SOFEEy
MICROSYSTEemS

A SUBSSIOINAY OF SOFTECH

UCSD p-SYSTEM
A PRODUCT FOR MINI- AND MICRO-COMPUTERS

Versions 11.0 and 1V.0

BASIC REFERENCE MANUAL

First edition: February 1981

SofTech Microsystems, Inc.
San Diego 1981

9494 Black Mountain Rd., San Diego, CA 92126 TWX: 910-335-1594
(714) 578-6105

UCSD, UCSD 'Pascal, and UCSD p-System are all trademarks of the Regents of the
University of California. Use thereof in conjunction with any goods or services is
authorized by specific license only, and any unauthorized use is contrary to the
laws of the State of California.

Copyright © 1981 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may be reproduced in any form or by
any means or used to make a derivative work (such as a translation,
transformation, or adaptation) without the permission in writing of SofTech
Microsystems, Inc.

DISCLAIMER:
This document and the software it describes are subject to change without
notice. No warranty expressed or implied covers their use. Neither the
manufacturer nor the seller is responsible or liable for any consequences of
their use.

ACKNOWLEDGEMENTS:
This document was written by Stan Stringfellow at SofTech Microsystems.
Special thanks are due to Dan LaDage of LaDage Computer Systems, as well
as Gail Anderson, Blake Berry, and Randy Clark of SofTech Microsystems,
for providing information and assistance. Also, thanks are due to Texas
Instruments Incorporated, for providing useful information.

iii

TABLE OF CONTENTS

SECTION

1 THE UCSD p-SYSTEM AND SOFTECH

NV BSWN

Introduction. . . .

Editing BASIC Programs.

o s s e e e

Compiling BASIC Programs

Compiler Options.
Comment Delimiters. . .

Multiple Line Statements .

Multiple Statement Lines

o s e s s e

2 DATA TYPES AND EXPRESSIONS

1

HOwVwoON O\

—

Data Types. « « « ¢« o o o

1 Numeric Data
2 String Data
Constants . « v v v v v v oW
1 Numeric Constants .
2 String Constants. . .

Variables

1 Numeric Varaibles. . .

1 Numeric Variable Naming Conventions
2 Numeric Variable Declarations
2 String Variables
1 String Variable Naming Conventions .

..... e e s e e e

2 String Variable Declarations .

AITaYS & v v v v v v v v o

1 The DIM Statement. .

o e o o o o o

IR

D T

2 Type Specification of Numeric Arrays
3 Size Specification of String Arrays . . « « « . .
4 The OPTION BASE Statement . .
The LET Statement

Arithmetic Operators . . .

String Operator

Relational Operators . . .

Logical Operators
Precedence of Operators .
Evaluation of Expressions .
1° Arithmetic Expressions
2 Logical Expressions . .

3 String Expressions. . .
4 Relations Expressions .

e e e e e

MICROSYSTEM BASIC

PAGE

VTUT VAN N =

N VOV OO NN

3 1/O STATEMENTS

1
2

~N o

The PRINT and DISPLAY Statements

PRINT and DISPLAY Options
The ERASE ALL Option
The AT Option

The SIZE Option
The BELL Option
The USING Option . . .
The IMAGE Statement .

o e s o o

AV SWN -

.

.

.
.
.
.
.
.

1 Format Control Characters
2 Fields Within IMAGE Definitions
3 The PUNCTUATION Statement .
The INPUT Statement. . . « « ¢ ¢ v v o ™
1 The AT Option With the INPUT Statement

2 The SIZE Option With the INPUT Statement

.
.
.
.
.
.
.

e ¢ o o 4 o o o o

e o e o o o o o o

¢ o o o & o o 4 o & o o

e o o & o o o 4 o o o @

e o o * o e 4 e e o @

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

3 The BELL Option With the INPUT Statement

The ACCEPT Statement . .
The DATA Statement
The READ Statement
The RESTORE Statement . .

4 CONTROL FLOW STATEMENTS

NV S WN -

The
The
The
The
The
.The
The

GOTO Statement
ON-GOTO Statement. .

5 STANDARD FUNCTIONS

1

The Numeric Functions
The ABS Function. . . .
The SIN Function
The COS Function .
The TAN Function .
The ATN .Function .
The EXP Function .
The LOG Function . .
The INT Function . . .
The SGN Function . .
The SQR Function. . .
The RND Function and

« e o e

HOWONONWVEWN

bt b

v

.

.

e o o o o s o s e e

)
>

AL T S S R S N

s e 0 6 0 e 0

D I R

« o o o

o e o e

o o s o s

« e e o o o o

. ...

oL Ll
£

e ¢ o o o e o s

Ne ® o o o o o o o0 o o

Ma o o ¢ o o o o o o &

IF-THEN-ELSE Statement
FOR-TO-STEP and NEXT Statements
GOSUB and RETURN Statements. . .
ON-GOSUB Statement
STOP and END Statements

e o e o o o o o

Statement

e o e s e s o

e o o o 4 o 4 s o e o

e o o s s e e e

o o o 8 o o o & o o o

© o ® e o e % e o o % s s a2 s o ® o

o * o o o * o

e o 2 o 4 o o o o o o

e ® o o & ® o o o o o o o o o o o o o

e o o o e o o

.
.
.
.
.
.
.
.
.
.
.
.

e e o o e ® o 8 s s o * s e o e e e o

e ¢ o s e e o

e ® o o o e & e+ o ® 4 ® e e o e e s o

o ¢ o o o o e

e o o o o o o & e o .0 »

e ® o % o % o ® o e o s e s s s e o e

e o o o * o o & o o o

e ® o ® o o o o e o e * e s o e s * o

e ¢ o o o o+ o

e o o o o o e & e o s @

e ® e & & o o o o & o s e e o e e o @

e o e o o o o o

e

® o o o o ® e e e o o o s s e e o e o

e e o e o e

21
23
23
23
23
24
24
25
25
26
27
28
28
28
29
29
29
30
31

32
32
33
34
35
36
37

38
38
38
38
39
39
39
39
40
40
40
40

2

String Functions

1
2
3
4
5
6
7
8

0

10
11
12

The
The
The
The
The
The
The
The
The
The
The
The

ASC Function . .
BREAK Function .
SPAN Function. .
LEN Function

NUMERIC Function-

VAL Function . .
STR$ Function . .
POS Function. . .
RPT$ Function . .
UPRC$ Function .
CHR$ Function. .
SEG$ Function . .

3 Miscellaneous Functions. .
DAT$ Function.
FREESPACE Function . .

6 USER DEFINED FUNCTIONS AND SUBROUTINES

1

ONOV S Ww

DI OV WN -

The
The
The
The
The
The
The
The

INKEY and INKEY$ Functio

EOF Function
FTYPE Function .
TAB Function
ERR Function . .
TIMES$ Function .

Functions . « « « v ¢ ¢ . ..
1 The DEF Statement. .

2 The FNEND Statement

3 Calling Functions . . .
Subroutines . + +
1 The SUB Statement. .
2 The SUBEND and SUBEXI
The CALL Statement ¢ v v v v oo
Local Variables and Parameters . . .
Line Numbers and Data Lists
The USES and LIBRARY Statements
Pascal Interface Text Restrictions. .

The UNIT Statement

.
.
.

.

.

PR

e o e e o e

e 4 s e e a4 e o e o

.

.

vii

. e
..
..
. .
..
..
..
. .
. .
. .
..
..
. .
o e

.

.

.
.
.

.

Statemen

.
.
.
.
.
.

.
.
.
.
.

..
..
..

..
..
..
..
..
o e
..
.“ e
.«

..
..
..
..
ns
..
..
..
..
.

® o o & s o 8 e e s o e e & ® e & o € o o o

.
.
.
.

® o e o s s o o + o ® e s 4 e o 8 e * o o o

ts

e * o e 4 * o e o

e o e e 4 s s o o o @

® s v o e e & & s e s o

e s e o o o e .

® e ® o s 4 s o s e o o

® o s 4 e e e o o o o o @

¢ o s o e o * o o o

* o & o s o s s s o s @

e e % 4 e 4 s 4 s e e o

e o o e s e e o e o

® s e 4 e 4 s e o o e @

e s % 4 e e s 4 s e s o

® o o e s o s e s e o e e s ® e e & o e o o

© 6 s 4 e e & o e o s o @

® e o e o 4 s s + e o & o e ® s s e e o e o

© e s 4 s e s o ® o s e »

® o o e o o e s s e e e e e e s s e * s e o

e e % 4 s e e e s e e o »

® o * e o 4 s e s e o s e 4 ® e o s e o o o

e o o 4 e 4 o e s e e e

® 4 e e o 4 s s % e s s o s ® e o e o o o o

*® e % 2 s e s e s e s o

® o e o s o s e s e e s e e & s e e ° s+ e o

© o ¢ s s o o e s e s s e o ° s e o * s e o

® o ¢ o s 4 s e s e e s »

® & o o e e o s e e e s » s e s s e e o o o

© e o o o o e e o o o o o

41
41
41
42
43
43
43
44
44
44
45
45
45
46
46

46
47
47
47
48
48

49
49
50
51
51
51
52
52
53
54
54
55
56

7 FILE 1/O AND VIRTUAL ARRAYS

1 Opening and Closing Files

1 The OPEN Statement.
2 File Acces Modes . + « ¢« ¢« ¢ v ¢ o
3 File Organization
4 File Lengtho oo 0o v
5 File Format . « v ¢ ¢ v o s v o o o @
6 Record Length.
7 The ASSIGN Statement and Virtual
8 The CLOSE Statement
2 Filel/O Statements . « v « o ¢ v o o o
1 Sequential File /O
2 Relative File /O v v v v v v v v v

3 The RESTORE Statement

APPENDIX A BASIC Reserved Words

APPENDIX B Error Numbers

viii

e o s s o o

o« o o o o o o

o« o e s o e o

e o o s s

e o o o o e @

e e o o o

e« o s e o .

o o e v o o o

o e e o o o o

o e e o e 4 s s s e o o

59
59
59
60
61
61
62
62
63
64
64
65
66

69

70

CHAPTER 1
THE UCSD p-SYSTEM AND SOFTECH MICROSYSTEM BASIC

1.1 Introduction

SofTech Microsystems” BASIC is a compiled BASIC that runs under the UCSD p-
System. Since it was designed to be used with the Screen Oriented Editor, it has
an expanded syntax that allows indented and unnumbered statements as well as
statements which are not in numeric order by line number. Because it is intended
to be one language in a multi-language software development environment, BASIC
subroutines can be separately compiled and linked into Pascal, FORTRAN, and
BASIC host programs without recompilation. Also, BASIC programs may host
separately compiled Pascal procedures and FORTRAN subroutines.

SofTech Microsystem’s BASIC allows arrays with unlimited dimensions and
subroutines with unlimited numbers of parameters. Virtual arrays which reside on
disk, and may be very large, are permitted. Large programs may be split into
many disk files, which can include each other using the $l compile option, and be
compiled into a single codefile.

The following sections describe how to use the UCSD p-System to create and
compile BASIC programs. The compiler options are described, and the 51mple BASIC
constructs relating to the text of the program itself are explalned

1.2 Editing BASIC Programs

The UCSD p-System Screen Oriented Editor is used to create and modify BASIC
programs. This section will give a cursory explanation of how to use this Editor.
For a more complete description of the Screen Oriented Editor, see the UCSD p-
System Users” Manual.

To enter the Editor from the main system promptline, type "E". The system will
respond by asking what file is to be edited. An existing text file may be specified
(e.g., #5:PROG<return> will indicate the file PROG.TEXT on the disk in drive #5:)
or a new file may be created by simply typing <return>.

Once the Editor has been entered, text may be inserted after typing an "I". A new
line of text will automatically be indented to correspond to the line above it. This
makes it easy to use the indentation feature of SofTech Microsystem’s BASIC to
increase readability:

BASIC User Reference Manual
The UCSD p-System and BASIC

FOR 1=1 TO 100
FOR J=1 TO 100
A(1,3)=0
B(,3)=J
NEXT J
IF 1 >= 50 THEN GOTO 10
DISPLAY "1 < 50"
10 NEXT 1
END

Note that line numbers are optional, and are really only necessary if a statement
is to be the target of a GOTO or GOSUB statement (described in Chapter 4).
When line numbers are used, they do NOT need to appear in increasing order.

Once the program has been typed in, the ETX key is typed to accept the text, and
the Editor is exited by typing "Q" for quit. Then the user may U(pdate or W(rite
the file. In the first case, the file will be saved as SYSTEM.WRK.TEXT and in the
second case a name may be specified (e.g., #5:PROG<return> will save the file as
PROG.TEXT on the disk in drive #5:).

1.3 Compiling BASIC Programs
Before the BASIC compiler can be invoked, the following steps must be followed:

1. Enter the Filer (by typing "F") and use the C(hange command to
change the names of SYSTEM.COMPILER and SYSTEM.LIBRARY to
some other names (such as PASCAL.COMPILER and SAVE.LIBRARY).

2. Change the names of BASIC.CODE and BASIC.LIBRARY to
SYSTEM.COMPILER and SYSTEM.LIBRARY. If the new
SYSTEM.LIBRARY is not on the * system disk, it must be T(ransfered
there.

1t may be desirable to create an entirely separate system disk to be used only
with the BASIC language.

When the BASIC compiler is properly set up, it may'be ‘invoked from the main
system promptline by typing "C". If the program text was U(pdated from the
Editor, it will be automatically compiled.

If the program was W(ritten to a file (and no SYSTEM.WRK.TEXT already existed),
the system will prompt for the name of the file to be compiled. The user should
respond, for example #5:PROGKreturn> if the file is PROG.TEXT on #5. Then the
system will prompt for the name of the codefile to be produced. The response

BASIC User Reference Manual
The UCSD p-System and BASIC

should be #5:PROG<return> if PROG.CODE on #5 is to be created.

At this point, the two pass compiler will execute, printing a dot for each line in
the text. After compilation, "R" (for run) should be typed, and the program will
execute (usually after linking the object with code from the Library).

If a syntax error is encountered by the compiler, the bell will sound, compilation
will temporarily halt, and an error message will be displayed. The editor may be
re-entered at this point by typing "E", and the error may be corrected
immediately. Compilation may also be either continued or aborted.

Other errors, such as runtime arithmetic overflows, will be caught during program
execution.

1.4 Compiler Options

The Compiler Options are used to control various aspects of the BASIC compiler’s
output. These options are specified in the following manner:

(*$<option> <parameters> *)

The INCLUDE option indicates to the Compiler that the specified file is to be
compiled as though it were placed directly in line within the current file. The
following is an example of this directive:

(*$1 #5:PROG2.TEXT *)

The LIST option causes the compiler to emit a compiled listing to the CONSOLE,
PRINTER or specified disk file:

(*$L. CONSOLE: *)
(*$L PRINTER: *)
(*$L #4:LIST.TEXT *)

The listing can be optionally turned on or off atgany point in the source text
(after it has been started using one of the above forms of this directive) by
following the directive with a "+" for on, or a "-" for off:

(*$L+*)
(*$L-%)

The PAGE option causes a form feed in a compiled listing at the point where it
occurs in the source text:

(x$P¥)

BASIC User Reference Manual
The UCSD p-System and BASIC

The FLIP option is used only in the 11.0 version of the compiler. This causes the
byte sex of the object to be of opposite sex from the host machine:

(*$F*)

The QUIET option controls the "quiet/noisy" mode of the compiler. In the noisy
mode, $Q-, the compiler displays a dot (period) on the system console for each
statement compiled. In quiet mode, $Q-, the dots are not displayed. The default is
$Q- unless the machine has a "slow terminal" (designated by a data item in
SYSTEM.MISCINFO), in which case the default is $Q+.

(*$Q+*)
(*$Q-%)

The RANGE CHECKING option controls runtime range checking on references to
array variables and string variables. When $R+ is in effect, runtime range errors
cause the program to abort with an execution error. If $R- is in effect, the
compiler does not emit code to do range checking during execution. The default is
$R+.

(*$R+*)
(*$R-*)

The 1/O CHECK option directs the compiler to emit code which will cause 1/0O
errors to be handled by the system if the $l+ option is on. The $1- option causes
the 1/0O status to be recorded and made available, through the built in function
IORESULT, but no execution error results from 1/O errors. The default is $1+.

(*$14+%)

(*§1-%)
The T option, when $T+ is used, causes code to be emitted which handles the
transcendentals in the library in a manner consistent with the Tl machines. The
default is T+.

(*§T+%)
(*$T-%)

The Copyright option will place a copyright notice within the codefile:

(*$C Copyright (c) 1981, SofTech Microsystems *)

BASIC User Reference Manual
The UCSD p-System and BASIC

1.5 Comment Delimiters

The REM statement and the exclamation point (!) are treated identically by the
BASIC compiler. They represent the start of a comment which is terminated by
the end of the line:

REM This is a comment

A=1 REM This is a comment
! This is a comment

A=2 ! This is a comment

The two delimiters (* and *) can also be used to enclose comments. The comments
between these two delimiters may cross line boundaries:

A=l (* This is a comment *)
B=2 (* This is a comment: At this point we have
decided to set B equal to 2 *)

1.6 Multiple Line Statements

Since placing an end of line between the delimiters (* and *) essentially causes
that end of line to be invisible to the compiler, statements which are allowed to
fill only one line may be expanded to several lines by commenting out the EOL
character. For example, the following DIM statement (see Chapter 2) is used to
declare two lines of arrays:

DIM A(4), B(5,6,7), C(10,10), (*
*) D(8,9), E(20)

And the following FUNCTION (see Chapter 6) is defined with more parameters
than might fit on one line:

DEF A_FUNC(A,B,C,D,E,F,G,H,1,J,K, (*
*) L,M,N,0,P,Q,R,S)
1.7 Multiple Statement Lines
Normally, only one statement is allowed on a line. The double colon (::) is used to
separate statements so that two or more may appear on a single line as in the

following example:

A=1 :: B=2 :: C=3

BASIC User Reference Manual
The UCSD p-System and BASIC

CHAPTER. 2
DATA TYPES AND EXPRESSIONS

2.1 Data Types

SofTech Microsystems” BASIC handles both numeric and character string data types.
Numeric data is expressed as INTEGER, REAL, or DECIMAL numbers. In the
current version, the DECIMAL data type is identical to the REAL type. Arithmetic
operations can be performed on this type of data. Character string data consists of
sequences of printable ASCHl characters. String operations may be performed on
data of this type.

2.1.1 Numeric Data

Integers have no decimal point and are allowed to have values between 32767 and
-32761.

Real or floating point numbers may have a decimal point and/or an "E followed by
an exponent. If an exponent is specified, the floating point number will be raised
to that power of ten. For example 2.0E7 is equivalent to 2.0 times ten to the
seventh power. The minimum and maximum values for real numbers are machine
dependent.

Decimal numbers are identical to real numbers. There are some syntax differences,
but there is no difference at all in the way they are treated in the current
version.

2.1.2 String Data

String data is nonnumeric information expressed as words or other character
sequences. A string may contain numeric symbols, but arithmetic may not be

performed on it. The string operations are described in Sections 2.7, 2.8, and
Chapter 5.

2.2 Constants

Data may be in the form of constants. The value of a constant is specified at the
time the program is written and does not change during program execution.

2.2.1 Numeric Constants

A numeric constant may be an integer or floating point number, and may be either
positive or negative. The following are examples of numeric constants:

BASIC User Reference Manual
Data Types and Expressions

27

1981
123.4567
0.333
333
333.0
10.0E3
10E3

-1
-765.4321
-0.001
-001.0
-12.234E5
-1E-15

The following are incorrect numeric constants:

25x2 The ‘x” is not allowed
7,999.99 Commas are not allowed
10.0E2E3 Only one ‘E’ is allowed

2.2.2 String Constants

A string constant is a sequence of printable ASCIl characters enclosed within
double quotes. A quote may be inserted into a string by entering two consecutive
quotes (™). The following are examples of string constants:

"Now is the time for all good men..."
"765.4321"

"y s 1@#S %%E*)+ ="

"Quoth the Raven, "'NEVER MORE!"""

The following are incorrect string constants:

‘Incorrect” Single quotes are not string delimiters
"WOW Second quote missing
"She said, "Hi!"" Second quote is taken as end of string

2.3 Variables

Variables are data items which may have their values changed during the execution
of a program. Like constants, variables may be numeric data or character strings.
Variables may also be grouped into arrays. Within an array they may be accessed
individually by specifying the array name and a subscript. For more information
about arrays, see Section 2.4.

BASIC User Reference Manual
Data Types and Expressions

2.3.1 Numeric Variables

Numeric variables may be INTEGER, REAL, or DECIMAL format. The range of
values which are valid for numeric variables is the same as for numeric constants.
1f, during program execution, an attempt is made to assign a variable to a value
outside that range, a runtime error will result. (The exception to this is when a
computed integer value overflows. An error will be produced only if the sign bit is
changed due to an overflow. Other integer overflow errors are not detected.)

2.3.1.1 Numeric Variable Naming Conventions

Numeric variable names must begin with a letter of the alphabet. This letter may
be followed by as many as 254 alpha-numeric characters or any of the special
characters: @, [,], \ or _. All the characters in a variable name (up to 255) are
used to distinguish it from other variables. The following are valid numeric variable
names:

ONE
Fl2INUM

P 123

VERY_LONG IDENTIFIERS ARE OK
L@PTR

Variable names may not be the same as reserved words used in SofTech
Microsystems Basic. For example, a variable can not be named GOTO. A compiler
error will result if this is attempted. A list of these reserved words apbears in
Appendix A.

2.3.1.2 Numeric Variable Declarations

All numeric variables are assumed to be of type REAL unless otherwise specified.
The default type can be changed by using the ALL clause as shown below:

INTEGER ALL Changes default type to INTEGER
REAL ALL Changes default type REAL
DECIMAL ALL Changes default type to DECIMAL

The ALL statement, if used, must precede the first occurrence of any of the
following statements:

BASIC User Reference Manual
Data Types and Expressions

INTEGER
REAL
DECIMAL
DIM

DEF

‘SUB

Numeric variables can be individually declared to be of a particular type,
regardless of what the default type is by using the INTEGER, REAL or DECIMAL
statements. (Numeric variables can also be declared within the DIM statement, see
section 2.4.2.) The type name is followed by a list of variables separated by
commas as follows:

INTEGER 1,3,K

REAL R

DECIMAL Al,A2,A3,A4,A5

DECIMAL (2) B1,82,83,84,85,86
DECIMAL (-4) C1,C2,C3,C4,C5,C6,C7

The INTEGFR declaration above specifies 1, J, and K as integers. The REAL
statement declares R as a REAL. The rest of the variables are declared to be
DECIMAL numbers. The second and third DECIMAL statements contain an optional
number in parentheses. In the current version, this number has no meaning, and
DECIMAL statements are equivalent to REAL statements.

2.3.2 String Variables

String variables, like numeric variables, may have their values altered during
program execution. A string may contain up to 255 printable ASCIl characters.
Strings are used to hold data for input and output and to express nonnumeric data
such as names, descriptions, etc.

2.3.2.1 String Variable Naming Conventions

String variables are named according to the same conventions as numeric variables.
The only difference is that string variable names must end with a dollar sign. The
following are correct examples of string variables:

ASTRING$
ANOTHER_STRING$
s[221%

A\B\C\$

10

BASIC User Reference Manual
Data Types and Expressions

2.3.2.2 String Declarations

Strings do not have to be declared, but declaring them may save memory space. If
they are not declared, or if the declaration does not specify a size, they are
allocated a default length of 255 bytes at compile time. This allocated space does
not change dynamically during program execution. But a maximum size can be
specified using the DIM statement:

DIM ASTRING$*20

This limits ASTRING$ to a maximum length of 20 bytes. For further information
concerning the DIM statement in this context, see section 2.4.3.

2.4 Arrays

Variables may be grouped together into an ARRAY. The array is given a name, a
number of dimensions, and a size for each dimension. By specifying the array name
followed by the one or more index values, a specific variable within the array may
be accessed. For example, a two dimensional array, AR1, would be refered to as
AR1(4,3) in order to obtain the indicated element. An array may have any number
of dimensions, but the total number of elements may not exceed 32767.

Virtual Arrays are arrays which reside on disk. This allows programs to use large
arrays which will not fit into memory. This type of array is discussed in Chapter
7.

2.4.1 The DIM Statement

In order to declare an array, the DIM statement is used. This statement defines
the number of dimensions and the number of entries within each dimension of the
array.

In the declaration, DIM is followed by the array name. Then, in parentheses, one
or more integers are specified, separated by commas. The array name should follow
the conventions for numeric variable names if it is an array of numeric variables.
Likewise, it should follow the conventions for string variable names if it is an
array of strings.

The integers in parentheses are zero-based. (This may be changed, however, by the
OPTION BASE statement. See Section 2.4.4.) This means that the array can be
indexed from zero up to the number specified, and that the number of entries is
one greater than that number.

More than one name may be defined in a DIM statement, if each name is
separated by a comma.

11

BASIC User Reference Manual
Data Types and Expressions

The following are correct examples of array declarations:

DIM ARI10 (9)

DIM ONE_ELEMENT_ARRAY(0)

DIM S\ARRAY$ (20,20)

DIM MULTI@ (3,7,15,31)

DIM A7(100,10,10),A8(100,10,10)

DIM LARGE(32000), W$(9,9,9), LIST_NUMS(0,17)

1t is not always necessary to declare arrays. If the maximum dimension is less than
or equal to 10 (e.g. DIM A(10,10,5)) then the array may be implicitly declared
when it is first referenced. The default lower boundary for each dimension is 0 and
the default upper boundary is 10. However, it may save considerable space to
declare small multi-dimensional arrays anyway. For example, an integer array of
dimension (2,2,2,2) would only take up 3 to the fourth (81) words of memory. If
undeclared, however, this same array would default to a (10,10,10,10) dimensional
array and take up 14641 words.

2.4.2 Type Specification of Numeric Arrays

All of the arrays declared in Section 2.4.1 above, except for S\ARRAY$ and W§$,
are numeric arrays. The variable type of the entries within those arrays will be
the numeric variable default type (REAL unless otherwise specified by using the
ALL statement). Numeric arrays may be declared to be of a particular type using
either a DIM statement or an INTEGER, REAL, or DECIMAL statement as in the
following examples:

DIM A(7,2), INTEGER B(2,3), C(12,1,0)

DIM REAL D(5,7), DECIMAL E(10,10,10), INTEGER F(0)
INTEGER 1,3,K(7,7,7)

REAL R(12),S

In the first line above, B is an array of type integer. A and C are arrays of the
default type. In the second line, D is a real array, E is a decimal array, and F is
an integer array. In the third line, 1 and J are integer variables and K is an
integer array. The fourth line declares R to be a real array and S to be a real
variable.

A DIM statement may also include single variables. These variables may optionally
be preceded by a type declaration:

DIM A(99,9),B,C(49)
DIM E(4,5), INTEGER F1,F2, G(6,7)
DIM REAL H

The first line above declares arrays A and C and variable B. Both arrays and the

12

BASIC User Reference Manual
Data Types and Expressions

variable are of the default type. The second line declares arrays E and G to be of
the default type. Variable F1 is declared to be an integer and variable F2 is
declared as the default type. In the third line, real variable H is declared.

2.4.3 Size Specification of String Arrays

An array is declared as a string array by naming it according to string variable
naming conventions:

DIM S_ARRAY$(2,3,4)

However each string in S ARRAY$ above will consume 256 bytes of memory. A
maximum size for each string in an array can be indicated by following the
declaration with an asterisk (*) and a number between 1 and 255 inclusive. Also,
string variables can be declared within DIM statements in the same way. The
following are examples:

DIM S_ARRAY$(2,3,4)*20
DIM S1$(2)*10, S2$(20)*11
DIM A$(10,10)*1, B$*25, C$(5,6,7), D$*1

The first line above declares three-dimensional S ARRAY$ to consist of strings
with a maximum length of 20 bytes. The second line declares S1$ and S2$ as one-
dimensional arrays containing strings with a maximum length of 10 and 11 bytes. In
the third line, A$ is a 10 by 10 array of one character strings, B$ is a string
variable with a maximum length of 25, C$ is a three dimensional string array of
256 byte strings, and D$ is a string variable containing at most one character.

This string length specification may occur anywhere tiiat a string declaration is
legal.

2.4.4 The OPTION BASE Statement

Array indices, whether declared in a DIM statement or not, are zero-based by
default. This means that the statement, DIM A(10), declares A to be indexed from
0 to 10. By using the OPTION BASE statement, array indices can be based at 1 or
0:

OPTION BASE 0
OPTION BASE 1

The first statement leaves the indexing base at the default value of 0 and the
second makes the base 1. The OPTION BASE statement may be used, at most,
once in a program. If it is used, it must come before any statement which
declares or references array elements. If 1 is declared to be the base, no
statement may declare or reference an array with an index of zero.

13

BASIC User Reference Manual
Data Types and Expressions

2.5 The LET Statement

The LET statement is used to make numeric or string assignments. The word LET,
which is optional, is followed by the variable to which a value is to be assigned.
This is followed by an equal sign and an expression, the value of which will be
assigned to the variable.

LET statement syntax:

LET numeric_variable = numeric_expression
LET string variable string_expression
numeric_variable = numeric_expression
string_varible = string_expression

LET statement examples:
LET A=l
LET R1=2.0 * (R1+1)
LET S1$="STRING"
LET S2$="ANOTHER "&S1$
A=2
R1=R2+1.0
52$=51%

The variables on the left of the equal sign may be subscripted variables (indexed
arrays). Likewise, the expressions on the right of the equal sign may contain
subscripted variables. Both sides of the LET statement must be of the same type.

2.6 Arithmetic Operators

The arithmetic operators are used to combine numeric constants.and variables
into expressions. The following table illustrates these operators:

SYMBOL OPERATION EXAMPLE
- Negation -A
+ Addition A+B
- Subtraction A-B
* Multiplication A*B
/ Division A/B
b Exponentiation A2

FIGURE 2.6.1 Arithmetic Operators

14

BASIC User Reference Manual
Data Types and Expressions

The unary minus negates the value following it. The four arithmetic operators
perform the standard arithmetic functions. And the exponentiation symbol raises
the first value to the power of the second.

2.7 String Operator

String variables, constants and expressions can be concatenated (joined together
into a single string) by using the the “& operation. When this symbol is placed
between two strings, they are concatenated. In ‘the following example, S1$ is set
equal to "ABCDEFGHIJ":

52$ = "EF" & "G"
S1$ ="ABCD" & S2$ & "HLJ"

2.8 Relational Operators

Relational operators are used to compare two expressions of the same type
(numeric or string). Relational expressions can be employed within control flow
statements. They may also be used to evaluate to the numeric values of -1 for
true and 0 for false. These values (-1 and 0) may then be used within arithmetic
expressions or they may be printed. The relational operators all have the same
precedence. The following table lists them:

SYMBOL OPERATION EXAMPLE
= equal to A =8B
< less than A greater than A>B
<= or =¢ less or equal A <=B
>= or => greater or equal A>=8B
<> or X< not equal A <> B

FIGURE 2.8.1 Relational Operators
The following example shows how relational expressions can be évaluated to
numeric quantities:

DISPLAY 7+8=15; 2 = 2.0/.1; 100 >= 1

-10-1
Comparisons between strings are based on the ASCIl value of their characters. For
example "A BIRD" < "A bird" because the ASCIl value for lower case b is greater

then the value for upper case B. Also "$ZEBRA" <= "AARDVARK" because the
code for $ is less then (or equal to) the code for A. If strings are identical except

15

BASIC User Reference Manual
Data Types and Expressions

that one string has addtional characters, then the longer string is greater: "COW" <
"COwBOY".

2.9 Logical Operators

Logical operators are used within expressions to create results which have the
values of TRUE or FALSE. The three logical operators are NOT, AND and OR.
The following truth table illustrates the actions of these operators:

NOT_ X X AND Y X OR Y

==X
=M= i<
MMM
-7
=

FIGURE 2.9.1 Logical Operators

The NOT operator yields the value which is logically opposite the value of the
argument.

The AND operator produces a TRUE if and only if both arguments are true.
The OR operator produces a FALSE if and only if both arguments are false.
The precedence of these operators is: NOT, AND, OR. This precedence may be

overridden by using parentheses. The following examples illustrate the use of the
logical operators:

A=1

B=2

C=3

IF NOT A > 0 THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE"

IF A <B AND C < B THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE"
IF A<BOR C <B THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE"
IF NOT A<B AND C<B THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE"
IF NOT (A<B AND C<B) THEN DISPLAY "TRUE" ELSE DISPLAY "FALSE"
FALSE

FALSE

TRUE

FALSE

TRUE

These operators can also be used to manipulate integer values. The meaning of the
logical operations on arithmetic bits is given by replacing every F with a 0, and

16

BASIC User Reference Manual
Data Types and Expressions

every T with a 1 in FIGURE 2.9.1. The NOT of an integer is equal to the NOT of
each individual bit within it (the one’s complement value). Likewise, the AND or
OR of two integers is the bitwise AND or OR operation performed on them. For
example:

DISPLAY NOT 0
DISPLAY NOT -2
DISPLAY 1981 AND 255
DISPLAY 1981 OR 255

-1

1
189
2047

Negative one is the bitwise complement of zero. Similarly, one is the complement
of negative two. The number 255 is a byte of all ones. The AND of 255 and 1981
represents the lower byte of 1981. The OR of 255 and 1981 is the upper byte of
1981 and a lower byte of 255.

Floating point numbers may be used with the logical operators. However, they are
converted to integer form before they are operated upon.
2.10 Precedence of Operators

The arithmetic and logical operations discussed in this chapter are evaluated
according to the following priorities:

PRIORITY OPERATION SYMBOL

1 Exponentiation -

2 Unary Minus -

3 Multiplication and Division *,/

4 Addition and Subtraction o

5 Relational Operators EXOREN ERE
6 Logical NOT NOT

7 LLogical AND AND

8 Logical OR OR

FIGURE 2.10.1 Precedence of Operators

Using these priorities, expressions are evaluated from left to right. A portion of an
expression may be placed inside parentheses. In this case, it will be evaluated
separately before being combined with the rest of the expression. Within the
parentheses, the same order of precedence is held. Parentheses may be nested, and

17

BASIC User Reference Manual
Data Types and Expressions

the most deeply nested portion of the expression is evaluated first.

2.11 Evaluation of Expressions

All expressions evaluate to either numeric or string values. (If the result is a
logical value, it is actually stored as a numeric quantity.) The last operator
evaluated, based upon the operator precedence discussed in Section 2.10, determines
what the expression type is.

2.11.1 Arithmetic Expressions

An arithmetic expression is one in which the last operator evaluated is an
arithmetic operation. Any combination of numeric variables, subscripted numeric
variables, numeric constants, or numeric functions along with arithmetic, logical
and relational operators may be combined together to form an arithmetic
expression. The only restriction is that two variables, constants, or operators may
not appear in direct succession. (A unary minus may appear, however, after another
operator; for example A*-B.) The following are correct arithmetic expressions:

A

A+B*C
1.2*A/B
-A/-B

ABC

(A AND B)*-1
(A >= B)+l

String functions and mathematical functions, discussed in later chapters, may also
appear within numeric expressions.

2.11.2 Logical Expressions

There is no short-circuiting done during the evaluation of logical expressions. In the
expression:

A=BANDC>D

both clauses, (A=B) and (C>D), are evaluated even if the first one evaluated is
found to be false. Then the AND operation is performed.

2.11.3 String Expressions
String constants, string variables, and string arrays may be combined with the

string operators described in Sections 2.7, 2.8, and Chapter 5 to form string
expressions. The results of these expressions are string values.

18

BASIC User Reference Manual
Data Types and Expressions

2.11.4 Relational Expressions

Constants and variables may be combined with arithmetic and logical operators to
form relational expressions. The only requirement is that the last operation
performed must be a relational operation. Relational operations are often used
within control flow constructs such as IF THEN ELSE statements.

19

BASIC User Reference Manual
Data Types and Expressions

20

CHAPTER 3
1/0 STATEMENTS

3.1 The PRINT and DISPLAY Statements

String or numeric expressions may be output using the DISPLAY or PRINT
statements. Usually the expressions to be output are constants or single variables.
The formatting of the output can be controlled with these statements.

The PRINT statement directs output to the printer unless another unit is specified.
If there is no printer, the PRINT statement directs its output to the console. The
DISPLAY statement directs output to the console (video terminal). 1If a PRINT
statement is re-directed to the console, it acts on all of the options described in
this chapter. If not, it ignores the following options: ERASE ALL, AT, SIZE and .
BELL. Except for these differences, the two statements are identical. The
description in this chapter of the DISPLAY statement and its options applies
equally to the PRINT statement.

The DISPLAY statement may be used with or without an expression following it:

DISPLAY
DISPLAY expression

If no expression is indicated, then a carriage return is output. Otherwise, the value
of the (numeric or string) expression is output, followed by a carriage return. When
string values are displayed, no automatic formatting is done. Numeric values,
however, are displayed with a leading character and a trailing blank. The leading
character is a space if the value is positive, a minus sign is the value is negative.
The trailing blank is used to separate numbers which are directly adjacent on the
same line. The following are examples of the DISPLAY statement using expressions:

DISPLAY "Roses are red, Violets are blue"
DISPLAY 2+2

Roses are red, Violets are blue
4

The DISPLAY statement may be followed by a list of expressions:
DISPLAY list

A list is several expressions, separated by commas, semicolons, or apostrophes.
These expressions may be mixtures of string and numeric types. The commas,
semicolons, and apostrophes are known as data separators. The effect of each data
separator is different. But ending a list with any of them causes the cursor to stay
on the current line after the DISPLAY statement is executed. In this way, it is
possible to use more than one DISPLAY statement to print characters on a single
line.

21

BASIC Reference Manual
1/O Statements

An output line is divided into display zones which are 16 characters wide. The
comma causes the cursor to advance to the next display zone. 1f the cursor is
currently in the last zone, then it advances to the first zone on the next line.
Data is left-justified within each zone. The following is an example of the use of
the comma as a data separator:

DISPLAY 1,2,3
DISPLAY "DOG","CAT","BIRD"

1 2 3
DOG CAT BIRD

This same effect can be achieved by using separate DISPLAY statements separated
by commas:

DISPLAY 1,
DISPLAY 2,
DISPLAY 3
DISPLAY "DOG",
DISPLAY "CAT",
DISPLAY "BIRD"

1 2 3
DOG CAT BIRD

Using a semicolon between expressions causes NO separation between them:

DISPLAY 1;2;3
DISPLAY "DOG""CAT";"BIRD"

1 2 3
DOGCATBIRD

The spaces between the 1, 2, and 3 represent the leading and trailing blanks which .
always accompany numeric values.

Using an apostrophe between expressions causes a comma to be inserted between
them:

DISPLAY 17273
DISPLAY "DOG"™"CAT""BIRD"

1,2,3
DOG,CAT,BIRD

22

BASIC Reference Manual
1/0 Statements

3.2 Options available with the PRINT and DISPLAY statements

This section discusses the several options which can be used with the DISPLAY and
PRINT statements. These options may be combined to fully format the output as
desired. The list of options follow the DISPLAY or PRINT command. A colon is
placed after the last option, and the expressions to be output are then specified. 1f
more than one of the options ERASE ALL, AT, SIZE, or BELL are used, they must
be in the order shown in this sentence.

3.2.1 The ERASE ALL Option

The ERASE ALL option causes the screen to be cleared before values are
displayed. The following example illustrates the syntax for this option:

DISPLAY ERASE ALL: "DOGS"," CATS"," and lots of BIRDS"
3.2.2 The AT Option

The AT option can be used to indicate a starting line and column number for the
display to appear on the screen. Column and line numbers start at 1. The format
for this option is:

AT (line_number,column_number)

The default line number is 24 (the bottom line on the screen). The default column
number is 1. If a DISPLAY statement which uses an AT option is followed by a
DISPLAY statement which does not, the second statement starts in the default
position regardless of where the first was positioned. The following example
illustrates the use of the AT option:

CcoL=10
DISPLAY AT (12,COL): "Where am 172"

3.2.3 The SIZE Option

The SIZE option can be used to specify the maximum number of characters to be
output by a DISPLAY statement. The format for the SIZE option is:

SIZE (n)

If this option is not used, the default size is large enough to hold all of the
characters to be output, plus enough extra blank spaces to fill the end of the last
line onto which the DISPLAY statement is writing. When this option is used, the
line will be cleared, after the output is performed, only as far as the indicated
size. If it is desired to leave portions of a line intact when displaying to the same

23

BASIC Reference Manual
1/0 Statements

line, this can be done with the SIZE option. The semicolon data separator should
be placed at the end of the display list so that no clearing will be done beyond
the end of the last character being displayed. Strings which have a length greater
than the specified size will be truncated on the right. If a negative size is given,
its absolute value will be used. The following example illustrates the use of the
SIZE option:

DISPLAY SIZE(38): "There are 38 characters in this string"
3.2.4 The BELL Option

The BELL option causes the terminal bell to ring when the display statement is
executed. The following are examples:

DISPLAY BELL: "There were bells on the hills"
DISPLAY AT(10,10) BELL: "But I never heard them ringing"

3.2.5 The USING Option

The USING option controls the output of a DISPLAY statement. (The USING option
may also be employed within the ASSIGN statement in conjunction with Virtual
Arrays, see Section 7.1.7, and within the PRINT statement in conjunction with file
1/0, see Section 7.2.1.) It has the following format:

USING line_number
USING string_expression

The line number is the number of a line containing an IMAGE statement (see
Section 3.2.6). The string expression contains the elements of an IMAGE statement.

1f a DISPLAY statement employs a USING statement, then the list of expressions
to be displayed must use commas as data separators. Also, the only data separator
that may terminate this list is a semicolon. The following illustrates the use of the
USING option:

NUM=999.999
FORMATS="###. 4"

10 IMAGE it dHE
DISPLAY USING "###.7##":NUM
DISPLAY USING FORMAT$:NUM
DISPLAY USING 10:NUM

999.99

999.99
999.99

24

BASIC Reference Manual
1/0 Statements

All of the above statements produce the same output. If a DISPLAY statement list
contains more expressions than the corresponding IMAGE statement contains
formats, a new line is begun. This new line is formatted according to the same
IMAGE statement. If there are fewer expressions than IMAGE formats, the
DISPLAY terminates after the last expression.

3.2.6 The IMAGE Statement

The IMAGE statement is referred to by line number within the USING clause of a
DISPLAY or PRINT statement. 1t provides a format for the expressions to be
output. 1t has the format:

IMAGE string_constant

The quotes around the string constant are optional. Text may be inserted into the
string constant and this text will appear in exactly the same position in the actual
output. Text consists of all characters which are not format control characters.

3.2.6.1 Format Control Characters
There are nine format control characters: #, %, -, +, ., <>, ,, $, and *.
The # (number sign) indicates the place of a data character.

The * (exponent sign) indicates how many places an exponent should fill. 1f there
are more places indicated then the actual exponent has, leading zeros are inserted.
Either four or five exonent signs should be used. 1f less than four exponent signs
are used, they will be printed as a literal string rather than used to indicate an
exponent field.

The - (minus sign) specifies the position of the minus sign if the value is negative.
If the value is positive, this position will be left blank. The minus sign may be
placed before or after the value.

The + (plus sign) may be placed to the left of a numeric field. It indicates that
positive numbers are to be displayed with a plus sign preceding them. Negative
numbers are displayed with a minus sign as usual.

The . (decimal point) is used to indicate the position of the decimal place.

The <> (angle brackets) are used to enclose numeric IMAGE fields if it is desired
to have negative numbers appear within angle brackets. Positive numbers will
appear without the brackets.

The , (comma) will produce a comma at the specified position within a numeric

value.

25

BASIC Reference Manual
1/0 Statements

The $ (dollar sign) will cause a dollar sign to appear at the beginning of the
indicated field. A $$ (double dollar sign) allows the dollar sign to float (otherwise
it is left justified).

Two ** (asterisks) produce asterisk fill wherever the numeric value does not fill
the field. This is used in protecting checks.

The following is an example of the use of these format characters:

A=999.999
B=88.8888
S$="OCEAN"

10 IMAGE #i###H# BLUE <#HFEHE>
DISPLAY USING 10:A,B
DISPLAY USING 10:5%,-B

1000 BLUE 88.89
OCEAN BLUE <88.89>

3.2.6.2 Fields Within IMAGE Definitions

An integer field of an IMAGE definition or string has no decimal point. 1t may
have a sign. If the value overflows the field, asterisks will be produced instead of
the value. The integer is right-justified within the field, and is rounded. The
following example illustrates integer fields:

10 IMAGE "JHE#E THHEHEE fHHE"
1=999 :: J=-88 :: K=7777
DISPLAY USING 10: 1,3,K

999 -88 xxx

A decimal field consists of a string of number signs and may have a plus/minus
sign. A decimal point may appear within it, just before it, or just after it. The
value is rounded according to the quantity of number signs which follow the
decimal point in the IMAGE format. The number is right-justified within the field.
The decimal point is placed in the position indicated in the field definition. If the
number overflows, asterisks are displayed instead of the value. The following
example illustrates decimal fields:

10 IMAGE "dHHFHE HFFFF FFFY
1=111.11 :: J=-88.888 :: K=7777.7777
DISPLAY USING 10: 1,J,K

111 -89 x*x

26

BASIC Reference Manual
1/0 Statements

An exponent field is a series of four or five exponent signs (*) which reserve space
for the exponent. The number is rounded similarly to decimal fields. A leftmost
plus/minus sign reserves space for the appropriate sign. If the minus sign is used, a
blank will appear if the value is positive. There must be at least one character (#,
+ or -) to the left of the decimal point if the number to be displayed is negative.
The following example illustrates exponent fields:

20 IMAGE "HEAHHHHE™ HHEAHHE RS
A=111.111 :: B=-66.666 :: C=55.5 11 D=-.077
DISPLAY USING 20:A,B,C,D

.11111E+03 -6.667E+01 56.E+00 -.78E-01

A string field may be indicated by any sequence of control characters. If the
string is shorter than the indicated field, blank spaces will be padded on the right.
1f the string exceeds the specified length, it will be truncated on the right.

Fields consisting of characters other than the control characters are taken as text
to be literally inserted into the displayed output.

3.2.6.3 The PUNCTUATION Statement

The PUNCTUATION statement can be used to alter the monetary symbols for
currency ($), digit separators (,) and decimal point (.). This statement takes the
following form:

PUNCTUATION string expression

The first character in the string expression is used for the currency symbol. The
second is used for the decimal point. The third character is used for the digit
separator symbol. The default values for these are the same as they would be if
the following statement was executed:

PUNCTUATION "$.,"
The following example demonstrates the use of the PUNCTUATION statement:
10 IMAGE $$###,##H# 4+

AMOUNT=999999.25

DISPLAY USING 10:AMOUNT

PUNCTUATION "L,."

DISPLAY USING 10:AMOUNT

$999,999.25
L999.999,25

27

BASIC Reference Manual
1/O Statements

3.3 The INPUT Statement

The INPUT statement accepts values typed in from the keyboard during program
execution. The basic form of this statement is:

INPUT variable

A question mark, followed by a blank space, appears when this statement is
executed. When a value is entered, followed by a <return>, the variable is assigned
accordingly. If it is a string variable, the input will be interpreted as a string. 1f
it is a numeric variable, the input must represent a correct numeric value. Leading
and trailing blanks are removed from string variables.

Several variables may be included within the INPUT statement if they are
separated by commas. The keyboard input must be made on a single line and the
input values must be separated by commas. All the variables must be within a
single INPUT statement for each line input form the keyboard. This last constraint
does not apply when input is being done from files.

A quoted string followed by a colon may precede the variable list. The string will
be used as a prompt to replace the question mark. If no prompt and no question
mark are desired, a null string (") may be used. The following are examples of the
INPUT statement:

INPUT RATE
INPUT "":HEIGHT,WIDTH,NAME(1)
INPUT "Type a character string:":STRING1$

3.3.1 The AT Option With the INPUT statement

The AT option may be used with the INPUT statement in a manner similar the
DISPLAY statement. The cursor is positioned according to the AT clause
specifications. The following are examples of the AT clause:

INPUT AT(10,10):PAY
INPUT AT(10,10)"Enter Pay":PAY

3.3.2 The SIZE Option With the INPUT statement

The SIZE option can be used to specify the maximum number of characters that
may be input. If the number specified is positive, the line will be cleared before a
prompt for input is made. If that number is negative the line will not be cleared.
The bell will sound if more characters are entered than the SIZE clause allows.
The default size is the remainder of the line after the input prompt. If a size is

28

BASIC Reference Manual
1/0 Statements

specified, it does not include the length of an input prompt if one is issued. The
following are examples of the use of the SIZE option with the INPUT statement:

INPUT AT (10,18) SIZE(2),"What year?": YEAR
INPUT SIZE(-3):S$

If the input exceeds the specified size, the bell will sound for each extra character
typed until a <space> or <return> is input.

3.3.3 The BELL Option With the INPUT statement

When the BELL option is used with the INPUT statement, the bell will ring,
prompting the user to input. The following is an example of this:

INPUT AT(10,20) BELL,"l hear bells, do you?": S$

3.4 The ACCEPT Statement

The ACCEPT statement is used like the INPUT statement, except that it can take
only one variable. The ACCEPT statement reads the entire line as input and does
not edit out commas or quotes. Since commas are used as data separators for the
INPUT statement, the ACCEPT statement is useful because a comma can be a
part of an input string. The ACCEPT statement, therefore, is most useful when
reading into a string variable. The INPUT statement options described above may
also be used with the ACCEPT statement. The following are examples of the
ACCEPT statement:

ACCEPT S$
ACCEPT "What Company? ": CO$
ACCEPT AT(10,10) SIZE(2): DAY_OF MONTH

3.5 The DATA Statement

The DATA statement defines values that will be used as data within a program.
These values may be numeric or string constants. Quotes may optionally be used to
enclose string data. Strings must be enclosed in quotes if commas are contained
within them. Otherwise, commas are interpreted as data separators. Also, leading
and trailing blanks will be removed from strings which are not within quotes. The
following is the DATA statement format:

DATA list
The list is one or more constants separated by commas. These constants may be

numeric or string types.

29

BASIC Reference Manual
1/0 Statements

Several DATA statements may appear within a program. They may be placed
anywhere in the program source text and need not be grouped together. As one
DATA statement is exhausted, the next one in the file will be used. The following
are examples of the DATA statement:

DATA 20,40,60,80
DATA 100,120,140,160

DATA ."CALIFORNIA"
DATA "TEXAS"

3.6 The READ Statement

The READ statement uses the values specified in DATA statements. 1t assigns
these values to variables which are listed in the READ statement. The READ
statement variables may be numeric or string and they may be subscripted or
unsubscripted. The DATA statements will be used in the order that they appear in
the source text. The specified variables and the corresponding data values must be
of the same type and have the same range. The READ statement has the following
form:

READ list
The list is one or more variables separated by commas.

1If a READ statement is encountered and no corresponding DATA statement has
been declared, or if all the DATA statements have been exhausted, then an error
will occur. The following illustrates the use of the READ statement:

READ 1,J
DISPLAY 1;3;
READ 1,J
DISPLAY 153
DATA 2,4,6,8

2 4 6 8

30

BASIC Reference Manual
1/0 Statements

3.7 The RESTORE Statement

During program execution an internal data pointer is kept. This pointer indicates
the next DATA statement value to be read. The RESTORE statement resets this
pointer to the first DATA statement in the program. Alternatively, the line number
of a particular DATA statement may be specified, and the RESTORE statement
will reset the data pointer to that statement. After the RESTORE statement is
executed, the next READ statement will take its input from where the reset data
pointer indicates. The RESTORE statement takes the following forms:

RESTORE
RESTORE line_number

1f a line number is indicated and that line does not contain a DATA statement,
then the next line which does contain a DATA statement is used. If there is no
DATA statement on the indicated line or following it, then an error will occur at
the next READ statement. The following illustrates the use of the RESTORE
statement:

DATA 1,2
20 DATA 3,4
30 DATA 56
READ 1,3,K,L
DISPLAY L;J5K;L
RESTORE
READ 1,J,K,L
DISPLAY 1;3;K;L
RESTORE 20
READ 1,J,K,L
DISPLAY 1;J;K;L

W
sSNN
RV
[o W S S

31

BASIC Reference Manual
1/0 Statements

CHAPTER 4
CONTROL FLOW STATEMENTS

4.1 The GOTO Statement

The GOTO statement unconditionally transfers control to a specified line number.
It has the following format:

GOTO line_number
GO TO line_numer

The following sample program shows the use of the GOTO statement:

1:1

10 DISPLAY 1
1=1*2
GOTO 10

1 2 4 8 16 ..

4.2 The ON-GOTO Statement

The ON-GOTO statement allows a multiple switch mechanism for control flow. This
statement has the format:

ON expression GOTO line_num_1, line_num 2, line_num 3 ...

The expression is any valid numeric expression. 1f necessary it will be rounded to
an integer. If the expression evaluates to 1, control is transfered to the first line
number. If the expression evaluates to 2, control is transfered to the second, etc.
1If the expression is less than 1 or greater than the number of listed line numbers,
an error will result. The following example illustrates the use of the ON-GOTO
statement:

32

BASIC User Reference Manual
Control Flow Statements

1=0
10 1=1+1
ON 1 GOTO 20,30,40
20 DISPLAY "AT LINE 20
GOTO 10
30 DISPLAY "AT LINE 30
GOTO 10
40 DISPLAY "AT LINE 40
END

AT LINE 20
AT LINE 30
AT LINE 40

4.3 The IF-THEN-ELSE Statement

The IF-THEN-ELSE statement provides conditional transfer of control flow based on
the value of a relational expression. It has the following forms:

IF condition THEN action
IF condition THEN action_a ELSE action b

The condition is a relational expression. If the expression evaluates to true, the
THEN clause is executed. Otherwise, the ELSE clause is executed (if there is no
ELSE clause, the next statement in the program is executed). The action is either
a single executable statement, or a line number to which control will be
transfered. The entire statement must fit on one line (or several lines joined
together with comment delimiters, see Chapter 1). The following example
demonstrates the use of this statement:

S1$="ABC"

'52$="123"

IF S1$=52$ THEN 10 ELSE 20
10 DISPLAY "WHAT 27"

STOP
20 DISPLAY "GOOD"

END

GOOD

The 1F clause condition may be a numeric expression. In this case the resulting
value is taken to be false if its least significant bit is zero, and true otherwise.

33

BASIC User Reference Manual
Control Flow Statements

A=10
IF A=10 THEN GOOD=1 ELSE GOOD=0
IF GOOD THEN DISPLAY "GOOD" ELSE DISPLAY "BAD"

GOOD

4.4 The FOR-TO-STEP and NEXT Statements

These statements are used to create programming loops. They have the following
formats:

FOR variable = init_val TO final_val

FOR variable = init_val TO final_val STEP increment
NEXT

NEXT variable

The variable is any subscripted or unsubscripted numeric variable. If it is a
subscripted variable such as A(10,J), its actual location is confirmed the first time
the loop is executed and does not change within the loop. Init_val, final_val and
increment are any valid numeric expressions. They are also bound at the first
execution of the loop, and do not change. When the FOR statement is first
executed, the variable is assigned the value of init_val. When the NEXT statement
encountered, the value of increment is added to it. If no increment is specified, 1
is added. 1f the value of the increment is positive and the new value of variable
does not exceed final val, the loop is re-executed. Likewise, if the value of the
increment is negative and the new value of variable is not less than final val, the
loop is performed again. -

The loop consists of those statements which lie between the FOR statement and
the NEXT statement. It is possible that the loop will never be executed if the
increment is positive and final_val is less than init_val, or if the increment is
negative and final val is greater than init val.

The NEXT statement may be followed by the loop variable. If this is the case,
that variable must match the variable specified in the preceding FOR statement. 1f
the loop variable is an array element, the NEXT statement should only specify the
array name.

The following demonstrates the use of these statements:

34

BASIC User Reference Manual
Control Flow Statements

FOR J=0 TO 10 STEP 2
DISPLAY " J="%
DISPLAY J;

NEXT

J=0 J=2 J=4 J=6 J=8 J=10
FOR statement loops may be nested as follows:

FOR 1=1 TO 10

FOR J(2,3,4)=A TO B STEP C

NEXT J

NEXT 1

4.5 The GOSUB and RETURN Statements

Basic programs may have procedure blocks within them. A procedure block is a
group of statements which are called by the GOSUB statement. When a RETURN
statement is encountered the block is exited and execution is continued at the first
statement after the GOSUB call. These statements have the following format:

GOSUB line_number

RETURN

The line_number indicates the start of the procedure block. When the RETURN is
encountered the block is exited. The following example illustrates the use of these
statements:

35

BASIC User Reference Manual
Control Flow Statements

1=10

J=20
GOsuB 100
1=100

J=200
GOSsuUB 100

100 DISPLAY 133
DISPLAY 143
RETURN

10 20 30
100 200 300

Procedure blocks may be nested in the following fashion:

1=10
GOSUB 100
1=20
GOSsuB 100

100 IF 1=20 THEN GOSUB 200 ELSE DISPLAY "In block 100"
DISPLAY "This is the second statement in block 100"
RETURN

200 DISPLAY "In block 200"
RETURN

In block 100

This is the second statement in block 100

In block 200

This is the second statement in block 100
4.6 The ON-GOSUB Statement

The GOSUB statement has a computed format similar to the computed GOTO
statement:

ON expression GOSUB line_l1, line 2, ...

1f the expression is equal to 1, control is transfered to the first line indicated. If

36

BASIC User Reference Manual
Control Flow Statements

the expression is equal to 2, the second line indicated is chosen, etc. Like the
computed GOTO statement, an error will result if the expression is less than one
or greater than the number of listed line numbers. The following example
illustrates the use of the computed GOSUB statement:

1=1

10 ON 1 GOSuB 100,200,300
1=1+1
IF 1 <= 3 THEN 10

100 DISPLAY "Block 100"
RETURN

200 _ DISPLAY "Block 200"
RETURN

300 DISPLAY "Block 300"
RETURN

Block 100
Block 200
Block 300

4.7 The END and STOP Statements

The END statement is used to indicate that the end of a program has been
reached. 1t must be the last statement in a program. 1t has the format:

END

The STOP statement causes execution to terminate. There may be more than one
STOP statement in a program. It has the form:

STOP
The following illustrates the use of these statements:

ACCEPT "Enter a number'": 1
IF1>0 THEN 10
DISPLAY 1
STOP
10 1=-1
DISPLAY 1
END

37

BASIC User Reference Manual
Control Flow Statements

CHAPTER 5
STANDARD FUNCTIONS

5.1 The Numeric Functions
The numeric functions take as an argument a numeric constant, variable, or
expression. These functions may be used within assignment statements, PRINT or
DISPLAY statements, ON statements, and function definitions.
5.1.1 The ABS Function
The ABS function returns the absolute value of the argument. A nonnegative
argument will be returned unaltered. The following is an example of the ABS
function:

1=2

J=-3

DISPLAY ABS(1); ABS(J)

2 3
5.1.2 The SIN Function
The SIN function returns the sine of the argument passed in radians. In order to
convert an angle from degrees to radians, multiply the number of degrees by
P1/180. The following example illustrates the SIN function:

1=25.0
DISPLAY SIN(1)

-.13235175
5.1.3 The COS Function
The COS function returns the cosine of the argument passed in radians. In order to
convert an angle from degrees to radians, multiply the number of degrees by

P1/180. The following example illustrates the COS function:

1=25.0
DISPLAY COS(1)

.99120292

38

BASIC User Reference Manual
Standard Functions

5.1.4 The TAN Function

The TAN function returns the tangent of the argument passed in radians. In order
to convert an angle from degrees to radians, multiply the number of degrees by
P1/180. The following example illustrates the TAN function:

1=25.0
DISPLAY TAN()

-.1335264
5.1.5 The ATN Function
The ATN (arctangent) function returns the angle in radians, which has the tangent
equal to the argument passed. If degrees are desired, multiplying the output of the
ATN function by 180/Pl performs the conversion. The following example illustrates
the ATN function:

1=25.0
DISPLAY ATN()

1.5308176
5.1.6 The EXP Function
The EXP function yields the value of e, the base of natural logarithms, raised to
the power of the argument passed. The following example illustrates the EXP

function:

1=25.0)
DISPLAY EXP()

72005171000.0
5.1.7 The LOG Function

The LOG function yields the natural logarithm (base e) of the argument passed.
The following example illustrates this function:

1=25.0
DISPLAY LOG()

3.2188754

39

BASIC User Reference Manual
Standard Functions

5.1.8 The INT Function

The INT function returns the largest integer which is not greater than the
argument:

DISPLAY INT(25.9); INT(-3.2)
25 -4
5.1.9 The SGN Function

The SGN function returns 0 if the argument is zero, 1 if the argument is positive,
and -1 if the argument is negative:

l:O

J=749

K=-1024

DISPLAY SGN(1); SGN(J); SGN(K)

0 1-1
5.1.10 The SQR Function
The SQR function yields the square root of the value passed. If the argument is
negative, an error results. The following example illustrates the use of the SQR

function:

1=25
DISPLAY SQR(1)

5
5.1.11 The RND Function and RANDOMIZE Statement

The RND function produces evenly distributed pseudo-random numbers which fall in
the range X: 0 <= X < 1. It has the format:

RND

The RANDOMIZE statement can be used to specify a "seed value" which will
generate a new sequence of numbers. It has the following format:

RANDOMIZE numeric_expression
RANDOMIZE

40

BASIC User Reference Manual
Standard Functions

The same sequence of values will be produced by the RND function in different
programs whenever no RANDOMIZE statement is used, or whenever there are two
occurrences of the RANDOMIZE statement with the same seed value. If the
RANDOMIZE statement is used without specifying a value, the seed value will be
taken from the real-time clock. If there is no clock, the user will be prompted to
enter a seed value. This will provide for an uncontrolled sequence of numbers.

The following example illustrates the use of these statements:

RANDOMIZE (.12345678)

FOR 1=1 TO 5
DISPLAY RND

NEXT 1

6213
.97039985
.41409874
.51999116
.2612381

5.2 String Functions

The string functions are used in conjunction with string variables. These functions
may be used within assignment statements, PRINT or DISPLAY statements, ON
statements, and function definitions.

5.2.1 The ASC Function

The ASC function returns the decimal value of the ASCIll code for the first
character in the string argument. It has the format:

ASC (string)

The string may be any valid string expression. The following example illustrates the
use of the ASC function:

S$="a
DISPLAY ASC(s$)

38
5.2.2 The BREAK Function
The BREAK function finds the first character in a string that appears in a second

string. 1t has the format:

41

BASIC User Reference Manual
Standard Functions

BREAK (string_1, string_2)

Strings 1 and 2 are any valid string expressmns. This function compares the first
character in string_l to all the characters in string 2. If there is no match, it
compares the second character in stnng 1 to all the characters in string_2, ete. It
returns the number of characters in string_1 which did not match any character in
string_2 before a matching character was found. If no match was found, it returns
the total number of characters in string 1. The following example illustrates this
function:

51$="ABC"

s2$="COwW"

S3$TXXXX1"

DISPLAY BREAK (51$,52%)
DISPLAY BREAK (52%$,51%)
DISPLAY BREAK (51$,53%)
DISPLAY BREAK (S3$,51%)

VWO N

5.2.3 The SPAN Function

The SPAN function compares the characters in one string with the characters in a
second string until a character in the first string is not found in the second string.
It has the format:

SPAN (string_l1, string 2)
String_l and string 2 are any valid string expressions. Consecutive characters of
string_ 1 are compared to characters in string 2. When a character in string 1 is

found which is not in string_ 2, SPAN returns the number of characters that did
match. The following example shows the use of the SPAN function:

S51$="$$$ Hi there"
52$=n$v|
DISPLAY SPAN(51$,52%)

3

42

BASIC User Reference Manual
Standard Functions

5.2.4 The LEN Function

The LEN function yields the number of characters in the string passed. It has the
following format:

LEN (string)

The string is any valid string expression. The following example shows the use of
the LEN function:

51$="ABC"

52$="ABCDEF GHIJIKLMNOPQRSTUVWXY Z"
DISPLAY LEN (51%)

DISPLAY LEN (52%)

3
26

5.2.5 The NUMERIC Function

The NUMERIC function will determine whether or not the string passed represents
a valid number. A -1 will be returned if it does, and a 0 will be returned if it
does not. 1f a string represents a valid number, it may be passed to the VAL

function (see Section 5.2.6). The following example illustrates the use of the
NUMERIC function:

DISPLAY NUMERIC ("1234"); NUMERIC ("12ABC")

-1 0
5.2.6 The VAL Function
The VAL. function returns the numeric value of the string argument. Leading and
trailing blanks are permitted. Any string expression which is accepted by the
NUMERIC function (see Section 5.2.5) may be passed to the VAL function without
error. The following example illustrates the use of the VAL function:

S$="1.234"

K=VAL(S$)

DISPLAY K+0

1.234

43

BASIC User Reference Manual
Standard Functions

5.2.7 The STR$ Function
The STR$ function provides a counterpart to the VAL function. The STR$ function
is passed a numeric value and returns the corresponding string value. 1t has the
format:

STR$(numeric_expression)
The string returned is identical to the numeric value as it would appear on the
console, i.e. it is preceded by a blank space or a minus sign, etc. The following
example illustrates the use of the STR$ function:

1=1.234

S$=STR$()

DISPLAY (S$)

1.234
5.2.8 The POS Function

The POS function is used to determine the position of one string within another. It
has the following format:

POS (string 1, string 2, start)
String_1 and string_2 are any valid strings, and start is a numeric value. This
function returns the position of the first occurrence of string 2 within string 1. The
search will begin at character position start within string_l. Start is rounded to an
integer value if necessary. If string 2 is not found within string 1, a 0 will be
returned. The following example illustrates the POS function:

DISPLAY POS('ROW ROW ROW YOQUR BOAT", "ROW", 1)
DISPLAY POS("ROW ROW R@W YOUR BOAT", "ROW", 2);

1 5
5.2.9 The RPT$ Function

The RPT$ function returns a string which is a specified number of repetitions of
the argument string. It has this format:

RPT$ (string, numeric_expression)
The string is any valid string. The numeric expression may evaluate to any

nonnegative number less than 256. The string returned is that number of repetitions

44

BASIC User Reference Manual
Standard Functions

of the string passed. If the resulting string has a length greater than 255 an error
will result. The following example shows the use of this function:

DISPLAY RPT$("Cats ",3)
Cats Cats Cats
5.2.10 The UPRC$ Function

The UPRC$ function changes all lowercase letters in the string passed to upper
case letters. Nonalphabetic characters remain the same. The following example
illustrates the use of this function:

S$$="Once upon a time..."
DISPLAY UPRC$(S$)

ONCE UPON A TIME...
5.2.11 The CHR$ Function

The CHR$ function takes a numeric argument, the value of which must fall
between 0 and 255 inclusive. It returns a single-character string whose ASCIl value
is equal to that number. This complements the ASC function (see Section 5.2.1).
Special control characters within DISPLAY or PRINT statements can be generated
with this function. The following example shows the use of this statement:

DISPLAY CHR$(65)
A

5.2.12 The SEG$ Function

The SEG$ function extracts a segment of a string. It has the following format:
SEG$(string, position, length)

The string is any valid string expression. Position and length are numeric
expressions which will be rounded to integers if necessary. Starting at position
characters into the string, length characters will be extracted by the SEG$
function. If position is less than or equal to zero an error will result. If position is
greater than the length of the string, a null string will be returned. If length is
less than 0, an error will result. If length is equal to 0, a null string will be
returned. 1f length plus position are greater than the remaining portion of the
string, all of the string will be extracted starting at position. The following is an
example of the use of the SEG$ function:

45

BASIC User Reference Manual
Standard Functions

S$="But don’t you step on my Blue Suede Shoes..."
DISPLAY SEG$ (S$,26,16)

Blue Suede Shoes

5.3 Miscellaneous Functions

The remaining standard functions discussed in this section are used in the same
way as numeric and string functions.

5.3.1 The DAT$ Function
The DAT$ function returns the month, day and year in the form:
month/day/year

Month, day, and year are two-digit numbers. The following example displays the
date using this function:

DISPLAY DAT$
02/16/81
5.3.2 The FREESPACE Function

The FREESPACE function returns the number of bytes available in memory. 1t has
the following format:

FREESPACE(0)
If there were 5000 bytes available, the following would occur:

DISPLAY FREESPACE(0)

5000
5.3.3 The INKEY and INKEY$ Functions
The INKEY function always returns zero. The INKEY$ function reads and removes
a character from the keyboard input buffer, and returns a string consisting of that
character. These functions have the following formats:

INKEY(0)

INKEY $(0)

46

BASIC User Reference Manual
Standard Functions

The following example shows the use of the INKEY$ function:

S$=INKEY $(0)
5.3.4 The EOF Function

The EOF function is used ‘to determine whether or not the end of a file has been
read. It has the following format:

EOF (X)

X is a numeric expression that evaluates to the file number which was assigned
when the file was opened. (See Chapter 7 for further information about files.) A
zero is returned by the EOF function if the last record of the file has not yet
been read. A 1 is returned if the last record has been read. A 2 is returned if an
attempt has been made to read beyond the end of the file. A 4 is returned if the
specified file number is not in use.

5.3.5 The FTYPE Function

This function always returns 0. The type of a file is determined by the name
associated with it. See Chapter 7 for further information on files.

5.3.6 The TAB Function

The TAB function advances the cursor or pﬁnter head to a specified position. It
has the following form:

TAB(position)

Position is the column number where the next output will begin. The position may
be a numeric constant, variable, or expression. This number will be rounded to an
integer if necessary. 1t must be nonnegative, and the value actually used is this
number modulus the output width of the device. If the cursor is already past the
specified position, it will be advanced to that position on the next line. The
following illustrates the use of this function:

DISPLAY TAB(10)%;CAT;
DISPLAY TAB(12);CAT;

CAT
CAT

47

BASIC User Reference Manual
Standard Functions

5.3.7 The ERR Function
The ERR function returns an integer error number which indicates the last
exception which took place. If there has been no error, a zero is returned. The
following illustrates the use of the ERR function:

IF ERR > 0 THEN DISPLAY "ERROR ";ERR
5.3.8 The TIME$ -Function
The TIMES$ function returns a string which represents the current time based on
the real time closk (if the computer is equipped with one). The following example
shows the use of this function:

DISPLAY TIME$

11:24:10

This call to TIME$ yielded 24 minutes and 10 seconds after 11.

48

BASIC User Reference Manual
Standard Functions

CHAPTER 6
USER-DEFINED FUNCTIONS AND SUBROUTINES

6.1 Functions

Functions are defined using the DEF and FNEND statements. A function consists of
one or more statements which are executed each time the function is called. A
function may have parameters passed to it, and it may have local variables.
Functions may also reference variables which are global to them. In the body of
the function, a value is assigned to the function name. This value will be evaluated
when the function is called, and then returned as the value of the function. A
function may call itself and other functions recursively. Subroutines may also be
called by functions and call functions in the same way (see Section 6.2). Functions
and subroutines may be nested to any depth.

6.1.1 The DEF Statement

The DEF statement is used to indicate a function definition. It has the following
formats:

DEF func_name

DEF func_name (param_list)

DEF func_type func_name

DEF func_type func_name (param list)

The func_type and param_list are optional and are described in the following
paragraphs.

For single-statement functions, the DEF statement defines the entire function. For
multiple-statement functions, the DEF statement defines the function name, type,
and parameters. Function definitions are commonly placed at the beginning of a
program. The following example shows the use of the DEF statement to define a
single statement-function:

DEF A_FUNC(,J,K)=1*J*K+200
A_FUNC is the name of this function. 1, J, and K are parameters passed to it. The
specified number of parameters must be passed each time the function is called.

The value returned is the expression on the right side of the equal sign. The
following is an example of a multiple statement function-definition:

49

BASIC User Reference Manual
User-Defined Functions and Subroutines

DEF A FUNC(1,3,K)
A_FUNC=1*J*K+200
FNEND

This function is equivalent to the one line function above. If the function name is
assigned a value more than once in the body of the function definition, the last
assignment before the execution of the FNEND statement determines the runtime
function value.

Function parameters are always passed by value. (Subroutine parameters are passed
by reference, see Section 6.2.) Any number of parameters may be passed to a
function. If necessary, the comment delimiters (* and *) may be used to comment
out the end of the line so that more than one line may be used to declare the
parameters. The parameters may be subscripted variables. In this case, they are
defined exactly as they would be within a DIM statement. The following illustrates
the use of comments to extend parameter lists and subscripted variables within
parameter lists:

DEF A_FUNC(A,B,C,D,E,F,G,H,l, (*
*) J,K,L,M)
DEF A FUNC(A(3,4), B$(S)*4)

The function name may be any legal variable name which corresponds to the
function type (numeric or string). If the function returns a numeric value, the

function type may be optionally specified as INTEGER, REAL or DECIMAL. For
example:

DEF INTEGER A _FUNC (1,J,K)=1*J*K+200
DEF REAL B FUNC (1,3,K)=I*J3*K+200

String functions may be defined to return a string that has a maximum length:
DEF MONTH$ (JULIAN)*3

6.1.2 The FNEND Statement

The FNEND statement indicates the end of a multiple statement function

definition. This statement must be the last statement within the function body. A

single statement function does not require an FNEND statement. The following
example illustrates the use of this statement:

50

BASIC User Reference Manual
User-Defined Functions and Subroutines

DEF F

FNEND
6.1.3 Calling Functions

User-defined functions, like the standard functions, may appear any place an
expression of the function type is permitted. The type and number of parameters
specified in the function definition must be passed at the call. An array element
or an entire array may be passed (or any other type of variable which matches the
definition). Only the array name is specified when an entire array is passed. The
following are examples of function calls:

1=FUNC1(1,3,K)

S$=FUNC2$(S1_ARRAY$(,J), 52_ARRAYS, INT)
DISPLAY FUNC3

DEF FUNC4(1)=1*FUNC3

6.2 Subroutines

Subroutines are similar to functions. There are three differences between them.
First, the subroutine name may not be assigned a value as in a function. Rather
than being used within assignment statements like functions, subroutines are called
using the CALL statement (see Section 6.3). Second, parameters are passed to
subroutines by reference (not by value as they are to functions). This means that if
an assignment is made to a parameter within a subroutine, the contents of the
actual location of that variable within the caller will be altered. And third, a
subroutine may not reference variables which are global to it (see Section 6.4).
This includes other subroutines or functions.

Subroutines, like functions, may be nested to any depth. Subroutines may call
themselves recursively. Subroutines may also have any number of parameters.

6.2.1 The SUB Statement

Subroutines are defined using the SUB statement. The SUB statement has the
following formats:

SUB subr_name
SUB subr_name (param_list)

This statement is similar to the DEF statement for functions (see Section 6.1.1).

51

BASIC User Reference Manual
User-Defined Functions and Subroutines

Like functions, this heading is followed by one or more statements. The parameter
list follows the same rules as for functions.

6.2.2 The SUBEND and SUBEXIT Statements

Subroutines are terminated with the SUBEND statement in the same way that
functions are terminated with the FNEND statement. But subroutines must always
include the SUBEND statement, unlike one-line functions which do not need the
FNEND statement. A subroutine may be specified on a single line by using double
colons to separate statements. The SUBEND statement must be the last statement
of subroutine.

There may be zero or more SUBEXIT statements within the subroutine body. When
a SUBEXIT statement is encountered, the subroutine is exited in the same manner
as it would be had the SUBEND statement been executed. The following examples
illustrate the use of the SUBEND and SUBEXIT statements:

SUB S1 (A) =2 A=l :: SUBEND

suB sz 1,J)
IF 1=J THEN 100

.

SUBEXIT
100 .

SUBEND

6.3 The CALL Statement
The CALL statement is used to invoke a subroutine. It has the following formats:

CALL subroutine_name
CALL subroutine_name (param_list)

When the subroutine returns, execution resumes at the statement immediately
following the CALL statement. The number and type of the parameters within the
CALL statement must match the definition of the subroutine. The actual variables
passed as parameters may be altered by the subroutine. The following examples
demonstrate the CALL statement;

CALL suBl
CALL suB2 (1,3,K)

52

BASIC User Reference Manual
User-Defined Functions and Subroutines

CALL SUB3 (A(L,J), S ARRAY$(,))

6.4 Local Variables and Parameters

Parameters and local variables are valid only within the body of the function or
subroutine. Numeric parameters may be defined to be INTEGER, REAL, or
DECIMAL by using those statements when the parameters are declared. String
parameters may be declared using the DIM statement if desired. Local variables
are declared using the INTEGER, REAL, DECIMAL, and DIM statements on the
lines which follow the function or subroutine heading. The following examples
illustrate the declaration of function and subroutine parameters and local variables:

DEF FUNC1
INTEGER A,B
REAL R1,R2
DIM S$*10

suB Sl.JBl(lNTEGER J,K, S_ ARRAY$(2,3)*10, S$)
DIM C$*20
INTEGER AN_ARRAY(2,3,4)

.

In the above examples, FUNC1 is defined to have local variables A and B as
integers, R1 and R2 as reals, and S$ as a ten-byte string. Subroutine SUB1 has
parameters integer J, default type K (real unless otherwise specified), two-
dimensional string array S ARRAY$ and string S$. SUB1 also has local variables
C$, a twenty-byte string, and AN_ARRAY, a three-dimensional integer array.

All local variables are cleared to zero, and local strings are set to null, each time
the function or subroutine is invoked.

All variables within a subroutine are local to it. A subroutine may not access any
variables external to it except through its parameter list.

A function may access variables in the standard block-structured manner. Any
variables which are global to a function up to the subroutine (or program)
definition may be accessed. If variables are not declared as parameters or local
variables within functions, they will be assumed to be global.

53

BASIC User Reference Manual
User-Defined Functions and Subroutines

6.5 Line Numbers and Data Lists Within Subroutines and Functions

Statement line numbers are local to functions and subroutines. This means that any
GOTO, GOSUB, ON, RESTORE line number or PRINT USING line_number
statements will refer to line numbers within the function or subroutine only.

DATA lists and READ data statements are local to subroutines and functions. A
RESTORE is executed automatically on entry to subroutines and functions.

6.6 The USES and LIBRARY Statements

BASIC programs may use separately compiled BASIC, Pascal, or FORTRAN units.
These units contain functions and subroutines (or procedures) which may be called
by a BASIC program. Units reside on disk, either in SYSTEM.LIBRARY or in some
user-created file.

Units may have interface text which declares variables, functions, and subroutines

(or procedures) to b t ily recognized by the host program. This text is
com’:’))iled when, duringecgrﬁp?fant?ony 01% thg host BKSIC program, a USES statement

is encountered. The USES statement indicates that one or more specified unit(s)
within SYSTEM.LIBRARY are to be used by the BASIC program. It has the
following format:

USES unit_namel, unit_name2, unit_name3, ...

If the unit(s) reside in a file other than SYSTEM.LIBRARY, that file may be
specified with the LIBRARY statement. 1t has the format:

LIBRARY "file_name"
The default library is SYSTEM.LIBRARY. Once the LIBRARY statement has been
executed, the indicated file will serve as the library where all units are to be
found by all USES statements, until another LIBRARY statement is executed. The
following is an example of these two statements:

USES PASCALIO

LIBRARY "MY.LIB.CODE"

USES MY_UNIT1, MY_UNIT2, MY _UNIT3

USES MY_UNIT4

LIBRARY "#5:ANOTHER.CODE"
USES ANOTHER _UNIT

In this example, PASCALIO will be found in SYSTEM.LIBRARY, MY_UNIT1 through

54

BASIC User Reference Manual
User-Defined Functions and Subroutines

MY UNIT4 will be found in MY.LIB.CODE on the prefixed disk, and
ANOGTHER UNIT will be found in ANOTHER.CODE on the disk in drive #5.

In the 11.0 version of the UCSD p-System, after compilation the unit must be
linked into the codefile. This may be done by invoking the Linker or, if the unit
resides within SYSTEM.LIBRARY, by simply R(UNning the program from the main
system prompt which will automatically use the Linker. In the 1V.0 version of the
UCSD p-System, the unit must be connected to the host codefile using the
Librarian, or if the unit resides in SYSTEM.LIBRARY, it will be called directly
from there during program execution. More information on units, the Linker and
the Librarian may be found in the UCSD Pascal Users” Manual.

6.7 Pascal Interface Text Restrictions

The BASIC compiler will parse the interface sections of Pascal units subject to
some restrictions. First, only the following simple types (which corespond to BASIC
types) are allowed:

INTEGER

REAL

STRING or STRING[<size>]

ARRAY [<dimensions>] OF <one of the preceding simple types>
ARRAY [<dimensions>] OF ARRAY/[<dimensions>] OF ...

No other types, and no user-defined types are permitted. A second restriction is
that no constants are allowed within interface sections. For example, the following
would not be correct:

ARRAY [LOW_INDEX, HIGH INDEX] OF INTEGER;
Arrays such as this may be declared if the indices are ordinary integers.

Procedure and Function declarations are allowed, as long as the type of the
parameters and the function type conform to these same restrictions.

The BASIC program should refer to any numeric Pascal variables which exceed
eight characters in length by the first eight characters only. Alternatively, the
Pascal program may be written so that no externally reconizable numeric variables
exceed that length. If a Pascal string variable does not exceed eight characters in
length, it should be refered to by BASIC with a dollar sign appended. If it does
exceed that length, if should be referred to by BASIC as its first eight characters
with a dollar sign appended.

55

BASIC User. Reference Manual
User-Defined Functions and Subroutines

6.8 The UNIT Statement

In order to create a BASIC unit, which is separately compiled and used by a host
BASIC, Pascal, or FORTRAN program, the UNIT statement is used. This statement
has the following format:

UNIT unit_name

The UNIT statement should be at the beginning of the text. Following this heading,
an interface section may be declared using the INTEGER, REAL, DECIMAL, and
DIM statements. Following this, Functions and Subroutines may be declared. These
routines will be accessible to the host program. There should be no main program
in the unit. The following is an example of a BASIC unit:

UNIT MY_UNIT
INTEGER 1,3
DIM S$*20

DEF A FUNC (A,B,C)
IF A > 0 THEN GOTO 10

.

10 FNEND

SUB A SUB (PARAMS)
IF S$=PARAMS$ THEN 1=2

.

SUBEND
END

In the above unit, integers 1 and J, and string S$ are able to be referenced from
the host program. They are essentially global variables in the host. A FUNC and
A SUB are accessible to the host program also. They are global routines within the
host as if they had been declared, like any other function or procedure, at the
beginning of the host.

All variable, function and subroutine names should be distinguishable by their first
eight characters if the unit is to be used by a Pascal host program. This is
because Pascal only distinguishes identifiers by their first eight characters. Also, no
special characters may be used in the BASIC variable, function and subroutine
names because Pascal allows only alpha-numeric characters within identifiers. The

56

BASIC User Reference Manual
User-Defined Functions and Subroutines

single exception to this is the dollar sign required at the end of a string variable
name.

The BASIC compiler will convert the externally recognizable BASIC text into a
Pascal interface section so that the Pascal compiler may use the compiled BASIC
unit.

57

JASIC User Reference Manual
Jser-Defined Functions and Subroutines

58

CHAPTER 7
FILE 1/O AND VIRTUAL ARRAYS

7.1 Opening and Closing Files

Sof Tech Microsystems BASIC allows the user to access disk files. The file must be
created, or opened if it already exists, before it can be accessed. The file should
be closed before the program terminates. If an error occurs during program
execution, the files left open will remain open.

7.1.1 The OPEN Statement

The OPEN statement will either open an existing file or create a ‘new one. Once
the file is open, records within it may be accessed until the file is closed. The
OPEN statement has the following format:

OPEN #file_num: "file_name", attributes

File_num is a numeric expression which has a positive value less than 256. This
number will be associated with the file as long as it is open. File_num should not
be assigned to any other file until this file is closed. File name is a valid UCSD p-
System file name. This name may include a unit number {(such as #4:FILE.TEXT) or
a unit name (such as DISK1:FILE.TEXT). The attributes are one or more of the file
attributes which determine: File Access Mode, File Organization, File Length, File
Format, Record Type, and Record Length. These are discussed in the following
sections.

If any of the attributes in the following two lists are used, they must appear in
the order shown:

SEQUENTIAL - DISPLAY - VARIABLE - File Access Modes
RELATIVE - INTERNAL - FIXED - File Access Modes

7.1.2 File Access Modes

The OUTPUT access mode indicates that the file to be opened is to be created as
a new file. New records may be written to a file declared with this mode. This
mode must be used if a new file is to be created. A device, such as a disk drive,
may not be opened with this mode, because a device cannot be created. The
following example will create FILE.TEXT on the disk in drive #4 and associate the
file with file number 1:

OPEN #1: "#4&FILE.TEXT", OUTPUT

The INPUT access mode indicates that the file may be read from. If INPUT is the
only attribute used, an attempt to write to the file will result in an error. If both
the OUTPUT and INPUT attributes are used, a new file will be created which can
be written to and read from. The following examples illustrate the use of the
INPUT attribute:

59

BASIC User Reference Manual
File 1/O and Virtual Arrays

OPEN #1: "#4FILE.TEXT", INPUT
OPEN #1: "#4:FILE.TEXT", INPUT, OUTPUT

The UPDATE access mode indicates that the file may be read from and written
to. This is the default mode. If this mode is used with the OUTPUT mode, a new
file will be created which can be read from and written to (this is equivalent to
using the combination of INPUT and OUTPUT access modes). The following is an
example of the use of the UPDATE mode:

OPEN #1: "#4:FILE.TEXT", UPDATE

The APPEND access mode is used only with sequential files and indicates that
records may be written to the end of the file. No reads may be done, nor may a
RESTORE statement be used on the file. All records will be written, sequentially,
starting at the end of the file. The following is an example of the use of the
APPEND access mode:

OPEN #1: "#4:FILE.TEXT", APPEND
7.1.3 File Organization
Files may be opened with either of two file organization attributes: SEQUENTIAL
or RELATIVE. If no -attribute is specified, SEQUENTIAL is assumed. Virtual Arrays,

which allow a file to be accessed as though it were an array in memory, are
RELATIVE files.

SEQUENTIAL files are identical to Pascal text files. SEQUENTIAL files are written
to and read from in sequential order, beginning with the first record in the file.
Also, records may be appended to the end of existing SEQUENTIAL files.
Peripheral devices are treated as SEQUENTIAL files. A device may be opened and,
if the device allows, written to or read from. The following examples illustrate
opening the Printer (LP0Ol and PRINTER: are treated identically):

OPEN #1:"PRINTER:"
OPEN #2:"LPO1"

An ordinary SEQUENTIAL file may be opened as follows:
OPEN #1:"#5:FILE.TEXT", INPUT, SEQUENTIAL
RELATIVE files allow sequential access and random access to the records within a

file. If a RELATIVE file is to be opened, the keyword RELATIVE must be one of
the specified attributes. If a new RELATIVE file is to be created, the attributes

60

BASIC User Reference Manual
File 1/0 and Virtual Arrays

INTERNAL and FIXED must also be specified. The following examples illustrate
how relative files are opened:

OPEN #1:"#5:FILEL", RELATIVE, INPUT
OPEN {#2:"#5:F1LE2", RELATIVE, INTERNAL, FIXED, OUTPUT

1f a record in a RELATIVE file is to be accessed out of sequence, that record is
specified by a number which represents its position within the file. The first record
within a file is record number zero. If it is desired to access the 12°th record in
the file, the number eleven should be specified. This record number is specified
within the REC clause of an INPUT, ACCEPT, RESTORE, or PRINT statement (see
Section 7.2.2).

7.1.4 File Length

When a RELATIVE file is created, it is assigned a maximum file length. 1t may
not expand beyond that size. This file length may be specified as one of the
attributes. If it is not, a default size of 144 logical records will be assumed. After
a file reaches its maximum size, it must be copied into a larger file before more
records may beadded to it. The following is an example of file length specification:

OPEN #1:"#5:FILE2", RELATIVE 700, INTERNAL, FIXED, OUTPUT
7.1.5 File Format

The information within files may be stored in either of two formats: DISPLAY or
INTERNAL.

The DISPLAY format is used with sequential files and indicates that the data is
stored in ASCIll format. This type of file typically contains text and string data.
DISPLAY is the default file format attribute, and may be used only -with
SEQUENTIAL files. The following example shows the use of the DISPLAY attribute:

OPEN #1:"#5:F1.TEXT", SEQUENTIAL, DISPLAY, UPDATE

The INTERNAL format must be specified when opening or creating RELATIVE
files. The INTERNAL format indicates that the data within the file is stored in
binary format. This type of format is especially useful when dealing with numeric
quantities. When a value is written to this type of file, it is stored in the format
which corresponds to its declaration within the program, e.g. INTEGER, REAL or
DECIMAL. 1t is important, therefore, that the data be read and written using
variables of the same type. The following example illustrates the use of the
INTERNAL file format attribute:

OPEN #2:"#5:FILE2", RELATIVE 700, INTERNAL, FIXED, OUTPUT

61

BASIC User Reference Manual
File 1/O and Virtual Arrays

7.1.6 Record Length

Records in a SEQUENTIAL file may have a fixed or variable length. The length
attribute should be specified in the OPEN statement when a file is created. This
"logical record length" should be greater than or equal to 2, and less than 32767
(bytes), and must be an even number. ‘

The VARIABLE attribute indicates that records in the file may be of different
lengths. An optional maximum length may be specified by a number following the
keyword VARIABLE. If no maximum length is specified, a default of 80 bytes will
be assumed. 1f a record being written to the file exceeds the maximum record
size, the current record slot is terminated, and the remaining data is written into
the next record. The VARIABLE attribute is assumed if no record length attribute
is indicated. The VARIABLE attibute may be used in conjunction with sequential
files only. In the following example, records have a variable length with a
maximum size of 200 bytes:

OPEN #1:"#5:F1.TEXT", SEQUENTIAL 500, VARIABLE 200, OUTPUT

The FIXED attribute indicates that the records in the file are all of the same
size. The size is specified to the right of the keyword FIXED. Any valid INTEGER
expression may be used to specify this length. An attempt to read or write records
which are not of the correct size will result in an error. RELATIVE files must be
created with. the FIXED attribute. Also, when an existing RELATIVE file is
opened, the FIXED attribute must be specified and the record size must match the
size specified when the file was created. The default length for fixed records is
256 bytes. The following example creates a RELATIVE file with 32-byte records:

OPEN #2:"#5:FILE2", RELATIVE 700, INTERNAL, FIXED 32, OUTPUT
7.1.7 The ASSIGN Statement and Virtual Arrays

The ASSIGN statement is used to associate a Virtual Array with a disk file. After
the ASSIGN statement has been executed, assignments may be made to the Virtual
Array, in which case the disk file is written to. Also, variables may be assigned
from the Virtual Array, in which case the disk file is read in order to obtain the
needed values. In this way Virtual Arrays may be used as ordinary arrays, but
instead of taking up space in main memory, they actually exist on disk. Very large
arrays may be used in this manner, without the danger of running out of memory
space. The total number of elements within an array, however, may not exceed
32767. The following is an example of the use of the ASSIGN statement to create
a Virtual Array:

ASSIGN "#4:REAL.FILE" USING V_ARRAY(100,100)

62

BASIC User Reference Manual
File 1/0 and Virtual Arrays

In this example, REAL.FILE on disk #4: is opened and associated with V_ARRAY.
V ARRAY may now be used as any other array, but whenever it is accessed,
#4:REAL.FILE is really used. V_ARRAY is declared as it would be within a DIM
statement and may be preceded by INTEGER, REAL or DECIMAL. The following
example shows the use of Virtual Arrays:

ASSIGN "#4:REALFILE" USING INTEGER V_ARRAY(100,100)
ASSIGN "#5:REALFILE2" USING STRINGS$(10,10,100)*10
V_ARRAY(99,97) = 1234

STRINGS$(2,8,97) = STR$(V_ARRAY(99,97))

CLOSE V_ARRAY
CLOSE STRINGS$

The CLOSE statements are used to close the disk files, see Section 7.1.8.
7.1.8 The CLOSE Statement

The CLOSE statement ends the association between an opened file and its file
number. The CLOSE statement is also used to end the association between a disk
file and a virtual array name. The file number or virtual array name is "then
available to be re-used if desired. The closed disk file is inaccessible to the
program unless it is re-opened. If the file number is not associated with an open
file when the CLOSE statement is executed, an error will result. The EOF function
can be used to determine if this association exists. The CLOSE statement has the
following formats:

CLOSE #file_number
CLOSE virtual_array name

Virtual arrays are also implicitly closed when a STOP, END, or RUN statement is
executed.

When a new file is opened, it must be explicitly closed with the CLOSE statement
if it is to remain on disk after the program has finished execution. By adding the
word DELETE to a CLOSE statement, the closed file will be removed from the
disk directory even if it existed before the program opened it. The following shows
the use of the DELETE option:

OPEN #2:"#4:JUNK. TEXT"
CLOSE #2:DELETE

63

BASIC User Reference Manual
File 1/O and Virtual Arrays

7.2 File 1/0 Statements

Records within a file may be accessed using the INPUT, ACCEPT, and PRINT
statements. After the file has been opened, the execution of one of these
statements causes a record to be read from or written to the indicated file. If a
data separator (comma, semicolon, or apostrophe) is used to terminate one of these
statements, 1/O will be defered. The RESTORE statement is used to select, in a
random access manner, the next record on which 1/O statements will perform their
function. The following are the simplest formats of these statements:

PRINT #file number: variable_list
INPUT #file number: variable list
ACCEPT #file_ number: variable
RESTORE #file_number

The PRINT statement outputs the variables listed to the indicated file. The INPUT
and ACCEPT statements input from the file indicated, to the variables in the list.
After one of these statements is executed, an internal record pointer is advanced
to the next record. The RESTORE statement points the internal record pointer to
the first record in the file.

If a record contains more variables than can be listed on one line, the 1/O
statement may be terminated with a data separator and further statements can be
used to complete the 1/0.

7.2.1 Sequential File 1/0

Because sequential files use the DISPLAY format, variables written to them will be
in the same format as if they were written to the console. In the following
example the variables 1, J, and K are written with trailing blanks, and a preceding
blank or minus sign (because of the comma data separator, see Section 3.1). The
file is then restored, and the variables are read back into a string. The Standard
Functions could then be used to convert the string into three separate numeric
values again.

PRINT #1: 1,,K
RESTORE #1
INPUT #1:THREE_VARS$

In the next example 1, J, and K are written with commas between them (because
of the apostrophe data separator, see Section 3.1). This allows the INPUT
statement to read the three separate variables directly as numeric values.
Alternatively, the ACCEPT statement (which doesn’t treat commas as data
separators) can be used to read the variables into a string.

64

BASIC User Reference Manual
File 1/0O and Virtual Arrays

PRINT #2: 1"’J’'K

RESTORE #2

INPUT #2: 1,J,K

RESTORE #2

ACCEPT #2:THREE_VARS$

1If there are fewer variables in a record than in the variable list of an INPUT
statement, subsequent records will be read until enough variables are obtained. 1f
there are more variables in a record than in the variable list of an INPUT
statement, the remaining variables will be discarded unless the variable list is
terminated with a data separator. ln this case the next input operation will read
further data from the same record.

The following example shows how 40 variables may be written to the same record:

FOR 1=1 TO 40 DO

PRINT #1:DATA_ARRAY (1)
NEXT
PRINT #1:

In this example, the apostrophe indicates that more data is still to be written to
the same record after the current PRINT statement is finished. (The apostrophe
also inserts commas between each value written to the file.) The PRINT statement
after the loop completes the record. Future PRINT statements to this file will
write to the next record.

The USING option (see Section 3.2.5) can be used in conjunction with the PRINT
statement to files. This allows formatting of the file contents. The following is an
example of the PRINT-USING statement to a file:

PRINT #1 USING . fHF: NUM

7.2.2 Relative File 1/O

Relative files always contain data in the INTERNAL format. This format may be
INTEGER, REAL, DECIMAL, or string. Because of this, the apostrophe data
separator, which produces commas in the output, may not be used with relative
files. The input variables used to read in data should be identical in number and
type to the output variables used to write the data originally. Otherwise, incorrect
results will occur. If string variables are written to relative files, the runtime
length of the string determines the number of characters written.

A particular record in a relative file may be accessed using the REC clause. The

keyword REC is followed by the number of the record (zero is the first record in
the file).

65

BASIC User Reference Manual
File 1/O and Virtual Arrays

In the following example two strings are written and then read from the 10°th
record in a file:

S1$="STRING"
S2$="FELLOW"
PRINT #1, REC 9: S1$,52%
INPUT #1, REC 9: 53%,54$

Fourteen bytes are written, a length byte and six characters for both S1$ and S2$.
The INPUT statement assumes the first character is a length byte and assigns S3$
accordingly. The byte which follows the first string is then assumed to be the
length byte for the second string, which is assigned to S4$.

If several statements are needed to write to or read from a single record, a data
separator can be placed at the end of each statement. This defers the final 1/O to
that record. Only the first such statement should contain a REC clause, however,
since each occurrence of a REC clause will cause a new record to be accessed.
The following example writes 40 values to record N:

PRINT #1, REC N: INFO(1);
FOR 1=2 TO 40
PRINT #1: INFO(1);
NEXT
PRINT #1
7.2.3 The RESTORE Statement

The RESTORE statement is used to reposition the internal file record pointer to a
specific record. SEQUENTIAL files use the RESTORE statement with the following
format:

RESTORE file_ number
The indicated SEQUENTIAL file is repositioned to the first record. within it.
RELATIVE files use the RESTORE statement with the following formats:

RESTORE file_number
RESTORE file_number, REC record number

The indicated file’s internal record pointer is set to the record number specified in
the REC clause. If no REC clause is specified, the file is repositioned to the
beginning. In the following example, the file is reset to the tenth record:

RESTORE #1, REC 9

66

BASIC User Reference Manual
File 1/0 and Virtual Arrays

The next read operation reads that record.

67

BASIC User Reference Manual
File 1/0 and Virtual Arrays

68

APPENDIX A
BASIC RESERVED WORDS

ABS ACCEPT ALL
APPEND ASC ASSIGN
AT ATN BASE
BELL BREAK CALL
CHR$ CLOSE COs
DATS$ DATA DECIMAL
DEF DIM DISPLAY
ELSE END EOF
ERASE ERR ERROR
EXP FIXED FNEND
FOR FREESPACE FTYPE
GO GOsuB GOTO

1F IMAGE : INKEY
INKEY$ INPUT INT
INTEGER INTERNAL LEN

LET LIBRARY LOG

NOT ON OPEN
OPTION OuUTPUT POS
PRINT PUNCTUATION RANDOMIZE
READ REAL REC
RELATIVE REM RESTORE
RETURN RND RPT$
SEG$ SEQUENTIAL SGN

SIN SIZE SPAN
SQR STEP STOP
STR$ suB SUBEND
SUBEXIT TAB TAN
THEN TIME$ TO

UNIT USES USING
VAL VARIABLE

69

APPENDIX B
BASIC ERROR NUMBERS

Compiler Errors

1. lllegal or missing label

2. lllegal or missing variable name

3. Duplicate ALL statements

4, Doubly-defined variable

5. Right parenthesis or comma is expected here
6. Bad format

7. Integer is expected here

8. No scale in decimal statement

9. lllegal character in text

10. lllegal statement

11. FOR without matching NEXT

12. Array is too large

13. lllegal variable type

14. lllegal operator in statement

15. Wrong number of dimensions

16. Wrong number of arguments to function or subroutine
17. Missing BASE in OPTION statement

18. Bad number in OPTION statement

19. Too many OPTION statements

20. Function reference is not allowed here
21. Expression should start with a constant or variable
22. Doubly-defined label

23. Too much stuff in statement

24. Missing equal-sign in assignment statement
25. Missing THEN in IF statement

26. Missing GOTO in ON statement

27. Missing equal-sign in FOR statement

28. NEXT statement without FOR statement
29. Missing TO in FOR statement

30. Undefined label

31. Colon is expected here

32. Missing ALL after ERASE

33. Left parenthesis expected here

34, REC clause is expected here

35. Too many input variables in the ACCEPT statement
36. Variable is expected here

37. String is expected here

38. Array dimension is too small

39. Pound (#) is expected here

40. Delete is expected here

41. Comma is expected here

42, File types conflict or are inconsistent

43. Modes conflict

70

44,
45.
46.
47.
48.
49.
50.
51.
52.
53
54
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

USING is expected here

Missing exponent in number

FNEND not expected
SUBEND not expected

Function name not expected

Too many jumps

Too much object code
Out of memory space
Number is too large

Number is expected here
Missing GOTO or GOSUB
Right parenthesis or semicolon is expected here

Semicolon is expected here
Too many units are included

Unit not found in library
Error attempting to open include or uses file
Variable in NEXT statement does not match FOR statement

Too many UNIT statements

BASIC User Reference Manual
Error Numbers

Too many subroutines and functions

Subroutine call is expected here

SUBEND or FNEND is expected here

END expected

71

BASIC User Reference Manual
Error Numbers

Execution Errors

1. String size error

2. Missing or bad number

3. File is not open

4, Not enough input

5. Bad number (conversion from string)

6. Too much input

7. Too many variables for print image

8. 1Image field error

9. End of data list

10. Wrong type of data in data list

11. File types do not match

12. You tried to open an open file

13. You cannot restore a sequential file

14. Read record overflow of relative file

15. Write record overflow of relative file

16. Bad arguments to SEG$ function

17. Number too large for exponentiation

18. Negative argument in exponentiation

19. ON statement index is out of bounds

20. You cannot write to a read-only file

21. You cannot read from a write-only file
22. You cannot close file #0.

23. You cannot close a closed file

24. You cannot open-for-output an existing file
25. You cannot open-for-output a device

26. Relative record number is too large or ton small
27. You cannot restore an APPEND file

28. The number of records in the OPEN statement is bad
29. The record size in the OPEN statement is bad
30. Too many returns from GOSUB

31. Too many GOSUB statements

32. FREESPACE argument is not zero

72

	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

