
,ARC-APP 4"DEC.75 20125 34044
34044

NLS Programmers~ Guide

content Analyzer
Ll0 Language

Command Meta Language
NODT

AUgmentation Research center

5 DEC 75

StanfOrd ResearCh Institute
333 RavenswQo4 AvenUe

Menlo p$rk, Callfornta 94025

NLS programmers' Guide
&ARC~APP 4-0EC.75 20:25 34044
ARC 34044 Rev. 5 DEC 75

sent to COM S.DEC.15. Remove journal directives before using as
prlntfile, Obsoletes 33522, NOM

page 1

ARC 34044 Rev, 5 DEC 75

page 11

&ARC-APP 4.DEC.75 20:25 34044
NLS Programmers' Guide

NLS programmers' Guide
Table of Contents

&ARC-APP 4-0EC.75 20;25 34044
ARC 34044 Rev. 5 DEC 75

TABLE OF CONTENTS

INTRODUCTION~ ••••• ,,~ ••• ,., •• ,., ••••• , •••••• ~t ••••• , •• , ••• ,,2

PART ONE: Content AnalYzer Patterns •••••••••••••• , •••••••• ,]

Section 1:
Section 2:
Section 3:
Sect10n 4:

PART TWOt

Introductlon ••••••• , •• t •• ~ •••• ~ ••••••• ",~ •• 3A
patterns, ••••••••••••••• , •••• , •••••••••••••• 3B
ExaMPles of C~ntentAnalyzer patterns. f ••• ,,3e
Us1ng the Content Analyzer ••••••••••••• , •••• 3D

Section 1: Content AnalYzer Progr ams ••••• , ••••••••••••• 4A
Introduct1on, •••••••• , ••••••• , •••••••••••••••••••••• 4A1
Program Structure •••••• , ••••••••••••••••••••• ,." ••• 4A2
Procedure str ucture,., ••• , •• , •• t, •••••• , •• t ••••• , ••• 4Al
Example:., ••••••••••• ,.,., ••••• , ••••• " ••••••••••••• 4A4
Declaration staternents •• " ••••••••••••••••• , ••• , •••• 4A5
Body of the proeedure •••••••••••••••••••••• " ••••••• 4A6
Programming Style: File structure •• , ••••••• , •••••••• 4A7
Using Content Analyzer PrOgrams •••••••••••••• ,." •• ,4A8
Problem$ ••••••••••••••••••••••• t •• " •• ,.~." •••• ! ••• 4A9

Section 2: Content Analy~er Programs: Modlfylng •• " •••• 4B
Introductlon., ••• , ••• , ••• ,~ •••••• , •••••••••••••••••• 4B1
string Constructlon •• , •• ~ ••• , •••••• ~., •••••••••••••• 4B2
Example:., ••••• , ••••••••• " •••• , ••••••• , •••••••• , ••• 483
More Than One Change per Statement, ••• , ••••• " •••••• 4B4
controliln~ Which statements are MOdlfied •••• , ••••• ,4BS
Problems ••••••••••••• " •••••••• , ••••••••••• , •••••••• 4B6

BasiC L10 Pro9rammlng, •• , ••••••••••••••••••• ~.t5

Section 1: The User program Envlronm'nt •• t~ ••••• , •••••• 5A
Introductlon •• ,~ •••• , •••• , ••••• , •••••• t ••••••••••• _.5A1
The Sequence Generator •• " ••••••••••••• , •••••••• , ••• 5A2
Content Analyzer Fl1ters •••••••••••••••••••••••••••• 5Al
The Portrayal 'ormattert, •••••••• , •••••••••••••••• ~.5A4

section 2: Program Strueture ••••••••••• , •••• , •••••••••• 5B
An NLS user program consists of the following ••••• t ,S81
An example Of a slmpleLlO proqram •••• ~ •••• ,.,.f •• ~.5B2

Section 3: Declaratlons •• t •••• , •••••••••••••••• , ••••••• 5C
Introductlon ••••••••••••••• ~ ••••••••• , •••• ~.! ••••••• 5C1
varlables •••••••••••• , •••• ~ •••••••••••••••••• ,.t, •• ,5C2
simple varlables ••••••••• , ••••• t •••••••••••••••••••• 5C3
Constants •••••••••••••••••••••••••••••• , •••••• ~ ••••• 5C4
~rrays ••••• , ••••••••••••••••••• , ••••••••••••• , •••••• SC5

page 111

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-DEC.75 20:25 34044

NLS proqramm~rs· Guide
Table of Contents

Text Polnters •• , •• ~.~ •• t~t"""""'~'~""t ••• ,.~.5C6
strings •••• " •••••••••••••••• , ••• t ••••••••••• , •••••• 5C7
Refere~c~d Varlables ••• , ••••••• , ••••••••••••••• ~ •••• 5C9
Declaring M$ny Varlabl~s In One Statement •• , •••• t ••• 5C9
Deelarln~ Loeals., •••• ~,., •• , •••••••••• t ••••••• ,t •• 5Cl0

Section 4: Statements •••• ,., •••••••••••• , •••••••••• , •• ,5D
Introductlon.t •••••• ~.~ ••••••••••• ~ ••• , •••••••••• ,~t5D1
A$slgnrnent.,.,.t.t ••••••••••••• , ••••• , •••••••••••••• 502
BUMP statemtnt ••• , •••••••••• ~ •••••••• " •••••• ,.,t ••• 5D3
IF Statement,t •••••• ~.~ •• , •••••••••••• 't •••••••••••• 5D4
CASE stateme nt •••••••• , •• , ••• , •••••••• , •••••••• tt ••• 5D5
LOOP Statement ••• , •••• ~, ••••• , ••• , ••••••••• , ••••••• ,5D6
WHILE",PO Statement ••••• , ••••• , ••••••••••• ,., •••••• SD7
UNTIL, •• OO Statement ••••••••• , •• ~ •••••••••••• " ••••• 508
DO ••• UNTIL/DO •• ,WHILE ~tatement •• , ••••••••••• tt ••• ~.5D9
FORt.,OO Statement, ••• ~ •••••••• " •••••••••• , ••••••• 5010
BEGIN, •• END statement •• , ••••• , ••••••••••••••••••••• 5011
EXIT statement ••• , •••• ~,.t.,.,., ••••••• , ••••••••••• 5Dt2
REPEAT Statement., ••••••• , •••••••••••••••••• ~ •••••• 5D13
DIVIDE $tatement •• ~ ••••••••• ~ •• ,~ •••••••••••• , •• , •• 5D14
PROCEDURJ CALL statement., ••• , ••••••••••••••••••••• 5015
RETURN Statement., ••• , ••••••••••••••• , ••••••••••••• 5D16
GOrO Statement ••••••••••• t ••••••••••••••••••••••••• 5D17
NULL statement~.9 •••• t~, ••••• t ••••••••••••••••• " •• 5DI8

section 5: Expresslons •• ~ ••••••••••••••• , ••••• " •••••• ,5E
Introduetlon •• w •••••• ,~ •••• ~ ••••••••••••••••• t., ••• ,5Et
Prlmltlves •• t •••••••••• f ••••••• , •• ~ •••••••• , •• ,,~.~.SE2
operator~ •••• ,_ •••••••••••• ,.,.,~ •••••• , •• ~ •• t •• t.,.5E3
Expres~lQns.t •••••••••••• , •• t" ••• ,~ ••••••••• , ••• ,.,5E4

section 61Strlng Test and Manlpulatlon., ••••• "., •• ,~.5F
Introductlon,., •••••••• ,.,.,., •••• , ••• , ••••• ,.~, •• ,.5F1
Current Character POsition (CCPOS) ••••• , •••• ~ ••• , .••• 5F2
FIND stat~mtnt, ••••••••• , •••• ~ ••• ,~,.'t ••• , •••• ,t ••• 5F3
FIND patterns ••• §, ••• ,., ••• , •••• , ••••••••••••••••••• SF4
string Constru~tlon ••••••• ~ •• ,.,., ••• , •••••• , •• tf ••• 5F5
Example: ••••• ,., ••••• , •• , •••• , ••••••••• , ••••••• ,.,.,sr6
More Than one Change perStatement ••••••••• ,! ••••••• 5F7
Text POinter Comparlsons •• ", •• ,., ••• " ••• " •••••••• SfS

section 7= Invocation of user Fl1ters.~ •••••• , •••• , •• ~.5G
Introductlon., •••••• ,.~ •• t ••• , •• t., •••••••••••• , •••• 5G1
Programs Subsystem ••• , •••• ~ •••••••••• " •••••••• ,f.,.5G2
Examples Of user Programs •••• ,~, •• , •• , •• "' •••••••• 5G3

page 1v

NLSProgrammers' Guide
Table of Contents

&ARC-APP 4-DEC-7520t25 34044
ARC 34044 R.v, 5 DEC 75

PART FOUR: Interactive Ll0 proqrammlng, •••••••••• , ••• " •• ,.6

Section 1: Introductlon,., ••• ,', ••••• "., •••• , ••••••••• 6A
Section 2: Command Meta ~anguage (CML) •••••••••• , •••••• 6B

Introduction, •••• , •••••••••••••••••••••••••••••••••• 6B1
ProgramStructure •••• ,." ••• ~ •••• , ••• , ••••• , ••••••• ,6B2
Subsystems." •••••••••••••• , ••• , •••••• , •••• , •••• ".,6B3
Rules. • • !II • • ., , • f' • • • • , • • • , • ,. • • , • , • • •• , , • • • • • • • " , • ., • 68 4
Declaratlons •• , •• f ••••• , ••• " ••••••••••••••••••••••• 6B5
C ML . E 1 em en t s·· f • • • • t. , ., • , \I • " , .. •• •• " , • •.• • • • • • • • , • , , • , , 6 B 6
Sample C~L Program •• , ••••••• , •• , •••••••••••••••••••• 6B1

Section 3: LtD Execution procedureS •••••• ,., ••••••• , ••• 6C
Section 4: Additional L1D capabl~ltles •• ".,.t' •••••••• 6D

Introductlon ••••• " ••••••• ,." ••••••••••• ,.,., ••••• ,6D1
Moving Around W1thin NLS Flles., •••••••••• ~., ••••• ~,6D2
Calling NLS Commands ••• ,., ••••• " ••••••••••••••••••• 603
OpenlngFl1es •••••••••••••••••••••••••••••••••• , •••• 6D4
Displaying Messages" ••••••••• !,t ••••• , •••••••••• ".6D5
setting Up for Display Refre$hing •••••••• ,., ••• , •• ~.6D6
other useful Procedures ••••• , •• , •••••• , •••••••• t •••• 607
Globals of Interest •••••••••••• " ••••• t •••••• , •• ,.~t6D8

section 5: CreatIng and Using Attachable SUbsystemS't •• 6E

PART FIVE: Advanced Programming Topics ••••• " ••• , •••• , ••••• 7

section 1: Error Handling .- S~GNALs •••• ,.~ •••• , •••• ~.t1A
Section 2~ NDDT Debuggln9,~.~ •••••••••••••• , ••••••••••• 7a

IntrodQet.lon •• , •••••••• , •• ~ •••• , ••• , ••• , ••• ,.! ••• , •• lB1
Accessing NDOT ••••••• ,.,." ••• "., •••• , ••••••••• , ••• 7B2
NODT Address £xpresslons, ••••••• , ••••• , •• , ••••• , •••• 1B3
Single-Word Varlables •••• " •••• t, ••••• , ••••••••• , ••• 7B4
$ t r 1 n 9 Va r tab 1 ,S, • ,t 'tI , .' '.' , " .t .. , .. , It lit " ••••• 7 B5
Records ••• ,f ••••• , ••••••••••••• , •••••• , •••••• , •• , ••• 7!6
Built in.NDDT symbols •••••••• ,.,i •• ~ •• , •.•• t' ••••••• 1B7
special character eommand$ •• , •• ,.,~ ••• , •••••• ,.t •••• 1B8
Traces and ar.akpolnts •••• ~~, ••• ~ ••••••••••• , ••• ,.,.789
LtO Procedures, •• , ••• , ••••••••• t •••••••••• ~ •••••• ,.7810
SYmbols.~, •• " ••• , ••• , ••• , ••• , ••• , ••••••••••••••••• 7al1
Scann1ng for Content., ••• , •••••••••••• " ••••••••••• 7B12

Section 3: writing CML Parsefunctlons •• , •••••• , •••••• ,,7C
SectIon 4: Calculator CapablJltles •••••• , •••••••••••••• 7D

Introductlon, ••• , •••••• " ••••••• ,.~ ••••• , ••• " •• , ••• 7D1
converting String to Doubl~.precls1onFloatlng ••• , •• 7D2
converting Floating point to Str1ng ••••••••••••••••• 7D3
Calculations with Foatlng polnt •• , •••• , ••••••••••••• 7D4

page v

ARC 34044 Rev. 5 DEC 7S
&ARC.APP 4-0£C.7520:25 34044

NLS Proorammer$' Guide
Table Of Contents

Section 5: Fields ~nd Records., •• t' •• , •••••••• ~, •••••• ,7E
section 6: Stacks and Rings.,."., ••• ,., •••••••••• , •• ,.1F
Section 7: U$ln9 the Sequence Generator •••••••••••••••• 7G

Introductlon ••••••••• f •••••••••• , ••••• , ••••••••••••• 7G1
CO-Routine Effect •••••••• , ••• , ••••• , •••••••••••••••• 7G2
sequence Work Area ••• , •••• ~ •• , ••••••••••••••••• ,t ••• 7G3
Displaying Strlngs •••••••••••••••••••••••••• , ••••••• 7G4
Us!nq seQuences •••••••••••• , •••••••••••••••••••••••• 7G5

Section 8: Co~dltlonal Compl11ng,., •• , ••••••••••••••••• 7H

ASCII '-SIT CHARACTER CODES •••••••••••• , ••••••••• , ••• , •••••• 8

page vi

NLS programmers' Guide
Introduction

&ARC.APP 4-DEC.15 20:25 34044
A~C 34044 Rev, 5 DEC 75

INTRODUCTION

NLS provides a variety of commands for tile manipulation and
vlewing, Editing commands allow the user to insert and change the
text in a file. ViewIng commands (v!ewspecs) allow the User to
control how the system prints or displays the file, Line
truncation and control Of statement numbers are examples of these

2

viewing facilities, 2a

Occasionally one may need mOre sophisticated view controls than
those ava11able with the viewing features Of NLS. 2b

For example, one may want to see only those statements that
contain a particular word or phrase, 2bt

Or one might want to see one line of text that compacts the
information found In severdl longer statements, 2b2

one might also wish to perform a series of routine editing
operations without specifyIng each of the NLS commands over and
over again, Or build commands for specific applications. 2c

User·wrlttenpfOgramS may tailor the presentation Of the
information In a file to particular needs, Experienced users may
write programs that edit files automatically. 2d

User.wrlttenprograms currently must be coded In ARC's
procedure.oriented programming language,.Ll0, NLS itself IS coded
In LtO. LtO 1s a hlgh.level language which must be eompl1ed into
machlne~readable instruCtions, This document describes LI0,
Programs whiCh Interact with users additionally use a langUage
developed at ARC called command Meta Language (CML), described In
part Four Of this document. 2e

This document desCribes three general ty~es of programs: 2£

--simple filters that control what Is portraYed on the user's
teletype or diSPlay (parts One and Two), 2f1

··pro9rams that may modify the statements as they decide
whether to print them (Parts Two and Three), 2£2

--those that, like commandS, are eXPlicitlY given eontrol Of
the job and Interact With the user (part FOUf), 2£3

user programs that control what material Is portrayed take

page 1

ARC 34044 Rev, 5 DEC 75
&ARC.APP 4-0£C.75 20:25 34044

NLS Programmers' Guide
Introduction

effect when NLS presents a seqUence of statements in response
to a command like Print (or Jump in DNLS), 2£4

In processing such"8 command, NLS looks at a sequence of
statements, examining each statement to see if it satisfies
the viewspecs then 1n force, At this pOint NLS may pass the
statement to a user·written program to see If it satisfies
the requirements specified in that program, If the user
program returns a value of TRUE, the (passed) statement Is
printed and the next statement In the sequence 1s tested, if
FALSE, NLS just goes on to the next statement. 2£4a

While the prOgram is examining the statement to decide whether
or not to print It, it may mOdify the coritents of the
statement. SUCh a program can do anything the user can do with
NLS commands. 2£5

For more complex tasKS, a user program function as a
speclal"purpOse Subsystem having (In addition to the may
supervisor ~ommands) one or more commands, onee such a program
Is loaded, it can be used just lIke any of the standard
subsystems, (The MESSAGE program 15 an example,) 2f6

This document 15 divided into five parts: 2g

Part One Is intended for the general user. 291

It Is a primer on content Analyzer patterns, allowing the
NLS user to set up simple yet powerful filters whrough Which
he may view and edtt files, This does not Involve learning
the LI0 language nor programming, This seetlon can stand
alone, and the general (1£ somewhat experienced) NLS user
should find it very useful, 2g1a

Part Two Is intended for the beginn1ng programmer, 2g2
~

It presents a hasiy overview of L10 programming, with enough
tOOlS to ~rlte SimPle programs, ThiS 15 intended as an
introduction for the beolnning user programmer, who we
assume Is reasonably fam111ar with NLS (its commands,
SUbsystems, and capabilities) and has some aptitude for
programming, 2g2a

Part Three is a more complete presentation of LtO, 2q3

page 2

It Is intended to acqUaint a potential Ll0 programmer with
enough of the lenguaqe and NLS environment to satisfY most
requirements for automated editing programs, Many of the

NLS Pro9rammers~ Guide
Introduction

&ARC-APP 4·DEC~75 20:25 34044
ARC 34044 Rev, 5 DEC 75

concepts In Part Two are repeated in Part Three so that it
may stand alone as an Interm,dl at e programmer~s re~erence
guIde, This Is the sect10n in which to begin looking for
answers to specific questions. 2g3a

Part Four presents mOre advanced Ll0 tools and an introduction
to CML, allowing command syntax speCification, 2g4

This Shouldglve the programmer the ability to write "
programs which work across files, WhiCh move throUgh files
~n other than the standard sequential order, and which
interact with the user, It allows the programmer to build
user-attachable subsystems with commands looking very much
like standard NLS facilities, 204a

Part Five presents a number Of subjects of interest to the
advanced Ll0 progammer, 2g5

We suggest that those whO are new to Ll0 begin by acquiring a
thorOUgh understanding ·0£ part One, Then Part TWo ShOUld be
studied one section at a time, pausing betWeen sections to try
out the eon~epts presented bY actually writing patterns or
Pfogr,ms that put the new idea$ to experimental use, Actual
experience Is Of at least as mueh value as this tutorial,
Tutorial guidance should be requested trom ARC through your
architect, If you have prOblems at any pOint, you should get
help from ARC before Pfoeeedlng to the next section, 2q6

Note: FOr syntactical COrrectness, some exampl~s Include
constructs not yet defined In the text, they will be
discussed soon thereafter, 2g6a

For ~xamples of us.r programs which serve a variety of need"
examine the attachable SubsYstems in the <PROGRAMS> directory and
their deseriptions 1n Help. rot information about commands
mentioned, ask tor the progra~mlng subsystem wtth theNLS Help
command. 2h

page 3

ARC 34044 Rev. 5 DEC 75

page 4

&ARC-APP 4-DEC-75 20:25 34044
NLS PrQgrammers· Guide

Part One: . Introduction

NLS programmer$- Guide
Part One: Introduction

&ARC.APP 4.0EC.75 20t25 34044
ARC 34044 Rev. 5 D~C 15

PART ONE, COntent Analyzer patterns

Section 1: Introduction

Content analysis patterns cannot affect the format In which a
statemtnt Is printed, nor can they edit a file. They ean only
determine whether a stateme~t should be printed at all. They are,
1n a sense, a filter through~whleh yoq may v!ew the file, More
complex tasks can be aceompltshed through programs, as d~serlbed

3

3a

later In this document, 3al

The Content Analyzer fIlter is created by typing 1n (or $electlng
from the text In a file) a string 9f a s~eelalform which
describe$ those statements which will pass through the filter.
This string is called the "Content Analyzer Pattern", Each
statement Is checked against the pattern before it 1s prlnte~J
only statements that are described by the pattern will be printed. 3a2

Some quiCk examples of Cont~nt Analyzer Patterns: 3a3

'($LD') will show all statements whose first Character Is an
open par~nthesls, then any number of letters or digits, then a
close parentheSis, 3a3a

["bl.pH) will show all statements with the string "blap"
somewhere In th.~. lalb

SINCE (3-JUN-75 00:00) will Show all statements edited since
June 1, 1975 3a3c

The next part of tbts s'ctlon w111 describe the elementswhleh
make u~ conttnt Analyzer p,tterns, followed by some examples. The
final subject of this sectlo~ls now to ~ut them to use, 384

page 5

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4-0EC.75 20:25 34044

NLS Progremmers' Guide
Part One: Patterns

Section 2: Patterns 3b

Elements of Content Analyzer Patterns 3bl

Content Analyzer patterns describe certain things the system
must check before printing a statement. It may check one or a
sertes of things, Each test Is ,called an element, the many
possible elements will be described below, 3bla

The Content Analyzer searches a statement from the
begInning, character by character, for described elements,
AS it encounters each element of the pattern, the Gontent
Analyzer checks the statement for the occurrence of that
elementf if the test falls, the whole statement Is failed
(unles$ there ~as an "or" condition,as described later) and
not printed, If the test Is passed, an imaginary marker
moves on to tne next character In the statement, and the
next test In the pattern Is considered.

For example, If the neit element In the content Analyzer
pattern IS "LD", the imaginary marker w111 move over the
next character 4nd 90 on to test the next element Of the
pattero only If the ne~t Character Is a letter Or a digit,
otherwise the whole statement falls to pass the filter.

The pattern may inClude any sequence of the following elements,
the Content Analyzer moves the marker through the statement
checking for each element Of the Pattern In turn: 3blb

Literal String elements 3blc

*c •• tn~glven character (e.9. a lower case C)

"strinG" •• the g1ven string (may include non-printing
Characters, SUCh as spaC~$'

Character class elements

CH .- any character

L -- lowercase or uppercase letter

o .- digit

UL •• uppercase letter

LL .- lowercase letter

page 6

3bld

NLS Programmers' Guide
Part One: patterns

&ARC.APP 4~DEC.75 20:25 34044
ARC 34044 Rev. 5 OEC 75

ULD •• uppercase letter, or diqlt

LLD .~ lowercase letter, or digit

to w_ lowercase of uppercase letter, or digit

NLD w~ not a letter nOr digIt

PT .- any printing character (letters, digits, punctuation)

NP .w any non-printing character (e,g. spaces, control
Characters)

special non~prlntlng character elements

SP •• a space

TAB -. tab character

CR .- a carriage return

LF w. line feed character

EOL •• TENEX EOL (end of l1ne) character

ALT -. altmode character

Special elements

ENDCHR .~ beOinnlng and end of every NLS statement, can-t
scan past it: not con5~dered a character

TRUE •• 1s true without checking anything in st*tement (used
with OR constructs, as described below)

ID- ld .~ statement created by user whose Ident Is given

IDI Id •• statement not created by user whose ident Is given

BEFORE (d~t) •• statement edited before given date and time

SINCE (d-t) ~~ statement edited since given date and time

E.g. BEFORE (1 OCT 1914 00:00) ,

The date and time must both appear in the parentheses.
It accepts almost any reasonable date and time syntax.

3ble

3blf

Page 7

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-0EC.75 20:25 34044

NLS Programmers' Guide
Part Oriel patterns

EXamples of valid dates:

17-APR-74
APR.17-74
APR 17 74
APRIL 17, 1974

Examples Of valid times:

17 APRiL 74
17/5/1974
5117/74

1:12:13 1234156
1234 1:56AM
1:56-EST 1200NOON
16:30 (i,e, 4:30 PM)
12:00:00AM Ci,e, midnight)
11:59:59AM~EST (l,e, late morning)
12:00:01AM {i,e, early morning)

Scan direction

< .- set scan direction to the lett

> •• set scan direction to the right

The default, re-initialized for each new statement, 1$
scan to the r19htfrom befOre the first character In the
statement (beginning to end),

3b19

Mod1fylng Elements 3b2

Several operators can modify any of the elements except the
"special elements": 3b2a

NUMBER -. mUltiple occurrences 3b2b

A number preceding any element other thap one ot the
~Spee1al elem~nts" means that the test will succeed only If
It finds exactly that many occurrences of the el~ment. If
there aren·t that many, the statement wIll be rejected.
Even thOugh there may be more, it will stop after that many
and gO on to check the next element1n the pattern,

3UL means three upper case letters

$ -- range of occurrences

Page 8

A dollar sIgn ($) preceding any element other than the
"Special elements" means "any number of occurrences of".

3b2c

NLS programmers' Guide
Part Onel patterns

&ARC·ApP 4-0EC.75 20:25 34044
ARC 34044 Rev. 5 DEC 1S

This may inclUde Zero occurrences, It 1s gOOd practice to
put the element itself in parentheses,

$('-) means any number of dashes

A number 1n front ot the dollar sign sets a lower limit.

3$(0) means three or more d1gits

A number after the dollar sign sets an upper limit for the
searCh, It will stop after that number and then check for
the next element in the pattern, even If it could have found
more,

$3(LD) means from zero to three letters or digits

SS7(PT) means from 5 to 7 (inclusive) printing
characters

tl •• floating scan

To dO other than a character by character check, you may
enclose an element or series of elements In square brackets
[l, The content Analyzer will SCan a $tatement until the
elementcs) 1s found. (If the element Is not in square
brackets, the wh91e $tatement falls If the very next
character or string fails the test of the next element.)
This test will reject the statement If it can-t find the
element anywhere In the statement. If it succeeds, it will
leave tne marker for the next test just after the string
satisfying the contents of the square brackets,

"start" means check to see 1f the next five characters
are: s tar t,

t"st.rt"l means SCan until it finds the strlngl s tar
t.

[30J means scan until it finds three digits,

(3D ':1 means scan until it fInds three dlqits followed
by a colon

~ -. negation

If an element Is pre~eded by a minus sign -, the statement
Will pass that test If the element does not o~cur.

3b2d

3b2e

page 9

ARC 34044 Rev, 5 DEC 75
&ARC.APP 4~DEC.75 20:25 34044

NLS Programmers' Guide
Part One: patterns

~LD means anything other than a letter or digit, such as
punctuation, invisibles, etc,

NOT •• negation

NOT Will be TRUE 1f the element or group of elements
enclosed 1n parentheses fOllowing the NOT is false.

NOT LO will pass If the next Character Is neither a
letter nOr a digit.

3b2f

Combining Elements 3b3

You may put together any number of any of these elements to
form a pattern, They may be combined in any order. Spaces
within the pattern are ignored (except In literal strings) so
they may be used to make reading easier for you, 3b3a

i,e, one or more printing characters, then SCan for ,NLS:
followed by one or more diqits, then check that the next
character Is not a space

MOre sophisticated patterns can by written by using the Boolean
logical expression features~of Ll0, Combinations of ,lements
may In turn be treated as sinole elements, to be mOdified or
combined using logical operators, lb3b

Generally, an expression 1s executed left to r1ght, The
followlnq operations are done 1n the given order:

()

I

()
I
NOT
AND
OR

Parentheses (and square brackets tor floating scans) may be
used to group elements, It Is good practice to use
parenthesis liberally,

I means "either or"; the bracketect element, consIsting Of
two or mOfe alternatives, will be true If either (anY)
element 1s true,

page 10

3b3c

3b3d

3b3e

&ARC-AfP 4-0EC.15 20:25 34044
NLS prog~ammer$' GuldeARC 34044 Rev. 5 DEC 75
Part One: Patterns

AND

OR

(3D L I 40) means either three digits and a letter or
four digits.

Since the S18$h Is executed before NOT, NOT D I 'h will be
true If the next character is NEITHER a digit nor the letter
"h", It 1s the same as NOT (D/~h)t

Sometimes you may want want the scan to pass YOUr marker
over something lfit happens to be there (an .optlonal
element), "TRUE" Is true ,1thout testing the statement, If
the other tests fall, the imaginary marker Is not moved,

(0 I TRUE) loOks for a di9it and passes the Imaginary
marker oVer it, If the next Character Is not a digit, it
will 1ust go on to the next test element In the pattern
without moving the marker and without falling the test.
(This test always passes,)

I.e, It 1s used to scan past something(s) which Mayor
may not be there.

Since expressions are executed from lett to right, it does
no good tO,have TRUE as th~ first option. (If it ts first,
the test will immediately pass without trying to scan over
any elements.)

AND meao$ both of the two separated groups of elements must
be true tor the statement to pass,

SINCE (3/6/1~ 00:00) AND ID#NDM means st~tements Written
since March 6, 1913 by someone other than NOM,

ORme.ns the test will be true if either of the separated
elements Is true, . It does the same thing as slash, but
after "AND" and "NOT" have been executed, allowlnq greater
flexibility,

D AND LLD OR UL
o AND LLD I UL

means the same as (D AND LLD) OR UL
means the same as 0 AND (LLD I UL)

While such patterns are correct and succinct, parentheses
make for much clearer patterns, . Elements within
parentheses &re taken ~$ a group; the grOup will be true
only If the statement passes all the requirements of the

3b3f

3b3g

page 11

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4.0£0.75 20:25 34044

NLS Programmers' Guide
part One. ,patterns

paqe 12

group. It 1s a good idea to Use parenthesas WheneVer
there might be any ambiguity,

&ARC.APP 4-DEC-15 20:25 34044
NLSPrograromers' Guide ARC 34044 Rev. 5 DEC 75
part One. Examples Of Cont~nt Analyzer patterns

Section 3: EXamples of Content AnalYZer Patterns 3c

D 2$LD I ["CA"l I ("Content Analyzer") 3et

This pattern will match and pass any of three types of NLS
statements: those beg~nnlng with a numerical digit followed by
at least two characters which may be either letters or digits,
or statements with either of tne strings "CAn or "Content
Analyzer" anywhere In the statement, 3eta

Note the use of the square braCKets to permit a floating
scan .~ a search tor a pattern anywhere in the statement.
Note also the use of the slash for alternatives,

BEFORE (2S·JAN-72 12:00) 3c2

This pattern will match those statements created or modified
before noon on 25 January 1972, 3e2a

(10 = MGL) OR (10 = NOM) 3e3

This Pattern will match all statements created or mOdified by
users with the identifiers "HGL" or "NDM". le3a

[e2L (SP/TRUE)/ 20) 0 '. 40] 3c4

This pattern will match Characters In the form of phone numbers
anywhere In a statement, Numbers matched may haVe an
alphabetic exchange followed by an optional space (note the use
of the TRUE construction to accomplish this) ora numerical
exchange. 3c4a

[ENDCHRJ < "cba n 305

This will pass those statements ending with "abC", It will go
to the end of the statement, change the scan direction to left,
and check fOr the chara~ters "cba", Note that s1nce you are
scanning backwards, to find ~.bc" you must look for ncba",
Since the "cba" Is not enclosed 1n square brackets, it must be
the very last characters In the statement, 3e5a

page 13

ARC 34044 Rev. 5 DEC 75
&AFC-APP 4-0EC-75 20:25 34044

NLS programmers' Gu1de
part One: Using the Content AnalYZer

Section 4: Using the Content Analyzer

content Analyzer Patterns may be entered In two wayst

1) From the BASE sUbsystem, use the command:

set Content (pattern) TO PATTERN OK

2) From the PROGRAMS subsystem, use the command:

Compile content (Pattern) PATTERN OK

OK means "Command Accept", a eontrol~D or,
in TNLS (by default) a carriage return.

In either ease:

1) Patterns may be typed in from tne keyboard, or

2) they may be text in a file.

rn this case, the pattern will be read from the first
character addressed and continue until It finds a semicolon
(Il so yOU must put a semicolon at the end of the pattern
(in the file),

Vlewspec j muSt be on (S,e. Content Analyzer off) wn~n entering

3d

3d!

3dla

3d1b

3d2

3d2a

3d2b

a pattern, ld2c

Entering a content Analyzer pattern does two things: 3d3

1) compiles a small user pro9ram from the characters in the
pattern, and 3d3a

2) takes that program and "institutes" it as the current
Content AnalYZer f1lter program, deinstttuting any previous
pattern.)d3b

"Instituting" a program means selecting it as the one to
take effect when the Content Analyzer 1s turned on, You may
have more than one program compiled but only one instituted.

When a pattern Is deinstltuted, 1t still exists in your
program buffer space and may be Instituted again at any time
with the command In the PROGRAMS subsystem:

Institute Program PROGRAM-NAME (as) Content (analyzer) OK

page 14

NLS Programmers' Guide
&ARC.APP 4-0EC-75 20:25 34044
ARC 34044 Rev. 5 DEC 75

Part One: Using the Content Analyzer

The programs maY be refered to bY number instead of
name, They are numbered sequentiallY, the first
entered being nUmber 1,

All the pro9ramsyou have compiled and the one you have
instituted may be listed with the command 1n the PROGRAMS
subsystem:

Show status (ot proqrams buffer) OK

programs maY build up in your -program bUffer, To clear the
program buffer, use the PROGRAMS subsystem command~

Delete All (programs 1n buffer) OK

We recommend that yOU do this before each new pattern,
unless you specificallY want to preserVe previous
pat.ter.ns.

To invoke the Content Analyzer: 3d4

When viewSpec 1 15 on, the instituted Content AnalYZer program
(if any) will check every statement before it is printed (or
displayed). 3d4a

If a statement does not pa$s all of the requlrem~nts of the
content Analyzer program, it wll1 not be printed.

In ONLS, It no st~tements from the to~ of the screen
onward through thef1le pass the content Analyzer fl1t~r,
the wOrd "Empty" will be disPlayed,

Note: yOU will not see the normal struCture since one
statement may pass the content Analy~er although its source
doe, nqt. Vlewspecm cs~atement numberscbn) Will help you
deter~lne the posltlonof the statement In the file.

When viewspee k is on, the instituted Content Analyzer filter
will check until it finds one statement that passes the
requirements of the pattern, Then, the rest of the output
(brancn, plex, display screen, etc,) will be printed w1thout
checking the Content Analyzer.)d4b

When vlewspec j Is on, no content Analyzer searching Is done,
This 1s the default state, every statement 1n the output
(bran~h, plex, dlspl~Y screen, etc,) will be printed, Note
that 1, j, and k are mutually exclusive. 3d4c

page 15

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4.DEC~75 20:25 34044

NLS Programmers' Guide
Part One; u$ing the content Analyzer

Notes on the use of Content Analyzer fl1ters~ 3d5

Some NL5 commands are always affected by the current vlewspecs
(1ncludlng 1,j, Or k): 3d5a

Output

Jump (In DNLS)

Pr1nt (in TNLS)

Most NLScommands ignore the Content AnalYZer in th~lr editing,
The fOllowing BASE sUbsystem commands offer the option of
specifying vle wspecs, Or ",liters", (which may turn on the
Content Analy~er) Which apply only for the purpose of that one
command and affect what statements the command wOrks on (only
those statements which pass the filter will be copied, moved,
etC,J structure will be adjusted): 3d5b

Copy

Delete

Move

SUbstitute

At th1s point, it would be wise to practice until yo~ become
proficient at Content Analyzer patterns. YOU mlQhtbeQl0 by
trying to use $ome of the patterns given In the above examples,
and then try writing a few patterns of your Own, These patterns
are both a useful NL5 tool and a basic component of many LtO
programs, we further re~ommend that you contact ARC via your
architect before you begin the next part. 3d6

page 16

NLS programmers' Guide
&ARC-ApP 4-DEC-75 20125 34044
ARC 34044 Rev. 5 DEC 75

Part Two: Content Analyzer programs

PART TWO: Introduction to Ll0 Programming 4

section 1: Content AnalYzer Programs 4a

IntroductIon 4al

When you specify a content Analyzer Pattern~ the PROGRAMS
subsystem constructs a program which looks for the pattern 1n
each statement and only displays the statement 1f the pattern
matching succeedS, You can gain more control and do more
things if you build the program yourself, The program will be
used just like the simple pattern program and has many of the
same limItations, Programs are written In ILS just lIke any
other text file, They then can be converted to executable code
by a compiler, This code resides (Or Is lOaded) In your
programs buffer space: it can be lnstltuted as the current
Content Analyzer filter program like a content Analyzer
Pattern, 4a1a

Program Structure 4a2

If you specifY a Content AnalYZer Pattern, NLS compiles a small
program that lookS like this (with the word "pattern" standinO
for whatever you typed In): 4a2a

PROGRAM name

(name) PROCEDU~EJ

IF FIND pattern THEN RETURN(TRUE) ELSE RETURN(FAtSE),

END,

FINISH

LtD programs must b~9in with a header statement, the word
PROGRAM call caps) fOllowed by the name of the first procedure
to be executed Call lower.case), This name Is also the name of
the program, If the proqfam 1$ being compiled into a file (to
be described at the end of this sectlon), the word FILE should
be substituted fOr the word PROGRAM, E.g, 4a2b

PROGRAM first
or

FILE deldlr

page 17

ARC 34044 Rev. 5 DEC 75
&ARC~APP 4-PEC-75 20:25 34044

NLSProgrammers' Guide
Part Twol Cont.ntAnalyzer Programs

(Note: the Content AnalYZer compiler makes UP a program
name eonsisttnq of UP#!XXXXX, where

is a sequential number, the first pattern being number
one, and

xxxxx Is the first five characters Of your pattern,)

E,g. UP11$LO[P

The body of a program consists of a series Qf DECLARATION
statements and PROCEDURES (in any order) which are blocks of
instructions, In the above case, the program consi$ted Of only
one smallproeedureand no de~laratlons. When the program Is
loaded into your programs buf~er space, the deelaratl~ns
reserve space In the system to store information (variables),
When the program Is used as a Content Analyzer filter program,
the first procedure Is called for each statement. It may 1n
turn call other procedures and access variables In the program
or in the NLS system, E,g. 4a2c

DECLARE x, y, z, (d-scribed below)
(first) PROCEDURE ; . , ,

The end of the pro9ram 1$ delimited by the word "FINISH" (in
all Upper ease), The Compiler stops at that pOint, so any text
after that In the NLS soure@ file will be ignored. 4a2d

comments may be enclosed tn percent signs (\) anywhere In the
program, even In the mlddl~ o~ Ll0 statements, The LtO
complIer will Ignore them. 4a2e

EXcePt wlthtn literal strings, variable nameS and speelal Ll0
w~rd$, spaces are 1 gnored. It 1~ 900d pract,ice to use them
lSberally so that your program w111 be ,asY to read. Also, NLS
file structure 1$ Ignored, statements wl11 be .read
sequentlally, re9ardles~ of t~elr level. Structtire Is,
however, verycvaluable in making the proqramr*adable, and it
Is gOod pract~ee to use it in close correlation to the
program~s log1Calstructur~. For instance, the Pfoqrammer
usually make$ eaCh of the elements Of a program (declarations,
procedures, .nd rINISH) $ep~rate stat,ments, below the header
statement lnfl1tstructurt, This pOint will be discussed
further later. 482f

So far, we have tile which looks something like: 4a2g

page 18

NLS Programmers' Guide
Part Two: Content Analyzer programs

P~QGRAM namel

DECLARE t t • • ,

DECLAFE • , t ;

(namel) PROCEDURE J

(name2) PROCEDURE

FINISH

,ARC-APP 4-DEC-75 20:25 34044
ARC 34044 Rev. 5 DEC 15

PrOcedure Structure 4a3

Each procedure must begin with its header statement, This
header statement 1s a name enclosed in parentheses fo~lowed by
the word PROCEDURE, and terminated by a semicolon, E,g. 4a3a

(rtame) PROCEDURE J

The bodY of the procedure maY consist of Local declarations,
then L10 statements, An L10 statement 1$ any program
instruction, terminated by a sem1colon. The body must at some
point return control to the procedure that called it, All this
will be further discussed later, 4a3b

The procedure mU$t end with the terminal statement: 4a3c

END,

page 19

ARC 34044 Rev, 5 DEC 75
&ARC8APP 4-DEC.75 20:25 34044

NLS Programmers~ GuIde
Part Twol Content Analyzer programs

Example (the aetual L10 statements In this example wIll become
clear a$ yoU read on): 4a4

PROGRAM compare % Content analyzer, Displays statement 1f
first two visibles are th~ same. % 4a4a

%reServe space for ("declare") four text pointers named
"ptl" through "pt4"%

DECLARE TEXT POINTER ptl, pt2, pt3, pt4;
%reserve 100 characters of space for each of two string
variables named "visl" and "Vls2",%

DECLAFE STRING vls1[100], vls2[1001J
(compare) PROCEDURE ,

%1f find two vls1bles, set pointers around first two
visibles (strings Of printing Characters)%

IF FIND $NP ·ptl l$PT ·pt2 $NP ·pt3 l$PT ·pt4 THEN
BEGIN
%put v1sibles in strinQs%

V!Sl ... ptl pt2 J
vls2 _ pt3 pt4 ,

%compare contents Of strings, return and display
the statement If Identical%

IF *vls1* ~ *v~s2* THEN RETURNCTRUE),
ENDJ

%otherwl$e, return and don't display'
RETURN (FALSE) J

EJI:IO.
FINISH

Deelaration statements 4a5

AS you may have guessed from the above exampl~, content
Analyzer programs can manlpulat~ variables (like text pointers
and strings), while patterns cannot. 4a5a

Text Pointers 4a5b

A text pointer points to a particular location w1th!n an NLS
statement (Or into a string, as described later),

The text pointer pOints between two characters in a
state~ent, By putting' the pointers between characters, a
single pointer can be used to mark bOth the end of one
strlnq and the beqinninq of the strinq starting with the
next character,

Text pointers are declared with the following oeclaration
statement:

page 20

NLS programmers' Guide
&ARC·ApP 4-DEC-15 20;25 34044
ARC 34044 Rev. 5 DEC 75

Part TWo: Content Analyzer programs

DECLARE TEXT POINTER name 1

Strings

String variables hold text, When they are declared, the
maximum number of characters 1s set.

To declare a string:

DECLARE STRING namefnumJ :

nurn Is the max1mum number of characters allowed for tne
string.

E.g.

DECLAFE STRING lstrlngtl00):

declares a string named "lstring" with a maximum l~ngth
of 100 characters and a current length of 0 characters
(it's empty).

you can refer to the contents of a string variable by
surrounding the name with asterisks, E,g,

1Itrln9 1$ the string stored in the variable named
"lstrlrlg".

(Referlngto lstr1ng without the asteriSkS represents
onlY the first computer$1t?}ford of the str1ng, This 15
rarely needed,)

you can put the text between two text pointers 1n a strlnQ
variable with the LIO statement:

lstrlng _ ptr1 ptr2 J

where ptrl and ptr2 art the name, of previoUSlY declared
and set text pOinters, and l$trlnq Is a previously
declared string variable.

These variables will retaln their value from one statement to
the next. other types of variables and their use will be

4a5c

discussed in detail In Part Three, Section 3. 4a5d

Body of the Procedure 4a6

FETURN statement 4a6a

page 21

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4~DEC.7520:25 34044

NLS Programmer$' Guide
Part Two: Content Analyz~r programs

NO matter what it does, every procedure must return control
to the procedure that called it, The statement which does
this 1s the RETURN statement. E,g.

RETURN ,

A RETURN statement maY pass Values to the procedure that
called itt The values must be enClosed In parentheses after
the word RETURN. E.g,

RETURN (1,23,47) ,

A Content AnalYZer program must return either a Value of
TRUE or of FALSE, If it returns the value TRUE (1), the
statement will be printed; 1f it returns FALSE (0), the
statement will not be printed, I.e,

RETURN (TRUE): will print the statement
RETURN (FALSE); will not print the statement

The RETURN statement often Is at the end of a procedure, but
it need not be, For e~ample, In the middle of the procedure
you may want to either R~TURN or go on depending on the
result of a test,

Other than the requirement of a RETURN statement, the body of
the procedure 1s entirely a function of the purpose of the
procedure, A few of the many possible statements will be
described here; others will be introduced in part Three of this
document, 4a6b

FIND Statement 4a6c

One of the most useful statements for Content Analyzer
~roQrams Is the FIND statement. The FIND statem'nt
specifies a content Analyzer pattern to be tested against
the statement, and text pointers to be manipulated and set,
starting from the Current Character position (that invisible
marker refered to In Section i), If the test succeeds, tne
character po~itlon is moved past the last character read,
If at any point tne test falls, the character position Is
left at the pOsition prior to the FIND statement, The
values of text pOinters set in the statement prior to the
falling element will remain as set, others of cOurse will
not be changed,

FIND pattern

page 22

NLS programmers' Guide
&ARC.APP 4-0EC.7S 20125 34044
ARC 34044 Rev. 5 DEC 75

Part Two: Content Analyzer programs

The Current Character position 1s initialized to BEFORE THE
FIRST CHARACTER, and the scan direction 1s Initialized to
left to RIGHT, FOR EACH NEw STATEMENT passed to the Content
Analyzer program.

Any simple Content Analyzer pattern (as describe above) is
val1d ina FIND statement.

In addition, the following elements can be incorporated In
the pattern:

the contents of the string variable

~ptr

ptr

store current scan position Jnto the text pointer
specified by ptr, the name of a declared text pOinter

back up the specified text pointer bY the spec 1fled
number (NUM) of characters, If NUM 1S not specified,
1 will be assumed, Backup is In the direction
~ppos'te to the current scen direction.

set current character position to this position. ptr
i5the name ot a previously set text pointer.

SF(ptr)

The current Character Position 15 set to the front of
the statement in WhiCh the text pOinter ptr is set and
scan direction Is set from left to right,

SE(ptr)

The CUrrent Character Pos1tion IS set to the end of
the statement In WhiCh the text pointer ptr 1s set and
scan direction 1s set from right to left,

page 23

ARC 34044 Rev, 5 DEC 75
&ARC-APP 48DEC.75 20125 34044

NLS Programmers' Guide
part Two: Content Analyzer programs

BETWEEN ptrl ptr2 (pattern)

search limited to between positions specified. ptr Is
a previously set text pointer; the two must be 1n the
~ame statement Or str1ng, Current Character Position
Is set to first positIon before the pattern Is tested.
E.Q,

BETWEEN ptl Pt2 (2D [.l $NP)

FINDS maY be Used as expressions as well as free-standing
statements, If used as an expression, for examPle In IF
statements, it has the value TRUE If all pattern elements
within it are true and the value FALSE If anyone of the
elements Is false. E,g,

IF FIND pattern THEN •• , J

Complicated eXample:

IF FIND ~sf SNP 'c $(LD/'-) ') [H. "*str*J SE[sf) SNP
" THEN RETURN(TRUE) ELSE RETURN(FALSE)J

IF Statement

IF causes execution of a statement if a tested expression is
TRUE, If it 1~ FALSE and the optional ELSE part Is present,
~he statement followlng tne ELSE Is executed. Control then
passes to the statement immediately following the IF
statement.

IF testexp THEN statement ,

IF testexp THEN statement1 ELSE sta t ement2 J

The statements within the IF statement Can be any valid Ll0
statement, but are not followed by the usual semicolon, the
whole IF statement is on~ LtO statement and Is followed by 4
semicolon,

IF FIND [50] THEN RETURN(FALSE) ELSE RETURN(TRUE) J

Programming style: File Structure

The complIer which converts your NLS text to code Ignores NLS
file structure. This allows you to use structure to make your

page 24

4a6d

4a7

NLS Programmers' Guide
&ARC-lPP 4.0EC~75 20.25 34044
ARC 34044 Rev. 5 DEC 75

Part Two: Cont~nt An~lYzer programs

program text easier to read and understand •. Logical use of
structure often facilitates the actualproQrammlnq task as
well, Some conventions have develop~d at ARC in this respect,
although flexibility 1s essential, These should seem obvious
and logical to you. 4a7a

All declarations and PROCEDURE statements should be one
level below the .PROGRAM statement,

All local declarations (not yet descr1bed) and code should
be one level below the PROCEDURE statement,

It Is good style, and makes for much easier programming, to
list what you want to do. as comment statements (In percent
signs) at the level below the PROCEDURE statement. Then you
can gO back and f111 in the code that accomplishes the tasK
described In each comment statement. The code should go one
level below the comment,

It Is alsO worthwhile to put comments In individual
statements Whose purpose Is not Obvious,

We will later describe how to blOCk a series Of statements
where one Is required, These blocks should go 4 level below
the statement of whieh th$y area part~

File structure Should follow the lOgical atruetureof the
programss Closely as possible, E.g,

IF FIND [SD]

THEN RETURNCTRUE)

ELSE RETUR.N(f"ALSE),

Using content Analyzer Pro9rams

once the content Analyzer program has been written (In an NLS
file), there are twoste~s In us1ng it, First, the PrOgram
must be "complIed," i,e. tran$lated into machlne·re8~able cOde:
the comPiled code Is "loaded" into a space reserved for user
programs (the user p~9grams butfer). Secondly, the loaded
program must be "instituted" as the current Content Analyzer
program,

There are two ways to com~11e and load a prooram:

1) You maY compile a pro~ram and lOad it into your programs

488

4a88

4a8b

page 25

&A.RC-A.PP t-DEC-1S 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Proqrammers' Guide

part Two: Content -Analyzer Programs

buffer all 1n one operation, In this case, the program
header statement must have the ,word PROGRAM!n it, When the
user resets his 10b or logs off, the complled code will
disappear,

First, enter the Pro9rams subsystem with the command;

Goto Proqrams OK

Then you may compile the program with the commandl

Compile Ll0 (user program at) SOURCE OK

SOURCE Is tne NLS file address of the PROGRAM
statement.

2) you may compile a ,program Into a TENEX code file and then
load it into your buffer In a. separate operation, The
program can then be loaded from the file into your user
programs butfer at any time without recompi11ng. The header
statement must use the word FILE instead of PROGRAM. Use
th. PROGRAMS subsysteM command:

Compile File (at) SOURCE (using) LtO (to fl1.) FILENAME
OK

The FILENAME must be the same as the prograM'S name,

The code file 1s called a REL (RELocatablecOde) f11e.
Whenever you Wish to load the program code into the user
programs buffer, use the PROGRAMS Subsystem command:

LQad Program (ftle) FILENAME OK

once a compiled program has been lOaded (by either route), it
must be instituted, This is done with the PROGRAMS sUbsyst.m
command: 4a80

Institute Program PROGRAM.NAME (as) Content (analyier
program) OK

The named program will b, lnstltut~d as ~he current Content
Analyzer filter, and any previously instituted program will
be delnstltuted (but willrematn In the bu~£er).

Again, the programs in the buffer are numbered, the first in
being numb~rone. You may use the number lnstead of the
program!s name as a shorthand for PROGRAM.NAME,

page 26

NLS pro9ramm~r$f Guide
&ARC.APP 4-0EC-75 20.25 34044
ARC 34044 Rev, 5 DEC 75

Part. Two: content Analyzer progra.ms

To Invoke the Content Analyzer using whatever program Is
currently instituted, use the viewspec 1, j, or k, as described
in part One, section 4 (3d4). 4a8d

Problems 4a9

Given these few constructs, yOU shoUld noW be able to write a
number of useful Content Analyzer proarams. Try programming
the following: 4a9a

t) Show those statements which have a number somewhere in
the first 20 characters.

2) Show those statements where the first visible In the
statement IS repeated somewhere tn the statement,

page 27

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4.0EC.75 20125 34044

NLS Programmers- Guide
part Two: Content Analyzer Programs

Sample solutions:

Problem 1

PROGRAM number
DECLARE TEXT POINTER ptrl, ptr2 J
(number) PROCEDURE J

FIND eptrl S20CH ·ptr2 J
IF FIND BETWEEN ptrl ptr2 ([0])

THEN RETURN(TRUE)
ELSE RETURN(FALSE),

END,
FINISH

Alternate SOlution to Problem 1: Content AnalYzer Filter

$20CH < COJ

Problem 2

page 28

PROGRAM vis
DECLARE TEXT POINTER ptrl, ptr2
DECLARE STRING str(500] J
(vis) PROCEDURE J

FIND $NP ·ptrl lSPT -ptr2 ,
str _ ptrl ptr2 J
IF FIND ptr2 [NP *str* NPl

THEN RETURN(TRUE)
ELSE RETURN(FALSE),

END,
FINISH

4a9b

&ARCwAPP 4-DEC-75 20:25 34044
NLS Programmers' Guide ARC 34044 Rev. 5 DEC 15
Part Twol Content AnalYZer programs: MOdifyIng statements

SectSon 2: Content Analyzer Programs: Modifying statements 4b

IntroductIon 4bl

content Analyzer programs may edit the statements as well as
-decide whether or not they are printed, They are very useful
where a series of editIng operations has to be done time and
time again, This sect10n will introduce you to these
capabilIties, All these constructs will be covered In detail
In Part Three, 4bla

A content Analyzer program ha~ several limitations. It can
manipulate only one file and it can look at statements only In
sequential order (~S they appear In the file), It cannot back
UP and re-examine previous statements, nor can it Skip ahead to
other parts of the file. It cannot interact with the user.
part Four provides the tools to overcome these limitations. 4blb

String construction 4b2

Statements and the contents of string variables maY be mOdified
by either of the fOllowing two statements: 4b2a

ST ptr _ strlngllst ,

The whole statement in which the text pointer named "ptr"
resides will be replaced by the string list (to be
described 1n a minute).

5T ptr ptr ~ string11st ,

The part of the statement from the first ptr to the
second ptr will be replaced by the string list,

ptr may be a previously set text pointer or SF(ptr) or
SE(ptr),

The content of string vartables maY be replaced with the strinQ
assignment statement: 4b2b

strlngname _ strlngl1st ,

The strlnq list (strlngllst) may be any series of str~ng
deSignators, separated by commas, The string deSignators may
be any of the following (other possibilities to be described
later): 4b2c

page 29

&ARC.APP 4-0EC-75 20:25 34044
ARC 34044 Rev. 5 DEC.7S NLS Programmers' Guide

part Two: Content AnalYZer Programs: MOdifying Statements

a string constant, e,g. ~ABCff or 'w

ptr ptr

the text between two text pointers previouslY set 1n
either a stateMent or a string

str1ngname

a string name 1n asterisks, referlng to the contents of
the string

ST pI p2 _ *strin9* 1
or.

ST pi _ SF(Pl) pi, *string*, p2 SE(P2);

(Note: these have e~actlY the same meanIng,)

4b2d

Example: 4bl

PROGBAM delsp % Content analyzer. Deletes all leading
spaces from statements, % 4b3a

%reserY~ space for ("declare") a text pOinter named "Pt",
DECLARE TEXT POINTER ptr

(del$p) PROCEDURE ,
%If arty l~adlng spaces, scan past them and set pointer%

IF FINO ISSP ·pt THEN
'replace statement with text from pOinter to
statement end,

57 pt • pt SECpt),
%return, don't display anything,

RETURN (FALSE) 1
END,

FINISH

More Than One Change per statement 4b4

Part of a text pointer 1$ • character count. Thi$ count stays
thes4me until the text pointer Is again set (to some other
position), even thoUgh the statement has been edited, If, for
example, yOU have the statement 4b4a

abedefg

and if yoU have set a pOinter between the "d q and the "eft, 1t
will always point between the fourth and fifth characters 1n

page 30

,ARC-APP 4.0EC.75 20:25 34044
NLS Programmers' Guide ARC 34044 Rev, 5 DEC 75
Part Two: Content Analyzer programs: MOdifying statements

the statement, If you then delete the character "a", your
pointer will be between the "en and the "t", now the fourth and
fifth characters, FOr thts reason, you should begin a series
of edits with the last one In the statement and work backwards
through the statement. 4b4b

controlling Which Statements are Modified 4bS

In TNLS, the Content AnalyZer program will be called for
commands which construct a printout of the file (print and
output), The program will run on every statement for which it
1s called (e,g. every statement In the branch during a Print
Branch command) which pass all the other viewspecs, once you
have written, complIed, and instituted a program which does
some editing operation, the Print command Is the easiest way to
run the program on a statement, branch, plex, or group, 4b5a

In ONLS, the sYstem will call the Content Analyzer program
whenever the display 1s recreated (e.g, viewspec r and the Jump
commands), and also for the Output commands, If the program
returns TRUE, it will only run on enough statements t9 fill the
screen, It 15 safer to have programs that edit the file return
FALSE, Then when yoU set.viewspec 1, it will run on all
statements from the top of the display on, and when it Is done
it will display the word "Empty", At.that point, change to
vlewspec j and recreate the display with viewspec F, then all
statements Ineludlnq the Cnange~ will be displayed, You can
contrOl which statements are edited with level viewspees and
the branch only (9) or plex only (1) viewspecs, and by
positioning the top Of your windOw, 4b5b

After having run your program on a file, you may wish to Update
to permanently Incorporate the changes in the file, It Is wise
to Update before you run tne program so that, if the program
does something unexpected, yoU can Delete Modifications and
return to a gOOd file, 4b5c

Problems 4b6

Try writing the following programs: 4b6a

1) Remove any invisibles from the end of each statement,

2) Make the first word a statement name surrounded by
parentheses,

page 31

,ARC.APP 4-DEC.75 20125 34044
ARC 34044 Rev. 5 DEC., 75 NLS prqgrammer s' Gu ide

part Twol Content Analyzer Programs: ModlfylnQ Statements

sample solutions:

Problem 1

PROG~AM endlnv
DECLARE TEXT POINTER ptr J
(endlnv) PROCEDURE ,

IF FINO 8 p tr SE(ptr) 1$NP ~ptr
THEN Sf ptr ~ SF(ptr) ptr J

RETURN (FALSE) J
ENO,

FINISH

Problem 2

page 32

PROGRAM makename
DECLARE TEXT POINTER ptrl, ptr2 :
(makename) PROCEDURE J

IF FIND $NP·ptrl 1SLD 8Ptr2
THEN ST. ptrl _ '(, ptrl ~tr2, '), ptr2 SE(ptr2)J

RETURN(FALSE)
END,

FINISH

4b6b

NLS Proqrammer$' Guide
&ARC-APP 4.DEC~75 20125 34044
ARC 34044 Rev. 5 DEC 75

Part Three. The User Program Environment

PART THREE: Basic Ll0 Programming 5

Section 1: The User Program Environment 5a

Introduction 5a1

User-written content Analyzer programs are called 1n the
process Of ereatlnQ a view of an NLS ~lle e,g" with a Print
command in TNLI, with any of the OQtput commands, and with the
Jump command In DNLS. 5ale

The sequenee generator provides statements one ata time,
the Content Analyzer may then Check each one, FlnallY, the
formatter prints It or puts it on the screen,

Thus If one had a user Content Analyzer program Qo~pl1ed and
Instituted, one could have a printout made containing only
those statements in the file satisfying the pattern.

Attachable SUbsystems are independent of this portrayal
process, althouQh theY are welcome to make USe Of it. TheY
consist of commands, which may utilize all the powers of NLS. sa1b

The Sequence Generator 5a2

In the portraY.l process, the sequence generator lOOks at
statements one ata time, beginning at the ~olnt sP,cit,ed by
the user. It observes vlewspecs like level truncation in
determining which statements to pass on t6 the fOrmatter, When
the sequ.nQe generator finds a stattment that pa$ses ,11 the
vlewspec requirements, it sends th~ statement ~o tne formatter
and walts to be Called again for the next statement In th~
sequenCe,

For example, the vlewspecs may 1ndicatethat only the first
line of statements!n the two hlqhest levels are to be
output, The de~ault NLS sequenee generator will produce
pOinters only to those statements passing the structural
f11t~rs, th. formatter will then truncate the text to only
the first lint before It displays or prints the statement,

Content Analyzer Filters

one of ~he viewspees that the sequence generatOr pays attent10n
to is "1" •• the vlewspec that indIcates whether a U$er Content
Analyzer filter 1s to be app11ed to the statement, I~ this

5a2a

5a3

page 33

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4.DEC~75 20:25 34044

NLSProgrammers· Guide
Part Three: The User Program Environment

vlewspec 1s on, the sequence generator passes control to a user
Content Analyzer program, which looks at the statement and
decides whether it should be Ineluded i~ the sequence, If the
statement passes the content~nalyzer (i,e. the U$er program
returns a value of TRUE), the~~equence generator sendS the
statement to the formatter, otherwise, it processes the next
st~tement In the sequence and sends it to the. user Content
Analyzer program for verification, (The particular user
program chosen as a filter 1s determined by what program Is
Instituted as the current Content Analyzer program, as
described below.) 5a3a

In the process of examining a statement and deciding whether
or notlt should be printed, the Content Analyzer program
may edit the text of the s~atementt These edits appear in
the partial copy, just as If the user had made them himself,
This provides a powerful mechanism for automatic editing,

In DNLS, If you display any statements, the program w1ll
stop after filling the screen, If you are not dl$playing
any statements, the program will run on either the whole
file, a plex (vlewspec 1), or a branch (vlewspec g), These
along with level clipping viewspecs give one precise control
over what statements 1n the f11e will be passed to the
program,

The PortraYal Formatter 5a4

The formatt,r arranges text Passed to it bY the sequenCe
generator In the stYle spe~lfied by other viewspecs, The
formatter observes vlew$pecs such as line truncation, length
and indenting, it also fOrmats the text 1n accord with the
requirements ot the output device, 5a4a

page 34

NLS ProQrammers· Guide
&ARC.APP 4-0EC-75 20:25 34044
ARC 34044 Rev. 5 DEC 75

Part Three: Program Structure

Section 21 Program Structure

An NLS user program consists of the follow1ng elements, which must
be arranged 1n a definite manner with strict adherence to

5b

syntactic punctuation: 5bl

The header. 5bla

a statement consisting of the word PROGRAM, fOllowed bY the
name of a procedure In the program, program execution will
begin with a call to the procedure with this name,

PROGRAM name

The PROGRAM statement may have a statement name In
parentheses: it will be lqnored,

The word FILE should be sUbstituted for the word PROGRAM If
the code 1s to be compiled into a ~lle to be saved.

The FILE statement may have a s~atement name: If so, that
name w1ll be used as tne eode~fl1e symbol. You must not
follow the word FILE with a name If there Is a statement
name preceding FILE.

The body ""

consists of declaration$ ana procedures In any order.

1) declaratIon statements Wh~Ch specify information
about the data to be processed by the procedures In the
proOram and enter the data Identifiers in the program's
symbol table, terminated by a semicolon, E,9,

DECLARE x,y,Z ,
DECLARE STRING testt500J J
REF x, z:

Declaration statements will be covered In section 3
(5c) "

2) procedures which specify certain execution tasks.
Each procedure mUsteonsist of:

the procedure name enclosed in parentheses followed by
the word PROCEDURE and optionally an argument list
containing names of variables that are passed by the

5blb

page 35

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-0EC.15 20:25 34044

NLS Programmers' Guide
part Three: Program Structure

ealling procedure for referencing within the called
procedure, This statement must be terminated by a
semicOlon, E,g.

(name) PROCEDURE f
(name) PROCEDURE (paraml, param2) 1

YoU should alw.ys include a comment 1n the
procedure statement breifly summarizing the
function of the procedure.

the bOdy of the procedure which may consist ot LOCAL,
REF, and Ll0 statements,

LOCAL and REF declarations within a procedure must
precede executable code, They Will be covered in
Section 3 (5e),

LtO statements will be covered In Sections 4 and 5
(Sd) (Se),

A RETURN statement must be inCluded at some
point, to pass control. back to the calling
prgcedure. If It Is missing, execution w1ll run
otf the end of the procedure and an ILLEGAL
INSTRUCTION will occur.

the statement that terminates the procedure (note the
final period)'

END,

The program terminal statement •

FINISH

Note: this 1~ a signal to the compiler to stop
compilation: it dOeS not mean stop eXecution, Any text
after that In the NLS souree file will be ignored,

5blc

Notes on Program Writing Style 5b2

EXcePt for within literal strings, variable names, and sPecial
LI0 reserved words, spaces are ignOred. It Is good practice to
use them liberally SO that your program will be easy to read, 5b2a

comments may be enclosed In percent signs (%) wherever spaces
are allowed. They will be ignOred by the compiler, It 1s good

page 36

NLS Programmers' Guide
&A~C.APP 4~DEC.75 20:25 34044
APe 34044 Rev. SPEC 75

Part Three: Program Structure

practice to use the level below the procedure statement for
comme~ts, filling 1n the code that executes tbe commented
function at the level below the comment, It Is alsO wise to
add comment$ to any 1ndividual statements whose function Is not
Obvious, particularly calls on other procedures. 5b2b

You may flnd it convenle~t to ad~ a comment to the FILE
statement Including the information needed by the Compile
File command, E.g,

FILE program % (LtO,) to (dlrectorY,PfOgram,sUbSyS,) % .
Also, NLS file structure is ignored, Structure Is, however,
very valuable In making the program readable, and it Is good
practice to use it In close correlation to the program's
logIcal structure. 5b2c

An example of a simple LtO program is provided here. The reader
ShOUld eaSilY understand this program after having studied this
document, 5b3

PROGRAM delsp , content analyzer, Deletes all leading
spaces from statements, % 5b3a

%reserve space for ("declare") a text pOinter named "pt U%
DECLARE TEXT POINTER ptJ

(del~p) PROCEDURE :
%ifany leading spaces, sean past them and set pointer%

IF FIND l$SP ·pt THEN
'replaCe statement holding pt with text from
pointer to statement end%

ST pt _ pt SE(pt);
'return, don't display'

RETURN (FALSE) ;
END,

FINISH

page 37

ARC 34044 Rev, 5 DEC 75
&ARC.APP 4.0EC-15 20:25 34044

NtS programmers' Guide
Part Threel Declarations

Section 3: Declarations

Introduction

LtO declarations provide information to the compiler about the
data that Is to be accessed, they are not executed, Every
variable used In tne prOgram must be declared somewhere In the
system (either In your program or in the NLS system).

There are a number of types of variables available, each with
its own declaration statement: the most frequently used are
discussed here, (complete documentation is available in the
LtO Reference Guide •• 7052,)

Variables

six types of variables are described In this document~ simple,
constants, arrays, text pointers, strings, and referenced.
Each 1s represented by an identifier, some unique lowercase
name, Each can be declared on three levels: loeal, global, or
external, .

Local Variables

A local variable 1s known and acceSSible only to the
procedure in whiCh it ap~ears. Local variables must appear
In a proeedure ar9u ment list or be declared In & procedure's
LOCAL declaration statements (to be explained below), Any
LOCALdeelaratlons must precede the executable statements In
a procedure,

Local variables in the different procedures may have the
same name without conflIct. A global variable may not be
declared as a local variable and a procedure name may be
used as neither. In such ca$es the n.me Is considered to be
multIply defined and a compilation error results,

Global Variables

GlObal Variables are defined In the program', DECLARE
statements, Variables speCified In these declarations are
outside any procedure and may be used by all procedures In
the program,

External Variables

page 38

5c

Sct

Se1a

5clb

Se2

5c2a

5c2b

5c2c

5c2d

NLS Pro9rammers' Guide
Part Three: Declarations

&ARC-APP 4-DEC-75 20.25 34044
ARC)4044 Rev. 5 DEC 75

External variables are defined 1n the program's DECLARE
statements or In the NLS system program.

Var1ables speclf.led In these declarations may be used by all
procedures anywhere In the system. Many externals are
defined as part of the NLS system, user programs have
complete access to these. Since other proeedures may access
the same variable, the user prOgrammer must be very careful
about changing their values,

Simple Var1ables 5c3
. ..

Simple variables represent one computer word, or ~6 bits, of
memory. Eaeh bit Is either on or Off, allowing binary numbers
to be stored In words. EaCh word can hold UP to five ASCII
7~blt characters, a single number~ or may be dlvld~d into
fields and hold more than Qne number~ 5c3a

Declaring a variable allocates a word In the computer to
hold the contents of the variable, The var1able name refers
to the contents of that word, one may ref~r to the address
of that computer word by preced1ng the variable name by a
dOllar sign ($),

FOr example, if one has declared a simple variable called
"num", one may put the number three In that v.rlable with
the statement.

nUIIl _ 3 ,

One may add two to a variable with the statement:

nUm .. num+ 2 :

One may put th. address of num into a var1able called
addrwlth the ~tatement:

aeidr .. $num ,

one may refer to predefined fields In any variable by
following the name of the variable with a perlod~ then the
field na~e. For example, the fields RH and LH are glObally
defined to be the right and left half (18 bits) of the word
respectivelY, e'.9.

num.LH • 2 J
num ,RH_ 3 ,

page 39

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-0EC-75 20:25 34044

NLS Programmers· G~lde
Part Thre~1 Declarations

Fleldsmay be defined by the user with RECORD statements
(described in section 5 of Part Five), Additionally, you
may refer to system-defined fields (e.Q, RH), They 41vlde
words into fields by numbers of bits, so they may refer to
any declared word, For example, the field "LH" refers lO
the left-most 18 bits In any 36.blt word.

If yoU assign a full word to a field of n bits within a
word, the rlght.most n bits will be assigned to t~e field
In the destination word, tne rest of the destination word
will be untouched,

If you assign a field with a word to a full word, it will
be rlght-justified .wlthln the destination word, the
remaining bits in the de$tinatlon word (to the left of
the asSigned bits) will be set to zero,

Declaring Simple Global Variables

DECLARE name J

"name" Is the name of the variable. It must be all
lower-case letters or dlQlts, and must begin with a
letter,

DECLARE X1 ,

optionallY, the user roay speclty.the Initial value of the
var1able being declared, If a simple variable 1s not
Initialized at the program level, for saf&tv it should be
lnitial1zedln the first executed procedure In which It
appears,

DECLARE name .~ e~p ,

exp 1$ the initial value of name, It may be any of the
following:

• a numeric constant optionally preceded by a minus
sion (.)

• a string, up to five characters, enclosed In
quotat1on marks

• another variable name previously defined In a SET

5c3b

NLS Programmers' Guide
Part Threet Declarations

&ARC-APP 4-DEC.75 20:25 34044
ARC 34044 Rev. 5 DEC 75

statement (described below), causing the latter's
value to be assigned

Examples:

DECLARE x2:5J

%X2 contains the value 5%

DECLARE x3="OUT":

%x3 contains the word OUT%

DECLARE Xx=x4,

%X4 has previously been declared in a SET
statement%

Formal parameters (passed to ~ procedure) are allocated as
local simple v.rlables, then inItialized whenever the procedure
Is called, within the called procedure, they should be treated
as simple variables, 5c3c

constants 5c4

You may declare a (simple) variable to be a constant value with
the statement: 5c4a

SET namel=exp J

where names and expressions are as described above for
initialiZing simple variables,

CQnstants take no memory. They may be refered to just like
simple variables, except the name must be preceded by a dollar
sign ($), They may not be changed by the program, E,g. 5c4b

after the declaration:
SET var = 4 J

the assl0nment:
num _ svar ,

will assign the value 4 to the variable num,

Arrays 5c5

Multl.word (one-dimensional) array variables may be declared,
computer words within them mlY be accessed bY indexing the
variable name, The index follows the variable name, and is

page 41

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4.DEC.75 20:25 34044

Nt! programmers' Guide
Part Three: Declaration$

enclosed in square brackets []. The first word of the array
need not be indexed. The index Of the first word 1s zero, so
if we have declared-a ten element array named "blah": 5c5a

blah Is the first word of the array
blah[l] 1s the second word of the array
blah[9} Is the last word of the array

Declaring Global Array Variables

DECLARE n8m e [num] ,

nurn Is the number Of elements in the array tf the array
Is not being initialized, It mU$t, Of course, be an
Inteqer,

DECLARE sam[lOl,

declares an array named "sam" containing 10 elements,

optionally, the user may specify the Initial value of each
element of the array, If array values are not initialized
at the program level, ior sa~ety,they should be Initialized
In the first executed procedure in which the array Is used,

page 42

DECLAFE name ~ (numl, num2, '") ,

num is the Initial value of each element of the array,
The number of constants implicitly defines the number
of elements in the array. They may be any of the
constants allowed tor $lmple vailables.

Not~t there Is a one.to-one correspondence between the
f1rst constant end the first element, the second constant
and the second element, etc,

Examples,

DECLARE numbs=Cl,2,3)7

declares an array. named numbs c~ntalnlng 3 elements
which are Initialized such that:

numbs = 1
numbs(1) = 2
numbs[21 = 3

5C5b

NLS Programmers' Guide
Part Threet Declarations

&ARC-APP 4-DEC.75 20:25 34044
ARC 34044 Rev, 5 DEC 75

DECLARE motleY=(10,$blah),

dee lares an array named motley containing 2
elements which are initialized such that:

motley = 10

motley[11 = $blah = the address of the variable
"blah"

Text Pointers 5c6

A text pointer Is an L1D feature used in string manipulation
constructions. It 1s a two-word entity which provides
information tor polntlnq to particular locations within text,
whether in string variables or In NLS statements, 5c6a

The text pointer pOints between two characters In a
statement or string. By putting the pOinters between
characters a slnglepo!nter can be used to mark both the end
of one SUbstring and the begInning of the SUbstring starting
with the next Character, thereby simplifying the string
manipulation algorithms and the way one thinks about
strings,

A text poi~ter consists D~ two words: a string identifier and a
character count, Assume you have declared a text pointer named
"pt," 5c6b

pt refers to the first word of the text pointer. The first
word, called an "stld," contains three system-defined
fields:

stfl1e •• the file number (if an NLS statement)
staatr •• a bit indicating string, not an NLS statement
stpsid •• the psld of the statem~ntJ every statement has
a unique number (psid) attached to it,

The $tid Is the basic handle on a statement In Ll0, It
15 often uSed alone, SinCe it 1s a single-word value, it
may be stored In a simple variable and passed easily
between prOcedures, and Is used by many routines to
specifY a statementQr string.

If an stid is used without being properly set, the
run-time error message "fst entrY nonexlstant" may
reSUlt,

page 43

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-DEC.75 20l2S 34044

NLS Programmers' Guide
Part Three: Declarations

pt[l] refers to the second word of the text pOinter, The
second word contains a character count, with the first
positIon being 1 (before the first character),

For example, one might have the following series of
assignment statements which till the three fields of the
first word and the second word with data, with pt being the
name of a declared text pointer:

pt,stfl1e ~ fileno,

%fl1eno 1s a simPle variable with a number In it%

pt,stastr ~ FALSE,

%a statement, not a string%

pt.stpsld ~ orl;ln,

'all origin statements have the psld = 2: origin isa
global variable with the value 2 In it%

pte!] _ 1J

%the word one after pt (i,e, the charaeter count) gets
1, the beginning of the statement%

It 1s important that stld'sbe InitIalized properly to avoid
errors. Text pointers may be most easily initialized by
setting them in a FIND statement (seeSect1on 6),

Declaring Text PQinters

DECLARE TEXT POINTER pt J

The names p1, p2, pJ, p4, andp5 are globally declared and
reserved for system use,

5C6c

strings 5c7

String variables are a ser1es of words holding text, when they
are declared, the maximum number of character, Is set. The
first word contains the two glObally defined fields. 5c7a

M •• the maximum number of characters the string can hold
L •• the actual number of characters currently In the string

The next series of words (as many as are required by the

page 44

NLS proqrammers* Guide
Part Three: Declarations

&ARC·APP 4-0EC.75 20'25 34044
ARC 34044 Rev, 5 DEC 75

maximum strIng size) hold the actual charaCters, five per word,
in ASCII 7-bit cOde, 5c7b

str refers to the contents of the strIng variable "str".

str refers to the first word of tne string variable "str";
tYPicallY thiS 15 onlY useful In ~omblnatlon with the two
fields "M" and nLH:

str,M refers to the maximum declared length of the
string variable "str" (an Integer).

str,L refers to the current length Of the string stored
In the string variable "stt" (an integer),

Declaring strings

The DECLARE STRING enables~the user to declare a global
string variable by inItializing the string and/Or declaring
its maxl~um character length,

TO declare a string:

DECLARE STRING name(num] ,

nurn 1$ the maximum number of characters allowed for
the string

sl~ce the maximum statement length Is 2000 characters,
you should not need to declare a string greater than
2000 characters long,

DECLARE STRING lstrlng[1001,

declares a string named fllstrlng n with a maximum
length Of 100 characters and a current length of 0
characters

TO declare and Inlttalize a string:

DECLARE STRING name=~Any string of text" ,

The length,of the literal string defines the maximum
length of the string variable,

Sc1c

page 45

A~C 34044 Rey, 5 DEC 75
&ARC-APP 4-0EC.75 20125 34044

NLs programmers' G~lde
Part Three~Declarations

DECLARE STRING meSsage=oRED ALERT",

declares the string message, with an actual and
maximum lenGth Of 9 characters and contains the text
ft REO AIJERT"

REF: Refereneed Variables

Reference Declarations

After a simple variable has been declared, the REF statement
can define it to represent some other variable, A .
referenced variable holds the address of another declared
variable Of any type. Whenever the referenced variable 1s
mentioned, Ll0 will operate on the Other variable instead,
~s 1f it were declared 1n that procedure and named at that
pOint,

This Is useful.when yoU wish a procedure to know about a
multi-word variable, In procedure calls, you arft only
allowed to pass single-word parameters. If yoU wish a
called procedure to use or op~rate on a textpolnter, array,
or string, yoU may pass the address of that multi-word
variable, Then, 1n the call~d ~rocedure, yoU must REF the
formal parameter receiving that address. From then on In
the call_d procedure, when you refer to the ~Er.d parameter,
yOuara actually operatln; on the multl·word variable
declared In lome other procedure to which the local REFed
variable points, i,e. on the variable Clt the address
eonta1ned 1n the REFed parameter.

Exemple:

If the simple variable "loe" 1n the current procedure
has beenREFed and contains the address of the string
~$tr" local to the calling procedure, then operations
on loc actually operate on the strlnqln str:

%mas gets tne string In str%

Similarly, you cannot return multi-word variables from a
called procedure. If you wish a procedUre to return a

page 46

Se8

5eSa

NLS programmers' Guide
part Threel Declarations

&ARC-APP 4-DECw7s 20.25 34044
ARC 34044 Rev, 5 DEC 75

string, you must declare the string as a local In the
CALLING procedure, pass its address to a REFed variable In
the called procedure, Then the called proeedur, oan modify
the string as if it were local (~nd return nothing), The
modifications will be made 1n the actual strlnq variable,

Unr&ferencingREFed Variables

one maY refer to the actual contents (an addre$s) of a REFed
v.llable (l,e, "unref" It) by preCeding th~ refere"eed
variable name with an ampersand (5), If, for ex.mple, an
address was passed to a REFed variable, and yoU wish now to
pass that address on to another procedure, you can punref"
it, 1,e,8CCe$S the actual content (the address of some
variable),

E,g. if x has been REFed and holds the address of y:

z .., x

%Z gets the CbNTENTS of y,

z _ &X 1

%z gets the ADDRESS of ,\

This construct might be uSed, for example, 1t one procedure
has been passed the address of a string, operate$on it,
then .ishes to pass (the address of) that strin9 on to
another procedure that It calls,

Thi, can be a trtcky concept, It may be worthwhile to review
this section carefully. .

REFlng SimPle Variables

once a simpl. variable has been declared (as a glObal,
local, or parameter), it may be REFed with the LI0
deelaration statement:

REF var f

It will be a reference from then on In that proe.dure, and
you must always use the ampersan~ to refer to its actual
contents: the address of the var1able it references,

Note that the REF statement does not allocate storaqe, it
just sets an attrtbute of an @xtsting variable_

scab

5c8e

page 47

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4-0EC.75 20:25 34044

NLS Programmers' Guide
Part Three: Deelaratlons

If you wish to use a variable that Is not REFed as 1f it
were REFed, enclose it in square brackets [l, E.g, aSSUme
the simple variable "astr" hOlds the address Of a string
variable but was NOT REFed:

[astrl refers to the contents of the string variable
whose address Is In astr,

Note on Programming Style

yoU should always REF locals and parameters which hold the
address of something to be accessed (even 1f that var1able
is only used to pass the address on to another procedure).

5c8d

Declaring Many Variables 1n one Statement 5c9

One maY avoid putting sev~ral individUal declarations of
variables in a serles by putting variables of s1mllar type,
initialized or not, 1n a list In one statement fOllowing a
slog1e DECLARE, separated by commas and terml~ated by the usual
semicolon, Array and slm~le varibles may be put toqether in
one statement, 5c9a

gxamples:

DECLARE x, Y[10], z .~ (1, 2, -5),
DECLA~E TEXT POINTER tP, sf, P~l, pt2 ;
DECLARE STRING lstrtngtl00], message="RED ALERT" J

Declaring Locals 5etO

Program level declarations (DECLARE and REF) and proc~dures may
appear in any order, However, procedure level deelatations
(LOCAL and REF inside a procedure) must appear before any
executable statements 1n the procedure. The different types of
variables may be declared In any order, but a variable must be
declared before it can be REred, 5cl0a

Whenever PosSible, LOCALs ShOUld be used instead of globals,
It makes for a Cleaner proQram if you pass parameters among
procedures rath_r than depend on global variables to
transmit information.

With one exception, a local variable declaration statement 1&
lUst the same as a global with the word "LOCAL" substttuted for
the word "DECLARE". The one exce~tion Is that LOCAL
declarations. can not initialize the variables. SelOb

page 48

NLS Programmers· Guide
P~rt Three: Declarations

&ARC.APP 4-DEC-75 20125 34044
ARC 34044 Rev, 5 DEC 75

EXamples:

LOCAL var, flag, level[12] ,
LOCAL TEXT POINTEF tp, pt, sf
LOCAL STRING test(100), out(2000] :

When a procedure 1$ called by another procedure, the calling
procedure may pass one-word parameters, The procedure receives
these values in simple local variables declared in the
paOCEDURE statement's parameter list. For example, two locals
will automatically be declared and set to the passed values
whenever the procedure "PfOename" 1s called: 5cl0c

(procname) PROCEDURE (var1, var2) ,

vart and var2 must not be declared again In a LOCAL
statement, They may, however, be REFed by a REF statement,
as discussed above, and used thrdughout the procedure,

The statement whiCh calls procname may loOk like:

procname (locvar, 2) ,

vart will be Inlti411zed to the value of the varIable
"locvar" and var2 will get the value 2,

Declaring Externals

Externals are declared 1u$t like glObals, with one exception,
The word DECLARE must be followed by the word EXTERNAL. E.g,

SET EXTERNAL one=1, two-2 ,
DECLARE EXTE~NAL a, b[10], C~5 J
DECLARE EXTERNAL TEXT pOINTER exptrl, exptr2 :
DECLARE EXTERNAL STRING exstr [100] J

REF specifications may not be external to the program,

Sell

5ella

5cl1b

page 49

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4.0£C-75 20:25 34044

NLS Proqrammers' Guide
Part Three: "Declarations

Accessing Registers 5c12

The user may access machine registers (the same length as other
words, i.e, 36 bits) by naming them with the declaration: 5012a

REGISTER name = regnum ,
or

REGISTER namel=re;numl, name2=regnum2 :

The declared names will then represent the registers to which
they are attached, lou may then access or assign values to
their content, On TENEX, the user programmer may use the first
seven registers, registers 0 through 6, (Registers 7 through
15 are reserved for system use,) E,g, 5cl2b

The names USed 1n the aboVe eXample are uSed most otten bY
convention.

Registers must be used verY caref~lly! They are typically used
when calling TENEX JSYS (see section 4), Many Ll0 constructs
and procedures use the registersJ you should assign their
content to a variable Immediately after the JSYSeall If yoU
wish to save it, Sel2e

page 50

NLS programmers' Guide
Part Threel Statements

&ARC-APP 4-0EC-75 20225 34044
ARC 34044 Rev. 5 OEC 15

Section 4: Statements 5d

Introduction 5dl

This section will describe some of the typeS of statements w1th
which one can build ~ procedUre, The term "expression" (often
abbreviated to "exp") will be used in this section, and will be
explained 1n detail 1n Section 5 (Se), 5dla

Assignment 5d2

In the assignment statement, the expression on the right side
of tne "_" is evaluated and stored In the variable on the left
side of the statement. 5d2a

var _ exp ,

where va: = anY global, local, referenced or unreferenced
varlable~

one may make a series of assignments In one statement by
enclOsing the list of variables and the list of expressions In
parentheses. The order of evaluation of the expressions Is
left to right. The expressions are evaluated ,and.pressed onto
a stack, after all are evaluated they are popped from the stack
and stored In the variables, 5d2b

(vart, var2, •• ,) ~ (eipl, exp2, •••) J

NaturallY, the number of eXpressions must equal the nUmber
of variables,

Example:

The expre$slon c+d Is evaluated and staCked, the
expression a.b Is evaluated and stacked, the value Of a.b
Is popped from th' staCk and stored into h, and finally,
the value of etd is popped and stored into a, It Is
equivalent to:

tempt ~ c+d ,
temp2 ~ a-b :
b _ temp2 ,
a ~ temp1 :

paqe 51

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4.DtC-75 20125 34044

NtS Programmers' Guide
Part Three: statements

One may assign a single value to a series of variables by
stringing the assignments together:

varl ~ var2 _ var3 _ exp ,

The assignment will be made from right to left, varl, var2,
and var3 will all be given the value of the expression,

Example:

a _ b _ 0,

Both a and b will be given the value zero, This type of
statement can be useful In initializing a series of
variables at the beginning of a procedure.

BUMP Statement

The BUMP statement will add one to a Variable:

BUMP var ,

This Is equivalent to:

var _ var + 1 J

BUMP DOWN will subtract one from a variable:

BUMP DOWN var J

This Is equivalent to:

var ~ var. 1 1

5d2c

5d3

5d3a

5d3b

You rnay BUMP more than one variable In a Single statement: 5d3c

BUMPvarl, var2, varl"., ,
or

BUMP DOWN varl,var2, var3" •• ;

IF Statement Sd4

This form caUse$ eXe~utlon of a statement If a tested
expresSion IS TRUE, If the expression IS FALSE and the
optional ELSE part Is present, the statement following the ELSE
Is executed, Control then passes to the statement immediately
following the IF statement, 5d4a

page 52

NLSProgrammers' Guide
Part Three: statements

&ARC-APP 4.DEC~75 20:25 34044
ARC 34044 Rev, 5 DEC 75

IF testexp THEN statement,

IF te$texp THEN statementl ELSE statement2 J

The statements within the IF statement can be any statement,
but are not followed by the usual semicolon, the whole IF
statement Is treated like one statement and followed by the
semicolon, Sd4b

E.g. Sd4c

IF y.z THENY_V+l ELSE y_z

In some cases, complex nested Irs may be simpler 1£ rewritten
as a CASE statement. 5d4d

CASE Statement 5d5

ThiS form Is similar to the IF statement except that 1t Causes
one of a sertes of statements to be executed dependlnQ on the
result of a ~erles of tests, 5d5a

CASE testexp OF
r e 1 () P e'l(P • $ tate m en t ,
relop e~p J statement 1
relop tXP I stat-ment ,

•
• ENDCASE statement ,

where relap ;; any re lat10nal or Interval ope.rator (>=, <, :11,

IN, etc.) see section 5 (5e3c) and (Se3d).

The C~SE.ta~ement prov.idt. a mean. o~ executln9 on, statement
but of many, The expr •• sionafter the word "CASE" 1s evaluated
and the res\Jltle1;t 'in ~. reg18t~r. This i.used •• the
lett-hand side of the binary relation$ at the beginning of the
various case$, Each expression 1s evaluated andeomp,red
accordln9 to the relltional Qptratorto the.CASE express1on.
If the relat10nship 1s TRUE, ~he statement 1s executed. If the
relationship I. FAL$!, the next e~pres$lon and relational
operator w111 be tried, tf non~ of the relations 1$satisfled,
the statement following the word "ENDQASE" ,Ill be .xecuted.
ContrOl then passes to the statement following the CASE
atatement 5d5b

Note that the relOp and ~xpresslons are followed by 4 oolon,
and the statements are terminated with the usual semicolon,

page 53

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4-D£0-75 20t25 34044

NLS Proqrammers' Guide
part Three: statements

The wOfdENDCASE tsnot followed bY aeolon. In ENDCASE,
the statement may be left out ~. this 15 the equivalent of
having a NULL statement there, nothing will happen,

CASE C OF
~ al ,executed If c ~ a%

x ~ Yl
> bl ,executed If c > b%

(x, y) ~ (x+', x-V),
ENOCASE %executed otherwise\

y ~ XI

CASE char OF
= 0: %1f char = the code for a digit'

char ~ 'I,
: ULI %If char = the code for an upper.ease letter%

char _ ·0,
ENDCASE, 'otherwise nothing%

Several relations maY be listed at the start of a single case,
they shOUld be separated bY comma.. The statement will be
executed If any of the relations 1s satisfied, 5d5c

CASE testexp OF
relop exp: statement J
relop exp, relop e~p: statement ,
relop exp, relop exp, relop exp: statement

•
• ENDCASE statement J

CASE e OF
=a, cd: %executed if c=a or ccd%

x ~ YJ
>b, .a: %executed 1f c>b or c=d%

(x,y1 _ (x+y,~.y):
ENDCASE %executed otherwise,

y ~ x:

As a point of stYle, the conditions of the CASE statement
should be put one level below the CASE statement 1n the source
(text) file, The statements (1f they are more than one line)
may be put one level below tne condItion, 5d5d

page 54

NLS programmers' Guide
Part Three; Statements

&ARC-APP 4-0EC-75 20:25 34044
ARC 34044 Rev. 5 DEC 75

LOOP Statement

The. statement following the word "LOOP" 1s repeatedly executed
until control leaves by means of some transfer instruction

5d6

within the looP, 5d6a

LOOP statement,

where statement = any executable LtO statement

LOOP IF a>;b THEN EXIT LOOP ELSE a ~ a+l J

(It Is assumed that a and D have been initialized before
entering the loop,)

The EXIT construction Is described below, It Is extremely
important to carefully provide for exiting a loop.

WHILE, •• DO statement 5d7

This statement causes a statement to be repeatedly executed as
long as the expression Immediately following the word WHILE has
a logical value of TRUE Or control has not been passed out of
the DO loop by EXIT LOOP (described below). 5d7a

WHILE exp DO statement ,

eXP Is evaluated and If TFUE the statement following the word
DO 1$ executed, exp 1s then reevaluated and the statement
continually executed until exp Is FALSE, Then control will
pass to the next statement, 5d7b

For example, If yOU want to tl11 out a string with spaces
through the 20th character position, you eould:

WHILE str.L < 20 DO *str* _ *str*, SP,
there, then a space'

%what's already

Remember that the first word Of everY string variable has
two globally defined fields:

L •• actual length Of contents of string variable
M •• maximum length of string variable

The WHILE construct Is equ1valent to: Sd7c

page 55

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4-DEC.75 20:25 34044

NLs Programmers' Guide
part Three: Statements

LOOP
IF NOT exp THEN EXIT LOOP
ELSE statement J

UNTIL.,.DO statement 5d8

This statement IS s~ml1ar to the WHILE ••• DO $tatement except
that the statement following the DO 1s execut~d until exp 1S
TRUE, As long a$ exp has a lbgtcal value of FALSE the
statement w111 be executed repeatedly. 5d8a

UNTIL exp DO statement J

EXample,

UNTIL a>b DO a _ a+1 ,

The UNT!L construct is equivalent to; 5d8b

LOOP
IF exp THEN EXIT LobpELSE statement f

DO."UNTIL/DO ••• WHILE statement 5d9

These statements ,re 11ke the preceding statements, except that
the logical test Is made after the statement has been executed
rather than before. 5d9a

DO statement UNTIL eXPJ

00 statement WHILE exp:

Thus the specified statement Is always exeCuted at least once
(the first time, befOre the test 1$ made). For example, this
DO, •• UNTIL: 5d9b

DO array[var) ~ 0 UNTIL (var 1= var w 1) = 0 J

and this DO,.,WHILE:

00 array(varl ~ 0 WHILE (var := var w 1) > 0 :

are both equivalent to:

LOOP
BEGIN
array[varl ~ 0 ,

page 56

5d9c

5d9d

NLS Programmers· Guide
Part Three: statements

&ARC.APP 4-0EC.75 20:25 .34044
ARC 34044 Rev, 5 DEC 15

IF (var :~ var • 1)
ENDJ

= 0 THEN EXIT LOOP ,

FOR.,.DO statement

The FOR statement causes the repeated. execution of the
statement following "DOff until a specific terminal v~lue 1s
reached.

FOR var UP UNTIL relop exp DO statement,

(UP will be assumed If left out,)

FOR var DOWN UNTIL relop exp DO statement:

where

var = the var1able whose value Is incremented or
decremented each time the FOR statement Is
executed

relop= any relational operator (deSCribed In Se3e)

exp= when combined with relop, determines whether
or not another Iteration Of the FOR statement
will be performed. It Is recomputed on eaCh

Iteration.

E.9. FOR 1 UP UNTIL> 7 DO a ~ a + t[i] J

OptionallY, the user maY initialize the variable and maY
increment it by other than the defaUlt of one,

FOR var ~ expl uf exp2 UNTIL relop exp3 DO statement:
FOR vat ~ expl DOWN exp2UNTIL relop exp3 DO statement,

where

expl- an optional Initial value for var. It expl 1$ not
specified, the current value of var Is used,

exp2 = an optional value by which var will be incremented
(1£ UP speCified) or decremented (If DOWN speCified), If
exp2 is not specified, a value of one will be assumed.

Note that ~xp2 and exp3 are recomputed on each iterat1on.

Example:

5dl0

5dl0a

5dl0b

5dl0c

page 57

ARC 34044 R@V. 5 DEC 75
&ARC-APP 4-0EC.15 20:25 34044

NLS Programmers· Guide
Part Three; Statements

FOR k _ n UP k/2 UNTIL> m*3 DO x[k] _ kJ

1s equivalent to

k _ nJ

LOOP
BEGIN
IF k >m*3 THEN EXIT LOOP;
x[J<] .. kJ
k. k: +k/2,
ENDJ

BEGIN,~,END statement 5dl1

The BEGIN •• ,END construction enables the user to group several
statements into one syntactic statement entity, A BEGIN."END
construction of any length is valid where one statement 1s
required, 5dl1a

BEGIN statement f statement r , •• END,

IF a >= b*c THEN
BEGIN
a..b,
c~d+51
END %nO semicolon here because an LI0
$tatement here wouldn't have one, see 5d4%

ELSE
BEGIN
a.;e,
b..d+2:
C""""b*d*1,
END; %this semicolon terminates the entire IF

statement%

Note the use of NL5 file structure to clarify the logic and
separate the blocks. BloCks should always be put one level
below the statement of whleh they are a part,

EXI'!' Statement

The EXIT statement tranSfers control (forWard) out Of CASE or
iterative statements, A CASE statement can be left with an
EXIT CASE statement. All of the iterative statements (LOOP,
WHILE, UNTIL, 00, FOR) can be exited by the EXIT LOOP
statement. EXIT and ExtT LOOP have the same meaning,

page 58

5d12

5d12a

NLS programmers' Guide
Part Three: statements

&ARC.APP 4.DEC~75 20,25 34044
ARC 34044 Rev, 5 DEC 75

EXIT LOOP nUm or EXIT num
EXIT CASE nurn

wherenum 1s an optional integer. The optlonalnumber
(num) specifies the number of lexical levels of CASE or
iterative statements r espect1ve ly that are to be exited
(e.g. i£ lOOps ar~ nested within loOPS). It a number Is
not given then t Is assumed,

LOOP
BEGIN
• • t • • .. • •

IF test THEN EXIT; .
%the EXIT will branch out of the LOOP%

• • 411 • .t , •

END;

UNTIL something DO
BEGIN
• , " tJ • • • •

WHILE test1 DO
BEGIN
, • • " , , • It

IF test2 THEN EXITJ
'the EXIT will branch out of the WHILE,

• • • I , • • ,

END, · ,
END1

UNTIL something DO
BEGIN · . " . , , , .
WHILt testl DO

BEGIN ·
IF test2 THEN EXIT 2J

lthe EXIT 2 will branch out of the UNTIL%
• • • • • • • • ENO, · . . . , , " ,

END,

page 59

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-0tC-7S 20:25 34044

NLS Programmers' Guide
Part Three: Statements

CASE exp OF
;;somethingJ

BEGIN
• '" • • , , • t

IF test THEN EXIT CASE,
'the EXIT will branch out of the CASE'

• • , , • ~ ., t

END,

REPEAT statement 5d13

The REPEAT statement transfers control (backward) to the front
of CASE or iterative statements, The optional number has the
same meaning as In the EXIT statement. REPEAT and REPEAT CASE
have the same meaning, 5d13a

REPEA'r LOOP num

REPEAT CASE num (exp) or REPEAT num (exp)

If an expression Is given In parentheses with
then It Is ev~luated and ~~ed 1n place of the
at t~e head of the specified CASE statement,
1s not given, thtn the one at the head of the
reevaluated.

CASE expl OF
"something;

BEGIN , ,
IFt.,tl THEN REPEAT,

,REPEAT with a reevaluat.d expl%
••••. t.t.,
IF C,'t2 THEN R&PEAT(eXP2)J

'~EPtAT with exp2%
• ., t " t • .,

END,
, • • • t • , •

ENOCASE ,

page 60

the REPEAT CASE,
expressiQn given
If the· expression
CASE statement Is

5d13b

Sdl1c

NLS programmers' Guide
Part Three: Statements

,ARC.APP 4ftDEC-15 20:25 34044
ARC 34044 Rev. 5 DEC 75

LOOP
BEGIN . , . . . , , .
IF t~st THEN REPE~T LOOP,

,REPEAT LOOP will go to the top of the LOOP' , ~ , .
END,

DIVIDE Statement Sd14

The divide statement permits both the quotient and remainder of
an integer division to be saved, The syntax for the divide
statement Is as follows: 5d14a

DIV expl I exp2 , quotient , remainder 1

QUotient and remainder are variable naroes In which the
respective value$ will be saved after the division.

OIY 8 I b, a~ r J

a will be $et to alb to the greatest integer with r
oetting the remainder

Floating point calculations are described in Part Five, Section

5d14b

4. 5d14c

PROCEDURE CALL Statement 5d15

Procedure calls direct program eontrol to the procedure
specified, A PrOcedUre call occurs when the name Of the
procedure 1s fOllowed by parentheses, If the prpcedure
requires that ar9yments b. passed" they should be included In
the parenthes~s, separated by commas, 5d15a

procname (exp, exp, ,t.) ,

where procname ~ the name of a procedure

exp ~ any valid L10 expression (explaln~d in Section 5),
The set Of expressions separated by commas Is the
aroument ll$t for the procedure.

The argument list consists of a number of e~presslons separated
by commas, The number of arguments should equal the number of
formal parameters for the procedure. The argument expressions

page 61

ARC 34044 Rev. 5 O~C 75
&ARC-APP 4.DEC~75 20:25 34044

NLS programmers~ Guide
Part Three: Statements

are eValuated 1n order from left to right, Each expression
(parameter) must evaluate to a one-word value. The values will
be assigned to the fOrmal parameters of the called procedure, 5d15b

To pass an array, text pointer, str1ng, or any multi-word
parameter, the programmer may pass the address of the first
word of the variable, then REF the receiving loeal In the
called procedure~

For example, one may Pass an stld directly, but to pass a
text pOinter, YOU must pass the address of the text pOinter
and REF the receiving parameter, Remember that a dollar
sign ($) preced1ng a variable represents the address of that
variable.

The procedure may return one or more yalu~s, The first value.
Is returned as the value of the procedure call, Therefore, if
only one value Is returned, one might say: 5d15c

a _ proc (b) ,

In th1s context, the procedure call Is an expression,

If more than one value Is returned by the called procedure, one
must specify a li,t Of variables In whlqh to store them, The
l,st of variables for multiple results Is separated from the
11$t of argument eXpressions by a colon, The number Of
locations for results need not equal the number Of results
actuallY returned. If there are more locations than reSUlts,
then the extra locations get anundeffned value, If there are
more results than locations, the extra reSUlts are simply lost.
The first RITURN value Is still taken only as the value of the
procedure call, 5d15d

var ~procname (exp, e~PI ••• : var, var, I ••) ,

If procedure "procH ends witn the statement

then the statement

q _ proc(:r,s),

results in (q,r,s) ~ (a,b,c),

page 62

NLS Programmers' Guide
Part Three: Statements

&ARC-APP 4.0EC.75 20:25 34044
ARC 34044 Rev, 5 DEC 75

A procedure call may just exist as a statement alone without
returning a value, Not all prOcedures require parameters, but
the parentheses are mandatory in order to distinguish a
procedure call from other constructs. 5d15e

E,g, lda(),

If a block of instructions are used repeatedly, or are
duplicated In d1fferent sections Of a program, it is Often Wise
to make them a separate procedure and simply call the procedure
when appropriate, Sd15f

It is considered good style to "modularlze" the functions of
yOur program as much as possible, where each proee4ur e
represents a funct10n which will be performed no matter
which procedure called it, This Implies very limited use of
glObal variables and careful definition of the procedure
Interface,

Procedures should not be made too long, nor have complex
nested loops, Often breaking the code into a number ot
shOrter procedures will make the program clearer and easier
to debug.

A procedure may recursively call itself. Each call will have
1ts own unique set of local variables. This may be useful 1f a
procedure Is built to handle a general ease as well a$ a
speelflcc$se or number of cases. The general ease may call
that same procedure for the specific ease after some
menlpulatlons, 5d159

A great many procedures are part of the NLS system and are
available to your programs, A list of them Is available in the
file <NLS,XPROCS,> Or <NLS,SYSGD,>. SYSGO lists links to the
Source code, so that you can eXamine the procedure In detail to
see just what it expects as arguments and what it returns, 5d15h

page 63

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-0EC-75 20:25 34044

NLS programmers' Guide
Part Three: Statements

RETURN Statement Sd16

This statement causes a procedure to return control to the
procedure which called it, optionally, it may pass the calling
procedure an arbitrary number of results. The order of
evaluation of results is from left to right. 5d16a

RETURN ,

RETU~N (exp, exp, •••) J

RETURN (TRUE, a+b) .. ;
RETURN (getnmf(stld)) :

GOTO statement

Any statement may be labeled; one puts the desired label (8
string Of lower case letters and digits) In parentheses and
followed by a colon at the beginning of a statement,

(label). $tatement 1

(there), a _ b + c ;

GOTO provides for unCond1tional transfer of control to a new
location,

GOTO label ,

E,g,

GOTO there J

GOTO statements maKe reading and debugging your program
difficult and are not considered good styler they can usually
be eliminated by use of procedure calls and the iterative
statements.

NULL Statement

The NULL statement maY be used as a convenience to the
programmer, It does nothing,

NULL J

page 64

5d16b

5d17

5d17a

5d17b

5d17c

Sd17d

5d17e

5d18

5d18a

NLS programmers~Gulde
Part Three: Statements

&ARC-APP ,-DEC-7S 20125 34044
ARC 34044 ReV, 5 DEC 75

CASE exp OF
~O, ~1: NULL,
ENDCASg Y_1J

JSYS Call and Assembly Language statement Sd19

The use of these capabilities should be limIted to system
programmers, Assembly language code makes user prOgrams
difficult to understand and to maintain as the executive
underlying NtS changes over time, L10 procedures are available
to accomplish most of the tasks one might want to do with a
JSYS, System programmers should refer to the TENEX JSYS manual
for a description of the available JSYS-s. 5d19a

Assembly language statements may be included In the Ll0 code bY
Preceding the statement with an exclamatlon~polnt (I), E,g. 5d19b

lPUSH s,jfn ,

A TEN EX JSyS may be invoked wIth a statement similar to the
procedure call statement; the name of the JSYS must be preceded
by an exclamation-point: 5d19c

IJSYSNAME (reg1, reg2,.,.) J

The arQument$ 1n the parentheses are evaluated $nd loaded into
the registers before the JSYS 1s invoked, The f1rst argument
will be put In register one, the second 1n register two, etc.
Up to eight arguments may beqlven, Sd19d

Like a procedure call, multlplt results may be reeeived. They
will be taken In order from the registers. (See c13510,3c> for
a description of user JS15 calls. 5d1ge

SOIDe JSYS return to the assemblY~langtiage line of COde (not the
L10 statement) one beyond the normal return location, With
such JSYS, you may uSe the SKIP construct to test 1£ it has
done $01 5d19f

IF SKIP lJSYS(argl't.,) THEN '" J

In uSing SKIP, YOU may not reCeive mUltiPle results directly,
but must read the registers into globals (see se12), 5d19g

page 65

&ARC-APP 4-0EC.75 20: 2.5 34.044
ARC 34044 Rev. 5 DEC 75 NLS Programmers' G~lde

Part Three: Expressions

Section 5: Expressions

Introduction

This section will deseribe the composition of the expressions,
which are an integral part of many Of the statem~nts descrIbed
1n section 4,

Primitives

Primitives are the b~s1c units Which are US~d as the operands
of L10 expressions. There are many types of elements that can
be u$ed as LI0 primitives: each type returns a value which Is
used In the evaluation of an expression,

EaCh ot the following Is a valid primitive:

a constant (see below)

any valid variable name, referlng to the contents (of the
first word, if not IndeXed) of that variable

the contents of a string variable, refered to as *var*

a dollar sign ($) fOllowed by a variable name, retering to
the address Of the variable

a procedure call which returns at least one value

the first (leftmost) value returned 15 the value of the
procedure ~allJ Other values may be stored 1n other
varlable$ as described in5eetl~n 4,

an assignment (see below)

classes ofCharaCtets; described in Section 1 of Part One

MIN (exp, exp, t~.) the minimum of the expressions

MAX (exp, exp, •••) the maximum of the expressions

TRUE has the value 1

FALSE has the value 0

VALUE (astrlng) given the address of a string contaifting a
decimal number, has the value of the number

Page 66

5e

5e1

Seta

5e2

Se2a

5e2b

NLS Programmers' Guide
Part Three' Expressions

&ARC-APP 4.DEC-7S 20125 34044
ARC 34044 Rev. 5 DEC 75

VALUE (astrlnq, hum) o1ven the address of a string
containing a number and the base Of that number, nas the
valu~ of t~e number (allows other than base.ten numbers)

READe (see below)

CCPOS (see below)

FIND

POS

used to test text patterns and load text pOinters for use
1n strinQ construction (see Section 6)J returns the value
TRUE or FALSE depending on whether or not all the string
tests within It succeed,

pas textpolnterl relop textpolnter2

may be used to compare two text pOinters, If the POS
construction is not used, only the first wOrds of the
pointer. (the stid's) will be compared, If a pointer Is
before another, it 1s consideted less than the other
pOinter,

POS Pt,l= pt2
PCS first >= last

Constants

A constant may ;be either a number or a l1ter$1 constant,

There are _everal ways in which numeric valu.s may b,
repre$,~nt.d. Asequenee o~ digits alone (otfollowed bya
0) Is lnterpreeed as base ten, If followed bya 8 the~ tt
Is interpreted as ba$e eight, A $cal~ factOr may ~e given
after the B for octal numbers or after a 0 for decimal
numbers. The seale f·aetor 1s equivalent to adding that many
zeros to the original number,

Examples:

64

144B

1008

100

-- 1 B2

102

5e2c

page 67

ARC 34044 Rev, 5 DEC 75
&ARC-APf 4-0EC-75 20:25 34044

NLS Programmers' GuIde
Part Three: Expressions

Llt~ral$ may be used as constants as they are represented
internally by numeric values. The following are valid
literal eonstants:

-any single character preceded by an apostrophe

e,g. ~a repreSents the code for 1418 •

• the following synonyms for commonly used characters:

ENDCHR •• endcharacter as returned by READe
SF •• sp~ce
ALT •• Tenex's version Of altmode or eScape (=338)
CR •• carriage return
LF ... I1n.e feed
EOL .- Tenex EOL Character
TAB .- tab
Be _. backspace character
BW •• backspace word
C ••• cen.ter dot
CA -. Command Accept
CD •• Command Delete

Assignments

An assignment can be used as a value In an expression.

The form a • b has the effect of storing b into a and has
the value ot b as the value Of th~ aSSignment.

Another fOrm of the assignment statement 1$1

a 1= b

This will store b into a, but have theQld valu, of a as
the value of the assignment when used as a primitive In
an expression.

For eXc1·ft\Ple,

b _ (.4 :1:1 b) J

The value of b will be put.in a. "The assignment will
get the old value of a, which Is then put In b, This
transposes the values of a and b, (The parentheses
are not really necessary,>

HE.ADC .. ENDCHR

page 68

5e2d

5e2e

NLS Programmers' Guide
Part Three: Expressions

&ARC-APP 4-0EC.75 20:25 34044
ARC 34044 Rev. 5 DEC 75

The primitive READe Is a special construction for reading
characters trom NLS statements or strings.

CCPOS

A character 1s read from the current character position
1n the scan direction set by the last CCPOS statement or
string analysis FIND statement or expression. CCPOS and
FIND are eXplained In detail In section 6 of this
document,

Attempts to read off the end of a string In either
direction result In a special "endcharacter" being
returned and the character position not being moved,
This endCharacter 1s Included In the set of characters
fOr which system mneumonlcs are provided and may be
referenced by the identifier ffENDCHR".

For example, to sequentially process the characters of
a string:

CCPOS *str*J

UNTIL (char _ READe) = ENDCHR DO proCess(char)J

(Note: READe may also be used as a statement if It Is
desired to read and simply discard a character).

When used aa a primitive, CCPQS has as its value the index
of the character to the rloht of the current Character
position, ~f str = U91arp", then after CCPOS *str*, the
value of CCPOS Is 1 and after CePQS SE(*str*) the value of
CCPOS Is 6 (one greater than the length of the string).

CCPOS IS more commonlY used as a statement to set the
CUrrent character position for use In te~t pattern matChin;,
This 1s discussed In detail In section 6,

CCPOS may be useful as an index to sequentially process the
first n characters of a string (assumed to have at least n
characters),

5e2f

page 69

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4.0£0-75 20~2S 34044

NLS programmers' Guide
Part Threet ExpreSsions

EXample:

CCPOS SFC*str*);
,cepos now has the index value of one, the front of

the .str 10g%
UNTIL CCPOS > n DO process(READC):

%READe r~ads tne next character and increments
CCPOS%

Operators 5e3

Primit1ves may be comblne~ with operators to form expressions.
Four types of operators will ~e described here: arithmetic,
relational, interval, and lo91cal. 5e3a

Arithmetic Operators 5e3b

+ (1n front of a number) .~ positive value

- (In front of a number) •• negat1ve value

+ •• addition

w -- subtraction

* multiplication

I •• integer divi$ion (remainder not saVed)

MOD •• a MOO b gives the remainder of a I b

.V •• (o~)a tV b=> bit pattern which h~s 1'5 where either
a or b contaln$ 1, 0 elsewhere

.X •• (XOR) a ,X b => bit pattern which hal 1-. where either
a holdS 1 and b contains O,era contaln$O and bcontalns
1., 0 elsewhere

.A •• (AND) a ,A b => bit pattern which has l~s where both a
~nd b contain 1, 0 el&ewhere

A relational operator Is used in an expression to compare
one quantity with another. The ,xpress!on Is evaluated for
a logIcal value, If true, its value is 1, If ~alse, Its
value 1s O.

Page 70

5e3c

NLS Programmers*Gulde
part Three: Expressions

&ARC-APP 4-0EC-75 20,25 34044
ARC 34044 Rev. 5 DEC 75

operator Meaning
"" -- .. -....

:: equal to

" not equal to
< less than
<= less than or

equal to
> greater than
>= greater than

equal to

... ---.. """,
4+1 = 3+2
6#8
6<8

8<=6
3>8

or
8>=6

(TRUE, =1)
(TRUE, =1)
(TRUE, =1)

(FALSE, =0)
(FALSE, =0)

(TRUE, =1)
NOT <other-relational-operator>

6 NOT > 8 (TRUE, =1)

Interval Operators

The interval operators permit one to check whether the value
of a primitive falls In or out of a particular interval,

IN (primitive, primitive) IN [primitive, primitive]

The value Is tested to see whether or not it lies within a
particular interval, Each side of the interval may be
"open" or "Closed". Thus the values which determine the
boundaries may be included in the interval (by u$lng a
square bracket) or exCluded (by using parentheses).

Example,

x IN (1,100)

ex >=1) AND ex < 100)

5e3d

page 71

ARC 34044 Rev. 5 OEC1S
&ARC-APP 4wDEC.75 20125 34044

NLS proqramm~rs· Gulde
Part Three: Expressions

Logical Operators

Every numeric value also has a logical value, A numeric
value not equal to zero has a logical value of TRUE1 a
numeric value equal to zero has a lOg1cal value of FALSE,

OR.

a OR b

AND

a AND b

NOT

NOT a

II; TRUE If a - TRUE -
;: ,'ALsE 1f a :: FALSE

- TRUE 1f a ;: TRUE -= fALSE 1f a :: FALSE

:: TRUE if a = FALSE
= FALSE If a = TRUE

or If b :: TRUE
and if b II FALSE

and If b := TRUE
or 1f b ;; FALSE

Expressions

lntroduction

An expression 1s any cqnstant, variable, special e~presslon
form, or combination Of these jOined by operators and
parentheses as necessarY to denote the order in which
operatlon$ are to be performed.

Examples of asslgnlnQ an eipresslQn to a variable:

var -, 0,
var - var + 2 7
var ... PaS ptrl >= ptr2 J
var - (a > b) OR (a IN [C' , dl) ,

Liberal use of parentheses 1$ highly recommended,

Special LtO expressions are:

Page 72

• the FIND expression Which Is used for string
maniPulation, and

• the conditional IF and CASE expressions which may be
used to give alternative values to eXpress!on$ depending
on tests made In the expressions,

5e3e

5e4

5e4a

NLS Programmers' Guide
Part Threet Expressions

,ARC-APP 4-PEC.75 20:25 34044
ARC 34044 Rev, 5 DEC 75

Expressions are USed where the syntax requires a value,
While certain of these forms are similar syntacticallY to
LiD statements, when used as an expression they always have
values (see below)~

Order of Operator Exeeutlon~· Binding Precedence

The order of performing individual operations within an
equation IS determ1ned by the hierarchY of operator
executiQn (or binding precedence) and the US~ of
parentheses.

operations of the same helrarchy are performed from left to
rlQht In an expression. Operat1ons In parentheses are
performed before operations not In parentheses,

The Order of execution Of operators (trom first to last) Is
as follows:

unary ., unary +

,A

,v, .x
*, I, MOD

+, •

relational tests (e,g" >=, <a,), <, ~, I, IN, OUT)

NOT relational tests (e.o" NOT »

NOT

AND

OR

Conditional Expression$

The tio condItional constructs elF and CASE) can be u$ed as
expres$lons as well as statements, As expressions, they
must return a value,

IF Expressions

IF testexp THEN expt ELSE exp2

5e4b

5e4c

page 73

ARC 34044 Rev, 5 PEC 75
&ARC-APP 4-0EC-75 20:25 34044

NLS programmers- GtJJ.de
Part Three: Expr~sslons

testexp 1s tested for its logical value. If testexp Is
TRUE then expl w1ll be evaluated, If it is FALSE, then
exp.2 Is eval uated.

Therefore, the result of this entire express10n Is EITHER
the result of expl or exp2,

Exampl~:

Y _ IF x IN[1,3] THEN x ELSE 4,
%If x == 1, 2, or 3, then y_xJ otherwlse y_4%

CASE EXpression

page 74

This form Is similar to the above except that it causes
anyone Of a series of expres~lons to be evaluated and
used ~s the result of the entire expression.

CASE testexp OF
relop exp : exp ,
relop exp : exp ,
relop exp : exp I

,
I

ENOCASE exp

where relop == any relatlon.l or Int:erv.l operator (>=,
<,., IN,ete. see above (5e3c) and (Se4d)

In the .bove,tbe teste~p Is evalyatedand us~~ with the
operatof relops and th.elr reSPfH!'t.lveexp$ to test. for a
vallJe Q.f. TBtJE or rALSE. If T~UE 1n$.nYlnstanc~, the
compan1'onexpres~lon to. the r1ghtof th' colon 1s
executed and taken to b~ the value Of the whole
expression, . A value, of FAt.SEfor .lltest$ causes ,the
next relop. 1n tb&CASEexpre.slon to beteSte~ against
thetes~exp. It .ll relops are F,ALSE, theENDCASE:
express.i~n 1$ tak,n to be the value Of the whole
express1on,

Note that ENOCAS.E cannot be null., 1tmust have a value,

As with the CASE statement, any number of case. maY be
speClfl~d, and each case ~ay tnelud. mo~e than one relop
and .xp~esslon, separated by commas,

NLS programmers' Guide
Part Three: Eipressions

y_ CASE x OF
<3: x+l,
=3, =4: X+2J
=5: x,
ENDCASE x*2,

Value of X Value of y

2 3
3 5
4 6
S 5
6 12

&ARC-APP 4-DEC.75 20,25 34044
ARC 34044 Rev,' 5 DEC 75

String Expressions 5e4d

Ll0 also provides several expressiQn forms which are used
for string manipulation and evaluation, These are discussed
In section 6 of this document, When using string
manipulation statement forms as express1ons, p$rentheS@$ may
be necessary to prevent amb1guities,

page 75

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4-0EC-75 20125 34044

NLS Programmers' Guide
Part Three: string Test and Manipulation

section 6: string Test and Manipulation 5f

Introduction Sf!

This section describes statements which allow complex string
analysis and construction, The three basic elements of string
manipulation discussed here are the Current Character~posltlon
(CCPOS) and text pOinters which allow the user to delimit
substrings within a string (or statement), patterns that cause
the system to search the string for specific occurrences of
text and set up pOinters to various textual elementS 1 and
actual string construction. 5fla

current Character Position (cepOS) 5£2

The Current Character Position is similar to the TNLS eM
(Control Marker) In that ~t speCifies the location in the
string at which subsequent operations are to begin, All Lto
string tests start their search from the Current charaeter
Position. In content Analyzer programs, It 15 initialized to
the BEGINNING OF EACH NEW STA1EMENT. For each new statement,
the scan direction is initIalized to LEFT TO RIGHT, It Is
moved through the statement Or throUgh strings bY FIND
expressions, It may be set to a particular position 1n a
statement or string by the L10 statement: 5£2a

CCpos ~os

poS Is a position In a statement or strIng that may be
expressed as any of thefollowlnQ'

A previouslY deClared and set text pointer.

If a text p¢loter 1s given after CCPOS, then the
character position is set to that location, A text
pointer points betwe~n two characters in a string.

e,g, CCPOS ptl ,

string Front •• left of the first character

page 76

SF(stspec)

when SF 1s sp~clt1ed, CCpos will be set before the first
character of the statement or string variable spec1fied
by stspec,

5f2b

NLS Programmers' Guide
&ARC-APP 4-DEC-75 20:25 34044
ARC 34044 Rev. 5 DEC 75

Part Three: string Test and Manipulation

stspee 1s a string specification that maY be expressed as

• an stld (e.9. the first computer word of a
previously declared text pointer), or

• a previously declared string name enclosed In
asterisks.

Examples;

CCPOS Sf(Ptl) ,
%ptl Is a text pOinter%

CCPOS SF(stid) ,
%st1d Is an st1d%

CCPQS SFC*str*) ,
%str 1s a string%

String End .- right of the last character

SE(stspec)

When 5E is specified scanning will take place from right
to left, and CCPOS w1ll,be set after the last character
of tne statement Of string variable specified by stspec.

A string C*strlngname*, Is given after CCPOS. The pos1tlon
Is moved to the beginning ot that string.

Indexing the strlngname,Cby speCifying [exp]) Simply
spec1fles a particUlar POsition wlthln~hestrlng. ThUS
str(3) puts the Current Character position between the
second and third characters.of the string "str". If the
sean direction Is left to right, then the third character
will be read next~ If the direction 1s right to left,
then the second will be read next.

E,g,

CCPOS *str*[31 ;

If no Indexlnq Is given, then the position Is set to the
left of the first character in the string. This 1s
equivalent to an index of I,

CCPOS tstr* ,

page 77

ARC 34044 Rev. 5 DEC 75
&ARC-iPP 4.PEC.75 20:25 34044

NLS Programmers' Guide
Part Three: Strin; Test and Manipulation

means the same as
CCPOS SF(*str*):

Setting the current character position with the CCPQS statement
also sets the scan direction to forward (left~to·r19ht), except
If the 5E construct 1s uSed. 5f2e

FIND Statement 5f3

The FIND statement speCifies a string pattern to be.te$ted
aGainst a statement Or string variable, and text pointers to be
manipulated and set, starting from the Current Character
Position. If the test succeeds the character position Is moved
past the last Character read,~~If the test fails the character
position 1s left at the pos1tton prior to the FIND statement,
The values of text pointers set In the statement prior to the
fatling element will remain as set: others of course will not
be changed. 5£3&

FIND pattern J

FINDS may be used as expressions as well as free·standlng
elementS. If used as an expression, for example In IF
statements, It has the valUe TRUE If all pattern elements
within It are true and the value FALSE If anyone of the
elements Is false,

IF FIND pattern THEN ,., J

It Is 900d pract1ce to use FIND as an expression with the
appropriate error conditions If the FINO falls. It the FIND

5t3b

5f3c

fails, text pOinters may not be set as expected, Sf3d

FIND Patterns 5£4

A string pattern may be anY valid combination of the following
logical operators, testtnq argUments, and other non-testing
parameters (note tne Identity with Content Analyzer patterns): 5£4a

NLS prOgrammers- Gulde
&ARC.APP 4.0EC.75 20:25 34044
ARC 34044 Rev. 5 DEC 15

part Three: string Test and ManiPulation

Pattern Matchlnq Arguments.·

(each ot these can be TRUE or FALSE)

str1ng constant, e,9, "ABC"

or any character, preceded by an apostrophy

It Should be noted that If the scan direction 15 set
rlght-to.left the string constant pattern should be
reVersed. In the above exam~le~ one woUld have to
search for "CBA".

Any of the system deflnedmnemonles, as de$crlbed In
the last section (5e2c), such as "SP" or "eRn, are
also valid,

character class

look fora character of a specific class; If found, =
TRUE, otherwise FALSE.

Character classes:

eM ~~ any character
L .~ lQwercase or uppercase letter
UL •• uppercase lett.r
LL .- low~rcase letter
0-.. digit
LD •• lowercase or uppercase letter Or digit
NLD .~ not a letter or digit
ULD •• upperease letter or digit
LtD •• lowercase letter or digit
PT •• printing character
NP •• non~rtnttnq character

Exampl~1

char;: LD

Is TRUE If the variable char contains a value
which Is a letter or a digit.

(elements)

look for an occurrence of the pattern specified by the
elements, If found, = TRUE, otherwise FALSE.
Elements may be any pattern, the parentheses serve to

5f4b

page 79

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4~DEC~75 20:25, 34044

NLS Programm~rs· Guide
Part Three: String Test and Manipulation

page 80

grOup the elements so as to be treated as a single
element 1n any Of the followlnQ elements,

-element

TAUE only 1f the string constant or character class
element following the dash does not occur,

NOT element

TRUE only 1f the element or group of elements
following the NOT does not occur.

[elements]

TRUE if the pattern specified by the elements can be
found anywhere 1n the remainder of the string,
elements may be any pattern, the squarebrackets also
group the elements so as to be treated as a ~lngle
element, It first searChes from ctirrent position, If
the search fatled, then the current position Is
incremented by one and the pattern Is tried again,
Incrementing and searching continues until the end of
the$trlng. The value of the search 15 FALSE If the
testing string entity is not matched befo.re the end of
the strlnQ Is reached,

find (eXactlY) the specified .numb~r of occurrences ot
the element,

E,g.

3(LD) means three letters or digits

NUMl $ NUM2 element

Tests fOr a range of occurrences Of the element
specified. If the element 1$ found at least HUM1
times and at most NUM2 times, the value of the test Is
TRUE.

Either number is optional. The default valUe for
NUN! IS zero, The default value for NUM2 IS 10000,
Thus aconstruct1on of the form "S3(CH)" would
search for any number of eharaeters (inCluding
zero) up to and including three,

NLS ptoorammers'Gulde
&ARC.APP 4-DEC.15 20125 34044
ARC 34044 Rev. 5 DEC 75

p~rt Thre~t string Teat and Manipulation

Examples.

2S4(UL) -. from two to four upper-case letters

$10(SP) •• up to ten spaces

1$(',) •• one or more periods

10 :: u$er"ldent
ID # 1,Jser-.ldent

If the string betng te,ted Is the text of an NLS
statement then 1dent of the user who created or last
edited the statement Is tested by this eohstructton;
If C~POS Is 1n a string, you will get the error
"string treated as statement"

FT var

TRUE if the Var1able holds a Value ot TRUE (non-zero),

SINCE dat1m

1f the string being tested 1s the ttxtO! an NLS
$ tet(tftlen.t, th1. tes t 1 IS TRUE 1 f the $ tat,ment w.,
created or modified after t~e date and tim. (datlml
see below) s~eel~led.

BEFORE dat1m

1f the str1ng beino te,ted 1s the te~tof an NLS
statement ,th.l$1;est 1, TRUE,lf th~ statement was
ereatedQr mOdified before the date andtlme (det1m,
see below) s~.cified.

page 8t

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-0EC.75 20:25 34044

NLS Progr.mmers' Guide
Part Three: String Test and Manipulation

Acceptable dates and times follow the form$ permlt~ed
by the TENEX system·s IDTIM JSYS described In detail
1n the TENEX JSYS manual, It accepts "most any
reasonable date and time syntax."

Examples of val1d dates1

17 .. A.PFh,70
APR-17",70
APR 17 70
17AP~IL 70
17/5/1970
5117/70
APRIL 17, ,970

Ex.mples of valid times (zero assumed if time left
out):

1:12:13
1234
1234:56
1:56AM
1J56.EST
1200NOON
16 t 30 (4130 PM)
12:00fQOAM (midnight)
!1.59159A~.EST (late ~orn1ng)
12:00:01AM (earlymorn1ng)

BEFORE (MAR 19, 73 16:49)
SINCE (25-JUL-73 2130~OO)

Thtse m~Y not appear In Content Analys1s ~attetn$, but are
valid el~.ents1n rIND st.tements in anY pr09ra~:

strl09name

the eOritents of the atring variable

BETWEEN pos POS (element)

Search 11$lted to between posittons specified. pes Is
$ prev!ous!yset text pOinter, the two mU$t be in the
lame$tatementor $tr In;. sean character .. pos 1 t10n 1s
.~t to first pO$ltlon before the pattern is tested

NLS Programmef$'Gulde
&ARC.APP 'wDEC-7S 20:25 34044
ARC 34044 Rev, 5 DEC 75

Part Three: string Test and ManiPulation

(This 1s not an unanchored sean unless sqUare brackets
are used within the parentheses.>,

BETWEEN Pt1 Pt2 (20 [,l $NP)

Logical Operators··

These eombln~ and delimit groups Of patterns, Each compound
group Is considered to be a single pattern with the value
TRUE or FALSE, The character position will be reset to It$
position before encounter1ng the group before a new group Is
tested, Any text pointers set within a test pattern before
It fails will retain their new values, (See examples below,)

I
AND
OR

These logical concatenators bInd In the order In which
they are listed, I.e.

a I bAND C
means the same as

(a I b) AND e

other Elements·.

These do not involve tests, rather, they involve some
execution actiQn. They are always TRUE for the purposes Of
pattern matching tests,

These may appear In simple Content Analysis Patterns:

(

>

set scan direction to the left

In this case, care should be taken to specify
patterns In reverse, that Is in the Order WhiCh the
computer will scan the text.

set scan direction to the right

TRUE

5f4C

5f4d

page 83

ARC 34044 Rev. 5 DEC 75
&ARC~APP 4.PEC.75 20r~5 34044

NLS programmers' Guide
Part Three: StrinG Test and Manipulation

has no effect,"lt Is generally used at the end Of OR
when a value of TRUE Is des1red even 1f all tests
fail,

ENDCHR

Attempts to read Off the end of a string In either
direction result 1n a special "endcnaracter" be1nQ
returned and the character position is not moved,
Thl_ endcharacter 1s included In the set of eharacters
for whiCh system mneumonics are provided and may be
referenced by the Ident1fier "ENDCHR".

These may not appear In simple Content Analysis Patterns,
but may In FIND statements:

paqe 84

pos

pos Is a previously set text pointer, or an SE(P~S) or
SF(POs) construction, Set current character pos1tion
to th1~ po~ 1 t.lon , If theSE pointer 1s used, .set scan
directiQn from r~ght to left, If the SF pOinter 1s
used, set sean direction from left to right.

E,Q.

FIND x,%sets CCPOS to posit1on of. previously se,t
text pointer x,

.. ID

store current scan posit1on into the textpolnter
specified by the identIfier

,_ [.HUM] ID

back up the speelfied text pointer bY the specified
number (NUM) of ~haracters, ,Default value for NUM is
one. Backup 1~ In the opposite direction of the
current scan direc t1on,

f'S var
rR var

FB will set the variable to TRUE (1). FR will reset
the variable to FALSE (0),

NLS Pro9rammers~ Guide
&ARC-APP 4.D£C-75 20125 34044
ARC 34044 Rev. 5 DEC 75

Part Three: string Test and Manipulation

String Construction 5£5

One may mOdify an NLS statement or a string with the statement: 5t5a

ST pos _ strlngllst J

The whole statement or string In whiCh pos resides will
be replaced by the string lIst.

ST pas pos _ stringlist ,

The Part of the statement or string from the fIrst pas to
the Second POS wl11 be replaCed by the string list ..
"pOSH may be a previously set text pointer or the
SF(pos)/SE(POS) constrUct1on,

There are two addItional ways of mOdifying the contents Of a
string variable: Sf5b

ST *strlngname*[exp TO exp] ~ strlngllst f
means the same as

*strlngname*cexp TOexp] _ strlng11st ;

The strIng from the first position to tne second pOsltiQn
will be replaced by the string list. The
square.braeketed ranQe is entirely OPtional; lt it Is
left off, the whole strtng w111 be re~l.ced.

Note that the "ST" IS optional when aSSigning a
str~ngllst to the contents of a string variable, The
$tatement then resembles any simple assignment statement.
I,e,

strlngname _ stringllst ,

The string list (strlngllst) may be any series of string
deSignators, separated by comm_s, The string deSignators may
be any of the following: Sf5c

the word NULL

represents a zero length (empty) string

string constant, e,g, "ABC" or 'w

part of any strl~Q or statement, denoted either by

page 85

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4-0EC-75 20:25 34044

NLS Programmers' Guide
Part Three: string Test end Manipulation

two text pointers previously set 1n either a statement or
a string

pos pos

a string name in asterisks, retering to the whole string

a string name In asterisk$ followed by an Index, referlng
to a 'character In the string

*stringname*texp}

(The index of the first character is one.)

a string name in asterisks followed by two Indices,
referlng to a substring Of the string

*str1ngname*rexp TO exp}

A construction Of the form *str*(l TO j) refers to
the sub~tr1ng starting With the Ith cnaractef In
the string up and including the jth Character,

Examples;

*str*t7 TO 10] 1s the four character substring
starting with the 7th character of $tr.

$tr[l TO str.Ll Is the strlnq str without the
first i-I Characters, ct 1S a deClared
variable,)

+ substring

SUbstring capitalized

• substring

exp

page 86

sUbstr1ng in lower ease

valu~ of a general Ll0expresslon taken as a CharacterJ
i,e" the character wlt~ the ASCII code value (see chart
at end of document) eqUivalent to the value of the
express10n

NLS Programmers' Gu1de
&ARC-APP 4-0EC.75 20t25 34044
ARC 34044 Rev. 5 DEC 75

part Three: string Test and Manipulation

STRING (expl, exp2),

gives a string which represents ,the value Of the
expression expl as a slgn~d decimal number. If the
second expression 1s present, a number of that base Is
produced instead of a aecimal number.

Examples,

STRING (3*2) Is the same a$ the string "6"
Qr

STRING (14,8) IS the same as the string "16 ff

ST pi p2 _ *strlno*;
does the same as

ST pi " SF(Pl) p1, *strlng*, p2 SE(p2):

assuming pi and p2 have been set somewhere in the same
statement, The latter reads "replace the statement
hOlding p1 with the text from the beginning Of the
statement to pi, the contents o~ string, then the text
from p2 to the end of the statement,"

st[low TO hiqh] ~ "string",
does the samess

st ~ *st*(l TO 10w-1], "string", *st*[hlgh+1 TO $t,~J'

assumlno low and high are declar~d simple variables,

5f5d

Example1 5f6

Let a "word" be def1ned as an arbitrarY nqmber of letters and
digits. The text pointer "tH 1s set before or after some
charac:ter In the word, The two statements in this example
delete the wotdwh1(!h holds the text pointer Itt", and if there
1s a space on the rlQht Of the word, it 1s also deleted,
Otherwise, 1f there Is space on the left of the word it Is
deleted, Sf6a

The text pointers ptrl and ptr2 are Qsed to delimit the left
and r1ght respectively of the $trlng to be deleted, Sf6b

IF (FIND t < $LD ·ptrl > $LD (SP ·ptr2 I ~Ptr2 ptrl < (SP ·ptrl
/ TRUE») THEN

8T ptrl ptr2 ~ NULL' Sf6c

page 87

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4-0EC-75 20:25 34044

NLS Proqrammers'Gulde
Part Three: String lest and Manipulation

The reader ahould w~rk through this example until It is clear
that it really behave$ asadvert1sed. Sf6d

More Than Onechan9~ per Statement 5f7

The $econdword of a text pointer, the character count, stays
the same until the text pointer IS again set to some other
position Cas does the first WOrd), ~ven though the statement
has been edited. If, for example, yoU have the .tatement 5£7&

abcdefQ
1\

and If YOU have set a pOinter between the "d" and the "t", it
will always point between the fourth and fl~th characters in
the statement: the second word ot the text pointer hOldS the
number 5, If you then delete the character "a", your pointer
will be between the He" and the "fn. 5f7b

bcdefg
/\

For thiS reason, YOU probablY want to do a series of ,dlts
beginning with the last one 1n the statement and working
backwards, Sf7e

Text Pointer comparljons SfB

This maY be used to (amPare two text pOinters, 5f8a

POS ptl·. pt2,
I
>
<
>!I!I
<;;

ptl and pt2 ere text pointers.

NOT may preced~ any~f the relational oPerators. If the
pOinters refer to diff,efentst8temeot$ then all relations
between them are FALSE ,,,c-ept, "not equal" whleh."s written.
or NOT-, If thepolnters refer to the same stat,ment, then
the truth of the relation 1$ decd.dedon the b8$1s of their
location within the statement~

A pointer clo_er to the front of the statement 1$ "less
than" a polhter closer to the end,

page 88

NLS programmers' Guide
,ARC-APP 4.0EC~75 20:25 34044
ARC 34044 Rev. 5 DEC 75

Part Threet Invocation of User Filters

Section 7: Invocation of USer Filters 59

Introduction 591

The content Analyz.r filters described In this document may be
imposed thrOugh the NLS PROGRAMS subsystem, 5g1a

user-attachable Subsystems may be written for more complex
tasks, this type of user program and NLS procedures which
may be accessed by them will be discussed in Part Four.
with such a program, however, the user will still make use
Of the commands in the NLS PROGRAMS sUbsystem,

This section desCribes NLS commands which are used to compile,
Institute and execute user programs and filters. 5g1b

Compilation· ..

Is the process by which a set of instructions in a
prOgram Is translated from the LIOlanQgage written in an
NLS source file 1nto object c~de, which the computer can
use to execute those Instructions.

1~ the process which copt.s the compiled Instruetions
Into the user-programs bU~fer,

Institution"" ...

1s the proc$ss bY,Which a compiled and loaded Content
.Analyzer program 1$ de$10nated as the current Cont.nt
Analyzer filter.

This section add1tionallY pr«sents .xampl&s of th~ use of the
Ll0 programming language. They do not make use Of en.y
constructions not explained .0 far In this manual, 5g1e

Programs SUbsystem 502

Introduction 5g28

The PROGRAMS. sUbsYst,m prov1des several fac111t·le$ for the
proce$sln9 Of user written progr,ms and ~11ter~t It 1s
ent~red by usln9 the NLS command:

Goto Program$ OK

page 89

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4~DEC.75 20:25 34044

NLS Programmers' Guide
Part Three: Invocation of user Filters

This SUbsystem enables the user to compl1~ LtO user programs
as well as Content Analyzer patterns, control hOW these are
arranged Internally fOr different uses, define how programs
are used, and to see the status of user programs,

PROGRAMS subsystem commands

After entering the PROGRAMS SUbsystem, you maY Use one of
the fOllowing commands~

Show status of programs buffer

This command print$ out information concerning active
user programs and filters which have been loaded and/or
instituted:

Show Status (of programs buffer) OK

When thiS command 1s executed the system will print:

•• the names of all the programs In the user programs
buffer, including those generated for simple Content
Analysis patterns, starting with the first program
loaded,

•• the remaining free space 1n the buffer. The buffer
eont.ln$ the compiled code for all the current
compiled programs •

• - the current Content Analyzer Program or "None"

_. the current User Sequence Generator program or
"None~

•• the user Sort Key program or "None"

Compile

page 90

LI0 Program

ThiS command compiles the proqram speclfl~d.

compile LtO (user program at) ADDRESS OK

ADDRESS is the address of the first statement of the
prOgram.

This command causes the program specified to be

5g2b

NLS programmers· Gulde
&ARC.APP 4-0EC.75 20:25 34044
ARC 34044 Rev, 5 DEC 15

part Threet Invocation of User Filters

compIled end loaded into the user program bufter 1n a
single operation. The program Is not instituted.

The name of the program Is the visible following
the word PROGRAM, ADDRESS points to the PROGRAM
statement.

The ~rogram may be instituted by the appropriate
commands,

File

The user program buffer Is cleared whenever the user
resets or logs out Of the system. If yoU have a long
program which will be used periOdically, yOU may wish
to save the compiled code in a TENEX file. It can
then be retrieved with the Load Proqram command. The
command to compile the code into a TENgX file is:

Compile File (at) ADDRESS (using) LtO OK (to file)
FILENAME OK

The FILENAME must be the same as the program name,
The program will then be compiled and $tor~d In the
TENEX til' Of theglven name (with the extension REt,
unless otherwise specIfied). The user may then load
it -at .any time.

Before dOing this, the programmer must replace the
word PROGRAM at the head of the proqram with the word
FILE.

Content Analyzer Pattern

-This command allows the user to specify a Content
Analyzer pattern a$ a Content Analyzer filter.

compile Content (analyzer filter) ADDRESS OK

The pattern must beqin with the first viSible after
the ADDRESS, or at that point YoQ may type it In, It
will read the pattern up to a semicolon, so be sure to
insert a se~lcolon where yOU want It to stoP.

When this command 1$ executed, the pattern specified
Is complIed into the buffer, AND it Is automatically
instituted as the Content Analyzer filter,

page 91

APe 34044 Rev. 5 DEC 75
&ARC.APP 4.DEC~75 20:25 34044

NLS pro9t$mmers r , Gulde
part Three, Invocatlonof User Filters

paqe 92

procedure

This command compiles a single procedure,

Compile Procedure Cat) ADDRESS OK

ADDRESS 1s the address of the PROCEDURE statement.

This command causes the procedure specified to be
complied and loaded into the user program buffer in a
s1ngle operation.

If a procedure of the same name has already been
loaded (In the user programs bufter or In the NLS
system), the old procedure wl11 be replaced. I.e,
any calls to that procedure name will invoke the
newly compiled procedure,

Error MeSsaqe during compilatIon

"SYNTAX EPRO~" messages include the type Of error, the
location of the line o~ assembly code that caused
trouble, and a few characters of the NLS source COde,
The l.st Of these characters Is the one which cau$ed
the error, In some cases this may be misleadinG, when
apreviGus error (e.g. a m1ssing quote Or percent
sign) cau$~d trouble later 1n the compilation,

",xt & locel- _. a symbol was used.a! both an
external Or qlobal and a local variable In the
file, If avarla~le is not declared in the
~rogram, the compiler assumes it 1s a system
EXTERNAL, If it Is later used .s a LOCAL, an error
will result.

"field too 1.rge" -. a field may not be defined as
more than 36 bits,

"sides not tqual" .~ 1n a multiple assignment
statement, the Sides must haVe the same number Of
values, e.g, (a,bic) _ (X,y,Z),

"not REF or POINTER" ~. an ampersand (&)was used
on a variable not REFed or declared as a POINTER
(not described in this document),

"8 args max" ~- yoU may not pass more than eight
arguments 1n a JSYS call.

NLS Programmers' Gulde
&ARC.APP 4-0EC-75 20:25 34044
ARC 34044 Rev, 5 DEC 75

Part Three. Invocation of User Filters

"SYSTEM ERROR" messages also inclUde the type of
error, the location ~f the line of assembly code that
caused trouble, and a few characterS of the NLS source
code,

"Eor READ" •• the compiler hit the end of the NLS
file b~~ore it read a FINISH statement. (This may
happen If you don't have v!ewspecs set to all
lines, all levels,)

"HASH TABLE FULL" •• yoU have used too many symbols
in the f1le, EaCh file 1$ limited to approx1matelY
2000 symbols,

"BACKUP TOO FAR" •• a symbol or a literal string
(text within quotes) has too many characters In it,
They are limited to 148 characters,

"SYMBOL TOO LtiNG" •• as above, a symbol has too
many characters In it.

"INPUT TOO LONG" ~. as above, a literal string has
too many characters In it.

"5.8, FULL"_ •• as above, a symbol has too many
characters In it,

"1/0 ERROR" .~ a number has too mlny dloits In It.

"LIT TABLE FULL" •• the file has too many literal
strings and numbers,

·PUSHDOWHOVERFLbw" means th~t one o~ the $tacks that
the compiler uses overflowed, LOOk ior In Lto
st,tement containing too many parentheJes or
particularlY complex con$tructlons. yoU may nave to
break some statements into multiple statements.

"Boolean as operand" •• yoU used an expression as 0
parameter or in a RETURN statement, This 15 NOT an
errOr, b~t only a warning Of unusual (thOUgh In many
eases good) pro9rammlng practice,

It yOU 1nclude the L1D statement

N.OMESS ,

at the beginning of the file, at the same level as

page 93

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4.0EC-7520:25 34044

NLS programmers' Guide
Part Three: Invocation of User Filters

glObal declarations (l.e. not within a procedure),
this ~arnlng will not be printed, Errors will be
printed as usual,

When the compilation 1s finished, it will list the
nurober of errors and walt for a Command Accept to
continue, You shOuld then search for the error in the
NLSsOufce COde file, correct It, and recompile before
attemptln9 to use the program,

ErrOf$ involving undefined variables will be reported
when you attempt to load the program, Of eoyrse any
code us1ng these variables will caU$~ execution
errors,

If yOU include the L10 statement

LIST 1

onywhere in the code, all the undefined symbols at
that pOint in thecompl1atlon Will be printed,

The compile Procedure eommand WJll generate
undefln,d variable errata legitImately It the
procedure refers to global variables.

If the addltlbn of your program to the user pr09rams
~uff&r requires mOre~than the maximum space allotted
fOr u$erpr 09rams (either In number of pages ,or number
of symbols), you wl110et a "fQrmat error" upon
loading, (If yOU have any otherpr09ra~$ loaded, use
the "Delete All" command prlortoloadlng.)

NOD! (described in Part Five, Section 2) will ,help yoU
trace run-time errors to errors in the NLS source
c,ode.

Load Program

page 94

A pre.c~mpiled prOgram existing asa REL file m,y be
loaded 1hto the program buffer with the command:

Load Proqram FILENAME OK

NLS ProQramm.rs' Guide
&ARC-APP 4-DEC-75 20t25 34044
ARC 34044 Rev, 5 DEC 7S

part Three: Invocatloft of U$er Filters

If the FILENAME Is spectfledwlthout specifying en
extension name, thlscommand will search the connected
dlrectory,"~hen the <PROGRAMS> directorY, for the
following extensions:

REL .- it will Simply load the R£L file

CA ""'. it will lOad the progl"am and institute it as the
current content analyzer program

SK •• .it will lOad the program and institute it as the
current sort leey extractor program

SG •• .1t will lOad the program and Institute it as the
current sequence generator program

SUBSYS.-· it will load the program and then look for a
f1le Of the same name w1th extension CML, If both are
successfully loaded, they will be treated as a single
l'fogram

CML •• it will load the program and then try to attaeh
it as a sUbsystem

PROC-REP •• It will load the program .snd then try to
replac~ an existing procedure of the same name as th~
TENEX code file by the flrstpr oeedur e In loaded
program

Bortkey extractor .nd sequence generator programs ar~
more complex and are generally limited to experienced
L1G prooramm.rs.

FILENAME 1s the name of the TENEX code file, not the name
of the program,

It any va~labl's ar. undefined, they will be reported
upon loadlng~ The'proqramshould not be used until those
var lab 1 es Ire ,dec lared somewhere,

Delete

All

This command clear. all programs from the user program
b~ffer. All proqr~mS are delnstltutedand the buft~r
1.5 marKed. as emPtY.

page 95

ARC 34044 Rev, 5 DEC 75
&ARC.APP 4-DEC-75 20,25 34044

NLSProgrammers',Gulde
Part Three: Invocatlon~f user Filters

Delete All (programs In buffer) OK

The u~er proqrams bU~fer shares memorY with data pages
for tiles which the U$er has open, therefore
increasing th. size of the user programs buffer
decreases the amount of space available for file data
with a possible .1owdown 1n response for that user,
The buffer size is increased automaticallY as needed,
This command also resets the buffer size to the
original Bpages (sav1ng system storage space"

Last

This command deletes the most recently loaded program
In the buf~er. The program Is deinstltuted 1f
instituted and its space in the buffer marked as free.

Delete Last (program In buffer) OK

Run Progra.m

This Command transfers control to the speCified program.
This type Of program Is used verY little, having been
sUbstantlallY,replaced by user.attachable subsYstems, as
described in part Four,

Run Program PROGNAME OK
Run Program NUMBER OK

PROGNAME is the name cfa program which had been
prev lo uslycomPil&d. That is, PROGNAME must be in the
buffer .when this c.ommand Is executed.

Inst.ad o~ PROGNAME, the U3ermay specify the program to
be run by its number, ThIs first program loaded lnto the
buffer 1$ number one.

Institute program

page 96

This command en~bles the user to deslqn_te a program In
the buffer as thecurr~nt Content Analyzer, Sequence
Generator, or Sort Key extractor program.

Institute Program PROGNANE OK (as) type OK

where type Is one of the following:
Content (analyzer)

NLS Programmers' Guide
&ARC-APP 4.DEC.75 20:25 34044
ARC 34044 Rev. 5 DEC 75

Part Three: Invocation of User Filters

Sort (keY extractor)
Sequence (generator)

If no type Is specified, Content analyzer will be
assumed.

Instea~ ofPROGNAME the user may specify the program
to be Instituted by ~pmber. The flrst program loaded
into the buffer Is n~~ber one,

If a program has already been instituted In that
capacity, it will be delnstltuted (but not removed from
the buffer),

De1nstltute Program

This command deactivates the indicated program, but does
not remove it from the bUfter, It may be reinstituted at
any ,time,

Deinstltute type OK

where type 1s one of t~e following:
Content (analyzer)
Sort (key extractor)
Sequence (generator)

Assemble File

Files written In Tree.Meta can be assembled directly from
the NLS source file with the Assemble Fl1~ command, Th!s
aspect of NLS programming will not be described 1n this
document.

page 97

ARC 34044 Rev, 5 DEC 75
'ARC~APP '-DEC.75 20:25 34044

NLS programmers' Guide
part Three. Invocation of User Filters

Examples of User Programs 5g3

The following are examples of user programs w~iCh selectively
edit statements 1n an NLS file on the basts ot text matched
against the pattern, For examples of LtO programming problems,
yOU may find out how the standard NLS commands work by tracing
them through, beginning with <NLS, SYNTAX, 2>, A table of
contents to all the global NLS routines Is available to the
user 1n <NLS, SYSGO, 1>. 5g3a

Example 1 ~. Content Analyzer program 5g3b

PROGRAM outname % removes the text and delimiters () of NLS
statement names in parentheses from the beginning of each
statement%

DECLARE TEXT POINTER sf:
(outname)PROCEDUREJ

IF FIND ~([-)] ~sf THEN %found and set pointer after
name%

BEGIN
%replace stmnt bY everything after pOinter%

ST sf _ sf SF,(st):
%display statement%

RETURN(TRUE),
END

%otherwlse don't displaY statement%
ELSE RETURN(FALSE)J

END.
FINISH

Example 2 w. Content Analyzer program

PROGRA~ changed %This program checks to $ee if a statement
was written after a certain date, If it was, the string
"(CHANGED1" will be put at the front of the $tatement,\

page 98

(Changed) PRoCEDURE ,
LOCAL TEXT POINTER p~ ; .
,remember, CCPOS Is Initialized to the beGinnIng ot
each new statement'
IF FIND 8 p t SINCE (2S.JAN-72 12:00) THEN

'the SUbstring of z~ro length Is replaced with
"[CHANGED]"%

5T pt pt • "[CHANGED]",
RETURN(FALSE) ,
END.

FINISH

5g3c

NLS Programmers' Guide
part Four: Introduction

&ARC.APP 4-0EO.75 20:25 34044
ARC 34044 Rev, 5 DEC 75

PART FOUR: Interactive Ll0 Programming

Section 1: Introduction

For many programming app11cations, it is sufficient to acc~Pt
statements one at a time from the sequence generator and assume as
an initial charact,r position the beginning of the statement (a
content Analyzer prOgram as described above), For more complex
applleatlons,you may have,to write programs Which skip around
files, between tiles, and interact with the user. These are not
called by the sequence generator but "Attached" and then used like
standard NLS subsystems, holding one or more commands, All the

6

6a

capabilities described above are available to such programs. 6al

There are two parts to every user·attachable subsystem: 6a2

1) the L10 execution routines WhIch do the file Manipulations,
and 6a2a

2) the command syntax, specified In a language called command
Meta Language (CML), describing the user interface of each
command 1n the us~r attachable SUbsystem. 6a2b

These two parts are two separate programs, compiled s~parately
Into two REL flles, The tw6 proqrams are loaded in unison and
together comprise the sUbsystem, 6a3

Like LI0, source programs for the CML compiler are free form NLS
files, comments may be used whetever a blank Is permitted and the
structure of the source file 1s Ignored by the compller. C~L,
source pro9raros ~reedmpiled lntoREL ftles with the compile File
command In the PROGRAMS subSystem, CML is the compiler name for
the CML compiler. 6a4

The REL file name of the CM~ code Should have the extension
"eml", The REL file name Of the corresponding Ll0 execution
Pfocedures shoUld have the same first name as the CML code
tl1~, and should have the ext~n$lon "sUbSys," It these
conventions are followed, the Load program command 1n the
PROGRAMS $ubsystem will automatlcallyload both part, of the
user Subsystem and attach it, making it available for use, The
userrs subsystem may then be invoked by using the Gato or
Execute commands, 6a4a

The CML program describes the command words, noise words,
selection requests, etc. that make up an NLS command, The CML

page 99

ARC 34044 Rev. 5 DEC 75
&A~C.APP 4-DEC-1S 20:25 34044

NLS Programmers- Guide
part tour: Introduction

COde interacts with the user when he enters the sUbsystem and as
he speCifies commands. In the process of interacting with the
user, the CML code may Call one or a number of LIO exeeution
procedures which "dO the wOrk," 6a5

CML automatically provides prompting, quest!onmark, and
<CTRLwS> facilities. The CML syntax specification applies to
both TNLS and DNLS (unless restricted by the programmer to one
or the other), and will conform to ~ll user options with
respect to prompting 4nd to recognition an4 completion mOdes. 6a5a

The next sectIon Will describe CML, and hoW to desIgn the user
interface, section 3 eXPlains the requirements of the LtO
procedures which CML calls, The remainder to part Four discusses
additional Li0 capabilities useful In the context of attachable
subsystems. 6a6

page 100

NLS Programmers' Guide
&ARC.APP 4-0EC.75 20:25 34044
ARC 34044 Rev. 5 DEC 75

part Four: Command Meta LangUaQe (CMLl

Section 2: Command Meta Language (CML) 6b

Introduction 6bl

This section describes th. Command Me~a Language (CML), CML
allows the speclf~catlon of the user int.rface to commands.
The C~L pro~ram (the grammar) may call Ll0 procedures of a
certain type (described 1n th. next section), The proorams
written 1n CML are siml1arln structure to L10 pro~rams.
Typically, a CML and an LjO program are used in unison asa
user attachable sUbsystem. A more technical presentation Of
CML may be found in <20438,>. 6bla

Program Structure 6b2

The basic C~L program structure 1s much 11ke that of LtO
programs, The program be~lns with a "FILE" statement (as dOeS
an Ll0 program) Of the form: 6b2a

FILE name

where name Is the name o~ the program cOde (1n lowercase
letters end number~, beg1nnlng with a letter)J it must be a
unique symbOl, different from the FILE namt of the LtO eode
file,

The program ends witb the statement (like LI0):

FINISH

within the pro9ram, one may have a series ctn any Order) of

6b2b

d~claratlons, rules, and Subsystems, 6b2c

AS In L1a,all Variables used 1n the program must be
decltred $Cm~where in the sYstem. Other value~ and
attributes must also be declared in CML.

RUles are defined sequences of the CML el.ments described
below, Rule nameS can be plaCed anywhere in a CML command
specification, When a rule Is called w1thin a command, It
Is almost as If the CML elements represented by that rule
were inserted at that pOint 1n the command, This allows the
definition Of v_neral interaetions that may be of use in a
number of commands Or~olnts in a command,

Each program usually represents on, or more sUbsystems, A
subsystem may include one or more commands, Each command Is

page 101

ARC 34044 Rev. 5 DEC 7S
&ARC-APP 4-DEC-15 20:25 34044

NL5 Proorammers' Guide
part Four: Command Meta Languaqe (CML)

a rUle itself, It maY optionally include rUles to be
performed uPon entertng or leaving the sub$ystem~ (One
enters a $ubsystem with the Geto or Execute commands, and
leaves with the Quit command,) A subsystem may al,o include
general rules defined throughout the subsystem.

Each of these parts Of the CML proqram w1ll be described
IndependentlY, The CML elements which make up rules will also
be described, 6b2d

Subsystems 6b3

A CML program holdS declarations, general rules whleh apPly
throughout the pro9ram, and subsystems (usUallY onlY one). 6b3a

The Subsystem b~glns with a statement of the form: 6b3b

SUBSYSTEM name KEYWORD "NAME"

where name Is th, lntern~l name of the Subsystem (prlmar!ly
for debugging purposes) and NAME Is tne name which the user
must specify (in a Goto or Execute command) to access
commands in the sUbsystem.

The$e two names may be the same but they must be ~nlque.,
dlt~erent from the FILE names of tb, CML and L1G tiles.

A subsystem ends with the statement:

END.

Within the SUbsystem, yOU may have any number Of rUles.

A rule as described below will be known thrOuQhout the
subsY$tem, but not outside the subsystem.

A rule preceded by t~. word "COMMAND" will be .vellable 8$ a
command In the subsystem, It should begin with' commend
word element, E,O.:

COMMAND zahow -"SHbW"IL21
ent 'III"" (·-!XA.MPLE" I "SAMPLE")
CONFIRM
prOf: (ent) ,

A rule preceded by the word nINITI.ALIZA.TIO~" will be
executed whenever thJ Subsystem 1s entered (either with a
Goto or an Ex.ecute command from another sUbsystem) t E. q.:

page 102

6b3C

6b3d

NLS programmers' Guide
&ARC~APP 4-0ECs75 20t25 34044
ARC 34044 Rev. 5 DEC 75

part Four: Command Meta Langu8ge (CML)

INITIALIZATION example =
proc:l cent)
proc2 cent) J

A rule preceded by the word ~TERMINATION" will be exeeuted
whenever the subsYstem is left (with a Goto or Quit command
from this subsystem).

A rule preceded by the word "RENTRY" will be executed
Whenever the subsystem Is reentered (either with a QUit
command from another subsYstem, having left this one with a
Goto, or upon completln9 an Execute of a command In another
subsystem from this sUbsystem'),

Preceding a rule with the above modifiers does not prevent
calling that rule from within another rule, 6b3e

Rules 6b4

A CML rule 1$ a de£1ned series of elements, each of which
represents one piece of the Interaction with the user or system
action, The elements will be described below, The name of a
rule (defined to be the given series of CML element$) may be
used in other rules, When the name of a rule appe.rs 1n
another rule, the CML code whIch it represents will be ~xecuted
at that pOint. 6b4a

A rUle takes the forml 6b4b

name = e1em_ntl element2 element3 •• , element'

where "name~ 1s any untque n.me (lowerca~e letters and
numbers, beglnnlrig with 8 letter).

Alternative elf!ments (where tne user has a ehoiCe) .. re
indicated by • slash (I) In the express1on. Parentheses
should be used to group element$f~artleularlY when
alternative logic and nesting of alternatives Is involved,
E,9,

name- (elementl I element2 element) element4 J

Note that, by use Of parentheses, an alternative may
include more than one etement.

Elements grouped In sqpare braCkets are options, and the
user must type the OPtion character <CTRL-U> to access them,
E.g.

page .103

A~C 34044 Rev. 5 DEC 7S
,ARC-ApP 4-DEC-75 20:25 34044

NLS programmers' Guide
Part Four: Command Meta Language (CML)

name ~. elementl [~lement2 element3) element4 ;

z1nsert ': "INSERT" ent~("WORD"I"CHARACTER") <"at">
dest~DSEL(ent) xlns(dest),

A nurober of elements may be included In a single rule. (If you
exceed themaxlmum, you will get -a "stack overflow" error at
run.t1me., Elements are NOT separated by any delimiter
character (except by spaces or the source file structurel, The

6b4c

entire rule Is terminated by a semicolon, 6b4d

The return value of elements may be assigned to CML variabl,s
(single-word as in LtO), using a left~arrow (_) In the form: 6b4e

variable _ element

The variable must have been declared, as described b~low.

A variable must be InItialized by such an assignment before its
content 15 passed to any routine. It must be initialized In
the rule which passes It to a routine (not just in other rules
called from the given rule, even thoUgh other rules may
subsequently set it to another valU~), (If you fall to do so,
you will get the run-time error "reference to undefined
interpreter variable.") 6b4f

Name$ on th~ left side of 4n aS$lgnment are assumed to be
variables: other names In CML rules are assumed to be CML
rules, 6b49

Declarations 6b5

oeclaratlon$ are used to associate nameS with their CML
function. A number of ty~es of names may be used 1n CML
programs. 6b5a

Variables 6b5b

Whenever a procedure Is called from CML, CML creates a
ten.word record, The address Of the record Is passed to the
procedure, which may put information In any of the ten
words, The procedure usually returns the address of Its
record,

page 104.

NLS Programmers' Guide
&ARC-APP 4.DEC.75 20125 34044
ARC 34044 Rev. 5 DEC 75

Part Four: Command Meta Language CCML)

A CML variable is a cell which holds the address of a CML
record, By this mechan1sm, up to ten words of information
may be handled with a single parameter by passing the
address of the flr$t word of the record. A variable may be
declared with the statement:

DECLAPE VARIABLE na~e J
or

DECLARE name J

where "name" is any unique name (lowercase letters and
numbers, beginning with a letter),

You may declare any number Of variables In a single
statement, I.e,:

DECLApE VARIABLE namel, name2, •• , J
or

DECLARE namel, name2, ••• ,

Many CML variables have been. declared fOr use anywhere 1n
the System, and may be used freely In user attachable
SUbSystems (without being declared bY the USer proQrammer).
some commonly u$ed variable names are:

ent namfl1 level param
dent dest fl1tre param2
sent $ource vs param3
port fromwhom literal param4

External Variables

As in Ll0, external Variables are var1ables which are made
available to any procedure anywhere in the NLS system,
(Simple variables are only known 1n the file 1n which they
are deClared,) one or more may be deelared with a statement
of the form:

DECLARE EXTERNAL name!, name2, •• , ,

Parsetunctions

An LtO function whiCh processe~ input and supplle$ a prompt
string Is called a "parsefunctlon." The name of the
procedure must be deelared as a parsefunctlon for CML to
request a prompt string whenever the procedure is called.

DECLARE PARSEFUNCTION namel, name2't.~ J

6b5c

6b5d

page lOS

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4-0EC.75 20,25 34044

VLS programmers' G~lde
Part Four: Command Meta Language (CML)

More detailed information about the nature of parsefunctlons
will be offered belOw.

Conlmand Words

A command word 1s a word specified as part of a command
(e,g, "Insert" or "Word" in the Insert Word command), it Is
specified In accordance with each user's recognition scheme
(often recognized after the first character), A declaration
may assign a value to a command word, to be passed to an LtO
procedure which needs to know which command word was chosen
by the user.

DECLAFE COMMAND WORD "WQRD1"=100, "WOR02"=101" •• ,

The value must be a positive decimal integer, 1es$ than
511. (ThiS limit may have to be Changed to 255 In future
vers10ns of NLS.)

More than one command word may have the same value
(unless Of course the L10 procedure must distinguish the
user's choice between the tWO).

A command wOrd that has not been declared may be Included In
the syntax, it will have no value though, bnly those
command words which are assigned $ value and then passed to
an L10 procedure must be declared. Many command wor~$ ha~e
been declared for use tn the NLssystem. It Is considered
gOOd practlc~ to useeom~and words alre.dy known to users
when possible, and to 9se the same values for thOse words as
deelared In NLS. section 5 otfers a set of decl.ratlons~
includ1ng all the sy.tern defined command words, it ean be
copied as the foundation for a CML prOgram.

You may not use command words identical to the names of
the Lto or CML files, to the name of the sUbsystem, nor
to any variable names.

6bSe

CML Elements 6b6

The cML e~ement$ desCribed here are the building blocks Of
rules, which d.scribe interactlofis with the user. 6b6a

Command Word Reeoqn1tion 6b6b

The appearance of a command word element in a rule means
that the U$er must specify that (or an alternative co~mand
word) at that point 1n the command specification,

page 106

NLS programmers' Guide
&ARC-APP 4-DEC-75 20125 34044
ARC 34044 Rev, 5 DEC 75

Part Four: Co~mand Meta Language (CML)

In the CML de$Crlptlon, each command word 1$ represented
by its full text. The algorithm u$ed to match a user·s
typed input against any list of alternative cOmmand words
Is known as "reeognltion," Each Indlvldual·s command
wOrd recognition mOde will determine what Characters the
user roust type to specifY the command word, This Is
handled automatically by the command interpreter,

AS the user specl~1es a command, the command words (and
noise words described below) are echoed in a line at the
top of the ONLS sereen, or printed In TNLS, This 1s
called the "command feedbaek line,"

Command word elements must be uppercase wordS enclosed in
double-quotes (""), e.g.

"INSERT"

Comman~ words optionallY may be fOllowed by one or more
qualifiers which modify the recognition proeess, separated
bY spaces and enclosed 1n eXclamation points, The
qual1fiers are:

NOTT •• not available in TNLS

NOTO 8. not available 1n DNLS

L2 .~ seCond level (some recognition modes differentiate
first from second level command words, e,g. second level
are preceded by a space)

number •• explicit valije for command word, supercedes any
value assigned by a DECLARE COMMAND WORD

For example;

"SET"lL21
"PRINT"lNOTD1
"EXAMPLEWORD"lL2 1041

page 107

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4.DEC~75 20:25 34044

NLS Programmers' GUide
Part Four: Command MetaLanguage (CML)

The address of records holding declared command wOrd values
may be asst9ned tOCML variables so that the user's choice
can be passed to subsequent routines, e,g.

ent _ "CHARACTER"
or

ent _ ("CHARACTER" I "WDRD")

then
xproeedure (ent)

Remember that, like all other CML assignments, the
variable rec~lves the address of a recOrd whieh holds the
information. When the~ontent of this variable (the
address of the recOrd) Is p,ssed to a prOcedure, the
procedure must REF its receiving variable to access the
contents of the record, the value.

This value will be assigned as above even 1f the command
word 1$ followed by ather CML elements, e,g,

ent _ ("CHARACTER" pararn--FALSE I "WORD" (nat">
param .. l,SEL (., "WORP"))

ent will get the value of the command word CHARACTER
or the value of the command word WQRD. The
appropriate actions will napr;len after the user chooses
the command word,

You may wish to pass this value without forcing the user to
type the com~and word, Thi$ address may be assigned by
pr ecedlnotheeommand word by a. pound-sign (#),

ent _ #"CHARACTER"

will Iss1gn the address Of the declared command word
value without forclng the user to type the command wOrd

Selection Recognition

selectl~ns.are input from users pointing to places 1n fileS
or typtng In. string. Of text. The three tYPes Of selection
routines available in CML, with their respective commend
prompts, are,

DSeL •• destination selection

BIA

page 1.08

6b6c

NLS Programmers' Guide
&rARC-APP 4.0EC.7520t25 34044
ARC 34044 Rev. S DEC 75

Part Four: Command Meta Language (CML)

SSEL •• source selection

BIAlrTl

LSEL •• literal selection

B/T/[A]

where S :;; bUg (not aVaIlable in TNLS), A·:; Dynamic
Address Element (any ~erle$ of NLS addressing elements),
and T·- typeln from keyboard,

Each of these predefined selection routines prompts the user
and receives the input.

The selection routines must be passed the ~ddress of a
record hOlding the value of a noun command word
(Charact~r, word, statement, plex, etc,), The command
wOrd enclosed in double.quotes and preceded by a
pound.sIgn (I) Is equivalent to the address of a record
holding the declared valUe Of that command word, e.9,'

DSEL(#"CHARACTER")

Or YQumay have assigned the address of the value of4
previously $electedcommand.word toa C~L varlable, then
p8,SS the content of the variable, e,g,:

ont. "CHARACTER"
DSEL(ent)

CMLwl11 prompt the.user tor the appropriate ln~ut. If
more than one selection 1$ necessary (e.9. to specify .
both ends of a group or string 9f text), they will prompt
fOr bott\ automatically. They will de.llmltthe
approprl~te entity ,!utomat1<;Clllyce,9,both tnds Of a
wOrd will be found frOm a single selection),

The routine will return the address Of a CML record
hOlding two text pointers In the flrst~ourwordsl
dellml·tlng the beg1nnlng and end of theentlty selected.

for string entities within statements

wordl 1.2: txt ptr before first eharacter of string
words 3.4, txt ptr after last Character of string

for types "STATEMENT" and "BRANCH"

page 109

ARC 34044 Rev, 5 DEC 1S
&ARC.APP 4.0EC.75 20125 34044

NLS Programmers' GuIde
Part Four: Command Meta Language (CML)

for

wordS 1-2: txt ptr before first character of
statement
words 3.4: txt ptr after last character of
statement

types qGROUP" and "PLEX"

words 1-2: txt ptr before first character
statement
words 3.4L txt ptr before first character
$tatement

of

of

for type "WINDOW"

word 1: address Of d1splay area
word 2: x and y screen coordinates

first

last

one usually assigns the returned address of this record
to a CML variable, e.g,:

dest ~ DSEL(#"STATEMENT")

Other ReCognizers

other prespeclfled input routines are available, each
prompting fOr and receivIng a type ot input from the user:

page 110

VIEWSPECS •• take, no argument and returns the address of
a CML record hold1ng:

word 1; updated vlewspec word 1
word 2: updated viewspee word 2
words 3.'. used for collecting characters from user

LEVADJ •• takes no ar9ument and returns the address of a
CML record holding:

word 1: level adjust count
(up = +1, same ~ 0, down = .1, up two levels = +2,

etc,)
words 2·7: used for collect1ng characters from user

6b6d

NLS Programmers' Guide
&ARC-APP 4-0EC-75 20~25 34044
ARC 34044 Rev, 5 DEC 15

Part Four: Command Meta Language (CML)

CONFIRM ~. waits for user to type confirmation character
(8 Command Accept, Insert, or Repeat character), it takes
no argu~ent and returns the address of a CML record
holding the confirmation code in word 1.

These values are rarely used, since subsequent
functions are handled automatically by the command
parser, For reference, they are:

1 = Command Accept
2 = Insert
3 = RePeat

DUMMY •• does nothinQ byt always TRUE, may be used to
allow elements to be sklped, e.o.:

("OPTION" somprocedure() I DUMMY) CONFIRM

alloWS the user to specify "Option" before the
CONFIRM, or skip it and just type a CONFIRM,

CML Constants

TRUE •• holds the address of a CML record whose first word
has the value TRUE (t,e. 1)

FALSE •• holdS the addresS of a CML record whose f~r$t word
has the value FALSE (I.e, 0)

Ll0 procedure Calls

L10 procedures may be called at any point in the rule by
inclUding the name of some routine followed bY its par~meter
list enclosed in parentheses, (The next section describes
the special requirements of Ll0procedures called from CML.)
E,9,

procedurename (paraml, param2't~.)

Parameters may inclUde CML varlable$ (WhOSe content IS
passed), the CML elements TRUE J FALSE or NULL, or the #
construct ($e~ "selection Recognition") representing the
address of a command word value,

Helpful Procedures in building CML logic:

lSd~lS() •• returns TRUE If DNLS, elSe FALSE

6b6e

6b6f

page 111

ARC 34044 Rev, 5 DEC 75
&ARC.APP 4-DEC.75 20:25 34044

NLS programmers' Guide
Part Four: Command Meta LanQuage (CML)

istnlS() ~. returns TRUE If TNLS, else FALSE

true() •• returns TRUE

false() w. returns FALSE

abort() .~ abort command as If user typed e Command
Delete

parsefunctlons 6b6g

Procedures which are declared as PARSEFUNCTIONs examine the
Information being typed by the user durlno eommand_
$pec!ficatlon (characters going into tht Input buffer), CML
places additional requirements on LtO procedures declared as
parsefunctlons, as described In the next section, They may
be called from CML l~ke any other Ll0 procedure, The
following parsefunctlo~s are available as part of the
running sYstem: they of COurse must be declared a$
parsetunetions 1n any program which uses the~ ~s such:

page 112

answ() .w if the next character 1n the input buffer is a
CONFIRM, option character, or the letter "y", It reads
the charaeter (dut of the input buffer) and returns TRUEJ
else it reads the next character and returns FALSE

answerC) .- reads next character, like anS w, but retUfn$
the address of a CML record whose first word holds either
the value TRUE (1) or the valueFALSE(O)

lookansw() .- 1f neit character 1s a CONFIRM, option
character, or the letter "y", returns TRUE and leavfs
next character in buffer, else returns FALSE and r~ads
character

mYlo~kan$w() •• if next character 1s a CONFIRM, option
character, or the letter "y", returns TRUEr else returns
rALSE' leaves next character in buffer

readConfirm() .~ If next character a CONFIRM Character,
reads and returns TRUE, els~ leaves Character 1n buffer
and returns FALSE

lookconflrm() •• if next character is a CONFIRM, returns
TRUEJ else returns FALSE' leaves next character 1n buffer

readbu9() •• If next character a Command Accept

NLS Programmers' Guide
&ARC.APP 4-0EC.75 20:25 34044
ARC 34044 Rev. 5 DEC 15

Part Four: Command Meta Language (eNL)

character, reads and returns TRUE, else leaves character
In bUffer and returns FALSE

lookbu9() -- If next character Is a Command Accept,
returns TRUEJ else returns FALSEJ leaves next character
in buffer

notca() -. If next character NOT a Command Accept
character, reads and returns TRUE' else leaves Command
Acctpt character In buffer and returns FALSE

readoption() -- If next character an option Character,
read$ and returns TRUE, else leaves character In buffer
and returns FALSE

readrepeatC) ~. if next character" a repeat character,
reads and returns TRUEJ else leaves Character in buffer
and returns FALSE

lookrpt() •• If next character is a REPEAT, returns TRUE,
else returns FALSE, leaves next character In buffer

sp()·· 1f next character a spacI, reads and returns
TRue, else lea~es character In buffer and returns FALSE

lOOkback() •• 1f next character 1s a back-arrow (~),
returns TRUE, else returns FALSE, leaves next Character
in buffer

looknumC) •• If next ~haracter is a digit, returns TRUE,
el$e returns FALSE; leaves next charact~r In buffer

page 113

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4-PEC.75 20:25 34044

NLS programmers' Guide
Part Four: Command Meta Language (CML)

Parsefunctlons maY apPear as alternatives to r,eognlzers.
However, they must precede any non.fal11nQ reeognlzers In
the list of alternatives, E,9.:

(lookconflrm() I "APPEND" I "FILE") CONFIRM

•• this example either will accept a CONFIRM or will
accept a spectflcatlon of the command word APPEND or FILE
followed by a CONFIRM,

Feedback

Noise words between command words are very helpful to the
user learning a new command, Any string of text may be
added to the command feedback line by enclosing the text in
parentheses and within an91e.braekets In a rule, E,g~

<"Text of noise words">

The last noise word string on the command feedbaCk line (In
DNLS) may be replaced With a new string by PlaCing three
dots before the first double-quote, e.g,~

<.,,"new noise words">

The lastno1se word string can be erased (in DNLS) with the
procedure eall:

clearname()

The entire command feedback l1ne can be cleered(ln DNLS)
with the CML element:

CLEAR

A few characters Of the noise wOrd will follOw the command
word in the sY$tem·s response to a questlonmark 1£:

page 114

1) the noise wOrd immediately follQWS the command wor4,
and

2) the command word 1s not being assigned to a variable
(it may however be part of a list of alternative. being
.ss19~ed),

E,g. the nOise words in the CML below will show In the
syste~$ response to a Questlonmark:

ant ~ ("FILE" <"name"> I "STATEMENT" <"at">)

6b6h

NLsprogrammers'Gu1de
&ARC.AP' 4.DEC.75 20'25 34044
ARC 34G44 Rev. 5 DEC 75

'art Four: comm.nd Meta Language (CML)

Loops

A looping facility permits r.petlt1onof a different rule
until an .xlt eondltlonls.met. The rule Is evaluated and
then the .xptesslon fOllowJng the UNTIL keyword Is
evaluated. If the expression returns TRUE, then the loop Is
exited and the next element of the fule 1s evaluat,d. If
the e~pression returns FALSE, then the named rule Is invoked
once agaIn,

PERFORMrulename UNTIL (exp)

where rulename Is the name of the rule to be repeatedlY
~xecuted and exp 15 an expression of CML elements which
evaluates to TRUE or FALSE.

PERFORM rulename UNTIL (<"Finished?"> answ())

Nested loops (loops within rule$ called by a PERFORM
element) are noteurrently allowed. Backspacing thrOugh
executed loops requires special treatment not de$crlbed
here,

6b61

page 115

ARC 34044 ~ev, 5 OEC 75
part Four:

,ARC-APP 4~DEC.75 20125 34044
NLS proqra~~er.i Guide

Command Mtta Lan9uage (CML)

Sample CML proqram 6b7

The fOllowing sample proqram i'tloUld htlp illustrate the use of·
the CML lanQ\t89Et fOr describing NLScommands, rOr more
eXhaustive examples, look at the CML sptcttieation tor the
standard NLS commands, In <NLS~SYNTAX,>. An ,xample of a
prOblem trea~ment can often be found by thinking of an NLS
Command which Is similar. 6b7a

FILE samplepro9ram '<CML,> to <Sample,rel,> ,
DECLARE what, whom, where J
DECLARE COMM~ND WORD

"GLUE" :; 1,
"PASTE" .;:J 2,
"CRAYONS't = l,
"PENS":; 4,
"PENCILS" .:: 5 ;

SUBSYSTEM sample KEYWORD "SAMPLE"
objects ::

"GLUE"
I "PASTE'"
I wrltlngthlngs J

wrlt1ngthlngs =
"CRAYONS"

I flPENS"
I "PENCILS"IL21 ,

COMMAND zuae = "USE~
wh.t _ writlngthings
CLEAR
<"to draw a pretty"~ whom ~

("PICTURE" <"of AQnt Mary">
I ·SKETCH" <"of your dOG">
)

CONFIRM
" eallexecutton rout1n'e. process the U5Ecommand'

x~se(what, whom) ,
COMMANDztak.. "TAKE'

what · ... Object$
<"oUt of Y·oIJrtt)

where ~ (~EARS"llJ I "NOsE"121 I "MOUTH"!3!)
<"PLEASE 11" >

CONFIRM
xtake (what, wh&re) :

EN.D.
FINISH

Given this sampl~ CML, the user might speCl~Y the command,

page 116

6b7b

6b7c

NLS Programmers' Guide
&ARC-APP 4·DEC~75 20:25 34044
ARC 34044 Rev. 5 DEC 75

part Four: command Meta Language (CML)

"Use Pens
(to draw pretty) Sketch (of your dog) <OK>"

"Take Crayons (out of your) Mouth (PLEASE!!) <OK>"

The. execution routines called from CML typically have names
beginning with the letter "x". 6b7d

page 117

ARC 34044 R@v, 5 DEC 75
&ARC.APP4·DEC~75 20:25 34044

NLS Programmers' Guide
part Four: L10 Execution Procedures

Section 3: Ll0 Execution Procedures 6c

The CML program interacts witn the user and gathers information,
it sUbsequently calls one or mar, LI0 procedures, The procedure
CML calls must meet certain .requirements, desCribed in this
section. Because of these requirements, typically the execution
routine 1$ written as an interface to 8 number Of other LI0
proC~dures perfOrm,ng the aCtual functions. This way the function
routines can be written Independent of which command or procedure
calls them, This section will describe the requirements of
procedures called from CML,The next section offers additional
LID capabilities In thIs environment. 6cl

CML can be in one of four states as it parses a command based on
the syntax described 1n your CML program (known as the
"parsemode"): 6c2

I) parsing: recognition state where Input text 1s compared
with grammatieal constructs in CML program 6c2a

2) backup' the user has typed a backspace, Or a procedure call
has returned FALSE: CML backs UP through previouslY specified
elements of the CML code, celiing each in bac~up mode, to
before the last CML alternative (not nec~ssarl1y equivalent to
user Input element, mayb, through the entire command, aborting
the command) 6c2b

3) cleanup: the usef has tYPed a Command D,lete, Qr the
command has been co~Pleted (1ncluding any execution prOeedure
calls), CML backs up throuqh all previouslY speCified elements
of the CML code, each procedure Is again called, this time 1n
"cleanuP" mode 6c2c

4) pars,helpl (U$ed only with parsefunctlons) before calling
a parsetune~lon 1n "par~lng" mode, the procedure is called tn
"parsehelp" mode to solicit a user prompt strino, 6c2d

5) parSeqmark: (used only with parsetunctlon$) when the user
types a questtonmarkt the procedure is called In "parseqmark"
mOde to solleita questlonmark string. 6c2e

When CML calls a procedure, it automatically passe$ two extra
implicit para~eters before the parameters the pro9rammmer
speClfieSJ 6c3

The first parameter Is the address of a CML record reserved for
use by that procedure. The record Is initially emptY (or

paQe118

NLS Programmers' Guide
&ARC-APP 4.0EC-75 20:25 34044
ARC 34044 Rev, 5 DEC 75

Part Four: Ll0 Execution procedur~s

filled with garbage), The execution procedure may fill the ten
words of the recOrd by receiving the address in a REFed
parameter variable and then indexing lnto the array. 6c3a

CML considers the prOcedure to have retUrned TRUE If It
returns the address of the CML record; otherwise the return
is considered FALSE. When l procedure returns FALSE, CML
w111 back up, c.ll1nq that ind previouS proCedures In
"backup" mode, until another branch in the eommand syntax
logic 1s found or until the entire command has been aborted.

The second parameter Is a value (not an address of a recOrd)
representing the parse mOde, Whenever CML encounters a
procedure call ~n the syntax (in any mode) it calls the
procedure, passing it the value of the parseModQ. 6c3b

Typ1cally, the executIon routine should only perform its
primary function 1n the parsemode "parsing". In "backup"
and "cleanup", it may reset any globals or state information
it may have affected while 1n the parsemode "parsing." The
names of the modes (se~ above) are glob41s to which yOU may
compare the value received In the second parameter, An
execution routine typically consists of a large CASE
statement, e,g.

CASE parsemode OF

:; parsing:
BEGIN

•
• END,

= backup, = cleanup:
BEGIN

t

• END,

ENDCASE J

Calls on procedures declared as parse~unctlons pass a third
implicit parameter, the address of a string In which to put the
prompt, They are called In the parsemode "parsehelp" fo~ the
str1ng before being called In the parsemode "parsing", or in
parsemode "par&eqmark" when the user types a questlonmark, 6c3c

CNt passes the parameters specified in the call after the two

page 119

ARC)4044 Rev, 5 DEC 75
&ARC-APP 4-0£C.75 20)25 34044

NLS Programmers' Guide
part Four: L10 Execution Procedur~s

or thr,e system supplied parameters. Remember that these
parameters will always be the address of a record holding the
lnforroat1on, sO the receiving variable must be REFed. The
format of the record itself 1s determined by the routine that
filled it. 6c3d

For example, If the CML procedure call looked as follows: 6c4

xprocedure (paraml, Pafam2) 6c4a

then the Ll0 execution procedure would receive parameters as
follows: 6c5

(xprocedure) PFOCEDURg (result, parsemode, parameter!,
parameter2) J' 6c5a

All parameters except the parsemode should be REFed In the
execution procedure. 6c5b

page 120

NLS Programmers' Guide
&ARC.APP 4-0EC-75 20125 34044
ARC 14044 R~v. 5 DEC 75

Part Four: Additional LIO Capabilities

Section 4: Additional LIO Capabilities 6d

Introduction 6dl

The attachable SUbsystems have access to the full capabilities
of the ~LS envlronroent. This section will describe some
capabilities not discussed In the context of Content Analyzer
programs. Further capabilit1es will be discussed 1n Part Five. 6dla

Moving Around within NLS F~les 6d2

Generally, at least one simple variable or a text pOinter will
have to be declared to hold the statement identifier (stid) of
the current statement. (The ~lrst word of a text pointer 1s an
stid,) Assume the simple variable with the name "stid" has
been declared fOr the Pur~ose Of the fOllOwing discussion, 6d2a

In the NL$ file system, two basic pOinters are kept with each
statement! to the substatement and to the successor, 6d2b

It. there is no substatement, the substatement-p61nter will
point to the statement Itself,

The proeedure qetsub returns the stid of the
ubtatement. TO do something to the substatement 1f
there 1s one:

IF (stld ;~ getsub(stld» # stld THEN someth1ng,.,

stid 15 given the value of the sUbstatement-polnter,
then the Old value Of st1d Is compared to the new. ~f
they are t!,\e$sme, then there 1s rloaubstr\lcture. If
they are different, you have the stid of the
substatement and can operate on it,

If there Is ~o successor (at the tall of a plex), the
successor-pointer will point to the statement UP from the
~tatement (i.e. the statement to which the current statement
1s a sub),

The procedUre getsuc returns the stld Of the SUccessor
(or Up),

TO move to the successor:

st1d ~ getsuc(stld),

page 1.21

ARC 34044 Rev. 5 PEC 75
&ARC",APP4-DEC'.75 20125 34044

_LS programmers' Guide
Part Four: Additional LtO CapabilitIes

Given the&e two baSic procedures, a number of other procedures
have been written and are part Qf the NLS system, All of the
fOllow1~g procedures take an stid as their 9n1y p~rameter, and
do nO~hin9 but return a value, usually a stld, If the end of
the file 1s encountered, these proc'tdu.res return theqlobal
value Hendfl1", 6d2c

getup(stld) •• returns the stld of the up

getprdcstld) "". returns stid of the l'redecessor

getnxt(st1d) -. returns stld Of next statement Or endfl1

getbCkCstld) •• returns the stld of the back or endf!1

gethed(stltS) •• returns stid of the head of the plex

getail(stld) ... returns stid of the tail of the plex

getend(st1dl •• returns the stld of the end of the tall of
the Plex

Qetftl(stld) -~ returns TRUE If stid 1s tail of plex, else
yAhSE

get lev(stl.d) .'" returns 1,evel of statement

oncey.ouhave the st1d of ast,atement, yoU m~y operate on it as
In Content Analyzer proqrams, E.g, 6d2d

FIND SF(stld) $NP ·ptr",

Another common Qper.tion lsto access ttte statement (file) in
Which the. eM COr bug) we$ at the time of the, la$t Command
Accept (Orothtf.QOmfl)end term~n.tor). This!. stored in th, .
system, and Ian be accesSed with the follow1hg procedure callI 6d2e

stl.d_lcesp() ,

Then, If youwl$h to set the stpsld to the origin of that
fl1e,y~u COuld say:

st1d,stpsld_ oriGin, \orlqln 1s a global with the
stpsld of theor191n statement 1n it'

The f911owln9 procedUres may also assist you in moving around
fileS' 6d2f

page 122

NLS Progr~mmers' QUid.
&ARC-APP 4.0EC-75 20J25 34044
ARC 34044 Rev. 5 DEC 75

part Four. Additional LtO C~pabl1ttles

caddexp(aPtrl,aPtr2,da,sta~tptr) ~~ given the ~ddresses of
two text pointers surround~no an NLS address expression, the
address of a dls~lay area, and the address of a te~t pointer
representing the starting po s 1 t 10 n :. e ad de x p will .. e val u ate
the address expression with respect to the starting
position, and update the start pointer to the new location.

ThIs proc,dure will follow file returns, links, etc,.
openIng files as necessary. Remember to close any open
files whenYQu are done with tnem (see 6d4 below),

The p.ro~edure lda () returns the address of the display
area WhiCh held the buq at the time oi the last Command
AcceptJ it may be used as the thlrdparameter of caddexp,
E,Q.

caddexp($ptrl, $ptr2, lda(), $sptr) ,

namlngrp(stldl,stld2,astring,levels) •• Qlv~n two $tlds
representing a grOup, the od~ress Of a string holdlnq the
name, ,nd a numberrepresentlnq levels Of depth below the
stldS'1 returns stld Of the stat,ment with the given
statement name 1n ~he group specified by th~ stlds, Only
searChes th·rOugh olven number of levels below sttd level,
(If the stlds are the same, will search the braneh.)

page 123

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4.DEC-75 20:25 34044

NLS programmers' Guide
Part Four: Additional LtO Capabilit1es

lOOkUp(ptr,string,type) ~. given the address Of a text
pOinter, the address of a str1ng, and a type, will do a
variety of searches (in the process destroys string and
changespolnterl. type may be one of the following:

nametyp •• non-sequential search for statement of name
given 1n string, r,turns stid and sets pointer to stld or
else returns endt1l in both places

nxtnaroe -. like name, also a non-sequential search, but
starts from place In file rlnq to which ptr points

seqnarne .~ starting with the statement following the one
refered to by the ptr, doe$ a sequential search of the
file for the given name, returns stld or endfil In
pointer

con tnt ~. does a sequential search of the file, beglnninQ
with the character fOllowing the pointer, for a statement
with the content of the string; returns stid or endf!1 in
pointer

contI!·· same as contnt, but looks only In statement
hOldin; pointer

wordtyp -. same as cootnt, but lookS for word given 1n
string

sid .~ pass an SIP tn$te~d of the address Of the ,trio9'
searches fOr statement with th~tSID and returns In
pOinter and as procedure value thestid or endeil

Calling NLS Commands 6d3

A program maY execute any of the standard NLS commandS by
calling the ,ame procedure that the system execution routines
call for each comm~nd.Th.se,procedures &re called the "core"
procedures, They are 11$ted In (NLS,XPROCS,> and 1n
CNLS,SYSGD,>. The1r names begin with the letter "en, generallY
followed by three Initials of each command wordt e.g, Ift$ert
Statement could be executed by call1nq the procedure "elnssta". 6d3a

U$ually the required arguments can be discovered bY knowing the
command and by lOOking at XPROCS and/or SISGO. For examPle,
the tormalparameters to the procedure "clnssta",a~e
(stld,rlevent,tpl,tp2). AS one might guess from the command
syntax, the procedUre wants a target sttd, the value of lev~l
adjustment (U~ • +1, same = 0, down = ~l, etc), and the address

page 124

NLS Programmers· Guide
&ARC-APP 4-DEC-75 20125 34044
ARC 34044 Rev. 5 DEC 75

Part Four: AddItional Ll0 CapabilitIes

Of two text pointers surrounding the string of text to be
Inserted.

Much can be learned by looking at the code 9£ the core
proeedure. you can see wbat procedures it 1n turn calls to
discover how the command 15 actually performed. But most
importantly, you can find out what the procedure returns, The

6d3b

RETURN statement for "cinssta n look like: 6d3c

RETURN(stid),

trom Which it can be inferred that the procedure returns the
stld of the newlY created statement, 6d3d

When you are not sure what the arguments mean, a gOOd way to
find out Is to see where the command parser picks up th~
Information. You can follow through the parsing of a command
by beginning with <NLS,SYNTAX,>, the actual NLS CML code. 6d3e

Tracing a command from <NLS,SYNTAX,> is also valuable In
finding Out hOW the sYstem performs an operation whlt~ you
WOuld like your program to dO, For ~xample, 1f you wish to
parse a lInk and open the given tile, you might learn hOW to do
it by following the Jum~ to Link command through, 6d3f

opening Flies 6d4

When you 8$k the user for an address or bug, you donft have to
open the file, yoU have a handle on It with the stid the user
gives yoU, There m~y be times, h~wever, when yoU wish yOur
program to open a file no~ specified by the user. There Is a
procedure Which does this: 6d4a

open (jfn, a$trlng),

You Shouldpasa zero a$ t~e,jin, and th~ addressofa string
containing the name of the f11e to astrlng. ThiS procedure
wIll return the file number, If the file Is not alreadY open,
it will open it. It will also t111 Out the string with the
complete file name If YOU do not specifY the directory or
version number. 6d4b

If the file does not exist, open call, the procedure fterr",
whlch generates a sional of the value "errslg," Signals are
discussed in Part Five.

The usual sequence of steps to open a file Is as fOllowS: 6d4c

page 125

ARC 34044 Rev, 5 DEC 75
&ARC.APP 4.DEC.75 20:25 34044

NLSproqrarnmets" Guide
Part Four: Additional Ll0 capabilities

%"stld" has been declared as a simple variable or text
pOinter%

stld _ or9stldJ %orgstld 1s a global with all zeros except
In th. stpsid field, where it has the stpsid of the origin
statement (the same for every file)%

str ~ "<dlrname>fl1ename.nls", lstr Is of eOurse a
declared string variable%

stld,stfl1e _ open (O,sstr)f

Note that the procedure "open" requires a TENEX file name. The
procedure "lnbfls" converts links to TENEX il1e names: 6d4d

lnbfls (llnkstr, 11nkparseblock, fl1enamestr)

Pass the address of the string hOlding the link as the first
parameter, zero for the seCond parameter (Used If link
already parsed), and the address of a string to receive the
filename as the third parameter,

The procedure returns the host number in case the link
include$ a site name, This value might be compared to the
following glObals:

lhostn ~~ the number of the loCal h~st

ut11host .- the number of Off1ce w l

arehost -. the number of the ARC machine (BBN-TENEX-S)

For example, you might use the procedure as followSl

CASE InbflS(&linkstr,O,$:fl1ename) OF

:I lhostn: NULL,

ENDCASE errCnotyet) :

At the end of your proqram, you should close any files that you
have opened, Use the procedure: 6d4e

close (f11num>,

page 126

NLS programmers~ Guide
&ARC-APP 4.0EC.75 20:25 34044
ARC 34044 Rev. 5 DEC 75

Part Four: Additional L10 CapabIlities

Displaying Messages

The following procedures may be of use In displaY1ng messages.
In all eases, the appropriate actions will occur in TNLS as

6d5

well ~s DNLS, although these descr1ptions are oriented to DNLS, 6d5a

dlsmes(type, astrln9) ~. teletype window

where type 1s one Of the fOllowing:

o ~. clear teletype window (no address need be passed)
1 ~. add text in string whose address Is passed as a
neW line In tne teletype window
2 •• add text 1n string whose address Is passed as a
new line 1n the teletype window for about 3 seconds,
then clear window
n •• any number >:1000 represents the number of
milliseconds the message Is to be displayed befOre the
teletype window Is cleared,

In TNLS, type: 1, 21 and >~1000 all simply print the
strtng starting on a new line,

fbctl(type, a s trlng) -. literal diSPlay window

where type 15 One Of the fOllowing:

~ypenul111t ~. begin empty literal displaY (replaelnq
file windOW), no string address passed

fbaddllt -. add string whoSe address 1s passed to
current literal disPlay

addcallt .~ add "Type eCA> to continue." to current
literal d1splay, then wait for <CA> or <CD>, then
restore file window

type11t •• start_literal display wtth string, then
walt for user input, then restore file WindOW

fbendl1t -- add string to current literal display,
then wait .for us;r input, then restore file window

typec&llt •• start literal di$play with string, add
"Type <eA> to continue,", then walt for <CA> or <CO>,
then restore file window

The literal display replaces the file window on the

page 127

ARC 34044 Rev. 5 DEC 75
,ARC.APP 4.01Ce75 20:25 34044

. NLS Programmers' Guide
part Four! Additional Ll0 Capabilities

screen, or 15 s1mply printed in TNLS, For exam~le, it Is
used by the Show File Status command.

dn(astrlng) •• name dlsplay

add string whose address Is Passed to command feedback
11ne, enClosed 1n quotes

setting Up for Display Refreshing 6d6

The command parser calls the procedure "cmdfinlsh" after
completlngand cleaning up every command. If certain
parameters are set properly, "cmdtlnish" will automatically
update the user-s screen (primarily of concern In DNLS), You
may also move a different statement to the top of the window
(i,e. jump) before updating the $creen, 6d6a

To refresh the screen after editing a file: 6d6b

The procedure "dpset" sets up parameters fQr refre$h1ng the
screen after a Command. If "dpset" 1S proPerly USed, the
screen will automatically be refreshed after the command.
One Should lOOk for the mOst eff~cient way to maKe the
proper ChangeS,

page 128

The proce~ure "dpset« mqst b~ called BEFORE any changes
are made in the file. This Is 50. that the display
reformatter w111 have something with w~leh to compare
when looking to see what has been changed.

The procedure Call shoUld look as follows:

dpset (type,stldl, stid2, stopst1d) ,

There are a nuMber of globals which may be passed for
"type":

dsprfmt ~. rewrite the content of one or two
statements

stid1 ~. the stid of the statement that has been
changed

st1d2 •• the stid of another statement that has
been changed, or "endfl1"

stOPit1d -w ignored, pass it "endfl1"

NLS Programmers' Guide
Part Four: Additional LI0 Capabilities

&ARC-APP 4-DEC.7S 20.25 34044
ARC 34044 Rev, 5 DEC 75

dspstre •• 1f file restructuring occured beginning at
at one or two places, doesn't rewrltecont.nt of
statements, wl11add new statements 1n a structure

stid1 ~" the stid of the statement where a
structural Change begins

stld2 -" the sttd Ofwh~re another structural
Change begins, or "~ndfl1"

stopstid ~~ the stld ot the statement after wbleh
It can stop c~anglng the ~creen (whetner change
began with stldl or stld2), the procedure "dPstp"
may be of service here; if yoU cannot fi9ure out
where it shOUld stop, pass it "endfl1" (go till end
of window)

dsprfSt ww rewrites content of one or two statements,
then looks tor structural changes thereafter

stidl ... th, stld of the statement where a set: of
changes begins

stld2 -. the st1d of where another set ofe·hange.$
begins, or "endf11"

stopst1d·. the stid af the stateM4nt after which
it can ~top ch~n9inQ the sere~n (Whether Change
be9anwlth st!dl or stld2)J the procedure "dp,tp"
may be of serv1ce heret If yQU cannot figure out
where it should stop, pass it "~ndfll" (00 till end
ofw1ndow)

dspjpf •• jump command in one window only, no editing

st1d! •• thestld oi th, $tatement to be' at the top
of the screen: see below for o~her parameters wh~eh
must be set

stld2 •• "endfl1"

stopstld ~. "endfil"

page 129

&ARC-APP 4~DEC.'5 20:25 34044
NLSProgrammer$# Guide

Part Foutl Additional Ll0 Capabilities

dSPYe S -. completely refresh"all windows holding one
nr either of two files specified

stid! •• the stld of a statement in the file where
changes will be made

st1d2~w the sttd of a statement In the file where
anOther set Of changes will be made, Qr "endfil"

s·toPst1d •• "endfl1"

dspno •• do no display refreshing

stldl -. "endfl1"

stid2 ~- "endfl1"

stopst1d .- "endfl1"

dspallf •• refresh the entire screen

stid1 •• "endil1"

stld2 -. "end~11"

stopstld •• "endfl1"

The procedure "dP$tP~,when p~ssed en stid, return$ the .tld
of the next statement in the til. at tbe same or _ higher
level, This c.ao be used flthetopst1d in "dpset" If
structural changes are ~ccurlng such that youdon-t know a
priori what the last state",ent ch4nqed will be,

To change the position of a window (jump):

The global "espuPdete "sh~Uld be set. to the address of. the
d1splayarea delc r1ptor fOr the wln.oowyoU want Changed.

page 130

In TNLS, it 1s always the address contained in the global
"tda ft •

If yOU wl~h toehanqe the view in th~ window which held
the buget t~e tim. of tne last CONFIRM, you may use the
statement:

cspupdate _ Ida(),

This also works for TNLS.

6d6c

NLS Programmers· Guide
Part Four: Addltlonel LtO Capabilities

&ARC-APP 4-DEC-7S 20;25 34044
ARC)4044 Rev. 5 DEC 75

once espupdate 1s set, any of the globals described below
will replace the ap~roprlate field in the display area
descriptor upon completion of the command,

The global ~curmkr" is a text pointer pOinting to the
statement at the top of a window In DNLS, Qr the eM in TNLS.

The first word of "curmkr" should b, set to the stld of
the stetement you want at the top of the window (1n TNLS
the statement wh1ch you want to hold the eM),

The second word of "curmkr", i.e. curmkr[l], should hold
the character position for the eM, (In DNLS it 1s
usuallY 1,)

The glObal "espvs" 1s a two word array which should hOld two
vlewspec words for the new view,

The global stdYsp 1s a two work array holding the NLS
standard viewspecs (i,e. the ones in effect when you
first enter NLS).

The current vlewspe~ wOrds may be gotten from the display
areadeserlpt or. If yOU have REFed a variable ~alled
"da", for example, yOU may assign the addr e$$ of the
display area whiCh he~d the cursor at tne time of the
last command Accept with tne statements

&da _ lda() , 'return address of display area
descriptor'

You may then refer to fields within the diSplay area
descr1ptor.

davspee ~. holds the ftrst viewspee word

davspc2 •• holds the second vlewspec word

YO~ may change individual fields within vlewspec words,
The following fields apply to viewspec words:

vslev •• lowest level to be diSPlayed

vsrlev -. if set to TRUEI the level of the current
statement will be added to vslev

vslevd .~ If set to TRUE and vsrlev ~s TRUE, the

page 131

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4-0EC.75 aO:25 34044

NLS Programmers' GuIde
Part Four: Additional LtO Capabilities

page 132

current level w111 be sUbtracted from ratner than
added to vslev

vstrnc -. number of lines of each statement to be
displayed

vscapf •• If TRUE, content analyzer on (vlewspec 1)7
takes precedence over v$eakf

v$cakf •• if TRUE, content analyzer on until one
statement passes (viewspec 1)

vsUsqf .~ If TRUE, user sequence generator on
(vlewspec 0)

vsbrof •• if TRUE, branCh onlY on (VleW5pec 9)1 takes
precedence over vsplxf

vsplxf •• If TRUE, plex only on (v!ewspec 1)

VSblkf -. if TRUE, blank lines on (vlewspec y)

vslndf -. If TRUE, indenting on (viewspec A: on by
default)

vsrlnd •• if TRUE, indenting relative to firSt
statement in dis~lay (v1ewspe c Q)

vsnamf •• if TRUE, statement nameB on (vtewspec CJ on
by default)

vsstnf •• 1f TRUE, Statement numbers or SIDS on
(vlewsPec m)

ys,tnr •• if TRUe, statement numbers/SIDa put on rtght
(vlewspec G)

vss1df •• it TRUE, SID$ replace statement numbers
(vlewspec I)

vs ldtf •• If TRUE, Statement signatures on (vlewspec
K)

vsfrzf •• if TRUE, frozen statements on (VieW5pec 0)

vspagf -. If TRUE, pagination on In TNLS (vlewspec E,
on by default)

NLS Programmers- Guide
&ARC.APP 4-0EC-75 20:25 34044
ARC]4044 Rev, 5 DEC 75

Part Four: Additional LtO Capab1litles

vsdaft •• if TRUE, don't dtfer display recreation in
DNLS (viewspec u, on by default)

If yoU wish, you may Jet the variable "cspcacod" to the
address of a user content analyzer procedure, and/or the
variable "espusqcOd" to the address of a user Sequ~nce
generator procedure; they will be instituted befOre the
window 1s updated.

The following fields In the display area de$crlptor may
be useful:

daeaeode -. holds address of currently instituted
content AnalYZer procedure

dausqeod •• holds address of currentlY instituted user
sequence Generator procedure

If you have ~ REFed variable called "daH, will not edit the
file, and do not wish to change the v1ewspecs, you might use
the following sequence of eommandS~

%address of last d1,play areal
&da • cspupdate _ Ide(),

%stld of stmnt to be put at top of window'
eurmkr ~ stld ,
curmkrrl1 ~ 1 ,

%twoeurr~nt v1e wspec Words%
espvs _ da.dav$Pec,
cspvs[tl ~ da,davspc2,

%turn on Content An81y~er%
espvs.vsc8pf .~ TRUE,

,institute the procedure "fl1terproc" as Content
Analyzer,

cs~cacod ~ $fl1terproc:
,set up for dl$play reereatiQn%

dpset (dspjpf, curmkr, end!!1, endfl1),

If you have ~dited the file, use the type "dspyes" instead
of "dspjpf" in your call on "dpset",

astrUc(astring) .~ g1ven the address of a string, sets the
string to upper case, 6d7a

fechno(sttd,astring) ~. 9iven a~ stid, appends the ,tatement
number string to the string variable whose address 1s passed. 6d7b

page 133

ARC 34044 Rev. 5 DEC 15
&ARC-APP 4-0EC.75 2Q:25 34044

NltS Programmers 'G-ulde
Part FOUf: Additional LI0 capabillt1es

getsld(stld) .- given an stid, returns value of SID (don't
tor get to add zero to front if converting toa string) 6d7c

fechsig(stld,a$trlng) •• given an stld, appends the statement
signature to the string var1able whose address Is passed, 6d7d

oetdat(astrlng) •• givjn the addreSS of a strln;, appendS date
and time to string. 6d7e

grptst(stldl,stld2) .~ checks that two stld's spse!fy a legal
group, returns them Ordered Or else an "Illegal grOup" slanal
1s generated. 6d7f

plxset($ttd) ~. given an stid, returns the stld of tht head and
of the tall of the plex o~ which the passed st1d is a member,
e.g, first ~ plxset(stid : last) , 6d7g

resetf(fllenO) .- given the flle numb~r of and open f11e,
deletes all contents Of the file leaving only oriqln statement,
resets date end ldent in origin statement (leaves flIt loeked) 6d7h

fllnam(f!lno,astr1ng) .~ given the file number, apPends the
fl1~ name (in link ~ormat surrounded by angle-brackets <» to
string whos. address Is passed 6d71

pause(ml111seeonds) •• waits the qlven number of milliseconds,
then returns 6d7j

settlmerC m111iaeconds,aproC,paraml,param2,param3,param4) ••
calls proc~dure whOse address 15 ~ass~d,passlng UP to four
p~rameter$ to that procedure, aiter given nuMber of
milliseconds, other code will be executed In the mean time 6d7k

Globals of Interest: 6dB

lnitsr .w Is the lOgin ident of the person currently using
the program. 6d8a

lnptrf •• Is Incremented every time the user types a <CTRL.o>,
this c.anbe used 45 a .. user pr.09ra~ lnte .. rr.upt.mechantsm, 1.~.
you can set it to 0 at the beglnninq of the program and then
check it at the start ot each loop of your proqram to see if
the user has typed a <CTRL.O>, I,e. wiShes to abort the
command, 6d8b

Inpstp •• 1s Incremented every time the user types a <CTRL-s>. 6d8c

page 134

&ARC-APP 4.DeC~75 20t25 34044
NLS Programmer$' Guide ARC 34044 Rev. 5 DEC 75
Part Four: Creating and Using A.tach8ble Subsystems

":. ;:7t~!;r,

section 5: Creating and Using Attachable SUbsystem$

In summary, the prOgrammer must write two programs to build a user
attach4ble subsystem: the CML and the Ll0 support procedures,
Each. of these programs 1s compiled separatelY (by their re$pectJve
compilers) into separate REL files. The Load rrogram command (In
the PROGRAMS Subystem) will load both at once if the extensiQn on
the filename holding the CML code Is "eml" and the extension on
the Ll0 code file Is usubsys-, once loaded, the user may use
commands In the SUbsystem as he does commands In any ot the

6e

standard SUbsystems. 6el

You may find it convenient to begin writing a program bY copying
the follow1ng sk~lton (plex) from this NLS file
<USERGUIDES,Ll0·GUIDE,6e2a>. It can then be modified to fit the
needs of your program, (The comments in the FILE st~t,ments allow
you to qu1Ckly bug the information required by the Compile F1le
command, All the CNL declarations that are used In the NLS system
are included onlY to contribute to consistent use Of command words
and values, The CML rules h~ve been lett blank, they must be
filled In or removed, All tile, procedure, SUbsystem, and rule
names are only exemplary. The last three parameters in the LtO
procedure are only e~emplary.)

6e2
FILE ename , (CML.SAV,) TO (cname.eml,) , 6e2a

, DECLARATIONS %
DECLARE PARSEPUNCTION

answ, , reads answer construCt'
anSwer, , for questions • returnS 011'
sp, % readS next Char, TRUE if space,
readeontirm, % reads next char if ca %
Teadbuq, , reads next char If BUG %
readoPtion, 'TRUE ~t next Char Is optchar ,
readrepeat, 'TRUE it next Char 1s repeat ,
lookansw, , TRUE tf next char Is IleA %
lookcont1rm, , TRUE 1f next char 1s CA/RtPEAT/lNSERT ,
lookbUg, % TRUE If next chaf 1s BUG,
looknum, % TRUE It next char 1s a number ,
elearname, 'Clears the name area %
notC8, % reads next char, TRUE If not CA Char,

OECLA~E COMMAND WORD
ttB~ANCH"= 1 ,
t'GROUP "= 2 ,
ttpLEX" :: 3 ,
"STATEMENT" = 4 ,
ffCHARACTE~" = 5 ,
"CONTROLCHAR" = 6 ,

page 135

&ARC.APP 4.DEC-75 20125 34044
ARC 34044 Rev, 5 DEC 75 NLS ProQrammers' Guide

page 136

Part Four: creating and Us1no Attachable SubsYstems

"INVISIBLE" = 7 ,
"uINK"= 8 ,
"DIRECTORY" • 9 ,
"PASSWORD" ~ 10 I

"NUMBER" = 11 ,
"TEXT'· ;: 12 ,
"VISIBLE'· • 13 ,
"WORD";: 14 ,
"P"IL!" ;: 15 ,
"NEWFILELINK" == 16 ,
"OLDFILELINK" • 11 ,
"NAME" == 18 ,
,t IDENT"z 19 ,
"IDENTLIST" = 20 ,
"EDGE" :: 21 ,
"M.ARKER't;: 22 ,
"NLS" :: 23 ,
·'ITEM" = 24 ,
"ITEMNOVS" : 25 ,
"SUCCESSOR" • 26 ,
"PREDECESSOR" = 21 ,
"UP" ==28 ,
"DOWN" = 29 ,
"HEAD" :: 30 ,
"TAIL" = 31 ,
ftltNOtl ;.; 32,
"BACK"::)) ,
"NEXT" = 34 ,
"OR IGIN" :;; 35 ,
"FILERETURN"= 36 ,
"RETURN" a 37 ,
~rlLENAME". 38 ,
"FIRSTNAME" = 19 ,
"NEXTNAMEfl = 40 ,
"EXTNAMi" :II 4.1,
"FIRST¢bNTENT" = 42 ,
"NEXTCOWTENT" • 4) ,
"PIRSTWORP" • 44 I

"NEXTWOMO" = 45 ,
"DETACHED" = 46 ,
"TTY" =-47 ,
"AUTO"=: 48 ,
"CONTINUE":;. 49 ,
"ON"- 50 ,
"RECOVER" = 51 ,
"SLINKeR";: 52 ,
"UPDATE" == 53 ,
"CLEAR ft= 54,

&ARC-APP 4-D£0-75 20125 34044
NL5 prOQrammers-Gu1de ARC 34044 Rev. 5 OEC 75
part Four: Creating end U$lng Attachable Subsystems

"IOENTS" :; 55 ,
"FILEsn .;; 56 ,
"OELETE" :; 57 ,
"DEFERRED" = 58 I

"IMMEDIATE" = 59 ,
"NOT" 11 60 ,
"PFEVENT" = 61 ,
"RESET" = 62 ,
"ARCHIVE" = 63 ,
"SEQUENTIAL" = 64 ,
I-TWO" ;: 65 ,
"JUSTIFIED" = 66 ,
"ASSEMBLER" = 67 ,
"BOTH" ;;68 ,
"UNDELETE" = 69 ,
"rOF" = 70 ,
"STATUS": 71 ,
"TAPE" = 72 ,
"ACCOUNT" :::; 73 ,
"Non :: 74 ,
"VERSIONS" ;; 75 ,
"EXTENSION" = 76 ,
"DATE" :; 77 ,
"CREATION" = 78 ,
"LAST" :: 79 ,
"FI~ST" •• 80 ,
",READ" 0:; S 1 ,
"WRITE" = 82 ,
"DUMP" ;; 83 ,
"EVERYTHING" = 84 I

f'LENGTH";; 85 ,
"MISCELLANEOUS"_ 86 ,
"ACCEsst'S" .. 87,
"P.ROTECT" == 88 I

"SIZ!" ;; 8.9 I

"TIME". 90 ,
"VE~,BOSE'" ;I 91 ,
"SORT" == 92 ,
"BYTESIZE" .;;·93 ,
"ARCHIVED" = 94 ,
"ALL ,. :;; 95,
"MODIFICATIONS" • 96 ,
"UPPER" :=97 ,
"LOWER" .98 ,
"MODE":: 99 ,
"SENDMAIL" : 100 ,
"BUSY'" ;; 101 ,
~QUICKpRINT" = 102 ,

Pilge 137

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4-DEC-75 20:25 34044

NL5 Programmers# Guide
Creating and Using Attachable Subsystems

page 138

Part Four'

"JOURNAL" = 103 ,
"P~INTER" = 104 ,
"COM" ::: 105 ,
"TERMINAL" = 106 ,
I' REMOTE II ;;107 ,
"REST" ;: 108 ,
"CASt:" :; 109 ,
"CONTENT" = 110 ,
"TEMPORARY" ~ 111 ,
"VIEWSPECS" = 112 ,
"EXTERNAL": 113 ,
"TO" = 114 ,
"PRIVATE" = 115 ,
"PUBLIC":: 11.6 ,
"TENEX" =117 ,
"ALLOW" = 118,
"EXECUTE" • 119 ,
"APPEND" ;;; 120 ,
"LIST";: 121 ,
"SET" = 122 ,
"SELF" = 12,3 ,
"f'ORB ID" :: 124 ,
"DISK" = 125 ,
"DEFAULT" ~ 126 ,
'tOLon :;; 127 ,
"NEW" ': 128 ,
"COMPACT" • 129 ,
"RENAME": 130 ,
"A.DO" =131 ,
"SUBTRACT" = 132 ,
"MULTIPLY" :: 133 ,
"DIVIDE" ;I 134 ,
"RIGHT" = 135 I

"!JEFT": 136 ,
"ACTION" = 137 ,
"AUTHORS" • 138 ,
"COMMENT" ,~ 139 ,
"EXPEDITE": 140 ,
" RA ROC 0 P y" ;;: 1 4 1,
"INFORMATION" = 142 ,
"INSERT". 143 ,
"KEYWORDS" = 144 ,
"OBSOLETES" = 145 ,
"FtFC"== 146 ,
"SUBCOLLECTIONS" * 147 ,
"TITLE": 148 ,
"UN~ECORDED" = 149 ,
"LIon = 150 ,

&ARC-ApP 4-0EC-75 20:25 34044
NLS programmers' Guide ARC 34044 Rev, 5 DEC 75
Part Four: creating and Usin9 Attachable Subsystems

"PROCEDURE" = 151 ,
"SEQGENERATOR" .~ 152 ,
"BU~"'FER" = 153 ,
"NODT" = 154 ,
"PARSERULE" ~ 155 ,
"CAft ;: 156 ,
'tCD";; 157 ,
"RPT" = 158 ,
"SC" = 159 ,
"BW" = 160 ,
"8S" == 161 ,
"LITESC" :; 162 ,
., IGNOFE" = 163 ,
"se·' = 164 ,
"SW": 165 ,
"TAB": 166 ,
.. I KLAC It :: 167 ,
"TI":; 168 ,
"NVT" = 169 ,
"EXECUPORT" = 170 ,
"MENU";; 171 ,
ftDNLS" ::: 172 ,
"TNLS"= 173 ,
"COMMAND" :; 174 ,
"RULE" := 175 ,
"SUBSYSTEM" ::: 176 ,
"DISPLAY" ::: 177 ,
ttr~OZEN" :;: 178 ,
"HLPCOM" .: 179 ,
"P~OGRAM" = 180 ,
"TERSE" = 181 ,
"INDENTING" = 182 ,
"UNIVERSAL" :; 183 ,
"ENTRY" :; 184 ,
"INCLUDE": 185 ,
" S (j T'l' 0 M " ::: 186 ,
"PAGE" ;:; 187 ,
"OFF" • t88 ,
"FULL" :; 189 ,
"PA~TIAL" =190 ,
"ANTICIPATORY" = 191 ,
"DEMAND". 192 ,
" F I X E Dn :; 1 93 ,
"CONTROL" = 194 ,
"CURRENTCONTEXT" = 195 ,
Itf'EEDBACK"= 196 ,
"HERALD";: 197 ,
"PFINTOPTIONS" = 198 ,

page 1,39

ARC 34044 Rev. 5 DEC 7S
part Four:

&ARC-APP 4.DEC w75 20:25 34044
NLS Programmer$' GuIde

Creatlngand Using Attachable Subsystems

"PROMPT" = 199 ,
"RECOGNITION" = 200 ,
"STARTUP" = 201 ,
"LEVELADJUST" = 202 ,
"REVERSE": 203 ,
"TEST" ~ 204 ,
"TASKER" = 205 ,
"LINEPROCESSOR": 206 ,
"CENTER" = 207 I

"CNTLQfl = 208 f
~ COMMON RULES %

% ENTITY DEFINITIONS %
edltentlty ~ textent I structure:

, TEXT ENTITY D~FINITIQNS ,
textent = text1 I "TEXT" I "LINK";
text1 = "CHARACTER" / "WORD" I "VISIBLE" I "INVISIBLE"
I "NUMBER",

% STRUCTURE ENTITY DEFINITIONS %
stru~ture = "STATEMENT" I notstatementJ
not statement = "GROUP" I "BRANCH" I "PLEX" :

SUBSYSTEM name KEYWORD "NAME"
INITIALIZATION fnamel = ,
COMMAND fname2 = "COMMANDWORD"

r
TERMINATION fname3=

J
END.

FINISH
FILE lname , CL10,SAV,) TO (lname.subsys,) ,

, glObals'
(xname) PROCEDURE , eKecution procedure %

page 140

'Formal Parameters'
(result, 'result record%
par •• mode, %parsln9, backu~, cleanup,
paraml, ,your first parameter, •• ,
param2, 1of course you may have, •• %
param3)J ,0 to 7 of your own parameters,

'Locals\
REF result, paraml, param2, param3,

CASE parsemode OF
= parsing:

BEGIN
END,

= backup, = cleanup:
BEGIN
END,

ENDCASEJ

6e2b

&ARC-APP 4-DEC-7S 20:25 34044
NLS pro;rammers'GQide ARC 34044 Rev, 5 DEC 75
~art Four; Creating and UsinO Attachable SUbSY$tems

RETURN(&result),
END,

FINISH

page 141

ARC 34044 Rev, 5 DEC 75

page 142

&ARC-APP 4-0EC-75 20:25 34044
NLS Programmers· Guide

Part Five: Error Handllrig •• SIGNALs

NLS Programm.rs' Guide
&ARC~APP 4-0EC.15 20:25 34044
ARC 34044 Rev, 5 PEC 75

part Fiv., Error Handling •• SIGNALs

PART FIVE: Advaneed programming Topics 7

Section 1: Error Handling •• SIGNALs 7a

Introduction 'a1

When an NL5 system proCedure ~al1s to perfOrm properly, It may
g,ner&te an error slonal. Ev~ry signal hal a value. Whena
signal 1s generated, control Is paSsed back to the last stgnal
trap In effect. If no eXplicit program control statem~nt (e,g.
RETURN, GOTD) 1s 91venln that stonal trap, a new s10nal wlJl
be generated, If the error 1s not dealt with, the s1gn.1 will
eventually bubble all the way back to the execution routine,
The execution routine should always trap a signal. 7ala

You may trap signals and regain control bY setting up the
response in advance, 1a1b

TraPPing SignalS 7a2

TO trap errOr sionals Of any error value: 7a2a

ON SIGNAL ELSE statement,

E.g.

ON SIC"'AL ELSE
BEGIN
dismes(2,$$trino), I

RETURN,
END,

It isa gOOd 1de~ to set ~p a slgnalre,ponsebtfore ealllnQ

7a2b

any NLS syst,m procedures. 7a20

Once the s19nal reSponse ts set, it remains In effect through
the ,nd of the procedure or until·l.t is chanQed, and w111 be
executed wheneyera signal 1$ received by that procedure, Any
s~bsequent ON StGNALstatelllents will at that point Change the
sional re$ponse (l,e. only one ,1Qnal responseean be In effect
at any point dUTing procedureexecutloft). 7a2d

Only signals generated by procedUre$ below (e,g. called by)
your procedure '11111 be trapped by YQur procedur."s'lqna l trap,
It will not trap slgnalsgenerated in the same procedure~ 7a2e

page 143

ARC 34044 Rev, 5 DEC 15
&ARC-APP 4-DEC-75 20,25 34044

NLS prog,ammers' Guide
Part Five: Etror Handling .- SIGNALs

The signal response maY be any (blOCk of)Ll0 statement(s), It
will be exeeuted, then 7a2f

• If you have an e~pllclt program control $tate •• nt (RETURN,
COTO, EXIT LOOP), control will be ~assed accOrdingly and the
signal w1ll stop there, or

• If the slgnel traP includes no eiPllClt pr09ram control
statement, anot~er signal of the same value will .be
generated, and control will pass upward through the stack of
procedures called until it encounters another signal trap,

A RETURN w111 return control to the procedure which called the
one which intercepted the stonal (not the One which generated
it), 7a2g

ThUs, if yOU wish to resume control In the current procedure,
the S1goal trap will have to end with a GOTO $tatemen~ pointIng
to an appropriately labeled statement, Th1s Is one of tne few
places where a GOTO is really necessary, 7a2h

If the signal trap applies to a loop,an EXIT LOOP or REPEAT
LOOP Is a valid Sign41 Program control statement. 7a2i

Trapping Signals lnExeeutlon~outlnes 7a3

If a s19n.l bubbles up thrOUQh th. execution routine to the
command parser (1ft. command In an at~achable$ub.ystem), the
results m~, be unpredictable, Execution routln.s should alw~ys
include signal traps. 7a3a

ARETURN(FALSE) w111 shift CML into backYp mode. It will baCk
UP to befOre the last seto~CML alttrnatives (nOt neceJsarily
equ~valent to the leat User input element), and then Shlftbaek
into parsing mode, (Thl$ mOYlmply b4Cklnq811 the way thrOUgh
the command, l,e,abortlng the command.) 7a3b

The procedure "abortsub$ysttm" may be u$etul In this context,
It will shift the eomma~d parser tnto backup mode and abOrt the
current eommend,Then it will execute a Quit (from .the current
subsystem) and return the user to the previously used
sUbsystem. It should be passed the addres$ o~an ertor string
to be dl,played. E,9. 7ale

ON SIGNAL ELSE abortsubsy$tem($"Error 1n xprocedurett'~) ;
or

ON SIGNAL ELSE abortsub$ystem{sysmsg) ,

page 144

NLS programmers' Guide
&ARC-APP 4-PEC-75 20~25 34044
ARC 34044 Rev. 5 DEC 75

Part FiVe: Error Handling -. SIGNALs

Cancelling Signal Traps 7a4

After program execution sets up a Signal response, the
following statement will cancel it so that thereafter a signal
will just bubble on up: 7a4a

ON SIGNAL ELSE NULL ,
or just

ON SIGNAL ELSE J

It may be subsequently reset by execution of another ON SIGNAL
statement. 7a4b

SpecifiC Signals 7a5

When a slgnal 1s generated, the NLS system global variable
"sysgnl" Is given a specific value (the value of the signal),
Each value represents a certain type of error. Also the system
glObal variable "sysmsQ" 15 given the address of a string which
holdS an error message, 7a5a

The above constructions react to any signal, no matter what its
value may be, The ON SIGNAL statement can be used much like a
CAS! statement (comparlnQ Cases to the glObal sYsgnl) 1f yoU
Wish to tra~ specific slgnals~ 7a5b

ON SIGNAL
=constant: statement:
=constant: statement,

• • • ELSE stat@ment1

ON SIGNAL
=ofl1err: 'open file error'

BEGIN
IF SySMsg THEN dismes(2,5YSmsg);
RETURN,
ENO,

ELSE %any other error signal%
BEGIN
d1sme$C2,$"Error")J
RETURN,
END,

7a5C

page 145

ARC 34044 Rev, 5 DEC 75
&ARC.APP 4-0EC.7S 20:25 34044

NLS programmers' Guide
Part Five: Error Handl1no •• SIGNAL5

The Current s1gnal constants can be found In cNLS,BCONST,>,
The common reason for using this specific signal treatment Is
when you call a procedure which you know will generate a
certain signal value under certain conditions, In such a case,
you can learn the signal constant of concern from the SIGNAL
statement which qenerates it, 7a5d

Generating signals 7a6

You maY generate a SIGNAL in a procedure bY the statementr 7a6a

SIGNAL (value, astrlnQ) J

where value is the value of the signal (perhaps a system
glObal) and astr 1ng Is the address of a string hOlding the
error message, If the second param~ter Is omitted, it wl~l be
assumed to be zero and no message wl11 be printed, The first
parameter Is mandatory: everY signal must have a value, 1a6b

Examples:

SIGNAL (ofl1err, S"couldn't open your file,") ,
SIGNAL (2) J

AnOther way to g~nerate a SIGNAL Is by calling the procedure 7a6c

err(errno)

It will Qenerate a SIGNAL of the value "errs19" (a system
global) and will set u~ a message depending on the value you
pass forerrno, errno may be any of the followingl

1 -- "File COPy fal1s~,
2 •• "Open scratch fails",
3 •• "Cannot load program",
4 ~. "1/0 Error"J
5 •• "Exceed capacity",
6 •• "Bad file block"}
7 -. "Not Implemented"

If yOU pass it the address of a string as the error
number, it will signal using that addres~ for sysmsg, and
that string will be printed.

8y allowing err to generate all the s1gnals, you will find
It easy to freeze execution u~on an errOr condition while
debugging using NODT, as described In the next section (by
setting a breakpoint at err),

page 146

NLS pr99rammer$'Gulde
Part Five; Error Handl1ng .~ SIGNALs

&ARC-APP 4.DEC~'5 20125 34044
ARC 34044 Rev. 5 QEC 75

Be careful not to call err and then trap its SIGNAL 1n that
same procedure, You might say:

ON SIGNAL
lIerrs1q: NULL,
ELSE .,.

page 147

ARC 34044 Rey, 5 DEC 75
&ARC-APP 4-DEC.75 20:25 34044

NLS Programmers' Guide
part FlYe: NDDT Debugging

Section 2: NDDT Debugging 7b

Introduction 7bl

Debugging 1s the process of finding the error$ 1n a program,
once the problem 1$ loeated,you m$Y correct it 1n the sOurce
Code (NLS file) and recompile, 7bla

NLS includes a debugging tool called NDDT, for "NLS Dynamic
Debugg1n9 Technique." NODT allows 'you to examine the state of
your program during or atter running it (l,e.uslpQ the command
or filter), This section describes the capabilities of NDDT. 7blb

Accessing NODT 7b2

To make NDDT available from NtS, You must execute the command
in the PROG~AMS subsystem: 7b2a

Set Nddt (control.h) OK

This adds the program NODT to your user programs buffer,
Thereafter, whenever YOU type a <CTFL-h>, NLS will immediatelY
be interrupted (be It 1n a waiting orrunnlng stat.) and YOU
will enter NDDT, NODT will respond with Its com~~ndhearald, a
right angle.bracket (», Indicating that NOD! 1s re4dy to
accept a command, 7b2b

NDDT commands are specified by typing the first character of
the command word,

You may continue with NL& (fram the point Where it was
interrupted) with the NDDT command:

continue OK

YOu may continue NLS from a $~eclflc instruction address with

7b2C

the NODT command: 7b2d

Goto ADDRESS OK

NOD! Address Expressions 7bl

EVerything stored In th. machine (instructions and variables)
has an address, its loc.tton within tbe computer'$ memory. An
address Is an octal (base.eight) number. 7b3a

The name of a procedure or of a named LtO statement may be used

page 148

NLS programm~rs' Guide
Part Five: NDDT Debugging

&ARC.APP 4.PEC-75 20:25 34044
ARC 34044 Rev, 5 DEC 75

instead of a number. It represents the octal loeatlon of the
named statement Or of the first instruction of the procedure, 7b3b

Addresses (symbols or numbers) may be combined, to evaluate to
some location. An expression concatenated with tne following
operators will be evaluated from left to right (no hierarchical
ordering) to a single value: 1b3c

<SP> same as +

*
I

Thus, a symbol may be followed bY a spaee (or Plus-sign) and
then an octal number. The number is added to the location
represented by the symbol.

S1ngle-Word Variables

Often., programmers wish to examine or mOdify the contents Of a
sinqle word at a given location. The NODT Show command prints
the contents of the word at that address.

Show Loc~tl0n AODRESS OK

where address Is an address eXpression as defined above or
one of the follOwing:

• ~. preceding entity

<LF>.· next ent1ty

Next ' •• next entity

<TAB> •• entity whose address Is the content Of current
locatIon

NDOT maintains some addres$ as your current location, and the
Show command sets this location to the one ~t examines. If you
do not specify an address 1n a show command, the current

7b3d .

7b4

7b4a

location Is assumed, 1b4b

NODT can print the contents 1n three Ways: as a Symbol fOllowed
by a number (to be added to_the symbOl location), as a single
number, or as text. The default printout mode Is symbolic,
The printout mode may optionally be chang~dln a Show command.
The new printout mode remains In effect until subsequently .
changed. 7b4c

page 149

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4.0EC-1520,25 34044

NLS proorammers# Guld.
Part riv.: NDDT Debugging

ShOW Location ADDRESS cCTRL-b> PRINTMOOE OK

where PRINTMOD! ~s one of the followlnQ:
NtJmeric
Symbolic
Text

A fast way to do the same thing is provided with the Value
command, 'b4d

Value Of ADDRESS OK
or

value of ADDRESS eCTRL-b> PRINTMODE OK

you may print and then replace the value in a word with the
Show command: 7b4e

ShOW Location ADDReSS ~ EXP OK
or

Show Location ADDRESS <CTRL-b> PRINTMODE ~ EXP OK

where EXP Is an expression whose value will replace the old
value ot the 91ven location. In addition to the address
expressions disCussed above, yoU maY use the f9rm:

valuel"value2

where "valUe1" 1s 8 standard expression which will b.put
In the l.f t half of the word,. and "vaJue2" Is an
expre.slon which will b, put In th~ right half,

String Variables 7b5

The contents of 4 string variable maY be eXamined and mOdified
as well as s!mplevaZ1able$, using thecommandl . 7bsa

show string ADDRESS OK

Strings are always printed In text printout mode.

you may print and then replace tne ~trlng with the ShOW
command:

ShOW String ADDRESS ~ STR OK

where SIR Is a lIteral string which YoU type in.

7b5b

7b5C,

NLS Programmers' Guide
part Five: NOD! Debugging

&lRC.APP 4-DEC.75 20:25 34044
ARe 34b44 Rev. 5 DEC 7S

Records

TO wOrk with L1QrecOrds, YOU must first set the NDDT record
pOinter to the first word Of an LtO record de~lnltlon, with the

7b6

command: 7b6a

Record pointer set to: SYMBOL OK

where SYMBOL 1s the n.me of some Ll0record. Not~ that tt
may be nece$Sary to use th~ MARK com~8nd (4e$Crtbed belOW)
to make local records known to the NODT Syst*m,

This 1$ eQuivalent to the command:

Show Location RP _ SYM80L bK
You may then examine all the fieldS o~ any record with the

7b6b

command: 7b6c

Show Record ADDRESS O~
or

ShoW Record ADDRESS <CTRL.b> PRINTMODE OK

IOU may"examln. and optionally ehange a single field within.
record with the Show Location tommand, substltutlnO
ADDRESS,FIELD for ADDRESS.. 7b6d

You may replace eaCh fltld ~n a reCOrd with the command. 1b6e

ShoW ReCord ADDRESS ~

The name of •• c.h field l$tnen printed and a tl."value may
be typed 1,n, terminated bY a command Accept. TyplnQ only a
command Accept w1l1 advance to the next fltld of the record
withOut modifying the last field,

Built in NDD! symbols 7b7

A numb.r Of symbols ate bUilt In to NDDTand m,y be used In
address expressions, when they are used, PRINTMOD! wl11be
Ignored, slncethe printOut mode 1s predefined for each of
these symbOls. 7b7a

Built In Locations, Registers 7b7b

AI .- register Al
A2 •• reglst.r A2
A3 •• reg1st.r A3

page 151

ARC 34044 Rev, 5 DEC 75
&ARC-APP 4.0EC-75 20:25 34044

NLS Programmers' Guide
part rive: NODT Debugging

A4 ~. register A4
Rl •• register Rl
R2 •• register R2
R3 ~. register R3
R4 ~. register R4

Built In Locat1ons, Frame

When a procedure Is called, a "frame" IS added to the stack.
It includes a word (hOlding the return location Qf that
procedure In the right half) followed by all the parameters,
then all the locals, some predefined symbols allow yOU
access the current or any ~revlous frames and the
information 1n them.

M ~. contains address of current frame
MARK -. contains address of previous frame
RET •• return location in current frame
RP •• address of record definition of last field used
S e. contains address of top of stack (last LOCAL word, or
whatever)
SIG .~ current frame stgnal location

BUilt in Records

BASE .~ first frame In procedure stack
FRAME -. current frame description
F •• same as FRAME
LOCALS •• current frame LOCALS
L •• same as LOCALS
RECP •• de$criptlon of current r~cord
R •• same as RECP
PARMS •• current frame parameters
p -~ same aSPARMS
TOP -. description bf top frame In procedure stack

Control Switches

EC -. Current symbol e~cape character (I'
RNAMEs •• It FAL$E suppresses printing Of reeord fleld names
sF •• If FALSE disables these NDDT built In symbols

7b7c

7b7d

7b7e

SpeCial character commands 7b8

The speCial character commands are provided for commonlY used
funct1ons, All but = are essent1411y.subeommands of the SHOW
command and are processed exaetly as If they had been preceded
by the command word Show, 7baa

page 152

NLS Pr~grammers' Guide
Part Five: NODT Debugqlng

&ARC-APP 4-0eC.75 20:25 34044
ARC 34044 R.v. 5 DEC 75

••• Show current location in numeric typout without
changing the current printlnQ mode

~ .- Assign a value to current location

• •• Show previous location

LF •• Show next location

TAB •• Show location addressed by current location

Traces and Breakpoints 1b9

If you set a "trace" at a location, the system will print that
address every time that instruction 1s executed, E~ecutlon
will not be 1nterrupted. YOU may set a trace with the eommand: 7b9a

Trace location ADDRESS OK

If You $et .a breakpoint at a loca~lon, a <C1RL-h> will
automatically be executed just before the given Instruction
(causing you to Interruptexecutlon and enter NDDT). This
allows yoU to interrupt e~ecutlon of your prOgram ~t a given
point and examine and Change the state of the system. A
breakpoint may be set with the command:

Breakpoint Set ADDRESS OK

Each trace and breakpoint Is assigned & number, beginning with
zero, when it 1s set. you may cancel a trace or breakpoint
using this number or using the address to which it Is set: 7b9c

Breakpoint Clear NUMBER OK
or

Breakpoint Clear ADDRESS OK

yoU may cancel all trace$ and breakpoints that you have $et
with the command: 7b9d

Breakpoint Clear All OK

You m~y list a trace or breakpoint of a Vlven number and the
location to which it is set with the command: 7bge

Breakpoint Print NUMBER OK

You may list ~ll traees arid breakpoints, their nUmbers, and
their locations with the command: 7b9f

page 153

ARC 34044 Rev. 5 DEC 75
&ARC-ApP 4.0EC-75 20125 34044

NLS Programmer,' Guide
Part Five: NDD! Debugging

Breakpoint Print OK

A breakpoint may replace a previous trace Or breakpOint (new
addreSSt same number) with the command; 7b99

Breakpoint set ADDRESS <CTRL-b> ReplaeeS breakpoint NUMBER
OK

A breakpoint may be set $0 that it only Interrupt~ it a
comparison between lOcation and a given constant 1s true, with
the following command: 7b9h

Breakpoint Set ADDRESS <CTRL-b> Test ADDRESS RELOP CONSTANT
OK

where ADD~ESS Is the location of the word to be compared,
RELOP Is one of thfe fOllowing: ~ # < > <= >=
CONSTANT Is an expression with a value.

A breakpoint may be set so that it only Interrupts If a
procedure Is e~lled and returns true, with the !ollowlnQ
command;

Breakpoint Set ADDRESS <CTRL-b> Call PROCEDURENAME OK

Ll0 Procedures

you may call an LIO proeedure from NODr with the command:

Procedure Call PROCEDUReNAME OK

If the procedure reqQire$ parameter~, YoU must list them In
parentheses, separated by commas, after the name of th~
procedure:

Procedure Call PROCEDURENAME (paraml, param2, •••) OK

one string, enc1o$ed In Quotes, may be inclUded in th~
parameter list, e,g.:

Procedure Call PRQCEOURENAMg ("literal", param2, ".l OK

The return value(s)of a procedure eall will be typed out,

NODT allows YOu to replace an eXisting procedur~ with a new
procedure. Whenever the old proc~dure Is called anYWhere In
the system, the new procedure wlll be called instead, Then ••

page 154

7b91

1bl0

7blOa

'blOb

7blOC

NLS programmers' Guide
part Five: NDDT Debugging

&ARC.APP 4-DEC.75 20:25 34044
ARC 34044 Rev, 5 DEC 75

procedure will be passed the same parameters as were passed to
the Old, This replacement can be done w1th the command: 7bl0d

Procedure Replace OLDNINE OK NEWNAM! OK

The name of the procedure which was replaced 1s saved so that
it may be restored, The replacement may be cancelled with the
command' 7bl0e

procedure Back UP to OLD NAME OK

symbols 7btl

The system mainta1ns a table of symbol names and the addresses
whieh they represent. When a user pr99ram is loaded, its
symbols are added to the symbol table, Thus, (In addition to
system globals) the table 1s composed of blocks, one for each
program, 7blla

Each block Is refered to by the (unique) name of the
program. (This 15 WhY the CML and SUBSYS parts of a user
attaChable subsystem must have different names in the FILE
statement.) The 11st of blocks (programs) Is called the
"mark stack," Locals as well a$gl~bals are reCOgnized by
NDDT for only those U$er programs In the ~ark staCk,

You may. list then.ame.$of the blocks currently in the mark
stack with the cqmmand:

Mark symbol table: Print contents of stack OK

A block may be deleted from the mark stack (the symbols remain
1n the$ymbol table, but they are not reco9nized by NOD!) With

7bl1b

the command: 'b1le

Mark symbOl tablel clear blOCk PROGRAMNAME OK

A block may be reinstated to the mark stack. with t.he command:

Mark. symbol table: Set at PAOGRAMNAME OK

A new (empty) block may be added to the mark staCk with the
command:

Mark symbol table: set at NEWBLOCKNAME OK

1bl1d

7b1te

page 155

ARC 34044 Rev, 5 DEC 15
&ARC.APP 4-DEC.75 20;25 34044

NLS Programmers- GQlde
part Five: NDDT Debugging'

If there is at least one block In the mark stack, a new symbol
representing some address may be created with the command: 7bltf

Oefine New SYMBOLNAME OK ADDRESS OK

symbols defined with this command have a global scope, and
may be used to satisfy external referenCes In LtO user
programs subsequently compiled,

Any symbol within a block listed In the mark stack may be
redefined to represent a different address with the command:

Define Old SYMBOLNAME OK ADDRESS OK

If YoU wish to replace an eXistinq routine by a new version of
the same routine, some method of dlstinqui$hlng between new and
old occurrences of the same symbol Is required, Any symbol
preceded by a semleolon (J) refers to the old occurrence of the
symbol. (The semicolon has the effect of disabling the symbol
table marking mechanism for ~he given symbol, causing it to be

7b119

identified In the "old" section of the'symbol table,) 7bl1h

For example, sUppose an existing routine named TEST Is to be
replaced by a new version of the same routine WhiCh YOU hAve
just compiled (hence Is in the mark stack), The NODT
procedure Replace command can be used as follOWS:

Scanning for Content

yOU may search a set of words for a specl~lc content with the
command:

Find content: CONTENT OK masked by: OK lower address:
STARTADD~ESS OK upper addresst ENDADDRESS OK OK

The content Of every word In the specified range will be
compared to CONTENT, CONTENT may be of the form of an address
Or a POP10 machine Instruction, The address and content of
eaCh word wnlch matches will be printed. (Note that the

7bt2

7b12a

nmasked by" field was iQnored.> 7b12b

If you Wl$h only to compare certain bits In each word to
Corresponding bits In CONTENT, you may specify a mask, A mask
1s a number (of the address form), Only those bit p6s1tions In
Which the mask has a one will be compared, (If the mask is not

Page 156

&ARC-APP 4-0EC' .. 75 20: 25 34044
NLS programmers' Guide
part rive: NODT DebuQglng

ARC]4044 Rev. 5 DEC 75

sPecified, all oneS will be assumed and the entire word will be
compared,) 7b12c

Find content: CONTENT OK masked by, MASK OK lower address:
STARTADDRESS OK upper address: ENDADORESS OK OK

MASK maY,al$Q be of either the ADDRESS form or the PDP10
instruction ferm,

7b12d

page 157

ARC 34044 Rev. SPEC 75
&ARC-APP4-0EC-75 20;25 34044

Nts PrQgtammef$-Oul~e
P4rt Five: Wrltlnq CML persefunctions

section 3: writing CML parsefunctions 7c

Parsetunctlons 7cl

Functions which are declar.d with the PARSEFUNCTION attribute
in CML are.,ssumed to be LtO procedures wh1chare designed to
be parslngfunctlQns. TheY ~reus.dtoexamln. the u,er'.
input. They are c.ll~d In "parsehelp" mode bafore being called
1n "parsing" mOde, Whenso .. c:,lled, they are passed t.he addresS
of a strln9 as 4 third lmpll¢1t argument. The par$@functlon
routine should fill that string with the appropriate prompt
Characters which tell what the parslnq function Is looktng for. 7cia

When the us~r 1s faced with a~ternatlves which Include a
parsefunctlon, the parsefunctto~ will b, called In parsemode
"parseqmark" fOr the stt1n; to include in the questlonmark
display, This string must be no greater than 24 characters. 7clb

Sample lnterpr~ter Parsefunctlon Roui1ne 7e2

Assume that In some command we want the type!n of a number to
appear as an alternative to some set of keywords. We can
accomplish this by defining a parsefunctlon (call it looknum)
which look54t the next,input eharact.r and jucceeds If the
ne~t character.1s, dl;ltandtal1sotherw1se.If we write
this function a, th. first ,lternattv. in som. oomm.nd, t~.n
control wtllpess from the interpreter to the parl.function
before it passes to the keywOrd interpreter. 1c2a

SUPPOGt our command loOk$ like: 7c2b

COMMAND .ample- "INSERT"

pagelSS

(looknUm() <"nUmber"> ent ~ #"NUMBERq
I en~_ ("TEXT"/~LINKn))
, entity nowcontaln$ an entl~Y type (NUMBER, !EX1# qr
LINK). we nbw use the LSEL function to get e selection
of thls type ,

SQUfct.LSEL(ent)
CONFIRM
xln$ert (ent, source) ,

NLS PfQgrammers' Guide
,ARC-A,P 4.0EC-15 20:25 34044
ARC 34044 Rev, 5 DEC 75

Part Five: writ!nq CML Par$efunetlon$

The parsefunctlon looknum whiCh Is called by the Interpreter
both when prompting the user and also during the actual parse
of the command. 7c2c

~looknum) PROCEDUFE % lookS at the next input character, if
it 1s a digit, then return TRUE, else return FALSE %

\ FORMAL ARGUMENTS %
(result, % address of the re$ult r@cord ,
parsemode, % parsing mode of the in~erpreter %
string); ,address of prompting string %

REF result, string:
CASE parseroode OF

= parsing:
CAsE lookcC) or %value Of next character in input
buffer%

IN ['0,
ENoelSE

= parsehelp:
str1ng _

= parseqmarkl
str1ng _

!NDCASEJ
RETURN (&result);
END,

~9]1 NULL 1
RETURN(FALS!) J

%supply string for prompt'
"NuM:" J
'supply string for questlonmark\

"Number" ,

page 159

ARC 34044 Rev, 5 OEC 75
,ARC.APP 4~DEC.75 20:25 34044

NLS proQrammers# Guide
Part Five: Calculator-Capabilities

Section 4: Calculator Capabilities 1d

Introduction 7dl

LIO arithmetic can only work w1th integers, The CALCULATOR
sUbsystem holds a numbers of procedures which the user
programmer maY call to dO dOUble-precision floating point
arithmetiC. Floating POint number$.re stored In two-word
arraYs, which the user programmer must 'deClare, All CALCULATOR
routines work with these two ~ord ~rrayst 7dla

converting String to Double-Precision Floating Point 7d2

A number in a string Variable maY be converted to a floating
point array with the procedure: 7d2a

nfloat (astrlng, awordl, aword2)

where astrlng 1s the address of a string holding the number,
awordl Is the address of the first word of the array,

and
aword2 Is the address of the second word of the array.

The number In the strinq may hOld a decimal point, and may be
preeeded by a mlnus·s19~ C-). Other char.Cters Ce,9, a dC'lar
519n) may precede the first character of the number (a digit,
minus sign, or decimal), they will be iQnored, 7d2b

Converting Floating Point to String 7d3

The two word array may be converted back to a string with the
proeedure, 7d3a

qtloutp (averl astrlng, fOrmat)

where

avar Is the addreJs of the (first word of the) array
holding the flOating pOint number, and

astrlng is the address of a string variable In which the
text of the number is to be placedJ

the third parameter Is ignored, sO jUst pass zerO,

The format of the strlnQ is dictated by the global variable

page 160

NLS Programmers' Guide
&ARC-APP 4-DEC-75 20:25 34044
ARC 34044 Rev, 5 DEC 75

part Five: Calculator Capabilities

"dfoutm." The followinG fleld$ apply to this global (default
values are In $quare brackets]: 7dJb

fld1 •• characters to the left of the decImal [10]

fld2 •• Characters to the right of the deCimal [2]

fld3 ~. characters 1n exponent field [0]

round •• n~mber of Si9nificant digits to round to [121 round
must be less than or equal to fldl + fld2 fld1 + £ld2 must
be less than Or equal to 12

Oflo -- go to exponent notation If left-of-deCimal too big
[01

exslan •• i£ a POSitive exponent, use first character of
exporient fIeld for: [0]

exp2 ••

o .- first digit of exponent
1 -. "+"
2 •• a space

prefix on exponent: [0]
0 .~ no exponent
1 ~. "E"
2 -. "0"
3 -. "*10-"

dpt •• pr1nt decimal point switCh (O=Off, l=On) tl]

dig •• print at least one digit to l$ft of decimal (0 If
necessary) (O~Off, 1=On) (1)

jU$t •• justify number within space of three fields; [1]
o ~. right jU$tify by adding spaces to left

1 ••
2 ••
3 ••

yOU must.lso $~t the
global "ealflg" to TRUE
right justify by adding "0"5
right justify by add1ng "*"S
left justify by adding spaces to right
yoU must also set the
qlobal Hcalilq" to FALSE

sign •• if a positive number, us. first character of field 1
for: [0)

o •• first dl~lt of number
1 •• a space
2 -.

page 161

ARC 34044 Rev. 5 DEC 75
&ARC-APP 4-pEC-75 20,25 34044

NLS pro9ra~mers' Guide
Part Flve~ Calculator Capabilities

AdditionallY, 1f the global "eactlg" is TRUE, tne number will
be formatted with commas, 7d3c

Calculations with Foatlnq Point 7d4

The following procedures do floating point calculations on the
two-word arrays described above, All of the following
procedures require as parameters the address of the (first word
of the) arrays, 7d4a

qcadd(a,b) •• a ~ a + b

qcsub(a,b) •• a ~ a ~ b

qcmultCa,b) •• a _ a * b

qcdlv(a,b) -. a ~ a I b

qcdlvw(a,b,c) •• c _ a I b

page 162

NLS Programmers' Guide
,ARC-AP' 4-0EC-75 20125 34044
ARC 34044 Rev. 5 DEC 75

part Five: Fields and Records

SectiQn 5: Fields and Records 7e

IntroductiQn 7el

A set of bits within a wOrd can be used without affecting the
rest of the word, (On the PDP-IO, words are 36.blt$ long.) A
contiguous set ot bits within a word 1s called a field. Fields
allow more efficient use of storaQe. 7ela

once a field Is defined, yoU may apply It to any wprd
(variable). It will refer to tne defined set of bits In
that word (e,g, the field "RH" refers to the right-most 18
bits of whatever word it modifies).

YoU may assign a number to or from a tleld by following the
variable name with a period <,l, then the name of the fl_1d: 7elb

E,g, stld,stpsld _ origin,

Many fields are defined in the NLS system, and may be .. used by
user proqrammers, some have been m~ntl~ned In preceding
sections, others may be found in the NLS source code, 7ele

Declaring Records 7e2

ReCords are alwaYs def1ned globallY, ReCord definitions are#
like global deClarations, put outside of procedures wlthinL10
fl1es~ 7e28

A reCOrd detlnitlondeflnes a serle$ of fields, with the length
(number of bits) sPecified fOr each field: 7e2b

RECORD fleldltlenQth], fteld2(lengthl, ,,' ,

The fields are allocated ~rom right to left within the wOrd. 7e2e

E.q, the record def1nition:

RECORD riqht[18], leftCt7] ,

would define two fields. The field "right" refers to the
rlght.~o$t 18 bits of the word. The.field "left" refers to
the next 17 bits to the left Of the field "right." (1ft.
left-most bit 1$ not Used 1n this example,)

page 163

ARC 34044 Rev, 5 DEC7S
~A~e-A'p 4-DEC.15 20:25 34044

NLS Pf09rammtfs# Guide
part Fiver Fields and R&cords

A RECORD definition may SpecifY any n9mber of fields, If a
field Is defined t.o be too large to fit in the remaining bits
of the current word, it 1s automatically defined to represent
the first field In the next word, I.e, this .and SUb$~qu.nt
fields are defined from the right of the next word. This can
extend through any number of words. 7e2d

E.g, the RECORD deflnltlon~

RECOFD fieldl(18), field2[10], fltld3(181, ~ield4C361 ,

wOuld define the fields as fOllows:

fleld1
fleld2
field3
£ield4

~. rt9ht half of word
•• right-most 10 bits in left half of word
.~ right halt of next word
•• entire third word (I.e, word[2])

Of course when using fields that refer to subsequent words,
you must be sure that you are operating on arraY$ of the
appropriate size,

Declaring Fields 7e3
. ~

AlthoUgh you can declare s1noleflelds as d,seribed here, tbe
Praetlce 1$ limited. (It 1s useful lnmanipulatlng byte
pointers.) User programmers ShOUld U'e ReCORD definitions
Instead. 'ela

A single field may be deflRedwith the declaratiOn: 7.lb

DECLARE FIELD name ~ [address, size : pOsftlonl ,

where

.ddres$ 1s the address of the word to which the field
refers,

size Is the number of bits In the field, and

position 15 the number Of bits left to the right ot the
field,

In an assignment, the address Of the word refereneed Is kept In
a r~91$tir, named "rp," It may b~ used as an index by pl.cln~
it in parentheses, Thus a FIELD declaration refer1ng tbthe
right half Of a wprd iSI 7e]e

page 164

NLS Prqgrammers' Guide
&ARC-APP 4-DEC.75 20.25 34044
ARC 34044 Rev. 5 DEC 15

Part Five: Fields and Records

DECLARE FIELD right=e(rp), 18:0] ;

The left half of the next word could be defined: 7e3d

DECLARE FIELD left=ll(rp), 18:1.8J J

The address Is held In the right halt of a byte pointer, You
may declare afield with zero as tne address, then assign thf
field definition plus an address to set up a byte pointer: 7e3e

DECLARE FIELD rlQht=rO, 18~O] J
then

bytepolnter _ right + $varlable

A FIELD declaration may be external as well as global: 1e3f

DECLARE EXTERNAL FIELD name = [address, size t position] ,

page 165

AFC 34044 Rev, 5 DEC 75
,AFC-APP 4-D£0-75 20.25 34044

NLS Programmers· Guide
Part Five: Stacks and Rings

section 6: Stacks and Rings 7f

Declaring Stacks and Rings 7f1

stacks and rings are allocated series of words of storage. A
$tack or ring 1s defined to hold a given number Of records,
each record may be a single or a defined number Of wordS. You
may "PUSh" r.~ords onto the stack or ring and then "pOp" th.m
otf, as described here. 7tla

A stack may be declared (at the global level) with tne L10
declaration: 1f1b

DECLARE STACK stackname[slze] ,

where size Is the number of one~word records In the stack.

yoU may work with records of mOre than one wOrd with the stack
declaration; 7f1e

DECLARE STACK stackname[slze,rec$izel ,

where recsize Is the number of words in each record. All
records In a stack must be the same size.

Like other declarations, any number of staek$ may be declared
with the same statement: 'fld

DECLARE STACK stacknametslzel, stackname[slze,recsizel, .t.'
StacKS may be declared as ext.~rnal to the program: 7fie

DECLARE EXTERNAL STACK stackname(slze,recslze], , •• ,

Ring declarations are identical, with the word "RING"
substituted for "STACK." E.g.: 7flt

DECLARE PING rlngname[sl;e], rlngname(slzefrec~!ze], t,. ,
DECLARE EXTERNAL RING rlnonamerslzetrecslze), .",

InitialiZing Stacks and Rings 7f2

Before it 1s used, a stack or ring must be initialized (l,e~
Cleaned up), with the L10 statement: 7f2a

RESET stackname J

page 166

NLS Programmers' Guide
&ARC-APP 4-0EC.15 20:25 34044
ARC 34044 Rev, 5 DEC 75

part Five: Stacks and Rings

or
RESET rlngname :

The storage can then be considered empty, Tht RESET $tatem~nt
can be used whenever yOU wl$h to clean uP the stack or ring, 7f2b

Using stacks and Alngs 7f3

You may add a record to the top of the stack or rlnq with the
LtD statement: 1£3a

PUSH address ON staekname ,

where address Is the address of the first word (perhaPs the
Single word) of the record to be added to the stack.

·1£ you trY to add more elements than the stack can hold, a
SIGNAL will be generated~

~If you trY to add more el~ment$ than the ring can hold,
records Will be replac~d, starting from the bottom (the
first reCord pushed on),

You may remove a reCOrd from the stack or ring, and o~tlonal1y
assign it to a record variable (a simple var1able or array of
the appropriate size) with the LIO statem~nt: 1f3b

POP StaCkname
or

POP stackname TO addreSS ,

where addre5s is the address of the tlrst word (perbaps the
single word) of the record to ree~lve the r$cord from the
stack.

wlfyoU try to remove more elements than the stack currently
holdS, a SIGNAL w111 be generated •

• If you try to remove more elements than the ring currently
holds, recordS will be reread, starting from the top. T~l$
should be avoided, It you did not previously f11l the ring,
this tOp record will hold garbage,

YoU may rfiH!:Id the first word of the record at the tOPQf the
staCk or ring (Without affectIng the stack or ring) as an
expression by enclosinQ the name In square.bracket$~ 7fle

lstacJenaR!el

page 167

ARC 34044 Rev. 5 DEC 75
,ARC-APP 4-DEC.7S 20125 34044

NLS pr09r&mmers~ Gylde
Part Five: Stacks and Rings

The second word (the one below that one the stack) maY be
read as [stacKname - III and so on,

var ~ t$tacknameJ :

TO use stacks and rings, one usually must keep track of how
many records are currently on the storage, Thus, you probably
will need to maintain a count in a simple variable 1n parallel

7f3d

to use of the ~tack or ring. 7f3e

page 168

NLS Programmers' Guide
&ARC-APP 4.DEC-75 20125 34044
ARC]4044 Rev. 5 DEC 15

part F~ve: Using the Sequence Generator

Section 7: USing the Sequence Generator 7;

Introduction 7g1

The sequence Generator is used by a number of NLS commands
which require a series of statements ~rom an NLS file, A
procedure may open a sequence holdinq a number of statement,.
the SeqUence Generator then passes thoSe statements back, one
at a time, every time It IS called. 7918

The sequence GeneratOr cOnsiders vlewspecs In choosing whiCh
statements to return, e,g. level truncation, If vlewspee 1 Or
k Is on, it may call a Content Analyzer proqram before
returning the statement. This allows a great deal of
fle~1bl11ty In worklnq with a series of statement$, 7g1b

Co~Routlne Effect 702

Once the Sequence Generator decides to return a statement (or
string), it calls a meChanism WhiCh returns control to the
procedure that called the sequence Generator. Thus control
wIll return directly to that calling procedure, even from other
procedures tne sequenc~ Generator has called, 1.e, even If the
return mech~nlsm was called from a procedure called by the
sequence Gener~tor. 7g2a

When the SeqUence Gener~tor 1$ called the next time, it passes
control to the instrUction after th~ one which called the
return mechanism, I,e, it continues rlQht where It left ofi. 792b

Thus, the sequenee Generator may call a content Analyzer
Program wnich maY return control directly to the prOcedure
Which called the Sequence Genar.tor. The next time the
sequence Generator 1$ ealled~ execution w111 begin in the
middle of that content Analyzer program (which may later return
thrOugh the normal RETURN statement to the sequenCe Generator).
CThU$, the sequence Generator is behaving like a cO.routlne to
the calling procedure,) 7g2c

page 169

ARC 34044 Rev, 5 DEC 75
&~RCwApP 4-0EC-75 20125 34044

NL$ progra~m.rs~ Guide
Part Five. Using the Sequence Generator

Calling Procedure sequence Generator tontent Analyzer

1 •• ,
2 I ••

3 seqgen(&sw) ».> 1 .,.
2 't.
3 CA filter » ••• >

4 •• , <_._._ ••• _._-_._._._ •• --_._._«
5 ,.,
3 seqgen('sw) »~--.---.-.----.. ~.-.>

4 I •• C·········«
5 , ••

7 ,., C··-.·.·.·« 6 return mechanism

1
2
3

4
5
6

II II • . " ,
return mechanism

,., , .
" . .
normal return

7g2d

Sequence Work Area 7g3

When a Content Analy~er program 1s called by the sequence
Generator, one parameter i$ passed, the address Of an array
called the "sequence work area." This array, althoUgh ignored
by most content Analyzer ~rogram$, holds a great deal of useful
information, If the content AnalYZer proc~dure receives this
address as ~ parameter, and then REFs it, it may refer to the
followInq fields In the sequence wOrk area cste
<NLS,BRECORDs,seqr> for entire record declaration): 193a

swstld ~w stld of current statement or strlnq In sequence

SWcstld .w stld of current real STATEMENT 1n Sequence (even
1f SW$tld pOint.s to a strln9)

swlbstld •• st~dOf statement heading last branch In
sequence

swclVl •• level of current statement 1.n sequ • .nce

swalvl -.. level of first stateme.nt in sequence

swvspec .- first word ot v1.ewspees for seqUence

swvsp2 . ., second word of v.1 ewspecs for sequence

swusqcod •• address of user Sequence Generator vroeedure for
sequence

$weacode •• address of content Analyzer procedur~ for
SeqUence

page 1 '70

NLS Pf99x:ammers· Guide.
&ARC-APP 4.DEC.752~.25 34044
ARC 34044 Rev. 5 DEC 75 .

Part Five: Using these~uenee Generator

$wkflg •• FALSE When sequence Is opened, TRUE once something
has been return~d by Sequence

pisplaYing stringS 794

You maY call the re~urn mechanism from Content Analyzer
pro~rams whllecau$lng the sequence Generator to inject a
string In the sequence. Under the normal circumstance, wh_re
the sequenQe Is belrt9 used to"put Up a display or print a flle
or to dQ fl1tered edlt1n9, this ,,110w$ you to inject. string
into the Output, Thus Y09 ~ay receive a st~temefit, reformat it
1nto a string .(without editing the statement itself), and then
display the $trlng. 7g4a

The following prOcedure injects a string 1n the sequence, then
returns to the procedure that called the Sequence Generator. 194b

send (SW, astrlnQ) J

where sw 1s the address of the sequence work area, .and
astring Is the address of the string. (Remember, If YOU
REFed the parameter holding tne address of the sequence work
area, use the ampersand (&) construct when passing it to
send,)

N9te thatth~ CO·fout~ne efftet will eGQ$e ,xecutlon to pick UP
right where it left Off when th~ Sequence Generator Is cal~ed
for the next statement. Thl;Js, exeeutlQo w111beglnjust after
the send, If YOij the~ RETURN a yalueof TRUE, the $tate~en~
1 tsel.f will ALSO be displayed " MOst appllG'at tons of send w111
RETURN(FALSE) lmmedlatelyafter the call on ,end, 7g4C

An example of a Content Analyzer program us1n~ send() to ahow
only the first 11neo.f each statement: 7Q4d

(tlrstllne) PROCeDURE. (sw)J 'content analyzer filter to
diSPlay only f·1·rst lines'

LOCAL TEXT POINTER ptr 1
REF SOW r

%tohold ad.dress of ~equence WOrK area,
%set pointer at end of first 11ne%

CASEREADCOF
• ENDCHRJ FIND ·ptr J
;:EOL: FINo-ptr ~ptr J
ENDCASE REPEAT CASE,

%put first line in global string%
dspstr ~ SF(Ptr) ptr ,

'inject string Into se~uence%

page 171

ARC 34044 Rev. 5 DEC 75
&ARC.APP 4-DEC-15 20r25 34044

NL8 Programmers' Guide
part Five: Using the sequence Generator

send (&SW, $dSpstr) ,
%So statement won~t also be displayed,

RETURN (FALSE) ;
END.

using Sequences 795

You may open and use your own seqUences in attachable
SubsYstems, Thlsmay be useful when yoU wlsh .. tQ proce$S a
series ot stetements, perhaps only those passlngeertaln
requirements (e,g. level or a Content Analyzer filter). 7gSa

To open a Sequence, you Should have declared and REFed a
variable to hold the address of the sequence work area that
will be reserved forvour sequence, The procedure which opens
the sequence returns this address. 7g5b

&SW _ openseq(stld1, stid2, vspecl, vspec2, seqproc,
caproc)1

where

page 172

stidl and stld2 are two stlds dellniatlng a group Ig an
NLS file that will be the source of the atatements In the
sequence, They may. be the same (for a branch). The
sequence Generator ignores the branch only and plex only
vlewspecs.

TO get stld2, the procedure "seqend" may be useful,
Given stidl and the two vlewspec words, it Cheeks the
branch~ortly and plex~onlY viewspecs and returns the
appropriate stid for stld2. E.g.:

&sw _ openseq (st1dl, seQend(stidl,vspeel,vspec2),
vspec!, vspec2, seqproc, caproc),

vspecl and vspec2 ere two words holding the v1ewspecs for
the sequence, There a a number of predefined fl~lds
which allow YQuto set bits within these word$. (See
part Four, section 4,) Of partiCular interest to the
sequence Generator are the level truncation (not the line
truncation) and the Content Analyzer viewspecs.

seqproc 1s the add~es. of the Sequence Generator routine
to be used, If you pass zero, the NLS standard sequence
Generator will be used. (User sequence Generators are
not described here,>

N~S Programmers· Guide
&ARC.APP 4-0EC-75 20;25 34044
ARC]4044 Rev, 5 DEC 75

part Five: Uslng tne sequence Generator

CapfQC 1$ the address of a content Analyzer procedure to
be used If needed by the Sequence (as specified in the
vlewspecs). It none Is needed, yoU may pass zero,
passing the address of a sequence Is in effect
instituting that procedure for that sequence. The
address of the currently instituted procedure maybe
gotten from the display area descriPtor, as described In
part Four, sectIon 4,

A calIon the procedure "seqgen" will Increment tne field, In
the sequence work area to the next statement (or string) in the
sequence, It wlJl return the first statement in the sequence
the first time it 15 called. IOu must pass it the address of a
sequence wOrk area, e,g.: 7g5C

seqgen (&5W) J

·seqgen returns the new SwS t l d field of the sequence. or
endfl1 If there are no more statements In the seqUence.

You may tnen refer to the fields In the Sequence work area
for information about that statement, e,g,:

sW,5wstid -~ stid o~ current item 1n sequence

sw.swelvl •• level of current Item in sequence

When YOU are don. with a sequence, yoU must close it by ~alllnq
the procedure "closeseq" with the adddre&S of the sequence work
area: e"O.: 7q5d

eloseseQC&s'W) ,

page 173

ARC 34044 Rev. 5 DEC 15
&ARC-APP 4-0EC-75 20:25 34044

NLS Prngrammer$' Guide
part Five: ustn9the Sequence Generator

A typical use Of the sequence Generator m19ht be as follows: 795e

% set up sequence %
% set up viewspecs %

%get adress of display area descriptorJ da 1s REFed
simple variable%

&da lda() J
'get current vlewspecsJ vspec 15 LOCAL two-word array,

vspec ~ da.davspec J
Y$pec[11 _ da,davspc2 ,

%turn on Content.Analyzer for this sequence%
vspec.vscapf • TRUE J

\openseq wlth."proc fl as Content AnalYzer filter, returns
the address of sequence work area, sw Is REFed simple
variable%

&SW ~ openseq(soureestid, sourcestld, vspec, vspac[l],
da.dausQcod, $proe),

ON SIGNAL ELSE eloseseq(&sw)
% loop through sequence %

%reset control-o flag%
1nptrf _ 0 ,

LOOP
B~GIN
IF Inptrf THEN ,user typed a control-o,

BEGIN
dlSmes (1, $"USer term1nated proceSS") J
a:XIT 1.,OOP,
END,

%increment to next $tatement In branch You are
procesSing WhiCh passed filter "procH; or else eXit'

IF seqgenc&sw) = ~ndfl1 THtN EXIT LOOP ,
%call some procedure to process current stid (could as
well have been any.block of cod.),

process(Sw,5wstld) 1
END,

% clQse sequence ,
ON SIGNAL ELSe: :
closeseq (&sw) J

page 174

NL5 Programmers' Guide
&ARC~APP 4-0EC.75 20:25 34044
ARC 34044 Rev, 5 DEC 75

Part Fly,: Conditional compiling

Section 8: Conditional Compiling

You maY delimit blocks of cOde within procedures that will onlY be
compIled If a constant 1S TRUE or FALSE, If the code is not
compiled, Of course-it wl11 not be part of the code file and will

7h

not be executed. 7hl

Fir,t a con.tant must be defined with the SET construct (at the
beginning Of the fIle) as either zero (FALSE) or non-z,ro
(TRlJE)~ 7hta

Then, cOde delimited by the string: 7hlb

%+name%

where name Is the SET constant

will only be compiled If the constant 1s SET to a TRUE
value.

Similarly, code delimited by the string:

will only be compiled If the constant 1s set to zero
(FALSE),

1h1e

ARC 34044 Rev. 5 DEC7S
&ARC-APP 4-0EC-75 20125 34044

NL5 programmers' Guide
Part Five: Conditional Compiling

If the following statement appears at the beginning of the
program:

then a procedure in the program might include cOde delimited bY

7h2

7h2a

this construct, e,g,: 7h2b

L10 statement J %normal cOde, always complIed'
,
-L10 statement : %normal code, always compiled%

%~test%
LtD statement , %this statement WILL be compiled%

,
L10 statement J %this statement WILL be compiled%
'.test%

%+test%
LIO statement %this statement will NOT be compiled%

,
LtO statement %thls statement will NOT be compiled%
%+test%

LtO statement J 'normal code, always compiled%

page 176

•
•

&ARC~ApP 4.PEC-75 20:25 34044
NL! proQr.mmer$' Guide ARC l4~44 R.V. 5 DEC 75
ASCII 7-bit Character Codes

ASCII 7-BIT CHARACTER CODES 8

Char ASCII Char ASCII Coar A.SC I I. Char ASCI!
""" '---.-.. .. -----.'.-- .-------.. - .----\11'-"---, 001 1 041 A 101 a 141
-B 002 " 042 B 102 b 142
"'e 003 # 043 C 103 eo 143
"0 004 $ 044 0 104 d 144
~E 005 , 045 E 105 e 145
!li'!JF 006 " 046 F' 106 f 146
Sell 007 ,

041 G 107 9 147
as 010 (050 H 110 h 150
Tab 011) 051 I 111 1 151
LF 012 * 052 J 112 j 152
VT 013 + 053 K 113 K 153
Form..-eed 014 , 054 L 114 1 154
CR 015 .. 055 M 115 m 155
·N 016 • 056 N 116 n 156
·0 017 / 057 0 117 0 15"1 .p 020 0 060 P 120 p 160
-Q 021 1 061 Q 121 q 161
tIIIIR 022 2 062 R 122 r 162
flitS 023 3 063 S 123 s 163
tIIIIT 024 4 064 T 124 t 164
·u 025 5 065 U 125 u 165 ·v 026 6 066 V 126 V 166
flOW 027 7 067 W 121 w 167
·x 030 8 070 X 130 x 170
"y 031 9 071 y 131 y 171
·Z 032 I 072 Z 132 z 172
ESC 033 , 073 [133

< 074 \ 134

= 075 1 135
> 076 - 136
'1 077 137 DEL 177

SP 040 @ 100

page 177

&ARC-APP 4-0EC-75 20J25 34044
34044

ARC 34044 Rev, 5 DEC 75
'ARC~APP 4.DEC.7S 20:25 34044

NLS Programmers' Guide

(J34044) 4.0EC-75 20:25J;;; Title: Author(s): SRlwARC Applications
Group I&ARC-APP: Distribution: INDM([INFO.ONLY 1) JHB([INFO.ONLY]
) LJM ((INf'"Q.ONLY J) JCN ([INFO.ONLY 1) : Sub.collectlons: NIC:
Obsoletes Docu~ent(s): 33522, Clerk: NOM, Origln~ < USERGUIDES,
Ll0-GUIDE.NLSJ431, >, 4-DeC-75 19:50 NOM 1';1

paQe

1 34044 Distribution
la N. Dean Meyer, James H. Bair, Laura J, Metzger, James C, Norton,

