for constants

CGS keeps a table of DESCRIPTORS for constants. All constants |
are stored in DATAAREA 2 - and only if they are actually needed at |
runtime. The following <specrunc>s all yield a value which is a
FOINTER to a DESCRIPTOR for a constant:

| ECON ( [expro>,j <exprild> ) l
ntnedsdl|

| 6CON ({ [<expr0>,] <Kexpri>,<expr?2>,<expr3dd> ) |
isin

i ECON ( <6DDRESS exp> ) )
Lm om om cm rin co co cor oe i tm rn ci,7 tae ri vi}

The default option for <expr9> in the first two cases is EUNDEF. In
these two cases, <epxr9> is evaluated and assigned to an internal
BYTE variable I (say). The value of 1 then becomes the KIND of the
DESCRIFTOR being created. The constant itself is then evaluated. In
the tirst case 1t 1s <exprl>; in the second case, <expril> is the
integer part, <expr2> the fraction, and <expr3> the exponent. (all
tnree must be integer-valued and the signs of <exprt> and <expr2>
must be the same). The constant is then converted to the KIND of the
new DESCRIPTOR and inserted in it (if KIND = GEUNDEF, the KIND is
changed to tke KIND of the constant.)

In the third case, a POINTEk to a DESCRIPTOR of a SPOINTER constant
is generated; the value of the constant is the value of the <EDDRESS
€X[De

Examples: to create a DESCRIPTOR or tne constant 1.23x10-6 use

ECON (1.23%.000001) or &CON(1,23,-6).

To create a doubleword constant tor 1it, use
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oT To create a constant whose value is the address of the next free
byte in the current CODEAREA, use

&CON (6DDRESS (6CODENO, &CODELOC) ) .

14.4. Runtime registers and theirdescriptions

lL CGS maintains descriptions of the coatents of the runtime registers
as code is being generated. The description of a register consists
mainly of a pointer to the DESCRIPTOR of the value in the register| and some status bits which indicate how the register is being used.

Por example, if the statement Pp = CODE (D+5) is executed, code
is generated to add 5 to the value described by the DESCRIPTOR D, a

- new DESCRIPTOR D1 (say) is jenerated to describe the resulting
value, and the address of D1 is stored in P. Suppose the resulting

g runtime value is in in general register 5. Then the description for
| register 5 will be changed to point to D1.

The compiler writer can leave most of the register handling to| CGS, or he can make full use of the facilities described in this
section to do his own register allocation.

14.4.1 register numbers and names. ‘

Syntax: |

<register nod> ::= <BYTE expression)
| <register name> ::= GREG | SFREG | REG( <expression) )

: Semantics: The registers are numbered as follows:

1 - general register 1
2 — general register 2

F - general register 15
10- general register 0
11- floating register 0
12- floating register 2
13- floating register 4
M4~ floating reyister 6 |

in certain contexts, the system names &GREG and &EFREG denote a
general register and a floating register, respectively. The precise
register to use is picked by -C6GS. Also, the construct GREG (I), where
I 1s a BYTE expression, is used to denote register I in certain
contexts.

18.4.2 general runtime register usage
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CGS uses the usual 0S 360 subroutine linkage conventions. A
compiler writer need not follow them, but it is better if Bn
cenventions are followed. When not actually linking, these linkage |
registers can pe used for other purposes. The table below gives a
briet explanation; a more complete description may be found in the
I1BM__System/300_ Operating System _- supervisor and Data Management
Services(Form C28-6646), pajes 9 - 16.

In addition, CGS requires two to three additional registers to
re used as base reyisters at runtime. These contain the address of

a DATAAREA 2, the address of tne current DATAAREA (if not 2 and if
: register 13 does not hold it), and the address of the current |

| subroutine (or main program).

Leyister use |
0 temporary or linkaye: parameter. Not restored.

| 1 temporary or linkaje: parameter or address of a
parameter list. Not restored.

2-7 temporary. Restored. |
8 temporary or used to provide addressability for

instructions (see below). Bestored.
9 address of a subprogyram being executed (usually) the ol

address of a CODEAREA). Kestored. |
10 temporary. pestored.
11 temporary, if current DATAAREA is 2 or its address is

in register 13; otherwise address of current DATAAREA.
Restored.

12 address of DATAAREA 2. Restored.
13 linkage: address or a SAVE AREA. This may also be the

address of a DATAAREA if the SAVE AREA is part of it.
Restored.

14 temporary or linkayje: return address. Restored,
15 temporary or linkaye: entry point when calling a

| ; program. Not restored. |
Floating registers are not restored.

Those registers marked temporary may be used for any purpose. Upon
return from a subprogram, those registers marked restored (reg 2-14)
contain the same values they contained just before the subprogranm
was called.

The problem of addressing more than 4096 bytes of instructions ‘
| is solved as follows. Register 9 always contains the base address of

the subprogram being executed. If the code being executed does not
lie within 4096 bytes of this address, register 8 contains the base N
address of the subprogram plus the multiple of 4096 bytes which
gives the executed instructions addressability. Each branch is a
single instruction. If the instruction being branched to is not |
addressable, then an indirect branch will cccur. For example, the | |
diagram below shows a branch to label Cj;
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CODEAREA an always—-addressable AREA

: | Bemm——meojeeeoy
| | i

{ 4096 BYTES | -~-=-==>] LA 8,CODEAREA+4096 |
| i | B C ——— |
| | I I
) | eee

| | 4096 BYTES | }
] ! i i
1 | i |

| bo 1
| | |

i fmmmm em mm mmm mmm
It is best to use registers 0 and 1 on a short-term temporary basis,

| since these registers are used orten for parameters to subprograms.

| 14.4.3 register descriptions
_ At any time during code jeneration there is a set of current

register descriptions which describe the runtime state of the
registers after the last instruction entered in the current CODEAREA
has been executed. As new instructions are generated, these register

| descriptions are changed to reflect the change in the runtinme
machine. There may be several sets of register descriptions at any
time; when talking about reyister descriptions in general, we mean
the current register descriptions unless otherwise stated.

: A register description coasists essentially of a pointer to a
DESCRIPTOR of the value in the register and some "status" bits.
These status bits are explained in tae following table.

status meaning

0 The register is GEMPTY (nothing in it).
1 The register is USED, This means that it was

; formerly &NEW (see below) and the value in the
register was used at least once since being put in
the register. A USED value may be discarded (not
saved) if a register is needed.

2 SAVE the value in the register until further
~ notice. If the reyister is needed for something

else, the value must be saved: if its DESCRIPTOR
contains an address, this location will be used,
otherwise CGS assiyns it a temporary location.

3 The value is YNEW. Once it is used to generate code
it will be switched to §USED. When CGS generates a
new value and its DESCRIPTOR, the register
containing the value is set to &NEW.

4 The register is being used as a &FAST location for
a variable or just contains a value which is not to
be disturbed until further notice. ¥r= -- }



14. CODE GENERATION SYSTEM (CGS) 90

registers 12 and 13 are &FAST registers (cf Section
14.4.2). oo. :

14.4.4 testing register status - |

Five functions, each with a single BYTE parameter which is a
register number, test the status of the register specified:

<specfunc> value 1s FALSE

: unless statusis
aeatainsheienteiatentuienteetentdndentef staff ffl———TTa

| §ISEMPTY ( <register no> ) E&EEMPTY |
tateStil

” | 6ISUSED ( <register no> ) &USED |
Ee testbed |

|] &ISSAVE ( <register no> ) &SAVE |
tbathtt |

| &ISNEW _ ( <register no> ) &ENEW i
nnii betttttl

| 6ISFAST ( <register no> ) &FAST |

Lr mr cor co ce om ee em ce i i er a te tr. en nn a en one sn sm om} oo

14.3.5 generating code to dump registers

When CGS needs a nev rejister to hold a runtime value, it looks
at the current register descriptions and uses one with the lowest

~ status. (This 1s complicated somewhat by the fact that at times an
even—odd register pair is needed, but we won't go into that here).
The- following table indicates what happens to the value in the
register chosen.

register chosen disposition of the old
has_status value _in_the_ register
0. (6EMPTY)
1 (&USED) the old value is lost
2 (LSAVE) if the DESCRIPTOR associated with the

| register value has an undefined address,
assi,;a 1t an address. Then if the value is
not a constant, generate instructions to

| store the value. |

| 3 (&USED) | same as tor &SAVE,
4 (EFAST) never dumped in this manner. A &FAST

rejister can be used for a different
| purpose only 1f its status is changed.

when a register is dumped, tae register description status is set to
GEMPIY. |

The «compiler writer may explicitly ask that code be generated
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: tc store a register. The <specproc>

BN athena

| &DUMPREG( <reyister nod) |
rr DSSS |

does this for the register specitied. The statement is executed as
| given in the above table. Note that EFAST registers may not be
— dumped. |

t 14.4.6 generating code to load and use registers

The register names &PREG, &EGREG and EREG (Kexpression>) may
| appear on the lefthand side ot an assignment statement within code

brackets. For example,

| | CODE (6REG = D ) |
is valid. The purpose of this statement is to generate code to load |
a value into a register. The execution of this statement is

i explained in detail in Section 14.6.2.
. A register name EREG(<rej ister nod) Bay also appear in a
] runtime expression within code brackets, to indicate that the
v contents of that reyister is to be used. See Section 14.5.

| 14.4.7 altering register descriptions
It 1s sometimes necessary to alter a register description

withcut generating code. For example, after generating code for a
function call, it may be necessary to tell CGS that the value of the

| functicn is in register 1. |

4.4.7.1 changingthe status to EEMETY. The <specfuncd

k Ae|

| EMPTY ( <register nod) |
. Lom cms rr cr rom an te tr a er er cr ee en an

| changes the description of the register specified to §EMPTY. The
~ DESCRIFTOR of the value in the register is changed to reflect the

tact that it is no longer there and is then released if possible.
The value of the function is a POINTER to the DESCRIPTOR of the
value (0 if destroyed or there was none.)

4.4.7.2 changing thestatus_to_otherthan EMPTY. Execution of
The <sgecprocds

|Sa
| SUSED( <reygister nod) |
debit
| 6SAVE( <register no>) |
tehsiliad
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| ENEW ( <register nod) |
|= — |
| 6FAST( <reglster nod) |
deaa

change the status of the register to the desired status. The |
previous status must not have been LEMPTY. | |

14.4.7.3 indicating that a value is _ina_register. Execution of :
the <sfgeciroc>s | |

Sa }
| | &USED( <register no», <DESCR exp>)|

|==me em eee |

- | ESAVE({ <rejister no>, <DESCR exp>)|
: |__|

| | &6NEW ( <reyister no>, <DESCR exp>)|

| &FAST( <rejister no>, <DESCR exp?)| N
Lim cro co com cr cn i re rn ee a ——— i = rw

performs the following. The statement SEMPTY (Kregister no») is
exectued, emptyiliny register <register nc>. The status of the
register 1s then changed to the desired status (procedure name),
with <DESCR exp> being the DESCKIPTOrR of the value in the rejister.

Notice that absolutely no code is generated by any of the |
procedures or functions describea in this Section 14.4.7. The only
purpose 1s to change a register description. |

14.4.8 saving and restoring reyister descriptions )

. It 1s often advantageous to save a set of register descriptions
for later use. For example, fewer instructions may be generated for
a conditional statement 1f one indicates that the contents of the

registers are the same at the beginning of the THEN statement and
the ELSE statement. The followin, <specproc>s are used to manipulate
the set of register descriptions. In all cases, the parameters P and
P1 are <destinationd>s of type POINTER. |

le ESAVEREGS(P). Storaje is allocated for a set of register
descriptions. The current register descriptions are
copied into the allocated storage. The address of the
allocated storage is put in P.

2. GUSEREGS (P). The set of register descriptions pointed at by
P are copied into the current register description
area. |

3. ERESTREGS (P). Same as &USEREGS, but in addition, the storage
pointed at by P is released and P is set to zero.

4. &JOINREGS(P). The set ot register descriptions pointed at by



: 14. CODE GENERATION SYSTEM (CGS) 93
—

" P are joined with the current register descriptions ~-
for each register, it both descriptions are the same,
the description resains; if the two descriptions are
different tne current register description 1s set to

| EEMPTY. The storage pointed at by P is released and P
is set to zero. |

L 5. £&JOINREGS (P,P1). Join the reyister descriptions pointed atby P to those of P1 (as in U.). Release the storage
pointed at by P and set P to zero. Note: this does

t not change the current register descriptions.
| 6. SEXCHREGS(P). The rejister descriptions pointed at by P

become the current register descriptions, while P is

L - changed to point to the previous current ones. |
© When the current register descriptions are changed, CGS always

| checks to make sure that all reyister values are consistent withnormal usage {cf Section 14.4.2). For example, register 8 and 9 are
continually updated by CGS if necessary.

14.5. Codeexpressions

L 14.5.1 syntax
{runprimary> :2:= <constant> | <DESCR exp>

} <run variable>

|] 6REG ( <register nod)
| ( <runexp> )

| <runfactor> ::= <ruhprimary>
| <runprimary> ** <runfactor>
| <unar; op> <runfactor>

| . {runexp> ::= <runfactor>|] <runexp> <mult op> <runexp> |
| <runexp> <add op> <runexp>
| <runexp> <bit op> <runexp>

L | <runexp> <relational op> <runexp>
- } <runexp> AND <runexp>

| | <runexp> OK <runexp>
14.5.2 semantics

L 14.5.2.1 runtime primaries. A 7rTuntime primary yields a |
DESCRIPTOR of a runtime value. There are several types of runtime

| [rimaries:
{constant>. The DESCRIPTOR 1s a DESCRIPTOR for the constant.

| This does not necessarily mean that the constant occupies a

| place in storage at runtime. It will only appear in the objectprogram if actually necessary.

. <CESCR _exp>. These have been discussed in Sections 14.3 and
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14.3.4. 1. |

Lrun__variable>. A <run variable)> is a variable declared to be
valid at runtime. If a primary is both a <rum variable> and a
<DESCR exp», its use as a <DESCR exp> takes precedence.

EREG( _<reyister_ _no>). The register specified contains the
| value; its KIND is the KIND of the DESCRIPTOR associated with

the register. If no DESCRIPTOR is associated with it currently,
the KIND is assumed to be &sFiWli. BE

| 14.5.2.2 the_ operators. The operators available to operate on
runtime values are exactly the same as those available to operate on

| compile time values. The precedence of the operators {cf Section
8.2.2) and the conversion ot operands (cf Section 8.2.3) are also
the same. The only difference 1s that evaluation of a <runexp>
causes code to be yenerated for it. This code, when executed at
runtime, will perform the desired evaluation. After the code is
generated, a DESCRIPTOR is built to describe the runtime result.

14.5.3.3 using code brackets aroundexpressions.

| Syntax:

<LCESCR exp> ::= CODE ( <runexp> )

Semantics: Execution of this expression causes code to be
generated to evaluate the <runexp> (if necessary). The result is the
DESCRIPTOR for the runtime result of the <runexpd.

14.6. Code statements |

Execution of a code statement causes code to be generated for the
runtime statements appearin; between the code brackets "CODE (" and
")". In the nonterminals detined below, the term "runstate" stands
tor "runtime statement". In general, a statement within code
trackets has the same meaning as a similar statement outside, except
that it indicates a runtime statement.

Syntax:

<code statement> =::= CODE ( | <<runstate> ;list> ])

<runstate> ::= <open runstate> | <closed runstated>

<cpen runstate> ::= <runlabel definition> <open runstated>
|] <open cond runstate>

<closed runstate> ::= | <runlabel definition> ]
[ <closed runstate> ] |
|] <compound runstated
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-

| |] <assigjnment runstated>
L { <closed cond runstate>

| {procedure run call |
; i <control runstate>

L | <procedure control

14.6.1 compound runtime statements
-

Syntax: |

{ <compound runstate> ::= BEGIN <<runstate> ;list> END
Semantics: A compound runtime statement is used to group

| several runtime statements into a single unit, just as a compound

L ~ statement is used (cf Section 9.1).

L 14.6.2 assignment runtime statements |
Syntax: )
<assignment runstate> ::= <DESCR exp> = <runexp>

| | <run variable> = <runexp> |
| <rejister name> = <runexp>

L Semantics: code is generated to evaluate the <runexp> and a |DESCRIFTOR for the result is puilt. Code is then generated to store
the result, depending on which of the above forms are used:

L 1l« <DESCR exp> = <runexp>. Code 1s generated to convert the
<runexp> to the KIND ot the <DESCR exp> and to store the result

1 in the location described by it (the address must be defined).
2. <run variable> = <runexp>. Code is generated to comvert and
store the <runexp> in the <run variable).

L 3. <register name> ( &GREG or &FREG) = <runexp>. An empty |
register is found; if necessary one is dumped. Code is then

( generated to store the <runexp> in this register. Its status is

L changed to ENEW. Code may be generated to convert the <runexp>
. to floating point (integer) if necessary, depending on which

, register name is used. |

L 4. <register name> ( GREG (<regyister no> ) = <runexp>. If the
register status is SEMPTY, we proceed as in (3) above. If not,
code 1s generated to convert the <runexp> to the KIND of the

. DESCRIPTOR associated vith the register and to store the value
in it. The register status is not changed. |

L 14.6.3 conditional runtime statements

Syntax:

— <open cond runstate> ::= IF <runexp> THEN <closed runstated
ELSE <open runstated

| | IF <runexp> THEN <runstated |
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<closed cond runstate>::= IF <runexp> THEN <closed runstated>
ELSE <cliosed runstate>

Semantics: Execution of a conditional runtime statement causes

code to te generated for it. Executionof this code at runtime will
perform the operations in tne usual manner (cf Section 8.2).

Example: IF D1 <= D2 THEN D1 = D2 ELSE GOIF D1

14.6.4 runtime label definitions

Syntax: |

<runlabel definition> ::= <DESCH exp> :
- | <DESCR exp> (0):

| <DESCK exp> (<KPOINTER destination) :

Semantics: The <DESCR exp> must yield a DESCRIPTOR with KIND = |
LABEL and with a completely undetined address. It is given the
address (6CODENO,6CODELOC) ~ tnat is, the address of the next free |
byte in the current CODEAREA. Any; already-generated references to |
this label will be fixed up - the address will be inserted in the
tranch instruction. (cf Section 14.6.5). The current register So
descriptions are changed as follows.

1 If the form <DESCR exp> : is used, the current register | |
descriptions are changed as follows.

USED registers are set to &£EMETY. |

SAVE and &FAST registers remain unchanged. It is up to
the compiler writer to make sure that these registers are
correctly loaded at all branches to this label. CGS takes care
of registers 9 and 8.

It a register is GENEW an error message is printed. This is
because the value has not peen used and it is probably a
mistake. Translation continues.

| 2. If the form <DESCR exp> ( <POINTER destination) : is used, |
the POINTER must point at a set of register descriptions. These
become the current register descriptions and the <destination>
is set to 0. The previously current register descriptions are :
released.

3. If the form <KDESCR exp> (0): is used, the register oo
descriptions remain unchanged. It 1s the compiler writer's
responsibility to make sure that the descriptions are correct.

14.6.5 runtime control statements

Syntax:

: {control runstate> ::= <yoto op> <DESCR exp>
|] GOIF <runexp> TO <DESCR exp>
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: | GOIFNOT <runexp> TO <DESCR exp>
Co Semantics: Execution of a runtime control statement causes an

unconditional or conditional branch to be generated. The <DESCR exp>
indicates where to branch to. If it has KIND &LABEL, its address

— need not yet be defined - CGS will automatically fix up the address |
when it becomes defined (cf Section 14.6.6). The <DESCR exp> may
have KIND GPOINTER, in which case its value is the address to branch

— to. In any case the address beiny branched to must lie in the
CCDEAREA where the branch occurs.

| With the conditional branches GOIF and GOIPNOT, at runtime the
branch will occur if the value of the <runexp> is not zero (TRUE) or

| zero (FALSE), respectively.
~ See Section 14.4.2 for a discussion of the instructions

| actually generated. CGS recognizes and produces better code in case

L the <runmexp> has the form <runrelation> (cf Section 14.5).

1 14.6.6 runtime procedure calls )
Syntax:

. procedure run call>::= <DESCR exp> |

| Semantics: The <DESCR exp> must yield a DESCRIPTOR with KIND
PROC. Execution proceeds as follows:

1. Code is generated to dump registers 14 and 15 if necessary.

2. Code is generated to load register 15 with the address defined by
the <DESCR exp> (see below), it necessary. A DESCRIPTOR for it is
built and associated with register 15 and the register status is
changed to &USED.

3. A BALR 14,15 or a BAL 14,i(15) instruction is generated (see |
telow).

If the address in the <DESCR exp> is not yet defined, the BALR
| instruction will be generated. When it becomes defined, the

effective address can only be the basic address itself (no indirect
addressing or subscripting).

If the address is already defined, and has the form A+X, (*17) +X
OC (**A)+X {cf Section 14.3.1) where X is a constant, the address A
(¥*A or **A) will be loaded into register 15 and the instruction

BAL 14,value of X (15)

will be generated. Otherwise code is BALR 14,15 is generated.

14.6.7 runtime procedure entries and exits
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Syntax:

{procedure control> ::= {procedure entry>
}] <procedure exit

<procedure entry> ::= <DESCi& exp> : I
{procedure exit> ::= RETURN | oo

Semantics: A «(procedure entry> defines the address of a
procedure entry point. The <DESCR exp> KIND must be &PROC. &CODELOC
is increased until it is a multiple of 8 (on a doublevword boundary).
Then the address (6CODENO, &CODELOC) is assigned to the DESCRIPTOR.

' In addition, the register descriptions are set as follows:

~ registers 0-11 EMPTY |
register 12 6FAST —- contains address of DATAAREA 2
register 14 SENMPTY
register 15 EFAST contains address of the entry point. |

Before executing a «procedure entry>, the compiler writer must do
the follcwing. h

1. If this is not a multiple entry point in a procedure, switch
| | to a CODEAREA which at this point is not being used. .

2. If this is a multiple entry point in a procedure, generate |
the correct branch around this entry point.

After executing a {procedure entry>, the compiler vwriter must do the
following.

1 Generate instructions to store the registers in the old
SAVEAREA and to get a new SAVEAREA.

2. Generate instructions to move register 15 to register 9.

3. Change the register descriptions to reflect the proper
register contents (especially registers 0,1,9,13, and 15.)

4. Generate instructions to take care of the procedure
parameters.

5 Indicate the nev current DATAAREA, if applicable.

Execution of a <procedure exit> causes the following code to be
generated (conventional OS subprogram return). oo | oo

L 13,4(13) | restore save area address
L 14,1213) return address in register 14
iM 2,12,28(13) reload registers 2-12
BR 14 return

If this is the last instruction to be generated in this

procedure the compiler writer should switch to another CODEAREA and
perhaps DATAAREA. This CODEAREA can now be used for another
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procedure.

| 14.7. Temporary runtime storage

| At times CGS must temporarily store values {for example, if a
; register must be dumped). When this occurs, CGS allocates storage in
— the current DATAAREA, with the aid ot the CALLOCP statement (cf

Section 14.2.4). This storaje remains in existence for this purpose
as long as the DESCRIPTOR of the value does. When the DESCRIPTOR is| released, CGS will use the storage assigned to it for other
temporary values.

| 14.8. When CGS releases DESCRIPTORS |

L CGS is continually generating DESCRIPTORS. If these are
allocated new space, bit EOURS is set to 1, as soon as such a

r DESCRIPTOR is used in the code generation process, it can be
C released. Should the compiler writer wish to save it, he should set

bit &NOSAV to 1. It is then nis responsibility to release it.

| A more detailed explanation will appear in a later version.

14.9. Specifying multiple coreloads

| This Section will be completed at a later date.
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Lo APPENDIX A. TABLES OF PERMISSIBLE OPERANDS AT

3 This appendix gives the types ot permissable operands for the binary
2. and unary operators. In the tables below, B11, B2, B3, B4 and BS

stand for BYTE, BYTE2, BYTE3, BYTE4 and BYTES (I) (for some I),
: respectively. P stands for POINTER.

- Each row represents a left-nand operand, each column a right-
hand operand of the operator. The corresponding table element is
either blank - which means that that particular left-right pair is

— not valid - or is some type. In the latter case, before the
operation is performed the two operands are converted to this type

| (as explained in Section 8.2.3). In addition, the result of the| operation has that type. :

| + B1 B2 B3 B4 BS HWI FWI FWF DWF DEC P
eee

Bl JHWI FWI FWI FWI FWIl HWI PWI FWF DWF DEC Pp

| B2 |FWI FPWI FWI FWI FWNI FWI PWI FWF DWF DEC P |
\ B3 |FWI FWI FWI FWI FWI FHI FWI FWF DWF DEC P |

B4 | FWI FWI PWI FWI FWI FWI FWI FWF DWF DEC |
i BS |FWI FWI FWI FWI FWI FWI FWI FWF DWF DEC P
5 HWI |HWI FWI FWI FWLi FWI HWI FWI FWF DWF DEC Pp

FWI |FWI FWI FWI FWI FWl FWI FWI FWF DWF DEC P
FWF | FWF FWF FWF FWF FWF FWF FWI FWF DWF DEC
DWF | DWF DWF DWF DWF DWF DWF DWF FWF DWF DEC
DEC |DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC
P {| E P P P P 1 4 P

UNARY + El B2 B3 BW BS HWI FwNI FWF DWF DEC P

JB1 B2 B3 BY4 BS HWI FWY FWF DWF DEC P

- Bl BZ B3 BU4 BS HWI FWI FWF DWF DEC Pp
ee

} B1 |HWI FWI FWI FWI FWI HWI FWI FWNF DWF DEC
: BZ | FWI FWI FWI FWI FWI FoI FWI FWF DWF DEC

B3 | FWI FWI FWI FWI FWI FAI FWI FWF DWF DEC
B4 | FWI FWI FWI FWI FWI FHI FWI FWF LWF DEC
BS |FWI FWI FWI FWI FWI FWI FWI FWF DWF DEC
HWI |HWI FWI FWI FWI F¥1 HWI FWI FWF DWF DEC
FWI JFWI FWI FWI FWI FWI FWI FWI FWF DWF DEC
FWF |FWF FWF FWF FWF FWF FWF FWI FWF DWF DEC
DWF JCWF DWF DWF DWF DWF DWF DWF FWF DWF DEC
CEC |CEC DEC DEC DEC DEC DEC DEC DEC DEC DEC
P { P P P P Pp P

UNARY ~- Bl B2 B3 BY BS HWI ¥WI FWF DWF DEC P

JHWI FWI FWI FWI FNI HWI FWI FWF DuU¥ nor
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* B1 B2 B3 B4 BS HWi FWI FWF DWF DEC P |

ee .
BE1 |HWI FWI FWI FW1 Fw] HAI FWI FWF DWF DEC |
B2 | FWI FWI FWI FWI FWI FWI FWI FWF LWF DEC |

B3 |FWI FWI FWI FWI FWI FdI FWI FWF DWF DEC
B4 | FWI FWI FWI FWI FWI FAI FWI FWF DWF DEC :

| BS |FWI FWI FWI FWI FWI FWI FWI FWF DWF DEC

HWI |HWI F&I FWI FWI FwI HWI FWI FWF DWF DEC

 FWI | FWI FWI FWI FWi FWl FWI FWI FWF DWF DEC

FWF |FWF FWF FWF FWF FWF FWF FWI FWF DWF DEC

DWF ) DWF DF DWF DWF DWF DWF DWF FWF DWF DEC

: CEC | DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC |
| E | |

/ B1 E2 B3 B4 BS HWI FWI FWF DWF DEC FE

B |oe ee ee A 2 oS > 2 2 te A tt eo to am
B1 | FWF FWF FWF FWF FWF FWF PWF FWF DWF DEC
B2 | FWF FWF FWF FWF FWF FWF PWF FWF DWF DEC

B3 | FWF FWF PWF FWF FWF FWF FWF FWF DWF DEC
B4 | FWP FWF FWF FWF FWF FWF FWF FWF DWF DEC

BS | FWF FWP FWF FWF FAF FWF FWF FWF DWF DEC

HWI |EWF FWF FWF FWF FWF FWF FWF FWF DWF DEC
| FWI |FWF FWF FWF FWF FWF FWF FWF FWF DWF DEC

FWF | FWF FWF FWF FWF FWF FWF FWF FWF DWF DEC

DWF | DWF DWF DWF DWF DWF DWF DWF DWF DWF DEC

DEC |DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC

P J

bits operators BITAND, BITOR, BITEXOR.
B1 B2 B3 BYU BS HWI FWI FWF DWF DEC P |

be——————————————
] B1 |B1 B2 B3 B4 BS BZ2 B44 B4 BS BS

B2 |B2 B2 B3 B4 BS B2 B4 B4 BS BS
B3 |B3 B3 B3 B4 BS B33 B4 BU BS BS
B4 |B4 B4 B4 BY B4 B3 B4 BU BS BS

- BS |BS BS BS BS BS BS BS BS BS BS

~ HWI §yB2 B2 B3 B4 BS B2 B4 B4 BS BS
* FWI |B4 B4 B4 BY4 BS B4 B4 B4 BS BS

FWF| B4 BU B4 B44 BS B44 B44 B4 BS BS
DWF {BS BS BS BS BS BS BS BS BS BS :

DEC {BS BS BS BS BS BS BS BS BS BS

P
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3 |

Exponentiation A**B., If A is HWI, FWI, or a bits type. And B is a
. positive integer «constant, the result is FWI. Otherwise the result

is DWF. A and B can have any type except POINTER and STRING.

— REM and /,/ are explained in section 8.2.4.

— CAT B2 STRING

eo___

p B2 | STRING STRING |
i STRING |STRING STRING

| “With the CAT operator, a BYTEZ2 operand is assumed to be an atom, and
br the string of characters it represents is used.

;
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| APPENDIX B. SYSTEM IDENTIFIERS Ald

— |

- ) EFLPT 9.9.3
GO &FREG 14.4.1

ATGCM 10. 4 SEFWF 14.3. 1.2
; BEGINPASS 9.6 GFW I 14.3.1.2

L CALLEASS 9.6 a. GREG 14.4.1
CHABMODE 9.8 SHEXT 9.9.3

COMPLETE. 9.6 GHWT 14.3. 1.2

L DESCRIETOR 14.3.1.2 SIN 9.9.1FALSE 5 3 INDIR 14.3. 4.2

LO 7.1 INIT 14,2.4.3

i L1 7.1 EINLINE 12.6
L L2 7.1 &INTDIC 10. 4

L3 7.1 SISEMPTY 14.4.4

LY 71 &ISFAST | 14.4. 4

] ~ RO 7.1 EISNEW 14.4.4
— R1 | 7.1 SISSAVE 14.4.4

R2 7.1 tISUSED 18. 4.4

| NOEMODE 9.8 &JOINREGS 14.4.8SCAN _ 9.8 & LABEL 14.3. 1.2
SCANSYM 12.1 & LENGTH 14.3.5

TRUE 5e 3 &LZ 14.3. 1.2

L SADD 14.3.4.5 ENEG 14.3.1.2 |
SALLOCF 14.2.4.2 LNEW 14. 4.7.2 -

| &EALLOCP 18.2. 4.1 tNLINE 12.6

L ~~ EASSIGNAD 14.3.4.3 ENOSAV 14. 3.1.2 |EBINT 9.9.3 5OCTT 9.9.3

&BL 4.3.1.2 ORD 14. 3.1.2 |

SBYTE 1403.12 &0URS | 14.3.1.2
. EBYTE2 The 301.2 &0UT 9.9.2

EBYTES3 14.3.1.2 $OUTDESCR 9.9.2
| SEBYTEY T4840 3.1.2 POINTER 14. 3.1.2

| &EBYTES 14.3.1.2 5 PROC 14. 3.1.2
ECLINE 12.6 REG 14.4.1

ECODELCC 14.1.3 CRELDYNADD 14. 2.6.2

i ] ECODENC 14.1.3 SRELEASE 9.10
“ §CON 14.3.7 &RESTREGS 14.4. 8

ECONST 14.3.1.3 &SAVEREGS 14.4.8

| ECREATECODEAREA 14.1. 4 ESAVE 14.4.7.2L "ECREATEDATAAREA 14.2.3 &SCLINE 12.6
.&D 14.3 &SUBSCR 14. 3.1.4

"&DDRESS 14.3. 1.1 | STBIN 9.9.3

| § DATALOC 14.2.2 ETDEC 9.9.3
-— §DATANGC 14.2.2 &TEXT 9.9.3

SDYNADD 14.2.6.1 &THEX 9.9.3

{ &EDEC 14.3.1.2 &TOCT 9.9.3
. &DECT 9.9.3 STYPE 10.4

EDUMEREG 14.4.5 EUNDEF 14.3. 1.2 |
EDWF | 14.3.1.2 SUSECODEAREA 14.1. 4

EEACALC 14.3.4. 4 SUSED 14.4.7.2

- SEAVAL 14.3. 4.5 LUSEDATAAREA 14.2.3 |
EEMPTY 14.4.7. 1 &USEREGS 14.4.8

GENTRY 14.3.6.1
— SEXCHREGS 14.4. 8 |

| SEXTEERN 14,.3.6.2 The following identifiers
EFAST 4.4.7.2 are used to name components of
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system structured types.

ADDR 14.3.1.2

ADDR 14.3. 1.3 -

ADDR 14.3.1.4

ADDRCONT 18.3. 1.2

ADDRVAL 14.3. 1.3

AREA 14.3. 1.1 |
BYTELENG 14.3. 1.2

- CONTROLS 1423. 1.2
E KIND 14.3.1.2

| CFFSET 14.3. 1.1

PC The 3.1.2

PS ~ 14. 3. 1.2 |

REG 14.3.1.2

SUBDCR 14.3. 1.4

THEIRS 14.3. 1.2

VALUE _14.3.1.3
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| APPENDIX C. PROGRAM EXAMPLES
: Example 1. This example illustrates basic declarations, assignment

statements and iterative statements. It computes and prints

| factorial N,for N=1,...,10. oo
BEGIN FWI I, N; /¥ I and N are Fullword Integers ¥*/

I= 1;

L FCR N = 1 UNTIL 10 DO
BEGIN I = Ix*N;

[ &OUT( *FACTORIAL', N, I)

L END;
END;

] |
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Example 2. This example is a direct translation from ALGOL into CIL |
ot Knuth's algorithm for cailculatiny the day and month of Easter, |
given the year (cf Comm. ACM 5 (April 62), 209).

FROCEDURE EASTER( HWI YEAR, /¥input */
MONTH, /¥output */

DAY); /¥output */ | |
BEGIN HWI GOLDENNUMBER, CENTURY, GREGORIANCORRECTION, |

CLAVIAN CORRECTION, EXTRADAYS, EPACT; |
GCLDENNUMBER = YEAR REM 19 + 1; |

a IF YEAR > 1582 |
: THEN BEGIN CENTURY = YEAR // 100 + 1; oo

GREGORIANCORRECTION = (3 * CENTURY) // 4 - 12;
CLAVIANCORRECTION = (CENTURY-16- (CENTURY-18)//25) // 3;

- EXTRADAYS = (5*%YEAR) // 4 - GREGORIANCORRECTION - 10;
EPACT = (11*GOLDENNUMBER ¢ 20 # CLAVIANCORRECTION

3 -~ GREGORIAN CORRECTION) REM 30;
IF EPACT <= 0 THEN EPACT = EPACT + 30;
IF (EPACT = 25 AND GOLDENNUMBER > 11) OR EPACT = 24
THEN EPACT = EPACT + 1: |
END

ELSE BEGIN EXTRADAYS = (5%YEAR) / U:

EPACT = (11*GOLDENNUMBER - 4) REM 30 + 1; Tr
END; |

DAY = 4 - EPACT;

IF CLAY < 271 THEN DAY = DAY + 30;
DAY = DAY + 7 - (EXTRADAYS+DAY) REM 7;
IF CLAY > 31 THEN BEGIN MONTH = 4; DAY = DAY ~- 31 END

END; |
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|

( Example 3. This example illustrates one use of tables, BYTES
L variakles and SUBBYTE designators. In JACM January 1962, Stephan

warshall gave the following aljorithm for computing M* = MEM*___%xNM
if M is a n by n Boolean matrix: |

( |

L 1. Set i = 1. |

{ 2. For all j such that M (j,i) = 1
- set M(j,k) = M(j,k) OR M(i,k) for all k.

{ 3. Increment i by 1.
| 4. If 1 <= n, go to step 2; otherwise stop. |

. - We give to ways of implementing this in CIL.
PROCEDURE MSTAR( BYTES TABLE M; FWI N):

| /¥ M is a table of records, each of type BYTES ({(N) (a
sequence of N 8-bit bytes). N is between 1 and 256.

, For I,J = 1,e+.,N, SUBBYTE(M(J) ,I-1,1)

L is the matrix element M(J,I) and will take on |only the values 0 or 1. ¥*/ |

L | BEGIN| Ful I,J; /*¥1,J are FullWord Integers.*/
FOR I = 0 UNTIL N-1 DO /¥loop on 1 */

FOR J = 1 UNTIL N DO /#loop on J #*/

| IF SUBBYTE(M(J) ,1,1) = 1
THEN M(J) = M(J) BITOR M(I+1):

. END

L ; |
EKOCEDURE MSTAR1( BYTES TABLE M; FWI N);

/* this is as in the above case. However this time each of the

| 8 bits in a byte of a record M (I) represents a matrix
element. Thus the matrix represented can be 256%8 by 256%8.

| For I,J = 1,..-.,N, if K = (3-1) REM 8 + 1

| then bit K of the byte SUBBYTE(M(I), (J-1) // 8,1)represents the matrix element M (I,J). */

BEGIN

BYTES (8) MASK; /7¥ MASK is a sequence of 8 bytes */
MASK = X'8040201008040201%'; /#* which is used to isolate a

| single bit of an 8-bit byte. Thus
- SUBBYTE (MASK,K, 1) BITAND B

yields the value (0 or not zero)
’ of the K+1th bit of the BYTE

L variable B for K=0,eec=,7. */

i FOR I = 1 UNTIL N DO
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BEGIN K = (I-11) REM 8; |
L = (I-1) // 8;
FOR J = 1 ONTIL N DO

IF SUBBYTE(M(J),L,1) BITAND SUBBYTE (MASK,K,1)
| THEN M(J) = M(J) BITORM (I);

END oo

END
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i Example 4. This example illustrates the use of tables, structures
— and pointer variables. We wish to describe the symbol tables

necessary to implement ALGOL block structure. Blocks will be
| numbered, starting with 1, in the order of their BEGINS. When a
L tlock is open, its identifiers will be stored in table SYMOP. When a

block is closed, the records tor identifiers in it will be moved
from SYMOP to table SYMCL. All records for a block are contiguous. A

L tabtle BLOCK helps to indicate where the records for each block are.For example, if ve have so far parsed |

{ BEGIN COMMENT block 1;
| BEGIN COMMENT block 2;

| N END;
BEGIN COMMENT block 3;

the tables will look like oo

| SYMCL BLOCK SYMOP | |
 tntantutindatet Ih Sutetata TTT eS ated |

| jidents for) | | block j—---3 |idents for]

L }] block 2 | | ] | ==1 | block 1 |
| SESulTEE BEEEnded Ett |
te———=—====J | t-—{-block | | ==————————

L tem===|- 2 | g¢=—-—=-=-->]idents for]===] |} } block 3 |
| block |--4 td i

| 3 | ——=—=—~—4 leew —————d

L . The declarations necessary are:
STRUCTURE SYIMSTE( /¥structure of SYNOLD, SYMNEW record*/

L BYTE2 AT, s/¥atom for identifier*/ |BYTE TYPE, /*type of identitier*/
BYTE BLOCKNO); /*block number in which declared*/

| DYNAMIC SYMSTR TABLE 50 SYMOP; /*table for identifiers in open
blocks*/

L DYNAMIC SYMSTR TABLE 99 SYMCL; /*table for ids in closed blocks¥*/
STRUCTURE BLKSTR( /¥structure of BLOCK table record.*/

BYTE BLOCKNO, /*block number*/

L BYTE BLOCKSU, /*surrounding block number*/
PCINTER PF, /*to first record for block*/

( POINTER PL, /*¥to last record for block (0 if none) */ |
L BYTE TAB); /*0= plock im SYMOP, 1 = SYMCL.*/

DYNAMIC BLKSTR 50 BLOCK: /*table to control block structure#*/
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BYTE BLKCUR, BLKLAST; /*current biock number and last block
number assigned. Both are initially 0%/

POINTER (BLKSTR) B; /¥pointer to records of type BLKSTR.*/
POINTER (SYMSTR) P1,P; /*pointer to records of type SYMSTR*/

BYTE AT, TYPE; /¥jlobal variables.*/

y The following should perhaps be explained. If P is a pointer
a variable pointing to some structured type record, and if X is the

name of some component of that structured type, then

- Pea X |

is a reference to the component X of the record pointed at by P. In
addition, we assume there is a stack operating in the usual manner.
LO and L1 refer to the top and second stack records before the last
matching of the stack with a production began. RO and R1 refer to
the current top and second stack records.

Iwo semantic routines are used to open new blocks and close |

blocks when entirely parsed:

SOPEN: /*this routine is called when a new BEGIN for a block
is scanned. It adds a new record for the new block in |
table BLOCK and fixes current block number. */ |

BLKLAST= BLKLAST+1; /*fix up the last block number - */
ENTER (BLOCK, BLKSTR (BLKCUR,RO.BLKNO,0,0,0);

/*¥add the record for the new block#*/
BLKCUR = BLKLAST; /¥fix up current block number. */
SYNTAX; /¥return to productions*/

SCLOSE: /*this semantic routine is called when BEGIN END is
on the stack. It moves the records for this block from |

table SYMOP to SYMCL and tixes everything up. */
B = & BLOCK (BLKCUR); /*save the address of BLOCK record

for current block in B.*/

IF B.PF s/*¥if this pointeris non-zero, we have some
~~ THEN BEGIN /*record to move to SYMCL. */

P1 = TALLY (SYMCL,0,BACK); /*save address of current last¥/
/¥record of SYMCL.*/

FOR P IN SYMOP FROM B.PF TO B.PL DO /*move the necessary*/
ENTER (SYMCL,&C(P) ); /¥records from

SYMOP to SYMCL*/

DELETE {SYMOP,B.PF) ; /¥delete the moved records*/
B.PL = TALLY (SYMCL,P1) ; /¥now fix up the block record*/
B.PF = TALLY(SYMCL,0,BACK); to point to the new records

IN symcl.*/
end; ’

E.TAB = 1; /*the records are now in SYMCL.*/ |
BLKCUR = BLOCK (BLKCUR).BLOCKSU; /*new current block is the */
SYNTAX; /¥previous surrounding one. ¥*/
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Two procedures are used to enter records into the symbol tables and

- to look for records for identifiers: |

. PROCEDURE DEC; /*this procedure enters a record for identifier
AT with type TYPE for block number
BLKCUR.*/

L begin pointer p;P = ENTER(SYMOP, SYMSTR (AT,TYPE,BLKCUR)); /*enter the record,
put its address in P.*/

A IF P=0 THEN BLOCK({BLKCUR) .PF=P; /*tix up the block structure*/
1 BLOCK (BLKCUR) « PL=P; /¥table record for this block.*/
| | END;

PROCEDURE FIND; /*this routine looks in block BLKCUR and

L | surrounding blocks tor an identifier named AT. |- If found, P= address of its record; otherwise
P=0. BLKCUR, AT and P are global.*/

BEGIN BYTE K;

L POINTER {BLKSTR) B;
P = 0; K = BLKCUR; /¥assume we can't find AT (P=0) and |

, initialize K to current block number*/ |
| WHILE K DO /*¥ve try current block and each |
- ‘surrounding block, in succession*/ |

BEGIN B = @& BLOCK (K) ; /¥save address of block record#*/

L IF B.TAB /*¥ve look tor the identifier in the recordsrecords for the block - in SYMCL if block

is closed, or SYMOP if open.*/

( THEN P = LOOK(SYMCL.AT, AT FROM B.PF TO B.PL)
( ELSE P = LOOK (SYMOP.AT, AT FROM B.PF TO B.PL);

IF P ~ /¥1itft P=0, AT wasn't in block, so*/
THEN K = 0 /¥set K to surrounding block nuamber*/

L : ELSE K = B.BLOCKSU /*otherwise we are done - set K to*/END; /7¥0 to end the WHILE stateant%/

{

I.

L
|

{
|

;

L.

: |
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Example 5. This example illustrates the use of code brackets to |
generate code for conditional statements of the usual form. We
assume that IF, THEN and ELSE are reserved words, that BE and S are

INTS for Boolean expression and statement respectively, and that
ENDIF is a class name for symbols which can end a conditional
statement. The productions used here (we only 1list the ones
necessary for illustration) are

IF BE THEN > THEN EXEC SBE SCAN GO BEGINSTATEMENT

. THEN S ELSE > ELSE EXEC STHELSE SCAN GO BEGINSTATEMENT

| THEN S ENDIF > S ENDIF EXEC SIFEND GO ENDSTATENENT

“ELSE S ENDIF > S ENDIF EXEC SIFEND | GO ENDSTATEMENT |

The following semantic routines generate code for conditional
statements, without «caring about the contents of the runtime
registers. We assume the main stack has a componentD which can be a
pointer to a DESCRIPTOR.

SBE: /*stack contained IF BE THEN and L11.D contains a
pointer to a DESCRIPTOR for BE. */ |

R0.D = /*yenerate a nev label to jump to¥*/
DESCRIPTOR (KIND=6LABEL) ; /*¥it BE is false and stack it.*/

COLE (GOIFNOT L1.D TO RO.D); /*generate a branch-on-BE-false*/
/¥to the label.*/ |

SYNTAX; /¥return to productions.*/

STHELSE: /*stack contained THEN S ELSE and we assume that the

code for statement S has already been generated. */
RO.D = /¥jenerate a new label to jump to*/
DESCRIPTOR (KIND=&ELABEL) ; /*¥after S is executed, stack it.*/
CODE (GO RO.D); /¥jenerate the branch to it.*/
CODE (L2.D3) ; /¥derine the address of the label*/

/¥to branch to if BE is false.*/

/¥CGS sets register descrptionsk*/
/*¥to EMPTY and fixes any*/
/¥previous branches to the label.*/

RELEASE (L2.D) ; /¥label is no longer needed-relese*/
SYNTAX; /*it, return to productions.*/

SIFEND: /* stack contained THEN S ENDIF or ELSE S ENDIF
and we assume code for statement S has been generated. oo
L2.D contains a pointer to a DESCRIPTOR for an
internal label for statement following ENDIF. */

CODE (L2.D2) ; /*define the address of the label to
branch to if BE is false {or after
the THEN statement has been

" executed). Rey descriptions set to
&EMPTY and previous branches to
lapel are fixed up. */

GRELEASE(L2.D) ; /¥release the DESCRIPTOR.*/
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[

| SYNTAX; /¥return to productions.*/
L

| The following semantic routines can be used in place of those above.
— They illustrate the use of the register descriptions to generate |

better code. In addition to component D, we assume that the main |

| stack «contains a pointer component which will point to register
— descrirtions. |

1 SBE: /*stack is as previous casex/ | |
| RO.D = DESCRIPTOR (KIND=&6LABEL); /*as 1n previous case¥/ |

| CCDE (GOIFNOT L1.D TO RO0.D); /*as 1in previous case¥/

| “ESAVEREGS (RO.P) , /¥save the current register descrip| tions for later use.*/
SYNTAX; |

L STHELSE: /*as in previous case, but LZ.P contains a pointer
to register descriptions as they were at the beginning of |

= the THEN statement.*/ |

| RO.D = DESCKIPTOR (KIND=&LABEL); /¥as in previous casex/
CCDE (GO RQO.D); /¥as in previous case*/ oo

. EEXCHREGS{L2.P); /¥save the current register descrip

L tions for later use and make thecurrent ones the same as they were
for the THEN statement.*/ |

( kKO0.P=12.P; /¥make sure its stacked right.*/
L CODE ({12.D (0) 2) /*def ine label - but leave register

RELEASE (L2.D); /*¥descriptions alone.*/ |

SIFEND: /#*as in previous case, but l1l2.p contains pointer to descrip
tions of registers as they were upon the branch-on-false

L . or the branch after the THEN statement.*/&EJOINREGS (L2.P) ; /¥join the register descriptions
| with current ones, since these

describe the only places that branch

| to here.*/
CODE (L2.D (0) 2) ; /¥ as betore, but leave register
ERELEASE (L2.D) ; descriptions alone.*/

L SYNTAX;

] ;
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