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Technical Report 20

EULER: A Generalization of AILGOL, and its Formal Definition

ERRATA et ADDENDA

p.4, Lh : replace "systemizing" by "systematizing" .

£21: replace "in [8]" by "here" .

p.5, 26 : "standard" should read "fixed" .

p.6, £14: underline "productive" .

£16: underline "reductive" .

p.10, £21: replace curly braces {} by parentheses ( ) .

p.11l, 110: dito

ALL: dito

£18: add the following sentence:
(as an alternative notation for cx we will use x .)

p.13, £3 : replace {,} by (,) respectively .

p-15, £11: after "U -x" insert "where" .

£14: insert a space after the first zj ved (VY= 2)...

217: dito

p.16, 2 : underline the word "sentence" .

£4 : underline "simple phrase structure language" .

p.26, £9 : the third symbol to the right of the vertical line should be
"ee" instead of "'" .

p.37, £17: change "ennumerate" into "enumerate" .

p .38, £31: underline the letter V .

134s (bottom line) dito.

p.41 : the horizontal line should be between IDENT and DIGIT instead
of between DIGIT and NUMBER.

p-48, £23: "a[l]" instead of "a[i]".
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p.52, £22: "will" instead of "would" .

p.63, #4, 16 : add a semicolon (}) to the right.

£8 : dito, also underline label

£11: add a semicolon to the right.

p.64, #37, 12: "P[V[jl[2] «k + 1" should be "P[V[jl[2]] «k + 1" .

p.65, #50 : "isn var" should be "isb var"

p.65, #57 : change the two occurrences of "isn" into "isu" .

p.67, #1lk t+ change "blockhead" into "blokhead"

p.70, £6 + change the colon at the right into a semicolon.

£13: add the symbol "t" underneath mod .

P-71, £12: "At i =~ i - 1" should be "A: i «i -1" .

p.72, £4 : change "string" into "symbol".

£29: add a semicolon at the right.

P.73, £14: dito

P-75, th : insert a semicolon in front of "x « s[1]" .

P.T7, £25+ change "is a number" into "is not a number".

P-91, £22: "RESUTS" should read "RESULTS".

P-981 £17: change "13" at the left into "28".

p.110, £17: add to the right: '"S[SP].ADR « FP; COMMENT A NULL LIST;"
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EULER : A Generalization of ALGOL, and its Formal Definition®

by

Niklaus Wirth and Helmut Weber

Abstract:

A method for defining programming languages 1s developed which 1intro-

duces a rigorous relationship between structure and meaning. The structure

of a language 1s defined by a phrase structure syntax, the meaning in terms

of the effects which the execution of a sequence of interpretation rules

exerts upon a fixed set of variables, called the Environment. There exists

a one-to-one correspondence between syntactic rules and interpretation rules,

and the sequence of executed interpretation rules 1s determined by the se-

quence of corresponding syntactic reductions which constitute a parse.

The individual interpretation rules are explained 1n terms of an elementary

and obvious algorithmic notation. A constructive method for evaluating

a text 1s provided, and for certain decidable classes of languages their

unambiguity 1s proven. As an example, a generalization of ALGOL is described

in full detail to demonstrate that concepts like block-structure, procedures,

parameters etc. can be defined adequately and precisely by this method.

¥/ This work was partially supported by the National Science Foundation
(GP 4053) and the Computation Center of Stanford University.
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It 1s the character of mathematics of modern times that through our

language of signs and nomenclature we possess a tool whereby the most com-

plicated arguments are reduced to a certain mechanism. Science has thereby

gained infinitely, but in beauty and solidity, as the business 1s usually

carried on, has lost so much. How often that tool is applied only mechani-

cally, although the authorization for it in most cases implied certain

silent hypotheses! I demand that in all use of calculation, in all uses

of concepts, one is to remain always conscious of the original conditions.

Gauss

(in a letter to Schumacher, Sept. 1, 1850)
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I. Introduction and Summarv

When devising a new programming language, one inevitably becomes

confronted with the question of how to define 1t. The necessity of a formal

definitiun 1s twofold: the users of this language need to know its precise

meaning, and also need to be assured that the automatic processing systems,

1.e. the implementations of the language on computers, reflect this same

meaning equally precisely. ALGOL 60 represented the first serious effort

to give a formal definition of a programming language [1]. The structure

of the language was defined in a formal and concise way (which, however,

was not in all cases unambiguous), such that for every string of symbols

it can be determined whether it belongs to the language ALGOL 60 or not.

The meaning of the sentences, 1.e. their effect on the computational pro-

cess, was defined in terms of ordinary English with its unavoidable lack

of precision. But probably the greater deficiency than certain known im-

precise definitions was the incompleteness of the specifications. By

this no reference 1s made to certain intentional omissions (like specifi-

cation of real arithmetic), but to situations and constructs which simply

| were not anticipated and therefore not explained (e.g. dynamic Own arrays

or conflicts of names upon procedure calls). A method for defining a

language should thereforebe found which guarantees that no unintentional

Omissions may OCCur.

| How should meaning be defined? It can only be explained in terms of
another language which 1s already well understood. The method of formally

deriving the meaning of one language from another makes sense, 1f and only

if the latter is simpler in structure than the former. By a sequence of

such derivations a language will ultimately be reached where 1t would not

|
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be sensible to define it in terms of anything else. Recent efforts have

been conducted with this principle in mind.

B8hm [3] and Landin [4][5] have chosen the h-calculus as the fundamen-

tal notation [6],[7], whose basic element is the function, i.e. a well-

established concept. The motivation for representing a program in functional

form 1s to avoid a commitment to a detailed sequence of basic steps repre-

senting the algorithm, and instead to define the meaning or effect of a

program by the equivalence class of algorithms represented by the indicated

function. Whether it 1s worth while to achieve such an abstract defini-

tion of meaning in the case of programming languages shall not be discussed

here. The fact that a program consists basically of single steps remains,

and 1t cannot even be hidden by a transliteration into a functional nota-

tion: the sequence is represented by the evaluations of nests of functions

and their parameters. An unpleasant side-effect of this translation of

ordinary programming languages into h-calculus is that simple computer

concepts such as assignment and jumps transform into quite complicated

constructs, this being in obvious conflict with the stated requirement

that the fundamental notation should be simple.

Van Wijingaarden describes in [8] and [9] a more dynamic approach

to the problem: the fundamental notation 1s governed by only half a dozen

rules which are obvious. It 1s 1n fact so simple that it 1s far from being

a. useful programming notation whatsoever, but just capable enough to pro-

vide for the mechanism of accepting additional rules and thus expanding

into any desirable programming system. This method of defining the meaning

2



(or, since the meaning is imperative: effect) of a language is clearly dis-

tinct from the method using functional notations, in that it explicitly

makes use of algorithmic action, and thus guarantees that an evaluating

algorithm exists for any sentence of the language. The essence of this

algorithm consists of first scanning the ordered set of rules defining the

structure of the language, and determining the applicable structural desig-

nations, 1.e. performing an * applicability scan’, and then scanning the

set of rules for evaluating the determined structural units, i.e. perform-

ing an ¢ evaluation scan’. The rules are such that they may invoke appli-

cation of other rules or even themselves. The entire mechanism is highly

recursive and the question remains, whether a basically subtle and intri-

cate concept such as recursion should be used to explain other programming

languages, including possibly very simple ones.

The methods described so far have in common that their basic set of

fundamental semantic entities does not resemble the elementary operations

performedby any computational device presently known. Since the chief aim

of programming languages 1s their use as communication media with computers,

it would seem only natural to use a basic set of semantic definitions close-

ly reflecting the computer's elementary operators. The invaluable advan-

tage of such an approachis that the language definition 1s itself a pro-

cessing system and that implementations of the language on actual machines

are merely adaptations to particular environmental conditions of the lan-

guage definition itself. The question of correctness of an implementation

will no longer be undecidable or controversial, but can be directly based

on the correctness of the individual substitutions of the elementary se-

mantic units by the elementary machine operations.

3



It has elsewhere been proposed (e.g. [10]) to let the processing

systems themselves be the definition of the language. Considering the

complexity of known compiler-systems this seems to be an unreasonable sug-

gestion, but 1f it 1s understood as a call for systemizing such processing

systems and representing them in a notation independent from any particular

computer, then the suggestion appears in a different light.

The present paper reports on efforts undertaken in this direction.

It seems obvious that the definition of the structure, 1.e. the syntax,

and the definition of the meaning should be interconnected, since struc-

tural orderings are merely an aid for understanding a sentence. In the

presented proposal the analysis of a sentence proceeds in parallel with

its evaluation: whenever a structuralunit is discovered, a corresponding

interpretation rule 1s found and obeyed. The syntactic aspects are defined

~ by a Phrase Structure System (cf. [11], [12], [2]) which is augmented by

the set of interpretation rules defining the semantic aspects. Such an

augmented Phrase Structure Language 1s subsequently called a Phrase

Structure Programming Language, implying that its meaning is strictly

imperative and can thus be expressed in terms of a basic algorithmic

notation whose constituents are, e.g., the fundamental operations of a

computer.

Althoughin [8] the processes of syntactic analysis and semantic

evaluation are more clearly separated, the analogies to the van Wijngaarden

proposal are apparent. The parsing corresponds to the applicability scan,

the execution of an interpretation rule to the evaluation scan. However,

this proposal advocates the strict separation between the rules which

define the language, 1.e. 1ts analysis and evaluation mechanisms, and the



rules produced by the particular program under evaluation, while the

van Wijngaarden proposal does not distinguish between language definition

and program. Whether the elimination of this distinction which enables--

and forces --the programmer to supply his own language defining rules, 1s

desirable or not must be left unanswered here. The original aim of this

contribution being the development of a proposal for a standard language,

it would have been meaningless to eliminate 1t.

Chapter II contains the descriptions of an algorithmic notation

donsidered intuitively obvious enough not to necessitate further expla-

nation in terms of more primitive concepts. This notation will subse-

quently be used for the definition of algorithms and interpretation rules,

thus playing a similar role for the semantic aspects as did BNF for the

syntactic aspects of ALGOL 60. The function of this notation is twofold:

1. It serves to precisely describe the analysis and evaluation mechanisms,

and 2. It serves to define the basic constituents of the higher level

language. E.g., this basic notation contains the elementary operators

for arithmetic, and therefore the specifications of the higher level lan-

guage defer their definition to the basic algorithmic notation. It 1s

in fact assumed that the definition of integer arithmetic 1s below the

level of what a programming language designer 1s concerned with, while

real arithmetic shall very intentionally not be defined at all in a

language standard. The concepts which are missing 1n the basic notation

and thus will have to be defined by the evaluation mechanisms are mani-

fold: the sequencing of operations and operands 1n expressions, the stor-

age allocation, the block structure, procedure structure, recursivity,

value- and name-parameters, etc.
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Chapter III starts out with a list of basic formal definitions leading

to the terms ‘Phrase Structure System' , ‘Phrase Structure Programming

Language' and ‘Meaning' . The notation and terminology of [12] is adopted

here as far as possible. The fact that the nature of meaning of a program-

ming language 1s imperative, allows the meaning of a sentence to be ex-

plained in terms of the changes which are affected on a certain set of

variables by obeying the sentence. This set of variables is called the

Environment.of the Programming Language. The definition of the meaning

with the aid of the structure, and the definition of the evaluation algo-

rithm in terms of structural analysis of a sentence demand that emphasis

be put on the development of a constructive algorithm for a syntactic

analysis. Chapter III is mainly devoted to this topic. It could have

been entirely avoided, had a reductive instead ofa productive definition

} of the syntax been chosen. By a productive syntactic definition 1s meant

a set of rules illustrating the various constructs which can be generated

by a given syntactic entity. By a reductive syntactic definition is meant

a set of rules directly illustrating the reductions which apply to a given

sentence. Areductive syntax therefore directly describes the analyser,

and recently some compilers have been constructed directly relying on a

reductive syntactic description of the language. [13]. A language defini-

tion, however, 1s not primarily directed toward the reader (human or arti-

ficial), but toward the writer or creative user. His aim 1s to construct

sentences to express certain concepts or 1deas. The productive definition

allows him to derive directly structural entities which conform to his

concepts. In short, his use of the language 1s primarily synthetic and not

analytic in nature. The reader then must apply an analytic process, which

6



in turn one should be able to specify given the productive syntactic defi-

nitions. One might call this a transformation of a productive into a

reductive form, a synthetic into an analytic form.

| The transformation method derived subsequently 1s largely based on

earlier work by R. W. Floyd described in [14]. The grammars to which this

transformation applies are called Precedence Grammars. The term 'Prece-

dence Syntax' 1s, however, redefined, because the class of precedence gram-

mars described in [14] was considered to be too restrictive, and even unnec-

essarily so. In particular, there is no need to define the class of prece-

dence grammars as a subclass of the ‘Operator grammars' . Several classes

of precedence grammars are defined here, the order of a precedence grammar

being determined by the amount of context the analysis has to recognize

and memorize in order to make decisions. This classification relates to

the definition of 'Structural Connectedness' described in [ 15], and

provides a means to effectively determine the amount of connectedness for

a glven grammar.

Also in Chapter III, an algorithm is described which decides whether

a given grammar 1s a precedence grammar, and 1f so, performs the desired

transformation into data representing the reductive form of the grammar.

A proof 1s then provided of the unambiguity of precedence grammars,

in the sense that the sequence of syntactic reductions applied to a sen-

tence 1s unique for every sentence 1n the language. Because the sequence

of interpretation rules to be obeyed 1s determined by the sequence of

syntactic reductions, this uniqueness also guarantees the unambiguity of

meaning, a crucial property for a programming language. Furthermore, the

fact that all possible reductions are described exhaustively by the syntax,



and that to every syntactic rule there exists a corresponding interpretation

(semantic) rule, guarantees that the definition of meaning 1s exhaustive.

In other words, every sentence has one and only one meaning, which 1s well

defined, 1f the sentence belongs to the language. Chapter III ends with

a short example: The formal definition ofa simple programming language

containing expressions, assignment statements, declarations and block-

structure.

A formal definition of an extension and generalization of ALGOL 60

1s presented in Chapter IV. It will demonstrate that the described methods

are powerful enough to define adequately and concisely all features of a

programming language of the scope of ALGOL 60. This generalization is

a further development of earlier work presented in [16].

8



II. An Elementary Notation for Algorithms.

This notation will in subsequent chapters be used as basis for the

definitions of the meaning of more complicated programming languages.

A program 1s a sequence of imperative statements. In the following

paragraphs the forms of a statement written in this elementary notation

are defined and rules are given which explain its meaning. There exist

two different kinds of statements:

A. the Assignment Statement, and

B. the Branching Statement.

The Assignment Statement serves to assign a new value to a variable

whose old value 1s thereby lost. The successor of an Assignment Statement

1s the next statement in the sequence. The.Branching Statement serves to

designate a successor explicitly. Statements may for this purpose be

labelled.

A. The Assignment Statement

The (direct) Assignment Statement 1s of the form

V «EF .

v stands for a variable and E for an expression. The meaning of this

statement 1s that the current value of v 1s to be replaced by the cur-

rent value of E.

An expression 1s a construct of either one of the following forms:

XxX, 0X ,xXxX0y, rr

where X, y, stand for either variables, literalsor lists, o stands

fora unary operator, © stands for a binary operator and r stands for

a reference. The value of an expression involving an operator 1s ob-

tained by applying the operator to the current value(s) of the operand(s).

9



A reference 1s written as @v, where v 1s the referenced variable.

The indirect Assignment Statement 1s written as

V.—BE

and 1s meant to assign the current value of the expression E to the

variable, whose reference is currently assigned to the variable v .

1. Literals

A literal 1s an entity characterized by the property that its value

1s always the literal itself. There may exist several kinds of literals,

e.g.’

Numbers

Logical constants (Boolean)

Symbols

Furthermore there exists the literal § with the meaning "undefined".

Numeric constants shall be denoted in standard decimal form. The logical

constants are true and false*.

A symbol or character 1s denoted by the symbol itself enclosed in

quote marks (*’). A list of symbols is usually called a string.

Other types of literals may arbitrarily be introduced.

A listis an entity denoted by’

(E, /, . ..,G}

whose value 1s the ordered set of the current values of the expressions

E, F,. . ., G, called the elements of the list. A list can have any

number of elements (including 0), and the elements are numbered with the

natural numbers starting with 1 .

* the underlined (boldface) letters have to be understood as one single symbol.

10



3. Variables

A variable is an entity uniquely identified within a program by a

name to which a value can be assigned (and reassigned) during the execution

of a program. Before the first assignment to a variable, its value shall

be Q .

If the value of a variable consists of a sequence of elements, any

one element may be designated by the variable name and a subscript, and

thus 1s called a subscripted variable. The subscript 1s an expression,

whose current value 1s the ordinal number of the element to be designated.

Thus, after a «{1,2,{3,4,5,},6}, a[l] designates the element "1", a[3]

designates the element {3,4,5}, and therefore a[3][2] designates the

second element of al[3], i.e. "4". The notation a, shall be understood

equivalent to ali], a3 5 equivalent to af[il[j] etc.

4. Unary Operators

Examples of unary operators are:

- X , yilelds the negative of x

CX » ylelds the value of the variable whose reference 1s

currently assigned to X

abs x » ylelds the absolute value of x

integer x , ylelds x rounded to the nearest integer

tailx , ylelds the list x with its first element deleted;

isli x , Yylelds true, if x is alist, false otherwise

A further set of unary operators 1s the set of typetest operators

which determine whether the current value of a variable 1s a member of

a certain set of literals. The resulting value 1s true, 1f the test 1s

affirmative, false otherwise.

11



Ixamples:

isnx, current value of x 1s a number

isbx, ..........1s a logical (Boolean) constant

isux, .........8 0 (undefined)

isy x, . . . . . ..is a symbol

A further set of unary operators is the set of conversion operators

which produce values of a certain type from a value of another type:

Examples:

real x yields the number corresponding to the logical value x;

logicalx inverse of real (true e1, false #0 shall be assumed);

Conversion operators between numbers and symbols shall not

be defined here, although their existence is assumed, because

the notation does not define the set of symbols which may

possibly be used.

>. Binary Operators

Examples of binary operators are:

+ - X designating addition, subtraction and multiplication in the

usual sense. The accuracy of the result in the case of the

operands being non-integral numbers 1s not defined.

/ denoting division in the usual sense. The accuracy of the

result 1s not defined here. In case of the denominator being

O, the result is Q .

4 denoting division between the rounded operands with the

result being truncated to its integral value.

12



mod yields the remainder of the division denoted by + .

& yields the concatenation of two lists, 1.e.

{x} & {y} = {x,y}

= yields true, 1f the two scalar operands are equal, false

otherwise.

4 denoting exponentiation, 1.e. x4 y stands for xt

The classes of unary and binary operators listed here may be ex-

tended and new types of literals may be introduced along with corresponding

typetest and conversion operators.

B. The Branching Statement

There are Simple and Conditional Branching Statements.

1. The Simple Branching Statement

It 1s of the form

Lot0

where f stands for a label. The meaning is that the successor

of this statement 1s the statement with the label f£ . Labelling

of a statement 1s achieved by preceding it with the label and a

colon (:). The label is a unique name (within a program) and desig-

nates exactly one statement of the program.

2. The Conditional Branching Statement

It 1s of the form

if E then goto{

where [| 1s a label uniquely defined in the program and E 1s

an expression. The meaning 1s to select as the successor to the

15



Branching Statement the statement with the label I, if the current

value of E 1s true, or the next statement in the sequence, if it

1s false. For notational convenience a statement of the form

if 9 E then goto / (7 = not)

shall be admitted and understood in the obvious sense.

He HHH HHH HH HHH HHH HH KKK

Notational standards shall not be fixed here. Thus the sequence

of statements can be established by separating statements by delimiters,

or by beginning a new line for every statement. The Branching Statement

and the labelling of statements may be replaced by explicit arrows, thus

yielding block diagrams or flow-charts.

14



ITI. Phrase Structure Programming' Languages'!,'

A. Notation, Terminology, Basic Definitions

Let U be a given set: the vocabulary. Elements of ¥ are called

symbols and will be denoted by capital Latin letters, S, T,U etc. Finite

sequences of symbols -- including the empty sequence (A) -— are called

strings and will be denoted by small Latin letters -- x, y, z, etc. The

set of all strings over ¥ is denoted by U'¥. Clearly UC VY".

A simple phrasestructuresystem 1s an ordered pair (UV; ®), where

U is a vocabulary and ¢ is a finite set of syntactic rules @ of the

form

UsX ww £ . UEV,x€UX)

For ¢ = U »x, U 1s called the left part and x the right part

of ©.

y directly produces z(y5 z) and conversely z directly reduces

into y, 1f and only if there exist strings u, v such that y = ulv

and z = uxv, and the rule U —-» x is an element of ¢ .

y produces 2(y 5 z) and conversely z reduces into y, if and

only 1f there exist a sequence of strings X32 oe ’X such that

y = XoX_ =32, and Xi] DX, (i-=1,...,n3m> 1) .

A simple phrase structure syntax 1s an ordered quadruple G=;0,%, A),

where U and ® form a phrase structure system; $ is the subset of¥ such

that none of the elements of B (called basic symbols) occurs as the left

part of any rule of ¢®, while all elements of V-8 occur as left part of

at least one rule; A 1s the symbol which occurs in no right part of any

rule of 9 .

15



The letter U shall always denote some symbol U € U-%.

Xx 1s a sentence of (, if x € U¥ (i.e. x is a string of basic

symbols) and A ut xX .

A simple phrase structure language & is the set of all strings x which

can be produced by (VU, ¢) from A:

£(G) = {x|A 5xA x c v5} :

Let U 3 z . A parse of the string z into the symbol U is a sequence

of syntactic rules P15 Pos Co. LP such that ?, directly reduces

Z51 into z] (J =1 . . .n), and z = 239 z= U .

Assume 2 = uu, eee Up (for some 1 <k <n) . Then z, (1 < k)

must be of the form ZL, = UUs Ly Us where for each I =1 . . . m either

u, 5 u,, Or Uv, =u, Then the canonical form of the section of the

parse reducing z, into z, shall be to Ho} . Ae}, where the

sequence {o,} 1s the canonical form of the section of the parse reducing

u, into U, Clearly lo,} is empty, if U, = u,, and is canonical,

1f it consists of 1 element only..

The canonical parse 1s the parse which proceeds strictly from left

to_right in a sentence, and reduces a leftmost part of a sentence as far

as possible before -proceeding further to the right. In general, there

may exist several canonical parses for a sentence, but every parse has

only one canonical form.

An unambiguous syntax 1s a phrase structure syntax with the prop-

erty that for every string x € 4(¢) there exists exactly one canonical

parse.

It has been show-n that there exists no algorithm which decides the

ambiguity problem for any arbitrary syntax. However, a sufficient con-

dition for a syntax to be unambiguous will subsequently be derived.

A method will be explained to determine whether a given syntax satisfies
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this condition. ©

An environment £ is a set of variables whose values define the

meaning of a sentence.

An interpretation rule y defines an action (or a sequence of actions)

involving the variables of an environment & .

A phrase structure programming language x (G,%¥,¢ ) is a phrase
structure language & (§), where G(V, 0,8, A) is a phrase structure

syntax, YY is a set of (possibly empty) interpretation rules such that

a'unique one to one mapping exists between elements of ¥ and ¢, and

£ is an environment for the elements of ¥Y. Instead of L(G 8) we

also write % (V, 0,8, A,¥,E).

The meaning m of a sentence x € x is the effect of the execution

of the sequence of interpretation rules Vr Vs coe Lo on the environment

E , Where Py P, ce. ?, is a parse of the sentence x 1nto the symbol A

and vs corresponds to P. for all 1.

It follows immediately that a programming language will have an unam-

biguous meaning, 1f and only 1f its underlying syntax 1s unambiguous. As a

consequence, every sentence of the language has a well-defined meaning.

A sentence xy S * §.,¥,,E) 1s called equivalent to a sentence

xX, € & So YE) (possibly G, = So = ¥.), if and only if

m(x, ) is equal to m(x,).

A programming language Le ( G1 Y,; £) 1s called equivalent to
& Go Y,, £), if and only if % _ and for every sentence x,
m, (x) according to (G > 1) is equal to m, (x) according to (Gs Y,) :

17



B. Precedence Phrase Structure Systems

The definition of the meaning of a sentence requires that a

sentence must be parsed in order to be evaluated or obeyed. our prime

attention will therefore be directed toward a constructive method for

parsing. In the present chapter, a parsing algorithm will be described.

It relies on certain relations between symbols. These relations can be

determined for any given syntax. A syntax for which the relation between

any two symbols 1s unique, is called a simple precedence syntax. Obviously,

the, parsing algorithm only applies to precedence phrase structure systems.

It will then be shown that any parse in-such a system 1s unique. The

class of precedence phrase structure systems 1s only a restricted subset

among all phrase structure systems. The definition of precedence relations

will subsequently be generalized with the effect that the class of prece-

— dence phrase structure systems will be considerably enlarged.

1. The Parsing Algorithm for Simple Precedence Phrase Structure

Languages.

In accordance with the definition of the canonical form of a

generation tree or of a parse, a parsing algorithm must first detect

the leftmost substring of the sentence to which a reduction 1s ap-

plicable. Then the reduction is to be performed and the same princi-

ple 1s applied to the new sentence. In order to detect the leftmost

reducible substring, the algorithm to be presented here makes use of

previously established noncommutative relations between symbols of

Uwhich are chosen according to the following criteria:

a. The relation = holds between all adjacent symbols within &

string which 1s directly reducible;

18



b. The relation < holds between the symbol immediately pre-

ceding a reducible string and the leftmost symbol of that string;

c. The relation© holds between the rightmost symbol of a

reducible string and the symbol immediately following that string.

The process of detecting the leftmost reducible substring now consists

of scanning the sentence from left to right until the first symbol

palr 1s found so that 5, 2 S417 then to retreat back to the last

symbol pair for which S41 55 holds. 5 5 Co Ss 1s then the
sought substring; it is replaced by the symbol resulting from the

reduction. The process then repeats itself. At this point it must

be noted that it 1s not necessary to start scanning at the beginning

of the sentence, since all symbols Sy for k < 3 have not been

altered, but that the search for the next © can start at the place

of the previous reduction.

In the following formal description of the algorithm the original

sentence 1s denoted by Pye PF . k 1s the index of the last symbol

scanned. For practical reasons, all scanned symbols are copied and

renamed S;008y . The reducible substring therefore will always be

Sy++5, for some Jj . Internal to the algorithm,there exists a

symbol LL initializing and terminating the process. To any symbol

S of Uit has the relations- l< S and S >I .

We assume that Py = P +1 = 1 .

19
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Comments to the Algorithm:

Q@ Copy the string P into S and advance until a relation S 1s

encountered;

@ Retreat backward across the reducible substring;

(3) A reduction has been made. Resume the search for ».

The step denoted by "Reduce Soo 8y7 requires that the reducible
substring 1s identified in order to obtain the symbol resulting from

the reduction. If the parsed sentence is to be evaluated, then the

interpretation rule v, corresponding to the syntactic rule P,:

u - Sse eB 1s 1dentified and obeyed.

2. An Algorithm to Determine the Precedence Relations.

The definition of the precedence relations can be formalized in

the following way:

a. For any ordered pair of symbols (85 55), S, = Ss if and only

1f there exists a syntactic rule of the form u - X55 5;
for some symbol U and some (possibly empty) strings x, y.

b. For any ordered pair of symbols (5 S.J; S. = S55 1f and only
1f there exists a syntactic rule of the form u - x5.U,y,

for some U, x, Vv, Uys and there exists a generation

u, > S52; for some string z.
c. For any ordered pair of symbols (558.1; OS. > S 50 1f and

only 1f

1. there exists a syntactic rule of the form U -> x05,

for some U, x, Vv, Uys and there exists a generation

Uy, 5 ZS for some string z, or
21



2. there exists a syntactic rule of the form U - x0 Uy,

| for some U, x, Vy, Ups Ups and there exist generations
Uy A Zs and U, ot 5 for some strings z, Ww .

We now introduce the sets of leftmost and rightmost symbols of a non-basic

symbol U by the following definitions:

£ (0) = {s]32(U 5 s2))

R(U) = {8]3 2(U 5 28)

Now the definitions a. b. c¢. can be reformulated as:

a. 8; £85, PP: U—x8,8.y)

b. 8, < 8. c-3 IJp(p: U - x5.U,y) A 8. c (U,)

c. 8; Sie Ip(p: U — XU} Sy) AS, € Ru, ) Vv
Ip (op: U - xU, Uy) AS. € Ru) A 8 d(v,)

~ These definitions are equivalent to the definitions of the precedence

relations, 1f ® does not contain any rules of the form u —A, where

A denotes the empty string.

The definition of the sets & and ® is such that an algorithm for

effectively creating the sets 1s evident. A symbol S is a member of

(Uv), if

a. There exists a syntactic rule 9: U 3 Sx, for some x, or

b. There exists a syntactic rule 9: u - U, x, and S € J(U, );
1.e.

LU). (slam: > VI. > UxASEIU)]
Analogously:

R(U) . {s] 3p: U>xSV 3p: U—xU AS € R(u,)} :

22



The algorithm for finding & and A for all symbols U € U-f3 involves

searching ¢ for appropriate syntactic rules. In practice, this turns

out to be a rather intricate affair, because precautions must be taken

when recursive definitions are used. An algorithm is presented in Appen-

dix I as part of an Extended ALGOL program for the Burroughs B5500 computer.

The precedence relations can be represented by a matrix M with ele-

ments M5 representing the relation between the ordered symbol pair

(8; 5) The matrix clearly has as many rows and columns as there are
symbols in the vocabulary TV.

Assuming that an arbitrary ordering of the symbols of UV has been made

(U= 181,85, .+4,8 1), an algorithm for the determination of the precedence
matrix M can be indicated as follows:

For every element ¢ of & which is of the form

U-38 Sy ce 5

and for every pair S., §, (i=1...m-1) assign

a. = to LN 14]

bh. < to all Mo with row index k such that S, € £(8,,1);

c. © to all Me irl with column index k such that Sc € R(s,);

d. ® > to all Y x with indices ({, k such that S, € R(s;) and Si S L(s,,) .

Assignments under b. occur only if S141 € V-8, under c. only if

S, € V-%B, and under d. only if both 8.5 8.41 € U-9B, because

f(s) and R(S) are empty sets for all st HR.

This algorithm appears as part of the ALGOL program listed in Appendix I.

A syntax 1s a simple precedence syntax, if and only if at most one

relation holds between any ordered pair of symbols.
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5. Examples

a. 5, = (Vy; 2,5 B., S)

Vv, =1is,H,r,"

B, = CA 3 "3

o : S — H "
H —

H—-H AN

H—-HS

Assume that S stands for ‘string’ and H for¢head’, then this phrase

structure system would define a string as consisting of a sequence of

string elements enclosed in quote-marks, where an element is either A

or another (nested) string.

u | Lu) KR)

g te H 1"

H tr H 1 . g

MIS H A :

S > > > >

Hz <« = (©
Nl >» > >»

A I

Since both H =" and H < ", § is not a precedence syntax. It is
intuitively clear that either nested strings should be delineated by

distinct opening and closing marks (& ), or that no nested strings should

be allowed (G5) :

ol
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Ms H AN"

S

H = =

A 3 >

" > >

5, 1s a precedence syntax.
As an 1llustration for the parsing algorithm, we choose the parsing

of a sentence of (Gg):

Eni? Cx 2A?0?
|

PA" HASAN??? H
e —

Q,: HEN 2 H
5 —

PQ. : HHA 2 2? H
a A

P., : HH ? ? H
5 1

: HS? S
1 iI
P : H ? H
4 —_—

Pq: S S

4. The Uniqueness of a Parse.

The three previous examples suggest that the property of unique

precedence relationship between all symbol pairs be connected with unique-

ness of a parse for any sentence of a language. This relationship is

established by the following theorem:

Theorem: The given parsing algorithm yields the canonical form of the

parse for any sentence of a precedence phrase structure language, 1f there

exist no two syntactic rules with the same right part. Furthermore, this

canonical parse 1s unique.
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This theorem is proven, if it can be shown that in any sentence its

directly reducible parts are disjoint. Then the algorithm, proceeding

strictly from left to right, produces the canonical parse, which 1s unique,

because no reducible substring can apply to more than one syntactic rule.

The proof that all directly reducible substrings are disjoint 1s achieved

indirectly: Suppose that the string SIRREL contain two directly reducible

substrings Sy +. Sk (a.) and 5.05 (b.), where 1<i<j<k<£f£<n.
Then because of a. 1t follows from the definition of the precedence rela-

tions that S51 = S and S, © S,4y » and because of b. S41 S.
and Sy = Sir Therefore this sentence cannot belong to a precedence

grammar.

Since 1n particular the leftmost reducible substring 1s unique, the

syntactic rule to be applied 1s unique. Because the new sentence again

belongs to the precedence language, the next reduction 1s unique again.

It can be shown by induction, that therefore the entire parse must be

unique.

From the definition of the meaning of a phrase structure programming

language 1t follows that its meaningIs unambiguous for all sentences,

1f the underlying syntax 1s a precedence syntax.

5. Precedence Functions.

The given parsing algorithm refers to a matrix of precedence

relations with n° elements, where n 1s the number of symbols in the

language. For practicalcompilers this would in most cases require an

extensive amount of storage space. Often the precedence relations are such

that two numeric functions (f, g) ranging over the set of symbols can

2(



be found, such that for all ordered pairs (8, 5.)
= g(S C=a. £(s,) g( 5) «5, Ss

b. f(s) < g(s;) «8, < S 4

Cc. £(8,) > g(8;) «8, > 5

If these functions exist and the parsing algorithm is adjusted appro-

priately, then the amount of elements needed to represent the precedence

information reduces from n to 2n. An algorithm for deciding whether

the functions exist and for finding the functions 1f they exist 1s given

as part of the ALGOL program in Appendix-1 .

In example G, e.g. the precedence matrix can be represented by the

two functions f and g, where

S =| s h nN © ?

f(s) = | 3 1 3 3 3

g(s) = 1 2 1 2 1

A precedence phrase structure syntax for which these precedence functions

do not exist 1s given presently:

VU = {4, B, C, \, [, 13

do: A->CB |]

Ao]

BoA

B->ANA

BoA

C >

It can be verified that this 1s a precedence syntax and in particular

the following precedence relations can be derived:
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Ae,[eo , [=], xe]

Precedence functions f and g would thus have to satisfy

f(A) <g(l) <£([) = g(]) <£(\)

which clearly is a contradiction. Precedence functions therefore do not

exist for this precedence syntax.

6. Higher Order Precedence Syntax.

It 1s the purpose of this chapter to redefine the precedence

ralationships more generally, thus enlarging the class of precedence phrase

structure systems. This 1s desirable, since for precedence languages a

constructive parsing algorithm has been presented which 1s instrumental

in the definition of the meaning of the language. The motivation for the

manner 1n which the precedence relationships will be generalized 1s first

illustrated in an informal way by means of examples. These examples are

phrase structure systems which for one or another reason might be likely

to cceurin the definition of a language, but which also violate the rules

for simple precedence syntax.

Example1.

U= aw . B, 3; , S, D}

B={,s, nl

do:A > B

A-D 3; A
B—-=_S

B-B3; S

S € $(A), thus ; <S, and also ; = 38 .

This syntax produces sequences of D's separated by ";", followed

by a sequence of symbols S, also separated by ";" . A parse is con-

structed as follows:

29



Ds; ...... 3D3D3S;;8S;5 ...,.. 8S
J

B
(I—|

B

oo B

A

EE—.
A

I —

A
LO
EE—

A

The sequence of S's 1s defined using a left-recursive definition. while

the sequence of D's 1s defined using a right-recursive definition. The

precedence violation occurs, because for both sequences the same separator

symbol 1s used.

The difficulty arises when the symbol sequence "8" occurs. It

is then not clear whether both symbols should be included in the same sub-

string or not. The decision can be made, 1f the immediately preceding

symbol 1s investigated. |

In other words, not only two single symbols should be related, but a

symbol and the string consisting of the two previously obtained symbols.

Thus:

B; = S and Dj; <S .

Example 2:

U=1[2a, B, ’ yr S 5D),

B=1; ’ S D}

¢: A -B

A->A; S
B -»D

B—-D3; B
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_

D € R(A), thus D ® ; and also D =;

This syntax produces the same strings as the preceding one, but with

a different syntactic structure:

Dj; «even s D ; D; S,; SS; Coe ys S
J

B

|

B

B

EU
| A

—_—
A

|
A
Ce

A

Here the same difficulty arises upon encountering the symbol

sequence "D3" . The decision whether to include both symbols in the

same syntactic category or not can be reached upon investigating the

following symbol. Explicitly, a symbol should be related to the subsequent

string of 2 symbols, 1.e.

D= ;D and D> ;S .

Example 3:

V={a,B,x,;,[,1}

® : A->B ; B |
B-[ A]

B-[ A] |
BoA |

Since MN € L(A) and A € $A) : [ <A and A>] . But'also

[ =A and AN =1.

In this case the following relations must be established to resolve the

ambiguity.

[ =A], [ <n;, sx] and [A =1 .
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This syntax therefore combines the situations arising 1n Examples 1 and 2.

Obviously, examples could be created where the strings to be related would

be of length greater than 2. We will therefore call a precedence phrase

structure system to be of order (m, n), 1f unique precedence relations

can be established between strings of length< m and strings of length

<n . Subsequently, a more precise definition will be stated. A set of

extended rules must be found which define the generalized precedence

relations. The parsing algorithm, however, remains the same, with the

exception that not only the symbols 5, and Pr be related, but pos-

sibly the strings S, 3 and Pe LL

The definitions of the relations < =, © is as follows: Let

vy ¢
X = s__ S_1» y = 5, Coe S let u,v,u’,v’ € VU and U, Up» Us € V-3,
then

a. XxX =1Y, if and only if there exists a syntactic rule

u - us _185¢V, and
*

us _4 A u'x, S1V = y-v' ;

b. x <y, 1f and only if there exists a syntactic rule

u - us _, Uv, and
*

uS_, Su'x, Uv yv’'

c. x= yy, 1f and only if there exists a syntactic rule

U - uu; 5, v, and
#* *

uly - u'x, SV - yv', or there exists a syntactic rule
U —- uU.U.v and uU % u'x uv 3S !172 1 ERMAN
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A syntax 1s said to be a precedence syntax of order (m,n), if and

only 1f

a. 1t is not a precedence syntax of degree (m', n') for m‘’ < m

or n' <n, and

, . / /

b. for any ordered pair of strings S ce. S_1) S ce. S, ,

where m' < m and n' < n either at most one of the J relations

<% = ® > holds or otherwise b. is satisfied for the pair

S_(n'+1)- @ wom SIETTL NE
A precedence syntax of order (1,1) is called a simple precedence syntax.

With the help of the sets of leftmost and rightmost strings, the defini-

tions of the precedence relations can be reformulated analogously to their

counterparts in section 2b, subject to the condition that there exists

no rule U +A .

a. xXx =7y o pp: U > us _,8,v)
—uVS ... (m-1)A(u S_+8 =u S_ +8, € KR (u))

AS....Sv =v VS... (n-1)(8, Sv vV8,...8 € (v))

b. x <y e 3p: u = us Uv)
/ a. V CL (m-1).Au's _...5_,=uVs_...s,€ RT (a)

(n)
(8, S_ € & (u,v)

c. xo ve Jle:u- uu, $,v)

Sv’. wVS.... (n-1)A (8, 8 Vv v VS, S_€ & (v))

or Jp: u » ul, Uv)
N R (m) A (n)A(s_,---S_;€ (wy) A (8,. ..s € XV (Uv)
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(1) and /u Js) are then defined as follows: |

1. 7 = Zy-ee2 € gd Vou) © 3k (1 < k <n) >
- a a. -uVZzZ. ..z€((z, Z, € 3 (U)A(Z, 2 u'=uVZ. 2 b¢ (u))

la. z=z,...2€ £0) (0) » 3k(0 < k< n) 3
(n-k)

(U > Z,.. ZUAZ ...Z €X (u))

2. z=2.. 2, € Rw) © (1 < k <n) 3
V (n-%) 1) A / (k),(Wz ..2,, _uVz. .z, €REW) A(z. ..2, € RV(V))

2a. 7 = Z weoZy € R20) (y) o 3k(0 < k <n) 3
(n-k) ys

(u- uz,. WZ)A Ze ec ® (u))

These formulae indicate the method for effectively finding the sets

(1

£ and X for all symbols in V-93. In particular, we obtain for 2 )

and R(1) the definitions for & and & without superscript as defined in

section 2b.

Although for practical purposes such as the construction of a

useful programming language no precedence syntax of order greater than

(2,2) -- or even (2,1) -- will be necessary, a general approach for the

determination of the precedence relations of any order shall be outlined

subsequently:

First it 1s to be determined whether a given syntax 1s a precedence

syntax of order (1,1). If it is not, then for all pairs of symbols

(8; Sk) between which the relationship is not unique, 1t has to be

determined whether all relations will be unique between either (5554> S,)

or (8 8,85); where SF ranges over the entire vocabulary. According to
the outcome, one obtains a precedence syntax of order (2,1), (1,2) or

(2,2), or if some relations are still not unique, one has to try for even

higher orders. If at some stage 1t 1s not possible to determine relations
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between the strings with the appended symbol 5 5 ranging over the entire
vocabulary, then the given syntax 1s no precedence syntax at all.

Example:

wW=f{a,B,rN, [,]]

B=WO, 0,1}

d : A>B

A->][ B]
B >A

Bo AN]

The conflicting relations are [<A ,[ =A, A 2] and A >]. But a

relation between (S[ , NX) or (A, 1S) can be established for no symbol

S whatsoever, and between ([ , AS.) and (SA , 1) only for s, = |

and S$, = [ . Thus this is no precedence syntax.

Clearly there exist two different parses for the string [A],

namely

[ A] and [ A]
LL I

B B

|EE I
A A

The underlying phrase structure systems 1n section III.3 and chapter

IV will be simple precedence phrase structure systems.

C. An Example

A simple phrase structure programming language shall serve as an

illustration of the presented concepts. This language contains the fol-

lowing constructs which are well-known from ALGOL 60: Variables, arithmetic

expressions, assignment statements, declarations and the block structure.

The meaning of the language 1s explained in terms of anarray of variables,
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called the 'value stack', which has to be understood as being associated

with the array § which 1s instrumental in the parsing algorithm. The

variable v. represents the ‘value' associated with the symbol 5. :

E.g., the interpretation rule Viq corresponding to the syntactic rule

Pi determines the value of the resulting symbol expr—as the sum of

the values of the symbols expr- and term belonging to the string to be

reduced.

Pq : EXpr-> expr- + term

Vip yy «V+ Vy, [V(expr-)  V(expr-) + V(tern)]

Note that the string to be reduced has been denoted by S4-- +53 in the
parsing algorithmof section III.2a. Instead of thus making explicit

reference to a particular parsing algorithm, V....V., the values of

the symbols 8; 8s can be denoted explicitly, i.e. instead of v.

and Y. in yy; one might write V(term) and V(expr-) respectively.
For the sake of brevity, the subscripts 1 and j have been preferred

here.

A second set of variables 1s called the ‘name stack' . It serves to

represent a second value of certain symbols, which can be considered as

a Sname' . The symbol decl is actually the only symbol with two values;

1t represents a variable of the program in execution which has a name

(namely 1ts associated identifier) and a value (namely the value last

assigned to it by the program). The syntax of the language is such that

the symbol decl remains in the parse-stack S as long as the declaration

1s valid, 1.e. until the block to which the declaration belongs is closed.

This 1s achieved by defining the sequence of declarations in the head

of a block by the right - recursive syntactic rule Py, . The
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parse of a sequence of declarations illustrates that the declarations can

only be involved in a reduction together with a body- symbol after a

symbol body- has originated through some other syntactic reduction.

This, 1in turn, is only possibly when the symbol end is encountered. The

end symbol then initiates a whole sequence of reductions which result in

the collapsing of the part of the stack which represented the closing

block. On the other hand, the sequence of statements which constitutes

the imperative part of a block, is defined by the left-recursive syntactic

formula Pg Thus a statement reduces with a preceding statement-list

into a statement-list immediately, because there 1s no need to retain

information about the executed statement in the value-stack.

This 1s a typical example where the syntax 1s engaged in the defini-

tion of not only the structure but also the meaning of a language. The

consequence 1s that in constructing a syntax one has to be fully aware of

the meaning of a constituent of the language and its interaction with

other constituents. Many other such examples will be found in chapter IV

of this article. It is, however, not possible to ennumerate and discuss

every particular consideration which had to be made during the construction

of the language. 'Only a detailed study and analysis of the language can

usually reveal the reasons for the many decisions which were taken in

its design.

Subsequently the formal definition of the simple phrase structure

language 1s given:

& = (U,9,8, program,@, &)

V -® = {program| block ad | statment !statlist | expr| exp:r-| term | term-|
factor| var| number| digit] _ }

B= ir] be lend i | “ll =IxI/1C])]Satay 71819] new|L}
= {5s vu i}
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$ ¢, : program - 1 block1 Y Vy : A (empty) oo
Py block — begin body end L : A

: - : A
Ps : body — body Vs

P), body- - decl ; body- Vy, : Ws « Q

Ps : body- - statlist Ve : A

Pg statlist —» statlist , statment | LA : A

Ps : statlist — statment ¥ A

Pg + statment - var« expr Vg : , «Vv,
Pq : statment — block Vg A

Pio} expr — expr- ¥i0° A
‘ - - : +Pq expr - expr- +term Vi Vey vy

Po EXPr- — expr- ~term Vio Ys «Vy - v,
. - - : Vv -V

Pyzt €Xpr - - term 13 AA
o - cs APq)¢ EXPT — term LAT

P51 term — term- Vig: A

? 6° term - term- X factor V6 Y; «¥, v,

P,,¢ term- — term- / factor ¥37 rv “Y, / Vv,
? 8° term- - factor ¥i8° A

‘ + V V.

P19} factor - var Vig v, “Yy,
Poo: factor ( expr ) Voo! v, “Vi

. : A

Poy factor — number Vo! |
P,,: Var - A Vo.t ted

if t = 0 then

if Ww, £ Ss then
Ys «t

Post number -— digit $23: A
: digit : Vv Vv, X 10

Poy, number — number digil 'ol, LA} CX x Vv-J -]J -—

: : W S

Pos decl — new A ¥os LY <5
3

: i 0 :Pog digit Yop Ys «0

Pop digit -1 Vor ° LF «1

: digit Vo: V, «
ETHIE 35° Vy «9
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Notes:

1. The branch in rule Von labelled with ERROR 1s an example for the

indication of a 'semantic error’ ‘in A . By 'semantic error' is in
general meant a reaction of an interpretation rule which 1s not ex-

plicitly defined. In the example of Von the labelled branch 1s

followed when no identifier equal to S. is found in the W stack,

l.e. when an 'undeclared' identifier is encountered.

2. The basic symbol A inTV is here meant to act as a representative

of the class of all identifiers. Nothing will be said about the

representation of identifiers.

On the subsequent pages follow the sets of leftmost and right-

most symbols & and ®, the matrix M of precedence relations, and the

| precedence functions f and g, 311 of which were determined by the

syntax-processor program listed in Appendix I.
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NO SYMBUL F G

001 BLUCK 003 004

002 BODY 001 0C1

003 BODY= 002 002

004 DECL 001 003

005 STATL IST 002 003

006 STATMENT 003 0C3

007 VAR 006 004

008 EXPR 003 0C1

009 EXPR= 004 002

010 TERM 009 002

011 TERM= 005 003

012 FACTOR 006 003

013 NUMBER 006 0C4

014 DIGIT 008 006

015 IDENT 007 0C4

016 BEGIN 001 005

017 END 004 001

018 3 0072 001
019 » 003 002

020 « 001 006

021 + 002 004

022 ~ 002 0C4

023 X 003 0C5

024 / 003 00S

025 ( 001 004

026 ) 006 003

027 0 008 007

028 008 007

029 2 008 007

030 3 0038 007
031% 4 008 O0C7
032 5 004 007
033 6 008 007

034 7 008 0C7

035 8 008 007

036 9 008 007

037 NEW 004 003

038 L 004 003
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IV. EULER: An Extension and Generalization of ALGOL 60

In this chapter the algorithmic language EULER 1s described first

informally and then formally by its syntax and semantics. ap attempt has

been made to generalize and extend some of the concepts of ALGOL thus crea-

ting a language which is simpler yet more flexible than ALGOL 60. A second

objective in developing this language was to show that a useful programming

language which can be processed with reasonable efficiency can be defined

in rigorous formality.

A . An Informal Description of EULER:

1. Variables and Constants

In ALGOL the following kinds of quantities are distinguished:

simple variables, arrays, labels, switches and procedures. Some of these

quantities ‘possess values' and these values can be of certain types, in-

teger, real and Boolean. These quantities are declared and named by iden-

tifiers in the head of blocks. Since these declarations fix some of the

properties of the quantities involved, ALGOL 1s rather restrictive with

respect to dynamic changes. The variables are the most flexible quantities,

because values can be assigned dynamically to them. But the type of these

values always remains the same. The other quantities are even less flexi-

ble. An array identifier will always designate a quantity with a fixed

dimension, fixed subscript bounds and a fixed type of all elements. A

procedure identifier will always designate a fixed procedure body, with a

fixed number of parameters with fixed type specification (when given) and

with fixed decision on whether the parameters are to be called by name or

by value. A switch identifier always designates a list with a fixed number

of fixed elements. We may call arrays, procedures, and switches€semistatic?,
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because some of their properties may be fixed by their declarations.

In order to lift these restrictions, EULER employs a general type concept.

Arrays, procedures, and switches are not quantities which are declared and

named by 1identifiers*, 1.e. they are not as in ALGOL quantities which are

on the same level as variables. In EULER these quantities are on the level

of numeric and Boolean constants. EULER therefore introduces besides the

number and

logical constant

the following additional types of constants:

reference, |
label,

symbol

list (array),

procedure,
undefined.

These constants can be assigned to variables, which assume the same form

“as in ALGOL, but for which no fixed types are specified. This dynamic

principle of type handling requires of course that each operator has to

make a type test at execution time to insure that the operands involved

are appropriate.

The generality goes one step further: A procedure when executed can produce

a value of any type (and can of course also act by side effects), and this

type can vary from one call of this procedure to the next. The elements

of a list can have values of any type and the type can be different from

element to element within the same list. If the list elements are labels

then we have a switch, 1f the elements are procedures then we have a pro-

cedure list, a construct which is not available in ALGOL 60 at all. If

the elements of a list are lists themselves then we have a general tree

structure.

* identifiers are defined in EULER exactly as in ALGOL 60.
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EULER provides general type-test operators and some type conversion

operators.

a) Numbers and Logical Constants

Numbers 1n EULER are essentially defined like unsigned numbers

in ALGOL 60.

The logical constants are true and false.

b) References

A reference to a variable in EULER 1s a value of type Reference.

It designates the identity of this particular variable rather than

the value assigned to 1t. We can form a reference by applying the

operator @ to a variable:

@<variable>

The inverse of the reference operator is the evaluation operator (.).

If a certain variable x has been assigned the reference to a

variable y, then

X.

represents thevariable vy. Therefore the form

<variable>.

1s also considered to be a variable.

c) Labels

A label 1s like in ALGOL a designation of an entry point into a

statement sequence. It 1s a 'Program Reference' . A label 1s

symbolically represented by an identifier. In contrast to ALGOL 60

each label has to be declared in the head of the block where it 1is

defined. In the paragraph on declarations 1t 1s explained why this

1s so.
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d) Symbols

A symbol (or character) in BULER is an entity denoted in a dis-

tinguishable manner as a literal symbol. A list of symbols is

called a string.

e) Lists

Lists in EULER take the place of arrays in ALGOL. But they

are more general than arrays in ALGOL in several respects. L 1 st s

can be assigned to variables, and are not restricted to a rectangular

format; they can display a general tree structure. Furthermore,

the structure of lists can be changed dynamically by list operators.

Basically a list 1s a linear array of a number of elements

(possibly zero). A list element is a variable: to 1t can be assigned

a constant of any type (in particular, 1t can itself be a list), and

its 1dentity can be specified by a reference.’

A list can be written explicitly as

(<expression> , <expression> , . ...)

The expressions are evaluated 1n sequence and the results are the

elements of the created list.

A second way to specify a list literally 1s by means of the list

operator list

{Eskpression>

where the expression has to deliver a value of type Number, and the

result is a list with as many elements (initialized to Q) as spe-

cified by the expression.

The elements of a list are numbered with the natural numbers

beginning with 1. A list element can be referenced by subscripting
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a variable (or a list element) to which a list 1s assigned. If the

subscript 1s not an integer then its value rounded to the nearest

integer 1s used for subscripting. An attempt to subscript with i,

where 1<O or 1 > length of the list, results in an error indi-

cation. An example for specifying a list structure 1s

(1,2,(3,(4,5),6,())) .

This 1s a list with three elements, the first two elements being

numbers, the third element being a list itself. This sublist has

four elements, a number, another sublist, again a number and last

another sublist with0 elements. If this list would have been

assigned to the variable a, then al[2] would be the number 2,

al3][2] would be the list (4,5) .

In order to manipulate lists, list operators are introduced into

EULER. There are a type-test operator (isli), an operator to deter-

mine the current number of elements (length), a concatenation opera-

tor (&), and an operator to delete the first element of a list

(tail). Here are some examples for the use of these operators:

(Assuming the list given above assigned to a)

isli a[2] gives a value false
Tengu al? [4] gives a value0
5.37 & a[3][2] gives the list (2,3,4,5) |
(a[2])& tail tail al[3] gives the list (2,6, 0)

From the formal description of EULER it can be seen what rules

have to be observed in applying list operators, and 1n what sequence

these operators are executed when they appear together in an expres-

sion (like in the last example).

Only a minimal set of list operators 1s provided in EULER.

This set can, however, easily be expanded. The introduction of list
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manipulation facilities into EULER makes it possible to express with

) this language certain problems of processing symbolic expressions

which can not be handled in ALGOL but required special list processing

languages like LISP or IPL.

f) Procedures

Similar to ALGOL, a procedure 1s an expression which 1s defined

once (possibly using formal parameters), and which can be evaluated

at various places in the program (after substituting actual para-

meters). The notion of a procedure in EULER is, however, in several

respects more general than in ALGOL. A procedure, i.e. the text

representing it, 1s considered a constant, and can therefore be

assigned to a variable. An evaluation of this variable'effects an

evaluation of this procedure, which always results in a value. In

this respect every EULER procedure acts like a type-procedure in ALGOL.

The number and type of parameters specified may vary from one call of

a procedure to the next call of this same procedure.

Formally parameters are always called ‘byvalue’. However,

since an actual parameter can again be a procedure, the equivalent

of a "call by name' in ALGOL can be accomplished. Furthermore an

actual parameter being a reference establishes a third kind of call:

"call by reference'. It must be-noted that the type of the call of

a parameter 1s determined on the calling side. For example, assuming

i=1 and ali] = 2,

pla[i]) is a call by value,

p( ¢al[il?) is a call by procedure (name),

p(@ al[i]) is a call by reference.
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In the first case the value of the parameter 1s 2, in the second

case it is ali], in the third case it is the reference to all] .

A procedure 1s written as

¢ <expression>’ or

¢ 5;8;...35; <expression>'

where © represents a formal declaration. The evaluation of a

procedure yields the expression enclosed in the quote marks.

A formal declaration 1s written as

formal <identifier> .

The scope of a formal variable 1s the procedure and the value assigned

to it 1s the value of the actual parameter if there exists one, {

otherwise. When a formal variable is used in the body of the proce-

dure, an evaluation of it 1s implied. For instance 1n

Pp «¢ formal x; x «5? ;...5p(@a);

the reference to a is assigned to the formal variable x, and the

implied evaluation of x causes the number 5 to be assigned to

the variable a (and not to the formal variable x). As a conse-

quence, the call p(1) would imply that an assignment should be made

to the constant 1. This is not allowed and will result in an error

indication.

g) The Value ‘Undefined’

The constant fi means 'undefined? Variables are automatically

initializedto this value by declarations. Also,a formal parameter

1s assigned this value when a procedure 1s called and no corresponding

actual parameter 1s specified in the calling sequence.
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2. Expressions

In ALGOL an expression 1s a rule for obtaining a value by applying

certain operators to certain operands, which have themselves values. A

statement in ALGOL 1s the basic unit to prescribe actions. In EULER

these two entities are combined and called‘expression', while the term

‘statement’is reserved for an expression which is possibly labelled. An

expression in EULER, with the exception of a goto-expression, produces

a value by applying certain operators to certain operands,and at the same

time may cause side effects. The basic operands which enter into ex-

pressions are constants of the various types as presented in paragraph 1,

variables and list elements, values read in from input devices, values

delivered by the execution of procedures and values of expressions en-

closed in brackets. Operators are in general defined selectively to

operate on operands of a certain type and producing values of a certain

type. Since the type of a value assigned to a variable can vary, type-

tests have to be made by the operators at execution time. If a type

test 1s unsuccessful, an error indication 1s given. Expressions are

generally executed from left to right unless the hierarchy between op-

erators demands execution in a different sequence. The hierarchy is

implicitly given by the syntax.

Operators with the highest precedence are the following type test

operators:

isb <variable> (is logical?)
isn <variable> (is number?)
isr<variable> (is reference?)
isl (1s label?)
ioy (is symbol?)
isli (1s list?)
isp (1s procedure?)
isu <variable> (is undefined?)
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These operators, when applied to a variable, yield true or false,

depending upon the type of the value currently assigned to the variable.

At the same level are the numeric unary operators:abs (forming the

absolute value of an operand of type Number), integer (rounding an operand

of type Number to its nearest integer), the list reservation operator

list, the length operator length (yielding the number of elements in a

list), the tail operator, and type conversion operators like real, which

converts a logical value into a number, logical which converts a number

into a logical value, conversion operators from numbers to symbols and

from symbols to numbers, etc.

The next lower precedence levels contain in this sequence: Exponen-

tiation operator, multiplication operators (%/,=, mod), addition op-

erators (+, =-), extremal operators (max, min). Operands and results

are of type Number.

The next lower precedence levels contain the relational and logical

operators in this sequence: relational operators (=, £, < <<, > >),

negation operator 7, conjunction operator A, disjunction operator V.

The relational operators require that their operands are of type Number

and they form a logical value. The operators A and V are executed

differently from their ALGOL counterparts: If the result 1s already

determined by the value of the first operand, then the second operand

is not evaluated at all. Thus, false A x — false, true V x -true for

all x.

The next lower precedence level contains the concatenation operator

& .

Operators of the lowest level are the sequential operators goto,
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If, then, and else, the assignment operator «, the output operator

out and the bracketing symbols begin and end. According to their

occurence we distinguish between the following types of expressions:

goto~-expressiorn, assignment expression, output expression, conditional

expression, and block. As it was already mentioned, all expressions

except the goto-expression produce a value, while in addition they may

or may not cause a side effect.

The go-to-expression 1s of the form

gekpression>

If the value of the expression following the goto-operator 1s of the type

Label, then control 1s transferred to the point in the program which this

label represents. If this expression produces a value of a different type,

then an error indication is given.

The assignment expression assigns a value to a variable. It is of

the form

<variable> « <expressiorn>

In contrast to ALGOL an assignment expression produces a value, namely

the value of the expression following the assignment operator, This

! general nature of the EULER assignment operator allows assignment of

intermediate results of an expression. For example:

a «b+ [ced+ e]

would compute d + e, assign this result to c¢, and then addb, and

assign the total to a.

The output expression 1s of the form

out <expression>

The value of the expression following the output operator 1s transmitted
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to an output medium. The value of the output expression is the value of

the expression following the output operator.

A conditional expression 1s of the form

1f <expression>then <expression> else <expression>

The meaning 1s the same as in ALGOL.

The construct

1f <expression>then <expression>

1s not allowed in EULER, because this expression would not produce a

value,if the value of the first expression is false.

An expression can also be a block.

5. Statements and Blocks

A statement in EULER 1s an expression which may be preceded by

one or more label definition'(s). If a statement is followed by another

statement, then the two statements are separated by a semicolon. A semi-

colon discards the value produced by the previous statement. Since a

goto-expression leads into the evaluation of a statement without encoun-

tering a semicolon, the goto operator also has to discard the value of

the statement in which it appears.

A block 1n EULER 1s like in ALGOL a device to delineate the scope

of identifiers used for variables and labels, and to group statements

into statement sequences. A block is of the form

begin g;0;...30 end or

begin 938;...3030305...30 end

where 0 represents a statement and ® represents a declaration. The last

statement of a block 1s not followed by a semicolon, therefore its value

becomes the value of the block.
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Since procedures, labels, and references in EULER are quantities

which can be dynamically assigned to variables, there 1s a problem which

1s unknown to ALGOL: These quantities can be assigned to variables which

in turn can be evaluated in places where these quantities or parts of them

are undefined.

Situations like this are defined as semantic errors, i.e. the language

definition 1s such that occurrences of these situations are detected.

4. Declarations

There are two types of declarations in EULER, variable-declara-

tions and label-declarations:

new <identifier> and

label <identifier>

A variable declaration defines a variable for this block and all inner

blocks, to be referenced by this identifier as long as this same identifier

1s not used to redeclare a variable or a label in an inner block. A vari-

able declaration also assigns the initial value § to the variable.

As discussed in paragraph 1, no fixed type 1s associated with a variable.

A label declaration serves a different purpose. It 1s not a definition

like the variable declaration; it 1s only an announcement that there 1s

going to be a definition of a label in this block of the form

<identifier> :

prefixing a statement.

Although the label declaration 1s dispensable it 1s introduced into

EULER to make it easier to handle forward references. A situation like

begin...L:...begin...goto Lj...L:...end;..end
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makes it necessary to detect that the identifier 1, following the goto

operator 1s supposed to designate the label defined in the inner block.

Without label'declarations 1t 1s impossible to decide, whether an identifier

(not declared in the same block) refers to a variable declared in an outer

block, or to a label to be defined later in this block, unless the whole

block 1s scanned. With a label declaration every identifier is known

upon encounter.
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B. The Formal Definition of EULER

EULER was to be a language which can be concisely defined in such

a way that the language 1s guaranteed to be unambiguous, and that from the

language definition a processing system can be derived mechanically, with

the additional requirement that this processing system should run with

reasonable efficiency. A method to perform this transformation mechani-

cally, and to accomplish parsing efficiently, has been developed and is

given in Chapter III for languages which are simple precedence phrase

structure languages. Therefore, 1t appeared to be highly desirable to

define EULER as a simple precedence language with precedence functions.

It was possible to do this and still include in EULER the main features

of ALGOL and generalize and extend ALGOL as described.

The definition of EULER 1s given in two ‘steps' to insure that the

~ language definition itself forms a reasonably efficient processing sys-

tem for EULER texts. The definition of the compiling system consists of

the parsing algorithm, given 1n paragraph III.B.l., a set of syntactic

rules, and a set of corresponding interpretation rules by which an EULER

text is transformed into a polish string. The definition of the executing

system consists of a basic interpreting mechanism with a rule to interpret

each symbol in the polish string. Both descriptions use the basic notation

of chapter II. If the definition of EULER would have been given in one

step like the definition of the example 1n chapter III C, it would have

been necessary to transform it into a two phase system in order to obtain

an efficient processing system. Furthermore, a one phase definition re-

quires the introduction of certain concepts (e.g. a passive mode, where

a text is only parsed bt not evaluated) which are without consequence for
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practical systems, because they take on an entirely different appearance

when transformed into a two phase system.

The form of the syntactic definition of EULER 1s influenced by the

requirement that EULER be an unambiguous simple precedence phrase structure

language. This involves that:

a) there must be exactly one interpretation rule (possible empty)

for each syntactic rule,

b) the parsing algorithm has to find reducible substrings in exactly

the same sequence 1n which the corresponding interpretation rules

have to be obeyed,

c) extra syntactic classes (with empty interpretation rules) have

to be introduced to insure that at most one precedence relation

holds between any two symbols,

d) no two syntactic rules can have the same right part.

For an 1llustration of the requirements a) and b) consider the syn-

tactic definition of an arithmetic expression in ALGOL 60:

<arithmetic expression> :: = <simple arithmetic expression>

<if clause> <simple arithmetic expression> else
<arithmetic expressiorn>

If the text

if b thena + ¢ else d + e

is parsed, then d + e 1s reduced to <arithmetic expression> and ac-

cordingly evaluated, before it has been taken into account that the pre-

ceding <if clause> may prevent d + e to be evaluated at all. In this

example, the syntax of ALGOL 60 fails to reflect the sequence of evaluation

properly, as it does e.g. 1n the formulations of simple expressions.

To correct this default, the corresponding syntactic definitions in EULER

are as follows: (BNF 1s adopted here to obviate the analogies)
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<expresssion> ::= <if clause> <true part> <expression> oo
<If clause> ::= if <expression> then'
<true part> ::= <expression> else

In the example above, the operator else will be recognized as occuring in

<true part> before the expression d + e 1s parsed. Through the inter-

pretation rule for <true part> the necessary code can be generated.

A similar situation holds for the ALGOL definition

<basic statement> ::= <label> : <basic statement>

The colon, denoting the definition of a label, 1s included in a reduction

only after <basic statement> was parsed and cvaluated. In EULER the

corresponding definitions read:

<statement> i= <label definition> <statement>

<label definition> ::= <identifier> :

Thus the parsing algorithm detects the label definition before parsing the

statement.

~ As a third example, we give the EULER definition of <disjunction>

<disJunction> ::= <disjunction head> <disjunction>
<disjunction head> tit= <conjunction> V

Thus, VY is included in a syntactic reduction, before <disjunction> is

parsed and evaluated; code can be generated which allows conditional skip-

ping of the following part of program corresponding té&disjunction>.

The corresponding ALGOL syntax

<Boolean term> ::=,<Boolean term> V <Boolean factor>

reflects the fact that both <Boolean term> and <Boolean factor> are

to be evaluated before the logical operation is performed. This inter-

pretation of the logical operators A and V was deliberately discarded

as being undesirable.

According to requirement <c¢) the language definition of EULER

contains certain auxiliary nonbasic symbols like
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<variable-> , <integer-> etc. to insure that EULER is a simple

precedence language. Without these nonbasic symbols the reducible sub-

strings in a sentence are not disjoint, as the following example taken

from ALGOL shows:

| X X y t Z , X X y t Z— LL — (I

<term> <factor> <factor> <prim>

| | —
<term> <factor>

Therefore one obtains the contradicting precedence relations x = <factor>

and X < <factor> .

The requirement d) together with the precedence property 1s a suf-

ficient condition for the language to be unambiguous. Requirement d)

has far reaching consequences on the form of the language definition,

because 1t forces the syntax to be written in a sort of linear arrangement

rather than a net. Two examples will be given.

A label unlike in ALGOL can 1n EULER not be defined as <identifier>,

because we already have

<varilable-> ::= <identifier>

This suggests that the best thing to do would be to introduce two different

forms of identifiers for the two different entities variable and label.

It was felt, however, that tradition dictates that the same kind of iden-

tifiers be used for variables and labels. It was possible to do this in

EULER although the solution might not be considered clean. In the text

gotoL

the identifier L 1s categorized by the parsing algorithm into the syn-

tactic class <variable>, but the corresponding interpretation rule ex-

amines the table of declared identifiers and discovers that this identifier

09



-

designates a label (defined or undefined at this time). Therefore, a

label 1s inserted into the polish string instead of a variable.

A second example for the specific arrangement of the syntax chosen

to fullfill requirement d) 1s the following: The concatenation operator

(&) is introduced into the syntax in the syntactic class <catena>,

which 1s defined as

<catena> ::= <catena> & <primary> |
<disjunction>

This looks as if & had a lower precedence than the logical and arithme-

tic operators. But this is of no consequence, since an operand of &

must be a quantity of type List and a <disjunction> can only be of type

List if it is a <primary>, i.e. not containing any logical or arithmetic

operators.

- But we cannot write

<catens> ::= <primary> ,

because this would violate requirement d). Therefore <catena> appears

in the syntax at a rather arbitrary place between <primary> and <expres-

sion>.

Looking at the requirements made upon the language definition and

| observing the careful choices that had to be made in drawing up the

language definition in line-with these requirements, the criticism will

probably be raised, that the difficulties usually encountered in deriving

syntax directed compilers for given languages are not avoided in EULER

but merely ‘sneaked' into the definition of the language itself. This

point is well taken, but we think that nobody 1s likely to create some-

thing as complicated as a processing system for an algorithmic language

like ALGOL without encountering some difficulties somewhere. We think
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it 1s the merit of this method of language definition to bring these dif-

ficulties into the open, so that the basic concepts involved can be recog-

nized and systematically dealt with. It is no longer possible to draft

an ‘ad hoc syntax' and call it a programming language, because the natural

relationship between structure and meaning must be established.

Subsequently follows the formal definition of EULER. It has been

| programmed as an Extended ALGOL program for the Burroughs B5500 computer.
This program 1s listed in Appendix II.
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Phase I (Translator)

The vocabulary U:

The set of basic symbols Bo: *

ol1l2|31:15161718]9l,1.15]: | @ | new] forma | 1abe1 |x| [| 1] begin] end

(11? | goto| out | if |then|else|&|v]|A|T|=| Al<|<|2|>]

min|max|+|-|X|/|+|mod|4 |abs|length|integer|real|logicall

list|tail|in|isb|isn|isr|isl|isli|isy|isp|isulo|qj

10 | =| true| false

The set of non-basic symbols VU -%: -

program |block|blokhead|blokbody|labdef|stat|stat-|

expr |expr-|ifclause|truepart|catena|disj|disjhead|

conj | conj-|conjhead |negation|relation|choice|choice-|

sum| sum- | term|term=| factor| factor-|primary|procder|

prochead|list*| reference |number| real]

integer*|integer-|digit|logval|var|var-|vardeci|

labdecl|fordecl

The environment E, :
S (stack used by the parsing algorithm)
V

1 (index to S and V)

y (index to S and V)

P (program produced by Phase I)
k (index to P)

N (list of identifiers and associated data)

n (index to N)

m (index to N)

bn (block number)

on (ordinal number)

scale (scale factor for integers)

gE. =(<s,v, 1, 3,P,k,N, n, m, bn, on, scale]

* AN and 0 are representatives for identifiers and symbols respectively.
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1: vardecl - new A k «k+l; P[k] « (“new”);on «on +1;
1 n « ntl; N[n] — (V[i], bn, on, new?)

| 2: fordecl — formal A k « k+l; P[k] « (*formal?); on ton +1;
n «n+l; N[n] « (V[i], bn, on, ‘formal')

3: labdecl - label A n «n+l; N[n] « (V[i], bn, Q, Q)

| 4: var- - A t tn; k & k+l;
Lhl: if t < 1 then goto Error:

if N[t][1T = vial then goto L&2;
| t « t-1; goto LAL;

Lh2: if N[t][4] £ “new? then goto Li3 ;
P[k] « (@’ , N[t][3], N[t][21); goto» L46

| 143: if N[t][4] # ‘label' thegoto Lk;Pik] « (‘label’, N[t1T3]1, N[t][2]); goto Lk6
Ih: if-N[t][4] £ 'formal' thengoto L45;

P[k] « (‘@ °, N[tI[3], N[tI[ 2];
k «k+l; P[k] « ('value'); gotoL4d6

145: Plk] « (%label?, N[t]1[3], N[tI[2]);
N[t][3] t-k; poto Lh4é;

| LY6:
5: var- - [expr] k « k+l; P[k] « (*1°)

| 6: var- — var- . k « k+l; Pk]« (‘value’)
f+ var . — var- A

8: logval = true Vij] « true

9: logval  — false Vij] « false

10: digit 40 V[3i] «0

19: git 9 Vij] «9

20: integer- - digit scale « -1

21: integer- + integer- digit t «10 X V[jl; VIj] «VIi]l + t;
scale « scale = 1

22: integer* 3 integer-. A

2): real* - integer* . infteger* t «10 Pr scale;
t «V[i] X t;
Vile VI3] + ¢

hs real* 3 integer* A
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25% number  - real* A

26: number - real* 10 integer* t «10 | Viil;
Vil «V[j] x t

27: number - jo integer t0.1 ) VIil;
Vij] «V[i]l xX t

28: number = 10 integer” Vj] «10 TV[i]

29: number > 10 - integer* Vij] «0.1 1 Vv[i]

30: reference - @var A

31: listhead— listhead expr, VIjleVIg] + 1

30: 1listhead — ( V[j] «0

33: listx — listhead expr) k «k+l; P[k] « (¢)?, V[j] + 1)

3h: list* — listhead) k «k+l; P[k] « (¢)?, V[j])

55: prochead — prochead fordecl ; A

36: prochead — ¢ bn «bntl; on « 0; k « k+l;
Plk] « (€6%,0); V[j] tk;
n «ntl; Nn] « (Q, m);
mtn

37: procdef — prochead expr ? k «k+l; P[k] « (427);
P[V[jl[2] «k+l; bn tbn - 1;
n tm-1; m « N[m][2]

38: primary - var k «k+l; P[k] « ('value')

39: primary - var list* k «k+l; P[k] « (call®)

40: primary — logval k « k+l; P[k] « ( ¢ logval®, viil)

41: primary  — number k «k+l; P[k] « ('number', V[jl)

42: primary — © k « k+l; P[k] « (© symbo1?, V[j])

43: primary — reference A

44: primary  — list* A

45: primary - tail primary k « k+l; P[k] « (‘tail’)

L6: primary — vprocdef A

47: primary —Q k «k+l; P[k] « (‘Q?)
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48: primary — [expr 1 A

49: primary - in k «k+l; P[k] « (‘in")

50: primary — isn var k «k+l; P[k] « (¢isb?)

51: primary — isn var k « k+1; P[k] « (“isn?)

52: primary — isr var k «kt1l; P[k] « (¢isr?)

53: primary - isl var k «k+l; P[k] « (isl?)

54: primary + isli var kK «k+l; P[k] « (¢is1i®)

55: primary — isy var k «k+l; P[k] « (‘isy?)

56: primary  — isp var k « k+l; Plk] « (“isp”)

57: primary — isn var kK k+1; P[k] « (isn?)

58: primary — abs primary k «k+l; P[k] « (abs?)

59: primary — length var k « k+l; P[k] «+ (‘length’)

00: primary — integer primary kK «k+l; P[k] « (‘integer’)

61: primary — real primary k « k+l; P[k] « (‘real’)

62: primary — logical primary k «k+l; P[k] « ('logical')

63: primary — list primary k «k+l; P[k] « (‘list’)

64: factor- — primary A

65: factor- -» factor- iy primary k «k+l; P[k] « (¢1?)

66: factor — factor- A

67: term-  — factor A

68: term-  — term X factor k «k+l; P[k] « (¢X?)

69: term- — term- / factor k « k+l; P[k] « (¢/?)

70: term- — term- <4 factor k «k+l; P[k] « (¢+?)

71: term- — term- mod factor k « ktl; Pk] « ('mod')

72: term — term— A

75: sum- — term A

65



Th: sum- ++ term A

75: sum- —+-term k «k+l; P[k] « (42?)

76: sum- - sum- + term k «k+l; P[k] « (6+?)

77: sum- — sum- —-term k «k+l; P[k] « (¢-*)

78: sum -» sum- A

79: choice- + sum A

80: choice- - choice- min sum k « ktl; P[k] « (“min?)

81: choice- » choice- max sum k « k+1; P[k] « (‘ max?)

82: choice = choice= A

83: gelation — choice A

84: relation - choice = choice k «k+l; P[k] « (¢="?)

85: relation — choice £ choice k «k+l; Plk] « (£7)

86: relation — choice < choice k « k+1; P[k] « (¢<?)

~ 87: relation — choice < choice k « k+l; P[k] « (¢<?)

88: relation - choice> choice k «k+l; P[k] « (>)

89: relation - choice > choice k « k+1; P[k] « (>?)

90: negation — relation A

91: negation — 7 relation k «k+l; P[k] « (¢7?)

92: conjhead - negation A k «k+l; P[k] « (‘A', 9); V[j] «k

PD : conj- — conjhead con] P[V[ jl]l[2] « kt1

94: conj- — negation A

96: disjhead — conjV k « k+l; P[k] « (¢V?, Q); Vv[j] « k

gr: disj — disjhead disj P[V[jl][2] « k+l

98: disj — conj A

99: catena 3 catena & primary kK «ktl; P[k] « (¢&?)
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100: catena - disj A

101: truepart 3 expr else k « k+1; P[k] « (¢else?, Q); V[j] « k

102: ifclause — if expr then K «k+l; P[k] « (¢ then?, Q); Vij] «k

103: expr- —- 'Block A

104: expr- — ifclause truepars PIV[3]11[2] «VI[j+1] +1; P[V[j+1]1][2] « k+1
105: expr- — var « expr- k « k+l; Plk] « ('t")

106: expr- > gotol mary k « k+1; P[k] « (“goto?)

107: expr- — out expr- k «k+l; Pk] « ('out')

108: expr- — catena A

109: expr — expr- A

110: stat- — labdef stat-= A

111: stat- — expr A

112: stat - stat- A

113: labdef —-> A: ttn;

L1131: if t <m then goto ERROR;
if N[t][1] = V[j] then goto L1132;
t «t-1; goto L1131;

L1132: if Nein LQ then goto ERROR;
s «N[t][3]; N[t][3] «— k+1;
N[t][4] « ¢label?;

L 1133: if s = Q then goto L113k;
t « P[s][2]; ele] « k+1;
Ss «t; goto L1133;

L1134;

114: blockhead - begin bn «bntl; on « 0; k « k+l;
P[k] « (*begin?);
n «n+l; Nn] «(q, m); m <n

115: blokhead — blokhead vardecl; A

116: blokhead — blokhead labdecl; A

117: blokbody -» blokhead A

118: blokbody - blokbody stat; k «k+l; P[k] « (¢;2)

119: block —- blokbody stat end k « ktlj P[k] « (‘end');
bn tm-1; m « N[m][2]

120: program = 1 block _L A
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Phase II (Interpreter)

The following 1s the definition of the execution code produced by Phase I.

The variables involved are:

S (tree structured memory stack)
i (stack index)

mp (stack dex, points at the last
element of a linked list of Marks)

P (program)
k (program index of the instruction

currently being interpreted)

fct (counter of formal parameters)

s, t, A, B, C (variables and labels local to any interpretation

rule)

&,={8s,1i,m,P,k, fet}
The following types of quantities are introduced, which were not men-

tioned in Chapter II :

labels bie program references)procedures i.e. procedure descriptors)

with the accompanying type-test operators isl, isp and the following

type-conversion operators :

progref converting the two integers pa andbn into the pro-

gram-reference with address pa defined in the block

with number bn.

proc converting three integers (block-number, Mark-index,

program—address) 1nto a uniquely defined procedure-

descriptor,

bln converting a procedure-descriptor into its block-number,

mix converting a procedure-descriptor or a label into the

index of the Mark belonging to the block in which the

procedure-descriptor or label 1s defined (Mark-index),
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adr converting a procedure-descriptor or a label into its

program address.

Also, there exists an operator

reference converting the two integers on and bn, into the

reference of the variable with ordinal number on in the

variable-list of the block with number bn.

The detailed description of these operators depends on the particular

scheme of referencing used in an implementation, for which an example 1s

given 1n Appendix II. It should be noted, however, that a reference,

label or procedure-descriptor, may become undefined if it is assigned

to any variable which 1s not in its scope. Since procedures and blocks

may be activated recursively, the actual identity of a reference, label

or procedure-descriptor can only be established in Phase II, which makes

it necessary for Phase I to describe them in terms of more than one quan-

tity. The sufficient and necessary amount of information to establish

these identities 1s contained in the 'Marks' stored in S . Marks are

created upon entry into a block (or procedure) and deleted upon exit.

A Mark contains the following data:

1. a block-number

2. a link to its dynamically enclosing block

3. a link to 1ts statically enclosing block
4. a list of its variables°

5: a program return address

By ‘link' is meant the index of the Mark of the indicated block. —

The following list indicates to the left the operator P[k][1] currently

to be executed, and to the right the corresponding interpretation

algorithm. At the end of each rule a transfer to the Cycle routine has

to be implicitly understood. This basic fetch cycle is represented

as follows:
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Initialize: 1 «0; mp « 0; k « 0;

Cycle ko ktl;
T Obey the Rule designated

by P[k][1]; goto Cycle

Operators Interpretation Rules (Y,)

+ if 3 isn S[i-1] then goto ERROR:
if 7 isn S[i] then goto ERROR;
S{i-1] « 8[i-1]+ S[i]; i « i-1

X

/ | defined analogously to +
mod

] 1f 7 isn S[1] then goto ERROR;
Sli] « - S[i]

abs
integer defined analogously to -
logical

real if 7 1sb S[1] then goto ERROR;
S[i] « real S[i]

min if 7 isn 8[i-1] then goto ERROR;
if 7 isn S[i] then goto ERROR;
1 « i-13

if S[i] < S[i+1] then goto A;
STi] « S[i+l]; A:

max defined analogously to min

isn if = isr S[i] then goto A;
S[i} «sil. ;
A: S[i] «isn S[i]

1sb

isr

isl

isli defined analogously to isn

18y
1sp
isu
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< if 7 isn S[i-1] then goto ERROR;
if71 isn S[i] then goto ERROR;
S[i-1] « S[i-1] < s[i]; it i-1

<
>
> defined analogously to <

A if 71 isb S8[i then goto ERROR;

if S[i] then goto A;
k « P[k][2]; goto T;
A: 1-1 -1

V if 7 isb S[i] then goto ERROR;
if71 8[1] then goto A;
k « P[k][2]; goto T; :
A: 1 «1 - 1

1 if 71 isb S[i] then goto ERROR;
STi] «1 sS[i] ———-

then if 7 isb S[i] then goto ERROR;
ied - 1;

if S[i+l] then goto A;
k «P[k][2]; poto T ;
A:

else k « P[k][2]; goto T

length if 7 isr S[i] then goto A;
S[i] « s[i].;

A: if 71 isli 8[i] then goto ERROR;
S[i] « length S[i]

tail if 1 isli S[i] then goto ERROR;
S[i] « tail S[i]

& if 7 isli S[i-1] then goto A;
1f 7 1sli S[1] then goto ERROR;

S[i-1] « S[i-1] & S[i]; 1 «i -1

list A: if 7 isn 8[i] then poto ERROR;
t «8[i]; S[i] « ();
B: 1f t € 0 _then goto C;
S[i] «8[il & (Q); t «tt - 1;
goto B; C:
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number i « itl; S[i] « Plkl[2]

logval i «itl; S[i] « P[k][2]

Q i «itl; S[i) «Q

string i « i+l; S[i] « Plk][2]

label i « i+1l; S[i] « progref(P(kl{2], P[k1[3])

@ i « i+l; S[i] « reference(P[kl[2], P[k][3])

new S[mp][4] « S[mpl[k] & (Q)

formal fet « fet+l;

if fct < fenged S1mpl{4] then goto A;
S{mp] [4] Slap ][+] & (2); A:

— 1f 7 1sr S[i1i-1] then goto ERROR;
S[i-1]. «sil; S[i-1] «sS[i]
1 « 1-1;

ie 1 - 1

if 7 isn S[i] then goto ERROR; (subscript)

if S[i]< 0_then goto ERROR; i ti-1;
if 7 isr S[i] then goto ERROR;
STi] «S[i].;
if 71 isli S[i] then goto ERROR;
t « length S[il;
if s[i+1] > t EheR ta R ;
si) « @S11[STThT]

begin 1 e i+1;
S[i] « (S[mpl[1]+1, mp, mp, ()); (a Mark)
mp ¢« i

end t « S[mp][2]; S[mp] « S[1i];
itmp; mp «t

é 1 « itl;

S[i] « proc (S[mpl[1]+1, S[mpl(3], x)
k © plx1T2T. goto T

value if T1isr S[i] then goto A;
s[i) «8[il.;
A: if7 isp S[i] then goto B;
fet « 03 t « S[i];

S[i] « (bln t, mix t, mp, (), k); (a Mark)
mp «i; k «adrt; B:
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call 1 i-1;

if 1isr S[i] then goto A;
S[i] « 8[i].;
A: if lisp S[i] then goto ERROR;
fect « 0; t «S[il;

S[i] « (bln t, mix t, mp, S[i+l], k); (a Mark)
mp ti; k «adr t

’ k « S[mp][5];t« S[mp][2];
S[mp] « S[1];
1tmp; mp « t

got 0 if 7 isl S[i] then goto ERROR;
mp «mix S[i]; pp «adr S[i];
1 «mp; goto T

) t « P[k][2]; s « () (build a list)
A: if t = O then goto B; -
t «t-1; s «5s &@©[i-t]); goto A;
B: i «itl; i «i - P[k][2];
S[i] « s
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Certain features of ALGOL are not included in EULER, because they were

thought to be non basic (or not necessary), or because they did not fit

easily into the EULER definition, or both.

Examples are

the empty statement, allowing an extra semicolon before end,

the declaration list, avoiding the necessity of repeating the

declarator in front of each identifier,

the conditional statement without else,

the for-statement,

the own type.

It 1s felt that these features could be included in a somewhat

‘fancier' EULER+ language, which is transformed into EULER by a prepass

to the EULER processing system. This prepass might include other features

- like ‘macros' or ‘clichés’, it would take care of the proper deletion of

comments, etc. Certain standard macros or procedures might be known to

this prepass and could thus be used in EULER+ without having been declared,

like the standard functions in ALGOL. The set of these procedures would

necessarily have to include a complete set of practical input-output pro-

cedures. It should be noted, however, that in contrast to ALGOL, they can

be described in EULER itself, assuming the existence of appropriate opera-

tors in and Buth (meading amd eedstiemg wharasters)o f£ s y mb ol s

and lists (formats are lists of symbols), of type-test- and conversion-

operators are of course instrumental in the design of these procedures.

A few other useful ‘standard procedures' are given as programming exam-

ples in the following paragraph. (cf. ‘for', ‘equal' and ‘array')
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C. Examples of Programs

A list can contain elements of various types, here numbers and procedures:

begin new Xx; new s;

s « (2, ‘begin x «x+1; s[x] end', ‘out x') x « s[1]; s[x]
end

¥ oR KK OH KK KH * ¥

A reference can be used to designate a sublist. Thus repeated double

indexing 1s avoided:

begin new a; new r;

a « (1,(2,3),4); The output is: 2, 3

r «@a[2];

out r.[l); out r.[2];

r.[1l] «<Q

end

KH KK KK HK XK ¥

A procedure assigned to a variable (here p) 1s replaced by a constant,

as soon as further execution of the test n < 100 1s no longer needed:

begin new p; new n; new f;

n « 0;

P « 'n«ntlyif n < 100 then f(n) else p « f£(n)';

f « ‘formal x; ........ Cees8

end

FH KK KK KK KX

If a parameter 1s a ‘value-parameter', the value is established at call

time. In the case of a ‘name-parameter', no evaluation takes place at

call time. Thus the output of the following program is 4,16,3
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begin new p; new a; new 1;

p « 'formal x; formal k;

begin k «k+l; out x end';

1 « 1;

ad (k4, 9,16);

p(alil, @i); p(‘ali]’, @1); outi

end _

begin new p; new a; new 1;

p « ‘formal x; formal Kk;

begin k «k+l;x «k end’;

a «list 3; 1 «1;

r(@ali], @i); p( ‘@ali]’, @i)

end

Here the final value of a is (2, 0,3).

x * kx Xx * S t * * * *

A for statement 1s not provided in EULER. It can, however, easily be pro-

grammed as a procedure and adapted to the particular needs. Two examples

are given below, the latter corresponding to the ALGOL for:

for « ‘formal v; formal n; formal s;

begin label k; Vv «1;

k: 1f v < n then

begin s; v « v+l; goto k end

else (

end’

algolfor «‘formal v; formal I; formal step; formal u; formal s;

begin label k; v «I;

k:if (v-u) X step < 0 then

begin s; v «Vv + step; goto k end

else Q

end’
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It should be noted that the decision whether the iterated statement should

be able to alter the values of the increment and limit 1s made 1n each

call for ‘for' individually by either enclosing the actual parameters

in quotes (name-parameter), or omitting the quotes (value-parameter).

E.g. a) n « 5; for @1, n, ‘begin n « n-1; out.n end”) Sn

b) n «5; for (@i, ‘n', ‘begin n tn-1; out n end') |

a) yields 4,3,2,1,0, while b) yields 4,3,2 .

¥ OH OK HK OK KK XX

There 1s no provision for an operator comparing lists 1n EULER. But

list comparisons can easily be programmed. The given example uses the

‘for' defined above:

equal «‘formal x; formal vy;

begin new t; new i; label k;

t « false;

if isli x A isli y A length x = length y then

begin for (@i, length x,

‘if -1equal (@x[i], @y[i]) then goto k else Q’);

Lt ttrue

end else

t tisn x A isn y A x=y;

k: t

end’

It should be noted that the definition of Adeviates from ALGOL and

thus makes this program possible; therefore in

t tisn x A isn y A x=y

the relation x=y 1s never evaluated if either x or y 1s a number.

If the list elements may also be logical values or symbols, then the above

statement must be expanded into:
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t «ishx A isn y A x=y V isb x A isb y Areal x = real y V

isy Xx A isy y A real x = real y

¥ OR KO HR XE RK ¥

There 1s no direct provision for an array declaration (or rather array

‘reservation') either. It can be programmed by the following procedure:

array ¢« ‘formal lL; formal Xx;

begin new t; new a; new b; new i;

b «2; t «list b[1];

a «if length b > 1 then array (tail b, x) else x;

for (@i, bl], “t[i] « a’);

t

end’

The statement a « array ((xl, x2, . . . , xn)) would then correspond to

the ALGOL array declaration

array all: x1, 1: x2, . . . , 1: xn],

while the statement a array ((xl1, x2, . . . , xn), a) would additionally

‘initialize all elements with a .

XH HER KH KKH

The following 1s an example of a summation procedure, using what 1s

in ALGOL known as ‘Jensen's device'. The statement sum (‘°’, @i, I, u)
u

has the meaning of Y t
i=4 .

begin new k; new I; new sum; new a; new b;

sum & ‘formalty formal i; formal 3 formal u;

begin i « 3;

if £ > u itl, u)else t + sum (‘¢’°, @i,

end’;

a « (1, 4, 9,16);
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out sum (‘a[k]’, @k, 1, 4);

out sum (‘alk] X a[5-k]?, @k, 1, 4);

out sum (‘sum (‘vlx][2]’, @t, 1, 2), @k, 1, 2)
end

KH KK HK KK KX

begin new x; new sqrt; new elliptic; label K;

elliptic « ‘formal a; formal Db;

if abs [a-b] < |, 6 then 1.570796326/a else

elliptic ([a+bl/2, sqrt (aXb))’;

sqrt « ‘formal a;

begin label L; new x; X « a/2;

L:if abs kT 2 - a] < ,*8 then x else

begin x « [x+a/x]/2; goto L
end

end’;

x « 0.7;

K: out x; out sqrt(x); out elliptic (1,x);

X «x+0.1; 1fx < 1.3 then goto K else

end

This program contains a square-root procedure using Newton's method

iteratively, and a procedure computing the elliptic integral

Lr

\ [85cos“t + bsinot
0

using the Gaussian method of the arithmetic-geometric mean recursively.

¥ OR KK KK XK KX

As a final example, a permutation generator is programmed in EULER, so

that the value of

perm (1, £)
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1s the list of all permutations of the elements of list {, i.e. a list with

l x2X3x . . . Xbengthlf 1 s t s :

begin new perm;new a; new k; label f;

perm « ‘formal k; formal vy;

begin new ragkep exch; new x;

X «Ys

rot « ‘formal k; formal m;

if m > length x then () else

perm (k+l, exch (k, m, @x)) & rot (k, m+l)’;

exch « ‘formal k; formal m; formal x;

begin new b; new t;

t tx;

b tlk]; tk] tlm]; tim] «Db; ¢

end’;

if length x = k then (x) else rot (k, k)

end’;

a « 0;

f: out perm (1, a); a «a & (length a); goto £

end

This program generates the following lists:

()

((0))

((0,1), (1,0))

((o,1,2), (0,2,1), (1,0,2), (1,2,0), (2,1,0), (2,0,1))
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Appendix I

| The following 1s a listing of the syntax-processor programmed 1n Extended

| ALGOL* for the Burroughs B5500 computer. The organization of this program
1s summarized as follows:

Input lists of non-basic symbols, basic symbols and productions

BL.

[ cr. Build list of leftmost and rightmost symbols, cf. III BZ.

| [ ce. Establish precedence relations, cf. III BZ.
| B2. Find precedence functions, cf. III Bb5.

| EZ Build tables to be used by the parsing algorithm of the
EULER processor. (punch cards)

| Most of the program is written in ALGOL proper. Often used extensions

| of ALGOL are:

1. READ and WRITE statements

(symbol strings enclosed in < and > denote a format)

2. DEFINE declarations, being macros to be literally expanded by the

| ALGOL compiler.

5. STREAM procedures, being B5500 machine-code procedures, allowing the

use of the B5500 character mode.

*

cf. Burroughs B5500 Extended ALGOL Reference Manual.
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BEGIN COMMENT SYNTAX=PROCESSOR, NIKLAUS WIRTHDEC.1964)
DEFINE NSY =150#%3 COMMENT MAX NO, OF SYMBOLS)
DEFINE NPH s §50%3 COMVENT MAXes NO, OF PRODUCTI ONSJ
DEFINE UPTO 3 STEP § UNTIL #3

DEFINE LS eo "<" #2, EQ ® nun gg, GR oo "evga,,NULLus"Wg)
FILE OUT PCH 0 (2,10)} COMMENT PUNCH FILEJ
INTEGER LT# COMVENT NUMBER OF LAST NONBASIC SYMBOLS

INTEGER KoMa Ns» MAX, OLON} BOOLEAN ERRORFLAG)
ALPHA ARRAY READBUFFERCO019), WRITEBUFFER[O3148))
ALPHA ARRAY TEXT (031113 COMMENT AUXILIARY TEXT ARRAY)

ALPHA ARRAY SYTB [OSNSY)3 COMVENT SYMBOLTABLEU
INTEGER ARRAY REF COSNPR»035)3 COMMENT SYNTAX REFERENCE TABLE?
LABEL START,EXIT}

LABEL. A»2BsCrEsF»G}

STREAM PROCEOURE CLEAR (D#N)} VALUE NJ

BEGIN 01 ¢ DI OS ¢ 8 LIT ""3SItDJDostNWDS
END J’ i

STREAM PHOCEOURE MARK (D»S)} VALUES)

BEGI N DI ¢ D3SI t LOC SJ SI1tSler) DSt CHR
END

BOOLEAN STREAM PROCEDUREFINIS(S))
BEGIN TALLY e313 SItSJIF SC ® "«® THEN FINIS ¢ TALLY

END J

STREAM PROCEDURE EDIT (S»s0sN)}

BEGIN DI ¢ [Dj SI tN} OS t IDECISYI t SI DSe¢ O WDSS
END J

STREAM PROCEDURE MOVE (S»D)3
BEGIN SI ¢ 8301 tD3 OS ¢ WSJ
END J

STREAM PROCEDURE MOVETEXTC(SsDsN)YJ VALUE NJ
BEGIN DIc¢DJ Sle ss OS ee NWDSS
END J

BOOLEAN STREAM PROCEDURE EQUAL (S2D)}
BEGIN SI t SJ 01 t¢DJ TALLY ¢ 1JIF SSC 8s DC THENEQUAL eTALLYS
ENDJ

STREAM PROCEDURE SCAN (S»D0sN)J
BEGIN LABEL A28,CsDrLt)

SI t ST DItODJ DOS t 48 LIT "0"3 Dle¢e DDJ SIt Sie)
IF SC # ® " THEN O0ItDI+8}

Al IF SC ® " " THEN BEGIN SI ¢SI+¢13G0T0AEND J
IF SC » "9" THEN GO TO DJ

8 CIFSCe®™ THEN BEGINODSeLIT"™™3 GO TO E END J DS€CHRIE1)}
BY IF SC #"™ " THEN BEGIN SI ¢SI1+1{3601108 END J
Cs SI t SI*1} GO TO AJ

DI DI ¢ NJ SI ¢S5I+5) OS ¢3 OCT

END J

STREAM PROCEDURE EDITTEXT (S»DsN)J} VALUE NJ

BEGI N SI ¢ S301 t 0J0Ie DI+10} NCDI ¢DI1+23 DS ¢ 38 CHR
END J

STREAM PROCEDURE SETTEXT CAsBsrCrDsErZ)}

BEGIN 01 ¢2Z3 O01 t DI+8) SI t AJ DSe 3 DECI SI ¢«B} DS ¢ WDS)
DI t DI*S3 ST t o = ¢3IDECS Dle pIled3 SI ¢DJ DS ¢ 3 DEC)
Ol t DI+33 SI t EJ] OS ¢ 3 0OECJ
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END 3

STREAM PROCEDURE PCHTX(SsDsN)3 VALUE N)
BEGI N SI « S) VI ¢ D301leDI4s

NCDS © LIT """} DS ¢ 8 CHR; DS e LIT nmr; DS ¢ LIT "»%)}
END 3

PROCEDURE INPUT)

READCCARDFIL»10, READBUFFERI%])) [EXIT])
PROCEDURE OUTPUT)

BEGIN WHITE (PRINFIL» 15» WRITEBUFFER[#*])}
CLEAR (WRITEBUFFER[O), 14)3

END J

I NTEGER PROCEDURE IN% ¢X)3 REAL X}
BEGIN INTEGER II LABEL FJ}

FOR 1 «0QUPTO M DO

IF EQUAL (SYTBLIJ» X) THEN GO TO F J

WRITE («UNDEFINED SYMBQL">»)J ERRORFLAG¢ TRUE}
F$ INX ¢ Ti

END)

START?

FOR N ¢ 0 UPTO 5 DO

FOR M ¢ 0 UPTO NPR DO REP [MsN) eq

Me Ne MAX ¢ ULDON ¢ 0) ERRORFLAG ¢ FALSE}
CLEAR {WRITEBUFFER[O)»14)}
COMMENT READ LIST OF SYMBOLS, ONE SYMBOL MUST APPEAR PER CARD»

_ STARTINGIN COLe9(8 CHARS: ARE SIGNIFICANT), THE LIST OF NON"
BASIC SYMBOLS IS FOLLOWED BY AN ENDCARD ("#" IN COL.1)e¢ THEN
FOLLOWS THE LIST Of BASIC SYMBOLS AND AGAIN AN ENDCARD J
WRITE (€ "NONBASIC SYMBOLSs">)}

At I NPUTJ

IF FINIS C(READBUFFERIO)) THEN GO TO E}
M ¢ M+1}

MOVE (READBUFFERC1), SYTB [M,
EDIT C(READBUFFERCO), WRITEBUFFERI1),» M)}
OUTPUTS] GO TO A}

E13 WRITE (</"BASIC SYMBOLSI">)} LT ¢ MJ
Fi INPUT)

IF FINIS (READBUFFER(O0J) THEN GO TOG}
M ¢ Mel) |

MOVE (REAOBUFFERL1), SYTB([MI)}

EDIT (REAOBUFFER[O), WRITEBUFFERL11,» M)}
OUTPUTJ GO TO FJ

COMMENT READ THE LIST UF PRODUCTIONS, ONE PER CARD, TELEFTPART
IS4 NONBASIC SYMBOL STARTING IN COL.2,NO FORMAT I$ PRESCRIBED
FOR THE RIGHT PARTe ONE OR MORE BLANKS ACT 4 SSYMBOL SEPARATORS,
IF COL+2IS BLANK, THE SAME LEFTPART AS IN THE PREVIOUS PRODUCTION
IS SUBSTITUTED. THE MAX. LENGTH OF A PRODUCTION IS 6 SYMBOLS}

G8 WRITE C(</MSYNTAXiI">)}
Bt INPUTS

IF FINIS C(READBUFFERC[O0]) THEN GO TO C3}

MOVETEXT (READBUFFER(OJ» WRITEBUFFERC13)» 10)3 OUTPUTS
MARK C(READBUFFERI[91» 12)3 SCAN (READBUFFERIOIs TEXTCOJs» NY}
IFN S 0 OR N > NPR OR REF{N»O) # 0 THEN

BEGIN WRITE (<"UNACCEPTABLE TAG">)J FRRORFLAGtTRUE} GO TO B
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END J
IFN> MAX THEN MAX t NJ
COMMENT THE SYNTAX IS STORED IN REFs EACH SYMBOL REPRESENTED BY

ITS INDEX INTHE SYMBOL=TABLE}
FOR K ¢ 0 UPTO 5 DO REF [NsaK] ¢ INX CTEXTILKI))

IF REF [N»O] 8 0 THEN REF (NsO] ¢ REF [OLDN»0J ELSE.
IF REF (N»0}) > LT THEN

BEGIN WHITE (<"I| LEGAL PRODUCTION">)) ERRORFLAG ¢ TRUE END J
OLDN ¢ N3 GO TO B}

Ct IF ERRORFLAG THEN GO TO EXIT)
N ¢ MAX}

COMVENT M IS THE LENGTH OF THE SYMBOL-TABLE, N OF THE REF~TABLE)J

BEGIN COMVENT BLOCK A}

I NTEGER ARRAY H{OtM, 08M}J} COMVENT PRECEDENCE MATRIX)

INTEGER ARRAY Fs» GCOSMI3 COMMENT PRECEDENCE FUNCTI ONSJ
BEGIN COMVENT BLOCK B13}

I NTEGER ARRAY LINX» RINX (O8LT)} COMMENT LEFT / RIGHT INDICES)
INTEGER ARRAY LEFTLIST2RIGHTLISTCO0110221}

BEGIN COMMENT BLOCK (I, BU LD LEFT- AND RIGHT-SYMBOL LISTS)
INTEGER 12d}

INTEGER §P» RSP} COMVENT STACK- AND RECURSTACK=POINTERS)

INTEGER LPs RP} COMMENT LEFT/RIGHT LIST POINTERS)
INTEGER ARRAY INSTACK COIM]}
BOOLEAN ARRAY DONE» ACTIVE COSLT))
I NTEGER ARRAY RECURSTACKs, STACKMARK [OSL T¢+11)}
I NTEGER ARRAY STACK (031022133 COMMENT HERE THE LISTS ARE BUILT)

PROCEDURE PRANTLIST (LXsL)3 ARRAY LX» L [0)}
BEGIN INTEGER IsJsK}

FOR I © 1 UPTO LT OO IF DONECI) THEN
BEGIN K ¢03 MOVE (SYTB(I)» WRITEBUFFER{O0))}

FOR J ¢ LX(I)s,J*1 WHILE LI{JY # 0 DO

BEGIN MOVE (SYTBLLIJI)» TEXTIK])) K ¢ K+i}
IF K 210 THEN

BEGIN EDITTEXT (TEXTLO)s WRITEBUFFERCO01,10)3 OUTPUTS
Ke 0)

END 3

END J

IFK » 0 THEN

BEGIN EDITTEXTCTEXT(O0)» WRITEBUFFERLOJs» K)} OUTPUT END J
END

END J

PROCEDURE DUMPIT3

BEGIN INTEGER I2J3 WRITE ((PAGE])}
WRITE (<X92"DONE ACTIVE LINX RINX">)}
WRITE (€516®, FOR 1¢ 1 UPTOLT DO

(I, OONECI)» ACTIVELIY» LINX CI3» RINXCIZI))
WRITE (</"STACK?S se BM", 13>» SP))
WRITE (<I10s"3 ",1016»» FOR 1 ¢0STEP 10 UNTIL $P DO

(I» FOR J ¢ITUPTO 149 DO STACK ([J)1)}
WRITE (</"RECURSTACKEI">»)}
WRITE (€316»» FOR 1¢1 UPTO RSP DO

(I, RECURSTACKIIl, STACKMARKIII)))
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END 3

PROCEDURE KESET (X)3 vALUE XJ} INTEGER X;
BEGIN INTEGER 1i

FOR I ¢ X UPTO RSP DO STACKMARK [!) ¢ STACKMARK (X1}

END J

PROCEDURE PUTINTOUSTACK (XJ)3 VALUE XI [INTEGER X3}

COMMENT X Is PUT INTO THE WORKSTACK, DUPLICATION IS AVOI DED!
BEGIN IF INSTACK [X) # 0 THEN

BEGIN SP ¢ SP+1} STACK [SPJ] « X3 INSTACK [XI ¢ SP END
ELISE IF INSTACK (X) € STACKMARK (RSP) THEN
BEGIN SP ¢ SP+1} STACK LSP) ¢ XJ

STACK CINSTACK{X]) ¢ 0) INSTACK [X) ¢ SPJ
END J

IF SP> 1020 THEN

BEGIN WRITE (</*STACK QVERFLOW"/>)3 DUMPITS GO TO EXIT END }
END}

PROCEDURE COPYLEFTSYMBOLS (X33 VALUE XJ INTEGER Xi
' COMMENT COPY THE LIST OF LEFTSYMBOLS OF X INTO THE STACK}

BEGIN FUR X ¢ LINX{X]» X¢1 WHILE LEFTLISTIX] # 0 DO
PUTI NTOSTACK (C(LEFTLISTC(X)1)}

END J /

PROCEDURE COPYRIGHTSYMBOLS (X)3 VALUE XJ INTEGER X3

COMMENT COPY THE LIST OF RIGHTSYMBOLS OF X INTO THE STACK)

BEGIN FUR X ¢RINX{X1» X41 WHILE RIGHTYLISTIX) # 0 DO
PUTI NTOSTACK (RIGHTLISTIXI1)}

END 3
PROCEDURE SAVELEFTSYMBDLS XJ} VALUE Xi INTEGER XI

COMMENT THE LEFTSYMBOLLISTS OF ALL SYMBOLS IN THE RECURSTACK

WTH INDEX ® X HAVE ' BEEN BU LT AND MJST NOW BE REMOVED, THEY ARE
COPIED INTJ YLEFTLIST™ AND THE SYMBOLS ARE MARKED "DONE" J

BEGIN INTEGER 1»sJ»U} LABEL LEX}

L$ IF STACKMARK CX] #® STACKMARK (X+%] THEN

BEGIN X ¢ X*1}3 IF X € RSP THEN GO TO L ELSE GO TO LXEND 3}
STACKMAHK (RSP+1)¢ SP+1)}
FOR I ¢ X¢31 UPTQ RSP DO

BEGIN LINX [(RECURSTACK[Il]le LP+1}
ACTIVE (RECURSTACKLIIJ] ¢ FALSE DONE ([RECURSTACK[{Ille TRUEJ
FUR J ¢ STACKMARK{IY UPTO STACKMARK[I+1l=1 DO
IF STACK (J) #4 0 THEN

BEGIN LP ¢ LPIJLEFTLIST (LP) ¢ STACK (J)
If LP » 1020 THEN

BEGIN WRITE (</T"LEFTLIST OVERFLOW™/>)3 DUMPIT)
PRINTLIST SCLINX» LEFTLIST)) GO TO EXIT

|. ENDS3
END

END J

LP ¢ LP+3} LEFTLIST [LP] ¢ 0}
EXSRSP ¢ XJ
END

PROCEDURE SAVERI GHTSYMBOLS (X)3 VALUE XJ INTEGER X}

COMMENT ANALOG TO ®"SAVELEFTSYMBOLS"™S

BEGIN INTEGER IsJ3 LABEL L2EX})

LtI F STACKMARK[X] = STACKMARK [X41] THEN

BEGIN X « X*43[JF X< RSP THEN GO TO L ELSE GO TO EX END 3}
STACKMARK [RSP+i) ¢ SP+1}
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FORT «X+1 UPTD RSP DO
BEGIN RINX [RECURSTACKI[I)) ¢ RP+1{}

ACTIVE [RECURSTACK[I)]le FALSE; DONE [RECURSTACK({I}) t+ TRUE)
FUR J ¢ STACKMARK(CI) UPTO STACKMARKII+11*"{ DO
If STACK (J) # 0 THEN

BEGIN RPeRP+1J RIGHTLIST [RP)Y oe STACK (J))
IFRP » 1020 THEN

BEGIN WRITE (</"RIGHTLIST OQVERFLOW"/>)}) DUMPITS
PRINTLIST CRINXsRIGHTLIST)YS GO TO EXIT

END 3

END

END J}

RP eo RP+1} RIGHTLIST (RPle 03
EXSRSP ¢ XJ}

END 3

PROCEDURE BUI LDLEFTLIST (¢XJ3 VALUE Xi INTEGER X3}

COMMENT THE LEFTLIST OF THE SYMBOL X IS BUILT BY SCANNING THE
SYNTAX FORPRODUCTIONS WITH LEFTPART ® X, THE LEFTMOST SYMBOL IN
THE RIGHTPART IS THEN INSPECTED: IF It1S noNBASIC AND NOT MARKED

DONE, ITS LEFTLIST IS BUILT FIRST, WHILE A SYMBOL IS BEING INSPECTED
IT IS MARKEO ACTIVE}

BEGIN INTEGER [sR,0OWNRSP}

ACTIVELX] ¢ TRUE}

RSP ¢ OWRSP ¢ LINX [X)e¢ RSP#1}
RECUHSTACK CRSP] ¢ Xi STACKMARK [RSPle SPe¢i)
FOR I ¢ § UPTO N DO
IF REF [1,0] 3 X THEN

BEGIN IF OWNRSP <« RSP THEN SAVELEFTSYMBOLS COWNRSP)}
R ¢& REF(I»1)3 PUTINTOSTACK (R)}
If R $ LT THEN

BEGIN IF DONE [RJ THEN COPYLEFTSYMBOLS CR) ELSE
IF ACTIVEIR) THEN RESET CLINX (R)) ELSE
BUILDLEFTLIST (R)}J

END

END 3

END 3

PROCEDURE BUILDRIGHTLISTC(X)} VALUE X3 INTEGER X}
COMVENT ANALOG TO "BUILOLEFTLIST";
BEGIN INTEGER I»RsONNRSP3 LABEL QQ}

ACTIVE [(X) ¢ TRUE:
RSP ¢ OWNRSP ¢ RINX [X)e RSP*+1}

RECUKSTACK (RSPJe¢ Xi SJACKMARK [RSPJe¢ SP+1)
FOR I «1 UPT3 N DO
If REF (1,0l®X THEN

BEGIN IF OWNRSP «¢ RSP THEN SAVERIGHTSYMBOLS C(OWNRSP)J}
FOR R ¢ 2,358,5 00 If REF (1,RI®0 THEN GO TO QQ}

QQt R ¢ REF (IsR=3]1} PUTINITOSTACK (R))
If R SLT THEN

BEGINIF DONE CR) THEN COPYRIGHTSYMBOLS(R)ELSE

IF ACTIVE (R) THEN RESET CRINX[{RIIELSE
BUILORIGHTLIST (R)J

END

END

END J
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SP ¢ RSP ¢ |P ¢ 03}
FORI¢ { UPTU LT D0 DUNECI) ¢ FALSE:
FOR 1¢1UPTO LT DO IF NOT DONE (1!) THEN
BEGIN SP ¢ RSP 0}

FOR J ¢« {UPTO MDO INSTACK LJ) ¢ 03

BUILOLEFTLIST (I) SAVELEFTSYMBOLS ¢0)}
| END 3}

WRITE ((PAGE})} WRITE (<X20s"wen LEFTMOST SYMBOLS w##%%/3)}
PRINTLIST CLINX, LEFTLIST))

| SP ¢ RSP ¢ HP ¢ 03)
FOR 1¢ 1 UPTO LT 00 OONECLI) e FALSE}
FOR I ¢ 1 UPTO LT DQ IF NOT OONE (l] THEN

| BEGIN SP e RSP ¢ 0:
FOR J ¢ 1 UPTO M 00 INSTACK [J] « 0}

BUILDRIGHTLIST (1); SAVERIGHTSYMBOLS 0)’
END J

| WITE €{3))) WRITE (€X20s"sw® RIGHTMOST SYMBOLS *#a%/3>)}
PRINTLIST (RINX, RIGHTLIST)}

END BLOCK Ci}

BEGIN COMVENT BLOCK C2, BUILD PRECEDENCE RELATIONS:
INTEGER Ja2KsPsQsRoL2T}

LABEL. NEXTPRODUCTIONI
PROCEDURE ENTER (X»Y»S)} VALUE XaY»S$3 INTEGER X»Y2S$

COMMENT ENTER THE RELATION § INTO POSITION ([XsY)y CHECK FOR DOUBLE=
OCCUPATION OF THIS POSITION:
BEGI N T €H(XsY)3 If T# NULL ANDT#S THEN

BEGIN ERRORFLAG t TRUE}

WRI TE ( <"PRECEDENCE VIOLATED BY "»2A{s"™ FOR PAIR", 214,
" BY PRODUCTION",I4%s Tr» Ss» Xo Ys J)J

END J

HCX2Y)e St

END J

WRITE C(CPAGE))S

FOR K ¢1UPTO M DO

FOR J ¢ 1 UPTD M DO H[KsJ) ¢ NULL:
FOR J¢ 1 UPTO N DO

BEGIN FUR K & 2»3,4,5 00 IF REF [JsK) # 0 THEN
BEGIN P ¢ REP [J,K*113 Q ¢ REF [JsK)}

ENTER (P»QsEQ)}
IfP S LT THEN

BEGIN FORRe¢RINXLP)» R+1 WHILE RIGHTLIST [R)# 0 DO
ENTER (RIGHTLIST(R)»Qs»GR)S

If Qs LT THEN

FORLeLINXCQ)aLey WHILE LEPTLIST [LY # 0 00
BEGIN ENTER (Ps LEFTLIST tL)» LS)!

FOR R¢RINX{P)sR+§{ WHILE RIGHTLIST [RY ¥ 0 DO
ENTER CRIGHTLISTIRILLEFTLISTIL)» GR)

END

END

ELSE IF € SLT THEN

FUR LeLINXI[Q)oL¢t WHILE LEFTLIST LLY # 0 00
ENTER (Ps LEFTLISTCILI»LS))

END
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ELSE GO TO NEXTPROOUCTIONS

NEXTPROOUCTIONS® END J ;
WITE (</X3,3913/»s FOR J ¢ 1 UPTO M 00 J);
FOR K €¢1 UPTO M DO

WRITE (<13239(X2,A1)>» Ks FOR J ¢ 1 UPTO M DO HIK»J)))}
END BLOCK €2 J

END BLOCK 81}

IF ERRORFLAG THEN GO TU EXIT;
WRITE (</ “SYNTAX ISA PRECEDENCE GRAMVAR'"/>):

BEGIN COMMENT BLOCK B2, BUILD F AN0O G PRECEDENCE FUNCTIONS1
INTEGERI, Js» Ks Ki» Ns» FMIN» GMIN» T3

PROCEDURE THRU (I»JsX)} VALUE 12JsX} INTEGER 1sJeX}
BEGIN WHITE (</"NO PRIORITY FUNCTIONS EXIST "»316>s lsoJsX)}

GO TO EXIT

END 3

PROCEDURE FIXUPCOL C(L»oJs Xd} VALUE L»JsX3 INTEGER L#2J2X} FORWARD;
PROCEDURE FIXUPROWCIosX)3 VALUEI»L»X3 INTEGER 1sLaX}

BEGIN INTEGER JFLI)eG[L])*X)

IF KY #8 K THEN

BEGIN IF H{I1,Kls E@ ANO FL1) #G[K) THEN THRU (€l1»,K»0) ELSE
IF H{l,K)me LS ANDFILI) 2GCK] THEN THRU (1»K»0)

END J

FOR J ¢Ki STEP=1 UNTIL 1 00

IF HEI»Jd}= EQ ANO FULI) #G{J) THEN FIXUPCOL CI»J»0) ELSE
If HEI»J] = LS AND FCI) 2 GCJ) THEN FIXUPCOLCI»Jsl)}

END 3

PROCEDURE f IXUPCOL CL» JoX33 VALUE L» JsX3 INTEGER Lo Ja X}
BEGIN INTEGER I3GCJ] ¢ FLL) + XJ

IF Ki# K THEN

BEGIN IF H(K,J) = EQ AND F{K)} #GCJ) THEN THRU(K:2J21) ELSE

END) IF HIKy»J) » GR ANO F(CKJ] € GCJJ THEN THRU (KsdJei)
FOR IeK STEP *§ UNTIL 1 DO

IF H{IsJd) = EQ AND FU1) #GCJI THEN FIXUPROWCI»JsO0)ELSE
IF HEIsJd) ® GR AND F(I) SGCJ) THEN FIXUPROWCI»Jal)}

END J

Kilt 03

FOR K 1 UPTO M DO

BEGIN FMN ei}

FOR J ¢ § UPTO K§ 00-
IF HCKsJ) = EQ AND FMN <€ G{J)} THEN FMIN ¢ G{J] ELSE |,
IF HEK»JI® GR AND FMINS GEJ) THEN FMIN t GLJ)*1)

FCK) ¢ FMN;
FOR J ¢K3§ STEP -1 UNTIL 1 DO

IF HEK»J] ® EQ AND FMIN » GCJ) THEN FIXUPCOL (KsJs0) ELSE
IF HLK»sJ] 3 LS AND FMIN 2GCJ)] THEN FIXUPCOL (Kodali)

Ki ¢ Ki+1}3 GMIN ¢ 1)
FOR 1¢1UPTO K 00

IF H{I,Ki= EQ ANO FCI)» GMIN THEN GMN ¢F{1) ELSE
IF HCI»K)s® LS ANDFLIJ2 GMIN THEN GM N eF(l11¢1}

GLK) ¢ GMINJ

FORT® K STEP ®=§UNTIL IDO
IF HCI»,K] = EQ ANO FLI) <GMIN THEN FIXUPROWCI»K»O0) ELSE:
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IF HLI,K} = GR AND FIL[I] € GMIN THEN FIXUPROWC(CI»Ks1)}
END K 3}

END BLOCK B2}

WRITE CCPAGE])S

BEGIN COMMENT BLOCK B3. BU LD TABLES Of PRODUCTION REFERENCES]

INTEGER ladsKa2l}

INTEGER ARRAY MTB (03MJ3 COMMENT MASTER TABLE J

INTEGER ARRAY PRTB [Ott 02211 COMMENT PRODUCTION TABLE #
LL ¢ 03

FOR IT¢1UPTOM DO

BEGIN MTB8(llelL+1}
FUR J «1UPTO N DO

IF REF[J21) SI THEN

BEGIN FOR K ¢ 22354,5 DO

IF REF[JsK) # 0 THEN
BEGIN 1. ¢ L+¢1J PRTBIL) ¢ REF(J»K)
END3

L ¢ L+1} PRTBIL) ¢ =J3 | ¢ L+i} PRTBIL) ¢ REF (J»01)}
END 3

IL ¢L+1IPRTBLLI® O
END J

COMVENT PRINT AND PUNCH THE RESUTS?

SYMBOLTABLE» PRECEDENCE FUNCTIONS» SYNTAX REFERENCE TABLES)

WRITE C(<X82"NOs",XS,"SYMBOL"»X8s "FW, XS," G"sX4,"MTB"/>))
FOR ITe¢1 UPTO M DO

BEGIN SETTEXTCI»SYTBLI)»F[11sGCI)s» MTBLI)s WRITEBUFFERLO01)}
OUTPUT

END J

WRITE (</"PRODUCTION TABLES"™/>)}

FOR Ie 0 STEP 10 UNTIL & DO
WRITE (€192X221016>, FORI ¢ 0 STEP 10 UNTIL I. DO

(I» FOR J ¢ 1 UPTO I+9 DO PRTBCJ11)}

WRITE ((/"SYNTAX VERSION "sAS5>,TIME €0))}
WRITE (PCHs €X4,"FTe¢"213,%"3 LT ¢",18,"3 LP "p80," 3">»,T4+1,MsL))
FOR Ie 1 STEP 6 UNTIL M DO

BEGIN PCHTX (SYTB[I1)» WRITEBUFFERCO}» IF M=126 THEN 6 ELSE M=l%1))}
WRITE (PCHs10,WRITEBUFFERLC*1)S CLEAR CHWRITEBUFFERLO0))»9)

END}

WRITE (PCHs €X4,12(14,"s")>s FOR I1¢ 1 UPTOM OO FCI1)}
WRITE (PCHs <X&,12(18,"2")>, FORT¢ 1 UPTO M DO G[11)}
WRITE (PCH «X4,12C14,"2»")> FOR 1 «1 UPTOM DO MTBLI1))}
WRITE (PCHr<X8,32C14,"5")>, FOR 1 ¢1UPTO L DOPRTBL11)}

END BLOCK B83

END BLOCK A

EXIT:

END,
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Appendix IT

The following is a listing cf the EULER processing system programa oo

Extended AILGOL for the Burroughs B55C0 computer. The organization of

this program is summarized a:; follows:

EULER Translator

Declarations including the procedure INSYMBOL and the code~gererating

procedures Pl, P2, P3, FIXUP,

Initialization of tables with data produced by the syntex-prcce-sor,

The parsing algorithm,

The interpretation rules (their labels correspord to thelr numbe -ing

in B)

| EULER Interpreter
Declarations including the procedures DUMPOUT (used for outputting

results) and FREE (used to recover no longer used storage space whan

memory space becomes scarce)

The interpretation rules for the individual instructions

The source program is punched on cards (col. 1-72) in free field

format. Blank spaces are ignored, but may not occur within identifiers or

word-delimiters.

An 1dentifier 1s any sequence of letters and digits (starting with

a letter), which is not a word-delimiter. Only the first 8 characters

are significant; the remaining characters are ignored.
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| Appendix II (continued)

| A word-delimiter is a sequence of letters corresponding to a single

EULER symbol, which 1n the reference-language 1s expressed by the same

sequence of underlined or boldface letters. E.g., begin - BEGIN,

end » END etc. Note: ¢ LQ, ’> - RQ, ,, — TEN, Q — UNDEFINED.

A symbol is any BCL-character* (or sequence of up to 5 XL-characters)

enclosed between characters '’. E.g. "*"

An example of an EULER program 1s listed at the end of this

Appendix.

»*

cf. Burroughs B5500 Extended ALGOL Reference Manual.
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BEGIN COMVENT EULER 1V SYSTEM MARCH 1965}
INTEGER FT» LT} COMMENT INDEX OF FIRST AND LAST BASIC SYMBOL}

I NTEGER LP} COMVENT LENGTH OF PRODUCTION TABLE)
ARRAY PKOGKAM COI1102211

DEFINE AFIELD = (3919)#, BFIELDO =(9130)#, C FI EL D=([118]#}
LABEL EXIT}

FT ¢ 45; LT 1193 LP ¢ 465} COMVENT DATA GENERATED BY SY®PR.}

BEGIN COMMENT E UL E R IV TRANSLATOR NeWIRTH 1}
DEFINE MARK = 119 #, IDSYM = 63 #» REFSYM = 590 #5, LABSYM = (2 #}

DEFINE VALSYM= S6 #2, CALLSYM = 55 #£, UNDEF 3 0 #» NEWSYM = (0 #)
DEFINE UNARYMINUS ® 116 #s NUMSYM = 68 #s BOOLSYM =® 64 #3

DEFINE LISTSYM = 1028, SYMSYM = 113 #» FORSYM = G1 #3}
DEFINE NAME = VCO #J

INTEGER 1oJsoKeMsNsRsTsoT1oSCALES BOOLEAN ERRORFLAGS
INTEGER BN» ON} COMMENT BLOCK- AND ORDER=NUMBER}

I NTEGER NP} COMMENT NAME LIST POINTER 3}
INTEGER MP) COMVENT MARK- POINTER Of NAME=LIST)

I NTEGER PRP} COMVENT PROGRAM POI NTER;
INTEGER WC» CC3 COMMENT INPUT POINTERS;
ALPHA ARRAY READBUFFER»s» WRITEBUFFER(O8141)}
ALPHA ARRAY SYIB [0sLT1} COMMENT TABLE QF BASIC SYMBOLS)
I NTEGER ARRAY F, G LOILT)S COMMENT PRIORITY FUNCTIONS 3
INTEGER ARRAY MIB (O0$LT)3 COMMENT SYNTAX MASTER TABLE #

INTEGER ARRAY PRTB (0tLPJ)} COMMENT PRODUCTION TABLE}
INTEGER ARRAY § [0842713 COMMENT STACK 3
REAL. ARRAY V (033271)} COMMENT VALUE STACK }
ALPHA ARRAY NL1 (03863) COMMENT NAME LISTJ

INTEGER ARRAY NL2», NL3, NL4 (0363)}
LABEL. AOsAl1»A2sA35Al8,A5,A6,AT»AB»A9}

LABEL LO Li131, NAMEFOUND»
L12L2,L3,LA8,L5,L6,L7s0L08,L9,L20,0L8150L12,L03,L38,L15,L16,0L17,0L18,L19,»
L20,L21,0L22,0L23,L28,0L.255L260L27»0L.28,0L29,L30,L312L32,L33,L34,

L35,L36,L37,L38,0L39,L40,L81,5L82,L83,L84,L85,0L86,0L47,L48,0L49,L50,L51,
LS2,L53sL58,0L55,L56,L575L58s0L59,L60,L61,L625L63,L68,L65,L66,L67,0L68)
L69sLT0sLT71oL720LT735L78sL7SsLT6sLTTLT78,L79»..80,L.81,1.82,0L83,01.84,0L83,
LB6,LBT,LB88,L89,L90,L91,L92,L93,L04,0L958,L962L97,L98,L99,L100,L101"»
L102,L103,L1042L105,L106,L107,L108,L109,0L110,L811,0L2122L113,L1314)
L115,L116,0L817, 118,0119,1120}

SW TCH BRANCH ¢ |
L12L2sL3sL4sLS5oL6sL7oL850L9,0L10,L88,L82,L13,0L08,0L15,L8600L17»0L18,L19,
L20,0L21,L22,0L235L24,1.255L26,0L27o0L28,0L29,01.3050L31,L32,L33,L34,
L3S»L36sL3750L38,0L39,L480,L01,L82,L83,0L04,L8550L06,L47,L48,0L09,L50,L51%>
L52sL53s0L582L55sL56sL57T2L5821L592L60s0L61,0L62,L632L68,L655L66,L672168,
L69aL70sLT1oL72,LT735L708s0L75sL76sLTT7L78,L79>L80,1L81,0L82,L83,L84,L85,
L86sLB7,L88,L89,1.90,L91,sL92,L932L98,0L95,L96,L975L98,L99,L100,L101»
L102,L103,L108,L105,L106,0L107,1108,L109,L110,L0820L01250L043,L1184,
L115oL316-0L13720 118,L1195L120

STREAM PROCEQURE ZERO (DJJ
BEGIN Dle D3 0S ¢ 8 LIT "0"}
END J

STREAM PROCEDURE CLEAR (023

BEGI N DIe¢D30Se 8 LIT "™ "3 SI ¢ D3 DS eo 14 WDS
END 3
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STREAM PROCEDURE MOVE (S»,0)3
BEGIN SI « SJ Ol&D30Se WDS
END }

BOOLEAN STREAM PROCEDURE EQUAL (X»Y)}
BEGIN TALLY ¢ 1; SI ¢ X3 DI ¢Y3 IF 8SC 8s DC THEN EQUAL ¢ TALLY
END J

I NTEGER PROCEDURE 1 NSYMBOL;

COMVENT "INSYMBOL"™ READS THE NEXT EULER=SYMBOL FROM INPUT.4
STRINGS Of LETTERS aND DIGITS ARE RECOGNIZED AS IDENTIFIERS,IF

THEY ARE NUT EQUAL TO AN EULER=IVWORD=~DELIMITER,
A CHARACTER=SEQUENCE ENCLOSED IN "™ IS RECOGNIZED AS A SYMBOL:
BEGIN INTEGER 1} LABEL AsB»CsD,E)}

STREAM PROCEDURE TRCH (S2M»DsN)} VALUE MpN}

BEGIN SI ¢ SJ] gS ¢SI+M} DI e DJ DI ¢ DI+NJ OS ¢ CHR
END J

BOOLEAN STREAM PROCEOURE BLANK (S»NJ3J} VALUE NJ

BEGIN TALLY ¢13SI ¢ SJ Sl ¢SI+NJIFSC  " " THEN BLANK ¢ TALLY
END J

STREAM PROCEDURE BLANKQUT (0);
BEGIN Dl¢D} DS ¢ 8 LIT "";

END 3

BOOLEAN STREAM PROCEDURE QUOTE (S»2N)3 VALUE NI
BEGIN TALLY ¢ 1; SI €¢s)SI¢ SI4N3IF SC = """ THEN QUOTE ¢ TALLY
END J

BOOLEAN STREAM PROCEDURE LETTER (S#N)3 VALUE NJ

BEGIN TALLY ¢ $3 SJ] ¢ SJ SI «SI+N}
IF SC 8 ALPHA THEN |

BEGIN IF SC € “0” THEN LETTER ¢ TALLY END

END J

BOOLEAN STREAM PROCEDURE LETTERORDIGIT (S»N)} VALUE NI
BEGIN TALLY ¢ 1: SI ¢s)jSIeSI+N}

IF SC ® ALPHA THEN LETTERORDIGIT ¢ TALLY

END J

STREAM PROCEOURE EDIT (N» S$» 0): VALUE NIJ.
BEGIN SI ¢ LOC NJ 01 «03 OS ¢ 3 OEC]

SIS) 01 ¢ 01 +133DSe 10 NDS

END J

PROCEDURE ADVANCE;

COMVENT ADVANCES THE INPUT POINTER BY { CHARACTER POSITION)
BEGIN IF CC = 7 THEN

BEGIN IF WC ® 8 THEN
- BEGIN READ (CCAROFIL»10sREADBUFFERI*JILEXIT])

EOIT (PRP+1s READBUFFER[O0)» WRITEBUFFER(O)))
WRITE C(PRINFIL215» WRITEBUFFERI[*))} WC ¢ 0

END ELSE WC ¢ W(C+i}
cc ¢ 0}

END

ELSE CC ¢ CC+1}
END ADVANCE J

BLANKOUT (NAME);
A, IF BLANK (READBUFFER LWC)s CC THEN

BEGIN ADVANCE} GO TO A END J

IF LETTER (READBUFFER CWC)» CC) THEN
BEGIN FOR I¢ 0 STEP 1 UNTIL 7 00
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BEGIN TRCH (READBUFFER (WCls CC, NAME, 1); AOVANCEJ
If NOT LETTERORDIGIT (READBUFFER [WC])» CC) THEN GO TO C

END J

B% AOVANCEJ]

IF LETTERORDIGIT (READBUFFER CWC)» CC THEN GO TO BJ
Cs

END ELSE

IF QUOTE (READBUFFER (WCJ)s CC) THEN
BEGIN AOVANCE]J] ZERO (NAME)} NAME ¢ "™ "5

El TRCH (READBUFFERIWNC]Is CC, 1s7; ADVANCE;
IF I #nn"® THEN

BEGIN NAME ¢ [,{8286) & NAME (18824124)3 GO TO E END
ELSE I¢ SYMMYM GO TO 0

END ELSE

BEGIN TRCH (REAOBUFFER (WCls CC, NAME» 0)3 ADVANCE
END U

FOR I¢ FT STEP 1 UNTIL LT DO

II; EQUAL C(SYTBLI)» NAME) THEN BEGIN ZEROCNAME)Y} GO TO 0 END
[ ¢« IDSYM)

D8 INSYMBUL ¢

END INSYMBOL J

PROCEDURE P1(X)} VALUE X} [INTEGER X3}

BEGIN PRP ¢ PRP+13 PROGRAM[PRP] ¢ X

END J

PROCEDURE P2C(X»Y)} VALUE XsYJ INTEGER X3REALVJ
BEGIN PRP ¢PRP+1J PROGRAMLPRP] ¢ X3 PROGRAMIPRPILBFIELD ¢ YJ
END J

PROCEDURE P3C(XsY24)} VALUE X»Y¥s2Z3 INTEGER XsYs 23
BEGIN PHP ¢PRP+13 PROGRAMCPRP) ¢ XI PROGRAMCPRP) BFIELD ¢ vy

PROGRAMIPRP)CFIELD ¢ 2
END J

PROCEDURE FIXUP(I»X)3 VALUE [sX3 [INTEGER 1X3}
PROGRAMLIIBFIELD ¢ X3

PROCEOURE ERROR (N)JVALUE NI INTEGER NJ
BEGIN SWTCH FORMAT ERR e

("UNDECLARED IDENTIFIER"),
("NUMBER T0U LARGE"),
("LABEL IS VDEFINEDTWICE™),

("A LABEL IS NOT DECLARED"),
("LABEL DECLARED BUT NOT DEFINED?),
("PRUGRAM SYNTACTICALLY INCORRECT");
ERRORFLAG ¢ TRUE;

WRITE C([NQOJs ERREN)I} WRITE (<€X30,"COL"213>» NCX8 ¢ CC +1)
END ERROR J

PROCEDURE PRUGRAMOUMP}

BEGIN REAL TJ INTEGER 13 LABEL LJ
STREAM PROCEDURE NUM (N»D)} VALUE NJ

BEGI N Ol ¢ DJ SI «LOC NJ OS 3 OEC
END u

READ (<A4>» T) CL)} If T # "DUMP" THEN GO TO L}
WRITEC<//"PROGRAM DUMPY>)}
FORI¢ 1 STEP 1 UNTIL PRP 00

BEGIN CLEAR (WNRITEBUFFERLO011)}
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| T ¢ PROGRAMCIYS NUM (I» WRITEBUFFER[O1)S
| MOVE (SYTB (T,AFIELD]» WRITEBUFFERC[1]))}

IF TeBFIELD # 0 THEN NUM(T.BFIELDs WRITEBUFFER[2]))}
IF ToCFIELD # 0 THEN NUM (T.CFIELDs WRITEBUFFERL31)}
IF T«AFIELD 3 NUMSYM THEN

BEGINI ¢I+3) WRITE ([NOl»<X14,E16,8>» PROGRAMLI)) END J
WRITE (PRINFIL»s150 WRITEBUFFERCL®])
END J

LIEND PROGRAMDUMP J

COMMENT INITIALISE THE SYMBOLTABLEs THE PRIORITY FUNCTIONS AN0O THE
PRODUCTI ON TABLES WW TH DATA GENERATED BY THE SYNTAX-PROCESSORJ

FILL SYTBE*)INWITH On

"PROGRAM "»"BLUCK "y"BLOKHEAD"»"BLOKBODY"»"LABDEF "y"STAT Ws
"STAT- "y"EXPR ","EXPR= "o"IFCLAUSE">"TRUEPART",»"CATENA "»

"DISJ "y,"DISJUHEAD"»"CONJ "s"CONJ= wo, "CONJHEADM™» "NEGATION™»
"RELATION™» "CHOICE ","CHQICE= ","SUM ®s"SUMe "s"TERM "

| "TERM=| ","FACTOR ","FACTORe= "#"PRIMARY "»"PROCDEF"»"PROCHEAD"™»
“LIST* "s"LISTHEAD","REFERENC",»"NUMBER ","REAL® "y"INTEGER#",»

“INTEGER-“#“DIGIT ","LOGVAL ","VAR ","/ARw "s"VARDECL %»
"FORDECL "»"_LABDECL",»"0 "yn ",n2 ", nq ",
“ 4 n,ng n,"g n,ny n,ng ",nQ ”,

", now n,n} n,m n,ng ",ONEW ",
"FORMAL "s"LABEL "y"IOENT W,%[ wy") ","BEGIN "s

"END a Il | ",") "ya"Q ","RQ ","G0TQ "
"OUT Pre ","IF ">" THEN ", "ELSE "yng "

"OR ","AND "s"NOT ","s n,n uF BX ",.
ns WF ","> "as"MIN wy, "MAX Bony ",
Ne "yny n,ny nong w,*M00 nN," ”,
"ABS "y"LENGTH "#"INTEGER "»"REAL “4“LOGICAL "s "LIST ws

“TAIL "s"IN ","]ISB ","ISN ","ISR "omIsSL Ws
"ISLI "enISY "a"ISP WF A £11) ","SYMBOL* "so "UNDEF INE",
"TEN nyng ", "TRUE Wa"FALSE w,ng “J

FILL FC(*) WITH 00 |
1» 40 190 1, 20 i, 28 30) 4s 1» 40) 4,
58 50 50 6, 60 60 Ts 7» 8, 9» 10, 11,

11» 12» 12» 13, 13» 3» $3, 3, 130 $3,» 13» 15,

17» 190 130 130 150 10 10 1» 190 19» 19» 190
190 319» 19» 19, 19» 190 190 16» 210 19» 13» 148
140 140 160 3, 16, 218 58 190 13» 19» 13» 2,
48 48 30 19, 19: 120 190 190 19%» 80 8s 8,
80 80 80 90 90 10, 10, 118 112 12»

18; 13» 13» 13» 13,
13, 13, 13, 12, 12; 120 16, 116, 13» 13» 5)

FILL GC#) WITH 0013, 13» |
10 50 6, 60 3, 10 20 30 40 50 1) -¥

50 60 60 60 Tr Tr 7s 8, 90 13» 13» 10,
118 1%» $2» 128 138 138 1333 18» 130 18» $8» 160
178 17» 13» 13, 114, 19» 3, 19» 180 18,
18» 180 18» 180 180 180 30 15, 1» 160 130 200
40 200 140 15, 30 60 1» 148 3, 13 3 S»

5 13» Ss 3, 3, 40) 50 60 7» 7» Te 7»
7» 70 7» 8, 80 10» 10, 11» 110 110 $1» 12,

138 $3» 13» 13, 130 138 13, 13, 13s, 13» 13» 13,
130 138 13» 13, 113» 130 130 160 130 130 43
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FILL MTBC«) WITH O»
1» 2» 5» 16, 258 298 30, 338 390 42, 470 48,

558 98s 62: 68, Ti, 175, 81, 8a, 111» 122, 125» 136,
1398 $985 1610 168e¢ 1710 178,183, 186, 198,201,204» 2160
2238 2298 232» 235, 245, 256, 257, 258, 289s 2620 2650 268,
2712274,2772» 280, 28352860 289, 2908 2915292» 29030 297,
3018 305, 3098 315s 320, 321, 324, 325, 328,329» 332» 3330
3370 3410 3428 347, 348, 3498350, 351» 3528 3568 3570 358,
3590 36053631» 362» 3638 3648 368, 372» 3730 3745375» 3740.
3770 3815385, 389, 3930 3978 40%, 405, 4080 412» 4160 420,
424, 82890832» 4360 440, 4438 4461 454, 4558 8582461)

FILL PRTBI{+*) WITH 0,

0»=103, 98 0, 42, 57,=115, 38 a4, S5T7»*116» 3,
©1177» 40 0» 68 ST»r=118>» 8, 6» 6T»,=119» 20 0,

7»=110, 7» 0, 0r=112» 68 0, 770°1010 11»*111,
7» 0,°109» 80 0» 11» 9,104, 90 0» 00 78,

13» 990 $12,=108, 9s 0,=100, $2, 0» 138 -970 138
0s» 79» *962» 140 -988 138 0, 950 150 Or» 16» #93,

162 0» 80» =92, 178 “940 168 “0s =90, 180 0» =83,
19, 82, 20, =84, 19, 83, 200 -850 198 84,20, -860

190 63s 20» =87, 19, 868 20, =88, 19» 870 200 =89,
19, 0, 88, 22, =80, 21, 89, 92290 -810 21» =82, 20,
Os =795 21» 0, 90, 24, =76, 23, 010 24» =77s 238

=78, 220 08 *=73, 238 08 92, 26» 68, 258 930 26»

w89y 25,» 9040 26, «70, 25, 950 26, =T 1s 25, *7 2» 248
Or *67» 25» 0, 96, 28, =65, 27, =66s 269 0 8 =64,

27» 08 =46s 280 08 438 ST» -350 300 88 710 *3T»
298 08 “448 28, 08 8» 550 =31, 328 80 690 =33,

310 69s -340 310 08 ' 430 28, 0r=41s 2380 0» =25,
340 315» 360 ®26, 348 1150 $16, 36, -270 340 0» 560

360 -230 350 *24, 350 0», 38, -210 370 "220 360 Os
«20» 370 0» -400 280 08 -380 28s 310 *®39» 280 740

9,=105, 90 0, 640 80 635, “8, A1y, 56, =6» 418
“7s 400 08 0» 0, 0, "80, 138, 08 *11s 380 0»

"120 38s 0» =13, 38, 0, =~ia4, 380 0» *1%» 380 0,
160 38s 08 =iT7, 38, 0» -180 38» 0» =19» 380 0 8

08 08 0» 0, 400 =30, 330 0 8 630 ‘18 420 08
638 '20 438 0, 63, =3, 440 0s =8,. 410 50,=313,
50 08 80 650 =4&48, 28, 0s 0s=118» 3 0 0» 0,

«32, 32,» 0» 0, =36» 300 0, 0, 28,%106, 90 0,

9»,=107>» 9» 0, 0» 80 T6,=102, 10, 0» 0» 0,
08 08 Or 19, =91%, 180 0» 0» 08 0» 0» 0,
0» 0» Or» 340 *=784, 230 O0.. 240 -750 238 0s 0,
0» 08 Or 0, 280 "580 28» 08 400 9590 28» 0,

280 -600 280, 280 =61» 28, 08 280 -620 28» 0,
280 =63, 280 On 280 =45, 28, 0s -490 280 08 40,
500 280 0s 408 *=51s 280 0» 400 *52» 280 08 408
2530 280 0» 400 =54, 280 0, 400 “558 280 0» 408

"560 28» 0» 400 37,» 280 0, =42, 230 08 =47» 28,
0» 36» -280 34, 1168 36» %29, 348 0,0, =8, 39
0» *9» 390 0» 2 119,120, 1» 0)

NC ¢ 8: CC ¢ 7: CLEAR (WNRITEBUFFERCLO0})3 CLEAR C(READBUFFERI[O01})J
S(O) « MARK} ERRORF|AG ¢ FALSE:
Je J ¢ BN ¢ ON ¢ NP ¢ PRP ¢0}
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| COMMENT ALGORITHM FOR SYNTACTIC ANALYSIS!
COMPARE THE PRIQRITIESOF THE SYMBOL R AN0 OF THE

SYMBOL UN TOP OF THE STACK Ss IF SCJ)e,seSLI] CONSTITUTE A RIGHTe
PART OF APRODUCTION, THEN REPLACETHI SSEQUENCE BY THE
CORRESPONDING LEFT- PART AND BRANCHTO THE INTERPRETATION- RULE

BELONGI NG TO THE PERFORMED PRODUCTI ON;
AOS R ¢ INSYMBOLSJ

Als IF FLSUI1]> GIR) THEN GO TO A2}
IF R# MARK THEN GO TO A9}

| I ¢ J ¢ 1+13 SLI) « R} MOVE (NAMEs VIL1))} GO TO AQ
A21 IF FCSEJ=1)] = G[S(J)) THEN BEGIN J] « J=13 GO TO A2 END

M ¢ MTBIS(JI1})

| Ads IF PRTBIM]) = 0 THEN BEGIN ERROR(5)} GO TO EXIT END}| N¢ JJ

Ads N¢ N+i}

IF PRTBIM] € 0 THEN GO TO A8}

| IF NS I THEN GO TO AT}AS M,© M#1)

IF PRTBIM} 2 0 THEN GO TO AS}
Ab M ¢ M#2} GO TO A3}

| At IF PKTBIM) # SCNJ THEN GO TO AS}
| Me M*1J GO TO A43

AB IF N4 I THEN GO TO A61

GO TO BRANCH[=PRTBI[M)1} -

LO: SCI] ¢ PRTBIM+1])31 ¢ J} GO TO All’

COMMENT THE FOLLOWING ARE THE INTERPRETATION=RULES)
Lis

| L213 PI1C(SLJ))} NP ¢ Np#+1} MOVE CVUIIANLLICNPI)} ZERO (VII)
NL2CNP) ¢ BN] NL3INP] ¢ ON ¢ON+13 NLAINP) ¢ SLJI} GO TO LOJ

L313 NP ¢ NP+13 MOVE CVIIJsNLLIENPI)} ZERO ¢VL11))
| NL2INP) ¢ BNI NL3INP] ¢ NLAINP) ¢ UNOEF] GO TO LO}
| L4s FOR T ¢ NP STEP =i UNTIL § DO

IF EQUAL (NL1LT), VEI)) THEN GO TO NAMEFQUNDJ

| ERROR €0)3 GO TO (0)
| NAMEF OUND $
| IF NL4CT) ® NEWSYM THEN

PICREFSYMy NL3CTI» NL2(T)) ELSE
IF NL4LT) = LABSYM THEN

PICLABSYM, NL3LT)» NL2[LT)) ELSE
If NL4LT)8 FORSYM THEN

BEGIN P3CREFSYMs NL3CTI» NL2ITI)S PICVALSYM) END ELSE

BEGIN P3CLABSYM» NL3ICLTIs NL2CTI)3 NLILT) ¢ PRP END J
GO TO LO}

LS? P1¢(S(I})} GO TO L033
L6s PIC(VALSYM)} GO TO LO}

LiO}

Los VEJ)¢ 03 GO TO LOJ

Lig

L683 ViJl ¢ 13 GO TO L03
Li2s VIJ) ¢23 GO TO LOJ

L13t V(J) ¢ 33 GO TO (0
L141 VEJ) ¢ 43 GO TO LO
L153 VQ) ¢ 53 GO TO (0
Liét VOI € 61 GU TO LO3
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L178 V(IJY ¢ 73 GO TO LO}
Lig: VIJ]) e 83 GU TO LO)
L199 VIJ) ¢ 93 GU TO LO}
L208 SCALE ¢13 GO TO LO}

L213 VIJ) ¢ VJ) x 10 +V[I]1} SCALE ¢ SCALE+!)
IF SCALE » 11 THEN ERROR (€1)} GO TO L0}

L231 VIJ) ¢ VII) Xx JO * (SCALE) + V{JI}G60 TO LO}
L268 VIJ] ¢ V(J) x 10 eo VIII} GO TO LOS
L278 VIJ] e V(IJ) x L,1*V[I]}} GO TO LO}
L283 VIJ) ¢ 10 ~~ VII] GO TO LOS
L298 VIJ) ¢ +8 * VII13 GO TO LO}

L31t VIJ] eVIJI+13G O TO LOJ

L32t VIJ] ¢ 03 GU TO LOI
L338 P2C(SLI)» VIJI*Y)} GD TO LOI

L3g4s P2¢S{I)» VIVI)} GO TO LOI

L36t BN ¢ BN+13 UNee 03 P2(SCLJ)s UNDEF) vIJle PRP)
"NP & NP+1} ZERO (NLIUNP1)J NL2INP) ¢« MP3 MP ¢ NP} GO TO LOS

L3I7IPLICSEI3)3 FIXUP (VIJ]» PRP+1)J NP.¢ MP=13 MP ¢ NL2[(MPI}
BN ¢ BN"1} GO TO L|L0}

L381 PI(VALSYM)} GO TO LO,
L399: PLICCALLSYM)} GO TO LO;
L40s P2¢(BOOLSYMsVIIIY}I G O TO LO
Lait PICNUMSYM)3 PHP ¢ PRP+1) PROGRAMIPRP) ¢ VIII} GO TO LO)
L423 P2CSE{I)» VIII) GO TO LOS
L758 PL1CUNARYMINUS)S GO TO LOJ

L928 196: L10%13L1023 P2C¢CS[I)s» UNDEF) VLJ) ¢ PRP} GO TO LOS
_L93s LOT FIXUP (VLJ])» PRP#+1)3 GO TO LO}
L104as FIXUP (V(Jls VIJ+1)+1)) FIXUPCVIJ+11,PRP+1YIGOT OLO)
L113 FOR T ¢ NP STEP =% UNTIL MP+% DO

If EQUAL (NL1(T),VIJI]) THEN
BEGIN IF NL4{T) # UNDEF THEN ERRQOR(2)}3

T1 © NL3CTIS NL3(T) ¢ PRP+1J NLACT) ¢ LABSYM} ZERO (V(LJ]))}
Lit31! IF TI # UNDEF THEN

BEGIN T ¢ PROGRAMETL1].BFIELDS FIXUP (Ti, PRP+1)}
TieT) GO TO Li1131

. END # GO TO LO}
END 3

ERROR(3)} GO TO LO:
L114% BN ¢ BN+1J UN ¢ 03 P1(S(11)}

NP eNP+33 ZERO (NLICNPIJ1J)3 NL2(NP) ¢ MP} MP ee NPJ GO TO LO}
L1§8sPICSCINIIGO TO (03
L1198 FOR T ¢ MP+1 STEP § UNTIL NP DO If NLACT) = UNDEF THEN ERROR(4)}

NP ¢MP=1} MP & NL2(MP)JP1¢S(I))} BN ¢ BN*1} GO TO LO}

L4Ss 147: L498 L508 LSts L528 LS3s L548 L558 L568 LST L558 L591 L6O}
L618 L662: L63: L918 L106% LIOTsP1(SCJY)ISGOTOLOS

L651 L681 169: L708 (718% L768 LTT: LBOY LBYs LBS 1.85: LB86s LB7Ts LBB
£89: 199: L105#P1(SCLJ+1))} GO TO LO)
L7: L22: L24% L25% L308 L351 L438 Lads Lass Lads L6at 668 L6Ts LT28
L73: L744 L788 L793 LB2% 183: L90¢ L9at Loss 193: L100 L103s L408
L109% L110% L118 L112 L315¢ L1168 L1478 L1200G O70 LOS

ADs PL(MARK)}J PROGRAMDUMP3 If ERRORFLAG THEN G60 TO EXIT
END + }
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BEGIN COMMENT E UL E R IV INIERPRETER MCKEEMAN & W RTH 3

| HEAL ARRAY Ss SI» Fs» F1 [08102233 COMMENT STACKSINTEGER Ii» 122 LVLs FORMAL COUNTS

I NTEGER &P3} COMVENT TOP=STACK POINTER)

INTEGER F Pi COMMENT FREE STORAGE SPACE POINTER;

| I NTEGER MP} COMMENT BLOCK- OR PROCEDURE- MARK POI NTER:;
I NTEGER PP} COMVENT PROGRAM POI NTER)
LABEL ADU» SUBs MUL» DIVIDE, IDIVs» REMAINDER, POWER» NEG» ABSV» |
INTEGER]ZE,» REALLs LOGICAL, MIN, MAX EQLs NEQ, LSS» LEQ, GEQ,» GTR»

| LENGTH, ISLUGICAL» JSNUMBER» ISREFERENCE, ISLABEL» ISSYMBOL»
ISLIST, ISPROCEDUREs ISUNDEFINED» LAND» LOR» LNOT, LEFTQUOTE,
RI GHTQUOTE, RIGHTPARENs» REFERENCE, PROCEDURECALL, VALUEOPERATOR,

| GOTO, NEW» FORMAL, BEGINV, ENDV, STOREs THENVs ELSEV» NUMBER, LOGVAL,
LABELL» SUBSCRIPT» SEM COLON, UNDEFINDs OUTPUT, INPUT» TAIL,
CATENATE, LISTT» SYMBOL» DONE» UNDEFINEDOPERATORS NEXT» TRANSFER;

COMMENT SI AND FI FIELD OEFINITIONS

1°4 8=17 18=27 28+=37 38e47 48*97
NUMBER TYPE VALUE
BOOLEAN TYPE VALUE
SYMBOL TYPE VALUE
UNDEFI NED TYPE
LIST TYPE LENGTH ADDRESS
REFERENCE TYPE MARK ADDRESS
LABEL TYPE MARK ADDRESS
PROCEDURE TYPE BLOCK NO MARK ADDRESS
BLOCKMARK TYPE DYNAM C BLOCK NOs STATIC ADDRESS LIST}

- DEFINE

TYPE=[134)%,

WCT=[{283101]¢%,
‘ADORESS=([383101%,

STATIC=[288101)%,
DYNAMIC=[83101)%,

BLN=a([183101%,

NSA=[188101)3%, COMMENT NEW STARTING ADDRESS FOR FREE)

UNDEF INED=0#,

NUMBERTYPE=L1%,»

SYMBOLTYPLE=Z2#,

BOOLEANTYPE=3#,
LABEL TYPE=4%,
REFERENCETYPE=®S#,

PROCEDURETYPE=GS,

LISTTYPESsST#*,
BLOCKMARK=8% }

STREAM PROCEDURE MUOVE(Fis Tis W)J
BEGIN LOCAL Ri, R23

SI © W} SI ee SI + 6}

DI« LOC R13} DI ¢ DI ++ 73 OS¢ CHRJ
DI ¢ LOC R23 DI ¢ (01 + 75 DS ¢ CHR}

SI « Fi} DI ¢ T1413
R1¢2¢DS ¢ 32 WDS))S DS ¢ R2 WDS)

ENDS
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PROCEDURE ODUMPUUT(XI» X)3 VALUE XI» X3 REAL XI, X3}
BEGIN INTEGER Ts Ii

PROCEDURE LISTUUT(X1)} VALUE X13 REAL Xi:
BEGIN COMMENT RECURSIVE LIST OUTPUT:

INTEGER I» NJ

SW TCH FORMAT LPAR ¢

AGP TIGIY AP FIAT TIA DP FIA GD FY 4 INF LD TY APIA 4.0 FY & IPI GB ¥
SW TCH FURMAT RPAR ¢

PLO FIGIS AS FIG ITD ADF EIN LD FE NS LL FY ATE TER AR FI PTY Aa k
WRITECKX9»"LIST"»110>» XI,ADDRESS)) WRITE (CNO3» LPARCLVLI]))

LVL ¢ LVL + 1; N ¢ XI ADDRESS ¢ XI WCT =}
FOR I ¢ XI+ADDRESS STEP 1 UNTIL N 00 DUMPOUT C(FICIJ)» FCI])}

LVL ¢ LVL ™ 13 NRITE (RPARCLVLI1)}

END LIST OUT:

T ¢ XI.TYPEJ

IF T ® UNDEFINED THEN WRITE(<X9, "UNDEFINED">) ELSE
If T ® NUMBERTYPE THEN

BEGIN

If X # ENTIER(X) THEN WRITE(<X9»"NUMBER",»E20,10>» X) ELSE
WRITEC<X9» "NUMBER'O 120>»s X)

END ELSE

IF T s BOOLEANTYPE THEN WRITEC<X9,"LOGICAL"» 14X1, L5>» BOOLEANCX))
ELSE

IF T = LISTTYPE THEN LISTOUT(X!) ELSE
IF T ® LABELTYPE THEN WRITEC(<€X9, "LABELO ADDRESS =", [4&,
" MARK'"O I4>s XI,ADDRESS» XI STATIC) ELSE
If Ts REFERENCETYPE THEN WRITE(SX9,"REFERENCE» ADDRESS=%,]4,
" MARK®",14>,X1ADORESS2X]ISTATIC) ELSE
If T ® PROCEDURETYPE THEN

WRITECSX9 "PROCEDURE DESCRIPTORO ADDRESS=", I4, " BNa", 14,
" MARK'"0O 14> XI.ADDRESS» XI ,BLNs XI1,STATIC) ELSE
IF Ts BLOCKMARK THEN

NRITEC<X9, "BLOCKMARK, BN=a"™, I4, ® DYNAMC'"0O 140 "™ STATICs",

I» " RETURN""O 148%» XIBLNa XI DYNAMICsXI+STATIC2oX1,ADDRESS)
ELSE IF T® SYMBOLTYPE THEN

WNRITEC<X9» "SYMBOL "yAS52s X)J
END DUMPOQUT)

PROCEDURE ERROR(N); VALUE N; INTEGER N}
BEGIN INTEGER 13

SW TCH FORMAT ER ¢

(“ILLEGAL INSTRUCTION ENCOUNTERED"10

("I MPROPER OPERAND TYPE"),
("CANNOT DIVIDE BY 0"),
("CALL OPERATOR DID NOT FIND A PROCEDURE")0
("REFERENCE OR LABEL OUT OF SCOPE"),
("QUT Of SCOPE ASSIGNMENT OF A LABEL OR A REFERENCE")O0
(“SUBSCRIPT IS NOT A NUMBER"),

("SUBSCRI PT NOT APPLIED TO A VARI ABLE")O

("SUBSCRI PTED VARIABLE IS NOT A LIST"),
("SUBSCRIPT IS OUT OF BOUNDS"),
("CANNOT TAKE TAIL OF A NULL LIST"),
("STACK UVERFLOW™),
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("STACK OVERFLOW DURING GARBAGE COLLECTION"),
("ASSIGNMENT TO ANON=VARIABLE ATTEMPTED"),
("FREE STUKAGE AREA IS TQ00 SMALL");
WITE ({0OBL1s ERIN])}

WRI TE (</ "SPs",I4," FPav, 14," PPam,I4," MP=a",[4," SYL=",14/>,

SPs FP» PP» MPs, PROGRAMIPPIAFIELD))
FORI ¢ 1 STEP 1 UNTIL Sip DO
BEGIN WRITEC(NO])» <14>» 1)} DUMPOUT (¢SIC1)»SLI)) END 3
GO TO DONE

END ERROR;

PROCEDURE FREE(NEED)} VALUE NEED} INTEGER NEED:
COMMENT "FREE" IS A "GARBAGE COLLECTION" PROCEDURE. ITIS CALLED

| WHEN FREE STORAGE f IS USED UP» AND MORE SPACE IS NEEDED.
GARBAGE COLLECTION TAKES THE FOLLOWNG STEPS?
1. ALL BLOCKMARKS» LIST DESCRIPTORS AND REFERENCES IN STACK

POINT TO VALID INFORMATION IN FREE STORAGE. LIKEWISE, ALL
LIST DESCRIPTORS AND REFERENCES THAT ARE POINTED TO ARE VALID,

ENTER INTO THE STACK ALL SUCH ENTITIES,
2. THE GARBAGE COLLECTOR MIST KNOW IN WHICH ORDER TO COLLAPSE THE
FREE STURAGEs THUS SORT THE LIST BY FREE STORAGE ADDRESS,

3, MUVE EACH BLOCK DOWN If NECESSARY,
4, NUW THE ADDRESSES ARE WRONG=w=MAKE ONE MORE PASS THROUGH THE

SORTED LIST TO UPDATE ALL ADDRESSES:
BEGIN OWN INTEGER Gs Hs I» J3 OW REAL T}

I NTEGER PKOCEDUHE FINDCW)3 VALUE W REAL W}
_ BEGIN COMMENT BINARY SEARCH THROUGH ORDERED TABLE}

INTEGEK Ts» Np Bs» KEY, KJ
LABEL. FOUND» BINARY}

T ¢ G¢i3 B ¢ SP + 1:
KEY ¢ WeADDRESS}

BINARY: N e (B*T) DIV 2:
K ¢« SII[N] ADDRESS}

If K= KEY THEN GO TO FOUND:
IF K€ KEY THEN B ¢« N ELSE T ¢ NJ

GO TO BI NAKY;

FOUND: FIND « SICN), NSA

END FI ND;

PROCEDURE RESET(Ws Z)3 REAL W» 2}

BEGIN INTEGER TY)
TY & WeTYPE} .

If TY 8 REFERENCETYPE OR TY = LISTTYPE THEN W.ADDRESS ¢ FIND(W) ELSE
IF TY = BLOCKMARK THEN <Z+ADORESS ¢ FIND(2)

END RESET;

PROCEDURE VALI DATE(P): VALUE P3 REAL P3
BEGIN COMMENT TREE SEARCH FOR ACTIVE LIST STORAGE;

INTEGER I» U:

G¢ G+ 1;
IF G >» 1022 THEN ERRQR(12)3}

SIG] ¢ PJ

U ¢ PoADURESS + PWCT =13 i
IF Po TYPE = LISTTYPE THEN FOR I¢ P,ADDRESS STEP § UNIIL U DQ
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IF FICI)eTYPE = LISTTYPE OR FI[1)eTYPE m= REFERENCETYPE THEN
VALIDATECFI(I])}

END VALIDATION)

PROCEDURE SURT(LBs» UB) VALUE LB» UBS} [INTEGER LB» UBS
BEGIN COMMENT BINARY SORT)

I NTEGER M3}

PROCEDURE MERGECLB» Mp UB)} VALUE LBs» Ms» UBS INTEGER LB» Ms» UB)
BEGIN INTEGER KsbksUs Kis» K25 LABEL A» BJ

K ¢ UB = LBj3

MOVECSIILBl», SELBY» KI

L ¢ K ¢ LB} U & M3 GO TO B}
At Ki © SCLIADDRESS}) K2 * S[U),ADDRESSS

IF KI € K2 UR (KI ® K2 AND SCLI TYPE 3 LISTTYPE) THEN

BEGIN SI[KleSILIIL® Let
END ELSE

BEGIN SI{Kle SLU)} U ¢ Us}

END}

K ee K + 13 :

Bs IF L ® M THEN ELSE IF U ® UB THEN

BEGIN K ¢ M=_}3 MOVEC(SILI,SI{UB="K]), K)
END ELSE GO TO A

END MERGE}

If LB € UB THEN
BEGIN M ¢ (LBe¢UB) Dlv 2)

SORT(LB» MY} SORT(M+1,» UB) MERGE(CLB, Mel» UB#+{)
- END

END SORT)

INTEGER LLAs LLW}
G « SP}

FOR Hel STEP 1 UNTIL SP DO
BEGIN CUMMENT LOCATE ALL ACTIVE LISTS AND REFERENCES)

IF SICH) TYPE ® LISTTYPE OR SICH] TYPE . REFERENCETYPE THEN
VALIDATECSI(H)) ELSE
IF SICH)eTYPE = BLOCKMARK THEN VALIDATE(SCH])}

ENDJ

COMVENT SORT THEM IN ORDER OF INCREASING ADDRESS)
SORT(SP+1, G))
I t $3 COMVENT COLLAPSE THE FREE STORAGE}

FORJ ¢ SP #1 STEP § UNTIL 6 DO

IF SICJIeTYPE o LISTTYPE THEN
BEGIN CUMMENTIF GoCe OCCURS DURING ®™COPY™ THEN WE MIST AVOID

THE CREATION OF DOUBLE LIST ENTRIES FROM DUPLICATED OESCRIPTORSI
IFSICJInSICJ+L) THENSICJU*1)TYPE t UNDEFI NED)
IIA ® SI[TJJsAODDRESS) 11LW eo SICJI(NWCTS
IF LLA #]1THEN

BEGIN

MOVECFCLLA), FCI)s LLNW))
MOVECFICLLAJ, FICCI)» LiLNW)J

ENO}

SICJIeNSA ¢ Ij
I «1 ¢ LLW}

END ELSE SICJ)NSA ¢T1= LLW + SILJ).ADDRESS = LLAJ
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FP ¢ I}

COMMENT RESET ALL AFFECTED ADDRESSES)
FOR I ¢ 1 STEP 1 UNTIL SP DO RESETCSICI1,SCI1)}
FOR I ® 1 STEP 1 UNTIL FP=1 DO RESETCFICI)»FL[11)}
IF FP + NEED > 1022 THEN ERROR(C$14)}

END FREE 3}

PROCEDURE MOVESEGC(LD)} REAL LD}
BEGIN COMVENT MOVE ONE LIST SEGMENT}

INTEGER WN» X}

W & LD. WNCTJ
IF FP + W > 1022 THEN FREE(W)}
X ¢ LOoADDRESS)

MOVECFC(X1s FLFP)s W)}
MOVECFICX)s FICFP)s W)}
LD.ADDRESS ¢ FPJ
FP ¢ FP + W}

END MOVE SEGMENT)

PROCEDURE COPY(LDJ} REAL LD}

BEGIN INTEGER, J} COMVENT RECURSIVE LIST COPY}
MOVESEGCLOD))

J ¢ LD.WCT . {J
FOR I ¢ 0 STEP 1 UNTIL J DO
IF FICI®LDsADORESS]I<TYPE =» LISTTYPE THEN COPYCFICLI*LD.ADDRESS))

END COPY;

~ PROCEOURE BOOLTESTI IF SILSP) TYPE # BOOLEANTYPE THEN ERROR(C1)3

INTEGER PROCEDURE ROUND(X)J VALUE X3 REAL XJ ROUND ¢ X}

PROCEDURE BARITH}

BEGIN If SIUSPI.TYPE # NUMBERTYPE OR SI[SP={),TYPE # NUMBERTYPE THEN
ERRORC1) ELSE SP e¢SPej

END BARITHJ

PROCEDURE FETCH}

BEGIN INTEGER [i

IF SICSPJ«TYPE 3 REFERENCETYPE THEN
BEGIN 1 e SIISP) ADDRESS) SILSP) ¢ FICI)) SLSPJe FLI] END

END FETCH 3}

I NTEGER PROCEDURE MARKINDEX(BL)J} VALUE BLJ INTEGER BL}

BEGIN COMVENT MARKINDEX IS THE INDEX OF THE MARK W TH BLOCKNUMBER BLS
LABEL Ui} INTEGER IJ
I ¢ MP}

UII TF SICI)eBLUN>®BL THEN
BEGIN T1®SICI)eSTATIC)I GO TO ULENDS

If SI{IJ«BLN «< BL THEN ERROR(4)}
MARKI NDEX ¢ |]

END MARKI NDEX J

PROCEDURE LEVELCHECKC(Xs Y)} VALUE YJ INTEGER YJ) REAL XJ

BEGI N I NTEGER To 18 ts U3 T ¢ Xo TYPE}
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If T= REFERENCETYPE OR T = LABELTYPE THEN
BEGIN IF X«aSTATIC > Y THEN ERROR(S) END ELSE

IF Ts PROCEDURETYPE THEN X.STATIC ¢ Y ELSE
IF T = LISTIYPE THEM

BEGIN L ¢ XeADDRESSS U © L + X WCT »13

FOR I ¢ L STEP 1 UNTIL U DO LEVELCHECK(FICLI)»Y)
END

END LEVEL CHECK}

PROCEOURE SPUPJ IF SP 2 1022 THEN ERRORC11) ELSE SPe SP + {J

PRDCEOURE SETIS(V)3 VALUE V3 INTEGER VJ

BEGIN FETCH}

SCSP) ¢ REALCSILSPITYPE 3 V)J
SICSP)+TYPE ¢ BUOLEANTYPE}

END SET IS}

SWITCH EXECUTE e
PROCEDURECALL, VALUEOPERATOR SEMICOLON, UNDEFINEOOPERATOR,

REFERENCES NEW FORMAL» LABELL» UNDEF INEDOPERATOR, LOGVAL
SUBSCRIPI» BEGINV, ENDOVs NUMBER, RIGHTPAREN, LEFTQUOTE» RIGHTQUOTE.

GOT08 OUTPUTS STORE» UNOEFINEDOPERATOR» THENVs ELSEVs CATENATES
LOR» LAND, LNOT», EQL, NEQ,LSS,»LEQ, GEQ, GTRsMIN» MA XS

ADDS SUB» MULs DIVIDE, IDIVs, REMAINDER, POWER, ABSVs LENGTH»
INTEGERIZE» REALL, LOGICAL, LISTTs T AIL : INPUT»
ISLOGICAL,» ISNUMBER,» ISREFERENCE» ISLABEL,ISLIST,»ISSYMBOLS
I SPROCEDURE [ISUNDEFINEDs SYMBOLS UNDEFINDs UNDEFINEDOPERATORs NEG?

= UNDEF INEDOPERATOR, UNDEF INEDOPERATOR, DONE}

WRITE ((PAGE]))

SPeMPe¢ PPe 03 FP ¢ 13 LVL ¢ 0} FT ¢ FT+9}

NEXTS PP ¢ PP+1)

TRANSFER? co To ExeEcUTE [PROGRAMIPPI.AFIELD *™ FT}

UNDEF INEOOPLRATORS

ERRORCO)}

SEM COLON:

se © SP = 1} GO TO NEXTS

UNDEFI ND: SPUPJ
SICSP)«TYPE ¢ UNDEFINED} GO TO NEXT}

NUMBER:

PP « PP + 1} SPUP} . |

SI{SPl,TYPE ¢« NUMBERTYPE} SCSP] ¢ PROGRAMLPPIJ GO TO NEXT)
SYMBOLS SPUPJ

SICSPI.TYPE ¢ SYMBOLTYPE} SCSP] ¢ PROGRAMIPP).BFIELDS GO TO NEXT]
LOGVALY SPUPJ

SIISPl«TYPE ¢ BOOLEANTYPEJ SCSPJ ¢ PROGRAMLPP1.BFIELDJ
GO TO NEXT]

REFERENCE: SPUPJ
SILSP) ¢ 0}
SI(SP).TYPE ¢ REFERENCETYPE]

SICSPI¢STATIC ¢ 11 e MARKINDEXC(PROGRAMLPP)LCFIELD))
SICSP)oADDRESS ¢ S[I1).ADDRESS + PROGRAMIPP).BFIELD . 1}
GO TO NEXT)
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| LABELLY SPUP}
SICSP)+TYPE ¢ LABELTYPE)

| SICSP) STATIC ¢ MARKINDEXCPROGRAMLPPI,CFIELD)J
| SICSPI.AVDDRESS ¢ PROGRAMIPP).BFIELDS GO TO NEXT)

CATENATE:;

If SICSPI«TYPE # LISTTYPE OR SICSP=1)1,TYPE#LISTTYPE THEN ERROR(1)}
IF SICSP=1)¢ADDORESS¢ SITUSP=1) WCT # SICSP).ADDRESS THEN
BEGIN CUMMENT MIST HAVE CONTIGUOUS LISTS}

MOVESEG(SI(SP=1]))
MOVESEG(SICSP))}

END}

SP ¢ SP = {J

SIISPINCT « SIUSPINCT + SICSP+1] NCCT)

GO TO NEXT)
LOR; BOOLTESTS

IF NOTBUOLEANCSISP)) THEN BEGIN SP ¢ SP = {3 GO TO NEXT END}
PP ¢ PROGRAMCPP)(BFIELD} GO TO TRANSFER;

LANDS BOOLTESTS

IF BOOLEANCS[{SP)) THEN BEGIN SP ¢ SP = {3 60 TO NEXT END;
PP ¢ PROGRAM[PP}(«BFIELD} GO TO TRANSFER:

INOT¢ BOOLTESTS

| S{SP) ¢ REAL(NOTBOOLEANCSISP)))}GO TO NEXT;
LSSS BARI TH)

SISP] ¢ REAL(S(SP]< S[SP+11)}

SICSP).TYPE ¢ BUDLEANTYPES GO TO NEXT}

LEQ BARITHJ

SCSP) ¢ REALCSESP) S SISP+11))

- SI{SPl+TYPE ¢ BUOLEANTYPES GO TO NEXT:

EQLt BARITH}
S{SP] ¢ REAL(SCSP) = S[SP+1)))

SICSPI.TYPE ¢ BUOLEANTYPE} GO TO NEXT;
NEQI BARI TH)

SLSP) ee REALC(SISP]# SCSP+11)}

SICSPI,TYPE « BUOLEANTYPES GO TO NEXT:
GEQS BARITHJ

SCSPJ e¢ REAL(CSISPI2S(SP+1]))}

SICSPI.TYPE«BUDOLEANTYPESGO TO NEXT;
GTRs BARITH}

SCSP) ¢ REAL(CS(SP] > S[SP+1))}
SICSPI+TYPE ¢ BDOLEANTYPE] GO TO NEXT!

MN BARI THI

IF S{SP+1) <S[(SP) THEN SCSPJ e S{SP+1)3 GO TO NEXT;
MAX, BARJITHJ

IF S{SP+1)>SCSPJ THEN SIESPleS[(SP+113 GO T O NEXT}
ADD: BARITH}

SCSPJ ¢S{SP1+S[{SP+1)} GO TO NEXT;
Sb1 BARITHJ

SCSPJ ¢S[SP] *S(SP+113GO TO NEXT;
NEGS IF SILSPI TYPE # NUMBERTYPE THEN ERROR(1);

SIESP) ¢ = S(SP)SGO TO NEXT}

MULS BARITHJ

SCSPle S[SPIXS[SP+1)3 GO TO NEXT:
DIVIDE: BAKITH}

IF S{SP+1) = (0 THEN ERRUR(C2))

SESP) ¢ S(SP) / SISP+1)3 GO TO NEXT;
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IDIVE BARI TH3
IF ROQUNDCSTISP+1])) = 0 THEN ERROR(2)J
SCSPIeROUND(SLSPIIDIVROUND(SISP+1))360 TO NEXT:

REMAI NDER: BARI THI}
IF S[{SP+1) = 0 THEN ERRUR(2)}

SESP) ¢ SCSPY MUD SISP+1])3 GO TO NEXT;
POWERS BARITHJ

SLSP) ¢ SISP)} » S(SP+11} GO TO NEXT]J
MBSV1 IF SI{(SPl.TYPEANUMBERTYPE THEN ERRORC1)}

SE{SPJ) ¢ ABS(S[SPI)} GO TO NEXT:
INTEGERIZE?

IF SI[SP)+ TYPE >» BOOLEANTYPE THEN ERROR(1);
SCSP) & ROUNDCSC(SPIIIGO T O NEXT)

REALL?

IF SILSPJTYPE > BOOLEANTYPE THEN ERROR(1);
SI{SP)«TYPE ¢ NUMBERTYPEJ GO TO NEXT:

LOGICALI1

IF SIC{SPJl TYPE # NUMBERTYPE THEN ERRORC1)}
IF S[{SP) 8 0 OR SISP) = 1 THEN SI(SPl.TYPEe¢ BOOLEANTYPE ELSE
SICSPI.TYPE¢ UNDEFI NEQJ
GO TO NEXT}

LISTTS
IF SICSP)«TYPE # NUMBERTYPE THEN ERROR(1)}
1 2 «¢S[SP)}
IF 12 #+ FP » 1022 THEN FREE(I2)}

FOR 11 ¢FP STEP 1 UNTIL FP+I2=1 DO FIC113),TYPE« UNDEFINED}
SICSPIrTYPE €LISTTYPEISIISPIoWCT ¢ 12.SICSPIADDRESS¢FP}
FPe FP +123 GO TONEXTS

ISLOGICALS SETIS(BOOLEANTYPE)} GO TO NEXTJ
ISNUMBERSY SETIS(NUMBERTYPE)S GO TO NEXT}

ISREFERENCE: SETISC(REFERENCETYPE)J GO TO NEXTS

ISLASELS SETISCLABELTYPE)} GO TO NEXTIJ
ISLISTS SETISCLISTTYPE)S GU T O NEXT)

ISSYMBOLY SETISCSYMBOLTYPE)S GO TO NEXT:
ISPROCEDUREt SETISC(PROCEDVRETYPE)S GO TO NEXT;
ISUNDEFINEDS SETISCUNDEFINED)S GO TO NEXTIJ

TAIL?

IF SICSPI TYPEALISTYYPE THEN ERROR(C1)}
IF SICSPJJNCT = 0 THEN ERROR(10))

SI{SPIWCT ee SICSPY+HCT = §}

SICSP)+ADDORESS e SI(SP1«ADDRESS + 13 GO TO NEXT}
THENVS

BOOLTESTS SP e¢SPe=i)

IF BOOLEANCS{SP+1)) THEN GO TO NEXT}

PP ¢ PROGRAM[PP)BFIELD} GO TO TRANSFER;
ELSEV?S

PP ¢ PROGRAMI[PPIWBFIELD3 GO TO TRANSFER}

LENGTHS

FETCH}

IF SILSP)«TYPE # LISTTYPE THEN ERRORC1)}

SICSPI+ TYPE ¢ NUMBERTYPES SISP] © SIISPI,WCTS GO TO NEXT}
GOTO3

IF SILSP)«TYPE # LABELTYPE THEN ERROR ¢ 1)
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MP €SICSPl.STATICS
COMMENT WE MIST RETYUIN TO THE BLOCK WHERE THE LABEL IS DEFINED)
PP ¢& SI(SPl.ADDRESS}) SP ¢ MP] GO TO TRANSFER}

FORMAL?

FORMALCOUNT ¢FURMALCOUNT+13

IF FORMALCOUNTSSIMPI«WCT THEN GO TO NEXTELSEGOTONEW;
NEW|

SIMPI NCI ¢ SIMPlWNCT +1)
FILFPl.TYPE ¢ UNDEFINED)
FP ¢ FP +1}

IF FP » 1022 THEN FREE(1)}
GO TO NEXT}

STORE 1

IF SICSP=1)sTYPE # REFERENCETYPE THEN ERRORC13)}
LEVELCHECK(SICSP)s SILSP=1).STATIC))

SP ¢ SP *=1} COMMENT NON-DESTRUCTIVE STORES
I1 ¢ SICSPJ«ADDRESS}

SCLSP) ¢ FCIL) ¢ SISP+1)) SI{SP) ¢ FIC11] ¢ SICSPe1))}
COMVENT THE NON=DESTRUCTIVE STORE IS NOT APPLICABLE TO LISTSS
IF SICSPI«TYPESLISTTYPE THEN SIISP).TYPE¢ UNDEFINED)
GO TO NEXT)

SUBSCRIPTS

If SICSPl+«TYPE # NUMBERTYPE THEN ERROR(C6)}
SP ¢ SP =1}

IF SILSPITYPE# REFERENCETYPE THEN ERROR(T)}
I] T¢SI{SPI+STATICS)SILSP) ¢ FICSILSP).ADDRESS]))
IF SICSPI« TYPE # LISTTYPE THEN ERROR(B);

TIF SCSP +1] <1 Of2 SCESP+1] > SI[SPINCT THEN ERROR(9)}
SICSPJ.AUDRESS ¢ SI(SPJ«ADDRESS + SCSPe+13} . 1}
SILSPI.TYPE t REFERENCETYPES COMVENT MIST CREATE A REFERENCE}
SICSPI,STATIC¢]I13GO TO NEXT;

BEGINVS SPUPJ

SICSP) ¢0

SIISPI, TYPE ¢ BLOCKMARKS

SILSP1+BLN ¢ SICMP) BLN + 1}
SICSP).DYNAMIC ¢ MP}

SI{SPl STATIC ¢ MP]
S{SPl.TYPE ¢ LISTTYPES

S{SPJ+ADURESS ¢ FPJ

SLSPIJWCT ¢0 4 COMMENT A NULL LISTS
MP ¢ SPJ] GO TO NEXT)

ENDVS

11 ¢ SI{MPI.DYNAMIC) ;

LEVELCHECKC(SI(SP), SICMP),STATIC))
SICMPJe SICSPJJ SIMP] ¢ S[{SP)}

SP ¢ MP] MP ¢]13 GO TO NEXT}

LEF TQUOTE1 COMMENT PROCEDURE DECLARATION)
SPUPJ

SILSP)sTYPE ¢ PROCEDURETYPEJ
SI{SP) ADDRESS ¢ PP]

COMMENT THE PRUCEDURE DESCRIPTOR MIST SAVE ITS OW LEXI COGRAPHICAL

LEVEL AS WELL AS THE STACK MARKER FOR UPLEVEL ADDRESSED VARIABLES;
SICSP)«BLN ¢ SIIMP) BLN + {3
SICSP),STATIC ¢ MP)

PP ¢ PROGRAMIPPIWBFIELD? GO TO TRANSFER)
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RIGHTQUOTE?

PP eo SICMP)+ADDRESS) COMMENT A PROCEDURE RETURN}
1 1 ¢SIIMP).DYNAMIC)

LEVELCHECK(SILSP), SITMP),STATIC))
SIIMP) ¢ SICSP)} SIMP) ¢ SCSPJJ

SP ¢ MP} MP ely} GO TO NEXT:
VALUEOQOPERATOR?S

IF SI{SPITYPE = LISTTYPE THEN GO TO NEXT)
FETCH}

IF SICSP) TYPE = PROCEDURETYPE THEN
BEGIN FORMALCOUNT ¢ 0)

1 1 «SILSP) ADDRESS)

SILSP) TYPE ¢ BLOCKMARK]}

SILSP) ADDRESS ¢ PP)
SILSP).OYNAMIC ¢ NP)

SCSPITYPE ¢ LISTTYPE)

. SESPJNCT ¢ 0
MP ¢& SP} PP e113

END ELSE IFSILSP) TYPESLISTTYPE -THEN COPY(SICSP)))
GO TO NEXT;

PROCEOQOURECALL:

SP ¢ SP =1} FETCH

If SICSPJ+TYPE # PROCEDURETYPE THEN ERRORC3))
FORMALCOUNT ¢ OJ

1 1 ¢«SI{SP),ADDRESS)
SI(SP).TYPE ¢ BLOCKMARK]}

SICSPl,ADDRESS ¢ PPJ
SICSPI.DYNAMICe¢ MP]

SISP) « SILSP+1J) COMMENT THE LIST DESCe FOR PARAMETERS;
MP € SP] PP eo 183 GO TO NEXT)

RIGHTPAREN?

11 ¢ PROGRAMIPPIBFIELDJ
If 11 «FP> 1022 THEN FREE(CI1)}
SP ¢ SP = 11 + 1}

MOVECSCSPl» FCFP1» I1)) MOVECSICSPYs» FICFP)» I1)3
SICSP)«TYPE ¢ LISTTYPE}
SICSPIWNCT ¢ 11)
SILSPI+AODRESS ¢ FP)

FP ¢ FP +113G0 TO NEXTS
INPUT: SPUPJ

READCSCSPIILEXIT)) SILSPI.TYPEe¢ NUMBERTYPES GO TO NEXT:
OUTPUT

DUMPOUT(SILSP)»SISP))} ‘GO TO NEXT;
DONE 3

END INTERPRETER:

EXIT

END .
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001 BEGIN NEW FUR} NEW MAKES NEW T3 NEW Al
006 FOR ¢ LO #ORMAL CV} FORMAL LB) FORMAL STEP} FORMALUBS FORMAL $3}
013 BEGIN

013 LABEL LJ LABEL KJ
014 CV ¢ LB)

020 K¢ If CV S UB THENS ELSE: GOTO L3
036 CV « CV + STEP)

047 GOTO KC

051 Lt O

052 ENDO RQJ

057

057 MAKE ¢ LQ@ FORMAL BJ FORMAL X}
062 BEGIN N&W TJ) NEW It NEW F3 NEW LJ

067 4 ¢ B3 T ¢ LIST LI1)3 )
081 . Fe IF LENGTH L # 1 THEN MAKECTAIL Ls» X) ELSE XI
103 FORC®I» $5 1» LCi)» LQ TCI] ¢ FRQ) J
126 T

127 END RQ)

132

132 A €()}
136 FOR (@Y» 1» 1» 4» 1.O BEGIN A ¢ A & LT) OUT MAKECPA,TIENDRQ)

165 END §

PROGRAM DUMP

001 BEGIN 030 '
- 002 NEW 031 0

003 NEW 032. ELSE 036
004 NEW 033 LABEL 052 003
00s NEW 034 ’

006 e 001 001 035 GOTO
007 LQ 056 036 }
008 FORMAL 037 J 001 002
009 FORMAL 038 "
010 FORMAL 039 J 001 002

011 FORMAL 040 N
012 FORMA4 041 0
013 BEGI N 042 [J 003 002
014 (J 001 002 043 .
015 044 '
016 # 002 002 045 +

017 . 046 *

018 N 047 J

019 . 048 LABEL 021 003
020 ] 049 )

021 e 001 002 050 GOTO

022 . 051 J
023 ’ 052 4 0,000000000#+00
024 8 004 002 054 END

025 . 053 RQ
026 . 056 ¢
027 S 057 ’
028 THEN 033 058 0 00a 001%
029 # 00% 002 059 LO 131
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060 FORMAL 120 Q 003 003
061 FORMAL 121 0

062 BEGIN 122 ¢

063 NEW 123 RQ
064 NEW 124 ) 005
065 NEW 125 ’

066 NEW 126 )
067 Q 004 003 127 Q 001 003
068 Q 001 002 128 ’
069 0) 129 END
070 . 130 RQ

071 ¢ 131 ¢

072 } 132 ’

073 N 001 003 133 Q 004 001
074 > 004 003 134 ))

075 ( 1,0000000004+00 135 ¢
or7 ] 136 }

078 * 137 Q 001 001

079 LIST 138 Q 003 001
080 ¢ 139 ( 1000000000400

081 } 141 ¢ 1.000000000+00

082 > 003 003 143 ¢ 4,000000000+00
083 N 004 003 145 LQ 165
084 ® = 24% p 146 BEGIN

083 ( 1,000000000+00 147 Q 004 001
087 # 148 Q 004 001

088 PR 099 149 0
089 @ 002 001 150 e 003 001
090 e 004 003 151 0
091 0 152 ) 0014
092 TAIL 153 }
093 Q 002 002 154 ¢
094 . 155 }

09S 0 156 [] 002 001
096 ) 002 157 ] 004 001
097 ’ 158 J 003 001
098 ELSE 102 159 .
099 Q 002 002 160 ) 002
100 0 161 ’
101 . 162 ouY
102 * 163 END
103 } 164 RQ
104 Q 001 001 165 ) 005
105 Q 002 003 166 ’
106 ( 1,000000000+00 167 END
108 ( 1.,000000000+00 168 $
110 Q 004 003
111 ¢ 1000000000400
113 )

114 *
115 LQ 124

116 C) 001 003
117 Q 002 003
118 0
119 )
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LIST 24 NUMB&H 4
| ¢ NUMBER 4 NUMB&R a

| ) vee)
LIST 61 LIST 382

( LIST 62 eee NUMBER 4
oC NUMB&R 9) NUMBER 4

NUMBER 2 NUMBER a

o) NUMB&R a
) vee)

LIST 142 oe)
( LIST 143 o)
o( LIST 145 )
eel NUMBER 3

NUMBER 3 ]

NUMBER 3
oe)

LIST 148

oof NUMB&R 3
NUMB&R 3

NUMB&R 3

ve)

0)

)

LIST 353

= ( LIST 354

o LIST 356

eof LIST 359

soe NUMB&R 4

NUMB&R 4

NUMBER 4

NUMBER 4
eee)

LIST 363

veel NUMB&R 4

NUMBER 4

NUMB&R 4

NUMB&R 4

vee)

LIST 367

veel NUMBER 4
NUMBER 4

NUMBER. a
NUMBER 4

eee)

00)

LIST 371

a ¢ LIST 374
TEL NUMBER 4

NUMBER 4
NUMBER 4

NUMBER 4

ees)

LIST 378

veel NUMBER 4

NUMBER 4
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program

blockheadB blockbody {statement (i)
(begin) blockhead var dec (3) blockhead |—{ label dec (3)
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