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Figure 1: A section ofa parametric space of trees.

Abstract considerable training to be used effectively. As a result, 3D model-

We utilize a high-dimensional parametric design space to support a oe 15 Largely done by p3oressionals in the movie and game indus-
novel and intuitive method for 3D modeling. Users visually explore Tes, and not the general popiid ton
the design space and pick models using a continuous, map-like in- Another approach to content creation 1s 3D scanning and motion
terface. We leverage models created by the user community to learn capture, which 1s often called data-drven graphics. In addition
underlying structure in the space via kernel density estimation. This to direct capture of specific objects, data-driven approaches can be
mapping of the space is maintained by a server that synchronizes used to construct more general models of motion, shape, and ap-
all the deployed design tools. The tools leverage the mapping to al- pearance. The basic recipe 1s to scan a large number of objects
low users with no prior modeling experience to easily create unique and then approximate them na low-dimensional parametric space
designs by interpolating between and extrapolating from landmark using machine learning techniques. For example, a library of mo-
models. The result is a self-reinforcing design system that becomes tions can be used to constructa general model of human walking

Our prototype tree modeling tool was downloaded by over six makes it easier for animators to construct new walking sequences,
thousand users from more than eighty countries in the month fol- or to target motion to different skeletal models.
lowing its release. Over fifteen hundred trees were voluntarily Currently this approach requires the ability to digitize real-world
picked from the roughly hundred dimensional tree space. We re- objects. We propose using data-driven graphics techniques with
port on usage patterns gathered through this deployment and on virtual objects that do not exist in the real world. Instead of scan-
subsequent user surveys. ning in objects, we propose to use a collection of objects created

. by a community of users. Each object in our system is an instance
1 Introduction of a parametric model, and the set of all possible parameter values
The widespread availability of 3D graphics hardware and the in- specifies the design space for a particular type of object. We learn
creasing popularity of three-dimensional participatory media such the structure of the parametric space from specific designs, and then
as networked virtual worlds [Miller 2007], game mods [Newman use this structure to enable a more accessible modeling process.
2006; Arendash 2004], and machinima [Marino 2004] are moti- Given a large collection of designs, we use density estimation to
vating many people to attempt to create three-dimensional content. approximate the distribution of good designs in the space. As the
Unfortunately, the creation of high-quality three-dimensional mod- number of models grows, the estimated density function approaches
els 1s a notoriously difficult task. Current modeling tools require this underlying distribution. Thus the structure of the design space

1



is mapped out collaboratively by the entire community of designers. nipulation of these features.
It emerges as a byproduct of self-interested modeling activity on a Blanz and Vetter [1999] attempt to avoid low-quality regions of
community scale. the face space (“unlikely faces”) by fitting a single Gaussian dis-

Using the density function, we construct a map of the design tribution to the examples. Our work uses more principled density
space. The map is a function from two dimensions to the parametric estimation inspired by practices in applied statistics and is capable
space. Thus, modeling can be performed by picking new points on of capturing local quality variations, such as clusters of quality in
this map. The map can also be used for navigation, mitigating the the space. Matusik et al. [2003] extract the relevant portion of a
complexity of design tasks. BRDF space using linear and non-linear dimensionality reduction,

We created and deployed a prototype tree modeling tool to eval- successfully reducing the dimension from roughly 100 to about 10.
uate these techniques. Figure 1 illustrates the parametric space used Our approach 18 complementary and 18 applicable even when the
by this tool. The tool was released to the public one month before intrinsic dimensionality of the Space 1s high. Another distinction 18
the submission of this paper and has already been downloaded by that we do not rely on a priori availability of large collections of
more than six thousand unique users, resulting in the submission of examples: we instead source these directly from the user commu-
over fifteen hundred tree models to our centralized database. Pre- nity.
liminary studies indicate that a majority of users believe our soft- Ngo et al. [2000] propose to avoid low-quality regions(“a typ-
ware allows them to create compelling tree models and is less cum- ical parameterized graphic ... contains nonsense images in much
bersome than existing tools. higher proportion than desirable images”) by modeling the desir-

able portion of the space as a product of simplicial complexes.
2 Related Work Simplicial complexes are also used by Matusik et al. [2003] to cir-

Intuitive modeling interfaces. The difficulty of traditional 3D cumscribe parts of a space of textures. Their simplicial complexoo : is constructed from 1500 examples. Unlike [Ngo et al. 2000], Ma-
modeling is well known. A popular alternative approach uses tus ) :: : : usik et al. [2005] describe a technique for computing the topology
sketching to reduce the modeling task to a series of 2D freeform : :

of the complex from the underlying geometry, rather than relying
strokes. In the Teddy system [Igarashi et al. 1999], the user traces : : :

) Co : on manual specification by the user. Both approaches require ex-
the silhouette of a 3D shape, which inflates accordingly. Many y tT : :

: : : ) plicit availability of extremal instances from the space, which serve
operations like extrusion, smoothing, and cutting are supported. : :

: as vertices. These extremal instances are used to sharply demar-
SmoothSketch [Karpenko and Hughes 2006] interprets the sketched : ) : : : : :

Lo : cate the quality regions. While widely applicable, this technique
curves as perceptual contours and fills in hidden cusps. FiberMesh co Te :

: ) is less appropriate in situations where only an incomplete set of
[Nealen et al. 2007] extends the sketching metaphor by embedding Co Ce : ay

: : representative instances is initially available, and when quality is a
the defining curves on the surface of the three-dimensional shape. : : :

continuous (rather than binary) function.
The curves can be directly manipulated, serving as handles that con- 0 oo : : :: ne of the contributions of our work is a continuous map-like
trol the object. : : : : :

CL interface for exploring high-dimensional parametric spaces. The

Another prominent direction is image- and video-based model- interface maintains perceptual continuity in two dimensions, while
ng, which aims to reconstruct real-world objects from photographs still allowing the entire space to be explored by the user commu-
and video sequences. A recent highlight in image-based modeling nity. Navigation in high-dimensional design spaces is a recog-
is Furukawa and Ponce [2007]. For a video-based approach see nized problem in computer graphics. Traditional approaches cen-
VideoTrace [van den Hengel et al. 2007], which reconstructs 3D tered around direct parameter control (e.g., via sliders) quickly be-
scenes from video streams, inferring geometric information from come intractable as the number of parameters grows. Marks et al.
user-drawn contours. nN [1997] describe a set of interfaces for parameter setting that typi-

~ Anderson et al. [2000] utilize physical creation processes to hd cally present a discrete set of landmarks sampled from the space.
sist digital modeling. Their first system uses instrumented Lego™:- The sampling is guided by criteria designed to maximize the land-
like building blocks. The user assembles these into a physical struc- marks’ usefulness. Ngan et al. [2006] describe an interface for pa-
ture, which is converted to a geometric model and embellished by rameter setting in a space of BRDFs, making extensive use of an
the system. A second prototype infers the geometry of a physical original image-based distance metric.
clay sculpture from images and retrieves a matching model from a

library. The stored library models can be rigged and animated in Large scale collaboration. Our system harnesses self-interested
advance, thus aiding the creation process. actions by members of a large distributed user community. Statis-
A number of systems in the game industry let a player assemble tical techniques are applied to derive global knowledge from this

a 3D object from parts, each chosen from a catalogue. An advanced pool of collective activity. This knowledge is then used to improve
implementation, in which the components are deformable and the the experience of each user, creating a positive feedback loop. This
resulting object can be animated, is described by Choy et al. [2007]. approach can also be seen in collaborative filtering, which aggre-

gates the preferences of many users to generate personalized rec-
Parametric spaces in graphics. High-dimensional parametric ommendations for individuals [Adomavicius and Tuzhilin 20035].
spaces are central to data-driven graphics. The landmark work of Since its introduction in the early 90s [Goldberg et al. 1992], collab-
Blanz and Vetter [1999] constructs a space of 3D faces from 200 orative filtering has become a Web mainstay [Linden et al. 2003].
example models. Every point is a linear combination of the ex- More recently, community-scale self-interested activity has been
amples. High-level attributes that correspond to meaningful fea- used for image labeling, object recognition in images, and the col-
tures like age, weight, and gender can be represented as vectors lection of semantic information [von Ahn and Dabbish 2004; Su
and learned from tagged examples. New faces can be modeled by et al. 2007].
adjusting these high-level attributes via sliders. Another example of mining collective activity in computer

Allen et al. [2003] extend this approach to entire human models, graphics is recent work leveraging large image collections sourced
reconstructing a space of body shapes from 250 scanned human from the Web. Snavely et al. [2006] present an interface for in-
figures using a sophisticated registration algorithm. In appearance teractive exploration of image collections taken at particular geo-
modeling, Matusik et al. [2003] generate a space of bidirectional graphic locations, leading to an engaging virtual tourism experi-
reflectance distribution functions (BRDFs) through the acquisition ence. Lalonde et al. [2007] use image collections to seamlessly
of over 130 real-world examples. Both of these works represent embed novel objects in existing photographs. Finally, Hays and
high-level features as vectors in the space and allow individual ma- Efros [2007] describe a novel scene completion algorithm using an
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Internet-scale image database.

Tree modeling. Although the focus of our work is not tree mod-
eling per se, our prototype tree modeler builds upon extensive prior
research in the field. As described in Section 6, we extend the

work of Weber and Penn [1995], which follows earlier approaches
[Honda 1971; Oppenheimer 1986] in specifying trees as vectors
from a high-dimensional parametric space. Much other work in the
area focuses on grammars [Prusinkiewicz and Lindenmayer 1990],

culminating in powerful systems that can yield striking visual re- . . : Co Co

sults [Méch and Prusinkiewicz 1996; Prusinkiewicz et al. 1994; Pgure 2: Parzen density estimation jor a set of poinis in one
Prusinkiewicz et al. 2001]. Lintermann and Deussen [1998] de-

scribe a tree modeler that combines rule-based and parametric in-
terfaces. Substantial recent progress has also been made on sketch-
and image-based approaches [Neubert et al. 2007; Okabe et al. where K' 1s an appropriate kernel. We use the Gaussian kernel
2005; Quan et al. 2006; Reche-Martinez et al. 2004; Shlyakhter
et al. 2001; Tan et al. 2007]. A comprehensive introduction to the K(x, x) = G(x; x, X) =

field can be found in [Deussen and Lintermann 2005]. 1 1 T a1 |——————exp |[—=(x —%;)” XT (x —x4)],
] (27)"/2 | Z| 1/2 2

3 Overview

We propose using the self-interested design activity of a community where the k*" entry of the diagonal covariance malrix i 1s set to
of users to build better tools for 3D modeling. Our system has a constant multiple of the sample variance of the £™* parameter of
two main components. The first is a central server that stores a points in {x; }:
large number of individual designs created by the community. The N
second is a client modeling tool that allows individuals to design & — 12

new objects. kk = N ) (x2), - (xi)
The first key idea behind our system is that we learn properties =

of the space of good designs from the collection of specific models Here c is an appropriate constant and (x1), is the sample mean of
selected by users. Our conjecture is that this space has structure, th
and that good designs are not just random collections of parame- the &™* parameter. A
ters. We learn this underlying structure using density estimation, a Our system uses the density function f(x) to draw samples from
technique common in machine learning and computational statis- the design space. Since f(x) is a uniform mixture of Gaussian
tics. Our approach is described in detail in Section 4. kernels, it can be sampled efficiently by first choosing uniformly

The modeling system itself is based on parametric models, which a random index 1 < i < [V and then drawing a sample from
are ubiquitous in graphics. For example, the parametric model of G(x; xi, X). oo
an articulated rigid skeleton might be a set of joint angles. A para- Our modeling interface, described in Section 3, further relies on
metric model of a face could be a collection of weights for a set the ability to sample from f(x) in the local neighborhood of a point
of blend shapes. In this paper, we employ a parametric model of xo. To accomplish this, we draw samples from probability distri-
trees. Section 6 describes both the general requirements for a para- butions of the form
metric model to be compatible with our method and the particular 1 k
tree model used in our system. —G (x; Xo, 30) - f(x),

The second key idea is that we can greatly improve the modeling 7
process itself by leveraging the structure learned from the commu- where ¢ is a normalizing constant. Intuitively, we bias the sample
nity. In Section 5 we describe an intuitive map-like interface for to be close to xo while still adhering to the quality distribution. To
selecting models and exploring design spaces. This extends tech- perform this sampling efficiently we notice that
niques common in the dimensionality reduction literature. In partic-

ular, we designate a smooth two-dimensional manifold that passes 1 G (x; <3 7(x) =through known high-quality regions of the design space and adap- © 00 0
tively refine this manifold as users pan and zoom across it. This N

refinement process, which makes extensive use of our density es- 1 G(x; x0, 30) : (+ > G(x; Xi, ®)) _timation technique, ensures that we allow navigation of the entire Ys) N pa
design space, instead of unnecessarily restricting users to some sub- N

setof it 93 (0x0, 20) (xix. 2) =
4 Density Estimation 7

Given a set of landmarks points that represent specific user-selected tL > (9 (x0; X;, 20 + >) g (x; Xj, =) :designs, we wish to estimate the density of quality designs in dif- pIN i=1
ferent regions of the space. Let {x;} be a set of N landmarks from
an n-dimensional parametric space ID, assumed to be drawn from a where

probability density function f(x). An approximation f(x) of f(x) > (=5" in =) —1 andcan be recovered with the Parzen estimate (Figure 2): - 0
x = (x05 + x; 37) x

N

F(x) _ 1 3 K(x,x:) These inverses can be computed rapidly since 3 and 3g are di-
N — TY agonal. Each of the summands is now a scaled Gaussian and the

3



contribution of summand ¢ to the probability mass is proportional oi M(x) Ww
to the constant G (xo; Xi, 20 + 2). Thus we can sample from lo)

SG (x; x0, 30) f(x) efficiently by choosing an index 1 < ¢ < N 1
with probability M' J

G (x0; %i, 20 + X)

>. 6 (x05%4, Xo + X) II . i
and then drawing a sample from G (x; x}, X'). R

5 Navigational Manifold

To make the problem of navigating a high-dimensional space O
tractable, traditional approaches often impose significant restric- pa
tions on users. For instance, at any given time a user might be

forced to choose between a discrete set of landmark pomnts, or Figure 3: Refining a section of M to generate a new manifold M’.
to move only along axis-aligned orthogonal paths in the design 1 p
space. Traditional dimensionality reduction techniques typically We sample » G(x; M(x), >) f(x) to generate {wv, w} < .
force navigation to stay within a single static low-dimensional sub- wand v are added as transient landmarks. w is not used since it is
manifold, which is unsatisfactory if the intrinsic dimensionality of too far awayfrom I.
the desirable regions in the space is believed to be high.

Our learned quality distribution f(x) enables the design of a
new interface for navigating through high-dimensional paramet- IT that represents an unmapped area of the design space, and is one
ric spaces. To allow users to explore the space and select partic- of the primary ways in which users explore and map out new re-
ular designs, we define a mapping from a rectangular portion of gions of ID. The transient landmarks introduced in this manner are
screen space, RR, to points in ID. This mapping defines a curved kept only for the duration of the current modeling session and are
two-dimensional manifold M in ID that interpolates the set of user- not propagated to a central database or other modeling tools.

designated landmarks {x;} and is monotone with respect to a two- Let x be the center of R. To generate a transient landmark, we
dimensional subspace IT of D. This monotonicity ensures that M sample from F(x) in the neighborhood of M(x), as described in
can be efficiently projected and visualized in two dimensions, al- : : ~
lowing users to explore M by panning and zooming R like an in- Section 4. If the generated sample projects sufficiently close to IR,
teractive map we add it to the set of landmarks; otherwise we try again. If the

In contrasX to traditional manifold embedding techniques, M is user navigated to a region that 1s far from all current landmarks and
not held static but is instead adaptively refined as users explore RR. no 1Xi} project in the neighborhood of It to begin with, it is un-
In particular, when a user navigates to a region of R that contains likely that this process will terminate within an acceptable amount
" | A of time. In this case we sample from G(x; M(x), 3p) directly.ew points from {x;},new points are sampled from f(x) and added Wi ted te transient landmarks until the threshold & i
to M. In this manner our method allows the user community to © Tepraredly Senerae tansient 1andmarks Unit the tresho 1

: : : 1 reached. This process is illustrated in Figure 3.
collectively explore the parametric space, while guiding users to
regions of the design space that are believed to be high quality. 5.2 Visualization

The manifold M is defined with the help of Principal Compo- CL

nent Analysis (PCA), although M itself is re linear. och ara: At any given time, the manifoldM is visualized through the screen
eter of every point in {x;} is normalized to the range [0, 1] using space rectangle IR, which corresponds to the rectangular region i
the absolute range of the parameter if this range is bounded and the on IL In our system, as users mouse over R, the cursor position 1s
current range of the parameter in the set {x;} if it is not. We then re- registered and is used to update a three-dimensional visualization of
center this normalized set about the origin, perform PCA on it, and the corresponding model from D. To assist the exploration process,
pick the two dominant eigenvectors to obtain the two-dimensional we display a set of icons at points in 1% that depict the correspond-
subspace II. The orthogonal projection matrix from ID onto II is ing three-dimensional models in M. We heuristically determine
denoted by P*. For each i, define 7; = P1x;. a target number of icons and their desired screen-space size. This

The manifold M is defined through IT. Let M be the following visualization method 1s illustrated in Figure 4.
function from II to ID: To determine which icons to display, we first compute the set

Sa (7) x4 of landmarks that project onto 2. We shuffle this set and iter-
a PPV Yilx # ate through it, attempting to place each corresponding icon on R.

M(x) = >i Pu (Z4) : A Poisson-disk rejection criterion [Cook 1986] is used to prevent
X; : T= ZT; icons from overlapping. Placement ends when the number of icons

reaches the target or when the set of suitable landmarks is ex-

where ¢5(y) is an appropriate radial basis function such as hausted. In the latter case, a set of novel icon locations is generated
¢=(y) = ||x —y||">. The manifold M is simply the set by Poisson-disk sampling. Since it is not essential that the target
{M(x) | x € II}. Note that adding a new landmark x to {x;} al- number of icons is reached, this process is capped at a small num-
ters every point in M \ {x;}, though in practice this is noticeable ber of iterations to prevent it from becoming stuck in problematic
only for points near x. areas.

5.1 Adaptive refinement 6 Parametric Models

Consider a particular rectangular region I? on II that a user wishes We define a parametric model to be a mapping from a set of pa-
to examine. If the number of landmarks from {x;} that project onto rameters to a renderable object. The number of parameters in the
R exceeds some threshold k, we consider M to be sufficiently de- model defines the dimensionality of the parametric design space.

tailed in this region. Otherwise, we refine this section of M by Such models are ubiquitous in computer graphics and used in a va-
introducing transient landmarks sampled from f(x). This refine- riety of applications.
ment generally happens when a user zooms or pans to a region of In order for a parametric space to be mappable with our method,
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Figure 4: (Left) A screenshot ofourprototype tree modeling tool. (Right) Users can toggle between this directparameter adjustment interface
and the map interface shown on the left.

it must possess two important properties. In particular, the space behavior violates our continuity requirement and we modified all
must be: such parameters to be interpreted consistently, either by discarding

one of the operational modes or by splitting the parameter into two.

Metric: The parameter space must have a metric so that the dis- Enforcing continuity required several other changes to the pa-
tance between points can be computed. Ideally, this metric rameter space. One such modification is the reinterpretation of Lev-
should correspond to perceptual distances between models, els as a floating point (rather than integer) parameter. This parame-
but determining such metrics is extremely difficult and well ter is reinterpreted in a natural way, so that a tree with Levels = /
beyond the scope of this paper. In practice, we have had sat- has [¢] physical levels, with proportion £ — |£] of its total leaves
isfactory results with the standard Euclidean metric. distributed at level |£] — 1 and the remaining 1 — ¢ + |£] at level

|£]. Furthermore, the length of the branches on level |£] is set to
Continuous: In order for our technique to be effective, we re- be ¢ — | £] times the length of the branches on level |£] — 1. There-

quire a sort of geometric and perceptual Lipschitz continuity. fore, trees that differ only in Levels appear to “morph” smoothly
Namely, points that are close in the design space should corre- into one another as one interpolates between them, instead of pop-
spond to perceptually similar models. In particular, we must ping discontinuously into visual equivalence. For the same reason,
be able to meaningfully interpolate between design space we are meticulous when assigning random seeds, so that the seeds
points, although it is not strictly necessary that all parameters of corresponding branches in different trees are always equal. In
be real-valued. this manner it is possible to smoothly interpolate one tree into an-

other by traversing a contiguous path in the design space.

6.1 Tree space We found some of the parameters in Weber and Penn to be un-

To test the ideas presented in this paper, we built a tool to explore a necessary, either because they were redundant, linearly dependent,
parametric space of trees. We chose trees for a number of reasons. or merely contributed little to the expressive power of the Space.
First, trees are ubiquitous in multi-user 3D environments like games We removed as many of these parameters as possible while still
and virtual worlds and there is significant demand for good tree retaining perceptual completeness.

models. Second, trees have complex and interesting structure that 7 Tree Modeling Prototype
encourages playful exploration, and are familiar to casual computer
users and expert modelers alike. Last, there exists a large body In our tree modeling prototype, the map interface is displayed in
of literature on tree construction and several excellent parametric the right pane and the user’s currently selected tree is shown in the
models are available. We based our space on the model developed left (see Figure 4, left). By clicking and dragging in the left pane,
by Weber and Penn [1995]. the camera can be rotated around the displayed tree. The tool ini-
We made several changes to Weber and Penn’s original param- tializes to a default Christmas tree, and in this fashion the cognitive

eter specification in order to create a design space appropriate for stumbling block of starting with a blank screen is avoided. The cur-
our technique. Although we highlight the most important modi- rent tree can be saved by the user at any time as an OBJ file; when
fications in the following paragraphs, space does not permit us to this occurs, the corresponding design space point is uploaded to our
completely describe the resultant model, which has ninety-eight di- centralized server. The interface also provides standard undo/redo
mensions. For those interested in reproducing our results, we will functionality and a “randomize” button that produces a variant of
make source code for our parametric model available along with the current tree by changing the random seed.
this paper. A toggle switches between the map navigation interface (Figure

In the Weber and Penn model, parameters frequently trigger con- 4, left) and a slider interface that gives precise control over most
ditional modes of execution. For example, the interpretation of a of the individual parameters in the space (Figure 4, right). The
particular parameter can vary greatly depending upon its sign. This user 1s free to alternate between the two at any time. When a user
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Figure 5: (Top) Six points chosen uniformly at randomfrom the tree space. (Bottom) Six points sampledfrom our density function.

modifies the tree using sliders and then returns to the map interface, 8 Results

the tool ads the modified tree to the set of transient landmarks and Our tree modeling prototype was made available to the public ex-
recentets the map around it. actly one month before the time of this writing. In this period it has

As the user mouses over the map, the displayed three- been downloaded 6,868 times by users in 88 countries, resulting in
dimensional tree model continuously updates to the corresponding the creation of 1,545 unique tree models. To analyze the effective-
point in the parameter space. The user can click on any point in the ness of our technique, Ve Performed statistical analysis on the set
map to select it as the current tree. The map itself may be panned of Mapped landmarks in the parametric space. We also conducted
and zoomed: clicking and dragging causes the displayed region i a detailed user study by mining the database of anonymous usage: : : logs and soliciting responses to a short survey.
on II to translate accordingly, while moving a zoom slider causes 8 & IeSp y
R to expand or contract. 8.1 Tree space analysis

Our modeling client is written in C++ and uses OpenGL for ren- We analyzed the set of user-submitted landmarks to test a number
dering. To facilitate crossplatform development, we made extensive of hypotheses about the tree space and ourmethodology. :
use of the Qt framework [Trolltech Inc. 2007]. Because the geome- First, we conjectured that the distribution of desirable trees in
try generated by the client is complex and because we employ many fhe 5i has sructure: that: 1s not uniform. Johhis end pi
advanced real-time rendering techniques (such as environment- P. ~ a. of K d ’. P a o © ; an Jy Ne 456
based lighting, bump-mapping, and render-to-texture), our modeler N SAMPICS PICREC UNIOMMTY dL TACO Hom WITHIN 11¢ min
requires a relatively modem graphics cord imal bounding box of the user-submitted set. Figure 6(a) shows

the pairwise-distance histograms of the two sets. For a given inte-

Our centralized tree server is written in Ruby and is based on gral distance value, each histogram shows the number of pairsof
Mongrel [Shaw 2007], a fast HTTP server library. SQLite [Hwaci points from the corresponding point set whose rounded pairwise
2007] is used to store and manage tree data and user information distance is at that value. A tell-tale sign of random point sets in
on the backend. To ensure the stability of the system in the face of high-dimensional spaces is that the set of their pairwise distances is
many simultaneous users, we employ Pound [Apsis Security 2007], sharply concentrated around the mean [Weil and Wieacker 1993].
a load-balancing reverse HTTP proxy. This is reflected by the spiky appearance of the distance histogram

for the random point set. The set of user-submitted landmarks, onp . . . .
At the beginning of a modeling session, the client sends a GET the other hand, exhibits a much wider distance distribution, indicat-

request to the server, which responds with a list of parameters for ing significant non-uniformity. The Same conjecture can be qual-
any newly-added landmarks from the tree space that are not present itatively confirmed through simple examination, as demonstrated
in the client’s cache. The server also sends several numeric con- in Figure 5. The top row shows typical random samples from the
stants, allowing us to modify settings after the initial deployment tree space. The bottom row shows typical random samples from
of the software. The set of landmarks is updated only when the the probability density function f(x) learned from the set of user-
client initializes so as to avoid perceptual discontinuities within a mapped landmarks.
given session. When a user saves a local copy of a tree mesh, the We also found that the set of user-submitted landmarks appears
client sends a PUT request with the parameters of the correspond- to have high intrinsic dimensionality. This lends further support to
ing point from the parametric design space. These are parsed by the use of density estimation in this context, instead of dimension-
the server and added to the central landmark database. Addition- ality reduction alone. We employed two established dimensionality
ally, each client keeps a log of user interactions with the interface reduction techniques: Principal Component Analysis and Isomap
and periodically uploads this log to server, where it is hashed with a [Tenenbaum et al. 2000]. PCA finds the best-fit hyperplane through
randomly generated per-client ID. In this manner we are able to ob- the data, while Isomap attempts to fit a nonlinear manifold. To
serve how large numbers of users interact with the software, while evaluate the extent to which these methods approximate the data,
protecting their anonymity. we examined the residual variance [Tenenbaum et al. 2000]. The
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residual variance is given as 1 — R?(D,,, D,,) where D,, is the ma-
trix of Euclidean distances recovered by the algorithm, D,, is the
algorithm’s best estimate of the intrinsic manifold distances, and RR?

is the standard linear correlation coefficient taken over all entries
of D, and D,,. Figure 6(b) shows the residual variance plotted
against dimensionality.

In both cases, the residual variance decreases as the dimensional- 120
ity is increased. PCA eventually becomes stuck, demonstrating its — Tree Database
inability to properly approximate the set of desirable trees. Isomap = 9% Uniform Distribution
is able to obtain a good reconstruction only at about forty dimen- 3S

sions. The lack of a sharp “elbow” (point at which the curve ceases 2 7
to decrease significantly with added dimensions) demonstrates that =

neither method is capable of conclusively determining the intrinsic 48

dimensionality of the space. 0
Finally, we tested to what extent the initial set of landmarks that S24

existed when the tool was first made publicly available influenced
the eventual set of user-submitted trees. The initial set of land- 0

marks comprised 26 trees, most of which are shown in Figure 8. 250 500 750 1000 1250
Our conjecture was that while correlation certainly exists, the user Distance

community was not confined by the initial set in the long term, due (a) Pairwise-distance histograms for the set of landmarks and a comparable
to adaptive refinement of the navigation manifold and the ability to set of points chosen uniformly at random. The two sets exhibit markedly dif-

;each almost any point in the space through the direct sliders inter- ferent signatures, indicating non-uniform structure in the set of landmarks.ace.

As a preliminary test of this hypothesis, we performed cluster-
ing on the final set of landmarks and measured the number of clus- 0.70
ters that are necessary to optimally represent the data. Intuitively, = Isomap

a good clustering maximizes intra-cluster distance and minimizes ° 0.56 PCA
inter-cluster similarity. We iteratively applied k-means clustering =
[Lloyd 1982] with increasing k to the set of landmarks and mea- g 0.42
sured the quality of the clustering after convergence using two dif- E

ferent quality measures [Raskutti and Leckie 1999]. Since no ac- Z 0.28
cepted metric exists for determining the optimal number of clusters or
) ; : 0.14
in general, we employed two distinct quality measures: the first

biased towards small clusters, and the second towards larger ones. 0
The first quality measure we evaluated was minimum total distance, 5 0 I5 20 25 30 35 40 45 50

stven by Dimensions
k k (b) Residual variance of the set of landmarks versus dimensionality for PCA

> > 1% _ cr + > jee — xe | : and Isomap. The gradual decline of both curves suggests that the dimen-, , sionality of the set of desirable trees is high.
Jj=1 \x; €C; j=1

where C; is set of database points in cluster j, Cie is the cluster’s 10
centroid, and x*V# is the global centroid. The second measure was ”
cluster separation: Ss 08

o

k —1 5

5 (mc|x: — or) g 06= \ming|G — CFF 3 0.4
N

To ensure a reliable estimate for each k, we ran k-means a num- £ 02 | Mini Total Di
ber of times until the quality measure did not significantly diminish 5S — Separated Ch anaance
for several iterations. Figure 6(c) shows the clustering quality for 0
each k. For both measures, the optimal number of clusters indicated | 10 20 30 40 50 60 70 80 90 100 110 120

is well over 100. We conclude, therefore, that the users collectively _——
mapped out clusters of desirable trees in the space that were not
represented by the initial 26 landmarks. This point can also be ap- (c) Clustering quality versus number of clusters for the set of landmarks.

”" The optimal number of clusters is clearly greater than the number of initial
preciated by examining Figures 8 and 9. The former shows almost landmarks that were used to seed the space
all of the initial landmarks, while the latter demonstrates models pace.
created by users.

8.2 User studies Figure 6: Statistical analysis of the set of user-submitted trees.
After the number of downloads of our tool topped five thousand,
we solicited responses to a short survey from users who had re-
quested to be added to our mailing list during the download pro-
cess. These users were presented with a series of statements about
the software and asked to evaluate these via the standard 5-point
Likert scale [1932], where 1 = ‘strongly disagree’, 3 = ‘neutral’,
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2 3 4 > mendations, tagging, and other community filtering mechanisms.
Software allows me to create compelling trees A Ratings and recommendations will allow us to associate a quality

E metric with each model, which will improve the density estimation
Software allows me to express myself Oo p=3.60, 0=0.91 . . . . .

Software is engaging PSrE PPO and manifold representation. Tagging will add semantic informa-
Software is more cumbersome than existing tools HO p=2.47, 0=0.87 tion, enabling new ways of searching and clustering models. Our

| used the map to explore what trees are possible HO  |u=3.99 0=083 hope 1s that these technologies can be used to build a new genera-
| used the map to explore variants of particular trees —O— p=3.60, 0=1.04 tion of 3D modeling tools.

| was inspired by trees | saw in the map Oo p=3.79, 0=0.96

The map positively affected the tree | made Oo p=3.68, 0=0.89 References
Zooming in the map was helpful =o h=3.23,0=1.06 ADOMAVICIUS, G., AND TUZHILIN, A. 2005. Toward the next generation
The forest map was not helpful =o U=2.10,0=0.93 of recommender systems: a survey of the state-of-the-art and possible

The sliders were not helpful =O u=2.24,0=0.94 extensions. Transactions on Knowledge and Data Engineering 17, 6,
| used the sliders to adjust particular aspects of trees HOH p=4.13, 0=0.78 734-749.

| never understood allof the sliders Ho h=237, 071.25 ALLEN, B., CURLESS, B., AND POPOVIC, Z. 2003. The space of human
Likert scale ratings:tt body shapes: reconstruction and parameterization from range scans. In

SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, ACM, New York, NY,

USA, 587-594.
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Figure 8: Nineteen trees that were used as initial landmarksfor the parametric tree space.
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Figure 9: Trees created by users of our modeling software within the first month of release. Trees in the top row were created in under 6
minutes. Trees in the second row were modeled in under 17 minutes.


