
\

CS 106 |

A.l. 65

-

De

Cy A PROGRAM TO PLAY CHESS END GAMES
De

Ne BY
~~
£5 3] BARBARA J. HUBERMAN

| SPONSORED BY

ADVANCED RESEARCH PROJECTS AGENCY LL
ARPA ORDER NO. 457 BN D D Co

IL ss fo weg
| TECHNICAL REPORT NO. CS 106 | = = |

AUGUST 19, 1968 ghar aks

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Rope NGHOU SE
pf Fearn Scenhve3 Joie

| A d 221 Ww

STANFORD ARTIFICIAL INTELLIGENCE PROJECT August 19, 1968MEMO AI-65

CS 106

A PROGRAM TO PLAY CHESS END GAMES

by Barbara Jane Huberman

ABSTRACT: A program to play chess end games is described. The model
used in the program is very close to the model assumed in
chess books, Embedded in the model are two predicates,
better and worse, which contain the heuristics of play,
different for each end game. The definitions of better and
Worse were obtained by programmer translation from “re
chess books,

The program model is shown to be a zood one for chess end
games by the success achieved for three end games. Also
the model enables us to prove that the program can reach
checkmate from any starting position. Insights about

| translation from book problem solving methods into computer
program heuristics are discussed; they are obtained by
comparing the chess book methods with the definitions of
better and worse, and by considering the difficulty en-
countered by the programmer when doing the translation,

The research reported here was supported in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense(SD-183).

ACKNOWLEDGEMENTS

I would like to express deepest thanks to my thesis advisor,

Professor John McCarthy, for his many valuable suggestions and helpful

criticisms. Also I am grateful to Professor J. Feldman for his construc-

tive reading of the final version of the thesis, and to Professor R.

Reddy for his earlier reading and assistance.

In addition I am indebted to my colleague, Mr. John Lennie, for

his critical evaluation of parts of this work, and to my cousin, Mrs.

Jill Custer, for her encouragement and careful reading.

I wish to express my appreciation to Mrs. Judy Muller for her ~~

excellent typing and preparation of this report, and to Mrs. Dorothy

McGrath for her fine illustrations.

This work was supported by the Advanced Research Projects Agency

of the Office of the Secretary of Defense, (SD-183),

iii |

TABLE OF CONTENTS

\

Chapter Page

I. Introduction . . + + % + + 5 % © 2 5 H 5 oF t hom ow ov vw 1

Methods and Models +... .. 2

Model and Methods for Chess End Games 5

Goals of the Research vv vv ... 6

Outline of the Thesis . . ¢ v ov « 4 + 2 5 4 5» 5% 5 « f

“ou 2. Program Organization Won o® mw ww wwe ¥ WW EW 10

NOCBLIon +. vw. ww « 4 ww 0 2 vw % % ¢ #2 BF 4 4 5 4 5 10

Program Organization 11

Tree Search Heuristics , . +. + ow wv « 4 v5 4 +» 2 3 9 3s + 20

Representation EEE EEE EEE

5. Definition of better and worse 2h

FOrma8lization . . « 4 4 5 4 + 4 4 4 2 o 2.2 + +» = =» « + B26

Additions to better and worse 3

4. Rook and King Against King 38

Formal Definitions of better and worse . . . , 38

Additions to better and worse L3

Examples of Program Play 48

Evaluation of Program Play +. « v + 5

>. Two Bishops and King against King 5h

BLOKE 2 2 4 + » mw « « BP ww ss vomwes wws: nes 46

) BEOER YL v4 vt SE HEAL RE er mn wm OB

Formal Definitions of better and worse T1

op to better and A 72

iv

Table of Contents (cont'd,)

Chapter Page

Examples of Program Play 80

Evaluation of Program Play + + « Bb

6. Bishop, Knight and King against King | 87

EE... EE E TE EE EE

CStABE Lh heee ee ee ee eee 92

BLBEB 2 + iv + bows mm www ss wr sews Dh

SLEEET «wv « 2% t HEB KR REE mens vw PB

; Stage 4 LL... eee... 108

Stage 5 . . . uu i ue ee ee ee eee... 108

BLaZe 8 + + + + vo 5 + os vm we ts mews vw sew 118

Formal Definitions of better and worse 118

Additions to better and worse 119

Examples of Program Play 131

7. Program Correctness1k0

8. Evaluations and Conclusions 150

Evaluation of the Forcing Tree Model , 150

Correspondence of Program and Book Methods 155

Evaluation of the Translation Process , 156

Extensions in Chess +... . ..171

Conclusions +. i vv uv uu... .163

ADDCRAIR A 4 2 2 ¢ 0 2 3 4 #9 5 + 2 6 5 so 0 09.9 3 5 = » + « 166

Bibliography + « « « « ¢ o ¢ ¢ © o ¢ ¢ 6 os o o « & s o « « « » 167

v

FIGURES

Figure Number Page

1.1 Example of a Forcing Tree +. + vv v + v vw ow 4 . 5

RE|.

2.2 Example of Forcing Tree EE EE EE EY 15

2.3 Main Program FLOW « ¢ & o © % 4 3 5 o % 5 5 = = 2 2 + 17

CE ¥

Bel wnt sad ts mde cs mmm rtm ts ones ww 19

=o

5.1 Example from Capablanca, pages 26-28 25

3.2 Stages in Figure 3.1 vv vv 4 4 4 ve eee 50

5.4 Listing of the Rules Introduced in Chapter 3 37

4.1 Example from Fine, pages 14 and 15 39

oR1 |

4.3 Examples of Moves in Stage 2 + + + v + « + . . hh B

L. 4 Examples of Stage 3 © vv 4 ee ee eee 47

4.5 Illustrations of Examples of Program Play 50

2.1 Example from Fine, pages 15-17 55

0.2 Examples of Quadrants + +. 4 4 ou ou ow ou ou. 56

Dad Li ma tt rE at emer arms em sews sw 5D

Yo

I EE EI IEE TN IEEE

5.6 Example from Capablanca, pages 29-30 66

5.7 Examples of 86886 3. . ©. « + + + v + + + « + 2 +» « +» « GOT

5.8 Examples of Stage 4 a. uu... 70

vi

Figures (cont'd)

Figure Number Page

2.9 Illegal Positions-, _ , , , Co... 13

2.10 Tree Pruning Heuristics for Non-Head Quadrants _ _ 75

5.11 Examples of Head Quadrants , , , 78

0.12 Examples of Program Play . , , CL 83

6.1 Example from Fine, pages 18-20 , , . . . Co 8&

B82 Ls BE EEA ams me ns mm a BO
/

EE

OR

ATo -

6.6 Examples of Knight Interference , lou

6.7 Forbidden Knight Interference , , los

6.8 . . 107

6.9 Example from Capablanca, pages 110 and 111 loo

6.10 Examples for Stage 5 , 113

I

6. 1h . 128

6.15 Starting Positions for Examples of Program Play . . . 132

J £1

8.2 Program Organization for Doing Simple Learning . . . 139

vii |

CHAPTER1

INTRODUCTION

; This research is concerned with the process of translatingbook

descriptions of problem solving methods into program heuristics. Many

books have been written for the purpose of teaching how to perform some

task. The task under discussion may be almost any kind of activity,

including intellectual activities such as proving theorems in geometry

or solving differential equations. People are able to learn from these

books although the difficulty in learning varies from task to task.

Therefore we can consider the information in the books as sufficient

for people. It would be convenient if the book infoymation could be

used by computer programs. We are interested in whether the information

is sufficient for computers, and if not, then we want to know what kind

of additional information is needed.

The fact that book information is sufficient for people does not

mean that it can be used directly. If the book describes an algorithm,

then sometimes only memorization is required of the reader; for example,

the method of finding truth values of sentences in propositional calculus

by means of truth tables can be learned by memorization. Many tasks,

nowever, require substantial learning before the student can understand

the book. The task of playing chess end games by computer provides a

simple but not trivial area for this research. By chess end games we

mean those games where the number of pieces on the bcard is small, but

, .

the number of moves to checkmate large: for example, Two Bishops and

King against King, or the various Pawn endings. Shas bocks give rules

for these end games which are not algorithms but are supposed to be

simple and complete enough that beginners at chess can learn to play

the end games fairly easily. A certain amount of intelligence is

reguired of the student, but still we expect to need only a minimal

amount of additional information. In this study the programmer will do

the translation. ©Since this translation from the chess books to the

programis not direct, as it would be in the case of truth tables, we

expect to learn something from the translation process.

Methods and Models

Computer researchers are well aware by now of the fact that any

task requiring intelligence can be profitably approached by distinguishing

between models and methods. The model, which is a representation of the

structure of the problem [Minsky, 1961] determines the overall logic of

the program. The methods are the heuristics which the program uses

within this structure. For example, in the Logic Theory Machine

[Newell, Shaw, and Simon, 1957], the model is a backwards tree and is

represented by that part of the program called the "Executive Routine".

Within this framework substitution, detachment and chaining methods are

used; these are encodings of the way people apply the rules of inference

in propositional calculus,

Generally books are concerned only with teaching the methods which

should be used to solve problems in the task area. The methods must be

TSecpage 113 of Minsky [1961]. |

2

applied within a structure which is assumed in the book but not generally

defined explicitly. It is necessary to build a model of this structure

in the computer before information about methods can be taken from the

book,

We expect that different models are required for different tasks.

Very often the model is a backwards tree; the General Problem Solver

| [Newell and Simon, 1961] is based upon this fact. However there are

problems which would require a different model: for example, bidding

in bridge. The closer the model used in the programis to the way that

the author of the book thinks about the problem, the easier it will be

to translate the methods of the book into heuristics for the program.

Chess end games could be handled by the General Problem Solver: however
in this research a model is used which is much closer to the abstract

model assumed in the chess books, In this way we hope to eliminate

making changes in the methods to account for a difference between the |

program's model and the abstract model assumed in the book. This means

that any difficulty experience in translating the book methods into

program heuristics can only ve due to inadequacy in the method descriptions.

Model and Methods for Chess End Games

The model used for chess end games is a forcing tree. The program

is supplied with two functions better and worse (containing the methods)

which compare positions. Froma given starting position p , in which

the program has the move, it uses tree search to find porition q
which are better than p . It will search until such a position ¢

5

is found for every sequence of moves by the opposition. An example of

such a tree is given in Figure 1.1. The program will then make the

moves dictated by the tree until it reaches a ¢ at the end of a

branch in the tree; ther it recalculates the tree ‘no force positions

better than q . This process continues until checkmate is reached.

worcge is used by the program to cut off branches of the tree which lead

to disaster (stalemate, etc.), and also to prune the tree. This model

is described in detail in Chapter 2.

The forcing tree model will be used for all the different end

games. However each end game is played by different methods which will

"result in different definitions of better ard worse. This enables us

to examine the problems of translation from methods to program heuristics

several times and for games of varying degrees of difficulty.

better and worse are built up out of pattern recognition functions

of positions which can be defined in a natural manner from information

given in the chess books. The methods, or rules, of play are defined

in two ways in the books. First of all, written statements are made,

For example, in the description of the Rock and King against King game in

Capablanca [1935] we find: "The principle is to drive the opposing

King to the last line on any side of the board" and then the student

should "Keep his King as much as possible on the same rank, or...file,

as the opposing King". The play of other games (and in other books)

is described by similar rules. It is not difficult to convert a

principle into a pattern recognition function of positions because the

pattern is inherent in the principle. For example, tc express the

2. See pages 26 and 27 in Capablanca [1935]

L

q

q

P

q

a

Figure 1.1. Example of a Forcing tree. The program has the move in
rn; it must make a move leading to a position q Judged better than p
‘or every sequenre of moves by the opposition. Each iteration of the
program will produce 2 tree like this; several iterations will be re-
quired to reach checkmate.

p

~ first principle quoted above we define

f(x) = the opposition king is We to an edge of the board in x ,

for x a position. Then we might decide a position q was better than

position p if

f(g) A £(p)

because the principle is satisfied by making the moves leading from bp

to q .

The chess books supplement the principles with examples of program

play. The principles generally cover the gross features of the game

and forma framework for viewing the play of the game. The majority of

moves are only partly derived from the principles; they are more directly

derived from the examples of program play. Thé examples contain more or

less complete information about methods of play; tne difficulty comes

in deciding what pattern features of the positions are important.

Obviously, induction is required to make this decision. Each example

is considered representative of a large class of positions and a general

rule must be defined for that class. If the example is accompanied by

principles, this simplifies the induction by providing clues to important

features (see Figure 3.1). The induction leads automatically to the

kind of pattern recognition functions used in better and worse.

g

Goals of the Research

The primary goal ci the research 1. to study lne transiati.n

process. We begin by stating two criteria wnich will help us achieve

this goal. First we would like to see if our model is a good cone for

chess end games. Our first hypothesis is: the model used in the

\ ¢

program is a good representation of the abstract model assumed by

chess books. We can support this hypothesis by successfully running

the program on different end games. Furthermore, conditions can be

given on better and worse which permit us to prove informally that the

program works correctly. The proof depends heavily on the model and

could not be given for a different model (for example the General

Problem Solver model).

Our second hypothesis is: the information in the chess books is

sufficient for the definitions of better and -worse. The chess book in-

formation will suffice for worseif all disastrous positions are

described, For better much more information is needed; the books must

give rules for recognizing progress frequently enough that the tree

search between positions is reasonable, For example it is not enough

to have rules recognizing only checkmate positions.

Finally we turn our attention to the primary goal of studying the

translation process, We assume that the two criteria are satisfied.

First we consider how closely the definitions of better and worse

correspond to the chess book methods, wsasuring the correspondence

by comparing program play with the book examples, #£1:0 we consider the

difficulty encountered in defining better and worse.

Outline of the Thesis

In Chapter 2, the overall organization will be described. A

detailed definition of the uses of better, worse, aud trec search will

I

be given; this constitutes the model which we use for chess end games.

In Chapter > the form of the contents of functions better and worse

| will be discussed. These functions are different for each end game,

| since different methods are used for each game. However, the form

given for better and worse is used in all end games. Some rules are

given for better and worse which will enable us to prove that the

program is correct in the sense of being able to achieve checkmate from

a given starting position.

Chapters 4, 5, and 6 each describe the definitions of better and

worse for a different end game. Rook and King against King is SL Sus sed
in Chapter 4, two Bishops and King against King in Chapter 5, and

Bishop, Knight and King against King in Chapter 6. These games are

presented in order of difficulty. The rock end game is quite a

simple one; two Bishops is a Lu of moderate difficulty, while the
Bishop-Knight end game is very difficult. The process of translating_

from the book information into pattern recognition functions will be

described,and reasons will be given for the programming decisions,

Examples of program play will be included for each game.

Chapter 7 contains an informal proof of program correctness. This

proof is given after the various end games are described because it

depends on the heuristics used for each game.

Chapter 8 will contain an evaluation of the better, worse format

in terms of the two primary goals, Subjects covered will include

program efficiency, a description of a way to have the program do
some of the inductive learning, and extensions to other task areas.

8

In the following chapters, ordinary chess notations will be used

[Capablanca, 1935]. The program is written in LISP [McCarthy, Abrams,

Edwards, Hart and Levin, 1965], and the reader is expected to have some

knowledge of this language. Function definitions are given using notation

and basic functions which are defined in Appendix A. They are built up

>f the connectives = (equivalence), D (implication), A (conjuction),

v (disjunction), and — (negation). These are used in the same way LISP

(not ALGOL) uses them; i.e., if in p Aq, p is evaluated and found

to be false, then q is not evaluated.

2 |

CHAPTER 2

PROGRAM ORGANIZATION

Notation

Throughout this thesis, certain conventions of notation will be

used. As in the ordinary use in chess books, the white side is the

winning side. The program will play white and a person black. The

letter p , with possibly subscripts or superscripts, is used to

represent a position with white (program) to move, and q , again with

subscripts or superscripts, for positions with black to move. When the
cclor cof the wove 45 unimportant, letters x , y , etc., with subscripts

or superscripts Wis be used,

In a position p , a certain set of white moves is legal according
to the rules of chess. A legal move is made from p to produce a new

position q with black to move. We will represent the connection

between p and gq by means of the relation M, . The ctatement

pMq is read: gq is a position which results from making one legal

white move in p . Similarly we write aM_p which means p is a

position which results from making one legal black move in q . If

pM.q we say QQ is an immediate successor position of p , and

similarly for aM p . If we say that ¢ is an ultimate successor of

p this means there exist Pyse-+s Py and Qyyeves such that

PMyd; A ayMgpy A... Ag Mey Apa

10

The program is given as a starting position a position p with

white to move. In some end games, white can win only from certain

legal positions with white to move. Let

P={p |p is a legal position with white to move, and

white can win from p} .

The program must work correctly for any starting position p € P ;

we do not care what happens for p € P .

As explained in Chapter 1, better and worse are used to compare

positions. They both have as an argument a pair of positions (p, aq) .

The first position is always & position with white to move; the second

is always a position with black to move. q is either an immediate or

ultimate successor to p .

The statement better(p, q) is (not) true is equivalent to saying

q is (not) better than p , and similarly worse(p, gq) is (not) true

is equivalent to q is (not) worse than p . Cccasionally when

discussing a tree search a statement like ™ q is a better position"

will be made. This means gq 1is better than the 'p at the head of

the tree. better and worse will always be underlined; so will all

other function names except those consisting of only one letter,

Program Organization

To start with, the program is given an initial position p € P.

It generates all positions q such that pM..q . The order in which

these positions are generated is not important; let us refer to them

11 |

as Q = (ays) a} . For each gq. the program asks the question

worse(p, a.) « If q, is worse than p then gq. is immediately re-

jected by the program, If worse(p, q,) is false, then the program

asks better(p, q) . If better (p, q,) is true, the move which led

to q; is retrieved by the program and made at this point without any

further analysis or examination of the remaining positions CORFE SE

Figure 2.1 is a flowchart of this part of the program.

If all q have been examined and none is found which is both

better and not worse than p , the program will resort to tree search.

The work it has done so far is really the first level of the tree search.

A branch remains in the tree for each as which was not worse than p .

Call this set <9 '

During the tree search the first element of the argument pair of

better and worse remains the initial position p . As explained pre-

viously, the second element must be a position with black to move. This

means that in the tree search, the ends of the branches can't be evalu-

ated after every move, since half of the moves result in positions with

white to move, Also it is convenient to have the depth in the tree equal

tc the number of white moves required to get to that point. If a position

q is sald to be at depth n in the tree, this means that 2n-1 moves

are required to get to q ; of these n are white moves and n-1 are

black moves,

The basic premise cf this method of play is that from p white is

able to force a position q better than p . "Force" means that white

must be able to answer every black move with an eventual better position; k

12

:

\

es i

| no
i ¥

geecar(Q) |

| no

| res
rewurn g

k no tN
|

1 @'{a*q')

“icure 2.1. Bi(p,Q)

pn € P is a starting position
Q is a list of successor positions of p .

BW returns

a single position q ; this means gq 1s b-tter =na no!
worse than p

a 1ist of positions (possibly.empty) contsinin: +11
positions which were not worse than p ; this men
no member of @ is better znd not worse than 1 .

15

conversely if any black mcve results in all poritions worse than p |

the position in which that black move was made must be discarded.

The tree search is a breadth-fir:t search. For each a; , the

program generates Pp. = (Bp py) . Each P; ; is the result of } |
a legal black move in. q, : 3.0, 9, MF for Jj = Towevs 5. . Then

for each P; <P; the program generates Qi ; = CETPRRRY Sis, where
Py sMyQy sy for k= 1,..., Si The program then computes BW(p, % 5)
(see Figure 2.1); that is, the 4 are compared with p in the same
W8y in which the q were compared with p previously. In order for

| the move leading to q to be accepted by the program, for each Py
there must exist a 9 ix such that worse(p, 9; 5k) is false and

| better(p, 2: 5x) is true; that is, BW(p, Qj) must return a single
position for Jj = 1,..., 5, (i.e., for every black move 25) If
this happens, then the move leading to q, is made by the program with-
out examining the other q.€0, :

If BW(p, 5) returne the null list for some 9 3 , this means
that all 4 3x9 5 are worse than p . Ta:s happens because in q;

the black move leading to Py is permitted, and white is not in a

position to control the result. In this case q, is completely removed
from the tree, just as if it had been worse than p in the first place.

The move 4, is eliminated in this way in Figure 2.2,

If a is neither rejected nor accepted, then for one or more of

the p,, , there exist several 9; jx Such that worse(p, 9 ix) is |

false but better(p, 9 ix) is also false. In this case, BW(p, Q 1)
returns the list of such 9 ik ; this information is saved in 2 4 in

1h

1%

number of

moves A
\

\

\

set Q \

1 :
ANE
YN/ NOON "o Go; © oie) Xe) ke oT

3 3 BESS NR :

| / ‘I'
| \ / |

SE
First f° 14° hx Ty {SHINES Wy
tree RB I IS EI518 =
com- 5
parison tw [AN = E
depth 2 | |

wn wo Ch WE al TR
nN no AS ;
AY. js }- ag Fs
no HM % pet

vecond | | ea i UP A -iree | A Lg TL | ho
com- | - YI =
parison 5t
depth 3 vo) Tt «= = v3) 2

Figure 2.2. Example of Forcing Tree.

1. From position qo, , for the black move leading to poz , 211 white
moves lead to positions worse than p . Therefore this branch is
eliminated. pg, Will not be examined.

2. Positions which are ‘better than p are marked with a B . A brarc
is accepted when every termination is marked B. Note that eve: if

a single position with white to move remains at a level, it is rot
necessarily better; e.g., qui; . This would be true even on the very
first level (set Q).

3. No decision is made at depth 2.

4. Now depth 3 is begun. For q; no aecision is made and all informatio
is saved.

>. The branch for a3 is examined next, and it is accepted since ihe oni
of every branch is marked with a B . One branch ends at depth 2; the
others end at depth 3. The program will now make the move leading to

az It does not examine the remaining branches for Qpseees q, -

15

case no q, is accepted at this level, For example in Figure 2.2, «e

‘would have set 0 = CIPSE yop) .

If no a, is accepted by the program at this level, the program

extends the tree cone more level every place where a decision wasn't

made previously (where a list 9 5 is saved). Every element 9 59 ;

produces several lists of positions 94 jkm , one for each immediate

successor positien - to 9 5x . Now BW(p, 9 jx is called.

If it returns a single position for each immediate successor Ps jim

of 9 jx 2 then 9 jx is accepted at depth 2 (just as before q,
would have been accepted at depth 1). In this case the other members

of % 5 are not considered. Also, as before, a branch can be rejected,

either back to depth 2 (9 5) or all the way back to depth 1 (a,) !
If no decision is made at depth 3, the program goes down another

level to depth 4. The search is continued until a decision is made.

Figure 2.2 is an example of a position which required a search of

depth 3. No decision was made for q, at depth 3 so all the information

in the figure would have been saved, For 93 , only one black move

Pz, remained to be answered and 300 is accepted at this level,

Therefore 4s is accepted by the programat this point, and Qseees Op
are not examined,

When the program has selected a branch of the tree, it remembers

the tree, and will make the moves dictated by the tree for as long as

it lasts. This is a very important point since it is the feature

which enables the program to force a better position,

Figures 2.3 to 2.6 are flow charts of the program. Figure 2.3 is

the main program; the other three flow charts cover the tree search.

16

enter with starting \
position p

TREE«NIL |

e{a*|pMax} |

-BW(p,Q)

| yes return, pro-
gram error

no

| is Q
| a single Ts(p,q) |

| position?

| | yes

| is Q

| no no

| print Q

1, f read pj

| $< yes
no

| | (move in TREE)
| TREE—cdr (TREE)

Figure 2.3%. Main Program Flow.

” . 7

enter with p,Q Q' IIT,—_—_———mm ——-——— ods

| - ge<ar(Q)

| is

yes a a | no

MMB(p,q) oo position oo M-TB(p,q)

B<
| no

4 yes

TREE—cdr(M)

no

Q'{MQ)

Qecdr(Q)

no <
yes

yes
return NIL

no

Figure 2.4, Function TS(p,0) is the top level tree search function
which starts the tree search going; calls the functions
which follow the branches of the tree; returns the select-
ed position and saves the branch in TREE if a decision
is made; or starts again to extend the search one more
level if no decision is made.

18

enter with p,q | P{p' la p'}—————————————————————————— '

PIL

p'ecar(P)

| ef{a'lp'Ma'l

| &-BW(p,Q)

| yes

<>
no

| P'{Q-F’')
| Pecdr(P) |

I ves

are

211 members yes
$s of P' single return (YES*P')

positions

no

Figure 2.5. Function MB(p,q).q is a single position. Three values are
returned.

(1) NIL means that some black move from q cannot be answered.
(2) YES*P' means that a better position is found for each black

move from q.

(3) P' means that for at least one black move no decision has
been made. |

13

enter with p,Q
lll Sisal oy.

Tet

QTL

geecar(Q)

3 no

ea

No ai at yes q' o no ve mr vy |

| MN i
| |

iy ; !

he | ne
\| |

Grtededr!)«0 pees

ro |
|

—— i

5: wore

i=l | nt ame EX

Figure 2.6. Function TB(p,Q). Q is a list consisting of positions
and of lists of positions. If an element of Q 1s a single
position, then it was found to be better at the previous level.
If the element is a list of »ositions, these are the non-worse
positions from the previous level. Q contains an element for
each black move in the position immediately above in the tree.

Function TB returns

‘ NIL - each member of a list of positions which is a element of
Q is rejected in the search.

YES+Q' - all elements of Q are or lead to better positions.
Q' - some elements of Q do not lead to better positions.

Q' contzins the tree from Q on down.

20

Tree Search Heuristics

Two heuristics are used during tree search. One helps to cut off

redundant branches of the tree; the other helps the program find the

better position faster. ’

1. Redundant Branch Cut-Off |

Suppose we are down at a node at depth n in the tree. A history

of the branch to this point is given by all the positions with black tc

move which the program has examined on the way to this node. There are

n positions in this history, say q., Dy gs+++> 4 5k. ..m . At this

point, suppose it is time to expand the rode at the end of the branch.

For simplicity let g* =A . Now suppose that BW(p, Q,*)
returns a list of positions @* . The program checks the positions of

the white pieces in each q, *eQ* against the positions of the white

pieces in q., Gy ovens q* , and if there is a match, gq.* Is
eliminated.

The reasoning behind this heuristic is as follows. It 1s true that

two positions in which the white pieces are in the same squares but the

black king is in a different square may have very different patterns,

However, in this case one position is a successor of the other, and

intuitively, if the placement of the white pieces is good, we should

have taken advantage of this originally and done something else from

there.

As far as the program is concerned, this heuristic has never

caused it to miss a move it should have made, Part of the reason for

this is that the treesare quite short (no more than a depth of seven)

and within that short a span the intuition is probably valid. At

21

. least one quarter of the positions returned by BW are eliminated by

this heuristic,

2. Killer Heuristic

If in the tree a position % 3k. ..m is found to be better and not

worse than p , the program finds out what the last white move, Ww ,

to ak. 0 was, and it remembers this move. Then every time after
this, when it forms a set @* Uo be used as an argument to BW , it

checks to see if w was the last move made to form some qg¥*cQ* , If

it was, then q* is made the first position in @Q¥* , so that it will

be examined first,

The theory is that in a tree search the positions are all similar,

so a move which led to a better position at one point is likely to do

so again. By putting the new position g* first we eliminate many

comparisons if the theory holds. If the theory fails we have lost a

little time,

In these end games the theory holds very well, If an examination

is made of the final moves to the better positions during a tree

search, usually there are only one or two such moves. The {ime saved

when the position put first is actually the one selected is large

enough to more than compensate for the time spent in ordering the

positions,

Representation

No attempt has been made to develop a sophisticated representation

for these end games. A position is represented by a list of the positions

of the pieces. Moves are generated rather than stored. Patterns are

i

discovered by functions. Some information is very time consuming to

obtain in this way, for example the set of all squares which a piece

can reach in two moves. In general patterns of this type are not

used, and the heuristics chosen for the end games reflect this.

| os

| CHAPTER 3

) DEFINITION OF BETTER AND WORSE

As was explained in Chapter 1, each end game 1s played by different

methods which we expect to result in different definitlons of better

and worse. However the form of better and worse is independent of the

particular end games. In this chapter we will define the form, which

will enable us to put a condition on the pattern recognition functions

which make up better and worse. We will use this conditicn to prove that

the program can reach checkmate from any starting positicn p € P.

First of all, in order for the program to work correctly it must

have a sense of direction. In the chess books this is achieved by an

ordering of methods. For example in the rook end game, first we drive

the opponent's king to an edge and then we keep our King on the same

file (rank) as his. In the program, rules are represented by patterns

of positions. Therefore the ordering of the heuristics is converted
into an ordering of patterns, and positions fram the end game can be

grouped into subsets according to this ordering. Then a position gq

will be better than position p if the subset containing gq is higher

in the order than the subset containing p .

Recall that the program builds a forcing tree from a position p

and ther. follows a branch of the tree (which branch is determined by the

opponent's moves) until a position gq at the end of the branch 1s

reached. This position gq is better than p . Now the opponent makes

2k

The ending Rook and King against King.
fhe principle is to drive the opposing King to the last line on any

side of the board.

In this position the power of the Rook is demonstrated by the first
move, H—-R{, which immediately confines the Black King to the last rank,
and the mate is quickly accomplished by: 1 R-R7, K—Ktl; 2 K=Kte.

The combined action of King and Rook is needed to arrive at a posi-
tion in which mate car be forced. The general principle for a beginner

DIAGRAM 20

to lollow Is to keep his King as much as possible on the same rank, or,
ag In this case, file, as the opposing King.

when, in this case, the King has been brought to the sixth rank, it
Ls better to place it, not on the same file, but on the one next to it
towarus the center.

Cees K=Bl; 3 K-B3, K—K1; 4 K-Kk4, K—Ql; 5 K—Q5, K=Bl; © ¥X—Gf.
liot ¥=B{, because then the Black King will go back to Ql and it will

Luke much longer to mate. If now the King moves back to ¢l, R—RE mates
al Once.

Ceesk=Ktl; 7 R-QBT, K~Rl; & K—BG, K=Ktl:; 9 K~Kt6, K—-R1l; 10 R—¥E¢ mate.
It has taken exactly ten moves to mate from the original pesition.

On move 5 BRlack could have played K-Kl1, and, according to principle,
White would have continued © K—Q6, K—Bl (the Black King will ultimately
be l'orced to move in front of the White King and be mated by R—RZ)q
7 ¥—£C, K-Ktl; 8 K-B6, K-Rl; 9 K-Kt6, K=Ktl; 10 R-R8 mate.

] Figure 5.1. Example from Capablanca, pages 26-28. :

22

a move, giving position p' . At this point the program will build a :

forcing tree from p' . It does this without memory of positions p

and q . If the program is toc work correctly, 1t must be able to derive

information about the state of the game from p' , and any q' at the

end of a branch of the forcing tree from p' must be better than p in

addition tc being better than p' . If this is true then we say the

program is playing consistently. Consistency is accomplished by being

careful about the selzg¢tion of 1g in the first tree; however we must

remember that orly a moderate amount of tree search to q 1s permitted.

In the following section we will have much more to say about better

than worse. This 1s not surprising, since for the program tO work

correctly worse need only recognize disaster and not interfere with

better. Both of these conditions will be satisfied.

Formalization

The notion of a stage has been adopted to facilitate the program's

sense of direction. The positions in an end game are divided into a

number of different subsets called stages. The stages are not necessarily

disjoint; however all the positions in a stage share a common pattern. |
In general a stage contains both positions with white to move and

positions with black toc move. The stages must exhaust the universe of

positions in the end game. Let

© @=PuU {qa | 3p(peP A pMa)} ,

for P the set of all legal positionsfrom which white can win. Every

position x € Q must be in at least one stage. The stages are ordered,

from the lowest (zero) stage containing stalemate positions and other

26

positions from which white cannot win, to the highest stage containing

checkmate positions. The nth stage in the order is called stage n ,

For programming purposes we prefer to deal with disjoint subsets.

If x € Q , we define |

st(x) = 0 if x € stage O .

= max ({n | x € stage n }) if x ¢ stage 0.

The subsets {x | st(x) = n} can be ordered by the value of st when

applied to the elements of the subsets. These subsets are used to give

the program a sense of direction in a natural way by

5.1 st(g)>st(p) > better(p,q) .

Also we will have

better(p,q) o st(q)> stip) .

The statement

3.2 st(q)st(p) = better(p,q)

is not used because it would result in tree searches of immoderate

length,

5.1 is a partial definition of better, so we consider what condition

is required to ensure that the program works consistently. Recall that

we want to be able to deduce from the successors of q information

about the state of the game at q . Suppose for now that 3.2 is the

definition of better. Then the program can be forced to play consistently

by the condition on stage definitions.

5.5 Vp' VaigMpp' OD st(p')> st(q)] . -

5.5 says the stages must be defined in such a way that black can n ver

force a return to a lower stage. This embodies the spirit of thes:

ra

7

games; that is, that white 1s in complete control, and that the black

moves are considered (by the program/ student) only as part of the white

strategy. We need not worry about a black move strategy.

There is no condition similar tc 3.3 for white moves. However

5.4 vp 3aq(pMa A st(q)> st(p))
is often useful. Intuitively it would seer that if some p had all

successors at a lower stage, then p was evaluated incorrectly. This

is not always true, but if 3.4 isnot satisfipd it is important to under-

stand why. "

As far as worse is concerned, we always have

st(q)=0 > worse(p,q)

which accomplishes branch termination and insures that worse recognizes

disaster, We do not have }

st(q)<st(p) > worse(p,q)

because sometimes the path that the program should follow involves this

kind of situation. We will always have

worse(p,q) D st(q)< stp) ,

since worsemay not interfere with better.

To help explain the definitions given in this chapter, an example

will be developed as we proceed. It covers the play of part of the

Rock and King against King end game, as explained in Capablanca [19351];

the text is given in Figure 3.1. This example can be handled in five

stages. First we introduce pattern recognition functions ff and g .

For x a position, we have

f(x) = {the black king is confined to a file (rank) edge in x} .

Let edge(x) be the edge to which the black king is confined in x .

28

g(x) = {£f(x) A (the white king is on the file (rank) two away from

the file (rank) edge containing the black king and on a

rank (file) closer to the center of the board than the

black king)} .

f(x) represents the first principle in Figure 3.1. g(x) partly

represents the second principle in Figure 3.1; it will be used to

recognize white move 6.

Now we can define the stages. These definitions are built up out

of basic functions and notation which are described in Appendix A.

x € stage 0 = {x is stalemate, or x 1s a position with black

to move, and black can take a white piece in

one move}.

x € stage 1 = {x canno* be assigned to any other stage].

x € stage 2 = {f(x) A de(uk_,edge(x))>2).

x € stage 3 = g(x).

x € stage 4 = {x is checkmate}.

Figure 3.2 gives examples of some of these stages. The opening position

in Figure 3.1 is in stage 1. Note that every legal position (every

position in set Q) is in some stage, because of the definition of

stage 1. In every end game there will be a catch-all stage defined

like stage 1.

Now we must check that st satisfies 3.3. If st(q) = 2

or st(q) = 3 , then the black king can never move in such a way as to

form a p with st(p)<2 . This is because in q the black king is

confined to an edge, and the white king is not blocking the rook since

it is two or more files (ranks) away from the edge while the rcok is |
29

wh, 7.8

SI“om 7 : hiteji i a,b 2. This is the position :fter white

/7

ivy”mh m,
’ . Y preay th ’, wi / oo.2 by J, Z 5« This is the position er vite

3 LIEPe| st(5.) = 4, This is the checkmate po

Figure 3.2. Stages in Figure 3

30

only cne away. The black king is not threatening to take the rook in

any q with st(q)>0 , because in that case we would have st(q)=0 .
Rule 3.4 is also easy to satisfy. In stage 1 there is no

difficulty. In stages 2 and 3, the rook will always be able to move to

another square on the same file (rank) (for a file (rank) edge) and

thus preserve the same stage.

If we use 3.2 as our definition of better and define worse by

worse(p,q) = st(q)=0 ,

then only moves 1, 6 and 10 from the example in Figure 3.1 will be

chosen by better. Thus the tree searches are fairly long, and also the

tree is very wide, This brings us to the remainder of the definitions

of better and worse. If we change the definition of better to

5.5 better(p,q) = {st(q)>st(p) v [st(q)=st(p)=2

A de(vk ,edge(Q)<de(vk , edge(p))])
then moves 1, 2, 3, 4, 5 6, 10 will be recognized by better. This is

a considerable improvement in the length of the tree search,

What is happening here in stage 2 happens in the other end games

as well. The stage itself is rather large, but the positions inside it

can be put into subsets, just as the whole universe of positions @Q was

put into stages. In fact, additional stages could be added, one for
each of these new subsets.

However, we must consider an interesting property of the stages

as they are defined in this end game, and one that is worth preserving

in other end games. Recall that each stage is defined by a distinct

pattern; in addition each stage is associated with its own heuristics.

51

Fach stage has as its immediate goal the achievement of the next stage
and its heuristics are directed toward that end. For example, in

stage 2 we move the white king up toward the edge until stage 3 is

reached; in stage 3 we force the black king toward a corner until check-

mate is given.

IT new stages were added for all these subsets, this heuristic

property would be lost. While we may expect to use additional heuristics

for two positions in the same subset of a stage, these heuristics are

independent of the particular subset and can be used for all subsets |

within that stage. So it maxes serse to handle these subsets differently

from the stages. Therefore a r.cw function has been added which is called

& measure. For each stage n | function m is defined for all

pesitions in stage n . m 1s not meaningful for every stage; in
that case we have

m (x) = 0 x(x € stage n) .

Definition 3.5 implies the following measures

m, (x) = de(wk_, edge) ¥x(x € stage 2) .

m(x) = 0 Vx(x € stage i) , i= 0, 1, 3, b .

Note that the smaller the measure, the better the position. This is

the opposite of stages. Then the new (and complete) definition of

better is

3.6 better(p,q) = {st(q)>st(p) Vv

[st(q)=st(p) A Bs (q) {V4 (q) (PI . |
For program consistency, 3.3 becomes

5.7 Vp Va{q Mpp D [st(p)>st(q) v (st(p)=st(a)

32

An addition is also made to give the complete definition of worse,

We have

3.8 worse(p,q) = {st(q)=0 v [st(p)=st(q) A mst (p) BIT (py (D]] ,
We can use this strong definition because if we have two positions in

the same stage we know better how to compare them than if they come

from different stages. We extand 3.4 to

3.9 Vp 3q {p Ma A (st(q)>st(p) v [st(q)=st(p) A

mst(q) Bey (p) (RIT.
Like 3.4, 3.9 is not necessary to the consistency of the program.

{

So far in this example stages have been defined in the same way

for positions with white and black to move, excepting stage 0 and

stage 4 which only contain positions with black to move. In general,

however, slightly different versions of the same pattern are used to

recognize positions with white to move as part of a stage than are

used for positions with black to move.

For example, 3.6 selects white moves 1, 2, 3, 4, 5, 6, and 10 in

Figure 5.1, but these are not the only moves it would select. In

general we are not too concerned if the program doesn't select the book

move, because the program is looking for a better position and not a

best move. However in this case the program is playing differently

from the book; it doesn't follcw the second principle in Figure 3.1

and white moves 2 through 5 are affected by this. If we define

x € stage 2 = {f'(x) A de(wk ,edge(x))>2} ,
where

f'(x) = {f(x) A (the two kings are on the same rank (file) in x)},

| 55

then we will violate 3.7. For instance after move 1 ir Figure el,

we have f'(qg) ; then the black king makes its move and we have

- £'{p) .

Whael 1s needed is to define stage 2 differently for positions with

white and black to move. We will use

x € stage 2 = {£"(x) A de(uk | edge(x) >2} ,
where

(gq) = £'(q) |

"(p) = {f(p) A (the kings are on the same rank (file) or on

adjacent ranks (files) in p)} .

With this new definition of stage 2 the program will chose moves 2, 3,

L and 5 correctly independent of the order in which the moves are

generated. Another effect of the new definition is to put more

positions in stage 1. In reality stage 1 would be divided into two or

more stages, but here we are concerned only with the part of the end

game covered in Figure 3.1.

Additions to better and worse

When functions are actually written for the play of end games,

5.6 will be the form for better and 3.8 for worse. However, certain

additions will have to be made to better and worse tc make the program

practical. These additions will be made in the following format,

If the tree search is too long, then an addition to better is

required. This will always have the form (for fixed n)

3.10 (st(p)=st(g)=n A...). | |

34

’ We assume m (p)=m (aq) since m (p)<m_(q) woul' have been worse, and

m (ppm (a) would already have been better. If the tree search is
toc broad, an addition will be made to worse. This will always have

the form (for fixed n)

3.11 {st(p)=n A [st(a)<n v (st(q)=n Am (q)=m (p))] A ...}.

To be sure that the program will work consistently it is always

necessary to extend 3.8 to cover additions 3.10, and 3.11 must not

eliminate all former paths to better positions. Program consistency

must be considered separately for each addition,

As =n example of additions consider 3.6 and 3.8 as they apply to

Figure 3.1. The definition of better is sufficient for this end game,

so no problem of consistency arises. However the definition of worse

needs to be enlarged. After move 6 in Figure 3.1, a tree of depth 4 is

required to reach checkmate. Position P in Figure 3.5 appears at
the head of this tree. At the first level alone, 12 white moves are

considered, and similar large numbers at further levels. If worse is

changed to

worse(p,q) = {st(q)=0 v {st(q)=st(p) A Mgt (p) (VPM (p) (P)] |
v [st(p)=3 A st(a)<3 A (d (wk, r)>d(wk,r)

v [sta) # 3 Ad (wk,r)>1])]]

then only 4 moves are considered in p, . In p, , five out of nine

moves remain; note that the desired move, wk-QKt6 gives g, not in
stage 3 (see Figure 3.3). This tree is still rather broad and other

or different heuristics can be added to prune more.

35

riiy=, 7. 2

hw,

Py nw This is the position after black move 6hh, Wh, in Figure 3.1.

www

“ow ww
p a This is the position after black move 8"8 | / / 7, | in Figure 3.1.

7

©neHE
a, WOW Y my After white move 9; note that st(a,) = 1,

Figure 3.3 |

36

Formal Definitions of better and worse
Sl Tn dt uni Ch SELLY SHC ¥Orse

3.6 better(p,q) = {st(q)>st(p) Vv

st{g)=st Am <m 11.

| 5.8 worse(p,q) = {st(q)=0 v [st(p)=st(q) A Bs (p) (P)Mgy (py ()])

Conditions on Stages and Measures

5.7 Vp Vafq Mp > [st(p)>st(q) v (st(p)=st(q)

A <n .

5.9 Wo 3a {p Ma A (st(q)>st(p) v [st(q)=st(p) A

m <n NY.

Additions to the Formal Definitions of better and worse
Te ——————————————————————————— ea eee es meme

Additions toc better have the form

5.10 (st(p)=st(q)=n A...).

Additions to worse have the form |

5.11 (stp)=n A [st(q)<n v (st(g)=n A m (q)=m (p))] A...) .

Figure 3.4 Listing of the Rules Introduced in Chapter 3,

37

|

: (

CHAPTER 4

ROOK AND KING AGAINST KING

Formal Definitions of better and worse

The method of play chosen for this end game is taken primarily

from Fine [1942]. His description is given in Figure 4.1. The last

few moves of the game are chosenby Capablanca's [1935] method

illustrated by moves 8-10 in Figure 3.1.

Only one basic pattern, shown in position 4, in Figure 4.2, is

required for this method of play. The ability of the rook to control |

ranks and files is utilized; as long as the black king is not in check

it is held in some area of the board by the rook, Usually this area

is a quadrant as shown in q - If the white king is not on the boundary

of the area, the black king can escape only by attacking the rook, If

the white king is outside of the area, as shown in q; , it is able to

protect the rook from such an attack if it is close enough. It can't

be blocked from protecting the rook by the black king.

If the pattern shown in 9 holds in a position, this is

recognized by function quad:

guad(x) = (the rook confines the black king to an area of the

board in x , and the white king is outside that area).

guad describes the pattern occurring in almost all positions of

Figure 4.1. For example quad holds after each of the first three black

| and white moves. If quad is satisfied by a position, we will refer to

38

I'nis piece is not nearly as strong as the Queen and the mate is
accordingly far more difficult. The Rook alone cannot drive the King t>
the edge of the board—it needs the assistance of

its own monarch. Since the Rook is much less Mating Position wit.
powerful than the Queen, there is less danger of the Rook.
stalemate—this is the brighter side of the picture. 7 A

In order to mate, the enemy King must again hy,mY h, 2be driven to the edge of the board. The mating 7, 7, i, wh,
position is then the same as the second one with 7 0.9 7
the Queen. Thus the problem here is essentially A Wthe same as that in the previous case, the chief hh, 0,0,difference being that the two preliminary steps | h, wn, Wh, %(driving the enemy King back and bringing one's UU 7 _ 7,
own King up) are carried out simultaneously. The 7, 7, 7 7
only stalemate that should be watched for occurs y y Ww |

Black to Play 1s

No. 2 Stalemated.

FA

0. 7

23 nh, nh, 7, when the Black King is in the corner.
27 _ _ 7 Starting from any position such as that

7 7 7, shown here in No. 2 we would then proceed as
“ “ follows: 1R—Q2 (confining the Black King bes

the right-hand side of the board), 1 K-5;
2 RQ5, K-K5; 3 K-BS, K—K6; 4 R—Q4 (now he has only three ranks and four
files), KX7; 5 KQ5, KKb; € K-K5, K—KT7; 7 K—Ki, K-B7; 8 R—Q3 (see dic-
scream No. 2a). K-K7; 9 K—QL4, K-B7; 10 R-K3, K-Kt7; 11 K-Kui, K-B7; 12 K-14,
¥—Kt7; 13 R-i2ch, K-B8; 14 ¥-B3, K—Kt8 (diagram No. 2b); 15 ¥—Kt3. K-Bf;
16 R-K8, K=K-3: 17 R-Kl mate.

The fin:1 maneuver, which involves losing a tempo, or mose, choulc
be remembere —it is the key to this mate.

No. 2a No. 2b

7 AP ws % % % wh

JEBomwm |Es 8
“0%, % I | Wh, GE, I

Position after 8 R—Q3. Position after 14
.... K=Kt8.

Figure 4.1. Example £ rom Fine, pe 2s 1k and 15. |
t

59

1 bl3 0, We have guad(q,) and squad (aq,) = 16,

wh, Wh, ih, 7) We still have quad(p,) but we must move
- 0 7/,%7), 7), the rook or we will Tose ite The rook
c 7) BE 7), can move so that there will be a quad-

7, y LE rant, but the size will be larger.

W“/ Py | Here we have guad(p,) and squad (p,) = 20.
UW ¥ :

N nh, nh, bo 0, | We have PM . We do not want to accept.nl? a, as better than p, .73 -P

um| 2) Wh, wh, 7) Here we have quad(x,) and squad(x,) = 2.
X, hath, 4,0, Xr, is in stage 3.

Figure 4.2

40

the area in question as a quadrant. This patterr lends itself very

naturally to a measure. If we have guad(x), ther squad(x) is the number

of squares inside the quadrant. For example, in q, in Figure 4.2,

squad(q,) = 16. |

If guad is to be used to determine a stage and squad is to be a

measure in that stage, we must satisfy conditions *.7 and 3.9 (see

Figure 3.4). Condition 3.7 presents no problem since both guad and

squad depend only on the positions of the white pieces. The black

king is unable to escape from a quadrant except by taking the rook; in

this case the position gq prior to the black move would be in stage O,

Rule 3.9 cannot be satisfied without putting additional conditions

in the stage definition. For example, suppose in position a the

black king moved to @Q+ to attack the rook, forming p, 1n

Figure 4.2. The white king is not close enough “o protect the rook;

thereforewe must move the rook away from the black king. It is simple

to form a new quadrant; for example, any rook move on the fourth rank
will do this. However every rook move which forms a quadrant forms

one of a larger size. In general, the rook can always form a quadrant,

but it may be larger than the present one. This viclates rule 3.9.

Note that it really would be incorrect for the program to accept

a position like gq, as better than for example, p, in Figure 4.2,

At position p, , the best that white can do is to maintain the smallest
possible quadrant. This will have size 20, the same as squad(p,).

Therefore nothing has been gained by meking the move to 9, and the

burden of correct play has been pushed onto the tree search.

| 43

Now the problem in position 9, came about only because the white

king was too far away from the rook to protect it from the black king's

attack. Therefore all that is needed to satisfy rule 7.9 is to

insist that the white king protect the rook. The condition of pro-

tection is given by function goodquad

goodquad(p) = {quad(p) A 4, (wk,r)<d (bk, r)+1]}
goodquad(q) = {quad(q) A 4 (uk, r)<d, (bk, r)) :

Different definitions are given for p and q to insure that goodquad

satisfies 3.7. (We remind the reader that definitions of basic functions

and notation are given in AppendixA.)

The use of goodquad for a stage and squad for a measure in that

stage will inexorably force the black King toward a corner of the

board. However, this process must stop when we reach a quadrant of

size 2, since any smaller quadrant would be stalemate. Therefore when

squad= 2 we must move to a new stage. At this point we shift to the

heuristics taken from Capablanca [1935]. x, in Figure L.2 is an

example of a position from this stage (stage 3).

We give the formal definition of better and worse by defining the

stages and measures.

x € stage 0 = (x is stalemate or x is a position with black to

move and black can take the rook in one move).

X € stage 2 x cannotbe assigned to any other stage.

x € stage 2 = {goodquad (x) A squad(x) > 2} .

x € stage 3 = {goodguad(x) A squad(x) = 2} .

x € stage 4 = x is checkmate.

bo

Only stage 2 has a meaningful measure. We have |

m, (x) = squad(x) ¥x(x € stage 2) “

m (x) = O ide |

Additions to better and worse

We are now ready to consider how well the program plays using the

formal definition of better and worse. We need not worry about the

transition from stage 1 to stage 2, since the tree search is no greater

than depth 2. However, the depth of tree search in stale 2 can be as

large as 8, although a depth of 3 is average; in stage 3 there is a
maximum depth of 5. Therefore, we must make additions to better.and

worse in stages 2 and 3.) -

In stage 2 both the length and the width of the tree must.be ’

reduced. Recall that we are striving to shrink the size of the quad- |

rant. The rook alone is unable to do this; sometimes the white king

must be used to force the black king away from the rook. For example, |

in Py in Figure 4.3 the white king must move onto the boundary of]

the quadrant. Then on the next white move the rook can forma new

quadrant smaller than the present one (see position 4; in Figure 4.3).
In order for the white king to be useful, it must first be next to the

rook, Position Py in Figure 4.3 is an example of a position in

which the white king must move up to the rook. We can recognize this

kind of move by adding to better

4.1 st(p)=st(q)=2 A d q(vk, r)<d (wk,r) ‘

43

yl J Uh, - In this position obviously we want wk-Q5 or
Py ll YH,om go po y
wm mW |

Wy lp lh This is the position beforg move © in Fine
P 7 m| U | (Figure a Now v8 vant. tc avs te white

i 120) i i; i re ineA es oe 0 id ie

i he nm wk-Kk; wk-KB4+ is just as good.

h, Mh,

JMh,JEre The black king is forced to move away frombe 7 MW Wi, , the rook (bk-KB7 in Fine), and then the rook

sn» can form a smaller quadrant (r-Q3), giving iz .

wh, mh, ih,

* | Pl, Ps *, taken f Figure 4.1 before white move 5P I,yl lh mh, is the pag i longest tree (depth b). ’

4, oe Z

Figure 4.3. Examples of Moves in Stage 2.

Ly

1.1 reduces the length of the tree search to a maximum of four. This

is a manageable length so no further change need be made to better.

A tree search of depth three or four requires considerable

pruning to be practical. In the formal definition only rook moves

leading to larger quadrants and moves giving stage O are eliminated,

In p* in Figure 4.3, for example, seven white king moves and four

rook moves would be examined in the tree search. This tree will be too

broad.

Note first of all that tree search will take place only when

a, (wk,r) = 1 . The strategy at this point is to move the white king
onto the boundary, which gives a position q in stage 1. Therefore

not all stage 1 positions gq can be declared worse than p . However,

the rook can also move to forma stage 1 position, either by moving

so that in q there is no quadrant or the rook is not protected by the

white king. All these moves can be eliminated. In addition all white

king moves which result in d, (uk, r) > 1 can be eliminated. We add to
worse

h.2 st(p)=2 A [st(q)<@ v (st(a)=2 A my(p)=my(a))]

A [a (wk, r)=1] |

A [a (wk, 7)>1 v (st(q)=1 A r Fry)
It is easy to see that these additions to better and worse are

correct. First we note that

(aMgp A st(q)=2) > (st(p)=2 A moe (p) (P) = moe (p)(Y
| . A dy, (wk, r) = dg (wk, r)) .

Therefore 3.7 can be extended to cover 4.1. As far as 3.9 is concerned,

the important thing is that the white king is always able to move to

L5

protect the rook and such a move will insure

d, (wk, x) < 4, (uk, x) .
We note also that 4.1 can only be applied to finite number of times

(no more than 7) between applications of the formal definition of

B better. 4.2 is correct because it does not interfere with 4.1 or the
formal definition of better, even when a tree search is required to
force a smaller quadrant.

In stage 3, the maximum length of the tree search is five, so it

is not necessary to change better. However considerable tree pruning
wlll be needed to make the tree manageable,

The checkmate position is illustrated by 93 in Figure 3.2. Before
the checkmate can be given, the white king must be in the square in-

dicated in 4z . Note d(wk,r) = 1 in the checkmate position. Now we

could have used d_(vk,r) as a measure in stage 3 but it leads to

considerable inaccuracy of play since only the indicated square, cf
all the Sarares next to the rook square, is used for checkmate. We have
concentrated instead on tree pruning.

Although we do not use d(wk,r) as a measure, it is obvious that

we do not want to move the white king away from the rook. This one rule

"will eliminate many king moves. However, the rock also contributes

many moves, some rook moves giving stage 2 positions and some stage 1,

The stage 2 moves can be eliminated, but sometimes a stage 1 rook move

1s necessary. This case is illustrated by position P, in Figure 4.4,
At this point the rook must make a "tempo" move. It must remain on the

QB file, so that the black king is forced to move into the corner.

However, there are six usable squares on that Tile. We can limit the

LE

ie 7 /, 7

m2 M,N,

Py hh, , i, No immediate successor position is better| 7 7 i 7 than p,. r-QB6 is a desired move

YV/

a Wh, un, nm, J After r-QB6, we have q., in stage 1. bk=R1i2 ,A 7 is the only legal move, find then we can get
am, a, checkmate. This rook move is needed for parity.

©.
vB 4

. 7 %, W Y p* 1s an example of the longest tree search,p #4, » 3 and the depth of this tree is 5 moves. It
| i, 2, wh, 7 is quite Ra rTOvy however. After pruning, theVi. % %; #% | remaini it -Q7, r-K7, r-

pn ha, reni ite moves are r-Q7, r-K7, r-QR&| ZW Z

Figure 4.4. Examples of Stage 3.

47

rook moves examined by insisting that the rook stay next to the white

king. In stage 5 we add to worse:

4.3 st(p)=3 A [st(g)=2 v (st(q)=1 A a, (wi, r)>1)

v (st(g)=3 A d, (wk, r)>1 A dg (wk, r)>d (wk,r))])
4.3% is correct because again we have been careful not to eliminate all

paths to checkmate, Now the tree is narrow enough to manage, In Py

wg instance only four moves are left after pruning; in p* also four

moves are left. Since very few moves are available to the black king

the tree remains quite narrow.

Combining formulas 4.1, 4.2 and 4.3 with the formal definitions

of better and worse we have:

better(p,q) = {(st(q)>st(p))

v (st(a)=st(p) Amy (0 (a)<m(0)
v (st(p)=st(q)=2 Ad (wk,r)<d (uk,r))} .

worse(p,q) = {st(q)=0 v (st(q)=5t(p) A Bp) Fp ya)
v (st(p)=2 A [st(q)=1 v (st(a)=2 A m,(p)=m,(q))]

| A a (wk,r)=1
Ad (wk,r)>1 v (st(a)=1 Ar #r)])

4 — Pp gq

v (st(p)=3 A [st(a)=2 v (st(a)=1 A d (wk, r)>1)

v (st(q)=3 A d, (vk, r)>1

Ado (wk, r)>d (wk, r))])}
These are the functions actually used in the program,

Examples of Program Play

In order to prove that the program works we must give examples of

program play. The first example is taken from Figure 4.1. The program

48

is started at the second move because it would maker -QR5 as its first

move, The reason for this difference will be discussed later,

The opening position is p, in Figure 4.5. We have:

1. r -Q8 Py is a Bade 4 position, there-
fore the first stage 2 position

generated is better.

bk -K5

2. r-@5 bk -X6 The program has lost one move.

3, wk-QO bk -K5

L, wk-Kb bk -K6

5. wk-KS bk -B6

6. r-Qh Now we have squad = 16. The white

moves 3 to 6 are chosen by a tree

search.

bk -KT

7. wk-K4 bk -B7

8. r'-@3 bk -K7 This is the same position as the

book's after move 8. White moves

7 and 8 are chosen in a tree

search.

9, wk-GH bk -B7

10. r =K3 bk Kt7 The tree has depth 3, but this

| pranch (moves 9 and 10) is only

depth 2.

11. wk-K& bk -B7

49

i,i: wh, MW,
mam, ,"eep 0,Ne , 2 The opening position for the example is in1 mn, Dn? 7) stage 1.
IW,

vn, ih,

An i, mW, , The position after book move 13.
En
Be
TT

5 1 Viz 7 A Z e rook and white king are in e position

kL § an tres ve 1s by the SE ihe poss
i, 0 Juss,

Figure 4.5. Illustrations of Examples of Program Play.

50

12. wk-Bb4 bk -K+7

13. r -B3 Moves G-12 are the same as the

book's, but now we differ.

bk -RT

14. r -Kt53 We are now in stage 3; see

Figure 3.1 at move 7.

bk -R8

15. wk-B3 bk -R7

16. wk-B2 bk -R8 |

17. r -R3> mate

The programis playing very similarly to the book up to move 13.

It choses a better and not the best position at move 1, and then must

work hard to catch up to the book. It is in a better position after

move 6 than the book is after move 4 and is able to regain two moves,

At move 13 the book makes a move using a different strategy. Instead

of shrinking the quadrant it puts the king in check (see a in

Figure 4.5). If the black king goes to any square tut BS the book

gives mate in two or three moves, but for the move to B8, four moves

are required. The program's move also requires four more moves to

checkmate, so it is really just as good as the book move.

Position p, in Figure L.5 is the starting position for this next

example. P, is the position which results if in the previous example
we have

35. wus bk -Kt8

1k. wk-Kt3 bk -R8

51

15. r -B2 * ¢-Bl is checkmate, butr -B2 is

generated first and also gives a

better (stage 3) position.

bk-Kt0

16. r -B4 bk-R8

17. r -Bl Checkmate.

However, the order of moves can also be correct. If

13. sev bk-R8 |
6 ;

4, r -B2 and two moves to checkmate. r-Kt3

also gives a better position, but

four moves would have been required

to mate,

The numbering of the program moves is one less then it should be

since the program started at book move two. This means the program

never recovered the move it lost at its first move.

Evaluation of Program Play

Now we can see that the program plays similarly to the books.

More important, it is using the same heuristics as the book's in most

cases. For example, the use of squad as a measure exactly models Fine's

book when it is concerned with cutting down the number of ranks and

files available to the black king (see the comment after move 4 in

Figure 4.1). Also both the program and the book use the white king

to protect the rook and to force the black king away from the rook so

a smaller quadrant can be formed.

52

The differences in program and book play that do occur illustrate

features of program play. These will be discussed in detail in

Chapter 7; only a list will be given here,

1. The goodness of program play is dependent on the order of move

generation (illustrated by the last two game examples).

2. The program will accept a move which gives a better position at

depth 1 even if an advantage would be gained by waiting until depth 2

to evaluate. This is the reason that the program will not make book
move 1.

5. The program uses a single main heuristic inside a stage; it will 6

not switch heuristics until it reaches a new stage. This is the reason

the program will not make book move 13,

| None of these features causes the program any serious difficulty. In

fact, the program plays this end game very well. If it can do as well

on other end games, we will be very satisfied with it.

23

| CHAPTER 5

| TWO BISHOPS AND KING AGATNST KING

This end game, while not difficult, is considerably harder to play

than the Rook end game, and the increase in difficulty is mirrored in

the program. The final definitions of better and worse are quite

complicated. As in the Rook game, the method of play used is a com-

posite of Fine [1944] and Capablanca [1935]. Figure 5.1 is the example

from Fine; Capablanca‘'s method is given in Figure 5.6. Again Fine's

method is used to guide the first part of the game, while Capablanca's

is used in the final stages.

Two basic patterns are sufficient for the entire end gam:. The

first, as in the Rook end game, is concerned with confining the black

king to an area of the board. Unlike the rook, a bishop does not hold

an uncrossable line. However when two bishops are on adjacent diagonals

they together do hold such a line. Position Xy in Figure 5.2 illus-

trates this; the black king is confined to approximately half the

board. When the bishops are also on adjacent squares, the space avail-

able to the black king is even smaller, approximately a quarter of the

board. This is shown in positions Xx, and x, in Figure 2:2. In
addition when the two bishops are on adjacent squares they may protect

each other, as in X, . If not, as in Xz 5 then only one bishop is

open to attack, and there is only one square inside the area from which

the black king can attack it. Therefore it is fairly easy for the

5h

In the previous cases it has always been sufficient to drive the
King to the edge of the board. Here, however, it is essential to have
the enemy King in a corner, for though mating positions in the center
are possible they cannot be forced. Any corner will do (unlike the
case with Bishop and Knight).

No. 3 Beginning with any arbitrary position (see
diagram No. 3) the first task is to reduce the

rr rr mobility of the Black King. Thus 1 B—-B3, KK;
| 772 77 77 _7/4 2 BB6, kQ5. Now that the Bishops are as well
7 7 ZZ placed as possible the King must come up.

| y or 7 WY 5 K-Kth, K-Q0; 4 B-K5, K-K6; 5 K~Bl, K-Q7; © B-bos “yw Z A Qh4, K-K7; 7 K-B3, K-B8 (see diagram No. 3a);54 _ 0. 3 8 B-B3, K-K8; 9 B-Kt2, K—K7; 10 B-B5 (a tempo
| Ny _ move: White cannot approach directly and loses
V. % Pp | a move to compel Black to retreat), K—K8; 11 K—7, «> 7, “0d QQ, K—QB8 (see diagram No. 3b). From this point
Z. oo. 1 on the rest is quite simple: by successively7 8 os cutting off the squares to the right of Black he

| | is compelled to play into the corner. 12 B=Ktk,
K-B8; 13 B-KB3, K=Kt7; 14 B-Ql (the King must not

be allowed to escape), K-B8; 15 B-R4, K—Kt8; 16 k—Q2, K-Kt7; 17 K—Ql,
K-Kt8; 16 B~B3, K-R7; 19 K—B2, K—R6; 20 B-Kt5, K—R7; 21 B—Ktk, K-R8;
22 BQ% (tempo move), K—R7; 23 B-Bhch, K-R8; 24 B—B3 mate.

No. 2a. Position after No. 5b. Position after
Black's 7th Move. "Black's llth Move.

vo, 7 J, Vv 0. 0 0.
78’ 7 7 o 7 7

i gE » Vi 2% On: wy 7 7 7 b/ Z ; ;

un UW EEE

Figure 5.1. Example from Fine, p. 15-17. This method serves as a guide
for the first part of the game.

55

Xq W,, “I, When the two bishops are on adjacent diagonals
le 7) they confine the black king to approximatelynn. A “a half the board.

Wa iff 1, . My
~.Mh, Mh

X 7 97 7) | If in addition they are on adjacent squares
2 Ww. 9 "i " they confine the black king to approximately| Wl << a quarter of the board. In Xn they alsolitany A y protect each other.\e 7 = i, 4S

Vi. TT He

v4,

xs AN rg. the white bishop is open to attack
VeSa_

Figure 5.2. Examples of Quadrants.

56

program to evaluate the danger of attack and decide aow to prevent

it. For this reason, together with the advantage of confining the black

king to a small area, the program uses this configuration as its sole

pattern. In Fine, this pattern is combined with the one where the two

bishops are simply on adjacent diagonals. Capablanca does not describe

the middle part of this end game; however the part he describes is a

continuation of this method (see Figure 5.6). |

Now when the bishops are side by side they keep the black king in

approximately a quarter of the board, so this area will be called a

quadrant. ¥ Suen an area will be recognized by function quad(x) . In

oo order for the black King t,o be confined tou an area it must either be

inside the area or else possibly on the inner diagonal of the boundary

of the area. For example, in Xs in Figure 5.2, squares QR2, QKt3,
Q3, K2 and KBl may be acceptable positions for the black king, in

addition to the inside squares. We have

quad(x) = {the black king is inside the area formed by the two

adjacent bishops, or it is on the inner diagonal of

the boundary of the area}.

Note that the position of the white king is not considered in quad.

It ic easy to define a size for a quadrant. The area in which

the black king is controlled by the bishops has the shape of a triangle,

and an edge of the board forms the side of the triangle opposite the

two bishops. Call this edge, edge(x) . Then

| squad(x) = de(kb_,edge(x))+delab, edge(x)) .

Thus squad(x,) = 8 and squad (x,) = 7 . (For definitions of basic
| functions and notation, refer to Appendix A.)

27

The fact that we intend tc use Capablanca's method for the last

part of the game puts a restriction on the quadrants the program uses

in this stage (stage 2). Position xy in Figure 5.3% is an example of
the start of Capablanca's method. Note that the quadrant in Xy contains

a corner. Now if we decrease the size of the quadrant indiscriminately

we may end up with the black king confined to a small area not contain-

ing a corner, as in x, in Figure 5.35. Then we would have to use an’

intermediate heuristic tc achieve xy Rather than do this we force

Xq to occur directly by only using quadrants containing corners.

Function hascorner(x) is true if the quadrant in x contains a

corner. This constraint makes it more difficult tor the program to

force a smaller quadrant, since often only one of the two immediately

smaller quadrants contains a corner. Position p in Figure 5.5 is an

example,

We now must consider whether quad and squad will satisfy conditions

3.7 and 3.9, For condition 3.7 we define

spec(x) = {some successor of the black king in x is not

inside the quadrant}.

Then for a quadrant to be accepted in q , spec(q) must be false, For

example, a, in Figure 5.4 will be rightfully rejected by this condition;

after the black king moves to KB7 no white move can force it back into

the area. Requiring that spec(gq) be false insures that the black king

must move inside the quadrant, and any p with the black king inside

the quadrant will be accepted. Therefore rule 3.7 is satisfied.

Condition 3,9 presents more difficulty. Firstwe must reject positions

like p, in Figure 5.4, In Ps , only gqb-@6 will form a quadrant, but

58

I 7 / / i
\, ith, J, 0,

7 ”m, nh, wh,

Xn i, mh, fy Hl |aEWnh, nS,

Vv wen

ih, 00, ih,

vii. 2 Ih The quadrant in p has a ccrner. However,mm rYy 3

P 21 nd 7 | of the two ways of forming 2 smaller quadrant,| 7 7 i only one, qb-QBS, produces a quadrant with

Vi)) Ja, 5. a corner.

59

wm, Wh, A h, ih

14 th, S22, 1h, The black king can move to KBY, giving p, »

‘Sm un

Ps bh, 2, a, and no Gain can gontain the black kingh 1 A in a quadrant of size O.

any
| i nh. w, The white bishop has just moved from GB6

q AR 7. 7. | (squad = 9), Now squad(q,) = 8. The black
5 7 _ 7 77 king is controlled by the Yhite king and must

| “yy s % 5 move inside the quadrant.

Figure 5.4. |

60

this quadrant has size 9, If Pb, 1: considered to have a quadrant,

then that quadrant would have size 8. Therefore, if in p the black

king is on the boundary of the area, we insist that spec(p) be false

if the quadrant is to be accepted.

We have now eliminated any possibility of direct black escape from

the quadrant. However, we must consider whether white may be forced to

give up an advantage because of a black threat. Now black can only

threaten a bishop, and in a position like X, in Figure 5.2 the bi-luops

protect each other. Therefore we need only worry about a quadrant like

the one in %y in Figure 5.2. A position x with a pattern like Bh,
can easily be recognized because squad(x) is odd. If this is true,

the quadrant is called a head quadrant, and head(x) is the square

containing the bishop closest to the black king, This bishop is referred

tc as the head bishop.

In the Rock end game we solved a similar problem by always insisting

that the white king be close to the vulnerable piece. Here things are

not so simple. In the Rook game the white king could assist in shrinking

the quadrant from a square next to the rook, but in this end game the

white king may have to move away from the head bishop in order to be of

use. For example in 2 in Figure 5.4 the king's bishop has just moved

from @B6; prior to this move the queen's bishop on black square QBS was

the head bishop, and the white king is four away from this bishop.

If in a head quadrant we can make a move into a smaller non-head

quadrant we have cancelled any threat the black king was making, If

either bishop could move to make a smaller quadrant, then if

61

d (bk, head(q)) > 3 we would always be sure of forming the non-head
quadrant in time. However, because of the corner condition, usualily

only one bishop move is permitted. In this case the white King is the

only sure means of defending the head bishop. However, if at any point

we know we can form a smaller quadrant in time, we will take advantage

of that fact.

It is difficult to be sure that the white king can protect the

head bishop. In 9 in Figure 5.> we have |
d(vkg, head(q,)) = d(ukg , head(q,)) , but even so the white king
cannot protect the head bishop. Therefore in q we expect the condition

A(wk, head(q)) < (bk, head())
and in p

5.1 a(wk, head(p)) < d(ok, head(p)) .
However these conditions are not even sufficient, Position Pz in

Figure 5.5 is an example. Px satisfies 5.1 but a bishop will have to
move to form a larger quadrant because every white king move leaves

the head bishop unprotected. This condition can be recognized in the

position from which black moved to form Ps (position gq, in

Figure 5.5). Note that the white king position shown in gq, and p,

is just one of many which are bad. The bad squares are: KKt3, KKth,

QB3, QB4+, KB6, and @6. Also all squares more than two away from the

head bishop are bad. The remaining squares are good: they are KKio,

KKt6, KKt7, KB5, KB7, K7, Q5, Q7, QBS, QB6, and QBT.

One final case remains to be considered, and it is illustrated by

position gq in Figure 5.5. We have d(bkg, , head (gq,)) = 2 and

62

| wg , MW 3, 5% gb) =3 = dq, (Pk gb). However the% - 4, AL Wh, A white king is unable to prevent the attack/ Wh , J n / on the head bishop since it will be blocked
0 7, TW 7,9 by the black king.

\ Wiel, W. Th

Y V// y 1

yy EE
en nn

»yowm
’ byh,, » ih

a Wh, Alh»

Figure 5.5.

63

a(uky » head(q,)) = 3 , but tne white king is still able tc protect the
head bishop. This is because the black king is in check, so it is

unable to use the direct attacking path (it needs two moves to attack).
The fact that the black king 1s in check but there is a quadrant, means

either the white king is guarding the boundary or the boundary is next

to an edge of the board. If the white king is guarding the boundary of

the area, we know that it cannot be prevented from protecting tne head
bishop. If the boundary 1s next to an edge, white will have no dif-
ficulty in forming a smaller quadrant, since we then know that either

bishop move will form a smaller quadrant containing a Corner. So, if
tne black king is in check in gq , and a (bk, head(q)) = 2 , we accept

q as long as awk head(q)) < 3 . The reason for going to all this
trouble is that this is a very common occurrence, and if we do not make

the exception the program will essentially play from one non-head quad-
rant to another with only tree search in between. This makes the trees

too long. Even sO some perfectly sale positions will be rejected.

Let us formalize the conditions discussed in the preceding

paragraphs. A function badc 1S defined to recognize the situations
occurring in positions q, and Pz of Figure 5.5. For aq, badc
is concerned with all positions with a(bk head(q)) = 2 . Thus the

case of the black king in check is nandled in badc also. We have

safe(q) = {(squad(q) is even) Vv [d(ok ,head(q))=2 A — badc(q)] Vv
[a(bk ,kead(a))>2 A d(wk,head(q))<d(bk,head(q))]} .

Note that gq with (wk , head (q))=a(bk , head(q))=1 will satisfy safe.
In p , badc handles all positions with a(bk ,head(p))=1 . We have

El

safe(p) = [(squad(p) is even) Vv (d(bk ,head(p))=1 A — badc(p)) Vv

(a(bk , head(p))>1 A d(wk ,head(p))<d(bk ,head(p)))] .
Now we can define the recognizer for stage 2:

goodquad(p) = {quad(p) A hascorner(p) A safz(p)])

goodquad(q) = {quad(q) A —spec(q) A hascorner(q) A safe(q)} .

goodquad and squad satisfy 5.7 and 3.9.

Stage 3

As explained previously the condition hascorner is used to insure

that stage 2 will eventually fit in with Capablanca's method for the

end of the game. The example from Capablanca is given in Figure 5.6;

position Xy in Figure 5.3% ‘satisfies the same pattern as Capablanca's

position after white move 3. This is the point at which stage > should

start because now we will use different heuristics. If goodgquad(x) ,

then squad(x)>6 indicates stage 2, while squad(x)=5 or 6 gives

stage 3. If squad(x)<5 we allow the program to use tree search to

arrive at the larger quadrant of stage J.

; Position Py inn Figure 5.7 is the position in Capablanca after
h white move 3. Capablanca's strategy for this part of the game is to

move the white king up into one of the squares marked Xl, X2, or Y ,

or the square occupied by the black king. For the program, this has

been simplified. Only the squares marked Xl and X2 are used as

goal squares for the white king. When squad=6 , X1 is the goal

square, When squad=5 , either X1 or X2 is allowed; one of these

will be covered by a bishop. Since with squad=> we have a head

quadrant, this is used only as a back-up for squad=6 . It is needed

65

low we come to two Bishops and King against King.

oh ” os

“uv
7. J.
2 3B

DIAGRAM 22

Since the Black King is in the corner, White can play 1 B13,
K-Kt2; 2 B-KKt5, K-B2; 3 B-BS5, and already the Black King is confined
to a few squares. If the Black King, in the original position, had
been in the center of the board, or away from the last row, White should
have advanced his King, and then, with the aid of his Bishops, restrict-
~4 the Black King's movements to as few squares as possible.

We might now continue: 3...K-Kte; i ¥~B2. In this ending the Black
Kino must not only be driven to the edge of the bcard, but he must also
be forced into a corner, and, before a mate can be given, the White King
rust be brought to the sixth rank and, at the same time, in one of the
12st two files; in this case either KR6, KKt6, KB, KB8, and as KRE and
TF are the nearest squares, it is to either of these squares that the
King ought to go. 4...K™B2; 5 K=Xt2, K—Kt2; 6 K—B4, K—B2; 7 K-R5, K=Kiz2;
5 B=Kt6, K—Ktl; 9 K—R6, K—Bl. White must now mark time and move one of
the Bishops, so as to force the Black King to go back; 10 B-RD, K—Ktl;
1}, BXK7, K"Rl. Now +he White Bishop must take up a position from which
it can give check next move along the White diagonal, when the Black King
moves back to Ktl. 12 B=KKth, K—Ktl; 13 B—Kbch, K-R1j 14 B—-B6 mate.

Figure 5.6. Example from Capablance, page 29-30, The program plays
almost exactly the same from White move L on.

66

7, th, Wh mem, |

7 hy WW, ™vb, ih, J
P, vi, nw, ow

7. 7, 7 7 |

7 y 7 . |

ih Wh, 7, 7

Figure 5.7. Examples of Stage 3.

| .

in a position like p, in Figure 5.7; the king's bishop moves to KKt6
which is really a tempo move (position gq, in Figure 5.7).

The obvious measure for stage 5 is some kind of distance function

measuring the number of moves required for the white king to reach the

goal square. This function must .take account of obstructions (the

bishops) and tempo moves. The following function works well. First we

define, for position x in stage 3, functions sql(x) and sg2(x) .

sgl(x) contains the goal square like X, in py, and sg2(x) the other

goal square Xs, . We use as a measure

max (awk ,sq1(x)),d(wk ,592(x))) .
This function has a minimum value of 1; it will bring the white king up

to sgl and sg2, but will not select the actual goal square. When
a goal square is achieved, we will be in stage Ub.

We must consider the problem of satisfying conditions 3.7 and 35.9.

If goodgquad holds we obviously have no prcblem, since no new difficulty
has been added, Actually goodquad is stronger than needed, since no

objection is raised now to moving from squad=5 to squad=6 . But

there is no particular reason to remove this condition, and it tends

to prevent foolish bishop moves.

Stage b

Once the white king has actually moved into the goal square, the

position is in stage 4. (Since st selects the highest stage there

is no conflict.) Three factors, recognized by function end2, are

used to determine stage 4. One is the position of the white king in a

goal square. In addition the black king must be confined to the edge

68

opposite the white king. This condition will always be satisfied if
we are coming from stage 3 and the white king is in the appropriate

goal square. If squad=6 and the white king is in sg2, usually the
condition is not satisfied. Position q, in Figure 5.8 is an example.
For the white king as shown,in sql(q,), we have stage 4. If the white
king were in sq2(q,)=KR6 , the black king would be able to escape from
the edge (to KB2), so we would not have stage 4. The third factor is
concerned with the distance of the black king and all its legal successors
from the corner closest to the white king. Let succ(x) De the set of
all successors to the black king in X . Let |

sucecl(x) = succ(x) U bk if the black king is not in check
in X .

= succ(x) otherwise. |

Let c(x) be the corner closest to the white king in Xx . Then let
dedge(x) = max({d(r,c(x))|resuccl(x)})

and dedge(x)<3 is the condition used for stage L,
The reason for the choice of three as a 1imit comes from the fact

that this is the highest value which the ordinary entry through stage 3
will satisfy. Sometimes a starting position, like Ps in Figure 5.8,
will have the white king in position and the black king confined to the
edge, but farther than three squares from the corner. Either a long
tree search or different heuristics would be required to handle such a

position if we called it stage 4, This is not worthwhile for such a
special case.

69

7 1)me
em

om

|wh, Wl, Yl

agapeaCR

} Figure 5.8. Examples

The heuristic for this stage is to use the bishops to force the

black king into the corner. Checkmate can only be given in or next to

a corner in this game. dedge can be used to exprese this heuristic

and is the measur= for stage Lb.

Again we must worry about satisfying conditions 3.7 and 3.9. The

difficulty arises from non-standard entries into stage 4. Consider

first qb in Figure 5.8. All conditions for stage 4 seem to be satis-

fied, but when the black king moves to K1 (position Ps in Figure 5.8)
we no longer have a stage 4 position. To avoid such trouble we add

condition

deond(q) = {dedg.\q)<a(bk ,c(a)) V
(goodguad(q) A 5 < sguad(qg) < 6)}.

deond(p) = — badk(p) .

This condition says that the black king is forced to move closer to the

corner; we only insist upon this when the entry is not from stage J.

Condition dcond is sufficient to satisfy both rules 3.7 and 3.9,

sinoe there is no way in which the black king can force white to

abandon stage 4. Since the black king cannot be in check in p , we

know that if a bishop is preventing its escape from an edge. that bishop

must be bearing on the edge. Unless a bishop is blocked by the white

king, as in pin Figure 5.8 (satisfying badt), white can maintain

stage 4, If the white king is preventing the black king from escaping,

the bishops have sufficient mobility to keep the advantage,

Formal Definitions of better and worse

Here are the definitions of the stages,

7X

x € stage 0 = {x is stalemate or x is a position with black to

move and black can take a piece in one move}.

x € stage 1 = {x is not in any other stage}.

x € stage 2 = {goodquad(x) ~ squad(x)> 6}.

x € stage 3 = {goodquad(x) A 5< squad(x) < 6 }.

x € stage 4 = {end2(x) A dcoud(x)}.

x € stage 5 = {x is checkmate}.

The measures are

m, (x) = squad(x) x € stage 2

m, (x) = max(d(wk_,sql(x)),a(wk_,sq2(x))) x € stage 3

m, (x) = dedge(x) x € stage 4

m, (x) = 0 i= 0,1,5, Xx € stage 1

An explanation is needed about the definition of stage O. There

are positions p with white to move which are successors of some

Q€ Q, but pg P. They are all like position p, in Figure 5.9

which is a successor of position q, in Figure 5.9. It is not

necessary to recognize q, as a member of stage O however. Since

position aq, is a stage 1 position, and since no position with white

tc move is in stage C, q, will never be accepted by better. Therefore

the program will work correctly with the present definition of stage O.

Changes to better and worse

Now that we have given the formal definitions of better and worse,

we consider what changes are needed to make the program practical, At

present a tree of at most depth 3 is required to move from stage 1 to

stage 2. This tree is very wide, but since it occurs at most once in

a game no changes have been made to stage 1 heuristics.

72

N/K

i» i, 2 2273 /

Figure 5.9. Illegal Positions.

73

In stage 2, very long tree searches may be needed, up to a

maximum of depth 8. The wors* cases occur in non-head quadrants,

Frequently in such positions, lree search to a new non-head quadrant

is required because of tne difficulty in being certain a head quadrant

is safe. For example, in position Py in Figure 5.10 a tree of depth 5
is required to force a better position; In p, the tree has depth 7.

We will discuss heuristics for non-head quadrants first.

Obvicusly we would like to cut down on both the length and breadth

of the tree search, Unfortunately it 1s very difficult to define

heuristics to add to better which will work in all long trees. In

position p, , the moves wk-QBS and wk-QB6 are equally good moves, and
either would be selected at depth 5. Both moves enable the white king

to guard the boundary of the quadrant. The move wk-QB6 satisfies

I dq (uk, bk)<d (wk, bk) A dmin(q)<dmin(p)
rs where

dmin(x) = min(d_(wk,kb),d (wk,qb)),
while wk-QBS5 does not, When 5.2 is added to better it will cut the

tree search in p, (starting at level 2 of the original tree) to 4;

in p, nothing is gained. In many positions, however, considerable
reduction in tree search is gained by this heuristic, and the maximum

tree depth is cut to 7 (position p,). 5.2 satisfies 3.7 because dmin

depends only on the positions of the white pieces. dmin also insures

that 5.2 will be applied only a finite number of times (no more than

rive).
Now rule 5.2 will obviously fail if

Th

2 _n n

Py |.n7 : 7 |rn7Sh © qt" nn = for Noor/ uric=W ing H“= orn 75Py, ’7., TreeToFLgu

1. a (wk, bk) =2 , or
2. dmin(p) = 1 .

If these patterns hold in p , We must turn to tree pruning to make the

tree manageable, First, all move: leading to positions without quad-

rants can pe eliminated by rejecting Qq satisfying

badquad(g) = {=quad(q) V spec(q) V — hascorner{q) V

[(squad(q) is odd) A A(bk , head (q))=2 A badc(q) 1} -
Bishop moves leading to larger quadrants are already eliminated; in

addition badquad eliminates some bishop moves leading tO smaller

quadrants. Few bishop moves are left; these are the ones which hope-

fully will lead to either a legal head quadrant or a small non-head quad-
rant in one more move,

badquad applies only to bishop moves; King moves must also be
eliminated. First we reject all king moves such that

5.3 1 (wk, bk)>d (uk, bE) :
We would also like to reject moves with :

dmin(q)>dmin(p)

because although 5.2 is not a measure, since it is a predicate instead

of a function with integer values, it would be nice to use it like a

measure. However this condition is too gbrles in Ps in Figure 5.10
for example, the move wk-QBS must be permitted. The condition is

changed to

5.4 dmin(q)>2 A dmin(g)>dmin(p) |
which works because when dmin(q)>2 we have almost no chance of forming

a better position with a head quadrant farther down in the tree, so it is

much harder to terminate the search.

76 |

When 3k, tie 32 it js not always possible to move the white king
up to the black king. This is illustrated in Py, in Figure 5.10. In

p), the white king is needed on the side of the quadrant toward the

center of the board. If he goes there via KKth, a tree of depth 8 will

be required to force better pcsitions, while if he goes via K3 the tree

terminates at depth 6. In this case we have d (wk, bik)=a, (wk, bk) and
dmin{q)=1 . We define . |

5.5 a (wk, bk)=a_ (wk, bk) A a (vk, bk)>2 A dmin(q)>1
as our final heuristic for rejecting king moves in non-head quadrants.

In head quadrants there is usually less difficulty in forcing a

better position since a non-head quadran. is automatically safe. In

general the tree searches are not as long as for head quadrants before

the addition of 5.2; a depth less than four is average. Position Pq

in Figure 5.11 is an example; this position may occur after the tree

search from position Pq in Figure 5.10. A tree of depth 2 is required

and the first move should be any white king move but wk-K5 or wk-K6.

The heuristic added to better for non-head quadrants does not apply and

this is true in general for head quadrants. Since the trees are of

manageable length no changes have been made to better.

Slightly different heuristics are used for tree pruning for head

quadrants than for non-head quadrants. badquad is replaced by the

stronger condition that only legal stage 2 positions are permitted for

q . This rule eliminates king as well as bishop moves. Other king

moves are rejected by

5.6 dmin(gq)>1 A (a (Wie, bk Y>d (vk, bk)
Vv [a (wk, bk)=d_(wk,bk) A a (uk, bk)>2]) .

[i

hh /lM
Wh,TE

WyheWi

Figure 5.11. Examples of Head Quadrants.

78

In head quadrants it may actually be necessary to move the white king

away from the black king. This is shown in position Ps in Figure 5.11.

It is essential to move the white king to QB3 at this point; the move

is similar to the cne made in p), in Figure 5.10. A tree of depth 5

is needed from p, . The correct move is permitted since dmin(q)=1 .

Summing up the additional heuristics in stage 2, we add to better

5.7 st(p)=st(q)=2 A (squad(p) is even) A a, (wk, bk)<d (wk,bk)
A dmin(q)<dmin(p) .

We add to -s
5.8 st(p)=2 A [(st(a)=1 A [(squad(p) is odd) Vv badquad(q)])

v (st(a)=2 A m,(p)=m,(qa) A cutk(p,q))]
where

cutk(p,q) = {[(squad(q) is even) Ad, (wk, bk)>d (vk, bk)

Vv [a (wk,bk)=a (wk, bk) A dmin(q)>1

A a, (vk, bk)>2]
v [dmin(g)>2 A dmin(gq)>dmin(p)])] Vv

[(squad(p) is odd) A dmin(gq)>1 A

(a, (uk, bk)>d_ (vk, bk)

Vv [a (wl, bk)=d, (vk, bk) A d (uk, bk)>2]) 1}
combines the king move heuristics 5.3, 5.4%, 5.5, and 5.6.

| In stage 3, the formal definitions work very well. Considerable

tree pruning car be gained by adding to worse

5.9 st(p)=3 A st(a)<3 ,

which will not eliminate all paths to better positions. The tree

searches have a maximum length of 3, and with the addition of 5.8, a

width of no more than three moves at any level,

13 |

In stage 4 we are also doing fine as far eas tree length 1s concerned

since the tree will only have a depth of 2. We add

5.10 st(p)=t A st(q)<t A = end2(q)

to worse; even with 5.9 the tree is quite wide but this is not serious

since it is so short.

Combining 5.7, 5.8, 5.9 and 5.10 with the formal definitions of

better and worsewe nave

better{(p,q) = {st(q)>st(p) v [st(a)=st(p) A mgt (p) (Dy(py (P)]
v [st(p)=st(q)=2 A (squad(p) is even) A

dp (wk, bk)<d (uk, bk) A dmin(q)<dmin(p)l} .

worse(p,q) = {st(a)=0 v [st(q)=st(p) A mt (p) PV ge (5) OH]
v [st(p)=2 A

([st(q)=1 A ((squad(p) is odd) v badquad(q))]

v [st(q)=2 A my(p)=m,(q) A cutk(p,q)])}

v [s2(p)=3 A st(q)<3]

v [st(p)=hA st(q)<t A end2(q)l} .

These are the functions used by the program.

Examples of Program Play

Our first example will illustrate how the program plays the last

part of the game. We will start with the position occurring after

black move 3 in Capablanca's example (Figure 5.6). This position is

the same as Py in Figure 5.7 except that the black king is in KKt2,

The program would not make the same first moves as are given in

Capablanca because a search of depth 3 has been made while the program

will use a depth 2 tree. We have

80

L., wk-Q2 This move gives m, (a)<m,(p),
put it is not as good as the book

move wk-KB2.

bk-KB2

5. wk=K5 bk-KKt2

6. wk-KBH bk-KB2

7. wk-KKth We have lost one move.
bk-KKt1

8. wk-KR5 Moves 7 and 8 are found by a tree
search of depth 2.

bk-KKt2

9. kb-KKt6 bk-KKt2

10. wk-KR6 Again by a tree search of depth 2.
bk-KBL

11. gb-KB6 bk-KKt1

12. ab-KT7 Again a tree of depth 2. The
program's move ll is just as good

as the book's move 10 (it is a tempo

move).

bk-KR1

13. kb-KBD bk~-KKt1l

14. kb-K6 ch. bk-KR1

15. gb-KB6 mate.

This example shows that the program plays the last part of the game
very well. Its only mistake is move 4 and this is not serious.

81

Our next example is taken from Fine (Figure 5.1). Our starting

pusition, Pq in Figure 5.12, occurs after black move 2. The program
will make different initial moves than the book because of the order of

move generation (position Ps in Figure 5.12 would result). We have
5, wk-QKt6 This move is rot nearly as good as

the book move or wk-QKt5. Move

} generation is at fault again,

bk-Q6

L, kb-Q5 We are now playing differently

from the book.

bk-K6 |

5. wk-QBT bk-Q>

6. wk-QB6 bk-K6

T. wk-Q7 We need the king on the other side

of the quadrant.

bk-Q5

8. wk-K6 bk-K6

9. wk-K5 bk-KB7

10. wk-KBh bk-KKt6

11. wk-KKt3 Condi'.ion dcond prevents the program

| | from accepting the position at this

point (a; in Figure 5.12) as better.
bk-KB8

12. ab-QB5 Moves 5-12 are found by a tree

search of depth 8. The black moves

are on the longest branch.

82

2ul,
Py fsm » Position Py is the start of the seconduaa Z se . Z

| 7) Ne 7 example of program play.ih, Mh, Wh, Wh,
Uw

P., KY 7, 7). 7. The program arrives at p, after twe moves

| Wi - 0 from the initial position in Figure °.1.

| A | ok | 7 gq, occurs after program move 11; end2(q,)

Lb lind 2 is is false, whlch prevents: Vi Hs Y 3) 23 | is true but dcond(az) ’ pr
| 1, 7, Wh, _ the program from accepting 1 as better.
Cu wv 4 we

Figure 5.12. Examples of Program Play.

83%

bk-KT7

13. wk-KBh bk-Q6

14, wk-KB3 bk-QBE

15. wk-K4 bk=-Q7

16, kb-QBh4 Moves 13 through 16 form a branch

- of length 4 in a tree of depth 6. ;

bk-K8

17. wk-K2? bk-&8

18. qb-QKth We are now in stage 3.

bk-QBY

19, wk-Qh bk-QB8

20. Wk-QB3 bk-Q08

21. wk-QKt3

Move 21 gives a stage 4 position, and the play from this point on is

essentially identical to the first example. Five more moves are

required to mate. This means that the program uses 24 moves to reach

checkmate from p, In Figure 5.12, while the book uses 22, Therefore

the program is playing quite well in spite of the interference caused

by bad move generation. The moves selected for black vary from ones

which present white with maximum difficulty (for example, black

moves 4 through 11) to medium difficulty (black moves 12 through 15).

Similar kinds of black moves are given in the book. The program would

require about 28 moves to reach checkmate from p, , 50 for the entire

example, it uses six more moves than the book.

The only place where the program is likely to have difficulty in

this example is with the tree of depth 8 (moves 5 through 12).

Sl

Fortunately this tree is very — Since the position at the

beginning of the tree has a head quadrant, most black moves allow

white to form a better position immediately. There is one other main

branch in the tree (wk-QBS5); this branch would terminate at depth 9.

This tree provides an illustration of the necessity of allowing the

white king to move away from the black king. Generally trees from

head quadrants are short (for example, moves 17 and 18); the one

exception occurs when the presence of the white king is required on

the other side of the quadrant, as in this tree.

One Lott SXanphe is given to illustrate some remarks made about

non-head quadrants. We begin with position py in Figure 5.10.

1. wk-K3 The white king is taking the

shortest route to the other side

of the quadrant.

bk-K3

2. wk-Qh bk-@QR |

3. wk-Q5 bk-QB1 |

“1 bh, wk-QB6 bk-Ql

5. kb=KB5 We have not yet reached a better

position because the white king is

too far away from the head bishop.

bk-K2

€. wk-Q5

Now we have reached a better position. At move 6, gb-KKt5 would give

a smaller non-head quadrant, but unfortunately this move was not

generated soon enough,

85

Evaluation of Program Play

The program is playing adequately, and the comments made at the

end of Chapter 4 can be applied to this game also. We merely note

that a second-best move in this game hurts the program more. Since

the game is harder, more precision is required for good play.

The program play is very close to book play in the last part of

the game. This is not true in the first part. However, the method

used in the first part was suggested by the book and works well.

86

CHAPTER 6

BISHOP, KNIGHT AND KING AGAINST KING

This end game is one of the most difficult of the classical

endings. When it 1s discussed in the chess books, it is broken into
two main parts. The first part of the game consists in forcing the

black king to an edge. Since the mate can only be given in (or next to)
oa corner of the same color as the bishop (the black corner in this

discussion since we will assume that white has the queen's bishop), we

expect to finish the first part with the black king in the corner of
opposite color to the bishop (the white corner). Then the second part
consists in forcing the black king down the edge to the corner where

mate can be given.

while the method of play used by the program in the second part of

the game agrees exactly with the books, in the first part we are forced
to provide our OWL neuristics. There are two reasons for this. First,

| the books only give a limited example of this part of the game; the
program must be able to handle all black king moves, not just those that
are most likely. And although books do make some attempt to explain how

to play, the procedures described are too local in nature to be used
directly. Figure 6.1 is taken from Fine [1944]; the two patterns

described are quite powerful, and in his example very conveniently the

white pieces are in a position to make constructive use of them. However
these patterns are useful in general only when embedded in some global
heuristic,

87

In order to drive the enemy King back to the edge of the bcard

White must make use of two typical positions (see diagram No. 5). In
the first - DA - all the points leading towards the center are inac-
cessible to the Black King and he cannot maintain the status quo; he

must retreat. In the second - 5B - the two pieces are cooperating
beautifully. Black's King can do nothing better than mark time and
as soon as the White King comes up he will have to give way. The
important feature in No. 5B is that the two pieces are diagonally

adjacent to one another, for it is because of this fact that they

cover SO many squares.

Starting from some arbitrary position such as No. © the most
effective continuation would 1 Kt—B3 (No. 5B), k¥—-Q3; 2 B-B6 (No. SA),
K—K%; 3» K—B5, K-K2; 4 K—Q5, K—Bl. Black is well advised to go to the

io. 5+ Driving the Black

King Back. No. ©

Cm, wm ERE
«rong corner, for that is the only way in which he can hold out for
any appreciable time. 5 K—Kb6, K—Kt2; 6 Kt—K5, K-Bl; 7 K-B6, i—Ktl;
5 Ke—Ktl, K=R2; 9 B—Q5, K=R3; 10 B—Kt8 and now we have position No. &
since the fact that Black will be chased along the file rather than

along the rank makes no difference.

No. Lb

Low

Figure 6.1. Example from Fine, pages 18-20.

85

Stage O

Stage O as usual contains the various illegal positions which in

this end game compr=¢ quite a large © It contalr positions in which

the black king can take a piece in two moves as well as the usual loss

in one move. Since immediate loss or stalemate is obvious we concen-

trate on describing the other kind of stage 0 position.

In order to be sure that we discover all illegal positions we

consider how such positions might occur. First, suppose the black king

can attack only one of the bishop and knight. Since the bishop has so

much mobility,it will be able tc escape the black king unless its path

is blocked by the knight. Therefore the knight is also under attack,

and this case will be discussed later. The knight does not have as much

mobility as the bishop and in fact is open to attack if it is in a

corner. Examples are shown in a and q, of Figure 6.2, To avoid

having to recognize positions like gq, and 4, (and distinguish them

from similar positions in which white is able to protect the knight) we

assign all positions in which the knight is in whe corner to stage 1,
which in this game proceeds the catch-all stage. This insures that the

program will move the knight out of a corner if it is in one in a starting
position, and will never accept such a position as better.

It is also possible for the black king to attack the knight and

bishop at the same time. The attack must come in one move or white
will be able to avoid it. We have

a, (kt, qb)<2 A a, (bk, qb)<2 Ad (bk, kt)<2 ‘
(The reader should refer to Appendix A for definitions of basic functions

and notation.) We also assume that neither the knight nor the bishop is
89

a, i, mW, = wh, | After bk—KKt2, white will be unable to
oe bl : avold losing the knight.Vik. 1 7 wm;

AT Th, Th.

As n, “0, Wh | After bk—QKt2, white will be unable toWh, i i, avoid losing the knight.

HW

Ix wn, wm, | n, 1, | Arter Biss, yniis wily be unable to

NE
Vv. 7, 7, 7

‘BBE

qd), fg, her wg Ap Re be unable toA vi mn avoid loss a ’

Figure 6.2. Examples of positions in which black can take a piece in
ow pe pie and q), are in stage 0, but 9

90

susceptible to being taken immediately. If d,(ab,kt)=2 , there is only
one configuration of knight and bishop which permits such an attack. It

is illustrated in 9 in Figure 6.2. If the black king instead were

on Kk, K5 or QBS he could also move to attack both pieces. In 9 the

knight is on a white square, and consequently is bearing on a black

square. This méans that it is not able to move to protect the bishop,

and also the bishop cam t possibly move to protect it. Since the black

king will threaten both the bishop and the knight, it is not possible to

simply move a piece out of danger. Therefore, the white king is white's

only means of defense, If the white kinz is next to either piece the

loss can be avoided. Also, if the white king can come to the aid of

the knight no loss will occur since the knight protects the bishop.

So we will lose a piece if

d,, (vk, qb)>1 A 4, (wk, kt)>2 .

If d, (kt, ab)=1 we have several cases to consider, First we have

positions like gq in Figure 65.2 in which the knight is on a white

square, The black king could also be on Q5 or QB> and be able to move

to attack the pieces. Such a positicn is similar to the previous case,

but in q, the knight does not protect the bishop, so the white king

must be able to move to protect both pieces if loss is to be avoided. |

Therefore

d, (wk, qb)>2 Vv a, (wk, kt>2
implies a piece will certainly be lost. In addition, even if this

condition is not satisfied white may still lose a piece since the move |

black makes to attack may block the white protecting move. This would

happen in gq, if the white king were on QB6.
91

Positions gq, and gq, of Figure 6.3 are examples of a, (kt,qb)=1
with the knight on a black square. In such positions the bishop is pro-

tecting the knight. If the bishop were not on an edge, it would be able

to retreat from the black attack and continue to protect the knight. If

in gq, or gq, we had d, (vk,qb)=1 , then the white king would prevent
the black king from moving into the attacking square. Also not all the

squares two away from the bishop are forbidden to the black king; for

example in a, only from squares Q6, K6, and KB6 can the black king

force the loss of a white piece. As usual, we do not worry about

a (vk,qb}>2 since we will handle that through stage 1. All of the
various cases of positions two black moves away from the loss of a

piece will be recognized by function badpos (q) .

In the positions shown in Figure 6.2 and also in a, and a, in

Figure 6.3% the black king causes difficulty for white by attacking

pieces. It is also possible for black to combine a threat of stalemate

with an attack on a piece. Position 5 in Figure 6.3 is an example.
There is no danger that this position would be chosen by better in some

later stage. Therefore it is not necessary to recognize it.

Stage 1

As mentioned during the discussion of stage 0, stage 1 is inserted

before the catch-all stage because this is a way of using simple tests

to avoid a lot of pattern recognition. Stage 1 contains all positions

with the knight in a corner and also all positions where

a, (vk,qb)>d_(bk,qb)+1

a, (wk, qb)>d (bk, qb)

=

dy Wh, By m, W If the black king moves tc Kf, white will| mi W, W, 7 lose either the knight or the bishop.
Wh, il, 8,

| Wh, hh, Wh,

WE Hen
oo Wh Mh 2 If the black king moves to KKtl, then whitea, , Yh will lose the bishop.
, 7, 7 7

323
BB |
ZY 7%

ay, 0 0) | 7 | ffter the black king moves to KKtl, white
7 7 7, 7 will either lose the bishop or give a

vr W, Ww u stalemate.

Figure 6.3. More examples of positions in which black can force a draw

in two moves. Position 4 and % are in stage 0; position g, would neverbe accepted as better, so we need not worry about recognizing it.

33

provided such positions are not already in stage 0. All of these

conditions are recognized by function stagel,

There are many positions p which are not in stage 1 but all of

whose successors are, In such a p the black king is attacking the
knight and white must move the knight away to N—— it It may then

happen that the black king is closer to the bishop than the white king. is,

wlving a q in stage 1. We will not worry about recognizing either p

or a q which preceeds this p because the strategy in the later

stages is equipped to handle such a p . Therefore p remains in the

stage it should be in (generally stage 2), and we do not break rule

3.7 although we do violate rule 3.9,

Stage 2

Since stage 1 has other uses, stage 2 is the catch-all stage whose

presence is recognized by the absence of all other stages. Position 6

in Figure 3.1 is in stage 2. A measure will be glven for this stage.

This measure is based on the statement in Capablanca [1935] which says

that we should begin this end game "by advancing the king to the center

of the board". One result of following this rule is that the program

will move wk-QB6 or wk-QBS in position 6 in Figure 6.1. There are four

squares in the center of the board; they are Qh, Q5, Kk, K5. So we

define ac our measure for stage 2 the function

dcent(x) = min (d(wk_,sq)) , S={Q+, Q5, Ki, K5}
SgES

There is no difficulty in showing that rule 3.7 holds for dcent,

since this function depends only on the position of the white pieces,

We do expect to break rule 3.9 occasionally by having all su.cessors to

3. Page 109.
qk

"- some p be in stage 1. To use dcent as a measure in worse, we must be

| sure that it is never necessary to move the white king away from the

center of the board. Although the black king can move into a position

p which would be in stage O if it were a position with black to move,

white will always be able to avoid stage O without moving the white King

| away from the center, {ince this p 1s in stage 2, we know that the

knight is not in a corner, and d_(uk,qb)<d, (bk, qb)+1 . An example of
such a position is given in p, in Figure 6.4. We will avoid the loss

of a piece by moving the white king to Kt and then the knight to KBJ.

Py is representative of such stage 2 positions; if it is not possible
to move the knight immediately, there will be a king move, which will

enable us to move the knight and protect the bishop on the next move.

This king move will generally give a position q 1n stage 1; the point

is, it is not necessary to allow the white king to move away from the

center (such a move would probably give a stage < position). Therefore

we can use dcent as a measure,

Stage 5

The positions in stage 3 have a definite pattern dependent on

recognizing that the black king 1c contained in a certain area of the

board. A size s can be assigned to this area and as usual we will

attempt toc shrink s . However s cannot be used as a measure, It can

be used like ameasure in better; that is

st(p)=st(a)=3 A s(p)>s(q) |

will mean that q is better than p . But s cannot be used in worse

because in a few cases this part of worse

95 |

nh Wh DPR

Py M, , % » Py in is stage 2, and decent (p) - Be T| 7 7 MW 7 fore wk—KBh, the only oe 1’ 'nere-7 i; 7) y position, will be reject : giving a stage 2| ww bh J) i vets ke ¢ relected since Sema) iay A, ”, jk WiLS Darmi) kt—KB3 on the SB ue 3 Drsiston,mi 7) a ing the loss of a piece. move, thus
: J

wii, / / : :

SE ZZ a, One c .| & en7 oie of The on Corresponds Lo the77 7 5 7 » of that area is is Sion Lriege The size| nm), y 1 mm hy the corner.
9

2 Vim » | The black king is insi7, 27 7 > is inside areas of size 5 and v.

Figure 6.4. i

st(p)=st(a)=3 A s{p)<s(a)

would eliminate the only move(s) which the program must make to proceed

correctly. When this happens, it is because the pattern recognition on

q is not sufficient to define the real value of s(q) . Since such

violations occur infrequently it is of course possible to add pattern

recognition to assign the proper value to the offending q . However

this approach is not taken. First of all, the pattern recognition would

have Lo be extremely detailed to define s(q) correctly and it is not

worthwhile to do all this analysis. As long as s(q) is never smaller

than it should be we can be sure the program will not accept gq for the

wrong reasons, Also 8 satisfies rule 3.7; once a q has been accepted,
we know that for any p which follows from it by one black move,

either p is in a higher stage than q or if p is in stage 5% then

s(p)<s(q) . Therefore the program will be able to proceed consistently
even if sp) is larger than it should be.

Second is the fact that throughout stage 3 we are liable to break

rule 3.9, generally by having all successors to a p in stage 5 in a

lower stage, and when worse is occasionally incorrect this is only a

special case of the overall problem. As explained in Chapter 3, rule 35.9
is useful but not necessary, and in this end game the amount of pattern

recognition required to satisfy rule 3.9 is not worthwhile,

Briefly, the reason for the violation of rule 3.9 is the following.

In the preceding games the black king could escape from an area in at

most one way, but in this game the black king will be able to escape

from the area defined for stage 5 1n many different ways. Some of these

will force a larger area and so must be prevented, but the majority will

Cl

put black in a poor position from which he must retreat or white will be

able to ultimately "confine" the black king to a smaller area of the

board. '"Confine" is put in quotes here because of course the same kind

of escape may be available to black in the smaller area. White should

take advantage of such moves; the problemis that vhe smaller area may

not be recognized right away, and in the meantime we may break rule 3.9.

First let us see what kind of area we can use to define stage 3.

We must partition the board globally or we might not be consistent in

our evaluation of successive positions (satisfy rule 3.7). Therefore,

the bishop must be the primary piece involved in defining the area,

since it is the only white piece which can hold a line through the

entire board. In this game we will deal with halves rather than quarters

of the board. For any bishop position there are two diagonals, and each

diagonal defines areas on both its sides. Therefore there are four

different areas to consider. (If the bishop is in a corner there are

only three,)

We assign a size to each area in a very simple way. An area is a

right triangle in shape with the hypotenense the bishop diagonal. It

may be necessary to extend the board to complete the triangle. The

other two sides are edges of the board; call them edgel(x) and edge2(x) .

Then tne size of the area is

6.1 de(qb_,edgel(x))+de(qp ,edge2(x)) ,

for de as defined in Appendix A. x, in Figure 6.4 provides an illus-

tration of areas. For the bishop diagonal acs drawn, the area above the

diagonal has size 5, and the area below has size $. The other diagonal

98

defines areas of sizes 6 and 8. In stage 3 we are only interested in

areas of size less than or equal to 6.

So far we have only discussed how to assign a size to an area. We

have not said which area is used to represent a position. Making this

decision is a complicated procedure. As explained before, the black king

will have many points of escape from an area in this game. We do not

want to block all escapes but only those which would force a larger

area. However we must satisfy rule 3.7. [To accomplish this we insist

that an area in q holds if afl the successors of the black king are
in 1t, while in p we recognize the area if it contains the black king.

Then we can be sure that after one black move the program will be able

to see the same area which it used as the basis for accepting gq .

Now suppose the black king is placed on the board. The black King

is necessarily inside one area, and sometimes inside two. For example,

in x, in Figure 6.4, the black king is in an area of size 5 and an

area of size 6. We must decide which of these areas to use. Obviously

we want (1) to assign the smaller area if possible and (2) to be sure

the black king cannot escape from the assigned area into a larger one.

We have already stated that the black king cannot escape in one move in

q ; however it may be able to escape in two moves in q and consequently

in one move in p ., Since it is difficult to calculate whether the knight

can be brought into position to block an escape, we rely mainly on the

white king,

The way we decide about an area is as follows. First we use the

position of the black king relative to the bishop to propose an area,

99

This condition is different for positions p and q . To do this we
define a function which selects areas: -

area(x,C) - (the area on the board whose right angle is corner C).
For any area & , c(a) produces the corner which is the right angle

gt a . Now we define
ac(sq, a)-de(sq, ilecdge(c(a)))+de(sq, rankedge(c(a)))

where sq is some square OX the board, and fileedge and rankedge

produce the appropriate rank and file containing c(a) . Then
size(x,a)=dc(qb,,2)

is the correct definition of the size of the area and agrees with 6.1.
This function dc18 basic to the kind of area with which we are concerned
because it has the same value for any square on a diagonal parallel to

' the boundary of the area. We can also use it to determine where a
square Sq is with respect to an area 4a by

Locaticn(x, sq,a)=size(x,a)-dc(sq,2) :

If location(x,sa,a) is positive then sq is inside a ; if it is
zero sq is on the boundary of a and if it is negative sq 18
outside a . location is also used to tell how far the diagonal con-
taining the square is from the boundary.

Let succ(x) be the set of syuares to which the black king can
legally move in X . Now we can define for area &

inside(q,a) = [Location(bk ,a)2 0 A
yr(resucc(q) 2 location(r,a)>0)]

inside(p,a) = location(bk ,a)>0
The definition of inside for gq insures that the black king must move
inside the area, and this will then be recognized by inside for p .

100

Once an area has satisfied inside we are ready to make further

tests on the positions of the white king and bishop. First we insist

that the bishop be placed toward the center of the boundary of the area.

Recall that any bishop position on the boundary of a given area will

produce the same value for size. The conditinn is

bpos(x,a) = [&(qb,c(a))<(size(x,a)-2)]
The reason for this condition is that when the bishop is placed towerd

the center of the boundary it is easier for white toc form a smaller area

and also to control the black king if he tries to escape. If

size(x,a)<t , no squares would satisfy bpos and in fact areas of size
less than 4 are not used.

If the bishop is in an acceptable position, the program will examine

the position of the white king and its relationship tO the bishop and

black king. First the white king must be outside the area, 1i.e.,

location(x,wk ,a)<0 ‘

Also we always have

6.2 a_ (wk, qb)<2
and the white king must be close enough to the bishop to protect it;

otherwise we would be in stage 1. The final condition on the white

king position is

kpos(x,a) = (d(wk_,c(a))<size(x,a))

which says that the white king must be fairly centrally located. These

conditions are illustrated in Figure 6.5. In x and Xs all possible

squares satisfying kpos and location will also satisfy 6.2, but some

squares may be eliminated 1n Xe Summing up all the conditions

stated so far, we have

101

6

|yoa, JXe J, A oh, wn,
Rae
Www wy

2

"EEih, y 1, 7 7 |

| Thx
Vy 7 my 2,

"hy Z

7% 7 |

Figure 6.5. Legal squares for the bishop are marked B : for
the white king they are marked K.

102

safe(x,a) = {inside(x,a) A location(x, wk ,a)<O A

bpos(x,a) A kpos(x,a) A d_(wk,bb)<2} .

These conditions are correct as far as they go, but we have not

paid any attention to the knight. Actually we want to use the knight

to help force a smaller area, but when the knight is not being used it

possibly will be a hindrance. There are three ways in which the knight

can interfere: it can block the white king or bishop, or it zan force

white to lose a move by being open to black attack. Examples of the

three different types of interference are shown in Figure €.6. All of

these cxamples could arise as the result of one black move from a

position gq which has an area satisfying safe. None of the kinds of

knight interference shown in Figure 6.6 is bad since white can always

either maintain the same area or find a smaller one very shortly.

Therefore there is no reason to forbid the kind of interference shown

in these three positions.

We do want to forbid certain kinds of knight interference however.

We use the same guiding principal for eliminating knignt positions as

we have all along; we cannot allow the black king to force a larger area.

There are two kinds of bad knight positions. These are shown in ay

and gq, in Figure 6.7. In both cases the black king will be able to

attack the knight in one move and thus escape toward the center of the

board. Even so white has no trouble controlling the escape when the

bishop satisfies

d(qb_,e(2))< size(x,a)-3 , :
because this insures that the white king will be able to block the

escape (since in gq it is protecting the bishop). The patterns shown

103

by, 1, wm,
vl,Jil, 1h

Py a Jos, wh, The knight is blocking the white king.
Ew

em
Ps 7 i i BL The knight is blocking the bishop.

Vv. 7 7 7

i, 27. Th,
7, 0s

Pz 0 a. y | The knight 1s being attacked.
lh, 0, Ji3h,TY Ti |

Figure 6.6. Examples of Knight Interference.

104

111 ne |5, ;
to

ne me

a2 ce st moxxxi TEEPE Lrgol a ooua Black ineYq =) LL. iallyli = enPatyee 0sLS scapeZa This p ° hosEe07 ingPz ny Ln cou a.= we Thv ea" Liade
~ 10%

Di on e 6.7.v _

in q, and gq, are the only bad ones in q (with minor variations)
and are recognized by

badkt(g,a) = {a (kt,qb)=3 A a, (bk,ab)=1 A d, (bk, kt)=2

d(gby,c(a))z size(q,a)-3 A location(q,kt ,a)=2

Vv (ocation(q,bk , a)=0 A loca® ion'q,kt .2)-3)] .
More pattern recognition is required in p because we must be prepared

for bad initial positions as well as results of one move from a gq

satisfying badkt. Position Py and p, are examples, Both these

positions cannot possibly have come in one black move from a position in

which the area of the appropriate size was recognized. We have

badkt(p,a)= {loseknight(p) A lecabionip bh ,8) = 1

A location(p, kt, , ¢

Al(d (wk, bk)=3 A a(bk ,c(a})=3) Vv

(a (uk, bk)=k A d(bk ,c(a))=b A

Lecation(p, wk ,a)=-")l} .
There remains one more knight condition to define. This case occurs

only in areas of size 4, and is illustrated by q, and p, in Figure 6.8.

In Ps the black king is able to escape from the area because the only

move to block the escape, wk-K6, gives stalemate. Ps 1s a successor

to q - We recognize this pattern by

bads(p,a) = {size(p,a)=h A location(p,kt ,a)=3

A Location(p,bk ,a)=1 A a, (bk, kt)=3}

badk(q,a) = (size(q,a)=" A location(g,kt ,a)=3

A d(bk ,c(a))=2)
Now we can give a complete description of the conditions which an

area must satisfy to be acceptable. We combine.safe, badkt and badh into

106

aw ES9 A q, satisfies function badk. If the black

: won8 7) ng moves to K1 (position Py) white musti m, wm, m, | permit him to escape from the area.
wy

nw
“EEA 4, w, Wh,
Lm, mW,
my

$7.87, 0h, 0 |
V, 0 7. Xz is an example of a stage 4 position.

Figure 6.8.

107

goodarea(x,a) = (safe(x,a) A — badkt(,a) A — badh(x,a)} .
It is possible that more than one area in 2 position will satisry

mn s will be the size of the sme st such area. Let C be
a set containing the four corners of the xd. Then we have

s(x) = min({size(x,2) | 3 c(c€C A a= ea(c) A goodarea(x,a))} U [15}) .
If no good area exists in x,s(x)=15 and x is in stage 2; otherwise

s(x)<15 and x is in stege J.

Stage 4

This stage is designed to be intermediate between stages 3 and >.

It is possible for the program to move irco stage 5 (or even stage 6)
directly. However, if black plays the best defense he will move toward
the white corner and in that case the prciranm will need stage 4 for at

least two moves.

Position Xs in Figure 6.8 is in stage 4. The black king is
confined to the edge and completely controlled by the bishop and king.

Function revcornpos(x) recognizes the pattern of these three pieces.

Obviously revcornpos satisfies 3.7 and 3.9.

Tt is the position of the knight wh.ch determines that stage U4

rather than stage 5 holds. The bishop and king maintain control of the

plack king until the knight is in a position for stage 5.

Stage >

Stage 5 controls the forcing of the black king down the edge of the

board toward the corner where mate can te given, The play of the

pieces in this stage must be very precise, The program follows closely
the example from Capablanca [1935] giver in Figure 6.9; it is interesting

108

The second and last part will consist 1n

w A 7, 7 : driving the Black King now from QRE to QR1 or

7 ¥ 7) i KR in order to mate hime GQR1l will be the: 3 - Cys

JS, ,J quickest in this position0, mam, W: 10. Kt—Ktbch K—R2
A2 i 7 11. BBY K—R3| Wi M Mi A | 12, pK Rp
mm 7 7 7 De Q ~R5h,, Mh, Mh,| 7 7 7 Black tries to make for KR1 with his King.

White has two ways to prevent that, one by
14 B-K5, K—Kt6; 15 Kt—K?, and the other which

I cive as text, and which 1 consider better for the student to learn, be-
cause it is more methodical and more in accord with the spirit of all
these endings, by using the King as much as possible.

1k. K—-BS5: K—Ktb
15. Kt—Kth K—B6
16. B-Bk K=Kt6
17. PK5 K-R5
18. KB K—RL
14. B-B7ch K—-R5
20. Kt—Q3 K—RO
21. B-Ktb K—R5
22. Kt—Kt2ch K—RE
23. K-B> K—R7
2h. K-B2 K=R6
25. B-BS5ch K—R7
26. Kt—Q3 K—-R3
27. B-Kth K—R7
28. Kt—Blch K—R3
29. B-B2 mate

It will te seen that the ending is rather laborious. There are two oul-
standing features: the close following by the King, and the controlling
of the squares of opposite color to the Bishop by the combined action of
the Knight and King. The student would do well to exercise himself
methodically in this ending, as it gives a very good 1dea of the actual
power of the pieces, and it requires foresight in order to accomplish the
mate within the fifty moves which are granted by the rules.

Figure 6.9. Example from Capzblanca, pages 110 and 111.

109

a

to note that this example is almost identical to the description of

this part of the end game in all the other chessbooks we have examined. ;

During the play of this part of the game the white pieces must

keep the black king close to the edge, and at the same time must force

it toward the black corner. To simplify the pattern recognition, we

limit the definitions, only recognizing enough positions to make the

stage playable. Stage 5 will not contain all the positions occurring

after white moves in Figure 6.9. As in stage 3, we will violate rule

3.9, but in this stage we can define a usable measure.

First of all we look for an edge e which satisfies the following

predicates. Let blc(e) be the black corner on edge e . Then we have

6.3 de(bk_,e)=0 , | |
6.4 de(wk_,e)=2 A (3< de(wk_,blc(e))<T) . s

6.5 de(ab_,e)#2 v d(qb ,blc(e))>d(wk ,blc(e))) . |
Rule 6.3 says that the black king must be on the edge. Rule 6.L says

that the white king must be on the file/rank two away from the edge

and also limits its position on that file or rank. For example if e

is the QRfile, then the white king must be on the QBfile in one of the

following squares: B2, QB3, QB4, QBS, QB6. Rule 6.5 prevents the

bishop from interfer: ng with the movement of the white king down this

Tile.

It is relativelr easy to use the bishop and white king correctly

in this game; the knight is a more difficult piece to control. For

example the knight is the only piece which can be used to deny the black

king a white square on the edge. If it is used to deny the black king a

110

!

black square on edge 1t probably will not be available for its correct

use when it is needed. We adopt the following stringent condition:

6.6 (onblack(kt) A de(kt ,e)=1) Vv (— onblack(kt_) A de(kt_,e)=3) .
Function onblack(sg) is true if the square 3q is black. 6.6 allows

the knight to bear only on white squares on the eage, and only on black

squares on the file/rank next to the edge. One result of this is that
ve will be sure the white king is actually being used (once functions

conf and el are defined) since it is the only piece which can bear on
white squares in the file/rank next to the edge. Let function

eposs(x,e) be true if rules 6.3% through 6.6 are satisfied.
In addition to rule 6.6, we also must be sure that the knight is

close enough to the black king to be used effectively. First we must

define a new distance function fr(sql,sqg2) which equals the difference

in files between sql and sq2 plus the difference in ranks between

sql and sg2 . For example in p, in Figure 6.10, fz, (bk, KE)=4 .
Then we have, for edge e

ktpos(p,e) = ([onblack(kt) A fr (ok, kt)<2] V
[= onblack(kt) A fr (bk,kt)<51)

ktpos(g,e) = ([onblack(kt) A d (wk, kt)<d (bk, kt)
A (bk, ble(e))-2<alkt , ble(e))<a(bkg, ble(e)) +1]

v [= onblack(kt) A fr (bk, kt)=31) . |
This condition, for the knight on a black square, prevents the knight

from denying white edge squares to the black king from a position above

the black king, because in that case the knight could not be used on

the next move to keep the black king confined to the edge. The part

111

of ktpos which says a (uc, ke)<d (bk, kt) prevents the bishop from
being used when the white king should be.

so far we have defined the relationships between the white pieces,

butwe have not said exactly how they should control the black king.

There are two parts to this control. First the black king must te

prevented from escaping from the edge. A small escape may occur, as

in black moves 14-16 in Figure 6.9, but we must be sure no larger

escape is possible. For succ(x) the set containing the legal succes-

sors of the black king in x , we have

conf(p,e) = yr[resucc(p) >(de(r,e)=0 Vv fr(ok ,r)=2)]
conf(qg,e) = ¥rlresucc(a) > de(r,e)=0] .

conf is only concerned with the squares labeled Xl, X2 and X3 in p,.
in Figure 6.10. In gq both squares are denied to the black king in

p only XZ is denied.

The control of squares XJ, Xk, X5 and ¥X6 is measured by

function el . The function determines the amount of control the white
pieces have on the black king from above, To define el, we need
function bears(x,X) which is true if the white pieces in x bear on

square X , or if X 1s not on the board. In the following definition
XN stands for a function with arguments (position,edge,N) which

produces the appropriate square, Or NIL if the square is off the board.
onblack(NIL)=NIL . The following definition assumes that conf is

satisfied. We have ,

112

) = ” = Lh.e(p, e(aand aap dedgeile) = 2 “8 Ww7 7, a give7, , el(p, wil

tate LoLe ; ae) - 3.x) y a yeasdedgeyN 1(p,pd oo |
y A n == Twi

b2 Jes '- ccepted% 7W th, . not a._1 7 | p, er
| _ nn poster © - |He N

Pz aaMh

enan }y ne Stans SP, Hha wm V/Z a —_ |7 '7 . BranpieLn 1 e 6.10. | :Fig .

el(p,e) = 0 if [bears(p,X4) A (onblack(X3) v bears(p,X3))] .
- 1 if [- bears(p,X#) A bears(p,X3)

A bears(p,X6) A (bears(p,X5) Vv onblack(X5))] .

_ 2 if [-bears(p,Xs) A bears(p,X3) A — bears(p,X6)

A (bears(p,X5) V onblack(X5))1 .

= 3 otherwise.

el(g,e)= 0 if [bears(q,X#)].

= 1 if [- bears(g,X4+) A bears(q,X6)

A (onblack(X5) Vv bears(q,X5))] .

- 2 if [bears(q,X5) A - bears(q,Xk)

A — bears(q,X6)! .

= 3 otherwise.

el(x,e)<3 means sufficient control from above exists in x . Combining
this with conf, we have in gq that the black king must be confined to

the edge. In p it cannot escape tre edge into X2 , the square next

to its present position; rule 3.9, may be violated at this point. If
it can escape above, the escape square must be black. This 1s necessary

tn accomodate a position like the one in Figure 6.9 after black move 18.

A white square off the edge is not permitted 4 the black king, even in

two moves. Only the white king can control such a square. Values of
el are given in Figure 6.10 for positions p, and p, .

. Finally there are two positions p which satisfy all the conditions

given so far, but cannot be handled wy She ordinary rules. They are

illustrated by py and p, in Figure 6.10. The problem is one of
parity; if identical positions to Ps and P), occurred farther down
on the same edge, the bishop would be able to make a move while

114

continuing to bear on the same edge square, We recognize Ps and D),

by badedge(p,e) , and badedge(q,e) = false for all q .

Now we can give a complete definition of a good edge. Let KE be

a set containing the four edges of the board. Then we have

edge(x) = e if [e€E A eposs(x,e) A ktpos(x,e) A conf(x,e)
A el(x,e)<3 A —badedge(x,e)] .

= NIL if no such e exists,

A position x is in stage 5 if edge(x) is not null.

Next we define ameasure for stage 5. This is an indicator of how

much access the black king has to the white corner, For p we can usc

a(bk,ble(edge(p)))+el(p, edge(p)) For gq we must make some adjust-
ments in this formula. We define

adj(q,e) = -1 if [el(q,e)=0 A

(the black king is in check in q)] .

= +1 if [el(q,e)=2 A onblack (bk) A = onblack(kt)] :
= 0 otherwise.

adj(p,e) = ©

Then we have

dedge(x)=d(bk, edge(x)) +el(x,edge(x))+ad)(x,edge(x))
and dedge is ameasure for stage 5. For example in p, in Figure 6.10,
edge(p,)= QRfile and dedge(p)=> . Only Kt-QKts will give a q in
stage 5, and dedge(q)=4 . Therefore this gq will be accepted by
better. For either black king move in this q , we will get a p with

dedge(p)=t . p, in Figure 5.10 is one of these successors. In p, ,
wk-QB5 and gb-X3 give positions in stage 5 with dedge=l ; however

gqb-QB7 will give dedge=5 .

| 115

It is not difficult to show that edge and dedge satisfy rule 3.7.

For edge, the only condition which presents any difficulty is el and
the value of el determines dedge. We must consider cases. If

el(q,e)=0 , then the black king must move toward the black corner,
giving el(p,e)=0 or 1, depending on whether the black king was in
check in q . In either case dedge(p) = dedge(q) . If el(q,e)=1

| "na the black king moves down the edge then there is no problem and

el(p,e)=2 ; if the black king moves away from the black corner, we have
a position like p, in Figure 6.10, with el(p,e)=0 . There is no
danger that a white square off the edge and above 1S available to the
black king in p , because this is expressly forbidden in q . Again
we have dedge(p)=dedge(q) . If el(g,e)=2 , we must have a position
like gq, Or 9 in Figure 6.11. The black king can move down only
in q, , and we will obviously geb el(p,e)=2 and dedge(p)<dedge(a) :
if the black king moves up in q We will get el(p,e)=l or 2

depending on adj(q) . In aq, with adj(q,)=1 , we get el(p,e)=2 ,
while in q, , with adj(q,)=0 , we get el(p,e)=1 . In either case
dedge(q)=dedge(p) Therefore all of rule 3.7 1s satisfied.

| We cannot hope to satisfy rule 3.9 pecause sometimes a DP will
have all successors in a lower stage. For example this occurs after
black move 13 in Figure 6.9. As explained before, this is not critical

| to the working of the program. The reason we can use dedge as a

measure in this stage is because there is no error in the evaluation

of dedge, and if dedge(q)>dedge(p) , there really has been a loss of
control.

116

a el(q. ,Qrfile) = 2 and dedge(qa,) = 5,5 Ui mh, Ih, i, ==

ma, yo5 Mam

Ww ww - (file) = 2 and dedge(a,) = “.

ag, J"eowm, |

nng g Yn | e bishop must be in a square

nyWRIOL*3 WW, i, , marked YX; the white king uss os Wy
a gy Ph The position of the knight 1sVi 7, 2, 0

Vin / /
Case

Py i.RO a xB preserves the ares Sd Ee kab)
|wwe gprs I in stele 13 2

Figure 6.11.

117

Stage 5

Stage 6 is similar to stage 4 in that the white king and bishop

control the black king, while the knight is maneuvered into position

for the next stage (checkmate). Position Xs in Figure 6.11 is an

example of a stage 6 position. The relative positions of the white

king and bishop and the black king are recognized ty cornerpos(x) .

Obviously, cornerpos satisfies 3.7 and 35.9.

Formal Definitions of better and worse

’ Now we can give the definitions of stages and measures. The

stages are

x € stage 0 = [(x is a position with black to move) A

[(x is stalemate) V (the black king can take a piece
in one move in x) V badpos(x)]}.

x € stage 1 = stagel (x) .

x € stage 2 = [(—stagel(x) A s(x) = 15} .

x € stage 3 = [—stagel(x) A s(x) < 15} .

x € stage 4 = revcornpos(x) .

x € stage 5 = edge(x)

x€ stage 6 = cornerpos(x)

x € stage 7 = x 1s checkmate.

The measures are

m,, (x) = dcent(x) x € stage 2.

mg (x) = dedge(x) x € stage 5.

m, (x) = 0 x€ stage i, 1 = 0, 1, 3, 4, 6, 7

118

Additions to better and worse

The formal definition of better is grossly inadequate only in

stage 3. In the other stages additions may be needed in worse. No

changes will be made in stage 1 since it is very short.

In stage 2 when dcent(p)>C we ordinarily expect a tree search

of no more than depth 2. If the tree search is longer, this will mean

we are moving the knight out of danger and so the tree will be quite

narrow. When dcent(p)=0 the tree may be deeper, since several moves

may be required to establish s(q)<l15 . We can eliminate many bishop

moves by

6.7 st(p)=2 A st(a)<2 A qbFab, Na, (wk, qb)>2 A (dcent(p)=0 Vv st(q)=2) .
6.7 is defined for all values of dcent(p) because when dcent(p)>0 , |

we are not interested in bishop moves except to protect the bishop.

There will always be time to make these protective moves without

violating 6.7 because if there were not, we would be in stage 1.

Stage 3 may require more than 20 moves. We immediately add to

better

6.8 st(p)=st(q)=3 A s(a)<s(p)

because as previously noted the difficulty with s as a measure

involves worse (it violates rule 3.9 but satisfies rule 3.7 which is

the critical one for better). However even with 6.8, more than ten

moves may be needed to force a smaller area. Both the length and the

breadth of the tree search must be decreased. In the following dis-

cussicn ar(s(x)) gives the area for which s is the size.

We can eliminate many moves by adding to worse

| 119 |

6.9 (st(p)=3 A st(q)<3

A (4, (wk,qb)>2 v [st{q)=1 A = ktspec(p,q)]))
where

ktspec(p,q)= fa, (kt, qb)=d A location(p,kt ,ar(s(p),)=0

A losebishop(p) A d_ (wk, kt)=1 A fr (uk, qb)=3

A wk =wk A ab =qb, A — onblack(kt)) :
ktspec recognizes a position like p, in Figure 6.11. All moves but

kt-QB4+ will be rejected at depth 1 since either we would have a gq in

stage 0, or d, (wk, qb)>2 . The last three requirements of ktspec
eliminate moves farther down in the tree.

6.9 does not provide sufficient pruning to permit the programto

handle a tree of depth 10. We can shorten the tree by considering how

the program must move to force a smaller area. It does this by co-

ordinating the action of the three pieces. We recognize certain of the

patterns involved by means of function wv defined for Xx in stage 32.
We have

v(x) = 1 if =ktvi(x)

= 3 if ktvi(x) A - ktva(x)

= 5 if ktvl(x) A ktv2(x)

where

ktvl(x) = (Location(x,kt_,ar(s(x)))=-2

A d(kt_,c(ar(s(x))))=s(x)}

ktve{x) = ([s(x)=k A d_(wk,kt)>1]

v [s{x)>k A d_(qb,kt)=3 A d_(wk,kt)=3

Ad (vk, gb)=1]} .

120

Figure 6.12 gives examples of v=3 and v=5, for s=5 . We can use

v by adding to better

6.10 st(p)=st(a)=3 A s{a)=s(p) A v(g>v(p) .
6.10 cuts down the depth of tree search in almost all cases to a

maximum of 6. This maximum is exceeded when the black king is able to

escape from the area in p . This escape will either result in a

smaller area, or will quickly be blocked. In the latter case, the moves
used to block the escape must be added to the moves required to increase

the value of v . Position ps, in Figure 6.12 is an example; a tree
of depth 8 is required. We can reduce this as follows. We define

function poss(p) which is true if the black king can escape 1n one
move from p . Then

6.11 st(p)=st(a)=3 A s(p)=s(a) A poss(p) A ktposs(p,a)
can be added to better. Function kKtposs handles a position like Py,

in Figure 6.12. If the program simply accepted any q in stage 5

with the same size area, then it would accept one with the knight still

on the boundary of the area, so the whole tree would have to be repeated.

ktposs will reject such a q .
The addition of 6.11 to better insures amaximum depth of 6 for

trees in stage 3. Considerable pruning will be needed befcre the

program can handle these trees. As an aid to pruning we introduce
function s1 for positions gq in stage 2. s1(q) is the size oi the
smallest area a in which

6.12 inside(q,a) A —badkt(q,2) A — badk(g,a)

holds. sl(q)=15 if no area in gq satisfies 6.12. If s(q)=15 ard

121

v |

LO hs W, s(p;) = 5, v(p,) = 3. The knight is guard-I W,, W. Ti ing part of the boundary of thd area, which
niah, | frees the king so it can force a smaller are=.

vi, ih, ‘mh, \

}) nh, wl, Mh s(pp) = 5, v(p,) = 5, The king must do the |EE a, n,uh w; forging on the part of the boundary awayWh » i i 7 from, the knight.

vor i"

mw, mu,
| y : y ‘mi s(pz) = 5 and v(py) = 1. White must move. |5wlm " the knight (to QB4) and the black king can
ya. J escape to QKt6. poss(p;) is true. If the
/ heyl, | king were in K6, it would be unable to latery wh, W, , 7 block the escape and the position would beUV) 7 7h 7 in stage 2.

| yas 31 Mh s(p),) = 5 and v(p,) = 1 and poss(p,). Ifk f “y BS a ; after wk—Q5 and bk—QKt3, then wk—K5, theyd] ih, h,,, ’ in resulting q will be rejected by ktposs.0 7A i

Figure 6.12.

. 122

s1(q)<6 , this means either bpos or Kkpos failed for the area. One

possibility is that s1(q)=3 (bpos cannot be satisfied in this case).

When st(q)=2 , we look at sl(q) . If sl(q)<s(p) either white

is blocking an escape by forcing a smaller area, in which case

sl(q)=s(p)-1 , or white is trying to make a smaller area by moving the
bishop toward the corner, giving sl(q)=s(p)-2 . Often such a move is

wasted because the black king will easily escape. When s(p)=k we

eliminate both kinds of moves; in addition we reject the second kind

when sl(q)=3 unless v(p)=5 (in this case .it is an interim move to

stage 4). We also eliminate positions with unlikely king locations.

| We reject all positions satisfying

badsmall(p,q) = (s(p)=t v [=(p)=sl(q)+2 A |
([s1(q)=3 A v(p)<5] Vv Location(p,wkg 22 (s(p)))£1

v (uk ,elaz(s(p))))20 0
We divide the remainder of the discussion of st(p)=3 into two

parts: v(p)=1 and v(p)>1 . For v(p)>1 , we can be very concise in

our description of bad moves. When v(p)=3 we refuse all moves such

that |

6.13 (s(a)=s(p) A v(q)=1) v (st(q)=2 A sl(q)>s(p))

We permit st(gq)=2 only if s1l(q)=s(p) . This occurs when the white

king has moved into the area to try to force a smeller area without the

aid of the knight. Positi.n p. in Figure 6.1% is an example of a

place where such a move should be made. Again this kind of move will

often be wasted since the black king can easily escape. We rejectall

such q satisfying

123

: 17 7 / 7 77 ”

EL /

/ iF F/ 4 7,

i p/
Py i 27) 7 wk—QB6 is the best move, and on the next

| V 7 Wi 7 move, qb—QB7 will give stage UL.
| | wml ws

Ef i FilifF f i 4 v,]

7 7 A

W. MSW. mW
/ ; | % 7 pel “wy is

bs 7 7 7 | When v(p) = 5, it is time to move the white
W 7 7 king ins Cs the area to the square indicated

7 fd A - he i] // A]

ny i :WM YW,/ / Filed ’, a ratte — — =
7 BN, 7 s(Py) = 4 and v(Pp;) = 5. The knight moves

Ps 0 7 7 7 to Q5; on the next move, it may go to K7

wh fi ; 4 7 ! 7 /, 77

hr, STITT LEE (IE,

au i 77 LAR and s1(q,) = 15. We are almost
nN 7 7 in stage 5, but need to move the bishop.
1 LE , ; A " I :I

Figure 6,13.

124

trysmall(p,q) = (qb fab, V Location(p,wk ,ar(s(p)))f1

oo Vv [a (wk, bk)=s(p) 3 A (a, (vik, b)>1
Vv Location (p,bk ,ar(s(p)))<s(p)-1)]

V dq (wk, bk)>s(p)-4 Vv [a (vk, bk)=s(p)-
. | A locetion(p,bk ,ar(s(p)))<s(e)-21} .

For example, if in p, the black king were in QR3, the white move wk-QB6
would be rejected by trysmall.|

When v(p)=5 , the tree is fairly long, up to depth 6. First, we |

introduce a rule similar to 6.13. gq will be worse than p it |

6.14 (s(q)=s(p) A v(g)=3) v (st(a)=2 A sl(q}>s(p)) .

We can decide what other movesto reject.by considering how the

program should play. We want to move the white king inside the area to

form a position like p, in Figure 6.13. The knight is protecting the

boundary of the area, so we need not worry that the black king will

escape when we do this, Sometimes it will be necessary to move the

knight before the king move can be made, This knight move is a tempo

move; it must satisfy

ktmove(p,q) = (kt =kt, Vv [a (wk, bk)=2 A
(s(p)>lb A location(p,kt ,ar(s(p)))=-1

| A a(kt ,e(ar(s(p))))=s(p)-2) V
(s(p)=b A location(p,kt ,ar(s(p)))=0

Vv [Location(p, kt ,ar(s(p)))=-3 A

a(xto,c(ar(s(p))))=4 101] ,
when s(p)>4 , only one knight move is permitted. In p, this is the

move kt-Q5. When s(p)=4 an additional knight move must be allowed

owing to the peculiarities of stage 5. Positions Py and q in
125

Figure 6.13 are examples. One result of the second knight move is

that 6.14 must be amended so that a position like q, will not be

rejected (s1(q, Pk) . Instead of 6.14 we have

((s(a)=s(p) A v(a)=3) Vv (st(a)=2 A s1(q)>s(p)

A [s(phb v kt =kt V = ktmove(p,q)]1)} .

In addition to the knight, the bishop makes a tempo move. Pp, in

Figure 6.13 is an example. However we can limit the number of bishop

moves allowed by refusing those satisfying

(ob Fab, Ald(abqb)>1 vd (wk,bk)>2 Vv bpos(q,ar(s(p)))]} .
Finally we can reject many king moves (and an occasional bishop move)

by

badkmove(p,q,10) = {lo<-1 Vv 1la>1l Vv [1lo<l A (a (wk, bk)>2

Vv qb Fab, v [lo=-1 A wk fuk 1)]) ;
where

lo=location(p,wk ,ar(s(p))) .
We combine all these conditions for v(p)>1 , excepting s(q)<s(p) or

sl(g)<s(p) in

check3b(p,q) = {(st(q)=2 A sl(g)>s(p) A [s(p)>k v v(p)<5

V Bb skit V ktmove(p,q)])
v (v(p)=3 A [st(q)=3 A v(q)=1]

| v [st(q)=2 A sl(q)=s(p) A trymove(p,q)])

v (v(p)=5 A [st(a)=3 v s1(q)=s(p)]

A [— ktmove(p,q) Vv (st(q)=3> A v(q)=3) Vv

Lo badkmove (p, q, Location (p, wk ,ar(s(p))))])] .
When v(p)=1 white does not have woth conrad, All knight moves

must be permitted except those giving stage O or stage 1. When

oe

s(q)=s(p) , we Kimit the pdoer of moves somewhat by
s(q)=s(p) A a (wk, bk)>d(uk bk) . |

st(q)=2 or s(q>s(p) is only permissible when the black king is

eble to escape from the area in p . Position p, in Figure 6.14 is

an example. Then gq 1s an intermediate position on a branch cf the

tree leading either to a smaller area Or he same area under better

control. We card limit moves by

(= poss(p) V — kpos(q,ar(s(p))) Vv a, (wk, bk)>d (wk, bk)

Vv Location(p,wk ,ar(s(p)))>-1})
We combine conditions for v(p)=1 excepting s(q)<s(p) or

sl(q)<s(p) in | > on |

check3a(p,a) = {(st(a)=3 A s(a)=s(p) A (vk, bk)>d, (wk, bk))
v (st(a)=2 A si(q)=s(p) A trysmall(p,q))

v ([(st(a)=3 A s(a)>s(p)) Vv (stlq)=2 A s1(q)>s(p))]

A [s(p)=b v qb Fab, v — poss(p)
V A kpos(q,ar(s(p))) V a, (wk, bk)>d (wk, bk)

Vv Location(p,wk ,ar(s(p¥))>-11)) ,
The heuristics for p in stage 5 in worse are

check3(p,q) = (st(a)<3 A [a (wk, qb)>2 Vv
(st(q)=1 A — X#tpec(p,q)) V ;

(st(a)=2 A sl(a)<s(p) 2 Saipiyle, a) v |
, (es(a)3 A s(@zs(e))V (ab(a)=2 A sl(a)2s(p))]

A [(v(p)>3 A check3b(p,a)) V

(v(p)=1 A check3a(p,a))])1] . -

In betterwe add 6.8, 6.10 and 6.11.

127 ;

ZZ AX Z s(p.) = 5, but when wk—Q5 ill h
5 ” yf "W mn Py) = 5, en we W ave
we “7 "i -7 s(q) = 6 . We permit this move.mr »mom y a, (vk, bk) < a, (wk, bk) and poss(p,).ii i) % wl 1

iy .

: own,

Ps Wy ul, Wl This position is at the head of the majorWw yy lh tree search in stage S(depth 7). kt—Q5 is7 7, » the only move on the first level.
l,l,Yh,

Vi. 7, %, ih,
Um WY

,. Pg _ Woy y This position occurs down in the tree
“w | “Ww y from p,,, after 2 white and 2 black moves.

Iow an | xt—QKt4 is the only move permitted.

Figure 6.1h. y

128 /

In stage 4 ordinarily a tree of depth 2 will be required to reach

stage 5 because we expect to enter stage 4 from stage 3 with the knight

appropriately placed for s=> . However we may occasionally have

stage 4 in a starting position or enter it from s=5 before the knight

| is put in position. In such a case a tree search of up to depth 5 may

occur, Since the whole point of stage 4 is that the white king and

bishop can control the black king without moving, allowing white to

bring the knight into play, we can easily reduce the breadth of the

tree search by adding to worse:

st(p)=k A st(q)<h

Then trees in stage 4 will be almost all knight moves.

In stage 5 tree searches are very short except for the one black

attempt to escape from the edge __ 14-16 in Figure 6.9), when a

tree of depth 7 is required. p, in Figure 6.1% is the position at

the head of the tree. We first of all eliminate all positions gq with

st(q)fe . Before proceeding further we must be able to recognize the

edge e even in positions where the black king is not on an edge.

We look for q in stage 2 such that, for e=edge(p)

kcond(q,e) = {eposs(g,e) A [de(bk ,e)=0 A el(q,e)<3

A d(bk ,bk(e))<3 A kconda(qg,e)]

Vv [de (bk, e)>0 A d(bk ,blc(e))<2 A kcondb(qg,e)]}
where

kconda(qg,e) = fr, (bk, kt)<5 A (onblack(bk) Vv fr (wk, bk)<t)
and '

kcondb(qg,e) = {dfwk,bk)<3 A(lde(bk ,e)=1 A
vr(resucc(q) > [de(r,e)< v fr (wk ,r)=2])]
V [de(bk ,e)=2 A Vr(resucc(q) > de(r,e)=1)1)} .

| 129

These conditions insure that the white pieces remain in the proper

locations for stage 5. In addition, they are sO stringent that they

often prevent the many bishop moves (the bishop is the least constrained

piece in stage 5) simply because one of the other pieces has to move.

Positions p, and Ps in Figure 6.14 are examples. In p, , only
kt-Q5 will be permitted and in Pz only kt-QKtk. In fact the effect
of these rules is to reduce the tree to almost one branch, Occasionally

a few bishop moves will be considered but they are down in the tree

where they do not do much harm. Since the tree nas only one branch we
could decide on many of the moves without tree — However handling
them through tree search enables the programTO avoid extra pattern

recognition of the positions with white to move which would result

from such positions. Summing up these rules, we add to worse .

(st(p)=5 A st(a)<5 A (st(a)f2 Vv — kcond(q,edge(p)))} .

Stage 6/is similar to stage 4, and we immediately add to worse
st(p)=6 A st(a)<6 .

~ However this may permit four wishop moves at every level in-addiftion to
all the knight moves, and although usually the tree is only of depth 5

or 4, 1% may be longer. We must allow one bishop move for parity, but
we eliminate all others by insisting that they satisfy

becorner(p,a) = (a4 (a0, wk)<3 | oo
(a, (ab, wk)=2 A d,(qb,wk)=>3)) ‘

: Combining the formal definitions of better and worse with the

1 vdrious additions we have .
Ty |

130 :

better(p,q) = {stlp)<st(q) Vv [st(p)-2t{q) A mn (p) DMs (5) P)
v [st(p)=3 A (s(q)<s(p) Vv

[s(q)=s(p) A (v(a)>v(p) v poss(p))])]}

worse(p,q) = (st(q)=0 v (st(p)=stlq) A may (p) (DMs (py (PD)
[st(a)< stp) A

((st(p)=2 A gb Fab, A d, (wk, qb)>2 A [decent(p)=0 v st(q)=2])
v (st(p)=3 A [d,(wk,qb)>2 V (st(q)=1 A = ktspec(p,q))

v (st(g)>1 A check3(p,q))])

v (st(p)=h A st(q)<ht)

v (st(p)=5 A st(a)<5 A

[st(q)f2 v — keond(q,edge(p))])

v (st(p)=6 A [st(q)<6 v = beorner{p,q)1) 1}. |
These functions are equivalent to the definitions used by the program.

Examples of Program Play | |
Our first example starts with position py in Figure 6.15.

st(p)=2 and my(p,)=3 .

1. WK-QF bk-K2 :

2. wWk-QB>5 bk-K3

3, wk-Q4 We now have m,=0 ‘

bk-G~

L., gb-KB4 ch. bk-QB3

5. gb-K5 vk-02

6. wk-Q5 Now we are in stage 3 with an area
: of size 6. Moves 4, 5 and 6 are

; selected by tree search.

bk-K2

151 Fo

HEH / ; i 7) ; ;

0, 77 7 Vi UV p, is in stage 2, and deent(p,) = 3,

7
\ , Ti, Wh, Wh oo

o., U) 7, 7 7, | p, is in stage 2 and deent(p,) = 2.
“Uw Wh,

Wh,

ww ww Ca| A y! , F : : {x = ’ 1ovev

bs 7 i 2» 0,9 p, is in Stage 2 and deent(p;) = 3 | owever
| 7 7 7 7 all immedidte successors of Pp, are in stageede oA # 1

bi, Ih «nn 0 or J. .

Figure 6.15. Starting Positions for Example of Program Play.

/

132
Co

7. kt-KR3 bk-KB2

8. kt-KB2 Now v=5 . We have skipped over
v=3 ,

bk-K1l

9. wk-K6 bk-Ql

10. qb-Q6 Moves 9 and 10 are selected by a
tree search of depth 2. Now we have
an area of size 5.

bk-QBl

11. kt-KKth bk-QKt2|

12. kt-KB6 | Now v=3 .

bk-QKt35

13. wk-Q5 bk-QR3

1h. wk-QB4 bk-QKt3

15. qb-QB5 ch. Now v=5 . Moves 13, 14% and 15 are
selected by a tree of depth J.

bk-QKte

16. wk-QKt5 bk-@QB2

17. gqb-QKth This is the bishop move allowed
for tempo.

bk-QKt2 ;

18. qb-QR5 Now we have sl=3 .

bk-GQR2

19. wk-QB6 LA
20. gb-QRT Now we are in stage 4. Moves 16

through 20 are selected by a tree
of depth 4.

bk-QR2

21. kt-q7 bk-QR1

135

22, kt-QKt6 ch, We are in the same position as
Figure 6.9 after white move 10.

bk-QR2

2%, qgb-@b A tempo move,

bk-QR3

2h, gh-QKtS m=5 |
bk-QRY

25. kit-@> bk-QR5

26, wk-QB5 bk-QR6

27. kt-QKth bk-QKtT

28. qb-KB4 bk-QKt8 |

29. wk-QB4 bk-QKET %

30. gb-K> This is the only place in the tree
| \ starting at move 25 where more than

one white move is considered.

bk-QR6

3], qb-Qh Now we have reached the end of the
branch of the tree (of depth 7) and
In = ”
2 |

; " bk-gy ° QRS
’ 22, qb-QKtb6 me=3 "

| bk-QR6

3h, kt-QKt2 ch. me=2 .

bk-GQR6 |

36, wk-QB2 bk-QR6
\

134

37. qb-QB5 ch. mg=1 . Moves 35, 36 and 37
are selected by a tree of

depth 3.

bk-QRT This move gives a p in stage 6.

38. kt-Q3 bk-QRB |
39. qb-gKth | A tempo move,

bk-QRT

39. kt-QBl ch. bk-QRE

40. qgb-QB3 mate.

The program plays the last part of the game (from move 22 on)

identically to Figure 6.9; different black moves have been selected

to give some variety. In the first part of the game the program play

is dull but steady. As usual, the program sometimes does: not make the

best move. About four moves are wasted in this way. The black moves

are selected to give the program & maximum amount of trouble. The

Sierilg position Py is the one given in Capablanca [1935]. "¥
Capablanca only uses nine white moves for the first part (compared with

21 program moves); however his black king moves are more cooperative

than the ones selected in this example. \

Our next example is taken from Fine (Figure 6.1). We start from

Ps in Figure 6.15 which is the same as the starting position in |
Figure 6.1 after adjustments have been made for the fact that the

program has the queen's rather than the king's bishop. Again we start

in stage 2. We have

1. wk-QB4 . bk-K5

2. qb-Qb bk-KB4

I. Page 109.
135

3. wk-Qu4 Now Mmo=0 but actually we are in
stage 3 with an area of size 6.

bk-KKt5 This move gives a p with
poss(p) true.

L, wk-Kb white blocks the escape, so the
position is accepted by bettet }

bk-KKth Cn 5 =6
CAREY

5. Kkt-QBT bk-KR> y
- av gar’ i. Fa

v6, kt-Q5 bk-KKt3) 'Le

7. kt-QKtb Now v=3 .

Ty bk-KB2

8. aqb-K5 Now wv=5 .

bk-KKt5

9. wk-KB4 bk-KR3

1 10. wk-KBS bk-K R2

11. qb-KBb Now we are in an area of size 4. .
bk-KKtl

12, kt-QB8 bk-KR2 NE

| 13. kt-Qb Now v=5.

bk-KR3

14, kt-Kb This is the first allowable knight
move.

bk-KR4

15. kt-KKt5 | This is the second knight move.
| We have sl(g)=15 .

bk-KR5

16. gb-K>5 Now we are in stage 5, and m=} :

oo 136

There is no point in continuing the example ines the program will play
the same as in example 1. Ten more moves are required to mate. As

exnpected, the program plays differently from Fine, The moves for black
‘x

. y, Bre chosen to illustrate how the program reaches stage 5 through areas

. : ® size § and 4. When this path is chosen, stage > 1s short and check-
mate is reached quickly.

We will now give two short examples tO illustrate special cases

in the first part of the game. The next example shows how the program

handles a temporary escape from an area. We begin at position pj in

Figure 6.12, st(p,)=3 ; s(py,)=5 , and poss(py, } is true. We have

1. wk-Q5 bk-QKt5

2. kt-Kk bk-QKt6

3, wk-Q4 bk-QBT

4, qgb-QKtu Now sl(q)=l+ ,

bk-Q8

5. wWk-Q3 bk-QB8

6. qb-QB3 Now we are in an area of size 4.

If at any time the black king had returned to the area of size 5, he

would have been trapped there and that branch would have terminated.

Our final example shows what happens when we must cope with a

stage 2 position complicated by thelocations. We start at Pz in

Figure 6.15. Ps is in stage 2 but all of its immediate successors
are in stage O or stage l. /

1. kt-KBS wk-KKt€ would give m, (a)<m, (p)
and dgq(wk,qb)<dq(bk,qb) but this
position is correctly recognized
as a member of stage O. We have

q in stage l.

bk-KKtl

2. qb-KB6 We are in stage 2, but
m,_(q)=m,(p) . Note d, (vk, qb)=2 .

bk-KB2 | |

3, wk-KKt5 Now we can accept q as better |
since m, (q)<m,(p) .

bk-K3

Lh, kt-KKt7 ch. The knight was blocking the path
| of the king.

bk-Q3

5. wk-KBS Now m,(q)=1 :

bk - Q4

6. wk-KB4+ The black king is blocking the
white king move into the center.

bk-QB4

7. wk-Kb Now m,(q)=0 :

bk-QB>

8. qb-Q4 Now we are in stage 3.

The program manages nicely.

This last example indicates that the program should be able to :

reach checkmate from any starting position within the 50 move limit.

y Stages 5 and 6 together never require more than 19 moves, and the first
example of program play gives a-close to maximum number of moves through

stage 3. Since this example ends similerly ‘tc the first exampls after

138

move 6, this means the program still has a margin of 8 moves to take
care of any complications which arise.

The remarks about the previous end games are also valid here.~ 1H

However, the mediocre (better but not best) program moves are oS

frequent in this game. This is because the difficulty of winning
forces more exactness in program play. The difficulty of this game

also provides a good test of the program. The fact that the program

can win, using the fairly simple patterns which provide the outline of
the play, "indicates that the forcing tree model used for the program is
a good one. Also the program play 1s identical to the book's when
sufficient information is available. |

159

fi \ Bi _ w a AE Ti "NN

i

A

fs

®

|

CHAPTER 7

| | PROGRAM CORRECTNESS

Now that the definitions of better and worse have been given for

the various end games, we Call consider the question of program correcti-

ness. We will say that the program plays an end game correctly if we

can prove that it will reach checkmate from any legal starting position

pEP . To prove, given the position p€P, that the program will actually

win from p , we must show

1. The program can force positions gq which are better than p .

2. This process need only be repeated a finite number of a before
| checkmate is reached.

First we must introduce some notation. |

Defn. prog, (p) = {a | ¢ is at “he end of a branch of the tree from
p which is produced by the program] . |

If an immediate successor gq of p 1s better than p , then prog, (p)
will contain the single element gq . If the program is unable to force

better positious from p , we would have prog, (p)=NIL , which means

either that all branches are reflected OF that the program does not
terminate (in 50 moves). The first statement can therefore be written:

Theorem 1. vp[pEP © — null(prog, (p))]

Proof. This theorem must be proved separately for the different stages

| and measures within each end game. It is sufficient to show that an
1:0

accapliaule path exists; we will not know for cerfhain what prog, (p)
contains but we will know that it is not empty since. the program uses

a breadth first search. *

We give a proof here for positions in stage 2 or the Rook end
game. Recall that stage 2 is defined by E

x € stage 2 = (goodquad (x) A squad(x)>2} .

The measure in stage 2 is | |

m, (x) = squhd(x) vx(xEstage 2) . y ;
better for' stage 2 is defined by

(st(p)=2 A (stlqP2 Vv |

st (a)-sblp) A (my(aemy(p) V alu,rca fuk, eID)
and worse by © :

| | id

(st(p)=2 A ([st(q)=2 Amy(aPmy(p)] Vv:

[(st(a)=1 Vv [st(a)=2 A my (a)=my(p)1) A a_ (wk, r)=1
A fa(ary (sta) A cprh TT

We divide the proof into two parts depending on a (vk, x) . y

| 1. d_(uk,r)>1 ®hen there exists a gq with (vk, r)<d (vk, x) /
. gq will have the same quadrant as p , ‘and since Pp satisfies rd

4 {vk r)g8 (ok, 0) , we can be sure that 4, (wk, 7)<0gl PK, 7) /
This gq; will ce better than p , and prog, (p)=(a*) : re
(g* Lr —_— equal to gq.)

Be a, (vik, r)=1 _ There are two cases tO consider. Let p'=p or a
I a of some .q down in the tree from P . |
a. There is a rook move leading %o a etter a (in stage 2 or 3)

with a smaller quadrant, Sch a pesition q. wil be better Lnan

p , and so we know the tree terminates. We are always in che ba
141

if d+ (bk, r}>2 ,

b. No such rook mcve exists.

i. do {bk 7)=d and we are not in 2a. Then we make one
of the king moves such that d, (vk, r)=1 and Ir (bik, wk)<h
for fr as defined in Appendix A. A move like this always

exists and is not worse; fr (wk, bk)<h insures that after

the black king mgges we will be in 2a or 2bii, which means

rd "the tree will serminabe ¥ one or two more moves,
: it. do kok, 7)=B A fr, (bk, wk)=h and we are not, in 2a. This

is the place where the white king moves onto the boundary

of the quadrant. Then after the black king moves we are |

in case 2a with just one move to terminate the tree.

$41. 8, #ADE 2)o0 A 2x, (bk, wk)=5 and we are nob in 2a. ‘We make
a white king move such that a, (wk, £)51 , and after the
black king moves we are in case 2bi or 2a (at mest three

more moves to terminate the search). |

Obviously such proofs are very tedious and we will not attempt to give

them for the other stages. The method of proof remains the same, and

sketches of such proof have been given in the various chapters.

Although the example chosen for the proof of theg previous theorem

was given _- tHe practical definition of better, for the rest of

this discussion we will use the formal definition of better. We will
diwouad tie wxbenslon of the theorems to the practical definition after

eh they have been proved. | N |
Pirsl we must prove that rule 3.7 holds.

| 142

Theorem 2. Va ¥p(aMpp > [st(pP>stla) V

(st(p)=stla) A mst (p) (PIs (p) (W)])
Proof. Again we must prove this for the different stages and measures.
In fact we have proved it informally in the chapters covering the end

games, The reason it is possible to prove this is that stages and

measures depend almost entirely upon the position of the white pieces.

When a rule is made about the position of the black king it is stated

in q and in p in such a way that if it holds in gq , it will hold

in all immediate successors Pp of q.
Lo

We have purposely given informal proofs for Theorems 1 and 2 Kase
the detail required for a formal proof is excessive and uninstructive.

It is necessary in these theorems to give separate proofs for each stage

of each end game. The proof given for Theorem 1 is correct for stage 2

of the ‘Rook end game, and serves as an Lglse how re proofs should
ad proceed, both for Theorem 1, and Theorem 2, dug the proofs for

Theorem 2: are simpler. ; 7 * ¢
prog, (p) produces only one step of the program. To handle the

entire programwe make the following definition

Defn. For $l, |
prog. (p)=(a | 3p'q' (q'€prog,,(p) A a'Mpp' A q€prog, (p'))] .

Please note that the i in prog. {p) does not generally stand for
the ith move from p ; it stands for the ith iteration of the

program. Anew iteration is not begun until the tree (possibly of

depth 1) from the previous program entry is exhausted,

| 1h3

: i | . Ca

4

rr

Now we can formalize the second statement,

Theorem3. Vp[p€P oD 3K YN(I>K DO null(prog,(p)))] ‘

Proof. P is associated with some end game, and let us suppose this

came has n stages. For each stage 1 , let k. be the number of

aifferent values which tne measure m, assumes, We know k>1 for

all i. (k, must be finite; this is tryg for all the measures which
have been defined.) Let

n

K = > , (k.).
i=l *

K is the number of different categories into which positions in the

end game can be put, not counting stage 0. We refer to each categcry

as a level, and we define a function le , which gives the level of a

position as follows,

(1) le(x)=1 = (st(x)=1 Am, (x)=max(m (y))]} , for S=(y | stly)=1} .
yeS Cd

(2) Assume we have defined the set of positions x for which |

; le(x)=1 . If this set is empty, then so is level i+l . Other-

7 wise, we define the set for which le(x)=i+l as follows. Let
:
% x be a position such that le(x)=i .

If i=K , then x 1is a checkmate position and the 1i+l level

is empty. |

. uet
Otherwise st(x)<n . If mex) $X) min(m . .y(¥)) , for

} ;
S = {y | st(y)=st(x)} , we have

=i+4 = Y= a 1le(z)=i+l = (st(z)=st(x) Amey) (2) max(m_, .y(¥))] s

h for §= (y | st(y)=st(x)A (y)<m_, (+(x)or = {y | stly)=stix 8st (x) WY st(x) ¥))
1b |

Otherwise we have

le(z)=141 = (st(z)=st(x)+1 Am pip) (z)=maxim y(y))] ,

for 8 = (y | st(y)=st(z)} . ’

For completeness we define

1 1e(x)=0 = st(x)=0. oo

The levels have the same order as. we would like the program to follow;
Vy! Cy

we know O< le(x)<K , for all x€Q . Recall @=P U (q|3p(p€P A pM.a)]

We have the following lemmas.

Lemma1. Vpq((a€Q A aM p) = le(p)> le(a)) . :

Proof. This follows immediately from Theorem 2.

Lemma2. vpa((peP A geprog, (p)) > le(aPle(p)) .

Proof. Since q€prog, (p) , we know better(p,q) is true. Therefore,
bY EN

\
Now, for pEP and N>K , let us assume there exists a q€prog, (p), .

We unravel the meaning of this: Me

qeprog, (p) | “,

3p, q,(a,€prog,,(p) A q;Mgp; A a€prog, (p;)) 4

y | N

We select the eppropriate Pys Qyse++s Ppy_1s I-1 , and apply our :
lemmas to get if a

L y # ’

| ¢

4

d

' Each sing ie have 1e(q.)>1le() we can write le(q,)> le{)+1 |cn bi ZENG; P22 Pi Mle ZE\G;Z EVR,

| since le is an integer function. Sco we have '

| le(q, ,)> le(p)+l A le(py ,)> le(qy,)
4 + {

| Y Therefore le{qy 5)> le(p)+2 A le(py_ p> le(p)+2 ;
' , |

=

le(q,)> lelp,)+1 A le(p))> lelq;) . 4

This gives le(p,)z le(p)+N-1 and since ie(q)> le(py)+l , we have

le(q)> le(p)+Ms> le(p)+K > K+1 ,
¥

but this is impossible since le(x)< K fo all x€Q . Therefore

prog, (p) is empty. $3 | ;.
- 3 J \ ra

Thecrem % insures that, the profby will never get into a loop. It
; i SR ; JF \

says that k, , in addition to being tre number of values the measure m,
assumes in stage i, is also a bound on the number of times the program

can produce better positions in stage i as it moves along from a starting

position to checkmate. The proof of peor 3 depends entirely upon
Theorem 2 and the definition of ves rdfidemas 1 and 2).

‘We use this theorem as 2o1ickg, Consider how the set prog. (p)
is formed. There are two parts to the definition. One part looks like

’ . 5 ; x *

q,€prog, (p; 4) ; the other is a statement like q.Myp, . Now Theorem1A |

says that the statement a,cproglp, ,;) is always true providedSrET——— L

Pp. 1F . We know this for the original p . However we must show

¥

1h6

Theorem4, VYp*[3pg(pEP A qeprog, (p) A qMpP*) >p¥€P]

Proof. This proof is the same for all end games and it produces a [
condition on the definition of stages. If we assume the premise for

some p¥* , then we know le(p*)>2 , Since le(p)>1 . This _— that
all non-winning positions which can be produced from a winning position

must be below the second level. In all three of the games discussed

the second level is in stage 2. The only questionable game is the

Bishop-Knight; we are confident that there is no p€P , st(p)=1 ,

which produces p* , st(p*)=2, but p*¢{P_ in this end game. |

By Theorems 1 and k we Jan be sure that the chain leading to

prog, (p) does not fail because a set prog, (p. ,) is empty. There-

it must iil in the other statement , q;Mpp. . This can only -

, happen if some q. has no successors, But if a, has no successors

it is either stalemate or checkmate. In this case it cannot be stalemate

since we know it is better than some p ; therefore it must be checkmate.

Sc Theorem5 means that less ig X uses of prog, are required to,
reach checkmate for any p€P . hegefore we can say

Pd

Theorem. Vp(p€EP© the program will force checkmate from p).

Before leaving the subject of correctness we must discuss the

extension of these theorems to the practical definitions of better and

worse. Theorem4 is the only one which is unaffected by the additions.

We consider Theorems 1, 2 and 3.

We first realize that Theorem 1 is not ‘affected by the additions

to better, This theoremis really a statement of existence and if the .

| 147 y

program terminates sooner than expected this does not affect the proof.

Theorem 1 is affected, however, by the additions to worse. We must be :

sure that worse does not now Miminate the path which is followed for |

the proof of Theorem 1. When we used the formal definitions of a |
and worse there was no danger of this sort because worse hardly o*

eliminated anything. Recall the formal definition of worse \

worse(p,q) = [st(q)=0 v (st(p)=st(a) A Mot (p) (PI sy(p) (1) ,
Since all positions in stage C were disastrous, only the second part

of the rult could affect the eventual finding of better positions.

This problem was considered carefully as the stages and measures vere

defined for each end game, and only if we were sure the program would

work correctly was a function allowed tc be a measure. The proof of: J

Theorem 1 is based upon this fact. Similar Cd be —— when

additions are made to worse. This problem Ho considered in Chigftyes b,
5 and 6, when the additions to wore Fe described. i

Theorem 2 is the s*tatement of rule 3.7, and must be exntonded to

cover each addition to better. This extension was discussed as the

additions were made, but we will consider it again here. Theorem5 is

affected by the additions Sedans we must redefine K . We discuss

both theorems at the same time,

In the Rook end game only one addition is made to the formal |

definition of better; this is |

st(p)=st(q)=2 A m,(p)=m,(q) A d, (wk, r)<d (wk,r) :
As was mentioned in Chapter Lh, this use of 2d is like a measure.

Since only the position of whitedpigees is involved we can be sure
that the evaluation of a successqr (Of! q using d will give the same

hug i |
7 “ | ' |

value as gq ; therefore the correctness of this addition depends on the.

correctness cf stage 2 and its measure. InTheorem5, we must use a

different value for K ‘od replacing k, with k,* ’ where
LAR vo! 3

k *=T-k, J Mince gts) can have al most 7 different eres:
| In the Bi shop-Ktght end game we need only worry about stage 7

As was mentioned in Chapter 6, s satisfies 3.7, and 3 . Vv also
~ is nearly ameasure and 3.7 can be extended to cover $6 SUE it depends
only on the position cof the white pieces. V leads us to give a value

of ky *=3 y
In they Two-Bishops end game, we added a function which is not

like a méaSure since it is not integer-valued. This is the rule uzed

for non-head quadrants in stage 2:

st(p)=st(q)=2 A squad(p)=squad(a) A (squad(p) is even)

A d,, (wk, bk)<d (wk, bk) A dmin(g)<dmin(p) .
| This rule is acceptable because of the use of dmin which is a fun~tion

of white pieces only. Therefore we know that 4 ;

QMpp > dmin(p)=dmin(q) .
Also the rule can be applied no more then six times since dmin(x)<6

for all x. with st(x)=2 . dmin could be used as —— by itself.
We can thinkof the other part of the rule,

(squad(p) is even) A a, (wk, bk)<d (vk, bk)
as a modifier on dmin. It does not affect the extension of Theorems 2

and 3. .

CHAPTER 8

EVALUATIONS AND CONCLUSIONS

Evaluation of the Forcing Tree Model |

We consider first the forcing tree model selected for the program.

This model has proved to be a good one for our purposes. The end games

described have all led to fairly simple pattern descriptions. Also, we

have been able to prove that the program can reach checkinale from a
given starting position. This procf depends heavily on the model, which

| is represented by functions prog, and prog
As far as the quality of program play is concerned, the program plays

211 of the end games discussed in quite a reasonable manner. The malin

objection which can be made ty *: nat the progres does Bok always play as well
as it might. Sometimes when there is a perfectly obvious move which

produces a position much better than the present one, the program will

select another move which is not as good.

Such play is a natural consequence of a method which locks for a

good move rather than the best move. And obviously, the more heuristics

the program has the more likely it is that the best move will not be

selected. For example if only checkmate positions were recognized by

better the best move would always be selected. However this approach

is not practical because the tree — is too large. In general ;
| there is this trade-off between goodness of play and length of tree |

search.

150

There are several fairly simple ways of making the program play

more efficiently. First of all we could improve program play by having

it search for the best move, rather than just settling for a good one.

This is easy to implement when examining immedf¥ate successors q of

some position p . We would simply let @Q be the list containing all

q ‘which were better and not worse than p . Then after all successors

of p had been examined, if Q were not empty we would compare the
members of @Q with each other, using a function similar to the formal

definition of better. The formal definition could not be used because

it expects a position with white to move as its first argument. However |

function

8.1 bettera(q,q') = (st(q')>st(q) v Beo(q){¥ Ist (q)(D)] |
" could easily be defined to compare two positions with black to move.

ve Convers the formal definition of better rather than the actual

one for two reasons. First of all, there is so little difference between

two positions, both successors of the same position p with the came |
stage and measure, that it is not worth the extra work to distinguish

between them, However even if we wanted to, it is not always possible

to convert the actual value of better into a rule like 8.1, because |

sometimes some information about p is used to assign a value to gq

in this definition. For example, in Two-Blshops we use the fact that

p is non-head quadrant tc decide about og This decision really

depends on the fact that p .is a predecessor of q, and cannot be

converted into a comparison of two positions with black to move,

It is not simple to extend this methed of program improvement to

tree search because the choice of one branch over ancther is not so

| 151 | |

clear-cut. In a tree search it is not usually a matter of deciding

which particular gq to put at the end of the branch, although this

would improve the program somewhat. It is more important to decide

between several branches all of which terminate at the same depth.

For example, suppose ore branch of a tree almost always leads to a

much better position than the original p , except in one or two places

which are only slightly better, while another branch is neither as

good nor as poor as the first, It is difficult to say which branch.

should be chosen. ,

The mein thing wrong with this method, even if we do nol consider

the problem of choosing between branches of a tree, is the fag¢t that it

would greatly increase program run time. After all, the killer heuristic, wi.
i

discussed in Chapter 2, introduces playing inefficiency but is tused

because the time saved is more important. This methodof searching for

the best move would waste more time than is saved by the killer

heuristic (ang also it is incompatible with the killer heuristic).

A way of improving program play which is not so time consuming is

~ the following, which compensates for the inefficiency in play intro-

duced by using extra heuristics to avoid tree search. We could replace

better with a hierarchy of functions which will be referred to as

versions of better. For example, version 1 would recog...Ze gross

differences between p and q (for instance, only changes in stage);

version 2 would recognize smaller differences and sc on. Then all non- ‘

worse successors q of some position p would ne exanined using
version 1 of better; if none were selected they would be examined by

152

: | | *

- version 2; and so on. This would be faster than the previous method -
because the tests in each version of better would be very short, and as|

soon as a q was selected, all testing would stop. A gain in efficiency
would be made even if just two versions were used; one would be the /
formal definition of better whileithe other would foe the additions /
which make the program practical. However three versions would be
required to get the most out of the method, becuse we would always

| prefer a change in stage to a change in pensure /
| Another way in which program efficiency could be improved would be

by paying attention TO the order of move WW J— This has already
: been done to some extent; for of. in the frook end game, wot moves

are examined before king moves, so that a s TX quadrant will be
formed if possible. on the guher hand, in L Bishop-Knight game, ~
knight moves are examined first so that for example in position Py

in Figure 8.1, kt-KB2 he be selected (5(g)=6 , v(q)=5) , although
gb-Q6 would give s(q)=5 ‘ Even if the only ordering done is to
decide what piece's noves to examine first, some gain in efficiency
can be obtained. More ro.5 50 efficiency can be made by considering
the ordering of moyes for each piece, For example if the rook moves

farthest away from the rook were generates first, then in Ps in
oo Figure 8.1, we jould select either r-K5 or r-QB® giving a quadrant

= of size 10 or fiz. If moves are on in the opposite way, r-Q
or r-QB4 whuid be selected giving I S— of size 15 or 16,

Improying program play by changing |the move ordering does not)

mr playing time (provided the killer heuristic is allowed to
/ } 153

i 7/ i 5, | ;7) / 7 W, is in stag)=1. i4, Y %- n,, .: ives _ y Vig) =Py * or - ” ives fe) =13 heW. hl "i qb—Q
i meWh

7 ml, e 2. and7 TT is in stage 2, thenih, Mh, 7 p, is r—QB3,7 J, a, J7 toy) = 20. o KS, then a (a) = 16.| mh, oy wm m,(q) = 30, If r=Q5, then m,°2 Vi a, W Z (q) = 12. m,(q) = 15.Ti Mh, y | Bp QB4, then 2“aw

Figure 8.1.

15h

stand). However, many times the move ordering will be wrong for the

particular situation. The board is symmetric in many ways in these

games, and so it is often possible to think of two positions p which

require opposite move ordering if the best position gq 1s to be }

generated first. Position Ps in Figure 8.1 is an example, Although

we can order the moves so that a quadrant of size 10 or 12 will be

selected instead of one of size 15 cr 16, there is no way to order the

moves so that we can be sure that the quadrant of size 10 will be

selected in both Py and all positions which areequivalent to Ps

| with respect to the symmetry of the board. %.

+ Correspondence of Program and Book Methods

Now we consider how closely the definitions of better and worse

correspond to the methods described in the chess books. When the

information in the books is reasonably complete, we would like the

program to play similarly to the books. We feel this goal has been

achieved. The only place where the information about play is very

| inadequate is the first part of the Bishop-Knight game (actually stage 3).

In all other parts the informaticn is adequate, and generally there is

nc question that the program plays the same as the books,

The one exception is stage 2 of the Two-Bishopsgame. The lack of

correspondence here comes from the fact that sometimes the book chooses

a move by a different heuristic even though the stage has not changed. |

The reason the book does this is probably to Endvpthe: student that more
than one kind of method can be appiied. In ote) stages and other games,

the number ofmoves chosen by a different heuristic is very small and so

155

| does not worry us. 1t is perfectly reasonable to limit the program tO
one kind of heuristic for each stage, and this is what is done in Two-
Bishops.

Another kind of difference between program and book moves 18 that
sometimes the book looks ahead one move (or more) even though 1U could
make a decision immediately. There iS no reason tO attempt to model
this. It does not happen consistently, and does not indicate any
essential SoD in methods.

Evaluation of the Translation Process

We heve shown that the forcing tree model allows the program to
produce winning play for three end games, OLE of which is very difficult.
Further there is a fairly close correspondence between book and program
play. We take this as proof *that the model is a good representation of
theabstract mcdel assumed by dens players. Now we turn cur attention
to the difficulty encountered 1n translating from the books into the
definitions of better and worse.

An examination of Chapters 4, 5 and 6 will suffice to convince |
us that this translation process 18 surprisingly difficult. Sometimes
we are hampered by a lack of book information, but even wher. there is
plenty of information we still encounter difficulty. The reason for

| this is that the induction required of the student is more extensive
| Shen We expected. For example, in the 1ast part of the Rishop-Knight

game (stage 2) une chess books give an almost complete example of play.
However it is very difficult to decide which features should be used to
represent the pattern. |

+

Now if we divide the translation process into simple versus |

difficult tasks we find the following. It is simple to decide roughly

what the stages are, and what kind of heuristic each requires. This

information is often stated in the bocks. It is difficult to give the

exact definition of the stages and measures, and generally it 1s even

more difficult to define the additions to better and worse which make

them practical. So we ask the question: can we use the computer to

help with the translation?

One way in which the amount of work might be lessened is the |
following, which helps with some of the difficult tasks. First we .in

observe that all the heuristics used in better and worse consist of yr

complicated predicates built up out of simpler predicates joined by

propositional calculus connectives. Many of the simpler predicates

are useful in all the different games, for example functions d snd de.

Others are not so widespread but are still basic to the structure of the

end game; for example function location in the Bishop-Knight game is a .

natural function for measuring distances from diagonals.

Next we observe that defining the heurisgics for an end game is

done in two separate parts. First we give the definitions of the stages

and measures, which are taken from the chess books whenever possible.
When the game is well defined the process of arriving at the stages and

measures, while sometimes tedious, can be guideq by the books.

After the formal definitions ofbetter wo S—_ are complete we
turn our attention to the practicality of the method. At this point

the chess books are not so useful; painstaking examination of the paths

157

which the program should and should nct follow is the important thing.
The rules arrived at are built up out of the distance functions and

pieces of the definitions of stages and measures. So it is eftirely
feasible that this part of the definition of heuristics can be done by

the program. |

The following method assumes that stages and measures have been

defined. The program has available to it the definitions and can get at |

parts of them. It can generate many other functions, in particular the
distance functions, and also tests like wR et, : menver 2 has to
do a tree search at some p , then for all gq at the top of 2 branch of

the tree, it generates a description of q which is the conjunction of
the values of all the functions it has at its disposal. When the tree

search terminates it notes which pattern describes the successful

branch and which patterns describe branches which failed. Then the next

) time it encounters a position p! like p it will accept a successor

q' of p' which fits a previously successful pattern. If 1t still has
to do a tree search, it will reject all successors of p' which fit a

failure pattern. Since q' may actually be in a lower stage than p' ,

the program must remember, when it accepts q' in this way, to use p'
as the first argument of better (rather than p" such that q' Mp")
until it finally reaches & q which is accepted by better. A flow

chart of this process is given in Figure 8.2. |

The tree search required to implement this method will be very

lengthy at first, but will decrease in time. The more simple functions °
the program has to work with, the longer it will take to converge on &

useful pattern. On the other hand, if the program has too few simple
158

eae EEEfs af yes FE -

position

j %

yes
4 return,

: “Pro rum erry

I no

Ia i.a :

at bee 2 peopl . A~ can I
i A 8 Sale no tion which haus (SE ve neYert WS

~ pasit.on Leen seed 4s a in

en,

fed
| Se
3 he

i no

To™ Lo tree seurchy, Te ect 0 in

return Q i. brass “3 : 3 Teyan ry fy s1| cheer te: mation.] vreviously

23{rirstp,) l o.c.

\=+/ « |
Jes :

| | return,

TREP-cdr (TREES)

| yes

Sm,

:

wg
,

1
hu

& w - Ld " ~

Figure 8.2. Program Organization for Doing Simple Learning. “~
,

functions it may make errors in the sense of being unable to distinguish ¢
(3

between two positions q and q' , one of which is at the head of a ;

shortest branch, while the other is rejected as leading to worse positions.

This method has been implemented for the Rook end game in an abridged

form. The program was given the formal definitions cof better and worse,

plus the following functions (2-valued or 3-valued; f : g has the

3 values < , = , and >):

quad(q)

squad(p) = squad(q) (If —quad(p) V —quad(q) , pthe
valueis undefined. This function is

;

useful only in stage 3, since squad

© is a measure in stage 2.)

a (vk,r) : d,(vk,r) |
d_ (wk,bk) : d (wk,bk

o(uk, bk): d_ (uk, bk)]
a (bk,r) - a, (bk, r)

fr (vk, r) : fr (uk,r)

fr (wk, bk) : fr (vk, bk)

| d, (wk, r) : d,(bk,r)A |
These functions were given to it; it did not derive them. In addition

the program needed a way of classifying positions p so it would know

when its new functions should be used. To classify p , the program

used

st(p) (only stages 1, 2, 3 apply) :

d (wk, r)=1 . |
Thus the program had amaximum of six classifications. d

at ¢

] #

160

IR

FO

The program used a "complete" yroe search, which means that when it
discovered a good branch of the tree at some depth n , it conyinved the

tree search for the rest of depth n to see if any other Sronciies were
also good at that depth. The Program Was run on a series of 34 positions

requiring tree search; it was able to make moves immediately for 16 of

them, including 7 out of the last 10.

The moves which the program discovered were not always the same as

the moves which the practical version of better would find. For example

it learned to make the moves satisfying

a, (wk, r)>1 A d, (wk, r)<d (wk, r) , | 4
but it also learned to move the white king onto the boundary of the quadrant
SO that a LI quadrant could be formed on the next move. Theoretically,

of course, it should be possible to make every move without tree search.

ih fact, this method is quite gocd at extending the definitions of
better but does not develop much of a definition of worse. Note also

that this method produces ahierarchy of versions of better, as was

discussed in the first part of this chapter, so program play remains

quite efficient. |

Extensions in Chess |

To illustrate the fact that the programis useful, we discuss how

it could be extended to cover a larger set of end games. Up to now,

chess programs have not been concerned with these games. The program

of Baylor and Simon [1966] could not be used to play chess end games.

It deals with mating combinations; these are the chess problems, in

161

A

which there are many pieces on the board and only a few moves to check-

mate, The more general programs (for example, Greenblati’s program

[Greenblatt and Crocker, 13A7]) are written to play the middle game.

The end games are ignored since they are played differently from both

the middle game and each other. Therefore, if enough end games could

Fh: handled by the program, it would be a useful addition to a more

general program like Greenblatt's.

"me success of the program has convinced us that it can be applied
to other end games. All that ™ required id the conviction of chess

| players that the particular end game can be won from all but certain |

| defined positions. If a position truly can be won. this means there

must be features of the position which express this fact. The re

of better, using stages and measures, provides = good framework for

gathering and using these features.

There are bo main problems to consider when extending the program.

First, it would seem that the method is not suitable to games in which

* black has many moves. If black has a few pawns that is all right, but

as soon as black has a major piece, there would be too many black

moves to do the tree search which the method requires. However, the

: number of moves is more apparent than real because usually most black

moves would be disastrous. One way to take advantage of this fact

would be to modify the program to evaluate positions in the tree search

‘after black moves as well as after white moves. After black moves, the

program would look for positions which lead to a better position in one

white move (there is no reason why this could not be recognized at

this point). After white moves possibly only worse would be used,

162

"since we would know better could not be satisfied or we would not have

searched so far. With this change, which is not a major one, many

games would become amenable to the method; for example King and Queen

against King and Rook.

A more serious problem is the fact that the heuristics are different

for each end game and this means that better and worse must be redefined.

However, if the induction method described in the previcus section’

could be used,we could extend the program without too much difficulty

to other end games. For example we could easily tnciude King and

Queen against King and the various Pawn end games.

In addition, we can use the programto handle other games without

giving new Setinbions of better and worse. These are end games which
include some solved end game as a subset. For example, suppose we had

ssventislly the Bishop-Knight end game, but black had a pawn and white
an extra bishop. Then the program could afford to sacrifice a bishop

to take the pawn. It would recognize this fact by obtaining at the

end of a tree search, which should be fairly short, a position gq in

the Bishop-Knight game such that st(q) 2 2.

Therefore the program can be extended to cover a fairly large

set of end games. This means that translating from book methods into |

program heuristics can produce a useful program, at least in this task

area.

Conclusions

The principal goal of this research was to study the process of

the translation of book problem solving methods into Sonpater program
163

!

heuristics, We chose the task area of chess end cames for this work.
Tc isolate the translation process, we distinguished between the model

which chess books use for these games, and the methods wnich are applied

to pariioxlar end games. We decided to represent the model ac closely

as possible, so that the translation process would be contained mainly

in the representation of book methods by program heuristics.
|

The forcing tree model chosen for the program has proved to be a

good representation of the abstract book model. As a consequence of

the closeness of the representation, we are able to express the methods

in fairly simple patterns, and in addition we can prove that the program

will reach checkmate from a given starting position. The value of the

proof comes from the condition (rule 3.7.) which it forces us to state.

The condition gives us a way of evaluating functions proposed for

defining better and worse, which is simpler than trying to think only

in terms of sequences of moves, and more likely to be correct. This

advantage supports our arguments that the program model shouldbe as

close as possible to the abstract model assumed in the book. The first

hypothesis should therefore be considered when future efforts in

translation of book informaticn are made.

Now we turn our attention to the translation process itself.

The main result is that we now see how much induction is required.

Induction is a form of learning which we would like to understand

better. The example in the preceding section of this chapter leads

us to believe that the field of chess end games is & good one in which

to study induction. It may be possible to develop a program which

16k

will domostof the work of translating, and research can profitably be

done in this direction.

We would also like to extend this translation process to other . |
fields of study. A field which presents itself 1s integration. When

integration is taught in a mathematics text, examples are given showing

how the rules should be applied. It seems reasonable that inductive

learning is going on here; some pattern in the original expression

suggests the application of a certain transformation. The learning is \
probably less involved than in chess end games. In Slagle's [1963] B
program he has simply done all the work ahead of time. It would De

interesting to see what could he done by trying to use the book more

directly.

165 /

-APPENDIX A

DESCRIPTION OF NOTATION AND DEFINITIONS

OF BASIC FUNCTIONS

.. The following abbreviations are used to represent pieces.

bk black king

wk white King

r rook

gb queen's bishop

kb king's bishop

kt knight

2, For x a position, and n the name of a piece,

n_ = the square which piece n occupies in x ,

3. Function d(X1,X2) equals the number of king moves required to

move a piece from square X1 to square X2 .

L., Function de(X,e) equals the minimum number of king moves required

to move a piece from square X to a square on the edge of the

board e .

5. Function fr(X1,X%2) equals the difference in files between squares

X1 and X2 , plus the aifference in ranks,

6, f (nl,n2) is used as an abbreviationof f(nl ,n2) when the

squares containing pieces nl and n2 are to be selected from

the same position x .

166

BIBLICGRAPHY

In addition to the chess books referred to in the body of the

thesis, several other books are mentioned here which were also found

useful.

Baylor, G. W., and Simon, H. A., 1966, A Chess Mating Combinations

Program, Proceedings of the AFIPS Spring Joint Computer

Conference, Spartan Books, Washington, D. C., 28: L31-Li7,

Capablanca, J. R., 1955, A Primer of Chess, Harcourt, Brace, New York.

Fine, R., 1944, Chess the Easy Way, David McKay, New York.

Foster, A. W., and Kemp, R. E., 1943, Chess: An Easy Game, David

McKay, New York.

Greenblatt, R. D., and Crocker, S. D., 1967, The Greenblatt Chess

Program, Proceedings of the AFIPS Fall Joint Computer Conference,

Thompson, Washington D. C., 31: 801-810.

Horowitz, I. A., 1957, How to Win in the Chess Endings, David McKay,

New York.

Mason, James, 1905, The Art of Chess, Howard Cox, London.

McCarthy, J., Abrams, P. W., Edwards, D., J., Hart, T. P., Levin, M. I.,

19€5, LISP 1.5 Programmers Manual, The M.I.T, Press, Cambridge,

Massachusetts.

167

Minsky, M. L., 1961, Steps Toward Artificial Intelligence, Proceedings

of the 1.R.E,, 5-30; reprinted in Computers and Thought,

Feigenbaum, E., and Feldman, J. (Ed), McGraw-Kill, New York,

406-450. \
,

Newell, A., Shaw, J. C., and Simon, H. A., 1957, Empirical Explorations

with the Logic Theory Machine, eronsaling of the 1957 Western
Joint Computer Conference, I.R.E., New York, 15: 218-239.

Newell, A., and Simon, H. A., 1961, GPS - A Program That Simulates

Human Thought, Lernende Automaten, H. Billing, Munich, 109-124,

Slagle, J. R., 1963, A Heuristic Program That Solves Simple Symbolic

Integration Problems in Freshman Calculus, Computers and Thought, |

Feigenbaum, E., and Feldman, J. (Ed), McGraw-Hill, New York, |

191-203,

168

[¥
Security Classification g= | -

AEul eeu ili— Rea——aa Ee EE A I. ; 3 —r a 2
DOCUMENT CONTROL DATA- K&D ol » i

; (Security classification of titie, body of abstract and Indexing annotation must be on tered when the overall report? is claasifiod
i: CRIGINATING ACTIVITY {Corporate author) ‘Zar, Fe SE Fv = x —— ; -| Artificial Intelligence Project ° Re ae :
i Computer Science Department eee& \ 2b. GROUP
i Stanford University
§3. REPORT TITLE)

| A Program to Play Chess End Games ;

A.I. Memo :
| 3+ AUTHORS) (Firat name, middle Initial, last mame ——— mm — mm — eo

| Barbara J, Huberman | ’
Cf | 8 | 168 12

J 83. CONTRACT OR GRANT NO. a. ORIGINATOR'S REPORT NUMBERS —
|

4 —* Bb. PROT:206 | Al 65
i |

rmr—_—m———————————eee: <. (0b. OTHER REPORT NOLS) (Any other numuers that may bo assijned! i this report) |

ia |
ie. oisvmieUTION STATEMENT TL ——— ——04—

: Statement No, 1 - Distribution of this document is unlimited.

Advanced Research Projects Agency
13. ABSTRACT

g A programto play chess end games is described, The model used in the program .
_ ¢ is very close to the model assumed in chess books. Embedded in the model are two|

{ predicates, better and worse, which contain the heuristics of play, different for|
| each end game. The definitions of better and worse were obtained by programmer
: translation from the chess books. g

The program model is shown to be a good one for chess end games by the success ¢
| achieved for three end games. Also the model enables us to prove that the
| program can reach checkmate from any starting position. Insights about transla-

; tion from book problem solving methods into computer program heuristics are)
; discussed; they are obtained by comparing the chess book methods with the defin- |

itions of batter and worse, and by considering the difficulty encountered by the |
A programmer when doing the translation. k

.

DD 22.1473
T SecuntyCiassification

i AL } : Link A ' Lige B INK C
f mEY wens: | move! wr | meugf wT | ROLE] wr |

| better i | | |

heuristics | | : |
. | : if I

| | end games | | |
| |

| : tree search | | | !

| | d |
1 | | | :

: | | ! | ; |

: | | | | | :
| *

| : |

$! 1

i ; 4

¥ | : |

- |
Becuniiy Cita culon

