
MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, >

< USERGUIOES, PROGRAMMERS-GUIDE.NLS;5, >. 3-Sep-19 10:34 LEN
;;;;Version with directives located in <~OURNAL,34210.>
Send requests for printed copies to (FEEDBACK>.
TABLE OF CONTENTS

INTROOUCTION •• 2
PART ONE: Content Analyzer Patterns •••••••••••••••••••••••• 3

Section 1: Introduction •••••••••••••••••••••••••••••••• 3A
Section 2: Patterns •••••••••••••••••••••••••••••••••••• 3B
Section 3: Examples of content Analyzer Patterns ••••••• 3C
Section 4: Using the content Analyzer •••••••••••••••••• 3D

PART TWO: Introduction to LIO Programming •••••••••••••••••• 4
Section 1: Content Analyzer Programs ••••••••••••••••••• 4A

Introduction •• 4A1
Program Structure ••••••••••••••••••••••••••••••••••• 4A2
Procedure Structure ••••••••••••••••••••••••••••••••• 4A3
Example: ••• ~4A4
Declaration Statements •••••••••••••••••••••••••••••• 4A5
Body of the Procedure ••••••••••••••••••••••••••••••• 4A6
Programming Style: File Structure ••••••••••••••••••• 4A7
Using Content Analyzer Programs ••••••••••••••••••••• 4A8
Problems •• 4A9

Section 2: Content Analyzer Programs: Modifying •••••••• 4B
Introduction •• 4B1
String Construction ••••••••••••••••••••••••••••••••• 4B2
Example: •• 4B3
More Than One Change per Statement •••••••••••••••••• 4B4
Controlling Which statements are Modified ••••••••••• 4B5
Problems •• 4B6

PART THREE: Basic liD Programming •••••••••••••••••••••••••• 5
Section 1: The User Program Environment •••••••••••••••• 5A

Introduction •• 5A1
The Sequence Generator •••••••••••••••••••••••••••••• 5A2
Content Analyzer Filters •••••••••••••••••••••••••••• 5A3
The Portrayal Formatter ••••••••••••••••••••••••••••• 5A4

Section 2: Program Structure ••••••••••••••••••••••••••• 58
An NLS user program consists of the following ••••••• 5Bl
An example of a simple LID program •••••••••••••••••• 5B2

Section 3: Declarations •••••••••• ~ ••••••••••••••••••••• 5C
Introduction •• 5C1
Variables ••• 5C2
Simple Variables •••••••••••••••••••••••••••••••••••• 5C3
Constants ••• 5C4
Arrays •• 5C5
Text Pointers ••••••••••••••••••••••••••••••••••••••• 5C6
Strings ••• 5C7
Referenced Variables •••••••••••••••••••••••••••••••• 5C8
Declaring Many Variables in One Statement ••••••••••• 5C9
Declaring Locals ••••••••••••••••••••••••••••••••••• 5ClO

Section~: Statements •••••••••••••••••••••••••••••••••• 5D
Introduct1on •• 5D1
Assignment •• SD2
BUMP Statement •••••••••••••••••••••••••••••••••••••• 5D3
IF Statement •• 5D4
CASE Statement •••••••••••••••••••••••••••••••••••••• 5D5
LOOP Statement •••••••••••••••••••••••••••••••••••••• 5D6

1

MARY. 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;!, >

WHILE ••• DO Statement •••••••••••••••••••••••••••••••• 5D7
UNTIL ••• DO Statement •••••••••••••••••••••••••••••••• 508
DO ••• UNTIl/OO ••• WHILE Statement ••••••••••••••••••••• 5D9
FOR ••• DO Statement ••••••••••••••••••••••••••••••••• 5Dl0
BEGIN ••• END Statement •••••••••••••••••••••••••••••• 5Dll
EXIT Statement •••••••••••••••••••••••• ~ •••••••••••• 5D12
REPEAT Statement ••••••••••••••••••••••••••••••••••• 5D13
DIVIDE Statement ••••••••••••••••••••••••••••••••••• 5014
PROCEDURE CALL Statement ••••••••••••••••••••••••••• 5D15
RETURN Statement ••••••••••••••••••••••••••••••••••• 5D16
GOTO Statement ••••••••••••••••••••••••••••••••••••• 5011
NULL Statement ••••••••••••••••••••••••••••••••••••• 5D18

Section 5: Expressions ••••••••••••••••••••••••••••••••• 5E
Introduction •• 5E1
Primitives •• 5E2
Operators ••• 5E3
Expressions ••• 5E4

Section 6: String Test and Manipulation •••••••••••••••• 5F
Introduction •• 5F1
Current Character Position (CCPOS) •••••••••••••••••• 5F2
FIND Statement •••••••••••••••••••••••••••••••••••••• 5F3
FIND Patterns ••••••••••••••••••••••••••••••••••••••• 5F4
String Construction ••••••••••••••••••••••••••••••••• 5F5
[xample: •• 5F6
More Than One Change per Statement •••••••••••••••••• 5F7
Text Pointer Compar;sons •••••••••••••••••••••••••••• 5F8

Section 7: Invocation of User Filters •••••••••••••••••• 5G
Introduction •• 5G1
Programs Subsystem •••••••••••••••••••••••••••••••••• SG2
Examples of User Programs •••••••••••••••••••••••••• 5G3

PART FOUR: Interactive LIG Programming ••••••••••••••••••••• 6
Section 1: Introduction •••••••••••••••••••••••••••••••• 6A
Section 2: Command Meta Language (CML) ••••••••••••••••• 6B

Introduction •• 6B1
Program Structure ••••••••••••••••••••••••••••••••••• 6B2
Subsystems •• 6B3
Rules ••• 684
Oeclarations •• 6B5
CML Elements •• 6B6
Sample CML Program •••••••••••••••••••••••••••••••••• 6B1

Section 3: LlO Execution Procedures •••••••••••••••••••• 6C
Section 4: Additional LIO Capabilities ••••••••••••••••• 6D

Introduction •• 6D1
Moving Around Within NLS Files •••••••••••••••••••••• 6D2
Calling NLS Commands ••••••••••••••• ~ •••••••••••••••• 6D3
Opening Files ••••••••••••••••••••••••••••••••••••••• 6D4
Displaying Messages ••••••••••••••••••••••••••••••••• 6D5
Setting Up for Display Refreshing ••••••••••••••••••• 6D6
Other Useful Procedures ••••••••••••••••••••••••••••• 6D7
Globals of Interest ••••••••••••••••••••••••••••••••• 6D8

Section 5: Creating and Using Attachable Subsystems •••• GE
PART FIVE: Advanced Programming Topics ••••••••••••••••••••• 7

Section 1: Error Handling -- SIGNALs ••••••••••••••••••• 7A
Section 2: NDDT Debugging •••••••••••••••••••••••••••••• 7B

Introduct1on •• 181
Accessing NODT •••••••••••••••••••••••••••••••••••••• 1B2

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAKMERS-GUIDE.AUG;l,) 3

NODT Address Expressions •••••••••••••••••••••••••••• 1B3
Single-Word Variables ••••••••••••••••••••••••••••••• 7B~
String Variables •••••••••••••••••••••••••••••••••••• 7B5
Records ••• 7B6
Built in NODT symbols ••••••••••••••••••••••••••••••• 7B7
Special character commands •••••••••••••••••••••••••• 788
Traces and Breakpoints •••••••••••••••••••••••••••••• 789
LiO Procedures ••••••••••••••••••••••••••••••••••••• 7B10
Symbols •• 1BI1
Scanning for Content ••••••••••••••••••••••••••••••• 7812

Section 3: Writing CML Parsefunctions •••••••••••••••••• 7C
Section 4: Calculator CapabiLities ••••••••••••••••••••• 7D

Introduction •• 70I
Converting String to Double-Precision Float1ng •••••• 1D2
Converting Floating Point to String ••••••••••••••••• 7D3
Calculations with Foating Point ••••••••••••••••••••• 7D4

Section 5: Fields and Records •••••••••••••••••••••••••• 7E
Section 6: Stacks and Rings •••••••••••••••••••••••••••• 7F
Section 7: Using the Sequence Generator •••••••••••••••• 1G

Introduction •• 1GI
Co-Routine Effect ••••••••••••••••••••••••••••••••••• 7G2
Sequence Work Area •••••••••••••••••••••••••••••••••• 7G3
Displaying Strings •••••••••••••••••••••••••••••••••• 7G4
Using Sequences ••••••••••••••••••••••••••••••••••••• 7G5

Section 8: Conditional Compiling ••••••••••••••••••••••• 7H
ASCII 7-811 CHARACTER COO£8 ••••••••••••••••••••••••••••••••• 8

INTRODUCTION
NlS provides a variety of commands for file manipulation and
viewing. Editing commands allow the user to insert and change the
text in a file. Viewing commands (viewspecs) allow the user to
control how the system prints or displays the file. Line truncation
and control of statement numbers are examples of these viewing
facilities.
Occasionally one may need more sophisticated view controls than
those available with the viewing features of NLS.

For example, one may want to see only those statements that
contain a particular word or phrase.
Or one might want to see one line of text that compacts the
information found in several longer statements.

One might also wish to perform a series of routine editing
operations without specifying each of the NLS commands over and over
again. or build commands for specific applications.
User-written programs may tailor the presentation of the information
in a file to particular needs. Experienced users may write programs
that edit files automatically.
User-written programs currently must be coded in ARC·s
procedure-oriented programming language, LID. NLS itself is coded
in LIO. LIO is a high-level language which must be compiled into
machine-readable instructions. This document describes LIO.
Programs which interact with users additionally use a language
developed at ARC called Command Meta Language (CML), described in
Part Four of this document.
This document describes three general types of programs:

--simple filters that control what is portrayed on the userts
teletype or display (Parts One and Two),
--programs that may modify the statements as they decice whether

MARY, 5-Jan-B2 15:05 (USERGUIOESt PROGRAMMERS-GUIDE.AUG;1, > 4

to print them (Parts Two and Three),
--those that. like commands. are explicitly given control of the
job and interact with the user (Part Four).
User programs that control what material is portrayed take effect
when NLS presents a sequence of statements in response to a
command like Print (or Jump in DNLS).

In processing such a command, NLS looks at a sequence of
statements, examining each statement to see if it satisfies
the viewspecs then in force. At this point NLS may pass the
statement to a user-written program to see if it satisfies the
requirements specified in that program. If the user program
returns a value of TRUE, the (passed) statement is printed and
the next statement in the sequence is tested; if FALSE.. NLS
just goes on to the next statement.

While the program is examining the statement to decide whether or
not to print it, it may modify the contents of the statement.
Such a program can do anything the user can do with NLS commands.
For more complex tasks. a user program function as a
special-purpose subsystem having (in addition to the may
supervisor commands) one or more commands. Once such a program
is loaded. it can be used just like any of the standarc
subsystems. (The MESSAGE program is an example.)

This document is divided into five parts:
Part One is intended for the general user.

It is a primer on Content Analyzer Patterns, allowing the NLS
user to set up simple yet powerful filters whrough which he
may view and edit files- This does not involve learning the
LIO language nor programming. This section can stand alone,
and the general (if somewhat experienced> NlS user should find
it very useful.

Part Two is intended for the beginning programmer.
It presents a hasty overview of LtO programming. with enough
tools to write simple programs. This is intended as an
introduction for the beginning user programmer. who we aSSUMe
is reasonably familiar with NLS (its commands. subsystems. and
capabilities) and has some aptitude for programming.

Part Three is a more complete presentation of LIO.
It is intended to acquaint a potential LIC programmer with
enough of the language and NLS environment to satisfy most
requirements for automated editing programs. Many of the
concepts in Part Two are repeated in Part Three so that it may
stand alone as an intermediate programmer·s reference guide.
This is the section in which to begin looking for answers to
specific questions.

Part Four presents more advanced LIO tools and an introduction to
CML. allowing command syntax specification.

This should give the programmer the ability to write programs
which work across files. which move through files in other
than the standard sequential order, and which interact with
the user. It allows the programmer to build user-attachable
subsystems with commands looking very much like standard NLS
f ac i lit i es •

Part Five presents a number of subjects of interest to the
advanced LlD progammer.
We suggest that those who are new to LID begin by acquiring a
thorough understanding of Part One. Then Part Two should be

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1, > 5

studied one section at a time. pausing between sections to try
out the concepts presented by actually writing patterns or
programs that put the new ideas to experimental use. Actual
experience is of at least as much value as this tutorial.
Tutorial guidance should be requested from ARC through your
architect. If you have problems at any point, you should get
help from ARC before proceeding to the next section.

Note: For syntactical correctness. some examples include
constructs not yet defined in the text; they will be discussed
soon thereafter.

For examples of user programs which serve a variety of needs.
examine the attachable subsystems in the (PROGRAMS) directory and
their descriptions in Help. For information about commands
mentioned, ask for the programming subsystem with the NLS Help
command. NOM

PART ONE: Content Analyzer Patterns
Section 1: Introduction

Content analysis patterns cannot affect the format in ~h1ch a
statement is printed. nor can they edit a file. They can only
determine whether a statement should be printed at all. They
are. in a sense, a filter through which you may view the file.
More complex tasks can be accomplished through programs. as
described later in this document.
The Content Analyzer filter is created by typing in (or selecting
from the text in a file) a string of a special form which
describes those statements which will pass through the filter.
This string is called the ·Content Analyzer Pattern". Each
statement is checked against the pattern before it is printed;
only statements that are described by the pattern will be
printed.
Some Quick examples of Content Analyzer Patterns:

.(SlD·) will show all statements whose first character is
an open parenthesis. then any number of letters or digits.
then a close parenthesis.
[ftblapD] will show all statements with the string Mblap·
somewhere in them.
SINCE (3-JUN-75 00:00) will show all statements edited since
June 3, 1915

The next part of this section will describe the elements which
make up Content Analyzer Patterns. followed by some examples.
The final subject of this section is how to put them to use.

Section 2: Patterns
Elements of Content Analyzer Patterns

Content Analyzer Patterns describe certain things the system
must check before printing a statement. It may check one or a
series of things. Each test is called an element; the many
possible elements will be described below.

The content Analyzer searches a statement from the
beginning. character by character, for described elements.
As it encounters each eLement of the pattern. the Content
Analyzer checks the statement for the occurrence of that
element; if the test fails. the whole statement is failed
(unless there was an ·or M condition, as described later)
and not printed; if the test is passed. an imaginary
marker moves on to the next character in the statement. and
the next test in the pattern is considered.

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1.) 6

For example, if the next element in the Content Analyzer
pattern is "lO", the imaginary marker will move ever the
next character and go on to test the next element of the
pattern only if the next character is a letter or a digit;
otherwise the whole statement fails to pass the tilter.

The pattern may include any sequence of the following
elements; the Content Analyzer moves the marker through the
statement checking for each element of the Pattern in turn:
Literal String elements

·c -- the given character (e.g. a lower case c)
"stringY -- the given string (may include non-printing
characters. such as spaces)

Character class elements
CH -- any character
L -- lowercase or uppercase letter
o -- digit
Ul -- uppercase letter
Ll -- lowercase letter
UlO -- uppercase letter, or digit
LlD -- lowercase letter. or digit
lD -- lowercase or uppercase letter. or digit
NLO -- not a letter nor digit
PT any printing character (letters. digits, punctuation)

NP any non-printing character (e_g_ spaces, control
characters)

Special non-printing character elements
SP -- a space
TAB -- tab character
CR -- a carriage return
LF -- line feed character
EOL -- TENEX EOL (end of line) character
All -- altmode character

Special elements
ENDCHR -- beginning and end of every NLS statement; can 9 t
scan past it; not considered a character
TRUr -- is true without checking anything in statement
(used with OR constructs. as described below)
10= 1d statement created by user whose ident is given
10# id -- statement not created by user whose ident is
given
BEFORE (d-t) -- statement edited before given date and time
SINCE (d-t) -- statement edited since given date and time

E.g. BEFORE (1 OCT 1974 00:00) ;
The date and time must both appear in the parentheses.
It accepts almost any reasonable date and time syntax.

Examples of valid dates:
17-APR-7~ 17 APRIL 14
APR-17-74 17/5/1974
APR 17 74 5117/74
APRIL 17, 1974

Examples of valid
1:12:13
1234
1:56-EST
16:30

times:
1234:56
1:56AM
1200NOON

4:30 PM)

MARY. 5-Jan-82 15:05 < USERGUIOES. PROGR AHM ERS-GUID E.· AUG; 1. > 7

12:00:00AM (i.e. midnight)
11:S9:59AM-EST (i.e. late morning)
12:00:01AK (i.e. early morning)

Scan direction
< -- set scan direction to the left
) -- set scan direction to the right

The default. re-initialized for each new statement. is
scan to the right from before the first character in the
statement (beginning to end).

Modifying Elements
Several operators can modify any of the elements except the
"special elements":
NUMBER -- multiple occurrences

A number preceding any element other than one of the
"Special elements" means that the test will succeed only if
it finds exactly that many occurrences of the element. If
there aren't that many, the statement will be rejected.
Even though there may be more, it will stop after that many
and go on to check the next element in the pattern.

3Ul means three upper case letters
$ -- range of occurrences

A dollar sign ($) preceding any element other than the
·Special elements· means "any number of occurrences of D •

This may include zero occurrences. It is good practice to
put the element itself in parentheses.

$(._) means any number of dashes
A number in front of the dollar sign sets a lower limit.

3$(0) means three or more digits
A. number after the dollar sign sets an upper limit for the
search. It will stop after that number and then check for
the next element in the pattern, even if it coUld have
found more.

$3(LO) means from zero to three letters or digits
5S7(PT) means from 5 to 1 (inclusive) printing
characters

[] floating scan
To do other than a character by character check. you may
enclose an element or series of elements in square brackets
[l. The Content Analyzer will scan a statement until the
element(s) is found. (If the element is not in square
brackets. the whole statement fails if the very next
character or string fails the test of the next element.)
This test will reject the statement if it can·t find the
element anywhere in the statement. If it succeeds. it will
leave the marker for the next test just after the string
satisfying the contents of the square brackets.

·start" means check to see if the next five characters
are: s tar t.
["start-] means scan until it finds the string: s tar
t.
(301 means scan until it finds three digits.
[3D -:J means scan until it finds three digits
followed by a colon
negation

If an element is preceded by a minus sign -. the statement
will pass that test if the element does not occur.

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;1, > 8

-LD means anything other than a letter or digit, such
as punctuation. invisiblest etc.

NOT -- negation
NOT will be TRUE if the element or group of elements
enclosed in parentheses following the NOT is false.

NOT LD will pass if the next character is neither a
letter nor a digit.

Combining Elements
You may put together any number of any of these elements to
form a pattern. They may be combined in any order. Spaces
within the pattern are ignored (except in literal strings) so
they may be used to make reading easier for you.

e.g. l$PT (ft.NLS;" 1$OJ -sp
i.e. one or more printing characters. then scan for .NLS;
followed by one or more digits, then check that the next
character is not a space

More s~phisticated patterns can by written by using the
Boolean logical expression features of LlG. Combinations of
elements may in turn be treated as single elements. to be
modified or combined using logical operators.
Generally. an expression is executed left to right. The
following operations are done in the given order:

()

I

AND

()

I
NOT
AND
OR

Parentheses (and square brackets for floating scans) may be
used to group elements. It is good practice to use
parenthesis liberally-

I means "either or"; the bracketed element. consisting of
two or more alternatives, will be true if either (any)
element is true.

(30 L I 4D) means either three digits and a letter or
four digits.

Since the slash is executed before NOT. NOT D I th will be
true if the next character is NEITHER a digit nor the
letter -hR. It is the same as NOT (D/ 9 h).
Sometimes you may want want the scan to pass your marker
over something if it happens to be there (an optional
element). ftTRUE- is true without testing the statement.
If the other tests fail9 the imaginary marker is not moved.

(0 I TRUE) looks for a digit and passes the imaginary
marker over it. If the next character is not a digit.
it will just go on to the next test element in the
pattern without moving the marker and without failing
the test. (This test always passes.)
i.e. It is used to scan past something(s) which mayor
may not be there.

Since expressions are executed from left to right. it does
no good to have TRUE as the first option. (If it is first,
the test will immediately pass without trying to scan over
any elements.)

MARY,

OR

5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1. > 9

AND means both of the two separated groups of elements must
be true for the statement to pass.

SINCE (3/&/73 00:00) AND ID#NDM means statements
written since March 6, 1913 by someone other than NOM.

OR means the test will be true if either of the separated
elements is true. It does the same thing as slash. but
after "AND- and "NOT" have been executed, allowing greater
flexibility.
D AND LLD OR Ul means the same as (0 AND LLD) OR UL
o AND LLD I UL means the same as D AND (LLD J UL)

While such patterns are correct and succinct,
parentheses make for much clearer patterns. Elements
withi~ parentheses are taken as a group; the group will
be true only if the statement passes all the
requirements of the group. It is a good idea to use
parentheses whenever there might be any ambiguity.

Section 3: Examples of Content Analyzer Patterns
o 2SLD / [WCA"] I [RContent Analyzer-]

This pattern will match and pass any of three types of NLS
statements: those beginning with a numerical digit followed by
at least two characters which may be either letters or digits,
or statements with either of the strings ·CAD or "Content
Analyzer- anywhere in the statement.

Note the use of the square brackets to permit a floating
scan -- a search for a pattern anywhere in the statement.
Note also the use of the slash for alternatives.

BEFORE (25-JAN-12 12:00)
This pattern will match those statements created or modified
before noon on 25 January 1972.

eIO = HGl) OR (10 = NOM)
This pattern will match all statements created or modified by
users with the identifiers "HGL- or "NOM".

[(2L (SP/TRUE) / 20) 0 .- 40]
This pattern will match characters in the form of phone
numbers anywhere in a statement. Numbers matched may have an
alphabetic exchange followed by an optional space (note the
use of the TRUE construction to accomplish this) or a
numerical exchange.

Examples include DA 6-6200, OA6-6200. and 326-6200.
[ENDCHRl < ·cba"

This will pass those statements ending with "abc·. It will go
to the end of the statement. change the scan direction to
left. and check for the characters ·cba n • Note that since you
are scanning backwards, to find ftabc· you must look for Reba-.

Since the. Rcba B is not enclosed in square brackets~ it must
be the very last characters in the statement.

Section 4: Using the Content Analyzer
Content Analyzer Patterns may be entered in two ways!

1) From the BASE subsystem. use the command:
Set Content (pattern) To PATTERN OK

2) From the PROGRAMS subsystem, use the command:
Compile Content (pattern) PATTERN OK

OK means ftCommand Accept-. a control-D or.
in TNLS (by default) a carriage return.

In either case:

5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUS;1, > 10

1) Patterns may be typed in from the keyboard. or
2) they may be text in a file.

In this case, the pattern will be read from the first
character addressed and continue until it finds a semicolon
(;) so you must put a semicolon at the end of the pattern
(in the file).

Viewspec j must be on (i.e. content Analyzer off) when
entering a pattern.

Entering a Content Analyzer Pattern does two things:
1) compiles a small user program from the characters in the
pattern. and
2) takes that program and "institutes w it as the current
Content Analyzer filter program, deinstituting any previous
pattern.

"Instituting" a program means selecting it as the one to
take effect when the Content Analyzer is turned on. You
may have more than one program compiled but only one
instituted.
When a pattern is deinstituted. it still exists in your
program buffer space and may be instituted again at any
time with the command in the PROGRAMS subsystem:

Institute Program PROGRAM-NAME (as) Content (analyzer)
OK

The programs may be refered to by number irstead of
name. They are numbered sequentially. the first
entered being number 1.

All the programs you have compiled and the one you have
instituted maybe listed with the command in the PROGRAMS
subsystem:

Show status (of programs buffer) OK
Programs may build up in your program buffer. To clear the
program buffer. use the PROGRAMS subsystem command:

Delete All (programs in buffer) OK
We recommend that you do this before each new pattern.
unless you specifically want to preserve previous
patterns.

To invoke the Content Analyzer:
When viewspec i is on, the instituted Content Analyzer program
(if any) will check every statement before it is printed (or
displayed>.

If a statement does not pass all of the requirements of the
Content Analyzer program, it will not be printed.

In DNLS, if no statements from the top of the screen
onward through the file pass the Content Analyzer
filter. the word -Empty· will be displayed.

Note: You will not see the normal structure since one
statement may pass the content Analyzer although its source
does not. Viewspec m (statement numbers on) will help you
determine the position of the statement in the file.

When viewspec k is on, the instituted Content AnaLyzer filter
will check until it finds one statement that passes the
requirements of the pattern. Then. the rest of the output
(branch. plex, display screen. etc.) will be printed without
checking the Content Analyzer.
When viewspec j is on. no Content Analyzer searching is done.
This is the default state; every statement in the output

5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;I.) 11

(branch. plex. display screen, etc.) will be printed. Note
that i. j, and k are mutually exclusive.

Notes on the use of Content Analyzer filters:
Some NlS commands are always affected by the current viewspecs
(including ;.j, or k):

Output
Jump (in DNlS)
Print (in TNLS)

Most NlS commands ignore the Content Analyzer in their
editing. The following BASE subsystem commands offer the
option of specifying viewspecSt or "Filters-. {which may turn
on the content Analyzer} which apply only for the purpose of
that one command and affect what statements the command works
on (only those statements which pass the filter will be
copied, moved. etc.; structure will be adjusted):

Copy
Delete
Move
Substitute

At this point. it would be wise to practice until you become
proficient at content Analyzer patterns. You might begin by
trying to use some of the patterns given tn the above examples.
and then try writing a few patterns of your own. These patterns
are both a useful NLS tool and a basic component of many LlD
programs. We further recommend that you contact ARC via your
architect before you begin the next part.

PART TWO: Introduction to LI0 Programming
Section 1: content Analyzer Programs

Introduction
When you specify a Content Analyzer Pattern. the PROGRAMS
subsystem constructs a program which looks for the pattern in
each statement and only displays the statement if the pattern
matching succeeds. You can gain more control and do more
things if you build the program yourself. The program will be
used just like the simple pattern program and has many of the
same limitations. Programs are written in NlS just like any
other text file. They then. can be converted to executable
code by a compiler. This code resides (or is loaded) in your
programs buffer space; it can be instituted as the current
Content Analyzer filter program like a Content Analyzer
Pattern.

Program structure
If you specify a Content Analyzer Pattern. NlS compiles a
small program that looks like this (with the word ·pattern R

standing for whatever you typed in):
PROGRAM name

(name) PROCEDURE;
IF FIND pattern THEN RETURN(TRU[) ELSE RETLRN(FALSE);
END.

FINISH
LIO programs must begin with a header statement, the word
PROGRAM (all caps) followed by the name of the first procedure
to be executed (all lower-case). This name is also the name
of the program. If the program is being compiled into a file
(to be described at the end of this section). the word FILE
should be substituted for the word PROGRAM. E.g.

MARY, 5-Jan-82 15:05

PROGRAM first
or

FILE deldir

< USERGUIOES, PROGRAMMERS-GUIDE.AUG;l,) 12

(Note: the content Analyzer compiler makes up a program
name consisting of UP#!xxxxx. where

is a sequential number, the first pattern being
number one, and
~xxxx is the first five characters of your pattern.)
E.g. UPl!$LO(P

The body of a program consists of a series of DECLARATION
statements and PROCEDURES (in any order) which are blocks of
instructions. In the above case. the program consisted of
only one small procedure and no declarations. When the
program is loaded into your programs buffer space. the
declarations reserve space in the system to store information
(variables). When the program is used as a Content Analyzer
filter program, the first procedure is called for each
statement. It may in turn call other procedures and access
variables in the program or in the NLS system. E.g.

DECLARE x. y, z; (described below)
(first) PROCEDURE;

•••
The end of the program is delimited by the word ·FI~ISHft (in
all upper case). The compiler stops at that point, so any
text after that in the NlS source file will be ignored.
Comments may be enclosed in percent signs (X) anywhere in the
program, even in the middle of llO statements. The LIO
compiler will ignore them.
Except within literal strings. variable names and special LlO
words. spaces are ignored. It is good practice to use them
liberally so that your program will be easy to read. Also.
NlS file structure is ignored; statemerits will be read
sequentially. regardless of their level. structure is.
however. very valuable in making the program readable, and it
is good practice to use it in close correlation to the
program·s logical structure. For instance. the programmer
usually makes each of the elements of a program (declarations.
procedures, and FINISH) separate statements, below the header
statement in file structure. This point will be discussed
further later.
So far. we have file which looks something like:

PROGRAM namel
DECLARE ••• ;
DECLARE ••• ;
(namel) PROCEDURE;
Cname2) PROCEDURE ;
FINISH

Procedure structure
Each procedure must begin with its header statement. This
header statement is a name enclosed in parentheses followed by
the word PROCEDURE. and terminated by a semicolon. E.g.

(name) PROCEDURE ;
The body of the procedure may consist of Local declarations.
then L10 statements. An LIO statement is any program
instruction, terminated by a semicolon. The body must at some
point return control to the procedure that called it. All

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;l, > 13

this will be further discussed later.
The procedure must end with the terminal statement:

END.
Example (the actual LID statements in this example will become
clear as you read on):

PROGRAM compare X Content analyzer. Cisplays statement if
first two visibles are the same. %

Xreserve space for (Bdeclare·) four text pointers named
·pt!- through ·pt'"%

DECLARE TEXT POINTER ptl. pt2, pt3. pt4;
%reserve 100 characters of space for each of two string
variables named ·visl" and ·vis2-,1

DECLARE STRING visl[100], vis2[lOO];
(compare) PROCEDURE ;

%11 find two visibles. set pointers around first two
vis1bles (strings of printing characters)%

IF FIND $NP Apt1 1SPT Apt2 SNP Apt3 lSPT Apt4 THEN
BEGIN
Iput visibles in strings%

v;sl _ ptl pt2 ;
v;s2 _ pt3 pt4 ;

%compare contents of strings. return and display
the statement if identicalX

IF *visl* = *vis2* THEN RETURN(TRUE);
END;

lotherwise, return and don't display%
RETURN (FALSE) ;

END.
FINISH

Declaration statements
As you may have guessed from the above example, content
Analyzer programs can manipulate variables (like text pointers
and strings), while patterns cannot.
Text Pointers

A text pointer points to a particular location within an
NLS statement (or into a string. as described later).

The text pointer points between two characters in a
statement. By putting the pointers between characters,
a single pointer can be used to mark both the end of one
string and the beginning of the string starting with the
next character.

Text pointers are declared with the following Declaration
statement:

DECLARE TEXT POINTER name ;
Strings

String variables hold text. When they are declared. the
maximum number of characters is set.
To declare a string:

DECLARE STRING name[num] ;
num is the maximum number of characters allowed for the
string.

E.g.
DECLARE STRING lstring[lOO];
declares a string named Bl s tr1ng- with a max1~um length
of 100 characters and a current length of 0 characters
(it-s empty).

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1,) 14

You can refer to the contents of a string variable by
surrounding the name with asterisks. E.g.

lstring is the string stored in the variable named
-lstring B •

(Refering to lstring without the asterisks represents
only the first computer word of the string. This is
rarely needed.)

You tan put the text between two text pointers in a string
variable with the LlO statement:

lstring _ ptrl ptr2 ;
where ptrl and ptr2 are the names of previously declared
and set text pointers. and lstring is a previously
declared string variable.

These variables wilt retain their value from one statement to
the next. Other types of variables and their use will be
discussed in detail in Part Three, Section 3.

Body of the Procedure
RETURN Statement

No matter what it does. every procedure must return control
to the procedure that called it. The statement which does
this is the RETURN statement. E.g.

RETURN ;
A RETURN statement may pass values to the procedure that
called it. The values must be enclosed in parentheses
after the word RETURN. E.g.

RETURN (1,23.47) ;
A Content Analyzer program must return either a ~alue of
TRUE or of FALSE. If it returns the value TRUE (1). the
statement wilt be printed; if it returns FALSE (0). the
statement will not be printed. I.e.

RETURN (TRUE); will print the statement
RETURN (FALSE); witl not print the statement

The RETURN statement often is at the end of a procedure.
but it need not be. For example. 1n the middle of the
procedure you may want to either RETURN or go on depending
on the result of a test.

Other than the reQuirem,nt of a RETURN statement, the body of
the procedure is entirely a function of the purpose of the
procedure. A few of the many possible statements will be
described here; others will be introduced in Part Three of
this document.
FINO statement

One of the most useful statements for Content Analyzer
programs is the FINO statement. The FIND statement
specifies a content Analyzer pattern to be tested against
the statement. and text pointers to be manipulated and set9
starting from the Current Character Position (that
invisible marker refered to in Section 1). If the test
succeeds. the character position is moved past the last
character read. If at any point the test fails. the
character position is left at the position prior to the
FINO statement. The values of text pointers set in the
statement prior to the failing element will remain as set;
others of course will not be changed.

FINO pattern ;
The Current Character Position is initialized to BEFORE THE

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1,) 15

FIRST CHARACTER. and the scan direction is initialized to
left to RIGHT, FOR EACH NEW STATEMENT passed to the Content
Analyzer program.
Any simple content Analyzer pattern (as describe above) is
valid in a FIND statement.
In addition, the following elements can be incorporated in
the pattern:

stringname
the contents of the string variable

Aptr
store current scan position into the text pointer
specified by ptr. the name of a declared text pointer

_NUM ptr

ptr

back up the specified text pointer by the specified
number (NUM) of charaiters. If HUM is not specified.
1 will be assumed. Backup is in the direction
opposite to the current scan direction.

Set current character position to this position. ptr
is the name of a previously set text pointer.

SFCptr)
The Current Character Position is set to the front of
the statement in which the text pointer ptr is set
and scan direction is set from left to right.

SE(ptr)
The Current Character Position is set to the end of
the statement in which the text pointer ptr is set
and scan direction is set from right to left.

BETWEEN ptrl ptr2 (pattern)
Search limited to between positions specified. ptr
is a previously set text pointer; the two must be in
the same statement or string. Current Character
Position is set to first position before the pattern
is tested. E.g.

BETWEEN ptl pt2 (20 [.l $NP)
FINDs may be used as expressions as well as free-standing
statements. If used as an expression. for example in IF
statements. it has the value TRUE if all pattern elements
within it are true and the value FALSE if anyone of the
elements is false. E.g.

IF FIND pattern THEN ••• ;
Complicated example:

IF FIND Ast $NP .($(LD/--) t) C-. • *str*] S£(sf) SNP
'. THEN RETURN(TRUE) ELSE RETURN(FALSE);

IF statement
IF causes execution of a statement if a tested expression
is TRUE. If it is FALSE and the optional ELSE part is
present. the statement following the ELSE is executed.
Control then passes to the statement immediately following
the IF statement.

IF testexp THEN statement ;
IF testexp THEN statement! ELSE statement2 ;

The statements within the IF statement can be any valid LIO
statement. but are not followed by the usual semicolon; the
whole IF statement is one LID statement and is followed by
a semicolon.

5-Jan-82 15:05 < USERGUIDES. PROGRA"MERS-GUIDE~AUG;l. > 16

E.g.
IF FINO [SOl THEN RETURNCFAlSE) ELSE RETURNCTRUE) ;

Programming Style: File structure
The compiler which converts your NLS text to code ignores NLS
file structure. This allows you to use structure tc make your
program text easier to read and understand. Logical use of
structure often facilitates the actual programming task as
well. Some conventions have developed at ARC in this respect,
although flexibility is essential. These should seem obvious
and logical to you.

All declarations and PROCEDURE statements should be one
level below the PROGRAM statement.
All local declarations (not yet described) and code should
be one level below the PROCEDURE statement.
It is good style. and makes for much easier programming. to
list what you want to do as comment statements (in percent
signs) at the level below the PROCEDURE statement. Then
you can go back and fill in the code that accomplishes the
task described in each comment statement. The code should
go one level below the comment.
It is also worthwhile to put comments in individual
statements whose purpose is not obvious.
We will later describe how to block a series of statements
where one is required. These blOCKS should go a level
below the statement of which they are a part.
File structure should follow the logical structure of the
program as closely as possible. E.g.

IF FINO [SOl
THEN RETURNCTRUE)
ELSE RETURN{FALSE);

Using Content Analyzer Programs
Once the Content Analyzer program has been written 'in an NLS
file), there are two steps in using it. First. the program
must be ·compiled." i.e. translated into machine-readable
code; the compiled code is Rloaded R into a space reserved for
user programs (the user programs buffer). Secondly. the
loaded program must be ainstituted" as the current Content
Analyzer program.
There are two ways to compile and load a program:

1) You may compile a program and load it into your programs
buffer all in one operation. In this case. the program
header statement must have the word PROGRAM in it. When
the user resets his job or logs off. the compiled code will
disappear.

First, enter the Programs subsystem with the command:
Goto Programs OK

Then you may compile the program with the com~and:
Compile LlD (user program at) SOURCE OK
SOURCE is the NlS file address of the PROGRAM
statement.

2) You may compile a program into a TENEX code file and
then load it into your buffer in a separate operation. The
program can then be loaded from the file into your user
programs buffer at any time without recompiling. The
header statement must use the word FILE instead of PROGRAM.

Use the PROGRAMS subsystem command:

5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 11

Compile File (at) SOURCE (using) LIO (to file) FILENAME
OK
The FILENAME must be the same as the program 9 s name.
The code file is called a REL (RElocatable code) file.
Whenever you wish to load the program code into the user
programs buffer, use the PROGRAMS subsystem command:

Load Program (file) FILENAME OK
Once a compiled program has been loaded (by either route), it
must be instituted. This is done with the PROGRAMS subsystem
command:

Institute Program PROGRAM-NAME (as) Content (analyzer
program) OK
The named program will be instituted as the current Content
Analyzer filter, and any previously instituted program will
be deinstituted (but will remain in the buffer).
Again, the programs in the buffer are numbered. the first
in being number one. You may use the number instead of the
program·s name as a shorthand for PROGRAM-NAME.

To invoke the Content Analyzer using whatever program is
currently instituted. use the viewspec i, j, or k, as
described in Part One, Section 4 (3d4).

Problems
Given these few constructs, you should now be able to write a
number of useful Content Analyzer programs. Try prcgramming
the following:

·1) Show those statements which have a number somewhere in
the first 20 characters.
2) Show those statements where the first visible in the
statement is repeated somewhere in the statement.

Sample solutions:
Problem 1

PROGRAM number
DECLARE TEXT POINTER ptrl. ptr2 ;
(number) PROCEDURE ;

FINO Aptrl S20CH Aptr2 ;
If FIND BETWEEN ptri ptr2 ((01)

THEN RETURN(TRUE)
ELSE RETURN(FALSE);

END.
FINISH

Alternate Solution to Problem 1: Content Analyzer Filter
$20CH < [DJ

Problem 2
PROGRAM vis

DECLARE TEXT POINTER ptrl. ptr2 ;
DECLARE STRING str[SOOJ ;
(vis) PROCEDURE;

FIND SNP Aptrl lSPT Aptr2 ;
str ptrl ptr2 ;
IF FIND ptr2 [NP *str* NPl

THEN RETURN(TRUE)
ELSE RETURN(FALSEJ;

END.
FINISH

Section 2: Content Analyzer Programs: Modifying Statements
Introduction

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 18

Content Analyzer programs may edit the statements as well as
decide whether or not they are printed. They are very useful
where a series of editing operations has to be done time and
time again. This section will introduce you to these
capabilities. All these constructs will be covered in detail
in Part Three.
A Content Analyzer program has several limitations. It can
manipulate only one file and it can look at statements only in
sequential order (as they appear in the tile). It cannot back
up and re-examine previous statements, nor can it skip ahead
to other parts of the file. It cannot interact with the user.
Part Four provides the tools to overcome these limitations.

String Construction
statements and the contents of string variables may be
modified by either of the following two statements:

ST ptr _ stringlist ;
The whole statement in which the text pointer named
"ptr" resides will be replaced by the string list (to be
described in a minute).

ST ptr ptr _ stringlist ;
The part of the statement from the first ptr to the
second ptr will be replaced by the string list.

ptr may be a previously set text pointer or SF(ptr) or
SE(ptr).

The content of string variables may be replaced with the
string assignment statement:

stringname _ stringlist ;
The string list (stringtist) may be any series of string
designators. separated by commas. The string deSignators may
be any of the following (other possibilities to be described
later):

a string constant, e.g. "ABC· or 'w
ptr ptr

the text between two text pointers previously set in
either a statement or a string

stringname

E.g.:

a string name in asterisks. refering to the contents of
the string

ST pl p2 _ *string* ;
or

ST pi _ SFtpl) pl, *string*, p2 SE(p2);
(Note: these have exactly the same meaning.)

Example:
PROGRAM delsp % Content analyzer. Deletes all leading
spaces from statements. %

%reserve space for (ftdeclare") a text pointer named "pt"l
DECLARE TEXT POINTER pt;

(delsp) PROCEOURE ;
X1f any leading spaces, scan past them and set pointerl

IF FINO ISSP Apt THEN
Xreplace statement with text fro. pointer to
statement endX

ST pt _ pt S[(pt);
%return. don't display anythingX

RETURN (FALSE) ;

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 19

END.
FINISH

More Than One Change per statement
Part of a text pointer is a character count. This count stays
the same until the text pointer is again set (to so~e other
position), even though the statement has been editec. If, for
example, you have the statement

abcdefg
and if you have set a pointer between the RdB and the De", it
will always point between the fourth and fifth characters in
the statement. If you then delete the character Daft, your
pointer will be between the De- and the "f·, now the fourth
and fifth characters. For this reason, you should begin a
series of edits with the last one in the statement and work
backwards through the statement.

Controlling Which statements are Modified
In TNLS. the Content Analyzer program will be called for
commands which construct a printout of the file (Print and
Outputl. The program will run on every statement for which it
is called (e.g. every statement in the branch during a Print
Branch command) which pass all the other viewspecs. Once you
have written. compiled, and instituted a program which does
some editing operation. the Print command is the easiest way
to run the program on a statement. branch, plex, or group_
In DNLS. the system will call the Content Analyzer program
whenever the display is recreated (e.g. viewspec F and the
Jump commands), and also for the Output commands. If the
program returns TRUE, it will only run on enough statements to
fill the screen. It is safer to have programs that edit the
file return FALSE. Then when you set viewspec 1, it will run
on all statements from the top of the display on, and when it
is done it will display the word ftEmpty". At that point.
change to viewspec j and recreate the display with viewspec F,
then aLL statements including the changes will be displayed.
You can control which statements are edited with level
viewspecs and the branch only (9) or plex only (l) viewspecst
and by posttioning the top of your window.
After having run your program on a file. you may wish to
Update to permanently incorporate the changes in the file. It
is wise to Update before you run the program so that, if the
program does something unexpected, you can Delete
Modifications and return to a good file.

Problems
Try writing the following programs:

1) Remove any invisibles from the end of each statement.
2) Make the first word a statement name surrounded by
parentheses.

Sample solutions:
Problem 1

PROGRAM endinv
DECLARE TEXT POINTER ptr ;
(endinv) PROCEDURE ;

IF FIND Aptr S[(ptr) lSNP Aptr
THEN ST ptr SF(ptr) ptr ;

RETURN (FALSE) ;
END.

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;1, > 20

FINISH
Problem 2

PROGRAM makename
DECLARE rEXT POINTER
(makename) PROCEDURE

IF FINO $NP Aptrl
THEN ST ptrl
SE(ptr2);

RETURN(FALSE)
END.

FINISH

ptrl. ptr2 ;
;
l$LO ~ptr2
te, ptrl ptr2. t), ptr2

PART THREE: Basic LIO Programming
Section 1: The User Program Environment

Introduction
User-written content Analyzer programs are called in the
process of creating a view of an NLS file e.g., with a Print
command in TNLS, with any of the Output commands. and with the
Jump command in DNlS.

The sequence generator provides statements one at a time;
the Content Analyzer may then check each one. Finally, the
formatter prints it or puts it on the screen.
Thus if one had a user Content Analyzer program compiled
and instituted, one could have a printout made containing
only those statements in the file satisfying the pattern.

Attachable subsystems are independent of this portrayal
process, although they are welcome to make use of it. They
consist of commands, which may utilize all the powers of NLS.

The Sequence Generator
In the portrayal process, the sequence generator looks at
statements one at a time. beginning at the point specified by
the user. It observes viewspees like level truncation in
determining which statements to pass on to the formatter.
When the sequence generator finds a statement that passes all
the viewspec requirements. it sends the statement to the
formatter and waits to be called again for the next statement
in the sequence.

For example, the viewspecs may indicate that only the first
line of statements in the two highest levels are to be
output. The default NLS sequence generator will produce
pointers on.ly to those statements passing the structural
filters; the formatter will then truncate the text to only
the first line. before it displays or prints the statement.

Content Analyzer Filters
One of the viewspecs that the sequence generator pays
attention to is "1- -- the viewspet that indicates whether a
user Content Analyzer filter is to be applied to the
statement. If this viewspec is on. the sequence generator
passes control to a user Content Analyzer progra •• which looks
at the statement and decides whether it should be included in
the sequence. If the statement passes the Content Analyzer
(i.e. the user program returns a value of TRUE). the sequence
generator sends the statement to the formatter; otherwise. it
processes the next statement in the sequence and sends it to
the user Content Analyzer program for verification. (The
parti~ular user program chosen as a filter is deter~ined by
what program is Instituted as the current Content Analyzer

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1,) 21

program, as described below.)
In the process of examining a statement and deciding
whether or not it should be printed. the Content Analyzer
program may edit the text of the statement. These edits
appear in the partial copy, just as if the user had made
them himself. This provides a powerful mechanism for
automatic editing.
In DNLS. if you display any statements. the program will
stop after filling the screen. If you are not displaying
any statements, the program will run on either the whole
file, a plex (viewspec l), or a branch (v1ewspec g). These
along with level clipping viewspecs give one precise
control over what statements in the file will be passed to
the program.

The Portrayal Formatter
The formatter arranges text passed to it by the sequence
generator in the style specified by other viewspecs. The
formatter observes viewspecs such as line truncation. length
and indenting; it also formats the text in accord with the
requirements of the output device.

Section 2: Program structure
An NLS user program consists of the following elements. which
must be arranged in a definite manner with strict adherence to
syntactic punctuation:

The header -
a statement consisting of the word PROGRAM. followed by the
name of a procedure in the program. Program execution will
begin with a call to the procedure w1th this name.

PROGRAM name
The PROGRAM statement may have a statement name in
parentheses; it will be ignored.

The word FILE should be substituted for the word PROGRAM if
the code is to be compiled into a file to be saved.

The FILE statement may have a statement name; if so.
that name will be used as the code-file symbol. You
must not follow the word FILE with a name if there is a
statement name preceding FILE.

The body -
consists of declarations and procedures in any order:

1) declaration statements which specify information
about the data to be processed by the procedures in the
program and enter the data identifiers in the program 9 s
symbol table. terminated by a semicolon. E.g.

DECLARE X.YtZ ;
DECLARE STRING test(500) ;
REF Xt Z;
Declaration statements will be covered in Section 3
(Sc).

2) procedures which specify certain execution tasks.
Each procedure must consist of:

the procedure name enclosed in parentheses followed
by the word PROCEDURE and optionally an argument list
containing names of variables that are passed by the
calling procedure for referencing within the called
procedure. This statement must be terminated by a
semicolon. E.g.

MARY, 5-~an-82 15:05 < USERGUIDES, PROGRAMMERS-GUIOE.AUG;1. > 22

(name) PROCEDURE ;
(name) PROCEDURE (paraml. param2) ;
You should always include a comment in the
procedure statement breifly summarizing the
function of the procedure.

the body of the procedure which may consist of LOCAL.
REF, and LIO statements.

LOCAL and REF declarations within a procedure must
precede executable code. They will be covered in
Section 3 (5c).
LIO statements will be covered in Sections 4 and 5
(Sd) (Se).

A RETURN statement .ust be included at some
point. to pass control back to the calling
procedure. If it is missing. execution will
run off the end of the procedure and an ILLEGAL
I~STRUCTION will occur.

the statement that terminates the procedure (note the
final period):

END.
The program terminal statement -

FINISH
Note: this is a signal to the compiler to step
compilation; it does not mean stop execution. Any text
after that in the NLS source file will be igncred.

Notes on Program Writing Style
Except for within literal stringst variable names, and special
LIO reserved words. spaces are ignored. It is good practice
to use them liberally so that your program will be easy to
read.
Comments may be enclosed in percent signs (X) wherever spaces
are allowed. They will be ignored by the compiler. It is
good practice to use the level below the procedure statement
for comments, filling in the code that executes the commented
function at the level below theco.ment. It is also wise to
add comments to any individual statements whose function is
not obvious, particularly calls on other procedures.

You may find it convenient to add a comment to the FILE
statement including the information needed by the Compile
File command. E.g.

FILE program % (llO,) to (directory.program.subsys.) X
Also. NLS file structure is ignored. structure is. however.
very valuable in making the program readable, and it is good
practice to use it in close correlation to the program 9 s
logical structure.

An example of a simple LtO program is provided here. The reader
should easily understand this program after having studied this
document.

PROGRAM delsp X Content analyzer. Oeletes all leading
spaces from statements. %

Xreserve space for ("decLareR) a text pointer named "pt W%
DECLARE TEXT POINTER pt;

(delsp) PROCEDURE ;
lif any leading spaces. scan past them and set pointerS

IF FIND 1SSP Apt THEN
lreplace statement holding pt with text from

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 23

pointer to statement endX
ST pt _ pt SE(pt);

Xreturn, don·t displayX
RETURN (FALSE) ;

END.
FINISH

Section 3: Declarations
Introduction

LID declarations provide information to the compiler about the
data that is to be accessed; they are not executed. Every
variable used in the program must be declared somewhere in the
system (either in your program or in the NLS system).
There are a number of types of variables available. each with
its own declaration statement; the most freQuently used are
discussed here. (Complete documentation is available in the
llO Reference Guide -- 7052,)

Variables
Six types of variables are described in this document: simple,
constants, arrays. text pointers. strings. and referenced.
Each is represented by an identifier, some unique lowercase
name. Each can be declared on three levels: local, global, or
external.
Local Variables

A local variable is known and accessible only to the
procedure in which it appears. Local variables reust appear
in a procedure argument list or be declared in a
procedure·s LOCAL declaration statements (to be explained
below). Any LOCAL declarations must precede the executable
statements in a procedure.
Local variables in the different procedures may have the
same name without conflict. A global variable may not be
declared as a local variable and a procedure name may be
used as neither. In such cases the name is considered to
be multiply defined and a compilation error results.

Global Variables
Global variables are defined in the program's DECLARE
statements. Variables specified in these declarations are
outside any procedure and may be used by all procedures in
the program.

External Variables
External variables are defined in the program's DECLARE
statements or in the NLS system program.
Variables spe~ified in these declarations may be used by
all procedures anywhere in the system. Many externals are
defined as part of the NLS system; user programs have
complete access to these. Since other procedures may
access the same variable. the user programmer must be very
careful about changing their values.

Simple Variables
Simple variables represent one computer word. or 36 bits, of
memory. Each bit is either on or off. allowing binary numbers
to be stored in words. Each word can hold up to five ASCII
7-bit characters. a single number. or may be divided into
fields and hold more than one number.

Declaring a variable allocates a word in the computer to
hold the contents of the variable. The variable name

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 24

refers to the contents of that word. One may refer to the
address of that computer word by preceding the variable
name by a dollar sign ($).

For example, if one has declared a simple variable
called anum", one may put the number three in that
variable with the statement:

num _ 3 ;
One may add two to a variable with the statement:

num _ num + 2 ;
One may put the address of num into a variable called
addr with the statement:

addr _ Snum ;
One may refer to predefined fields 1n any variable by
following the name of the variable with a period, then the
field name. For example, the fields RH and LH are globally
defined to be the right and left half (18 bits) of the word
respectively; e.g.

num.lH 2;
num.RH 3;

Fields may be defined by the user with RECORD statements
(described in Section 5 of Part Five). Additionally. you
may refer to system-defined fields (e.g. RH). They divide
words into fieLds by numbers of bits. so they may refer to
any declared word. For example. the field -LH- refers to
the left-most 18 bits in any 36-bit word.

If you assign a full word to a field of n bits within a
word. the right-most n bits vill be assigned to the
field in the destination word; the rest of the
destination word will be untouched.
If you assign a field with a word to a full word. it
will be right-justified within the destination word; the
remaining bits in the destination word (to the left of
the assigned bits) wilt be set to zero.

Declaring Simple Global Variables
DECLARE name ;

-name ft is the name of the variable. It must be all
tower-case letters or digits, and must begin with a
letter.

E.g.
DECLARE xl ;

Optionally. the user may specify the initial value of the
variable being declared. If a simple variable is not
initialized at the program level. for safety it should be
initialized in the first executed procedure in which it
appears.

DECLAR.E name = exp ;
exp is the initial value of name. It may be any of the
following:

- a numeric constant optionally preceded by a minus
sign (-)
- a string, up to five characters. enclosed in
quotation marks
- another variable name previously defined in a SET
statement (described below), causing the latter·s
value to be assigned

Examples:

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 25

DECLARE x2=S;
%x2 contains the value 5%

DECLARE x3= ft OUr ft ;

Xx3 contains the word ourl
DECLARE xx=x4;

%x4 has previously been declared in a SET
statementx

Formal parameters (passed to a procedure) are allocated as
local simple variables. then initialized whenever the
procedure is called. Within the called procedure, they should
be treated as simple variables.

Constants
You may declare a (simple) variable to be a constant value
with the statement:

SET namel=exp ;
where names and expressions are as described above for
initializing simple variables.

Constants take no memory. They may be refered to just like
simple variables. except the name must be preceded by a dollar
sign ($). They may not be changed by the program. E.g.

Arrays

after the declaration:
SET var = 4 ;

the assignment!
num $var;

will assign the value 4 to the variable num.

Multi-word (one-dimensional) array variables may be declared;
computer words within them may be accessed by indexing the
variable name. The index follows the variable name, and is
enclosed in square brackets [J. The first word of the array
need not be indexed. The index of the first word is zero. so
if we have declared a ten element array named -blah-:

blah is the first word of the array
blah(ll is the second word of the array
blahC9] is the last word of the array

Declaring Global Array Variables
DECLARE name[num) ;

nurn is the number of elements in the array if the array
is not being initialized. It must, of course, be an
integer.

E.g.
DECLARE sam[10J;
declares an array named "sam" containing 10 elements.

Optionally. the user may specify the initial value of each
element of the array. If array values are not initialized
at the program level. for safety they should be initialized
in the first executed procedure in which the array is used.

DECLARE name = (numl. num2 • •••) ;
num is the initial value of each element of the
array. The number of constants implicitly defines
the number of elements in the array. They may be any
of the constants allowed for simple variables.

Note: there is a one-to-one correspondence between the
first constant and the first element. the second
constant and the second element. etc.
Examples:

5-Jan-82 15:05 < USERGUIOES, PROGRAMM(RS~GUIDE.AUG;l. > 26

DECLARE numbs={l,2.3);
declares an array named numbs containing 3
elements which are initialized such that:

numbs = 1
numbs[l) = 2
numbs[21 = 3

DECLARE motley=(lO.Sblahl;

Text Pointers

declares an array named motley containing 2
elements which are initialized such that:

motley = 10
motley[ll = Sblah = the address of the variable
"blah"

A text pointer is an LID feature used in string manipulation
constructions. It is a two-word entity which provides
information for pointing to particular locations within text.
whether in string variables or in NLS statements.

The text pointer points between two characters in a
statement or string. By putting the pointers between
characters a single pointer can be used to mark both the
end of one substring and the beginning of the substring
starting with the next character, thereby simplifying the
string manipulation algorithms and the way one thinks about
strings. -

A text pointer consists of two words: a string identifier and
a character count. Assume you have declared a text pointer
named ·pt."

pt refers to the first word of the text pointer. The first
word, called an ·stid,- contains three system-defined
fields:

stfile the file number (if an NLS statement)
stastr a bit indicating string. not an NLS statement
stpsid the psid of the statement; every statement has
a unique number (psid) attached to it.
The stid is the basic handle on a statement in LID. It
is often used alone. Since it is a single-word value.
it may be stored in a simple variable and passed easily
between procedures, and is used by many routines to
specify a statement or string.

If an stid is used without being properly set. the
run-time error message "1st entry nonexistant- may
result.

pte!] refers to the second word of the text pointer. The
second word contains a character count, with the first
position being 1 (before the first character).
For example. one might have the follo~ing series of
assignment statements which fill the three fields of the
first word and the second word with data. with pt being the
name of a declared text pointer:

pt.stf1le _ fileno;
%fileno is a simple variable with a number in itl

pt.stastr FALSE;
%a statement, not a stringS

pt.stpsid origin;
%all origin statements have the psid = 2; origin is a
global variable with the value 2 in it%

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 27

pte1] _ 1;
lthe word one after pt (i.e. the character count)
gets 1. the beginning of the statementX

It is important that stid·s be initialized properly to
avoid errors. Text pointers may be most easily initialized
by setting them in a FINO statement (see Section 6).

Declaring Text Pointers
DECLARE TEXT POINTER pt ;
The names pI, p2, p3, p4, and p5 are globally declared and
reserved for system use.

Strings
String variables are a series of words holding text. When
they are declared, the maximum number of characters is set.
The first word contains the two globally defined fields:

M -- the maximum number of characters the string can hold
l -- the actual number of characters currently in the
string

The next series of words (as many as are required by the
maximum string size) hoLd the actual characters. five per
word, in ASCII 7-bit code.

str refers to the contents of the string variable ·str".
str refers to the first word of the string variable astra;
typically this is only useful in combination with the two
fields -H" and "L":

str.M refers to the maximum declared length of the
string variable ·strH (an integer).
str.L refers to the current length of the string stored
in the string variable ·str- (an integer).

Declaring Strings
The DECLARE STRING enables the user to declare a global
string variable by initializing the string and/or declaring
its maximum character length.

To declare a string:
DECLARE STRING name[num] ;
num is the maximum number of characters allowed for
the string
Since the maximum statement length is 2000
characters. you should not need to declare a string
greater than 2DOO characters long.

E.g.
DECLARE STRING lstring[lOOl;
declares a string named -lstring- with a maximum
length of 100 characters and a current length of 0
eharacters

To declare and initialize a string:
DECLARE STRING name=-Any string of text- ;
The length of the literal string defines the Maximum
length of the string variable.

E.g.
DECLARE STRING message=-REO ALERT-;
declares the string message, with an actual and
maximum length of 9 characters and contains the text
BRED ALERT"

REF: Referenced Variables
Reference Declarations

After a simple variable has been declared, the REF

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMHERS-GUIOE.AUS;19) 28

statement can define it to represent some other variable.
A referenced variable holds the address of another declared
variable of any type. Whenever the referenced variable is
mentioned, Ll0 will operate on the other variable instead.
as if it were declared in that procedure and named at that
point.
This is useful when you wish a procedure to know about a
multi-word variable. In procedure calls. you are only
allowed to pass single-word parameters. If you wish a
called procedure to use or operate on a text pointer.
array, or string, you may pass the address of that
multi-word variable. Then, in the called procedure. you
must REF the formal parameter receiving that address. From
then on in the called procedure, when you refer to the
REFed parameter, you are actually operating on the
multi-word variable declared in some other procedure to
which the local REFed variable points. i.e. on the variable
at the address contained in the REFed parameter.

Example:
If the simple variable Bloc· in the current procedure
has been REFed and contains the address of the string
ftstrD local to the calling procedure. then operations
on loc actually operate on the string in str:

mes *loc*;
%mes gets the string in str%

loc ·corpuscle";
%str gets the string ·corpuscleftX

Similarly, you cannot return .ulti-word variables from a
called procedure. If you wish a procedure to return a
string. you must declare the string as a local in the
CALLING procedure. pass its address to a REFed variable in
the called procedure. Then the called procedure can .odify
the string as if it were local (and return nothing). The
modifications will be made in the actual string variable.

Unreferencing REFed Variables
One may refer to the actual contents (an address> of a
REFed variable (i.e. ·unref ft it) by preceding the
referenced variable name with an ampersand C&l. If, for
example. an address was passed to a REFed variable. and you
wish now to pass that address on to another procedure, you
can Runref- it. i.e. access the actual content (the address
of some variable).

E.g. if x has been REFed and holds the address of y:
z x;

Iz gets the CONTENTS of yX
z &x;

%z gets the ADDRESS of yX
This construct might be used, for example, if one procedure
has been passed the address of a string. operates on it.
then wishes to pass (the address of) that string on to
another procedure that it calls.
This can be a tricky concept; it may be worthwhile to
review this section carefully.

REFing Simple Variables
Once a simple variable has been declared (as a global.
local. or parameter), it may be REFed with the LlO

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;l. > 29

declaration statement:
REF var ;

It will be a reference from then on in that procedure, and
you must always use the ampersand to refer to its actual
contents: the address of the variable it references.

Note that the REF statement does not allocate storage;
it just sets an attribute of an existing variable.

If you wish to use a variable that is not REFed as if it
were REFed, enclose it in square brackets fl. E.g. assume
the simple variable ftastr" holds the address of a string
variable but was NOT REFed:

[astrJ refers to the contents of the string variable
whose address is in astr.

Note on Programming Style
You should always REF locals and parameters which hold the
address of something to be accessed (even if that variable
is only used to pass the address on to another procedure).

Oeclaring Many Variables in One statement
One may avoid putting several individual declarations of
variables in a series by putting variables of similar type.
initialized or not. in a list in one statement following a
single DECLARE, separated by commas and terminated by the
usual semicolon. Array and simple var1bles may be put
together in one statement.

Examples:
DECLARE x. y[10l. z = (1, 2, -5);
DECLARE TEXT POINTER tp. sf, ptl. pt2 ;
DECLARE STRING lstring[lOOl. message=-RED ALERT" ;

Declaring Locals
Program level declarations (DECLARE and REF) and procedures
may appear in any order. However, procedure level
declarations (LOCAL and REF inside a procedure) must appear
before any executable statements in the procedure. The
different types of variables may be declared in any order, but
a variable must be declared before it can be REFed.

Whenever possible. LOCALs should be used instead of
globals. It makes for a cleaner program if you pass
parameters among procedures rather than depend on global
variables to transmit information.

With one exception, a local variable declaration statement is
just the same as a global with the word -LOCAL· substituted
for the word -DECLARER. The one exception is that LOCAL
declarations can not initialize the variables.

Examples:
LOCAL var. flag. level[12J ;
LOCAL TEXT POINTER tp. pt, sf ;
LOCAL STRING test(lOO]. out(2000J ;

When a procedure is called by another procedure, the calling
procedure may pass one-word parameters. The procedure
receives these values in simple local variables declared in
the PROCEDURE statementes parameter list. For example. two
locals will automatically be declared and set to the passed
values whenever the procedure ·procname- is called:

(procname) PROCEDURE (varl, var2) ;
varl and var2 must not be declared again in a LOCAL
statement. They may. however. be REFed by a REF statement,

MARY, 5-Jan-82 15:05 (USERGUIOES. PROGRAMMERS-GUIDE.AUG;1, > 30

as discussed above. and used throughout the procedure.
The statement which calls procname may look like:

procname (locvar, 2) ;
varl will be initialized to the value of the variable
"locvarw and var2 will get the value 2.

Declaring Externals
Externals are declared just like globals. with one exception.
The word DECLARE must be followed by the word EXTERNAL. E.g.

SET EXTERNAL one=l, two=2 ;
DECLARE EXTERNAL a, brlOl. c=5 ;
DECLARE EXTERNAL TEXT POINTER exptrl, exptr2 ;
DECLARE EXTERNAL STRING exstr[lOO] ;

REF specifications may not be external to the program.
Accessing Registers

The user may access machine registers (the same length as
other words. i.e. 36 bits) by naming them with the
declaration:

REGISTER name = regnum ;
or

REGISTER namel=regnuml. name2=regnum2 ;
The declared names will then represent the registers to which
they are attached. You may then access or assign values to
their content. On TENEX. the user programmer may use the
first seven registers. registers 0 through 6. (Registers 7
through 15 are reserved for system use.) E.g.

REGISTER rO=O. rl=l, r2=2t r3=3, r4=4. r5=5, r6=6 ;
The names used in the above exaMple are used most often by
convention.

Registers must be used very carefully! They are typically
used when calling TENEX JSYS (see Section 4l. Many LIO
constructs and procedures use the registers; you should assign
their content to a variable immediately after the JSYS call if
you wish to save it.

Section 4: Statements
Introduction

This section will describe some of the types of statements
with which one can build a procedure. The term "expression
(often abbreviated to -exp·) will be used in this section. and
will be explained in detail in Section 5 (5e).

Assignment
In the assignment statement, the expression on the right side
of the w_n is evaluated and stored in the variable on the left
side of the statement.

var _ exp ;
where var = any global. local. referenced or unre1erenced
variable.

One may make a series of assignments in one statement by
enclosing the list of variables and the list of expressions in
parentheses. The order of evaluation of the expressions is
left to right. The expressions are evaluated and pressed onto
a stack; after all are evaluated they are popped from the
stack and stored in the variables.

(varl, var2, •••) _ (expl, exp2 •••• l ;
Naturally, the number of expressions must equal the number
of variables.
Example:

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 31

(a. b) _ (c+d. a-b)
The expression c+d is evaluated and stacked. the
expression a-b is evaluated and stacked, the value of
a-b is popped from the stack and stored into b. and
finally, the value of c+d is popped and stored into a.
It is equivalent to:

tempI _ c+d ;
temp2 _ a-b ;
b _ temp2 ;
a templ;

One may assign a single value to a series of variables by
stringing the assignments together:

varl _ var2 _ var3 _ exp ;
The assignment will be made from right to left. varl,
var2, and var3 will all be given the value of the
expression.
ExampLe:

abO;
Both a and b wlll be given the value zero. This type of
statement can be useful in initializing a series of
variables at the beginning of a procedure.

BUMP statement
The BUMP statement will add one to a variable:

BUMP var ;
This is equivalent to:

var var + 1 ;
BUMP DOWN will subtract one from a variable:

8UMP DOWN var ;
This is equivalent to:

var var - 1 ;
You may BUMP more than one variable in a single statement:

BUMP var1. var2. var3, ••• ;
or

BUMP DOWN varl. var2, var3, ••• ;
IF statement

This form causes execution of a state.ent if a tested
expression is TRUE. If the expression is FALSE and the
optional ELSE part is present. the statement following the
ELSE is executed. Control then passes to the statement
immediately following the IF statement.

IF testexp THEN statement ;
IF testexp THEN statementl ELSE statement2 ;

The statements within the IF statement can be any statement,
but are not followed by the usual semicolon; the whole IF
statement is treated like one statement and followed by the
semicolon.
E.g.

IF y=z THEN y_y+1 ELSE y_z ;
In some cases, complex nested IFs may be simpler if rewritten
as a CASE statement.

CASE statement
This form is similar to the IF statement except that it causes
one of a series of statements to be executed depending on the
result of a series of tests.

CASE testexp OF
relop exp : statement ;

MARY, 5-Jan-82 15:05 < USERGUIOES9 PROGRAMMERS-GUIOE.AUG;1, > 32

relop exp : statement ;
relop exp : statement ;

•
•

ENDCASE statement ;
where relop = any relational or interval operator (>=. <. =. IN, etc.) see section 5 (5e3c) and (5e3d).

The CASE statement provides a means of executing one statement
out of many. The expression after the word ·CASE" is
evaluated and the result left in a register. This is used as
the left-hand side of the binary relations at the beginn.ing of
the various cases. Each expression is evaluated and compared
according to the relational operator to the CASE expression.
If the relationship is TRUE, the statement is executed. If
the relationship is FALSE, the next expression and relational
operator will be tried. If none of the relations is
sati$fied. the statement following the word BENDCASE- will be
executed. Control then passes to the statement following the
CASE statement

Note that the relop and expressions are followed by a
colon. and the statements are terminated with the usual
semicolon. The word ENDCASE is not followed by a colon.
In ENDCASE. the statement may be left out -- this is the
equivalent of having a NULL statement there; nothing will
happen.
Example:

CASE c OF
= a: %executed if c = aX

x _ y;
> b: %executed if c > bl

(x. y) _ (x+y. x-y);
ENDCASE Xexecuted otherwiseX

y _ x;
CASE char OF

= 0: lit char = the code for a digitI
char '1;

= Ul: %if char = the code for an upper-case letter%
char ·0;

ENDCASE; Xotherwise nothing%
Several relations may be listed at the start of a single case;
they should be separated by commas. The statement will be
executed if any of the relations is satisfied.

CASE testexp OF
relop exp: statement;
relop exp. relop exp: statement;
relop exp. relop exp, relop exp: statement;

•
•

ENDCASE statement ;
Example: •

CASE c OF
=a. (0: Xexecuted if c=a or c<dX

x _ y;
>b. =d: %executed if c)b or c=dX

(x,y) (x+y,x-y);
ENDCASE iexecuted otherwise%

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 33

y _ x;
As a point of style, the conditions of the CASE statement
should be put one level below the CASE statement in the source
(text) file. The statements (if they are more than one line)
may be put one level below the condition.

LOOP statement
The statement following the word "LOOPW is repeatedly execoted
until control leaves by means of some transfer instruction
within the loop.

LOOP statement;
where statement = any executable LlO statement
Example:

LOOP IF a>=b THEN EXIT lOOP ELSE a _ a+l ;
(It is assumed that a and b have been initialized before
entering the loop.)

The EXIT construction is described below. It is extremely
important to carefully provide for exiting a loop.

WHILE ••• OO
This statement causes a statement to be repeatedly executed as
long as the expression immediately following the word WHILE
has a logical value of TRUE or control has not been passed out
of the DO loop by EXIT lOOP (described below).

WHILE exp DO statement ;
exp is evaluated and if TRUE the statement following the word
DO is executed; exp is then reevaluated and the statement
continually executed until exp is FALSE. Then control witt
pass to the next statement.

For example, if you want to fill out a string with spaces
through the 20th character position. YOU could:

WHILE str.L < 20 DO *str* _ *str*. SP; %what-s already
there. then a spaceS
Remember that the first word of every string variable
has two globally defined fields:

L -- actual length of contents of string variable
M -- maximum length of string variable

The WHILE construct is equivalent to:
lOOP

IF NOT exp THEN EXIT LOOP
ELSE statement ;

Statement
UNTIL ••• OO statement

This statement is similar to the WHIlE ••• OO statement except
that the statement following the 00 is executed until exp is
TRUE. As long as exp has a logical value of FALSE the
statement will be executed repeatedly.

UNTIL exp 00 statement ;
Example:

UNTIL a>b 00 a _ a+l ;
The UNTIL construct is equivalent to:

LOOP
IF exp THEN EXIT LOOP ELSE statement ;

OO ••• UNTIL/DO ••• WHllE statement
These statements are like the preceding statements, except
that the logical test is made after the statement has been
executed rather than before.

00 statement UNTIL exp;

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;l.) 34

DO statement WHILE exp;
Thus the specified statement is always executed at least once
(the first time. before the test is made). For example, this
DO ••• UNTIL:

00 array[var] _ 0 UNTIL (var := var - 1) = 0 ;
and this OO ••• WHIlE:

DO array[var] _ 0 WHILE (var := var - 1) > 0 ;
are both equivalent to:

LOOP
BEGIN
array[varl 0;
IF (var := var - 1) = 0 THEN EXIT lOOP;
END;

FOR ••• DO statement
The FOR statement causes the repeated execution of the
stateme~t following "DO" until a specific terminal value is
reached.

FOR var UP UNTIL relop exp 00 statement;
(UP will be assumed if left out.)

FOR var DOWN UNTIL relop exp DO statement;
where

var = the variable whose value is incremented or
decremented each time the FOR statement is
executed

relop = any relational operator (described in 5e3cl
exp = when combined with relop, determines whether

or not another iteration of the FOR statement
will be performed. It is recomputed on each

iteration.
E.g. FOR; UP UNTIL> 7 00 a _ a + t(i] ;
Optionally. the user may initialize the variable and may
increment it by other than the default of one.

FOR var expl UP exp2 UNTIL relop exp3 DO statement;
FOR var expl DOWN exp2 UNTIL relop exp3 DO statement;
where

expl = an optional initial value for Yare If expl is
not specified, the current value of var is used.
exp2 = an optional value by which var will be
incremented (if UP specified) or decremented (if DOWN
specified). If exp2 is not specified. a value of one
will be assumed.

Note that exp2 and exp3 are recomputed on each iteration.
Example:

FOR k n UP k/2 UNTIL) m*3 DO x[kl k;
is equivalent to

k n;
lOOP

BEGIN
If k)m*3 THEN EXIT LOOP;
x(kl t;
k k + k/2;
END;

BEGIN ••• END statement
The BEGIN ••• ENO construction enables the user to group several
statements into one syntactic statement entity~ A BEGIN ••• ENO
construction of any length is valid where one stateKent is

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1, > 35

required.
BEGIN statement ; statement ; ••• END;
Example:

IF a >= bile THE.N
BEGI.N
a_b;
c_d+5;
END Xno semicolon here because an LIO
statement here wouldn·t have one; see 5d4%

ELSE
BEGIN
a_,c;
b_d+2;
c_b*d* 1;
END; %this semicolon terminates the entire IF

stat ement %
Note the use of NLS file structure to clarify the logic and
separate the blocks. Blocks should always be put one level
below the statement of which they are a part.

EXIT statement
The EXIT statement transfers control (forward) out of CASE or
iterative statements. A CASE statement can be left with an
EXIT CASE statement. All of the iterative statements (lOOP,
WHILE, UNTIL, DOt FOR) can be exited by the [XIT LOOP
statement. EXIT and EXIT LOOP have the same meaning.

EXIT lOOP num or EXIT num
EXIT CASE nurn

where num is an optional integer. The optional number
(nurn) specifies the number of lexical levels of CASE or
iterative statements respectively that are to be exited
(e.g. if loops are nested within loops). If a number is
not given then 1 is assumed.

Examples:
LOOP

BEGIN
.'
IF test THEN EXIT;

Xthe EXIT will branch out of the LOOPI
••••••••
END;

UNTIL something 00
BEGIN
••••••••
WHILE test1 DO

BEGIN
••••••••
IF test2 THEN EXIT;

%the EXIT will branch out of the WHIlEX
••••••••
END;

••••••••
END;

UNTIL SOMething 00
BEGIN
••••••••
WHILE test! DO

MARY, 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;l.) 36

BEGIN
••••••••
IF test2 THEN EXIT 2;

lthe EXIT 2 will branch out of the UNTIl%
••••••••
END;

••••••••
END;

CASE exp OF
:something:

BEGIN
••••••••
IF test THEN EXIT CASE;

Xthe EXIT will branch out of the CASE~
••••••••
END;

••••••••
REPEAT Statement

The REPEAT statement transfers control (backward) to the front
of CASE or iterative statements. The optional number has the
same meaning as in the EXIT statement. REPEAT and REPEAT CASE
have the same meaning.

REPEAT LOOP num
REPEAT CASE num (exp) or REPEAT num (exp)

If an expression is given in parentheses with the REPEAT CASE.
then it is evaluated and used in place of the expression given
at the head of the specified CASE statement. If the
expression is not given, then the one at the head of the CASE
statement is reevaluated.
Examples:

CASE expl OF
=something:

BEGIN
••••••••
IF test! THEN REPEAT;

XREPEAT with a reevaluated expl%
••••••••
IF test2 THEN REPEAT(exp2);

%REPEAT with exp2X
••••••••
END;

••••••••
ENDCASE ;

LOOP
BEGIN
••••••••
IF test THEN REPEAT lOOP;

XREPEAT LOOP will go to the top of the LOOPI
••••••••
END;

DIVIDE statement
The divide statement permits both the quotient and remainder
of an integer division to be saved. The syntax for the divide
statement is as follows:

DIY expl I exp2 t quotient , remainder ;
Quotient and remainder are variable names in which the

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1, > 37

respective values will be saved after the division.
E.g.

DIVa I b, a, r ;
a will be set to alb to the greatest integer with r
getting the remainder

Floating point calculations are described in Part Five.
Section 4-.

PROCEDURE CALL statement
Procedure calls direct program control to the procedure
specified. A procedure call occurs when the name of the
procedure is followed by parentheses. If the procedure
requires that arguments be passed, they should be included in
the parentheses, separated by commas.

procname (exp, exp, •••) ;
where procname = the name of a procedure

exp = any valid LIG expression (explained in Section 5).
The set of expressions separated by com.as is the
argument list for the procedure.

The argument list consists of a number of expressions
separated by commas. The number of arguments should equal the
number of formal parameters for the procedure. The argument
expressions are evaluated in order from left to right. Each
expression (parameter) must evaluate to a one-word value. The
values will be assigned to the formal parameters of the called
procedure.

To pass an array, text pointer. string. or any multi-word
parameter, the programmer may pass the address of the first
word of the variable. then REF the receiving local in the
called procedure.
For example, one may pass an stid directly, but to pass a
text pointer. you must pass the address of the text pointer
and REF the receiving parameter. Remember that a dollar
sign ($) preceding a variable represents the address of
that variable.

The procedure may return one or more values. The first value
is returned as the value of the procedure call. Therefore. if
only one value is returned. one might say:

a proc (b) ;

In-this context, the procedure call is an expression.
If more than one value is returned by the called procedure,
one must specify a list of variables in which to store them.
The list of variables for multiple results is separated from
the list of argument expressions by a colon. The number of
locations for results need not equal the number of results
actually returned. If there are more locations than results.
then the extra locations get an undefined value. If there are
more results than locations, the extra results are simply
lost. The first RETURN value is still taken only as the value
of the procedure call.

var _ procname (exp, exp, ••• : var, var ••••) ;
Example:

If procedure "proc· ends with the statement
RETURN (atb,c)

then the statement
q _ procC:r,s);

results in (q,r,s)

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIOE.AUG;1. > 38

A procedure call may just exist as a statement alone without
returning a value. Not all procedures require parameters. but
the parentheses are mandatory in order to distinguish a
procedure call from other constructs.

E.g. lda();
If a block of instructions are used repeatedly. or are
duplicated in different sections of a program. it is often
wise to make them a separate procedure and simply call the
procedure when appropriate.

It is considered good style to wmodularize ft the functions
of your program as much as possible, where each procedure
represents a function which will be performed no matter
which procedure called it. This implies very limited use
of global variables and careful definition of the procedure
interface.
Procedures should not be made too long. nor have complex
nested loops. Often breaking the code into a nu&ber of
shorter procedures will Make the program clearer and easier
to debug.

A procedure may recursively call itself. Each call will have
its own unique set of local variables. This may be useful if
a procedure is built to handle a general case as well as a
specific case or number of cases. The general case may call
that same procedure for the specific case after some
manipulations.
A great many procedures are part of the NLS system and are
available to your programs. A list of them is available in
the file CNlS.XPROCS,> or CNlS.SYSGO,>. SYSGO lists links to
the source code, so that you can examine the procedure in
detail to see just what it expects as arguments and what it
returns.

RETURN statement
This statement causes a procedure to return control to the
procedure which called it. Optionally, it may pass the
calling procedure an arbitrary number of results. The order
of evaluation of results is from left to right.

RETURN ;
RETURN (exp, exp • ••• 1 ;

E.g.
RETURN (TRUE. a+b) ;
RETURN (getnmf(stid)) ;

GOrO Statement
Any statement may be lab_led; one puts the desired label (a
string of lower case letters and digits) in parentheses and
followed by a colon at the beginning of a statement.

(label): statement;
E.g.

(there): a b + c ;
GOTD provides for unconditional transfer of control to a new
location.

GOTO label ;
E.g.

GOTO there ;
GOTO statements make reading and debugging your program
difficult and are not considered good style; they can usually
be eliminated by use of procedure calls and the iterative

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 39

statements.
NULL Statement

The NULL statement may be used as a convenience to the
programmer. It does nothing.

NULL ;
Example:

CASE exp OF
=0. =1: NULL;
ENDCASE y_1;

JSYS Call and Assembly Language statement
The use of these capabilities should be limited to system
programmers. Assembly language code makes user programs
difficult to understand and to maintain as the executive
underlying NLS changes over time. L1G procedures are
available to accomplish most of the tasks one might want to do
with a JSYS. System programmers should refer to the TENEX
JSYS manual for a description of the available JSYS·s.
Assembly language statements may be included in the LIO code
by preceding the statement with an exclamation-point (!l. The
instruction must be upper-case; the arguments must be
lower-case. E.g.

lPUSH s.jfn ;
A TENEX JSYS may be invoked with a statement similar to the
procedure call statement; the name of the JSYS must be
lower-case. preceded by an exclamation-point:

!jsysname (reg1. reg2, •••) ;
E.g. !gjinf();

The arguments in the parentheses are evaluated and loaded into
the registers before the JSYS is invoked. The first argument
will be put in register one. the second in register two. etc.
Up to eight arguments may be given.
Like a procedure call, multiple results may be received. They
will be taken in order from the registers. (See (13510,3c)
for a description of user JSYS calls.
Some JSYS return to the assembly-language line of cede (not
the LIO statement) one beyond the normal return location.
With such JSYS. you may use the SKIP construct to test if it
has done so:

IF SKIP !jsys(arg1 ••••) THEN ••• ;
In using SKIP. you may not receive multiple results directly.
but must read the registers into globals (see 5(12).

Section 5: E~pressions

Introduction
This section will describe the composition of the expressions.
which are an integral part of many of the statements described
in Section ~.

Primitives
Primitives are the basic units which are used as the operands
of L10 expressions. There are many types of elements that can
be used as LIG primitives; each type returns a value which is
used in the evaluation of an expression.
Each of the following is a valid primitive:

a constant (see below)
any valid variable name. refering to the contents (of the
first word. if not inde~ed) of that variable
the contents of a string variable, refered to as *var*

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1.) 40

a dollar sign (S) followed by a variable name, refering to
the address of the variable
a procedure call which returns at least one value

the first (leftmost) value returned is the value of the
procedure call; other values may be stored in other
variables as described in Section 4.

an assignment (see below)
classes of characters; described in Section 1 of Part One
MIN (exp, exp, •••) the minimum of the expressions
MAX (exp, exp, •••) the maximum of the expressions
TRUE has the value 1
FALSE has the value 0
VALUE (astring) given the address of a string containing a
decimal number. has the value of the number

VALUE (astring. num) given the address of a string
containing a number and the base of that number, has the
value of the number (allows other than base-ten numbers)

READC (see below)
CCPOS (see below)
FIND

P~S

used to test text patterns and load text pointers for
use in string construction (see Section 6); returns the
value TRUE or FALSE depending on whether or not all the
string tests within it succeed.

POS textpointerl relop textpointer2
may be used to compare two text pointers. If the POS
construction is not used. only the first words of the
pointers (the stid.s) will be compared. If a pointer is
before another, it is considered less than the other
pointer.
E.g.

POS ptl = pt2
POS first >= last

constants
A constant may be either a number or a literal constant.
There are several ways in which numeric values may be
represented. A sequence of digits alone (or followed by a
0) is interpreted as base ten. If followed by a B then it
is interpreted as base eight. A scale factor may be given
after the B for octal numbers or after a 0 for decimal
numbers. The scale factor is equivalent to adding that
many zeros to the original number.

Examples:
64 = 1008 = IB2
1448 = 100 = 102

Literals may be used as constants as they are represented
internally by numeric values. The following are valid
literal constants:

-any single character preceded by an apostrophe
e.g •• a represents the code for 1416.

-the following synonyms for commonly used characters:
ENDCHR -- endcharacter as returned by READC
SP -- space
ALI -- Tenex·s version of altmode or escape (=338)
CR -- carriage return

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1,) 41

LF -- line feed
EOl -- Tenex EOL character
TAB -- tab
Be backspace character
BW backspace word
C. center dot
CA Command Accept
CD Command Delete

Assignments
An assignment can be used as a value in an expression.
The form a _ b has the effect of storing b into a and has
the value of b as the value of the assignment.
Another form of the assignment statement is:

a := b
This will store b into a. but have the old value of a as
the value of the assignment when used as a primitive in
an expression.
For example,

b (a:= b) ;
The value of b will be put in a. The assignment will
get the old value of a, which is then put in b. This
transposes the values of a and b. (The parentheses
are not really necessary.)

READe - ENOCHR
The primitive READe is a special construction for reading
characters from NLS statements or strings.

CCPOS

A character is read from the current character position
in the scan direction set by the last CCPOS statement or
string analysis FIND statement or expression. CCPOS and
FINO are expLained in detail in Section 6 of this
document.
Attempts to read off the end of a string in either
direction result in a special Rendcharacter- being
returned and the character position not being moved.
This endcharacter is included in the set of characters
for which system mneumonics are provided and may be
referenced by the identifier BENOCHR-.

For example, to sequentially process the characters
of a string:

CCPOS *str*;
UNTIL (char READe): ENOCHR DO process(char);

(Note: READe may also be used as a statement if it is
desired to read and simply discard a character).

When used as a primitive. CCPOS has as its value the index
of the character to the right of the current character
position. If str = -glarp·, then after CCPOS *str*, the
value of CCPOS is 1 and after CCPOS SE(*str*) the value of
CCPOS is 6 (one greater than the length of the string).
CCPOS is more commonly used as a statement to set the
current character position for use in text pattern
matching. This is discussed in detail in Section 6.
CCPOS may be useful as an index to sequentially process the
first n characters of a string (assumed to have at least n
characters).

Example:

MARY. 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1,) 42

CCPOS SF(*str*);
XCCPOS now has the index value of one, the front

of the str1ng%
UNTIL CCPOS > n DO process(REAOC);

%REAOC reads the next character and increments
CCPOS"

Operators
Primitives may be combined with operators to form expressions.

Four types of operators will be described here: arithmetic.
relational, interval, and logical.
Arithmetic Operators

+ (in front of a number)
- (in front of a number)
+. -- addition

subt rae t ion
* -- multiplication

positive value
negative value

I integer division (remainder not saved>
MOD -- a MOD b gives the remainder of a I b
.v -- (OR) a .V b => bit pattern which has I's where either
a or b contains 1, 0 elsewhere
.x -- (XOR) a .X b => bit pattern which has l's where
either a holds 1 and b contains O. or a contains 0 and b
contains 1, 0 elsewhere
.A -- (AND) a .A b => bit pattern which has 1·s where both
a and b contain 1. 0 elsewhere

Relational operators
A relational operator is used in an expression to compare
one quantity with another. The expression is evaluated for
a logical value. If true. its value is 1; if false, its
value is o.
Operator Meaning Examp l e

= equal to 4+1 = 3+2 (TRUE, =1)
It not equal to 6#8 (TRUE" =1)
< less than 6(8 (TRUE, =1)
<= less than or

equal to 8<.=6 (FALSE. = 0)

> greater than 3)8 (FALSE. :. 0)

>= greater than or
equal to 8>=6 (TRUE. =11

NOT <other-relational-operator)
6 NOT > 8 (TRUE, =1)

Interval Operators
The interval operators permit one to check whether the
value of a primitive falls in or out of a particular
interval.

IN (primitive, primitive) IN [primitive, primitive]
The value is tested to see whether or not it lies within a
particular interval. Each side of the intervaL may be
·open" or "closed w• Thus the values which determine the
boundaries may be included in the interval (by using a
square bracket) or excluded (by using parentheses).
Example:

x IN [1.100)
is the same as

(x >=1) AND (x < 100)

5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 43

Logical Operators
Every numeric value also has a logical vaLue. A numeric
value not equal to .zero has a logical value of TRUE; a
numeric value equal to zero has a logical value of FALSE.
OR

a OR b = TRUE if a = TRUE or if b -. TRUE
= FALSE if a = FALSE. and if b = FALSE

AND
a AND b = TRUE if a = TRUE and if b = TRUE

= FALSE if a -. FALSE or if b = FALSE
NOT

NOT a = TRUE if a = FALSE
= FALSE if a = TRUE

Expressions
Introduction

An expression is any constant, variable. special expression
form, or combination of these joined by operators and
parentheses as necessary to denote the order in which
operations are to be performed.
Examples of assigning an expression to a variable:

var 0;
var var + 2 ;
var POS ptrl)= ptr2 ;
var _ (a > b) OR (a IN [et dl) ;

liberal use of parentheses is highly recommended.
Special LtO expressions are:

- the FINO expression which is used for string
manipulation. and
- the conditional IF and CASE expressions which may be
used to give alternative values to expressions depending
on tests made 1n the expressions.

Expressions are used where the syntax requires a value.
While certain of these forms are similar syntactically to
L10 statements, when used as an expression they always have
values (see below).

Order of Operator Execution-- Binding Precedence
The order of performing individual operations within an
equation is determined by the hierarchy of operator
execution (or binding precedence) and the use of
parentheses.
Operations of the same heirarchy are performed from left to
right in an expression. Operations in parentheses are
performed before operations not in parentheses.
The order of execution of operators (from first to last) is
as follows:

unary -, unary +
.A
• V, .x
* t I, MOD
+, -
relational tests (e.g., >=, <=.), <. =, n. IN. OUT)
NOT relational tests (e.g •• NOT »
NOT
AND
OR

Conditional Expressions

MARY. 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1,) 44

The two conditional constructs (IF and CASE) can be used as
expressions as well as statements. As expressions. they
must return a value.
IF Expressions

IF testexp THEN expl ELSE exp2
testexp is tested for its logical value. If testexp is
TRUE then expl will be evaluated. If it is FALSE, then
exp2 is evaluated.
Therefore. the result of this entire expression is
EITHER the result of expl or exp2.
Example:

y _ IF x IN[1.3J THEN x ELSE 4;
%11 x = 1. 2, or 3, then y_x; otherwise y_4%

CASE Expression
This form is siMilar to the above except that it causes
anyone of a series of expressions to be evaluated and
used as the result of the entire expression.

CASE testexp OF
relop exp : exp ;
relop exp : exp ;
relop exp : exp ;

•
•

ENDCASE exp
where relop = any relational or interval operator
(>=. <, =, IN, etc. See above (5e3c) and C5e4d>

In the above. the testexp is evaluated and used with the
operator relops and their respective exps to test for a
value of TRUE or FALSE. If TRUE in any instance. the
companion expression to the right of the colon is
executed and taken to be the value of the whole
expression. A value of FALSE. for all tests causes the
next reLop in the CASE expression to be tested against
the testexp. If all relops are FALSE. the ENtCASE
expression is taken to be the value of the whole
expression.
Note that ENDCASE cannot be null; it must have a value.
As with the CASE statement. any number of cases may be
specified. and each case may include more than one relcp
and expression, separated by commas.
Exa_ple:

y CASE x OF
<3:

=5:
ENDCASE

Value of X

2
3
4
5
6

string Expressions

x+l;
x+2;
x;
x*2;

Value of y

3
5
6
5

12

LlO also provides several expression forms which are used
for string manipulation and evaluation. These are

MARY. 5-Jan-B2 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1, > 45

discussed in Section 6 of this document. When using string
manipulation statement forms as expressions. parentheses
may be necessary to prevent ambiguities.

Section 6: String Test and Manipulation
Introduction

This section describes statements which allow complex string
analysis and construction. The three basic elements of string
manipulation discussed here are the Current Character Position
(CCPOS) and text pointers which allow the user to delimit
substrings within a string (or statement), patterns that cause
the system to search the string for specific occurrences of
text and set up pointers to various textual elements, and
actual string construction.

Current Character Position (CCPOS)
The Current Character Position is similar to the TNLS eM
(Control Marker) in that it specifies the location in the
string at which subsequent operations are to begin. All LIC
string tests start their search from the Current Character
Position. In content Analyzer programs. it is initialized to
the BEGINNING OF EACH NE~ STATEMENT. For each new statement.
the scan direction is initialized to LEFT TO RIGHT. It is
moved through the statement or through strings by FIND
expressions. It may be set to a particular position in a
statement or string by the LtO statement:

CCPOS pos ;
pos 1s a position in a statement or string that may be
expressed as any of the following!

A previously declared and set text pointer.
If a text pointer 1s given after CCPOS, then the
character position is set to that location. A text
pointer points between two characters in a string.
e.g. CCPOS ptl ;

String Front left of the first character
SF (sts.pec)
When SF is specified. CCPOS will be set before the first
character of the statement or string variable specified
by stspec.
stspec is a string specification that may be expressed
as

- an stid (e.g. the first COMPuter word of a
previously declared text pointer). or
- a previously declared string name enclosed in
asterisks.

Examples:
CCPOS SF(ptl) ;

%ptl is a text pointer%
CCPOS SF(stid) ;

Istid is an stidl
CCPOS SF(*str*) ;

Xstr is a stringX
String End right of the last character

SE(stspec)
When S[is specified scanning will take place from right
to left, and CCPOS will be set after the last character
of the statement or string variable specified by stspec.

A string <*stringname*> is given after CCPOS. The position

MARY, 5-Jan-82 15:05 < USERGUIOESt PROGRAMMERS-GUIDE.AUG;1, > 46

is moved to the beginning of that string.
Indexing the stringname (by specifying [exp]) simply
specifies a particular position within the string. Thus
str[3J puts the Current Character Position between the
second and third characters of the string "str-. If the
scan direction is left to right. then the third
character will be read next. If the direction is right
to left. then the second will be read next.
E.g.

CCPOS *str*[3] ;
If no indexing is given. then the position is set to the
left of the first character in the string. This is
equivalent to an index of 1.
E.g.

CCPOS *str* ;
means the same as

cepos SF(*str*);
Setting the current character position with the CCPCS
statement also sets the scan direction to forward
(left-to-right), except if the SE construct is used.

FINO statement
The FIND statement specifies a string pattern to be tested
against a statement or string variable. and text pointers to
be manipulated and set, starting from the Current Character
Position. If the test succeeds the character position is
moved past the last character read. If the test fails the
character position is left at the position prior to the FINO
statement. The values of text pointers set in the statement
prior to the failing element will remain as set; others of
course will not be changed.

FINO pattern ;
FINDs may be used as expressions as well as free-standing
elements. If used as an expression. for example in IF
statements. it has the value TRUE if all pattern elements
within it are true and the value FALSE if anyone of the
elements is false.
E.g.

IF FINO pattern THEN ••• ;
It is good practice to use FINO as an expression with the
appropriate error conditions if the FIND fails. If the FINO
fails. text pointers may not be set as expected.

FINO Patterns
A string pattern may be any valid combination of the following
logical operators. testing arguments. and other non-testing
parameters (note the identity with Content Analyzer Patterns):
Pattern Matching Arguments--

(each of these can be TRUE or FALSE)
string constant, e.g. "ABC"

or any character. preceded by an apostrophy
It should be noted that if the sean direction is set
right-to-left the string constant pattern should be
reversed. In the above example. one would have to
search for ·CBA-.
Any of th~ system defined mnemonics, as described in
the last section (5e2c), such as ·SP" or ·CR". are
also valid.

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1. > 47

character class
look for a character of a specific class; if found, =
TRUE. otherwise FALSE.
Character classes:

CH -- any character
l -- lowercase or uppercase letter
UL -- uppercase letter
lL -- lowercase letter
o -- digit
tD -- lowercase or uppercase letter or digit
NLO not a letter or digit
ULO -- uppercase letter or digit
LLD -- lowercase letter or digit
PT -- printing character
NP -- nonprinting character
Example:

char = LO
is TRUE if the variable char contains a value
which is a letter or a digit.

(elements)
look for an occurrence of the pattern specified by
the elements. If found, = TRUE, otherwise FALSE.
Elements ~ay be any pattern; the parentheses serve to
group the elements so as to be treated as a single
element in any of the following elements.

-element
TRUE only if the string constant or character class
element following the dash does not occur.

NOT element
TRUE only if the element or group of elements
following the NOT does not occur.

[elements]
TRUE if the pattern specified by the elements can be
found anywhere in the remainder of the string.
elements may be any pattern; the squarebrackets also
group the eleMents so as to be treated as a single
element. It first searches from current pcsition.
If the search failed, then the current position is
incremented by one and the pattern is tried again.
Incrementing and searching continues until the end of
the string. The value of the search is FALSE if the
testing string entity is not matched before the end
of the string is reached.

NUM element
find (exactly) the specified number of occurrences of
the element.
E.g.

S(tO) means three letters or digits
NUMI $ NUM2 element

Tests for a range of occurrences of the element
specified. 11 the element is found at least NUMl
times and at most NUH2 times. the value of the test
is TRUE.

Either number is optional. The default value for
NUMI is zero. The default value for NU~2 1s
10000. Thus a construction of the form ·S3(CH)·

MARY, 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1.) 48

would search for any number of characters
(including zero) up to and including three.

Examples:
2$4(UL) -- from two to four upper-case letters
SlO(SP) -- up to ten spaces
1$(·.) -- one or more periods

10 - user-ideot
10 # user-ident

if the string being tested is the text of an NlS
statement then ident of the user who created or last
edited the statement is tested by this construction;
if CCPOS is 1n a string, you will get the error
·string treated as statement-

FT var
TRUE if the variable holds a value of TRUE
(non-zero).

SINCE dat.im
if the string being tested 1s the text of an NlS
statement. this test is TRUE if the statement was
created or modified after the date and time (datim.
see below) specified.

BEFORE dati.
if the string being tested is the text of an NLS
statement, this test 1s TRUE if the statement was
created or modified before the date and time (datim.
see below) specified.
Acceptable dates and times follow the forms permitted
by the TENEX system's IDTIM JSYS described in detail
in the TENEX JSYS manual. It accepts ".ost any
reasonable date and time syntax."

Examples of valid dates:
1.7-APR-10
APR-11-70
APR 17 70
17 APRIL 10
17/5/1970
5117/70
APRIL 11, 1970

Examples of valid times (zero assumed if time left
out) :

1:12:13
1231f
123'+:56
1 :56AM
1:56-[S1
1200NOON
16:30 (4:30 PM)
12:00:00AM (midnight)
11:S9:S9AM-EST (late morning)
12:00:014M (early morning)

Examples:
BEFORE (MAR 19. 73 16:49)
SINCE (25-JUL-73 2130:00)

These may not appear in content Analysis patterns. but are
valid elements in FIND statements in any program:

stringname

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1. > 49

the contents of the string variable
BETWEEN pas pos (element)

Search limited to between positions specified. pes
is a previously set text pointer; the two must be in
the same statement or string. Scan character
position is set to first position before the pattern
is tested (This is not an unanchored scan unless
square brackets are used within the parentheses.).
E.g.

BETWEEN ptt pt2 (20 e.l SNP)
Logical Operators--

These combine and delimit groups of patterns. Each
compound group is considered to be a single pattern with
the value TRUE or FALSE. The character position will be
reset to its position before encountering the group before
a new group 1s tested. Any text pointers set within a test
pattern before it fails will retain their new values_ (See
examples below.)

I
AND
OR
These logical concatenators bind in the order in which
they are listed. I.e.

a I bAND c
means the same as

(a I bJ AND c
Other Elements--

These do not involve tests; rather, they involve some
execution action. They are always TRUE for the purposes of
pattern matching tests.
These may appear in simple Content Analysis Patterns:

<

)

set scan direction to the left
In this case, care should be taken to specify
patterns in reverse. that is in the order which
the computer will scan the text.

set scan direction to the right
TRUE

has no effect; it is generally used at the end of OR
when a value of TRUE is desired even if all tests
fail.

ENDCHR
Attempts to read off the end of a string in either
direction result in a special -endcharacter ft being
returned and the character position is not moved.
This endcharacter is included in the set of
characters for which system mneumonics are provided
and may be referenced by the identifier -ENDCHRw.

These may not appear in simple Content Analysis Patterns.
but may in FIND statements:

pos
pos is a previously set text pointer. or an SE(pos)
or SFtpos) construction. Set current character
position to this position. If the SE pointer is
used, set scan direction from right to left. If the

MARY, 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1, > 50

SF pointer is used, set scan direction from left to
right.
E.g.

ft 10

FIND x; Xsets CCPOS to position of previously set
text pointer x%

store current scan position into the textpointer
specified by the identifier

[NUM] 10
back up the specified text pointer by the specified
number (NUH) of characters. Default value for NUM is
one. Backup is in the opposite direction of the
current scan direction.

FS var
FR var

FS will set the variable to TRUE (1). FR will reset
the variable to FALSE (0).

String Construction
One may modify an NLS statement or a string with the
statement:

Sf pos _ stringlist ;
The whole statement or string ;n which pas resides will
be replaced by the string list.

ST pas pos _ stringlist ;
The part of the statement or string from the first pas
to the second pas will be replaced by the string list.
·pos" may be a previously set text pointer or the
SF(pos)/S[Cpos) construction.

There are two additional ways of modifying the contents of a
string variable:

Sf *stringname*[exp TO expl _ stringl1st ;
means the same as

stringname[exp TO exp] _ stringlist ;
The string from the first position to the second
po~ition will be replaced by the string list. The
square-bracketed range is entirely optional; if it is
left off. the whole string will be replaced.
Note that the ·sr- is optional when assigning a
stringlist to the contents of a string variable. The
statement then resembles any simple assignment
statement. I.e.

stringname _ stringlist ;
The string list (stringlist) may be any series of string
designators. separated by commas. The string designators may
be any of the following:

the word NULL
represents a zero length (empty) string

string constant. e.g. -ABC· or ·w
part of any string or statement. denoted either by

two text pointers previously set in either a statement
or a string

pos pos
a string name in asterisks. refering to the whole string

str;ngname
a string name in asterisks followed by an index.
refering to a character in the string

MARY. 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIOE.AUG;l, > 51

stringname[exp]
(The index of the first character is one.)

a string name in asterisks followed by two indices,
refering to a substring of the string

stringname[exp TO exp]
A construction of the form *str*(i TO j] refers to
the substring starting with the ith character in
the string up and including the jth character.
Examples:

str[l TO 10J is the four character substring
starting with the,7th character of str.
str[i TO str~L] 1s the string str without the
first i-1 characters_ (i 1s a declared
variable.)

+ substring
substring capitalized

- substring

exp
substring in lower case

value of a general LIG expression taken as a character;
i.e., the character with the ASCII code value (see chart
at end of document) equivalent to the value of the
expression

STRING (exp1. exp2);
gives a string which represents the value of the
expression expl as a signed decimal number. If the
second expression is present, a number of that base is
produced instead of a decimal number.
E.g.

Examples:

STRING (3*2) is the same as the string 86-
or

STRING (14,8) is the same as the string 816-

ST pi p2 _ *string*;
does the same as

ST pi _ SF(pl) pi, *string*. p2 SE(p2J;
assuming pI and p2 have been set somewhere in the same
statement. The latter reads -replace the statement
holding pi with the text from the beginning of the
statement to pl. the contents of string, then the text
from p2 to the end of the statement."

st[low TO high] _ ·string-;
does the same as

st *st*[l TO low-I], ·string-, *st*[high+l TC st.L];
assuming low and high are declared simple variables.

Example:
Let a ·word" be defined as an arbitrary number of letters and
digits. The text pointer at a is set before or after some
character in the word. The two statements in this example
delete the word which holds the text pointer -t w • and if there
is a space on the right of the word, it is also deleted.
Otherwise, if there is space on the left of the word it is
deleted.
The text pointers ptrl and ptr2 are used to delimit the left
and right respectively of the string to be deleted.
IF (FIND t < $LD Aptrl > $LO (SP Aptr2 I Aptr2 ptrl < (SP

MARY, 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1.) 52

Aptr1 I TRUE») THEN
ST ptrl ptr2 _ NULL;

The reader should work through this example until it is clear
that it really behaves as advertised.

More Than One Change per statement
The second word of a text pointer. the character count, stays
the same until the text pointer is again set to some other
position (as does the first word), even though the statement
has been edited. If, for example. you have the statement

abcdefg
/\

and if you have set a pointer between the ad- and the "e·, it
will always point between the fourth and fifth characters in
the statement; the second word of the text pointer holds the
number 5. If you then delete the character 8 a ". your pointer
will be between the "eft and the ·f".

bcdefg
/\

For this reason, you probably want to do a series of edits
beginning with the last one in the statement and working
backwards.

Text Pointer Comparisons
This may be used to compare two text pointers.

POS ptl = pt2;

)

<
>=
<=

ptl and pt2 are text pointers.
NOT may precede any of the relational operators. If the
pointers refer to different statements then all relations
between them are FALSE except Bnot equal- which is written
or NOT=. If the pointers refer to the same statement,
then the truth of the relation is decided on the basis of
their location within the statement.
A pointer closer to the front of the statement is -less
than" a pointer closer to the end.

Section 7: Invocation of User Filters
Introduction

The Content Analyzer filters described in this document may be
imposed through the NLS PROGRAMS subsystem.

User-attachable subsystems may be written for more complex
tasks. This type of user program and NlS procedures which
may be accessed by them will be discussed in Part Four.
With such a program, however, the user will still make use
of the commands in the NLS PROGRAMS subsystem.

This section describes NlS commands which are used to compile,
institute and execute user programs and filters.

Compilation--
is the process by which a set of instructions in a
program is translated from the LIO language written in
an NlS source file into object code. which the computer
can use to execute those instructions.

Loading--
is the process which copies the compiled instructions

5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1, > 53

into the user-programs buffer.
Institution--

is the process by which a compiled and loaded Content
Analyzer program is designated as the current content
Analyzer filter.

This section additionally presents examples of the use of the
LID programming language. They do not make use of any
constructions not explained so far in this manual.

Programs Subsystem
Introduction

The PROGRAMS subsystem provides several facilities for the
processing of user written programs and filters. It is
entered by using the NlS command:

Gota Programs OK
This subsystem enables the user to compile llO user
programs as well as content Analyzer patterns, centrol how
these are arranged internally for different uses. define
how programs are used, and to see the status of user
programs.

PROGRAMS subsystem commands
After entering the PROGRAMS subsystem, you may use one of
the following commands:
Show status of programs buffer

This command prints out information concerning active
user programs and filters which have been loaded and/or
instituted:

Show status (of programs buffer) OK
When this command is executed the system will print:

-- the names of all the programs in the user programs
buffer. including those generated for simple Content
AnalYSis patterns. starting with the first program
loaded.
-- the remaining free space in the buffer. The buffer
contains the compiled code for all the current
compiled programs.
-- the current content Analyzer Program or "None"
-- the current user Sequence Generator program or
-None"
-- the user Sort Key program or -None-

Compile
LIO Program

This command compiles the program specified.
Compile LIO (user program at) ADDRESS OK

ADDRESS is the address of the first statement of the
program.
This command causes the program specified to be
compiled and loaded into the user program buffer in a
single operation. The program is not instituted.

The name of the program is the visible following
the word PROGRAM. ADDRESS points to the PROGRAM
statement.

The program may be instituted by the appropriate
commands.

File
The user program buffer is cleared whenever the user
resets or logs out of the system. If you have a long

5-Jan-82 15: 05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;l. > 54

program which will be used periodically. you may wish
to save the compiled code in a TENEX file. It can
then be retrieved with the Load Program command. The
command to compile the code into a TENEX file is:

Compile File (at) ADDRESS (using) LID OK (to file)
FILENAME OK

The fILENAME must be the saMe as the program name.
The program will then be compiled and stored in the
TEN EX file of the given name (with the extension REL,
unless otherwise specified). The user may then load
it at any time.
Before doing this, the programmer must replace the
word PROGRAM at the head of the program with the word
FILE.

content Analyzer Pattern
This command allows the user to specify a Content
Analyzer pattern as a Content Analyzer filter.

Compile Content (analyzer 1i lter) ADDRESS OK
The pattern must begin with the first visible after
the ADDRESS, or at that point you may type it in. It
will read the pattern up to a sem1eolon, so be sure
to insert a semicolon where you want it to stop.
When this command is executed, the pattern specified
is compiled into the buffer. AND it is automatically
instituted as the content Analyzer filter.

Procedure
This command compiles a single procedure.

Compile Procedure (at) ADDRESS OK
ADDRESS 1 s the address of t he PROCEDURE st atement.
This command causes the procedure specified to be
compiled and loaded into the user program buffer in a
single operation.

If a procedure of the same name has already been
loaded (in the user programs buffer or in the NLS
system), the old procedure will be replaced. I.e.
any calls to that procedure name will invoke the
newly compiled procedure.

Error Message during Compilation
·SYNTAX ERROR" messages include the type of error.
the location of the line of assembly code that caused
trouble. and a few characters of the NLS source code.

The last of these characters is the one which caused
the error. In some cases this may be misleading.
when a previous error (e.g. a missing Quote or
percent sign) caused trouble later in the
compilation.

"ext & local" -- a symbol was used as both an
external or global and a local variable in the
file. If a variable is not declared in the
program, the compiler assumes it is a system
EXTERNAL. If it is later used as a LOCAL. an
error will result.
"field too large" -- a field may not be defined as
more than 36 bits.
"sides not equal" -- in a multiple assignment
statement, the sides must have the same number of

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1.) 55

values, e.g. (a,b,c) _ (x,y,z);
"not REF or POINTER- -- an ampersand (&) was used
on a variable not REFed or declared as a POINTER
(not described in this document).
D8 args max· -- you may not pass more than eight
arguments in a JSYS call.

"SYSTEM ERRORw messages also include the type of
error. the location of the line of assembly code that
caused trouble, and a few characters of the NLS
source code.

"[OF READH -- the compiler hit the end of the NLS
file before it read a FINISH statement. (This may
happen if you don't have viewspecs set to all
lines. all levels.)
"HASH TABLE FUll" -- you have used too many
symbols in the file. Each file is limited to
approximately 2000 symbols.
"BACKUP TOO FAR" -- a symbol or a literal string
(text within quotes) has too many characters in
it. They are limited to 148 characters.
"SYMBOL TOO LONG" -- as above. a symbol has too
many characters in it.
"INPUT TOO LONG" -- as above, a literal string has
too ~any characters in it.
·s.s. FULL" -- as above. a symbol has teo many
characters in it.
wI/O ERROR" -- a number has too many digits in it.
"LIT TABLE FULL· -- the file has too many literal
strings and numbers.

·PUSHDOWN OVERFLOW· means that one of the stacks that
the compiler uses overflowed. look for an L10
statement containing too many parentheses or
particularly complex constructions. You may have to
break some statements into multiple state.ents.
"Boolean as operand· -- you used an expression as a
parameter or in a RETURN statement. This is NOT an
error, but only a warning of unusual (though in many
cases good) programming practice.

If you include the L10 statement
NOMESS ;

at the beginning of the file. at the same level as
global declarations (i.e. not within a procedure).
this warning will not be printed. Errors will be
printed as usual.

When the compilation is finished. it will list the
number of errors and wait for a Command Accept to
continue. You should then search for the error in
the NLS source code filet correct it. and recompile
before attempting to use the program.
Errors involving undefined variables will be reported
when you attempt to load the program. Of course any
code using these variables will cause execution
errors.

If you include the LID statement
LIST ;

anywhere in the code, all the undefined symbols at

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;1, > 56

that point in the compilation will be printed.
The Compile Procedure command will generate
undefined variable errors legitimately if the
procedure refers to global variables.

If the addition of your program to the user programs
buffer requires more than the maximum space allotted
for user programs (either in number of pages or
number of symbols), you will get a Bformat error
upon loading. (If you have any other programs
loaded, use the -Delete All- command prior to
loading.)
NOOT (described in Part Five. Section 2) will help
you trace run-time errors to errors in the NLS source
code.

Load Program
A pre-compiled program existing as a REL file may be
loaded into the program buffer with the command:

load Program FILENAME OK
If the FILENAME is specified without specifying an
extension name. this command will search the connected
directory. then the <PROGRAMS> directory, for the
following extensions:

REL -- it will simply load the REL file
CA -- it will load the program and institute it as
the current content analyzer program
SK -- it will load the program and institute it as
the current sort key extractor program
SG -- it will load the program and institute it as
the current sequence generator program
SUBSYS -- it will load the program and then look for
a file of the same name with extension CHl; if both
are successfully loaded, they will be treated as a
single program
CML -- it will load the program and then try to
attach it as a subsystem
PROC-REP -- it will load the program and then try to
replace an existing procedure of the same name as the
TENEX code file by the first procedure in loaded
program
Sort key extractor and sequence generator programs
are more complex and are generally limited to
experienced LID programmers.

FILENAME is the" name of the TENEX code file. not the
name of the program.
If any variables are undefined. they will be reported
upon loading. The program should not be used until
those variables are declared somewhere.

Delete
All

This command clears all programs from the user
program buffer. All programs are deinstituted and
the buffer is marked as empty.

Delete All (programs in buffer) OK
The user programs buffer shares memory with data
pages for files which the user has open, therefore
increasing the size of the user programs buffer

5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;1. > 57

decreases the amount of space available for file data
with a possible slowdown in response for that user.
The buffer size is increased autoMatically as needed.

This command also resets the buffer size to the
original 8 pages (saving system storage space).

last
This command deletes the most recently loaded program
in the buffer. The program is deinstituted if
instituted and its space in the buffer marked as
free.

Delete Last (program in buffer) OK
Run Program

This command transfers control to the specified program.
This type of program is used very little, having been

substantially replaced by user-attachable subsystems. as
described in Part Four.

Run Program PROGNAME OK
Run Program NUMBER OK

PROGNAME is the name of a program which had been
previously compiled. That is, PROGNAME must be in the
buffer when this command is executed.
Instead of PROGNAKE. the user may specify the program to
be run by its number. This first program loaded into
the buffer is number one.

Institute Program
This command enables the user to designate a program in
the buffer as the current Content Analyzer. Sequence
Generator. or Sort Key e.tractor program.

Institute Program PROGNAME OK (as) type OK
where type is one of the following:

Content (analyzer)
Sort (key extractor)
Sequence (generator)
If no type is specified, Content analyzer will be
assumed.

Instead of PROGNAME the user may specify the program
to be instituted by number. The first program loaded
into the buffer is number one.

If a program has already been instituted in that
capacity, it will be deinstituted (but not removed from
the buffer).

Oeinst1tute Program
This co •• and deactivates the indicated prograa, but does
not remove it from the buffer. It may be reinstituted
at any time.

Oeinstitute type OK
where type is one of the following:

content (analyzer)
Sort (key extractor)
Sequence (generator)

Assemble File
Files written in Tree-Meta can be assembled directly
from the NLS source file with the Assemble File command.

This aspect of NLS programming will not be described in
this document.

Examples of User Programs

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 58

The following are examples of user programs which selectively
edit statements in an NLS file on the basis of text matched
against the pattern. For examples of LlO programming
problems. you may find out how the standard NLS commands work
by tracing them through, beginning with <NLS, SYNTAX, 2>. A
table of contents to all the global NLS routines is available
to the user in <NlS. SYSGD, 1>.
Example 1 -- Content Analyzer program

PROGRAM outname X removes the text and delimiters () of NLS
statement names in parentheses from the beginning of each
statement%

DECLARE TEXT POINTER sf;
(outname)PROCEOURE;

IF FIND .((t)] ~sf THEN Xfound and set pointer after
nameX

BEGIN
Xreplace stmnt by everything after pointer%

ST sf sf SECsf);
Xdisplay statement%

RETURNCTRUE);
END

Xotherwise don-t display statementl
ELSE RETURN(FALSE>;

END.
FINISH

Example 2 -- Content Analyzer program
PROGRAM changed %This program checks to see if a
statement was written after a certain date. If it was. the
string "[CHANGED]" will be put at the front of the
statement.%

(changed) PROCEDURE;
LOCAL TEXT POINTER pt ;
%remeMber. CCPOS is initialized to the beginning of
each new statement%
IF FIND Apt SINCE (25-JAN-72 12:00) THEN

%the substring of zero length is replaced with
-CCHANGED]-X

ST pt pt _ "[CHANGED]";
RETURN(FALS[) ;
END.

FINISH
P'RT FOUR: Interactive LlO Programming

section 1: Introduction
For many programming applications. it is sufficient to accept
statements one at a time from the sequence generator and assume
as an initial character position the beginning of the statement
(a content Analyzer program as described above). For more
complex applications, you may have to write programs which skip
around files. between files, and interact with the user. These
are not called by the sequence generator but -Attached- and then
used like standard NLS subsystems, holding one or more commands.
All the capabilities described above are available to such
programs.
There are two parts to every user-attachable subsystem:

1} the L1D execution routines which do the file manipulations.
and

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;I. > 59

2) the command syntax. specified in a language called Command
Meta Language (CML). describing the user interface cf each
command in the user attachable subsystem.

These two parts are two separate programs, compiled separately
into two REL files. The two programs are loaded in unison and
together comprise the subsystem.
Like LIO, source programs for the CHl compiler are free form NLS
files. Comments may be used wherever a blank is permitted and
the structure of the source file is ignored by the compiler. CMl
source programs are compiled into REL files with the Compile File
command in the PROGRAMS subsystem. CML is the compiler name for
the CML compiler.

The REL file name of the CML code should have the extension
·cml R • The REl file name of the corresponding LIO execution
procedures should have the same first name as the CML code
file, and should have the extension -subsys." If these
conventions are followed. the Load Program co.mand in the
PROGRAMS subsystem will automatically load both parts of the
user subsystem and attach it. making it available fer use.
The user's subsystem may then be invoked by using the Goto or
Execute commands.

The CMl program describes the command words. noise words.
selection requests, etc. that make up an NlS command. The CML
code interacts with the user when he enters the subsystem and as
he specifies commands. In the process of interacting with the
user. the CML code may call one or a number of LIO execution
procedures which "do the work."

CML automatically provides prompting, Questionmark, and
(CTRL-S> facilities. The CMl syntax specification applies to
both TNLS and ONLS (unless restricted by the programmer to one
or the other). and will conform to all user options. with
respect to prompting and to recognition and completion modes.

The next section will describe CML, and how to design the user
interface. Section 3 explains the requirements of the l10
procedures which CHL calls. The remainder to Part Four discusses
additional LIO capabilities useful in the context of attachable
subsystems.

Section 2: Command Meta Language (CMl)
Introduction

This section describes the Command Meta language (CML). CML
allows the specification of the user interface to commands.
The CMl program (the grammar) may call LtD procedures of a
certain type (described in the next section). The programs
written in CML are similar in structure to LIO programs.
Typically, a CMl and an LIO program are used in unison as a
user attachable subsystem. A more technical presentation of
CML may be found in (20438.>.

Program structure
The basic CML program structure is Much like that of L10
programs. The program begins with a -FILE- statement (as does
an LIO program) of the form:

FILE name
where name is the name of the program code (in lowercase
letters and numbers, beginning with a letter); it must be a
unique symbol. different from the FILE name of the LIO code
file.

MARY, 5-Jan-82 15: 0 5 < USERGUIOES, PROGRAM"ERS~GUIDE.AUG;l, > 60

The program ends with the statement (like LlO):
FINISH

Within the program, one may have a series (in any order) of
declarations, rules. and subsystems.

As in LIO, all variables used in the program must be
declared somewhere in the systeM. Other values and
attributes must also be declared in CML.
Rules are defined sequences of the CMl elements described
below. Rule names can be placed anywhere in a CMl command
specification. When a rule is called within a command, it
is almost as if the CMl elements represented by that rule
were inserted at that point in the com.and. This allows
the definition of general interactions that may be of use
in a number of commands or points in a command.
Each program usually represents one or more subsystems. A
subsystem may include one or more commands. Each command
is a rule itself. It may optionally include rules to be
performed up on enter i ng or leaving the s ubsyst.em. (One
enters a subsystem with the Goto or Execute commands. and
leaves with the Quit command.) A subsystem may also
include general rules defined throughout the subsystem.

Each of these parts of the CML program will be described
independently. The CML elements which make up rules will also
be described.

Subsystems
A CHL program holds declarations. general rules which apply
throughout the program. and subsystems (usually only one).
The Subsystem begins with a statement of the form:

SUBSYSTEM name KEYWORD -NAME-
where name is the internal name of the subsystem (primarily
for debugging purposes) and NAME is the name which the user
must specify (in a Goto or Execute command) to access
com.ands in the subsystem.

These two na.es may be the same but they must be unique.
diff~rent from the FILE names of the CML and LIO files.

A subsystem ends with the statement:
END.

Within the subsystem. you may have any nu.ber of rules.
A rule as described below will be known throughout the
subsystem. but not outside the subsystem.
A rule preceded by the word ·COMMAND- will be available as
a command in the subsystem. It should begin with a command
word element. E.g.:

COMMAND zshow = ·SHOW·!l2!
ent (-EXAMPLE"I·SAMPLE")
CONFIRM
prot' (ent) ;

A rule preceded by the word "INITIALIZATION- will be
executed whenever the subsystem is entered (either with a
Goto or an Execute command from another subsystem>. E.g.:

INITIALIZATION example =
procl (ent)
proc2 (ent) ;

A rule preceded by the word KTERMINATION" will be executed
whenever the subsystem is left (with a Gota or Quit command
from this subsystem).

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;l, > 61

A rule preceded by the word -RENTRY" will be executed
whenever the subsystem is reentered (either with a Quit
command from another subsystem. having left this one with a
Goto, or upon completing an Execute of a command in another
subsystem from this subsystem).

Preceding a rule with the above modifiers does not prevent
calling that rule from within another rule.

Rules
A CML rule is a defined series of elements, each of which
represents one piece of the interaction with the user or
syste~ action. The elements will be described below. The
name of a rule (defined to be the given series of CML
elements) may be used in other rules. When the name of a rule
appears in another rule. the CMl code which it represents will
be executed at that point.
A rule takes the form:

name = element! element2 element3 ••• element ;
where Bname ft is any unique name (lowercase letters and
numbers. beginning with a letter).
Alternative elements (where the user has a choice) are
indicated by a slash (/) in the expression. Parentheses
should be used to group elements. particularly when
alternative logic and nesting of alternatives is involved.
E.g.

name = (elementl I element2 element3) element4 ;
Note that. by use of parentheses, an alternative may
include more than one element.

Elements grouped in square brackets are options, and the
user must type the option character (CTRL-u> to access
them. E.g.

name = elementl Celement2 element3J element. ;
E.g.

zinsert = -INSERT" ent_("WORO·/·CHARACTERft) <"at">
dest_DSEl(ent) xins(dest);

A number of elements may be included in a single rule. (If
you exceed the maxi.um, you will get a ·stack overflow· error
at run-time.) Elements are NOT separated by any delimiter
character (except by spaces or the source file structure).
The entire rule is terminated by a semicolon.
The return value of elements may be assigned to CML variables
(single-word as in L10), using a left-arrow ,_) in the form:

variable eLement
The variable aust have been declared. as descr1bedbelow.

A variable must be initialized by such an aSSignMent before
its content is passed to any routine. It Must be initialized
in the rule which passes it to a routine (not just in other
rules called fro. the given rule. even though other rules may
subsequently set it to another value). (If you fail to do so.
you will get the run-time error "reference to undefined
interpreter variable.·)
Names on the left side of an assignment are assumed to be
variables; other names in CML rules are assumed to be CMl
rules.

Declarations
Declarations are used to associate names with their CML
function. A number of types of names may be used in CMl

5-Jan-82 15:05

programs.
Variables

< USERGUIOES. PROGRAMMERS-GUIDE.AUG;l.) 62

Whenever a procedure is called from CML, CML creates a
ten-word record. The address of the record is passed to
the procedure. which may put information in any of the ten
words. The procedure usually returns the address of its
record.
A CML variable is a cell which holds the address of a CML
record. By this mechanism, up to ten words of information
may be handled with a single parameter by passing the
address of the first word of the record. A variable may be
declared with the statement:

DECLARE VARIABLE name ;
or

DECLARE name ;
where "name- is any unique name (lowercase letters and
numbers. beginning with a letter).

You May declare any number of variables in a single
statement, i.e.:

DECLARE VARIABLE namel, name2, ••• ;
or

DECLARE namel, name2 •••• ;
Many CML variables have been declared for use anywhere in
the system, and .ay be used freely in user attachable
subsystems (without being declared by the user programmer).

Some commonly used variable names are:
ent na.fil level param
dent dest filtre param2
sent source vs param3
port fromwhom literal param~

External Variables
As in L1n, external variables are variables which are made
available to any procedure anywhere in the NlS system.
(Simple variables are only known in the file in which they
are declared.) One or more .may be de~lared with a
statement of the form:

DECLARE EXTERNAL namel, name2, ••• ;
Parsefunctions

An LIO function which processes input and supplies a prompt
string is called a ·parsefunct1on." The name of the
procedure must be declared as a parsefunction for CML to
reQuest a prompt string whenever the procedure is called.

DECLARE PARSEFUNCTION na.el.name2 •••• ;
More detailed information about the nature of
parsefunctions will be offered below.

Command Words
A command word is a word specified as part of a command
(e.g. Rlnsert- or -Word" in the Insert Word command); it is
specified in accordance with each user·s recognition scheme
(often recognized after the first character). A
declaration may assign a value to a command word, to be
passed to an llO procedure which needs to know which
command word was chosen by the user.

DECLARE COMMAND WORD "WORDI"=100. ·WOR02 R =lOl, ••• ;
The value must be a positive decimal integer. less than
511. (This limit may have to be changed to 255 in

MARY, 5-Jan-82 15:05 (USERGUIOES, PROGRAMMERS-GUIDE.AUG;1, > 63

future versions of NlS.)
More than one command word may have the same value
(unless of course the llO procedure must distinguish the
userts choice between the two).

A command word that has not been declared may be included
in the syntax; it will have no value though. Only those
command words which are assigned a value and then passed to
an LIG procedure must be declared. Many command words have
been declared for use in the NlS system. It is considered
good practice to use command words already known to users
when possible. and to use the same values for those words
as declared in NLS. Section 5 offers a set of
declarations. including all the system defined command
words; it can be copied as the foundation for a CML
program.

You may not use co •• and words identical to the names of
the LtD or CML files. to the name of the subsystem. nor
to any variable names.

CML Elements
The CML elements described here are the building blacks of
rules, which describe interactions with the user.
Command Word Recognition

The appearance of a command word element in a rule means
that the user must specify that (or an alternative command
word) at that point in the command specification.

In the CML description. each comMand word is represented
by its full text. The algorithm used to match a user~s
typed input against any list of alternative command
words is known as -recognition.- Each individuales
command word recognition mode will determine what
characters the user must type to specify the command
word. This is handled automatically by the command
interpret er.
As the user specifies a command. the command words (and
noise words described below) are echoed in a line at the
top of the ONLS screen, or printed in TNLS. This is
called the ·co •• and feedback line."

Command word elements must be uppercase words enclosed in
double-quotes (WW); e.g.

-INSER.T-
Command words optionally may be followed by one or more
Qualifiers which mOdify the recognition process, separated
by spac~s and enclosed in exclamation points. The
qualifiers are:

NOTT -- not available in TNLS
NOTO -- not available in DNLS
l2 -- second level (some recognition modes differentiate
first from second level COMmand words. e.g. second level
are preceded by a space)
number -- explicit value for command word; supercedes
any value assigned by a DECLARE COMMAND WORD

For example:
·SET"!l2!
·PRINT"fNOTO!
-EXAMPLEWORoa!L2 104!

The address of records holding declared command word values

MARY. 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;l. > 64

may be assigned to CMl variables so that the user.s choice
can be passed to subsequent routines. e_g_

ent ·CHARACTER"
or

ent ("CHARACTER" I "WORD-)
then

xprocedure (ent)
Remember that. like all other CML assignments. the
variable receives the address of a record which holds
the information. When the content of this variable (the
address of the record) is passed to a procedu re. the
procedure must REF its receiving variable to access the
contents of the record. the value.
This value will be assigned as above even if the command
word is followed by ather CML elements; e.g.

ent _ ("CHARACTER" param_FAlSE I ·WORO· <"at")
param_LSEL(#"WORO"))
ent will get the value of the command word CHARACTER
or the value of the command word WORD. The
appropriate actions will happen after the user
chooses the command word.

You may wish to pass this value without forcing the user to
type the command word. This address may be assigned by
preceding the command word by a pound-sign (.).

ent _ i-CHARACTER-
will assign the address of the declared command word
value without forcing the user to type the command word

Selection Recognition
Selections are input from users pointing to plates 1n files
or typing 1n strings of text. The three types of selection
routines available in CML. with their respective command
prompts. are:

DSEL -- destination selection
BIA

SSEL -- source selection
BI A/[T)

lSEl -- literal selection
B/T/[A J

where B = bug (not available in TNLS), A = Dynamic
Address Element (any series of NlS addressing elements).
and T = typein from keyboard.

Each of these predefined selection routines prompts the
user and receives the input.

The selection routines must be passed the address of a
record holding the value of a noun command word
(character. word, statement, plex, etc.). The command
word enclosed ;n double-quotes and preceded by a
pound-sign (#) is equivalent to the address of a record
holding the declared value of that command word. e.g.:

DSEL(#ftCHARACTER-)
Or you may have assigned the address of the value of a
previously selected command word to a CML variable. then
pass the content of the variable. e.g.:

ent ftCHARACTERw
DSEL(ent)

CML will prompt the user for the appropriate input. If

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;1. > 65

more than one selection is necessary (e.g. to specify
both ends of a group or string of text). they will
prompt for both automatically. They will delimit the
appropriate entity automatically (e.g. both ends of a
word will be found from a single selection).
The routine will return the address of a CMl record
holding two text pointers in the first four words.
delimiting the beginning and end of the entity selected.

for string entities within statements
words 1-2: txt ptr before first character of
string
words 3-4: txt ptr after last character of string

for types DSTATEMENT" and "BRANCH-
words 1-2: txt ptr before first character of
statement
words 3-4: txt ptr after last character of
statement

for types -GROUp· and ·PLEX·
words 1-2: txt ptr before first character of first
statement
words 3-4: txt ptr before first character of last
statement

for type ·WINDOW"
word 1: address of display area
word 2: x and y screen coordinates

One usually assigns the returned address of this record
to a CML variable. e.g.:

dest OSEl(#·STATEMENT")
Other Recognizers

Other prespecified input routines are available. each
prompting for and receiving a type of input from the user:

YIEWSPECS -- takes no argument and returns the address
of a CML record holding:

word 1: updated viewspec word 1
word 2: updated viewspec word 2
words 3-1: used for collecting characters.from user

LEVADJ -- takes no argument and returns the address of a
CML record holding:

word 1: level adjust count
(up = +1, same = O. down = -1. up two levels = +2.

etc.)
words 2-7: used for coLlecting characters from user

CONFIRM -- waits for user to type confirmation character
(a Command Accept. Insert. or Repeat character); it
takes no argument and returns the address of a CMl
record holding the confirmation code in word 1.

These values are rarely used. since subsequent
functions are handled automatically by the command
parser. For reference. they are:

1 = Command Accept
2 = Insert
3 = Repeat

DUMMY does nothing but always TRUE; may be used to
allow elements to be sk1ped. e.g.:

(·OPTION- somprocedure() I DUMMY) CONFIR'

MARY. 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1. > 66

allows the user to specify ·Option- before the
CONFIRM. or skip it and just type a CONFIRM.

CML Constants
TRUE -- holds the address of a CML record whose first word
has the value TRUE (i.e. 1)
FALSE -- holds the address of a CHL record whose first word
has the value FALSE (i.e. 0)

LIO Procedure Calls
LIO procedures may be called at any point in the rule by
including the name of some routine followed by its
parameter list enclosed in parentheses. (The next section
describes the special requirements of LtO procedures called
from CML.) E.g.

procedurename (paraml. param2 ••••)
Parameters may include CML variables (whose content is
passed), the CML elements TRUE. FALSE or NULL. or the #
construct (see ·Selection Recognition") representing the
address of a co •• and word value.
Helpful Procedures in building CHl logic:

isdnls() -- returns TRUE if ONLS, else FALSE
istnls() -- returns TRUE if TNLS, else FALSE
true() -- returns TRUE
false() returns FALSE
abort() -- abort command as if user typed a Command
Delete

Parsefunct ions
Procedures which are declared as PARSEFUNCTIONs examine the
information being typed by the user during command
specification (characters going into the input buffer).
CHL places additional requirements on l10 procedures
declared as parsefunctions. as described in the next
section. They may be called from CML like any other LIO
procedure. The following parsefunct10ns are available as
part of the running system; they of course must be declared
as parsefunctinns in any program which uses them as such:

answ() -- if the next character in the input buffer isa
CONFIRM, option character, or the letter .y., it reads
the character (out of the input buffer) and returns
TRUE; else it reads the next character and returns FALSE

answer() -- reads next character; like anSW9 but returns
the address of a CMl record whose first word holds
either the value TRUE (1) or the value FAlSE(O)
lookansw() -- if next character is a CONFIRM. option
character. or the letter .y., returns TRUE and leaves
next character in buffer; else returns FALSE and reads
character
mylookansw() -- if next character is a CONFIRM. option
character. or the letter ·Y·t returns TRUE; else returns
FALSE; leaves next character in buffer
readconfirm() -- if next character a CONFIRM character.
reads and returns TRUE; else Leaves character in buffer
and returns fALSE
lookconfirm() -- if next character is a CONFIRM. returns
TRUE; else returns FALSE; leaves next character in
bu tfer

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;1,) 67

readbug() -- if next character a Command Accept
character, reads and returns TRUE; else leaves character
in buffer and returns FALSE
lookbug() -- if next character is a Command Accept,
returns TRUE; else returns FALSE; leaves next character
in buffer
notca() -- if next character NOT a Command Accept
character, reads and returns TRUE; else leaves Command
Accept character in buffer and returns FALSE
readoption() -- if next character an option character.
reads and returns TRUE; else leaves character in buffer
and returns FALSE
readrepeat() -- if next character a repeat character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE
lookrpt() -- if next character is a REPEAT, returns
TRut; else returns FALSE; leaves next character in
buffer
sp() -- if next character a space, reads and returns
TRUE; else leaves character in buffer and returns FALSE
lookback() -- if next character is a back-arrcw (_),
returns TRUE; else returns FALSE; leaves next character
in buffer
looknum() -- if next character is a digit. returns TRUE;
else returns FALSE; leaves next character in buffer

Parsefunctions may appear as alternatives to recognizers.
However. they must precede any non-failing recognizers in
the list of alternatives. E.g.:

(lookconfirmC) I ftAPPEND- I "FILE-) CONFIRM
-- this example either will accept a CONFIRM or will
accept a specification of the command word APPEND or
FILE followed by a CONFIRM.

Feedback
Noise words between command words are very helpful to the
user learning a new command. Any string of text may be
added to the command feedbaCK line by enclosing the text in
parentheses and within angle-brackets in a rule. E.g.

<-Text of noise words·>
The last noise word string on the command feedback line (in
DNLS) may be replaced with a new string by placing three
dots before the first double-quote. e.g.:

< ••• ·new noise words ft
)

The last noise' word string can be erased (in DNLS) with the
procedure call:

cLearname()
The entire command feedback line can be cleared (in DNLS)
with the CML element:

CLEAR
A few characters of the noise word will follow the command
word in the system·s response to a questionmark if:

1) the noise word immediately follows the command word.
and
2) the command word is not being assigned to a variable
(it may however be part of a list of alternatives being
assigned).
E.g. the noise words in the CML below will show in the

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1,) 68

systems response to a questionmark:
ent (-FILE" <"name"> f "STATEMENT" eWatR))

Loops
A looping facility permits repetition of a different rule
until an exit condition is met. The rule is evaluated and
then the expression following the UNTIL keyword is
evaluated. If the expression returns TRUE. then the loop
is exited and the next element of the rule is evaluated.
If the expression returns FALSE, then the named rule is
invoked once again.

PERFORM rulename UNTIL (exp)
where rulename is the name of the rule to be repeatedly
executed and exp is an expression of CML elements which
evaluates to TRUE or FALSE.

E.g.
PERFORM rulename UNTIL (("Finished?-> answ())

Nested loops (loops within rules called by a PERFORM
element) are not currently allowed. Backspacing through
executed loops requires special treatment not described
here.

Sample CMl Program
The following sample program should help illustrate the use of
the CMl language for describing NtS commands. For more
exhaustive examplesf look at the tHL specification for the
standard NLS commands. in (NLS,SYNTAX.>. An example of a
problem treatment can often be found by thinking of an NLS
command which is similar.
FILE sampleprogram X <CML.> to (sample.rel.> %

DECLARE what. whom, where ;
DECLARE COMMAND ~ORO

"GLUE" = 1.
·PASTE" = 2,
"CRAYONS" = 3.
·PENS· = 4.
·PENCILS" :: 5 ;

SUBSYSTEM sample KEYWORD ·SAMPLE"
objects =

"GLUE"
I "PASTE"
I writingthings ;

w r it i n gt h i n 9 s =
·CRAYONS·

I "PENS·
I "PENCILS"!L2! ;

COMMAND zuse : ·USE"
what _ writingth1ngs
CLEAR
("to draw a pretty"> whom _

(·PICTURE- <·of Aunt Mary">
I ·SKETCH- <·of your dog·)
)

CONFIRM
% call execution routine process the USE command X

xuse(what. whom) ;
COMMAND ztake = "TAKE"

what _ objects

MARY. 5-Jan~82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;l.) 69

<-out of your">
where (-EARS-!l! I -NOSr-!2! I -MOUTH-!3!)
("PLEASE!!">

CONFIRM
xtake (what, where) ;

END.
FINISH

Given this sample CML, the user might specify the command:
·Use Pens
(to draw pretty) Sketch (of your dog) (OK)-

-Take Crayons (out of your) Mouth (PLEASE!!) (OK)"
The execution routines called from CML typically have names
beginning with the letter ·x-.

Section 3: L1D Execution Procedures
The CML program interacts with the user and gathers information;
it subsequently calls one or more LIO procedures. The procedure
CML calls must meet certain requirements. described in this
section. Because of these requirements. typically the execution
routine is written as an interface to a number of other LIC
procedures performing the actual functions. This way the
function routines can be written independent of which command or
procedure calls them. This section will describe the
requirements of procedures called from CMl. The next section
offers additional L10 capabilities in this environMent.
CML can be in one of four states as it parses a command based on
the syntax described in your CML program (known as the
"parsemode W):

1) parsing: recognition state where input text is cOMpared
with grammatical constructs in CML program
2) backup: the user has typed a backspace, or a procedure
call has returned FALSE; CMl backs up through previously
specified ele.ents of the CMl code. calling each in backup
mode, to before the last CML alternative (not necessarily
equivalent to user input eleMent; Maybe through the entire
command. aborting the eommandl
3) cleanup: the user has typed a Command Delete. or the
co~mand has been completed (including any execution procedure
calls); CML backs up through all previously specified elements
of the CML code; each procedure 1s again called. this time in
·cleanup· mode
4) parsehelp: (used only with parsefunctions) before calling
a parsefunction in ·parsing- mode, the procedure is called in
·parsehelp· mode to solicit a user prOMpt string.
S) parseqaark: (used only with parsefunctions) when the-user
types a question.ark, the procedure is called in ·parseqmark"
mode to solicit a questionmark string.

When CML talls a procedure, it automatically passes two extra
implicit parameters before the parameters the program •• er
specifies:

The first parameter is the address of a CML record reserved
for use by that procedure. The record is initiall, empty (or
filled with garbage). The execution procedure may fill the
ten words of the record by receiving the address in a REFed
parameter variable and then indexing into the array.

CML considers the procedure to have returned TRUE if it
returns the address of the CML record; otherwise the return

5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;l.) 10

is considered FALSE. When a procedure returns FALSE, CMl
will back up, calling that and previous procedures in
"backup· mode. until another branch in the command syntax
logic is found or until the entire co •• and has been
aborted.

The second parameter is a value (not an address of a record)
representing the parse .ode. Whenever CML encounters a
procedure call in the syntax (in any mode) it calls the
procedure, passing it the value of the parsemode.

Typically, the execution routine should only perform its
primary function in the parsemode "parsing". In -backup·
and ·cleanup". it may reset any globals or state
information it may have affected while in the parsemode
·parsing.- The names of the modes (see above) are globals
to which you may compare the value received in the second
parameter. An execution routine typically consists of a
large CASE state.ent, e.g.

CASE parse.ode OF = parsing:
BEGIN

•
•

END;
- backup, = cleanup:

BEGIN
•
•

ENOi
ENDCAS[;

Calls on procedures declared as parse1unctions pass a third
implicit parameter. the address of a string in which to put
the prompt. They are called in the parse.ode ·parsehelp· for
the string before being called in the parsemode ·parsing-, or
in parsemode ·parseqmark R when the user types a questionmark.
CML passes the parameters specified in the call after the two
or three system supplied parameters. Rem.mber that these
parameters will always be the address of a record holding the
information, so the receiving variable must be REFed. The
format of the record itself is determined by the routine that
filled it.

For example. if the CML procedure call looked as follows:
xprocedure (parami. param2)

then thellO execution procedure would receive parameters as
follows:

(xprocedure) PROCEDURE (result. parse.ode. paraMeterl.
parameter2) ;
All parameters except the parse.ode should be REFed in the
execution procedure.

Section 4: Additional L10 Capabilities
Introduction

The attachable subsystems have access to the full capabilities
of the NLS environment. This section will describe SOMe
capabilities not discussed in the context of Content Analyzer
programs. Further capabilities will be discussed in Part
Five.

Moving Around Within NlS Files

5-Jan-B2 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;I. > 11

Generally. at least one simple variable or a text pointer will
have to be declared to hold the statement identifier (stid) of
the current statement. (The first word of a text pointer is
an stid.) Assume the simple variable with the name ·stid- has
been declared for the purpose of the following discussion.
In the NLS file system, two basic pointers are kept with each
statement: to the substatement and to the successor.

If there is no sUbstatement. the substatement-pointer will
point to the statement itself.

The procedure getsub returns the stid of the
sUbstatement. To do something to the substatement if
there is one:

IF (stid := getsub(stid» # stid THEN something •• ;
stid is given the value of the substatement-pointer.
then the old value of stid is compared to the new.
If they are the same. then there is no substructure.
If they are different. you have the stid of the
substatement and can operate on it.

If there is no successor (at the tail of a plex), the
successor-pointer will point to the statement UP from the
statement (i.e. the statement to which the current
statement is a sub).

The procedure getsu~ returns the stid of the successor
(or up).
To move to the successor:

stid _ getsuc(stid);
Given these two basic procedures. a number of other procedures
have been written and are part of the NLS system. All of the
following procedures take an stid as their only parameter, and
do nothing but return a value, usually a stid. If the end of
the file is encountered. these procedures return the global
value -endfil a •

getup(st1d) -- returns the stid of the up
getprd(stid) returns stid of the predecessor
getnxt(stid) returns stid of next statement or endfil
getbck(st1d) returns the stid of the back or endf1l
gethed(st1d) returns stid of the head of the plex
getail(stid) returns stid of the tail of the plex
getend(stid) returns the stid of the end of the tail of
the plex
get1tl(stid) returns TRUE if stid is tail of plex. else
FALSE
getLev(stid) returns level of statement

Once you have the stid of a statement, you may operate on it
as in content Analyzer programs. E.g.

FINO SFCstid) SNP ~ptr •••
Another common operation is to access the statement (file) in
which the eM (or bug) was at the time of the last Command
Accept (or other command terminator). This 1s stored in the
system, and can be accessed with the following procedure call:

stid _ lccsp() ;
Then. if you wish to set the stpsid to the origin of that
file, you could say:

stid.stpsid _ origin; %or1g1n is a global with the
stpsid of the origin statement in itx

The following procedures may also assist you in moving around

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1, > 72

files:
caddexp(aptrl,aptr2,da,startptr) -- given the addresses of
two text pointers surrounding an NLS address expression,
the address of a display area. and the address of a text
pointer representing the starting position: caddexp will
evaluate the address expression with respect to the
starting position, and update the start pointer to the new
location.

This procedure will follow file returns. links. etc.,
opening files as necessary. Reme.ber to close any open
files when you are done with the. (see 6d4 below).
The procedure lda() returns the address of the display
area which held the bug at the time of the last Command
Accept; it may be used as the third parameter of
caddexp. E.g.

caddexp($ptrl. Sptr2. lda(), Ssptr) ;
namingrp(stidl.stid2.astring.levels) -- given tWG stids
representing a group. the address of a string holding the
name. and a number representing levels of depth below the
stids·: returns stid of the statement with the given
statement name in the group specified by the stids. Only
searches through given number of levels below stid level.
(If the stids are the same. will search the branch.)
lookup(ptr.string.type) -- given the address of a text
pointer. the address of a string, and a type, will do a
variety of searches (in the process destroys string and
changes pointer). type may be one of the following:

nametyp -- non-sequential search for statement of name
given in string; returns stid and sets pointer to stid
or else returns endfil in both places
nxtname -- like name. also a non-sequential search. but
starts from place in file ring to which ptr points
seqname -- starting with the statement following the one
refered to by the ptr. does a sequential search of the
file for the given name; returns stid or endfil in
pointer
contnt -- does a sequential search of the file.
beginning with the character following the pointer, for
a stateMent with the content of the string; returns stid
or endfil 1n pointer
contls -- same as contnt. but looks only in statement
holding pointer
wordtyp -- same as contnt. but looks for word given in
string
sid -- pass an SID instead of the address of the string;
searches for statement with that SID and returns in
pointer and as procedure value the stid or endfil

Calling NLS Commands
A program may execute any of the standard NLS commands by
calling the same procedure that the system execution routines
call for each command. These procedures are called the weore
procedures. They are listed in <NLS.XPROCS,> and in
<NLS.SYSGO,>. Their names begin with the letter ·c·,
generally followed by three initials of each command word.
e.g. Insert statement could be executed by calling the
procedure "cinssta".

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1, > 73

Usually the required arguments can be discovered by knowing
the command and by Looking at XPROCS and/or SYSGO. For
example. the formal parameters to the procedure Rcinssta ft are
(stid.rlevcnt.tpl,tp2). As one might guess from the command
syntax. the procedure wants a target stid, the value of level
adjustment (up = +1. same = O. down = -1. etc), and the
address of two text pointers surrounding the string of text to
be inserted.
Much can be learned by looking at the code of the core
procedure. You can see what procedures it in turn calls to
discover how the command is actually performed. But most
importantly, you can find out what the procedure returns. The
RETURN statement for "cinssta- look like:

RETURN(st1d);
from which it can be inferred that the procedure returns the
stid of the newly created statement.
When you are not sure what the arguments mean. a good way to
find out is to see where the command parser picks up the
information. You can follow thrGugh the parsing of a command
by beginning with <NLS.SYNTAX.>. the actual NlS CML code.
Tracing a command from <NLS,SYNTAX.> is also valuable in
finding out how the system performs an operation which you
would like your program to do. For example. if you wish to
parse a link and open the given file, you might learn how to
do it by following the Jump to link command through.

Opening Files
When you ask the user for an address or bug, you don.t have to
open the file; you have a handle on it with the stid the user
gives you. There may be times. however, when you wish ~our
program to open a file not specified by the user. There is a
procedure which does this:

open (jfn, astring);
You should pass zero as the jtn. and the address of a string
containing the name of the file to astringe This procedure
will return the fite number. If the file is not al ready open.
it will open it. It will also fill out the string with the
complete file naMe if you do not specify the directory or
version number.

If the file does not exist. open calls the procedure "err-,
which generates a signal of the value -errsig.- Signals
are discussed in Part Five.

The usual sequence of steps to open a file is as follows:
X·stid- has been declared as a simple variable or text
pointerX
stid _ orgstid; %orgstid is a global with all zeros except
in the stpsid field, where it has the stps1d of the origin
statement (the same for every f1le)X
str _ n<dirname>filename.nls·; Istr is of course a
declared string variableX
stid.stfile _ open (O,$str);

Note that the procedure ·open- requires a TENEX file name.
The procedure -lnbfls· converts links to TENEX file names:

lnbfls (linkstr. linkparseblock, filenamestr)
Pass the address of the string holding the link as the
first parameter. zero for the second parameter (used if
link already parsed). and the address of a string to

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1,) 74

receive the filename as the third parameter.
The procedure returns the host number in case the link
includes a site name. This value might be compared to the
following globals:

lhostn -- the number of the local host
utilhost -- the number of Office-l
archost -- the number of the ARC machine (BBN-TENEX-B)

For example, you might use the procedure as follows:
CASE lnbfls(&linkstr,O,Sfilename) OF

= lhostn: NULL;
ENOCASE err (not yet) ;

At the end of your program, you should close any files that
you have opened. Use the procedure:

close (filnum);

close (stid.stfile);
Displaying Messages

The following procedures may be of use in displaying messages.
In all cases, the appropriate actions will occur in TNlS as

well as DNlS. although these descriptions are oriented to
ONlS.

dismes(type, astring) -- teletype window
where type is one of the following:

o -- clear teletype window (no address need be
passed)
1 -- add text 1n string whose address is passed as a
new line in the teletype window
2 -- add text in string whose address is passed as a
new line in the teletype window for about 3 seconds.
then clear window
n -- any number >=1000 represents the number of
milliseconds the .essage is to be displayed before
the teletype window is cleared.

In TNLS. type = 1. 2, and >:1000 all simply print the
string starting on a new line.

fbctl(type. astring) -- literal display window
where type is one of the following:

typenulllit -- begin empty literal display (replacing
file window), no string address passed
fbaddlit -- add string whose address is passed to
current literal display
addcalit -- add "Type <CA> to continue." to current
literal display, then wait for eCA> or <CO>. then
restore file window
typelit -- start literal display with string, then
wait for user input, then restore file window
fbendl1t -- add string to current literal display,
then wait for user input. then restore file window
type'calit -- start literal display with st ring t add
-Type (CA) to continue.", then wait for (CA) or <CO>.
then restore file window

The literal display replaces the file window on the
screen. or is simply printed in TNLS. For example. it
is used by the Show File status command.

dn(astring) -- name display
add string whose address is passed to command feedback

MARY. 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;l, > 15

line. enclosed in quotes
Setting Up for Display Refreshing

The command parser calls the procedure ·cmdfin1sh" after
completing and cleaning up every command. If certain
parameters are set properly. ·cmdfinish- will automatieally
update the user.s screen (primarily of cancern in ONLS). You
may also Move a different statement to the top of the window
(i.e. jump) before updating the screen.
To refresh the screen after editing a file:

The procedure -dpset- sets up parameters for refreshing the
screen after a command. If-dpset" is properly used, the
screen will automatically be refreshed after the command.
One should look for the most efficient way to make the
proper changes.

The procedure "dpset" must be called BEFORE any changes
are made in the file. This is so that the display
reformatter will have something with which to compare
when looking to see what has been ehanged.
The procedure call should look as follows:

dpset (type. stidl. stid2. stopstid) ;
There are a number of globals which may be passed for
-type-:

dsprfmt -- rewrite the content of one or two
statements

stid! -- the stid of the statement that has been
changed
st1d2 -- the stid of another statement that has
been changed, or -endfil"
stopstid -- ignored. pass it -endfil"

dspstrc -- if file restructuring occured beginning at
at one or two places; doesn·t rewrite content of
statements; will add new statements in a structure

stidl -- the stid of the statement where a
structural change begins
stid2 -- the stid of where another structural
change begins. or -endfil-
stopst1d -- the stid of the statement after which
it can stop changing the screen (whether change
began with st1dl or stid2); the procedure -dpstp·
may be of service here; if you cannot figure out
where it should stop. pass it -endfil· (go till
end of window)

dsprfst -- rewrites content of one or two statements.
then looks for structural changes thereafter

stidl -- the stid of the stateMent where a set of
changes begins
st1d2 -- the stid of where another set of changes
begins. or aendfil-
stopstid -- the stid of the stateaent after which
it can stop changing the screen (whether change
began with stidl or stid2); the procedure -dpstp·
may be of service here; if you cannot figure out
where it should stop, pass it -endfil a (go till
end of window)

dspjpf -- jump command in one window only. no ~diting
stidl -- the stid of the statement to be at the

5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;l, > 16

top of the screen; see below for other parameters
which must be set
stid2 --wendfiln
stopstid -- wendfil w

dspyes -- completely refresh all windows holding one
or either of two files specified

stidl -- the stid of a statement in the file where
changes will be made
st1d2 -- the stid of a statement in the file where
another set of changes will be made, or "endfil·
stopstid -- ·endfil n

dspno -- do no display refreshing
stid! -- ftendfil ft

stid2 -- "endfil-
stopstid -- -endfil ft

dspallf -- refresh the entire screen
stidl -- Mendfil·
st1d2 -- ftendfil"
stopstid -- Rendfil w

The procedure -dpstp·, when passed an stid, returns the
stid of the next statement in the file at the same or a
higher level. This can be used as the stopstid in Rdpset
if structural changes are octuring such that you don't know
a priori what the last statement changed will be.

To change the position of a window (jump):
The global ·cspupdate- should be set to the address of the
display area descriptor for the window you want changed.

In TNLS. it is always the address contained 1n the
global -tda 8 •

If you wish to change the view in the window which held
the bug at the time of the last CONFIRM, you ~ay use the
statement:

cspupdate _ lda();
This also works for TNLS.

Once cspupdate is set, any of the globals described
below will replace the appropriate field in the display
area descriptor uponcompl_tion of the command.

The global -eurmkr" is a text pointer pointing tc the
statement at the top of a window in DNlS. or the eM in
TNLS.

The first word of "curmkr u should be set to the stid of
the statement you want at the top of the window (in TNLS
the statement which you want to hold the eM).
The second word of ·curmkr", i.e. curmkr[lJ, should hold
the character position for the eM. (In DNLS it is
usually 1.)

The global ·cspvs· is a two word array which should hold
two viewspec words for the new view.

The global stdvsp is a two work array holding the NLS
standard viewspecs (i.e. the ones in effect when you
first enter NlS).
The current viewspec words may be gotten from the
display area descriptor. If you have REFed a variable
called -daft, for example, you may assign the address of
the display area which held the cursor at the time of
the last command Accept with the statement:

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;1, > 17

&da lda(); Xreturn address of display area
descriptor%

You may then refer to fields within the display area
descriptor.

davspec -- holds the first viewspec word
davspc2 -- holds the second v1ewspec word

You may change individual fields within views pee words.
The following fields apply to viewspec words:

vslev -- lowest level to be displayed
vsrlev -- if set to TRUE, the level of the current
statement will be added to vslev
vslevd -- if set to TRUE and vsrlev is TRUE. the
current level will be subtracted from rather than
added to vslev
vstrnc -- number of lines of each statement to be
displayed
vscapf -- if TRUE, content analyzer on (viewspec i);
takes precedence over vscakf
vscakf -- if TRUE, content analyzer on until one
statement passes (viewspec i)
vsusqf -- if TRUE. user sequence generator on
(views pee 0)
vsbrof -- if TRUE. branch only on (viewspec g); takes
precedence over vsplxf
vsplxf if TRUE. plex only on (viewspec l)
vsblkf -- if TRUE, blank lines on (viewspec y)

vsindf -- if TRUE, indenting on (viewspec A; on by
default)
vsrind -- if TRUE. indenting relative to first
statement in display (viewspec Q)
vsnamf -- if TRUE, statement names on (v1e~spec C; on
by default)
vsstnf -- if TRUE, statement nu.bers or SICs on
(v;ewspec m)
vsstnr -- if TRUE, statement numbers/SIOs put on
right (v1ewspec G)
vssidf -- if TRUE, SIOs replace statement nUMbers
(viewspec I)
vs1dtf if TRUE. statement signatures on (viewspec
K)
vsfrzf if TRUE. frozen statements on (viewspec 0)

vspagf if TRUE, pagination on in TNLS (viewspec E;
on by default)
vsdaft -- if TRUE. don.t defer display recreation in
DNlS (viewspec u; on by default)

If you wish. you may set the variable ·cspcacod w to the
address 01a user content analyzer procedure. and/or the
variable Wcspusqcod- to the address of a user sequence
generator procedure; they will be instituted before the
window is updated.

The following fields in the display area descriptor may
be useful:

dacacode -- holds address of currently instituted
Content Analyzer procedure
dausqcod -- holds address of currently instituted
user Sequence Generator procedure

5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1.) 78

If you have a REFed variable called -dan, will not edit the
filet and do not wish to change the viewspecs, yeu might
use the following sequence of commands:

Xaddress of last display areal
&da _ cspupdate _ lda();

%stid of stmnt to be put at top of w1ndowl
curmkr stid;
curmkr[lJ 1;

xtwo current viewspec wordsl
cspvs _ da.davspec;
cspvs[lJ _ da.davspc2;

sturn on content AnalyzerS
csPvs.vscapf _ TRUE;

Xinstitute the procedure -filterproc· as Content
Analyzer%

cspcacod _ Sfilterproc;
Xset up for display recreationX

dpset (dspjpf. cur.kr. endfil. endf1l);
If you have edited the file. use the type -dspyes n instead
of -dspjpf" in your call on ·dpset-.

Other Useful Procedures
astruc(astring) -- given the address of a string. sets the
string to upper case.
fechno(st1d,astring) -- given an stid. appends the statement
number string to the string variable whose address is passed.
getsid(stid) -- given an stid. returns value of SID (don't
forget to add zero to front if converting to a string)
fechs1g(stidY8string) -- given an stid, appends the statement
signature to the string variable whose address 1s passed.
getdat(astring) -- given the address of a stringy appends date
and time to string.
grptst(stidlystid2) -- checks that two stid's specify a legal
group; returns them ordered or else an ·illegal group· signal
is generated.
plxset(stidJ -- given an stid. returns the stid of the head
and of the tail of the plex of which the passed stid is a
member; e.g. first _ plxsetCst1d : last) ;
resetfCf1leno) -- given the file number of and open file.
deletes all contents of the ftle leaving only origin
statement. resets date and 1dent in origin statement (leaves
file locked)
f1lnaa(f1lno.astring) -- given the file number. appends the
file name (in link format surrounded by angle-brackets <» to
string whose address is passed
pauseCmilliseconds) -- waits the given number of milliseconds.
then returns
settimer(milliseconds.aproc,paraml,param2.param3.param~) -
calls procedure whose address is passed. passing up to four
parameters .to that procedure, after given number of
milliseconds; other code will be executed in the mean time

Globals of Interest:
initsr -- is the login ident of the person currently using
the program.
inptrf -- is incremented every time the user types a CCTRl-o>;
this can be used as a user program interrupt mechanism; i.e.
you can set it to 0 at the beginning of the program and then

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;l, > 79

check it at the start of each loop of your program to see if
the user has typed a <CTRl-o>. i.e. wishes to abort the
command.
inpstp -- is incremented every time the user types a (CTRL-s>.

Section 5: Creating and Using Attachable Subsystems
In summary, the programmer must wr~te two programs to build a
user attachable subsystem: the CML and the LID support
procedures. Each of these programs is compiled separately (by
their respective compilers) into separate REL files. The load
Program command (in the PROGRAMS subystem) will load both at once
if the extension on the filename holding the CHL code is "cml M

and the extension on the LI0 code file is ·subsys-. Once loaded,
the user may use commands in the subsystem as he does commands in
any of the standard subsystems.
You may find it convenient to begin writing a program by copying
the following skelton (plex) from this NlS file
<USERGUIDES.LIO~GUIDE.6e2a>. It can then be modified to fit the
needs of your program. (The comments in the FILE statements
allow you to quickly bug the information required by the Compile
File command. All the CML declarations that are used in the NlS
system are included only to contribute to consistent use of
command words and values. The CML rules have been left blank;
they must be filled in or removed. All file. procedure,
subsystem. and rule names are only exemplary. The last three
parameters 1n the LID procedure are only exemplary.'

FILE cname % (CMl.SAV.) TO (cname.cml.) %
X DECLARATIONS %

DECLARE PARSEFUNCTION
answ. % reads answer construct X
answer. X for questions - returns 011 %
sp. I reads next char, TRUE if space X
readconfirm. X reads next char if ca X
readbug, X reads next char if BUG %
readoption. % TRUE if next char is optchar %
readrepeat. % TRUE if next char is repeat X
lookansw. X TRUE if next char is VICA X
lookconfirm, X TRUE if next char is CA/REPEAT/INSERT
X
lookbug.
looknum.
clearname.
notca;

X TRUE if next char is BUG X
I TRUE if next char is a number %
J clears the name area X
X reads next char. TRUE if not CA char I

DECLARE COMMAND WORD
"BRANCH" = 1 •
"GROUp· = 2 •
"PLEX· = 3 •
·STATEMENT" = 4 ,
"CHARACTER- = 5 •
"CONTROLCHAR" = 6 ,
"INVISIBLE" = 1 •
"LINK" = 8 ,
"OIRECTORY· = 9 •
·PASSWORO· = 10 •
"NUMBER" = 11 •
"TEXT" = 12 ,

MARY, 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;1,) 80

"VISIBLE" = 13 ,
"'WORo· = Ill- ,
"FILE" :: 15 ,
RNEWFILElINK" :: 16 •
"OLDFILELINK· = 17 ,
"NAME" :: 18 ,
-IOENT" :: 19 ,
RIDENTLIST" = 20 •
"EDGE" :: 21 ,
"MARKER" :: 22 t
ItNlS" :: 23 t

"ITEM" ::; 24 ,
"ITEMNOVS· :: 25 t

"SUCCESSOR" :: 26 ,
·PREDECESSOR- = 21 •
"UP" :: 28 ,
·OOWN" = 29 t

"HEAO· :: 30 ,
"TAIL" :: 31 ,
"END" :: 32 ,
"BACK" ::; 33 ,
"NEXT" = 311- •
"ORIGINR :: 35 ,
"FIlERETURN" ::; 36 •
"RETURN" = 37 •
"FILENAME" :: 38 ,
"FIRSTNAME" = 39 ,
"NEXTNAMEB = 11-0 t
REXTNAME" :: 41 t

nFIRSTCONTENT" = 42 ,
"NEXTCONTENTft = 43 •
wFIRSTWORD· = 44 •
"NEXTWORO· ::; 45 •
·OETACHEO" :: 46 t

"TTY" :: 47 ,
"AUTO" = 48 •
·CONTINUE" :: 49 ,
·ON- = 50 ,
"RECOVER" = 51 t
·SLINKER" :: 52 •
·UPDATE" :: 53 ,
"CLEAR" = 54 ,
ItIDENTS· :: 55 •
"FILES" :: 56 .,
"DELETE" = 57 ,
-DEFERREO· ::; 58 •
"IMMEDIATE- = 59 ,
"NOT" ::; 60 t

"PREVENT" :: 61 •
"RESET" = 62 t

-ARCHIVE" = 63 t

·SEQUENTIAL" = 64 •
-TWO" = 65 ,
"~USTIFIEDft = 6& ,
"ASSEMBLER" = 67 •
"BOTH" = 68 ,

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;l, > 81

"UNDELETE" = 69 •
-FOR" = 70 t

"STATUS· = 71 t

gTAPE" :. 72 •
-ACCOUNT" = 13 •
"NO· :. 74 ,
"VERSIONS" = 75 t

"EXTENSION" :. 16 ,
·OATE" = 71 ,
·CREATION" = 78 •
"LAST" = 19 •
-FIRST· = 80 ,
-READ" :. 81 ,
·WRITE" = 82 ,
"OUMp· = 83 t

"EVERYTHING" :. 84 ,
-LENGTH" = 85 t

-MISCELLANEOUS" = 86 ,
"ACCESSES· = 87 ,
"PROTECT" = 88 ,
·SIZE" :. 89 t

-TIME* = 90 t

·VERBOSE- = 91 •
"SORT" = 92 t

"BYTESIZE" = 93 ,
-ARCHIVED- = 94 t

"ALL" = 95 t

-MODIFICATIONS· = 96 •
-UPPER" == 97 • \
BLOWER" :. 98 ,
-MODE" = 99 ,
·SENOMAIL" = 100 t
-BUSY· :. 101 ,
-QUICKPRINT" = 102 t

"JOURNAL" = 103 t

"PRINTER" = 104 ,
·CO,.." = 105 ,
"TERMINAL- = 106 ,
"REMOTE" :. 107 ,
• REST • = 1 0 8 t

·CASE" = 109 ,
·CONTENT" = 110 t

"TEMPORARY" :. 111 t
·VIEWSPECS· :. 112 t

"EXTERNAL" = 113 t

"TO- = 114 t

"PRIVATE" :. 115 ,
"PUBLIC· = 116 ,
"TE·NEX· :. 117 ,
-ALLOW" = 118 ,
"EXECUTE- = 119 ,
-APPENO· = 120 •
"LIST" = 12.1 •
·SET" = 122 ,
·SELF" = 123 ,
"FORBID" = 121f. ,

MARY, 5-Jan-82 15:05 (USERGUIOES, PROGRAMMERS-GUIDE.AUG;I.) 82

"DISK" :: 125 •
·OEFAULT- :: 126 •
·OLO· :: 127 •
-NEW· = 128 •
·COMPACT- = 129 ,
"RENAME- = 130 ,
"ADD· :: 131 t

·SUBTRACT" = 132 •
"MULTIPLY" = 133 •
·OIVIDE- :: 134- •
"RIGHT" = 135 ,
-LEFT" = 136 t

·ACTION" :: 131 •
-AUTHORS- ::: 138 •
·COMMENT" = 139 ,
-EXPEDITE" = 140 t
·HARDCOPY· ::: 141 •
-INFORMATION- = 142 •
"INSERY- ::: 1lf.3 t

·KEYWORDS· ::: 1.4 •
·OBSOLETES· :: 145 t

wRFC· = 1'+6 t

·SUBCOLlECTIONS· ::: 147 •
"TITLE· ::: lila •
·UNRECORDEO· = 149 t

-LIO" ::: 150 •
"PROCEDURE- :; 151 •
-SEGGENERATORa = 152 ,
"BUFFER" = 153 •
aNOOT" :: 151J ,
-PARSERULE" :: 155 ,
"CA" =- 156 t
·co ft :; 151 ,
ftRPT- ::: 158 •
"BC· = 159 •
-BW· :: 160 ,
-BS· = 161 •
ftLITESC- = 162 t

"IGNORE- :: 163 •
-se· = 164 ,
·SW· :: 165 •
·TAB-:: 166 •
aIMLAC" :: 167 •
ItTl" = 168 ,
"NVTft ::: 169 •
"EXECUPORT" :: 170 t

"MENU" ::: 171 •
"ONLS· = 172 t

uTNlS" :: 113 •
·COMMANOw = 174 •
-RULE" :: 175 •
·SUBSYSTEM" = 176 ,
·OISPLAY· ::: 117 t

"FROZEN- = 178 ,
-HlPCOM- :; 119 ,
·PROGRAM- = 180 ,

5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIOE.AUS;l, > 83

"TERSE" = 181 •
IIINDENTING" = 182 ,
·UNIVERSAL" :: 183 •
"ENTRY" :: 184 •
"INCLUDE" = 185 ,
"BOTTOM" = 186 •
IIPAGEtt = 187 ,
·OFF" :: 188 ,
-FULL" :: 189 ,
·PARTIAL" = 190 t

"ANTICIPATORY· = 191 ,
"DEMAND" :: 1f32 ,
"FIXEDtt :: 193 "
·CONTROL- = 194 ,
·CURRENTCONTEXTu :: 195 ,
"FEEDBACK" :: 196 ,
-HERALD" :: 191 ,
·PRINTOPTIONS· = 198 ,
·PROMPT- = 199 ,
"RECOGNITIONII = 200 ,
·STARTUp· :: 201 t

-LEVELADJUST" = 202 ,
-REVERSE- :: 203 ,
"TEST- :: 204 •
"TASKER" = 205 ,
HLINEPROCESSOR" = 206 t

"CENTER- :: 207 ,
"CNTLQ" = 208 ;

% COMMON RULES X
X ENTITY DEFINITIONS X

editentity = textent I structure;
X TEXT ENTITY DEFINITIONS X

textent = textl I "TEXT" I "LINK-;
text1 = ·CHARACTER" I "WORO· I ·VISIBLE- I
-INVISIBLE- I "NUMBER-;

% STRUCTURE ENTITY DEFINITIONS X
structure = "STATEMENT- I notstatement;
notstatement = -GROUp· I -BRANCH- I ·PlEX- ;

SUBSYSTEM name KEYWORD -NAME-
INITIALIZATION fnamel = · •
COMMAND fnaee2 = ·COMHANOWORO·

• ,
TERMINATION fname3 =

· •
END.

FINISH
FILE lname X (ltO.SAV,) TO (lname.subsYS9) X

% globals%
(xname) PROCEDURE % execution procedure I

XFormal Parametersl
(result, Xresult record%
parsemode. %parsing, backup. cleanup%
paraml. Syour first parameter ••• l
param2, 101 course you may have ••• l
param3); %0 to 7 of your own p arametersJ

MARY. 5-~an-82 15:05 < USERGUIDES. PROGRA""ERS-GUIOE.AUG;l. > 84

XLocals%
REF result. paraml. param2, param3;

CASE parsemode OF
= parsing:

BEGIN
END;

= backup, = cleanup:
BEGIN
END;

ENOCASE;
RETURN(&result);
END.

FINISH
PtRT FIVE: Advanced Programming Topics

Section 1: Error Handling -- SIGNAls
Introduction

When an NLS system procedure fails to perform properly. it may
generate an error signal. Every signal has a value. When a
signal is generated. control is passed back to the last signal
trap in effect. If no explicit program control statement
(e.g. RETURN. GOTO) is given in that signal trap. a new signal
will be generated. If the error is not dealt with. the signal
will eventually bubble all the way back to the execution
routine. The execution routine should always trap a signal.
You may trap signals and regain control by setting up the
response in advance.

Trapping Signals
To trap error signals of any error value:

ON SIGNAL ELSE statement ;
E.g.

ON SIGNAL ELSE
BEGIN
d1smes(2,$string);
RETURN;
END;

It is a good idea to set up a signal response before calling
any NLS system procedures.
Once the signal response is set. it remains in effect through
the end of the procedure or until it is changed. ana will be
executed whenever a signal is received by that procedure. Any
subsequent ON SIGNAL statements will at that point change the
signal response (i.e. only one signal response can be in
effect at any point during procedure execution).
Only signals generated by procedures below (e.g. called by)
your procedure will be trapped by your procedure-s signal
trap. It will not trap signals generated in the sa&e
procedure.
The signal response may be any (block of) LI0 state~ent(s).
It will be executed, then

- if you have an explicit program control statement
(RETURN. GOTO. EXIT LOOP). control will be passed
accordingly and the signal will stop there. or
- if the signal trap includes no explicit program control
statement, another signal of the same value will be
generated. and control will pass upward through the stack

MARY. 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;l,) 85

of procedures called until it encounters another signal
trap.

A RETURN will return control to the procedure which called the
one which intercepted the signal (not the one which generated
it).
Thus. if you wish to resume control in the current procedure.
the signal trap will have to end with a GOTO statement
pointing to an appropriately labeled statement. This is one
of the few places where a GOTO is really necessary.
If the signal trap applies to a loop, an EXIT LOOP cr REPEAT
LOOP is a valid signal program control statement.

Trapping Signals in Execution Routines
If a signal bubbles up through the execution routine to the
command parser (in a command in an attachable subsystem>. the
results may be unpredictable. Execution routines should
always include signal traps.
A RETURN(FALSE) will shift CML into backup mode. It will back
up to before the last set of CML alternatives (not necessarily
equivalent to the last user input element). and then shift
back into parsing mode. (This may imply backing all the way
through the command. i.e. aborting the command.)
The procedure "abortsubsystema may be useful in this context.
It will shift the command parser into backup mode and abort
the current command. Then it will execute a Quit (from the
current subsystem) and return the user to the previously used
subsystem. It should be passed the address of an error string
to be displayed. E.g.

ON SIGNAL ELSE abortsubsystem(S-Error in xprocedure ••• ·) ;
or

ON SIGNAL ELSE abortsubsystemfsysmsg) ;
(see ·Specific Signals·)

Cancelling Signal Traps
After program execution sets up a signal response, the
following statement will cancel it so that thereafter a signal
will just bubble on up:

ON SIGNAL ELSE NULL ;
or just

ON SIGNAL ELSE ;
It may be subsequently reset by execution of another ON SIGNAL
statement.

Specific Signals
When a signal is generated. the NLS system global variable
·sysgnl- is given a specific value (the value of the signal).
Each value represents a certain type of error. Also the
system global variable ·sysmsg- is given the address of a
string which holds an error message.
The above constructions react to any signal, no matter what
its value may be. The ON SIGNAL statement can be used much
like a CASE statement (co.paringcases to the global sysgnl)
if you wish to trap specific signals:

ON SIGNAL
=constant: statement;
=constant: statement;

•••
ELSE statement;

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 86

ON SIGNAL
=ofilerr: Japen file errorX

BEGIN
IF sysmsg THEN dismes(2.sysmsg);
RETURN;
END;

ELSE %any other error signall
BEGIN
dismes(2.$"Error D);

RETURN;
END;

The current signal constants can he found in CNlS.BCONST,).
The common reason for using this specific signal treatment is
when you call a procedure which you know will generate a
certain signal value under certain conditions. In such a
case. you can learn the signal constant of concern from the
SIGNAL stateMent which generates it.

Generating Signals
You .ay generate a SIGNAL in a procedure by the statement:

SIGNAL (value, astring) ;
where value is the value of the signal (perhaps a system
global) and astring is the address of a string holding the
error message. If the second parameter is omitted, it will be
assumed to be zero and no message wlll be printed. The first
parameter is mandatory; every signal must have a value.

Examples!
SIGNAL (ofilerr. $ftCouldn-t open your file. a) ;

SIGNAL (2) ;
Another way to generate a SIGNAL is by calling the procedure

err(errno)
It will generate a SIGNAL of the value -errs1g a (a system
global) and will set up a message depending on the value
you pass for errno. errno may be any of the following:

1 -- -File copy fails-;
2 ·Open scratch fails·;
3 ·Cannot load program";
4 -1/0 Error-;
5 -Exceed capacity";
6 RBad file blockw;
7 -Not implemented"
If you pass it the address of a string as the error
number. it will signal using that address for sysmsg.
and that string will be printed.

By allowing err to generate all the signals. you will find
it easy to freeze execution upon an error condition while
debugging using NODT, as described in the nekt section (by
setting a breakpoint at err).
Be careful not to call err and then trap its SIGNAL in that
same procedure. You might say:

ON SIGNAL
=errsig: NULL;
ELSE •••

Section 2: NODl Debugging
Introduction

Debugging is the process of finding the errors in a program.
Once the problem is located. you may correct it in the source

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;l. > 87

code (NLS file) and recompile.
NLS includes a debugging tool called NOOT. for -NLS Dynamic
Debugging Technique." NOOT allows you to examine the state of
your program during or after running it (i.e. using the
command or filter). This section describes the capabilities
of NDDT.

Accessing NODT
To make NOOT available from NLS, you must execute the command
in the PROGRAMS subsystem:

set Nddt (control-h) OK
This adds the program NODT to your user programs buffer.
Thereafter. whenever you type a (CTRL-h), NLS will immediately
be interrupted (be it in a waiting or funning state) and you
will enter NOOT. NOOT will respond with its command hearald,
a right angle-bracket (»), indicating that NOOT is ready to
accept a command.

NDOT commands are specified by typing the first character
of the command word.

You may continue with NLS (from the point where it was
interrupted> with the NODT command:

Continue OK
You may tontinue NLS from a specific instruction address with
the NDDT command:

Goto ADDRESS OK
NODT Address Expressions

Everything stored in the machine (instructions and variables)
has an address. its location within the computer's memory. An
address is an octal (base-eight) number.
The name of a procedure or of a naaed LIO statement may be
used instead of a number. It represents the octal location of
the named statement or of the first instruction of the
procedure.
Addresses (symbols or numbers) may be combined. to evaluate to
some location. An expression concatenated with the follo~ing
operators will be evaluated from left to right (no
hierarchical ordering) to a single value:

(SP) same as +

*
I

Thus. a symbol may be followed by a space (or plus-sign) and
then an octal number. The number is added to the location
represented by the sy.bol.

Single-Word Variables
Often, program.ers wish to examine or .odify the contents of a
single word at a given location. The NOOT Show command prints
the contents of the word at that address.

Show Location ADDRESS OK
where address is an address expression as defined above or
one of the following:

A __ preceding entity
<LF> -- next entity
Next -- next entity
<TAB> -- entity whose address is the content of current
location

NODT maintains some address as your current location. and the

5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIOE.AUG;1, > 88

Show command sets this location to the one it examines. If
you do not specify an address in a show command, the current
location is assumed.
NODT can print the contents in three ways: as a symbol
followed by a number (to be added to the symbol location). as
a singLe number, or as text. The default printout mode is
symbolic. The printout mode may optionally be changed in a
Show command. The new printout mode remains in effect until
subsequently changed.

Show Location ADDRESS (CTRL-b) PRINTMODE OK
where PRINTMODE is one of the following:

Numeric
Symbolic
Text

A fast way to do the same thing is provided with the Value
command:

Value of ADDRESS OK
or

Value of ADDRESS (CTRL-b) PRINTMODE OK
You may print and then replace the value in a word with the
Show command:

Show location ADDRESS EXP OK
or

Show Location ADDRESS (CTRL-b) PRINTMODE _ EXP OK
where EXP is an expression whose value will replace the old
value of the given location. In addition to the address
expressions discussed above, you may use the form:

valuel"value2
where ·value!8 is a standard expression which will be
put in the left half of the word. and ·value2 w is an
expression which will be put in the right half.

String Variables
The contents of a string variable May be examined and Modified
as well as simple variables. using the command:

Show String ADDRESS OK
Strings are always printed in text printout mode.
You may print and then replace the string with the Show
command:

Show String ADDRESS _ STR OK
where STR is a literal string which you type in.

Records
To work with llO records, you must first set the NOOT record
pointer to the first word of an LI0 record definition. with
the command:

Record pointer set to: SYMBOL OK
where SYMBOL is the name of some LIO record. Note that it
may be necessary to use the MARK command (described below)
to make local records known to the NDOT system.

This is equivalent to the command:
Show Location RP _ SYMBOL OK

You may then examine all the fields of any record with the
command:

Show Record ADDRESS OK
or

Show Record ADDRESS (CTRl-b) PRINTMOOE OK
You may examine and optionally change a single field within a

MARY. 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;1,) 89

record with the Show Location command. substituting
ADDRESS.FIELD for ADDRESS.
You may replace each field in a record with the co •• and:

Show Record ADDRESS
The name of each field is then printed and a new value may
be typed in. terminated by a Command Accept. Typing only a
Command Accept will advance to the next field of the record
without modifying the last field.

Built in NDDT symbols
A number of symbols are built in to NODT and aay be used in
address expressions. When they are used, PRINTMODE will be
ignored. since the printout mode is predefined for each of
these symbols.
Built in Locations. Registers

At register At
A2 register A2
A3 register A3
A_ register A4
Rl register Rl
R2 register R2
R3 register R3
R4 register R4

Built in Locations. Frame
When a procedure is called. a -frame- is added to the
stack. It includes a word (holding the return lccation of
that procedure in the right half) followed by all the
parameters. then all the locals. Some predefine~ symbols
allow you access the current or any previous fra~es and the
information in them.
M -- contains address of current frame
MARK -- contains address of previous frame
RET -- return location in current frame
RP -- address of record definition of last field used
S •• contains address of top of stack (last LOCAL word. or
whatever)
SIG -- current frame signal location

Built in Records
BASE -- first frame in procedure stack
FRAME -- current frame description
F -- same as FRAME
LOCALS -- current frame LOCALS
L -- saMe as LOCALS
RECP -- description of current record
R -- same as RECP
PARMS -- current frame parameters
P -- same as PARMS
TOP -- description of top frame in procedure stack

Control Switches
EC -- Current symbol escape character (;)

.RNAHES -- If FALSE suppresses printing of record field
names
SF -- If FALSE disables these NOOT built in symbols

Special character co.mands
The special character commands are provided for commonly used
functions. All but = are essentially subcommands of the SHOW
command and are processed exactly as if they had been preceded

MARY, 5-Jan-82 15:05 < USERGUlors. PROGRAMMERS-GUIDE.AUG;1, > 90

by the command word Show.
= -- Show current location in numeric typout without
changing the current printing mode
_ -- Assign a value to current location
ft __ Show previous location
LF -- Show next location
TAB -- Show location addressed by current location

Traces and Breakpoints
If you set a -traceR at a location. the system will print that
address every time that instruction is executed. Execution
will not be interrupted. You may set a trace with the
command:

Trace location ADDRESS OK
If you set a breakpoint at a location. a <CTRl-h) will
automatically be executed just before the given instruction
(causing you to interrupt execution and enter NODT). This
allows you to interrupt execution of your program at a given
point and examine and change the state of the system. A
breakpoint may be set with the command:

Breakpoint set ADDRESS OK
Each trace and breakpoint is assigned a number. beginning with
zero. when it is set. You may cancel a trace or breakpoint
using this number or using the address to which it is set:

Breakpoint Clear NUMBER OK
or

Breakpoint Clear ADDRESS OK
You may cancel all traces and breakpoints that you have set
with the command:

Breakpoint Clear All OK
You may list a trace or breakpoint of a given number and the
location to which it is set with the command:

Breakpoint Print NUMBER OK
You may list all traces and breakpoints. their numbers, and
their locations with the command:

Breakpoint Print OK
A breakpoint may replace a previous trace or breakpoint (new
address, same number) with the command:

Breakpoint Set ADDRESS (CTRL-b> Replaces breakpoint NU"BER
OK

A breakpoint may be set so that it only interrupts if a
comparison between location and a given constant is true, with
the following command:

Breakpoint Set ADDRESS <CTRL-b) Test ADDRESS RELOP CONSTANT
OK
where ADDRESS is the location of the word to be compared.

RELOP is one of thfe following: = # (> <= >=
CONSTANT is an expression with a value.

A breakpoint may be set so that it only interrupts if a
procedure is called and returns true, with the following
command:

Breakpoint Set ADDRESS (CTRl-b) Call PROCEOURENAME OK
LtO Procedures

You may call an LIG procedure from NODT with the command:
Procedure Call PROCEOURENAME OK

If the procedure requires parameters, you must list them in
parentheses. separated by commas. after the name of the

MARY. 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;l,) 91

procedure:
Procedure Call PROCEDURENAME (paraml, param2, •••) OK
One string, enclosed in quotes. may be included in the
parameter list. e.g.:

Procedure Call PROCEDURENAME '-literal-, param2, •••) OK
The return value(s) of a procedure call will be typed out.
NOOT allows you to replace an existing procedure with a new
procedure. Whenever the old procedure is called anywhere in
the system, the new procedure will be called instead. The new
procedure will be passed the same parameters as were passed to
the old. This replacement can be done with the command:

Procedure Replace OlDNAME OK NEWNAME OK
The name of the procedure which was replaced is saved so that
it may be restored. The replacement may be cancelled with the
command:

Procedure Back up to OLDNAHE OK
Symbols

The system maintains a table of symbol names and the addresses
which they represent. When a user program is loaded, its
symbols are added to the symbol table. Thus. (in addition to
system globals) the table is composed of blocks. one for each
program.

Each block is refered to by the (unique) naae of the
program. (This is why the CML and SUBSYS parts of a user
attachable subsystem must have different na.es in the FILE
statement.) The list of blocks (programs) is called the
-mark stack.- Locals as well as globals are recognized by
NOOT for only those user programs in the mark stack.

You may list the names of the blocks currently in the mark
stack with the command:

Mark symbol table: Print contents of stack OK
A block may be deleted from the .ark stack (the symbols remain
in the symbol table, but they are not recognized by NOOT) with
the command:

Mark symbol table: Clear block PROGRAMNA"t OK
A block may be reinstated to the mark stack with the command:

Mark symbol table: Set at PROGRAMNAME OK
A new (empty) block may be added to the mark stack with the
command:

Mark symbol table: Set at NEWBLOCKNAME OK
If there is at least one block in the mark stack, a new symbol
representing some address asy be created with the co •• and:

Define New SYMBOLNAHE OK ADDRESS OK
Symbols defined with this command have a global sCope, and
may be used to satisfy external references in LtG user
programs subsequently compiled.

Any symbol within a block listed in the mark stack may be
redefined to represent a different address with the command:

Define Old SYHBOlNAME OK ADDRESS OK
If you wish to replace an existing routine by a new version of
the same routine. some method of distinguishing between new
and old occurrences of the same symbol is required. Any
symbol preceded by a semicolon (;) refers to the ole
occurrence of the sy.bol. (The semicolon has the effect of
disabling the symbol table marking $echanism for the given
symbol. causing it to be identified in the "old- seetion of

5-Jan-82 15:05 < USERGUIOES, PROGRAHKERS-GUIDE.AUG;l,) 92

the symbol table.)
For example. suppose an existing routine named TEST is to
be replaced by a new version of the same routine which you
have just compiled (hence is in the mark stack). The NOOT
Procedure Replace command can be used as follows:

Procedure Replace ;TEST OK TEST OK
Scanning for Content

You may search a set of words for a specific content with the
command:

Find content: CONTENT OK masked by: OK lower address:
STARTAODRESS OK upper address: EHDADDRESS OK OK

The content of every word 1n the specified range will be
compared to CONTENT. CONTENT may be of the form of an address
or a POP10 machine instruction. The address and content of
each word which matches will be printed. (Note that the
-masked by· field was ignored.)
If you wish only to compare certain bits in each word to
corresponding bits in CONTENT, you may specify a mask. A mask
is a number (of the address form). Only those bit positions
in which the mask has a one will be compared. (If the mask is
not specified. all ones will be assumed and the entire word
will be compared.)

Find content: CONTENT OK masked by: MASK OK lower address:
STARTAODRESS OK upper address: ENDADORESS OK OK
MASK may also be of either the ADDRESS form or the PDP10
instruction form.

section 3: Writing CML Parsefunctions
Parsefunct10ns

Functions which are declared with the PARSEFUNCTION attribute
in CML are assused to be ltO procedures which are designed to
be parsing functions. They are used to examine the user·s
input. They are called in ·parsehelp· mode before being
called in ·parsing" mode. When so called. they are passed the
address of a string as a third implicit argument. The
parsefunction routine should fill that string with the
appropriate prompt characters which tell what the parsing
function is looking for.
When the user is faced with alternatives which include a
parsefunction. the parsefunction will be called in parse.ode
·parseqmark" for the string to include in the question.ark
display. This string must be no greater than 24 characters.

Sample Interpreter Parsefunction Routine
Assume that in some command we want the typein of a number to
appear as an alternative to some set of keywords. We can
accomplish this by defining a parsefunction (call it looknum)
which looks at the next input character and succeeds if the
next character is a digit and fails otherwise. If we write
this function as the first alternative in some command. then
control will pass from the interpreter to the parsefunction
before it passes to the keyword interpreter.
Suppose our command looks like:

COMMAND sample = -INSERT"
(looknum() <-number"> ent #-NUHBERB
lent _ ("TEXT-I"LINKW))
% entity now contains an entity type (NUMBER. TEXT. or

5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;!. > 93

LINK). We now use the LSEl function to get a selection
of this type %

source lSEl(ent)
CONFIRM
xinsert (ent. source) ;

The parsefunction looknum which is called by the interpreter
both when prompting the user and also during the actual parse
of the command.

(looknum) PROCEDURE X looks at the next input character.
if it is a digit. then return TRUE, else return FALSE X

X FORMAL ARGUMENTS X
(result. X address of the result record X
parse.ode. X parsing mode of the interpreter X
string); % address of prompting string X

REF result. string;
CASE parsemode OF

= parsing:
CASE locke() OF Xvalue of next character in input
bufferX

IN ['0. -9]: NULL;
ENOCASE RETURNCFAlSE) ; = parsehelp: %supply string for promptX

string _ -NUM:- ;
= parseqmark: %supply string for question.arkS

strin9 _ "Number- ;
ENOCASE;

RETURN ('result);
END.

Section 4: Calculator Capabilities
Introduction

L10 arithmetic can only work with integers. The CALCULATOR
subsystem holds a numbers of procedures ~hich the user
programmer may call to do double~prec1sion floating point
arithmetic. Floating point numbers are stored in two-word
arrays. which the user programmer must declare. All
CALCULATOR routines work with these two word arrays.

Converting string to Double-Precision Floating Point
A nUMber in a string variable may be converted to a floating
point array with the procedure:

nfloat (astring, awordl, aword2)
where astring is the address of a string holding the
nu.ber,

awordl is the address of the first word of the array.
and

aword2 is the address of the second word of the
array.

The nuaber in the string may hold a decimal point, and may be
preceded by a minus-sign (-). Other characters (e.g. a dollar
sign) may precede the first character of the number (a digit,
minus s1gn. or decimal); they will be ignored.

Converting Floating Point to String
The two word array may be converted back to a string with the
procedure:

qfloutp (avar, astring, format)
where

5-Jan-82 15: 05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1, > 94

avar is the address of the (first word of the) array
holding the floating point number. and
astring is the address of a string variable in which the
text of the number is to be placed;
the third parameter is ignored. so Just pass zero.

The format of the string is dictated by the global variable
-dfoutm.- The following fields apply to this global [default
values are in square bracketsl:

fldl characters to the left of the decimal (10]
fLd2 -- characters to the right of the decimal [2]
fld3 -- characters in exponent field (0)
round -- number of significant digits to round to [12J
round must be less than or equal to fldl + fld2 fldl + fld2
must be less than or equal to 12
oflo -- go to exponent notation if left-af-decimal too big
[0]
exs1gn -- if a positive exponent. use first character of
exponent field for: [0]

o first digit of exponent
1 __"+11

2 -- a space
exp2 -- prefix on exponent: [0]

o no exponent
1 "E"
2 "0"
3 It*lOAw

dpt -- print decimal point switch (O=Off. I=On) [ll
dig -- print at least one digit to left of decimal (0 if
necessary) (O=Off, I=On) [ll
just -- justify number within space of three fields: [lJ

o -- right justify by adding spaces tc left
you must also set the
global ·calflg" to TRUE

1 right Justify by adding ·O"s
2 right justify by adding "."s
3 left justify by adding spaces to right

you must also set the
global "calflg- to FALSE

sign -- if a positive number. use first character of field
1 fo r: [0]

o -- first digit of number
1 -- a space
2 -- "+"

Additionally. if the global ·cacflg" is TRUE, the number will
be formatted with commas.

Calculations with Foating Point
The following procedures do floating point calculations on the
two-word arrays described above. All of the following
procedures require as parameters the address of the (first
word of the) arrays.

qcadd(a.b) -- a _ a + b
qcsub(a,b) -- a _ a - b
qcmult(s.b) -- a _ a * b
qcdiv(a.b) -- a a I b
qcdivw(a.b,c) -- c a I b
Qcneg(a) -- a _ -a

5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1.) 95

Section 5: Fields and Records
Introduction

A set of bits within a word can be used without affecting the
rest of the word. (On the POP-10, words are 36-b1ts long.) A
contiguous set of bits within a word is called a field.
Fields allow more efficient use of storage.

Once a field is defined. you may apply it to any word
(variable). It will refer to the defined set of bits in
that word (e.g. the field "RH- refers to the right-most 18
bits of whatever word it modifies).

You may assign a number to or fro. a field by following the
variable name with a period (.l, then the name of the field:

var.field
E.g. stid.stps1d _ origin ;

Many fields are defined in the NLS system, and may be used by
user programme~s. Some have been mentioned in preceding
sections; others may be found in the NLS source code.

Declaring Records
Records are always defined globally. Record definitions are.
like global declarations. put outside of procedures within LtC
files.
A record definition defines a series of fields. with the
length (number of bits) specified for each field:

RECORD fieldl[lengthl. field2[lengthl, ••• ;
The fields are allocated from right to left within the word.

E.g. the record definition:
RECORD right[18J. left[111 ;

would define two fields. The field "right- refers to the
right-most 18 bits of the word. The field "left- refers to
the next 11 bits to the left of the field "right.- (The
left-most bit is not used in this example.)

A RECORD definition may specify any nUMber of fields. If a
field is defined to be too large to fit in the remaining bits
of the current word, it is automatically defined to represent
the first field in the next word. I.e. this and subsequent
fields are defined fro. the right of the next word. This can
extend through any nUMber of words.

E.g. the RECORD definition:
RECORD ffeldl[181. field2[lOl. field3[181. field4[361 ;

would define the fields as follows:
fieldl right half of word
field2 right-most 10 bits in left half of word
fieldS right half of next word
field4 entire third word (i.e. word[2l)

Of course when using fields that refer to subsequ.ent words.
you must be sure that you are operating on arrays of the
appropriate size.

Declaring Fields
Although you can declare single fields as described here. the
practice is li.1ted. (It is useful in manipulating byte
pointers.) User programmers should use RECORD definitions
instead.
A single field may be defined with the declaration:

DECLARE FIELD name = [address. size: position] ;
where

address is the address of the word to which the {ield

MARY. 5-Jan-S2 15:05 < USERGUIOES, PROGRAM"ERS-GUIOE.AUG;l. > 96

refers.
size is the number of bits in the field. and
position is the number of bits left to the right of the
field.

In an assignment. the address of the word referenced is kept
in a register, named -rp.- It may be used as an index by
placing it in parentheses. Thus a FIELD declaration refering
to the right half of a word is:

DECLARE FIELD right=[(rp), 18:0] ;
The left half of the next word could be defined:

DECLARE FIELD left=[I(rp). 18:18) ;
The address is held in the right half of a byte pointer. You
may declare a field with zero as the address. then assign the
field definition plus an address to set up a byte pointer:

DECLARE FIELD right:[O. 18:0] ;
then

bytepointer _ right + $variable ;
A FIELD declaration may be external as well as global:

DECLARE EXTERNAL FIELD name = [address. size: position] ;
Section 6: Stacks and Rings

Oeclaring Stacks and Rings
Stacks and rings are allocate.d series of words of storage. A
stack or ring is defined to hold a given number of records;
each record may be a single or a defined number of words. You
may ·push" records onto the stack or ring and then ·pop· them
off. as described here.
A stack may be declared (at the global level) with the LlD
declaration:

DECLARE STACK stackname[size] ;
where size is the number of one-word records in the stack.

You may work with records of more than one word with the stack
declaration:

DECLARE STACK stacknameCsize.recs1zel ;
where recsize is the number of words in each record. All
records in a stack must be the same size.

Like other declarations. any number of st~cks may be declared
with the same statement:

DECLARE STACK stackname[sizel, staekname[size.recsizel, ,
Stacks may be declared as external to the prograM:

DECLARE EXTERNAL STACK stacknaee[size.recsizeJ •••• ;
Ring declarations are identical. with the word -RING
SUbstituted for ·STACK." E.g.:

DECLARE RING ringname[sizel. ringna.e[s1ze,recsizel •••• ;
DECLARE EXTERNAL RING ringname[size.recsizel •••• ;

Initializing Stacks and Rings
Before it is used, a stack or ring must be initialized (i.e.
cleaned up), with the LlO statement:

RESET stackname ;
or

RESET ringname ;
The storage can then be considered empty. The RESET statement
can be used ~henever you wish to clean up the stack or ring.

Using stacKs and Rings
You may add a record to the top of the stack or ring with the
LI0 statement:

MARY, 5-Jan-82 15:05 < USERGUIOES, PROGRAMMERS-GUIDE.AUG;l.) 97

PUSH address ON stackn.me ;
where address is the address of the first word (perhaps the
single word) of the record to be added to the stack.
-If you try to add more elements than the stack can hold, a
SIGNAL will be generated.
-If ~ou try to add more elements than the ring can hold.
records will be replaced. starting from the bottcm (the
first record pushed on).

You may remove a record from the stack or ring, and optionally
assign it to a record variable (a simple variable or array of
the appropriate size) with the LIO statement:

POP stackname ;.
or

POP stackname TO address ;
where address is the address of the first word (perhaps the
single word) of the record to receive the record from the
stack.
-If you try to remove more elements than the stack
currently holds. a SIGNAL will be generated.
-If you try to remove more elements than the ring currently
holds, records will be reread. starting from the top. This
should be avoided. If you did not previously 11 II the
ring. this top record will hold garbage.

You may read the first word of the record at the top of the
stack or ring (without affecting the stack or r1ng) as an
expression by enclosing the name in square-bracKets:

CstacknameJ
The second word (the one below that one the stack) _ay be
read as [stackname - 1]. and so on.

E.g.
var CstacknaMel;

To use stacks and rings. one usually must keep track of how
many records are currently on the storage. Thus. you probably
will need to maintain a count in a simple variable in parallel
to use of the stack or ring.

Section 7: Using the Sequence Generator
Introduction

The Sequence Generator is used by a number of NLS commands
which require a series of statements fro. an NLS file. A
procedure may open a sequence holding a nUMber of statements;
the Sequence Generator then passes those statements back, one
at a time, every tiMe it is called.
The Sequence Generator considers viewspecs in choosing which
statements to return, e.g. level truncation. If viewspec i or
k is on. it may call a content Analyzer prograM before
returning the statement. This allows a great deal of
flexibility in working with a series of statements.

Co-Routine Effect
Once the Sequence Generator decides to return a statement (or
string), it calls a mechanism which returns control to the
procedure that called the Sequence Generator. Thus control
will return directly to that calling procedure, even from
other procedures the Sequence Generator has called, i.e. even
if the return mechanism was called frOM a procedure called by
the Sequence Generator.
When the Sequence Generator is called the next time, it passes

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAMMERS-GUIDE.AUG;1,) 98

control to the instruction after the one which called the
return mechanism. I.e. it continues right where it left off.
Thus, the Sequence Generator may call a Content Analyzer
program which may return control directly to the prccedure
which called the Sequence Generator. The next time the
Sequence Generator is called, execution will begin in the
middle of that content Analyzer prograM (wh1ch may later
return through the normal RETURN statement to the Sequence
Generator). (Thus. the Sequence Generator is behaving like a
co-routine to the calling procedure.)

Calling Procedure Sequence Generator Con~ent Analyzer
1 •••
2 •••
3 seqgen(&sw) »-) 1 •••

2 •••
3 CA filter »---)

4 ••• <~~~~----~--~~~~-~-~~~~~~--~-«
5 •••

3 seqgen(&sw) »-------------------->
~ ... (---------«
5 •••

1 ••• <---------« 6 return mechanise

1
2
3

4
5
6

•••
•••
return mechanism

•••
•••
normal return

Sequence Work Area
When a Content Analyzer program is called by the Sequence
Generator. one parameter is passed, the address of an array
called the "sequence work area.- This array. although ignored
by most Content Analyzer programs. holds a great deal of
useful information. If the Content Analyzer procedure
receives this address as a parameter. and then REFs it. it may
refer to the following fields in the sequence work area (see
(NLS,BRECOROS.seqr) for entire record declaration):

swstid -- stid of current statement or string in sequence
swcstid -- stid of current real STATEMENT in sequence (even
if swstid points to a string)
swlbstid -- stid of statement heading last branch in
sequence
sw~lvl -- level of current stateaent in sequence
swslvl -- level of first statement in sequence
swvspec -- first word of viewspecs for sequence
swvsp2 -- second word of v1ewspees for sequence
swusqcod -- address of user Sequence Generator procedure
for sequence
swcacode -- address of Content Analyzer procedure for
sequence
swkflg -- FALSE when sequence is opened. TRUE once
something has been returned by sequence

Displaying Strings
You may call the return mechanism from Content Analyzer
programs while causing the Sequence Generator to inject a
string in the sequence. Under the normal circumstance. where
the sequence is being used to put up a display or print a file
or to do filtered editing, this allows you to inject a string
into the output. Thus you may receive a statement. reformat
it into a string (without editing the statement itself). and

MARY, 5-Jan-82 15:05 < USERGUIDES, PROGRAM"ERS~GUIOE.AUG;l.) 99

then display the string.
The following procedure injects a string 1n the sequence, then
returns to the procedure that called the Sequence Generator:

send (SW9 astring) ;
where sw is the address of the sequence work area. and
astring is the address of the string. (ReMember, if you
REFed the parameter holding the address of the sequence
work area, use the ampersand (') construct when passing it
to send.)

Note that the co-routine effect will cause execution to pick
up right where it left off when the Sequence Generator is
called for the next statement. Thus. execution will begin
just after the send. If you then RETURN a value of TRUE, the
statement itself will ALSO be displayed. Most applications of
send will RETURN(FALSE) immediately after the call on send.
An example of a Content Analyzer program Using send() to show
only the first line of each statement:

(firstline) PROCEDURE (sw) ; lcontent analyzer filter to
display only first linesX

lOCAL TEXT POINTER ptr ;
REF sw ;

Ito hold address of sequence work areal
%set pointer at end of first line%

CASE READe OF
= ENDCHR: FIND Aptr ; = EOl: FIND Aptr _ptr ;
ENOCASE REPEAT CASE;

%put first line in global str1ngt
dspstr _ SF(ptr) ptr ;

Jinject string into sequence%
send (&sw. Sdspstr) ;

Iso statement won-t also be displayed%
RETURN (FALSE) ;

END.
Using Sequences

You may open and use your own sequences in attachable
subsystems. This may be useful when you wish to process a
series of statements, perhaps only those passing certain
requirements (e.g. level or a Content Analyzer filter).
To open a sequence. you should have declared and REFed a
variable to hold the address of the sequence work area that
will be reserved for your sequence. The procedure which opens
the sequence returns this address.

&sw _ openseq(stidl. stid2t vspecl. vspec2, seqproc.
caproc);
where

stid! and stid2 are two stids deliniating a group in an
NLS file that will be the source of the statements in
the sequence. They may be the same (for a branch). The
Sequence Generator ignores the branch only and plex only
viewspecs.

To get st1d2. the procedure ·seqend- may be useful.
Given stidl and the two v1ewspec words. it checks the
branch-only and plex-only viewspecs and returns the
appropriate stid for stid2. E.g.:

&sw _ openseQ (stid!_ seqend(stidl.vspecl.vspec2).

MARY, 5-Jan-82 15:05 < USERGUIOES. PROGRAMMERS-GUIDE.AUG;1, > 100

vspecl, vspec2, seQproc. caproc);
vspecl and vspec2 are two words holding the viewspecs
for the sequence. There a a number of predefined fields
which allow you to set bits within these words. (See
Part Four. Section 4.) Of particular 1riterest to the
Sequence Generator are the level truncation (not the
line truncation) and the Content Analyzer viewspecs.
seqproc is the address of the Sequence Generator routine
to be used. If you pass zero, the NLS standard Sequence
Generator will be used. (User Sequence Generators are
not described here.)
eaproc is the address of a content Analyzer procedure to
be used if needed by the sequence (as specified in the
viewspecs). If none is needed. you may pass zero.
Passing the address of a sequence is in effect
instituting that procedure for that sequence. The
address of the currently instituted procedure may be
gotten from the display area descriptor. as described in
Part Four. Section 4.

A call on the procedure ·seqgen- will increment the fields in
the sequence work area to the next statement (or string) in
the sequence; it will return the first statement in the
sequence the first time it is called. You must pass it the
address of a sequence work area, e.g.:

seqgen (&sw) ;
seqgen returns the new swstid field of the sequence. or
endfil if there are no more statements in the sequence.
You may then refer to the fields in the sequence work area
for inforMation about that statement. e.g.:

sw.swstid -- stid of current item in sequence
sw.swclvl -- level of current item in sequence

When you are done with a sequence. you must close it by
calling the procedure ·closeseq· v1th the adddress of the
sequence work area; e.g.:

closeseq(&sw) ;
A typical use of the Sequence Generator might be as follows:

% set up sequence X
I set up viewspecs %

%get adress of display area descriptor; da is REFed
simple variableX

&da _ lda() ;
%get current viewspecs; vspec is LOCAL two-word
arrayl

vspec _ da.davspec ;
vspec[lJ _ da.davspc2 ;

%turn on Content Analyzer for this sequenceX
vspec.vscapf _ TRUE ;

%openseQ with Rproc W as content Analyzer filter. returns
the address of sequence work area; sw is REFe~ simple
variable%

&sw _ openseq(sourcestidt sourcestid, vspec,
vspec[ll. da.dausqcod. Sproe);

aN SIGNAL ELSE closeseq(&sw) ;
x loop through sequence X

lreset control-o flagX
inptrf _ 0 ;

MARY. 5-Jan-82 15:05

LOOP
BEGIN

< USERGUIDES, PROGRAMMERS-GUIOE.AUG;1, > 101

IF inptrf THEN %user typed a control-oX
BEGIN
dismes (1, SftUser terminated process·) ;
EXIT LOOP ;
ENO;

~intrement to next statement in branch you are
processing which passed filter ·proc·; or else exit%

IF seqgen(&sw) = endfil THEN EXIT LOOP ;
Xcall some procedure to process current stid (could
as well have been any block of code)1

process(sw.swstid) ;
END;

X close sequence X
ON SIGNAL ELSE ;
eloseseq (&sw) ;

Section 8: Conditional Compiling
You may delimit blocks of code within procedures that ~ill only
be compiled if a constant is TRUE or FALSE. If the code is not
compiled. of course it will not be part of the code file and will
not be executed.

First a constant must be defined with the SET construct (at
the beginning of the file) as either zero (FALSE) or non-zero
(TRUE).
Then. code delimited by the string:

%+name%
where na.e is the SET constant

will only be compiled if the constant is SET to a TRUE
value.

Similarly. code delimited by the string:
%-nameX
will only be compiled if the constant is set to zero
(FALSE).

For example.
if the following statement appears at the beginning of the
program:

SET test=O;
then a procedure in the program might include code aelim1ted
by this construct, e.g.:

LIO statement ; lnormal code. always compiled%
•
•

llO statement ; Xnormal code, always compiledl
x-test%

LtO statement; Xthis statement WILL be compiledl
•
•

LIO statement; xthis statement WILL be compiledX
l-testX

%+testx
LlD statement; Xth1s statement will NOT be compiledX

•
•

LtO statement; %this statement will NOT be compiledX
%+test%

MARY. 5-Jan-82 15:05 < USERGUIDES. PROGRAMMERS-GUIDE.AUG;l. > 102

LIO statement . Xnormal code. always compi led% t

•
•

ASCII 7-81T CHARACTER coors

Char ASCII Char ASCII. C. har ASCI I Char ASCII
.......... -----... _. ... ----- ... _,---- ... ---------... ---- .. _--.. --
#to A 001 041 A 101 a 11l-I
AS 002 If 042 B 102 b 142
A(" ... 003 # 043 C 103 c 143
#too 004 $ 044 0 104 d 14lt
AcE 005 % O~5 [" 105 e 145
#toF 006 & 046 F 106 f 146
Bell 001 • Olt7 G 107 9 147
as- 010 (050 H 110 h 150
Tab 011) 051 I 111 i 151
LF 012 * 052 J 112 j 152
VT 013 + 053 K 113 k 153
FormFeed 014 • 054 L 114 l 154
CR 015 055 M 115 III 155
#toN 016 • 056 N 116 n 156
AO 017 I 057 0 117 0 151
Ap 02.0 0 060 P 120 p 160
AQ 021 1 061 Q 121 q 161
AR 022 2 062 R 122 r 162
AS 023 3 063 S 123 s 163
AT 02lf. If 064 T 12,. t 164
AU 025 5 065 U 125 u 165
""v 026 6 066 V 126 v 166
"..w 021 7 067 W 127 w 161
AX 030 8 070 X 130)(170
#toy 031 .., 071 y 131 Y 171
AZ 032 · 072 Z 132 z 172 · ESC 033 · 073 [133 ..

< 074 \ 134
:: 075 1 135
> 016 A 136
? 077 137 OEL 177

SP 040 i 100
TITLE PAGE

NLS Programmers· Guide
Content Analyzer
LI0 Language
Command Meta Language
NODT
Augmentation R.esearch center Stanford Research Institute
333 Ravenswood Avenue
Menlo Park. Cali forn; a 94025

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102

