CS 106
A.l. 65

A PROGRAM TO PLAY CHESS END GAMES

BY

BARBARA J. HUBERMAN

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

TECHNICAL REPORT NO. CS 106

AUGUST 19, 1968 Wi

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

; .i.:,;, o, v,
N
'ﬂ&- -
=
+ Reproduced by the
CLEARINGHOUSE

. for Faderal Scientific & Technical
. Information Springfield Va. 22151

o~
{

STANFORD ARTIFICIAL INTELLIGENCE PROJECT August 19, 1968

MEMO AI-65

CS 106

ABSTRACT:

A PROGRAM TO PLAY CHESS END GAMES

by Barbara Jane Huberman

A program to play chess end games is described. The model
used in the program is very close to the model assumed in
chess books. FEmbedded in the model are two predicates,
better and worse, which contain the heuristics of play,

different for each end game, The definitions of better and

Worse were obtained by programmer translation from *ne

chess books,

The program model is shown to be a zood one for chess end
games by the success achieved for three end games. Also
the model enables us to prove that the program can reach
checkmate from any starting position. Insights about
translation from book problem solving methods into computer
program heuristics are discussed; they are obtained by
comparing the chess book methods with the definitions of
better and Wworse, and by considering the difficulty en-

countered by the programmer when doing the translation.

The research reported here was supported in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense

(SD-183).

ACKNOWLEDGEMENTS

I would like to express deepest thanks to my thesis advisor,

Professor John McCarthy, for his many valuable suggestions and helpful
criticisms. Also I am grateful to Professor J. Feldman for his construc-
tive reading of the final version of the thesis, and to Professor R.
Reddy for his earlier reading and assistance.

In addition I am indebted to my colleague, Mr. John Lennie, for
his critical evaluation of parts of this work, and to my cousin, Mrs.
Jill Custer, for her encouragement and careful reading.

I wish to express my appreciation to Mrs. Judy Muller for her
excellent typing and preparation of this report, and to Mrs. Dorothy
McGrath for her fine illustrations.

This work was supported by the Advanced Research Projects Agency

of the Office of the Secretary of Defense, (SD-183).

iii

TABLE OF CONTENTS

X

worse

-

. .

- . .

- . .

Chapter

1. Introduction . . , « » .
Methods and Models . .
Model and Methods for Chess End Games
Goals of the Research
Outline of the Thesis .

2. Program QOrganization
Notation
Program Organization .
Tree Search Heuristics .
Reéresentation @ @ 4

3. Definition of better and
Formalization
Additions to better and worse

4. Rook and King Against King .
Formal Definitions of better and worse
Additions to better and worse
Examples of Program Play
Evaluation of Program Play .

J.

Two Bishops and King against King

Stage 3

Stage 4 .,

Formal Definitions of better and

worse .

Changes to better and worse .

iv

- -

Page

10
10
b8
21
22
24

26

65
68
T1
72

Chapter

Table of Contents (cont'd,

Examples of Program Play .

Evaluation of Program Play .

0

1

6

.

.

.

Formal Definitions of better and

Additions to better and worse

Bishop, Knight and King against King

.

Examples of Program Play

Program Correctness

-

Evaluations and Conclusions

-

Evaluation of the Forcing Tree Model

Correspondence of Program and Book Methods .
Evaluation of the Translation Process
Extensions in Chess

Conclusions

6.
Stage
Stage
Stage
Stage
Stage
Stage
Stage

7.

8.

Appendix A

Bibliography

Ll

*

.

.

p—

.

Page
80
86
87
89
92

95
108

108
118
118
119
151
140
150

150

. 155

156
161

. 163

166

. 167

FIGURES

Figure Number

1.1
=30 |
2.2
2.3
2.k
2.5
2.6
3.1
B

5.4
2.5
5.6
2.7
5.8

Example of a Forcing Tree
Example of Forcing Tree R

Main Program FLow - « s s « % 4 3 % « 3 &

. . . . - . . - * - - . - . .

Example from Capablanca, pages 26-28 . .

Stages in Figure 3.1

Listing of the Rules Introduced in Chapter
Example from Fine, pages 14 and 15 . . .
Examples of Moves in Stage 2

Examples of Stage 3

Illustrations of Examples of Program Play .

Example from Fine, pages 15-17

Examples of Quadrants

- - - . - * - . * . . .

Example from Capablanca, pages 29-30 . .
Examples of Stage 3
Examples of Stage 4

vi

15
17
18
19
20
25
30
36
37

59
Lo

Lk
b7
50
25
56
29
60
63
66
67
70

Figures (cont'd)
Figure Number

Page
5.9 Illegal Positions-, _ ., _ 13
5.10 Tree Pruning Heuristics for Non-Head Quadrants | " 5
5.11 Examples of Head Quadrants _ _ _ . . 78
5.12 Examples of Program Play . s 83
6.1 Example from Fine, pages 18-20 L. L. 8€
I .
/
6.3 C 93

I T I U R

6.5 102

- . . . - - - -

6.6 Examples of Knight Interference , ., loy

6.7 Forbidden Knight Interference , , _ . L. . 1los

6.8 L oy
6.9 Example from Capablanca, pages 110 and 111 _, _ _ | . 109

6.10 Examples for Stage 5 A L 113

S &
6.12 L 22
B85 & i w i i oo e s e e e i v owow 4 12N
6.1k L, 128

- . . - . . . -

6.15 Starting Positions for Examples of Program Play , . . 132

Bil & it hme e me e w mwm y . e e e e e e 13k

8.2 Program Organization for Doing Simple Learning A

vii

CHAPTER 1

INTRODUCTION

This research is concerned with the process of translating book
descriptions of problem solving methods into program heuristics. Many
books have been written for the purpose of teaching how to perform some
task. The task under discussion may be almost any kind of activity,
including intellectual activities such as proving theorems in geometry
or solving differential equations., People are able to learn from these
books although the difficulty in learning varies from task to task.
Therefore we can consider the information in the books as sufficient
for people. It would be convenient if the book infoymation could be
used by computer programs. We are interested in whether the information
is sufficient for computers, and if not, then we want té know what kind
of additional information is needed.

The fact that book information is sufficient for people does not
mean that it can be used directly. If the book describes an algorithm,
then sometimes only memorization is required of the reader; for example,
the method of finding truth values of sentences in propositional calculus
by means of truth tables can be learned by memorization. Many tasks,
however, require substantial learning before the student can understand
the book. The task of playing chess end games by computer provides a
simple but not trivial area for this research. By chess end games we

mean those games where the number of pieces on the bocard is small, but

»

the number of moves to checkmate large: for example, Two Bishops and
King against King, or the various Pawn endings. Chéss books give rules
for these end games which are not algorithms but are supposed to be
simplie and complete enough that beginners at chess can learn to play
the end games fairly easily. A certain amount of intelligence is
recguired of the student, but still we expect to need only a minimal
amount of additional information. In this study the programmer will do
the translation. Since this translation from the chess books to the
program is not direct, as it would be in the case of truth tables, we

expect to learn something from the translation process.

Methods and Models

Computer researchers are well aware by now of the fact that any
task requiring intelligence can be profitably approached by distinguishing
between models and methods. The model, which is a representation of the
structure of the pfoblem [Minsky, 1961]];determines the overall logic of
the program. The methods are the heuristics which the program uses

within this structure. For example, in the Logic Theory Machine

[Newell, Shaw, and Simon, 1957], the model is a backwards tree and is
represented by that part of the program called the "Executive Routine”.
Within this framework substitution, detachment and chaining methods are
used; these are encodings of the way people apply the rules of inference
in propositional calculus.

Generally books are concerned only with teaching the methods which

should be used to solve problems in the task area. The methods must be

1. See page :13 of Minsky [1961].

applied within a structure which is assumed in the book but not generally
defined explicitly. It is necessary to build a model of this structure
in the computer before information about methods can be taken from the
book.

We expect that different models are required for different tasks.

Very coften the model is a backwards tree; the General Problem Solver

[Newell and Simon, 1961] is based upon this fact. However there are
problems which would require a different model: for example, bidding
in bridge. The closer the model used in the program is to the way that
the author of the book thinks about the problem, the easier it will be
to translate the methods of the book into heuristics for the program.

Chess end games could be handled by the General Problem Solver; however

in this research a model is used which is much closer to the abstract
model assumed in the chess books. In this way we hope to eliminate
meking changes in the methods to account for a difference between the
program's model and the abstract model assumed in the book. This means
that any difficulty experience in translating the book methods into

AY
rrogram heuristics carn only be due to inadequacy in the method descriptions.

Model and Methods for Chess End Games

The model used for chess end games is a forcing tree. The program

is supplied with two functions better and worse (containing the methods)

which compare positions. From a given starting position p , in which

the program has the move, it uses tree search to find positions g

which are better than p . It will search until such a position q

is found for every sequence of moves by the opposition. An example of
such a tree is given in Figure 1l.1. The program will then make the
moves dictated by the tree until it reaches a g at the end of a
branch in the tree; then it recalculates the trec ‘» force positions
better than q . This process continues until checkmate is reached,
worse is used by the program to cut off branches of the tree which lead
to disaster (stalemate, etc.), and also to prune the tree. This model
is described in detail in Chapter 2.

The forcing tree model will be used for all the different end
games, However each end game is played by different methods which will
result in different definitions of better and worse. This enables us
to examine the problems of translation from methods to program heuristics
several times and for games of varying degrees of difficulty.

better and worse are built up out of pattern recognition functions
of positions which can be definéd in a natural manner from information
given in the chess books, The methods, or rules, of play are defined
in two ways in the books. First of all, written statements are made,
For example, in the description of the Rock and King against King game in
Capablanca [1935] we find: "The principle is to drive the opposing
King to the last line on any side of the board" and then the student
should "Keep his King as much as possible on the same rank, or...file,
as the opposing King".2 The play of other games (and in other books)
is described by similar rules. It is not difficult to convert a
principle into a pattern recognition function of positions because the

pattern is inherent in the principle. For example, tc express the

2. See pages 26 and 27 in Capablanca [1935]
L

Figure 1.1. Example of a Forcing tree. The program has the move in
py it must make a move leading to a position q Jjudged better than p
tor every sequenre of moves by the opposition. Each iteration of the
progrem will produce a tree like this; several iterations will be re-
quired to reach checkmate.

" first principle quoted above we define

f(x) = the opposition king is céﬁfined to an edge of the board in x ,
for x a position. Then we might decide a position q was better than
position p if

£(q) A - £(p)
because the principle is satisfied by making the moves leading from p
to q .

The chess books supplement the principles with examples of program
play. The principles generally cover the gross features of the game
and form a framework for viewing the play of the game., The majority of
moves are only partly derived from the principles; they are more directly
derived from the examples of program play. Thé examples contain more or
less complete information about methods of play; the difficulty comes
in deciding what pattern features of the positions are important.
Obviously, induction is required to make this decision. Each example
is considered representative of a large class of positions and a general
rule must be defined for that class. If.the example is accompanied by
principles, this simplifies the induction by providing clues to important
features (see Figure 3,1). The induction leads automatically to the

kind of pattern recognition functions used in better and worse.

Fy
Goals of the Research

The primary goal ol the research 1s to study lne trams.iati.n
process. We begin by stating two criteria wnich will help us achieve
this goal. First we would like to see if our model is a good cne for

chess end games. Our first hypothesis is: the model used in the

program is a good representation of the abstract model assumed by
chess books, We can support this hypothesis by successfully running
the program on different end games. Furthermore, conditions can be
given on better and worse which permit us to prove informally that the
program works correctly. The proof depends heavily on the model and
could not be given for a different model (for example the General

Problem Solver model).

Our second hypothesis is: the information in the chess books is

sufficient for the definitions of better and -worse. The chess book in-

formation will suffice for worse if all disastrous positions are
described. For better much more information is needed; the books must
give rules for recognizing progress frequently enough that the tree
search between positions is reasonable., For example it is not enough
to have rules recognizing only checkmate positions.

Finally we turn our attention to the primary goal of studying the
translation process. We assume that the two criteria are satisfied.
First we consider how closely the definitions of better and worse
correspond to the chess book methods, =sasuring the correspondence
by comparing program play with the book examples., #!:0 we consider the

difficulty encountered in defining better and worse.

Outline of the Thesis

In Chapter 2, the overall organization will be described. A

detailed definition of the uses of better, worse, eud trec search will

be given; this constitutes the model which we use for chess end games.

In Chapter 3 the form of the contents of functions better and worse

will be discussed. These functions are different for each end game,
since different methods are used for each game. However, the form
given for better and worse is used in all end games. Some rules are
given for better and worse which will enable us to prove that the
program is correct in the sense of being able to achieve checkmate from
a given starting position.

Chapters 4, 5, and 6 each describe the definitions of better and
worse for a different end game. Rook and King against King is discﬁssed
in Chapter 4, two Bishops and King against King in Chapter 5, and
Bishop, Knight and King against King in Chapter 6. These games are
presented in order of difficulty. The rock end game is quite a
simple one; two Bishops is a gg?e of moderate difficulty, while the
Bishop-Knight end game is very difficult. The process of translating _
from the book information into pattern recognition functions will be
described, and reasons will be given for the programming decisions,
Examples of program play will be included for each game.

Chapter 7 contains an informal proof of program correctness., This
proof is given after the various end games are described because it
depends on the heuristics used for each game.

Chapter 8 will contain an evaluation of the better, worse format

in terms of the two primary goals, Subjects covered will include
program efficiency, a description of a way to have the program do

some of the inductive learning, and extensions to other task areas.

8

In the following chapters, crdinary chess notations will be used
[Capablanca, 1935]. The program is written in LISP [McCarthy, Abrams,
Edwards, Hart and Levin, 1965], and the reader is expected to have some
knowledge of this language. Function definitions are given using notation
and basic functions which are defined in Appendix A. They are built up
>f the connectives = (equivalence), D (implication), A (conjuction),

v (disjunction), and — (negation). These are used in the same way LISP
(not ALGOL) uses them; i.e., if in p Aq, p 1is evaluated and found

to be false, then q is not evaluated.

CHAPTER 2

PROGRAM ORGANIZATION

Notation
Throughout this thesis, certain conventions of notation will be
used. As in the ordinary use in chess books, the white side is the
winning side. The program will play white and a person black. The
letter p , with possibly subscripts or superscripts, is used to
represent a position with white (program) to move, and q , again with
subscripts or sﬁﬁegﬁé;ipts, for positions with black to move. When the
| etc

color of the move is unimportant, letters x , y

» with subscripts

3 *5

or superscripts wiil be used.

In a position p ,!a cergg;n set of white moves is legal according
to the rules of chess. A legal move is made from p to produce a new
position gq with black to move. We will represent the connection
between p and q by means of the relation Mw . The statement
prq is read: q 1is a position which results from making one legal
white move in p . Similarly we write qMBp which means p 1is a
position which results from making one legal black move in q . If
prq we say q 1is an immediete successor position of p , and

similarly for qMBp . If we say that q is an ultimate successor of

p this means there exist Pyseces Py and Qis-ees 4 such that

pMqu . qlMBpl oo B8 anBpn & PnMWq '

10

The program is given as a starting position a position p with
white to move. In some end games, white can win only from certain

legal positions with white to move. Let

P={p | p is a legal position with white to move, and
white can win from p} .
The program must work correctly for any starting position p € P
we do not care what happens for p € P .

As explained in Chapter 1, better and worse are used to compare
positions. They both have as an argument a pair of positions (p, a) .
The first position is always & position with white to move; the second
is always a position with black to move. q is either an immediate or
ultimate successor to p .

The statement better(p, q) is (not) true is equivalent to saying
q is (not) better than p , and similarly worse(p, q) is (not) true
is equivalent tc q is (not) worse than p . Cccasionally when
discussing a tree search a statement like " q is a better position"
will be made., This means q 1is be?ter than the 'p at the head of

the tree. better and worse will always be underlined; so will all

other function names except those consisting of only one letter.

Program Organization

To start with, the program is given an initial position p € P.
It generates all positions q such that prq . The order in which

these positions are generated is not important; let us refer to them

11

as Q = {ql,..., qn} . For each qi the program asks the question
worse(p, qi) ¢ db q, is worse than p then a, is immediately re-
jected by the program. If worse(p, qi) is false, then the program

asks better(p, qi) . If better(p, qi) is true, the move which led

to q is retrieved by the program and made at this point without any
further analysis or examination of the remaining positions qi+l"”’ qn .
Figure 2.1 is a flowchart of this part of the program.

If all qi have been examined and none is found which is both
better and not worse than p , the program will resort to tree search.
The work it has done so far is really the first level of the tree search.
A branch remains in the tree for each q which was not worse than p .
Call this set Ql .

During the tree search the first element of the argument pair of
better and worse remains the initial position p . As explained pre-
viously, the second element must be a position with black to move. This
means that in the tree search, the ends of the branches can't be evalu-
ated after every move, since half of the moves result in positions with
white to move. Also it is convenient to have the depth in the tree equal
tc the number of white moves required to get to that point. If a position
q 1is said to be at depth n in the tree, this means that 2n-1 moves
are required to get to g ; of these n are white moves and n-1 are
black moves,

The basic premise cf this method of play is that from p white is
able to force a position q better than p . "Force" means that white

must be able to answer every black move with an eventual better position;

enter with p,Q

Q'e«NIL

| return Q'

gecar(Q)

ecdr(Q) worse(p,q)

¥

Q'H{q°q")

“igure 2.1. BW(p,Q)

p€ P is a starting position
Q 1is a list of successor positions of p .
BW returns

a single position q ; this means gq 1is btter =nd nof
worse than p

a 1ist of positions (possibly.empty) contzinin: =11
positions which were not worse than p ; this me
no member of @ is better znd not worse thun 71 .

15

conversely if any black mcve results in all po~itions worse than p ,
the positior in which that black move was made must be discarded,

The tree search is a breadth-fir:t search, For each qi the

>
’

3 — R 2] “ t
program generates P, = {p..,..., pis,} . Each Py s the result of

1
a legal black move in qi i 18, qiMBp:j for J= Lices Si . Then
4 >

for each pijgpi the program generates Qij = {q: o 9]

ijl?-- Jle where

The program then computes BW(p, Q..)

M = 1,...
pi,jquijk or k l, s S ij

iJ

(see Figure 2.1); that is, the gq are compared with p in the same

ijk

W8y in which the q; were compared with p previously. In order for

the move leading to qi to be accepted by the program, for each p’j
[S

there must exist a

such that worse(p, q..,) is false and

9 5k i3k
bei%er(p, q?jk) is true; that is, BW(p, Qij) must return a single
position for j = 1,..., 5, (i.e., for every black move Q;J). If

4
this-happens, then the move leading to qi is made by the program with-
out examining the other qiEQl .

If BW(p, Qij) returne the null list for some Qi this means

J’ 3
that all qijkeQij are worse than p , Ta:s happens because in qi
the black move leading to pij is permitted, and white is not in a
position to control the result. In this case q is completely removed
from the tree; Just as if it had been worse than p in the first place.
The move 9, is eliminated in this way in Figure 2.2,

If qi is neither rejected nor accepted, then for one or more of
the pij , there exist several qijk such that worse(p, qu.k
false but better(p, qijk) is also false. In this case, BW(p, QiJ)

} is

returns the list of such qijk 3 this information is saved in Qsj in

14

=t

£ \N

N

number of

moves
This is 4° ‘s
set
Q 1
o o o
= W
o o
First =4° 22 3 VP
S = N S
tree = N\E
com- 3
parison =
depth 2
o ol o
N N AN N
N/l O
n/ o= 1
o =W
4
vecond Y ¥ gf
‘ n g O
come S A I
parison 5t
depth 3 w w

Figure 2.2. Example of Forcing Tree.

From position g, , for the black move leading to Poz ., 211 white
moves lead to positions worse than p . Therefore this branch is
eliminated. pg), will not be examined.

Positions which are ‘better than p are marked with a B . A brarnct
is accepted when every termination is marked B. Note that eve: if
a single position with white to move remains at a level, it is rot

necessarily hg&ig;; €.g., Qm11 - This would be true even on the very
first level (set Q).

No decision is made at depth 2.

Now depth 3 is begun. For q; no decision is made and all informztio
is saved.

The branch for %z is examined next, and it is accepted since the ¢nd
of every branch is marked with a B . One branch ends at depth 2; the

others end at depth 3. The program will now make the move leading to
az - It does not examine the remaining branches for Qreees G -

15

case no q, is accepted at this level. For example in Figure 2.2, e

.would have set ng = {ql2l’ q122} .

If no q; is accepted by the program at this level, the program
extends the tree one more level every place where a decision wasn't

made previously (where a list Qij is saved). Every element qijk€Q13

produces several lists of positions Q one for each immediate

ijkm ?
successor positien P! jim to 9 5 - Now BW(p, Qijkm)

If it returns a single position for each immediate successor P,

is called.
Jkm
of 9 5 then qijk is accepted at depth 2 (just as before 4
would have been accepted at depth 1). 1In this case the other members
of Qij are not considered. Also, as before, a branch can be rejected,
either back to depth 2 (qijk) or all the way back to depth 1 (qi) .
If no decision is made at depth 3, the program goes down another
level to depth 4. The search is continued until a decision is made.
Figure 2.2 is an example of a position which required a search of
depth 3. No decision was made for 9 at depth 3 so all the information
in the figure would have been saved. For q5 , only one black move
Psp remained to be answered and q,322 is accepted at this level.
Therefore q5 is accepted by the program at thif point, and QY yennes qm
are not examined.
When the program has selected a branch of the tree, it remembers
the tree, and will make the moves dictated by the tree for as long as
it lasts, This is a very important point since it is the feature
which enables the program to force a better position,
Figures 2.3 to 2,6 are flow charts of the program, Figure 2.3 is

the main program; the other three flow charts cover the tree search.

16

enter with starting

position p
TREE«NIL

— a{a*|p a*)

)

Q-BW(p,Q)

Jyes return, pro-
gram error

is Q

P no B}
4 aigle — @75(p,Q)
osition?
4'
is Q
checkmate? yes
no no

@—(move in TREE)
TREE«cdr (TREE)

- —a

Figure 2.3. Main Program Flow.

17

enter with p,Q

Q'edLT,

v

gcar(Q)

q a

MB(p,q) position M-TB(p,q)
¥ Y
yves
no
} yes
TREEcdr (M)
no (return gq)
A UACAD)
Qedr(0)
no

Fiecure 2.4,

Function TS(p,Q) is the top level tree search function
which starts the tree search going; calls the functions
which follow the branches of the tree; returns the select-
ed position and saves the branch in TREE if a decision
is made; or starts again to extend the search one more
level if no decision is made,

18

enter with p,q Pe{p'lqMBP'}

v

P'eNIL

:

p'ecar(P)

o el oM a')

l

%—BW(P, Q)

€

no .

P'e{Q:F')
Pecdr(P)

no

Figure 2.5.

(1)
(2)

(3)

11 members
of P' single
ositions ..

‘ return P')

Function MB(p,q).q is a single position. Three values are

returned.

NIL means that some black move from gq cannot be answered.

YES*P' means that a better position is found for each black
move from q.

P' means that for at ieast one black move no decision has
been made,

yee =Geturn (YES* P)

19

cnLer with p,Q

Tet
QeI

gecar(Q)

AT
YMedi(p,at)

t e O te{edr (T «0f)

1T
Q f“,-‘".,.,,) |
|

Figure 2.6. Function TB(p,Q). Q is a list consisting of positions
and of lists of positions. If an element of Q 1is a single
position, then it was found to be better at the previous level.
If the element is a list of -ositions, these are the non-worse
positions from the previous level. Q contains an element for
each black move in the ppsition immediately above in the tree.

Function TB returns

NIL - each member of a list of positions which is a element of
Q 1is rejected in the search.

YES*Q' - all elements of Q are or lead to better positions.
Q' - some elements of Q do not lead to better positions.

Q" contains the tree from Q on down.

20

Tree Search Heuristics

Two heuristics are used during tree search. One helps to cut off
redundant branches of the tree; the other helps the program find the
better position faster.

'
1. Redundant Branch Cut-Off

Suppose we are down at a node at depth n 1in the tree. A history
of the branch to this point is given by all the positions with black tc
move which the program has examined on the way to this node. There are
n positions in this history, say qi, qij""’ qijk m - At this

LRI

point, suppose it is time to expand the rode at the end of the branch.

For simplicity let g¥* = % ik...m Now suppose that BW(p, Ql*)
returns a list of positions Q* . The program checks the positions of
the white pieces in each qi*€Q% against the positions of the white
pieces in q., qij""’ q* , and if there is a match, qi* is
eliminated.

The reasoning behind this heuristic is as follows. It is true that
two positions in which the white pieces are in the same squares but the
black king is in a different square may have very different patterns.
However, in this case one position 1s a successor of the other, and
intuitively, if the placement of the white pieces is good, we should
have taken advantage of this originally and done something else from
there.

As far as the program is concerned, this heuristic has never
caused it to miss a move it should have made, Part of the reason for
this is that the treesare quite short (no more than a depth of seven)

and within that short a span the intuition is probably valid. At

el

least one quarter of the positions returned by BW are eliminated by
this heuristic.
2. Killer Heuristic

If in the tree a position q; is found to be better and not

jK...m

worse than p , the program finds out what the last white move, w

to qijk - was, and it remembers this move. Then every time after
this, when it forms a set @Q* to be used as an argument to BW , it
checks to see if w was the last move made to form some q*€Q* . If

it was, then q¥ is made the first position in Q* , so that it will
be examined first.

The theory is that in a tree search the positions are all similar,
so a move which led to a better position at one point is likely to do
so again. By putting the new position g* first we eliminate many
comparisons if the theory holds. If the theory fails we have lost a
little time,

In these end games the theory holds very well. If an examination
is made of the final moves to the better positions during a tree
search, usually there are only one or two such moves, The Lime saved
when the position put first is actually the one selected is large
enough to more than compensate for the time spent in ordering the

positions.,

Representation

No attempt has been made to develop a sophisticated representation
for these end games. A position is represented by a list of the positions

of the pieces. Moves are generated rather than stored. Patterns are

oo

discovered by functions. Some information is very time consuming to
obtain in this way, for example the set of all squares which a piece
can reach in two moves. In general patterns of this type are not

used, and the heuristics chosen for the end games reflect this.

CHAPTER >
DEFINITION OF BETTER AND WORSE
As was explained in Chapter 1, each end game is played by different

methods which we expect to result in different definitions of better

and worse. However the form of better and worse is independent of the

particular end games. In this chapter we will define the form, which
will enable us to put a condition on the pattern recognition functions
which make up better and worse. We will use this conditicn to prove that
the program can reach checkmate from any starting position p € P .

First of all, in order for the program to work correctly it must
have a sense of direction. In the chess books this is achieved by an
ordering of methods. For example in the rook end game, first we drive
the opponent's king to an edge and then we keep our king on the same
file (rank) as his. In the program, rules are represented by patterns
,Of positions. Therefore the ordering of the heuristics is converted
into an ordering of patterns, and positions fram the end game can be
grouped into subsets according to this ordering. Then a position g
will be better than position p if the subset containing gq is higher
in the order than the subset containing p .

Recall that the program builds a forcing tree from a position p
and ther follows a branch of the tree (which branch is determined by the
cpponenz's moves) until a position gq at the end of the branch is

reached. This position gq 1is better than p . Now the opponent makes

2k

The ending Rook and King against King.

The principle is to drive the opposing King to the last line on any
side of the board.

In this position the power of the Rook is demonstrated by the first
move, —~R7, which immediately confines the Black King to the last rank,
and the mate is quickly accomplished by: 1 R-R7, KE=Ktl; 2 K=Kte.

The combined action of King and Rook is needed to arrive at a posi-
tion in which mate car be forced. The general principle for a beginner

DIAGRAM 20

+ o

te ollow is to keep his King as much as possible on the same rank, or,
as in this case, file, as the opposing King.

When, in this case, the King has been brought to the sixth rank, it
is better to place it, not on the same file, but on the one next to it
towarus the center.

CeesK—Bl; 3 K—B3, K—K1; 4 K—K4, K—Ql; 5 K—Q5, K~Bl; © X—qf.

liot ¥-B(, because then the Black King will go back to @l and it will
tuke nuch longer to mate. If now the King moves back to Gl, KR8 mates
at once.

Ceesk=Ktl; 7 R-QB7, ¥~Rl; 8 K—BG, K=Ktl; 9 K—Kt6, K-R1l; 10 R—KE¢ mate.

It has taken exactly ten moves to mate from the original position.
On move 5 Black could have played K-K1, and, according to principle,
White would have continued 6 K—Q6, K-Bl (the Black King will ultimately
be lrorced to move in front of the White King and be mated by R-Rt);

7 ¥=KC, K=Ktl; 8 K—B6, K-Rl; 9 K—Kt6, K=Ktl; 10 R-R® mate.

Figure 3.1. Example from Capablanca, pages 26-28. ¥

25

a move, giving position p' . At this point the program will build a
forcing tree from p' . It does this without memory of positions p
and q . If the program is to work correctly, it must be able to derive
information about the state of the game from p' , and any q' at the
end of a branch of the forcing tree from p' must be better than p in
addition to being better than p' . If this is true then we say the
program is playing consistently. Consistency is accomplished by being
careful about the selection of g in the first tree; however we must
remember that ornly a moderate amount of tree search to q 1is permitted.

In the following section we will have much more to say about better
than worse. This is not surprising, since for the program to work

correctly worse need only recognize disaster and not interfere with

better. Both of these conditions will be satisfied.

Formalization

The notion of a stage has been adopted to facilitate the program's
sense of direction. The positions in an end game are divided into a
number of different subsets called stages. The stages are not necessarily
disjoint; however all the positions in a stage share a common pattern. |
In general a stage contains both positions with white to move and
positions with black to move. The stages must exhaust the universe of
positions in the end game. Let

Q=P2U {a]| 3p(peP A pial} ,
for P the set of all legal positionsfrom which white can win. Every
position x € @ must be in at least one stage. The stages are ordered,

from the lowest (zero) stage containing stalemate positions and other

26

positions from which white cannot win, to the highest stage containing
checkmate positions. The nth stage in the order is called stage n .
For programming purposes we prefer to deal with disjoint subsets,

If x € Q , we define

st(x) =0 if x € stage O .

max ({n | x € stage n }) if x ¢ stage 0.
The subsets {x | st(x) = n} can be ordered by the value of st when
applied to the elements of the subsets. These subsets are used to give
the program a sense of direction in a natural way by
3.1 st(grst(p) o better(p,q) .
Also we will have
better(p,q) > st(q)> stlp) .
The statement
3.2 st(qrst(p) = better(p,q)
is not used because it would result in tree searches of immoderate
length.

5.1 is a partial definition of better, so we consider what condition
is required to ensure that the program works consistently. Recall that
we want to be able to deduce from the successors of q information
about the state of the game at q . Suppose for now that 3.2 is the
definition of better. Then the program can be forced to play consistently
by the condition on stage definitions.

5.5 Vp' ValaMgp' o st(p')> st(q)] . -
5.5 says the stages must be defined in such a way that black can n ver

force a return to a lower stage. This embodies the spirit of thes:

27 i

games; that is, that white is in complete control, and that the black
moves are considered (by the program/student) only as part of the white
strategy. We need not worry about a black move strategy.

There is no condition similar to 3.3 for white moves. However

v

3.4 vp 3q(pM g A st(q)> st(p))

¢

is often useful. Intuitively it would seeﬁ that if some p had all

-

successors at a lower stage, then p was etaluated incorrectly. This

-

is not always true, but if 3.4 isnotsatisfipd it is important to under-
stand why. f\

As far as 29553 is concerned, we always have

st(q)=0 > worse(p,q)
which accomplishes branch termination and insures that worse rec?gnizes
disaster., We dc not have ’

st(a)<st(p) > worse(p,q)
because sometimes the path that the program should follow involves this
kind of situation. We will always have

worse(p,q) D st(q)< st(p) ,
since worse may not interfere with better.

To help explain the definitions given in this chapter, an example
will be developed as we proceed. It covers the play of part of the
Rook and King against King end game, as explained in Capablanca (1935];
the text is given in Figure 3.1. This example can be handled in five
stages. First we introduce pattern recognition functions f and g .
For x a position, we have

f(x) = {the black king is confined to a file (rank) edge in x]}

Let edge(x) pe the edge to which the black king is confined in x .

28

g(x) = {f(x) A (the white king is on the file (rank) two away from
the file (rank) edge containing the black king and on a
rank (file) closer to the center of the board than the
black king)} .
£(x) represents the first principle in Figure 3.l. g(x) partly
represents the second principle in Figure 5.1; it will be used to
recognize white move 6.
Now we can define the stages. These definitions are built up out

of basic functions and notation which are described in Appendix A.

x € stage O = {x 1is stalemate, or x 1is a position with black
to move, and black can take a white piece in
one move}.

x € stage 1 = {x cannot be assigned to any other stage).

x € stage 2 = {f(x) A gg(wkx,e_dgg(x)pz}.

m

x € stage 3 = g(x).

x € stage 4 = {x is checkmate}.
Figure 3.2 gives examples of some of these stages. The opening position
in Figure 3.1 is in stage 1. Note that every legal position (every
position in set Q) is in some stage, because of the definition of
stage 1. In every end game there will be a catch-all stage defined
like stage 1.

Now we must check that st satisfies 3.3. If st(q) = 2
or EE(Q) = 3 , then the black king can never move in such a way as to
form a p with Eg(p)<2 . This is because in q the black king is

confined to an edge, and the whife king is not blocking the rook since

it is two or more files (ranks) away from the edge while the rook is

29

M W /W
///

/;;//ic 5, W
S men
X agE

V/////////////

no

.///’ ,// . M
W

) ’7/// */ //’ /// %
éiiifg T W
e ////1
//»*»-v 0//
-,Mﬁ%%,,“ﬁﬁ
Lé//, ’/ " 7////

RN
{\
“b&-

7. W // ///%

st(x) = 2. This is the position «fter white
move k4,

st(x.) = 3. This is the position after white
- move €. Note that x. is in both
stage 2 and stage 3.

st(o.) = L. This is the checkmate position.

Figure 5.2. ©Stages in Figure 3.1.

30

cnly cne away. The black king is not threatening to take the rook in
any q with st(q)>0 , because in that case we would have st(q)=0 .
Rule 3.4 is also easy to satisfy. 1In stage 1 there is no
difficulty. 1In stages 2 and 3, the rook will always be able to move to
another square on the same file (rank) (for a file (rank) edge) and
thus preserve the same stage.
If we use 3.2 as our definition of better and define worse by
worse(p,q) = st(q)=0 ,
then only moves 1, 6 and 10 from the example in Figure 3.1 will be
chosen by better. Thus the tree searches are fairly long, and also the
tree is very wide. This brings us to the remainder of the definitions

of better and worse. If we change the definition of better to

5.5 better(p,q) = {st(q)>st(p) v [st(q)=st(p)=2

A de(wk , edge(@)de(vk , edge(p))]])
then moves 1, 2, 3, 4 5 6, 10 will be recognized by better. This is
a considerable improvement in the length of the tree search.

What is happening here in stage 2 happens in the other end games
as well. The stage itself is rather large, but the positions inside it
can be put into subsets, just as the whole universe of positions Q was
put into stages. 1In fact, additional stages could be added, one for
each of these new subsets,

However, we must consider an interesting property of the stages
as they are defined in this end game, and one that is worth preserving
in other end games. Recall that each stage is defined by a distinct

pattern; in addition each stage is associated with its own heuristics,.

31

\

Each stage has as its immediate goal the achievement of the next stage
and its heuristics are directed toward that end. For example, in

stage 2 we move the white king up toward the edge until stage 3 is
reached; in stage 3 we force the black king toward a corner until check-
mate is given,

If new stages were added for all these subsets, this heuristic
property would be lost. While we may expect to use additional heuristics
for two positions in the same subset of a stage, these heuristics are
independent of the particular subset and can be used for all subsets
within that stage. So it makes gerse to handle these subsets differently
from the stages. Therefore a r.cw function has been added which is called
a measure. For each stage n , function m is defined for all
positions in stage n . m is not meaningful for every stage; in
that case we have

0 vx(x € stage n) .

m, (x)
Definition 3.5 implies the following measures

m,{x)

m, (x)

"

gg(wkx,edgex) ¥x(x € stage 2) .

1

0 ¥x(x € stage i) , i =0, 1, 3, L4 .
Note that the smaller the measure, the better the position. This is
the opposite of stages. Then the new (and complete) definition of
better is
3.6 better(p,q) = {st(q)>st(p) v

[_-?_E(Q):S_t(p) A mﬁ(q)(Q)Qﬁ(q)(P)]} .
For program consistency, 3.3 becomes
3.1 Vp Vafq Mpp D [st(p)>st(q) v (st(p)=st(q)

A mst(p)(p)smst(q)(q”]] .

32

An addition is also made to give the complete definition of worse,

We have

i

3.8 worse(p,q) = {st(q)=0 v [st(p)=st(a) A ms_t(p)(pkms_t(p)m)]} :

We can use this strong definition because if we have two positions in

the same stage we know better how to compare them than if they come

from different stages. We extend 3.4 to

5.9 ¥p 3q {p Ma A (st(a)>st(p) v [st(q)=st(p) A
?EE(Q)(Q)EMEE(p)(P)})}.

Like 3.4, 3.9 is not necessary to the consistency of the program.

So far in this example stages have been defined in the same way
for positions with white and black to move, excepting stage O and
stage 4 which only contain positions with black to move. In general,
however, slightly different versions of the same pattern are used to
recognize positions with white to move as part of a stage than are
used for positions with black to move,

For example, 3.6 selects white moves 1, 2, 3, 4 5 6, and 10 in
Figure 3.1, but these are not the only moves it would select. 1In
general we are not too concerned if the program doesn't select the book
move, because the program is loocking for a better position and not a
best move. However in this case the program is playing differently
from the book; it doesn't follcw the second principle in Figure 3.1
and white moves 2 through 5 are affected by this. If we define

x € stage 2 = {f'(x) A gg(wkx,gggg(x))>2] ,
where

f'(x) = {f(x) A (the two kings are on the same rank (file) in %)},

5

then we will violate 3.7. For instance after move 1 in Figure b
we have f'(q) ; then the black king makes its move and we have
~ £*(p) .
What is needed is to define stage 2 differently for positions with
white and black to move. We will use
x € stage 2 E'{f"(x) A gg(wkx, edge(x))2} ,
where

£"(q) = £'(q)

' (p)

]

{f(p) A (the kings are on the same rank (file) or on
adjacent ranks (files) in p)} .

With this new definition of stage 2 the program will chose moves 2, 3,
L and 5 correctly independent of the order in which the moves are
generated. Another effect of the new definition is to put more
positions in stage 1. 1In reality stage 1 would be divided into two or
more stages, but here we are concerned only with the part of the end

game covered in Figure 3.1.

Additions to better and worse

When functions are actually written for the play of end games,
3.6 will be the form for better and 3.8 for worse. However, certain

additions will have to be made to better and worse to make the program

practical. These additions will be made in the following format.
If the tree search is too long, then an addition to better is
required. This will always have the form (for fixed n.)

3.10 (st(p)=st(q)=n A ...)

We assume mn(p)=mn(q) since mn(p)<mn(q) woul ® have been worse, and
mn(pl>mn(q) would already have been better. If the tree search is
too broad, an addition will be made to worse. This will always have
the form (for fixed n)

3.1 {st(p)=n A [st(a)<n v (st(a)=n Am(Q)=m ()] A ...} .

To be sure that the program will work consistently it is always
necessary to extend 3.8 to cover additions 3.10, and 3.11 must not
eliminate all former paths to better positions. Program consistency
must be considered separately for each addition.

As =n example of additions consider 3.6 and 3.8 as they apply to
Figure 3.1. The definition of better is sufficient for this end game,
so no problem of consistency arises. However the definition of worse
needs to be enlarged. After move 6 in Figure 3.1, a tree of depth 4 is
required to reach checkmate. Position p in Figure 3.3 appears at
the head of this tree. At the first level alone, 12 white moves are

considered, and similar large numbers at further levels. If worse is

changed to

worse(p,q) = {st(q)=0 v [st(q)=st(p) A m§£<p)(q)>m£§(p)(p)}
v [58(p)=3 A st(a)<3 A (4 (wk,r)>d (wk,r)
v [sta) # 3 A (uk,r)>1])])
then only 4 moves are considered in Py - In Ps five out of nine
moves remain; note that the desired’move, wk-QKt6 gives % not in

stage 3 (see Figure 3.3). This tree is still rather broad and other

or different heuristics can be added to prune more.

35

)

"

/ f/’ '/////
/// This is the position after black move 6

in Figure 3.1l.
’/// // ////
// L

. T
5 1 //
W, /// ///// 7

" m
// 3 : s §
// ///// ///, / E‘Slls?i;r:h;]’fsmlon after black move 8
7 // ., W

f// 'y / W

’:// / //
// / /
% // 7 %

After white move 9; note that §1;_(q2) = 1.

Figure 3.3

36

Formal Definitions of better and worse

3.6 better(p,q) = {st(q)>st(p) v

[S_t_(‘%):EE(P) A mst(q)(Q)q‘lst(q)(P)]} .

3.8 worse(p,q) = {st(q)=0 v [st(p)=st(q) A mst(p)(p)<mst(p)(Q)]} ’

Conditions on Stages and Measures

5.7 ¥p Va{q Myp > [st(pP>st(q) v (st(p)=st(q)
Al (p) (PISEge () (@)1} .
3.9 Yo 3q {p Ma A (st(q)>st(p) v [st(q)=st(p) A

m_s_t_(q)(q)'smﬁ(p)(p) })} .

Additions to the Formal Definitions of better and worse

Additions to better have the form

5.10 (st(p)=st(q)=n A ...).

Additions to worse have the form

2.11 (st(p)=n A [st(q)<n v (st(g)=n A m (a)=m (p))] A...) .

igure 3.4 Listing of the Rules Introduced in Chapter 3,

37

CHAPTER L

ROCK AND KING AGAINST KING

Formal Definitions of better and worse

The method of play chosen for this end game is taken primarily
from Fine [1942]. His description is given in Figure 4.1. The last
few moves of the game are choseﬁ'by Capablanca's [1935] method
illustrated by moves 8-10 in Figure 3.1.

Only one basic pattern, shown in position 9 in Figure 4.2, is
required for this method of play. The ability of the rook to control
ranks and files is utilized; as long as the black king is not in check
it is held in some area of the board by the rook. Usually this area
is a quadrant as shown in q - If the white king is not on the boundary
of the area, the black king can escape only by attacking the rook. If
the white king is outside of the area, as shown in q; , it is able to
protect the rook from such an attack if it is close enough. It can't
be blocked from protecting the rook by the black king.

If the pattern shown in 9 holds in a position, this is
recognized by function quad:

guad(x) = (the rook confines the black king to an area of the

board in x , and the white king is outside that area).
quad describes the pattern occurring in almost all positions of
Figure 4,1, For example gquad holds after each of the first three black

and white moves. If guad is satisfied by a position, we will refer to

38

Ihis piece is not nearly as strong as the Queen and the mate is
accordingly far more difficult. The Rook alone cannot drive the King t>
the edge of the board—it needs the assistance of
its own monarch. Since the Rook is much less Mating Position wit.
powerful than the Queen, there is less danger of the Rook

stalemate—this is the brighter side of the picture. %gy
7

7

In order to mate, the enemy King must again

be driven to the edge of the board. The mating , ’iky ééz 4%7
position is then the same as the second one with 449 // fﬁ& C
the Queen. Thus the problem here is essentially // ////
the same as that in the previous case, the chief é%%//é%? é%%/y %
difference being that the two preliminary steps /// A% //:/ %
(driving the enemy King back and bringing one's E%& ég? 46; f{%
% s

own King up) are carried out simultaneously. The .4% //
%

only stalemate that should be watched for occurs

Black to Play is
No. 2 Stalemated.

3
/// . /////,Ea,
///f/// //,//,/§7
%/////////, y oy Y
%%%%
/4; 42% %é? é%% when the Black King is in the corner.
422 gﬁ’ é%% Starting from any position such as that

shown here in No. 2 we would then proceed as

7/ %
% % % / follows: 1R—Q2 (confining the Black King 1.

the right-hand side of the board), 1 K-i5;

2 RQ5, KK5; 3 KBS, K—K6; 4 R—Q4 (now he has only three ranks and four
flles), K-KT7; 5 KQ5, K—K6; € K-K5, K—K7; 7 K—Kbk, K=B7; 8 R—Q3 (see dic-
grem No. 2a). K—K7; 9 K—Q4, K-BT7; 10 R-K3, K—Kt7; 11 K—Kh ¥K=RB7; 12 K-ik,
¥=Kt7; 1% R—!2ch, K+58 14 ¥X—B%, K—Kt8 (diagram No. 2b); 15 K—Kt% . K—Ef
16 R=KB8, KK 3: 17 R—Kl mate.

The fin:1 maneuver, which involves losing a tempo, or mose, choulc
be remembere —it is the key to this mate.

No. 2a No. 2b

W BYE W | BB Y.
“mEE W @4@%

I

/
/”/’@”‘/
» B
vy
Position after 8 R—Q3. Position after 1h
.... K=Kt8.

Figure L.1. Example from Fine, pe =s 1k and 15.

39

\\

e

mem.: W

// W
.
,% U
n

"a"a"

7
e
P

W/’////////
%/% %/%

., W
W////

§§\

f////

7///
s
///////

%%/%

»

Wi
%79;
// // f//

We have guad(ql) and sguad(ql) = 16.

We still have gggg(pg) but we must move
the rook or we will lose it. The rook

can move so that there will be a quad-

rant, but the size will be larger.

Here we have guad(pl) and sguad(pl) = 20.
We have leWQl . We do not want to accept-
q, as better than Py -

Here we have guad(xg) and sguad(xg) = 2.

X5 is in stage 3.

Figure 4.2

40

the area in question as a quadrant. This patterr lends itself very
naturally to a measure., If we have quad(x), ther squad(x) is the number
of squares inside the quadrant. For example, in ql in Figure h.2,
squad(q,) = 16.

If guad is to be used to determine a stage and squad is to be a
measure in that stage, we must satisfy conditions 3.7 and 3.9 (see
Figure 3.,4), Condition 3.7 presents no problem since both guad and
squad depend only on the positions of the white pieces. The black
king is unable to escape from a quadrant except by taking the rook; in
this case the position q prior to the black move would be in stage O,

Rule 3.9 cannot be satisfied without putting additional conditions
in the stage definition, For example, suppose in position 9, the
black king moved to Q4 to attack the rook, forming p, in
Figure 4.2, The white king is not close enough .o protect the rook;
therefore we must move the rook away from the black king. It is simple
to form a new quadrant; for example, aﬁy rook move on the fourth rank
will do this. However every rook move which forms a quadrant forms
one of a larger size. 1In general, the rook can always form a quadrant,
but it may be larger than the present one. This viclates rule 3.9.

Note that it really would be incorrect for the program to accept
a position like 9, as better than for example, Py in Figure 4.2,

At position p, , the best that white can do is to mainiain the smallest
possible quadrant. This will have size 20, the same as §gggg(pl).
Therefore nothing has been gained by making the move to q1 and the

burden of correct play has been pushed onto the tree search.

L1

Now the problem in position 9, came about only because the white
king was too far away from the rook to protect it from the black king's
attack. Therefore all that is needed to satisfy rule 5.9 is to
insist that the white king protect the rook. The condition of pro~

tection is given by function goodgquad

goodquad(p) = {gquad(p) A dp(wk,r)ﬁdp(bk,r)+l}

goodquad(q) = {quad(q) A dp(wk,r)gﬁq(bk,r)] i

Different definitions are given for p and q to insure that goodquad
satisfies 3.7. (We remind the reader that definitions of basic functions
and notation are given in Appendix A.)

The use of goodquad for a stage and squad for a measure in that
stage will inexorably force the black king toward a corner of the
board. However, this process must stop when we reach a quadrant of
size 2, since any smaller quadrant would be stalemate. Therefore when
squad = 2 we must move to a new stage. At this point we shift to the
heuristics taken from Capablanca [1935]. X, in Figure 4.2 is an
example of a position from this stage (stage 3).

We give the formal definition of better and worse by defining the

stages and measures.

x € stage 0 = (x is stalemate or x 1s a position with black to
move and black can take the rook in one move).

X € stage l-E x cennot be assigned to any other stage.

x € stage 2 = {goodquad(x) A squad(x) > 2} .

x € stage 3 = {goodquad(x) A squad(x) = 2} .

x € stage 4 = x is checkmate.

L2

Only stage 2 has a meaningful measure. We have

m; (%)

m, (x)

squad(x) ¥x(x € stage 2) .

0 i#2

Additions to better and worse

We are now ready to consider how well the program plays tsing the
formal definition of better and worse. We need not worry about the
transition from stage 1 to stage 2, since the tree search is no greater
than depth 2. However, the depth of tree search in staBe 2 can be as
large as 8, although a depth of 3 is average; in stage 3 the;e is a
maximum depth of 5. Therefore, we must make additions to better.and
worse in stages 2 and 3.

In stage 2 both the length and the width of the tree must.be
reduced. Recall that we are striving to shrink the size of the quad-
rant. The rook alone is unable to do this; sometimes the white king
must be used to force the black king away from the rook. For example,
in p, in Figure 4.3 the white king must move onto the boundary of
the quadrant. Then on the next white move the rook can form a new
quadrant smaller than the present one (see position 1 in Figure 4.3).
In order for the white king to be useful, it must first be next to the
rook. Position Py in Figure 4.3 is an example of a position in
which the white king must move up to the rook. We can recognize this

kind of move by adding to better

4.1 st(p)=st(q)=2 A dqﬁwk,r)<dp(wk,r) :

43

T T
//,///,\

i
W /////
/’///////’////

W /////A
//////// //

k[n this position obviously we want wk-Q5 or
Wk-KSC

///// //// ’/// f///,
/// ///// ///// ///// This is the position beforg move € in Fine
i, % ! % §

(Fi Bal)s N tt the whit
//// ///// // kizllgl::ito the boxd:iywzz foiczozie bia:k king
//’ away from the rook. The move made in Fine is

///A/////////////////////// wk-Ki; wk-KB: 1is just as good.

/////////

// //// / /// The black king is forced to move away from
Az / /// /// /// the rook (bk-KB7 in Fine), and then the rook
////// //// f%/ /// can form a smaller guadrant (r-Q,)), giving Q7 .

e

7,
///, ’////// .
L, /// ///////
/¢ /’// //
//// W ///// o 7

7 7.
////,////// /// ’//

p*, taken from Figure 4.1 before white move 5,
is the start of the longest tree (depth 4).

Figure 4.3. Examples of Moves in Stage 2.

L

L1 reduceé the lengfh of the tree search to a maximum of four, This
is a manageable length so no further change need be made to better.

A tree search of depth thfee or four requires considerable
pruning to be practical. In the formal definition only rook moves
leading to larger quadrants and moves giving stage O are eliminated,

In p* in Figure 4.3, for example, seven white king moves and four
rook moves would be examined in the tree search. This tree will be too
broad.

Note first of all that tree search will take place only when
dp(wk,r) = 1 . The strategy at this point is to move the white king
onto the boundary, which gives a position q in stage 1. Therefore
not all stage 1 positions g can be declared worse than p . However,
the rook can also move to form a stage 1 position, either by moving
so that in q there is no quadrant or the rook is not protected by the
white king. All these moves can be eliminated. In addition all white
king moves which result in dq(wk,r) > 1 can be eliminated. We add to
worse
4.2 st(p)=2 A [st(a)<@ v (st(a)=2 A my(p)=my(a))]

A [dp(wk,r)=l]
A [dq(wk,rk>1 v (stq)=1 A rp#rq)]

It is easy to see that these additions to better and worse are

correct. First we note that

(aMzp A st(a)=2) D (st(p)=2 Amg (. y(p) = mog(p) (P

CA a,(uk,) = do(vk, r)) .

Therefore 3.7 can be extended to cover 4.1. As far as 3.9 is concerned,

the important thing is that the white king is always able to move to

L5

protect the rook and such a move will insure

dq(wk,r) < dp(wk,r) .

We note also that 4.1 can only be applied to finite number of times
(no more than 7) between applications of the formal definition of
better. 4.2 is correct because it does not interfere with 4.1 or the
formal definition of better. even when a tree search is required to
force a smaller quadrant.

In stage 3, the maximum length of the tree search is five, so it
is not necessary to change better. However considerable tree pruning
will be needed to make the tree manageable,

The checkmate position is illustrated by q5 in Figure 3.2, Before
the checkmate can be given, the white king must be in the square in-
dicated in 9z . Note d(wk,r) = 1 in the checkmate position. Now we
could have used dx(wk,r) as a measure in stage 3 but it leads to
considerable inaccuracy of play since only the indicated square, cf
all the séuares next to the rook square, is used for checkmate. We have
concentrated instead on tree pruning.

Although we do not use d(wk,r) as a measure, it is obvious that
we do not want to move the white king away from the rook. This one rule
will eliminate many king moves. However, the rock also contributes
many moves, some rook moves giving stage 2 positions and some stage 1,
The stage 2 moves can be eliminated, but sometimes a stage 1 rook move
is necessary. This case is illustrated by pbsition pl in Figure 4.4,
At this point the rook must make a "tempo" move., It must remain on the
QB file, so that the black king is forced to move into the corner.

However, there are six usable Squares on that file. We can limit the

Le

//'9'///////
//////
///////

No immediate successor position is better
é%% than Py r-QB6 is a desired move

f///////
;/7/////////%

//'"/// /// ////

After r-QB6, we have q. in stage 1. bk-Rl
é%& % %/ is the only legal move, énd then we can get
7 ////4

ZZ? checkmate. This rook move is needed for parity.
////’///////

_'7
/4/////7
//////%%

p* 1s an example of the longest tree search,
and the depth of this tree is 5 moves. Tt
is quite narrow, however. After pruning, the
remaining white moves are r-Q7, r-K7, r-QR8
and wk-Q7.

VA

R

V2
W

Figure 4.4. Examples of Stage 3.

k7

rook moves examined by insisting that the rook stay next to the white
king. In stage 5> we add to worse:
4.3 st(p)=3 A [st(q)=2 v (st(q)=1 A dq(wk,r)>1)

v (st(q)=3 A dq(wk,r)>1 A dq(wk,r)zdp(wk,r))]
4.3 is correct because again we have been careful not to eliminate all
paths to checkmate. Now the tree is narrow enough to manage., In Py
'fh(instance only four moves are left after pruning; in p¥* also four
moves aré left. Since very few moves are available to the black king
the tree remains quite narrow,.

Combining formulas h.l, 4.2 and 4.3 with the formal definitions

of better and worse we have:
better(p,q) = {(st(q)>st(p))
v (st(q)=st(p) A mst(q)(Q)<mst(q)(p))

v (st(p)=st(q)=2 A dq(wk,r)<dp(wk,r))] .

worse(p,q) = {st(q)=0 v (stla)=st(p) Am . y(p)<m ;. y(a))
v (st(p)=2 A [st(q)=1 v (st(q)=2 A m,(p)=m,(q))]
A dp(wk,r)=l
A [dq(wk,r)>1 v (st(q)=1 A rp#rq)])
v (st(p)=3 A [st(q)=2 v (st(q)=1 A dq(wk,r)>l)
v (st(a)=3 A dq(wk,r)>l
A dq(wk,r)zﬁp(wk,r))})] .

These are the functions actually used in the program.

Examples of Program Play

In order to prove that the program works we must give examples of

program play. The first example is taken from Figure 4,1. The program

L8

is started at the second move because it would make r -QR5 as its first

move, The reason for this difference will be discussed later.

The opening position is

1. r-@8

3, wk-Q6
L., wk-K6

5. wk-K5

7. wk-K4

8. r'-@

9. wk-Q4

10. ¥ -K3

11, wk-K&

bk -K5
bk -X6
bk -K5
bk -K6

bk -B6

bk -K7

bk -B7

bk -X7

bk -B7

bk -Kt7

bk -B7

in Figure 4.5. We have:

Py is a stage‘l position, there-
fore the first stage 2 position

generated is better.

The program has lost one move.

Now we have squad = 16. The white
moves 3 to 6 are chosen by a tree

search.

This is the same position as the
book's after move 8, White moves
7 and 8 are chosen in a tree

search,

The tree has depth 3, but this
oranch (moves 9 and 10) is only

depth 2.

LT T
//////////
//////////A
i
/////////////////A
////%////%

The opening position for the example is in
stage 1.

Pl

.
////
a, ggy A%y Zyé é%?

s
w7
n ///////é///

%%

m, W
. ' //////

The position after book move 13.

I// W //
/'///////// U
v 7. 7. //

/

////%

% f/

The rook and white king are in the position
after move 13 by the program.

&

4 /
,’; ;"
744

Figure 4.5. Illustrations of Examples of Program Play.

50

12. wk-B& bk -K+7
13, r-B3 Moves 9-12 are the same as the

book's, but now we differ.

bk -RT7
L, r-Kt3 We are now in stage 3; see
Figure 3.1 at move 7.
bk -R8
15. wk-B3 bk -R7
16. wk-Be bk -R8

17. r -R3 mate ‘

The program is playing very similarly to the book up to move 153.
It choses a better and not the best position at move 1, and then must
work hard to catch up to the book. It is in a better position after
move 6 than the book is after move 4 and is able to regain two moves,
At move 13 the book makes a move using a different strategy. Instead
of shrinking the quadrant it puts the king in check (see 9 in
Figure 4.5). If the black king goes to any square tut B8 the book
gives mate in two or three moves, but for the move to B8, four moves
are required. The program's move also requires four more moves to
checkmate, so it is really just as good as the book move.

Position o in Figure 4.5 is the starting position for this next

example. Py is the position which results if in the previous example

we have
l}' LAY bk -Kt8
14, wk-Kt3 bk -R8

51

15. r -B2 " r-Bl is checkmate, butr -B2 is
generated first and also gives a
better (stage 3) position.

bk-Kt8

16. r -B4 bk-R8

17. r -Bl Checkmate.

However, the order of moves can also be correct, If

13 wss bk-R8

4. r -B2 and two moves to checkmate. r-Kt3
alsc gives a better position, but
four moves would have been required
to mate.

The numbering of the program moves is one less then it should be
since the program started ai book move two. This means the prdgram

never recovered the move it lost at its first move,

Evaluation of Program Play

Now we can see that the program plays similarly to the books.
More important, it is using the same heuristics as the book's in most
cases. For example, the use of squad as a measure exactly models Fine's
book when it is concerned with cutting down the number of ranks and
files available to the black king (see the comment after move 4 in
Figure 4.1). Also both the program and the book use the white king
to protect the rook and to force the black king away from the rook so

a smaller quadrant can be formed.

52

The differences in program and book play that do occur illustrate
features of program play. These will be discussed in detail in
Chapter 7; only a list will be given here,

1. The goodness of program play is dependent on the order of move
generation (illustrated by the last two game examples).

2. The program will accept a move which gives a better position at
depth 1 even if an advantage would be gained by waiting until depth 2
to evaluate. This is the reason that the.program wWill not make book
move 1.

3. The program uses a single main heuristic inside a stage; it will
not switch heuristics until it reaches a new stage. This is th; reason
the program will not mske book move 13,

None of these features causes the program any serious difficulty. 1In
fact, the program plays this end game very well. If it can do as well

on other end games, we will be very satisfied with it.

23

CHAPTER 5

TWO BISHOPS AND KING AGATNST KING

This end game, while not difficult, is considerably harder to play
than the Rook end game, and the increase in difficulty is mirrored in
the program. The final definitions of better and worse are quite
complicated. As in the Rook game, the method of play used is a com-
posite of Fine [1944] and Capablanca [1935]. Figure 5.1 is the example
from Fine; Capablanca's method is given in Figure 5.6. Again Fine's
method is used to guide the first part of the game, while Capablanca's
is used in the final stages.

Two basic patterns are sufficient for the entire end gam:, The
first, as in the Rook end game, is concerned with confining the black
king to an area of the board. Uniike the rook, a bishop does not hold
an uncrossable line. However when two bishops are on adjacent diagonals
they together do hold such a line. Position Xy in Figure 5.2 illus-
trates this; the black king is confined to approximately half the
board. When the bishops are also on adjacent squares, the space avail-
able to the btlack king is even smaller, approximately a quarter of the
board. This is shown in positions X, and x3 in Figure 5'23, In
addition when the two bishops are on adjacent squares they may érotect
each other, as in X, - If not, as in x3 , then only one bishop is

open to attack, and there is only one square inside the area from which

the black king can attack it. Therefore it is fairly easy for the

Sh

In the previous cases it has always been sufficient to drive the
King to the edge of the board. Here, however, it is essential to have
the enemy King in a corner, for though mating positions in the center
are possible they cannot be forced. Any corner will do (unlike the
case with Bishop and Knight).

Beginning with any arbitrary position (see’
diagram No. 3) the first task is to reduce the
mobility of the Black King. Thus 1 B-B3, K—KO6;
2 B-B6, ¥-Q5. Now that the Bishops are as well
placed as possible the King must come up.

3 K-Kth, k-Q6; 4 B-K5, K—Kb6; 5 KB4, K—Q7; © B-
Q4, K-K7; 7 K-B3, K-BE (see diagram No. 3a);

8 B-B3, K—K8; 9 B-Kt2, K—K7; 10 B-B5 (a tempo
move: White cannot approach directly and loses
a move to compel Black to retreat), K—K8; 11 ¥K—
Q3, ¥Q8 (see diagram No. 3b). From this point
on the rest is quite simple: by successively
cutting off the squares to the right of Black he
is compelled to play into the corner. 12 B-Ktkh,
K-B8; 13 B-KB3, K—Kt7; 14 B-Ql (the King must not
be allowed to escape), K—BS8; 15 B-Rl, K-Kt8; 16 K—Q2, K=Kt7; 17 K-Ql,
K-Kt8; 18 B-B3, K—R7; 19 K—B?, K—R6; 20 B—KtS, K-R7; 21 B-Ktk, K—R8;

22 BQ3 (tempo move), K—R7; 23 B—thh, K-R8; 24 B—B3 mate.

No. 3

No. Za. Position after

No. 3b. Position after
Black's 7th Move.

Black's 11th Move.

| /,;, 7
7// %%y %?,/ v,
% Y /4//2%
/, /.,,@f,%
f// :: % Y ,/ 1 %
2N N / / 7.
_ ”’ o %%//
7 4 %*/ 7 A*/ %

Figure ,15- 1.

Example from Fine, p.

15-17. This method serves as a guide
for the first part of the game.

25

\ M

\

///,; /%%/%/////

///// /
" W /)
///////// /
////”////

////

/ 7
//, “y
g // /'////,

7 / 7
%’ //
{//// ///// 4 {///

When the two bishops are on adjacent diagonals
they confine the black king to approximately
half the board.

If in addition they are on adjacent squares
they confine the black king to approximately
a quarter of the board. In X, they also
protect each other.

2
Y // //
/% "’// // 7)
& s e viaon
_/9’ 4 7 However, the white bishop is open to attack
,/ 7 // / ian.
éV
07 i
//'///4’///~/’//
R ///“
Figure 5.2. Examples of Quadrants.

56

program to evaluate the danger of attack and decide how to prevent

it. For this reason, together with the advantage of confining the black
king to a small area, the program uses this configuration as its sole
pattern. In Fine, this pattern is combined with the one where the two
bishops are simply on adjacent diagonals. Capablanca does not describe
the middle part of this end game; however the part he describes is a
continuation of this method (see Figure 5.6).

Now when the bishops are side by side they keep the black king in
approximatel& a quarter of the board, so this area will be called a
quadrant. /Such an area will be recognized by function gggg(x) . In
order for the black king to be confined t¢ an area it must either be
inside the area or else possibly on the inner diagonal of the boundary
of the area. For example, in x3 in Figure 5.2, squares QR2, QKt3,
Q3, K2 and KBl may be acceptable positions for the black king, in
addition to the inside squares. We have

quad(x) = {the black king is inside the area formed by the two

adjacent bishops, or it is on the inner diagonal of
the boundary of the area}.
Note that the position of the white king is not considered in gquad.

It ic easy to define a size for a quadrant. The area in which
the black king is controlled by the bishops has the shape of a triangle,
and an edge of the board forms the side of the triangle opposite the
two bishops. Call this edge, edge(x) . Then

squad(x) = de(kb,,edge(x))+de(ab , edge(x)) .

Thus §355g(x2) =8 and ESEEQ(X5) =7 . (For definitions of basic
functions and notation, refer to Appendix A.)

o7

The fact that we intend to use Capablanca's method for the last
part of the game puts a restriction on the quadrants the program uses
in this stage (stage 2). Position Xy in Figure 5.3 is an example of

the start of Capablanca's method. Note that the quadrant in Xy contains
a corner. Now if we decrease the size of the quadrant indiscriminately

we may end up with the black king confined to a small area not contain-
ing a corner, as in X5 in Figure 5.3. Then we would have to use an’
intermediate heuristic to achieve Xy o Rather than do this we force

Xl to occur directly by only using quadrants containing corners.

Function hascorner(x) is true if the quadrant in x contains a

corner. This constraint makes it more difficult tor the program to

force a smaller quadrant, since often only one of the two immediately
smaller quadrants contains a corner. Position p in Figure 5.3 is an

example,

We now must consider whether quad and squad will satisfy conditions

3.7 and 3.9, For condition 3.7 we define

spec(x) = {some successor of the black king in x 1is not
inside the quadrant}.

Then for a quadrant to be accepted in q , §2§g(q) must be false, For
example, 9 in Figure 5.4 will be rightfully rejected by this condition;
after the black king moves to KB7 no white move can force it back into
the area. Requiring that EEEE(Q) be false insures that the black king
must move inside the quadrant, and any p with the black king inside
the quadran® will be accepted. Therefore rule 3.7 is satisfied.
Condition 3,9 presents more difficulty. First we must reject positions

like p, in Figure 5.4. 1In P, , only gb-@6 will form a quadrant, but

58

h // ///W}

| / / V
s
-, Y /z%

W

7
» //,’ 7
W//////”///’/ .
e [y ”// //// 7
m// //// "////
b e

%%

The quadrant in p has s ccrner. However,
of the two ways of forming a smaller quadrant,

only one, qb-QBS, produces a quadrant with
a corner.

%//M Y
"/;’ '// _

Vi W W W
///y ///

Figure 5.3.

29

////

o ///

/ V/
//// //////
,/,,// / //// W

/A The black king can move to KB7, giving p2 »

/ ,/ //
/;/////////////////

I// and no white move can contain the black king
/// ///// // in a quadrant of size 8.

Z // // /

/’ ?’
. // // Z/
// // / / / The white bishop has just moved from QB6
/// //; (squad = 9). Now squad(a;) = 8. The black
/ // king is controlled by the '?zhlte king and must

| / /4 /// move inside the quadrant.

/////f/

Figure 5.k.

60

this quadrant has size 9. If b, 15 considered to have a quadrant,
ther that gquadrant would have size 8. Therefore, if in p the black
king is on the boundary of the area, we insist that spec(p) be false
if the quadrant is to be accepted.

We have now eliminated any possibility of direct black escape from
the quadrant. However, we must consider whether white may be forced to
give up an advantage because of a black threat. Now black can only
threaten a bishop, and in a position like X, in Figure 5.2 the bi-hops
protect each other., Therefore we need only worry about a quadrant like
the one in x3 in Figure 5.2. A position x with a pattern like x5
can easily be recognized because ggggg(x) is odd. If this is true,
the quadrant is called a head quadrant, and ESEQ(X) is the square
containing the bishop closest to the black king., This bishop is referred
toc as the head bishop.

In the Rock end game we solved a similar prcblem by always insisting
that the white king be close to the vulnerable piece. Here things are
not so simple. In the Rook game the white king could assist in shrinking
the quadrant from a sguare next to the rook, but in this end game the
white king may have to move away from the head bishop in order to be of
use. For example in q3 in Figure 5.4 the king's bishop has just moved
from QB6; prior to this move the queen's bishop on black square QBS5 was
the head bishop, and the white king is four away from this bishop.

If in a head quadrant we can make a move into a smaller non-head
quadrant we have cancelled any threat the black king was making., If

either bishop could move to make a smaller quadrant, then if

61

d(bkq, head(q)) > 3 we would always be sure of formirg the non-head
quadrant in time. However, because of the corner condition, usuaily
only one bishop move is permitted. 1In this case the white king is the
only sure means of defending the head bishop. However, if at any point
we know we can form a smaller quadrant in time, we will take advantage
of that fact.

It is difficult to be sure that the white king can protect the
head bishop. 1In Q in Figure 5.5 we have |

d(wk head(ql)) = d(bkql, head(ql)) , but even so the white king

q;°

cannot protect the head bishop. Therefore in q we expect the condition
A(uk , head(q)) < a(vkg, head(q))

and in p

5l d(wkp, head(p)) < d(okp, head(p)) .

However these conditions are not even sufficient. Position p3 in

Figure 5.5 is an example. satisfies 5.1 but a bishop will have to

b5
move to form a larger quadrant because every white king move leaves
the head bishop unprotected. This condition can be recognized in the
position from which black moved to form p3 (position e in
Figure 5.5). Note that the white king position shown in %, and p5
is just one of many which are bad. The bad squares are: KKt3, KKth,
QB3, QB4+, KBS, and Q6. Also all squares more than two away from the
head bishop are bad. The remaining squares are good: they are KKt5,
KKt6, KKt7, KBS, KB7, K7, Q5, Q7, QB5, QB6, and QBT.

One final case remains to be considered, and it is illustrated by

position g in Figure 5.5. We have d(bkqh, head(qh)) =2 and

_ A /
e /////

7A

1% g%% ;

. m

M, .2 2
%///

7)
)

7 7
W, ﬁ, W,
////’////%m
///’////; WW///
’ % Uy

,/ ///,

///

/////%

’/%
W, M. % W
W%%%

7
W, /////y/
) //

//”/////W

////% //

1
//

’//
/%/f

dql(wk,qb) =3 = dql(bk,qb). However the

white king is unable to prevent the attack
on the head bishop since it will be blocked
by the black king.

Figure 5.5.

63

d(wth, EEEQ(qﬁ)> - 3 , but tne white king is still able tc protect the
head bishop. This is because the black king is in check, so it is
unable to use the direct attacking path (it needs twc moves to attack).
The fact that the black king is in check but there is a gquadrant, means
either the white king is guarding the boundary or the boundary is next
to an edge of the board. If the white king is guarding the boundary of
the area, we know that it cannot be prevented from protecting tne head
bishop. If the boundary is next to an edge, white will have no dif-
ficulty in forming a smaller quadrant, since we€ then know that either
bishop move will form a smaller quadrant containing a corner. So, if
the black king is in check in q , and d(bkq, head(q)) = 2 , we accept
q as long as d(wkq, head(q)) < 3 . The reason for going to all this
trouble is that this is a very common OCCUrrence, and if we do not make
the exception the program will essentially play from one non-head quad-
rant to another with only tree search in tetween. This makes the trees
tco long. Even so some perfectly sale positions will be rejected.

Let us formalize the conditions discussed in the preceding

paragraphs. A function badc is defined to recognize the situations

occurring in positions 4, and p3 of Figure 5.5. For aq, badc
is concerned with all positions with d(bkq? nead(q)) = 2 . Thus the
case of the black king in check is nandled in badc also. We have
safe(q) = {(squad(q) is even) V [d(bkq,t_l_eft_t}(Q))=2 A — badc(q)] Vv
[d(bkq,zgf;dg(q) }>2 A d(wk,head(q))<d(bk,head(a))]} .
Note that q with d(wkq,_&ga_gg_(q))=d(bkq,p_g_§g(q))=1 will satisfy safe.

In p , badc handles all positions with d(bkp,head(p)):l . We have

64

safe(p) = [(squad(p) is even) v (d(bk,head(p))=1 A - bade(p)) v

(a(vk ,head(p))>1 A d(uk ,head(p))<d(bk ,head(p)))] .

Now we can define the recognizer for stage 2:

goodquad(p) = {quad(p) A hascorner(p) A safe(p)}

goodquad(q) = {quad(q) A — spec(q) A hascorner(q) A safe(q)} .

goodquad and squad satisfy 5.7 and 3.9.

Stage 3

As explained previously the condition hascorner is used to insure
that stage 2 will evenftually fit in with Capablanca's method for the
end of the game. The example from Capablanca is given in Figure 5.6;
position Xy in Figure 5.3 "satisfies the same pattern as Capablanca's
position after white move 3. This is the point at which stage 5 should
start because now we will use different heuristics. If goodquad(x) ,
then squad(x)>6 indicates stage 2, while squad(x)=5 or 6 gives
stage 3. If §3&2§(x)<5 we allow the program to use tree search to
arrive at the larger quadrant of stage 3.

Position Py in Figure 5.7 is the position in Capablanca after
white move 3. Capablanca's strategy for this part of the game is to
move the white king up into one of the squares marked Xl, X2, or Y ,
or the square occupied by the black king. For the program, this has
been simplified. Only the squares marked X1 and X2 are used as
goal squares for the white king. When squad=6 , X1 is the goal
square. When squad=5 , either X1 or X2 is allowed; one of these
will be covered by a bishop. Since with squad=5 we have a head

quadrant, this is used only as a back-up for sguad=6 . It is needed

65

llow we come to two Bishops and King against King.

Since the Black King is in the corner, White can play 1 B3,
K—Kt2; 2 B-KKt5, K-B2; 3 B-BS5, and already the Black King is confined
to a few squares. If the Black King, in the original position, had
been in the center of the board, or away from the last row, White should
have advanced his King, and then, with the aid of his Bishops, restrict-
~d the Black King's movements to as few squares as possible.

We might now contimue: 3...K—KtZ2; L ¥~B2. 1In this ending the Black
Kinz must not only be driven to the edge of the bcard, but he must also
be forced into a corner, and, before a mate can be given, the White King
rust be brought to the sixth rank and, at the same time, in one of the
1-st two files; in this case either KR6, KKt6, KBT, KB8, and as KRE and
Z¥T¢ are the nearest squares, it is to either of these squares that the
King ought to go. H4...K™B2; 5 K=Kt3, K—Kt2; 6 K—R4, K-B2; T K-R>, K—Xt2;
8 B—Kt6, KXKtl; 9 K—R6, K—Bl. White must now mark time and move one of
the Bishops, so as to force the Black King to go back; 10 B—R5, K—XKtl;
1}, BX7, KRl. Now the White Bishop must take up a position from which
it can give check next move along the White diagonal, when the Black King
moves back to Ktl. 12 B—KKth, K—Xtl; 13 B—Kéch, K—Rlj; 14 B-B6 mate.

Figure 5.6. Example from Capablance, page 29-30. The program plays
almost exactly the same from White move L4 en.

66

‘ ?/, /
’//%’%/%m

7’//
// %% 7

o

W
/' ,//// ///’/// W
,,/ "f///, // """ /
% /'% m)

Y "

_ //4///2//2/23

,/, ,,//
U v Y

Figure 5.7. Examples of Stage 3.

67

in a position like Ps in Figure 5.7; the king's bishop moves to KKt6
which is really a tempo move (position d, in Figure 5.7).

The obvious measure for stage 3 is some kind of distance function
measuring the number of moves required for the white king to reach the
goal sguare. This function must .take account of obstructions (the
bishops) and tempo moves. The following function works well. First we
define, for position x in stage 3, functions sql(x) and sg2(x) .
Egi(x) contains the goal square like Xl in Py s and Egé(x) the other
goal square X2 . We use as a measure

max (d(wkx,s l(x)),d(wkx,ggg(x))) .

This function has a minimum value of 1; it will bring the white king up
to sql and sg2 , but will not select the actual goal square. When
a goal square is achieved, we will be in stage L.

We must consider the problem of satisfying conditions 3.7 and 3.9.
If goodquad holds we obviously have no problem, since no new difficulty
has been added. Actually goodquad is stronger than needed, since no
objection is raised now to moving from squad=5> to 59222;6 . But
there is no particular reason to remove this condition, and it tends

to prevent foolish bishop moves.

Stage b

Once the white king has actually moved into the goal square, the
position is in stage L. (Since st selects the highest stage there
is no conflict,) Three factors, recognized by function EEQE , are
used to determine stage 4. One is the position of the white king in a

goal square. In addition the black king must be confined to the edge

68

opposite the white king. This condition will always be satisfied if

we are coming from stage 3 and the white king is in the appropriate

goal square. If squad=6 and the white king is in sg2 , usually the
condition is not satisfied. Position 9 in Figure 5.8 is an example.
For the white king as shown, in §gl(ql), we have stage 4. If the white
king were in ggg(ql)=KR6 , the black king would be able to escape from
the edge (to KB2), so we would not have stage L. The third factor is
concerned with “he distance of the black king and all its legal successoOrs
from the corner closest to the white king. Let succ(x) be the set of

all successors to the black king in X . Let

succl(x) = succ(x) U bk if the black king is not in check
in x.
= succ(x) otherwise.

Let c(x) be the corner closest to the white king in x . Then let
dedge(x) = max({a(x,c(x))|resucel(x)})
and ggggg(x)gj is the condition used for stage L,
The reason for the choice of three as a limit comes from the fact
that this is the highest value which the ordinary entry through stage 3
will satisfy. Sometimes a starting position, like p5 in Figure -
will have.the white king in position and the black king confined to the
edge, but farther than three squares from the corner. Either a long
tree search or different heuristics would be required to handle such a
position if we called it stage 4. This is not worthwhile for such a

special case.

69

////

7 ////

7 ///m//
" ////////// m
/’///

/
///////// /// //A

/
/ /// //,///

/////////
/////////////,///

/
"

/,,,/
///////////,/

\

\

T . A

) ///// 2
//%@
Ui // il ///y

//// Il///

W
//%////,,///

Figure 5.8. Examples of Stage k4.

Py

70

The heuristic for this stage is to use the bishops to force the
black king into the corner. Checkmate can only be given in or next to
a corner in this game. dedge can be used to express this heuristic
and is the measur=z for stage L.

Again we must worry about satisfying conditions 3.7 and 3.9. The
difficulty arises from non-standard entries into stage 4. Consider
first q, in Figure 5.8. All conditions for stage 4 seem to be satis-
fi~d, but when the black king moves to K1 (position Py in Figure 5.8)
we no longer have a stage 4 position. To avoid such trouble we add
condition

deond(q) = {dedg.\4)<d(bk ,c(a)) v

(goodquad(q) A 5 < squad(g) < 6)}.

deond(p) = - badh(p)

This condition says that the black king is forced to move closer to the
corner; we only insist upon this when the entry is not from stage 3.
Conditigp dcond is sufficient to satisfy both rules 3.7 and 3.9,

sinc; there is no way in which the black king can force white to

abandon stage 4., Since the black king cannot be in check in p , we
know that if a bishop is preventing its escape from an edge. that bishop
must be bearing on the edge. Unless a bishop is blocked by the white
king, as in p, in Figure 5.8 (satisfying badk), white can maintain
stage 4., If the white king is preventing the black king from escaping,

the bishops have sufficient mobility to keep the advantage.

Formal Definitions of better and worse

Here are the definitions of the stages.

71

il

x € stage O {x 1is stalemate or x is a position with black to

move and black can take a piece in one move}.

x € stage 1 = {x is not in any other stage].

x € stage 2 = {goodquad(x) ~ squad(x) > 6},

x € stage 3 = {goodquad(x) A 5< squad(x) < 6 }.
x € stage 4 = {end2(x) A dcond(x)}.

x € stage 5 = {x is checkmate].

]

The measures are

m2(x) = squad(x) x € stage 2
mB(x) = max(d(wkx,EQQ(x)),d(wkx,ggg(x))) x € stage 3
mh(x) = dedge(x) X € stage 4
mi(x) = 0 i=0,1,5, x € stage i

An explanation is needed about the definition of stage O. There
are positijons p with white to move which are successors of some
Q€ Q, but pg P. They are all Like pesition D5 in Figure 5.9
which is a successor of position 9 in Figure 5.9. It is not
necessary to recognize q, asa member of stage O however. Since
position 9 is a stage 1 position, and since no position with white
to move is in stage C, 9 will never be accepted by better. Therefore

the program will work correctly with the present definition of stage O.

Changes to better and worse

Now that we have given the formal definitions of better and worse,
we consider what changes are needed to make the program practical. At
present a tree of at most depth 3 is required to move from stage 1 to

stage 2. This tree is very wide, but since it occurs at most once in

a game no changes have been made to stage 1 heuristics.

T2

T
,, W

1 7// /// - ’//A
’/’M ’//// ////

// /// //{%///1

/////

B
7// ’///%////7%

. ‘// i f///ﬂ
i ,/ .
i, /////

s ‘./,,f /

’/’, /’// ////)
% .', 4% %

Figure 5.9. Illegal Positions.

[

In stage 2, very long tree searches may be needed, up to a
maximum of depth 8. The wors® cases occur in non-head quadrants.
Freguently in such positions, tree search to a new non-head gquadrant
is required because of tne difficulty in being certain a head guadrant
is safe. For eiémple, in position Py in Figure 5.10 a tree of depth 5
is required to force a better position; in Py the tree has depth 7.
We will discuss heuristics for non-head quadrants first.

Obviocusly we would like to cut down on both the length and breadth
of the tree search, Unfortunately it is very difficult to define
heuristics to add to better which will work in all long trees. In
position Py s the moves wk-QB5 and wk-QB6 are equally gocod moves, and
either would be selected at depth 5. Both moves enable the white king
to guard the boundary of the quadrant, The move wk-QB6 satisfies
5.2 dq(wk,bk)<dp(wk,bk) AM(Q)<M(p)
where

dmin(x) = min(dx(wk,kb),dx(wk,qb)),
while wk-QB5 does not. When 5.2 is added to better it will cut the
tree search in Py (starting at level 2 of the original tree) to 4;
in Ps nothing is gained. In many positions, however, considerable
reduction in tree search is gained by this heuristic, and the maximum
tree depth is cut to 7 (position pz). 5.2 satisfies 3.7 because dmin
depends only on the positions of the white pieces. dmin also insures

that 5.2 will be applied only a finite number of times (no more than

i

fivé).

Now rule 5.2 will obviously fail if

T4

// /"7 W

W W
///’/////f//%/
4o //, W, W
%%//////w///
”/// %// //% %
% i

T
. e
o ///////j ///

"y f///, '@! o
i ///, e

% %

////////////

////// o

row
/// s
) s

///////////

7/// -~

7
7 / /
" //

Figure 5.10. Tree Pruning Heuristics for Non-Head Quadrants.

12

1. dp(wk,bk) =2 , of
2, dmin(p) =1
If these patterns hold in p , we must turn to tree pruning to make the
tree manageable, First, all movec leading to positions without quad-
rants can oe eliminated by rejecting q satisfying

badquad(g) = {= quad(q) Vv spec(q) Vv — hascorner{q) Vv

[(squad(a) is odd) A d(bk ,head(q))=2 A badc(a) 1} -

Bishop moves leading to larger quadrants are already eliminated; in
addition badquad eliminates some bishop moves leading to smaller
quadrants. Few bishop moves are left; these are the ones which hope-
fully will lead to either a legal head quadrant or a small non-head gquad-
rant in one more move.

badquad applies only to bishop moves; king moves must also be
eliminated. First we reject all king moves such that
o O iq(wk,bk)>dp(wk,bk) ;
We would also like to reject moves with

dmin(q)>dmin(p)

because although 5.2 is not a measure, since it is a predicate instead
of a function with integer values, it would be nice to use it like a
measure. However this condition is too stricti in 93 in Figure 5.10
for example, the move wk-QB5 must be permitted. The condition is

changed to

5.4 dmin(q)>2 A dmin(q)>dmin(p)

which works because when dmin(q)>2 we have almost no chance of forming
a better position with a head quadrant farther down in the tree, so it is

much harder to terminate the search.

76

When dp(wk,bk)>2 it is not always possible to move the white king
up to the black king. This is illustrated in Py, in Figure 5.10. 1In
P, the white king is needed on the side of the quadrant toward the
center of the board. If he goes there via KKt4, a tree of depth 8 will
be required to force better positions, while if he goes via K3 the tree
terminates at depth 6. In this case we have dp(wk, bk):dq(wk,bk) and
dmin{(q)=1 . We define .

5.9 dp(wk,bk):éq(wk,bk) A dp(wk,bk)>2 A dmin(q)>1
as our final heuristic for rejecting king moves in non-head gquadrants.

In head quadrants there is usually less difficulty in forcing a
better position since a non-head quadran. is automatically safe. 1In
general the tree searches are not as long as for head quadrants before
the addition of 5.2; a depth less than four is average. Position Py
in Figure 5.11 is an example; this position may occur after the tree
search from position Py in Figure 5.10., A tree of depth 2 is required
and the first move should be any white king move but wk-K5 or wk-K6.
The heuristic added to better for non-head quadrants does not apply and
this is true in general for head quadrants. Since the trees are of
manageable length no changes have been made to better.

Slightly different heuristics are used for tree pruning for head
quadrants than for non-head quadrants. badquad is replaced by the
stronger condition that only legal stage 2 positions are permitted for
q . This rule eliminates king as well as bishop moves. Other king
moves are rejected by
5.6 dmin(g)>1 A (dq(wk,bk)>dp(wk,bk)

v [dq(wk,bk):dp(wk,bk) A dp(wk,bk)>2]) .

17

%7/’///////7////'////
1/’///// ///,
il i //// ’//
W // /////
%? 442z

i el W
AW ///// W

/; .ﬁﬁ? %%; 4%7
////@ o M //// .
,/ W,
1 W %_

W
/)

Figure 5.11. Examples of Head Quadrants.

78

In head gquadrants it may actually be necessary to move the white king

away from the black king., This is shown in position Py in Figure 5.11,

It is essential to move the white king to QB3 at this point; the move

is similar to the cne made in D), in Figure 5.10. A tree of depth 5

is needed from p, . The correct move is permitted since dmin(q)=1 .
Summing up the additional heuristics in stage 2, we add to better

5.7 st(p)=st(q)=2 A (squad(p) is even) A dq(wk,bk)<dp(wk,bk)

A dmin{q)<dmin(p) .

We add to y_g_x;s_e
5.8 st(p)=2 A [(st(a)=1 A [(squad(p) is odd) Vv badquad(q)])
v (st(a)=2 A m,(p)=m,(a) A cutk(p,q))]
where
cutk(p,q) = {[(squad(q) is even) A(dq(wk,bk)>dp(wk,bk)
v {dq(wk,bk):dp(wk,bk) A dmin(q)>1
A dp(wk,bk)>2]

v [dmin(g)>2 A dmin(q)>dmin(p)])] v

[(squad(p) is odd) A dmin(gq)>1 A
(d_(wk,bk)>d (wk,bk)
q p

v [dp(wk,bk)z‘dq(wk,bk) A dp(wk,bk)>2])]}

combines the king move heuristics 5.3, 5.4, 5.5, and 5.6.
In stage 3, the formal definitions work very well, Considerable

tree pruning car be gained by adding to worse
5.9 st(p)=3 A st(q)<3 ,
which will not eliminate all paths to better positions. The tree
searches have a maximum length of 3, and with the addition of 5.8, a

width of no more than three moves at any level,

79

In stage 4 we are also doing fine as far es tree length is concerned
since the tree will only have a depth of 2. We add
5.10 st(p)=k A st(q)<t A - end2(q)
to worse; even with 5.9 the tree is quite wide but this is not serious
since it is so short.

Combining 5.7, 5.8, 5.9 and 5.10 with the formal definitions of

better and worse we have

better(p,a) = {st(a)l>st(p) v [st(a)=st(p) A m_(s(a)<my, y(p)]
v [st(p)=st(q)=2 A (squad(p) is even) A

dq(wk,bk)<dp(wk,bk) A dmin(q)<dmin(p)l} .

worse(p,q) = {st(a)=0 v [st(q)=st(p) A mst(p)(p)mst(p)<q”

v [st(p)=2 A

([st(a)=1 A ((squad(p) is odd) v badquad(q))]

v [st(a)=2 A m,(p)=my(a) A cutk(p,q)])]
v [s:(p)=3 A st(q)<3]
v [st(p)=k A st(q)<4 A - end2(q)l} -

These are the functions used by the program.

Examples of Program Play

Our first example will illustrate how the program plays the last
part of the game. We will start with the position occurring after
black move 3 in Capablanca's example (Figure 5.€). This position is
the same as Py in Figure 5.7 except that the black king is in KKt2.
The program would not make the same first moves as are given in
Capablanca because a search of depth 5 has been made while the program

will use a depth 2 tree. We have

L, wk-@2 This move gives mj(q)<m3(p),
put it is not as good as the book

move wk-KB2.

bk-KB2
5. wk-K> bk-KKt2
6. wk-KBH+ bk-KB2
7. wk-KKth We have lost one move.
bk-KKt1
8. wk-KRS Moves 7 and 8 are found by a tree
search of depth 2.
bk-KKt2
9. Kb-KKt6 bk-KKt2
10. wk-KR6 Again by a tree search of depth 2.
bk-KBl
11. gb-KB6 bk-KKt1
12, ab-KT7 Again a tree of depth 2. The
program's move 11 is just as good
as the book's move 10 (it is a tempo
move).
bk-KR1
13, kb-KB> bk-KKt1l
14. kb-K6 ch. bk-KR1

15. qb-KB6 mate.
This example shows that the program plays the last part of the game

very well. Its only mistake is move 4 and this is not serious.

81

Qur next example is taken from Fine (Figure 5.1). Our starting
pusition, Py in Figure 5.12, occurs after black move 2. The program
will make different initial moves than the book because of the order of

in Figure 5.12 would result). We have

move generation (position Ps
3, wk-QKt6 This move is rnot nearly as good as
the book move or wk-QKt5. Move
generation is at fault again.
bk-Q6
L, kb-Q5 We are now playing differently
from the book.
bk-K6
5. wk-QBT7 bk-Q5
6. wk-QB6 bk-K6
T. wk-Q7 We need the king on the other side
of the quadrant.
bk-Q5
8. wk-K6 bk-K6
9. wk-K5 bk-KBT
10. wk-KBh bk-KKt 6
11. wk-KKt3 Condi'.ion dcond prevents the program
from accepting the position at this
point (q_:6 in Figure 5.12) as better.
bk-KBS
12. ab-QB5 Moves 5-~12 are found by a tree

search of depth 8. The black moves

are on the longest branch.

82

.,
/////// W //

pl | ////'&// / Position Py is the start of the second

// /// %// //// example of program play.
"/// oW

/ . ////

"

. W
| ///, Wl | |

P, ¢ /// ,/ The program arrives at p2 af'ter twc moves

'/// //// / from the initisal positionin Figure .1,

72 ///// 'y

//// /// v///// //%
7 %
/%// , , / / 4; occurs after program move 11; end2(qﬁ)

LV _Q.// ’/// s true but dcond(qsz) is false, which prevent
» m;g/////// /////// i rue bu cond(qz s false, whic revents

the program from accepting q5 as better.

///4 0
A 4// ,,:'.’

Figure 5.12. Examples of Program Play.

83

bk-K7

13. wk-KBh4 bk-Q6

14, wk-KB3 bk-QBF

15. wk-K4 bk-Q7

16, kb-QBh Moves 13 through 16 form a branch

| of length 4 in a tree of depth 6,

bk-K8

17. wk-K3 bk-G8

18. qb-QKth We are now in stage 3.
bk-QBT

19, wk-Qh bk-QB8

20, wk-QB3 bk-Q8

21. wk-QKt3

Move 21 gives a stage 4 position, and the play from this point on is
essentially identical to the first example. Five more moves are
required to mate. This means that the program uses 24 moves to reach
checkmate from p, in Figure 5.12, while the book uses 22. Therefore
the program is playing quite well in spite of the interference caused
by bad mcve generation. The moves selected for black vary from ones
which present white with maximum difficulty (for example, black
moves 4 through 11) to medium difficulty (black moves 12 through 15).
Similar kinds of black moves are given in the book. The program would
require about 28 moves to reach checkmate from p, , so for the entire
example, it uses six more moves than the book.

The only place where the program is likely to have difficulty in

this example is with the tree of depth 8 (moves 5 through 12).

84

Fortunately this tree is very narrow. Since the position at the
beginning of the tree has a head quadrant, most black moves allow
white to form a better position immediately. There is one other main
branch in the tree (wk-QB5); this branch would terminate at depth 9.
This tree provides an illustration of the necessity of allawing the
white king to move away from the black king. Generally trees from
head quadrants are short (for example, moves 17 and 18); the one
exception occurs when the presence of the white king is required on
the other side of the quadrant, as in this tree.

One lasfﬁexample is given to illustrate some remarks made about
non-head quadrants. We begin with position py in Figure 5.10.
1. wk-K3 The white king is taking the

shortest route to the other side

of the quadrant.

bk-K3
2. wk-Q4 bk-Q2
3. wk-Q5 bk-QBl
L., wk-QB6 bk-Q1
5. kb-KB5 We have not yet reached a better
position because the white king is
too far away from the head bishop.
bk-K2

€. wk-Q5
Now we have reached a better position. At move 6, gb-KKt5 would give
a smaller non-head quadrant, but unfortunately this move was not

generated soon enough,

85

Evaluation of Program Play

The program is playing adequately, and the comments made at the
end of Chapter 4 can be applied to this game also. We merely note
that a second-best move in this geme hurts the program more. Since
the game is harder, more precision is required for good play.

The program play is very close to book play in the last part of
the game. This is not true in the first part. However, the method

used in the first part was suggested by the book and works well.

CHAPTER 6

BISHOP, KNIGHT AND KING AGAINST KING

This end game is one of the most difficult of the classical
endings. When 1t is discussed in the chess books, it is broken into
two main parts. The first part of the game consists in forcing the
black king to an edge. Since the mate can only be given in (or next to)
a corner of the same color as the bishop (the black corner in this
discussion since we will assume that white has the queen's bishop), we
expect to finish the first part with the black king in the corner of
opposite color to the bishop (the white corner). Then the second part
consists in forcing the black king down the edge to the corner where
mate can be given.

While the method of play used by the program in the second part of
the game agrees exactly with the books, in the first part we are forced
to provide our OWL neuristics. There are two reasons for this. First,
the books only give a 1imited example of this part of the game; the
program must be able to handle all black king moves, not just those that
are most likely. And although books do make some attempt to explain how
to play, the procedures described are too local in nature to be used
directly. Figure 6.1 is taken from Fine [194k4]; the two patterns
described are quite powerful, and in his example very conveniently the
white pieces are in a position to make constructive use of them. However
these patterns are useful in general only when embedded in some global

heuristic.

87

In order to drive the enemy King back to the edge of the bcard
White must make use of two typical positions (see diagram No. 5). In
the first - 5A - all the points leading towards the center are inac-
cessible to tne Black King and he cannot maintain the status quo; he
must retreat. In the second - 5B - the two pieces are cooperating
beautifully. Black's King can do nothing better than mark time and
as soon as the White King comes up he will have to give way. The
important feature in No. 5B is that the two pieces are diagonally
adjacent to one another, for it is because of this fact that they
cover SO many squarese.

Starting from some arbitrary position such as No. 6 the most
effective continuation would 1 Kt—B3 (No. 5B), ¥-Q3; 2 B-B6 (No. 5A),
K—K%; 3 K-B5, K-K2; 4 K—Q5, K-Bl. Black is well advised to go to the

o« 5. Driving the Black
King Back.

st “mem m
AN B

i, W3
//////
////4,7////////
B

«srong corner, for that is the only way in which he can hold out for
any appreciable time. 5 K—K6, K-Kt2; 6 Kt—K5, K-Bl; 7 K-B6, ¥K—Ktl;
8 Kt=Kt(, KR2; 9 BQ5, K-R3; 10 B—Kt8 and now we have position No. 4
since the fact that Black will be chased along the file rather than
along the rank makes no difference.

4////

W, ’/;/

/,/
., M, M
%/W/

Figure 6.1. Example from Fine, pages 18-20.

88

Stage 0]

Stage O as usual contains the various illegal positions which in
this end game compr =c quite a large ° . Iy contalr positioms in which
the black king can take a piece in two moves as well as the usual loss
in one move. Since immediate loss or stalemate is obvious we concen-
trate on describing the other kind of stage O position.

In order to be sure that we discover all illegal positions we
consider how such positions might occur. First, suppose the black king
can attack only one of the bishop and knight. Since the bishop has so
much mobility, it will be able to escape the black king unless its path
is blocked by the knight. Therefore the knight is also under attack,
and this case will be discussed later. The knight does not have as much
mobility as the bishop and in fact is open to attack if it is in a
corner. Examples are shown in q, and q, of Figure 6.2. To avoid
having to recognize positions like ql and 9% (and distinguish them
from similar positions in which white 1is able to protect the knight) we
assign all positions in which the knight is in the corner to stage 1,
which in this game proceeds the catch-all stage. This insures that the
program w%ll move the knight out of a corner if it is in one in a starting
position, and will never accept such a position as better.

It is also possible for the black king to attack the knight and
bishop at the samé time. The attack must come in one move or white
will be able to avoid it., We haxe‘

dq(kt,qb)_<_2 A dq(bk,qb)_<_2 A dq(bk,kt)ge .

(The reader should refer to Appendix A for definitions of basic functions

and notation.) We also assume that neither the knight nor the bishop is

89

(}l

\N

4q)

7

W,

“wi we
'

7 /// 7
/ //// % // ,' After bk—KKt2, white will be unable to

//////////
%//Az///

avoid losing the knight.

‘2,//

’/7/

/// // ///
// // / /// After bk—QKt2, white will be unzble to

///////

////,,//

%V A%C avoid losing the knight.

///@’//// W //
o

7 //

/
7/

W

////
////////,,&@

Figure 6.2.

WW

7
//////7//
//‘“//

%//

After bk—Ql4, white will be unable to
avoid loss of a piece.

e
/Z%%j/

//// / /
/ After bk—Ql, white will be unable to

9/ /9/ avoid loss of a piece.
,,

Examples of positions in which black can take a piece in

two moves. Positions g, and q, are in stage 0, but g
3 b 1
and q, are in stage 1.

90

susceptible to being taken immediately. If dq(qb,kt):? , there is only
one configuration of knight and bishop which permits such an attack. It
is illustrated in q_5 in Figure 6.2. If the black king instead were

on K4, K5 or QB5 he could alsc move to attack both pieces. 1In q5 the
knight is on a white square, and corsequently is bearing on a black
square. This means that it is not able to move to protect the bishop,
and also the bishop cam tpossibly move to protect it. Since the black
king will threaten both the bishop and the knight, it is not possible to
simply move a piece out of danger. Therefore, the white king is white's
only means of defense., If the white kingz is next to either piece the
loss can be avoided. Also, if the white king can come to the aid of

the knight no loss will occur since the knight protects the bishop.

So we will lose a piece if

dq(wk,qb)>l A dq(wk,kt)>2 ,

If dq(kt,qb):l we have several cases to consider, First we have
positions like q, in Figure 6.2 in which the knight is on a white
square., The black king could also be on Q3 or QB3 and be able to move
to attack the pieces. Such a position is similar to the previous case,
but in 9, the knight does not protect the bishop, so the white king
must be able to move to protect both pieces if loss is to be avoided.
Therefore

dq(wk, gb)>2 v dq(wk, kt)>2
implies a piece will certainly be lost. In addition, even if this
condition is not satisfied white may still lose a piece since %the move
black makes to attack may block the white protecting move. This would
happen in q, if the white king were on QB6.

91

Positions q, and q, of Figure 6.3 are examples of dq(kt,qb):l
with the knight on a black square. In such positions the bishop is pro-
tecting the knight. If the bishop were not on ar edge, it would be able
to retreat from the black attack and continue to protect the knight. If
in q; or aq, we had dq(wk,qb):l , then the white king would prevent
the black king from moving into the attacking square. Also not all the
squares two away from the bishop are forbidden to the black king; for
example in ql only from squares Q6, K6, and KB6 can the black king
force the loss of a white piece. As usual, we do not worry about
dq(wk,qb)>2 since we will handle that through stage 1. All of the
various cases of positions two black moves away from the loss of a
piece will be recognized by function badpos(q) .

In the positions shown in Figure 6.2 and also in q and 9, in
Figure 6.3 the black king causes difficulty for white by attacking
pieces. It is also possible for black to combine a threat of stalemate
with an attack on a piece. Position q3 in Figure 6.3 is an example.
There is no danger that this position would be chosen by better in some

later stage. Therefore it is not necessary to recognize it.

Stage 1

As mentioned during the discussion of stage 0, stage 1 is inserted
before the catch-all stage because this is a way of using simple tests
to avoid a lot of pattern recognition. Stage 1 contains all positions
with the knight in a corner and also all positions where

dp(wk,qb)>dp(bk,qb)+1

dq(wk,qb)xq(bk,qb)

n

(15

Figure 6.3.
in two moves.

%\

///%/////
/////////

I W

// ///////
,///M////
////////ﬁ///

,//4
/////////////M
////////

Z
///////////////////A
W, M,

////%/%////%/%

L// @.
/é/’////
%/f///////////
/%/,////
V/f//////
///,4///}9///
%////%

If the black king moves tc K7, white will
lose either the knight or the bishop.

If the black king moves to KKtl, then white
will lose the bishop.

~fter the black king moves to KKtl, white
will either lose the bishop or give a
stalemate.

More examples of positions in which black can force a draw
Position g, and qg are in stage O; position g, would never
be accepted as better, so we nee

not worry about recogniziné it.

@

provided such positions are not already in stage O. All of these
conditions are recognized by function stagel.

There are many positions p which are not in stage 1 but all of
whose successors are. In such a p the black king is attacking the
knight and white must move the knight away to protect ig; It may then
happen that the black king is closer to the bishop than the white king. is,
.giviné a q in stage 1. We will not worry about recognizing either p
or a q which preceeds this p Dbecause the strategy in the later
stages is equipped to handle such & p . Therefore p remains in the
stage it should be in (generally stage 2), and we do not break rule

%.7 although we do violate rule 3.9.

Stage 2

Since stage 1 has other uses, stage 2 is the catch-all stage whose
presence is recognized by the absence of all other stages. Position 6
in Figure 3.1 is in stage 2. A measure will be given for this stage.
This measure is based on the statement in Capablanca [1935] which says
that we should begin this end game "by advancing the king to the center
of the boa.rd“.3 One result of following this rule is that the program
will move wk-QB6 or wk-QB5 in position 6 in Figure 6.1. There are four
squares in the center of the board; they are @4, Q5, K4, K5. So we

define as our measure for stage 2 the function

dcent(x) = min (d(wk_,sq)) , &= {Q4, @5, Kk, K5}
sgeS

There is no difficulty in showing that rule 3.7 holds for dcent,

since this function depends only on the position of the white pieces,

We do expect to break rule 3.9 occasionally by having all su:cessors to

5. Page 109.
g4

some p be in stage 1. To use dcent as a measure in worse, we must be
sure that it is never necessary to move the white king away from the
center of the board, Although the black king can move into a position

p which would be in stage 0 if it were a position with black to move,
white will always be able to aveid stage O without moving the white king
away from the center. £ince this p .is in stage 2, we know that the
knight is not in a corner, and dp(wk,qb)gdp(bk,qb)+l . An example of
such a position is given in Py in Figure 6.4, We will avoid the loss
of a piece by moving the white king to K4 and then the knight to KB3.

2% is representative of such stage 2 positions; if it is not possible
to move the knight immediately, there will be a king move which will
enable us to move the knight and protect the bishop on the next move.
This king move will generally give a position q in stage 1; the point
is, it is not necessary to allow the white king to move away from the
center (such a move would probably give a stage 2 position). Therefore

we can use dcent as a measure,

Stage 3

The positions in stage 3 have a definite pattern dependent on
recognizing that the black king i:z contained in a certain area of the
board. A size s can be assigned to this area and as usual we will
attempt to shrink s . However s cannot be used as a measure, It can
be used like a measure in better; that is

st(p)=st(a)=3 A s(p)>s(a)
will mean that q is better than p . But s cannot be used in worse

because in a few cases this part of worse

95 ’

3]

1

"2

o]

///

///,,/////

///,//// ’/// ///

’///
/////

/

e
b /////
SN

éé'/
. M\ %

7,

/% ,
7 ////
’//////

7

"////
7

W
4/ W, e

z///"yy

////,

9

Py in is stege 2, and dcent(pl) = O. There-

fore wk—KBY4, the only move giving a stage 2
position, will be rejected since dcenu(q)
However, wk—Ki, which sives a stage ce 1)051t13n,
will permit kt—KB3 on the next move, thus
avoiding the loss of a piece.

One corner of the board corresponds to the
right angle of the area triangle. The size
of that area is marked at the corner.

The black king is inside areas of size 5 and C.

y

Figure 6.bk.

st(p)=st(a)=3 A s{p)<s(q)
would eliminate the only move(s) which the program must make to proceed
correctly. When this happens, it is because the pattern recognition on
q 1is not sufficient to define the real value of s(q) . Since such
violetions occur infrequently it is of course possible to add pattern
recognition to assign the proper value to the offending q . However
this approach is not taken. First of all, the pattern recognition would
have to be extremely detailed to define s(q) correctly and it is not
worthwhile to do all this analysis. As long as s(q) is never smaller
than it should be we can be sure the program will not accept q for the
wrong reasons. Also s satisfies rule 3.7; once a q has been accepted,
we know that for any p which follows from it by one black move,
either p 1is in a higher stage than q or if p is in stage 3 then
s(p)<s(q) . Therefore the program will be able to proceed consistently
even if s(p) is larger than it should be.

Second is the fact that throughout stage 3> we are liable to break
rule 3.9, generally by having all successors to a p in stage 3 in a
lower stage, and when worse is occasionally incorrect this is only a
special case of the overall problem. As explaired in Chapter 3, rule 3.9
is useful but not necessary, and in this end game the amount of pattern
recognition required to satisfy rule 3.9 is not worthwhile,

Briefly, the reason for the violation of rule 3.9 is the following.
In the preceding games the black king could escape from an area in at
most one way, but in this game the black king will be able to escape
from the area defined for stage 3 in many different ways. Some of these

will force a larger area and sO must be prevented, but the majority will

g

put black in a poor position from which he must retreat or white will be
able to ultimately "confine" the black king to a smaller area of the
board. “Confine" is put in quotes here because of course the same kind
of escape may be available to black in the smaller area. White should
take advantage of such moves; the problem is that the smaller area may
not be recognized right away, and in the meantime we may break rule 3.9.

First let us see what kind of area we can use to define stage 3.

We must partvition the board globally or we might not be consistent in
our evaluation of successive positions (satisfy rule 3.7). Therefore,
the bishop must be the primary piece involved in defining the area,

since it is the only white piece which can hold a line through the

entire board. In this game we will deal with halves rather than quarters
of the board. For any bishop position there are two diagonals, and each
diagonal defines areas on both its sides. Therefore there are four
different areas to consider. (If the bishop is in a corner there are
only three.)

We assign a size to each area in a very simple way. An area is a
right triangle in shape with the hypotenense the bishop diagonal. It
may be necessary to extend the board to complete the triangle. The
other two sides are edges of the board; call them edgel(x) and edge2(x) .
Then the size of the area is
6.1 de(ab,,edgel(x))+de(ab ,edge2(x)) ,
for de as defined in Appendix A. Xy in Figure 6.4 provides an illus-
tration of areas. For the bishop diagonal as drawn, the area above the

diagonal has size 5, and the area below has size G. The other diagonal

98

defines areas of sizes 6 and 8. 1In stage 3 we are only interested in
areas of size less than or equal to 6.

So far we have only discussed how to assign a size to an area. We
have not said which area is used to represent a position. Making this
decision is a complicated procedure. As explained before, the black king
will have many points of escape from an area in this game, We do not
want to block all escapes but only th?se which would force a larger
area. However we must satisfy rulg 5;%;”}To accomplish this we insist
that an area in q holds if a{é/bﬂé“suééessors of the black king are
in it, while in p we recognize the area if it contains the black king.
Then we can be sure that after one black move the program will be able
to see the same area which it used as the basis for accepting q .

Now suppose the black king is placed on the board. The black king
is necessarily inside one area, and sometimes inside two. For example,
in X, in Figure 6.&, the black king is in an area of size 5 and an
area of size 6. We must decide which of these areas to use., Obviously
we want (1) to assign the smaller area if possible and (2) to be sure
the black king cannot escape from the assigned area into a larger one.

We have already stated that the black king cannot escape in one move in

q ; however it may be able to escape in two moves in q and consequently
in one move in p . Since it is difficult to calculate whether the knight
can be brought into position to block an escape, we rely mainly on the
white king,

The way we decide about an area is as follows. First we use the

position of the black king relative to the bishop to propose an area,

99

This condition is different for positions p and q . To do this we
define a function which selects areas: B

area(x,C) = (the area on the board whose right angle is corner C).
For any area & , c(a) produces the corner which is the right angle

fOf a . Now we define

gg(sq,a):Qg(sq,fileedge(c(a)))+§g(sq,rankedge(c(a)))
where sq is some square On the board, and fileedge and rankedge
produce the appropriate rank and file containing c(a) . Then

size(x,a)=de(ab,, 2)
is the correct defiﬁitien of the size of the area and agrees with 6.1
This function dc is basic to the kind of area with which we are concerned
because it has the same value for any square on & diagonal parallel to
the boundary of the area. We can also use it %o determine where a
square 54 is with respect to an area a by

locaticn(x, sq,a)=size(x, a)-dc(sq,a) .
If location(x,sa,a) is positive then sg is inside a ; if it is
zero sq is on the boundary of a and if it is negative sq 1is
outside a . locatiocn is also used to tell how far the diagonal con-
taining the square is from the boundary.

Let EEEE(X) be the seht of syuares to which the black king can
legally move in x . Now we can define for area &

inside(q,a) = [1ocation(bkq?a)z 0 A

yr(resucc(q) > 1location(r,a)>0)]

inside(p,a) = 1ocation(bkp,a)>0

The definition of inside for q insures that the black king must move

inside the area, and this will then be recognized by inside for p .

100

Once an area has satisfied inside we are ready to make further
tests on the positions of the white king and bishop. First we insist
that the bishop be placed toward the center of the boundary of the area.
Recall that any bishop position on the boundary of a given area will

produce the same value for size. The conditinn is

bpos(x,a) = [a(ab ,c(a))<(size(x,a)-2)] .

The reason for this condition is that when the bishop is placed towerd
the center of the boundary it is easier for white to form a smaller area
and also to control the black king if he tries to escape. If
size(x,a)<t , no squares would satisfy bpos and in fact areas of size
less than 4 are not used.

If the bishop is in an acceptable position, the program will examine
the position of the white king and its relationship to the bishop and
black king. First the white king must be outside the area, i.e.,

location(x,wk ,a)<0 .

Also we always have

6.2 dx(wk,qb)_<_2

and the white king must be close enough to the bishop to protect it;
otherwise we would be in stage 1. The final condition on the white
king position is

kpos(x,a) = (d(sk ,c(a))<size(x,a))
which says that the white king must be fairly centrally located. These
conditions are illustrated in Figure 6.5. In X, and x5 all possible
squares satisfying Kkpos and location will also satisfy 6.2, but some
squares may be eliminated in Xg - Summing up all the conditions

stated so far, we have

101

-

// // // W
Y %/
/4,,” ’A/ ///
//WW 'f////
// W, /// 7

W
/// = .{//// I

7

/K';,W/K///
i, 1. ////
/// /f///’//

%, 0, /_,
é// ///’ ///” /
13 //
% / // /
5/// / / .

s ” ;;4
;4/

\

\\

\
%
:\&

’ 7

\\\\\‘x

\\
AN

7

’,, // // /

7 ’,“ﬁ Z
w2y
%Y

AR
\\%\\

/

$§§
RN
\\§

Figure 6.5.

Legal squares for the bishop are marked B
the white king they are marked K.

102

>

for

safe(x,a) = {inside(x,a) A location(x,wkx,a)<0 A
bpos(x,a) A kpos(x,a) A d_(wk,bb)<2} .

These conditions are correct as far as they go, but we have not
paid any attention to the knight. Actually we want to use the knight
to help force a smaller area, but when the knight is not being used it
possibly will be a hindrance. There are three ways in which the knight
can interfere: it can block the white king or bishop, or it zan force
white to lose a move by being open to black attack. Examples of the
three different types of interference are shown in Figure €.6. All of
these cxamples could arise as the result of one black move from a
position gq which has an area satisfying safe. None of the kinds of
knight interference shown in Figure 6.6 is bad since white can always
either maintain the same area or find a smaller one very shortly.
Therefore there is no reason to forbid the kind of interference shown
in these three positions.

We do want to forbid certain kinds of knight interference however.
We use the same guiding principal for eliminating knignt positions as
we have all along; we cannot allow the black king to force a larger area.
There are two kinds of bad knight positions. These are shown in qy
and Py in Figure 6.7. 1In both cases the black king will be able to
attack the knight in one move and thus escape toward the center of the
board. Even so white has no trouble controlling the escape when the
bishop satisfies

a(ab, e(2))< size(x,a)-3 ,
because this insures that the white king will be able to block the
escape (since in q it is protecting the bishop). The patterns shown

103

Ty
e n%"

"

pl %/ / // %//A The knight is bloclf::ing the white king.
M. M //// Y »
% / // /// /%

| / 7

7 ’/ *'/

_/,// 2 //////
Py 47 27 The knight is blocking the bishop.
/,//,//// /'// 7

The knight is being attacked.

Figure 6.6. Examples of Knight Interference.

104

4//,
W, M //// M
W
//’/// //////’//////

//////”/
,"///’// ////
A///////”/////

7
U, //// 2 ////
, A /
//W/
/// '///// e |

//////////////
W ’///
////////f////%

/ ’/////

///’/////,//"///
’//////

W WP

/ //%V;; // 47

//
// //

////
//////////

Figure 6.7.

If the black king moves to K it will then
-

be able to escape.

Black can escape by first moving to K.
-

This position is essentially the same as
result of bk—K5 in ql .

If the white king were in K3 the escape
could be blocked

Forbidden Knight Interference.

105

the

in q, and q, are the only bad ones in q (with minor variations)

and are recognized by
badkt(q,a) = {dq(kt,qb)=§ A dq(bk,qb):l A dq(bk,kt):Q
d(qbq,c(a))z size(q,a)-3 A location(q,ktq,a)=2
v {Llocation(q,bk v a)=0 A loca* i_qg-’q,ktq.,.??? 3},
More pattern recognition is required in p because we must be prepared
for bad initial positions as well as results of one move from a ¢
satisfying badkt . Position pﬁr and p, are examples. Both these
positions cannot possibly have come in one black move from a position in
which the area of the appropriate size was recognized. We have
badkt(p,a) = {loseknight(p) A locatio;(r,bkp,a) =1
A location(p,ktp:t
A[(dp(wk,bk)=5 A d(bkp,c(a)):i) v
(dp(wk,bk):h A d(bkp,c(a)):h A
location(p,wkp,a):*T)]) .
There remains one more knight condition to define. This case occurs

only in areas of size 4, and is illustrated by 9 and Py in Figure 6.8,

In o the black king is able to escape from the area because the only
move to block the escape, wk-Ké, gives stalemate. Py is a successor
to ql . We recognize this pattern by

badhk(p,a) = {size(p,a)=t A 1ocation(p,ktp,a)=3
A 1ocation(p,bkp,a)=l A dp(bk,kt):j}

badk(q,2)

n

(size(q,a)=" A location(q,ktq,a):}
A d(bkq,c(a))=e} :
Now we can give a complete descrfption of the conditions which an

area must satisfy to be acceptable, We combine.safe, badkt and badh into

106

Ssh

///////@
’//
'////////

////// //////////1
//// / ///%

/
W, M
///// /’//////@//////

ey
/f/////////

/////’///
////////////
%%%

ﬁ/%%/
4,,////
/////’//Z/
7. 7 %
//////
%%%@

q, satisfies function badlk. If the black
king moves to K1 (position p2) white must
permit him to escape from the area.

X is an example of a stage 4 position.

Figure 6.8.

107

goodarea(x,a} = (safe(x,a) A — badkt(-,a) A — badk(x,2a)} .
It is possible that more than one area in 2 position will satisTy
goaéarea. s will be the size of the sme -st such area. Let C be
a set containiné the four corners of the ird. Then we have

s(x) = min({size(x,2a) | 3 c(ceC A a= ea(¢c) A goodarea(x,a))} U (15}) .
if no good area exists in x,s(x):lS and x is in stage 2; otherwise

s(x)<15 and x is in stege 3.

Stage L

This stage is designed to be intermediate between stages > and >.
It is possible for the program to move irco stage 5 (or even stage 6)
directly. However, if black plays the best defense he will move toward
the white corner and in that case the prczram will need stage 4 for at
least two moves.

Position %y in Figure 6.8 is in stage 4. The black king is
confined to the edge and completely controlled by the bishop and king.
Function revcorngos(x) recognizes the pattern of these three pieces.
Obviously revcornpos satisfies 3.7 and 3.9.

It is the position of the knight wh_.ch determine; that stage U
rather than stage 5 holds. The bishop and king maintain control of the

black king until the knight is in a posiuion for stage 2

Stage 5

Stage 5 controls the forcing of the black king down the_edge of the
board toward the corner where mate can te given. The play of the
pieces in this stage must be very precise, The program follows closely
the example from Capablanca [1935] giver in Figure 6.9; it is interesting

108

The second and last part will consist in
driving the Black King now from QR8 to QR1 or

AZZ ﬁ/ KRS in order to mate him. GRl1 will be the
/%VJ 9/ zy 6/ gquickest in this position
I//// /// 7/// 10. Kt—Ktébch K-R2

V// 11. B-BY K-R3
/// /// //// ///// 12. B-Kt8 K—RL
///// ////, /// /// 13. Kt—Q5 K-R5

Black tries to make for KRl with his King.
White has two ways to prevent that, one by

14 B-K5, K—Kt6; 15 Kt—K3, and the other which
I give as text, and which I consider better for the student to learn, Le-
cause it is more methodical and more in accord with the spirit of all
these endings, by using the King as much as possible.

14. K-B5! K=Kt6
15. Kt—Kth K—B6
16. B-B4 K—Kt6
17. B-K5 K—R5
18. K-Bh K=RU
19. B-B7ch K-RS
20. Kt—Q3 K—RO
21. B-Ktb K-R5
22. Kt—Kt2ch K=RE
23, K-B? K=R7
24h. K-B2 K—RE
25. B-BSch ¥K-RT7
26. Kt—Q3 KRE
27. B-Kth K—R7
28. Kt—~Blch K-RE

29. B-B? mate

It will te seen that the ending is rather laborious. There are two out-

standing features: the close following by the King, and the controlling
of the squares of opposite color to the Bishop by the combined action of
the Knight and King. The student would do well to exercise himself
methodically in this ending, as it gives a very good idea of the actual
power of the pieces, and it requires foresight in order to accomplish the
mate within the fifty moves which are granted by the rules.

Figure 6.9. Example from Capublanca, pages 110 and 111.

109

to note that this example is almost identical to the description of
this part of the end game in all the other chessbooks we have examined.

During the play of this part of the game the white pieces must
keep the black king close to the edge, and at the same time must force
it toward the black corner. To simplify the pattern recognition, we
limit the definitions, only recognizing enough positions to make the
stage playable. Stage 5 will not contain all the positions occurring
after white moves in Figure 6.9. As in stage 3, we will violate rule
3.9, but in this stage we can define a usable measure.

First of all we look for an edge e which satisfies the following
predicates. Let Elg(e) be the black corner on edge € . Then we have
6.3 de(bk ,e)=0 .

6.4 gg(wkx,e)=2 A (3< E(wkx,b_lc_(e))g) .

6.5 de(qb_,e)f2 v d(qb_,ble(e))>d(wk ,blc(e))) .

Rule 6.3 says that the black king must be on the edge. Rule 6.k says
that the white king must be on the file/rank two away from the edge

and also limits its position on that file or rank. For example if e

is the QRfile, then the white king must be on the QBfile in one of the
following squares: /B2, QB3, QB4+, QB5, QB6. Rule 6.5 prevents the
bishop from interfer ng with the movement of the white king down this
file.

It is relativel easy to use the bishop and white king correctly
in this game; the knight is a more difficult piece to control. For
example the knight is the only piece which can be used to deny the black

king a white square on the edge. If it is used to deny the black king a

110

{

black square on edge it probably will not be available for its correct
use when it is needed. We adopt the following stringent condition:

6.6 (onblack(kt.x) A _(_iﬁ(ktx,e)=l) v (— onblack(ktx) A _d_e_(ktx,e)=5) .
Function onblack(sg) is true if the square sq is black. 6.6 allows
the knight to bear only on white squares on the edge, and only on black
squares on the file/rank next to the edge. One result of this is that
we will be sure the white king is actually being used (once functions

conf and el are defined) since it is the only piece which can bear on

white squares in the file/rank next to the edge., Let function
eposs(x,e) be true if rules 6.% through 6.6 are satisfied.

In addition to rule 6.6, we also must be sure that the knight is
close enough to the black king to be used effectively. First we must
define a new distance function f{(sql,qu) which equals the difference
in files between sgl and sg2 plus the difference in ranks between
sql and sqg2 . For example in p, in Figure 6.10, ggpl(bk,kt)=h :

Then we have, for edge e

LI}

ktpos(p,e) {{onblack(ktp) A §£P(bk,kt)§2] Y
[— onblack(kt) A fr (bk,kt <5}
—'_____(P) ""P(’))
ktpos(g,e) = {[onblack(ktq) A dq(wk,kt)g_dq(bk,kt)
A d(bkq,blc(e))-25d(ktq,b1c(e))gd(bkq,blc(e))ﬂ]
v [onblack(ktq) A fr (bk,kt)=31) .
This condition, for the knight on a black square, prevents the knight
from denying white edge squares to the black king from a position above

the black king, because in that case the knight could not be used on

the next move to keep the black king confined to the edge. The part

111

of ktpos which says dq(wk,kt)gdq(bk,kt) prevents the bishop from
being used when the white king should be.

o far we have defined the relationships between the white pieces,
but wehave not said exactly how they should control the black king.
There are two parts to this control. First the black king must be
prevented from escaping from the edge. A small escape may occur, as
in black moves 14-16 in Figure 6.9, but we must be sure no larger
escape is possible. For EESE(X) the set containing the legal succes-

sors of the black king in x , we have

conf(p,e) = yr[resuce(p) o (de(r,e)=0 Vv gg(bkp,r)=2)]

conf(q,e) vr{resuce(q) D de(r,e)=0] .

conf is only concerned with the squares labeled X1, X2 and X3 in Py
in Figure 6.10. In q both squares are denied to the black king in
p only X2 is denjed.

The control of squares X3, X4, X5 and X6 is measured by
function el . The function determines the amount of control the white
pieces have on the black king from above. To define el , we need
function Qgg{i(x,x) which is true if the white pieces in x bear on
square X , or if X is not on the board. In the following definition
XN stands for a function with arguments (position,edge,N) which
produces the appropriate square, Or NIL if the square is off the board.
onblack(NIL)=NIL . The following definition assumes that conf is

satisfied. We have

112

-,
g
-l

i,
= N ~.

xs 7 7
////// /////////// g_;(pl,Q,Rfile) = 2 and dedge(p,) = 5.

Kt=QKtlh will give a q with dedge(q) = 4.

%
’///////
//////////////

W, M “w //, //, | "
////// ///’////// /// el(p, ,QRfile) = O and dedge(p,) = 4.

’/ 7
i // ///,/ {g//////// qu—QB7 will give a q with dEQE(q) = 3.
///

/ "W W
/////’/////////

//,'///// 7 ///

// Jy // Positions p3 and p), are not accepted

o'cY
*//// f///,//

/// //// /// by stage 5.

,'// W
//////////////%////

/%//

/// ”//,/ /////

Figure 6.10. Examples for Stage 5.

113

1
o

el(p,e) if [bears(p,Xt) A (onblack(X3) Vv bears(p,X3))] .

-1 if [- bears(p,X4) A pears(p,X3)
A bears(p,X6) A (bears(p,X5) v onblack(X5))] .
-2 if [bears(p,Xs) A bears(p,X3) A - bears(p,X6)
A (pbears(p,X5) Vv onblack(X5))]
= 3 otherwise.
el(q,e)= 0 if [bears(q,X¥)] .
=1 if [- bears(qg,X4) A bears(q,X6)
A (onblack(X5) v bears(q,X5))] .
- 2 if [bears(g,X5) A - bears(q,X4)
A — bears(q,X6)! .
= 3 otherwise.
g&(x,e)<§ means sufficient control from above exists in X . Combining
this with conf, we have in g that the black king must be confined to
the edge. In p it cannot escape the edge into X2 , the square next
to its present position; rule 3.9, may be violatéd at this point., If
it can escape above, the escape square must be black. This is necessary
+n accomodate a position like the one in Figure 6.9 after black move 18.
A white square off the edge is not permitted io the black king, even in
two moves. Only the white king can control such a square. Values of
el are given in Figure 6.10 for positions p, and p, -

Finally there are two positions p which satisfy all the conditions
given so far, but cannot be handled by-the ordinary rules. They are
i}lustrated by Py and p, in Figure 6.10. The problem is one of
parity; if identical positions to p3 and P), occurred farther down

on the same edge, the bishop would be able to make a move while

114

continuing to bear on the same edge square, We recognize p3 and Dy,
by badedge(p,e) , and badedge(q,e) = false for all q .
Now we can give a complete definition of a good edge. Let E be

a set containing the four edges of the board. Then we have

edge(x) = e if [e€E A eposs(x,e) A ktpos(x,e) A conf(x,e)
A el(x,e)<3 A — badedge(x,e)] .

NIL if no such e exists.

A position x is in stage 5 if edge(x) is not null.

Next we define a measure for stage 5. This is an indicator of how
much access the black king has to the white corner. For p we can use
d(bkp,glgﬂgggg(p)))+gl(p,gg§g(p)) . TFor q we must make some adjust-

ments in this formula. We define

adj(g,e) = -1 if [el(q,e)=0 A
(the black king is in check in q)l .
= +1 if [el(q,e)=2 A onblack(bkq) A —1onblack(ktq)] ;
= 0 otherwise,
adj(p,e) = O

Then we have

dedge(x)=a(vk , edge(x)) +el(x, edge(x))+adj(x, edge(x))
and dedge is a measure for stage 5. For example in Py in Figure 6.10,
edge(p,)= GRfile and dedge(p)=5 . Only kt-QKtd will give a q in
stage 5, and ggggg(q)=h . Therefore this g will be accepted by
better. For either black king move in this gq , we will get a p with
dedge(p)=k . p, in Figure 6.10 is one of these successOrs. In p,,
wk-QB5 and gb-X3 give positions in stage 5 with ggggg;h ; however
qb-QB7 will give dedge=3 .

| 115

It is not difficult to show that edge and dedge satisfy rule 3.7.
For edge, the only condition which presents any difficulty is el and
the value of el determines dedge. We must consider cases. If
el(q,e)=0 , then the black king must move toward the black corner,
giving gl(p,e):O or 1 , depending on whether the black king was in
check in q . In either case dedge(p) = dedge(q) . If el(qg,e)=1
and the black king moves down the edge then there is no problem and
El(p,e)=2 ; if the black king moves away from the black corner, we have
a position like p, in Figure 6.10, with el(p,e)=0 . There is no
danger that a white square off the edge and above is available to the
black king in p , because this is expressly forbidden in q . Again
we have ggggg(p)=§§§§g(q) . If el(g,e)=2 , we must have a position
like q, ©or 9 in Figure 6.11. The black king can move down only

in q, and we will obviously get el(p,e)=2 and dedge(p)<dedge(a) ;

if the black king moves up in q We will get el(p,e)=l or 2
depending on adj(q) . In 4, with adg(ql)=l , we get el(p,e)=2 ,
while in 4, , with adj(q2)=0 , we get el(p,e)=1 . In either case

dedge(q)=dedge(p) . Therefore all of rule 3.7 is satisfied.

We cannot hcpe to satisfy rule 3.9 because sometimes a p will
ﬁavé all successors in a lower stage. For example this occurs aftef
black move 13 in Figure 6.9. As explained before, this is not critical
to the working of the program. The reason we can use dedge as a
measure in this stage is because there is no error in the evaluation

of dedge, and if dedge(q)>ded§e(p) , there really has been a loss of

control.

116

Py

| //
W% %
/’.../? ////

7
'

/'}

7
/7/W

%1%

//
% 7
//V %/
% y %

.
0 W
//////'////

y

W

M

/ ;9¢ z%féy

B ////// ///

m V V
%/W W/%

"5

/

"

W:%f%

///,/;;/'
/// ///// 7//

ms ﬂ

,,4/
//%/

7
///////

M

m

////‘7/

7
/ 7
W%@Wh /:

%,,

W

Y
/%

7

E_J-_(Cil,Q,Rfile) = 2 and dedge(ql) = 5,

g;(qQ,Q,Rfile) = 2 and degge(qg) = b,

For stage 6, the bishop must be in a square
marked X , and the black king in a square
marked Y; the white king must be as shown.
The p031t10n of the knight is not important.

kt—QB4 preserves the area and protects the
bishop. However, d (wk,qb) >4 (bk,qb),

so q is in stage 1.

Figure 6.11.

117

Stage 6

Stage 6 is similar to stage 4 in that the white king and bishop
control the black king, while the knight is maneuvered intoc position
for the next stage (checkmate). Position X in Figure 6.11 is an
example of a stage 6 position. The relative positions of the white
king and bishop and the black king are recognized ty cornerEos(x) :

Obviously, cornerpos satisfies 3.7 and 3.9.

Formal Definitions of better and worse

Now we can give the definitions of stages and measures. The

stages are

x € stage O = {(x is a position with black to move) A
[(x is stalemate) V (the black king can take a piece

in one move in x) V badpos(x)]}.

x € stage 1 = stagel (x) .

x € stage 2 = (- stagel(x) A s(x) = 15} .
x € stage 3 = {— stagel(x) A s(x) <15} .
x € stage 4 = revcornpos(x) .

x € stage 5 = edge(x)

x € stage 6 = cornerpos(x)

x 1is checkmate.

x € stage 7

The measures are

ma(x) = decent(x) x € stage 2.
m5(x) = dedge(x) x € stage 5.
mi(x)=0 x € stage i, 1 =0, 1, 3, 4, 6, 7

118

Additions to better and werse

The formal definition of better is grossly inadequate only in
stage 3. In the other stages additions may be needed in worse. No
changes will be made in stage 1 since it is very short.

In stage 2 when 22323(p)>0 we ordinarily expect a tree search
of no more than depth 2. If the tree search is longer, this will mean
we are moving the knight out of danger and so the tree will be quite
narrow. When ggggg(p)zo the tree may be deeper, since several moves
may be required to establish s(q)<15 . We can eliminate many bishop
moves by
6.7 st(p)=2 A st(a)<@ A ab fab N d (uk,qb)>2 A (dcent(p)=0 v st(q)=2) .
6.7 is defined for all values of dcent(p) because when dcent(p)>0 ,
we are not interested in bishop moves except to protect the bishop.
There will always be time to make these protective moves without
violating 6.7 because if there were not, we would be in stage 1.

Stage 3 may require more than 20 moves. We immediately add to
better
6.8 st(p)=st(a)=3 A s(a)<s(p)
because as previously noted the difficulty with s as a measure
involves worse (it violates rule 3.9 but satisfies rule 3.7 which is
the critical one for better). However even with 6.8, more than ten
moves may be needed to force a smaller area. Both the length and the
breadth of the tree search must be decreased. In the following dis-
cussicn ar(s(x)) gives the area for which s is the size.

-We can eliminate many moves by adding to worse

119

6.9 (st(p)=3 A st(q)<3
A (dq (wk,qb)>2 v [st{q)=1 A — ktspec(p,q)])]
where
ktspec(p,q)= {dp(kt,qb)=l A 1ocation(p,ktp,5£(s(p)})=o
A losebishop(p) A dp(wk,kt)zl A fﬁp(Wk,gb):j
A wkp:wkq A qbp:qbq A —~onblack(ktq)} .
ktspec recognizes a position like Py in Figure 6.11. All moves but
kt-QB4+ will be rejected at depth 1 since either we would have a d' in
stage 0, or dq(wk,qb}>2 . The last three requirements of ktspec
eliminate moves farther down in the tree.
6.9 does not provide sufficient pruning to permit the program to
handle a tree of depth 10. We can shorten the tree by considering how
'Ehe program must move to force a smaller area, It does this by co-

ordinating the action of the three pieces. We recognize certain of the

patterns involged by means of function v defined for x in stage 3.

We have
v(x) = 1 if - ktvi(x)
=3 if ktvl(x) A - ktve(x)
=5 if ktvli(x) A ktva(x)
where
ktvl(x) = {1ocation(x,ktx,5£(s(x)))=-2
A d(kt_,c(ar(s(x))))=s(x))
ktve{x) = ([s(x)=k A dx(wk,kt)>1}

v [s(xp>b A dx(qb,kt)=5 A dx(wk,kt)=5

A dx(wk,qb)=1]} .

120

Figure ©.12 gives examples of v=5 and v=5 , for s=5 . We can use
v by adding to better
6.10 st(p)=st(a)=3 A s{a)=s(p) A v(gp>v(p) -

6.10 cuts down the depth of tree search in almost all cases to a
maximum of 6. This meximum is exceeded when the black king is able to
escape from the area in p . This escape will either result in a
smaller area, or will quickly be blocked. In the latter case, the moves
used to block the escape must be added to the moves required to increase
the value of v . DPosition 95 in Figure 6.12 is an example; a tree
of depth 8 is required. We can reduce this as follows. We define
function poss(p) which is true if the black king can escape in one
move from p . Then
6.11 st(p)=st(a)=3 A s(p)=s(a) A poss(p) A ktposs(p,a)
can be added to better. Function ktposs handles a position like P,
in Figure 6.12. If the program simply accepted any Q in stage >
with the same size area, then it would accept one with the knight still
on the boundary of the area, sO the whole tree would have to be repeated.
ktposs yill reject such a q .

Thé addition of 6.11 to better insures a maximum depth of 6 for
trees in stage 3. Considerable pruning will be needed befcre the
program can handle these trees. As an'aid to pruning we introduce
function §l‘ for positions gq in stage 2. s1(q) is the size of the
smallest area a in which
6.12 inside(g,a) A — badkt(q,2a) A — badk(g,a)

holds. sl(q)=15 if no area in g satisfies 6.12. If s(q)=15 ard

121

L

W/ i, 77
/‘7///" V//
W /%//

g «ff/ly
"/

,27

/*
W, N /,.
e

., ., W
W, é{/;/////////

// / A
....... %//@

/ /
*y V// /.

/

i
//// y ,///%//

%7 «7/ %%

V) ﬂ%’ /57 ﬁwZ

s(pl) = 5) v(pl = 3'
ing part of the boundary of thd’area, which

The knight is guard-

frees the king so it can force a smaller are=.

\
\
\

\
(pp) = 5, ¥(py) = 5.
forging on the part of the boundary away
froﬁ\the knight.
\

The king must do the

s(pi) =5 and v(ps) = 1. White must move
the knight (to QB4) and the black king can
If the

king were in K6, it would be unable to later

escape to QKt6. EOSS(P5) is true.

block the escape and the position would be

in stage 2.

s(ph) = 5 and v(ph) =1 and EOSS(Pu)- If
after wk—Q5 and bk—QKt3, then wk—K5, the
resulting q will be rejected by ktposs.

Figure 6.12.

122

s1(q)<6 , this means either Dbpos or kpos failed for the area. One
possibility is that s1(q)=3 (bpos cannot be satisfied in this case).

When st(q)=2 , we look et sl(q) . If sl(q)<s(p) either white
is blocking an escape by forcing a smaller area, in which case
sl(q)=s(p)-1 , or white is trying to make a smaller area by moving the
bishop toward the corner, giving sl(q)=s(p)-2 . Often such a move is
wasted because the black king will easily escape. When s(p)=4 we
eliminate both kinds of moves; in addition we reject the second kind
when sl(gq)=3 wunless v(p)=5 (in this case.it is an infterim move to
stage 4). We also eliminate positions with unlikely king locations.
We reject all positions satisfying

badsmall(p,q) = (s(p)=k v [=(p)=sl(q)+2 A

([sl(q)=3 A v(p)<5] Vv location(p,wkq?§£(S(P)))%1
vd(wkq,c(_ag(s(p))))*?r)‘?

We divide the remainder of the discussion of 53(p)=3 into two
parts: v(p)=1 and v(p)>1 . For v(p)>1 , we can be very concise in
our description of bad moves. When v(p)=3 we refuse all moves such
that
6.15 (s(a)=s(p) A v(q)=1) v (st(a)=2 A si(a)>s(p)) .

We permit st(q)=2 only if sl(q)=s(p) . This occurs when the white
king has moved into the area to try to force a smeller area without the
aid of the knight. Positiun p. in Figure 6.13% is an example of a
place where such a move should be made. Again this kind of move will
often be wasted since the black king can easily escape. We reject all

such q satisfying

123

el

', %/

7

////////

’/ I/ ‘/. /3
‘ / /[/
,ﬁ % / / / wk—QB6 is the best move, and on the next
% W ’//, move, qb—QB7 will give stage L. ‘

ﬁ

W, T, T, T

// W %% fff
When v(p) = 5, it is time to move the white
., klng inside the arez to the square indicated
:/ /)
,/é% 7 in p,. s(pe) = 15, but sl(pe) = 5.
Wi
/"’ ?
/ 7

./
_/‘.4
/,

s(ps) = 4 and v(p,s) = 5. The knight moves
to Q5; on the next move, it may go to K7

giving q, -

V)
/’ //{;

s_t_(qh) = 4 and g(qh) = 15. We are almost

in stage 5, but need to move the bishop.

Figure 6.13.

12k

trysmall(p,q) = [qbp#qbq v location(p,wkq,gg(s(p)))%1
v [dq(wk,bk):s(p)-5 A (dq(wk,{b)x
v location(p,bkq,gg(s(p)))<s(p)-1)]
v d (uk,bk)>s(p)-k v [dq(wk,,bk)=s(p)-1+
A lgggziga(p,bkq,gz(S(p)))<S(p)-?3} .
For example, if in Py the black king were in QR3, the white move wk-QB6
would be rejected by trysmall.
when v(p)=5 , the tree is fairly long, up to depth 6. First, we
introduce a rule similar to 6.13. q will be worse than p 1
6.14 (s(a)=s(p) A v(a)=3) Vv (st(a)=2 A si(aP>s(p)) -
We can decide what other moves to reject.by considering how the
program should play. We want to move the white king inside the area to

form a position like in Figure 6.13. The knight is protecting the

P2
boundary of the area, so we need not worry that the black king will
escape when we do this, Sometimes it will be necessary to move the
knight before the king move can:be made, This knight move is a tempo
move; it must satisfy
ktmove(p,q) = {ktp:ktq v [dq(wk,bk):E A
(s(pplt A location(p,ktq,gg(s(p))):-1
A d(ktq,c(§£(S(P))))=S(P)‘2) v
(s(p)=k A location(p,ktq,gg(s(p)))=0
v [location(p,ktq,ﬁi(s(p)))=-5 A
d(ktq,c(_ag(s(p))))%t 1}

when s(p)>4 , only one knight move is permitted. 1In p, this is the
move kt-Q5. When s(p)=4 an additional knight move must be allowed
owing to the peculiarities of stage 5. Positions p5 and q, in

125

Figure 6.13 are examples. One result of the second knight move is
that 6.14 must be amended so that a position like q, will not be
rejected (Ei(qh)>k) . Instead of 6.14 we have

((s(a)=s(p) A v(q)=3) v (st(a)=2 A sl(q)>s(p)

Als(ppb v ktp:ktq V - ktmove(p,q)]1)} .

In addition to the knight, the bishop makes a tempo move. p, in
Figure 6.13 is an example. However we can limit the number of bishop
moves allowed by refusing those satisfying

(ab fab, A ld(ab ,qb)>1 v 4 (wk,bk)>2 v bpos(a,ar(s(p)))]) .
Finally we can reject many king moves (and an occasional bishop move)
by

badkmove(p,g,10) = {lo<-1 Vv 1lo>1 v [1lo<l A (dq(wk,bk)>2

v qbp;‘q_bq v [lo=-1 A wkp%wkq])}},
where

lo=location(p,wkq?g£(s(p))) .

We combine all these conditions for v(p)>1 , excepting s(q)<s(p) or
sl(q)<s(p) in

check3b(p,q) = ((st(q)=2 A s1(a)>s(p) A [s(pP>k v v(p)<5

v ktp:ktq vV — ktmove(p,q)])
v (v(p)=3 A [st(a)=3 A v(q)=1]
v [st(q)=2 A sl(q)=s(p) A trymove(p,q)])
v (v(p)=5 A [st(a)=3 v s1(q)=s(p)]
A [ktmove(p,q) v (st(q)=3 A v(q)=3) v

badkmove(p,q,1ogation(p,wkquz(s(p))))])}

e

When v(p)=1 white does not have much control. All knight moves

must be permitted except those giving stage O or stage 1. When
126

s(q)=s(p) , we Hﬁmit the number of moves somewhat by
s(a)=s(p) /}dq(wk,bkbd(wkp,bkq) "
st(q)=2 or s(q)>s(p) is only permissible when the black king is
able to escape from the area in p . Position p, in Figure 6.1k is
an example. Then gq 1is an intermediate position on a branch of the
tree leading either to a smaller area or vhe same area under better
control. We canl limit moves by
(= poss(p) v - kpos(q,ar(s(p))) v d (wk,bk)>d (uk,bk)
v locatlon(p,wk ,ar(s(p)))>-1} .
We combine conditions for v(p)=1 excepting s(q)<s(p) or
sl(q)<s(p) in ' S
check3a(p,q) = ((st(a)=3 A s(q)=s(p) A d (wk’ bk)>d_(uk,bk))
v (st(a)=2 A sl(q)=s(p) A rzsmall(p,q))
v ([(st{a)=3 A s(a)>s(p)) Vv (st(a)=2 A s1(a)>s(p))]
A [s(p)=k v qbp#qbq v — poss(p)
v - kpos(q,ar(s(p))) v dqﬁwk,bk)>dp(wk,bk)
v location(p,wkq,gg(s(p)))>-1])} :
The heuristics for p in stage 3> in worse are
check3(p,q) = (5t(a)<3 A [dq(wk,qb)>2 v
(st(a)=1 A — M#Bpec(p,q)) V ‘ ;
(st(a)=2 A Sl(q)<8(p) A baml%(p,q)) v
/ ([(st(a)=3 A S(q)>8(pb) v ‘(;_(q)—?’—’ A s1(q)>s(p))]
A [(v(p)>3 A check3b(p,q)) V
(v(p)=1 A check3a(p,q))1) 1] . -

In better we add 6.8, 6.10 and 6.11.

127 i

’ 7 /é i
o, 5 W, W,
’// .
,%, 7
,J

///
%ﬁ' A Ay

‘7//,7/¢////
//4%/%

P2 4//%
N //
/////%%

///%//////

Y. 7 U T
Y // %
s i
> %,

/// th,,

/// /é% .

s(pl) = 5, but when wk—Q5 we will have
s(q) = 6 . We permit this move.

d (wk, bk) < d_ (wk, bk) and poss(p.).
q Py 1

This position is at the head of the major

tree search in stage S(depth 7). kt—=Q5 is
the only move on the first level.

This position occurs down in the tree
from Py after 2 white and 2 black moves.
%t=QKtls is the only move permitted.

Figure 6.1k.

128

In stage 4 ordinarily a tree of depth 2 will be required to reach
stage 5 because we expect to enter stage 4 from stage 3 with the knight
appropriately placed for s=5 . However we may occasionally have
stage 4 in a starting position or egter it from s=5 before the knight
is put in position. 1In such a case a tree search of up to depth 5 may
occur, Since the whole point of stage 4 is that the white king and
bishop can control the black king without moving, allowing white to
bring the knight into play, we can easily reduce the breadth of the
tree search by adding to worse:

st(p)=h A st(q)<s

¥
-

Then trees in stage 4 will be almost all knight moves-

In stage 5 tree searches are very short except for the one black
attempt to escape from the edge (movés 14-16 in Figure 6.9), when a
tree of depth 7 is required, 2 in Figure 6.14% is the position at
the head of the tree., We first of all eliminate all positions q with
EE(q)fE . Before proceeding further we must be able to recognize the
edge e even in positions where the black king is not on an edge.

We look for q in stage 2 such that, for e=edge(p)

kcond(q,e) = (eposs(g,e) A [E(bkq,8)=0 A el(q,e)<3
A d(bk ,bk(e))<3 A keonda(g,e)]
v [igcfbk,ebo A d(bkq,p_l_c(e))gz A kcondb(qg,e)]}
where
kconda(g,e) = g-_q(bk,ktks A (M(bkq) v gq(wk,bk)d&)
and .
kcondb(q,e) = {dq(wk,bk)g A([gg(bkq,e)=1 A
vr(resucc(q) > [de(r,e)<@ v §£(“kq:r)=2])]
v [de(bk ,e)=2 A Vr(resucc(q) > de(r,e)=1)])} .

129

1

b

f

These conditions insure that the white pieces remain in the proper
locations for stage 5. In addition, they are soO stringent that they
often prevent the many bishop moves (the bishop is the least constrained
piece in stage 5) simply because one of the other pieces has to move.
Positions p, and Ps in Figure 6.14 are examples. In p, , only
kt-Q5 will be permitted and in py only kt-QKtk. In fact the effect
of'these rules is to reduce the tree to almost one branch., Occasionally
a few bishop moves will be considered but they areﬂdown in the tree
where they do not do much harm. Since the tree hasnonly one branch we
could décide on many of- the moves without tree searcﬁ. Howéver handling
them\thragéh tree search enables the program to avoid extra pattern
recognition of the pﬁsitions with white to move which would result

from such positions. Summing up these rules, we add to worse

(st(p)=5 A st(a)<5 A (st(a)#2 v — keond(q,edge(p)))} -

Stage 67is similar to stage 4, and we immediately add to worse

st(p)=6 A st(a)<6 .

{
j

However this may permit four bishop moves at every level in-addition %o

all the knight moves, and although usually the tree is only of depth 3
or 4, it mé;‘be longer. We must allow one bishop move for parity, but
we éliminate ali others by insisting that they satisfy
beorner(p,q) = {dq(Qb,Wk)<3
(dp(qb,wk)=2 A dq(qb,wk)=5)] ;
Combining the formal definitions of better and worse with the

Lk . TR
véilous additions we have

130

better(p,a) = (st(p)<et(a) v [st(p)-zt(a) A m oo sla)smy,(y(p)]
v [st(p)=3 A (s(a)<s(p) Vv
[s(q)=s(p) A (v(a)>v(p) v poss(p))])]]
worse(p,a) = (st(q)=0 v (st(p)=st(a) A ms_t(p)(q)mﬂ(p)(p))

[st(a)< st(p) A

((st(p)=2 A qb:%qbp A dq(wk,qb)>2 A [dcent(p)=0 v st(q)=2])

v (st(p)=3 A [dq(wk,qb)>2 v (st(q)=1 A - ktspec(p,a))
v (st(g)>1 A check3(p,q))])

v (st(p)=t A st(q)<h)

v (st(p)=5 A st(q)<5 A

[st(q)#2 v = kecond(g,edge(p))])

v (st(p)=6 A [st(q)<6 Vv — beorner{p,q)]) '1} .

These functions are equivalent to the definitions used by the program.

Examples of Program Play

Our first example starts with position p, in Figure 6.15.

st(p)=2 and my(py)=> .

1. wk-@ bk-K2
2. wk-QB3 bk-K3
3. wk-Qh We now have m,=0 .
bk-4-
L. gb-KB4 ch. bk-QB3
5. gb-K5 Lk-Q2
6. wk-Q5 Now we are in stage 3 with an area
of size 6. Moves 4, 5 and 6 are
selected by tree search.
bk-K2

L%

T, TieT,_ T

oo
f//// W///%

"/// //// '%//
e B

/%
M

§

%////
i, b . %@
W//?’//

/,

p, is in stage 2, and dcent(pl) = 3,

\

P, is in stage 2 and dcent(pe) = 2.

Py is in Stage 2 and dcent(pB) = %, However
all immedidte successors of p5 are in stage

0O or

/7.

Figure 6.15. Sfar;ing Positions for Example of Program Play.

(.

132

10.

11.

12,

13.

14,

15.

16.
T

18.

19.

20,

21,

kt-KR>3

kt-KB2

kt-KKth

kt-KB6

wk-Q5

wk-QB4

qb-QB5 ch.

wk-QKt5
gb-QKth

gb-QR5

wk-QB6
qb-QRT

kt-Q7

bk-KB2

bk-K1

bk-Ql

bk-QBl

bk-QKt2 .

bk-QKt>3
bk-QR>
bk-QKt>

bk-QKt2

bk-QB2

bk-QKt2

bk-QR2
)
k-QR>

bk-QR2

bk-QR1

Now v=5 . We have skipped over

v=3 .

Moves 9 and 10 are selected by a
tree search of depth 2. Now we have
an area of size 5.

Now v=3 .

Now v=5 . Moves 13, 14 and 15 are
selected by a tree of depth 3.

This is the bishop move allowed
for tempo.

Now we have 52;3 .

Now we are in stage 4. Moves 16
through 20 are selected by a tree
of depth 4.

155

23.

2k,

25.
26.

27.
28.

29.
30.

1,

=.

33.

35.
36.

kt-QKt6 ch.

qb-QH

gh-QKt8

kt-Q5
wk-QB5
Kt-QKth
gb-KB4
wk-QB4

qb-K>

qb-Qh

qb-QKt6

kt-Q5

wk-QB3
wk-QB2

bk-QR2
bk-QR>

bk-QRY
bk-QR>
bk-QR6
bk-QKt7
bk-QKt8
bk-qx£7

bk-QR6

bk-QR5

bk-QR6
bk-QR5

bk-QR6

bk-QRT
bk-QR6

We are in the same position as
Figure 6.9 after white move 10.

A tempo move,

m5=5 -

This is the only place in the tree
starting at move 25 where more than
one white move is considered.

Now we have reached the end of the

branch of the tree (of depth 7) and
m.=k .

>

134

37, qb-QB5 ch. mg=1 . Moves 35, 36 and 37
are selected by a tree of

depth 3.

bk-QR7 This move gives a p in stage 6.
38, kt-Q3 bk-QR8 |
39. qb-QKth ‘ A tempo move,

bk-QRT
39. kt-QBL ch. bk-GR8

40, qb-QB3 mate.
The program plays the last part of the game (from move 22 on)
identically to Figure 6.9; different black moves have been selected
to give some variety. In the first part of the game the program play
is dull but steady. As usual, the program sometimes does.not make the
best move. About four moves are wasted in this way. The black moves
are selected tu give the program a maximum amount of trouble The
starti:g position Py is the one given in Capablanca [1935]‘~
Capablanca only uses nine white moves for the first part (compared with
21 program moves); however his black king‘moves are more cooperative
than the ones selected in this example. '
Our next example is taken from Fine (Figure 6.1). We start from
Py in Figure 6.15 which is the same as the starting position in .
Figure 6.1 after adjustments have been made for the fact that the
program has the queen's rather than the king's bishop. Again we start

in stage 2. We have

1. wk-QB4 . bk-K5
2. qb-@b bk-KB4
L, Page 109.

135

10.

ik,

15.

14,

5

16.

wk-Q4

wk-Kb4

kt-QBT
Kt-Q5
kt-QKt6

gb-K5

wk-KB4
wk-KB5

qb-KB6

kt-QB8
kt-Qb

kt-Kb

kt-KKt5

gb-K5

bk-KKt5

bk-KKth

bk-KR>

bk-KKt3

bk-KB2

bk-KKt3

bk-KR3

bk-K R2

bk-KKt1l

bk-KR2

bk-KR3

bk-KRU4

bk-KR5

Now Mo=0 but actually we are in
stage 3 with an area of size 6.

This move gives a p with
poss(p) true.

White blocks the escape, so the ;-
positiopn igrg%gepted by bettefi

.
-y

L hat
N ¥

Now v=3 .

Now v=5 .

Now we are in an area of size 4.

Iz}

Now v=5 .

This is the first allowable knight
move.

This is the second knight move.
We have sl(q)=15 .

Now we are in stage 5, and m5=h .

136

tu‘,l |

There is no point in continuing the example sincé the program will play
the same as in example 1. Ten more moves are required to mate. As
eﬁpected, the program plays differently from Fine. The moves for black
o
) x gre chosen to illustrate how the program reaches stage 5 through areas
; {pdf size & and 4. When this path is chosen, stage 5 is short and check-
mate is reached quickly.
We will now give two short examples to illustrate special cases
in the first part of the geme. The next example shows how the program

handles a temporary escape from an area. We begin at position N in

Figure 6.12, EE(ph)zj 5 S(ph)=5 , and Eoss(ph) is true. We have

1. wk-@Q5 bk-QKt5
2. kt-Kk bk-QKt6
3, wk-Q4 bk-QBT
L, gb-QKt4 Now sl(q)=h
bk-Q8
5. wk-Q bk-QB3
6. qb-QB3 Now we are in an area of size k4.

If at any time the black king had returned to the area of size 5, he

would have been trapped there and that branch would have terminated.
Our final example shows what happens when we must cope with a

stage 2 position coumplicated by the locations, We start at p3 in

Figure 6.15. P is in stage 2 but all of its immediate successors

/
are in stage O or stage 1.

137

1. kt-KBS wk-KKt6 would give (q)<m2(p)
and dqﬂwk,qb)sﬁq(bk,qb) but this
positian is correctly recognized
as a member of stage O. We have
q in stage 1.

bk-KKtl
2. qb-KB6 We are in stage 2, but
mz(q)zme(p) . Note dq(wk,qb)=2 .
bk-KB2
3. wk-KKt5 Now we can accept q as better
since mE(q;<m2(p) .
bk-K3
4, k&-KKt7 ch. The knight was blocking the path
‘ of the king.
bk-Q3
5. wk-KB5 Now mz(q)=1 .
bk~ Q4
6. wk-KB4+ The black king is blocking the
white king move into the center,
bk- QB4
7. wk-Kb Now mz(q)=0 p
bk-QB >
8. aqb-Q Now we are in stage 3.

The program manages nicely.
This last example indicates that the prégram should be able to
reach checkmate from any starting position within the 50 move limit.

Stages 5 and 6 together never require more than 19 roves, and the first

i

example of program play gives a-close to maximum number of moves through
A 4 4"«" o
stage 3. Since this exemple ends similéfl§‘to the first example after
s ' ' 4
. .

i

138

]

move 6, this means the program still has a margin of 8 moves to take
care of any complications which arise.

The remarks about the previous end games are also valid hereg.
However, the mediocre (better but not best) program moves are not'go
frequent in this game. This is because the difficulty‘of winning
forces more exactness in program play. The difficulty of this game
also provides a good test of the program. The fact that the program
can win, using the fairly simple patterns which provide the outline of
the play, "indicates that the forcing tree model used for the program is

a good one. Also the program play is identical to the book's when

sufficient information is available.

139

CHAPTER 7

PROGRAM CORRECTNESS

Now that the definitions of better and worse have been given for
the various end games, we can consider the question of program correct-
ness. We will say that the program plays an end game correctly if we
can prove that it will reach checkmate from any legal starting position
peP . To prove, given the position p€P, that the program will actually
win from p , we must show
1. The program can force positions q which are better than p .

2. This process need only be repeated a finite number of ??mes before

checkmate is reached.

First we must introduce some notation.

Defn. grogl(p) = {q] g is at “he end of a branch of the tree from

p which is produced by the program) .

If an immediate successor q of p 1is better than p , then Erogl(p)n
will contain the single element q . If the program is unable to force
better positious from p , we would have Erogl(p)=NIL , which means
either that all branches are rejected or that the program does not

terminate (in 50 moves). The first statvement can therefore be written:

Theorem 1. Vp[p€EP :>—1null(grog1(p))])

Proof. This theorem must be éroved separately for the different stages

and measures within each end game. It ijs sufficient to show that an

110

acéeptable path exists; we will not know for cerﬁain;what gzggl(p)
contains but we will know that it is not empty since.the program uses
a breadth first search. V
We give a proof here for positions in stagé 2 Sf the Rook end
game. Recall that stage 2 is defined by |
x € stage 2 = {goodquad(x) A squad(x)>2} .
The measure in stage 2 is
m2(x) . squhd(x) ¥x(xE€stage 2)
better for‘stage 2 is defined by
{st(p)=2 A (stlap2 v ’)
‘st (q)=st(p) A (my(a)<m, (p) vd (wk r)<c (wk r)NN),
an& worse by '
:
(st(p)=2 A ([st(a)=2 A my(aPmy(p)] V
[(st(q)=1V [st(q)-2 A my(q)=m,(p)]) Ad (wk r)=1
A (o (u, rm y (st(a)=1 A x fr, mi)
We divide the proof 1nto two parts dependlng on dp(wk,r) s
'1. dp(wk,r)>l . Phen there exists a q with dq(wk,r)(dp(wk,r) .
g will have the same quadrant as p , and since p satisfies
d (wk r)<ad (bk r)+1 , we can be sure that d (wk r)<dqﬁbk,r) .
This q will ée EE&EEE than p , and EL__l(P) {a*]} .
(g* is not necessarily equal to q.)
2. dp(wk,r):l . There are two cases to coésider. Let p'=p or a
succassgr of some .q _down in the tree %rom P .
a. There is a rock move leadinc o 'a p%sition g (in stage 2 or %)

with a smaller quadrant. Such a pGalt on Q. wifl be better tnan

p , and so we know the tree terminates. We are always in chﬁe ba

141

i

if dp,(bk,r)>2 .
b. No such rook mcve exist§.
i, dp,(bk,r):l and we are not in 2a. Then we make one
of the king moves such that dq(wk,r):l and f_g_q(bk,wk)dt
for fr as defined in Appendix A. A move like this always
exists and is not worse; ££ (wk,bk)<t insures that after
the black king mgHes we will be in 2a or 2bii, which means
the tree will termlnate Jyo&e or -’ two more moves.
if, dpi(bk’r)=2 A fgp,(bk,wk):h and we a;e‘nOU in 2a. This
is the place where the white king moves onto the boundary
of the quadrant. Then after the black king moves we are
in case 2a with just one move to tefminate the tree.
§id. d bk,)=2 A fr , (bk;wk)=5 and we are not in 2a. “We make
a white king move such that d (wk r) 1 , anid after the
black king moves we are in case 2bi or 2a (at most three

more moves to terminate the search).

4

Obviously such\proofz are very tedious and we will not attempt to give
them for the other stages. The method of proof remains the same, and

sketches of such proof have been given in the variocus chapters.
i

Although the example chosen for the proof of thg previous theorem

was given using tHe practical definition of better, for the rest of

this discussion we will use the formal definition of better. We will
discussf the extension of the theorems to the practical definition after

they have been proved.

First we must prove that rule 3.7 holds.
n"

142

P‘""'

¢

Theorem 2. ¥q Vp(aMpp 2 [st(p)>stlq) Vv

(_Sﬁ(P)=S_t(Q) A mst(p)(p)smst(p)(q))]) "
= SR

Proof. Again we must prove this for the different stages and measures.

In fact we have proved it informally in the chapters covering the end
games, The reason it is possible to prove this is that stages and

measures depend almost entirely upon the position of the white pieces.
When a rule is made about the position of the black king it is stated
in q and in p in such a way that if it holds in g , it will hold

in all immediate successors p of q.

SN
We have purposely given informal proofs for Theorems 1 and 2 because
the detail required for a formal proof is excessive and uninstructive.
It is necessary in these theorems to give separate proofs for each stage
of each end game. The proof given for Theorem 1 is correct for stage 2
of thé Rook end game, and serves as an ;%;ﬁ?ﬁ*?&'how such proofs should
proceed; both for Theorem 1, and Theorem 2, althdugh the proofs for
Theorem araie simpler. _ . 5 x ‘
Egggl(p) produces ogij cne step of the program. To handle the

entire program we make the following definition

Defn, For 1,

prog, (p)={a | 3p'q’ (q'€prog, ,(p) A a'Mgp' A aeprog, (p'))} .
Please note that the i 1in Egggi{g) does not generally stand %or
the ith move from p ; it staﬂds for the ith iteration of the

program. A new iteration is not begun until the tree (possibly of

depth 1) from the previous program entry is exhausted.

’

143

r

Now we can formalize the second statement.

Theorem 3. Vp[p€P D 3K VN(I>K > null(prog {p)))] .

Proof, P 1is associated with some end game, and let us csuppose this

came has n stages., For each stage i , let ki be the number of

different values which the measure mi assumes, We know kle for

all 1. (ki must be finite; this is tgag gfr all the measures which

have been defined.) Let

Sy
i=1

K is the number of different categories into which positions in the
end game can be put, not counting stage O. We refer to each categcry
as a level, and we define a function le , which gives the level of a

position as follows,

(1) le(x)=1 = (st(x)=1 A m (x)=max(m (v))} , for S=(y | sty)=1} .
yeES

(2) .Assume we have defined the set of positions x for which
le(x)=i . If this set is empty, then so is level i+l . Other-
wise, we define the set for which le(x)=i+l as follows. Let
x be a position such that le(x)=i .

If i=K , then x 1is a checkmate position and the i+l level

is empty.

Otherwise st(x)<n . If M (x)(x)>m1n(m £y)(y))

S = {y | st(y)=st(x)} , we have

Ehﬁﬂls@ﬂﬂﬁﬂﬂAm%&ﬁﬂmum“uﬂwn,

for 5= (y | st(y)=st(x) Amgy(, (V<m0 (0))

st(x
14k

Otherwise we have

le(z)=i+l = (st(z)=st(x)+1 A mst(z)(2)=m2>sc(mst(z)(y))} ,
st yes 3t

for 8 = (y | st(y)=st(z)]} .
]
For completeness we define

le(x)=0 = st(x)=0 . 2

The levels have the same order as.we would like the program to follow;

we know 0< le(x)<K , for all x€Q . Recall Q=P U (a|3p(p€P A pM a)]

We ﬁave the following lemmas.

i

Lemma 1. Vpq((q€Q A aMyp) = le(p)> le(q)) .

Proof. This follows immediately from Theorem 2.

Lemma 2. Vpa((peP A geprog, (p)) o le(a)Ple(p)) . !

N

Proof. Since qEErogl(p) , we know better(p,q) is tfﬁq: Therefore,

1le(aPle(p) . . N

N

Now, for peP and N>K , let us assume there exists a qﬁgnogN(bl ;
.

3.8
™

We unravel the meaning of this:

a€prog, (p)
3p, 9, (3,€prog, ,(p) A q;Mgp; A acprog, (p,)) #

¥
¢ ™pq)...Py_y %y o (9 €prog, (p) A'ay Mopy , A...A a€prog)(p;)) .
k|
We select the eppropriate p., Q,,¢¢., P q. , and apply our
i e ? ¥N-1° ?N~1

<

lemmas to get e

le(qy_, >1e(p) A le(py_,)> le(qy ;) A...A le(a)>le(p,) .

145

.
-

-

'
Lot - e B
Each time we have lg(qi)>}g(9i+l) we can write lE(qi)i 52\9i+l)+1

; . " 7)
since 1le is an integer function. 8o we have

le(qy_;)> le(p)+l A ielpy > le(qy ;)
(>] (
le(qy 4)> le(py)+l A le(py 52> lelqy o)

Y Therefore le{q, -)> le(p)+2 A le(p, ,)2> le(p)+2 .
lelqy o) leip, lelpy ake. 18

i

v

le(q, 2> le(py)+l A le(py)> lelq)) . 4
This gives lg(pliz le(p)+N-1 and since EE(QJZ.EE(P1)+1 , we have
le(q)> le(p)+Ns> le(p)+K > K+1 ,

but this is impossiblé since ES(X)S K for all x€Q . Therefore

prog, (p) 1is empty. . ?‘v:‘.

Ju

" g

)

Thecrem % insures that,;he prc‘ﬂﬁ‘§\nill never get into a loop. It

,] ;e :

says that ki , in addition to being tre number of values the measure m,
assumes in stage i, is also a bound on the number of times the program
can produce better positions in stage i as _t moves along from a starting
position to checkmate. The proof of Theorég 3 depends entirely upon
) v

Theorem 2 and the definition of betneg‘iﬁ.emas 1 and 2").

"We use this theorem as followﬁ. Consider how the set Erogngp)
is formed. There are two parts to?th? definition. One part looks like

- 5 f- 4 4

qiegrogl(pi+l) ; the other is a statement like q,Myp, . Now Theorem 1

.1

says that the statement qiéprog(pi+l) is always true provided

p. .€P . We know this for the original p . However we must show

i+l

146

Theorem 4. Vp*[3pq(pEP A qEErogl(p) A qup*) > p¥€P] .

Proof. This proof is the same for all end games and it produces a }
condition on the definition of stages. If we assume the premise for
some p* , then we know le(p*)>2 , since le(p)>1 . This meags that
all non-winning positions which can be produced from a winning position
must be below the second level. 1In all three of the games discussed
the second level is in stage 2. The only questionable game is the
Bishop-Knight; we are confident that there is no pe€P , st(p)=1 ,

which produces p* , st(p*)=2 , but p*¢P in this end game.

-

By Theorems 1 and 4 we ¢an be sure that the chain leading to

grogN(p) does not fail because a set grogl(pi+l) is empty. There-

X o & .
fore it mgst $§;l in the other statement , qiMBpi . This can only

:'happen if some q has no successors, But if q has no successors

it is either stalemate or checkmate. In this case it cannot be stalemate
since we know it is better than some p ; therefore it must be checkmate.
So Theorem 3 means that less ﬁhaﬁ?\x uses of 25251 are required to;

reach checkmate for any p€P . T&é;efbre we can say
: 2"

Theorem. VYp(pEP o the program will force checkmate from p).

¥

Before leaving the subject of correctness we must discuss the
extension of these theorems to the practical definitions of better and
worse. Theorem 4 is the only one which is unaffected by the additions.
We consider Theorems 1, 2 and 3.

We first realize that Theorem 1 is not affected by the addL%ions

!

to better., This theorem is really a statement of existence and if the

147

‘ !

program terminates sooner than expected this does not affeét the proof.
Theorem 1 is affected,however, by the additions to worse. We must be
sure that worse does not now'g!iminate,the path which is followed for
the proof of Theorem 1. When we used the formal definitions of begter
and Egzggrthere was no danger of this sort because worse hardly
eliminated anything. Recall the formal definition of worse \

worse(p,q) = [st(q)=0 v (st(p)=st(q) A mEE(P)(p)<m§E(P)(q))] ’
Since all positions in stage C were disastrous, only the second part
of the rult ceuld affect the eventual finding of better positions.
This problem was considered carefully as the stages and measures vere
defined for each end game, and only if we were sure the program would
work correctly was a function allowed tc be a measure. The progf of

: o

Thecrem 1 is based upon this fact. Similar carg must be exercised when
additions are made to worse. This problem is considered in Chaﬁt%;s L,
5 and 6, when the additions to w_o_m‘_e_ e’ described. L

Theorem 2 is the s%atement of rule 3.7, and must be extéhded to

cover each addition to better. This extension was discussed as the

L
additions were made, but we will consider it again here. Theorem 3 is

affected by the additions because we must redefine K . We discuss

both theorems at the same time,

In the Rook end game only one addition is made to the formal
definition of better; this is |

st(p)=st(q)=2 A m,(p)=m,(q) A dq(wk,{)édp(wk,r) .
As was mentioned in Chapter 4, this use ofild is like a measure.
Since only the position of whitéapizcef is involved we can be sure

that the evaluation of a successqr}%ﬁj q using d will give the same
ot

'lhs‘ L

(]
i LR

value as q ; therefore the correctness of this addition depends on the.
correctness cof stage 2 and its méasure. In‘Theorem 5, we must use a

different valus fSr K ,fy}replacing k2 with ke* y
k*=T-k, ;ilincé d‘(?k,r} can have al most 7 different ?alues.

where

iy
In the Bishop-Kﬂlght end game we need only worry about stage 2

As was mentioned in Chapter 6, s satisfies 3.7, and h3=3 . v also

is nearly a measure and 5.7 can be extended to cover it;since it de?ends
only on the position of the white pieces. Vv leads us to give a value
of k3*=9 .

In they Two-Bishops end game, we added a function which is not
like'g méagure since it is not integer-valued. This is the rule uxzed
for non-head quadrants in stage 2:

st(p)=st(q)=2 A squad(p)=squad(a) A (squad(p) is even)

A dq(wk,bk)<dp(wk,bk) A dmin(g)<dmin(p) .

This rule is acceptable because of the use of dmin which is a fun~tion

4

of white pieces only. Therefore we know that

qM:Bp > dmin(p)=dmin(q) .

Also the rule can be applied no more than six times since dmin(x)<6
for all x. with EE(X)=2 . dmin could be used as ; measure by itself.
We can think of the other part of the rule,

(squad(p) is even) A dq(wk,bk)<dp(wk,bk)
as a modifier on dmin. It does not affect the extension of Theorems 2

and 3.

149

CHAPTER 8

EVALUATIONS AND CONCLUSIONS

Evaluation of the Forcing Tree Model

We consider first the forcing tree model selected for the program.

This model has proved to be a good one for our purposes. The end games
described have all led to fairly simple pattern descriptions. Also, we
have been able to prove that the program can reach checkhaﬁe from a
g{;en starting position., This proof depends heavily on the model? which
is represented by functions prog, and prog, -

As far as the quality of prégram play is concerned, the program plays
411 of the end games discussed in quite a reasonable manner. The main
objection which can be made ¢ + -t the program does not always play as well
as it might., Sometimes when there is a perfectly obvious move which
produces a position much better than the present one, the program will
select another move which is not as good.

Such play is a natural consequence of a method which looks for a
good move rather than the best move. And obviously, the more heuristics
the program has the more likely it is that the best move will not be
selected. For erample if only checkmate positions were recognized by
better the best move would always be selected. However this approach
is not practical bgéause the tree s;arch is too large. In general
there is this trade-off between goodness of play and length of tree

search.

150

There are several fairly simple ways of making the program play
more efficiently. First of all we could improve program play by having
it search for the best move, rather than just settling for a good one.
This is easy to implement when examining immedfate successors q of
some position p . We would simply let @Q be the list containing all
q ‘which were better and not worse than p . Then after all successors
éf p had been exaﬁined, if Q were not empty we would compare the
members of Q with each other, using a function similar to the formal
definition of better. The formal definition could not be used because
it expects a position with white to move as its first argument. However

*function
8.1 bettera(q,q') = (st(q')>st(q) v ms_t(q)(q‘)<m_s_§(,q)(Q)}
could easily be defined to compare two positions with black to move.

We‘convert the formal definition of better rather than the actual
one for two reasons. First of all, there is so little difference between
two positions,.both successors of the same pocsition p with the same
stage and measure, that it is not worth the extra work to distinguish
between them, However even if we wanted to, it is not always possible
to convert the actual value of better into a rule like 8.1, because
sometimes some information about p 1is ysed to assign a value to g
in this definition. For example, in Two-Bl'Shops we use the fact that
p is non-head quadrant to decide about .q,. This decision really
depends on the fact that p .is a predecessor of q, and cannot be
converted into a comparison of two positions with black to move,

It is not simple to extend this method of program improvement to
tree search because ‘the choice of one branch over ancther is not so

¥

151

clear-cut, In a tree search it is not usually a matter of deciding
which particular g to'put at the end of the branch, although this
would improve the program somewhat. It is more important to decide
between several branches all cf which terminate at the same depth.

For example, suppose ore branch of a tree almost always leads to a
much better position than the original p , except in one or two 2laces
which are only slightly better, while another branch is neither as

good nor as poor as the first. It is difficult to say which branch.
should be chosen. R

The mein thing wr;kg with this method, even if we do not consider
tﬁe problem of choosing between branches of a tree, is the fagt bhat it
would greatly increase program run time. After all, the killer heuristic, ?4£!

i
discussed in Chapter 2, introduces playing inefficiency but is*u;ed
because the time saved is more important. This method of searching for
the best move would waste more time than is saved by the killer
heuristic (an@ also it is incompatible with the killer heuristic).

A way of improving program play which is not so time consuming is
the foilowing, which compensates for the inefficiency in play intro-
duced by using extra heuristics to avoid tree search. We could replace
better with a hierarchy of functions which will be referred to as
versions of better. For example, version 1 would recog...Ze gross
differences between p and q (for instance, only changes in stage);
version 2 would recognize smaller differences and so on. Then all non-

worse successors q of some position p would ne examined using

version 1 of better; if none were selected they would be examined by

LR

version 2; and so on. This woild be faster than the previous method
because the tests in each version of better would be very short, and as
soon as a q was selected, all tegtinglﬁould stop. A gain in efficienéy
would be made even if just two versions were used; one would be the '
formal definition of better whileithe other would_ﬁe the additions

which make the program practical. However three,&ersions would be
required to get the most out of the method, becaﬁse we would alwajs
prefer a change in stage to a change in measure.

Another way in which program efficiency could be improved Fould be
by paying attention to the order of move genejatlon This has already
been done to some extent for e%ample in the Rook end game, rook moves
are examined before klng moves, so that a s aller quadrant will be
formed if possible. On the other hand in ;he Bishop-Knight game, -~
knight moves are examined first so that fof example iq position p,
in Figure 8.1, kt-KB2 'w7ll §E selected (;(q);6 , v(q)=5) , although
gb-Q6 would give s(q)=§ , Even if the oﬁly ordering done is to
decide what piece's moées tc examine first, some gain in efficiency

can be obtained. More gain in efficiency can be made by considering

the orderlng of moyes for each piece. For example if the rook moves

farthest away frgim the rook were generatbd first, then in P, in

Figure 8.1, we pould select either r-Kj or r-QB3 giving a quadrant

n

of size 10 or . If moves are gengrated in the opposite way, r-Q5
or r-QB+ whuld be selected giving a- adrant of size 15 or 16,
Improying program play by’changing%the move ordering does not

increase fthe playing. time (provided the killer heuristic is allowed to

// ' 153

///;'/////////// %/ '/// . p% is; inéstage(}.)

/// /// /// %/ | Zt:lCB;g;v;s Vsl()é) ; 6 , v(q) = 5 .
/ //' //’ / q gives s(q) =5, vlg)=1.
Z /////,//// /,//// ' () =5, vla)

7,

/////’/// /
i
p2//%’////////

P, is in stage 2, and
mg(pe = 20. If rQB3, then

/ '// me(q) = 10. If r-K5, then
7, /// /////// IIII //y my(q) = 12. If 5, then mq(q) = 16.
/// /// y/ %/ If r—QB4, then me(q) = 15.

Figure 8.1.

15h

stand). However, many times the move ordering will be wrong for the
particular situation. The board is symmetric in many ways in these
games, and so it is often possibtle to think of two positions p which
require opposite move ordering if the best position q 1is to be }
generated first. Position p, in Figure 8.1 is an example, Altgbugh
we can order the moves so that a quadrant of size 10 or 12 will be
selected instead of one of size 15 cr 16, there is no way to order the
moves so that we can be sure that the quadrant of size 10 will be

selected in both P and all positions which are equivalent to Py

with respect to the symmetry of the board.

~ .

Correspondence of Program and Book Methods

Now we consider how closely the definitions of better and worse
correspond to the methods described in the chess books. When the
information in the books is reasonably complete, we would like the
program to play similarly to the books. We feel this goal has been
achieved. The only place where the information about play is very
inadequate is the first part of the Bishop-Knight game (actually stage 3).
In all other parts the informaticn is adequate, and generally there is
nc question that the program plays the same as the books.

The one exception is stage 2 of the Two-Bishopsgame. The lack of
correspondence here comes from the fact that sometimes the took chooses
a move by a different heuristic even though the stage has not changed.
The reason the book does this is probably to Ehd%(the'student tﬂat more

|
than one kind of method can be appiied. In other stages and other games,

the number of moves chosen by a different heuristic is very small and so

155

does not worry us. It is perfectly reasonable to'limit the program tO
one kind of heuristic for each stége, and this is what is done in Two-
Bishdps.

Another kind of gifference between program and book moves is that
sometimes the book looks ahead one move (or more) even though it could
make a decision immediately. There 1S no reason to attempt to model
this. It does not happen consistently, and does not indicate any

essential change in methods.

Evaluation of the Translation Process

We heée shown that the forcing tree model allows the program to
produce winning play for three end games, OLE€ of which is very difficult.
Further there is 2 fairly close correspondence between book and program
play. We take this as proof'ﬁhat the model is a good representation of
the abstract mcdel assumed by cﬁess players. Now we turn our attention
to the difficulty encountered in translating from the books into the

definitions of better and worse.

An examination of Chapters L, 5 and 6 will suffice to convince
us that this translation process 18 surprisingly difficult. Sometimes
we are hampered by a lack of book information, but even wher there is
plenty of information we still encounter difficulty. The reason for
this is that the induction required of the student is more extensive
tﬁan we expected.(For example, in the 1ast part of the Bishop-Knight
game (stage 5) the chess books give an almost complete example of play.
However it is very difficult to decide which features should be used to

represent the pattern.

156

Now if we divide the translation process into simple versus
difficult tasks we find the following. It is simple to decide roughly
what the stages are, and what kind of heuristic each requires. This
information is often stated in the bocks. It is difficult to give the
exact definition of the stages and measures, and generally it is even
more difficult to define the additions to better and worse which make
them practical. So we ask the question: can we use the computer to
help with the translation?

One way in which the amount of work might be lessened is the
following, which helps with some of the difficult tasks. First we
observe that all the heuristics used in better and worse consist of
complicated predicates built up out of simpler predicates joined by
propositional calculus connectives. Many of the simpler predicates
are useful in all the different games, for example functions d and de .
Others are not so widespread but are still basic to the structure of the
end game; for example function location in the Bishop-Knight game is a
natural function for measuring distances from diagonals.

Next we observe that defining the heuri%&ics for an end game 1is
done in two separate parts. First we give the definitions of the stages
and measures, which are taken from the chess books whenever possible.
When the geme is well defined the péocess of arriving at the stages and
measures, while sometimes tedious, can be guideq by the books.

After the formal definitions of better and'ggzég are complete we
turn our attention to the practicality of the method. At this point

the chess books are not so useful; painstaking examination of the paths

157

which the program shogld and should nct follow is the important thing.
The rules a¥rived at are built up out of the distance functions and
pieces of the definitions of stages and measures. So it is eftirely
feasible that this part of the definition of heuristics can be done by
the program.

The follcwing method assumes that stages and measures have been
defined. The program has available to it the definitions and can get at
parts of them. It can generate many other functions, in particular the

f

distance functions, and also tests like wkp:wkq . Whenveriig has to
do a tree search at some p , then for all q at the top of & branch of
the tree, it generates a descri;tion of q which is the conjunction of
the values of all the functions it has at its disposal. When the tree
search terminates it notes which pattern describes the successful
branch and which patterns describe branches which failed. Then the next
time it encounters a position p' 1like p it will accept a succCessor
q' of p’ which fits a previously successful pattern. If it still has
to do a tree search, it will reject all successors of p' which fit a
failure pattern. Since q' may actually be in a lower stage than p' ,
the program must remember, when it accepts q' in this way, to use p'
as the first argument of better (rather than p" such that q'MBp")
until it finally reaches & Q which is accepted by better. A flow
chart of this process is given in Figure 8.2,

The tree search required to implement this method will be very
lengthy at first, but will decrease in time. The more simple functions -

the program has to work with, the longer it will take to converge on &

useful pattern. On the other hand, if the program has too few simple

158

enter with strtinge

“ TREE « UIL

rusifioa n '

firatp « ¢
! ! %

return,

HYOITru™ erroy

u posi
which has

seen

no

search, ey,ect ¢ In @
vhich were
vreviously
vade
2 .

return
(v move in TREE L
prosrum error,;

swecdr (TREE)

Figure 8.2. Program Organization for Doing Simple Learning.

159

-

. % ¥
— 3
functions it may make errors in the sense of being unable to distinguish r
) (8
between two positions q and q' , one of which is at the head of a !

]

shortest branch, while the other is rejected as leading to worse positions.
This method has been implemented for the Rook end game in an abridged
form. The program was given the formal definitions cof better and worse

—_—1

plus the following functions (2-valued or 3-valued; f : g has the

3 values < , = , and >): y
quad(q)
squad(p) = squad(q) (If - quad(p) vV — quad(q) > gthe

value' is undefined. This function is
useful only in stage 3, since ggggg
is a measure in stage 2.)
dp(wk,r) : dq(wk,r)
dp(wk,bk) : dq(wk,bk)
dp(bk,r) : dq(bk,r)
f{p(wk,r) : fzq(wk,r)
gp (wk,bk) : f_rq (wk,bk‘)
ag(ws,e) : d (ble,x) .48 4
Th?se functions were given to it; it did not derive them. In addition
the program needed a way of classifying positions p so it would know

i

when its new functions should be used. To classify pi, the program

used
st(p) (only stages 1, 2, 3 apply) '
dp(wk,r)=l ‘
Thus the program had a maximum of six classifications. “

P
. L

160

4

'

The program used a "complete" tree search, which means that when it
discovered a good branch of the tree at some depth n , it continued the
tree search for the rest of depth n to see if any other br;nches were
also good at that depth. The pfogram was run on a series of 34 positions
requiring tree search; it was able to make moves immediately for 16 of
them, including 7 out of the last 10.

The moves which the program discovered were not always the same as
the moves which the practical version of better would find. For example
it learned to make the moves satisfying

dp(wk,r)>1 A dq(wk,r)<dp(wk,r) s ’- d
but it also learned to move the white king onto the boundary of the quadrant
so that a smailer quadrant could be formed on the next move. Theoretically,
of course, it should be possible to make every move without tree search.

Iﬁ fact, this method is quite good at extending the definitiéns of
better but does not develop much of a definition of worse. Note also
that this method produces a hierarchy of versions of better, as was

discussed in the first part of this chapter, so program play remains

quite efficient.

Extensions in Chess

To illustrate the fact that the program is useful, we discuss how
it could be extended to cover a larger set of end games. Up to now,
chess progrims have not been concerned with these games. The program
of Baylor and Simon [1966] could not be used to play chess end games.

It deals with mating combinations; these are the chess problems, in

161

which there are many pieces on the board and only a few moves to check-
mate. The more general programs (for—exgmple, Greenblatt's program
[Greenblatt and Crocker, 13A7]) are written to play the middle game.
The end games are ignored since they are played differently from both
the middle game and each other. Therefore, if enough end games could
r: handled by the program, it would be a useful addition to a more
general program like Greenblatt's.

LA

The success of the program has convinced us that it can be applied
L ,
to other end games. All that is féquired id the conviction of chess

¢

players that the particular end game can be won from all but certain
defined positions. If a position truly can be won, this means there
must be features of the position which express this fact. The notioﬁ
of better, using stages and measures, provides-a good framework for
gathering and using these features.

There are tﬁs main problems to consider when extending the program.
First, it would seem that the method is not suitable to games in which
black has many moves. If black has a few pawns that is all right, but
as soon as black has a major piece, there would be too many black
moves to do the tree search which the method requires. However, the
number of moves is more apparent than real because usually most black
moves would be disastrous. One way to take advantage of this fact
would be to modify the program to evaluate positions in the tree search
'after black moves as well as after white moves. After black moves, the
program would look for positions which lead to a better position in one
white move (there is no reason why this could not be recognized at
this point). After white moves possibly only worse would be used,

162

since we would know better could not be satisfied or we would not have
searched so far. With this change, which is not a major one, many
games would become amenable to the method; for example King and Queen
against King and Rook.

A more serious problem is the fact that the heuristics are different
for each end game and this means that better and worse must be redefined.
However, if the induction method described in the previcus section’
could be used, we could extend the program without too much difficulty
to other end games. For example we could easily inélude King and
Queen against King and the various Pawn end games.

In addition, we can use the program to handle other games without
giving new definitioné of better and worse. These are end games which
include some solved end game as a subset. For example, suppose we had
esséntialky the Bishop-Knight end gamé, ?ut black had a pawn and white
an extra bishop. Then the program could afford to sacrifice a bishop
to take the pawn. It would recognize this fact by obtaining at the
end of a tree search, which should be fairly short, a position q in
the Bishop-Knight game such that st(q) 2 2.

Therefore the program can be extended to cover a»fairly large
set of end games. This means that translating from book methods into
program heuristics can produce a useful program, at least in this task

area.

Conclusions

The principal goal of this research was to study the process of

£Y

the translation of book problem solving methods into compu'+<r program

163

i

{
i

heuristics. ?e chose the task area of chess end games for this work.

Tc isolate the translation process, we distinguished between the model
which chess books use for these games, and the methods which are applied
to particﬁlar end games., We decided to represent the model as closely
as possible, so that the translation process would be contained mainly

+

in the representation of book met@ods by program heuristics,
|

The forcing tree model chosen for the program has proved to be a
good representation of the abstract book model. As a consequence of
the clogeness of the representation, we are able to express the methods
in fairly simple patterns, and in addition we can prove that the program
will reach checkmate from a given starting position. The value of the
proof comes from the condition (rule 3.7.) which it forces us to state.

The condition gives us a way of evaluating functions proposed for

defining better and worse, which is simpler than trying to think only

in terms of sequences of moves, and more likely to be correct. This
advantage.supports our arguments that the program model should be as
close as possible to the abstract model assumed in the book. The first
hypothesis should therefore be considered when future efforts in
translation of book information are made.

Now we turn our attention to the translation process itself.
The main result is that we now see how much induction is required.
Induction is a form of learning which we would like to understand
better. The example in the preceding section of this chapter leads
us to believe that the field of chess end games is & good one in which

to study induction. It may be possible to develop a program which

164

will do most of the work of translating, and research can profitably be
done in this direction.

‘ We would also like to extend this translation process to other
fields of study. A field which presents itself is integration. When
integration is taught in a mathematics text, examples are given showing
how the rules should be applied. It seems reasonable that inductive
learning is going on here; some pattern in the original expression
suggests the application of a certain transformaticn. The learning is
probably less involved than in chess end games. In Slagle's [1963]
program he has simply done all the work ahead of time. It would be
interesting to see what could be done by trying to use the book more

directly.

165 /

-APPENDIX A

DESCRIPTION OF NOTATION AND DEFINITIONS

OF BASIC FUNCTIONS

-

1. The following abbreviations are used to represent pieces.

bk black king

wk white king

r rook

gb queen's bishop
kb king's bishop
kt knight

2. For x a position, and n the name of a piece,

n = the square which piece n occupies in x .

3. Function d(X1,X2) equals the number of king moves required to
move a piece from square X1 to square X2 .

L, TFunction 250(:6) equals the minimum number of king moves required
to move a piece from square X to a square on the edge of the
board e .

5. Function §£(X1,X2) equals the difference in files between squares
X1 and X2 , plus the aifference in ranks.

6. fx(nl,n2) is used as an abbreviation of f(nlx,n2x) when the

squares containing pieces nl and n2 are to be selected from

the same position x .

166

BIBLICGRAPHY

In addition to the chess books referred to in the body of the
thesis, several other books are mentioned here which were also found
useful.

Baylor, G. W., and Simon, H. A., 1966, A Chess Mating Combinations

N\

Program, Proceedings of the AFIPS Sﬁfing Joint Computer

Conference, Spartan Books, Washington, D. C., 28: L431-L47.

Capablanca, J. R., 1935, A Primer of Chess, Harcourt, Brace, New York.

Fine, R., 1944, Chess the Easy Way, David McKay, New York.

Foster, A. W., and Kemp, R. E., 1943, Chess: An Easy Game, David

McKay, New York.

Greenblatt, R. D., and Crocker, S. D., 1967, The Greenblatt Chess

Program, Proceedings of the AFIPS Fall Joint Computer Conference,

Thompson, Washington D. C., 31: 801-810.

Horowitz, I. A., 1957, How to Win in the Chess Endings, David McKay,

New York.

Mason, James, 1905, The Art of Chess, Howard Cox, London.

McCarthy, J., Abrams, P. W., Edwards, D. J., Hart, T. P., Levin, M. I

¢ s

19¢€5, LISP 1.5 Programmers Manual, The M.I,T, Press, Cambridge,

Massachusetts.

167

Minsky, M. L., 1961, Steps Toward Artificial Intelligence, Proceedings

of the I.R.E., 8-30; reprinted in Computers and Thought,
Feigenbaum, E., and Feldman, J. (Ed), McGraw-Hill, New York,

L06-450. ‘
b
Newell, A., Shaw, J. C., and Simon, H. A., 195{, Empirical Explorations

with the Logic Theory Machine, Proceedings of the 1957 Western

Joint Computer Conference, I.R.E., New York, 15: 218-239.

Newell, A., and Simon, H. A., 1961, GPS - A Program That Simulates

Human Thought, Lernende Automaten, H. Billing, Munich, 109-124,

lagle, J. R., 1963, A Heuristic Program That Solves Simple Symbolic

Integration Problems in Freshman Calculus, Computers and Thought,

Feigenbaum, E., and Feldman, J. (Ed), McGraw-Hill, New York,

191-203,

168

¥

Security Classification g -
DOCUMENT CONTROL DATA-R & D 2 »
(Security classilication of titie, body of abstract and indezing annotation must be entered whon the overall report is clasifivd
. ORIGINATING ACTIVITY {Corporate author) ‘2u, REPORT SECURNETY ,(SSIFIC A -’
Artificial Intelligence Project Unclassi;;égfiflu
Computer Science Department . GReuR
Stanford University
3. REPORY TITLE
A Program to Play Chess End Games
g
. 4. DESCRIPTIVE NOTES (Type ol report and inciusive dates) -
A.I., Memo :
S AUTHOR(S! (Firaf name, middle inilial Tast name) y -
Barbara J. Huberman
”‘s. REPORT DATE 7a. TOT.AL NO. OF PAGES Yb. NO. OF REFS
st 1968 /168 12
8. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPOIRT NUMBE RIS,
g
&
r b. PR09§C110906. AI-65
|
- 2. OTHER REPORT NOI(S) (Any other numovers that may bo uasigned
this report)
A‘, d.
=

10. DISTRIDUTION STATEMENT

2

b

Statement No. 1 - Distribution of this document is unlimited.

RIS TN T A

§11. SUPPLEMENTARY NOTES iZ. SPONSORING MILITARY ACTIVITY

i
H

l Advanced Research Projects Agency

13, A.\STRAC?

L m L S

S

) A program to play chess end games is described. The model used in the program .
is very close to the model assumed in chess books. FEmbedded in the model are two |
predicates, better and worse, which contain the heuristics of play, different for
each end game. The definitions of better and worse were obtained by programmer
translation from the chess books.

\

TR T

The program model is shown to be a good one for chess end games by the success :
achieved for three end games, Also the model enables us to prove that the
program can reach checkmate from any starting position. Insights about transla-
tion from book problem solving methods into computer program heuristics are
discussed; they are obtained by comparing the chess book methods with the defin-
itions of bztter and worse, and by considering the difficulty encountered by the
i programmer when doing the translation, ’

f

s

DD ™. 1473

Securnity Ciassification

Cl

Security

LiINK

us.Sil'ic.n;Cr_

<

[i“

AC LD

A O T N NG R Iy

W

KEY WOROS

better

worse

heuristics

end games

tree search

- S [P — i
=z T s = R iz - == B
N

quadrants

Licwbawaculaon

SUCaly

=

