
| CS -115 |

PROGRAMMERS MANUAL

FOR

A COMPUTER SYSTEM FOR TRANSFORMATIONAL GRAMMAR

by

Joyce Friedman
Thomas H. Bredt
Robert W. Doran

Theodore S. Martner

Bary W. Pollack

This research was supported in part by the United

States Air Force Electronic Systems Division, under

Contract F196828-C-0035. |

STANFORD UNIVERS ITY COMPUTER SCIENCE DEPARTMENT

COMPUTATIONAL LINGUISTICS PROJECT

AUGUST 1968

3)

»-

AF - 36

CS - 115

PROGRAMMERS MANUAL

FOR

A COMPUTER SYSTEM FOR TRANSFORMATIONAL GRAMMAR

by

- Joyce Friedman*

Thomas H. Bredt
SM

Robert W. Doran

Theodore S. Martner

Bary W. Pollack

Present-address: Computer and Communication Sciences Department

The University of Michigan, Ann Arbor, Michigan

*k 1
Present address: Department of Mathematics

City University, London, ENGLAND

]

BSS Rib fd Of
area

‘ [aa

LRN

4

Abstract

This volume provides programming notes on

a computer system for transformational grammar.

The important ideas of the system have been

presented in a series of reports which are listed

in Appendix B; this document is the description

of the system as a program. It is intended for

programmers who might wish to maintain, modify

or extend the system.

”»ie
SLT

TT —

PROGRAMMING CREDIT

The principal programmers for each set of programs are listed below.

MAIN =~ Friedman and Martner

Free-field input/output =- Doran

Trees ~ Doran and Friedman

Grammar 1nput =~ Bredt, Doran (PSGINN), Friedman

Phrase-structure generation - Bredt, Friedman, John H. Gilman,
Alan C. Tucker

Lexical insertion =~ Bredt

Analysis - Doran and Friedman (CXIN), and Martner (ANTEST - replacing
an early version by Doran)

Restrictions =- Pollack

Structural change - Bredt, Friedman, Barbara Jackson

Complex symbol operations - Friedman

Control program - Pollack

11

HR Rca

’

Table of Contents

Page

1, TNErodUCLION « ¢ « oe o o o o o o o o o o o oo o oo o o o 1-1

2. Subroutine Structure « + Te i i eee eee 2-1

2.1 Main Program . « « « « « oo +o ee 0 0 ee oe ee 2-1

2.2 Free field input-output 2-1

2.3 Trees ee ee ee eee eee eee eee eee 2—2

2.4 Grammar input . . +. +o oc 0000 ee ee. 2-2

2.5 Phrase structure generation oo . . 2-3

2.6 Lexical insertion .« « « vv4 4 ve eee eeu. 2-3

2.7 BANAlysSisS + « vv vt eee ee ee ee ee ee 2-4

2.8 Restrictions « « « v vv vv vv ee ee ee ee 2-5

2.9 Structural change . . . + v4 vv ve ee ee. 2-6

2.10 Complex symbol operations «. . « « « «« « « « . . 2-6

2.11 Control program . « « « «« « « « « « «ee eo. 2-7

5. Subroutine Descriptions . . . « . . + « «+ 4 «<4 5-1

3.1 Main Program . . « « « « « o o © ©© 0 4 44 ee 5.1-1

3.2 Free field input-output 3.2-1

3.3 Trees ee ee ee ee eee eee eee eee 3.3-1

3.4 Grammar input . . . +... 0 eee ee eee. 3.4-1

3.5 Phrase structure generation 3.5-1

3,6 Lexical insertion oo... .. 3.6-1

) 3.7 Analysis Ce ee ee ee ee eee eee eee 3.7-1

3,8 Restrictions .« « vv vv vv vv vee ee ee 3.8-1

5.9 Structural change« + + + oo 0 0. 3.9-1

3.10 Complex symbol operations « 5.10-1

3.11 Control program «0 oc 0 WW . 5.11-1

bo COMMON BLOCKS . vv v + vv vv ee eee eee L-1

5. BLOCK DATA SUDbPrOgrams . . « + « « oo ov ov wv ov ov ov 5-1

111

Table of Contents (Continued)

6. Possible Extensions +. +. 4 4 eeu eee 0-1

6.1 Rule Features « « « « « 5 « o o oo oo oo « oo 6-1

6.2 Tree pruning ec + oe oe a eo a eo e eo eo eo © eo © eo © eo 6-5

6.3 n-ary features ce + + + + + so se se se se se se eo eo eo = 6-6

6.4 Restrictions on skips « « « « « «+ 1 ee 4. a. 6-7

6.5 Analysis of skips ec + eo eo eo +s eo eo eo eo + eo eo eo eo 6-7

Appendices

A. Formal Syntax for Transformational Grammar eee A-1

B. Reports on the Computer System for Transformational
Grammar . .« « « « os0 ote 0 uw ov 0 eee eee B-1

1v

Table of Figures

Page

1.1 Schematic Program Structure 1-2

3.3.1 Example of Printed Tree Output" 3.3-5

3.3.2 Listing of Punched Tree Output 3.3.6

3.4.1 Macro-Flow Diagram of Expansion, Order 3.4-5

3.4.2 Initialize Ce ee eee eee ee eee eee 3.4-8

3.4.3 Sburoutines Called by TRANIN 3.4-29

3.4.4 Storage of Transformations 3.4-32

3.7.1 Finding a Structural Analysis and Restriction

Pointer oo oo 0000 eee 3.7-9

3.7.2 Sample Use of ANNEX and ANPAR 3.7-12

3.8.1 Syntax of Restrictions 3.8-10

3.8.2 Table of Allowable Arguments + ... 3.8-11

3.8.3 Subprogram Call/Result Table 3.8-12

3.8.4 COMMON Blocks for Restrictions 3.8-13

3.8.5 Sample RUN + + + + vv vo vv vee eee eee 3, 8-14

3.8.6 Truth Tables for RESTST . . . « + v vv vu vv. . 3.8-17

3.8.7 RESIST: Table of Arguments and Results 3.8-18

3.8.8 RESTUN: Table of Arguments and Results 3.8-19

3.8-9 RESTPR: Sample Output « + « « . . . 3.8-20

3.8.10 Definition of Relations + + 3.8-22

3.9.1 Storage for Structural Changes 3.9-4

© 5.11.1 CPCOM, SYNCM . . . © . vv vv vv vv eee a a 5.11-24

5.11-2 Block Data Statements 35.11-25

3.11.3 Stack . . . Lo... o ooo eee ee eee 3.11-27

3.11.4 Terminal Symbols 2 a a aaa. 3.11-28

5.11.5 Syntax for SYNCHK. 5.11-29

TE AN darBO gle

RES atv [ae ;

ma

1. INTRODUCTION

This Manual 1s written by and for programmers. Its purpose 1s to

make the code of the computer system for transformational grammar more

readily understandable to programmers who wish to maintain and use the

system, or to modify and extend it. Section 2 1s a short outline of

the subroutine structure of the system. It 1s followed in Section 3% by

more detailed descriptions of the subroutines. Sections 4 and 5 are

listings of the COMMON blocks and BLOCK DATA statements, respectively.

Section 6 discusses possible extensions to the system.

The programs are written in FORTRAN IV for the IBM 360/67 compiled

under FORTRAN H, OPT=2, under O.S. There are approximately 9000 lines

of FORTRAN code; the compiled code, with storage areas, requires ap-

proximately 300,000 bytes of storage.

The inputs to the system consist of

1. a grammar (described by the formal syntax of AF-2L4)

2. a one-line driver for the MAIN program (see Section 2.1)

3. 1nput trees or skeletons (see 2.3 and 2.5).

© Extended examples are given in AF-33 (CS-108).

A simplified schematic diagram of the basic structure of the system

1s given in Figure 1.1. Arrows go from calling routine to called sub-

routine.

* References on the system are listed in Appendix B below.

1-1

a =~
OQ ~H #

| H © 3

: Oo 0 g
~— 44 O

|= BlE|E|E] oo

al |g] I 2 Bs)oo 1A a | wn NI Gh [B]/ g| | \. Tp y, | :EE 2 3 7 g 21 fig
= [AE EE:
H | = %

SE Aan er fe | gE B |

I RE | oon EE

" Co OO 0 o

| | 1-2

Programming Conventions

Input/Output

Almost all of the input to the system 1s handled by the free-field

input/output package (FREEIO). The only exception to this is the al-

ternative fixed-field tree input format. f[ikewise, most of the output

1s handled by FREEIO, with exceptions 1n certain cases of tabular

debugging output and fixed-field trees.

Error messages

A uniform convention for error messages 1s used throughout the

system. The standard form 1s

ERROR. Subroutine name. Message

Messages of the form

WARNING. Subroutine name. Message

are occasionally issued when a strong possibility of error exists, hut

an 1nternal correction has been made.

Output files

System output 1s written on several different logical units. pq

minimum output for a standard run is placed on unit 6. Unit 7 contains

additional general output useful for a more detailed study of the run. 3

Units 8,9 and 10 contain output for programmers concerned with :
ANALYSIS, RESTRICTIONS, and CONTROL, respectively. |

1-3

: -

2. SUBROUTINE STRUCTURE

In this section we list the subroutines of the system. For each

subroutine a brief discussion is given of its role. Further discussion

of each subroutine 1s given in the corresponding parts of Section 3.

‘ 2.1 Main program

'Routine Type Role
MAIN malin MAIN reads the directions for the

current run. The input is in the form

TRIN GEN

SAIN {coed(0) {Tp}) (TRAN)

2.2 Free field input-output

Routines Type Role

Entries

FREAD (NE) R*8 Free-field read. Returns a word or
special character.

INITLZ Initializes FREAD, KOUTWD and /MAINCM/ .

" FROUT(ISTART,I1,...,L6) SR Free-field output of KSUMP from ISTART
on.

KOUTWD (WORD , LENGTH) R*8 Returns an abbreviated word to FREAD

EXPND(KTS , WORD Expands an abbreviated word to a
LENGTH) long word.

KEYPUT Puts abbreviated words into KSUMP.

LNGOUT Outputs table of abbreviated words
and long words.

/ CNSTCM/ INTEGER*2 constants.

/ FCSTCM/ REAL*8 constants

2-1

2.3 Trees

Routine Type Role
Entries

TRIN SR Inputs fixed-field tree

TROUT(NQ1,NQ2) SR Outputs TREE starting at node NQl .
If NQ2 = -1, outputs the number
for each node.

/Z/ Short, miscellaneous block data,
includes NS, NERROCR.

- FTRI(ARG) I%2 Calls FTRIN with arguments for
input to TREE if ARG = 1, or
for addition to CHTREE 1f ARG = 2 .

FTRIN(FTREE, TREE, CLIST, I*2 Inputs free-field tree. Returns
MTREE,MCLIST,KA,KB, pointer to root of tree.
ISTART, FWORD)

FTROUT(TOP,PJ) SR Free—-field output of subtree
headed by TOP. PJ = 1 punches

output.

2.4 Grammar input

Routine Type Role
Entries

. INIT SR Initializes everything.

GRAMIN SR Reads 1n the phrase structure,
lexicon and transformations.

+ PSGINN SR Inputs phrase structure rules.

Expands, orders, and stores them.

PSGSMP Puts expanded phrase structure
rules into KSUMP,

PSGOUT SR Outputs tables of the phrase
structure rules.

LEXIN SR Reads 1n a lexicon = calls PRELEX.

PRELEX SR Reads 1n the prelexicon.

2-2

2.4 Grammar input (continued)

Routine Type Role
Entries .

NUMNAM(FWORD , ARG) I"2 ~~ Returns the number for the feature
NAME IN (FWORD, ARG) FWORD. Stores WORD as the name of

the contextual feature with the

number ARG.

LEXSMP SR Copies the lexicon into KSUMP,

LEXOUT Outputs the internal tables for the
lexicon.

~TRANIN SR Reads in the transformations.

TRANDU Outputs the table of transformations.

2.5 Phrase structure generation

Routine Type Role CL

Entries

GEN SR Generates a directed random tree,

IFIND (M,N) I*2 Subroutine for GEN. Returns 1,
0, -1 1f M must, may, or cannot
dominate N . IFIND(N,N)=1 .

TIAFIND(I) R*8 Called by IFIND. Returns I, if
I 1s a terminal symbol. Otherwise,
returns position of first rule which

expands I .

NSRCH (N) I%2 Called byIFIND. Returns position
of last rule which introduces sym-
bol N, 0 if none.

2,6 Lexical insert ion

Routine Type Role
Entries

LEXINS SR Does lexical insertion.

2-3

2.6 Lexical insertion (continued)

Routine Type Role

Entries

LSRCH(CATNY , NODE , WORD, TCS) SR Finds entry of category CATNY
suitable for insertion at NODE
which has complex symbol TCS and

WORD (1f non-blank).

TSRCH(CAT , NODE) Searches tree for lexical category
; (cAT) - returns node number in NODE.
N Returns NODE = 0 if there are

none. Keep calling, TSRCH keeps

~ searching.

CSTEST (NODE ,M,N) I*2 Returns number of compatible complex
symbol 1f complex symbol N 1s suit-

able for insertion at NODE which
~. already has complex symbol M .

SIDEFF(NODE,N) Does side-effects for each contextual
feature in complex symbol N .

CSCPMP (M,N, IND) I*2 Compatibility test for -omplex symbols.
If M or N > 0 they are node num-

bers. If M or N < 0, they = -

complex symbol numbers, If INL - i,
use nondistinctness test. If IND = 2,

use 1inclusion-1 test, If IND = 3%

return pointer to compatible complex

symbol found for node M.

2.7 Analysis

Routine Type Role

. CXIN{ KDUMMY) I"2 Reads in a complex symbol and returns
its number. If KDUMMY = 1, the

complex symbol 1s first expanded by

the redundancy rules.

SLFEAT (KDUMMY) I*2 Reads in a contextual feature and

returns 1ts number.

ANALIN(KDUMMY) T*2 Reads in a structural analysis and
returns 1ts number.

ANAIPU(I) Writes out the internal representa-
tion of structural analysis I.

2-4

2.7 Analysis (continued)

Routine Type Role
Entries

CSSUMP _ Copies a complex symbol into KSUMP,

CSOUT Outputs the interval tables for

complex symbols.

ANTEST(TRANN@ , TREETP , ANALNQ) L*1 Evaluates the structual description
of transformation TRANNY or the

| structural analysis ANAIN in the
subtree headed by TREETP.

_ ANRTES(PPSN) L*1 Tests restrictions on the node as-
signed to PPSN. If PPSN > 0,
test complex symbol also.

ANRUNS (POSN) SR Unsets restrictions on node PSN,
i Also sets NUMNPD and ANNODE to zero.

NEXT (HERE, TOP, SIGN) SR Resets HERE to the next node after
HERE.

2.8 Restrictions

Routine Type Role
Entries

RESTIN({YNE) I*2 Reads restriction . or
restriction > ; returns 1ts number.

_ RESTST(I,PPSN) I*1 Tests and sets restriction designa-
ted by I or CREST. If POSN = 0
resets the restriction first.

RESTUN(I,POSN) SR Unsets restriction I . If
| POSN = 0, sets CREST = I and

completely resets restriction I .

RESTPR(TI) SR Outputs tables for restriction I .
I = 0 outputs all.

GTPKEN(SYM) SR Returns a token, i.e.,, a logical
operator or condition.

/RESTCM/ Constants and storage.

2-5

2.9 Btructual change

Routine~~ Type — Role
Entries

CHANIN [*2, , Reads a structural change and returns

a pointer to it.

CHANTY Tidies up after all changes read,

CHANPU Outputs the table of structural
change.

ELEMOP (NWPORD,NQ1,NQ2) SR Applies operator NWPRD to arguments
NQl, NQ2 .

ERASE(NQ2) Entries for specific changes. IBM
SUBSE(NQ1,NQ2) operations are also done by ELEM@P,
ALADE(NQ1, NQ2)} but do not have individual entries.
AFIDE(NQ1, NQ2)"
ARTAE(NQ1,NQ2)
ALESE(NQ1,NQ2)
ARISE(NQ1,NQ2)
SUBST(NQ1,NQ2)
ADRIS(NQ1,NQ2)
ADIES(NQ1,NQ2)
ADIAD(NQ1,NQ2)
ADRIA(NQ1,NQ2)
ADFID(NQ1,NQ2)

CHANGE(ID,CNRNUM) SR Performs the structural change of
transformation ID using the

CNRNUM-th analysis found by ANTEST.

. 2.10 Complex symbol operations

Routine Type Role
Entries

REDRUL(M) I*2 Returns the number of the complex
symbol obtained on expansion of

complex symbol M using the redun-

dancy rules.

CSPP(TYPE,A,N,M) I*2 If TYPE = 1 returns pointer to new
complex symbol created by doing

operation A on complex symbols N
and M . If TYPE= 2 returns value

of test A on complex symbols N, M ,

2-6

2,10 Complex symbol operations (continued)

Routine Type Role
Entries,

CSEXCH (N, M) I*2, | Sets up calls to tests and operations
in CSP.

CSEQ(N,M)

(CSINCL(N,M)
CXINC1(N,M)

CSINC2(N,M)
CSNDST(N, M)

{ CSMERG (N,M)
MERGEL1(N,M)

CSMERR(N, M)

CSERAS(N, M)

CSSAVE (N, M)

2.11 Control program

Routine Type Role _
Entries

CPIN SR Inputs a control program. Check
syntax.

CONTRL SR Interprets the control program.

SCAN (DMY) I*2 Inputs next symbol and generates
token.

] SCAN1(DMY) I%2 Inputs next symbol and generates
token.

TRACE(TNp , TIM, ANFG) SR Generates TRACE output,

TAPPLY SR Invokes a transformation.

APPLY1(TND) SR For IN-transformations,

APPLY (TND) SR General

OUTTRN SR Outputs the list of tranformations
which have applied.

APPLYI(TND) SR When inside an IN construct.

e-7

2.11 Control program (continued)

Routine Type Role
Entries

SYNCHK I*1 . Checks syntax of the control program.

RECOG L*1 Generates token and recognizes
symbols.

APPLYG (GN) SR Invokes transformations of group
GNP.

/CPCoHM/ Storage.

~/ SYNCM/ Storage.

2-8

5. SUBROUTINE DESCRIPTIONS

In this section we describe individually each subroutine of the

system. The reader will immediately notice that the level of detail in

the program descriptions varies greatly. In general, where the program-

ming 1s straight-forward we have simply described inputs, internal

: storage, and outputs, On the other hand, when more complicated algorithms

are involved we have gone into considerable detail in order to try to

make the programs easy to follow.

3-1

3.1 Main program

The subroutines.of the system may be combined in various ways by

changing the main program (MAIN) . The current main program 1s given

below. It accepts an input in the form

TRIN GEN

The program first reads in a grammar. Then a tree 1s read by TRIN

or FTRIN . The integer n controls the number of times this tree

will then be used. If GEN 1s specified, the input 1s treated as a

skeleton to be expanded by the generation routine GEN (which then

calls the lexical insertion program (LEXINS)) . If LEX is specified,

the input is assumed to be a complete phrase structure tree and lexical

insertion is called directly. If TRAN 1s specified, the transforma-

tions will then be applied.

After n (or 1 if n 1s not specified) iterations a new tree

is input. The program terminates when there are no more inputs.

3.1-1

_—

MALN PROGRAM

c Resi oole ae As MATIN 11 REAR ARES SUBROUTINE desist | Sie xc ol ere
C MAIN PRAGRANM FOR TESTING GEN = 3675/67 = 1/19/67 -
C VERSINN FNR TESTING GEN —~ 11 8/18/67 oo oo

C INPUT CARD STOUENCE Co |
| C INITIALIZATION TS DONE BY GRAMIN

C P5Gy LEXICON, AND TRANSFORMATIONSARE READ IN ARSITEL
C OROER RY GRAMIN Lo I SE
C GRAMIN RETURNS VHEN $ IS READ.

C THEN eee | oo |
C READ IN (WHETHER TO CALL FTRINCR TRIN),
Cr ITERATIONS FDR GEN, CALL TD GEM, LEX, CONTRL.

IMPLICIT INTEGER®:?2 (A-2) . =»

COMMON /Z/ LAHK a NXXXyNSSyNSyNANDNOR, NANDOR NE RROR
| REAL*S LANK y MX XX gy NSS, NS, NAND $y NOR, NANDDR

SCOMAON /TREECHY/ FTREE,TFEESCLISTHMTREEyMCLIST a NCONDE
| REAL%#H FTREC(47C) | I oo

+ INTEGER#2 TREE(47 346) yCLIST(A0S) yMTREC ,MCLISTNCODEL(LG)
COMMIN/SKELCM/FISKELy I1SKELySKLIST,y ISKELTgMSKLST
REALL FISKELI227) | aE

oo INTEGER%2 ISKEL(Z240 96) SKLIST(200)I SKELT yMSKLST |

CCHMIN JCSCM/7 | Co | |
1 AMALWD CSLIST(4,20050) oAMALPT(500) yANALWP(20CC) ANALST 200 C),
2 TEMPIN(23ZC) 9 SLCTPT(4LC) yANALTP 2 SLCTTPyCSFGCSFRPT(ANALWT
REAL®R ANALWO{27:3) | |
COMMON/MAINCHM/ CHRTR,KSUMF,ISUMP,NCHRTR |

CCMMON/IRDCM/ MUM ISPEC,0ORDFL,MUMFL |
LOGICAL*®1 ORDFLNUMFL . |

REAL™B8 IMAIN/*S¢MAINY/,ZFTRIN/*FTRINY/L,ZTRIN/YTRINY/,
1 ZGEN/YGENY/Z7LEX/VLEXY/ y7TRAN/YTRANY/ FREAD

- INTEGER2 ONE/1/ oo |
N1l=1 | | So
N2=-1 | |

| | NZ =2" | a | |
WRITE(H,1T7730) |

g NERRNR=" | | | | |

CALL GRAMIN |

CSFIAV=LSERPT : :

C WE HAVE THT $, IF IT ISN'T US, QUIT NOW,

IF (CHRTR NE. ZMAIN) STOP |

3,1-2

Ww No @’ oO @) o> oO

— — — -— poet — <0 HS
($4 So aA re TC — pd —

. m m m 0 - —

HNO rt OMO ZT et rt Aa = CIO ZR a Ot ra OX es CF bot +t mt mt ome CD AOD met (YX XK XZ ee :
NADY OOM MMS>D MM TOMO NDNSXRXKZoDNZ20XZO0O0AATTMTMMTTMITC XI NTT IAXXXEXOW
xr AR wn To -~ < m mm — -, op Bhp — ! AT —~ TQ)= Mm
Fr iM MN ANZ os 0 ad 2 JI a TT = iN ef of oom mmm om TJ mdm oom ed MTF. 022 C
Vion CE aia Om nA X TC SCPXOXRXIOZPDOMOOODN— ZXAMIDOOX ZIM Ww
= He ro TA TRA — I Z A I IT Tv m T= ZMKe
Hom =H om Kom oe fT -— «4 I 0 o ¥ ~~ DDD AC Ht 4 ~~ XOX TT ZT UT C22 Hon
Sm lose HomTYHe ACY Cy HO m ww N=— =n -— MH —_ Hou r—-
Cr) er pd ef Kt a ps A arin ow ho =z — - 0 LO TO rr mI LOA Mo pd
= ie Nw I ¢e «~ Oim Ao — oO) Cs r— * ~ - pe (3 2
alk BEE BI | I A Ws & Nt =z vO Nn 4 pers se > De ee moO * ee M =
Ne Om —d —f ed M 72 Te oo > es — 2 rr CCM MM ZO om Mm>
~~ A xo e Ni OMIM ~ in r= Vecom QOZ alls Nw) r—

{NY sme Ti fy 2 0 OD ® —-— ™ . EE Ee . PY et Ww Co
~“? OM MM ~~ de SI oS — ~) 4 DO c
~~ — - — x = — mm ONNMN DY = ~N NN pt ;
— — -— = << andi = NX = IT AHO m0 C= mm ~
~ oT 5 — ~~ —. LAMM ON a amy ot ae

A _— | = =z ~~ TX ZO 3 — JD I

— » >. op! ~ - a =
WV on ~~ mr DD ©

i pt 2 wr < (OO >
Ww | o nn — Bt! ~~ > =

> pei ~N) aS oO — —
-— — LZ —— mM - kv) :

: -— : — NS re oo) . r=
<< J oo FY) w »H CZ

= ~ - Oo

: : I> A

. wn ow

. - .

=

_— | aunand

3.2 Free field input-output

A full description of the free-field input/output subroutine

package is given by R. W. Doran in AF-14 (C8-79) to which the reader

is referred. These programs are independent subroutines and may be

used outside of the present system.

2.2=-1

5¢3% Trees

COMMON/TREECM/FTREE,TREE, CLIST,MTREE, MCLIST

REAL*8 FTREE (400) Co.
INTEGER*2 TREE(400,6),CLIST(400), MTREE,MCLIST

Example

A i
C i G+F

Fool mmm

FTREE TREE CLIST

col. 2 3 L4 6

1 |S 0 1 3 0] 1]2

2 | B 1 5 5 0 2]5

3 | E 5 6 6 0 |3]|h

L | H 1 0 0 Ok

51D 1 8 9 o0|5]6

6 | C 2 0 0 Oo 67

7 | F 3 0 0 107

8 | G 5 0 0 0]8]53

MTREE=8 518
MCLIST=9

3.3-1

Discussion

FTREE 1s a list of the labels of the nodes of the tree. The numbering

of the nodes is arbitrary except that the root of the tree is always node 1,

TREE 1s a six—-column array parallel to @TREE. Columns 1 and 5 are used

for work-space. Col. 2 1s a pointer to the parent of the node (0 for the

root). Cal. 6 is a pointer to the complex symbol attached to the node (in

j CSLIST), or 0 1f none. Notice that the format thus allows complex sym-

bols to be attached to any node of the tree. Columns 3% and L point to the

first and last positions in CLIST which contain the daughters of the node,

CLIST gives the daughters in left-to-right order. MTREE 1s the current

length of FTREE and TREE; MCLIST is the current length of CLIST.

The format 1s a compromise between case of search and ease of change.

The list of node names in FTREE allows a quick search for a particular

node name. The entries in TREE and FTREE need not be contiguous and CLIST

likewise can be expanded without recompression. (The example shows CLIST

as 1t might look after various changes have taken place).

The COMMON block /SKELCM/ is structured like /JTREECM/ ; in the

common block / CHANCM/ FCHTRE, CHTREE, CHCLIS, NCHT, NCHCL correspond

| to FTREE, TREE, CLIST, MTREE and MCLIST .

Block data /Z/ contains a few miscellaneous parameters used in

the system. The most important of these are NSS and NS which both

continue the sentence symbol'S' and NERROR which can be used to

communicate an error condition. Some of the other parameters in /Z/

are no longer used.

3.3=2

1

External formats

The system has both fixed field and free field external representa-

tions for trees. TRIN and TROUT are the fixed field input and output

routines; FTRIN and FTROUT are the corresponding free field routines.

TRIN and TROUT, fixed-field tree I/O

TRIN and TROUT (I,J) input and output trees to and from the internal

format described above. The external format 1s immediately readable and

. readily punched. output may be printed or punched and may begin at any

selected node of the tree. A substitution feature allows subtrees to be

treated separately.

Figure 3.3.1 gives an example of the printed output of TROUT(1,0).

Figure 3.3.2 is a listing of cards produced by TROUT(1,1) . The input

to TRIN is the same as the output of TROUT(1,1).

Basic external format

The basic format 1s a representation in which the daughters of a

node in field L appear in field I+l . The first (left-most) daughter

1s 1n the same card as 1ts parent. Daughters to the right appear on

"lower cards. Thus

A B C

D E F

G

H

5.3-3

_

represents the tree

oo | B SN | oo

Substitution feature

A potential difficulty in the basic format 1s that the depth of a

tree may exceed the maximum number of fields allowed. A substitution

feature avoids this by replacems © . 2 ¢fummy node by a subtree. This

1s indicated by the use of a substitution card with XXX in the first

field and the dummy node in the second. Thus, the input cards

EXAMPLE

AB C

D E F

G

H

| ~XXX G

| .] oo

D

(blank)

represent the tree

co | | IN oo I CT

oo |] | | . oo : oo

BASE 25 IS THE AUTO THE CONVEYANCE THAT THE HORSE NAS AT THAT TIME

SS +

S PRE Q

NP DET ART THE

PSAR ADM

N NCM NCT

NU SG

AUX AUXA TNS PRES !
VP BE

PRED NP OET ART THE

PSAR AOM

N NCM NCT

NU SG

SS +

S NP OET ART THE

PSAR AOM

N NCM NCT

NU SG

AUX AUXA TNS PST

VP BE

PREO NP OET ART OEM WH

THAT

NBR

PSAR AOM

N NCM NCT

NU SG

TIM ™ AT

NPI OET ART OEM THAT

NBR

PSARAOM

TIME

NU SG

+

+

+ Q ThE ADM NCT SG PRES BE THE AOM NCT SG + THE AOM NCT SG PST BE WH
THA TNBR ACM NCT SG AT THA TNBR AOM TIME SG + +

Figure 3.3.1 Example of Printed Tree Output

BASE 25 Is THE AUTO THE CONVEYANCETHAT THE HORSE WAS AT THAT TIMESS

S PRE Q
NP DET ART THE

PSAR ADM

N NCM NCT

NU SG

AUX AUXA TINS PRES
VP BE

PRED NP DET ART THE |
PSAR ADM |

N NCM NCCT
NU $G

| SUBO1
+

XxX SUBO1

w 88 +
& I NP DET ART THE
Fo PSAR ADM

N NCM NCT

NU SG

AUX AUXAT NS PST
VP BE

PRED NP DET ART DEM WH
THAT ’

NBR

PSAR ADM

N NCM NCI

NU SG

TIM TM AT

. NPI DET ART DEM THAT
NBR

PSAR ADM

| TIME

NU SG
4 i

BLANK

FIGURE 3.3.2 LISTING OF PUNCHED TREE OUTPUT

oo -

The ony restriction on the use of the substitution feature on input

is that a unique name be given to the dummy node for which the subtree

1s to be substituted. Substitution will be made only for the first occur-

rence of that name.

In output, substitution 1s made for all occurrences of the sentence

symbol which occur at or beyond the field MAXSS . Thus, MAXSS should |

be set, on the basis of the grammars being processed, so that the maximum

depth of a kernel tree does not exceed MAXJ - MAXSS, where MAXJ is

the number of fields. If MAXSS is set too high to avoid overflow,

substitution will be made for the rightmost field. For the MITRE

Junior grammar the values of MAXSS = 5 and 13, for punch and print

' respectively, are acceptable for all but a few trees.

Alternative formats

Jane Robinson's PARSE program* uses an output format for binary

trees 1n which the first daughter appears to the right and the second

daughter, 1f any, appears below. Robinson's trees contain numbers asso-

ciated with each node and the lines of the tree are put in. A simple

. example 1s the tree

aN
we Reo
AW

of du

* J. Robinson, Preliminary codes and rules for the automatic parsing

of English, RAND RM-3%39-PR, 1962.

55-7

which is output as 1108 *¥%%x (130
R10 WHY :
» |

»*

1107 *%%% 0327 x¥A¥ GBD]
R2Q U52 DID
* *

* *

* 2005
* HE
I»

*

1001

GO

F. Blair* uses an input form which 1s inverse to ours since the

rightmost daughter occurs on the highest card. His input is free field

except that all daughters of a given node must begin in the same column.

As an example, the tree

/AN
\

GED

can be input as

A B C D

E

E

F G

R S

T

* D. Lieberman, Design of a grammar tester, and F. Blair, Programming of
the grammar tester, in D. Lieberman, Ed. Specification and Utilization
of a Transformational Grammar, AFCRL-66-270, 1966.

3.3-8

This limited use of free field seems to us to be no easier to punch

than fixed field. Its major advantage 1s that, since his program 1s in LL

LISP, atoms.of arbitrary length can be used. Blair's output 1s the

standard LISP S-expression form.)

Discussion of the format

The printed version of this format 1s easy to read; it seems to us

at least as intuitive as the alternatives discussed above. It is not

hard to punch an input tree directly from the graphic representation,

although it may be easier to use coding sheets.

Corrections and modifications to a tree are very simple to make.

An interesting by-product of the form 1s that a small set of card

types can be used to obtain all the trees possible within a given gram-

mar. For the IBM Core Grammar* a set of 42 basic card types wou.d

suffice to give all the possible kernel trees. About ten additional

card types would suffice to take advantage of the substitution feature

for embedded sub-trees. Additional punching would be required only for

input of lexical items.

TROUT

Output of trees 1s controlled by the two parameters of TROUT (I,J) .

The first parameter controls the starting point of the output. If I=1

the entire tree will be output, preceded by 1ts title and followed by

the terminal string. If I is not 1, the subtree headed by node

numberI will be output. This feature can be useful in testing trans-

formations, with I set in turn to each of the nodes of the proper

*P, Rosenbaum and D. Lochak, The IBM Core Grammar of English, Ibid.

5.35-9

analysis. If I 1s negative, an error indication 1s given; 1f 0,

SNIL is output; if greater than MTREE, it is reset to 1 .

The parameter J controls the punch option and numbering. If

J= 0 the tree 1s printed only; if 7 = 1 1t 1s printed and punched

offline; 1f J = -1 each node name will be preceded by the node number.

The parameters are protected so that the call 1s essentially by

value.

- IRIN

For input by TRIN the tree must be preceded by a title card. The

first card must have a node in field 1 . The format is 1286 . The

tree 1s terminated by a blank card. |

Conversion of decks

Conversion to this format of trees in another format 1s simple.

They can be read in by the old input routine and then punched out by

TROUT(1,1) . The output deck is ready for input to TRIN .

Error checks

; If TROUT is called with I negative, an error (301) results,

In TRIN error 210 occurs when the dummy node for which a substitu-

tion 1s to be made cannot be found in the tree. A final check on the

input tree detects trees in which the root 1s not the sentence symbol

(error 90),or which have multiple roots (error 93), Otherwise the

routine assumes that the input tree 1s good. It is therefore recommended

that TRIN be immediately followed by a call to a checking routine to

verify that the tree 1s in fact a correct tree of 1ts grammar.

3.3-10

The programs are set up for 6-character words. If 8-character

words are desired, the format statements, as well as the values of MAXSS

and MAXJ must be changed. In the case of a-character words, it would

be desirable to use the full 80-column card, so the format statements

must be changed accordingly. The word BLANK can then no longer be writ-

ten on the final blank card as it is in the T72-column version of TROUT(1,1).

FTRIN, FTRI, and FTROUT, free-field tree I/O

: Free-field tree inputs are primarily used to read into / TREECM/

and /CHANCM/ . To avoid the necessity for specifying all the parameters

in these cases, FTRI can be used. FTRI (1) calls FTRIN with the

correct parameters for reading a tree into / TREECM/ . FTRI(2) calls

FTRIN to add a tree to CHTREE in /CHANCM/ .

FTRIN(FTREE, TREE, CLIST, MTREE, KA, KB, ISTART, FWORD) reads a

free-field tree into a block strutured like /TREECM/ in which KA is

the maximum size of FTREE and TREE, and KB the size of CLIST .

If ISTART = O, an entire tree will be read, if ISTART = 1, FWORD

will be taken as the root of the tree.

. In the FTRIN code a single subtree is stored using a recursive

algorithm with a pushdown. KNPUSH(I) contains a pointer to the parent

of the Ith level of the subtree in array TREE and the daughters of

this parent so far found are from MPUSH(KMPUSH(I)) to MPUSH(KMPUSH(I+1)-1).

The recursion 1s depth first and whenever it 1s known that all the daughters

of a given node have been found they are dumped into CLIST . Substitution

1s done by finding the node to be substituted for (pointers to terminal

nodes are stored in NODES(50)) and then initializing the pushdown by

retrieving the left sisters of the substituted node and placing them on

5.3-11

the pushdown. The substituted sub-tree 1s then expanded until a period

or comma 1s encountered whence the right most sisters of the substituted

node are retrieved from CLIST and then all of the new list of daughters

stored back in CLIST . This causes waste space in CLIST and TREE,

but there 1s no waste space 1f there 1s no substitution.

FTROUT (TOP, PJ) outputs the subtree of TREE which has root TOP . :

PJ = 1 causes it to also punch the output. The code for FTROUT is a

very simple recursion. KMPUSH(I) tells us where in TREE the Ith

level of the tree is and. KNPUSH(I) points to the daughter of KMPUSH(I)

in CLIST with which we are dealing.

3.35-12

3.4 Grammar input

This section discusses the input routines for grammars and for the

three components of a grammar.

INIT, initialization

Subroutine INIT initializes everything in the system, including

the free-field input routine. It is called by GRAMIN .

GRAMIN, grammar input

GRAMIN first initializes the system by calling INIT and then

reads 1n a grammar, Since each of the major components begins with an

identifying word and ends with SEND, (@RAMIN is able to read either

a full grammar or just one or two components. @QRAMIN returns when it

encounters the order $ which ends the grammar, leaving the ordar

itself to be read by the MAIN program.

PSGINN, phrase structure grammar input

PSGINN reads compactly written context-free phrase structure rules

from the input stream, expands and orders them and stores them in the

~ rule storage area /PSGCM/ .

Storage of phrase structure rules

~~ COMMON/PSGCM/NSGA1, NSGC, NSGA2, NSGB, KA, KB, KC
REAI*8 NSGAL1(200), NSGC(2000)
INTEGER*2 NSGA2(200), NSGB(300), KA, KB, KC

Example

Input

S = NP AUX VP.

AUX = ((NEG, AFF))(ADV)TNS.

3.4.1

Expanded form

S =NPAUXVP.

AUX = TNS,

NEG TNS,

NEG ADV TNS, -—-

ADV TNS,

AFF TNS,

AFF ADV TNS,

) Internal form

NSGAL | NSGA2 NSGB NSGC

|
1 S.. 1 —_—p 1 1 pe————>P 1 | NP

_— h 2 | AUX
2 AUX 2 3 5 51 VP

4 7 4h | TNS

3 A 8 5 10 5 | NEG

KA = 3 6 12 Ny 6 | TNS
7 1h 7 | NEG

8 17 | 8 | ADV

KB = 8 9 | TNS
| 10 | ADV

11 TNS

12 | AFF

13 TNS

14 | AFF

| 15 | ADV

NG NS17 A

KC = 17

3.4-2

Discussion of internal form

NSGAL contains left-hand sides of rules.

NSGC contains right-hand sides of the (expanded) subrules,

NSGB (7) contains a pointer to the position in NSGC of the first
word of the jth subrule.

NSGA2(i) contains a pointer to the position in NSGB which points
to the beginning of the first subrule of rule 1 .

KA is the current length of NSGA1l and NSGAZ2

= number of rules + 1

KB 1s the current length of NSGB

= number of subrules + 1

KC is the current length of NSGC

= total number of words on RHS's+ 1

Algorithms for Expanding and Ordering P.S. Rules

Task

To read a set of compactly written Phrase Structure Rules, to

expand, order, and store them,

e.g., the rule Aux = ((NEG,AFF))(ADV)INS. will be expanded to

AUX = NEG ADV TNS,

NEG TINS ,

AFF ADV TNS,

AFE TNS ,

ADV TNS ,

TNS .

34-3

then ordered algebraically to AUX = TNS ,

NEG TNS ,

NEG. ADV TNS,

ADV TNS ,

AFE TNS ,

AFF ADV TNS .

and then stored as described above.

The overall logic of the program PSGINN is illustrated in Fig. 3.4.1.

The main (numbered romantically) steps are now described.

I/. The expansion of rules was broken down into 2 steps. An

"abbreviated node list" (i.e., a compactly written part of a rule,

e.g., "(PAST, PRES)" in the rule "TNS = (PAST, PRES) is firstof all

scanned and a table of linkages built up and then expanded using the

linkage table. Nodes are stored in array "NODES" and linkages in the

2 dimensional "LINKS" e.g., (NEG , AFF)) (ADV)TINS is firstly converted

into:

NODES LINKS 1.2.3.4

L. ; 23 Lh 5

2. NEG 2 ks

3. AFF 3 45

4, ADV hb 5

>. TNS 5 0

Every expanded node list may be obtained by chasing pointers until a 0

1s found. .

3.4-4

ENTER

INITIALIZE

|

|

(0
READ AND |

R.H.S. N |
~ |

| a |
N

| ERROR CONDITIONS |

READ& LINK |I (ABBREVIATED } — — — —| SKIP TO NEXT RULE
NODE LIST

OR EXIT

| |

EXPAND | |
II LINKED \

NODE LIST ~
so

~~

7”

NN
. rd

ORDER & 7
III STORE

R.H.S.s | |

Figure 3.4.1 Macro-flow Diagram of Expansion,
Order and Storage Algorithm.

3.4-5

e.g. LINKS(1,2) —> NODES(3) = AFF

LINKS(3,1) — NODES(L4) = ADV

LINKS(4,1) — NODES(5) = TNS

LINKS(5,1) = 0

so ‘AFF ADV TNS' 1s one of the expanded node lists.

This first linkage section 1s the most complex. It was found

possible to expand an abbreviated node list using a simulated pushdown

stack, only having immediate knowledge of the character being scanned

at present and the one previous.

There are 2 basic types of linkage between nodes 1n an abbreviated

node list: -

a . A-links as between A and B, A and C of A(B,C)D

b/. B-links as between B and D, C and D of A(B,C)D

A-links are links into parentheses, B links are links out of parenthe-

ses.

The 1dea of the algorithm of part I 1s then to scan the abbreviated

~~ node list, when parentheses are opened storing the A-type links for that

level of the pushdown and when closing parentheses fixing the B-type

links. Of course, links are also storsd and -fixed when commas or nodes

are encountered.

Nodes are stored linearly in NODES (I) when they are encountered,

INODES points to the last node stored. LINKS are stored in LINKS(I,J),

there being KLINKS(I) links in the Ith row.

The push down 1s rather complex. IPUSH indicates the level of

operation. At level I the A-links are stored in MPUSH from

3.4-6

KMPUSH(I) to KMPUSH(I+1)-1 and the B-links in NPUSH from KNPUSH(I)

to KNPUSH(I+1l)-1 . IMPUSH and INPUSH point to the tops of MPUSH and

NPUSH respectively.

KTR holds the character being scanned.

ISPEC indicates the type of the scanned character, ILAST the type

of the previous character scanned.

, ~we will go through the linkage of our example " ((NM;, AFF))(ADV)TNS"

describing what occurs at each stage. The internal configuration of the

system at each stage 1s illustrated in Fig. 3.4.2.

Stage N

The system 1s initialized as 1f the last character was a common

(ILAST = 2) and an A-link from the 1st node (there is no first node,

but a link from the first node indicates the beginning of an expanded

node list) is placed into MPUSH at the IPUSH = 1 level. KNPUSH(1) =

KNPUSH(2) indicates that level 1 of NPUSH is empty.

Stage 2

A parenthesis 1s scanned and causes the pushdown to be pushed

" down (IPUSH is increased by 1) and the links in MPUSH for the last

level are copied into this level. NPUSH is also empty for this level.

ptage

Similar to stage 2.

Stage

"NEG" is entered into the table of nodes at NODES (2) and the

A-links in this level of MPUSH are fixed onto "NEG" i.e., a pointer "2"

3. 4-7

h | FIGURE 3,h,2 STAGE 1 - INITIALIZE

KTR ISPEC ILAST —2___

1 2 3 4 5 6

INODE NODES 1. KLINKS1. —Q LINKS 1. — — _

3. 3. — 3. ee — ———
4. 4, 4, 0000000

5 5, — 5 ee

IPUSH IMPUSH PUSH INPUSH

by 1 1 Lr _0
=
co

KMPUSH MPUSH KNPUSH NPUSH

1. 1 1. 1 1. 1 1.

2. 2 2. oo 2. 1 2.
3. 3. 3. 3.

4, 4. 4. Co 4.

6. 6.

7. 7.
Cee 8. 8.

9. 9.

10.. 10.

| _—

is placed in LINKS(1,1) indicating that the first expanded node list

starts with the contents of NODES (2) .

Stage

A comma preceded by a word causes a B-link from the word to be

placed into NPUSH at this present level. In this example, INPUSH

is increased by 1 to 1, KNPUSH(IPUSH+1l) becomes INPUSH+1 (i.e.,

KNPUSH(4) becomes 2) and KNPUSH(IPUSH) has "2" placed in it.

Stage 6

The word "AFF" is placed in NODES(3) . A word preceded by a

comma 1S much the same as a word preceded by a left parenthesis so the

MPUSH link is fixed -"3" is placed in LINKS(1,2) .

Stage 7

A right parenthesis 1s preceded by a word (like a comma, slash, or

period preceded by a word) causes a B-link from the word to be placed

into NPUSH for this level,, The pushdown is popped (IPUSH is de-

creased by 1), but the links of the old level are still current, the

. next character determines the action to be taken.

Stage 8

- Another right parenthesis.,

Firstly as at this level (IPUSH=2) we have KNPUSH(IPUSH)=KNPUSH

(IPUSH+1) it follows that there have been no commas at this level and

consequently the nodes of this level are optional. So the A-links into

this level (just "1") become B-links out of this level (i.e., the A-links

skip over the contents of this level). A transfer 1s made from MPUSH

into NPUSH,

3.4-9

Co FIGURE 3.4.2 STAGE 2

KTR ISPEC —1__ ILAST —=2

1 2 3 4 5 ©6

INODE NODES 1. KLINKS 1._& LINKS |. (oo es

_1 py 0, | 2, —
3. 000 3, — 8, ee ——

: 4, 4. 4, eo

5 Me 5. — >J—

PUSH IMPUSH PUSH INPUSH

Ww 2 2 2 _°
T
0

KMPUSH MPUSH KNPUSH NPUSH .

1. 1 1. 1 . 1 1.

2. 2 2. 1 2. 1 2.

. 3. 3 3. 3. 1 3.

4. 4. 4. 4.

5. 5. 5. 5..
6. 6.

7. 7.

8. 8.

9. 9.
10. 10.

" FIGURE 3.4.2 STAGE 3

KTR { ISPEC1 [LAST 1

12 3 4 5 @

INODE NODES 1.____ KLINKS 1. —© LINKS 1. — —
1 2. 00000 2. 2, —

3 3.— 3

4, 8, a, __

5, 5. —— 5, 4 -— —

IPUSH IMPUSH IPUSH INPUSH

VW _3 _ _c _0
T
=

KMPUSH MPUSH KNPUSH NPUSH

1. 1 1. 1 1. 1 1.
o. 2 2 1 o 1 2.

3. 3 3. 1 3. 1 3

4, L 4 4, 1 4,

5. 5. 5, 5.

6. 6.

7. 7.
8. 8.

9. 9. :

10. 10.

Ce FIGURE 3.4.2 STAGE 4

KTR N86 ISPEC _©0 [LAST

1 2 3 4 5 6

INODE NODES 1. __ KLINKS 1. — 1 _ LINKS 1.2

30 00000 3, — 3 — a —
4. 4. 4. __

5 5. — 5¢ M4 — —

IPUSH IMPUSH IPUSH INPUSH

Ro

KMPUSH MPUSH KNPUSH NPUSH |

1. 1 I. 1 1. 1 1.
2. 9 2. 1 2. 1 2.

3. _ 3 3. 1 3. 1 3.
4. 4 C4, 4.’ 1 4

5. 5. 5. 5.
6. 6.

7. 7.

8. 8.

9. 9.

10, 10.

' FIGURE 3.4.2 STAGE 5

KTR =» ISPEC _2 |LAST —O_

1 2 3 4 5 6

INODE NODES 1. KLINKS 1. —1 LINKS 1. 2 __ ___ __ ___ ___

3.00000 3 —_ 3 oe

4 4, N 4, ___
| 5 Se — 5. — — 0

[PUSH IMPUSH | IPUSH INPUSH

_ 3 _3 _3 Ll
Ne

T

5 KMPUSH MPUSH KNPUSH NPUSH

1. _ 3 1. 1 . 1 1. 2
2. 2, 1 2. 1 2.

) 3. 3 3. 1 3. 1 3.

4: 4 4. 4. 2 4.

5. 5. 5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

10. 10,

: FIGURE 3.4.2 STAGE 6

KTR AFF ISPEC © ILAST —=2__
12 3 4 5 6 -

INODE NODES 1. KLINKS 1.2 LNKS1. © 3m - -— -—

— 2, _ NEG 2, 0 2
3._AFF 3 2 3 — — — — — —

4, 4. —_— 4. —e— —— ——— ———

Sf —_ 5. —, — 5. ———————

{PUSH IMPUSH IPUSH INPUSH

_3 3 | _3 1
WN .
7
=

KMPUSH MPUSH ~ KNPUS NPUSH

1. 1 1. 1 1: 1 1. 2

2. 2 2. 1 2. 1 2.

3. 3 3. 1 3. 1 3.

4. 4 4. 4. 2 4.

5. 5. 5. 5."

6. oo 6.

7 7.

g 8.

9. 9. . ‘

10. 10.

I id

Secondly, as the preceding character was a right parenthesis, the

B-links for the preceding level are added to the B-links of this level.

We now have links from 2, 3, 1 in NPUSH for this level.

Thirdly, the pushdown is popped again (IPUSH=1).

Stage 9

A left paren. 1s scanned so the pushdown 1s agaln pushed. Now all

the B-links out of the previous parenthesis level become A-links into

the new parenthesis level., So NPUSH for this level 1s transferred to

MPUSH and is itself eliminated by putting KNPUSH(IPUSH+1) = KNPUSH(IPUSH) .

Stage 10 h

"AD"" is entered into NODES(L4) and the A-links for this level are

fixed to "4",

Stage 11

As 1n stage 7, the MPUSH A-links become B-links in NPUSH . First

of all a B-link is entered from "ADV" in NODES(L4). The push down is

popped to level 1,

Stage 12

"INS" is enteredin NODES(5) . As the preceding character was a

right parenthesis the B-links in NPUSH for the preceding level are

fixed to "5".

Edage

A period firstly causes a link from "TNS" in NODES(5)to be

placed in NPUSH . Then links in NPUSH for this first level are fixed

to "0" indicating the end of an expanded node list. Control is passed to

the expansion section,

3.4-15

oo FIGURE 3.4.2 STAGE 7

KTR) ISPEC6 LAST —_C __

1 2 3 4 5 6

INODE NODES 1. KLINKS1 2 LINKS 1. 2.2 ___ __

3, AF 3.0 3
a, 4, 4, oe

5, 5, — 5 oe

PUSH IMPUSH IPUSH INPUSH

2 2 2. 0

on KMPUSH MPUSH . KNPUSH NPUSH

3. 3 3.1 3. _Y 3._
4. 4 l, 4. 3 . 4.

5, 5. 5. | 5. -
0. 6.

8. 8.

9. - 9,

1-0, 10.

FIGURE 3.4.2 STAGE 8

KTR) ISPEC _6 ILAST 6 __
1 2 3 4 5 6

INODE NODES 1. _ KLINKS 1.2_ LINKS 1. 2 3 __ __ __ __

3 o, NEG 2, 0 2 —

3, AFF 3, 9, 3.
4. 4. 4. —

J 5. — 5 M4 — —

IPUSH IMPUSH IPUSH INPUSH

1 1 1 0

Ww

SE

x KMPUSH MPUSH KNPUSH NPUSH

1. 1 1. 1 1. + 1. 2

2. 2 2. 1 2, 1 2. 3
: 3. 3 3. 1 3. L 3. 1

4, _ b 4. 4. 3 4.
5. 5. 5. 5.

6. 6.

7. 7.

8. 8. |

9. 9.

10. 10,

o | | [1]

a |]

i

«| 1] ||

«ef |] |

of | || |

wn 7)

é: 2 | 5 «|hv 0 o

3 ® & 0 9 & = 8 2 9
HN @MTInON©OoO

J]g a

oa ~~ (NN 0N << Wn = 3 AA]
Qo. =\O 7) o.| x x e eo ee eo

I J |. i.

NY 2 h 4
ZR
a | .

|

tv |

a Bl 2

& es eo eo eo 0 x = :
o — NTN a = rl aul xn ~

= (a: wn oa £ |
L = ® & & & 2 & 6 2 ee a
Se HNOON © OO

| bon I 5 lanl = |
oo | | oo ®e ee oo uwE22 ~ NM Ton=
hd Le)

3.4.18 4

Ce FIGURE 3.4.2 STAGE 10

KTR __ Vv SPEC© jLasT _*

1 2 3 4 5 6

INODE NODES 1. KLINKST . 3 LINKS 1. 2_3 _% __ _ ___
_ Lk 2, NEG -2, 1 2,

3. ATF 3. + 3. +

[PUSH IMPUSH IPUSH INPUSH

T

5 Co
KMPUSH MPUSH KNPUSH NPUSH

1. 1 1. 1 1. 1 1. 2

2. 2 2. 2 2. 1 2. 3

3._5 3. _ 3 3. 1 3.1
4. 4 4. A 4, 3 4.

5. 5. 5. 5.

0. 0.

7. 1.

3. 8.
0 9.

10. 10.

Following through the above example should give the readera good

feel for the algorithm*

During this stage a number of errors such as "(" followed by ","

are checked for. If an error 1s encountered, the rule or context being

expanded 1s skipped entirely.

II/, Expansion Algorithm

This is a straight-forward chasing of links and can best be under- .

stood by reading the appropriate section of the program. The Ith

expanded node ist is stored in MEXPND from KEXPND(I) to KEXPND(I+1)-1 .

IEXPND points to KEXPND, JEXPND points to MEXPND . KMPUSH and KNPUSH

are used during the expansion to keep track of how much has been expanded

so far, The Ith word of an expanded node sublist at a given time is in

NODES (LINKS (KMPUSH(I),KNPUSH(I))) .

ITII/. Ordering Sections

The ordering algorithm 1s simple. The smallest expansion 1s taken

out of MEXPND and stored, being replaced by a large non-word (") ."

in this case) and then the smallest expansion removed again and SO on.

Duplicate expansions are removed. (The procedure 1s complicated by

‘the requirementthat "A B" when compared with "A" actually has to be

compared with "A blank".)

Iv/. Context Checker

Foul contexts like "=" or "A " or "A « B - " are removed and

null contexts are accounted for, Error messages arc issued.

3.4220

‘FIGURE 3.4.2 STAGE 11

KTR J) ISPEC _® LAST O°
1 2 3 4 5 6

INODE NODES 1. KLINKS 1. 8 LINKS 1..2 3% _ _ __

3. AF 3. Lt 3. - 0 o- - 4
4. AV 4, 9 4. = - o-oo
5. 000 5. 5

IPUSH | MPUSH . IPUSH INPUSH

1 1 1 0

. _1 1 + _v
=
o

~ KMPUSH MPUSH KNPUSH NPUSH

1. 1 1. 1 1. 1 1. 4

2. 2 2. 2 2. 1 2. 2

- 3. 5 3. 3 3. 5 3. 3

4. 4 4. 1 4. 3 4, 1

5. 5. 5. 5.

6. 6.

8. 8.

9. Q.

10. 10.

FIGURE 3.4.2 STAGE 13

KTR ISPEC _T LAST©

1 2 3 4 5 64 .

INODE NODES 1 KLINKS): —— LINKS 3 I2— 2 |
3, _AFF 3, _2 3, + 5 __ _______

C4,_AW 4, _ 1 4. 5 __
5._TNS 5. 1 5. 0 _ ____ __ __

IPUSH IMPUSH IPUSH INPUSH

1 1 1. 1 -

¥ ;
nN

KMPUSH MPUSH KNPUSH NPUSH

1. 1 1. 1 1. 1 1. 5

2. 2 - 2. 2 2. 2 2. 2

. 3. 5 3. 3 3. 5 3. 3

4, 4% 4, 1 a, 3 4, 1

5. 5. 5. 5.
6. 6.

7. 7.
8. 8.

9. 9, |

10. 10.

oo FIGURE 3.4.2 STAGE 12

KTR __ TN ISPEC_O LAST —&_
1 2 3 4 5 6°

INODE NODES 1. KLINKS 1._% LINKS 1.2 3 %_ 5 __ __
_5 o _NEG 2.2 2 4 5 _ _____ __ |

3 _ AFF 3. 2 3. » 5 _
4, AV 4, a, 2 ____
5, INS 5, 9 5. —

IPUSH IMPUSH IPUSH INPUSH

1 1 1 0

o _1 1 _t _J
1
O

KMPUSH MP US H KNPUSH NPUSH

1. 1 1. 1 1. 1 1,

2: 2 2 2 2, 1 2. e

3. 5 3. 3 3. O° 3. 3

4. 4 4. 1 4. 3 4. 1

5. 5. 5. 5.

6. 6.
7. 7.

8. 8.
9. 9.

10. 10.

V/., Error Recovery

The general philosophy has been to try and continue after an error

1s found so as to check for further blunders. In later models, expanded

and non-expanded node lists will be mixable so partial expansions will

be valuable.

VI/. Denouement

When all rules have been read, the expanded rules are listed or

hunched if desired and other odds and ends tidied up.

PSGSMP

The entry PSGSMP of PSGINN places the expanded phrase structure

rules into KSUMP, which can be printed by calling FROUT .

PSGOUT

PSGOUT 1s a short subroutine which prints out the phrase structure

rule tables.

LEXIN, lexicon input routine

Internal Formats

We describe here only the storage of category features as used by

lexical insertion and the storage of the lexical entries. The storage

of inherent features, contextual, feature labels and descriptions, and

redundancy rules are treated elsewhere.

Lexicon data 1s stored 1n the common block labeled / LEXCM/ defined

as below.

3.4-24

5 ct

COMMON/ LEXCM/

1 LEXWD,LEXWDS,LEXCS,LEXCSS,LXCPTR,CATLST,NLXC,
2 NLEX,NLEXW,NLEXCS,NCATL
REAL*8 LEXWD(500),CATIST(20)
INTEGER*2 LEXWDS(300),LEXCSS(300),LEXCS(500),

1 LXCPTR(100,20),NLXC(20),NLEX,NLEXW ,NLEXCS,
2 NCATL

The category feature list 1s stored in the order input in the

array CATLST . The parameter NCATL gives the number of entries in

the category list.

A lexical entry 1s defined as a list of vocabulary words and a list

of complex symbols. Internally each entry 1s composed of two lists of

pointers. One list (LEXWDS) contains pointers to the array LEXWD

where the vocabulary words for the entry are stored. The other list

(LEXCSS) contains pointers to the array LEXCS where numbers ¢f the

complex symbols for tne entry are stored (these numbers are pointers to

the array CSLIST) .

To illustrate, if the ith and i+lst lexical entries are as

defined below:

entry

i JOHN BILL SAM [+N +HUMAN]|

i+1 IOVE |+V + TRANS|

then the storage would be as shown below.

3. 4-25

LEXWDS | LEXWD |
; » JOHN

To BILL

i
irl _ LOVE

i

mess | LEXDS
i

itl n CSLIST (-,n)

To simplify searching tor Lexica. entries during the lexical inser-

tion process, the entries are linked by lexical category; that 1s, all

nouns are linked together, all verbs, etc.

For the jth entry in CATLST

NIXC(J) = number of lexical entries in that category

IXCPTR(k,j) = pointer (to LEXWDS and LEXCSS) for

the kth lexical entry 1n category CATLST (J)

(1 < k < NLXC(3]))

LEXIN. lexicon input

When LEXIN 1s entered, it immediately calls the subroutine

PRELEX to read in the prelexicon portion of the lexicon. After

PRELEX returns, the lexical entries are processed, The subroutine

FREAD 1s used to read vocabulary words and special symbols

("o% "ss "|") . Complex symbols are read by the subroutine CXIN .

The flag ENTFI=.true. is used to indicate that an entry must be linked

to the appropriate category list, The flag ENDEF=.true. indicates

3.4-26

that entry has been completed and thus the pointers in LEXCSS and

LEXWDS must be specified. Error comments are produced by LEXIN

1f the array limits specified for the lexicon are exceeded. The array

limits are specified in the common block /LEXCM/ .

PRELEX, prelexicon input

Calling sequence: CALL PRELEX

Description: the integer variable STAGE is used in a "computed

goto" statement to transfer control to the appropriate place. If errors

occur, such as illegal punctuation or the omission of punctuation, error

comments are generated and recovery 1s attempted. The subroutines and

functions called by PRELEX are

Type Name and Args. Purpose

FUNCTION FREAD (ONE) free field input

FUNCTION NUMNAM (CHRTR, ZERO) store category and inheren:
features

FUNCTION SLFEAT(ONE) read contextual feature
description (not including
restriction)

SUBR NAMEIN(CWORD,I) store contextual feature
label

FUNCTION RESTIN (ONE) read restriction 1n con-

textual feature description

. FUNCTION CXIN (ONE) read 1n complex symbol
appearing in redundancy
rules.

LEXSMP, lexicon output

calling sequence: CALL LEXSMP

description: This subroutine puts the lexical entries into the

array KSUMP. They may then be printed or punched as desired by the

3.4-27

appropriate call to FROUT . The output format 1s suitable for use as

input. The subroutine CSSUMP 1s used to put complex symbols into

..... . If KsuMp becomes full the contents are printed by calling

FROUT and then the remaining entries are stored. The lexical entries

are put into KSUMP 1s category order as specified in CATLST .

LEXOUT, lexicon debugging

calling sequence: CALL LEXOUT

) description: This subroutine generates a printout of the storage

arrays for the lexicon described earlier. This printout 1s intended for

debugging purposes only. The code for this subroutine is found in the

subroutine LEXSMP.

NUMNAM, feature number and name

NUMNAM (FWORD, ARG) returns the feature number for the feature name

FWORD . If ARG is nonzero, and FWORD has not previously been assigned

a number, FWORD 1s assumed to be the name of an inherent feature, and

a warning to that effect is printed.

The entry NAMEIN (FWORD,ARG) stores FWORD as the name of the

contextual feature whose feature number 1s ARG .

The entry FEATOU prints out the internal tables for features,

redundancy rules and calls CSOUT for the internal complex symbol tables.

TRANIN, input routine for transformations

TRANIN reads 1n a set of transformations and stores the information

for later use. TRANIN is called by GRAMIN . TRANIN calls subroutines

ANALIN (an entry to CXIN), RESTIN, CHANIN, and CPIN which read

and store parts of the transformation specification, as shown in Figure 3.4.3.

3.4-28

Figure 3.4.3 Subroutines called by TRANIN

subroutine result

ANALIN(@NE) returns pointer to-the structural analysis

RESTIN(ONE) returns pointer to the restriction

CHANIN(@NE) returns pointer to the structural change

CPIN stores the control program for use by the control

subroutine

3.4.29

The only information which 1s analyzed by TRANIN itself 1s the

identification. The following comments explain the use of the parts

of the identification. (1) The optional integer is solely for the

convenience of the user and 1is {gnored by the program; the transformation

name is always used in referring to the transformation. (2) The group

number 1s used by the control program to refer to a set of transforma-

tions. If the group number 1s omitted on input, it will be taken to

_ be the same as the group number of the preceding transformation, or I

in the case of the first transformation. (3) Repetition determines 1f

and how the transformation will be reapplied to the same subtree. The

choices are AC (analyze once and change), ACAC (analyze, change and

repeat), AACC (find all analyses, then do all changes, and AAC (find

all analyses, do one randomly-selected change). The null option is AC .

(4) The choices for optionality are option (OP) and obligatory (OB) .

The null option is OB . (5) The keywords must be present in the tree

to which the transformation applies; this is a technical non-linguistic

device to speed up the program by avoiding the analysis routine, (Remark:

| At some later time we may wish to expand the notion of keyword to allow

Boolean combinations of keywords, or possibly even key-subtrees.) An

embedding parameter which would allow a search to go below any sentence

symbol was originally planned but has not been implemented; a tree will

be searched below a sentence symbol only 1f the analysis explicitly men-

tions a sentence symbol and gives an analysis for it.

Internal storage. Transformations are stored in the common block

/ TRANCM/ . The present capacity 1s 100 transformations. The I-th

transformation read 1s stored as follows:

3.4-30

-™

FTRAN(I) = name of transformation

TRAN(I,1) = group number (stored as an integer 1-7)

TRAN(I,2) = repetition (1 for AC, 2 for ACAC, 3 for AACC

and4% for AAC) ~

TRAN(I,3) = optionality (0 for obligatory, 1 for optional)

TRAN(I,4) = (currently unused)

TRAN(I,5) = pointer to the structural analysis of structural

description

TRAN(I,6) = pointer to the restriction of the structural

description

TRAN(I,7) = pointer to the structural change

The keywords for the I-th transformation are stored in KEYS from

KEYPT(I)+1 through KEYPT(I+1) . The number of transformations (hence

the current length of both FTRAN and TRAN) is NTRAN . The total

number of keywords is NKEYS .

Output of transformations. The transformations should be followed

by the order $END . This causes the program to output FTRAN and

TRAN in tabular form, followed by the list of keywords. Control is

then returned to the main program. CALL TRANOU will also produce this

output, which is illustrated in Figure 3.4.4.

3.4-3]1

FIGURE 3.4.4

TRANSFORMATIONS

NAMF GROUP CYCL OPT EMR $0 RES SC

| DUMMY | 0 r 0) 0 0

2 CP] i 1 0 0 3 0

3 CP? 1 " 0 4 2 4

4 CP3 1 1 G 0 5 0 5

5 IF 0 on o 0 n

6 10] 1 n 6 0 A

7 TO 1 0 0 7 0 7

~ § PASSIVE L 0 nN 8 3 8
9 EYTR4 1 1 1 0 10 0 12

10 PROREP 1 0 0 11 nN 13
11 WHA ! : o B 12 0 14

12 RELPLACF] o 0 13 0 15

13 AUXFILL l Nn 0 14 0 16
14 AG 1 1 0 0 15 0 17

15 EVER 1 1 0 16 0 20

16 REGDEL| 1 1 0 17 5 21

17 REGDEL2 1 0 0 18 6 22

18 DEFI 1 1 r 0 19 0 23

19 WHAG 1 1 0 0 20N -7 24
20 PROGDEL 1 0 0 21 9 27

21 RELDEL 1] 0 22 0 28

22 ADJPLACE | QO 0 23 0 31
23 CDUP 0 0 24 G 32

24 CNEG 1 0 25 0 33

25 CTENSE ! C 0 26 0 34

26 TS 1 t 0 27 0 36

27 CD 1 1 1 n 28 0 37

28 TAG 1 0 29 0 38

29 NEGPLACE 1 0 0 30 0 41

30 NEGTAG 1 n 31 0 42

31 NEGAUX 1 1 0 32 0 43

32 QU ES 1 0) 0 23 0 44
33 YESND 0 0 34 0 45

34 AF 1 C 0 35 0 46

35 PREPDEL 0 nN 36 10 47
36 PD 1 0 0 37 0 48

37 AGDFL 1 1 Nn 18 0 49
38 THAT 1 n 39 0 50

39 VPCOMP 1 0 40 0 51

40 BEDEL 1 0 0 41 0 54

41 MC DEL 0 0 42 0 55

42 QNEL 1 0 0 43 0 56

43 ERASE 0 0 44 0 57

3, 4-30

FIGURE 3.4.4 (part 2)

44 PAST 2 | 0 O 45 0 59

45 MTNEL 2 n 0 46 0 AN

46 PLUDFL p n n 47 0 61

47 NUM 2 { 0 0 48 G 62

48 NUAG 2 0 C 49 0 63

49 CONTR 2 1 0 0 50 0 64

50 NEGSPE LL 2 0 N 51 0 AS

51 NN1) t 0 0 52 0 66

. 52 DO2) 1 0 0 53 0 67

53 N03) 1 € 0 54 0 68

54 RE1 2 | 0 9) 55 0 69
55 BE?2 2 0 0 56 0 71

56 BF3 2 1) 9) 57 0 73
57 BF4 ? 0 0 58 0 75

58 HAVE] 2 1 0 0 59 0 77

59 HAVF2 _ 2 0 9) 60 0 79
60 HAVF3) 1 0 Q 61 0 A1

61 WHPDI) 1 0 62 0 83

62 WHPD? 2 1 0 8) 63 0 54
63 WHDEL 2 1 1 0 64 0 A5

64 DEFTHAT 2 1 0 0 65 $) Rb
65 WH1) 1 0 0 66 0 57

66 WH2 2 | 0 0 67 0 89

67 WH3 2 | 0 0 68 N 91

68 PLADEL 2 1 0 0 69 0 03

69 Cl) 0 0 70 0 94

70 c2 2 1 0 0 71 0 95

71 C3 2 i 0 0 72 0 96

72 c4) 0 0 73 0 97

73 8Y 2 0 0 74 0 98

74 INDEF 2 0 0 75 0 99

75 DEF) 1 0 0 76 0 100

TRANS KEYWORDS

3.4-33

3.5 Phrase structure generation

This section describes the routines GEN,IFIND,TAFIND, and NSRCH

which are used to expand tree skeletons into base trees. A general

description of this process is given in CS-80 (AF-15).

The main program is GEN and 1s called each time a skeleton 1s to

be expanded. The skeleton is expanded, starting with the sentence

symbol S, by selecting at random from the set of applicable phrase

structure rules. The skeleton may contain restrictions which require

dominance (DOM), nondominance (NDOM), equality (EQ), and special

node symbols, null expansion (NL), or variable numbers of daughters

(X or Y) . Restrictions DOM, NDOM, and EQ appear in the skeleton

as daughters of nodes as shown in the example below.

|RES ANN

The special node symbols NL, X, and Y appear directly in the skeleton.,

The appearance of NL as the leftmost daughter of a node indicate that

. ho daughters are to appear to the left of the daughter to the right of NIL,

that 1s the skeleton

/\
NL N

could not be expanded to

NP

a"

3¢5-1

EE

but could be expanded to

NP

The appearance of NL as the rightmost daughter in the skeleton

similarly limits expansion to the right.

The special node X indicates that 0 or more daughters must

appear 1n its place and the special node Y indicates that1 or more

daughters must appear,

The restrictions DOM,NDOM,EQ may refer to nodes or vocabulary

words (vocabulary words are handled during lexical insertion),, DOM

and NDOM may also refer to complex symbols with the node symbol a blank.

GEN uses the subroutine LSRCH (described in Section 3.6) with a node

number of 0 to determine 1f there 1s a compatible complex symbol in

the lexicon, The DOM restriction allows subtrees to be specified as

well as single nodes and these subtrees may contain further restrictions.

For example

: ~~,
ae Sorina

The function'subprogram IFIND (M,N) is used by GEN in testing

DOM and NDOM restrictions to determine 1f a node of type M must,

might, or cannot dominate a node of type N . IFIND calls IAFIND (N)

to find the first PSG rule (in PSGAl) which expands a node of type N .

IFIND calls NSRCH(N) to find the last PSG rule which could expand

to a node of type N .

3.5=2

- —

GEN

The following storage arrays are used by GEN in building the base

tree and handling restrictions

type

STRING (200,2) R*8

ITRACK (100) I*2

NEQLST (20) I%2

EQTRAN(20) R*8

NRESRS(10) I*2

NRES(10,3) R*8

NOK (20) I%2

NTEM(50,2) R*8

NTEM3 (50) I%2

NTEMCS (50) I%2

NOK (20) I%2

STRING

The array STRING contains a parallel list of the terminal node

| symbols and the terminal node numbers for the tree e.g.,for the I-th

element in terminal string

STRING(I,NSTA) = node number

STRING (I,NSTB) = node symbol

During expansion the new elements are inserted in the appropriate side

of the array. After expansion of an element the rest of the string is

copied over,

The pointers NSTA and NSTB are then reversed which in effect

"flips" the array. 3.53

ITRACK

This array contains pointers to the acceptable rule expansions of

a given node, The number of entries in ITRACK is given by the param-

eter MTRACK.

NEQLST

This array 1s used for handling equality restrictions, The first

appearance of a node with an equality restriction 1s expanded and the

node number is placed in NEQLST(I) where I is the equality restric-

tion number, For each succeeding appearance of a node with the same

equality restriction; the resiriction number 1s savedin TREE(NODE,5)

and the node 1s not expanded further at that time, When the base tree

has been completely specified (including lexical insertion) then the

subtree headed by the original node (with restriction TIT) replaces each

appearance of a node with TREE(NODE,5) = I ,

EQTRAN

The routine TRIN does not convert integers to integer format,

This conversion 1s performed by table look-up in the array EQTRAN,

NRESRS

If a DOM restriction contains a subtree (more than a single node),

or 1f a complex symbol appears 1n a restriction then the tree node which

1s the top of the subtree (or has the complex symbol) 1s saved in

NRESRS (MRES) where MRES 1s the number of restrictions (DOM or NDOM)

detected thus far., Otherwise NRESRS(MRES) = 0 .

3.54

NRES

For each DOM or NDOM restriction

NRES(,1) = DOM or NDOM

NRES (,2) = top node symbol of the restriction

NRES (,3) = tree node of the first daughter making up
the restriction (RES) .

NOK

] NOK(MK) = result of IFIND for the MKth daughter of a node with

DOM or NDOM restriction.

NTEM, NTEM3, NTEMCS

For each possible (MKth) daughter of a node with a DOM or NDOM

restriction

NTEM (,1) = node symbol

NTEM(,2) = DOM or NDOM

NTEM3() = NOK(MK)

NTEMCS(_) = complex symbol pointer if a complex symbol was

specified in the restriction.

The actual operation of GEN may be summarized as follows.

1. If there 1s a skeleton, store it in TREE .

If there 1s no skeleton, start with SS(SS=S) in TREE .

J. Pick a PSG rule (linear pass through NSGAL) .

If no more rules, go to step 11.

5. Match element of STRING with the left part of the rule.

If no more entries 1n STRING, go to step 2.

3.5-2

4, If there are no daughters specified in the skeleton, put pointers

to the possible rule expansions in ITRACK and go to step 6.

5. If there are daughters in the skeleton

5a. Search daughters for a restriction. If there is a RES and

- 1f 1t 1s an EQ

- put first node number in NEQLST and continue

with step 5a.

- for subsequent occurrences of the restriction put

the restriction number in TREE (node, 5) and go to

_ Step 3.

- 1f 1t 1s a DOM restriction with daughters or a complex

symbol, save the node number in NRESRS

- 1f it is a DOM or NDOM of an SS put this as the

first entry in NRES; otherwise put restriction in next

NRES entry.,

5b. Put pointers to the possible rule expansions in ITRACK

replacing X and Y nodes and treating the NL . If

there were DOM or NDOM restrictions, use IFIND to

determine the effect of the rules in ITRACK for each

restriction and save the results in NTEM . If the

restriction contained a complex symbol, consult LSRCH

as well. Delete those rules from ITRACK which are not

desired.

6. Pick a rule from ITRACK entries.

T. Put rule expansion in TREE (if not already there) and in STRING.

Unlink RES, X, Y,and NL daughters.

3.5-6

8. Save the remaining STRING entries.

9. If there were restrictions, then for each restriction

—- test each daughter and find the one corresponding to the

NTEM entry.

- for a DOM restriction

- if satisfied, set indicator (MK) and if DOM has

daughters or a complex symbol attach them

— 1f not satisfied yet, put the DOM restriction (with

complex symbol or daughters, 1f any) on one of the new

daughters which could possibly meet the restriction.

- for a NDOM restriction, if still could be violated, add

the restriction to each new daughter which could be expanded

into a node of the type not desired.

10. Fill and flip the STRING array and go to step 3 (pick up

where we left off in STRING).

ll. If there are any SSes or Ses in STRING and if an SS or

S appeared in a DOM restriction, then put the leftmost S

in the first entry in STRING and go to step 2 (this wipes out

the old STRING).

. 12. Do lexical insertion (call LEXINS),

15. If there were EQ restrictions, search tree for nodes marked

with a restriction number (in TREE (,5)) and substitute

the subtree headed by NEQLST (TREE (,5))

50-7

IFIND (M,N)

IFINDis an INTEGER*2 function with two REAL*8 arguments M

and N which are node symbols that appear in the tree and in a DOM

or NDOM restriction, respectively.

IFIND (M,N) = -1 if a node of type M never can dominate a node

of type N

IFIND(M,N) = 0 1f a node of type M might dominate a node of

type N.

IFIND(M,N) = 1 if a node of type M must dominate a node of type

N

The result of IFTND 1s obtained by examination of the phrase structure

rules stored in the arrays NSGAl, NSGAZ, NSGB, and NSGC . Th: array

ISTACK is used for pushdown to save intermediate parameters and the

array CATRES 1s used to save 1ntermediate results.

A heuristic has been introduced to increase the efficiency of the

search process. Any node symbol examined to see 1f it dominates another

node symbol is tested only once. If the search 1s performed exhaustively

a given category may be examined several times 1f 1t appears more than

once in the phrase structure rules. For example:

1. s =NP VP

2. VP -V NP

3. NP =N S

For IFIND(S,N), the NP will be examined only once even though it ap-

pears on the right-hand side of rules 1 and 2. The array BADST 1s used

to remember rules which have been previously examined.

3.5-8

TAFIND(I)

IAFIND is a REAL*8 function with a REAL¥8 argument. The

value of I 1s a node symbol. If I 1s the sentence symbol (SS=S)

or a terminal symbol of the phrase structure grammar then the value of

TAFIND(I) is I . Otherwise the value of IAFIND is the index to the

first rule in the phrase structure grammar pointer to (NSGAl) that

expands the symbol I .

NSRCH(N)

NSRCH is an INTEGER*2 function with a REBAL*8 argument, N .

N is a node symbel. The value of NSRCH 1s the index to the last rule

in the phrase structure grammar that introduces the symbol N . If no

rule introduces the symbol N, the value of NSRCH is 0 .

5.5-9

3.6 Lexical insertion

The main subroutine for lexieal insertion 1s LEXINS. This program

calls the subroutine TSRCH to locate lexical category nodes in the tree.

LEXINS calls the subroutine LSRCH to locate complex symbols and vocabulary

; words that are suitable for insertion at a specified lexical category node.

LSRCH calls the subroutine CSTEST to test if the lexicon complex symbols

are sultable for insertion in the tree. CSTEST calls the subroutine

CSCOMP to determine 1f a tree complex symbol and a lexicon complex symbol

are compatible. CSCOMP will assign values (either to + or -) to all

features with the value *. CSCOMP merges complex symbols and expands

the result using the subroutine REDRUL. The result of CSCOMP is either

a complex symbol number or the integer value zero to indicate that the two

complex symbols are incompatible. If CSCOMP indicates that the complex

symbols are compatible, CSTEST then calls the subroutine ANTESTto test

each contextualfeature specification in the complex symbol returned by

CSCOMP.

: The following common blocks contain arrays and variables used in lex-

ical insertion.

COMMON/LINSCM/
1 SRCHL, ELIST, NSRCHL,NELIST

INTEGER*2 SRCHL(2,50),ELIST(2,50),NSRCHL, NELIST

where

SRCHL(2,50) is a stack of parent and daughter pointers that

1s used by the subroutine TSRCH in searching for nodes of a particu-

lar lexical category. This array is initialized by the subroutine

LEXINS. The number of entries 1n SRCHL 1s given by the parameter

NSRCHL.

3.6-1

wo.

ELIST(2,50) is an array used to hold the lexical items found

by the subroutine LSRCH

ELIST(1,-) = index to vocabulary word in the array LEXWD

ESIST(2,-) = pointer to the complex symbol in the array

CSLIST

NELIST gives the number of items in ELIST. If more than one item

1s found, an item 1s selected at random for insertion,.

COMMON/CONFCM/
1 CFVALS(100)

The array CFVALS is used to save the value for a contextual feature

when it has been determined by the subroutine ANTEST. This array

1s 1hitialized by the subroutine LSRCH and data 1s entered into

the array by the subroutine CSTEST. Before CSTEST calls ANTESTto

analyze a contextual feature, it first checks to see if the value

has already been 'obtained.

if M is the feature number (CSLIST(1l,))

; O = no value determined for this

feature.

CFVALS (M-MXEXP) = | 1 = feature is positively specified.2 = feature is negatively specified.

LEXINS, lexical insertion

calling sequence: CALL LEXINS

description: lexical insertion is performed in two passes. On the

first pass restrictions and vocabulary words introduced by the directed

random generation of the tree-are considered. On thesecond pass, .the

remaining lexical category nodes are treated. The operation of the

3.6-2

cee | | ur -_

program may be summarized by the following sequence of actions.

1. initialize EQLST for equality restrictions

2. search tree, breadth first (right to left) and top down. Make

a list (SSLIST) of the appearances of the sentence symbol (SS).

3. do pass 1

3.1 take SS from SSLIST (last first) if no more go to step 4.

3.2 search tree for category symbols in the order specified

in CATLST 1f no more entries in CATLST go to step 3.1.

5.5 call TSRCH(CA,T,CNODE) to get next category node.

CNODE = 0 = no more nodes in this category so get next

= CATLST entry and go to step 3.2.

CNODE = 0 = if not a restriction or vocabulary word go

to step 3.3.

3.4 if equality restriction

-—- convert restriction number to integer (TRIN doesn't

do this). We require 1 < restriction number < 20.

~~ if EQLST(restriction no.) = 0 then

EQLST(restriction no.) = node of lexical category

(CNODE)

cALL LSRCH (LC,CNODE, vocabulary word, tree

complex symbol)

| LC = lexical category number in CATLST

CNODE = node of lexical category symbol

1f there 1s an entry - attach the complex symbol and

treat the side effects CALL SIDEFF

(CNODE,LECS goto step 3.3.

1f no entry - error comment go to step 3.3.

3.6-3

-- if EQLST(restriction no.) # 0 then

substitute vocabulary word and complex symbol

CALL SUBST (EQLST(I), CNODE)

go to step 3.3.

5.5. If dominance restriction, erase RES and DOM daughters and go

to step 3.6.

3.6. Vocabulary word is specified

CALL LSRCH(LC,CNODE,WORD, TREE (CNODE,6))

1f there 1s an entry

attach new complex symbol- treat side effects

- go to step 3.3.

if no entry

write error comment

go to step 35.3.

L. do pass 2.

4.1. take SS from SSLIST (last first)

1f no more RETURN

4.2. get entry in CATLST

if no more go to step k.1.

4.3. search tree for node in proper category

CALL TSRCH (CAT, CNODE)

return

CNODE = 0 = no more 1n this category; go to step 4.2.

CNODE # 0 = if daughter on node (from pass 1)

go to step 4.3.

L.4, search lexicon for vocabulary word and complex symbol

3.6-4

CALL LSRCH(LC,CNODE,FBLANK,TREE (CNODE,6))

1f no entry

error comment

go to step 4.3.)

if entry

attach complex symbol

attach vocabulary word

EE CALL ALADE(MTREE,CNODE)

treat side effects

CALL SIDEFF (CNODE, complex symbol no.)

h go to step 4.3.

TSRCH, tree search for lexical category nodes

calling sequence: CALL TSRCH(CAT, NODE)

where CAT(REAL*8) = node type desired

NODE (INTEGER¥2) = return parameter

return parameter:

NODE = 0 = no more nodes in the category CAT

NODE # 0 = number of category rule in TREE.

description:

The initial tree top and first daughter are stored in SRCHL(1,1)

and SRCHL(2,1) respectively by LEXINS. The search is depth

first and left to right in the tree but never goes below any

SS or below a lexical category node. The depth of search

1s recorded by the parameter NSRCHL. On subsequent calls to

TSRCH, the search 1s resumed where it left off.

3.6-5

LSRCH, search lexicon

calling sequence:

CALL LSRCH(CATNO,NODE,WORD,TCS)

where CATNO = number of category of interest (pointer to CATLST)

0 special call by GEN
NODE =

tree node location for lexical item

| blank 1f no vocabulary word 1s yet associatedWORD = with node vocabulary word
1f a particular vocabulary word has already

been specified in the tree

0 if no complex symbol 1s defined in tree

TCS = pointer to complex symbol in CSLIST 1f lexical

h category node 1n tree has a complex symbol
attached.

description:

LSRCH has several modes of operation depending on the values

of its operands. In all cases the basic function 1s to find a lexical

item (vocabulary word and complex symbol) which are suitable for

insertion in the tree. The acceptable item is returned in the COMMON

array RELIST.

| ELIST(1,NELIST) = pointer to vocabulary word in array LEXWD

ELIST(2,NELIST) = pointer to complex symbol in CSLIST.

1f there 1s no lexical item suitable for insertion then NELIST = 0

on return to the calling program (LEXINS).

If a vocabulary word has been specified LSRCH searches the lexicon

in the appropriate category for that word. If the word is found the

complex symbols associated with the entry are tested by using the function

CSTEST (NODE, TCS,LCS) just as in the case when no vocabulary word is

specified.

3.6-6

If no vocabulary word has been specified, then lexical entries are

examined in the proper category but in a random manner (random selection

without replacement). If the entry selected contains acceptable complex

symbols (this is determined by using the function CSTEST(NODE,TCS,LCS))

then the search terminates. If the entry does not contain acceptable entries,

then the entry is marked as unacceptable (LBAD(j) = true where j = jth

entry in the category specified by CATNO) and a new random entry is

_ selected.

We 1llustrate this process below. N 1s the number of entries

remaining to be tested. I is the increment used to obtain an entry.

Initially, N equals the number of entries in the category.

compute I (I = random integer, 1 <I <N)

th
get I entry not yet tested

test the entry--if acceptable, then exit

mark entry not acceptable

N=N-1 1f N = 0, exit--no entry 1s acceptable

3.6-7

Suppose N = 8, compute I, = 6 and ®
test entry 6 . Entry 6 is not \ TN
acceptable, so mark entry, decre- \ * CC
ment N, compute I, = L . Step | 2

4 untested entries to entry 2. Test (o
entry 2. Not acceptable. Mark —— A
decrement N, compute Is _ 2 \>

} Step 2 entries. Test entry 4%. This 6 |
entry acceptable, so exit. [

J

This method of selection weights lexical entries equally. Since

an entry may have more than one complex symbol, complex symbols do not

have exactly equal probabilities of being selected. If this 1s an

important consideration, the lexicon should be defined so that each

entry consists of a single complex symbol with its associated vocabulary

words. If lexical items are to receive equal probability of selection,

the lexicon should be defined so that each entry 1s a single vocabulary

word and a single complex symbol.

CSTEST, test complex symbol for lexical insertion

CSTEST 1s a function subprogram the value of which 1s an integer

variable (INTEGER¥2). The function is referenced as shown in the

example below.

CSR = CSTEST (NODE,TCS, LCS)

where

3.6-8

the node in the tree if doing lexical insertion

NODE = | 0 for a test in the generation of the basetree by the program LSRCH-GEN.

TCS = { pointer to a complex symbol (usually the complex symbolassoclated with the tree)...

ICS = pointer to a complex symbol from the lexicon.

These results are

CSR = 0 1f the complex symbol 1s not suitable for insertion in the

tree.

CSR = complex symbol pointer 1f the complex symbol in the lexicon

1s suitable for insertion. In this case, the variable CSR

points to the new complex symbol which 1s to be inserted in

the tree.

description: The basic test used to determine if a complex symbol 1is

suitable for insertion in the tree has two parts. The first part

1s the compatibility test. This test is performed by the program CSCOMP.

If the tree complex symbol and the lexicon complex symbol are not

compatible, the lexicon complex symbol 1s rejected and the value of CSTEST

. 1s zero. If the complex symbols are compatible, then the program CSCOMP

returns a new complex symbol that 1s the result of the compatibility

test. The second part of the test performed by CSTEST involves the

analysis of each of the contextual features that appear in the new complex

symbol. This part of the test 1s performed in two passes. On the first

pass, the value of each contextual feature is compared with the entry

in the array CFVALS. If the array entry is defined, then the value of this

feature has already been determined by an earlier call to CSTEST (for

a complex symbol which was rejected). We require that the values of the

3.6-9

contextual feature in the array and the value in the complex symbol be

the same. On the second pass contextual features whose values do not appear

in the array CEFVALS are treated. The program ANTEST is used to analyze

the tree for each such feature. Before ANTEST is called the node in the

tree which corresponds to the top of the contextual feature description

must be determined. This is done by getting the node type (e.g. S,VP)

from the contextual feature description (in ANALWD). The tree 1s then

searched up from the node for which lexical insertion 1s to be performed

-and the first occurrence of a symbol of the proper type 1s used as the top

node for the analysis process. Of course if the node is not found the tree

does not match the feature description and the value of the feature 1s

minus (2). If the tree matches the feature description (ANTEST returns

the logical value true), the value of the feature is + (1). If tree

does not match the feature description (ANTEST returns false.) the value

1s minus (2). Again we require that the tree value and the lexicon value

be the same. The value determined for the contextual feature is saved

in the array CFVALS so that the analysis program will not be called twice

for the same contextual feature in the search for a lexical item for the

. same tree node. If the tree meets all the contextual feature specifications,

the complex symbol number 1s returned indicating that the complex symbol

1s acceptable for insertion in the tree.

SIDEFF (a separate entry point in CSTEST), side effects

When a vocabulary word and complex symbol are inserted in the

tree, side effects must be considered and 1f necessary treated. For

a definition and discussion of side effects see (CS-103.. The program

which handles side effects is called SIDEFF(NODE,N) where NODE is the

tree node where a lexical item was just inserted and N 1s a pointer

3.6-10

to the complex symbol just inserted. A rigorous treatment of side

effects 1s not performed, however the cases which usually occur in

practice are handled correctly. We describe here what is actually

done by the program, not what should be done. The program performs

as outlined below:

1. Side effects for negatively specified contextual features

are 1gnored.

2. For each positively specified contextual feature.

2.1 If the contextual feature description does not contain

a complex symbol, there are no side effects for this

feature so look for another contextual feature.

2.2 If the contextual feature does contain a complex symbol,

the analysis routine 1s called to examine the tree for

the feature description. When the program ANTEST tests

as a complex symbol embedded in a contextual feature

description it uses the program CSCOMP. C(CSCOMP saves

the result of the compatibility test. When ANTEST

returns, SIDEFF examines the array ANNODE and retrieves

the tree node which matched the node in the contextual

feature description. SIDEFF then uses the function

CSCOMP(NODE,0,3) to retrieve the complex symbol derived

by CSCOMP during the analysis of the tree and attaches

the complex symbol to the node. This is done for every

complex symbol appearing in the contextual feature

description. We use the result of the compatibility test

rather than the complex symbol that appeared in the

contextual feature description to insure that features

3.6-11

with the value *(3) will not appear in the tree.

CSCOMP(M,N,IND), compatibility test

This program 1s an 1nteger*2 function whose basic task 1s to

determine the compatibility of two complex symbols. The test for

compatibility 1s described in general terms in CS-103. The parameter

IND indicates the function CSCOMP 1s to perform

if IND = 1: perform compatibility test using nondistinctness

as the subordinate test. (This mode 1s used in

lexical insertion.)

IND = 2: perform compatibility test using inclusion as

the subordinate test. (This mode could be used in

the analysis process for transformations.)

IND = 3: then M 1s a tree node for which a compatible

complex symbol has been obtained on a prior call

to CSCOMP. The purpose of the current call 1s to

retrieve the number of the compatible complex symbol

from the array TREECS(M) where it has been saved.

| (Thismode 1s used in treating side effects.)

The parameters M and N point to either a tree node or to a complex

symbol 1n the array CSLIST.

M,N > 0 = tree node

M,N < 0 = point'to a complex symbol

If M or N point to a tree node then CSCOMP uses the complex symbol

attached to the tree node. If there is no complex symbol attached to

the tree node, then CSCOMP creates a complex symbol which contains

a single feature specification, a positive feature specification for

3,6-12

the category designated by the tree node. If the tree node has a

complex symbol attached but this complex symbol does not contain a category

feature specification, then CSCOMP creates the proper category feature

specification and links it to the tree complex symbol. At this point

CSCOMP has two complex symbols to test for compatibility, each of which

contains a category feature specification 1f 1t 1s possible to determine

one.

CSCOMP checks 1f each complex symbol has a category feature

) specification and, 1f both do, checks to see that the same feature

appears in both complex symbols. This is necessary because category

features are exceptions to the test for nondistinctness. If this check

fails, CSCOMP returns the value 0 to indicate incompatibility.

If IND = 1, the nondistinctness test is made (CSNDST(MM,NN))

where MM and NN are the complex symbols derived from M and N .

If IND = 2, the inclusion test is mode (CSINC1(MM,NN)), MM and NN

as above.

If these tests fail, the return value 1s 0 .

If the appropriate test succeeds, the complex symbols are merged to

form a new complex symbol. (NNEW = CSMERG(MM,NN)).

Next asterisks which may appear in the complex symbol pointed to

by NNEW must be considered. Asterisks appearing as values of features in

a complex symbol indicates that the value of the feature may be either +

or =- with equal probability. Thus a complex symbol with k asterisks

for feature values 1s really an abbreviation for 2 complex symbols. The

result of the compatibility test (if successful) 1s a complex symbol which

does not contain the asterisk value. Therefore at this time we select at

3.6-13

random without replacement from the possible ok complex symbols and

test each complex symbol for compatibility by expanding the complex

symbol using the function REDRUL(NNEW') where NNEW' is the complex symbol

NNEW with asterisk values changed to either + or = . If the

redundancy rule expansion 1s successful, then the complex symbol pointer

NNEW' 1s returned as the value of CSCOMP. If the expansion is unsuccessful,

a new value assignment 1s computed and the expansion repeated with the

new complex symbol NNEW'. The process continues until either a successful

expansion 1s obtained or until all value assignments are exhausted. In

the latter case, the return value of CSCOMP 1s 0 to indicate incompatibil-

ity. Value assignments are computed so that each possible value assignment

has equal probability of selection. The limit on the number of asterisks

that appear in a complex symbol has been arbitrarily set at four. To

increase this limit, increase the size of the array ASTLST and increase the

test value at statement label 121.

If the complex symbol pointed to by NNEW does not contain any asterisk

values, then the complex symbol 1s expanded by the redundancy rules

(REDRUL(NNEW)) and the appropriate result generated.

| In summary, the value of CSCOMP is zero 1f the complex symbols are

incompatible. If the complex symbols are compatible the value 1s a

pointer to a new complex symbol obtained by merging the originals, selecting

a value assignment for any asterisk values, and expanding by the redundancy

rules.

If parameter M pointed to a tree node then the result of the compati-

bility test is saved in the array TREECS(M) (1 < M < k00) so that it may

be retrieved on a later call to CSCOMP with IND = 3.

3.6-1k

3.7 Analysis

CXIN, input routine for complex symbols, structural analyses and

contextual features

CXIN 1s a somewhat involved {nput routine which 1s used to read

three different types of objects. Since complex symbols may contain

contextual features, and structural analyses may contain complex

symbols, this program would have been much easier in any language which

allowed recursive subroutine calls.

There are three entry points to the subroutine. The normal

entry CXIN 1s for complex symbols, SLFEAT is for selectional

features and ANALIN 1s for structural analyses. At each entry logical

flags are set so that it 1s always possible to tell which entry was

called.

Data Storage

Complex symbol storage

The function of CXIN 1s to store the input object in the

appropriate arrays for later use. We first describe these arrays.

: Complex symbols are stored in CSLIST which is a b4-row, 2000

column array, with current length = CSFRPT- 1. (This structure

was chosen so that a single feature specification would be looked

at either as four INTEGER*2 entries, or as one REAL¥8 entry). Each

column of CSLIST contains a feature specification consisting of

feature number, feature type, and feature value and also a pointer to

the next feature specification. A complex symbol number is a pointer

to the first feature specification of the complex symbol, Subsequent

feature specifications in the complex symbol are found by following the

SeT=1

pointers. The last feature specification of the complex symbol has a

pointer of 0. The feature specifications of a single complex symbol

are ordered by feature number. (The list structure of CSLIST was not

exploited in most of the code; actually the feature specifications

for any one complex symbol form an adjacent block in CSLIST.)

The feature number of a category or inherent feature (herein

called explicit features) is obtained by a call to NUMNAM. Numbers

are assigned in the order in which the features were first encountered.

Explicit features not given 1n the prelexicon, but encountered later,

are assumed to be inherent features.

The feature number of a contextual feature 1s 100 plus its

position 1n the list of contextual features.

The type of a feature is 0 for category features, 1 for inherent

features, and 3 for contextual features.

The value of a feature is 1 (+), 2 (-),3(¥%).

Storage of structural analyses

Structural analyses are storedin the parallel arrays ANALWP

] and ANALST with subsidiary arrays ANALWD (current length = ANATWT)

and ANALPT (current length = ANALTP). ANALPT contains pointers to

ANATWP and ANALST. The current length of ANALWP and ANALST 1s

- ANALPT (ANALTP). Structural analysis I 1s stored from ANALPT(I-1)+1

through ANALPT (I), (I > 2). ANALWD 1s a REAL array containing first

"¥" and "" and then the words which occur in analyses. Each symbol

or group of symbols in the structural analysis goes into an entry in

ANALPT. ANALWP contains pointers and other information:

5. 1=2

en 3 EE

Analysis item ITYPE ANALST ANALWP

word 1 pointer to ANALWD pointer to preceeding

) integer or:0

_ 8 2

* 1 1

% 10 0

integer 2 -(100+integer)

complex symbol 3 => pointer to CSLIST

< L -1 pointer to >

— _ 18 -2

/< 17 -3

—/< 16 ~4

> 5 -6 pointer to word preced-

ing <

(of an option 6 -7 pointer to)

) of an option 7 -8 pointer to (

(of a choice 19 -9 pointer to ,

| , of a choice 13 -10 pointerto , or)

(of a choice 20 -11 pointer to (

STORAGE OF A STRUCTURAL ANALYSIS

The values in ANALST and ANALWP are chosen for the convenience

of the analysis routine (ANTEST). In CXIN the values for ANALST are

storedin the array TTIYPE, which 1s indexed by ITYPE, the internal

numbers in CXIN for the symbols. This allows CXIN to be changed with

relative ease.

21-3

Storage of contextual features

A contextual feature 1s a (special) structural analysis, enclosed

within angular brackets. Contextual features are stored in

SLCTPT(200,2), in which the first column contains a pointer to the
*

structural analysis. The second column 1s set to 0 by CXIN, but

will bp used by PRELEX to store a pointer to the restriction on the
f structural analysis. The current length of SLCTPT is SLCTITP. In

order to be able to use the same sequence of numbers for all features,

the feature number of a contextual feature 1s 1ts position in

SLCTPT+ MXEXP (the maximum allowable number of explicit features).

(Names ofcontextual features appear only in the array SLNAME

which 1s internal to subroutine NUMNAM.)

Initialization of Storage

The storage arrays of CXIN are initialized by the subroutine

INIT which is at the beginning of every run. INIT does the following

for CXIN:

ANALWD(1) = FSTAR x

ANAIWD(2) = FLINE "ou
. ANAIWT = 2

ANALPT(1) = O
ANALTP = 1

SLCTTP = 0

CSFRPT = 1

Temporary storage areas in CXIN

Entities read by CXIN are not stored in the above arrays until

they have been completely read in. Temporary storage 1s used during

the read-in process.

* 1
The mnemonics for contextual feature storage were created when we were

calling them "selectional features", hence the "SL".

LEVEL and SLEVEL are used to record the current levels of complex

symbols, and of analysis and contextual features. (Recall that the

basic difficulty 1s that complex symbols may contain structural

analyses which may contain complex symbols,. @ Initially both LEVEL

and SLEVEL are set to 1. SLEVEL is incremented by 1 when the left

bracket of a new contextual feature 1s encountered; it 1s decremented

by 1 when a contextual feature 1s finished and stored into SLCTPT.

LEVEL 1s incremented by l when a complex symbol is encountered in a

contextual feature; it is decremented by 1 when a complex symbol

1s finished and stored into CSLIST.

SLPUSH and SLPUSN hold the values which will go into ANALST and

ANALWP. The SLEVEL-th analysis 1s stored in' SLPUSH and SLPUSN from

SLPHPT (-1) + 1 through SLPHPT(SLEVEL).

CSPUSH holds the values which will be stored in CSLIST. The LEVEL-th

complex symbol is stored in CSPUSH from CSPHPT(LEVEL-1l) + 1 to CSPHPT(LEVEL).

PUSH 1s a two-column array used as a push-down for terms in

an analysis which will be needed to set up the backwards pointers

in ANALWP. For the SLEVEL-th contextual feature, PUSHPT(SLEVEL)

© points to the first entry in PUSH for that feature, VLPUSH(SLEVEL)

1s the value of the feature,

Reading in a complex symbol

The above explanation of storage 1s intended to help explain

how the three uses of CXIN for complex symbols, contextual features

and analysis are interrelated. We now describe the behavior of the

subroutine in each of these uses.

When CXIN 1s called, initialization steps set up the temporary

arrays. SLFLAG and ANALFL are both set to false, so that the entry point

3.7-5

can be recalled. The parameter STAGE indicates what 1s expected next

from FREAD. When STAGE = 1, the routine expects either a feature value,)

or a "|" which will terminate the complex symbol When STAGE = 2,

a feature 1s expected. If the featureis a word, the associated feature

number is retrieved from NUMNAM. The feature type is computed and the

value, type and number are stored in CSPUSH. If the feature is a

r contextual feature, STAGE is set to 5 and a contextual feature is read

(see below). (sTAcE= 4 is an error skip.) When the complex symbol

has been terminated by a "|", the feature specifications are sorted on

feature number, a check 1s made to see that there 1s only one category

feature, and the-complex symbol 1s moved into CSLIST. LEVEL 1s reduced

by 1. If LEVEL = 1, ANALFL is FALSE and SLFLAG is FALSE, the parameter

of CXIN 1s tested, and if = 1, the complex symbol 1s expanded by a

call to REDRUL. CXIN then returns control. If the triple test above

1s not met, then we have just completed a complex symbol within an

analysis, so the routine continues.

Reading in a structural analysis

] In reading a structural analysis (either on a call of ANALIN or

SLFEAT or within a complex symbol), SLEVEL 1s first increased by 1,

STAGE is equal to 3, and then FREAD is used to read the entities of

the analysis. As each entity 1s read a branch 1s made on the value

of ISPEC returned by FREAD, and ITYPE is set to the internal number

for the entity (in sorting it in CSPUSH and later in ANALST, TTYPE

(ITYPE) will be used).

For each value of ITYPE the process 1s essentially the same.

A check 1s made to see that-the entity can correctly follow the

3. 7-6

previous ITYPE (now stored as NLAST). The value of SLPUSH (and hence

of ANALST) 1s computed, from ANAIWD for ITYPE=l, (100 + the integer)

for ITYPE=2, and otherwise TTYPE(ITYPE). The value of SLPUSN (and

hence of ANALWP) 1s computed by backing up in PUSH for entities which

point backwards. Entities which are to be pointed to by subsequent

entries are stored in PUSH, which contains in the first column a pointer

to SLPUSH and in the second column a code for the type, KEEP(ITYPE). The

entity 1s then stored in SLPUSH and the pointer in SLPUSN.

If a complex symbol 1s encountered, it 1s read as described above.

An analysis is terminated when either the ™" which corresponds to

the initial <n of a contextual feature or a period is found. The analysis

1s then compared with previous analyses so that 1t will not be stored

twice. If it is new it is stored in ANALST and ANALWP and the routine

continues 1f within a complex symbol, or otherwise terminates.

21-7

ANTEST, analysis

ANTEST is the subprogram which performs analysis (see AF-34 for

a description of the analysis procedure; equivalent knowledge will be

assumed in the current description). It 1s called with three arguments:

TRANNO, TREETP, and ANALNO. Either TRANNO (for transformations) or

ANAINO (for contextual features) 1s used to locate a structural analysis

which has been coded into ANALST and ANALWP by subroutine CXIN; this

structural analysis is copied into arrays ANLIST and ANWDPT in positions

1 to TPOSN. The method of finding the structural analysis and a pointer

to its associated restriction is diagrammed in Figure 2.7-l1. TREETP

1s a number indicating the location in TREE/FTREE of the top node of

the sentence tree which 1s to be tested for analyzability.

ANTEST returns the value TRUE 1f the given sentence tree 1s analyzable

as the given structural description, and FALSE if not. For a TRUE return,

it further supplies (in the 50-position array NUMNOD) the positions of

tree nodes which have been associated with numbered structural description

nodes. Since some transformations require that all possible analyses be

found, NUMNOD is dimensioned 50X10 so that ANTEST can return up to ten

different analyses; in this case, NUMCNT will be the number of analyses

actually found.

© To simplify this description, we will use several words in unusual

senses. A defnode will be anything in a structural description —— word,

underline, asterisk, or boundary symbol —— which matches a single

sentence node. This will free the word node to refer to only sentence-tree

nodes. An option will be a choice with only one structural analysis

in its clist of structural analyses; from here on, a choice will be a

3,7-8

TRAN

(-55) (-,6) ANALPT ANALST/ANALWP

TRANNO T——> — Call

SN

SLCTPT | |
(-,1) (-,2) _

»

Hi 7 pointer to associatedANALNO —————> — 1 4 restriction.

Figure 3.7-1

3.7-9

choice (in the usual sense) which 1s not an option.

Analysis 1s probably the most complex single operation performed

in this program system, because of the elaborate procedure that must

be followed for matching and for backtracking when no match 1s possible.

To simplify this procedure as much as possible, an elaborate system of

pointers 1s set up during analysis. The backbone of this system is the

five vectors ANSKIP, ANNODE, ANPREV, ANNEX, and ANPAR, which parallel

the two vectors ANLIST and ANWDPT in which the structural analysis 1s stored.

Skips are ignored when first encountered; after the next defnode has

been matched, a range must be assigned to preceding skips. For this

purpose, the variable SKIP and vector ANSKIP are used. SKIP indicates

the position of the last bypassed skip; ANSKIP points back to other

preceding skips. ANSKIP 1s defined for all bypassed skips, matched

defnodes, and the (of options (in case 1t 1s later decided that

the option should not be taken) and choices. It always points to a

preceding skip, and equals zero if there 1s no preceding skip. The skip

routine (statement numbers 500-599) uses ANSKIP to find skips after a

node has been matched, or at the end of an analysis level,

For backtracking when a match cannot be found, the variable PREV

and vector ANPREV are used. PREV points to the previous significant

item —— defnode or (or < —— preceding the current item.

ANPREV .continues the chain. ANPREV is defined for each defnode and

(and < and > which is currently active (e.g., an option

which has been bypassed 1s not active). It equals zero for the first

significant item of the structural analysis and for every < . Using

ANPREV, the backtracking routine (statement numbers 700-799 in the program)

can thus easily find where it-i1s to restart the search after a mismatch.

5.7-10

BR i ners lis _

The matching of a choice 1s aided by the vectors ANNEX and ANPAR and

the variable PAR. PAR points to the opening of the choice while

a search 1s made for a match to the first defnode of the choice, and

is zero otherwise; 1ts major use 1s as a flag. ANNEX 1s used to chain

together those defnodes which are possible first-defnodes of a choice.

(See Figure 3.7-2 for a sample use of ANNEX and ANPAR). ANNEX of the

(points to the first possible first-defnode, ANNEX of this defnode

points to the next, and ANNEX of the last points to the) of the

choice. If there 1s a choice within the choice which may be first,

ANNEX points to the of this inner choice, which is then chained

as usual; the B of this choice then continues the chain. ANPAR is

used for skips, since ANSKIP does not sufficiently define skips within

choices; note, for example, that in Figure 3.7-2 the defnode C may

be preceded by no skip or by the skip in position 1, depending on whether

or not defnode B has been matched. ANPAR 1s defined for a defnode

or (or ’ or skip, and points to the chain of skips which will

precede a defnode if it is first in a choice. It is set negative when

pointing to a (or , and positive when pointing to a skip.

When a choice 1s encountered, the choice-setup routine (statement numbers

300-399) sets PAR; if this choice has not previously been seen, it also

sets up the ANNEX and ANPAR chains. The skip routine uses ANPAR as well

as ANSKIP to find skips; the matching routine (statement numbers L40O-

499) uses ANNEX to move through the chain of defnodes for a choice,

and ANPAR to set up the proper pointers in ANSKIP. The backtracking

routine uses ANPAR to ald the restart when it backs up into a choice.

The correspondence between defnodes and tree nodes 1s handled by the

3. 7-11

Sample Use of ANNEX and ANPAR

Structural description % (A , (B) (C , % D))

position 1 2 3 hy 5 6 7 9 9 10 11 12 |13 14

/

ANLIST o | -9 3 | -10 | -7 | -8 | -9 5 | -10 | o 6 | -11 | -11

ANWDPT 0 n 0 1h | 7 0 5 10 | o 13 | 0 0 3 2

w ANNEX 3 6 | 8 9 | 12 13 | 14

i
— | |

S » + =
ANPAR Lr | -2 2%) 4 | 4 -4 | -8 8 1-101 11 |

t BRE 4 +

Figure 3.7-2

iad a. od _—

matching routine and by subprograms ANRTES, ANRUNS, and NEXT. The arrays

NUMNOD and SKPNOD, vector ANNODE, and variables HERE and LAST contain

pointers to tree nodes. ANNODE is defined for defnodes and skips. For

defnodes, 1t contains the position of the matching tree node; 1t 1s assigned

on a match, and reset during backtracking. For skips, it points to

SKPNOD, a 200x2 array which points to the preceding and following matched

tree nodes, or 1s set to -1000 for a null skip; it 1s assigned in the skip

routine and reset during backtracking. HERE points to the tree node

currently being tested for a match; it is advanced in NEXT (see below)

and reset on a backtrack. LAST is the last matched tree node, used only

to appropriately -set the first column of SKPNOD.

Subprogram ANRTES 1s called after a match has been found. It checks

restrictions and complex symbols, and sets NUMNOD. The first step is to

move through the chain of pointers to numbers set in ANWDPT by the input

routine CXIN. For each number, it copies the tree node pointer into

the number-th position of NUMNOD and calls RESTST to test any restrictions

associated with that number. If all succeed, and if there is a complex

symbol, 1t calls CSCOMP to check that 1t corresponds to the tree complex

* symbol (inclusion for transformations, compatibility for contextual features).

ANRTES then returns TRUE if all tests succeed and FALSE on failure.

Subprogram ANRUNS reverses the procedure of ANRTES; it calls RESTUN

instead of RESTST and restores NUMNOD. It is called by ANRTES on failure

and by the backtracking routine. The miscellany with-1000 in ANRTES

and ANRUNS 1s occasioned by the problem of telling whether a defnode

has simply not yet been reached, or has been bypassed (and thus made

explicitly null). ANNODE will be zero for not-yet-reached defnodes and

skips, -1000 for null skips, -2000 for bypassed skips (set during the

5.7-13

final routine (statement numbers 800-899)), and 1000 for bypassed defnodes.

NUMNOD combines the -1000 and -2000 into -1000. Since a number may be

assigned to several defnodes or skips (particularly in the case of choices),

no testing or reassignment in NUMNOD should take place during the final

routine if NUMNOD has already been set. Finally, in ANRUNSit is impossible

to tell, if NUMNOD and ANNODE are both -1000, whether NUMNOD should be re-

Hd set; for this reason, ANNEX of a skip (not otherwise used, thus usually

_zero) 1s set to 1 if this skip's ANNODE is not to unset NUMNOD.

Levels should be discussed before proceeding to NEXT. For these,

the vector LEVIOP and variables LEVEL, TOP, and HERE are used. LEVEL

1s initially sero; one 1s added to it every time the program enters an

angle-bracketed subanalysis, and one 1s subtracted at the end of proces-

sing the subanalysis. TOP 1s initially set equal to TREETP (the top

node of the tree under consideration); every time a subanalysis 1s entered,

the current TOP 1s saved in LEVTOP and a new TOP 1s created pointing to

the tree node which matches the defnode heading the subanalysis; at

the end of the subanalysis, the old TOP 1s restored. TOP is set-negative

if the < of the subanalysis does not have a / preceding it

(an 1mmediate constituent analysis). HERE 1s set negative at the beginning

of a subanalysis to flag the beginning. This processing takes place in

the levels routine (statement numbers 600-699). The levels routine

also checks success or failure of subanalyses. If the < was

preceded and analysis reaches the > either at the righthand side

of the subtree or with a skip preceding, the subanalysis succeeds and

analysis continues. Otherwise, the subanalysis fails, and backtracking is

begun at the defnode heading the subanalysis.

3.7-1k

or dake oy Ae | —

Subprogram NEXT finds the next node in the tree. It has three

arguments: HERE, the previous node, TOP, the top node of the tree under

consideration, and SIGN, a flag which takes on the values -2, -1, 0,

1, 2. The new node 1s returned as a new HERE; HERE 1s set to zero if

there 1s no next node. NEXT is complicated by several features. The

very first node that should be examined is the topmost node in the tree;

this 1s indicated by HERE=0. This, however, is true only for the first

level of analysis; for subanalyses, the first daughter of the top node

1s the first node to be tried. Thus all subanalyses commence with HERE

set negative and equal in absolute value to TOP. Thereafter, the procedure

depends on whether there was a / preceding the subanalysis. If

SO, or 1f this 1s the topmost level, TOP will be positive and a search

will be made for daughters of HERE (the leftmost of which will be taken

as a new HERE), and 1f there are no daughters the search will continue

to the right of HERE, but not going above TOP. If there was no /

then TOP 1s negative; in this case, the search will be immediately for

right sisters of HERE. If no next node exists, HERE is set to zero.

Skips introduce a further complication. If there 1s a skip

preceding the current defnode, it is all right to leave dangling tree

branches behind, but not if there is no skip. SIGN is used for this

purpose. When matching is first attempted, SIGN is set to zero and

remains zero; after a failure to match, SIGN is set to 1 and changes to

-1 when a branch is skipped (that 1s, when the old HERE has no daughters).

Also, the fact that SIGN=0 indicates that no attempt should be made to

find daughters of HERE; HERE has already been matched, so its daughters

are unavailable. SIGN 1s set to 2 when no next node exists.

3.T-15

Choices require more machinery. After skipping a branch during

a choice search, it 1s fairly easy to thereafter examine only those

first-defnode candidates which are preceded by skips; however, it

would be much nicer to quit immediately i1f none of them are preceded

by skips. For this reason, SIGN is set to -2 if it is -1 and a first-

defnode preceded by a skip 1s about to be tested; if SIGN 1s still -1

after ckecking all candidates, the match routine exits immediately to

backtrack instead of fruitlessly advancing HERE through the rest of the

tree.

The end of a level requires a check to see if any more nodes

exist to the right of the last-matched one, plus an assignment of range

1f a skip 1s rightmost in the level. For this purpose, NEXT is entered

with SIGN=2. If no next node exists, SIGN will still be 2 and HERE

will be zero; any skip will have null range. If one exists, SIGN will

be set to -1 and HERE will be set to minus the absolute value of TOP,

which 1s the appropriate value to insert into SKPNOD to indicate a

level-ending skip.

Minor points not yet covered include POSN, which points to the

current position of the AN---- arrays. The scan section (statement

numbers 200-259) decides which other section of the program 1s to be

called next, on the basis of what kind of (WASFUR) thing is at the

current POSN. DEFNOD, set to ANLIST of the current defnode in the match

section, points to ANALWD, which contains names of defnodes; the first

two entries in ANALWD are permanently set to be * and — .

CYCL indicates cyclicity of transformations; as used by ANTEST, a value

of 0 (contextual feature) or 1 or 2 means to find at most one analysis,

3.7-16

while a value of 3 or 4 means to find all possible analyses. If the

parameter TRANNO 1s negative, it means that the current structural descrip- .

tion and top tree node are the same, but the tree has been shuffled around

since last time; this 1s simply to save setup time, since vectors ANLIST,

ANWDPT, ANNEX, and ANPAR are already in place.

3.7-17

3.8 Programs for Restrictions

This section describes a set of subroutines (RESTIN, RESTST,

RESTUN, and RESTPR) which manipulate restrictions. They input, test

and set, unset and print restrictions, respectively; GTOKEN is a "work

routine" for RESTIN. Input includes translation into internal format

and storage of the restrictions.

The description of a restriction 1s given 1n Figure 1" below. The

description of the internal format and the composition of restriction

storage (/RESTCM/ - restriction common block) 1s given below.

RESTIN is called by any routine requiring a restriction input. The

primary routine calling RESTINis TRANIN. Input to RESTIN is completely

free field and 1s read by FREAD. RESTIN calls GTOKEN and CXIN which

generate the next token and read in a complex symbol, respectively.

RESTIN returns the number of the restriction it just read 1n.
RESTST 1s called by a routine which needs to know if an analysis

satisfies a particular restriction or not. It returns true or false,

although internally 1t may find a restriction to be "undefined' (as a

result of a reference to a node which has yet to be assigned). "Undefined"

values are interpreted as true. RESTST calls CXEQ and CXINC to determine

1f complex symbols are equal or included in one another, respectively.

* The references to figures in section 3.8 are to figures 3.8.1 to
3.8.10. These figures are found at the end of this section.

3.8-1

RESTUN 1s called by any routine which needs to unset (reset) a node

without unsetting (resetting) the whole restriction. Uneetting means .

setting to undefined all conditions which refer to the given node. RESTUN

may also be used to completely reset a restriction.

RESTPR will print a gilven restriction or print all the restrictions,

It is essentially a dump of /RESTCM/ .

GTOKEN 1s described in the description of the operation of RESTIN

below. |

Be8=2

| E —

- INTERNAL STORAGE - oo

Restrictions are stored in the common block /RESTCM/ given in

Figure 4. The present capacity is about 150 restrictions. Capacityis

. determined by the size aswell as number of restrictions. The I-th

restriction read is stored as follows:

RESTS (I*4-3) = value of restriction I:

0 = false, 1 = true, 2 = undefined

RESTS (I*4-2) = pointer to first entry in RESTR

RESTS(I*4-1) = pointer to last entry in RESTR

RESTS (T*4) = pointer to first entry in CONDS

RESTR(J) = if > 0: a pointer to first entry in CONDS

if < 0: -1 = logical OR

-2 = logical AND

-3 = logical NOT

CONDS (XK) = value of the conditiou:

0 = false, 1 = true, 2 = undefined

CONDS(K+1) = coded type of condition:

type = N¥100+L, for the L-th N-ary restriction

(at present there are only l-ary and 2-ary

restrictions, so all types are in the range:

100 < type < 300)

CONDS (K+2) = first argument of restriction, it is alwaysa number

> 0 which refers to a particular node

3s 8=3

CONDS (K+3) = if > 0: the number of a particular node

cee 1f< 0: a pointer into WD (designating a

CONDS (K+1+N) word e.g 'S", "PRED", or "ADS") (in

particular, to the -CONDS(M)'th word)

1f < WWD: a pointer to a complex symbol which has

been read in by CXIN . (In pa rticul ar,

to the ~CONDS(M)+NWD'th complex symbol.)

NWD is currently 100.

1) RESTS (restrictions) is always a multiple of 4 times the number

of restrictions in length; i.e., each restriction takes exactly four

locations in RESTS.

2) RESTR (restriction tree) 1s of arbitrary length for each restric-

tion, but will always be at least one location long. The contents of

RESTR is the Polish postfix for the restriction read in. It is composed

completely of references to conditions (the basic primitives, e.g., "TRM",

"NUL" , "NDOM", etc.) and references to logical operators (e.g., "AND",

."OR", "NCT").

3) CONDS (conditions) 1s the list of primitives which comprise

the restriction. Each condition is always at least 3 locations long,

and tin general will be M2 locations long for each N-.ary condition.

 3.8-k

I

CALL: REST IN (ONE;

RESTIN 1s self-initializing: it initializes/RESTCM/ the first

time it 1s called. RESTIN provides checks to see that the capacity of

/RESTCM/ is not exceeded.

RESTIN utilizes the "railway shunt aigoritim" to create a restriction

in storage, It runs using a token generator to provide the next token.

Tokens are of two types: conditions and operators. Conditions are

returned by the token generator in an array called "TOK". Operators

are returned as numbers > 0 in "OPFG".

The effect 1s to "compile" a logical expression composed of conditions:

the logical relations and pointers to the conditions appear in RESTR in

Polish postfix, and the conditions themselves appear in CONDS.

RESTIN will input an arbitrarily complex logical combination of

restrictions.

GIOKEN generates the next token for KESTIN. It operates as follows:

} 1; Read the next symbol (by calling FREAD)

2) Test to see if it is a number, if so, go to (6)

'3) Test to see if it is a "reserved word", if so, go to (5)

4) Find which logical operator it is and return

5) Find which 1l-ary operator this is, generate the array TCK:

containing the index of the condition followed by its argument;

return

6) Find which N-ary operator +his is, generate the array TOK:

containing the index of the condition followed by its N argu-

ments; return

3. 8-5

Every time GTOKEN encounters a "reserved word" (e.g., "ADJ", "PRED",

"NOUN", etc.) it searches the ar-ray WC for a copy. If it finds one,

1t uses the negative of the index into WD. If it does not find a CODY,

it generates one and uses the negative of the new index into WD. Every

time GTOKEN encounters a complex symbol, i 1% calis CXIN to input it, . { XIN

returns the number of the complex symbol. GTCKEN fills in TOK with minus

this number minus NWD. NwD is presentiy set at 100. If there is any

possibility of there being more than 100 "reserved words", NWD should be

made larger: the test routine discriminates between words and co-mplex

symbols by comparing their indices with NWI.

The lengths of RESTS, RESTR and CONDS are currently 500 each, LRESTS,

LRESTR and LCONDS (data initialized varia'bles in RESTIN) should always be

set to the lengths of thelr respective arrays at compile time. Ths capacity

of /RESTCM/ is approximately I£ONDS/3.5 restrictions.

3.8-6

- RESTST: OPERATIONS ~

CALL: RESTST(I,POSN)

RESTST both sets and tests the restriction designated 'by I or

CREST (CREST = current restriction; this variable is in /RESTCM/), and

: it returns true or false accordingly.

_ Every time the current restriction 1s changed, RESTST automatically

resets it before testing, If the current restriction 1s the same as the

one at the last call to RESTST, RESIST saves time by not resetting the

restriction First.

If POSN 1s zero, CREST 1s set to I and restriction ‘I 1s completely

reset before it 1s tested, If POSN 1s non-zero, RESTST tests restriction

CREST.

RESTST interprets the Polish postfix in RESTR: 1t acts like a Polish

postfix machine. Each reference to a condition 1s interpreted to mean:

1) If the condition 'has value true or false, load the value stack

with this value.

2) If the condition 1s undefined, evaluate the condition.

3) Load the stack with the value of the expression,

RESTST condenses each pair of conditions whose names are (NAME)

and N{NAME) (referring to the normal and negative forms of a condition)

into one evaluation via the varia'bie "'NORMAL". The value of a condition

winds up in the variable "CVAL",

RESTST will evaluate an arbitrarily complex logical combination of

conditions. It uses the truth tables in Figure 6 to evaluate the restric-

tior.. If the final value is undefined, EKESTST will return true. Figure 7

gives a ta'ble of arguments and actions for RESTST.

3.8-7

- RESTUN: OPERATICN -

CALL: RESTUN(I,POSN)

RESTUN unsets the condition designated by I +. If POSN is zero, it

wlll set CREST to I and then completely reset restriction I . RFSTIN

does this by setting RESTS(CREST*¥4-3) to undefined, and then setting

.each component condition of the restriction to undefined.

If POSN 1s greater than zero, the argument refers to 3 node in the

analysis using the current restriction, All. component conditions which

reference this node are set to undefined,

RESTUN accomplishes the unsetting by going down CONDS and utilizing

the coded information therein.

Figure 8 gives a table of arguments and results for RESTUN.

3. 8-8

- RESTPR: OPERATION =~

CALL: RESTPR(I)

RESTPR prints the restriction designated by the parameter I . If

this parameter 1s zero, it prints all the restrictions. See Figure 9

for sample output.

:

J

5.8¢9

|

- FIGURE 3.8.1 -

SYNTAX OF RESTRICTIONS

|

RESTRICTIONS ::= *¥RES RESTRICTION .

RESTRICTION ::= BOOLEANCOMBINATION (CONDITION)

CONDITION ~~ ::= CONDITION: |CONDITIONZ|CONDITION3

CONDITIONI : i= RELATION]1 RIGHT-PART

CONDITIONZ ::= INTEGER RELATIONZ RIGHT-PART

CONDITION3 ci = INTEGER RELATION3 RIGHT-PARR, RIGHT-PART

RIGHT-PART ~~ ::= INTEGER|BORIYCOMPLEX O L

RELATION1 ~~ ::= TRM|NTRM|NUL|NNUL

RELATION? ::= EQ |NEQ|DOM|NDOM|HAS | NHAS | EQCS | NEQCS

RELATION3 i= EMPTY (There are no 3-ary conditions as yet.)

NOTE 1: The definitions of the relations are found in Figure 3.8.10.

OTE : Although the syntax will allow the creation of almost arbitrary

constructs, not all of them have meaning, The input routine

(RESTIN) will not detect any meaningless constructs: it will

accept any syntactically correct restriction, Only during the

evaluation of the restriction (via RESTST) will the error be

detected,

NOTE Additional relations will be included as they are found to be

useful.

3.8-10

TABLE OF ALLOWABLE ARGUMENTS

RESTRIC- | CODE | # ARGS ARGUMENT 1 | ARGUMENT 2
TION INTGR | WORD | C-SYM INTGR | WORD C-SYM

TRM 101 1 x | |

NTRM 102 1 x

NUL™ 103 1 X

NNUL 104 1 X

EQ 201 2 X X

NEQ 202 2 X CX

DOM 203 2 x X

NDOM 204 2 Xx | X

HAS 205 2 X X X

NHAS 206 2 x x X

EQCS 207 2 X X X

NEQCS 208 2 x pe x

- FIGURE 3.8.3 - |]

SUBPROGRAM CALL/RESULT TABLE

SUBPROGRAM TYPE CALLS RESULTS

RESTIN(ONE) Ix2 GTOKEN Returns number of the restriction it

reads in and stores restriction. |

RESTST(I, POSN) L*l CSEQ Returns true/false depending on whether

CSINC the restriction 1s satisfied or not.

RESTUN(I,POSN) _ S -- Unsets a restriction; returns nothing,

RESTPR(I) S -—- Prints a restriction; returns nothing.

GTOKEN(SYM) S FREAD Returns a token: logical operator or

CXIN condition.

NOTE 1: TYPE: 1I¥2 - INTEGER¥2 function

L#*¥]1 - LOGICAL*1 function

S - subroutine

NOTE 2: ONE = dummy argument

1 = restriction number

: POSN = position in an analysis

SYM = array internal to RESTIN

2.8-12

| aa

- FIGURE 3.8.4 -

COMMON BLOCK FOR RESTRICTIONS

COMMON /RESTCM/ WD,CREST, PS, PR, PC, FW, RESTS (500), RESTR(500), RESTCML

CONDS (500) RESTCM2

REAL*8 WD(100) RESTCM3

COMMON BLOCK FOR GTOKEN

COMMON /RTOKEN/ OPFG,LTH,TOK(10) RTOKEN

DATA VARIABLES IN RESTIN

INTEGER*2 LRESTS/500/,LRESTR/500/,LCONDS/500/,NWD/100/

= FIGURE 3.8.5 -

SAMPLE RUN

EXAMPLE 1:

NUL 5 .

RESTS() 2 1 1 1 undf'd,ptrl,ptr2,ptr?

RESTR() 1 ptri

CONDS() 2 103 5 undf 'd,NUL,5

wD() empty

ptrl - points at the 1 in RESTR()

ptr2 - points at the 1 in RESTR()

ptr3 - points at the 2 in CONDS()

ptrh - points at the 2 in CONDS()

EXAMPLE 2:

3 DOM kL

RESTS() 2 2 2 4 undf‘d,ptrl,ptr2,ptr3

- RESTR() 4 ptrh

CONDS() 2 205 3 U4 undf'd ,DOM,3 , 4

-WD() empty

ptrl - points at the 4 in RESTR() .

ptre - points at the 4 in RESTR()

ptr? - points at the 2 in CONDS()

ptrd - points at the 2 in CONDS()

EXAMPLE 3:

TRM 7 & 6 HAS |=+HUMAN| .

RESTS() 2 3 5 8 undf‘d,ptrl,ptr2,ptr3

RESTR() 8 11 -2 ptrh;ptr5,&

CONDS() 2 101 7 2 205 6 -101

undf 'd,TRM,7,undf'd,HAS,6,| =+HUMAN|

WD() empty

ptrl - points at the 8 in RESTR()

ptr2 - points at the -2 in RESTR()

ptr? - points at the first 2 in CONDS()

ptrh - points at the first 2 in CONDS()

ptr - points at the second 2 in CONDS()

EXAMPLE 4:

—- ((6 DOM PRED |5 NDOM VP) &8 NEQCS |=-muMaN!) .

RESTS () 2 6 11 15 undf'd,ptrl,ptr2,ptr?

RESTR() 15 19 -1 23 -2 -3

ptrh,ptrs,| ,ptr6& ,—

CONDS () 2 205 6 -1 2 204 5 -2 2 208 8 -102

undf'd,DOM, 6,PRED,undf *d,5, VP,

undf'd,NEQCS,8, | = -HUMAN|

© WD() PRED VP

ptrl - points at the 15 in RESTR()

ptr2 - points at the -3 in RESTR()

ptr3 - points at the first 2 in CONDS()

ptrh - points at the second 2 in CONDS()

ptr5 - points at the third 2 in CONDS()

3¢8=15

Note that positive numbers in CONDS() refer to nodes 1n the analysis,

and that negative numbers are pointers. Pointers of magnitude less .

than 100 refer to WD(); pointers of magnitude greater than 100 refer

to complex symbol storage.

All restrictions go in with value undefined,

3.8=-16

-' FIGURE 3.8.6 -

TRUTH TABLES--FOR RESTST

NOT AND FF T U OR FF T U

F{ T F FF F F F TU

T F T F TU T T T T

3] u U F U U U UT U

TF = false (coded as 0)

T = true (coded as 1)

u = undefined (coded as 2)

)

4

- FIGURE 3.8.7 -

RESTST: TABLE OF ARGUMENTS AND RESULTS

POSN

I =0 >0 <0

>0 CREST=I test & set illegal

| test & set using current

=0 illegal illegal illegal

<0 illegal illegal illegal

-. FIGURE 3.8.8 -

RESTUN: TABLE OF ARGUMENTS AND RESULTS

FOSN

I =0 >0 <0

>0 CREST=1 reset all refs illegal

reset restrct to node POSN

I in restrct I

=0 illegal illegal illegal

<0 illegal illegal illegal

348-19

x ~ x pw x <. x
m wn m m m C om
Va] 7] wn» Wn wn wh

=

. Iz = 3 Eo =x La
m O

8 Ce

< < , < () hsi= ~ pS ES > i
PCR VINNY ~ > NN NO rr o# nm NG ~~ x <

Cc ~— Cc rm C rr. Ln
rr | oT | m | [m i Vg

1 = p=

x > iE O 4 po po =x 99! po

— Nn * nN < Z vr -— ® =

CP WNC Wee OJ wn ~N WwW — mr: x o£ vi pa or atroms T i p— - A tA
{EB > wu Hd

pv OX I = vg J i

NN NN pet pee yp .- NXT — 5
SOW NUN DW DS = or mw 18

ro | rm AV) Vo BNo po
~ wr = =

© 3 Wn © =v 5 = fv
Qo SPN A + po 0 oN Be
! DMO DSN Or bo »; J .

@ Hd :
ig =

= RESTR =
KES] # TREE

1 1 4 -2 -1

2 8

3 12 lo -1 20-1

24 3 N
5 28 -3 - 1

6 -3 32 -3 36 -3 -1

7 40

8 44

9 43 52 - 1

— CUCNCS ~-

REST # vabLUkE TYPE ARLUMENTS

| 2 2C1 iL - 1

pa 103 -=1
2 2" 205 5 =101

3 2 2C% 6 -2 ’

2 2C7 7 -1GC2

2 203 17 -3

4 2 0H 4 -1c¢3

5 2 2C6 8 -=-104

6 2 207 4 =1CH5

2 2C7 5 7

7 Vi 20 3 3 5
8 2 203 7 -3

9 2 2C4% 3 _ 4
2 2C1 6 5

- WURLCS -

| /S / ALPHA JF OC /SS /

- Figure 3.8.10 -

DEFINITION OF RELATIONS

FORMS

RELATION1I INTEGERIL

INTEGER2 RELATIONZ INTEGER3

INTEGER2 RELATION2 WORD |

INTEGER2 RELATION2 COMPLEX SYMBOL

wheré& RELATION]1 is one of the unary relations and

RELATION2 is one of the binary relations

DEFINITION

NAME, RESULT

TRM true 1f node INTEGERI 1s terminal

false 1f node INTEGER1 1s not terminal

NTRM same as — TRM

. NUL undefined if node INTEGER]1 has yet to be assigned

false if node INTEGER1 has been assigned

never true

NNUL undefined if node INTEGERL has yet to be assigned

true 1f node INTEGER1I has been assigned

never false

EQ true if node INTEGER2 1s equal to node_INTEGER3:

has same substructure and complex symbols are equal

(uses CSEQ to test complex symbols)

false if not equal

348-22

NEQ, same as = EQ

DOM true if substructure of node INTEGER2 inciudes a WORD equal

to WORD1l. Does not search below an S

false 1f not equal

 NDOM same as -1 DOM

HAS true 1f node INTEGERZ and node INTEGER3 have non-conflicting

) complex symbols or if node INTEGER2 and COMPLEX SYMBOL

are non-conflicting. (Uses CSINC to test complex symbols)

false 1f not

NEQCS same as = BOCS

NOTE: All relations (except NUL & NNUL) are undefined if at least

one operand 1s undefined

3.8=-23

5.9 Structural change

CHANIN, Input routine for structural change.

CHANIN is an INTEGER¥2 function of one dummy INTEGER*2 argument.

CHANIN reads in the instruction part of a structural change, stores it,

and returns a pointer to the instruction.

The syntax of structural change 1s given in Appendix A (5.01 -

5.10). The formats restriction, tree, and complex symbol are given

elsewhere in the descriptions of the subroutines which read and

store them. CHANIN is called by TRANIN after it reads an SC . CHANIN

reads the structural change and stores it, and returns after reading

a period. CHANIN calls RESTIN(ONE), FTRI(TWO), and CXIN(ONE) to read

a restriction, tree, or complex symbol.

5.9-1

Internal storage

A pointer to the structural-change for the J-th transformation

is stored by TRANIN in TRAN(J,7) . The instruction is stored by CHANIN

in the COMMON block /CHANCM/.

Initialization: /CHANCM/ 1s initialized by a BLOCK DATA pro-

gram given 1n section 5. CHAN, CHWORD, FCHTRE, CHTREE, and CHCLIS are

initially empty. OPLIST 1s initialized to contain the list of operators

and complex operators. The current sizes of CHAN, CHWORD, CHTREE, CHCLIS,

and OPLIST are NCHAN, NCHW, NCHT, NCHCL, and NOPL; the maximum sizes are

MXCHAN, MXCHW, MXCHT, MXCHCL and MXOPL.

Each change instruction 1s stored in a line of CHAN.A change 1s

stored in CHAN as follows:

CHAN(I,1) = type of first argument

0 ifnone

1 if integer
2 if word

3 if ‘(tree)
L if complex symbol

CHAN(I,2) = first argument

if type 1 then the integer

1f type 2 then a pointer to CHWORD

if type 5 then a pointer to CHTREE
if type 4 then a pointer to CSLIST

CHAN(I,3) = index of the operator or complex operator in OPLIST

CHAN(I,4) = type of first second argument 0, 1, or 2 as above

CHAN(I, 5) = second argument

as for first argument

CHAN(I,6) = polnter to next instruction to be done (0 if none)

A conditional change is also stored in a line of CHAN, but the allocation

1s different:

3. 9-2

CHAN(I,1) =6

CHAN(I,2) = pointer to the restriction

CHAN(I,3) = pointer to the next instruction to be done if the
restriction 1s met (0 if none)

CHAN(I,4) = pointer to the next instruction to be done if the
restriction 1s not met (0 if none)

CHAN(I,5) = CHAN(I,6) = O

CHWORD is simply a REAI*8 list of words. FCHTRE, CHTREE, and

CHCLIS store trees as described in section 3.3.

The final setting of the pointers to the next instruction 1s not

done by CHANIN proper, but by the entry CHANTY, which tidies up the table

CHAN. This entry is called by TRANIN after all the structural changes

for the grammar have been read. A call to CHANOU causes the structural

change tables to be output.

The output of CHANOU is shown in Figure 3.9.1.

5:9-3

f

Figure 5.9.1

STRUCTURAL JHANGRES

STRUCTURAL C FANGFS

I TYPE ARG Ne ARGT ARG NEXT
A ? 3 00

2) 1 1 4 0

3 2 2 1 1 4 0
4 2 1 1 5 0

5 2 3 1 4 0

6 1 5 4 1 3 0
7 0 0 11 1 4 0

2) 1 3 5 . 10 9
9 1 7 6 3 10

10 2 4 1 1 5 11
11 2 5 1 1 5 0

12 1 4 2 1 5 0

13 1 6 6 1 3 0

14 1 6 2 1 4 0

15 1 4 4 1 5 0

16 1. 4 4 1 3 0

17 6 4 18 19 0 0

18 4 9 12 1 4 0

19 4 10 12 4 0
20 2 6 3 6 Nn

21 0 0 11 1 3 0

22 0 0 11 1 3 0

23 2 7 5 1 5 0

24 6 8 25 26 0 0

25 4 17 12 1 4 0

26 4 18 12 1 4 0

277 0 0 11 5 0
28 0 0 11 1 4 29

29 0 0 11 1 5 30

30 0 0 11] 6 0

31 1 4 2 1 3 0 _

32 1 3 3 1 4 0

37 1 5 2 1 3 0

34 2 5 3 | 3 35

35 2 A 3 1 3 0
36 0 0 11] 5 n

37 0 0 11 1 5 0

38 1 3 2 1 7 39

39 1 4 1 1 7 40

40 1 5 1 1 7 0

41 1 2 4 1 5 0

42 1 4 4 1 9 0

43 1 4 R 1 3 0

44 1 4 2 1 2 0

45 1 5 2 1 3 0

46 1 3 4 1 4 0

47 0 0 11 1 3 0

48 0 0 11 1 3 0

49 0 0 11 1 3 0

50 9) 0 11 1 5 0
51 1 4 ? 1 3 52
52 1 5 2 1 3 53

2. 9-4

53 1 6 ? 1 3 , 0
54 " ~ 11 1 4 C

55 Ek r 11 1 4 ~

5h n r 11 1 3 o

57 z r 11 1) SP

58 Si ~ 11 1 3

59 p 9 5 1 2

6" m ~ HE i 3 n

61 7 { 11 ! E ~

62 2 10 3 1 2

63 ? 1¢ iS 1 3
54 ? 11 S 1 3 3

65 ? 11 5 1 2

66 2 12 5 1 7 0

~T 2? 113 5 1 ? n
AQ > 14 5 1 ~

sn on A B 1 3. 70 | |

A 2s 2 1 3 0 | | |

71 0 SEE | 1 I 72

12, ? 14 To 1 2 8 | |
71 rn r 1 1 7 14
74 > 17 5 1 7 1 |

75 ~ r 11 1 76

74 2 1R 5 1 ; n | i;
77 " ~ \ 7 7o | ei

72 2 19 5 1 3 no £
WN 79 gi SEE Ot 7 AG | | ©
. 21 > a A 1 3 2 | - |

\° 3y on fH 11 1 > 82 oo | | - be
\J1 Q2 2 20 kB 1 7 - : O

a1 2 SERB 1 1 y X

14 ~ rr 11. 1 3 n ! =

| 27 A (11 2 38 | . . | | So So | | =

31 2 0 11 1 2 92 CT EE | Co oo | | | |

oo 33 2 0 11 1 2 9D | SE | : ; So oo | | oo

: 4 2 10 = 1 3 n : CL

a7 2 26 3 ! K

| 9 > 27 ® 1 2
29 : Ze £ l ? a

: Bs 27 in 1 7

BER RCIRRERARN

1 cons 2 CHAINYT TT OTHAT 4 BRE 5 EM b EVFR 7 NEF 8 HAVE 9 FN
12 5 11 NIT 12 NID 13 DOES 14 90 15 1S 16 ARE 17 WAS 12 WERE
19 HAS 20 HAD 21 WHN 22 WHICH 23 WI-AT 34 FNR 2% 10 26 ING 27 RY
29 A 29 THF

CHANGE, control program for structural change

When a transformation is to be applied, CONTRL calls CHANGE. CHANGE

makes a subroutine call for each of the change operations in the structural

change. If the operation is a tree operation, ELEMOP is called; 1f it 1s

a complex symbol operation, CSEXCH is called. When all of the change

operations have been performed, CHANGE relinquishes control to CONTRL.

ELEMOP, elementary tree operations

) ELEMOP performs one tree operation for each call from CHANGE, and then

returns. ELEMOP also contains separate entries for a subset of the tree

operations and is occasionally called by other subroutines. For example,

GEN calls the entry ALADE in building a tree.

The elementary tree operations of ELEMOP are those of the MITRE

grammars and those of the IBM core grammar. The MITRE operations are:

SUBST SUBSE substitution

ADRIS ARISE add as right sister

ADLES ALESE add as left sister

ADFID AFIDE add as first daughter

ADLAD ALADE add as last daughter

ADRIA ARIAE add as right aunt

ERASE erase

The operations in the left-hand column first make a copy of the

subtree to be adjoined, and then adjoin the copy; those 1n the right-

hand column move the original subtree to the new position, thus

effectively erasing the original. The IBM operations are:

SUBSTI SUBSET

- ADRISI ARISEl

3.9-6

ADLESI ALESEI

ADLADI AILADEI

The IBM operations differ from the MITRE operations in that in

general in the IBM operations chain upward from the named nodes.

Description of the individual IBM operations follow.

Substitute: SUBSTI (N1,N2) and SUBSEI (Nl, N2)

) Both SUBSTI and SUBSEI substitute the subtree headed by Nl for

| the subtree headed by N2; in additions, SUBSEI erases the original

occurrence of Nl.

Given the tree:

B/ c

AF G* I

SUBSTI (E,D) while SUBSEI (E,D)

produces: A produces: . A

B C | |
| B Cc

/ /\
é !

H H I HS I

If immediately above Nl there 1s a non-branching chain of nodes, the

top of that chain 1s used instead of Nl; similarly, the top of any

39-7

non-branching chain above N2 is used instead of N2. Thus, SUBSTI (E,F)

applied to A A

B ¢ produces B C
D |

E E

F
G H G G H

1d rg

and SUBSTI (I,D) applied to

- A A

B/\. |
B C

produces

D E El E

F G H | H H

I I I

Add as right sister: ADRISI(N1,N2) and ARISEI(N1,N2)

Add as left sister: ADIESI(N1,N2) and ALESEI(N1,N2)

These operations add the node Nl as the left or right sister of

"the node N2; in addition, ARISEl and ALESEI erase the original occurrence

of NI.

ARISEI(G,B) applied to

3.9-~8

A A

B C . B G C
produces

G D

D* EB F EH IF

H I

N1 will be replaced in these operations by the head of any non-branching

chain above Nl, but N2 will not be so replaced. Thus, ADLESI (F,B)

applied to

A Ag.

B C E B C

produces

D E D E

m F

but ADLESI (F,D) applied to

A A

B C C
produces B

D E F Fd DY ¢E F

G G H G H

Add as daughter: ADLADI (N1,N2) and ALADEI (N1,N2)

ADLADI adds Nl as the anty daughyer nfoN2; be used 1f N2

already has descendants. ALADEI adds Nl as the only daughter of N2 and

59-9

also erases the original occurrence of Nl. The operations chain upward

from NL but do not chain from N2. ALADEI (F,B) applied to

A) A

| B \
¢ produces } C

| E mw 5

while

ATADETI (F,D)

applied to h

A

A

B C

B C produces
D E

F
F

Erase: ERASE1 (Ni)

This operation deletes from a tree the subtree headed by Nl as

well as any non-branching chain above Nl.

ERASE]1 (E) applied to

A A

produces AB C D B C
E

F G

-

3.10 Complex symbol operations

CSEXCH(N,M)

CSEXCH (Complex Symbol Exchange)_ 1s an INTEGER*2 function which

sets up calls to CSOP and returns the results of CSOP. The arguments

N and M are complex symbol numbers (i.e. pointers to CSLIST).

CSEXCH 1s never entered from the beginning but always from one of

the entries which determine the test or operation to be performed. The

- entries are:

For tests

_ CSEQ

CSINC1 (or equivalently, CXINC1)

CSINCZ

CSNDST

For operations

CSMERG

CSMERR

CSERAS

. CSSAVE

For each entryexcept CSMERR CSEXCH makes a preliminary test and an

immediate return 1f the test or operation is trivial (N=M). Otherwise it

makes the appropriate call to CSOP by setting TYPE to 1 for operations

and 2 for tests, and selecting the array A which defines the test or

operation as the second argument of CSOP.

Each of the matrices defines a function of feature values and

1s of the form:

3.10-1

N + +++ -—-—- —- %¥ ¥ ¥%¥ A AAA (A = absent)

M + - *A+—-*A+-*A+—-*A

A(N,M)

For tests the values in A(N,M) are 1 if true, and in general 2 if

false. An exception is CSINClL where 2 and 3 are both false, 2 in the

case of noninclusion because of the absence of the feature in M and

5 1f the values in N and M conflict. (This distinction 1s used by

. REDRUL.)

For operations the values in A(N,M) are the values to be given

to the feature in the new complex symbol being constructed. They

are 1 (+),2(-), 3 (*), 4 (absent) and 5 (a random choice between

+ and -).

It should be noted that new operations and tests may easily be

defined, simply by adding to CSEXCH a new entry and a corresponding

new value for the matrix A .

CSOP(TYPE,A,N,M)

CSOP 1s an INTEGER*2 function of four arguments which is called by

CSEXCH. CSEXCH determines the function of a particular call to CSOP

and sets up the arguments. The arguments are:

TYPE, an integer with value 1 1s a new complex symbol 1s to be

created, or value 2 if a test on complex symbols 1s to be evaluated.

A 1s an integer array which represents the 4x4 matrix which defines

the operation or the test to be performed.

N and M are pointers to the complex symbols which are the

arguments of the operation or test.

3.10-2

Each test or operation on two complex symbols 1s computed from

the value of the test or operation on the individual feature specifica-

tions of the two complex symbols. The value of a test is the maximum

of the values for individual feature specifications; thus, if a

test is to succeed it must be true (=1) for all pairs of feature

specifications. The value of an operation is the complex symbol

resulting from pairwise application of the operation to the feature

specifications 1n two complex symbols.

In order to understand the flow of CSOP it 1s necessary first

to know the structure of the array CSLIST(4,2000) which contains the

complex symbols. Each entry 1n CSLIST consists of (feature number,

feature type, feature value, pointer to the next feature specification |

in the complex symbol (0 1f none)). The entries in CSLIST for a

particular complex symbol are sorted on the first column (feature

number). This ordering 1s taken advantage of 1n going through the

complex symbol.

The subroutine uses the same basic cycle to pick the current

feature specification pairs for both operations and tests. The main

| difference 1n the treatment 1n operations and tests comes when a

feature specification pair has been selected. Then a branch is made

depending on TYPE and the operation or test carried out for the current

pair. TYPE 1s also tested in initialization and in finishing up.

The discussion of how the matrix A determines the result of CSOP

will be found in the writeup of CSEXCH.

REDRUL (M)

REDRUL is an integer¥2 function of the complex symbol number M. It

5.10-3

returns the number of the complex symbol obtained after expansion of

M by the redundancy rules, of 0 if a contradiction 1s found in doing

the expansion.

The redundancy rule A= B has been stored in RULE as the pair

of complex symbols (A,B). Parallel to RULE is a temporary LOGICAL*1

array RULCHK.

First RULCHK 1s initialized to FALSE, and FLAG 1s set FALSE.

The main cycle is a pass through the rules in RULE. For the

Ith rule, the computation is: If RULCHK 1s TRUE the rule 1s skipped.

Otherwise, the two parts A and B of rule I are compared with the

complex symbol M using CXINCL. If A is included in M and B

1s not included in M and B does not conflict with M , the new

value of M is set to the result of merging (MERGEL) M and B ,

RULCHK (I) is set TRUE and FLAG is set TRUE. If A and B are both

included in M , the RULCHK (I) is simply set TRUE. The next rule 1s

then considered. If A is included in M , but B conflicts with

M (i.e. CXINCl returns 3), an error message 1s printed and the sub-

routine terminates. After all rules have been tried, FLAG 1s tested

and 1f TRUE, 1t 1s reset to FALSE and the main cycle 1s repeated. If

FLAG 1s FALSE, no changes have occurred on the last cycle, so the

. expansion process is complete.

After the iteration of the main cycle 1s completed a space recovery

section of the code is executed to reduce waste space in CSLIST. All

intermediate complex symbols created by merging are erased and only

the final result is retained.

3.,10-4

3.11 Control program

This section describes a set of subroutines (CPIN, SYNCHK, RECOG, CONTRL,

: SCAN, TAPPLY, TRACE, APPLYG) which input and interpret control programs.

CPIN inputs a control program, checks syntax, and checks block
structure. It also builds the symbol table which associates symbols and
locations in CPBUF (the control program main storage area).

SYNCHK is a general context free grammar recognizer. It is calledby
CPIN to check the syntax of the control program.

RECOG is a token generator/recognizer for SYNCHK. It uses SCAN to do

the actual token generation.

CONTRL interprets a control program residing in CPBUF. It checks
syntax as it executes. SCAN is a token generator for CONTRL.

SCAN 1s a token generator used primarily by CONTRL to determine what is
the next item in the execution sequence.

TAPPLY is the subroutine (with four entry points) which determines
whether a given transformation should be invoked and if so, invokes it.
It 1s driven by CONTRL and APPLYC and itself drives TRACE.

TRACE is the routine which does the outputting of trace infoxmation
, during the execution of the control program.

APPLYG 1s driven by CONTRL. Its function 1s to invoke those
transformations of a group (denoted by group number) which should be
invoked. It hands the members of a group to TAPPLY one-by-one.

<

FORMAL, DEFINITION OF -A CONTROL PROGRAM

SYNTAX

CONTROL-PROGRAM : := CONTROL-PROGRAM1 .

CONTROL-PROGRAM : := SCLIST [CONTROL-INSTRUCTION]

_ CONTROL-INSTRUCTION s:= LABEL CONTROL- INSTRIJCTION OR
CONTROL-INSTRUCTION LABEL

[NSTR! J CTION

LABEL ::= WORD : LABEL
~ WORD

INSTRUCTION : := CONTROL-ELEMENT OR
TRANSFORMATION-ELEMENT OR

CONTROL-LIST

CONTROL-LIST ::= ¢ SCLIST [INSTRUCTION]>

CONTROL-ELEMENT : := REPEAT-INSTRUCTION OR

IN- INSTRUCTION OR

[E-INSTRUCTION OR

FLAG-INSTRUCTON OR

GO- INSTRIJCTION OR

TRACE- INSTRIJCTION OR

STOP-INSTRLJ CTION

’ TRANSFORMATION=-ELEMENT ::= TRANSFORMATION-NAME OR
GROUP-NUMBER

REPEAT- INSTRUCTION ::= RPT INTEGER < CONTROL-PROGRAMI1 » OR
RPT < CONTROL-PROGRAM1 >

IN-INSTRUCTION : := IN TRANSFORMATION-NAME (INTEGER)
DO < CONTROL-PROGRAM »

[F-INSTRUCTION s:m= IF INSTRUCTION THEN GO=-INSTRUCTION

OPT [ELSE GO=INSTRUCTION]

FLAG-INSTRUCTION ::= FLAG-NAME TRASFORMATION=- LIST

FLAG-NAME ::= FLAG OPT [INTEGER]

CO-INSTRUCTION ::= ‘G0 TO WORD OR

GOTO WORD

2,11-2

TRACE-INSTRUCTION : := TRACE TRANSFORMATION-LIST SPECIFICATION OR

UNTRACE TRANSFORMATION-LIST OR

TREE

SPECIFICATION = BEFORE TEST OR
AFTER SUCCESS OR

AFTER FAILIJRE OR

AFTER CHANGE OR

RESULT

STOP- INSTRUCTION : ¢= STOP OR

TRANSFORMATION- LIST ::= TRANSFORMATION-ELEMENT OR
< SCLIST [TRANSFORMATION-ELEMENT]>

5.11-3

SEMANTICS i

A control program 1s a sequence of control instructions separated by
semi-colons’ and ending with a period.

Each control instruction may be labeled with an indefinite number of
labels.

A label is a word, whichis not a reserved word, followed by a colon.
-All terminal symbols of the syntax and all transformation names are
reserved words. Duplicated labels are not allowed.

There are two types of control instructions: those specifying control
elements (instructions to the interpreter] and those designating
transformations. ~~ Control elements may be thought of as operators and
transformation elements as operands.

Instructions may be grouped for convenience by enclosing them in.
angular brackets, Nesting within angular brackets may occur to any
desired depth, Each pair of angular brackets serve to define a block (see
Block Structure below).

There are seven types of control elements. Each differs in its effect
on the interpreter and its effect on the tree.

A transformation element may be the name of a transformation or the
name of a transformation group (denoted by a Roman numeral).

Two forms of repeat instructions exist: definite and indefinite. Both
_ are similar 1n interpretation.

The definite repeat will execute the following control program INTEGER
number of times or until the control program has no effect (i.e. has value
false - see Values below), whichever occurs first.

The indefinite repeat will execute the following control program until
it has no ef fect (i.e. has value false - see Values below). The number of
iterations of the control program will not exceed INFNTY « a variable in
CPCOM,

The value of the repeat is trueif any transformation was succcessfully
invoked and 1s false otherwise.

The IN-construct allows the user to fix a top node of the tree. This
node may or may not be the mot of the tree, allowing the transformations
in the control program following to operate on a subtree of the original
tree if desired.

Execution of an IN-construct proceeds as follows:

3.11-4

Invoke the named transformation,)

If successful, examine the node designated by the INTEGER,

If this node has never been used as the top node of the IN before,

execute the control program using this node a s the top of the tree,

If this node h as been the top node of the I N before, find another top

node by invoking the transformation again, If the invocation is
unsuccessful, the IN terminates. If it is successful, examine the node
designated by the INTEGER as above,

The value of the IN is true if any invoked transfomation succeeds and
is false otherwise,

The FLAG instruction provides the means by which a group of
transformations may be monitored, Flagging both establishes the group
and sets the flag to false, The value of a flag 1s true 1f any
transformation in its group has been successfully invoked since the fl a g
was last established and is false otherwise,

There are ten flags which may be referred to by number, The construct
FLAG with no INTEGER following is taken to mean FLAG O,

An IF-construct with FLAG means: if the current value of the

designated flag 1s true then execute the first GOTO, if it 1s false then
execute the second GOTO if it exists (otherwise control passes to the next
instruction), If no INTEGER follows FLAG flag 0is assumed. An IF
followed by any other instruction means: if the value of the instruction

1s true then execute the first GOTO, if it is false then execute the
second GOTO if it exists (control passes to the next instruction if it
does not). Note that a group must be formed through an instance of a
FLAG-construct before an IF-construct with FLAG h a s meaning,

Two forms of GOTOs exist, They are entirely equivalent in their
effect. Both force the execution of the control program to continue from
the point specified, Jumps into blocks are not ‘allowed (see Block
Structure below),

Three types of trace instruction exist: TRACE, UNTRACE and TREE.
UNTRACE resets the trace operation (turns off the output). TRACE turns on
a specified type of dump (see below). TREE outputs the whole current tree
whenever it is executed,

Five types of dumps are provided. Any combination, including all, are
possible. BEFORE TEST outputs the current tree before a call to ANTEST is
made but after all keywords have been satisfied. AFTER SUCCESS outputs
the current tree after ANTEST has returned true but before the tree has

been changed. AFTER FAILURE outputs the current tree after ANTEST has
returned false. AFTER CIIANGE outputs the current tree after a call to
subroutine CHANGE, RESULT outputs one line telling whether or not the
transformation was successfully applied.

The STOP instruction terminates execution of the control program. An
alternate way to terminate the” control: program is to "run off the end",
i.e, to try to execute the period.

A TRANSFORMATION-LIST 1s either a transformation element or a list of

transformation elements separated by semi-colons and enclosed. in angular
brackets.

VALUES

Each INSTRUCTION of a control program has a value. This value is
determined as follows : \

CONTROL ELEMENTS:

RPT - true if any value of its control program is true;
false otherwise.

IN - true if the IN-transformation has value true;
false otherwise.

IF - true 1f its INSTRUCTION 1s true;
false otherwise.

FLAG - has no value. A FLAG within an IF has the

value of the FLAG designated.
GO - has no value.

TRACE - has no value.

STOP - has no value,

TRANSFORMATION-ELEMENTS ©

TRANSFORMATION-NAME - true if the transformation

1s successfully applied (i.e. a structural change
has been made or would have been if it were not void);
false otherwise.

GROUP-NUMBER - true if any transformation in
the designated group 1s successfully applied;
false otherwise.

3.11-6

Lists : :

CONTROL-LIST - true 1f any element of the list has
value true;
false otherwise.

TRANSFORMATION-LIST « true if any element of the
list has value true;
false otherwise.

CONTROL-PROGRAMI - true if any element of the list
has value true;

. false otherwise.

An undefined value 1s taken to be false throughout.

In general angular brackets serve to combine many values into one.
This combination is formed by taking a logical inclusive-OR of the values
of the elements within the brackets.

BLOCK STRUCTURE

A block may be formed by the usage of angular brackets. The elements
within a block form a unit and determine one value (see Values above).
Control may pass to a block only by executing the angular bracket at its
head. Control may pass fmm a block either by executing the angular
bracket at its tail or by executing a GOTO, Any label within a block may
be thought of as being local to that block. However, throughout an entire
control program duplication of labels is’not permitted (even though the
duplicates may be in different blocks).

A block 1s formed by any of the following constructs: RPT, IN and IF.
The block formed is inherent to the construct = control may only pass into
such-.a block through its head. Control may pass from such a block through
its tail or by the execution of a COTO.

In fact the interpreter will allow GOTOs from one block into another so
long as the level of the destination 1s as low or lower than the level at
the GOTO, Thus it is possible to enter a block at a point other than its
head (but the stack will not have been set up by the block entry bracket,
so results other than those which were desired may be obtained).

Note that every entry into a block forces a push onto the stack, and
every departure forces a pope.

STORAGE

The main storage area for the control program is CPCOM (see Figure 1%).
Almost all communication 1s done via variables and arrays residing within
this region. The initialization of CPCOM is done in three ways. Data
which never changes is loaded via BLOCK DATA subprograms (see Figure 2).
CPBUF and all symbol-related data are set up by CPIN. All other
initialization occurs within the first few statements of CONTRL.

The following variables and arvays are all in CPCOM:

CPBUF() - main control program buffer: contains the
symbolic control program as read in by CPIN.

CPPTR =~ pointer inte CPBUF: used by CONTRL to
indicate the current instruction being
interpreted.

SYTB() =~ symbol table: contains the alphameric symbols
of the control program.

SYTV() - symbol values: contains pointers into CPBUF,
Each entry of SYTB has an associated SYTV
entry showing at what point the symbol was
defined.

SYTL() =~ symbol levels+ contains the level of each
symbol in SYTB, Used to detect errors during
execution.

SYTN - the number of entries in SYTB.
TERM() - contains the terminal symbols of the syntax

(see Figure 4).
STK() =~ execution stack (see Figure 3 and the

description of CONTRL below).
SPTR - points at the current first postion of STK.
OTOP() « points into OTOPS (see description of TAPPLY),
OTOPS() - contains old top nodes for a currently executing

IN-instruction (see TAPPLY description).
LVL - the current level

ZSCAN - auxilliary output from SCAN (see below).
ZINT ...2UNT - tokens for the terminal symbols in TERM().

*The references to figures in section 3.11 refer to figures 3.11.1 to3.ll.5.

These figures appear at the end of this section.

3.11-8

) INFNTY « the value taken to be infinity by RPT and TAPPLY.
FGN(,) ~- boolean array designating flagged

transformations.

FGV(,) =~ boolean array containing the values of flagged
transformations.

TRCF(,) = boolean array designating which transformations
are being traced and by what type of trace.

APFG « a flag set by TAPPLY used by CONTRL. It
is true when a transformation which has been

invoked by a call to TAPPLY has
successfully attempted to modify the
current tree.

IFFG - used by CONTRL in the evaluation of
IF-statements. True if the IF will take the

first branch; false otherwise.
RFG -- true whenever the stack contains an

IN-instruction; false otherwise.

The following variables and arrays reside in SYNQM:

SNTX(,) =- base syntax used by SYNCK.
CUR - current goal symbol.
SCN - set to semi-colon: error recovery symbol.
SPT - stack pointer for STAK.
STAK() = stack used by SYNCK in recognition

process.

[PT - pointer into CPBUF used by RECOG.
NEON - number of syntax equations, set to 57.
TRCFG = trace flag for SYNCK, set to false.
DMPFG « dump flag for SYNCK, set to false.
RECFG = recovery flag for SYNCK, set to true.

%.11-9

The following variables and arrays reside in local storage:

BLOK(,) - contains a skeleton of the block structure of the
program. Used by CPIN.

OPTR - points at the top element of OTOP, Used by
CONTRL,

SLVL - used by CONTRL to keep track of levels when
scanning for semi-colons or angular brackets.

TYP - 1ndicates the type of instruction in the stack.
May be set to zero, ZIF, ZIN or ZRPT
only. Used by CONTRL.

TYP - indicates the type of tracing. Used by TRACE.
TRCTYP - indicates the type of tracing. Used by CONTRL,
FLGN - holds the flag number; Used by CONTRL.
TRM() « an equivalenced array allowing SCAN to reference

the tokens parallel to TERM in CPCOM,
ROMAN() = holds the Roman numerals I through Xe Used by

SCAN.

S() - array holding the marked S's in TAPPLY,
TOP - contains the top node for TAPPLY,
CYC - contains the cyclicity ofa transformation

OPT - contains the optionality of a transformation
in TAPPLY,

GOAL - contains the goal S in TAPPLY,
ANFG - contains the result of having called ANTEST

in TAPPLY,

TRNS() - contains the transformations which have successfully
been invoked in order. Used by TAPPLY,

TIM - contains the time of call for TRACE,

3. 11-10

DESCRIPTION OF CPIN

CPIN inputs a control program into CPBUF and checks its syntax and
block structure. It also detects undefined and multiply defined labels
and undefined symbols. The program operates in two passes.

Pass 1 inputs the control program up to and including the period at its
end. It detects labels by the colon following them and enters them into
SYTB along with their location and level. LVL contains the current level:

. 1t 1s increased by one each time a € is seen and decreased by one whenever
a > 1s seen. Concurrently a skeleton of the block structure 1s built in
BLOK,

The format of BLOK is:

BLOK(I,1) - number of labels in this block
BLOK(I,2) - parent of this block
BLOK(I,3) = labels in this block

BLOK(I1,20) - ., .

Example: {for this control program:

L1: TRAN1 ;
C L2: TRAN2 ; L3: < L4: TRAN3D> ; LS:> ;

L6: STOP.

BLOK would appear as:

2 0 LT L6

31 12 L3 LS

1 2 14

SYTB ~~ SYTV SYTL

L1 3 0

L2 8 1

L3 12 1

L4 15 2

LS 20

L6 25 0

3.11-11

Pass 2 scans CPBUF checking to see that each GOTO refers to a defined
symbol and that no jumps into blocks occur. It also checks to see that
each GO Is followed by a TO. The number of errors detected is output at
the conclusion of Pass 2 if it IS greater than zero.

CPIN then calls SYNCHK which checks the syntax of the input program
(see SYNCHK below).

DESCRIPTION OF SYNCHK

SYNCHK is a top-down recognizer. It drives a stack attempting to
recognize a CONTROL-PROGRAM. It uses the syntax in SYNOM which is
equivalent to the syntax given above.

The program operates as follows:

Load the stack with CONTROL-PROGRAM.

If the stack’s top element 1s non-terminal, find an equation with this
non-terminal as left-most symbol and stack it, Examine stack’s top element
as above.

If the stack’s top element 1s terminal, call RECOG to see if the first -
element of the input stream 1s the same as this symbol. If 1t 1s, -
continue examining this equation. Every time. a non-terminal 1s found it 1s |
pushed onto the stack. Each time a terminal is found a call 1s made to |
RECOG. If RECOG returns true it advances the input stream over the symbol |
it just recognized. If RECOG returns false it does not.

Each time the recognizer finds that the input stream and the current
equation differ, 1t scans for another equation which has the same
left-most symbol as the current one. If it finds one it tries to use it
in the recognition process. If it 1s unable to find one or runs out of Co
new equations it will pop the stack if it has not advanced the input
stream and continue searching for valid equations. If it has advanced the |
input stream then there 1s a syntax error at the current position.

Whena synrax error is encountered the recognizer begins scanning until
it finds the symbol SCN (currently a semi-colon) in the input stream. It ‘
then assumes that it has successfully recognized the current equation and
continues.

Two types of trace output are available. Both are normally off.

TRCFG= if true, the recognizer will output the name of each
non- terminal symbol which it successfully recognizes.

DMPFG - if true, the recognizer will ouput the stack every time it

begins to examine the current symbol.

RECFG 1s normally true - it provides the error recovery described |
above. If you wish to avoid the error recovery set RECFG to false.

{

5011-13

The syntax used by SYNCHK is given in Figure $5, This syntax is more
general than the syntax given above and better reflects the actual

operation of the control program although it is more complex.

DESCRIPTION OF RECOG

RECOG is the recognizer/token generator for SYNCK. It calls SCAN to
generate the actual token and then compares this with the tokens in SNTX.
The input stream pointer IPT 1s advanced if the desired symbol and the
input symbol match, otherwise it 1s not,

|

DESCRIPTION OF CONTR.

The first few statements of CONTRL initialize the various stacks and

variables which it uses.

The main loop begins at statement 10. It 1s at this point that the
program has just finished recognizing and interpreting a control
instruction and it is ready to look for the next. Wenow call SCAN for
the next token and go to the appropriate part of the interpreter depending
upon what SCAN returns. If the symbol 1s illegal or undefined, a branch
“is made to statement 9, the standard error recovery section.

Belov is a description of the actions of the control program for each
construct or symbol which it sees.

Syntax errors send the control to statement 9. At this point scanning.
fur the next semi-colon begins, The program keeps track of its level and
will stop scanning when it finds the next semi-colon at the current level.

INTEGER Illegal syntax, control passes to Error Recovery.

T-NAME APPLY or APPLY is called depending upon whether or not the
control program 1s currently in an IN-construct. The result of the
invocation 1s inserted in the stack.

WORD words, that is labels, are passed over. They have no effect on
the control program.

GROUP-NO APPLYG is called with this group number as argument. The
result of mmvoking the transformations of this group 1s inserted in the
stack.

{-A left angular bracket signals the beginning of a
TRANSFORMATION-LIST, The level is increased by one, the stack is pushed
down, and the arrays OTOP and OTOPS are pushed down.

> A wright angular bracket signals the end of some type of
transformation- or control group. Atest is made to see if the group is
an IN, an IF, a RPT, or a TRANSFORMATION-LIST, If it 1s an IN, control

passes to statement 7500 (described below). If it 3 an IF, control
passes to statement 6500 (described below). If it 1s a RPT, the stack 1s
tested. If the value 1s false, the RPT terminates and control passes to
statement 10, If the value is true, the value is reset to false, the
renc at ~ounter 1s decremented (if 1t 1s zero, terminate the RPT), then the
RIFT 1s started again. If it is a TRANSFORMATION-LIST the stack 1s popped
and the value of the list is inserted into it.

3.11-16

: Semi-colons have no effect.

(Parentheses are illegal. Control” passes to Error Recovery.

) Parentheses are illegal. Control passes to Error Recovery.

e A period terminates the execution of the control program (see STOP
below).

¢ Colons are ignored.

. AFTER Illegal, control passes to Error Recovery.

BEFORE Illegal, control passes to Error Recovery. |

CHANGE Illegal, control passes to Error Recovery.

DO Illegal, control passes to Error Recovery.

ELSE Illegal, control passes to Error Recovery.

FAILIJRE Illegal, control passes to Error Recovery.

FLAG Checks the stack to see if the control program 1s currently
executing an IF-construct. If it is, then it returns the value of the
designated flag. If an INTEGER follows the FLAG, that flag 1s used, if
not then flag zero is used. If the control program is not executing an
IF-construct, it checks the next symbol for INTEGER. If it finds one,
FLGN 1s set to that number, if not, FLGN 1s set to zero. Then the

following expression is read and each transformation designated (by name
or group number) 1s flagged by setting the corresponding entry in FGN to

true. The corresponding values in FGV are all reset to false.

GO Scan the next symbol for TO, if found go to GOTO; if not found, go
to Error Recovery.

“GOTO Scan the next symbol for WORD. If not found, go to Error
Recovery. Look up the value of the label in SYTV and its level in SYTL.
If the new level 1s higher than the current one an attempt is being made
to jump into a block, complain and go to Error Recovery. Otherwise change
CPPTR to the value looked up.

IF Push the stack and put IF into the top, push OTOP and OTOPS,

THEN (statement 6500) Pop the stack. If the old value is true go to
statement 10. If the old value is false scan to an ELSE (if it exists or
a semi-colon if 1t does not) and go to statement 10.

IN Scan for the name of the IN-transformation, left parenthesis, an
integer, right parenthesis,DO. Then initialize OTOP and OTOPS, Attempt
to invoke the IN-transformation by calling APPLY1, If it does not apply,
go to statement 10. If it does then push the stack, enter ZIN into the
stack and go to statement 10, Control passes to statement 7500 at the
right angular bracket of an IN-construct. We then call APPLY!, again
seeking a new S for top node. If APPLY returns true then the stack is
pushed as above and control passes to statement 10 after resetting CPPTR
to the left angular bracket of the IN. If APPLY1 returns false the IN
terminates and conrol passes to statement 10,

_ RESULT Illegal, control passes to Error Recovery.

RPT Scan for an integer, if one is found enter it as the repeat
counter value. If not, enter INFNTY. Scan to a left angular bracket and
go to ¢ above.

STOP Terminate the execution of the control program. Print the number-
of instructions executed and the transformations which hae applied, then
return to the calling program.

SUCCESS Illegal, control passes to Error Recovery.

TEST Illegal, control passes to Error Recovery.

THEN Illegal, control passes to Error Recovery.

TO Illegal, control passes to Error Recovery.

TRACE Scan to tho specification after marking the current position.
Then rescan the TRANSFORMATION-LIST setting the TRCF entry for each
‘transformtion which is to be traced.

TREE Call TROUT ro output the current tree,

UNTRACE Reset the TRCF entries for each transformation designated in
the transformation list.

Note that the syntax which describes the operation of the control

program is given in Figure 5 below. |

DESCRIPTION oF SCAN

SCAN is the token generator for CONTRL. In addition it keeps track of
the current position in CPBUF,

SCAN has two outputs: the first is the token for the current symbol
(returned in SCAN). The second is ZSCAN = this is auxilliary information:
the integer, label, transformation number, etc.

Values for SCAN and ZSCAN are as follows: |

SYMBOL SCAN ZSCAN

undefined symbol 0 0
INTEGER 1 the integer
TRANSFORMATION-NAME 2 the transformation number
LABEL 3 pointer into SYTB

for this label

GROUP-NUMBER 4 integer representing the
Roman numeral

terminal symbol token con

Terminal symbols are all "reserved words", The tokens for the
terminals are given in Figure 4. The tokens are referenced by index via

. the array TRM - an equivalenced array. No transfoxmatfon may have the
same spelling as a terminal symbol.

The entry point SCAN1 is used by RECOG. It differs only in that no
trace information i s printed during the program’s execution.

5.11-19

DESCRIPTION OF TAPPLY

TAPPLY is called to invoke a transformation, If it has applied APFG is
set to true and FGV is set to true. In addition, this transformation is
entered into TRNS. A transformation is said to have applied if it
successfully modified the tree (or at least called subroutine CHANGE) or
if it would have called CHANGE if the structural change had not been void.

The subroutine has four entry points which are described below. Each of
the first three are similar in all but minor details. We now give a brief
description of the operation of APPLY.

First, all S's are marked in the current subtree, If no S's exist, we
are done.

, Then we find the keywords for this transformation. If none exist then
we will be trying the transformation at every S, so set the appropriate
flag.

Find the first S which has been marked which dominates all the keywords
(or use the first Sif there are no keywords). If no such S exists, then
exit after updating TRNS if necessary.

Trace before ANTEST,

Call ANTEST (if the structural description is not zero, if it is, then
set ANFG = true), put the result into ANFG,

If ANFG is false, unmark the current S (so it will never be tried
again) and return to the process above.

If ANFG is true, then if the structural change is zero trace after
change,. unmark the S, and return to the process above. If the structural
change 1s non-zero, then branch to one of the four segments dealing with
the. particular type of transformation,

Type 1-AC - non-cyclic: call CHANGE, then unmark the S and proceed
as above.

Type 2 = ACAC - cyclic: call CHANGE, then return to the above without
unmarking the current S,

Type 3 - AACC: call CHANGE NUMCNT times, then unmark the S and return
to the above.

Type 4 «-MC: call CHANGE once picked from among the NUMCNT choices at
random and proceed as above."

3.11-m

We have not discussed optionality in the above. Optionality tests are
inserted before calling ANTEST for Type 1 (AC) transformations and within
the three subparts for the other three. ~

APPLY is the entry point for general invocation of transformations. It
proceeds as above.

APPLY1 is the entry point for the execution of the IN-transformation,
It updates OTOP and OTOPS and uses APPLY or APPLYI depending upon whether
the current IN-construct is within another IN or not. For APPLY1 to be

successful the node found by ANTEST must be different from all nodes
already in OTOPS.

The formats of OTOP and OTOPS are: entries in OTOP are pairs of :
pointers into OTOPS - there is one pair for each level of execution,
Entries in OTOPS are the actual nodes which have been used as top nodes
inside an IN-construct.

APPLY1 is the entry point for the execution of the program inside the
angular brackets of an IN-construct. It differs from APPLY in that there

is only one S which may be used as the goal and top node of the tree forANTEST and CHANGE - the node specified by the INTEGER of the IN-construct.

OUTTRN is the last entry point - it is used by CONTRL to output the
contents of TRNS - the transformations which have successfully applied in
order of application.

Each of the entries to TAPPLY above will set APFG to true if the

invocation is successful and enter the transformation into TRNS,

53.11-21

DESCRIPTION OF TRACE

TRACE outputs trace information which may be the tree (by a call to
TROUT) or just the result of invoking the transformation (true or false
depending upon whether or not the transformation was successful),

TRACE is called at three points during the inwcation of a
transformation: before calling ANTEST (but after all keywords have been
satisfied), after calling ANTEST but before calling CHANCE, and after
calling CHANGE. ’

The type ofTRACE (there are five types) is determined by use of the
array TRCF (in CPCOM),

ANFG is a logical variable giving the value of the last call to ANTEST,

Values for TIM and TYP are:

TIM =1 before ANTEST

-2 after ANTEST, before CHANGE
=3 after CHANGE

TYP -1 BEFORE ANTEST
-2 AFTER FAILURE of ANTEST

=3 AFTER SUCCESS of ANTEST

-4 AFTERCHANGE

=5 RESULT

3.11-22

DESCRIPTION OF APPLYG

APPLYG invokes the transformations in the group designatedby GNO
one-by-one. If GNO refers to a non-existent group APPLYG comments to this
effect and returns false. Otherwise the value of APPLYG is an
inclusive-OR or the values of all transfonaations in the designated group.
The value of APPLYG is returned in APFG (a variable in CPCOM),

APPLYG will use APPLY or APPLY1 depending upon whether or not the
control program is currently executing an IN-construct. (It tests RFG to
determine this.)

%.11-23%

Figure 3.11.1

CPCOM, SYNCM

CPCOM

IMPLICIT INTEGER*2 (A-2) CPCOMO
COMMON /CPCOM/ CPBUF,SYTB,TERM CPCOMI

_ REAL*8 CPBUF (500) ,SYTB(100) ,TERM(32) CPCOM
COMMON /CPCoM/ SYTV(100) ,STK(100) ,0TOP(20) ,0TOPS(50) , CPCOM3

1 CPPTR,SPTR,LVL,SYTN,ZSCAN,SYTL (100), CPCOr 4
2 ZINT,2TRN,ZWRD,ZGRN,ZLAN,ZSMI, CPC} IS
3 ZLPR,ZRPR,ZPER,ZCOL, ZAFT,ZBEF, ZCHN, CPCOM'6
4 IDO, ZELS,ZFAL,ZFLG,2G0,2GOT,ZIF, CPCOM'7
5 ZIN,ZRSL,ZRPT ,2STP,ZSUC,ZTST,ZTHN, CPCOM'§
6 ZT0,ZTRC,ZTRE,ZUNT, INFNTY cpPcor 9
COMMON /CPCOM/ FGN,FGV, TRCF,APFG, IFFG,RFG cpcom1(
LOGICAL*1 FGN(100,10) ,FGV(100,10),TRCF(100,5),APFG,IFFG,RFG CPCOMI1

SYNOM :

IMPLICIT INTEGER*2 (A-2) SYNCMO
COMMON /SYNQM/ SNTX » CUR, SCN, SPT, IPT,NEQN, SYNQM1

1 TRCFG, DMPFG ,RECFG SYNOM2
) REAL*8 SNTX (57,8) ,CUR,SCN SYNOM3

LOGICAL+1 TRCFG,DMPFG,RECFG SYNOM4

3. 11-24

Figure 3.11.2

BLOCK DATA STATEMENTS

_SYNCM
BLOCK CATA FSYNCM

IMPL IC It INTEGER®2 (A-Z) SYNCMO
COMMUN /SYNCM/ SNTX+CURsSCNySPT IPT NEQN, SYNCMI]

1 TRCFG,DMPFGyRECFG SYNCM2
REAL*8 SNTX(57,8)4yCURGSCN/*3/ SYNCMS3

LOGICAL%]Y TRCFG/+TRUE./¢NVMPFG/ «FALSE./+RECFG/ .TRUE./ SYNCMS
INTEGER*2 NEQN/57/ SYNCM6

ECU IVALCNCE |
1 (SNTX{191)eC1(1))y{SNTX(192),C2{1)),(SNTX(1:43),C3(1)),
2 (SNTX(1,4)9Ca(1))y(SNTX(1sS)yCS5(L)){SNTX(1,6),C6(1)),
3 (SNTX(1,7),C7(1)), (SNTX(1,8),C8{1))
REAL*8C | (57)/

1 'CTLPCM. *'PGM, "4 'PGM. "2 'CP, ", ICP, ',

2 ‘CP. ',0CI “w'Cl. '‘y?'Cl. ""Cf. '
: 3 ‘SC. ',* SC. "2 'LBL. ",'LBL, 'LOINST, ¢,

4 "INST, "9 VY INST. *+'ClL., YotCL., t,'CL1, *y
5 *CLl. *y'CL1. *9y*'CE., 'y'CE. '» ‘Cf. Vy
6 ‘CE. *y'CE. *+'CE. ','CE. "2! TF. iE)
T *TE. 'y'RPT=1. *y ‘RPT-I. 'y'IN-I. ,1DNP, '

3d ‘IF-1. *y*'IF=-1., *2y?'FLG~1. 's?'FN. "+ 'FN. '
9GO-T+ *4%GO=I. '4'TRC=I. *,*TRC-I. '4'TRC-1. *,
1 *SPEC., '*,'SPEC. *y ‘SPEC. '3 SPEC. ', SPEC. “4
2 ‘STP-1. "S'TL., "y' TL. 'y*'TL. 'L ITLL, i)
3 *TL1, *ytTL1. '/
REAL%*8 C2(57)/

1 'PGM,.Y, SC." 'CP.*, Cl. "Cle!

2 *Cl.'y ‘LBL ‘'LBL.Y INST." ‘INST.
3 ty "3 PZWRCe'y '"IWRDe®y: ‘CE.

& ‘CL TE. (Kt, CY, VINST.,.Y,
S‘ INST.” “INST.” "'RPT=1.%y t*IN=I4"% ‘TF-1.°,

GUFLG=Te%y GO-1.°, 'TRC=Ie®y ‘STP-1e*9*ZTRN.",
7 ZGRN.Y, ‘RPT ‘RPT’, “IN » ‘DO’,

8 'IFY, “1 FF” 'FNe ‘FLAG’, 'FLAG',
9 'GCTOY, ‘GO’ 9 * TRACE’y *UNTRACE','TREE?,
1'BcFOREYy AFTER’, ‘AFTER AFTER ?, ‘RESULT»
2 ‘STOP, ty, '<t, 'TE.Y ‘TE. %y
2 'TELY, ‘TEL./

REAL%8 C3(57)/

I *e'y *'CP.Yy ty “SC.” 1SCe
2 ' ‘Ct. °, LI ‘LBLa% '
3 °SC.” ' 0, 120, 130, vo.

“ V0, '., ‘SC."*, 'CL1.Y, ‘SC."*,
5 SC ', | LI ’ ‘“, ¢ ‘,
Hb vt, ' 0, ' 0, ' oe, LI J
7 0, VZINT.Y, *<t, PZTRN.Y, CY,

8 INST.*, “INST.” 'TL.% ‘LINT. ,",
9 *ZWRD.*'y TOY, 'TLo'y "TL. vo,

I ‘TEST’, 'SUCCESS®y*FAIL URE’ 9*CHANGE"y"",
2 Vy ‘SC. *TLL.'y * 9, ‘SC.°,
3 “SC.” ' v/

3.11=25

SYNCM, Cont'd

REAL®8 C4(5T)/3%% VV, 0CP,*,8%1 ¢ BL?4%" 0,

1] "CLL 'e"D'y'CLYIp11% 0 ev eDOM 0 (0, 9D0GM, 0, THENY, 8
2 CTHEN® 4% ? 1 2WRD.Y SPEC." 48% ,0T 1,%,'>",
300 VG NTLL. Yet Y/
REAL*8 CS5(5TI/1T%x% *,1D>%,13%" 1, 1DGM,¥,'D>¢,

1 YZINT o's" Dy 'G0=1,'4'GO=1,"914% 8 030, 5% 0/
REAL%8 CO6(ST)/31%r ¢,0>8,¢ oo 0) 00 9 SE?,21%%0/
REAL%8 CT(57)/33%¢ 2 sDOP V4 1, 0GO=["21%" v/

— REAL*8CB(57)/5T%1/

END x

CPCOM

BLUCKNDAT A ZCONTROL

IMPLICITINTEGER*2(A=-2) CPCOMO
COMMON /CPCOUM/ CPBUF, SYTB, TERM CPCOM1
REAL*ACPBUF(500) / STOP '/4SYTB(100) 4 TERM(32)/ CPCOM?2

1 *ZINT, "L,YZTRN, *,ZWRD, * ,"ZGRN. *,1< ' CPCOM2A
2 "a's ", 0 "9') “91. ’ cPCOM2B

3 *, *AF TER * YBEFORE ' ‘CHANGE ?,'DO ', CPCOM2C

4 ELSE *SYFAILURE %,'FLAG "4, GO ' 5 'GOTD ', ~ C PCOM2D
5 ‘IF "y'IN " ‘RESULT *',*'RPT "2 STOP " c PCOM2E

6 ‘SUCCESS *,!'TEST ' 3 * THEN 'y' 10 ', *TRACE ', CPCOM2F
7 ‘TREE "SYUNTRACE '/ CPLCOM2G

COMMON /CPCCM/ SYTV(100),STK(100),0T0P(20),0TOPS(50),CPPTRsSPTRs CPCOM3
I LVLeSYTNsZSCAN,SYTL{100), CPCOM4
2 LINTGZTRNyZWRDZGRNeZLANyZRANy2SMI, CPCOMS

3 ZLPRZZIRPRoZPERZZICOL¢ ZAFT yZBEFsZCHN, CPCOM6
. 4 TDC LELSsZFALZZFLGyZ2G0,2G0T,21F, CPCOM7

5 ZINgZRSLyZRPT,ZSTP,ZSUCL2TST,ZTHN, CPCOMS

6 2TOsZTRCoZTRESZUNTINFNTY CYCOM9

INTEGER? CPCOMSA

IL ZINT/1/42TRN/2/4ZWRD/37/42GRNZG/ZLAN/S/ 9 IRANZO/ 2 2SMIZT/ 4 CPCOMYB
2 LLPR/B/IRPR/G/+WIPER/LIO/WZCOL/11/oZAFT/12/ +2BEF/13/42CHN/14/ cPCOM9B
3 ZDO/1S/ZELS/L6/42ZFAL/LYT/42FLG/18742G0/197,2G0T/720/4,2F721/, CPCOMSC
4 ZIN/2274vIRSL/23/+2IRPT/24/425TP/25/42SUC/26/+2TST/27/7,2THN/28/7, CPCOMID
5 IT0/29/+2TKC/30/4ZTRE/31/72ZUNT/32/+INFNYY/10/ CPCOM9YE
COMMECN /CPCCM/ FGNWFGV,TRCF,APFGy IFFG,RFG CPCOM10
LOGICAL*]1 FGN(100,10)+FGVI100410)4TRCF(100+¢5),APFG,IFFG,RFG CPCOMI11
ENG ; 4

3.,11-26

Figure 3.11.3

STACK-

STK - CONTENTS:

0 POSN POSN POSN POSN current position
in CPBUF

1 VAL VAL VAL VAL current value of the
evaluation

2 TOP TOP TOP TOP current top node
_3 0 RPT IN IF type of operation
4 - RPT-CTR T-NAME - see below

5S - - IN-NODE - see below

Where:

POSN = some setting of CPPTR
VAL = (for false

> 0 for true

TOP = either one (by default) or sane value inserted
by an IN-construct

0 = fag indicating a CONTROL- orTRANSFORMATION-LIST

RPT = flag for RPT-construct (ZRPT)]
IN = flag for IN-construct (ZIN) *
IF = flag for IF-construct (ZIF)
RPT-CTR = repeat counter; set to INFNTY or the integer

following the RPT and counted’
down to zero

T-NAME = number of the IN-transfomation

IN-NODE + node number of the current top of the tree
for an IN-construct

Note that any instruction containing an angular bracket
always affects the stack. So does an IF-construct.

Figure 3.11.4

TERMINAL SYMBOLS

TERMINALS AND ASSOCIATED VALUES (ALL IN /CPCOM/) S-28-68

TERMINAL VALUE # STATEMENT

{UNDF'D SYMBOL> 0 9
{INTEGER) ZINT |
{T-NAME) ZTRN 2 1000

_ <WORD) ZWRD 3
<GROUP-NO> 7ZGRN 4 2000
¢ ZLAN 5 2050
> ZRAN 6 2060
- ZSMI 7 10

(ZLPR 8
) ZRPR 9
. 7ZPER 10 3000

: ZCOL 11

AFTER ZAFT 12
BEFORE 7ZBEF 13

CHANGE ZCHN 14

Do ZD0 15

ELSE ZELS 16 6550
FAILURE ZFAL 17

FLAG ZFLG 18 4000
GO /GO 19 S000
GOTO 7ZGOT 20 $500
IF ZIF 21 6000

IN ZIN 22 7000
RESULT ZRSL 23

RPT ZRPT 24 8000
STOP ZSTP 25 3000
SUCCESS ZSUC 26

TEST ZTST 27 |

THEN ZTHN 238 6500
TO ZT0 29

TRACE ZTRC 30 9000
TREE ZTRE 31 9800
UNTRACE ZUNT 32 10000

3.,11-28

dor

Figure 3.11.5

SYNTAX FOR SYNCHK

I CTLPGM, t= PGM. .
2 PGY. Pe= sCe CP.

3 PGM, es := cP.
4 CP. T= cr. SC. CP.

S co. t= Cl. SC.

6 CP. t= Cl.
7 Cl. HIE LRL. Cl.

8 Cl. HE LRL.

9 Cl. s2= INST, LBL,

1n Cl. st= INST.

11 SC. HE ’ SC.

12 SC. s:= ’

13 L3Le. t:= IWRD, : LBL.
14 LRL. Tes 7WRD. H

15 INST. t= (CE.

16 INST. :2e= CL.

17 INST, ~ $e= TE.

18 CL. t= (SC. CL. >

19 CL. at = Cc CLL. >
2N CL. T= INST. SC. CLt.

21 CL. HIME INST. SC.
22 CLL. se = TNST.

23 CE. = RPT-I.

24 CE. te= | N- 1.

25 CE. $= | F-1.

26 CE. Te= FLG-1.,

27 CE. se= GO-1.
28 CE. t= TRC-I.

29 CE. st = STP-I.

30 TE. :s= ZTRN.

31 TE. Te= ZGRN.

32 RPT-I. Tc= RPT ZINT. C PGM. >

33 RPT-I. HI RPT < PGY >
34 IN-1e T= IN ZTRN. (ZINTY,) 10]0]

. 35 DOP. 23= NN C PGM. >
36 | F-1. t= If INST. THEN GO-1. ELSE GO-I.
37 | F-1. ss= | F INST. THEN GO-I.

38 FLG-1. ts= FN, TL.

39 FN. t2= FLAG ZINT.

40 FY. s:= FLAG

41 GO-1. se= GOTO ZWRD.
42 GO-~1. se= GO TO ZWRD,

43 TRC-I. ti= TRACE TL. SPEC.
44 TRC- |. Te= UNTRACE TL.

45 TRC-I. = TREE
46 SPEC. t:= BEFORE TEST

4 7 SPEC. tt2 AFTER SUCCESS

48 SPEC. s2= AFTER FAILURE

4 9 SPEC. te= AFTER CHANGE

3 SPEC. t:= RESULT

51 StpP-1,. t= STOP
52 TL. ss= (£ SCe TL. >

53 TL. ss = < TLL. >

54 TL. st= TE.

55 TL 1. t= TE, SC. TLL.

56 TLL. s:= TE. SC.

57 TLL. se= TF.

Wa Ne FE

-

4, COMMON BLOCKS

IMPLIC| TINTEGER%2 (A-2)

C /CRCCM/

CCMMON /0ORDCM/ NUM, ISPEC,CRLCFL ¢NUMFL

INTEGER®*2NUM, ISPEC

LCGICAL%*] CRDFLyNUMFL
C /MA INCM/

CCMMON /MAINCM/ CHRTR,KSUMP, ISUMPNCHRTR

REAL *8CHRTRKSUMP(20C9)

INTEGER%2 ISUMP,NCHRTR

c JCNSTCM/

COMMON/CNSTCM/ NBLANK NLAND oNMINUS) NSLASHoNCENT o+NSTOP 4 NLESS

1 NLEFTPJNPLUS #NLOR NXCLM oNDCLLR¢NSTAR¢NRITEP NSCCLNgNLNOT

I N1211oNCOMMAJNPERC oNLINE oNGREATSNQUERYoNCOLON,NBOUND,sNAT
3 NAQUOTEJNEQUAL sNCQUCT

INTEGER*2 NBLANKy NLAND oNMINUS,NSLASH,y,NCENT ,NSTCOP oNLESS
1 NLEFTFoNPLUS oNLOR oNXCLM oNDOLLRJNSTAR sNRITEPyNSCOLNyNLNOY

¢ N1211 JNCUMMASNPERC oNLINE JNGREAT,NQUERY,NCGCGLCN ,NBOUND,NAT
3 NQUOT EJ NEQUAL, NCCQUOCT

C /FCSTCH/

CCMMON /FCSTCM/

LEFELANKFLANC + FMINUSy FSLASHK, FCENT 2 FSTOP HFLESS HFLEFTP,FPLUS

P2FLUR oF XCLM oFDOLLR,FSTAR oFRITEP oFSCCLNJFLNQT ,F1211 »FCOMMA,

3FPERC oFLINE oFGREATFQUERY,FCOLON,FBOUND,FAT » FQUOTE»FEQUAL,
4FCQLUT yPAGE . 9 RECORELC

: REAL*8

1FELANK, FLAND oFMINUSFSLASH, FCENT oFSTOP +FLESS sFLEFTP,,FPLUS

SFLUR JFXCLM oFDOLLRYFSTAR 2FRITEP FSCOLNZFLNOT ,F1211 JFCOMMA,

3FPERC HFLINE +FGREATLFQUERYFCOLCN,FBCUNDFAT 2» FQUOTE ZFEQUAL,
4FCQUCT 4PAGE , RECORD

C /MAINCM/

CCMMNON /MAINCM/ CHRTRyKSUMPLISUMP,NCHRTR
REAL*%8 CHRTR,KSUMP(20UD)

INTEGER*2 | SUMP 4NCHRTR

c /FSGCM/

COMMCN /PSCECM/ NSGAL1 J NSGC yNSGAZ2NSGBsKALKB,KC
REAL*8 NSGA1(208) 4NSGCL2CCT)

INTEGER*2 NSGA2(200)yNSGB(300),KA,KB,KC
c /1/

CGMMCN/T/ TITLE(F)
REAL*B TITLE

hol

c /JTIREECHM/ | |

CCMMCON /TREECM/ FTREEZTREESCLIST MTREEJMCLIST
REAL%8 FTREE(4u))

Cc /z/ INTEGER*2 TREE(400,6),CLIST(400) MTREE,MCLIST
COMMON /2/ LANK¢NXXXeNSSy NSyNAND NOR sy NANDCR9yNERROR
REAL*8 LANKoNXXX9 NSSyNSyNANCyNORy NANDQOR

INTEGER*2 NERROR

C /WCRK1l/
COMMON /WORK1/ LINESTRINGyNSUBS2,NSUBS1yN1gN2 |

REAL*8 LINE(14),STRING(12C) 4NSUBS2(1C)

INTEGER*2 NSUBS1(1Q)eN1{14)yN2(14)
C /RESTCM/

CCMMON /RESTCM/ WDyCRESTyPSyPRyPCyPWHRESTS(5D0D) +RESTR(54(),

1 CONCS(50G)
REAL*8 WD(1C0)

C /FRCCM/

COMMON /FRECM/ OUTWESoLNGFTSoLNGPTyPTPIoyTHECS HDS, TENS UNITS, WDF
1 LNGWDS

REAL*8 OUTWLCS (130)

INTEGERX*4 LNGPTS(130)

INTEGER*2 LNGPTsPTPTTHOS HES, TENS, UNITS, WCPT
LCG ICAL*1 LNGWCS (23CC)

C /CHANCM/
COMMON /CHANCM/CHAN{4C096) +CHWORD(180) ,0PLIST(50),

} FCHTRE (2L3)y CHTREE(Z20C,6)sCHCLIS(20C), :

2 NCHAN yMXCHANyNCHW os MXCHWyNCPL ¢MXOPL ¢dNCHT gy NCHCL yMXCHT, MXCHCL
REAL*8 CHWORD yFCHTRE LOPLI ST

C /JFEATCHMY/

COMMON /FEATCM/ FTNAMEJsMXEXPNBCAT yNBEXP¢NRULE,RULE(2,20C)
REAL*8 FITNAME (190)

Lo

c /CSCM/ z

CGMMON /C SCM/

1 ANALWE,CSLIST(442000)sANALPT(5(0) sANALWP (20800) ANALST(2C GO)
2 TEMPAN(2UDG) 4 SLCTPT(200,2), ANALTP,SLCTTP,CSFG,CSFRPT, ANALNT
REAL*3 ANALWD{ 20Q)

C /LEXCM/

COMNCN/LEXCM/

1 LEXWDoLEXWDS yLEXCS ¢LEXCSSeLXCPTRyCATLSToNLXCyNLEXyNLEXW¢NLEXCSs
2NCATL

REAL%*8 LEXWC (500) 4CATLST(2C)

INTEGER%2 LEXWCS(360) yLEXCSSI30G) yLEXCSI5CL)yLXCPTR(100,2G)
1 NLXC(20) yNLEXyNLEXWyNLEXCSyNCATI

Cc /JLINSCM/

CCMMON/L INSCM/

1 SRCHL yELISToNSRCHLyNELIST

INTEGER*2 SRCHL(250) 9ELIST(2,450) yNSRCHLyNELIST

C JTRANCM/ - |

CCMMCN/TRANCM/FTRANCLICO)9 KEYSC2GO) py TRAN(L1CO 7) 4 KEYPT(13D),

NTRANyNKEYS

REAL¥B FTRANJKEYS

C /RTCKEN/

CUMMGN /RTCKEN/ZUPFGLTH, TCK{ 10)

c /JSKELCM/

COMMCN/SKELCM/FLSKELyISKEL, SKLI SToTISKELTyMSKLST
RcAL#*8 FI SKEL(230)

INTEGER%*2 ISKEL(20)96)y SKLIST(2C0) $ ISKELT ¢MSKLST
c /CCNFCM/

CCMMCN /CUNFCM/

1 CFVALS(12h)

4-3

c JCPCCNM/

CGMMCN /ZCPCOM/CPBUFSYTB, TERM

REAL*8 CFBUF(500),SYTR(1CO),TERN(32)

COMMON ZCPCCM/SYTV(100)+STK(10C)OTOP{20),0TCPS{50),CPPTR,SPTR,
1 LVLeSYTN9ZSCANSYTL(1CO0)

2 2INTo2TRNyZWRD9yZGRNyZLANG2ZRANyISMI,

3 ILPR,ZRPRyZIPERyZICUOLyZAFT ZBEFyZCHN,
4 LCCoZELSsZFALsZFLGy2G0,ZGOTL21F,

5 ZINegZRSLsZRPT42STP ¢ZSUC,ZTSTHZTHN,
& LTCoZTRC4ZTREWZUNTyINFNTY

CCMMCN /CPCCM/ FGNy FCVsTRCF4APFGyIFFGHRFG
LOGICAL*]1 FGN(1G0y10)sFGVL1GC21C)TRCFI10045) 9APFGyIFFG,HRFG

C /TRANCM/ |

COMNCN/TRANCM/FTRAN(LGOO)oKEYS{2CO0) 9s TRAN(L102,7)+KEYPT(1CD),
1 NTRAN,NKEYS

REAL*& FTRANJKEYS

C /JANALCM/

CCMMON /ANALCM/NUMNOD(50,1C)y SKPNOD (20092) 4NUMCNT y SKPTGP
1 ANLIST(LOO)) ANNDPT (100) ANNOCE(160) TTPOSN,UNDNOD, TOPNOL yRESTNU,
2 TNCoANSKIP(100)ANPREV{1CO) JANPAR(100) JANNEX(133)

C /SYNCM/

CCMMCON/SYNCM/SINT X oSTAKyCUR SCN SPT, IPToNEQN,
1 TRCFGyDOMPFG,RELCFG

REAL*8 SNTX(57,8) yCUR,y SCN

INTEGER*2STAK({ 100u)

LCGICAL%®]1 TRCFGyCMPFGIRECFG

Ly

5. BLOCK DATA SUBPROGRAMS

BLOCK CATA

IMPLICIT INTEGER#*2{(N)
COMMCN/CNSTCM/ NBLANKyNLAND oNM INUSyNSLASHo,NCENT 4NSTOP _,NLESS |,

1 NLEFTFSNPLUS yNLOR oNXCLM »NDCLLR INSTAR JNRITEPJNSCOLNyNLNOT |

2 N1211 oNCUMMAJNPERC yNLINE oNGREATsNQUERY NCOLGCNNBOUND, NAT ,
3 NQUOTE.NECUAL,.NCQUQT |
CATA NBLANKy NLAND oNMINUS ¢yNSLASHyNCENT oNSTOP 4NLESS |

1 NLEFTPNPLUS JNLOR oNXCLM (NDOLLR¢NSTAR ¢NRITEP ¢NSCOLNgNLNOT |
2 N1211 oNCCMMASNPERC yNLINE yNGREAT,NCQUERY yNCOLONyNBOUNDy NAT |
3 NQULCTENEQUAL NDQUCT

4/10040,20050420060+20061,2004A,2004B,2004C,2004D,2Z004E,ZN04F,2005A
59 ZLUSB2005C,2005D92C05E92ZN05F,Z006A,2006B,2006C,20260D42ZC06E,Z006F

69yZUCTALZCCTByZIOTC+2ZC0TDZCNTELZQOTF/ |
RETURN |

~ END

BLCCK CATA

COMMON ZFCSTCM/

1 FBLANKyFLAND +FMINUS,FSLASHOFCENT oFSTOP ,FLESS »FLEFTP,FPLUS |
2 FLOR +FXCLM oFDOLLRF STAR +FRITEPyFSCOULN,FLNOToF 1 2 1 1 FCOMMA,
3 FPERC sFLINE »FGREAT,FQUERYFCOLON,FBOUNDLFAT vyFQUOTE,FEQUAL,

4 FOQUUOT +PAGE LRECORD

REAL*8
1 FBLANKyFLAND 9 FMINUSy FSLASH, FCENT +FSTOP oFLESS oFLEFTP,FPLUS |
2 FLCR JFXCLM +FDOLLRSZFSTAR +FRITEP,FSCOLNLFLNOT ,F1211 o FCOMMA,
3 FPERC oFLINE FGREAT,FQUERY oFCOLONsFBOUNDFAT y FQUOTE, FEQUAL
4 FOQLOT PAGE JRECCRC
DATA

1 FBLANKgFL AN O oFMINUSyFSLASHoFCENToFSTOP +FLESS oFLEFTPoFPLUS |
2 FLOR 4FXCLM 4 FDOLLR,FSTAR <+FRITEP,FSCCLN,FLNOT ,F1211 osFCOMMA,
3 FPERC oFLINE +FGREAT,FQUERYFCOLONy FBOUNL,FAT oe FQUOTE, FEQUAL ,
4 FOQUOT, PAGE |, RECORC

SFY VQ Gl JE 1,0 00 (0,040 ,74F40404040404040,0 v Vg

IRE LPLI I PI a PR I PS CS LE I EPL EL LY
7 L7C404040G4C404040, *=04 "1, 1P$$5$563,7B5585858°/
- END

BLOCK CATA |
COMMONZZZLANKsNXXX9NSSeNSsNANDNOR yNANDOR,NERROR

REALXS LANKyNXXXa NSSe NSoNANC NOR NANDOR
INTEGER#2 NERROR

CATA LANKgNXXX9gNSSeNSyNANC «NOR yNANDCR,NERRQOR
179% P40 XXX0 40850 L050 PANDY 4? CR, * ANDOR",0/
END

5-1

ELOCK LATA

COMMON/CHANCM/CHAN (400,56) yCHWORE(100) ,0PLIST(50),
1 FCHTRE (2C0), CHTREE(2CGC,6),CHCLIS(200),
2 NCHAN yMXCHAN ¢NCHW¢ MXCHWy NOPL 9 MXCOPL yNCHT gy NCHCL ¢yMXCHT 3 MXCHCL ,NCOP
REAL*8 CPLIST/5HSUBSEsSHARISE)SHALESE5HALADEySHAFIDE,,SHARIAE,

1 SHERASE,S5HSUBST,SHADRIS SHADLES,S5HADLAD,5HADF IDs5HADRIA,

1 6KHSUBSEI 6HARISEI y6HALESEI 6FALADEI 6HERASEL»6HSUBSTI,
1 OH6HADRISI,,6HADLESI,6HADLADI ,6HERASEF SHSAVEF ,6HMERGEF,
1 SKFMOVEF/

REAL*8 CHWCRLC,FCHTRE

INTEGER*2 CHAN,CHTREELCHCLIS

INTEGER®2 NUPL/26/+NCOP/23/ |

INTEGER#%2 NCHAN/D/ ¢sNCHW/C/ 4 NCHT/0Q0/ 9s NCHCL/O/
INTEGER*2 MXCHAN/400/ ¢sMXCHNW/100/ ¢MXCPL/50/ yMXCHT/200/ 4MXCHCL/Z200/
END

BLOCK CATA

IMPLICIT INTEGER*2 (A-2)

CCMMGN /7CPCOM/ CPBUF, SYTB,TERM

REAL*8 CPBUF(5C0)/*STOP V/,SYTB(100Q),TERM(32)/

1 *2INT, *y*ZTRN. *+'ZWRO. "9 YZGRN, PR ¢ y

2 > “3 LEI | 2?) "9%, *
3 83 * Hy YAFTER *S>*BEFORE *, ‘CHANGE ‘','DO '
4 ‘ELSE * WYFAILURE "9 'FLAG *,¢GO0 ', GOTO *y

5 ‘IF * "IN Ys ‘RESULT "9 RPT *, STOP *
6 ‘SCCCESS ?4* TEST "+ THEN "TO ys *TRACE 'y
7 ‘TREE *, "UNTRACE */ |
COMNCN /CFCCM/ SYTVI(1CO),STK(100),0TOP(20),0TOPS(50C),,CPPTRySPTR,

1 LVLSYTN,ZSCAN,SYTL (100), |
2 ZINToZTRNyZWROJZGRN9ZLANGZRANSZISMI|

3 ZLFRyZRPRyZPERy 2ZCOL 9 ZAFT 4ZBEF4ZCHN,»
4 ZDG9ZELSIZFALZZFLG 92G0,2GAT ,21F,

5 ZIN, ZRSLeZRPT¢ZSTP 92ZSUC+ZTST92THN,
6 LTCoZTRCHZTREJZUNT oINFNTY
INTEGER*2

1 ZINT/1/9 ZT RN/2/92ZRRE/3/792ZGRN/4/92ZLLAN/S5/92ZRAN/G6/2SMI/T/,

2 ZLLPR/EB/yZIRPR/S/+IPER/LIO/ yZCCL/L1/y2AFT/12/+21IBEF/13/7,2CHN/1G/,

3 IDC/1E/+92ELS/16/42FAL/1T/52FLG/18/2G0/19/74+2G0T/720/421F/21/,
4 ZIN/22/+2RSL/23/¢2RPT/247425TP/725/72S5UC/726/+2TST/27/2THN/28/,
5 ZTC/2S/+2TRC/30/42ZTRE/31/,2ZUNT/32/1INFNTY/10/
COMMONZCPCOM/FGNsFGVsTRCF APFGeIFFG oRFG

LOGICAL*1 FGN(100,10),FGVI1CO»10),TRCF(100,5)+APFG,yIFFG,RFG
END

5=2

6. POSSIBLE EXTENSIONS

There are certain extensions to the Transformational Grammar System

which we have considered, but which have not been implemented. An

informal discussion 1s given here of ways 1n which these extensions

might be made. The additions considered are:

A. Rule features

B. Tree—-pruning

) c. n-ary features

D. Restrictions on skips

E. Analysis of skips,

6.1 Rule features

This section discusses the changes which would be necessary to

include rule features. It is inconclusive in not defining where rule

features will appear and where they will be looked for. This is an open

linguistic question, as 1s the question of the need for rule features.

) Input of rule features

A rule feature 1s simply a transformation name used as a feature.

However, since the lexiconmay be read in before the transformations,

the program cannot recognize rule features as such. The lexicon con-

tains a list of category features, a list of inherent features, and a

list of contextual feature definitions. Any feature which does not

occur 1n those lists 1s now assumed by the program to be an inherent

feature, and a message "WARNING. NUMNAM. FEATURE xxx ADDED AS INHERENT"

6-1

is printed, In the table of feature names (FINAME) the entries from

1 to NBCAT are names of category features, and from NBCAT+1 to

NBEXP names of inherent features. Names of contextual features are

stored in SINAME

To modify the input to allow for rule features, the use of FINAME

would be modified slightly so that the entries from 1 to NBCAT were

category features, the entries from NBCAT+l to NBSPEC were inherent

features given on the list of inherent features in thelexicon, and the

entries from NBSPEC+l to NBEXP were additional feature names encoun-

tered in reading the lexicon. At this point the program would not know

if they were inherent features or rule features, so the message above

would be altered to "WARNING. NUMNAM. FEATURE xxx ADDED AS INHERENT OR

RULE?

After the transformations have been read in, the feature name

table FTINAME could be searched from NBSPEC+l to NBEXP to see which

transformation names occur there. The number of the corresponding rule

feature (i.e., the index in FINAME) can be storedin TRAN(L,A4).

This column contained the EMB parameter until EMB was abolished.

Effect of rule features

The possible cases in which rule features can affect the handling

of a transformation are shown 1n the table on the next page, where 1

indicates apply, 0 don't apply, and .5 apply with probability 0.5 .

6-2

: —

value of rule feature

transformation type + unmarked -

OPC 1.0 0.5 0.0

OBmajor = 1.0 1.0 0.0

OBminor 1.0 0.0 0.0

OPmajor 0.5 0.5 0.0

OPminor 0.5 0.0 0.0

(The use of major and minor rules 1s discussed in Lakoff*., The sub-

division of each of these classes into OB and OP seems to be a

natural extension.)

The system now allows OB and OP as the only two optional

classes. The list could easily be extended to the five classes above

by inventing suitable mnemonics.

Testing rule features

Currently no tests are made of features except as they occur

within complex symbols. The best approach to rule features would seem

to be to write an integer*2 subroutine FTINC (csno, featno) which

would return the value of the feature specification for featno in

complex symbol csno . Values are currently represented as 1 for

* and2 for - . 0 could thus represent the unmarked case. In

testing the structural description of a transformation with a rule

feature, ANTEST could call FTINC to obtain its value.

*Lakoff, G. on the Nature of Syntactic Irregularity. NSF-16, The
Computation Laboratory, Harvard University (1965).

6-3

Where to look for rule features

The difficulty problem in incorporating rule features comes 1n

deciding where to look for them. The following possibilities occur:

(1) look for rule features on every-node used 1n the analysis,

(2) look for rule features only on nodes corresponding to numbered

terms,

(3) look for rule features only on nodes corresponding to numbered

terms with a small subset of special numbers,

© (4) look for rule features only after encountering some special symbol

in the structural analysis.

Alternative (1l)~is bad because there is the possibility that the rule

feature might be found more than once, with opposite values. Alternative

(2) 1s bad for this same reason. The linguist must number terms for use

in restrictions and structural change. He might thus be forced to

number two which would have the rule feature with opposite values.

Alternative (3) would notpresent any real problems, since the numbers

are otherwise arbitrary (and between 1 and 50). Alternative (4) is

unpleasant because it would require some changes to CXIN .

) Lakoff has suggested that the rule feature should be looked for

on the main verb. This does not solve our problem since we still need

-to indicate the main verb. However, 1t does lead us to think that

alternatives (1) and (2) above are too broad,

Note that we cannot require that the rule feature be explicitly

mentioned in the structural description because this would mean that

it must always be present for the transformation to work. This would

be acceptable only for OBminor and OPminor rules.

6-4

-

Suppose we were to create a new restriction RUL which would be

true 1f the node were marked for the rule feature of the current trans-

formation and false otherwise. Then the analysis would fail at that

point if the value of FTINC(csno,featno) is - , but should it then

proceed to look for another analysis?

When should rule features be tested

In order that the rule feature test tie in properly with the

- repetition parameters (AC, ACAC, AACC, AAC) and the optionality

parameters (OB, OP) 1t would appear that the rule feature should be

tested only after the analyses have been found. Otherwise an AC

transformation, for example, would go on to find a second analysis,

when the first fails, only because of the rule feature. This problem

needs to be thought about carefully, since it 1s not clear what is

linguistically correct in the various cases which arise.

6.2 Tree-pruning

Some linguists (notably Ross*) have discussed a notion of tree-

| pruning. Tree-pruning 1s essentially an obligatory transformation

which must be applied whenever the structural description 1s met, and

thus fails to fall into any linear ordering of transformations. Within

the system as 1t stands tree-pruning could be handled by defining one

or more tree-pruning transformations, PRUNEl, ..., PRUNEn, and writing

the control program for the transformations so that these transformations

Ross, J. R. A proposed rule of tree-pruning. Presented to the
Linguistic Societyof America (1965).

6-5

are 1nvoked after every successful application of another transformation.

This 1s somewhat awkward and 1t might be desirable to handle this auto-

matically by an instruction in the control program itself, say TREEPRUN,

which would automatically invoke the-tree-pruning transformations after

each change. To do this one would simply add the new instruction to the

control language, and then incorporate the calls to the tree-pruning

transformations into the TRACE subroutine at the same point that

TRACE. ..AFTER CHANGE 1s now tested. This would be more elegant; 1t

would also be more time-consuming in execution.

6.3 n-ary features

The recent attention to case in grammars of English might be best

handled by the use of features with more than 2 values. Fillmore*

has proposed that case be handled within the phrase structure, but

treatment by n-ary features 1s an alternative which should certainly

be explored. To do this would require some fairly major changes in the

system, both in the input routine for complex symbols and in the various

tests and changes to complex symbols. One possibility for external

format would be to allow small integers as values 1n addition to the

+, - and ¥* now allowed, viz., | + N33 PREP - HUMAN | . There is

‘no basic reason why this could not be done, but it would take some time

to implement 1t well.

*Fillmore, C. J. A proposal concerning English prepositions, Georgetown

Monograph Series on Language and Linguistics, 19 (1966) pp. 19-34,

6-6

6.4 Restrictions on skips

Although the present syntax for structural analysis for the system

does not allow the numbering of terms which are skips, the possibility

of doing so might be considered. This would make it possible to test

dominance and nondominance restrictions on skips. It 1s not clear what

equality of skips should mean. The main question here is whether lin-

guistically a skip should be treated as analyzable in any way. The

] system of transformational grammar as 1t now stands 1s cleaner than

one which would allow this, and we have seen no examples in which it is

required (although it might have been used in the definition of

LOWESTS). i

The problem could be handled by an integer function

INSKIP*2(SKPPTR,WORD, ITEST) which would decide whether there was a

node with the real*8 name WORD 1n the scope of the skip whose bounds

are in the SKPPTR-th. entry of SKPNOD . If so, it returns that node's

position 1n the TREE; if not, it returns 0 . When ITEST = 0, the

entire range 1s searched. When ITEST # 0, the range beyond node

number ITEST 1s searched.

This subroutine could be called by both the restriction tester

(RESTST) and the analysis tester (ANTEST) . For RESTSTthe call

"would be INSKIP(NUMNOD(N,NUMCNT),word,0) . If the value is 0, there

1s no dominance; 1f nonzero, dominance.

6.5 Analysis of skips

The syntax for skips which was originally considered for the

system was:

6-7

isked p % optlopt[—lopt[&]{clist[structure]’]

The interpretation would be that the clist of structures referred to

structures within the range of the skip. & would mean that all must

be present; = & would mean that none may be present; = would mean

that at least one must not be present; and no preceding symbol would

mean that at least one must be present. For the reasons discussed 1n |

D above we have not felt that this strong a definition was necessary.

To make the extension would require changes to the analysis routine,

ANTEST . The subroutine INSKIP described above could be used here.

The call from ANTEST would be approximately

1 =0

a I = INSKIP (SKPPTR,ANALWD(ANLIST (POSN)),I)

IF (IJ3Q0.0) GO TO . . .

IF (... }) GO TO

6-8 5

& -

MODIFIED 23 aucUst 1968

COMPLETE SYNTAX FOR TRANSFORMATIONAI GRAMMAR

0.01 TRANSFORMATIONAL GRAMMAR ::= PHRASE STRUCTURE LEXICON TRANSFORMATIONS $END

1.01 TREE SPECIFICATION ::= TREE opt[, clist[WORD TREE]]
1.02 TREE ::= NODE optl COMPLEX SYMBOL J] opt{[1ist[TREE]]]

1.03 NODE ::= WORD or SENTENCE SYMBOL or BOUNDARY SYMBOL
© 1.04 SENTENCE SYMBOL ::= s

1.05 BOUND&Y SYMBOL ::= #

2.01 STRUCTURAL, DESCRIPTION ::= STRUCTURAL ANALYSIS optl , WHERE RESTRICTION J .
2.02 STRUCTURAL ANALYSIS ::= listl TERMJ . |
2.03 TERM ::= opt] INTEGER] STRUCTURE or opt| INTEGER] CHOICE or SKIP q
2.04 STRUCTURE ::= ELEMENT opt] COMPLEX SYMBOL] optl opt[= | opt[/ 1 { STRUCTURAL ANALYSIS)] =
2.05 ELEMENT ::= NODE or* or _ »
2.06 CHOICE ::= (clist[STRUCTURAL ANALYSIS T) -»
2.07 SKIP ::=%

> |

= 3.01 RESTRICTION ::= booleancombination{ CONDITION I

3,02 CONDITION ::= UNARY CONDITION or BINARY CONDITION
3.03 UNARY CONDITION ::= UNARY RELATION INTEGER .
3.04 BINARY CONDITION ::= INTEGER BINARY TREE RELATION NODE DESIGNATQR or

INTEGER BINARY COMPLEX RELATION COMPLEX SYMBOL DESIGNATOR

3.05 NODE DESIGNATOR ::= INTEGER or NUDE
3.06 COMPLEX SYMBOL DESIGNATOR ::s COMPLEX SYMBOL or INTEGER
3.07 UNARY. RELATION ::= TRM or NTRM or NUL or NNUL or DIP or NBIF
3.08 BINARY TREE REI.ATION ::= EQ or NEQ or DOM or NDOM or DOMS or NDOMS or DOMBY or NDOMBY

3.09 BINARY COMPLEX RELATION ::= INCl or NINCl or INC2 or NINC2 or CSEQ or NCSEQ or NDST
or NNDST or COMP or NCOMP

4.01 COMPLEX SYMBOL ::= | list{ FEATURE SPECIFICATION] |
L.02 FEATURE SPECIFICATION ::= VALUE FEATURE

4.03 FEATURE ::= CATEGORY FEATURE or INHERENT FEATURE or CONTEXTUAL FEATURE or RULE FEATURE

4.04 CATEGORY FEATURE ::= CATEGORY

4.05 CATEGORY ::= WORD
4.06 INHERENT FEATURE ::= WORD |
4.07 RULE FEATURE ::= TRANSFORMATION NAME

4.08 CONTEXTUAL FEATURE ::= CONTEXTUAL FEATURE LABEL or CONTEXTUAL FEATURE DESCRIPTION

4.09 CONTEXTUAL FEATURE DESCRIPTION ::= { STRUCTURE opt[, WHERE RESTRICTION])
4,10 VALUE: :=4+0r-or *

5.01 STRUCTURAL CHANGE : : = clist[CHANGE INSTRUCTION1
5.02 CHANGE INSTRUCTION ::= CHANGE or CONDITIONAL CHANGE

5.05 CONDITIONAL CHANGE : := IF (RESTRICTION) THEN (STRUCTURAL CHANGE)
optl ELSE (STRUCTURAL CHANGE)]

5.04 CHANGE ::= UNARYOPERATOR INTEGER or

TREE DESIGNATOR BINARY TREE OPERATOR INTEGER or

- COMPLEX SYMBOL DESIGNATOR BINARY COMPLEX OPERATOR INTEGER
or COMPLEX SYMBOL DESIGNATOR TERNARY COMPLEX OPERATOR INTEGER INTEGER

5.05 COMPLEX SYMBOL DESIGNATOR ::= COMPLEX SYMBOL or INTEGER

5.00 TREE DESIGNATOR ::= (TREE) or INTEGER or NODE
5.07 BINARYTREE OPERATOR ::= ADLAD or ALADE or ADLADI or ALADEI or ADFID or AFIDE or

ADRIS or ARISE or ADRISI or ARISE1l or ADLES or ALESE or ADLESI or ALESEI

or ADRIA or ARIAE or SUBST or SUBSE or SUBSTI or SUBSEI

5.08 BINARY COMPLEX OPERATOR ::= ERASEF or MERGEF or SAVEF

5.09 UNARY OPERATOR ::= ERASE or ERASE]
5.10 TERNARY COMPLEX OPERATOR ::= MOVEF

6.01 PHRASE STRUCTURE ::= PHRASESTRUCTURE list¢ PHRASE STRUCTURE RULE 2 $END
0.02 PHRASE STRUCTURE RULE ::= RULE LEFT = RULE RIGHT .
0.03 RULE IL EF T::=NODE
6.04 BULF RIGHT ::=HODE or |i st f RULE RIGHT 2o0 f(Vist€ RULE RIGHT 2) o r{c | i st f RULE RIGHT *)

7.01 LEX CON ::= LEXICONPRELEXICON LEXICAL ENTRIES $END
7.02 PRELEXICON ::= FEATURE DEF! HITIGNS opt REDUNDANCY RULES »
7.03 FEA URE “.DEEITIONS ox» _ATEGORY DEFINITIONS opt(INHJHHEREEFINITIONS 2» opt€ CONTEXTUAL DEFINITIONS 2
7.04 CATEGORY DEFINITIONS : := CATEGORY 1ist(CATEGORY FEATURE » .
7.05 JHHERENT DEFINITIONS ::= INHERENT listf INHERENT FEATURED).
7.06 CONTEXTUAL DEFIHITIONS::= CONTEXTUAL clistf CGITEXTUALDEFINITION 2» .
7.07 CON EXTUAIDEFINITIQN::= CONTEXTUAL FEATURE LABEL= CONTEXTUAL FEATURF DESCRIPTION
7.08 CO: EXTUAL FEATURE LABEL : :=#ORD
7.03 REDUNDANC Y RULES ::=R UL E Sclistf REDUNDANCY RULE » .
7.10 REDUHOANCYRULE ::= COMPLEX SYMBOL => COMPIFX SYMBO|
7.11 LEXICAL ENTRIES ::= ENTRIES list(LEXICAL ENTRY 2».
7.12 LEXICAL ENTRY ::= list€ YOCABULARY WORD 2 list COMPLEX SYMBOL ?
7.13 YOCABULARY WORD ::= WORD

8.01 . := TRANSFORMATIONS 1 ist{ TRANSFORMATION » CP CONTROL PROGRAM . $END
8.02 JRA i: ::= TRANS IDENTIFICATION SD STRUCTURAL DESCRIPTION opt SC STRUCTURAL CHANGE . 2?- 3.03 IDE ii FICAT | om : := opt¢ INTEGER ¥ TRANSFORIAT | OK HAME opt 11 stf PARAMETER. > opt¢ KEYWORDS » .

: 8.04 PARAIETER ::= GROUP NUMBER or OPT IOHAIITY OR REPETITION
Wo 8.05 GROUP NUMBER ::=1 or 11 or #1} or IV or Vv or, VI or VI1

8.06 ONALITY ::=0 B o rOP
8.07 REPETITIONs2= AC orA CA Co raACCor AAC
8.08 KEYWORDS::= (1 i st f HORE 2?)

9.01 CONTROL PROGRAM ::=sclistf op tfLABEL: > INSTRUCTION »
9.02 LABEL ::= HORD
9.33 STRUCTION::=RPT INSTRUCTION or[HSTRSTRUCTION o r IFIHSTRUCTION

o r G_OIlNSTRUCTICilo r TRACE IHSTRUCT{Oo r STOP | NSTRUCT ION
or I INSTRUCTION or <sclistg INSTRUCTION 2 >

9.04 L_{HSTRUCTION::= TRANSFOR! ATO? ~ LRUDE GQROMB_H''MBER
9.05 BATIHSTRUCTION ::= RPT opt¢ :{CONTROD __PROGRAL >
8.06 L NIASTRUCTIO N::=| N TRANSFORIAT | ON HAHME (UKTEGER)D O < CONTRO! PKOGRAK >
9.07 JFINSTRUCTJON ::=1iF INSTRUCTIONTHEN GO INSTRUCTION opt€E L S E_GQLIWSTRUCTION?
9.08 GUYINSTRUCTION ::=GO T QLABE]
9.09 JRACE INSTRUCTION ::=T RA CE_TINSTRUCTIONTRA C E SPECIFICATION ar UWTRACE_T INSTRUCTION O r TREE,

9.10 JRACESPECIFICATION::=*= BEFORE TEST or AFTER FAILURE or AFTERSUCCESS or AFTER CHANGE
9.11 STOPINSTRUCTION::= STOP

ESA AER 2
A AE
: PRET

LN

a

APPENDIX B

Reports on the Computer System for Transformational Grammar

AF-14 360 0.S. FORTRAN IV Free Field Input/Output R. W. Doran
C8-79 Package October 1967

AF-15 Directed Random Generation of Sentences J. Friedman

Cs-80 (to appear, CACM) October 1967

AF-21 A Computer System for Transformational Grammar J. Friedman

CS-84 January 1968

AF-2L A Formal Syntax for Transformational Grammar J. Friedman
+ C8-95 R. W. Doran

March 1968

AF-25 Lexical Insertion in Transformational Grammar J. Friedman

July 1968

AF-%5 Computer Experiments in Transformational Grammar J. Friedman, Ed. |
CS-108 September 1968

AF-34 Analysis in Transformational Grammar J. Friedman
T. Martner

September 1968

AF-35 A Control Language for Transformations J. Friedman
B. Pollack

September 1968

B-1

