
NLS Programmers' Guide
Content Analyzer

L 1 0 Language
Command Meta Language

NDDT

Augmentation Research Center

8 JAN 76

Stanford Research Institute
333 Ravenswood Avenue

Menlo Park. California 94025

34210

NlS Programmers' Guidl'
T able of Contents

ARC 34210 Rev. 8 JAN 76

TABLE OF CONTENTS

I NTRODUCT ION •.•..••.•..•.•.••.•••••••••..••••.••••••.•.••••• 2

PART ONE Content Analyzer Patterns ••••••••••••••••••.••••• 3

Section
Section
Section
Section

1
2
3
4:

Introduction
Patterns
Examples of Content Analyzer
Using the Content Analyzer ••

Patterns

.3A

.38

.3C

.30

PART TWO: Introduction to LID Programming •••••••••••••••••• 4

Section 1: Content Analyzer Programs.
Introduction ••••
Program Structure ••
Procedure Structure ••
Example: ••••••••
Declaration Statements
80dy of the Procedure.
Pro g r a mm i n g Sty I e F i I e
Using Content Analyzer
Problems

Structure.
Programs ••••

Section 2: Content Analyzer Programs
Introduction ••••
String Construction
Example: ••••••••
More Than One Change per Statement.
Control I ing Which Statements are Mod
Problems

Modifying.

f i ed

• .4A
• •• 4Al

.4A2

.4A3

.4A4

.4AS

.4A6

.4A7

.4AB

.4A9
• .48
.4B1
.482
.483
.484
.485
.486

PART THREE: 8 a sic L lOP r 0 g r a mm i n g • 5

Section 1: The User Program Envi ronment ••
Introduction •••••••••••
The Sequence Generator •••
Content Analyzer Fi Iters.
The Portrayal Formatter •••

Section 2: Program Structure ••
An NLS user program consists of the following ••

• ••• 5 A
.5A1
.SA2
.SA3
.5A4
• .58
.581

page i

ARC 34210 Rev. 8 JAN 76

An example of a simple
Sect ion 3: Dec larat ions.

Introduction
Variables.
Simple Variables.
Constants.
Arrays.
Text Pointers ••

L10 program ••

NLS Programmers' Guide
T able of Contents

.SB2
• • SC
.SC1
.SC2
.SC3

• '''',r-,H!~~ ~,~ •
.--;~ ••• SC4
• •••• • ~. 5C5

.SC6

.SC7

.SC8
Strings ••••••••
Referenced Variables ••
Declar ng Many Variables
Declaring Locals •••

in One Statement .SC9

page ii

Section 4: Statements.
Introduction •••
Assignment •••••
BUMP Statement.
IF Statement .••
CASE Statement.
LOOP Statement.
WHILE ••• DO Statement
UNTIL ••• DO Statement
DO ••• UNTIL/DO ••• WHILE Statement
FOR. . • DO S tat em e n t • • • • .
BEGIN ••• END Statement.
EXIT Statement •••
REPEAT Statement.
DIVIDE Statement.
PROCEDURE CALL Statement •.•
RETURN Statement.
GO TO Statement ••••
NULL Statement ••

Section S: Expressions.
Introduct ion ••
Primitives.
Operators.
Expressions •.

Section 6: String Test
Introduction •••••

and Manipulation

Current Character Position
FIND Statement.
FIND Patterns ••
String Construction.
Example: ••••••••

(CCPOS)

More Than One Change per Statement.
Text Pointer Comparisons •••

Section 7: Invocation of User Filters.
Introduction •••.••••••
Programs Subsystem ••••
Examples of User Programs

.5C10
• • SO
.SD1
.SD2
.SD3
.SD4

• .' •.• SD5
· •• SD6
· •• 5D7

.5D8
••••• SD9

· • 5D1 0
• ••••••• 5 D 11

· .5D12
• .5D13
· .5D14
· .5D15

• •• 5D16
• .5D17
· .5D18
• ••• 5 E

.SE1
· •• SE2
· •• SE3

.SE4
• .5 F
.SF1
.SF2

· •• SF3
• ••• 5 F 4

.SF5

.SF6
• •• S F7
• •• S F8

• .5G
.SG1

• •• SG2
.SG3

NLS Programmers' Guide
T able of Contents

ARC 34210 Rev. 8 JAN 76

PART FOUR: Interactive LI0 Programming ••••••••••••••••••••• 6

Section 1 Introduction ••••••••.••••••
Section 2 Command Meta Language (CML)

Introduction ••••
Program Structure ••
Subsystems •••
Ru Ie s •••
Declarations.
CML Elements.
Sample CML Program ••

Section 3 LI0 Execution Procedures
Section 4: Add tional LI0 Capabilities

Introduct ion.
Moving Around Within NLS Files ••
Cal I ng NLS Commands
Opening Fi les ••••••
Displaying Messages.
Setting Up for Display Refreshing.
Other Useful Procedures
Globals of Interest ••••

Section 5: Creating and Using Attachable

• .6A
• .6B

• • 6B 1
• .6B2

.6B3
• .6B4

• •• 6B5
• •• 6B6
• •• 6B7

.6C
• .60

• •• 601
• •• 602

.603

.604
• •• 605
• •• 606
• •• 607

• .608
Subsystems •••• 6E

PART FIVE Advanced Programming Topics ••••••••••••••••••••• 7

Section 1:
Section 2:

Error Handl ing
NDDT Debugging.

Introduct ion ••••••••••
Accessing NDDT •••••••
NDDT Address Expressions.
Single-Word Variables.
String Variables ••
Records ••••••••••••••
Bu i It in NDDT symbols ••
Special character commands
Traces and Breakpoints.
LI0 Procedures ••••••
Syml:>ols ••••••••••••••
Scanning for Content.

SIGNALs

Section 3: Writing CML Parsefunctions
Section 4: Calculator Capabi I ities.

I nt roduct ion ••••••••••••••••••••
Converting String to Double-Precision
Converting Floating Point to String ••
Calculations with Foating Point ••••••

.7 A
• •• 7B

• •• 7B 1
• .7B2

.7B3
• .7B4
• .7B5

• •• 7B6
.7B7
.7B8

• •• 7B9
• .7BI0

• •• 7B 11
• • 7B 12

• • 7C
• ••••••• 70

• •• 701
Floating. .702

.703
• .704

page iii

ARC ~4210 Rev. 8 JAN 76

Section 5: Fields and
Sect ion 6: Stacks and
Section 7: Using the

Introduction ••.
Co-Routine Effect.
Sequence Work Area.
Displaying Strings.
Using Sequences

Section 8: Conditiona

Records
Rings ..

Sequence Generator

Comp iii ng.

NLS Programmers' Guide
T able of Contents

.7E

.7F

.7G
· • . 7Gl
· • • 7G2
· • • 7G3
· . • 7G4
· • . 7G5

. • 7H

ASCI I 7-81T CHARACTER CODES ...•....•••.•.....•...•••.....••. 8

page iv

NLS Programmers' Guide
Introduction

ARC 34210 Rev. 8 JAN 16

INTRODUCTION

NLS provides a variety of commands for file manipulation and viewing. Editing commands allow
the user to insert and change the text in a file. Viewing commands (viewspecs) allow the user to
control how the system prints or displays the file. Line truncation and control of statement
numbers are examples of these viewing facilities. 2 a

Occasionally one may need more sophisticated view controls than those available with the viewing
features of NLS. 2 b

For example, one may want to see only those statements that contain a particular word or
phrase. 2b1

Or one might want to see one line of text that compacts the information found in several
longer statements. 2 b 2

One might also wish to perform a series of routine editing operations without specifying each of
the NLS commands over and over again, or build commands for specific applications. 2 c

User-written programs may tailor the presentation of the information in a file to particular needs.
Experienced users may write programs that edit files automatically. 2 d

User-written programs currently must be coded in ARC's procedure-oriented programming
language, LIO. NLS itself is coded in LIO. LIO is a high-level language which must be compiled
into machine-readable instructions. This document describes LIO. Programs which interact with
users additionally use a language developed at ARC called Command Meta Language (CML),
described in Part Four of this document. 2 e

This document describes three general types of programs: 2 f

--simple filters that control what is portrayed on the user's teletype or display (Parts One and
Two), 2f1

--programs that may modify the statements as they decide whether to print them (Parts Two
and Three), 2f2

--those that, like commands, are explicitly given control of the job and interact with the user
(Part Four). 2 f 3

User programs that control what material is portrayed take effect when NLS presents a
sequence of statements in response to a command like Print (or Jump in DNLS). 2 f 4

In processing such a command, NLS looks at a sequence of statements, examining each
statement to see if it satisfies the viewspecs then in force. At this point NLS may pass
the statement to a user-written program to see if it satisfies the requirements specified in
that program. If the user program returns a value of TRUE, the (passed) statement is
printed and the next statement in the sequence is tested; if FALSE, NLS just goes on to
the next statement. 2 f 4 a

While the program is examining the statement to decide whether or not to print it, it may
modify the contents of the statement. Such a program can do anything the user can do with
NLS commands. 2 f 5

For more complex tasks, a user program function as a special-purpose sub~ystem having (in

page 1

ARC 3421.0 Rev. 8 JAN 76 NLS Programmers' Guide
Introduction

addition to the may supervisor commands) one or more commands. Once such a program is
loaded, it can be used just like any of the standard subsystems. (The MESSAGE program is
an example.) 2 f 6

This document is divided into five parts: 2 9

Part One is intended for the general user. 2 9 1

It is a primer on Content Analyzer Patterns, allowing the NLS user to set up simple yet
powerful filters whrough which he may view and edit files. This does not involve learning
the LIO language nor programming. This section can stand alone, and the general (if
somewhat experienced) NLS user should find it very useful. 291 a

Part Two is intended for the beginning programmer. 292

It presents a hasty overview of LIO programming, with enough tools to write simple
programs. This is intended as an introduction for the beginning user programmer, who we
assume is reasonably familiar with NLS (its commands, subsystems, and capabilities) and
has some aptitude for programming. 292 a

Part Three is a more complete presentation of LIO. 293

It is intended to acquaint a potential LIO programmer with enough of the language and
NLS environment to satisfy most requirements for automated editing programs. Many of
the concepts in Part Two are repeated in Part Three so that it may stand alone as an
intermediate programmer's reference guide. This is the section in which to begin looking
for answers to specific questions. 293 a

Part Four presents more advanced LIO tools and an introduction to CML, allowing command
syntax specification. 294

This should give the programmer the ability to write programs which work across files,
which move through files in other than the standard sequential order, and which interact
with the user. It allows the programmer to build user-attachable subsystems with
commands looking very much like standard NLS facilities. 29 4 a

Part Five presents a number of subjects of interest to the advanced L I 0 progammer. 295

We suggest that those who are new to L I 0 begin by acquiring a thorough understanding of
Part One. Then Part Two should be studied one section at a time, pausing between sections
to tryout the concepts presented by actually writing patterns or programs that put the new
ideas to experimental use. Actual experience is of at least as much value as this tutorial.
Tutorial guidance should be requested from ARC through your architect. If you have problems
at any point, you should get help from ARC before proceeding to the next section. 296

Note: For syntactical correctness, some examples include constructs not yet defined in the
text; they will be discussed soon thereafter. 296 a

For examples of user programs which serve a variety of needs, examine the attachable subsystems
in the <PROGRAMS> directory and their descriptions in Help. For information about commands
mentioned, ask for the programming subsystem with the NLS Help command.

NOM 2h

page 2

NLS Programmers· Guide
Part One: Introduction

ARC 34210 Rev. 8 JAN 76

PART ONE: Content Analyzer Patterns

Section 1: Introduction 3a

Content analysis patterns cannot affect the format in which a statement is printed, nor can they
edit a file. They can only determine whether a statement should be printed at all. They are, in a
sense, a filter through which you may view the file. More complex tasks can be accomplished
through programs, as described later in this document. 3 a 1

The Content Analyzer filter is created by typing in (or selecting from the text in a file) a string of a
special form which describes those statements which will pass through the filter. This string is
called the "Content Analyzer Pattern". Each statement is checked against the pattern before it is
printed; only statements that are described by the pattern will be printed. 3 a 2

Some quick examples of Content Analyzer Patterns: 3 a 3

'($lD ') will show all statements whose first character is an open parenthesis, then any
number of letters or digits, then a close parenthesis. 3 a 3 a

["blap"] will show all statements with the string "blap" somewhere in them. 3 a 3 b

SINCE (3-JUN-75 00:00) will show all statements edited since June 3, 1975 3a3c

The next part of this section will describe the elements which make up Content Analyzer Patterns,
followed by some examples. The final subject of this section is how to put them to use. 3 a 4

page 3

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part One: Patterns

Section 2: Patterns

Elements of Content Analyzer Patterns

Content Analyzer Patterns describe certain things the system must check before printing a
statement. It may check one or a series of things. Each test is called an element; the many

3b

3bl

possible elements will be described below. 3 b 1 a

The Content Analyzer searches a statement from the beginning, character by character,
for described elements. As it encounters each element of the pattern, the Content
Analyzer checks the statement for the occurrence of that element; if the test fails, the
whole statement is failed (unless there was an "or" condition, as described later) and not
printed; if the test is passed, an imaginary marker moves on to the next character in the
statement, and the next test in the pattern is considered.

For example, if the next element in the Content Analyzer pattern is "LD", the imaginary
marker will move over the next character and go on to test the next element of the
pattern only if the next character is a letter or a digit; otherwise the whole statement fails
to pass the filter.

The pattern may include any sequence of the following elements; the Content Analyzer moves
the marker through the statement checking for each element of the Pattern in turn: 3b 1 b

Literal String elements 3 b 1 c

'c -- the given character (e.g. a lower case c)

"string" -- the given string (may include non-printing characters, such as spaces)

Character class elements

CH - - any character

L -- lowercase or uppercase letter

o -- digit

UL - - uppercase letter

LL - - lowercase letter

ULD -- uppercase letter, or digit

LLD -- lowercase letter, or digit

LD - - lowercase or uppercase letter, or digit

NLD - - not a letter nor digit

PT - - any printing character (letters, digits, punctuation)

NP -- any non-printing character (e.g. spaces, control characters)

Special non-printing character elements

SP -- a space

TAB - - tab character

page 4

3bld

3ble

NLS Programmers' Guide
Part One: Patterns

ARC 34210 Rev. 8 JAN 76

CR - - a carriage return

IF - - line feed character

EOl -- TENEX EOl (end of line) character

Al T - - altmode character

Special elements

ENOCHR - - beginning and end of every NlS statement; can't scan past it; not considered a
character

TRUE - - is true without checking anything in statement (used with OR constructs, as
described below)

10= id - - statement created by user whose ident is given

10# id -- statement not created by user whose ident is given

BEFORE (d-t) -- statement edited before given date and time

SINCE (d-t) -- statement edited since given date and time

E.g. BEFORE (1 OCT 1974 00:00) ;

The date and time must both appear in the parentheses. It accepts almost any
reasonable date and time syntax.

Examples of valid dates:

17-APR-74
APR-17-74
APR 17 74
APRil 17, 1974

17 APRil 74
17/5/1974
5/17/74

Examples of valid times:

1:12:13 1234:56
1234 1:56AM
1:56-EST 1200NOON
16:30 (i .e. 4:30 PM)
12:00:00AM (i .e. midnight)
11 :59 : 59 AM- EST (i • e. I ate mo r n i n g)
12:00:01AM (i.e. early morning)

Scan direction

< -- set scan direction to the left

> -- set scan direction to the right

The default, re-initialized for each new statement, is scan to the right from before the
first character in the statement (beginning to end).

3blf

3b 1 9

page 5

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part One: Patterns

Modifying Elements 3 b 2

Several operators can modify any of the elements except the "special elements": 3 b 2 a

NUMBER - - multiple occurrences 3 b 2 b

A number preceding any element other than one of the "Special elements" means that
the test will succeed only if it finds exactly that many occurrences of the element. If there
aren't that many, the statement will be rejected. Even though there may be more, it will
stop after that many and go on to check the next element in the pattern.

3UL means three upper case letters

$ - - range of occurrences

A dollar sign ($) preceding any element other than the "Special elements" means "any
number of occurrences of". This may include zero occurrences. It is good practice to
put the element itself in parentheses.

$(' -) means any number of dashes

A number in front of the dollar sign sets a lower limit.

3$(0) means three or more digits

A number after the dollar sign sets an upper limit for the search. It will stop after that
number and then check for the next element in the pattern, even if it could have found
more.

$3(LO) means from zero to three letters or digits

5$7(PT) means from 5 to 7 (inclusive) printing characters

[] - - floating scan

To do other than a character by character check, you may enclose an element or series of
elements in square brackets []. The Content Analyzer will scan a statement until the
element(s) is found. (If the element is not in square brackets, the whole statement fails if
the very next character. or string fails the test of the next element.) This test will reject
the statement if it can't find the element anywhere in the statement. If it succeeds, it will
leave the marker for the next test just after the string satisfying the contents of the
square brackets.

"start" means check to see if the next five characters are: s tar t.

["start"] means scan until it finds the string: s tar t.

[3D] means scan until it finds three digits.

[30':] means scan until it finds three digits followed by a colon

3b2c

3b2d

- -- negation 3b2e

pagl' 6

If an element is preceded by a minus sign -, the statement will pass that test if the
element does not occur.

-LD means anything other than a letter or digit, such as punctuation, invisibles, etc.

Nl.S Programmers' Guide
Part One: Patterns

ARC 34210 Rev. 8 JAN 76

NOT - - negation 3b2f

NOT will be TRUE if the element or group of elements enclosed in parentheses following
the NOT is false.

NOT LD will pass if the next character is neither a letter nor a digit.

Combining Elements 3b3

You may put together any number of any of these elements to form a pattern. They may be
combined in any order. Spaces within the pattern are ignored (except in literal strings) so
they may be used to make reading easier for you. 3 b 3 a

e.g. I$PT [".NLS;" 1$0] -SP

i.e. one or more printing characters, then scan for • NLS; followed by one or more digits,
then check that the next character is not a space

More sophisticated patterns can by written by using the Boolean logical expression features of
LID. Combinations of elements may in turn be treated as single elements, to be modified or
combined using logical operators. 3 b 3 b

Generally, an expression is executed left to right. The following operations are done in the
given order:

()

/
NOT
AND
OR 3b3c

()

/

Parentheses (and square brackets for floating scans) may be used to group elements. It
is good practice to use parenthesis liberally.

/ means "either or"; the bracketed element, consisting of two or more alternatives, will be
true if either (any) element is true.

(3D L / 40) means either three digits and a letter or four digits.

Since the slash is executed before NOT, NOT 0 / 'h will be true if the next character is
NEITHER a digit nor the letter "h". It is the same as NOT (O/'h).

Sometimes you may want want the scan to pass your marker over something if it happens
to be there (an optional element). "TRUE" is true without testing the statement. If the
other tests fail, the imaginary marker is not moved.

(0 / TRUE) looks for a digit and passes the imaginary marker over it. If the next
character is not a digit, it will just go on to the next test element in the pattern
without moving the marker and without failing the test. (This test always passes.)

i.e. It is used to scan past something(s) which mayor may not be there.

Since expressions are executed from left to right, it does no good to have TRUE as the
first option. (If it is first, the test will immediately pass without trying to scan over any
elements.)

3b3d

3b3e

page 7

,.

ARC 34210 Rev.8JAN76 NLS Programmers' Guide
Part One: Patterns

AND

AND means both of the two separated groups of elements must be true for the statement
to pass.

SINCE (3/6/73 00:00) AND ID#NDM means statements written since March 6,
1973 by someone other than NDM.

3b3f

OR 3b3g

page 8

OR means the test will be true if either of the separated elements is true. It does the
same thing as slash, but after "AND" and "NOT" have been executed, allowing greater
flexibility.

D AND LLD OR UL means the same as (D AND LLD) OR UL
D AND LLD / UL means the same as D AND (LLD / UL)

While such patterns are correct and succinct, parentheses make for much clearer
patterns. Elements within parentheses are taken as a group; the group will be true
only if the statement passes all the requirements of the group. It is a good idea to
use parentheses whenever there might be any ambiguity.

NlS Programmers· Guide ARC 34210 Rev. 8 JAN 76

Part Om': Examples of Content AWllyzer Patterns

Section 3: Examples of Content Analyzer Patterns 3c

D 2$LO / ["CA"] / ["Content Analyzer"] 3c 1

This pattern will match and pass any of three types of NLS statements: those beginning with a
numerical digit followed by at least two characters which may be either letters or digits, or
statements with either of the strings "CA" or "Content Analyzer" anywhere in the statement. 3 c 1 a

Note the use of the square brackets to permit a floating scan -- a search for a pattern
anywhere in the statement. Note also the use of the slash for alternatives.

BEFORE (25-JAN-72 12:00) 3c 2

This pattern will match those statements created or modified before noon on 25 January
1972. 3c2a

(ID = HGL) OR (ID = NDM) 3 c 3

This pattern will match all statements created or modified by users with the identifiers "HGL"
or "NOM". 3c3a

[(2L (SP /TRUE) / 20) D '- 40] 3c4

This pattern will match characters in the form of phone numbers anywhere in a statement.
Numbers matched may have an alphabetic exchange followed by an optional space (note the
use of the TRUE construction to accomplish this) or a numerical exchange. 3c4a

Examples include OA 6-6200, OA6-6200, and 326-6200.

[ENDCHR] < "cba" 3 c 5

This will pass those statements ending with "abc". It will go to the end of the statement,
change the scan direction to left, and check for the characters "cba". Note that since you
are scanning backwards, to find "abc" you must look for "cba". Since the "cba" is not
enclosed in square brackets, it must be the very last characters in the statement. 3 c 5 a

page 9

ARC 34210 Hl~V. 8 JAN 76 NLS Programmers' GUIde
Part One: Using the Content Analyzer

Section 4: Using the Content Analyzer 3d

Content Analyzer Patterns may be entered in two ways: 3 d 1

1) From the BASE subsystem, use the command: 3d 1 a

Set Content (pattern) To PATTERN OK

2) From the PROGRAMS subsystem, use the command:

Compile Content (pattern) PATTERN OK

OK means "Command Accept", a control-D or,
in TNLS (by default) a carriage return.

In either case:

1) Patterns may be typed in from the keyboard, or

2) they may be text in a file.

In this case, the pattern will be read from the first character addressed and continue until
it finds a semicolon (:) so you must put a semicolon at the end of the pattern (in the file).

3d1b

3d2

3d2a

3d2b

Viewspec j must be on (i. e. Content Analyzer off) when entering a pattern. J d 2 c

Entering a Content Analyzer Pattern does two things: 3d3

1) compiles a small user program from the characters in the pattern, and 3 d 3 a

2) takes that program and "institutes" it as the current Content Analyzer filter program,
deinstituting any previous pattern. 3d3b

p·'gl' 10

"Instituting" a program means selecting it as the one to take effect when the Content
Analyzer is turned on. You may have more than one program compiled but only one
instituted.

When a pattern is deinstituted, it still exists in your program buffer space and may be
instituted again at any time with the command in the PROGRAMS subsystem:

Institute Program PROGRAM-NAME (as) Content (analyzer) OK

The programs may be refered to by number instead of name. They are numbered
sequentially, the first entered being number 1.

All the programs you have compiled and the one you have instituted may be listed with
the command in the PROGRAMS subsystem:

Show Status (of programs buffer) OK

Programs may build up in your program buffer. To clear the program buffer, use the
PROGRAMS subsystem command:

Delete All (programs in buffer) OK

We recommend that you do this before each new pattern, unless you specifically want
to preserve previous patterns.-

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 7~

Part One: Using the Content Analyzer

To invoke the Content Analyzer: 3d4

When viewspec i is on, the instituted Content Analyzer program (if any) will check every
statement before it is printed (or displayed). 3 d 4 a

If a statement does not pass all of the requirements of the Content Analyzer program, it
will not be printed.

In DNLS, if no statements from the top of the screen onward through the file pass the
Content Analyzer filter, the word "Empty" will be displayed.

Note: You will not see the normal structure since one statement may pass the Content
Analyzer although its source does not. Viewspec m (statement numbers on) will help you
determine the position of the statement in the file.

When viewspec k is on, the instituted Content Analyzer filter will check until it finds one
statement that passes the requirements of the pattern. Then, the rest of the output (branch,
plex, display screen, etc.) will be printed without checking the Content Analyzer. 3 d 4 b

When viewspec j is on, no Content Analyzer searching is done. This is the default state; every
statement in the output (branch, plex, display screen, etc.) will be printed. Note that i, j, and
k are mutually exclusive. 3 d 4 c

Notes on the use of Content Analyzer filters: 3 d 5

Some NLS commands are always affected by the current viewspecs (including i,j, or k): 3 d 5 a

Output

Jump (in DNLS)

Print (in TNLS)

Most NLS commands ignore the Content Analyzer in their editing. The following BASE
subsystem commands offer the option of specifying viewspecs, or "Filters", (which may turn
on the Content Analyzer) which apply only for the purpose of that one command and affect
what statements the command works on (only those statements which pass the filter will be
copied, moved, etc.; structure will be adjusted): 3 d 5 b

Copy

Delete

Move

Substitute

At this point, it would be wise to practice until you become proficient at Content Analyzer
patterns. You might begin by trying to use some of the patterns given in the above examples, and
then try writing a few patterns of your own. These patterns are both a useful NLS tool and a
basic component of many LIO programs. We further recommend that you contact ARC via your
architect before you begin the next part. 3 d 6

page 11

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 7~

Pdrt Two: Content Analyzer Programs

PART TWO: Introduction to LIO Programming

Section 1: Content Analyzer Programs 4 a

Introduction 4 a 1

When you specify a Content Analyzer Pattern, the PROGRAMS subsystem constructs a
program which looks for the pattern in each statement and only displays the statement if the
pattern matching succeeds. You can gain more control and do more things if you build the
program yourself. The program will be used just like the simple pattern program and has
many of the same limitations. Programs are written in NLS just like any other text file. They
then can be converted to executable code by a compiler. This code resides (or is loaded) in
your programs buffer space; it can be instituted as the current Content Analyzer filter program
like a Content Analyzer Pattern. 4 a 1 a

Program Structure 4 a 2

If you specify a Content Analyzer Pattern, NLS compiles a small program that looks like this
(with the word "pattern" standing for whatever you typed in): 4a2a

PROGRAM name

(name) PROCEDURE;

IF FIND pattern THEN RETURN(TRUE) ELSE RETURN(FALSE);

END.

FINISH

LIO programs must begin with a header statement, the word PROGRAM (all caps) followed by
the name of the first procedure to be executed (all lower-case). This name is also the name of
the program. If the program is being compiled into a file (to be described at the end of this
section), the word FILE should be substituted for the word PROGRAM. E.g. 4a2b

PROGRAM first
or

FILE deldir

(Note: the Content Analyzer compiler makes up a program name consisting of UP#!xxxxx,
where

is a sequential number, the first pattern being number one, and

xxxxx is the first five characters of your pattern.)

E.g. UPl!$LD [P

The body of a program consists of a series of DECLARATION statements and PROCEDURES
(in any order) which are blocks of instructions. In the above case, the program consisted of
only one small procedure and no declarations. When the program is loaded into your
programs buffer space, the declarations reserve space in the system to store information
(variables). When the program is used as a Content Analyzer filter program, the first

page 13

f.RC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Two: Content Analyzer Programs

procedure is called for each statement. It may in turn call other procedures and access
variables in the program or in the NLS system. E.g. 4a2c

DECLARE x, y, z; (described below)
(first) PROCEDURE;

The end of the program is delimited by the word "FINISH" (in all upper case). The compiler
stops at that point, so any text after that in the NlS source file will be ignored. 4 a 2 d

Comments may be enclosed in percent signs (%) anywhere in the program, even in the middle
of L 1 0 statements. The LID compiler will ignore them. 4 a 2 e

Except within literal strings, variable names and special Ll D words, spaces are ignored. It is
good practice to use them liberally so that your program will be easy to read. Also, NlS file
structure is ignored; statements will be read sequentially, regardless of their level. Structure
is, however, very valuable in making the program readable, and it is good practice to use it in
close correlation to the program's logical structure. For instance, the programmer usually
makes each of the elements of a program (declarations, procedures, and FINISH). separate
statements, below the header statement in file structure. This point will be discussed further
later. 4 a 2 f

So far, we have file which looks something like: 4 a 29

PROGRAM name 1

DECLARE ••• ;

DECLARE ••• ;

(name 1) PROCEDURE ;

(name2) PROCEDURE ;

FINISH

Procedure Structure 4 a 3

Each procedure must begin with its header statement. This header statement is a name
enclosed in parentheses followed by the word PROCEDURE, and terminated by a semicolon.
E.g. 4a3a

(name) PROCEDURE;

The body of the procedure may consist of Local declarations, then LIO statements. An LID
statement is any program instruction, terminated by a semicolon. The body must at some
point return control to the procedure that called it. All this will be further discussed later. 4a3b

The procedure must end with the terminal statement: 4a3c

END.

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part Two: Content Analyzer Programs

Example (the actual LIO statements in this example will become clear as you read on): 4a4

PROGRAM compare % Content analyzer. Displays statement if first two visibles are the
same. % -1a4a

% reserve space for ("declare") four text pointers named "ptl" through "pt4"%
DECLARE TEXT POINTER pt 1, pt2, pt3, pt4;

% reserve 100 characters of space for each of two string variables named "vis I" and
"vis2",%

DECLARE STRING vis 1 [1 00], vis2 [100] ;
(compare) PROCEDURE;

%i1 find two visibles, set pOinters around first two visibles (strings of printing
characters) %

IF FIND $NP f pt 1 1 $PT f pt2 $NP f pt3 1 $PT f pt4 THEN
BEGIN
%put visibles in strings%

*visl * - ptl pt2 ;
vis2 - pt3 pt4 ;

%compare contents of strings, return and display the statement if identical%
IF *vis 1 * = *vis2* THEN RETURN(TRUE);

END;
%otherwise, return and don't display%

RETURN (FALSE) ;
END.

FINISH

Declaration Statements 4 a 5

As you may have guessed from the above example, Content Analyzer programs can
manipulate variables (like text pointers and strings), while patterns cannot. 4a5a

Text Pointers 4 a 5 b

A text pointer points to a particular location within an NLS statement (or into a string, as
described later).

The text pointer points between two characters in a statement. By putting the
pointers between characters, a single pointer can be used to mark both the end of one
string and the beginning of the string starting with the next character.

Text pointers are declared with the following Declaration statement:

DECLARE TEXT POINTER name ;

page 15

ARC 34210 Rev.8JAN76 NLS Programmers' Guide
Part Two: Content Analyzer Programs

Strings

String variables hold text. When they are declared, the maximum number of characters is
set.

To declare a string:

DECLARE STRING name [num]

num is the maximum number of characters allowed for the string.

E.g.

DECLARE STRING Istring [100] ;

declares a string named "Istring" with a maximum length of 1 00 characters and a
current length of 0 characters (it's empty).

You can refer to the contents of a string variable by surrounding the name with asterisks.
E.g.

Istring is the string stored in the variable named "Istring".

(Refering to Istring without the asterisks represents only the first computer word of
the string. This is rarely needed.)

You can put the text between two text pointers in a string variable with the LI0
statement:

Istring +- ptrl ptr2 ;

where ptrl and ptr2 are the names of previously declared and set text pointers, and
Istring is a previously declared string variable.

These variables will retain their value from one statement to the next. Other types of

4a5c

variables and their use will be discussed in detail in Part Three, Section 3. 4 a 5 d

Body of the Procedure

RETURN Statement

page 16

No matter what it does, every procedure must return control to the procedure that called
it. The statement which does this is the RETURN statement. E.g.

RETURN;

A RETURN statement may pass values to the procedure that called it. The values must be
enclosed in parentheses after the word RETURN. E. g.

RETURN (1,23,47) ;

A Content Analyzer program must return either a value of TRUE or of FALSE. If it returns
the value TRUE (1), the statement will be printed; if it returns FALSE (0), the statement
will not be printed. I.e.

RETURN (TRUE); will print the statement
RETURN (FALSE); will not print the statement

The RETURN statement often is at the end of a procedure, but it need not be. For
example, in the middle of the procedure you may want to either RETURN or go on
depending on the result of a test.

4a6

4a6a

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part Two: Content Analyzer Pro'gLims

Other than the requirement of a RETURN statement, the body of the procedure is entirely a
function of the purpose of the procedure. A few of the many possible statements will be
described here; others will be introduced in Part Three of this document. 4 a 6 b

FIND Statement 4 a 6 c

One of the most useful statements for Content Analyzer programs is the FIND statement.
The FIND statement specifies a Content Analyzer pattern to be tested against the
statement, and text pointers to be manipulated and set, starting from the Current
Character Position (that invisible marker refered to in Section 1). If the test succeeds, the
character position is moved past the last character read. If at any point the test fails, the
character position is left at the position prior to the FIND statement. The values of text
pointers set in the statement prior to the failing element will remain as set; others of
course will not be changed.

FIND pattern ;

The Current Character Position is initialized to BEFORE THE FIRST CHARACTER, and the
scan direction is initialized to left to RIGHT, FOR EACH NEW STATEMENT passed to the
Content Analyzer program.

Any simple Content Analyzer pattern (as describe above) is valid in a FIND statement.

In addition: the following elements can be incorporated in the pattern:

stringname

the contents of the string variable

f ptr

store current scan position into the text pointer specified by ptr, the name of a
declared text pointer

-NLJM ptr

ptr

back up the specified text pointer by the specified number (NUM) of characters.
If NUM is not specified, 1 will be assumed. Backup is in the direction opposite to
the current scan direction.

Set current character position to this position. ptr is the name of a previously set
text pOinter.

SF(ptr)

The Current Character Position is set to the front of the statement in which the
text pointer ptr is set and scan direction is set from left to right.

SE(ptr)

The Current Character Position is set to the end of the· statement in which the text
pointer ptr is set and scan direction is set from right to left.

page 17

ARC 34210 Rev, 8 JAN 76 NLS Programmers' Guide
Part Two: Content Analyzer Programs

BETWEEN ptrl ptr2 (pattern)

Search limited to between positions specified. ptr is a previously set text pointer;
the two must be in the same statement or string. Current Character Position is
set to first position before the pattern is tested. E.g.

BETWEEN ptl pt2 (20 [.] $NP)

FINDs may be used as expressions as well as free-standing statements. If used as an
expression, for example in IF statements, it has the value TRUE if all pattern elements
within it are true and the value FALSE if anyone of the elements is false. E.g.

IF FIND pattern THEN ••• ;

Complicated example:

IF FIND f sf $NP '($(LDj' -) ') [". "*str*] SE(sf) $NP '. THEN RETURN(TRUE)
ELSE RETURN(F ALSE);

IF Statement

IF causes execution of a statement if a tested expression is TRUE. If it is FALSE and the
optional ELSE part is present, the statement following the ELSE is executed. Control then
passes to the statement immediately following the IF statement.

IF testexp THEN statement;

IF testexp THEN statementl ELSE statement2 .;

The statements within the IF statement can be any valid L 1 0 statement, but are not
followed by the usual semicolon; the whole IF statement is one LIO statement and is
followed by a semicolon.

E.g.

IF FIND [50] THEN RETURN(FALSE) ELSE RETURN(TRUE) ;

4a6d

Programming Style: File Structure 4 a 7

The compiler which converts your NLS text to code ignores NLS file structure. This allows you
to use structure to make your program text easier to read and understand. Logical use of
structure often facilitates the actual programming task as well. Some conventions have
developed at ARC in this respect, although flexibility is essential. These should seem obvious
and logical to you. 4 a 7 a

page 18

All declarations and PROCEDURE statements should be one level below the PROGRAM
statement.

All local declarations (not yet described) and code should be one level below the
PROCEDURE statement.

It is good style, and makes for much easier programming, to list what you want to do as
comment statements (in percent signs) at the level below the PROCEDURE statement.
Then you can go back and fill in the code that accomplishes the task described in each
comment statement. The code should go one level below the comment.

It is also worthwhile to put comments in individual statements whose purpose is not
obvious.

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76

Part Two: Contt'nt Analyzer Progrdll1s

We will later describe how to block a series of statements where one is required. These
blocks should go a level below the statement of which they are a part.

File structure should follow the logical structure of the program as closely as possible.
E.g.

IF FIND [50]

THEN RETURN(TRUE)

ELSE RETURN(FALSE);

Using Content Analyzer Programs

Once the Content Analyzer program has been written (in an NLS file), there are two steps in
using it. First, the program must be "compiled," i.e. translated into machine-readable code;
the compiled code is "loaded" into a space reserved for user programs (the user programs
buffer). Secondly, the loaded program must be "instituted" as the current Content Analyzer
program.

There are two ways to compile and load a program:

1) You may compile a program and load it into your programs buffer all in one operation.
In this case, the program header statement must have the word PROGRAM in it. When
the user resets his job or logs off, the compiled code will disappear.

First, enter the Programs subsystem with the command:

Goto Programs OK

Then you may compile the program with the command:

Compile LI0 (user program at) SOURCE OK

SOURCE is the NLS file address of the PROGRAM statement.

2) You may compile a program into a TENEX code file and then load it into your buffer in
a separate operation. The program can then be loaded from the file into your user
programs buffer at any time without recompiling. The header statement must use the
word FILE instead of PROGRAM. Use the PROGRAMS subsystem command:

Compile File (at) SOURCE (using) L 10 (to file) FILENAME OK

4a8

4aBa

4aBb

The FILENAME must be the same as the program's name. /lo-t·~Lt.:. ,--.....~<."".:?~:~' .. '-- -
The code file is called a REL (RELocatable code) file. Whenever you wish to load the
program code into the user programs buffer, use the PROGRAMS subsystem
command:

Load Program (file) FILENAME OK

Once a compiled program has been loaded (by either route), it must be instituted. This is
done with the PROGRAMS subsystem command: 4aBc

Institute Program PR.OGRAM-NAME (as) C~nt~nt (analyze~ program) OK

The named program will be instituted as the current Content Analyzer filter, and any
previously instituted program will be deinstituted (but will remain in the buffer).

page 19

ARC 3421 a Rl~v. 8 JAN 76 NLS Programmers' Guide
Part Two: Content Analyzer Programs

Again, the programs in the buffer are numbered, the first in being number one. You may
use the number instead of the program's name as a shorthand for PROGRAM-NAME.

To invoke the Content Analyzer using whatever program is currently instituted, use the
viewspec i, j, or k. as described in Part One, Section 4 (3d4). 4a8d

Problems 4 a 9

Given these few constructs, you should now be able to write a number of useful Content
Analyzer programs. Try programming the following: 4a9a

page 20

1) Show those statements which have a number somewhere in the first 20 characters.

2) Show those statements where the first visible in the statement is repeated somewhere
in the statement.

NLS Programmers' Guide
Part Two: Content Analyzer Progr.-HllS

Sample solutions:

Problem 1

PROGRAM number
DECLARE TEXT POINTER ptrl, ptr2 ;
(number) PROCEDURE;

FIND f ptr 1 $20CH f ptr2 ;
IF FIND BETWEEN ptrl ptr2 ([0])

THEN RETURN(TRUE)
ELSE RETURN(FALSE);

END.
FINISH

Alternate Solution to Problem 1: Content Analyzer Filter

$20CH < [0]

Problem 2

PROGRAM vis
DECLARE TEXT POINTER ptrl, ptr2 :
DECLARE STRING str [500] :
(vis) PROCEDURE;

FIND $NP f ptr 1 1 $PT f ptr2 ;
str +- ptr 1 ptr2 ;
IF FIND ptr2 [NP *str* NP]

THEN RETURN(TRUE)
ELSE RETURN(F ALSE);

END.
FINISH

ARC 34210 Rev. 8 JAN 76

4a9b

page 21

ARC 34210 Rev. 8 JAN 76 NlS Programmers' Guide
Part Two: Content Analyzer Programs: Modifying Statements

Section 2: Content Analyzer Programs: Modifying Statements 4b

Introduction 4b 1

Content Analyzer programs may edit the statements as well as decide whether or not they are
printed. They are very useful where a series of editing operations has to be done time and
time again. This section will introduce you to these capabilities. All these constructs will be
covered in detail in Part Three. 4 b 1 a

A Content Analyzer program has several limitations. It can manipulate only one file and it can
look at statements only in sequential order (as they appear in the file). It cannot back up and
re-examine previous statements, nor can it skip ahead to other parts of the file. It cannot
interact with the user. Part Four provides the tools to overcome these limitations. 4 bIb

String Construction 4 b 2

Statements and the contents of string variables may be modified by either of the following two
statements: 4 b 2 a

ST ptr - stringlist ;

The whole statement in which the text pointer named "ptr" resides will be replaced
by the string list (to be described in a minute).

ST ptr ptr - stringlist ;

The part of the statement from the first ptr to the second ptr will be replaced by the
string list.

ptr may be a previously set text pointer or SF(ptr) or SE(ptr).

The content of string variables may be replaced with the string assignment statement:

stringname - stringlist ;

The string list (stringlist) may be any series of string designators, separated by commas. The

4b2b

string designators may be any of the following (other possibilities to be described later): 4b2c

a string constant, e.g. "ABC" or 'w

ptr ptr

the text between two text pointers previously set in either a statement or a string

stringname

a string name in asterisks, refering to the contents of the string

E.g.:

page 22

ST pI p2 - *string* ;
or

ST pI - SF(pl) pI, *string*, p2 SE(p2);

(Note: these have exactly the same meaning.)

4b2d

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76

Part Two: Content Analyzer Progrdms: Modifying Statements

Example: 4b3

PROGRAM delsp % Content analyzer. Deletes all leading spaces from statements. % 4 b 3 a

% reserve space for ("declare") a text pointer named "pt"%
DECLARE TEXT POINTER pt;

(delsp) PROCEDURE;
%if any leading spaces, scan past them and set pointer%

IF FIND 1 $SP 1 pt THEN
% replace statement with text from pointer to statement end %

ST pt .- pt SE(pt);
%return, don't display anything%

RETURN (FALSE) :
END.

FINISH

More Than One Change per Statement 4 b 4

Part of a text pointer is a character count. This count stays the same until the text pointer is
again set (to some other position), even though the statement has been edited. If, for
example, you have the statement 4 b 4 a

abcdefg

and if you have set a pointer between the "d" and the "e", it will always point between the
fourth and fifth characters in the statement. If you then delete the character "a", your
pointer will be between the "e" and the "f", now the fourth and fifth characters. For this
reason, you should begin a series of edits with the last one in the statement and work
backwards through the statement. 4 b 4 b

Controlling Which Statements are Modified 4b5

In TNLS, the Content Analyzer program will be called for commands which construct a
pr;ntout of the file (Print and Output). The program will run on every statement for which it is
called (e.g. every statement in the branch during a Print Branch command) which pass all the
other viewspecs. Once you have written, compiled, and instituted a program which does some
editing operation, the Print command is the easiest way to run the program on a statement,
branch, plex, or group. 4b5a

In DNLS, the system will call the Content Analyzer program whenever the display is recreated
(e.g. viewspec F and the Jump commands), and also for the Output commands. If the
program returns TRUE, it will only run on enough statements to fill the screen. It is safer to
have programs that edit the file return FALSE. Then when you set viewspec i, it will run on all
statements from the top of the display on, and when it is done it will display the word
"Empty". At that point, change to viewspec j and recreate the display with viewspec F, then
all statements including the changes will be displayed. You can control which statements are
edited with level viewspecs and the branch only (g) or plex only (I) viewspecs, and by
positioning the top of your window. 4b5b

After having run your program on a file, you may wish to Update to permanently incorporate
the changes in the file. It is wise to Update before you run the program so that, if the
program does something unexpected, you can Delete Modifications and return to a good file. .. b 5 c

page 23

ARC 34210 Rev.8JAN76

Problems

Try writing the following programs:

NLS Programmers' Guide
Part Two: Content Analyzer Programs: Modifying Statements

4b6

4b6a

1) Remove any invisiblesfrom the end of each statement.

2) Make the first word a statement name surrounded by parentheses.

page 24

NlS Prograrnnwrs' Guide
Pdrt Two: Content Analyzer Progrdms: Modifying Statements

Sample solutions:

Problem 1

PROGRAM endinv
DECLARE TEXT POINTER ptr ;
(endinv) PROCEDURE;

IF FIND f ptr SE(ptr) 1 $NP f ptr
THEN ST ptr 4- SF(ptr) ptr ;

RETURN (FALSE) ;
END.

FINISH

Problem 2

PROGRAM makename
DECLARE TEXT POINTER ptrl, ptr2 ;
(makename) PROCEDURE;

IF FIND $NP f ptrl 1 $LD f ptr2
THEN ST ptrl 4- '(, ptrl ptr2, '), ptr2 SE(ptr2);

RETURN(F ALSE)
END.

FINISH

ARC 34210 Rev. 8 JAN 76

4b6b

page 25

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part Three: The User Program Environment

PART THREE: Basic LIO Programming

Section 1: The User Program Environment 5a

Introduction 5 a 1

User-written Content Analyzer programs are called in the process of creating a view of an NLS
file e.g., with a Print command in TNLS, with any of the Output commands, and with the Jump
command in DNLS. 5a 1 a

The sequence generator provides statements one at a time; the Content Analyzer may then
check each one. Finally, the formatter prints it or puts it on the screen.

Thus if one had a user Content Analyzer program compiled and instituted, one could have
a printout made containing only those statements in the file satisfying the pattern.

Attachable subsystems are independent of this portrayal process, although they are welcome
to make use of it. They consist of commands, which may utilize all the powers of NLS. 5a 1 b

The Sequence Generator 5 a 2

In the portrayal process, the sequence generator looks at statements one at a time, beginning
at the point specified by the user. It observes viewspecs like level truncation in determining
which statements to pass on to the formatter. When the sequence generator finds a
statement that passes all the viewspec requirements, it sends the statement to the formatter
and waits to be called again for the next statement in the sequence. 5 a 2 a

For example .. the viewspecs may indicate that only the first line of statements in the two
highest levels are to be output. The default NLS sequence generator will produce pointers
only to those statements passing the structural filters; the formatter will then truncate the
text to only the first line before it displays or prints the statement.

Content Analyzer Filters 5 a 3

One of the viewspecs that the sequence generator pays attention to is "i" - - the viewspec that
indicates whether a user Content Analyzer filter is to be applied to the statement. If this
viewspec is on, the sequence generator passes control to a user Content Analyzer program,
which looks at the statement and decides whether it should be included in the sequence. If
the statement passes the Content Analyzer (i .e. the user program returns a value of TRUE),
the sequence generator sends the statement to the formatter; otherwise, it processes the next
statement in the sequence and sends it to the user Content Analyzer program for verification.
(The particular user program chosen as a filter is determined by what program is Instituted as
the current Content Analyzer program, as described below.) 5 a -:: a

page 27

ARC 34210 Rev.8JAN76 NLS Programmers' Guide
Part Three: The User Program Environment

In the process of examining a statement and deciding whether or not it should be printed,
the Content Analyzer program may edit the text of the statement. These edits appear in
the partial copy, just as if the user had made them himself. This provides a powerful
mechanism for automatic editing.

In DNLS, if you display any statements, the program will stop after filling the screen. If
you are not displaying any statements, the program will run on either the whole file, a plex
(viewspec I), or a branch (viewspec g). These along with level clipping viewspecs give one
precise control over what statements in the file will be passed to the program.

The Portrayal Formatter 5 a 4

The formatter arranges text passed to it by the sequence generator in the style specified by
other viewspecs. The formatter observes viewspecs such as line truncation, length and
indenting; it also formats the text in accord with the requirements of the output device. 5a4a

pi'lgP 28

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
PMt Three: Program Structure

Section 2: Program Structure 5 b

An NlS user program consists of the following elements, which must be arranged in a definite
manner with strict adherence to syntactic punctuation: 5 b 1

The header - 5 b 1 a

a statement consisting of the word PROGRAM, followed by the name of a procedure in the
program. Program execution will begin with a call to the procedure with this name.

PROGRAM name

The PROGRAM statement may have a statement name in parentheses; it will be
ignored.

The word FILE should be substituted for the word PROGRAM if the code is to be compiled
into a file to be saved.

The FILE statement may have a statement name; if so, that name will be used as the
code-file symbol. You must not follow the word FILE with a name if there is a
statement name preceding FILE.

The body -

consists of declarations and procedures in any order:

1) declaration statements which specify information about the data to be processed
by the procedures in the program and enter the data identifiers in the program's
symbol table, terminated by a semicolon. E. g.

DECLARE x,y,z ;
DECLARE STRING test [500] ;
REF x, Z;

Declaration statements will be covered in Section 3 (5c).

2) procedures which specify certain execution tasks. Each procedure must consist
of:

the procedure name enclosed in parentheses followed by the word PROCEDURE
and optionally an argument list containing names of variables that are passed by
the calling procedure for referencing within the called procedure. This statement
must be terminated by a semicolon. E.g.

(name) PROCEDURE;
(name) PROCEDURE (paraml, param2) ;

You should always include a comment in the procedure statement breifly
summarizing the function of the procedure.

Sblb

page 29

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: Program Structure

the body of the procedure which may consist of LOCAL, REF, and LIO statements.

LOCAL and REF declarations within a procedure must precede executable
code. They will be covered in Section 3 (5c).

LIO statements will be covered in Sections 4 and 5 (5d) (5e).

A RETURN statement must be included at some point, to pass control
back to the calling procedure. If it is missing, execution will run off the
end of the procedure and an ILLEGAL INSTRUCTION will occur.

the statement that terminates the procedure (note the final period):

END.

The program termi,nal statement -

FINISH

Note: this is a signal to the compiler to stop compilation; it does not mean stop
execution. Any text after that in the NLS source file will be ignored.

5 b 1 c

Notes on Program Writing Style 5 b 2

Except for within literal strings, variable names, and special LIO reserved words, spaces are
ignored. It is good practice to use them liberally so that your program will be easy to read. 5 b 2 a

Comments may be enclosed in percent signs (%) wherever spaces are allowed. They will be
ignored by the compiler. It is good practice to use the level below the procedure statement
for comments, filling in the code that executes the commented function at the level below the
comment. It is also wise to add comments to any individual statements whose function is not
obvious, particularly calls on other procedures. 5 b 2 b

You may find it convenient to add a comment to the FILE statement including the
information needed by the Compile File command. E.g.

FILE program % (LIO,) to (directory,program.subsys,) %

Also, NLS file structure is ignored. Structure is, however, very valuable in making the program
readable, and it is good practice to use it in close correlation to the program's logical
structure.

page 30

5b2c

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
P"Ht lhrl'e: Program Structure

An example of a simple LIO program is provided here. The reader should easily understand this
program after having studied this document. Sb:'

PROGRAM delsp % Content analyzer. Deletes all leading spaces from statements. % 5 b 3 a

% reserve space for ("declare") a text pointer named "ptlO %
DECLARE TEXT POINTER pt;

(delsp) PROCEDURE;
%if any leading spaces, scan past them and set pointer%

IF FIND 1 $SP f pt THEN
% replace statement holding pt with text from pointer to statement end %

ST pt - pt SE(pt);
% return, don't display%

RETURN (FALSE) ;
END.

FINISH

page 31

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: Declarations

Section 3: Declarations

Introduction

LIO declarations provide information to the compiler about the data that is to be accessed;
they are not executed. Every variable used in the program must be declared somewhere in

5c

5 c 1

the system (either in your program or in the NLS system). 5 c 1 a

There are a number of types of variables available, each with its own declaration statement;
the most frequently used are discussed here. (Complete documentation is available in the
LIO Reference Guide -- 7052,) 5c 1 b

Variables 5 c 2

Six types of variables are described in this document: simple, constants, arrays, text pointers,
strings, and referenced. Each is represented by an identifier, some unique lowercase name.
Each can be declared on three levels: local, global, or external. 5c2a

Local Variables 5 c 2 b

A local variable is known and accessible only to the procedure in which it appears. Local
variables must appear in a procedure argument list or be declared in a procedure's
LOCAL declaration statements (to be explained below). Any LOCAL declarations must
precede the executable statements in a procedure.

Local variables in the different procedures may have the same name without conflict. A
global variable may not be declared as a local variable and .a procedure name may be
used as neither. In such cases the name is considered to be multiply defined and a
compilation error results.

Global Variables

Global variables are defined in the program's DECLARE statements. Variables specified in
these declarations are outside any procedure and may be used by all procedures in the
program.

External Variables

External variables are defined in the program's DECLARE statements or in the NLS system
program.

Variables specified in these declarations may be used by all procedures anywhere in the
system. Many externals are defined as part of the NLS system; user programs have
complete access to these. Since other procedures may access the same variable, the user
programmer must be very careful about changing their values.

5c2c

5c2d

Simple Variables 5c3

Simple variables represent one computer word, or 36 bits, of memory. Each bit is either on
or off, allowing binary numbers to be stored in words. Each word can hold up to five ASCII
7 -bit characters, a single number, or may be divided into fields and hold more than one
number. 5c3a

Declaring a variable allocates a word in the computer to hold the contents of the variable.

page 32

NLS ProgrcHnmers' Guide
Part Thrpe: Declarations

ARC 34210 Rev. 8 JAN 76

The variable name refers to the contents of that word. One may refer to the address of
that computer word by preceding the variable name by a dollar sign ($).

For example, if one has declared a simple variable called "num", one may put the
number three in that variable with the statement:

num - 3 ;

One may add two to a variable with the statement:

num - nLim + 2;

One may put the address of num into a variable called addr with the statement:

addr - $num ;

One may refer to predefined fields in any variable by following the name of the variable
with a period, then the field name. For example, the fields RH and LH are globally defined
to be the right and left half (18 bits) of the word respectively; e.g.

num.LH -- 2 ;
num.RH - 3 ;

Fields may be defined by the user with RECORD statements (described in Section 5 of
Part Five). Additionally, you may refer to system-defined fields (e .g. RH). They divide
words into fields by numbers of bits, so they may refer to any declared word. For
example, the field "LH" refers to the left-most 18 bits in any 36-bit word.

If you assign a full word to a field of n bits within a word, the right-most n bits will be
assigned to the field in the destination word; the rest of the destination word will be
untouched.

If you assign a field with a word to a full word, it will be right- justified within the
destination word; the remaining bits in the destination word (to the left of the assigned
bits) will be set to zero.

Declaring Simple Global Variables

DECLARE name ;

"name" is the name of the variable. It must be all lower-case letters or digits, and
must begin with a letter.

E.g.

DECLARE xl ;

Optionally, the user may specify the initial value of the variable being declared. If a
simple variable is not initialized at the program level, for safety it should be initialized in
the first executed procedure in which it appears.

DECLARE name = exp ;

exp is the initial value of name. It may be any of the following:

- a numeric constant optionally preceded by a minus sign (-)

- a string, up to five characters, enclosed in quotation marks

5c3b

page 33

ARC 34210 Rev.8JAN76 NLS Programmers' Guide
Part Three: Declarations

- another variable name previously defined in a SET statement (described below),
causing the latter's value to be assigned

Examples:

DECLARE x2=5;

% x2 contains the value 5 %

DECLARE x3="OUT";

%x3 contains the word OUT%

DECLARE xx=x4;

%x4 has previously been declared in a SET statement%

Formal parameters (passed to a procedure) are allocated as local simple variables, then
initialized whenever the procedure is called. Within the called procedure, they should be
treated as simple variables. Sc3c

Constants 5 c 4

You may declare a (simple) variable to be a constant value with the statement: 5c4a

SET name 1 =exp ;

where names and expressions are as described above for initializing simple variables.

Constants take no memory. They may be refered to just like simple variables, except the
name must be preceded by a dollar sign ($). They may not be changed by the program. E.g. Sc4b

after the declaration:
SET var = 4 ;

the assignment:
num +- $var ;

will assign the value 4 to the variable num.

Arrays Sc5

Multi-word (one-dimensional) array variables may be declared; computer words within them
may be accessed by indexing the variable name. The index. follows the variable name, and is
enclosed in square brackets []. The first word of the array need not be indexed. The index
of the first word is zero, so if we have declared a ten element array named "blah": ScSa

blah is the first word of the array
blah [1] is the second word of the array
blah [9] is the last word of the array

Declaring Global Array Variables

DECLARE name [num] ;

page 34

num is the number of elements in the array if the array is not being initialized. It
must, of course, be an integer.

E.g.

DECLARE sam [10] ;

declares an array named "sam" containing 10 elements.

ScSb

NLS Programmers' GuidI.:'
Pdrt Three. Declarations

ARC 34210 Rev. 8 JAN 76

Optionally, the user may specify the initial value of each element of the array. If array
values are not initialized at the program level, for safety they should be initialized in the
first executed procedure in which the array is used.

DECLARE name = (num 1, num2, •••) ;

num is the initial value of each element of the array. The number of constants
implicitly defines the number of elements in the array. They may be any of the
constants allowed for simple variables.

Note: there is a one-to-one correspondence between the first constant and the first
element, the second constant and the second element, etc.

Examples:

DECLARE numbs=(1,2,3);

declares an array named numbs containing 3 elements which are initialized
such that:

numbs = 1
numbs [1] = 2
numbs[2] = 3

DECLARE motley=(IO,$blah);

declares an array named motley containing 2 elements which are initialized
such that:

motley = 10

motley [1] = $blah = the address of the variable "blah"

Text Pointers 5 c 6

A text pointer is an L10 feature used in string manipulation constructions. It is a two-word
entity which provides information for pointing to particular locations within text, whether in
string variables or in NLS statements. 5 c 6 a

The text pointer points between two characters in a statement or string. By putting the
pointers between characters a single pointer can be used to mark both the end of one
substring and the beginning of the substring starting with the next character, thereby
simplifying the string manipulation algorithms and the way one thinks about strings.

A text pointer consists of two words: a string identifier and a character count. Assume you
have declared a text pointer named "pt." 5 c 6 b

pt refers to the first word of the text pointer. The first word, called an "stid," contains
three system-defined fields:

stfile - - the file number (if an NLS statement)
stastr - - a bit indicating string, not an NLS statement
stpsid - - the psid of the statement; every statement has a unique number (psid)
attached to it.

The stid is the basic handle on a statement in LIO. It is often used alone. Since it is
a single-word value, it may be stored in a simple variable and passed easily between
procedures, and is used by many routines to specify a statement or string.

page 35

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: Declarations

If an stid is used without being properly set, the run-time error message "fst entry
nonexistant" may result.

pt [1] refers to the second word of the text pointer. The second word contains a
character count, with the first position being 1 (before the first character).

For example, one might have the following series of assignment statements which fill the
three fields of the first word and the second word with data, with pt being the name of a
declared text pointer:

pt. stfile +- fileno;

%fileno is a simple variable with a number in it%

pt. stastr 0- FALSE;

%a statement, not a string%

pt.stpsid +- origin;

%all origin statements have the psid = 2; origin is a global variable with the value
2 in it%

pt [1] +- 1;

%the word one after pt (i.e. the character count) gets 1, the beginning of the
statement%

It is important that stid's be initialized properly to avoid errors. Text pointers may be
most easily initialized by setting them in a FIND statement (see Section 6).

Declaring Text Pointers

DECLARE TEXT POINTER pt ;

The names pI, p2, p3, p4, and p5 are globally declared and reserved for system use.

Sc6c

Strings Sc7

String variables are a series of words holding text. When they are declared, the maximum
number of characters is set. The first word contains the two globally defined fields: 5 c 7 a

M - - the maximum number of characters the string can hold
L - - the actual number of characters currently in the string

The next series of words (as many as are required by the maximum string size) hold the
actual characters, five per word, in ASCII 7-bit code. Sc7b

pagE.-' 36

str refers to the contents of the string variable "str".

str refers to the first word of the string variable "str"; typically this is only useful in
combination with the two fields "M" and ilL":

str. M refers to the maximum declared length of the string variable "str" (an integer).

str. L refers to the current length of the string stored in the string variable "str" (an
integer).

NLS Programmers' Guide
Pdrt Three: Declarations

ARC 34210 Rev. 8 JAN 76

Declaring Strings

The DECLARE STRING enables the user to declare a global string variable by initializing
the string and/or declaring its maximum character length.

To declare a string:

DECLARE STRING name [num]

num is the maximum number of characters allowed for the string

Since the maximum statement length is 2000 characters, you should not need to
declare a string greater than 2000 characters long.

E.g.

DECLARE STRING Istring [100] ;

declares a string named "Istring" with a maximum length of 1 00 characters and
a current length of 0 characters

To declare and initialize a string:

DECLARE STRING name="Any string of text" ;

The length of the literal string defines the maximum length of the string variable.

E.g.

DECLARE STRING message="RED ALERT";

declares the string message, with an actual and maximum length of 9 characters
and contains the text "RED ALERT"

, REF: Referenced Variables

Reference Declarations

After a simple variable has been declared, the REF statement can define it to represent
some other variable. A referenced variable holds the address of another declared variable
of any type. Whenever the referenced variable is mentioned, L 10 will operate on the other
variable instead,as if it were declared in that procedure and named at that point.

This is useful when you wish a procedure to know about a multi-word variable. In
procedure calls, you are only allowed to pass single-word parameters. If you wish a called
procedure to use or operate on a text pointer, array, or string, you may pass the address
of that multi-word variable. Then, in the called procedure, you must REF the formal
parameter receiving that address. From then on in the called procedure, when you refer
to the REFed parameter, you are actually operating on the multi-word variable declared in
some other procedure to which the local REFed variable points, i.e. on the variable at the
address contained in the REFed parameter.

5e7e

SeB

5eBa

page 37

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: Declarations

Example:

If the simple variable "Ioc" in the current procedure has been REFed and
contains the address of the string "str" local to the calling procedure, then
operations on loc actually operate on the string in str:

mes -- *Ioc*;

% mes gets the string in str%

Ioc +- "corpuscle";

% str gets the string "corpuscle" %

Similarly, you cannot return multi-word variables from a called procedure. If you wish a
procedure to return a string, you must declare the string as a local in the CALLING
procedure, pass its address to a REFed variable in the called procedure. Then the called
procedure can modify the string as if it were local (and return nothing). The modifications
will be rnade in the actual string variable.

Unreferencing REFed Variables

One may refer to the actual contents (an address) of a REFed variable (i.e. "unref" it) by
preceding the referenced variable name with an ampersand (&). If, for example, an
address was passed to a REFed variable, and you wish now to pass that address on to
another procedure, you can "unref" it, i.e. access the actual content (the address of some
variable) •

E.g. if x has been REFed and holds the address of y:

z +- x ;

%z gets the CONTENTS of y%

z -- &x ;

%z gets the ADDRESS of y%

This construct might be used, for example, if one procedure has been passed the address
of a string, operates on it, then wishes to pass (the address of) that string on to another
procedure that it calls.

This can be a tricky concept; it may be worthwhile to review this section carefully.

REFing Simple Variables

page 38

Once a simple variable has been declared (as a global, local, or parameter), it may be
REFed with the LID declaration statement:

REF var ;

It will be a reference from then on in that procedure, and you must always use the
ampersand to refer to its actual contents: the address of the variable it references.

Note that the REF statement does not allocate storage; it just sets an attribute of an
existing variable.

ScSb

SeSe

Nl S Programmers' Guide
Part Three: Declarations

ARC 34210 Rev. 8 JAN 76

If you wish to use a variable that is not REFed as if it were REFed, enclose it in square
brackets []. E.g. assume the simple variable "astr" holds the address of a string
variable but was NOT REFed:

* [astr] * refers to the contents of the string variable whose address is in astr.

Note on Programming Style 5 c 8 d

You should always REF locals and parameters which hold the address of something to be
accessed (even if that variable is only used to pass the address on to another procedure).

Declaring Many Variables in One Statement 5 c 9

One may avoid putting several individual declarations of variables in a series by putting
variables of similar type, initialized or not, in a list in one statement following a single
DECLARE, separated by commas and terminated by the usual semicolon. Array and simple
varibles may be put together in one statement. 5. c 9 a

Examples:

DECLARE x, y[10], z = (1, 2, -5);
DECLARE TEXT POINTER tp, sf, pU, pt2 ;
DECLARE STRING Istring [100], message="RED ALERT" ;

Declaring Locals 5 c 1 0

Program level declarations (DECLARE and REF) and procedures may appear in any order.
However, procedure level declarations (LOCAL and REF inside a procedure) must appear
before any executable statements in the procedure. The different types of variables may be
declared in any order, but a variable must be declared before it can be REFed. 5c 1 Oa

Whenever possible, LOCALs should be used instead of globals. It makes for a cleaner
program if you pass parameters among procedures rather than depend on global variables
to transmit information.

With one exception, a local variable declaration statement is just the same as a global with the
word "LOCAL" substituted for the word "DECLARE". The one exception is that LOCAL
declarations can not initialize the variables.

Examples:

LOCAL var, flag, level [12]
LOCAL TEXT POINTER tp, pt, sf ;
LOCAL STRING test [100], out [2000]

5 c lOb

page 39

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: Declarations

When a procedure is called by another procedure, the calling procedure may pass one-word
parameters. The procedure receives these values in simple local variables declared in the
PROCEDURE statement's parameter list. For example, two locals will automatically be
declared and set to the passed values whenever the procedure "procname" is called: 5 c 1 0 c

(procname) PROCEDURE (var 1, var2) ;

varl and var2 must not be declared again in a LOCAL statement. They may, however, be
REFed by a REF statement, as discussed above, and used throughout the procedure.

The statement which calls procname may look like:

procname (Iocvar, 2) ;

varl will be initialized to the value of the variable "Iocvar" and var2 will get the value
2.

Declaring Externals

Externals are declared just like globals, with one exception. The word DECLARE must be

5 c 11

followed by the word EXTERNAL. E. g. 5 c 11 a

SET EXTERNAL one=l, two=2 ;
DECLARE EXTERNAL a, b [lO] , c=5 ;
DECLARE EXTERNAL TEXT POINTER exptr 1, exptr2 ;
DECLARE EXTERNAL STRING exstr [100] ;

REF specifications may not be external to the program. 5 c 1 1 b

Accessing Registers 5 c 1 2

The user may access machine registers (the same length as other words, i.e. 36 bits) by
naming them with the declaration: 5c 12a

REGISTER name = regnum ;
or

REGISTER name 1 =regnum l, name2=regnum2 ;

The declared names will then represent the registers to which they are attached. You may
then access or assign values to their content. On TENEX, the user programmer may use the
first seven registers, registers 0 through 6. (Registers 7 through 15 are reserved for system
use.) E. g. 5 c 12 b

REGISTER rO=O, rl = l, r2=2, r3=3, r4=4, r5=5, r6=6 ;

The names used in the above example are used most often by convention.

Registers must be used very carefully! They are typically used when calling TEN EX JSYS (see
Section 4). Many LI0 constructs and procedures use the registers; you should assign their
content to a variable immediately after the JSYS call if you wish to save it. 5 c 1 2 c

page 40

NLS Programmers' Guide
Part Thw(': Statements

ARC 34210 Rev. 8 JAN 76

Section 4: Statements

Introduction

This section will describe some of the types of statements with which one can build a
procedure. The term "expression" (often abbreviated to "exp") will be used in this section,

Sd

Sdl

and will be explained in detail in Section 5 (5e). 5 d 1 a

Assignment 5 d 2

In the assignment statement, the expression on the right side of the
stored in the variable on the left side of the statement.

var -- exp ;

where var = any global, local, referenced or un referenced variable.

is evaluated and

One may make a series of assignments in one statement by enclosing the list of variables and
the list of expressions in parentheses. The order of evaluation of the expressions is left to
right. The expressions are evaluated and pressed onto a stack; after all are evaluated they are

Sd2a

popped from the stack and stored in the variables. 5 d 2 b

(varl, var2, •••) -- (expl, exp2, •••) ;

Naturally, the number of expressions must equal the number of variables.

Example:

(a, b) -- (c+d, a-b)

The expression c+d is evaluated and stacked, the expression a-b is evaluated and
stacked, the value of a-b is popped from the stack and stored into b, and finally, the
value of c+d is popped and stored into a. It is equivalent to:

temp I -- c+d ;
temp2 ...- a-b;
b ...- temp2 ;
a ...- tempI;

One may assign a single value to a series of variables by stringing the assignments together: 5 d 2 c

varl -- var2 ...- var3 ...- exp ;

The assignment will be made from right to left. varl, var2, and var3 will all be given the
value of the expression.

Example:

a -- b -- 0;

Both a and b will be given the value zero. This type of statement can be useful in
initializing a series of variables at the beginning of a procedure.

BUMP Statement

The BUMP statement will add one to a variable:

BUMP var :

Sd3

5d3a

page 41

ARC 34210 Hev.8JAN76 NLS Programmers' Guide
Part Three: Statements

This is equivalent to:

var -- var + 1 ;

BUMP DOWN will subtract one from a variable:

BUMP DOWN var ;

This is equivalent to:

va r -- va r - 1 ;

You may BUMP more than one variable in a single statement:

BUMP varl, var2, var3, ••• ;
or

BUMP DOWN varl, var2, var3, ••• ;

5d3b

Sd3c

IF Statement 5 d 4

This form causes execution of a statement if a tested expression is TRUE. If the expression is
FALSE and the optional ELSE part is present, the statement following the ELSE is executed.
Control then passes to the statement immediately following the IF statement. 5 d 4 a

IF testexp THEN statement;

IF testexp THEN statement 1 ELSE statement2 ;

The statements within the IF statement can be any statement, but are not followed by the
usual semicolon; the whole IF statement is treated like one statement and followed by the
semicolon. 5 d 4 b

E.g. Sd4c

IF y=z THEN y--y+ 1 ELSE y--z ;

In some cases, complex nested IFs may be simpler if rewritten as a CASE statement. 5d4d

CASE Statement 5 d 5

This form is similar to the IF statement except that it causes one of a series of statements to
be executed depending on the result of a series of tests. 5 d 5 a

CASE testexp OF
relop exp : statement ;
relop exp : statement ;
relop exp : statement ;

ENDCASE statement ;

where relop = any relational or interval operator (>=, <, =, IN, etc.) see Section 5 (5e3c)
and (5e3d).

The CASE statement provides a means of executing one statement out of many. The
expression after the word "CASE" is evaluated and the result left in a register. This is used
as the left-hand side of the binary relations at the beginning of the various cases. Each
expression is evaluated and compared according to the relational operator to the CASE
expression. If the relationship is TRUE, the statement is executed. If the relationship is

pagt' 42

NLS Programrn~rs' Guidl'
Pdrt Threp: Statements

ARC 34210 Rev. 8 JAN 76

FALSE, the next expression and relational operator will be tried. If none of the relations is
satisfied, the statement following the word "ENDCASE" will be executed. Control then passes
to the statement following the CASE statement 5 d 5 b

Note that the relop and expressions are followed by a colon, and the statements are
terminated with the usual semicolon. The word ENDCASE is not followed by a colon. In
ENDCASE, the statement may be left out - - this is the equivalent of having a NULL
statement there; nothing will happen.

Example:

CASE c OF
= a: %executed if c = a%

x +- y;
> b: %executed if c > b%

(x, y) +- (x+y, x-y);
ENDCASE %executed otherwise%

y +- X;

CASE char OF
= D: % if char = the code for a digit%

char +- '1;
= UL: %if char = the code for an upper-case letter%

char +- '0;
ENDCASE; % otherwise nothing%

Several relations may be listed at the start of a single case; they should be separated by
commas. The statement will be executed if any of the relations is satisfied. 5 d 5 c

CASE testexp OF
relop exp: statement ;
relop exp, relop exp: statement ;
relop exp, relop exp, relop exp: statement ;

ENDCASE statement ;

Example: •

CASE c OF
=a, <d: %executed if c=a or c<d%

x +- y;
>b, =d: %execu\\..~ if c>b or c=d%

(x,y) +- (x+y,x-y);
ENDCASE %executed otherwise%

y +- X;

As a point of style, the conditions of the CASE statement should be put one level below the
CASE statement in the source (text) file. The statements (if they are more than one line) may
be put one level below the condition. 5 d 5 d

page 43

ARC 34210 Ht'v. 8 JAN 76 NLS Programmers' Guide
Part Three: Statements

LOOP Statement 5d6

The statement following the word "LOOP" is repeatedly executed until control leaves by
means of some transfer instruction within the loop. 5 d 6 a

LOOP statement;

where statement = any executable LIO statement

Example:

LOOP IF a>=b THEN EXIT LOOP ELSE a +- a+1 ;

(It is assumed that a and b have been initialized before entering the loop.)

The EXIT construction is described below. It is extremely important to carefully provide
for exiting a loop.

WHILE ••• 00 Statement 5d7

This statement causes a statement to be repeatedly executed as long as the expression
immediately following the word WHILE has a logical value of TRUE or control has not been
passed out of the DO loop by EXIT LOOP (described below). 5d7a

WHILE exp DO statement;

exp is evaluated and if TRUE the statement following the word DO is executed; exp is then
reevaluated and the statement continually executed until exp is FALSE. Then control will pass
to the next statement. 5 d 7 b

For example, if you want to fill out a string with spaces through the 20th character
position, you could:

WHILE str.L < 20 DO *str* +- *str*, SP; %what's already there, then a space%

Remember that the first word of every string variable has two globally defined fields:

L - - actual length of contents of string variable
M - - maximum length of string variable

The WHILE construct is equivalent to:

LOOP
IF NOT exp THEN EXIT LOOP
ELSE statement;

5d7e

UNTIL. •• 00 Statement 5d8

This statement is similar to the WHILE ••• DO statement except that the statement following the
DO is executed until exp is TRUE. As long as exp has a logical value of FALSE the statement
will be executed repeatedly. 5 d 8 a

UNTIL exp DO statement;

Example:

UNTIL a>b DO a +- a+ 1 ;

page 44

NLS Programllwrs' Guidl'
Part 'I hrl'L' Statt'lllcnts

ARC 34210 Rev. 8 JAN 76

The UNTIL construct is equivalent to: 5d8b

LOOP
IF exp THEN EXIT LOOP ELSE statement ;

DO ••• UNTil/DO ••• WHILE Statement 5 d 9

These statements are like the preceding statements, except that the logical test is made after
the statement has been executed rather than before. 5 d 9 a

DO statement UNTIL exp;

DO statement WHILE exp;

Thus the specified statement is always executed at least once (the first time, before the test is
made). For example, this DO ••• UNTIL: 5d9b

DO array [var] 0- 0 UNTIL (var := var - 1) = 0 ;

and this DO ••• WHILE: 5d9c

DO array [var] 0- 0 WHILE (var := var - 1) > 0 ;

are both equivalent to:

LOOP
BEGIN
array[var] +- 0 ;
IF (var := var - 1) = 0 THEN EXIT LOOP;
END;

5d9d

FOR ••• DO Statement 5 d 1 0

The FOR statement causes the repeated execution of the statement following ''~O'' until a
specific terminal value is reached. 5d lOa

FOR var UP UNTIL relop exp DO statement;

(UP will be assumed if left out.)

FOR var DOWN UNTIL relop exp DO statement;

where

var = the variable whose value is incremented or
decremented each time the FOR statement is
executed

relop = any relational operator (described in 5e3c)

exp = when combined with relop, determines whether
or not another iteration of the FOR statement
will be performed. It is recomputed on each iteration.

E.g. FOR i UP UNTIL> 7 DO a -- a + t[i] ; 5dlOb

page 45

AHC34210 Rvv.8JAN76 NLS Programmers' Guide
Part Three: Statements

Optionally, the user may initialize the variable and may increment it by other than the default
of one. 5 d 1 0 c

FOR var +- expl UP exp2 UNTIL relop exp3 DO statement;
FOR var +- expl DOWN exp2 UNTIL relop exp3 DO statement;

where

exp 1 = an optional initial value for var. If exp 1 is not specified, the current value of
var is used.

exp2 = an optional value by which var will be incremented (if UP specified) or
decremented (if DOWN specified). If exp2 is not specified, a value of one will be
assumed.

Note that exp2 and exp3 are recomputed on each iteration.

Example:

FOR k +- n UP k/2 UNTIL> m*3 DO x [k] +- k;

is equivalent to

k +- n;

LOOP
BEGIN
IF k >m*3 THEN EXIT LOOP;
x [k] +- k;
k +- k + k/2;
END;

BEGIN ••• END Statement Sd 11

The BEGIN ••• END construction enables the user to group several statements into one syntactic
statement entity. A BEGIN ••• END construction of any length is valid where one statement is
required. Sdll a

page 46

BEGIN statement ; statement; ••• END ;

Example:

IF a >= b*c THEN
BEGIN
a-b;
c-d+5;
END % no semicolon here because an L 1 0
statement here wouldn't have one; see 5d4 %

ELSE
BEGIN
a-c;
b-d+2;
c-b*d*7;
END; %this semicolon terminates the entire IF statement%

Note the use of NLS file structure to clarify the logic and separate the blocks. Blocks
should always be put one level below the statement of which they are a p~rt.

NLS Programmers· Guide
Part Thn'e: Statements

ARC 34210 Rev. 8 JAN 76

EXIT Statement

The EXIT statement transfers control (forward) out of CASE or iterative statements. A CASE
statement can be left with an EXIT CASE statement. All of the iterative statements (LOOP,
WHILE, UNTIL, DO, FOR) can be exited by the EXIT LOOP statement. EXIT and EXIT LOOP

Sd12

have the same meaning. 5 d 1 2 a

EXIT LOOP num or EXIT num
EXIT CASE num

where num is an optional integer. The optional number (num) specifies the number of
lexical levels of CASE or iterative statements respectively that are to be exited (e.g. if
loops are nested within loops). If a number is not given then 1 is assumed.

Examples:

LOOP
BEGIN

IF test THEN EXIT;
%the EXIT will branch out of the LOOP%

END;

UNTIL something DO
BEGIN

WHILE tesH DO
BEGIN

IF test2 THEN EXIT;
% the EXIT will branch out of the WHILE %

END;

END;

UNTIL something DO
BEGIN

WHILE tesH DO
BEGIN

IF test2 THEN EXIT 2;
% the EXIT 2 will branch out of the UNTIL %

END;

END;

page 47

ARC 34210 Rev. S JAN 76

CASE exp OF
=something:

BEGIN

IF test THEN EXIT CASE;
%the EXIT will branch out of the CASE%

END;

NLS Programmers' Guide
Part Three: Statements

REPEA T Statement 5 d 1 J

The REPEAT statement transfers control (backward) to the front of CASE or iterative
statements. The optional number has the same meaning as in the EXIT statement. REPEAT
and REPEAT CASE have the same meaning. SdlJa

REPEAT LOOP num

REPEAT CASE num (exp) or REPEAT num (exp)

If an expression is given in parentheses with the REPEAT CASE, then it is evaluated and used
in place of the expression given at the head of the specified CASE statement. If the
expression is not given, then the one at the head of the CASE statement is reevaluated. 5 d 1 J b

Examples: 5 d 1 J c

CASE expl OF
=something:

BEGIN

IF test! THEN REPEAT;
%REPEAT with a reevaluated expl %

IF test2 THEN REPEAT(exp2);
% REPEAT with exp2 %

END;

ENDCASE;

LOOP
BEGIN

IF test THEN REPEAT LOOP;
%REPEAT LOOP will go to the top of the LOOP%

END;

DIVIDE Statement 5 d 1 4

The divide statement permits both the quotient and remainder of an integer division to be
saved. The syntax for the divide statement is as follows: 5 d 1 4 a

DIVexp.l / exp2 , quotient, remainder;

page 48

NLS Programmers' Guide
Part Three: Statements

ARC 34210 Rev. 8 JAN 76

Quotient and remainder are variable names in which the respective values will be saved after
the division. 5 d 1 4 b

E.g.

DIV a I b, a, r ;

a will be set to alb to the greatest integer with r getting the remainder

Floating point calculations are described in Part Five, Section 4. 5 d 1 4 c

PROCEDURE CALL Statement 5 d 1 5

Procedure calls direct program control to the procedure specified. A procedure call occurs
when the name of the procedure is followed by parentheses. If the procedure requires that
arguments be passed, they should be included in the parentheses, separated by commas. 5 d 1 5 a

procname (exp, exp, •••) ;

where procname = the name of a procedure

exp = any valid LIO expression (explained in Section 5). The set of expressions
separated by commas is the argument list for the procedure.

The argument list consists of a number of expressions separated by commas. The number of
arguments should equal the number of formal parameters for the procedure. The argument
expressions are evaluated in order from left to right. Each expression (parameter) must
evaluate to a one-word value. The values will be assigned to the formal parameters of the
called procedure. 5d15b

To pass an array, text pointer, string, or any multi-word parameter, the programmer may
pass the address of the first word of the variable, then REF the receiving local in the
called procedure.

For example, one may pass an stid directly, but to pass a text pointer, you must pass the
address of the text pointer and REF the receiving parameter. Remember that a dollar sign
($) preceding a variable represents the address of that variable.

The procedure may return one or more values. The first value is returned as the value of the
procedure call. Therefore, if only one value is returned, one might say: 5d15c

a +- proc (b) ;

In this context, the procedure call is an expression.

If more than one value is returned by the called procedure, one must specify a list of variables
in which to store them. The list of variables for multiple results is sp,parated from the list of
argument expressions by a colon. The number of locations for results need not equal the
number of results actually returned. If there are more locations than results, then the extra
locations get an undefined value. If there are more results than locations, the extra results are
simply lost. The first RETURN value is still taken only as the value of the procedure call. 5d15d

var +- procname (exp, exp, ••• : var, var, •••) ;

page 49

ARC 34210 Rev. 8 JAN 76 NLS Prcgrammers' Guide
Part Three: Statements

Example:

If procedure "proc" ends with the statement

RETURN (a,b,c)

then the statement

q -- proc(:r,s);

results in (q,r,s) -- (a,b,c).

A procedure call may just exist as a statement alone without returning a value. Not all
procedures require parameters, but the parentheses are mandatory in order to distinguish a
procedure call from other constructs. 5 dIS e

E.g. Ida();

If a block of instructions are used repeatedly, or are duplicated in different sections of a
program, it is often wise to make them a separate procedure and simply call the procedure
when appropriate. 5 dIS f

It is considered good style to "modularize" the functions of your program as much as
possible, where each procedure represents a function which will be performed no matter
which procedure called it. This implies very limited use of global variables and careful
definition of the procedure interface.

Procedures should not be made too long, nor have complex nested loops. Often breaking
the code into a number of shorter procedures will make the program clearer and easier to
debug.

A procedure may recursively call itself. Each call will have its own unique set of local
variables. This may be useful if a procedure is built to handle a general case as well as a
specific case or number of cases. The general case may call that same procedure for the
specific case after some manipulations. 5 dIS 9

A great many procedures are part of the NLS system and are available to your programs. A
list of them is available in the file <NLS,XPROCS,> or <NLS,SYSGD,>. SYSGD lists links to
the source code, so that you can examine the procedure in detail to see just what it expects as
arguments and what it returns. SdlSh

RETURN Statement 5 d 1 6

This statement causes a procedure to return control to the procedure which called it.
Optionally, it may pass the calling procedure an arbitrary number of results. The order of
evaluation of results is from left to right. 5 d 1 6 a

RETURN;

RETURN (exp, exp, •••) ;

E.g.

page 50

RETURN (TRUE, a+b) ;
RETURN (getnmf(stid)) ;

Sd16b

NLS Programmers' GLJid~'

PM! Three: Statements

ARC 34210 Rev. 8 JAN 76

GOTO Statement 5 d 17

Any statement may be labeled; one puts the desired label (a string of lower case letters and
digits) in parentheses and followed by a colon at the beginning of a statement. Sd17a

(label): statement;

E.g.

(there): a- b + C ;

GOTO provides for unconditional transfer of control to a new location.

GOTO label;

E.g.

GOTO there:

GOTO statements make reading and debugging your program difficult and are not considered
good style; they can usually be eliminated by use of procedure calls and the iterative

Sd17b

Sd17c

Sd17d

statements. 5 d 1 7 e

NULL Statement 5 d 1 B

The NULL statement may be used as a convenience to the programmer. It does nothing. 5 d 1 B a

NULL;

Example:

CASE exp OF
=0, =1: NULL;
ENDCASE y-I;

JSYS Call and Assembly Language Statement 5 d 1 9

The use of these capabilities should be limited to system programmers. Assembly language
code makes user programs difficult to understand and to maintain as the executive underlying
NLS changes over time. LIO procedures are available to accomplish most of the tasks one
might want to do with a JSYS. System programmers should refer to the TENEX JSYS manual
for a description of the available JSYS's. 5 d 1 9 a

Assembly language statements may be included in the LIO code by preceding the statement
with an exclamation-point (!). The instruction must be upper-case; the arguments must be
lower-case. E.g. Sd 19b

!PUSH s,jfn :

page 51

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: Statements

A TENEX JSYS may be invoked with a statement similar to the procedure call statement; the
name of the JSYS must be lower-case, preceded by an exclamation-point: 5d 19c

!jsysname (regl, reg2, •••) ;

E .go !gjinfO;

The arguments in the parentheses are evaluated and loaded into the registers before the JSYS
is invoked 0 The first argument will be put in register one, the second in register two, etc. Up
to eight arguments may be given. 5d19d

like a procedure call, multiple results may be received 0 They will be taken in order from the
registers. (See <l3510,3c> for a description of user JSYS calls. 5d1ge

Some JSYS return to the assembly-language line of code (not the LIO statement) one beyond
the normal return location 0 With such JSYS, you may use the SKIP construct to test if it has
done so: .5 d 1 9 f

IF SKIP !jsys(argl, •••) THEN 0 •• ;

In using SKIP, you may not receive multiple results directly, but must read the registers into
globals (see 5cI2). 5d19g

pagp 52

Nl S Programmers' Guide
Part Three: Expressions

ARC 34210 Rev. 8 JAN 76

Section 5: Expressions 5e

Introduction 5 e 1

This section will describe the composition of the expressions, which are an integral part of
many of the statements described in Section 4. 5 e 1 a

Primitives 5 e 2

Primitives are the basic units which are used as the operands of LIO expressions. There are
many types of elements that can be used as lIO primitives; each type returns a value which
is used in the evaluation of an expression. 5 e 2 a

Each of the following is a valid primitive: 5 e 2 b

a constant (see below)

any valid variable name, refering to the contents (of the first word, if not indexed) of that
variable

the contents of a string variable, refered to as *var*

a dollar sign ($) followed by a variable name, refering to the address of the variable

a procedure call which returns at least one value

the first (leftmost) value returned is the value of the procedure call; other values may
be stored in other variables as described in Section 4.

an assignment (see below)

classes of characters; described in Section 1 of Part One

MIN (exp, exp, •••) the minimum of the expressions

MAX (exp, exp, •••) the maximum of the expressions

TRUE has the value 1

FALSE has the value 0

VALUE (astring) given the address of a string containing a decimal number, has the value
of the number

VALUE (astring, num) given the address of a string containing a number and the base
of that number, has the value of the number (allows other than base-ten numbers)

READC (see below)

CCPOS (see below)

FIND

used to test text patterns and load text pointers for use in string construction (see
Section 6); returns the value TRUE or FALSE depending on whether or not all the
string tests within it succeed.

page 53

AHC34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: Expressions

POS

POS textpointer 1 relop textpointer2

may be used to compare two text pointers. If the POS construction is not used, only
the first words of the pointers (the stid's) will be compared. If a pointer is before
another, it is considered less than the other pointer.

E.g.

POS pH = pt2
POS first >= last

Constants

A constant may be either a number or a literal constant.

There are several ways in which numeric values may be represented. A sequence of digits
alone (or foflowed by a D) is interpreted as base ten. If followed by a B then it is
interpreted as base eight. A scale factor may be given after the B for octal numbers or
after a 0 for decimal numbers. The scale factor is equivalent to adding that many zeros
to the original number.

Examples:

64 = 100B = 1B2

144B = 100 = 102

Literals may be used as constants as they are represented internally by numeric values.
The following are valid literal constants:

-any single character preceded by an apostrophe

e.g. 'a represents the code for 141B.

-the following synonyms for commonly used characters:

ENDCHR - - endcharacter as returned by READe
SP -- space
AL T -- Tenex's version of altmode or escape (=338)
CR - - carriage return
LF - - line feed
EOL -- Tenex EOL character
TAB -- tab
BC -- backspace character
BW - - backspace word
C. - - center dot
CA - - Command Accept
CD - - Command Delete

Assignments

page 54

An assignment can be used as a value in an expression.

The form a -- b has the effect of storing b into a and has the value of b as the value of
the assigr:tment.

5e2c

5e2d

NLS Programmers' Guide

PMt Three: Expressions

ARC 34210 Rev. 8 JAN 76

Another form of the assignment statement is:

a:= b

This will store b into a, but have the old value of a as the value of the assignment
when used as a primitive in an expression.

For example,

b +- (a := b) ;

The value of b will be put in a. The assignment will get the old value of a, which
is then put in b. This transposes the values of a and b. (The parentheses are not
really necessary.)

READC - ENDCHR

The primitive READC is a special construction for reading characters from NlS statements
or strings.

CCPOS

A character is read from the current character position in the scan direction set by
the last CCPOS statement or string analysis FIND statement or expression. CCPOS
and FIND are explained in detail in Section 6 of this document.

Attempts to read off the end of a string in either direction result in a special
"endcharacter" being returned and the character position not being moved. This
endcharacter is included in the set of characters for which system mneumonics are
provided and may be referenced by the identifier "ENDCHR".

For example, to sequentially process the characters of a string:

CCPOS *str*;

UNTil (char +- READC) = ENDCHR DO process(char);

(Note: READC may also be used as a statement if it is desired to read and simply
discard a character).

When used as a primitive, CCPOS has as its value the index of the character to the right
of the current character position. If str = "glarp", then after CCPOS *str*, the value of
CCPOS is 1 and after CCPOS SE(*str*) the value of CCPOS is 6 (one greater than the
length of the string).

CCPOS is more commonly used as a statement to set the current character position for
use in text pattern matching. This is discussed in detail in Section 6 c

CCPOS may be useful as an index to sequentially process the first n characters of a string
(assumed to have at least n characters).

Example:

CCPOS SF(*str*);
%CCPOS now has the index value of one, the front of the string%

UNTil CCPOS > n DO process(READC);
% READC reads the next character and increments CCPOS %

5e2e

5e2f

page 55

AHC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: Expres~ions

Operators 5e3

Primitives may be combined with operators to form expressions. Four types of operators will
be described here: arithmetic, relational, interval, and logical. 5 e 3 a

Arithmetic Operators

+ (in front of a number) - - positive value

- (in front of a number) - - negative value

+ - - addition

- - - subtraction

* - - multiplication

/ - - integer division (remainder not saved)

MOD - - a MOD b gives the remainder of a / b

• V - - (OR) a • V b = > bit pattern which has l' s where either a or b contains 1, 0 elsewhere

.X -- (XOR) a .X b => bit pattern which has 1 's where either a holds 1 and b contains 0,
or a contains 0 and b contains 1, 0 elsewhere

5e3b

.A -- (AND) a .A b => bit pattern which has l's where both a and b contain 1,0 elsewhere

Relational Operators

page 56

A relational operator is used in an expression to compare one quantity with another. The
expression is evaluated for a logical value. If true, its value is 1; if false, its value is o.
Operator Meaning Example
-------- ------- -------

= equal to 4+1 = 3+2 (TRUE, =1)
not equal to 6#8 (TRUE, =1)
< less than 6<8 (TRUE, =1)
<= less than or

equal to 8<=6 (FALSE, =0)
> greater than 3>8 (FALSE, =0)
>= greater than or

equal to 8>=6 (TRUE, =1)
NOT <other-relational-operator>

6 NOT > 8 (TRUE, =1)

Se3c

Nl S Prograrnnwrs' GU.ide
Part Three: Expressions

ARC 34210 Rev. 8 JAN 76

Interval Operators

The interval operators permit one to check whether the value of a primitive falls in or out
of a particular interval.

IN (primitive, primitive) IN [primitive, primitive]

The value is tested to see whether or not it lies within a particular interval. Each side of
the interval may be "open" or "closed". Thus the values which determine the
boundaries may be included in the interval (by using a square bracket) or excluded (by
using parentheses).

Example:

xlN [1,100)

is the same as

(x >=1) AND (x < 100)

Logical Operators

Every numeric value also has a logical value. A numeric value not equal to zero has a
logical value of TRUE; a numeric value equal to zero has a logical value of FALSE.

OR

a OR b = TRUE i f a = TRUE or i f b = TRUE
FALSE i f a FALSE and i f b = FALSE

AND

a AND b TRUE i f a = TRUE and i f b = TRUE
= FALSE i f a = FALSE or i f b = FALSE

NOT

NOT a = TRUE i f a = FALSE
= FALSE i f a = TRUE

Expressions

Introduction

An expression is any constant, variable, special expression form, or combination of these
joined by operators and parentheses as necessary to denote the order in which operations
are to be performed.

Examples of assigning an expression to a variable:

var 0;
var var + 2 ;
var POS ptrl >= ptr2 ;
var (a > b) OR (a IN [c, d]) ;

Liberal use of parentheses is highly recommended.

5e3d

5e3e

5e4

5e4a

page 57

AfK 3 /1210 Hcv. 8 JAN 76 NLS Programmers' Guide
Part Three: Expressions

Special L10 expressions are:

- the FIND expression which is used for string manipulation, and

- the conditional IF and CASE expressions which may be used to give alternative
values to expressions depending on tests made in the expressions.

Expressions are used where the syntax requires a value. While certain of these forms are
similar syntactically to L 1 0 statements, when used as an expression they always have
values (see below).

Order of Operator Execution- - Binding Precedence

The order of performing individual operations within an equation is determined by the
hierarchy of operator execution (or binding precedence) and the use of parentheses.

Operations of the same heirarchy are performed from left to right in an expression.
Operations in parentheses are performed before operations not in parentheses.

The order of execution of operators (from first to last) is as follows:

unary -, unary +

.A

.v, .x
*, /, MOD

+, -

relational tests (e.g., >=, <=, >, <, =, #, IN, OUT)

NOT relational tests (e.g., NOT »
NOT

AND

OR

Conditional Expressions

pagt' 58'

The two conditional constructs (IF and CASE) can be used as expressions as well as
statements. As expressions, they must return a value.

IF Expressions

IF testexp THEN expl ELSE exp2

testexp is tested for its logical value. If testexp is TRUE then exp 1 will be evaluated.
If it is FALSE, then exp2 is evaluated.

Therefore, the result of this entire expression is EITHER the result of expl or exp2.

Example:

y -- IF x IN [1,3] THEN x ELSE 4;
%if x = 1, 2, or 3, then y--x; otherwise y--4%

5e4b

Se4c

NLS Programmers' Guide
Part TI1rPP: Expressions

ARC 34210 Rev. 8 JAN 76

CASE Expression

This form is similar to the above except that it causes anyone of a series of
expressions to be evaluated and used as the result of the entire expression.

CASE testexp OF
relop exp : exp ;
relop exp : exp ;
relop exp : exp ;

ENDCASE exp

where relop = any relational or interval operator (>=, <, =, IN, etc. See above
(5e3c) and (5e4d)

In the above, the testexp is evaluated and used with the operator relops and their
respective exps to test for a value of TRUE or FALSE. If TRUE in any instance, the
companion expression to the right of the colon is executed and taken to be the value
of the whole expression. A value of FALSE for all tests causes the next relop in the
CASE expression to be tested against the testexp. If all relops are FALSE, the
ENDCASE expression is taken to be the value of the whole expression.

Note that ENDCASE cannot be null; it must have a value.

As with the CASE statement, any number of cases may be specified, and each case
may include more than one relop and expression, separated by commas.

Example:

y - CASE x OF
<3: x+l;
=3, =4: x+2;
=5: x;

ENDCASE x*2;

Value of X Value of y

2 3
3 5
4 6
5 5
6 12

String Expressions 5 e 4 d

LI0 also provides several expression forms which are used for string manipulation and
evaluation. These are discussed in Section 6 of this document. When using string
manipulation statement forms as expressions, parentheses may be necessary to prevent
ambiguities.

page 59

ARC 3421 0 l~l·V. 8 JAN 76 NLS Programmers' Guide
Part Three: String Test and Manipulation

Section 6: String Test and Manipulation Sf

Introduction 5 f 1

This section describes statements which allow complex string analysis and construction. The
three basic elements of string manipulation discussed here are the Current Character Position
(CCPOS) and text pointers which allow the user to delimit substrings within a string (or
statement), patterns that cause the system to search the string for specific occurrences of
text and set up pointers to various textual elements, and actual string constru,ction. 5 f 1 a

Current Character Position (CCPOS) 5 f 2

The Current Character Position is similar to the TNLS CM (Control Marker) in that it specifies
the location in the string at which subsequent operations are to begin. All LI cj string tests
start their search from the Current Character Position. In Content Analyzer programs, it is
initialized to the BEGINNING OF EACH NEW STATEMENT. For each new statement, the scan
direction is initialized to LEFT TO RIGHT. It is moved through the statement or through
strings by FIND expressions. !t may be set to a particular position in a statement or string by
the L 1 0 statement: 5 f 2 a

CCPOS pos:

pos is a position in a statement or string that may be expressed as any of the following: 5 f 2 b

pagp 60

A previously declared and Set text pointer.

If a text. pointer is given after CCPOS, then the character .position is set to" that
location. A text pointer points between two characters in a string.

e.g. CCPOS ptl ;

String Front -- left of the first character

SF(stspec)

When SF is specified, CCPOS will be set before the first character of the statement or
. string variable specified by stspec. .

stspec is a string specification that may be expressed as

- an stid (e.g. the first computer word of a previously declared text pointer), or

- a previously declared string name enclosed in asterisks.

Examples:

CCPOS SF(pU) ;
%ptl is a text pointer%

CCPOS SF(stid) ;
%stid is an stid%

CCPOS SF(*str*) ;
%str is a string%

NLS Programnlf'rs" Guide
PMI Three: String Test (lnd Manipulation

String End - - right of the last character

SE(stspec)

ARC 34210 Rev. 8 JAN 76

When SE is specified scanning will take place from right to left, and CCPOS will be set
after the last character of the statement or string variable specified by stspec.

A string (*stringname*) is given after CCPOS. The position is moved to the beginning of
that string.

Indexing the stringname (by specifying [exp]) simply specifies a particular position
within the string~ Thus *str* [3] puts the Current Character Position between the
second and third characters of the string "str". If the scan direction is left to right,
then the third character will be read next. If the direction is right to left, then the
second will be read next.

E.g.

CCPOS *str* [3]

If no indexing is given, then the position is set to the left of the first character in the
string. This is equivalent to an index of 1.

E.g.

CCPOS *str*; "
means the same as

CCPOS SF(*str*);

Setting the current character position with the CCPOS statement also sets the scan direction
to forward (Ieft-to- right)~ except if the SE construct is used. Sf 2 c

FIND Statement Sf 3

The FIND- ,statement specifies a string pattern to be tested against a statement or string
variable, and text pointers to be manipulated and set, starting from the Current Character
Position. If the test succeeds the character position is moved past the last character read. If
the test fails the character position is left at the position prior to the F!ND statement. The
values" of text pointe'rs set in the statement prior to the failing element will remain as set;
others of course will not be changed. Sf 3 a

FIND pattern ;

FINDs may be used as expressions as well as free-standing elements. If used as an
expression, for example in IF statements, it has the value TRUE if all pattern elements within it
are true and the value FALSE if anyone of the elements is false. 5 f 3 b

E.g. Sf3c

IF FIND pattern THEN ••• ;

It is good practice to use FIND as an expression with the appropriate error conditions if the
FIND fails. If the FIND fa"ils, text pOinters may not be set as expected. Sf3d

page 61

AfK 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: String Test and Manipulation

FIND Patterns

A string pattern may be any valid combination of the following logical operators, testing
arguments, and other non-testing parameters (note the identity with Content Analyzer

5f4

Patterns): 5 f 4 a

Pattern Matching Arguments- - 5 f 4 b

page 62

(each of these can be TRUE or FALSE)

string constant, e.g. "ABC"

or any character, preceded by an apostrophy

It should be noted that if the scan direction is set right-to-Ieft the string constant
pattern should be reversed. In the above example, one would have to search for
"CBA".

Any of the system defined mnemonics, as described in the last section (5e2c),
such as "SP" or IOCR", are also valid.

character class

look for a character of a specific class; if found, = TRUE, otherwise FALSE.

Character classes:

CH - - any character
L - - lowercase or uppercase letter
UL - - uppercase letter
LL - - lowercase letter
D -- digit
LD - - lowercase or uppercase letter or digit
NLD - - not a letter or digit
ULD - - uppercase letter or digit
LLD - - lowercase letter or digit
PT - - printing character
NP - - nonprinting character

Example:

char = LD

is TRUE if the variable char contains a value which is a letter or a digit.

(elements)

look for an occurrence of the pattern specified by the elements. If found, =
TRUE, otherwise FALSE. Elements may be any pattern; the parentheses serve to
group the elements so as to be treated as a single element in any of the following
elements.

-element

TRUE only if the string constant or character class element following the dash
does not occur.

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part Three: String Test and ManiplJlation

NOT element

TRUE only if the element or group of elements following the NOT does not occur.

[elements]

TRUE if the pattern specified by the elements can be found anywhere in the
remainder of the string. elements may be any pattern; the squarebrackets also
group the elements so as to be treated as a single element. It first searches from
current position. If the search failed, then the current position is incremented by
one and the pattern is tried again. Incrementing and searching continues until the
end of the string. The value of the search is FALSE if the testing string entity is
not matched before the end of the string is reached.

NUM element

find (exactly) the specified number of occurrences of the element.

E.g.

3(LO) means three letters or digits

NUM1 $ NUM2 element

Tests for a range of occurrences of the element specified. If the element is found
at least NUM 1 times and at most NUM2 times, the value of the test is TRUE.

Either number is optional. The default value for NUM 1 is zero. The default
value for NUM2 is 10000. Thus a construction of the form "$3(CH)" would
search for any number of characters (including zero) up to and including
three.

Examples:

2 $4(UL) - - from two to four upper-case letters

$10(SP) - - up to ten spaces

1 $(' .) - - one or more periods

ID = user-ident
ID i user-ident

if the string being tested is the text of an NLS statement then ident of the user
who created or last edited the statement is tested by this construction; if CCPOS
is in a string, you will get the error "string treated as statement"

FT var

TRUE if the variable holds a value of TRUE (non-zero).

SINCE datim

if the string being tested is the text of an NLS statement, this test is TRUE if the
statement was created or modified after the date and time (datim, see below)
specified.

BEFORE datim

if the string being tested is the text of an NLS statement, this test is TRUE if the

page 63

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: String Test and Manipulation

statement was created or modified before the date and time (datim, see below)
specified.

Acceptable dates and times follow the forms permitted by the TENEX system's
IDTIM JSYS described in detail in the TENEX JSYS manual. It accepts "most any
reasonable date and time syntax."

Examples of valid dates:

17-APR-70
APR-17-70
APR 17 70
17 APRIL 70
17/5/1970
5/17/70
APRIL 17, 1970

Examples of valid times (zero assumed if time left out):

1:12:13
1234
1234:56
1:56AM
1:56-EST
1200NOON
16:30 (4:30 PM)
12:00:00AM (midnight)
11:59:59AM-EST (late morning)
12:00:01AM (early morning)

Examples:

BEFORE (MAR 19, 73 16:49)
SINCE (25-JUL-73 2130:00)

These may not appear in Content Analysis patterns, but are v~!id elements in FIND
statements in any program:

stringname

the contents of the string variable

BETWEEN pos pos (element)

Search limited to between positions specified. pos is a previously set text pOinter;
the two must be in the same statement or string. Scan character position is set
to first position before the pattern is tested (This is not an unanchored scan
unless square brackets are used within the parentheses.).

E.g.

BETWEEN ptl pt2 (20 [.] $NP)

Logical Operators--

page 64

These combine and delimit groups of patterns. Each compound group is considered to be
a single. pattern with the value TRUE or FALSE. The character position will be reset to its

Sf4c

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76

Pclrt Threl' String Test and Manipulation

position before encountering the group before a new group is tested. Any text pointers
set within a test pattern before it fails will retain their new values. (See examples below.)

/
AND
OR

These logical concatenators bind in the order in which they are listed. I. e.

a / bAND c
means the same as

(a / b) AND c

Other Elements--

These do not involve tests; rather, they involve some execution action. They are always
TRUE for the purposes of pattern matching tests.

These may appear in simple Content Analysis Patterns:

<

>

set scan direction to the left

In this case, care should be taken to specify patterns in reverse, that is in the
order which the computer will scan the text.

set scan direction to the right

TRUE

has no effect; it is generally used at the end of OR when a value of TRUE is
desired even if all tests fail.

ENDCHR

Attempts to read off the end of a string in either direction result in a special
"endcharacter" being returned and the character position is not moved. This
endcharacter is included in the set of characters for which system mneumonics
are provided and may be referenced by the identifier "ENDCHR".

These may not appear in simple Content Analysis Patterns, but may in FIND statements:

pos

pos is a previously set text pointer, or an SE(pos) or SF(pos) construction. Set
current character position to this position. If the SE pointer is used, set scan
direction from right to left. If the SF pointer is used, set scan direction from left
to right.

E.g.

FIND x; %sets CCPOS to position of previously set text pointer x%

10

store current scan position into the textpointer specified by the identifier

5f4d

page 65

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part l hree: String Test and Manipulation

[NUM] ID

back up the specified text pointer by the specified number (NUM) of characters.
Default value for NUM is one. Backup is in the opposite direction of the current
scan direction.

FS var
FR var

FS will set the variable to TRUE (1). FR will reset the variable to FALSE (0).

String Construction

One may modify an NLS statement or a string with the statement:

ST pos +- stringlist ;

The whole statement or string in which pos resides will be replaced by the string list.

ST pos pos -- stringlist ;

The part of the statement or string from the first pos to the second pos will be
replaced by the string list. "pos" may be a previously set text pointer or the
SF(pos)/SE(pos) construction.

There are two additional ways of modifying the contents of a string variable:

ST *stringname* [exp TO exp] -- stringlist ;
means the same as

stringname [exp TO exp] -- stringlist ;

The string from the first position to the second position will be replaced by the string
list. The square-bracketed range is entirely optional; if it is left off, the whole string
will be replaced.

Note that the "ST" is optional when assigning a stringlist to the contents of a string
variable. The statement then resembles any simple assignment statement. I. e.

stringname -- stringlist ;

The string list (stringlist) may be any series of string designators, separated by commas. The

5f5

5f5a

5f5b

string designators may be any of the following: 5 f 5 c

pag!' 66

the word NULL

represents a zero length (empty) string

string constant, e.g. "ABC" or 'w

part of any string or statement, denoted either by

two text pointers previously set in either a statement or a string

pos pos

a string name in asterisks, refering to the whole string

stringname

a string name in asterisks followed by an index, refering to a character in the string

'*stringname* [exp]

NLS Programmers' Guide ARC34210 Rev.8JAN76
Part Three: String Test and Manipulation

(The index of the first character is one.)

a string name in asterisks followed by two indices, refering to a substring of the string

stringname [exp TO exp]

A construction of the form *str* [i TO j] refers to the substring starting with
the ith character in the string up and including the jth character.

Examples:

str [7 TO IO] is the four character substring starting with the 7th
character of str.

str [i TO str. L] is the string str without the first i-I characters. (i is a
declared variable.)

+ substring

substring capitalized

- substring

exp

substring in lower case

value of a general L I 0 expression taken as a character; i. e., the character with the
ASCII code value (see chart at end of document) equivalent to the value of the
expression

STRING (expl, exp2);

gives a string which represents the value of the expression exp1 as a signed decimal
number. If the second expression is present, a number of that base is produced
instead of a decimal number.

E.g.

Examples:

STRING (3*2) is the same as the string "6"
or

STRING (14,8) is the same as the string "16"

ST pI p2 - *string*;
does the same as

ST pI - SF(p1) pI, *string*, p2 SE(p2);

assuming p I and p2 have been set somewhere in the same statement. The latter
reads "replace the statement holding pI with the text from the beginning of the
statement to pI, the contents of string, then the text from p2 to the end of the
statement. "

st [low TO high] - "string";
does the same as

st - *st* [1 TO low-I], "string", *st* [high+l TO st.L];

assuming low and high are declared simple variables.

SfSd

page 67

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Three: String Test and Manipulation

Example:

Let a "word" be defined as an arbitrary number of letters and digits. The text painter "t" is
set before or after some character in the word. The two statements in this example delete the
word which holds the text pointer "t", and if there is a space on the right of the word, it is

5f6

also deleted. Otherwise. if there is space on the left of the word it is deleted. 5 f 6 a

The text pointers ptr 1 and ptr2 are used to delimit the left and right respectively of the string
to be deleted. 5 f 6 b

IF (FIND t < $LD t ptrl > $LD (SP t ptr2 / t ptr2 ptr! < (SP t ptr! / TRUE») THEN
ST ptr! ptr2 - NULL; Sf 6c

The reader should work through this example until it is clear that it really behaves as
advertised. 5 f 6 d

More Than One Change per Statement Sf i'

The second word of a text pointer, the character count, stays the same until the text pointer is
again set to some other position (as does the first word), even though the statement has been
edited. If, for example, you have the statement Sf 7 a

abcdefg

/\
and if you have set a pointer between the "d" and the "e", it will always point between the
fourth and fifth characters in the statement; the second word of the text pointer holds the
number 5. If you then delete the character "a", your pointer will be between the "e" and the
"f" •

bcdefg

/\
For this reason, you probably want to do a series of edits beginning with the last one in the

Sf7b

statement and working backwards. 5 f 7 c

Text Pointer Comparisons 5 f B

This may be used to compare two text pointers. Sf8a

pagl' 68

POS pt!

>
<
>=
<=

pt2;

ptl and pt2 are text pointers.

NOT may precede any of the relational operators. If the pointers refer to different
statements then all relations between them are FALSE except "not equal" which is written
or NOT=. If the pointers refer to the same statement, then the truth of the relation is
decided on the basis of their location within the statement.

A pointer closer to the front of the statement is "less than" a pointer closer to the end.

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76

Pdrt Three: Invocation of User Fllk'rs

Section 7: Invocation of User Filters 59

Introduction 591

The Content Analyzer filters described in this document may be imposed through the NLS
PROGRAMS subsystem. 591 a

User-attachable subsystems may be written for more complex tasks. This type of user
program and NLS procedures which may be accessed by them will be discussed in Part
Four. With such a program, however, the user will still make use of the commands in the
NLS PROGRAMS subsystem.

This section describes NLS commands which are used to compile, institute and execute user
programs and filters. 59 1 b

Compilation- -

is the process by which a set of instructions in a program is translated from the L 1 0
language written in an NLS source file into object code, which the computer can use
to execute those instructions.

Loading--

is the process which copies the compiled instructions into the user-programs buffer.

Institution- -

is the process by which a compiled and loaded Content Analyzer program is
designated as the current Content Analyzer filter.

This section additionally presents examples of the use of the LIO programming language.
They do not make use of any constructions not explained so far in this manual. 591 c

Programs Subsystem 592

Introduction 592 a

The PROGRAMS subsystem provides several facilities for the processing of user written
programs and filters. It is entered by using the NLS command:

Goto Programs OK

This subsystem enables the user to compile LIO user programs as well as Content
Analyzer patterns, control how these are arranged internally for different uses, define how
programs are used, and to see the status of user programs.

PROGRAMS subsystem commands

After entering the PROGRAMS subsystem, you may use one of the following commands:

Show Status of programs buffer

This command prints out information concerning active user programs and filters
which have been loaded and/or instituted:

Show Status (of programs buffer) OK

59 2b

page 69

ARC 34210 Rev.8JAN76 NLS Programmers' Guide
Part Three: Invocation of User Filters

page 70

When this command is executed the system will print:

Compile

- - the names of all the programs in the user programs buffer, including those
generated for simple Content Analysis patterns, starting with the first program
loaded.

- - the remaining free space in the buffer. The buffer contains the compiled code
for all the current compiled programs.

-- the current Content Analyzer Program or "None"

- - the current user Sequence Generator program or "None"

- - the user Sort Key program or "None"

LID Program

File

This command compiles the program specified.

Compile LID (user program at) ADDRESS OK

ADDRESS is the address of the first statement of the program.

This command causes the program specified to be compiled and loaded into the
user program buffer in a single operation. The program is not instituted.

The name of the program is the visible following the word PROGRAM.
ADDRESS points to the PROGRAM statement.

The program may be instituted by the appropriate commands.

The user program buffer is cleared whenever the user resets or logs out of the
system. If you have a long program which will be used periodically, you may wish
to save the compiled code in a TENEX file. It can then be retrieved with the Load
Program command. The command to compile the code into a TENEX file is:

Compile File (at) ADDRESS (using) LID OK (to file) FILENAME OK

The FILENAME must be the same as the program name. The program will then
be compiled and stored in the TENEX file of the given name (with the extension
REL, unless otherwise specified). The user may then load it at any time.

Before doing this, the programmer must replace the word PROGRAM at the head
of the program with the word FILE.

Content Analyzer Pattern

This command allows the user to specify a Content Analyzer pattern as a Content
Analyzer filter.

Compile Content (analyzer filter) ADDRESS OK

The pattern must begin with the first visible after the ADDRESS, or at that point
you may type it in. It will read the pattern up to a semicolon, so be sure to insert
a semicolon where you want it to stop.

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76

Part Thn't': Invocation of User Filto'rs

When this command is executed, the pattern specified is compiled into the buffer,
AND it is automatically instituted as the Content Analyzer filter.

Procedure

This command compiles a single procedure.

Compile Procedure (at) ADDRESS OK

ADDRESS is the address of the PROCEDURE statement.

This command causes the procedure specified to be compiled and loaded into the
user program buffer in a single operation.

If a procedure of the same name has already been loaded (in the user
programs buffer or in the NLS system), the old procedure will be replaced.
I.e. any calls to that procedure name will invoke the newly compiled
procedure.

Error Message during Compilation

"SYNTAX ERROR" messages include the type of error, the location of the line of
assembly code that caused trouble, and a few characters of the NLS source code.
The last of these characters is the one which caused the error. In some cases this
may be misleading, when a previous error (e.g. a missing quote or percent sign)
caused trouble later in the compilation.

"ext & local" - - a symbol was used as both an external or global and a local
variable in the file. If a variable is not declared in the program, the compiler
assumes it is a system EXTERNAL. If it is later us€d as a LOCAL, an error
will result.

"field too large" - - a field may not be defined as more than 36 bits.

"sides not equal" - - in a multiple assignment statement, the sides must have
the same number of values, e.g. (a,b,c) -- (x,y,z);

"not REF or POINTER" -- an ampersand (&) was used on a variable not
REFed or declared as a POINTER (not described in this document).

"8 args max" - - you may not pass more than eight arguments in a JSYS call.

"SYSTEM ERROR" messages also include the type of error, the location of the
line of assembly code that caused trouble, and a few characters of the NLS source
code.

"EOF READ" - - the compiler hit the end of the NLS file before it read a
FINISH statement. (This may happen if you don't have viewspecs set to all
lines, all levels.)

"HASH TABLE FULL" -- you have used too many symbols in the file. Each
file is limited to approximately 2000 symbols.

"BACKUP TOO FAR" -- a symbol or a literal string (text within quotes) has
too many characters in it. They are limited to 148 characters.

"SYMBOL TOO LONG" - - as above, a symbol has too many characters in it.

"INPUT TOO LONG" -- as above, a literal string has too many characters in it.

page 71

ARC 34210 Rt'v.8JAN76 NLS Programmers' Guide
Part Three: Invocation of User Filters

pagE:' 72

"S.S. FULL" -- as above, a symbol has too many characters in it.

"I/O ERROR" -- a number has too many digits in it.

"UT TABLE FULL" - - the file has too many literal strings and numbers.

"PUSHDOWN OVERFLOW" means that one of the stacks that the compiler uses
overflowed. Look for an L 1 0 statement containing too many parentheses or
particularly complex constructions. You may have to break some statements into
multiple statements.

"Boolean as operand" - - you used an expression as a parameter or in a RETURN
statement. This is NOT an error, but only a warning of unusual (though in many
cases good) programming practice.

If you include the L 10 statement

NOMESS;

at the beginning of the file, at the same level as global declarations (i.e. not
within a procedure), this warning will not be printed. Errors will be printed as
usual.

When the compilation is finished, it will list the number of errors and wait for a
Command Accept to continue. You should then search for the error in the NLS
source code file, correct it, and recompile before attempting to use the program.

Errors involving undefined variables will be reported when you attempt to load the
program. Of course any code using these variables will cause execution errors.

If you include the LIO statement

LIST;

anywhere in the code, all the undefined symbols at that point in the
compilation will be printed.

The Compile Procedure command will generate undefined variable errors
legitimately if the procedure refers to global variables.

If the addition of your program to the user programs buffer requires more than
the maximum space allotted for user programs (either in number of pages or
number of symbols), you will get a "format error" upon loading. (If you have any
other programs loaded, use the "Delete All" command prior to loading.)

NDDT (described in Part Five, Section 2) will help you trace run-time errors to
errors in the NLS source code.

Load Program

A pre-compiled program existing as a REL file may be loaded into the program buffer
with the command:

Load Program FILENAME OK

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part Three: Invocation of User Filti'rs

If the FILENAME is specified without specifying an extension name, this command will
search the connected directory, then the <PROGRAMS> directory, for the following
extensions:

REL - - it will simply load the REL file

CA -- it will load the program and institute it as the current content analyzer
program

SK - - it will load the program and institute it as the current sort key extractor
program

SG -- it will load the program and institute it as the current sequence generator
program

SUBSYS - - it will load the program and then look for a file of the same name with
extension CML: if both are successfully loaded, they will be treated as a single
program

CML - - it will load the program and then try to attach it as a subsystem

PROC-REP -- it will load the program and then try to replace an existing procedure
of the same name as the TENEX code file by the first procedure in loaded
program

Sort key extractor and sequence generator programs are more complex and are
generally limited to experienced LIO programmers.

FILENAME is the name of the TENEX code file, not the name of the program.

If any variables are undefined, they will be reported upon loading. The program
should not be used until those variables are declared somewhere.

Delete

All

This command clears all programs from the user program buffer. All programs
are deinstituted and the buffer is marked as empty.

Delete All (programs in buffer) OK

The user programs buffer shares memory with data pages for files which the user
has open, therefore increasing the size of the user programs buffer decreases the
amount of space available for file data with a possible slowdown in response for
that user. The buffer size is increased automatically as needed. This command
also resets the buffer size to the original 8 pages (saving system storage space).

Last

This command deletes the most recently loaded program in the buffer. The
program is deinstituted if instituted and its space in the buffer marked as free.

Delete Last (program in buffer) OK

page 73

ARC 34210 Rev.8JAN76 NLS Programmers' Guide
Part Three: Invocation of User Filters

pag!:' 74

Run Program

This command transfers control to the specified program. This type of program is
used very little, having been substantially replaced by user-attachable subsystems, as
described in Part Four.

Run Program PROGNAME OK
Run Program NUMBER OK

PROGNAME is the name of a program which had been previously compiled. That is,
PROGNAME must be in the buffer when this command is executed.

Instead of PROGNAME, the user may specify the program to be run by its number.
This first program loaded into the buffer is number one.

Institute Program

This command enables the user to designate a program in the buffer as the current
Content Analyzer, Sequence Generator, or Sort Key extractor program.

Institute Program PROGNAME OK (as) type OK

where type is one of the following:
Content (analyzer)
Sort (key extractor)
Sequence (generator)

If no type is specified, Content analyzer will be assumed.

Instead of PROGNAME the user may specify the program to be instituted by
number. The first program loaded into the buffer is number one.

If a program has already been instituted in that capacity, it will be deinstituted (but
not removed from the buffer).

Deinstitute Program

This command deactivates the indicated program, but does not remove it from the
buffer. It may be reinstituted at any ti:ne.

Deinstitute type OK

where type is one of the following:
Content (analyzer)
Sort (key extractor)
Sequence (generator)

Assemble File

Files written in Tree-Meta can be assembled directly from the NlS source file with the
Assemble File command. This aspect of NlS programming will not be described in
this document.

NLS Programmers' Guidl' ARC 34210 Rev. 8 JAN 76
Part Thrl't': Invocation of User Filkrs

Examples of User Programs

The following are examples of user programs which selectively edit statements in an NLS file
on the basis of text matched against the pattern. For examples of L 10 programming
problems, you may find out how the standard NLS commands work by tracing them through,
beginning with <NLS, SYNTAX, 2>. A table of contents to all the global NLS routines is

593

available to the user in < NLS, SYSGD, 1>. 5 9 3 a

Example 1 -- Content Analyzer program 5g3b

PROGRAM outname % removes the text and delimiters 0 of NLS statement names in
parentheses from the beginning of each statement%

DECLARE TEXT POINTER sf;
(outname)PROCEDURE;

IF FIND '([')] T sf THEN %found and set pointer after name%
BEGIN
%replace stmnt by everything after pointer%

ST sf .- sf SE(sf);
%display statement%

RETURN(TRUE);
END

%otherwise don't display statement%
ELSE RETURN(FALSE);

END.
FINISH

Example 2 - - Content Analyzer program

PROGRAM changed % This program checks to see if a statement was written after a
certain date. If it was, the string "[CHANGED]" will be put at the front of the
statement. %

(changed) PROCEDURE;
LOCAL TEXT POINTER pt ;
% remember, CCPOS is initialized to the beginning of each new statement%
IF FIND f pt SINCE (25-JAN-72 12:00) THEN

%the substring of zero length is replaced with" [CHANGED] "%
ST pt pt +- "[CHANGED] ";

RETURN(FALSE) ;
END.

FINISH

5g3c

page 75

NLS Programmers' Guide
Part Fottr: Introduction

ARC 34210 Rev. 8 JAN 76

PART FOUR: Interactive LIO Programming

Section 1: Introduction

For many programming applications, it is sufficient to accept statements one at a time from the
sequence generator and assume as an initial character position the beginning of the statement (a
Content Analyzer program as described above). For more complex applications, you may have to
write programs which skip around files, between files, and interact with the user. These are not
called by the sequence generator but "Attached" and then used like standard NLS subsystems,
holding one or more commands. All the capabilities described above are available to such
programs.

There are two parts to every user-attachable subsystem:

1) the LI0 execution routines which do the file manipulations, and

2) the command syntax, specified in a language called Command Meta Language (CML),
describing the user interface of each command in the user attachable subsystem.

These two parts are two separate programs, compiled separately into two REL files. The two
programs are loaded in unison and together comprise the subsystem.

Like LIO, source programs for the CML compiler are free form NLS files. Comments may be used
wherever a blank is permitted and the structure of the source file is ignored by the compiler.
CML source programs are compiled into REL files with the Compile File command in the
PROGRAMS subsystem. CML is the compiler name for the CML compiler.

The REL file name of the CML code should have the extension "cml". The REL file name of
the corresponding L 10 execution procedures should have the same first name as the CML
code file, and should have the extension "subsys." If these conventions are followed, the
Load Program command in the PROGRAMS subsystem will automatically load both parts of
the user subsystem and attach it, making it available for use. The user's subsystem may then
be invoked by using the Goto or Execute commands.

The CML program describes the command words, noise words, selection requests, etc. that make
up an NLS command. The CML code interacts with the user when he enters the subsystem and as
he specifies commands. In the process of interacting with the user, the CML code may call one or
a number of L 10 execution procedures which "do the work."

CML automatically provides prompting, questionmark, and <CTRL -S> facilities. The CML
syntax specification applies to both TNLS and DNLS (unless restricted by the programmer to
one or the other), and will conform to all user options with respect to prompting and to
recognition and completion modes.

The next section will describe CML, and how to design the user interface. Section 3 explains the
requirements of the L 10 procedures which CML calls. The remainder to Part Four discusses
additional L 10 capabilities useful in the context of attachable subsystems.

6a

6 a 1

6a2

6a2a

6a2b

6a3

6a4

6a4a

6a5

6a5a

6a6

page 77

Af?C34210 Hl'V.8JAN76 NLS Programmers' Guide
Part Four Command Meta Language (CML)

Section 2: Command Meta Language (CML) 6b

Introduction 6 b:

This section describes the Command Meta Language (CML). CML allows the specification of
the user interface to commands. The CML program (the grammar) may call LIO procedures
of a certain type (described in the next section). The programs written in CML are similar in
structure to LIO programs. Typically, a CML and an LIO program are used in unison as a
user attachable subsystem. A more technical presentation of CML may be found in
<20438,>. 6bla

Program Structure 6 b;>

The basic CML program structure is much like that of LIO programs. The program begins
with a "FILE" statement (as does an LIO program) of the form: 6b2a

FILE name

where name is the name of the program code (in lowercase letters and numbers,
beginning with a letter); it must be a unique symbol, different from the FILE name of the
LIO code file.

The program ends with the statement (like LIO):

FINISH

Within the program, one may have a series (in any order) of declarations, rules, and

6b2b

subsystems. 6b2c

As in LIO, all variables used in the program must be declared somewhere in the system.
Other values and attributes must also be declared in CML.

Rules are defined sequences of the CML elements described below. Rule names can be
placed anywhere in a CML command specification. When a rule is called within a
command, it is almost as if the CML elements represented by that rule were inserted at
that point in the command. This allows the definition of general interactions that may be
of use in a number of commands or points in a command.

Each program usually represents one or more subsystems. A subsystem may include one
or more commands. Each command is a rule itself. It may optionally include rules to be
performed upon entering or leaving the subsystem. (One enters a subsystem with the
Goto or Execute commands, and leaves with the Quit command.) A subsystem may also
include general rules defined throughout the subsystem.

Each of these parts of the CML program will be described independently. The CML elements
which make up rules will also be described. 6b2d

Subsystems 6b3

A CML program holds declarations, general rules which apply throughout the program, and
subsystems (usually only one). 6b3a

P~~t' 78

NLS Progrdlnnwrs' Guide ARC 34210 Rev. 8 JAN 76
Pdf! • our: COlllllldnd Mt'ta Language (CML)

The Subsystem begins with a statement of the form:

SUBSYSTEM name KEYWORD "NAME"

where name is the internal name of the subsystem (primarily for debugging purposes) and
NAME is the name which the user must specify (in a Goto or Execute command) to access
commands in the subsystem.

These two names may be the same but they must be unique, different from the FILE
names of the CML and LID files.

A subsystem ends with the statement:

END.

Within the subsystem, you may have any number of rules.

A rule as described below will be known throughout the subsystem, but not outside the
subsystem.

A rule preceded by the word "COMMAND" will be available as a command in the
subsystem. It should begin with a command word element. E.g.:

COMMAND zshow = "SHOW"!L2!
ent - ("EXAMPLE"/"SAMPLE")
CONFIRM
proc (ent) ;

A rule preceded by the word "INITIALIZATION" will be executed whenever the subsystem
is entered (either with a Goto or an Execute command from another subsystem). E.g.:

INITIALIZATION example =
proc! (ent)
proc2 (ent) ;

A rule preceded by the word "TERMINATION" will be executed whenever the subsystem
is left (with a Goto or Quit command from this subsystem).

A rule preceded by the word "RENTRY" will be executed whenever the subsystem is
reentered (either with a Quit command from another subsystem, having left this one with
a Goto, or upon completing an Execute of a command in another subsystem from this
subsystem) •

Preceding a rule with the above modifiers does not prevent calling that rule from within

6b3b

6b3c

6b3d

another rule. 6b3e

Rules 6b4

A CML rule is a defined series of elements, each of which represents one piece of the
interaction with the user or system action. The elements will be described below. The name
of a rule (defined to be the given series of CML elements) may be used in other rules. When
the name of a rule appears in another rule, the CML code which it represents will be executed
at that point. 6b4a

page 79

AIK 34210 Rl'v. 8 JAN 76 NLS Programmers' Guide
Part Four: Command Meta Language (CML)

A rule takes the form:

name = element! element2 element3 ••• element ;

where "name" is any unique name (lowercase letters and numbers, beginning with a
letter) •

Alternative elements (where the user has a choice) are indicated by a slash (/) in the
expression. Parentheses should be used to group elements, particularly when alternative
logic and nesting of alternatives is involved. E.g.

name = (element! / element2 element3) element4 ;

Note that, by use of parentheses, an alternative may include more than one element.

Elements grouped in square brackets are options, and the user must type the option
character <CTRL-u> to access them. E.g.

name = element 1 [element2 element3] element4 ;

E.g.

zinsert = "INSERT" ent--("WORD"/"CHARACTER") <"at"> dest-DSEL(ent) xins(dest);

A number of elements may be included in a single rule. (If you exceed the maximum, you will
get a "stack overflow" error at run-time.) Elements are NOT separated by any delimiter
character (except by spaces or the source file structure). The entire rule is terminated by a

6b4b

6b4c

semicolon. 6 b 4 d

The return value of elements may be assigned to CML variables (single-word as in LIO), using
a left-arrow (-) in the form: 6b4e

variable -- element

The variable must have been declared, as described below.

A variable must be initialized by such an assignment before its content is passed to any
routine. It must be initialized in the rule which passes it to a routine (not just in other rules
called from the given rule, even though other rules may subsequently set it to another value).
(If you fail to do so, you will get the run-time error "reference to undefined interpreter
variable. ") 6 b 4 f

Names on the left side of an assignment are assumed to be variables; other names in CML
rules are assumed to be CML rules. 6b4g

Declarations 6bS

Declarations are used to associate names with their CML function. A number of types of
names may be used in CML programs. 6bSa

Variables

pagp 80

Whenever a procedure is called from CML, CML creates a ten-word record. The address
of the record is passed to the procedure, which may put information in any of the ten
words. The procedure usually returns the address of its record.

6bSb

NLS Prograll1l1wrs' Guidt' ARC 34210 Rev. 8 JAN 76

Pdrt Four: Command Mpta Language (CML)

A CML variable is a cell which holds the address of a CML record. By this mechanism, up
to ten words of information may be handled with a single parameter by passing the
address of the first word of the record. A variable may be declared with the statement:

DECLARE VARIABLE name;
or

DECLARE name:

where "name" is any unique name (lowercase letters and numbers, beginning with a
letter).

You may declare any number of variables in a single statement, i. e.:

DECLARE VARIABLE name1, name2, ••• ;
or

DECLARE name1, name2, ••• ;

Many CML variables have been declared for use anywhere in the system, and may be used
freely in user attachable subsystems (without being declared by the user programmer).
Some commonly used variable names are:

ent namf i I level param
dent dest f i I t r e param2
sent source vs param3
port fromwhom literal param4

External Variables

As in L 10, external variables are variables which are made available to any procedure
anywhere in the NLS system. (Simple variables are only known in the file in which they
are declared.) One or more may be declared with a statement of the form:

DECLARE EXTERNAL name 1, name2, ••• ;

Parsefunctions

An LI0 function which processes input and supplies a prompt string is called a
"parsefunction. " The name of the procedure must be declared as a parsefunction for
CML to request a prompt string whenever the procedure is called.

DECLARE PARSEFUNCTION name 1, name2, ••• ;

More detailed information about the nature of parsefunctions will be offered below.

Command Words

A command word is a word specified as part of a command (e.g. "insert" or "Word" in
the Insert Word command); it is specified in accordance with each user's recognition
scheme (often recognized after the first character). A declaration may assign a value to a
command word, to be passed to an LIO procedure which needs to know which command
word was chosen by the user.

DECLARE COMMAND WORD "WORDl"=100, "WORD2"=lOI, ••• ;

The value must be a positive decimal integer, less than 511. (This limit may have to
be changed to 255 in future versions of NLS.)

6bSc

6bSd

6bSe

page 81

ARC 34210 Rcv. 8 JAN 76 NLS Programmers' Guide
Part Four: Command Meta Language (CML)

More than one command word may have the same value (unless of course the LIO
procedure must distinguish the user's choice between the two).

A command word that has not been declared may be included in the syntax; it will have no
value though. Only those command words which are assigned a value and then passed to
an L 10 procedure must be declared. Many command words have been declared for use
in the NLS system. It is considered good practice to use command words already known
to users when possible, and to use the same values for those words as declared in NLS.
Section 5 offers a set of declarations, including all the system defined command words; it
can be copied as the foundation for a CML program.

You may not use command words identical to the names of the LIO or CML files, to
the name of the subsystem, nor to any variable names.

CML Elements 6b6

The CML eler,lents described here are the building blocks of rules, which describe interactions
with the user. 6 b 6 a

Command Word Recognition 6 b 6 b

The appearance of a command word element in a rule means that the user must specify
that (or an alternative command word) at that point in the command specification.

In the CML description, each command word is represented by its full text. The
algorithm used to match a user's typed input against any list of alternative command
words is known as "recognition." Each individual's command word recognition mode
will determine what characters the user must type to specify the command word. This
is handled automatically by the command interpr'\~ter.

As the user specifies a command, the command words (and noise words described
below) are echoed in a line at the top of the DNLS screen, or printed in TNLS. This is
called the "command feedback line."

Command word elements must be uppercase words enclosed in double-quotes (""); e.g.

"INSERT"

Command words optionally may be followed by one or more qualifiers which modify the
recognition process, separated by spaces and enclosed in exclamation points. The
qualifiers are:

NOTT - - not available in TNLS

NOTD - - not available in DNLS

L2 -- second level (some recognition modes differentiate first from second level
command words, e.g. second level are preceded by a space)

number - - explicit value for command word; supercedes any value assigned by a
DECLARE COMMAND WORD

For example:

"SET"!L2!
"PRINT"!NOTD!
"EXAMPLEWORD"!L2 1 04!

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part Four: Command Mt'ta Language (CML)

The address of records holding declared command word values may be assigned to CML
variables so that the user's choice can be passed to subsequent routines, e.g.

ent - "CHARACTER"
or

ent - ("CHARACTER" / "WORD")

then
xprocedure (ent)

Remember that, like all other CML assignments, the variable receives the address of a
record which holds the information. When the content of this variable (the address of
the record) is passed to a procedure, the procedure must REF its receiving variable to
access the contents of the record, the value.

This value will be assigned as above even if the command word is followed by ather
CML elements; e. g.

ent - ("CHARACTER" param-FALSE / "WORD" <"at">
param-LSEL(#"WORD"))

ent will get the value of the command word CHARACTER or the value of the
command word WORD. The appropriate actions will happen after the user
chooses the command word.

You may wish to pass this value without forcing the user to type the command word. This
address may be assigned by preceding the command word by a pound-sign (#).

ent - #"CHARACTER"

will assign the· address of the declared command word value without forcing the user
to type the command word

Selection Recognition

Selections are input from users pointing to places in files or typing in strings of text. The
three types of selection routines available in CML, with their respective command
prompts, are:

DSEL - - destination selection

B/A

SSEL -- source selection

B/A/[T]

LSEL - - literal selection

B/T/[A]

where B = bug (not available in TNLS), A = Dynamic Address Element (any series of
NLS addressing elements), and T = typein from keyboard.

Each of these predefined selection routines prompts the user and receives the input.

The selection routines must be passed the address of a record holding the value of a
noun command word (character, word, statement, plex, etc.). The command word

6b6c

page 83

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Four: Command Meta Language (CML)

enclosed in double-quotes and preceded by a pound-sign (#) is equivalent to the
address of a record holding the declared value of that command word, e.g.:

DSEL(# "CHARACTER")

Or you may have assigned the address of the value of a previously selected command
word to a CML variable, then pass the content of the variable, e. g. :

ent -- "CHARACTER"
DSEL(ent)

CML will prompt the user for the appropriate input. If more than one selection is
necessary (e.g. to specify both ends of a group or string of text), they will prompt for
both automatically. They will delimit the appropriate entity automatically (e.g. both
ends of a word will be found from a single selection).

The routine will return the address of a CML record holding two text pointers in the
first four words, delimiting the beginning and end of the entity selected.

for string entities within statements

words 1-2: txt ptr before first character of string
words 3-4: txt ptr after last character of string

for types "STATEMENT" and "BRANCH"

words 1-2: txt ptr before first character of statement
words 3-4: txt ptr after last character of statement

for types "GROUP" and "PLEX"

words 1-2: txt ptr before first character of first statement
words 3-4: txt ptr before first character of last statement

for type "WINDOW"

word 1: address of display area
word 2: x and y screen coordinates

One usually assigns the returned address of this record to a CML variable, e.g.:

dest -- DSEL(#"STATEMENT")

Other Recognizers

page 84

Other prespecified input routines are available, each prompting for and receiving a type of
input from the user:

VIEWSPECS - - takes no argument and returns the address of a CML record holding:

word 1: updated viewspec word 1
word 2: updated viewspec word 2
words 3-7: used for collecting characters from user

6b6d

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
P,lrt Four: Command Meta Language (CML)

LEVADJ -- takes no argument and returns the address of a CML record holding:

word 1: level adjust count
(up = +1, same = 0, down = -1, up two levels = +2, etc.)

words 2 - 7: used for collecting characters from user

CONFIRM - - waits for user to type confirmation character (a Command Accept, Insert,
or Repeat character); it takes no argument and returns the address of a CML record
holding the confirmation code in word 1.

These values are rarely used, since subsequent functions are handled
automatically by the command parser. For reference, they are:

1 = Command Accept
2 = Insert
3 = Repeat

DUMMY - - does nothing but always TRUE; may be used to allow elements to be skiped,
e.g.:

("OPTION" somprocedure() / DUMMY) CONFIRM

allows the user to specify "Option" before the CONFIRM, or skip it and just type
a CONFIRM.

CML Constants

TRUE -- holds the address of a CML record whose first word has the value TRUE (i.e. 1)

FALSE -- holds the address of a CML record whose first word has the value FALSE (i.e. 0)

LID Procedure Calls

LI0 procedures may be called at any point in the rule by including the name of some
routine followed by its parameter list enclosed in parentheses. (The next section
describes the special requirements of LI0 procedures called from CML.) E.g.

procedurename (paraml, par~m2, •••)

Parameters may include CML variables (whose content is passed), the CML elements
TRUE, FALSE or NULL, or the i construct (see "Selection Recognition") representing the
address of a command word value.

Helpful Procedures in building CML logic:

isdnlsO - - returns TRUE if DNLS, else FALSE

istnlsO - - returns TRUE if TNLS, else FALSE

true() - - returns TRUE

false() -- returns FALSE

abort() - - abort command as if user typed a Command Delete

6b6e

6b6f

page 85

AHC 34210 Hev. 8 JAN 76 NlS Programmers' Guide
Part Four: Command Meta Language (CMl)

Parsefunctions

page 86

Procedures which are declared as PARSEFUNCTIONs examine the information being typed
by the user during command specification (characters going into the input buffer). CML
places additional requirements on LI0 procedures declared as parsefunctions, as
described in the next section. They may be called from CML like any other LI0
procedure. The following parsefunctions are available as part of the running system; they
of course must be declared as parsefunctions in any program which uses them as such:

answO -- if the next character in the input buffer is a CONFIRM, option character, or
the letter "y", it reads the character (out of the input buffer) and returns TRUE; else
it reads the next character and returns FALSE

answerO - - reads next character; like answ, but returns the address of a CML record
whose first word holds either the value TRUE (1) or the value FALSE(O)

100kanswO -- if next character is a CONFIRM, option character, or the letter "y",
returns TRUE and leaves next character in buffer; else returns FALSE and reads
character

mylookanswO -- if next character is a CONFIRM, option character, or the letter "y",
returns TRUE; else returns FALSE; leaves next character in buffer

readconfirmO - - if next character a CONFIRM character, reads and returns TRUE; else
leaves character in buffer and returns FALSE

100kconfirmO -- if next character is a CONFIRM, returns TRUE; else returns FALSE;
leaves next character in buffer

readbug() -- if next character a Command Accept character, reads and returns TRUE;
else leaves character in buffer and returns FALSE

100kbugO - - if next character is a Command Accept, returns TRUE; else returns FALSE;
leaves next character in buffer

notcaO - - if next character NOT a Command Accept character, reads and returns
TRUE; else leaves Command Accept character in buffer and returns FALSE

readoptionO - - if next character an option character, reads and returns TRUE; else
leaves character in buffer and returns FALSE

readrepeatO - - if next character a repeat character, reads and returns TRUE; else
leaves character in buffer and returns FALSE

100krptO -- if next character is a REPEAT, returns TRUE; p.lse returns FALSE; leaves
next character in buffer

spO -- if next character a space, reads and returns TRUE; else leaves character in
buffer and returns FALSE

100kbackO -- if next character is a back-arrow (--), returns TRUE; else returns FALSE;
leaves next character in buffer

100knumO -- if next character is a digit, returns TRUE; else returns FALSE; leaves next
character in buffer

6b6g

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part ~ our: Command Meta Language (CML)

Parsefunctions may appear as alternatives to recognizers. However, they must precede
any non-failing recognizers in the list of alternatives. E.g.:

(100kconfirmO / "APPEND" / "FILE") CONFIRM

- - this example either will accept a CONFIRM or will accept a specification of the
command word APPEND or FILE followed by a CONFIRM.

Feedback

Noise words between command words are very helpful to the user learning a new
command. Any string of text may be added to the command feedback line by enclosing
the text in parentheses and within angle-brackets in a rule. E.g.

<"Text of noise words">

The last noise word string on the command feedback line (in DNLS) may be replaced with
a new string by placing three dots before the first double-quote, e.g.:

< ••• "new noise words">

The last noise word string can be erased (in DNLS) with the procedure call:

clearnameO

The entire command feedback line can be cleared (in DNLS) with the CML element:

CLEAR

A few characters of the noise word will follow the command word in the system's response
to a questionmark if:

Loops

1) the noise word immediately follows the command word, and

2) the command word is not being assigned to a variable (it may however be part of a
list of alternatives being assigned).

E.g. the noise words in the CML below will show in the systems response to a
question mark:

ent +- ("FILE" <"name"> / "STATEMENT" <"at">)

A looping facility permits repetition of a different rule until an exit condition is met. The
rule is evaluated and then the expression following the UNTIL keyword is evaluated. If the
expression returns TRUE, then the loop is exited and the next element of the rule is
evaluated. If the expression returns FALSE, then the named rule is invoked once again.

PERFORM rulename UNTIL (exp)

where rulename is the name of the rule to be repeatedly executed and exp is an
expression of CML elements which evaluates to TRUE or FALSE.

E.g.

PERFORM rulename UNTIL (<"Finished?"> answO)

Nested loops (loops within rules called by a PERFORM element) are not currently allowed.
Backspacing through executed loops requires special treatment not described here.

6b6h

6b6i

page 87

ArK 34210 Hev. R JAN 76 NLS Programmers' Guide
Part Four Command Meta Language (CML)

Sample CML Program

The following sample program should help illustrate the use of the CML language for
describing NLS commands. For more exhaustive examples, look at the CML specification for
the standard NLS commands, in <NLS,SYNTAX,>. An example of a problem treatment can
often be found by thinking of an NLS command which is similar. 6b7a

FILE sampleprogram % <CML,> to <sample. rei,> % 6b;'b

DECLARE what, whom, where ;
DECLARE COMMAND WORD

"GLUE" = 1,
"PASTE" = 2,
"CRA YONS" = 3,
"PENS" = 4,
"PENCILS" = 5 ;

SUBSYSTEM sample KEYWORD "SAMPLE"
objects =

"GLUE"
/ "PASTE"
/ writingthings ;

writingthings =
"CRAYONS"

/ "PENS"
/ "PENCILS"!L2! ;

COMMAND zuse = "USE"
what +- writingthings
CLEAR
< "to d raw a pretty" > whom --

("PICTURE" <"of Aunt Mary">
/ "SKETCH" <"of your dog">
)

CONFIRM
% call execution routine process the USE command %

xuse(what, whom) ;
COMMAND ztake = "TAKE"

what +- objects
<"out of your">

where +- ("Ef\RS"!1! / "NOSE"!2! / "MOUTH"!3!)
<"PLEASE!!")

CONFIRM
xtake (what, where) ;

END.
FINISH

Given this sample CML, the user might specify the command:

"Use Pens
(to draw pretty) Sketch (of your dog) <OK>"

"Take Crayons (out of your) Mouth (PLEASE!!) <OK>"

6b7::

The execution routines called from CML typically have names beginning with tne letter "x". 6 b 7 d

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76

Part r our: L 1 0 EXt'cution Procedures

Section 3: LIO Execution Procedures

The CML program interacts with the user and gathers information; it subsequently calls one or
more LIO procedures. The procedure CML calls must meet certain requirements, described in
this section. Because of these requirements, typically the execution routine is written as an
interface to a number of other L 1 0 procedures performing the actual functions. This way the
function routines can be written independent of which command or procedure calls them. This
section will describe the requirements of procedures called from CML. The next section offers

6c

additional LIO capabilities in this environment. 6c 1

CML can be in one of four states as it parses a command based on the syntax described in your
CML program (known as the "parsemode"): 6c 2

1) parsing: recognition state where input text is compared with grammatical constructs in
CML program 6 c 2 a

2) backup: the user has typed a backspace, or a procedure call has returned FALSE; CML
backs up through previously specified elements of the CML code, calling each in backup
mode, to before the last CML alternative (not necessarily equivalent to user input element;
maybe through the entire command, aborting the command) 6 c 2 b

3) cleanup: the user has typed a Command Delete, or the command has been completed
(including any execution procedure calls); CML backs up through all previously specified
elements of the CML code; each procedure is again called, this time in "cleanup" mode 6c2c

4) parsehelp: (used only with parsefunctions) before calling a parsefunction in "parsing"
mode, the procedure is called in, "parsehelp" mode to solicit a user prompt string. 6c2d

5) parseqmark: (used only with parsefunctions) when the user types a questionmark, the
procedure is called in "parseqmark" mode to solicit a questionmark string. 6c2e

When CML calls a procedure, it automatically passes two extra implicit parameters before the
parameters the programmmer specifies: 6 c 3

The first parameter is the address of a CML record reserved for use by that procedure. The
record is initially empty (or filled with garbage). The execution procedure may fill the ten
words of the record by receiving the address in a REFed parameter variable and then indexing
into the array. 6c3a

CML considers the procedure to have returned TRUE if it returns the address of the CML
record; otherwise the return is considered FALSE. When a procedure returns FALSE, CML
will back up, calling that and previous procedures in "backup" mode, until another branch
in the command syntax logic is found or until the entire command has been aborted.

The second parameter is a value (not an address of a record) representing the parse mode.
Whenever CML encounters a procedure call in the syntax (in any mode) it calls the procedure,
passing it the value of the parsemode. 6 c 3 b

page 89

ARC 34210 Rl'v.8JAN76 NLS Programmers' Guide
Part Four: L 10 Execution Procedures

Typically, the execution routine should only perform its primary function in the parsemode
"parsing". In "backup" and "cleanup", it may reset any globals or state information it
may have affected while in the parsemode "parsing." The names of the modes (see
above) are globals to which you may compare the value received in the second parameter.
An execution routine typically consists of a large CASE statement, e.g.

CASE parsemode OF

= parsing:
BEGIN

END;

= backup, = cleanup:
BEGIN

END;

ENDCASE;

Calls on procedures declared as parsefunctions pass a third implicit parameter, the address of
a string in which to put the prompt. They are called in the parsemode "parsehelp" for the
string before being called in the parsemode "parsing", or in parsemode "parseqmark" when
the user types a questionmark. 6c3c

CML passes the parameters specified in the call after the two or three system supplied
parameters. Remember that these parameters will always be the address of a record holding
the information, so the receiving variable must be REFed. The format of the record itself is
determined by the routine that filled it. 6 c 3 d

For example, if the CML procedure call looked as follows: 6 c 4

xprocedure (paraml, param2) 6c4a

then the L 1 0 execution procedure would receive parameters as follows: 6 c 5

(xprocedure) PROCEDURE (result, parsemode, parameterl, parameter2) ; 6cSa

All parameters except the parsemode should be REFed in the execution procedure. 6cSb

Nt S Prograrnmers' Guidl' ARC 34210 Rev. 8 JAN 76

f\lrt ~ our Additional L 10 Capabil,· ips

Section 4: Additional L 10 Capabilities

Introduction

The attachable subsystems have access to the full capabilities of the NLS environment. This
section will describe some capabilities not discussed in the context of Content Analyzer

6d

6 d 1

programs. Further capabilities will be discussed in Part Five. 6dla

Moving Around Within NLS Files 6 d 2

Generally, at least one simple variable or a text pointer will have to be declared to hOld the
statement identifier (stid) of the current statement. (The first word of a text pointer is an
stid.) Assume the simple variable with the name "stid" has been declared for the purpose of
the following discussion. 6 d 2 a

In the NLS file system, two basic pointers are kept with each statement: to the substatement
and to the successor. 6 d 2 b

If there is no substatement, the substatement-pointer will point to the statement itself.

The procedure getsub returns the stid of the substatement. To do something to the
substatement if there is one:

IF (stid := getsub(stid» :# stid THEN something .. ;

stid is given the value of the substatement-pointer, then the old value of stid is
compared to the new. If they are the same, then there is no substructure. If they
are different, you have the stid of the substatementand can operate on it.

If there is no successor (at the tail of a plex), the successor-pointer will point to the
statement UP from the statement (i. e. the statement to which the current statement is a
sub).

The procedure getsuc returns the stid of the successor (or up).

To move to the successor:

stid 4- getsuc(stid);

Given these two basic procedures, a number of other procedures have been written and are
part of the NLS system. All of the following procedures take an stid as their only parameter,
and do nothing but return a value, usually a stid. If the end of the file is encountered, these
procedures return the global value "endfil". 6d2c

getup(stid) -- returns the stid of the up

getprd(stid) -- returns stid of the predecessor

getnxt(stid) -- returns stid of next statement or endfil

getbck(stid) - - returns the stid of the back or endfil

gethed(stid) -- returns stid of the head of the plex

getail(stid) -- returns stid of the tail of the plex

getend(stid) - - returns the stid of the end of the tail of the plex

page 91

M<C34210 Ht'v.SJAN76 NLS Programmers' Guide
Part Four Additional Ll a Capabilities

getftl(stid) -- returns TRUE if stid is tail of plex, else FALSE

getlev(stid) - - returns level of statement

Once you have the stid of a statement, you may operate on it as in Content Analyzer
programs. E.g. 6d2d

FIND SF(stid) $NP T ptr •••

Another common operation is to access the statement (file) in which the CM (or bug) was at
the time of the last Command Accept (or other command terminator). This is stored in the
system, and can be accessed with the following procedure call: 6 d 2 e

stid - IccspO ;

Then, if you wish to set the stpsid to the origin of that file, you could say:

stid.stpsid - origin; %origin is a global with the stpsid of the origin statement in it%

The following procedures may also assist you in moving around fifes:

pClgf' q2

caddexp(aptrl,aptr2,da,startptr) -- given the addresses of two text pointers surrounding
an NLS address expression, the address of a display area, and the address of a text
pointer representing the starting position: caddexp will evaluate the address expression
with respect to the starting position, and update the start pointer to the new location.

This procedure will follow file returns, links, etc., opening files as necessary.
Remember to dose any open files when you are done with them (see 6d4 below).

The procedure IdaO returns the address of the display area which held the bug at the
time of the last Command Accept; it may be used as the third parameter of caddexp.
E.g.

caddexp($ptrl, $ptr2, IdaO, $sptr) ;

namingrp(stidl,stid2,astring,levels) -- given two stids representing a group, the address of
a string holding the name, and a number representing levels of depth below the stids':
returns stid of the statement with the given statement name in the group specified by the
stids. Only searches through given number of levels below stid level. (If the stids are the
same, will search the branch.)

6d2f

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
PM! Four' Additional Ll 0 Capabilities

lookup(ptr,string,type) -- given the address of a text pointer, the address of a string, and a
type, will do a variety of searches (in the process destroys string and changes pointer).
type may be one of the following:

nametyp -- non-sequential search for statement of name given in string; returns stid
and sets pointer to stid or else returns endfil in both places

nxtname - - like name, also a non-sequential search, but starts from place in file ring to
which ptr points

seq name - - starting with the statement following the one refered to by the ptr, does a
sequential search of the file for the given name; returns stid or endfil in pointer

contnt - - does a sequential search of the file, beginning with the character following
the pOinter, for a statement with the content of the string; returns stid or endfil in
pointer

contls - - same as contnt, but looks only in statement holding pointer

wordtyp - - same as contnt, but looks for word given in string

sid -- pass an SID instead of the address of the string; searches for statement with
that SID and returns in pointer and as procedure value the stid or endfil

Calling NLS Commands 6 d 3

A program may execute any of the standard NLS commands by calling the same procedure
that the system execution routines call for each command. These procedures are called the
"core" procedures. They are listed in <NLS,XPROCS,> and in <NLS,SYSGD,>. Their names
begin with the letter "c", generally followed by three initials of each command word, e.g.
Insert Statement could be executed by calling the procedure "cinssta". 6 d 3 a

Usually the required arguments can be discovered by knowing the command and by looking at
XPROCS and/or SYSGD. For example, the formal parameters to the procedure "cinssta" are
(stid,rlevcnt,tpI,tp2). As one might guess from the command syntax, the procedure wants a
target stid, the value of level adjustment (up = +1, same = 0, down = -I, etc), and the
address of two text pointers surrounding the string of text to be inserted. 6 d 3 b

Much can be learned by looking at the code of the core procedure. You can see what
procedures it in turn calls to discover how the command is actually performed. But most
importantly, you can find out what the procedure returns. The RETURN statement for
"cinssta" look like: 6 d 3 c

RETURN(stid);

from which it can be inferred that the procedure returns the stid of the newly created
statement. 6 d 3 d

When you are not sure what the arguments mean, a good way to find out is to see where the
command parser picks up the information. You can follow through the parsing of a command
by beginning with <NLS,SYNTAX,>, the actual NLS CML code. 6d3e

Tracing a command from <NLS,SYNTAX,> is also valuable in finding out how the system
performs an operation which you would like your program to do. For example, if you wish to
parse a link and open the given file, you might learn how to do it by following the Jump to
Link command through. 6 d 3 f

page 93

AHC34210 Hev.8JAN76 NLS Programmers' Guide

Part Four: Additional L 1 0 Capabilities

Opening Files

When you ask the user for an address or bug, you don't have to open the file; you have a
handle on it with the stid the user gives you. There may be times, however, when you wish

6d4

your program to open a file not specified by the user. There is a procedure which does this: 6 d 4 a

open (jfn, astring);

You should pass zero as the jfn, and the address of a string containing the name of the file to
astringe This procedure will return the file number. If the file is not already open, it will open
it. It will also fill out the string with the complete file name if you do not specify the directory
or version number. 6 d 4 b

If the file does not exist, open calls the procedure "err", which generates a signal of the
value "errsig." Signals are discussed in Part Five.

The usual sequence of steps to open a file is as follows:

% "stid" has been declared as a simple variable or text pointer%

stid orgstid; %orgstid is a global with all zeros except in the stpsid field, where it has
the stpsid of the origin statement (the same for every file) %

str "<dirname>filename.nls"; %str is of course a declared string variable%

stid .stfile open (O,$str);

Note that the procedure "open" requires a TENEX file name. The procedure "Inbfls"

6d4c

converts links to TENEX file names: 6d4d

Inbfls (Iinkstr, linkparseblock, filenamestr)

Pass the address of the string holding the link as the first parameter, zero for the second
parameter (used if link already parsed), and the address of a string to receive the
filename as the third parameter.

The procedure returns the host number in case the link includes a site name. This value
might be compared to the following globals:

Ihostn - - the number of the local host

utilhost -- the number of Office-l

archost -- the number of the ARC machine (BBN-TENEX-B)

For example, you might use the procedure as follows:

CASE Inbfls(&linkstr,O,$filename) OF

= Ihostn: NULL;

ENDCASE err(notyet) ;

At the end of your program, you should close any files that you have opened. Use the
procedure: 6d4e

pi'lgc 94

close (filnum);

E.g.
close (stid. stfile);

NLS Programmers· Guide ARC 34210 Rev. 8 JAN 76
P'lrt f our', Additional L 10 Capabilities

Displaying Messages 6d5

The following procedures may be of use in displaying messages. In all cases, the appropriate
actions will occur in TNlS as well as DNlS, although these descriptions are oriented to DNLS. 6d5a

dismes(type, astring) - - teletype window

where type is one of the following:

o -- clear teletype window (no address need be passed)
1 -- add text in string whose address is passed as a new line in the teletype
window
2 -- add text in string whose address is passed as a new line in the teletype
window for about 3 seconds, then clear window
n -- any number >=1000 represents the number of milliseconds the message is to
be displayed before the teletype window is cleared.

In TNlS, type = 1, 2, and >= 1000 all simply print the string starting on a new line.

fbctl(type, astring) - - literal display window

where type is one of the following:

typenuillit -- begin empty literal display (replacing file window), no string address
passed

fbaddlit - - add string whose address is passed to current literal display

addcalit -- add "Type <CA> to continue." to current literal display, then wait for
<CA> or <CD>, then restore file window

typelit - - start literal display with string, then wait for user input, then restore file
window

fbendlit - - add string to current literal display, then wait for user input, then
restore file window

typecalit -- start literal display with string, add "Type <CA> to continue. to, then
wait for <CA> or <CD>, then restcre file window

The literal display replaces the file window on the screen, or is simply printed in TNlS.
For example, it is used by the Show File Status command.

dn(astring) - - name display

add string whose address is passed to command feedback line, enclosed in quotes

Setting Up for Display Refreshing 6 d 6

The command parser calls the procedure "cmdfinish" after completing and cleaning up every
command. If certain parameters are set properly, "cmdfinish" will automatically update the
user's screen (primarily of concern in DNlS). You may also move a different statement to the
top of the window (i.e. jump) before updating the screen. 6d6a

page 95

ARC 34210 R!'v. 8 JAN 76 NLS Programmers' Guide
Part Four: Additional L 1 0 Capabilities

To refresh the screen after editing a file:

page 96

The procedure "dpset" sets up parameters for refreshing the screen after a command. If
"dpset" is properly used, the screen will automatically be refreshed after the command.
One should look for the most efficient way to make the proper changes.

The procedure "dpset" must be called BEFORE any changes are made in the file.
This is so that the display reformatter will have something with which to compare
when looking to see what has been changed.

The procedure call should look as follows:

dpset (type, stid 1, stid2, stopstid) ;

There are a number of globals which may be passed for "type":

dsprfmt - - rewrite the content of one or two statements

stid 1 - - the stid of the statement that has been changed

stid2 - - the stid of another statement that has been changed, or "endfil"

stopstid - - ignored, pass it "endfil"

dspstrc -- if file restructuring occured beginning at at one or two places; doesn't
rewrite content of statements; will add new statements in a structure

stid 1 - - the stid of the statement where a structural change begins

stid2 - - the stid of where another structural change begins, or "endfil"

stopstid - - the stid of the statement after which it can stop changing the
screen (whether change began with stid 1 or stid2); the procedure "dpstp"
may be of service here; if you cannot figure out where it should stop, pass it
"endfil" (go till end of window)

dsprfst -- rewrites content of one or two statements, then looks for structural
changes thereafter

stid 1 - - the stid of the statement where a set of changes begins

stid2 -- the stid of where another set of changes begins, or "endfil"

stopstid - - the stid of the statement after which it can stop changing the
screen (whether change began with stid 1 or stid2); the procedure "dpstp"
may be of service here; if you cannot figure out where it should stop, pass it
"endfil" (go till end of window)

dspjpf - - jump command in one window only, no editing

stid 1 - - the stid of the statement to be at the top of the screen; see below for
other parameters which must be set

stid2 --"endfil"

stopstid - - "endfil"

6d6b

NLS Programmers· Guidl' ARC 34210 Rev. 8 JAN 76

Pdrt f ollr: Addltion,)1 L 10 Capabilitips

dspyes - - completely refresh all windows holding one or either of two files
specified

stid 1 - - the stid of a statement in the file where changes will be made

stid2 -- the stid of a statement in the file where another set of changes will be
made, or "endfil"

stopstid - - "endfil"

dspno - - do no display refreshing

stid 1 - - "endfil"

stid2 -- "endfil"

stopstid - - "endfil"

dspallf - - refresh the entire screen

stid 1 - - "endfil"

stid2 -- "endfil"

stopstid - - "endfil"

The procedure "dpstp", when passed an stid, returns the stid of the next statement in the
file at the same or a higher level. This can be used as the stopstid in "dpset" if
structural changes are occuring such that you don't know a priori what the last statement
changed will be.

To change the position of a window (jump):

The global "cspupdate" should be set to the address of the display area descriptor for
the window you want changed.

In TNLS, it is always the address contained in the global "tda".

If you wish to change the view in the window which held the bug at the time of the
last CONFIRM, you may use the statement:

cspupdate -- IdaO;

This also works for TNLS.

Once cspupdate is set, any of the globals described below will replace the appropriate
field in the display area descriptor upon completion of the command.

The global "curmkr" is a text pointer pointing to the statement at the top of a window in
DNLS, or the CM in TNLS.

The first word of "curmkr" should be set to the stid of the statement you want at the
top of the window (in TNLS the statement which you want to hold the CM).

The second word of "curmkr", i.e. curmkr[1], should hold the character position for
the CM. (I n DNLS it is usually 1.)

6d6c

page 97

ARC .11210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Four: Additional Ll a Capabilities

The global "cspvs" is a two word array which should hold two viewspec words for the
new view.

The global stdvsp is a two work array holding the NLS standard viewspecs (i .e. the
ones in effect when you first enter NLS).

The current viewspec words may be gotten from the display area descriptor. If you
have REFed a variable called "da", for example, you may assign the address of the
display area which held the cursor at the time of the last command Accept with the
statement:

&da 0-- IdaO ; %return address of display area descriptor%

You may then refer to fields within the display area descriptor.

davspec -- holds the first viewspec word

davspc2 - - holds the second viewspec word

You may change individual fields within viewspec words. The following fields apply to
viewspec words:

vslev - - lowest level to be displayed

vsrlev - - if set to TRUE, the level of the current statement will be added to vslev

vslevd - - if set to' TRUE and vsrlev is TRUE, the current level will be subtracted
from rather than added to vslev

vstrnc - - number of lines of each statement to be displayed

vscapf - - if TRUE, content analyzer on (viewspec i); takes precedence over vscakf

vscakf - - if TRUE, content analyzer on until one statement passes (viewspec i)

vsusqf - - if TRUE, user sequence generator on (viewspec 0)

vsbrof - - if TRUE, branch only on (viewspec g); takes precedence over vsplxf

vsplxf - - if TRUE, plex only on (viewspec I)

vsblkf -- if TRUE, blank lines on (viewspec y)

vsindf - - if TRUE, indenting on (viewspec A; on by default)

vsrind - - if TRUE, indenting relative to first statement in display (viewspec Q)

vsnamf - - if TRUE, statement names on (viewspec C; on by default)

vsstnf - - if TRUE, statement numbers or SIDs on (viewspec m)

vsstnr -- if TRUE, statement numbers/SIDs put on right (viewspec G)

vssidf -- if TRUE, SIDs replace statement numbers (viewspec I)

vsidtf - - if TRUE, statement signatures on (viewspec K)

vsfrzf - - if TRUE, frozen statements on (viewspec 0)

vspagf - - if TRUE, pagination on in TNLS (viewspec E; on by default)

vsdaft - - if TRUE, don't defer display recreation in DNLS (vi~wspec u; on by
default)

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part Four: Additional Ll 0 Capabilities

If you wish, you may set the variable "cspcacod" to the address of a user content
analyzer procedure, and/or the variable "cspusqcod" to the address of a user sequence
generator procedure; they will be instituted before the window is updated.

The following fields in the display area descriptor may be useful:

dacacode -- holds address of currently instituted Content Analyzer procedure

dausqcod - - holds address of currently instituted user Sequence Generator
procedure

If you have a REFed variable called "da", will not edit the file, and do not wish to change
the viewspecs, you might use the following sequence of commands:

%address of last display area%
&da .- cspupdate +- Ida();

%stid of stmnt to be put at top of window%
curmkr +- stid ;
curmkr[1] .- 1 ;

%two current viewspec words%
cspvs .- da. davspec;
cspvs [1] +- da .davspc2;

%turn on Content Analyzer%
cspvs. vscapf .- TRUE;

% institute the procedure "filterproc" as Content Analyzer%
cspcacod .- $filterproc;

%set up for display recreation%
dpset (dspjpf, curmkr, endfil, endfil);

If you have edited the file, use the type "dspyes" instead of "dspjpf" in your call on
"dpset" •

Other Useful Procedures 6 d 7

astruc(astring) - - given the address of a string, sets the string to upper case. 6 d 7 a

fechno(stid,astring) -- given an stid, appends the statement number string to the string
variable whose address is passed. 6 d 7 b

getsid(stid) -- given an stid, returns value of SID (don't forget to add zero to front if
converting to a string) 6 d 7 c

fechsig(stid,astring) - - given an stid, appends the statement signature to the string variable
whose add ress is passed. 6 d 7 d

getdat(astring) -- given the address of a string, appends date and time to string. 6d7e

grptst(stid 1,stid2) - - checks that two stid's specify a legal group; returns them ordered or else
an "illegal group" signal is generated. 6 d 7 f

plxset(stid) - - given an stid, returns the stid of the head and of the tail of the plex of which the
passed stid is a member; e.g. first +- plxset(stid : last) ; 6d7g

resetf(fileno) -- given the file number of and open file, deletes all contents of the file leaving
only origin statement, resets date and ident in origin statement (leaves file locked) 6 d 7 h

page 99

ARC 34210 Rev.8JAN76 NLS Programmers' Guide
Part Four: Additional L 1 a Capabilities

filnam(filno,astring) -- given the file number, appends the file name (in link format surrounded
by angle-brackets <» to string whose address is passed 6d7;

pause(milliseconds) -- waits the given number of milliseconds, then returns 6d7 j

settimer(milliseconds,aproc,paraml,param2,param3,param4) -- calls procedure whose address
is passed, passing up to four parameters to that procedure, after given number of
milliseconds; other code will be executed in the mean time 6 d 7 k

Globals of Interest: 6 d B

initsr - - is the login ident of the person currently using the program. 6 dB a

inptrf -- is incremented every time the user types a <CTRL -0>; this can be used as a user
program interrupt mechanism; i.e. you can set it to 0 at the beginning of the program and
then check it at the start of each loop of your program to see if the user has typed a
<CTRL-o>, i.e. wishes to abort the command. 6dBb

inpstp -- is incremented every time the user types a <CTRL-s>. 6dBc

page 100

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76

Pelrt Four: Crl'ating and Using Attilchable Subsystems

Section 5: Creating and Using Attachable Subsystems 6e

In summary, the programmer must write two programs to build a user attachable subsystem: the
CML and the L10 support procedures. Each of these programs is compiled separately (by their
respective compilers) into separate REL files. The Load Program command (in the PROGRAMS
subystem) will load both at once if the extension on the filename holding the CML code is "cml"
and the extension on the L 1 0 code file is "subsys". Once loaded, the user may use commands in
the subsystem as he does commands in any of the standard subsystems. 6 e 1

You may find it convenient to begin writing a program by copying the following skelton (plex) from
this NLS file <USERGUIDES,Ll 0-GUIDE,6e2a>. It can then be modified to fit the needs of your
program. (The comments in the FILE statements allow you to quickly bug the information required
by the Compile File command. All the CML declarations that are used in the NLS system are
included only to contribute to consistent use of command words and values. The CML rules have
been left blank; they must be filled in or removed. All file, procedure, subsystem, and rule names
are only exemplary. The last three parameters in the LI0 procedure are only exemplary.)

FILE cname % (CML.SAV,) TO (cname.cml,) %
% DECLARATIONS %

DECLARE PARSEFUNCTION
answ, % reads answer construct %
answer, % for questions - returns 0/1 %
sp, % reads next char, TRUE if space %
readconfirm, % reads next char if ca %
read bug, % reads next char if BUG %
readoption, % TRUE if next char is optchar %
readrepeat, % TRUE if next char is repeat %
lookansw, % TRUE if next char is Y ICA %
lookconfirm, % TRUE if next char is CA/REPEAT IINSERT %
lookbug, % TRUE if next char is BUG %
looknum, % TRUE if next char is a number %
clearname, % clears the name area %
notca; % reads next char, TRUE if not CA char %

DECLARE COMMAND WORD
"BRANCH" = 1 ,
"GROUP" = 2,
"PLEX" = 3 ,
"STATEMENT" = 4 ,
"CHARACTER" = 5 ,
"CONTROLCHAR" = 6 ,
"INVISIBLE" = 7 ,
"LINK" = 8 ,
"DIRECTORY" = 9 ,
"PASSWORD" = 1 0 ,
"NUMBER" = 11 ,
"TEXT" = 12 ,
"VISIBLE" = 13 ,
"WORD" = 14 ,

6e2

6e2a

page 101

ARC 34210 Rev.8JAN76

p2lge 102

"FILE" = 15 .
"NEWFILELlNK" = 16 ,
"OLDFILELlNK" = 1 7 ,
"NAME" = 18 ,
"IDENT" = 1 9 ,
"IDENTLlST" = 20 ,
"EDGE" = 21 ,
"MARKER" = 22 ,
"NLS" = 23 ,
"ITEM" = 24,
"ITEMNOVS" = 25 ,
"SUCCESSOR" = 26,
"PREDECESSOR" = 27 ,
"UP" = 28,
"DOWN" = 29,
"HEAD" = 30,
"TAIL" = 31 ,
"END" = 32,
"BACK" = 33 ,
"NEXT" = 34,
"ORIGIN" = 35 ,
"FILERETURN" = 36 ,
"RETURN" = 37 ,
"FILENAME" = 38 ,
"FIRSTNAME" = 39 ,
"NEXTNAME" = 40 ,
"EXTNAME" = 41 ,
"FIRSTCONTENT" = 42 ,
"NEXTCONTENT" = 43 ,
"FIRSTWORD" = 44 ,
"NEXTWORD" = 4 5 ,
"DETACHED" = 46 ,
"TTY" = 47 ,
"AUTO" = 48 ,
"CONTINUE" = 49 ,
"ON" = 50,
"RECOVER" = 51 ,
"SLINKER" = 52 ,
"UPDATE" = 53 ,
"CLEAR" = 54 ,
"IDENTS" = 55 ,
"FILES" = 56 ,
"DELETE" = 57 ,
"DEFERRED" = 58 ,
"IMMEDIATE" = 59,
"NOT" = 60,
"PREVENT" = 61 ,
"RESET" = 62 ,
"ARCHIVE" = 63 ,

NLS Programmers' Guide
Part Four: Creating and Using Attachable Subsystems

NLS Programmers' Guidl'
Pdf! F our: Creating and Using Attdchable Subsy!>terns

"SEQUENTIAL" = 64 ,
"TWO" = 65 ,
"JUSTIFIED" = 66 ,
"ASSEMBLER" = 67 ,
"BOTH" = 68,
"UNDELETE" ~ 69 ,
"FOR" = 70,
"STATUS" = 71 ,
"TAPE" = 72 ,
"ACCOUNT" = 73 ,
"NO" = 74 ,
"VERSIONS" = 75 ,
"EXTENSION" = 76 ,
"DATE" = 77 ,
"CREATION" = 7 8 ,
"LAST" = 79 ,
"FIRST" = 80 ,
"READ" = 81 ,
"WRITE" = 82 ,
"DUMP" = 83,
"EVERYTHING" = 84 ,
"LENGTH" = 85 ,
"MISCELLANEOUS" = 86 ,
"ACCESSES" = 87 ,
"PROTECT" = 88 ,
"SIZE" = 89 ,
"TIME" = 90,
"VERBOSE" = 91 ,
"SORT" = 92,
"BYTESIZE" = 93 ,
"ARCHIVED" = 94 ,
"ALL" = 95 ,
"MODIFICATIONS" = 96 ,
"UPPER" = 97 ,
"LOWER" = 98 ,
"MODE" = 99,
"SENDMAIL" = 100 ,
"BUSY" = 101 ,
"QUICKPRINT" = 102 ,
"JOURNAL" = 1 03 ,
"PRINTER" = 104 ,
"COM" = 105 ,
"TERMINAL" = 106 ,
"REMOTE" = 107 ,
"REST" = 108 ,
"CASE" = 109 ,
"CONTENT" = 110 ,
"TEMPORARY" = 111 ,
"VIEWSPECS" = 112 •

ARC 34210 Rev. 8 JAN 76

page 103

ARC 34210 Rev. 8 JAN 76

pagp 104

"EXTERNAL" = 113 ,
"TO" = 114 ,
"PRIVATE" = 115 ,
"PUBLIC" = 116 ,
"TENEX" = 117,
"ALLOW" = 118 ,
"EXECUTE" = 119 ,
"APPEND" = 120 ,
"LIST" = 121 ,
"SET" = 122 ,
"SELF" = 123 ,
"FORBID" = 124 ,
"DISK" = 125 ,
"DEFAULT" = 126 ,
"OLD" = 127 ,
"NEW" = 128,
"COMPACT" = 129,
"RENAME" = 130 ,
"ADD" = 131 ,
"SUBTRACT" = 132 ,
"MULTIPLY" = 133 ,
"DIVIDE" = 134 ,
"RIGHT" = 135 ,
"LEFT" = 136 ,
"ACTION" = 137 ,
"AUTHORS" = 138 ,
"COMMENT" = 139 ,
"EXPEDITE" = 140 ,
"HARDCOPY" = 141 ,
"INFORMATION" = 142 ,
"INSERT" = 143 ,
"KEYWORDS" = 144 ,
"OBSOLETES" = 145 ,
"RFC" = 146 ,
"SUBCOLLECTIONS" = 147 ,
"TITLE" = 148 ,
"UNRECORDED" = 149 ,
"L10" = 150,
"PROCEDURE" = 151 ,
"SEQGENERATOR" = 152 ,
"BUFFER" = 153 ,
"NDDT" = 154 ,
"PARSERULE" = 155 ,
"CA" = 156 ,
"CD" = 157 ,
"RPT" = 158,
"BC" = 159,
"BW" = 160,
"BS" = 161 ,

NLS Programmers' Guide
Part Four: Creating and Using Attachable Subsystems

NLS Programmers' Guide
Part Four: Cn.'ating and Using Att<!chable Subsystems

"UTESC" = 162 ,
"IGNORE" = 163 .
"SC" = 164 ,
"SW" = 165,
"TAB" = 166 ,
"IMLAC" = 167 ,
"TI" = 168 ,
"NVT" = 169,
"EXECUPORT" = 1 70 ,
"MENU" = 171 ,
"DNLS" = 172 ,
"TNLS" = 173 ,
"COMMAND" = 174 ,
"RULE" = 175 ,
"SUBSYSTEM" = 176 ,
"DISPLAY" = 177 ,
"FROZEN" = 1 78 ,
"HLPCOM" = 179 ,
"PROGRAM" = 180 ,
"TERSE" = 181 ,
"INDENTING" = 182 ,
"UNIVERSAL" = 183 ,
"ENTRY" = 184 ,
"INCLUDE" = 185 ,
"BOTTOM" = 186 ,
"PAGE" = 187 ,
"OFF" = 188 ,
"FULL" = 189 ,
"PARTIAL" = 190 ,
"ANTICIPATORY" = 191 ,
"DEMAND" = 192 ,
"FIXED" = 193 ,
"CONTROL" = 194 ,
"CURRENTCONTEXT" = 1 9 5 ,
"FEEDBACK" = 196 ,
"HERALD" = 197 ,
"PRINTOPTIONS" = 198 ,
"PROMPT" = 199 ,
"RECOGNITION" = 200 ,
"STARTUP" = 201 ,
"LEVELADJUST" = 202 ,
"REVERSE" = 203 ,
"TEST" = 204 ,
"TASKER" = 205 ,
"LlNEPROCESSOR" = 206 ,
"CENTER" = 207 ,
"CNTLQ" = 208 ;

ARC 34210 Rev. 8 JAN 76

page 105

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Four: Creating and Using Attachable Subsystems

% COMMON RULES %
% ENTITY DEFINITIONS %

editentity = textent / structure;
% TEXT ENTITY DEFINITIONS %

textent = text! / "TEXT" / "LINK";
text! = "CHARACTER" / "WORD" / "VISIBLE" / "INVISIBLE" / "NUMBER";

% STRUCTURE ENTITY DEFINITIONS %
structure = "STATEMENT" / notstatement;
notstatement = "GROUP" / "BRANCH" / "PLEX" ;

SUBSYSTEM name KEYWORD "NAME"
INITIALIZATION fnamel =

COMMAND fname2 = "COMMANDWORD"

TERMINATION fname3 =

END.
FINISH

FILE Iname % (LIO.SAV,) TO (Iname.subsys,) %
% globals %

pag" 106

(xname) PROCEDURE % execution procedure %
% Formal Parameters %

(result, %result record%
parsemode, % parsing, backup, cleanup %
param I , % your first parameter ••• %
param2, %of course you may have ••• %
param3); %0 to 7 of your own parameters%

%Locals%
REF result, paraml, param2, param3;

CASE parsemode OF
= parsing:

BEGIN
END;

= backup, = cleanup:
BEGIN
END;

ENDCASE;
RETURN(&result);
END.

FINISH

6e2b

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
PM! Five: Error Handling - - SIGN.l\Ls

PART FIVE: Advanced Programming Topics

Section 1: Error Handling -- SIGNALs "fa

Introduction 7 a 1

When an NLS system procedure fails to perform properly, it may generate an error signal.
Every signal has a value. When a signal is generated, control is passed back to the last signal
trap in effect. If no explicit program control statement (e.g. RETURN, GOTO) is given in that
signal trap, a new Signal will be generated. If the error is not dealt with, the signal will
eventually bubble all the way back to the execution routine. The execution routine should
always trap a signal. 7 a 1 a

You may trap signals and regain control by setting up the response in advance. 7 alb

Trapping Signals 7 a 2

To trap error signals of any error value: 7 a 2 a

ON SIGNAL ELSE statement:

E.g.

ON SIGNAL ELSE
BEGIN
dismes(2, $string);
RETURN;
END;

7a2b

It is a good idea to set up a signal response before calling any NLS system procedures. 7a2c

Once the signal response is set, it remains in effect through the end of the procedure or until
it is changed, and will be executed whenever a signal is received by that procedure. Any
subsequent ON SIGNAL statements will at that point change the signal response (i .e. only one
signal response can be in effect at any point during procedure execution). 7 a 2 d

Only signals generated by procedures below (e.g. called by) your procedure will be trapped by
your procedure's signal trap. It will not trap signals generated in the same procedure. 7a2e

The signal response may be any (block of) L 1 0 statement(s). It will be executed, then 7 a 2 f

- if you have an explicit program control statement (RETURN, GOTO, EXIT LOOP), control
will be passed accordingly and the signal will stop there, or

- if the signal trap includes no explicit program control statement, another signal of the
same value will be generated, and control will pass upward through the stack of
procedures called until it encounters another signal trap.

A RETURN will return control to the procedure which called the one which intercepted the
signal (not the one which generated it). 7 a 2 9

Thus, if you wish to resume control in the current procedure, the signal trap will have to end

page 107

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Five: Error Handling -- SIGNALs

with a GOTO statement pointing to an appropriately labeled statement. This is one of the few
places where a GOTO is really necessary. 7 a 2 h

If the signal trap applies to a loop, an EXIT LOOP or REPEAT LOOP is a valid signal program
control statement. j a :1 i

Trapping Signals in Execution Routines 7 a 3

If a signal bubbles up through the execution routine to the command parser (in a command in
an attachable subsystem), the results may be unpredictable. Execution routines should always
include signal traps. 7 a 3 a

A RETURN(FALSE) will shift CML into backup mode. It will back up to before the last set of
CML alternatives (not necessarily equivalent to the last user input element), and then shift
back into parsing mode. (This may imply backing all the way through the command, i.e.
aborting the command.) 7 a 3 b

The procedure "abortsubsystem" may be useful in this context. It will shift the command
parser into backup mode and abort the current command. Then it will execute a Quit (from
the current subsystem) and return the user to the previously used subsystem. It should be
passed the address of an error string to be displayed. E.g. 7a3c

ON SIGNAL ELSE abortsubsystem($"Error in xprocedure ••• ") ;
or

ON SIGNAL ELSE abortsubsystem(sysmsg) ;

(see "Specific Signals")

Cancelling Signal Traps I a4

After program execution sets up a signal response, the following statement will cancel it so
that thereafter a signal will just bubble on up: 7a4a

ON SIGNAL ELSE NULL;
or just

ON SIGNAL ELSE ;

It may be subsequently reset by execution of another ON SIGNAL statement. -; a 4 b

Specific Signals 7 as

When a signal is generated, the NLS system global variable "sysgnl" is given a specific value
(the value of the signal). Each value represents a certain type of error. Also the system
global variable "sysmsg" is given the address of a string which holds an error message. 7aSa

The above constructions react to any signal, no matter what its value may be. The ON
SIGNAL statement can be used much like a CASE statement (comparing cases to the global
sysgnl) if you wish to trap specific signals: 7 a 5 b

rage lOR

ON SIGNAL
=constant: statement;
=constant: statement;

ELSE statement;

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part F iw: Error Handling - - SIGNAL.~~

E.g.

ON SIGNAL
=ofilerr: %open file error%

BEGIN
IF sysmsg THEN dismes(2,sysmsg);
RETURN;
END;

ELSE %any other error signal%
BEGIN
dismes(2, $ "Error");
RETURN;
END;

The current signal constants can be found in <NLS,BCONST,>. The common reason for using
this specific signal treatment is when you call a procedure which you know will generate a
certain signal value under certain conditions. In such a case, you can learn the signal constant

ia5e

of concern from the SIGNAL statement which generates it. 7 a 5 d

Generating Signals 7 a 6

You may generate a SIGNAL in a procedure by the statement: 7a6a

SIGNAL (value, astring) ;

where value is the value of the signal (perhaps a system global) and astring is the address of
a string holding the error message. If the second parameter is omitted, it will be assumed to
be zero and no message will be printed. The first parameter is mandatory; every signal must
have a value. 7 a 6b

Examples:

SIGNAL (ofilerr, $"Couldn't open your file. ") ;
SIGNAL (2) ;

Another way to generate a SIGNAL is by calling the procedure

err(errno)

It will generate a SIGNAL of the value "errsig" (a system global) and will set up a
message depending on the value you pass for errno. errno may be any of the following:

1 - - "File copy fails";
2 - - "Open scratch fails";
3 - - "Cannot load program";
4 - - "I/O Error";
5 - - "Exceed capacity";
6 - - "Bad file block";
7 -- "Not implemented"

If you pass it the address of a string as the error number, it will signal using that
address for sysmsg, and that string will be printed.

By allowing err to generate all the signals, you will find it easy to freeze execution upon an
error condition while debugging using NDDT, as described in the next section (by setting a
breakpoint at err).

7a6e

page 109

ARC 34210 Rl'v.8JAN76 NLS Programmers' Guide
Part Five: Error Handling - - SIGNALs

pagp 110

Be careful not to call err and then trap its SIGNAL in that same procedure. You might
say:

ON SIGNAL
=errsig: NULl;
ELSE •••

NLS Progrdrnmers' Guide
f\u t F IVI': NDDl Debugging

ARC34210 Rev.8JAN76

Section 2: NDDT Debugging 7b

Introduction i b 1

Debugging is the process of finding the errors in a program. Once the problem is located, you
may correct it in the source code (NLS file) and recompile. :'bla

NLS includes a debugging tool called NDDT, for "NLS Dynamic Debugging Technique." NODT
allows you to examine the state of your program during or after running it (i. e. using the
command or filter). This section describes the capabilities of NODT. ;' b 1 b

Accessing NDDT ;' b ~

To make NDDT available from NLS, you must execute the command in the PROGRAMS
subsystem: .,. b ~ a

Set Nddt (control-h) OK

This adds the program NDDT to your user programs buffer. Thereafter, whenever you type a
<CTRL -h>, NLS will immediately be interrupted (be it in a waiting or running state) and you
will enter NDDT. NODT will respond with its command hearald, a right angle-bracket (»,
indicating that NDDT is ready to accept a command. ;' b 2 b

NDDT commands are specified by typing the first character of the command word.

You may continue with NLS (from the point where it was interrupted) with the NODT
command:;b2c

Continue OK

You may continue NLS from a specific instruction address with the NDDT command: 7b2d

Goto ADDRESS OK

NDDT Address Expressions 7 b 3

Everything stored in the machine (instructions and variables) has an address, its location
within the computer's memory. An address is an octal (base-eight) number. 7 b 3 a

The name of a procedure or of a named L 10 statement may be used instead of a number. It
represents the octal location of the named statement or of the first instruction of the
procedure. 7b3b

Addresses (symbols or numbers) may be combined, to evaluate to some location. An
expression concatenated with the following operators will be evaluated from left to right (no
hierarchical ordering) to a single value: ;' b 3 c

<SP> same as +

*
/

Thus, a symbol may be followed by a space (or plus-sign) and then an octal number. The
number is added to the location represented by the symbol. j' b 3 d

page III

ARC 3421 0 Rl~V. 8 JAN 76 NLS Programmers' Guide
Part Five: NDDT Debugging

Single-Word Variables 7b4

Often, programmers wish to examine or modify the contents of a single word at a given
location. The NDDT Show command prints the contents of the word at that address. 7 b 4 a

Show Location ADDRESS OK

where address is an address expression as defined above or one of the following:

t -- preceding entity

<LF> - - next entity

Next - - next entity

<TAB> -- entity whose address is the content of current location

NDDT maintains some address as your current location, and the Show command sets this
location to the one it examines. If you do not specify an address in a show command, the
current location is assumed. 7 b 4 b

NDDT can print the contents in three ways: as a symbol followed by a number (to be added to
the symbol location), as a single number, or as text. The default printout mode is symbolic.
The printout mode may optionally be changed in a Show command. The new printout mode
remains in effect until subsequently changed. 7 b 4 c

Show Location ADDRESS <CTRL -b> PRINTMODE OK

where PRINTMODE is one of the following:
Numeric
Symbolic
Text

A fast way to do the same thing is provided with the Value command:

Value of ADDRESS OK
or

Value of ADDRESS <CTRL-b> PRINTMODE OK

You may print and then replace the value in a word with the Show command:

Show Location ADDRESS <- EXP OK
or

Show Location ADDRESS <CTRL-b> PRINTMODE -- EXP OK

where EXP is an expression whose value will replace the old value of the given location. In
addition to the address expressions discussed above, you may use the form:

value! "value2

where "value!" is a standard expression which will be put in the left half of the word,
and "value2" is an expression which will be put in the right half.

7b4d

7b4e

String Variables 7b5

The contents of a string variable may be examined and modified as well as simple variables,
using the command: 7b5a

Show String ADDRESS OK

pagp 112

NLS Progrdrnn1l'r<;' Guide
fJ,ut FIve: NDDI Debugging

ARC 34210 Rev. 8 JAN 76

Strings are always printed in text printout mode. 7b5b

You may print and then replace the string with the Show command: 7b5e

Show String ADDRESS -- STR OK

where STR is a literal string which you type in.

Records ib6

To work with LIO records, you must first set the NDDT record pointer to the first word of an
LIO record definition, with the command: 7b6a

Record pointer set to: SYMBOL OK

where SYMBOL is the name of some L 10 record. Note that it may be necessary to use
the MARK command (described below) to make local records known to the NDDT system.

This is equivalent to the command:

Show Location RP -- SYMBOL OK

You may then examine all the fields of any record with the command:

Show Record ADDRESS OK
or

Show Record ADDRESS <CTRL-b> PRINTMODE OK

You may examine and optionally change a single field within a record with the Show Location

7b6b

7b6e

command, substituting ADDRESS. FIELD for ADDRESS. :b6d

You may replace each field in a record with the command: 706e

Show Record ADDRESS +-

The name of each field is then printed and a new value may be typed in, terminated by a
Command Accept. Typing only a Command Accept will advance to the next field of the
record without modifying the last field.

Built in NDDT symbols i' 0"7

A number of symbols are built in to NDDT and may be used in address expressions. When
they are used, PRINTMODE will be ignored, since the printout mode is predefined for each of
these symbols. 707 a

Built in Locations, Registers 7 b 7 b

Al -- register Al
A2 -- register A2
A3 - - register A3
A4 -- register A4
RI -- register RI
R2 -- register R2
R3 -- register R3
R4 -- register R4

page 113

AfK 342]0 H('v. 8 JAN 76 NLS Programmers' Guide
Part Five: NDDT Debugg:ng

Built in Locations, Frame

When a procedure is called, a "frame" is added to the stack. It includes a word (holding
the return location of that procedure in the right half) followed by all the parameters, then
all the locals. Some predefined symbols allow you access the current or any previous
frames and the information in them.

M - - contains address of current frame
MARK -- contains address of previous frame
RET -- return location in current frame
RP -- address of record definition of last field used
S - - contains address of top of stack (last LOCAL word, or whatever)
SIG -- current frame signal location

Built in Records

BASE - - first frame in procedure stack
FRAME - - current frame description
F - - same as FRAME
LOCALS - - current frame LOCALS
L - - same as LOCALS
RECP -- description of current record
R - - same as RECP
PARMS - - current frame parameters
P - - same as PARMS
TOP - - description of top frame in procedure stack

Control Switches

EC - - Current symbol escape character (;)
RNAMES -- If FALSE suppresses printing of record field names
SF -- If FALSE disables these NDDT built in symbols

/b7c

7ble

Special character commands i' b B

The special character commands are provided for commonly used functions. All but = are
essentially subcommands of the SHOW command and are processed exactly as if they had
been preceded by the command word Show. 7 b B a

= -- Show current location in numeric typout without changing the current printing mode

+- - - Assign a value to current locai:rm

T - - Show previous location

LF - - Show next location

TAB - - Show location addressed by current location

Traces and Breakpoints 7b9

If you set a "trace" at a location, the system will print that address every time that instruction
is executed. Execution will not be interrupted. You may set a trace with the command: 7b9a

Trace location ADDRESS OK

If you set a breakpoint at a location, a <CTRL -h> will automatically be exe~uted just before
the given instruction (causing you to interrupt execution and enter NDDT). This allows you to

pilg l ' 114

Nl S Prograrnllwrs' Guide
P,lrt five: NDDT Debugging

ARC 34210 Rev. 8 JAN 76

interrupt execution of your program at a given point and examine and change the state of the
system. A breakpoint may be set with the command: 7 b 9 b

Breakpoint Set ADDRESS OK

Each trace and breakpoint is assigned a number, beginning with zero, when it is set. You may
cancel a trace or breakpoint using this number or using the address to which it is set: 7 b 9 c

Breakpoint Clear NUMBER OK
or

Breakpoint Clear ADDRESS OK

You may cancel all traces and breakpoints that you have set with the command: 7b9d

Breakpoint Clear All OK

You may list a trace or breakpoint of a given number and the location to which it is set with
the command: 7 b 9 e

Breakpoint Print NUMBER OK

You may list all traces and breakpoints, their numbers, and their locations with the command: ;'b9f

Breakpoint Print OK

A breakpoint may replace a previous trace or breakpoint (new address, same number) with
the command: 7b9g

Breakpoint Set ADDRESS <CTRL -b> Replaces breakpoint NUMBER OK

A breakpoint may be set so that it only interrupts if a comparison between location and a
given constant is true, with the following command: 7 b 9 h

Breakpoint Set ADDRESS <CTRL-b> Test ADDRESS RELOP CONSTANT OK

where ADDRESS is the location of the word to be compared,
RELOP is one of thfe following: = # < > <= >=
CONSTANT is an expression with a value.

A breakpoint may be set so that it only interr~pts if a procedure is called and returns true,
with the following command: 7 b 9 i

Breakpoint Set ADDRESS <CTRL -b> Call PROCEDURENAME OK

page 115

i\f~C 342]0 Ht'v. 8 JAN 76 NLS Programmers' Guide
Part Five: NDDT Debugging

LIO Procedures ibID

You may call an LIO procedure from NDDT with the command: Of bID a

Procedure Call PROCEDURENAME OK

If the procedure requires parameters, you must list them in parentheses, separated by
commas, after the name of the procedure: 7 b lOb

Procedure Call PROCEDURENAME (parami. param2, •••) OK

One string, enclosed in quotes, may be included in the parameter list, e.g.:

Procedure Call PROCEDURENAME ("literal", param2, •••) OK

The return value(s) of a procedure call will be typed out. 7 b: 0 c

NDDT allows you to replace an existing procedure with a new procedure. Whenever the old
procedure is called anywhere in the system, the new procedure will be called instead. The
new procedure will be passed the same parameters as were passed to the old. This
replacement can be done with the command: ! b 10 d

Procedure Replace OLDNAME OK NEWNAME OK

The name of the procedure which was replaced is saved so that it may be restored. The
replacement may be cancelled with the command: 7 b 1 0 e

Procedure Back up to OLDNAME OK

Symbols 7 b 1 1

The system maintains a table of symbol names and the addresses which they represent.
When a user program is loaded. its symbols are added to the symbol table. Thus, (in addition
to system globals) the table is composed of blocks, one for each program. i' b 11 a

Each block is refered to by the (unique) name of the program. (This is why the CML and
SUBSYS parts of a user attachable subsystem must have different names in the FILE
statement.) The list of blocks (programs) is called the "mark stack." Locals as well as
globals are recognized by NDDT for only those user programs in the mark stack.

You may list the names of the blocks currently in the mark stack with the command:

Mark symbol table: Print contents of stack OK

A block may be deleted from the mark stack (the symbols remain in the symbol table, but

7 b lIb

they are not recognized by NDDT) with the command: 7b 11 c

Mark symbol table: Clear block PROGRAMNAME OK

A block may be reinstated to the mark stack with the command: 7 b 11 d

Mark symbol table: Set at PROGRAMNAME OK

A new (empty) block may be added to the mark stack with the command: 7 b 11 e

Mark symbol table: Set at NEWBLOCKNAME OK

p i1w'116

NLS Programmers' Guide
Part Fiv(': NDDT Debugging

ARC 34210 Rev. 8 JAN 76

If there is at least one block in the mark stack, a new symbol representing some address may
be created with the command: 7 b 11 f

Define New SYMBOLNAME OK ADDRESS OK

Symbols defined with this command have a global scope, and may be used to satisfy
external references in llO user programs subsequently compiled.

Any symbol within a block listed in the mark stack may be redefined to represent a different
address with the command: 7 b 11 9

Define Old SYMBOlNAME OK ADDRESS OK

If you wish to replace an existing routine by a new version of the same routine, some method
of distinguishing between new and old occurrences of the same symbol is required. Any
symbol preceded by a semicolon (;) refers to the old occurrence of the symbol. (The
semicolon has the effect of disabling the symbol table marking mechanism for the given
symbol, causing it to be identified in the "old" section of the symbol table.) ?bll h

For example, suppose an existing ,routine named TEST is to be replaced by a new version
of the same routine which you have just compiled (hence is in the mark stack). The
NDDT Procedure Replace command can be used as follows:

Procedure Replace ;TEST OK TEST OK

Scanning for Content

You may search a set of words for a specific content with the command:

Find content: CONTENT OK masked by: OK lower address: START ADDRESS OK upper
address: ENDADDRESS OK OK

The content of every word in the specified range will be compared to CONTENT. CONTENT
may be of the form of an address or a PDPlO machine instruction. The address and content

7b12

7b12a

of each word which matches will be printed. (Note that the "masked by" field was ignored.) 7 b 1 2 b

If you wish only to compare certain bits in each word to corresponding bits in CONTENT, you
may specify a mask. A mask is a number (of the address form). Only those bit positions in
which the mask has a one will be compared. (If the mask is not specified, all ones will be
assumed and the entire word will be compared.) 7b12c

Find content: CONTENT OK masked by: MASK OK lower address: ST ARTADDRESS OK
upper address: ENDADDRESS OK OK

MASK may also be of either the ADDRESS form or the PDP 10 instruction form.

7b12d

page 117

AHC 342] 0 HI'v. 8 JAN 76 NLS Programmers' Guide
Part Five Writing CML Parsefunctions

Section 3: Writing CML Parsefunctions "Ie

Parsefunctions :' c 1

Functions which are declared with the PARSE FUNCTION attribute in CML are assumed to be
LIO procedures which are designed to be parsing functions. They are used to examine the
user's input. They are called in "parsehelp" mode before being called in "parsing" mode.
When so called, they are passed the address of a string as a third implicit argument. The
parsefunction routine should fill that string with the appropriate prompt characters which tell
what the parsing function is looking for. 7 cia

When the user is faced with alternatives which include a parsefunction, the parsefunction will
be called in parsemode "parseqmark" for the string to include in the questionmark display.
This string must be no greater than 24 characters. i' c 1 b

Sample Interpreter Parsefunction Routine 7 c 2

Assume that in some command we want the typein of a number to appear as an alternative to
some set of keywords. We can accomplish this by defining a parsefunction (call it looknum)
which looks at the next input character and succeeds if the next character is a digit and fails
otherwise. If we write this function as the first alternative in some command, then control will
pass from the interpreter to the parsefunction before it passes to the keyword interpreter. ;' C 2 a

Suppose our command looks like: 7 C 7. b

COMMAND sample = "INSERT"
(100knumO <"number"> ent -- #"NUMBER"
/ ent -- ("TEXT"/"L1NK"))
% entity now contains an entity type (NUMBER, TEXT, or LINK). We now use the
LSEL function to get a selection of this type %

source -- LSEL(ent)
CONFIRM
xinsert (ent, source) ;

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
P,nt FIVl' Writing CML Parsefllnct,on~

The parsefunction looknum which is called by the interpreter both when prompting the user
and also during the actual parse of the command. 7 c 2 c

(Iooknum) PROCEDURE % looks at the next input character, if it is a digit, then return
TRUE, else return FALSE %

% FORMAL ARGUMENTS %
(result, % address of the result record %
parsemode, % parsing mode of the interpreter %
string); % address of prompting string %

REF result, string;
CASE parsemode OF

= parsing:
CASE 100kcO OF %value of next character in input buffer%

IN ['0, '9]: NULL;
ENDCASE RETURN(FALSE);

= parsehelp: %supply string for prompt%
string +- "NUM:" ;

= parseqmark: %supply string for questionmark%
string +- "Number" ;

ENDCASE;
RETURN (&result);
END.

page 119

ArK 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Five: Calculator Capabilities

Section 4: Calculator Capabilities

Introduction

LI0 arithmetic can only work with integers. The CALCULATOR subsystem holds a numbers of
procedures which the user programmer may call to do double-precision floating point
arithmetic. Floating point numbers are stored in two-word arrays, which the user programmer
must declare. All CALCULATOR routines work with these two word arrays.

~ Converting String to Double-Precision Floating Point . fI/./ A number in a string variable may be converted to a floating point array with the procedure:

nfloat (astring, aword 1, aword2)

where astring is the address of a string holding the number,
aword 1 is the address of the first word of the array, and
aword2 is the address of the second word of the array.

The number in the string may hold a decimal point, and may be preceded by a minus-sign (-).
Other characters (e.g. a dollar sign) may precede the first character of the number (a digit,

7d

7dl

7 d 1 a

7d2

7d7a

minus sign, or decimal); they will be ignored. 7 d 2 b

Converting Floating Point to String 7 d3

The two word array may be converted back to a string with the procedure: 7d3a

qfloutp (avar, astring, format)

where

avar is the address of the (first word of the) array holding the floating point number,
and

astring is the address of a string variable in which the text of the number is to be
placed;

the third parameter is ignored, so just pass zero.

The format of the string is dictated by the global variable "dfoutm." The following fields
apply to this global [default values are in square brackets]: 7d 3b

page 120

fld 1 - - characters to the left of the decimal [10]

fld2 - - characters to the right of the decimal [2]

fld3 - - characters in exponent field [0]

round -- number of significant digits to round to [12] round must be less than or equal
to fld 1 + fld2. fld 1 + fld2 must be less than or equal to 12

oflo - - go to exponent notation if left-of-decimal too big [0]

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Part f IVl': Calculator Capabilities

exsign - - if a positive exponent, use first character of exponent field for: [0]
o - - first digit of exponent
1 -- "+"
2 -- a space

exp2 - - prefix on exponent: [0]
o - - no exponent
1 -- "E"
2 -'- "0"
3 -- "*10 r"

dpt -- print decimal point switch (0=Of1, I=On) [1]

dig - - print at least one digit to left of decimal (0 if necessary) (0=Of1, 1 =On) [1]

just - - justify number within space of three fields: [1]
o - - right justify by adding spaces to left

you must also set the
global "calflg" to TRUE

1 - - right justify by adding "O"s
2 - - right justify by adding "*"s
3 - - left justify by adding spaces to right

you must also set the
global "calflg" to FALSE

sign - - if a positive number, use first character of field 1 for: [0]
o - - first digit of number
1 -- a space
2 -- "+"

Additionally, if the global "cacflg" is TRUE, the number will be formatted with commas. 7d3c

Calculations with Foating Point ; d 4

The following procedures do floating point calculations on the two-word arrays described
above. All of the following procedures require as parameters the address of the (first word of
the) arrays. 7d4a

qcadd(a,b) --a -- a + b

qcsub(a,b) -- a -- a - b

qcmult(a,b) -- a -- a * b

qcdiv(a,b) -- a -- a / b

qcdivw(a,b,c) -- c -- a / b

qcneg(a) -- a -- -a

page 121

ARC 34210 Rpv. 8 JAN 76 NLS Programmers' Guide
Part Five: Fields and Records

Section 5: Fields and Records

Introduction

A set of bits within a word can be used without affecting the rest of the word. (On the
PDP-I0, words are 36-bits long.) A contiguous set of bits within a word is called a field.

7e

7 e 1

Fields allow more efficient use of storage. 7 e 1 a

Once a field is defined, you may apply it to any word (variable). It will refer to the defined
set of bits in that word (e. g. the field "RH" refers to the right-most 18 bits of whatever
word it modifies).

You may assign a number to or from a field by following the variable name with a period (.),
then the name of the field: 7 e 1 b

var. field

E • g. stid. stpsid .- origin ;

Many fields are defined in the NLS system, and may be used by .user programmers. Some
have been mentioned in preceding sections; others may be found in the NLS source code. 7ele

Declaring Records 7 e 2

Records are always defined globally. Record definitions are, like global declarations, put
outside of procedures within LI0 files. 7e2a

A record definition defines a series of fields, with the length (number of bits) specified for
each field: 7 e2b

RECORD field 1 [length] , field2 [length], ••• ;

The fields are allocated from right to left within the word.

pagt' 122

E.g. the record definition:

RECORD right[18], left [17]

would define two fields. The field "right" refers to the right-most 18 bits of the word.
The field "left" refers to the next 17 bits to the left of the field "right." (The left-most
bit is not used in this example.)

7e2e

Nl S Progr<Hlll11erS' Guidl' ARC 34210 Rev. 8 JAN 76
P(lrt F IVl': Fields and Records

A RECORD definition may specify any number of fields. If a field is defined to be too large to
fit in the remaining bits of the current word, it is automatically defined to represent the first
field in the next word. I. e. this and subsequent fields are defi ned from the right of the next
word. This can extend through any number of words. 7e2d

E.g. the RECORD definition:

RECORD field 1 [18], field2 [10], field3 [18], field4 [36]

would define the fields as follows:

field!
field2
field3
field4

right half of word
right-most 10 bits in left half of word
right half of next word
entire third word (i.e. word [2])

Of course when using fields that refer to subsequent words, you must be sure that you are
operating on arrays of the appropriate size.

Declaring Fields :' e 3

Although you can declare single fields as described here, the practice is limited. (It is useful
in manipulating byte pointers.) User programmers should use RECORD definitions instead. 7e3a

A single field may be defined with the declaration: 7 e 3 b

DECLARE FIELD name = [address, size : position]

where

address is the address of the word to which the field refers,

size is the number of bits in the field, and

position is the number of bits left to the right of the field.

In an assignment, the address of the word referenced is kept in a register, named "rp." It
may be used as an index by placing it in parentheses. Thus a FIELD declaration refering to
the right half of a word is: 7 e 3 c

DECLARE FIELD right= [(rp), 18:0] ;

The left half of the next word could be defined: 7e3d

DECLARE FIELD left= [1 (rp), 18: 18] ;

The address is held in the right half of a byte pointer. You may declare a field with zero as
the address, then assign the field definition plus an address to set up a byte pointer: 7e3e

DECLARE FIELD right= [0, 18:0]
then

bytepointer <- right + $variable ;

A FIELD declaration may be external as well as global:

DECLARE EXTERNAL FIELD name = [address, size : position]

7e3f

page 123

ARC 34210 Rev.SJAN76 NLS Programmers' Guide
Part Five: Stacks and Rings

Section 6: Stacks and Rings

Declaring Stacks and Rings

Stacks and rings are allocated series of words of storage. A stack or ring is defined to hold a
given number of records; each record may be a single or a defined number of words. You

7f

7 f 1

may "push" records onto the stack or ring and then "pop" them off, as described here. 7 f 1 a

A stack may be declared (at the global level) with the L 1 0 declaration: 7 fIb

DECLARE STACK stackname [size] ;

where size is the number of one-word records in the stack.

You may work with records of more than one word with the stack declaration:

DECLARE STACK stackname [size,recsize] ;

where recsize is the number of words in each record. All records in a stack must be the
same size.

7 fIe

like other declarations, any number of stacks may be declared with the same statement: ., f 1 d

DECLARE STACK stackname [size], stack name [size,recsize], ••• ;

Stacks may be declared as external to the program: 7 fIe

DECLARE EXTERNAL STACK stackname [size,recsize], ••• ;

Ring declarations are identical, with the word "RING" substituted for "STACK." E.g.:

DECLARE RING ringname [size], ringname [size,recsize], ••• ;
DECLARE EXTERNAL RING ringname [size,recsize], ••• ;

7 f 1 f

Initializing Stacks and Rings 7 f 2

Before it is used, a stack or ring must be initialized (i.e. cleaned up), with the LIO statement: 7f2a

RESET stackname ;
or

RESET ringname ;

The storage can then be considered empty. The RESET statement can be used whenever you
wish to clean up the stack or ring. 7f 2 b

page 124

NLS Programmers' Guidf'
r.lrt flVl' Stacks and Rings

ARC 34210 Rev. 8 JAN 76

Using Stacks and Rings

You may add a record to the top of the stack or ring with the LIO statement:

PUSH address ON stackname ;

where address is the address of the first word (perhaps the single word) of the record to
be added to the stack.

-If you try to add more elements than the stack can hold, a SIGNAL will be generated.

-If you try to add more elements than the ring can hold, records will be replaced, starting
from the bottom (the first record pushed on).

You may remove a record from the stack or ring, and optionally assign it to a record variable

7f3

if3a

(a simple variable or array of the appropriate size) with the LIO statement: ~f3b

POP stackname ;
or

POP stackname TO address;

where address is the address of the first word (perhaps the single word) of the record to
receive the record from the stack.

-If you try to remove more elements than the stack currently holds, a SIGNAL will be
generated.

-If you try to remove more elements than the ring currently holds, records will be reread,
starting from the top. This should be avoided. If you did not previously fill the ring, this
top record will hold garbage.

You may read the first word of the record at the top of the stack or ring (without affecting the
stack or ring) as an expression by enclosing the name in square-brackets: 7 f 3 c

[stackname]

The second word (the one below that one the stack) may be read as [stack name - I],
and so on.

E.g.

var ~ [stackname] ;

To use stacks and rings, one usually must keep track of how many records are currently on
the storage. Thus, you probably will need to maintain a count in a simple variable in parallel

:'f3:l

to use of the stack or ring. :: ~3e

page 125

AHC 34210 Hc'v. 8 JAN 76 NLS Programmers' Guide

Part Five: Using the Sequence Generator

Section 7: Using the Sequence Generator i'g

Introduction "j 9 1

The Sequence Generator is used by a number of NLS commands which require a series of
statements from an NLS file. A procedure may open a sequence holding a number of
statements; the Sequence Generator then passes those statements back, one at a time, every
time it is called. i 9 1 a

The Sequence Generator considers viewspecs in choosing which statements to return, e.g.
level truncation. If viewspec i or k is on, it may call a Content Analyzer program before
returning the statement. This allows a great deal of flexibility in working with a series of
statements. i 9 ! b

Co-Routine Effect 792

Once the Sequence Generator decides to return a statement (or string), it calls a mechanism
which returns control to the procedure that called the Sequence Generator. Thus control will
return directly to that calling procedure, even from other procedures the Sequence Generator
has called, i.e. even if the return mechanism was called from a procedure called by the
Sequence Generator. 792 a

When the Sequence Generator is called the next time, it passes control to the instruction after
the one which called the return mechanism. I.e. it continues right where it left off. 79 2 b

Thus, the Sequence Generator may call a Content Analyzer program which may return control
directly to the procedure which called the Sequence Generator. The next time the Sequence
Generator is called, execution will begin in the middle of that Content Analyzer program (which
may later return through the normal RETURN statement to the Sequence Generator). (Thus,
the Sequence Generator is behaving like a co-routine to the calling procedure.) 792c

Calling Procedure Sequence Generator Content Analyzer 792d

1
2
3 seqgen(&sw) »-> 1

2
3 CA fi Iter »--->

4 <----------------------------«
5
3 seqgen(&sw) »-------------------->

4 ... <---------«
5

7 ••• <---------« 6 return mechanism

1
2
3 return mechanism

4
5
6 normal return

Nl.S Programmers' Guide ARC 34210 Rev. 8 JAN 76

PMt f IVl': Using the Sequence Gerlerator

Sequence Work Area 793

When a Content Analyzer program is called by the Sequence Generator, one parameter is
passed, the address of an array called the "sequence work area." This array, although
ignored by most Content Analyzer programs. holds a great deal of useful information. If the
Content Analyzer procedure receives this address as a parameter, and then REFs it, it may
refer to the following fields in the sequence work area (see <NLS,BRECORDS,seqr> for entire
record declaration): 793 a

swstid - - stid of current statement or string in sequence

swcstid -- stid of current real STATEMENT in sequence (even if swstid points to a string)

swlbstid - - stid of statement heading last branch in sequence

swclvl -- level of current statement in sequence

swslvl - - level of first statement in sequence

swvspec -- first word of viewspecs for sequence

swvsp2 - - second word of viewspecs for sequence

swusqcod -- address of user Sequence Generator procedure for sequence

swcacode - - address of Content Analyzer procedure for sequence

swkflg - - FALSE when sequence is opened, TRUE once something has been returned by
sequence

Displaying Strings 79 4

You may call the return mechanism from Content Analyzer programs while causing the
Sequence Generator to inject a string in the sequence. Under the normal circumstance, where
the sequence is being used to put up a display or print a file or to do filtered editing, this
allows you to inject a string into the output. Thus you may receive a statement, reformat it
into a string (without editing the statement itself), and then display the string. 79 4 a

The following procedure injects a string in the sequence, then returns to the procedure that
called the Sequence Generator: 79 4 b

send (sw, astring) ;

where sw is the address of the sequence work area, and astring is the address of the
string. (Remember, if you REFed the parameter holding the address of the sequence work
area, use the ampersand (&) construct when passing it to send.)

Note that the co- routine effect will cause execution to pick up right where it left off when the
Sequence Generator is called for the next statement. Thus, execution will begin just after the
send. If you then RETURN a value of TRUE, the statement itself will ALSO be displayed. Most
applications of send will RETURN(FALSE) immediately after the call on send. 79 4c

page 127

ARC 34210 Rev. 8 JAN 76 NLS Programmers' Guide
Part Five: Using the Sequence Generator

An example of a Content Analyzer program using send() to show only the first line of each
statement: 794 d

(firstline) PROCEDURE (sw) ; %content analyzer filter to display only first lines%
LOCAL TEXT POINTER ptr ;
REF sw;

%to hold address of sequence work area%
%set pointer at end of first line%

CASE READC OF
= ENDCHR: FIND f ptr ;
= EOL: FIND T ptr --ptr ;
ENDCASE REPEA T CASE;

%put first line in global string%
dspstr SF(ptr) ptr ;

%inject string into sequence%
send (&sw, $dspstr) ;

%so statement won't also be displayed%
RETURN (FALSE) ;

END.

Using Sequences 795

You may open and use your own sequences in attachable subsystems. This may be useful
when you wish to process a series of statements, perhaps only those passing certain
requirements (e. g. level or a Content Analyzer filter). 795 a

To open a sequence, you should have declared and REFed a variable to hold the address of
the sequence work area that will be reserved for your sequence. The procedure which opens
the sequence returns this address. 795b

&sw 0- openseq(stid 1, stid2, vspec 1, vspec2, seqp roc , caproc);

where

pZlgt' 12R

stid 1 and stid2 are two stids deliniating a group in an NLS file that will be the source
of the statements in the sequence. They may be the same (for a branch). The
Sequence Generator ignores the branch only and plex only viewspecs.

To get stid2, the procedure "seqend" may be useful. Given stid 1 and the two
viewspec words, it checks the branch-only and plex-only viewspecs and returns the
appropriate stid for stid2. E.g.:

&sw openseq (stidl, seqend(stidl,vspecl,vspec2), vspecl, vspec2,
seqproc, caproc);

vspec 1 and vspec2 are two words holding the viewspecs for the sequence. There a a
number of predefined fields which allow you to set bits within these words. (See Part
Four, Section 4.) Of particular interest to the Sequence Generator are the level
truncation (not the line truncation) and the Content Analyzer viewspecs.

seqproc is the address of the Sequence Generator routine to be used. If you pass
zero, the NLS standard Sequence Generator will be used. (User Sequence Generators
are not described here.)

caproc is the address of a Content Analyzer procedure to be used If needed by the

NLS Programmers' Guide ARC 34210 Rev. 8 JAN 76
Pellt hVl': USing the Sequence Gl'rll'rator

sequence (as specified in the viewspecs). If none is needed, you may pass zero.
Passing the address of a sequence is in effect instituting that procedure for that
sequence. The address of the currently instituted procedure may be gotten from the
display area descriptor, as described in Part Four, Section 4.

A call on the procedure "seqgen" will increment the fields in the sequence work area to the
next statement (or string) in the sequence; it will return the first statement in the sequence the
first time it is called. You must pass it the address of a sequence work area, e.g.: 7g5c

seqgen (&sw) ;

seqgen returns the new swstid field of the sequence, or endfil if there are no more
statements in the sequence.

You may then refer to the fields in the sequence work area for information about that
statement, e. g. :

sw. swstid - - stid of current item in sequence

sw.swclvl -- level of current item in sequence

When you are done with a sequence, you must close it by calling the procedure "c1oseseq"
with the adddress of the sequence work area; e.g.: 7g5d

c1oseseq(&sw) ;

page 129

ARC 34210 Rev. 8 JAN 76 NLS Programmer!:.' Guide
Part Five: Using the Sequence Generator

A typical use of the Sequence Generator might be as follows:

% set up sequence %
% set up viewspecs %

% get adress of display area descriptor; da is REFed simple variable%
&da -- IdaO ;

%get current viewspecs; vspec is LOCAL two-word array%
vspec da. davspec ;
vspec [1] -- da. davspc 2 ;

%turn on Content Analyzer for this sequence%
vspec • vscapf -- TRUE ;

%openseq with "proc" as Content Analyzer filter, returns the address of sequence
work area; sw is REFed simple variable%

&sw openseq(sourcestid, sourcestid, vspec, vspec [1], da.dausqcod, $proc);
ON SIGNAL ELSE closeseq(&sw) ;

% loop through sequence %
%reset control-o flag%

inptrf <- 0 ;
LOOP

BEGIN
IF inptrf THEN %user typed a control-o%

BEGIN
dismes (1, $"User terminated process") ;
EXIT LOOP;
END;

%increment to next statement in branch you are processing which passed filter
"proc"; or else exit%

IF seqgen(&sw) = endfil THEN EXIT LOOP;
%call some procedure to process current stid (could as well have been any block
of code)%

process(sw • swstid) ;
END;

% close sequence %
ON SIGNAL ELSE ;
closeseq (&sw) ;

/g5e

NLS ProgriHllmcrs' Guide ARC 34210 Rev. 8 JAN 76
Pdrt live: CondltionClI Compiling

Section 8: Conditional Compiling

You may delimit blocks of code within procedures that will only be compiled if a constant is TRUE
or FALSE. If the code is not compiled, of course it will not be part of the code file and will not be

7h

executed. I h 1

First a constant must be defined with the SET construct (at the beginning of the file) as either
zero (FALSE) or non-zero (TRUE). 7 h 1 a

Then, code delimited by the string: ',' h 1 b

%+name%

where name is the SET constant

will only be compiled if the constant is SET to a TRUE value.

Similarly, code delimited by the string:

%-name%

will only be compiled if the constant is set to zero (FALSE).

For example,

if the following statement appears at the beginning of the program:

SET test=O;

then a procedure in the program might include code delimited by this construct, e.g.:

LIO statement; %norrnal code, always compiled%

L 1 0 statement; % normal code, always compiled %
%-test%

L 10 statement ; % this statement WILL be compiled %

L 1 0 statement ; % this statement WILL be compiled %
%-test%

%+test%
L 10 statement ; % this statement will NOT be compiled %

L 10 statement ; % this statement will NOT be compiled %
%+test%

LIO statement; %normal code, always compiled%

7 h 1 c

7h2

7h2a

7h2b

page 131

NLS Programmers' Guide
ASCII 7 bit Character Codes

Char ASCII

tA 001
r B 002
tC 003
tD 004
t E 005
r F 006
Be I I 007
BS 010
Tab 011
LF 012
VT 013
FormFeed 014
CR 015
rN 016
rO 017
tP 020
tQ 021
rR 022
r S 023
rT 024
tU 025
tV 026
TW 027
tX 030
TV 031
T Z 032
ESC 033

SP 040

ASCII 7-81T CHARACTER CODES

Char ASC I I Char ASC I I
---------- ----------

041 A 101
042 B 102

043 C 103
$ 044 D 104
% 045 E 105
& 046 F 106

047 G 107
(050 H 110
) 051 I 111
* 052 J 112
+ 053 K 113

054 L 114
055 M 115
056 N 116

/ 057 0 117
0 060 P 120
1 061 Q 121
2 062 R 122
3 063 S 123
4 064 T 124
5 065 U 125
6 066 V 126
7 067 W 127
8 070 X 130
9 071 V 131

072 Z 132
073 [133

< 074 \ 134
= 075] 135
> 076 136
? 077 137
@ 100

ARC 34210 Rev. 8 JAN 76

Char ASC I I

a 141
b 142
c 143
d 144
e 145
f 146
g 147
h 150

151
j 152
k 153
I 154
m 155
n 156
0 157
p 160
q 161
r 162
s 163
t 164
u 165
v 166
w 167
x 170
y 171
z 172

DEL 177

page 133

