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1. Introduction

Managerial decision-making traditionally conforms to a separetist

philosophy, } i.e., decisions are meade without questioning the origin of

the premises. Thus, sccourting-dats, engineering-dsta, sales-dats, etc.,

as supplied by different functional representatives are sccepted as valid

representations ~f the state «of the deciclion-environment.

The development of powerful computerized information processing

systems has brought an increasingly large portion of msnagerial functions

within reach ~f mechanizatinn. Usually such mechanization is performed

by retaining the basic philosophy of separst.ecm, {.e., given unambigu-

~usly represented deta, a programmed decision-procedure ic employed to

attsin desired results. This spprosch, however, does not fully take

advantage of the capabilities of modern informestion-technology, i.e.,

adventage has not been taken of the possibilities of tailoring the infor-

matir. systemeg to the needs of the mansgers. However, the informstion-

needs of the manager: sre by no means clearly defined. Dr. Parocld Koontz

in 8 recent pane. discussion” described how an information-system tailored

to the -tated needs of the executives of 8 progressive company turned out

tc be 8 complete failure, becauge the decision-makers were used to receive

informeron, not to ask for it.

Tnuc emsy access tc a8 large store of raw-dsts, i.e., largely unedited

simple elements of informst.-n, dces not in itself give an optimal support

to efficient decision-making even if it potentisllycen supply any infor-

mation needed by sn executive. On the contrary, (t is a commonly held

opinion tnat efficient problem-solving requires suitable representations

of problems, and thus also suitably organized data.
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The situation is illustrated in an example due to Norse, where a

“typical” inventory-problem such ss finding sn optimal reordering-policy

for sppliances is represented as a queuing-problem. The existence of

alternate representations of problems implies that the need for data can

not be determined until a particular representation is choser.. This

suggests that instead of supplying s set of well organized data-represen-

tations to en informstion-processing system, a richer, and more satisfac-

tory situation would be achieved if the “system” could accept a minimal

rav-data representation, decide how to represent encountered problems,

orgsnize dats ag required, and then perform the actual data-processing-

phase. It may be doubtful if such a system can be designed, however, it

is quite possible that the following question at least for certain areas

can be answered in the negative.

Are all significant analogies (representstions) beyond the capabliii-

ties of explicit design-rules, i.e., are all significant anslogies

"crestive”?

The present thesis sttempts to show the feasibility of designing

an sutomsted system for finding suitable representations in & special

case, where

(8) The "raw-dsts” arc restricted toc symbol-differentistion.

(bt) The problem iz restricted to sequence extrapolation.

(c) The number of siternstive representations is restricted but

experdstble.

Although the thesis is restricted to s specific cese, the employed

methodology end the genersl structure of the developed system will sug-

gest other areas -f spplication.
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The design of the system will proceed via a study of how certain

epistemological models of inquiry represent en unlimited store of raw-

deta, ‘.e., “reality”, s discussion of the importance of representation

in problem solving, to the organizati-n and implementation of a computer-

program for finding representations of sequential patterns.

1.1 Inguiry - A Problem of Representation

Although the present thesic sttemypts to solve a specific representa-

vienal problem, major parts of the discussion can be held on a general

.eve., thus facilitating future attempts to generalize on achieved results.

We nave .n the introducti'n indicated the reprecentaticnal protlem

1 managerial decision-making snd ites impact on the decign »f orgenize-

tonsa. nformetion-processing systems, however, no definition of the

problem was given. For the present discussion 8 definition which sbstracts

from the zituas-lon of particular managers, but stil: retains the basic

re; recentationas. characterictics is desired. One such definition ls:

The ~tlect of managerisl decision-msking is to initiate correct

action in 8 changing environment.

Tr.'r definition closely pers..els Churchman's pragmatic definition

rf enow. edge:

"¥riow.edge (2 8 potentisl of taking correct sction in a changing
env. ronment.

I+ shouid be noted that by sssuming that correct action for the

manscer iz equiva.ent to correct action for the orgsnizetion, l.e., the

manager ic s member of s team in the Marschsk-Radner sense, the role

~f en organizetic can be defined sc:

Orgenizestions, ss its managers, seek s capebility of taking correct
action in a changing environment.
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This means that the objectives of organizations and of managers in

the present context can ve considered to be synonymous to creation of

knowledge, i.e., orgsnizations and managers perform the functions of

inquiring-systems.

By studying the concepts of managerisl and crganizationsl decigion-

meking at @ level of abstraction corresponding to the genersl concept of

inquiry, several adventages can be achieved, e.g.,

@. Experience can be drawn from epistemological models of inguiry.

b. A convenient categorization of "problem-scivers” can be

developed.

¢. Abstrsc. ion from particular functions of managers permits a

stud, of the general problem of representation in inguiry.

Although the ultimate goal should be to establish tc what extent

the epistemclogical prcblem of ingu.ry can be transformed tc sz technical

problem, the present thesis surveys the general representations. problems

of inquiry in order to mechanize a particular system. Thus by etudying

the genera. problems:

1. Whet are tne necessary functions of an inquiring-system?

and 2. Which functions, if any, -f inquiry can be mechanized?

Answers may be found for more spec. fic questione such ss:

5. How is the representatinna. function represented in the gyztems

of inquiry?

end 4. How can 8 perticular representations. function be mechanized?

The sciution: t- the problems will have to be sought in seversl fields

si:ich as artificial intelligence, computer science, logic, mathematics,

phlloscphy, psychclogy, etc.
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As will be seen in the discussion, 8s merging of information from

these diverre fields is complicated by linguistic incompatibilities.

Thus, the phenomena called "Cartesian Dualism”, i.e. the employment of

a different langusge for discourse on cognition than for subjects con-

cerning the material world, will present itself. This clash of languages

hac been obgerved particularly in the literature on artificisl intelligence,

where words such 8s machine-liearning, machine-intelligence, machine-

«now edge, etc., have caused a great dea. of confusion.’ However, since

“hese subjects (1. the [future sre likely tec ~ccur more frequently, the

we! .-gnown 8bllity of language to adapt itself tn new categories through

"£8ro or genuine crestion undoubtedly will eliminate this linguistic

vik. In the present digcuscion, however, the incompleteness of language

caused by the relative youth of the fleld »f artificial intelligence

red ns 48 8 problem.

iia On Mode.g

By =» mwiel ~7 8 cyctemc we mean sny mechanical, chemical, or symbolic

rerresentation nf ite relatinnal structure. A symbolic model consiste of

8 ncllectirn of rules, namely:

.. Pules fror trenslati~n of "reality" '~bject language) to the

.ang.age nf the model (model-language’.

2. PRules for mesnipulstion of sentences .n the model-lsngusge (syntax

“ff model|; and

’. Rules frr describing sentences of the model-langusge in s mete-

lenguege (semantics.
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Type 1 rules are representations, i.e., reflexive and transitive

relations between the sentences of an object-language and the axioms,

theorems, sand sentences of a model.

The extent to which a model can portray the "object-world" is deter-

minedby the richness of the employed languages (Figure 1.1). A "perfect"

description requires isomorphism between object and model, a situation

schieved easily when the model-lsnguage is richer than the object-lan-

guage. In most practicsl situations, however, a model is intended to be

arn easily manipulated abstraction of its object, and therefore the model-

language and the object-language are homomorph by design.

To answer the questions set forth in section 1.1 a discussion is

necessaryat two levels: 1. Inquiry should be discussed in the richest

possible model-language. 2. The mechanical design-models of the models

of inquiry must be formulated in a language that is simple enough to be

translated into a physical realization. The use of two levels of models

implies thet, 8 priori, inquiry is not considered to be within reach of

purely mechanical processes.”

For the purpose of modelling what smounts to thought processes, there

{ge no richer medium than that provided by the human mind augmented by

proper tools. As, among others, Craik’ has realized, "...human thought

has 8 definite function; it provides sa convenient small scale model of

a process, .... He alsc notes that "Agsin, there is no doubt that we

do use external and mechanical symbolizatinne to assist our own thinking."

The external devices are designed, however, by the human mind and we can

safely sssume that the brain without having to refer to any particular

augmentations, is the most powerful medium sveilable for modeling processes.



OBSERVER

Object | Model Manipulsted
| Model

©, Object language — mode. language
CG) Model-languasge — model language
©) Meta-language

Figure 1.1



A

An epistemological model is @ model that the mini formulates about

itself. Such self-description or self-reproduction is feasible logically

and there is no paredox involved. But, the formulation of such models,

as evidenced in the literature, is a very difficult task.

It is well known that the less constrained a model is, the greater

its potential for reaching an optimum. The models that are formulated

in the mind gain their power and their limitations from language. The

power, is derived from the flexibility of language as a medium for pro-

cessing and expressing relations; the limitation is derived from the

slowness of language to keep pace with new situations and to discriminate

between certain categories. In particular, epistemological systems refer

to objects that can be described only vaguely by an essentially formal

language. The situation is worsened because the approximated object-

language, the model-language, and the meta-language are all the same am-

biguous, natural language. As language develops, the object-language

toward more richness, and the model-language toward less ambiguity, the

task of building this kind of model is likely to be facilitated.
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FOOTNOTES AND REFERENCES FOR SECTION 1

1. Compare C. West Churchman, "On Whole Systems,” Space Sciences Labo-
ratory, Social Sciences Project, University of California, Berkeley,
196.5.

2. Panel discussion at the "2lst National Conference and Exhibit,"
Association for Computing Machinery, Los Angeles, California,

August 31, 1960.

5. Philip M. Morse, "Queues, Inventories, and Maintenance,” John Wiley
and Sons, New York, 1958.

L. CC. West Churchman, "Design of Inquiry,” Space Sciences Laboratory,
Social Sciences Project, University of California, Berkeley, 1965.

“. See P. Armer, "Attitudes Toward Intelligent Machines,” and A. M.
Turing, "Computing Machinery and Intelligence.” Both articles
reprinted in "Computers and Thought,” edited by E. A. Feigenbaum
and J. Feldman. McGraw-Hill, New York, 1963.

¢. If warranted this assumption may be relaxed, in which case the two
levels of language could be replaced by one level.

7. K. J. W. Craik, "The Nature of Explanation,” Cambridge University
Press, Cambridge, 1943.

£. As shown by von Neuman in, "The General and Logical Theory of
Automata,” in Jeffress, L. A. (ed.), "Cerebral Mechanisms in Behavior:
The Hixon Symposium," John Wiley, New York, 1951.
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2. On Models of Inquiry

In the present section a search for a theory, or at least a begin-

ning of a theory, of mechanized inquiry is initiated. Our search effort

will nave to touch upon such diverse areas of science as philosophy, psy-

chology, computer sciences, artificial intelligence, logic, etc.

Direction for the search effort is provided by the history of modern

epistemology, which aids in organizing ideas and machines for inquiry

into convenient classes; in addition, as Singer’ points out, the history

of epistemology 8&lso may provide direction by indicating where different

propnhsed systems of inquiry have fallen short of their goals.

To facilitate comparison between differing types of inquiring systems,

a classification of knowledge according to Spinoza may prove useful.

He recognized four kinds (or four levels in Pulya’s LALeroratEL:A ) of

knowledge:

1. knowledge arising from hearsay - mechanical knowledge;

2. knowledge srising from mere RDO - inductive knowledge;

3, knowledgé arising from demonstration - rational knowledge; and

L. knowledge arising from conviction that the inquirer knows -

intuitive knowledge.

Spinoze and Polys both considered level 4 to be the most importsnt. In

the present context, however, the pragmatic definition of knowledge im-

plies that the level of knowledge is of no consequence as long as potentisl

for correct action prevails; only in casee where such action excludes
certain kinds of knowledge will the categorization be of any value e.g.,

knowledge by hesrsay will not slways suffice for taking correct action

in a changing environment.
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Before proceeding to the discussion of epistemological models of

inquiry a brief note on the language that will be employed should be

given. Systems of inquiry are discussed most conveniently in teleological
L

terms and since the main source’ for the present discussion is presented

in this form, it will continue to be used. However, mechanical design

of systems is likely to require a more descriptive language and therefore

programor model descriptions are given in a language approximating only

the teleological functional definitions.

2.1 Rationalist Inquiring Systems

The law-regulated world image of the rationalist htioscphers® seems
suited particularly for an investigation of the feasibility of mechanized

inquiry. Singer's brief summary’ provides a background of the basic ideas
of the rationalists.

To sum up, the Rationalist's argument runs in this wise:
No contradiction appears in denying the hardest fact known to
us by observation, such knowledge may always be doubted. And
no less open to doubt must be any empirical rules generalized
from such observed facts. Resting their appearances of univer-
sality on induction, these rules can obviously be no more hard-
and-fast than are the facts on which they depend. But laws,
necessary truths’ as the school called them, are as inexorable

and undeniable as the principles of logic by which they are
established. By which alone they sre established, - for it
comes to that. As independent principles, the axioms of the
special sciences will have disappeared. Only logic remains
as the modus vivendi - the unique metnod of attaining to
truth.

A system of inquiry based on these ideas was described by Leibnitz

in his Monadology. However, our purpose is not to describe particulsr

historical systems but rather to investigate their major contributions

“0 epistemclogical theory. A brief account of a generalized Leibnitzian
A

inquiring system by Churchman will illustrate retionalist ideas.
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By reference to the generalized Leibnitzisn inquiring system

hopefully two important questions will be answered partially.

eo) Which level of knowledge can be created by a rationslist

inquiring-system?

b) To what extent can sa rationalist-inquiring-system be implemented

as & program for a digital computer?

An senswer to the first question will be deduced from the proper-

ties of the system described by Churchmsr. The second question will

be answered by reference to work performed within artificial intelli-

gence and mathematical programming.

Before proceeding to a description of the proposed system an

important contribution by Leibnitz should be acknowledged. He was one

of the firct philosophers” tc realize the need for & universal langusge

of logic. Also he designed such 8 language to relieve his logical

processor from the difficulty of resolving ambiguities of natural

language.

A lLeibnitzien Inquirer

Churchman's generalized Leibnitzisn inquiring system is presented

and commented from the sspect of mechanical inquiry. The following

functione are required in s Leibnitzian inquiring system.

1. "An internal guarantee that generated results will converge."

Thie requirement is derived from Leibnitz’' insistence on innate

idese. For the practical design © necessary condition must be met~

the domain of inquiry must be deccribed in s decidable formsl system.

2. "A capability of producing strings of symbols that can be broken

down intc recognizable units.”
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The input sector cen notice, individuate, break down into units,

and dispstch strings of sentences (- logical processing. Strings of

sentences are introduced to the syster. (as perespLtena iY or generated

within the system. The importance of the design of the input sector

was realized clearly by Leibnitz, this will de discussed further in s

later section.

3, "A capsbility of establishing falsity or truth of sny unit.”

A logicel processor and s dictionary of definitions are employed

to establish truth (tsutology) or falsity (self-contradiction) cf

received units. If these can't be established directly, the unit is

¢ candidate’ for further processing.

k. "A capsbility of forming nets of units by means of s given set of

relations and operstors.”

The main deductive structure of the Leibnitzian inquirer is

provided by s memory, organized for direct and chained addressing.

From the beginning the memory is blank, but gradually it will build up

nets of related units. Por each received ‘candidate unit' the memory

is sesrched for logicslly related units. If the search is successful,

the related units are connected snd the 'candidate unit' becomes a

contingent truth. Now, truth for s Leibnitzian inquirer is an end-

result, which means that all sentences are doubtful until their con-

nection with the largest fact-net is estsblished. This makes the

problem of inefficient generstion of new connections scute. A proce-

dure for directing such generstion is needed. At this point, it should

ve pointed out thet there is an snalogy between the procedures of

"eibnitzisn inguirers snd the representation of problem solving as @

tree searching. ll
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The relstion nets of the inquirer correspond to tree structures

that are built without concern for di,ection, i.e., they are not

generated selectively. It is, however, known that by exhaustion of

sll combinatorial possibilities, will one net eventually provide a path

between the “true” definitions and the "desired" end result. The

situation strongly resembles that described by Newell, Shaw, and Simon

ac the "British Museum Algorithm. "1?

Te provide selectivity in generation of strings of units, Churchman

he: added two requirements.

©. "A capsbility of ranking the nets according to a prescribed

criterion”; and

£. "A method ~f processing symbols and building nets vse on the

ranv.ng, such thst the sys‘em will eventually srrive at an optimal net

and know when [t has srrived. Or else will converge to an optimal net

end w.)l kncw that it is converging.”

Requirements © snd € are satisfied by introducing sn "executive"

whicn assumes the responsibility of reducing unfruitful generstion of

sentences to a minirum. The executive function, as conceived here has

beer. 2 major design problem for srtificisl intelligence machines; this

provlem will be reviewed briefly later. Our present concern is the

question of how powerful the executive can be permitted to be within

8a truly leibnitzisn design.

The tasks of the executive sre represented in requirements 4, 5,

and £. A trief discussion of the respective functions follows:

Requirement 4 permits the inquirer to spply slternative logical

systems. Some choice has to be made sbout which system to use.
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This decision is quite complicated unless, of course, all approaches

can be tried out in persllel. It must be decided if the executive

should be permitted to conduct inguiry on the structure of ite own

processing to learn about when to apply particular logical systems, Or

if a priori decision rules should be applied.

Requirement > necessitates an evaluation procedure for created

nets. Such evslustion mey be made in terms of computestion time,

simplicity, elegance, etc. It should be observed, however, that

simplicity and similar measures are not defined objectively and, as

such require & detailed investigation before they can be applied.

Requirement © can be implemented in certain areas, guch ss theorem

proving, where answers tO well-defined questions can be tested for

correctness. In genersl, however, this requirement l& difficult 10

implement.

2.1.1 Leibnitzien Machines

In the following, inquiring systems, which have peern implemented

in the form of programs for digital computers, will be called ‘machines’.

several classes of Leibnitzian machines are described in the literature,

examples are computer programs for methematical programming, optimiza-

tion techniques, artificial intelligence, etc., & few of these will be

discussed briefly.

A majority of all computer-programs can be considered tc be

algorithmic-mechines—i.e-, tc belong to & class of machines that
nave beer proven to find solutions to ell provlems within 8 specified

domain, and tc dc sc in a finite time. Typical examples of such
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machines are linear programming programs, programs for finding maxima

or minima, programs to solve systems cf equations, etc. The Leibnitzian

requirements sre fulfilled in dat’:
1. the machines operate within a decidable formal system;

5. the machines have access to primitives and rules of sentence-

formation of the formal language,

gl] definitions and rules of inference are available to the

machines,

4. an implication net is formed bystrings of symbols connecting

giver inputs with the desired result;

S. the time requirements of alternate paths of processing may

be determined; and

f there is scme way of checking if a solution is obtained

Susrchsmechiined such as steepest ascent or other gradient search

machines, pettern-search machines, box-enalysis machines, etc., satisfy

sre leibnitzian requirements under the following two conditions:

1) their envirorment is unimocdsl, and

> a solution, or an optimum, is defined as a range around the

‘real’ optimum

L special class of these machines are ‘heuristic’ search machines

gucr, as the line-bslancing programby Tonge” and cther programs for

maripulstion of corbinstorial situations.

pb class of programe, which follow very closely the leibnitzian

description, is the "simple deduction machines”, or question-answering

machines, exemplified by Rephsels sr,’ Slagle 's pEDUCOM, *°
MeCartny's Advice Saker, > and others. In these machines simple facts
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formilated in a formal language are connected tc implication nets in

such a way that simple questions can te deduced by tracing through

relevant paths.

A typical problem solved by DEDUCOM is the "Monkey Question”.

The following facts are given:

1. The monkey can move the box to any place;

2. Someone moving v to u leads to vy being at u;

3. The monkey can climb the box; )

L. v being at u and p climbing v leads to v being at u and p

being on ¥;

5. Under the bananas is a place;

£. If the box is under the bananas, and the monkey is on the box,

then the monkey can reach the bananas; and

7. p reaching x leads to p having x.

Question:

"What should the monkey do so that the monkey has the bananas?”

DEDUCOM'S ANSWER:

( (THE MONKEY SHOULD DO THE FOLLOWING)

(THE MONKEY MOVES THE BOX UNDER THE BANANAS)

(THE MONKEY CLIMBE THE BOX)

(THE MONKEY REACHES THE BANANAS))

An important group of Leibnitziesn machines sre the thecrem-proving

mechines exemplified by those of Vang", Davis & putnam, 2 McCarthy, 22
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Robinson, > Friedman, Gilmore,’ Wos, Carson & Robinson, and others.
Such machines have been designed to employ:

a) Decision procedures, which are available for propositional

calculus, elementary algebra, elementary theory of conditionel

expressions, and certain other branches of mthemtios.”
For undecidable calculi, such as the first-order predicate

———. the machines may stpiov 2

b) Decision procedures for solvable subclasses of undecidable

calculi;

¢) Proof-procedures that will recognize any theorem, but will not

converge for non-theorems” *; or

d) Semi-decision procedures, which @pprosches: b and cc are

combined, i.e., provide decision procedures for solvable sub-

classes but proof-procedures cutside there.

Although theorem-proving machines perform satisfactorily in certain

domains, the problem arises of an exponent ially-growing time requirement

of processing for linearly-increasing numbers of clauses or connectives,

limiting their applicability to rather simple theorem proving.

Complex-Search Machines, as exemplified by GROPE © by Flood and

Leon, utilize alternate logical processors. The processors are applied

to problems according to rules derived from their performance in previ-

ously encountered situations. In the case of GROPE, the executive

employs a simple symmetric stochastic learning model to choose a logical

processor. Progresgs in problem solving is measured by criteria of

relative improvement in & hill-climbing situstion. The machine exem-

plifies in this way the application of a sophisticated executive in a

Leibnitzian inquirer.
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Our brief review of typical Leibnitzian machines indicates clearly

that much work has been done in this area. This has lead to the develop-

ment of efficient methods for frequently encountered tasks. In this

context only the importance of efficient tree-searching methods, such

as the 0 B provedure’ employed in several artificial-intelligence

machines will be stressed.

2.1.2 Knowledge Created by lLeibnitzian Inquirers.

An important contribution of the rationalists was their insistence

on removing ambiguities causedby natural language and introducing

instead precision in the form of a universal language of logic. How-

ever, the employment of an autonomous logi. “1 processor precluded any

investigation of the nature of the processed units, thus makirg the

results of inquiry precise but empty of content.

Given an internal guarantee of convergence, the Leibnitzian

inquirer is purely deductive and can thus be classified as producing

knowledge of Spinoza's third level. However, the inquirer guarantees

that, given sa valid input-sentence, the 'correct' answer will be

produced. Therefore, for an external observer, or user, its process

of producing knowledge can not be discriminated from a "dictionary- |

iook-up”, i.e., from "hearsay-knowledge’. Thus, Spinoza's third

level," "perception arising when the essence of one thing is inferred

from another thing, but not adequately” is not reached. It should,

however, be noted that our pragmetic search for Knowledge is not con-

cerned so much with how it was achieved as with what it means. There-

fore leibnitzian inquiring systems, even if looked upon as huge
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dictionaries, are valuable systems, not only when used separately, but

also when employed as logical processors in more sophisticated inquirers.

2.1.3 Representation in Leibnitzian Inquirers

The problemof representation is only encountered at a superficial

level in the Leibnitzian inquirer, in fact, one to one correspondence

between symbolical representations and unambiguous rev-data precludes

any problem-oriented search for "optimal" representations. Orly in the

case of complex machines, e.g., GROPE, is an implicit choice among

alternate representations made. As such selectivity is the major

feature of Kantian inquiring-systems a detailed discussion will be

postponed.

2.2 Empiricist Inquiring Systems

The onlin ioiste, in opposition to the emptiness of content of

the rationalists' system of formal inquiry, presented a theory of

inquiry based on the “reality of things." At first glance their theory

appears very reasonable, in particular as it seems validated by common

sense feeling as well as psychological evidence of basic learning

—_" The empiricists’ thesis may be summarized in

Locke's words:

‘These two, I say, viz. external material things as the
objects of sensation and the operations of our own minds within
as the objects of reflection, are to me the oply origirals from
whence all our ideas take their beginnings.

The empiricists’ theories of inquiry have been criticized, ond

deservedly, by later schools of epistemology. However, as we are not

giving a critical survey but are searching for ideas, an amended
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veregion of a Lockean inquiring system will be employed to represent

the major ideas of the empiricists.

Froma Lockean inquiring system we require:

1. a capability of receiving and individuating inputs

The input-sector acknowledges reception of input-units (sensations)

and individuates the unit by space-time-coordinates. The empiricists

failed to realize the importance of this sector, Singer points out:

“However sound may be the Empiricist’'s account of how our

knowledge has grown once having started, his own account of 27
this growth makes it impossible for its start to be part of it".

2. a capability of labelling and transmitting received inputs

The inp.* pre-processor recognizes the unit as simple or complex

and labels the unit byattaching a list of properties corresponding to

impressions from sense-organs. The pre-processed unit is transferred

to the memory

The task of the pre-processor is to define ideas, Churchman and

Ackof foo write

within empiricism progress in defining was “theoretically”
possible. To make a definition better, the references to
the immediate had to be made more precise. Insofar as we

could make that which was designated by a word less and less

ambiguous, the definition of it could be made better and
better. But as defining became better and better with respect
to "content, for the empiricist, it became worse and worse
with respect to communicability, since content was a function

of the "immediate" which was itself inexpressible

In requirement 2 the empiricist manner of defining becomes a

labelling operation performed by a filing-system which can grow its own

categories Such categorization is performed by an artificial intelli-

gence machine, EPAM 2, which will be described in section 2.2 1.
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3. a capability to reflect on the internal processing.

One of the functions of the executive is to observe and label the

internal processing of the inquirer.

L, a capability to perform logical operations on labels.

The "scts of mind” according to Locke are combining, comparing,

and abstracting. Thus the logical processor incorporates facilities

for compounding labels by logical connectives. A logic of classes is

employed.

S. a capability toc generalize on experienced sensations.

The generalization sector is globally applicable. It complements

the input preprocessor in making abstractions necessary for establishing

similarities of inputs. The logical processor as well as the executive

are possible domains for generalizations.

6. a capability to communicate about labels.

The Lockean inquiring-system needs a guarantor of reality to

replace the innate ideas of Leibnitz. Locke stated;

Our knowledge, therefore, is real only so far as there
is a conformity between our ideas and the reality of things

Such conformity according to Locke was present in his design. Simple

ideas were imposed upon the inquiring-system by reality and since

complex ideas were internally created for internal processing, they had

no reason to be connected to reality. Complex inputs (substances)

caused complications, but an involved reference to their parte estab-

lished conformity. >

Although the empiricist inquiring-systemmay have a tie to reality

via the naming of simple sensations, there is no guarantee cf validity

unless a community of inquirers can agree on the correct label of the
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input. Locke seems to feel that the labels of different inquirers are

isomorphic, because he writes: "For what need of @ sign, when the thing

signified is present and in view. Churciaan, 2 however, points out

that it is & non-trivisl task for s community of inquirers to agree that

they are talking about the same input when assigning its neme. Community

consensus thus is employed as a method of ostensible definition of meaning.

2.2.1 Design of Mechanical Lockean Inquirers

There are three essential problems tc be met in the design of Lockean

inquiring systems, namely }

1) to define simplicity,

2) to represent generalization,

end 3) to design 8 non-triviela .,...

Simplicity of sensations mey seem tc be easily defined, in particular,

when there are words available to define simple concepts. However, as

simplicity 1s ® property of particulsr situations, experience may require

further breakdown of concepts which initially were considered simple.

Thus the Lockean inquirer must have a capacity for changing its concepts

of simplicity. Such capacities are easily implemented 1n internal proces-

-1ng languages, but are very difficult to handle in the communicstion

anguage. EPAM, a computer model of humsn learning by E. Feigenbaun®®

is an exemple of a Lockean filing system which crestes ite own categories.

The EPAM program is the precise statement of sn informastion

processing theory of yeysal learning that provides ean alternativeto other verbal learning theories which have been proposed.

In the present context we are less interested in EPAM as 8 model of

verve. learning than in its capacity for efficient categorizing, storing,
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and retrieval of information. The primary information structure in EPAM

is the discrimination net, a sorting tree which is grown to sccommodate

all information encountered in the problem-solving process.

An example of 8 discrimination net is given in Figure 2.1.

@ : 8 test-node
[1] 8 terminal-node

Figure 2.1

Information is stored at the terminals of the net snd tests sre placed

at the nodes. Labels and/or property lists sssocisted with received en-

tities are tested at the nodes snd the entities, as @ result, sorted down

left or right.
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For retrieval of stored informstion only those properties of the

label which have been tested during the procedure have to be presented

to the nat, V6 If an attempt to store informstion at a previously occu-

pled terminal is msde, 8s further discrimination has to be initisted, and

8 new test is added, (Figure 2.2)

Figure 2.2

A simple exsmple: Euppcse we have translated derived property lists

to binery lsbele which sre introduced to “he discrimination net, then

it msy grow as examplified in Figure 2.7%.

Ti = {:th digit test. (i - 1,2,%,4} .

2 Store 1011 (7:
0 J

Figure 2.2.1
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2, Store 0110

TL

0 | 1

O | 1

O 1

(=
or NL

0 1

Figure 2.5.1

Store 0010 (7) (1)0 1 O 1

OE: O

© EAR

Figure 2.5 .c
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EPAM clearly vill never make 8 finer categorization than is neces-

sary 8t the moment of receiving en entity. This mesns high efficiency

of tree-searching and low requirements of storage. However, an smended

EPAM would be desirable for the second problem, i.e., description of

generalization.

Genereslization in 8 Lockean inquirer means grouping of concepts intc

classes. Such grouping cen be done synthetically by sdding concepts into

generic classes, or it can be done snslyticslly by considering incomplete

breakdowns of complex concepts. The situstion is most conveniently repre-

sented in a tree, where the terminal nodes sre simple concepts and sll

other nodes define sub-trees which sre classes of concepts. Thus &t the

trunk of the tree there is 8s cless 'something', which by tracing the tree

will me broken down into successively finer classes. In the case of

EPAM, the terminel nodes represent des.red groupings provided that s

proper design and noticing-order of tests is imp_emented. In Figure 2.7,

there are two possible classificetions conteining 02110, nsmely

{0100, 0110} ana {0010, 0110} . The correct grouping cen only be de-

termined by reference to @& perticulsr context, but since the poegibilities

for ambiguities to arise must be kept in mind, s cerefully planned noti-

cing-order is mesintained.

In mechanized inquiry the important gusrsntor-function “-ommunity-

agreement” will have to be replaced by some "onventioinl™ t method of

validating that received inputs sre representations of reality. One

such “conventional” design is to embed the inquirer in a larger system

which guarantees the validityof its communicetions to the inguirer. A

non-trivial requirement would be that the proposed system hes tc agree
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with its own labeling over time. This requires s capability to abstract

from changes which sre functions of time, and, therefore, puts pressure

on the capability of individusting inputs.

2.2.2 Knowledge Created by Lockean Inguirers

The level of knowledge achieved by 8s Lockean inquirer depends upon

the nature of its gusrantor-function. If the gusrsntor is “conventional,”

then the Lockean inquirer does not go any further than the Leibnitzian,

becguse the “sensstions’ of the former do not correspond to reality any

more than the perceptions of the lstter.

2.2.2 ERepresentstion in Lockean Inguirers

The ma or weakness of the empiricist inquiring system is to be

found in the input-sector. Although a claim of correspondence between

labels and "reslity” is meade, physiclogicsl snd psychological evidence

shows thst the “sensations” of reslity by no means are unambiguous, in

particular, the individustion of objects, the intensity of impressions

ori the sense orgsns, snd the rsnge of the sense-impressions sre not

uriiquely defined; furthermore, there is no representational function

tc guide the observations on the real world. Thus the representational

functiong of Lockean inquirers sre not sufficiently sophisticated to

support directed sesrch for informstion.

2.2? The A Priori Sclences of Inquiring-Cystems

An attempt to bring the rstionalist and empiricist systems of inquiry

together wes made by Kant send other criticists. We hsve given rether
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detailed descriptions of Leibnitzian and Lockean inquiring systems.

These systems employ most of the components of the Kantian inqu ‘er. One

ma jor sector, however, remains to be discussed, namely, the role of a

priori sciences.

Kant's main contribution to epistemology may well be that he realized

that "whenever there is experience, there are prerequisites of experience."

This realization led him to conclude that the sciences necessary for rec-

ognition (geometry) and individuation (logic) of phenomena had to be a

priori to any experience. Post-Kantian developments have introduced the

possibility of introducing elternste a priori-sciences, i.e., to employ

some geometry and some logic. The main difficulty of the Kantian doctrine,

however, still remains: to establish how the & priori enters the mind.

There have been seversl attempts to form such a theory ranging from Plato's

deduction of & previous existence to theories of psychological a prioris.

However, none of these, including Kant's has been convincing. In the

present pragmatic search for ideas, however, this is of no conrern, because,

if the a priori cen be shown to be a necessary attribute of inquiring-

systems, then feasible methods of their implementation, not their actual

origin, is of importance

The availability of alternstives for the choice of the a priori sug-

gests the design of a Kantian inquiring-system with multiple sets of

a priori sciences. As Kant did not imply that the a priori sciences were

simple, the possibility of employing powerful s priori comes forth as a

viable alternative toc previous persimonious attempts. Churchman, in his

i. cussion of what he calls maximal a priori's, states:
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Suppose, instead, we were to say that there is no
"basic" mode of representation in the design of the input
sector of the inquirer, snd that a maximum flexibility
in representation is desirable. Hence instead of attempting
to minimize the influence of the apriori of the inquiring
system on the information, the designer should try to
maximize this influence in order to represent the informa-

tion in a Danyer in which the problem solution be_.omesfacilitated. 7

Parsimony in a priori sciences, however, permits untiased generality

but is very likely to lead to inefficient problem-solving. Therefore, a

judicious balance between domain and efficiency of inquiry will have to

be maintained in order to permit an "optimsl"” degree of specialization.

The tasks of the executive of a Kantian maximum a priori inquiring-

system will have to be more sophisticated than in systems previously

discussed. In particular, the svailability of alternate apriori sciences

will require decisions to be made on how to represent particular problems.

Thus the tssk of the Kantian executive is to translate a problem-formula-

tion into the language of a suitable model, i e., relate its object-domain

to a model. Other tasks of the executive are to select input for proces-

sing and to judge the relative difficulty of differently reoresented

problems. These tasks will be d.scussed in depth in Sections 3, 4, and

5 Instead of anticipating this discussion let us now turn to @ more

sophisticated system of inquiry based on Singer's ideas. tC

Singer was dissatisfied with the "paradox of apriori" and, by ob-

serving the methodology of empirical and formal sciences, ceme up with

the system of inquiry presented in his "Experience and Reflection”.

Singer's "Experimentalist System” is baged on a careful distinction be-

tween what is known to experience and what is known to reflection on

experience. Experience belongs to one subject, the learner, but the
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8priori possessions to another, the reflective mind. Thus, an inquirer

can be said to produce knowledge only if it is observed doing so by another

inquirer, and the designer of an inquiring-system is a member of the very

same system, because his prepossessions are reflected in its design. The

position of the experimentalist is to relate the formal and the non-formal

I
by their common purpose, progress of science. Churchman and Ackoff J

summarize the experimentalist ideas as:

The precision with which we can respond to a question
is a function of the precision with which we can ask a ques-

tion. The latter is itself a function of the explicitness

of presuppositions of the asking and answering of a question.
The actual number of presuppositions involved in framing

any question is indefinitely large. It has been the lesson
of experimentalism that the final answer of any question
presupposes the final answering of every other question.
The absolute answer to 8 question is an ideal which may be

constantly approached but never attained. Consequently, the
presuppositions, as well as the response, are constantly
subject to change. Science is capsble of progressive change
insofar as it can indefinitely reduce the error expressed

in the response to any question.

Thus Singer's experimentalist inquiring-system employs a technique

of experimental ccntrol that will meke a progression of answer-question

pairs to converge to a limit - an a priori fact. Although the Singerian

system of inquiry is extremely hard to visualize in a non-trivial mechan-

ized system, a slightly Singerian flavor is added to our sequence-extrapo-

.ating system by permitting its executive to inquire about the procblem-

concocter in order, hopefully, to be able to predict his behavior.

2.3.1 Representation, a function of the a priori

The Kantian inquiring-system stresses the importance of a priori

.c.ences, which in turn stresses the importance of finding suitable repre-

sentations of problems, because, tne presuppositions, i.e., the apriori
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sciences, determine what information to ask for, i.e., the representation

of rew date. The representational functions of the Kantian inquirer will

be discussed in Section 3. A more specific context, nsmely sequence

extrapolation, is the subject of Sections 4 and 5.

2.4 Summary

A few epistemological models have been reviewed. Although several

alternate theories could have been presented, our choice has been based

on representativity of schools of thought as well as on potential for

computer-implementation. Thus an interesting inquirer - the Hegelian -

has not been reviewed, because the dislectic method at present seems toc

much of a speculative tool for programming cn a computer.

The systems reviewed and especially, the Kantian, have contributed

to our understanding of efficient organization and classification of

mechanized inquirers. The later developments, including Singer's system

provide a direction for search of feasible ways of implementing more

sophisticated inguirers. In the next section, the problem of represen-

tation raised by the Kantien meximuma priori spproach will be discussed.



33

FOOTNOTES AND REFERENCES FOR SECTION 2

l. E. A. Singer, Jr., "Experience and Reflection," 1959, University of
Pennsylvania Press.

2. B. de Spinoza, "On the Improvemement of Human Understanding,” The
Chief Works of Benedict de Spinoza, Vol. II., tr. Eleoca, R. H. M
George Bell and Sons, 1884, reprinted in Dover edition, 1955.

5. G. Polya, "Mathematical Discovery,” Vol. 1., John Wiley and Sons,
Inc. New York, 1962.

4. See M. Minsky, "Steps Toward Artificial Intelligence,” Proceedings
of the Inst. of Radio Engineers, Jan., 1961, 49:8-30.

5. C. West Churchman, "Design and Inquiry," Internal Working Paper
No. 28, Space Sciences Laboratory, Social Sciences Project, University
of California, Berkeley.

6. Here represented by Descartes, Leibnitz, and Spinoza.

8. C. West Churchman, "Rationalist Inquiring Systems,” Internal Working
Paper No. 29, Space Sciences Laboratory, Social Sciences Project,
University of California, Berkeley, 1965.

9. Others are exemplified by Russell and Carnap.

10. Leibnitz Monads generated all perception-streams from within.

11. See any of a number of pavers in Feigenbaum and Feldman, ed.,
"Computers and Thought,” 1967, McGraw-Hill.

lz. A. Newell, J. C. Shaw, and H. A. Simon, "Empirical Explorations of
the Logic Theory Machine: A Case Study in Heuristics." Proc. of
the 1957 Western Joint Computer Conf., Feb., 1957, p. 218-230,
reprinted in ref. [11].

15. Such as propositional calculus, predicate calculus, principia math-
matica, modal logic, etc.

14. See ref. [8].

15. See DL. J. Wilde, "Optimum Seeking Methods,” Englewood Cliffs, N. J.,
Prentice Hall, 1964.

> F. M. Tonge, "A Heuristic Program for Assembly Line-Balancing,"”
Englewood Cliffs, N. J., Prentice Hall, 1961.



bp

17. B. Raphael, "A Computer Program Which 'Understands,'" Proc. Fall
Joint Computer Conf., 1964, Vol 26, Spartan Books.

18. J. R. Slagle, "Experiments With a Deductive Question-Answering
Program,” Communications of the ACM, Vol. 8, No. 12, Dec., 1965.

19. T. McCarthy, "Programs With Common Sense," Symp. Mech. of Thought
Processes, Nat. Phys. Lab., Teddington, Middlesex, England, 1958.

20. H. Wan, "Towards Mechanical Mathematics," 1BM Journal of Research
Dev., Vol. 4, 1960, p. 2-22.

2l. M. Davis and H. Putnam, "A Computing Procedure for Quantification
Theory," Journal of the ACM, Vol. 7, 1960.

ce. J. McCarthy, "Computer Programs for Checking Mathematical Proofs in
Recursive Function Theory," Proc. of Symposia in Pure Mathematics,
Vol. 5, Amer. Math. Society, 1962.

25. J. A. Robinson, "A Machine Oriented Logic Based on the Resolution
Principle,” Journal of the ACM, Vol. 1, Jan., 1965.

2b. J. Friedman, "A Computer Program for a Solvable Case of the Decision
Problem,” Journal of the ACM, Vol. 10, No. 3, July, 1963.

>. P. C. Gilmore, "A Proof Method for Quartification Theory," IBM
Journal of Research Dev., Nc. 4, 1960.

26. L. Wos, D. Carson, and G. Robinson, "The Unit Preference Strategy
in Theorem Proving,” Proceedings of the Fall Joint Computer Conf.,
Vol. 26, Spartan Books, 196k.

27. See ref. [22].

268. Proven to be undecidable by Church, 19%6.

2G. See ref. [24].

50. For undecidable calculi constraints on the time requirement for
finding a proof, at least terminates the process of generation of
gentences.

51. A. Leon, "Steps Toward a Universal Adaptive Code for Optimization,"
(GROPE), Internal Working Paper No. 11, Space Sciences Laboratory,
University of California, Berkeley.

Je. T. Hart and D. J. Edwards, "The Tree Prune Algorithm,” M.I.T.
Artificial Intelligence Project Memo 30, Dec., 1961, M.I.T. Comp.
Center.

3%. See ref. [2].



35

34. Here, mainly represented by Berkeley, Hume, and Locke.

35. Compare EPAM (ref., see note Lh) as a theory of verbal learning.

36. J. Locke, "An Essay Concerning Human Understanding," Book 11,
Chap. 1:4, Dover Publ, New York, 1959.

37. See ref. [1].

38. C. West Churchman and R. L. Ackoff, "Psychologistics," University
of Pennsylvania, 1947, mimeo.

59. E. A. Feigenbaum, "The Simulation of Verbal Learning Behavior,” in
“Computers and Thought,” edited by E. A. Feigenbaum and J. Feldman,
McGraw-Hill, New York, 1963.

40. Ref. [36], Book 4, Chap. 4:3.

bl. The connection between ideas and reality was stressed by the
empiricists. In particular, Hume and Mill stressed the reduction
of complex ideas, or words, to simple.

42. C. West Churchman, "Lockean Inquiring Systems,” Internal Working
Paper No. 45, Space Sciences Laboratory, Social Sciences Project,
University of California, Berkeley, 1966.

bl. See rer. [42].

bh. See ref. [39].

45. Unless the growth of the discrimination-net necessitates extra
information. Compare: E. Feigenbaum and H. A. Simon, "Forgetting
in an Associative Memory," Proc. of the ACM Nat. Conf., 1961.

U6. See rer. [42].

47. C. West Churchman, "Kantian Inquiring Systems,” Internal Working
Paper No. 46, Space Sciences Laboratory, Social Sciences Project,
University of California, Berkeley, 1966.

LE. See ref. [1].

49. See ref. [38].



36

5. On Representation

Inquiry and problem-solving generally raise the following questions:

How are the premises collected? How does deduction proceed once they

are found? These questions are strongly interdependent in view of the

problem of representation even though, according to the positivists and

statisticians, they could be attacked and solved separately. A third

question, therefore, will have to be posed, namely, how to represent the

problem.

The subject of representation reaches far [t connects the a priori

tneory necessary fcr observing the environment with the logical proces-

sing necessary for coming to any conclusions about it. Our present task,

however, will restrict the discussion of representation to a technical

level by exploring it as a prerequisite for mechanized inquiry.

We have not asked if symbolic representation is really necessary at

all For machines and for most human inquiries, it is. Even though

Henri Bergaon’ describes an intuitive knowledge which arises without

employing symbolic representation, we have no reason to discount its

importance for inquiry.

The evidence in favor of representing reality by symbolismis too

massive to permit us tc doubt its importance Evidence is available

from different branches of science, and we will briefly indicate some

sourcee Susan Langer states, "A new philosophical theme has been set

forth to a coming age. An epistemological theme, the comprehension of

science The power of symbolism is its cue, az the finality of sense-

data was the cue of a former epoch. She reviews in detail the liter-

ature on pnilosophy of language, which clearly indicates that the subject
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of representation is important in contemporary philosophy. In psychology,

| we need only to refer to works such as Bruner, Goodnow, and Austins:

"A Study of Thirking,™ or Humphrey's "Thinking" to establish the rel-

evance of language. Even neurology, anthropology, linguistics and other

branches of science, support the conclusion of A. D. Ritchie that, "as

far as thought is concerned, and at all levels of thought, it [mental

life] is a symbolic process. "©

The most elementary form of symbolism is the action, or push-button,

response tc signals, which corresponds to Spinoza s classification

"hearsay-knowledge.” This is in animal behavior represented by "built-

in subroutines” and conditioned reflexes The level of knowledge sought

in sophisticated inquiring systems, however, requires far richer repre-

sentations than these pure signal-action relations peri, thus episte-

mological models, as previously shown, require elaborate languages for

| internal processing as well as for communication

Granted that elaborate representations are required, then the ques-

tion of which one to use is relevant unless, as is the case between the

languages of Western culture, translation can be performed without actu-

ally distorting very much information 3 Such translation is, however,

not possible between languages of very different cultures, for example

the detailed categorization of snow in the language of the Lape differs

in degree and the space-time relations in the language of the Hopi-Indi-

ang, differ in kind from corresponding parts of the English language.

The linguist Whorf from these facte drew nis hypothezes that,

We are thus introduced to a new principle of reality
wnich holds that all observers are not led by the same
physical evidence to the came picture of the universe,

unless their linguistic bagkerqunds are similar or can
in sume way be calibrated.
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The observation of Kant that pecple put regularity into nature is

obviously supported by the fact that people actually see reality differ-

ently, depending upon their language Now if the world-image is a func-

tion of ite representation in terms of language we clearly should choose

the “best” possible representation. Unfortunately, as there is no ob-

jective measure of the goodness of language, comparisons of efficiency

can be made only along a few dimensions. Thus a language of internal

processing should be unambiguous as Leibnitz, later Russell, and in

particular Carnap, in his "Logical Syntax,” have observed. For other

dimensions the vague notions of simplicity, efficiency, etc., w#ill have

to be employed.

Language ctvicucly provides a model of ous world image and helps

us to otgerve and inquire into reality. However, language can be used

to design alternate models of specific domains of inquiry and therefore

the problem of chousing an “optimal” representation arises. Churchman

has described tne situation in nis discussion of the maximuma priori

approach to the desig. of Kantian inquiring ———
Within our .anguage are geveral sub-languages relevant to descrip-

tion of part.cular domains, sc that events or problems are presented in

a form accessible for "logical processing.” Such models, or grammars,

are abundantly represented in the progress of diverse sciences. Several

branches of sc.ence use isomorphic models, which has led to speculations

about universality of scientific laws or similarities between sciences

as suggested by Von Bertalantfy,t? in "An Outline of General Systems

Theory” or, as expressed by McKay, in his statement "Many scientific

concepts in different fields have a logically equivalent structure.
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One can abstract from them a logical form which is quite general and

takes on different peculiar meanings according to the content. "Er

If such universality exists, then of course onea priori would

suffice, but specialized models are still likely to be preferred for

reasons of efficiency and/or simplicity. The importance of scientific

representation cannot be overemphasized. We cannot here give a compre-

hensive discussion but will cite a few examples:

1. Kinematics by means of Newton & law received a new and very

powerful predictive model. Although the model has been found incomplete,

it still provides a useful representation on the terrestrial scale.

¢. Organic Chemistry developed more rapidly after the represen-

tation of cyclical mclecular structures was invented.

5. The theory of ideal gases has led to many significant inven-

tions since the concept of entropy was introduced

L. Astronomy has experienced significant improvements in i's pre-

dictive capabilities as the result of Kepler & and Einsteins’ represgen-

tations

S The impcrtant rcle ¢° mathematical notation can hardly be

doubted.

In summary, development -f adequate representations plays & very

important part in scientific inquiry, and is alsc reflected in the ap-

plied sciences

All models require a cer .ain structuring of their domain of appli-

cation wailigant? gives an amusing account of now people w.th varying

backgrounds try to squeeze an industrial engineering optimization vroblem

into their particular model. One can question what ‘reality is ke
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when the same situation can be described as a linear programming model,

a Lagrangian multiplier application, a dynamic programming case, a sim-

ulation situation, a task for gradient search-methods, etc. The answer

obviously must be that "realtiy” is what our thoughts makes it, and that

i{t therefore depends upon representation.

I+ is obvious that, following Kant, Hegel, Singer and others,

there is no 'right' in the sense of an optimum representation of a sit-

uation. Every representation is the result of some =» priori theory. It

carries some experience-depender* approximations etc., and we will there-

fore never escape the doubt of Hume ab' the validity of sclentific

reasoning cr, notably, induction based on such representations.

For a pragmatic use of representation, however, the situation is

different. An efficient rejresentation is not only a simple way of

handling data as opposed t- an inefficient and complex way, 1? An effia-

cient representation often means the difference between success and

failure. If there has been at least one inductive step in the develop-

ment of a cuitable representation, then there ic no guarantee that come

other representation baced on a minimuma priori, will ever get to the

gclution unless a particular nistory should be repeated. Therefore,

mechanical inquiry will nave tc be based on suitable representation, a

sub ert to which we will now turn.

2.1 Representation in Mechanized Inquiry

Tne present subject is most conveniently discussed in the context

of particular examples. Polya? presents an anecdote about little Carl

Friedrich Gauss still attending primary school. "One day the teacher
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gave a stiff task: to add up the numbers 1, 2, 3, and so on to 20. The

teacher expected to have some time for himself while the boys were busy

doing that long sum. Therefore, he was disagreeably surprised as the

little Gauss stepped forward when the others had scarcely started work-

ing, put his slate on the teacher's desk, and said, ‘Here it is!'"

Little Gauss had obviously found an efficient representation of the

problem such as

1 + 2 +« 3 + bh + 5 + 6 + 7 + B + 9 + 10

$2. 20 + 19 + 18 + 17 + 6 + 15 + 1b + 13 + 12 + 1]

2l + 21 + 21 + 21 + 21 + 21 + 21 + 21 + 21 + 21

= 10 x 21 = 210

How Gauss did it is not important, but the fact that there is a repre-

sentation which simplifies the problem is sufficient evidence for us to
study the problemof how tc find it.

At a different level of representation problem-solving is often

described as a process of tree-searching In particular, almost ail

currently implemented artificial-intelligence-machines>' employ some

form of tree-searching and/c. tree-growing process. In general, a prob-

lem [2 represented as a state SS, which by application of any of a

finite number of operators 0, (i =1,2, .., r) can be transformed

into cther states 3, (J = 1, 2, 3,. ...) which, ‘n turn, can be
transformed to new states by applying operators, etc. A solution to

“he proviem is defined as one particular state Se or any member of a
get of ztateg 8 .
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All states except S, can be conceived as generated by some se-

quence of operators, operating on S, . The totality of such sequences

can be summarized in the form of a tree. Suppose there are only two

operators 9 and 0, available, then the situation of figure 3.1
arises.

©

5. 0,
: OS

Figure 5.1

Az we see, the representation of the problem 8, can be trans-

formed toc a solution Sy by a seqgience of applications of operators.

The number ~f available operators may be quite large. For our

purpcse the tree is most conveniently assumed to be built from two come

pounds of operators, one context-dependent and one context-independent.

»

. ®
”

»

@

®

®

context-dependent representations context-independent

Figure 3.2
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A problem thus is solved in two stages:

1. Find a solution to the context-dependent part, i.e., find a

feasible representation.

2. Starting with an acceptable representation, deduce the solution

of the problem.

Granted that such division can be made, Leibnitz's idea of a general

logical processor can be made operational, such processor could probably

be designed to perform quite well in the first order predicate calculus

and for other calculi. The matter of incomputability does not necessarily

prohibit the use of ‘undecidable’' systems, because an operational defi-

nition of failure in the form of a time- or operation-cycle-constraint

makes the system pragmatically decidable. Several logical calculi can,

of course, be employed such as suggested in the generalized Leibnitzian

system Lindsay e writes, ~ an intelligent machine would achieve some

economy by employing general purpose representations whenever usable

rather than devising special schemes for each case.” This statement in

the description of Figure 5.2 translates to: "Try to minimize the uti-

lization of context-dependent operators,” which amounts to pushing the

line A in Figure 3.2 ag lose to S_ a8 possible. This approach is

taken in several artificial intelligence machines of minimuma priori

“ype, where a.l procegsing is performed in a single formal language.

Such machines are abundantly reprecented in the li‘erature on

artificial-intelligence Actually, there is a whole sub-branch of arti-

ficial (ntelligence, which concerns itself with the design of such pro-

‘#sgsore Some examples are theorem-proving-machines, (see Section 2.1.1),

“Cimple deducers,” such as Slagle s DEDUCOM, 7 Newell, Shaw and Simon's
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LOGICAL THEORIST," and the ADVICE TAKER by McCarthy; 2) and so-called

question answering machines such as Raphael's SIR, and Bobrow's®”

STUDENT, which compile English-like sentences into the language of the

logical provesEor

The converse of the context-indevendent approach, namely almost

exclusive utilization of context-dependent operators, is also frequently

employed in the design of artificial intelligence-machines. Such maximum

a priori inquirers are represented by, for .nstance, elepiter ses geome
etry proving program, Slagle’ so symbolic irtegration program, and other

special purpose performance machines.

In general, the design of zuch machines has been particularly suc-

cessful in areas where the choice of representation seems more or less

obvious to the human probtlem-soclver as ir the following examples:

a. The use of dlagrams for geometry problems. Gelernter supvolied

a heuristic in the form of a coded model of a diagram to his geometl-y

machine in order to provide a ‘filter’ for rejection of infeasible sen-

tences generated as attempted sub-goals. "As an experiment, a number of

attempts were made to prove extremely simple theorems with the latter

heuristic 'dizconnected’ from the system (i.e., all non-c.rcular sub-

goals generated were accepted)....We estimate conservatively that, on

the average, a number of the order of 1000 sub-goals are genera“ed per

stage by the decoupled system. If one compares the latter figure with

the average of 5 sub-goals per stage accepted when the dlagram is cor-

sulted by the machine, it is easy tc see that the use of a diagram is

crucial for our system. (Note that the total number of sub-goals appear-

ing on the problem-solving grapn grows exponentially with the number
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accepted per stage). "S| To be fair the result would, of course, be no

less spectacular if the constraints were introduced into the problem by

some other method. The diagram simply was one convenient way of doing
8O.

0. Family relationships by convention are represented in trees,

80 it is quite natural that Lindsay's SAD-SAM displays family relation-

ships in the form of tree structures (a representation particularly

suitable as the programming-language used was IPL-V).

¢ Fitting of lines to given sets of data is most easily visualized

in a diagram. This method of representation has therefore been programmed

into our sequence-extrapcliators.

In terms of the representation of Figure 5.2, this approach pushes

the line A as close to the solution as possible.

There is also a possibility of employing artificial intelligence-

machines such as a where a context-independent "permanent core" is

embedded in a context-dependent "environment-machine," i.e., problem-

solving {3 performed in a dialogue between two essentially separately

functioning sub-machines The border between the domains of the gub-

machines is ir Figure 7.2 represented by the line A .

By choosing a narrow doma.n for a conte ‘t-dependent inquirer, it

may ve possible to design quite powerful input-sectors, but the appeal

cf having a wide area of applicability le lost. If a wide domain is

chosen the input-se~tor is likely to become poorly selective and, in

short, mediocre in elegance and efficiency. The only way out of the di-

emma seems Lo ve the application of several powerful modele which, when

come. ied, cover a wide domain, but when correctly chosen permit strong
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selectivity. Such multiple maximuma priori Kantian inquiring-systems

as exemplified by the complex sequence-extrapolator SEP, will be discussed

in Section 5. The main components of such a system sre indicated in

Figure 3.3. |

Rk

LEN
Ke =\ Nn

—
Executive which Models Logical Analyzer
selectes model Frocessor

{.e., represen-
tation

Figure 3.32

In Figure %.7 there ig a set of models, which define representations

suitable for specialized domains of inquiry. When a problem arrives, an

executive after studying the raw input-data decides which model to apply

first. Input-data is represented according to the specifications of the

chosen model, and the processing iz performed. If the result is deemed

successful, an output results. Otherwise the process ls repested, i.e.,

a new model is chosen, etc., The rules for choocing models, etc., are

discussed in Section 5.
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3.1.1 The Domino Problem

Newell” has presented the domino-problemas an example of the

insufficiency of the stock of ideas concerning representation. McCarthy” ~

has given a formal representation of the problem in the first order

predicate calculus as “A Tough Mut for Proof Procedures.” The problem

is interesting because, if represented as a straightforward formalization,

it is a very tough challenge for a logical processor. However, when

represented in an efficient model, the solution’ of the problem is

easily found.

The Problem: Is it possible to cover the mutilated checkerboard shown

in Figure 3.4 by dominces of cize 1 x 2 squares?

88/8
7, 7 VIAVI,
778 TV
74107, VIA
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Wawel, in reviewing several different repregertations of the

protlem, states:

Hence, the ultimate protlem 13 not to discover the prcof,
but to. build a machine that can discover the proof to the domino

proulem. [tt ig a fair statement, | telieve, that no one today
krows how to build such a machine - or equivalently, how to

CcCrnEtruct such a computer program.

t- statement doec not C...y represent Newells and other writers’

~onception ot the protlem; the following quotation from a later section,
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however, provides a clarification:

For, I believe. certainly, that given a modest amount of
additional effort, a reasonable program can be constructed
that finds the domino proof and does so fairly.

The last word should be emphasized: What a priori knowledge can be |

considered fair for an artificial intelligence-machine?

The question of "¢airpness” is recurrent in discussions of artificial

intelligence. Mainly, this ls because the total amount of contextual

information available to a machine must be far smaller than that avail-

sable for a human problem-solver, thus making addition of any information

_f pertinance to the context of a particular problem to stand out as

“unfairly” given. Therefore, fairness seems to imply that no information

present in the memory of a machine constitutes an anticipation of a par-

ticular problem or -f a narrow class of problems. Thus, in the case of

+he dominoc-problem, such contextual information as the existence of black

«nd white squares seems to be tabu (compare McCarthy's 'clean’ represen-

ation, and Newell's careful avoidance of the subject) and we feel right-

7 so. But fairness must imply some cortextua' information, come methods

“nich ‘might’ work, etc.

I+ should be observed that the question of fairness looses its sig-

rificance if reference ic made to careful definitions of the domains of

‘rnquirers, instead of imposing rules of fairness on the employed methods

of solution.

The following proposal for a machine solution of the "Domino Probe

lex” freely draws upon a priori knowledge, but still it should be con-

sidered fair in the light of our preceding discussion.

'y
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The 'solution will be given step by step. Pl is the initial prob-

lem, P2 and PJ are questions generated by the machine.

Pl. 1s it possible to cover the mutilated checkerboard by dominoes?

P2. How can "to cover ‘something’ by dominoes” be represented?

P35. How can "to cover by a domino” be represented?

PJ represents the cruc.al step in our approach and criticism against

it may certainly be justified because it seems to be so easily identified.

It should, however, be noted that several different approaches are at-

tempted in any ‘real’ situation, and that the 'one shot' success {llus-

trated here may be the result of lengthy search.

Somea priori knowledge is required to represent "a cover." as in

the minimal a priori Kantian inquirer, a coordinate-system for space-

relations is assumed to be available.

A representation of ‘a cover of a square (I, J) is given in

Figure 3.5.

BN

BB |
F.gure > 5
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As seen, a 'cover' of the square (I, J) can be represented as any one |

of four pairs:

(I, J), (I +1, J)

(I, J), (I -1, J)

(I, J), (I, J + 1)

¥) o (I, J Jy (1, J - 1).

The inquirer attempts to find simple representations of concepts;

therefore, [ts "generalization sector” is employed to find a represen-

tation that subsumec the above four pairs. Looking for differences in

the pairc, it is found that “hey only differ by +1 or -1, which

suggests ‘lie picture of Figure 2.6

EB
Figure 2.6

The repregentation of a cover [eg thus reduced to any one of two pairs:

(N, 2 +1)
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In the next step, the "generalization sector” attempts to combine

these two pairs into a common representation. Such representation can

be found as each pair consists of one odd and one even number.

- |

B44 B44.| /A or /4 £

Figure 7.7

The representation of a cover then is (E, 0) -

The translations between representations given in Figures 2.5, 5.6,

end 3.7 are summarized in figure 3.8-

Rl. RZ. R%.

s| _ _ B 5 ET | = BE

JRE |elol elo]
l 2 2 4

Figure 2 .B

SOLUTION OF P35

Represent a ‘cover atc (E, O) .

The next step is to find the sclution of P2, i.e., tO represent &

board covered by dominoes.

This step requiresa priori knowledge of the principle of mathema-

tical induction, or, in Newell's words, ".. If P(n) implies P(n + 1),

and P(1) is true, then P(n) is true for all positive n . Now, there

is only one such principle,.... Consequently, it 1s reasonable to
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assume that a problem-solving program would be given this principle.”

Purely formal operation of this principle gives the result that to

cover something by n dominoes requires n pairs (E, 0) .

SOLUTION OF P2 |

"To cover the mutilated :heckerboard by dominces” is represented

as:

n pairs (E, 0) .

The next step is to find the solution of Pl, i.e., to establish

{f the mutilated checkerboard can be covered by n pairs (E, 0) .

1. The board has 62 squares, !.e., it can be divided into 31

pairs.

2. There are 50 E's and 32 0's, i.e., there cannot be formed

31 pairs of E's and O's . t

SOLUTION OF Pl

Ho, the mutilated checkerboard cannot be covered by n pairs

(E, 0) .

The described procedure explicitly searches for a simple represen-

tation of a cover. Even if the reader does not consider it to be a

‘fair’ sclution, we hope that the simple lesson, "search for sa simple

representation,” will justify the use of a well-known example on the

importance of finding a representation. It should be observed that the

simple induction-rules employed here alsc are employed in one of our

sequence-extrapolation programs (see Section 4) and, therefore are not
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specific to the current example. This may increase the likelihood of a

verdict of fairness for the presented solution.

«ec levels of Representation in Mecnanize. Models of Inquiry

The discussion of Section 2.1 indicates that some vay of representing

representations [is needed !n order to find s suiiable representation of

& problem. This result iz not empty, but on the contrary, it clearly

indicates the pocr't| Ly aug: Voy a8 Lierarchy J! representations,
OF languages, in the protlem-s-lving process.

Such hierarchy extends all! “he way from representation of problems,

via Tormiltlon 00 pri eusse. ng programs down to Lhe internal pro-

cegaing eves a il,"3 © mputer. By visualizing problem-solving as

@ tree sorting procedure we (because of the recursive definition of a

sree) implicitly suggest that search for representations be performed
at any level of the process.

Therefore, an initially considered protlem-formulation may, during

Lhe procecs of problem-zoiving, be “ranziated .nto otner representations

in order to permit gererslizat.on and/or appiication of particular

techniques. The former case will now be briefly discussed.

"The ability tc d.scern zimilarites beneath divergence is the

ability to generalize,” aceording “o tne psychologist Humphrey.” ~ Our

task {3 to find reprezerntat.ons that jermit such generalizations to be

made. There 1s an abundant |!tersature on _nductive logic, but still it

ig very 411i cult to find some description of 8 language suitable for

reprecernling generalization. A quotetion from E. Sesuizers character-
izeg the situation,
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Thus, abstraction is very easy for the "philosopher" but,
on the other hand, the determination of the particular from the
universal, so much more difficult.

There are a few examples of application of inductive methods for

particular situations represented in the literature on artificial intel.

ligence. London”? used induction on length of strings as a practical

tool. But his method is based -n a particular theorem-proving situation

and he conseqQuen®ly ctates,

The mechanization cf these techniques [induction and
case analysis) {: tied intimately toc this task and their
ceparation from the task along the lines of GPS ig desirable
if the program (5s tt beccme a more genera. aid and thecrem-
prover.

Solomonof £0 describes a grammatical induction scheme. A very

simple but general induction technique is employed in the exemplification

of the domino problem (cec Figure ?.7) for representing a ‘cover,’

where a -pecific representation (R1) is first slightly generalized (RZ)

and evertually a gtill more general representation (R2) is used for the

remainder »f the process. Ancther example is provided by our zequence-

extrapolating programs, where the input is represented as a sequence of

numbers which (s to be modeled. In cases where noc apriori models are

available, the tock is f=irly straight-forward, but, when the program

itself builds models, then the representation must be such that it

permite generc’ ization of experienced results. This requirement will

be discucged in Jecilion kL.

An instructive example of application of multi-level languages ic

given by T. Evans” | in his discussion of a program for analysis of

pictorial analogies.
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By utilizing multiple levels of language, situations (which at cne

level of abstraction seem to be unrelated) may, at a higher level, be

naturally connected. Occurrences which, in one representation, seem

random are clearly -ausal at a different degree of abstraction. Multi-

ple langusges permit abstraction, specialization, utilization of differ.

ent relational models on a constant data-base and, in short, gives the

"linguistic flexibility” necessary for sophisticated problem-solving.

35.2 Pragmatics of Representation

The importance of suitable labelling, as discussed in the context

cf lockean inquiring-systems, applies equally well to mechanical inqui-

rers. The following pair of quotations illustrates the situation. The

paychologist K. J. W. crate? writes:

The effects of language in perception appear to be

to make those features of the cbjective world that are

reprezented ty linguistic forms stand cut in greater
articuiation.

This quotation (8 strongly related to the computer scientist, Minsky's,”’

zgtatement:

[t+ is usually neceggary to have ways of assigning

names symbolic expressions) tc the defined classes.
Tne structure cf the names will have a crucial influence

on the mental world of tne machine because (tt determines

what things can be conveniently thought about.

We have shown how EPAM from given representations of complex enti-

tieg abstracts features, whicn suffice for an efficient parsimonious

labelling and, also, how the noticing-crder employed by EPAM will affect

its categorizations. [In general, computer-generated labels can be made

wr. 3u.ted four logical processing and classification than the conven-
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tional names of natural language are. In particular, 'content based’

addressing, as in EPAM, can be efficiently implemented.

In the pioneering works of Newell, Shaw, and Simon,*® there is a

recurrent realization that sopnisticated problem-sclving requires power-

ful means of representing models. They write:

There is a close and reciprocal relation between

complexity and communication. On the one hand the

complexity of the systems we can specify depends upon
the language in which we must specify them....

and

a more powerful language can specify greater complexity
with limited processing powers.

There is an obvious trend toward development of increasingly sophise-

ticated programming languages. We can trace how the basic signal lan-

guage of bits and gates of a computer {3s activated from successively

more complex languages such as machine-language, assembly-language,

problem-oriented TL and all the way up to sub-routines and

execut.ve-routines of problem-solving programs. Our main concern, how.

ever, haz been to study the languages from the other end of the program- .

ming process, i.e., we have discussed the languages relevant tc problem~

solving. As there (3, however, a very definite interaction between com

puter-languages and formulations of problem-solving machines, not only

in comporients but also in their very structure, a few comments on the

situation will be made. The users of the programming language, LISP,

for instance, sometimes "get carried away” by its convenient recursion

facilities 2 or choose problem-environments particularly suited to its

mathematical structure. Equally obvious is the tendency to structure

problems according to IPL V's mo: equential structure. Raphael? has,
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- in somewhat confused terms, tried to classify computer- languages as

declarative or imperative where the former type (if implemented) weuld

be more suitable for formulation of programs of artificial intelligesce.

It should be obr-rved here that “simulated” declarative languages cam be

Sevised by proper strusturing eof sub-routines. Although vesy intereetiag,

the subject of pragmatics of pregramming- languages will ast be discussed

further is this content. >

§
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kL. Seguence-Extrapclstion

Sequence-extrapolstion has been chosen as the domsin of es computer-

model of a representational inquiring-system which will be presented in

the next few sections. As representational functions of inquiring-systems

are strongly context-oriented (Section 3.1.1), a brief introduction to

the field of sequence-extrspclation will be given in order to provide beck-

ground for lster discussion.

Sequence-extrapolation, or inquiry into the structure of sequential

patterns, iz a process of establishing relationships, rules of progression,

between members of a series of symbols. Such inquiry is deemed success-

ful, i.e., knowledge hes occurred when sets of identified rules, i.e.,

models, can be applied to generate arbitrary members of corresponding

sequences.

At first glance, sequence-extrapolation will seem to require applica-

tion of genuine induction, i.e., to start out from a pattern, represented

by an i{nput-sequence, and eventually arrive st a more general representa-

tion from which the input-sequence may be deduced. However, true inductive

ressoning is not necessarily required. In many ceses, apparent inductive

behavior should rather be described as "deduction disguised as induction”.t

Some such cesses will be indicated during the following discussion.

The process cf establishing relationships between members of a sequence

is snslogous to finding grammars for sets of sentences. Buch grsmmars

can be trivislly designed by enumerstion or by employing rules such as:

“sentence — sentence + any word”. Any spparent generslity of such gram-

mar is necesssrily not sufficient reason to accept it as a desired type

of description. The essily reslized drevwbacks of these "general grammars”
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8re not 8s easily discovered when translated to the analogous case of

sequence extrspolation. In particular, some confusion sbout this situa-

tion has been noticeable in published work on sequence-extrapolation.

Specifically, the question of power, or inductive power, of sequence-

extrapolators seems to have been misunderstood. The next section will

therefore be devoted to this subject.

In general, there exists no unique continuation to any sequence of

symbols. Actually, no continuation can be ruled out as infeasible.

EXAMPLE1. Which ere the next few entries of the sequence:

1, 2, 5 L, 5, irti mone 0

As for any sequence, there are infinitely many possible continustions,

some of which sre:

6, 7, 8, 9, 10, rerenwme 0)

1, 2s FF Lh, 5, wwwvo www 8)

8, 7, 16, 9, 32, ceene-ee (ec)

: 9 9, 1}, 12, 16, voeecees (Ad)

A few of the patterns may seem rather unlikely, but tney can all

be justified if seen in their proper context: ‘

a) This is the continuation which would be preferred by most knowl-

edgeable people if no particular context is defined, i.e., in the typical

Case where the human problem-solver Rnows the order of the numbers and

Sees no reason that the progression will not continue as started.
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b) This pattern gives a cyclical repetition of the subsequence o

1, 2, 3, 4, 5. It may be chosen under the influence of previous exposure
0

to cyclical patterns, e.§., calendar dats.

c) This sequence has actually been given by a sequence-extrapolestion

program. The situstion was such that the program had endountered seversl

patterns consisting of intertwined subsequences, i.e., the pattern was

assumed to be:

be ow og Tos Tom

d) This series is somewhat tricky. It consists of the primes and

their powers arranged in order of magnitude.

The example is homely, but hopefully it helps to illustrate the

point that the context within which a psettern is presented should have

a major influence on any prediction of its continustion.

The non-unigqueness of continustions of sequences thus forces us to

consider discovery as well as evalustion-procedures for representations

of sequences.

Discussion of eveluation will be postponed. For the moment, it

sufficees to note that such evaluation is the task of the executive of

leibnitzian inquirers. Representation of sequential patterns, on the

cther hand, will be illustrated in the context of a few simple examples.

Given a sequence of n numbers, we can slways find a polynomial

c x7 + c X"° ¥ vues * CX . C. which for consecutive values of
X, X =1,2,..., n; will represent the initisl sequence.” Thus, any

sequence of n numbers cen always be described by an expression contsine

ing n independent persmeters which cannot only recreate the sequence
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but alsc provide one justifiable continustion. Such extrepolator is

described in Section 6.1. This extrspolatorwill hereafter be denoted

as El El 1s completely genersl, but will not elways provide repre-

sentations which seem ressonable.

Certain shortcomings of s class of "genersl” sequence-extrapolators’
will pe demonstrated by exemplification

L

EXAMPLE 2 i, 10, 100, 1000, 10000, L0O951

The extrapclation 40951 does not seem reasonable. By representing the

input sequence differently, however, El, as shown in Example 3, is

applicable

EXAMPLE 3 10%, 10%, 1%, 10°, 10%, 102

The extrapclation is here performed on the sequence of exponents.

A generalized version of El, described in Section 6.3, here denoted

E2, na: a somewhat richer domain of representations.

EXAMPLE 4 iy 10, 100, 1000, 10000, 100000

n= reeuit is derived via an implicit translation of the input

Sequence toc 1, ZN 10, n, = 1, where on, is the nth elementi I~

L

of tne E~-QuenCe g

AAMPLE 5 l, il, 111, 1111, 11111, 111111

Here E2 finds J (n | 10) + 1, ny, = I.

EXAMPLE © l, 12, 123, 1234, 12345, 1234 56

F2 trans.ates "0 nh, * ni 10) + i, n, = J

+0 general, Ez applies over a domein described by n, = Pn, _,, i),
where PF denotes a linear combinatiomof its erguments.



EXAMPLE 7. 1, 22, 333, Lbbkk, 15865

Here E2 obviously fails while a simple representation which could easily i
be made internal to E2 succeeds. Compare Example 8. i

n, :
where n, = i (== 10 + 1), n, = 1 or the sequence ;

1-1, 2-11, %-111, 4-111, ..., 10-1111111111

or where n, = i:i, where : stands for number of occurrences giving

the sequence 1:1, 2:2, 7:3, L:4, 5:5, ..., 10:10 .

(Note the dissimilar results for i = 10, i.e., 11111111110 and |
10101010101010101010, respectively)

The examples presented are very simple but, hopefully, they have |
conveyed the idea that even if we add features which take some of the

shortcomings out of a “general” sequence-extrapolator, there will still ;
be unlimited numbers of sequences which will be extrapolated in a very |
awkward manner. Obviously, context must be considered and, within any |

context, simplicity and elegance chould also be taken into account. |
Thus, generality is not necessarily a virtue of sequence-extrapolators |

but may actually be a hindrance for reasonable performance. Therefore, |
the subject of context in sequence-extrapolation will be discussed in |
the next section. |

L.2 Context in Segquence-extrapolation

"How can you do ‘new math' problems with an 'old math' mind?"

(Linus in Peanuts by Charles Schultz)

Why do certain extrapolations seem more “right” than others?

How should an evaluation-procedure for sequence-extrapolation be designed?
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* These questions are very difficult to answer with authority as

correctness in sequence-sxtrapolation is clearly a function of how well

the results fit intc the particular context within which the problem is

formulated. Even if the context is weli-defined, there still remains to

evaluate alternatives which clearly cannot be judged on the criterion of

relevancy for context only Trius, the well known but rarely objectively

defined notions of simplicity, elegance, parsimony, etc., will have to

be employed The only guide that car te given s2ems tu be that the most

appealing of those alternatives which fit into the context should be

chosen. Thie guide is admittedly weak out still it is preferable to an

uncritical acceptance of *he first alternative that comes along.

The importance of context has bzern expressed repeatedlybut how is

it introduced 1ntc mechanical Eejdu=ntCe extrapoiators?

There are several methods =vailati- and we will now proceed to exem-~

Plify trose which are mos* frequently «mpicyed

1. Design "ne extrapolator to apply a few specialized methods (ses 3

below) v.', if these fail, to resort to some gereral "clean up method.

This approach is used 11 an exrtrapoiator ty M. Pivar and M. Finkelstein,

which conceptually 18 very close to *he previously described E2. They
ninig.

ie repur® deals with tre proviem of programming a
computer to perform inductions on certain general
kinds of dats in a manner superior tc the majority of
human beings.

In view of tre pocr selectivity of tne program, the above passage

“arly corfuses uncritical generality, as demonstrated ia Bection b.1,

»1 1 inductive power However, the risk ef confusiag “inductive powsy®

wit «fficient aigorithms for exploring very navrow demains must alse

Ce rea. lzed
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Simon and Kotovsky' have published an account of e specialized se-

quence-extrapolator for the Thurstone letter-completion-tests. Although

parsimonious in respect to immediate memory requirement and variety of

operators, the extrspolator can satisfactorily account for most of the

test-sequences presented in their peper. However, the authors’ claim

that "several versions of the program show varying levels of inductive

power” seems to miss the point that the purely deductive Leidbnitzian

inquirer they present only needs 8 very limited amount of trial and error

or exhaustive search to compile s generating model for any valid sequence.

A more straight-forward procedure, covering the same domain, is pre-

sented in Section 4.2.2, where an extrapolator is described which cen

efficiently extrapolate seguences from s very well-defined domain.

L.2.1 A Sequence-extraspolator Which Builds & Model of Its Domain

An extrapolator which, using & simple meta-langusge, cen perform

certain ele.c:iary generslizations is developed. The particular model is

rether restricted in scope but the methods employed are of wider applica-

bility. The inquirer is divided into two parts:

A. a model-building end evaluating executive, and

B. a set of tools for construction of models.

The executive is requested to build a model of sequences which, during

a learning period, are presented for analysis and extrapolation. The

executive is general, in the sense that its methods are not context-

dependent.

The executive operstes on r-tuples which are manipulated by simple

rules of induction. These rules are:



68

1. A set of n identical symbols S may be represented as a pair

(n, 8) .

2. A r-tuple of symbols which belong to the same category C may

be abstracted to a pair (r, C) .

3. Initial states of sequences may be separated from the relational

structure.

Part B of the program is context-dependent. The present discussion will

concern itself with s domein defined by a perticular type of letter-

sequences which are used in Thurstone Letter Completion vesta®; however,
several other domains cen easily be implemented.

The following 8priori facilities are available:

a. an slphabet, (usually the English);

b. facilities to establish if any one of a set R of relations

holds

R={= +, -]

(=) = equality

(+) = successor

(-) = predecessor ,

c. facilities to estatlish cyclicity.

Cyclicity is established by the shifted difference approach, 1i.e.,

® sequence Y -y, y,, EES is cyclical with the perio IK

if for all |i, y, = Vi 4 Cyclicity can be represented as

YIP rv Ye Yaak? Yiegel! Yieger? 2 Yp

Tur or Tyr Vir Yip Vppeer Tg
— ee

2, = : % 4 my -,

or (=, =5.. , =
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A description of how a particular learning-period will influence the
8

model-building is given. The examples are taken from Simon end Kotovsky.

A) a b a b a b

k=2 — a b = b =a b
EE Ee a EEE i SIS

I+ should be noted that s model is designed to be a symbolical represen-

taticn of 8 relational structure; thus, where possible, details of come

ponents are excluded. Hence, by induction rule 3, i.e., in analogy with

mechanical models, the initial state is separated from the relstional

model. The sequence is conveniently described as:

(a, b) (=, =)
Sono Coad)

Initial State Model M,

By rule 1 the model may be written (2, =) .

/

B) Cc a 4d a e a ff a

As indicated by the arrow, model M, doe not apply. A more detalled

study is therefore required. There are several different approaches

available, two of which will be shown.
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1. ¢c a 4 a ee 8 ff =a

2. c a 4 a e a ff a

The sequence of line 3 does not indicate cyclicity, unless a

generalization of the cyclicity-operator can be found. A potential

generalization is:

(e, a)(R, =) .

The nature of R will have to be studied. It turns out that R cor-

responds to (+), which suggests the model My .

Mfc, a)(+, =) .

Here a generalization has been made; instead of the parameter (=)

of the cycle-operator, the operator (+) 1s employed. A similar paras-

eter has been found. Similarity is, in the present model, defined as

shared class-belonging, however, (=) and (+#) both belongte the

~lass of relations R = ( =, +, - | and, therefore, (+) is accepted

in the pregent situation.

Another approach is to apply the cyclicity-operator om & model of

the relational structure of the inpul-sequemnce
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Input—» ¢ a dd a e a ff =a

c a d a ee a ff =a

Model — f= 4 = 4 =

# = ¢ "w ¢ -

= = = =

The model sequence can be described as:

(4, =) (=, =)
Ea Yndt

Initial State Relations

Use the model tc “mack” out the "questionable" sequence.

Input C a d a e & f a

Cequence c d eo £

Tnis i5 a simple successor-sequence which, by thea prior. facilities,

can be recognized ac:

(c)(+) .

substituting (c)(+) for (#)(=) gives (c, a)(+, =} i.e., Model ¥., v

C) a a bt bb ¢ e d
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No cyclicity can be directly applied, but reverting to a model of

the sequence permits analysis.

e 8&8 bb bb ¢ ¢ 4

a a bb bP ¢ ¢ 4

Relational model + + + + 4

A generalization, as in Example B, provides a model;

M.:(a, a)(+, +) .

The value of k = 2 is the result of previous experience and, further-

more, other periods do not provide models compatible with the periodicity

of the input-sequence.

The presently employed models are:

My y fv, =)

M. : (+s +)

Completeness suggests:

M,: (=, * } .

The relation (-) 1s a potential candidate for enteringthe models.

By rule ¢ the models can be generalized to:
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M: (u, v) us, v € R

D) a b x ¢ 4 x e ff x g h x

The present model cannot describe this sequence; it will, therefore,

have to be filed away for future analysis.’

— ml
E) a x b y a x bb y a x b

At first glance, the model (a, x)(+, +) seems applicable, however,

further testing establishes its falsity. The general model M does not

apply and a complete investigation will have to be made.

a x bt y a x b y a Xx b

Kk = 4 4 a x b y a x b y a x b

Mo : (a, X, b, y)(=, =, =, =) .

The model resembles the previously developed ones and a consolida-

tion of models is conceivable.

Mo: (u, v) u, v € R

M: (5, t, u, v) g, t, u, v€ R

The second model iz derived from ®, a3 a generalization by rule 2 .
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R has been substituted for (=) . The models may be represented as

pairs:

M: (2, r) r € R

M: (bk, r) r€R.

Asimple unified representation would be:

M: (m, r) m€ (2, 4}, r € R .

The range of m can be tested by random generation of sequences which

are presented to a guarantor for approval or disapproval. A further

generalization, which is quite feasible and actually can be easily derived

from 2 suitable example, is to expand the set of relations to

2
(=, +, -, M}, i.e., by adding the model itself to the set of relations.’

Supposing that a period of 2 has been very frequently encountered,

i.e. a large fact-net (see Section 2.1) reinforces the period 2, then

an attempt to employ the following representation is made:

M* : (a, x)(Rl, R2) .

The sequences ccrresponding to Rl and RZ are:

Rl : a, b, a, b, a, b

R2 : x, ¥y X, ¥y» X, _
i.e., Rl: (a, b)(=, =)

R2 : (x, y)(=, =) .
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This suggests

| ofl ((a, b), (x, y)) ((=, =), (=, =)) ’

Thus M is, as suggested above, included in the set of relations.

F) r 8s r t r u r v or

The model Ho is easily found:

Ms y {xy s)(=, +)
". EM.

G) a bb ¢ 4 a bb ¢ e a bb c¢ ff 8 Db cc

M. ; (a, b, c, d)(=, =, =, +) ‘

This reinforces M as previously only (=, =, =, =) of length 4 has

occurred.

H) m n 1 n k n J n

M, : (m, n)(-, =) .

M, EM.

This is the i.rst occurrence of (-) .

I) m n © m © © m Pp OO m

(m, n, o)(=, +, =) .
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This suggests that the domain of m should be investigated. At present,

m€ (2, 3, 4) .

J) c e g e 4 e h e e e i p ff oe

M, : (cy e, ge) (+, =, +, =)

Or, in a different mode of expression, i.e., by considering M as a

relation,

1

Mo: ((c, 8), e)((+, +), =) .

The present model M describes a major part of the domain of letter

completion tests. Although the model is developed by rather bold steps

of generalization, the methodology is still justified because the sequence-

extrapolator is conceived to be interrogated in time-sharing, where the

executive can test its hypothesis by asking the interrogator for valida-

tion of sequences generated by proposed models.

4.2.2. A Specialized Model

When knowledge about the structure of a domain is achieved, e.g.,

when the model M of section 4.2.1 is developed, efficient probles-

solving may be performed. 1n the present section, the domain of letter-

completion-tests, as described by the model M of the preceding section,

~111 be utilized for efficient sequence-extrapolation.



17

The model is:

(m, r) mE (2, 3, U}; r€ [=y +, = M} .

By temporarily disregarding the relation M, a simple strategy for

extrapolation can be designed.

Given an input-sequence Y = Yi» Yor cc Y? extrapolation is

performed in three steps.

1. Find the value of m .

2. Find the relation r between Yn+1-2m and . » :

7c Vn or nets }
The steps can most conveniently be represented graphically, as in

Figure 4.1. Let the letters of the alphabet be represented on the

ordinate-axis and the order of elements of a sequence along the abscissa

of a 2-dimensional coordinate system.

h
"Solution"

A

£

e

d

£

b

&

Figure 4.1
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The proc-dure is as follows:

1. Starting at the point defined by entry Ypelom’ where m = 2,

i.e., in the example at Vor test if a line of slope +0, +1, or -1

touches entry Yn+1-2m’ i.e., in the example Vg: If this is the case,

8180 check points Yp+1-3m’ Yn41-bm’ etc., until the sequence is

exhausted. In Figure 4.1, the negatively sloping line touches points

eT Ye» Ys9 and yy If such line does not exist, increment m by

1 and repeat the above steps. After, at most, 1 (m-1). 3 + > - 1
elementary tests, where 2 < m< 4, the periodicity of any valid sequence

is established.

2. The relation r between Yn+1-2m and Yn+lem is defined by
the slope of the line establishing periodicity, i.e., no new test will

have to be performed.

o Yoel can be computed from available information, i.e., by

extending the line until the intersection with Yoel is found.

As seen, an exhaustive search only requires 8 + 2 or, in general,
approximately 12 elementary tests in the worst possible situation.

By optimizing the search-strategy of step 1, an average of 3 + 4
elementary tests can be expected to suffice for extrapolation. Thus,

the required level of "inductive power" of sequence-extrapolation over

this domain is very low.

4.3 Error Correction in Sequence-extrapolation

In a constreined environment, redundant information may be utilized

“or error-detection and/or error-correction im "nearly" valid input

sequences. Although it is true that it is impossible to judge any
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sequence as invalid, in the Leibnitzian tradition the largest fact-net

is also presumed to be the most reliable, and therefore, minor changes

which permit a sequence to be connected to such a net are assumed to be

permissible, in particular, if the input-mechanism is known to be unre-

liable.

Error-correction cannot be performed by "general sequence-extrapola-

tors," thus E1 would unhesitatingly produce:

1, 2, 3, 4, 4, 6, 7, 8, 9, -116

instead of reporting, "I believe the sequence to be"

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 .

Extrapolators which establish their domain by experience can, in many

cases, reinforce models which have proved successful in a long run of

problems such that "erroneous" sequences are not permitted to influence

the design of the model. Furthermore, certain irregularities may be

detected by very simple tests. The greatest potential {or error-cor-

rection is, of course, to be found in strongly constrained sequence-

extrapolators. A particularly powerful error-correction facility has

been implemented in our sequence-extrapolator, 3EP, where several types

of errors can be dected and corrected. A brief description of these

facilities will be given in order to illustrate the power of such design.

Section 6.1.1 describes a set of error-correction procedures derived

for polynomial-erxtrapolation. By permitting certain transformations,

which preserve the properties upon which the procedures are based, we
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can, however, stretch the validity to cover more general situations. In

particular, monotonous transformations of polynomial sequences are still

valid objects for error-correction. The following cases are satisfacto--

rily handled.

Case 1. At most, E entries of the input-sequence Y are incorrect.

An estimate Y of Y is produced by applying the extrapolator
* ces

toc m+ 1 consecutive values (You 4? Y144? ’ Yes)

§j=0,1, ..., n-m. If Y, differs from Y in, at mcat, E

places .t is accepted, otherwise the procedure is repeated for new

values of J until an acceptable estimate of Y is found.

Case 2. At most, E pairs of entries are interchanged. Apply the

procedure of case 1 but permit differences between Y and Y in,

at most, E pairs of positions such that by interchanging the

members of such a pair corresponding differences are eliminated.

e.g, Y:1,2,6,4, 5, 3,7, 8

Y:1,2,3 4 56,7, 8

Combinations of case 1 and case 2 may, of course, be handled by

the same procedures.

Case 5. At most, E entries of Y are missing.

The present case is "diagnosed" when Y and Y differ in leading

or trailing strings of consecutive entries. By adding "dummy"

members to the input-sequence, such that the number of discrepancies

is minimized, identification of missing entries can be performed,
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e.g. Y : 1 2 3 5 6 7 8 10 11

Y,: 2345678 3 10

Y: 1 2 3 D5 6 7 8 D 10 11

f a,Y : 3 5 6 7 8 9 10

Dummies are placed where the runs of discrepancies start.

Case 4. The input-sequence Y is scrambled.

Section 6.1.1 gives a detailed accouri of how this case can be

handled satisfactorily.

In general error-correction-procedures are based upon context-4epen-

dency and simplicity. The role of simplicity and efficiency in error-

correction is rather interesting and will be briefly discussed.

The authors of "Automation, Using LISP, of Inductive Inference on

Sequences,” have proposed the following method for error-correction

(detection of irregularities).

If, in a difference table’ at some level k, the majority of the

Ls are equal, it ic assumed that all entries at this level should be
i

equal. By working backwards, a modified difference-table defining an

"ideal sequence,” is constructed, e.g.,

Y 1 2 3 4 5 5 7 8 1 2 3 4 5 6 7 8

o5y 1 1 1 1 0 2 1 -— 3} + 1 3 % i 1

The "ideal sequence” is 1 1 1 1 1 1 1 and the result 1 2 % &

5 6 7 8.
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The method seems simple and efficient, but it can hardly be used in

any but rather trivial cases (for low-order polynomials) The reasons

for this limitation are described below.

Suppose we have the following situation:

There are n+l entries in the input-sequence.

The polynomial in question is of k:th order.

E errors are permitted.

A typical difference-table may be represented as:

. . . v X . ‘ ' N

‘ . i X X ; : ;

‘ ; X X X ‘ :

. X X X X '

X = irregular entry

. = regular entry

The number of entries at the oF ievel is n+ 1 - k .

At level oF, each original error can affect k + 1 positions.

We, therefore, find that a majority of “constant” entries at

level a requires that the original sequence is of length n + 1,
vhere:

n+ 1l>2E(k +1) +k 16
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The sequence-extrapolator of Section 6.2 requires k ¢ 1 consecu-

tive correct entries in order to extrapolate a polynomial of order k .

The situation can be illustrated as’?

‘ " 9 r £ . ‘ . X . . . .

k k k+l

In this case, the required number of entries 1s expressed by:

n+ 1>k(E+1) +1.

A still more efficient method is provided by Newton's general

interpolation-formila, which would require:

n+l>k+.l~* E .

The difference ir. efficiency between the first two approaches can

be written as.

Diff. = 2E(k + 1) +k - k(E + 1) + 1

The difference is thus dominated by the product E - k, which

indicates that the first method is unsuitable for higher order polyno-

mials.
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FOOTNOTES AND REFERENCES FOR SECTION&

1. This formulation is due to Thomas A. Cowan.

2. Compare Sectiom 6.

3. One extra-polator belonging to this class is described by Malcolm

Pivar and Mark Finkelstein in "Automation, Using LISP, of Inductive
on Sequences,” in "The Programming-Language LISP," edited by
Berkeley and Bobrow, Cambridge, Massachusetts, 1964.

bk. An underlined element of a sequence represents a prediction or
correction made by & sequence-extrapolator.

§. E2's representations of examples &, 5, and 6 are described in more
detail in Section 6.3.2.

7. See "Human Acquisition of Concepts for Sequential Patterns” by
H. A. Simon and K. Kotovsky in Psychological Review, 196%, Vol. 70,
No. 6, p. 53-546.

8. see [7].

9. See [3].

10. See [7], Pp 536.

11. The necessary capabilities are easily implemented. See section 7.

12. Actually list processing languages such as IPL-V, and LISP favor
such recursion.

13. In a perverse case, (m-1) .- 6 + : - 1 tests may be required.
14. See note [3].

15. Some concepts discussed in Section 6 are employed here.

16. The expression is derived from E(k + 1) < - (n+1-k) .
17. The illustrated spacing of errors represents the worst case. Only

at one place is it possible to find k+l consecutive error-free
entries.
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5. On the Executive Function

The tasks of executives for inquiring-systems, and particularly so

in non-minimum 8 priori designs are strongly context-dependent (compare

section 2.5%). The organization of execitives, on the cther hand, can

often be designed independently of context. In the present section we

will therefore employ a particular complex sequence-extrapolstion

inquirer sep! to exemplify an essentially generally applicable execu-

tive design.

5.1 Organizetion of a Complex Sequence Extrapolator

It has previously, in Section 4, been shown that sequence-

extrapolation, as the general representationsl problem, is strongly

context -dependent and that, for this reason, no single extrapolator can

be expected to operate efficiently over a wide domain. However, by

combining several extrapoclators into one complex machine, sn inquiring-

system with, as well, wide domain as efficient operation can be sesigned,

Employment of specialized sequence-extrapolators, or in more gene

eral, Kentisn terms maximal gpriori sciences, mesns that the problem-

solving is likely tc be biased, such that problems are, non-selectively,

squeezed into available models, and furthermore there is & possibility

that the chosen domsin of the inquirer is too narrow to permit inter-

esting problem-solving. The problem of widening the domain is easily

solved ss sn extrapolator corresponding to the Kantien minimala priori

may be added, thus permitting a gredusl model-building whenever more

specialized aprioris fail. Such organization permits efficient inquiry

over well known domains as well 8s & great Jdegree of flexibility over
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more general areas. Though the risk for bias of course still remains,

by completely eliminating it no contextual information can be sdvan-

tageocusly employed. Therefore, a judicious balance will have to be

established between efficiency and dias, such that optimal performance

is achieved.

As shown in Section 3, the available sequence-extrapolators are

means for utilizing alternate representations of sequences. Conse-

quently, the task of the complex extrapolator consists of two phases:

1. the choice of an efficient representation

2. the application of appropriate methods of extrapolation

Phase 1 will be described in the present section, phase 2 is in

Sections 6 and 7.

5.2 The Domain of the Complex Sequence Extrapolator

Before proceeding some notation will have to be introduced.

n* = & sequence-extrapoclator, k =1,2,%3,4,5

x = the problem-domain of ME

M = a set of sequence-extrapolators Me operating under a

common executive,

X = the problem-doma:n of M

X, = a8 particular problem, X, € X, {=1,2,3, ...

Y, = the solution to problem X,

The application of a sequence-extrapolator, or hereafter "machine,"

tO a problem is denoted MEX, ). In this case mK represents a function

and X, is its argument. The value of Mex, ) is 1 Af a solution
is found, otherwise it is undefined.
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The presently implemented machines are:

Mt : Polynomial machine

M° : Extended polynomial machine

Mo : Extrapolator for intertwined sequences

mM : Recognizer and retrieval machine

and M° : Complex machine for letter-sequences.

The problem-domains of the machines are related as follows:

x! n x° - Non-empty (approximately x1)

x! nx’ = Non-empty (approximately x!)

xt n x = Non-empty (very small)

xt nx’ - Non-empty (very small)

X° Nx = Non-empty (approximately x)

x2 n x* = Non-empty (small)

X° Nn x’ = Non-empty (very small)

© nx*- Non-empty (small)

X° NX = Non-empty (very small)

x nx = Non-empty (very small)

The complex machine M has a domain X which represents the

union of the domains x* of the machines ME,

x-xX uxPud uxtux

f.e., X - xk + The above relations are illustrated in figure 5.1.
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Figure 5.1

oC NG
Ll 1]

Ei

—
|

Any X, € X can by the definition of X be successfully solved by

some machine ME, If Xx; € ~ it 1s said t«, be of the problem-type x=,
The type of a problem can not be determ.red a priori, only when a

solution is found can 1ts type be estap.ished. l.e,

X, e X* iff vmx} = 1, where the function VIA} = 1 iff its
argument A defines a proper go... 0",

The executive functions ot *tr= -. mplex macu.ne M may employ a

great variety of Strategies, rargirg from simple sequential application

»T sub-machires “0 elaborate predictive Glra*tegies which sweep in all

conceivable aspects of the ingy.iring -process, Regardless of the come

plexity, however, tre goal of ‘ie executive 5 “c propose optimal

representations, i.e.; to aliocate tre work between its sub-machines
=uch taht:

«eo A sclution if fourd for ANY problem X, e X.
2. The average amount cf informaticn required to find a solution

1s minimized
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3. The expected amount of time (computational effort) necessary

for the identification of a solution is minimized.

The first goal causes no difficulty in the design of the executive

machine, but the other two are in a sense contradictory and do, there-

fore, require rather complicated analyses for a high degree of simul-

taneous achievement.

The next few sections will illustrate a gradually implemented

complex executive for a set of extrapolators.

5.3% The Executive Functions of a Closed Machine

Hereafter a purely Leibnitzian inquiring-system is called a closed

machine. Such machine may be simple, e.g. ME, or it may be complex

e.g., M. A closed complex machine Mq is defined by any predeter-

mined sequence Z of application of simple machines mK, Figure 5.2

illustrates a simple case.

Flow of Control in a Closed Machine

& Ye
| | Output
| [ : |

Jes

+ = success

- = failure

Figure 5.2



90

A closed complex machine M, is defined such that its sub-machines
kK fo KK k

are employed in the order: M ", M ", MM“, M | M where the sequence

of superscripts stands for any predetermined permutation of machines,

ke (1,2,3,4,5) and i=1,2,3,4,5 .

Machine M, satisfies goal one because successive application of

each of the five sub-machines covers the problem-domain X. Thus, any

X, eX is solvable provided that a sufficient amount of information

about X, is available,

M, does not, in general, achieve goals two and/or three, a defici-

ency which may be partly removed by an appropriate organization of the

closed machine. a

Goal 2 may be realized by the following procedure:

1 Introduce the smallest possible amount of information about

X, into the machine M,. Denote this amount of information

by 1q(X, ); (in general, an amount of Jj quanta of informa-

tion about X, is denoted by Ja(X,), i.e., here j= 1).

2 Apply M, to Jax, ). If a solution is found goals 1 and 2
are achieved.

5. If no solution is found in step 2, introduce a new quantum

cf information, i.e., substitute (j+l)c for Jq. Then re-

turn to ctep 2.

By applying the machine M, to increasingly large amounts of

information until a solution is found, we know that within the size of

one quantum a minimum amount of information is employed.
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In symbolic form, the procedure may be written as:

Find the lowest value J of J for which

vim, (Ja(x,))} = 1 (1)

Where V{A} = 1 if and only if its argument A defines a

sclution.

In general, this procedure will defeat the realization of goal

three and particularly so when information is added in very small

quanta. If we assume that the time requirement for a solution is in-

dependent of the amount of information employed, then goal three may

be achieved by introducing any amount of information larger than |

Ja(x,). As we do not have any a priori information about the size of
3 , 8 time-minimizing strategy would have to apply all information

available about X, in order to assure successful solution of X, in
the first sttempt.

Symbolically this strategy may be written as;

VIM, (naxq(X,))} = 1

Where maxq(X, ) = all available information about x.”
Goals two and three are simultaneously satisfied only when

Jax) = maxq(X, ) . Depending upon the relative importance attached
to the two goals, some compromise such as introduction of an amount

mq of information, Ja(x,) < mq(X, ) < maxq(X, ), may be justitied.”
Further improvements of the efficiency of M are not possible

without relaxing the assumption of a closed machine M, ‘
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5.4 The Executive Functions of an Adaptive Machine

By relaxing the restriction of using a closed machine, information

about previous performance can be used to improve the efficiency of

the executive.

An easily implemented improvement consists in assigning thresholds

-K

q to each sub-machine Me such that it does not accept any amount of
—k

; -K

information below q , i.e., Jax, ) > q is required. A machine
empioying such thresholds is illustrated in Figure 5.3

Input

COT = 0

+

| |
( hl 5. | OutputIT « (T+1 2 |= : -

REOa [1 aOe [SRO -"

TO

—k Hy LES

> - ja 29
No

Yes

os

Figure Ses
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3 can be determined as

a. the smallest amount of information that has ever sufficed to

solve a problem X, ex" 3 Or
b. the expected amount of information necessary to solve sa

problem X, eX" ‘
In both cases a can be determined from information about previ-

ously solved problems,

In symbolic notation we have:

a. Ch = mn 5 alxy) (3)
K

orb. t= E(Ja(x)) = & © a(x) (4)
n=1

nel. 2... r*

k=1,2,3,4,5

r = The number of problems of type xX encountered,

5 a(x) = The amount of information about the n:th problem
of type xk which was found necessary for its

solution.

A simple example may clarify the use of the thresholds a :

Suppose the sequence of sub-machines defining M, is:

mE, M2, 0, MY, Ww)

Assume the following thresholds have been derived from previous

experience:



a

ml a = b

sg TE -5
Ww T - 6

u = 3

Ww T = Ub

In the process of solving a problem Xs the sub-machines would be

applied in the following order:

(3q(x,)): W'
(bq(x,)): WM, MY, Ww
(5q(X, )): Mt, u°, M*, mM’
(6a(X,)): ME, M2, 00, M*, W
(7a(x,)): ub, WZ, 0, M*, W
etc.

The sequence is terminated when a solution is found.

Further adaptation may be made in response to informstion gained

about the relative frequencies v of occurrence of the different

problem-types XK (k=1,2,%3,4,9) . If available such information may

be used tc minimize the expected time-requirement for finding a solution.

The minimization may be expressed as:

Chocse the permutation Z of sub-machines for which the expected

time for solution of a problem Xx, is minimized, i.e., find:
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Min ; vee
Z k=1

kK _ k oF

y= Fr @,-1,x "O = TC) (5)
k

Where Mo = A given permutation of machines M J where

k,el1,2,3,b,5] ‘

tS = Expected time for finding a solution to a problem of

type x~ on the machine M,
(s = 1,2,..., 120) .

Pk, ,k = The probability that the machine Re: will solve
8 problem of type x¥,

“s
rd = The expected time for solution (or indicetion of failure)

of a problem Xx on machine uo .

A simple example may indicate how 1a is determined:

Suppose: M, = M°, Mm Ww, mt, mM’)
@2,4 = 0.25

ph.b = 1.00

‘ y a" + (1 - 0.25) * 2)

The procedures for increasing the efficiency of the executive

function of a problem solver M, as outlined here, may of course also

be based on informetion received from external sources. Unless such

information can be received and acted upon continuously the potential
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for improvement is limited to es given environment, i.e., we still have @

basicslly closed machine. Such mechine can, however, itself be used to

collect informstion sbout the problem types, to compute its own “optimel”

orgenizetion, and to revise seid orgsnization 'f the environment changes.

This gives us 8 fully adaptive machine which will be "optimel” in some

sense over 8 wide range of different environments.

The task of the executive is to optimize the permutstion of subme-

chines at time ¢, denoted Z(t) on the basis of statistics cf perfor-

mence. Any one of a number of sdaptive procedures E mey be employed.

z(t) = E[Z(t-1)] (6)

Improvements in efficiency due to the executive function has, until

now, been limited to resther simple rescheduling of the flow of control

between sub-machines. However, given well-defined problems, i.e., 8

guarantor for the correctness of produced extrapolations, en introspective

executive (compere Lockean inquiring systems) will be sble to perform &

more sophisticated sllocetion of work. The next section will illustrate

such executive.

5.5 Inguiring Executives

We have previously indicated that it would be necessary to know the

type (class-belonging x©) of the problem X, for simultenecus schieve-
ment of goals two and three. This informstion ig not directly derivable

from the formulation of the problem Xs but it may still be possible

= predict the cless-belonging of any given Xx, . We have been concerned

with statistical measures for improving the expected performance of the
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basic machine. Now we intend to investigate methods to predict the

problem-type for specific problems, i.e., we want to find some reesonsbly

efficient way of predicting the next entry in the time-sequence of problem-

types encountered by the mschine.

To do ressonable predictions the executive needs s model of its

environment end our task will now be to erplore the possibilities of

generating such a model.

A usgeful model of the environment should be formulated in terms of

the processes available within the system, and furthermcre, it should

slsc be manipulated snd interpreted internally. These restrictions, of

course, limit the possibilities but it is still feasible to design as use-

ful model provided certain s priori sssumptions are shown to be justified.

The task of the model should be to permit prediction of the type

of any given sequence in order to assign suitable extrsplstors. 8uch

prediction can only, tc 8 very limited extent, be made by studying the

properties of input-sequences; however, by assuming such regulsrity in

the environment thst input-sequences, if observed in their context would

be parts of 8 pettern, then prediction would be possible if only the

psttern could be revesled. The only context, within which the executive

can search for informstion, ig the sequence in which different problem-

types have been received. Therefore, the following sssumptions will have

tc be made:

1. that there exists some psttern or strategy sccording to which

problems sre generated and presented, and

2. thst, given such psttern, its categories are homomorph to the

proolem-types which can be recognized by the inquirer M .
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Assumptions 1 and 2 imply that the context of events (problem-types)

can be represented as a sequence of problem-types. Prediction can then

be performed provided that some suitable sequence-extrapolator is available.

The situation is slightly re-formulated in the following descrip-

1. the machine M receives its problems X, according to some

strategy S for presentation of problem-types X', and

2. the strategy S is operational for the executive E, 1i.e.,

E can extrspolate s sequence of problem-types generated according to S .

Figure 5.4 illustrstes the functions of the executive.

Predictor enory

& J
pred

FJ

Figure 5.4

i

X = {input -sequence

X, = extrapolated X,

xk = problem-type
k

X = predicted problem-t
pred p | % ype

1.1% = stored parts of the input-strategy

M = complex extrapolator
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In Figure 5.4 the executive receives problems Xs in a sequence

determined by a previously chosen strategy. The executive E, on arrival

of a problem, retrieves a sequence, denoted 1-17 of the i-1 latest

encountered problem-types. The sequence 1-15 corresponds toc the first

i-1 positions of the strategy S . The executive, by employing a pre-

dictor, i.e., sequence-extrapolator, attempts to predict the next problem.

Assuming that this is most likely to be of type a machine Me is

chosen. Whenever a solution is found, the name of the successful sub-

machine is stored in the memory as the type of the corresponding problem.

The procedure for problem-solving is as follows:

1. The class-belonging x of Xs is predicted by E,
i.€.y E(,_,S) =X; (i.e., X, eX") :

2. Assuming the prediction of the class-belonging to be correct, the

sub-machine Me .8 applied to the problem Xs»

i.e., ME (X, ) =X, ‘

3. If a solution is found, the "memory" is updated,

i.e., (4S + [M°) ~ 5 ,

otherwise, some other class-belonging is assumed and points 2-3 are re-

peated. |

Obviously the prediction of the problem-type xk for a given Xs
is a problem which may be attacked in exactly the same way as solving the

problem Xs itself. It is, therefore, possible to extend the complexity

of the executive E as far as we have been able to extend the organiza-

tion of the problem-solving machine M, itself.
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5.6 Complex Inquiring Executive |

It is quite possible that there may be several alternate types of

strategies of presenting problems to the inquirer. If this is the case,

the question of efficient domain for the executive will arise. Thus, the

executive, too, may be most efficiently organized as a complex machine.

In thise case, the external problem-poser can be assumed to employ a

strategy of presenting types of strategies for presenting problems to the

inquirer M . As seen, the situation at the strategy-level parallels

that of the problem-level.

For convenience, we may think of each available strategy-type as

an 'experimenter' who has a particular way of presenting problems. The

situation resembles the frequent case where students learn about their

professor's strategy of formulating test-problems in order to optimize

their problem-solving performance, but as every new professor employs

his own strategy, they have to be alert to changes.

In summary, the situation is:

1. the machine M receives its problems X, from any one of

several experimenters;

2. each experimenter employs his own stragegy of presentation of

problems;

z. the executive has models for prediction of the probable strategies,

but is not informed which model is aprlicable at any given time.

An important goal of the executive is to identify the experimenter,

or rather the current strategy, before trying to solve any given problem

x. .
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As there is no apriori knowledge available about the identity of

the experimentor, we have to find decision-rules for identification of

efficient machines. There are several possible rules, some of which are

listed below:

1. Committee-vote: Let each sub-machine of the executive make a predic-

tion, choose the vote of the majority. This approach could be used

in a two-choice situation, for multiple choices it might bring con-

fusion. Furthermore, as only one prediction can be correct, no

compromise solution is likely to be satisfactory.

2. Priority-choice: (Dictatorship) In this case one sub-machine of the

executive is given pricrity, such that when it is able to produce a

prediction, this will be chosen. This method may, in certain in-

ctances, be very powerful. The design of the priority-scheme, however,

requires certaina priori information about the environment.

2. Competition: Let all machines provide predictions and pick the

"opinion" of the machine which in most cases has proven to be correct.

This may require very extensive double-computation unless a computa-

tionally efficient appros-h is chcsen. Some approaches are listed

below:

a. In stage 1, experience is collected and the prediction of

each sub-machine is used to find a suitable representation

of X, . A corresponding method of problem-solving is
applied. The amount of time used for each of the methods of

solution is recorded. In stage 2, experience is emplcyed

to choose the sub-machine which has the lowest expected

time-requirement.



102

b. The prediction of a randomly chosen sub-machine is used to

choose representation. The probability of picking e particu-

lar machine is determined by statistics of past performance,

which are updated as soon as success or failure of a predic-

tion is established.

Cc. All sub-machines make predictions. One of these is chosen

by random for solution of the problem. The time requirement

is recorded. Thereafter, knowing the actual problem-type,

each of the remaining predictions is employed as a starting-

point for simulated problem-solving. The expected time-

requirements are computed and compared, then the represen-

tation corresponding to the lowest time-requirement is

chosen. (Section 5.6.1 gives a more detailed description

of this approach.)

5.6.1 Employment of a Model of the Complex Machine

The situation facing the complex problem-solver of Section 5.6 may

be briefly stated as:

There is a community of inquirers which is to decide about the cate-

gorization of a particular element, which cannot be enaslyzed by direct

observation, but which may be indirectly spproachable via its membership

in 8 sequence of presentations. Such membership can be, as shown, es-

tablished by brute-force methods, though, simpler and more efficient

methods are to be preferred. A detailed account of one such method, namely

“mp.oyment of a simulated model of the executive, will now be given. The

method is most conveniently described as a sequence of steps:
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1. Applya probability vector to pick one sub-machine by random.

Solve the problem X, as suggested by the prediction. Record the compu-

tational time used at each step of the problem-solving process and store

the results at each perticular sub-machine. (When a sub-machine has been

previously “timed”, a stored average is updated.) Also, keep track of the

real cumulative time used up to and including each stage of the solution

process.

2. When a solution is found, the type x= of the corresponding

problem Xx. is known.

2. For each sub-machine not used in step 1., simulate the problem-

solving which would have been necessary for finding a solution, starting

at the pcint defined by the prediction of step Ll. (A detailed descrip-

tion of this stage will be given below.)

L. Compare the time used for actual problem-solvingwith those time-

requirements which have been derived by simulated problem-solving. In-

crease the probability of picking the machine which provided the smallest

time-requiremen< (regardless of whether the time-requirement was derived

by asctusl or simulated problem-solving). This ensures that the machine

which has “een most successful in predicting the correct problem-types

will be most likely to provide the prediction used for future problem=

solving.

By previous assumptions about the nature of the problem-domain, we

know that any sequence of application of sll sub-machines ME will,

providing that sufficient information about Xs is given, ultimstely

fird a solution. The permutation of sub-mechines defined by the struc-

ture of Ms augmented py thresholds for minimum and maximum amounts of
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information used by the different sub-machines defines a path between any

starting-point and a solution. An example is given in Tables 5.1 and 5.2.

EXAMPLE:

A problem X, 1s received and steps 1 and 2 of the above

sequence have been performed.

Suppose that the solution found in step 1, and recognized

in step2, indicates problem-type 3 requiring 7q of

information.

Suppose that some other sub-machine G predicts the

problem to be of type 2, and that past experience in-

dicates that problem-type 2 requires at least 6q of

information.

The two assumptions give a starting-point type 2, 6q

and an end-point type 3, 7q for the simulated problem-

solving of a machine defined in Table 5.1. The situation

is illustrated in Table 5.2. The expected time for

solution of the problem is computed to be T .

Parameters of the machine M,

M, = u, ow, ow, M’, Mw)

Machine number Minimm threshold Maximum threshold

1 3q 6q

2 bq 8q

3 6q 10q

L bq Lq

5 Bq 10q

Table 5.1
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Simulated protlem-solving by M,

Sequence of Information Average time Cumulated time
application quantity required in for the current
of sube-machines previous use problem
EE ———————— A ——— a ————

1 3q tus

: “q pT

2 hq to,

4 bq ty

1 5q is

2 5q tos

1 6q tig

Start — 2 6q tog tog

(predicted) 3 6q tag tg * tse

2 Tq ‘x tg * 56 + tr

Solution —» 3 Tq ty T = to + tag + tr + tar
(achieved)

Table 5.2

5.6.1.1 A Note on Simulated Problem-solving

It may turn out tc be 8 rather difficult tesk to construct s new

table for every encountered problem (N-B! thresholds and flow of

control may very sccording to experience.) Therefore, the machine

itegelf 1s employed as a generalized table, i.e., the mechine is used

to describe itself. The method is rather straightforwerd. A simple

illustration ig given in Figure 5.5.



106

The mode of operation of the sub-machine Mu is determined by the

executive machine. During the actual problem-solving phase, the compu-

tation mode is chosen, i.e., the necessary computations are performed and

the amount of time t J used by a is stored in & location accessibleJ

during the simulated mode.® In the simulated mode, the time ty { isJ

Picked up after which the actual computational part of Me is by-passed.

Control is thereafter transferred to the failure-exit or the success-exit,

depending upon the relation between the type of the problem X, (as de-
cided by sctual problem-solving) and the domain of the machine a under

test. X
i

I.T_T:T_T — T_T —— A -

| " |
| LW Mode? |

|

| Computational || Simulation Vode |
Mode

| =
——— ee ——

Figure 5.5

By providing each sub-mechine with a facility for by-pessing most of

its time-consuming perts, we have, in effect, facliliteted introduction
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of partially decentralized control which permits the use of a very simple

executive machine. When the sub-machines sre made "responsible" for per-

forming most tests for fessibility, constraints, etc., the executive machine

essentially transfers control between the sub-machines in & round-robin-

fashion (with provisions made for high level constraints). The sub-mechines

thus can be used tc make 8 majority of decisions concerning their own rele-

vance for a given situation.

Some advantages of this approach sre:

Ll. Any number of sub-machines (with very differing epplicability)

may be essily connected to the executive machine without greatly increas-

ing the total level of complexity.

2. Any psrticulsr constrsint may be included into s sube-mechine without

necessitating any changes in the executive organization.

’. The feature of “simulating” the time-requirement for using the

sub-machines may be essily implemented.

9.7 Exgplors+ion of a "Super-strategy”

Tne situation, as previcusly indicated, may well be that problems

are presented sccording tc slternate strategies which, for instance, could

be the case when experimenters are alternating sccording to some "super-

strategy. By trying to identify such super-strstegy, the executive im-

plicitly sssumesz that there sre multiple levels of ceusstion of events.

One possibility of doing this will be outlined.

Tc describe the super-sztrategy SS, we need sn indicator which st

any given point of time can be used to find the class-belonging of the

current strategy. As we have previcusly shown, the simulation spproach
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may be used to identify the best predictor for a sequence of problem-types

a . We have slsc indicated that the probability of applying s perticulsr

predictor is positively correlated to its current degree of success, i.e.,

after a large number cf successful predictions by s machine, the probability

of applying it will be greater than that of any other machine. But if the

current strategy is replaced by some other (in accordance with the super-

strategy SS), then the probablility-vector for choosing predictor will

adapt to the new situation. Changes in said probability-vector thus in-

dicate the sequence of strategy-types applied by SE . We thus can con-

clude that variations in the probability-vector for choosing prediction

machines indicates changes initiated by the super-strategy 88 .

The situstion is illustrated in Figure 5.6.

Machine with

highest proba-

bility of being
chosen

C \

A |

Time

| y Figure 5.6
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Disregarding transitory oscillations, we, from Figure 5.6, find that

the sub-machines, i.e., the classes of strategies, have been applied in the

following sequence:

B AC BA CB A C

The executive is 8 generally applicable machine for identification

~f strategies snd can thus be used to find the super-strstegy S88 by

extrapolating the above sequence.

Two levels of prediction have been described. One may be identl-

fied ss prediction of problem-types under sa non-chsnging environment, the

other predicts changes in the environment itself. At any point of time

the strategy in use is sssumed to be known, thus permitting as successful

prediction of the sequence of future problem-types. When the strategy is

changed, thie lz manifested ss an oscillation in the previously discussed

nrobability-vector. Any change in said vector triggers sa rapid sdaptetion

tc 8 predicted change in the environment.
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Footnotes for Section 2.

1. SEP (Sequence Extrapolstor) is s progrsm for e digital computer
written in the progrsmming-langusge IPL-V.

2. There sre 120 such permutations.

3. Any X, eX will be solved in the first application of M, ‘
b. The cost of informetion is rarely discussed in the litersture on

decision-making. A notable exception, however, is Marshak and
Redners' work on the theory of teams.

5. In most instances t. { is computed as an aversge time-requirement’

for several solved problems of type k .

6. A "timing-routine”, in the form ~f an operstion-cycle counter, cen
be inserted st any pert of sn IPL-V program during the execution-
phase.

H
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6. Extrspolators for Sequences of Numbers

Representation and modeling in the general ares of inquiry as well

as in sequence extrapolation has in preceding sections been dis-

cussed with only superficial connection to particular programs for

digital computers. In this and the following section a description

will be given of several implemented sequence extrapolating programs.

The discussion will be given at a sufficiently dctailed level to permit

reconstruction of the basic ideas of the programs, however, particular

aspects of programming will not be discussed.

The sequence-extrapclators presented sre all “complete” in the

sense that thev can be employed as isolated Leibnitzian systems and,

furthermore, most of them are also homogeneous such that their inpute-

output specification: permit connection to SEP. A program can be in-

cluded in SEP by simply adding its name to a list of members. That is,

all transfers cf information between SEP and its members are performed

via "public" commun.cation cells, and thus great flexibility in organi-

zation ig schieved.

£.1 Extrapolation of Polynomial Sequences

The following basic scheme will correctly extrapolate any sequence

~nf m numbers generated by a polynomisl of a degree lower than m.

A polynomial sequence Y = Yr¥yseoer ¥p is defined as a tabulation

of a polynomial f(x) for the values

¥, ® fx) gs = 0,1,2,..., n

Xo =X + 3S * h h = 2

x = O
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The k:th forward difference of x denoted 4 “x, is defined by:

a%t(x) = 8"t(x +n) - a" te (x)
0

a f(x) = f(x) ‘

a®le(x +h)s= a" t(x ) + a"t(x) (1)

Denote the set of polynomials of order m by F' . For

any f(x)EP" (2)
ar (x)!

8° (x)eP° or a(x) =a" (x,,) (3)

8" (x) = 0 1=1,2,... (b)

By (1) and (3), any polynomial sequence Y = Yor Yyroce0 ¥ (n > mn)
can be extrapolated by the following scheme:

A%(n - (m-1)) =a%(n - n)

stn - (m-2) =a (0 - (a-1)) + &a%(n - (n-1))

af(n) = af(n - 1) + 8%¢(n - 1)

f(s + 1) = £(n) + Af(n)

or ’

Tnel «Y, * oy,

The procedure is most esmveniently demonstrated ia a &iffeveance-

table (figure 6.0).



p—

et

=

a  —
5 Godt I

T © ¥
bs d ~~ =
Te x

+ ~ J) —
— ot » foac i L—
» = es
— » Va H

~ od
i —

J + i»
— i — ]

— Od &
+ — ) bd
- c = t

eg » » =
—— po “tm ol
a fot fee Sort

Got

4% .
rt 0d

Fo =
4 » > =
et — rg pd

oN

< a >
<

o

\O

ou ]
>

LA

— _— .

—

» »
— —

Come Cont
<,

——— _—

os C — —
pd » oC <

—_ il ”< »fae —_— Lo
be - — oO

. od =}

4 <4 ..

[ BJ So
——— —_ ~~ eg

oe Pn LL—

LA A LA ™ . p bot rdod

< < E E
< <



11k

Each entry of the difference-table equals the sum of its left neighbor

ad the entry just delow said neighbor.

A simple example may illustrate the procedure. Y = 1, b, 9, 16, 25.

r(x) 1 aA 9 16 25 36 = 11 +25 | (2)

ar(x) 3 5 7 9 | =9+2]
8%t (x) 2 2 2 (1)

871 (X) 0 0

(1) 8%t(x ) = 8% (x, ) +0°¢ (x )EP° — f(x )EP°

| / 2
(2) tx)= (Xx +1) X=0, 1, ...

6.1.1 Error-correction in Polynomial Extrapolation

By limiting the domain of a sequence-extrapolator to polynomial

sequences of degree m or less, certain error-correction-procedures

based on the following theorem may be implemented.

Theorem 1: There is one and only one polynomial f(X) of degree m

which for =m + 1 different arguments x = X, ({ = 0,1,2 ... m)

assumes m + 1 given values r(x, ) 2
The design of the polynomial extrapolator has been based on the existence

part of Theorem 1. The uniqueness part permits implementation of certain

error correction facili. les.
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Given a polynomial input-sequence Y of a degree not exceeding m

T= y 2¥ys--9¥y n>m

1

YEU P

J=0

Y defines a set of argument-value pairs XxY where X = {[O,1,...,n} .

By Thecrem 1 there is one and only one m:th degree polynomial

£ : XY such thet f satisfies m+l arbitrary values of XxY .

Sequence-extrapolation based on Newton's interpolation formula for

constant .ntervals, however, requires m + 1 consecutive values of XxY.

Result 1: A polynomial sequence of degree m or less can be uniquely

identified by any m + 1 consecutive entries.

Definition: A polynomial input-set U = (a sugye-eru) is an

arbitrary permutation of a polynomial input-sequence.

Proposition 1. Any sufficiently large polynomial input-set U can

ve identified, ordered, and extrapolated by the

pclynomial sequence-extrapolator.

In the following, a heuristic proof of Proposition 1, based on certain

well known properties of polynomial functions, will be given.

Treocrem 2: The derivative f£'(x) of a m:th degree polynomial has

at most mel ——



116

Theorem 2 insures that s polynomisl sequence f(x) will monotonously

approech +® or -e for sufficiently large arguments, i.e., for

srguments larger than eny root of f'(x).

All possible forms for graphs of polynomial sequences of degree 4 or

less sre given in Figure 6.1.Y
Degree 1 Degree 2

Degree 3 Degree

Figure 6.1

Polynomial functions are eontinuous, therefore, all values corresponding

to finite arguments are finite. This property in combination with

Theorem 2 leads to the following result.

Result 2. There exists for any polynomial f(x) a constant x* such

that

If(x)| < |r(ao) tx < x® .

f(x + 1)] > je@x)] x > x%
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Based on Result 2, the following procedure will identify the polynomial

input-sequence Y underlying any sufficiently large polynomial

input-set U .

1. Sort the members of U into s sequence a ARR A TARTA

such that

2. Find the genersting polynomial g of the subsequence

Up iy? Upazo Un ns Up 1s Yp . Provided that n > x* + 5 , Result 2

gusrantees that u, =y. for 1 nel, ...,n.

3. Generste s sequence Z where z = g(i-(n-b)) 1 «0,1,...,n

If n=x%*+5 , Theorem1 assures that Tg, =, -

hk. The genersting polynomial f(X) of Y 1s found by substituting

x-(n-4) for Z in g .

The procedure is illustrsted in Figure 6.2.
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€.1.2 Computer Implementation of s Basic Polynomial Extrapolstor

The procedure described in Section 6.1 has been implemented using

several different programming-langusges such ss IPL-V, FORTRAN, PDP-5

mechine-language, etc. The IPL-V version is employed by SEP for certain

support-functions, however, the unrestricted generslity, compare Sec-

tion 4.1, makes direct application of the program unsultable for the

purpcses of SEP.

A simple flow-chart of the program is given in Figure 6.3.

6.2 Identification of Genersting Polynomials

The basic scheme derived from Equation 1 is spplicadble for

extrapolation of any polynomial sequence, but it does not explicitly

identify the genersting polynomisl f(x) . An edaptation of Newton's

forward interpolstior formuls, however, permits such identificetion.

Newton's forward formulas can be written

XxX + 8° X + sh

fx +8 h)=flx)+ | © ) atx) + & | %e (x) *1 2

+ LL. + 2 tPf(x ) + Rn oc

a X *8-h 5. o L°C(x ) «+ R (1)

SE
For the present extrspolator x = O end h =1 . Furthermore, for

polyn-misl sequences of order m ; R = Q.-for n> na.
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A Basic Polynomial Extrepolstor |

Input is Y° \~/
Produce the sequence ode $01by applying 4 to esch (tar)
member of YT .

Are all members of

. equal.

yes

Add enother copy of y (F) « ((F),¥)
to a . |

lis
Compute and eppend ¢ Dow (r¥) ’-

entry to (Fy, ov sy)

| YES

Yo (y » Yyrocos ry,’ A : (1°) |

" : name of ® seoQguance or list

(YY) =ga sequenes oF list
Rae 60
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n y
f(z) = L at(s) (2)

J=o J

Any order difference can be written as 8 linear cosbinetiom of

functional values. .

J
J k {J

alex )e IT (a1) | ) 3)o’ * x

Equations (2) and (3) give |

n J J

f(x ) = L n +E (03 f(x). (b)¢ j=o \J k=o x

Equation (4) is suitsble for polynomisl extrapolstion. Substituting i.

n+l for s gives the value of y _. = fx ,,/ .

Limiting the domsin to polynomisls of order m < 4, Equstion (2)

can be written:

f(x) . f(x ) +g of(x) + : + s(s-l) ° 6%(x_) »

* } + g(s=1)(s=2) ° £21 (x ) + 4 + 8(s=1)(8-2)(8=3) - 8't(x)
(5)

The equation can be rearranged as:

r(x) = (f(x) )
+o . of(x) > 2 0%(x,) " 3 671(x) » $ott(x) )
SENN + 20%0(x) - 2002(x) + Fp otelx,))
e AS + 3002(x;) - §8°2(x,) )
oo of 8°2(x,) )

(6)
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[1 0 o oo o f(x)

x | 0 1 -3 +3 -¢ af(x )Ca a2 50 3. 2tin) « (1,80°° o x od 3% || a%Gk))
© 0 Qe} -¢ 62(x_)

f(x) s 8 - A ‘D (7a)

Por m = b Equation (3) cen be written:

f(x) = f(x )

af(x) = fx,) - f(x )

6°f (x) - f(x,) - 2f(x)) + (x)

(x) = fx) - 31(x,) + 3¢(x, ) - f(x_)
sfx) - fx) - be(x,) + 6f(x,) - br(x) + f(x)

In metrix notation:

f fx) 1 0 0 © 0 r(x)

£f(x) -1 1 ©0 oOo o©o f(x, )

£58 (x) «| 1-2 1 o of.|r)

ox -1 3 «3 1 0 r(x)
2 fx) 1 «kh é6 - 54 1 r(x, )
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or

Dea, ¥ (9a)

Equation (b) cen be written:

f(z) eT -a "AX (10)

vhere:

Ze 0 0 0 L

|- 50 % -T2 52 -6

A Ashe | 25 -6 % - 16 1
-10 36 - 8 28 - 6

1 - b 6 - b 1

Thus:
2 0 0 0 0 f(x)

50 % -T2 32 \ [-6 fx)

r(x) x (1,8,82,8,4& 1] 25 - 6h 5k - 16 1 f(x,)
10 36 - 48 28 - 6 f(xy)
1 - 6 - bk 1 f(x,)

(10a)

Example: Y = 1, 4, 9, 16, 25

2h 0 0 0 0 1

50 % -T72 32 -6 ".

f(x) = (Ls,s%,0,8') mf 25 -6 SH 16 1 9 |
-10 36 - 48 28 - 6 16

| \: - 6 - bu 1 25
1

= (1,8,82,6,8") : ; =14¢ 2s + a2 s (1+ 8)?O
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6.2.1 Computer Implementstion of s Procedu for Extrepolation and
 1deptification of Noisy Polynomial Sequences

Ye extrapolator derived in Section 6.2 and there defined by

Equation ( 10) hes been implemented in e program for ¢ digitel computer.

The progres is written in IPL-V but could easily be pdepted to some

slgebraic programming language such ss FORTMN. The I1PL-V programs

follows the inputs end output-specifications of SEP.

In the progremmed version (x-1) has been substituted for s in

» Bgustios 5.

$. ’

fx) =y, @ (1B y+ 3° (e1)(x-2) - 8%) + 2 (a-1)(x-2) (x3) + By6 1

v3 -D)(x-2)(x-3)(x4) By, | (5%)

v J Corresponding modifications have been made in Eunos 6, 7, snd 10.
| Certain additions] features have been sdded. So, for instance,

only the minimum necessary 8mount of information about input -sequences

ig utilized. Therefore, 8s m:th degree polynomial sequence can be

extrapolated from any m+l consecutive entries, i.e., no minimum

number of entries is required. All extrspolstions are normalized such

that the general expression always uses the first entry of the sequence

es origin.

2.g., The sequence: 1, 4, 6, 16, 25, 36, 49, 6+, ... if extrapolated

from L£, 25, %€ gives the genersl expressiom (x° + 6x + 9) , however

translation of the origin of the genersl expression is desirable, such

that x - 1 corresponds to the first value ef the sequense. Therefore,

. the next step, 8 sequence for the srgumests <2, =1, 0, *i, *2, of =

1 generated giving the velues 1, 4, 9, 16, 25, 56, 49, &, ... Which
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sequence in turn, is extrspolsted from 1, 4, 9, giving the general expression

(2°) . Thus, the normalizetion is performed without sctuslly employing

any pertioaler rules for symbolic transformation of slgebraic expressions.
A flowchart is given in Figure 6.4.

An sctusl output from a computer-run of the extrepolator is illus-

trated in Figure 6.5. A few comments to the example are given below:

Given s sequence of numbers (line 5), SEP on the besis of pest

experience selects the number of entries from the input-sequence that

will be used for forming e temporary hypothesis (line 11). The first

four entries are chosen (line 52) end the sligorithm is applied (line 71).

The general expression Pu + 10X is genersted (line 7%). By substi-

tuting the values 1, 2, 3, and 4 for X, four values are genersted.

These four values sre tested against the four input-values (lines 74-77),

gs the computed values are the same 85 the given, the complete lnput-

sequence is used to test the hypothesis (1ines 78-84). During this test

one discrepancy occurs (by previous decisions of SEP one error is per-

mitted), this is ignored and the temporsry hypothesis is accepted.

Thereafter, an extrspolstion of the sequence is made using the temporsry

hypotheses 8s generstor for values (1ines 91-92). The result is stored

ir, the memory for future reference. (line P)

Examples of extrspolstion of "scrembled gsequencies” are given in

Figure 6.6.
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Extrepoistion snd ldentificetiop of

Yolynomisl Sequences ;

=r, » ¥,)

The index J defines the
starting point of enalysis. J - =}

| def
Y is defined ss eo vector of b Ad

five consecutive entries of the (3 Lo. y. .)
geguence ¥ Cie

E

2

Li a, + 4, Xx + i, Xx 4,
x + 4d ry |

p, { = O
BE + tne number of discrepancies RE - © |
vetweenn Y and its egtimeste.

-

Produce estimste of y, | (vy Jy . I 4 (3-%7 i- g £

Bing ! | | _

2

Figupe €.L.
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|

kb Test {ff number of dis- |

crepancies is permissible. re |
ms

|

| NO

* All combinatinng ff five (3 No j=n-=5
consecutive entries of Y

nae not beer tegted yet.

| YES |

Grim

Y — |

: EST

(v,)qr +r (Ya hy]

p, As there is no provision & led pam J=0for translating the | |
origin of 8 sequence.

gerersting polyromisl, the YES
estimated sequence is given |
sg input for the program. PRINT

This sequence cen be ex- _ -

trapolested for 3 = 0, Y and Tear |
therefore, a correct ex-

pression of the generating

pclynomisl is giver by fr. |

Coram)

Figure 6.4.2
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6.53 Generslized Polynomisl Extrapolator

The domain of the basic polynomisl extrapolator can be extended by

introducing edditionsl operators.

A 1:th level sequence

| ' = y. ’ yy» vowy vn is derived as the result of
sequential applicetion of I arbitrery operstors

| 0, (3 =1,2, ...1 ) on a sequence Y.
i

1 1

or Y = «x 0,1
3=1

Y° =Y .

The following operstors sre defined for integer values only.

The difference cperator &

4 | 1
BY "Yi "Ye

The quotient operstor &
i

! Viel
By, = Nn

Yi

The cycle operstor pk

yo i . iYi T Jie.

i =01, ..., n=!

J =21, +2, ...

K = 1,2, e Be

[| = 0,1, ETT ’

1<41i+ jk <n-t.
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Inverse application of the operstors can be used for extrspolation

VN yo 7.) = yo = av, + y
88 vy, v.) =y ty cv

n° °n n+l n n

) ¥ “Vp © Vpoked

At each level of analysis the operstors are applied in order ¢,

E , snd 4A because:

f is used as stopping rule for recursion |

£ applies to any sequence, therefore & would never

be spplied if preceded by 4&4 .

Extrapolation proceeds ss follows:

1. Orerators are applied recursively on sequences y until
any one of two stopping-rules is met.

a. The sequence is genersted,’ or
t. The § operstor spplies.

Thus, 8t most, n applications of operstors leads to

termination.

2. Application of sll employed operstors in reverse order

provides desired extrapolation.

The domain of the present extrspolstor is rether wide,’ By the
difference-operstor, sll polynomial sequences C8n be extrapolated.

The quotient operator is applicable on exponential and factorial

sequences. The cycle-operator Dy itself can recognize all cyclical

sequences and, in combinstion with the other operators, recognizes in-

rertwined sequences. Other combinations of operstors cover rather
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complicated genersting expressions; however, as {l1lustrated in Section 4.1,

the present extrspolstor is not selective enough to be employed by SEP.

6.3.1 Computer-Ispplementation of 8 Generalized Polynomial Extrspolator

The generslized polynomisl extrspolstor is, at present, not included

{in the complex sequence-extrspolstor SEP, the reason being its generality

which would “overlook” available contextusl informstion snd thus decresse

the power of the compound. An implementation, currently progrsmmed in

PORTMAN, is illustreted as a flow-chart in Figure 6.7, here recursion

is simulsted by iterstion.

6.3.2 Example. of Representation

Examples 4, 5, and 6 of Section 4.1 are below represented ss is

implicitly done by the Generalized Polynomial Extrspolstor. The 3h
entry of a sequence ie denoted n,.

Example Li: 1 10 100 1000 10000
5: 10 10 10 10

(8 = = . = .
8 (Bayys ng) =n stn tay 2100

The representation is

n, = 10 yy

Example 5: 1 11 iil 1111 11111

A: 10 100 1000 10000

5: 10 10 10
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Generalized Polynomial Extrapolator

Input sequence |

y! = Yi» Yoo ccs 5 *

yes

J

£% applies when ye > Yes ¢5y!
for 11 i, i = 1,2,..., n-k-f sppiicable?

ne

* applies when for all i, Bo S ol RA

i=1,2, .., n=l-1 Ys 18 applies? |
s factor ¢ Yiey |

a Shwaye BFP Lee.

Apply cperstor 0, | oY! " rit!
( Pugh down previous operator). {ef +1

‘
The last entry cf Y is I I 1

n-1’ Yi = Yiek
the next entry is
1 | |

In-1+1 * Ypegel-k (0.4) yd
Apply &ll inverse operators in
reverse order of application. for § = 0y1,..., !
(Pop up the operators).

Figure 6.7
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From the representation of example 4, we have

an, = 8(n,,) @n,_,)=10" 80,

an, = ny = 0

(n,-n,_,) = 10(ns_; - Bn, 5)

n, = 10n,, + (n, , - 10 no)

=10n, , * (10 n, »* Bo" 10 ny5 10 nyo)

= 10 n,_;* (n, , - 10 ns)

In generslwe can derive

= : - 0 = —n, 10 n,_,* (n, 1 on _,) k = 1,2,
or

ng - 10 n,_y = n, - 10 ne.

which holds for all k

For k=2 we have

n, - 10 Ngq = 11 - 10 +1 =1

The representation is

n, = 10 Nn, + 1

Example 6: | 12 12% 12%4 12345 123456
A 111 11)1 11111 11111}

Using the representation of example 5

A n, = 10 &n, , + 1
- a - +ny n, 1 10 (n, , _- 1
- - 10n, 100,  * {n,4 ~ 100, 1)

ng = 10 nq + (10 Nn, _5 * n,_o.° 10n, + 1 = 20m, o 4 1)
= - dpn, 10 Boyt (n, 5 10 n,_s 2)
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In general

+ - 10 -
n, ® 10m, _, (n 1 ny? 1-k)

or

- oi = - -k
n, = 3109, , B, ~ OR, ,

Using the initial conditions for k = 3

we have

- 10 - i - 0 ‘ - 2ng n, 5 = 123 - 1 12 2 = 0

The representation 1s

= 10 n +
Ry wy td

6.4 An Extended Sequence-extrapolstor

The domein AZ of the present extrapolator is recursively defined.’
wl ct

AE = A874. DP

AC € PX

8! ¢ pf

ce

PP = The set of all polynomials of degree h or less which

have integer coefficients.

g = 1,2,...

h = 0,1,...

i= 1,2,..4300

J = 1,2,...5n0

kK = O,1,...

I = 0,1y-..

m= 0,1,...
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A sequence Y belonging to the domein a8 can, in genersl, not be

extrapolated by strictly algorithmic methods. Repeated spplicstion of

polynomial extrepolstors to sequences derived from Y will, however,

suffice for its extrspolstion.

The applicstion of polynomial extrspolators requires thet esch

entry of the sequence Y is represented ass three separate

elements a, bs and c, -
C

i 7

yy = "Py

If this is the case, the three sequences

A = 8» 8,558

B = bs Dis--nby

C = Co’ Cy 2 C,

can be separstely extrapolated.

The subdivision of Y into A, B, and C is, of course, roc trivial

task. The limitetion of the domains of the component sequences, however,

permits rether efficient search for proper subdivisioms.

By definition

4
Y, = 84 "by = 8, " b, mw b,

| ——

Cy repetitions of LA

The search for subsequencies A, B, C pow proceeds ia three phases.

Phase 1:

Find sequence C.
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From 8 given number ys it is not possible to directly identify

corresponding c¢i An upper bound cen, however, be found becsuse 8

prime factor occurring X times in 8, and Z times in b, must

ve represented

X+c, °2 times in yy

Result 1. The exponent Cy can not sssume any velue grester than the
number of occurrencies of the most frequent prime factor

8

of yy oo

Step 1. Generste a sequence P = Pores Pyrees P such that for each

vy, €Y, Py is the number of occurrencies of its most
frequently occurring prime factor.’

10

By Result 1, the relstion c,< Py in general holds. Therefore,

P mey be considered as sn upper bound for C.

Step 2. Find a sequence CogtE PF" which is bounded from above by
the sequence P .

We have assumed that m = 1, thus C is linear snd its estimate may

be written

Cast =k -i1i+h ‘

Cet can not be derived directly from P, however, sa rather efficient
search-procedure can be designed for its identificetion. The search

for Cast is most easily conceptualized as the fitting of 8 line to

a set of points (i, p,) in a 2-dimensional graph.
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Result 1 implies the following restriction:

Restriction 1: Cost may, for st most m = 2 + E srguments i,
exceed corresponding P . ( E stands for the

maximum number of irregularities in Y YH

Any estimste which satisfies Restriction 1 is said to be legal.

The following heuristic rules for choice of peremeters for Cost

are employed.

1. The initisl estimstes of h and k, denoted by h° end k°,

sre set as fcllows: ',

h’ = P_

© = Pie “Py
aT

i* is the largest i for which the inequality

Py SP, holds.

2, If C _, ~ kK °° {+h satisfies Restriction 1, them k end/or h
are incremented by | until neither cen be incremented without

violating Restriction 1. Then Rule 3 is applied.

Ir Cast does not sstisfy Restrictiem 1, k and/or h sre
decreased in the following order until the resulting sequence

is legal.

i. k is decreased in steps of 1.

fi. If k =0, h {is decreased by 1 omd the initisl velue

] of k is restored.

114. The procedure is continued wmtil Cont is legel, then
Rule 2 is applied.
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3. The "highest legal” estimate is: C__ = Kk i+h.

Assumption 1: Cost is a correct estimate of C .

Phase 2:

Find sequence B .

In the relation y, = 8 ’ b, , 8 given value of cy implies

that esch factor of b, occurs st least Cy times in yy . Thus, no

prime fsctor occurring less than cy times in y, cen be contributed

oy b,

Result 2. b 4 cannot exceed the product of all prime factors which

occur st least Cy times in Yy 2

Step 1. Generate a sequence Gg = qo? COTRRRY Use such that for

each y€ Y, qy is the product of the r:th power of

every prime factor which occurs st least r - cy times

in y, ( r is 8s positive integer)

By Result 2, the relation b, < Ay in general, holds. Therefore,

Q may be considered as an upper bound of B.

We have assumed thst BEF , therefore, substitution of B for Cc

snd @ for P will permit application of Step 2 of Phase 1 to find

B, EF

Assumption 2: Boot ig a correct estimste of B.

Phase 5:

Identify the sequence A by the definition

8s 4
Y; =8, "5, or 8, == ;

" i
i
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Step 1. Generste a sequence A =a ,8.,...,8 such that for each y€ Y
¥

.: = ——
b i
i

Step 2. A is tested by the polynomial extrspolator. If agp >
the extended extraspolator is applied (substituting A for Y).

When, at some level of recursion A€ p , corresponding sequence Y

can be extrapolated by perts A, B, and C. This permits extrepolstion

of the next level, etc., until the original sequence Y is extrspolated.

6.4.1 Computer-Implementstion of sn Extended Sequence Extrapolator

At present, a somewhat simplified version of the extended extrspolator

is included in SEP. The domain can be written

¥-h - BF

A € pt

BEP

cep

The program written in IPL-V is completely compatible with other members

of SEP. Some ambiguities of the procedure have had to be resclved in

programming. A few of these are exemplified:

Examples:

Suppose that the sequence C = 1,1,1,1,l..000. 1.e.,

c, = 1] for all i. Then it is impossible toc isclste 5, from .,

on the basis of the number of prime fectors in n, . Therefore, vhes

ee is 8 polynomis]l sequence of 4:th order and b 1s of first order

the resulting sequence s - b is of the 5:th order, a csse vhich is

not included in the domain of the polymemial extsapoletor.
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The easiest way out of this difficulty is to simply extend the

domain of the polynomial extrspolator to include 5:th order polynomials.

Although this extension is easily implemented, we have chosen another

approach, nsmely, tc use a simple heuristic for guessing the form of the

sequence b.

Write b, 88 L + (1-1) "1 set L to the value of one of the
prime factors of the first entry of the input-sequence. If for

every | E3 TL is integer, then we assume thet ., = the value
of said integer.

The method as outlined seems to cover a very restricted class of

gcitust ions (particularly as the coefficient for (i=1) 4s =1) . We can,

ncwever, show that the procedure may be applied in more genersl situs-

1h
tions, because:

bcc ume o, = L + (i-1)  K then n, = 8, ~(L+ (1-1) © K)

or n= K a; ( z (11), , where b, is of the seme form as above,
and where the sequence K © a can be extrapclated by the polynomial

routine equally weil age 8 itself, provided that 5 is integer-valued.
Several other types of difficulties may occur in the process of

extrapclstion. So, for instance, values n, = O can in genersl not be

accepted, because if the exponentisl part 5, would tum out to be O

({ e., b. = J), we would have to divide n, by O in order to identify

the value of 3, The solution to this problem is very simple; delete O

if it occurs in tne first position cof the input-sequence, ctherwise re-

piece it with | {this will, of course, introduce an error into the

input-cequence, but by sdding one to the number of permisssble errors

this will be taken care of).
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In sddition to sbove mentioned instances, several locsl tests and

safeguards against adverse combinations of perameters have been included
into the sequence-extrspolator whenever deemed necessary.

Representation of Results

The procedure used for identification of the sequences B and C

will implicitly factor out powers of sub-expressions of O:th or 1l:st

degree. The actual result of the fectoring will depend upon certain
adaptive parameters so, for instance, the polynomial:

| (x* - ©)

SAY be printed as:
| 2-1) X;

(x -X)'*X%;

© +X) (X-1);or

x - ¥) (Xx +1) .

By applying the procedure recursively, we could also gets
x+1)  (X-1) X;

| (OF +X) - X-1)  X; or

(X°- X) © (X+ 1) X; etc.

The general expression is internally represented ss 8 list of nine

parameters (A, s Ags A, Als As B., B » Cs and Cc.) which represent:

(A,X + AX + AX + AX + A) (BX * 5) 1% * Co) ‘
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The sbove general expression will be simplified as much as possible

before it is printed out, some rules sre:

a. Atern AX' where A, =0 will not be printed out,
e.g. (5° + ox’ + oX° + OX -2) is printed:

(5° + 2X° - 2) .

bp. If (B,X + B_) - 1, then the exponential pert will be deleted,
e.g, (sx * ox° - 2) - (OX + 1) (5X +2) is printed:

ec. If (CX + C,) = 1, then the exponent will be deleted,
e.g, (5x" + 2X - 2)" (5X + 2) (OX +1) is printed:
(5° + 26° - 2) © (5X + 2) . |

a. If (CiX + C,/ = 0, then the exponential pert will be deleted,
e.g. (5% + o%° - 2) + (5% + 2) (0X + 0) is printed:

(51* + 2° . 2)

Error-Correction by the Extended Sequence-Extrapolstor

It can be shown that all error-correction features available for

the polynomial extrspoclator are also applicable to the extended extrsp-

slator. Intuitively we can consider the present extrapolstor 8s an ex-

tension of its polynomial counter-part, where the added features

(extrapolation of the exponential pert) do not reduce the error-

correction abilities. To show how the most complicated case can be

taken care of, let us study how a “scrambled” sequence, if necessary,

can be "unscrambled”.

From the form of the genersl expression, we have:

(L:tn order polynomisl) - (exponential expression) .
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The exponential expression cen be considered as a transforming

operator. There are basicallytwo different situations:

1. The transformis monotonous.

2. The transform gives rise to oscillations.

The two cases are illustrated in Figure 6.8.

The illustration of the monotonous case shows that the transformed

polynomialhas actually lost the two original extremum-points, which

permits us to set X* to a lower value than in the pure polynomial case

(in our situation X* = 1). By decreasing the value of X*, we have

increased the possibility of finding a "tail" of K¢l entries,

thus, also increased the power of the error-correction facilities.

The oscillatory case may seem somewhat more difficult, but by

essentially splitting the sequence in two parts, one for even and the

other for odd indices, the procedure ends up being identical with the

previous case. It is also possible to identify “tail” for the

oscillating sequence by studying only absolute-values, which in the

“teil” are increasing monotonously.

A simplified flow-chart over the extrapolator is given in

Figure 6.9. bo
In Figure 6.10, an example of an actual output from a computer-run

of the extrapolator is given. The example is self-documenting, therefore,

no comments will be given here.
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a

Y=8listof 2 ambers. \ i/1

| 8 n

(YT) = cach maser of a list. (1) + 11st of all primefactorsof (n1 1

2 pl |

Y + Y = sutrapolation. (P) « mmber of occurrencesof the
1 1 1 n

1

SE n

Pind linear sequence C, (C)< (P)
1 1 1

The general expression of 3 is
Gl 1

n n

1 n

which occur at least (C) times
1

n | n

Pind linear squence B, (3)< (P)
1 1 1

The general expression of 3 is
oz 1

n n n

(2) (3) ®® (C)
1 1 1

n n n

(1) ~(Y)/ (B)
1 1 1

Do

yes

PUSH DOWN B. no

Gl, end G2

bald

Figure 6.9.1
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n+l n

Y «Y

1 1

general expression = G

Produce Print List

PL = (G)

n+l n

E «E

1 1

n+l n+l n+l

(Y) « (Y) - (E)
] 1 1

Modify Print List

PL « ((PL), *Ge, **G1)

Pop up E,

Gl, and G2

End of

Stack

yes

n+l

Print Y and
1

PL

Figure 6.9.2
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Pigure 6,10.7
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Figure 6.10.4
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6.5 An BExtrapolator for Intertwined Sequences

In certain situations, sequences consisting of more than one sub-

sequence are presented,

e.g, at ; A rein. ot TIT IT
1 2 i

and

n’ ne Eg n2 FE
1? M2” 1’ )

are intertwined as

ad, nl, 2, n,n 2,
or

Dy» Ny Dy gp By 5 coe foy_1? Dogs ooo

We have, in our sequence-extrspolstor, included the ability to

separste two intertwined subsequences, extrapolate them separately,

and recombine them. It is, of course, trivially simple to include the

ability tc separate any number of intertwined subsequences. We have,

however, chosen not to do so. The case of two intertwined subsequences

is included because it is very useful for extrapolation of oscillating

sequences which occur for certain combinstions of perameters of the

extended polynomial sequence extrspolstors.

The oscillating sequences are extrapolated in two parts, one for

even and one for odd indeces.

€.6 Recognition of Previously Encountered Sequences

Unless the extrapolation procedure is extremely efficient, there

should be 8 facility for recognition of previously encountered sequences,
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such that simple retrieval from memory substitutes extrspolation. SEP

includes several schemes for dynamic storage of intermediate results;

one of these ic designed as an associative file for sequences.

The simplest case of information retrieval is the situation where

a unique label can be assigned as index for storage as well as retrieval

of informaticn. The task-envirorment of our machine 1s such that it is

not feasible to assign a unique label to every conceivable sequence,

and even if it were, there would te nc way of finding the correct label

* for an input-sequence without actually extrapoleting and anslyring it.

The first few entries of a sequence could possible be used as an

identifier but, as we went our machine to recognize sub-sequences of

previously encountered snd extrapolated sequences, this indicator would

obviously not suffice. Co

The simple scheme described below has been chosen for implemsn~

tation.

Description of Associative Srorsge

1. Any entry of a sequence may be used as a clue C, few its

retrieval.

2. Any clue Cy may OCCur 1" several sequences. For efficliemy
in retrieval, we therefore allow the use of multiple clase.

Assume m clues erz used, e.§:, Ce C,’ neep C .

%. The total number of conceivable clues is very large. WS,

' therefore, for certain operstioms coubims clues into

classes K, x
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L, For each class of clues K, , there is a subset Ly of clues
which have been encountered,

i.e. if C, €L, them L CK, .
. Sh yd

5. For each C, € L, , there is associated a set N, of the names
of all sequences Y, on which Cy is known to occur,

i.e., if C, €L, , then N, = (x, | c, ev,} .
The indirect definition of sets make the description somewhat

swicward; an example may clarify the situstion.

Given s sequence Y, (Y = 1, 3, 5, 20, 30, 40, 80, 155,) establish

{f it hes been previously encountered. Allow for one error in the

input -sequence. |
1. Extrsct clues, by sny method, in a number determined by

experience.

C= 9s 30, 80, 155 .

o>. Establish the classs-belonging of the clues

5 € Ky i.e., 0< 5< 25
26 < 30< 75

. 76 < 80 < 200

76 <155 < 200 .

5. Retrieve L, , L, , and by (corresporiing to K ’ Ks

and K, )

L,: (1, 4, §, 12, 16, 21)

L,: (21, 30, 42, 49)

Ly - (5%, 80, 9h, 120, 155, 305)
5€L, ,30€L,,8€L , and 155€1L, .
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It is now established that sll clues have been encountered previously.

The members of L y L, , and L, do not only represent clues, i.e.,
numerical values, they sre alsc names of sets, which cen be retrieved.

Denote the mame of $5 by Ne , etc.

4. Retrieve the sets named by clues

. £

Xo $ (8,, 85 Sp 8... |

Ngo ° (s,, 8, PE TY

Rss’ (8, 8.) -

5, Pind the sequences whose names are members of at least

By inspectio:, we find “hat:

8, is a member of 4 sets, and

S., is = memter of 3 sets.

The two sequences, A snd 8.1 , are now retrieved amd tested against
‘he input-sequesce. As 5 occurs on more liste them 8,1 , it is
tested first.

Input! (- P- 5, 20, 80, 15%, : wie 3 ween pain J

&, H (1, bo © 20, 80, 155, 268 sarin ap)

Stosege of iaformtios in the stove associative store fellows

essestially the same steps as outlined for the retrieval preesdure.
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The main differences are that clues are added to the sets Ly and
that the name of the sequence containing the clues is added to the

proper sets N, . If no such sets exist, they are created.
The method for informetion retrieval, illustrated above, has the

disadvantage that information has to be duplicated and stored in two

different places, namely, as clues and as members of sequences. The

advantages sre that no direct sddressing is necessary at any stage of

the procedure, all sets are completely flexible, and any amount of in-

formation can be accommodated without modification of the scheme.’

The rigidity of classification may turn out to be disadvantageous,

in which case an EPAM-1like structure, which grows its own categories as

~ found necessary, is contemplated for implementation.
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FOOTNOTES FOR SECTION 6

1. By the definition of o* and the distributive law for 4 .
For a proof, see Kuntz's "Numerical Analysis”, McGraw Hill,
1957.

2. Proofs of this theorem may be found in most textbooks on Algebrs.

3. For a proof, see reference in Footnote 1, above.

4, All cases are normalized by appropriate translation of the coor-
dinate-system.

5. The sequence Y® has only one entry.

€. By permitting sny order of polynomials as valid extrapolations,
any sequence of numbers can be extrapolated.

7. In the presently implemented extraspolator, the values of k, 1,
and m, are limited to respectively, 4, 1, and 1.

8. There are a few exceptions to result 1:

a. If 8, = O then Y; = O regardless of cy -

b. If b, = 0 then y, = O regardless of cy

Co If bs = 1] then y, = 8 regardless of cy -

g. The value of this factor is at this stege irrelevant.

10. Note previously listed exceptions.

11. The velue 2 represents exceptions a, b, and c¢ of result 1.
If three exceptions occur simultaneously, 8 and b will coincide.

12. With the following exceptions:

e. 1f a, = 0, then the value of b, is irrelevant.

b. The rule does not apply for erroneous yy

13. Except for s number of values corresponding to E.

14. The procedure amounts to guessing ome of the five roots of a pely-
nomisl equation of degree 5.
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15. k +1 entries are needed for the polynomial pert, however, the ex-
ponential part may use the same entries and it often needs less than
k +1 entries for identification.

16. Such classification greatly reduces the time-requirement for search
ing the storage.

17. As long as the storage is not exhausted.
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Ts Extrapolation of Sequencies of Symbols

Models based on the extrapolation for the Thurstone-letter-completion

tests, described in Section 4, are presented in this section; generaliza-

tions as well as particular implementations are discussed.

7-1. A Basic Extrapolator

The present extrapolator is included in SEP. It is based on the

graphical representation of test-sequencies given in Section 4.2.2. The

computer-program is written in the programming-language IPL-V, and certain

features of this language has dictated the design.

let us demonstrate the extrapolating procedure in terms of an :

example. Find the next entry of the sequence:

ww XxX a XxX y b y z Cc z a d a b _

1. Reverse the order of the sequence.

_ Db a d a Z Cc z y bb y x =a X Ww

2. Identify the periodicity of the sequence. "Guess" the most

likely periodicity k, assume k = 3 . If the guess is correct, the

underlined symbols should form a "legal" sub-sequence.

_ b a d a z ¢ Z y b y x a XxX W

There are only three legal sequencies. They are partially represented

below.
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d 4 4 4a 4d (=)

c 4d e ff g (+)

nD, d ¢c b a (-)

- d ¢c bv =a (assumed sub-sequence)

3. Comparison of sequencies gives the result that the next letter

is e .

It should be observed that the here outlined procedure is based

exclusively on ordinal properties of the alphabet, nd thus does not

require any numerical computations. We want to stress this fact because

certain sequence-extrapolators employ a policy like: "Any symbol can

be encoded into numbers, therefore, a numerical extrapolator can be

employed for any sequence of symbols." The risk of using this poliey

is that the ordinal character of alphabets is replaced by the cardinal

properties of numbers. So, for instance, the sequence:

a 4 1 »p or encoded 1 9 16

could be extrapolated: ”

1 b 9 16 25 which is decoded ea d {i p Jy.

~~

An important advantage ef using purely symbolic comparisons is

that egy slphabet ar actually apy number of different alphabets cam be

‘ntro@ueed as 498) for Whe sequence-extrapolator. We, thus, in ows

case whmmlly isslefie at least the English alphabet and the alphabet of
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L

vowels. When several alphabets are employed, they are ranked according

to the relative frequencies of their occurrence in input-sequences.

Input-sequences are tested against one alphabet at a time until success

or failure of the extrapolation is established. A print out of results

derived by the present extrapolator is given in figure 7-1.

7.1.1 A Numerical Version of the Basic Extrapolator

We can easily extend the domain of our basic extrapolator to cover

arbitrary, but constant, step-sizes for each sub-sequence. The most

convenient way of tmplementing this extension is to use numerical encod-

ing for the input-sequence (N.B.: the warning concerning this approach

given in the preceding section). By restricting the domain of the numer-

ical extrapolator to linear sequencies most objections against the

approach may be avoided.

Procedure:

1. Encode the alphabet into numbers.

a = 1 (or 27)

b = 2 (or 28)

5

z = 26 (or 952)

©. Instead of trying to match the encoded sequence against a set
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of “legal” sequences, we now try to find linear sub-sequences

of the form:

Cy = Ct o » 4 where: Cy = the i:th member of thesub=-sequence.

A = 18 constent (first dif-
ference).

3 If a legal subsequence contsining the blank _ is found, the

velue corresponding to _is computed.

iy Under certain circumstances, seversl “legel” subsequences of

different periodicity may be found; in this case, the smallest

value k for the periodicity is chosen.

EXAMPLE: Find the next entry of the sequence:

) X d y € z J -
Encode:

1 ZU 25 7 26 10 1 _

(27)

Assume that the periodicity is = 2.

1 Lh 7 10 _

Is this subsequence linear?

From the two first entries, a linear sequence is generated:

Cy = 1+ (b - 1) (1-1) or Cs = «2 + 31 .
We generste for {i =1, 2, 5, ....

1 L 7 10 13 oh

Now, tect the generated sequence against the given subsequence.

As the two sequences sre identical in the first four positions,

the value Cs = 13 is accepted for _ .
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We now have:

1 bi T 10 13

Or, for the “complete” sequence:

1 28 4 25 7 26 10 21 13

Decode:

o x d y & rA J | RB

7.2. A "Two-Dimensional® Extension of the Bssic Extrapolator

abbcccddd _ :

The continuation of the above sequence seems cbvious. We have,

therefore, decided to extend the problem-domain of the basic ex-

trapolator to include a class of “two-dimensional” sequences, which,

@s & simple special case, can solve the above problem.

The procedure is based upon re-representstion of “runs” of symbols

by a pair (s , n) where s is the symbol and n is the number cof oc-

currences of s .

EXAMPLE:

btgwwbbbhvvbbbbiuubbbbbjtt_ is

represented as

(b,2)(gy1)(w,2)(b,3)(h,1)(v,2)(b,4)(1,1)(m,2)(b,5)(3,1)(¢,2)

or, as no confusion cen result, as

b2glw2b?hlv2bidilm2b¥9jlte_.

which, in the model of section 4, is represented ses

(b, 2, 8 1, Ww, 2) , (=,+,+, =, -, =).

This model can be applied to generate the continusticms ®
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The present extrspolator can be used to extrapolate most of the

numerical examples of section 4, e.g., the sequence 1, ll, 111, 1111,

11111, is represented by the sequence

11,1 12,1 13 ,1 14 ,1 15,1
1, 11 , etc.

which is translsted into the model

(1, 1, , , 1,) (= +, = =) .

which is extrapolated by generation of as many entries as necessary to

produce a comma-sign, e€.g.,

11, 112, 113, 114, 115, 116,

Retranslation to & “one-dimensional” sequence gives:

1, 11, 111, 1111, 11111, 111111 .

Ssmple-outputs from the extended extrapolastors are given in

Figure 7 1.

7.2.1 A Modified "Two-dimensionsl” Extrspolator

The following sequence csnnot be extrapolated by the method of

gection 7.2 because some adjscent members of the subsequencies are

identical.

ceeddddddeccdfbbbdgeadh_ .

However, by utilizing the restrictions of the model of section b, a

revised procedure can be employed for {ts extrapolation.

1. Trenslste into s “two-dimensional” sequence

cle2dbelc2dlflb3dlgle2dlbl .

2. Try to find s legal subsequence, regardless of periodicity

cdefgh .
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3. Retrieve the quantities corresponding to the subsequence

cldébeljlglh .

The resulting sequence should be valid in the model of Section h.2.1.

If it is not so, make the necessary adjustments:

(e ,1)(+, =)» ¢c1d1leljlglhl .

Lk. Subtrsct the "candidate" subsequence from the initial

"swo-dimensionsl™ sequence. The remsinder is:

e2d5c2d4dl1lbv3d4dla2dl .

5. Repeat steps 2-4:

2. edcbae

2, e2d45c2blacd

(e, (2,3), (=, (=, =)) >» e283 c2Db3 ac

bk, d2d41414d41

5. 4ddadad

e. d2d4d1414dl

2, d2dldldle- ddddd -¢41d4d1d414d414d1l

Lh, £.

6. Assemble the subsequences:

Cl D1 El | 4 Gl ""

E2 D3 ee i] A2 _

D1 Dl | pl Pl

ci 22 DL D1 D3 BL El @ B91 FL. 3 Bl Cl A2 31 HW _.

7. Employ the model MN to find somtimmstion

(c, 1, ¢, (2, 3), 4, 1)(+,= 0 (=, =), =, =).

8. The result is z .
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7.3 An Extrspolator for Non-regular Sequences

The present extrapolator utilizes certain statistical properties

of a sequence to “guess” its most likely continuation.

A short digression may clarify the bases of its design.

Given an infinite sequence, generated by a good pseudo-random-

generator, then the best strategy of predicting its next member is to

produce the, in the past, most frequently occurring number. Or, in

other words, the most frequently occurring member under an infinite

horizon.

Given a sequence where members occur in randomly distributed runs

of random length, then the best stracegy would be to always select

the latest occurring member as prediction of the next EE —__e
Or, in other words, the most frequently occurring member under a hori-

zon of 1.

G.ven sequences of other designs, it is likely that a strategy

such as selecting the most frequently occurring member under an optimally

long horizon will prove suitable.

The present sequence-extrapolator tesie the given historic sequence,

Yo ¥q vr Vp oo for all horizons h from 1 to n and chooses the
horizon which provides the highest number of correct predictions on

the n first items. Because of the finite length of the sequence,

predictions on the first few items y cee Yo will be based upon 8
horizon smeller than h.

An example of a computer-output from the extrspolator is given

in Figure 7.2.
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$ 8 0 © 6 % 6% % 6 8% ¢ 8 5S SS 6G SS SS 6 6 tC OO OS Os OPES

IF MOST RECENT PROMI FATYPES WERE g
4 3% 1 + 1 2 4&4 3 1 1 2 2 44 3 1 1 1 2 2 2 4 13) A

} 1 2 2 3 7
’ NO PATTERN CAN HE FOUND S$ CHOOSE THE MOST FREQUENT PRUBLEM-TYPE

WITHIN AN DPT IMalL HURIZON (DF MAX. 20) Ki

ee MORIZON_) GIVES 9 CORRECT ESTIMATES OF 20 ENTRIES 10
HIORIION 7 LIVES 3 CORRECT ESTIMATES OF 20 ENTRIES 11

HWORITJON 3 GIVES 4 CORRECT ESTIMATES OF 20 ENTRIES 12

HMURIZION 4 GIVES 3 CORRFCY FSTYIMATES OF 20 ENTRIES 13

MORIZUN § GIVES 3 CORRECT ESTIMATES OF 20 ENTRIES 14

HORIION & GIVES & CORRECT ESTIMATES OF 20 ENTRIES 15

eeeSRII 7 GIVES 1 CORAECT ESTIMATES OF 20ENTRIES}6_
HORTION A GIVES 11 COXRECTY ESTIMATESOF 20 ENTRIES 17

HORIZON 9 GIVES 10 CORRECY ESTIMATESOF 20 ENTRIES 18

HORIJON 10 GIVES & CORRECT ESTIMATES OF 20 ENTRIFS 19

b HORIZON 11 GIVES 7 CORRECT ESTIMATES OF 20 ENTRIES 20

HORIZON 12 GIVES & CORRECT ESTIMATES OF 20 ENTRIES 21

oe HORIZON 13 GIVES 6 CORRECT ESTIMATES OF 20 ENTRIES 22
HORIZON 16 GIVES 10 CORRECY ESTIMATES OF 20 ENTRIES 2)
HORIZION 1S GIVES & CORRECT ESTIMATES OF 20 ENTRIES 24

HMORIION 16 GIVES 8 CORRECT ESTIMATES OF 20 ENTRIES 2%

MURTIJIN 17 GIVES B CORRECT ESTIMATES OF 20 ENTRIES F{3

HORI ZUN 1A GIVES 8 CORRECT ESTIMATES OF 20 ENTRIFS 27

CL ROKIION19 GIVES8 CORRECT ESTIMATES OF 20 ENTRIES 28
CHNSFE THF HORIJUN = 8 29

PRIRL FATYPFE 2 OCCURS MUST FREQUENTLY WiITHIN THE MORIZION B 30

NiY4 TRY PUNALFM=TYPE 7 WITH 5 ENTRIES 31
"EE EEE EERE NIT EE SEIS EE EE a Br A EE EE EE A EEE EE

Pipge 1.2
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FLOTNCTES FOR SECTION 7

1. This is done for convenience of programming; it 1s not a necessary

step.

5. Pivar and Finkelstein (Section 6, ref. [3]) use this approach; they,
however, mainly discuss "linear" sequences but also claim,
"...compounding of operations is necessary when dealing with more
complex sejuencies.”

3, The sejuence is assumed toc be X

L i.e , AABECIDCE_ is extrapclated
AABECIDOET

5. Compare the concept "frejuency of diagrams” in cryptology.
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8. Summary

The present section, after a brief summary of previous sections,

demonstrates how features of epistemological models of inquiry are

implemented in the design of our sequence-extrapolating system (SEP),

and furthermore, indicates how experience gained in the design of SEP

can be generalized to apply in a wide range of technological models of

inquiry.

Section 1 introduces the purpose of this thesis: an investigation

into the feasibility of designing mechanized inquiring-systems for find-

ing suitable representations of problems, i.e.; to perform the "creative"

task of finding analogies. Because at present a general solution to this

problem does not seem to be within reach, the feasibility of mechanizing |
a particular representational inquirer is chosen as a reasonable first

gtep towards an increased understanding of the general problem. It is

indicated that by actually designing, programming, and running a repre-

sentational inquirer as a program for a digital computer, a severe test

of its consistency and potential for future extensions can be performed.

A short discussion of the use cf models for analysis of complex "real"

problems is also given. |
Section 2. reviews several proposed systems of inquiry in order to

indicate the possibilities of performing investigation by systems where

no technical limitations exist. Although our goal is to translate the

"unlimited" epistemological systems of inquiry presented by the philos-

ophers into mechanical design, i.e.; to reduce the epistemological prob-

lems tc a technical level, the discussion clearly indicates how the

representational problem (in the form of a priori knowledge) assumes an
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{ncreasingly important role in more sophisticated systems. A convenient

classification of inquiring-systems, i.e., in Leibnitzian, Lockean, and

Kantian systems is employed.

Section 3. discusses the problem of representation raised in

Section 2. As no general results are available, the presentation is

given in terms of specific examples. However, certain generally arising

problems of representation are identified, (and exemplified in the dis-

cussion of the domino problem).

Section 4. digresses into the area of sequence-extrapolation. The

discussion of context in this section, however, is analogous to the

representational aspects presented in Sections 2 and 3. This section .

links the general discussion of inquiry to the particular problemof

mechanized sequence-extrapoclation.

Section 5. is based on a description of a particular computer-pro-

gram, SEP. However, the discussion is performed at such a level that

the executive structure of SEP can be directly translated into a far

more general class of inquirers, in fact, the executive functions are

basically context-independent.

Sections 6 and 7. present particular strongly context-dependent

programs for sequence-extrapolation. The individual programs are

[eibnitzian but correspond to Kantian maximal apriori sciences, i.e.;

to alternate representations of symbolic data The presentation is

given at a level which permits replication of the logic of the programs,

however, no detailed discussion at the actual programming level is given.

The summary clearly indicates how our design of a representational

inquiring system for sequence extrapolation has been derived frem the
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general epistemological models of inquiry. However, it remains to be

shown how experience gained in the design of SEP can be generalized to

a wider area of applicability.

The limited availability of resources nakes a strict translation of

epistemological models of inquiry into technological designs difficult.
This means that several functions can only be approximately implemented.

Furthermore, the concept of efficiency will have a dominating influence

on particular designs. Still, certain major features of the epistemo-

logical models of inquiry are directly reflected in the design of SEP,
such as:

1. the Leibnitzian logical processor (Section 2.1);

5. the Kantian employment of apriori sciences (Section 2.3);

2, the Lockean capability of reflection on the internal processing

(Section 2 2); and

L. the Singerian idea of bringing the problem-concocter into the

domain of inquiry. |

A detailed discussion of these features follows:
1. SEP is organized around a set of Leibnitzian processors which,

although complicated in themselves, do not suggest any general rules of

design. Nevertheless, their organization and modes of communication,

i.e., the executive and the organizational functions, are most interest-

ing from the general aspect of efficiency. |
2. The multiplea priori sciences of Churchman's version of Kantian

inquiring systems (Section 2.5) has been implemented in SEP; however, it
is not quite obvious if a given technological model is to be classified

as Leibnitzian or Kantian In the case of SEP, the complete system
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viewed as a translation from the input to the output is Leibnitzian,

and furthermore, each sub-machine (including the executive) is also

Leibnitzian. Thus, SEP is, in fact, a two-stage Leibnitzian inquiring-

system operating under a "time-conscious” executive. This, of course,

is true of all mechanized inquirers. However, SEP approximates a Kantian

design, which is reflected by the fact that its level of sophistication

permits greater efficiency in terms of available resources than a purely

Leibnitzian design. Moreover, the multiple a priori sciences permit

class.fication of problems, such that suitable representations may be

found.

We have shown (Section 4) that not only the efficiency, but also

the quality of problem sclving depends upon the partitioning of vide

domain of potential representations into suitable domains for the

apriori sciences, but no rules for such partitioning have been given.

Such rulec -an, however, be deduced from the functions of the executive

in a Lockean design.

3 The lockean capability of reflection on the internal processing

of the inquiring system is implemented in the executive of SEP. Imple-

mentation of a vague, or intuitive rule, such as "the operations of cur

own minds within, as the objects of reflection,” (Section 2.2) requires

a formal definition of introspective reflection. In the case of SEP,

the reflections of the "inquiring executive” (Section 5.9) are analogous

to processing of the "external material things as subjects of sensations”

(Section 2 2). That is the executive operates upon internally genersted

‘rings of symbols, hence, the problem arises of where, and how these

strings are generated. In SEP observation can be performed on the

communication between submachines and/or between submachines and the
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executive. This suggests that the composition of the apriori must not

only be considered as a sufficiently large set of sub-machines to "cover"

a specified domain of inquiry, but that the relative domains are also

important.

L. It has been shown (Section 5.5) that the division into sub-

domain of SEP should be homomorph to the problem-concocters conception

of classes of problems. Thus, flexibility requires a great variety of

classes, i.e.; a large number of apriori sciences.
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9. Conclusions Lo

hie thesis hasa a limited goal; ‘toc design & systema for find-
ing suitable representstions in a specific environment. This goal nae

Seen achieved in that a model, which meets reasonable requirements of

performance for such a systeam, has-been programmed and tested on a

digital computer.

In the light of the discussion of Section 8, it may be argued that

os two-stage Leibnitzian inquiring system represents an algorithm for

finding algorithms, however, this is (as shown in Section 3) always

true of the representational mode of information. Therefore, such

arguments must be based on a more restricted conception of the represen-

tational problem in mechanized inquiry than is possible in the scope of

this dissertation.

The presented model permits generalization in several directions

due to the basically context- independent design of the executive struc-

ture. Although it does not represent the only, and hardly even the best,

way to design the executive structure of a complex representational

inquiring-system, it is felt that a direction for future research Is to

be founé slong the lines of reasoning presented here.


