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§1. Vector Spaces

We summarize some basic concepts from linear algebra. A
VECTOR _SPACE V OVER A FIELD K (1.1)
(denoted VK) is an abelian group (V,+) --the zero element being

denoted by {% or simply 0 --with K as a multiplier field; i.e.,
with a mapping K X ¥V -V  (SCALARMULTIPLICATION) satisfying

Vo,B € K; x,y € V: ax+y) =ax+ay
(0 + B)x = a x + By
(a B)x = afp %)

- Ix = x
x €V is called a
VECTOR. (1.2)
o € K is called a
SCALAR. (1.3)
Examples:
(i) Let (If,+) be the additive part of a field K . Then VK

is a vector space over K with multiplication in K as a

scalar multiplication.

(ii) Let V = k" be the n-fold direct product of K; i.e., the

set of all ordered n-tuples of elements of K . We may write

them columnwise.

. il
Y =K = % : qiE K, i=1,2,. .. . n
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Define + over V componentwise in the sense of K:

0‘1 By ot B
%

BT [% TR
an Bn an+Bn

Then (V,+) is an abelian group with the

Let scalar multiplication be defined by components in the
sense of K:

oy
e

gl
@l %
a / oo

n

Then VK is a vector space over K .

Kn

It will be denoted
Its elements in the representation given above are
called COLUMN VECTORS

(iii) Let C[0,1] be the set of all real-valued functions defined

and continuous on the closed interval [0,1] For

£, £, € ¢[0,1], define f = fl + T, by

£(s) = (&) - £,(8) v & €[0,1]

Then C[0,1] is an abelian group with zero element § :
& (¢) =0 . For g € C[0,1], € R, define f = @ g by

£(E) = a g(&) ¥ £ €[0,1]

Then C[0,1] is a vector space over R .

[Note: The sum and multiples of continuous functions are continuous].

0
zero element $ = [0).
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Example (ii) and Example (iii) are special cases of vector spaces
obtained from a field K by forming ordered sets of elements,
ordered according to some index set (the set (1, 2, . . . . n) of
natural numbers and the set [0,1] of real numbers respectively).

In Example (iii) moreover, an additional property is postulated

(continuity) which is hereditary under the componentwise operations.

A subset Vl of a vector space V is called a

K
SUBSPACE OF VK (1.4)
if it is a vector space over K; i.e., if
- X,yE'V:L>x+y€V1
Va€K: xEVl>ax€Vl
or equivalently,
¥V a,B €K : x,yEVl> X+ B . EVl
ax+ By 1is called a
LINEAR COMBINATION (1-5)
of x and y
A subset M of a vector space VK is called a
K-BASIS OF Vg or simply a BASIS OF Vi (1.6)

if any x € VK is uniquely determined by some (finite!) linear
combination (x = ayX + 0%, + . . . + ox ) of elements of

M (xi € M) . For Example (ii), the axis vectors



1 0
0 5 :
e, = , e, = s ey €= | &
1 : 2 n 0
0] 0/ 1
, n
are a basis for K
If VK has a
FINITE BASIS, (1.7)

i.e., a basis formed by a finite number n ©f elements, then every

basis has n elements and these elements are K-linearly independent:

0 € K, o X, + .. .+ ox = 0 > a = O =...=0 = 0 .

n 1s called the

DIMENSION OF Vi (1.8)
(denoted dim(VK)) and V. is isomorphic to K
In Example (ii), the dimension of Kn is n . We call Kn an

n-DIMENSIONAL COORDINATE SPACE. (1.9)

. n .
In particular, we shall consider R" and C°, where R 1is the

real field and C the complex field.



$2. Normed Vector Spaces

A set M is

ORDERED BY A RELATION p or p-ORDERED (2.1)

if there is a relation p over M X M, an ORDERING of M, with

the properties:

TRANSITIVITY: x pyAypz>xpzV x,y,z€M (2.2)

REFLEXIVITY: x px ¥V x € M. (2.3)
ANTISYMMETRY: x p yAypx>x =y V x,y €M (2.4)

An abelian-group G = (M,+) 1is a
p—-ORDERED GROUP (2.5)

if the ordering p of M is compatible with the group composition;

i.e., if

apb>a+x p b+tx Vab,x€M . (2.6)

An element of G is

NON-NEGATIVE (2.7)

if Opx. An ordering p of M is
LINEAR (2.8)
if it has the property

xpy V ypx Vxy€M




If the ordering of an ordered group G is linear, then G is a

LINEARLY ORDERED GROUP . (2.10)

Examples:
(1) The family of all subsets of a given set is ordered, the
ordering being set inclusion C : XCY:xp€X>p€yY.

It is not linearly ordered.

(ii) The set of natural numbers has a linear ordering, usually

denoted by <.

(iii) The additive parts of the ring'of integers Z, the rational
field P, and the real field R are linearly ordered

abelian groups for the ordering usually denoted by <.

(iv) Let K be a field, the additive part of which has a

linear ordering < (e.g., P or R) . Then
X py ' Xisyi, i=l_, 2’00-, n (2.11)

defines an ordering p in Kn (COMPONENTWISE ORDERING) ;

The additive part of K is a p-ordered abelian group.
For n > 1, however, the ordering p is not linear.
Nevertheless, we shall use the conventional sign < to

denote this ordering; i.e.,

x<y 3 X <y,i=1,2...,0n; xy €K (2.12)

—

In accordance with standard practice, we shall use < to

denote strict inequality; i.e.,
x<y mx, <y,i=1, 2..,n;xy €K (2.13)

Note that x <y and x % y together is weaker than
x<y .




Furthermore, we shall denote by bd the vector whose

components are the absolute values of the components of x

Ix, |
i= |X24

%l )
A functional over a vector space V with values from a p-ordered

V-G, isa

X1 , x €x° . (2.14)

abelian group G, i.e., a mapping v

NORM (2.15)

if it is _
SUBADDITIVE: v(x+y) p v(x) + w(y) Vx,y € V (2.16)
NON-NEGATIVE: O p v(x) VY x €V (2.17)
DEFINITE: x=% % v(x) =0 . (2.18)

Examples:
(i) Let K be the primitive field of characteristic 2 with

. \ n
elements 0 and 1 . Define a function v over K

with values in the < - ordered abelian group of integers

by:
*1
If x=| %2 has k components which are 1,
X
n

then v(x) = k (2.19)

Then v(x) is a norm, the "Hamming norm" of coding theory.



(ii) In V = R* or €%, the

TSCHEBYSHEFF NORM. or MAXIMUM NORM, (2.20)

with values in R 1is defined by

v(x) := max |x]| . (2.21)
1<i<n

(iii) In V = c[0,1], the Tschebysheff norm with values in R
is defined by

v(f) := max{f(e): 0 <t <1}

(iv) In V = 8% or Cn, a norm with values in the vector

space G = Rri ordered componentwise (2.11), is defined by
v(x) = |x|. (2.22)
We will refer to this norm as the

MODULUS NORM ('"BETRAGSNORM") (2.23)

of R" or ¢’ . For n = 1, it reduces to the simple

absolute value which is a norm over the vector spaces R
and C .

In a normed vector space with a real norm, a (unsymmetric) distance
© is induced by

a(x,y) := v(x-y) . (2.24)

It has the properties:
TRIANGLE INEQUALITY: d(x,z) < a(x,y) + d(y,z) (2.25)
NON-NEGATIVITY: - 0 < a(x,y) (2.26)

8



(2.27)

DEFINITENESS: d(x, y) =0 ¥ x =y

v(x-z) = v( (x-y) + (v-4 ) < v(x-y) + v(y-z)

Proof: d(x,z)
= d(x,y) + d(y,z)

In particularx # y > d(x,y) > 0 .If the norm is

SYMMETRIC: v(-x) = v(x) (2.28)
then the distance is
(2.29)

SYMMETRIC: d(x,y) = d(y,x) ,

and, by means of the distance induced by the norm, the vector space 4
becomes a topological space, the topology being based upon e-

neighborhoods
%@Q = {y:d(x,y) < ¢

the distance is
(2.30)

Moreover,
yta) = d(x,y)

TRANSLATION-INVARIANT: d(x+ta,

Conversely, a distance which is translation invariant induces a norm

by means of

v(x) = d(x, ¢) (2.31)

Examples:
The usual distance in Euclidean geometry which is in-

(1)
variant under translation, furnishes the most important
and best-known example of a norm. The

EUCLIDEAN NORM, (2.32)

given by the distance from the origin, is the natural
In an

norm of the vector space of Euclidean geometry.



isomorphic coordinate space of dimension n it is given

by

n

v(x) = ( x € R

1

s
. N
}_l

28

(2.33)

o]

vix) = (; |xi|2)% x € C7

(ii) In Manhattan, the distance a car has to travel from one
place to another is the sum of the distances along the
streets and the avenues. 1In Rr1 or Cn, the MANHATTAN
DISTANCE is

TCTORTH Pl LN P R P (2.34)

The norm in V = R™ or C° induced by this translation

invariant distance, the

MANHATTAN NORM, or SUM NORM, (2.35)

is defined by
n
vix) = ) |xi| . (2.36)
i=1

A mapping o@: VR X VR ~ R of a vector space VR over the real field

R 1is a
SCALAR PRODUCT (2.37)
if it is
SYMMETRIC: o(x,¥7) = o(y,x) (2.38)
BILINEAR:  @(ayX) + 0%y, ¥) = o0(x,¥) + a@(x,,y) (2.39)
DEFINITE: x # ©> ¢(x,x) > 0 (definite on the diagonal)
- (2.40)

10




A scalar product defines a norm, the

SCALAR PRODUCT NORM, (2.41)

v(x) = [o(e,x) 1% . (2.42)

The scalar product norm of a linear combination ax + By can be

expanded using (2.42) and (2.39) as

VB (axsgy) = oPvE(x) + 208 (x,y) + 85VE(y) >0 . (2.43)
For a = v(y), B = <0(x,y)/v(y) we obtain
VeV - 9°ny) 20,

whence

SCHWARZ-BUNJAKOWSKI INEQUALITY: |9(x,y) | S v(x)v(y)  (2.h4)

The cosine of the ANGLE a, Q < & < 7w, between x and y may there-
fore be defined by

aﬁé{% xFéAy b (2.45)
since ‘;%ﬁ%t%%§4 <1

A scalar product norm has the additional property (see(2.43))

2
PARALLELOGRAM EQUALITY: v2(x+y) + ve(x-y) = 2v2(x) + 2v°(y)

(2.46)

The scalar product is reproduced from the norm by

VP (xty) - v (x) - VE(y) ]
302(x) + v2(y) - v (x-y) ] (2.47)

= %EVE(X+Y) - vz(x-y)] .

o (x, y)

11



Moreover, any norm v for which the parallelogram equality holds
defines by (2.47) a function which is a scalar product (?xercise 1)

and therefore is a scalar product norm, v(x) = [p(x,x)]%.

A normed vector space with a scalar product norm and hence a scalar

product is a

HILBERT SPACE . (2.48)

In the vector space Rn, any scalar product m(x,y),heing a sym—
metric, bilinear, definite functional, can be written as a symmetric,

bilinear, definite form in the components of x and y, i.e.,

o(x,y) = X Ay (2.49)

where xT is the transposed vector x and A is a symmetric,
positive definite matrix of order n . Consequently, any scalar

product norm v can be written
V(X) = (xTAx)% (2.50)
The Euclidean norm is a special case with A =1

Exercise 1. Let g(x) be a real functional over VR such that

g(xty) + gx-y) = 2g(x) + 2g(y) .
Show that
gxty+z) - g(x+y) - g(y+z) - g(z+x) . g(x) . g(y) . g(z) ., ©

Let furthermore V(x+y) := %[g(X+Y)' gx) -egly)] .
Show that

W(x#y,z) = \V(X)Z) + W(yyz) .

12



§5-Homoqeneous Norms

Very often, the range of a norm is not only an ordered abelian group,
but a field (such as the real field in some of the examples in $2) or
a vector space (as in Example (iv) of $2) with an ordered additive part
such that non-negativity is preserved under suitable multiplications.

By way of definition, a field Ko 1is a

LINEARLY p, - ORDERED FIELD (3.1)

if the additive part of Kb is a linearly p - ordered group and the

ordering po 1is compatible with non-negative multipliers:

V-a, B»7eK : O QAB P ¥ >APBR po QY (3.2)
In particular,

Va, BeK : Op A0 p B>0p af - (3.3)
Since we have a linear ordering and a p 0 > 0 po (-a)

VaeXo: Opo. VOp .o
Since (-a)2 = a?, squares are non-negative and, in particular,
1=(1)2>0p01.

As a consequence, the characteristic of a linearly ordered field cannot

be finite:
Op 1>0ppn-1(=1+... +1)¥n>1.
Moreover,

OpaAa# 0>0 a_l; (3.4)

15



otherwise,

Opoa/\oc_lpo0>lp00,

L

. -1 -1 -1 -1
a contradiction. Furthermore, from ¢ -8 =00 B (B - a),

-1

Op aNa#0AC B>B ! o a (3.5)

The rational field P, the real field R, and the field of all real
algebraic numbers are linearly ordered fields with the conventional

< - ordering.

Similarly, a vector space G over a linearly po - ordered field Ko

is a -

p - ORDERED VECTOR SPACE (3.6)

if the additive part of G is a p - ordered abelian group and multi-

plication by non-negative scalars is compatible with the ordering p :
VaekK,xyeG: Op OAXpYy>aXxpQy . (3.7)
In particular,
VaeZK, x e G: Opoa/\$px>$pax. (3.8)
Examples:

(1) R" is a p - ordered vector space over the linearly < - ordered

field R, p being the < - ordering of (2.12)

(ii) c¢[0,1] is a p - ordered vector space over the linearly < -

ordered field R, p being defined by:

fpG:3f(E)<GgE), VEelo,1] .

14




If VK is a normed vector space and the range of the norm v is a
p - ordered vector space G over a linearly po - ordered field Ko,

Ko a subfield of K, then it makes sense to define
HOMOGENEITY: V @ €Kos o €V: Opo @ > o X) o @ e . (3. 9)
For homogeneous norms, (2.17) and (2.18) can be replaced by:

POSITIVE DEFINITE: V x € V: x # 0 » 0 p v(x) Av)# O (3.10)

Proof:

From homogeneity with a = 0,
V). v(0.w.ov(x) = 0 ; i.e., x = %> v(x) = 0
From positive definiteness,

v(x) =0 >x =4

giving (2.18). This and positive definiteness give (2.17).
In R' and Cn, the Tschebyscheff norm, the Euclidean norm and other
scalar product norms, the Manhattan norm, and the modulus norm are all
homogeneous. We shall assume homogeneity in succeeding paragraphs and
shall speak simply of norms if G is a field (mainly the real field)
and of VECTORIAL NORMS if G is a vector space of dimension greater

" than 1 over some field (again mainly the real field).

15







§4. Linear Mappings.

LINEAR MAPPING, (4.1)

i.e., a mapping ¢ of a vector space VK into a vector space VIE is
called a VECTOR SPACE HOMOMORPHISM if

Vo BeK xyeleol@ax+py)=aex +8oly); *.2)

i.e., if ¢ 1is compatible with linear combinations. In particular,

o) = 4.

-

The image (P(VK) C 1/12 is itself a vector space, a subspace of VI; .

¢ induces a SURJECTIVE (onto) linear mapping of V. onto cp('VK) .

However, since we frequently consider homomorphisms of a vector space

VK into itself (ENDOMORPHISMS), it would be impractical to restrict our

attention to surjective mappings only.

Let @ be a linear mapping of V.

“ !/
K into VK . The set

Ker ¢ := {x ¢ VK: p(x) = ﬁ%]

is a subspace of VK the KERNEL of cp . [Note that Qf e Ker o;
@(x)=¢A¢(y)=4><p(ax+By) = a ox) + poly) = 4 .

¢ is INJECTIVE if
o(x) . o(y) > x .

Equivalently, @ is injective % Ker ¢ = {d}} . [Note that

P(x)= o(y) ¥ o(x-y) = o(x) - ¢(y) = & ;
(cp(z) =4»> z-=4) % {x ¢ Vup(x) = 4} = ) 1.

16




@ 1is ONE-TO-ONE if it is both surjective (every element of Vﬁ has at
least one preimage) and injective (every element of Vé has at most one
preimage). Such a mapping ¢ is called a REGULAR mapping or ISOMORPHISM.
If Ker ¢ = {éﬂ, then the induced linear mapping @:VK —'w(VK) is an
isomorphism. The set of all linear mappings of a vector space VK into

a vector space v, denoted

KJ
Hom (VK, Vé) (4.3)

is itself a vector space over K with addition and scalar multiplication
defined by

P=9, to, 3 o) =0, (x) +o,(x), Vxe V. o (k1)

¢ =ae = ekx)=aoex), Vxe Vo (.5)

The zero element of Horn (VK’V%) is the zero mapping 0 : 0O(x) Eﬁ*.
If Vﬁ is just the field. K itself, the mapping ¢ is called a

LINEAR (K - VALUED) FUNCTIONAL OF Vi (4.6)
and we write
Vg = Hom (VK, K) (4.7)

The zero element of Vg is the ZERO FUNCTIONAL QP:¢P(X) =0 .

Example:
The dual vector space of the coordinate space R is the set of

all linear functionals

pl(x) = D 2 IR S SR i ¥ (4.8)
T . .
where 1= = (21,12,..,, zn) is called a ROW VECTOR. In this
representation, (Rn) is again a coordinate space of dimension n

over R .

17




§5. Subadditive Functionals Generated by a Set of Linear Functionals

Linear mappings are trivially seen to be subadditive and homogeneous but
not definite. We shall use supremum constructions which preserve sub-

additivity and homogeneity to generéte functionals that are non-negative
and even definite. We first turn our attention to the case where K is

the real field R and GKo coincides with X, i.e., the real field.

Thus, we discuss real-valued functionals and norms of a vector space V

over R

In the linearly ordered real field R, the supremum of a set of elements
is defined for bounded, nonempty sets. To remove these restrictions,

we form the EXTENDED REAL FIELDCD R* = {R, + », - »} and define

stpR=+o; supf=-w (5.1)

infR=-®; inf@=+ow

where ¢ denotes the empty set. The < - ordering of R* is that of

R, supplemented by

Theorem: (5.2)

Let S = VD = Horn (¥, R) be a set of linear real-valued function-

als of a vector space U over R . Then
75(x) = supfo(x): @ ¢ 5) (5.3)

is a subadditive, homogeneous functional (sometimes called a GAUGE

FUNCTION) over V¥V with values from extended real field R* .

CDNote that R* is not a field: (+ ®) 4 (- ®) is not defined.

18



Proof:
vg(xty) = sup(o(xty) : @ e 5)
= sup{®(x) + o(y): @ ¢ S)
< sup(e(x) : ¢ ¢ 8} + sup{e(y) : @ e S)
=¥, (x) + Yg(¥)
ys(x) is subadditive.

Yg(ax) = sup(p(ox): ¢ e S)
= supf{a @(x) : ¢ € S)
= a sup{p(x): ¢ ¢ S} for >0
= a Yg(x)

Ys(x) is homogeneous. Q.E.D.

To be a norm, YS'"(X) must also be non-negative, definite, and real-

valued (i.e., bounded). A sufficient condition for the first property

is given by:

Theorem: -¢-D eS>0< ’YS(X), VxeV. (5.4)

D

Proof: 0 =¢~ (x) < sup{op(x): ¢ ¢ S} = Ys(x) )

A mapping over V with values from the extended real field R* is a
SEMINORM (5.5)

if it is subadditive, homogeneous, and non-negative. Obviously,

VoeS xeV:iogkx< Ys(x) . (5.6)

Moreover, some linear combinations of elements of S are bounded by

D
Yg Let Pys Pos o w P eDV and Qps Qs o vy Q€ R . Then
v i
OthPl + a2q>2 + + oen(Pn € is a
CONVEX COMBINATION OF Cl)l, CP2, ey CPn (5-7)

19




if 0< Oi and o To o F a = 1.
Theorem: Let @ be a convex combination of @,, @, ---:¢n€S . (5. 8)
Then
¥V xe V: o(x) < 7S(x) . (5. 9)
Proof:
0@, (x) + o, (x) + ... + e (x)
Sogrg(x) Larg(x) L. L re(x)
. (oz1 NEEEEE ozn) 7S(x)
- rgx)

Theorem: (5.10)

D . .
If -¢- can be represented as a convex combination of elements of

S, then 7S(x) is non-negative and therefore a seminorm.
The converse is not true, e.g., Example (i) (d) below.

Examples:

(i) The following subadditive, homogeneous functionals 7S over

2
R~ are depicted by their contour maps in Figure 1.

(a) 8, = {(0,1), (1,0)} ysl(x) = max(x;, x,)
(®) 8, = {(1,1), (1,2), (2,1), (2,2)}
ysg(x) = max{xl+x2, X, 2%,
2x, X 2xl+2x2}

(e) 35 - {(11,12)11 >0, L, >0, zi + 12 = 1)
Y%(X) B ((‘i ok X 20, %2 0
Xq xi > 0, X5 <0
X5 xl <0, X5 >0
\ max (xl,x2 ) x) < 0,x,< 0

20



FIGURE 1
(i)

(@) (b)
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(c) (d)

FIGURE 2
Gi)
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2 2
(a) S, = { (11,12). o> 0 2+ 1y = 1]
- (x2 + xe)% X, > 0
1 2 1
7g (%) = 1
4 %5 | x, £0
(ii} . The following seminorms .7S over R” are generated by sets

S which contain QP or a subset, a convex combination of which is

¢P (See Figure 2):

(a) 85 = {(1,0), (0,1), (0,0)}  7g (x) = max(x,x,, 0)

5
% = Lt 420050, & + .- 11 s (0,0]

YS6(X = mauc(?55 (x),0)

(iii) The following functionals 7S over R2 have + ® among their
values. All except (a) are seminorms. (See Figure 3):
(a) = {(2,,0): £ > 1} e X, > 0
1 1= ;4 1
K 7S?(X) =
Xl xl S 0
(v) 58={(zl,o): zlzo] + ® X, > 0
758(X) =
0 xl <0
(c) 8y = {(4585): £, > 0,2, > 0} © x) £0,x, <0
YS9(X) =<f ® otherwise
(d) S0 = {(zl,o): £, eR} ﬁeo X, #0
0 0 X, = 0
(e) _Sll = {(21,12): |!2| <1} |x2| X = 0
7Sll(X) R otherwise
Note that in all the examples, the set
:= : < .
K= {x: 7g(x) < o} (5-11)

is an intersection of a family of half-planes

22



FIGURE 3

i)

(i

(d)
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H = (x ¢ o(x) < p}

PP
In fact
Theorem: K =_0.H .12
- P Ped P, P (5 )
Proof:
; xer>YS(X)_<_p
| >o(x)<p, YoeS by (5.6)
>x e H v €S
0, o’ ®
>x e N H
PeS P, p
N o H >x e H v S
* € ¢es 9,0 9,00 P €
>cp(x)§p, VYo €85
> p upper bound for {p(x): ¢ € S}
> p <Yg(x) = lub{e(x) : ¢ e 5]
> e K .E.D.
X o 0
For p < O, Kp may be empty. In particular, K0 is a
CONE, (5.13)
i.e., a subset of ¥V such that
A .
xeKO/\ozeR ocZO>ozx EKO
Ko certainly contains -¢- and may degenerate to (-Q]
Theorem: A seminorm is definite % K, = “) . (5.14)
If K, = (4}, then
= . .1
& o, 0 4 (5.15)
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i.e., S T'"surrounds the origin of VD -

A seminorm 7S(x). is a norm if it is definite and also

BOUNDED: V x ¢ Vi “7S(x) <+ o, (5. 16)
A sufficient condition for boundedness is:
Theorem: If S is a finite set, then Vg is bounded. (5.17)
In V = Rn,'yS is bounded if S is componentwise bounded. If 7S is

both definite and bounded, we write the norm defined by S as

In particular, we can now derive the Tschebyscheff, Euclidean, and
Manhattan norms in R from their generation sets. Let

T . th
:= (0,0, v, 0,1,0, . . . . 0)

eq € ﬁl where the 1 is in the 1

place. The Tschebyscheff norm is defined by

5 U e, ~e1} 5 vg(x) = maxb (5.19)

The Euclidean norm is defined by

Il
Uy ) By v = () )

Proof:

vs(x) = sup{lTx 4Ty = 1}

< (xTx)% since by (2.49) ithl < (ITI)% (xTx)é
For £ = xT/(xTx)%, 1T = (XTX)% and 254 = 1

gl = (MR = (L

2>




The Manhattan norm is defined by

n
S =((+1,+1,...,+1)]); vg(x) = L Ix,| (5.21)
i=1

Proof: n
Vo e S:o@ =) x|
i=1

1 X >0 T n
For £, =(_; % <0 o (x) =£x=_z Ixi| .
i — i=1

We can now discuss real-valued norms of a vector space V over the

complex field C . For the supremum construction, we can no longer
use linear functionals of V over C since they are complex-valued.

However, the real part of these functionals is still additive and

homogeneous:
D
Theorem: Let S< ¥V~ = Hom(V,C) be a set of complex-valued (5.22)
functionals on VC . Then

Yg(x) = sup(Re(p(x)): ¢ € S) (5.23)

is a subadditive, homogeneous functional on V with values from the
extended real field R*

The theory develops further as in the real case. For the Tschebyscheff

norm, the Euclidean norm, and the Manhattan norm, the generating sets are

respectively,
S = u wa : o] = 1) (5.24)
1
S = (L), veny 2): |le|2 + |12|2 o4 lflml2 =1} (5.25)
8 = {(w, 0y . . . o) lel=1, i=1,2,....n . (5.26)

Before going into a similar study of the case of vectorial norms, we shall
elaborate on the generation of norms somewhat further in order to investi-

gate fields of values and eigenvalue exclusion theorems.
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§6. Replete Generating Sets. Application: Fields of Values and

Eigenvalue Exclusion Theorems.

We shall call the set SC ¥° that_generates 7S(x) (or V,(x))

REPLETE (6.1)
if
TxeV @9e5: o). rgx) . (6.2)
If S is replete, then
- 7g(x) = ;ﬂ:g o (x); (6.3)

i.e., the supremum is actually attained.
Not every set is replete; in §5, Example (i) (d),
0]
X a (l) > (P(X) < 7S(X)’ V q) €

Whether a set S CZVD can be extended to a replete set §' such that
7S(X) = YS,(X) and whether

5 = (o eV’ : 9(x) < 75(x), ¥ x & V)

is replete are subtle topological problems for which no general answers
exist. For finite dimensional spaces, however, the SUPPORT THEOREM
(Bonnesen - Fenchel) guarantees that every set S can be so extended.
Henceforth we shall consider only replete sets in generating norms in

Rn and Cn

On the other hand, a replete set S need not consist of all linear

functionals ¢ satisfying @(x) < 7S(x) . The set
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T T
S = ? {ei, -e:}

n
of (5.19) generates the Tschebyscheff norm in R as does

SI

e’ 0(x) < 7g(x), Vxev)
= {(0ys Ao woes ) (e |+ gl e+ e [ < 1Y
Both sets are replete, but the additional elements in S' are convex

combinations of the elements of S and are in a sense superfluous. In

finite dimensional spaces, the set ¥ of EXTREME POINTS of any replete

extension S,

T-{pes 29,0,e8 Ao=ag +(1-a)p,A0<ac<]

>0 =9, V=01

contains no superfluous elements. We shall see in the following applica-
tion to fields of values and eigenvalue exclusion theorems that it is
important to choose the generating set S to be replete yet as small as

possible.

Let A be a linear mapping of a vector space ¥V  over the complex field
C into itself. The set of all such endomorphisms of v, Hom(V, V)
((4.3)), is itself a vector space over C and even a ring, multiplica-

tion being composition of mappings. If
Ax = Ax (6.4)

where x # 0, then A e C is called an

EIGENVALUE OF A (6.5)
and x € ¥V the corresponding
EIGENVECTOR OF A . (6.6)
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We define the
EIELD QF VALUES OF A 6. 7)

with respect to the replete set S which generates the norm VS(X) to
be the set of complex numbers
GglA] := {p(Ax) : 9es, x eV, vs(x) = cp(x) = 1) . (6. 8)

GS[A] has the property of COVARIANCE UNDER TRANSLATION:

G,

S[A+0I]=G[A]:o.~,.;;o;aeGS[A]}. (6. 9)

S

Proof:

VoeS x eV such that vS(x) =op(x) = 1:

e((A + oI)x) = @(Ax) + g(x) = @(Ax) + o .

The field of values of A with respect to such a set S defines an

EXCLUSION DOMAIN for the eigenvalues of A:

Exclusion Theorem: No eigenvalue of A lies outside GS[A]; (6 .10)

i.e., if A e C is an eigenvalue of A, then A € GS[A]

Proof:
Let x 74 0 be an eigenvector of A corresponding to the eigenvalue
A . Since S Ggenerates a norm, VS(X) > 0 and x' = x/vs(x) is
again an eigenvector with VS(XI) = 1 . By repleteness, there exists
® €S such that o(x') = vg(x’) = 1 . p(ax’) = o(x’) = n(x’) =
A.1 = A whence A € GS[A]
Q.E.D.

n .
In ¥V =C7 A can be represented by an n X n complex matrix, an

X
element of the matrix ring Cn n, and
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GglA] := {t8ax ¢ 2fes, xev, vg(x) = i = 13, (6.11)

Using the generating set S of the Tschebyscheff norm ((5.24)), we
obtain the

GERSCHGORIN FIELD OF. VALUES, (6.12)
a union of circular domains centered at the diagonal elements of A :
.= 6.
aglAl := Uc,[al, (6.13)
Where

C—i[A] = (z : Iz - aiil <

AL

(6.14)

la

R

Gglal = (. dfes = U {we?.: : |w] = 13, xev, vg(x) = 7% =1}
i

n
T ST
= ;il{aEiAx : ol = 1, er,vS(x) = max|xi| =1, we;x = ux,
n T 1 )
='U{a)eiAx:|a)|=l,xi=B and xulilforu#l]
i=1
nooT
= U {eiAx : x, = 1 and |x | <1 for u # i}
i=1 . H ‘ |
i |, | # 1}
= U { a,, * a. x :ix | <1 for p#i
i=1 T g HH K
§ | | < 1}
= U {a,.+n a, |:0<1<
i=1 7t o W
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n
= U c,[a]
i=1
Q-EoD
Corollary: Let x be an eigenvector of A with a DOMINANT (6.15)
i-TH COMPONENT :
Ixul ilxi|, p=1 2, .. . .n.

Then the eigenvalue corresponding to x lies in Ci[A].cD

We also note that Ci[A] reduces to a single point, Ci[AJ = {aii},
if and only if ei is a LEFT EIGENVECTOR of A : efA = kez; i.e., the

i-th row of A is just aiief . Consequently, the Gerschgorin field of
values reduces to n points if and only if A is a diagonal matrix,
these n points being the eigenvalues of A . The following examples
show, however, that one or several of the disks Ci[A] may be arbitrarily

small without containing an eigenvalue:

Examples: 1 1 e—l \
(i) A =11 2 3¢ | yith eigenvalues 1, 4 + /15 (6.16)
e 36 | T
C5[A] = (z :|z-6]|< ke} does not contain any eigenvalues
of A for e sufficiently small.
1 e O
, -1 -
(ii) A=|c¢ 2 ¢ Ywith eigenvalues 2, 2 + /3 (6.17)
0 e 3

c,[aAl = (z : |z - 1] < ¢} and C5[A] = ¢: lz - 3] <e} do

not contain any eigenvalues of A for e sufficiently small.

GDThe classical elementary proof of Gerschgorin's Theorem goes along this

line. In practice, however, information of this kind is rarely avail-
able.
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Obviously, the set S generating the Tschebyscheff norm is distinguished
with respect to diagonal matrices in so far as all of its elements are
left eigenvectors of a diagonal matrix. Other generating sets may con-
tain more elements than there could be eigenvectors of a non-derogatory
matrix. In general, the field of values will reduce to a finite number
of points only if the matrix is a multiple of the identity matrix. This
is true in particular for the set (5.25) generating the Euclidean norm.

The corresponding field of values, the

TOEPLITZ FIELD OF VALUES, (6.18)
is given by
- GS[A] = {XHAx . o = 1} (6.19)

since by the Schwarz inequality ((2.44)),

= 1A VS(x) —xx o= 1 atfx =1 0F =

A classic result by Toeplitz asserts that this field of values is convex
((9.20))., If A is NORMAL (unitarily similar to a diagonal matrix),
then the Toeplitz field of values of A 1is the convex hull (the set of
all convex combinations) of the eigenvalues of A :

(Fax : Fx = 1)

{xHUAUEx . AUtk = xx = 1)

H . H
{y" atag(M)y : vy =1}

GS[A]

In this case, xﬂAx such that xHx = 1 is called a RAYLEIGH QUOTIENT

and we write

32




GS[A] = H[\ . xn] . (6.20)

ik XE’ ’
For a vector space V over the real field R, we may again define
GS[A] by (6.8), now giving a set of real numbers which contains all
real eigenvalues of A . For the generating set (5.19), we obtain the
restriction of the Gerschgorin field of values to the real axis, thus
nothing new for real A . For the generating set (5.20), we obtain the
restriction of the Toeplitz field of values to the real axis. If A is
real and symmetric, then A is normal with real eigenvalues and we again
obtain the convex hull of the two extreme eigenvalues which consists of

all Rayleigh quotients.

In the real case, the set (5.21) generating the Manhattan norm gives the

field of values

Gglal = U rfal, s={(t1, 1, ....¢% 1)} (6.21)
tTeS
where
T (A] = {00Ax ¢ va(x) . x| . Il el =1, 2 = 1)
l = . S F l =) 2 ® . L) ® n )
T
= {1 : x—(llpl,!lgpe,. .. . lp) where 0 <p., <1
and Z.p_.1= 1)
= {4"Dp:0<p, <1and Zp =1) where
D, = diag(lll, ceey zn)
- T . —
= {Zpi(z AD,));: 0 <Py <1 and gp; = 1)
T T
= H[ (l ADB)]., DR | (l ADl)n]
T T T
Tl [A] = H[e DIZADIZel’ e eDJlADen] where € = (1, 1, . . . . 1)
and eTDl = £T . (6.22)
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As in (6.15), we can gain some additional information as to the location

of eigenvalues by looking at the eigenvectors:

Theorem: Let x be a real eigenvector of a real matrix A (6.23)
and !T =(+1,+1, .... + 1) bé the SIGN DISTRIBUTION of x

Then the eigenvalue corresponding to x lies in T![A]-

In contrast to the previous situation, some information concerning the
sign distribution of real eigenvectors of a matrix is often available
as is the case with so-called oscillation matrices We shall
later see that matrices with non-negative elements have at least one
eigenvector which has in suitable form non-negative components. The

corresponding eigenvalue (the Perron root) certainly lies in

T(l, ly~ee., 1)
Example: 9 3.6 )
40.5 48.6 5h
T4, 1, ..., 1)lAl = HI72, 70.2, T1] = [70.2, 72]

contains the eigenvalue 36+9/15=70.8568

Note that this theorem gives good results only if the column sums of A
(or rather of DtADl) are not very different. Thus matrices are distin-
guished which are non-negative apart from a sign transformation and whose

column sums are nearly equal.
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§7. Norm Transformations and Invariance Groups

Let S be a set of linear functionals and let
SB := {¢B: oS} (7-1)

denote the transformed set under the linear mapping BeHom(V, V) where

9B is defined by
PB(x) := 9(Bx) . (7.2)

SB is again a set of linear functionals and generates the functional

7gp(x)

Theorem: 7SB(X) . 7S(BX) ; (7.3)
Moreover,
Theorem: 7sp is a norm if and only if Vg is a norm and (7.4)

B is a regular mapping (isomorphism).

Proof:

B not regular » Bx = 0 for some x % 0
> 7SB(X) = 7S(BX) = 0 for some x % 0

>y is not a norm.

SB
B regular A y7g not a norm > 7860 = 0 for some x # 0
> 7SB(y) = 7S(Ey) = 0 for some y = B 1% £ 0

> is not a norm.

SB
B regular Ayg a norm >(7SBOQ = 7SCmQ =0>»Bx =0%»x=0)

is a norm.

Q.E.D.

>7SB
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We shall call VB(X) := v(Bx) (in particular, (VS)B = VSB) a
LINEARLY TRANSFORMED NORM or a LINEAR TRANSFORMATION OE_.. (7.5)
Let Kp denote the set {x: VS(x) < p} = The corresponding set for
VSB is
{x: v (x) < o} = {x: vo(Bx) < o} = (B7ly: vo(y) <o} - BTK_.
- SB — . S —_— e S — T
Thus,
If S is replaced by SB, then Kp is replaced by (7.6)
51k
P .

If B leaves the norm vinvariant (in particular, SB = S L then the

linear transformation B is called a

NORM INVARIANCE TRANSFORMATION. (7-7)

The set of all such transformations is clearly a group, the

INVARIANCE GROUP (7.8)

of v (or S %

The invariance group of the Tschebyscheff and Manhattan norms in Rn is
the hyperoctahedral group of permutations and sign-changes of the n

T

. T . . . .
objects e e The invariance group of the Euclidean norm in

TIRE
R" is somewhat larger; it is the orthogonal group, the group of all

orthogonal transformations in R"

In Cn, the group of permutations and phase changes is the invariance
group of the Tschebyscheff and Manhattan norms and the group of unitary

transformations that of the-Euclidean norm.
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There are norms whose invariance group consists of the identity alone;

2
e.g., the norms in R generated by the sets:

.
L 3
-+
K

/ X

The application determines whether small or large invariance groups are

desirable. In most cases, however, norms have at least some invariance

properties.
A set S and'a norm Vare
SYMMETRIC (7..9)
if -1 is an invariance transformation:
-S=5S and vw = v(-x) (7.10)
(see (2.28)). A set S and a norm vare

STRICTLY HOMOGENEQUS (7.11)

if the field K of the vector space Vp 1is the complex field or a

subfield thereof and {wI: wekK, hﬂ = 1} 1is a subgroup of the invariance

group:

weK A |o] = 1 > @S = 5 Av(ax)= v . (7.12)

As a consequence, for a strictly homogeneous norm V:

Voe K: v(iox) = |o] v(x) (7.13)
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since any ¢ € K can be decomposed as ¢ = w|o| with kl;; 0 and
LJ = 1 . The Euclidean, Tschebyscheff, and Manhattan norms in Cn and
n

R™ are strictly homogeneous.

If K is the real field R, the concepts of symmetry and strict homo-

geneity coincide. 1In Cn, the norms

v(x)
v(x)

max{ |Re xil, JIm xil} (7.14)

=l |Re xi[ + |Im xi!]
are symmetric but not strictly homogeneous.

Finally, we may investigate how the field of values G.[A) is changed

S
by a regular linear transformation of the generating set S

. (7-15)

Theorem: [A] = GS[BAB-

Csp

Proof:

H
GSB[A] = {IHAX: lHeSB,Vxx)= L'x = 1)

= {zHB'l(BAB'l.)Bx; zHB'les,vS(Bx)= /M3 lex = 1)

- (THeas bz Tes, vg(®) = 7% = 1)

Q.-E.D.

If A is normal (unitarily diagonalizable), then there exists a linear
transformation B (dependent on A! ) such that the field of values of
A* with respect to SB is just the field of values of the diagonal
matrix BAB = with respect to S . For the Gerschgorin field of values,
we thus obtain the set of all eigenvalues; for the Toeplitz field of

values, the convex hull of this set.

The Gerschgorin field of values is frequently used to locate the eigen-
values of a normal matrix if an approximate eigenvector system is avail-
able. The success of this procedure is based upon the following theorem

also due to Gerschgorin:
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Theorem: If the union of k Gerschgorin disks is disjoint (7.16)
from the remaining disks, then this union contains exactly
k eigenvalues--multiplicities being counted as the multi-

plicities of the zeroes in the characteristic equation.

The proof, usually using a continuity argument, seems to be outside of
norm-theoretic considerations, In particular, if one Gerschgorin disk
is ISOLATED from all the others, then it contains exactly one eigenvalue.
We can now obtain some information about the eigenvector corresponding

to this eigenvalue:

Lemma: TIf' Ci[A] N Ck[A] = @, then there is no eigenvector (7.17)
whose i-th and k-th components are dominant.

Proof:
If the i-th and the k-th components of the eigenvector x are

dominant, then Xeci[A] and KeCk[A] whence KeCi[A] N Ck[A] % @,

a contradiction.

As a consequence,

Theorem: If the Gerschgorin disk Ci[A] is isolated, then (7.18)
if contains exactly one eigenvalue A with a correspon-
ding eigenvector x whose i-th component is STRICTLY

DOMINANT:
u%i>|xu|<|xi|.
Proof:

From the Lemma, if the component X is dominant, then it is

strictly dominant. If X, is not dominant, then Hu # i such

that X, is dominant and therefore XeCu[A] . But KeCi[A] whence
xeCi[A] n CM[A] # 0, a contradiction.
0.E.D.
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Among linear transformations of the generating set S, diagonal trans-

formations or correspondingly SIMILARITY SCALING

d,
-1 1
A ~DAD "; a —»gaik (7.19)

with D = diag(dl, d dn) and duyl 0 are of special practical

2" e e
interest. For the Gerschgorin field of values, they leave the centers of
the Gerschgorin disks fixed and change only the radii. Assume that Ci[A]
is isolated and let x be an eigenvector corresponding to ?\.eCi[A].

. . . L .
Since X, 1s dominant, l(ll > 0 and we may set qu = |;;| <1l, p # i.

For

-1 )
d; = 1 and q,p‘_fdpl <1, u#i, (7.20)

-

the diagonal transformation D = diag(dl, d2’ e e dn) will decrease

the radius of Ci unless it is already zero:

V|_ia|='d“l|a.|<§|a|

Ag TS in .

u‘;i s uafiu i

provided ; Iaiul #£ 0 . But eventually, isolation of the disk C;
HFL

will be lost, at the latest when d;l = qu for some p since then the
transformed eigenvector Dx will have dominant i-th and p-th components
and therefore Ci[DAD-l] n Cu[DAD'l] # ¢ . Varga has recently discussed
this problem in detail.

Diagonal scaling is of particular importance in connection with the field
of values obtained from the generating set for the Manhattan norm in Rn
since diagonal scaling with positive elements leaves the sign distribu-
tion of an eigenvector invariant. Thus if Theorem (6.23) can be used to
prove that the eigenvalue M\ corresponding to the eigenvector x lies
in TI[A]’ then it can be used to prove that A lies in TI[DAD-I],
provided the scaling is positive. However, scaling can shrink the set

T]z enormously:

Lo




Let pT = (P, Pps+++s Py) (p,# 0) be a row vector with the
L [N 1L M
. . T . .
sign distribution £7; i.e., B = lulpul . Let D = dlag(‘pll,
bgl,, *x bnl) so that eTDlD - 4™ - pF. Then
-1, T -1 T -1
T,[DAD ] = Hle"D,DAD""Dje,, -, €D DAD D,e,]

T T T T
= H[p Ael/p €5 « 05 P Ae /p7e ]

TI[DAD_lL] = Hlp' /P52 /e (7-21)
where
(/5 DS» . -5 D’) = DA (7.22)
l, 2’ . b n’ = .

Thus, we may réformulate (6.25):

Theorem: Any eigenvalue A\ corresponding to an eigenvector (7.23)

X with sign distribution IT is contained in
e / /
T, lAl = Hlp{/p)s po/Pps oo B /D]

where pT = (pl’ Pos o **, pn) is any row vector with sign pattern

T 7 ! T
£~ and nonzero components and  (P;, Py . -+> Pn) =P A,

Note that the n quotients will coincide if and only if pT is a left
eigenvector of A with the prescribed sign pattern; the better pT
approximates such a left eigenvector, the smaller TP[A] will be. Such
. a left eigenvector does not exist if A has two right eigenvectors with

the sign pattern IT corresponding to different eigenvalues.

Example: 1
1 2 A =3 and X =(l)
A= ) 1
-7 A=5 and x =(2)
T
For £ = (1,1) and p, > 0, py > O:

Tp[A] contains-both eigenvalues but cannot shrink to a point

since no (pl,pz)T is a left eigenvector.
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For gT = (,1,_]_) and pl> 0, p2 < 0:

P b,
T (A) = H[1 -4-%, 7 +2—=] shrinks to {3} for p./p, = -%
D Pl p2 2/ 1
and to {5} for 92/pl = -1 but does not contain an eigen-

value even if p2/pl approaches these values since there is

no right eigenvector with this sign distribution.

For non-negative matrices, Ty [A] with p, > 0 contains an eigenvalue
(the Perron root) with a corresponding non-negative right eigenvector.
For positive matrices, there is only one such eigenvector and therefore

only one eigenvalue in TP[A] .

Example:

1 1 1

A=|1 2 3| ; A=1, 4+ /15 =7.87298, 4 - /15 = 0.12702
1.3 6

T

P o= (1, 2.4, 4.k) TP[A] = H[7.8, 7.91, 7.86]

pT = (3.9, -5.6, 2.2) Tp[A] = H[0.128, 0.125, 0.136]

pT = (2' 1, -1) Tp (Al = H[1, 1, 1]

PT =(-b, 1" 1) T [A] = H[0.5, 1, 5] no eigenvector

p with this sign
distribution.
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}_.83 Suprema and Infima in Ordered Vector Spaces.

We shall now return to the general case of vectorial norms, norms in a
vector space k with values from a p-ordered vector space @ with

Ko a subfield of K . 1In order to-generate these norms by a supremum

construction, we first investigate suprema (and infima) in a p-ordered

vector space GKo over a po-ordered field K, . GKO is characterized
by its POSITIVITY (NON-NEGATIVITY)CONE:
+
Theorem: The set G  of all non-negative elements of Gg, (8.1)
+
G :={xeG, : 4 p x) (8.2)
Ko
is a CONE:--.
+ +
VaekK, xG : 0 po > a xeG (8.3)
which is
+ +
CONVEX : xeG A yeG > xty € G+ (8.4)
+ + +
POINTED AT4:  4¢G ; xeG A (-x)eG > x = 4 .  (8.5)
Proof:

+
That G is a cone follows from the compatibility of multiplication

by non-negative scalars with the ordering p((3.8)).

+ +
xeG A yeG >¢-px/\-¢py
by compatability

>+ pxX ANXx pxty’ of p with .
addition ((2.6)
> 4 p xty by transitivity ((2.2))
>»xtye G +
is convex.

b3



p reflexive ((2.3)) >+ pf
N

xe6" A (-x)eG >#ox A 40 (-x)

>-¢px~/\xb~¢

>x = by antisymmetry ((2.4))
et s pointed at 4.
_Q.E"

+
In fact, the come G completely characterizes the erdering p :

+
Theorem: Let G C GKo be a convex cone pointed at f . (8.4)

Then the relation p defined by
X py 3% y-x e G+ (8.7)

is an ordering which is compatible with vecter addition and multipli-

cation by non-negative scalars.

Proof:

G+ pointed at ¢ > X-x = -Q € G+

>»X p X (reflexivity).
+ +
xpyAypx>(y-x)eG A -(y-x) = x-y €G

>x =y (antisymmetry) .

X py Ay pz>(y-x)ed A (z-y)eG
> (z-x) = (z-y) + (y-2)eG"

> X pz (transitivity).

+
x py > (y-x)eG
+
> (y+a) - (xt+a)eG

> x+ta p yta (compatibility with
vector addition).

+

X py A Opa>(y-x)eG A Opa
+
> a(y-x)eG

>axpay (compatibility with
scalar multiplication).
Q.E.D.
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An element x of a p-ordered set M is

p-MAXIMAL (p-MINIMAL)or simply MAXIMAL (MINIMAL) (8. 8)

if it has no upper (lower) bound other than itself:

Xpy>»y=x (y px>y=x). (8. 9)

Elements which are upper (lower) bounds for all elements of a subset

h of M are called URPER (LOWER) BOUNDS of h

U.bp(h) i={xeMm:ypx,Vyen} (8.10)

.L'bp(h) = (xeM:xpy, Vyen}. (8.11)
Either set may, of course, be empty.

Example:

For the ordering given by the Hasse diagram

b c
d e
f g

the set of all upper bounds of h = {d,e} is {a,b,c} and the set

of all lower bounds is empty.
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Usually one is only interested in the best upper and lower bounds, best
in the sense that they cannot be replaced by other bounds. Thus we define

the set of MINIMAL UPPER BOUNDS of h € <

Supp(h) := {ye pr(h) : vy minimal in pr(h)} (8.12)

and the set of MAXIMAL LOWER BOUNDS of h

Infp (n) := {ye A.\',bp(n) : y maximal in .tbp(h)) . (8.13)
In the preceding example, Sup((d,el) = {b,c} and Inf({d,e}) = @.

In particular, we are interested in the case where all upper (lower)

bounds can be replaced by one least (greatest) bound. In this case we
define the
LEAST UPPER BOUND or SUPREMUM OF h (8.14)
a= supp(h.) 3¢ a ¢ ubp(n) Aapx,VXe ubp(n) . (8.15)
and the
GREATEST LOWER BOUND or INFIMUM OF h (8.16)
b = info(h) X b ¢ .cbp(n) Axpb ¥V xe .cbp(n) . (8.17)

Obviously, the supremum and infimum, if they exist, are uniquely deter-

mined. Moreover,

Theorem: (8.18)
a = suppOU exists ¥ 3a : prOO ={x : a p x)
b= info(h) exists ¥ 3b : £& ) = (x : x p b} .

P

In the p-ordered vector space the set of all upper bounds of an

G
KO,
element ¢ is the
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TRANSLATED CONE (8.19)

(y:icpyl=(y:yceG)=1lctz : zea) := cta™ (8.20)

and the set of all lower bounds is likewise c—t . Therefore, the set
of all upper (lower)bounds of h C G is an intersection of translated

Ko
positivity (negativity) cones:

b () = N(ctG) [ (N) =N (c=G+)] . (8.21)
P cen e cd1

As an immediate consequence of Theorem (8.18),

Theorem: (8.22)
a = sup (h) exists 3 HaeG :n (c+G+) = a+g’ (8.23)

¢ Ko can
b= info(h) exists ¥ @beG, : N(c-G') = b-G+  (8.24)

Koo

Moreover, if supp(h) exists, then infp(-h) and supp(h+a) exist and

INVOLUTION: infp(-h) = —supp(n) (8.25)
supp(~h) = -info(h)

TRANSLATION-COVARIANCE: supp(‘n+a.) = Supp(h) + a (8.26)
infp(n+a) = info(h) + a .

Theorem (8.22) shows that a rather heavy restriction is imposed on the

" ordering of the vector space (to be precise, on the defining positivity
cone) 1if the supremum of even two elements should exist. 1In (RB,S),
it is intuitively clear that circular and ellipsoidal cones fail to
meet this restriction (an intersection of such cones is not necessarily
a cone); in fact, suprema and infima will only exist in general in

(RB,S) if the positivity cone is triangular.
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If we require of an ordered set M that the supremum and infimum of any

two elements (and therefore of any finite number of elements) exist, then

m 1is a
LATTICE-" (8.27)
and we write
a|_] b := supla,b) ("a cup b") (8.28)
a || v := inf(a,b) ("a cap b") . (8.29)

A p-ordered vector space GKo is a

LATTICE-ORDERED VECTOR SPACE or simply a VECTOR LATTICE (8.30)

if it is a lattice with respect to the ordering p . By Theorem (8.22)

this is equivalent to

+ +
(a+G ) N (b+G+) = c+G (8.31)

Va beG, 3c,deG, :
Ko aen b-cr) = a-c+

Ko

Moreover,

Theorem: GK.o is a vector lattice if and only if (8.32)

YV ae GK): a+:= sup[aﬁH ("positive part") exists.

Proof:
Involution and translation-covariance can be expressed in lattice

notation by

INVOLUTION: (-a) |71 (-b) = -(a] _|b) (8.33)
(-a) || (-b) = -(a|7|p)
TRANSLATION-COVARIANCE: (atc) || (b+c) = (a|_Jb)+e
(atc) | ] (b+c) = (a] o)+
(8.34)
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Therefore,
al__lb = at[(a|_|b) + (-a)]
atf4 | _|(b-a)]

a + supl®, b-a)

a|_|b =a + (b-a)+ = b+(a-d)’ (8-35)
Similarly,
al |b = at[(a| |b) -a] -
= a-[(-a)| |_(-p) +a]
= a-[% |_|(a-b)]
al o = a-(a-b)+ = b-(b-a)+ (8.36)

.. The supremum and infimum of two elements can be expressed in terms

of the positive part of their difference and conversely.

Q.E.D.

As a consequence,

DEDEKIND'S PROPERTY: al_Jp+al |b = atb . (8.37)

The following result characterizes the vector lattice GKo in terms of

its positivity cone:

Theorem: In a vector lattice GKo’ every element is a (8.28)
+
difference of two non-negative elements: a = a = a-
+ + +
where a- ‘< (—a) . That is, be =G -G
Proof:

Taking b to be-¢ in Dedekind's property,

o= a=al el W=l 4 (o) Jb=a" s -

Q.E.D.
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+
Moreover, a and a- are DISJOINT:

&' [Tla™ = (al_l4) [ (-al_|4)
= la+(-al_|4)] 7] (-al_4)
= a[7l4 + (-a|_|4)
- a4 - a7l4

A PR |

Other properties of vector lattice operations are

TDEMPOTENCE : al_|a=a al | a=a (8.39)
COMMUTATIVITY: a|_|b = bl Ja a[ b =0p| |a (8.40)
ABSORPTIVITY: al | (al_|p) = a al | (a[7lv) =2 (8.41)

assocIATIvVITY:  al_| (bl_le) = (al_[o) e &l | (b lec) = @[ 1oy Tlec .
(8.42)

Moreover, a vector lattice is

I

LD T GaLe) ()
(al |p) L_I(ar'lc)-

prsTrisuTIve: " — (o[ 1¢)
al | (vl_Je)

Proof:
The proofs of idempotence, commutativity, absorptivity, and associa-
tivity are straight-forward applications of the definitions of

. supremum and infimum. The proof of distributivity is more difficult:

a p (al_|p) Aap (al fc) >a p (al_|v) [T (al_le)

(o[ Je)p o A(d[le)pec> (o lc)p (al lo A (b lc) p (g |e)
> (o[ 1e) o (al_lv) [T (al_le)

Soall (eTle) plal_lv) 171 (al_le)
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[a+(b-a)"1 [7| [a+(c-a)"]
a+kb-a)+ 7] (c-a)+]
a+[(b|7]c) -al”

a+[(b-a) || (c-a)l"

(a] _Jo) [T (a]_Je)

al_l([e)

Hence to prove that (a|_|b) || (a]_Jc) o &a| _| (0| |c), it sufficies
to prove that f+|—]g+ P (f|-]g)+ .

T = T e + T T 6 - el
=l | )+ TR LE L) + 7))
M) + 1M el ) + &)
- (e[ Tel™W
o £l e - (£] ]e) | 14
(£[7le) |14
(£]7le)”

sal oMo =_p) 1=l ] Je).

]

The proof of the second distributive law is analogous.

Q-E.D.
Related to this is the cancellation law

X|—‘yl = Xl_lYeAxl—ly:L:X'—‘ye > yl = ye.

which follows immediately from Dedekind's property (indeed, the assump-

tions give x+yl = X+y2) . Another useful result is
al_Je pp|_|e
apb > al—lc o b|_|c (8.544)
+ 0+
a. pb
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Proof:

a Lﬁp(ﬂ_k”Jb:(ﬂJb”Jc:tﬂjcﬂme al_|b=1.

The remainder of the proof is analogous.

Examples:
(1) The real field is a well-known though trivial example of a

vector lattice.

(ii) R® is a vector lattice under the componentwise ordering < of
(2.11). The positivity cone is the set of all vectors with non-
negative components, the "full first orthant." It is intuitively

clear that the intersection of two translated orthants is again a

translated orthant. Indeed,

and every finite or infinite set of elements has a supremum.

(1ii) R is not a vector lattice under the ordering p defined by
xpy:§(Vi:xi<yi)V(V i ox, = y.)

The positivity cone is the set of all vectors with positive
components together with the origin ﬂb the 'strict first orthant.'
However, the intersection of two translated cones is in general a

translated cone minus the point of that cone.

(iv) R" is a vector lattice under the ordering p defined by

Xp Y :§(xl<yl)v(xl = yl/\x2<y2)
Vv (xl= y A%, = ¥, A x5<y5).,..-.-

v (x1 C Y Ay Yy CX yn)

("lexicographic" or "telephone book" ordering).
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However, it has the property that there exist elements a and

b such that a is "incomparably smaller" than b (a < b) :
napb, In>1

2
For example, (S) < (é) in (RS, p)

(v) ¢[0,1] 4is a vector lattice with the ordering defined by
f p g 3¥xe[0,1]: £(x) < g(x)

The positivity cone is the set of all non-negative continuous

functions on [0,1] .

Examples (iif%nd (iv) are prototypes for all finite dimensional vector
lattices over the real field. Mannos (1942) has shown that any n-dimen-
sional vector lattice G is isomorphic to R" with an ordering built

R
up by direct union

(g, 1) o (g'y b') 3 (g p, 8") A (n o, b')

and lexicographic union
(g) b)) o (8", b") X (g e, 8" Ae#e')Vig=¢e Ahp b')

of the orderings of subspaces. If we require our ordered vector space

to satisfy
(VaekKk :aapb) >a==%

then lexicographic union is excluded in the construction of p and GR
is isomorphic to (Rn, <) of Example (ii), with some one-to-one affine

mapping of the full first orthant as its positivity cone.

More generally, we shall call any ordered vector space G-K.o which has

no incomparably small elements
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ARCHIMEDEAN: Vaek :aapb)>a==%. (8.45)
An even stronger property is s

STRONGLY ARCHIMEDEAN ("integrally closed"): (8.46)

(VoeK :0p a>aapb)>apd.
Indeed, every strongly Archimedean ordered vector space is Archimedean.
Proof:
Assume that V as Ko : dxa pb . If O @ thenaxaphb
If Opo(-a), then a(-a) = (-a)a p b . From the strong Archimedean
property, a E-¢ and -a p¢ whence a = -Q* .
Q.E.D.

The converse is not true in general. However,

Theorem: If G is a vector lattice, then G is strongly  (8.47)

Xo Ko
Archimedean if and only if GKo is Archimedean.
Proof:
Assume that GKo is Archimedean. If 0 ppo @ and @ a p b,
+ + +
then aa =(xa) pb . If @ 0 and a a p b, then

+ + + + .
aa p$pb . Thus VaeK: aa pb . From the Archimedean
property, at = 4 whence a p4 .

Q.E.D.

To continue the discussion for the finite dimensional case, every finite
dimensional Archimedean vector lattice over the real field is isomorphic
to ®", <), the ordering being generated by the full first orthant. The
only cones which make R an Archimedean vector lattice are deformed
full orthants or SIMPLICIAL CONES. Such a cone is the set of all convex

combinations of n linearly independent vectors and non-negative multiples

thereof.
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Another difficulty with vector lattices is that there are always sets
of elements for which no supremum exists:

Theorem: The set of all multiples of a nonzero element x

(8.48)
F := (ax: xe Ko)

has no supremum.

Proof:

If the vector lattice is Archimedean,

then not even upper bounds
exist.

In general, however, if s = sup(%) exists, then & = x+¥
and

-

s = sup(%) = sup(x + ¥) = x + sup(d) = x + s

whence x = 4 a contradiction.

Q-E.D.

Thus we can only ask for the existence of the supremum and infimum of a

set of elements if that set is BOUNDED, that is, has a lower bound and

an upper bound. Therefore we define a vector lattice to be

COMPLETE (8.49)

if every non-empty bounded set has a supremum (and by involution, an
infimum) . As in the case of the real numbers, we can remove this restric-
tion by enlarging the vector lattice G

Ko to the EXTENDED VECTOR LATTICE
Gﬁ; with two additional elements, - ® and + o :

VxeG,: - X + o
Ko o) o]

(8.50)

inffi=+e; supf:i=-w, (8.51)

Then every set h C Gﬁo has a supremum and infimum:
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If h not bounded from below: inf(h) = - ®

If h not bounded from above: sup(h) =+ co .
Of course GI*<° is not a vector space since t+® + (- ®) is not defined.

Completeness will only be needed to assure the existence of suprema and

infima of infinite sets. As a consequence of completeness,

Theorem: A complete vector lattice is strongly Archimedean. (8.52)

Proof:

Assume-that Va e Ko: O ppa>aapb. Then N={aa: 0 p a}
is bounded above whence ¢ = sup(h) exists. But

-

c+a=supf{(ad + 1)a: 0 o a }

sup{B a: 1 po B}
sup{p a: 0 po B}

= C

©

whence 3. p'¢.
Q-E.D.

The vector lattice (Rn, <) of Example (ii) is complete. Therefore it
is the only n-dimensional complete vector lattice over the real field up

to isomorphism.

+ 4 +
Exercise: Prove that (atb) pa + b
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§9. Subadditive Mappings Generated by a Set of Linear Mappings.

As was the case with scalar norms ($5), we can now generate norms in

V., with values in a complete vector lattice G by supremum construc-—

K Ko

tions over sets of linear mappings:-

Theorem: Let S C Hom(VK, GK) be a set of linear mappings (9.1)

of a vector space VK into the vector space GK and let

Re: GK - Gkb be an additive, &-homogeneous mapping of

GK into the complete vector lattice GKb where Ko is

a subfield of K . Then

7g, (%) + = sup (Re 9(x) : © ¢ 5]
is a subadditive, homogeneous mapping of VK into G¥ , the

extended vector lattice.

Remark: If S is finite, then completeness is not necessary since
G is a vector lattice.
Ko
Lemma: Provided that the suprema exist, (9.2)

n, cn, > supp(hl) P supp(hg) .

Proof:

Since supp(hz) is an upper bound for all elements of he, it is
an upper bound for all elements of the subset nl and therefore is
an upper bound of h, . But supp(nl) is the least upper bound of
()

1.
Q.E.D.

Lenma: Let Ny + N, := (atb : a ¢ N, Dbe nz} . Then (9.3)

provided that the suprema exist,
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Proof:

]

su,pp(nl + 1) supp{supp(a th) :oace n3

supp{a + supp(ne) tace hl}

sup () o+ sup (ny) .
Q.E.D.

Proof of Theorem:
Re ¢(x) 1is an additive, &-homogeneous mapping of VK into Q&).
7q (xty) = sup {Re 9(x) + Re @(y) : 9 ¢ 5]
P P
o sup {Re @, (x) + Re Pp(¥) : @15 @, ¢ S}
= sup_(Re 9, (x) : @ ¢ S} + sup {Re o, (x): e8]

- VS’D(X) + VS,p(Y)

7S,p(d x) = supp{Re ol x) : 9 ¢ 8}
= supp{a Re 9(x) : 9 €S} Vaek
=q . supp[Re P(x) : 9 eS8 VoekK :0pa
= a 7S’p(x)

‘ 7g 0 is a subadditive, &-homogeneous mapping of VK into
° ’

% -
0.E.D.
Examples:
(1) Let VK = %$ . Then Re: GK - %% is the identity mapping.

For S = {I,0} where I is the identity and 0 the zero mapping

of VK into itself,

7g,p(®) = sup [x, 4} = x'

is subadditive and &-homogeneous:
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(a+b)+ 0 a + b (9. L)
Opoa>(oza)+=oza+. (9. 5)
(ii) Let VK = GKo and let S = }I, -1) . Then
s, () = x LI (=)

(ex |_| #) - =

X+ = (X+ - x_)

1

+ -

= x +x
_ 7S,p(x) x| o= o o+ oxT (9. 6)
since 75 is subadditive and &-homogeneous,
latb| o |a| 4= |b] (9- 7)
o a]l =clal Vaoek: O0pa. (9. 8)
Moreover,
la-b| = (a-b)+ + (a-b)-

= [(a-b)+ + bl + [(b-a)+ - b]
al_Jo - a7 (9 9)

|a-b]
From Dedekind's property ((8.36))
ath = al__\b +‘a|—lb;
we now obtain

al_|b = %latb + |a-b|] (9-10)
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al |o = 3latb - |a-b|] . (9-11)

In addition to being subadditive and homogeneous, |x| is non-
negative as a consequence of (9.6). 1Indeed, it is even positive
definite:

la-b] = 0 > (a]_|p) - (a]7|p) = 0
> ai__rb = a‘—Wb
>a=>

> a-b = f&

Thus,

x] 1is a norm. (9. 12)
(1ii) Let VK = Rn and GKo =(Rn, 5), the vector lattice generated
by the full first orthant. Then the norm kl of Example (ii)

n
is just the modulus norm (Betragsnorm) in R ((2.23)).

Most of the results of §5 carry over to the case of vectorial norms

generated by sets of linear mappings. In particular, Theorems (5.8)
and (5.10) now read:

Theorem: If A is a convex combination of elements of S. (9.13)
then
Re A(x) p 7S,p(x), Vo.eVe . (9.14)
Proof:
Let A = Py APy e AN where o€ Ko P, € S, 0 po o
and T ai =1 . Then

1
Re A(x) = o Re @ (x) + o Re @, (x) .. + a Re @ (x)

ploy + g+ + o) sup {Re 9(x): 0 ¢ 5)

= 7a (%) .
Ssp Q-E.D.
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Theorem: If the zero mapping 0 can be represented as a (9.15)
convex combination of elements of S, then 74 p( ) is
)

non-negative and therefore a seminorm.

Example:
(iv) Let Vp = c® and GKo - (RY, <)_as in Example (iii) and let
S =f{a I: |a|]=1) . Then

I = 75(x) = sup{Re (@ x) : |ef = 1)

is subadditive and strictly homogeneous. By the preceding
theorem, it is non-negative [0 = &(I) + %(-I)]; positive
definiteness follows from its explicit representation. Thus

. . n
|X| is--a norm, the modulus norm in C .

As in §5, we may introduce the sets

Ky o= (x e Vo 7s,p(x) PPl PeG . (9.16)

K_¢_= (x: 7S,p(x) p 4} is again a cone and

Theorem: A seminorm 7y

S,p(x) is definite X I?#= 4 (9.17)

We can still represent KP as an intersection of domains

£CP:p = (x ¢ VK : Re 9(x) p p}: (9.18)
“Theorem: K = N £ .1
_— p €S ?,p . (9:19)
However, £cp D is no longer a half-plane:
2
F =1 : = p-G+ .
or =1, &, _{xt xpp =pG
+
For ¢ = -1, o0 - {x: -x p p) = ptG
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A set G 1is

CONVEX (9.20)
if
Va beG: pa + (L-p)be G, O poppl . (9.21)
Theorem: £ is convex. . 22
— ®,p ¢ )
Proof:
Let a,be:.tcpp and O po w @ L . Then Re ¢(a) pp A Re ¢(b) p >
J
and Re ¢(u a + (1-p)b) = p Re ¢(a) + (1-u)Re @(b)
ouwp + (1-p)p
=D
since 0 p w and 0 po l-p . Therefore w a + (L-p)b e £q) p
) .
Q-E.D.
In general,
+ -1 +
Spp - X 2 Re 0lx) e -G} = (Re 9) " (p-G ),
the preimage of the translated cone p-G+ . Letting ﬁ denote the

one-to-one mapping of Vk/Ker(Re ®) into Re @(VK) induced by Re o,

A=l
%v’p/Ker(Re ?) = § (Re ¢(VK) N (p-G+))

If GKo is a finite-dimensional, Archimedean vector lattice, we might

expect the domains to be intersections of half-spaces rather than

By
PP
half-spaces themselves. 1Indeed, if VK is a vector space over the real

or complex field and GKo = (%, <), then
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~ {x: Re 0(x) < p}

Psp =
= {x: eT Re ¢(x) < efp, i =1,2, .00, m)
m
= N {x: Re et o(x) < e T D)
. i =&
i=1
m
£ = N H
(p’p i=1 Re e CP, e p
and therefore
m
K =N £ = T
P veS ®,p i= 1 veS HRe e, ¢, e p .

(9.23)

(9.24)

This result is obviously a consequence of the fact that (Rm, 5) is a

direct union o-f the linearly ordered real field, and we shall now like-

wise investigate this effect on the mapping 7860 .

Let VK be a vector space over the real or complex field and let G

(Rm} 5) . Then it is easily seen that each component of a subadditive,
homogeneous mapping of VK into Gkb is itself subadditive and homo-
geneous. If the mapping is a norm generated by a set S, then each
component is a bounded seminorm or even a norm; moreover
Theorem: 7sl(x) (9.25)
Ya (X
Sm
where
T

S; = {eicp. Pe . C vﬁ (9.26)

Proof:

75(x) = sup{Re @(x) : @ eS)

e{ sup Re ¢(x)

T
' m
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sup Re ei o(x) T
I since e, sup (h) =

T
sup Re n o(x) Sup(ezn) in (Rmyf_)

YS?(X)

75. (x)

Q-E.D.

In the literature, only a special case of this result has been studied:

the case where

The i-th c?mgonent of the norm v(x) is a norm on the (9.27 )
i
subspace VK‘ = PiVK.
Examples:
(1) Let Ve = R2 and GKO = (R2, <). Then the sets

10 1 0 -1 0 -1 O 410 -1 0
give rise to the same sets 8 = {+(1,0)} and S, = {+(0,1)} am
therefore generate the same norm. Note, however, that the second

set does not generate the first set by convex combination.

(ii) Let ¥ = R* or ¢" and Gy = (R%, <) with v(x) the modulus
norm in VK Then each component of V(X) is a norm on the sub-

space formed by all scalar multiples of a coordinate axis.

(1ii) Let Vp = R and Gy, = (R2, <) with the norm
% ( max (|xl|, xg)
v ( X, ) =
X5 max(-xg, |x5‘)
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V(x) 1s generated by

which gives rise to the sets

"

{(x00), (<100 ), (010)}

5

S

, = {(0-10), (001, (VO0-1)

In this example, neither ysl(x) nor ysé(x) is a norm though

both are bounded seminorms.

Theorem: Let y be a symmetric seminorm on VK . Then there (9.28)
exists a subspace uK c VK such that y restricted to uK

is definite.

Proof:

Since y is non-negative, the cone K, = (x: Y(x) p4ﬁ is the domain

where 7(x) vanishes. By symmetry (y(-x) = y(x)), K¢ contains with

every element x its negative -x . Therefore K is a subspace of
VK ) Let uK = VK/KQ and let P be the projection of VK onto uK
If x ¢ UK and y(x) = Q} then x € K¢_ whence Px = 0 and x = 0
since Px = x V X ¢ uK . Thus y 1is definite on UK

In conclusion, we note that the concept of linearly transformed norms
carries over unchanged from §7 to vectorial norms, and that relation

(7.3) is valid for the transformed generating set.

Exercise: Prove that ar—lb P X P al_lb > lxl P Ial I_J |b| .
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§10. Additional Remarks.

We have seen how norms can be generated from sets of linear mappings.
The question may arise whether all norms are so generated. The following
theorem is suggestive:

Theorem: Let y be a subadditive mapping of VK into G (10.1)

Ko
Define

S=1{p : o is additive; V x e Vg p(x)p 7(x)} - (10.2)

Then 7s(x) o 7 (x)

75(x) = suwplo(x) : 9 ¢ 5)
Eup{@(x) : @ is additive; VEGVK:Q(E)D7(§)}
pr(x) .

Whether such a set S generates y(x), that is, whether the supremum
is indeed y(x) for all x, depends on the topological properties of
the space VK . In finite dimensional spaces over R and C, the
support theorem guarantees that 7de = y(x)
A further remark concerns the basic triangular inequality (2.16):

vix . y)p vix) . v(y) .
Replacing x by x + y and y by -y, we obtain

v(x) - v(-y)p v(x + ¥), (10.3)
or, combining the two inequalities,

4 - v )pvix 4+ y)-v(x)p viy) . (10.4)

If vis symmetric (v(x) = v(-x)), then
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V(x4 ¥) -v(x) o viy)
Replacing y by -y in (10.3), we obtain
v(x) -v(y) p vix - ¥)

Again, if vis symmetric, then

() -v(y) | p vix . v) .
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§11. Mappings of Normed Vector Spaces

Let VK and V. be normed vector spaces with norms v : VK - «H%,p)

K
and Vv : Vﬁ - «%;,p') . Let A be a linear mapping of VK into
/ . . . "_. / .
VK . Then a linear mapping B: G&; GKo 1s an
UPPER BOUND EOR A or LIPSCHITZ BOUND (11.1)
if
v/ (Ax) o’ BV(x), ¥ x v, - (11.2)

The situation is illustrated by the following diagram:

-

Vg (GKo,p)
Al ! B (11.3)
U
v
g = (G sp")
. - H 7 - H 7 '
A mapping | Iv’,v om(VK,VK) Om(GKb’GKb) is an
UPPER BOUND MAPPING (11.%4)

. _ . ’
if B= E]v’,v is an upper bound for A for all A € Hom(VK,VK).

Examples:
(i) Let ¥ = Vg = R" and Gy = Go = (R,<) with v(x) = vi(x =|x|,
the modulus norm. Then A ¢ Hom(R,R"') is an n Xxn matrix (a..)

iJ
and an upper bound mapping is given by

lKI = |A| $= (|aij‘)
(11) Let ¥ = Vg = R® and Gy = GI'<O = (R,<) with v =V (x)-=

(ZX§)%, the Euclidean norm. Then
i
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—_ 2
x| := mgxlaii\ + (j4k a.lk)%

is an upper bound mapping. Another upper bound mapping is the
Frobenius norm ((16.17))

—_ 2 \%
|Z| = llall, == (=& )% .
F . ik
Similarly, a linear mapping C : GKo-a Glgo is a
LOWER BOUND_FOR A (11.5)
if Cv(x) p'V'(AX), ¥V X e ‘I{K . (11.6)

- 7 1 .
i : - Hom(G, >G; is a
A mapping .l_‘vl,v : Hom(VK,VK) om( K, ? K0)

LOWER BOUND MAPPING (11.7)

if C= ]é_]v/,v is a lower bound for A for all A e Hom(VK,VI;) .

Example:
; 2 _ v 2 .
= = = = R < = )
Let Vg = Vg = K and G £ (R%,<) with v v F3,
the modulus norm. Then
A= (3 L has the lower bound C = > -1 since
1 3 -1 3
x| 5%, +3,
5 -1 1 1 2 — —_
cv(x) % < =|ax] = v'(ax) .
{ -1 5) x2|J |x2 + 5x1\
c =0 is also a lower bound for A and L—-\v’,VEOiS a lower

bound mapping.
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§12. Least Upper and Greater Lower Bounds I.

We shall first investigate the case of scalar norms; that is, GKb = Géb =
(R, <) . For a given mapping A € Hom(VK,V{{), the set of all upper
bounds for A has a least element, ‘the LEAST UPPER BOUND:

lubV/,V(A) := inf{p v’(Ax)<sv(x),vxevK}. (12.1)

Since V’(Aﬁ) <B V(ﬂ) for all R,

lubv’,v(A) = inf{g : v'(ax) < BV A x #4}
. X
= inf{p : VZA-;sz)‘S B A V(x) # 0}
N =inf{p : v (Ax)<pAvV(x)=1 )
Lub,,, V(A.) = sup{v’(Ax): v(x) = 1} (12.2)
)
lub, , _(A) =sup{vl(AX) T X %-Q} (12.3)
Vi,V V(x)
lubV/ v is, of course, an upper bound mapping and
>
- A /
Lub, | (A) < IAIV,,V, V A e Hom(Vy,Vy) (12.4)
for all upper bound mappings rwvl v - Moreover,
)
Theorem:  The mapping lub , . : Hom(VK,Vk) - R is subaddi-  (12.5)
)

tive, homogeneous, and positive definite.

Proof:

luby. (A, &)

= sup{v’((Al + AQ)X) s v(x) = 1)
< sup{v’(a;x) + v'(ax) : v(x) = 1)

< SUP{V/(AIXI) + V’(A2x2 : V(xl)= V(XE) = 1)
= SPP{V/(Alxl : v(xl) = 1) + sup{v’(A2x2 :V(x2)= 1)

= lubv/’v(Al) + lubv,,v(Ag) .
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Note that lubvlv

S lubv/ N is subadditive; homogeneity and nonnegativity are like-
)

wise inherited from ..

/
lubV/,V(A) = 0> v'(Ax) <0,V x € Vg

> v/ (Ax) =0, V x ¢ Ve since Vv is
nonnegative
> Ax = 0, V x e VK since Vv is
a norm
A =0 .
. lub, is definite.
vy Q-E.D.

may not be bounded and therefore may not be a norm.
)

Example:

Let VK = Cl[O,l], the space of once continuously differentiable

functions on [0,1], and let Vk = ¢[0,1], the space of continuous

functions on [0,1] . Take

vig) = vi(f) = max{|f(x)| : 0 < x <1} .

Let A = Then ¥B:

2l

max|f'(x)| = v(Ax) < B v(x) = B.max|f(x)]

for all f e Cl[O,l] . Therefore, lubv,,,(A) =+ o

H

Any mapping A € Hom(VK,Vé) for which lubvl v(A) < + ® is said to be
)
bounded. That the set of all such mappings is a subspace of Hom(VK,Vk)

follows trivially from the subadditivity and homogeneity of lubvz
)

v o

Thus:

Theorem: lubV/ N is a norm on the subspace of all bounded (12. 6)

)
mappings.
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In this case, lubv, V 1s called the
)

LEAST UPPER BOUND NORM (2. 7)

subordinate to the norms V' and V 1

In finite dimensional spaces, every mapping is bounded, independent of
the norms V' and Vv used. This can be shown by a compactness argu-
ment or by Ostrowski's theorem that all norms over a finite dimensional
space are topologically equivalent; that is, given norms Vl and Ve

over VK, there exists a constant 7 such that

V . GVK . Vl(x)<1‘ . VE(X)
Thus, the proof is reduced to the case where Vv and v/ are the maxi-
mum norm over VK and Vﬁ and follows by using the product topology.
For a given mapping V € Hom(VK,Vk), the set of all lower bounds for
A has a greatest element, the GREATEST LOWER BOUND:

glb,, (&) := sup{y: yv(x) < v/(Ax), V x e ¥y} . (12. §)
)
= inf{v'(Ax): Vv(x) =1) (12. 9)
/
= inf{v—vg%zz x # 4 . (12.10)
glbvl v is, of course, a lower bound mapping and
b
/
A v,V < glbv/’V(A), VaAce Hom(VK,V.K) (12.11)

for all lower bound mappings LJ ' . Thus, for all x e ¥, with
V ,V 7/ -IK.

(Ax)

Vv
x # 4, we may bound the MAPPING DISTORTION EIOR

v/

(Ax)
lAlV/,V S gle/’V(A) S WS lubvl,V(A) S |KIVI,V .
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The mapping glbv/ v is homogeneous and nonnegative but neither subaddi-

tive nor definite.' Indeed, it is not even superadditive
(glbv,,v\(Al)- + g‘lb",‘,v’(Ae) < glbv, (A +A2)) as one might expect.

Theorem: If A is not injective (Ker A # {$}), then (12.12)
glbv/,v(A) =0 .

Proof:

KerA={erK:AX=‘¢}7‘¢>HX?é¢"AX=¢
> dx # 4 : V(AX) 0
>glbv/’v(A) =0 .

If A is injective (but not necessarily surjective), then a left inverse

-1 , -~ /
A exists on AVK c VK and

glbv’,v(A) = in f{_\)_é_l-_\_))c_z :oxeV A x # 4

e v (Bx)
= lnf{V(A—lA) : XGVK AN x # $3
. (y)
= inf v
{V(A y) P yeAV, Ay # 4]

l/sup{XT’A'(%l : yeAV, Ay # 4

v

l/Sup{—-rz—-j er - 74 '¢'}

L
l/lubv’ v/ (&)

where ALe Hom(V;.,Vi{) is any mapping which coincides with 2! on AVK,
an extended LEFT INVERSE of A:

L
ATAx = x, VYV x ¢ VK‘. .
Theorem: If A is injective and al s any left inverse (12.13)

L
of A, then gle/,V(A) > l/lubv ,v/(A ) .
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L) < + ®» and

Moreover, if A" is a bounded mapping, then lubv\ﬂ(A
L D
glb,/  (A) > l/lubv,v/(A ) > 0.

In finite dimensional spaces, all linear mappings are bounded and any
injective mapping has at least one left inverse. Therefore A 1is injec-

tive if and only if glbv/v(A) >0
J

Theorem: If A is regular (injective and surjective), then  (12.1k4)

-1
glb,s , (B) = l/lubv, v,(A )

Proof:

If A is regular, then AVK = Vé and Z—\_1 is uniquely determined.

Thus, we may sharpen the proof of Theorem (12.12)

gle/,V(A) - inf{v’# pyeVe Ay £ 4)

v(A"y)
= l/sup{%é:(;,%l yely Ay # 4]
= l/lubv, ,(A'l)
0.E.D

If VK = Vﬁ, then the mapping A : VK - Vﬁ is an endomorphism and may
be injective yet not surjective. In finite dimensional spaces, a dimen-
sion argument shows that this situation cannot occur and we obtain a

nonsingularity criterion:

. Theorem: If A is an endomorphism of a finite dimensional (12.15)
vector space, then

-1
l/lub (A7) if A nonsingular
glbv/,v(A) = {;) VoV otherwise.

If VK = Vé and v=v’, then the greatest lower bound and the least

upper bound of the identity endomorphism are given by:

glbvf,v (I) = lubV/,V(I) =1
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Although glbv/ v is not subadditive,
J

Theorem: glbvl)v (3 + A2) < glbv,,v(Al) n lubv/’V(Az) (12.16)

Proof:
For any € > 0, there exists §evK with v(¢) = 1 such that
glbvz’v(Al) = v'(Alg) - € . Therefore,

(A, +A

| FA) < V(8 + AE)

glbv',v
<v(a) + v (asg)
glb, , V(Al) + & + v’(Agg)
)

< gle/,V(Al) + lubv,’v(Ae) + €

- Q-E.D.

From (12.5) and (1216) we obtain a result analagous to that derived for

vector norms (see (10.4)):

1lub. |

vy B lubv,’v(-B) < 1ubv,,V(A+B) < lubv,,v(A) + lub,, (B)

112.17)

glb, s ,(A) -lubv,,v(-B) < glbv,,’v(A+B) < glbv,’v(A) + lub s (B) .
(12.18)

If v and/or v’ is symmetric, then these relations simplify to

Ilubv,,v(A+B) - lubv/,v(A)l < lubV/,V(B) (12.19)

Iglbv,,v(A+B) - glbv,,v(A)I < lubv,,v(B) (12.20)

as a consequence of the following

Theorem: if Vv and/or v’ 1is symmetric, then lub, /s, 18 (12.21)
- J

symmetric.
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V(X) = v(-x) > lub, v('A) — sup{v' (Ax) : v(x) = 1)
)

sup{v’(A(-x)) : v(-x) = 1)

sup (v' (Ay) :: v(y) = 1)

) lubv/,v\(li\) B

vi(-x)= v'(x) » lub, / v(-A) = sup{v’(-Ax) : v(x) = 1)
b
= sup{v' (Ax) : v(x) = 1)

= lubv,,v(A)

Q-E.D.

Relations (12.19) and (12.20) may also be expressed as

IN

llubV, y (B) - lub V(B)I

) )

lub, / v (A-B)

- < -
Iglbv,,v(A) g;bv,,V(B)I lub, ., . (A-B)

- )
from which it is easily seen that lub,, . and glb , ., are continuous

bl \4

mappings with respect to the topology generated by lubv/ v
)

The effect of norm transformations on luby’v and glbvlV is given by:
)

Theorem: Let 6f and VR be the transformed norms corre- (12.22)

sponding to the nonsingular linear transformations Q and R:

Vé(x) = v/'(Qx) and VR(x)=V(Rx).

Then
-1
lub,, () = lub_, . (QAR ) (12.23)
VQ'VR v,V
-1
glb_, (a) = glb,, . (QAR ™) (12.24)
VQ’VR v,V
Proof: V'(Ax)
lub,,, ., (A) = supl Q c x #4)
‘Q'R V)
v/ ( QAR 'Rx)




A similar argument shows glb\i),

QR.
Q.E.D.

Thus, if v’ 1is invariant under the group of norm transformations q

and v 1s invariant under the group R, then lubv/ y are invariant

under the product group @x R : A -~ §AR .

Let A be an endomorphism of a normed vector space VC over the complex

/

field C and let _V' =V be strictly homogeneous. Then:

Theorem: If A is an eigenvalue of A, then (12.25)
glo, @) <l < by, (8) .

Proof:

Let A be an eigenvalue of A and x the corresponding eigenvector.

Then Ax = AX and

glbv’v(A) < V\(,‘%fcg = "5’(8 = || V(x-)\;-(;jlxl <__lubv,v(A)

Q-E.D.

The domain defined in (12.25) is an annulus in the complex plane. For
real, nonnegative eigenvalues, the assumption of strict homogeneity may
be dropped. In this case, if A = eler, T > 0, is an eigenvalue of A,

, . . -i
then T 1s a real, nonnegative eigenvalue of e eA and

(e_leA) <7< 1w, (e-leA)

glbv/ Vv ,V

’V

The domain is still an annulus but the bounding curves no longer need be

concentric circles.
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If the norm v’ is generated by the set S'C:VI/{D(V'=VS/), then

V'(AX) = sup{Re ¢(Ax) : ¢ ¢ S')

and
1ub, . . (A) = sup{v’(Ax) : v(x) = 1)
= sup{sup(Re ®(Ax) : @ €8’} : v(x) = 1)
= sup(Re ¢(Ax) : ¢ € S, v(x)= 1)}
= sup Re {p(Ax) : 9 ¢ 5", Vv(x) =1},
the BILINEAR CHARACTERIZATION OF THE LEAST UPPER BOUND. (12.26)

This leads us to introduce the
BILINEAR FIELD QF VALUES _OF A (12,27)
subordinate to VS' and v :

PS’,v[A] = {p(Ax) : 9 ¢ a', v(x) =1} . (12.28)
Since

lubv/’v(A) = sup Re PS',V[A]’ (12.29)

lubv, V(A) characterizes the position of a parallel to the imaginary
J
axis supporting PS'V[A] from the right. In the special case of

/

Vi =V = Vg comparing (12.28) with the more restrictive (6.8) gives:
GS[A] = {p(Ax) € Pg ,V[A] . o(x) = v(x)) ¢ Pg, v (a] . (12.30)

Thus by Theorem (6.10),
Exclusion Theorem: No eigenvalue of A lies outside (12.31)

PS v [A]; that is, if A e C is an eigenvalue of A,

)
s
then \ € PS’VS[A]
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Pg , [A] is not only larger than GS[A] in general but is also not
b
s

covariant under translation. Like GS[A],

UNDER SCALAR MULTIPLICATION:

however, it is INVARIANT

¥ r1ekK: PS,Vq['rA]= T PS,V (A], (12.32)

and, for nonsingular B,

-1
[A] = PS » S[BAB ]

SB

4

P
SB,Vv

More generally, 1f B and B' are nonsingular, then

S[B’AB'l] . (12.33)

(Al = P

Sp S,V

Porps ,V
If either v’s or V 1s strictly homogeneous, PS' V[A] will have
)

rotational symmetry about the origin: If g e PS’ y[A] for some

choice of ¢ and x, then w q € PS’ Y [A] for all w with |a>| =1
J
(consider the element of PS’ V[A] generated by either w ¢ and x
2

or ¢ and wx) . Thus, (12.51) is a generalization of (12.25) without

the restriction of strictly homogeneous norms.
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§13. Dual Norms

The order in which the suprema are taken in (12.26) may be reversed:
VoY x \QeS'

lub_, () = sup{f)ub {Re @(ax)} : v(x) =1§

= sup sup{Re PA(x) : v(x) = 1}
PpesS' x

D
If we define the mapping v orV]?K = Hom(VK,K) by

V() = suplRe ¥(x) : vi(x) = 1) 130 )
_ = sup {Rj 1 =L x £4) (13.2)
= inf{B : Re V¥(x) < B-V(X>,VX€VK}, (13.3)
then
Lub,, ,(A) = suplv" (98) : @'}, (13.4)

the DUAL CHARACTERIZATION OF THE LEAST UPPER BOUND.

The supremum of (13.1) much resembles the supremum that led to the least
upper bound. In fact, since Re is additive and homogeneous, a proof
analogous to that of Theorem (12.5) shows that WP is subadditive and
homogeneous. However, since Re is neither non-negative nor definite,

. D . .
another argument is needed to show that v is positive definite:

Proof:
D A
Assume thatv(lll)SO . Then VXeVK with x;é-¢-:%{-(rﬁso.
But for such x, v(x) > 0, whence Y xeV, : Re ¥y(x) < 0 . In

. X
6
particular, V 6 e [0,2m), x € Vg : Re eletb(x) = Re {(e™"x) <0

Therefore ¥(x) = 0 and ¥ =‘¢D; that is, ¥ 744‘]3 > VD(W) >0 .

Q.E.D.

80




If VD(¢) is bounded, then W ois a norm; therefore,

D . .
Theorem: V (¥) 1is a norm on the subspace of bounded linear (13.5)

functionals of VK, the
DUAL NORM_TO THE NORM y. (13.6)

L . . . . . D
In the finite dimensional case, every linear mapping is bounded and v

. D
is a norm on VK for every norm v

Examples:
(i) Let VK = Rn (or Cn ) with v the Tschebyscheff norm. Then
D
Ty o= (4 e ¥ )€ VD

-

IO ) (15.7)
i=1

the Manhattan norm on the dual space.

(ii) Let VK = Rn (or Cn ) with v the Manhattan norm. Then
D
V‘V = (‘l’l, e vy ‘l‘n)e VK’

Ly = nax vyl (15.8)
1<i<n

the Tschebyscheff norm in the dual space.
(iii) Let VK be a Hilbert space with the scalar product norm

v (x) . (@(x,x))g . Then by the Riesz Representation Theorem,
Vye Vg dye VK: ¥ (x) = o(x,y) and

D
vy . (13.9)
(iv) Let VK = R" and lgt A be Hermitian and positive definite so
2 T ,D D
that v(x) = (XTAX-)2 is a norm. Then Vy'e Vi =R,
D, T T -1 \3
viy)=(rayE . (13.10)
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In particular, if A = I, then v is the Euclidean norm and
n 1
D, T 2\2
V(Y)=(Z|yi|);
it
the Euclidean norm in the dual space.

D
If the set S C VK generates the norm vg, then the unit ball of the

dual norm
D D
K = {¥e Vo v3() < 1]
is closely related to 8 . 1In fact, since from (13.3)
.. D
- VS(W) < 1 % Vxe VK: Re V(x) < vs(x),

it follows that

]

9

(ve Vi w3(¥) < 1)

{Ve Vg: Re V(x) < VS(X), Vxe VK}

(13.11)
D
= XQVK {ve VK. Re ¥(x) < vs(x)}
= XQVK x,vs(x)
where
B i= (e ¥2: Re ¥(x) < o} (13.12)
x,a Kc o .
. , D ) HD
is a half-space in V_ . It is clear from (9.1) that VxeV_: SC
K K x,vs(x)
On the other hand, if ScC H ,» then VpeS: Re o(x) < @ whence
)
c
VS(X) < o and HX,VS(X) - Hx,a . Therefore,
KD . . . . D
Theorem: 1 1is the intersection of all half-spaces in VK (13.13)

containing S, the
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BIPOLAR HULL OF S . (13.14)

As a consequence SC KE and, since the half-spaces Hx are convex,

Py

H[S] © Klf, (13.15)

where H[8] denotes the CONVEX HULL OF S, the intersection of all

convex sets containing S . 1In finite dimensional spaces,

K]i = FH[S] (13.16)

where ¥ denotes the topological closure operation.

Example: ~
Let VK = R and 1let

2 2 2
5 = {(ll, Ry !ln). R N /ln<l},

the open unit sphere. Then
2 2 2
K]; = {(zl,..., zn): 1+, * +zn51},
the closed unit sphere.

At this point it is interesting to note that the work of the preceding
paragraphs could have been done usingPl rather than S . However,

the eigenvalue inclusion theorems gave better results for simple (minimal)
sets S . Also, it is nicer to generate norms without resorting to limit

processes and this can only be done for finite sets S .

If the norm v' is generated by a finite set 8', then (13.4) reduces

lub, V(A) to a maximum over a finite set of dual norms:
J

1, (8) = max (v(oA)} - (13.17)
’ peS’
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Examples:
% and let v' be the Tschebyscheff norm with

4 — ]
(1) Let VK = VK = C

generating set

$' = u {we'f:" lo| = 1]
1

Then

vD(wezA) } (13.18)

lub ,  (A) = max
VoV 1, |a] =1

If v is strictly homogeneous, then

D, T
lubv,,v(A) = mi% v (eiA), (13.19)

the maximum of the dual norms of the rows of A If v is the

n
Tschebyscheff norm, then v~ is the Manhattan norm and

lubv,,v(A) = mgxz |aik|’ B 0 m
ik
the ROW SUM NORM. If v is the Manhattan norm, then VD is
the Tschebyscheff norm and
(13.21)

Lub,, (A) = max lay |5

the MATRIX TSCHEBYSCHEFEF NORM.

(11) Let VK = Vk = c™ and let v' be the Manhattan norm with

generating set
ie i6 ie

S'= ((e l, e 2, . ey € n}

Then

V(A) = max ’VD(ZTA) . (13.22)

lubv,
, 1
ZTeS'
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If v is the Manhattan norm, then vD is the Tschebyscheff

norm and

lub , (A) = max max |£TAe l
ARy T X
£7eS' T k
T
= max max |£ Aekl
k 1T€S'
lub . (8) = mixg EUNIP (13.23)

the COLUMN SUM NORM. If v is the Tschebyscheff norm, then vD

is the Manhattan norm and

T
lubv,,V(A) = r;ax % | £ Aekl
L eS!
= maxz |e’TDlAek| (see (6.22))
D, k
lub,, (A) = max }; | Z (0,8 | (13 .24)
D,k i

the maximum of the sum of the absolute values of the column sums
of A under left-sided phase transformations. One might have
expected from the duality between the Manhattan and Tschebyscheff

norms that

o, (8) = ¥ ey

ik
in this case. Indeed,
b, () siZk ., |5 (13.25)
b

however, there is equality if and only if A is non-negative up

to a two-sided phase pattern transformation. Thus in general,

Z laikl

i,k

is merely an upper bound for A compatible with the Manhattan
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norm v' and the Tschebyscheff norm v

(1iii) Let VK = Vk = ¢" and let v! and v be the Euclidean norm.

We introduce the

BELTRAMI-JORDAN DECOMPOSITION .OF A: (13 .26)
A= U 502
where U and V are unitary and £ = diag(qv Ops ooy Un)2_0

Since the Euclidean norm is invariant under unitary transformations,

- o
Lo, . (8) = 1w, (U ZV)

g = max o,
so that
o < max o,
v i
}ubv,’v(A) = m?x 0y (13 .28)
the EUCLIDEAN BOUND NORM ("SPECTRAL" NORM). The non-negative
scalars oi are the
SINGULAR VALUES OF A_ . (13.29)

, H ‘w2 H . . o
Since AA= UZ U is Hermitian positive definite, the o,
are just the non-negative square roots of the eigenvalues of
AHA . If A is Hermitian or normal, then the Ui are the

absolute values of the eigenvalues of A .
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§14. Least Upper and Greater Lower Bounds II.

We shall now consider least upper and greatest lower bounds in the general

case where GKb and Gﬁb are not both one-dimensional. But first we

must state what we mean by such bounas.

Let B[A] C Hbm(Gkb’ q&) denote the set of all upper bounds for A
((11.1)) and let C[A] Hom(GK), %&) be the set of all lower bounds
for A ((11.5)). To compare bounds within these sets we must introduce

an ordering p in Hbm(q@, %&) . Thus we define

v 4, -&2 € Hom(GKO, GI'Q;): .&l 0 .&2 3% VxeGKD: $ox > 31x p! .3’2x .
(1 .1)

Theorem: 5 is transitive, reflexive, and antisymmetric. (14.2)

Proof:
Transitivity ((2.2)) and reflexivity ((2.3)) are inherited directly
from p but the proof of antisymmetry ((2.4)) is more difficult:

ﬁi o Jé A Jé 0 J& > VxeG : Jix o ﬁbx N x ' &x

+
> VxeG : -&lx = .&ex

: + +
> M =-& i = -
'\7'xeG-K.o J&g X since GKb G G
>4 =%
1 2
Q.E.D.
Thus p 1is an ordering of Hom(GKb, Gﬁb)’ the
ORDERING INDUCED BY p AND p'. (14.3)
Moreover, it is
COMPATIBLE WITH o AND p': (14 .4)
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X, p Xy A '&l o -3‘2 > '&lxl p! -&2}{2 . 05

Example:
Let G = (RY, <) and Gt = (R

%
in Hom(Rk,Rz) - g4

a <)_. Then the ordering p induced

is given by
S0 H & Vi, j: (.. < (H).., (14.6)
an elementwise ordering which we shall again denote by < .

As might be expected, we can obtain weaker bounds from known bounds by

means of the ordering o:

Theorem: ~ (% .7)
s >
Bl e B[A] A Bl o B2 B2 e B[A]
s >
C, € C[A] A c2 o cl C, € C[A].
Proof:
Assume that B; € B[A] and Bl D B, Then v ' (Ax) p' Blvbdp'Bgvbd
since 0 p v(x) . Therefore B2 e B[A] .
Q0.E.D.
_ Theorem: B[A] and C[A] are convex. (14.8)
Proof:
Let By, B, e B[A] and assume 0 po B po 1 . Then

v!(Ax)p! Blv(x) A v'(Ax)p! Bzv(x)
> vt () o' BBV A (L)' (A o' (1-w)Byy (x)
> v (ax) o' [w By + (1-w)B,Iv(x)

> BB, + (1-»)32 e B[A] .

1

Q.E.D.
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The zero element 0 of Hom(GKO, GI’<°)

is always a lower bound:
0 e C[A] . (1k. 9)
However, this does not imply that V & ¢ B[A]: 0 p # . Indeed
H ¢ C[A] A & ¢ B[A] > Vxﬂe_VK: Hy (x)p'dv(x),
whereas

H?J-&?éVZEG;;O:HZ ot &z

Still,

+
Theorem: If v-(x) 1is SURJECTIVE ON GKo’ that is, if v is (14.10)

. + °
a mapping of VK onto GKo’ then
HeCAl A & e B[A]l > H p &

+
For now (V(x): erK} ={z: 2z ¢ GKo} .

In the case where GI'<c> = (K,00), the induced ordering o is an order-
ing of Gy = Hom(G ,%), the

DUAL ORDERING (14.11)
(For GKo = (Ko,po) as well, ?3 reduces to the ordering p of Ko ).

+ . .
The DUAL CONE. of the positivity cone G is then given by

P2

{WGGEO: 0 ot (x), VxeG+]

[#]
1

D
L {\]leGKo. 0

[}

(o)
i

> XQGT- {*#GGED: 0 o ¥(x)] (14.12)

an intersection of half-spaces. The question of whether B[A] C Ggo

has a least element and C[A] a greatest element was answered in §8:
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D
B[A] has a least elementpo ¥ B[A] = po + G,

C[A] has a greatest elementys ¥ C[A] =y - G]_)_'_ .

Examples: i l
(1) Let V., = R° and G, = (R ,<) w1tthl I
K Ko 2 = | 9 (1413)
the modulus norm. Let V' = R and Xo.
GIl{o = (Ry,<) with v'(x) = |x| . Then VA = (81’32) € Hom(VK,VI'{),

Bla) = {(p,B,): lajl < Bys la,] <8

C[A] = {(71’72): 71 S lall’ 72 S. |82‘) 7l|all + 72I82| S. O}

in

Since B[A] is a translated positivity cone, B[A] has a least

element B = (Iall, |ael) . However, C[A] has no greatest element.

2 2 'X]_
(ii) Let Vg =R and Gy, = (R%,<) withwv | = . (14.14)
et Vi = R and G = (R,<) with 2
v'(x) = |x| . Then VA = (81’82) € Hom(VK,VI'{),
fo 2
BlAl = {(51’52)' By + By 2Vey * 32}
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B[A] has no least element and C[A] has no greatest element.

Moreover, since the values of v(x) lie on a single ray in
+

v is not surjective on GKb and Theorem (14.10) does not apply.

Indeed, there do exist some lower and upper bounds which are

incomparable.

(1ii) Let Vo = R° and Gy, = (Rg,g) with (14,15)

v(xl) [ I=d |%, |
2l \max (|x |, |x,])

Let Vi = R and Gy = (R,<) with V'(x) = |x| . Then
VA = (81’82) ¢ Hom (VK, VI'{)’

Bla)={(8,8): 28y +8, > aj| + lagl, By + B, > max(la; ], |a, )]

an intersection of half-spaces not yet a translated positivity

cone. Note that v 1is not surjective on GKb

1 ] a 1 4D
Let GKo = (Koym) and assume that v' 1is generated by a set S'CV K
of linear functionals. Then in a purely formal manner, we may extend

the concept of the least upper bound of A ¢ Hom(VK;Vk) with respect
to the norms v' and v:
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o= 3 D . 1 v
lUbv',v(A) : 1nf[BeGKo. vt (Ax) po PV(x), Vxe K}
inf{BeGD : sup Re OQA(x) po Bv(x), VxeV }
Ko K
Pes’
sup inf{BeGﬁo: Re @A(x)po BV(x), VerK}
PeS’ )

sup inf{BeGIlzo : Re ¥ (%) po PVv(x), VerK}
YeS'A

where the interchange of infimum and supremum is again purely formal.
D

S'AC VK is a set of linear functionals on VK . Thus, provided all

the necessary infima and suprema exist, we have reduced the study of

upper bounds for homomorphisms A € Hom(VK,VI%) to the study of upper

bounds for linear functionals cpeVK . It is well to remark at this
point that although G and Gy = (Ko,po) are assumed to be vector
lattices, Hom(GKO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>