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81. Vector Spaces

We summarize some basic concepts from linear algebra. A

VECTOR _SPACE V OVER A FIELD K (1.1)

(denoted Vy) is an abelian group (V,+) --the zero element being
denoted by 4 or simply 0 -—-with K as a multiplier field; 1i.e.,
with a mapping K X ¥V —-»V (SCALAR MULTIPLICATION) satisfying

Vo, €K; x,y €V: x+y) =ax + ay

(0 +BlX=ax+8y

(a p)x = ofp x)
~ lx = x

x €V is called a

VECTOR. (1.2)

a € K is called a

SCALAR. (1.3)

Examples:

(i) Let (If,+) be the additive part of a field K . Then Vx
is a vector space over K with multiplication 1nK as a

scalar multiplication.

(il) LetV = K' be the n-fold direct product of K; i.e., the

set of all ordered n-tuples of elements of K . We may write

them columnwise.

nV = K = hs ba € K, 1=1, 2,. . . . |
A
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Define + over V componentwise in the sense of K:

ul Py oq + By
Sit (BP) 7 [%R th

% Py & + Pn

0

Then (V,+) is an abelian group with the zero element & = [0}|.

0

Let scalar multiplication be defined by components 1n the

sense of K:

a 3 © -X, / ax, }

Then Vo 1s a vector space over K . It will be denoted
kK . Its elements in the representation given above are
called COLUMN VECTORS .

(iii) Let C[0,1] be the set of all real-valued functions defined

and continuous on the closed interval [0,1] . For

£5 1, € C[0,1], define f = £, + 1, by

£(s) = £,(8) - £,(8) v £ €[0,1]

Then C[0,1] is an abelian group with zero element  :

© (£) =0 . For g € ¢[0,1], * € R, define f = a g by

£(E) = a g(&) VE €O0,1]

Then C[O,1]is a vector space over R .

[Note: The sum and multiples of continuous functions are continuous].
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Example (11) and Example (111) are special cases of vector spaces

obtained from a field K by forming ordered sets of elements,

ordered according to some index set (the set (1, 2, . . . . n) of

natural numbers and the set [0,1] of real numbers respectively).

In Example (iii) moreover, an additional property 1s postulated

(continuity) which 1s hereditary under the componentwise operations.

A subset [8 of a vector space Ve is called a

SUBSPACE OF Ve (1.4)

1f it 1s a vector space over K; 1i.e., 1f

= Ly €V, > x+y €V,

Va€EK: x€V, >ax€V
1 1

or equivalently,

V a,p € K : x,y €V, > . X + B €v,

aX+ By 1s called a

LINEAR COMBINATION (1.5)

of x and y .

A subset M of a vector space Ve 1s called a

K-BASIS OF Vy or simply a BASIS OF Vp (1.6)

if any x € Ve 1s uniquely determined by some (finite!) linear
combination (x = 0X4 3 OX, + Co. . + ax) of elements of
M (x, € M) . For Example (ii), the axis vectors
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1 0 0 |

ey = 0 ’ €s = 0 3 teegy © = .
. . 0

o/ o/ . 1

n

are a basis for K

If Ve has a

FINITE BASIS, (1.7)

i.e., a basis formed by a finite number n ©0f elements, then every

basis has n elements and these elements are K-linearly independent:

pnd po pnd pnd ‘se pnd pnd 0 .a; € K, aX) to. tax 0 a = a a,

n 1s called the

DIMENSION OF Vy (1.8)

(denoted dim(V,) ) and V, is isomorphic to KT. oo

: In Example (11), the dimension of K" is n . We call K” an

n-DIMENSIONAL COORDINATE SPACE. (1.9)

n

In particular, we shall consider R' and C, whereR is the
real field and C the complex field.
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$2. Normed Vector Spaces

A set M 1s

ORDERED BY A RELATION p or p—-ORDERED (2.1)

1f there 1s a relation p over M X MN, an ORDERING of M, with

the properties:

TRANSITIVITY: x py AN vyvpz>xpz VV x,y,z €M (2.2)

REFLEXIVITY: Xx px VV x € M . (2.3)

ANTISYMMETIRY: xpyA ypx>x=y V x,y €M (2.4)

An abelian-group G = (M, +) 1s a

p-ORDERED GROUP (2.5)

if the ordering p of M is compatible with the group composition;

i.e., 1f

apb>a+x p b+x Vab,x€M . (2.6)

An element of G 1s

NON-NEGATIVE (2.7)

1f Opx. An ordering p of M is

LINEAR (2.8)

1f it has the property

xpy V ypx Vxye€M .



If the ordering of an ordered group G 1s linear, then G 1s a

LINEARLY ORDERED GROUP . (2.10)

Examples:

(i) The family of all subsets of a given set is ordered, the

ordering being set inclusion C : XCY:=xpeX>p€yY.

It 1s not linearly ordered.

(ii) The set of natural numbers has a linear ordering, usually

denoted by <.

(111) The additive parts of the ring'of integers Z, the rational

field P, and the real field R are linearly ordered

abelian groups for the ordering usually denoted by < .

(iv) Let K be a field, the additive part of which has a

linear ordering < (e.g., P or R) . Then

xpyx x, <y,, 1=1, 2,..., 1 (2.11)

defines an ordering p in K© (COMPONENTWISE ORDERING);

The additive part of K' is a p-ordered abelian group.

For n > 1, however, the ordering p 1s not linear.

Nevertheless, we shall use the conventional sign < to

denote this ordering; 1.e.,

x<y® xX<y,i=1,2..,0n; xy €K (2.12)

In accordance with standard practice, we shall use < to

denote strict inequality; 1i.e.,

x <y x x, < Vis i =1, 24... n 3 x,y € K" (2.13)

Note that x < ¥ and x # y together is weaker than
x<y.



Furthermore, we shall denote by |x| the vector whose
components are the absolute values of the components of x :

1

X] = EN i X € K" . (2.14)
|x yln

A functional over a vector space V with values from a p-ordered

abelian group G, i.e., a mapping v : V = G, 1s a

NORM (2.15)

if 1t 1s _

SUBADDITIVE: v(x+y) p v(x) + u(y) Vx,y € V (2.16)

NON-NEGATIVE: O p v(x) V x €V (2.17)

DEFINITE: x=4 x v(x) =0 . (2.18)

Examples:

(1) Let K be the primitive field of characteristic 2 with

elements 0 and 1 . Define a function v over K"

with values in the< - ordered abelian group of integers

by:

*1

If x= #2 has k components which are 1,

X
n

then v(x) = k . (2.19)

Then v(x) 1s a norm, the "Hamming norm" of coding theory.



(ii) In V = BR" or C7, the

TSCHEBYSHEFEF NORM. or MAXIMUM NORM, (2.20)

with values in R 1s defined by

Vv (xX) := max |x, | : (2.21)
1<i<n

(iii) In V = c[0,1], the Tschebysheff norm with values in R

1s defined by

v(f) := max{f(g):0 <t < 1}

: ” n n
(iv) In V = R or C7, a norm with values in the vector

space G = RY ordered componentwise (2.11), is defined by

v(x) = |x]. (2.22)

We will refer to this norm as the

MODULUS NORM ("BETRAGSNORM") (2.23)

ofRY orC' . For n = 1, 1t reduces to the simple

absolute value which 1s a norm over the vector spaces R

and C .

In a normed vector space with a real norm, a (unsymmetric) distance

© 1s 1nduced by

d(x,y) := v(x-y) . (2.24)

It has the properties:

TRIANGLE INEQUALITY: d(x,2z) < d(x,y) + d(y,z) (2.25)

NON-NEGATIVITY: - 0 < d(x,y) (2.26)
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DEFINITENESS: d(x, y) =0 ¥ x =y (2.27)

Proof: d(x,2z) = v(x-z) = v( (x-y) + (v-4 ) < v(x-y) + v(y-z)

= d(x,y) + d(y,z)

In particularg # y > d(x,y) > 0 .If the norm is

SYMMETRIC: v(-x) = v(x) (2.28)

then the distance 1s

SYMMETRIC: d (x,y) = d(y,x) , (2.29)

and, by means of the distance induced by the norm, the vector space V

becomes a topological space, the topology being based upon e-

neighborhoods

U(x) = {y:d(x,y) < €]

Moreover, the distance 1s

TRANSLATION-INVARIANT: d(x+a, yt+a) = d(x,y) . (2.30)

Conversely, a distance which 1s translation 1nvariant induces a norm

by means of

v(x) = d(x, &) . (2.31)

Examples:

(1) The usual distance in Euclidean geometry which is in-

variant under translation, furnishes the most important

and best-known example of a norm. The

EUCLIDEAN NORM, (2.32)

given by the distance from the origin, 1s the natural

norm of the vector space of Euclidean geometry. In an

9



isomorphic coordinate space of dimension n 1t 1s given

by

n 1
~ 0 n

v(x) = (§ x)® x € R
i=l .T.

(2.33)

vx) = (CY |x. 9) x €C gq
i=l

(11) In Manhattan, the distance a car has to travel from one

place to another 1s the sum of the distances along the
n

streets and the avenues. In R" or C, the MANHATTAN
DISTANCE 1s

d (x,y) y= |x, -v, | + Ix -v,| LA |x -y_| (2.34)

The norm in V = R® or ¢' induced by this translation

invariant distance, the

MANHATTAN NORM, or SUM NORM, (2.35)

1s defined by

n

vx) =) Ix] (2.36)
i=1

: A mapping Pp: Vo X Lo = R of a vector space V, over the real field
R is a

SCALAR PRODUCT (2.37)

if 1t 1s

SYMMETRIC: o(x,y) = o(y,x) (2.38)

BILINEAR:  @(agxy + 0%, ¥) = og@(x,y) + a@(x,,y) (2.39)

DEFINITE: x # ©” ¢(x,x) > 0 (definite on the diagonal)
(2.40)

10



A scalar product defines a norm, the

SCALAR PRODUCT NORM, (2.41)

v(x) = [p(x,x)1° . (2.42)

The scalar product norm of a linear combination x + BY can be

expanded using (2.42) and (2.39) as

2 2 2 2 2

vo (oxtBy) = av (x) + 2opo(x,y) + gv (y) > 0 . (2.43)

For a = v(y), B = 0 (x,y)/v(y) we obtain

- 2 2 2

vo (x)vi(y) - o%(x,y) >0 ,

whence

SCHWARZ -BUNJAKOWSKI INEQUALITY: |@(x,¥) | Sv(x)v(y) (2.4L)

The cosine of the ANGLE a, 0 < a < xn, between x and y may there-

fore be defined by

xX ' ‘

cos a = Smal X # A y # $ (2.45)
X

since ee <1
A scalar product norm has the additional property (see(2.43))

2 2 2 2
PARALLELOGRAM EQUALITY: v (x+y) + vT(x-y) = 2v°(x) + av (y)

(2.46)

The scalar product 1s reproduced from the norm by

2, 2 2
9 (x, y) = lv (x+y) - v(x) - v(y)]

2 2 2
= B[v(x) + v(¥) - v(x-y)] (2.47)

= pIv(xty) - ve (x-y) 1.

11



Moreover, any norm v for which the parallelogram equality holds

defines by (2.47) a function which is a scalar product (Exercise 1)
and therefore is a scalar product norm, v(x) = [@(x,x) 12.

A normed vector space with a scalar product norm and hence a scalar

product 1s a

HILBERT SPACE . (2.48)

In the vector space R', any scalar product @(x,y), being a sym-

metric, bilinear, definite functional, can be written as a symmetric,

bilinear, definite form in the components of x and y, 1.e.,

T,.
. P (x,y) = X Ay (2.49)

where x! 1s the transposed vector x and A is a symmetric,
positive definite matrix of order n . Consequently, any scalar

product norm v can be written

1

V(X) = (xix)* (2.50)

The Euclidean norm 1s a special case with A = 1 .

Exercise 1. Let g(x) be a real functional over LI such that

g(x+ty) + g(x-y) = 2g(x) + 2g(y) .

Show that

g(xty+z) - g(xt+y) - g(yt+z) - glz+x) . g(x) . aly) . gz) , 0 .

Let furthermore V(x+y) := Blglxty) - g(x) - gly)] .
Show that

V(xty,z) = V(x,2) + V(y,2z) .

12



83. Homogeneous Norms

Very often, the range of a norm 1s not only an ordered abelian group,

but a field (such as the real field in some of the examples in $2) or

a vector space (as in Example (iv) of $2) with an ordered additive part

such that non-negativity is preserved under suitable multiplications.

By way of definition, a field Ky, is a

LINEARLY po - ORDERED FIELD (3.1)

if the additive part of Ki is a linearly po, - ordered group and the

ordering po 1s compatible with non-negative multipliers:

V-a, Br7eK : Op GABP7>aB po a7 (3.2)

In particular,

Va eK: Opo AO po B>0 po OB (3.3)

Since we have a linear ordering and a po 0 >» 0 po (-a)

VaeKo: Oppo. VOpo am

2 2
| Since (-a) = @, squares are non-negative and, in particular,

2
1 =(1)" »>0 po 1.

As a consequence, the characteristic of a linearly ordered field cannot

be finite:

Opp 1L>0pon-1(=1+...+# 1) V n>1.

Moreover,

Op aAa#0>0p a; (3.4)

15



otherwise,

-1
O po ON boc O>1 po 0,

CL -1. -1 -1 -1
a contradiction. Furthermore, from oa - fF =a B (B - a),

-1 -1
Opp CAQZO0OAQPEP B>B ~ po (3.5)

The rational field P, the real field R, and the field of all real

algebraic numbers are linearly ordered fields with the conventional

< =~ ordering.

Similarly, a vector space G over a linearly po- ordered field Ko

1s a ~

p - ORDERED VECTOR SPACE (3.6)

if the additive part of G 1s a p - ordered abelian group and multi-

plication by non-negative scalars 1s compatible with the ordering p :

YVaekK,x5yeG Op aAXpy>axpQy- (3.7)

In particular,

Vae Ko, x € Ge Op OAS px>¢ pax. (3.8)

Examples:

- (1) rR" 1s a p =- ordered vector space over the linearly < = ordered

field R, p being the < - ordering of (2.12)

(ii) C[0,1] is a p - ordered vector space over the linearly < -

ordered field R, p being defined by:

fpG:3xf(E)< GE), VEtel0,1].
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If Vi 1s a normed vector space and the range of the norm V is a
p - ordered vector space G over a linearly po - ordered field Ko,

Ko a subfield of XK, then it makes sense to define

HOMOGENEITY: V Q €Kos » €V: Oo @ > we X) oo @& owe. (3.9)

For homogeneous norms, (2.17) and (2.18) can be replaced by:

POSITIVE DEFINITE: V x eV: x #0 > 0 p v(x) Av# O (3.10)

Proof:

From homogeneity with a = 0,

v#).v(0.e.ov(x) = 0 5 i.e., x = > v(x) = 0 .

From positive definiteness,

v(x) = 0 » x = a

giving (2.18). This and positive definiteness give (2.17).

In RK and cH, the Tschebyscheff norm, the Euclidean norm and other

scalar product norms, the Manhattan norm, and the modulus norm are all

homogeneous. We shall assume homogeneity 1n succeeding paragraphs and

shall speak simply of norms 1f G is a field (mainly the real field)

and of VECTORIAL NORMS 1f G 1s a vector space of dimension greater

“than 1 over some field (again mainly the real field).

15
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84. Linear Mappings.

A

LINEAR MAPPING, (4.1)

i.e., a mapping ® of a vector space Vk into a vector space Vy 1s
called a VECTOR SPACE HOMOMORPHISM if

Vo, Bekx,yelrol@ax+py)=aolx)+poly); *.2)

i.e., if @ 1s compatible with linear combinations. In particular,

PE) = 4

The image (Vy) C Vi 1s 1tself a vector space, a subspace of Vy .
¢ induces a SURJECTIVE (onto) linear mapping of ¥ onto (Vy) :
However, since we frequently consider homomorphisms of a vector space

Vi into itself (ENDOMORPHISMS), it would be impractical to restrict our
attention to surjective mappings only.

Let ¢ be a linear mapping of V, into Ve . The set

Ker @ := {x € [% ex) = ¢)

is a subspace of Vi the KERNEL of cp . [Note that & e Ker 9;
ox) = 4 roy) = 4 > 0x +8 y =a (x) + pe(y) = 41 .

¢ 1s INJECTIVE if

(x). oly) »x . . .

Equivalently, © 1s injective ¥ Ker 0 = {4 . [Note that

P(x)= o(y) ¥ @(x-y) = o(x) - oy) = & ;

(cp(z) =#> z-= $) % {x ¢ V:0(x) = 4) = {$} 1.

16



@ 1s ONE-TO-ONE if it is both surjective (every element of % has at
least one preimage) and injective (every element of Vi has at most one
preimage). Such a mapping @ is called a REGULAR mapping or ISOMORPHISM.

If Ker ¢ = (93, then the induced linear mapping $v, 9 (Vy) 1s an
isomorphism. The set of all linear mappings of a vector space Vx into

a vector space Ves denoted

Hom (Ves Ve) (4.3)

1s 1tself a vector space over K with addition and scalar multiplication

defined by

= + : = . |P=9, +o, 2 ox) =(x) +9,(x), Vxe Vp (4)

P= aoe, 3X ox) =a ox), Vxe V. . (4.5)
1 1 K

The zero element of Horn (Vr Ve) 1s the zero mapping 0 : 0O(x) = 4 .
If Ve is just the field. K itself, the mapping ® is called a

LINEAR (K - VALUED) FUNCTIONAL OF Ve (4.6)

and we write

Vp = Hom (Vis K) (4.7)

The zero element of vo 1s the ZERO FUNCTIONAL 4° 4° (x) = 0

Example:

The dual vector space of the coordinate space rR 1s the set of
all linear functionals

ox) = £.X. LX oo... Lx . Lx (4.8)171 © Tee nn ’

where gL _ (4,5 2,; ce L) is called a ROW VECTOR. In this
representation, (HP 1s agaln a coordinate space of dimension n
over R .

IN



§5. Subadditive Functionals Generated by a Set of Linear Functionals

Linear mappings are trivially seen to be subadditive and homogeneous but

not definite. We shall use supremum constructions which preserve sub-

additivity and homogeneity to generate functionals that are non-negative

and even definite. We first turn our attention to the case where K is

the real field R and Ck, colncides with X, 1.e., the real field.
Thus, we discuss real-valued functionals and norms of a vector space V

over R .

In the linearly ordered real field R, the supremum of a set of elements

1s defined for bounded, nonempty sets. To remove these restrictions,

we form the EXTENDED REAL F1ELD DP R¥ = {R, + », - »} and define

sup R=+o; sup §=-o (5.1)

inf R==-o; inf §=+

where @ denotes the empty set. The < - ordering of R* is that of

R, supplemented by

VaeR: -o<agAa<+=.

Theorem: (5.2)

. Let S = VP = Horn (V, R) be a set of linear real-valued function-
als of a vector space U overR . Then

| g(x) = sup{o(x): 9 e 5} (5.3)

1s a subadditive, homogeneous functional (sometimes called a GAUGE

FUNCTION) over VV with values from extended real field R* .

D yote that R*¥ 1s not a field: (+ ©) + (= ®») is not defined.

18



Proof:

vg(xty) = suplp(xty) : 9 e 8)
= sup{e(x) + @(y): @ e S}

< sup{p(x) : ¢ € 8} + sup{o(y) : ¢ e S)

=v, (x) + gly) -
. Yq (x) is subadditive.

Yq (ox) — sup{p(ax): ¢ e S)
= sup{a @(x) : 9 € S)}

= a sup{p(x): 9 e S} for a> 0

y Yq (x) is homogeneous. 0.E.D.

To be a norm, vg (x) must also be non-negative, definite, and real-
valued (i.e., bounded). A sufficient condition for the first property

1s given by:

Theorem: 4 eS>0< Ya (x), VxeV. (5.4)

D

Proof: 0 = 4 (x) < sup {op (x) : QP e€ S} = Yg (x) .

A mapping over V with values from the extended real field R* is a

SEMINORM (5.5)

if it is subadditive, homogeneous, and non-negative. Obviously,

VoesS, xeV:oplx)< Vg (x) : (5.6)

Moreover, some linear combinations of elements of S are bounded by

Let vP d a,, & a € R . Then
Yg SL Pr Por ee By CL an 12 Yor cesHy .

V .
a9, + APs +... F a @ € 1s a

CONVEX COMBINATION OF Pq, @, «+s @ (5.7)

19



if O0< a. and ay tO, +... + a =1.

Theorem: Let @ be a convex combination of @,,@ 5 :v+) ?€5 . (5.8)
Then

Vx eV: ox) < 7g(x) : (5. 9)

Proof:

3) + +... +a(x) + a9, (x) ae (x)

Saprg(x) argx) LLL La rg(x)

. ©, IE a) 7g(x)

N gx)

Theorem: (5.10)

If 4 can be represented as a convex combination of elements of

Ss; then 75x) 1s non-negative and therefore a seminorm.

The converse 1s not true, e.g., Example (1) (d) below.

Examples:

(1) The following subadditive, homogeneous functionals 7g over
2

R are depicted by their contour maps in Figure 1.

(a) S; = {(0,1), (1,0)} vg, (*) = max (x, , x5)
(6) 8, = ((L,1), (1,2), (2,1), (2,2)}

vg, (%) = max{x, +x, x, ¥2X, 5
2x, +X, 5 2x, +2x,}

2 2

(c) 5, = {(£54:)8 20, 4,20, £7 + 4; = 1)

|] 2 2%

Xq Xy > 0, X, <0

CX, xq < 0, x, > 0

max (x)5%, ) x, < 0,x, <0

20
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2 2

(da) S), = { (£525): L> 0 2 + 45 = 1]
SOIT (CRC LE

1 2 1

7g (x) =

(ii} = The following seminorms 7g over rR’ are generated by sets
S which contain 4° or a subset, a convex combination of which 1is
& (See Figure 2):

(a) Sg = {(1,0), (0,1), (0,0)} 7g (x) = max (x, , Xn 0)
p,

(b) Sg — {(£,51,): £2058, > 0, 4] + £ = 1} u (0,0)]}

glx = mxlrg (x),0)

(111) The following functionals 7g over R® have + ® among their
values. All except (a) are seminorms. (See Figure 3):

(a) = {(2,,0): 2. >1} He XxX.> 01 1 —- Fo 1

K 7s, (0 = xy xX, <0

(b) Sg = { (4,50): t, > 0} + @ x,> 0
75, x) = 0 xX, <0

(c¢) Sy — {(2,5L,): L, > 0,4, > 0} 0 x, $0,x, <0

ER “IF otherwise
(d) 5 = {(£,,0): {eR} (+ ® x, £ 0

Vs, ( x=10 0 X, = 0

| Co (e) 5; = {(2,2,): 2] < 1} | |x, | x, = 0
7s, te otherwise

Note that in all the examples, the set

1= : < ’K, {x : 74(x) < 0} (5.11)

1s an intersection of a family of half-planes
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H = {X x) < .0,0 = o(x) < pl

In fact

Theorem: K = _.00_H 12SRSOLENE BT peSy, op (5.12)

Proof:

| x e K > vg(x) <p
| >p(x) <p, Yoed by (5.6)

> x e€ H v € oO |
0, 0’ P

: >x e N_H
PES P,P

Tx em H > x € H V € ODPed P,P Py 0’ b

> p(x) <p Vo ed

> po upper bound for {e(x) : @ € SJ}

> p <Yg(x) = lub{p(x) : ¢ eS)

> x € K 0.E.D.
0

For p < 0, K, may be empty. In particular, Ky 1s a

CONE, (5.13)

i.e., a subset of ¥ such that

x e KyNae RAa>0>ax eK.

K, certainly contains 4 and may degenerate to (4) :

Theorem: A seminorm is definite ¥ Kj = (4) i (5.14)

If XK, = {4}, then
| = ’ 1BR 0 (4) (5.15)
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i.e., S "surrounds the origin of vP .

A seminorm 7g(x). is a norm if it is definite and also

BOUNDED: ¥ x & Vi “7g(x) < + @ | (5. 16)

A sufficient condition for boundedness 1is:

Theorem: If S is a finite set, then Vg is bounded. (5.17)

In V = R")7g 1s bounded 1f S 1s componentwise bounded. If ’g is
both definite and bounded, we write the norm defined by S as

- va(x) | (5.18)
o

In particular, we can now derive the Tschebyscheff, Euclidean, and

Manhattan norms in R= from their generation sets. Let

eq i= (0,0, «ev, 0,1,0, . . . . 0)? € Rr where the 1 1s 1n the th
place. The Tschebyscheff norm 1s defined by

T T _

S + Ufeys -e;}s vglx) = maxx; . (5.19)
1 1

The Euclidean norm 1s defined by

n

2 2 > _ 21%
- { (4, EI | L) t = £, Ea ah eh = ' a 1} = va (x) - (LZ x.)

(5.20)

Proof:

Vg (x) = sup{ 1x . 1Ty = 1}
T T T

< (Tx) E since by (2.49) 27x | < (4 1)E (x x)2

For I = xL/ (xTx) 2, Tx = (xx) and £54 = 1 .
n

: 2

=~. 1
i=1

22



The Manhattan norm 1s defined by

n

Ss =x, .., 21); v= lx] (5.21)
i=1

Proof:
— n

Vo e S: ox) = 3 |x, |
i=1

1 Xx. > 0 - n
For £; ={_1 4 <0» © =2x=7 Ix].

r 1 — 1=1

We can now discuss real-valued norms of a vector space V over the

complex field C . For the supremum construction, we can no longer

use linear functionals of V over C since they are complex-valued.

However, the real part of these functionals is still additive and

homogeneous:

D

Theorem: Let SC V© = Hom(V,C) be a set of complex-valued (5.22)

functionals on Ys . Then

Yo(x) = sup(Re(p(x)): @ ¢ S} (5.23)

is a subadditive, homogeneous functional on V with values from the

extended real field R* .

’ The theory develops further as in the real case. For the Tschebyscheff

norm, the Euclidean norm, and the Manhattan norm, the generating sets are

respectively,

T

S =u (we, co) = 1) (5.24)
i

. 2 2 2
S = {lt vey 0) lI" + I5 + 00+ [T=1) (5.25)

5 = {(e, 0, C0) Jo | = 1, i=1,2,....1n . (5.26)

Before going into a similar study of the case of vectorial norms, we shall

elaborate on the generation of norms somewhat further in order to 1investi-

gate fields of values and eigenvalue exclusion theorems.
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$6. Replete Generating Sets. Application: Fields of Values and

Eigenvalue Exclusion Theorems.

We shall call the set SC vP that generates 7 (x) (or V,(x))

REPLETE (6.1)

if

VxeV Ape S: ox), 7g(x) (6.2)

If S 1s replete, then

i g(x) = max o(x); (6.3)
PeS

l1.e., the supremum is actually attained.

Not every set is replete; in §5, Example (i) (d),

0)

x, (J) > oe) <x), Toe.

Whether a set s cv’ can be extended to a replete set § such that

] 7 (x) = 7g (x) and whether

Ss’ = {pe VP : p(x) < 75(x), V x e¢ V]}

"is replete are subtle topological problems for which no general answers

exist. For finite dimensional spaces, however, the SUPPORT THEOREM

(Bonnesen - Fenchel) guarantees that every set S can be so extended.

Henceforth we shall consider only replete sets 1n generating norms in

Rr" and c"

On the other hand, a replete set S need not consist of all linear

functionals @ satisfying @(x) < 75(x) . The set
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1

n

of (5.19) generates the Tschebyscheff norm in R as does

$= {0 eV: p(x) < 7g(x), Vx eV)
= {(8y5 bys o0es LD: INES EN ES

Both sets are replete, but the additional elements 1n S' are convex

combinations of the elements of S and are in a sense superfluous. In

finite dimensional spaces, the set S of EXTREME POINTS of any replete

extension SY,

S={pes’ 20,0, e8 Ap=0a9 +(Q-a)p, AOL ax]

>9 =0, VO =0},

contains no superfluous elements. We shall see in the following applica-

tion to fields of values and eigenvalue exclusion theorems that 1t is

important to choose the generating set © to be replete yet as small as

possible.

Let A be a linear mapping of a vector space V over the complex field

C into itself. The set of all such endomorphisms of V, Hom(V, V)

 ((4.3)), is itself a vector space over C and evena ring, multiplica-

tion being composition of mappings. If

Ax = AX (6.4)

where x # 0, then Ae C is called an

EIGENVALUE OF A (6.5)

and x e€ V the corresponding

EIGENVECTOR OF A (6.6)
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We define the

FIELD QF VALUES _OF A (6. 7)

with respect to the replete set S which generates the norm vg (x) to
be the set of complex numbers

Gel A] = {p(Ax) : 9 es, x eV, vg (x) = cp(x) = 1) . (6. 8)

Gg[A] has the property of COVARIANCE UNDER TRANSLATION:

Gg [A + oI] = GA] © 0 4 == = 0 « QE Gg[A]} . (6. 9)

Proof: B

Vo e€S,x € ¥V such that vg (x) =x) = 1:

P((A + oI)x) = (Ax) + g(x) = @(Ax) + 0 .

The field of values of A with respect to such a set S defines an

EXCLUSION DOMAIN for the eigenvalues of A:

Exclusion Theorem: No eigenvalue of A lies outside Gg lA]; (6 .10)

i.e., if Ae C is an eigenvalue of A, then A € GglA] :

’ Proof:

Let x # 0 be an eigenvector of A corresponding to the eigenvalue

A. Since S generates a norm, vg (x) > 0 and x' = x/vg (x) is
agaln an eigenvector with vg (x) = 1 . By repleteness, there exists
® €S such that ox’) = vg(x") = 1 . pax") = p(x") = MoE’) =
AN.1l = A whence A € GA] :

Q.E.D.

In V = ch, A can be represented by an n X n complex matrix, an
X

element of the matrix ring cH 0 and
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ala] := (fax: 1s, xev, vg (x) = 1 = 13. (6.11)

Using the generating set S of the: Tschebyscheff norm ((5.24)), we

obtain the

GERSCHGORIN FIELD OF. VALUES, (6.12)

a union of circular domains centered at the diagonal elements of A :

n

GolA] := UC,[A], (6.13)
ST A

1=1

Where

c; [A] = (z : |z - a; | < logy, 1}. (6.14)
#1

Proof:

H

Gala] = (fax. tes =U we : Jo] = 13, xev, vo(x) = 17x = 1)

n T T
= U {we Ax wl = 1, xeV, V(x) = max |x, | = 1, welx = ax, = 1}

i=1

- T 1
= U{wenhx:of=1, x =3 and x, | £1 for u # i}

i=1

hoo
= U {elAx : x, = 1 and |x <1 for up # i}

: i i pt =". N
i=1

i x, £1]=y { a,, + a. x : |x |<1 for p#i
i=1 Tt opp MF a

5 1— + 0 < <u { 254 a . las, | =0 =
i=1 MFEL
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n

= Ue tema) lag, 13
=i=1 EET AE EE

n

= Uc [a] . ’
i=1

Q-E.D

Corollary: Let x be an eigenvector of A with a DOMINANT (6.15)

1-TH COMPONENT:

pe, F< lw = 1, 2, + . . .n.

Then the eigenvalue corresponding to x lies 1n c, (81.9

We also note that C, [A] reduces to a single point, C; [Al = {a},
if and only if e, 1s a LEFT EIGENVECTOR of A : e’A = he i.e., the
i-th row of A is just ae, . Consequently, the Gerschgorin field of
values reduces to n points 1f and only 1f A 1s a diagonal matrix,

these n points being the eigenvalues of A . The following examples

show, however, that one or several of the disks Cc, [A] may be arbitrarily
small without containing an eigenvalue:

Examples: 1 1 <1)
(1) A =}1 2 Se | with eigenvalues 1, 4 +/15 (6.16)

e 3¢6 |

CsA] = (z :|z- 6]|< ke} does not contain any eigenvalues
of A for e sufficiently small.

1 e O

‘x -1 -

(ii) els 2 e Joe eigenvalues 2, 2 + /3 (6.17)0 e 5

C,[Al = (z : |z - 1] < €} and Cx[A) = lz - 3] < e} do
not contain any eigenvalues of A for e sufficiently small.

dD
The classical elementary proof of Gerschgorin's Theorem goes along this

line. In practice, however, information of this kind is rarely avail-
able.
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Obviously, the set S generating the Tschebyscheff norm is distinguished

with respect to diagonal matrices in so far as all of its elements are

left eigenvectors of a diagonal matrix. Other generating sets may con-

tain more elements than there could be eigenvectors of a non-derogatory

matrix. In general, the field of values will reduce to a finite number

of points only if the matrix is a multiple of the identity matrix. This

1s true in particular for the set (5.25) generating the Euclidean norm.

The corresponding field of values, the

TOEPLITZ FIELD OF VALUES, (6.18)

1s given by

H

. aglAl = {xAx : xx = 1] (6.19)

since by the Schwarz inequality ((2.44)),

Ia = 1A v(x) = x = 1 a tl = 1» tH = £.

A classic result by Toeplitz asserts that this field of values 1s convex

(9.20), If A is NORMAL (unitarily similar to a diagonal matrix),

then the Toeplitz field of values of A 1s the convex hull (the set of

all convex combinations) of the eigenvalues of A :

GglA] = {xAx = 1}
= Cuno . yd = xix = 1)

H _. H

= {y atag(M)y : yy = 1}
: n n

i=1 i=1

n | n

= cc Pi : 0<p;< 1, 2. Ps = 1} .
i=1 i=1

H H :
In this case, Xx Ax such that xx = 1 is called a RAYLEIGH QUOTIENT

and we write
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Gg [A] = HIN Moy oe A) : (6.20)

For a vector space V over the real fieldR, we may again define

Gg A] by (6.8), now giving a set of real numbers which contains all
real elgenvalues of A . For the generating set (5.19), we obtain the

restriction of the Gerschgorin field of values to the real axis, thus

nothing new for real A . For the generating set (5.20), we obtain the

restriction of the Toeplitz field of values to the real axis. If A is

real and symmetric, then A is normal with real eigenvalues and we again

obtain the convex hull of the two extreme eigenvalues which consists of

all Rayleigh quotients.

In the real case, the set (5.21) generating the Manhattan norm gives the

field of values

Gglal = U1 la], S = (+1, +1, ....+1} (6.21)
les

where

T [A] = {0Ax vax) «|x| lx] LLL x | = 1, 7% = 1)
f Bh "TD 1 2 : n

T

= {1 Ax : x = (4p, LPs + + . Lp) where 0 <p. <1

and 2D. = 1)

= {£'aD p : 0 < Py <1 and 2p. = 1) where

D, = diag(2,, coy 2)
T

— , <p. <1 —{zp, (4 AD), 0 <P; <1 and Zp, 1)
T T

= H[ (£7AD ),, . . +, (47AD,)|

T, [A] = Hle'D AD je ell ADe_] where e = (1, 1 1){ { J) 1’ . . . . { n / / . . . .

and €D, = £ (6.22)
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As in (6.15), we can gain some additional information as to the location

of eigenvalues by looking at the eigenvectors:

Theorem: Let x be a real eigenvector of a real matrix A (6.23)

and £5 = (+1, +1, .... + 1) bé the SIGN DISTRIBUTION of x :

- +1, x. > 0
| i—

I, =
-1, x, <0.

| i

Then the eigenvalue corresponding to x lies in T,[A .

In contrast to the previous situation, some information concerning the

sign distribution of real eigenvectors of a matrix 1s often available

as is the case with so-called oscillation matrices We shall

later see that matrices with non-negative elements have at least one

eigenvector which has in suitable form non-negative components. The

corresponding eigenvalue (the Perron root) certainly lies in

T
(1, Ly=evey 1)

Example: 9 3.6 2
A={ 22.5 18 15

40.5 18.6 S54

Al = 2 .2. = 2, 712
Top, 1, ..., 1)lA) = B72, 70.2, 71] = [70.2, 72]

contains the eigenvalue 36+9/15=70.8568

Note that this theorem gives good results only if the column sums of A

(or rather of D,AD,) are not very different. Thus matrices are distin-
guished which are non-negative apart from a sign transformation and whose

column sums are nearly equal.
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87. Norm Transformations and Invariance Groups

Let S be a set of linear functionals and let

SB := {¢B: @eS} (7.1)

denote the transformed set under the linear mapping BeHom(V, V) where

PB 1s defined by

PB(x) := @(Bx) . (7.2)

SB 1s again a set of linear functionals and generates the functional

7g(%)

Theorem: 7 op (¥) } 7 (Bx) (7.3)

Moreover,

Theorem: 7 SR is a norm if and only if yg 1s a norm and (7.4)
B 1s a regular mapping (isomorphism).

Proof:

B not regular » Bx = 0 for some x # 0

: > 7 op (%) _ 7(Bx) = 0 for some x # O

> 7B 1s not a norm.

B regular A 7g not a norm> 74%) = 0 for some Xx # 0

> 7g (V) - 74(By) = 0 for some y = B 1x £ 0
> | t .
<p 1s not a norm

B regular Ayg a norm > (7g (%) = 75(Bx) = 0»Bx =0» x = 0)

be 7 <p 1s a norm.
Q.E.D.
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We shall call v2 (x) := Vv(Bx) (in particular, (vg) = Va ) a

LINEARLY TRANSFORMED NORM or a LINEAR TRANSFORMATION OE... (7.5)

Let K_ denote the set {x: vax) < o}= The corresponding set for
%
oB 1s

{x: von (x) < po} = {x: vo(Bx) < p} = (B71: v.(y) <p} = Bk
OB — S we S —- T

Thus,

If S is replaced by SB, then K, is replaced by (7.6)
Bik

Pe.

If B leaves the norm vinvariant (in particular, SB= S ), then the

linear transformation B 1s called a

NORM INVARIANCE TRANSFORMATION. (7.7)

The set of all such transformations 1s clearly a group, the

INVARIANCE GROUP (7-8)

of Vv (or S ).

The invariance group of the Tschebyscheff and Manhattan norms in rR 1s

the hyperoctahedral group of permutations and sign-changes of the n

objects 3 coe e . The invariance group of the Euclidean norm in
Rr" is somewhat larger; 1t 1s the orthogonal group, the group of all
orthogonal transformations in RY

In oa the group of permutations and phase changes 1s the invariance

group of the Tschebyscheff and Manhattan norms and the group of unitary

transformations that of the-Euclidean norm.
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There are norms whose invariance group consists of the identity alone;
2

e.g., the norms in R generated by the sets:

The application determines whether small or large invariance Jgroups are

desirable. In most cases, however, norms have at least some invariance

properties.

A set S and'a norm Vare

SYMMETRIC (7.9)

1f -1 1s an invariance transformation:

-S=S and vx = v(-x) (7.10)

(see (2.28)). A set S and a norm Vare

STRICTLY HOMOGENEOUS (7.11)

if the field K of the vector space Vy 1s the complex field or a
subfield thereof and {wI: eK, |] = 1} 1s a subgroup of the invariance

group:

weK A lof = 1 > oS = 5 Av(ax)= vx. (7.12)

As a consequence, for a strictly homogeneous norm V:

VY 0 ¢ K: V(ox) = lo] v(x) (7-13)

>



since any 0 e¢ K can be decomposed as ¢ = w|o| with Ll> o and
Lo] = 1 . The Euclidean, Tschebyscheff, and Manhattan norms in ¢" and
R" are strictly homogeneous.

If K 1s the real fieldR, the concepts of symmetry and strict homo-

geneity coincide. In ct, the norms

v(x) = max{|Re x, |» fm x, |} (7.14)

v(x) = Z[ |Re x, | + Im x, |]

are symmetric but not strictly homogeneous.

Finally, we may investigate how the field of values GglAl 1s changed
by a regular linear transformation of the generating set S .

-1-
Theorem: Gop [A] = Go [BAB 1. (7.15)

Proof:

H H

Gon [A] = (eax: £7eSB, Vx)= x = 1)
SB

- -1 -1 -1

= The: L (BAB YB: I: “eS, vo (Bx) = Ta: Bx = 1)

= (7 (ras H%: Tes, Vg (X) - Tx= 1} .
| ~~ Q.E.D.

If A is normal (unitarily diagonalizable), then there exists a linear

transformation B (dependent on A!) such that the field of values of

A with respect to SB is just the field of values of the diagonal

matrix BAB© with respect to S . For the Gerschgorin field of values,

we thus obtain the set of all eigenvalues; for the Toeplitz field of

values, the convex hull of this set.

The Gerschgorin field of values 1s frequently used to locate the eigen-

values of a normal matrix 1f an approximate eigenvector system 1s avail-

able. The success of this procedure 1s based upon the following theorem

also due to Gerschgorin:
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Theorem: If the union of k Gerschgorin disks is disjoint (7.16)

from the remaining disks, then this union contains exactly

k eigenvalues--multiplicities being counted as the multi-

plicities of the zeroes in the characteristic equation.

The proof, usually using a continuity argument, seems to be outside of

norm-theoretic considerations, In particular, if one Gerschgorin disk

1s ISOLATED from all the others, then it contains exactly one eigenvalue.

We can now obtaln some information about the eigenvector corresponding

to this eigenvalue:

Lemma: If" C, [A] N C [A] = @, then there is no eigenvector (7.17)
whose 1-th and k-th components are dominant.

Proof:

If the i-th and the k-th components of the eigenvector x are

dominant, then NeC;[A]l and AeC [A] whence xeC, [A] Nn C[A] # @,
a contradiction.

As a consequence,

Theorem: If the Gerschgorin disk c, [A] is isolated, then (7.18)
1f contains exactly one eigenvalue A with a correspon-

ding eigenvector x whose i-th component is STRICTLY

DOMINANT:

LAL x <x |

Proof:

From the Lemma, 1f the component X. 1s dominant, then it 1is

strictly dominant. If X. is not dominant, then&u # i such
that x is dominant and therefore AeC [A] . But eC, [A] whence
eC, [A] Nn c [Al # 0, a contradiction.

| 0.E.D.
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Among linear transformations of the generating set 8, diagonal trans-

formations or correspondingly SIMILARITY SCALING

A -DADT; a Lo, (7.19)
r 3k d, ik )

with D = diag(d., d d ) and 4d # 0 are of special practical
1 2" emme nn v!

interest. For the Gerschgorin field of values, they leave the centers of

the Gerschgorin disks fixed and change only the radii. Assume that c, [A]
1s 1solated and let x be an eigenvector corresponding to NeC, [A].

Since X, 1S dominant, El] > 0 and we may set 4, = | <1, p#i.
For

d. = 1 and <at<a uw# i, (7.20)1 T= ’

the diagonal transformation D = diag(d, ; dns ce. a) will decrease
the radius of C, unless 1t 1s already zero:

d. _ 1
T al = 7 a a, |< la. |
7d 1p HL 1H } 1dFi y HEL BFL

provided la; | # 0 . But eventually, isolation of the disk Cy
MFL H

-1

will be lost, at the latest when 5, = q, for some MW since then the
transformed eigenvector Dx will have dominant 1-th and p=-th components

and therefore c, [DAD] Nn c, [Dap] # @ . Varga has recently discussed
this problem 1n detail.

Diagonal scaling 1s of particular importance 1n connection with the field
n

of values obtained from the generating set for the Manhattan norm in R

since diagonal scaling with positive elements leaves the sign distribu-

tion of an eigenvector invariant. Thus if Theorem (6.23) can be used to

prove that the eigenvalue A corresponding to the eigenvector x lies
-1

in T,[Al, then it can be used to prove that A lies in T,[DAD 1,
provided the scaling is positive. However, scaling can shrink the set

Lp enormously:
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Let pr = (P," Pns «+s Ps) (p. # 0) be a row vector with the
L ee ir pL

T :

sign distribution £4 5 1i.e., P, — 4 ip, | . Let D = diag (|p, |;
T T T

bl. +x, b |) so that eDD =D =p . Then

-1, _. T -1 T -1
T, [DAD J] = Hle'D,DAD "D,e,, -.., e"D,DAD De |

T T T T

= H[p Ae /Pe;, . ++, Phe [pe |]
-1 _ z / 21TI, [DAD ©] = Hp 1/Py SEE p/P, (7 )

where

(p/» ls . ++» Dp.) = DA (7.22)1’ 0? . J n’ = .

Thus, we may reformulate (6.23):

Theorem: Any eigenvalue A corresponding to an eigenvector (7-23)

X with sign distribution Z 1s contained 1n

z / /

TA] T= Hp, /p,> P,/Pps cee p/p]

where . = (py Pps oe *%, p,) 1s any row vector with sign pattern
| T

oT and nonzero components and (P;, Dy» . 0) p.) = PA,

- Note that the n quotients will coincide if and only if pr 1s a left
eigenvector of A with the prescribed sign pattern; the better p

approximates such a left eigenvector, the smaller TA] will be. Such
_ a left eigenvector does not exist if A has two right eigenvectors with

the sign pattern ot corresponding to different eigenvalues.

Example: 1
1 2 A=53% and X -{1)
“7 A=5 and x -(3)

T

For £ = (1,1) and p,> 0, p, > 0:

LA] contains-both eigenvalues but cannot shrink to a point
since no (0,505) is a left eigenvector.
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For ot = (1,-1) and py. > 0, Py, < 0:
Po Py

1 [A) = H[1 -%—=, 7 +2—=] shrinks to {3} for p/P, = -%
P Py p2
and to {5} for p,/Pq — —-1 but does not contain an eigen-

value even 1f p,/Py approaches these values since there 1s
no right eigenvector with this sign distribution.

For non-negative matrices, I, [A] with P > 0 contains an eigenvalue
(the Perron root) with a corresponding non-negative right eigenvector.

For positive matrices, there 1s only one such eigenvector and therefore

only one eigenvalue in T [A] .
Example:

1 1 1 |

A={1 2 3; A=1, % + /i5 = 7.87298, 4 - /15 = 0.12702

- 1 3 6
P= (1, 2.4, 4.4) r [A] = H[7.8, 7.91, 7.86]
T

pT = (3.9, -5.6, 2.2) r [A] = H[0.128, 0.125, 0.136]

oT = (2' 1, -1) I, [A] = H[1, 1, 1]
ot =(-4, 1' 1) T [A} = H[0.5, 1, 5] no eigenvector

oP with this sign
distribution.
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$8. Suprema and Infima in Ordered Vector Spaces.

We shall now return to the general case of vectorial norms, norms 1n a

vector space ¥ with values from a p-ordered vector space Gye with
Ko a subfield of K . In order to—-generate these norms by a supremum

construction, we first investigate suprema (and i1nfima) in a p-ordered

vector space Gy over a po-ordered field Ko . Gy 1s characterized
by its POSITIVITY (NON-NEGATIVITY)CONE:

+

Theorem: The set G of all non-negative elements of Ck, (8.1)

+

G :={xeG, : 4 p x) (8.2)
Ko

1s a CONE:--.

+ +

VaekK,xeG : 0 pa >a xeG (8.3)

which 1s

+ +

CONVEX : xeG A yeG > xty € G+ (8.4)

+ + +

POINTED AT 4: 4G; xeG A (-x)eG > x = 4 . (8.5)

Proof:

+

: That G 1s a cone follows from the compatibility of multiplication

by non-negative scalars with the ordering p((3.8)).

+ +

xeG A yeG > ox A poy
by compatability

> 4 px Nx pxty’ of p with
. addition ((2.6)

> + p Xty by transitivity ((2.2))
>xtye G +

.. . 1s convex.
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p reflexive ((2.3)) > 4 'R 4
+

> 4 ¢G

+ + :

xeG A (-x)eG >4 0x A 4 0 (-x)

> 4 p X-AN X o 4

. > X = by antisymmetry ((2.4)) .
Gis pointed at #.

QE. D

+

In fact, the come G completely characterizes the erdering s :

+

Theorem: Let G C Gg. be a convex cone pointed at 4+ . (8.4)
Then the relation p defined by

X py ¥ y-x 6 G+ (8.7)

1s an ordering which 1s compatible with vecter addition and multipli-

cation by non-negative scalars.

Proof:

+ +

G pointed at $ » X—-X = . 2 eG
> X p X (reflexivity).

+ +

x py Ay px >(y-x)eG A -(y-x) = x-y eG

>X =y (anti1symmetry).

+ | +

x py Ay pz>(y-x)eG A (2z-y)eG
| +

> (z-x) = (z-y) + (y-2)eG

> X p Zz (transitivity).

+

x py > (y-x)eG
+

> (y+a) - (xta)eG

> Xta p yta (compatibility with
vector addition).

+

x py A OQpa>(y-x)eG A Op
+

> o(y-x)eG

>ax pay (compatibility with

scalar multiplication).
Q-E.D.
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An element x of a p-ordered set NM is

p-MAXIMAL (p-MINIMAL)or simply MAXIMAL (MINIMAL) (8. 8)

1f it has no upper (lower) bound other than itself:

Xpy>y=x (y px >y =x). (8. 9)

Elements which are upper (lower) bounds for all elements of a subset

h of M are called UPPER (LOWER) BOUNDS of h :

u (n) c={xeM:vypx,¥yehn) (8.10)

£ (n) = (x eM: xpy, Vyen}. (8.11)

Either set may, of course, be empty.

Example:

: For the ordering given by the Hasse diagram

a

b C

d ee

f g

the set of all upper bounds of h = {d,e} is {a,b,c}and the set

of all lower bounds 1s empty.
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Usually one 1s only interested 1n the best upper and lower bounds, best

in the sense that they cannot be replaced by other bounds. Thus we define

the set of MINIMAL UPPER BOUNDS of h CN

Sup (n) := {ye Uo  (n) : yv minimal in UW (n)} (8.12)

and the set of MAXIMAL LOWER BOUNDS of h

Inf (mh) := {ye on) : y maximal in fb (h)) . (8.13)

In the preceding example, Sup((d,e]) = {b,c} and Inf({d,e}) = @.

In particular, we are interested in the case where all upper (lower)

bounds can be replaced by one least (greatest) bound. In this case we

define the

LEAST UPPER BOUND or SUPREMUMOF h (8.14)

a= sup (0) 3% g ¢ Uo (n) Aapx,V xe Wo (n) (8.15)

and the

GREATEST LOWER BOUND or INFIMUMOF h (8.16)

b = info(h) :¥ b e (0) ANxpb V xe £o (n) : (8.17)

Obviously, the supremum and infimum, if they exist, are uniquely deter-

mined. Moreover,

Theorem: (8.18)

a = sup (n) exists ¥ 3a : Ww (0) ={x : a p x)

b= info(h) exists ¥ 3b : fo, (n) = (x : Xx pb}.
In the p-ordered vector space Gg, ? the set of all upper bounds of an
element ¢ 1s the
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TRANSLATED CONE (8.19)

+ + +

{yt cpyl ={y : yvceGl={ctz : z eG} :=ctGd (8.20)

and the set of all lower bounds is likewise c-G . Therefore, the set

of all upper (lower )bounds of h C Si 1s an 1ntersection of translated
positivity (negativity) cones:

+

Ub (n) = Nica )[&o (MW) = N (c-G+)] . (8.21)
P cen P cdl

As an immediate consequence of Theorem (8.18),

Theorem: (8.22)

+ +

a = sup (nN) exists ¥ HaeG : n (c+tG ) = a+G (8.23)
P Ko

cell

+

b= info (h) exists ¥ dbeG : N(c-G ) = b-G+ (8.24)
fo an

Moreover, if sup (1) exists, then inf (-n) and sup (n+a) exist and

INVOLUTION: inf (-n) = -sup (Nn) (8.25)
sup (-1) = —info (h)

TRANSLATION-COVARIANCE: sup (+a) = sup (0) + a (8.26)
inf (n+a) = info(h) + a .

Theorem (8.22) shows that a rather heavy restriction is imposed on the

- ordering of the vector space (to be precise, on the defining positivity

cone) if the supremum of even two elements should exist. In (R,<),
it 1s intuitively clear that circular and ellipsoidal cones fail to

meet this restriction (an intersection of such cones 1s not necessarily

a cone); 1in fact, suprema and infima will only exist in general in

(R,<) if the positivity cone is triangular.
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If we require of an ordered set NM that the supremum and infimum of any

two elements (and therefore of any finite number of elements) exist, then

m is a

LATTICE-" (8.27)

and we write

a |_| b := sup{a,b} ("a cup b") (8.28)

a | | vb := inf(a,b) ("a cap bd") . (8.29)

A p-ordered vector space Gy is a

LATTICE-ORDERED VECTOR SPACE or simply a VECTOR LATTICE (8.30)

if it is a lattice with respect to the ordering ¢ . By Theorem (8.22)

this 1s equivalent to

Re +
+ +G+) = ct

Va, beG 3c deg : (CIN (BIGH ctG (8.31)
(a-G ) N (b-G+) = d-G+

Moreover,

Theorem: Cg. is a vector lattice if and only if (8.32)

+ CL

¥V a ¢ Gy : a := sup(as$) ("positive part") exists.

Proof:

Involution and translation-covariance can be expressed 1n lattice

notation by

INVOLUTION: (a) |] (-b) = -(a] |b) (8.33)

(-a) |_| (+p) = -(a| 7p)

TRANSLATION-COVARIANCE: (atc) | | (btc) = (a|_|p)te
(atc) |] (bt+c) = (a] Jo)+c

(8.34)
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Therefore,

al |b = at[(a| |b) + (-a)]

= atl |_| (b-a)]

= a + sup (4, b-a)
+

al Jo =,a + (b-a)+ = p+(a-D) (8.35)

Similarly,

al |p = a+[ (al |b) —al]

= a-[(-a)l |_(-b) +a]

= a-[4 |_| (a-p)]

al |b = a-(a-b)+ = b-(b-a)+ (8.326)

.. The supremum and infimum of two elements can be expressed 1n terms

of the positive part of their difference and conversely.

Q.E.D.

As a consequence,

DEDEKIND'S PROPERTY: al|p+a|Jo = a+b . (8.37)

The following result characterizes the vector lattice Ge in terms of
1ts positivity cone:

Theorem: In a vector lattice Ck, ? every element 1s a (8.28)
+

difference of two non-negative elements: a = a = a-
+ + +

| where a- := (-a) . That is, Gk. =G -G -

Proof:

Taking Db to be 4 in Dedekind's property,

— +

a= a= alral -al 4- (a) boa" -a

Q.E.D.
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Moreover, a and a— are DISJOINT:

+)— =

a | la” = (al_|4) [7] (-al_|4)

= Tat(-al_|4)] [7] (-al_l4)

= al [4 + (-al_|4)

= al |4 -a[ [4
+ -

a |la” ={

Other properties of vector lattice operations are

IDEMPOTENCE : al |a=a a | a=a (8.39)

COMMUTATIVITY: al |b = bl Ja al |b = bv |a (8.40)

ABSORPTIVITY: al| (al |p) = a al| (al |p) = a (8.41)

ASSOCIATIVITY:  al_| (bl Je) = (al_|v)le al| (b] le) = &[10) ic.
(8.42)

Moreover, a vector lattice 1s

DISTRIBUTIVE: AI le) = (allo) [M1 (ale) (8.43)
al| (ble) = (alIn) [_I (alle).

_ Proof:

The proofs of idempotence, commutativity, absorptivity, and associa-

tivity are straight-forward applications of the definitions of

. supremum and infimum. The proof of distributivity 1s more difficult:

ap (al_Ib) Aap (al fe) >a p (al_lo) [T] (al le)

(bl le) po A (ble) pc > (ble) o (allo A (b[ 1c) p (af |e)

> (b[ lc) o (av) [7] (al_le)

Sal| (ef le) elal_lv) 171 (al_le)
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-

(a] _Jo) [7] (al_le) = [a+(v-a)"] [7] [a+(c-a)"]

= a+{b-off |] (c-a)"]
a| | (o| Je) = at+[(b| |e) al”

= a+[(b-a) | | (c-a)1"

Hence to prove that (a| |b) | | (a] Jc) eal J(| |e), it sufficies

to prove that £1 e’ p (£[e)’ ,

FTE = TT lL) + ETI MGM - Eee

Se | J) + CTT LI) + (eT)

1 lel_14) + Ce _J4) + (| 19)]

= (le ¢)

o te - (£] 1a) | 4

= (£] 1g) |_J4

= (¢[7e)"

cal Lee) =v) Il Je).

The proof of the second distributive law 1s analogous.

Q.E.D.

. Related to this 1s the cancellation law

x _lyp =xyax Tlyy = x[Tlyp > vy = v5.

which follows immediately from Dedekind's property (indeed, the assump-

tions give xty, = x+y) . Another useful result is

al_le pbl_le

a pb > al |e 0 bl |e (8.44)
+ +

a. pb
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Proof:

a | Jeo (al Je) Jo = (al_Jv)|_le = b|_]c since al |p=1.
The remainder of the proof is analogous.

Examples:

(1) The real field 1s a well-known though trivial example of a

vector lattice.

(11) R" is a vector lattice under the componentwise ordering < of

(2.11). The positivity cone 1s the set of all vectors with non-

negative components, the "full first orthant." It is intuitively

clear that the intersection of two translated orthants 1s again a

translated orthant. Indeed,

~ max (a. , ng
+ .

a = supla, 9) = .

\ max (a; 0)/

and every finite or infinite set of elements has a supremum.

(111) Rr" 1s not a vector lattice under the ordering p definedby

x py =(Vi:x, <y,)V(¥ i: x, = y;) .

The positivity cone 1s the set of all vectors with positive

: components together with the origin 4, the 'strict first orthant.'’

However, the intersection of two translated cones 1s 1n general a

translated cone minus the point of that cone.

(iv) RY 1s a vector lattice under the ordering p definedby

Xp VY 3 (x) <yp) V(x) = yA x5 < yy)

Vv (x; = VAX, = ¥, A x5 <¥3) A

V (x; CYL NKg Fg ee Xo y,)

("lexicographic" or "telephone book" ordering).
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However, 1t has the property that there exist elements a and

b such that a is "incomparably smaller" than b (a <b):

na pb, im>1.

| 1, . 2

For example, (9) << (5) in (R7, p) .
(v) C[0,1] is a vector lattice with the ordering defined by

f p g XVxe[0,1]: f(x) < g(x) .

The positivity cone 1s the set of all non-negative continuous

functions on [0,1] .

Examples (ii) and (1v) are prototypes for all finite dimensional vector
lattices over the real field. Mannos (1942) has shown that any n-dimen-

sional vector lattice Gn 1s 1somorphic to BR" with an ordering built
up by direct union

(g, hb) po (g", bh’) # (gp, 8") A (hg h')

and lexicographic union

(g, n) 0 (g's b') (gp, 8" Agfe’)V(e=gAhp bh’)

of the orderings of subspaces. If we require our ordered vector space

to satisfy

(VoaeK : aa pb) >a=-=%

then lexicographic union 1s excluded in the construction of p and Gr
1s 1somorphic to (RY, <) of Example (11), with some one-to-one affine

mapping of the full first orthant as its positivity cone.

More generally, we shall call any ordered vector space Cx. which has
no 1ncomparably small elements
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ARCHIMEDEAN: Vaek : aapb)>a=4%9. (8.45)

An even stronger property 1s Re

STRONGLY ARCHIMEDEAN ("integrally closed"): (8.46)

(V o ¢ Ko : Opp a>aapb)>apé.

Indeed, every strongly Archimedean ordered vector space 1s Archimedean.

Proof:

Assume that V as Ko : da pb . If O po @ thenx ap b .

If Opo(-a), then a(-a) = (-a)a op b . From the strong Archimedean

property, a [Ri and -a 04 whence a = + .
Q.E.D.

The converse 1s not true in general. However,

Theorem: If Gp is a vector lattice, then Gp is strongly (8.47)
Archimedean if and only if Ck, 1s Archimedean.

Proof:

Assume that Gx, 1s Archimedean. If O po x and a p b,
+ + +

thenaa =(axa) pb . If am 0 and a a p b, then
+ + + +

) a a ppb . Thus VaeKe: aa pb . From the Archimedean

property, at = $ whence a p i .

Q.E.D.

To continue the discussion for the finite dimensional case, every finite

dimensional Archimedean vector lattice over the real field 1s isomorphic

to ®R, <), the ordering being generated by the full first orthant. The
only cones which make R® an Archimedean vector lattice are deformed
full orthants or SIMPLICIAL CONES. Such a cone 1s the set of all convex

combinations of n linearly independent vectors and non-negative multiples

thereof.
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Another difficulty with vector lattices 1s that there are always sets

of elements for which no supremum exists:

Theorem: The set of all multiples of a nonzero element x (8.48)

F = (ax: xe Ko)

has no supremum.

Proof:

If the vector lattice 1s Archimedean, then not even upper bounds

exist. In general, however, if s = sup(%) exists, then ¥F = x+&

and

s = sup(¥) = sup(x + F) = x + sup(d) = x + s

whence x = 4 a contradiction.

Q.-E.D.

Thus we can only ask for the existence of the supremum and infimum of a

set of elements if that set is BOUNDED, that is, has a lower bound and

an upper bound. Therefore we define a vector lattice to be

COMPLETE (8.49)

1f every non-empty bounded set has a supremum (and by involution, an

infimum). As in the case of the real numbers, we can remove this restric-

tion by enlarging the vector lattice Ck, to the EXTENDED VECTOR LATTICE
Gg. with two additional elements, - ® and + « :

VxeG,: -®pxp+® (8.50)
Ko

inf @ i= +o; sup i=-®, (8.51)

Then every set h c Gk has a supremum and infimum:
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If h not bounded from below: inf(h) = ~

If h not bounded from above: sup(h) = + co .

Of course Ck is not a vector space since +® + (- ») is not defined.

Completeness will only be needed to assure the existence of suprema and

infima of infinite sets. As a consequence of completeness,

Theorem: A complete vector lattice is strongly Archimedean. (8.52)

Proof:

Assume-that Va eK: Op a>» axa pb. Then N= {a a: 0 po a}

1s bounded above whence c¢ = sup(h) exists. But

c+a=supf{(ad + 1l)a: 0 po a }

= sup{B a: 1 po BJ

po sup{p a: 0 om B}

= C

whence 3. od.
Q-E.D.

The vector lattice (RY, <) of Example (ii) is complete. Therefore it

1s the only n-dimensional complete vector lattice over the real field up

to isomorphism.

| + + +
Exercise: Prove that (ath) pa +b .
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89. Subadditive Mappings Generated by a Set of Linear Mappings.

As was the case with scalar norms ($5), we can now generate norms in

Vk with values in a complete vector lattice Gy by supremum construc-
tions over sets of linear mappilngs:-

Theorem: Let S C Hom (V. » Gy) be a set of linear mappings (9.1)
of a vector space Vi into the vector space Ge and let

Re: Gy - Gy, be an additive, &—-homogeneous mapping of
Gy into the complete vector lattice Gx, where Ko 1s
a subfield of K . Then

X) «= sup {Re (x) : eS73, 00%) p {Re @(x) : 9 ¢ 5]

is a subadditive, homogeneous mapping of Vg into GR 7 the
extended vector lattice.

Remark: If S 1s finite, then completeness 1s not necessary since

G 1s a vector lattice.
Ko

Lemma: Provided that the suprema exist, (9.2)

Cn, cn, > sup_(n, ) 0 sup _(N,,)

Proof:

Since sup (ny) is an upper bound for all elements of Nh, it is
an upper bound for all elements of the subset ny and therefore 1s

an upper bound of ny . But Sup (, ) 1s the least upper bound of
ny .

Q-E.D.

Lemma: Let n, +h, := (ath : ae ns be n,.} . Then (9.3)
provided that the suprema exist,

sup (N)- + Ny) = sup(ny) + sup(ny)
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Proof:

sup (ny + n,) = sup {sup (a + n,) : ae n, J

= sup {a + sup (ny) : ae n, }
| +

osu (ng)+ sup(ny)

Q.E.D.

Proof of Theorem:

Re ®(x) is an additive, &-homogeneous mapping of Vi into Gx. .

7g. (xty) = sup {Re ¢(x) + Re 9(y) : ¢ ¢ 5}’ RP P

po sup {Re @, (x) + Re P5(¥) : @5 9, ¢ 5}

= sup {Re Pp, (x) J Ss} + sup {Re Psy (x) : 9, ¢ 8}

7s, oo Xx) = sup {Re ola x) : 9 ¢ S}

= sup {a Re ®(x) : ¢ 8} Vaoae kK

=o - sup {Re ¢(x) : ¢ ¢ S] VaekK : 0pm

| 7g . 1s a subadditive, &-homogeneous mapping of Vi into° 0 }

“ko

Q.E.D.

Examples:

(1) Let Vi = Ges . Then Re: Gye — Gx, 1s the identity mapping.
For S = {1,0} where I 1s the identity and 0 the zero mapping

of Vk into itself,

re (x) = sup (x, 4} = x
DP P

1s subadditive and &-homogeneous:
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(a+b)” 0 a +b (9. 4)

0 ppa> (x a)t =aa . (9.5)

(11) Let Vg = Gy, and let S = (I, -1) . Then

rg o0) = x |_| (=)
=(ex |_| 9) - x

= 2X+ = (x - xX )
+ -

=x + x

_ 73,00) = |x| = x+ + X (9. 6)

Since 7s . 1s subadditive and &-homogeneous,J

lato] po [a] 4 |b] (9. 7)

lo a| = ola VaoeK: Op o. (9. 8)

Moreover,

la-b| = (a-b)+ + (a-b)-

= [(a-b)+ + b] + [(b-a)+ - Db]

la-b| = al |b - a| |b (9. 9)

From Dedekind's property ((8.36))

atb = a|_|b +a] |b,

we now obtain

al |b = #[atb + |a-b}|] (9.10)
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a["1b = #latd - |a-b|] . (9-11)

In addition to being subadditive and homogeneous, |x| 1S non-
negative as a consequence of (9.6). Indeed, it is even positive

definite: :

la-b] = 0 > (a]_|p) - (a| Jv) = ©

>a| |b =al |b

>a=>

> a-b = 4%

Thus,

IX] is a norm. (9. 12)

(111) Let Vv = rR" and Gy = RY, <), the vector lattice generated
by the full first orthant. Then the norm [x] of Example (11)

n

is just the modulus norm (Betragsnorm) in R  ((2.23)).

Most of the results of §5 carry over to the case of vectorial norms

generated by sets of linear mappings. In particular, Theorems (5.8)

and (5.10) now read:

"Theorem: If A is a convex combination of elements of S. (9.13)
then

Re A(x)p 7s, 0%); Vooely . (9.14)

Proof:

Let A = a Py . Ps Ce ee ow a P where a, € Kos Pe S, 0 po os
and Z a. = 1 . Then

1

= ) +Re A(x) = og Re ¢,(x) + a; Re (x)..+ a Re P(x)

ploy + a + al sup {Re ¢(x): 9 ¢ 5)
= rq (Xx).

51 P Q-E.D.
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Theorem: If the zero mapping O can be represented as a (9.15)

convex combination of elements of S, then 7g of J) isJ

non-negative and therefore a seminorm.

Example:

(iv) Let Vk = cH and Gy, = (RY, <) as in Example (i111) and let
S = {a I: |e|= 1) . Then

oq = 7 (x) = sup{Re (a x) : |e] = 1)

1s subadditive and strictly homogeneous. By the preceding

theorem, it is non-negative [0 = &(I) + #(-I)]; positive

definiteness follows from 1ts explicit representation. Thus

IX] i1s--a norm, the modulus norm in oe .

As in §5, we may introduce the sets

K := : .16: (xe Vy: 7g (x) ppl, DeG . (9.16)

Ky = (x: X 1s again a cone and4 7g, ot ) p 4} g

Theorem: A seminorm 7g o(%) 1s definite x & {4} (9.17)

We can still represent K, as an intersection of domains

ky t= e V. : Re 9(x : . 18- (x eV, ¢(x) op p} (9.18)

- Theorem: K = N £ 1

— P 0S ¢,p . (9-19)

However, Yo p 1s no longer a half-plane: |’ |

|

For = I BY X: = p-Gt+ .\% ’ ©,p — { X Pp Dp) P
+

For = —1 X: =X = p+ .? ’ Lo,p _ { Pp Pp) pt+G
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A set G 1s

CONVEX (9.20)

I if N

Va beG: pa + (1-p)b eG, O pop po 1 (9.21)

; Theorem: § is convex. (9. 22)
= —_— ¢,p

Proof:

Let a, be £ and O po wo 1 . Then Re @¢(a) pp A Re @(b) ppJ

and Re @(p a + (L-p)b) = up Re ¢(a) + (1-p)Re ¢(b)

opp + (1-p)p

=P

since 0 pop and 0 po l-p . Therefore p a + (l-u)b e So .J .

Q-E.D.

In general,

+ -1 +

$0.0 {x : Re (x) e p-G } = (Re ¢)  (p-G ),

"the preimage of the translated cone p-G+ . Letting § denote the

one-to-one mapping of V,/Ker (Re ®) into Re (Vy) induced by Re O,

aml

iy /Ker (Re P) = ¥ (Re @(V.) N (p—-G+)) .
Q,p K

If Gy, 1s a finite-dimensional, Archimedean vector lattice, we might
expect the domains 0 p to be intersections of half-spaces rather thanJ

half-spaces themselves. Indeed, if Vi 1s a vector space over the real

or complex field and Gg, = (R", <), then
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AY Xx: Re x) <0p (x) <p)
T :

= {x: e. Re p(x) < e; i=1,2,..., m)
m

= N {x: Re or p(x) < el p)
: i - i

i=1 |

m

£ = (0 H, T 7 (9.23)

and therefore

m

K = N £ = NN nN T T
Cv . . . 2

This result is obviously a consequence of the fact that (R',<) is a
direct union o-f the linearly ordered real field, and we shall now like-

wise investigate this effect on the mapping 75(x)

Let Vk be a vector space over the real or complex field and let Sky =
(R", <) . Then 1t 1s easily seen that each component of a subadditive,

homogeneous mapping of Vx into Gx, 1s itself subadditive and homo-
geneous. If the mapping 1s a norm generated by a set 8, then each

component 1s a bounded seminorm Or even a norm; mMOreover

Theorem: 7g, (x) (9.25)
74x) = .

\7g (x)
m

where

T D

S; = {e[®: Pe . CV . (9.26)

Proof:

r(x) = sup{Re ®(x) : © eS)

k sup Re (x)= ‘
\e” sup Re ¢(x)
‘m



sup Re e) o(x) y
= since e, sup (h) =

cop

sup Re e_ (x) | sup (en) i. (B",<)

vg, (x) g

7g (x)
m

! Q.-E.D.

In the literature, only a special case of this result has been studied:

the case where

The i-th Cisonent of the norm v(x) is a norm on the (9.27)i

subspace Ve = PV

Examples:

(1) Let Vk = R° and 6, = (85 <). Then the sets
10 1 O -1 0, ,-1 © 10 -1 0

give rise to the same sets 5) = {+(1,0)} and S, = {+(0,1)} an
therefore generate the same norm. Note, however, that the second

) set does not generate the first set by convex combination.

CL. n n n

(ii) Let Vp = R or C and Gp, = (R , <) with v(x) the modulus
norm 1n Vi Then each component of v(x) is a norm on the sub-
space formed by all scalar multiples of a coordinate axis.

CL 5 2

(1ii) Let Vi = R” and Gy. = (R , <) with the norm

gil [ max (1x, 15 x5)
v (| x, |) = |

2

Xz! max (-X, |%5 |) .

64



V(x)1s generated by

1 00 O 1 O
= {+

which gives rise to the sets )

5, ={(100), (100), (010)}

S, = {(0-10), (001, (00-1)

In this example, neither Yq (x) nor Vo (x) 1s a norm though
1 2

both are bounded seminorms.

Theorem: Lety be a symmetric seminorm on Vk . Then there (9.28)

exlsts a subspace Up, c Vy such that y restricted to Uy
1s definite.

Proof:

Since y 1s non-negative, the cone fg = (x: Y (x) p 4) is the domain
where 7(x) vanishes. By symmetry (y(-x) = yv(x)), Kg contains with
every element x its negative -x . Therefore Kg 1s a subspace of
Vie Let Ug = Vi/Kg and let P be the projection of ¥, onto WU. .
If x e Ue and y (x) = 4, then X € 2% whence Px= 0 and x = 0
since Px= xXx V X ¢ Ue . Thus y 1s definite on UK

In conclusion, we note that the concept of linearly transformed norms

carries over unchanged from§7 to vectorial norms, and that relation

(7.3) 1s valid for the transformed generating set.

Exercise: Prove that al [bp x po a| |b > |x| o |a | || bl .
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§10. Additional Remarks.

We have seen how norms can be generated from sets of linear mappings.

The question may arise whether all norms are so generated. The following

theorem 1s suggestive:

Theorem: Let y be a subadditive mapping of Vx into Gg, (10.1)
Define

S= {op : ¢ is additive; V x € Vg o(x)p 7(x)} . (10.2)

Then y4(x) p 7(x) .

Proof:

7o(x) = sup{o(x) :  ¢ s)
= sup{p(x) : @ is additive; Teel, :0(E)pr(E)]
o r(x) .

Whether such a set S generates y(x), that is, whether the supremum

1s indeed y (x) for all x, depends on the topological properties of

the space Vk . In finite dimensional spaces over R and C, the

support theorem guarantees that 75x) = y(x) .

A further remark concerns the basic triangular inequality (2.16):

: vix oy) p v(x). vy).

Replacing x by x + y and y by -y, we obtain

v(x) - v(-y)p v(x + ¥), (10.3)

or, combining the two inequalities,

4 - Yep vix + y)-v(x)p viy) . (10.4)

If Vis symmetric (v(x) = v(-x)), then

66



Vix 4 ¥) vx)|p viy) (10. 5)

Replacing y by -¥y in (10.3), we obtain

v(x) -v(y) p vix - ¥) (10. 6)

Again, if vis symmetric, then

© v(x) -v(y) |p v(x . ¥) . (10. 7)
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§11. Mappings of Normed Vector Spaces

Let Vk and Vi be normed vector spaces with norms v : Ve — (Gg sp)
and V : Ve - (Gy ,0°) . Let A be a linear mapping of Vy, into
Vi . Then a linear mapping B: Gy ~ Ce. is an

UPPER BOUND EORA or LIPSCHITZ BOUND (11.1)

if

v' (Ax) o’ Bv(x), V x e Vi . (11.2)

The situation 1s illustrated by the following diagram:

V

Al | B (11.3)
/

AY, }

Vg = (Gg sp")

' - / / '

A mapping | lv’ : Hom (Vy. Vy) Hom (Gye 5 Gy) 1s an

UPPER BOUND MAPPING (11.4)

; _ : /

1f B= Bl, 1s an upper bound for A for all A e Hom (Vy, Vy) .

Examples:

(1) Let Vy = Vg = R* and Gg = Cg,” (R'<) with vo = v(x) =|x|,
the modulus norm. Then A e Hom(R,R') is an n Xn matrix (a 5)
and an upper bound mapping 1s given by

A] = A] = (lags) .

Co / n / : ?
= == = = < =V =

(ii) 25 Vg = Vg = RB and Gg = Gp (R,<) with v(x (x)
(2x) , the Euclidean norm. Then
i
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— 2

BE] i= max|a,.| + ( a. 5] ii 1k
1 yk

is an upper bound mapping. Another upper bound mapping is the

Frobenius norm ((16.17)) N

— 2 \B
7 = ally = (52 a5)%

Similarly, a linear mapping C : Gy” Ge. is a

LOWER BOUND FOR A (11.5)

if cv(x) p'v/ (Ax), V x e Vg . (11.6)

A - - Hom (V vr.) = Hom(G. ,G. is a

LOWER BOUND MAPPING (11.7)

' ' /

if C= 1A], y is a lower bound for A for all A e Hom (Vos Vie) .

Example:
| / 2 2

= = = ' = R ,< = ’Let Vy, = Vx =R and G,_= @ (R,<) with vy = vx $4,
the modulus norm. Then

A= E L has the lower bound C = > -1 since1 3 -1 3

x, | 32, +x,]
cv (x) 7 < o=|ax] = vax).| -1 } | ol - (a + 5%, | |

Cc = 0 1s also a lower bound for A and lly, =0is a lower
bound mapping.
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12. Least Upper and Greater Lower Bounds I.

We shall first investigate the case of scalar norms; that 1is, Ge. = Gy. =
(R, <) . For a given mapping A e Hom(Vy,Vy), the set of all upper
bounds for A has a least element, the LEAST UPPER BOUND:

lub, (A) = inf{p : v (Ax)<Bv(x),Vx eV. }. (12.1)’ K

Since v'(A$) < g v(®4) for all pg,

lub, (8) = inf{p : v'(ax) < BV A x #4}
_ os . / X

= inf{p : vA eI < BA V(x) # 0}
_ = inf{g : v (Ax)<BAV(x)=1)

Lub, , JB) = sup{v’(ax): v(x) = 1} (12.2)0)

lub, , (A) = sup{y—ax) : x #4) (12.3)Vv ,V V(x )

Lub, N 1s, of course, an upper bound mapping and2

re A /

Lub, (A) < LYN V A e Hom(Vy,Vy) (12.4)

for all upper bound mappings BN y Moreover,
J

Theorem: The mapping lub, : Hom (Vo, Vy) - R is subaddi- (12.5)J

tive, homogeneous, and positive definite.

Proof:

lub, (A + A)

= sup{v’((4, + A )x) : v(x) = 1)

< sup{v’ (Ax) + vi (Ax) : v(x) = 1)
/ / hd _— =< sup{Vv (Ax) + Vv (Ax) : v(x) v(x) 1)

/

= sup{Vv’ (A x, ) : vix,) = 1) + supiv (Ax) tv (x,)= 1)

= Lub, oA) * Luby. (A)
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lub, v is subadditive; homogeneity and nonnegativity are like-J

wise inherited from ..

/

Lub,/ (A) = 0 > v'(Ax) <0,V x e Vg

> Vv (Ax)= 0, ¥ x ¢ Vi since Vv is
nonnegative

>» Ax = 0, Vxel, since V18
a norm

>A =0 .

J. lub, is definite.

voy Q.E.D.

Note that lub, y may not be bounded and therefore may not be a norm.p

Example:

Let Vi = ctio,1], the space of once continuously differentiable
functions on [0,1], and let Ve = C[0,1], the space of continuous
functions on [0,1] . Take

vig) = vi(f) = max{|f(x)| : 0 < x <1}.

Let A = &. Then AB:= :

max|f'(x)| = v(Ax) < B v(x) = B.max|f(x)]

for all f£ e€ ct 10,1] . Therefore, lub, 0 (A) = + @ |J

Any mapping A e€ Hom (Vo) Vo) for which lub, JA) < + ® is said to beJ

bounded. That the set of all such mappings is a subspace of Hom (Vy Vo)
follows trivially from the subadditivity and homogeneity of lub, / yb

Thus:

Theorem: lub, v is a norm on the subspace of all bounded (12. 6)J

mappings.
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In this case, lub, V 1s called theJ

LEAST UPPER BOUND NORM (12. 7)

subordinate to the norms V' and V .

In finite dimensional spaces, every mapping is bounded, independent of

the norms V' and v used. This can be shown by a compactness argu-

ment or by Ostrowskili's theorem that all norms over a finite dimensional

space are topologically equivalent; that is, given norms V1 and Vo

over Ver there exists a constant T such that

V.eV,. vy (x) <r .ovo(x)

Thus, the proof 1s reduced to the case where Vv and v/ are the maxi-

mum norm over Vi and Ve and follows by using the product topology.

For a given mapping V € Hom (Vo, Vee) 5 the set of all lower bounds for
A has a greatest element, the GREATEST LOWER BOUND:

glb,,/ J(8) r= sup{7: yv(x) < v' (ax), V xX € Ve) . (12. 8)J

— inf{v’'(8x): v(x) = 1) (12. 9)

eV (Ax)
= nf{ry X # 4) . (12.10)

glb,, v is, of course, a lower bound mapping andJ

/

Alyy S gl, (a), V Ae Hom(Vy, Vy) (12.11)

for all lower bound mappings ly v Thus, for all x e€ Ve with
: Vv (Ax)

x # 4, we may bound the MAPPING DISTORTION ~G)

Ay. < glb, (A) < v' (Ax) < lub, , (A) < |A] / .BPly/,y = vivit 2 Tx)= viv = v',v
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The mapping glb,, N 1s homogeneous and nonnegative but neither subaddi-
tive nor definite.' Indeed, it is not even superadditive

(g1b,, (4) + gly. (45) < glb, , (A +A.) as one might expect.

Theorem: If A is not injective (Ker A # 41), then (12.12)

gb, (A) =0 .

Proof:

Ker A = xev, :Ax=41 #0 >3x #4: Ax = 4
v (ax) _

>» Hx # 4 : x) = 0
> gb, (8) =0 .

If A is injective (but not necessarily surjective), then a left inverse

A™l exists on AV, © V. and
K K

/

oo. v' (Ax) .
glb,, (A) = inf {07 : xeVy AN X + 4)

> ing{——A%) : xeVp Ax # $3
v(A “Ax)

Vv’

= ine(X 0) : yeAVy ANY # 4)
via Ty)

-1
VA Ty)

= 1 :[supl=rmSt veal, Ay # 4)
L

> 1 JL :> 1/supl{=7rrd vel 7 4]
L

= 1/lub,, (A )

where ale Hom (V,..,V, ) 1s any mapping which coincides with at on AVe
an extended LEFT INVERSE of A:

atax = X V ev
’ X K ’

Theorem: If A 1s injective and A" 1s any left inverse (12.13)
L

of A, then glo, (A) > 1/1ub,, yA )
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Moreover, 1f at 1s a bounded mapping, then lub, Jr (a7) < + o and
I, J

> .

gl, A) 1/1ub,, (A ) > 0

In finite dimensional spaces, all linear mappings are bounded and any

injective mapping has at least one left inverse. Therefore A 1s injec-

tive 1f and only if glb,/ (4) > 0 .
J

Theorem: If A is regular (injective and surjective), then (12.14)
-1

glb, (A) = 1/lub, me )

Proof:

If A 1s regular, then AVL = Vie and al 1s uniquely determined.
Thus, we may sharpen the proof of Theorem (12.12)

ae Vy) /
glb, oA) = inf{——— : yeVy NY # 41

v(A Ty)
-1

_ v(A Ty)
= 1/sup{=rry vel Ay #4)

-1

= 1/1, (A )
Q.E.D.

If Vi = Vie: then the mapping A : Vx - Vi 1s an endomorphism and may
be injective yet not surjective. In finite dimensional spaces, a dimen-

) sion argument shows that this situation cannot occur and we obtain a

nonsingularity criterion:

. Theorem: If A 1s an endomorphism of a finite dimensional (12.15)

vector space, then

1b (A) 1/1ub,, (a7) if A nonsingularSR SVIRY — 10 ’ otherwise.

If Vi = Vi and Vv=v’, then the greatest lower bound and the least
upper bound of the identity endomorphism are given by:

glb,/ (I) = Lub, s (I) = 1 .
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Although glb, N 1s not subadditive,J

Theorem: glb,,/ (3 + A) < gb, (A) + Lub, (A) (12.16)

Proof: :

For any € > 0, there exists fe¥p with v(E) = 1 such that

glo, (A) = via) - € . Therefore,

+ < v/'((A. + A
gl, (A Ay) < vi((a 5)E)

/ | /

<vi(ag) + vi(agt)
_ Vv’glbys L(A) + & + V/(Ag8)

< glb,s (Ay) + lub, (A) + €
" Q-E.D.

From (12.5) and (1216) we obtain a result analagous to that derived for

vector norms (see (10.4)):

Lub, (A) - lub, ,(-B) < Lub, (A+B) < lub, (A) + lub, (3)
112.17)

glo, (A) - lub, ,, (-B) < glo, (A+B) < eld, (A) + lub, (B) .
(12.18)

If v and/or Vv’ is symmetric, then these relations simplify to

Tub, (A+B) - lub, (8) < lub, (8) (12.19)

giv, (A+B) - gid, ,(8)] < lw, (8) (12.20)

as a consequence of the following

Theorem: if v and/or Vv’ is symmetric, then lub. 18 (12.21)- bJ

symmetric.
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Proof:

V(X) = v(-x) > lub, y(-2) = sup{Vv'(-Ax) : v(x) = 1)J

= sup{v’'(A(-x)) : v(-x) = 1)

= sup (v' (Ay) 2 v(y) = 1)

vi(-x) = v'(x) > lub, / J(-A) = sup{v’ (-Ax) : v(x) = 1)J

= sup{v’'(Ax) 1 v(x) = 1}

Q.-E.D.

Relations (12.19) and (12.20) may also be expressed as

| Tub, (A) - Lub, / JB) < Lub, ,(A-B)
- < A-B

lew, (a) - eb, (B)] < lub, (A-B)

from which it is easily seen that lub,, and glb_, . are continuous| 4 )yv

mappings with respect to the topology generated by lub, / v °J

The effect of norm transformations on lub, and glb,/ 1s given by:

Theorem: Let X- and Vr be the transformed norms corre- (12.22)
sponding to the nonsingular linear transformations Q and R:

vo (x) = v'(Qx) and vp (x)=v(Rx) .
Then

| lub. , (A) = lub, (QAR™1) (12.23)
viv vi,V
Q' R

-1
glb., ., (A) = glb,, (QAR 7) (12.24)

Vv. ..V Vv ,V
Q R

RATA = ac « X # 4)
v'( QAR™'Rx)

— suPl—— me : Rx # 4)
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/ ~-1

= sup ((QAR 7)y) . y 4 4)
BEE

= lub, , (QAR)
Vv ,V )

A similar argument shows glb. ,. (AY = glb., (@ar™H) ]
VIN RAV AERY
Q R.

Q.E.D.

Thus, if v' is invariant under the group of norm transformations g

and Vv is invariant under the group ®, then lub, y are 1nvariant
under the product group x ® : A ~ GAR |

Let A be an endomorphism of a normed vector space Vo over the complex
field C and let _ Vv’ =v be strictly homogeneous. Then:

Theorem: If A is an eigenvalue of A, then (12.25)

glb,s  (B) < fal < Lub, (A)

Proof:

Let A be an eigenvalue of A and x the corresponding eigenvector.

Then Ax = AX and

v(Ax) v(x) v(x)< = = = < lub Aglb,, (A) SVE) x= IA] Sy ~ uv )
Q-E.D.

The domain defined in (12.25) is an annulus in the complex plane. For

real, nonnegative eigenvalues, the assumption of strict homogeneity may

be dropped. In this case, 1f A = a9, T 2 0, 1s an eigenvalue of A,
then 7 1s a real, nonnegative eigenvalue of e 18, and

-i8 -i0
< .glb,/ ,(e a) <r1< lub, (e A)

The domain is still an annulus but the bounding curves no longer need be

concentric circles.
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If the norm v' is generated by the set s'cr,” (v/=vg), t hen

V'(AX) = sup{Re (Ax) : © ¢ 8’)

and

lub, / (A) = sup{v’ (ax) : v(x) = 1)J

= sup{sup(Re 9(Ax) : ® e€8'} : v(x) = 1}

= sup{Re (Ax) : ¢ eS, v(x)= 1)

= sup Re {p(Ax) : 9 e¢ 5", v(x) = 1},

the BILINEAR CHARACTERIZATION OF THE LEAST UPPER BOUND. (12.26)

This leads us to introduce the

BILINEAR FIELD QF VALUES OF 2 (12.27)

subordinate to Vg! and v :

Pg yA) = {o(Ax) : pea, vx) = 1). (12.28)
Since

Lub, , (A) = sup Re Pgs y[AL, (12.29)

lub, y (B) characterizes the position of a parallel to the imaginary
2

axis supporting Pg JA] from the right. In the special case of
| vi= v= Vo» comparing (12.28) with the more restrictive (6.8) gives:

Gglal = {o(ax) e Pg JA) ex) = v(x) c Pg, % [a] . (12.30)
Thus by Theorem (6.10),

Exclusion Theorem: No eigenvalue of A lies outside (12.31)

Pg v [A]; that 1s, if Ae C is an eigenvalue of A,J
Ss

then } e Pg [A] .
S
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Pg ; [A] is not only larger than GglA) in general but 1s also notJ
s

covariant under translation. Like GglAl, however, it is INVARIANT
UNDER SCALAR MULTIPLICATION:

¥ 7 ¢K: Pg y TA) T Sv [A], (12.32)
o S

and, for nonsingular B,

p [A] = Pp, _ [BAB™'] ,
SB, Van S WV <

More generally, 1f B and B' are nonsingular, then

Pojuy [A] = Pg, [B/AB™Y]. (12.33)
S°B »Vap S Va

If either Va or Vv 1s strictly homogeneous, Pas JA] will haveJ

rotational symmetry about the origin: If gq e Pg, gto] for some
choice of ¢ and x, then ® qe Pg, [A] for all ® with lof =1J

(consider the element of Pa, Jal generated by either w ¢ and xJ

or ¢ and wx) . Thus, (12.31) is a generalization of (12.25) without

the restriction of strictly homogeneous norms.
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813. Dual Norms

The order in which the suprema are taken in (12.26) may be reversed:

V sv 'x Ped

= sup supi{Re QA(x) : v(x) = 1}
PesS' x

D D

If we define the mapping Vv ov, = Hom(V., K) by

D

Vv (¥) := sup{Re ¥(x) : v(x) = 1} 130 |)

Re f(x) .N = Sup fe bn) PX # 4} (13.2)

= inf{p : Re ¥(x) < B-v(x),VxeV,], (13.3)

then

D '
lub, (A) = sup{v (9A) : @eS'}, (13.4)2

the DUAL CHARACTERIZATION OF THE LEAST UPPER BOUND.

The supremum of (13.1) much resembles the supremum that led to the least

| upper bound. In fact, since Re is additive and homogeneous, a proof
D

analogous to that of Theorem (12.5) shows that v= is subadditive and

homogeneous. However, since Re is neither non-negative nor definite,
D

. another argument 1s needed to show that v 1s positive definite:

Proof:

D .

Assume that v (¥) < 0. Then VxeVy with x #4 Re tx) < .
But for such x, v(x) > 0, whence V x ¢ Ve t Re V(x) < 0 . In

0° ‘5

particular, V 6 e [0,2m), x € Vx : Re e” ¥ (x) = Re ¥(e™7x) <0.
_ D

Therefore ¥(x) = 0 and ¥ = 40; that is, ¢ 14° >v (VV) > 0.

; Q.E.D.
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If WP) is bounded, then v0 is a norm; therefore,

D
Theorem: V (Vv) is a norm on the subspace of bounded linear (13.5)

functionals of Vis the

DUAL NORM_TO THE NORM wv. (13.6)

In the finite dimensional case, every linear mapping 1s bounded and v

1s a norm on vo for every norm v .

Examples:

(i) Let V, = R® (or C") with v the Tschebyscheff norm. Then
D

T= (bys eer VDE,

- 5 n
vy) = 3 vl (15.7)

oo i=1

the Manhattan norm on the dual space.

(11) Let Vi = Rr" (or oa ) with v the Manhattan norm. Then
| D

Vy = (V5 cee Vv )e [

D | 8
1<i<mn

the Tschebyscheff norm in the dual space.

(iii) Let Vi be a Hilbert space with the scalar product norm
v (x) . (o(x,x))® . Then by the Riesz Representation Theorem,

Tye V2 Gye Vo: ¥ (x) = 0(x,y) and
D

v (¥) Lov). (13.9)

(1v) Let Vx = BR" and let A be Hermitlan and positive definite so
5 T D D

that v(x) = (x Ax)? is a norm. Then Vy e LI = Rs

D, T T -1 \3
vy) = (yATY)E (13.10)
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In particular, if A = I, then v is the Euclidean norm and

n 1
D, T 2v2
vy) = (Lv 95,

i=1

the Euclidean norm in the dual space.

| D

If the set SC Ve generates the norm Vg» then the unit ball of the
dual norm

D D
© = {ye Vir vg(¥) <1}

is closely related to 8 . In fact, since from (13.3)

...D ‘
vg (¥) < 1 = Vxe Vi: Re V(x) < vg (x),

it follows that

D D

K = {Ve Vi Vg (V) < 1}

= {Ve v2, Re V(x) < va(x), Vxe V_]}B K* =€ = Ys\t/s K

(13.11)
D

= xv {Ve V1 Re ¥(x) < vg(x)]

xv ie vg (x)
where

| H i= {ve V2: Re y(x) < } (13.12)XO x+ Re X o .

D iPis a half-space in V_ . It is clear from (9.1) that VxeV _: SC 0
K K X, Vg (x)

On the other hand, if SC H o’ then VeeS: Re o(x) < « whence
2

< H -

vg(x) < «@ and x, Vg (x) — a . Therefore,
x DTheorem: 1 1S the intersection of all half-spaces 1n Vi (13.13)

containing S, the
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BIPOLAR HULL OF S . (13.14)

As a consequence oC © and, since the half-spaces Ho q Are convex,b J

D.

H[S] K. (13.15)

where H[S] denotes the CONVEX HULL OF S, the intersection of all

convex sets containing 8. In finite dimensional spaces,

K; = FH[S] (13.16)

where & denotes the topological closure operation.

Example: ~

Let Ve = R" and let

S = {(4 £): 1° + 1° 4 + 1° <1)1’ LL | n LJ 1 o ° ce n J

the open unit sphere. Then

2 2 2
—_ oe © : + [Iof L(y, ’ £) 2 I + + tL < 1},

the closed unit sphere.

At this point 1t 1s interesting to note that the work of the preceding

paragraphs could have been done using’, rather than S . However,
the eigenvalue inclusion theorems gave better results for simple (minimal)

sets S . Also, it is nicer to generate norms without resorting to limit

processes and this can only be done for finite sets S .

If the norm v' 1s generated by a finite set ®', then (13.4) reduces

lub, L(A) to a maximum over a finite set of dual norms:J

D

lub, , (A) - max tv (pA)}. (13.17)
J ped’
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Examples:

(1) Let LE% = Ve = ¢* and let v' be the Tschebyscheff norm with
generating set

o!' = 1 {we : || = 1} .
1

Then

D, T

lub, (8) — max y (we A) : (13.18)
’ 1, lo = 1

If v 1s strictly homogeneous, then

D, T
lub, (A) = max v (e.A), (13.19)
AY ; i

the maximumof the dual norms of the rows of A . If v 1s the
I

Tschebyscheff norm, then v= is the Manhattan norm and

lub, (8) = max) a. |, Bon
1 k

D |
the ROW SUM NORM. If v 1s the Manhattan norm, then Vv 1s

the Tschebyscheff norm and

lub , (A) = max la. |, (13.21)
V',V i,k

1,k

the MATRIX TSCHEBYSCHEFF NORM.

(11) Let LE% = Ve = ¢" and let v' be the Manhattan norm with
generating set

i6 16 iB
L 2 n

o!'= ((e y © 3 + sey € }

Then

D, T

lub, , , (8) = max Vv (474) . (13.22)
J |

tres
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If v 1s the Manhattan norm, then > 1s the Tschebyscheff
norm and

T
lub , (A) = max max | Ae |

Vi, V T k
"ed" k

T

= max max | ¢ Ae, |
k les

lub, (A) = max ) EP (13.23)
k 1

the COLUMN SUM NORM. If v 1s the Tschebyscheff norm, then Ww
1s the Manhattan norm and

lub (A) = max y | 1 ae |
APY T m kK

"ed!

= max y. le’D Ae. | (see (6.22))| 1 k
D, k

JJ

A) = | 15.lub, (8) = mex 1 | 2 (0,8); | (15.24)
“yp I ie

the maximum of the sum of the absolute values of the column sums

of A under left-sided phase transformations. One might have

expected from the duality between the Manhattan and Tschebyscheff

norms that

lub , (A) = Y la. |
Viv Tk 19k

in this case. Indeed,

1b, , (4) < 2 lagls (13.25)
i,k

however, there 1s equality if and only 1f A 1s non-negative up

to a two-sided phase pattern transformation. Thus in general,

2 lal
i,k

1s merely an upper bound for A compatible with the Manhattan
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norm ¥' and the Tschebyscheff norm v .

(iii) Let Ve = Ve = on and let v' and v be the Euclidean norm.
We introduce the

BELTRAMI-JORDAN DECOMPOSITION OF A: (13.26)

A= U TV B02

where U and V are unitary and EZ = diag(o., Os voes 0.) > 0 :
Since the Euclidean norm 1s invariant under unitary transformations,

lub (A) = lub (vu sv)
vi,V v'iyv' oo

= lub, (2)
DO 2

f= ii

i

= Sup EF

z I, | |= i
i

< max 0, .
i

i

1 0g = max 0.
This bound is achieved for x =(. H so that

Mo 0 5,< max o.

lub (A) = max 0.5 (13 .28)
the EUCLIDEAN BOUND NORM ("SPECTRAL" NORM). The non-negative

scalars 0. are the

SINGULAR VALUES OF A. . (13.29)

H 2 H LL LL _

Since AA= UZ U is Hermitian positive definite, the ,
are just the non-negative square roots of the eigenvalues of
H

AA. If A 1s Hermitian or normal, then the 0. are the
absolute values of the eigenvalues of A .
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814. Least Upper and Greater Lower Bounds II.

We shall now consider least upper and greatest lower bounds 1n the general

case where Gye and Ge are not both one-dimensional. But first we
must state what we mean by such bounds.

Let B[A] C Hom (Gy, Gy. ) denote the set of all upper bounds for A
((11.1)) and let C[A] C Hom (Gy Ge) be the set of all lower bounds
for A ((11.5)). To compare bounds within these sets we must introduce

an ordering p in Hom (Gy, Gy) . Thus we define

CF DE c : : x > & ' & xv 4. 5 © Hom (Gy, Gg): of 0 4, zs VxeGy 4p x Xp! ox
(14 .1)

Theorem: p 1s transitive, reflexive, and antisymmetric. (14.2)

Proof:

Transitivity ((2.2)) and reflexivity ((2.3)) are inherited directly

from p but the proof of antisymmetry ((2.4)) 1s more difficult:

~ ~ +

> : & ' Ex NF 'od} 0 <, A 2, 0 of VxeG 1X pox SX px
-+

. & => VxeG 1X <x
> VxeG, : &x = 4x since G =a -q

Ko 1 2 Ko

> % =
1 2

Q.E.D.

Thus p 1s an ordering of Hom(G, , G! ), the
Ko Ko

ORDERING INDUCED BY p AND p'. (14.3)

Moreover, 1t 1s

COMPATIBLE WITH o AND pt: (14.4)
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xX PX, A os} 0 4, > 1X po ZX, wh 05

Example:

Let 6, = RS 9 and Ge = ®%, <) Then the ordering p induced
in Bom(RE, RY) = rEg given by

PRE . . : &

an elementwise ordering which we shall again denote by < .

As might be expected, we can obtain weaker bounds from known bounds by

means of the ordering 0:

Theorem: = (14.7)

r >B, € BIA] A B, p By, > Bj e BA]
A c > C[A].Cy e C[A] C, 0 C, C, e C[A]

Proof:

Assume that B; e€ B[A] and B, 0 B, . Then v' (Ax) p' B,v(x)p "BV (x)
since 0 p v(x) . Therefore B, e B[A] .

Q.E.D.

_ Theorem: B[A] and C[A] are convex. (14.8)

Proof:

. Let Bj, Bye BA] and assume 0 po Bb po 1 . Then

vi(Ax)p' Bv(x) A Vv'(Ax)p' B(x)

> pv! (Ax) p' WBV(x) A (L-p)v'(Ax) p'(1-w)B,v(x)

> v' (Ax) p' [Ww By + (1-0)B,Iv(x)
- [5 .> WB, + (1 k)B, e BA]

Q.E.D.
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The zero element 0 of Hom (Gy , Gy) 1s always a lower bound:

0 e C[A] . (1k. 9)

However, this does not imply that V & ¢ B[A]l: 0 p & . Indeed

H ¢ C[A] A £ ¢ B[A] > Vxel,: Hv (x)p'Sv (x),

whereas

n +

Hp & % VzeGy : Hz o! Hz

Still,

+ : : :

Theorem: If v—(x) is SURJECTIVE ON Gye » that is, if v is (14.10)
a mapping of Ve onto Ge then-

He C[A] A & e B[A] » H p 4 .

For now (V(x): xe¥_ } =1{z: z ¢ a }
) K Ko

In the case where Gy = (Ko 500 ) the induced ordering 0 is an order-
ing of Ge = Hom(G, Ko), the

DUAL ORDERING (14.11)

(For Gye = (Ko , po ) as well, 0 reduces to the ordering pe of Ko ).
+

The DUAL CONE. of the positivity cone G 1s then given by

D D D a

G, := {eG : 0 p }
D +

= {YeGy : 0 po¥(x), VxeG)
D D

G, = N, {ye1 0 po ¥(x)} (14.12)
xXeGr i

an intersection of half-spaces. The question of whether BS[A] C Gy.
has a least element and C[A] a greatest element was answered in $8:
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D

B[A] has a least elementpfo 3X S[A] = Bo + G

C[A] has a greatest elementyo %¥ C[A] = - cay .

Examples: . [ |
(i) Let V_, = R® and G, = (R%,<) with vl 1] = 1
the modulus norm. Let Vi = R and Xo.
Gi. = (R,<) with v'(x) = |x| . Then VA = (a;58,) € Hom (V., Vi)

Bla) = {(B;»8,): lag] < By lal <8)

CIA] = {(ryr75): 7g la,1, 7, < ENP 7 la | + 75 la, < 0}

Ps
~ | LL BA]

2]
L725 L

Since [B[A] is a translated positivity cone, B[A] has a least

element B = (la, 5 la, 1) . However, C[A] has no greatest element.

VER
5 5 xy 1 2

(ii) Let Ve, =R and Cy, = (R7,<) with of | =| | . (14.14). 2 2 2

: Let V; = R and Gy = (R,<) with Vx; + *2
v!'(x) = |x| . Then VA = (a,,a,) € Hom(V_,V5),

f2 2

C[A] = Lr 57): Al + Vo < 0} °
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7 sia

| ) \"

cla) /

B[A] has no least element and C[A] has no greatest element.

Moreover, since the values of v(x) lie on a single ray 1in Gye»
+

V 1s not surjective on Gre, and Theorem (14.10) does not apply.
Indeed, there do exist some lower and upper bounds which are

incomparable.

CL 2 2

(111) Let Ve = R~ and Gye = (R7,<) with (14.15)

+

[3 NEARX

“2 max (|x, |, |x, 1)

Let Ve = R and Ge = (R,<) with V' (x) = |x| . Then
— 1

VA = (a), a) € Hom (Veer Ve)

an intersection of half-spaces not yet a translated positivity
+

cone. Note that Vv 1s not surjective on Gye

1 ! : 1 +0
Let Gye — (Koyo) and assume that v is generated by a set S'CV K
of linear functionals. Then in a purely formal manner, we may extend

the concept of the least upper bound of A e€ Hom (V,., Vg) with respect
to the norms v' and v:

91



D

lub, (A) := inf{peGy : v! (Ax) po Bv(x), VxeV }
D

= inf{peG, : sup Re PA(x) po Bv (x), Vxel, }
Pes’

= sup inf{peq : Re @A(x)po BV(x), VxeV. }‘ Ko -Ped

= Sup inf{pec : Re ¥ (x) po BV(x), VxeV_]}
Ko KYeS'A

where the interchange of infimum and supremum 1s again purely formal.
D

S'AC Ve is a set of linear functionals on Ve . Thus, provided all
the necessary infima and suprema exist, we have reduced the study of

upper bounds for homomorphisms A e€ Hom(V,, Vr) to the study of upper
D

bounds for linear functionals PeVy . It 1s well to remark at this

point that although Gy and Gye = (Ko,po) are assumed to be vector
D

. _

lattices, Hom (Gy, Gy) Cy. is not necessarily a vector lattice.
Thus, the indicated infima may not exist.

D

Let B[p] denote the set of all upper bounds for PeVy:

D
Ble] := {BeG, : Re (x) po Bv(x), VxeV}

Ko K
D (14.16)

= IN {BeGy : Re (x) po Bv(x)]}
x eV

K

Blo) = N H [o] (14.17)
xeV

where

D
H [0] = {eG :Re 9(x) po BV(x)} .
X Ko

Thus Ble] is an intersection of half-spaces. By Theorem (8.22),

Blo] has a least element Bo if and only if Ble] is the translated
D

cone Ro + G, . In this case we denote the least element Bo by
D

vo(¥):
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D

Theorem: If WP (0) exists for all pel, then v is a (14.18)
norm on the subspace of bounded linear functionals on Ver the

DUAL NORM TO THE NORM v . i

Proof:

D

Let Pps PV . Then

Re (9,+0,) (x) = Re 9, (x) + Re9 (x) po (v(@,) +v (@,))v(x)1 72 1 2 1 2

Therefore

D D

vo (9) +v (9,) Blo +o, ]

and

Wier) pv (o,) +2 (p,) (subadditivity)1 "2 1 2

since VC,49,) is the least element of Blo to,] . Homogeneity
follows from the homogeneity of the mapping Re: VaeKo with 0 po Q,

D D .

v (a @) = inf{BeGy : Re @ 9(x) po By (x),  VxeV|]

= inf{geq : a Re @(x) po Bv(x), VxeV, }
- | -1 |

= a * infix "Bea Re 9(x) po a Bv(x), Vel}

=Q - inf {eG : Re ¢(x) po Bv(x), VxeV }
D

=a v (p) .

D ~ D
Assume that v (9) p OO . Then VxeV Re ¢(x)po 0 . In particu-

lar, for each xeVo,

VaeK: Rea g(x) =Reola x)pe 0.

: _ D D
From this we conclude that (x) = 0; that 1s, © 4 Oo > v (op) > 0

(positive definiteness).
Q.E.D.
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Moreover, as in (13.4),

D

lub, (A) = sup v (pA) . (14.20)
sv pes!

Examples:

(1) Let Vo = ®R" and Gre = (R",<) with v the modulus norm.
| D

Let © = (a,, 85 +++; a) € Ve . Then

D |

% (9) = lo] . = (lal, lal, RY la |) .
x [x | + [x]

2 1 1 5

(ii) Let K ® an  _ (R7,<) with wv 2 Ce
Then for ¢, ={,1,0) ¢ V; and o¢, = \%3] Il T 1X31)

D, |
(2,1, 5) € Ve:

/1/ od
Ble, 1 / Po

rr EEE
v 1s surjective; however, for some @, B[ep] is not a translated

cone.

_ As the preceding example indicates, surjectivity of the norm v 1is

necessary but not sufficient to guarantee the existence of a least

upper bound for the linear functional © . However, 1n the case of a

finite dimensional norm, we can prescribe a sufficient condition .

Henceforth we shall assume that v 1s a finite-dimensional norm,

vi Vp = (R®,<) . By Theorems (9.25) and (9.28), each component v,
of v 1s a seminorm and, 1f v 1s symmetric, even a norm on some sub-

space u. of Ve . Proceeding along this line, we define the norm v
to be

REGULAR (14.21)
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if Vi is a direct sum of subspaces

= U .. OuVe u © p © ® x (14.22)

and each component Vs of v is a norm on the subspace u, . Let

D D D D

Ve =U @U  ® ... eu (14.23)

CL D D

be the decomposition ofVy as a direct sum of subspaces u. corresponding
to (14.22). Then

D
Theorem: If v is regular, then Vv exists and (14.24)

] D D D,. .
- VE) = (vy), LL) vp) (14.25)

where

| D D
= cos u. .

Proof:

.D, . ,

Re V(x) =L Re V(x.) < Jv. (¥,)v,(x;)
D

Therefore v (¥) is an upper bound. If (85 coy Bl) ec B[V], then

u.:Vx.e€ : v(x.) < Bs v, (x)

D D

whence vo (vs) S By . Therefore v (V) is the least upper bound.
Q.E.D.

_ CL D
Thus we have given a sufficient condition for the existence of v .

+

Note thata regular norm 1s surjective on Gre but that the converse
1s not necessarily true.
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Example:

Let Ve = Rr" and Gre, = (R",<) with v the modulus norm. Then an
immediate consequence of Theorem (14.24) 1s that for 9 = (9, Cee P|

D

€ Ver

D *

vo (@) = lol = (ol, « *" lo),

the modulus norm in the dual space.

| Having found a sufficient condition for the existence of least upper
D

bounds for linear functionals PeVys we now return to the study of

least upper bounds for homomorphisms A € Hom (V,., V2) . Let v be a
regular norm and let

! —

Hom (Vis Vi) ne £ ©, 0...0 Le (14 .26)

be the decomposition of Hom(V,,V}) as a direct sum of subspaces

= u,v?L Hom ( iy &) (a

corresponding to (14.22). Then analogous to Theorem (14.24),

Theorem: lub, y exists and (14.28)bg

ub, (A) = (Lub, (A), Tub,| (Ay), o we lub, (A)
1 2 k

where

— t

r= (Adal. TA). Hom(V,., V.\)

and

A. ¢ £. .
i i

We may now drop the assumption that v' is a scalar norm and require

instead that v' be a (finite-dimensional) regular norm. Let
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=U! . oo... Ow .ve . ® u @ | (14,29)

be the direct sum decomposition of Vy such that each component Vi

of v' is a norm on the subspace u:. Let

"Y= @ §£ .Hom (V .,V¢) 195 Lys (14.30)

where

= uu

£4; Hom ( 12 3

is the decomposition of Hom(V Vg) corresponding to (14.22) and (14.29).
Then analogous to Theorem (14.28),

Theorem: Lub, v exists and (Lh 0 32

lub, . (A..) lub,  (A..) .. lub,  (A,.)
Vis Vy 11 Vis Vs 12 . Vis Vy 1k

lub, . (A5q) lub,. (A..) lub, . (A...)

v'i,V ; : .

lub | (A) lw , (A, ) ....lub, (A,)
Vp Vy £1 VprVoo £2 Vs Vi Lk

(14.32)

where

Al Al, co Aly

= (1h.

Aq Ap coe Aj

Example:

Let Ve. = B® and Ve = B® with v and V' the modulus norms in
43 X

rR and R" respectively., Then for A e€ Hom(V,,V}) I
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la, | le J Cee a, |
la, | la |... . la.1 2

wb, (A) =| 3 ° =. (14.31)
Vi, V

la_.| la 1 Cee Eo

As an 1mmediate consequence of the norm properties of lub, v.
i775

. Theorem: lub, v is a norm on the subspace of bounded homo- (14.35)4 -— ’

morphisms A € Hom(V,,V ¢) i

We now shift our attention to lower bounds for homomorphisms. We shall

find that, except for the case of scalar norms considered in $12, the

set @[A] of lower bounds for A has in general no greatest element.

This will follow smediately from the existence of a maximal element

which 1s not comparable with all other lower bounds.

As before, we assume initially that v is a regular norm and that v'

1s a scalar (real-valued) norm.

Theorem: Let SD) } glo, yA) ho=1i (14.36)
" :

- -Awb, (-A) wb fd
w

(1) (1) (1)— ! —

| for 2 (A |A,] Co. |A,) € Hom (Vp, V5) . Then vy (vy » Yo ls
cr Ye )€ Q[A] for i=1, 2, . . . .n.

Proof:

-v'(Ax) = v'(A.x. + Ax)
A sl MM

> yr(A.x.) - v'(-Ax)
— i :

1 Ai bo M

> glb_, (A) . wv.(x.) - lub, (=A)  v (x)
viv, td ii ui viv, ol TT

= glb_, (A) . v(x) . [-1wb , , (-A)] . v (x)
viv, iti ui viv, v TT
Ee

Q.E.D.
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If As 1s singular, then glb , y (4) = 0 and the bound v1) can be14 Jt

replaced by the bound 0 by virtus of (14.9). On the other hand, if

As 1s nonsingular, then glb_ o (A) > 0 and, following ROBERT,} .
1

Theorem: Let ) (140 37)
1b (A, =i

0) SN i)
Yo OF -glb |, (A) . lub -ATA) boF i

Viv. VisV, MW

— 1 . '

for a = (a1) Co. A) € Hom (V,., V7) with A. nonsingular. Then
~(1) (1) (1) ~(1)
Y = (7 YT, LY) Eeal

Proof:

v' (ax) = v'(A,(x. + 2 ATA x ))A iti A RE VV)
| at

>qglo, (A) Lv. (x, . AJAX)
Vis Vs id bi WM

>glb wg [v,(x,) - v, (-A7A x,)]
\ -1

> glb_, (A) * [v.(x;) - lub (-A7A)Y Lv (x )]

-1
= glb_,  (A)v,(x.) + [-glb , (A) lub (-A-7A) Jv (x)

vi,v, 11d wh Vi, vd Vis Vy, iW VERT?

70)
Q.E.D.

Using the inequality

-1

glb ,  (A.) . lub (-A7A ) < lub, (-a)
Viv. VirVy, i Ww V VY, Ms

1

to be derived in $16, we find that the bound yt ) of (14.36) can be
replaced by the bound (1) of (14.37) provided A, 1s nonsingular.
Thus the bounds of (14.36) are not necessarily maximal.
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Example:

_ 2

Let Vi =} and Gp = (R,<) with )
| \% 5 | @ + 2)Jan RAEUN NO FT

2 |

2 1 2 2

e K and Gye SRS) with v 5 GRA .Let |

_ _ [2 2]2

a= (Ala) B :)
Then

~ lube, (A) = 6
1

21

toby, (A) = J/13

610,1, (A) = /13

lub, (-A77A,) = #Y17 Vo

and

1 p—

vo, - v3)
2v® _(-6, v3)

~(1

72) does not exist since A, 1s singular.

As previously noted, 71) 1s a better bound than v(1) in this
case a far better bound. From the basic inequality
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X

I :

2] en3

2
— + + Xvv) =v iC + a + vl]

< yi (Ax) = J (2x +2%, +2x )? + (2x,+5x, +3x )°
— 1 "2 73 1 7275

2 0 2

withx = {-1], {0}, |-1], we may infer that every lower bound
0 1 3

VY — (Y15Y5) e G[A] satisfies

Vp S15 Y, S55/5y + 3y, <0

Since (Lk fulfills the first and third conditions sharply, (1)
1s a maximal lower bound.

Analogous to (14.17), it is immediate from the definition that

Theorem: C[A] is an intersection of half-spaces: (14.38)

c[a] = NH [A] (14.39)
xeV

K

where

TIA] = {ved : yw(x) < v'(Ax))
X Ko — )

Since @[A] c H [A] for eachx, we can obtaln restrictions on the set
of lower bounds by choosing suitable x:

Theorem: VvyeC[A]: Y; glb, y (A). (14.40)
"i

Proof:

. — ! — t

Vxe u.: Yv. (x) = Yv(x) < v! (Ax)= vy (Ax)

Thus A 1s a lower bound for A, and Y. < E151, (Ay)
Q.E.D.
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Theorem: If yeC[A] and 7s > (0, then (14.41)

Y -1

i] < -lub (-A; A wi. (14.42)

Moreover, if A, is nonsingular, then the bound of (14.37) is maximal.

Proof: :
Let x, € u, (b #1) and let x; = -A, AX, € u, . Then for
X —- X HESTY

v(x) _ygvi() oy, (0)
J

t = yt — _~ < Vv (Ax) = v (Ax, + Ax) V (4) —0

y ov,(x) v.(-ATta x) | |
LIEN “= = “TG Vx eu, X v (x i717 uh Th" : |

7 -1

Thus =~ = is an upper bound for -A. A. whence
1

4 -

i ~ lub, (=a)

y -

£ < 1up y (-87"8) .Vs VirVy

| ~(1) _
. Assume that Ag is nonsingular and that HyeC[A] such that 7? S 7

~(1) — A)< vv.

7: = Ep, 2575
(1) = -glb (A,) lub (-a7ta ) < vy (b #1) |
m vi,v, 1 Vis V SI

1 i? Tw

| | = (A)
By Theorem (14.40), 7s <glb ,  (A;) and therefore 7; Loy, i
> 0 . By the result just proved,’
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y

£<b (-A71a
- 1.

< -7, -A,7p S775 ub, (SATA) (b # 1)
A

= -glb ,  (A.)lub (-A71a ) :
ViaVv, 1 V.sV 1 J

1 17

-1 ~(1)
Thus y = -glb , (A .)1lub (-A,A) and yy =7 , whence

Mo Viv, 1 Vis V iW
1 i7

Robert's bound 1s maximal.

Q.E.D.

The full importance of this result will become evident in $15. For now,

we note that although 0 and Robert's bound are both lower bounds, they

are usually not comparable. Thus there does not generally exist a greatest

lower bound for the homomorphism A € Hom (V,., V2) .

Since regular norms are surjective, Theorem (14.10) gives

yeC[A] > v < lub, , (8) ‘ (14.43)b

As before, we may now drop the assumption that v' is a scalar norm

and require only that v and v' are regular norms. We can now con-

struct lower bounds from the "row-wise" bounds previously discussed.

Let A € Hom (V.., V¢) and write

Ay
A

A=|-2

A

where

i!A € Hom(V., 3) :
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Then if y; is a lower bound for A (1 < i <1)

71

72

Y = .

ly

1s a lower bound for A .

If k = 1, then the row bounds may be taken to be the lower bounds of

(14.36)in such a manner that there is exactly one element of the form

glb. y(Bs 5) in each row and each column. With suitable reordering,
1775

these elements will appear on the diagonal and, if the dimensions of the

subspaces in the direct sum decompositions of Vy and Vi coincide, we
obtain the lower bound of FIEDLER:

glb (A) lub,  (-A..).. . , lub,  (-A;.)
Vis Vy 11 Vis Vy 12 Vis Vy 1k

-1ub (-A..) gb, (A)... . -lub, (-A,)

Fiedl ! :

ub, (A) lub. (<A) . . . .gb, (A)
Vio Vy kl Vir Vo k2 TV Vy kk

“Drier ~ UFieal

where

D_. = diag (glb A .e o 81D (A ,))Fiedl 9(9 vv, 11) ° SV vy KK

lub, | (A; 5) if]
(Urieqr)15 i Co

J 0 1 =]

If the oF are all nonsingular, then Fiedler's bound can be replacedi

by the bound of Robert
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Hoop ~Priear’t - 'Rob) (1h .45)

where

lub (-a7ta, ) if;
Vis Vy iii]

(Upon )i ; - IE (14.46)
0 i =

Of course, 1f all subspaces are one-dimensional, then these bounds

coincide as do bounds (14.36) and (14.37).

Example:

Let Ve © Vi = R' and letv = v' be the modulus norm. Then
_ fy phXn,

VA = (a;5) = Hom (V,, Vy) = R

a, | -la |

_ I I EV EE UOEEEN
pop = Hriear =| <% ce en’ (14.47)

Finally, we consider upper and lower bounds for a sum Ap tA, of two
Vv. ,v!):homomorphisms A; A, € Hom ( ©? x)

Theorem: Let od} and <, be upper bounds for Ay and A, (14.48)
respectively. Then + 4 is an upper bound for A, + A, .

* Proof:

] + ! ! !vi ((AFAL)x) pt v' (AX) + v' (AX)

'&pt Hv (x) +E v(x)

= (& +&($+) v (x)

Q.E.D.
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Theorem: Let Hy be a lower bound for Ay and let <, be (1k 49)
_ . - &

an upper bound for A, Then Hy > 1s a lower bound for ]
+

A A, .

Proof: )

(H, -$)v(x) = Hv(x) - v(x)

t ! - t(_

p' v' (Ax) = v'(-A x)

pvt ( (AFA )x)

0.E.D.
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$15. Best Lower Bounds in the Sense of Robert; Applications: Nonsingularity

Criteria and Eigenvalue Exclusion Theorems.

Lower bounds for an endomorphism A,. of Vo may be used to establish-1

nonsingularity of the mapping A and to find upper bounds for A

For the case of scalar norms v and v',

A singular > glb , (A) , O .
ViyV

Equivalently,

glo, v (A) > 0 >» A nonsingular .pb

Moreover, since any left inverse for A 1s the unique two-sided inverse,

Theorem (12.15) gives

lub (a™H = 1/glb (A)
vi, viv?

-1

an upper bound for A

In the general case, the situation 1s similar yet in a weaker sense.

We shall assume that Ve = Ve that the norms v and v' are regular,
and that the finite-dimensional vector lattices (G. sp) and (Gg 5p")
have the same dimension. Thus A € Hom(V Vy) 1s an endomorphism of
Vi and all bounds for A, subordinate to v' and v, are square
matrices. Furthermore, both mappings and bound mappings have the property

-1
~ that M is nonsingular % ¥ two-sided inverse M ~, where M is

either a mapping or a bound mapping.

A lower bound H € C[A] is said to have a

-1
SEMIPOSITIVE INVERSE H (15.1)

-1

if H is nonsingular and 0 p H , where 0 is the ordering induced in
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-1

Hom (Gg, Gy) by p' andp . For such a bound, H ~ # 0 and

VxeV : v(x) p H Lut (Ax)K . (15.2)

Theorem: If H e C[A] has a semipositive inverse, then A (15.3)
1s nonsingular.

Proof:

x #4 > v(x) #0
-1

> H “v'(Ax) # O by (15.2)
-1

> vi(Ax) # O since H
1s nonsingular

> Ax £4

Thus A 1s nonsingular.

Q.E.D.

Example:

n Vv ~

Let Gk, = Ge = (R ,<) - Then p coincides with p and is just
the elementwise ordering of matrices. Thus H is semipositive

1t 1s componentwise non-negative.

Theorem: IfH e¢ C[A] has a semipositive inverse, then got (15.4)
is an upper bound for 7] |

Proof:

By Theorem (15.3), A is nonsingular and letting x = Ay in
(15.2):

Vie -1 -1Vye Vi: v(ay) p H v'(y) . (15.5)

Q.E.D.

-1 —

Although H 1s not necessarily the least upper bound for a : and
may be a quite weak upper bound, it often does have the advantage of

108



being more easily calculated. Moreover, 1t 1s of some importance 1in

connection with matrix problems which have a natural decomposition into

blocks; for example, finite difference approximations in multi-dimensional

problems.

Example:

Let LI = BR and let v = v' be the modulus norm. For

3 1 1

A={1 3 1],

1 1 3

The lower bound of (14.47) is just

3 -1 -1

H=|-1 3 —] .

-1 -1 3

H has a semipositive inverse

0.5 0.25 0.25 |

HT =(0.25 0.5 0.25
0.25 0.25 0.5

which 1s an upper bound for

0.4 -0.1 -0.1

J 0.4 -0. |.

-0.1 -0.1 0.4

The least upper bound for A 13
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/o 0.1 1

lub, (A-1) 1 0.4 2 :Vy,V

0.1 0.1 0.4/

A mapping H € Hom (Gy, Gy) is

MONOTONIC (15. 6)

: if

Vu, eG, : Hu p' Hv > u p v . (15. 7)

Theorem: H 1s monotonic ¥ H has a semipositive inverse. (15. 8)

Proof:

Assume that H has a semipositive inverse and that Hu p' Hv . Then

v o.—1 :
Op H Aop' H(u-v) > 0 p (uv

whence wu p v. Therefore H 1s monotonic. Assume that H is

monotonic. Then

H singular > 3w # 0: Hw = 0

o (© pw 15 0 7 with u=0, v=w
wp oO 5 0 7 with u=w, v=0

> w = 0,

- a contradiction. Thus H is nonsingular. Moreover,

! t SE
op'w> H(0) p' H(H w)

>0p H-1-w .

v _—1 _
Thus 0 p H and H has a semipositive inverse.

) Q.E.D.
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Apart from the question of whether monotonic lower bounds exist, we may

want to compare the inverses of monotonic lower bounds under the ordering

0 . Let

cla] := {H-1: HeC[A) has a semipositive inverse}, (15. 9)

the set of inverses of the monotonic lower bounds of A . Then

cla] = BIA] (15.10)

oo | -1
and we may seek minimal or even least elements in GC [A] .

Theorem: If H, and H, are monotonic, then (15.11)

~ -1 Vv -1
> .

Hy o) H, H, 0 H, .

Proof:

-1

Op'w > 0 eo Hy Ww
-1 | "

> HH, wp ow since Hy pH,
-1 -1

>
H, WP Hy w

-1 v -1

Therefore H, 0 Hy .
| Q.E.D.

Thus inverses of monotonic bounds which can be replaced in the sense of

. p can be replaced in the sense of 0 . The converse is not true as the

following example indicates:

Example:

Let

2 -3 zk
H = ; H. = | .

1 \-1 2 = lo 1
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Then

4 [2 3 4 [23
Hy _ ; H, =
1 2 oO 2

-1 v _~-1

and Hy and H, are monotone. However, although Hy, P Hy 1t 1s

not true that H oH, . In fact, Hy and H, are 1ncomparable.

3 We could instead consider (15.5) from the point of view of obtaining an

error estimate by means of residuals. In this case we would desire H

to be such that the set

+

S[H,v] := {ueG : Hu p' v} (15.12)

is as small as possible for fixed v = v'(x) . For the size of

1 ‘ -1 -1 ? 1]
S[H,v'(x)]) = {v(a x): Bv(A x) p' v'(x))

reflects the size of the set

-1 t t
(A772: v' (2) = v'(x)},

the set of possible errors.

~ +

Theorem: H eH, > VveG: S[H,,v] © SH, ,v] : (15.13)

Proof:

+

| ued [H,, v] > ueG A Hyu p' Vv
t ] .

> ueG A Hu 0 Hou Pp’ Vv since Hy pH,

Q.E.D.

Note that the preceding result does not require monotonicity, but the

class of monotonic bounds is again distinguished with respect to 8[H,v]:
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Theorem: If H is monotonic, then Vveq' S[H,v] is (15.14)
nonempty and bounded.

Proof:

Since H 1s monotonic, |

. -1
Hup' v > u p Hv

and

~1
S[H,v] € (u: 0p upH Vv}

Thus #[H,v] is bounded from above and below. Since

+ - +

_ veG'- > H Lea ,

-1 |
H "ved[H,v] and the set is nonempty.

Q.E.D.

Thus a monotonic lower bound gives a bounded set of norms of errors and

hence a bounded set of errors.

+

An equivalent characterization of the boundedness of 8[H,v] VveG'

with respect to an Archimedean ordering 1s given by

) +

Theorem: $®[H,v] is bounded VveG' = (15.15)

+
(ueG A Hup'0 >u-=0) .

Proof:

+ +

Assume that VveG': 8[H,v] is bounded. Let ueG with Hu p'0 .

Then

+

(VveG') (Va eK : 0p @): oa ue SHV].

But the set {ou} 1s unbounded for u # 0 . Thus u = 0 . Assume
+ .

that dveG' : $8[H,v] is not bounded. Then since
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+

{ueg : 0 p' Hu p' v}

is bounded, its complement with respect to 8[H,v]

+

{ueG © Hu p' 0)

+

is unbounded and contains a nonzero element; that is, dueG : Hu p'0

andu £ 0 .

Q.E.D.

The full importance of Robert's bound (14.45) 1s indicated in the

following two Theorems:

Theorem: The set of all monotonic lower bounds with positive (15.16)

diagonal and non-positive off-diagonal elements 1s non-empty 1f and

only 1f 1t contains rob .

Proof:

Let H be a monotonic lower bound with positive diagonal and non-

positive off-diagonal elements. Then H = D(I- U) where D is

diagonal with positive elements and U 1s off-diagonal with non-

negative elements. By Theorem (14.41), U > Upop+ Since H is
-1 CL

monotonic, H 1s semipositive and

0< DA 0< HT = (1 -uv) bt > 0 <(1 _u)7h

-1 k
Moreover, since 0 < U, Yk > 0: 0< (I -U) U . From

- - k
(I - U) Lo = (I - U) Lire (I -U)]

- K-

= (1 -u)"t - T+u+0+...4+0 h

we obtain

- -1

0<T+u+U +...+ 05 < (I - U)

and the infinite sum being elementwise bounded and nondecreasing,
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I+U+U+0 +...

converges. Since 0 SUpop < U, the infinite sum

+ «I + Yrob ¥ Uo 3Rob +
CL a -1

also converges. The limit is just (I - UY which is element-
wise non-negative:

oy -1
0 <(I- pop

whence

-1.-1 o-1
0 < (I -Up) Drier = Frop

and He ob is monotonic. The remainder of the theorem 1s 1mmediately
evident since He 1s a lower bound with positive diagonal and non-
positive off-diagonal elements.

Q.E.D.

Theorem: Among all monotonic lower bounds H which have (15.17)

positive diagonal and non-positive off-diagonal elements, the

bound Hoop 1s least in the sense of inclusion of the domains
S[H,v]:

TveG': S[H _,v] © S[Hv].
Rob’

. Proof:

Assume that the set of monotonic lower bounds with the prescribed

sign pattern is non-empty. Then by Theorem (15.16) Hp 4 is mono-
tonic and an element of this set. Thus

>ued[H, , ,v] He ou <v

> (I -U. Ju<Dr .v.
Rob — Fiedl
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Let H = D(I - U) be any other such bound. By Theorems (14.40) and

(14.41)'

P< Ppiear? U.Z YRep

Thus

-1 -1

(I -U)u < (I - Upp) 0 SDpi gv SD

or Hu < v.. Therefore ued[H,v] .

Q.E.D.

The monotonic lower bounds which are the subject of Theorems (15.16)

and (15.17) are matrices with positive diagonal and non-positive off-

diagonal elements which have non-negative 1inverses. These M-matrices

(OSTROWSKI) have been studied in detail by OSTROWSKI, FAN, KOTELJANSKI,

and FIEDLER and FTAK. GASTINEL has proposed studying the class of
+

matrices H for which $[H,v] is bounded VveG', and SCHNEIDER has

discussed a related class of matrices. It would be interesting to know

how Hob 1s characterized within this class which 1s wider than
(Theorem (15.14)) the class of M-matrices.

We shall now apply our results on bound mappings to formulate several

. nonsingularity criteria and eigenvalue exclusion theorems. Thus we

Ta = G! v =v
assume that Ve K and Ge Ck, and that the norms are
regular.

The dual characterization of lub, , (8) ((14.20)) for scalar norms v'J

D 1
lub, (A) = sup {v (pA): 9eS'}Vo,

P

is also valid for regular norms v' . However, a bilinear characterization

and the corresponding bilinear field of values do not seem to exist. More-

over, the field of values defined in 86 does not seem to allow a useful

generalization.
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There 1s a natural connection between nonsingularity criteria for a

matrix A and exclusion theorems for the eigenvalues of A:

Theorem: Let P[A] be a statement about an endomorphism (15.18)

A € Hom (V,,V) . Then the nonsingularity criterion

P{A]> A nonsingular (15.19)

and the eigenvalue exclusion theorem

[A- AI] > A is not an eigenvalue of A 15 0 20)

are equivalent.

Proof:

Assume that

[A]> A nonsingular

and let A be an eigenvalue ofA . ThenA - AI 1s singular:

A is an eigenvalue of A >= P[A - AI] (15.21)

an equivalent formulation of (15.20). Assume that

[A- AI]>» A is not an eigenvalue of A .

Then

P[A] > XN = 0 is not an eigenvalue of A

>» A 1s nonsingular.

Q.E.D.

Example:

Let

PIA] := Vi : a, | > EF) :
Ji
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Then Gerschgorin's Theorem may be stated as

AeizeC: Hi: |z - a. < la. . |] (15.22)
ii = Lo. 1]

71

- {ze C: —P[A - 2I]} )

or

A is an eigenvalue of A > —P[A- zI].

The equivalent nonsingularity criterion

Vi : |a..| > Y la. .| > A nonsingular (15.23)
ii J. 1]

fi

was discovered by LEVY in the nineteenth century.

There 1s a direct proof of the preceding result ((15.23)) as a special

case (take. B to be the diagonal of A and consider the lub subordinate

to the Tschebyscheff norm) of the following nonsingularity criterion:

-1

Theorem: If B is nonsingular and lub(I - B "A) < 1, then (15.24)

A 1s nonsingular.

Proof:

1 > 1lub(I - 5714)

> 1ub(I) - g1b (BA)
-1

=1 - glb(B A)

-1

0 < glb(B "A)

-1 -1
Thus B A 1s nonsingular as 1s A = B .B 7A .

Q.E.D.

The corresponding exclusion theorem 1s

118



-1

lub(I - B "(A - AI)) > 1 >» \ is not an eigenvalue of A .(15.25)

B is usually chosen to be C - AI provided C - AI is nonsingular.

In this case, (15.25) becomes

lub((C - AI) "LH (C - A)) >1 > \ is not an eigenvalue of A .
(15.26)

Equivalently, the set

{zeC: (C - AI) is singular or lub((C - AT) (C -A)) <1}

(15.27)

contains all the eigenvalues of A . The preceding results are all

comparison theorems and their usefulness depends on the choice of B

or C .

The nonsingularity criterion of Theorem (15.13) leads immediately to

Theorem: Let H e€ C[A - x1] be a monotonic lower bound for (15.28)

A - AI . Then A is not an eigenvalue of A .

This result can be applied to Hoi agp LA - A\I]1 and Heo [A - AI] . In
the first case, 1t can be slightly modified.

Lemma : If Hy and H,, have positive diagonal and non- (15.29)
positive off-diagonal elements and Hy < H, then

Hy monotonic > H, monotonic .

Proof: Compare the Neumann series for Hy and H, .

Theorem: (Fiedler - Ptak) If A is an eigenvalue of A, (15.30)

then

A € u {z: glb,i , (Ay; - zI) < c, }
1 i771
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provided Cis Cpy +». . Cy are such that

diag(eq, c,, ee c,) - Upiogq [A]

1s monotonic. :

Proof:

Assume that C12Cny vos Cp are such that

H, = diagley,cy) 0 waa cy) = Upyoq [A]

1s monotonic. Then by the preceding Lemma, if

| > C,~ gb, (A) =
i771

Then Hosagp 2 - MI] is monotonic and A 1s not an eigenvalue of
A.

Q.E.D.

In the case of the modulus norm, we get a sharpened form of Gerschgorin's

Theorem due to KOTELJANSKII and FAN:

A € {z: a. ~ z| < c. } ] (5 0 31)

120



816. Submultiplicative Functionals on Half-categories and Semigroups;

Normed Categories and Rings

In preceding sections, we have considered mappings between a pair of vector

spaces Vx and Vi and, 1n some speclal cases, mappings of a vector space!

Ve into itself. If instead we have a family of vector spaces vi) where
1 ranges over some finite or infinite index set I, then we may consider

homomorphisms between any two members of this family. If the vector spaces

are normed, then these norms induce upper and lower bounds for the homo-

morphisms.

/ .

Let A: vi = vd) and B: vi) — vim be homomorphisms. Then, pro-
vided the range ul of A coincides with the domain ne of B,
the product BA can be naturally defined as A composed with B . Since

composition of mappings 1s an assoclative operation, 1f A, B, C are

homomorphisms and A (BC) exists, then (AB)C also exists and (AB)c =

A(BC) . We may abstract this algebraic structure of homomorphisms and

define a

HALF -CATEGORY (16.1)

as a set M together with an associative partial composition:

. VA, B, C e€ M: A(BC) exists > (AB)C exists and (AB)C = A(BC) .

(16.2)

Example:

The set of all finite matrices 1s a half-category with the usual

definition of matrix multiplication (if the number of columns of A

is not equal to the number of rows of B, then the product AB is

not defined). It 1s the half-category of homomorphisms corresponding
Le =]

to the family of vector spaces ®'Y

A half-category in which composition 1s defined for every pair of elements

1s a ’
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SEMIGROUP. (16.3)

A functional N on a half-category M with values from a (j-ordered

half-category 2 is

SUBMULTIPLICATIVE (16.4)

if for all A, B e€ M such that AB exists, N(A) N(B) also exists and

| N(AB) ¢ N(A) N(B) (16.5)

Example:

On the half-category of finite matrices, the mapping

A- A] where A = a.) and | Al = (fay 51)

1s a submultiplicative functional.

Theorem: Let (vit )y. be a family of normed vector spaces (16.6)
CREW), 0) Lm) (3)

with regular norms v' ’: Vy - (Ge , p77) . For
Ae rom(v (1) v1), define

lub (A) := lub ,. + (A)
ROCESS

LY }

(lub ,. .\ (A) exists since g > and v J) are regular norms.)
L3) (4)b

Then lub 1s a sub—-multiplicative functional on the half-category of

* homomorphisms

m = {A: Hi,jel: A rom v9)

with values from the 1-ordered half-category

P= {& Hi,jel: & «€ rom(c{H, 6303,
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(1) (3)
the ordering § being the ordering induced on Hom(G, ,G, ) by
(1) (5) fo © Fo

Pp andp .

Proof:

If A, BeM andAB exists, then the domain of A coincides with

the range of B:

/ +N {+ {

AC SAY: EEAY BU £3

From the definition of lub.J

£ 1

y ) (aBx) o (1) lub (5) (8) 9) (x)J
vo,

(2) (1)
~ Pp lub (A) + lub ,. A (B) «vi (x)

MORNE) ya) 3)

Therefore Hoy) NOR te (5) (1) (®) is an upper bound for9 ’

AB and

lub .y (AB) p 1ub (A) |. lub ,. ~(B) (16.7)
MOINES MONE 3) ,Q)

Co Co (2) (1)
where p 1s the ordering induced by p and p . Equivalently,

lub (AB) § lub(A) lub(B) . (16.7)

Q.E.D.

: d : :

The inequality (16.7) may be weakened. If NO (3) an [| (3) (1), V Vv U,V

are upper bound mappings ((11.4))' then

Lub .y (8B) § [A] IB (yo (16.8)
MORNE (0()) LG) LM

1ub(aB) ¢ [A]]B] . (16.8)
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The proof of Theorem (16.6) depended pon the existence of a least upper1 1
bound for AB with respect to Vv andv . Since the greatest

lower bound for a mapping does not exist in general in the case of non-

scalar norms, we cannot expect a corresponding result for glb . However,

1f we restrict ourselves to scalar norms, then

Theorem: Let wit, be a family of normed vector spaces, (18 9)| i i J

with scalar norms , 4) ve ) (R,) . For A ee Hoy iN Ys
define

1b (A) := glb ,. \ (A)
glo (8) i= gb (5) (1)J

Then glb 1s a SUPEXMULTIPLICATIVE functional on the half-category

of homomorphisms

[A: di,jel: A ¢ rom(v.{ Hv (0)

with values from the < - ordered half-category R; that is

glb (AB) > glb(A) glb (B) (16.10)

As before, inequality (16.10) may be weakened:

glb(AB) > [A] [B] (16.11)

where |] 1s any lower bound mapping ((11.7)).

Theorem: (16.12)

lub (AB) > glb(A) 1ub(B)

glb (AB) < lub(A) glb(B) . (16.13)

Proof:

v : .

e> 0 3y £4 ,(3) (3
lub(B) - pnt .— (1

ve (y)
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Letting x = By,

(4)

glb (A) . [Lub(B) - el] < Lm . [1ub(B) - €]vd (x)

Yo (By) v7 (y){

ve (yy)

< lub (AB)

Similarly, Ve >0dy # 4:

(3)

glb(B) - € > Rl .
- vo (y)

Letting x = By,

(2) (3)
Vv Blub(A) * [glb(B) - el > Lx) .a

(0) \Y (x) 4 (vy){

vo (vy)

> glb(AB) .

Q.E.D.

Note that in the proof of the preceding theorem, 1t would not have been

possible to vary x first since there might not exist a y such that

By = X . However,

Theorem: If B is surjective, then (16.14)

lub(AB) > 1lub(A) glb(B)

glb (AB) < glb(A) 1ub(B) .

In the case where A and B are both endomorphisms, the last pair of

inequalities always hold: for if B is nonsingular, then B is surjec-

tive; and if B is singular, then AB is also singular and g1b(B) =

glb(AB) = 0 .
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We may define a second partial composition, addition, between the elements

of a half-category of homomorphisms. The sum of two homomorphisms A and

B 1s just

(A+B) (x) := A(x)+ B(x),

provided the domains and ranges of A and B coincide. The resulting

algebraic structure is called a CATEGORY. A subadditive, submultiplica-

tive, definite functional on a category 1s a MULTIPLICATIVE NORM on that

category. Restating several earlier results ((12.5)and (16.6):

Theorem: lub 1s a multiplicative norm on the category of (16.15)

homomorphisms corresponding to a family of vector spaces.

Examples:

(1) The set of all finite matrices 1s a category with the usual

definitions of addition and multiplication. The mapping

A- |Al where A = (a.-) and | Al = (fas; 1) (16.16)

1s a lub subordinate to the modulus norm and therefore a multipli-

cative norm, the MODULUS NORM on the category of finite matrices.

(11) On the category of finite matrices' the mapping

1

i = Ak n _m
lal_={Y ¥ la |7], ae Hom(g",R") (16.17)F TY

w=l v=1

is a multiplicative norm, the FROBENIUS NORM. This norm 1s not a

Lub-NORM subordinate to two vector norms and indicates that not all

multiplicative norms are so generated.

(iii) If the family of vector spaces ity, consists of only one
vector space US then the corresponding set 7M of homomorphisms
is a set of endomorphisms. Thus addition and multiplication are

defined for any pair of elements of NM . Considered as a half-
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category, M 1s a semigroup. Considered as a category, M is a

ring since multiplication distributes over addition .

Henceforth we shall restrict our attention to scalar (real-valued)

a CL

O, 1f A has a right zero divisor

[4] : = Li =1 I, (16.19)
inf{||la7]| ": A is a left inverse of A],

otherwise

where we have assumed in addition that R satisfies

. If A has no right zero divisors, then (16.20)
A has at least one left inverse.

To further simplify matters, we also assume that

1 1 1 -1 :
a (unique) two-sided inverse A for A exists (16.21)

$¥ A has no right zero divisors.

In this case, (16.19) becomes

i -1

lA h-L if A exists
BY — (16.19)"

O , 1f A has a right zero divisor.

" Theorem:

im - Bl < [A+B] < [A] + [BI (16.22)

la] - BB] < |a+B| < |4] + [B] (16.23)

lal - [8] < la] < [a] - [8B] (16.25)
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Proof:

(i) (16.22) follows from the subadditivity of |...]| and a systematic

change of variables (see (10.3)).

CL -1 -1
(ii) Assume that A and (A+B) “exist. Then

at = (arm) THT + BATT)

= (a+B) “t+ (a+B) tma”t
-1 ~-1 -1

lA < IF (a+B) ll (1+ IIB] 1A7D
“1 -1 ~1,-1

| (ax) 7 < lla + ll]

|a+B| < [a] + [B] .

Assume that (A+B) 1 exists and Iu. does not exist. Then A
has a right zero divisor (dX # 0: AX=0) and

-1
x = (A+B) ~(A+B)X

= (A+B) “1BX
-1

Izll <I (a+B) “lil fx]
-1,=-1

I(a+B) ll" <lBl since x #£ 0 > [IX] £0

A+B] < [B]

A+B] < [A] + [B] since [4] = o .

Assume that (a+B) "1 does not exist. Then | A+B] = 0 and the
preceding inequality is again vaild. The left hand side of (16.23)

1s obtained by a systematic change of variables (see(10.3)).

(iii) The right hand side of (16.24) follows from the submultiplicativity

of | | . Assume that ! exists. Then
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A=AB 3B"

-1

laf < [las] . lIB™7
-1, -1

| al lB TT < las]

[a] . [B] <" [8B] .

Assume that BY does not exist. Then |B] = 0 and the preceding
inequality 1s still satisfied.

(iv) Assume that (AB) "l exists. Then al also exists and

At = (AB)
-1 -1

| a> < I 8 Il (aB)
~ -1; -1 -1y -1

| (a8) 7 < lam Lis

[aB| < [A] [B]

Assume that (AB) -1 does not exist. Then | AB| = 0 and the pre-
— -1

ceding inequality again holds. Assume that A ! and B exist.
Then (AB) 1 = a exists and

~1 -1 -1

I (aB) “Hl < lB. lla
-1,-1 -1,-1 -1-1

IA. 37 < Hl (a8)

a] - [8] < [a8] .

Assume that at does not exist. Then (AB) E does not exist and

|A = | aB| = 0, whence the preceding inequality is trivially satis-
fied. A similar situation occurs when Bt does not exist.

Q.E.D.

The following inequalities are proved in an analogous manner:

[a] - TB] < [a8]
(16.26)

las] < [a] [B] .
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Example:

Inequalities (16.22) - (16.26) are valid for any real-valued multipli-

cative norm on a finite matrix ring.

The question naturally arises as to whether the functionals [7] and

|] as defined by (16.18) and (16.19) are upper and lower bound mappings

respectively in the sense of (11.4) and (11.7); that 1s, whether there

exists a normed vector space Lg" such that for every A eR, A is an
endomorphism of Ug and [A] and [Al are an upper and lower bound for
the mapping distortion. For the case where R is a ring over some field

K (i.e., an algebra), the answer 1s given by

Theorem: Let R be a ring over the field K and let Ve be (16.27)
R (taken additively) or some proper left ideal of R . Define

anormon Ve by v(X) = I1X|l . Then

RC Hom(V,,V.)

and

A] < pL < [a] (x # 0)

Proof:

The first assertion 1s an immediate consequence of the fact that

multiplication on the left by an element of R® 1s an endomorphism

of any left ideal of R (R is itself a left ideal of R) . From

v(ax) = [axl] < lla] lll = [A] v(x)

we obtain

v (Ax) < |AVG) © A
-1

provided v(X)# 0 (X # 0) . Assume that A exists. Then
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-1
v(x) = [|a Ax]

~1 |

< [a - [lax]
-1,~1

17H < faxfv (0)
v (AX -lal < IE (xX #0) .

-1

Assume that A does not exist. Then |2] = 0 and the preceding
inequality is trivially satisfied.

Q.E.D.

Henceforth we shall assume that R is a ring over the field K . For

any non-zero ideal 4 of R we may define VA e R:

~ | Ax]
Lub ¢(A) := sup{——: Xed, X #0 (16.28)

I]

| ax]
glb (A) := inf{—— Xe, X £0) . (16.29)

Ix]

Clearly,

Theorem: (16.30)

[A] < alba) < lub (a) < [A] .

Moreover, as a consequence of Lemma (9.2),

. Theorem: If 3, © 4, are left ideals of R, then (16.31)

lub (A) < lubg (2)
1 2

glby (A) < glbg (8) |
2 1

Finally,

Theorem: lubg is a multiplicative norm on R. (16.32)
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Proof:

Subadditivity and submultiplicativity are inherited from I. ..]l; the

proof is analogous to that of Theorems (12.5) and (16.6) and may be

carried out for Lub 4 for any non-zero ideal & . Definiteness is
also inherited from |... : ——

Lubg (A) = 0 > I = 0 VXeR, X £0
> lax] = © VXeR

> AX = 0 VXeR

> A=0.

The last step is not in general valid for a proper nonzero ideal d

so that although Lub g 1s subadditive and submultiplicative, it 1s
not usually a multiplicative norm.

Q.E.D.

ICES 1/luby (A), if A™" exists. (16.33)
glbg (A) 0 , Otherwise.

Proof:

If A exists, then the proof 1s the same as that of Theorem (12.14).

Otherwise, A has a right zero divisor and the infimum is zero.

Q.E.D.

As a consequence of the preceding theorems, lubg and glby satisfy

inequalities (16.22)- (16.26).
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Appendix: Historical and Bibliographical Notes

The concept of norms came up around the turn of the century in algebra

for a sum of squares (rather than the square root of it). In vector

spaces and functional spaces, 0. Holder used it for the first time in a

wider sense—--to include the Euclidean and the Tschebyscheff norm (which

had been used somewhat implicitly by Tschebyscheff.) These norms, among

others, have the property that x. |< lx, and the Tschebyscheff norm
1s the best among them in the sense that these inequalities are sharp

for at least one 1 . Later, abstract properties of norms have been

used to define them, mainly in connection with metric topologies

(Lindenbaum, Banach in the twenties). See

S. Banach. Théorie der Operations linéaries. Warszawa 19352.

For a modern treatment, in particular of the topological side, see

Kelly, Namioka.

A topology that has a special connection with norms, the weak topology,

has been introduced by Tychonoff. Norms were introduced into numerical

analysis by Faadeva and, more systematically, by Householder. In Banach

spaces, partial ordering has been studied by

L. Kantorovitch. in Mat. Sbornik N. S. 4k 121 - 168 (1937).

Further details,in particular about positivity cones, can be found in

M. G. Krein and M. A. Rutman. Linear operators leaving invariant a

cone in a banach space (1948). English translation in Amer. Math.

Soc. Transl. Series I, 10.

From a more algebraic side, partially ordered groups and vector spaces

have been studied by Freudenthal (1936), inspired by Riesz. Stone,

Birkhoff and Lorenzen have developed the theory further. See chapters

XIV, xv of

G. Birkhoff, Lattice Theory. Revised ed. Providence 1961 (a new

edition 1s in preparation).
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and

H. Gericke. Theorie der Verb&de. Mannheim 1963.

Questions of imbedding in direct products of linearly ordered lattice

groups have been studied by Mannos and Lorenzen. Rudimentary steps were

already taken by Dedekind in 1897,

A. Dedekind. Werke, Vol.2, 103 -148.

Vectorial norms seemingly were first considered by Kantorovitch ("spaces

normal with the elements of a semi-ordered space"). See

L. Kantorovitch. The method of successive approximations for

functional equations. Acta Math. 71,62-97 (1939)

The first published results on bounds are due to Fiedler and Ptak (1960):

M. Fiedler and V. Ptak. Generalized norms of matrices and the

location of the spectrum. Czech. Math. J. 1-2, 558-571 (1962).

More work on bounds has been done by Ostrowski (1960 Madison Report No. 138)

and by Robert (to appear in Num. Math.). M-matrices, which show up in this

connection, were studied by Fan, Kotelyanskii and in particular by Fiedler

and Ptak in 1960:

M. Fiedler and V. Ptak. On matrices with non-positive off-diagonal

| elements and positive principal minors. Czech. Math. J. 12, 302 -

400 (1962).

A-wide class of matrices was introduced by Hans Schneider in 1964:

H. Schneider. Positive operators and an inertia theorem, Num. Math.

7, 11 - 17 (1965).

Multiplicative norms have been studied by Gastinel, Focke and Stoer.

Stoer has 1n particular characterized matrix norms which are also lub

norms:
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J. Stoer. On the characterization of least upper bound norms in

matrix space. Numer. Math. 6, 302 -314 (1964).

Further concepts in a comprehensive theory of norms would include:

Condition numbers: based on norms. These have been introduced by

Householder and Bauer. Their relation to certain matrix transformations

has been investigated in

F. L. Bauer. Optimally scaled matrices. Numer. Math. 5,73-87

(1963).

Fields of values: Connected with the support tangents to a field of

values 1s a functional which turns out to be a directional derivation

of the lub . See

F. L. Bauer. On the field of values subordinate to a norm. Numer.

Math. 4, 103- 113 (1962).

and

N. Nirschl and H. Schneider. The Bauer fields of values of a matrix.

Numer. Math. 6, 355 - 365 (1964).

Composite norms: A variety of multiplicative norms, defined by some

composition, have been studied by

A. M. Ostrowski. Uber Normen von Matrizen. Math. Z. 63, 2 -18

(1955).

More recently, Maitre (to appear in Numer. Math.) has obtained more

. results in this direction.

Unitarily invariant norms: Multiplicative norms which are invariant

under two-sided unitary transformations were studied by J. von Neumann.

Absolute norms: Absolute norms are norms which depend only on the abso-

lute values of the coordinates. See

F. L. Bauer, J. Stoer,C. Witzgall. Absolute and monotonic norms.

Numer. Math. 3 257 - 264 (1961).
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and more recently

D. Gries. Uber einige Klassen von Normen. Thesis. Munich, 1966.

who also discusses fields of values.

Most of the norms used in practice are absolute, and this has an important

consequence: the lub of a diagonal matrix 1s equalto the maximum of

the absolute values of the diagonal elements. For Holder norms, which

are absolute, Stoer has given an abstract characterization:

J. Stoer. A characterization of Holder norms. J. Soc. Indust.

Appl. Math. 12,634- 648 (1964).

In the theory of partially ordered vector spaces, some recent developments

due to Birkhoff, Hopf and Ostrowski have led to an interesting submultipli-

cative functional or non-negative mappings which 1s homogeneous of degree

zero. Connected with this 1s a bound for the oscillation of a vector.

This and other concepts playing a role in this connection deserve great

attention. See

F. L. Bauer. An elementary proof of the Hopf inequality for positive

operators. Numer. Math. 7,331- 337 (19695).

Related to this theory 1s the generalization of the Perron-Frobenius

theorem to a large class of positivity cones (Krein-Rutman). See

| H. Schneider. Positive operators and an inertia theorem. Numer.

Math. 7, 11 -17 (1965).
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