
CS 101

Al. 60 AD 672923

THE FORMAL THEORETIC ANALYSIS OF STRONG EQUIVALENCE

FOR ELEMENTAL PROGRAMS

BY

DONALD M. KAPLAN

TECHNICAL REPORT NO. CS 101

JUNE 12, 1968

poll oi is urlimited.

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY DDC

HY AUG9 1968

Reorrdeced br Be 0st Saud
Information. Sorimgfeld Ve. 32131 C

STANFORD ARTIFICIAL INTELLIGENCE A-PORT June “¢, 1968
MEMO A,I, OU

CS 10Ql1

THE FORMAL THEOR: TTC ANAL "SIS OF STRONG EQUIVALEN .

FOR ELEMENTAL PROGRAMS

By

Donalc M. Kaplan

ABSTRACT: The syntax anu .emantics is given for :2lemental pi rams,
and the strong equivalence of these s.mple ALGOL~i (ie flow
charts is znown to be undecidable, A formal theory is

introduced for deriving statements of strong equivalence,
anc the completeness of this theory is obtainec “or -raricus
sub-cases, Several applications of the theory ae c.iscussed,
Using & regular expression representation for elemental

programs and an unorthodox semantics for these expressions,
several strong equivalence detecting procedures are developed.
This work was completed in essentially its present form in

March, 1968,

The research reported here was supported in part by the Advarced Research
Projects Ayency of the Office of the Secretary of Defense (SD-183).

ACKNOWLEDGEMENTS

I would like to express deepest thanks to my thesis advisor,

Professor John McCarthy, for his assistance and gocd counsel, and for

his be. ng to me a consia’ source of inspiraticn, I am also grateful

to Pr. ‘air gor: George Forsythe, David Gries and William Mi. er for their

efforts i. ~:airg tv. thesi , an. for their many helpful suggestions.

In addition, I would lire to thank Professor Dana Scott for nis comments

and advice, and Mr, Takayasu Ito for nis participation in our many in-

vigorating .iscussions,

Special thanks to Mrs, Ju.y Muller for her unfailing perserverance

and excell:iace in the typing of this manuscript, And to Mrs, Dorothy Mcirath

and the staff of the Hansen Laboratories Drafting Room, my thanks for their

highly prui:;sicual work on the illuv.tratfons,

But above all, I am grateful for tie en.Lwregement and understanding

o” my wife Barbara, to whom this work is dedicated,

This work was supported by the Advanced Research Projects Agency of

the Office of the Secretary of Defense, (SD-1Y5).

iii

TABLE OF CONI ENTS

Chapter Page

The Need for A Theory . . . ¢ ¢ ¢ «+ + o + « « « os o os o os «+ = 1

A Theory of Strong Equivalence +. + + - . . po

Elemental Programs and Computing Struciures , . ,. « . +. . . . c

The Str.ag Equivalence Decision Problem b

Syntacticand Semantic Properties +. + + 0 5 « o » 5

The Inferential System « + « « + ¢ + o os o a a a 6

Completeness Fesults and Applications « « « « « T

Initisl Conditionr and K-events ¢« +. « ¢ « ¢ « « 8

Concluding Remarks , +. « ¢ ¢ « ¢ « « « + so oo oa oo « « 10

2. Computing Structures ¢ « s ¢ oo ¢ « + os ss «e+. 1

Exemples of Computing Structures « «+ + « » . 12

Meny Borted Computing Structures «. « « « oa » » 1k

4. Elemental Prog~ams: Syntax and Semantics « « 16

The Syntax of E-programs . , + «a « « « « » « os « 17

The Semantics of E-progra@s ., © «+ « « « + « 0 oe os +o» 2%

4, Well-Formed Formulas: Syntax and Semantics , 29

The Syntax of Well-Formed Formulas , . . « « « © + - - « os » 29

The Semantics of Well-Turmed Formulas , 29

9. Concerning the Decide). lity of Strong Equivalence . . , , . . . 31

Partial Recurs!v: mmction8 , , ¢ . ¢ ¢ ¢ ¢ a ¢ oe o "6 oa oo ¢« Nl

6. Fucther Syntectic and Seminntic Properties of E-progrems 58

Forward Substitution of Assignment Schemata , 58

lostantiation of Well=Formed FOrmllas . . , ¢ o « « « os « » 69

iv

Chapter Page
Composition, Decomposition and Rep.icement of E-programs . . . 78

7. The InferentialSystem «+. +«0s 0... Bu

Ime Axioms and Rules of Inference « + - + +s » so « » 8

8. Some Completeness Results and Applications 113

Bxtended Completenessfor Single qffs « « « 113

Extended Completeness for Sequences of Assignment. Schemata . . 12k

Results for Other Possible Assignment Schemata. 132

T-progrems with DC LOOPS . ©. . © . & ¢ 4 ¢ = « = os o + oo « o 137

Some Applications of the Formal Theory 7, Ceeee ee eo 140
9. Initial Conditions and XK-events , 160

Regular Expressions and Reguiar Events , . « » 160

E-programsas Regular Zxpressions + « « « « « « « 162

K-events and the Decidability of K-equivalence , 190

Syntax and Semantics of K-expreszions «+ . . 191

K-aquIVAlence . , 4 os oe + o = oo ss ce 0 cs 00s. 198

An Inferential System for K-equivilence , « + « « =» » 20%

Soundness of the Theory Jo . . o.oo vv sa via... 206

Adequacy of the Theory Tg == cov vere veee.. 2

K-events and Ianov's Results +... . +.... 235

Bhift Sets and Shift X-events ¢ « v + oo + +» » . 238

10, Concluding Remarks ¢ ct ce co ov 0s 0 06 5 00 009+ 7

Appendix I - Many-Sorted Computing Structures 291

Appendix II - Subscripted Variables , ¢ +. « . » 25k

Appendix III - Derivations for the Propositional Axioms 257

Bibliography . . . + . + « ¢ « « oo oe ce 2 0 so 00 es «+ 0.2 299

v

“ {Xi OF ILLUSTRATION

FIGURE NUMBER ...iL LL, 0 UMEER PAGE FiCUE MUMEFR ~~ PAGE

1 22 22 91 55(a) 135

2 24 25(a) R 35(Y) 135

3(a) 33 23(b) 2 35(c) 136

3(b) 25 cl (a) 93 35(d) 136

3(¢) 33 24(b) PN 3(a) 136

4 37 2h (c) 9% 36(b) 138

5 37 24 (a) 98 36(c) 139

6 bh 2k (e) 9 36(a) 139

7 NN 2k (1) 100 37 143

8 45 25(a) 102 58(a) 14k
9 46 25(b) 103 38(v) 146

10 47 25(c) 104 39 148

11(a) 51 26 115 ho 151

11(b) 52 27 11% hl 157

12{a) 53 28 116 2 158

12(b) 53 29(a) 117 43 159

13 55 29(b) 113 ye 159

14 55 29(c) La 45 164

15(s) 59 30 12% 46 192

15(b) 59 31 126 WT 195

16 71 32(a) 126 48 195

17 76 32(v) 17 49 20s
18 80 33(a) 131 50 a

19 81 33(b) 131 51 hy

20 82 33(c) 151 52 2h

21 88 3h 133

vi

WOTATIONAL CONVENTIONS

The standard notational conventions of sot theory as given by

Halmos [14] for example, are acsumed throughout the text. Aside from

the notations introduced below, all others are introduced when they are

used,

Sequences or n-tuples

A sequence of n items, i.e,, an n-tuple will be represented as

Ky» Xypeeey Xi» OF B< 1, and as simply x for n=1,

Any list. set, :equance or whatever, containing the items

Xos Xyseeos X15 18 the null list, set, sequence or whatever if n= 0 ,

The Natural Numbers

The set of natural mmbers (0, 1, 2, ...} , as defined set theo-

retically by Halmo: [14], is denoted by « , Since, according to this

definition, w 1s well ordered by the "€" or set membership relation,

the notation x < W will be used in lieu of x € WwW ,

fhe set w - [L} , i.e., [1, 2, ...} , is denoted by ww"

Then, x< W means 1< x< W ,

vii

CHAPTER 1

INTRODUCTION

The Need for a Theory

Computer programming is not yet a science, but rather still some-

what of an art, A great deal of ingenuity and heuristic methodology is

required when we attempt to debug a program; convince ourselves that a

computation will terminate; show two programs are equivalent; or certify

that a compiler is correct. Although the "art" can never be fully

removed from many of these endeavors, if more "science" could be employed,

then at least our attack on these problems would benefit from the resultant

organization and sophistication, and perhaps in same cases even be made

susceptible to mechanized implementation, One way of injecting "science"

into our approach would be to formulate a "theory of computation”,

Ideally, what we want 1s a theory of computation rich enough to admit

interesting statements about programs, computations and compilers, and

powerful enough to admit proof of the correctness of these statements.

The theory we consider here falls short of this ideal in the sense that

we treat only one small area of concern, name.;,, the equivalence of programs,

There is a parallel between computer programs and sentences in a formal

theory of mathematical logic, Programs take on meaning only when the

machine on which they are executed is specified; sentences in a formal

theory take on meaning only when the mathematical system in which they are

interpreted is specified, Thus, a formal theory of computation would seem

to have intuitive appeal, and it is just such an approach that we take here,

1

A Theory of Stromg Equivalence

The sort of theory that cuncerrs us here is one whose well-ormed

formulas (wffs) expre.s the strong equivalence (i.e., equivalence for all

interpretations) of two programs from a certa.r restricte. class of programs,

The notion of such a forwal thecry has been explured by Ianov [¥], but his

results are abstract in nature and mirror only the ccarser fertures of

programs as we know them. The theory developed here differs from Ianov's

in that the sort of programs we consider provide a far more detailed pre-

scription for computations and in fact are ALGOL-like in structure and

behav! r ‘i.e., consist of assignment statements and conditional branches).

A suggeat.ve analogy is that our theory is to Ianov's, a . - first order

predicate calculus is to the prow 2it_ onal calculus. In fac, this

endeavor constitutes a new and we believe necessary step in the formal-

ization and detection of the strong equiva.ence of ALGO;- like programs.

Elemental Programs snd Computing Structures

The literature abo nds in different formal ‘epre.:c.iations of ALGOL-

lika programs in the context of theoretical analysc:, [I =se varv from the

complicated efforts of Ianov (16, Ershov [9] and Narasimhan [34% to the more

succinct approaches of Luckham and Park [14], Paterson (34, Cooper [5] and

Glushkov (13. Nevertheless, each of these suffers some difficulty if we

take as our objective a representation that is sufficiently ALGOL-like and

vet amenable to formal treatment,

For our formal theory, we consider the class of elemental programs,

These are multi-entrance, multi-exit flowcharts made up of (1) two-way

conditional branches on the truth-value of quantifier-free formulas (qffs)

2

of the first order predicate calculus with equality, and (iI) operators

called assignment schemata which assign the values of a set of terms to

a set of distinct variables. This representation as explicated fully in

Chapter 3 avoids the cumbersome complexity of definition given 'v Ershov

[9] and Narasimhan [34 for their s hemes, and at the same time alleviates |

the unnecessary deficiencies in exprecsion found in the other represen-

tations mentioned above, In addition, by making usc of Lae formal entities

of the predicate calculus, we gain access to the abundance of results

already known for this formalism,

Quite recently, and independently of this author, Engeler [8] and

Manna [38 have introduced representations of programs which are very

similar to the elemental programs considered here. However, both of

these authors study the teruination of program execution not the strong

equivalence of programs.

The semantics of an elemental program is defined with respect to ea

mathematical system, called a computing structure, of the sort used to

provide interpretation for formulas of the predicate calculus. In

Chapter 2, we define such structures precisely and indicate how various

bases of computation can be expressed as camputing structures, In

Chapter 3, we define just how computing structures are utilized to give

the semantics of elemental programs,

Also introduced in Chapter 3 is the notion of subscripted varisble.

There we define a new data structure called a hierarchial state and show

how such a structure can be accessed by a subscripted variable to produce

a value,

5

The Strong Equivalence Decision Froblem

In Chapter 4, we introduce the wifes of our thecry and defire the

concepts of equivalence and strong ecuivalence in terms of the validity

and general validity of these wffe., Luckhax and Park [24], Kaluzhair 19],

and Paterson [36] define these notions similarly,

In Chapter 5, we examine in some detail the question of effe :tive

decidablility of strong equivalence. Very recently, and independently of

tnie author, Luckhem, Park and Paterson [25 36] have corsidered this prob.es

in some detail for a sub-class of the class of elemental programs. How-

ever, we ob%air cur basic undecidability result in Chapter 5 by utilizing

a related result for partial recursive functions, whereas Luckham, Park

and Paterson utilize certain results for Turing machines and two-headed

automata. This appeal to recursive function theory makes our proof of

undecidability rrief and easy tc follow.

As preface Lo these results, we prove the universality of elemental

programs, Ershov [9] shows in a roughly sketched form how to compute all

partial recursive functions in his fcrmalism, but he fails to explicate

the details. We give a nuw scheme which generates an elemental program

for evaluating any partial recursive function at arbitrary arguments;

the generating scheme utilizes the variables to simulate a firgst-in-

last-out stack when the generated elemental program is executed.

In contrast to the pessimistic general undecidability results, certain

sub-cases of the decision problem are found in Chapter 5 to yield a favor-

able solution. We first show that strong equivalence is decidable for the

sub-class of elemental prcgrams in which nc function letters appear, The

same result ic obtained for the sub-class of elemental programs in which

4

best available copy

nu gffs appear. We alse hicw that under condition: tha. yirid cecidability

of the logical validity for Affe in che prodgloate calculus, wo obtain

decidability of strong equ:vzlence for three further subeclasses of

elemental programs: (i) the sub-class whose algoritams have nc loops,

(11) the sub-class whose elemental programs contain no operators, and

(111) the sub-class whose clemental programs always terminate, i.e.

terminate in all computing structures. As mentioned above, Paterson (56)

has considered similar questions, but except for the case of always

terminating elementel programs, our results were obtained independently.

Syntactic and Semantic Properties

In Chapter €, we consider various syntactic and semantic preliminaries

to the introduction of an inferential system of axioms and rules of infer-

ence for the formal theory of strong equivalence,

First, we define the notion of forward substitution of assignment

schemata into other assigmment schemata and into offs. These simple

syntactic operations, here examined in detail apparently for the first

time, reveal the basic semantic interaction betr:e:n operators and between

operators ana qffs,

To carry out derivations in the formal theory fram hypotheses, we need

the notion of instantiation of wffs. Thus, from a general statement of

equivalence given by some wff, we want to produce when needed in a deri-

vation, any relevant ipstance of that equivalence as given by some new

wif, We give a powerful theorem which prescribe: 2 sulicient condition

for an instance of a wff to be valid when the wff itself is.

°

We then turn our attertion to the staidard matters of composition,

decomposition and replacement of elcmental programs, Here, we discuss

these operations with respect to the graph theoretic properties of

elemental programs, as do Ershov [9,, Narasimnan (34 and Kaluzhnin (1d.

The Inferential System

The wffs of our formal theory having heen defined and studied, we

introduce in Chapter 7 the inferential system of the formal theory. We

discuss the usual notions of derivability, completeness and extended

completeness and Jollow Feferman [10] and Mendelson [33 in these matters.

From the proof of undecidebility, we obtain the further result that

no axiomatic complete theory of strong equivalence exists, However,

we proceed to specify an inferential system of fifteen axioms and five

rules of inference. The first seven axioms characterize the properties

of q*fs; the next four, the properties «f assignment schemata; and the

last four, same of the graph theoretic properties of elemental programs.

The first two rules characterize strong equivalence as an equivalence

relation in the ordinary sense; the third rule permits instantiation of

wife; the fourth rule provides a oridge between strongly equivalent

assignment schemata and qff:c expressing the equality of terms; and the

fifth rule permits roformulation of an elemental program ir "iterative"

form into "recursive" or "ciroased” form, but this rule .i not effectively

applicable, sc that the theory is ot axiomatic,

This inferential system is apparently the fir:% such for deriving

statements of strong equivalence between programs as rich in structure as

the elemental progrems considered here. Earlier efforts include McCarthy's

axiomatizetion of the equivalence of conditional expressions [30]; Ianov's

6

a‘ready discussed results (16); and this author’s proof of completeness 21)

of an axiomatization of the "assign” and contents’ fu.ctions fir . gi ean

b.. McCarthy 28; and to some extent, these efforts relate tc the current

endeavor. The inferential system is shown to be sound in the sense that

all derivable wffs are g-meraily valid, i.e,, express the strong equivalence

of two elemental programs.

Completeness Results and Applications

The c/2rall completeness properties of our non-axiomai.. «% cry os.

unknown. It is nevertheless complete or even extended complete, as we

show .n Chapter 8 for those sets of wiffs expressing the strong :quivaleuce

of \.) a two wey branch and the always true branch; (ii) two sequences of

assignment schemata, or further, any two elemental programs without qffs;

(iii) two elemental programs without loops; and (iv) two elemental programs

which always halt, i.e., in all c:mputing structures.

We then conside. an axiometization cf the properties of assignma:nt |

schemata consisting of a singe assignment of a term to a variahle, anda

conjecture that this axiomatization is complete.

To illustrate the considerable derivational power >f the formal theory,

ve consider in Chapter 8 several applications: (i) the reorganization of

a simple loop from FORTRAN form, where the body of the loop is executed at

least once, to ALGOL form, where the body of the loor may poss.bly not be

executed at all; (ii) the detection of an elemental prosram that always

fails to halt; (iii) loop reorganization to point up and isolate posaible

non-halting executions; (iv) the removal from a loop of a loop-independent |

operation; (v) the traasi:. of a loop-transparent operation from before the

7

loop to after it; (vi) the detection of strongly eq‘ ivalent always halting

elemental programs; (vii) the decaction of the surcng equivalence of two

elemental programs {rom certa.n hypotheses on the algebraic properties

of functions appearing in them, e.g., commutativity or identity.

Initial .nnditions and K-events

The essential motivaticn for this work is the study, detection and

derivation of the strorg equivalence of elemental programs. Because this

property is in general both undecidable and unaxiomatizable, we feel there

should be a basic commitment to sharpening our analytic tools as much as

possible. The aim, then, is t. provide an or. .a.l» ad ¢ uprehensive method

for the detection of strong equivalence, to who:ver .. ent such is obtain-

able.

To this end, we turn in Chapter ? to the notions of regulcr expressions

and regular events, as defined by Lieene [23, and as further studied by

Harrison (19, Salomaa [38, McNaughton and Yamada [31], and many others.

We show how to map any elemental progran into a finite automaton, and thence

into a characterizing regular expression, Indepwnden.ly of this author,

Engeler [8] and Ito 18] use a simiiar regular expression representation.

We then develop through a series of theorems the notion of initial

condition. Thus, given ary werd in the regular event associated with an

elemental program, we J-:fine ar initial condition that holds with respect

to a given interpretation (i.e., computing structure, if an ~auly if the

elemental program, when 2xecuted in inhat computing structure, gencrates

the given word, We then reca-t anew the definition of strong equivalence

in terms of a possibly infini-e propositional form involving the initial

8

conditior: - the words in the regular events associated with the clemental

programs involved. We give an interesting theorem which serves to verify

this recasting of the definition >f strong equivalence,

All of this leads to an operative tcol in the detection of strong

equivalence, We show that if twc elemental programs have the same

regular event associated with chem, then they are strongly equivalent.

Since the equality of regular event: ig decidabl: (ct. Salomaa [3d), this

gives us an effective handle on strong equivalence,

To sharp.n this technique somewhat, we in-r duce the notion of

r-gvent. This reformulatior of the semantics for the regular expression

associated with an elmental program (now called a K-expression) reflects

the pr:iiously ignored rropositioral structure of those letters ir the

alphabet for that elsmental program that are qffs, We first prove that

1° “wo elemental programs have the same K-event associated with them, then

they are strongly equivalent. Equality of K-events, i.e., the X-equival oe

of K-expressions, 1s shown to be decidable concurrently with an examination

of a formal theory of K-equivalience and a proof that this theory is complete,

Since equality of regular events implies equality of K-events but not vice-

versa, this result therefore gives us a stronger effective handle on strong

aquivalence.

This last result also gives us a fresh and pellucid reformulation of

the equivalence problem for abstract program schemata as studied by Ianov [Xf]

and Rutledge [37. This follows since if we restrict our elemental programs

by permitting but a single distinct variable, we have the abstract case.

In this situation, K-equivalence and strong equivalence are identical

9

notions. As well, Ito [18 considers the equivalence problem for a class

of nondeterminiastic abstract program schemata and his positive solution,

obtained independently of ‘his author, implies a positive solution to the

deterministic case. However, he does not consider K-events and

K-squivalence, as defined here, nor the relation of these to the strong

equivalence of elemental programs.

To sharpen our strong equivalence detection tools even further, we

introduce the notion of shift eet, This concept was first introduced

by JTanov [14 and subsequently extended by Rutledge [57]. For each operator

occurring in an elemental program, we can effectively apecify wnich atomic

Qffs occurring in the algorithm can be affected, i.e., with regard to their

truth-value, ty the execution of the given opera‘or. This allows us to

refine our notion of K-equivalence and 30 therefore strengthen our ability

to detect strcug ~quivalence,

Concluding Remarks

The contest between strong equivalence and the theoretician is not

yet rcsolved., The opponent has gotten in some strong blows, viz,, un-

dec’ dability and unaxiomatizability. But, we have countered with a

powerful formal theory and potent analytic tools. There are still a great

many potentiially productive attacks to be considered; this endeavor, it

seems, hus merely scratched the surface of the strong equivalence problem.

In the concluding remarks at the end of this work, we consider what some

of these as yet untried attacks might be,

10

best available copy

CHAPTER

COMPUTINGSTH JCTUKE

At first. thought it may zceem cs mewnat ad oo vy js oussinge a

prime element of the semantics ¢f & crogrammin: targus before that

language itself is definea. Bul not .-. Given a probl:m to solve,

one nat.irally comes ir contact firs: with the ;pr-mitives of the

~itur sion: domain of the protlem sr ace, transformations to aid in

:ffecting a solution, and measures 1 maize und svususte progress,

Once th2se fundamental entiuizu, wi.°n 2 ca}! 2 semantic higls, are

estapliished, some algorithmic proeoer.: <dan be undertaken tc generate

the required solution, ané only then wi.il sc nemes for specifying such

algorithms be relevant. To specify a semantic basis, we will use a

computing structure.

A computing structure is a mathematical structure comprised of a

on-empty set, called the Qomain, and finitely many rela...1is, functioas,

and desigruted individuals in the domain. The relations and functions

are toc be “otal, i.e., defined for all argum~nts,

We classify computing structures according to their structural

similarity. To specify this classification we tise a signature which is

of the form

s§ = < Dechy 17 RN EREEL Vtg p>

where n,..., n_,, B,..., n,, € Wk, J p€ wand where if

k=) or {=0, the respective members of the triple s are simply O ,

11

By a computing structure *t' signature s we mean a sequance

D = <D, Royoens R _1» | Fpo1o A yeeey 5-1 >
such that

(1) D is a non-empty possibly infinite set, the domain

(11, R, cpt fcr 1 < kx, the relations

(iii) F, : pi ~«D for i <¥ , tne functions
(iv) a, € D for 1 < p, the designated individuals

Note that the first element of sequence Db, i.e. D. is the domain D.

In the sequel, when a computing structu e is not explicitly defined, we

will designate its domain in this {uchion., Assumed present in every

structure, regardless of signature, is the¢ relation of equality over the

domain of that structu:.

Examples of Computing Structurc.

As examples of computing structures for whick there i: some interest

in constructing programs, we can first mention some thet are algebraic

mathematical structures,

(1) The Boolean algebra {v, F}, A, v, ~ > with signature

<0, <,2,1, ® serves as the s:mantic basis for the iogical constructs

of several programming languages.

(11) The commutative ring of comple: numbers < C, +, x, I> with

signature <0, <2,2>, 1> might serve st tic semantic basis for a ~omplex

arithmetic programming language,

As further examples, we can cite the folicowing non-algebraic systems,

(i) The computing structure 2, TZE, TMI, ADD, ALE> with

signature < <1,1>, <2,L-, & superficially mimics part of the order code

in the IBM 7090 computer, Here 226 cenctes the set of all 3¢ bit words

over {0,1}, and

12

TZE = {00...9)

™I = (bb)... bye fu)
ADD : 236 X 230 +2°° according ‘0 some convenient rule

of binary addition which ignores overt! ow, and

AIS : 296 L220 go tha* £L5(b byes bac) = bibs. ..bgg0 .
Here, the mnemonics TZE, TMI, AD) and ALS serve only tc indicate the

contexts in which these relations and operations might be used. Thus,

the addition instruction orn some ccaoputer might use the ADD operation

together with various data transmissio~s, overflow tests and so on, tc

carry out ts action.

(ii) The computing structure <w, TZE, ADDl, SUBl, > with

signature <1, <1,1>, 1> 1s used Jor campu.ing with the natural numbers.

Here,

TZE = {0}

ADI': : w = Ww so that ADDl(n) = r + 1

SUBl : w = Ww so ther YRI(n) =n-) if n>0

= 0 if n=2¢

This system serves as semantic basis for several ¢f the machines studied

in recursive function theory, e.g., the URM of Shepherdson and Sturgis [40]

or the register machines defined by Gandy i. 2].

(1i1) The computing structure <W, 7°© TRANS> with signature

<2, 2, @ is the basis for computation ‘n Jost tag systems (cf. Davis [7]).

Here, W = A%* is the set of words over some finite alphabet A , and

TEST= {<x, > : X€A and y= xz for some z € W }

TRANS : WxW -W sc that TRANB(x, y) = y'’x where y = uy’ for

some u € A.

15

Many Sorted Computing Structures

We should remark at this point that there are certain mathematical

systems which cannot be formulated in a ratural way as camputing

structures in the sense used above (e.g., modules, of which vector

spaces are instances; cf. Feferman [10]). Since it would c¢.*:n be of

interest to construct programs for sucn systems, there is sume motivation

for extending the concept and definition of both signature and computing

structure to accomodate them, However, in the sequel, we concern ourselves

only with the sort of signatures and computing structures already intro-

duced, Therefore, the discussion cf how these concepts can be extended

to generalized signatures and many-sorted computing structures is relegated

to Appendix I.

Remarks:

(1) As we shall see, a computing structure constitutes the bare

bones of a class of partial functions computable via programs interpreted

in that structure, This viewpoint seems tc be in sympathy with Scott's

feeling [] that functions computed by various machines are "more basic"

than the sets accepted by them,

(1i) The notion of semantic basis is also employed by McCarthy [30],

when he defines a class of functions [{A} computable in terms of a

base set JF of functions, relations and constants.

(111) It is conceivable that we could specify a computing structure,

undoubtedly ® many-sorted cne, to mirror the true complexity of the

operations and tests in, say, the IBM TO90 computer. However, our ability

to carry out theoretical analyses would then be hampered by cumbersome

| 14

notations and invclved formal procedures, The degree tc which the

formulation presentec here falls short of reality reflects the degree

of compromise required to achieve a tractable theoretical approach.

Of course, a possible alternative for the fut xe is to design computers

with elegant and eminently blemish free operational characteristics so

as to facilitate the theoretical analysis oi their behavior. This is

obviously the theoretician, not the engineer, talking.

15

BLANK PAGE

CHAITER

The motivation for formulating a set of rules for the prescription of
algorithms is that we want to have a convenient uniform method of specifying

calculations in some mathematical structure of interest. Usually, our attention |

is focused on a specific structure, say S-expressions, real numbers, Turing

machine tapes, the natural numbers or whatever. Of course, often we may be

forced to do our calculaticns in a structure different fram the one intended,

either knowingly (e.g., we decide tha. it is better to campute with pointer

linked machine words instead of symbolic S-expressions) or unknowingly (e.g.,

we may think of doing real aritbrmetic, but truncated floating point arithmetic

is substituted instead).

As indicated in Chapter 1, we will define algorithms in terms of flow-

charts labelled with assigmment schemata and quantifier free formules of a

first order predicate calculus with equality (qffs). There are several reasons

for pursuing a theoretical analysis of algorithms specified in this way.

(1) We can easily apply the flowchart method of prescribing algorithms

to specify calculations in virtually all mathematical structures of interest,

This is important if we are tc study the strong equivalence problem which ranges

over all structures,

(ii) Utilizing assignment schemata and gqffs in a flowchart scheme in

some sense provides us with maximal computing pover, Thur, as we show later,

in the structure <w, +1, 0» we can compute all parlial recursive functions,

16

(111) The flowchart method for prescribing computational processes

has proved itself to be both natural and intuitive. The hope then is

that these properties will propogate into the theoretical anelysis of

these processes as well,

(iv) If ths results obtained here are to be useful, then the programs

whose properties are analyzed should be closely related in structure and

intent to actual computer programs, And in spite of their lincar string

representa‘.ion, modern ALGOL~like programs are indeed basically flowcharts

of assignments and branches. In fact, variations ina program caused by

squashing its flowchart into a linear string in different ways are not

really of interest,

We will define fbr »ach signature s , a formal langusge, L, , of

elemental programs (cr E-programs as we shail usually term them) for

specifying algorithms that utilize computing structures of that signature.

Strong equivalence, which we loosely said in Chapter 1 was "equivalence for

all interpretations”, will refer, for each signature s , to the equivalence

of E-programs in Ly for all computing structures of that signature.

The Syntax of E-programs

Yor each signature s , we define the formal language L, to be the

set of all B-programs ¥ = <X, I'’ > where X 4s a finite non-empty set

of nodes; I is a partial map over X such that for each x € X where

I' ie defined, Ix is either y or the ordered pair <y, £> for some

Y, s€EX;and L:X-+ 4UQUBUE is a consistent labelling of the

nodes in X with operators from 4 , discriminators from &, initiators

from 8 = {b,b,...] and terminators from & = {e , e,,...} . (Note: we
write [x) instead of L(x) for the label of node x € X .) We define

X(4) = {x : x€ X & [x] €A), t.e., X(#) is the sub-set of nodes labelled

vith an operator. Similarly for Xx(@), X(8) and X(&) .

17

The labelling < of ar E-program ¥ = <X I, "> being consistent means

(1) [x]€ £# wlxwy for some y € X

(11) [(xJe @ Ix= <y, =» for some y, z CX ,

(111) Ix) B® Ix ey for some y€X, and for all 2 €X, Xx 4s not

reachable via I' from z, i.e., is not in the transitive closure of T

(cf. Berge (1) for a discussion of reachability).

(iv) (x)eZ I 4s not defined at x.

(v) If X stipulates that =m <d nodes are labelled with initiators and

n < 6 nodes with terminators, then these must be Db,b,,...,b_, and

€ 025:-y%,, respectively, In this case, & 1s called a type <u, >

algorithm.

Remarks:

(1) In the set B = {v,b,,...], b,, for exsmple, stands for itself,

i.e., for the letter "b" asubscriptedbya "2°. Thus, 6 , and £, { ad

& os well, are sets of formal copstituents., However, we often make use of

the fact that subscripts are whll understood designations for natural numbers;

30 we may often say "the i-th varisble" for vy or "b, where k<® ., No
confusion should result fram this double usage.

(11) Here the terminology and methodology Are somewhat controversial,

When we awy I, is a formal language, by "formal" we mean “purely syntactically

defined”, and this agrees vith modern usage in most cases, One advantage of a

formal system i: that manipulation of formulas and expressions of the system cen

be expressed in a precise finitistic way involving uly syntax; if the myntax is

arranged properly, the effectiveness of various notions concerning the systema

become self-evident. Carnap [3]) gave formal metnods, as such, a big boost

18

much to the consternation « ° certair «thor mathemati~al logician, Zurry [6]

vigorously remonstrates against Carnep'. innovations and he chide. the "syntax

addicts" and others to "sign a declaration of independence” fram purely

syntactical methods, In fact, purely tormal methodology (see, e.g., Karp [22])

can easily lead to intractable situations. For this author, Curry's advice

is well-taken, and we adopt a somewhat middle corrse, making formal those part.

of the endeavor that will profit from formalization (i.e., the sets +, [,

and £) and } aving informal those parts that would suffer from it (i.e., the

organization of an E-program as a graph defined in a set theoretic manner).

In this light, our designation of Lg as a "formal" language is, in part, a

misnomer (one, nevertheless, we shall continue to apply).

To define the sets A and [, we first introduce a first order predicate

calculus with equality, PC, . Note the dependence of this calculus on the

signature ss, To see the connection between the definitions which follow and

the computing structures for which the algorithms in L, are defined, recall

that a representative computing structure of signature

sm < DWseeest1 7s W peopl 4 >, P>

is

D =<, Ryyeeey Ry, 1» Foseeos Fp_10 8g ees 8,1” .

The countably-many symbols of PC. are: the variables Vos Vyseee, the

constants Kgpeeosk 1s the function letters f ,.,. BIRT the relation letters
Fseers Ty_qs 80d the symbols "(", ")", "a", "I', " and ","

We now define the terms of PC, "

(i) The variables VsVyy... are terms,

(11) The constants ksees ko} are terms,

(111) For any 1 <{, if Tees "m, 1 arc term: then F(T eens "n -1)
is a term,

19

(iv) An expression is a term only if it can te shown to be s0 through a

finite number of applications of (i), (ii) and (111) above. (Note: hereafter,

this last proviso will be referred to only as the "extremal clause",)

Then the quantifier-free formulas (qffs) of PC¢ &re defined as follows.

Of course, the set RQ of discriminators is just the set of qffs of FC.

(1) For any i<k, if 71,..., "a el are terms then
r (1...) "a1 is a qff,

(11) If © and ¢ are terms, then (t = ¢) is a qff.

(111) If p and q are qffs, then (~ p) and (p > q) are qffs,

(iv) Extremal clause,

We can define other propositionel cc-u.2¢vives as follows,

(1) (p Aq) will stand for ~(p 2 ~q)

(11) (p v q) will stand ror ((~p) 2 q)

(111) (p = q) will stand for ((p D> q) A (¢> p))

The conjunction (1 = 0.) A (ty, = 0) ALLA (ty - 0,1) where t, and gq, ,

i<n<w , are terms, will be abbreviated in the sequel as (r, = 0;); cp

As the operators in 4, we take assigpment schemata of the form

uy z=, & wore oT, &..b Wl i® Ta

vhere n<w, and where ifn =1 we have simply u, : = T_ . Here

Taeesy To, are terms of PC, and u,..., wu _, ere distinct variables of

PC, . (The intent here is that the terms 7,..., 7. , are computed before
any assignments are done.) We will abbreviate expressions of Lhe above form

as (u, := 7,),=~ and refer to the u, , i<n, as the assigned variables,

20

In Figure 1 iz an example of an E-program shown in flowchart form, We

will call this form of an E-program its diagrammatic representation (dr).

Because the dr of an E-program is such a convenient representation, we will

in the sequel define E-progrars in terms of their dr's rather than give the

actual set-theoretic definition. We define the dr of an E-program

He<X I'NZ> as follows.

(1) T™he ar of x € X(B) UX(E) 1s a circle enclosing [x]; of

x € X(4), o rectangle enclosing [x]; and of x € X(§), an oval enclosing [x].

(11) Porall x €X such that Ix= y for some y € X, the dr of the

partial map TI actingon x consistsof an arrow from the dr of x to the

ar of y. Por all x€X such that Ix= <y, © for same y, z € X , the

dr of the partialmap I’ acting on x consists of two arrows fram the dr

of x, oneto the dr of y 1lubelledwith the letter T and the otherto the

dr of z labelledwith the letter F . When it is unambiguous, the T and F

labelswill be dropped, and the convention adoptedthat the arrows from the dr

of x will point down and the leftmost one will be the T arrow,

(111) Then the dr of = <X, I, 72> consists of the drs of the nodes

in X, Joinedby the dr of the partial map [' actingon the nodesin X .

To give some indication of the generality of L , and to further

illustrate the idea of a diagrmmatic representation for E-progreams, we have

constructed the rather artificial example of Figure 2,

Remarks:

(1) In spite of tis fact that we will not have occasion to define an

E-program in set-theoretic terms, but rather will alweys employ a dr of that

E-progren, we nevertheless will retain the set-theoretic definition and will

21

* gp 3 oy .vl z(t (k,, vi) v,) & v, i= Vy

Vv, i= (vs v,) bv, := £, (vy, k_)

Figure 1

A type <2, 2» E-program in Lg where ss =<<1, 2, > , <2, 2, 1, >,
In this example Tos r, and ky y which are permissable, do not appear.

22

regard the Ar merely as an aid tL understanding, We u: thir holaulc the

syntactic manipulations required ic applying a formal theory arc much

easier to describe and sffectively carry out in set-theoretic terms rather

than in terms of boxes, arrovs, ovals, etc,

(11) In Pigure 2, we see that the definition of E-program allows

totally isolated components and other components not reachable fram any

noae in X(B). As well, certain loops once entered can never be left,

Intuitively speaking, inclusion of these constructs would usually be

classed as poor or improper programming. However, by admitting them here,

we are facing up to the fact that such constructs do appear with unfortu-

nate regularity in actual progrsms, and therefore should be subject to

analysis in any theory of computation with pragmatic goals,

(111) The E-progrems of L_ can have many entrances snd exits,
Thus, if we vant to study or transform not a whole E-program, but only

some isolated fragment that may be entered and left in more than one way,

we can do 30 by extracting that fragment as an E-program with many entrances

and exits,

The Semantics of E-progrems

To effect a computation, we needa type <a, n> E-program,

§=<X Ir, X> in L, , & natural number i <a, a computing structure

D of signature 5 , anda state { : w— D . The E-programtells what

to do; the number 1 tells where to start (i.e., at which initiator); the

camputing structure supplies the primitives for doing it; and the state acts

first as input, then as "memcry” during execution, and finally as cutput.

We first give the semantics for PC . It is assumed throughout this

section that the signature s is se << ,..., 0 >W,..., mn HP

23

A Cy) (2 by

Figur. 3

A type <4 i E-program in L, where s=<, 1, I>,

24

and that we are concerned with the fixed computing s' ructure of signature so

Da 2, Ropecey R 1 Foseeos Po 10 Ryreees Sp" >
and the fixed state § : WD,

The valueof a term 7 with respect to D and ¢, denoted

7(D, £], 1s an element of the domain and is defined recursively as follows.

(1) If © 1s a variable v, , then t(D, t]) = v,(D, t] = c(i, ¢),

where c(i, §), read "the contents of location i in ¢" 4s the notation for

t, or t(i) introducedby McCarthy [28].

(11) If t 41s a constant k,, then t(D,t] = k,(D, ti] = 8, .

(111) If «+ 1s £,(T sees "n,-1)s then t(D, t] =

We will say that ff p of C, has a truth-value with respect to D

and ¢ denotedby p(D,t], such that piD,¢] iff p 4s satisfiedby ¢ in

D in the usual sense of the predicate calcuius. A recursive definition of

p(D, t] follows,

(1) It p is FLL IPPTPN "n,-1s then p{D,¢] =
i

(11) If p 1s (v= 0), then p[D,t]» (7 = 0)(D,t]

o t[D,t)= ofD, t], i.e, T(D,E] and oD,t] are the same element of

the domain D ,

(111) Ir p 1s (@>r), them p(Dt] » (qo) [Dt]

enot qD,t] or riptl.

(1v) If p 1s (~q), then pit] ® (~q) [D,¢) »not alD,t].

25

An assigrment schema 2 = (u, t= Tien applied to tke state §

produces a nev state f{D, tJ. Here, the values 7,[D, Lt), ic , are
all first computed and then substituted in the state { at the places

corresponding to the a:signed variables u,, in, s0 that ve have for each

variable Ve iw, of PC,

vy(D, £10, t1]) = v,[3, t] = c(i, ¢) if wu 4 v, for all i<n,

- 7,00, t) if uy =v, for some i<n
Alternatively, we have

(V2 el 8) = aly, TpylR et] (rg 2 Tdeen (R60)
if 1<n< Ww

- a(t, 7(D, ¢t], t)
if n=1.,

vhere a(i, k, ¢), read "the assignment of quantity k to location i in ¢",

is the notation introduced by McCarthy in [28 for the sequence obtained from ¢

by replacing its i-th element by k . We may also write this as

(vy ¢ = hall t= ald_., 7ID, 8], aid5, 7[D, 8], al...
a(4,, *.[D, ¢], als, 7(D, t), £))...))) .

Nov ve explain the semantics of E-programs themselves, The type <=, >

E-program ¥ = <X, I,r> applied to the state ¢ starting at initistor b,, idm,

produces

u(p, <¢, ©) = X(%, D, ¢, x)

where [x] = b,, and where the partial execution function RE 1s defined
as follows,

(1) Ir (x)Je BG, i.e,, if [x] is an initiator, then

E(%,D, t, x) = E(W,D, ¢, Ix).

(11) If [x)e A , i.e., if [x] 10 an assignment schema f , then

EW, p, ¢, x) = B(W, D, £[R, t], Ix).

26

(iti) If (x) € Q, i.e., if [x] is a qff p , and if I'y = <y, >

for some yv, z € X , then

EM, D, ¢, x) = EM, J, &, y) if p[D, &]

= E(M, D, §, z) otherwise.

(iv) If [x] €&, i.e., if [x] is a terminator es then

E(M, L, §, x) = <k, >.

Clearly, for certain &, D, §{ and i where [x] =b, , E(M, D, ¢, x)

does not terminate, and M[D, <§, i>] 1s therefore indeterminate. If

termination is obtained, sc that u(D, <t, PDl=<t', > for some ¢':w «4D

and Jj <n, we say that when E-program % ' is executed in computing structur.

D with initial state § , starting at the i-th initiator, it halts at the

j-th terminator producing the final state ¢°' ,

Remarks:

(1) The c(i, ¢) and a(i, k, ¢) notations, after first being

introduced by McCarthy, have subsequently been used by him along with

Painter [26, 35] and by this author, as well [20,21].

(11) The execution function E , on reaching a node labelled with a

Qff p , will take the arrow in the dr labelled T (i.e., the left arrow)

if p turns out true and the arrow labelled F (li.e., the right arrow) if

p turns out false,

(111) As an alternative form of assignment schema, we could take

simple assigmment schemata, i,e., those with only one assigned variable.

This form would be somewhat more ALGOL-like, though not quite as general.

In Chapter 8, we will examine briefly some of the implications of such a

choice,

(iv) A modification in the definition of E-programs that would make
them more ALGOL-like would be a provision for subscripted variables, :.e,,

27

arrays. In Appendix II, we give the details of a scheme for introducing

subscripted variables, We redefine the syntax for terms, qffs and assign-

ment schemata, and introduce a new data structure, the hierarchial state,

which 1s used to store the arrays that are accessed by subscripted variables.

at

BLANK PAGE

CHAPTER i

WELL-FORMED FORMULAS: SYNTAX AND SEMANTICS

Our principal interest is in the strong equivalence of E-programs, and

so the well-formed formulas of the formal theory we develop in this and

suc. ding chipters will simply express for two E-programs of the same type

that they are strongly equivalent,

Th. Syntax of Well-Formed Formulas

Por each signature s , we define a formal theory JT, = Amys of >

where Fm 1s the set of well-formed formulas (wets), and <2 , 08
explained in Chapter 7, is an inferential system of axioms and rules of

inference, The set Fm is simply the set of all expressions of the form

M -% where UU and 8 are E-programs of the same *:pe in L, « Recall

that by "of the same type", we mean with like numbers of initiators and like

numbers of terminators,

The Semantics of Well-Formed Formulas

We say that a wif 8 = 8, where 8 and 8 are type <m, n> E-programs

is valid in a camputing structure D and write 5 A=W (i.e, W is

equivalent to 8 in D) iff for all i <m, for all ¢ tar =D , We have
that W[D, <¢, i>] = BD, <¢, i>] . The notation x & y means that either

x and y are both indelcrminate, or both are determinate and x= y ,

Notice that if both ¥ and ® halt, producing <t', i'>> and

<€", 1"> respectively, then for equivalence we require that <t*, i'> =

&", 1"> , i.e., &' =¢" and {' = {" , Thus, not only must two E-programs

produce the same output state but they also must halt at the same terminator.

‘his is a natural condition if we are to have substitution of equivalent sub-

programs,

29

We say that a wff “ ® is generally valid anc write f= 8 = ®

(i.e., W 1s strongly equivalent toc 8) iff for all computing structures

D, §=8 is validin D.

For any set of wffs AC Fm (called either proper axicms or

hypotheses), we write AO |= M ® iff for all computing structures D,

if the wffsin 4 are all validin D, then ¥ - 8 is validin D.

In this case we say that ¥ = 8 is a semantic consequence of 4.

Evidently, general validity is just a special case of this latter concept

since [/ EEE ENN EX vhere P is the empty set.

Remarks:

(1) We may use the notion of semantic consequence to aid in the study

of equivalence for E-programs in particular computing structures. Thus,

if the proper axioms in 4 can be shrewdly specified so that they are all

valid only in the structure (or class of structures) of interest, then a

wif 8 8 will be a semantic consequence of & just in case ¥ = ® is

valid in that structure. When this is the case, we say ve have axiomatized

the properties of that structure.

(11) It is not clear precisely what properties of structures can be

axiomatized by a set of wffs of the form MM =~ 8B . It may be that more

complicated statements about strong equivalence should be permitted so as to

give us the axiamatizing power required to characterize certain structures,

like the integers, for example. Thus, propositional statements, like

H-OAE-9DO8-%, or quantificational statements, like (3x)(¥(x) = ©) |
may be desirable, We do not pursue this matter any further here. |

30

CHAPTER '-

CONCERNING THE DECIDABILITY OF STRONG EQUIVALENCE

As one might expect, because of the complexity of the situation under

study here, undecidability is iurking in every corner. There are two

approaches both to the strong equivalence problem and to the axiomatiz-

ability problem which we discu:z: in Chapter 8. On the one hand we can

examine these problems with respect tc the whole of Fm, for various
signatures 8 ; or on the other hand we can cansider various subsets of

Fm for arbitrary fixed signatures s . One result obtains immediately.

Theorem 1: Strong equivalence is decidable for E-programs in which no

function letters or constants occur.

Thus, Til = 8? , where WM 3 ®¢ Fm. , is decidable for any signature

8 =< <nyee ne 17s 0, @® .

Proof: In this case, since there are no functions, the assignment schemata

are relegated to merely transferring around the initial data from location

to location. Thus, L, is not too interesting or powerful a language,

Consider the type <m, r=» algorithm § € L with K < «ww nodes

labelled with assignment schemeta and qffs, and in which there occur

N < w distinct variables. Suppose we execute € in some computing

structure with some initial state ¢ . Since elements in the state for

variables that do not occur in § are unchanged during execution, and

since there can be at most N distinct values stored in the initial state

¢ for the N distinct variables occurring in § , then there are at

most NY distinct states that can arise during the execution of § .

32

Thus, the at most N distinct initial values fcr the N dictince variatice

in § are shuffled around by the assignment’ schemata into at most

configurations,

Now, suppose that this execution of & we are considering fails to

halt. Then there exists a node x of & such that execution passes

through x more than a times. Thic is so because an infinite number

of nodes are encountered during the non-halting execution, of & , but

~ since € itself has only a finite number of nodes, at least one node must

be encountered infinitely often, Thus, after at most Nel passes through

node x , the current state at that point must repeat itself, since there

are at most XN distinct states, Of course, after a state repeats it-

Self at a node, execution is thereafter periodic in nature with some fixed

loop, which includes that node, executing repeatedly and generating a
periodic sequence of states,

Since there are XK nodes in § labelled with assigmment schemata or

Qffs, an execution of € which has su far passed through at most K x n

such nodes is guaranteed to have generated a repeated state at one of them,

80 that execution never halts. 8inc~ there are but a finite number of

distinct paths through € consisting of less than K x N' nodes, the

pumber of distinct paths associated with halting executions, 1i.e., those

beginning vith an initiator and ending with a terminator, is therefore finite.

The E-program of Figure 3(a), for example, has but four paths through

it that are associated with halting executions, Thus, we may execute the

loop sero, one, two or three times and then halt, but if r(u, wv, y, x) 4s

still false after three executions of the loop, then the E-program never

32

4 r(u, w, ¥, x)

(5) | Utcwhwisyby:i=mubx:sz

Figure 3(a)

Here u, w, x, y, 2 are variables and r is a relation letter,

Fiure 3(b)

Here wu, v, wv are variables and r is a relation letter,

Figure 3{c)

Here v and w are variables,

35

halts. This is because after this point, the contents of u, w, y and x

vary only periodically, and so =(u, w, y, x) will be testing a state

altready encountered,

In Chapter 9, we show how tO associate with the set of all paths

through € , that begin with an initiator and end with a terminator, a

set I of triples <v,, tf, es s Where b, and e, Aare an wnitiator
and terminator respectively, and where f is an assignment schema, called

an operation in this context. We say two triples are similar iff they

have the same initiators and terminators and their operations, f aad g,

say, are strongly equivalent (i.e., f(D, t] = g(D, t}] for all computing

structures D and states ¢ : wD) . No two triples in the set Te
of triples for € are similar, and furthermore, with each triple

<d,, f, rIe we associate a qff p , called its joint initial condition,
such that if € is executed in D with initial state { , starting at

b, , it will halt at e, and produce the final state £{D, gl ire
p(D, ¢] . Then, we show (Theorem 25) that the two E-programs # and ®

are strongly equivalent iff first, for each pair of similar triples, one

from TN and one fram Te , the corresponding joint initial conditions

are logically equivalent; and second, for any triple in Ne Tg) for

which there is no similar triple in Ty @ Ty , its joint initial cemdition

must be identically false, i,e., a logical contradiction.

It iz easy to show that the E-progrsm of Figure 3(b) has but one path .

through it associated with a halting execution. The triple corresponding

to this path is <>. Vv i= Ww, ¢> snd the joint initial condition for this
triple is r(u) A~r(w) . This joint initial condition is just the

34

necessary and sufficient condition on the initial state for the E-program

of Figure 3(b) to halt, having executed Vv := w . Notice that the

E-program of Figure 3(c) also has a single path associated with halting

execution. The triple here is also <b_, u := v, e> , but its joint initial

condition is identically true, Thus, since the joint initial conditions

for the triple <b_, v :=w, e > are not logically equivalent, i.e,

r(u) A ~ r(w) is not identically true, the E-programs of Figures 3(a)

and 3(b) are not strongly equivalent.

We have already shown that there are only a finite number of paths

through ¥ associated with halting execution, each with less than K x N°

nodes; similarly for 8 . Thus, it suffices to consider only the set of

triples and joint initial conditions for paths of length out to the re-

spective maximums necessary for M and 8 . Since the sets Tx and

Ta of triples are then finite, we can decide the strong equivalcuce of

M and © using the procedure outlined above, provided that we can decide

the logical validity of qffs in PC5 and the strong equivalence of operations,

But, as indicated by Church [4], since no function letters occur in the qffs

of PC, , their logical validity is decidable, and as indicated in Chapter 8

(Theorems 1%, 15 and 16), the strong equivalence of operations, i.e., assign-

ment schemata, is decidable, Thus, so is Tl = 9? , |

This decidability result can easily be extended to a far larger class

of E-programs, Thus, strong equivalence is decidable whenever the number

of paths associated with halting exscutions is finite, and the logical

validity of qffs in PC 1s decidable. In Chapter 9, we return to these

matters and indicate in detail the role of joint initial conditions in

decision procedures for thease cases.

55

There are twc obvi.us applications of this extended declidablility

result. Thus, we have that strong equivalenc: 1: de :dable for E-programs

without loops and scr Yepr wrar. that always helt (i.e., in =)l computing

structures, with All in.tial states. of Figure 4% Tor an example of this

case), prov'de., of course, the logical validity of qffs is decidable,

In Chapter ©, we indicate now HL-orosrans without leone ar ce put inte

a canonical fore using the axioms snd rules of our forma: theory. The

result for eiways halting E-prograr: 18 merely quoted hers from the recent

work of Paterson [36].

A specializatvion of the nu-luops result, which doers rot depend on

the decidability of logical validity for qffs, is the following

Theorem 2: Siromg equivalence for E-programs consisting solely of

assignment schemats, 1.e., without any branching, is decidable.

If we let 1(4) « ERI,» cL : X(Q) = #} , and define

Im,(f) = MW Bc Fm 18, BEL (4), ther Theorem 2 states that
? lt <9 , vhere 8 SBC Im (4) « 1s decidable for any arbitrary

signature 3 . (Incidentally, we define L_(§) and Fm RQ in a

similar fashion.) Pigure 4 illustrates an E-program § € L. 4) 3

Proof: In Chapter: 8, we give a detailec proof that there is ar effectively

generable canonicel form for E-progrems in L.(#4 (Theorems 1k, 15 aud 16),

and this solves the decision problem for this case, We pcstpone this dis

cussion, however, 3c that we can describe the generation of the canonical

form in terms of the axioms and rules of our formal theory. §

The E-programs whose strong ~quivalence decision problem ve have

considered s. far have been somewhat restrictive in the sense that the sorts

36

" 9 (2) © (3

fy o)
3 £5

by

Fieare dg

Tn: E-program §& ¢ Fn (4) « Here, foo... 0 are assignment schemata,

Figure »

The E-program ¥% € Fm (Q) . Here py... py; are qffs,

51

of computations they specify are not very complicated or interesting.

let us nov consider the signature as a <1, 1, I> . Computing structures

vith this signature are of the forma <D, R., F., a> where the relation

R, and function PF, are womnadic. If we further disr~gard the equality

relation over the domain, then structures of this sort i:present, in a

sense, the barest bones with which we might want to carry out interesting

meaningful computations, Now, let us consider the strong equivalence

decision problem for B-progrems in L. that do not use equality. One

immediate result is

Theorem3: Strong equivalence is decidable for E-programs consisting solely

of qffs build up from a single monadic relaticn letter, a single monadic

function letter, s single constant, but without equality.

If we lot LS = (W€L : Doqffof the form (T = 0) occursin ul,
and define Fa = MVE Fp : 4 BEL}, then Theorem3.

states that ull SW? , where WBE Tm (Q), is decidable for the
signature 3 «<1, 1, > ,

Proof: Since E-programs here do not heave any assignment schemata, we can

argus, precisely as in the proof for Theorem 1, that there are but a

finite number of paths through an E-program € associated with halting

executions of € . Furthermore, decidability of logical validity for

Qffs obtains here, so that the joint initial condition decision procedure

wsed in Theorem1 will sufficehere as well.

To see how the joint initial conditions are obtained here, consider

the R-program # of Pigure 5. Here in this example, it is obvious that

38

there are but five paths through 8&8 associaten with halting executions,

These give rise to the triples <b, v_ =v , «>, <b), VY, i= V, €2

and <b, vV, t= Vos e,” , Where v, = v, is just a dummy identity
operation, The joint initial conditions associated with these triples

can be easily verified to be respectively

(py Ampgy AP) V (~p; AR APs Ap),

(m, Apy A~ps Ang) V (~p, ARs AD AR),

(~ my, APs Ag) i

Thus, for s = <1, 1, I> , E-programs in L_~ have a solvable

strong equivalence decision problem when they consist solely of assign-

ment schemata (Theorem 2) or solely of qffs (Theorem 3). Nevertheless,

in general we still have the following unfortunate

Theorem 4: Strong equivalence is undecidable for E-programs bullt up

from a single monadic function letter, a single monadic relation letter,

asingle constant, but without equality.

Thus, Tj=81 = 87 , where 8 =®€ Fm , is undeciduSle for the

signature s = <1, 1, I> , and therefore, for any signature s' such

that Fm “© Fm,” . So even without all the customary paraphernalia

available for expressing algorithms, we are still saddled with the fact

that in general the analysis of strong equivalence cannot be an effective

process,

To prove Theorem 4, we will take a somewhat roundabout path and

first show that in an appropriate computing structure we can compute

all partial recursive functiona. This result will then lead us to the

proof we desire,

39

(1) The principal point of concern here is that for schemes that are

of pragmatic interest, the strong :quivalence of E-programs is undecidable.

Of course, if a computing structure has a finite domain then equivalence

in that structure is decidable for the same reasons the wffs of Theorem 1

are decidable. So, we might be tempted to say that, for example, equivalence

of IBM TO90 programs is decidable since the domain 236 is finite. There are

two reasons why this sort of reasoning is not productive. First, the sort

of exhaustive loop unwinding performed in the example of Figure 3{a) would

take years in a domain the size of 26, thus making impractical the obvious
decision procedure, Second, as suggested earlier, we may not even be aware

of what computing structure our program is being executed in, thus rendering

the concept of equivalence of programs somewhat ‘mpotent. The sort of

statement we would be more interested in is: "No matter what computer these
progres are sxscuted cn, they give the same result”, i,e,, a statement of

strong equivalence. But Luckhsm, Park and Paterscan [25 J show that for a

certain sub-class of programs, even squivalence in all computing structures

vith finite domains is undecidable,

(11) Theorems 1, 2 and 3 discuss various decidability results, but

sctually, all of these results derive from the same set of facts, If the

number of paths associated with halting executions is finite, and if we can

effectively determine a bound on the length of such paths, then decidability

is obtained in cases vhere the general validity of qffa is decidable. This

is because in such situations, the aets of triples to be checked are finite

and determinable, the strong equivalence of operations is decidable (this is

always the case), and the logical equival.nce of joint initial conditions is

decidable,

(114) The triples notation, used anere merely for explanatory purposes,

- 4s not used in Chapter 9.

40

(iv) Within the undec.dability limitation: imposed by the structure of

the problem belng studicd, we covelop in du.ceeaing chapters certain viable

analytic tools for working on the strong equivalence problem for E-programs,

Partial Recursive Functions

We shall show that givin a suitable camputing structure, we can construct

E-programs to compute all partial recursive functions. The reasons for this

demonstration are twofold: first, to illustrate that E-programs as defined here

are adequate in the sense that thers i: no function computable in a structure

that we cannot specify with a rfuitable E-program; and second, to provide a

convenient method of proof for Theorem 4 above,

Consider the computing structure N= <&, F , a> with signature

s = <0, 1, I>, where F_ 1s the successor function, a is zero and the

equality relation over « ic included in N, (Note: we will write x +1 |

for F_(x) and O for a .) For the purposes of defining partial recursive
n

functions, we also consider the projection functions uy (xpeees x 1) - x,

for all n < @”, all 1<n and all <x,..., Xx _,> €4 as initial or base
functions, The partial rccursive functions are obtained from zeru, the successor

and projection functions us‘ng three methods of combinin; functions. (This is

all given by Mendelson in [33].)

(1) Composition: given the functions |

B(X peeey X71)

h(x pees, Xpa1)

by (xgpeees %; 3)

CY C SPIT Xp.1)

kl

whee m< &, n< &, we say that the function aefirned by

F(X eees Xne1) = gh (x 5..., Xp1)seres bya {Xgseees Gey?)
is obtained fram the given functions by campositicn.

(11) Primitive recursion: given the functions

B(x yeep X5)

B(xgseees "ne2? *p-1° x)
where l<n<& , we say the function defined by

£(x yee, Xn .20 0) = {6 SPPPON x 2)

xg eney Xn.2 xt) “ h(x,..., *ne2s *pa1 Exp ees *n-2» “n-1))
is obiained from the given functions by primitive recursion.

(111) The unrestricted u-operator: given the function

B(x 5e0ey X10 ¥)

where n <4, we say that the function defined by

£(X poco X,_1) - nz(e(x,..., Xl? z) = 0)

which we read as "the least z such that g(x,..., x ,, 2) = O", is obtained

from the given function by the unrestricted u-cperator, Here, 4 ¢ SP x 1)
n

is defined for X seeey Xx > € Ww iff for some k <w, (x coos Xs z) = C

and for all z< Kk, g(x_,..., x., z) exists and is not zero; and when

such is the case, f(x ,..., x ,) then has the value k.

We will now deacribe a scheme such that for any partial recursive function

and suitable arguments, we can construct an E-progrex in L, which when executed

in N computes the value of that function at those arguments, Suppose that the

fun+iion f(x yey x _y) 1s defined by a form ¥, as given by the initial

functions and (1), (11) end (iii) above, and that d= <d,..., 4 >

ha

where d € w” is a set of arguments at which L(x yevry x 1) is to be

evaluated, Then the E-program R(§ £ d) , produced by the generating

function R using the form L £ and arguments d , when executed in J

with any initial state, camputes £(d). The zZ-program R(Eps d) is

illustrated in Figure 6, Here, TM is another E-program generating function;

the composition of E-programs, indicated schematically in Figure 6, is

discussed in Chapter 6,

The E-program Tp, &¢) is generated in a recursive fashion according

to the structure of ¢§ £ The variables are utilized to simulate a stack

as Mp, sp) proceeds, the first argument of MT acting as a stack pointer

during construction of the F-program, When constructing 9p, Ee) p< WW,

we assume that variables Voe12 ts Von will contain the arguments at
which f is to be evaluated, and we arrange for the value of f at these

aryuments to be returned in Yo .

Consider first Wp, €¢) for the initial functions, These definitions

are given in Figure 7. Figures 8, 9 and 10 show constructions for composi-

tion, primitive recursion and the unrestricted pu-operator. Also in the illus-

trations are representations of the run-time stack showing how the variables

are assigned during E-program constructicn by Wp, &¢) . On the basis of

these constructions, we have the following

Theorem 5: For all partial recursive functions f(x,...,x ,) with form é,

and arguments d = <d ,..., d ,> , and then for all initial states

ft wow R(& rs d)[N, <t, @>) is determinate and has a value <t' &® for

some §' toww iff £(d y:eea da 5) exists, Furthermore, in case

20d yeep 4 ,) exists, then f(d,...,d ,) =c(3, £').

45

b

_ op 1 ,

Figure 6

Here the variables v ,..., Vv, , are loaded with the arguments d,..., d 1The variable v, is eed to Bteurn the final value, The reason £8r not °°
using vi, ér Vv, will become apparent when we consider the proof of
Theorem &

) L L,|

h

Figure7

by

| {

| | Vorases = pares)in

. " , H

PHRHn+2 Wetntmk2, "k(x yeeey x_4)")

argumerts Y
for h

1 v Li ¥

+ " "

pHmin+3 proms, h (x ,..., x 1))
ps

om ey
arguments

for ¢ :
”" [,]

WwW pnw? ho 1(Xgs eves X 1))
pnd Y

péntl value of ¢ sx
Yptntmel ‘7 Vpeneme2

pn x

Ww ptn+l, {CSTR xa)
arguments y

for {

pl

v;

Fipure 8

On the right is the definition of Mp, "f(x ,..., x 4") where
Pros ses x,y) 1s given by composition asE(h(xX geces Xo 1)peney Bo (xX y00ey a 1)). Jn the left is the run-time stfck showin? the stolape locatiln given by MM. The arguments
for fr , already prcsent, are loaded as arguments for hy i mm. Then,
h(x ,.e0, x.), i<m, is computed and the result loaded as the i-th
abgulent for 3 . Finally, g 1s computed with these arguments and the
result returncd as the value of tn LA

LF

’ » |

pene || | pepe ° Ypue dion(Ypes je2 3° Vp «1)icn-1

pan | arguments | »sy prov, "g(x ,..., x_5)")

iy (Cp~ “pefor g 3 a
& pil

- CEE CPT

arguments)
for f

, pnd, "B(x ,..., x)"

prl y
TET

Figure oO

On the right is the definition of "

time stack, Tne valde of fX5%..., x.)O it ccmBated Bom the’ ins) x=22,%n-3)) . On the left is the riare loaded and g evaluated; then ’ us®hz v « a t side out”:” Tirs', lhe arguments for
required depth of SORE “Hy as 3 temporary counter, h 1s repeated y evaluated until thevith th var > recursion 18 achieved, Whe evaluating bh , the 13a" argument v is lo=dc ue oe § loade-o at the previous level, 1i.e., Voin+l « Then Yo receives tee $ Pree t.

' | :
; : <

pn wr. 16 SPPI x))
arguments .

& for f
—J

arguments Cpm %3)for ¢

p+l Voan+er 7 Fv antl)

[oe 2
Figure 10

On the right is the definition of "Np, "EX yee, 4 0") where £(x yeu, x} is defined by tue
unrestricted -coperator using g(x gesey K)". Om the left is the run-time stick. “he value of

fix precy Xx) is computed by sifply comput ing g(x gnesy X =}? y =k for y = Ty ly eo untily $s found stn that k= 0 , If no such y is fousld, the & putatic:n fails to .alt, and the value
of L(x pees x.) is therefore undefined, The restriction on the unrestrictei .-operatcr assures
us that for all 3 » if B(X 50ers X=? h) # QO for y = 1, 2, eso y zl 3 then BX yeep X12 z)
is defined.

Proof: An inductive proof on the structure of R(¥y 3) can be given in some

detail. We will assume that the definition of R(%,, d), be attendant

comments, and the stack diagrams make the proof wholly obvious. }

Remarks:

(2) Ershov [9] indicates, for his scheme, how flowcharts can be given tc

campute partial recursive functions, but no details are given. There is really

little or no ingenuity required in the construction of R(E,, 4) as we have
sees above; this bespeaks of the naturalness of a flowchart representation of

algorithms which utilizes assignment schemata mcd ffs.

Nov let us retaurn to Thearem 4. We are to show that {EEX , Where

$Z0€ Fu for signature s = <1, 1, I>, is wdecidable. Recall that W
md § containno gfe of the fam (T=¢) ,

Jyoofs Let us sketoh a rough outline of the proof first before giving the

details. Ve will show how to effectively construct, for any partial recursive

function 16 SUPP Xo.) and ay arguments 4d = <4,..., 4 ,>, 8 type

<Q, > Eprogrem RE,d) €L , where se <1, 1, I> euch that If REL"

is same type <Q, I> E-progremthat never halts (i.¢., R[p, <¢, ®) 4s

indeterminatefor all D with signature 5 = <1, 1, I> end all ¢ 1 @-D)

tha,

(1) There exists a computing struciure X , with signature # , such that

ir af, 4) 3 lsvalidin X, them f(d,..., 4 ,) does not exist;

(11) for ey computing structure D, vith signature ss, if

(Ef, 8) 2 1s not valid in D, them £(d,..., 4 ,) does exist.

8

Then, existence of a decision procedure for j= 8 = ® 7 in general,

where 8 T ®€ Fw , would imply a decision procedure for

Te R*(E,, 4) ¥ ®? in particular, which, fram (1) and (ii) above, would imply

a decision procedure for the c-xistence of £(d 0 d 1) for an arbitrary

partial recursive function f and arguments d = <d,..., 1.7 + However,

this last problem is trivially undecidable (cf, Mendelson 33, p. 255]), so that

therefore a decision procedure for j= ¥ =®?, where M SBE For~ , does
not exist,

From the foregoing discussion, we see that R*(Z 4) is going to have to

behave as if it were attempting to compute £(d,..., d 1)» as it were, in all

computing structures with signature s =<1, 1, I> , To accomplish this we in-

troduce the concept of an image of a natural number, (cf, Luckhsm and Park Pb)

where a method of "representations" 1s used in a similar context.) Consider

an arbitrary structure D = <D, R , F , a> with signature s , We say that

Xx €D is an imsge of n € w iff rR (7 "(x)), k<n, sdnoe R(F(x).
If we suppose R’:D —{0, 1} such that R’(x) = 1 if R(x) and R’(x) = 0

otherwise, then x is an image of n iff the infinite sequence of 1's and

o's (R'(F"(x))} ,, bas an initial segment consisting of n 1's followed by
a O. Note that if R’(x)= 0 then x is an imageof zero,

We will construct ®%(f,, d) €L, , where s=<1, 1, I>, from

R(E, 4) €L, , where 8 = <0, 1, I>, by replacing individual constructs in

R(&,, d) with open subroutines in Ll (0 d) which have the required "in

all computing structures" flavor. From the definition of R(E, 4) , ve

see that we will have to simulate, via open subroutines, the following

constructs:

(1) loading of the arguments d= <d,..., 4 >

h9

(11) the test for equality of the values of two variabies or of the

value of a single variable and O ,

(111) the sucoessor function +1 applied to the value of a variable

(iv) initializing the value of a variable to O

(v) the assignment of the value of a varieble to another performed by an

assigment schema,

We will consider each of these in turn.

Loading of the arguments is accomplished with the aid of the macro

shown in Figure 11(s). Hers, starting from s_, ve search the domain D

by repeated spplicstions of F_, at each step looking for an initial segment
wich indicates that the current value of the variable x is an imageof n EW.

IZ it »0 happensthat the computing structure <D, R, Lo a> is such that no

imageof n can be found, the routine will fail to halt. Figure 11(b) shows

in detailhow the argument loading section of R(X, d) 1s simulatedby a

sequence of these macros in 2*(€ 4) . If this section of (2, 4)

halts in some computing structure D, thenthe values of the variables

Visooos Vngn vill be images of the argments 4.,..., 4d, .

Testing for equality of the valuas of two variables is accomplished with

the aid of the macro shown in Figure 12(a). Here, the working variables

v, sd v, are used to check that the values of the variables x and y are

images of the same natural number by searching ahead using repeated gpplications

of and checking for identity of the initial sogments generated at each stage.

By hypothesis, the valuesof x and y are both images of some natural mmbers

and 80 the couputation halts in any computing structure, at terminator e, ir

the valuesof x and y are iwvagesof the same naturaloumber and at LY iz
not,

50

3

\¥

~~ =

»

~~ &
4 4
]

=)
QO

- |~~

C Fo

a Ra
KX c
-

<< Bt
(] O

— “nn LW
—

» -
~

— Q
1

& i
~
By Sy 8

&

oe A 2
- & pe;

<Z

{ §~~ J
9

Ly »
od LY

oO

: F~

Q

fut |
ord

- 5)~— 3
—

> d
LN [

4) |]
LY
Yo? t= of
O

< [)

~~ =
C

a” ord
lv}

. g
oo

wn
oy

te]

Pry

= =

51

©)

d.-1 4%
r (vw) A r (f_(v,)) AecaA r (Lf, (v,)) A ~~ r (f, (v,))

d,-1 ‘
rvs) Ar (f.(ve)) Acaz (2° (v5) Amr (f (v,))

Dro

41d dne1
ro(vos) A r (2 (vy s)) Aooh x(f) (Vae3)) Amr (f (Vp43))

©

(59

(v,p = 1(x))),

(5

Figure 11(b)

The upper E-program replaces the lower in forming = (&,, 4) .

pd

vo 1 ®EV Ty

> ~ Tc ' 3

~ roe) Amr o(v))

Figure 12(a)

Here, x and y ar. variables, The E-program on the left repluces the

one on the right iu R*(& py d) .

Figure 12(v)

Here x {is a variable, Thc E-program on the left replaces the one on

the right in ®(&, d) .

53

Testing for equality between th valve of a variable » ad 2 is

accomplished with the aid of the x:cr shown .n F gure 2(b). In |

®(:,, 4) , the gff (x = k_) is testing for (as the current value of |
variable x ; in Lu (d) , the qff ~ (x) is testing for an image of O
as the current value of variab’e¢ x. |

Applying the successor function is accomplished with the aid of the |

macy> showr. n Figure 13. Here, the value of the working variable \P is

started at ., and stepped up by repeated applications of LA . At each step,

a check is nade using the working varisbles v_ and vy to see if the current

value of vs ic an image of a natural mmber greater by one than the number of

which the value of variabie x is an imege. If the computation halts, the nev

valueof variable x will be an imageof n+l vhere the cold value of x was

an image of n

Initializing the valuc of a variable to O is accomplished with the

macro of Pigure 11(a) with n set to O, Here the value of the variable x is

initialized co LI and then LI is apnlied repeatedly until an image of O

iz found, If the computation halts, the value of x 1s an image of O .

Assigning the value of one variable to another is dome with precisely the

seme construct in R(x, 4) as in ™(E, 4) , i.e., sn assignment schema.

This completes the definition of the process for constructing the E-progrem

®(f,d) in L°~, vhers s=q,1, I>, frm the I-progrem RE,4) in

L, where s= <0, 1, I>. Evidently, an inductive proof on the construction

of *E,, 2) ¢ives us that if for any computing structure D , with sigasture

bo

x i= f(x)

r (v,) A r (v,

: ES

Pigure13

Here, x is a variable, The E-program on the left replaces the one on the right in **(C,, 4) .

Figure 14

An alvays indeterminate type <1, I» E-prograa.

$ = <1, 1, I> and input tate - :w = I, w have we(zs, d) halts ir D,

then £r(d ,..., a _,) must be “ined, This 1s “ecmu:« deterrinacy umpliec
that the required images were found at every stage, enc this implies that tne

execution of m=(f£9 4) therefore faithfully followed the execution of

2(&,, 4) which therefore must have halted, thus implying the existence of
)

£(a ,..0, d._.. >

On the basis of this result, let us complete the proor of Theorem 4

by introducingthe type <1, 1> E-program REL, where s =<, 1, I,

in Figure 14, For topological reasons, MD, <¢, >) is indeterminate

for all computing structures D and input states § : w= D, - Let us consider

the wf R%(E,,4) = %» € Fm,end note that if WN¥(£,,4) = * is not

valid in a certain computing structure D , then the reason must de that

RE, d) halts in D, i.e., in light of the discussiou above, { CHPRP a.,)
exists. Thus, if we have a decision procedure for general validity, and we

apply it to the wre XE 4) S 2 and it says "not generally valid", then

there must exist a computing structure D in which the wff in question is not

valid. hich of course .mplies that rd ,..., d 1) exists. In summary, there

exist: a wff 6, , € Fm" which if not generally valid then implies that
? ~

£(d,.. a 5) exists.

We z.w demonstrate the other alternative, namely, if oO a is
? ~~

geoerally valid then £(d se... & 1) does not exist. To do this, ve introduce

the computing structure X = <X, 8, G, b> vith signature <1,1, > definedso

that the infinite sequence over {C, 1} given by (8°(a"(®))}. 5 is just
00100101100101101110010110211031110 ...

56

which in a very obvious way cor<ains images for the fcllowing sequence of

natural numbers:

0010120123012% ,..

Since the arguments dypeees d _, are loaded by searching from b using

applications of GG , and since all searches for images therefore stav in the

sequence shown above, and since an image for every natural number occurs

infinitely often, then all cearches for images will succeed, This implies that

ir ®(",, 4) = 2 is valid in X, and so R¥(&,, d) does not halt in X,

then it does s0 not because any image searches failed along the way, but because

®(€,, 4) does not halt in N, i.e., because f(d,..., 4_;) does not exist,

Thus, if we have a decision procedure for general validity, and we apply it to

the wif R*(E py d) = Mand it says "generally valid", then the wff in question

must be valid in X in particular, which of course implies that £(d,..., 4 ,)

does not exist. Thus, if 8 2, d is generally valid then f(d,..., 4 ,)
does not exist.

In summary, then, a decision procedure for general validity of wffs, 3a
in particular, would imply a decision procedure for the existence of

€(d_seees dy) for .rbitrary partial recursive functions snd arguments

4d =<d,..., d ;>, which is impossible, Tnerefore ffm M4 8? , ware

A-08c¢ Fig for signature s =<], 1, I> , 1s undecidable, |
Remarks:

(1) This undecidability result is essentially that given by Paterson [36]

although our method of proof, ocotained independantly, differs considerably.

The forerunncr of both these results is that given by Luckhsm and Park [20] for

schemes that compute with the natural numbers,

217

BLANK PAGE

CHAPTER €

In Chapter 4, we introduced the formal theory TJ = <Tm ,% - ,

vhere Sm is the set of wits of 7d ~na ef is the inferential system of

J . In Chapter 5, we exam.ncda the yencral validity decision problem for

wifs in Fm , and in the present and succeeding chapters, we will complete

our study of Tq by developing the inferential system of . Before we get
to specifying the actual axioms anu rules of inference of «’_ in Chapter 7,

we will lay the nece-sary groundwork by «<ap‘ning further syntactic and semantic

properties of E=-programs in this chapter. We will assume a fixed signature

8 =< <n,..0, D7B sees By12 throughout,

Forward Substitution of Assignment Schemata

The first syntactic notions to be exnmined are illustrated in Pigure 15(a).

We want to know what assignment schema x and qff r will make the wffs

pictured in Figure 15(a) generally valid,

To begin, let us consider the syntactic substitution of texms for variables.

If t is a term or qff, then we write (uy HEE 95) ien t , vhere n < Ww , to
denote the term or qff obtained from t by the syntactic substitution

of the terms gy, 1 <n, for all occurrences in t of the dittinct variables

u,, i <n. We can conveniently read (u ::= o)t as "t with 0 substituted

Yor u"; the "::=" notation is, of course, borrowed from Backus-Naur Form

where it also denotes cubstitution of strings. We define substitution rigorously

as follows,

58

d @ S

N oS

Co) CID ©
Figure 15(a)

Here, f and g are known assignment schema and p a known qff; x is
an unknown assignment schema and r an unknown qff,

O @ Co Co)

oN fg) ~

DS Ca Lo 9

Figure 15(b)

Here, f and g are assigoment schemata, p a gff, fg the forward
substitution of £ into g, and fp the forward substitution of ¢
into p .

| >9

(1) If t is a variable Vis then

(u, Sim 04)yent = (uy 23: 9 sen’; =v, if u, ¢ Vy for all { <n
=o, 1f Uy = Vy for some i <n.

(11) Ir t is a constant k, , then (u, tis 0) int

- (u, tim %)ien®; = ks .

(114) If ¢ is £(7,..., a1) then (u, ::3= 0.)¢
- (u, em 9)icn (Tene, "m-1) = £,(uy tse 0) sen Toseess (Uy $ sm °ica’n, 1)

(iv) If t is r (Tees Tn, -1)s then (u, im 0)ient
= (u, sim 93) 1enT3{Tpreees "n -1) = ry((u sie 05) icnTor es (u, ‘tm “scan, 1)

(v) If t is (7, = T,) , then (uy i= 9 Dien?

- (u, tim 0 yen) - 7,5) - ((uy tgs 0)sen™ - (uy tim 9)yen’s) 5

(vi) If t is (p>q), then (u, im 0 yen

= (u =o), (pP2q) = ((uz::=0,) p2(y ::=0,) a).

(vii) If t 13 (~p), then (uy tix 05)yent

= (uzi= 0), (~p) = (Au, ::=0,), Pp).

We will write CH 3 Rs 0.) int if only some of the occurrences of the

variables u, are substituted for in t .

Next, let us define the syntactic operation on two assignment schemata

denoted by their juxtaposition. Thus, if f = (vu, t= Tien and

g = (v, te 0,) scm , then their juxtaposition defines the assignment schema

fg = (vs t= (uy 23s 73) 1<n%) 5<m & (uy tm ERY

called the forward substitution of f into g , where {uy hee 2 is the largest
subset of (vw len disjoint from {% Hjem . Thus, we substitute forward all
terms of f wherever the assigned variables of f occur in the terms of g ,

and in addition carry forward those assignments of ff whose assigned variebles

do not conflict with those of g .

60

As well, let us define the syntactic operation on an assigmment schems

and a term or ff, denoted by their juxtaposition. Thus, if

f= (u, tm ¥:)icn and t is a term or qff, then their juxtaposition defines
the nev tem or qff

ft = (vu, ‘tm Ty)icnt
called the forward substitution of ff into ¢ .

The first step in the analysis of the forward substitution of assignment

schemata is the following

Theorem 6: For auy assignment schema fu, te 7,) oy » COmputing structure

D of appropriate signature state ¢ : wT, and either term or qfL 2

t(D, f(D, t]] = £tlD, t].
Thus, executing an assignment schema ff on the state { and then evaluating ¢

yields the same value or truth value as the forward substitution of £ into ¢,

evaluated using ¢ .

Proof: We use induction on the structure of t . Mrst consider the case where

t is a tem.

(1) If ¢ 4s the variable vy, then

- v,(2 (u, = 7.) [D, 81]

= v,[D, tl] if vy fu, forall i<a, or 7D, t) 1f vy =u
for scme 1 <n, by the definition of the semantics of assignment

schemata and terms

com T
- (u, tem 1),0 v,(D, t] by the definition of substitution
- (uy 1g= "em t(D, t] as required,

61

(11) If t is the ccnstant ky , then

t(D, (u, t= 7.)0 [D, ¢l]

= kB, (uw, z= 7.) [D,¢]]

= k1 ¢] by the definition of the semantics for terms

- (u, sim T en k,(D, kt] by the defiritlon of substitution
= (uy RL Tin t(D, ¢] Aas required.

(i111) If t is Ti (Tgs-ees m,-1 then
t(D, (uy := 7.) [D, tl]

= Eyl Fn ti Rens ty LR (ay nT) (BOD) by
the definition of semantics for terms,

- Py((uy 22m 1)ien TolDstlyeen, (uy zim 1), u,-1 [{D, ¢]) by induction
hypothesis

» £,((u, i= Tien Toseees (u, 1" Tien "n,-1D £] by the
definition of semantics for terms

= (u, ::= "sem CIPS n,-1(2 t] by the definition of substitution
- (uy 13= Tien tiD, ¢] as required,

Next, let us consider +he case where t is a qff,

(1) If t is FLIRT Tn _1) » ‘then the proof parallels exactly
J

the proof when t is (Teens m,-1) .
(14) If t is (p= q), then

t(D, (u, t= tT) scnlD gl] |
» (p> q)[D, (vu, := 1), (D, ¢]! |
«not pb, (u, := T)ienlDs £)] or q(D, (uw, t= 7), (D, ¢]]

by the definition of semantics for qffas

62

® not (u ::= * Vien plL, &¢) or (u, tis "Dien q[D, t] by
induction hypothesis

- (Ca, io "Wien (x, tem “en q){D, ¢] by the definition
of semantics for qff:s

» (vu, tie Tien (p> q)[D, ¢] by the definition of substitution

» (u, sm ier t(D, ¢) as required,
(119) If ¢ 1c (~ Pp), *nen the proof parallels exactly the proof

when t 15 (pDq) .

(1+ If & 218 (tT = g) , then

t(D, (u, en Tent £1]
o (t= a){Db, (u, i= ty)senlDs el]

wtp, (uv :=1), [D £])=olD, (uw, :=17.), [D, ¢]} by

the delinition of semantics for qfts

» (vu, tm 7")ientBs t] = (uy sim 0, 90, ¢] by induction
hypothes:s

ME 4 - 4 Lag» ((uy ss sen T= {u 75),9D, ¢] by the
definition of the semantics of qffs

- (u, Sim ten? = o)[D, ¢] by the definition of
substitution

od (u, sem Ty sen tiD, ¢) as required. i

“he foregoing theorem immediately suggests the following.

Theorem 7: For any assigmment schemata f= (v, tm tT.) ia and
i

g = {vy ‘x 0.) en computing suricture D of appropriate signature,
and state ¢ : ©]

—p—

_B[D,_11D,§]] = %glD, §) .

63

Thus, executing two assignment schemata f and g in sequence on a state

¢ produces the same state as the forwara substitution of f {nto g executed

on Gt .

Proof: It is possible to give an inductive proof over the nuwber of assignments

in either f or g , but a brute force mcthod may, in fact, prove moce merciful.

elb, iD, tl)

=» On, Sw oy) sll £[D, tl)
- a, i= %y) yt nl, where n = f(D, £]
= zn.oy oyID, q), a... a(n,, o,(D, nl, a(n, o,{D, nl, n))...)) by the

defirition of semantics fcr assignment achemata,

Now, for ell J <n

o,(D, 1)

= 9% Va, i= T,)iquDy t3/ since n= £[D, ¢
= (Va, tim Tia o,lD, £] by emma 3,
- fo,(D, £] by the definitio- of forward substitution of assignment

schemata.

Sc that, continuing

glp, fp, ¢}!

= a(ng., fa, ,(D, t}, a(...a(n,, fo,(D, tJ, a(n, fo[D, t], n))...))

- any _,, fay 1D, tl, a(...a(n,, fo, (D, tl, a(n, fo (D, tl,
almy15 TyilD tl, a(...a(m, 7,(D, t], am, 7(D,-t], £))...))))...))

The next step in the proof relies on certain axioms which characterite

expressions involving a , the "assign" function, and c¢ , the "contents"

function. As mentioned above, these functions were introduced by McCarthy [28],

and there he also gives the axioms

6h

(i) ali, k, a(j,£4, &)V) = a(j,£, alz, ¥. €)) if ig j

- ai, k, ¢) if =

(i1) a(4, c(4, 8), &) =

(141) (4, a(y, k, ¢)} = c(4, *%) if 1¢ 0

= kK if 1 =

which, this author [21] hes shown 4o be both ound and adeguste for aerivin,

equality of states.

The re_evance of there ~ompleteness results is that In the last expression

for g(2, fiD, t]) above, if ~ = @, for some J <N , 1 <M, then we can

prove .nat the assigmment tc m, can be cmittved since the cone to an3 wil). be
the only one to have effect. In fact the droof consists simply repeated

applications of axiom (i) abcve, Let us suppose, without lack of generality,

that {m, By... me} iz the largest subset of (m }, en disjoint fram

(ny), , where K <M, Then, on the basis of the above discuss.on,
s(D, f(D, tl]

= a(n,., fo, .(D, ¢], a(.. an, fo, [D, ¢], alm_., TelD £1 al...

a(z,, 7, [D, £], alm, =,iD, £1, £))...)))...))

- (Vn, = 19.) sem & Vy, = 7.) xD £] by the definition
of the semantics for esiiganent schemata

- a, = Cm, © gegen (Vg, t= 7), (Dy, £] DY the
definition of forward substitution of assignment schemata

= 2g{D, t] as required. |
Remarks:

71) In (2N, we =xplain in detail how the ex:oms for the a and

functions can Je used to :fTect the simplificetion required in the foregoing

theorem. It is felt that restatement of all the results in [21] is not

wWHRrrancec nere,

65

(i1) Theorems 6 and 7 lead to a certain parsimony in notation for the

diagrammatic representations of E-programs and this will prove useful when

we carry out deduction: using the drs of various E-programs,

(111) We now know through its forwarc substitution the eatire effect

of an operator, whether on another cperator or on a discriminator. It is

precisely the lack of this complete information that distinguishes the schemes

of Tanov [16] and Glushkov [13] from that developed here,

Theorems 6 and 7 seem to tell us that in Figure 15(a) the assigmment

schema x should be fg and the gff r should be fp for the wiffs pictured

there to be generally valid. This, in fact, is the content of the following

Theorem 8: The wffs of Figure 15(b)(%) and 15(v) (14) are generally valid.

Proof: (i) Consider executing the left-hand E-progran # = <X, I, £> say,

in an arbitrary computing structure D , of the appropriate signature, with an

artitrary input state ¢ WD . Then,

uD, <¢, >]

= E(M, D, §, wv) where weX and [wv] = b

= E(M, D, ¢, I'w) by the definition of the execution function E

= E(M, D, ¢, x) where xe X and [x] =f

= E(M, D, f(D, ¢]), x) by the definition of E

= EM, D, f[R, t], y) where yeX and [(yle=g

= E(W, D, g(D, f(D, £1], ly) by the definition of E

= E(M, D, glD, £(p, tl], z) where zeX and (z] = e

= <g[D,£[D, €]], 0 > *®. the definition of E

= <fg[D, £), O> by Thecrer 7.

66

Now, consider executing the right-hand E-program, 8 = <X, I',&> say, in the

same fashion, So

op, <¢t, >]

= E(B, L, ¢, x) 4here x€X and (x) = b,

« B(8, D, ¢, I'x) by the definition of E

«EB, D, t, vy) where yeX and (y] = fg

= E(®, D, fglD, t], ly) by the definition of E

= E(8, L, fg'L, t}, £) where z€X and [2] = e,

» <fglD, t], G> by the definition of ZT .

Thus, for erbitrary I and t , up, <t, @] - 9(D, <, a>) ’

f.¢., f= LK ° 8, as required, |

141} Consider executing tie left-hand E-program, § = <X, I, £> say,

in an arbitrary -omputing structure D, ol the appropriate signature, with an

arbitrary .nput state § 3 WD . Then,

uD, <¢, C!

= EM, D, ¢, v; where VEX and (v) = b,

= B(M, D, §, Iv) by the definition of E

= EW, D, t, v)} where wEX and (w]=T¢

= EW, D, f[D, t], I'v) by the definition of E

= E(N, D, f(D, i, x) where x€X and [x] = p

= EW, L, f(D, ¢), ¥) if p[D, £iD, £1], or E(M, D, 2(D, tl,z)

otherwise, where y, z€X and [y] » es (2) =» e, by the definition of Ek

- EWM, L, r[D, ily) if fp(D, t], or x(W, D, f(D, t], £)

otherwise, by Theorem 6,

67

= <r{p, ¢], @ if fp(D, ¢} or <f(]D, £], I> otherwise, definition of E.

Now, consider executing the right-hand E-progrem 8 = <X, I, <> say, In the

same fashion, Sco

or, <t, ©’

w E(®, DR, ¢, u) where u€X and (u} = b,

= E(8, D, ¢, Mu) by the definition of F

= E(®, D, {, v) where veEX and [v] = fp

= 5(®, D, §, wv) if fp[p, t] or E(B, D, ¢, x) otherwise,

where w, x€X aud [w] =f, [x] = £, by the definition of E

- E(®, D, £[D, t], I'v) ir fp(D, ¢]) or E(B, D, ID, t], I'x) otherwise,

by the definition of E

= E(®, D, r{p, tl], y) if fp(D, ¢t], or E(®, D, flp, t], z) otherwise,

where y,2€X and (y] = es [2] = e,

= 2p, 5), > if fp(p, t], or <f(p, ¢], I> otherwise, by

the definition of E .,

Thus, for arbitrary D and t , M(D, <t, ©] = ®D, <¢, ®]

i.e., {= %=0 6 as required. |

Remarks:

(1) Though the proof of the foregoing theorem is somewhat tedious, it

nevertheless points up the raie of the execution function in semantically

oriented proofs of general validity for wffs. This sort of verification

of general validity will certainly be required of all the axioms in the

inferential system introduced in the next chapter.

68

(11) Of course, the wfts of Pigure 15(b) will be key axioms in that

inferent:a sy:tom

Instantiation of Well-Formec Formulas

We vant to exvend the ideas of the precedi-y section to allow substitution

¢f terms for variables whenever they occur in the E-programs of a «ff.

Thue wff resulting from such e substitution Will be called an instance of the

original one. We are alsc interested in specifying the conditions under which

an instance of a wif is also a semantic consequence of it, This sort of

syntactic: process must be available if we are to carry out derivations from

a set of proper axioms or hypotheses.

First, let us extend the notion of substitution to E-programs and write

(wy ::=1,), W, vhere n<w , to denote the E-program obtained from W

by the simultaneous syntactic substitution of the terms rv, , i<n, for all

occurrences in ® of the distinct varisbles u, , i<n . HNote that if some

Uy , i<n, occurs as an assigned variable in an assignment schema of HN,

and T, is not a variable, then (u, tm Tic ® is not a permitted syntactic

operatior since the result, if the substitutions were performed as indicated,

would not be an Z-progran.

To give a more precise definition, suppose that ® « <X, I, X> , Then

(u, ::= Tien Wa<X I, Z> where XI’ is defined as follows, (Note: we
write [x)’ for X’{x) here,)

(1) Ir (x) BY E, then [x]' = [x],

(11) If [x'e« W, then (x) = (u, tim Tian X] .

69

(i113) If [x] ¢ , ay, ir - (| re "in , then

Ld” = (Quy em 7) «, r= up ae “Jian 0) om

Of course, as mentionec above, if wu. = of fcr some i<n , j<m and Ty is

not a variable, then (u ::= 7.) WM is not a defined uvperation.

Then, an instance wu, Les To) U-8 f “he vff 8 = 8B is simply

(u, iia Yin y= (u, =) BL

To discover when an incter:e of a wf is also a semantic consequence thereof,

we need the concepts of scope and freedom, Consider the E-program ¥ = <X, T',ZL> .

If the variable u occurs as an "scigroi variable in an assignment schema [x],

vhere x € X , then we define the scope of that occurrence of u to be the set

of variables which have occurrences in the assignment schemata and ffs labelling

nodes reecheble via I from x . The example in Figure 16 indicates the scopes

of the assigned variables ir a simple E-program.

Then, if J{(7) = {w : «v is a variable and w occurs in the term rt}

ve say that the term 71 is free for the variable u in M iff (i) and (ii)

below both hold,

(1) For each occurrence of a variable w € \J(7) as an assigned varisble

in M, u is not in the scope of that occurrence.

(11) If u occurs anywhere in ¥ as an assigned variable, then 1 is

simply a variable w , and for ~ach such occurrence of u as an assigned

variable, w 15 not in the scope of that occurrence.

In Figure 16, notice that u 1s free for v , and that vy is free for

u, f(u) and gu, v).

We bring together the notions of substitution, scope and fr«:dom in

the following

70

(2, +] viet)|) fo)

CT

Figure 16

Here, u, v, w bare distinct variables; f, g¢ are function letters;
and p, r are relation letters. The set of variables associated with
each assignment schema !s the scope of the assigned varisble.

11

Theorem 9: For any signature s , any wif M8 € Fm, terms 7, and

distinct variables uy, i<n< Ww , if for all i<n, tS. isfree for uy An

YU and B®, then

(1) for all computing structures D with signature s ,

bpd ° 9 = bp (vy 3= 7.) U=S,
or alternatively,

(11) {uM < %} = (uy 1 i= Ti)ien 9.

In this case, we say that (uy i= Ty) 1en ® Z® is a proper instantiation

of M=®, Evidently, then, any proper instantiation of a wff is a semantic

consequence thereof,

Proof: The notion of freedom here is actuelly very simple, and the theorem

follows easily once the nature of an E-program ¥M in which a term T is free

for a variable u is understood. We will employ an intuitive proof rather than

a highly technical one since the latter would only obscure the simplicity of the

situation. We will assume a fixed computing structure D .

Let us first consider the simple case of a term f(w) , say, where f is

a function letter and w is a variable, teing substituted for the variable

vg in the type <m, > E-program WM . In this case, only condition (i) for

freedom is relevant, and we require that vx is not in the scope of any

occurrence of w as an assigned variable, That is, for any execution of ¥ ,

Vg Will wot be evaluated once an assignment to w has been made, It follows,

then, that any evaluation of a substituted occurrence of f(w) during the

executior of (vy s:= (Ww) will simply utilize the value of w it had in the

input state, Thus, executing (vi ::= £(w))M with any input state np gives the

12

same result o. .ccuting M with input state a(k, f(w){D, nl, 1), l.e.,

(vy 22= i(« MWD, <q, D] ZWD, <a(K, £(w)[D, ql, n), ©), for all im.

Of cour: , the same sort of result holds for E-program ®, i.e,

(ve t:= £(v1D, <n, i>] = (D0, <a(k, £(w)[D, nl, n), DI], for all im,

ff tlw) i ‘ree for Vy in 8, But, the hypotheses for Theorem 9 sive

ue that I=L “8, i.e, for all im, Yor all & :w=L , we have

ud, <t, i 8D, &, i> , Put then the transitivity © = gives that
for all i<u ,

uD, <a(K, f(w)ID, ql, 0), 1] = 8D, <a(K, f(w)ID, 1], 1), >]

since for ar, state nq wT , there is scme £:Ww—D such that

¢ = a(K, £(«}D, nl, n) . Then, combining the results above, we have

(vy tim £(w))ulr, <q, 1] = (v 1i= £(w))®iD, <n, i>}, for all i<m ., But,

this is true for all wn: w=) , so that = (vy s:= fw) = (ve iim £(w))® |

i.e, bp (vy ::= f(w))M = 8 , as required. N

Extension of this result to terms with more than one distinct variable

occurring in it is straightforward. But, now consider the more complicated

case of a variuble vy being substituted for another variable Vi ir the type

<m, o> E-program ¥ , where v, occurs in ¥ as an assig.ed variable. In thic

case, both conditions (i) and (ii) for freedom are relevant, so that we require

that vi is not in the scope of any occurrence of vp as an assigned variable

and vp is not in the scope of any occurrence of vy 88 an assigned variable,

That is, for an; -xecutivn of ®, v, will not be evaluated or be assigned a

value once an an: umme:t to vy, has been made, and vg will not be evaluated

or be assigned su new value cnce an assignment to Yi has been megac., For both

these conditions to be true simultaneously, either vy Or Vv, never occurs ir.

75

8 as an assigned variable. If it is v, that never occurs in # as ar

assigned variable, then we have precisely the case already analyzed above.

If we have the case where vy does rot occur as an assigned variable in

¥ , then it follows that any evaluaticn of a substituted occurrence of vg

during the execution of (vy i= vy M will simply utilize the value of vy

it had in the input state. Thus, except for the values of v, and vp

in the output state (if such 1s determined), executing (vy 1:= PM with

any input state v gives the same result us riecuting ¥ with input state

a(K, v[D, nl, 1), t.e.,

(vy t2= vy MD, <q, ©] = (vy, wv 182 <aK, %[D, 3], n), ©] for all i<m.

The notation whereby the "=" symbol is subscripted _y a sot of variables

was first used by McCarthy [26], and has also been used by this author [20].

Here, for W®(D, <¢, ©} & CR (BL <¢, >] to hold, either both sidesQ -

are indeterminste, or both are determinate, producing <t', J'> and <t", J'™

say, suck that J' = j" aud c{K, ¢') = c(K, ¢") for all

K€ {m:vefu,..., vu;}}. Thus, §' and {" may differ on in

locations corresponding to the variables wu,..., ug oe

In this instance, we can actiaily say what the relationship is between the

values cf Vx and \/ in the output state, if there is ome, Suppose that

(1) (vy sim vp M(D, Lg, ©) = <a’, J»

(11) MD, <a(K, v,[D, nl], q), ©] = <a", J%>

Then evidently, c(.£, a') = c(X, @'), c(K, a') = c(K, vy), c(f o) = c(£ 4)

and <o' > = <af', "> .
’ J {vy vs} ’ J

74

Of course, the same sort of result holds for E-program 8, i.e,

(vy tim vp)8(D, <q, >] & (v,> vg) ®(D, <a(K, v (D, nl, un), 1
for all i<m. Let us suppose here that

(1) (vg ::= y)0ID, <n, ©) = <8’, 3

(11) 8D, <a(X, v [D, 1], 0), ©] = <6", 4"

Here too, we have c(4, B') = c(K, 8"), (Kk, B') = c(K, 7),

c(4,8") = c(4,q) and <8’, J"> = {vy vp) <p", ">.
Now from the hypotheses of Theorem 9, = 8 9, so that in particular,

<', "> =p", J", i,e., & =p" and j' = J' . What ve are

now is that <a', jj» = <p', J"> . Well, we have jJ' = j" , 80 all that

remains is a' = f* , We proceed as follows:

<0 ™ a <f > af" JO- tJ" . Thus, ve have> J {vgs 2} J <® J (ves VI r J ’ only
to show that c(X, o') = c(X, f') and c(4, a') = c({, B') . But

o(K, @) = c¢(K, 3) = c(X, £*) and cf, a') = c(K, o") = c(X, 8") = c(4, B') .

Thus, taken all together, these results give <a', J*> = <B', j™> , Bince this

is true for all i<m and sll np: WwW —+D , we have

bp (vg tim Vy ME (, 1:= v, 0B, Le, Fp i= vo 5 8, as required,
This covers all the cases. It is also easy to verify that the substitutions

(u, Pim sen may ‘be done simultaneously without dsmaging the results so far
proven for the single substitution case, |

Figure 17 illustrates :everal examples of proper instantiation, and in the

next chapter, this syntactic operation will be incorporated into our inferential

system as a rule of infereace,

72

~ —_— —_ =
u := glu) u := g{u) | Goat ou 1 u := glu)

-
lo

© Co 9 Co)

(v pl i

- ~~ _— — ~ ———

Figure iy

Here, wu, v, x arc variables; ff, g, are functilon letiers; r is ~ reiation lett-r, and x is a
constant, The rigrnt-hand E-programs result from the left-hand E-rro-ram: through ta: nropv n-
stantizticon indicated, Continued next page,

(x ::= y)
(vy ::= h(2))

x t= £g(y)) ~~ => |y:= teh) | = |v i= s(fn(z))

3
-J

(u z= g(x))

Gv ~ (a) ~ —a (a(x) A~p(2(8(x))) =

Figure 17 (contd,

Here, x, y, 2, u are variables; r, p are relatiun letters; and f, g, h are function letters.
The right-hand E-programs result from the left-hand E-programs through the proper instartiaticns
indicated,

Remarks:

(1) The notions of "ccurrence” and of a variable or term “occurring”

in sme formula has been left informal in this discussion. Thi: is simply

because intuition alone is an excellent guide in these matters, not because the

formal definition is intractable. Feferman [10] treats a similar

matter for the predicate calculus,

(11) The roles of substitution, scope and freedom in this work seex

curiously similar to related matters in the vredicate calculus. For example,

see Mendelson {35, pp. 4€ and 53]. There is likely more in this than at first

meets the eye,

Camposition, Decomposition and Replacement of E-programs

Before considering transformations on E-programs which alter their

tcpoiogical structure, we must consider the syntactic operations of composition

and decomposition of E-programs, In Chapter 5 we leaned heavily cn an intuitive

understanding of how the graphs of E-programs could be combined to form the

graph of the composition of these, but a few further details are in order to

make these ideas more formal,

Roughly speaking, a composition of two E-programs # end ® to form a

new E-program §€ is accomplished simply by pairing in a 1-1 fashion some

terminators of B with initiators of W , and then joining ® and 8 together

at thes: points and simultaneously eliminating these terminator-initiator pairs.

To assur: that the result of this composition is in fact an E-program we require

there be m< ww initiators and n< w terminators rexaining, and that these

be relab:lled b , Oyseeeaby o and ee, €1scees®y reapectively, This rather

7%

loose description can be made more precise in terms of the set theoretic

definiticn of E-programs, but no real benefit is .0 be gained by such an

endeavor. Instead, we use the example of compositicn in Figure iB to

illustrate the details.

Roughly speaking, a decomposition of an E-program § into two

E-programs # and 8B is accomplished aimply by interposing a number of

new terminator-initiator pairs between nodes of § , and breaking @

apart of these places. Of course, proper attention must be paid to the

labelling of the new initiators and terminator. to assure well-formedness

of # and 8. This rather loose description cai. also be made more

precise in terms of the set-theoretic definition of E-programs, but

rather than introducing such opacity, we will simply say that § can

be decomposed into ® and WN if there exists a composition of ¥ and

B to form § . Figure 19 illustrates a simple e¢xample of decomposition.

If § can be decomposed into two E-programs, one of which is § ,

we muy say that ¥ is a sub-jrogram of § and write €(¥) instead of

€ to indicate this, If ¥ au © are F-programs of the same type,

then we say that the E-program §(®) arices fram €(M) through

replacemens of sube-program ¥ uy ® , provided that the composition that

forms G(M) , and the composition that forms (8) , are identical.

Figure 20 illurtra‘c:c = cimple examplz of replacament.,

19

T 3 Cultl

<>. T
1 / &

< CY
E-program §

{¥ T
oO @ E-program §

E-program ®

Figure18

A composition of E-programs 8 and 8 to form E-program &§ . Here, ff, g, x, y¥, 2 are
assignment schemata; and p, q, r are qffs.

— a

las “N
7 |

rad !i

f rr? /
Pa 4

JP Ti x | /’
-

pd Jt

NEDf J
' :

AY oe"

Firure 1°

Here, f,6 g, h, x, ¥y are ascigmment schemu.., wc p is '. gff., The
lower two B-programs result fram the indicated 4 campnsit ic. of the
upperswst E-progras.

81

Lg CL

f SD EN
_ \

© UC

9) oo [t-prorrws &(W)LE)
\ J

(3 e

DG

2] |v

1 E-program §(®)

oa
”~ |

4 \

| |

| a Lv] Pd
Vaan ap Er Gb ED En E> a EH On $0

¢ (3

Figure 20

Here, f, g, Ww, 2, ¥ are assignment schemata, and p, q, r, 8 are
qffs, E-program €(B) arises from €(8) through replacement of sub-
program ¥ by B®.

82

We bring together the notions of composition, decomposition and replacement

in the following

Theorem 10: For any signature s , E-programs § , ® , &(M) and G(®) in

where 8 and 8 are of the same type and &(8) arises from &(M) by

replacement of sub-program ® by UW :

(1) for all computing structures D with signatures ,

Pp¥8 = |), 64) = §(8) ,or alternatively
(11) {M0 = #8} k= &W) = G(W) .

Proof: Since §(M) and §(®) sare formed using the same camposition,

if during the execution of &(M), MU is entered where b, was and left wher:

ey was, thereby producing a certain result, then since = 8 = ¥ by hypothesis,

during the execution of &(®) , B will be entered where b, was and left

where e3 was, and will thereby produce the same result, Thus, §(X) and
8(8) are equivalent in D whenever % and 8 are,

Remarks:

(1) Theorem 10 will serve as the basis for a replacement rule of inference

in the inferential system defined in the next chapter,

(ii) The substitutivity properties of equivalence and strong equivalence,

along with their obvious symmetry, characterize them as equivalence relations

in the ordinary sense,

83

CHAPTER 7

THE INFERENTIAL S/S5TM

In Chapter 1, we introduced several basic ideas regarding & formal

theory of strong equivalence and we will continue here tc develov along

those lines, In Chapter 4, we irtroduced the formal theory

JT, = <n, >, and in Chapters 4, 5 and 6 the set Fu of wffs has

beer studied. In this chapter, the inferentisl system of = < /x ov>
is resented and its soundness demonstrated,

The inferential system I = <4x s xX > consists of an effectively

decidable set Ar C Fm, Of wifs called the axioms and a finite set R

of rules of inference. For any set OC Fm , Wwe write 4 FM =® iff

the wff ¥ = ® is finite.y derivabie from & U 4; using RK. By this we

mean that there exists a finite sequence of wife 6, 6,,..., € . such that

for all : <u , either 6.€ 04 Uhr, or 9, can be inferred frem 6 _,..., 6; _;

by some rule ir R, and 6 . is ¥W=8.

The rules of inference in RK will be prescribed independently of the

signature s . In the same spirit, we will define A» ¢ by first defining

a finite set Ay of axiom schemata, also independent of s , and then

fi = M=®¢ Png 2 U0 is a' instanceof some axiom schema in 42 } .

If 4 c Pow is a set of wffs such that for any wff M -®B¢ of

and any AC of we have LO f=8 =B ®»A U8, then we say that the

inferential system «f . is extended complete for d; if we have only

=t-8 |W = 8, then we say of, is complete for J . Notice that

8h

extended completeness implies comp'.tcness. As to be ~xpected, whether or

not of is complete or «xtended complete for same 5 = rg depends

on the signature s , the set & and, of course, the sets .+¢ and Lo.

In addition, we will say that the theory J. =< Songs <> is complete

(or extended complete) if wl is complete {or e<tended complete) for

Fin .

Before we formulate 2 and study its properties, we should note that

there are definite limitations on the axiomatizability of strong equivalence,

i.e., on the existence of an inferential system complete for Fn . We say

that the formal theory Tq = < wg Pe is axiomatic if its inferential

system <J = <.fz4 £ > is effective, i.e., Aa g © Fmg 1s effectively
decidable and the rules in HK are effectively applicable. Thi: means that

we can always recognize when a wff is an instance of an axiom schema, and we

can always determirie if the proposed application >f a rule of inference is

legitmate,

In Chapter 5, we showed that the strong equivalence problem for wffs in

Jo s , where 8 =<1, 1, I>, is unsolvable (Theorem 4), But the minimal

language Lg , where recall qffs of the form (1 = g) have been suppressed,
suffers from another unfortunate malaise which must serve as a basic

restriction in our attempts at formulating an axiomatic complete theory

of strong equivalence, Consider the following

Theorem 10: For the signature 8=<1, 1 1>, there exists no effective }

inferentialsystem complete for Fim _. |

85

Thus, for any signature s = < DB seeey R17» Wye m, 1” P ,

if k> 0, £> 0 and p> 0, any effective Inferential system is of necessity

incomplete. This precludes, then, any axiomatic complete formal theory of

strong equivalence for E-programs in systems with any appreciaile computing

power.

Proof: In the proof of Theorem 4, we established an isomorphism between the

set AC Png of generally valid wffs of the form ®*(f,, d) = * ,

where 4d = <A sees 4.7 and the set B of pairs <&, <> such that

£(d_,..., 4_,) does not exist, Now, consider the set C of all pairs

<Ep & and the set DCC of all pairs <[F, & such that f£(a,..., 4,)

does exist. Now D is certainly effectively emumerable, for exemple, by

computing each £(d,..., 4 |) a little bit, infinitely often, and noting

when one produces a final value, But, recall that D is not effectively

decidable (i.s., the set membership decision problem for D is unsolvable),

Then, certainly B= C - D {is not effectively enumerable, since the effective

enumerabilityof both B and D where BUD= C, would implyan existance

decision procedure for any f(a ,..., 4_,), namely, perform the enumerations

of B and D until <E, & comes up; if <f,, & €D, £(d yeeey 4)

does not exist and if <Fr,, & €D then f£(d,..., 4 ,) does exist. This

implies D ix effectively decidable,a contradiction. 80 we have that B is

not effectively enumerable.

But then neither is AC Fm.~ effectively emmersble, since A mnd

B are isomorphic. Suppose that there exists an effective inferential systema

camplete for Fm." , 1.e., ve have |= Bad} WS ® for all

W>®c Fn" . Then, since the inferential system is effective, ve can

86

enumerate all thc theorems, which by completeness yields an enumeration

of all the generally valid wffs in AC Fine,” Cc Fmt , & contradiction, Thus,

no effective inferential system complete for In” exists. |

Remarks:

(1) In spite of the pessimism that this incompleteness result is likely to

engender, we can nevertheless take heart in the several areas for which AL
is both effective and complete and even extended complete, We will take these

matters up in Chapter 8 after introducing the sets A ana K

(11) or course, if we accept Church's thesis, we can replace "effective"

with "recursive" in the above discussion. Then, < £, &> would be a "sequence

number" or "g&del number" generated in an appropriate manner from the form §£ ¢

and sequence i =<d,,..., 4.7 .

The Axioms and Rules of Inference

There are fifteen axiom schemata: fx = {Al, A,..., Al15} , and five

rules of inference: XK = (Rl, RR,..., R53},

First, we give the rules which characterize "=" as an equivalence relation

in the ordinary sense.

RL: ¥-9=>8-H

R:U0=-8 =>¢N) =¢(®) vhere €(V) arises from €(X) through the

replacement of 8 by ©.

Then, to permit derivations from hypotheses, we have

RE:0-8 (ug iim Tin ¥°0.

The axiom schemata Al, A2,.,., A] characterize the properties of qffs,

and are illustrated in Figure 21. Also in Figure 21 is a rule R3‘ which 1s

Just a particularization of Rj, we mention it here because it reflects the

instantiation properties of qffs.
87

<p <> <<»

a> = = = Go
7

oo) OC LD) ® © SIC S) 5
&

& @ & &

2: 7 — rs LR: <O = C=
Ca Crd CpJ

Co Q CG 9 © & Co) Cu Cy

Figure 21

Axiom schemata that characterizes qffs, Here p, q are qffa. Continued next page,

QO d C 6S

Va 2 ~| =>Cmved =
3 DO OO © & ©

o3
O

Al: (uy = 7)y ey 2 (2 (uy sims), ip) = Ab: <I» a

3d @ OO OO & DY
Figure 21 contd.

Axiom schemata and rule that characterize qffs, Here, p is a qff; u; i<n , are distinct variables;
and To» i<n , are terms.

The axiom schemata A8, A9, AlQ and the rule B4 characterize the properties

of assignment schemata, and ave illustrated in Figure 22.

Axiom schema All characterizes the effect of operators on discriminators,

and is illustrated in Figure 23(a). When this axiom schema is applied, we will

sometimes say that the operator f is "pushed through" the discriminator p .

The three axiom schemata, Al2, Al> and Ald, provide a characterization of

the graph-theoretic properties of E-programs. In what follows, § = <X, I,

is assumed to be a type <m, n> E-program. First, we have

A2 : NF °, (W)

where i <m and ¢, (w) is called the i-th separation of ¥ . Roughly

speaking, ALY is formed as follows

(1) A copy ¥, is made of the sub-program of NM whose nodes are

reachable via I from the node labelled with b, .

(11) Then ¥, is composed with 8 30 that the node labelled with by

nov leads into a, .

An instance of Al2 is shown in Figure 2i(a), and this should make matters

intuitively clear. However, a demonstration is given in Figure 2i(b),

which shows, albeit in schematic form, the decomposition and composition under-

taken to obtain the instance of Al2 given in Figure 24(a). When this axiom

is applied, ve will sometimes say ’. (W) is obtained by "separation".

Notice that separation gives rise to extraneous nodes in o (®) vhich are

not reachable from any initiator node. Axiom schema Al3 does away with such

nodes. We have,

Al : = 8%) ’

a?

2 > EB (uy i= uy) o =

& O (2 &

g Ao: CEU o CAREX

C9 e

Q O © 09

3 = = Crag =

& & OO & QO
Figure 22

The axiom schemata and rule that characterize assignment schemata, Here, ff and g are assignment

schemata; u, , i<n , are distinct variables; rt,, o,, i<n , are terms; and s : n +n is any 1-1
onto permutation.

f <>

mr (Gy - a
Lo & SEC

Figure 25(a)

The push through axiom schema, Here { is an assignment schema and
p a Qff,

ass <>} = Cr
rou)

C9 Oo
Figure 23(b)

Here p 1s a qff,

92

fl Le Lb Le Le
‘ oy

<> <> Cr) Cr <>

> KB =] LE

DD © ® © B® ® &
Figure 24(a)

Anining separation axiom schema, A12: Ml = ¢(M) . Here f, g, h, x, y are assignment

Bchematic form of E-program

—— §. @® denotes an initiator,
| and O a terminator,

| oO

% is decomposed into a

type <8, > E-prograa
and a type <5, © "md"
E-progrem,

PAS SO BAY

Figure 24(b)

Continued next page.

Gh

3 £
% o 4%

Ct 11dy 1

1 158

00

ob
oso o-~0 :

[© =

. in :
RS I

oO ?

gy

(«y (
;

95

The final composition

Nu produces the O=-th
separation of WN ,

® ® 0) 0

Pigure 2:(b) contd.

where Of) = <X’, I’, L%, X’ = X(®) UX(f) U [x € X: x is reachable

via [from same y € X(3)} , I'Y is T restricted tc X', and <I’

is X restricted to X’ . An instance of Al3 is shown in Figure 2k(c).

If a certain section of an E-program is a cul-de-sac, 1.e,, has no

exit to a terminator, then we shall went tc detect this at a graph-

theoretic level. we have,

FILER EAL)

vhere i < m . Roughly speaking, R, (W) is formed as follows,

(i) A copy ¥, iz made of the sub-program of ¥ whose nodes are

reachable via I' from the node labelled with b, , as in the case of Al2

when forming #,(¥) .

(i1) If at least one of the terminator nodes of N is reachable

from the initiator node of u corresponding to that of § labelled

with b, , then 0, (x) = ¥, i.e., we make no changes,

(iii) If none of the terminator nodes of ¥, is reachable from

the initiator node of u, corresponding to that of ¥ labelled Db{9

then a special always indeterminate E-program % of the same type as

u, is composed with ® so that the node labelled with b, now leads

into %.

An instance of Ald is shown in Figure 24(d), and this should make

matters intuitively clear; the special always indeterminate E-program

® is also illustrated there, However, a step by step demonstration is

given iz Figure 2i(e) which shows, again in schemitic form, the decom-

position and composition undertaken to obtain the instance of Al4

given in Figure 24(a),

>{

Co) Co)
a

<> «>
fa8

(aRo Ro) a
S ® Co ©

Figure 24(c)

An instance of Al3. Here, g, x, y, z are assignment schemata, and p
is a qQff,

3 by Cy @

Cp (fem [EC
«> x o ao x

nfo) ofio)
& € ® 3

Figure 24(d)

An instance of axiom schema Ah: ¥ 5 Q (M) . Here, f, g, h, x are
assignment schemata, and p,'r are atts.

98

Schematic form of

E-program § .

0

8 is decomposed into

a type <5, »
E-program and a type

<3, >» "null"

1 0 ! E-proyr an,

oO Subprogram ¥«(+ Is a cul-de-sa? A ©as is that ut

Figure 24 (e) contd,

Continued next page.

99

The "null" E-program is
replaced with the special
always indeterminate
E-progranm,

} 1 |

The result is 2(¥) .

oO

Figure 2h (e) contd,

G3 (2 ©

(£5 =] = (=p
&, 9 ® GG

Figure 24(f)

Simplification of the left-hand E-program of Figure 24(d) using Al3 and Ab,

100

Of course, further simplification of the right-hand member of the

wif in Figure 2h(e) can be made by applying Alk to the appropriate sub-

program, and then applying Al3 to remove the isolated component.

Pigure 24(f) shows the final result.

Another sort of cul-de-sac is detected by axiom schema Al. As

11lustrated in Figure 25(b), ve are dealing here with logical, as

opposed to topological indeterminacy, This sort of construct can be

used to define pseudo-qffs with "undefined" as an additional truth-value.

The last rule of inference is Ry and 1s called the recursion rule,

Before giving the general statement of the recursion rule, we consider

a restricted instance thereof wnich illustrates, in a simple manner,

most of the salient points. This restricted instance, which we refer

to as RS’, and which is illustrated in Figure 25(a), allows us to infer

a recursive closed form for an E-program, which is initially defined

iteratively, i.e., not in clcsed form. As we shall see in Chapter 6,

even in this restricted form, the recursion rule is a powerful derivatiooal

tool and is c=ssential if certain derivations concerning E-programs with

loops are to be made,

The restricted rule RS’ 1s actually that vsed by McCarthy [28] when

discussing "recursion induction" for flowcharts. Thus, if two E-programs

¥, and W, sati:fy the “equation” in the premise of R5’, then W * WU, ,

since by R53’ both 8, and &, are strongly equivalent to the recursive,

or closed form, E-program inferred using R5’.

101

© (bg bo) (by)

E-program 8’ E-progrem ¥”

provided that in any computing D in which the wffs of A and ¥ =‘ are valid, then for all
t :woD , if w’(D, <¢, ®] "is indeterminate, then so is uD, @].

Figure 25(a)

The recursion rule, R5’, Here p is any qff and ¥, 8, € and type <1, 1> E-programs,

Ay | ==

Pg

F-program o,

|

i<n

where, for each in , ®, ®, € LA <V {the k distinct type <1, i> null
E-programs}, g, B, are any type <k I> E-programs, and x; is the i-thclosed form com <sition (defined in the text) of the E-programs in
5} <n provided that in any computing structure L in which the proper

obs in A, and the wffs in (M =< 2s are valid, then tor allt tw =D , and <n, if R(D, 4, 05]*Fs indeterminate, so is «(pn <t, ol,
or alternftively, it (0, <t, >] is determinate, so is x1, <¢, & .

Figure 25(0)

The recursion rulc RS.

= 103

Q 3 o &)

ONES CANO NE

alain all 3)O O08
CD @ © QE C ORD

E-program BD E-program 3

d > ® QD

H.R ®.R
AERA A x

(> OS
) © |) a

CRS Ro) O&O

E-prograa 3, E-prograa Bx

Figure 25(c)

Areatte; ach fh 6 be ky x} anh iSligment senmate. This Flew tet ©
continuedon the next page.

108

(95 G2(t OC y] [x]

(= o
C20

5 eo] [2]

OG Ca 5)
Figure25(c) contd,

An exsmple showing the 2nd closed form composition of 9, P,, T, and T .

The general form of the recursion rule RS is illustrated in

Pigure 25(b). The ith closed form composition referred to in

Pigure 25(b) is formed frum the E-programs {D,) (cy iD & simple way.

For each P,, i<n , suppose that ® is “ and R, 1s v, Jor
seme m,, 0, <n, since recall WM, WN, may be members of {W.},

Then, we delete, in 2, , the entries into Yao, and Yo , and in-
stead set up branches from S. and B, directly to the di-.crimin-

ators Pu, and Pa, respectively in the E-program: Th, and %a, .
We retain one set of k terminators, and for any ®, {or x.) that is

a null type <2, ik» E-program, i.c., 8 single branch fram the nitiator

to one of the terminators, we set up a branch from §, (or B.) to the

appropriate terminator. Of the k initiators, we retain only v, , but

relabel it b°° The result of all these operations is the ith closed

form composition of the E-programs (®) j<a ° An 2xemple of this con-
struction is given in Figure 25(c).

The recursion rule RS can be used to implement recursion induction,

in a generalized sense, for flowcnarts. Suppose that |, = ® , 1 <n,

and a, ’ %® , 1 <n, ana that the side conditions for application

of R5 hold in each case. Then, |, “% and ju, °~® ,1i<n,

by R3, and then |-M, *®,‘, 1 <n, by RL and R2, Without referring

to Rp, we could use the termizology of recursion induction and say that

since (u,) <n Ad (w, l<p DOLD "satisfy" the "equations"

X, “® , 1 <n, and since both %, and u’ are "defined (i.e., halt)

for the same arguments”, then, by recursion induction -u, s uw’ s 1<n,
The side condition "defined for all arguments" is, of course, equivalent to

the side condition for RS.

106

It is straightforward to show that using separation (i.e., Al2)

and push through (1.e., All), we can put any type <1, n> E-program
into a rorm directly expressable as the O-th closed form composition

of a set (3), 5 of E-programs,where ¥, °9®, , i<N, 1s a set

wifes like that required for Ry, where N < « is the number of qffs

in the original E~program, Thus, we can prove the strong equivalence

of any two type <l, n> E~programs using R;. But, proving the strong

equivalence of any two type <m, n> E-programs can be achieved by

reducing the problem, via separation, to proving the strong equivalence

of m sets of pairs of type <1, n> Eeprograms, which we can do using

R2. Thus, proving any two E-programs strongly equivalent can be carried

out using recursion induction, 1i.,e,, using the recursion rule Rj.

Of course, for certain signatures s , the question of whether the

side condition for the application of R3 holds may, in general, be un-

decidable, However, the possible ineffectiveness of R5 usually presents

ac problem when carrying out relatively simple derivations as the side

condition usually ca: be resolved. In fact, £ being ineffective in

general leaves open the possibility that ~ is complete for Fng 3

we will not pursue this possibility here, however,

Remarks:

(1) The axiom schemata A8, AQ and AiO, as we shall see, correspond

directly to the axioms mentioned in the foregoing chapter for the "assign"

functiu: « and "contents" function c . |

(i) The axiom schemata Al, A2 and A3 are similar to three axioms from

& set of ten given by McCarthy [30] for conditional expressions, The rest

107

are obviated by the flowchart representation (as opposed to linear strings),

and by the presence of a rule of replacement in our inferential system.

(111) The inferential system of implies that given by Ianov [16],
i.e., we can prove all of his axioms (and more, of course) in our system, More

on this will appear in Chapter 9.

(iv) It is, of course, mildly unpleasant to have to use the assignment

schema Vo 1= V, in the special always-indetermjinate E-program % . This is

akin to not having logical constants in the propositional calculus, and instead

employing pV ~p and p A~p for truth and falsity, Ianov, faced with the

same unpleasantness [16]. used an identicaily false discriminator whose false

branch returned to itself, and whose true branch proceeded to the exit of the

prograa scheme,

Soundness of the Theory 7,

If the theory J. is to be useful at all, we should require that the

theorems of J, be generally valid, or at least semantic consequences of any
hypotheses used in thelr derivation.

Theorem 11: The theory J. is sound, i.e, for all AG Ap _and all

8 KI Ih. wy ES YY Ef

Proof: It is sufficient to show that the axiom schemata in. Ar geuerate

axioms in - x, that are all generally valid, and that the rules of inference
in R all preserve validity, i.e,, if arule is HM = 0 = 4’ ZB’ then we

require {Ml 8} j=%' 0’,

Rule RL : partial equality, "=" | in the definition of validity is

symmetric,

108

Rule R2 : Theorem 10.

Rule R3 : Theorem 9.

Axiom schema Al: first consider an instance of the left hand member of

Al (cf, Figure 21(a)), W = <X, I, I> say. Assume that D is an arbitrary

computing structure of the appropriate signature, and that § : w >D, is

an arbitrary input state, Then,

%(p, <¢, O]

= E(N, D, gE, u) where u€X and [ul] = b,

= E(M, D, ¢, Nu) by the definition of E

=E(M,D, ¢, v) where veEX, [vl]=p and Iv=aw, 2, w, 2 €X

- EW, D, ¢, wv) if p(D, ¢], or E(N, D, &, z) if not p[D, t], where

[wl] =p and [z]=e, , Ivacx, , x, y EX, by the definitionof E

- E(M, D, ¢, x) if p[D, ¢] and p[D, Et], or

EM, D, ¢, y) if p(D, ¢] and not p[D, ¢£], or

E(M, D, ¢, 2) if not p(D, £] , where [x] = e., (y] = e, , by the
definition of E

= EWM, D, ¢, x) if p(D, ¢] or E(M, D, §, 2) otherwise

=<t, ® 1f p[D, ¢], or <i, 2> otherwise, by the definition of E

Now, consider executing an instance of the right hand member of Al,

Dw <X, r, > say.

8p, <t, ®]

=E®, D, ¢{, v) where ve€X and [v] =®

= E(®, D, £, I'v) by the definiticn of E

=E®,D, ¢, v) where wEX, [wl=p and I've<x, ©, x, z€X

109

= E(®, D, &, x) if plD, ¢J, or E(B, D, &, z) otherwise, where

[x} =, and [z]= e, , by the definition of E

= <§, © if p[D, 8] or <t, 2 otherwise, by the definition of E

Thus, for arbitrary D and % :w-— D , we have

¥[D, <t, >] = BD, <t, ®], i.e., {= ¥ = WB for any instance UM ~® of Al.

Axiom schemata A2, A3, A4 and A5: that all instances of these axiom

schemata are generally valid can be shown by arguments just as simple (and

as tedious too) as that given for Al.

Axiom scheme AS and AJ: these are the axiom schemata which characterize

"=" as the equality relation (cf. Mendelscn {3 , p. 75]). Since (v = *)ID, t)

for any term T , computing structure D and state § : w- 0, , then clearly
Ab generates only zenerally valid wffs, Schema A7, however, requires somewhat

more comment,

Consider the assignment schema 2 = (vy = x Den , computing structure D
. { -

and any state ¢ tw —D such that \ = Te een | D5 £€] . Then, from the
semantics for ffs =nd terms, we have that c(i, £) = Tl Ds ¢], k<n . Then,

for all j < w,

vylD, £{D, t]) = vyiL, £] = c(3, &)
1f 3 # 1, for all «x

= TID, t) = cli, &) = 2(, ¢)

if =i for some &k<n,

i,e., £[D, £1 = ¢ . Now, fram Theorem 6, p(T, ¢t] = oiD, £{r, ¢1] , which

from the above result gives fp[D, ¢] = p(D, ££], i.e,

Then from the semantics for qffs, (p o (vy :2= 7.)p)(D, ¢] . But, from the

110

hypothesis on ¢ , (vy = Teen Ds ££], so that, (Cog = "i ken > (p>
(vy sem 7,.)p))(D, 8] . If we relax the substitution to only same of the
occurrences of the Yi , this result still holds, and the general
validity of the wffs generated by AT] is obtained

Axiom schema AB: Theorem 8. Recall that the proof of Theorem 8 depended

on the axioms for the "assign' and "contents" function, especially,

a(i, k, a(1, 2, ¢)) = a(4, Kk, ¢) .

Axiom schema AQ: follows immediately from the same axioms, especially

a(i, (i, 8), &) =¢,

applied to the semantics for assignment schemata

Axiom schema AlO: follows immediately from the same axioms, especially

a(i, k, a(J, £, ¢)) = a(3,L, a(1, k, £)) , where 1 4],

applied to the semantics for assignment schemata.

Rule Ri: if the hypothesis is valid, then the values of the terms

assigned to each variable must be cqual, Hence, the rule preserves validity,

Axiom schema All: Theorem 8.

Axiom schema Al2: The separation o,(w) merely routes execution through

a copy of the subgraph of ¥ reachable from the node: labelled b, . Since

no other nodes are reachable, and since MN; 1s a copy of this sub-graph, the

execution of ¥ and o, (w) , starting at b, , wiil be identical,

Axiom schema Al3: Since none of the nodes deleted from ¥ to form

68) can be reached during exe~ution of § , their absence in O(¥) will.

not cause &(K) to execute any differently than .

111

Axiom schema Al¥: Clearly replacing one cul-de-sac with anotuesr will not

csuse 2, (¥) to execute any differently than § .

Axiom schema Al5: If the gqff is initially false it will remain so, thus

giving an indeterminate execution,

Rule RS’: Consider an arbitrary computing structure D in which the vffs

of 4 and ¥ TN’ are valid, and state ¢ :w+ D . Now, consider

A=¥%[p <t, ®] and B=W[D, <t, >] (cf. Pigure 25(a) for NM’ and &).

Suppose that B halts; there are two possibilities,

(1) 1 pp, t], and &[p, <t, O>] halts in ¥',

then in NH’ the seme will occur, and A will halt producing the same output

state as B, i,e,, A=B

(11) If not piD, £), and the loop is executed n times before & is

executed, then since = 8 -9(M), we can perform n replacements of

¥ by 4° to give % - 4 (W(...(8)...)) . Then, A, = %_(D, <t, @]
will behave Just as A does, and in light of the n executions of the loop

in 4°, A =B, vhence A=3B,

Suppose that A halts. If B halts too, then we reason as above and

obtain A=B. But, B cannot fui) to halt, since by the side condition

on Rj, A fails to halt, a contradiction,

Thus A halts iff B halts, and in case they do halt, A = BB. 8ince the

state ¢ is arbitrary, je %‘ 6°, wd then = ucu gives

b= p 8 8°, as required.

Rule RS: By an argument similar to that for RS’. i

112

BLANK PAGE

CHAPTER 8

SOME COMPLETENESS RESULTS AND APPLICATIONS

So far, we have defined the formal theory Tg = < Frmgs of > , and
demonstrated its soundness. In this chapter we isolate some of the sub-cases

for which the inferential system NS is complete or extended complete. In

addition, various illustrative examples are given which demonstrate the

utility and derivational power of the theory 7, .

Extended Completeness for Single qffs

Let Fm, ‘(Q) S Fm, be the set of all wffs of the sort depicted in

Pigure 26, where p is any qff. (Note: we denote the rather trivial algorithm

that serves as the right hand member for all wffs in Fm ‘Q@ as.)

Theoreg12: For any signature s , the inferential system of = <Aa, ">

is extended complete for Fn, "(Q).

Proof: We have A |= % =! = Am U4, for any 4S Fm '(wma

MT € Fan, (0, from Theorem 11.

Therefore, we have only to show that A [=U= ¢ =p A =USt | and we

do this by making use of the obvious analogy between the , eneral validity of

wifs in Fm _'(Q) and the logical validity of the qffs that occur in them.

(Note: we dencte validity in D , in the sense of PC, , by fu and logical
validityby |=* .) Thus, the wff 8 = ¢ in Figure26 is valid in D iff

piD, t] for all ¢ : w D,, vhich is equivalentto p being valid in p

in the senseof PC, le, |= WZ! w I=%p . By extendingthis analogy
vith the predicate calculus, ws have that A pu % S ¢ =p &’ |= p, where &’

is the set of qffs occurring in the wiffs of oO.

15

Now, consider the qffs

(1) p>(a>p)

(11) (p22 (@a2r)) 2 ((p2q) 2 (p>r))

(111) (q2>~) D> ((Ma>p) > 4q),

which occur in the wffs of Figure 27, and the qffs

(Av) (ry = Thy

(ef (uy = 7) 2 (02 (uy ttmr,), BP),

which occurs in axiom schemata AS and A] , together with the rules

(vi) modus ponena: p, pO q = q

(vii) particularization: p => (u, 11m Tien P,
where (vii) is obtained from R3‘. The inferential system (i) through (vii)

(an adaptation of that given by Mendelson {33], is known to be extended

complete for the qffs of PC, . Thus, if we mean by A {-*r that the qff

r finitely derivable fram 4 using (i) through (vii) above, then

A jer » A |=%r for all such r and sets & of qffs.

In particular, we have that A j= M = ¢t » A'|m¥p » A'}=*p . Now, the

derivation of p fram A&’ using the inferential system (1) through (vii)

car. be mimicked ‘n a one-to-one fashion by a derivation of HH -¢ frm A

using the wffs of Pigure 27, the axioms given by AS and KJ, the rule R3’

and the rule corresponding to modus ponens shown in Figure 28. Thus, if the

wffs of Figure27 and the rule in Figure 28 can be derived using d_, then
Alfmtp Al 9 St |, 50 that finally, A {= WZ ipl |etp pd frp ool U =,

A derivation of the wffs of Figure 27 using ¥ 1s given in Pigure 29, and a

derivation of the rule in Figure 28 is given in Figure 30. |

11%

(%) (5)

Cp) ~

 & CG) ©

Figure 26

A member of Fu! (D . Here p 1s any qff of PC_ .

S 6

EES I

© ©) ®

(po(@or))>((p2q) (por) N

dD 6 LEQ,

(Co)

(Mqo~p) 2((~g 2p) D4) o

Sd ©

Thres members of Fon, '@) corresponding to axioms for the propositionalcalculus, Here, 0p, r are any gqffs.

115

al

O

? 3
i

(—— o

EF

Rd §
& 3

3

.
Oo i

—_——

aN

®

5 Coe&
~

SAC oft
6,

2°

| |2

dl

’ No
3 2 N

. y

ATT oe2 |
oo
9

117

(bg

(23

»

I

Jd e C9 @

: @2 (42) 2 XD

© = NA
C2 C22 /C

«> +) <>
QQ, 3 Co) LL

Figure 29(b)

Pirst part of the derivation of the second wff of Figure 27. Continued next page.

OE

" :
| Z

i.

d 8< Fa 3 ETr,NAVEINGLL
le |

JA—1
: {
Te

M, 2 Al, R2 A,

ve Go ’ / A
8 oy © @ Go @

Figure 29(v) contd,

Completion of the derivation of the second wif of Figure 27.

B

Lu SE»

(~q>~p) > ((~a>p) dq) ~ =)3 9
S oy

Figure 29(c)

Pirst part of the derivation of the third wff of Figure 27. Continued next page.

°

> ONAN3 : On
2! :

—

SANS
. ;
%) 3

;i
i

~~

2 : -
Ss ©

|

9" 3
oh

0s :WC |
A 5

7 @ 3] ;
;

2 oi ;
3

e)

o§

i]

ha

o__@ E

i

;
i :

3
%

& x

Remarks:

(1) Notice that oS is still complete for Fm (Q) {out ro* extended

complete) even if rule R3 is omitted,

(14) Also, with reference tc the argument abcve, if the s.gnature s 18

such that 1A‘j=#p? for an srbitrary A’ and p is decidable, then so 1s

taj § 47 for an arbitrary 4C Fm'(Q) and WZ ie Fam (Q) .
(141) It is interesting that the usual axioms for propositional calculus

need not be given here, i,e.,, we can depend sclely on the more btasic character-

ization given by axiom schemata Al through A» te provide an aaequate

axiomatization,

Extended Completeness for Sequences or Asaignment schemata

Let Im, ‘U) c Fm, be the set of all wffs of the sori iepicted in

Figure 31, where f,, i < «<u , and Eys J <A <w , sre any ussignment
schemata,

Theorem 13: For any signature s , the inferential system of = <. Fug, > is

extended completefor Fm ‘Wl).

Proof: We have Af MB wom ¥ ZB, for my AC Fo, A) and

H-8c Fm ‘(+ , from Thecrem 11.

Therefore, we have only tc show that A p= “® >A A 8, and

we do this by developing the ro.ion of ncrmal torm wffs ir Fm (4) . If

avwff € -9 ¢€ Fr, A) has “he same form as the left-hand hypothesis for
RM (cf, Figure 22), and if |= S <6" and ppDD’, then §' =D is

said to be a normal fore of the ff § =P, Evidently, for any computing

structure D , ve have & SD >=; ¢’ 29’. By applying this to our

problem we get that 4&4 tt = 0-20 a S® wnere 4’ is a set of
normal forms for the wffs in & and ¥' 28’ is anormal formof US ©,

2b

Since Rb preserves viiidity, we have that A’ U “B'® A'|jm ® = 4

vhere TT S44 € Fn, (Q and is obtained from M’ © ®’ as indicated by
BM, just as the wffs in AT c Fm, (@) are obtained from the wffs in a’ .

Since Theorem 12 gives that of is extended camplete for Jim _’() , we bave

that &'f= M Saea’f B = , and by applying Bs "in reverse”, ve obtain

°F 3 Zia’ 4 0’. This last step is accomplished as follows:

starting from 4’ , use Ré repeatedly until 4° 1s obtained; then, since

Af Ti wecanderive ® IZ! ; next, ve apply R¥ and so obtain

8’ C8, as required. We zo far have reasoned that 4 je HE ° 0 =»

AlN030RU 050" B Siw | PD CieU Ce;

to furnish the last step, i.e., ALU ZR'w0 |UD, we have only to
demonstrate how to use J to derive normal forms for wffs in Fm‘ A) .
For, then, we start from 4 and derive 4’ and so therefore ¥’'= ®’ ;

if a derivationof %' 8’ from 8 © can be given, then it will, in

reverse order, serve as a derivation of M8 fram 8-9.

Thus, it remains for us to show how any desired normal form of a vff

S§-8c¢ Pm (A) can be derived using Jd . We use Rl and R2 as required
and proceed as follows.

(1) Apply AB repeatedlyto each of 8 and 8 untilonly a single

assignment schema remains in each.

(11) Apply A9 followedby AB or vice versa as needed, in order to

make the sets of assigned variables in the two assigmment schemata identical |

to the desired set.

(111) Apply ALO to arrsnge the assignments in both assignment

schemata in the desired order, i

125

O 9

[.

: |

FigureJi

A member of Jy’ . Hereff, 1<k<Ww d g.,, J< Ld cware as igment ah. 1° » ® J? ’

a (im 2)

=) = fe)

vimubviev] .

CS C9
rigure 32(a)

First step in the derivation of a normal form for the upper wff. Here
u, v, v are distinct variables and f, ¢ are function letters.
Contimed next page,

126

AS, R2

¢

5 Co)
A, B

¥

view bhvwisvwihku i= g(f(v), wv) a v i= £(w) & u = g(f(v), w)

(5 vie% |
AB, R2 (%

Q v O
vievwvhvwiswvhu:i=g(e(v), wv) | & Jw:swbyis (vw) &u = g(f(v), wv)

9 eo)
AO, R2

¢

ui g(f(v), v) bviswvbviav |] & luisg(f(v), wv) bvyietu)bvwisw

3 fo)

Yigure 52 (a) contd.
Completion of the derivation of a normal form of the first vif of this figure.

w= wauiege(v), W)bxsex] & [vie flu) du im gf(v), ¥) & x tax

« ©

Yigure 52(v)

A second normel form for the first wet of Pigure R2(a). Hare x isa
variable distinct from u and v ,

1Z(

Notice that two normal forms for a wff ¥ Z®€ “uu(4) may differ only
ia the order of the assignments in #§ and 8 and in the number and sort of

ml) assigmments of the form 1G := u that occur in both ¥ and ®.

Pigere 32(s) {1llustrates the derivation of a normal form for a wff in

 _ (4) , wa Figure 32(b) illustrates how two normal forms may differ by
Giving & second normal form for the same wff,

Let L040) C L_ be the set of all E-programs that occur in the wffs of

Fn_'0e) C 7m, » 1.e., the set of all E-programs consisting of a single
seguence of assignment schemata. The idea of normal forms for wffs in

AR,'W can be extended to yield a canonical form for algorithms in L_ uh .
Wo wae Rl and R2 and proceed as follows,

(1) Apply AB repeatedly until a single assignment schema remains.

(11) Apply A8 followed by AQ to delete all vacuous assignments of

the form u :=u ,

(141) Apply ALO to arrange the assigned variables in order by their

sbacripts.

If this process applied to ¥ € L_ ‘4) yields Ww’ € L, ‘(4) , then we

seg that 8’ is the canonical form for ® . Of course, we should say with

respect to what property this form is canonical, and that is the content of the

following

Theorem 14; For any signature s and 8 , 8€L ‘(4) with canonical forms

§’ and 8’ respectively,(=M “9 »®’ is identicalto ®’.

EXoof;: First, we prove that ¥’ identical to ®'=pj= UZ 0. Now,

U6a= 0-8 and |-89 af 8-8 by Theorem 11. Furthermore,

@’ 1@entical to ®'>jf= A’ = B’ | and since strong equivalence is transitive and

metric, UZ >j=U=-9,

128

To prove that p= 8 = BM’ and 8° are identical, assume the contrary,

f.e,, that |= M = ®, but ¥’ snd ®' differ. Since W’' and ®' each

consist of a single assigmment schema, they can differ in only two ways.

(1) A variable u occurs an assigned variable in ¥W‘ but not in B'

say, or

(11) Assignments u := T and u := og, vhere T and ¢ ware distinct

terms, occur in %’ and ®’ respectively,

Consider cease (i). An assignment u := 7 occurs in %’ and 7 is

not u since M‘ is canonical. Thus, a computing structure D and state

¢ :w— D can be found such that t(D, t] ¢ u[D, ¢] , and so therefore
'-® tanot valid in D, i.e, not |= %‘=® . But, UW,

f=8 9%’ and =U 8, so that j=’ ZB’, a contradiction.

Consider case (ii). Here a computing structure D and state

{ t+ wD can be found so that 7(D, ¢1pdD, ¢t], thus giving the sume

result as (1) above, Hence, |= MH = 85>’ and 8’ are identical, |

We nave, therefore, an effective test for the strong equivalence of

E-programs in L_‘(4) , for any signature s . Of course, semantic consequence
remains an unvolvable problem here because of its direct connection with the

logical validity of qffs in PC, .

Using Theorem lk, we can easily obtain a further result. In Chapter 5,

we considered the set fay (4) © Fy, for arbitrary signatures s , and in

Theorem 2, we ;ut cff proving until now that tell “87 , for AW TB € Fm 4) ,

is decidable. Recall that the wffs of Fm _(4) contain only E-programs from

129

LU) , and chat no qffs occur in these E-programs (cf. Figure k(a) for an
example). We prove the decidability result of Theorem 2 during the proof

of the following

Theorem 15: For any signature s , the inferential system

of, =<A4x,R> ‘iscompletefor Fm (4) .

Proof: Wehave |-M=8 » |=¥ 9, for any M8 Fn(4) from
Theorem 11,

Therefore, we have only to show that |= MM CB | MA ZB, aud we do

this using methods similar to those used in the proof of Theorem 14, First,

we develop the notion of a canonical form for E-programs in L, 4) . We use

Rl and R2 and proceedas follows,

(1) Apply Al2 at each initiator to separate out the various sequences

of assignment schemata. (Figure 33(a) illustrates this step for the E-program

of Figure 4(a).)

(11) Apply AM at each initiator to detect which sequences never

terminate, and use Al3 to clear away all unreachsble nodes. (Figure 33(b)

illustrates this step.)

(111) Apply AS, A9 and Al0 to the remaining sub-programs, each

consisting of a sequence of assignment schemata, to put them into canonical

form, as we have already described. (Figure 33(c) illustrates this step,)

If this process applied to ¥ € L_ (#) ylolds ®€'€L (4), then ve say
¥’ 4s the canonical form for ¥ . The decision procedure required for

Theorem 2 ia then given by

130

pd 3 al Lo PAREN

al [fs] ll = [1% of

7s 7 al@
Q © 6) O ki

Figure 23(a)

E-program € 7 Figure 4(8) is arocessed by 512, the separc..cr axiom
schema.

B oan (a
«= [q ts |

BY 5
(J)

Figure 33(b)

Further simplification of § arises from the application of Al3 and Ak,

Cs

Figure 33(c,

The canonicelform of E-progrem € , vhere f£ ff and f £.f_ are in their
respective canonical forms. 123 L=5°3

13%

Theorem 16: For any signature s andany¥ , B € L (4) _ with canonical forus

8’ and ®’ respectively, |= 4 =® 8%’ and®' are identical,

Proof: If e, is reachable from b, in ¥’ but not in 8’ , then clearly
§ and ® camnot be strongly equivalent, i.e., not j= % = ® , which

contradicts the hypothesis for Theorem 16. Therefore, ¥%’ and ® can be

snalyzed by comparing the sub-program of ®’ between b, and e3 and that

of 8’ between b, and e, , using Theorem 14, Evidently, then
l= 8-8 8’ and ®’ are identical; the converse is, as in Theorem 1k,

trivially true, :.

To return to the proof of Theorem 15, we now consider the problem of

showing that |= SB»|- UW -®. From Theorem 16, ¢=U "Bap4’ and B®’

are identical, so that |-M’<®’ by Rl and R2 . Purthermore

Fu-u% and |-®S® 50 that, once again by Rl and RR, NCW, |

Results for Other Possible Assignment Schemata

In Chapter J, we introduced simple assignment schemata, i.e., those

each consisting of a single assignment, Let 4° be the set of all simple

assigrment schemata (relative to a given signature s , of course), and let

L’ be the formal language obtained vhen A© is the class of operators, If

Fm © is the set of wffs built up from L,” s then we want to consider the new
theory JSO a < Fn’, od> , where of ° is 1ike ofg °xcept that axiom
schemata Bl, B2, Bj, B* and rule 51, illustrated in Figure 34, replace AS,

A9, AIO and Bs.

Certainly t=¥ ®t for 8, 8c LC(Lf), tie, UZBE Fn°(f),
ia decidable by applying the methods of the foregoing section. (Here the

132

[imo
Bl: ~~ where v does .' occur

< C9

Be: ~ vhere u does rut occur

&9 Cs

G 3 Q G;

2 [C0] =~ 3 CCX

(5 (% um C3

Cg

pn [ed] =f] =>C0 =

& 0 0 G LD ©
FigureSh

An inferential sub-system for simple assignment schemata. Here,
u, v are distinct variables, and o, T are tems.

133

E-programs of L(A) are all type <1, I> , and consist of a single
sequence of simple assignment schemata.) Moreover, we conjecture the

following

Theorem17: Yor any signature s , theinferential system f°1s

lete for Fm°(£).

Proof: In support of this conjecture, notice that essentially all we have to

shov is that Bl, B2, B} and B¢ do not miss any of the derivational power

afforded by AB, A9 and AlO for theorems WM - 8c Fm (4) .

Consider ¥ € L.°/(4°) , illustrated in Figure 35(a). We want to find

all E-programs 8 €L°'(4°) such that |W ZW, i.e., WS is derivable

with AB, A9 and AO.

(1) Under the hypotheses that u and v are distinct, oc is not wu,

T isnot v_, and u does not occur in a, the derivation in Pigure 35(b)

can be carried out.

(11) Under the hypotheses that u and v are distinct, o is not wu,

T {snot v, and v does not occur in a , the derivation in Pigure 35(c) can

be carried out.

(111) Under the hypothesis that neither ¢ nor tv is u , the derivation

in Figure 35(d) can be carried out,

This clearly exhausts all the possibilities for E-progrems 8 ¢ 1. °/(f) ,

such thet ® 8 1s derivable in «{ . Butwe have simply derived Bi, EB

and BY here; as well, BA is the equivalent in dC of AS. Thus, d.°
reflects all of the derivational power of «f with respect to theorems in

0

Fm OU) j

15%

Figure s Lay

Herc, vu, v are variables, and og, =~ av Leruws

x
=

:

(5g Since u
does not

Rl, R2

=o v i= (u 22= ¢)((1 ::= 0)T)& u t= ¢@ occur in

ar :

v := (u ::= o)7

e

\

Figure 35(b)

Here, i, v wr. distinc’ variables, ‘0 is a termnot u, T is + term
not v, and o dees not ocur din oo.

155

Q &

a] £
fad

EEX)

O
<

ALO, Re

~

e)

(b)

~ u zm (v 23= (u i= 0)T)o & v t= (u 32m a)

(e)
Since v does not occurin o .

b,
A, RR

% =(5

Figure 25(c)

Here, u, v are distinct variables; o isa termnot uj 1 is a tem
not v; and v does not occurin o ,

CET En

um Cs

< Figure 35(a)

Here, u is a varisble and 0 7 are terms not u ,

136

In Chapter 3, we introducea subscripted variables as a possible

extensior. of our formal language L, . Let At be vie set of 1}
ass:erment schemata with subscrintea variables permitten (re.at.ve ‘0

a giver signature 5 , of course), and let LA) be whe set of
all type <1, I> E-programs each consisting of a single sequence «f

assignment schemata fram A .

We conjecture that for any signature s , Tj=ll “ 8% Zor

o, 8c L.A) is decidable, but here Co mot comsider “ne matter any
further.

E-programs with no Loops

It is straightforward to prove that 4. is cump.iete for the sub-

set of Fn involving only E-programs with no locps. An E-program

® = <X, i[,> 4s said to have “no loops" iff for ail x€ X, x is

not reachable fram x via [, i.e., not in the transitive closure of

I. E-prcgram M_ of Figure 36(a) 1s an examply of an Z-program with
no loops.

der<c, “ee only indicate, using an example, the derivational steps

required to put an E-program with no loops into a canonical form,

Figure 36(b) shows E-program v, the result after the scparation axiom

scheme Ai2 has been applied throughout to ® . Figure 36(c) shows &, ,

the result after the push through axiom schema All and the forward sub-

stitution axiom schema AB have been applied throughout to LY . Each

assigmment ccrema is then put into canonical form, and axiom schemata

Al through i) uplied to compress the network of qfZs, The result is

137

> d

Cr 2

E >
oy Lv]

«>

0

O @

Figure 3(a)

d 2

(Pp E
Nl] Cn

CD

0 2 3 |CY CO | a

olo IRL PIL; [0x |
Figure 36(b) |

E-program % after separation using Al2.

.

Q <»

EBBo
Er———— ——

er
or lo)

Figure 26(c)

F-program ¥ after pus: through using All.

0) &

ic

>) <=)
E2REdgEiIREl EB Ean ES |

ND @

Figure 36(d)

E-program # after processing by Al,..., Aj. Here, we have assumed that
yvil, 8] = xyv(D, ¢] forall D, all § :w—D , so that the comdition
for yv is n ds junction of two conjunctions, Here, the result just displays
the initial conditions for each of the operations,

139

u, , shown in Figure 36(d). Note that since two of the assigmment
schemata have the same canonical form, one occurrence is deleted and

the relevant qff is expressed as a disjunction. By specifying an

ordering and a canonical form for the qffs of u, , & canonical form
for E-programs with no loops is obtained,

We see that a canonical form for these E-programs merely displays

each of the finite number of operations (as discussed in the proof of

Theorem 1) and its attendant initial conditions,

Remarks:

(1) The canonical form concept for E-programs without loops, can

be extended to may E-program in L provided that infinite canonical

forms are permitted, Thus, all the loops are unwound, and the E-program

taxes on the loop-free property in infinitary form,

(11) The completeness result for qffs as given ir Theorem 12 can be

used to show 4, is complete for the sub-set of Fn, involving
E-programs which correspond to the "conditional expressions" discussed by

McCarthy [30]. Type <1, 2» E-programs containing qffs only, but possibly

having loops, can be used to simulate predicates which are undefined for

certain arguments. It is conjectured that ef is complete for this case
as well,

(111) In Theorem 1, ?t|=8 = 87 , where M = 8 € Jp for signatures

§ = << ,...y By>, 0, >, vas shown to be decidable. We conjecture that:

4, is complete for In, .

Some Applications of the Formal Theory Js

To give some indication of the derivational power of the inferential

system J , We consider a few applications of the formal theory J .

140

In Figure 37, we show hov a simple loop, organized as in FORTRAN

where the body 18 executed at least once, can be transformed into a loop

organized as in ALGOL where the body is possibly not executed at al.

The notations "gp' and "gh" indicate the forward substitution of assign-

ment schema g into the qff p and assignment schema h , respectively.

In Figure 38(a), we use two hypotheses to deduce that the simple

loop considere¢ is always indeterminate. Of course, the hypotheses may

in fact be generally valid, i.e., the syntactic properties of f£ , g

and p , may permit proof of the wffs taken here as hypotheses.

Figure 38(b) illustrates just this possibility for the always indeter-

minate loop problem considered here. In all of the examples considered

here, where certain hypotheses are assumed, there is the parallel case

where the hypotheses themselves are derivable,

In Figure 39, we shov a simple loop can be reorganized to displey the

cases where execution is determinate and indeterminate. Simply put, we

have here the case of the body of a loop having no nev effect after one

execuvion 80 that if nc exit is aade after one circuit, no exit will be

made at all.

In Figure 4C, we illustrate the classic removal from a PORTRAN-like

loop of an operaticn which is loop-independent. The conditions expressed

by the hypotheses are sufficient to permit this reorganization, but not

necessary. For example, if the aff p were r (v,) and the assigmment

schema x were v, := f(v;, , and if g ani h commuted with

v, i= £,(v;) ‘hen the same removal of x , i.e., Vv, i= £.(v,) , fram
the loop is warranted and is derivable. Figure 41 illustrates this sort

of situation in a simple loop.

141

The problem illustrated in Figure 42 is elso classic. Here we

derive from a sufficient set of hypotheses that the assignment schema

f may be executed before or after the loop in questicn, i,e., we prove

that the loop is “transparent” to f ,

Figure 43 illustrates a derivable wef expressing the strong

equivalence of two always determinate E-programs.

Figure 44 illustrates the sort of deduction concerning assignment

schemata that can be carried out using hypotheses which express algebraic

properties of the furctions involved, e.g., commutativity or identity.

142

KE
DRE A

C2 B <>»

D =] [=

D :)
& e € |

Co Co

KE £
i9 28

=~ (85 N = =3ee] |e af {8

h

(5 Co
Figure57

Conversion of a FORTRAN-iike 1dcop to ALGOL-like form, Here, f£, g, %
are assinment schemata and p is a off,

1h3

a 2 >

tf

(2) = rg] = er 5 \)
OD ® GOO e C5 =f Le

&

¥ t 0 »
Al2 Al2 All

RIO) ERC si = BI
af [s 1] Le bf) Le;

¢ © (C2/ C9) (Cry

| B

Figure 38(a)

Detection of an always indeterminate E-program under certain hypotheses, Continued next page.

>, [© . le
I = 18, AL N

dE = ERAN ERAN
2]| Ls; «> ro LE mn] Le

O\Szyg Cs Q &
s |

i CS ©

8, BD, G=
~~ t | ~ ~~

<«» Q ©
a] le

©

Figure 38(a) contd.

Detection of an always indeterminate E-program under certain hypotheses,

Clo) ACT ne JOEL= —>

, mv ECE

S

Figure 35(b)

Detection of an always indeterminate E-program. Here, u, v, wv are variables; f is a function
letter; and r 1s a relation letter. Continued next page.

w [ov ’ EEX

CE) Ee [Ed @r=e

CENCE) d /
=
pad,

Q Q ¢

Theorem 12, Al} AS a2

~= {u) A ~(v) or uiev =~

CEE ET fel? ®
@ im

C9

Figure 38(b) contd,

Detection of an always indeterminate E-program.

” 2 Sveps of Tig. 27 <>
~ |g ~ _

| =) LT\©) | Do D
Qs €) |

/

x Now, consider a decivation concernirg the A - 7sub-program

Co bg £0 0
113 nz 0W = [i = ~ _

> © 3 Sn
Figure39

a oe, Sontinmmd pect page of an E-program, Here, f,6 g, h are assignment schemata; and p is¢ «= page.

<<

nz a B : BCD = id J 2 =

Ad &- (2 J > <> . (2 J

he This last E-program can replace

6) D the indicated sub-program above,

moa (Cay 5s D)or or
E fs

> = Cs
Figure 59 contd,

Detecting the halting cases of an E-program, Continued next page.

So,we bave

n B 2] <<»
sm] = == CN3 \

> oan DixEC
Q < INE

~ 9 Cg 6
3

(7) <> «>
Ae A Al

= [wy & MG) = EB) Ge
5] fo rw fo

ob

5 (%) (e5

| Figure 39 comtd,

Detecting the halting cases of an E-prograa.

© 0 6 © © © S ?

SOC ce 3S QD & 4%Ji

H 3 fs)
=

- 5 5] [s_ a

B - x | k = P —>

1 ofr on

<p C2 ¢ ONE
x Ba

Cs Co |
Figure40

Removal from a loop of a loop-independent operation. Here, [, g, h, k, x are assigricen’.
schemata and q is. a qff. Continuel next page.

]

CAA
Q-(IRE

J ;
;

j :

vyEHH g
(2 1

i

a)
:

SLigEI(:
Cn:

1

152

C Cy) (bg

fen
See first four

steps of Fig. 37

ALL xp a3 <<» <>.
~ ~~ ~ TN

kenx] |x gn ZI I
\

ERE) (2) \!
/

O OD Cy [xx] [xe] /7
& Now, consider a derivation concerning “: ~7

the sub-program -

A2

<« = (pr) —(HL, #2, Hp Hs)

xx ix] | Len

Figure 40 contd,

Removal from a loop of a loop-independent operation. Continued next page,

as KE] —

:
a!

eos]= .

3 |

£0<

pi) "
gl

e] .

(9

A |e 5

e: <<». 80,

x « - his Lerrocram
EI = fe] (oa repieeprogram above,

a oh
. BD 2

Hh | n «>27il, BE, 13, HB Re \

ST x po | fe \ —
)

HN nD)
C2 J = Ji

x | ’
Q aid

D

Figure LO contd,

Removal from a loop of a loop-independent operation. Continued next page,

QU 2

q §

ya

:

GQ)
3°

Co (C9 o)
Az Al, A

Cro J xr C03 ENGI

. AED) INE
. AN TN /Co) Po) 4 (b \

/ \

a2 All /
=~ CG) FEED ECD

/
/

Co eC] aG C @
<< \ (sw)

RN 0!
Nov, consider a derivation conceruing the sub-prograg Aat

Q_6 Q € DQ ©

Ad Al, A, AJ, AI

EEC) IEE Dy

dere @ (89 &) S Ey

nz CONGO, 0 a2

@ I I @
Figure bL:

Detection of an indeterminate } . Continued .
are variables, f is a function otter ao Pr Ah Ne ’

157

The result of the derivation concerning the indicated sub-program then

replaces that sub-program,

® NN , © GC

| Jr

C \&/ Cs Qo
Figure 41 contd.

Detection of an indeterminate loop.

213 3 a2
B® © S @

EER AOR ©] 2 [)
3 9 GO GO CO «<>» >.

fle €

dD Coy C2
ble

mw Poe § oe § ¢

y £2) a CGN x GI oa =)«] Le Emi te] Le tr] Le

a] Le ob a] [ef b)

o «>» S aT» o «>. £
Ge ojo D|o

Figure 42

An example of loop-transparency,

158

Ek

Plur- +3

Two strong,’ yv equivalent always halting E-programs, hr left-nand F-propram

executes coro circuits of the lcop, and the right-hand b-proyram executes
up to thre. circuits, Here, u, v, w are variablesy f is a function letter;
and r ic a rci<tion letter.

: i= f(y) | 2 | x i= gly) a EE h(g(y)) & | x := g(h(y)) |
u ir h{f(k)) v := n(k) & u := g(g(k))
—

v += tu] ~ v := hu) & u := v

v i= e(g{v), 1 (u)) v := e(f(v), v) & u := g(u) |

Cu \©
Fiqur- 44

Two asrisnment schematu, cquivalent provided ff ani g ure Lhe: same
function and g and 1 commute, Here, x, y, u, Vv are variables;
e, f, £, 1 are functicn letters; and k 1s a constant,

15¢

BLANK PAGE

CHAPTER 9

LNIIAL CONDITIONS AND K-EVENTS

Representing E-pr.;;am.. as flowcharts 1s advantageous nn that it

avoids a plethora cf cyntactic structure which might impede intuitive

wicerstanding and confound meta-level analysis, However, as always,

there are two sides “C this coin. In fact, the analysis of some

properties of E-programs would te wade more tractable if a neater, more

orderly, syntactic representation were available (cf. the efforts of

Bohm and Jacopini { 2] in this direction). Many researchers in switching

and automata theory, have discovered that certain of their problems yield

solutions more readily when studied in terms of regular expressions in-

stead of state transition diagrams (cf. Harrison [15, p. 3211). In this

chapter, we wiil examine how regular expressions and K-expressions, used

as an alternative representation for EZ-programs, alsc lcad to a more

prodhwctive analyais,

Regular Expressions and Regular Events

Before proceeding, we will repeat here the basic definitions associated

with regular expressions and regular events. This material is also given

by Sal-mea [58], Harrison [15] and by many others; we include it here only

to avoid notational misunderstandings, First, we discuss the syntax of

regular exvressions,

Lat La fx, Ky... x 1} , &£ < Ww”, be an alphabet; here, each

letter x, is assumed to be some formal expressior, 1,e¢., perhaps a

sequence of symbols on some other lower level alphabet, This possibility

will not concern us just now, however.

160

We build up regular expressions from L using the additional symbols:

"(, "yn na "0" "wv", "0", and "1",

(1) X, Xipeees X 4, CO, 1 are all regular expressions
(11) If a and @ are regular expressions, then (av Bg), (a. B)

and a% are regular expressions

(111) Extremal clause.

In practice, we omit "." from regular expressions of the form (a. 8).

In addition, parentheses are often omitted with the understanding that "." is

performed before "V" , and "#" before either ".," or "V' . Thus,

avert istobereadas (av (Pp. 7»)).

The semantics of a regular expression over the alphabet I yields a

certain sub-set of I* | which is the set of all finite words (or simply words

if there is no confusion) over L , i.e., the free semi-group with idenuity

generated by I where the operation is juxtaposition. The subset of Ex

associated with the regular expression a 1s denoted by |a| and is called

a regular event.

(1) |=] = {x}
(11) |1| = {A, the empty word, i.e,, the identity of I*}

(111) [0] = # , the empty set

(iv) jave| = ja] u |e

(v) |oB| = {ab : a € |a| & be |B]}

(vi) |o%| = the smallest set that contains the eapty word, and for sny

es€ jal] and b€ |o*| contains the word ab, i.e.

jo = |2] U Jo] U |aa| U |e] wv...

161

E-programses Regular Expressions

Throughout these discussions, we assume some fixed arbitrary signature s .

Each R-program MM = <X, I'. /> has associated with it the alphabet

Oy ={v: for some x¢ X,ix] =u} U{u: for some x ¢ X(@), (x] = u} where
here, and in the sequel, we may write u instead of ~u for u € J. Thus,

Nn 418 u finite sunsetof 8B UA UR U £

We «ill define q, , a regular expression over De “hat correspouds to

an E-pr ram ® , ty utilizing a finite automaton My that accepts the set

| og | , ‘.e., given a word x as input, M, reaches the final state iff

x € 9 . let us define these ideas .n more detail.

Gir: the E-program 8 = <X, [, XZ > , we define the finite automaton

My = <5 7, Bp, where S is a finite set of sutcmaton states (or simply

states if no confusion with states as sequences over a domain results), and

Ts: SS» 2% —=+S 15 a transition function . The set £ of states is

to ix = x(B)) VU {b, e, d}

where ‘t, ¢, 4} NX =@ , b is the start state, ¢ is the final state

and 4d ic “he dead state.

Th: t:onsition function ies defined as follows.

(1° 7 x€X(#) rnd I'x=y , then T(x, [x]) = y and

T(x, u} < ¢ ror all u € By - {{x]}.

(11) If x€X(Q) and Ix =<y, =, then T(x, (x]) = y,

T(x, ~M{x]) =z and T(x, u) «sd for all u € N -{(x], ~x]}) .
(118) 1r xe X(E) , then T(x, [x])) =e end T(x, u) = 4 for al

ue gy - {x]}.

162

(dv) T(L, [x])) = y for all z € X(B) where x= y, and T(b, u) = d

for allu € N- d,..., LY vhere # is type <a, n>, i.,e., has =m

initiators.

(v) T(e, u) =d for all u € K .

(vi) T(d, u)= 4 for all u £ & .

These not altogetler pellucid definitions can be rendered more informative

by referring to Figure 45, Here the diagrammatic representation of an E-program

o and a partial transition disgrsm (pdt) for My Are illustrated, The pdt is
partial in that the dead state has been omitted as have all transitions to it.

As we now see, the formation of M, from WM. is really a trivial operation.

Nevertheless, this characterization of 8 as a finite automaton My anables us
to apply many well understood powerful techniques to the analysis of the strong

equivalence problem for E=programs.

The behavior of the sutomaton My is simply the set of words in ot that

Ny accepts, i.e., that cause My to go from the start state to the final state
via the transition function. Let us define the acceptor function

T# ¢+ S x Ig 8 as follows

(1) T(x, A) = x

(11) T*(x, o w) = ™(T(x, 0), wv) for o € In , WE Ny .
Then the behavior of M, is Ry = {w € Mt: T*(b, wv) = e¢} . From the con-

struction of Ny, VER will begin with an initiator and end with a

terminator. (Note: the semi-group operation of juxtaposition does not further.

imply forward substitution as discussed in Chapter 6.)

Theorem 18: There existsaneffective procedure, which for any finite sutomat.n

M constructs a regular expression a auch that lad is the behavior of NM,

Thus, the regular expression q , where |g| = By , is effectively constructable.

163

Cr of

x . B-program M

@ D

b, b,

Partial Transition (i @ f
Diagram for Mu r

o () k
‘ K

n

“o h

O—C

Fi:rure LS

An E-program Y ani th: partial tr.nsition diay ram for My . Here,
ry, p Aare gffs, and f, hy k ar: wilpnment schemat

| 1h

Proof: This result is due to Kleene [23). See also Harrison [15]. i

Remarks:

(1) The procedure of Theorem 18 is involved and complicated, and the

regular expression produced is usually inordinately large and liable to

drastic simplification, In the sequel, we will use heuristic methods for

writing down regular expressions in simple form. For example, the E-program

of Figure 45 yields

Oy = bre, Vv brkhe, v b, £(pk)*phe,
(11) The inherent utility of the regular expression notation is now

evident, For, no matter how comvoluted and entangled the graph of an E-program

may be, its regular expression has a hierarchial structure where, so to speak,

all the loops are nested, Thus, while the dr of ¥ is easy to understand

(and easy to encode or program up), the regular expression Gy 1s easier to
analyze.

(111) It would seem that there is really samething very primitive and

pervasive about the ideas involved with regular expressions and regular events,

They play a key role in many areas, have a potential role in several others,

e.8., pur~ graph theory or artificial languages (cf. Tixier Ml]), and their

application to the analysis of E-programs is quite natural and productive,

We now vant to consider the relationship between executions of ¥ and

words in log . Clearly, ve can associate a word in |o| with every halting
execution of % , but the converse is not always true. That is, certain paths

through % (1i.e., certain words in og!) starting at some initiator b, and

ending with some terminator e may not be executable, In formulating the

initial conditions for Figure 5, we appealed to an intuitive notion of

unexecutable paths, and now we will cunsider these matters in more detail,

165

We define W(M, D, &, 4) to pe the (possibly infinite) word over Ni

associated with the execution E(Y, D, &, x) of E-program ¥ starting at

node x . Eventually we shall want to show that W(M, D, E, x) € | oy |

when W(M, D, &, x) is finite and x €X(B) .

(1) If x € X(B), then

w(¥, D, &, x) = [x] wW(¥, D, &, Ix)

(11) If x € X(4) , then

WK, D, &, x) = [x] W(¥, D, [x], ¢], Ix)

(111) If x € X(R) and Ix= <y, z> , then

w(M, D, ¢, x) = [x] wW(¥, D, &, v) if [x][D, ¢&) |

=~ [x] WM, D, &, z) otherwise

(iv) If x € XxX(&) , then

w(¥, D, &, x) = [x].

So the function W follows through ¥ , just as the execution function E

would, except that here a word over Igy 1s built up as we proceed through the

E-program, Of course, W produces a finite word iff the execution given by

E halts, To study such finite words, we need the following.

Theorem 19: For any E-program § = <X, I', X> , computing structure D , state

§ iw D and x€X(®), if WM, D, ¢, x) is finite, then

T*(b, Wl, D, &, x)) =e,

Proof: First we do an induction on the word W(M, D, &, x) to show that for

any x €X- X(8) , T(x, wil,D, £, x)) =e,

(1) The primitive basis of induction is the case x € X(¥), where we

have

166

T(x, W(X, D, ¢&, x))

= T(x, [x]) by the definition of W

« T*(P(x, [x]) ,/\) by the definition of T*

= T#(e, /A) by the definition of T

= @ by the definition of T* ,

(11) 1 x . X(4) , then

T(x, W(N, D, ¢, x))

« T#(x, [x] w(®, D, [x}(D, t], I'x)) by the definition of W

= T#(T(x, [x]), w(4, D, [x](D, ¢], I'x)) by the definition of T+

= T*(I'x, W(N, D, [x][p, £], I'x)) by the definition of T

= € by induction hypothesis .

(111) If x € X(g) and Ix =<y, z> , then

™(x, wWw(¥, D, ¢, x))

= T(x, [x] w(W, D, &, ¥)) ir [x)(D, ¢] or

T#(x, ~{x] W(X, D, §, z)) otherwise, by the definition of W

= ™(T(x, [x]), w(%, D, ¢, y)) ir [xI{D, &] or

T™#(T(x, ~{x]), W(&, D, §, 2)) otherwise, by the definition of T#

= T*(y, w(¥, D, ¢, y)) if [x][D, ¢] or

T#(z, W(X, D, ¢, z)) otherwise, by the definition of T

=e if [x])[D, ¢] or e otherwise, by induction hypothesis

-e

and this completes the induction,

Now consider W(M, D, §, x) where x € X(B) .

(vb, W(W, D, ¢&, x))

= T#(b, [x] W(&, D, ¢, I'x)) by the definition of W

167

= ™(T(b, [x]),W(W, D, &, I'x)) by the definition of T*

= T#(rx, w(u, p, &, Ix) by the definition of T

= &¢ from the result obtained above, since I'x £ X(&)

by the definition of E-programs, B

Since T#(b, W(W, D, &, x)) =e => WM, D, &¢, x) € By » and since

By = | ag by Theorem 18, then an immediate corollary to Theorem 19 is that
if x € X(B) and W(K, D, &, x) is finite, ther W(N, D, ¢, x) € jou} .

Te illustrate the connection between W(Y, D, &, x) and E(W, D, ¢, x),

we introduce a function E* which "executes" the word W(M, D, ¢, x) .

(1) If o€ QUBG and we R*, then

EX(D, &, ow) = EX(D, &, vw)

(11) If oc€4 and w€ Ro, then

E*(D, ¢, ov) = EX(D, o[D, £], w)

(111) If o 1s e € &, then

E¥(D, 8, 0) = EX(D, ¢, e,) = <t, P

The function E* simply applies each assignment schema encountered to the

current state and bypasses the initiator and all qffs. The relationship between

the execution functions E and E%* , and the function W ia then given by the

following

Theorem 20: For any E-program M = <X, I) X>, computing structure D , state

§ 1 Ww D, and x € X ,

E(M,D, &, x) S E%(D, ¢, W(¥, D, &, x)) .

168

Proof: Notice first that W(M, D, t, x) is finite, i.e., E¥(D, t, W(8, D, §, x))

is determinate, iff E(M, D, ¢, x) is determinate. We give an inductive proof

for the case of halting execution,

(1) The primitive basis of induction is the case x € X(¥) where

[x] = e, . Then, the left-hand side is
E(8, D, §, x) = <t, J> by the definition of E,

and the right-hand side is

e*(D, ¢, w(W, D, ¢, x))

= Ex(D, ¢, e,) by the definition of W
= <§, J> by the definition of E* , which is identical to the left-hand side.

(11) If x € X(4) , then the left-hand side is

EM, D, t, x)

= E(M, D, [x)(D, ¢), 'x) by the definition of E

= E*(D, [x](D, ¢], w(¥, D, [x](D, t], I'x)) by induction hypothesis,

and the right-hand side is

E*(D, ¢, W(¥, D, ¢, x))

= EX(D, ¢, [x] w(w, p, (x])(p, ¢], 'x)) by the definition of W

= E#(p, [x](p, ¢), w(¥, p, [(x][p, t], I'x)) by the definition of E*

which is identical to the left-hand side,

(118) If x€ X() , where [x = <y, £> , then the left-hand side is

E(%, D, ¢, x)

= EM, D, ¢, y) if [x])[p, ¢t) or

E(M, D, ¢, z) otherwise, by the definition of E

= BD, &, w(¥, D, &, ¥)) if (x](p, ¢} or

E#(D, ¢, W(M, D, ¢, z)) othervise, by induction hypothesis,

and the right-hand side is

169

E¥(D, &, W(¥, D, &, x))

= E*(D, &, [x] w(y, §, &, y)) if (x][D, ¢] or

E*(D, ¢, ~{x! W(¥, D, &, z)) otherwise, by the definition of W

= E¥(D, &, W(¥, D, &, v)) if [x][p, &¢] or

E*(D, ¢t, W(M, D, ¢, z)) otherwise, by the definition of E* |

which is identical to the left-hand side.

(iv) If x € X(B) , then the left-hand side is

E(Y, D, &, x)

= E(M, D, ¢, Ix) by the definition of E

= E*(D, §, W(M, D, &, Ix)) by induction hypothesis,

and the left-hand side is

E*(D, 5, W(¥, D, ¢&, x))

= E#(D, &, [x] W(W, D, ¢, I'x)) by definition of W

= E*(D, ¢, W(M, D, ¢, I'x)) by definition of E* , which is identical to

the left-hand side, and this completes the induction, }

We see then that executions of an E-program ¥ give rite to words in

lay! that can themselves be "executed" producing the same result, Intuitively,
the qffs encountered during the execution of an E-program MM specify the

condition on the input state for that execution the qffs in the corresponding

word in | og play the same role with regard to the execution of that word, In
Chapter 5, we called this the initial condition; we now develop this notion in

detail,

We first define a function #& : Wy — Ly" , where Wy -

(u€ Re -{A] : there exists w€ L* such that wu € |g |} . Hotice that

| ogg < Wy + Applying =x to a word, is termed applying "push through";

170

we will see how this ties in with the notion of push through associated with

axiom schema All of Ax . In Chapter 6, we denoted the forward substitution

of an assignment schema into either another assignment schema or a ff by

Juxtaposition. To avoid conflict with the juxtaposition of letters in x

to form words in I" , We will denote the forward substitution of an assignment

schema f into t by (f ot) ,6 where t€ AU [3 . In addition, we adopt

that the convention that — associates to the left, so that

(f «g =h =p) denotes (((f +g) =h)sp) . Now, we are ready to define

the function x . (Note: for convenience, the parentheses around the argument

of x are dropped.)

% bv - b, xv

afgv = x(f -¢g)w

fw = (2 -p)atv

np = Pw

“5 7%

ate, = fe,

vhere f, g€4, p€ | ed we Rt. This definition clearly covers all the

cases of mu for u€ Wy ‘

To illustrate the effect of the push through function =x, we consider

a fev exmmples.

(1) Suppose byxpyaqree, € log | , vhere x, vy, ¢, £ € A and
PL Tr€ Q. The,

wb, xpyEqrie,

- by axpyeqree,

- b, (x - p)myzqrfe,

171

= b, (x — p) n(x ~y)earfe,

= b. (x “+ p)r(x »y — 2)qrfe.

= B(x + p)x +y + 7 2 Q)n(x =y »2)rfe,

= b,x +p)(x sy +z 2q)(x »y =z 21)x(x Iy + 2)fe.

=b, (x 2p)(x 2y 22 2q)(x »y =z =1)a(x sy 22 + f)e,

=by(x 2p)(x vy +z 2 q){x oy wz 21)(x 2y 22 (fe,

(11) Consider once again the E-program # of Figure 3(b), that was used

in the proof of Theorem 1 (Ctapter 5). Here,

Oy = bv i= wi~r(ulu := v & v := u)*r(u)(~~ r(w)) r(v)e ,

where u, v, v are variables and r is a relation letter. Consider the path

through ¥ that executes each loop zero times. The word in | og corresponding
to that path is

x, = bv ia wr{u)~ r(v)e_ |

and applying the push through function, we have

™

=b av i= wr (u)~ r(w)e

- b (v te Ww =+2r(u))xv t= wo r(wle,

- o r(u)(v i= W =~ r(w))xv = ve_

- b_r(u)~ (wy := ve_
Now consider the path that executes the upper loop once and the lower loop

zero times. The word in [o| corresponding to that path is

x, = bv t= we r(u)u te v & v i= ur(ule r(w)e,
and applying the push through function, we have

oo

=b Av i= we r(u)u := v & v := ur{u)~ r(wje_

= b (v im w =~ r(u))av := wu := v & v := ur(u) r(vw)e

172

- b_r(u)x(v i= W =u ie V&V u)r(ul r(v)e

- b r(v)m i= Ww & Vv i= ur(u)~ r(vw)e

- b r(u)(u ta WAVY tau—-2r(u))mu te WAV i= uv r(vw)e_

eb r(u)r(vw)(u := vw & v 1= u +~ r(v))m := w kv := ue

- b r(u)r(vw)~ r(v)u t= vw & ¥ te ue

From xx , ve can abstract the off r(u) A r(w) A~r(w) . In the proof

of Theorem 1, these ffs were called the initial conditions for the paths (i.e.,

words) in question. Specifically, we define the functions I : Wy = Q,

A: Wy 4, BO: || -+ and Y, : Wy - ww , 88 follows. First notice

that for any vw € wy , ww is of the form BP Pisces Pp. Ye where

BEBUA ,p €Q, K<n<w, and PecAUu{Al. Then, I(v) = (v, =v.)

i.e., I(w) 1s identically true, if n=0, or I(w) = P, AP AAD

othervise. Also, A(w) = v, ir VY , i.e, A(w) 1s the identity operator, if

¥Y=A, or Av) «= P othervise. Finally, Y(v) = Jj, and for any v € [op]

vhers va bu for some u € Wy » Y, (vw) =i. We say that A(w) is the

operation of wv , and that I(w) 4s the initial condition of that operation

or of the word w itself,

Intuitively, the soundness of the push through axiom schema All (given by

Theorem 8) means that the push through Nmction =x gives us the right qff for

the initial condition of a word, Furthermore, the soundness of the forward

substitution axiom schema AS (given by Theorem 0) means that x gives us the

right assigment schema for the operation of a word. This latter notion {as

explicated in the following

Theorem 21; For any E-progrem# = <X, I, X> , computing structure D , state

§ tw-D and word we of,

EXD, Lv) = AWD,Et], Y (wD.

175

Proof: We given ah inductive proof of an even stronger result. In fact,

we prove the statement of the theorem for all v € Wy , and since

logl wy , this includes the case we [qf .

(1) The first case in the primitive basis of induction is + = e; -
Then, the left-hand side is

E%(D, 8, e) = <j, 3> by the definition of B* ,
and the right-hand side is

<A(e,)(D, t], Tle,»
= <v = v,[D, t]), > Vy the definitions of A and Y,

e <, >> by the definition of semantics for assigmment schemata, which is

identical to the left-hand side.

(11) The second cass in the primitive basis of induction is w = fe, R
where £ € A. Then the left-hand side is

E*(D, ¢, fe,)

= B%(D, f(D, t], e;) by the definition of E+
= <f[D, t], I> by the definition of E*

and the right-hand side is

<A(fe,)(D, t], Y (fe >
= <f[p, t], i> by the definitions of A and Y , which is identical to the

left-hand side.

(1141) If we pu, vhere p € J, then the left-hand side is

2*(D, ¢, pu)

= B%(D, ¢, u) by the definitionof E*

= <A(u)(p, ¢], Y (ul by induction hypotbesis,
and the right-hand side is

1h

<A(pu)(p, t], Y(mu)

- <A(u)(D, t), Y (up by the definitions of A and Y ,
vhich is identical to the left-hand side.

(iv) If wefpu, vhere f€ 4 and p€ W, then the left-hand

side 1s

(p, t, fpu)

= E*(D, ID, ¢t], pu) by the definition of E#

= B%(D, r[D, t], u] by the definition of E

= <A(u)(d, f(D, tll, Y (up by induction hypothesis

Before proceeding with the right-hand side, we need ths result that forward

substitution of assignment schemata is associative, Thus, if f, g, he 4,

we have for any computing structure D and state ¢ : w =D, ’

((£ +g) =h)[D, ¢)

= hp, {f —+g)(D, t]) by Theorem 7

= hip, gD, #(D, t]]] by Theorem7

= (g¢ »n)[D, £[D, t]1) by Theorem7

= (t + (g 21) by Thecrem7

Then, the right-hand side is

<A(fpu)lD, tl, Y(fpab

= <(f - A(pu))(p, t], Y (up by the associativity of forward substitution

and the definition of LL

= <(f = A(n))R, &]), Y (up by the definition of 4A

= <A(u)(D, £(], ¢]), Y(uP by Theorem 7, which is identical to the left-hand
side.

(v) If wa tgu where f, gE€ A, then the left-handside is

35

E*(D, ¢, fgu)

= E*(D, t(D, £], gu) by the definition of E¥*

= E*(D, g(D, f[D, ¢]], a) by the definition of E*

= E*(D, (f »g)[D, ¢], u) by Theorem 7

= <A(u)(p, (£ =g)R, tll, Y, (un) by induction hypothesis,
and the right-hand side is

<A(fgu)[D, ¢], Y(fu)

= <((f 2g) 2 A(u))D, t], Y (ul> by the associativity of forward substitution

and the definition of x, .

= <A(u)(D, {£ —»g)(p, tl], Y (ul by Theorem 7, which is identical to the
left-hana side,

(vi) If w= b,u , then the left-hand side is

E#(D, ¢, bu)

= B#(D, £, u) by the definition of E*

= <A(u)(D, &], Y (up by induction hypothesis,

and the right-hand side is

<a(b,u)(D, tl, Y(bub ‘

= <A(u)[D, t1], Y (u)> by the definitions of A and Y, , Which is identical
to the left-hand side, and this completes the induction. |

From Theorem 19 we found that if W(M, D, §, x) , vhere x € X(8) and

(x] = b, , is finite, then W(N, D, ¢, x) € ou| . Also, from the semantics

of E-programs and Thecrem 20, we have that ®(D, <t, >] SEM, D, ¢, x) &

#(D, ¢, WM, D, ¢, x)) . These results, together with Theorem 21, give us that

if W(M, D, t, x) is finite, then N[D, <t, ©] = <A(u¥(N, D, ¢&, x))(D, t],

Y(WE, D, t, x)> . Thus, for halting executions, the set [ay] completely

characterizes the output of #8 . We continue along these lines by examining the

role of the initial condition I(W(X, D, t, x)) when W(W, D, {, x) 1s finite.

176

Theorem 22: For any E-program # = <X, I, £>, computing structure D , state

t tw-D and x€X, if WW,D, ¢, x) is finite, then
(u(x, 5, t.x)ID, ¢1.

Bo the initial condition of a word, produced Ly a halting execution, must hold,

Proof: We give an inductive proof.

(1) If x €X() and [x] = e, , then

1(w(w, D, ¢, x))(D, ¢)

© I(e,)(D, ¢] by the definition of W

” (v, - v, (2, {] by the definition of x and I , and (v, - v)(D ¢)
by the definition of semantics for qffs.

(11) If xe 4) and [x] =f, then

r(w(w, p, ¢, x))(p, ¢t]

o I(ew(M, D, £(D, ¢t], I'x))[D, ¢] by the definition of W

Notice that for any w € "y , I(v) = I(aw), and suppose that

W(X,D, €, x) is of the form

were p EQ, 1<k<w, md g €4, 1<L<w, The,

I(w(u, p, ¢, x))(p, t)

® Ip, Pye By (Go((f vg) 20)... 2g ;))ey)D, ¢]

® Ip, Pyoes By(f= ((..((g, +8) »&)...)))e)ID, E] Dy the
associativity of fcrvard substitution

“I{(po Ary A.cAp 1)(f=(...))e,)(D, t] by the definition of I

© I{(f =» (e, A gy A. Ag Xe (-.))e,)(D, ¢] by the definition of
%, wheres p = (fq), 1<k

- I(e(q, Ag A.A Oy)(e0)e ID, t] by the definition of «x .

77

So (a Ag ALLA G3) is Just TI(W(M, D, £[D, £), Ix)) . If ve take

I(w(%, 0, Ip, ¢], rx))(p, £[p, ¢]) as the induction hypothesis, then we have

simply (q_ Aq, A...Aq JD, £[D, £1]. But,

(q, nq A...r gq ID, £ID, £]]

of = (q, Ag AA 4 _,)(D, £] by Theorem 6

- (p, AP, A..A R16: ¢] by the definition of q, 1 < k

But, (p, AP) A..A P_) is Just I(W(M, D, &, x)) , sc that finally,
I(w(M, D, &, x))[D, t], as required,

(111) If xe X(Q , Ix =<y, =» and [x]= p , then

I(w(M, 0, €¢, x))[p, ¢]

o I(pw(®, D, &, ¥))(D, ¢] ir p[D, t] or

I(~pW(W, D, &, 2z))[D, ¢] if ~p[D, £], by the definition of W

« (p A X(W(W, D, &, ¥)))D, ¢] if p[D, &] or

(~p AI(W(H, D, &, 2)))(D, ¢) if ~p[p, ¢], by the definitions of = and I.

ep[D, 8, A I(W(M, D, &, ¥))P, ¢] ir plD, ¢] or

~plp, t] A I(W(M, D, ¢, £))[D, ¢] if ~p{D, t], by the definition

of semantics for qffs

o I(W(M, D, &, y))D, ¢] ir pp, ¢) or

I(w(u, D, &, z))(D, ¢] otherwise, by the definit:on of semantics for

qffs, and this holds by induction hypothesis.

(iv) If x € X(B), then

I(w(u, po, &, x))I[D, ¢]

o I([x)w(¥, D, ¢&, I'x))[D, £) by the definition of W

» I(W(W, DO, ¢, I'x))(D, ¢] Wy the definitions of x and I , and this holds

by induction hypothesis, and the induction is therefore complete. |

178

So, we have shown that 1f we execute UY and so generate a word

v € |g| , then the initial condition of w must hold. But, what of the

converse? Suppose we 7re given D, ¢t and Ww € |g! , and we find that

I(w)(D, t) . Can we infer that w = W(¥, D, t, x), where [x] = b, and

Y, (v) = § 7 The answer is yes, and this is the content of the following

Theorem 23; For any E-program W = <X, I', X> , computing structure D ,

statet :w—Dand word w€ [oui , if I(u)iD, t], then

w= WH D §, x) where [x] = b, , i= Y (wv).

Proof: Roughly speaking, we show that I(w)[D, t¢] implies that all the qffs

in w , or alternatively in the path deiined by w , have truth-values such that

execution, and hence W too, will follow that path. Ir the proof, we imagine

that the acceptor function T* is used to step letter by letter through w ,

causing the automaton My to undergo transitions from state to state, At the

same time, W 1s used to step through the E-program $i , from node tc node,

generating a word letter by letter. At each step in the process, we verify

that the node of ¥ corresponds to the state of My , and that the letters

of W and w are identicel, We use an inductive proof, but of a strange

variety. Induction hypothesés are made about the situation on either side of

the current position of the word in question, so that a primitive basis case

occurs at euch end of the word, one for each induction,

(1) Consider the initial case, Suppose w = bu . Then,

T™*(b, w)

= T#(T(Db, b,), uv) by the definition of T#*

= T#(I'x, u) since [x] = b, and by the definition of T ,

179

and,

wig, 0, ¢, rv)

= [x)W(M, L, ¢, ’x) by the definition of W

= b,W(, D, ¢, I'x)

Thus, the next atite and node coincide, i,e., are Ix.

Furthermore, note that I(w)[D, ¢) =» I(u)(p, &] , by the definition of I,

Then by induction hypothesis, I(u){D, ¢] => u = W(¥, D, §, 'x) , so that

webus= b, W(N, D, &, rx) = W(%, D, ¢, x) , as required.
(11) Consider an intermediate case. By induction hypothesis assume

that My is in state 8s € X(4) , and that W is at node s with state n .

Also assume that v = ou, c€ Ly, is the word remaining, and that

I(v)[D, nl] . Then,

T*(s, Vv)

= T#(T(s, 0), u) by the definition of T#

Ifwe |ay|, then T*(s, v) = ¢, and therefore it must be the case that

o= [8s], otherwise transition to the dead state ¢ would occur, and e

would not be reached. So,

T#(s, v)

= ™(T(s,[s]), u)

= T#(Fs, u) by the definition of T* ,

As well,

w(®, D, v, 8)

= (s)W(8, D, (s](D, nl, I's) by the definition of W.

Thus, the next state and node coincide, i.¢., are Is .

180

Furthermore, note that I(v)[D, n]=>1I(u)(Dp, (slp, nl,

a8 indicated in the proof of Theorem 22, Then, by inductiom hypothesis,

I(w)(D, (s)(D, n)] =>u = w(K, D, [s)[D, n), I's) , so, that

ve [sh «(sh D, (s][D, ny], I's) = W(X, D, n, 8), as required,

(111) Consider the other intermediate case, By induction hypothesis,

assume that M, is in state s € X(Q), and that W 1s at node s with

atate n . Also assume that v = ou, 0 € IZ, , is the word remaining, end

that I(v)[D, 4] . Then,

T*(s, v)

= T#(T(s, 0), u) by the definition of T* ,

If ve ag , then T(s, v) = ¢, and therefore it mustbe the case that

o € {{[s],~[s]} , otherwise transition to the dead state 4 would occur, and

e would not be reached, 8o,

(as, v)

= T*(T(s, 0), u) where og € {[s], ~ [s]}

« T(t, u) vhere I's =<y, ©» and t€ {y, z}.

As well,

w(u, D, 4, s)

= (sh(¥, D, 0, y) if (sl)(D, 9] or

~ [shi(¥, pb, n, 5) if ~{s)(D, 1], by the definition of W,

Now, suppose that, in fact, o = [s]. Then

I(v)iD, nl

+ I(ou)(D, 0)

*I({sh)ID, vn)

*{s){D, 1] A I(u)(D, 7] as indicated in the proof of Thecram 22,

181

Then, W(M, D, n, s) = (aW(&, D, n, ¥) . If, in fact, ~=~{s]), theu

we get that W(M, D, n, 8) = ~ [s]W(M, D, n, 2) . Thus, th- next state and node

coincide, i.e., are y or z , as the case may be, where [Is =< 2 .

Furthermore, note that I(v)[D, n]®»I(u)(D, n] , as indicated above. Then,

by induction hypothesis, I(u)(D, nleu = W(t, D, 5, t) , t € {y, z} , so that

veou= oW(li, D, ofD, nl, t) = W(¥&, D, 1, 8) , as required,

(iv) Consider the final case. By induction hypothesis, assume that My

is in state 8 € X(E) , and that W 1a at node s with state n . Also assume

that v - ou, 0 € §, is the word remaining, and that I(v)[D, n] . Then,

T*(s, Vv)

= T#(T(s, 0), u) by the definition of T#

If ve |g, then T#(s, v) = e, and therefore it must be the casé that
0 = [8] , otherwise transition to the dead state d would occur, and e would

not be reached. Of course, then u = A. Bo,

T*(s, Vv)

= T™(T(s, 0), \} by the definition of T*

- Te, A) by the definition of T

=e by the definition of T#

As well, W(M, ° vn, 8) = [8], by the definition of W . Thus,

vaou-={c]=W8 o vq, 8), as required. This completes the inductiom. i

Together, Theorems 19, 20, 21 and 23 give us the following useful

Theorem 24: For any E-program § = <X, [<> , computing structure D

state } :w +p and word ve [qf,

I(w)(R, t) «Mp, <t, ¥,(wD) = <A(w)[D, £], Y(wD

Proof: Consider the =p case first,

182

= E(M, D, ¢t, x) by the definition of semantics for E-progrems where

[x] = b, and Yy(w) =94 ,

& E*(D, ¢, w(M, D, &, x)) by Theorem 20

= <A(W(S, D, &, x))[D, ¢t], Y(w)> since by Theorem 23,

I(v)(D, ¢)»vw = W(¥, D, &, x) , i,e, W(W, D, &, x) is finite. Then,

from Theorem 19 we get that W(M, D, ¢, x) € log , and this allows
application of Theoram 21,

= <A(w}[D, t], Y, (wp once again, by Theorem 2D.

Now, consider the <= case. We know |

up, <t¢, Y(vp)

= <A(v)(D, tl, Y (wp from the hypotheses of the theorem.

Thus, E(M, D, , x) must be determinate, and so therefore is W(W, D, ¢, x) .

In this case, from Theorem 19 we get again that W(W, D, ¢t, x) € |g . Bo
applying Theorems 20 and 21 as in the first case,

up, <i, Y, (vp]

- <A(W(M, 2, t, IR, t], Y,(W(, B, ¢, x)

whence, w= WW, D, ¢, x) . But since W(¥, D, t, x) is finite, then

I(v(W, D, ¢, x))(p, t] , by Theorem 22, t.e., I(w)(D, t). 8

Using Theorem 24 as a starting point, we can recast the definition of strong

equivalence in a form which naturally sheds light on the decidable sub-cases.

To start, let us define the binary relation <e betweenwords of [qf ,

such that for any u, v € log} , We £6 u _; similarto v end write
Vesv , iff

183

(1) Yu) = ¥,(v)

(11) Y_(u. = ¥(v)

(141) for all D, for all ¢ : w-D_, A(u)(D, £) = A(V)ID, ¢], 1.e.,

A(u) and A(v) are strongly equivalent. This we write ar A(w) = A(v) .

Now, consider a partition Cy of | oy | into similarity equivalence
classes such that

(1) UpegyZ * |og
(11) Merz -9,

and such that for any u € | og , the equivalence class of u with respect

to «» i8 {Vv€ |g | : UwwV) .

Let us extend the notion of similarity to similarity equivalence classes

themselves. If U € Cy and VE Cg ure similarity equivalence classes,

then we say U is similarto V, and write U«sV, iff for some wu EU

and vEV, unr |

With each U € Cy , ve associate a joint initial conditics J(U) (no

confusion will result from the duplicate "initial condition" nomenclature), where |
J(U) « vip € Q: p= I(u) for some wu € VU},

Here ve write V8, where S is a set of formal objects, for the disjunction |

formed with "Vv" of the objects in 8 in any order, If 8 1s infinite, then

VE is an infinite disjunction. Intuitively, J(U) is the initial condition

for any of the words in U , all of vhich have strongly equivalent operations

Three further notational matters: we use AB to denote the conjunction

formed with "A" of the objects in 8 ; we denotes (poq) A (@g Dp) as

P =a; and we extend logical validity, denoted |=*, to infinitelylong

Qffs in the natural way (cf. Karp (22) for a detailed treatment).

164

With the notions of similarity and joint initial condition defined,

we can give the following

Dheorem 29: Yor any two E-programs of the same type,

ll = 8 » jm A {J(U) = J(V) : VE Coy & VE Co & U-rV] A

A{~J(U) :t UE€ Cy & for all V € Co UefeV} A

Af~J(V) : VE Cu &foranuve ly, Uefev)

In very rough terms, Theorem 25 states that ¥ and B® are atroogly

equivalent iff they have the same class of potential outputs, and the

conditions for 8 and ® to produce ~ach such output are logically

equivalent,

Proof: Consider the «<= case first, Consider any computing atructure

D, state £ : wD, and {<m, where 8 and ® are bothof type

<a, © , say. We write A for uD, <¢, >] and B for 8D, <t, J

in what follows. We will show that the logical validity of the qff,

Q say, in the statement of this thcorem implies that A & B, There are

five cases to consider,

(1) A and B are both indeterminate, Thus, A&B,

(14) A and B are both determinate and A= B, Thus, A&B.

(111) A is determinate and produces a word u in UE Cu R

but B is indeterminate, From Theorem 24 we have I(u)(D, £] , so that

by the definition of joint initial condition, J(U){D, £) . But then,

notice that for no V € Lg, such that UeeV, do we have J(V)(D, ¢).
This is because if there were sucha V , we wouldhave

J(u) = J(V)(D, ¢) , and further, since J(U)[D, ¢] , therefore

J(V)(D, t] . But then by Theorem 24, B must be determinate and procuce

185

some V EV. Since tnis contradicts the hypothesis of this case,

there is, therefore, no such V € Co , such that U«sV , But, then

the second conjunct of gq gives that ~J(U)[D, ¢] , which alsc contradicts

the hypothesis of this case, Thererore, this case cannot arise,

(iv) B is determinate and produces a word v in V ¢ Co , but

A is indeterminate. The argument proceeds here as in case (ii) above,

except that we make use of the third conjunct of Q to show that this

case cannot arise,

(v) A and B are both determinate and produce words u and Vv

in UE Cu and V € Co , respectively, but A¢ B. From Theorem 2k

we have I(u){D, t) and I(v)[D, ¢] , so that by the definition of joint

initial condition, J(U)[(D, t] and J(V)[D, &] . However, since A¢ B,

therefore Ue/eV , Suppose that for some W € Co , UesW . Then, the

first conjunct of Q gives that J(U) = J(W)(D, ¢) , and since

J(U)[D, ¢) , therefore J(W)(D, £] . Now, since W and V are distinct

(they must be since U<feV and U<W) , and since not both J(W)[D, ¢]

and J(V)[D, ¢] (otherwise, by Theorem 2i, one execution would give two

different outputs), and since J(W)[D, t] therefore not J(V)(D, t].

But, this is a contradiction so that for no We€ Ce do we have UseW ,

But, then, the second conjunct of Q gives that ~J(U)[D, 8] which is

also a contradiction, so that therefore this cease does not arise either.

Since only cases (i) and (11) can arise, and since they give

ASB for any such D,¢ and i, we thereforehave |= = 8,

Nou, consider the =p case. We will assume the comjunaotion Q is

not logically valid, and then show that % and § are therefore not

186

strongly equivalent. Since the conjunction Q is not logically valld, one

(at least) of the conjuncts is not logically valid. Suppose that ~J(U) ,

where U€ Cu wd for all V ¢ Ca , US*V , is not logically valid. Then,

for some computing structure D , state & , not ~J(U)[D, £], i.e.

J(U)[D, €] . Then by the definition of joint initial condition, for scme

weEvU, I(u)[D, £] , so that by Theorem 24, «&[D, <t, Y, (u)>] =

<A(u)(p, ¢], Y(u)> . Then, since for all Ve C,, UsfeV , therefore

oD, <t, Y, (up] either is indeterminate, is determinate with execution

not halting at ej where J = Y, (u) , Or is determinate with execution

halting at egj but having executed a word in some other similarity
equivalence class different from U , If either of the first two cases

occur, then we are done, since then clearly not |=8 = #8, The last case

must bec consldered at length,

However, let us first consider the second alternative for making Q

not logically valid, Suppose that J(U) = J(V) , where U€ Cu , VE Co
and UesV , is not logically valid. Thus, for some computing structure

D and state ¢ , not J(U) = J(V)[D, ¢], i.e, for exemple, J(U)[D, t)

but not J(V)[D, ¢] . But, since for all WE Co different from V we

have Ve/oW , this case is therefore precisely like that considered above,

80, we are concerned with the case where I(u)(D, t], wu€U, UE Cu

and I(w)[D, t],veEW, We Cg As well, UefoW, but Y,(u)= ¥, (vw)

and XY (u) - Y, (wv) . It may be, for this D and § , that

A(u)(D, t] # A(w){(D, £] , so that not {=i = ® , in which case we are done,

But, suppose A(u)(D, ¢) = A(w)[D, t] . We want now to show the existence of

a special computing structure D* and special initial state ¢* :c2 —» D,.

such that IX(u)(D*, &*) and I(w)[D¥, t*] , but where

A(u)(D*, ¢*] § A(w)[D®, t*] , so that not |=ll = 8.

167

Consider the computing structure D* , with signature

8 = << By ey BY 17 Wy, ees By 17 p> , with domain

Dre ((v,, ¥pees Vd URgpeen, kU IE, £0] UNC, 7) TD)

vhere ¥, B€ L ; LV,» Vises Ver contains all the variables occurring in

8 and 8; and (...)* once again denotes the free semi-group with identity

generated by (...) . Here, then, the domain consists of finite strings made up

of some of the symbols that appear in 8 and 8.

Now, we define the other constituents of

Dr = <*, Rees Rey ’ Fopeeon Fool 8 peeey te

The designated individuals a ,..., &1 are just the symbols

Kageoos ko € D* . The functions F,, 1 <{ , are defined by

Fx yen, *n, 1) = 1 ¢ SUPP *w,-1) , where x,..., *a,-1 € D* , Here,
"t,", "(", ")", "," , and the x,..., Tn, -1 are juxtaposed as shown to give
r(x ,..., *n, -1) € D* , We define R,, 1 < k, by referring back to D and
{ , namely, R(x ,..0, *n, 1] » r(x ,...y %,-12 t) .

Tha iet the input state &% : w —»D* be defined so that c(i, L#) = Yi

where of course vy © D% ,

This exotic computing structure and initial state permit us to show that

not ¢=8l ©. First, notice that I(u){D, ¢] = I(u)(p*, ¢*] and

| I(w){D, ¢] > I(w)[D*, ¢*] , since this relationship holds for qffs in general.

(For example, suppose r,(v.)(R, 8] : then R, 1s defined so thet Ry(vg)

But then ry(ve)(D%, Ex] o R,(c(6, #)) eo R, (vg) , which holds, Thus,

r,(ve)(D, t] =>» r, (voip, t#].) Therefore, we can examine A(u)[p*, t+] and

A(w)[D¥, ge],

188

Because of the way tne F, and R, awmdefined, thesc executions follow

exactly the computations given by A(u)(D, t] and A(w){D, ¢] , except now the

computation is being carried cut in symbolic form, the current state reflecting

all past computations. Since U </~W, then uefew , and since

1, (uv) - Y, (vw) and Y (u) - Y _(v) , we must have Au) # A(w) . Now if

A(u)(D*, t*] = A(w)[D®, ¢*] then certainly A(u) = A(vw) , so that

A(u){p*, t+] § A(w)[D*, £*] must be ihe case. Thus, ¥[D*, <&*, Y, (up] #

®(p*, <t*, Y,(v)>} , and hence not j= MT 3 i
Remarks:

(1) The ideas of initial condition, Iv) , and operation, A(w) , are

closely related to McCarthy's method [29] for prescribing conditicas

yy for entering % at b, end leaving at ey , and operators 83 telling
what function is computed entering at b, and leaving at e . The difference
lies in the fact that McCarthy concerns himself with schemes of recursive

equations for defining the "iq the solution to which are not considered,
Essentially, the cutcoms here is that for simple flowcharts, as characterize

algorithms here, regular expressions provide a co.venient way of expressing the

solution of such schemes of equations. Ito [17], considers these matters in

some detail.

(11) If finite sub-sets of |q,| and |ay| can be isolated that we
know contain all words produced by halting executions of 8 and B®

respectively, then the partitions Co and Lo are finite, as is, therefore,
the off in the statement of Theorem 25, Then, since the strong equivalence of

operations is decidible (Theorem 16), the strong equivalence of E-programs

likes ¥§ and § is therefore decidable under those circumstance for which

the logical walidity of qffs is decidable.

189

K-events and the Deciuaility of K-equivalence

At a pragmatic level the cecidability of certain exotic and computationally

uninteresting sub-cases -f the sirong ~quivalence problem does little to help us

analyze the more: compiex, und herce mre useful, general case, Our interest,

then, is in finding a suff:7iently rick subsei of Fm , Tor arbitrary signatures

3 , for which J is comp.e%e. in this chapter, we attack this problem in-

directly by defining the rotion of X-equivalence between E-prcrrams, shoving

that K-equivalence is decidable and that =f o implies a second inferential system
©) adequate for deriving K-equivalence, The further result that the

K-equivaience of two kK-programs impiies their strong equivalence, means that a

handle or strong equivalence for a large and interesting subset of Fm is
therefore available,

Before we proceed with the definitions of K-equivalence and K-events,

and to foreshadow what is tc come, let us use the results of the preceding

section concerning initial conditions to derive the following useful

Taeorem 26: For any E-progrems #8 and 8B. of the same type,

1g! = lagl => kup

Pruof: Since | og] = | Og , ther the partitions T. and Cy are
ldentical, i.e., Ty = Cf . Thus in

A{J(U) = J(V) : UE Cy & VET, & UseV)

UeeV and Cu» C4 imply U=V. Thus, J(U)= J(V) for all such

conjuncts, making the entire conjunctiom logically valid, Hence, by Theorsm 25,

luce. i

Now, the equality of regular sets is decidable (cf. Salomea [38]) so that

Theorem 26 gives us a tool, however meager, for investigating strong equivalence.

190

Thus, siven Ww EE EN 48 UR “hether War B® are strongly equivalent,

we can generat: yg 7 Oy, ffective proce.c, 8nd then test for

lol = og , a‘... am offectir »~ cess, If | = | og then =% CW,

but if | 9 | ¥ fowl , wo cai dra. neo conclusions ne way or the other,

Consider the wf’ 8 <® 1 Figure 46, which is generally valid since

log | » | og] « We see that th + '» st for strong <~quivalence can detect this
property in a fairly large sul :.t of rg . However, this method faiis on even

so simple a wef us A3 (cf, Pi ure 21), where for the method Lc work, we would

have to show |p v p| = |1] which is clearly not true, It is just this sort of

problema that the irtroduction of --events mand K-equivalence will alleviate,

Syntax and Semant.icc of K-expres..ons

K-expressio:: nrc defined cver an alphabet I = ./ wm U 0, 1} U &

where /'.. and are disjoint finite non-empty sets of atomic formulas and

operators respectively, For this discussion, we will write

Aw {By Pypesey bp 1}, B<w , and = 16, Byyerey £3}, D<w

where the p,, i <=, and g,, i <n, merrly stand Jor the actual letters of

Au and J,

First, we define the set .~ of propositions

(1) /Hn.u fo, 1} c

(11) It p, q€ XY, then (~p)€ *- and (p>aq)eVV.

(111) Extremal clause,

Then, we define the set X of K-expressions,

(1) Pu vc h

(41) If o, BE A, then (a. Bg), (avp),are HK

(111) Extremal clmuse,

191

best available copy

<P -) a Cr <<)

E-program fe) E-progrem ©

Oy = b_f(pq)*pe Vv b,hi*rg(pq)*pe

ay = bf(p V pa(Pa)*ple v byhrér(gp)*gpe,

Figure46

An example cf | = =p °®., Of course, the andgiven above1 ak 1s Aol expressions ot erabie Trem | | »
and 8. Here, p, r are qffs, and f, g, h are assignment schemata,

192

MWe use tlie same conventions as for regular expressions vhen dropping parcntheses

and “he "." from (a-.8) .

The cemantics of a K-expression a is a set called a X-event denoted

by aff . In the definition of |lof] , ve make use of the set J called

truth, defined as

J = (s, 5, ... 8 , 8 =p or s = (~p,) , i<m}

which is just the set of disjuncts of the full disjunctive normal form for a

tautology in ~, Then,

lle, | = fs, # ... 8, ,C UT: 8 =p} p, € Atm,

lei = {r&a:pa€T]} g €
hl = 7

lol = #

el = 7 - lol per

ip = all = I~ell Ullal Pa €P

lle v Bll = flod] u lied]

llo*ll = fix] © liodl u jlocd] lioood] u ... ape X

llog|l = ‘xpy : xpe |joff & py€ jBf| & pe]

Notice that for any F-program M , we can take Ang to be tae set of

all distinct qffs of the form T(Toseees "n-1) or (tT = a) occurring
in ® (or simply the set {(v_= v.)) if there are no qffs occurring in §) ,

and by to be the set of all initiators, terminators and distinct assignment

schemata occurring in % . Then evidently, Oe , the regular expression over

oe corresponding to 8, is also a K-expression over Ming and dy . In
general, we concentrate our attention on K-expressions that come from E-programs

even though some of the theorems we prove in the sequel hold for all

X-expresszions in general.

195

let us ¢ “Lv come exumples of Ee:voirams and their respective

K-expressions « : crrespordine ¥-events, or Zeprogram of Figure U7,

we can write

= be i & (~ ry(v,)v, : Lv irra Mr (vg) V ~ ro (Veg t= xe)

cr, in a more crmpact aboroviated orm

% = bk)*r(pe_ v ke.)

where k stands for v, i= K_ , anc so on, Then,

log | a [b _kroe , b_krpke., b krfrpe b krfrpke,,...}

and since Atmg, i fr. (ve), revel} = ir, p} , then
J = {rp, rp, rp, rp}

and

lggll = {rpb_rpkrperp, rpbrpkrperp, rpbrpkrperp,

rpt_FPkIpe ID, rpb_rpkrpe rp, rpb_rpkrpe rp, coop

rpt_rpkrpe rp, ...} .

Each word of licggll is an alternating sequence of words of truth amd
operators, the first and last operators being an initiator and a terminator

respectively. Each word of truth, in some sense, depicts the statc of affairs

at that point in the execution of ¥ . Thus, as ¥ is executed, cefore and

after each operator (i.e., assignment schema) 1s encountered, the atomic formulas

in Ary have certain truth values with respect to the current state, and these
are mirrared in the words of truth prec-ding and following the operator in

w € log! . Consider, for example,

robFpkrperp € lag

This word corresponds to an execution of ¥ | which starts at initiator b,

and halts at terminator e_ ; and if ® is executedin D with input state

§ , then this word tells us that ~r Ap [(D, ¢] anda r A p(p, x(p, tl).

”

best available copy

Figure 47

The upper f!gure shows E-proyram # in full detail, ‘ic lower figure is

an abdrevistaodform where k stands for the assignment schema Vg i= k, ’
and 30 om,

Fi cure 48

Here, L is a qff. The re for this E-program is b, p*pe .
1

Reproduced from

best available copy

In genera! as with certa.n words cf | oy | , many words of lig! do
not corresiond or any execut on of 8 siwkrplvy because the proposed sequence of

words of truth and operators -.s not possible. An obvious example is

rpbrpkrperp € [iq ,

since by certainly does not =ffeet the Laput state end so could not reverse the

truth-value of - . As another example, .opsider a word containiag the sequence

ovir(u)v := f{v)p(vi(u) . This suggests that for same D, and 3,

plv) Ar(u)(D, ¢] and p(v) A ~c(u)(D, w:= £(v)(D, tl}, l.e.,

Taken together, these would give p(v) A r(u) A p(r(v)) A ~2(u)(D, ¢) , vhich
is clearly impossible since r(u) A ae(u) is a logical contrediction.

To see how the concept of K-event will be more powerful ia detecting strong

equivalence, consider once again the wff of Aj (ef, Pigure 21). Barlier, we

vserved that |r v | = {p, p}] # {1} = |1| , so that the regular set approach

Lo deciding strong equivalence is no help. But observe that

ovo

= alt ull pl

= lob U(T- loll)

- Jini

We we :iall sce shortly, equality of K-events doas in general 1Eply etrong

equiva: nce,

To ter som .{ the implications of the semantics of K-expressicms, consider

the follow.ng ‘“xiig cs.

196

(1) lip*ll = lial u llell v llepll U ... for pe P

Nov, lopll = [xs € fell & sye |ipl| & s€ 7}
«(st oe loll se ipl se)

= ipl

so, lel = lll u liell uv ipl U llell U ...

= 7 U [ll

= J

Thus, for the algorithm of Figure 48 with K-expression bJP'peo » Ye have

llp*oll = (5 : se [lox] &o€ [pl & se Tr)

« {3:s5€T& 3 |p] & 5€7)

= 70 |lpll

= [lel

so, Ifo roel = llo_pe_|i , since ®." 4s associative,

(41) Jol = {py : pe ll & pye llofl & pT}, ae X

= {py : p€7 &pye [lof& pe7)

= lod

(113) Jill = 7- [ili = 7-7 = #8 = [lo]

16 = = lof = 77- $= = Jaf

From these examples, wi. see that K-events have many useful and interesting

properties: the "1" 1s :. en to behave both as a symbol for truth and us an

"identity" opcrator; the tuct that the loop in the E-program of Figure 48 once

entered is never left is reflected in the semantics for p*p ; "0" and "1"

are seen to behave consistently as symbcls for truth and falsity.

197

Remarks:

(1) As pointed cul carlrer, the representation of an k-program (1.e.,

flowchart) as a regular expression is a natural adaptation of the state

diagram methods cf automata theory. oth Itc [18] and Engeler {8] have

independently used syntaciic representations clcsely related to that used by this

author. However, the forr of K-event and the description of K-expression

semantics, as given here ha: not appeared elsewhere.

(1i) This author feels that the notion of K-event and the scheme for

attaching semantics to K-expressions represent a significant step forward in

the description and representation of algorithms, As we indicate in the sequel,

these ideas iink in with, and bring cchesion to the work of lanov po) and

Rutledge [57], and ir addition, provide a starting point for even more productive

investigations.

K-equivalence

Two K-expressions a and ¢ are said to be K-equivalent iff ed] = | .

We introduce a =f as a well-formed formula expressing the K-squivalence

of ¢ and B, and write j= = = B Justin case [a]= [8] . We write Fm

for the set of all such wffs, K-equivalence can be a useful tool in the

analysis of strong ~quivelence, as we see in the following

Theorem 27: For any E-programs ¥ and B of the same type,

p= = % => uce,

This theorem is the counterpart of Theorem 24, but provides a much more

powerful test fcr strong equivalence. If % and ® are strongly equivaleamt

because |= % = Oy + then we say # and B are XK-equivalent as well.

198

Proof: Actually what is properly called for here is a development similar to

that given in the first part of this chapter. Then a proof for this theorem

wouid follov as naturally as did the one for Theorem 26. However, here we give

a less sophisticated proof, a: this suffices for our present purposes,

With every halting execution of % , we can associate a word from

log , and similarly for ® and llog . Suppose, in fact, that for the

computing structure D , state { : w-~D and initiator b, , uo, <t, ©]
is determinate and produces the word

vaEdy)

vhere vellall, n<w, ET, k<m2, x =b, x = ¢5 x €A4, 0<k<n and,
of course, QW = 9 and SL WE Sin:e the hypothesis of the theorem gives

that iq ll = log): » then we flogll as well; we will show that ®[D, <¢, ©]
is also determinate and, in fact, produces this very word w . This, of course,

gives u(D, <t, >) = 8p, <¢, >], for any D, ¢ and i such that

SD, <¢, ©] 1s determinate. A similar result cbtains when we assume that

8{D, <t, ©] is determinate, and both together give |= 8,

So we must show that %(D, <t, >) produces the word w assuming that

Wp, <t, ©] does. We do not assume that WD, <¢, ©) is determinate, but

show that the first 2n+3 letters of u , the (possibly infinite) word produced

by WD, <¢, D>], are those of vw, and since x = e, , this implies that ®
does in fact halt, and that it produces just w , We proceed Ly discussing the

various ways that u can differ from w ,

Suppose that u ard w differ firs. at some A . This cannot be 9

however, since % and B are each started with *# and the atomic formulas

199

#211 have like truti-veiues ir each cec.. Since 3 = gq. , i.e., b, has

nc effect, then the first place © ar? w could differ is at gq, . Let

us assume they differ first at gq, <r <n + 1, so that

Um doy Xpdpees XpgP ces

vhere p ¢ q, ; alsc recall that

vou N% oe Xea% oo Gta

Since M[D, <¢, i>) produced <2, we have that

q[D, (...((x -%,) +x,)+..~»x_,)ID, el]

But p and gq are both words from J°, and fram the definition of 7,

s(D, §) »t[D, tL], for 8, t€ Ts is t, i.e, only ome of the disjuncts

in the full disjunctive normal form of a tautology can be true for any given

truth assignment, Thus p = 4 .

Suppose that u and w differ first at some x This cannot be x,

however, since ¥ and B are each started at initiator Db, . Let us assume

they differ first at X53 O<r<ntl, so that

UE aU ce XG

vhere y € A UE, vy ¢ x; also recall that

VoxYh coe Xe BX cor 5%

Since w € [lgll ana ogg = log , then w € lio! . 80 there is a path through

8, starting at the node labelled bN and proceeding to one labelled Xl .

Since ®(D, <¢, ©] produces u , we can consider another path through ©

starting at the node labelled b, and proceeding to one labelled Xeal ° We

vant to show that these two paths must, in fact, be the asme path, The only

way the paths could differ is if at some discriminator p , say, one path

takes the true branch and the other the false branch, But this would imply

200

best available copy

that w and u mul differ at same gq , I< k< r+. , ang tnis (s net

80 since we are assuming u and w are identical up to 9. - Thus the

assignment schemata y and Xx must be reachable run the same wode, i.e,

one labelled x.

If 8=<X, I’, >, and x € X is the node such that [x] 1s the

assignment scheas X._1 0 and if I'x € X(4) U X(E) , then bcth u and w

must have [I'x] as the next letter after qd. > i,e., u and w dc not

differ at x. - So the case left to consider is where there are discriminators

intervening between X 1 and y in the path corresponding to u , and between

x. and x. in the path corresponding to w , This situation is illustrated
in Figure 49. Since w € [lai , the definition of the semantics for "." tells

us that q. € liell where t is the qff specifying the condition for reaching

x. 3 1in Figure 49, we have a. € ||; A ts) . But one of the conjuncts in t
must be negated in the condition t' for reaching y ; in Figure 49, we have

t' = t, At, . Therefore it'll Nn ft] = # , and so q, ¢ it*|| , which means
the path to y cannot be executed, Simply put, the topology of the situation

establishes a certain qff which if true implies we get y next, and if false

implies we get x, next, Then since w € [log , this eliminates the former
possibility, and s0 we muat get xK as the next letter,

From the preceding arguments,

Wor gx 0X05 cee Xen,

but since x, = 5 this means ®(D, <¢, i>] terminates at this point, and so

Ter = 9 is the last letter of u .

So, we concluce that u=w , i,e., if WD, <¢, ©] is determinate and

produces w , then ®(D, <t, >] 1is determinate and produces w . Since the

sequences of assignment schemata encountered are therefore identical, then

up, <¢, >] = ®D, <¢, £>] . An argument similar to the foregoing yields that

201

|
)
|

|
l
'

here q[D, t], vhere ¢lp——

: 1s theTvizent’ state
Figure oo)

Here p, q are qffs; Xx ,,..., X are assignment schemata and each of

y and x. Bay be eithet an assizhment schema or tue terminator ., .

202

ir ®D, <¢, i>) is determinate anl produce: w , then WD, <i, ©] is

determinate and produces w . Again, we obtain M[D, <¢, ir] = BD, <§, i],

Together, these results give M[D, <t, i>] 2 ®[D, <t, ©) for any D, ¢ and

i. ™us [mB CH®,

Remarks:

(1) Certainly, the proof of Theorem 27 can be given in a far more precise

form, for example, in the context of a supporting set of theorems like that

given for Theorem 26,

(11) Theorem 27 is useful only if =a = 87 13 deciiable for arbitrary

K-expressions a and £ . It ls to this problem that we now turn cur attention.

An Inferential System for K-equivalence

We investigate the decidability of K-equivalence by studying the properties

of f , &n inferential system for deriving wffs in Zm. Together, Fm and

vJ constitute the formal theory of K-equivalence, Tx = <Pm, > , Later,
we show that «f is complete for Fm, and that t|= @ = B? is decidable for

arbitrary a «5€ Mm.

Here, and in subsequent discussions concerning the completeness of of, we

deal with some fixed set X of K-expressions defined over some fixed alphabets

Atm and & , For these discussions, it will not concern us what the actual

constituents of these alphabets are, or whence they came. The point is simply

that one application of K-expressicns can involve the study of strong

equivalence for E-programs, In that case, the alphabets are defined as

Am = Amy U Mmg ad b= by U 4g , where the strong equivalence
of E-proyrems ¥ and ® 1s the point in question, This is why the signature

8 plays no direct role here, i,e., the set JX of K-expressions is determined

solely by the ssts Atm and & .

203

“rv inferential system tJ =< Ary, R> cpecifies a finite set fe ”
of ax’. schemata, the instances of which constitute a subset of Fir, and a

finite set Li of rules of inference. If QQ = 8 € X ic f.riteLy derivable
using of , then we say (=f 1s a theorem and write pct = 0 .

The axiom schemata and rules >f cf come from two sources:

(i) an analysic of the axiom schemata and rules of 3 tn determine
what properties of K-expressions they imply, and

(ii) an analysis of the inlerential system given by Salomaa (38) for

deriving wffs of the form a =f where a and B are regular expressions.

We star: by analyzing axiam schemata Al through AT of Ax. From axiom

schema Al in }.gure 21, we obtain the following wff of Jim:

b,ppe V b Fre. Y b_pe, = bre, v b_pe,

which suggervs the following axiom schemata for A,

Cl: pp=7p
_ p is any proposition in P

EL: pp=0

From axiom schema A2, we obtain

bpae_ Vv bpqe, vb pe, = bqpe_ Vv b_gpe, V b (ap Vv ap)e,

which sugges its the follcy ng axiom schema for LL
C3: xg =qp p.:¢ PP.

From axiom © iema AZ, we otain

+) F 1b (p v hle, 1

which suggest: the following axiom schema for AT
OH: pVvos=el pf P

From axiom schama Ak, we obtain

v_(p =) Qe Vb ~p > qe; =b (pv pale Vv bPae,

20k

which suggests the following axiom schemata for Ax,
CS:pravpVvy

P, 9€ FP
C6: ~p oq) =pq

Pram axiom schema AS, we obtain

boP®s v b be, = bbe vb pe,

which suggest. the foliowing axiom schema for Ay

Cl:p=p pe€P

The remainder of the axiom schemata in Ar, are taken directly from (38]
where Salomaa uses them to characterize the equality of regular expressions.

8l: av(Bvy)s=(avB)vy 86: ava=a

8: opr)= (a8) SI: al=a

83: avf=pva S68: a0=0

Hh: xHpVvI)=0BVD 89: =vO0s=«

85: (avp)y wove

810: a* = 1vV oot

Bll: o* «= (1vVv a)

This completes the definition of Ax, = {Cl,..., CI, 81,...,,811} . The set
Ry = (T, 12, T3] 1s defined as follows,

Tl: AQ: fp =p Bal

2: a=p =» (a) = 7(p)

In T2, one or more occurrences of the K-expression a in 7(a) is replaced

by f to give »(B) . The rules T1 and T2 correspond to Rl and R2 of R and

serve to characterize "=" as un equality relation.

205

15: AQ=7 Vix = aA= pF provided T lle .

Sour.drc ~., of the Theory J

nee again, 1f the theory Jy is to be useful in tr derivation

of K-equivalence, then we should require that the theorems a =p of Jp

be valid, 1i.e,, ea = 8 .

Thecrem 28: The theory J is sound, i.e., for all @- PE X R

asp = pka=8.

Proof: 1% is sufficient ti show that the axiom schemata in the sei Ax,

gener:s.e va, ld wiffs, and that th: rules of inference in Ry all preserve
validly,

Axiom scuema ..:

drole = txiy 1 xs € ipl © 8y ¢ pli & 8 €7)

= fs . sc |lpfl& s€|fipii & 8€7)

= {lp

This follows fro the obvious result that for all p € P, |ipll © 7.

Axiom schema C2:

ppl = ‘xsy © »s ¢ llpll & sy € lipll & s €7)

=ir 18 loll & s8€ 7 -lpj) & 8 €F)

= 9

= [lo

Axiom schema C3:

lipall = {xay : xs € fipll & sy € fll & s€ 7)

={s:s€cllp& selqfa sec)

206

= lle Nn lai

= lal 2 |p|

= {s:s€elql& sepfl& sc)

= llqpll

Axiom schema Oh:

lle v Bll = llell v liz

= Mell uv (T- [Ipll)

= TJ

= [hl

Axiom schema C5.

lie > all = Hip} v lal

= lp v4

Axiom schema C6:

Me 2 a)ll = 7 - lp oq

= J - (ell u lla)

= T= (CT- lel) vu lal

= T-0T-lpl) vu (T - (7- Had)

= T-(T- dell 0 ¢T- Ha)

- ell n (T= {lalf)

= fleil © fall

~{s:s pase &seT)

= |lall

Axiom scheme CT:

Bl - 7 - IIB

«T= (T- lvl

= lel

207

Axiom schemata S1,... S6: by the properties of set union and set

intersection, The "Vv" operaticn directly corresponds to set union,

and the "," operation correspcids to set intersection directly for

Keexpressions which are propositions in P and indirectly for K-expressions

in general, To see this latter point, notice that if

ny ® [s€ TT: for came x, xs € |ai|}

ER = {8€ J: for some y 6 s8yE€ 181i}

{y= {xt for sme s€7, xs5¢ ix}

Xg = {y + for sme 8s €/, syc€|8|}

then

for. Bll= (xay : x cx, & 5 € 5, NB ky€X) .

Axiom sclLema ST:

loll = {xsy : xs € flo & sy € |]2|| & 5 € 7}

= {x8: x3 € |lof} «8s € TJ)

= {fol

Axiom schema S88:

lloofl = {xsy : xs € |jof| & sy € ||o]| & 8 € T7}

« {xsy : xs €E || kaye prs eT)

-f

= [jo]

Axiom schema 89:

llr v off = Jicd| u [io]

= fol LU #

= [lod

203

Axiom schema S10:

Lv ao]

= |i} U flocs]

= lll U {xsy : vo € |lol & sy € Jlor|| & 8 € T)

= 1] U {xsy : xs € la] & sy € iL) U Nad) U |locy]] Uo. ks €J)

U {xsy : xs € [IY] & sy € [|of|}

U {xsy : x8 € [af] & sy € [joa]

= [illu lladl U Holl U laced} u ...

= Jil

Axiom schema S11.

Ia v a)

=RfviivaduifiGvaavajufjGva@avaava)lu...

= Jill v (ff u fled)

Ulli u fad} U fjoodf)

UCL u fled] U flo] u fjaond)

= [lil u Jlod] Ulloa u Jjaoad) u ...

= flor]

Rules Tl, T2: these rules reflect the symmetry and substitutivity

properties of set equality.

Rule 12: First we show that a = p¥*y satisfies the equation

@=7V pa, Substituting for «a , we have

209

ly v 8(s* 7)

= I(x v BB*)7|| 85, and since [27] = ||7}

= le*|| 810

Now we show that the solution «a = B*y 1s unique iff JT ¢ |i] .

Suprose that J £ [|Bli., but that there exists another solution Y , i.e.,

fell = ly ve 2 . Then from

liBr=ll = llr v ee*7|| , and

tll = fir v sj)

we obtain

lie*rl ~ iil]

= llr v psy - [jr v BY]

= (Jl U llee®r|) = (irll u lex]

= |lee*7|i - fle]

= {xpy : xp € |[|p]l & py € [jp*¥7|]} ~fuav : uq € |i8}| & qve |x|}

= {xpy : xp € |iB]] & py € [l8®]| - [¥]l}

so that

(lel - fis) - (xo = xp € lll & gy € Clow] = Ii} = 8

i.e ,{xpy : xp € (T- ligll) & py € (lew - [XlD} = 8.

But this means that either J - [|B = or |ie*r|l - |fY|| = # . 8ince

7 £ |Bll , we cannot have T - |lg]l = § , so therefore we must have

llesrif - lel =¢ , s.e., lel =Jltll . mms, T° £ |j8| => the solution

a= pf% is unique, This argument could be simplified somewhat if "="

were introduced as part ~f the formal definition of X-exyressions, i.e,,

Lf we defined [fo - sl} = Joi] - J] .

210

To see that the solution Qa = f* is no longer unique if Jc Bll ’

first observe that J C ||B1! impjies that for some K-expressions u , V

either (1) pie 1, or (11) pis uv v and either T C |juf| or

Te|vll, or (111) p 1s pv and TC |jul| and Tc ||, or (iv) B 1s ur.

Then a simple inductive argument on the structure of £ gives us that

T lll >lell = | v 8]] for some K-expression © .

Then, assuming J C ||8|| and so ||| = || v B}} , we can show that

a= fy Vv g*X, for any K-expression X,is also a solution cf Q = 7 Vv pa.

Substituting for a , we have

la v 8(8%r v 8*X)||

«Irv (1ve)((vo)yv (1v 8)

= ly v (1 v 8)(8% v =*x}|| S11

= lly v 8% v 3%X v B5*r Vv s5*X|| oh

= [J(1 v s8*)r v 8% Vv(&* Vv 86*)X|| 85

= [le*r v 8*r v (1 Vv Bo* v 88%) 510

= || &*r v (1 v se)x| 86

= || &*7 v ox] 810

=| (1vs)rv (1vex| s1

= || py v B=x|| as required,

al: completes the proof of soundness of Ty . |

One immediate and very useful result of this soundness of Tx

arises from the identity of 81,..., 811, Tl, T2, T3 with Salcamea's axioms

and rules [38]. Evidently, the set X of K-expressions over the alphabets

A ana Mmis identical to the set of regular expressions over the alphabet

C=4HUu(P-{0,1)}). Now, if a and P are two such regular expressions

and [a] = |B] , then a =p 4s derivable from§1 through 88 using T1, T2

211

ané T3. “hus, any cI the standard derivebility results concerning regular

express. une car te wppl.ed tc X-expressions if we take the alphabet az L .

In fact this if true for any sub-set 27 X that can be regarded as

regular over some aiphabet. Among “ke results we ofter use are

Pl: (av 2i* = {poem

rR: apa) = (pla

23: da = 20

RB: la = «a

In derivations, we wil’ use Pl..., A to denote these standard derivations.

Hemarks:

{i} The K-expressions derived from E-programs have certain character-

istic feactures, Tor example, we can write any such K-expression in a

“crm where 'V' and "*" appear onlyin the constructs (pu Vv pv) and

(pu)*p respectively. Here a and v are any K-expressions and p is

a qff serving as a discriminator in the E-program in question, Apparently,

gngeler [B] hes pinned .-e form of such K-expressions down precisely.

Ito i} discusses what sort of objects could give rise to K-expressions not

derived {rom schemes like E-programs, namely certain non-deterministic

programs,

{ii) by making use of this knowledge of the form of K-expressions

derived from E-programs, one can show that for such K-expressions, the

condition on rule TJ, namely that "J¢ ||pli " can be reduced to J |B] .

(141) Also, it is possible to give interpretation of Salomsa's

axioms S1,..., S) in terms of the structural properties of E-programs. The

212

point is that properties that can remain unformalized in the graph

representation of E-programs, must submit to axiomatization when the

linear representation of K-expressions is adopted,

(1v) As well, the rule T3 in Ris a direct counterpart of RS,

the recursion rule, in J . The connection hetveen these two warrants
further investigation, especially the relationship of the side conditions

for the application of each.

(v) With a complete knowledge of the relationship between E-programs

and the structure of K-expressions derived from them, we can see how to

extend the result of Theorem 27. Thus, if |= Oy = 0p then [=U =®,

but in addition, we can derive Oy = Og using the axioms and rules of N .
Then this derivation could be used to indicate a derivation using J
of the wff ¥ = 8, so that not only would strong equivalence be detected,

it would be derived as well, We leave these matters in their present in-

complete state,

Mequacy of the Theory ~

The theory Ty being adequate means that if f= 0 = 8 where

ap €X then | a= 8 ; thus, we can derive all instsnces of K-equivalence,

The first step in obtaining this result is to prove propositional adeguacy,

wid this is the content of the following

Theorem 29: =r = q = |p = q for arbitrary propositions p, q € P.

This theorem in fact assures us that the axioms Cl,..., C] are complete

in the sense of the propositional calculus.

213

Proof: “The fivol «0 to toa nl Colby oo wffs of va Porn

p=21 (where .« P' «ovrecurmds ~. , regarced af a statement of

the proces trop: AY 0 EP of LY S.oacry., For ary uo #2 we

develop tre notin. of ~ruun acs.ennor and truti-value unle:r such a

truth aos: men owl _Loen ent U0 repard fo word “ruth,

ie, ve J. 0 0 true oso cmon the atomic formulas I

Atm- {© Co EE CLELLL ASSLMIICLL vv Ve vel. WVth J » Broo Sold? 0 "1 L-1

acts 88 a Tu ow vo vo, 0 whee C0 oary proposition in P

gencrate DSSTUR ISFOTRI. Ca eT lan.

‘ . UAVISEDGR RE

Pp, 2 € P
- 1 oLhierw.s

vip. - [I J
\Ps 5

= L if v, i. ~~ a J
v(C} = 9)

vil : Zz

Since we sre I lowing the notions of propositional calculus, we say

- i . - : + -

p € ‘P is tautciogy, ana write k= p, iff for all ve€ J, vip) = 1.

de tie together “he notions ©” X-events of propositions being truth, and

tnose propositions bei: tautologies,in the following

+

Theorem 30: For any proposition p € P, b=p = 1 eo = P, i.,e., the
K-event for p ir “ruth just in case p» is a tautology.

I

Proof: Evidently, we must show vu € pli for all uw € J eou(p) =1 for all

214

Reproduced from
best available copy

ue J. It is sufficient then to snow that vo pl ewln) 22

for an arbitrary v ¢ J. We use wr wnductite uraof on the structure

of p.

(1) If p is 1, then [lp] = 10 FT nd so ue |p! for all

u€ J. Moreover, u(p) = u(l) = 1 fcr all v ¢ J, Thus

v Ep # vip) =1, sincev € 7.

(11) If p ig ©, then |p! - [jo «= @¢ and so ug |pll for

all u€ J. Morecver, u(p) = WO) =C, i.e., up) # 1, for all

ued, Tus velplevip)=1, since vc 7.

(114) Ir p is py € Am, then [ipl = lil = {s_ By ve. Bo 3 €7:

8, = py } . Thus, ve¢€ lp, | ®v, =p, . Moreover, vip) = vip) = 1

1ff v, =p, , so that tog=ther we have Vv € eh oe vip) = 1.

((:v) If p is f(q=>r), gq, r€ P, then [pl = [a>] =

lal U li=ll . Thus, ve lpll eve lal Uliell, tie, VE lafl or

veE |r|. Moreover, v(p) = v(gor)=1 iff v(~q)=1 or v(r)=1,

i.e., v(qQ) #1 or v(r) = 1. By induction hypothesis, v € |r| «

vir) =1 and ve€ qf »v(q) =1, i.e., v lq »v(q) #1. Then,

taken together these results give v € |p| = v(p) = 1.

(v) If p 1s (~a), a €P, then |p| = |lall = T- |lafi .

Thus, v€ |p| «ave T-|lal, i.e., v£ lal . Moreover, v(p) = v(~q) = 1

iff v(q) = 0, i.,e,, v(q) #1 . By induction hypothesis,

velq| ev(q) = 1, t.e., v¢ |g ®v(q) #1. Then taken together these

results give v € |p|] ® v(p) = 1 . This completes the induction and proof,]

Because the classical propositiona. <.>12ulus does not allow the

constants O and J) , we will have cause to utilize the mapping

R: Po P defined as follows

215

R(0) = ~p, 2p,

R(1) = (p, 2p.)

R(p © q) = R(p) > Rig) Vp af P
R(~p) = ~R(p) od

R(py) = p:

Thus, for any » € P, R(p) contains nc 0 or 1 but for all v CJ,

v(p) = v(R(p)) . This result follows from a simple inductive proof on

the structure of p utilizing the fact that v(p, pt P,) = 1, since

either Vo "Pp, OF Vo =TRL

Consider the following three axiom schemata and rule of inference,

(1) r=>(qg>p)

(it) (p2(@ord> ((p2g) D> (rp 2r))
P, EF

(111) (~p 2 q) D ({~ 2~q) Dp)(iv) p, p DQ =»¢ nodus ponens |
This inferential system i: given by Mendelson [33] for the propositional

calcuius, If a propesit:o»n p € FP is derivable in this system, then we

write |j='p to denote this. Since this system is known to be both sound

and adequate, we have that for all pe , ='p - Fp " -
Let us now outline the steps in prcving Theorem 29, First, for any

p € P, we hav:

kp = 1ok'p by Theorem 30

= b="R(p) property of the mapping R

4 1R(p) completeness of the inferential

system for propositional calculus

2 R(p) = 1 this we must sho:

= fp = 1 this we must show

216

Then this will allow us to finally show that |=} = @ = }=p = q, for

any propositions p, gq ¢ P. So the first step is to show that

'R(p) 2 R(p) = 1, i.e., we nave to show now ti mimic a cerivatia

of R(p) using the inferential system given above for the propositicnal

calculus, sc that a derivation of R(p) = 1 using the inferential system

ef is produced,

In Appendix III, we show how to construct the following derivations:

(1) F (p>(a2p)) =1

(11) F (p> (@2) = (p>) 2(p>r))) = 1 |

(111) | ((¢ 2 q) > ((>~) Dp) = 1

(iv) bpoa=1i, pp=l1alag=1.

Then, given any derivation Hp , We can construct the required derivation

tp = 1 by mimicking each step of the former with the appropriate derivation

given in Appendix III.

The next step 1s to show that | R(p) « 1=|~p « 1 . The appropriate

occurrences of ~p, > P,) and (p, - P,) in R(p) can be replaced by
O and 1 using the following derivations:

(1) ~p, op.) =p, ~p, [+] |
= 0 [+]

(11) (p, @ 2.) =~, Vp, cs

=p, VY ~P, 8

-1 [o.]

Thus, so farwe have shown that for any PEP, |p =1pjpp=1.

Bow, to show |ep= q ® |p= q, note that spe qa fmp~qVpg=1l.

We can easily verify this as follows.

217

f~p~aveallel~p~adfluipal

= {pail 0 hall) u Cilell 0 fall)

= ((7- lel) n (7 Yall) u (lel u lla

= ((7- ld) » {(7= llali)) u Call u llall) since fipll = [lal

= (T= |lal) u lial

= 7

= jh

Then, lr=¢ 3k ~p~qVpg=_l=pp ~p~qVpg=1 using the

derivablility results already obtained, Now consider the following two

derivations

Pq = pq V S39

= 0V pq 53

= ~p0 V pq s8

* ~ Pp ~ ag Vv pag Cl andG2

- (~p~qvV pag 85

=1q since pf ~p~qVvpg=l

. gq Be

P«. pPQVv oO 89

=0VvVopq 55

<~ ~q0V pq 88

=~ q~ pp V par cl,2 and Oo

= {~p~qVvplp 85 andC3

= 1p since |= ~pa~qVpgel

= p Ho

Then, since |-pq = pg by 11 and TZ, we use T2 again to substitute

lpa=p and ppg=q wdsoobtaln peg. Tus, pp=qgpp=q.]

218

!

Before we discuss the adequacy of Ty in general, we need two further

results (Theorems 31 and 52). Recall that VS denotes tne conjunction

formed with "V' of the formal objects in the set § , and vp = 0,

Theorem Jl: For any proposition r € P, br = v||z}; .

This corresponds to an existence theorem for the full disjunctive normal

form nf the propositional calculus.

Proof: First let us extend the result of Theorem 29 and show that

bp = q |p = q for arbitrary K-expressiocns p, q € 'M where
+

(1) Pc p
+

(14) if a, B8€ P’ then (av B)e P* and (8) € F

(111) extremal clause.

Thus, we want to extend the adequacy statement of Theorem 29 to the closure

of P over ™"V" and "." . The entities of PY are still propositional

in nature since '"V" behaves as disjunction and ".," as conjuncticn,

Consider the following derivations:

rS s YX ~~§ Cl

=~ (r2D~ 5) fo.)

r, 8 € r

rvissm~~rvas 414

= (~7 Ds) cS

Using these derivations, we can convert any ¢ € into a proposition

t’ € P, such that {wt = t’ . This follows from a simple inductive

argumentover the structure of ¢ € P*. Then for p, 9 € er,

219

bop =q = j=p’ = q’ by the above argument

=> fp’ = q° Theorem 29

2 bp =q by the above derivations,

Then, tc show |r = V||rll as required in the statement of Theorem 31,

we first show jer = Vir] and then apply the extended adequacy result just

obtained, Notice that for a word of truth v = Vo V1 ree poi»

fivll = llvy vy «co vp,ll

“Ng (8 8 oo py © T 8y = vy]

= {v, i vo oo)

Then to show |er = V |ir|| , we have
|

WIE IT = Ug ¢ pie livil
"We fet)
- ||rll as required. |

Finally, =r = Vv ||r|| ®» |r = v |ir|| from the extended adequacy result

obtained above. 8

In the proof of adequacy fcr Ty , We make use of the notion of

standard K-expressions. A K-exp-ession a € X¥ is said to be standard

iff it 1s of the form

} 1 V...V Py.1 Vv 8.Xt V ... V 80.1%-1%2-1

where p,..., Py 11 8 toseees 5.1, ty1 € Th Xoo X40 € XK,
and kK 2< Ww, k+L < WwW , Vedencte by X~ the set of all standard

K-expressions in X .

220

We shall make use of the syntactic operation 2: x 8 ="

which allows us tc "multiply out” twe standard K-cxpressions, If

Q@=VA, B=VB and @,8€JX , ther

Q®P=Vixpy: xp€ A & py€ B& p€ TJ}.

As an illustrative exampie we have

3 = Vv Y(sy Vs, V 1X85) ® (s, V sy¥s, V 5,25,) (sy V 8,28, V 5,y54 5,X8,¥5,)

where s,, s,, Sy € J and x,¥,z € { . Concerning the idea of standard
K-expression and the ®& operator, we have the following

Theorem 228 For any standard K-expressioris a and B |-08 =p.

Proof: First notice that for any distinet uw, ve J,

Juvl] = {s : s € lull Ese lvl « = € TY

w {8 : 5€{u)ase {v]& s5¢ T)

-f

and

fvvfl » {a : se (vl & s€ |v] &s€ us}

= Iv

Thus, }~ uv = 0 and |=vv = v . This result together with repeated

application of 84,by which ".," is seen to distribute over 'V" , and

B89, vy which any extraneous © is dropped, yieldsthe desired derivation

of USP. |

Also used in the proof of adequacy for Tx 1s the notion of normal

form K-expressions. For any 7 € X, the K-expression N(7) 1s said to be

a normal form of » iff N(») is a reguiar expression over the alphabet

bh uT aa |rfi= 8G) = 8G).

221

Since the structure of normal form K-expressions plays a xey role in

the sequel, let us consider some examples which make this structure clear.

Suppose that Atm= {p, qJ and ¥ = {x} ; ther J = {pq, pq, Pq, pa} .

Below i8 & list of X-expressions and a possible normal form for eech.

K-expression Qo A Normal Form N(a)

2 (Pav paVpaVv pa) x (pqVpa v pgV pa;

(p = q) PQ V Pq V pq

~ P Pq V Pg

~p = ~q)x pax(pq V pa V pq Vv pq)

(~(p > ~q)x)* (pax)*(pq V PQ V Pq V Pq)

We are now ready to discuss the overall adequacy of Jy , and we
state the main result in the following

Theorem 33: For eny K-expressions ay Bc X, pcx = B =p |-a -f .

Proof: Lect us first give a sketch of the proof.

We first prove a Normal Form Theorem (Theorem 34) which states that

l= 7 = N(») for any K-expression 7» and same normal form K(7) .

Adequacy follows immediately: |m=a =p =»|lall = ||8]| =»

IN(a)|| = |IN(B)|| = |N(a)| = |N(B)| , and since Salomaa's system is

adequate, -|N(a)| = |¥(B)| = |-N(a) = N(B) . The normal form theorem

then gives |-N(a) = N(B) &|-a = 8 , so that altcgether we have

=a= 8 =» |-a« 8 as required.

The first step, then, is the following

Theorem 34: (Normal Form Theorem): For any K-expression a, |l-a = N(a) ,

where N(a) is a normal form of a,

222

Proof: The proof is inductive over the structure of >, We define =

simple K-expressicn as one in which no "*" occurs, and let 4 * C 1, be the

set of all simple X-ex;ressions. Thus vt 1s the closure cf

P US over "V' md ",” . We prove the result first for a € }

(again by induction on the structure of a) and ther for x - 3% |

where - B= N(B) ie owr induction hypothesis,

Suppose a is simple; there are four cases tc consider.

(1) a is an operator 8; € 4 . Then we take

Na) = N(g,) = v{pg,a: p, a€ TJ} = vig .

We have |- g = N(eg,) as follows:

8 = §&; Li, Ie

- 18,1 ST, By

=v7T . gy VT Theorem 31

= vipga:p,a€ 7) 84, 85

= N(g,)
(11) a is a proposition p € P . Then we take

N(a) = N(p) = Vip] |

end |= p - N(p) by Theorem 31.
(111) a 18 8V 7 . Then we take

N(a) = (BV?) = N(B) v (7) .

By induction hypothesis, |- 8 « N(8) and |7 = N(), so that

le Bvy = NEV?) as required.

(iv) a is BY . Then we take

N(x) = N(B7) = N(B) ® H(Y) .

23

The "@®' is permissible since evidently the normal forms we generate for

simple K-expressions are themseives standard K-expressions, By induction

hypothesis, |- B = N(B) and |r = N(7), so that |=-py = N(B) N(7)

by R2. Then Theorem 32 gives |-N(B) N(r) = N(B) ® N(B) , so that

finally, = By = N(By) . This completes the induction for the case of

simple «a.

So far we have shown that |=a = N(a) where a 1s simple, but to

verify that N(a) 1s indeed a normal form of «a , we must also show that

IN(a)|| = |N(a)| , where the regular event |N{(@){ is evaluated considering

N(a) as a regular expression over the alphabet 5 U J. It is straight-

forward to show from the definitions in (i) through (iv) above that

N(a) is in fact a regular expression over 4 U J. We now prove,

again by induction over the structure of a, that [[N(a)|| = |N(a)| .

There are four cases to consider.

(1) a 1s an operator 8, € A and Ka) = v {req tp, QE TJ.
Then,

= || vireya : p, a € TI

=U, qegipeyal
- u, q € 717% :r € |p & rx € lg, qf 8 r€T}
- yu q € 77% tr €{p} arxefut : ut €gflat eld ater)
=U, qe yx: repgrx€fut: ut € {mg,n :m, n€T} &t€ {q})}
=U, q€ JF: €fut: ut € {mgm: m, DET] & t= q})
=u qe: px € {ug: uq € (mg,n : m, n €7}}}
-u qe FP: px € (mgq :m cc7T])

24

=U, qe 5 (pga]
= {pga: p, 1ET} ,

and,

|%(a)|

= |vipe,a : p, a €7}|

=U qeiveal
"U qeslovive lel & veal
=U qegluv uc {p} & ve {xy : x€ le, | «vy€ |e)
-y, qeyuv usp eve ix : x € {g,} &y€ {q}}]

-u, qe VE xy : x =g, &y = q}}

“=U, qeglov:ive {g,al]

=U qeai®v:v=egall

=U, qerived
- {pga :p q€ 7},

wo that |¥(a)|| = |H(«)| in case a 1s g € BH.

(11) a 1s a proposition p€ P and N(x) = V|pJl . Then,

local] = [vill I

= |lpfl by Theorem 31,

and,

In(al} = [viel |

"Ur e fp)!"

=U lel 7} since r€ 7
= fioll ,

so that [[N(a)|l = |[M(a)| in case a 1s pe P.

(141) a 1s pv y an? N(a) = N(B) v N(7) . Then,

lin(a)} = |ix(B) v N(»)]|

oll (CH NTR. (RY

225

= |x(B)| UP) by induction hypothesis

= [¥(8) v N(7)}

= |¥(a)| as required.

(iv) a is Bp and N(a) = N(B) ® N(») . Then,

lin(a)|| = [In(e) ® n(r)l

« |M(xpy: xp €B& py €CcapeTi,

where N(B) = VB and N(») = VC . By induction hypotheais,

in(8)]] = |m(B)]|, t.e., |vBll = |VB| , and from this we can easily

shov that |lxp|| = |xp| for all xp € B. s5imilarly, from the in-

duction hypothesis [|N(7)}| = |¥(7)| , we obtain |lpyll = |py| for ala

py € C, Using the semantics of "." | this last result can be restated as

(pr: pz € yl}= {pr : z € |y|} , so thatfor any v,

pv € |lyll » ve |y] . To complete the evaluation of N(a) started

above, notice that

xpyll = {upv 1: up € jixp|| & pv € ly)

= fupy : up € |xp| & v € |y|], above results

= jepeyl.

Then,

Is(all= |Vixzy : sp eBapyeC ape TY

“Ugy : sped apy ecaperil
* Uny : pepbpyecsperwl, shove result
« |vipy: xpEB & py€ECED ET)

= |wa)] ,

as required. This compietes the induction.

Thus, 80 far, we have shown that for any simple K-expression

a€ X', a= No) where N(x) is a normal (and standard) form

226

of a. Now, let us complete the proof of Theorem 34 by showing

that }-p* = N(B*) where by induction hypothesis, bt = N(B) .

Since |-8 = N(B) , then bop = N(3)* , and since N(B) is a

standard K-expression of the form a Vv a Vv...Va ,, m< ww, then

N(p)* 1s of the form (a Va Vv... a,)* . Now, if 6_ is a *

end 6 is (a 66, Co 6.1)" , 0<n<m, then

I= n(B)* = 6.6) --- Bp1 -
This follows simply if we recall that 6 is regular over 2 U J and

then apply Pl: (av B)* = o#(Ba*)* repeatedly. To see the form of

68,9, coe B04 9 consider the following example of the above result:

= (a vb Vcv ad) = ar (ba*)*(ca*(bax)*)*(da*(ba*)*(car(bak)*)*)*

Here, M = 4 ang,

N(B)*= (avbvcyvad*

+

6, is a

0, is (bax)*

6, is (ca*(ba)*)+

65 1s (dan(ba®)*(ca*(bar)*)*)* |

Since |- p* = N(B)* and |- N(B)*=06, ... 6. , we then have

Io p*=00, ... 6, , using T2. Now, for the moment, let us assume that
we can show

Fe, = No,), |- 9, = N(o)),..., Foa1 = N(6,,_1) .
Then, using T2 again, we have |-F* = N(e)N(e;) ... N(e _;) . Theorem 31

then yields |-g* = N(6) ® N(o,) ®...8 N(6,_,) . By an argument precisely

like that given for the case of simple a of the form py , we have that

lin(e,) ® N(s,) &...@ ne.) = Ine) © N(6,) ®...® N(e__,)|

227

end furthermore, since Ty is sound, we have

lig*l| = |m(6_) ® n(e,) ©...® K(g__,)}i

Thus, by the definition of normal form, we can take N{B%*) to be

N(6_) ® X(e,) ®...® N(e__,) . What remains for us to show is that

lo, = ¥(e), 6, = M(6,),..., 6, = No,_;) .

We will show inductivéyhow to carry out these derivations. First we

shou 6, = N(e,) , and then assuming that we have 6, =~ n(e_J,...,

6, = (6,,) , ve show |g =M6), n<m.

Since 6_ is a where NB) = (a, Va v...V _,) , there
are three possibilities to consider in light of ‘he fact that

(a, Vv 8 V...V ay) iz a standard K-expression.

(1) a, in sxs

(11) is sxt Poems T(111) . is a

We consider derivations P5, PC andP] for each case in turn

F5: (sxs)* = 1lv sxs (sxs)* 810

=m lV sx(ssx)®s 3

= 1vV sx(sx)*s a

a VIV sx(sx)%s Theorem 31

6: (sxt)® = 1V axt(sxt)e 810

= 1V ext(lv sxt(sxt)*) 810

=1VxtlyV sxtext(sxt)* 84

e 1V ext V sxOxt(sxt)*® Thecrem 32

= lV sxt 88, 89

= VY V axt Theorem 31

228

Pl: First we show |- 1 = 1%,

l=lvVOQ S9

=1VO0l ST

= O%1 T3

- OF Sv

= (1 vO) §10

= (OV 1)* S3

= O%(10%)* pn

= O%(O%)* BB

- 1 1% Since |=1 = O¥%

= 1%) ud

Then we have,

3% o (1 Vv 8) 811

= (VI v s)* Thecrem 31

« (VI) s6

= 1% Theorem 31

ll Since |=1 = 1#

PY i Theorem 31

It is a straightforvard matter to show that because (a Va V..v a1)

is a normal form then so is a, i.=., [la] = [a| , where a 1s
regular over 4 U J. From this we can easily obtain that

vIVv sx(sx)*s , VJ V sxt , or VJ, as the case may be, is a normal form for

a,*, i.8,, for 6 . Furthermore, this normal form, which ve may nov

write as LIC is also a standard form, as is required of all normal

forms used in the proof of this theorem.

To complete the construction, we show how from

fo, = ¥(6_), |-6, = N(e,),..., }6,_, = X(6__,), n<m , we have

229

8, = N(©} . Recall that 6, is (8.60) ... 8)*. su the

Fe, - (8.8.8, ... 6,4)

by T1 end 72 . Since the normal forms N(6_),..., N(6_ ,) nav:

been assumed derivable, we have

bo, - (a N(6)N(6,) ... N{s _,))* .

Then, applying Theorem 32,

bo - (a ®N(6) ®@N(6)) &..8N(6, _))*.

Because a is a single disjunct of the form sxs8 , sxt or =s , for

some 8, t . J, then a © N(e_) ® N(e,) @..8 N(e__,) must be of
the form

sv Sx 8 V...V SK. 18 LY; sy. to V...V 8Y¢ 1% 1

where the leading s € 7 may be absent, and where

Xseeey Xp 1s Ypres Yq € 4, k,{ <w, toreoes Yo 1 € 7,

A < « , snd are distinct from s . If all the disjuncts are absent,

we have simply bo, = O* , and we can take LIC as V7 . In any

case, we can easily generate a normal form here by making use of the

fact that the leftmost words of truth in the disjuncts of the

expression are the same, namely s .

First, let us show that |=(s v 2)* = a* for any s €¢ J and

xe XN .

(svats={(1vasva) 811

= (VI vsva* Theorem 31

= (VF Vv a)* s6

= (1V a) Theorem 31

- Ort su

230

Thus, it suffices to consider finding a normal form for

8Xs V sy t V...V sy, .t, , , where X= VIX op , L.€., WE
may ignore the leading s even if it is precent. Ic ad? further

brevity, we rewrite this as sXs Vv visy tv} ict Now, consider

the following derivation,

*

(sXs Vv visy,t.),.,)

- (sxs)*(v{sy bt); (sXs)*)* 2
- *(sXs) (visy ti}, (2 Vv sX(sX)¥s))* PS
= * \'4(8Xs) (Vay ti)ic pv (sv ty), gsX(sX)*s) Sk
= * * o)(sXs) (Vi{sy,t 0 ,V 0) Theorem 53
- »

= (sXs)*(sy_t)*(v{sy,t,},_, 1) Pi, P5, S4, Theorem 32, 359

= (axs)*(syt)*(sy;t,)* ... (sy, ,t, ;)* Fl, PS, S4, Theorem 32, $9
=m * ' -(1 v sX(aX)*s)(1 Vv syt.) -.. (1 SY_1%,.1) Bp), js]
- * *vr v visy,t.} Vv sX(sX)*s v v{sX(sx) SANDY Thaorems 31, 32

This last K.expregssion is both normal and standard and will serve as the

required N(e,)

We conclude, therefore, that |-0_ = N(e), 6, = N(s),...,

l-6,_, = N(e,_,) . Then, as we have already shcwn, N(B*) can VL: taken

as N(e) @..®N(6_ ,), and furtnermore, |-8% = N(B¥) . |

The normal fcrm theorem (Theorem 34) we have just proven, immediately

leads to a proof of Theorem 33, which expresses the adequacy of Te

231

The hypothesis cf Theorem 33 is that =a = B for arbifrary K-exprees: ions

a,8 € 1 Inen,

a - B => |jaf| = ||8]] by definitior,

> |[N(a)il = |iN(B)] qaerc N{@) anc N(@) arc She noamal

forms provided py Theorem 5%

= |N(a) | = IN(B. | property cf normml forms,

== I=N(a) = N(B) using only Salomaa. oyster

which i. adequate,

Then, since a = N(a) and }-8 = N(B) by the normal form theorem,

we have finally, ba =f . Thus, pt = B > a = f , a8 required. |
Remarks:

(1) The imbedding of X = v{x.},, in the construction of N(e)

implies that an artitrary K-expression a cannot in general be expressed

ir a purely disjunctive normal form, i.e,, one where no "Vv" appears inside

of "{)#",

{11) Since the proof of Theorem 33 is constructive, ?Zjma = B? for

an arbitrary wff a = 8 € Fm 1s therefore effectively decidable, Thus,

for any two K-expresslicns au and fB , we can say whether or not they are

K-equivalent, and if they are, then we can produce a proof in 7x of
this fact,

(111) Theorem 27 tells us that for any two E-programs MM and 8 of

the same type, |mq = op => 8 = ® . Since Tj=gy = Qu! 1s decidable,
this means we have a test for strong equivalence which in part answers the

question Till = ®? ., Thus, by testing Oy and aq for K-equivalence, we
either obtain "yes" or "maybe" to the question: is ¥ strongly

equivalent to 8.

232

(iv) Even though the K-evert formulation and proof of completeness

given here (Theorems 28 and 33) are new and independently obtained, the comp-

leteness result is not new. In fact, despite the K-event formulation, this

result actually includes that of Ianov [16] and Rutledge [57], and is appa.intly

equivalent to that of Ito [18]. The completeness results of Ianov, Rutledge

and Ito, and the work by Itc in the recasting of regular expression semantics,

are among the factors that motivated this author's quest for the here presented

elegant formalism and concise completeness proof, which together constitute

a measurable improvement over those earlier works,

K-events and lanov's Results

We shall not embroil ourselves here in a dissection of Ianov':s work.

Rather, we shall define for any signature & =<<n_,..., n _,>, XW ,.eey By>

pP>> sub-class A Cc Lg of abstract E-programs such that the properties of

strong equivalence and K-equivalence are identical, This in the sense that

for any abstract E-programs M, 8c A, bbl = Bw fay = ay. It will then
be evident that abstract E-programs are like Ianov's program schemata, except

that we allow more than one entrance and exit, and repeated occurrences of

operators, i.e,, assignment schemata.

An E-program ¥ 1s said to be abstract iff

(1) v, is the only variable occurring in ® (we will write

simply "v"),

(11) no constants occur in « .

(111) no function letters occur in any qff occwring in W ,

(iv) all assignment schemata occurring in 8 are of the form

V im £,(Tgsee es a2) vhere Jj < £ , and each one of Toreees Tg oy
is Just the variable v , J

233

Abstrt Eanruprun

2

<

Figure

Two ctrongly equivalent abstract E-proyrans, Here, f, g, hb wre tunct! on

letturs; p, r are »-l:tion letters; v1. ithe variable AJ

234

Figure 50 «1llustrate: -. 2] Re

evidently |=8 = ¥ .

Theorem 35: For any tw. UL) 1, ® : So Lar .

ll = B= h=cy, = Og

Proof: The case oy, - % A) - 3 : es ste ly Yrom Tneor w ZO)
For the other case, we nae Lhe ° SA

(1) For any computing str *. <. ciontture 0, state Eid

i <n (where Y and 8 ur: Lon Cay), 4 ul, JE =

and sc also Bil, <i, =) ee : ey eee words oa yl LL

Ww £ log! respeclively, tho
(11) For any abstract ~--5 ow. I 7 4 of type <@m, n> , if

We = {sb s xve tf 3 log" so Te wv <’ & t=1t‘], then
for any u ¢ We , there exice iu ie Structure x of signature os ,

state n and K<m such that & .. + £»i .s determinate and produces

the word u .

(- oo Hey |
(111) Wy = Wy =» IF) = lah

From these results (whivei we on .+:sow), the desired result follows

immediately. Consider any SL TRE . it), WX, <n, kK] generates u :

and by (1) WX, <n, ©] alsc gencrute. u , so that u € Wy as well.
CC : vive q CThus, “ Cc "a . A similar argument gives We C wy s so that finally

Wy = Wg . Then, (iii) gives ay MR teen, =oy = ay, 86 required,

To obtain result (i) above, wc neel not yive a detailed proof like that

given for Theorem 27. Let us simply note that twe sequences of assignment

schemata of the sort found in abstract kK-programs are not strongly equivalent

250

Reproduced from

best available copy

unless they are synta tically identical. Thus, in th? words nu ¢ RETR

and w € llongdl , the operator letters that are assiyrment schoamat. in
each are equinume:rocus, identical, and appear in the same ord.r. since

the atomic formulas in two words of truth cannot all be true .1 evaluated

in a state, the words of truth following each operator letter in uv and

wv must therefore be identical. This, because the states ar . rrosoornd iu

points in the execution of 8 and ® are identical as a »-vuj- J

identical sequences of ass .gnment schemata having been execute © on identical

initial states, Furthermore § and ®B start at the same initistor ani

halt at the same terminator (since they are strongly equiva! ent), oo that

the initial and final operator letters in u and w are al.o identlceul,

Thus, u = w .

To obtain result (11) above, we actually show for any «urd u « We

how to specify the required computing structure X = <X, Eoseory Ry»

Fpeeos Fo_1 8 seers a. 1 , State n and K< mm. Let the domain X
be the set of all terms In which no constants and oniy the varialle

v occur. For the functions, we let Fylecr oy a, -1) = Tole, ony op 10,
J<1 , Where Cores Cn -1 € X, l.e,, are terms. The constants y
ET 8-1 can be ote arbitrarily, of course. The relations will be
specified below by examining the word u € Wg to determine what the

branching through & must be during execution so that u is generated,

For the initial state 1 , we simply specify that c{0, n) = v so

that viX, wl] = v initially, Suppose that u € We is of the form

sb, 8x p X, cen Xq-2Pno%y- be 5b

where 8, t, p,..., Pyo € J, b, €B, e, € £ and x,..., x ,€ 4.
Choose K = 1] so that we atart at the correct initiator. In specifying the

236

relations, we need only concern ourselves with the terms stored ir + at

each stage of the computation. We use the word of truth at each stage *c

set the truthevalues of the relations for th- current value of v . ‘hus,

for example, if after executing assignment schemata Xap Xyseoes Xo 15 T° No,

the term oo is stored in v , then the word of truth Pr. = 9,9, Sr1a1

(where Am has M members) tells us how to specify the relations, If

IT J<M is 2 (Topeeey *n,-1) , where each of peony "n,-1 ic the
varisble v , tner R,{c_,.... n,-1) , where each one of «c_,..., 0, -1 is
oc , the current contents of v . If 15 J<M, 1s TLLIEEEP "n,-1) >
then not R,(c,,..., ¢ _;) . We are guaranteed that the specification of

i

the relations can be achieved without conflict since after each assignment

schema Xx; , 1<N, is executed, we know that +v will contain a new term

that has not previously arisen earlier in the execution of § .

Thus, when & 1s executed in X with the initial state g starting

at initiator Dy s 1t halts and generates the word u ¢ LS .

To obtain result (iii) , simply notice that for any E-program § ,

leg || = U (8b, s'xtet’ : 8’, t'¢ J)og sb, sxte,t € Ws i J ’
Thus, thc words in L and Va represent the generable words, and associated

with each such word is a set of words which are .ot generable because operator

letters that are initiators or terminators cannot affect the truth values of

the atomic formulas. Since all of lll and all of |la,|| are obtained this

way, and since like words from “ and L™ give rise to like sets of non-

generable words, Wy, = Wy > [Ill = [loll . }
Remarks:

(1) Since Toy = Oy! , for arbitrary abstract E-progrems W, S€ A,

257

is decidable (Theorem 2%‘ the strong equiveience of nrstract E-vpre z2rams is

therefore decidable by Thr orem 35.

(ii) Abstract E-prorrams correspond tc lanov's vrogram : hemes because,

as we have seen, only syntactically identica. cequences of roerntcy | Lo,

assignment schemata, are strongly equivalent, and the truth value of each

atomic formula may uve affected by each cof the operators, These are the

properties that churacterize lanov's schemes.

(111i) Since the notions of strong equivalence for abstract E-programs

and K-equivalence ror K-expressions are identical, the notions of K-expression

and K-event therefore constitute a reformulation of Ianov's results. As weil,

tc say any two E-programs are K-ecuivalent is to say they are equivalent in

the sense of Tanov's definition of equivalence,

(iv) One notion we have not yet explored is that of "shift distribution”

as defined by Ianov [14 and extended by Rutledge [37]. This we do in the

next section.

Shift Sets and Shift K-events

Ianov [16] uses his "shift distribution” to indicate for each operator

in a program schema what atomic formulas could be affected by the execution

of that operator. Rutledge [37] extends this by indicating for each operator

and each possible set of truth-values for the atomic formulas (i.e., for

each word of truth in our scheme) the possible sets of truth-values after

execution of the operator. Rutledge's method for specifying relationships

between the operators and atomic formulas is more extensive than Ianov's

shift distribution, and in fact includes it as a sub-concept.

238

For our acheme of K-expressions and K-eventa, the implementation of

these notions is straightforward and natural, We will first define the

notions of shift set and shift K-event with respect to the set A of

K-expressicns defined over the alphabets & = {g_,..., & _,] and

Am = {p_y..., P_;] , nd then subsequently indicate how these concepts
strengthen our ability to detect strong equivalence of E-programs,

Shift K-events are simply a generalization of K-events. In fact, the

shift K-event lledi associated with the K-expression a 1s evaluated in
precisely the same marner as the K-event |lod| , except for the case of

operator letters in 4 . Shift K-events are defined with respect to a

shift set 8 {8, 5,,..., 8_;}, vhere 8, C|lgl , 1 <n. (Intuitively,

a word sgt €8, , vhere s, t € 7, indicates a "permissable event”, i.e,

the vords of truth 8s and t give truth-values for the atomic formulas that

sre compatible with the properties of the operator letter g, .) The

definition of shift K-event with respect to a shift set S 4s then,

kollg = lel! PE Pp

hay lls = 8, 8 € 4

kav Blig = liadlg u llellg

fol, = lll U liadlg U lloodig U [laced], U...
lool= (xy : spe fjodl; Sprefolly ape 7).

Two K-expressions @, 8 € J are said to be K-equivalent with respect

to a shift set 8 iff of; = oll; , Le, iff aap.

For any shift set §, let J, (8) be the formal theory obtained from

x by adjoining to Ax the axiom schemas

239

C8: g = VS, , i= Oy lyees, D=2

If a= fp is derivable in J (8) , wc write |g a= 6.

Theorem 36: For any K-expressions a, 8 € Jy and any shift set § ,

Thus, the theory J, (8) is complete, i.e., both sound and adequate,
for K- equivalence with respect to the shift set S .

Proof: First, let us show soundness, i.e., |= dw B f=. a=p. It

is obvious from the definition of shift K-event, that

=x = Pople B . Bince a = 8 =» pt = fg by Theorem 28, then

a=p ®ma=p. In addition, for axiom schema CB, leglls = 8; = Iv s,ll ,

sc that mcg, =V 8 . Thus, |-a=8 >|=a=p, as required,

Now, let us consider adequacy, i.e., |= 3 =P >|a =p. We proceed
precisely as in Theorems 33 and 34, except that now the normal fcrm for

8, € b 1s obtained directly using C8. Tms N(g,) = Vllg,|[g =v 8;

(instesd of X(g,) = vie, ll , a8 before), and C8 gives be, = X(g,) , 88
required. |

Our goal is to detect the strong equivalence of two E-programs Wl

and ® by testing for the K-equivalence, with respect to a shift set, of

the K-expressions N and Ol derived from those E-programs. To facilitate

this testing, we develop the notion of consistent shift set, Intuitively,

a shift set is consistent iff for any E-program ¥ , no word in

log! - lloggllg is generable by an execution of ¥ in same computing structure,
Thus, by cutting down a K-event for an E-program to some shift K-avemt, we

have not dsleted any words which could be produced by some execution of that

E-progranm,

20

There are several possibilities for the construction of consistent

shift sets, one of which we now examine. Consider the word

Us 8,8, ceo 8-1 9 ty ceo tel

vhere 58, ... 8 , tt ...t ,€ J, i.e. are words of truth, and

§, is an assignment schema. If for some j <m, 8 # ts , aud yet none of

the assigned variables in gy occur in =jy then the word u could never
arise during the execution of an E-program. That is, words cannot arise

during execution that indicate changes in truth-values of atumic formulas

vhen those atomic formulas do not contain an occurrence of one of the

assigned variables of the intervening assignment schema, Thus, Sy is

defined to be the set of all words u € |g|| such that for all j<m,

it ., # t then an assigned variable in g, occurs in S .

Consider the following example. Suppose

Atm= {r(u), p(u, £(v))}

4 = {u:= ru), v:=g(v), w:=n(w)].

Then, abbreviating #fmas {r, p} , we have

J = {rp, th, Fp, 75)

Using the criterion discussed above for forming a consistent shift set,

end abbreviating 4 as (g, 8,, 8) , ve have,

8, = ls,

8, = (rpe,rp, rpe,rp, rPE,TP, rpg,rp

Fre,fp, Fre 7, Fpe,TP, pe,ip)

8, = {rpe,rp, rD6,rD, FPE,FP, FPE,FT) -

Thus, for exemple, rpg, 7p ¢ 8, since v :- g{v) cannot affect the
truth-value of ru) .

2h

Theorem 37: Fr anyF-programs and o 2 of the samc type, with

associated K- » reusions Op, og A,and then for any «onsistentshift

set 8 defiuc. .''h reopect to KN

oly = 4p > FUR.
Proof: This tnveram (oo the counteypmri + Theorem £7, and i: proved ju

a similar manner, sithough with far Lose Jetall,

With every tnlting execution ¢f YW , we can associate a word in

lloggll . This is co because S$ being « cusistent assurcs us that only

" impossible” word: have been deleted frum log! to yield log .

Suppose uD, <t, i>] is determinate and produces the werd w € loll .

Since the hypothesis of the theorem gives that liogglls = loll , then

vw € loll as well, Using precisely the same argument given in the proof
of Theorem 27, we obtain that ®D, <t, I>] also is determinate, and in

fact produces this same word w ,

This, of course, gives M[D, <t, i>] = ®{D, <¢, >} , for any 1

¢ and 1 such that M(D, <¢, £>] is determinate. A similar result

obtains when we assume that ®{D, <t, i>] is determinate, and both

together give |= 4 = 8 i

Once again, we have been able to strengthen our ability to detect

strong equivalence of E-programs, Given two E-prcpram: we would construct

their associated K-expressions, and the shift set 5 , based on the method

described above. Since the proof of Theorem 36 is constructive, then

Hg = Bt , for arbitrary a, fp € X and shift set S , is decidable,

242

In fact, if I=s% = On , then a proof of this in J (8) is produced,
and we conclude |= = ®

T.. see that this technique constitutes an improvement in our ability

to detect strong equivalence, consider the example in Figure 51. For the

E-prcyram ® , we have

oy = b (~r(u)v := f(w))er(u)e_
= b(rf)#re , if we abbreviate.

For E-program 8 , we have

Oy = b_ (~(u))*r(u)e,
= b(r)*r e , if ve abbreviate.

Notice that [loll # [loll . 1f we construct a consistent shift set 8,
where [rfr, rfr)} € § is the member for the operator letter f (reflecting

the fact that w := f(w) carnot affect the truth value of r(u)) , then

Tx(8) yields the following derivation.

b(rf)%re = b(r(rfr v rfr))*re c8, R2

= b(rrfr v rrfr)¥re 3

= b(Ofr Vv rfr)*re Cl, c2, C3

= b(0 Vv rfr)*re P3

= b(rfr)ere 83, 89
= b(1 Vv rer (rer)*)re 810

= b(1 v rf(rrf)*r)re rR

= bre V brf(rrf)*rre oh, 85

= bre V bre(rrf)*0e 2, ¢3

= bre VO 88, Pp

= blre 89 81

= b(r)%re Theorem 31, FI

263

E-progran WM E-program 8

Figure 51

Two strongly equivalent E-programs for which ordinary K-event analysis
vill not suffice, Here, r is a relation letter; ff ic a function
letter; and u, w arc variables,

E-program E-program ®

Figure52

Two strongly equivalent f-progrems for which ordinary shift K-event
analysis falls. Here, Ir 1s a relation letter; f is a function
letter; and u, v, v arc variables,

2h

Thus, b-gb(rf)xre = b(r)ere , i.e., so = Og , SO that Theorem 36

gives FS = Op Then, finally, Theorcm 37 gives jl = @ , So,
vsing shift K-events, we ~an detect strong equivaience in cases where

ordinary K-events fail,

There are many other possibilities for the construction of consistent

shift sets, In Figure 52 we see two E-programs ¥ and 8 which are

strongly equivalent, but comparison of shift K-events, for a consistent

shift set constructed as above, fails to detect this fact. Here we would

want the shift set to reflect the fact that after certain operators, certain

atomic formulas are constiained to have identical truth values.

For E-program ¥ , w2 have

Oy = bu i= v{~{r(u) > r(v)))*(r(u) or(v))e,

= bf(~{p > r))*(p Dr)e, if we abbreviate.

For E-program ® , we have

Op =bo UW i= ve,

= bJe , if we abbreviate,

Rotice that if we take the member of the shift set 8 for operator £ to

be

{prfpr, prfpr, prfpr, prepr, prfpr, pripr, pripr, prfpr)

as we would using the earlier method for constructing consistent shift sets,

then Jills # llay)l . However, let us take the member of 8 for f to be
{prtpr, oFfhr, pripr, pripr) ,

which reflects in addition the fact that after executing u :» v , r{u)

aid r(v) must have the ssme truth-value., Then Ti(8) yields the
following derivation,

hs

bf(~{p > r))*(p > 1r)e

= bf(pr)*(p o r)e Theorem 3}

= bfl(p Dre Theorem 31, Ff

= bf(p oD r)e 1

= bf(pr Vv pr Vv pre Theorem 31

= b(prfpr v prfpr v prfpr v pripr)(pr v pr Vv pre ce

= b(prfpr v prfpr Vv prfpr Vv prpr)e Theorem 3c

= bfe c8

Thus, <% = Cy , and so k=O = Oy . Then, ‘heorem 37 g!ves = <8.

Remarks:

(1) From the simple nature of the procf for Theorem 36, we see that

our ability to detect strong equivalence will be improved by any device,

technique or heuristic that serves to delete words fram log thal u
cculd never produce in execution, Among several possibilities, is the

identification of identity operators. Thur wu := u occurring in ¥ would

not be included in YU but converted to 1 directly when ey vas formed.
(ii) The K-expressicn representation for algorithms finds application

in another area besides the detection of strong equivalence, This author

has devised another formulation of Ke-expression semantics that permits us

to write down for any nade in the graph of an E-progrem a possibly infinite

qQff which tells what is true at that node, At present, this work, which

bears closely on the problems discussed by Floyd (11), is incomplete and so

will not be discussed here any further,

246

BLANK PAGE

CHAPTER 10

CONCLUDING REMARKS

In this work, the principal goal has beea to ‘nvestigate the strong

equivalence of elemental prcgrams \J.e., E-programs). We have sought to

provide a formal theoretic framework within which proofs of strong equi-

valence can be generated. Thus, any sequence of transformations performed

on an elemental program using the axioms generates a proof that the final

program is strongly 2quivalent to the initial one. Furthermore, avail-

ability of a formal theory of equivalence 1s essential should we want to

mechanlize proof generation or proof checking. This because such automated

systems would treat these matters from the point of view of syntax not

semantics,

The elemental programs and computing structures considered here

together only barely meet the cxitericn of being ALGOL-like, Thus, while

pany-entrance, many-exit flowcharts of assignment schemata (possibly with

subscripted variables included) and conditional branches can be termed ALGOL-

like, there is still a wealth of structure in ALCOL not programmable in or

reducable to this sort of formalism. Clearly FOR-loops, conditional

arithmetic expressions, etc., are reducable to elemental programs, but

block structure, recursive procedures and the like escape such reduction,

In addition, we have concentrated on single-sorted computire structures,

This even though, as we indicate in Appendix I, we likely would have to

resort {oc many-sorted computing structures to bring into the scope of

the theory those bases of computation of topical interest.

247

The theory of strong equivalence we introduce, while Possibly

incomplete, is nevertheless powerful enough to serve in many applications.

In addition, the theory is complete, end even extended complete, for certain

sub-cases of interest, However, thcre are many unanswered questions in this

area. Precisely vhat are the limits on the derivational power of the theory?

Can this power be increased? Is the theory complete for certain decidable

strong equivalence sub-problems studied recently by Paterson [¥%)? These

questions beg to be answered, but are beyond the scope of this work.

Taking another approach to the strong equivalence problem, we have

introduced a hierarchy of analytic tools for discovering strong equivalence.

These tools or methods rely on the notions of K-expression representation

for elamental programs and on K-event interpretation of these expressions.

In this area too, there are many paths of investigation that seem promising.

For example, can we further refine cur ability to detect strong equivalence

by finding even more unexecutable words that can be cast out of the K-event
corresponding to an elemental program? If so, vhat are the limits on this

capability to detect unexecutable paths in an elemental program?

There are other aspects of the strong equivalence problem we have

barely touched on in this work. Ome is our ability to characterite the

properties of a computing structure by providing a set of proper axioms.

In fact, what sort of properties of computing structures can be expressed

by a set of equivalences given by proper axioms? In general, what formal

techniques are required to at least partially characterize such domains as

the integers?! 8hould the theory be extended to allow propositional or

gomntificational statements about strong equivalence so that useful

domain characterisations can be made?

2h8

In same sense, strong equivalence is too strong a property. That is,

tvo strongly equivalent elemental programs share this property for reasons |

that are not very complicated. This of course must be so since all infor-

mation regarding any computing structure is suppressed when making this

statement of strong equivalence, That being the case, we are still a

long way from a theory of equivalence which is widely applicable to

strictly ALGOL~like programs, This is so because a great many of the

transformations we would like to make will depend on various properties

of a specific computing structure and so will not be included in our

theory of strong equivalence, This makes the characterization of computing

structures through proper axioms a very relevant issue, since thic is the

route we would take to arrive at a theory which could derive statements

of equivalence of the sort we are interested in,

Another potentially useful extension of the theory presented here

would be to make it "bilingual". Thus, we would define two languages for

specifying algorithms, one a high level source language and the other a

machine-like object language. For each language, an inferential system for

deriving strong equivalence of its programs would be specified, We also

would specify an additional axiom embodying a compiling transformation from

the source language into the object language. To prove such a theory sound,

ve would have to verify that the compiler axiom was sc:nd, i.e,, that the

compiling transformation wes "correct". McCarthy, Painter [26,28 35] and

this author (20] have all studied the problem of proving compiler trans-

formations “correct”, Such a bilingual theory would find application in

systems where both pre- and post-campilation optimizations and transformations

249

are performed on a prograxr, The soundness of the theory would guarantee

that the final object program was in some sense strongly equivalent to

the initial source program, The basic inadequacy of a mechanized version

of such a theory, however, precludes a system which will always fully

optimize or simplify a given source program.

We see that the road to a viable useful theory of equivalence for

ALGOL~1ike programs is strewn with many obstacles. Our hope is that this

work, to some extent, has removed same of those obstacles and 80 moved us

further along that road,

APPENDIX I

MANY-SORTED COMPUTING STRUCTURES

Single-sorted computing structures arc often inadequate for

characterizing semantic bases of topical interest, The principal

difficulty lies in the restriction to 2 cingle domain, since in many

programming languages and computers we have more than one "data type".

Here we extend the notions of signature and computing structure to

indicate how this deficiency might be remedied.

A generalized signature is a 7=tuple of “he form

8 = <I, J, Ji» Jo, 0, m, p>

where,

(1) I is a non-empty possibly infinite index set telling how

many domains there are.

(11) J, 18 a posaibly infinite index set for the relations and

n is sa function on J, such that for Jj € J, ’

a3) = <iyeee, 1,>, 1 €1, r< 5, < w

(111) Jy is a Consibly infinite index set for the functions and
m is a function on Jy such that for J € Jy ’

n(J) = <i,..., betes te, ret,
(iv) J, is a possibly infinite index set for the designated indi-

viduals and p 4s a function on J; such that for J € Js p(d) €e 1,

By a many-sorted computing structure of generalized signature s » VE

mean a b-tuple, D =» < D>ic1s Fp sea» Fea, <8 jeu, >
where,

(1) i, 1s a non-empty possibly infinite set for i € 1

(11) Ry SD; xeeox Dy for Jed
© %J 251

(111) F, : Dy Xo» aX fy, +0, " for J €J,
J J

(iv) . € D4) for j & J, .

We can easily find systems that are either naturally or of necessity

defined as many sorted,

(1) Consider the system

< <A,D, 5, <atm,ep, <car, cdr, cong>, <NIL> >

vith generalized signature

< Q,1,2», <0,>, <0,1,2>, 0, n, m, p>

where,

(0) = 2 m(0) = ,2 p(0) = ©

ol) = 0,» n(l) = 1,2

n(2) = 2,2,1>

This system is like that givenby McCarthy [27] wherehe defines the LISP

programming lenguage. The many-sorted computing structure defined above provides

a basis for computation with either s-expressions or with lists, Definitions for

the various canstituents of the system follow below,

A the set of atoms

D the set of dotted pairs

8=AUD ths set of s-exprissions

atom = A

= (<x, : x,y EA and x «y}

car: D 8 so that car((x.y))= x

ofr: D8 so that cdr((x.y))= y

ons 6° +8 20 that cons(x,y) = (—.y)
BIL € A

252

(11) Consider the many-sorted computing structure

<« @® 2%. <rzE,™I, TDG, <ADD,ALS, SXA>, O
with generalized signature

< <0, >, <0,1,2, «0,1,2, 0, m, n, @

where,

n(0) = 0 m(0) = <0,0,>

n(l) = 0 m(l) = <0,0>

n(2) « <a, m(2) = <0, 1,

This system is an extension of the IBM 7090 example used in the text to

demcristrate the single-sorted case, Here, 2+? denotes the set of all

15 bit words over {0,1}, which is just the range of possible values

for index registers in the IBM 7090. Then, in addition to the definitions

given in the previous example, we have

TIX = {<x,y> tt X,y € 21? and taken as binary representations of
natural numbers, x > y} |

sa: 2° x 21 L220 so that

SXA(D 0 aD) eo eBay CeeeCqy) = BeseDpoCpeneCyy

Most of the results obtained in this work for single-sorted computing

structures would seem to have straightforward extension to the many-sorted

case. IU is because of the somewhat cumbersome notational framework

required for many-sorted computing structures that we concern ourselves

mainly with the simpler single-sorted case,

253

BLANK PAGE

APPENDIX II

SUBSCRIPTED VARIABLES

To introduce subscriptea variables, we first must modify the

definition for terms by umendiag clause (i) tu read

(1) 1r Tpeees Tp ys X < W, are tems and v, 1s a variable,

then v,(7 ,..., 7, .) is a term, called a subscripted variable, and

Toaeees Typ, Ore callea subscripts, If Xx = 0 , we have simply Vy oo

The concept of the value of a term must also be revised, Now, the

value of a term is definca with respect to a cumputing structure °C,

an indexing function { : Dw, which constitutes a partition of D,
into countably-many ey-:ivalence classes called indices and a hierarchial

state 6 of D. A h.erarchial state, or simply h-state, of D is an

ordered pair <{, 6 where § :w- D_ is a state in the ordinary

sense and 8’ : w+ ©, where 6 is the set of all h-states of D,

Thus, an h-state of D it a state together with a sequence of further

h-states,

Roughly speaking, the values of the subscripts of a subscripted variable

give rise to indices which ure used to filter down through the hierarchial

structure of an h-state to inally produce a value. To accomplish this, we

must first define two auxilliary functions dealing with h-statea; here

<Ayeeey 4, > € of, <t, 6% c@and a € D_

€ (<i ueey 4 yy <2, 65)

- 8... L >, c(i1, 0%) If 1<k<w
= ¢(1o t) if k=1

25k

<t,.., i 2s 9, <¢, 1%)

- <b, oly, Ali,ony 1, 22, 4 olig, 87), 6'p> if 1<k<w

=<uafs, 4, tL), 65 if k=1

‘her, the value of a term Tt with respect to DJ, I and €& is

dew ted bv TID, 1, 6] and is defined as follows.

(2v It tv is a constant k, , then 1(D, I, 8) = kD, I, 8] = a, .

(11) If 1 is £(T seen, "m,-1) , then
+(D, 1, 9)

=f (1,0) ENSUE I, 6]
=F (LL -,..., m, 12 LL 9D.

(111) If © is wv(7,000, 7p1), kK < @, then

*[p, I, 6]

=v (Tene 7.1/0 I, 6]

= 8(<1, 1(v [p, I, 1,..., Ir _,(D, I, 61>, 6).

We amend the uafiniticiu of qffs to permit terms as redefined above,

Now let us amend the definition of assignment schemata 80 that in

(u, i= %3) sens Ggse+ey TO,, ure terms as redefined above snd the
Ugeeep, UW _, are subscr.pted variables, The well-formedness condition

here is that for all i<w , forall k< Ww, Vv, can occurbut once

as an assigned variable vith k subscripts in (w, t= 7), - Thus,
we allow two different "arrays" to have the same "name" provided they

have a different number of subscripts, and the well-formedness condit ‘oa

for assignment schemata simply says that the Ugeeey LY mist access

or refer to distinct "arrays". This is a necessary condition, since for

same D,I and @ we mighttry to make simultaneous assigrmentsto the

same slement of some "array".

255

An assignment schema f = (u, t= 93) sen applied to an h-atate 6
produces a new state £(D, I, 6] defined as follows.

(u, tm %)inlD I, 9]
= 8(<t, I(x [D, I, 8)),..., Is, ,ID, 1, 61p,

03D IL oly (uy i= 0y)y (DB, I, 01)
if 1<n<w and u _, = vy (T aeees Teel) » KS W

- 84, I(r IB, I, 681),..., I(r, ,[D, I, 0]> , 0[D, I, 6], 6)
if n=1 end u , = VT penny Tells XK < 4)

Notice that the case of no subscripted variables is just a special

case of the extension introduced above. In that situation, only the

"first" element of each "array" is accessed,

Notice also that the functions & and £ act together like a

"storage mapping function" in the sense this term is usually used when

subscripted variables in a source language are implemented in som. object

language, usually machine code,

256

BLANK PAGE

FLPEIDIY fad

1} HE 2(3) =.

p2>(q>p) =~, + (qd =p) cy

=~ + (~qV p) [o)

=~ (FV ~q) [54

ce {(~.vp)Va~qg 33

= {1 ~p)Ve~y 53

= 1V~yg Ch

= (qv~q)Vv~qg fo

=qV (~qVv~q) Sl

= qQV~gq Cl

-1 Ch

(i1) (po (aor))o((p2q) = (p>Dr))) =2

(po(a>r))o({p24q) (por)

=~(p2{@aor)) v((goa) o(por)) (oF)

=p~(gor)v~(p2q)v (por) cu, C6

= pQrvVpQVv pvr cs, Cb

= pqr Vv pql v pli v lir S7,B+

=pqr Vpe(r vr)v

plava)rvr)v(pvrilqv @r [oS

= pqr Vv (pr v par) v

(par Vv pqr v par V pgr) Vv

(par v par v per por) 8, 85

=v7 86

«ll Theorem31

2571

(111) F(~p=q)>((~p~q) 2p) = 1

(~p2q) 2((~p>~4q) op)

=4{~p>q) / ((~p>~Qq) op) [5]

= pq Va{~pO~q)Vp ce,6

=PAVRVEP 6

=PRVDPQVP a

=plavq) vy [3

=plvp x,8

=pVp 14

=pVp 83

-1 os

(vi) (p>q)=1, p=1apl|q=1

1=0Vvaq 8,82
= vgq [+]

«aIvg *

«-pVQq hypothesis

=(p2q) cs

-1 hypothesis

258

BIBL IOGKRAPHY

[1] Berge, _., ine Theory of Jrapns anc its Applications, Wiley,

b2w Tork (1962).

(2) Bomms, C. ani Jacopini, G., Flow Diagrams, Turing Machines and

Languages with Only Two Formation Rules, Comm, ACM,

Vol, 9, No. 5 (1964) pp. 366-371.

{3] Carnap, R., The Logical Syntax of Langusge, Harcourt, Brace & Co,,

New York (1937).

[6] Church, A., Introduction tc Mathematical Logic, Princeton University

Press, Princeton (1956).

[5S] Couper, D. C., Some Transformations and Standard Forms of Graphs,

with Applications to Computer Programs, in Machine Intelligence 2,

Edited by D. Michie, Oliver und Boyd, Edinburgh (1968).

[6] Curry, H. B.,, Outlines of a Formalist Philosophy of Mathematics,

North-Holland, Amsterdam (1961),

[7] Davis, M., Computability and Unsolvability, McGraw Hill, New York (1958).

[8) Engeler, E., Algorithmic Properties of Structures, Mathematical

Systems Theory, Vol, 1, No, 3 (1967).

(9) Ershov, A. P., Operator Algorithms I, Problems of Cybernetics,

Vol. ITI (1962) pp. 697-763.

(10) referman, S., Notes for a Course in Metamathematics, Stanford

Libraries, Lib, of Congr. call no. QA9/P4,

2%

{11) TFioyd, R. W., Asiipning lbwiing Lo Programs, Preliminary

araft, (May 196).

(12} Gandy, K., Recursive Function Theory, Class notes for 7hil. 293a,

Stanford University (Sept. 1966).

[13] Glushkov, V. M., Automata Theory and Formal Microprogram

Transtforma.ions, Kibernetika, Vol. 1, No, 5 (1965) pp. 1-9.

(ik) Halmos, P. k., Naive Set Theory, Van Nostrand, Princeton (1960).

[15) Harrison, M. A., Introduction to Switching and Automata Theory,

McGrew Hill, New York (1965).

(16) Ianov, Iu I., The Logical Schemes of Algorithms, Problems of

Cybernetics, Vol. I (1960) pp. 82-140,

(17] Ito, T., On Certain Representation of Algorithms - Part I,

Unpublished draft, Stanford University (1967).

(18) Ito, T,, Personal communication concerning an uncirculated pre-

liminary draft of On Certain Representation of Algorithms -

Part II, Stanford University (1967).

(19) Kaluzhnin, L. A., Algoritlmization of Mathematical Problems,

Problems of Cybernetics, Vol. II (1961) pp. 3571-391,

(20) Kaplan, D. M., Correctness of a Compiler for ALGOL-like Pxograms,

Stanford Artificial Intelligence Project Mexo No. MS,

Stanford University (July 1967).

[2] kaplan, D. M., Some Completeness Results in the Mathematical Theory

of Computation, J. ACM, Vol. 15, No. 1 (1968) pp. 12k-13k.

260

{22]) Karp, ©. -., Language: with bxproosiune of Infinite Lengu..,

North-ijollanu, eb vag Le.

(23) Kleene, S, C., Reprecent8tir { :..: . Ju ..rve Nets and Finite

Automata, in Autamati otu.. o.oo iy fo FE. dhannor and

J. McCarthy, Princeton Ur ver: ty Pre.c, Princeton (1yd6)

pp. 3-42.

[2h] Luckham, L. and ixrk, L., The Und. ciaability of the Equivalence

Problem for rogram Schoemata, «tt oseranek and Newman Inc,

Report No, 11+: (1904).

{25] Luckham, DI, C., Par, ©. M. <. no Pteroon, Mo S., On Formalised

Computer Progrars, Preliminary irart, Programming Research

Group, vxford University, (Auguc. 1967).

[26] McCarthy, J. und Paints, J., Correctiies: of a Compiler for

Arithmetic Expressic:ic, Stanford Artificial Intelligence

Project Mem. No, 40, “.inford University (April 1966),

{27} McCarthy, J., Recursive Functions of Symbolic Expressions and their

Computation by Machin, pPurt I, Com. ACM, Vol. 3 (196) pp. 184-195,

[28] McCarthy, J,, Towards = Mathematical Science of Computation,

Proc, IFIF Congress 2, lortn-ilolland, Amsterdam (1362)

PP. 21.26,

[29) McCarthy, J., Leciurrs for CS2hs, Mathematics: The ry of Computation,

Staaforc Univer: icy (Jan, “x,

261

Reproduced from

best available copy

[55] McCarthy, J., A tusi. tor a Mathematical the gy of Computation,

in Computer Propraauiing and Forma. Sy: tema, Edited by

P. Brarfort aud D. Hirshber:, Nortn-Hellana, Amstertam (103),

[31) McNaughton, R. wun! Yamada, H., Hdegular Expressions and State Graphs

for Automata, Trans. IRE, EC-y (1960) pp. 39-47.

(32) Manna, Z., Termination of Algorithms, Thesis, Carnegie-h:1lon University

(1968).

[33] Mendelson, E., Introduction to Mathematical Logic, Van Nostrand,

Princeton (1904).

[34] Narasimhan, R., Programming Languages and Computers: a Unified

Metatheory, Advances in Computers, Vol. 8 (1967) pp. 189-224,

(35) Painter, J., Semantic Correctness of a Compiler for an ALGOL-like

Language, Stanford Artificial Intelligence Project Memo No, Uk,

Stanford University (March 1967).

(36) Paterson, M. 5., Equivalence Problems in a Model of Computation,

Thesis, University of Cambridge (August 1967).

(37) Rutledge, J, D.,, On Ianov's Program Schemata, J. AM, Vol. 11, No. 1

(1964) pp. 1-9.

[38] Balomaa, A., Two Complete Axiom Systems for Lhe Algebra of Regular

Bvents, J. ACM, Vol. 13, No. 1 (1966) pp. 158-169.

[39) 8cott, D., Some Definitional Suggestions for Automata Theory,

Journal of Computer rnd System Sciences, Vol. i, ¥. 2

(1967).

262

[sc] Shepherdson, J. .. und Sturgis, H. E., Computability of Recurs.ve

Puncticas, . ACM, Vol. 10, No, = {1903) pp. 217-256.

[#1] Tixier, V., Recur.ive Functions of Regular Expressions in Language

Apalysis, Computer Science Department Technical Report No. 58,

Stanford University (March 1967).

2063

