
"..,..

Summary Report

AUGMENTING HUMAN INTELLECT:
EXPERIMENTS, CONCEPTS, AND POSSIBILITIES

B~ ~ c. ENGELBART

Prepared for:

DIRECTORATE OF INFORMATION SCIENCES
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
WASHINGTON, 25, D.C.

CONTRACT AF 49(638)-1024

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 · U.S.A.

March 1965

Summary Report

AUGMENTING HUMAN INTELLECT:

EXPERIMENTS, CONCEPTS, AND POSSIBILITIES

Prepared for:

DI"RECTORA TE OF INFORMAT ION SCI ENCES
AIR FORCE OFFICE OF SCIENTIFI.C RESEARCH
WASHINGTON 25, D.C.

By: D. C. ENGELBART

SRI Project 3578

Approved: TORBEN MEISLING, MANAGER
SYSTEMS ENGINEERING LABORATORY

J. D. NOE, EXECUTIVE DIRECTOR
ENGINEE:RING SCIENCE:S AND INDUSTRIAL DE:VELOPMENT

CONTRACT AF 49(638)-1024

ABSTRACT

Early stages of research on augmenting human intellect are

reported. An experimental system comprising a tapewriter (tape

punching typewriter), a computer-programmed Translator, and a

Flexowriter and incorporating a text~editing facility has been

implemented and was used in composing much of the original rough

draft of the report. The Z-code system that provides the editing

operations is described.

The general philosophy of the system is described, and then

an illustration is given in which the philosophy is applied to a

particular problem. A chord handset is discussed that will permit

one or two-handed binary transmission, and possible results of its

incorporation into the system are mentioned.

Questions still to be answered and speculations about possible

future results are included.

ii

FOREWORD

This report describes the AFOSR-sponsored portion of a study

being carried on at Stanford Research Institute, under Contract

AF 49(638)-1024. Other portions of the study are being supported

by ARPA under Contract SD-269, by AFSO under Contract AF 19(628)-

4088, and by NASA under Contract Nas 1-3988.

The project monitor for the AFOSR portion is Mrs. Rowena

Swanson.

iii

CONTENTS

ABSTRACT .. ii

FOREWORD . . iii

LIST OF ILLUSTRATIONS.

I

II

III

INTRODUCTION . .

THE MAN-COMPUTER COMMUNICATION CHANNEL

A.

B.

C.
D.

Man-To-Computer Communications Background
1. Computer-Aided Human Communication
2. The Open-Ended Subsubsystems
Presently Known Techniques
1. Speech.
2. Stenotypy.
3. Standard Typewriter.
4. Telegraph Key
5. Handwriting
6. Relative Suitability for Our Needs
The Chord-Handset and Binary-Coding Approach .
Directions of Possible Reverberations after
Introducing the Chord Handset.•

THE USER-SYSTEM, SERVICE-SYSTEM DICHOTOMY.

A.
B.

C.

D.

User System. . . • . • . . . • . .
Service S ys tern
1. Parameters of Service.
2. Transaction Points . •
Categories of Research • • .
1. Service-System Research.. . . .
2. User-S ys tern Research •
Approaches to the Problem.
1. The Importance of "Value to the User".
2. Special Orientation Toward User-System R&D
3. Ideal Research Results . ••
4. The Reverberation Principle. . . •..
5. The Home-Level Principle •
6. Implications for User-System Research. .

iv

vi

1

4

4
4
6

8

8

8
9
9

l()
10
10

12

14

15
16
16
16
17
17
17
19
19
20
21
21
22
23

IV

V

CONTENTS (continued)

THE Z-CODE SYSTEM. .

A.
B.

C.

D.
E.

Introduction .
Discussion ..•
1. Basic Design Principle .
2. Some Definitions ...
3. The ZN Data-To-Control Escape Code.
4. Conventions for Describing Control Strings .
Description and Examples
1. Alphabetic Case and Underline from the

Model 33ASR Teletypewriter ..•..
2. Deletion Commands •.
3. Insertion Commands• . .
4. Line and Left-Margin Format Control
Criticisms and Suggestions for Improvement.
Evaluative Comments ...

SUMMARY AND CONCLUSIONS ••

A. Summary •.•
B. Conclusions.

APPENDIX A .

APPENDIX B

v

24

24
25
25
26
26
27
27

27
28

31
35
38
46

48

48
49

50

56

Fig. 1

Fig. 2

Fig. 3

I LLUSTRAT IONS

Computer-Aided Human-Transmission Subsubsystem.

Computer-Aided Human-Reception Subsubsystem . .

Computer-Aided Human-Communication Subsystem.

vi

5

5

7

I INTRODUCT ION

1 2
This is the second report' on a continued effort whose nature

demands some introduction. "Augmenting human intellect" here means

increasing the capability of a man to approach a complex problem

situation, to gain the comprehension that he seeks, and to derive

solutions. Increased capability in this respect is taken to mean

one or more of the following: faster comprehension, better compre

hension, comprehension of ' the previously incomprehensible, speedier

problem solving, better solutions, or solutions to previously in-

soluble problems.

None of this is a matter of clever tricks for particular

situations; instead, an integrated domain is envisioned where

hunches, cut-and-try, intangibles, and the human "feel" for a

situation coexist usefully with powerful concepts, streamlined

terminology and notation, sophisticated methods, and high-powered

electronic aids. The subject matter envisioned is the level of

complex problem faced by scientists, diplomats, attorneys, and

executives. The means of augmentation are extensions of those

man has already developed to assist in applying his native sensory,

mental, and motor capabilities.

Along the conceptual and planning lines reported in References

1 and 2, an experimental program was launched with separate, but

coordinated, projects supported by ARPA, ESD, and NASA. These pro

jects have pushed the development of on-line text-manipulation

techniques that are presently being integrated into our way of work.

1 "A· A " Engelbart, D.C., ugmentlng Human Intellect; Conceptual Framework,
Contract AF 49(638)-1024, Stanford Research Institute, Menlo Park,
California (October 1962), AD 289565

2Howerton, Paul W. and David C. Weeks, Vistas in Information Handling,
Vol. I, Douglas C. Engelbart, "A Conceptual Framework for the
Augmentation of Man's Intellect," Pgs. 1-29, (1963), Cleaver-Hume Press

1

The smaller AFOSR project, the precursor of the others, has provided

conceptual and planning guidance, and has pursued several experimental

developments associated with the program objectives. This report deals

only with work of the AFOSR project. Reports on the work of the other

projects are planned by mid 1965.

The system approach to increasing human intellectual effective

ness finds no ready-made conceptual framework such as exists for

established disciplines. Thus, before a research program could be

designed intelligently, a conceptual framework had to be erected.

Briefly, the conceptual framework has the following basis: The in

tellectual effectiveness of a human can be significantly improved by

an engineering-like approach toward redesigning changeable components

of a system. The principal elements of the system involved here are

the language, artifacts, and methodology that a human has learned to

use. These elements are dynamically interdependent within an oper

ating system whose structure is hierarchical. That is, there is a

hierarchy of process capabilities whose primitive components are the

basic human capabilities and the functional capabilities of the arti

facts, organized into successively more sophisticated capabilities.

An example of this is discussed in Chapter II, in which the various

human capabilities and artifact capabilities concerned in man-to

computer communication are discussed, and a possible new solution is

presented--a chording handset that may permit of great potential im

provement in direct, man-to-computer "speech."

The continued work at the conceptual-framework level produced

the method-of-approach philosophy discussed in Chapter III. Here

is discussed the potential richness of having direct man-to

computer communication become a dialogue. The automation of the

symbol manipulation associated with the minute-by-minute mental

processes seems to offer a logical next step in the evolution of

man's intellectual power. The approach that seems logical is to

redesign the capability hierarchies from the bottom up, using a

bootstrapping technique. Since the object is to increase human

2

intellectual effectiveness, one practical test of any redesign is to

use it in problem solving. Thus, the basic-research attention has

primarily been focused on augmenting those human capabilities that

are needed in augmentation research. This approach incorporates a

positive feedback, and at the same time, permits the earliest pos

sible attainment of the rich and significant gains foreseen.

One example of the bootstrapping technique is the design and

implementation of an off-line, computer-aid system for composing

original text. This system, which is described in Chapter IV as

the Z-code system, was used for much of the original composition

of this report. The techniques were not smooth: the system would

occasionally backfire from unwitting violation of a subtle point

in convention; many extra hours went into composition of some parts

because the system was not compatible with the thought processes of

the author; and considerable constriction was experienced. However,

the feeling of being tied into a system made a surprising difference

in the work itself, revealing new kinds of inadequacies, and new

kinds of possibilities.

It must be understood that many of the details of establishing

a computer-based laboratory and the basic associated hard- and soft

ware needed for the first stages of bootstrapping with computer aid

are uninspiring and not necessarily technically relevant. New ventures

require the coordination of new people and new approaches toward new

goals. The inherent slowness of this process often seems discouraging,

just as it is often discouraging to attempt to compose a report with

a primitive computer-aided system. However, progress is being made.

3

II THE MAN-COMPUTER COMMUNICATION CHANNEL

This section shows a specific application of our philosophy to

actual research planning, in order to provide some orientation for

the generalized discussion that will follow in Section III.

Our research facility is flexible, and is only for experimenta

tion; it is used to implement the trial subsystems that we design so

that we can actually employ them in the total process of designing,

writing, debugging, documenting, and modifying our own computer pro

grams. To help in launching many levels of concurrent activity, we

are implementing first a very crude total system. This will provide

an actual working experimental environment to help orient participants

by simulating the research activity at the different levels of the

total system.

From our experience of designing a first-pass, crude, computer

aided system, we find that little of the work reported on in the

literature on man-computer communication has any direct application

to this kind of user system. Because of this lack, the coordinated,

whole-system approach also demands smaller units of research to fill

the specific needs of the system. An example of this is the area of

man-to-computer communication.

A. MAN-TO-COMPUTER COMMUNICATION BACKGROUND

1. Computer-Aided Human Communications

First, it proves useful to think of the entire communication

subsystem as consisting of subsubsystems involving human transmission

and human reception of information. It appears feasible to introduce

direct computer aid into these subsubsystems, according to the general

possibilities sketched in Figs. 1 and 2.

We assume that the larger activity, the computer-aided com

munication subsystem, will accommodate the needs for transducing to

and from the signal forms required in other parts of the system and

that Processes D and E deliver and accept information coded in some

4

HUMAN
CENTRAL

PROCESSES

HUMAN
CENTRAL

PROCESSES

A B C 0

HUMAN
HUMAN

EXTERNAl COMPUTER

- ----... ENCODING --- TRANSDUCERS --.... TRANSDUCER f---+o DECODING

1
PROCESSES

(MOTOR

1
PROCESSES PROCESSES

1
PROCESSES)

INTERNAL, COGNI TlVE INTERFACE SIGNAL EXTERNAL, SYSTEM
SIGNAL FORM FORM AND CODE SIGNAL FORM
AND CODE AND CODE

FIG. 1 COMPUTER-AIDED HUMAN-TRANSMISSION SUBSUBSYSTEM

H G F E

HU NAN
HUMAN

EXTERNAL COMPU TER
TRANSDUCER S ... ~ DECODING --- (SENSORY ~

TRANSDUCER f-- CODING

r
PROCESSES

PROCESSES)

f

PROCESSES PROCESSES

1
INTERNAL, COGNITIVE INTERFACE SIGNAL EXTERNAL, SYSTEM
SIGNAL FORN FORM AND CO DE SIGNAL FORM
AND CODE AND CODE

FIG. 2 COMPUTER-AIDED HUMAN-RECEPTION SUBSUBSYSTEM

5

TO
CONMUN ICA TlON

SUB-SYSTEM

RA-3578-12

FRON
COMMUNICATION

SUB-SYSTEM

RA-3578-13

form directly compatible with general information-manipulation processes

within a computer.

The basic aid given the subsubsystems by the external trans

ducers and the computer processes is in providing a match between

the signal forms and the codes used in the rest of the system, and

the signal forms and codes at the interface that can best be handled

by the human capabilities represented by Boxes A, B, G, and H.

When it comes to organizing the human-transmission and human

reception subsubsystems within the human-communication subsystem,

we find that (as in Sect. III), we can utilize computer aid in

integrating the capabilities of computer-aided lower-level systems

into a higher-level system. Figure 3 shows a representation of

this that appears to offer completely general possibilities for a

human-communication subsystem. The basic aid given the subsystem

by computer processing is to provide versatile feedback through the

two open-ended subsubsystem channels--to enable more effective use

of each channel by means of cooperative use of the other. A simple

example would be displaying a representation of a message as the

human transmits it.

2. The Open-Ended Subsubsystems

To begin research activity in the human-transmission and

human-reception subsubsystems, we look first at the chief design

factors: the information characteristics of the messages, the

signal forms and the information encoding at the interface, and

the computer decoding process. These must end up being compatible

with the system design and with human ability to learn and to per

form. The message information characteristics depend upon the

nature of the larger system; we chose to consider English text

transmission, to permit us to go ahead with meaningful and gen

erally applicable activity.

6

COMPUTER-AIDED HUMAN TRANSMISSION SUB-SUBSYSTEM

HUMAN
HUMAN

EXTERNAL
TRANSDUCERS

COMPUTER
ENCODING ~

(MOTOR
~ TRANSDUCER f---+ DECODING I--~ COMPUTER

PROCESSES
PROCESSES)

PROCESSES PROCESSES PROCESSES
FOR f- ~

HUMAN ROUTING
CENTRAL AND

PROCESSES COMPUTER-AIDED HUMAN RECEPTION SUB-SUBSYSTEM PROCESSING
THE f4 f-

HUNAN
HUMAN

EXTERNAL IWORMATION COMPUTER
DECODING f4-

TRANSDUCERS
~ TRANSDUCER ~ f+- FLOW

(SEN SORY
CODING -

PROCESSES
PROCESSES)

PROC ESSES PROCESSES

RA-3578-14

FIG. 3 COMPUTER-AIDED HUMAN-COMMUNICATION SUBSYSTEM

The range of possible body actions from which transducers

can obtain computer-sensible signals is very large, as is the range

of possible ways to encode information by combinations and sequences

of these actions. Similarly, there are large ranges for the types

of computer-controlled transducer stimuli that can be used as input

signals through human sensory mechanisms, and for the ways in which

combinations and sequences of these signals can be used to encode

information.

For our research in the man-to-computer communications area,

we plan to take off from what we know now about existing techniques

and capabilities, and push in a direction that offers both to teach

us practical things about human capability and to provide applica-

tion experience with new communication subsystem features that seem

valuable.

7

B. PRESENTLY KNOWN TECHNIQUES

1. Speech

This we think of as "most natural," and our average trans

mission rate is quite good--apparently about 180 words per minute.

By pushing a bit, I can speak 240 understandable words per minute.

The signal forms and encoding techniques are actually very complex-

a great many different muscles coordinating in complex combinations

and sequences with a very sophisticated, highly redundant encoding.

We have no way of knowing how long it will be before a system

applicable speech-recognition machine will be able to decode full

English transmission.

2. Stenotypy

Stenotypy is a keyboard-shorthand system, which apparently

gives the fastest known transmission of natural language (up to 300

words per minute). The signal actions involve 23 keys with two

handed strokes on the keyboard. At each stroke, different combina

tions of the keys are depressed, and sometimes one finger may depress

two keys simultaneously. Not all of the 2
23

-1 key-depression com

binations can be actuated with ten fingers, but there are over

3,000,000 unique combinations of 10 out of 23 keys, which is still

only a subset of those than can be actuated. Information is encoded

through a phonetic representation of words. Each two-handed stroke

prints some pattern of phonetic vowel and consonant characters across

a 23-space line, and each key corresponds to a fixed character im

printable at a fixed location. Three zones across the line provide

for initial consonant, middle vowel, and final consonant. Some words

require but one stroke, others may take two or more. A relatively

tiny subset of the possible signal actions are thus utilized in the

code vocabulary, but even so it requires an estimated (by Stenotype

school) 52 weeks with a total of 720 hours to train a Stenotypist

8

to a rate of 125 words per minute,and another 800 hours to raise his

speed to 175 words per minute. Because of the phonetic encoding,

there are many of the same ambiguities to resolve in decoding as

are found with voice. IBM developed a computer-translation tech

nique
3

but although the Stenotype code had to be modified to remove

the most troublesome ambiguities, the IBM language translation

computer with ten million bits of storage (considered "inadequate")

must do the translation, which even then is not perfect.

3. Standard Typewriter

This is the most widespread transmission technique for

coupling nonnumeric communication to a computer. Rates of 60 words

per minute represent a good average. Training is relatively easy.

The signal actions involve about 45 keys, of which one is struck

at a time. Good technique assigns each key to a specific finger,

and both hands must be held to the keyboard for normal text trans-

mission, and must cooperate synchronously but not in uniform

alternation. The encoding is a very straightforward one character

per key, with a shift in significance (or character assignment)

often available between several cases as specified by the operator

through special case-shift keys. Coupling to a computer and con

version to computer-sensible code is straightforward.

4. Telegraph Key

The telegraph key is familiar, but inadequate, with a max

imum speed of 25 words per minute. The signal actions involve opening

and closing a single contact by means of a spring-return lever. The

signals given are one of two lengths of contact-closed period or one

of two lengths of contact-open period. Serial sequences of these are

encoded to represent characters. More frequent characters are given

shorter codes. The code itself is relatively straightforward to de

code by computer, but it proves to be very hard for a machine to

3Galli, E.J., "The Stenowriter--A System for the Lexical Processing of
Stenotypy," pp. 187-199, IRE Transactions on Electronic Computers
(April 1962)

9

determine accurately the dot-dash sequence of a human transmission.

Besides this difficulty and the slow transmission rate, this technique

seems relatively difficult to attain; --it seems to take longer to

become a proficient International-Morse code operator than a profi

cient typist.

5. Handwriting

I seem to be able to write legibly and comfortably enough

to do steady composing at a rate of about 30 words per minute. The

signal form and the encoding are complex, although not so much so as

for speech. Handwriting offers very flexible formatting--insertions

and cross-outs are made quite easily.

6. Relative Suitability for,Our Needs

Voice and handwriting offer the advantage of being existing

skills, but the complex signal forms and coding involved make them

poor candidates in a serious search for basically better interface

signal forms and codes.

The speed of stenotypy is desirable, but the decoding com

plexity is a disadvantage. However, the means by which stenotypy

provides its range of signal actions is a separate feature that is

worth considering. This depression of two or more keys per hand

stroke is often termed "chording."

The telegraph key is undesirable because of its limited

signal actions and the difficulty in getting more speed even with

sophisti~ated coding. The notion of one-handed transmission, however,

is appealing, especially in situations where the human would like to

do other tasks concurrent with transmitting.

From the evaluation of existing techniques, a possible new

technique can be envisioned. This will be discussed next.

C. THE CHORD-HANDSET APPROACH

The chording approach, using relatively few finger-operated

keys to provide many possible signal forms (hand-stroke chords),

10

seems a very logical first step toward exploring new possibilities at

the man-system communication level:

(1) It involves a relatively minor excursion from

familiar techniques

(2) It" offers interesting system-capability possibilities

(3) It promises to orient us rather nicely to the needs

for basic knowledge of human capabilities and for

development at other levels of our system.

As a start in this direction, I have done some experimenting

with using the 31 unique five-finger chords for transmitting English

text. I have devised and learned a five-key code capable of dupli

cating the upper and lower case typewriter character repertoire and

can transmit at a rate of almost 35 words per minute.* Most of my

practice has come by drumming my fingers on any handy surface-

copying roadsigns as I drive or trying to copy people I happen to

be listening to during the day. We have made some five-key handsets,

connected them to our CDC l60A computer and programmed it to sample

the keys, determine when a signal stroke has occurred, decode this,

and type out on the on-line typewriter.

One trial subject, our transcription clerk, learned to transmit

at about 20 words per minute after about 25 hours of unsupervised

practice. We lately have been using the partial learning of this

skill as an experimental task in another project, and find that

clerical-type subjects learn very readily to encode alphabetic

characters into five-finger chord strokes on our five-key handsets.

A very interesting feature has evolved in this exercise. I

find that the learning transference is quite good to my left hand.

In fact, with relatively little additional practice, I can transmit

left-handed at about 25 words per minute, and have no doubt that the

left hand will soon do as well as the right. This system feature of

being able to transmit with either hand introduces a new versatility.

*See Appendix B for description of the code.

11

Beyond this, I have learned without too much effort to transmit

with both hands simultaneously, alternating synchronously so that

each hand transmits every other character. It gets to be rather

like picking up walnuts with both hands, where the "central con

troller" in one's mind selects successive nuts to pick up, and some

automatic internal mechanism synchronously alternates the hands with

out particular conscious effort. I haven't practiced this even as

much as with the left hand alone, yet my two-handed rate is faster

(about 29 words per minute). It would be interesting to explore far

enough to determine the speed potential of the two-handed mode rel

ative to that of one hand only.

D. DIRECTIONS OF POSSIBLE REVERBERATION AFTER INTRODUCING
THE CHORD HANDSET

Experimentation in using the chord handset in connection with

activity on our on-line system could produce reverberations (See

Section III) at various levels within the system that might include

the following:

Development of a ten-key handset on which each finger of one

hand can strike one or both of two keys. This would provide

1023 unique chords to use for encoding not only the individual

letters but also high frequency syllables, word endings, etc.

Using such a handset in daily work ought to provide informa

tion on how large a vocabulary of unique codes can be adequately

handled, and whether there is some optimum rate at which a user

can transmit information.

Development of a mobile handset (perhaps in the form of a glove)

which could be used away fram the console and concurrently with

other tasks. The transmission could be off-line if some storage

medium (such as paper tape) were used.

Development of some new reception device using the binary prin

ciple of the chord handset to permit responses from the computer

to be displayed or transmitted with less translation equipment.

12

The last of these reverberations would have considerable avalanch

ing effect. Because it is very easy to display binary patterns (visual,

audio, or tactile) to a human, the potential ability of a human to re

ceive and decode binary patterns with relative ease is worth serious

consideration from the system point of view. CRT displays would not

need such expensive character-generators, and simple shift-register,

indicator-light packages could provide fast and flexible displays.

Very simple binary-pattern printers can give hard-copy output. Or

an audio channel could be used in parallel with a visual channel, or

by itself to allow more physical mobility unhampered by fixed-position

visual display, or as backup in case the visual channel fails. Tactile

input offers much the same possibility as the audio.

The signal forms used for these human-input channels can be dir

ectly compatible with those used for the human-output channels, and

the coding could be identical. Computer operators and punched-paper

tape users often learn to read binary codes quite handily, and psy

chologists have tested human discrimination capability on binary

patterns versus one-out-of-N patterns. As far as I know, nobody has

developed coordinated techniques for binary communication within an

operational environment and had people use these techniques for their

working communication for an extended period.

A further reverberation possibility is practical binary audio

computer-to-man communication, which in turn might present possi

bilities for very cheap on-line work stations and for working aid

from a computer under unusual operational conditions. A need would

then exist for research into how well a human could work with a com

puter if he were limited to audio communication from the computer,

assuming a rate near that of speech. Full use of feedback and control

processes would be important.

13

III THE USER-SYSTEM, SERVICE-SYSTEM DICHOTOMY

The following considerations are relevant to the general area of

man-computer-systems research and development.

In the earlier 'report for this project
l

there was defined a

system that was held to be of basic importance to human intellectual

effectiveness. This system was composed of the human together with

the language, artifacts, and methodology that he had been trained to

use. The language, artifacts, methodology, and training are rede

signable in a total-system approach toward increasing the human's

intellectual effectiveness.

For some very natural reasons, the area of this "total system"

that has received by far the greatest attention and development in

the man-computer-systems-research community is the one which would

be labeled above as artifacts--"physical objects designed to provide

for human comfort, the manipulation of things or materials, and the

manipulation of symbols," (from Ref. 2, p. 4). And, most of the

workers in the community seem strongly oriented towards artifact

deve lopment.

To try to develop some perspective in this regard, it seems

useful to consider that the systems under study in the over-all

research community consist each of two subsystems: Service system

and User system. A Service system will provide computer service to

a User system at some interface. It is often planned (in time

sharing systems) for one physical Service system to serve many User

syst~ Simultaneously. This feature is included here, although it

is not emphasized. Most of the folloWing discussion assumes a User

system composed of a problem-oriented professional dealing mainly

with symbols, although it would not seem difficult to accommodate

variations into the framework described.

1
See Page 1

14

An interface between each User system and its Service system will

exist. Across this interface passes the two-way interchange of re

quests for service (both explicit and implicit) and their consequent

service results--in what is useful to consider below as request

response "transactions." At what point between the computer main

frame and the human brain this interface is defined is rather flex

ible, but for the discussion below we would put keys, buttons, light

pens, and display screens on the Service system side, together with

the conventions and system of the command "language" with which ser

vice is elicited from the devices. On the User-system side of the

interface are the procedures and processes with which service requests

are composed.

It was strongly emphasized in the previous writings that a great

deal of evolutionary interaction exists between the total-system com

ponents. This belief holds here, too, in that developments in the

User system and the Service system each interact upon needs and pos

sibilities of the other.

A. USER SYSTEM

The Service-system, User-system dichotomy leaves the human and

the following total-system components in the User-system category

(Definitions taken from p. 4 of Ref. 2):

1. Language--the way in which the individual classifies

the picture of his world into the concepts that his

mind uses to model that world, and the symbols that

he attaches to those concepts and uses in consciously

manipulating the concepts ("thinking").

2. Methodology--the methods, procedures, and strategies

with which an indivudual organizes his goal-centered

(problem-solving) activity.

3. Training--the conditioning needed by the individual

to bring his skills in using language, artifacts, and

methodology to the point where they are operationally

effecti vee

15

The basic concern of the man-computer research community is

assumed to lie with the effectiveness of the User systems in pur

suing their objectives. The only valid objective of a Service

system would seem to be to increase that effectiveness.

B. SERVICE SYSTEM

1. Parameters of Service

The parameters to the service supplied a User system are

assumed to include the size of the different storage media, their

access times, computer processing speed, reliability, the service

delays, the amount of information visually displayed, the speed and

flexibility with which the computer can display it, the repertoire

of display characters, the power of the command languages, and so

on. These parameters will be assumed to form a multidimensional

Service space, with subspaces, surfaces, and the like. A given

Service system is assumed to present a given User system with a

surface, in Service space, that represents the limits in service

that can be supplied (the Service-limit boundary). Service is

assumed to be provided by means of request-response transactions.

2. Transaction Points

For a Service system to provide the response to a User

system in a given transaction, some given degree of service must

be available along each of the dimensions of Service space, so that

each transaction is assumed to establish a point in Service space.

A User system will initiate many transactions, some large and some

small, some nested within others, some straining the Service system

to the limit and others exercising less than one percent of the

potential. It is thus possible to speak of a scattering of trans

action points through the Service space. Areas within the Service

limit boundary surface that are void of transaction points can be

assumed to indicate overdesign. Transactions whose points fall

beyond the boundary surface, but whose value to the User system

outweighs the cost of extending the boundary surface, can be assumed

to represent underdesign.

16

C. CATEGORIES OF RESEARCH

There is a directly evident categorization of research activity

provided by introducing the User-system, Service-system dichotomy.

Within each of these categories, however, we find "system levels"

that suggest further categorization. To facilitate discussion,

we have isolated three such levels in each system, labeling them

"system," "device," and "material" levels, in analogy with a System

level categor~ation applicable in many engineering systems. Better

categorization could well be valuable to a more extended discussion.

1. Service-System Research

New regions of Service space must be made available, within

arbitrarily established cost limits, for the experimental development

of User systems, and for pilot installations to be used by working

User systems. Eventually, new regions of Service space must be made

available to working installations within the cost limitations that

are imposed by the estimate of the utility that will accrue to a

particular User system in daily work.

Within the Service system, system-oriented research includes

the whole-system viewpoint. Device-oriented research would include

new memories, new displays, new executive systems, etc., pursued with

only background consideration for the whole system. Materials-oriented

research would include new phenomena that could be harnessed into new

components. Besides physical phenomena research, this would include

voice-recognit,ion research, artificial-intelligence research, research

into new principles of storage allocation, compiling, and list pro

cessing, etc.

2. User-System Research

The system-oriented approach to User-system research involves

studying the balanced possibilities for harnessing service transactions

available in a given region of service space to the over-all symbol

manipulating activity of a given problem-oriented user. Such an

approach would be, for instance, to give maximum over-all aid to a

17

computer programmer, or to a cryptographer, a designer, an applied

mathematician, or a manager.

Device-oriented research involves studying how a given

region of Service space can be used to improve some capability that

forms only one part of a given type of User system. For instance,
4

I would classify Ivan Sutherland's Sketchpad as a device within

the symbol-manipulating domain of a design engineer, and Glen Culler's
5

system as such within the domain of an applied mathematician. They

are very bright examples of devices, but their respective User systems

still involve far more symbol manipulation than these devices provide,

The Sutherland-Culler examples are like exciting new arithmetic units

bU.ilt with a new component technique, which have still to be matched

by surrounding devices (control, memory, input/output, etc.) that

potentially can be much improved by use of the same new technique,

(The new arithmetic units can be fitted into existing systems, but

a whole system rebuilt for the new component technology will be much

more powerful than the old system retrofitted with a new arithmetic

unit,)

Materials-oriented research involves studying basic phen

omena of User system organization and components. For instance,

techniques for structuring and tagging information, a better lan

guage for planning, improving the information-transfer rate of a

human, and studying the skill limits of humans would be examples

of materials-oriented research in the User system area,

4
Sutherland, Ivan E., "SKETCHPAD: A Man-machine Graphical Communication
System," AFIPS Proceedings--Spring Joint Computer Conference, Vol. 23,
(1963)

5culler, G. J, and Burton D. Fried, "An On-Line Computing Center for
Scientific Problems," Thompson-Ramo-Wooldridge, Inc., Canoga Park,
Calif., (January 11, 1963), AD 296582

18

D. APPROACHES TO THE PROBLEM

1. The Importance of "Value to the User"

One key to research for the man-computer community is the

identification of the value to the User systems that can be derived

from the real-time computer aid (including intercommunication pos

sibilities). If only limited value can be derived from opening up

a given region of Service space, then this service must be cheap if

it is to be provided. If startlingly significant value is expected

to be derived, initial cost is less important. Experimental working

systems of significant value will stimulate interest, create a market,

evoke new research, and so on. The resulting experience with the

problems and possibilities of actual operating Service systems can

be expected to provide better orientation than would otherwise be

available for research and development in that area.

Any User system will typically mix many Service transactions

with many User actions. Denial of any particular kind of Service

transaction may disable some large and critical part of this organ

ization of User actions and Service transactions. The worth of a

Service transaction to a User cannot be determined until the struc

ture of his organization of actions and transactions is determined,

and until system analysis can isolate the changes in User-system

capability caused by denying that type of transaction. When this

has been done, a value can be established for the capability. A

particular service transaction is justified only if it has enough

value in boosting this effectiveness to offset the cost of the

transaction. The cost involves both a prorated utility-available

cost and a particular-utilization cost, and fairly straightforward

accounting would seem to take care of determining this within a

given Service system.

But, for example how does one determine the value of having

fast response from the computer, and of having CRT-like displays

where the display can change quickly and flexibly? Considering

this Service facility solely fram the point of view of being able

19

to compose and modify displayed information--to erase that word,

move this sentence up and have the rest of the text rearrange it

self accordingly, begin a new paragraph there, insert the following

word, change that symbol to logical AND--makes it extremely hard to

place a value upon that facility until it has been integrated into

a coordinated and practiced way of working. A man could predict

that he would have no use for such a facility, but until he appre

ciate~ from experience, what it was like to have the added capability,

his evaluation would be premature.

2. Special Orientation Toward User-System Research
and Development

There is a strong need for a class of researchers who want

to design and experiment with new User systems. This class is dif

ferent from the class of those who are trying to do useful research

in some other discipline and are, as a secondary activity, trying

to put together some useful new User-system tools and procedures.

A characteristic necessary to the User-system researchers is that

they be system-oriented. Device-oriented User-system research will

often be furthered by the ingenuity of the other-discipline re

searcher out to make himself some new tools. But the other-discipline

researcher lacks the time, background, and interest to become knowl

edgeable enough either to develop his ingenious devices or to

coordinate them in the design of his whole User system.

Significant User-system research need not await fundamental

advances in Service-system development. Many of the service trans

action points of tomorrow's exotic User systems--basic to many of

the fundamental activities of the system--fall within those regions

of Service space already available to us. For instance, composing

and editing displayed information with really polished speed and

flexibility probably will not depend upon having huge memories or

very much computation; total-system-oriented subsystem research

could thus be emphasized with little need for prior Service system

research.

20

3. Ideal Research Results

It "would be nice" to be able to plot a family of curves,

with types of User systems as a family parameter, against an abscissa

of Service-system sophistication and with User-system capability as

an ordinate. We cannot do it, but there are a few points on these

curves that it seems important to attempt to determine. In particu

lar, it seems important to find the highest User-system capability

that can be developed from the most exotic Service system obtainable

in the research laboratory. This would be a very useful "calibration"

experiment. It seems safe to assume that the capability-sophistication

curves would rise monotonically--that from any less exotic Service

system there could not be derived as much added capability to the

User system. If, for such an experiment, relatively little gain in

capability could be attained, concentration upon more basic User

system research would be indicated. If a very great payoff in cap

ability were found at this extreme experimental point, then we could

see where to cut down on the sophistication of the Service system

wi thout reduc i n g capability too much, or where to search for inter

mediate points that could satisfy the economic needs of potential

users, and thus move rather directly toward application.

4. The Reverberation Principle

Generally it is useful to consider a system as being com

posed of many levels of subsystems and subsubsystems (as done roughly

above with "system," "device," and "material" levels). In improving

a system, an innovation at one level often leads to reverberating

waves of (1) possibilities for other innovations, and (2) needs for

other innovations. Waves of possibilities tend to propagate upward

with an increasingly broad effect--new gains from an innovation (or

possibility) at a lower level provide a new innovation possibility

(or perhaps several) at a higher level. Gains from these possible

innovations are added to the original gains, to stimulate possibili

ties at still higher levels, etc. The process is similar for

innovation needs: consideration of an innovation possibility at

21

one level often stimulates a new need for functions at lower levels.

To fulfill such a need, one or more new innovation possibilities are

considered at the lower levels, and again, each is likely to generate

new needs in the levels below it, which join with the original to

form a downward avalanche of needs.

Each new innovation arising in either the upward wave of

possibilities or the downward avalanche of needs is the potential

source of a new wave in the opposite direction; it reverberates.

5. The Home-Level Principle

The researcher who is most likely to make significant

innovations at a given level is the researcher who is "at home"

at that level.

In general, every level of a User system is supported by

sublevels while it also supports higher levels; every level thus

participates in the upward and downward waves of innovation pos

sibility and innovation need. But every level has its own collection

of specific concepts, techniques, and methods and these collections

are likely to be unique. Any given level inherits a unique set of

needs from the levels above, together with the relative-importance

distribution among them. It also inherits a unique set of possi

bilities from the lower levels, together with associated constraints

and relative-potential values. To make significant innovations at

that level requires a coordinated knowledge of these needs and pos

sibilities, extending to the "subliminal" level of knowledge that is

referred to as "having a feel for" these things.

A researcher cannot be at home in a given level unless he

knows enough about adjacent levels that he can deal realistically

with the importance, value, and constraints associated with the

possibilities and needs from these adjoining levels. It is obvious

that the more levels over which he is at home, and the greater his

understanding of the interlocking considerations of need and pos

sibility at a given level, the more likely he is to make really

significant innovations.

22

6. Implications for User-System Research

above:

User-system improvement will require, as implied by the

(1) Establishing concurrent activity at many

system levels

(2) Starting multilevel research as a total

activity as soon as possible

(3) Keeping the best of communication up and

down between the different levels

(4) Giving the different levels considerable

freedom to explore

(5) Supporting exploration and research, in

contrast to waiting for clever ideas to buy.

All of these will foster an environment that maximizes the

reverberation of needs and possibilities among researchers at the

different levels. It is important that there be researchers "at

home" in all levels, but the degree of understanding, the orienta

tion, and the coordinated motivations associated with being at home

in a given level take years--even in systems that have achieved a

certain stability in evolution and in the mix of disciplines involved.

For computer-aided User systems of enough value to deserve concerted

research, being at home will take longer; the very patterns of needs

and possibilities transmitted from other levels will shift rapidly

as researchers in other levels struggle toward growing understanding

and capability.

Research at isolated levels, while it would initially take

less time to organize, would invite\ establishment of overly restricted

or false sets of possibilities and needs for the work of that level.

This leads to innovations of diminished significance, and to gener

ation and distribution of needs and possibilities that may be weak

or even misleading.

23

IV THE Z-CODE SYSTEM

A. INTRODUCTION

The Z-code system evolved from the principle of having project

personnel develop and use computer aids in our own work, and is

presented here to illustrate the process and utility of "boot

strapping."

Our emphasis has been directed toward on-line aids, but the

value of a coordinated off-line system became apparent to us as we

began to see what problems face anyone who tries to do useful work

with the on-line aids if his only coupling to the computer occurs

during the expensive and much-in-demand on-line operating time.

This Chapter describes the off-line text-editing system that we

have implemented.

I have long had the habit of doing much of my "thinking" work

on a typewriter, when the nature of the subject permitted it. It

occurred to me that if I used a private "tapewriter" (our term for

a paper-tape-punching typewriter) in my office for such thought

development I could then feed the paper tape into the computer at

the beginning of my on-line working session, and thus take direct

advantage of off-line thinking time. When I work at a typewriter,

the ideas develop as the words flow, and when the thinking is hard,

the sentences get butchered, with much insertion and deletion (pen

cilled arrows and interlineation, etc.), until they say what my

current though requires. After a page or two of this, the real

ideas begin to emerge and the whole thing needs reorganizing.

Given this process, and admittedly it is a personal one, I

began to wonder if the computer that was going to be working for

me anyway, when I took the material on-line, couldn't respond to

control commands embedded in my off-line text to effe<7t some of

24

the changes that are so much a part of my thought-development-process-

not to speak of correcting the errors that always show up.

Accordingly, a portion of our AFOSR support was used to design

and implement such a system. I use the system in my daily work

(indeed, much of the first draft of this report was written this

way), and the transcription operator uses it in the preparation of

our inter-group memoranda. The system described suffers from a

number of faults and inadequacies. We plan in the near future to

modify and expand the system along the lines discussed in Part D.

Our off-line system involves a translator program (the Translator)

for our l60A that converts the tapewriter output (paper tape) into a

new tape that can be used either to produce hard copy on the Flexowriter,

or as input data for on-line work at the CRT-display console. The new

tape (Translator output) reflects the modifications in format and con

tent specified by the control commands that were written into the

tapewriter copy during its origination.

B. DISCUSSION

1. Basic DeSign Principle

The system was designed on the following important and basic

principle relative to tapewriter operation:

Everything about the eventua~ output from the Translator must

be unambiguously discernible from examination of the original tape

writer printed copy.

This requires that the operator does not manually change

platen or carriage (or carrier) position, nor touch the paper-tape

feed mechanism. It also implies that all translation algorithms be

based purely upon the identity and position of printing characters

as they appear on the origination copy. Nonprinting keyboard actions-

i.e., SPACE, CARRETURN, TAB, BACKSPACE--are to be considered only as

they may be inferred from the copy. For example, SPACES or TABS

immediately preceding a CARRETURN must be ignored by the Translator,

since they could not be detected by examining the copy. And it

25

must not matter whether a TAB or successive SPACES produced a given

horizontal separation.

2. Some Definitions

Later discussions will be facilitated if some of the special

terms are defined here. The origination copy, as represented by the

linear succession of punched codes on the paper tape, is considered

as a string of characters. This input character string (as seen by

the Translator) will be composed of printing strings alternating with

gap strings. A printing string is an unbroken succession of (any)

printed charcters, and a gap string is a succession of non-printing

characters producing the horizontal and vertical separation between

two successive printing strings.

Independent of the above sub-string categories (printing and

gap), there is another categorization--there are data .strings and

control strings. Control strings serve as messages to the Translator

about the entire input string; they specify both content and format

changes.

3. The ZN, Data-To-Control, Escape Code

Except for the four special control characters described in

Part C-I, the translator detects all of the control strings by stop

ping at every numeric character that immediately follows a letter "z"

(either upper or lower case), and checking to see if what follows is

a valid command. Termination of delete-command control strings is

implicit (but unambiguous), while the remaining types of control

strings are terminated explicitly.

We plan to provide future means for handling data strings

that look like control strings (see Part D). So far it has not been

a problem; we have not suffered for being unable to use certain

ZNXX character strings as throughput data.

26

4. Conventions for Describing Control Strings

When a sample control string is to be presented as data (e.g.,

in the discussion below about the control strings) without being re

moved and interpreted by the Translator, punctuation marks are inserted

to render the string invalid as a command so that it will be ignored

by the Translator. None of the valid command forms includes any

punctuation marks--with this knowledge a reader seems to suffer no

added confusion from finding punctuation marks in sample control

strings presented for illustration.

In the following discussion, the character pairs nl, n2,

n3, ... will frequently be used to represent distinct decimal integers

(with no pre-established size limits). Since the letter n is not used

in regular command-string forms, any appearance in subsequent command

string examples is assumed to be in association with the following

digit--the pair to represent a decimal integer.

C. DESCRIPTION AND EXAMPLES

1. Alphabetic Case and Underline from the
Model 33ASR Teletypewriter

Because it is far less expensive than other candidate tape

writers, I selected the Model 33 ASR Teletypewriter for my personal

use. That it has only one alphabetic case, and has no tabulator,

backspace, or underline make it less than ideal, but these deficien

cies can be circumvented. The following conventions were adopted

initially. They serve reasonably well for general use, and the

planned reworking should improve their effectiveness. Four of the

Teletypewriter's sixty-three printing characters (/, +, «,:» are

used as special control codes when in specified contexts. Each

upper-case word below designates a character. SLASH, PLUS, LESSTHAN,

and GREATERTHAN represent the above-mentioned control characters.

ALPHA represents any alphabetic character, and NONALPHA represents

any other character (either printing or spacing). When one of the

four special characters appears between two characters of the spec

ified type, the Translator deals with it as indicated below. Found

27

in any other context, these special symbols are treated by the Translator

as ordinary data characters:

NONALPHA. SLASH ALPHA. -- specifies that the SIASH

is to be dropped and the alphabetic character made

upper case.

NONALPHA. PLUS ALPHA. specifies upper case for

this and all other alphabetic characters that follow

until interrupted by a gap string or a nonnumeric,

nonalphabetic character. The Translator drops the

PLUS.

NONALPHA. LESSTHAN ALPHA. specifies underlining

of this and all the alphabetic characters that follow,

up to the first nonalphabetic character. The Translator

drops the LESSTHAN.

ALPHA. GREATERTHAN NONALPHA. -- specifies underlining

of this and all other nonalphabetic characters that

follow, up to the first alphabetic character. The

Translator drops the GREATERTHAN.

2. Deletion Commands

If the Translator finds a ZNlL control string, it will begin

with the last character of this command (the L), and move backward

deleting all characters until it has passed the Nlth CARRETURN char

acter. Then it continues deleting all NON-PRINTING characters until

it finds either a PRINTING or a CARRETURN character, which it leaves.

The character immediately to the right of the L of the control string

will now appear in place of the beginning character of the string

that has just been deleted.

If the Translator finds a ZNlC control string, it will begin

with the last character of the command (the C), and delete backward

through the control string and through the Nlth character preceding

the Z. A carriage-return action is counted as one character (a

CARRETURN), but tabulator action (represented by a TAB character)

28

EXAMPLE ZC-l

+~XAMPLE +ZC-l: ITHIS PASSAGEI SHOWN IN 80TH ORIGINATION FORM
(/TELETYPE) ~ND IN POST-ITRANSLATOR FORM (/FLEXOWRITER)I ILLUSTRATES
THE USE OF <UPPER>-<CASE AND <UNDERLINING +CONTROL +CODES.
IMISCELLANEOUS EXAI"1PLES: +CDC +160A; l60/A: +ANFSIIQ32;
+ANFS/+Q32. lIN GENER~L" ARBITRARY IV1IXING OF lJPPER- .AND
LOWER- CASE ALPHABETIC CHARACTERS WITHIN ONE WORD IS
IMPOSSIBLE TO SPECIFY IN THIS MANNER. lIT ALSO PROVES
IMPOSSIRLE TO SPECIFY ROTH UNDERLINING AND UPPER CASE FOR
THE SAME CHAR~CTERS.

EXAMPLE ZC-l: This pLssage, shown in both origination form
(Teletype) a.ni in post-Translator form (Flexowriter), illustrates
the use of upper-ca.se ar.d underlin~ CONTROL CODES.
Miscellaneous exampIes: CDC I60A; OA: ANFS/Q~2;
ANFS/Q~2. In general, arbitrary mixing of upper- and
lower- case alphabetic characters within one word. is
impossible to specify in this mnner. It also proves
impossible to specifY both UIXlerlining and upper case for
the same characters.

29

is treated just as if it were effected by hitting the appropriate

number of spaces--where each space is treated as a separate char

acter (SPACE). The movement backward along the character string

is exactly as the backspace movement on a typewriter would be if

it were possible to backspace over a CARRETURN. (Remember that

any SPACE or TAB characters immediately backward from a CARRETURN

are to be ignored.) The character immediately to the right of the

C of the control string will now appear in place of the beginning

character of the string that has just been deleted.

If immediately forward of a ZNIL, ZN2W, or ZN3C control

string, there appears a sequence of either N3L, N4W, or N5C, then

these latter characters are assumed by the Translator to be part of

the command, with interpretation as described below. Any number of

successive INTEGER LWC sequences (where LWC is a character that is

either an L, a W, ~ a C) can be thus chained to form a composite de

lete command. Any deviation from a pure, alternating mix of integers

and letters (L, W, or C) will implicitly signal the end of the control

string to the Translator, and execution will begin:

(a) The Translator will associate a single integer

number with each of the three letters, and will

choose the last integer to be paired with that

letter in the control string.

(b) The Translator begins with the last character of

the control string and deletes all characters as

it moves backward through: (1) the control string,

then (2) through the L-specified number of CARRE

TURNS, plus any SPACE-TAB sequence just backward

of the last CARRETURN, then (3) through the W

specified number of Gap Strings, and then (4)

through the C-specified number of characters

(with a CARRETURN plus any SPACE-TAB combination

immediately forward of it treated as a single

character, and with a TAB treated as though pro

duced by successive SPACES).

30

In dealing with deletion commands, the Translator scans the

input string backward (from the end to the beginning), stopping to

interpret and execute each deletion command before continuing the

scan. Thus, later deletion commands can delete all, or parts of,

earlier commands. A deletion command can actually be embedded (and

executed) within an unfinished earlier command, since the Translator

does not know that any particular group of characters belongs to a

deletion control string until it scans back to the initial Z and

then reverses to examine what follows the Z. What it then sees and

interprets as a command following the Z is a character string that

may well be the product of prior deletion operations.

Since the Translator must at present perform within the lim

ited storage capacity (8,000 12-bit words) of our 160A, we were forced

either to limit the span over which a command could be effective (es

pecially the insertion commands described below) or to make a two-pass

Translator involving an intermediate paper-tape output. We chose the

former.

It had been determined frum other of our system considerations

that we would want to designate explicitly the start of new paragraphs,

and to number them for later reference. We thus use the sequence CARRE

TURN ASTERISK NUMERIC as a signal to the Translator of a new-paragraph

beginning. Our present convention is to restrict the range of deletion

and insertion commands back to and including the most recent new-paragraph

ASTERISK. The Translator processes one paragraph at a time, with a 2000-

character limit to paragraph size.

3. Insertion Commands

A Z.lI marks the start of an insertion command. This is follow

ed by a parameter string (whose general form is nlLn2Wn3C) that specifies

insertion-point location, then by the insertion string (the character ,
string to be inserted, which is enclosed in parentheses), and then by

a Z.2I, which specifies explicitly the termination of the command.

31

EXAMPLE ZC-2

*2.1 IHERE IS A SAMPLEDZlC Of SIMPLE CHARACTER DELETION.

*2.2 ISIMPLE ZORDZIW WORD DELETION.

*2.3 ISIMPLE LINE DELETION.ZlL

. *2.4 IMORE COMPL--OH OH~ II WANT TO PUT SOMETHING ELSE AfTER THE
PREVIOUS ENTRY--Z2L

*2.3 IIF BOTH LINE-DELETION EXAMPLES t-JORKED~ ONLY THIS 2.~ LINE "JILL
SURVIVE.

*2.4 INOTICE THAT \rJHEN DELETIONS Al~E MADEl THE ITRANSLATORZ6W THE
ITRANSLATOR fILLS OUT DEL TZ lVJ DELETION GAPS TO PRODUCE fULL-LENGTH
LINES IN THE fINAL TEXT. IMORE LATER ABOUT HOW IT KNOWS WHEN
A GIVEN POINT IN THE TEXT IS <SUPPOSED TO HEAD A NEW LINE IN TRE OUTPUT
COPY.

*2.5 I A MORE COi\1PLEX EXAMPLE OF'X CHARACTER-~'JORD DEL TINGZ2W 1 C
WORD-CHARACTER DELETION.

*2.6 , THE ~'!oRD-DELETE COMi'1AND ACTS THROUGH COMPLETE IGAP ISTRINGS--
MULTIPLE +SPACES~ +TA8S~ ANDIOR +CARR~TURNS.XX XXXX

XXXX Z3vJ2Q

*2.7 ITHE CHARACTER-DELETE COMMAND TREATS +CARRETURN X
Z2C AS A SINGLE CHARACTER.

*2.8 10RDER ISN'T SIGNIfICANT IN THE SEQUENCE OF PARAMETERS IN
THE DELETION COtv1MAND.XXX XXXX XXX X XXXX XZ3C4t'-l

*2.9 lONE CAN REMOVE OR CHANGE A PRIOR DELETE COMMAND WITH SUCCEEDING
DELETE COMMANDS.X XX XXX XXXXZ3WYY ZlW3CCZ ZZZZZZl~ ZZZZIW Z1W3C ZZ Z

*2.10 lONE CAN MODIFY THE PARAMETER SPECIFICATION AS 11·
IS BEING COMPOSED MERELY BY ADDING A NEW SPEC TO SUPERCEDE THE PRIOR
ONE.X XXZ2WICIW Y YY YYY YYYY Z3L3W2COLIC

*2. 11 I IF ONE FINDS THAT A +CARRETURN MUST BREAK A It!ORD IN AN UNFORT
ZlWUNATE PLACE~ HE CAN CLOSE THE GAP WITH A Z.lC~ Z.lW~ OR Z.lL.

*2.12 IIF O.\lE MISSES HIS END OF LINE BELL AND PILES UP CHARACTERS llNRE9
Z2W UNREADABLY~ HE CAN DELETE THE OVERPRINTED CHARACTERS TO BE SURE
THAT HIS COPYZIW READABLE COpy INDICATES WHAT THE ITRANSLATOR WILL DO.
IIF HE KNOWS THAT Nl SPACING GAPS OCCURRED BETWEEN THE PRINTING
CHARACTERS IN THE PILEUP~ THEN HIS NEItJ LINE SHOULD BEGIN WITH
IZN2W~ WHERE N2 IS ONE GREATER THAN Nl. IBUT If HE IS NOT SURt
OF HOW MANY ISPACING IGAPS WERE INCLUDED# HE SHOULD START THE NEXT
LINE WITH A IZ.2L~ . TO DELETE THE \'I'HOLE PRECEDING LINE~ AND THEN
RETYPE THAT LINE FROM THE BEGiNNING.

32

EXAMPLE ZC- 2

*2.1 Here is a sample of simple character deletion.

*2.2 Simple wo~ deletion.

*2.3 If both line-deletion examples worked, only this 2.3 line will survive.

*2.4 Notice that the Translator fills out deletion gaps to produce
full-length lines in the final text. More later about how it knows when a
given point in the text is supposed to head a new line in the output cop,y.

*2.5 A more complex example of wo~-character deletion.

*2.6 The wo~-delete command acts through complete Gap Strings-- multiple
SPACES, TABS, and/or CARRETURNS.

*2. 7 The character-delete comrrand treats CARRETURN as a single character.

*2.8 Order isn't significant in the sequence of parameters in the deletion
coIl1riE.ni.

*2.9 One can remove or change a prior delete command with succeeding delete
commands.x xx xxx xz zzzz zzz zz z

*2.11 If one finis that a CARRETURN must break a wo~ in an unfortunate
place, he can close the gap with a z.lc, z.lw, or z.ll.

*2.12 If one misses his end-of-line bell and piles up characters unreadably,
he can delete the overprinted characters to be sure that his readable cop,y
indicates what the Translator will do. If he knows that n1 sJRcing gaps
occurred between the printing characters in the pileup, then his new line
sh0uld begin with Z.n2w, where n2 is one greater than nl. But if he is not
sure of how nRny Spacing Gaps were included, he should start the next line with
a Z.2l, to delete the whole preceding line, and then retype that line from the
beginning.

33

The parameter string interpretation differs for an insertion

command from that for a similar-appearing string in a delete command.

(In our next system we would make them similar, as discussed in Part

D.) The insertion point is referenced by counting lines, words and

characters forward from the asterisk that marks the beginning of the

current paragraph. The asterisk is the first character of the first

word of the first line. A "word" here means a printing string as

defined in Part B-2, any unbroken sequence of printing characters

bounded at both ends by a Gap String. The parameter string

nlLn2Wn3C is generally interpreted as specifying the insertion

point to be immediately after the n3th character of the n2th word

of the nlth line.

As with deletion commands, the parameters can be given in any

order, and for multiple occurrence of character, word, or line terms,

it is the last term which is used by the Translator.

The first and last line, word, or character are quite often

the desired target for an insertion point. Straightforward inter

pretation of the parameter string (as above) makes it easy to specify

the first item of a given kind, but specifying the last item would

require careful counting. To make last-item specification also easy,

the following complication has been introduced into the parameter

string interpretation.

If any term is unspecified in the parameter string, the

Translator will interpret this as designating the last item of its

class. For instance: omitting the line specification designates

the last line (i.e., the one in which Z.lL appears); omitting the

word specification designates the last word of the designated line;

omitting the character specification designates the last character of

the designated word. Zero-line and zero-word specifications are

equivalent to omitting the line and word specification, but zero

character is interpreteddifferently from omitting the character.

A zero-character specification will put the insertion point in

34

front of the first character of the designated word, while omitting

the character specification puts the insertion after the last character.

The insertion string can contain both data and control strings

(except for insert-command strings, which cannot be handled within in

sertion strings). The control strings will be interpreted as if they

occur in their inserted location. The Translator moves backward through

the input string, interpreting and executing control strings as it finds

them. An insertion command thus causes its insertion string to be moved

at the time the Translator reaches the Z.2I, but any control strings

in the insertion string wait for interpretation until the Translator

later reaches the insertion point.

If successive insertion commands are to be given, the Z.II of

the second command can be omitted if the associated parameter string

follows immediately after the Z.2I termination for the first command.

There must be a gap string after the final Z.2I termination.

CARRETURN appearing in an insertion command has an effect that

depends upon where it appears. Within the insertion string, a CARRE

TURN becomes but one of a string of characters being inserted at the

insertion point. Elsewhere in the command, a CARRETURN is ignored if

it follows an alphabetic character (but will invalidate the command

if it follows a nonalphabetic character--an unnecessary inconvenience

to be remedied in the future).

Delete commands, appearing elsewhere than in the insertion

string, will invalidate the insertion command (another unnecessary

restriction). Correcting a mistake in an insertion command is not

generally as easy as elsewhere, and may involve aborting the command

with a delete command and starting over.

4. Line and Left-Margin Format Control

Using arbitrary deletion and insertion capability would often

result in unacceptably wide variation in length of the output lines.

Insertions into a line, or the deletion of one or more CARRETURNS,

can often produce a very long output line. Or, most of an input

35

EXAMPLE ZC-3

*1 /A SIMPLE INSERTION fIRST.ZII4WC EXAMPLE)Z2I
* 1 A simple insert ion example first.

*2 /DELETE AS AN EXAMPLE A GIVEN PRIOR WORD.ZII7WCZIW)Z2I
*2 Delet.e as an example a prior word.

*3 /REPLACE ONE ITEM WITH ANOTHER.ZII4WCZIW WORD)Z21

*3 Replace one word. wit.h another.

*4 /INSERT WITHN A WORD.ZII3W4CCI)Z21
*4 Insert wit,hin a word •

.
*5 /SUCCESSVE INSERRTIONS AND CORRECTIONS.
ZlIIL2WCZ2CIVE)Z2IIL3W5CCZIC)Z2I

~

*5 Successive insertions and corrections.

*6 INSERTING CONTROL CHARACTERS.ZII2WOCC/)Z213WOCC+)Z21

*6 Inserting CO~ROL characters.

*7 ITRY INSERTING INTO A PRIOR ZlI3WC NEW)Z2I INSERTION
STRING.ZIIIL7W7CCSOMETHING)Z21
*7 "'ry inserting somet'}ling new into a prior insertion string.

*8 /RESPEClfY PARAMETER TERMS IN INSERTION COMMAND.
ZlI2L3W5WILC AN)Z2I

*8 Respecif.y parameter terms in an insertion command.

*9 ICORRECTIONS DURING WRITING Of INSERTION STRING.
ZlIIL2WICCZIW IMAKE SME MISZ2W SOME VARIOUSZIW SAMPLE)Z2I

*9 Vake some sample corrections during writing of insertion string.

*10 /If INSERTION-COMMAND ERROR IS BEfORE THE OPENING PAREN OR AfTER
THE CLOSE PAREN Of THE /INSERTION /STRING (AND ISN'T SUCH AS TO BE
CORRECTED AS IN *8)# USUALLY HAVE TO ABORT THE COMMAND AND START OVER.
ZIIILWZ6CZIIIL2W(AN)Z2I

*10 If an insertion-cornm'3.nd error is before the opening p3.ren or after the
close ~ren of the Insertion String (and isn't such as to be corrected as in
*8), usually have to abort the cOITl1JRnd and start over.

36

line may be deleted, ,to produce a very short output line. Similar

troubles can occur with horizontal spacing in tabular data. The

following conventions and Translator features have been adopted to

alleviate these problems.

The CARRETURN ASTERISK NUMBER sequence that heads a para

graph anchors that asterisk at the start of a line. Within the

Translator, in the normal case, the other CARRETURNS are replaced

by SPACES, and some other SPACES are replaced by CARRETURNS to pro

duce new lines of uniform length. The Translator can be set at run

time for the number of characters to be in the maximum-length output

line. The output lines then are terminated at the end of the last

full "word" (printing string) that will fit within this line-length

specification.

Another provision was made, for left-margin control, that

provides a first step toward tabular control, and that also has a

feature helpful with new-line control. A control string ZnlT (which

is removed by the Translator) establishes the "normal" left margin

as being inset by nl TABS. In succeeding text, until a new margin

control command is given, any CARRETURN followed by other than nl

TABS is assumed by the Translator to be a specified new-line point.

When the CARRETURN is followed by nl TABS, the Translator considers

th~s gap string (CARRETURN nl-TABS) as equivalent to a SPACE. Be

tween specified new-line points, the Translator then replaces SPACES

(or equivalent) with CARRETURN nl-TABS wherever needed to produce

full lines.

This feature, even when no margin inset is desired, proves

to be very useful for inserting specified new-line points without

having to use the CARRETURN ASTERISK NUMERIC sequence (which often

is undesirable since it establishes a barrier to modification commands,

and also may not be desired in the text structure). No TAB-specification

control code (i.e., a code which directs the Translator to install TABS)

has yet been established for teletype use--but with what always amounts

to zero-TAB INPUT, one can still take advantage of the new-line

specification feature of the margin-control codes.

37

A new-line point is inferred by the Translator whenever more

than one CARRETURN is given in succession.

It should be noted that the margin-control codes are inter

preted and executed by the Translator, after all deletions and insertions

are executed, on a second pass over the character string, this time

moving forward from the beginning toward the end of the string. In

sertion and deletion commands occurring later in the text can thus be

used to modify earlier specification of margin control.

There proves to be a fairly simple way to produce sections of

inset text from Teletype input. A Z.lW (or Z.lL or Z.lC) at the start

of a new line will delete the preceding CARRETURN. If this is done on

successive lines after inputting a ZnlT with nl greater than zero, the

resulting input is treated by the Translator as one long line to be cut

into a succession of shortened lines, each inset by nl TABS. The first

line, however must be inset by SPACES to the desired starting point.

D. CRITICISMS AND SUGGESTIONS FOR IMPROVEMENT

Since we plan to keep improving the system, we include with the

identification of each inadequacy, notions for remedying it. Two

general types of inadequacy exist. First, it is impossible or in

efficient to do some of the necessary tasks that are within the reach

of the initial system, and second, the reach is limited.

Using the Z NUMERIC sequence to signal the start of control strings

leaves the problem of how to designate output text that might have valid

command strings in it (strings one doesn't want the Translator to exe

cute). One solution is to use ZlZx (where x is any printing character)

to specify that, moving backward, no control codes are to be obeyed until

just forward of the next occurrence of the character "x." Whether or

not x is to be removed along with ZlZx is still open. Insertion could

be allowed into this "dead" region, and a delete command initiated after

its end could delete into or through the region.

Another solution is to use one printing character exclusively for

signalling a control-code occurrence. For the Model 33 ASR Teletypewriter,

38

EXAMPLE ZC-4

*4 lONE CAN FORCE A NEW LINE WITH: ZIT

4.1 IA +CARRETURN +ASTERISK +NUMERIC SEQUENCE, OR

4.2 IA MISMATCH BETWEEN THE CURRENT +ZNIT SETTING AND
~IL THE NUMBER OF +TABS THAT FOLLOW THE +CARRETURN. (/THIS
?IW LATTER CHARACTERISTIC, TOGETHER WITH THE PRACTICE Of
ZIC DELETING +CARRETURN O-+TAB SEQUENCES WITH DELETE CODES AT
ZlL THE BEGINNING Of EACH LINE, ALLOWS LEFT-MARGIN INSET OF A
ZlW RODY Of TEXT.) ZlI2L6W(WHICH DESIGNATES THE START Of
71W A NEW PARAGRAPH,)Z2I

*4 One can force a new line with:

4.1 A CA~URN AS~ERISK NUMERIC sequence, which designates the
start of a new piragraph, or

4.2 A mismatch between the current ZNI~ setting and the number of
I'T1ABS that, follow the CARRET'URN. (rr1his latter
characteristic, together with the practice, of deleting
CARR~URN O-~AB sequences with delete codes at the
beginning of each line, allows left-margin inset of a body of
text.)

39

it is tempting to use BACKSLASH for this, using it in place of the Z

in every control command. Initially it seemed advantageous to use

symbols found on all of our printing and displaying devices, so that

a common set of control codes could be used among them all. Exper

ience shows that if the format and Significance of tne rest of the

control command are constant, different control-flag symbols would

be easily accommodated by users; it now seems better to use whatever

flag symbol is most convenient to a given device.

Another problem concerns the underline and case control codes

for the Teletypewriter. The current prefix symbols serve very nicely

for straightforward use, but allow no arbitrary specification of case

or underline. One solution is to have case-shift Z-code control

strings--e.g., Z2K to specify that all alphabetics to follow are to

be upper case, and ZIK to specify return to lower case. Similarly,

Z2U specifies beginning of an underline, with ZIU specifying term

ination. The Translator would remove these control strings. The

present prefix codes, or some similar version of them, would be worth

keeping because of their convenience for the situations where they do

suffice.

The absence of a TAB key in the Model 33 Teletypewriter is a

limitation that proves especially bothersome when writing computer

code. For an initial solution, we plan to have the Translator in

terpret the BACKSLASH character as though it were a TAB. This allows

the desired explicit specification from the input keyboard, but having

no associated spacing gap appearing in the input copy may prove bother

some in rereading prior text.

Although the deletion facility seems generally quite effective,

several kinds of suggestion have arisen. One, allow an abbreviation

of the oft-used Z.IW code by a Single character, still retaining the

ZnlW facility. Our current suggestion is to use the dollar-sign

character (DOLLAR). Any occurrence of the two-character sequence,

PRINTCHAR DOLLAR, is to be interpreted as a Z.IW with backward de

letion to begin with DOLLAR. Multiple occurrence might be allowed

40

to designate multiple-word deletion. This would be less efficient

than ZnlW for more than three words, but command composition could

often be done as sort of a tallying action while ticking off the

word steps to be deleted, for an actual saving in time.

There would also be benefit from a single-character equivalent

of Z.lC, with multiple-occurrence repetitive interpretation. Perhaps

either or both PERCENT PRINTCHAR or NONNUMERIC PERCENT sequences

could signal the delete-character code (with backward deletion be

ginning with PERCENT). This convention would ignore normal usage of

PERCENT--i.e., NUMERIC PERCENT NONPRINTCHAR. The convention for

interpretation of the sequence DOLLAR PERCENT might be established

as either (1) delete DOLLAR, or (2) after deleting DOLLAR and its

preceding word, delete percent and the now-preceding character.

The latter may be the more useful convention--we could always use

ZnlC to delete unwanted DOLLARS or PERCENTS.

For both delete and insert commands, changes to Parameter String

convention and interpretation could make for more efficient and con

sistent designation. Allow the use of minus-sign characters, so that

the nl, n2, ... parameters may be either positive or negative integers.

For either type of command, the parameter string will specify the lo

cation of a "designated point" relative to a "reference point."

For a parameter string nlLn2Wn3C, the designated point is found by

starting at the reference point, counting to the beginning of the nlth

interline spacing gap, from there to the beginning of the n2th inter

word spacing gap, and from there through tien3th character. But for

each parameter, the direction along the data string depends upon the

sign of that parameter: backward for positive, forward for negative.

What reference point to use depends upon the sign of the highest

ranking non-zero parameter--i.e., which direction one would start

moving (as interpretation is described in the foregoing paragraph)

to find the designated point. If this parameter is positive (the

first move is backward), the reference point is just before the

leading Z of the command string. If this parameter is negative

41

(the first move is forward), then the reference point is just before

the asterisk that heads the paragraph.

A delete command will remove the command string and all characters

between it and the designated point. When all parameters of a delete

command are positive, the action will be exactly the same as it would

be for the current Z-code System. But a Z.2L-l~ for instance, would

delete up to the first word of the line preceding the command, and a

Z.-lW would delete up to the first word of the paragraph.

Insertion commands using all-negative parameters would be inter

preted exactly the same as the current Z-code System would interpret

one using all-positive parameters. In the changed system, one can

count lines, words or characters from whichever end of the paragraph,

line or word is nearer. For instance: the command, Z.lI3W(XX)Z.2I

would insert XX at the end of the third word backward from the command;

Z.lI-2L2W(XX)Z.2I would insert at the end of the third-from-last word

in the second line of the paragraph; Z.lI-2L2W-lC(XX)Z.2I would in

sert XX at the beginning of the second-from-last word in the second

line of the paragraph; Z.lI2L-3W(XX)Z.2I would insert XX at the end

of the third word of the second line above the command.

It also seems that the following addition to parameter-string

convention is worthwhile. Beside the nIL, n2W and n3C terms, allow

an n4Xab ... cX term--where n4 can be either a positive or negative

integer. This will be called a search-string term. The sequence

of characters ab ... c is the search string and X is the delimiter

character. We shall allow X to be any nonnumeric, nonalphabetic,

printing character other than MINUS, but it must always be preceded

by a numeric character. For any such parameter term, the search

string ab ... c may include any character (printing or nonprinting)

except the character used for X in that term. Allowing any of

several delimiter characters to be used removes much of the re

struction which this latter limitation might otherwise impose.

If X is one of the nonnumeric, nonalphabetic characters from

the top rank of keyboard keys, the search-string term will be

42

interpreted after the line term and before the word term. If X is a

nonnumeric, nonalphabetic printing character from any key not in the

top rank, then the search-string term will be interpreted after the

word term and before the character term.

Interpretation of a search-string term (n4Xab ... cX) involves

moving backward or forward (for positive or negative n4 respectively)

to the n4th occurrence of the character string ab ••. c, and to corne

to rest just forward of the c character. Use of search-string terms

should save some of the time and tedium of counting*.

For example Z.2Ll"." would delete up to the last period in the

second line above the command. Z-2"." would delete up to the second

period that appears in the paragraph, no matter what line. A COMMA

PERIOD COMMA string could have replaced the QUOTE PERIOD QUOTE string

without change of interpretationin either of the above examples, but

not so in a Z.2Ll"."lW example, which deletes one more word than do

the first examples. A frequent application, for instance, would be

such as using Z.lI"en "(Z.lW common)Z.2I for specifying that the word

frequent at the start of this sentence be replaced by common. This

could also have been specified with parameter strings l"app"lW or

1","-2W.

With the minus-sign convention within parameter strings, an

overlay grid (or equivalent mechanism) fixed onto the Tapewriter

could be used to advantage, making always available at a glance

the nl-lines-up and n2-characters-right counts to any desired in

sertion or deletion point, on the recent lines of text, from a

reference at the head of the current line. If the vertical scale

*This feature is basically borrowed from the COMIT programming
language. The nth occurrence and arbitrary delimiter-character
(x) features were added here (We have since found the latter to
be implemented in the recsnt on-line typewriter editing system
at Project MAC by Saltzer).

6 Saltzer, J. H., "TYPESET and RUNOFF, Memoranda Editor and Type-Out
Commands," CC-244-2, MAC-M-193-2, (January 11, 1965).

,43

started with ONE at the current line, and the horizontal scale started

with ONE at the point just before the first character of a line, then

an n1L-n2C parameter string would accurately specify an nl, n2 co

ordinate point on the overlay grid. From my experience, I would judge

this to be a very handy innovation--at least with a tapewriter for

which the typing carrier moves instead of the platen carriage.

Use of insert commands has been hampered by the fact that it is

sometimes hard to repair errors within them. The DOLLAR and PERCENT

delete conventions suggested above could improve th~ satisfactorily,

if the rule were that anywhere in an insert command the Translator

would interpret and execute these characters (but not Z-codes) before

it interpreted and executed the insert command. For instance,

Z.II2L3W(%4W(,)Z.2I would be thus corrected before interpretation

to be Z.II2L3W4W(,)Z.21, and the Translator would use the 4Was the

word term instead of the 3W (since only the last-specified term of

a given parameter rank is used by the Translator). This rule would

prevent usage of DOLLAR and PERCENT characters as a desired part of

a search-string parameter term, but initially this constraint would

seem preferable over the alternatives of (a) no deletion means within

a parameter string or (b) more complex conventions.

It would be useful to be able to specify the right-margin setting

with control codes. Perhaps it would suffice to have something like

a ZnlR specify that what follows is to have the lines of its translated

copy terminated in accordance with an nl-character maximum-length line.

In the second category of inadequate features f or the present

system, we treat the matter of the "reach" which the Translat or can

accommodate, back into prior material, to execute its insert, delete

and move commands. A reach only back to the head of the current par

agraph is a very bothersome limitation.

One level of improvement, to be made as soon as possible, is to

extend the reach back to the beginning of the "current" input string-

in such a manner that a prior Translator--output tape, or other input

tapes, could be cascaded with a new tape and treated as one long input

string. With this change there should be added an nIP term to those

44

acceptable in a parameter string--a term interpreted before any of the

others, designating a move from the reference point to the beginning

of the nlth interparagraph spacing gap.

A second level of innovation to increase the reach would be to

store a record of each Translator output printing in a magnetic-tape

(or disk) file. Make the file accessible to the Translator, so that

control commands in a new input can specify extraction from any prior

printout and integration (with modification) into a new printout.

Special control commands could be established to remove any unwanted

records.

One could specify collection of many extracted passages, modified

as desired, to be integrated with new input material into a new print

out. A suitable convention for unique identification of specific

records in the file, and of specific reference points in the records,

must be established and made easily useable from inspection of the

associated hard-copy printout.

With the longer-reach capability, the matter of recycling can

properly be considered. (The most frustrating part of my use of this

system to date has been that I could get computer help on only the

first pass of origination work.) With the extended-reach facility

(even at the first level of improvement) one can have computer-aided

manipulation over successive drafts as a design record (or memo,

report, etc.) evolves into shape.

To accommodate this recycling, the Translator must not remove

the format-control codes except on a final-output pass, where standard,

clean text is required. It is planned to use a high speed line printer

for printing intermediate copy of larger-sized material, and t9 use

control-specification conventions similar to those for the Model 33ASR

Teletype to accommodate the one-alphabetic-case and no-underline lim

itations of the printer.

SPECIAL NOTE: At publication time for this report, an extended

reach system, with recycling capability, is being implemented under

SRI internal sponsorship.

45

E. EVALUATIVE COMMENTS

In forcing myself to use the Z-code System in the generation of

a report, I was both hobbled and stimulated. The foregoing change

recommendations will go far to alleviate the hobbling, especially if

fast recycling can be obtained for several-page sections of text.

I found that for stretches where the words flowed relatively

easily, the system was quite helpful, and with later recycling cap

ability I think it will prove to be very helpful over a wide range

of writing and rewriting applications. For tougher stretches of

composition, the system got in the way. For some of these sections,

I went back to more primitive means, a ball-point pen, with lots of

scratch-outs, arrows, and marginal scribbling and a skilled typist

to translate to clean text. This was much preferable--and I admit

this with no sense of failure regarding the utility of the eventual

improved Z-code System.

Indeed, viewed as a first in a succession of stages in a bootstrap

evolving, augmentation system, the Z-code System is a success. It

revealed and put into perspective in a most satisfying way various needs

at lower levels and possibilities at higher levels of my augmentat~on

system. Data structuring (discussed in a previous reportl) is showing

itself to be an important factor in my specific collection of "needs

and possibilities." One of the problems in hard-think work is the

matter of clarity of presentation of preceding work. Cleaned-up copy

via frequent recycling is one help, but brevity in substantive state

ments, and clear and concise designation of interrelation among

statements are also important. These things can be facilitated with

better structuring conventions.

SPECIAL NOTE: The new system, being implemented at final proof

ing time of this report, is designed especially to manipulate text

in which relationships among the individual statements are explicitly

designated within a crude but formalized "structuring system."

I See Page I

46

It is also very apparent that the "immediate recycle and display"

characteristics of on-line text manipulation (at a CRT console) will

provide a significant utility in the hard-think type of work. We

are developing such on-line facilities, and then plan to keep them

to be completely compatible with the off-line system of procedures

and conventions as both systems evolve. A person will be able to

feed material into the computer, have it processed by the Z-code

Translator, inspect, add, modify, etc. from the CRT console, and

will be able to output copy that is again available for either or

both off-line or on-line recycling.

For some of the time-sharing systems providing remote type

writer consoles such as at MIT (Project MAC), at Systems Development

Corporation, at Carnegie Institue of Technology, and at Stanford

University, I should think many of the features of our Z-code System

(implemented or planned) would be easily implemented and very useful.

But also, off-line text-manipulation systems similar to that dis

cussed above could be implemented for use with almost any conventional

digital-computer facility. There would seem to me to be considerable

potential worth to exploring and developing such possibilities, for

use in both clerical and professional activity. The researchers who

develop the structuring and procedural conventions best harnessing

computer service, and the variety of users integrating these into

their way of working would both be getting very good experience and

orientation toward the next step--that of on-line text mnipulation.

47

V SUMMARY AND CONCLUSIONS

A. SUMMARY

A specific discussion of man-computer intercommunication needs

is developed in Chapter II to illustrate one possible solution. A

general ten-element intercommunication model evolves, and a chorded

handset is selected for the next step in exploration. Experience

with such handsets, and the associated binary codes generates a set

of needs and possibilities at this and other User system levels.

In Chapter III are developed sane general concepts which are

relevant to planning of research in the man-computer area. Immed

iately introduced is the dichotomy in a whole man-computer system

that is represented by the definitions for Service system and User

system--with associated concepts of request-response transactions,

transaction points in service space, and User-system actions. A

chief need in the man-computer research area is exploring the value

to the over-all capability of the User system that can be derived

from integrating into it particular transactions with the Service

system. A system of this kind should be viewed as a many-level

hierarchy, and research to improve the system involves "needs" and

"possibilities," propagating down and up the hierarchy with

lanching" and "reverberating" characteristics.

" ava-

The Z-code System described in Chapter IV is one man's off-line,

computer-aided text-editing system--"text" meaning generally anything

one might generate at a typewriter keyboard. The user sits at a paper

tape-punching typewriter to produce his text. At any point on his page,

as he makes mistakes, changes his mind, or wants to specify some for

matting mode, he simply types explicit, visible sets of characters that

specify his wishes. His keyboard input is recorded stroke by stroke on

punched paper tape, which is subsequently processed by a computer to

48

locate, interpret, and execute the commands he has thus buried in his

text. The computer produces a new paper tape from which a Flexowriter

can type the cleaned-up text.

This system was used for the origination of much of the text of

this report, and the improved and expanded versions of the system

described in Chapter IV-D are planned as a coordinated portion of a

larger, continuously evolving working system, which also will include

the CRT-console, real-time aids to text manipulation.

B. CONCLUSIONS

Our first primitive system of computer aids will serve us well

as the first stage of an evolving progression, and has furnished us

much orientation and stimulation. It is not yet competitive with

conventional methods as an aid to "hard-think" work, but the rec

ommended improvements are expected to make it so. The modifications

and expansions recommended would provide an off-line system with

considerable potential to a wide variety of users having access to

conventional computation services.

In a more general vein, with the assumption that significant

undiscovered and untapped potential awaits us in the man-computer

area, it seems very evident that strong, specific focus on User

system research is overdue. The concepts and recommendations of

Chapter III are an initial guide to such research, but these would

soon be swept into primitive history by the flood of new concepts

and developments resulting when attention and energy are focused

on this area.

49

Appendix A

LINKED-STATEMENT DESCRIPTION OF THE Z-CODE TRANSLATOR

50

Appendix A

LINKED-STATEMENT DESCRIPTION OF THE Z-CODE TRANSLATOR

Assume that the Input String has been produced and is now ready to

be processed by the Translator. The paper tape containing the coded In

put String is fed into the computer first-generated-end first. The Trans

lator reads this tape, processes the data, and produces new output tape

in batches. The following terms need definition: beginning and end of

text refer to the first and last produced at origination time. The for

ward direction is toward the end; the backward direction is toward the

beginning.

1. Read paper tape forward, loading into the working store.

If started at end, HALT--Translation complete.

If find sequence CARRETURN ASTERISK NUMERIC, go to 2.

If reach END, go to 2.

2. Start at end of text in working store.

3. Scan backward looking for control commands.

If reached beginning and found none, go to 5.

If one is found, go to 4.

4. Execute delete and insert commands.

4.1 If invalid command, go to 3.

4.2 If not a Delete Command, go to 4.3.

4.2.1 Determine parameters (nl, n2, n3) of Delete

Command, specifying deletion of nl lines, n2

words, and n3 characters.

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

Delete the Deletion-Command character string.

If nl is zero, go to 4.2.5.

Count backward through nl CARRETURNS, through

any SPACES and TABS (in any order) beyond that,

and delete everything in this interval.

If n2 is zero, go to 4.2.7.

Count backward through n2 Gap Strings and delete

everything in this interval. A Gap String is

any unbroken sequence of SPACES, TABS, and

51

4.2.7

4.2.8

CARRETURNS, in any order and of any length

greater than zero characters.

If n3 is zero, go to 3.

Count backward past n3 characters and delete

everything in this interval. Each CARRETURN

and each SPACE is counted as one character,

and a TAB is counted as being executed by a

string of SPACES. Go to 3.

4.3 If not an Insert Command, go to 3.

4.3.1 Determine the parameters (nl, n2, n3) specify-

4.3.2

4.3.3

4.3.4

ing the point of insertion--nl lines, n2 words,

and n3 characters.

Determine the designated line: If nl is un

specified or zero, take the line in which the

insert command was started. Otherwise, go

backward to the first new-paragraph designator

(the sequence CARRETURN ASTERISK NUMERIC), take

that CARRETURN as the first and count forward

past the nlth CARRETURN. The next character

heads the designated line.

Determine the designated word in the designated

line: If n2 is unspecified or zero, take ~he

last word of the designated line (i.e., go for

ward to the next CARRETURN, then backward to

the start of the first GAP STRING or to the

head of the line, whichever is found first).

If n2 is not zero, take the Gap String which

includes the CARRETURN heading the designated

line as the first, and count forward to the end

of the n2th Gap String. Position now is on the

last character of the Gap String preceding the

deSignated word.

Determine the deSignated character of the

designated word: If n3 is unspecified, take

52

4.3.5

the last printing character of the word. Other

wise, take the present position (the last char

acter of the Gap String preceding the word) as

zero, and count forward to the n2th character

(n2 may be specified as zero, in which case the

designated character is the Gap-String char

acter immediately preceding the designated word).

Each SPACE and each CARRETURN will be treated as

a character, and a TAB will be treated as if it

were executed by successive SPACES. TABS and/or

SPACES preceding a CARRETURN are ignored.

Remove the command-specification characters of

the insertion control string, and insert the

insertion - string part of the Insert Command

just forward of the designated character. Go

to 3.

5. Start at beginning of text in working store. Set CHCOUNT to

zero. COMMENT: This second pass readies the batch for output

punching. The description is as for converting from Teletype

input to Flexowriter output, where underlining and alphabetic

case are converted from prefix specification to the real thing.

There are a number of Control States effective during this

pass that can be defined for clearer understanding of the

process description:

(a) CASE--determines output case for alphabetic characters:

LOW--every alphabetic character to be lower case.

UPALPHANUM--every alphabetic character to be upper case

until first character that is neither alphabetic or

numeric.

(b) UNDERLINE--determines whether characters are to be under

lined:

OFF--no underline.

FORALPHA--every alphabetic to be underlined until reach

first nonalphabetic character.

53

NONALPHA--every nonalphabetic character to be underlined

until first alphabetic character is reached.

(c) LEFTMARGIN--determines the nwnber of TABS for "normal"

left-margin inset. Variable of the State is: nl-TABS-

specifies decimal nwnber of TABS for inset. Nl may be

any integer (0,1,2, •..).

(d) LINELENGTH--Nwnber of characters to constitute maximwn-

length line in output text, a parameter set into computer

at time the Translator is to be run.

6. Scan forward, detecting and executing remaining control

strings.

6.1 Pick up next character in working store. Look at next

character.

6.2 No next character--end of working-store text: Go to 1.

6.3 If character is ALPHABETIC, go to 6.8.

6.4 If preceding two characters were ALPHABETIC GREATERTHAN,

set UNDERLINE St ate to NONALPHA. Remove GREATERTHAN.

6.5 If character is not NUMERIC, set CASE State to LOW.

6.6 If UNDERLINE State is NONALPHA, underline the char

acter and go to 7.

6.7 Set UNDERLINE State to OFF. Go to 7.

6.8 If preceding two characters were NONALPHABETIC SLASH,

remove SLASH and go to 6.13.

6.9 If preceding two characters were NONALPHABETIC PLUS,

set CASE State to UPALPHANUM, remove PLUS and go to

6.13.

6.10

6.11

6.12

6.13

6.14

If preceding two characters were NONALPHABETIC LESSTHAN,

set UNDERLINE State to FORALPHA, and remove LESSTHAN.

If this character completed a string Z INTEGER T, set

variable of LEFTMARGIN State to the value of the integer

string.

If CASE State is not UPALPHANUM, go to 6.14.

Make this character upper case.

If UNDERLINE State is FORALPHA, underline the char

acter f and g~ to 7.

54

6.15 Set UNDERLINE State to OFF.

7. Replace unnecessary CARRETURN TABS sequences with SPACE.

7.1 If this character is not a CARRE TURN , go to 8.

7.2 If it is, remove any SPACES and/or TABS immediately

preceding it.

7.3 If the CARRETURN is followed by exactly the number of

TABS specified by the LEFTMARGIN variable, go to 7.5.

7.4 To 9.

7.5 If, in the text forward of this CARRETURN, there are

any other TABS bounded ultimately by printing char

acters, before the next CARRE TURN , go to 9.

7.6 Replace the CARRETURN nl-TAB string by a SPACE.

8. Insert CARRETURN NI-TAB strings where new lines are necessary.

8.1 Increment CHCOUNT by one.

8.2 If CHCOUNT equals RIGHTMARGIN, go to 8.4.

8.3 Add the character to the output-Line Buffer. Go to 6.

8.4 Scan backward in working store to beginning of closest

Gap String. In the Output-Line Buffer, replace this

Gap String and the partial Printing String just for

ward of it by a CARRETURN.

9. Punch out and clear the output-Line Buffer. Put nl TABS at

head of output-Line Buffer, where nl is the variable of LEFT

MARGIN state. Set CHCOUNT to nl times TB, where TB is the

number of SPACES between the tab stops on the Flexowriter.

Go to 6.

55

Appendix B

BINARY-KEYSET CODE SYSTEM

56

Appendix B

BINARY-KEYSET CODE SYSTEM

This describes the current code utilized with a five-key chorded

handset. The chart of Table I shows the assignments of meaning given

each of the 31 unique chord strokes that are available with five keys.

The meaning of each hand-stroke keying configuration (chord) depends

upon the current "interpretive case." It is assumed that a computer

will interpret these codes, although there may be paper-tape intermediate

storage.

I will use the following naming conventions. For code i, struck

in Case n, I will write Cn.i. The four printing cases and the Control

Case have n of 1, 2, 3, 4, and c, respectively. It is often useful, in

actions designated from the Control Case, to return interpretation back

to the printing cases from which Control Case was last entered -- and I

designate this last-occupied printing case as Cx. Then, Cl, C2, C3, or

C4, used alone will designate Cases 1, 2, 3, or 4; Cc will designate

Control Case; and Cn will designate any case. The form Ca, b, ... ,c.i

will designate Code i in cases a, b, ... ,c.

To shift from one printing case to another requires going through

the intermediate Control Case. For instance, to shift from Case 1 to

Case 2, hit Cl.27 (shifting to Control Case) and Cc.2 (shifting from

Control Case to Case 2). Hitting Cn.27 will always ensure being in Control

Case.

1. Printing Cases

Abbreviations of sorts are included. Codes Cl,2.17 represent

the character pair "qU" and "QU." If a "q" is desired without the "u,"

use Codes C3,4.26. Also, in Cases 1 and 2, Codes 29 and 30 designate

more than "comma" and "period." Code 29, labelled EOF for End of Phrase,

will designate the character pair COMMA SPACE. To get a comma without a

space following it, use Codes C3,4.29. Codes Cl,2.30 labelled EOS for

End of Sentence, designate the following: "period." " " " " space, space,

"shift to Case 2 for one character and then to Case 1." To get a period

use C3,4.30. If Cl.17 is hit after an EOS, the result will be the char

acter pair "Qu" heading the next sentence.

57

TABLE I

CODE ASSIGNMENTS FOR FIVE-KEY BINARY HANDSET

CONTROL FINGER PRINTING
CASE CODE CODE CASE

4 3 2 1 T NO. 1 2 3 4 --
0

CASE 1 X 1 a A +
CASE 2 X 2 b B "
CASE 3 X X 3 c C * CASE 4 X 4 d D dive . ,
Cx, underline next
alphabetic character X X 5 e E
Cx, underline alphabetics
until Code greater than 28 X X 6 f F / ?
Cx, underline alphabetics
until Code 28 or 30 X X X 7 g G (
l-ch C2, Cx X 8 h H) &
l-wd C2, Cx X X 9 i I TAB degrees
l-ch C3, Cx X X 10 j J $ 1/2
l-wd C3, Cx X X X 11 k K C; B.S.
l-ch C4, Cx X X 12 1 L #
l-wd C4, Cx X X X 13 m M @

X X X 14 n N %
Backspace-Delete X X X X 15 0 0
Backspace-Delete, Cx X 16 P P 0
Delete to SP, Cx X X 17 qu QU 1
Delete thru . Cx X X 18 r R 2
Delete thru TAB, Cx X X X 19 s S 3

X X 20 t T 4
Hand Spec. X X X 21 u U 5

X X X 22 v V 6
X X X X 23 w W 7
X X 24 x X 8
X X X 25 Y y 9
X X X 26 z Z q Q

Reset Control X X X X 27 CC CC CC CC
EOP, Cx X X X 28 CR CR CR CR

X X X X 29 EOF EOF ,
X X X X 30 EOS EOS
X X X X X 31 SP SP SP SP

Note: Cn refers to caseN, where N = 1,2,3, or 4.

Cc refers to Control Case.

Cx refers to Case from which last jumped to Cc.

58

C4.ll, a Backspace code, has the same effect as backspacing a type

writer. The originally written characters past which you backspace re

main to be over-printed by succeeding printing characters.

2. Control Case

Control Case contains a number of special features. Codes 1,

2, 3, and 4 designate direct transfer to the corresponding case. Codes

5, 6, and 7 are used for underlining alphabetic characters. Code 5 says

"return to Cx (the case from which you most recently transferred to

Control Case) and underline the next character designated." Code 6 will

send you back to Cx and cause underlining of all succeeding alphabetic

characters up to the next occurrence of a code of 28 or greater-

essentially, underlining the next word. Code 7 sends you back to Cx and

causes'underlining of all alphabetic characters until an occurrence of

either a Code 28 or a Code 30--for underlining section titles. For Codes

Cc.6 and Cc.7, a hyphen will be assumed as a legitimate "alphabetic"

character to be underlined, but a double hyphen (representing a dash)

will be a terminater of the underlining action. For Codes Cc.8 through

Cc.13 we designate a short one-character or one-word "visit" to a

specified case before shifting back automatically to Cx. Special note:

sequence Cc.8, C2.l7 results in a printing sequence corresponding to

C4.26, Cx.21. Similarly, a one-character visit to Code 17 of Case 1

would produce a "q" and a Code 21 from Cx. The "one-word visit" is

terminated by any code equal to or greater than 27, and that code will

be interpreted as though it were in Cx.

Codes Cc.15 through Cc.19 are used for deleting preceding char

acters. They all have the effect upon the eventual output text of back

spacing a magic typewriter that erases any character in a position to

which it backspaces. Cc.15 can be hit n times successively to cause n

such effective backspace-deletes, each of which eats up one line space.

Cc.16 is used for the last of such a string of backspace-deletes (or

when you just want one) if you want to transfer automatically thereafter

back to Cx. Cc.17 will atuomatically do backspace-deletes back to but

not including the previous "space", and then will transfer you back to

Cx. Cc.18 will automatically do backspace-deletes back to and including

59

(i.e., through) the previous "period," and then transfer you to Cx. Cc.l9

will automatically do backspace-deletes back to and including (i.e.,

through) the previous "tab," and then transfer you to Cx. IMPORTANT NOTE:

A delete command is not actually executed until the next printing-case

code other than Code 27.

Code Cc.2l, "Hand Spec," is used as part of a procedure to

tell the interpretive device which hand you are going to use on the key

set. Following recognition of this code, the computer will assume that

the very next input code will use either or both the thumb and index

finger, but 'no others -- i.e., you must jump to Cl, C2 or C3 on the next

stroke -- and it deduces the specified hand from this stroke. Notice

that getting to this code from any state can be done entirely with

symmetrical codes (codes that are the same for both hands), so that it

doesn't matter what hand the interpretation ~ assuming, or what inter

pretive case was being used, when you choose to use a given hand to

specify the hand-interpretation made. (A Hand Spec code automatically

actuates a Cc.27 code as part of its response.)

Code Cc.27 (which in other cases causes transfer to control

case) leaves interpretation in control case, but clears any pending

control action which the code interpreter may be wait.ing to complete

e.g., any of the underline, case-visit or delete actions.

Code Cc.28, labelled EOP for End Of Paragraph, will automat

ically set up the output for a new paragraph. For typewriter output,

present convention, this would provide the sequence equivalent to C3.30,

C3.28, C3.28, C3.9, C3.27 Cc.l, Cl.27, and Cc.8.

3. Future Possibilities

Below are a few salient possibilities among the many that

will undoubtedly be uncovered with future study. It will generally

require coordinated analysis of editorial conventions and occurrence

frequencies to establish efficient transcription codes for an inter

pretive program of reasonable size and operating cost.

(l) Automatic Underlining--A number of odd conditions seem

to arise in trying to specify how far ahead in the text you

60

specify a number, n. The interpreter is to observe the symbol

string S composed of the next n input characters, and use S (ex-

actly as it would use W in the original variation) to locate the

renewed starting point back in the prior input.

For on-line use with CRT feedback, one need not specify n

in the latter variant of the command. He could (after giving

the command) merely start entering characters and watching a

"place marker" until the computer had enough input to have set

the marker at the desired spot, then hit two Code 27 strokes to

clear control and stop the search.

(3) First Person Singular--We can rather easily incorporate the

convention that a Cl.9 code (lower-case i) immediately preceded

and followed by space codes, is to affect the output as if it

were a C2.9 code.

(4) New Sections--This concerns text blocks larger than the

paragraph. More study is needed, with establishment of consis

tent conventions for headings to sections of different levels.

Automatic format help for these headings -- e.g., capitalization
and underlining -- could be obtained, as well as coordinated sub

sequent-paragraph indentation. A Cc Code (or set of them) could

be used to designate a new section and the section type or level.

This can include listings and quoted inserts.

(5) Specifying Abbreviations--The "qU," EOF, EOS, underline,

visit, delete, and EOP codes all are abbreviations, and further

study of standard transcription message types will undoubtedly

suggest other types. This section, however, concerns abbrevi-

ations the user may wish to establish temporarily or permanently

for himself.

One Control-Case code could be used to declare that you

were going to establish an abbreviation form. You then enter

the full form (both control and data) of the input string you

wish to abbreviate, and install a unique separate input code.

You follow with the unique characters (abbreviation form, F) by

which you wish to enter (designate) the abbreviation in the future.

Henceforth, entry of the abbreviation form will automatically

cause substitution of the full form, to produce words and/or
control sequences.

61

want printed characters to be underlined. Cc.5 through Cc.7

as designated above don't easily handle all of these. More

study is required of occurrence frequency for such conditions

before one could say how best to designate codes to handle

them.

One new-code possibility would say "return to Cx and

underline all legitimate characters until a Cc.27 code is

struck." Perhaps several such would be useful, depending

upon what are to be specified as legitimate characters (e.g.,

sometimes a space is underlined, sometimes not).

Another new-code possibil~ty, call it CC.j, would be used

in a two-stroke sequence CC.j, Cx.k, which is then to be

followed by printing designations in Cx. Underlining will

automatically occur, for all legitimate characters, up to

and including the next occurrence of Code k in Case x.

(2) Automatic Delete (and Place Finding)--In some situations,

e.g., involving prior case-shift, between-sentence, and

between-paragraph codes that are to be corrected, it is not

clear that delete commands such as Cc.15 through Cc.19 provide

the best facility for deleting and relocating, especially for

an off-line operator who can't see the effect of such commands

as interpreted by the computer. Also, an off-line operator

may lose track of recent code strokes and/or their consequences,

and may need a straightforward way to relocate correctly.

A Control-Case code could be used to tell the interpreter:

Observe the next word, W, that I enter and search backward

until the first occurrence of W. Delete all old entry back

through the old W, and, beginning with my new W entry, accept

subsequent entry as normal continuation." If you got lost,

you could thus go back and restart at a previous unique word

where you knew you had been doing all right. This command

also allows flexible specification of deletion.

A variant of this code might be preferable, where you

follow the Cc command code with a digit (or, two digits) that

62

Another Cc code could be used to remove a given abbreviation

form, and still another Cc code could be used to designate which

group or groups of abbreviations you might wish to make use of

if such would be useful. There could well be a standard set

to which in some given writing place you could usefully add

some of your own. Unless you remembered these local-use

additions, and could control their accumulation and discard,

it could be very handy to call for a fresh start with a stan

dard group of abbreviations.

We could ask the interpreter to check every input word

against a table of abbreviation forms -- or we could constrain

all such forms to begin with one particular character (or one

of a special set of characters) so that lookup was done for only

those input words beginning with a special character -- or we

could say that a special Cc code must accompany every input

word that is to be interpreted as an abbreviation form.

I would think there are few enough normal words beginning

with z or x to let one or both of them, as an initial char

acter of a word, tell the interpreter to look at the abbrevi

ation table. Using a special Cc code to designate this, where

this code has no other use, would seem to be of advantage

mainly if you wanted feedback if the interpreter found no

such abbreviation form in its table -- since with such as the

z or x designater we would have to let the interpreter print

the input word if it didn't find it on the table.

(6) Control Trees--We could foresee a possibility in the fore

going section of a number of different control commands

associated with setting up or deleting abbreviations. These

wouldn't be too frequently used, and codes will become

precious as we learn more use for them. For less-frequent

control commands, it could pay to bundle them in one or more

second-level control cases to which entry is made from the

first-level Control Case (the one we now have). For still

less-frequent commands, third-level control cases might be

fitting, etc.
63

Alternating two hands on two keysets definitely seems a useful

possibility for faster transcription. The interpreter has to keep

track of which keyset provides a given entry, and a separate Hand Spec

procedure is needed for each keyset. Otherwise the string of sequential

input codes is interpreted without regard for which keyset enters which

code.

We can stipulate that the user, for this type of interpretation,

never overlaps his key strokes -- i.e., only one set of keys is depressed

at a time. We can then stipulate that if overlap exists, the two over

lapped codes are to be interpreted differently.

For instance, we may stipulate that a code stroke that is held so

as to be overlapped by the succeeding other-hand stroke is to be inter-

preted as a Cc code with the succeeding overlap code being interpreted

normally. But this only saves one stroke, and at the expense of a break

in stroke rythmn.

A better use of two-hand overlap would seem to stem from saying

that the two overlapped five-bit codes are to be interpreted as an

independent ten-bit code. This gives us 961 unique codes with which to

designate special abbreviations, control tricks, etc. and opens the door

to a coordinated "shorthand" code. Phrases, words, n-grams (including

spaces, punctuation, and control characters), whose payoff in frequency

of use times 5-bit code strokes saved is large enough, would thus be

encoded as single two-handed overlap strokes.

It seems reasonable to say that it is the order of keyset actuation,

rather than which hand actuates which code, that should determine the

way the interpreter groups the two five-bit codes into a ten-bit code.

This would seem less disturbing to the character-at-a-time alternate-hand

rhythm in which the shorthand code would be embedded.

However, it would be possible for the order of overlapping

which hand was first to be of significance. This could provide two

independent 961-code interpretive repertoires. It is also possible to

have the interpretation give the same designator role to the same hand,

no matter which of the overlapped pair was struck first.

64

The shorthand forms can be remembered and stroked as a pair of Cl

characters rather than as a ten-bit code. Also, this shorthand springs

compatibly from the five-bit character-by-character code, and a person

can gradually add new shorthand forms to his repertoire as his familiarity

and skill grow.

65

