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Figure 1: A section of a parametric space of trees.

Abstract

We utilize a high-dimensional parametric design space to support a
novel and intuitive method for 3D modeling. Users visually explore
the design space and pick models using a continuous, map-like in-
terface. We leverage models created by the user community to learn
underlying structure in the space via kernel density estimation. This
mapping of the space is maintained by a server that synchronizes
all the deployed design tools. The tools leverage the mapping to al-
low users with no prior modeling experience to easily create unique
designs by interpolating between and extrapolating from landmark
models. The result is a self-reinforcing design system that becomes
easier to use as more people participate.

Our prototype tree modeling tool was downloaded by over six
thousand users from more than eighty countries in the month fol-
lowing its release. Over fifteen hundred trees were voluntarily
picked from the roughly hundred dimensional tree space. We re-
port on usage patterns gathered through this deployment and on
subsequent user surveys.

1 Introduction

The widespread availability of 3D graphics hardware and the in-
creasing popularity of three-dimensional participatory media such
as networked virtual worlds [Miller 2007], game mods [Newman
2006; Arendash 2004], and machinima [Marino 2004] are moti-
vating many people to attempt to create three-dimensional content.
Unfortunately, the creation of high-quality three-dimensional mod-
els is a notoriously difficult task. Current modeling tools require

considerable training to be used effectively. As a result, 3D model-
ing is largely done by professionals in the movie and game indus-
tries, and not the general population.

Another approach to content creation is 3D scanning and motion
capture, which is often called data-driven graphics. In addition
to direct capture of specific objects, data-driven approaches can be
used to construct more general models of motion, shape, and ap-
pearance. The basic recipe is to scan a large number of objects
and then approximate them in a low-dimensional parametric space
using machine learning techniques. For example, a library of mo-
tions can be used to construct a general model of human walking
by embedding the joint angles in a low-dimensional manifold. This
makes it easier for animators to construct new walking sequences,
or to target motion to different skeletal models.

Currently this approach requires the ability to digitize real-world
objects. We propose using data-driven graphics techniques with
virtual objects that do not exist in the real world. Instead of scan-
ning in objects, we propose to use a collection of objects created
by a community of users. Each object in our system is an instance
of a parametric model, and the set of all possible parameter values
specifies the design space for a particular type of object. We learn
the structure of the parametric space from specific designs, and then
use this structure to enable a more accessible modeling process.

Given a large collection of designs, we use density estimation to
approximate the distribution of good designs in the space. As the
number of models grows, the estimated density function approaches
this underlying distribution. Thus the structure of the design space



is mapped out collaboratively by the entire community of designers.
It emerges as a byproduct of self-interested modeling activity on a
community scale.

Using the density function, we construct a map of the design
space. The map is a function from two dimensions to the parametric
space. Thus, modeling can be performed by picking new points on
this map. The map can also be used for navigation, mitigating the
complexity of design tasks.

We created and deployed a prototype tree modeling tool to eval-
uate these techniques. Figure 1 illustrates the parametric space used
by this tool. The tool was released to the public one month before
the submission of this paper and has already been downloaded by
more than six thousand unique users, resulting in the submission of
over fifteen hundred tree models to our centralized database. Pre-
liminary studies indicate that a majority of users believe our soft-
ware allows them to create compelling tree models and is less cum-
bersome than existing tools.

2 Related Work

Intuitive modeling interfaces. The difficulty of traditional 3D
modeling is well known. A popular alternative approach uses
sketching to reduce the modeling task to a series of 2D freeform
strokes. In the Teddy system [Igarashi et al. 1999], the user traces
the silhouette of a 3D shape, which inflates accordingly. Many
operations like extrusion, smoothing, and cutting are supported.
SmoothSketch [Karpenko and Hughes 2006] interprets the sketched
curves as perceptual contours and fills in hidden cusps. FiberMesh
[Nealen et al. 2007] extends the sketching metaphor by embedding
the defining curves on the surface of the three-dimensional shape.
The curves can be directly manipulated, serving as handles that con-
trol the object.

Another prominent direction is image- and video-based model-
ing, which aims to reconstruct real-world objects from photographs
and video sequences. A recent highlight in image-based modeling
is Furukawa and Ponce [2007]. For a video-based approach see
VideoTrace [van den Hengel et al. 2007], which reconstructs 3D
scenes from video streams, inferring geometric information from
user-drawn contours.

Anderson et al. [2000] utilize physical creation processes to as-
sist digital modeling. Their first system uses instrumented Lego™-
like building blocks. The user assembles these into a physical struc-
ture, which is converted to a geometric model and embellished by
the system. A second prototype infers the geometry of a physical
clay sculpture from images and retrieves a matching model from a
library. The stored library models can be rigged and animated in
advance, thus aiding the creation process.

A number of systems in the game industry let a player assemble
a 3D object from parts, each chosen from a catalogue. An advanced
implementation, in which the components are deformable and the
resulting object can be animated, is described by Choy et al. [2007].

Parametric spaces in graphics. High-dimensional parametric
spaces are central to data-driven graphics. The landmark work of
Blanz and Vetter [1999] constructs a space of 3D faces from 200
example models. Every point is a linear combination of the ex-
amples. High-level attributes that correspond to meaningful fea-
tures like age, weight, and gender can be represented as vectors
and learned from tagged examples. New faces can be modeled by
adjusting these high-level attributes via sliders.

Allen et al. [2003] extend this approach to entire human models,
reconstructing a space of body shapes from 250 scanned human
figures using a sophisticated registration algorithm. In appearance
modeling, Matusik et al. [2003] generate a space of bidirectional
reflectance distribution functions (BRDFs) through the acquisition
of over 130 real-world examples. Both of these works represent
high-level features as vectors in the space and allow individual ma-

nipulation of these features.

Blanz and Vetter [1999] attempt to avoid low-quality regions of
the face space (“unlikely faces”) by fitting a single Gaussian dis-
tribution to the examples. Our work uses more principled density
estimation inspired by practices in applied statistics and is capable
of capturing local quality variations, such as clusters of quality in
the space. Matusik et al. [2003] extract the relevant portion of a
BRDF space using linear and non-linear dimensionality reduction,
successfully reducing the dimension from roughly 100 to about 10.
Our approach is complementary and is applicable even when the
intrinsic dimensionality of the space is high. Another distinction is
that we do not rely on a priori availability of large collections of
examples: we instead source these directly from the user commu-
nity.

Ngo et al. [2000] propose to avoid low-quality regions (“a typ-
ical parameterized graphic ...contains nonsense images in much
higher proportion than desirable images”) by modeling the desir-
able portion of the space as a product of simplicial complexes.
Simplicial complexes are also used by Matusik et al. [2005] to cir-
cumscribe parts of a space of textures. Their simplicial complex
is constructed from 1500 examples. Unlike [Ngo et al. 2000], Ma-
tusik et al. [2005] describe a technique for computing the topology
of the complex from the underlying geometry, rather than relying
on manual specification by the user. Both approaches require ex-
plicit availability of extremal instances from the space, which serve
as vertices. These extremal instances are used to sharply demar-
cate the quality regions. While widely applicable, this technique
is less appropriate in situations where only an incomplete set of
representative instances is initially available, and when quality is a
continuous (rather than binary) function.

One of the contributions of our work is a continuous map-like
interface for exploring high-dimensional parametric spaces. The
interface maintains perceptual continuity in two dimensions, while
still allowing the entire space to be explored by the user commu-
nity. Navigation in high-dimensional design spaces is a recog-
nized problem in computer graphics. Traditional approaches cen-
tered around direct parameter control (e.g., via sliders) quickly be-
come intractable as the number of parameters grows. Marks et al.
[1997] describe a set of interfaces for parameter setting that typi-
cally present a discrete set of landmarks sampled from the space.
The sampling is guided by criteria designed to maximize the land-
marks’ usefulness. Ngan et al. [2006] describe an interface for pa-
rameter setting in a space of BRDFs, making extensive use of an
original image-based distance metric.

Large scale collaboration. Our system harnesses self-interested
actions by members of a large distributed user community. Statis-
tical techniques are applied to derive global knowledge from this
pool of collective activity. This knowledge is then used to improve
the experience of each user, creating a positive feedback loop. This
approach can also be seen in collaborative filtering, which aggre-
gates the preferences of many users to generate personalized rec-
ommendations for individuals [Adomavicius and Tuzhilin 2005].
Since its introduction in the early 90s [Goldberg et al. 1992], collab-
orative filtering has become a Web mainstay [Linden et al. 2003].
More recently, community-scale self-interested activity has been
used for image labeling, object recognition in images, and the col-
lection of semantic information [von Ahn and Dabbish 2004; Su
et al. 2007].

Another example of mining collective activity in computer
graphics is recent work leveraging large image collections sourced
from the Web. Snavely et al. [2006] present an interface for in-
teractive exploration of image collections taken at particular geo-
graphic locations, leading to an engaging virtual tourism experi-
ence. Lalonde et al. [2007] use image collections to seamlessly
embed novel objects in existing photographs. Finally, Hays and
Efros [2007] describe a novel scene completion algorithm using an



Internet-scale image database.

Tree modeling. Although the focus of our work is not tree mod-
eling per se, our prototype tree modeler builds upon extensive prior
research in the field. As described in Section 6, we extend the
work of Weber and Penn [1995], which follows earlier approaches
[Honda 1971; Oppenheimer 1986] in specifying trees as vectors
from a high-dimensional parametric space. Much other work in the
area focuses on grammars [Prusinkiewicz and Lindenmayer 1990],
culminating in powerful systems that can yield striking visual re-
sults [Méch and Prusinkiewicz 1996; Prusinkiewicz et al. 1994,
Prusinkiewicz et al. 2001]. Lintermann and Deussen [1998] de-
scribe a tree modeler that combines rule-based and parametric in-
terfaces. Substantial recent progress has also been made on sketch-
and image-based approaches [Neubert et al. 2007; Okabe et al.
2005; Quan et al. 2006; Reche-Martinez et al. 2004; Shlyakhter
et al. 2001; Tan et al. 2007]. A comprehensive introduction to the
field can be found in [Deussen and Lintermann 2005].

3 Overview

We propose using the self-interested design activity of a community
of users to build better tools for 3D modeling. Our system has
two main components. The first is a central server that stores a
large number of individual designs created by the community. The
second is a client modeling tool that allows individuals to design
new objects.

The first key idea behind our system is that we learn properties
of the space of good designs from the collection of specific models
selected by users. Our conjecture is that this space has structure,
and that good designs are not just random collections of parame-
ters. We learn this underlying structure using density estimation, a
technique common in machine learning and computational statis-
tics. Our approach is described in detail in Section 4.

The modeling system itself is based on parametric models, which
are ubiquitous in graphics. For example, the parametric model of
an articulated rigid skeleton might be a set of joint angles. A para-
metric model of a face could be a collection of weights for a set
of blend shapes. In this paper, we employ a parametric model of
trees. Section 6 describes both the general requirements for a para-
metric model to be compatible with our method and the particular
tree model used in our system.

The second key idea is that we can greatly improve the modeling
process itself by leveraging the structure learned from the commu-
nity. In Section 5 we describe an intuitive map-like interface for
selecting models and exploring design spaces. This extends tech-
niques common in the dimensionality reduction literature. In partic-
ular, we designate a smooth two-dimensional manifold that passes
through known high-quality regions of the design space and adap-
tively refine this manifold as users pan and zoom across it. This
refinement process, which makes extensive use of our density es-
timation technique, ensures that we allow navigation of the entire
design space, instead of unnecessarily restricting users to some sub-
set of it.

4 Density Estimation

Given a set of landmarks points that represent specific user-selected
designs, we wish to estimate the density of quality designs in dif-
ferent regions of the space. Let {x;} be a set of N landmarks from
an n-dimensional parametric space D, assumed to be drawn from a
probability density function f(x). An approximation f(x) of f(x)
can be recovered with the Parzen estimate (Figure 2):
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Figure 2: Parzen density estimation for a set of points in one
dimension.

where K is an appropriate kernel. We use the Gaussian kernel
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where the k*" entry of the diagonal covariance matrix X is set to
a constant multiple of the sample variance of the k*" parameter of
points in {x;}:
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Here c is an appropriate constant and (x;), is the sample mean of
the k*" parameter.

Our system uses the density function f (x) to draw samples from
the design space. Since f (x) is a uniform mixture of Gaussian
kernels, it can be sampled efficiently by first choosing uniformly
a random index 1 < ¢ < N and then drawing a sample from
G(x;x3, X).

Our modeling interface, described in Section 5, further relies on
the ability to sample from f(x) in the local neighborhood of a point
Xo. To accomplish this, we draw samples from probability distri-
butions of the form

1 R
- g(X7 X0, 20) : f(X),
)
where ¢ is a normalizing constant. Intuitively, we bias the sample

to be close to x¢ while still adhering to the quality distribution. To
perform this sampling efficiently we notice that

G (x;%0,X0) - f(x)
;Q(XXO,EO ( ngx“ )
&
go_NZ( xxo,Eo xxl7 )
i —

@LNZ( X07X1720+2 XX“ )
i=1

where
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These inverses can be computed rapidly since 3 and ¥ are di-
agonal. Each of the summands is now a scaled Gaussian and the



contribution of summand ¢ to the probability mass is proportional
to the constant G (xo;x;, 30 + X). Thus we can sample from

%Q (x; %0, o) f(x) efficiently by choosing an index 1 < i < N
with probability
G (xo0;%i, 3o + X)
> G (x0;%4, 30 + X)

and then drawing a sample from G (x; x}, X').

5 Navigational Manifold

To make the problem of navigating a high-dimensional space
tractable, traditional approaches often impose significant restric-
tions on users. For instance, at any given time a user might be
forced to choose between a discrete set of landmark points, or
to move only along axis-aligned orthogonal paths in the design
space. Traditional dimensionality reduction techniques typically
force navigation to stay within a single static low-dimensional sub-
manifold, which is unsatisfactory if the intrinsic dimensionality of
the desirable regions in the space is believed to be high.

Our learned quality distribution f (x) enables the design of a
new interface for navigating through high-dimensional paramet-
ric spaces. To allow users to explore the space and select partic-
ular designs, we define a mapping from a rectangular portion of
screen space, I, to points in D. This mapping defines a curved
two-dimensional manifold M in ID that interpolates the set of user-
designated landmarks {x;} and is monotone with respect to a two-
dimensional subspace IT of . This monotonicity ensures that M
can be efficiently projected and visualized in two dimensions, al-
lowing users to explore M by panning and zooming R like an in-
teractive map.

In contrast to traditional manifold embedding techniques, M is
not held static but is instead adaptively refined as users explore 2.
In particular, when a user navigates to a region of R that contains
few points from {x; }, new points are sampled from f(x) and added
to M. In this manner our method allows the user community to
collectively explore the parametric space, while guiding users to
regions of the design space that are believed to be high quality.

The manifold M is defined with the help of Principal Compo-
nent Analysis (PCA), although M itself is not linear. Each param-
eter of every point in {x;} is normalized to the range [0, 1] using
the absolute range of the parameter if this range is bounded and the
current range of the parameter in the set {x; } if it is not. We then re-
center this normalized set about the origin, perform PCA on it, and
pick the two dominant eigenvectors to obtain the two-dimensional
subspace II. The orthogonal projection matrix from D onto II is
denoted by P. For each 4, define z; = P1x;.

The manifold M is defined through II. Let M be the following
function from II to ID:

2ide (@)X .
M) = 5= 60 (00) D ViLx £ T 7
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where ¢, (y) is an appropriate radial basis function such as
¢x(y) = ||z —y||”®.  The manifold M is simply the set
{M(z) | = € II}. Note that adding a new landmark x to {x;} al-
ters every point in M \ {x;}, though in practice this is noticeable
only for points near x.

5.1 Adaptive refinement

Consider a particular rectangular region R on II that a user wishes
to examine. If the number of landmarks from {x;} that project onto
R exceeds some threshold k&, we consider M to be sufficiently de-
tailed in this region. Otherwise, we refine this section of M by
introducing rransient landmarks sampled from f(x). This refine-
ment generally happens when a user zooms or pans to a region of

Figure 3: Refining a section of M to generate a new manifold M'.
We sample % G(x;M(z), Zo) - f(x) to generate {u,v,w} € D.
u and v are added as transient landmarks. w is not used since it is
too far away from R.

1T that represents an unmapped area of the design space, and is one
of the primary ways in which users explore and map out new re-
gions of . The transient landmarks introduced in this manner are
kept only for the duration of the current modeling session and are
not propagated to a central database or other modeling tools.

Let  be the center of R. To generate a transient landmark, we
sample from f (x) in the neighborhood of M(x), as described in
Section 4. If the generated sample projects sufficiently close to R,
we add it to the set of landmarks; otherwise we try again. If the
user navigated to a region that is far from all current landmarks and
no {x;} project in the neighborhood of R to begin with, it is un-
likely that this process will terminate within an acceptable amount
of time. In this case we sample from G(x; M(z),Xq) directly.
We repeatedly generate transient landmarks until the threshold & is
reached. This process is illustrated in Figure 3.

5.2 Visualization

Atany given time, the manifold M is visualized through the screen-
space rectangle IR, which corresponds to the rectangular region R
on II. In our system, as users mouse over R, the cursor position is
registered and is used to update a three-dimensional visualization of
the corresponding model from ID. To assist the exploration process,
we display a set of icons at points in [? that depict the correspond-
ing three-dimensional models in M. We heuristically determine
a target number of icons and their desired screen-space size. This
visualization method is illustrated in Figure 4.

To determine which icons to display, we first compute the set
of landmarks that project onto R. We shuffle this set and iter-
ate through it, attempting to place each corresponding icon on RR.
A Poisson-disk rejection criterion [Cook 1986] is used to prevent
icons from overlapping. Placement ends when the number of icons
reaches the target or when the set of suitable landmarks is ex-
hausted. In the latter case, a set of novel icon locations is generated
by Poisson-disk sampling. Since it is not essential that the target
number of icons is reached, this process is capped at a small num-
ber of iterations to prevent it from becoming stuck in problematic
areas.

6 Parametric Models

We define a parametric model to be a mapping from a set of pa-
rameters to a renderable object. The number of parameters in the
model defines the dimensionality of the parametric design space.
Such models are ubiquitous in computer graphics and used in a va-
riety of applications.

In order for a parametric space to be mappable with our method,
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Figure 4: (Left) A screenshot of our prototype tree modeling tool. (Right) Users can toggle between this direct parameter adjustment interface

and the map interface shown on the left.

it must possess two important properties. In particular, the space
must be:

Metric: The parameter space must have a metric so that the dis-
tance between points can be computed. Ideally, this metric
should correspond to perceptual distances between models,
but determining such metrics is extremely difficult and well
beyond the scope of this paper. In practice, we have had sat-
isfactory results with the standard Euclidean metric.

Continuous: In order for our technique to be effective, we re-
quire a sort of geometric and perceptual Lipschitz continuity.
Namely, points that are close in the design space should corre-
spond to perceptually similar models. In particular, we must
be able to meaningfully interpolate between design space
points, although it is not strictly necessary that all parameters
be real-valued.

6.1 Tree space

To test the ideas presented in this paper, we built a tool to explore a
parametric space of trees. We chose trees for a number of reasons.
First, trees are ubiquitous in multi-user 3D environments like games
and virtual worlds and there is significant demand for good tree
models. Second, trees have complex and interesting structure that
encourages playful exploration, and are familiar to casual computer
users and expert modelers alike. Last, there exists a large body
of literature on tree construction and several excellent parametric
models are available. We based our space on the model developed
by Weber and Penn [1995].

We made several changes to Weber and Penn’s original param-
eter specification in order to create a design space appropriate for
our technique. Although we highlight the most important modi-
fications in the following paragraphs, space does not permit us to
completely describe the resultant model, which has ninety-eight di-
mensions. For those interested in reproducing our results, we will
make source code for our parametric model available along with
this paper.

In the Weber and Penn model, parameters frequently trigger con-
ditional modes of execution. For example, the interpretation of a
particular parameter can vary greatly depending upon its sign. This

behavior violates our continuity requirement and we modified all
such parameters to be interpreted consistently, either by discarding
one of the operational modes or by splitting the parameter into two.

Enforcing continuity required several other changes to the pa-
rameter space. One such modification is the reinterpretation of Lev-
els as a floating point (rather than integer) parameter. This parame-
ter is reinterpreted in a natural way, so that a tree with Levels = £
has [¢] physical levels, with proportion ¢ — |¢] of its total leaves
distributed at level |£| — 1 and the remaining 1 — £ + | £] at level
|4]. Furthermore, the length of the branches on level |£] is set to
be £ — | £] times the length of the branches on level |£] — 1. There-
fore, trees that differ only in Levels appear to “morph” smoothly
into one another as one interpolates between them, instead of pop-
ping discontinuously into visual equivalence. For the same reason,
we are meticulous when assigning random seeds, so that the seeds
of corresponding branches in different trees are always equal. In
this manner it is possible to smoothly interpolate one tree into an-
other by traversing a contiguous path in the design space.

We found some of the parameters in Weber and Penn to be un-
necessary, either because they were redundant, linearly dependent,
or merely contributed little to the expressive power of the space.
We removed as many of these parameters as possible while still
retaining perceptual completeness.

7 Tree Modeling Prototype

In our tree modeling prototype, the map interface is displayed in
the right pane and the user’s currently selected tree is shown in the
left (see Figure 4, left). By clicking and dragging in the left pane,
the camera can be rotated around the displayed tree. The tool ini-
tializes to a default Christmas tree, and in this fashion the cognitive
stumbling block of starting with a blank screen is avoided. The cur-
rent tree can be saved by the user at any time as an OBJ file; when
this occurs, the corresponding design space point is uploaded to our
centralized server. The interface also provides standard undo/redo
functionality and a “randomize” button that produces a variant of
the current tree by changing the random seed.

A toggle switches between the map navigation interface (Figure
4, left) and a slider interface that gives precise control over most
of the individual parameters in the space (Figure 4, right). The
user is free to alternate between the two at any time. When a user



Figure 5: (Top) Six points chosen uniformly at random from the tree space. (Bottom) Six points sampled from our density function.

modifies the tree using sliders and then returns to the map interface,
the tool adds the modified tree to the set of transient landmarks and
recenters the map around it.

As the user mouses over the map, the displayed three-
dimensional tree model continuously updates to the corresponding
point in the parameter space. The user can click on any point in the
map to select it as the current tree. The map itself may be panned
and zoomed: clicking and dragging causes the displayed region R
on II to translate accordingly, while moving a zoom slider causes
R to expand or contract.

Our modeling client is written in C++ and uses OpenGL for ren-
dering. To facilitate crossplatform development, we made extensive
use of the Qt framework [Trolltech Inc. 2007]. Because the geome-
try generated by the client is complex and because we employ many
advanced real-time rendering techniques (such as environment-
based lighting, bump-mapping, and render-to-texture), our modeler
requires a relatively modern graphics card.

Our centralized tree server is written in Ruby and is based on
Mongrel [Shaw 2007], a fast HTTP server library. SQLite [Hwaci
2007] is used to store and manage tree data and user information
on the backend. To ensure the stability of the system in the face of
many simultaneous users, we employ Pound [Apsis Security 2007],
a load-balancing reverse HTTP proxy.

At the beginning of a modeling session, the client sends a GET
request to the server, which responds with a list of parameters for
any newly-added landmarks from the tree space that are not present
in the client’s cache. The server also sends several numeric con-
stants, allowing us to modify settings after the initial deployment
of the software. The set of landmarks is updated only when the
client initializes so as to avoid perceptual discontinuities within a
given session. When a user saves a local copy of a tree mesh, the
client sends a PUT request with the parameters of the correspond-
ing point from the parametric design space. These are parsed by
the server and added to the central landmark database. Addition-
ally, each client keeps a log of user interactions with the interface
and periodically uploads this log to server, where it is hashed with a
randomly generated per-client ID. In this manner we are able to ob-
serve how large numbers of users interact with the software, while
protecting their anonymity.

8 Results

Our tree modeling prototype was made available to the public ex-
actly one month before the time of this writing. In this period it has
been downloaded 6,868 times by users in 88 countries, resulting in
the creation of 1,545 unique tree models. To analyze the effective-
ness of our technique, we performed statistical analysis on the set
of mapped landmarks in the parametric space. We also conducted
a detailed user study by mining the database of anonymous usage
logs and soliciting responses to a short survey.

8.1 Tree space analysis

We analyzed the set of user-submitted landmarks to test a number
of hypotheses about the tree space and our methodology.

First, we conjectured that the distribution of desirable trees in
the space has structure: that it is not uniform. To this end we com-
pared the set of N = 1, 545 user-submitted landmarks with a set
of N samples picked uniformly at random from within the min-
imal bounding box of the user-submitted set. Figure 6(a) shows
the pairwise-distance histograms of the two sets. For a given inte-
gral distance value, each histogram shows the number of pairs of
points from the corresponding point set whose rounded pairwise
distance is at that value. A tell-tale sign of random point sets in
high-dimensional spaces is that the set of their pairwise distances is
sharply concentrated around the mean [Weil and Wieacker 1993].
This is reflected by the spiky appearance of the distance histogram
for the random point set. The set of user-submitted landmarks, on
the other hand, exhibits a much wider distance distribution, indicat-
ing significant non-uniformity. The same conjecture can be qual-
itatively confirmed through simple examination, as demonstrated
in Figure 5. The top row shows typical random samples from the
tree space. The bottom row shows typical random samples from
the probability density function f (x) learned from the set of user-
mapped landmarks.

‘We also found that the set of user-submitted landmarks appears
to have high intrinsic dimensionality. This lends further support to
the use of density estimation in this context, instead of dimension-
ality reduction alone. We employed two established dimensionality
reduction techniques: Principal Component Analysis and Isomap
[Tenenbaum et al. 2000]. PCA finds the best-fit hyperplane through
the data, while Isomap attempts to fit a nonlinear manifold. To
evaluate the extent to which these methods approximate the data,
we examined the residual variance [Tenenbaum et al. 2000]. The



residual variance is given as 1 — R? (]ADm7 D, ) where D, is the ma-
trix of Euclidean distances recovered by the algorithm, D, is the
algorithm’s best estimate of the intrinsic manifold distances, and R
is the standard linear correlation coefficient taken over all entries
of D, and D,,. Figure 6(b) shows the residual variance plotted
against dimensionality.

In both cases, the residual variance decreases as the dimensional-
ity is increased. PCA eventually becomes stuck, demonstrating its
inability to properly approximate the set of desirable trees. Isomap
is able to obtain a good reconstruction only at about forty dimen-
sions. The lack of a sharp “elbow” (point at which the curve ceases
to decrease significantly with added dimensions) demonstrates that
neither method is capable of conclusively determining the intrinsic
dimensionality of the space.

Finally, we tested to what extent the initial set of landmarks that
existed when the tool was first made publicly available influenced
the eventual set of user-submitted trees. The initial set of land-
marks comprised 26 trees, most of which are shown in Figure 8.
Our conjecture was that while correlation certainly exists, the user
community was not confined by the initial set in the long term, due
to adaptive refinement of the navigation manifold and the ability to
reach almost any point in the space through the direct sliders inter-
face.

As a preliminary test of this hypothesis, we performed cluster-
ing on the final set of landmarks and measured the number of clus-
ters that are necessary to optimally represent the data. Intuitively,
a good clustering maximizes intra-cluster distance and minimizes
inter-cluster similarity. We iteratively applied k-means clustering
[Lloyd 1982] with increasing k to the set of landmarks and mea-
sured the quality of the clustering after convergence using two dif-
ferent quality measures [Raskutti and Leckie 1999]. Since no ac-
cepted metric exists for determining the optimal number of clusters
in general, we employed two distinct quality measures: the first
biased towards small clusters, and the second towards larger ones.
The first quality measure we evaluated was minimum total distance,
given by

k k
Do 20 I =) + IO X
J=1 \x;€C; j=1

where C} is set of database points in cluster j, C;\'g is the cluster’s

centroid, and x*V® is the global centroid. The second measure was
cluster separation:
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To ensure a reliable estimate for each &, we ran k-means a num-
ber of times until the quality measure did not significantly diminish
for several iterations. Figure 6(c) shows the clustering quality for
each k. For both measures, the optimal number of clusters indicated
is well over 100. We conclude, therefore, that the users collectively
mapped out clusters of desirable trees in the space that were not
represented by the initial 26 landmarks. This point can also be ap-
preciated by examining Figures 8 and 9. The former shows almost
all of the initial landmarks, while the latter demonstrates models
created by users.

8.2 User studies

After the number of downloads of our tool topped five thousand,
we solicited responses to a short survey from users who had re-
quested to be added to our mailing list during the download pro-
cess. These users were presented with a series of statements about
the software and asked to evaluate these via the standard S-point
Likert scale [1932], where 1= ‘strongly disagree’, 3 = ‘neutral’,

120
= Tree Database

S 9% Uniform Distribution
s
£ n
£
S
L 4
<]
£
£ 24

0 4

| 250 500 750 1000 1250
Distance

(a) Pairwise-distance histograms for the set of landmarks and a comparable
set of points chosen uniformly at random. The two sets exhibit markedly dif-
ferent signatures, indicating non-uniform structure in the set of landmarks.
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(b) Residual variance of the set of landmarks versus dimensionality for PCA
and Isomap. The gradual decline of both curves suggests that the dimen-
sionality of the set of desirable trees is high.
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(c) Clustering quality versus number of clusters for the set of landmarks.
The optimal number of clusters is clearly greater than the number of initial
landmarks that were used to seed the space.

Figure 6: Statistical analysis of the set of user-submitted trees.



1 2 3 4 5

| T T T I
Software allows me to create compelling trees o p=3.93,0=0.75
Software allows me to express myself o p=3.60, 0=0.91
Software is engaging o H=3.89,0=0.83
Software is more cumbersome than existing tools o p=2.47,0=0.87
I used the map to explore what trees are possible o p=3.99, 0=0.89
| used the map to explore variants of particular trees o p=3.60, 0=1.04
| was inspired by trees | saw in the map o p=3.79, 0=0.96
The map positively affected the tree | made o p=3.68, 0=0.89
Zooming in the map was helpful —o— p=3.23,0=1.06
The forest map was not helpful o p=2.10,0=0.93
The sliders were not helpful o p=2.24,0=0.94
I used the sliders to adjust particular aspects of trees o p=4.13,0=0.78
I never understood all of the sliders —0o— p=2.37,0=1.25

| | | | |

Likert scale ratings: 1 2 3 4 5

Figure 7: Survey results from 72 users of our software. Error bars
indicate % standard deviation in each direction.

and 5 = ‘strongly agree’. We received complete responses from 72
users; the results of their evaluations are summarized in Figure 7.

The responses seem to largely validate our technique, with a ma-
jority of users indicating that the prototype allowed them to create
compelling models and was less cumbersome than existing tools.
Especially encouraging was the degree to which users found the
software allowed them to express their personal sense of aesthetics
and provide an engaging and even inspiring experience. The survey
also reinforced our hypothesis that users would use the map navi-
gation interface to explore the space and the slider controls to make
fine-detail changes to particular trees.

Our final evaluation was to analyze the collected log information
to determine the modeling times for some of the more visually ap-
pealing and complex trees submitted to the database. We measured
this quantity as the time elapsed between the start of a user’s session
and the time the tree was submitted to the database. The average
creation time for the first 16 trees presented in Figure 9 was 11.6
minutes; more detailed timing information is given in the caption.
It is important to note that these numbers are not from a controlled
setting: all trees shown were created entirely “in the wild.”

9 Discussion and Future Work

The ability to learn the structure of a parametric design space leads
to simple interactive tools for exploring the space and creating mod-
els. One area for improvement is the way we represent the navi-
gational manifold. If the manifold has complex folds and singu-
larities, the method we present may have problems. Additionally,
adaptive density estimation techniques may be more effective than
kernel density estimation if the density of samples varies widely.
Finally, we normalize the distance in each dimension using the
standard deviation of that dimension. Some machine learning tech-
niques, in contrast, first learn the distance metric, and then extract
the structure.

One area that we are actively investigating is the applicability
of this technique to other domains. We have outlined the general
characteristics of a parametric model necessary for our technique
to work. Parametric models of faces, bodies, creatures, vehicles,
furniture all deserve investigation. More challenging are models
that have a combinatorial structure, such as L-systems and recur-
sive procedural models. Whether the presented techniques can be
applied to these more complex models is an open question.

Finally, we are very excited by the opportunities of collabora-
tive modeling. As the Web has taught us, distributed collaboration
infrastructure will catalyze exciting new approaches to solving dif-
ficult problems. We are eager to add support for ratings, recom-

mendations, tagging, and other community filtering mechanisms.
Ratings and recommendations will allow us to associate a quality
metric with each model, which will improve the density estimation
and manifold representation. Tagging will add semantic informa-
tion, enabling new ways of searching and clustering models. Our
hope is that these technologies can be used to build a new genera-
tion of 3D modeling tools.
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Nineteen trees that were used as initial landmarks for the parametric tree space.
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Trees created by users of our modeling software within the first month of release. Trees in the top row were created in under 6
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minutes. Trees in the second row were modeled in under 17 minutes.
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