
CS 118

A. 1.74 |

- |

oN MACHINE LEARNING OF HEURISTICS
-

ro,

© BY

i. DONALD ARTHUR WATERMAN

SPONSORED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

DECEMBER 1968 JAN 221969

\

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

gm Tonroved
7 3 la; te

ory

BEST
AVAILABLE COPY

Machine [earning of Heuristics

A DISSERTATION

SUBMITTED TO TiiE DEPARTMENT OF COMPUTER SCIENCE

AND TH COMMITTEE ON THE GRADUATE DIVISION

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOF THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Donald Arthur Waterman

December 1968

STANFORD ARTIFICIAL INTELLIGENCE REPORT December 1968
MEMO NO. AI-Tk4

MACHINE LEARNING OF HEURISTICS

by Donald Arthur Waterman

ABSTRACT: First, a method of representing heuristics as production
rules is developed which facilitates dynamic manipulation
of the heuristics by the program embodying them. This
representation technique permits separation of the heuristics
from the program proper, provides clear identification of

individual heuristics, is compatible with generalization
schemes, and expediles the process of obtaining decisions
from the system.

Second, procedures are developed which permit a problem-
solving program employing heuristics in production rule form
to learn to improve its performance by evaluating and
modifying existing heuristics and hypothesizing new ones,
either during a special training process or during normal
program operation.

Third, the sbovementioned representation and learning techniques
are reformulated in the light of existing stimulus-response
theories of learning, and five different S-R models of
human heuristic learning in problem-solving environments are
constructed and examined in detail. Experimental designs

for testing these information processing models are also proposed
and discussed.

Finally, the feasibility of using the aforementioned represen-
tation and learning techniques in a complex problem-solvin:
situation is demonstrated bLy applying these techniques to the

problem of making the bel decision in draw polier. This
application, involving the construction of a computer program,
demonstrates that few production rules or training trials are

needed to produce & thorough and effective set of heuristics
for draw poker.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).

|

ACKNOWLEDGMENTS |

I wish to express my sincere thanks and appreciation to my principal |

thesis advisor, Professor Edward A. Feigenbaum, not only for his perceptive |

guidance, his intellectual inspiration, and his discerning criticisms,

but alsc for the friendly encouragement and moral support he so generously

provided. I am also grateful to Professor Gordon H. Bower for the extensive

time and effort he spent enlightening me with regard to the psychological

aspects of my thesis topic.

In addition I am indebted to Dr. Bruce G. Buchanan, Professor D. R. Reddy,

and Professor David J. Gries for their valuable suggestions and critical

evaluations of this thesis.

I would also like to thank Mrs. Grace Mickelson and Mrs. Gail Schwartz

for their excellent job in typing and proofreading his report, Mrs.

Dorothy McGrath for her fine illustrations, Miss Dianna Konrad for supervising

the preparation of this report, and Miss Barbara Chiarle for reproducing

parts of this report.

y,

/

iii

~ [BLANK PAGE

3 TABLE OF CONTENTS

| Chapter Page
: | 1. HEURISTIC PROBLEM-SOLVING BY COMPUTER + « « + + « « « + o 1
: lel Introduction +. « « ¢ ¢ ¢ ¢ 0 ¢ 0 0 ¢ 0 0 oc 0 os 0 0 oo L

| 1.2 Definition of Heuristic Methods «+ « ¢ ¢ o « os ¢ o ¢ « 5

| i l.% Historical Background « « « o o o o o o os o o o o o o 11
1 Lod ObJECtiVES + « + os o « o os o o o os o o 0 o 0 os os o o o 27

hh I 2. REPRESENTATION OF HEURISTICS « « « + o « o o o o « o o o o 29
2el Introduction « « « o¢ o o o o os o 0 6 5s os s 5 os o oo 0 29

| | 2.2 Production Rules « « « o o o « o 4 o 5 0 o 6 0 so 0 o o 32
2.3 Translation of Heuristics into Production Rules . « + 40

| } 5. PROGRAM MANIPULATION OF HEURISTICS « « os « « os os s s o o o o L7
| | 3.1 Creation and Evaluatio: of Heuristics « ¢ o o o o « o 47

322 Training Procedures «+ « « o o o o os os 0 os os o 0 © o oo 55

} 5¢5 Learning Without Explicit Training « « « ¢ « o o o « 17
L, IMPLICATIONS FOR S-R THEORIES OF LEARNING « o « ¢ o o = 89

i Lel Introduction o « o o o o so « o 6 o 0 0 6 os os o 0 0 0 oo 89 :

} L.2 An S-R Interpretation of Production Rules + « « + + 1
| 4.2 Proposed Experimental DeSigNS « o « o o o o o o o © o » 114

| S¢ A SPECIFIC APPLICATION « o « o ¢ 2 o o o os 0 os 0 os 0 os os o 120
Bel INtOorduction ¢ o o +o +o ¢ o ¢ o os os 6 5 5 os 0 0 ¢ os so 120

! 5.2 Heuristics for Draw Poker .« « « + «+ o ¢ ¢ os os « os o o 122

3 53 Training the Poker Program « + os o o o os os o o o o o o 133
5.4 Learning Poker Without Explicit Training « « « « . « & 143

| 5¢5 Discussion of Results =: ¢ « ¢ o o o os © © o © o © o o 152

L iv
I

i

i

po Ve do ue NE 2g

3

t

CONTENTS (Continued) “

| Chapter Page i
6. CONCLUSIONS « + « « o o o o so o o o 0 o so oo oo os oo 158

6.1 Achievements « « « « + « o o « o o so « o oo o o oo 158 :
3 6.2 Areas for Future Investigation eo « o « o o o o o o 160 -

| .
| BIBLIOGRAPHY « ¢ ¢ ¢ o o o o o ¢ o o o 0 o a + ¢ 5s os os o 169

| PN
APPENDIX A. Models of Strategy Learning . « « « « o « 175 |

APPENDIX Be. Heuristics for Draw Poker « « ¢ « ¢ « « o o 182

APPENDIX C. Sample of Games Played During Proficiency

Test for Built-in Heuristics « « « o o + « 190

APPENDIX D. Training Trials for Manual-training Heuristics 195 }

APPENDIX E. Sample of Games Played During Proficiency

Test for Manual-training Heuristics + « . 201

APPENDIX F. Sample of Games Played During Proficiency

Test for Before-Training Heuristics « « « 205 »

APPENDIX G. Training Trials for Automatic Training

: HeuristiCsS « o o o o os o © o 5 6 5s o o o o o 209

APPENDIX H. Sample of Games Played During Proficiency

Test for Automatic-training Heuristics o 217 "

APPENDIX I. Logical Statements for Draw Poker « « « . 221 3

APPENDIX J. Treining Trials for Implicit-training £1

Heuristics « « « o o « o o o 0 o o os os o o o 226 -

APPENDIX K. Sample of Games Played During Proficiency

Test for Implicit-training Heuristics . . . 251 .
0

4-

v -

hd

.

a ~. : me vere emmanuel (0)

LIST OF ILLUSTRATIONS |Figure Page

i 1-1 Structure of a Heuristic Frogram for Chess ¢« ¢« « ¢ ¢ ¢ ¢ ¢ 8 A
1-2 Graphical Illustration of the Criteria for the Usefulness

1 or Power of Heuristics © 5 + 4 0 8 8 8 4 8 se ts ss us 10 |

| l=3% |] |] LJ LJ LJ LJ |] |] |] |] |] |] |] |] [|] LJ |] |] |] |] |] |] |] |] LJ |] LJ |] LJ ® 23
l=k ® [J ® ® ® ® ® LJ ® [® LJ LJ LJ [J LJ ® LJ LJ LJ ® LJ [® ® LJ LJ ® LJ LJ 25 i

| 2=1 LJ |] LJ |] |] |] |] [] [] |] |] |] [] |] [] |] |] |] |] |] |] |] |] L LJ |] |] LJ LJ LJ 22

| 2=2 LJ ¢ eo eo eo ¢ eo eo LJ LJ o * eo oo 0 + + & + e eo o * eo eo oo 38
2-23 Syntax of a Language for Specifying Heuristics « « o o « « 42

: 3-1 A Block Diagram of the Training Procedure « « « o o o o o 69
i 3-2 . * © 2 eo © 0 ¢ eo e eo e o e oO eo eo oo ¢ 0» ° ® ° ee ¢ oo oo eo 75 1

3=3 LJ ae oe ee eo ¢ eo LJ * eo 6 oo @ oo oo @o O° oo 0 * * * eo oo 75

l 3h LJ ¢ oo oo © + oo oo oo oo LJ LJ * & ¢ ee eo os e eo ® * eo s. Oo eo 83

| Lol Feasible Models of Strategy Learning « « « « o o o « o ¢ o 97
4L-2 Training Sequence and Defiuinions to Illustrate Model

| Operation LJ LJ |] |] |] |] |] |] [[|] |] ® LJ |] |] |] |] |] LJ LJ |] | |] LJ Qg
L-3 An Environment for Testing Models of Human Strategy Learning 117

5-1 Definitions of State Vector Variables and Symbolic Values . 124

5-2 The Relationships Existing between the Function Variables

| and the Bookkeepign Variables « « ¢ o ¢ o o ¢ o o o 0 o o o 126
5=3% Built-in Heuristics LJ LJ LJ LJ LJ LJ LJ ® LJ ® J LJ LJ LJ LJ LJ LJ |] |] [] 127

| 5-4 Possible Arrangements of Hands for the Proficiency Test
for Draw Poker PE a eo ® ee 8 8 ee a ®« @ eo @ . a *s ® oo os eo oo 12¢

vi

&

Eis EE a do RedeLB

2

ILLUSTRATIONS (Continued)

| Figure Page ue

| Tomer Es an an mE ET EIS, |
| | 5-6 Results Obtained by Applying the Proficiency Test to the V
| Poker Frogram Containing the Built-in Heuristics « « « « « + 122 -

5-7 Manual-training Heuristics « « « ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ ¢ ¢ oo o 135 1
i 5-8 Results of Applying the Proficiency Test to the Poker Program a

Containing the Manual-training Heuristics « « « o « o ¢ o o 136 we

5-9 Results of Applying the Proficiency Test to the Poker Program 1
Containing the Before-training Heuristics + « « o o ¢ o o o & 138 |

5-10 Automatic-training Heuristics « « ¢ ¢ ¢ ¢ oo ¢ ¢ o o o o o 140 1
5-11 Results of Applying the Proficiency Test to the Poker Program —

Containing the Automatic-Training Heuristics « «¢ ¢ ¢ o « « 142 -

5-13 Implicit-Training HEUTiStics « « o + o o o o o o o « « oo o « 140

5-14 Results of Applying the Proficiency Test to the Poker Program I
Containing the Implicit-Training Heuristics « ¢ o¢ ¢ ¢ « oo o 151 |

I

A=l oo ¢ oo 6s 6 4 4 6 6 4 6 6 6 6 6 8 6 8 6 ss 6 os 6 eo 8 eo » 180 -

Table | B

5-1 Percentage Agreement Between Trainer and Trainee « « ¢ « « « 141]
5-2 Percentage Agreement Between Learning Program and Axiom Set . 150 r

53 Summary Of RESULLS o « o ¢ o 6 o o o o 6 oo ¢ oo o o os 0 o o 153 ee

vii "

£®

3

EE |

»

. [. |

)

CHAPTER 1

|

HEURISTIC PROBLEM-SOLVING BY COMPUTER

l.1 INTRODUCTION 4
Currently much research is being done with computers in an attempt

to produce programs which exhibit intelligent behavior. This work can A

be divided into two main categories, (1) artificial intelligence research, |
and (2) research in the simulation of cognitive processes (Feigenbaum i

and Feldman, 1963). The former is concerned with programming computers p-
to perform intellectual tasks, while the latter is concerned with +
programming computers to simulate human cognitive processes. 3

The goal of artificial intelligence research is the construction "

of computer programs which exhibit intelligent behavior, with the | }

| emphasis placed on the degree of intelligence exhibited. The goal of
’ research in the simulation of cognitive processes, on the other hand,

! is the construction of compute. programs which simulate human cognitive

behavior, with the emphasis placed on the degree to which the programs

can predict this behavior.

To illustrate the distinction between these two categories consider |

the intellectual task of game playing. A researcher in artificial

| intelligence would judge the merits of his game-playing program on the
basis of its skill at playing the game, the ideal program being one

capable of defeating all other players. However, a researcher in the

simulation of cognitive processes would base the evaluation of his game-

playing program on the extent to which its game decisions or "moves"

| paralleled those of human players, not on how well his program played the ‘
i |

| of
i

FY

|

0 FIERO,A EAA o a '

: game. This distinction is not a clear one, since some research efforts |
can be classified as belonging to both categories. One example of this T

| | is the NSS Chess Player (Newell, Shaw, and Simon, 1958), a program, N
| proficient at playing chess, which employs many human-like problem-solving I

techniques. oo

In both the artificial intelligence area and the simulation of 4

cognitive processes area extensive use is made of heuristic programming, |
that is, of employing heuristics in programs which solve complex problems. N

The utility of most of these heuristic programs depends to a large extent i
on the form or character of the heuristics employed. Thus heuristics

play an important role in the attempt to create programs which exhibit I

intelligent behavior. |
One of the important unsolved problems of artificial intelligence |

research today is that of the learning of heuristics (Feigenbaum and |
Feldman, 1963). The question is this: how can computers (and how do

people) learn new heuristic rules and methods which can be used to |

facilitate decision-making in a problem-solving situation? Furthermore, i
how are these new heuristics combined with existing ones to produce a

functional system capable of intelligent decision making? Solutions in 1
this problem area, besides permitting the construction of very powerful

problem-solving programs might also suggest what direction psychological 1
theories of leariiing should take. This paper will be concerned primarily T

with the development of computer programs which learn heuristics in a =

problem-solving environment. \

2 .

’ 1 oy
-—T Eo

:
y

1.2 DEFINITION OF HEURISTIC METHODS d

In this section the concept of the heuristic will be discussed in

detail. First, the term "heuristic" will be informally defined and

contrasted with the concept of the algorithm. Next, more formal

| definitions of these terms will be presented, and the implications of
these definitions examined.

|
Informal Definitions

| A heuristic (heuristic procedure, heuristic method) is a rule-of-

| thumb, strategy, trick, simplification, or any other kind of device
which drastically limits search for solutions in large problem spaces

(Feigenbaum and Feldman, 1963). A heuristic does not guarantee a solution,

rather it supplies solutions which are acceptable most of the time. On

| the other hand, an algorithm (from the logician's viewpoint) is any set
of operations which can be represented by a Turing machine (Trakhtenbrot,

| 1963). However, when "algorithm" is contrasted with "heuristic" a
narrower definition is usually implied. In the narrow sense an algorithm

is a well-defined search procedure which is guaranteed to produce the

correct solution, given enough time. The advantage in using a heuristic

method rather than an algorithmic one is often that of reduced search time

and effort. The disadvantage is that a solution may not be found, and if one

is found it may not be optimal.

EVALUATION. The above informal definitions give a clear, intuitive picture

of what is usually meant by the term "heuristic" but are unsatisfactory

in two respects. First, these definitions lead to much confusion

concerning the nature of the differences between heuristic and algorithmic

| b.
|

| sh, e -

i

methods. For example, they fail to provide the answers to the following]
, questions:]
| (1) Can a search procedure be both heuristic and algorithmic? |

r (2) Does a heuristic procedure necessarily imply failure on i
some problems? I

(3) How does one show that a given procedure is a heuristic one?

An algorithmic one? 1

Confusion concerning these and related questions has led to a good deal)
of controversy in this area. 3

Second, these definitions state that a heuristic necessarily

implies reduced search time or effort in a problem area, thus denying

the existence of heuristics which do not lead to reduced search time

or effert. This constraint leads to definitions which are satisfactory |

for the typical heuristic problem-solving program; i.e., one where the

heuristics are embedded in the program and can be changed only by some

external operation, such as the programmer revising portions of the code.

However, these definitions are not satisfactory for the type of program

: to be described in this paper, a program which hypothesizes, evaluates, h

and modifies its own heuristics. For this type of program the concept A

of a "poor" (inadequate, ineffective, or useless) heuristic is needed .

since the program itself must be able to determine whether : given heuristic |
is a "good" or "poor" one; and thus decide whether to retain it or

discard it. It cannot be assumed that every procedure hypothesized by

this type of program will lead to reduced search time or effort, but]
it would be convenient to think of all these procedures as heuristics.

This can be accomplished if the definition of the term heuristic carries -

no stipulation about search time or effort but instead uses the search =

L

i

Ps

: _ » | —

I

i |
i

}
time or effort as one of the criteria for the "goodness" or "worth" |

| I of the heuristic. |
Formal Definitions | |

! In this paper the terms computational rule, algorithm, and
1 heuristic will be taken to mean the following.

} Computational Rule: any procedure determined by a set of instructions
that specify at each moment precisely and unambiguously what is

\ | to be done next.
Algorithm: a computational rule which obtains solutions to problems,

f such that there exists at least one problem domain where for

l every problem in the domain this computational rule produces
the correct solution. Furthermore, the computational rule is

| | said to be an "algorithm for" each problem domain satisfying
the above requirement.

| | Heuristic: a computational rule which obtains solutions to problems,
| such that there exists at least one problem domain where the

! computational rule obtains one or more correct solutions but
| where it is not true that the computational rule will produce

the correct solution for every problem in the domain. Further-

| more, the computational rule is said to be a "heuristic for"
each problem domain satisfying the sbcve requirement.

]
These formal definitions satisfv the two conditions that the informal

| definitions failed to satisfy. That is, (1) providing a clear dis-
tinction between heuristic and algorithmic methods, and (2) admitting

I the existence of heuristics which fail t- lead to reduced search time |
| or effort. :

p)

|

BY

J

IMPLICATIONS. From the formal definitions given above it is clear that !
for any computational rule, CK, and problem domain, D, if CP produces any |

oo correct solutions in D then it is always true that CR is either a

heuristic for D or an algorithm for D , but never both. However, |
a computational rule may be both a heuristic and an algorithm; for example, :

CR might be a heuristic for problem domain D1 but an algorithm for §
domain D2 . Also, it is possible that a computational rule could |
be a heuristic for more than one problem domain. |

To show that a computational rule CR is an algorithm for a problem |
domain D one must

(1) show that CR produces the correct solution |
for every problem in D . |

To show that a computational rule CR is a heuristic for a problem domain |

D oue must |
(1) show that CR produces a correct solution for a least |

one problem in D . |

(2) show that CR fails to produce a correct solution for |
at least one problem in D .

It should be noted that under these formal definitions, a heuristic l
procedure does necessarily imply failure on some problems.

If one is unable to show that a particular computational rule CR

(which produces correct solutions in problem domain D) is an algorithm

for D , and is also unable to show that CR is a heuristic for D then

the status of CR is unknown, although it is still either an algorithm |
or a heuristic (but not both) for D . Since the members of this class ,

of computational rules are generally thought of as being heuristics,

in this paper they will, for convenience, be labeled or "hypothesized"

6 -

a ha §

| as heuristics with the urderstanding that their status is actually '
unknown and may be discovered or proven at some later date. }

HEURISTIC PROGRAM. A program will be considered to be a computational rule

precise enough to be executed by a computer, and a heuristic program

simply a program which contains heuristics. Thus under the formal

definitions given, a heuristic (or heuristic procedure) is just a

heuristic program containing exactly one heuristic. And convers:zly a

| heuristic program is actually a heuristic for some particular problem
domain. Figure 1-1 illustrates how a heuristic program for chess (Bernstein

| and Roberts, 1958) could be considered a heuristic for the problem domain
D1 while containing heuristics for domains D2 , D3 , Db , and D5 .

I

ada.

Heuristic Program for Chess 'S

heuristic in D2

| (for improving
’ area control) .

J
a

heuristic in D3

(for improving
mobility)

heuristic

in D1 (for

) winning a 1
heuristic in Dk ees)
(for maintaining
king defense)

heurasiic in DS

(for improving
material balance) |

Figure 1-1. Structure of a heuristic program for chess, .
illustrating how the program is a heuristic

for domain D1 while containing heuristics for {domains D2, D3, D4, and DS.

8

| o

*

A

HEURISTIC POWER. The usefulness or "power" of a heuristic (as formally }

defined) is dependent on two criteria: :

| (1) the search time or effort involved in obtaining |
a solution, and

(2) the percentage of problems in the domain which can be

correctly solved.

A very useful, good, or powerful heuristic would thus be one requiring

- only a short search time to find a solution, while having the capability

of correctly solving a large percentage of the problems in the domain.

On the other hand, the usefulness of an algorithm is dependent on just

one criterion, the search time or effort involved in obtaining a solution.

The percentage of problems correctly solved is not relevant since by

definition the algorithm always solves all the problems in the domain.

These criteria are demonstrated graphically in Figure 1-2 (Anonymous,

1967). Here algorithm A)» is unequivocally superior to heuristic H,

. algorithm A, , and heuristic H, ; 1.e., A > H 3 A, ’ H, . In the

0-3 hour range H, > A, > H, , but in the 0-5 hour range A, > Hy > H, »

and in the 0-7 hour range As > H, > Hy « This clearly illustrates how a

heuristic can prove more useful than an algorithm when the search time or

computing effort is restricted, since Hy is superior to As when the

computing effort is limited to 35 hours or less.

|

in

!
¥

i

(0 @)

U 3

fy
lo)
Cot

© Y °
ord)

is a.\O 3g.
—{

MO y
CQ or

0 |
+ »

— — — — CT—— |— — TaN. + H
S ot ©
ho 0 |2 eG

Oo O

¥ 3.
or

= P bo
8 £0
BH as
0 —
oO ~~ O
9) ,
5 gda ECHC er [LY F0

m9 5
Rollie]

5%
8
tho

| WN .QV]
|]

—

| :
! u| — &

| Fe

C

—

0 8
- ™~~
Lop
g 00d

Log0 h >4 ~{ f
% O00

Ak OO WD J

10
Vv

@»

|

| 1.5 HISTORICAL BACKGROUND

| In the last decade a large number of computer programs employing

l heuristics have been written, most of them being of a nonnumerical
nature. Some of the more important programs of this type will now be

I briefly discussed. For this discussion it will be convenient to think
of them as being divided into two categories: (a) programs designed

I orimarily to demonstrate problem solving techniques, such as game playing,

| theorem proving, and question answering, and (b) programs designed
primarily to demonstrate learning techniques, such as pattern recognition,

| concept learning, and verbal learning.

| Problem Solving Programs
LOGIC THEORIST. One of the landmarks in the development of heuristic pro-

| gramming is a program written by Newell, Shaw, and Simon which attempts to
prove theorems in elementary logic. (Newell, Shaw, and Simon, 1956, 1957a,

| 1957b; Stefferud, 1963). This proaran, called the Logic Theory machine
(or LT), uses heuristic methods to discover proofs in the Russell-Whitehead

system for the propositional calculus.

Initially, the program is given a set of axioms to use and the

problem of finding a proof for a particular theorem. The program first

| tries the method of substitution on the theoremj that is, LT compares
the theorem with each axiom to see if through substitution of free

variables and connectives the theorem can be made to match one of the

axioms, thereby solving the problem. If no match can be found a number

of subproblems are generated, each being the task of proving valid

| a particular proposition whose validity implies the validity of the
original theorem. The method of substitution is then tried on the

| 11

is

subproblems and if no match can be found subproblems of each subproblem °

are generated and the procedure is again applied to each of them. ,
The search continues in this fashion until a solution is found or the

program runs out of time. .

Some of the important heuristics used in LT include (1) the

heuristic technique of working backward from the theorem to be proved °

toward the axioms, (2) the methods used to generate subproblems, and i :
(3) the heuristics for deciding which subproblem out of a group of

subproblems should be attempted first (i.e., which subproblem is easiest :

to solve) and which should not be attempted at all. The heuristics used

in LT are an integral part of the program and are thus difficult to :

recognize and specify precisely.

The LT project has been criticized (Wang, 1960a) on the grounds

that there exist mechanical decision procedures for the propositional i

calculus which will find the proof of any valid theorem and will find

it faster than does LT. Minsky (1961) answers this criticism by noting -

that the purpose of LT is primarily to study techniques for solving

difficult problems rather than to produce an expert theorem proving

program in the propositional calculus. The techniques used by LT can

be applied to many different problem areas, whereas Wang's decision

procedure is applicable only to the propositional calculus. This is not

meant to imply that decision or proof procedures are of little importance

in artificial intelligence; much progress has been made, for example,

in the area of proof procedures for the predicate calculus (wang, 19600,

1961; Davis and Putnam, 1960; Davis, 1903; Robinson, Wos, and Carson,

1964; Wos, Carson, and Robinson, 196l4; Robinson, 1965; Slagle, 1967). :

12 -

®

i - ATTN i

i

| LT APPLICATIONS. The techniques used by LT have been successfully applied
| to a number of different problem areas. A program for proving theorems

in plane geometry (Gelernter, 1959; Gelernter, Hansen, and Loveland,

i | 1960) has been developed which starts with the theorem to be proved
and like LT generates subproblems in an attempt to work backward i]

I toward one of the given axioms. Elementary symbolic integration problems |
| have been solved using this same general approach. (Slagle, 1961). :

| Here the program starts with an expression to be integrated (main problem) h

| and generates other expressions to be integrated (subproblems) such |
1. that the solution of certain subproblems leads to the solution of the

| I main problem. A subproblem is solved (expression integrated) when the ’
| expression can be made to match one of a set of standard forms whose

integrals are known. These standard forms are thus analogous to the axioms

| of the Logic Theory machine.
| Another example of the LT influence can be found in the area of question

| answering programs. A program has been written (Black, 1964) which is

| designed to answer questions put to it in advice-taker notation (McCarthy, |
1959) by working backward from the question, generating subquestions, in

I an attempt to match these subquestions with given statements known to be
true. Recently, work has been done on incorporating the LT techniques

| into a general purpose program capable of constructing proofs for proposi-

I tions in a number of different problem domains (Slagle and Bursky, 1968).
GENERAL PROBLEM SOLVER. Out of the Logic Theory mechine grew a more power-

i ful program called the General Problem Solver (GPS), designed to simulate

| human problem-solving processes (Newell, Shaw, and Simon, 1959; Newell and
Simon, 1961). This program deals with a task environment consisting of

i 2

i

}

\ .

| :

objects and operators. The problem is usually of the form "given I
an initial object A and a desired object B , find a sequence |

1 of operators, 5:Q, cee Q , that will transform A into B ". In this
| formulation the problem is one of heuristic search, a process which underlies |
d much of the recent work in problem solving programs (Newell and Ernst,

1965). To so.ve this problem GPS has three types of goals available: l
| (1) Transform object A into object B ,] n

(2) Apply operator Q to object A ,

(3) Reduce thie difference D between object A and object B .]
Associated with each goal is a set of methods related to achieving

goals of that type. Hence solving the problem consists of selecting an I
appropriate goal, evaluating this goal in context to see if it is worth]
attempting, and executing the methods associated with the goal, if the goal

deemed feasible. If the methods include achieving one or more of the |
three goals just described then these are considered subgoals whose |

attainment leads to the attainment of the initial goal. GPS attempts | |

to solve the problem of transforming A into B by generating, in a |
"depth first" fashion (Newell, 1962), goals and subgoals relevant to |

reducing the differences between A and B . l
One of the initial applications of GPS has been to the problem :

of proving theorems in the propositional calculus. For this particular i

task, the objects are logic expressions, the operators are axioms or |
rules for transforming one logic expression into another, and the

differences between objects which are recognized by the program include]
features like the logical connectives employed or the number of occur- :
rences of a variable. Besides being given the definitions of the objects, :

operators, and differences, the program must also be suppl ‘ed with a

14 .

o

>: - p »

I
I

| connection table which associates with each difference a set of

| operators relevant to modifying that difference. Once the task
environment is so defined, GPS is ready to attempt to prove theorem A,

| a logic expression in the propositional calculus, by transforming it
into a given expression B which is a known axiom in the propositional

| calculus.

} The important heuristics used in GPS are (1) those connected with
| the methods used to try to achisve the generated subgoals, (2) heuristics

I for deciding whether or not a particular subgoal is worth attempting,
and (3) the technique of planning, i.e., constructing a tree of subgoals

I based on an abstracted problem space composed of simplified objects and
i operators, and then using this tree as a plan of attack for the actual

problem space of complex objects and operators. Most of these heuristics

i deal directly with the manipulation of objects and differences. In
contrast, the heuristics of LT deal with the manipulation of theorems

i and axioms in the propositional calculus. It 1s precisely this difference

i that makes GPS a "general" problem solver, that is, capable of solving
problems in any domain where the problem can be specified in terms of

| objects, operators, and differences.
Besides proving theorems in logic, GPS has also been used to

solve trigonometric identities (Newell, Shaw, and Simon, 1959).

Programs employing GPS problem solving techniques have been written which

balance assembly lines (Tonge, 1961), compile computer programs (Simon,

1961, 1¢63), and simulate human behavior in the binary choice

experiment (Feldman, Tonge, and Kanter, 1963).

|
CHESS-PLAYING PROGRAMS. Game playing is another area which is quite

15

1 ———ga iI

amenable to the development of heuristic programs. In this area, a large]

portion of the work has been concentrated on the development of programs :

: for playing chess. Shannon in 1949 proposed a framework for a chess playing

program which in essence stated that (1) the chess game can be thought of .

in terms of a game tree whose nodes correspond to board configurations and

whose branches correspond to the alternative legal moves and, (2) the i

best move to make from a particular node Nl (i.e., in a particular board :

| situation) can be determined by generating alternative moves in the tree

down to some particular depth, evaluating the board configurations at that

depth as single numerical values, and minimaxing (Slagle, 1963) these

values back up the tree to node N1 , picking from Nl the alternative move

which received the highest value (Shannon, 1950; Newell, Shaw, and |

Simon, 1958). .

Turing has described a program based on Shannon's proposal which, J

in determining the best move, generates all possible alternative moves |
down the tree until a dead position with regard to piece exchange is

reached at each branch (Turing, 1950). A group at Los Alamos has |
programmed MANIAC I to play chess, also generating all possible alternative |

moves but only down the tree to a fixed depth of 4 moves (Kister et al.,

1957). The program performs only a minimal evaluation of the board con- [
figurations at this depth, before minimaxing to determine the best al-

ternative. A program written by Bernstein plays chess using this same

framework but generates only 7 plaucible alternatives at each node down

to a fixed depth of 4 moves, where it performs an extensive evaluation

of the board configuration before minimaxing (Bernstein and Roberts, 1.0958).

NSS CHESS PLAYER. Newell, Shaw, and Simon have developed a cness program

6 :

4

) N oe

!

i which differs in a number of respects from the programs just described
| (Newell, Shaw, and Simon, 1958). A set of goals are defined (king safety,

material balance, etc.) and alternative moves are generated which tend to

| satisfy the top priority goals in the given situation. The tree is
generated until at each branch a dead position is reached with respect to

I all goals, that is, until no move can be made which will drastically alter
| the situation with respect to these goals. The board configuration at

each dead position is then evaluated as a list of values (one for each

| goal) describing how well that configuration meets each goal, and these
lists are minimaxed back up the tree. An alternative move is chosen as

i being a satisfactory one if the list associated with it through minimaxing

| is greater, element by element, than a list representing the minimum
allowable values for each goal.

i The important heuristics used in the chess programs just described
are (1) those concerned with the generation of alternative moves, (2)

| those concerned with the depth of analysis, and (3) heuristics for the

i evaluation of board configurations. Again it is difficult to recognize
and specify precisely the heuristics used by these programs, since they

tend to be interrelated and are an inseparable part of each program.

Learning Programs |

PATTERN-RECOGNITION PROGRAMS. Pattern-recognition research has led to the

| development of many programs which employ learning mechanisms. Much of
the initial work in patte:n recognition was based on neural network learning

techniques (Carne, 1965), the riost successful example of these techniques

being Rosenblatt's perceptron (Rosenblatt, 1958, 1962; Green, 1963). The

perceptron is basically a network of randomly inter-connected neural

)

|

elements, each element being capable of "firing" or putting out a fixed -

amplitude signal over its output connection lines whenever the sum ol 2

the signals on its input connection lines exceeds some threshold. The r
network learns through reinforcement procedures, the most common type -

consisting of presenting the network with a stimulus (a set of input i
signals) and for each learning trial incrementing the output amplitude |

of all elements which fire when the correct response (output signal) is]
made.

A more sophisticated pattern-recogniticn model, Pandemonium l
(Selfridge, 1959), uses a highly organized network where the elements |
represent likely features of the input patterns. The model learns

by adjusting the weights associated with the connections between these]
elements .nd the possible responses. For example, if the model were !

given a pettern containing feature fy and was told that the pattern |
belonged in class R, , then the weight on the connection between |
element fy and response Ry would be incremented, meaning that a :

pattern with feature fy would then have a greater probability of being |
classified as type Ry « One problem with this type of model is that

the features it uses must be supplied to it by the designer, and it is]

seldom clear what features will lead to efficient operation. A pattern- |
recognition program has been written (Uhr and Vossler, 1061), which

attempts to overcome this difficulty by effectively generating features |
at random, evaluating them in terms of their usefulness, and discarding

those which are not useful. The program not only learns to classify :

patterns by adjusting weights or coefficients on the features, but also i
learns what features can be used to classify the patterns. i

18 Ek

’ N oo

i |

}
In the pattern-recognition programs just described the learning

I consists essentially of using a reinforcement process as the basis for
generalizing by adjusting weights or coefficients. The heuristics

| involved include those connected with the determination of features to use

i and those concerned with the techniques used to adjust the weights.
SAMUEL'S CHECKER-PLAYING PROGRAM. One of the most successful learning

i programs to date is a checker-playing program which learns to improve its

i playing ability through training and game-playing experience (Samuel,
1959, 1960). This program is patterned after the framework proposed by

I Shannon for the game of chess. As in the chess programs described earlier,
the checker program bases its move decision on the results of looking

i ahead in the game tree to relatively dead positions, evaluating the board

} configurations at these positions, and minimaxing these values back up
the tree. The value of a toard configuration is determined by calculating

| the numerical value of a linear scoring polyr.omial wif + wofs + ... + wit y
where the f's represent certain parameters or features of the board

i configuration (such as. piece advantage, denial of occupancy, mobility,

i and center control) and the w's are weights or coefficients representing
the relative importance of each parameter.

I The checker program is capable of two basic types of learning,
(1) rote learning and (2) generalization learning. The rote learning

i is quite elementary and consists of storing in memory all the board
positions encountered during play together with their scores based on

I lookahead minimaxing. Performance improves under this learning scheme
I since the program saves time when it encounters familiar board positions,

and this time can be used for searching the game tree to a greater depth.

|

%

l

|
The generalization learning, on the other hand, is somewhat complex and

involves adjusting the coefficients of the scoring polynomial toward |
their optimal values. -

BOOK LEARNING. In one form of generalization learning the program is _

"trained" by being given a large number of board positions and the associated A

book moves (the moves recommended by master checker players). During this SPS

book learning procedure the program keeps track of the parameters whose

values have a general tendency to increase as a result of the book moves

and also those whose values have a tendency to decrease. The parameters

whose values increase are considered to be important for winning the

game and their coefficients are incremented. Conversely, the parameters

whose values tend to decrease are considered unimportant and have their

coefficients decremented.

LEARNING THROUGH GAME PLAY. In another form of general zation learning

the program modifies the coefficients during actual play by comparing, (for

each of its moves) the backed-up score for the board position with the score

calculated directly from the scoring polynomial. It is assumed that the

backed-up score is more accurate than the direct score, hence the

coefficients of the parameters are adjusted so that the direct score will

more nearly approximate the backed-up score. Parameters which have a

general tendency to increase the difference between the backed-up and

the direct scores are removed from the polynomial and replaced by para-

meters from a reserve list. Thus the program can radically modify its

evaluation polynomial and can possibly learn which of a given set of

parameters are relevant to the goal of winning at checkers.

20)

>

[

A - | - x

: |
|

SIGNATURE TABLES. One difficulty with implementing learning by adjusting

| coefficients in a linear polynomial is that there exists in this procedure
an implicit assumption of independence of the parameters involved, while in

¥ actual fact the parameters are seldom independent. Samuel (1967) has proposed

i a "signature table" scheme to help overcome this problem. In its simplest
form this scheme consists of grouping the parameters into sets called

i signature types, and for each set defining a function which when given
a value for each parameter of the set generates a number reflecting the

i | relative worth of that particular combination of parameter values. Each

i function is defined by enumeration; that is, by a table pairing each
combination of parameter values with a number indicating their worth.

| To keep the tables small the range of parameter values is restricted
to either 3, 5 or 7 values. A board position is then evaluated by evaluating

] each signature table using the parameter values of that position and

| adding together the numbers obtained from each table. The signature table
approach proves to be more efficient than the linear polynomial method when

. | book. learning is employed.
In the checker program, learning consists of generalizing by

| modifying coefficients of board parameters. Among the heuristics used

] are those concerned with depth of analysis, tree pruning techniques
(such as the alpha-beta procedure: Slagle, 1963; Samuel, 1967), de-

| termination of parameters, specification of the evaluation function,
| and the adjustment of coefficients. Heuristics which are used but are
| I seldom acknowledged in this type of program are those connected with :

the definitions of the parameters; for example, mobility can be defined

| in many ways, but one definition is likely to be more useful than the

: 2

|

ah

i

l
others. The particular definition chosen can be considered a heuristic

for measuring the value of the parameter. |

CONCEPT-LEARNING PROGRAMS. Programs have also been written which simulate |
human learning processes. One of the important contributions in this area

is a concept-learning program by Hunt (1962, 1966) which learns to distin-]

guish between positive and negative instances of a concept after it is)

presented with a small sampling of positive and negative instances. Hunt

represents an instance of a concept as a set of attribute values, for

example, (LARGE, RED, TRIANGULAR) is a positive instance of the concept

"large triangle", while (LARGE, RED, CIRCULAR) and (SMALL, RED, TRIANGULAR)

are negative instances. The learning process consists of growing a

decision tree whose nodes represent tests on the attribute values, such

as "is the object large?" or "is the object triangular?". The decision

tree is used to classify any given instance as being either positive or

negative by sorting the instance down the tree to a terminal node and

assigning the instance to the category associated with that terminal node.

To illustrate this process consider the sampling of positive and

negative instances given in the above example for the concept "large

triangle". The program would use these instances to grow the following tree.

!
22

| ®

" _

is it large?

yes no

negative
instance

is it triangular?

yes no

| } negative
positive instance
instance

Figure 1-3.

It is clear that if a new instance, such as (LARGE, BLUE, HEXAGONAL) is

presented it will be sorted to the proper terminal node (negative, in

this case) and thus correctly identified. Another program which performs

concept learning is one written by Kochen (1960, 1961). This program,

like Hunt's, generates a decision rule for deciding whether or not a

given object belongs to a certain class, but makes no attempt to simulate

human behavior.

In the concept-learning programs the process of learning consists

of making clever generalizations based on the given information. The

important heuristics used in Hunt's program are those concerned with

the choice of attribute values to use as tests for the nodes and the

order in which the chosen values are arranged in the tree.

SIMULATION OF VERBAL LEARNING. Another important contribution in the area

of simulation of human learning is a program called EPAM(elementary

23

|

vd

i

perceiver and memorizer), which simulates verbal learning behavior by memor- a

| izing three-letter nonsense syllables presented in associate pairs or serial
lists (Feigenbaum, 1959, 1963, 1964, 1967). EPAM's task for each pair of

: syllables S,R is to learn to produce the response R when given the i

stimulus S . The program accomplishes this by growing a discrimination

net composed of nodes which are tests on the values of certain attributes }

of the letters in the nonsense syllables. For example, a test at one node -

might be "does the third letter of the syllable have a horizontal component?".

The various stimuli and responses are individually sorted down the net to

terminal nodes where they are stored, one per terminal node. If two

different syllables are sorted to the same terminal node a new test node

is grown at that point capable of distinguishing between the two syllables

and thus sorting them into two separate terminal nodes. In this fashion

the discrimination net is grown. A complete description (all 3 letters)

of each response is stored in the net, but for each stimulus only a

partial description (1 or 2 letters) is stored together with a cue or

partial description of the associated response.

As an illustration of this process consider the task of learning

the two pairs of syllables, RAX — JIF and JEQ— HOX. The program

would grow the following type of net.

2h

®

FY x ’
re oak Mota sid

ES does the third letter have| a horizontal component? i

does the first letter have ;

| 1 a curved component?

| / \

second

1 letter have a
vertical component?

: \

I Figure 1-k4.

i Now if EPAM is given RAX and asked for the response, it sorts RAX

] down to terminal node 5, retrieves the cue J F , sorts it down to
terminal node 1 and responds with JIF. If the test at a node cannot

l be applied because of insufficient information in the cue, the cue is
sorted left or right randomly at that node. The program improves its

i performance as the nurber of learning trials increases, since each
time it retrieves an incorrect response it enlarges the partial des-

| cription connected with the retrieval of that response. Using this

| basic scheme EPAM is able to demonstrate stimulus generalization,
| 25

Sil

prey

response generalization, and retroactive inhibition.

Learning takes place in EPAM by simple association; a stimulus -

1s associated with a response cue in a terminal node. However, generali-

zation techniques (the growing of the discrimination net and the use of

partial descriptions) are employed which tend to minimize the amount

of information that needs to be stored and which lead to aumanlike

verbal learning behavior. The important heuristics used in EPAM are

those concerned with the implementation of the generalization techniques.

It is of interest tc note that in all of ine learning programs

discussed, learning is accomplished either through rote memorization

processes or through various generalization techniques. The implication

here is that the process of generalization must be well understood in

order to be able to construct really effective programs for performing

complex learning tasks.

26

i . oo

I

i
1.4 OBJECTIVES

i
This paper proposes to examine the following three questions as

| a first step toward the development of computer programs which learn
heuristics: (1) what is a useful way of representing heuristics in a

i program?, (2) how can heuristics be modified by the program embodying

l them?, and (3) what implications do these representation and modifi-
cation techniques have for theories of human learning?

i Most heuristic programs (and in fact, all the programs discussed
in section 1.3) have the heuristics "built-in"; i.e., the heuristics are

| an integral part of the program and even on close inspection it is
difficult to decide exactly what heuristics are being used, what their

I effects are, and how they are related to one another. When this is the
] case, the entire program, in a sense, is a representation of the embodied

heuristics.

The problem encountered in using this naive method of representation

is the following. The heuristics are so entwined in the program that

] it is extremely difficult to make the program itself manipulate them.

| It would be desirable to have a program which during execution could
monitor the use of its own heuristics; e.g., which could obtain measures

| of their values, modify them in an attempt to improve them, discard ones
which seem of little value, and add new ones to replace the discarded

I ones. A program with the ability to manipulate its own heuristics could

| be given, as a secondary task, the job of learning what set of heuristics
would provide optimal performance in its primary task. For instance, a

1 game-ylaying program with this ability could learn, during the course of
a game, how to play the game more intelligently by manipulating the

))
}

r

heuristics concerned with the strategy used in playing the game. |

Psychologists have been studying the phenomenon of learning for over

three-quarters of a century, with the result that many divergent theories

or viewpoints have appeared. The majority of the work in this field .

has been done on simple learning (acquisition of motor skills, discrimi-

nation learning, memorization, etc.). Some work has been done on more

complicated learning processes such as concept learning (Bruner, Gondnow,

and Austin, 1956; Hunt, 1962), but little has been done on the complex

processes involved in strategy learning in game-playing or problem-solving

envirorments. Thus, it would prove beneficial if artificial intelligence

techniques for representing and modifying heuristics could be applied to

a psychological theory of complex human learning.

28

PS

| CHAPTER 2 |
| REPRESENTATION CI* HEURISTICS

2.1 INTRODUCTION

The feasibility of learning heuristics by dynamically manipulating

| them in a program Cepends heavily upon the method used to represent the
heuristics.

i REQUIREMENTS. To facilitate aynamic manipulation, the representation should

y salisfy the following requirements:

l 1. It should permit separation of the heuristics
from the program using these heuristics.

| } 2. It should provide for clear identification of
individual heuristics and show how these heuristics

1 are interrelated.

I 5. It choulid be relatively easy to work with.
The first requirement is basic, since the program would have a

I difficult time trying to manipulate heuristics that it could not even

[locate. The second requirement is necessary because individual heuristics
need to be modified and evaluated, and when a modification occurs the

i effect of this change on the whole system of heuristics must be known if
an accurate evaluation is to be made. For example, if heuristic hl

| depends in some way on heuristic h2 , and h2 is modified, then

i effectively hl is also modified. In the evaluation of this modification
it is necessary to recognize the relation between hl and h2 , since

r=

B

I
it is possible that either hl or h2 will be rendered less effective

by the change. If the relation were unrecognized, the program might naively |
proceed with the evaluation by testing the new h2 but ignoring the heur-

istic hl . |
The last requirement states that the representation technique

employed should be easy to work with. By this is meant (a) that the i

heuristics should be easy to modify or replace, (b) that the represen-

tation should te compatible with generalization schemes, and (c) that

it should be easy to use the heuristics to obtain a decision from the

system. The desirability of conditions (a) and (c) is clear. Condition

(b) is desirable in view of the evidence presented in Chapter 1 that

complex learning can be achieved through the use of genera.ization

techniques.

The representation method discussed in Chapter 1, where the entire .

program is a large complex representation of the embodied heuristics,

is obviously inadequate. It fails to satisfy every requirement except }

| conditions (b) and (c) under requirement 3. This chapter will be devoted |
to the exposition of a representation technique which does satisfy the

above requirements. |

DEFINITIONS. A method of representing heuristics which satisfies the re-

quirements of section 2.1 will now be proposed. First, however, the follow-

ing items must be defined:

1. Heuristic Rule: a heuristic which directly specifies

an action to be taken.

r

50 ws

-

) - | a

. 2. Heuristic Definition: a heuristic which does not specify

an action directly, but instead de-

fines a term.

Lg 5. General Heuristic: a heuristic rule or definition which

employs terms defined by heuristic

definitions.

| 4, Special Heurir*ic: a heuristic rule or definition which

does not employ terms defined by heuristic

; definitions.

} Some examples (taken from the game of checkers) to illustrate the

i above definitions are given below.

(a) If the piece advantage is "high" then 'make an even exchange’.

(General heuristic rule).

| (b) If the piece advantage is greater than 3 then 'make an even

| exchange'. (Special heuristic rule).
(c) A "high" piece advantage is one 5 or more greater than a

| "low" piece advantage. (General heuristic definition).

] (d) A "high" piece advantage is one equal to or greater than b.
(Special heuristic definition).

i In section 1.2 a heuristic is defined as a particular type of
computational rule, capable of obtaining solutions to problems. Consider

] example (b) above from the game of checkers. This can be thought of as a
computational rule for solving the problem "what type of move should I

! make to increase my chances of winning the game?" Furthermore, example

i (d) can be thought of or rastated as a computational rule for solving the
problem "Is the piece advantage in the present board configuration a high

I
31

!

one?" Thus the above definitions correspond to those presented in

section 1.2. i

2.2 PRODUCTION RULES

During execution, a program goes through a succession of states

as the values of its variables are changed. Consider a "situation" as

the set of current values of the variables of the program and let this

set be called the state vector & of the program (McCarthy, 1962, 1965).

When a block of code is executed, the effect on the state vector may be

described by the equation &' = f(€) , where &' is the resulting state

vector and f(€) is a function which stands for the block of code. In

the typical heuristic program the heuristics are represented by blocks

of code, each block being a complicated, inflexible function of the program

variables. The relation between the code and the values of the program

variables is illustrated below for variables A, B, and C with values

a, , by , and cy .

COMPUTATION

BLOCK

g = (a sby5c,) =» |£(e) = £(4,B,C)]| = (a'ysb' sc") = g'

Figure 2-1.

22

3 . .

|

A simple, more flexible way to express such a function is by a

| set of rules, each having the form

(a1sby5c) - (r (€); £,(€); £5(e)) 2

! The above rule states that when the value of A is ay , B 1s 2) and
| C is Cy the function (or block of code) changes the values such that the

| value of A becomes £,(8) , B becomes £,(€) , and C becomes £5(e)
The problem with this technique is that it may require an excessively

i 1 large number of rules to adequately describe a function.
This difficulty can be eliminated by using sets of values in place

| | of individual values in the description of the state vector. For example,
] instead of using (a;5b 5c) above to represent a particular state,

(A1,B1,Cl) can be used where Al, Bl, and C1 are sets, in this case de-

| fined as Al = ta, } y Bl = {b,] , and Cl = {el . A single description
such as (Al1,Bl,Cl) can be made to represent a number of states by merely

l enlarging the sets defined by Al, Bl, and C1 . Thus by using rules of

| the form

] (AL, BL, C1) ~— (£,(€), £,(€), £5(€))
it takes fewer rules to adequately describe a function depicting a

| block of code containing heuristics.

i In view of these considerations a heuristic will be represented
as a rule of the form b ¥ . This rule will either (a) specify

| an action to be taken in situation S§ by the rule S —- S' , where S' 1s
the situation that results after the action is taken, or (b) define a

i term by the rule Z —+ Z2' , where Z 1s the term being defined and 2' is |

} some conbination of terms which constitutes the definition of 2 .
25

.

pr.

r

:

2
It will be useful to think of these rules as production rules which

specify how a value or string of values of variables from the state vector 1

can lead to other strings. ,

K 4

REPRESENTATION OF HEURISTIC RULES. A heuristic rule can now be re-

presented by aproduction rule of the type S - S'. Here S is a situation a

defined by the state vector variables, such as the vector (Al, Bl, Cl) , w |

and S' 1s the definition of the resulting situation or state vector,

such as (r (&), £,(€), r4(e)) . Production rules of the type S — S'
will be called action rules (ac rules). (onsequently, an action rule

states that in a situation of type S tle values of some of the state vector |

variables are changed to produce a situation of type S' . This type of

production rule is weakly analogous to the productions used in a Chomsky

type O grammar (Chomsky, 1959).

REPRESENTATION OF HEURISTIC DEFINITIONS. A heuristic definition can be

represented by a production rule of the type Z —= Z' , where Z is a

value of a state vector variable (such as Al) and Z' is either

(1) a value of a state vector variable and an associated predicate, or

(2) a computational rule for combining variables of the state vector.

Case (1) will be called a bf rule (backward form) and case (2) an ff

rule (forward form). An example of case (1) is Al =~ A , A> 20,

meaning that A is considered a member of the set Al if the current

value of A is greater than 20 . An example of case (2) is X KL x IT , |

meaning that X is defined by the arithmetic expression Kl x D . :

This type of production rule is weakly analogous to the productions used

in a Chomsky type 2 grammar (Chomsky, 1959). :

3h

3 h lh |

I |

! STATE VECTOR COMPOSITION. The state vector is subdivided into three %
types of variables: bookkeeping variables, which provide a record of

i past experiences; function variables, which represent arithmetic
l expressions containing state vector variables; and dynamic variables,

which either directly influence the decisions of the program or change

I in value as a direct result of these decisions. Only the dynamic
variables are used in the descriptions which represent the left

| and right parts of the action rules.

| Decision Making Using Production Rules

I The production rule just deseribed can be used to implement decision
making in a problem solving program. This technique will now be illustrated

i for the class of problem solving programs categorized as game players. The
"intelligence" of a game playing program is measured by the appropriateness of

| the decisions (or moves) it makes during the course of a game. In order to
make a decision, a program using the production rule method of heuristic

i representation (1) examines the action rules to find one applicable to the
I current situation, and (2) uses the rule just found to change the values of

certain dynamic variables of the state vector in such a way that the change

i defines a move.
To illustrate the use of these production rules in a game-playing

) situation, let the subvect © B8 , composed of the pertinent dynamic
f variables of the state vector, be the following:

Bg = (a, b, c)

I
where A, B, and C are variables with the current values a, b, and c

i respectively. The heuristics to be used for this simple example are:
1. If A is an "Al" then add X to the value of B .

|

] 55

i

2. If A is an "A2" and C is a "C1" then subtract Y 5
from the value of C .

3. If B is a "Bl" then add Y to the value of C . 1
4 A is an "Al" when A > 25 . ,
5 A is an "A2" when A < 25 . :

6. B is a "Bl" when B> 1.

7. B is a "B2" when B> Lk . .

8. ¢ is a "C1" when C= 5.

9. X increases as D increases.

10. Y increases as E decreases.

In the preceding heuristics, D and E are bookkeeping variables,

X and Y function variables, and A, B, and C dynamic variables.

The corresponding production rules are:

1. (Al, *, ®*) = (a, X+b, c) ac \

2. (a2, *, c1) - (a, b, c-Y) ac

5. (*, BL, *¥) - (a, b, Y+c) ac

4, AL ~~ A, A> 25 bf

De A2 - A, A<25 bf

0. Bl - B, B>1 bf

7. B2 - B, B> 4 bf :

8. CL = C, C=5 bf

9. X = KlxD ff

10. Y = K2-(K3 x E) ff

A "¥" in a subvector indicates that the variable in question may

take on any value. Hence (Al, *, *) describes all situations where A

has the symbolic value Al , while B and C have any values. Also needed o

are the following production rules (one for each element of the subvector):

26

11. A —- a, a¢€ {set of possible values of A } bf |
I 12. B = Db, b € {set of possible values of B } bf |

13. C = c¢, c € {set of possible values of C } bf

|
For this example, the set of possible values tor A, B, and C will be

| defined as the set of natural ..umbers.

| In the game, wlien the point is reached where the program must
make a "move" decision, the values of A, B, C, D and E will have been

i set by either a previous program decision or by the non-heuristic part
of the program. The terms Kl, K2, and K35 are considered to be

| constants. The decision is made in two steps as follows.

| A. Each element of the current program subvector
is matched against all right sides of the bf rules.

| When a match occurs (the predicate is satisfied) the

| corresponding left side of that bf rule is then matched
against all right cides of bf rules, etc., until no more

| matches can be found. The resulting set of symbols de-
fines a symbolic subvector. This step 1s somewhat analogous

] to parsing (Irons, 164; Ingerman, 1966).

i I}. The symbolic subvector derived in Step A is
matched against all left sides of the action rules,

L going from top to bottom, and when the first match is

i found the values of the program subvector are modified
as described by the right side of the matched rule. A for-

| ward search is usually necessary, through the ff rules, to |
determine the new values for the program subvector variables.

§
57

!

As a concrete example let the subvector have the values a = 4, b = 5, |
c = 6, the constants have the values Kl =1, K2 = 20, K3 = 3 , and let

the bookkeeping variables have the values 1 = 7 and E=8. Then |
B = (4, 5, 6) and the "parse" c. step A has the following form.

| | |
A /\ C
A2 Bl B2

Figure 2-2.

Here step A is initiated by comparing a = 4 with each bf rule

predicate, the predicate being satisfied only if it contains the symbol |

a and is true when a is set equal to 4 . Thus a = 4 is found to

match rule 11 and no others. Next, A = 4 is similarly compared with all

bf rule predicates and is found to match only rule 5. Finally, A2 = 4 |
is compared with all bf rule predicates, and since it matches none of |

them the search terminates, leaving A2 as the final symbolic value. |
Flements b and c¢ are processed in the same manner, and the symbolic

subvector that results is ((A2), (B1,B2), (C)) . This subvector |
is a description of all situations in which (1) the variable A has the

symbolic value A2 , (2) the variable B has either the symbolic value

Bl or B2 , and (3) the variable C has the symbolic value C . |
Step B now consists of comparing the subvector ((A2), (B1,B2), (C))

with the left side of each action rule, until a match is found. In |
this case a match occurs at rule 3. The program subvector is then set -

38 ’

| |

a CL

Tr

to the values specified in the right side of rule 3. Hence the new 8

equals (4, 5, (20 - (3x 8)) +6) or (4, 5, 2) . 1In effect, the pro-

gram made the decision to change the value of the variable C to 2 .

The method just proposed for representing heuristics easily satis-

fies the first two requirements of section 2.1, since the heuristics are

separated from the program, and the individual heuristics and their inter-

relationships are clearly identified. The third requirement of section

2.1 is also satisfied, since the production rules are easy to

modify or replace, are compatible with generalization schemes (this will

be shown in Chapter 3), and are easy to use to obtain a decision from

tiie system. Standard techniques for handling production rules, such as

parsing, are seen to suggest methods which can be used to facilitate the

decision making process. :

NEWELL'S SYSTEM. This is not the first attempt to use a production

system as the underlying mechanisin in a problem solving scheme.

Nowell (1900, 1467) uses a production system to characterize the problem

solving process occuring in a human subject as he solves crypt-arithmetic

problems. Each production consists of an expression of the form:

condition = action

and specifies the action to take when the condition in the left part

of the production is true. The prcductions are priority ordered so

that the system can uniquely determine which production to use in

situations where more than one is applicable. The production rule

system ‘just described closely parallels Newell's system in its

general approach to decision making.

! 59

[9

_

2.3 TRANSLATION OF HEURISTICS INTO PRODUCTION RULES 2 |

At this point it is reasonable to ask how one can go from a I
$

heuristic stated informally, like "if the piece advantage is high make

| an even exchange', to a set of representative production rules. This i
transition can be accomplished through the use of an intermediate step, }| that is, a formal language in which heuristics can be expressed precisely,
and which can be automatically translated into production rules. With ! -
such a tool, one would only have to restate the heuristic in this

intermediate rormal language in order to effect its transformation into }

production rules. 1
A Language For Specifying Heuristics

The syntax of a language for expressing heuristics is presented in h
Figure 2-3 as a set of syntactic rules. This language will be called i
LASH: language for specifying heuristics.

1
TERMINAL SYMBOLS. The terminal symbols in the syntactic rules include

{1) all the underlined words, (2) all non-alphabetic symbols, and (3) all | |
| Greek letters. The terminal symbol @ stands for any ALGOL-like ; 3

identifier (Bauman et al., 1964; Ekman and Froberg, 19C5), while the i |
terminal symbol # stands for any ALGOL-like number.

The terminal symbol A stands for any simple arithmetic expression, I
that is, any ALGOL-like expression composed of identifiers, the arith- i
metic operators +, -, X, + and the delimiters) and (. However one

restriction is made; a single number or identifier must be enclosed in]
parentheses to be recognized as an expression. Without this restriction

it would be, in some cases, impossible to determine whether a given i
LO | |

Hi

A 3 ’

A |

| terminal string was an @ , a # , ora A . Also, one extension is made; :

| an expression can include the function "random (a,b)", which when
executed evaluates to a number chosen at random from the range a to Db .

: The terminal symbol nn stands for any simple Boolean expression which
is enclosed in parentheses, that is, any parenthesized ALGOL-like Boolean

} expression composed of identifiers, arithmetic operators +, -, X, +,
| relational operators > , < , =, # , and the delimiters) and (« Some

ey. mples of @-type strings are Kl, STORE, and M3J , of #-type strings

I are 3, 1.5, and -12 , of A-type strings are (Kl), (3), and I8 + (3 x Q)
and of n-type strings are (P> 4), (6 x M4 = PL-3), and (I8 + (3 x Q) < Kl) .

f

|

| "

l

geo
QO =
by

oH
—

3
& J
Fh)
©

w Kol »
+

O
@ or O = L.

a +P red 3)
OC rt wv oo
or wv 1D]
v2 er oy)
vu 8

= Q QL a Oo
oO Le $ u
or 2 Qo ©
+ -

0 iY) wl +L .
} = =~ = 0)

0 0 ao © 3) i .
sen or or pe =| A

LP a iL BY:5 ol od wl A 7)[+0] = = ol
ol er B ~~ 8 B 2
1] wv 0 “ @) @) od

nn uw PL OL LP 2] iY |@ ®© oo v vv «oo © oo of # WV A VIAIW & = < E = "
RD
=

5
= = 7) (7) = OR = = = = cS - 2 = (oN or
O O nw o = O O bet | O @] O O O O = @] QO O Ww Q

LP PW eH eH PP L PPP Pp Pp A ®© E vw A joOO OO ww LP Pp AH eA @ © ®@®@ © @©@ @©@ PL vw ~~ u
CC © GQ eH 8 = —N ~~ HA HA ~~ ~~ © = Qo ~~

2 oo oH eH (1) @ 0 © © © ~ 3 I.VE VE VE I a, 0
~~ ~~ oo o ft 5 Gd

8° ° :
RD

:
=

Lo) ©

2] r—i(
®

—

Q CG
= 0
_-

+ +L »

; : ; 2
| a £ E+ w

* 4s] + 4p)
fe 0 ~~

+ © QU PP ft

g 1 53 “f I: ;7BE © Q

= © Ww Ua 0 =] EB g + JoO A geo! + ol oO @ Q
— P 0 Ll +L co
Eh -) 7] oft © r—i Wo
co ol + QV] fol © o]

| SR ww *e £ (TVJ 7) go to! © O pooO an jo = + o p lnI | 0’)> 1) O O O QU 1} © o o fq +2 or{
0 © - AH A BB 0 ul E o¥) jo x” © =
o +2 2 Pp wo aI Q ~~

Yo! . ® ®@ ®©® = O TT VD < < > Oo ©
By $e fet = Ww $e IE

gl uv ov © © @®@ OO wu + WW O —- i ~~ [=
“Al © OO A HA HA A 0 0 AH A © ™m 3 TT ™ E EB O
NH 0 UU OU PP ~~ 0 P00 © Ww 0 © oO oO

ol = 2 vo © © oO g a hol tO MH kM Rk HM MH PP ©Dl = TY TT TT © HoH ~~ oA A Ay © ©

VU = =~ +2 vw ww ££ uu uw Ow »P PP Vv "wv Yv ~~ ~~ NN NN ©
S00 v2 ££ 0 Uv vo 4A £2 £2 $$ © OV TW mw ©v oY EB

- © 2S WwW 0 0 HoH = S 0 OU ® MH AO P vO 0 ©WD oH HS eH eH P33 HB BOO A AM MN AB
oP PO PHO Hk vo oO A ©TREN © FR © FRE © THE ©
QO po =u oH (a) «© 1 +L 2” @)
bq OO OO PP HH HH © ®@ «© © or

HN © ®@ © ~~ NEEL . +L
TE TE a oO 0) 0] fa, Q
® OO OO ow ®
- 0 OO T
OO ©
WY

o 42 |

&

! SIMPLE PRECEDENCE SYNTAX. The syntax presented in Figure 2-3 is a simple | 1]

i precedence syntax i.e., the syntactic rules are so arranged that the |
relation between any two symbols is unique. Three types of relations are

| considered.

l (1) The relation = holds between all adjacent symbols within
any string forming the right side of a syntactic rule.

i (2) The relation < holds between the symbol immediately preceding
a reducible string and the leftmost symbol of that string.

| (3) The relation © holds between the rightmost symbol of a
reducible string and the symbol immediately following that

I string.
} Here a reducible string is one which can be reduced through parsing

to another string of equal or smaller length. As a consequence

i of this arrangement, the language defined by the syntax is a simple |
precedence phrase structure language (Wirth and Weber, 1966).

I The advantage in using this type of language is that there exists a

| very efficient algorithm for parsin; sentences of the language (Wirth and
Weber, 1 6). This is quite important if one wants to construct a

| syntax-directed compiler (Irons, 1961, 1963; Ingerman, 1966) for automat-
ically translating the language into some other form, such as a set of

| machine instructions or list of rules. Thus the language is designed not

| only to provide for adequate descriptions of heuristics, but also to
permit relatively siuple and efficient translation into production rules.

i Te computer program to be described in this paper does not include a
compiler for translating LASH into production rules. Consequently,

| translation into prcduction rules is performed by hand.

| ’

i

STRUCTURE. The structure of the language defined in Figure 2-3 will now

be illustrated by using it to express a number of heuristics for a

hypothetical game. It will be assumed that for this game the dynamic

: variables are A, B, C, D, and E , the bookkeeping variables are F and

G , the function variables are P and R , and the constants are

Kl, K2, K3, and K¥ . The way in which the language can be used to “

express heuristics is shown below. 1
’

begin 'MOVEL' : B « 2xB; C « D +(4xC)+P,

'MOVE2' : B « B+6; D « C+D; E « (0),

'MOVE3' : A « (5); D « (E). 1

if A> 5 A B< 10 then 'MOVELl' otherwise

if A> 20 then (if B=O then 'MOVE2' else J

(if B=1 A C=CX then 'MOVE3' else 'MOVELl')) otherwise 1
if D=DZ then 'MOVE3' . 3

CX is a C such that (C+5 > P), |y
DZ is a D such that (D < E-20), ;

| P equals (K1 x F) - (K2 x R), !

R equais (K3x G) + (Kkx A) end

Note that each of the three declarations, MOVEl, MOVEZ2, and MOVE? ,

define a change to be made in the state vector, or more precisely a change |

in some of the dynamic variables of the state vector. The three rules

(see Figure 2-3 for the definition of the symbol 'rule") in the above

example specify under what conditions each of these changes in the state

vector is to be made. The four definitions contained in the example |

merely define variables used in the declarations, the rules and in the

definitions themselves.

Lh

o

) N Lf

} |
'

| |
TRANSLATION. The heuristics in the above example translate into the

| following production rules.

| (Al, Bl, *, *, ¥) = (%, 2xb, d+(Lxc)+P, *, *) ac
Al - A, A> DS bf

| BT =» B, B<10 bf
(A2, B2, *, *, ¥) = (¥, b+6, *, c+d, 0) ac

(A2, B3, CX, *, ¥) = (5, *, ¥, e, ¥) ac

i (h2, *, *, *, *) = (%, 2xb, d+(bxc)+P, *, *) ac

A2 - A, A> 20 bf

B2 = B, B=0 bf

B5 = B, B=l bf

(*, *, %, DZ, *) - (5, *, *, e, *) ac

CX = CC, C+t5>P bf

DZ = D, D< e-20 bf

P = (KLxF) - (K2xR) fr

R —= (K3xG) + (KuxA) ff

|
Here when the value of a variable in the right side of an action

| rule is a "¥" it means that no change is made in the value of that

variable. Thus

|
(A2, B3, CX, *, ¥) = (5, *, ¥, e, ¥)

means that when A=A2 , B=B3 , and C=CX then A is changed to 5 ,

D is changed to the current value of E , and B, C, and E are left

unchanged in value. This notation is slightly different from (and

| slightly suverior to) the notation presented earlier for the representation

! of heuristic rules. In the earlier notation the above rule would be

Co

 §

written |

(A2, B3, CX, *, *) = (5, b, c, e, e) . -

It should be noted that a rule in LASH translates almost directly .

into a number of action rules and bf-type heuristic definitions. Moreover,

a& definition in LASH translates directly into either an ff-type or a

bf-type heuristic definition. Thus the translation of heuristics ! 1
expressed in this language into production rules is a relatively simple

SPECIFYING HEURISTICS IN LASH. There is one question as yet unanswered. !

How difficult is it to take heuristics stated in natural language and +

restate them in this formal language? The answer is that it is quite .

easy to make this transition, provided that a relevant state vector has |
been established and its variables defined. For example, the heuristic

mentioned at the beginning of this section, "if the piece advantage is i
high make an even exchange', can be restated as

if PIECEADVANTAGE = HIGH then 'EVENEXCHANGE' .

Also necessary is (1) a LASH declaration defining 'EVENEXCHANGE' by

specifying the effect of an even exchange on the state vector variables,

and (2) a LASH definition defining the term HIGH. The high degree of
!

similarity between the heuristic stated in English and the heuristic :

stated in LASH indicates how simple, sometimes even trivial, the transi-

tion from one to the other can be. Consequently the formal language serves

as a very convenient intermediate step in the process of translating

heuristics into production rules.

®

: i . .

l CHAPTER 3 |
| PROGRAM MANIPULATION OF HEURISTICS

5.1 CREATION AND EVALUATION OF HEURISTICS

i Ideally, a heuristic problem-solving-program should be able to

| modify or replace its heuristics in order to improve its overall problem
solving performance. A step has been made in this direction by the

: | development of a game playing program which modifies coefficients in
an evaluation polynomial in order to improve performance (Samuel, 1959,

} 1960), and a pattern recognition program which generates, evaluates, and

| modifies its operators in an attempt to improve pattern recognition ability
(Uhr and Vossler, 1961). However, these programs make no effort to

| recognize, create or evaluate individual heuristics, and as a consequence
they are unable to radically modify their own heuristic configurations.

| Before the manipulation of heuristics in a program can be implemented

. | two major problems must be faced:
(1) the problem of evaluating existing heuristics in terms

' of their usefulness to the program.
(2) the problem of creating new heuristics, both by modifying

| old ones and hypothesizing new ones.
To solve these problems, techniques must be devised which will enable the

program to evaluate and create heuristics during the course of its regular

! problem solving activity.
Evaluation of Heuristics

Of the two problems just outlined, the first one, measuring the value

)

dl —

or usefulness of a heuristic is perhaps the more difficult. This problem

is actually an excellent example of the basic credit-assignment problem

for complex reinforcement learning systems (Minsky, 1961).

CREDIT-ASSIGNMENT PRCBLEM. The credit-assignment problem is the following.

If a large number of steps are required to complete some complex task,

then how should the credit for completing the task be distributed among

each of the individual steps? A learning system which could answer this

question would be able to reinforce steps pertinent to completion of the

task and thus learn which steps are necessary and which are redundant or

ineffectual... A rudimentary solution to the credit-assignment problem is to

merely assign an equal amount of credit to each step involved in the successful

completion of the task. This approach, however, will lead either to very

inefficient learning or no learning at all unless the steps are relatively

independent. If the steps are highly dependent, as is the case for the

tasks to be considered in this paper, this simple approach is doomed to failure.

Minsky (1951) illustrates the dangers of underrating the credit-

assignment problem in a discussion of a program-writing prcgram by

Friedberg (1958, 1959). The Friedberg program is designed to learn,

through reinforcement, to write a test program that will perform some

simple task. Frielberg's program attempts this by (a) randomly generating

a 6l-instruction test prosram, (b) executing this test program and eval-

uating its operation according to a predetermined criterion, and (c) using

the information concerning the success or failure of the test program to

reinforce indi .idual instructions associated with successful test programs.

Reinforcement consists of increasing the probability that particular

instructions will be generated in later trials. Friedberg's program

48

o

i
1

i
learns to solve simple problems but takes much longer than it would take

| to solve the problems by pure chance alone. The mistake made, Minsky
notes, is that credit is assigned to individual instructions rather than

1 to functional groups of instructions such as subroutines, and this

i disregard for the hierarchical nature of the problem leads to the poor
results,

| OUTER-LEVEL PROBLEM. Evaluating or measuring the usefulness of a heuristic

| in a game playing program (or any type of problem solving program) is
actually a 2-level credit-assignment problem; that is, a credit-assignment

| problem within another credit-assignment problem. The outer or
top-level problem is to evaluate the effectiveness of a sequence

| of decisions or "moves" and then to use this result to assign credit or

i blame to the individual decisions in the sequence. The problem is difficult
because it may not be clear how to distribute the credit or blame. For |

| example, if the sequence is a poor one, which decisions in the sequence
should take the blame? It would be unrealistic to blame every decision

| automatically , since the sequence may have been ruined by just one
or two key decisions. Conversely, if the sequence is a good one it,

| does not necessarily mean that every decision is good; there could be a
| few poor ones present which exert very little influence on the game

situation.

| In general, it is relatively easy to evaluate the effectiveness
of a long sequence of game decisions (the longer the sequence, the easier

i the evaluation) but difficult to evaluate or determine the effectiveness

| of any individual decision. Fven so, it must be pointed out that the |
method used to determine the value of a game decision depends to a large

| ’

I

Pi 3

RS

¥q L
L

i extent on the particular game under consideration. |
I |

uw INNER-LEVEL PROBLEM. The inner or lower-level credit-assignment problem is :

that of using the evaluation of a game decision tc assign credit or blame |
to the individual heuristics which played a part in making the decision. .

| Again the problem is difficult because there exists no simple rule for l;
| specifying how to distribute the credit or blame. This problem is iT le

| possibly more formidable than the higher-level problem, since the heuristics .
are often highly entangled and interdependent. Aseigning credit (or i
blame) to a set of heuristics which have been involved in making a -

! good (or bad) decision entails trying to determine to what degree each

heuristic contributed to the decision. Thie is especially difficult when +

the heuristics are very dependent on one another.

SOLUTION TO THE EVALUATION PROBLEM. Part of the solution te the problem oe

of evaluating heuristics lies in the method chosen to represent them. The mn

first step in solving the problem is obviously to separate the heuristics fe

from the main body of the program and to clearly define the relation- 1

ships existing between them. This is accomplished automatically by ;

representing heuristics as production rules. The next step is to devise ae

techniques for distributing credit or blame. The heirarchical rs

arrangement of the production rules in the form of an ordered list suggests fe

the following type of analysis. When a decision is made via production

rules a symbolic subvector representing the game situation 1s compared)
to all left parts of the list of action rules (production rules which |

represent heuristic rules) going from top to bottom until a match -

is found. The action rule which defines the decision, that is, the one ‘
v

50 L

I

; Re ai 4

»

|
whose left part matches the symbolic subvector, can easily be located.

| After the decision is evaluated the credit or blame can then be assigned
to the action rule which defined the decision (or to the rules above it ;

| in the list of action rules) and t> the associated heuristic definitionms.

| The approach to be used here is that of esssigning blame to action rules
leading to poor decisions by immediately modifying these rules in an

| attempt to make them more effective, while ignoring action rules leading
to good or acceptable decisions. :

i
Creation of Heuristics |

| The second major problem which must be faced before the heuristics |
of a program can be adequately manipulated is the problem of creating new ;

| heuristics. The most feasible way of creating new heuristics is by

| modifying existing ones. For action rules, three modification techniques
will be considered:

| (1) Replacing the symbolic values in the left part of the |
rule. For example, (Al, Bi, *) = (1, 2, *) might be

| changed into (A, B3, *) = (1, 2, *) .

i (2) Changing the relevancy of the elements in the left part
of the rule. For example, (Al, Bl, *) = (1, 2, *) might |

l be changed into (*, Bl, *) = (1, 2, *) . Here element A |
is made irrelevant. |

| (3) Changing the heuristic definitions associated with the
left part of the rule. For example, (Al, Bl, *) —= (1, 2, *) |

I might remain unaltered while the definition of Al is

| changed; i.e., Al =A , A< 15 might become Al = A, A < 20.
These techniques will be applied to action rules which lead to

:

|
. A

£ 0

" gi 2?)EAE 00 00m re, act ARES 7 SA ret erre£1 |

h =e

¥ decisions that are evaluated as being poor. Heuristic definitions L

represented by bf-tyve rules will be modified by simply changing the i |
predicates in the right partis of the rules. Definitions represented hy gw

ff-type rules will not be modified. a

INFORMATION NEEDED. In order to create useful heuristics, .

either by modifying existing ones or by hypothesizing new ones, three zs |

items of information will be used. =

(1) a good or acceptable decision for the situation, r
(2) the situation elements (subvector variables) relevant B

to making this good decision, and 4.

(3) the reason why the decision is being made, expressed as ae

an evaluation of these relevant situation elements. ~*

To illustrate that these three items are adequate consider the example H

given below. The subvector PB for this example will be defined by the -
dynamic variables A, B, and C . The action rules will be 1

1. (Al, *, C2) = (*, =, c+3)

s 2, (A2, Bl, *) = (a+2, *, *) Li

3. (*, B2, C1) = (*, b+l, *) :

and the rules corresponding to heuristic definitions will be N

L, Al =A, A> 20 {.

De A2 =A, AK 20

6. Bl -B, B> 16 4

Te B2 +B, B< 16

8. CL~C, C>5

9. c2=C, C<5

10. A =a, a € {set of natural numbers} =

02 -

.

“eo

a »

F

a

i 11. 2 = Db € {set of natural numbers } ;
| 12, C =c € {set of natural numbers)

IT the program subvectoar representing the game situation is considered :

| to be (13, 5, 7) , the symbolic subvector obiained tarough parsing is }
(A2, B2, C1) . This symbolic subvector matches rule 3 above and leads 4

l to the decision of incrementing the value of B by 1. If it can be 1
| determined that this was a poor decision and that

(1) a good decision is to add 6 to the value of A , {
| (2) the variables relevant to this decision are A and C ,

and I
i (3) the decision is being made because the current value of A |
| classifies A as an Al and the current value of C :

classifies C as a Cl,

| then the production rules can be modified by (a) changing the
rules corresponding to the heuristic definitions of Al and A2 such

i that they become Al = A, A> 13 and A2 “A, A<13, and (b) inserting

| the action rvle (Al, *, Cl) = (a+6, *, *) Just above the action rule
which now "catches" the symbolic subvector. Changing the definitions

- of Al and A2 changes the symbolic subvector to (Al, B2, Cl) which
still matches or catches on rule 3, thus the new action rule is inserted :

| just above rule 3. After such a modification is made the rules have |

| the form:
1. (Al, *, C2) = (*, *, c+3)

| 2. (A2, Bl, *) — (at2, *, *) |
3. (AL, *, C1) ~ (at, *, *)

] bh. (%, B2, C1) = (*, b+l, *)

f

}

3 $71 RY LAD AATRSI 5 0 HI I A PA EIU P10 Sete oo OTH SLPOTPr Ere a
| I
;

5. AL =A, A> 13 >
' 6. A2 =A, AK 13 1|

Te BL=B, B>'% -

8. Bp ~B, B< 16 1a

9. CL~C, C>5 | e

11. A~a, act fset of natural numbers } - |
12. B—b b € {set of natural numbers } = 1]
13. C=~c,c€ fset of natural numbers }
It can be seen that now in the situation (13, 5, 7) the correct

decision, "add 6 to the value of A " is made. Consequently, the “i
three items of information previously mentioned, i.e., a good decision, -
the relevant elements, and an evaluation of these elements, permit "
the creation of useful or "good" heuristics. This process is specified 1]
in detail in the next section.

 }

rs

54 yw

. - ite

1

I
3.2 TRAINING PROCEDURES

I In the previous section it was noted that three items of information |

1 are adequate for the creation of useful heuristics: i
(1) a good decision for the situation, 1

[| (2) the relevant situation elements, and
(3) the reason why the decision is being mede. !

i When a learning program is presented with a game situation and the above

: 1 items of informaticn for the purpose of improving its performance, the
process will be called training.

I !
BOOK LEARNING. In section 1.3 a checker-playing program which employs

| an abbreviated form of training is described. Tuis technique is called
book learning (Samuel, 1959, 1967), a procedure wherein the program is J

1 presented with game situations and the associated book-recommended moves
and is permitted to use this book information to correct its move-

I generating apparatus. In this procedure item (1) above is given to the
| | program b." items (2) and (3) are not.

Book learning has proved to be a successful technique for teaching

| programs to play games where minimaxing procedures can be applied. The
book information supplies the program with a good move decision while the

I minimaxing procedure provides a method by which the program can determine

] which situation elements (or parameters) are relevant. One way parameter
relevancy is determined in the checker program is by comparison of the

1 current parameter values for a situation with the backed-up parameter
values obtained through minimaxing on the path in the game tree corres-

| ponding to the book move. The parameters whose backed-up values are

1 5%

|

¥

LR I AJ EE MN POS STL AR rasan

I
: consistently greater than the current values are considered the relevant

ones, since these axe the parameters that the book moves tend to increase. }
In one version of the checker program the value or worth of any game

situation (or board configuration) is represented by a linear polynomial. I
As a consequence, when a move decision is made it is always because the ir
move has associated with it the largest numerical value obtained by - |
minimaxing evaluations of the polynomial back up the game trec. Thus Il .
by using miuimaxing and a polynomial representation of the board value 7 1

the program is able to obtain, by itself, the information specified by .e

items (2) and (3) above. th

TRAINING. For the general game=-playing program, where the parameters ‘om

are not independent and minimaxing is impossible (because not enough in- So

formation is known to construct a game or decision tree) training procedures i

| can be used to improve performance. This training can take place in B

two ways, (a) by supplying the program with a number of unrelated game |
situations and the associated information needed for training, or (b) .

by having a human (who is an expert at the game) monitor the decisions -s

of the program as it plays an actual game and give the program, when ¥

a poor decision is made, the three items of training information. o

In section 3.1 an example was presented which indicated how heuristics li
in production rule form can be created or learned when the appropriate u

training information is available. The use of training information J

in learning heuristic rules and definitions will now be e.;amined in detail. }

Learning Heuristic Rules :

As illustrated in section 3.1 the training information provides the .-

data necessary for the construction of a new action rule; i.e., item (1)

56 3

a — he.

®

|

I of the training information supplies the right part of the action rule, |
| while items (2) and (3) supply the left part. The most elementary method |

of correcting the set of action rules when they lead to a poor decision _—

| | is by (a) using the training informatior to create a new action rule |
through generalization, and (b) inserting this new rule in the list of

| action rules immediately above the action rule which led to the unacceptable E.
| decision. However, this method may not always be practical, since it 2

entails adding a new action rule for every training trial. Such a A

| technique could lead to a prohibitive number of action rules. ;

| CORRECTION BY MODIFYING EXISTING RULES. What is needed for efficient .
correction of the set of action rules is the addition of another gener-)

I alization scheme to the abovementioned process. Such a scheme should :
permit training information to be added to the set of action rules

1 without the insertion of a new rule. One way this can be accomplished
I is by finding an appropriate action rule already located above the error-

causing rule and modifying it to make it general enough to catch Lhe

| symbolic subvector. An appropriate rule is one which is capable of
being suitably modifiza and which leads to the same decision as

i that specified in item (1) of the training information. After such a

! modification is carried out, the training information is effectively
incorporated into the set of action rules. This is true because whenever

| the original training situation is re-encountered (i.e., the current
state vector is identical to the state vector of the training trial) the

} system will make the decision previously specified by the training

} information.
If no appropriate rules are located above the error-causing

I :

| |

i eumemar vem EEE SRE tS means Seas
5

3 |
]

| rule but some are located below it, the following approach may be used. _. |
The error-causing rule, if suitable, is modified sc as to pass (rather $s

than catch) the symbolic subvector, while the first appropriate action ae

: rule belowit is modified to catch the subvector. Also, if any rules i| located between the errov-causing one and the first appropriate one ii

| catch the subvector, they are modified to pass it. This type of e |
modification also incorporates the training information into the set of bl
action rules. 1

RULES APPROPRIATE FOR MODIFICATION. At this point it must be made

] clear whick rules can be modified to catch the symbolic subvector, LA
which can be modifiedto pass it, and exactlyhow this modification process ?

takes place. An action rule will be considered appropriate for modifi- He

cation to catch the subvector if it has the same form as the training

rule, that 1s, the action rule which can be created from the training .

information. An action rule has the same form as the training rule 8

only if (1) their right parts are identical, (2) for each * in the .

left part of the training rule there is a corresponding %* in the left ve

pert of the action rule, and (3) the correspcuding symbolic values of

their left parts are identical, or at lezst are alike to the extent that i
they are both defined by the same logical operator. Here * is |!
considered to always be identical to any other symbolic value.

EXAMPLE OF RULE MODIFICATION. For example, consider the rule created

from the training information bo be {}

(A1, *, C1) = (%, b42, *) {

and the existing production rules to be i

58 an

| 4
a g

®

|

1. (AL, #, C2) = (%, b+2, *) 3

i 2, (Al, BL, *) = (*, *, g+5) ;
3. (A2, ¥, C3) —~ (%, pH2, *) :

I bh, (AL, *, ®) = (%, *, e45) :
1 5, AL =A, A<6 ;

6. A2 =A, ASB

| 7 BL ~3, B> 8 y
8. CL-~C, C> 12 |

1 9. C2-C,C<5 :

1 10. C3 =C, C> 1b i
Here rule 1 anc the training rule are not of the same form becaus2 Cl

| | and C2 are not defined by the same logical operator (requirement (3) $
above). Rule 2 and the training rule are not of the same form because]

| rule 2 has a Bl where the training rule has a * and their right parts i
l are different (requirements (2) and (1) above). Rule 3 anu the training

rule, however, are of the same form since they satisfy all three of the

i above requirements.
An action rule can be modified to catch the symbolic subvector by

i enlarging the sets defined by the symbolic values in the rule. As an
illustration of this generalization technique consider again the example :

I just presented, and let the program subvector be (5,3, 13) . The
I symbolic subvector obtained through parsing is ((a1, A2j), (3), (C1)),

which matches or catches on rule 4, This rule leads ‘to a poor decision,

i since it is not the decision advocated by the training information. h
Rule 3 is located above error-causing rule U4 and has the same form

| as the training rule. Thus, if rule 3 is modified to — the symbolic

i subvector, the training rule will effectively be incorporated into the
| 59 |

| AEN

- — = — eneemma mani ——— A——————Sete Heme Se m———— we—

4

i BN ATRINT ENa

! gy

: E |
set of action rules. The left part of rule 3 is (A2, *, C3) , so it

can be seen that the subvector matches the left part of rule 3 with I]
respect to its first two elements but not with respect to its third =

element C3 . If the value C3 in rule 3 is replaced by a symbolic \

value representing a set large enough to include the current value of 1

the state vector variable C (which in this case is 13) the symbolic oe

subvector obtained through parsing will catch on rule 35. Therefore C3 I
is replaced by Cl , making rule 3 become (A2, *, Cl) ~ (%*, b+2, *) . i.

“he subvector now catches on rule 3, as desired, and causes the action /

advocated by the training information to be taken.

An action rule can be modified to pass the symbolic subvector by ’

reducing the size of the sets defined by the symbolic values in the

rule. This technique is somewhat the opposite of the generalization]

method just described. In the previous example the symbolic subvector el

catches on the new rule 3. To modify this rule so that it passes the a>

subvector it is necessary to restrict the definition of one of the sym- fe

y bolic values in the rule such that the symbolic subvector no longer TER

includes this symbolic value. This can be achieved by restricting the)
definition of A2 so that it no longer includes the current value of the L.

state vector variable A (which in this case is 5). Let rule 6 become .

A2 = A, A< 5 ; then the symbolic subvector becomes ((Al), (B), (Cl)) -

which fails to catch on the new rule 3, as desired. 1

OVERGENERALIZATION. When an action rule is modified so it will pass (or £)

catch) the symbolic subvector it is necessary to expand (or restrict) *

the size of the sets defined by one or more of the symbolic values in the |
rule. Care must be taken not to overgeneralize, that is, to change oe

60 -
fod

In iE, ar

iJ

put the definitions of the symbolic values. If this happens the

training process could become unstable; that is, many redundant action
al

rules might be created during training. i
ald Overgeneralization may be guarded against by specifying the maximum |

+ allowable definition change wuich may be made. In the previous examples i

~ Cl replacing C3 led to a change of size 2, since the predicate was |
: changed from C > 14 to C > 12 , and A2 had a definition change of

) size 3. The maximum allowable change depends largely on the type of |

- game being played, and thus will be represented &s a generalization constant |
I K which can be changed only by the programmer. In view of these con-

siderations, an action rule is appropriate or suitable for modification

| only if the definition change involved is equal to or less than K . :

1 Learning Heuristic Definitions
It has been shown how the three items of training information supply

4 the data necessary for the creation and modification of heuristic rules
represented as action rules. This training information also provides the

| necessary data for creating or learning heuristic definitions represented -

i as bf rules. The techniques whicn can be used to learn heuristic
definitions will now be described.

I PARTITIONING. A simple bf rule consists of a production rule and an

| associated simple predicate, such as

| Al = A, A> 10
This rule states tliat if the value of the state vector variable A is

| greater than 10 , then the state vector variable A may take on the

| symbolic value Al . The symbolic values a state vector variable may
61

j

5 |

4 : Eh i lh ee ": a

| take partition the set of possible values for that variable into subsets.

; Two types of partitioning procedures will be considered, (1) mutually |
x exclusive (and exhaustive) partitioning, and (2) overlapping (and

d i

| non-exhaustive) partitioning. An example of mutually exclusive partition-

ing for the state vector variable A is i

Al = A, A> 10

4 A2=» A, AL 10 °

| where the set being partitioned is just the set of natural numbers. Here .

any value of the state vector variable A permits A to take one and

only one symbolic value. An example of overlapping partitioning is a

A2= A, A>Lk

Here a particular value of the state vector variable A may permit A to ri

take zero, one; or a number of symbolic values. pe

EXCLUSIVE VS OVERLAPPING VARIABLES. In the learning procedure egbout to -

be outlined a state vector variable will be considered one of two types: :

either an exclusive variable with symbolic values defined by mutually

exclusive definitions, or an overlapping variable with symbolic values

defined by overlapping definitions. Item 3 of the training information

provides a reason why the proposed decision is being advocated. When .

an exclusive state vector variable is being referred to in item 3, the :

symbolic value associated with the current numerical value of the)

variable must be given. Let A , for example, be an exclusive state

vector variable with a value of 8 . Then item 3 might state that the mo

62 |

-».

s - EE

proposed decision is being advocated because " A is an A2 ". When an ng
!

overlapping state vector variable is being referred to in item 3, a :

magnitude indication associated with the current numerical value of the

variable must be given. Let A , for example, be an overlapping state

vector variable with a value of 20 . Then item 3 might state that the

prorcsed decision is being advocated because " A is large" or because

"A is small”. :

. LEARNING EXCLUSIVE DEFINITIONS. The procedure for learning the definitions
} 1

of the symbolic values of an exclusive state vector variable merely con- Bf
| i

sists of partitioning the given range into the number of desired subsets x

| and then using the data of item 3 from each training trial to shift the
boundary lines whenever the newly acquired information so permits. An

| example will clarify this procedure. Let A be an exclusive state
vector variable with the three subsets or possible symbolic values Al ,

A2 , and A) , and let the range of A be the positive integers from

1 to 60. Initially A is partitioned into the specified number of

| subsets by estimating or guessing the boundary locations. Let the initial
estimate of the boundaries partition A as follows:

Al A2 A>

b 50751 Lo'hT 50 |

| Thus the initial bf rules are

| Al =» A, A< 20
A2 + A>20A A<40

i A3 + A, A> LO

{ 63

:

hi|

1 WAIVER aaBl REET

The effect of 4 hypothetical training trials on the partitioning is .s

| shown below. y
| Trial Information New Boundaries .e

1. A= 1k, A has the Al A2 A3 “

value associated with REET 5) 'E—— VOLS ' M—Te
| the middle subset; 1571 0h1 -.

j.e., A is an A2 .

| 2. .A=T, A is an Al Al A2 A3 ~e
1 131 O41 ws

3. A=3,A is an A3 Al A2 A3 [4
1 131% 29130 60

b. A=1, A is an A2 Al A2 A3

i 10711 29130 %0

The bf rules learned are: El

Al + A, A< 10 --

A2 + A, A> 10A A 29 =

! A3 + A, A> 29 4

LEARNING OVERLAPPING DEFINITIONS. The procedure for learning the definitions 3

of the symbolic values of an overlapping state vector variable is quite B

elementary. It consists of using the magnitude indication of item 3 to-

gether with the current numerical value of the state vector variable to

define a particular subset of the range. If the variable is classified .

&s "large the current numerical value of the variable and all values

above it are defined as a subset. Conve.'sely, if the classification is L

"small" the current value and all below it are defined as a subset. Con-

sider the following example for the overlapping state vector variable B

64 a

" N Joa

with a range from 1 to 60 . Initially, there are no bf rules for B , i

| and *he range is unpartitioned as follows:

i B

| The effect of 4 hypothetical training trials is shown below.

i Trial Information New Boundaries
1. B=8,B is small <3

s A
2. B=30,B is large <5) [82

I 1 879 29 30 60Bl3 B=5l1l,B is large e:iN [B2, [B3,

} T 89 29130 50" 51 60
4, B=28, B is large BL! B2, [B2,

i 1 89 27 28 50" 51 60

i Note that on trial 4 instead of defining a new subset BY , where
B> 27 , the existing subset B2 was enlarged. This type of generalization

| will be performed whenever it can be accomplished without enlarging beyond
some maximum amount KK , a constant which depends on the game being

I learned. The bf rules learned are:

I BL+ B, B< 9
B2 + B, B> 27

i B5> + B, B> 50

I Training Procedure Outline
The entire training procedure for learning heuristics represented

| as production rules will now be briefly outlined. This outline, shown

I 6s

i Pols

f TTT — "
4

: |
3

: below, lists the steps involved in a single training trial. >
l. a. Parse the program subvector to obtain the symbolic subvector. |

| b. Drop the symbolic subvector through the action rules to ”
: >

b obtain a decision. i
c. If the tralner indicates that the decision was acceptable vo

| then stop, otherwise go to step 2. ‘
2. a. Obtain the training information from the trainer. \ 1

b. Construct an action rule (to be called the training rule) :

from this information. x

c. Use item (3) of the training information to change or create

bf rules which represent heuristic definitions. If this .

changes the symbolic subvector then go to step 3, otherwise

go to step 4.

3. a. Drop the new symbolic subvector through the action rules to i

obtain a decision.

b. If the decision is the one advocated by item (1) of the ,

training information then stop, otherwise go to step 4.

| 4. a. Locate the action rule responsible for the unacceptable

decision made in step 3 (or in step 1 if step 3 was skipped). |

This action rule will be called the error-causing rule.

5. a. Search the action rules above the error-causing rule for a

rule which has the same form as the training rule and is

suitable for modification to catcli the symbolic subvector.

This rule will be called the target rule.

b. If such a rule is found modify it to catch the symbolic

subvector and go to step 3, otherwise go to step 6. 1

66 l

|

‘ - Rb

|

6. a. Search the action rules below the error-causing rule for a

| rule which has the same form as the training rule and is
suitable for modification to catch the symbolic subvector.

| This rule will be called the target rule.

I b. If (1) such a rule is found, (2) the error-causing rule is
suitable for modification to pass the symbolic subvector, |

i and (3) the rules hetween the error-causing rule and the
target rule either pass the symbolic subvector or are suit-

I able for modification to pass it then modify the target rule

| to catch the subvector, the error-causing rule to pass the
subvector, and the rules between these two to pass the

I subvector and go to step 3, otherwise go to step 7.
7. a. Place the trainin; rule immediately above the error-causing

i rule in the list of action rules and stop. |

i These steps are illustrated by the block diagram given in figure 3-1.
To see exactly how these steps are applied consider the following example,

| where the dynamic subvector variables are A, B, and C . Here A is

i an exclusive variable, while B and C are overlapping variables. The
initial set of production rules for this example is shown below. :

1 1. (A2, Bl, *) + (atl, *, *)
2. (Al, *, Cl) = (*, b+2, *)

| 3, (%¥, ¥, *) + (random)

I L. Al +» A, A 20
De A2 + A, A> 20

| 6. BL+ B, B> 3 |
7. Cl+C, C>9

| 2

I

y Coad iS ame oad - wr W

-

«igi

The word random in the right part of rule 3 means that if the symbolic we

J subvector catches on this rule, a decision will be chosen at random from 1
the set of possible decisions. During training "random" is assumed to

always lead to an unacceptable decision since this accelerates the training

| process. .

| INSERTINGA NEW ACTION RULE. Let the program subvector at the beginning
of trial 1 be (18, 2, 11) . This parses to the symbolic subvector .

(Al, B, C1) which catches on rule 2 and leads to the decision of in- :

crementing B by 2 . Assume that this decision is unacceptable and :

that the training information is:

}

{

}

wh.

68 i.

| -

- '. :

+ . y me |
yo! -— al en Esaa tT

START

| Obtuin a 4
decision A

| Is \
yes

the decisio L

| correct 4g-"
no ¥

Obtain :
training k

information 1

:

| Create training .rule and modify y
heuristic definitions

| Has Is es
the symbolic Jes Obtain a the decision !
subvector decision OF fect!

| haled
no no

Locate the

| ~atest error-causing rule

I Can
come target

ule above the error- »

causing rule be modified yes Mouily the
I .c catch the afersubvector? rue

I f
Can

f the ectionules be modified so .

a tarpge® rule below the es MOLL EY us
errcr=causing rule will

catch the rules |
subvector?

no Insert the training

rule just above

the error-causing
rule

I Figure 3-1. A block diagram of the training procedure.
69

aaa

—— - - neE——— = a a aa a

(FATTRE LL A I ST I ES A,FT AI MITRE rs -

r or
|

f if

I (1) a good decision is "add 3 to the value of C ". .

(2) the relevant variables are A and B . i
(3) the decision is being mad. because " A is an A2 " and |

"B is small". A

| The training rule (constructed from the training information) is gr |
(A2, B2, *) = (%*, ¥, c+3) —

i ’
and the bf rules changed ov created (on the basis of item (3) above) are

1

| Al + A, A< 18

B2-+B, B<3.

| These bf rules change the symbolic subvector to (A2, B2, Cl) which -

catches on rule 3. Thus the error-causing rule is rule 5. No action |

rules above or below the error-causing rule have the same form as the ih.

training rule, so the training rule is inserted into the list of action 8.

rules immediately above error-causing rule 5. The new set of rules is :

shown below. Here, when the program subvector is (18, 2, 11) the ud |

desired decision, "add 3 to the value of C ", is made.

1. (A2, Bl, *) + (atl, *, *)

3. (A2, B2, ¥) «+ (*, ¥, c+3)

4, (*, *, ¥) =< (random) =

5. Al» A A<18

6. A2 + A, A> 18

7. Bl-+B, B> 3) i.

)
70 a

-.

| :

| |
8. B2 + B, B<3

I 9. Cl+C,C>9

| MODIFYING A RULE ABOVE THE ERROR-CAUSING RULE. Let the program k |
subvector at the beginning of training trial Z be (12, 1, 7) « This ;

| parses to the symbolic subvector (Al, B2, C) which catches on rule 4 1
and leads to a random decision. Assume that this decision is unacceptable 3

| and that the training information is:
| (1) a good decision is to "add 2 to the value of B ". -

(2) the relevant variables are A and C . A
| (3) the decision is being made because " A is an Al " and

"C is large". ,
I The training rule (constructed from the training information) is |

1 (Al, *, C2) + (%, b+2, *) E

| and the bf rule created (on the basis of item (3) above) is

| +0, C>6.

I This bf rule changes the symbolic subvector to (Al, B2, C2) which still
catches on rule 4. Thus the error-causing rule is rule 4. Rule Z,

] above the error-causing rule, has the same form as the training rule and |
is suitable for modification to catch the symbolic subvector if K > 3 .

1 Let K= 3, then rule 2 is modified by replacing Cl with C2 . The

I new set of rules is shown below. Here, when the program subvector is :
(12, 1, 7) the desired decision, "add 2 to the value of B ", is made. y

| 1. (A2, Bl, *) = (atl, *, *)
2. (Al, *, C2) = (¥*, vt2, *)

I n

|

: — Fr— AFeesam———————————————— etosc ect mm = ot

By

. ID ets PT APEsyog

Ly -
{ of

3)

3. (A2, B2, *) = (¥, *, ct3) «

b. (*, *, *) 4 (random) ~
pe -

6. A2 + A> 18

7. Bl+B,B>3

| 8. B2 + B, B<3 .

9. CL+C, C>9 tL

10. c24C,C>6 :

MODIFYING A RULE BELOW THE ERROR-CAUSING RULE. Let the program subvector ‘

at the beginning of training trial 3 be (21, 4, 15) . This parses to

the symbolic subvector ((A2), (Bl), (C1,C2)) which catches on rule 1

and leads to the decision of incrementing A by 1 . Assume that this

decision is unacceptable and that the training information is:

(i) a good decision is to "add 3 to the value of C ".

(2) the relevant variables are A and B .

(3) the decision is being made because " A is an A2 " and

"B is small".

The training rule (constructed from the training information) is ;

(A2, BY, *) + (*, *, ct+3)

and the bf rule created (on the basis of item (3) above) is

B5+ B, B< 5 .

This bf rule changes the symbolic subvector to ({A2), (B1,B3), (C1,C2)) :

which still catcnes on rule 1, making it the error-causing rule. Rule 5

below the error-causing rule has the same form as the training rule and)

72 -

I

[J

: 5, a ———

|! is suitable for modification to catch the symbolic subvector. Further-
| more, the error-causing rule is suitable for modification to pass the |

subvector. Thus rule 3 is modified by replacing B2 with B3 , and rule

i l is modified by changing the definition of Bl to

| Bl + B, B> 4.

| The new set of rules is shown below. Here, when the program subvector
is (21, 4, 15) the desired decision, "add 3 to the value of C ",

| is made.
1. (A2, Bl, *) +» (a+l, *, *)

| 2. (Al, *, c2) » (*, b+2, ¥)
| 3. (A2, B3, *) = (*, ¥, c+3)

h., (¥, ¥, ¥) + (random)

| Die Al » A, A 19
6. A2 + A, A> 18

| 1. Bl+ B, B> 4

| 8. B2 + B, B< 3
9. B+ B, B<5

| 10. Cl-+C, C> 9
11. C24 C, C>6

CONVERGENCE. The effectiveness of these modification techniques can

| be tested by using a program, rather than a human, as a trainer. The
training program must contain a complete set of game heuristics in produc-

| tion rule form and must monitor the learning program, which initially

| contains no heuristics. Whenever the learning program makes a decision
which conflicts with the one made by the training program, it will be |

.

I

¥

l

told by the training program the correct decision, the relevant variables, |
and why the decision was made. The training program's decisions are]
considered to be the correct decisions. If the modification techniques |

used were perfect for use in the task environment under consideration, I
the learning program would eventually grow a set of production rules

leading to exactly the same decisions as the training program rules. 5

Poor modification techniques would create a learning program which rarely

made the same decision as the training program. Thus the speed and

degree of convergence obtainable between the decisions generated :

by the learning program and those generated by the trainer can be used

as a measure of the effectiveness of the modification and generalization

procedures.

Applicability of Training Process

A pertinent question at this point is the following. Using the

modification and generalization techniques just described what features

of the task environment affect the speed and the degree of convergence

] obtainable between the decisions generated by the learning program

and those generated by the training program? For the learning procedures

even to be applicable each subvector variable must be considered to |

have a range consisting of a set of integer values. When this condition

is satisfied convergence can be obtained, however the speed and degree

of convergence depend upon the properties of the "decision space"

utilized by the trainer.

DECISION SPACE. The decision space of the trainer is considered to be

an n-dimensional space which has a dimension corresponding to each of .

7h .

1

¢ " 2 .

| |
the n variabl:s in the subvector. Thus each point in this space |

| represents a game situation, and the entire space represents the set '

| of all possible game situations.
The trainer is assumed to know the correct decision to make in ;

] every game situation, i.e., it has a decision associated with each point
in its decision space. For example, let B = (P, B) where P and B

| each have a range from 1 to 9 and where decisions d, » ds, dz) and
| dy may be made. Then the decision space for the trainer could have the

form shown below.

I ;

: do} Ca 2) a]
| 3 dp dT a, d Figure 7-2,
| 2 [a B d, a; Jd dy |

DO pie SESE Em

I ! dy GB SH idL)
| 3 Vee =m = =m m= - -
| 1 2 3 L 5 P |

I The degree to which identical decisions tend to form groups will be
1 called the clustering effect, indicated by the dotted lines in the

above figure. In this example there is a high degree of clustering.
p

1 An example of minimal clustering is shown below.
- B

| y d, d, 4d; d 4d

: 4 d, q, d, d, d,
” ’ g! “1 gp! Figure 3-3.
Ii 2 d, 8) d, d, d,
kt It 4, 4 4 4 4

| 1 2 3 4 5 P
75

| |

=

¥i

SPEED OF CONVERGENCE. It can now be seen that the speed of convergence .

A depends on the degree of clustering inherent in the decision space of il
i the trainer. If there is a high degree of clustering then convergence will

be rapid, that is, the learning system will be able to accurately -

} imitate the training program after learning only a small number of action

rules. If, however, there is a low degree of clustering, convergence “

will be slow. For example, with minimal clustering the system will not

converge until it has acquired one action rule for each game situation

in the entire decision space.

DEGREE OF CONVERGENCE. The degree of convergence obtainable from

the learning system, on the other hand, depends on the degree of

consistency exhibited by the trainer during the training process. If .

the trainer is very consistent in its task of supplying decisions when

presented with game situations (i.e., the arrangement of decisions in)

its decision space is very stable) a high degree of convergence is

possible.

76 !

3 "

5.3 LEARNING WITHOUT EXPLICIT TRAINING y

| In section 3.2 it was shown how heuristics in the form of production |
rules can be learned when the following information is available for

I each move or game decision made by the program:
| (1) a good decision for the situation,

| (2) the relevant situation elements, and

| (3) the reason why the decision is being made.
* Training is one way to provide the program with this information, but

| this technique requires the presence and participation of a trainer. Since
| humans can learn to play games without explicit training, developing pro-

| grams which also can learn without expaicit training seems a reasonable

| goal. This can be attained if the pro;;ram itself can be made to generate
the training information, either through logical deduction or hypothesis

| formation. Once the training information is generated the program can
l proceed as outlined in the previous section and in a sense train itself.

One difficulty is that some mechanism must be included for testing the

I hypotheses formed and for eliminating useless ones. Further, this
mechanism must be compatible with the generalization techniques used in

i the training process. A procedure will now be described which enables

i the program to generate the training information during the normal
course of play and thus learn heuristics without explicit training.

i AXIOMATIZATION. The fundamental problem at this point is: how can the program
i hypothesize reasonable heuristic rules without explicit training? The

chance of finding a reasonable or useful heuristic by creating heuristic

| rules at random seems rather remote. A novel way to attack the problem
is to formalize or axiomatize (McCarthy, 1950) the following for the

I .

}

;

I

game under consideration: }
(1) the rules of the game, ¥

! (2) statements (or "axioms") about the game, Ez
$ (3) general statements about techniques used in game playing. I

The result is a set of logical statements or premises, from which new '

statements can be deduced using rules cf deductive inference. These new =

statements can then be used as the basis for creating new heuristic rules. !

This technique of logical deduction can be used by the program to }

obtain item (1) of the training information, that is, a good decision |

for the given game situation. This process entails (a) making a)

decision in a situation S , (b) noting the effect on S of the sub- .

sequent decision by the opponent, and (c) using the information about §

and the change in S together with the set of logical statements to

deduce what the original decision should have been. It was noted in

section 5.1 that the longer the sequence of decisions, the easier it

is to evaluate the sequence as being good or bad. This technique of using .

logical deduction permits the evaluation of a decision sequence of the

worst type, a sequence of length one. An example of this technique

applied to a particular game, as well as a complete set of logical

statements for th: game, is presented in chapter 5.

DECISION MATRIX. Item (3) of the training information can be obtained }

from a decision matrix which is game dependent and is given to the program !

before learning starts. Each row of the matrix stands for a game

decision or class of decisions and each column for a subvector variable. %

Each entry E; ; in the matrix indicates why the variable Jj is relevant, 1
if when the decision i is made it is in fact relevant. For example, Bh

78 I

l

. a = _—r

ah

“* if the program can determine that decision i is good and variable]

I J 1s relevant, and entry Ey is the term "large" then it knows that |
decision 1 was made because variable J is large. An underlying

1 assumption here is that when a variable is relevant for a particular

decision or class of decisions it is always relevant for the same reason.

: The types of reasons under consideration are simply (a) the category |

the current value of the variable belongs to (for exclusive variables),

| and (b) the magnitude indication associated with the current value

| of the variable (for overlappiag variables).

A linear polynomial used to determine a move decision is somewhat

analogous to a decision matrix with just one row but with one column

for each parameter of the polynomial. The entries in the matrix would

all be the term "large", since whenever a decision is picked it is

always because the relevant parameters are large and thus increase the

value of the polynomial. Another heuristic program which is supplied

with informaticn in matrix form is GPS (Newell, Shaw, and Simon, 1959).

This program relies on a connection table to provide information about

the operators relevant to reducing certain differences.

HYPOTHESIS FORMATION. Item (2) of the training information can be obtained

through the generation and testing of hypotheses concerning the relevancy

of subvector variables. Again the problem of generating useful or

. reasonable hypotheses arises. This problem can be solved for the special

case of relevancy hypotheses in the following manner. Let the initial

hypotheses in every case be that all subvector variables are relevant;

this means that the left parts of the training rules constructed from the

3 items of training information will initially contain no * 's. Testing

79

’

%
I

will consist of noting whether or not a particular training rule (placed |

in the set of action rules by step 7 of the training procedure) catches 1
the symbolic subvector when the action advocated by the rule is determined

: to be the correct decision. If the rule does not catch the subvector, i

the hypothesis for that rule concerning the relevancy of the variables

1s changed by making some of the variables in the left part of the rule :

irrelevant. This makes the rule more general since it then applies to

a greater variety of situations.

This technique can be easily incorporated into the training procedure

as follows. If it is desired to modify an hypothesized action rule to

catch the subvector and the rule cannot be suitably modified by replacing ;

symbolic values then the following action is taken. The left part of

the rule is modified by making a minimum number of variables irrelevant

while still increasing the generality enough so the rule can catch the

symbolic subvector. Of course some limit must be imposed on the degree

of generality which may be obtained, otherwise the hypothesized action 1

rules would eventually contain all ¥ 's in their left parts. ILet N stand

; for the minimum allowable number of variables which must remain relevant ‘

in the left part of an action rule. Then, when an hypothesized action

rule has only N symbolic values which are not * 's in its left part it

cannot be modified by reducing the number of its relevant variables.

The value of N depends on the number of subvector variables used and the

particular game under consideration.

Revised Training Procedure I

The technique Just described can be merged with the training

procedure outline in section 3.2 by makinga few minor changes. This -

revised training procedure outline is shown below. 2

80

|
1
+ l. a. Parse the program subvector to obtain the symbolic sub-

1 vector.
-

i b. Drop the symbolic subvector through the action rules to

ne obtain a decision.

> c. If the trainer indicates that the decision was acceptable

’ then stop, otherwise go to step 2.

i 2. a. Obtain the training information from the trainer.

} b. Construct an action rule (to be called the training

Il rule) from this information.

c. Use item (3) of the training information to change or

create bf rules which represent heuristic definintions.

If this changes the symbolic subvector then go to

} step 3, otherwise go to step &.
_

1 3. a. Drop the new symboli: subvector through the action rules

- to obtain a decision.

. b. If the decision is the one advocated by item (1) of the

| training information then stop, otherwise go to step bk.
| 4. a. Locate the action rule responsible for the unacceptable

| decision made in step 3 (or in step 1 if step 3 was
skipped). This action rule will be called the error-

l causing rule.

[5. a. Search the action rules above the error-causing rule for
a non-hypothesized rule which has the same form as the

y training rule and is suitable for modification to catch

. the symbolic subvector. This rule will be called the

- target rule.

»

» 81

l

Mog So RY SY TIAS 1PS

i

b. If such a rule is found use the training generalization oe

| techniques to modify it to catch the symbolic subvector A

| and go to step 35, otherwise search the action rules above Bol the error-causing rule for an hypothesized action rule i

leading to the decision advocated by the training infor- - »

mation. If such a rule is found, modify it to catch the ~

subvector by making a minimum number of variables irrele- i}

vant if this can be done and still leave N variables .

relevant and go to step 3; if no action rules suitable 3

for this type of modification can te found above the

error-causing rule then go to step 6. yu

6. a. Search the action rules below the error-causing rule for

a non-hypothesized rule which has the same form as the

training rule and is suitable for modification to catch

the symbolic subvector. Th.s rule will be called the

target rule.

b. If (1) such a rule if found, (2) the error-causing rule

| is suitable for modification to pass the symbolic sub-

vector, and (3) the rules between the error-causing rule

and the terget rule either pass the symbolic subvector

or are suitable for modification to pass it then use the

training generalization techniques to modify the target

rule to catch the subvector, the error-causing rule to

pass the subvector and go to step 3, otherwise go to

step 7.

7. a. Place the training rule immediately above the error-causing

rule in the list of action rules and stop.

82 -
:

Ps

» Ce ms El LA

§
|

l An example of the operation of the revised training procedure will

| now be given for a state vector composed of overlapping variables A, B,
and C . It will be assumed that K=3 , N= 1 , and the decision matrix |

I x

l dq d, 4, ¥

: | Figure 3-4. A
’

| where dy stands for "add 1 to the value of A ", d, stands for "add |
I 2 to the value of B " and d; stands for "add 3 to the value of C ". ;

The initial set of production rules for this example is shown below. |

| 1. (Al, *, CL) = (*, %, c+3)
; 2. (*%, *, *) + (random)

i 5. Al + A, A> 10

I 4. CL+C, C<15
| INSERTING AN HYPOTHESIZED ACTION RULE. Let the program subvector be :

| (15, 12, 2) . This parses to (Al, B, Cl) which catches on rule 1 and

I leads to the decision of incrementing C by 35 . The opponent now
makes a decision and the program uses the information about the resulting

| game situation to logically deduce what its own decision should have been.
Assume that the program deduces that a good decision would have been

I "add 2 to the value of B ". The training rule is then
F

| | 33
|

—

: —_— RET ey

{

i
(A2, Bi, C2) + (*, b+2, *)

and the bf rules changed or created are

| A2 + A, A> 1h

Bl +B, B>1l

C2-+C, C<3

Since no rules in the set of action rules lead to the correct derision

the training rule is inserted above the error-causing rule (rule 1) as

spe.ified in step 7 of the revised training procedure outline. In this

case the training rule is an hypothesized rule and is marked in some way

so the program can distinguish it from action rules which were not

hypothesized. The new set of rules is shown below. Here, when the

program subvector is (15, 12, 2) the desired decision, "add 2 to the

value of B " is made.

1. (A2, Bl, C2) + (*, b+2, *) hypothesized

2. (Al, *, Cl) = (*, *, c+3)

3, (*, *, *) -+ (random)

L. Al + A, A> 10

De A2 + A, A> 14

0. Bl +» B, B> 11

Te ClL-+C, C<15

8. C24 C, C<3

MODIFYING AN EXISTING HYPOTHESIZED RULE. Let the program subvector

at the time of the program's next move decision be (18, 13, 14) .

This parses to ((Al, A2), (Bl), (Cl)) which catches on rule @ and

. l
|

i
|

) - 1] |
i yn TEESE

T |

| leads to the decision of incrementing C by 3 . The opponent now :

make a decision, and the program logically deduces what its own |
decision should have been. Assume that the program deduces that a

good decision would have been "add 2 to the value of B ". The

training rule is then

(A2, Bl, Cl) + (*, b+2, *)

: and no bf rules are changed or created. Rule 1 which leads to the

correct decision and is above the error-causing rule cannot be modified

to catch the subvector by replacing symbolic values since K is too

small. However, this rule is an hypothesized one and can therefore be

modified by making variables irrelavant. In this case only the variable

C must be considered irrelevant, so rule 1 becomes

(A2, Bl, ¥*) + (¥, b+2,%) .

The new set of rules is shown below.

1. (a2, Bi, *)» (*, b+2, *) hypothesized

2. (Al, *, C1) » (*, *, c+3)

3. (*, *, ¥) + (random)

4, Al» A, A> 10

5. A2+ A, A> 14

6. Bl +B, B>1l

7 Cl-+C, C<15

Here when the program subvector is (18, 13, 14) the desired decision,

"add 2 to the value of B " is made.

COMBINING TRAINING AND HYPOTHESIS FORMATION. The system just described

85

| 8

can learn heuristics in a variety of ways. It can learn through i

(1) training alone: here the action rules are non-hypothesized, |
since they are all based on information obtained from a

: trainer, |
(2) hypothesis formation alone: here the action rules are all |

hypothesized, or |

(3) training and hypothesis formation combined: here the action |
rules are a mixture of hypothesized and non-hypothesized

rules. |
In any case the program starts with no heuristic definitions and just one

heuristic rule, (*, *, *) «+ (random) , which tells it to initially make !

decisions at random. Training and hypothesis formation may be combined |
by first giving the program a number of explicit training trials and |

then letting it learn through hypothesis formation during actual game |
play. In this situation the hypothesized action rules must be distinguished

from the non-hypothesized ones since the two types of rules require |

different generalization techniques. However, when an hypothesized rule |
is generalized to the extent of having only N variables remaining in its

left part it can be given the status of a non-hypothesized rule. i

Creation of Redundant Action Rules |
The use of hypothesized action rules increases the possibility of

accidentally creating redundant action rules. These are rules which can i
be removed from the list of action rules without in any way affecting

the decisions made by the system. i

TYPES OF REDUNDANCIES. Two types of redundancies will be considered: I

a6 |

I

®

(a) subordinate redundancy, where a rule in the ordered list |causes a rule below it to be redundant, and (b) superordinate redundancy, |

where a rule in the ordered list causes a rule above it to be redundant.

To illustrate, let rule i be above rule j in the list of action

rules. Then rule 1 makes rule Jj a subordinate redundant rule if i

Keeps Jj from ever catching a symbolic subvector, by itself catching all

generated subvectors that could otherwise be caught by j . This situation

occurs when each symbolic value in the left part of rule i defines a

] set which includes the set defined by the corresponding symbolic value

of rule , .

Conversely, rule 1 1s a superordinate redundant rule if every

symbolic subvector caught by 1 would be caught by another rule below

1 leading to the same decision as i if rule i were removed. This

situation occurs when each symbolic value in the left part of a lower |

rule | defines a set which includes the set defined by the correspond-

ing symbolic value of rule 1 , and rule 1 , rule J , and all rules

between 1 and J lead to the same decision.

EXAMPLE. As an example, consider the set of production rules shown

below, where the state vector contains overlapping variables A, B, and |

C , and 3 different decisions are denoted by d; > ds» and dy .

1. (Al, Bl, *) - dy

2. (A2, B2, C1) d,

3. (*, B2, C2) ~ a,

L., (*, Bl, *) - ds
Be AL» A, A> 5

6. A2 + A, A> 10

: 87

|

Te Bl+ B, B<9 a

8. B2 + B, B< 4

9. ClL+C, C>15 =

10. C2+C, C<7

Here rule 1 makes rule 2 a subordinate redundant rule, and rule 4 makes

rule > a superordinate redundant rule. As a consequence, the set of »

production rules shown below, with action rules 2 and 3 removed, is

exactly equivalent to the original set.

1. (Al, Bl, *) =» dy

2. (%, Bl, *) = dg
3. Al+ A, A> 5S

4. Bl+ B, B< 9

Note that the removal of action rules 2 and 3 made bf rules 6, 8, 9, and

10 superfluou. and thus led to their removal also.

REDUNDANCY CHECKS. In a learning system of the type proposed in this

section redundancy checks should be made periodically to keep the action

rule list from becoming too long. However, the danger in removing i

redundancies before learning is completed is that rules may be removed

which later would have been generalized upon and made non-redundant. .

Premature removal of this type will tend to slow down the learning process.

Thus both the length of the action rule list and the speed of convergence

of the learning system must be considered when determining how often

redundancy checks should be made.

88 }

3 N .

N

- CHAPTER 4

| IMPLICATIONS FOR S-R THEORIES OF LEARNING

4.1. INTRODUCTION

In psychology, learning theories fall into two major categories,

stimulus-response (S-R) theories and cognitive theories (Hilgard and

Bower, 1966). The stimulus response theories view learning as the

acquisition of stimulus-response chains or "habits". Organisms are

assumed to merely learn responses, and to resort to trial and error when

l confronted with a novel problem for which no response has been learned.

Cognitive theories on the other hand, view learning as the acquisition

of memories or expectations in the form of cognitive structures.

Organisms are assumed to learn facts, and to employ "insight" based on

the understanding of the essential relationships involved when .onfronted

with a novel problem.

In both categories, model building has proved to be a useful

technique for describing data and predicting experimental results.

Mathematical models of learning (Bush and Mosteller, 1955; Estes, 1959)

have been constructed which are simple, concise descriptions of quanti-

tative data, many capable of yielding quite accurate numerical pre-

dictions. As Bower (1966) points out, most of the theoretical work in

mathematical learning theory has been in the area of "stimulus-response

associationism", although cognitive theories can be and often are

expressed in mathematical form.

More recently, information-processing models of human behavior

and intelligence have emerged (Feigenbaum, 19593; Feldman, 1959; Newell

89

and Simon, 1961; Hunt, 1962; Simon and Kotovsky, 1963; Reitman, 1965). .

This type of model, in the form of a computer program, can be regarded

as a theory of the psychological processes underlying the behavior being ”

] simulated. The information-processing model is a precise, unambiguous ‘

statement of the theory and is well suited for generating explicit

predictions. .

Up to now S-R theories have been used to explain many types of .

simple learning, but not processes as complex as strategy or heuristic

learning. The information-processing system described in Chapter 2 and

3 suggests a number of approaches to the problem of constructing S-R

theories or models of human strategy learning in geame-playing or problem- -

solving environments. Some of the possible approaches to this problem

will now be examined and evaluated.

90 -

-

»

3 a 2s :

i 4.2. AN S-R INTERPRETATION OF PRODUCTION RULES

i A production rule defining the change to make in the state vector

A € of a program has the form:

, (A1, BL, C1) + (£,(8), £,(€), £5(€)) ’
where Al, Bl, and C1 are symbolic representations of the current values

| of the subvector, and £,(€), f(€) and f, (€) are functions or arith-

t I metic expressions defining the new values for the subvector. It will
be recalled that the subvector is the set of program variables which

| may influence or be affected by the decisions of the program. Another
way to interpret the subvector is to consider it a description of a

| particular game situation, where each element of the subvector is a
value of a pertinent attribute of the situation. The production rule

shown above can thus be thought of as a situation-action pair

| 5+ A

which effectively means "in situation S take action A". Under this

interpretation, strategy learning simply consists of the acquisition

| of S-A pairs.

S-R Models of Strategy Learning

Models of human strategy learning in a game-playing environment

| will now be proposed. These models learn by being presented with a

series of game situations, the corresponding actions to take in each

situation, and the reason why each action is taken. A situaticn des-

cription consists of a list of all pertinent aspects of the situation,

each aspect being called a situation (or stimulus) element.

91

J

| l

| CONSTRAINTS. All the models under consideration are based on certain f
constraints about how strategy learning can actually take place. The

constraints thus postulated are the following:

l. Association: the stimulus elements of a situation become

associated with or connected to the correct action to take in

that situation.

2. One-trial learning: the stimulus elements are connected com-

pletely to an action after one training trial.

3. Dependent elements: a situation description is a pattern of

dependent stimulus elements, i.e., the pattern, rather than

the individual elements, becomes connected to the action.

4. Interference: the only way that forgetting can occur is through

interterence, that is, by replacing the action part, A , of

an S-A connection with a new action A' .

5. Consistent training: the situation-action pairs presented to

the model will not contain conflicting information, such as

the same situation paired with two or more different actions.

Th2 effect of this constraint is that interference (and hence

forgetting) will not occur.

Association, one-trial learning, and interference arc postulated

because they provide the models with a basic structure that is

relatively simple. Dependent elements must be postulated, since in

a game-playing situation the stimulus elements are quite highly inter-

dependent. Consistent training is postulated so that complications

due to forgetting may be neglected.

92 -

I

. .

I ACTUAL ELEMENTS. In a game-playing situation the pattern of stimulus

i elements that describes the situation at a particular time is composed
of the values of the pertinent attributes of the situation. It is

r | assumed that these values can be represented as integers. For example,
consider a game with attributes H, P, and B , each having values

| from 1 to 10 . Then a typical situation description (pattern of

| stimulus elements) might be 2,9,5 meaning that this situation is
defined by HH having a value of 2, P a value of 9, and B a

| value of 5 . An asterisk as an attribute value indicates that the

attribute nioy take on any value. Hence 6,%,4 represents a class of

| | situations where H has the value 6 , P any value from 1 to 10 ,

i and B the value 4 . These integer stimulus elements are called
"actual" elements.

I ABSTRACT ELEMENTS. Another type of element to be considered is the

| b symbolic stimulus element, such as hl, pl , or bl , where each
| symbol represents any element from a particular subset of integers.

| Thus hl,pl,bl is a description of a class of situations. These
symbolic stimulus elements are called "abstract" elements and are

i defined by partitioning the ranges of the attributes either into

I mutually exclusive und exhaustive subsets or into overlapping subsets.
An example of the former type of partitioning for H is "hl: H < 6

l and h2: H> 6". An example of the latter type is "hl: H< 7 and
h2: H> 3",

|
| STORAGE. If a pattern of stimulus elements S is presented to sa

| model and the model fails to predict the correct action A , the model

|

is told the correct action, and the §S-A ccnnection is stored in sa .

list. The storage process may consist of simply placing the new :

connection at the end of the previously learned connection list. If =

exclusive abstract elements are used, storage may consist of also

growing a decision tree from the previously learned S-A connections. LL

Furthermore, when overlapping abstract elements are present, storage .

may consist of the following steps.

(1) The definitions of the abstract elements are changed such }

that the new S-A connection is effectively placed in the

previously learned connection list.

(2) If step (1) is not possible, the new S-A connection is

added to the previously learned list by placing it immediately

above the connection which led to the last error.

RETRIEVAL. When a model is given a situation description S , it

must predict what action to take. It is assumed that this prediction

is based in some way on the result of a retrieval process. The most

elementary process consists of matching S against every situation |

description stored and if a perfect match is found retrieving the

associated action. If no match is found an action is picked at random .

for output.

A more complicated process consists of comparing S to every :

situation description stored and choosing as the prediction the action

associated with the description that is closest to S . Here closeness

is defined as the distance between two descriptions, where a description, A

for n attributes, is thought of as a point in n-dimensional space.

Sh

®

i
%

| A third possible process consists of filtering S down a decision ut

| tree or discrimination net grown from previously learned S-A connections. i
The action associated with the terminal node finally reached by S is |

1 then used as the prediction.

1 DEGREES OF FTEEDOM. The preceding remarks concerning methods of
representation, storage, and retrieval for the models will now be

i summarized. The models are permitted the following degrees of freedom:
l. Situation Representation

I a. Actual Elements (example: 9,4,7)

1 b. Abstract Elements (example: hl,p2,b3)
(1) Mutually exclusive definitions (example: hl: H< 5,

i h2: H> 5)
(2) Overlapping definitions (example: hl: H> 7,

| he: H< 15)

1 2. Storage Mechanism (storage of an S-A connection)
a. Simple Placement: the connection is added to the end

| of the connection list already learned.
b. Induction: a decision tree is grown based on the current

i list of learned §S-A connections.

i c. Complex Placement: definitions of abstract elements are
changed, if possible, to effectively place the connection

| in the learned list. Otherwise the connection is added
just above the connection that led to the last error.

| 3, Retrieval Mechanism (retrieval of an A when given an 8)
a. Simple Search: the S is compared to all descriptions

J in the learned connection list, and if an exact match is |
| os

|

found the corresponding A is retrieved, otherwise an

A 1s picked at random.

b. Stimulus Generalization: the S is compared to all)

descriptions in the learned connection list, and for

the best match (defined by closeness in n-dimensional

space) the corresponding A is used.

c. Tree-sorting: the S is sorted down a decision tree to

a terminal node, and the A at that node is used.

FEASIBLE MODELS. Allowing the preceding degrees of freedom should

permit the construction of 3 x 3 x 3 or 27 different models. Actually

only 10 of these models are feasible due to certair incompatibilities

which exist between the proposed methods of representation, storage

and retrieval. In the diagram shown below each square represents one

of the 27 hypothetical models. The X's indicate which of these

are the 10 feasible models.

96 .

it

3 - TL

[|

i Actual Abstract AbstractElements Elements Elements

(exclusive (overlapping

) definitions) definitions)
Simple

i Placement X
Induction Simple

Search

| Complex
Placement

i Simple

: Stimulus

Complex X
Placement

Simple

i Placement

| Induction ox " Tree-sorting
Complex

| Placement
Figure 4-1,

I Four of these models, indicated by the circles in Figure 4-1, will be

I described in this chapter and their operation illustrated by the train-
ing sequence given in Figure 4-2,

| TRAINING, Treining consists of supplying the models with training
i information after each error. This training information consists of

(1) the correct decision, (2) the elements relevant to making the correct

l decision, and (3) the reason why the decision is being advocated, express-
ed in terms of an evaluation of each relevant element. If a model uses

| y

FT

actual elements, item (3) is not required since there are no definitions i

to learn. If a model uses abstract elements, item (3) is necessary,

end the model is assumed to learn the definitions of these elements using |

the procedure outlined in section 3.2. Figure 4-2 gives the definitions .

the models would learn if this procedure were applied to the training

sequence shown. Model operation will be illustrated as though the models

are given these definitions, in order to simplify the examples presented.

However, in an actual experimental design the models would be required

to learn the definitions.

o8 .

® - ’

|
|

| Range of Actual Values: H(1-50) P(1-60) B(1-10)
Mutually Exclusive

| Definitions: h1(H>25) pl(P>9) b1(B>T7)
h2(10<H<25) p2(F9) b2(B<T7)

| h3 (H<10)
Overlapping Definitions: hl(H<16) pl(P>20) bl(B<7)

| h2(H<5) p2(<9) b2(B>9)
h3 (1>36)

i Training Sequence:
situation correct relevant

1 description decision elements reason
1. 15,21,6 A3 H, P, B H is "n2" or "small", P is "pl"

| or "large", B is "b2" or "small"2. L,28,3 Ab H H is "h3" or "small"

3, 13,8,4 A2 H, P, B H is "h2" or "small", P is "p2"

i or "small", B is "b2" or "small"
4, 27,4,9 Al H,P H is "hl" or "large", P is ''p2"

or "small"

[3h 12,9, 10 AL H,B H is "h3" or "small", B is "bl"
or "large"

| 6. 1,42,17 Al H H is "h3" or "small"
7. 12,5,5 A2 H,P,B H is "h2" or "small", P is "p2"

L or "small", B is "b2" or "small"
Figure 4-2. Training sequence and definitions

to illustrate model operation.

99

|

A Simple Model ’

The first model to be described is defined as having the following |
characteristics:

(1) actual elements, »

(2) simple placement,

(3) simple search.

This is called a Simple Model and is the most elementary one which can

be constructed within the framework Just proposed. Its operation will

be illustrated for the first five trials of the training sequence shown

in Figure k4-2.

PREDICTION. When the model is given a situation description S and is

asked to predict A 1t matches S against all left sides of the

connections in the learned list going from top to bottom until an

exact match is found. The right side of the connection whose left side |
exactly matches S 1s then used as the prediction. If the prediction

is wrong, a new connection, formed from S and the correct action, is

| added to the bottom of the list of learned connections.

The model is assumed to initially consist of a single S-A

connection of the form

y% {action picked at random}

which catches all situation descriptions and leads to an action being

picked at random from the set of possible actions. Since the model

learns through training what actions are possible, on the first trial

the known set of possible actions is empty and no prediction is made.

100 1
|

| |
!

) -

| OPERATION. The operation of the Simple model for the first five training |
trials is depicted below.

I Learned S-AS Connections Predicted A Correct A

| 1. 15,21,6 *,%x + {} none A>
2, 4,28,3% 15,21,6 + A3 A3 Al

* % % + {A3] (from last

| connection)
| 3. 13,8,k4 15,21,6 = A3 Aly A2
' | L%* + Al (from last| * % % {a3 AL} connection)

L. 37,4,9 15,21,6 = A3 A3 Al
Lh, %,% = AL (from last

| 13,8,4 + A2 connection)

! *, 0% % - {A2, A3, AL}5. 12,9,10 15,21,6 = A3 | A2 Ak
Lh * % 4 AL (from last

| 13,8,4 = A2 connection)3T,4,% = AL
*, kk {AL,A2,A3,Al

| EVALUATION OF THE MODEL. Because of the wide range of values of the

| { three attributes, the probability of finding an exact match for S
I among the learned connections is quite small, especially if the situation

| descriptions are chosen at random. Hence the model does little more |

| than make a random guess when presented with an A and asked for a
prediction. This model is clearly too simple to serve as a useful theory

| of human strategy learning.

! A Stimulus Generalization Model

The second model to be described is called the Stimulus Generaliza-

| tion model and is defined as having the following characteristics:

|

g

|

(1) actual elements, |
, (2) simple placement,

-

(3) stimulus generalization.

| The operation of this model will be illustrated for the entire training

sequence given in Figure 4 2,

PREDICTION. The model makes a prediction, when given a situation .

description S , be comparing S to every situation description stored

in the learned connection list and choosing as the prediction the action

associated with the description that comes closest to matching §S .

Closeness is defined as the distance between two descriptions when each

description, for n attributes, is interpreted as a point in n-dimensional

space. However, descriptions containing one or more *'s must be thought

of as hyperplanes in the n-dimensional space. For example, if n=>

then 15,21,6 represents a point, 15,%,6 a line, and 15,%,% a

plane in 3-dimensional space. If the prediction made by the model is

wrong, a new connection composed of S and the correct action is added

to the end of the learned connection list. No prediction is r.le on

the first trial since at this point the connection list is empty.

OPERATION. The operation of the Stimulus Generalization model for the

training sequence of Figure 4-2 is shown below.

102 -

3 - 7 ~

! Learned Distance Between
S S-A Connections S and Connection Predicted A Correct A

| 1. 15,21,6 none none none A3
2. L4,08,3 15,21,6 = A3 13.4 A> Al

| 3. 13,8,4 15,21,6 + A% 13.3 Al A2
L, %¥ % 2 Al 9.0

I 4. 37,L,9 15,21,6 + A3 28.0 A2 Al
13,8,4 = A2 24.8

| 5. 12,9,10 15,21,6 = A3 15.0 A2 Al
L, *,% <9 Al 8.0
13,8,4 =< A2 6.2

i 37,4 ,% + Al 25.5
6. 1,k2,17 15,21,6 = A3 27.6 Al Ak

i Lh, * % + Ab 3.0
37,4,% + Al 52.3

i 12,%,10 + Ak 15.1
T. 12,5,5 15,21,6 * A3 16.3 A2 A2

L, *,% + Al 8.0

| 13,8,4 = A2 343
37,4,% = Al 25.0

i 12,%,10 + Al 5.0
| The model always chooses an A such that the distance between S

and the left side of the connection containing A is minimized. In

I trial 5, for instance, action A2 is predicted by the model because the
distance d between S (12,9,10) and the situation description of the

| third connection (13,8,4) is the smallest. This calculation is

| illustrated below.
2 2 2

| a =\[(x)=x,)" + (y;-v,)" + (z,-2))

) A\/ (12-13)2 + (9-8)2 + (10-4)2 = 6.2
103

}

A "#" is considered to be an exact match for any value when the above :

formula is used to calculate 4d .

EVALUATION OF THE MODEL. This model is clearly superior to the Simple &

model since the closest match to S is always found, and thus the model

need not resort to random predictions. However, this model does have

its weak points. First, the type of comparison procedure suggested for

retrieval is quite involved, and it is difficult to imagine humans .

actually performing such mathematically-oriented calculations when placed

in such a training situation. Second, in the early stages of training

virtually every training trial adds a new S-A connection to the learned

list. Since the input S must always be compared with every connection

on this list, the time needed to retrieve a response (i.c., the latency) :

sharvly increases as the number of reinforced trials increases.

An Induction Model

The third model to be described is the Induction model, which is

| defined as having the following characteristics:

(1) abstract elements with mutually exclusive definitions,

(2) induction,

(3) tree-sorting.

The training sequence and definitions in Figure 4-2 will be used to

illustrate the operation of this model.

PREDICTION. The Induction model makes a prediction by sorting the given

S to a terminal node in a decision tree previously grown using the

current list of learned S-A connections. The action associated with

that terminal node is used as the prediction. If the prediction is FP

104 l

I

) - :

! |wrong, the connection formed by S and the correct action is added to

i the learned S-A connection list, and a new tree is grown.
The generalization technique used to grow the tree is an extension

f of the technique used by Hunt (1962,1966) for growing concept trees,
that is, trees for distinguishing between positive and negative instances

[of a concept. The decision tree partitions the universe of situations

I into m sets, one for each possible action that may be taken. Each
situation element is considered to be an attribute of the situation,

i and the tests made at the nodes of the decision tree are tests on the
possible values of these attributes. The tree-growing technique is

| summarized in Appendix A, Part I.

i OPERATION. The operation of the Induction model for the training sequence
in Figure 4-2 will now be illustrated. No prediction is mede on the

| first trial since at this point no decision tree exists.

i Learned Tree used to
S S-A Connections produce a prediction Predicted A Correct A

h2,pl,b2 none none none A3

2. L4,28,5 h2,pl,b2+ AB a3 Al

} h%,pl,b2

h2,p2,b2 h3,%,% = Al

I 105
e¢,

{

|
{ Learned Tree used to or

S S=-A Connections produce a prediction Predicted A Correct A

| bh. 37,4,9 h2,pl,b2 + A3 (157) :hl,p2,bl h3,*,%* = AL y NN A2 Al .

h2,p2,b2 + A2 p17 a
+ - -_—n

"|

:

o

5. 12,9,10 h2,pl,b2 * A3 A2 Al |

: h2,p2,b1 h3,%,% = AL ih2, p2,b2 + A2 (va)
hl,p2,* = Al + i

2 (mo

I

6. 1,42,17 h2,pl,b2 = A3 (mn) AL Al 1
h2, p2,t2 + A2 (ver, I
hl, p2,* + Al + —

h2,%,bl =» Ak 7

e :
+ —

ti |+ -

106 .

| Learned Tree used to

S-A Connections roduce a prediction PredictedA CorrectA f

| 7. 12,5,5 h2,pl,b2 + A A2 A2 7
| h2,p2,b2 h3,*,%* = AL N (m2) _ |

| h2,p2,b2 + A2
hl,p2,% += Al (na)

| h2,%,b1 = A4 + —

l ss
+ -—

©
| | ‘ - |

] |

I Note that a completely new tree must be grown each time another S-A

| connection is added to the learned list. Only in trial 7 above was a
new tree unnecessary, since the correct prediction was made in trial

| 6 and consequently no S-A connection was added to the list. |

| EVALUATION OF THE MODEL. The Induction model is possibly superior to
the models previously presented sir-= it does not have to resort to

i random predictions and the retrieval mechanism is somewhat more satisfying
as an explanation of human cognition. Also, this mhdel does not lead

! to a sharp increase in response retrieval time when the number of

| reinforced training trials increases, as does the Stimulus Generalization
model. This is true because (a) the response retrieval time depends

| entirely on the time needed to sort the §S down the tree, and this

| 107

sorting time increases very slowly as the size of the tree increases; :

the retrieval time doesn't depend on the time needed to grow the tree

since tree growing occurs at the end of a trial, as part of the storage ’
process, and (b) fewer S-A ccanections are stored during training to J

a criterion of say x correct trials in a row, and fewer connections ;

means faster retrieval. [
Although this model is possibly superior to the others, it does .

have its deficiencies. First, the decision tree that is grown, and hence |

the action retrieved, is highly dependent on the algorithm used to deter-

mine which attribute value is to be chosen as a test at a node, and it ah

is not clear what the best algorithm is. However, this dependency can |
be turned into a virtue if one can see how to modify the algorithm to |
improve the performance of tne model. Second, the model must be presented

with completely consistent training information in order to function

| properly. If during training it is given information implying that more |

than one action is possible in a certain situation, the tree-generating

i nechanism will generate some branches which never terminate. For example, |
if the model is told the S-A connections hl,pl,*#* Al , and

hl,*,b2 + A2 are both valid it will growa non-terminating branch, |
This feature is a deficiency because humans are able to learn strategies |

even when presented with inconsistent information.

A Complex-placement Model |
The last model to be described is the Complex-placement model, which ;

is defined as having the following characteristics:

(1) abstract elements with overlapping definitions,

108 :

| o

I

i (2) complex placement,
i (3) simple retrieval.

The operation of this model will be illustrated for the training

[sequence and definitions given in Figure 4-2.

I PREDICTION. The Complex-placement model makes a prediction by comparing
the given S to all situation descriptions in the learned connection

| list, going from top to bottom, and if an exact match is found the

J corresponding A is retrieved. If & match is not found, an action is| selected at random from the known set of possible actions. When an

| incorrect action is retrieved the abstract definitions are changed, if
possible, to effectively place the connection formed by S and the

| correct A in the existing list. Otherwise this new connection is added

| to the existing ordered connection list immediately above the §S-A
connection that led to the previous error. Initially, the model consists

| of a single S-A connection which catches all S's and leads to an action
being picked at random, as in the Simple model.

a
OPERATION. The operation ot the Complex-placement model for the training

| sequence of Figure 4-2 is shown below.

S Learned S-A Connections Predicted A Correct A

1. 15,21,6 ¥ * % a [] none A3

| hl, pl,bl
2. 4,28,3 hl, pl,bl = A? A3 Ak

hl-h2,pl,bl *,%,% + {a3} (from the first
connection)

109

_

S Learned S-A Connections Predicted A Correct A }

3. 13,8,4 h2,*,% » Ah Al A2

hl, p2,bl hl,pl,bl + A3 (from last
connecti. * * * + {AZ , AL} Oo on)

hb. 37,4,9 ho,*,% + Al A2 Al

h3,p2,b hl,pl,bl + A3 (from the last

hl,p2,bl + A2 connection) .
ss

*6% 4 {A2,A3,AL)

5. 12,9,10 h2,*,% + AL A3 Aly

hl, p,b2 hl, pl,bl = A3 (from last

hl,p2,bl + A? connection)
h3,p2,% -+ Al

*6% 4 {A1,A2,A3,Al}

6. 1,42,17 h2,%*,% + Ab Al Al

hl-h2,pl,p2 hl,pl,bl + A3 (from first

hl,p2,bl + A2 connection)
h3,p2,% + Al

hl, *,b2 + Ab

*,%,% 4 {AL,A2,A7,AL}

7. 12,5,5 h2,*,% + Ak A2 A2

hl, p2,bl hl,pl,bl + A3 (from third

hl,p2,bl+ A2 connection)
h3,p2,% = Al

hl,*,b2 = Al

*,%,% + [A1,A2,A3,Ab)

The actual situation descriptions, such as 4,28,3 in trial 2, are

converted to abstract situation descriptions in a manner analogous to the

parsing step of section 2.2. Thus 4,28,3 becomes hl-h2,pl,bl, meaning

that U4 is a member of set hl snd set h2 , 28 is a member of set

pl , and 3 is a member of set Dbl . In trial 5 the actual element

110

LJ

3 - ‘ |

E

{ 9 is a member of no set and is consequently represented by the abstract |
i element p . |

In the training trials just described no S-A connections were

{ placed in the connection list by merely modifying definitions because
no connection already in the list had the same form as the ones being

l added to the list. A connection in the list has the same form as one
being added to the list only if (1) their A's are identical, (2) for

i each #* in the S of the connection being added there is a corresponding
’ | *¥ in the S of the connection elready in the list, and (3) their

corresponding abstract elements both use the same logical operator.

i For example, consider the following S-A connections.

| (a) hl,*,bl = Al hl: H< 12
(b) %l,*,b2 + Al h2: H< 6

| where bl: B> 7
(c) hl,*,* = A2 b2: B< 15

) (d) h2,*,b3 = Al b3: B> 2
Here (a) and (b) are not of the same form because of restriction (3),

j (a) and (c) are not of the same form because of restriction (1), and

| (a) and (d) are of the same form.
The process of placing a connection in the list by modifying

| definitions is described below for the learning of the connection
"18,24,3 + A3 because 18 is small, 24 is large, and 3 is small".

i
S Learned S5-A Connections PredictedA Correct A

I 18,24,3 h2,*,% = AL Al A3
= h,pl,bl hl,pl,bl * A3 (from last

| hl,p2,bl + A connection)

}

I

S Learned S-A Connections PredictedA Correct A :

h3,p2,% = Al

hl,* b2 - Ab

* % % a {AlA2,A3,Al}

It is assumed that the wrong action was predicted using the last connec-

tion is the above list, hence the model must add the connection

hl, pl,bl + A3 to the list. Here hl is defined by the set "H< 19" ,

and this is learned when the model is told that 18 is "small". The

model searches all connections above the error-causing one to see if

any have the same form as hl,pl,bl % A3 . In the above example, ¢ vy

the second connection, hl,pl,bl #% A3 , has this form. Consequently,

the definition of hl is changed to include 18 , thus its new definition

is hl: H< 19 . Now when 18,24,3 is given to the model it predicts

the correct action, A3 .

EVALUATION OF THE MODEL. The Complex-placement model, like the Induction

model, offers a more satisfying explanation of human cognition than do

] the first two models described. Also, for this model, the response

retrieval time does not sharply increase as the number of reinforced

training trials increases. This is because (a) the retrieval process

does not always require looking at every connection in the list, and

(b) a new connection is not always added to the connection list when

an error is made. Moreover, the Complex-placement model does not require

consistent training trials, as does the Induction model. If the model

is told that hl,pl,* + Al is a valid connection, and then that

hl,*,b2+ A2 is a valid connection, it has been given inconsistent

information, since in situation hl,pl,b2 two different actions should

112

) -

] |

I be taken. Nonetheless, this information is incorporated into the

I ordered connection list. If the second connection is placed in the
list because the first connection led to an error, the list has the

} following form:

| hl,*,b2 + A2
hl,pl,*= Al

| * % % 4 {Al AZ}
: But now because of the hierarchical arrangement of the connections in

the list the information is no longer inconsistent. The list in effect

| says to take action Al if H is hl, P is pl and B is anything
but b2 , and to take action A2 if H is hl , P is anything, and

| B is b2 .
: The Complex-placement model does, however, have at least one short-

I coming. In the early stages of training it often resorts to making
| predictions at random, since it is difficult to find an exact match

| when the connection list is short. This might have a detrimental effect

| on the degree of correlation obtainable between the predictions made
by the model and the predictions made by human subjects.

I

I

113

|

[a ES mt —~

l

L.3. PROPOSED EXPERIMENTAL DESIGNS]
|

In the previous section a mumber of 8-R theories or models of]
human strategy learning were presented. The validity of these models |
can be tested by comparing them with human subjects in a game-playing i

or problem-solving environment.

Random Selection Design

An experimental paradigm for testing these models is outlined

below. It is patterned after a series of experiments performed by Hunt, |

Marin, and Stone (1966) which are based on a random selection design.

l. Choose a game-playing or problem-solving environment. For this

enviromment define (a) a set of attributes with numerical values,

sucht that a situation description consists of a list of the values |
of these attributes, (b) a set of actions which can be taken, and]

(c) a set of consistent strategies in the form of situation-action |
pairs with exclusive abstract values, which partitions the universe |

of possible situations into n subsets, one for each possible - |
action. “

2. Pick a group of situation descriptions at random from the universe | |
of possible situations. |

3. Present these situation descriptions to the subjects in a serial | |
fashion, and for each presentation or trial ask the subjects to :

predict the correct action. After each subject makes a prediccion

give him the correct action, and the reason why the action is correct, |
expressed as an evaluation of the relevant attributes. Present

this information visually, such that on subsequent trials the subject |
|]

114] |
l

|

) N a

has available a cumulative visual record of the results of all

previous trials.

4. Compare the predictions of the models with the predictions of the

human subjects, when the models are given the situation descriptions

from step 2, presented in the same order as they were presented

to the subjects.

TRAINING INFORMATION. The information given to the subjects after each

prediction can be obtained in a variety of ways. One way is to separately

analyze each situation description from step 2 and decide, on the basis

of the particular environment being represented, what action should be

taken and why. The danger here is the possibility of inadvertently

giving the subjects inconsistent information.

A better way to obtain the desired information is to use the set

of S-A pairs defined in step 1 to grow a decision tree, using the

generaiization technique described for the Induction model. Each

| situation description, S , of step 2 is then sorted down the tree,

and the correct action is assumed to be the one contained in the terminal

node reached by S . As this S is sorted down the tree it passes

| through a number of test nodes which define its path through the tree.

| All attributes which are tested by these path-defining nodes are consid-
ered to be attributes relevant to choosing the correct action for §S .

| The evaluation of these relevant attributes (or the reason why the action
is taken) is simply the specification of the categories they fall into.

| The available categories are those defined by the exclusive definitions |
used to specify the abstract values needed for the set of S-A pairs

defined in step 1.

| 115

l

TRAINING TRIALS. The training trials used in section 4.2 to describe the

operation of the models were obtained by the method just outlined. The

environment chosen is shown in Figure 4-3, and the tree grown from the]

S-A pairs in Figure 4-3 is shown in Figure A-1. To see how the training A

trials were constructed, consider the situation description 12,9,10 y
used in the training sequence of Figure 4-2. This description becomes ’

h2,p2,bl when expressed in terms of the abstract values defined in -

Figure 4-3, thus h2,p2,bl is sorted down the tree of Figure A-l. The :
terminal ncde reached contains Al , so the correct action is assumed to !

be A4 . The path that h2,p2,bl takes through the tree is defined

by the test nodes (2) (2) and , thus attributes H y
and B are assumed relevant. The reason A4 is correct is therefore 1
because H is an h2 , and B is a bl . Agame-playing interpretation

of the environment defined in Figure 4-3 is presented in Appendix A, |
part II. gt

Rather than giving the subjects nondescriptive category names like |

hl , h2 , and h3 they are given descriptive names which suggest how to]
I order the categories, like large, medium, and smell. Thus for trial 1 |

in Figure 4-2 the correct action is A3 because "H is medium, P I
is large, and B is small". If the models are to be compared to human |

subjects they must be given the training information in the same form |
used for the subjects. Consequently, the Induction model and the !

Complex-placement mod=l (the models which learn the definitions of the 2

abstract values) are given ordering information about the categories

used to describe the attribute values, e.g., that "large" > "medium">

"small". a

116 .

’"

) - oC

b

I :

s Attributes: H P BRange of Values: 1-50 1-60 1-10

| Abstract Values: h1(1>25) pl(P>9) p1(B>7)h2(10<H<25) p2(F<9) b2(BT)

| h3 (H<10)

! Universe of Situations:

I Al)py

J /
} Universe consists of 50X60X10 or 30,000 situations

Heuristics: hl,*,b2 — Al

| hl,p2,* — Al
h2,p2,b2 —& A2

i hl, pl,bl —p AZ
h2,pl,b2 —p AZ

| h2,*,bl —= Al
h3,%*,% —b Al

Figure 4-3. An environment for testing models

I of humal. strategy learning.

| 117

r

|

I
The Induction model can then use the ordering information to o

translate "large" into hl , "medium" into h2 , and "small" into h3

when it is told why a particular action is correct, and then proceed "

as described in section 4.2. The Complex-placement model must use the i

ordering information to translate any given category into either "large"

or "small". It can accomplish this by interpreting all categories above ‘

the middle one as "large", all below the middle one as "small", and the ”

middle one itself (if there is one) as "small". Thus it would interpret

"large", "medium", and "small" as "large", "small", and "small" when

told why a particular action is correct, and proceed as described in

section 4.2.

Interactive Selection Design

Another experimental design which might prove interesting is cne

where interactive selection (Hunt, Marin, and Stone, 1966) is used in

step 2 rather than random selection. Here the subject examines the

entire universe of situation descriptions and decides for himself which

| situation description to consider for each trial. The models must like-

wise decide which situation description to pick for each trial, and an

S should be picked which provides a good test of the training information

received when the last error was made.

For the Induction model this requirement is satisfied if it 1s

required to pick an S that sorts to the same terminal node as the S

part of the S-A connection last added to the list from which the tree

was grown. The requirement is satisfied for the Complex-placement model

if it is required to pick an S which catches on or below the last S-A

connection added to the list. It is difficult to satisfy this requirement
| -

118 A

|

" " g : .

for the Simple and Stimulus Generalization models, consequently, they ;

! would not be included in an experiment based on interactive selection.

{

ft

b

119 |
— Sl

bd | Ada 4

uh oNFN50 y ts 1 ASRS ea maT SIGHTHAO. areas rere ee ee —————

x =
i 1 A SPECIFIC APPLICATION |

I
Bi 9.1 INTRODUCTION |

i In order to demonstrate the feasibility of the representetion and |

| 4 manipulation techniques presented in chapters 2 and 3 a full scale
application in the area of game playing will now be described. The

| i game chosen for this task is basic draw poker, a game in which the |
players do not have access to all the existing game information. In

| contrast, games like chess, checkers, go, and buckgammon are designed

| | so that each player has available the total game information at each
' decision point; these are called games of perfect information (Rapport,

i 1966).
To date, research in heuristic game playing has been concerned

| | | predominately with games of perfect information, because these games 1
can usually be represented by game trees in which very effective search

} and prediction procedures (cuch as minimaxing) are applicable. Mini-

| i maxing cannot be used with most games of imperfect information, as A
there is not enough information available to construct a game trec in |

| i advance. The representation and manipulation techniques described |
earlier are an effective approach to implementing decision-making and

| | learning in an imperfect information environment.
| Game playing is studied not merely to develop programs which are

good at playing games, but more to develop programmable methods and

! techniques for solving practical problems. Games Of imperfect information :
are useful to study because they are realistic abstractions of the complex |

1

I { 120

L

BLANK PAGE

LL PHA Be SE
| |H

{3

problems encountered in daily life, moreso than games of perfect infor- “s

mation. For example, chuss is actually & game of war, where each side i |
tries to defeat the other by capturing the opposing army and imprisoning k

the king. In actual war it is seldom the case that one side knows the)
exact location, strength, and capabilities of all units of the opposing is

army, as one does in the gane of chess. 4

A similar analogy can be drawn between games of imperfect information ul

and the struggle which occurs between businesses engaged in marketing =

competitive products. Again, each side is faced with the problem of i
making crucial decisions without having available the information needed

for accurately predicting what the counter-move by the opposition will be. 1

In this chapter a detailed analysis of the heuristics for the bet 1
| decision in draw poker will be presented together with their representation

as production rules and an illustration of their use in an actual computer H
program. Next, the process of training will be illustrated by showing

| how the program can be trained to play draw poker, using either a human 1
i or a program as a trainer. Finally, it will be shown how the program can Iq

| learn to play poker without explicit training, that is, by gaining =

experience through actual game play. ¥

| y

.e

| .

121 i

——_—

8
5.2 HEURISTICS FOR DRAW POKER

|
The game under consideration is a standard version of five-cerd

| draw poker, in which up to three cards may Le replaced and no cards
| are wild. (See Appendix B, Part I for a detailed definition of the

J | game.) The bet decision made by the computer program which plays

| | this game is based on a number of interrelated heuristics. An informal| description of these heuristics is given in Appendix B, Part II.

& i || State Vector Description

; i The state vector needed to adequately describe the bet decision
heuristics for this game has the form:

]
| ¢ = (VDHAND,POT, LASTBET, BLUFFO, POTBET, ORP, OSTYLE, OH, 0B, CS, BO, LAP,

| SB,MB, BB, BBS, BBL, OAVGBET, OTBET , OBLUFFS , OCORREL, OD) ,

] where the dynamic variables are VDHAND, POT, LASTBET,BLUFFO,POTBET,ORP,
and CSTYLE , the function variables are OH,0B,CS,BO,LAP,SB,MB,BB,BBS,

| 1 and BBL , and the bookkeeping variables are OAVGRET,CTBET,OBLUFFS,OCORREL,
| and OD . The definitions of these variables and the definitions of the

1 symbolic values of variable VDHAND are presented in Figure 5-1.
The range of values for BLUFFO,0STYLE,OH,0B,CS,BO, and OCORREL is

the set of positive and negative integers, where a large or positive

i value indicates a high probability that the opponent can be bluffed, the
opponent is conservative, etc. VDHAND ranges from 1 for one-or-a-kind

1 to 600,000 for a royal flush, LASTBET ranges from 1 to 20 , and ORP

1 ranges from 0 to 3 . VDHAND is an exclusive variable, while the other
- dynamic variables are of the cverlapping type. It should be roted that

1
122

1
:

—

vin dle “ :

4a A A EE SN A ES A ECESAARC am i i... —|I 4

in two instunces a variable serves a dual role, being both a function t

| | and a dynamic variable, i.e., BO and BLUFFO both stand for the same |+
| variable, and CS and OSTYLE both stand for the same variable. .

- The subvector for this game is composed of the dynamic variables Ll

| of the state vector and thus has the form: 1
} 4

8 = (VDHAND,POT,LASTBET,BLUFFO,POTBET,ORP,OSTYLE) . -

“i

For convenience the dynamic variables will be abbreviated so that the a

subvector can be written: -i

p = (H, P, B, BFO, PB, R, OCS) . fl
’

ve

boa

-

123

L

a i rip

| .

: x 4 alt i | 42

TE a vr ES Sry ara a —— ———————— a recATER . |
i |

| VDHAND : the value of your hand
rCT: the amount of money in the pot

| LASTBET: the amount of money last bet
BLUFFJO: a measure of the probability that the opponent can be bluffed

| POTBET : the ratio of the money in the pot to the amount last bet ¥
ORP: the number of cards replaced by the opponent d

| OSTYLE: a measure of conservative style by the opponent |
Oi: the expected value of the opponent's hand

| OB: a measure of the probarility that the opronent is bluffing 1
CS: a measure of conservative style by the opponent i

} BO: a measure of the probability that the opponent can be bluffed
LAP: the largest bet possible without causing the opponent to drop .
SB: a small bet

| MB: a medium size bet
BB: a large bet made in an attempt to bluff the opponent ’i

| BBS: a small bluff bet =
BBL: a large bluff bet b

1 OAVGBET: the average bet made during a round of play |
OTBET: the number of bets made by the opponent during a round of play

1 OBLUFFS: the numver of times the opponent was caught bluffing
CCORREL: a measure of the correlation between the opponent's hands and

bets

| OD: the number of times the opponent has dropped

1 SW: a sure-to-win handEC: an excellent-chance-of -winning hand

GC: a good-chance-of-winning hand

i PC: a poor-chance~of-winning hand
NC: a no-chance-of-winning hand

| Kl tc K31: constants

| Figure 5-1. Definitions of state vector variables
" and symbolic values.
{

-p

}

" 124 8

” :

TITRAPA AO TESONET RIN TS , Yer rmses SoEsmamerws omer

|
| The Heuristics As Production Rules |
| The Let decision heuristics (described in Appendix B, Part II) by |

virtue of being informal are also imprecise and occasionally ambiguous.

| However, they can be made precise and unambiguous by being rewritten and I

expanded in LASH, a language designed for specifying heuristics (see 1section 2.3). The LASH version of the bet decision heuristics are |
given in Appendix B, Part III, and the corresponding production rules 1
in Appendix 8B, Part IV. |

The five function variables OH,0B,CS,BO, and LAP are highly inter- :

related as can be seen from ff rules ll through 14 in Appendix B, Part IV. —-

The relationships existing between these variables and the bookkeeping »e

variables are iilustrated in Figure 5-2. OAVGBET ard OTBET can be °F

thought of as contributing to the short-term memory of the system while ”

OBLUFFS,0CORREL and OD contribute to the long-term memory. Extending 4

this idew.., VDHAND,POT,LASTBET,POTBET, and ORP are short-term variables ’

while BLUFFO and OSTYLE are long-term variables. The value of the

constants used in defining tnese variables are given in Appendix B, :

Part V. B

The production rules representing the bet decision heuristics I
have been incorporated into a LISP (McCarthy, 1962) computer program -

which plays draw poker. A listing of the action rules and bf rules on

actually used by the program is shown in Figure 5-3. The expression Al

(INCP) in the action rules stands for the expression POT4(2 x LASTBET) . or

For each action rule in Figure 5-3 the first item in the rule is the J
left part of that rule, with the last 7 items forming the right part -

of the rule. 2 |

-; !

| !

:

| + | :

4 Q i

E H 6
& o] [49] on

Q \

| Po /

: a oo %
: v : % 9

| + | bg 1 i

5 2 a i()

XX O {|

x v0 L

wo

3 joJi =
= Oo

| ot

| ® 0
i + : + rl =)
i 58 bo
. ’ ry

| QO

A >

umn H

x THIRLIEEL ARi &)

| BE | 2

un 1 1]Lie

4

: !

| n

EETe Rg Ng 7TE I I=

: | rw

| »
| —~ :

| (DEFPROP MUILT=INeHEURISTICS 5(VIL

(C(SW PY J @ @ @ 0) © (INCH) 4 @ o ¢ 0)
! (CSW © © © 0 0 0) @ (INCP) LAP © o @ @o) -

(CEC P1 d% © @ 0 0) © (INCVP) ¢ © @ © a) i{ (CEC © © a @ o 0) @ (INCP) LAP @® 0 0 0)

3 (CGC P2 35 @ o URL ©) © (NCP) #4 o © eo’)
& (CGC PO 56 © @ JURY ©) & (INCP) UV o o o o)
: ((GC © d5 @ @ OR2 CS1)o (INCP) © 0 0 o 0) i

. (CGC P3 AS @ @ ORI @) © (INCH) 4 & @ 0 9) »| (CGC © © HOY @ ORJ ee) @ (INCP) SU o @ @o ») Ak |
: (CGC Pa 15 @ 0 @ 0) @ (NCP) ¢ © @¢ ¢ 0)

((GC PO 7 @ @ » 0) © ([INCVF) v0 © 0 @ 0) -—
| ((GC © @ 0 ¢ 0 0) ¢ (NUP, MH @ o o @) X

| (CPC @ n5 © Pd? OKA ©) & (INCP) ¥ o o @ o) »
((PC® go> ® Pd2 ON2 CS?) @ (INCP) Pp o o oo) - 1]

| ((PC P6 59 BOL PBI ORS @) @ (INLF) HH © @ » o)

: ((PC P% 42 802 @ o @) @ (INCP) Bb o o o 0) “- 4
(CPC © pd ® PH4 ORO ©) 3 @¢ J eo & o 0) q 1
((PC © 0 © @ @ 0) @ (INCP) 9 o @ o 0) ob
(CFC © © 0 0 @ a) @ (INCP, SB o 0 0 9)

((NC © @ @ @¢ URG 0) P © 2 0 0 0 oo)

((NC © @ 0 @¢ OR2 CS3) # eo pp oo o o oo) “-—
((NC Plu 89 HUL » OK? e) @ (INCH) HES © @ 0 oo) iy
((NC P6 4 BUS © QRS eo) o (ICP) dBL @ @ @ 9) -—
((NC @ ub @ Pl « @) o (INUP) A © oo o @)

((NC P?7 Ry @ @ @ a) & (INCVP) VO @ @ @ 0)

C(NC P7 25 @ 0 0 0; @ (NCP) SH @ o o bo) -r

LINC P6 H3 @ @ URS o) ® (NCP) SE o o o @)
(CNC © @ @ ¢ @ 8) # @¢ A » oo & o)) -

ceksy ANU (GREATLRP (UIFFEREwWCE HW UKM) XK18) (WO) C(LESSP HW K19)))
i (FC ANU (GREATERP (LJIFERLWCL H UM) K13) (LESSP KH K19))
: (GC ANU 44

(LLSSP KZ! (O!FFLRENCE H OH))

) (NUT (GREATERP (DIFFLRENCE HW OM) K16))) ’
(RC ANU

(LLESSP R21 (DIFFERENCE HW UM))

‘ (NUT (GREATERP (DIFFLKLLE H OM) K24)))

: (MC NOT (GRLATERP (DIFFERENCE ® UN) X21)))
((PY GREATERP P Kt) (P2 GHEATERP Pp K2) Tr

(PS GRLATLRP P K4)

(P4 GREATLRP P K6) oe
(PS LLSSP P RY)

(PO LLLSPKP P Ki14)

(P7 LESSP P K$2) ad
(P38 GRLATERP P 120)

(PY GREATLHK © 17) -—
(P1Y LLSSP ¥ 18))

(CRY LESSP © KA) (1'2 LESSP 8 Ki) ve
I (83 LESSP © £13)

(B4 LLSSP 8B K19)
(85 GRLATLRP HB 4) -_
(66 GRLATLRMY H 7)

(H7 GRLATLRF b 12) <a
(H8 GRLATLRI B 11)

(BY ANU (LLSSP 15 9) (NUT (ROUAL U 2))))
((601 GRUATLRP WFQ KS) (Hhu7 GREATERP bFU X11) : on

(403 LREATLRP UFU K16)) 1((Pd1 GREATLRP PB K17) (Ppe2 URLATLRP PR 1)
(PbS UnLATERP PB 3)

(PH4 LeSSP Po 2))

(CORY OK (LQ R 2) (LO R 1)) (uke EOUAL R 2) -n
(URS LQUAL R =1)

(UR4 QQUAL KR #4) wo

(URS LOUAL HR 1)

(UNO NOT (EQUAL R «1))
(UR/ LQUAL R 3)) wa

((CS1 GHEATERP UCS Nl) (CS2 GLREATERP 0QCS X7)

(CSS GRLATERP OCS K12)))) ae
VALUE)

“eo

Figure 5-3. Built-in heuristics for draw poker.

127

i

oS aS 2

%

. .

gf |

A Proficiency Test for Poker

| In the next section it will Le cliown how trainiig can produce =e
useful and effective sets of hewristics. In order to teat the poker !

| playing ability of the programs which are trained, some type of proficiency |

1 test is needed. Such a test will now be described ani applied to the
poker program as it uses the heuristics (28 action rules and 41 Hf rules) |

l given in Figure 5-3 (henceforth referred to as the "built-in" heuristics). |
| Applying this test to the program containing the built-in heuristics will :

| provide a base against which the heuristics learned through training can %
{ be compared, in terms of game-playing effectiveness. i

TEST PROCEDURE. The proficiency test consists of the following procedure. y
i The program plays 5 games against a human opponent, each consisting of 1

| 5 hands. The cards are dealt from a standard deck of 52 cards which ,
is first shuffled in a random manner. When the deck is depleated the

I cards are shuffled and the same deck is used again. Thus a total of |
50 hands are dealt during the 5 games, 25 to the program and a corres-

i ponding 25 to the human opponent. (In this context a hand is taken to |

1 mean the 5 cards dealt plus 3 additional cards which may be given tothe player if he decides to replace cards from his original five.) |

} "After the 5 games are played a second series of 5 games is played, |
| again using the same hands that were used in the first series. However, |
| in the second series of games the program receives the 25 hands held by

the opponent in the first series, and the opponent receives the 25 |

1 corresponding hands held by the program in the first series.
I |

128 :

Fy

ha ..
i |
ah00400JN ery307A SY tir Sr es eee

|

|

| Program Opponent Program Opponent :
Series Game Hand Hand Series Game Hand Hand

| 2 x. 8 8' II. E. u' u 8,
b b' v' v |

| c g’ w' Ww we
d a’ x! X a
e e! y' y -e

2. f f' 2, x! k 4)

g g' 1! 1 we
h h' m' m

i i! n! n ae

. J 3 o' 0 5

5, k k' 5. £ f ”
1 1 g' g
m m' h! h we

n n' Th i

o o! jy! 3 Oh

4. P p' Lh. a' a
q q' b? b -
r r' c' c

8 gs’ a’ d r
t t! e' e T

: De u u' De p’ p “o
v v! q’ q
w w' r' ; he

x x! s' S

y y' t' t

| Figure 5-4. Possible arrangements of hands for
the p.oficlency test for draw poker.

[

129 l

’ . iN

. man TERRAPT |

]

i This procedure is illustrated in Figure 5-4. It is seen that in)
series I the program receives hands &a through y , and the opponent :

| hands a' through y' . In series II the situation is reversed; the i

| program receives a' through y' and the opponent a through y . 3
The only difference between series I and series II, other than the |

| reversal of hands, is that the games do not occur in the same order. iFor example, in Figure 16, game 1 of series I occurs as the fourth game ;

] of series II. The games of series I are rearranged by a random process !

| to establish the game order for series II. |
PLAYING ABILITY. The playing ability of the program is measured relative :

to the opponent's playing ability as follows. The amount won by the |

| program in series I is compared to the amount won by the opponent in
series II for corresponding r-o-p's , and these results are displayed

1 in graphical form as illustrated below.

| opponent _ _
Cumulative —4 difference

| amount won =by each
player program

| Number of rounds-of-play (r-o-p's) or hends
Figure 5-5,

!
Also calculated is the percentage difference between the total amount

I won by the opponent and the total amount won by the program. Since
the same human oppouent is used in each proficiency test, the test

} provides a means of comparing the game-playing effectiveness of different
| sets of heuristics.

130

i |

ai 4

| | rar

| rs

al In order to reduce the likelihood that the opponent remembers

and uses information he is exposed to in series I as he plays the games I
of series II, (1) a number of dummy hands chosen randomly are played oe

immediately before and after series I is played, and (2) a time elapse -v

of 24 hours is used to separate series I from series II. }

TEST RESULTS FOR BUILT-IN HEURISTICS. The results obtained by applying -

the proficiencytest to the poker program containing the built-in .
k heuristics are shown in Figure 5-6. It is seen that the program won ry

roughly the same amount as the human opponent, who is an experienced i

| player. In fact, the program won slightly more than the human opponent; &
i.e., the opponent won 9 less than the amount won by the program. A

portion of the series of games which comprise this proficiency test is =

presented in Appendix C.

131 H

o

I g ;
h x b 5

®e |) 1| : :ord
”

i xe - 3 5 {i .

S *

$8 3 3

I a o ye :Q of

2 .
xe 8 (oR i

o 0

0+
'~ © 44

¥

gg |\ TP
x 9 py a 0 +

[+ spd ord

0 5
a,

| » by
°c ©

xe et .

i EEJP
Lo
ov

w ©

| Tr=
ww 0

| NU
9
™\

:
or

Oo Fa

| 5s & 8 ;= | po

$8
I 1)

» 0M

jitI 3 FY

l "

%

{

! 5.5% TRATNING THE POKER PROGRAM |

| The training procedures described in section 3.2 will now be]
LB applied to the aforementioned system for playing draw poker. The |

program to be trained initially contains one action rule of the form |

(*, *, *, * *, *, *) + (random decision) , *

no bf rules, and one ff rule for each of the function variables. During -

the course of training the program learns both the action rules and the 1

bf rules, in a manner exactly identical to the process described)

earlier. In all examples discussed in this section training is

continued to the point where further training results in little or no

improvement in the program's ability to avoid making decisions which .

are rated unacceptable by the trainer.

| It
133 *

\ :

| 2 > | [0RE——— “

!

| Training Using a Human Trainer

I In the first type of training to be illustrated the program plays ;
an actual game against a human opponent and immediately after making]

i each move decision asks a human trainer if the move was satisfactory. |
If the trainer indicates that the mcve was acceptable, the program

i proceeds by making that move. If the trainer instead indicates that ‘
a particular alternative move would have been better, the program

i analyzes the training information supplied by the trainer, incorporates
I it into the existing production rule list, and then proceeds by making \

the trainer-recommended move. This correction procedure is called a

I training trial. Thus a training trial occurs only when the program
makes an error, that is, a decision which is unacceptable to the trainer.

| The heuristics learned by the progran after being put through 38

| training trials by a human trainer are given in Figure 5-7. These
heuristics will be referred to as the "manual-training" heur‘stics.

| During the training process 31 action rules were created, but 5 of these
were made redundant through generalization on other rules and were

automatically removed after training was completed, leaving the 26

| action rules shown in Figure 5-7. A portion of the training trials
used to create the manual-training heuristics is presented in Appendix D.

TEST RESULTS FOR MANUAL TRAINING. In crder to test the game-playing effec-

| tiveness of the manual-training heuristics the proficiency test was applied
to the poker program containing these heuristics (see Appendix E for a

| sample of the games played for this test) and the results plotted in
Figure 5-8. As the graph shows, the program won almost as much as the

| opponent did, winning 6.8% less than the amount won by the opponent.

134

a.
4

i

; A DNEYiw wy rg YE J Che seine i

al

ve

(DEFPROP MANUAL TRAININGeHEUR|STICS
(NIL "

(((H3 @ B3 & a a a) ® (INCP) 0 & & o oa) i
((HI PL © & o & a) & (INCP) Su © & » a) wie
((H3 P14 B82 BO3J o & a) a (INCP) BES © & oo »)

((HS @ B2 @ o 0 0) & (INCP) SU ® & & a) vw

((H4 P1 B7 B02 # a 8) @ (INCP) oB » & & ») i
((H4 © B2 & & oo 0) & (INCP) SB ® o o oo) “sr
((H4 PL BB © @ a oe) & (NCP) 0 ® a & a)
((H4 © @ & PB4 @ a) 0 0 0 a 8 0 0) =

((H4 PI B4 & a a a) ® (INCP) 0 ® & a o) ¥
((H4 PL © » & RY, oo) » (INCP) SB ®» oo 0 &) ws

((H2 & » BOJ o RY @) & (INUP) SB @ & & ») l
((H2 PL ® BO4 © o a) o (INLP) BYU » & o o) ~
((H2 PL B2 @ & o eo) ® (INCP) SH © oo o bo) i
((H2 PB H4 © a & eo) © (INCP) 0 © © & ¢) -
((H2 P2 HL ® @ & a) ® (INCP) 0 ®# oo o oo)

((H2 © a & & & a) © (INCP) MU © @ » 0) T((H3 P4 B85 & o o o) a (INCP) MH ® » o 0) |

((H4 © & oa © R4 a) J oe 0D © 0 & 3) a
((HL P4 ® @ 0 & 0) 0 (NCP) SU © @ @ oa)

1 ((HY P13 o & a 0 0) » (NCP) MJ ® oo o o) -

((H1 P46 & o » a 0) & (INCP) LAF ® oo o 9) |((H1. PO B4 & oa o 0) ® (INCP) J ® » » 9)
((H1 P11 BI o © o #) o (INLPY 1 © @ » o)

((H1 © © 0 oo a 0) ® (INCP) LAP ® & o 9)

SHS B12 87 4.0 28s § SINCE) Biase o 8) {((HI ® 8 6 8 0) 8 (INCP) S9 » 0 0 9)

((oe ® » » & o 0) (STARO) (STARI) (BETO) @ & o @))
(C(H4 LESSP (OJFFERENCE H (LVALL (QUUTE 0OH))) 9)

(HI AND |(NOT (LESSP (OIFFERFNUE HW (EVALL (QUOTE UH))) 2) :
(LESSP (DIFFERENCE H (EVALL (QUOTe OH))) 12))

(H2 AND

(NOT (LESSP (DIFFERENCE H (EVAL: (QUOTE OH))) 12)) I(LESSP (DIFFERENCE H (EVALL (QUOTE OHW))) 34))

(HY NOT (LESSP (DIFFERENCE HB (EVALL (QUOTE OM))) 34)))
((P1 LESSP P J) (P2 GREATLKP P 17)

J (P3 GREATERP P 1) I(P4 LESSP VP 13)

(P6 LESSP P $3)

(P8 GREATENRP P 41)

(P9 GRLATEHRP P 143) T
(P10 GREATERF F 75) -
(P12 GREATERP P 15)

(P13 LESS? P 23)

(P14 LESSP P 7)) |((B9 NOT (EQUAL B M)) (88 ANU (NOT (EQUAL B @)) (LESSP 8 4))
(41 GREATERP 8 4)

(d2 LESESP © 1)

(B3 GREATERP B 3) on

(B4 GREATERP © 1) j
(B85 LESSP 8 2) de
(87 LESSP H 3))

((BO2 GREATERP BFO 17) (BOS UHEATERP UFO 0) (604 LESSP BFO =5)) We
((PB4 LESSP PB 4))
((R4 EQUAL R 0) (RY EQUAL KR =1)) FI
NILD)

VALUE) as

Figure 5-7. Manual-training heuristics for draw poker.

i
135 -

“r

Ld

g A

I % : |*} |
ht x o 5
~~ | | » p

4 al ¥
- i
he QL 18

8 5 :
| Bn; 8 |

oo) %
fw 3

wv -
FERNS) |
0 |V+ |Ln

| > iOs :
- 4

3) ;
] o X nw ES g |

SY
be sail 3

] igsa"Ot

1
” -

laia B: &
= @

| 5 ¥wiwn a
+L A

=
wo

wt £8

oe) .
\

H 3
i)

3
oi

| &
8 = ro x ¢
~+ NM qY in’

1 oc>
i%e

1 HeO22

] 136 |
l |

aeT

i

I

Comparing this with the performance of the program containing the]

built-in heuristics it appears that although both programs play roughly

| as well as the human opponent the program with the built-in heuristics
| is somewhat superior to the prograwm wiin the manual-training heuristics.

The improvement in game-playing ability due to training can be

illustrated by comparing the results of the proficiency test applied

before training (see Appendix F) with the results of the test applied

after training. Figure 5-9 shows the results befor. training, where the

program contained no bf rules and only one action rule of the form

(* % % % * * *)9 (random decision). Before training, as the graph

shows, the program won 71% less than the amount won by the opponent,

while after training it won only 6.8% less. Thus the training process

effected a significant improvement in the playing ability of the program.

Training Using a Program Trainer

Training can also be implemented using a program rather than

a human as the trainer. This method of training will now be illustrated,

| using the poker program containing the built-in heuristics as the trainer

and another version of the poker program containing only the random

decision action rule as the trainee. As before the trainee queries the

trainer after each move decision to find if the move is acceptable. If it

is not, the trainer supplies the trainee with the training information,

in exactly the same form as that supplied by the human trainer, and

the trainee incorporates it into itc existing production rule list.

137 i |

I
|

x
w

i : | | j® x °° =)
23 0

i hr | a,© "
mot n +» TY v

0)| a & re+
lo)
=

7)

| \ > ol. N 0] ord
QL +
PCy

> hy

| 2 5oRLC
ol

¥,

| ® = - 4 on
a of

| I4 2

5 $3
i

* x oO LO ha

AN \ h :
= 80

oS
ot

mw=

l He
jo JENS
uw
v O

[" x 0 = oOL

CA
A

i)

! 8
ot

I : C FyoO

o % 8 3Ne 2 8 A a ~

iy
, >O

3%
®W POO

| FEEgpdO <0 MN

| 1 138

i

The effectiveness of the modification and generalization techniques :

used by the tralnee as it learns how to play the game can be tested in

the following manner. After training is completed the trainee plays)

a number of games against the human opponent and each decision made lL

by the trainee is compared to the decision that the trainer would have

made in that game situation. If the two programs rarely make the same »

; decision it can be inferred that the modification techniques used by

the trainee are ineffectual. On the other hand, if the trainer and }

trainee always make exactly the same decisions it can be inferred that {

the modification techniques used are extremely effective. In any

case, the percentage of decisions which the two programs agree upon -

can be used as a measure of the effectiveness of the modification

and generalization techniques.

A program trainer rather than a human trainer is used in obtainir-

this measurement because the program trainer by its very nature will

make exactly the same decisions during testing as it did during the

training process, whereas the human trainer cannot be relied upon to

be this consistent. It should be clear that any inconsistency of this

type exhibited by the trainer will decrease the percentage of decisions

which the trainer and trainee agree upon, thus confounding the measure-

ment of the effectiveness of the modification techniques.

The heuristics learned by the trainee after being put through

29 training trials by the program trainer are shown in Figure 5-10. These :

heuristics will be referred to as the "automatic-training" heuristics.

During the training process 20 action rul~s were created, but one of h

these was made redundant through generalization on other rules and was 5

139 :

%

o

’ —- SmtoaMaman

“ki

| b’

i

(OEFPROP AUTOMAT]C-TRAININGeHEUR]ISTICS §
(NIL ;

| (((H3 ®# 53 & PBL R2 #) @ » pp & & » ») :
((H3 P1 88 B04 « « #) & (INCP) bB « & & a)

((H3 P6 B4 B03 PR2 R2 #) « (INCP) Bt o « & &) o
((H3 P6 B10 BOS « o w#) & (INCP) BB ® « & #)

((KS ®» B7 »# « & o) & (INCP) V » & & ») i
((H3 & & o & » a) oo (INCP) SB o # » #»)

((H2 ® » BOL # RL #) ® (INCP) SE # @ » @)

| ((H2 P4 B81 @ @ RI #) # (INCP) 0 & & & &) I((H2 PS 81 &# & & a) & (INCP) 0 & & & &)
((H2 & » 303 © RY «#) & (INCP) SE @ & & &)

((H2 P8 B6 « @« R1 #) a (INCP)Y 2 & a & »)

((H2 ® & & & a a) o (JNCP) MB & & » ») i
((HL PI BS &« @o @ a) o (INCP) 0 @ o » »)

((HL & & & & @ a) & (INCP) LAP » & & &)

((H4 P2 B2 » @ & uo) » (INCP) SB ® » » ») |
((H4 P6 B4 » & « a) o (INCP) 0 ® » & ») i
((H4 P7 BR ® @ R2 #) & (INCP) SH « & » »)
((H4 ® B7 » PBI # a) & (INCP) P & » oo o)

((H4 @* & a 8 & 0) 0 oa # & 8 »)

((o » » «a » » 8) (STARO) (STAR]) (BETO) » & & @))
(((H4 LESSF (D]JFFERENCE H (EVALL1 (QUUTE OH))) ©)

(H3 AND

(NOT (LESSP (DIFFERENCE H (EVALL (QUOTE UH))) @))
(LESSP (DIFFERENCE H (EVAL1 (QUOTE OH))) 13))

(H2 ANU

i (NOT (LESSP (OJFFERENCE H (EVALL (QUOTE UH))) 13))
(LESSP (DIFFERENCE MH (EVALL (OUOTE OH))) 34))

(H1 NOT (LESSP (DIFFERENCE H (EVALY1 (QUOTE OH))) 34)))

((P1 LESSP P 11) (P2 LESSP P J)
(PS GREATERP FP 63)
(P4 GRLATERP P 43)

(PS GRLATLKP P 47)
(P6 LESSP P 5)
(P7 LESSP P 15)

(P8 GRLATERP P 13))
((B4 AND (LESSP B SH) (NUT (EQUAL B ©))) (BL GREATERP B 2)

(62 LLSSP B 1) 5

(83 GREATERP B 13)
(86 GREATERP B 1)

(87 GREATERP B ¢)

(J8 LeSSP B J)
(B10 LESSP 8B 4)

((B031 GREATERP BFO 21) (BOS OGREATERP BFO 12)
(B04 GREATERP BFOU 27)
(RO> GREATERP BFO 46))

((PB1 LLSSP PH 2) (PB2 GREATLRP PB 3) (PRJI GRELATERP PY 11))
((R3 UR (EQ R 2) (EQ R 1)) (R2 NOT (EQUAL.R =1)) (R1 EQUAL R <1))
NLD)

VALUE)

Figure 5-10. Automatic-training heuristics for draw poker.

140

et

=

a

|
i

& automatically removed after training was completed, leaving the 19)

action rules shown in Figure 5-10. A portion of the training trials i
| used to create the automatic-training heuristics is given in Appendix G. .

TEST RESULTS FOR AUTOMATIC TRAINING. The percentage of decisions which B

the trainer and the trainee agreed upon was measured, both before and after -

| training, for 50 consecutive game situations supplied from hands chosen -

at random. The results are shown in Table 5-1 below. 4

T

% AGREEMENT BEFORE TRAINING }

i= !
I

Table 5-1. Percentage agreement between
trainer and trainee. -

I
It is seen that training produces close to 100% agreement between the 5

trainee and the trainer, thus showing that the modification and |

; generalization techniques used are extremely effective. |
The playing ability of the trainee, the poker program containing

the automatic-training heuristics,was tested byapplying the proficiency |
test to the program (cee Appendix H for a sample of the games played).

The results are plotted in Figure 5-1l. As the graph shows, the program |
won apprcximately the same amount as did the opponent. Comparing Figure =

5-11 with Figure 5-6 it appears that the trainee plays almost as well as :
the trainer, in spite of the fact that the trainee contains only 19

action rules, 9 less than the trainer contains. -

p
141 >

I

| -

> ’

1

}
§

:

| A
®

R- ry

« QO

- x o
wl 2]
o +]

0
Fe) WN

sn § & IY 8Q

 B by
3 2 0

5 ;
Q
io
+= ®

7]

| S hgox a
NN +

ow
nn

QO

i ArsQ
> LO
Q

. ow
QQ CC

T pri

[I | pt | Ww ©
77]

i a 0of QL

g 89
vgGt
a)©

0 oe

5 Sa
x © © — :

' — Bgant =
= a +

i BbOO «
ord

0
+ or
~ ©

i jo JERSaQ OC
xe un ao

|

| ~r~-{'
(TaN

QL

l 6od
oO

Q fo) Oo (x4Q

~3 NN NN ~

| ? &>0
oiXT
+2 No
9 $2 0 A

458795jo J OF BEN
: [14]

38 no] O 0 Ay

142

0

5.4 LEARNING POKER WITHOUT EXPLICIT TRAINING :

The techniques described in section 3.3 which permit the program to i

obtain the training information through normal game play will now be

applied to the problem of making the bet decision in draw poker. The -

program which uses this implicit-training procedure initially contains

one action rule of the form (%, *, *, *, %*, *, %) 4 (random decision) , i

no bf rules, no ff rules, a set of logical statements or premises

about the game of poker and game playing in general, and a decision

matrix for poker. During the course of playing a series of games the

program learns both the action rules and the bf rules.

Axiomatizing the Game

In order to permit the program to hypothesize reasonable heuristic

rules without explicit training it is necessary to provide the program

with a means of determining or deducing reasonable decisions. |

This can be accomplished by supplying the program with a set of logical

statements based on

: (J) the rules of the game,

(2) assertions (or "axioms") about the game,

(3) general propositions about techniques used in game playing.

Then, after the program makes a decision it can use these .iogical

statements, together with information concerning the subsequent decision

by the opponent and its effect on the game situation, to deduce wnat

the original decision should have been.

PROGRAM OPERATION. Specifically, the program operates as follows. During

a game the program subvector is saved each time a bet decision is made, and

143 :

I

b N ‘

f
|

this information is accumulated until the termination of the current

} round-of-play. If the r-o-p was terminated by a "drop", the information
is not used; i.e., the program learns nothing. If the r-o-p was

| terminated by a "call", thus exposing the opponent's hand, a program

I subvector (and associated bet decision) is used, with the value of the
opponent's hand, to set the predicates in the logical statements. Once

| these statements are so primed, the program is atie to deduce what the
bet decision should have been in order to have maximized the program's

i score. If the bet decision actually made by the program was not correct
| (the one that would have maximized the program's score) a learning

trial takes place; i.e., the correct decision plus information from

| the decision matrix is used by the program to modify the existing
production rule list as specified in section 3.3. This procedure

! is carried out individually for each program subvector (and associated
bet decision) accumulated after cards are replaced.

. NON-EVALUATABLE ACTION RULES. A major problem encountered in using this

learning technique is that all action rules which specify the action DROP

J are non-evaluatable. This is true because when a drop is made the r-o-p

' is terminated but the program is not permitted to see the cpponent's
hand. Without this information the logical statements cannot be primed,

consequently there is no way to determine whether or not the decision to

drop was a sound one. This becomes a problem when a bad or ineffectual

action rule leading to drop is hypothesized by the system, because it

| is non-evaluatable and thus cennot be modified or removed.
The problem of the non-evaluatable action rule is solved in the

following way. If during the learning trials the symbolic subvector

1h

I

I
catches on a non-evaluatable action rule the decision specified by

the rule is not made, instead an evaluatable one (in this case a CALL) N

is made. Then during the evaluation process the non-evaluatable y

decision (the drop) is compared to the decision deduced using the “

logical statements, and if the two decisions differ the existing

production list is modified. After learning is completed the

substitution of evaluatable decisions for non-evaluatable ones is

discontinued.

LOGICAL STATEMENTS. The logical statements used by the program are shown

in Appendix I, Part I. The poker "axioms'" included therein are statements

which can be deduced by a human strictly from the rules of the game and an

elementary knowledge of casual laws. It is reasonable to give these

statements to the program since a human about to play the game for the

first time would have this information readily available, even though

he knew nothing of the decision strategy to use for the game.

| The logical statements used by the program have the form PD Q ,

meaning that if P is true then Q is also true. The expressions P and

Q consist of predicates and the logical connectives A and V . The

arguments of a predicate may be either constants, as in add (pot ,yourscore)

or variables, as in add(x,z) , and these variables may take the value

of any constant as long as the assignment is consistent within a logical

statement.

DEDUCTION PROCESS. To illustrate how the program can use these logical 1

statements to deduce the best decision; i.e., the decision that would have
[]

maximized its score, consider the following. First, the state vector -

145 I

1

|
!

associated with one of the program's bet decisions and the value of the

I opponent's hand are used to set certain predicates in the logical
| statements. Then the program takes the expression maximize (yourscore)

I and tries to make it true. To accomplish this the program searches the

| right sides of the implication statements PD Q looking for a @ which
matches maximize(yourscore) or can be made to match it by substituting

| constants for free variables. After such a Q 1s found the program applies
: the same technique to the problem of making the left side or P of the

PDO Q statement true by matching P or parts of P against the right

sides of the implication statements. This process continues until

all decisions which make maximize(yourscore) true are found. An

| example of this deduction procedure is presented in Appendix I, Part III.
In some situations more than one type of action by the program will

| make maximize(yourscore) true. When this is the case the program
chooses one of these actions as follows. The left side of general

| axiom 2 has the form aV bV cc. If expression a can be made true then
an action is picked at random from the set of actions which makes a

true. If a cannot be made true but b can, then an action is picked

| at random from the set which makes b true. If neither a nor Db can
be made true then an action is picked at random from the set of actions

| which makes c¢ true.

| The Decision Matrix
As explained in section 3.3 a decision matrix is needed to provide

| the program with the reasons why the subvector variables are relevant.
| After the program logically deduces a decision and hypothesizes which

variables are relevant, it uses the decision matrix to determine why

| |

yy

(cal adie

-"

- i

each of the variables hypothesized as relevant are in fact relevant.

The decision matrix used for draw poker is shown below. Each row -
a

stands for a game decision and each column for a subvector variable. se

x

' p

- -»

VDHAND FOT LASTBET BLUFFO POTBET ORP OSTYLE

"Category the "current w

DROP ue large large small small value of large
belongs in" ORP o

"Catego=y the " ‘urrent

CALL SugTom value large large small lurge valve of large
b-longs in" ORP

program

"Category the hand : large "on -~

BBL |Sarrent.value mall mall goed large Nere largeLow |of VDHAND 8 § g " ge
belongs in" program ogti hand : small

poor |

program program program program

"Category the hand : large |hand : small} hand : small "ourrent hand : small
BEET [current value 11 good good good value of good
HIGH |of VDHAND sma obel in" program program program CRP programSage in hand : small | hand : large| hand : large hand : large

. poor poor poor poor
4

Figure 5-12.

For example, if the nrogram determines that the decision should have

been BET LOW and hypothesizes that VDHAND, POT, LASTBET, BLUFFO,

POTBET, ORP, and OSTYLE are relevant then it uses the decision matrix to

find that it should make the decision BET LOW because VDHAND falls

into a particular category, POT is small, LASTBET is small, BLUFFO is :

large (if goodhand(you) = T) or small (if goodhand(you) = F) , POTBET |

is large, ORP is a particular value, and OSTYLE is large. -

ol

147 ru

ull

i

' h oo

|
L.earning Based on Implicit Training

The effectiveness of the implicit-training techniques used by the

learning program can be tested as follows. After learning is complete

the irogram plays a number cf games against the opponent and each

decision made by the program is compared to the decision that would

have been deduced in that game situation using the axiom set. The

percentage of decisions agreed upon can be used as a measure of the

effectiveness of the hypothesis-formation and deduction techniques used

by the learning program.

The heuristics learned by the program after 57 training trials

are shown in Figure 5-13. These heuristics will be referred to us

the "implicit-training" heuristics. During the training process 15

action rules were created, but one of these was made redundant through

generalization on other rules and was automatically removed after

learning was completed, leaving the 14 action rules shown in Figure 5-13.

3 A portion of the training trials used to create the implicit-training

heuristics is given in Appendix J.

Learning was terminated after 57 training trials since this was

| the number of trials needed to make the action rules general enough to

| catch the symbolic subvector the vast majority of the time. After 57 trials
they caught the symbolic subvector 9 of the time, permitting the random

| rule at the bottom of the action rule list to catch the subvector only
5 of the time.

|
TEST RESULTS FOR IMPLICIT TRAINING. The percentage of decisions agreed

| upon by the program and the axiom set was measured for 50 consecutive

! us

|

| 5

(DEFPROP IMPLICIT=-TRAINING-HEURISTICS
(NIL

(((Hy @ o o PBS o CSS) # (INCP) SSS (DUMMY #) » @ a) v
((H3 @ g3 » « o CS2) & (INCP) © (DUMMY #) « «)

: ((H4 P32 BS B034 PuB27 # CS12) « (INCP) dBd (DUMMY @#) + « a)
! ((H4 P14 B12 ©» o » @#) 2 & (DUMMY @) » « @»)

((H3 P27 B22 & PRBS & «#) # (JNCP) SSS (DUMMY #) & » »)

((H2 & uy19 & PBS e CS2) « (INCP) SSS (DUMMY #) « » «)

((Hq & p22 & oo & a) # (INCH) SSS (DUMMY #) & « «)

((H3 » B12 B02 PB? « CS1) & 08 (UUMMY @#) o 2 a) :
((H2 » g8 « PS & CS1) # (NCP) ¥U (DUMMY &) & « »)

((H1 P22 4 B02 PB4 # CS6) » (INCP) Bp (UUMMY eo) » © a) “5 |
((HL » BI « » @« CS2) o (INCP) 0 (UUMMY #) @« « &)

((H2 P15 @ B014 # RY S77) & (JNCP) BHEB (DUMMY #) » « a) Ll

((H3 P12 & » oo R1 #) & (INUCP) Bol (UUMMY #) # « «)

((H2 P22 B4 « PB17 « «) « ([0CH) BBY (DUMMY #) ¢ « »)

((o &= « ao & oo 2) (STARO) (STARI) (BLTO) » & & «))

(((Hq LESSP KH 3) (B3 AND (NUT (LLSSP H 3)) (LESSP H 28)) =
(H2 AND (NUT (LLESSP H ?2D)) (LLSSP H 42))

‘ (H1 NOT (LLSSP H 42)))

((P12 L&SHP P 27) (P14 GREATERP P 5) I
(P15 (LESSP I 21)
(P20 LESSP P 61)

(P22 LESSP P $1) 1
(P27 LESSP P 33) wb

(P32 LESSP P 298))

((B3 GREATERP B 4) (B44 OGREATERE WB 1) ye

(BS LESSP 8 4)]
(B88 GREATERP U 7)

(3172 GREATLERP © ©)

(B19 LLESSP UB 14)

(822 LESSP § 6))]
((B02 LESSP BFO «5) (BO14 LESSP UFO 6) (RBU34 GREATERP BFD «52))
((PB4 LLSSP Pd 17) (PBS GRLATLRP PB 1) ,

(PY? LESSP Pu 41) 1(P17 LESSP PB 21)

(PB?7 GREATERP Pd 6))

((R$ EO R 3)) |

((CS1 GREATERP OCS <1) (CS2 GREATLRP QCS =2) |(CS LHEATELRP QCS -1)
(CSh LESSP OCS 1)

(CS7 LESSP CS J)

(CS12 GRELATERP OCS «6)))) |
WALL ~) |

W

Figure 5-1%. Implicit-training heuristics for draw poker.

14 -

' o / y cl !

game situations, both before and after the training trials. The results

i are shown in Table 5-2 below.
1

I 4 agreement before training
|

I 4 agreement after training 82%

1 Table 5-2. Percentage agreement between
learning program and axiom set.

| It is seen that the training trials produce an 82% agreement between

i the program and the axiom set, an increase of 58% over the agreement
before training, thus showing that the implicit-training techniques

1 are effective in implementing learning. The percentage agreement
between the program and the axiom set (82%) was less than the

| percentage agreement between the trainee and trainer (96%) described

i in section 5.3.
The playing ability of the program containing the implicit-training

1 heuristics was tested by applying the proficiency test to the
program (see Appendix K for a sample of the games played). The results

i are plotted in Figure 5-14. As the graph indicates, the program won

| 1% less than did the experienced human opponent, implying that the
opponent is a slightly better player than the learning program.

150

|abs]

i -
ww | |

| ‘ |o2 | |f Qo
RM x©

: MN 0 g

v hu 5

v © x © bo)
a

b-Fe

8 & 8 |
NN OS "Ww O 0) :

3g 5]Ba O Lad
oO wu

aid

*« x y PP |ww

Q A

AN 31
= RV :
QO a
=

2 I~

LY Gud ord

» Al
wv QQ +
~ Lo ord
£2 LO
o er

2 wd |3 ooB
> or

h a.oO © 0)

® —~ 0 a, co]i To +

\ EL uy
(oJ©

rd

wn 0
+L ord

3 15

v 0
an oO

x ® un |+

i:
Ta)

0)

or

" C fx &

4 od ¥ ro 8 -A = A AY =r

¥ !be
3%
CREE

geek r=i38 »z i

% an

151 -

wp

»

| |

1
| 5.5 DISCUSSION OF RESULTS 1

| The results obtained in sections 5.2, 5.%, and 5.4 are summarized

i in Table 5-3. The first column of this table is a list of the various
sets of heuristics (action rules and associated bf rules) tested in

t this chapter. The before-training heuristics consist of a single
action rule of the form (3%, *, *, *, * *, ¥) -+ (random decision) and no

bf rules, whereas the other sets of heuristics consist of the action

| and bf rules illustrated in Figures 5-3, 5-7, 5-10, and 5-13.
NUMBER OF TRAINING TRIALS. The second column of Table 5-3 contains the

number of training trials used to create the sets of heuristics listed

in the first column of the table. The built-in and before-training

heuristics were created by hand and thus required no training trials.

The manual-training and automatic-training heuristics were created using

| the training procedure of section 3.2, and required 38 and 29 training
trials, respectively. Training was continued until the trainee, during

| training, played one complete game of 5 hands without once making a
decision rated unaccentable by the trainer. The implicit-training

| heuristics were created without the use of a trainer and required 57
(training trials. Training was continued until the acquired action rules

| were made general enough to catch the symbolic subvector, and thus geners=-
ate a non-random decision, 95% of the time.

The number of training trials required by the explicit-training

| procedures cannot be directly compared to the number of trials required
by the implicit-training procedure because (1) the same criterion was not

| used in each case for determining when training trials should cease, and

| :
152

|

i

a
0 9 a
£5 TI
a
CE Ow | No) bi
QL +L = WAY a
EQ Gye
+O <<

a pr "
- el
jo’

gn Ly]
1
$4 ord or

i | 3)Ege
eu i oN aN

1) I RdQO of PS
MH or

£8 §
it wr

(W})
Q {®

jot ™ .
Ono 0 J
~ 0 0 oO +7

ak Re y =ORS Ee bs hoa 9) hoy NN a
o£ § & + - . . — O T
Age ES = .
Is WO Gy
[oli oli o J © 1 O
OAHM Ry

(3) 2, O fo
$y | 9

Q es oo |g& ¥ :
)

a T
C= .5 .
fet a — DO (0) I 4 Tp
U0 = QV] oN ~—{ ~~
LQ 0 ov

Ba {ERE 5 |
a 4

7)

"QO «HH oT4) .
OO

| TE oR oJ

Seq 3g HEE BCEEEE |=o =
W)

0;

te |Oo ud

oS -od

oF © © on —
0 od om NY QV] in

BRE~ EH
&

7) y
3) (3) '

Ee! orf y= | +L =i £2 |nv QO ' QO oH ~~ of oS + Q
- Un + ~ o = Eg ot£2

by ~~ O A jn JEP O ~ —~2 gd |9E|E2|EE1ED

os alas |E5|z3 AB 1

153 |
;

s . } .

| 1

(2) the number of decisions which had to be learned was not a constant,

| i.e., "ae explicit-training programs had to learn to associate 8 different

: decisions with the game situations encountered, while the implicit-
training program had to do ‘the same with only 4 different decisions.

i Nevertheless, there is an indication that the implicit-training procedure
requires many more trials than does explicit training, since this was

I the case even when the implicit-training program had only half as many

: A decisions to deal with as did the other programs.| Implicit training requires more trials because not only are training

| generalization techniques being utilized but also generalization

| techniques for determining variable relevancy. The important point,! however, 1s that only a modest number of trials is required by either
| procedure to produce a program capable of playing a c ‘mplex game, like

! draw poker, with roughly the same level cof skill as an experienced human |
| player.

I 2 NUMBER OF REDUNDANCIES. The third column of Table 5-3 contains the number
of action rules made redundant during training. It is seen that more

| | redundancies occurred during manual training than occurred during either
automatic training or implicit training. One explanation is that

| the human trainer was less consistent during training than was the program
trainer or axiom set and this inconsistancy led to an increase in the

number of redundancies created. More important is the result that the

modification and generalization techniques employed form learning systems

| which are quite stable and which accordingly create very few redundancies

during the acquisition process.

[
154

a —— LL SE r—— a —_———————

I

NUMBER OF ACTION RULES. The fourth column of Table 5-3 contains the |
number of action rules either created by training or put into the system

by hand. Note that although the trainee (the program containing the I
automatic-training heuristics) contained 9 fewer action rules than did 4

its trainer (the program containing the built-in heuristics) it played

almost as well as the trainer. Here the training process acted like a]

transformation procedure, changing a lengthy, thorough set of action

rules into a compact, efficient set, leaving out rules corresponding

to game situations seldom encountered in actual play.

The number of action rules created by the implicit-training process

is seen to be less than the number created by explicit training. This

difference is due simply to the fact that during implicit training the

program had only four decisions to associate with game situations, while

during the explicit training it had eight decisions. More generally

speaking, it is seen from column 4 that a surprisingly small number

of action rules (and associated bf rules) are needed to describe a

thorough and effective set of heuristics for the game of draw poker.

PROGRAM PROFICIENCY. The fifth column of Table 5-3 contains the percent

difference between the program's winnings and the opponent's winnings dur-

ing an application of the proficiency test, expressed as a percentage of

the amount won by the winning player. A plus percentage indicates that

the program was the winning player, a minus percentage that the opponent

was the winner. It is clear by comparing the difference in winnings

before and after training that both the explicit and the implicit training 1

procedures led to a significant increase in the playing ability of the

programs involved.

155

I
’

: - Nl;

! |
| However, the increase in playing ability during implicit training

| was not as great as the increase during explicit training. This |result is due, presumably, to the following factors: (1) the axiom ;

| set, which provides a means for deducing "good" decisions, does not }
provide the program with decisions which are as shrewd or perceptive as

| those provided by a human trainer, (2) the program must use a complex |
generalization process to determine variable relevancy during implicit

training, while it is given this information by the trainer during

| explicit training, and (3) the program is permitted to learn to
| make only half as many different decisions during implicit training

as it can learn to make during explicit training.

CONVERGENCE. The last two columns of Table 5-3 contain a measure of the

agreement obtained between (a) the trainer and trainee and (b) the axiom

set and the implicit-training program, both before and after training.

In each case the percentage is based on the number of identical

decisions made during 50 consecutive game situations. It is seen from

Table 5-3 that a high percentage of agreement or degree of convergence

was achieved for both case (a) and case (b) above.

However, the degree of convergence for case (b) is less than

that for case (a), probably because of the following aspect of the

implicit-training procedure. The axiom set is used, together with the

value of the opponent's hand, to logically deduce the decision that would

have maximized the prograr.'s score, and this is considered by the vrogram

to be the decision it should have made during actual play. But during

actual play the decisions of the program are based on a set of action

rules which do not include the value of the opponent's hand (this

value is unknown at the time).

156

ur —_—

i

For example, the "trainer" (the program as it performs deductions |

with the axiom set) may indicate that in game situation S action A Fi
should be taken and that in game situation §' action A' should be

taken. If the only difference between S and S' is the value of the |
opponent's hand then the two situations are identical when put into

action rule form. Thus it appears to the "trainee" (the program as |
it uses the action rules to make a decision) that the "trainer" is ~ | §f

sometimes inconsistent, and as a result the percentage of agreement

between the two is reduced.

|

.

l

l

} . |

1} !
I

| CHAPTER 6 |

| CONCLUSIONS

2
6.1 ACHIEVEMENTS

In the preceeding chapters a number of ideas relative to the

problem of implementing machine learning of heuristics were presented

: and investigated. The achievements resulting from this examination

| of the problem will now be briefly summarized.

First, a method of representing heuristics (as production rules)

| was developed which facilitates dynamic manipulation of the heuristics
by the program embodying them. This representation technique permits

separation of the heuristics from the program proper, provides clear

| identification of individual heuristics and indicates how they are
interrelated, makes the modification or replacement of heuristics a

| trivial task, and makes it simple to use the leuristics to obtain a
: decision from the system. Furthermore, a language for . ecifying

heuristics was tormulated which serves as a convenient intermediate

| step in the process of translating informally stated heuristics into

production rules.

Second, procedures were developed which permit a problem-solving

program employing heuristics in production rule form to learn

| to improve its perforinance by evaluating and modiiying existing

heuristics and hypothesizing reasonable new ones, either during a

special training process or during normal program operation. These

learning procedures are applicable in all cases where each of the

| 156
{

a . CR

subvector variables, the program variables which directly influence or

are influenced by the program's decisions, can be considered to have N

a range consisting of a set of integer values. -

: Third, the abovementioned representation and learning techniques
were reformulated in the light of existing stimulucr-response theories *

of learning, and five different S-R models of human heuristic learning

in problem-solving environments were constructed and examined in detail, } _
Experimental designs for testing these information processing models {

were also proposed and discussed.

Finally, the feasibility of using the aforementioned representation =

and learning techniques in a complex problem-solving situation was

demonstrated by applying these techniques to the problem of making]

t he bet decision in draw poker. This application, involving the }

construction of a computer program, demonstrated that (a) a surprisingly

small number of production rules are needed to describe a set of heuristics .

for draw poker which enables a computer program to play the game with

roughly the same level of skill as an experienced human player, (b) -

the program, whether learning via the training process or learning

during normal program operation, requires only a modest number of

acquisition trials to produce a thorough and effective set of heuristics

for draw poker, and (c) the modification and generalization techniques

which form the basis of the learning process lead Lo the creation of

learning systems which are highly non-redundant or stable and whose

decisions tend to converge to those supplied by the trainer during

training.

159 h

l

3 - Co

i

| 6.2 AREAS FOR FUTURE INVESTIGATION

i The ideas presented in the previous chapters suggest a number of ’

| areas which merit further iurectigation. These areas will now be

I specified and briefly discussed.

| Learning the Decision Matrix
| The learning system described in Chapters 3 and 5 which learns

through actual game experience rather than explicit training must be

| supplied with a decision matrix. This matrix, it will be recalled,

l has a row corresponding to each decision the system can make and a
column corresponding to each sutvector variable. Each entry Eqs in

| the matrix indicates why the variable Jj is relevant, if when
decision 1 is made the variable is in fact relevint. The next

| logical step in the process of expanding the power of the learning

] system is to eliminate the requirement that the system be supplied
with a decision matrix. This can be accomplished by initially pro-

I viding tre system with an empty decision matrix and then having it
learn through game experience what the entries in the matrix should be.

| CHANGING LOGICAL OPERATORS, One approach to the problem of learning
the decision matrix entries will now be outlined. As mentioned in

l Chapter 3 there are essentially two ways an action rule can be generalized

| upon to catch the symbolic subvector (or program subvector).

| 160

ry

=

K
RS

(1) Training Method: the sets corresponding to the symbolic

values in the left part of the rule are enlarged by -
changing the numerical values in the predicates defining

the sets,

(2) Hypothesis-formation Method: some of the relevant sub-

vector variables (variables which have symbolic values

other than the value *) in the left part of the rule

are made irrelevant (are given the value ¥),

In order to implement the learning of the decision matrix entries a

third method of modifying an action rule to catch the symbolic sub-

vector is needed. This method is shown below.

(3) Decision-matrix Method: the logical operators in the predicates

defining the sets corresponding to the symbolic values in

the left part of the rule are changed, and each time a

logical operator is changed the corresponding entry in the

decision matrix is also changed in the same manner.

|
EXAMPLE. A simple illustration will serve to clarify this procedure.

Assume the subvector is (P, B), the action rule to be modified is |

(Pl, Bl) »d, where Pl -P, P>15 and Bl 5B, B<h, the

progran subvector is (7, 2), and the current decision matrix is as |
shown below.

P B :

d, < >

Figure 6-1.

l
161

I

N

’
:

| |
Then the action rule can be modified to catch the program subvector

I by changing the logical operator in the definition of Pl from
> to < . Thus the definition becomes Pl -» P, P< 17 . The

I numerical value in the definition is adjusted so that 16 is still
a member of the set defined by Pl. The entry in the decision matrix

| which corresponds to the logical operator just changed is the one

[found by entering the matrix at row dy y column P . Consequently,
1 the decision matrix entry at this location is also changed and the

| matrix takes the form shown below.
P B

g

Figure 6-2,

I
I¢ the decision matrix used by the learning system is initially empty

i | the system can be thought of as hypothesizing whether > or < should

t be an entry at each location in the matrix and then later testing and
revising each hypothesis.

I CREDIT ASSIGNMENT. The crucial problem involved in using this approach

I to implement the decision matrix learning is the following. If method (1)
is not applicable for modifying the action rule to catch the symbolic

i subvector, either method (2) or method (3) can be applied. The
problem is to devise a priority scheme that specifies which of these

| two methods to use in any particular learning situatioa,

-

i 162

!

BT TTT TTTrTr —— Oe-

y \i :

"
In a general sense, the problem is that of determining which of |

two concurrent hypotheses is to blame when an errcr is detected, the |

| relevancy hypothesis or the decision-matrix hypothesis. This is :another example of the credit-assignment problem, an extremely }
difficult and heretofore unsolved problem in artificial intelligence. 1

In this case, however, the priority scheme does not have to solve ’ .

the problem single-handedly by determining with perfect accuracy which [|

hypotheses are in error. It operates in conjunction with a learning

system which is self-correcting, that is, which modifies or removes

poor action rules. Thus the priority scheme need only be accurate

enough to keep from overloading the self-correction mechanism, thereby

permitting the learning system to converge at & reasonable speed.

Learning the Function Definitions

Another way to expand the power of the learning system is to

require that it learn the function definitions. (They are ordinarily

supplied to the system.) The functions (ff rules), described in

Chapter 3, are defined by mathematical expressions composed of boox-

keeping variables and function variables. Mathematical expressions

of this type are a very compact, efficient way to represent heuristics,

and for this very reason are quite difficult to manipulate or learn.

EXPANDING THE SUBVECTOR. Rather than tiying to devise a system which

will learn the function definitions directly, the following approach

can be taken. Exvand the subvector (the set of dynamic variables) J
by including in it all the bookkeeping variables needed to define the =

163 {
i

i

! N » ——

|i be

functions. Then during the learning process described in Chapter 3 :

i a number of action rules (and associated bf rules) will be learned

| 1 which are roughly equivalent to the original action rules containing
function definitions.

I EXAMPLE. To see how a set of action rules can approximate a single

i action rule and its associated function definitions consider the
following example. Assume that the subvector is (P, B) and the

I 1 function A is defined as AoE + 3 , where E 1s a bookkeeping
variable with a range of 1 to 6. Then the action rule and function

I definition

| (P1, Bl) - (*, A) set 1

A-E +3

1 can be approximated by the set of production rules given below, in
which. E is considered a subvector variable,

I (Pl, Bl, El) — (*, 8, %)

) | (Pl, Bl, E2) - (*, 6, *) set 2
(P1, Bl, *) — (¥, 4, *)

! El »E, E> 4
E2 -E, E> 2

| The action advocated by set 2 is compared below to the action advocated

| by set 1.

|

!

I Lo

§

i.

Em oT

|

New value of B

E Set 1 Set 2

1 4 4

: 2 5 !

3 6 6

h 7 6 »

5 8 8]

6 9 8 }

It is clear that set 2 does approximate set 1. In general, the number »

of action rules needed to approximate a function definition depends

on the complexity of the function and the range of the function

variables.

Other Areas of Interest

There are a number of areas remaining which, if properly

exploited, could lead to an increase in the power of the proposed

learning system. Two of these areas will now be briefly described.

IMPROVINGTHE AXIOM SET. One area which presents a challenge is the

axiom set and associated aeduction techniques used to supply the

system with good decisions. In Chapter 5 it was noted that the degree

of convergence exhibited by the learning system is reduced when the

axiom set is used in place of a trainer. The explanation given for

this was, in brief, that the axiom set has a tendency to appear

inconsistent to the learning system, since in its deduction process

+15 1

]

3 a =

i
|

it makes use of the value or the opponent's hand, a variable which the |
| learning system does not have available.

| Since the value of the opponent's hand is essential to the axiom :
cystem operation and cannot be given to the learning system (at the

time it makes a decision) an indirect approach to the problem is in

order, A profitable approach might be to use a more sophisticated

axiom set, one which Las not only the gral of maximizing the program's

score but also the goal of providing a decision which is reasonable

when the value of the opponent's hand is unknown. However, this

approach, in one sense, is more a restatement of tre problem than a

bona fide solution. As the axiom set is made more sophisticated the

problem of finding a necessary and sufficient set of axioms becomes

increasingly difficult.

DEFINING THE TASK ENVIRONMENT. Another area which presents a challenge

is the problem cf devising an effective way of defining the task

environment in which the learning system operates. The task environ-

ment can be considered to consist of the set S of all possible situations

which can occur and the set D of all possible decisions which can be

made. This environment is defined by (1) specifying the subvector

variables and their ranges, and (2) defining and partitioning the

decision set. For example, the set D used in Chapter 5 is shown

below,

166

|

I EEE TL. ETM EERE

CALL _| DROP /
\ adh -

== NT TT BET 16 :
BET 1 BET 6 | RET 11

BET 2 BET 7 , BET 12 Of
BET 3 BET 8/ BET 13 BET 18 N

BET 4 BET 9“\ BET 14 °° 19
J []

BET 5, -— BET i BET 20 “
BET 10

Figure 6-3,

The dotted lines in Figure 6-3 indicate how the set was partitioned

into subsets. |

During the learning process an ordered list of action rules |
is acquired which effectively partitions set S into n subsets,

establishing a one-one correspondence between the subsets of S and |
and the subsets of D . It should be clear that the manner in which

the subvector variables are chosen and defined (thus defining 8) |
and the way in which the decision set is partitioned both have a

profound influence on the prospective capabilities of the learning I

system. |
To illustrate, consider the task of partitioning the decision

set D . This set should ideally be partitioned to (a) maximize the |
speed of convergence of the learning system, and (b) permit the

system to become proficient at the problem-solving task being learned. |
An approach to maximizing convergence speed is to generate {rial par- =

titionings. Each partitioning restructures or redefines the trainer's -

decision space, and each newly-defined decision space can be used to
rol

167 wh

’ N BE

estimate the resulting speed of convergence of the system. The size |
of this estimate can be used as one of the criteria for determining |
a good partitioning of D . Another criterion can be the number of

subsets D is partitioned into, where the assumption is that potential

proficiency increases with the number of subsets used.

The speed of convergence can be estimated by sampling the decision

: space of the trainer to determine the approximate number ans size of

decision clusters in the space. Since (1) the numbcr of action rules

nceded to describe the space is roughly equal to the number of clusters

in the space, and (2) the optimal generalization constant K is very

nearly equal to the average cluster width, this sampling provides an

estimate of the speed of convergence of the learning system.

168

BLANK PAGE

BIBLICGRAPHY

Anonymous, 1967. Heuristic programs and algorithms, SICART
Newlsetter, November, pp. 10-25.

Baumann, R., Feliciano, M., Bauer, F., and Samelson, K. 196k.
Introduction to ALGOL, Prentice all, Inc., Englewood Cliff's,
N. J.

Bernstein, A., and Roberts, M. 1958. Computer vs. chess player.
Scientific American, Jund, v. 198, pp. 96-105.

Black, F. 196k. A deductive question answering system. Doctoral
dissertation, Harvard University, Cambridge, Mass.

Bower, G. Ho 1966. Mathematical learning theory. Theories of
Learning, Hilgard, E. R., and Bower, G. H., Chapter ll,
Appleton-Century-Crofts, New York.

Bruner, J. W., Goodnow, J. J., and Austin, G. A. 1956. A Study
of Thinking, Wiley, New York.

Bush, R. R., and Mosteller, Fe. 1955. Stochastic Models for

Learning, Wiley, New York.

Carne, E. B. 1965. Artificial Intelligence Techniques, Spartan
Books, Inc., Washington, D. C.

Chomsky, Ne. 1959. On certain formal properties of grammars.
Information and Control, v. 2 pp. 137-167.

Davis, M., and Putnam, H. 1960. A computing procedure for
quantification theory. ACM Journal v. 7, no. 2, pp. 201-215.

Ekman, T., and Froberg, C. 1965. Introduction to ALGOL Programming,
Studentlitteratur, Lund, Sweden.

Estes, We K. 1959. The statistical approach to learning theory.
Psychology: A study of a Science, Vol. 2 S. Koch (ed.),
McGraw-Hill, New York.

Feigenbaum, E. A. 1959. An information processing theory of verbal
learning. Rand Corporation Paper P-1817, October, Santa Monica,
Calif.

169

Feigenbaum, E. A. 1963. The simulation of verbal learning behavior.
Computers and Thought, Feigenbaum, E. A. and Feldman, J. (eds.)
pp. 297-209.

Feigenbaum, E. A. and Feldman, J. 1963. Computers and Thought,
New Yord, McGraw-Hill.

Feigenbaum, E. A., and Simon, H. A. 1964. An information processing
theory of some effects of similarity, familiarization, and

meaningfulness in verbal learning. Journal of Verbal Learnin |
and Verbal Behavior, v. 3, no. 5, October, pp. 385.306, | "

Feigenbaum, E. A. 1967. Information processing and memory. Fifth

Berkele Symposium on Mathematical Statistics and Probability, |
Ve L, pp. 37-51, University of California, Berkeley, Calif. :

Feldman, J. 1963. Simulation of behavior in the binary choice |experiment. Computers and Thought, Feigenbaum, E. A., Feldman, J.
(eds.) McGraw-Hill, New York, pp. 3%29-3L6.

Feldman, J., Tonge, F., and Kanter, H. 1963. Empirical explorations |
of a hypothesis-testing model of binary choice behavior.

Symposium on Simulation Models: Methodology and Applications to
the Behavioral Sciences, Hoggatt, A., and Balderston, F. (eds.)
Cincinnati, Ohio, South-Western Publishing Co., pp. 55-100.

Friedberg, R. M. 1958. A learning machine, part I. IBM Journal,
June v. 3, pp. 282-287.

Friedberg, R. M., Dunham, B., and North, J. He 1959. A learning
machine, part II. IBM Journal, June, v. 3, pp. 282-287.

Gelernter, H. 1959. Realization of a geometry theroem-proving machine.

Proceedings of the I.ternational Conference on Information
Processing, Paris, UNESCO House, pp. 2735-282.

gelernter, H., Hansen, J. R., and Loveland, D. W. 1960. Empirical

explorations of the geometry theorem-proving machine. RALof the Western Joint Computer Conference, May 1960, pp. 143-147.

Green, B. F. 1963. Digital Computers in Research, McGraw-Hill, New York. |

Hilgard, E. R., and Bower, G. H. 1966. Theories of Learning, Appleton-
Century-Crofts, New York.

Hunt, E. B. 1962. Concept Learning: An Information Processing Problem,
John Wiley & Sons, New York.

170

®

} N oc

&

Hunt, E. B., Marin, J., and Stone, P. J. 1966. Experiments in
Induction, Academic Press, New York.

Ingerman, P. Z. 1966. A Syntax-Oriented Translator, Academic Press,
New York.

Irons, E. T. 1961. A syntax directed compiler for ALGOL 60. ACM
Communications, v. 4, January, pp. 51-55.

Irons, E. T. 1963. The structure and use of the syntax directed
compiler. Annual Review in Automatic Programming, v. 3,
Goodman, R. (ed.) MacMillan Co., New York, pp. 207-228.

Irons, E. T. 1964. Structural connections in formal languages.

J ACM Communications, v. 7, no. 2, February, pp. 67-71.

Kister, J., Stein, P., Ulam, S., Walden, W., and Wells, M. 1957.
Experiments in chess, ACM Journal, April v. 4, no. 2, pp. 174-177.

Kochen, M. 1960. Experimental study of hypothesis formation by
computer. IBM Report RC-294, International Business Machines
Corporation, Yorktown Heights, New York.

Kochen, M. 1961. An experimental program for the selection of
disjunctive hypotheses. Proceedings of the Western Joint
Computer Conference, v. 19, pp. 571-578.

McCarthy, J. 1959. Programs with common sense. Proceedings of the
Symposium on Mechanisation of Thought Processes, National
Physical Laboratory, Teddington, England, Blake, D., and Uttley, A.
(eds.) pp. 75-84.

McCarthy, J. 1962. Towards a mathematical science of computation.
Proceedings ICIP.

McCarthy, J. 1962. LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Massachusetts.

McCarthy, J. 1965. Problems in the theory of computation. Proceedings
of the IFIP Congress, pp. 219-222.

Minsky, M. L. 1961. Steps toward artificial intelligence. Proceedings
of the IRE, v. 49, no. 1, January.

Newell, A., and Simon, H. A. 1956. The logic theory machine. IRE
| Transactions on Information Theory, v. IT-2, no. 3, pp. 61-79.
|

Newell, A., Siw, J. C., and Simon, H. A. 1957a. Empirical explorations
of the logic theory machine. Proceedings of the Western Joint
Computer Conference (WJCC) pp. 218-239,

171

ErET I p— si EE ae en ——ee ————— en oe nnws. I ————I. ss Egle

Newell, A., and Shaw, J. C. 1957Tb. Programming the logical theory)
machine. Proceedings of theWestern Joint Computer Conference
(wicc), pp. 230-2koO.

Newell, A., Shaw, J. C., and Simon, H. A. 1958. Chess-playing programs
y and the problemof complexity. IBM Journalof Research and
: Development, v. 2, no. 4, pp. 320-335.

Newell, A., Shaw, J. C., and Simon, H. A. 1959. Report on a general
problem-solving program. Rand Corporation Paper P-1584, Santa
Monica, California.

Newell, A., and Simon, H. A. 1961. GPS, a program that simulates
human thought. Rand Corporation Paper P-2257, Santa Monica,
California.

Newell, A. 1962. Some problems of basic organization in problem-
solving programs. Rand Report RM-3283-PR, December, Santa
Monica, California, p. 8.

Newell, A., and Ernst, G. 1965. The search for generality. Proceedings
of the IFIPS Congress 65, v. 1, pp. 17-24.

Newell, A. 1966. On the analysis of human prcblem solving protocols. |
Proceedings International Symposiumon Mathematical and Computational

Methodsin the Social Sciences. |
Newell, A. 1967. Studies in problem solving: subject 3 on the crypt-

arithmetic task Donald+ Gerald = Robert. Center for the Study

of Information Processing, Carnegie Institute of Technology, {
Pittsburgh, Pa.

Rapoport, A. 1966. Two-Person Game Theory, University of Michigan {Press, Ann Arbor, Michigan.

Reitman, W. R. 1965. Cognition and Thought, An Information Processing
Approach, Wiley, New York.

Robinson, G. A., Wos, L. T., and Carson, D. F. 1964. Some theorem-

proving strategies and their implementation. AMD Technical Memo |
no. 72, Argonne National Laboratory.

Robinson, J. A. 1965a. A machine-oriented logic based on the resolution [4
principle. ACM Journal, v. 12, January, pp. 23-41,

Robinson, J. A. 1965b. Automatic deduction with hyper-resolution.
International Journal of Computer Mathematics, v. 1, July 3

L

172

, - }

t

| Rosenblatt, F. 1958. The perceptron: a probabilistic model for
information storage and organization in the brain. Psychol.
Rev., v. 65, pp. 386-408.

Rosenblatt, F. 1962. Principlesof Neurodynamics: Perceptrons
and the Theoryof Brain Mechanisms, Spartan Press, New York.

Samuel, A. L. 1959. Some studies in machine learning using the
game of checkers. IBM Journal, v. 3, no. 3, pp. 210-229.

Samuel, A. L. 1960. Programming computers to play games. Advances
in Computers Vol. 1, Alt. F. L. (ed.), Academic Press, New York,

Samuel, A. L. 1967. Some studies in machine learning using the game
’ of checkers, II - Recent Progress. IBM Journal, November, v. 11,

no. 6, pp. 601-617.

Selfridge, O. G. 1959. Pandemonium: a paradigm for learning. Proc.

Symposiumon Mechanisation of Thought Processes, H. M. Stationery
Office, London.

Shannon, C. E. 1950. Programming a digital computer for playing

chess. Philosophy Magazine, March, v. 41, pp. 356-375.

Simon, H. A. 1961. Experiments with a heuristic compiler. Rand
Paper, P-2349, Santa Monica, California.

Simon, He A. 1963. The heuristic compiler. Rand Corporation Report,

| RM-3588-PR, Santa Monica, California.
Simon, H. A. and Kotovsky, Ke. 1963. Human acquisition of concepts

! for sequential patterns, Psychol. Rev. vol. 70, no. 6, pp. 53u4-5kL6.
Slagle, J. R. 1961. A computer program for solving problems in

freshman calculus. Doctorial Dissertation, MIT, Cambridge,

| Massachusetts.
Slagle, J. R. 1963. Game trees, m & n minimaxing, and the m & n

| alpha beta procedure. Lawrence Radiation Laboratory AI Reportno. 3, November, Livermore, California.

Slagle, J. R. 1967. Automatic theorem proving with renamable and
semantic resolution. ACM Journal, October, v. 14, no. &,

| Slagle, J. R., and Bursky, P. 1968. Experiments with a multipurpose,
theorem-proving heuristic program. ACM Journal, v. 15, no. 1,

. pp. 85-99.

I 175

Stefferud, E. 1963. The logic theory machine: a model heuristic
program. Rand Corporation report RM-3731-CC, Santa Monica,
California.

Tonge, Fo M. 1961. A Heuristic Program for Assembly Line Balancing,
$ Englewood Cliffs, N. J., Prentice-Hall.

Trakhtenbrot, B. A. 1963. Algorithms anu Automatic Computing Machines,
D. C. Heath and Company, Boston.

Turing, A. M. 1950. Computing machinery and intelligence. Mind,

Uhr, L., and Vossler, C. 1961. A pattern recognition program that
generates, evaluates, and adjusts its own operators. Teleological

mechanisms, Annals of the New York Academyof Science, v. 50,
no. 189, pp. 555-569.

Wang, H. 1960a. Toward mechanical mathematics. IBM Journalof
Research and Development, v. 4, no. 1l., pp. 2-22.

Wang, H. 1960b. Proving theorems by pattern recognition-I. ACM
Communications, v. 3, April 1960, pp. 220-234,

Wang, H. 1961. Proving theorems by pattern recognition-II. Bell
System Technical Journal, v. 40, Jan. 1961, pp. 1-42.

Wirth, N., and Weber, H. 1966. EULER: a generalization of ALGOL,
and its formal definition: part I. ACM Communications, v. 9
no. l, January, pp. 13-25.

Wirth, N., and Weber, H. 1966. EULER: a generalization of ALGOL,
and its formal definition: part II. ACM Communications, v. 9,
no. 2, February, pp. 59-99.

Wos, L., Carson, D., and Robinson, G. 1964. The unit preference
strategy in theorem proving. AFIPS Conference Proceedings, v. 20,
Spartan Books, Washington, D. C., pp. 615-621.

174

}

BE

+r

{=

)

| |
|

APPENDIX A

MODELS OF STRATEGY LEARNING

I. Generalization Technique for Growing Concept Trees

The tree-growing technique discussed in section 4.2 is summarized

below. This technique is applied to the current unordered list of

: S=-£. connections.

1. Group the situation descriptions (or S's) into sets determined by

the actions associated with them, i.e., all the S's connected

to action Ai form a set called Ai . The situation descriptions

comprising all these sets will be called the clacs of relevant

S's .

2. If all the S's in the class of relevant S's are members of one

set then grow a terminal node containing the name of that set.

3. If it is not the case that all the S's in the class of relevant

S's are members of one set then grow a test node using as the

test the attribute value determined by the procedure described below.

Eliminate from consideration any value which occurs in every S

of every set. This test node has the form:

does

attribute T

have value

p)

vy?
a

+ AN
i 175

BE—————————————— EE -

| L. If a test node was grown in step 3, sort all the S's in the current |

] class of relevant S's down the node to either the positive side or I
the negative side. However, if an S has * as the value of the

| test attribute T than sort it down both sides of the node. Now take I
all S's which sorted down the positive branch and apply steps 1

through 4 again, using these S's as the current class of relevant } |
S's and growing the next node from this positive branch. Finally, | ”
take all S's which sorted dowr. the negative branch and apply steps

1 through 4 again, using these S's as the current class of relevant |
S's and growing the next node {rom this negative branch. |

|
CHOOSING ATTRIBUTE VALUES. The attribute value to use as a test at a |

node (see ster 3 above) is ascertained by applying the following procedure |

to the sets which partition the current class of relevant S's : |
(a) For each attribute value calculate the maximum |

value of bc , the value of av , and the value |
of sv . For a particular set containing attri- |

P bute value vy of attribute T , |

(numbe> of times v, occurs as a value of T in the set) |
°C = (total number of S's in the set) |
The maximum value of bLc¢ for attribute value vy is just the

largest value obtained when the above fermula is applied to :
every set. The quantities av and sv are defined as follows

for attribute value v, of attribute T .

|

176 }

|
.

|

| (the number of sets where (the total number of *'s |
*¥ 1s used at least once _ used as the value of T, |
as the value of T) counting all sets)

oT (total number of S's in all the sets hy
(number of times v, occurs as a value of T in all sets

except the set used to detedwine the maximum value of bc) |
ST (total number of S's in all the sets

|
(b) Choose as the test at the node that attribute value which

"og maximizes the arithmetic expression ae , where ae = bc-av-sv .

If more than one value maximizes ae , one of them coulda be

| selected at random. Instead, however, select one according
to some arbitrary deterministic criterion, such as h's before,

p's , p's before b's , and in case of a tie on letters, low

| digits before high digits.
This procedure leads to the selection of tests which tend to minimize

| the size of the tree being grown. This is because the procedure favors

| tests on values which occur often in one set but seldom in all other
sets, a condition conducive to minimal tree generation.

| EXAMPLE OF TREE GROWING. To clarify this tree-growing procedure to
| above rules will be applied to the list of S-A connections shown below. -

The attributes considered are H , P , and B .

| hl,*,b2 «+ Al
hl,p2,* = Al

h2,p2,b2 =+ A2

| hl,pl,bl = A3

|
177

p

| oi lb LL

h2,pl,b2 =» A>

h2,%,bl + Ab

h3,*,% + Ab

The S's are grouped into sets as indicated (step 1):

Al A2 A3 Ak

hl,%*,b2 h2,p2,b2 hl,pl,bl h2,*,bl g

hl,p2,* h2,pl,b2 ho ,%,%*

Since the S's are not all members of one set, a terminal node is

not grown (step 2). Instead, a test node is grown (step 3) using hl

as the test, since for hl the maximum bec is 2 or 1 (from set

Al), av is = or 0, and sv is 3 , and these values for bc ,
av , and sv produce the largest ae . The value of ae for hl is

thus 1-0-7 or 2 » while the value of ae for the other attribute
values is less. All the S's are sorted down the test node (step 4)

to produce the following result:

AAl A> A2 A> Al

hl,*,b2 hl,pl,bl h2,p2,b2 h2,pl,b2 h2,%,bl

h3,%,%

Now steps 1 through U4 are applied to the S's that sorted dowa the

positive branch of the hl test. This leads to the growing of a new

2 1]

test node. Since the value of ae is 1-3-0 or 3 for both pl and bl

178

i"

! - .

|)

and is 330 or =z for both pe and b2 the test is made on

| either pl or bl {in this case pl , since a priority of p's
before b's has been established). The attribute value hl is

| not considered since it appears in every S of every set being

| I currently processed. Since pl is picked as the test at this node,
| after the S's are sorted down the node the result is:

' A
) Al A> Al

hl,*,b2 hl,pl,bl hl,*,b2

i hl,p2,*

} Now steps 1 through 4 are applied to the S's that sorted down
the positive branch of the pl test, and a test node based on

| either bl or b2 must be grown. The attribute values hl and pl
: are not considered since they appear in every S of every set being

| currently processed. Value bl is picked as the test (since a

) priority of low digits before high digits has been established)
and the S's are sorted down the node, resulting in:

bl ?

! SAG

1 A3 Al
hl,pl,bl hl,*,b2

I 179

—. a —

RE rm RE

Now steps 1 through 4 are applied to the S's that sorted down

the positive branch of the bl test, but since all the S's belong

to one set, a terminal node is grown (step 2) containing A3 .

Similarly, when steps 1 through 4 are applied to the negative branch

of the bl test a terminal node containing Al is grown. Then these

steps are applied to the negative branch of the pl test and another

terminal node containing Al is grown. Finally steps 1 through &

are applied to the negative branch of the hl test, and three more

test nodes plus four terminal nodes are grown. The complete tree is

shown below.

(nm)

+ - * N

+ - + KU

Go)

Figure A-1l.

180

PY

b - :

It is easily demonstrated that all the S's from the original S-A

| connection list sort down the tree into terminal nodes corresponding
to the actions with which they were associated.

IZ. A Game-Playing Interpretation of the Environment Defined in

Figure 4-3.

| The game under consideration here is an extremely simplified
; version of draw poker where H is the value of your hand, FP the

amount of money in the pot, and B the amount last let by the opponent.

Attributes: H(hand) P(pot) F(opponent's last bet)

Range of Values: 1 - 50 l - 60 1 - 10

Abstract Values: hl(good) pl(large) bl(large)
h2(fair) p2(small) bc (small)
h3 (poor)

Universe of Situations: Al 5 Al(drop)
(bet high)

Heuristics: hand-good and bet-small # bet high
hand-good and pot-small + bet high
hand-fair and pot-small and bet-small+ bet low

hand-good and pot-large and bet-large = call
hand-fair and pot-large and bet-small+ call
hand-fair and bet-large = drop

hand-poor = drop

181

a

APPENDIX B

HEURISTICS FOR DRAW POKER

I. Definition of the Game

l In the version of draw poker being considered a game consists
(|

| of a predetermined number of rounds-of-play between two players. Each
round-of-play (r-o-p) is comprised of the following sequence of events.

| (1) Deal: Each player receives 5 cards (a hand) and antes
1 chip into the pot. The cards are dealt "face down",

i that is, each player sees only his own hand.(2) Betting Interval: Each player alternately has the option of
betting, calling, or dropping. A call terminates the

i betting interval and a drop terminates the round-of-play.
(3) Replace: Each player may remove from O to 3 cards from

B his hand and receive new cards to replace them.
(4) Betting Interval: Each player alternately has the option of

betting, calling, or dropping. As before, a call

i terminates the betting interval and a drop terminatesthe round-of-play.

(5) Showdown: Both players display their hands, and the one
with the highest ranking hand wins the money in
the pot.

| Betting is defined as placing in the pot an amount of money
larger than the amount last placed there by the opposing player.

| The term "bet stands for the difference between the amount placed

] in the pot and the amount previously placed there by the opporent.
| (In the standard poker jargon this is usually called the raise rather

than the bet.) Only integer bets of from 1 to 20 are allowed.
|

A call is defined as placing in the pot an amount of money equal

| to the amount last placed there by the opposing player. Thus a call

can be thought of as a bet of zero. A call always terminates the

132

i

) N

]i

betting interval and after cards have been replaced leads directly to {

the showdown. However, a call may not be made until a bet has been 1
made in the current betting interval. |

A drop is defined as withdrawing from the present round-of-play]
relinquishing all money in the pot to the opposing player. No hands

are displayed when a player drops. All the standard poker hands from]

one-of-a-kind to a royal flush are recognized, but no wild cards are 1
permitted. -

II. Informal Description of the Bet Decision Heuristics

The heuristics used by the computer program in making the bet |

decision in draw poker are listed below.]
l. A player with a hand that is sure Lou win should bet

the largest amount possible without causing the opponent to drop. 3
However, if the pot is extremely large a call should be made. |

2. A player with a "hand that has an excellent chance of winning »

should bet the largest amount possible without causing the opponent |
to drop. However, a call should be made after the pot becomes
quite large.

3. A player with a hand that has a good chance of winning should X
bet a medium amount, unless the opponent is easily blvffad and

cards have not yet been replaced. In this case a smal' bet should
be made. However, if either the pot becomes quite large or both i

the pot and the opponent's last bet are fairly large then a call
should be made. The call should be made sooner if the opponent

replaces fewer than 2 cards or has not yet replaced cards. Further-

more, a call should be made if the opponent is a conservative

player and replaces two cards.)

4, A player with a hand that has a poor chance of winning should
call, unless the opponent has not yet bet. In this situation
a small bet should be made. However, if cards have been replaced, r

the opponent's last bet is large, and the pot-bet ratio is small |
a drop should be made. Furthermore, if the pot and the opponent's
last bet are small, and the opponent ig easily bluffed a bluff bet .
(a large vet) should be made. But if the opponent is a conservative
player and replaces O or 2 cards and the pot-bet ratio is large, S
a call should be made.

4

183 i

5. A player with a hand that has almost no chance of winning
should drop unless both the pot and the opponent's last bet are
very small. In this case a small bet should be made if the

opponent has not yet bet or a call made if the opponent has bet
and the pot-bet ratio is large. However, if the opponent is very
easily bluffed and replaces 3 cards, and both the pot and the

l opponent's last bet are small then a bluff bet (a fairly large
or a very large bet) should be made.

| 6. A hand is sure to win if its value is large, and is very muchlarger than the expected value of the opponent's hand.

7. A hand has an excellent chance of winning if its value is not,

I large, but is very much larger than the expected value of the
opponent's hand.

| 8. A hand has a good chance of winning if its value is much larger
than the expected value of the opponent's hand.

i 9. A hand has a poor chance of winning if its value is only¢ lightly larger than the expected value of the opponent's hand.

10. A hand has almost no chance of winning if its value is not

i larger than the expected value of the opponent's hand.
11. The expected value of the opponent's hand decreases as the average

| bet made during an r-o-p times 'the number of bets made bythe opponent during an r-o-p' times 'the number of times the
opponent was caught bluffing during the r-o-p' increases.

| 12. The probability that the opponent is bluffing increases as
"the number of times the opponent was caught bluffing' increases
and decreases as 'a measure of conservative style by the opponent’

! increases.
15. A measure of conservative style ty the opponent increases as

| 'a measure of the correlation between the opponent's hands andbets' and 'the number of times the opponent has dropped' increase.

14. The probability of being able to bluff the opponent increases

3 as 'a measure of conservative style by the opponent' increases and
decreases as 'the expected value of the opponent's hand' increases.

| 15. The largest bet possible without causing the opponent to dropincreases as 'the probability of being able to bluff the opponent!
decreases.

i 16. A small bet is one ranging from 1 to 5 .

| 17. A medium bet is one ranging from 3 to 9 .
18. A fairly large bet is one ranging from 10 to 15.

1 "

| oo

) []

=

®

19. A large bet is one ranging from 8 to 1k . J

20. A very large bet is one ranging from 14 to 20 . .

III. LASH Description of the Bet Decision Heuristics |

The heuristics used by the computer program in making the bet decision 1
in draw poker are presented below in LASH.

begin 'CALL' : POT « POT+(2XLASTBET);LASTBET « (0), I
'BETLAP' : POT + POT+(2XLASTBET);LASTBET « (LAP),
'BETSB' : POT « POT-+(2XIASTBET);LASTBET « (SB),
'BETMB' : POT « POT+(2xLASTBET);LASTBET « (MB),
'BETBB' : POT « POT+(2xLASTBET);LASTBET « (EB),
'BETBBS' : POT « POT+ (2X LASTBET) ; LASTBET «~ (BBS), 1
'BETBBL' : POT « POT+(2xXLASTBET); LASTBET « (BBL), :
'DROP' : VDHAND « (0); LASTBET « (0) .

if H = SW then
(if P > BOA BO then 'CALL' else 'BETLAP') otherwise ‘

if H = EC then
(if P > K1 A BfO then 'CALL' else 'BETLAP') otherwise .

if H = GC then :
(if P>K2A BFO A (R=OVR=1) then 'CALL else

(if P>5VB>TA (RO V R=1l) then 'CALL' else
(if B#O A R=2 A OCS > K3 then 'CALL' clse

(if ¥»> Kt A BO A R < O then 'CALL' else :
(if BFO> K5 A R < O then 'BETSB' else

(if P > K6 A BfO then 'CALL' else
(if P< 15A B> 10 then 'CALL' else 'BETMR')))))))otherwise

if H = PC then
(if B#£O A FB> 1 A R=0 ther. 'CALL' clse

(if BFOA PB> 1 A R=2 A OCS > K7 then 'CALL' else
(if P< KLbAB< 5A BOA BFO> K5 A PB> 3 A Rf-1 then 'BETBB' else

(if P<K9A B<KLOA BFO > K11 then 'BETBE' else
(if B> 9A PB< 2A Rf-1 then 'DROP' else

(if B#O then 'CALL' else "BETSB')))))) otherwise

if H = NC then
(if R=0 then 'DROP' else

(if R=2 A OCS > Kl2 then 'DROP' else
(if P< 13A B< 5A BOA BFO> K5A R=? then 'BETBBS' ¢lse

(if P < Kl4 A B < KIS A BFO > Ki6 A Rf-1 then 'BETBBL' else :
(if BFO A PB > K17 then 'CALL' else

(if P<K32A B<5A BO then "CALL' else
(if P > K32 A B < K13 then 'BETSB' else

(if P< K14 A B < KI3 A Rf-1 then 'BETSB' else 'DROP')))))))).
r

105 .

{

{

SW is an H such that (H-OH > K18 A H > K19),
i EC is an H such that (H-OH > K18 » H < K19),

GC is an H such that (K20 < H-OH A H-OH < K18),
PC is an H such that (K21 < H-OH A H-OH < K20),

I NC Is an H such that (H-OH < Kl),OH equals K22-(K23 x OAVGBET X OTBET X OB),
OB equals (K2L x OBLUFFS) - (K25 x CS),

i CS equals (K26 x OCORREL) + (K27 x OD),BO equals (K28 x Cs) - (K29 x OH),
LAP equals K30 - (K31 x BO),
SB equals random (1,5),

| MB equals random (3,9),
BBS equals random (10,15),
BB equals random (8,14),

1 BBL equals random (14,20),H is a VDHAND such that (VDHAND > 0),
P is a POT such that (POT > -1),
B is a LASTBET such that (LASTBET) > O A LASTBET < 21),
BFO is a BLUFFO such that (BLUFFO > O V BLUFFO < 0),
PB is a POTBET such that (POTBET > 0),
R is an ORP such that (ORP > -1 A ORP < 4),

i OCS is an OSTYLE such that (OSTYLE < Ov OSTYLE < 0) end.

i It is clear that 2 one-to-one correspondence exists between
the first five informally stated heuristics in Appendix B, Part II (the

! heuristic rules) and the five major if-statements in the above routine.

I Similarly, there is one definition above for each of the other informallystated heuristics (the heuristic definitions). The last seven definitions

| given above (one for each subvector variable) do not correspond to any
of the informal heuristics. Instead, they correspond somewhat to those

| game rules which define the allowable values for the game variables.

I IV. Production Rule Description of the Bet Decisicn Heuristics

| The production rules which correspond to the LASE routine shown in
1 Appendix BR, Part II] are presented below. The rirst 62 rules are

]

r; separated into {ive groups, each group having been generated from one

y of the five major LASH if-statements. The remaining rules correspond,

in a one-to-one fashion, to the definitions set forth in the ILASh routine.

2 186

|

) . |

—

|

1. a. (SW P8 BH * * * *) + (* POT+(2xLASTBET) O * * % %) call :
be. (SW * * * % % *) + (* POT+(2xLASTBET) LAP * * * *) bet _

2. a. (EC P1 BS * * %* *) + (* POT+(2xXLASTBET) O * * % %) call a)
b. PL + P, P>Kl bf

Ce BS + B, B> 0 bf ~v

de (EC * * %* % x *) + (* POT+(2XLASTBET) LAP * * * %) bet od

3. a. (GC P2 BS * * QR1 *) + (*% POT+(2XLASTBET) O * * * *) call on
be. P2 + P, P > K2 bf i
Cc. ORL + R, R=0o0or1l bf “i
d. (GC P9 B6 * * ORL *) + (* POT+(2xLASTBET) O * * % x) call
e. PQ + P, P> 15 bf “}
f. Bb = B, B> 17 bf 4

g. (GC * BRS * ® QOR2 (CS1) + (* POT+(2XLASTBET) O * * * %) call

i. cS1 + 0CS, 0CsS > K3 bf

j» (GC P3 BS * * QR? *) + (% POT+(2XLASTBET) O * * * *) call :
k. P> + Pp, P> Kh bf
1. OR? + R, R= -1 bf |

m. (GC * % BOL * OR3) + (* POT+(2XLASTBET) SB * * * *) bet y
n. BO1 + BFO, BFO > K5 bf

o. (GC P4 BS * * * ¥) + (* POT+(2XLASTBET) O * * * *) call ~]
oF Ph + P, P > KE bf 1
q. (GC PY B7 * * % #) + (* POT+(2XLASTBET) 0 * % * *) call
Te B7 + B, B> 10 bf oh

s. (GC * = * %* * *) + (* POT+(2XLASTBET) MB * * * *) bet

4. a. (PC * B5 * PB2 ORL *) + (* POT+(2XLASTBET) O * * * *) call
b. PB2 + PB, PB > 1 bf
C. ORL + R, R= 0 bf
d. (PC * BS * PB2 OR2 CS2) += (* POT+(2xLASTBET) O * * % *) call
e. CS2 + 0CS, OCS > K7 bf

f. (PC P6 BY BOL PB3 ORE *) = (* POT+(2XLASTBET) BB * % * *) bet
ee PC + P, P< Klk bf
h. By + B, B< 5A B#O bf
i. PB> + IB, PB > 3 bf

Je ORC + RE, R# -1 bf |
k. (PC P5 B2 BO2 * * *) + (* POT+(2XLASTBET) BB * * * %) bet
5 P5 + P, P < K9 bf

mM. B2 = B, B < K10 bf
n. BO2 + BFO, BFO > K11 Lf

o. (PC * B8 * PB4 ORE *) + (0% 0% % * ¥) drop
De BE + B, B> © bf
qe PBL + PB, PB < 2 bf
r. (PC * BS * % ¥ %) + (* POT+(2XLASTBET) O * * % *) cull
se (PC * * * % % *) + (* POT+(2XLASTBET) SB ¥ * * *) bet

5. a. (NC * % %* * QR4 *) + (0% 0% * % %) drop
b. (NC * # %* * OR2 (53) + (0% 0% % % %) drop
c. CS3 + 0CS, 0Cs > K12 bf

d. (NC P10 B9 BOl * OR7 ¥) = (* POT+(2xLASTBET) BBS * * * *) bet
|

187

4

2 J

ji ee TEE TR ER EL SRE LRT.TE RR SE Tse —— EE

| e. PIO + P, P< 13 bf
3 g. (NC P6 BM BOZ * OR6 *) + (% POT+(2XLASTBET) BEL *¢ * * *) beth. P6 + P, P<KIik bf

i. Bi + B, B<K5 bf
Jo BO3 - BFO, BFO > r16 bf
ke (NC * BS PBL * *) + (* POT+(2XLASTBET) O * %* * *) call
1. PBl + PB, PB > K17 bf
m. (NC P7 BO * * * ¥) + (* POT+(2XLASTBET) O * %* * %) call

0. (NC P7 B3 * * * %) + (* POT+(2xLASTBET) SB * * * %) bet

[q. (NC P6 B3 * * CRG *) + (* POT+(2XLASTBET) SB * * * *) betA r. (NC * # % % % %) + (0%0% % * x) drop
|

i 6. SW+ H, H- OH> K18 and H> K19 bf
Te EC + H, H- OH> K18 and H < K19 bf

| 8. GC = H, K20 <H - OH< K18 bf
9. PC+» H, K21 < H - OH < K20 bf

| 10. NC = H, H- OH<K2 bf

| 11. | OH + K22 - (K23 x OAVGBET X OTBET X OB) ff
12. OB -+ (K24 x OBLUFFS) - (X25 x CS) ff

| 13. cS + (X26 x OCORREL) + (K27 x OD) ff
| 14, BO + (K28 x CS) - (K29 x OH) ££

: 15. LAP = K30 - (K31 x BO) ff

17. MB = random(3,9) rf

i 18. BBS + random(10,15) ff
ly. BB = random(3,14) ff

| 20. BBL - random(14,20) ff
21. H - VDHAND, VDHAND > O bf

[23, 'B + LASTBET, O < LASTBET < 21 bf
ol, BFO -+ BLUFFO, BLUFFO < O V BLUFFO > 0 bf

| 188

k . La

BLANK PAGE

| i
\ 25. PB + POTBET, PGIBET > O bi

26. R + ORP, -1< ORP< 4 pt |
eT. OCS «+ O3TYLE, OSTV1E < O Vv OSTYLE > O bf ad

4

V. Values of Constants Kl Through K32 4
’

The values of the constants used in defining the production rules oa

representing the heuristics for draw poker are given below.

wn

.

Kl = 40 K17 = 4

- K3 =1 K19 = 376 1)

KS =5 K21 = 0 —
K6 = 30 K22 = 6

K9 =23 K25 = 2)
K10 = 7 K26 = 1 i
Kll = 10 K27 = 2
Ki2 = 1 K28 = 8 a

Ki3 = 1 X29 = 1 {
Kid = 21 K30 = 5

K15 = & K31 = 1 -

Tr

189 1

»

! i _

1
| APPENDIX C
; :

| L SAMPLE OF GAMES PLAYED DURING
| i PROFICIENCY TEST FOR BUILT-IN HEURISTICS

[The following program output is from a game (5 hands) of draw

| I poker played between the program and a human opponent via the Stanford
PDP-6 timesharing system. This game is one of a five-game series used

l to test the proficiency of the program. The left column on each page
is the series I game of the test, while the right column on each page

i is the corresponding series II game. The dialogue printed by the pro-
gram starts at the left margin of each column, while the dialogue typed

L by the human opponent is indented five spaces.
| The abbreviations used to represent playing cards are H: hearts,

S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of

| spades, Dll a jack of diamonds, and Hl4 an ace of hearts.
Note that each hand dealt the human player in series I (left

} column) is identical to the hand dealt the program in thz corresponding

| r-o-p in series II (right column), and vice versa. Thus the hands
held by the program in each r-o-p can ve determined.

I

}

!

!

»
190

}

Fr = B

A y "Sh gS A E ..TIRE Ar

an |

| i |L1

[

(REFEREE 5) (REFEREE $5) 3

YOUR HAND !S HS H14 C12 Ha D9 YOUR HAND 1S D2 Si2 Dé D8 C7 -p
y
Lo

1 BET 1. 1 BET 2.

| THE POT EQUALS 2. THE POT EQUALS 2. :
YOUR BET ooo YOUR BET +0

,) CALL an

I REPLACE 3. CARDS 4
: WHAT CARDS DO YOU WANT REPLACED see

(D2 D6 CT) 1
I CALL iy
1 REFLACE 3. CARDS YOUR NEW CARDS ARE C6 C3 Sa
WHAT CARDS DO YOU WANT REPLACED ee.

>”

(HS Ha D9))q wh
YOUR NEW CARDS ARE Ca Cla H17 1 BET 7.

THE PCT EQUALS 6.

YOUR BET eee 1
o

DROP

I BET 3.

THE POT EQUALS 6. I WIN rm

YOUR BET eee MY SCORE IS 3. 1
YOUR SCORE IS A MERE -3.

7
A

{

-
YOUR HAND IS C10 HI2 D2 S10 S12

THE POT EQUALS 2. N

) 1 DROP YOUR BET eee
YOU WIN

MY SCORE IS -6. | 5 .
YOUR SCORE IS 6.

YOUR HAND IS Ca i4)) ST SS S8 1 DROP
THE POT EQUALS 2. YOU WIN
YOUR BET eo. MY SCORE IS 2.

YOUR SCORE IS A MERE «2. -
|

YOUR HAND iS D4 S3 D3 D7 DS

Jimi

191]

3 ; ’

s, - . ec r———TOTSTI NES

| -1 BET 4, Fig‘THE POT EQUALS 4. P LS 2.

CALL CALL

WHAT CARDS DO YOU WANT REPLACED «s. I REPLACE J. CARDS
Y WHAT CARDS DO YOU WANT REPLACED «ee

(Ca ST SS

| (D4 D7 DS)
YOUR NEW CARDS ARE S13 C5 HY

1 REPLACE 1. CARD YOUR NEW CARDS ARE C12 D9 C3
THE POT EQUALS 12.

YOUR BET coe

1
1 BET 3.

THE POT EQUALS 8.

YOUR BET cee

é

1 BET 8.

THE POT EQUALS 14.

YOUR BET ces

DROP
1 CALL

1 WIN MY HAND 1S S14 S13 HS C8 C11
MY SCORE IS 1. YOU WIN
YOUR SCORE IS A MERE -1. MY SCORE IS -11.

l YOUR SCORE IS 11.
YOUR HAND 1S D10 C2 Si) S14 D8

YOUR HAND IS C9 Hé6 Hl4 HT HS

THE POT EQUALS 2.

YOUR BET eee

1 BET 2. 3
THE POT EQUALS 2.

CALL

i 1 REPLACE 3+. CARDS 1 BET 2.
WHAT CARDS DO YOU WANT REPLACED see THE POT EQUALS 8.

YOUR BET eee

(D160 C2 D8)

| CALL
YOUR NEW CARDS ARE HS C8 C1}

WHAT CARDS DO YOU WANT REPLACED ceo

| C9
1 BET 3. YOUR NEW CARDS ARE Ha
TSE POT EQUALS 6. I REPLACE 3. CARDS
YOUR BET eee THE POT EQUALS 12.

YOUR BET eee

5
8

192

y 8

Rl AAE Te YE, Gy |Ps

|

1 BET 3. I CALL |
THE POT EQUALS 22. MY HAND 1S C14 D14 S6 DI12 S4
YOUR BET +o YOU WIN

MY SCORE IS =2S5.

‘ YOUR SCORE IS 25. 1“a

YOUR HAND 1S $3 C13 Ha H9 Cla I
1 BET 3.

THE POT EQUALS 48.

YOUR BET ose IA 1 BET 3.
THE POT EQUALS 2.

MY HAND 1S $3 D3 Ci2 LY C3 YOUR BET oe.
I WIN

MY SCORE IS 24. CALL |
) CORE IS A M “2d :

yours a ERE -2 1 REPLACE ©. CARDS

WHAT CARDS DO YOU WANT REPLACED eee 1R (S3 Ha HY)
YOUR HAND 1S Cla S2 D6 D14 C7

THE POT EQUALS 2. YOUR NEW CARDS ARE S2 Dla Hla

YOUR BET oo» | T
wh

4

1 BET 18. -

THE POT EQUALS 8.]YOUR BET eee .

I CALL ee on

WHAT CARDS DO YOU WANT REPLACED «ee |
¢S2 Dé C7)

YOUR NEW CARDS ARE $6 DI12 Sa Tr
1 REPLACE 1. CARD I DROP
THE POT EQUALS 10. YOU WIN

: YOUR BET eee MY SCORE 1S -47.
YOUR SCORE 1S 47. .

. YOU WIN THE GAME |
NIL

I
I BET 3.

THE POT EQUALS 20.

YOUR BET ee |2 A

193

=

Ld LE JET BE

J] BET J.

THE POT EQUALS J0.

YOUR BET ooo

CALL

MY HAND 1S Hid HE HT? M6 Ha

I WIN

MY SCORE 1S 42.

YOUR SCORE IS A MERE -4g.

YOUR HAND 1S Hill D3 C8 C7? Dé

1 BET 1.

THE POT EQUALS 2.

YOUR BET +0

CALL

1 REPLACE 3. CARDS

WHAT CARDS DO YOU WANT REPLACED eee

(D3 C7 04)

YOUR NEW CARDS ARE D9 Ca Ci)

1 BET J.

THE POT EQUALS a.

YOUR BET eo

4

1 BET 3.

THE POT EQUALS 28.

YOUR BET +00
oO

CALL

MY HAND 1S Cla C13 S2 Dia HiIA

1 WIN

\ MY SCORE IS 359.
YOUR SCORE 1S A MERE -59.

1 WIN THE GAME

NIL %

yf BE 7) -20r emmy AIPGE SOY RED SINTETLE YT Sr p—— - — CE J————

¥ i APPENDIX D
| TRAINING TRIALS :

y FOR MANUAL-TRAINING HEURISTICS

| ly :

EL 1 The following program output is from the first 8 training trials
given the learning program by a human trainer via the Stanford PDP-6

| timesharing system. The dialogue printed by the program starts at the

| 1 left margin, while the dialogue typed by the human trainer (who also
acts as the program's opponent) is indented 5 spaces.

ra 3 The abbreviations used to represent playing cards are H: hearts,
S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of spades,

; I D11 a jack of diamonds, and Hll4 an ace of hearts.

] Each time the program places a bet it first prints (1) the current
csnumber, i.e., the number of the action rule which was used in making

| the bet decision, and (2) the hand it currently holds. The action
| rules are considered to be numbered from top to bottom, starting with 1.

| 195

a RAITT

3 J iH ; | | 2 ho

(REFEREE 5) [

YOUR HAND IS S9 D2 H6 C9 P13

CCSNUMBER 1+)

CC3 H3 HI13 H7 HD)]
+ BET 3.
OK ? |

(BET SB BECAUSE YOUR HAND 1S FAIR», AND THE POT IS SMALL)]

CCSNUMBER {+)]
CC3 H3 H13 H? HD)

I BET 1.]
THE POT EQUALS 2.

YOUR BET ee:

|

CCSNUMBER 24)

(C3 H3 H13 HT H2) |
I BET 3.)
0K? | -

! (CALL BECAUSE YOUR HAND IS FAIR, AND THE LASTBET IS LARGE, AND |
ORP IS (EQUAL TO =1))

CCSNUMBER 24))

(C3 H3 HI13 H7 H2) |
I CALL

I REPLACE 3. CARDS =

WHAT CARDS DO YOU WANT REPLACED ose |
(D2 H6 D13)

‘

YOUR NEW CARDS ARE DS C6 S10 |

E ~ i wm EP

¥ TEN KLIS Mee mamma i ps N

|

| (CSNUMBER 3)
(C3 H3 S14 S12 HA)

i 1 BET 1s
| 1.2

l (BET SB BECAUSE YOUR HAND 1S FAIR, AND THE LASTBET 1S SMALL)

{| CCSNUMBER 30+)(C3 H3 S14 S12 HA)

I BET 1. 1
THE POT EQUALS 14.

YOUR BET eee

| CCSNUMBER 4+)
(C3 H3 S14 S12 HA)

| I CALL
OK?

i (CALL BECAUSE YOUR HAND IS FAIR. THE POT IS LARGE» AND THELASTBET 1S LARGE)

i CCSNUMBER 4+)
(C3 H3 S14 S12 HA)

| I CALL
MY HAND IS C3 H3 S14 S12 Ha
YOU WIN

MY SCORE IS =~12.

YOUR SCORE IS 126

YOUR HAND IS HS D9 C8 H9 Cl4

THE POT EQUALS 2.

| YOUR BET eee

I 8

| 197

BLANK PAGE

Si care &

(CSNUMBER So)
(Hil C7 S6 C4 D3)

I CALL

OK ? .

(DROP BECAUSE YOUR HAND IS POOR» AND THE PBRATIO IS SMALL) Se

| CCSNUMBER Se) =
(Hit C7 S6 C4 D3)

I DROP :

YOU WIN

MY SCORE IS =13.

YOUR SCORE IS tn» :

YOUR HAND IS Di4 S8 Hi4 D1 D4

(CSNUMBER 64)

(S13 Hi2 Ci: D8 ST)

I BET 15

0K?

! (BET SB BECAUSE YOUR HAND 1S POOR» THE POT 1S SMALL» AND
ORP IS CEQUAL TO =1))

CCSNUMBER 6+)

| (S13 Hi2 Cit D8 ST)

I BET to

THE POT EQUALS 2.

YOUR BET ees
!

10

198

3 ¥ 3
RP apa By yim a

(CSNUMBER Se)

(S13 H12 C11 D8 ST)

| 1 DROP
OK?

¢ OK)

CCSNUMBER Se)

(S13 H12 C11 D8 ST

1 DROP

YOU WIN

YOUR SCORE IS 1S.

SHUFFLE

YOUR HAND IS Hé6 H8 S10 C13 S3
THE POT EQUALS 2.

YOUR BET eee

2

(CSNUMBER 6¢)

(C8 C6 DS Ha D3)

1 BET 1.

OK?

(CALL BECAUSE YOUR HAND IS POOR, THE POT IS LARGE, AND THE
LASTE \LASTBET IS LARGE)

CCSNUMBER 6¢)

(C8 C6 DS HA D3)

| 199

2

I CALL

WHAT CARDS DO YOU WANT REPLACED eee .
Io

(H6 HE S3) -

_.

YOUR NEW CARDS ARE D7 D1@ S8

I REPLACE 1+ CARD }
THE POT EQUALS 6

YOUR BET ees

6 -

}

(CSNUMBER 6+) }
(C6 D5 Ha D3 S14)

k

1 CALL

0K ? .
{|

(DROP BECAUSE YOUR HAND IS POOR» AND THE PBRATIO IS SMALL. a
AND THE LASTBET IS LARGE)

(CSNUMBER Se)

(Cé6 DS Ha D3 S14) |
I DROP

YOU WIN

MY SCORE IS -18. {
: YOUR SCORE IS 18.

|

|
wl

200

&

| ‘ an. FRR

I

| APPENDIX E

el SAMPLE OF GAMES PLAYED DURING

| PROFICIENCY TEST FOR MANUAL-TRAINING HEURISTICS

| The following program output is from a game (5 hands) of draw
poker played between the program and a human opponent via the Stanford

| PDP-6 timesharing system. This game is one of a five-game series used

I to test the proficiency of the program. The left column on each page
is the series I game of the test, while the right column on each page

| is the corresponding series II game. The dialogue printed by the
program starts at the left margin of each column, while the dialogue

| typed by the human opponent is indented five spaces.

I The abbreviations used to represent playing cards are H: hearts,
S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of

I spades, D11 a jack of diamonds, and Hlh4 an ace of hearts.
Note that each hand dealt the human player in series I (left

I column) is identical to the hand dealt the program in the corresponding
r-o-p in series II (right column), and vice versa. Thus the hands

! held by the program in each r-o-p can be determined.

!

3

:

I

!

i 3

f
wo

md

: (REFEREE 3) (REFEREE S) -s

F YOUR HAND IS $7 Hé H18 DJ S10 YOUR HAND IS S13 SS D8 HY S4 '
. we

I BET 2. I BET 8. 3
THE POT EQUALS 2. THE POT EQUALS 2.

YOUR BET ee. YOUR BET see
=

1 DROP i
1 WIN

MY SCORE IS 1.

YOUR SCORE iS A MERE =1. |
I CALL

| I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED eee -

YOUR HAND IS HE H13 D6 S6 H3 4
(ST H6 DI) THE POT EQUALS 2.

YOUR BET eee

YOUR NEW CARDS ARE DI11 C19 SII

. |
1 BET 1.

THE POT EQUALS 8.

YOUR BET eee 1 BET 2.
THE POT EQUALS 8.

4 YOUR BET ceo

CALL 1
WHAT CARDS DO YOU WANT REPLACED eee

I CALL (H2 H13 HJ) |
MY HAND IS S13 H9 D9 Da D2

YOU WIN YOUR NEW CARDS ARE C3 C7 Ce

MY SCORE IS -9. I REPLACE 2. CARDS

YOUR SCORE IS 9. THE POT EQUALS 12.]YOUR BET eee

4 (

YOUR HAND 1S DI11 S11 H7 C11 C9 |
THE POT EQUALS 2. .
YOUR BET eee

3 1 BET 10. I
THE POT EGUALS 20. ->

YOUR BET eco

CALL
5)

1 BET 2. MY HAND IS D11 S11 C11 S12 C14 -
THE POT EQUALS 8. 1 WIN

YOUR BET "XX MY SCORE | §-3 21. ye
YOUR SCORE 1S A MERE «21.

CALL |

202 I

-

. - ruling

I

) i

|

[WHAT CARDS DO YOU WANT REPLACED e¢eo YOUR HAND 1S C8 DI HA H14 S9
(HT C9)

YOUR NEW CARDS ARE S12 Ci4

1 REPLACE 3. CARDS 1 BET 4.
THE POT EQUALS 12. THE POT EQUALS 2.
YOUR BET see YOUR BET ooo

I 9 CALL
I REPLACE 3. CARDS

WHAT CARDS DO YOU WANT REPLACED eee

! (C8 D3 HA)
1 CALL

MY HAND IS Dé S56 C3 C7 C2 YOUR NEW CARDS ARE H12 D9 HI
YOU WIN

MY SCORE IS =-24.

YOUR SCORE 1S 24.

1 BET 3.

I THE POT EQUALS 10.YOUR BET eee
YOUR HAND IS S2 S10 S13 DS HiI@

i 6
1 BET 11.

: THE POT EJQUALS 2.

] YOUR BET +00 I BET 7.THE POT EQUALS 28.

CALL YOUR BET eee

| REPLACE 3. CARDS CALL
WHAT CARDS DO YOU WANT REPLACED e+e

MY HAND 1S S10 HI10 S3 C10 Ca

(52 513 DS) 1 WIN
MY SCORE 1S 42.

I YOUR NEW CARDS ARE S3 C10 Ca YOUR SCORE 1S A MERE «42.

x 1 BET 4. YOUR HAND 1S $8 HS H6 S14 D113
THE POT EQUALS 24. THE POT EQUALS 2.
YOUR BET eee YOUR BET eee

i 1 CALL 1 BET 3.
MY HAND IS H14 S9 H12 D9 HII THE POT EQUALS 6.
YOU WIN YOUR BET +00

] MY SCORE 1S =-44.YOUR SCORE 1S 44. CALL

"*

|

a 20%
13

LJ

YOUR HAND 1S S7 DI2 SS Sa CS WHAT CARDS DO YOU WANT REPLACED eee »
THE POT EQUALS 2. |]
YOUR BET eee (S8 HS HE) wo

PY YOUR NEW CARDS ARE Ci2 D114 HY J
I REPLACE 3+ CARDS

THE POT EQUALS 182. {!
YOUR BET eee

s —

I DROP ‘

YOU WIN .e
MY SCORE IS =a5S.

YOUR SCORE IS 4S. .

I CALL ae
MY HAND 1S €S CS D7 Cé D2
YOU WIN

YOUR HAND IS Hil S8 S6 C8 DI} MY SCORE IS 31. i
YOUR SCORE IS A MERE =J1.

I BET 11.

THE POT EQUALS 2. YOUR HAND 1S H7 Ha Cia S2 D6 4
YOUR BET see

14 .
I BET 1. “
THE POT EQUALS 2.

YOUR BET eee

1 DROP CALL ..
YOU WIN

MY SCORE IS =57. I REPLACE 1. CARD
3 YOUR SCORE IS $7. WHAT CARDS DO YOU WANT REPLACED +e.

YOU WIN THE GAME
(Ha S2 D§&)

NIL
YOUR NEW CARDS ARE Hi4 Ca HS

I BET 9.
THE POT EQUALS 4.

YOUR BET o¢ee .

12

I CALL

MY HAND IS Hil Dil S8 C8 HY ny
I WIN

MY SCORE IS 54.

YOUR SCORE IS A MERE =-54.

I WIN THE GAME a

NIL -

20h |

”

) § 1 ’
ceo NT

I APPENDIX F

I SAMPLE OF GAMES PLAYED DURING

| PROFICIENCY TEST FCR BEFORE-TRAINING HEURISTICS

| The following program output is from a game (5 hands) of draw
poker played between the program and a human opponent via the Stanford

| PDP-6 timesharing system. This game is one of a five-game series used

I to test the proficiency of the program. The left column on each page
is the series I game of the test, while the right column on each page

i is the corresponding series II game. The dialogue printed by the
program starts at the left margin of each column, while the dialogue

| typed by the human opponent is indented five spaces.
The abbreviations u-ed to represent playing cards are H: hearts,

I S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of

] spades, D11 a jack of diamonds, and Hl4 an ace of hearts.
Note that each hand dealt the human player in series I (left

] column) is identical to the hand dealt the program in the corresponding
| r-o-p series II (right column), and vice versa. Thus the hands

I held by the program in each r-o-p can bc determined.

I 205

=

y gry _— ES— a — -— — ee EE <— ar He —"

i

(REFEREE $) (REFEREE $5) i

YOUR MAND 1S DIO C10 Dia KIO SiA YOUR MAND IS S12 C9 DiI3 Dé Sa [|

1 BET Se 1 BET 20. |
THE POT EQUALS 2. THE POT EQUALS 2.

j YOUR BIT eee YOUR BET eee

9 DROP I
1 WIN

. MY SCORE 1S 1.

YCUR SCORE 1S A MERE -1.]{ BET 8.
THE POT EQUALS 30.

YOUR BET eee -

YOUR HAND IS C14 S3 D7 Hil Hé 1
il THE POT EQUALS 2. dl

YOUR BET oo

» aw

1 BET 17.

THE POT EQUALS 68. -e

YOUR BET eee

1 BET 1S. 44

26 THE POT EQUALS 4.

YOUR BET oo oe

DROP -e

: 1 WIN

| BET 19. MY SCORE 1S 3. vs
THE POT EQUALS | 42. YOUR SCORE 1S A MERE -3.
YOUR BET eee vs

CALL .

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED eee YOUR HAND IS ~~ H? D9 C11 Cé S9 8

NONE we

] BET 6. -

THE POT EQUALS 2.

YOUR BET soe "ib

i BET 1S. A
THE POT EQUALS 186. Sat big
YOUR BET ooo 1 REPLACE 3. CARDS

WHAT CARDS DO YOU WANT REPLACED eee 3
CALL wo

MY HAND IS DI13 S12 D8 C13 H4 oer151168
YOU WIN NEW
JOU VIN 18 “ies YOUR NEW GARDS ARE C2 NS He w
YOUR SCORE 1S 10S. 1

206

ul Nw Pe —

i YOUR MAND 1S DS H9 S13 $9 Sé 1 BET 6.
THE POT EQUALS 2. THE POT EQUALS 14.
YOUR BET eee YOUR BET ooo

| i) CALL
MY MAND 1S Hi13 Hi2 Mia C8 Da
YOU WIN

MY SCORE 1S -10.

YOUR SCORE IS 18.

1 BET 2.

THE POT EQUALS 8.

| YOUR BET eeeCALL YOUR HAND 1S Ct] H3 D3 $7 M10
THE POT EQUALS 2. |

WHAT CARDS DO YOU WANT REPLACED eee YOUR BET ooo

| (H9 S13 S6&) 3
YOUR NEW CARDS ARE C12 C3 CS
I REPLACE 3. CARDS

THE POT EQUALS 12.
YOUR BET «oe

1 CALL

1 WHAT CARDS DO YOU WANT REPLACED coo

! (C31 ST H1®) |
YOUR NEY CARDS ARE Ci2 Cla Da
I REPLACE J+ CARD

I DROP THE POT EQUALS 8.
YOU WIN YOUR BET ooo
MY SCORE IS -111. |

I YOUR SCORE IS 111. 4
| YOUR HAND IS C7 HI3 S8 H3 HIQ

1 BET 4.

THE POT EQUALS 16.

YOUR BET +e

| I BET 2. CALLTHE POT EQUALS 2.

YOUR BET eee MY HAND 1S Hil D186 HS D7 Mig
YOU WIN

CALL MY SCORE 1S -22.
| | YOUR SCORE 1S 22.

I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED eee

! (C7 $8 HI) || YOUR MAND IS H2 H13 C19 S10 $13

| YOUR NEW CARDS ARE Hi4 C8 D4

] I BET 6.
1 DROP THE POT EQUALS 2.
YOU WIN YOUR BET see .

| I MY SCORE 1S -114.: YOUR SCORE 1S 114. . 8
|

l

|

| 207
is ar SRN—pe—SC

}F. ae

i

[-.
: YOUR HAND 1S HS D1O® DS Mil D7

. THE POT EQUALS 2. ; -

YOU WIN go

’ MY SCORE IS -29.

YOUR SCORE 1S 29. -

I YOU WIN THE GAME
NIL 3

| THE POT CAUALS 4.
r YOUR BET eee

DROP !

I WIN

MY SCORE 1S =112.

YOUR SCORE IS 112.

YOUR HAND IS S3 S2 C13 HS S8 :

I BET 3. |
THE POT EQUALS 2.

YOUR BET ceo

CALL

I REPLACE 1. CARD

WHAT CARDS DO YOU WANT REPLACED oe.

(S3 S2 HS)

YOUR NEW CARDS ARL S14 DI2 CS

I DROP

YOU WIN

MY SCORE IS ~116e :
YOUR SCORE IS 11) 6.

YOU WIN THE GAME

NIL

208 a

|

-

‘s

3 o a Cl

i APPENDIX G |
| TRAINING TRIALS

i FOR AUTOMATIC-TRAINING HEURISTICS

! The following program output is from training trials 6 through 10
given the learning program by a program trainer via the Stanford PDP-6

] timesharing system. The dialogue printed by the program hLieing trained

i and by the program trainer starts at the left msrgin, while the dialogue
typed by the human opponent is indented 5 spaces.

i The abbreviations used to represent playing cards are H: hearts,
S: spades, C: clubs, and D: diamonds. Thus 88 is an eight of spades,

! D11 a jack of diamonds, and Hl4 an ace of hearts.

] Each time the program places a bet it first prints (1) the current
csnumber, i.e., the number of the action rule which was used in making

i the bet decision, and (2) the hand it currently holds. The action
rules are considered to be numbered from top to bottom, starting with 1.

I 00

(REFEREE S)

SHUFFLE a.

YOUR HAND IS S10 H3 HS J14 Hla -

(CSNUMBER 2.) ”
(D2 C2 Hil S9 D4)

I BET 4. -
OK?

}
llr

(CSNUMBER 194)

(D2 C2 Hil S9 DA) r
wi

(OK) 1
(CSNUMBER 2.)

(D2 C2 Hil S9 D4) .

1 BET 2. |
THE POT EQUALS 2.

YOUR BET eee 16

(CSNUMBER 1.)

(D2 C2 Hil S9 DA) 1I CALL

OK?

(CSNUMBER 184)

(D2 C2 Hil S9 DA)

(OK)
y

wt

(CSNUMBER 1)

(D2 C2 Hil S9 DA) 1
nb

210

]

®

CCSNUMBER 1+)

} (D2 C2 H11 S9 D4)
I CALL

1 REPLACE 3. CARDS

j WHAT CARDS DO YOU WANT REPLACED eee
(S10 H3 HS)

f YOUR NEW CARDS ARE C7 Ca C10
(CSNUMBER 24)

(D2 C2 D13 SS $4)

I BET 3.

) OK ?

| (CSNUMBER 194)(D2 C2 D133 S5 S4)

| COK)

| (CCSNUMBER 2.)(D2 C2 D13 S5 S4)

1 BET 3.

i THE POT EQUALS 8.YOUR BET eee

] 8

| CCSNUMBER 1)(D2 C2 D13 SS Sa)

1 CALL

| a

| (CSNUMBER 184): (D2 C2 D13 SS Sa)

| COK)

| (CSNUMBER 14). (D2 C2 D13 S5 S4)

211

1 CALL

MY EAND 1S D2 C2 D113 SS Sa
YOU WIN

MY SCORE IS -20.

YOUR SCORE 1S 20.

YOUR HAND IS D14 S11 H6 S12 S13

THE POT EQUALS 2.

YOUR BET eee

[3

(CSNUMBER 5.)

(C13 C11 D8 D3 S2)

1 CALL

OK?

(CSNUMBER 28.)

(C13 C11 D8 D3 $2)

(DROP BECAUSE THE HAND 1S POOR)

(CSNUMBER Se)

(C13 C11 D8 D3 S§2)

1 DROP

YOU WIN

MY SCORE 1S -21.

YOUR SCORE IS 21.

YOUR HAND 1 D12 C6 H2 D111 S7

¢CSNUMBER 3.)

¢C12 H12 H8 $6 S3)

1 BET 7.

OK?

(CSNUMBER 12.))
(C12 H12 H8 S6 SI)

212

’ - Th

3 (OK)
(CSNUMBER 3.)

(C12 H12 HB S6 S3)

THE POT EQUALS 2.

YOUR BET eee

i DROP
I WIN

h MY SCORE IS -20.YOUR SCORE IS 20.

YOUR HAND IS C9 HT H9 DI@ H4

THE POT EQUALS 2.

| YOUR BET oe.
4

(CSNUMBER 3.)

| (C8 S8 H10 D7? D6)
I BET S.

| OK?
(CSNUMBER 18.)

i (C8 S8 H1@ D7 D6)

l (CALL BECAUSE THE HAND IS FAIR THE LASTBET IS LARGE)
(CSNUMBER 1)

(C8 S8 H10 D7 D6)

I CALL

} WHAT CARDS DO YOU WANT REPLACED «..
(H7 D10 Ha)

YOUR NEW CARDS ARE D9 C14 CS

I REPLACE 3. CARDS

SHUFFLE

THE POT EQUALS 10.

YOUR BET eee

| 8
213

ann. —

(CSNUMBER 14)

(C8 S8 H13 DS CJ) .

I CALL

OK?

(CSNUMBER 18.)

(C8 S8 HI13 DS CJ) -

-*

(0K)

(CSNUMBER 1.)

(C8 S8 H13 DS CY “

I CALL

MY HAND 13 C8 S8 H13 DS C3 “

YOU WIN

MY SCORE IS =33.

YOUR SCORE IS 33.

YOUR HAND IS Hil S13 HS C10 Hé6

(CSNUMBER 3.) .

(C12 D12 C11 SS Ha

1 BET 7.

0K?

(CSNUMBER 9.)

(C12 D12 C11 SS Ha)

(BET SB BECAUSE THE HAND IS GOOD THE BLUFFS IS LARGE TKE ORP 1S (EQUA
LTO =1+))

(CSNUMBER 3.)

(C12 D12 C11 SS HA)

I BET J. .
THE POT EQUALS 2.

YOUR BET eee

CALL

.)

214

&®

—- _ a ol ®
BS ,

)
CALL

I I REPLACE 3. CARDS

I (HS H6)
YOUR NEW CAKDS ARE D14 C14

i (CHNUMEER de)
(C12 D12 S3 DS D13)

i I BET be
02

(CSNUMBER 164)

(C12 D12 S3 DS D123)

(BET BB BECAUSE THE HAND IS FAIR THE POT IS SMALL THE LASTBET IS SMAL

I L THE BLURFS IS LARGE)
(CSNUMBER 24)

I (C12 D12 S3 DS D13)
I BET 2.

THE POT EQUALS 8.

| YOUR BET + oe
10

(CSNUMBER 1)

| (C12 D12 S3 DS D13)
I CALL

0K 2

(CSNUMBER 17+)

| (C12 D12 S3 DS D13)

i (DROP BECAUSE THE HAND IS FAIR THE LASTBET IS LARGE THE PBRATIO IS SMALL THE ORP IS (NOT (EQUAL TO =1¢)))

I 215

(CSNUMBER 1.)

(C12 D12 S3 DS D133)

I DROP I
YOU WIN

MY SCORE IS =39.

YOUR SCORE IS 39. IYOU WIN THE GAME

NIP |
1

.!

216

R . eh ow
.

!

| APPENDIX H

| SAMPLE OF GAMES PLAYED DURING
PROFICIENCY TEST FOR AUTOMATIC-TRAINING HEURISTICS

;

} The following program output is from a game (5 hands) of draw
poker played between the program and a human opponent via the Stanford

| PDP-6 timesharing system. This game is one of a five-game series used
to test the proficiency of the program. The left column on each page is

i the series I game of the test, while the right column on each page is

i the corresponding series II game. The dialogue printed by the program
starts at the left margin of each column, while the dialogue typed by

| the human opponent is indented five spaces.
The abbreviations used to represent playing cards are H: hearts,

} S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of spaces,

l D11 a jack of diamonds, and Hl4 an ace of hearts.
Note that each hand deelt the human player in series I (left

| column) is identical to the hand dealt the program in the corresponding
r-o-p in series II (right column), vice versa. Thus the hands held

| by the program in each r-o-p can be determined.

l

I

I

|

| 2X7

|

ES— “SS BN i

a { r -— - — - ——

C(RFEFF.REF. S)(KEFENEE S) REE |

YOUR HAND IS Hi3 S14 Dla $12 nie YOUR HAND 1S Cina CIM S11 SS CG? |

I BET a. I BET 8. |
THF. POT FGUALS 2. THF. POT F.QUALS 2.
YOUR RET eee YOUR BET eee

CALL CALL |
| REPLACE J3e¢ CARDS I RF.PLACE 3. CARDS
VHAT CARDS DO YOU) WANT RFPLACED eee VHAT CARDS DO YOU) WANT KEPLACFED eee

(HIA S12 DIN (CIA S58 CP) I
YOUR NFV CARDS ARF Hia Cé DIA YOIIR NEW CARDS ARF NDB HS HT

1 RET a. I BET J.
THE POT FONALS 16. THE POT F.QUALS 18.
YOUR PET see YOUR RET eee

7 CALL

MY HAND 1S S14 Dia H14 CA DI [|
I WIN pe

MY SCORF. 1S 12.

YOUR SCORE. 1S A MERE ~-12.

I prOP]
YOU WIN wb

YOUR SCORE IS 9.

YOUR HAND 1S D9 C7 HA S13 Dé I
: THE POT EQUALS 2.

YOUR RFE.T eee mh

YOUR HAND 1S N12 CS SIA Dla HA ! p—
THF. POT FQUALS 2.

YOUR RET eee 1
a

I CALL |
VHAT CARDS DO YOU VANT RF.PLACED «ee oe

(CT Ha D&) -

I CALL

WHAT CARDS DO YOU) WANT REPLACED eee YOIIR NEW CARDS ARE SB SS Sil -
I ikF.PLACF. 3+ CARDS

(CS S18 HY) THE POT EWUALS 4.
. YOUR RET eee ,

YOUR NEV CARDS AKE Hi1® D? Hé6

I RFPLACF. 3. CARDS | -
THF. POT EQIIALS ®.

YOUR RET eee po

‘

4 -

218

— Fr sie. an 3 = il s i jr — on a. oT
=

] I DROP 1 CALL4 Y.Oll VIN MY HAND IS Nila DI2 H16 D2 He
MY SCOKE 15 =13. 1 “IN

YOUl: SCORE 15 13. bY SCORE IS 1S
It YOUR: SCORE 1S A MEME =1S. \
{|

:

ny YOK HAND 15 SA PH C9 D1 C12
YOUR HAND IS H1a $2 H12 Ca S9 |

5 .

I DFT 2.
THF. POT FOUALS 2. L PET De
YOU PET see THE POT RFGUALS 2.

YOUls PET eee

CALL

CALL

I REPLACE A. CARDS

WHAT CAPPS DO YO!) VANT TEPLACFED se I OFILAGE Re CAIDS |
WHAT GAEDE NO YOU WANT REPLACED eee

(Sa NB C9)

(12 CA S9)

YOU: NY CAINSALF S12 HE C2

YOUR NE“ CARDS ADF C11 H9 H1}

I RFT Ve ®

THF. POT FOALS Ae 1 PET Te
YOUR RET eee THF POT FGIALS fe

YOU}? PET eee

11

Nl

|

I RET de ,
THE. POT EHRDALS AK. 1 RFT He
YOUE BET es THE, POT FRIIALS OF. |

YOIt: PFET soe

CALL

CALL

MY RAND 15 H1a H12 C11 H9 HI

YOU WIN MY HAND IS C12 D11 S1> HB GA
MY SCOPE 15 =2S. I WIN
YOUR SCOKK 15 35. NY SCORE TS 27.

YOUR SCORE 1S A NERF =37.

YOUR HAND 1° D3 P1a CH Na HS

THE POT FQUALS 2. YOUR HAND IS NIA C2 C13 HT HP
YOUR RET eee THE POT EWUALS 2.

YOUR PFT eee i

2 :
he|

QP|

—

- 219 !

i
Ls : ae mer Wee EedR

— | ri

| CALL I CALL

WHAT CAKDS DO YOU, WANT RFEPLACFD +e WHAT CARDS NO YOU YANT KEPLACFD +e i
(DA NDA HS) (DIA C13 HD)

| YOUR NFW CAKDS ARF Cid nS D7 YOUR NEI CARDS ARF H14 56 S23
| I KEPLACE 3+. CARDS 1 KRFPLACE das CARDS

TSE POT FQUALS 6. THE POT FOIIALS 8.
YOUR BET eee YOUR RET eee

A A |

I CALL I hnop I
MY HAND [IS CP? H? H14 S66 SA YOu VIN

I WIN MY SCORE IS 373. :

mY SCOkE IS =28. YOU SCORE 1S A MERF =33. |YOIIR SCORF 1S 28.

YOUR HAND IS N11 S13 Ca Cla DI? |YOR HAN: IS S3 D6 HA HA HI4A

I RET Re]
1 BET a. THE POT EQUALS 2.
THF. POT FGLIALS 2. YOIIR RET eee
YOUR BET eee

1
1

I CALL

I CALL I REPLACE 3« CARDS :
1 REPLACF. 1+ CARD WHAT CARDS DO YOU WANT REPLACED eee
WHAT CARDS DO YOII WANT REPLACED ee

! Ca y
(D6 Ha H14)

YOIIR NEV CARDS ARF Hl!
YOUR NEY CARDS ARF, S7 S11 C9

I RFT 1.

1 RET S. THE POT FOUALS 16. .
THE. POT FQIIALS 12. YOUR RET ee
YOIIR RET eee

A

CALL

MY HAND 1S Cla S13 D122 D111 HIA

I WIN

mY SCORE IS =17.

YMIR SCOKE 1S 17. I CALL
YO) WIN THE GAMF MY HAND IS S3 Ha S§7 S11 C9

YOU WIN

NIL MY SCORE IS 23.
YOUR SCORE 1S A MFKF =23.

I WIN THF. GAFME

NIL I220

®

) - :

| APPENDIX I

| LOGICAL STATEMENTS FOR DRAW POKER

I. Rules and Axioms for Draw Poker

The rules and axioms for draw poker used by the computer program are listed

below. In these statements "action" refers to the decision made by the program

while "oppaction" refers to the decision made by the program's opponent. A low

bet is defined as a bet from 1 to 9 , while a high bet is defined as one

from 10 to 20 .

Poker Rules:

1. action(call) A higher(yourhand,cpphand) D add(lastbet,pot) A add(pot,yourscore)
2. oppaction(call) A higher(yourhand,opphand) D add(lastbet,pot) A add(pot,yourscore)
3. action(call) A higher(opphand,yourhand) © add(lastbet,pot) A sub(pot,yourscore)
4. oppaction(call) A higher(opphand,yourhand) © add(lastbetpot) A add(pot,yourscore)
5. action(drop) © sub(pot,yourscore)
6. oppaction(drop) oD add(pot,yourscore)
7. action(bet low) © add(lastbet,pot)
8. action(bet high) D add(lastbet,pot)
9. oppaction(bet low) D add(lastbet,pot)

10. oppaction(bet high) o add(lastbet,pot)

Poker Axioms:

1. action(drop) © keepsmall(pot)
2. action(call) D unsureofhand(you)
3. onlycalled(opp) © unsureofhand (opp)
4. action(bet low) V action(bet high) OD keepsbetting(you)
5. oppaction(bet low) V oppaction(bet high) D keepsbetting(opp)
6. keepsbetting(opp) A keepsbetting(you) 2 buildup(pot)
7. action(bet high) A higher(opphand,yourhand) © bluffed(opp)

4 8. goodhand(x) A didbet(x) © surehandwillwin(x)
9. unsureofhand(you) A seemsureofhand(opp) D makelargenough(pot)

10. pot(large) Vv lastbetopp(bet high) © seemsureofhand (opp)
11. (action(call) Vv action(bet low) V action(bet high)) A higher(yourhand,opphand) o

eventually(add (pot, yourscore))
" 12. bad(opphand) A bluffed(opp) A notprevoppaction(bet high) o prob(oppaction(drop))

13. (action(bet high) Vv action(bet low)) A surehandwillwin(opp) D
” prob(oppaction(bet low)) A prob(oppaction(bet high))

re 221

_— me - a.

pn

14. action(bet low) A good(opphand) A unsureofhand(opp) 2 |prob(oppaction(bet low))A prob(oppaction(call)
15. action(bet low) A bad(opphand)OD prob(oppaction(bet low))A prob(oppaction(call))

General Axioms:

l. x OD eventually(x)]
: 2. (buildup(x) V makelargenough(x)) A eventually(add(x,z))

V add(x,z)

V (keepsmall(x) A sub(x,z) D> maximize(z) l

The meanings of the predicates shown above tend to be self-evident, however |
the logical statements are written out in detail in Appendix I, Part II.

ITI. Description of Rules and Axioms for Draw Poker I

The rules and axioms for draw poker listed in Appendix I, Part I are |

described in detail below. |
Poker Rules:

l. If you or your opponent calls, and your hand is higher than your 1
opponent's hand then the last bet is added to the pot, after which

the pot is added to yourscore. |2. If you or your opponent calls and your opponent's hand is higher than %
your hand, then the last bet is added to the pot, after which the pot
is subtracted from your score. 4

5. If you drop, then the pot is subtracted from your score.
4. If your opponent drops, then the pot is added to your score. :
5. If you or your opponent bets, then that bet is added to the pot.

Poker Axicms:

l. If you drop, then you keep the pot small. |
2. If you call, you are unsure your hand will win.

3. If your opponent calls but does not bet in an r-o-p, then he is unsure ph

his hand will win. |
4. If you bet, then you have kept the betting going.
5. If your opponent bets, then he has kept the betting going.

6. If both you and your opponent keep the betting going, then the amount |
of money in the pot builds up. -

7. If you bet high and you opponent's hand is higher than your hand, the

you have bluffed. 1

222]

-

|

) .

8. If a player has a good hand and has just bet, then he is sure that
his hand will win.

9. If you are unsure your hand will win and the opponent seems sure his
hand will win; then you have made the pot large enough.

10. If the pot is large or the last bet by the opponent was large, then
the opponent seems sure his hand will win.

11. If you call or bet and your hand is higher than your opponent's
hand, then you will eventually add the pot to your score.

12. If your opponent has a bad hand and you bluff but have not pre-
viously bet high in the present r-o-p, then it is probable that

H your opponent will drop.
15. If you bet and your opponent is sure that his hand will win, then

it is probable the' your opponent will also bet.

[1k. If you bet lcw and your opponent has a good hand and is unsure
his hand will win, then it is probable that your opponent will

: bet low or call.

[15. If you bet low and your opponent hes a bad hand, then it isprobable that your opponent will Let low or call.

] General Axioms:
l. If x is now true then x will be true in the future, that is

| eventually. (Here x must be a member of a class of predicates
whose values are irreversible within the time limit under consideration.)

2. If you increase the size of x or make x large enough and eventually
add x to z , or if you just add x to z , or if you keep Xx

small and subtract x from 2z then you tend to maximize =z .

III. Example of Deduction Procedure Using Rules and Axioms for Draw Poker

| Assume the predicates in the logical statements are set as follows:
higher (yourhand,opphand) =F higher (opphand,yourhand) = T
notprevoppaction(bet high) = T lastbetopp(bet high) = F

| onlycalled(opp) = T pot(large) = F
goodhand (you) = F goochand(opp) = F

> good(opphand) = F bad (opphand) = T
didbet (you) = T didbet(opp) = F

In this case maximize(yourscore) matches maximize(z) in the

right side of the last logical statement when "yourscore' is substituted

for 2 « Thus the program tries to make the left side of this statement

true, which is the expression:

| 22%

a

"

(buildup(x) V (keepsmall(x) A eventually(add(x,yourscore)) i
V add(x,yourscore) V (keepsmall(x) A sub(x,yourscore)) . :

This expression has the form a Vb V ¢ , so the program first

attempts to make a true. If this fails it tries to make b true, {
-

and if this also fails it tries c¢ . Here a has the form a; Aa,

accordingly both 8, and a, must be made true if a is to be true. |
But a, = eventually(add(x,yourscore)) which matches only the right

side of axiom 11 of the poker axioms. For a, to be true, the left |
part of axiom 11 must be true, but this is false since

higher (yourhand,opphand) is false. Consequently, it cannot be shown that |
] a, can be made true, or that a can be made true. |

Now the program attempts to make b true, where b = add(x,yourscore).

This expression matches the right sides of poker rules 1, 2, and 6 he

(b is considered a match for a A b since if it is shown that a A b |

is true it is alsu shown that b is true), but the left sides of rules |

1 and 2 cannot be made true since they both contain higher (yourhand,opphand), 1

which is false.

However, the right side of rule 6 can be made true if

cppaction(drop) can be made true. This expression matches only the N

right side of poker axiom 12 and will be true if the left side of

axiom 12, bad(opphand) A bluffed(opp) A notprevoppaction(bet high),

can be made true. But bad(opphand) and notprevoppaction(bet high)

are both prediactes set to true by the program, so the right side of

axiom 12 is true if bluffed(opp) can be made true. This expression

matches only the right side of poker axiom 7 and is true if the left h

side of axiom 7, action(bet high) A higher(opphand,yourhand), can ;

22k |

) N oC

|

be made true. Since higher(opphand,yourhand) is one of the predicates ,

initially set to true by the program, bluffed(opp) is true if

action(bet high) can be made true. But his can be made true by having

the program make the decision to bet high; thus the decision to bet

high makes bluffed(opp), prob(oppaction(drop)), add(pot,yourscore),

and maximize(yourscore) all true. As a consequence, the program deduces

that it should have bet high in the given situation in order to have

maximized its score.

|

|

|

|

|

|

|

|

! 225

BLANK PAGE

} N

t

|

| APPENDIX J

| TRAINING TRIALS

{ FOR IMPLICIT-TRAINING HEURISTICS

| The following program output is from the first 5 learning trials
given the learning program via the Stanford PDP-6 timesharing system.

| The dialogue printed by the program starts at the left margin, while
the dialogue typed by the human opponent is indented 5 spaces.

| The abbreviations used to represent playing cards are H: hearts,
| S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of spades,

D11 a jack of diamonds, and Hl4 an ace of hearts.

| Each time the program places a bet it first prints (1) the current
cr number, i.e., the number of the action rules which was used in

l making the bet decision, and (2) the hand it currently holds. The

| action rules are considered to be numbered from top to bottom, starting
with 1.

| At the end of each r-o-p the program prints the following for
each bet decision it makes after cards are replaced: (1) the csnumber

| for that bet decision, (2) a list of acceptable bet decisions, (3) and

l (4) the decision chosen from the list of acceptable ones, which is
inserted in the action rule list as an action rule, and (5) the program

| subvector existing at the time it made the bet decision, together with
the bet decisions made by the program and the opponent.

|

|

226

|

(REFEREE 5 |

:]
YOUR HAND IS Ha D10 C16 C9 D14

(CSNUMBER 1.)

(H6 D6 H14 D9 DS)

{ BET 1.
THE POT EQUALS 2.

YOUR BET ese

CALL

1 REPLACE 3. CARDS

WHAT CARDS DO YOU WANT REPLACED +.

(Na C9 D14)

YOUR NEW CARDS ARE D7 S11 DI12

(CSNUMBER 1.)

(H6 D6 S6 D8 H1@)

I BET 1.

THE POT EQUALS 4.

YOUR BET «ee

2

(CSNUMBER 1.4)

(H6 D6 S6 DB HIB)

1 BET 11.

THE POT EQUALS 10.
YOUR BET oe

CALL

MY HAND IS H6 D6 S6 D8 H10

ear

®

| } - ; a

a

I 1

i (CSNUMBER 1)
(BETHIGH BETLOYW)

BETLOW

I (BET SSS)
(CSNUMBER 2.)

] (BETHIGH BETLOW)
BETLOW

(BET SSS)

(CCSPe Ae Be =60 Ae 30 BO.) BETLOW BETLOW) (C52. 6+ 2¢ =6¢ 3¢ 3¢ 0) B

i ETHIGH CALL))Y I WIN
MY SCORE IS 16.

yOUR SCORE IS A MERE =-16.

} SHUFFLE

yOUR HAND IS S12 D3 S9 C7 DI?
THE POT EQUALS 2.

YOUR BET eee

' 7
(CSNUMBER 2.)

(Sa Da KI13 HI2 HI)

{ BET 13.

THE POT EGUALS 16.

YOUR BET eee

CALL

| WHAT CARDS DO YOU WANT REPLACED oe.
(D3 $9 CT)

| YOUR NEW CARDS ARE DT S10 H9
I REPLACE 3. CARDS

THE POT EQUALS 42.

| YOUR BET eee
5

] i

p

i

| CCSNUMBED 2)]
(54 D4 511 D8 C2) :

I CALL

MY HAND IS S4 D4 S11 D& C2

| (CSNUMBER 2+) 1¢CALL)
CALL

CALL a
(CC100e 42¢ Se =6¢ Be 3s 0+) CALL NIL)Y) YOU WIN |
MY SCORE IS ~10.

YOUR SCORE I5 10.

YOUR HAND IS S14 H6 D5 D6 Ha
BY

(CSNUMBER 3.) !
(D14 S13 S8 SS H2)

I BET 6.

THE POT EQUALS 2.

YOU

BET LB BN

CALL

{ REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED oe.

(DS Ha) L

YOUR NEY CARDS ARE D2 H8

(CSNUMBER 3+)

(D14 S13 C8 C9 C11)

{ BET S.
THE POT EQUALS 14.

YOUR BET ees

CALL

MY HAND 1S D14 S13 C8 C9 C11
L

229 Ii

®

3 . : A YA As ny

|

(CSNUMBER 3.)

(DROP)
DROP

pitOP
(C(2¢ 14¢ Be =14¢ 14¢ 2. =1.> BETLOW CALL)) YOU WIN
MY SCORE IS -22.

YOUR SCORE 1S 22.

YOUR HAND 1S C3 H14 C6 C4 HI
THE POT EQUALS 2.

2

(CSNUMBER 44)
(S7 HT C17 D9 S53)

] CALL
WHAT CARDS DO YOU WANT REPLACED «ee

(C6 C4)

YOUR NEW CARDS ARE CS HI10

I REPLACE 3. CARDS

THE POT EQUALS 6.

YOUR BET eee

K|

(CSNUMBER 4.7

(ST H7 D1@ D13 C12)

1 CALL
MY HAND IS S7 H? D10 D13 C12

¢(CSNUMBER 4.)
(BETLOW)

BETLOW

(BET SSS)

(C13. 6. 3s =~14. 2 2 -1e) CALL NIL)Y) I WIN
MY SCORE IS =-16.

YOUR SCORE IS 16.

230 5

I

I APPENDIX K

| SAMPLE OF GAMES PLAYED DURING
3 PROFICLENCY TEST FOR IMPLICIT-TRAINING HEURISTICS

I
The following program output is from a game (5 hands) of draw

poker played between the program and a human opponent via the Stanford

i PDP-6 timesharing system. This game is one of a five-game series used
to test the proficiency of the program. The left column on each page

| is the series I game of the test, while the right column on each

| page is the corresponding series II game. The dialogue printed by
the program starts at the left margin of each column, while the dialogue

| typed by the human opponent is indented five spaces.
The abbreviations used to represent playing cards are H:! hearts,

| S: spades, C: clubs, and D: diamonds. Thus S8 is an eight of
spades, Dil a jack of diamonds, and Hl4 an ace of hearts.

i Note that each hand dealt the human player in series I (left
| column) is identical to the hand dealt the program ia the corresponding

] r-o-p in series II (right column), and vice versa. Thus the hands ;

| held by the program in each r-o-p can be determined.

i

|

|

|

i 2

1

| .

BLANK PAGE

(REFEREE $) (REFEREE S)

YOUR HAND IS D6 D13 C12 S14 $3 YOUR HAND 1S Hi4 S8 C6 D8 S4

| |
1 BET 3. I BET 7a

TE POT EQUALS 2. THE POT EQUALS 2.
YOUR BET eee YOUR BET eee

CALL CALL
= a

I REPLACE 3. CARDS I REPLACE 3. CARDS |WHAT CARDS DO YOU WANT REPLACED «ee WHAT CARDS DO YOU WANT REPLACED ee

(D6 $3 C12) (H14 C6 SA)

YOUR NEW CARDS ARE C13 C11 C3 YOUR NEW CARDS ARE M7 D3 DS

1 BET 8. I BET S.
THE POT EQUALS 8. THE PNT EQUALS 16.
YOUR BET oqo YOUR BET eee

8 3

I CALL I BET 1.
MY HAND IS S8 D3 H7 D3 DS THE POT EQUALS 32.
YOU WIN YOUR BET eee
MY SCORE IS =-260.

YOUR SCORE IS 20. 2

YOUR HAND IS Cla Da Hil HI3 $7

THE POT EQUALS 2. {1 BET 1.
YOUR BET eee THE POT EQUALS 38.

YOUR BET eee

3

CALL

MY HAND 1S St4 D13 C13 Cit C3

1 WIN

MY SCORE IS 2a.

{1 BET 7. YOUR SCORE 1S A MERE -20.
THE POT EQUALS 8. j

YOUR BET cee

CALL

232]

) . |
2

THE POT EGUALS 2.

(Da H11 ST) YOUR BET ooo

YOUR NEW CARDS ARE D9 D7 C2 3
1 REPLACE 3+ CARDS
THE POT EQUALS 22.

YOUR BET eo

2

1 BET 6.

THE POT EQUALS 8.

YOUR BET +e

CALL

1 BET 2.

THE POT EQUALS 26. WHAT CARDS DO YOU WANT REPLACED +.»
YOUR BET eee

(D2 H8 C95)

CALL

YOUR NEW CARDS ARE S9 HS H2
MY HAND IS D12 C9 S9 HS H2 I REPLACE 3. CARDS
1 WIN THE POT EQUALS 20.

YOUR SCORE IS S.
4

YOUR HAND IS DIG S13 C8 S2 SS

1 DROP

YOU WIN

MY SCORE IS 180.

1 BET 7. YOUR SCORE 1S A MERE -18.
THE POT EQUALS 2.
YOUR BET eee

CALL

YOUR HAND IS S11 D114 Ha HJ S12
I REPLACE 3. CARDS

WHAT CARDS DO YOU WANT REPLACED <..

(C8 S2 S%)
1 BET 3.

YOUR NEW CARDS ARE C7 H10 Sie AE POT EQUALS 2.
YOUR BET eee

CALL

I BET é. 1 REPLACE 3. CARDS

THE POT EQUALS 16. WHAT CARDS DO YOU WANT REPLACED ee.
YOUR BET eee

(S11 Ha HY)

14

YOUR NEW CARDS ARE Hé6 H12 Sé

233

pL.

’

1 BET 18. 1 BET 7. |‘THE POT EQUALS S6. THE POT EQUALS 8.
YOUR BET eee YOUR BET «oe

CALL 13

MY HAND IS Di4 S12 M6 HI2 S6

YOU WIN
MY SCORE IS =Sle

YOUR SCORE IS Si.
I BET 12.

THE POT EQUALS 48.

. YOUR BET oo.

YOUR HAND IS C11 D2 M18 S2 C7 CALL |
THE POT EQUALS 2

YOUR BET eee MY HAND IS S13 D1 C7 H18 S10
I WIN

2 MY SCORE IS 46.
YOUR SCORE IS A MERE -46. ;

|

I BET 14. YOUR HAND IS H12 HE S9 Dé SI®
THE POT EQUALS 6. THE POT EQUALS 2.

YOUR BET eee YOUR BET see |
CALL 3

WHAT CARDS DO YOU WANT REPLACED oe. |
(C11 H10 CT)

YOUR NEW CARDS ARE SS C13 D11 I CALL

I REPLACE 3. CARDS WHAT CARDS DO YOU WANT REPLACED eee |THE POT EQUALS 34.

YOUR BET eee (H2 S9 D6)

1 YOUR NEW CARDS ARE Hi4 C10 99

I REPLACE 3. CARDS |THE POT EQUALS 14.

YOUR BET eee

|I BET 1.

THE POT EQUALS 36.

YOUR BET eee

CALL |I CALL

MY HAND IS H12 S12 Hi4 C18 D9 MY HAND IS D2 S2 SS C13 DI1
I WIN YOU WIN
MY SCORE IS -32. MY SCORE IS 34.
YOUR SCORE IS 232. YOUR SCORE IS A MERE =34.

YOUR MAND IS C2 D14 H8 H13 S4 YOUR HAND IS Y Cé C8 SJ S8 HJ |

234

&

3 _ .

|
| YOUR HAND IS C2 Dia H8 HI3 S4 YOUR MAND IS Y C6 C8 S3 S8 H3 |

| 1 BET 7. 1 BET 7.
THE POT EQUALS 2. THE POT EQUALS 2.
YOUR BET eee YOUR BET eee

| CALL CALL
I REPLACE te. CARD I REPLACE 3. CARDS
WHAT CARDS DO YOU WANT REPLACED eee WHAT CARDS DO YOU WANT REPLACED «eo

(C2 H8 Sa) cé

| YOUR NEW CARDS ARE H11 St3 S7 YOUR NEW CARDS ARE Sé6
I BET 8. 1 BET 4.
THE POT EQUALS 16. THE POT EQUALS 16.
YOUR BET eee YOUR BET eee

| 9 12
I BET a. I CALL
THE POT EQUALS 50. MY HAND IS Dia M13 Hil S13 S7
YOUR BET eee YOU WIN

MY SCORE 1S 10.

CALL YOUR SCORE 1S A MERE =-140.
1 WIN THE GAME

MY MAND IS C8 S8 S3 H3 S6

I WIN NIL
MY SCORE IS -3.

| YOUR SCORE IS 3.YOU WIN THE GAME

NIL
}

|

255

