SO =

MICROSYSTEams

A SUBSIDIARY OF SOFTECH

UCSD p-SYSTEM and UCSD PASCAL
A PRODUCT FOR MINI- AND MICRO-COMPUTERS

Version 1V.0

INTERNAL ARCHITECTURE GUIDE

First edition: March 1981

SofTech Microsystems, Inc.
San Diego 1981

This guide was written by Gail Anderson, Randy Clark, Chip Chapin, Bill Franks,
Mark Overgaard, and Stan Stringfellow, and edited by Randy Clark. Much advice
and information was supplied by Rich Gleaves, Steve Koehler, and Mark Overgaard.

The editor feels this is the appropriate place to thank all the people at Arts &

Crafts Press, both for the quality of their work, and their truly admirable
patience. '

UCSD, UCSD Pascal, and UCSD p-System are all trademarks of the Regents of the
University of California. Use thereof in conjunction with any goods or services is

authorized by specific license only, and any unauthorized use is contrary to the
laws of the State of California.

CP/M® is a registered trademark of Digital Research Corporation.

Copyright © 1981 by SofTech Microsystems, Inc.
All rights reserved. No part of this work may be reproduced in any form or by
any means or used to make a derivative work (such as a translation,

transformation, or adaptation) without the permission in writing of SofTech
Microsystems, Inc.

TABLE OF CONTENTS

SECTION PAGE
1 INTRODUCTION

1 Purpose of this Guide D |

2 A Brief History of the System 2
11 THE P-MACHINE

1 Overview00 e e e e e e et e e e e 5

1 Interpretive Execution ceeee S

2 The Stack and the Heap C e e e e e e e ae e e 5

3 Code Segments . . v v v v v 0w e S

4 Device 1/0 v vt i i i i e e e e e e e e e e e e e e e e N

2 Program Code . . . v v v v vt it e . S -

1 Code Segments © ¢ 4 4 4 s e e e e s e s e e e e... B

1 Code Segments and Byte Sex e ee e s e e s e e e e 10

Routine Dictionaries C e e e e e e o ... 10

3 Routine Code0..... e e e e e e e e e e e 11

4 The Constant Pool + .o v o v v v v v v v e v v w e e e e . 12

5 The Relocation List ., ... C t e e e e e e e e e e e .. 17

6 Segment Reference List c e e e e 0. 21

7 Linker Information e e e e e 23

2 Codefile Organization v v v v v v v v, e e e e . 27

1 The Segment Dictionary e e e e ae e 27

2 Assembler-Generated Codeflles e e e e e e . 33

3 Code Segment Environments . c e e v e e s 34

1 Segment Information Blocks (SlBs) e e e . 34

2 Environment Records (E RECs) e e e e e e e 37

3 Task Environments S et et e e e e e e e e e, 40

4 P-Machine Instructions, e e e . 44

1 The Intrinsic P MACHINE et e e e e e . . 44

2 P-Code Instruction Set o e e e e e . et e e e 46

1 Operands and Notation . . . v v v v v v v v v v b o e e e e 46

1 Instruction Parameters . e e e e s o e e e . 46

2 Dynamic Operands .. e e e e e e o e e e 47

3 Activation Records e e e e e e e e e e e e et 48

4 Conventions e e e e e e e e e e e e 50

2 Individual Instructions vt i it e e e e, 52

11

LOW-LEVEL 1/O

Introduction to the 1/O Subsystem -

e e o @

The Language Level: Device 1/O Routines

1 Calling the RSP/IO

s e o

3 Logical Disk Structure

*« o o

o e o o a o

2 10RESULT and Completion Codes . . .

The Interpreter Level: The RSP/IO . . .

1 Calling Mechanisms . . .
2 Semantics

The Machine Level: The BIOS . .

—

Design Goals
2 Completion Codes
3 Calling Mechanisms
4 Character Codes

5 Semantics,
6 Special BIOS Calls
Appendices

1

2

Appendix A -- Summary of BIOS Calling Sequences

@ o o e 0 ¢ e e & 0 & 0 0 o O e o @

ooooooo '-‘:o'-u .
¢ o o o8 e e o6 0 o & e o o o e
e o e s o 5 e o e« o o o ¢ o 2 o
a o o e o o o v s o e . .
oooooooo * ¢ o 0
oooooooo L Y ° e 8 o o o e & o
e a s e e s s s a2 s @ o e
oooooooooooooooooo
. e e e e © o e a o e & e o
e © e o ¢ e e ¢ o o s 9 @
------ o e e e o = o .
ooooooooooo 8 & o e e o o

® 9 & & o & e o e ¢ o o & O & s & s

oooooooooo

Appendix B -- Processor-Specific BIOS Calls . v o v v v o v s 0 0 s o &

IV THE OPERATING SYSTEM

\%!

1 Organization . . . ¢ ¢ v v v i v o 0t v v v oo a0 oo oo s s e e s e e e e s
1 Structured Overview of the System . e e e e e e e e

2 P-Machine Support C et e e e e e e e e e e e e e e s e e e
1 TheHeapo,
2 The Codepool e e e e e e o o .
3 Fault Handling . . & v v v v v ittt e e e e e e e e e e e e e e e e
4 COoncCurrency « « v« o o o o & e h e s s e et et e e e e e s e

3 1/O SUPPOTL v v v vt e
1 File Information Blocks (FIBS) & v ¢ v v v v o v v v o o o o o o o o o v
2 DIrECLOTIES v v v v v v v v o e e e b o e e e e e e e et e e e
3 Varieties of /O e e e e e e e e e e e e e

4 Using the Screen Control Unit . & ¢ v v v v v o v v v o o o o o o o o o o o

V. PROGRAM EXECUTION . .. v v v v oo e e e e e e e e e e e e e e e

APPENDICES

A @ Yo 11 1 o

B P-Machine Opcodes . v v v v o v v v o v e v e et et e e e e e

C] 5 1 e e e e e e e e e e e e e e e e

71
74
74
77
78
81
81
85
88
88
88
89
91
92

101

103

103

105

FIGURES:

AN

.

Executable Code Segment Format

Constant Pocol
Relocation List
Main Memory Usage

Procedure Activation Record

Directory Format

e ® o o o

e ® o & o

.

13
19
43
49
125

Architecture Guide
Introduction

l. INTRODUCTION

1.1 Purpose of this Guide

This guide describes the internal design of the UCSD p-System: the P-machine,
Operating System, basic 1/0O, and the way in which these elements are organized to
support the running of a program written in UCSD Pascal (or BASIC or
FORTRAN).

It should serve as a guide and reference for more advanced- users of the System,
but is not intended to be a standalone definition for the use of implementors.

Such a definition does not yet exist; if one is written, it will probably be based on
the format of this book.

Perhaps the best way to use this guide is to read it sequentially, skipping those
sections (such as the list of P-codes) that go into very specific detail. This
should give the reader a fairly complete picture of what goes on within the
System. If the user then needs to know specific internal details, the relevant
section can be referred to later.

While few users will want or need to implement a p-System from scratch, the
internal descriptions provided in this guide should be useful to a number of
audiences.

The largest audience is probably those who will make no specific use of the
information. To these users, the benefit will be a better understanding of the
System’s operation and a general improvement in their ability to engineer programs
for effective execution in the p-System environment.

Second, there are the implementors of system software facilities that complement
existing System capabilities: for instance, new language translators, new System
utilities, or Interpreters for additional processors. For this group of programmers,
the Architecture Guide presents more information than was available in the past.

Finally, there are the implementors with a compelling need to use facilities such
as, for instance, the ability to explicitly generate P-codes in a Pascal program,
where an ordinary Pascal construct would not suffice (we take it for granted that
only a compelling need would lead a user to take such steps).

All of these audiences (but particularly the last) should understand that the
. principal commitment of SofTech Microsystems (and its licensees) is to the user
facilities described in the Users’ Manual, and not to any of the specific
implementation strategies that are described in this guide. Programmers who take
advantage of "internal tricks" do so at their own risk.

Architecture Guide
Introduction

1.2 A Brief History of the System

The software system that is now called the UCSD p-System began when Kenneth
Bowles was responsible for teaching the introductory programming course at the
University of California, San Diego. In late 1974, under Bowles” direction, a

group of undergraduate and graduate students began to implement Pascal for
microcomputers.

Before this time, the introductory programming course had been taught using a
large time-shared computer (on campus it was popularly called "The Beast"). This
presented a bottleneck: many people used the machine, so its turnaround was
sometimes quite slow, and a student’s productivity was to some extent limited by
the availability of the card punches. Furthermore, the machine’s time-sharing
environment, its accounting system, its complexity, and the amount of sensitive
information that it stored prevented the student from anyextensive "hands on" use
of the machine or its facilities. 1n brief, the Beast was intimidating.

These were the main reasons for the decision to change the nature of the
beginning programming course. It would be self-paced, to accommodate the large
number of students, and each individual student’s study habits (UC -- Irvine's
physics program had been doing this successfully for a couple of years). 1t would
use Pascal, rather than the dialect of Algol that was specific to the University’s
large time-sharing computer. And it would use microcomputers.

The decision to use small computers was motivated partly by their low cost, and
partly by the desire to give students an opportunity to program in an interactive
environment. The System was first implemented for a number of PDP-11/10"s with
floppy disks and VT-50 terminals. Students were expected to buy their own
floppy disk, and use it for storing the System and their own programs.

It was the interactive environment that led to some of UCSD Pascal’s deviations
from the standard language, mostly as regards INTERACTIVE files and the
handling of EOF and EOLN. The type STRING came about from the desire to
teach basic programming concepts without recourse to numerical problems (which
distracted many students from the actual problems of programming).

The user interface of the System, by which we mean the philosophy of displaying
a promptline at every level of the System, and organizing these promptlines in a
tree structure, was intended to be easy to learn for the complete novice, yet
usable (i.e., not cumbersome) for the experienced user. This proved very
successful, and has been retained.

The interpretive approach to executing Pascal was present from the beginning. P-
code, adapted from the original design by Urs Amman of the Eidgenossische
Technische Hochschule in Zurich, was designed to be compact and easily generated

Architecture Guide
Introduction

by a Compiler; because of the constraints of the microprocessor environment, the
goal was to keep the Compiler and the codefiles as small as possible. The

tradeoft in execution time was felt to be an affordable cost (time has borne out
this decision).

All of the original implementations were on PDP-11/LSl-11 machines. Because of
the interpretive approach, it was a relatively straightforward matter to re- write
the Interpreter for the 8080 and Z80, and subsequently for many other processors.

This adaptation of the Interpreter was originally motivated by the search for
cheaper hardware, but it was soon recognized that software portability was
valuable in itself. The economics of the computer business, especially the
microprocessor field, dictated this: it is not a new observation that hardware costs
continue to plummet, while software, being "hand-made", continues to be very
expensive; it is relatively new to encounter a software system that, through

modularity and portability, addresses the problem as thoroughly as does the: p-
System.

This is a brief view of the System as it was first created at UCSD. It was
created to fill a need within the University, and other issues were subordinate to
that need. Thus, despite the innovations within the System, it came as quite a
surprise to learn that there was considerable commercial interest in the System.
This commercial interest ultimately led the University to turn the "Pascal Project"
over to a licensee, and proceed with other projects. The firm of SofTech
Microsystems was created with the original purpose of supporting, maintaining,
licensing, and further developing UCSD Pascal and the System that supports it.

Architecture Guide
Introduction

Architecture Guide
The P-Machine

II. THE P-MACHINE

11.1 Overview

The P-machine is an idealized machine. The Operating System itself, System
programs such as the Filer, and compiled user programs all run on the P-machine.
Code for the P-machine is known as P-code, and all codefiles in the System

consist of either P-code or native code (that is, code for a particular physical
processor).

P-code is designed to be compact, so that programs in P-code are much sharter

than equivalent programs in native code. P-code is also designed to be easily
generated by a compiler.

Because P-code is compact and simple, relative to native codes, it is fairly easy to
implement the P-machine on a variety of actual processors. It is also easier (and
cheaper) to maintain a System that runs on one P-machine, rather than a family of
Systems, each dedicated to a particular physical processor. This is the essential
key to the portability of the p-System.

11.1.1 Interpretive Execution

The "P" in "P-code" and "P-machine" stands for "pseudo." The P-machine may be
implemented as a physical processor, or emulated by an interpreter. The
Interpreter is a program written in the native code of some particular processor.

It is responsible for executing P-code instructions, and controlling machine-
dependent 1/0.

At runtime, the user’s program (or a portion of it) is in main memory. The
Interpreter fetches each P-code instruction, in sequence, and performs the
appropriate action. The process :of bootstrapping involves loading the Interpreter
(if necessary) and starting its execution (the next step is to call the Operating
System, which runs on the P-machine).

11.1.2 The Stack and the Heap

The System maintains memory-resident data in two dynamic structures called the
Stack and the Heap. The Stack is used for static variables, bookkeeping
information about procedure and function calls, and evaluation of expressions.
The Heap is used for dynamic variables, including the structures that describe a
program’s environment.

Architecture Guide
The P-Machine

The Stack can be considered part of the P-machine. Most P-code instructions
affect the Stack in one way or another.

The Heap is an integral part of the System, but is primarily supported by the
Operating System, rather than the P-machine.

Both the Stack and the Heap reside in main memory, and grow toward each other
in a (largely) First-In-First-Out manner. Between them is an area of memory that
is partly unused, but also contains the Codepool (see below).

The Heap is more fully described in Chapter 1V.

11.1.3 Code Segments

In the p-System, program code is stored in one or more segments. A code
segment may contain either P-code or native code (or both). Besides the code

itself, each code segment contains bookkeeping information for the System’s use,
and (usually) a pool of constants.

Every "compilation unit" (a separately compiled Pascal PROGRAM or UNIT) results
in a "principal segment" of code. In addition, there may be "subsidiary segments,"
if the program or unit contained SEGMENT routines or EXTERNAL native code
routines. Information embedded in the compilation’s codefile contains the

references among the (possibly) various compilation units that are part of the full
program.

When a program is eX(ecuted, the Operating System reads this reference
information and resolves the references by finding the location of all compilation
units needed by the program (including subsidiary segments and indirect references,
such as a UNIT using another UNIT). Tables are built that may be used at
runtime to make references (such as procedure calls) from one segment to another.

The segments of a running program compete for space in main memory with each
other and with the Stack and the Heap. The principal constraint (as far as code
segments are concerned) is that both the calling and called segment must both be
present in main memory for an inter-segment call to succeed.

Segments in main memory are all stored contiguously in an area called the
Codepool. The Codepool resides between the Stack and the Heap, and may be
moved about to create more room.

Code segments are described in this chapter. Codepool handling is described in
Chapter 1V.

Architecture Guide
The P-Machine

11.1.4 Device 1/0

Device 1/O and control is accomplished by calls from the language level to routines
within the Interpreter. The device 1/0 routines then call on the routines of the
Interpreter’s BIOS (for Basic 1/O Subsystem), and the BIOS routines control the
peripheral hardware directly. /O ‘environment dependencies are thus isolated in
the BIOS, and it is possible to adapt the p-System to a new hardware environment
by changing only the BIOS (not the entire Interpreter).

On Adaptable Systems, the BIOS itself has a standard interface to the SBIOS, or
Simplified BIOS. The SBIOS is a set of simple 1/0 routines, and is intended to
allow the user to rapidly adapt the System to a new 1/O environment,

The BIOS is dealt with in Chapter 11l, and the SBIOS is fully described in the
Installation Guide.

Architecture Guide
The P-Machine

11.2 Program Code

11.2.1 Code Segments

A code segment is a collection of routines, together with descriptive information.
The code and information in a segment is contiguous, since the code segment is

the "unit of movement" for code; code is loaded into memory a segment at a
time.

There are up to 255 routines within a segment, numbered 1..255.

At compile time, segments are assigned a name and a number. The name is 8
characters long. It is used by the Operating System to handle inter-segment
references at associate time. It is also used when maintaining codefiles with
LIBRARY. The number is used to reference the segment at runtime.

The beginning (low address) of a code segment is a record that contains the
following information about the segment:

pointer to the routine dictionary

pointer to the relocation list

the B-character name of the segment (4 words)
byte sex indicator word

pointer to the constant pool

real size word

space reserved for future use (2 words)

Figure 1 illustrates a code segment as it would be loaded into memory. The
various substructures of a code segment are described below.

procedure
dictionary

procedure

code for

procedure
** 2

EXECUTABLE CODE SEGMENT FORMAT

high address

odd even

relocation list

Architecture Guide
The P-Machine

number of procedures

pointer to procedure 1

pointer to procedure 2

pointer to procedure N

Constant Pool

)

.- procedure code
RO
N b4

procedure %£2
object code

datasize

exitic

e e e
procedures code
S s

S e I

resarved for future use

reserved for future use

realsize

constant pool pointer

byte sex indicator word = 1

8 chacter symbolic
name of segment

relocation list pointer

proc dictionary pointer

low address

FIGURE 1

Architecture Guide
The P-Machine

11.2.1.1 Code Segments and Byte Sex

Code segments are independent of the byte sex of the host processor. A number
of System components cooperate to achieve this independence.

There are two groups of word-oriented (byte-sex-dependent) information. The first
is superstructure information, such as the routine dictionary. This information is
flipped by the Operating System when a segment is loaded. The second is
embedded information, such as, for example, constants (accessed by LDC) or XJP
tables. This sort of information is flipped by the Interpreter.

The Compiler produces code segments that contain word information in the natural
order of the machine on which the Compiler was run. lmmediately following the
segment’s 8-character name is a flag that always contains the constant 1, in the

byte sex of the original machine; if read in the opposite byte sex, it appears to be
a 256.

When a segment is loaded by the Operating System, and its byte sex flag
indicates that the sex of the segment is opposite that of the running machine,

routine dictionaries are byte-swapped. Embedded information is then flipped by
the Interpreter.

The net result is that segments of either sex can run on any machine.

11.2.1.2 Routine Dictionaries

The first word in a code segment points to word 0 of the segment’s routine
dictionary (also called the "procedure dictionary"). The routine dictionary is a list
of pointers to the code for each routine in the segment. FEach routine dictionary
pointer is a seg-relative word pointer.

Routines within a segment are numbered 1..255. A routine’s number is an index
into the routine dictionary: the n’th word in the dictionary contains a pointer to
the code for routine n.

The first word (word 0) of the dictionary contains the number of routines in the
segment.

In the case of EXTERNAL and FORWARD routines, the source code may contain a
routine’s declaration but not its code. The corresponding routine dictionary entry
is zero (at least, before linking).

10

Architecture Guide
The P-Machine

11.2.1.3 Routine Code

The code of a routine consists of two words: DATASIZE and EXITIC, followed by
the executable object code. The object code may be entirely P-code, entirely
native code, or a mixture of the two.

DATASIZE is the number of words of local data space that must be allocated
when the procedure is called. DATASIZE does not include parameters: the
routine’s parameters are assumed to already be on the Stack. The first executable
instruction starts at the byte or word immediately following the DATASIZE word.
If the first executable instruction is native code, DATASIZE is one’s-complemented.

If this first instruction is a P-code instruction, then EXITIC is a seg-relative byte
pointer to the code that must be executed when the procedure is exited. If this
first instruction is a native code instruction, then EXITIC is undefined at runtime.

If the code of the routine contains both P-code and native code, it is still the
first instruction of the routine that determines these conditions.

11

Architecture Guide
The P-Machine

11.2.1.4 The Constant Pool

In Version IV.0, muiti-word constants are stored together in a single constant pool

for the entire segment. The constant pool begins immediately after the last body
of procedure code in the segment.

The location of the constant pool is contained in the constant pool pointer, a seg-
relative word pointer that immediately follows the byte sex indicator word at the
beginning of the segment. It points to the low address of the constant pool. If

the constant pool pointer is equal to zero, the segment does not contain a
constant pool.

Constants are referenced by word offsets relative to the beginning (low address)
of the constant pool.

The constant pool is divided into two subpools: the real pool and the main pool.

The first word of the constant pool points to the beginning of the real pool.
This is a word pointer relative to the start of the constant pool; if there are no
real constants in the code segment, this word must be 0. The first word of the

real pool contains the number of real constants in the real pool.

Figure 2 illustrates a constant pool with an embedded real subpool.

12

Guide

The P-Machine

Architecture

.

////

\
- . /
2 E £ N2
,// A\
- 3

pool

CONSTANT POOL

ptr

FIGURE 2

13

Architecture Guide
The P-Machine

Real constants are generated for either 32- or 64-bit floating point BCD (Binary
Coded Decimal) data formats: real values (and operations upon them) can be
transported across all processors with the same-sized representation of floating

point numbers, but cannot be transported to machines with floating point formats
of a different size.

Only one size is likely to be available for a particular processor, since real
constant handling is done by machine-dependent software (i.e., within the

Interpreter). Within a single program, all compilation units must share the same
size for real constants and variables. -

The Pascal Compiler is configured (when it is compiled) to default either to 32-bit
or 64-bit reals. A directive is available to override the default:

{$R2{ - sets realsize to 2 words (32 bits)
$R4} - sets realsize to 4 words (64 bits)

This directive must occur before the first symbol in a compilation that is not a
comment. The active realsize for a particular compilation is displayed after the
Compiler’s version number at the beginning of the console output during a
compilation (and in a compiled listing).

The realsize at compilation time is also embedded in every code segment (even

though it may not reference any reals). The word REALSIZE at the base of the
segment contains this value.

A 32-bit real constant is represented by a three-word record. The first word
contains a signed integer representing the exponent value. The following two
words contain the mantissa digits. A mantissa word representing significant
mantissa digits contains an integer whose absolute value is between 0 and 9999; its
value corresponds to four mantissa digits. The first mantissa word is signed, and
thus contains the mantissa sign. The second mantissa word may contain a negative
value; in this case, it does not contain any significant digits and is disregarded
when constructing the ‘internal representation of the real constant. It serves as a
terminator word for the constant conversion routines. The decimal point is defined
to lie to the right of the four digits in the last valid (used) mantissa word. The
digits in the last mantissa word are left-justified.

For example, if the real value is 1.1, the first mantissa word contains 1100
(BCD).

Example:

1 .. 4 significant mantissa digits:
The first mantissa word contains a signed value between 0

14

Architecture Guide
The P-Machine

and 9999. The second word contains a negative value. The

implied decimal point position is at the end of the first
word.

5 .. B significant mantissa digits:
The second mantissa word contains a positive value between
1 and 9999, and represents up to 4 low-order digits.
The first word contains a signed value between 1 and 9999;
it represents the 4 high-order digits. The
implied decimal point position is at the end of the second
word.

A 64-bit real constant is represented by a record whose length may vary between
4 and 6 words, depending upon the number of significant digits in the constant.
The first 2 words of a 64-bit constant are identical in format to those of a 32-bit
real constant; thus, the format always contains an exponent word and a first
mantissa word. An enumeration of the remaining words for all cases follows:

1 .. 4 significant mantissa digits:
Mantissa word 2 contains a negative terminator.
Mantissa word 3 is zeroed and is present solely
to provide sufficient space for the native format.

5 .. 8 significant mantissa digits:
Mantissa word 2 contains 1 to 4 digits (left-justified).
Mantissa word 3 contains a negative terminator.

9 .. 12 significant mantissa digits:
Mantissa word 2 contain 4 digits.
Mantissa word 3 contains 1 to 4 digits (left-justified).
Mantissa word 4 contains a negative terminator.

13 .. 16 significant mantissa digits:
Mantissa words 2 - 3 contain 4 digits.
Mantissa word 4 contains 1 to 4 digits.
Mantissa word 5 contains a negative terminator.

17 .. 20 significant mantissa digits:
Mantissa words 2 - 4 contain 4 digits.
Mantissa word 5 contains 1 to 4 digits.

Real constants are converted to native machine format when a code segment is
loaded into memory; this may result in a significant runtime overhead for programs
that are memory-bound. Time-critical programs of this nature may sacrifice
portability for execution speed by using a native constant generator utility program

15

Architecture Guide
The P-Machine

(not yet available) to convert their real subpools into native machine format. This
is done by replacing the canonical form of each real constant in the codefile with
a native real constant. The modified subpool is merged with the main pool by
setting the real pool pointer to zero, thus eliminating the usual conversion process
during a segment load. Because the constant pool is transformed in place, constant
offsets embedded in the codefile do not require updating.

16

Architecture Guide
The P-Machine

11.2.1.5 The Relocation List

The last (high address) body of information in a (memory-resident) code segment is
the relocation list. The second pointer at the beginning of the code segment
points to the last (highest address) word in the relocation list. This pointer is a
seg-relative word pointer; if there is no relocation list, it is equal to zero.

The relocation list contains all the information necessary to fix any absolute
addresses used by code within the segment, whenever the segment is loaded or
moved in memory. Such absolute addresses are only needed by native code:

Segments containing exclusively P-code are completely position-independent; no
relocation list is needed.

A relocation list consists of zero or more relocation sublists. Each sublist contains
code offsets for objects that must be relocated, and specifies the type of
relocation that must be done. Sublists can occur ‘in any order, and more than one
sublist can have the same type of relocation.

The following code fragment shows the format of the heading of a sublist:

SegRel, relative to address of base of this segment}
BaseRel, {relative to data segment given in DATASEGNUMY}
lnterpRel,{relative to Interpreter’s interp-relative table}
ProcRel); {relative to address of 1lst instruction in proc}

LocTypes=(RelocEnd, {si{gnals end of entire relocation list}

ListHeader=PACKED RECORD
ListSize: integer; {mumber of pointers in sublist}
DataSegNum: 0..255; ‘[ldcal segment number for BaseRel}
RelocType: LocTypes; {relocation type of sublist entries}
END;

Each sublist contains a ListHeader and zero or more seg-relative byte pointers to
the objects which must be relocated. The RelocType field in the ListHeader

defines what kind of relocation will be applied to all objects designated by the
sublist,

The relocation type ProcRel is generated by the Assembler, but changed by the
Linker into SegRel. ProcRel sublists should never be encountered when loading and
relocating assembly code.

The DataSegNum field in the ListHeader is only used in sublists with a RelocType

of BaseRel, and in all other cases should be zeroed. It specifies the local segment
number of the data segment that all of the sublist’s pointers are relative to.

17

Architecture Guide
The P-Machine

Since the Assembler cannot know this segment number in advance, it should zero-

fill the field and leave the responsibility for correctly setting this field to the
Linker.

The ListSize field in the ListHeader contains the number of pointers in the sublist.

Figure 3 illustrates a relocation list with multiple sublists:

18

The P-Machine

Architecture Guide

high address

relocation
sublist

5
& &
SE
[o]
gz
R
,,,,w,///_ \ //
//../.— ,,,/, N /., . w
E //mv . £
c ' o |
o o\ c
m A\ ,m”.,.,... m
® m AR m
® = T ©
ks g
2 5
X m NN R AN Wm
m. - N . 0 ,”/h///////,/////w/m mrm
o AVEAAN SEERANRE SNARY AN o
2 .,,,N/_n%. AT £
W\ AR \
AELTEER AT AR
N ~ 7

low address

RELOCATION LIST

FIGURE 3

19

Architecture Guide
The P-Machine

The relocation list is intended to be used from high address down to low address.
Each sublist in turn from high to low is processed until a sublist with a relocation

type of RelocEnd is encountered. The DataSegNum and ListSize should be 0 for
this terminating entry.

The relocation list is located at the end of the code segment, since it is

sometimes possible to discard the relocation information after the segment has
been loaded into memory.

20

Architecture Guide
The P-Machine

11.2.1.6 Segment Reference List

In the P-machine, Version 1V.0, each code segment is associated at runtime with
an "environment vector" that defines the mapping of each segment number to the
segment or unit that it designates. Each compilation unit has its own
independent (i.e., local) series of segment numbers, and its own environment
vector. In this way, a particular unit may be referenced by more than one unit,
and each unit that references it may use a different segment number. (More
about environment vectors appears in Section 11.2.3.)

When a compilation unit references one or more othér compilation units, the
principal segment of the compilation contains a segment reference list. This list
defines the connection between the segment numbers that appear in the object
code (they are created by the Compiler), and the names of the units to which they
refer. Only principal segments contain segment reference lists.

The segment reference list, when present, is located above the relocation list (it
grows toward higher memory addresses). The list is used by the Operating

System at associate time. It does not occupy any space in memory during the
program’s execution,

The segment reference list associates the name of each compilation unit (which
does not change) with the number by which that that compilation unit is
referenced.

The following fragment of Pascal code describes a record in the segment
reference list:

SegRec=PACKED RECORD
SegName: PACKED ARRAY [0..7] OF CHAR; {referenced segment name}
SegNum: 0..255; {associated segment number}

Filler: 0..255; {reserved for future use}
END;

The Seg_Refs entry in the segment dictionary (described below) contains the
number of words in the segment reference list. The Code Leng field in the
segment dictionary can be used as a seg-relative word pointer to the start of the
segment reference list. The segment reference list consists of one or more
SegRec’s, starting directly above the relocation lists and continuing towards higher
memory addresses. A SegRec consists of SegName, which contains the name of
the segment, SegNum, which contains the number by which the segment is
reference within this current code segment, and some Filler.

21

Architecture Guide
The P-Machine

The segment reference list is terminated by a SegRec with a blank-filled
SegName and SegNum of zero.

SegRec’s with a SegName of “*** are generated so the Operating System
can execute the initialization and termination code sections of a unit: before
executing a host program, the Operating System constructs a list of all used units
that contain a reference to ‘**%° and uses this list to execute the

initialization/termination sections of all used units before/after the invocation of
the host program.

When the initialization/termination section of a unit (which is procedure 1) is
compiled, a <CXG (*x**-g seg num>, 1> instruction is emitted between the
initialization and termination parts. A local segment number is reserved for the
‘*¥%’ segment reference, and the Operating System creates a linear list that links
together the units of a program that require initialization. " At the end of this list
is the outer body of the main program. The Operating System invokes the
program by calling the first initialization code on this list, which calls the next,
and so forth up to the body of the main program itself. When the main program

terminates, the calling chain is "popped", and termination sections are executed in
the reverse order.

22

Architecture Guide
The P-Machine

11.2.1.7 Linker Information

Linker information (Linker info) is a portion of a code segment that allows the
Linker to resolve references between P-code and native code. Segments output by
an assembler always have Linker info. Segments output by a compiler have Linker
info only if they contain an EXTERNAL routine. Only principal segments may
contain EXTERNAL routines.

Linker info is a sequence of B-word records, starting on the block boundary
following the end (high address) of the segment reference list. The end of the

sequence contains the value EOFMark. Linker info records are always 8 words
long: unused records and unused fields are zero-filled.

If a code segment has Linker info, the HasLinkerlnfo Boolean in Seg_Misc in the
segment dictionary is TRUE. The starting block of Linker info, relative to the
start of the codefile, can be calculated from the formula:

Code_Addr + ((Code Leng + Seg_ﬁefs + 255) DIV 256)

... where Code_Addr, Code_Leng, and Seg Refs are all values in the segment
dictionary (see below).

Two fields are common to all Linker info records. The Name field contains an 8-
character segment name. The L1Type field determines the nature of the Linker
information in the remainder of the record.

The following fragment of psuedo-Pascal code describes a Linker info record:

PtrRecNum = {an integral number of 8-word pointer records}
this is variable from record to record};

LITypes = (EOFMark, GlobRef, PublRef, PrivRef, ConstRef, GlobDef, PublDef,
ConstDef, ExtProc, ExtFunc, SepProc, SepFunc);

LIEntry = RECORD

Name: PACKED ARRAY [0..7] OF CHAR;
CASE LIType: LITypes OF

GlobRef, PublRef, ConstRef
: (Format: (Word, Byte, Big);
NRefs: integer);

PrivRef: (Format: (Word, Byte, Big);

NRefs: integer;
NWords: integer);

23

Architecture Guide
The P-Machine

ExtProc, ExtFunc
(SrcProc: integer;
NParams: integer);

SepProc, SepFunc
: (SrcProc: integer;
NParams: integer;
KoolBit: Boolean);

GlobDef: (HomeProc: integer;
ICOffSet: integer);

PublDef: (BaseOffset: integer;
PubDataSeq: integer);

ConstDef: (ConstVal: integer);

EOFMark:
END {CASE};

PtrList: ARRAY [0..PtrRecNum] OF
ARRAY [0..7] OF integer

END {LlEntry};

GlobRef, PublRef, ConstRef, and PrivRef are all Linker info types generated by an
assembler. They all consist of two fields that precede a list (PtrList) of seg-
relative byte pointers into the associated segment. Format contains the size of
the fields pointed to by the accompanying list. NRefs contains the number of

pointers in the list. PtrList contains multiples of 8 words; all unused words should
be zero.

For these types of Linker info records, PtrRecNum = ceiling(NRefs/8), where
ceiling(n) is the smallest integer >= n.

GlobRef is used to link identifiers in two or mare assembled routines. Name is an
identifier that is referenced within the segment, and defined in some other
assembled routine. Format should always be Word. The Linker must add the final
segment offset of the referenced object to all words pointed at by PtrList. This
offset must be in the correct addressing mode: i.e., bytes or words, depending on
the processor being used.

PublRef is used to link an identifier in an assembled routine to a global variable in
a compilation unit. Name is an identifier that is referenced in the segment, and

24

Architecture Guide
The P-Machine

defined as a global variable in some other compilation unit. Format should always

be Word. The Linker must add the offset of the referenced object to all words
pointed at by PtrList.

ConstRef is used to link an identifier in an assembled routine to a global constant
in a compilation unit. Name is an identifier that is referenced in the segment,
and defined as a global constant in some compilation unit. Format may be either
Byte or Word. The Linker must place the constant value into all locations pointed
at by PtrList.

PrivRef is used to allocate space in the global data segment. Format should
always be Word. NWords specifies the number of words to allocate. The Linker
must add the offset of the start of the allocated area within the global data
segment to all words pointed at by PtrList.

ExtProc and ExtFunc are generated by a compiler to reference EXTERNAL
routines. There is no PtrList. SrcProc is the number assigned to the routine.
NParams is the number of words allocated for parameter passing.

SepProc and SepFunc are generated by an assembler for routine declarations.
There is no PtrList. SrcProc is the number assigned to the routine. NParams is
the number of words allocated for parameter passing. KoolBit is TRUE if the
routine is relocatable, FALSE otherwise. Thus, .PROC and .FUNC generate
SepProc or SepFunc records with KoolBit = FALSE, and .RELPROC and .RELFUNC
generate SepProc or SepFunc records with KoolBit = TRUE.

GlobDef declares a global identifier in an assembled routine. A GlobDef record is
generated for each label defined by a .DEF, .PROC, .FUNC, .RELPROC, or
-RELFUNC directive. There is no PtrList. Name is an identifier defined within
the segment, and may be referenced by any other assembled routines within the
same segment. HomeProc contains the number of the routine in which Name is
defined. ICOffset is a byte offset to Name, relative to the start of the routine in
which Name is defined.

PublDef declares a global variable in a compilation unit. A PublDef record is
generated for each global variable in a compilation unit that is visible to any
EXTERNAL routines. There is no PtrList. BaseOffset is the word offset of the
variable, relative to the start of the data segment that contains it. PubDataSeq is
the local number of the data segment that contains the variable.

ConstDef declares a global constant in a compilation unit. A ConstDef record is

.generated for each global constant in a compilation unit that is visible to any
EXTERNAL routines. There is no PtrList. ConstVal contains the value of the
constant.

25

Architecture Guide
The P-Machine

EOFMark indicates the end of used Linker info records. Name should be blank-
filled.

The following table shows the types of segments (as defined in the segment
dictionary), and the types of segment reference records that can be contained in
the associated Linker info. Note that Proc_Seg’s cannot have Linker info at all:

Prog_Seg Unit_Seg Seprt_Seg

GlobRef yes
PublRef yes .
PrivRef yes
ConstRef yes
ExtProc yes yes

ExtFunc yes yes

SepProc yes
SepFunc yes
GlobDef yes
Pub IDef yes yes

ConstDef yes yes

EOFMark yes yes yes

26

Architecture Guide
The P-Machine

11.2.2 Codefile Organization
11.2.2.1 The Segment Dictionary

The first block of a codefile contains the first record of that file’s segment
dictionary. In Version 1V.0, a segment dictionary consists of a linked list of
dictionary records; if the dictionary is longer than one record, subsequent records

are embedded in the codefile. These are each one block long, and are located
between code segments.

A single dictionary record can describe up to 16 distinct segments. The
information describing a segment is contained in 6 different arrays: the information
describing a segment is found by using a single index value to select a component
from each of these arrays. Entries in the segment dictionary describe only
segments whose code bodies are included in the codefile.

The following fragment of Pascal code describes a segment dictionary record:

27

Architecture Guide
The P-Machine

CONST Max_Dic_Seg = 15; {maximum segment dictionary record entry}

TYPE Seg Dic Range = 0..Max Dic_Seg; {range for segment dictionary entries}

Segment Name = PACKED ARRAY [0..7] OF CHAR; {segment name}
{segment types}
Seg Types = (No_Seg, {empty dictionary entry}
B Prog Seg, jprogram outer segment
Unit_Seg, {unit outer segment}
Proc_ Seg, |segment procedure inside prdgram or unlt}
Seprt_Seg), native code segment}

{machine types}
M Types = (M_Psuedo, M_6809, M PDP_11, M 8080, M_Z 80,
M GA 440, M 6502, M 6800, M | 9900,
M_B0Eé, M | 78000, M 68000)

{p-machine versions}
Versions = (Unknown, 11, 11 1, 111, 1v, V, VI, V1)

{segment dictionary record}
Seg Dict = RECORD
Disk _Info:
ARRAY [Seg Dic_Range] OF {disk info entries}
RECORD
Code Addr: integer; {segment starting block}
Code | Leng: integer; {number of words in segment}
END {of RECORD};
Seg_Name:
ARRAY [Seg Dic_Range] OF Segment Name; {segment name entries}
Seg_Misc:
ARRAY [Seg Dic_Range] OF {misc entries}
PACKED RECORD
Seqg Type: Seg Types; {segment type}
Filler: 0..31; {reserved for future use}
Has__Llnk_lnfo Boolean; {need to be linked'?}
Relocatable: Boolean; segment relocatable?}
END {of PACKED RECORD};
Seg_Text:
ARRAY [Seg Dic_Range] OF integer; {start blk of interface text
Seg_Info:
ARRAY [Seg_Dic_Range] OF {segment information entries}
PACKED RECORD
Seq Num: 0..255; {local segment number}

28

Architecture Guide
The P-Machine

M_Type: M Types; {machine type}
Filler: 0..1; {reserved for future use}
Major_Version: Versions; {P-machine version}
END tof PACKED RECORD}
Seg Famly:
ARRAY [Seg Dic_Range] OF {segment family entries}
RECORD

CASE Seg Types OF
Unit_Seg, Prog_Seg:
(Data Size: integer; {data size}
Seq | Refs: integer; segments in compilation unit}
Max_Seg_Num: integer; {number of segments in file}
Text_Size: integer); {# of blks interface text}
Seprt Seg, Proc_Seg:
(Prog Name; Segment | Name) {outer program/unit name}
END {of Seg Famly},
Next Dict: integer; {block number of next dictionary record}
Filler: ARRAY [0..6] OF integer; {reserved for future use}
Copy Note: string[77]; {copynght notice}
Sex: integer; {machine sex (Sex = 1)
END {of SEG DICT};

29

Architecture Guide
The P-Machine

Disk_Info contains information about the segment’s location within the file.
Segment code always starts on a block boundary. Code_Addr is the number of the
block where the segment code starts (relative to the start of the codefile).
Code Leng is the number of 16-bit words in the segment. This size includes the
relocation list but does not include the segment reference list. All unused entries
in this array should be zeroed.

Seg_Name contains the first 8 characters of the program, unit, segment, or
assembly procedure name. Unused entries should be blank-filled.

Seg Misc contains miscellaneous information about the segment. Seg Type indicates
the type of segment: Prog Seg and Unit_Seg are outer segments of “programs and
units respectively; Proc_Seg is a segment routine within either a unit or a program
outer segment; Seprt Seg is an unlinked native code segment. Has _Link_Info
indicates whether Linker information has been generated for this segment. Linker
info resides in the blocks that directly follow the segment reference list. Linker
info starts on a block boundary. The Boolean Relocatable specifies whether a code
segment is statically or dynamically relocatable.

Dynamically relocatable code segments reside in the code pool; their position in
memory may change many times during execution. Statically relocatable code
segments are loaded only once, in a fixed position on the system heap: they remain
position-locked and memory-locked throughout their lifetime.

All segments that contain only P-code are position-independent and thus
dynamically relocatable. Segments that contain native code may be dynamically
relocatable provided they make no assumptions about either the lifetime of any
modifications made to the segment body itself, or the exact location of the
segment body in memory across the execution of a smgle P-code.

Dynamically relocatable native code is generated by assembling routines using the
RELPROC or RELFUNC assembler directives; a linked code segment containing
assembly routines is dynamically relocatable only if all of its assembly routines
were originally specified as dynamically relocatable. Note that the use of these
assembler directives is an assertion by the programmer that the routines they
declare behave properly; the System does not enforce this, so caution must be
used. If a routine is to be dynamically relocatable, it cannot store information
into the segment body, be self-modifying, or store any pointers to the code

segment in data variables, and then assume that things will behave correctly the
next time it is called.

The Boolean Relocatable is unaffected by the presence or absence of relocation
lists, and is not relevant to concurrency considerations.

Seg_Text contains the starting block of the segment’s INTERFACE text section,
relative to the start of the codefile. The INTERFACE text section can appear

30

Architecture Guide
The P-Machine

anywhere within the codefile that contains the code segment it describes. The
Seg_Text array entry, in conjunction with the Text Size field in the Seg Family
record, indicates the address and length of the INTERFACE section in blocks. The
INTERFACE text section always starts on a block boundary and follows all of the
conventions of a textfile, with the exception that the last page of the section may
be either 1 or 2 blocks long. Only segments with a Seg Type of Unit Seg have
INTERFACE sections. All other segments and unused entries should be zero-filled.

Seg_Info contains further information about the segment Seg Num is the segment
number. M Type tells what kind of object code is in the segment. If there -“is
any native code in the segment, then M Type will have one of the processor-
specific M Type’s. If the segment consists exclusively of P-code, then its M Type

is M_Psuedo.” Major Version gives the version of the P-machine on which the
codefile is intended to run.

Seg Famly contains information about the code segment’s compilation unit. The
information contained in this array depends on whether Seg Type indicates a
principal or a subsidiary segment.

If the segment is a subsidiary segment, then Seg__Famly contains the first 8
characters of the parent compilation unit’s name, stored in Prog Name. If this
name is not known at codefile generation time (as is the case with Seprt_Seg’s),
the field should be blank-filled.

If segment is a principal segment, then the information in Seg Famly consists of
four fields:

Data Size is the number of words in this segment’s base data segment.

The variables of principal segments are referenced from any location, including
their own outer routine bodies, via global loads and stores (rather than local
operations). Therefore, the Data Size field associated with the body of an
outer routine in a code segment should be zero, so that no superfluous memary
will be allocated in an unused local data area.

Seg Refs is the size in words of the segment reference list for this segment.

Max_Seg_ Num is the total number of segment numbers assigned to this -
compilation unit. Max_Seg Num includes all segments with assigned numbers,
regardless of whether the segment body is contained in this file or not.

Text Size is the number of blocks of INTERFACE text within the compilation
unit. Text Size is used in conjunction with the Seg Text array to specify the
INTERFACE text for a compilation unit of type Unit _Seg; it is zero-filled for
all other compilation unit types.

31

Architecture Guide
The P-Machine

If the segment is unused (Seg Type = No_Seq), then Seg Famly should be zero-
filled.

Next_Dict contains the block number of the next segment dictionary record,
relative to the start of the codefile. In the last record of the segment dictionary,
Next Dict should be zero.

Filler is reserved for future use and should always be zero-filled.

Copy Note is reserved for a copyright message, which can be creatéd with either
the LIBRARY utility or a Compiler directive.

Sex corresponds to the byte sex of the codefile. It is a full word that contains
the value 1, with the same byte sex as the rest of the dictionary record. Thus,
when this word is examined by a program running on a machine with the same
byte sex as the codefile, it will appear as a 1; on a machine of opposite sex, it
will appear as a 256. System programs use this word to detect the sex of the
codefile, and if necessary, byte-swap the word-oriented fields of the dictionary.

32

Architecture Guide
The P-Machine

11.2.2.2 Assembler-Generated Codefiles

Codefiles generated by an assembler have a slightly different structure from those
generated by a compiler. A relocation list is generated for each procedure in an
assembler-generated segment (instead of one relocation list for the whole segment).
These are the only sort of lists that may contain ProcRel relocation. These lists
are placed immediately after the body of the procedure they describe. The start
or high end address of each list is pointed at by the seg-relative word pointer
contained in the ExitlC field of each assembler-generated procedure.

An assembler-generated segment is also unique in that during the linking process,
the code bodies of all its procedures and functions may be copied into one of ‘the
segments of the compilation unit it is being bound to. Further, the name of the
segment or segments that the assembly code may be linked to is never known at
assembly time. It is, however, always assumed that any number of assembly
procedures or functions that communicate via REFs and DEFs are always bound
into the same segment, regardless of whether they were assembled together.

The DataSize word generated by the assembler for each routine should have a
value of -1 (OFFFF HEX): this indicates a data size of zero that is one’s

complemented, to signal that the first instruction of the code body is native
code.

Finally, since the assembler-generated code segments cannot know what program or
unit they are to be linked to, the Prog Name entry in the Seg Famly array of the
segment dictionary should be blank-filled, and the DataSegNum field in the
ListHeader record of all BaseRel relocation sublists should be zero-filled.

It is the Linker’s responsibility, when linking assembler-generated segments, to
convert all ProcRel relocation sublists into SegRel relocation lists, to correctly set
the DataSegNum field in the ListHeader of all BaseRel relocation sublists, and to
collect all relocation sublists and place them after the procedure dictionary of the
code segment. The Linker should also update the Relocatable bit in the Seg Misc
array, depending on the information supplied in Linker info.

33

Architecture Guide
The P-Machine

I11.2.3 Code Segment Environments
11.2.3.1 Segment Information Blocks (SIBs)

A Segment Information Block (SIB) is a record that contains information about an
"active" code segment. A code segment is active if it may be used by a
program that is running. A SIB is allocated on the Heap, and remains there as

long as the segment is active. There is only one SIB for each code segment, no
matter how many other segments may be using it.

Note that a code segment need not be in memory to be active: an active code

segment may be on disk or in the Codepool, but its SIB will always be on the
Heap.

The following fragment of Pascal code describes a SIB:

SIB = RECORD

Seg Base: Mem_Ptr; segment’s memory location}
Ref Count: integer; ## of active calls to the seg}
Actlvxty integer; memory swap activity}

Link_Count: integer; number of links to the S1B}
Residency: -l..maxint; {-1 = pos lock, 0 = swap, n = mem lock}
Seg_ Name: PACKED ARRAY [0..7] OF CHAR;

Seg Leng: integer; # of words in segment}

Seg_Addr: integer; disk address of segment}

Vol _Info: VI Ptr; pointer to disk drive info}

Data | Size: integer; number of words in data segment]}

Res_. 51Bs: RECORD code pool management record}
Next SIB: SIB_P; next SIB in list}
Prev SIB: SIB P; previous SIB in list}
CASE Boolean OF {scratch area}
TRUE: (Sort _SIB: SIB_P); {next SIB in sort list}
FALSE: (New Loc: Mern__Ptr); {temporary address}

END {of Res SIBs};
END {of sIB};

Seg Base contains the current memory address of the code segment. 1f the code
segment is not in memory, Seg_Base contains NIL.

Ref_Count contains the number of outstanding calls to the segment. It is
incremented whenever a routine outside the segment executes a CXP to a routine

within the segment. 1t is decremented whenever a RET from a routine within the
segment returns to a routine outside the segment.

34

Architecture Guide
The P-Machine

Activity contains a value based on the number of times a segment is used; it
increases over time. It is incremented by 6 whenever a call is made to a routine
outside the segment. It is also incremented by 6 whenever a routine within the
segment returns to a routine outside the segment. Finally, it is incremented by 6
whenever a task switch suspends the segment that is currently executing.)

Link_Count contains the number of links to the SIB from other Operating System
data structures. When Link Count becomes zero, the SIB is removed from the
Heap (the space it occupied is available again).

Residency contains a value between -1 and maxint. -A -1 indicates that the
segment is Position_Locked (this occurs when the Boolean Relocatable in the
segment dictionary is TRUE). A zero indicates that the segment . is Swappable
(that is, it can be removed from memory if necessary). A value greater than zero
indicates that the segment is Memory Locked. In this case, the value is a count
of the number of memory lock operations that have been applied to that segment.
Residency is incremented when a program declares the segment to be
Memory_Locked, and decremented when a program declares it to be Swappable. It
becomes ctuallx Swappable when Residency is equal to zero (i.e., when no
outstanding Mem_Lock operations remain). Programs can control the residency of
segments by using the intrinsics MEMLOCK and MEMSWAP.

Seg_Name contains the first 8 characters of the segment’s name.

Seg_Leng contains the number of words that the code segment occupies (including
any relocation lists, but excluding segment reference lists).

Seg_Addr contains the segment’s first block number on disk.

Vol_Info contains a pointer (VI _Ptr) to a volume information record that contains
the drive number and volume name of the disk on which the segment is resident.

Data_Size contains the number of words in the code segment’s data segment. This
only applies to principal segments: otherwise, Data Size should be zero.

Res_SIBs is used to maintain the Code Pool. All SIBs of segments in the Code
Pool are on a doubly-linked list formed by the Prev_SIB and Next SIB pomters The-

Sort_SIB and New_Loc fields are used for temporary values while managing the
Code Pool.

The Operating System uses several data structures to manage code segments by
maintaining active SIBs and managing the Code Pool. All of these data structures
refer to SIBs through pointers.

When a program being prepared for execution requires a code segment that is not
yet active, the appropriate SIB is allocated on the Heap and initialized. The

35

Architecture Guide
The P-Machine

Operating System creates a pointer to the SIB, and the SIB’s Link Count is
incremented. When the segment is no longer needed, the pointer is removed, and

the Link Count is decremented. When Lmk__Count becomes zero, the SlB is
removed from the Heap.

36

Architecture Guide
The P-Machine

11.2.3.2 Environment Records (E_RECs)

A code segment’s "environment" is the mapping of segments it may access into
local segment numbers. Segment numbers only have local meaning; a segment may
only refer to segments that have been assigned local segment numbers. 1t may
not refer to segments outside of this scope.

For each segment, there is an Environment Record (E_Rec). This record designates
an Environment Vector (E_ Vec) that describes the mapping of local segment
numbers to actual code segments.

The following fragment of pseudo-Pascal describes environment records and vectors:

E Vect P = "E_Vect;

E Rec P = "E_Rec;
E Vect = RECORD
Vec_Length: integer; {number of local segments}
Map: ARRAY [l..Vec Length] OF E Rec P;
local™ envnronment mapping}
END {of E_Vect};
E Rec = RECORD
Env_Data: Mem Ptr; {pointer to global data}
Env SIB: SIB P; {pointer to SIB for seg number}
Env Vect: E Vect Pj {pointer to environment}

CASE Boolean OF
TRUE : (Link Count: integer; {number of links to E Rec}

Next Rec: E_Rec_P); {next environment record}
END {of E Rec};

Env_Data points to the segment’s global data. (The data segment is allocated on
the Heap when the program is invoked.)

Env_SIB points to the segment’s SIB. (Also placed on the Heap when the program .
is invoked.) :

Env_Vect is an array of pointers to E Rec’s. It is indexed by a segment number:
the ponnter indicates an E Rec that describes a code segment. In this way, a
mapping from local segment numbers to actual segments is accomplished.

Link_Count indicates the number of active compilation units that are currently

USE’ing the segment. This only applies to the principal E_Rec of a compilation
unit. Link_Count is maintained in the same way a S1B’s Link_Count is

37

Architecture Guide
The P-Machine

maintained.

Next Rec is a pointer on a chain of all active compilation units. This chain is

called Unit List. This field also applies only to the principal E Rec’s of a
compilation unit.

In order to minimize index manipulations, the Map array in an E Vect record starts
at 1. Thus it may be indexed by local segment numbers (these must be 1 or

greater). The Vec_Length field of the record may be considered to occupy the
zero’th position of the map.

The Operating System uses a recursive routine to construct the environments of a
program’s USEd units, and then its subsidiary segments and principal segment (lts
“native segments"). The algorithm is roughly:

FUNCTION Build Env (Seg_Dict): E_Rec P;
BEGIN
IF outer block segment E_Rec exists in Unit List THEN BEGIN
increment Link Count;
return existing E Rec P
END ELSE BEGIN
create E_Vect;
create Env Data for outer block data space;
IF there are USEd units indicated in Seg Dict THEN
FOR all USEd units DO
install Build Env (New_Seg Dict) into current E Vect;
FOR all native segments DO
BEGIN
create E Rec and SIB for native segment;
install E Vect, S1B8, and Env_Data in E Rec;
install E Rec for natwe segments in E_ _Vect
END;
install E Rec for outer block segment on Unit List;
return E_Rec P for outer block segment
END
END

The Build_Env function returns a pointer to the E_Rec for the outer block of the

program being executed. This pointer is instailed into the Operating System’s
User Program E_Vect entry.

After a program’s execution, a recursive routine is used to de-link the environment

for the program’s outer block and all subsidiary units and segments. The algorithm
is roughly:

38

Architecture Guide
The P-Machine

PROCEDURE Dump_Env (E_Rec_P);
BEGIN
decrement Link_Count;
IF Link Count = 0 THEN
BEGIN
de-link from Unit List;
DISPOSE (Env | Data);
FOR all E Rec’s on E_Vect whose Seg Vect <> E _Rec.Seg Vect DO
Dump_Env (those E Rec’s);
FOR all E_Rec’s on E_Vect whose Seg Vect = E_Rec.Sec_Vect DO
BEGIN
de link E_ REC".SEG _SIB;
DISPOSE (those E_RECs);
END;
DISPOSE (E_Rec.Seg Vect);
END
END

The Operating System sets its E Vect entry for the terminating program to NIL,
and calls Dump_Env for the outer block’s E _Rec. After Dump Env returns, a pass

is made through the Res S1Bs list to find all segments whose Link Count = 1, and
remove them from the Heap.

39

Architecture Guide
The P-Machine

11.3 Task Environments

A task is a routine that is executed concurrently with other routines. task is

implemented by three data structures: the body, the Task Information Block (TiB),
and the task stack. In Pascal, a task is known as a PROCESS.

The "main task" of the p-System is the thread of execution that runs from
Operating System initialization and all System utility or user program executions to
the termination of the Operating System. A program may have subsidiary tasks.

During execution, each subsidiary task uses its own stack instead of the System
Stack. The task’s activation record is actually contained in the task stack: both

are allocated on the Heap, along with an amount of free space into which the
stack may grow.

The task body is a portion of a P-code segment. In structure it is no different
from the body of a procedure or function.

The amount of space allocated to the task stack depends on the STACKSIZE
parameter of the START intrinsic. The default is 200 words.

The main task uses the System Stack for expression evaluation and activation
records. The Heap is shared by the main task and all subsidiary tasks.

The TIB of a subsidiary task is allocated on the Heap when the task is started. It
contains information about a task’s execution environment. This must be
maintained, and restored whenever a task is restarted after having been idle.

At any given time, the P-machine may have:

one task running
several tasks ready to run, and
several tasks waiting for semaphores.

The tasks that are ready to run are organized into a queue. There is also a queue
of waiting tasks for each semaphore (it may be empty). Tasks in queues are
ordered by their priority.

The P-machine register CURTSK always points to the TIB of the currently

executing task. The register READYQ points to the first in the list of tasks
ready to run.

40

Architecture Guidé
The P-Machine

The following fragment of Pascal code describes a TIB:

TIB = RECORD {Task Information Block]}

Regs: PACKED RECORD
Wait_Q: TIB_Ptr;
Prior: byte;
Flags: byte;
SP_Low: Mem Ptr;
SP_Upr: Mem_Ptr;
SP: Mem_Ptr;
MP: MSCW_Ptr;
BP: MSCW Ptr;
IPC: integer;
Env: ERec_Ptr;
ProcNum: byte;
TIBIOResult: byte;
Hang_Ptr: Sem Ptr;
M_Depend: integer;

END {of Regs}
MainTask: Boolean;
Start MSCW: MSCW _Ptr;
END {of TIB}

SP is the P-machine Stack Pointer. SP_Low and SP Upr are the limits on SP for
this task.

MP and BP designate (respectively) the local and global activation records for this
task.

IPC is the P-code Instruction Counter (a seg-relative byte pointer), and ProcNum is
the number of the executing routine.

Priority contains the task’s priority. This is a number from 0..255. The lower the
value, the more urgent the priority.

Wait_Q is used when the task is waiting to run, or waiting on a semaphore. Wait Q '
is one link in a linked list of TIBs.

When a task is waiting on a semaphore, Hang Ptr points to that semaphore. If the

task is not waiting on a semaphore, Hang_Ptr is NIL. Hang Ptr allows a task to
" be removed from a semaphore’s wait queue if the task is being terminated.

Flags is reserved for future use.

41

Architecture Guide
The P-Machine

Env is a pointer to the task’s £ Rec. The task’s SIB (Segment Information Block)
may be found through the E | Rec.

TIBIOResult will in the future be used to save an IORESULT that is local to the
task.

M Depend contains machine-dependent data maintained by the Interpreter. It is
initialized to O.

MainTask, if TRUE, indicates that this is the TIB of a "root" ("parent") task.

StartMSCW points to the MSCW (Mark Stack Control Word) of the routine that
START ed this task.

Further information about tasks appears below in Chapter 1V. Figure 4 shows the

layout of main memory while the System is running, including the location of task
stacks as discussed in this section.

42

high address

low address

odd even

OPERATING SYSTEM
(subset always resident)

HEAP

PROCESS1 STACK

s - - -]
PROCESS 2 STACK

GLOBAL DATA SEG1

GLOBAL DATA SEG2

INTERPRETER

MAIN MEMORY USAGE

FIGURE 4

Architecture Guide
The P-Machine

43

Architecture Guide
The P-Machine

11.4 P-Machine Instructions
11.4.1 The Intrinsic P_MACHINE

A Pascal compilation unit may directly generate in-line P-code. This is done by
calling the intrinsic procedure P_MACHINE’. Producing in-line P-code may be
useful in very low-level system programming. Absolutely no protection is
provided by this intrinsic or the System; it can only be used at the user’s risk,
and extreme caution should be exercised.

The form of a call to P_MACHINE may be sketched as follows:
P_MACHINE (<P-machine item> {, <P-machine item>})

... that is, the parameters to the procedure are a list of one or more <P-machine
item>s. A <P-machine item> describes a portion of P-code, and causes one or
more bytes to be generated.

There are three varieties of <P-machine item):

1) P-code syllable: the simplest item is a (non-real) scalar constant. This

item produces a single byte of P-code which is the least significant byte of
the specified constant.

2) Expression value: if the item is an expression enclosed in parentheses,
then a P-code sequence is generated which will compute the value of the
expression and leave it on the stack.

3) Address Reference: if the first token of the item is “*, then the item is
the specification of a variable, and P-code is generated which leaves the
address of that variable on the stack.

.. A <P-machine item> may not be a string constant.

44

Architecture Guide
The P-Machine

EXAMPLE:
Given these declarations:
CONST STO = 196;
TYPE Records = RECORD
FirstField, SecondField: integer
. END;

PRecords = “Records;
VAR Vector: ARRAY [0..9] OF PRecord;

it integer;
... the following call to P MACHINE ...
PMACHINE (“Vector[S}.FirstField, (i*i), STO)

... would cause the square of i to be stored in the first field of the record
designated by the sixth element of the array Vector.

45

Architecture Guide
The P-Machine

11.4.2 P-Code Instruction Set
11.4.2.1 Operands and Notation
11.4.2.1.1 Instruction Parameters
The parameters to a P-code instruction contain information about the location and
size of that instruction’s operands. They are generated at compile time, and are
therefore static. Each P-code uses some (fixed) combination of these parameters.
These are the five possible parameter formats (there are no others):
UB - Unsigned Byte
Represents a positive integer in the range 0..255. When converted to a 16-bit
two’s complement value, the most significant byte is zeroed.
SB - Signed Byte
Represents a two’s complement B8-bit integer in the range -128..127. When

converted to a 16-bit two’s complement value, the most significant byte is a
sign extension (all bits equal bit 7 of the low byte (SB)).

DB - Don’t care Byte

Represents a positive integer in the range 0..127. It may thus be treated as
either an SB or UB. Bit 7 is always 0.

B - Big

This is a parameter with variable length. If bit 7 of the first byte is 0, the
remaining 7 bits represent a positive integer in the range 0..127. 1f bit 7 of
the first byte is 1, then bit 7 should be cleared; the first byte is the high-
order byte of a 16-bit word, and the following byte is the low-order byte of

that word. The Big format may represent positive integers in the range
0..32767.

W - Word

This is a two-byte parameter. It is a 16-bit two’s complement value that

represents an integer in the range -32768..32767. The word is always least-
significant-byte-first.

46

Architecture Guide
The P-Machine

11.4.2.1.2 Dynamic Operands

In the P-machine instruction descriptions below, stack-oriented dynamic operands of
the P-codes will be discussed. This section describes those operands.

Activation Record

See the following section.

Addr (address)

A 16-bit hardware word address (on by_te-addressable processors, this is
typically an even quantity).

Bool (Boolean)

A 16-bit quantity treated as a logical value.

Byte-ptr (byte pointer)
A 32-bit quantity. TOS is an index into an array of bytes. TOS-1 is the

word address of the base of the byte array. Two words are used in a byte-

ptr so that individual bytes may be specified even on word-addressed
processors. ,

Int (integer)
A 16-bit two’s complement integer.
Nil

A constant that references an invalid address. The actual value varies from
processor to processor.

47

Architecture Guide
The P-Machine

Offset

An offset into a code segment. This is either a word or a byte offset,
depending on the natural addressing unit of the host processor.

Pack-ptr (packed array pointer)

Three words that designate a bit field within a 16-bit word. TOS is the
number of the rightmost bit of the field, TOS-1 is the number of bits in the

field, and TOS-2 is the address of the word. -

Real
A 32-bit or 64-bit floating point quantity.

Set
A set is 0..255 words of bit flags, preceded by a word that contains the
number of words in the set.

Word
A 16-bit quantity that may be treated in any way: as an integer, Boolean,
address, etc.

Word-block

A group of zero or more words.

11.4.2.1.3 Activation Records

An activation record is created for each invocation of an active routine. Figure 5
illustrates an activation record.

Mark
Stack

high address

function value

parameters

ocals
and
temporaries

MSPROC

MSENV

MSIPC

MSDYN

MSSTAT

low address

Architecture Guide
The P-Machine

DATASIZE
words

)

least significant
byte

PROCEDURE ACTIVATION RECORD

FIGURE 5

49

Architecture Guide
The P-Machine

The parts of an activation record are:

1) Mark Stack.

Five (full) words of housekeeping information:

a) MSSTAT - pointer to the activation record of the lexical
parent.

b) MSDYN - pointer to the activation record of the caller.

c) MSIPC - seg-relative byte pointer to point of call in
the caller.

d) MSENV - E_Rec pointer of the caller

e) MSPROC - procedure number of caller

2) Local and temporary variables. This area is DataSize words long.

3) Parameters. ;
This area (which may be empty) contains:
a) Addresses - for VAR parameters, and record and array
value parameters.
b) Values - for other value parameters.

4) Function value. This area is present only for functions, and is
either one or two words (or four words, if reals are that size).

11.4.2.1.4 Conventions

Section 11.4.2.2 describes individual P-machine instructions, grouped by the nature
of their operation.

On the left is the mnemonic for the instruction, followed by its value (all P-code

instructions are represented by a single byte). This is followed by the format for
the parameters, if any.

If the the instruction has more than one parameter of the same format, then they
are distinguished by an underscore followed by a number (parameters of a given
kind are numbered left to right, starting from 1).

On the right is a verbal description of the instruction.

Below the opcode value is a notational description of the P-machine Stack before
and after the P-code’s execution. Only the expression-evaluation portion (the top
words of the stack) is shown.

On the left is a depiction of the Stack before the opcode is executed, followed by

a colon (:), followed by a depiction of the stack after the opcode is executed.
Each depiction of the Stack is enclosed in angle brackets (<>). Within the

50

Architecture Guide
The P-Machine

brackets, the stack grows from left to right. Individual operands are separated by
commas, and vertical bars represent exclusive alternatives (one or the other value,
but not both). Thus the operand closest to the right bracket (>) is the top-of-
stack (TOS). - Brackets that do not enclose any operands represent an empty
evaluation stack.

51

Architecture Guide
The P-Machine

11.4.2.2 The Individual P-Code lnstructions

11.4.2.2.1

SLDC
LDCN
LDCB
LDC1

LCO

11.4.2.2.2
SLDL1
SLDL16
LDL
SLLAL
SLLAS

LLA

52

Constant One-Word Loads.

0..31
Olwordd

152
<><KNILD

128 UB
<> word>

129 W
Owordd

130 B
<Oioffset>

Short Load Word Constant. Push the
opcode, with the high byte zero.

Load Constant NIL. Push NIL.
The value may vary across processors.

Load Constant Byte. Push UB, with
high byte zero. -

Load Constant Word. Push W,

Load Constant Offset. B is a word
offset into the constant pool of the
current segment. Convert B to a seg-
relative word offset. If operating

on a byte addressed machine, then
convert to a byte offset. Push the
offset on the Stack.

l.ocal One-Word Locads and Stores

32

47
<Oiwordd
135 B
<>:iword>
96

103
<{>:<addr>
132 B
<{>:<addr>

Short Load Local Word. SLDLx: fetch
the word with offset x in the local
activation record and push it.

Load Local Word. Fetch the word with
offset B in the local activation record
and push it.

Short Load Local Address. Push the
address of the indicated offset in the
local activation record.

Load Local Address. Calculate address
of the word with offset B in the local
activation record and push it.

SSTL1

SSTLS8

STL

11.4.2.2.3
SLDO1
SLDO16
LDO

LAO

SRO

11.4.2.2.4

SLOD1
SLOD2

LOD

104
111
<word>:<>

164 B
<word>: <>

Global One-Word Loads and

48

63

<Olword>
133 B
<>iword>
134 B
<>:Kaddr>
165 B
<word>:<>

Architecture Guide
The P-Machine

Short Store Local Word. Store TOS in
the indicated offset in the local
activation record.

Store Local Word. Store TOS into word
with offset B in the local activation
record.

Store

Short Load Global Word. SLDOx: fetch
the word with offset x in the global

data area of the current segment and
push it.

Load Global Word. Fetch the word with
offset B in the global data area of the
of the current segment and push it.

Load Global Address. Push the word
address of the word with offset B in the
global data area of the current segment.

Store Global Word. Store TQOS into the

- word with offset B in global data area

of the current segment.

Intermediate One-Word Loads and Store

173 B
174 B
<>iword>

137 DB,B
<Oword

Short Load Intermediate Word. Push
the word at offset B in the
activation record of the parent
(LOD1) or grandparent (LOD2) of

the local activation record.

Load Intermediate Word. DB indicates
the number of static links to traverse
to find the activation record to use.
Push the word at offset B in that
activation record.

53

Architecture Guide
The P-Machine

LDA

STR

11.4.2.2.5

LDE

LAE

STE

11.4.2.2.6
SINDO
SIND7

IND

STO

54

136 DB, B
<>:<addr>

l66 DB, B
<word>:<>

Load Intermediate Address. DB
indicates the activation record as for
LOD. Push the address of offset B in
that record.

Store intermediate word. Store TOS
at offset B in the activation record
indicated by DB.

Extended One-Word Loads and Store

154 UB, B
Owordd

155 uB, B
<>:<addr>

217 U8, B
<word>:<>

Load Extended Word. Push the word at
offset B in the global data area of
local segment UB.

Load extended address. Push the
address of the word at offset B in the
global data area of local segment UB.

Store extended word. Store TOS at
offset B in the global data area of
local segment UB.

Indirect One-Word Loads and Store

120

127
<addr>:<word>
230 B
<addr>:{word>
196

<addr,word>:<>

Short Index and Load Word. TQOS is the
address of a record. SINDx: replace it
with word x of the record.

Index and Load Word. TOS is the
address of a record. Replace it with
the B’th word in the record.

Store Indirect. Store TOS into the
word pointed to by TOS-1.

Architecture Guide
The P-Machine

11.4.2.2.7 Multiple-Word Loads and Stores

LDC

LDM

STM

LDCRL

LDRL

STRL

131 us.l, B, UB_2
<>:<{word-block>

208 UB
<addr>:{word-block>

142 UB
<addr,word-block>:<>

242 B
<> real>
243

<addr>:<real>

244
<addr,real>:<{>

Load Multiple Word Constant. B is a
word offset into the constant pool of
the current segment. Push

the UB 2 words starting at that offset
onto the evaluation Stack. If UB_l, the
mode, is 2, and the current segment is
of opposite byte sex from the host, swap
the bytes of each word as it is pushed.
If less than B+20-words available to

the Stack, issue a Stack fault.

Load Multiple Words. TOS is a pointer
to the beginning of a block of UB
words. Push the block onto the Stack,
preserving the order of words in

the block. If less than UB+20

words available to the Stack,

issue a Stack fault.

Store Multiple Words. TOS is a block
of UB words. Transfer the block from
the Stack to the destination block
starting at the address TOS-1, and
preserving the order of words in

the block.

Load Real Constant. Push the real
constant designated by the constant pool
index B in the current segment. The
constant is guaranteed to be in the
native byte sex of the host, so no byte
flipping is necessary during the load.

Load Real. TOS is the address of a
real variable. Replace the address
by the value of the variable.

Store Real. TOS is the value of a

real variable. TOS-1 is an address.
Store TOS at the address in TOS-1.

55

Architecture Guide
The P-Machine

11.4.2.2.8 String and Packed Array of Char Parameter Copying

To copy value parameters of type string or packed array of char into the
activation record of a called routine, the calling routine generates a 'parameter
descriptor.” This descriptor is a 2-word record. The first (low address) word is
either NIL, or a pointer to an E Rec. If the first word is NIL, the second word is
the address of the parameter. 1f the first word points to an E Rec, the second

word is an offset relative to the designated segment (the offset is generated by an
LCO instruction).

The called routine uses a CAP or CSP instruction to copy the parameter into its
activation record. CAP and CSP use the parameter descriptor to do this.

CAP 171 B Copy Array Parameter. TOS is the
<addr,addr>:<> address of the parameter descriptor for

a packed array of characters. Cause a
segment fault if the parameter
descriptor designates a non-resident
segment. Otherwise, copy the source
(which is B words big) into the
destination address at TOS-1.

CcspP 172 UB Copy String Parameter. TOS is the
<addr,addr>:<> address of the parameter descriptor for

a string. Cause a segment fault if the
descriptor designates a non-resident
segment. Otherwise, compare the
dynamic length of the designated string
to UB, the declared size (in bytes) of
the destination formal parameter.

Cause
a string overflow fault if the length of
the source is greater than the capacity
of the destination. Otherwise, copy,
for the length of the source, into the
destination, whose address is in TOS-1.

56

11.4.2.2.9 Byte Load and Store

LDB

ST8

11.4.2.2.10

LDP

STP

167
<byte-ptr>:Kword>

200
<byte-ptr,word>:<{>

Architecture Guide
The P-Machine

Load Byte. TOS is a byte pointer. Pop
it and push a word with the byte it
designated in the least significant bits
and a most signifant byte of zero.

Store Byte. Store byte TOS into
the location specified by byte
pointer TOS-1.

Packed Field Load and Store

201
<pack-ptr>:<word>

202
<{pack-ptr,word>:<{>

Load a Packed Field. Replace the
packed field pointer TOS with the field
it designates. Before being pushed on
the Stack, the field is right-justified
and zero-filled.

Store into a Packed Field. TOS is the
right-justified data, TOS-1 a packed
field pointer. Store TOS into the field
described by TOS-1.

57

Architecture Guide
The P-Machine

11.4.2.2.11 Record and Array lndexing and Assignment

MOV 197 UBR, B Move. Move B words from the source
<addr,addr>:> designated by TOS to the destination

designated by TOS-1. TOS is either the
address of a word block (if UB is zero)
of the offset of a constant word block
in the current segment. 1f UB is 2, and
the current segment has opposite byte
sex from the host, swap the bytes of
each word as it is moved.

INC 231 B Increment Field Pointer. The word
<addr>:<addr> pointer TOS is indexed by B words and
the resultant pointer is pushed.
IXA 215 B Index Array. TOS is an integer
<addr,word>:<addr> index, TOS-1 is the array base word

pointer, and B is the size (in words) of
an array element. Push a word pointer
to the indexed element.

IXP 216 UB 1, UB_2 Index Packed Array. TOS is an
<addr,word>:{pack-ptr> integer index, TOS-1 is the array base
word pointer. UB_1 is the number of
elements per word, and UB_2 is the
field-width (in bits). Compute
and push a packed field pointer.

58

11.4.2.2.12

LAND

LOR

LNOT

BNOT

LEUSW

GEUSW

11.4.2.2.13

ABI

NGI

INCI1

DECI

ADI

SBl

Logical Operators

161
<word,word>:{word>

160
<word,word>:{word>

229
<word>:{word>

159
<Bool>:<Bool>

180
{word,word>:<Bool>

181
<word,word>:<Bool>

Integer Arithmetic

224
<int>:K<int>

225
<int>«<int>

237
<int>:Kint>

238
<int>:<int>

162
<int,int>:<int>

163
<int,int>:<int>

Architecture Guide
The P-Machine

Logical And. AND TOS into TOS-1.
Logical Or. OR TOS into TOS-1.
Logical Not. Take one’s complement of

TOS.

Boolean Not. Complement the low
bit and clear the remainder of TOS.

Less Than or Equal Unsigned. Push
Boolean result of unsigned comparison
TOS-1 <= TOS.

Greater Than or Equal Unsigned. Push

Boolean result of unsigned comparison
TOS-1 >= TOS.

Absolute Value Integer. Take absolute
value of integer TOS. Result is
undefined if TOS is initially -32768.

Negate Integer. Take the two’s
complement of TOS.

Increment Integer. Add 1 to TOS.
Decrement Integer. Subtract 1 from
TOS.

Add Integers. Add TOS into TOS-1.

Subtract Integers. Subtract TOS from
TOS-1.

59

Architecture Guide
The P-Machine

MP1

DVl

MODI1

CHK

EQUI

NEQI

LEQI

GEQI

11.4.2.2.14 Real Arithmetic

140
<int,int>:<int>

141
<int,int>:<int>

143
<int,int>:Kint>

203
<int,int,int>:<int>

176
<int,int>:<Bool>

177
<int,int>:<Bool>

178
<int,int>:<bool>

179
<int,int>:<bpol>

Multiply Integers. Multiply TOS into
TOS-1. This instruction may cause
overflow if result is larger than

16 bits.

Divide Integers. Divide TOS-1 by TOS
and push quotient.
If TOS is 0, cause an execution error.

Modulo Integers. Divide TOS-1 by TOS
and push the remainder. ~

Check Subrange Bounds. Insure that
TOS-1 <= TOS-2 <= TOS, leaving TOS-2
on the Stack. If conditions are not
satisfied, cause a runtime error.

Equal Integer. Push Boolean

result of integer comparison
TOS-1 = TOS.

Not Equal Integer. Push Boolean
result of integer comparison
TOS-1 <> TOS.

Less than or Equal Integer. Push

Boolean result of integer comparison
TOS-1 <= TOS.

Greater than or Equal Integer. Push
Boolean result of integer comparison
TOS-1 >= TOS.

All overflows and underflows cause a runtime error.

FLT

TNC

60

204
<int>:{real>

190
<real>:«<Lint>

Float Top-of-Stack. Convert the
integer TOS to a floating point number.

Truncate Real. Convert the real TOS
to an integer by truncating.

RND

ABR

NGR

ADR

SBR

MPR

DVR

EQREAL

LEREAL

GEREAL

11.4.2.2.15

ADJ

191
<real>:Kint>

227
<{real>:<{real>

228
<real>:{real>

192
<real,real>:<real>

193
<real,real>:<real>

194
<real,real>:<{real>

195
<real,real>:<{real>

205
<real,real>:<{Bool>

206
<real,real>:<{Bool>

207
<real,real>:<Bool>

Set Operations

199 UB
<set>:{word-block>

Architecture Guide
The P-Machine

Round Real. Convert the real TOS to
an integer by rounding.

Absolute Value of Real. Take the
absolute value of the real TOS.

Negate Real. Negate the real TOS.
Add Reals. Add TGS into TOS-1.

Subtract Reals. Subtract TOS from
TOS-1.

Multiply Reals. Multiply TOS into
TOS-1.

Divide Reals. Divide TOS into TOS-1.
If TOS is 0, cause a runtime error.

Equal Real. Push Boolean result of
real comparison TOS-1 = TOS.

Less than or Equal Real. Push Boolean
result of real comparison TOS-1 <= TOS.

Greater than or Equal Real. Push
Boolean result of real comparison
TOS-1 <= TOS.

Adjust Set. Force the set TOS to
occupy UB words, either by expansion
(adding zeroes "between'" TOS and
TOS-1) or compression (chopping of high
words of set), and discard its length
word. After this operation, if less
than 20 words are available to the
Stack, cause a Stack fault.

61

Architecture Guide
The P-Machine

SRS 188
<int,int>:<{set>

INN 218
<int,set>:{Bool>

UNI 219
<{set,set>:<set>

INT 220
{set,set>:{set>

DIF 221
<{set,set>:<set>

EQPWR 182
<{set,set>:Kbool>

LEPWR 183
<{set,set>:<{Bool>

GEPWR 184
<{set,set>:<Bool>

62

Build a Subrange Set. The integers
TOS and TOS-1 must be in [0..4079].
If not, cause a runtime error, else
push the set . 1f TOS-1

> TOS, push the empty set.

Before this operation, if less than
20 words available to the Stack,
cause a Stack fault.

Set Membership. Push Boolean result
of TOS-1 IN TOS. -

Set Union. Push the union of sets TOS '

and TOS-1. (TOS OR TOS-1)

Set Intersection. Push the
intersection of sets TOS and TOS-1.
(TOS AND TOS-1)

Set Difference. Push the difference
of sets TOS and TOS-1.
(TOS-1 AND NOT TOS)

Equal Set. Push the Boolean result of
set comparison TOS-1 = TOS.

Less than or Equal Set. Push true if
TOS-1 is a subset of TQOS, else
push false.

Greater than or Equal Set. Push true
if TOS is a superset of TQOS, else
push false.

11.4.2.2.16 Byte Array Comparisons

EQBYT 185 UB 1, UB 2, B
<addrloffset,addr|offset>:<Bool>
LEBYT 186 UB1, UB 2, B

<addr|offset,addr|offset>:<Bool>

Architecture Guide
The P-Machine

Equal Byte Array. TOS and TOS-1 are
each a pointer to a byte array (if the
corresponding UB is zero) or the offset
of the constant byte array in the
current segment. B is the size (in
bytes) of that array. UB_l and UB 2
are mode flags. They refer to TOS and
TOS-1, respectively. If the byte sex of’
the segment is different from the host,
and the corresponding mode is 2, swap
the bytes of each word of that operand,
before doing the comparison. Push the
Boolean result of the byte array
comparison TOS-1 = TOS.

Less than or Equal Byte Array. TOS
and TOS-1 each point to a byte array
(if the corresponding UB is zero) or the
offset of the constant byte array in the
current segment. B is the size (in
bytes) of that array. UB_l1 and UB 2
are mode flags. They refer to TOS and
TOS-1, respectively. If the byte sex of
the segment is opposite from the host,
and the corresponding mode is 2, swap
the bytes of each word of that operand,
before doing the comparison. Push the
Boolean result of the byte array
comparison TQOS-1 <= TOS.

63

Architecture Guide
The P-Machine

GEBYT 187 us 1, UB 2, 8B Greater than or Equal Byte Array.

<addr|offset,addr|offset>:<Bool> TOS and TOS-1 each point to a byte
array (if the corresponding UB is zero)
or the offset of a constant byte array
in the current segment. B is the size
(in bytes) of that array. UB_1 and
UB 2 are mode flags. They refer to
TOS and TOS-1, respectively. If the
byte sex of the segment is opposite
the host, and the corresponding mode
is 2, swap the bytes of each word of
that operand before doing the
comparison. Push the Boolean result
of the byte array comparison
TOS-1 <= TOS.

11.4.2.2.17 Jumps

uapP 138 sSB Unconditional Jump. Jump
O by byte offset SB,

FJpP 212 SB False Jump. Jump by byte offset SB
<Bool>:<> if TOS is false.

TIP 241 SB True Jump. Jump by byte offset SB if
<Bool>:<> TOS is true.

EFJ 210 SB Equal False Jump. Jump by byte offset
<int,int>:<> SB if TOS < TOS-1.

NFJ 211 sB Not Equal False Jump. Jump by byte
<int,int>:<d> offset SB if TOS = TOS-1.

JPL 139w Unconditional Long Jump. Jump W
O H O bytes from current location.

FJPL 213 W False Long Jump. Jump W bytes
<Bool>:<> from current location if TOS is false.

64

xJp 214 B
<int>:<H>

11.4.2.2.18 Routine Calls and Returns

Architecture Guide
The P-Machine

Case jump. The first word, W1, with
word offset B in the constant pool of
the current segment is word-aligned and
is the minimum index of the table. The
next word, W2, is the maximum index.
The case table is the next (W2-W1)+1
words. If the byte sex of the segment
is opposite to the host, any of these
words must be byte-swapped before they
are used. -

If TOS, the actual index, is in the

range W1..W2, then jump W3 words from
the current location, where

W3 is the contents of the word pointed
at by TOS. Otherwise do nothing.

For all procedure call instructions, after the MSCW and Datasize words have been
pushed on the Stack, a check is made to see that there are still at least 40 words
available between the Stack and the Codepool. If there are not, a Stack fault is

issued.

For all calls to external procedures, issue a segment fault if the desired segment

is not already in memory.

CPL 144 UB
<{param>:<activation>

CPG 145 UB
<{param>:<activation>

SCPI11 239 UB
SCPI12 240 UB
{param>:<activation>

Call Local Procedure. Call procedure
UB, which is an immediate child of the
currently executing procedure and in the
same segment. Static link of the new
MSCW is set to old MP.

Call Global Procedure. Call procedure
UB, which is at lex level 1 and in the
same segment. The static link of the
MSCW is set to BASE.

Short Call Intermediate Procedure. Set
the static chain to point to the lexical
parent (CPl1l) or grandparent (CPI12) of

the calling environment.

Call procedure UB.

65

Architecture Guide
The P-Machine

CPI 146 DB, UB
<{param>:<activation®

MSCW.

CXL 147 uUB_1, uB 2
<{param>:<activation>

SCXG1 112 uB
SCxG8 119 Us
<{param>:<activation>

CXG lag uB_1, uB 2
<{param>:<activation>

CXl1 149 uB 1, DB, uB 2
<{param>:<activation>

CPF 151
<{param,proc-ptr>
:<activation>

66

Call Intermediate Procedure. Call
procedure UB, which is at lex level DB
less than the currently executing
procedure and in the same segment.

Use that activation record’s static

link as the static link of the new

Call Local External Procedure. Call
procedure UB_2, which is an immediate
child of the currently executing
procedure and in the segment uB_1.

Short Call External Global Procedure.
The segment number is indicated by the
opcode (1-8) and UB is the procedure
number.

SCXG1 may refer to a procedure
embedded in the Interpreter. |If

this is the case, an Interpreter

table contains the procedure’s

location.

Call Global External Procedure. Call
procedure UB_2 which is at lex level 1
and in the segment uB 1.

If the segment number s 1, then the
procedure code may be embedded in
the Interpreter; an Interpreter

table contains its location.

Call Intermediate External Procedure.
Call procedure UB 2 which is at lex
level DB less than the currently
executing procedure, and in the
segment UB 1.

Call Formal Procedure. TOS contains a
procedure number. TOS-1 contains an
E_Rec pointer. T0S-2 contains a static
link. Call the indicated proccdure,

RPU 150 B
<a¢§ivation>:<func>

LSL 153 DB
<{>:<addr>
BPT 158

<>:activation>

Architecture Guide
The P-Machine

Return from Procedure. Restore
state of calling procedure from MSCW
and discard. Pop MSCW from Stack.
Cut back an additional B words from
Stack, leaving function value,

if appropriate.

If returning to different segment
(Mark Stack E Rec <> current E Rec)
then issue a segment fault if necessary.
If procedure number in MSCW is < 0,
return to EXITIC of procedure, not
MSCW’s IPC.

Load Static' Link onto Stack. DB
indicates the number of static
links to traverse.

Push the indicated static link.

Breakpoint. Unconditionally call
execution error procedure.

67

Architecture Guide
The P-Machine

11.4.2.2.19 Concurrency Support

SIGNAL 222
<addr>:>

WAIT 223
<addr>:<>
11.4.2.2.20 String Instructions

EQSTR 232 UB 1, UB .2
<addr|offset,addr|offset>:<Bool>

LESTR 233 uB 1, UB 2
<addr|offset,addr|offset>:<Bool>

GESTR 234 uB 1, UB 2

Signal. TOS is a semaphore address.
Signal this semaphore.

Wait. TOS is a semaphore address.
Wait on this semaphore.

Equal String. TOS and TOS-1 each
point to a string variable

(if the corresponding UB is zero) or the
offset of a constant string in the
current segment. UB_1 and UB_2 refer
to TOS and TOS-1, respectively. Push
the Boolean result of the string
comparison TOS-1 = TOS.

Less or Equal String. TOS and TOS-1
each point to a string variable

(if the corresponding UB is zero) or the
offset of a constant string in the
current segment. - UB_1 and UB 2 refer
to TOS and TOS-1, respectively. Push
the Boolean result of the string
comparison TOS-1 <= TOS.

Greater or Equal String. TOS and

<addr|offset,addrloffset>:<Bool> TOS-1 each point to a string variable

68

(if the corresponding UB is zero) or the
offset of a constant string in the
current segment. UB_1 and UB_2 refer
to TOS and TOS-1, respectively. Push
the Boolean result of the string
comparisonT 0S-1 >= TOS.

ASTR

CSTR

11.4.2.2.21

LPR

SPR

DUP1

235 UB 1, UB 2
<addr,addr|offset>:<>

236
OO

Miscellaneous lnstructions

157
<int>:<{word>

209
<int,word>:<{>

226
<{word>:{word,word>

Architecture Guide
The P-Machine

Assign String. TOS-1 is the address of
the destination string variable. UB_2
is the declared size of that string.
TOS represents the source for the
assignment. 1t is either the address of
a string variable (if the mode, UB_1,

is 0) or the offset of a string constant
in the current segment. Cause a string
overflow fault if the dynamic size

of the source string is greater than
the declared size~of the destination.
Otherwise, copy the source into the
destination. '

Check String Index. TOS-1

is the address of a string variable.
TOS is an index into that variable.
Check that the index is between 1 and
the current dynamic length of the
variable. If not, cause a range-check
execution error.

Load Processor Register. TOS is a
register number. Push the contents of
the register indicated in this fashion:
(for SPR, also):
a) register number is positive: it is a
word index into the current TIB.
b) register number is negative:
-1 indicates the pointer to the TIB
of the currently running task
-2 indicates the current £ Vec P
-3 indicates the pointer to the TIB
at the head of the ready queue

Store Processor Register. TOS-1 is a
register number (defined as for LPR).
Store TOS in indicated register.

Duplicate One Word. Duplicate one
word on TOS.

69

Architecture Guide
The P-Machine

DUPR 198 Duplicate Real. Duplicate the real
<word-block>:<word-block> on TOS.

SWAP 189 Swap. Swap TOS with TOS-1.
<word,word>:{word,word>

NOP 156 No Operation. Continue execution.
OO

NAT 168 Native Code. Transfer control to
19419 native code that begins directly after

this instruction. Details are
machine-dependent.

NAT-INFO 169 B Native Code Information. Ignore the
OO next B bytes in the P-code stream.
This information is used in the
generation of native code. Treat
the instruction as a long form of NOP.

RESERVE1 250 These codes are reserved for use by
the Compiler to identify embedded
RESERVEG6 255 compiler directives. They must not be

explicitly generated by programs.

70

Architecture Guide
The Bl1OS

11l. LOW-LEVEL 1/0

111.1 Introduction to the 1/0 Subsystem

Besides emulating the P-machine, each interpreter must contain some native code
to perform certain time-critical operations, and deal with hardware dependencies
such as 1/O devices. The body of code that is not devoted to emulating P-code
is called the Runtime Support Package (RSP). The portion of the RSP that is
responsible for 1/0 is called the RSP/IO.

To make the System as portable as possible, the RSP/IO is machine-independent,
except for a portion called the Basic Input/Output Subsystem (BIOS). The BIOS
must vary depending on the hardware in use, but the interface between the BIOS
and the RSP/IO is standard: calls to routines in the BIOS are clearly defined.

Thus, we have the 1/0O Hierarchy shown in Diagram 1.0: The user’s 1/O calls (e.qg.,
READLN, WRITELN) are mapped by the Compiler and Operating System into calls
to the RSP (i.e., UNITREAD, UNITWRITE). The RSP/IO itself calls the BIOS
which controls the actual device operations. It is important for the reader to
recognize that here we are discussing a synchronous 1/O system. In other words,
when an 1/0 request has been initiated by a user program, control does not return
to that program until the 1/O operation is completed.

This chapter describes the behavior and interfaces of the RSP/IO and BIOS. The
SBIOS (Simplified BIOS) is described in detail in the Installation Guide. The
easiest way to describe its relation to the BIOS and RSP/IO is to sketch the
history of 1/O support within the p-System.

The first implementation was for the PDP-11, which has well-established standard
interfaces to peripheral devices (regardless of manufacturer). In this environment,
there was no need for 1/O adaptation.

When the p-System was adapted to the 8080 and Z80, the widespread availability
of CP/M® was used: p-System 1/O called CP/M BIOS routines. In this way, any
hardware environment that CP/M already supported could then host the p-System.

As adaptations for additional processers (e.g.,, the 9900, 6502, and 6800) were -
begun, it became clear that the p-System needed some analog to the CP/M BIOS.

It was at this point that the p-System BlOS, essentially as described in this
chapter, was created and standardized.

71

Architecture Guide
The BIOS

The final step in this 1/O development took place at SofTech Microsystems, where
it was realized that:

1) The BIOS definition did not address the problem of
standardizing bootstrap mechanisms, and

2) lmplementing a BIOS was a difficult task, and virtually
required the use of an already running p-System.

The Adaptable System was created to address these problems. The SBIOS is as
simple a hardware interface as possible, so that it can be written by a relatively
inexperienced programmer. It is called from a unit of "interface code" that
accepts BlOS-style calls and emits SBIOS routine calls. This interface code allows

the Interpreter/SBIOS interface to be simpler than the BIOS interface. The
RSP/10 is essentially unchanged.

The Adaptable System also addresses the bootstrap problem by defining a hierarchy

of bootstrap components, only some of which need to be implemented by the user
installing a p-System.

A user who has access to a running p-System and the source code for the
Interpreter and SBIOS interface code may wish to implement a BlOS-level 1/O
interface. This is potentially more efficient than an SBIOS-level adaptation, since
the more elaborate BIOS interface allows the implementor to take advantage of
such performance characteristics as DMA support in the disk interface.

Both BIOS and SBIOS 1/O interfaces have been created as the System was adapted

to new environments. Earlier adaptations (such as for the PDP-11) do not always
use these conventions (though in the future they may).

72

Architecture Guide
The BlOS

"Language Level" A U?ER

v
THE SYSTEM

“winterpreter Levei” SRR

device no., data area address,
?yte count
, block no., control word])

v
DEVICE 1/O .
(parameter checking)

IConsole IPrinter Di sk IRemote User-
v v v defined
SPECIAL CHAR SPECIAL CHAR SPECIAL CHAR Devices
HANDL ING HANDL ING HANDL ING
(DLE s ,CR s,E?‘ (LE‘s, CR's, I§OF (DLE’s, CR’s, ?0"
& alphalogck & alphalock fphalock .
write Tread drive no., device no.,
]] data area . data area
single single single address, single address,
data data data byte count, data byte count,
byte byte byte lo?ical byte logical
block no. block no.
"B10S
Level" v v v v
PRINTER DI SK SERIAL LINE MISCELLANEQUS
PRIMITIVES MAPPER PRIMITIVES DEVICE
tmmmemma- T (Mag logxcgl DR1VERS
locks into
v track f sector)
TYPE -AHEAD
v
DISK
v PRIMITIVES
S SPEClALlO4NR
(start/stoT, flush, break)
v v
SCREEN
PRIMITIVES PRIMITIVES
Diagram 1.0 ---- | /O Subsystem Hierarchy

73

Architecture Guide
The BlOS

111.2 The Language Level: Device 1/O Routines

As mentioned above, all language-level 1/0 requests are eventually mapped by the
Compiler and Operating System into calls to a group of intrinsic routines known as
the Device 1/0O Routines. The programmer may call the Device Routines directly,
or may use the standard 1/O syntax of the language in use. The exact details of
how this mapping is accomplished do not concern us here. The Device 1/O
Routines are not written in Pascal, but in fact are the native code procedures that
comprise the RSP/IO. The way that these procedures are called is described next.

Throughout this chapter, it is assumed that all 1/O support at or below the device
1/0 level is implemented in assembly language. If P-code is the Mative language
of the host processor, these routines may in fact be implemented in Pascal.

The RSP/IO routines are implemented and accessed as routines of the Operating
System’s unit KERNEL. KERNEL is accessible as segment 1 of every compilation

unit. The actual code for the routines may reside in the Interpreter itself, instead
of in KERNEL.

111.2.1 Calling the RSP/IO

To the user making direct calls to Device 1/O Routines, they look like any other
intrinsic routine. If they actually were declared in Pascal, the declarations would

have the following format (allowing a few illegitimate constructs such as optional
parameters and variable-length arrays):

PROCEDURE UNITREAD(UNITNUMBER : INTEGER;
VAR DATAAREA : PACKED ARRAY [0..BYTESTOTRANSFER-1]

OF 0..255;
BYTESTOTRANSFER : INTEGER

[; LOGICALBLOCK : INTEGER]
[; CONTROL : INTEGER]);
PROCEDURE UNITWRITE(<same as for UNITREAD>);

FUNCTION UNITBUSY(UNITNUMBER : INTEGER) : BOOLEAN;

PROCEDURE UNITWAIT(UNITNUMBER : INTEGER);
PROCEDURE UNITCLEAR(UNITNUMBER : INTEGER);
PROCEDURE UNITSTATUS(UNITNUMBER : INTEGER;

VAR STATUSWORDS : ARRAY [0..29] OF INTEGER;
CONTROL : INTEGER);

74

Architecture Guide
The Bl1OS

Remember that no such declarations actually exist in the System. They are
intended to model the parameters passed and returned by the native code RSP/10
routines.

111.2.1.1 Devices and Device Numbers

As described elsewhere, each device is referred to in the System by a given
number. The formal parameter UNITNUMBER in the declarations above determines
which physical unit the operation is intended for. Thus, the Device /O Routines
are device-transparent to the Pascal programmer; the same procedure will handle
any physical unit. Diagram 2.0 is a list of the pre-defined unit numbers associated
with each physical unit. The meaning of the other parameters is discussed later in
this chapter.

Unitnumber Volume name

<Reserved for the system>
CONSOLE

SYSTERM

<Reserved for the system>
disk0

diskl

PRINTER

REMIN

REMOUT

disk2

10 disk3

11 disk4

12 disk5

13-127 <Reserved for future expansion>

NV DIV EWNE-O

Diagram 2.0 -- Unitnumbers

111.2.1.1.1 User-Defined Devices

The System reserves all device numbers above 127 for user-defined devices. They

have no pre-assigned names, yet can be accessed through the UNIT intrinsics just
as devices with pre-assigned numbers.

75

Architecture Guide
The BIOS

111.2.1.2 CONTROL Parameters

The CONTROL parameter to UNITREAD, UNITWRITE and UNITSTATUS is a word
used to pass special information to the RSP/I0 and BlOS regarding the handling of

the 1/0 request. The formats of the CONTROL words are shown in Diagrams 2.1
and 2.2.

MSB . LsB
I 15-13 | 12.4 | 3 [2 | I o0 |
| USER | | l | I l
| DEFINED | (Reserved) | NOCRLF | NOSPEC IF’HYSSECTII ASYNC }
I I | l |
Value| ! | 8 | 4 | 2 | 1 |
Bit 0 ASYNC Set (1) implies asynchronous 1/0 request.

Reset (0) implies synchronous 1/0 request.
(This bit should always be reset.)
Bit 1 PHYSSECT set implies "Physical Sector Mode" for disk 1/0.
Reset implies "Logical Block Mode" for disk 1/0.
(See section 2.3.1 for details.)
Bit 2 NOSPEC Set implies "no special character handling".
Reset implies "special character handling".
(See sections 3.2.1 and 3.2.2 for details.)
Bit 3 NOCRLF Set implies no LFs are to be appended CRs during
non-disk 1/0.
Reset implies LFs are to be appended to CRs during
non-disk 1/0.
(See sections 3.2.1.2 and 3.2.1.3 for details.)
Bits 4-12 Reserved for future expansion.
Bits 13-15 User-defined functions.

The default setting for all these bits is reset (0).

Diagram 2.1 - CONTROL word format for UNITREAD and UNITWRITE

76

Architecture Guide
The BlOS

MSB | 15-13 | 12-1 | 0 | LSB
| USER I I l
:DEFINED I(Reserved)l 10D1R :
I
Value I | | 1 |
Bit 0 IODIR Set (1) implies the status of the input channel
is to be returned.
Reset (0) implies the status of the output
channel is to be returned.
Bits 1-12 Reserved for future expansion.
Bits 13-15 User-defined functions.

Diagram 2.2 - CONTROL word format for UNITSTATUS

111.2.2 10ORESULT and Completion Codes

At times, an 1/O request will terminate abnormally. To handle error conditions, a

program may use the intrinsic IORESULT. The integer value returned by
IORESULT describes the status of the last 1/O request.

Each call to UNITREAD, UNITWRITE, UNITCLEAR or UNITSTATUS causes a
"completion code" to be set in the SYSCOM data area (SYSCOM, for SYStem
COMmunication area, is conventionally the only data space that may be directly

accessed by both the Operating System and the Interpreter). Programmers may
test the completion code by using IORESULT.

The standard completion codes are given in Diagram 2.3 below.

77

Architecture Guide
The BI1OS

Code Meaning

0 No error

1 Bad block, CRC error (parity)

2 Bad device number

3 lilegal 1/0 request

4 Data-com timeout

5 Volume is no longer on-line

6 File is no longer in directory

7 lllegal file name

8 No room; insufficient space on disk

9 No such volume on-line

10 No such filename in directory

11 Duplicate file

12 Not closed; attempt to open an open file
13 Not open; attempt to access a closed file
14 Bad farmat; error reading real or integer
15 Ring Buffer Overflow

16 Write attempt to protected disk

17 lllegal block number

18 lllegal buffer address

19 - 127 Reserved for future expansion

Codes 128 through 255 are available for non-predefined, device-dependent errors.

Diagram 2.3 - 1/0O Completion Codes

111.2.3 Logical Disk Structure

The System views a disk as a zero-based linear array of 512-byte logical blocks.
All disks in the System have this logical structure, regardless of their physical
format. The physical allocation units of a disk are commonly known as sectors;
these may vary widely from one model of drive to another. The BlOS is responsible
for mapping the logical structure of a System disk onto the physical structure of
the device, i.e., mapping logical blocks onto physical sectors.

78

Architecture Guide
The BIOS

111.2.3.1 Physical Sector Addressing Mode

To provide enhanced flexibility for systems programming at a machine-specific
level, a mechanism has been provided for directly accessing the physical sectors of
the disk. When the PHYSSECT bit (bit 1, value 2) of the CONTROL word is set
on a call to UNITREAD or UNITWRITE involving a disk unit, the 1/O is performed
in Physical Sector Mode. This has the following effects:

1) The parameter LOGICALBLOCK is interpreted by the BIOS as the physical

sector number (PSN). (In the future, this may become the least significant 15 or 16
bits of the PSN.)

2) The parameter BYTESTOTRANSFER must be 0. (In the future, this may
become the most significant 16 bits of the PSN.) '

111.2.3.1.1 Physical Sector Numbers

Typically, the physical sectors of a disk are addressed by specifying both track and
sector numbers. That is, the disk is viewed as an array of tracks where each

track is an array of sectors. If this data structure were declared in Pascal, it
would look like this:

type

BYTE = 0..255;

SECTOR = array [0..(BYTESperSECTOR-1)] of BYTE;

TRACK = array [1..SECTORSperTRACK] of SECTOR;

DISK = array [0..(TRACKSperDISK-1)] of TRACK;

(Note that here, we are using the convention that track numbers are zero-based
but sector numbers start from one.)

We can convert the type DISK into a linear array of SECTOR as follows:
type
DISK = array [0..(TRACKSperDISK*SECTORSperTRACK)-1] of SECTOR;

We use this linear representation for addressing the disk by physical sector number
(PSN). The relations between the PSN, and track and sector numbers are:

79

Architecture Guide
The BlOS

PSN = (TRACKNUMBER*SECTORSperTRACK) + SECTORNUMBER-1;
TRACKNUMBER = PSN div SECTORSperTRACK;
SECTORNUMBER = (PSN mod SECTORSperTRACK) + 1;

111.2.3.1.2 Physical Sector Size

Any physical sector size may be accomodated. An 1/0O request in Physical Sector
Mode simply causes a full sector to be transferred. The programmer is responsible
for ensuring that the data area is at least large enough for one physical sector.

Programs written using physical sector mode are not expected to be portable‘to
different disk hardware without some modification.

80

Architecture Guide
The BlOS

ll1.3 The Interpreter Level: The RSP/IO

This section details the design and operation of the Input/Output portion of the
Runtime Support Package (RSP/IO). While the design itself is processor- and
hardware-independent, it is intended to be realized in native code. Thus, the final

product will be processor-specific but still independent of the exact peripherals
used.

l11.3.1 Calling Mechanisms

This section now discusses how each routine in the RSP/IO is called from the
Pascal level (or the level of another compiled language). The level of detail is
intended to be such that an implementor of the RSP will know how to pop
parameters off the Stack when the RSP is called, and how the Stack should look

when the RSP returns. The detailed semantics' of each routine are discussed in
Section 111.3.2.

111.3.1.1 UNITREAD and UNITWRITE

PROCEDURE UNITREAD(UNITNUMBER : INTEGER;
VAR DATAAREA : PACKED ARRAY [0..BYTESTOTRANSFER-1]
OF 0..255;
BYTESTOTRANSFER : INTEGER
[; LOGICALBLOCK :INTEGER]
[; CONTROL : INTEGER])

PROCEDURE UNITWRITE(<same as for UNITREAD>)

I1I.3.1.1.1 Parameter Description
UNITNUMBER has already been discussed.

DATAAREA is the user’s buffer to or from which the data will be transferred.
Describing it as a VAR parameter signifies that UNITREAD and UNITWRITE are
passed a pointer to the start of the data area. This pointer is actually
represented as an address couple, consisting of a word base and a byte offset. On
processors which use byte addressing, the effective address is computed by simply
adding the base and the offset, since both quantities are in bytes. For processors
using word addressing, the effective address is computed by indexing byte-wise
from the base address (always toward higher locations). Generally, the address of
the start of the data area may or may not be on a word boundary. In the case
of disk units, however, it is only defined in the case that it is on a word
boundary; that is, a Pascal programmer must not allow actual parameters with odd

81

Architecture Guide
The BlOS

numbered indices (like A[3]) to occur when transferring to or from the disk. The
reason for this inconsistency is to avoid restricting disk data to being moved byte-
by-byte.

The third item in the parameter list, BYTESTOTRANSFER, contains the number of
bytes to move between the user’s data area and the physical unit.

Two optional parameters follow for UNITREAD and UNITWRITE: LOGICALBLOCK
and CONTROL. These parameters are optional for the Pascal programmer; the
compiler will assign them both the default value zero. LOGICALBLOCK is only
relevant for disk reads or writes; as discussed in Section 111.2.3, it specifies the
Pascal logical block to be accessed. The CONTROL word has been discussed
above in Section 111.2.1.2.

111.3.1.1.2 Parameter Stack Format

UNITREAD and UNITWRITE receive their parameters on the evaluation stack in
the following order (each box represents a 16-bit quantity):

wevs WILIINITITINITTT K- - - - - - (on return, SP

[emmmmeie - | points here)

| Byte Count [

R e E |

| Block Number | (The stack shown here
fmmm i m e eeeee o | grows down)

| Control [{eommme e oo SP

Diagram 3.0 - Stack state on entering UNITREAD or UNITWRITE

Like ordinary Pascal procedures, these RSP routines pop their parameters from the
stack when they are finished.

82

Architecture Guide
The BIOS

111.3.1.2 UNITBUSY
FUNCTION UNITBUSY(UNITNUMBER : INTEGER) : BOOLEAN

The UNITBUSY function has meéning only in an asynchronous environment and

thus will always return FALSE (0) for this synchronous specification. The use of
the stack is illustrated in Diagram 3.1.

et {///////////////: {///{///////////:

| Unit Number |<-«-- SP ----- >1 ;alse !

T | |oemmmmmmmee s
before after

Diagram 3.1 - Stack state before and after UNITBUSY

111.3.1.3 UNITWAIT
PROCEDURE UNITWAIT(UNITNUMBER : INTEGER);

Like UNITBUSY, UNITWAIT is only useful in an asynchronous environment. In a
synchronous system, as described here, UNITWAIT becomes essentially a no-op,
since no unit will have a 1/O request pending. A single parameter is on the top-

of-stack when the procedure is called and is popped off before the procedure
returns. The use of the stack is illustrated in Diagram 3.2.

PP :///////////////} sP ---->:///////////////{

:"CJ;EE'&um;e;":<---- 5P | Tlempty> |

S T N [|
before after

Diagram 3.2 - Stack state before and after UNITWAIT and UNITCLEAR

83

Architecture Guide
The BIOS

I11.3.1.4 UNITCLEAR
PROCEDURE UNITCLEAR(UNITNUMBER : INTEGER)

The purpose of UNITCLEAR is to restore the specified unit to its "initial" state.
At the RSP level, this would mean clearing any state flags pertaining to the
specified unit (see sections 111.3.2.1.1 and 111.3.2.2.2). The “initial" state for each
device at the BIOS level is defined in Section 111.4.5. The stack format is identical
to that of UNITWAIT (see Diagram 3.2 above).

111.3.1.5 UNITSTATUS

PROCEDURE UNITSTATUS(UNITNUMBER : INTEGER;
VAR STATUSWORDS : ARRAY [0..29] OF INTEGER;
CONTROL : INTEGER)

The purpose of UNITSTATUS is to acquire various device dependent information
from the specified UNIT. The procedure is passed a pointer to a status record
(whose length is a maximum of 30 words) into which the status words are
sequentially stored (Note: Users may define words starting at word 29 and
allocating toward word 0, to allow for the system’s use of the first words of the
record) and a CONTROL word (see Section 111.2.1.1).

UNITSTATUS receives its parameters on the evaluation stack in the following order
(each box represents a 16-bit quantity):

et NSLTITTITI T <o (on return, SP

oo mmeea o | points here)

| Status |

| Record | (The stack shown here
| Pointer | grows down)
I |

[Control [<ommm e SP

Diagram 3.3 - Stack state before and after UNITSTATUS

84

Architecture Guide
The BI10S

111.3.2 Semantics

This section will detail the processing to be performed by the RSP/10. The primary
function of the RSP/IO is to manage calls to the BIOS. Secondarily, the RSP/10 is
responsible for handling certain special functions which shall be described here.
Appendix A contains a Pascal realization of the RSP/IO which should be considered
the most precise reference for the semantics.

111.3.2.1 Special Character Handling on Output

Output to the printer, console or remote units must properly handle Blank
Compression Codes and Carriage Returns.

111.3.2.1.1 Blank Compression Code (DLE’s)

The System supports textfiles that contain a two-byte blank compression code (only
at the beginning of a line). It is the responsibility of the RSP/1IO to decode the
blank compression code and send an appropriate number of blanks. The first byte
is an ASCIl DLE (decimal 16) which signals that the next byte contains the excess-
32 number of blanks to insert (i.e., it should be interpreted as being the <number
of blanks to be sent>+32). Therefore, the next byte following the DLE should be
processed by subtracting 32 from its value and sending that number of blanks.
Note that negative results, obviously in error, are translated to a value of zero.
Note also that the blank-count byte may not be the next input byte processed, due
to device switching. This, therefore, requires the maintenance of a flag for each
device to indicate that it is currently processing a DLE. The DLE character and
the blank-count byte are not normally sent to the device (see Section 111.3.2.3).

111.3.2.1.2 Carriage Return -- Line Feed

Textfiles contain ASCIl CR’s (decimal 13) at the end of lines. We define this
character as meaning "New Line", i.e., a carriage return followed by a line feed.
Thus, it is the responsibility of the RSP/IO to send an ASCIl LF (decimal 10) after
sending each CR (also see Section 111.3.2.1.3).

111.3.2.1.3 NOCRLF Bit in CONTROL Parameter

‘When bit 3 (value 8) of the CONTROL parameter is set, the special handling

accorded CR’s is turned off, i.e., a LF is not automatically appended, and they are
sent out like other characters.

85

Architecture Guide
The BIOS

111.3.2.2 Special Character Handling on lnput

There are several characters which should receive special treatment when received
from the console, the printer or the remote devices, in a complete implementation
of this 1/O system. All but two of them, however, are handled by the BIOS.
Those which are handled in the RSP/IO are the EOF and ALPHALOCK characters.

111.3.2.2.1 EOF Character

The EOF character, when received from the console, printer or remote devices,
signals that the "end-of-file" has been reached on that particular unit. Rather
than being a fixed ASCIl code, this is a "soft character". That is, the exact
character code which will be interpreted as "End-Of-File" may be changed during
system execution by the Pascal user. Further discussion of the soft characters
used by the 1/O Subsystem may be found in Section lll.4.4. The EOF character is
in the SYSCOM data area and must be accessed by the RSP/IO to determine what
character to look for. When the EOF character is found in the input stream, the
action to be taken depends somewhat upon which device was referenced. If we
are reading from UNIT 1 (CONSOLE:), then the rest of the user’s buffer, starting
at the current position, is packed with nulls (decimal 0). For UNIT 2 (SYSTERM:),
the printer and the remote, the EOF character is put into the user’s buffer. In

all cases, no further characters are transferred to the buffer and control returns
immediately. :

111.3.2.2.2 ALPHALOCK Character

The ALPHALOCK character, when received from a device by the RSP/IO, signals a
default case change for all alphabetic characters. All lower case alphabetic
characters (i.e., ‘a” to ‘z’) received after the ALPHALOCK character will be
converted to upper case. Receipt of another ALPHALOCK character will cause
the case to revert back to non-converting mode (the default mode). As for DLE
handling described above, a flag for each device to indicate that it is currently in
the ALPHALOCK state should be maintained to ensure proper handling when

devices are switched. The ALPHALOCK character is not normally returned in the
buffer (see Section 111.3.2.3).

111.3.2.2.3 BIlOS Functions

The remaining special input characters BREAK, START/STOP and FLUSH are used

only for input from the console, not from the printer or remote devices. They are
handled by the BIOS and are described in Section 111.4.5.1.4.

86

Architecture Guide
The BIOS

111.3.2.3 NOSPEC Bit in CONTROL Parameter

When bit 2 (value 4) of the CONTROL parameter is set, the special handling
accorded DLE’s, and the EOF and ALPHALOCK sensing functions described above

are turned off. These characters should then be transferred as any other
character. The BIOS functions are not affected.

87

Architecture Guide
The BIOS

111.4 The Machine Level: The Bl10OS

As explained above, the Basic Input/Output Subsystem is responsible for providing
the actual access to 1/O devices. Both the design and implementation of the BIOS
are specific to a given processor and 1/O configuration. In this section we will
attempt to specify the nature of the BIOS in sufficient detail for an experienced
programmer to write the code for a given processor and set of peripherals.

The general scheme discussed below uses vectors from the RSP/IO to the BIOS
subroutines for reading, writing, initializing and controlling, and answering status
requests. The exact vector scheme and means of passing parameters must be
worked out separately for each processor. Arrangements that have already been
worked out for certain processors are illustrated in Section 111.6.2.

111.4.1 Design Goals

The speed of the BIOS code is fairly insignificant, compared to the (slow) speed of
the 1/0 devices that it handles. When peripherals are changed, which may occur
frequently, it often proves that only minor changes need to be made to an existing
BIOS to service the new hardware. Also, since the BIOS always resides in main
memory, each byte it occupies is one less available to the programmer. For these
reasons, we suggest that major design goals (assuming correctness!) be (1)
compactness and (2) clarity.

Like the rest of the Interpreter, the BIOS should be ROM-able. Obviously, it will
also require access to some RAM., The addresses that the BIOS references should
be specified in the assembly code by equates, so that it is a simple matter to

change them and reassemble the BIOS whenever there is a change in the 1/0O
ports or the memory configuration.

111.4.2 Completion Codes

All read, write, initialization and control, and status calls to the BIOS must return
a byte to the RSP that contains status information about the 1/O request just
serviced. The value of this byte is the '"completion code" discussed in Section
111.2.2. Most of the standard completion codes are not relevant to the BIOS --
they are returned by the Operating System for file errors and the like. The
following standard errors can be returned by the B1OS:

No error

CRC error

lllegal device number
lllegal operation on device
Undefined hardware error

S WN~O

88

Architecture Guide
The B10S

9 Device not on line

15 Ring Buffer Overflow

16 Write protect; wrttempt to protected disk
17 lllegal block number -

18 lilegal buffer address

All other errors are considered hardware-dependent. For these, the BIOS should
return codes in the range 128..255. The selection of appropriate codes is left to
the BIOS writer.

Note that any pre-defined devices not implemented must arrange to return a
completion code of 9 ("Device not on line") when an attempt is made to initialize
or use them.

Any user-defined devices not implemented should return a completion code of 2
("lllegal device number") when an attempt is made to access them.

111.4.3 Calling Mechanisms

In this section we discuss the parameters required in the BIOS calls for each
device. Each device has four BIOS calls associated with it: READ, WRITE,
CONTROL (CTR L)and STATUS. Each device has varying needs for information
associated with these functions. Remember that all calls must return a

completion-code byte. For a summary of the BIOS calling requirements, see
Section lll.6.1.

111.4.3.1 Console

Only one parameter is needed for reading and writing: the data byte to be
transferred. The status request requires two parameters: the CONTROL word and
the pointer to the status record. For initialization and control of the console, the
BIOS requires a number of special control characters. These are provided by
passing the BIOS console initialization routine a pointer to the base of the
SYSCOM data area, and a pointer to a break-handler routine.

111.4.3.2 Printer

To read and write to the printer, a single parameter is required: the byte that
‘contains the data. To check the status, the CONTROL word and the pointer to

the status record are required. For initialization and control, no parameters are
needed.

89

Architecture Guide
The BIOS

111.4.3.3 Disks
Reading and writing with disk devices requires five parameters:

(1) a starting logical block number as described above
(2) a count of the number of bytes to transfer
(positive signed 16 bits, i.e., 0 to 32K-1)

(3) the address of the data area to transfer to or from

(4) a drive number (0..n-1, given n drives. Currently n=6 is assumed)

(5) the CONTROL parameter. i
To check the status, the CONTROL word and a pointer to the status record are
passed as parameters. For initialization and control, the drive number is passed.

111.4.3.4 Remote

The remote device requires a single parameter for reading and writing: a byte
that contains the data being transferred. As with the devices just described, the
status requires the CONTROL word and the pointer to the status record.
Initialization and control of the remote device requires no parameters.

111.4.3.5 User-defined Devices
Reading and writing with a user-defined device requires five parameters:

(1) a starting logical block number as described above

(2) a count of the number of bytes to transfer
(positive signed 16 bits, i.e., 0 to 32K-1)

(3) the address of the data area to transfer to or from

(4) a device number (this will be the same as UNITNUMBER)
(5) the CONTROL parameter.

The native code in the BIOS may choose to ignore some of this information, of
course.

When checking status, the CONTROL word, device number, and a pointer to the
status record are passed. For initialization and control, the device number is

passed. It is left up to the device handler to decode the specific device from its
device, number.

90

Architecture Guide
The BIOS

111.4.4 Character Codes

The System assumes that the printer and console devices will support the use of
printable ASCIl characters and a few standard control codes (CR, LF, SP, NUL and
BEL). The remaining control codes that may be useful (such as cursor positioning
and screen erasure) are "soft" characters that may be changed by the user (using
the utility SETUP) to meet the requirements of some particular hardware.

These soft characters, along with all other information that is entered using
SETUP, are stored in the file *SYSTEM.MISCINFO. SYSTEM.MMISCINFO is read

into a portion of the global data area SYSCOM whenever the System is booted or
re-initialized.

The reason for keeping this hardware-dependent information at such a high level is
that the control ccdes for terminals vary widely, and users change terminals fairly
often, and so it was necessary to be able to change a terminal without creating a
new BlOS. The basic issue is one of mapping logical control symbols into the
control codes that are recognized by the hardware.

Suppose, for example, that there is a pre-declared procedure CURSORBACK which
causes the cursor on a screen terminal to move left one column. Somewhere in
the System, CURSORBACK must cause a control code to be sent to the terminal,
which will cause the desired response: control-U, control-H, or an escape sequence.
One way to do this would be for the Compiler to emit a standard code which the
BIOS then translates into whatever is correct for the current terminal. This has
the disadvantage of requiring a new BIOS for every slightly different terminal.
The approach which we have taken sees to it that the correct code is sent to the

Bl1OS for the terminal that is currently online. The details of how this is done are
described elsewhere.

Since many devices can make use of eight-bit control codes, the System makes no
assumptions about the relevance of the high-order bit, and transfers the whole byte
unchanged. When using seven-bit ASCI], the value of the high- order bit is defined
to be zero. This means that the BIOS must return ASCIl codes with the high-
order bit off for all standard characters received from the console. This is not
required of any of the other devices that are driven by the BIOS.

The RSP sends both upper- and lower-case characters to the BIOS. If a device can
handle only upper-case characters, the BIOS must map lower case into upper case.

91

Architecture Guide
The BIOS

111.4.5 Semantics

111.4.5.1 Console

In the following discussion, the console device is assumed to be a CRT terminal.
A typewriter device may also be used for the console.

111.4.5.1.1 Output Requirements

As noted in above, we depend on the action of certain ASCIl control godes. These
are the minimum requirements for a console device:

CR <carriage return> (hex 0D) --. Move cursor to the beginning of the
current line (column 0).

LF <line feed> (hex 0A) -- Move cursor down one line while the column
position remains the same. Starting from any but the last line on the
screen, the contents of the screen should remain the same while the cursor
moves downward. 1f the cursor is on the last line when the LF is issued, it
should remain in the same position while the rest of the display scrolls
upward one line and the bottom line clears.

BEL <bell> (hex 07) -- If an audio signal is available, it should sound. If

one is not available, the terminal should do nothing. The delay time
required while doing nothing is immaterial.

SP <space> (hex 20) -- Write a space at the current cursor position (erasing
whatever is there) and advance the cursor position by one column. If the
cursor is already at the last position in a line, the position of the cursor
after the SP is undefined. We prefer that the cursor remain in its prior
position in this case. If the cursor is in the last column of the last line on
the screen, not only is the position of the cursor undefined after the SP, but
so is the state of the screen: maybe it scrolled and maybe it didn’t. As

above, we would prefer that the cursor remain where it was and that the
screen not scroll.

NUL <null> (00) -- Delay for the time required to write one character.
The state of the console should not change.

any printable character -- Same as the discussion for SP, except, of
caurse, write the character.

Note that the effect of sending non-printable characters other than those described
above is not defined, since it is known to vary from terminal to terminal.

92

Archjtecture Guide
The BIOS

111.4.5.1.2 Qutput Options

The following set of cursor and screen functions should be provided if possible.
However, they are optional in the sense that almost all major functions of the
System will still be available even if they are not provided. The control
characters or sequences of characters which provide these functions are left
unspecified (these are soft characters). If a standalone ASCIl terminal is
connected to the host system, these functions may be provided by the terminal

itself. 1In this case, all the BIOS need do is pass the appropriate control
characters.

Reverse Line Feed: Move the cursor to the next line higher on the screen
without changing the column or the contents of the screen. If the cursor is
already on the top line, the result is undefined. 1f possible, the screen
should reverse-scroll in such a case, or if that is not feasible, the cursor
and screen should just remain as they were.

Non-destructive Forward and Backward Space: Move the cursor in the
direction indicated without changing the contents of the screen (i.e., move it
non-destructively). The position of the cursor is undefined if an attempt is
made to move it beyond the beginning or the end of a line. The preferred
result is that cursor and screen remain unchanged in such a case.

Cursor HOME: Move the cursor to the upper left-hand corner of the screen
without changing the contents of the screen.

Cursor X,Y Positioning: Move the cursor to some absolutely determined
row and column without disturbing the contents of the screen. The result is

undefined if an attempt is made to move the cursor to a non-existent
position.

Erase to End of Screen: Erase from the cursor position to the end of the

screen, leaving the cursor where it started and the other contents of the
screen undisturbed.

Erase to End of Line: Erase from the cursor position to the end of the
current line, leaving the cursor where it started and the rest of the screen
undisturbed.

93

Architecture Guide
The BIOS

111.4.5.1.3 Input Requirements

Input from the console should not be echoed to the screen by the BIQS; this
function is handled by RSP/IO. Keys which represent ASCIl characters should
generate 8-bit codes between 0 and 127. Other [non-ASCIl, e.g., special function]
keys can generate codes between 128 and 255, if desired.

111.4.5.1.4 Input Options

If possible, we recommend that the console input BIOS be respensible for the
following special functions:

111.4.5.1.4.1 START/STOP

The START/STOP character is used to control console output. When START/STOP
(a soft character) is received, console output is suspended until (a) another
START/STOP character is received, (b) a FLUSH character is received, (c) the
console BIOS is reinitialized, or (d) the BREAK character is received. The action
to take in the last three cases is discussed below. Should another START/STOP
character be received, the suspended activities should resume exactly as they left
off. The chief benefit of this arrangement is that the user can suspend output
processes which are proceeding too fast: e.g.,, a text file is scrolling across the
screen at 9600 baud, or a printer rmust be brought online before the program starts
sending it characters. The suspension process takes place wholly within the B10S,
and requires no communication to the , RSP. (Note that the START/STOP character

is never returned to the RSP. The queueing of keyboard input, if implemented,
should continue during the suspension.)

1V.1.4.5.1.4.2 FLUSH

FLUSH is another soft control character; when FLUSH is typed, the console output
B1OS discards all output characters (i.e., does not display them) until (8) FLUSH is
typed again, (b) input is requested from the console BIOS, (c) the console BIOS is
re-initialized or (d) the BREAK character is received. The FLUSH character is
never returned to the RSP. If FLUSH is received while a START/STOP suspension
is pending, the suspension is cancelled and FLUSH has its usual effect. This
feature is useful when a long textfile is being displayed on the console and you’re
tired of looking at it. Push FLUSH and it terminates rather quickly. 1t is also
useful when a process is generating console output that is irrelevant, but slows
down the process. Note that FLUSH applies only to console output.

94

Architecture Guide
The BIOS

111.4.5.1.4.3 BREAK

When DREAK (also a soft character) is typed, the console input BIOS should
immediately give control to a special Interpreter routine. The vector to this
routine is passed at console initialization time. After execution of the BREAK
routine, the BIOS should continue as before. The BREAK routine is responsible for
notifying the Interpreter that a BREAK should be executed before the next P-code
is interpreted. (Note that the BREAK character is never returned to the RSP.
Receipt) of BREAK should terminate any START/STOP or FLUSH suspension
pending.

111-4.5.1.4.4 Type-Ahead

When non-special characters (i.e., not described in the sections above) are received
from the keyboard when no read request is pending, they should be queued until
the next read request. The next read request should remove the first character
from the queue. When characters in excess of the maximum queue size are
received, they should be ignored; the queue should remain intact. While a type-
ahead of even one character is better than none at all, we recommend a minimum
queue size of about 20 characters. If possible, the bell should be sounded for each
character entered from the keyboard after no room remains in the queue.

111.4.5.1.5 Initialization and Control

The initialization and control part of the console BIOS is responsible for the
following tasks (and whatever else the BIOS implementor finds expedient):

Soft character recognition: The System stores the soft characters START/STOP,
FLUSH and BREAK in a data area called SYSCOM. One parameter to console
initialization and control is a pointer to the start of the SYSCOM area. The

offsets to these characters from that pointer are (expressed as positive byte
offsets):

FLUSH - 83 decimal (53 hex and 123 octal)
BREAK - B4 decimal (54 hex and 124 octal)
STOP/START - 85 decimal (55 hex and 125 octal)

BREAK vector: Another initialization and control parameter is the address of the
Interpreter routine which handles BREAK. The console initialization code is
responsible for setting up a vector to this address via its private data area and
calling this routine when the BREAK character is received.

95

Architecture Guide
The BIOS

Flags: lnitialization should cause the START/STOP and FLUSH flags to be cleared
(or whatever else may be required to return to normal).

Type-ahead queue: Initialization should cause any characters currently waiting in
the type-ahead queue to be discarded.

111.4.5.1.6 Status

As described in Section 111.2.1.2, bit 0 (value 1) of the CONTROL word defines the
direction of the status request. The request should return, in the first word of
the status record, the number of characters currently queued for the direction
specified. 1f some form of buffering is being used, this will simply be the number
of characters in the buffer. If no buffering is implemented, the output status will

always return 0, but the input status will return 1 if a character is waiting to be
read, or 0 if none is waiting.

96

Architecture Guid.e
The BIOS

111.4.5.2 Printer

The printer is conceived as being a line printer or other hardcopy device. In
actual practice, any ASCIl display device may be used.

111.4.5.2.1 OQOutput Requirements

In order to serve the widest variety of hardcopy devices, the RSP/IO does not
buffer a line of text and send it all at once. Rather, it sends the printer BIOS a
single character at a time. Many line printers must buffer a line and then print
it all at once: if this is the case, it is the BIOS that must do so. If this is the
case, the BIOS must recognize the end of a line. EOLN is signalled by a certain
character: the possibilities are listed below:

CR <carriage return> (hex 0D) -- Print the line and return the carriage to
the first column. An automatic line feed should not be done.

LF <line feed> (hex 0A) -- In normal operation, the RSP/IO will only send
an LF to the BIOS immediately after a CR. If the hardware allows a
simple line feed to be performed (without a return) then this should be done.
If a complete "new line" operation (i.e., return and line feed) is the only
way your printer can print a line, then do so at an LF: don’t do anything
about a CR.

FF <form feed> (hex OC) -- The printer should advance the paper to top-
of-form, if possible, and perform a carriage return. If no such feature is

available, the printer may execute a "new line" operation, i.e., a return
followed by a line feed.

111.4.5.2.2 Input Requirements

There are no strict requirements for input from the printer device. If the printer
device has the capability to transmit data, then the printer input BIOS should
return all eight data bits unchanged. If not, then input should not be allowed and
should return completion code 3 ('lllegal operation on device").

111.4.5.2.3 Initialization and Control

Initialization of the printer device should make it ready to print at the beginning
of a blank line. A "new line" (carriage return and line feed) operation may be in
order here. Any characters that have been buffered but not printed are lost. The
printer does not need to do a form feed each time it is initialized.

97

Architecture Guide
The BIlOS

111.4.5.2.4 Status

As described above, the number of bytes buffered for the direction specified in the
CONTROL word should be returned in the first status word. If the printer has
no form of self-checking, return O.

111.4.5.3 Disk

111.4.5.3.1 Mapping Pascal Logical Blocks onto Physical Sectors

The disk device may be any type of disk drive (e.qg., floppy or hard disk). The
actual sectoring arrangements of the disk are immaterial. The System addresses
the disk in terms of consecutive logical blocks of 512 bytes each. A primary
function of the disk BIOS, therefore, is to provide an appropriate mapping scheme
into the actual (physical) sectors used on the disk. The sector interleaving
algorithm should be optimal for the hardware.

The System makes no assumptions about the interleaving method used by the BIOS
(except that it works!).

H1.4.5.3.1.1 Bootstrap Location

While bootstrap schemes vary, typical implementations make use of a hardware
(usually ROM) bootstrap to load and execute a primary software bootstrap which,
in turn, loads and executes a secondary software bootstrap. The secondary
bootstrap then loads the Interpreter and Operating System, performs required
initializations, and starts the System.

To be accessible to the hardware bootstrap, the primary software bootstrap must
reside at a location on the disk which is predetermined by the hardware vendor.
Since these locations can vary widely, it is necessary that the System’s
requirements for a physical disk format be flexible in this regard.

The primary bootstrap area must not overlap disk data structures maintained by
the System (chiefly the directory and the bootstrap itself).

Logical blocks 0 and 1 of each disk are usually reserved for bootstrap code (a
total of 1024 bytes). This is the most convenient alternative.

1f 1024 bytes are not enough room, or if the interleaving format is unacceptable to

the hardware bootstrap, the primary bootstrap area must be outside of the "Pascal
disk". The Pascal logical blocks must be mapped onto the disk in such a way that

98

Architecture Guide
The BIOS

the hardware-defined bootstrap area is inaccessible to the Pascal system as ‘a

logical block. (It will still be accessible in Physical Sector Mode (see Section
11.2.3.1)).

For Adaptable Systems, full details about bootstrap locations and the mechanisms
of booting may be found in the Installation Guide.

111.4.5.3.1.2 Physical Sector Mode

When bit 1 (value 2) of the CONTROL word is set, disk access should be
performed in Physical Sector Mode, as described in Section 111.2.3.1.

111.4.5.3.2 Output Requirements

The disk device BIOS must transfer as many actual sectors as are needed to
accommodate the data. To simplify a disk-write in which (BYTESTOTRANSFER)
mod 512 is not equal to zero (i.e., a block is partially written to), the remaining
contents of the last block are undefined. This makes it possible to write as much
of whatever garbage remains in the buffer, if that is most convenient, to fill up a
whole sector. Diagram 4.0 illustrates this situation. The language level is
responsible for keeping track (in logical block numbers and byte counts) of where
the good data is.

EXAMPLE: Write to disk.
Number of bytes to transfer = 1174

Starting logical block number = 72
Data area address = DATAAREA

| | I : |
| Block 72 | Block 73 I Block 74 |
l (512 bytes) | (512 bytes) | 150 :(362 bytes)|
| | Ibytes: |
[{mmmmccec e e - data-------ccccccanann- >:<undefined>|
| | | : |
| | |
start of data area end of data area |
|

end of last block

Diagram 4.0 -- State of blocks on Disk after being written

99

Architecture Guide
The BlOS

111.4.5.3.3 Input Requirements
On input from a disk device, it is not permissible to over-write the end of the
assigned data area, Therefore, the BIOS is responsible for transferring no more

than the number of bytes requested. One way to accomplish this is to buffer the
last sector.and then transfer only the requested part.

111.4.5.3.4 Initialization and Control
Initialization of a disk device should bring it to a state in which it is ready to
read or write from any given track or sector. For some drives with simple

controllers, the head may need to be stepped to track 0 to facilitate the BIOS disk
driver’s remembering the current track. Any buffered data is lost.

111.4.5.3.5 Status

Status requests from the disk will return the following words in the status record:
Word 1 - The number of bytes currently buffered for the direction specified
in the CONTROL word, as described in Section 1V.4.5.1.6 above. If no
capability for checking is available, it should be set to 0.

Word 2 - The number of bytes per sector

Word 3 - The number of sectors per track

Word 4 - The number of tracks per disk

111.4.5.4 Remote

This unit is intended to be an RS-232 serial line for supporting various types of
communication. It is important that it transfer raw data without changing it in
any way. All eight bits of the transferred byte should be considered significant.

100

Architecture Guide
The Bl1OS

111.4.5.4.1 Output Requirements

As noted above, all eight bits of the data byte should be transmitted. The remote
B1OS driver is sent one byte at a time.

111.4.5.4.2 1nput Requirements

lnput from a remote device should be buffered, if possible, by the scheme

suggested in Section 111.4.5.1.4.4. As noted above, all eight data bits must be
returned.

111.4.5.4.3 Initialization and Control

Initialization of the remote device should bring it to a state in which it is ready
to read or write.

111.4.5.4.4 Status

The number of bytes buffered for the direction specified in the CONTROL word
should be returned in the first status word, as described in Section 111.4.5.1.6
above. If no capability for checking is available, it should return O.

111.4.5.5 User-Defined Devices

These devices are intended to allow the user the freedom to implement devices not
specifically defined in this document. The actual implementation is left entirely
to the user. The only requirement is that they return a completion code when
finished and, if the UNITNUMBER is not defined, that it return code 2 ("lllegal

unit number"). Users should use device numbers starting from 128 (see Section
11102.10101)0

111.4.6 Special B10S Calls
These functions are provided by the BIOS to make configuration-specific functions

accessible to the Interpreter. Although these functions are not related to

Input/Output, they are put into the BlOS as the repository for configuration-
~specific code.

As with all other routines in the BIOS, each should return a completion code.

101

Architecture Guide
The BIOS

111.4.6.1 System Output

System Output is reserved for future expansion and, at this time, should cause the

system to HALT. (Note that HALT may actually cause a reboot on some (few)
implementations.)

111.4.6.2 System lnput

System Input is also reserved for future use, and like System Output, should cause
a HALT.

111.4.6.3 System Initialization and Control

The System Initialization and Control BIOS routine should initialize such things as
the clock (reset it to 0) and the interrupt system, if either is to be used.

111.4.6.4 System Status

The System Status BIOS routine should return the following information in the
status record:

Word 1 - The address of the last word in accessible contiguous RAM
memory, e.g., on an 8080 system with 64K bytes of RAM, the last byte
address may be FFFF’, but the last word address is ‘FFFE’.

Word 2 - The least significant part of the 32-bit word used by the system
clock. If a clock is not present then this must be set to O.

Word 3 - The most significant part of the 32-bit word used by the system
clock. If a clock is not present then this must be set to O.

Note: If a clock is used, the System assumes that the two words returned are
representative of the time in 60ths of a second. It is the clock driver's
responsibility to maintain the closest approximation to this time. The time is
defined to be 0 at clock initialization. Currently the CONTROL word is ignored.

102

Architecture Guide
The BIOS

I11.5 Appendices
11l.5.1 Appendix A -- Summary of BIOS Calling Sequences
The following is a summary of the calling conventions described in Section 111.4.3.

Processor-specific protocols for certain machines are shown in the following
section. All calls to the BIOS return a completion code.

Entry Point Parameters
CONSOLEREAD single data byte
CONSOLEWRITE single data byte
CONSOLECTRL BREAK vector
SYSCOM pointer
CONSOLESTAT STATREC pointer
CONTROL word
PRINTERREAD single data byte
PRINTERWRITE single data byte
PRINTERCTRL (none)
PRINTERSTAT STATREC pointer
CONTROL word
DISKREAD block number
byte count

data area address
drive number
CONTROL word

DISKWRITE (same as DISKREAD)
DISKCTRL drive number
DISKSTAT drive number

STATREC pointer
CONTROL word

REMOTEREAD single data byte
REMOTEWRITE single data byte
REMOTECTRL (none)
REMOTESTAT STATREC pointer

CONTROL word

103

Architecture Guide
The BIOS

Entry Point

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

SYSWRITE

SYSCTRL
SYSSTAT

104

Parameters

block number
byte count

data area address
device number
CONTROL word
(same as USERREAD)
device number
device number
STATREC pointer
CONTROL word

block number

byte count

data area address
device number
CONTROL word
(same as SYSREAD)
device number
STATREC pointer
CONTROL word

Architecture Guide
The BlOS

111.5.2 Appendix B -- Processor-Specific BIOS Calls

Entry Points: All BIOS entry points are given as positive offsets from the beginning
of the BIOS code space. These locations should contain a JMP instruction to the
appropriate address in the BIOS.

Parameters: When parameters are not being passed in a specified register, they are

pushed on the stack. Offsets from top-of-stack are given, recognizing that the
stack grows down.

Completion Code: Return in register A.

Calling Sequence: The RSP will use the CALL instruction to call the BIOS. Thus
the return address is at (SP),(SP)+1. All registers are available for use by the
BIOS. The BIOS should clean off the stack before returning to the RSP.

Entry Point Offset(hex) Parameters

CONSOLEREAD (8]0} return data byte in Reg C

CONSOLEWRITE a3 write data byte in Reg C

CONSOLECTRL 06 BREAK vector at (SP)+2,(SP)+3
SYSCOM pointer at (SP)+4,(SP)+5

CONSOLESTAT 09 STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

PRINTERREAD oC return data byte in Reg C

PRINTERWRITE oF write data byte in Reg C

PRINTERCTRL 12 - (none)

PRINTERSTAT 15 STATREC pointer at (SP)+2,(SP)+3

CONTROL word at (SP)+4,(SP)+5

DISKREAD 18 block number at (SP)+2,(SP)+3
byte count at (SP)+4,(SP)+5
data area address at (SP)+6,(SP)+7
drive number at (SP)+8,(SP)+9
CONTROL word at (SP)+A,(SP)+B

DISKWRITE 1B (same as DISKREAD)
DISKCTRL 1E drive number in Reg C
- DISKSTAT - 21 drive number in Reg C

STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

REMOTEREAD 24 return data byte in Reg C

105

Architecture Guide

The BIOS

REMOTEWRITE 27 write data byte in Reg C

REMOTECTRL 2A (none)

REMOTESTAT 2D STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

USERREAD 30 block number at (SP)+2,(SP)+3
byte count at (SP)+4,(SP)+5
data area address at (SP)+6,(SP)+7
device number at (SP)+8,(SP)+9
CONTROL word at (SP)+A,(SP)+B

USERWRITE 33 (same as USERREAD)

USERCTRL 36 device number in Reg C

USERSTAT 39 device number in Reg C
STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

SYSREAD 3C block number at (SP)+2,(SP)+3
byte count at (SP)+4,(SP)+5
data area address at (SP)+6,(SP)+7
device number at (SP)+8,(SP)+9
CONTROL word at (SP)+A,(SP)+B

SYSWRITE 3F (same as SYSREAD)

SYSCTRL 42 device number in Reg C

SYSSTAT 45 device number in Reg C

STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

111.5.2.2 6500 Series

Entry Points: All BIOS entry points are given as positive offsets from the beginning
of the BIOS code space.These locations should contain a JMP instruction to the
appropriate address in BIQS.

Parameters: When parameters are not being passed in a specified register, they are
pushed on the stack. Offsets from the address pointed to by S (described as (S))

are given, recognizing that the stack grows down and that S normally points to the
first available address below valid data.

Completion Code: Return in register X.
Calling Sequence: The RSP will use the JSR instruction to call the BIOS. Thus

the return address is at (S)+1, (S)+2. All registers are available for use. The
stack should be cleaned off by the BIOS before returning to the RSP.

106

Entry Point

CONSOLEREAD
CONSOLEWRITE
CONSOLECTRL

CONSOLESTAT

PRINTERREAD
PRINTERWRITE
PRINTERCTRL
PRINTERSTAT

DISKREAD

DISKWRITE
DISKCTRL
DISKSTAT

REMOTEREAD
REMOTEWRITE
REMOTECTRL
REMOTESTAT

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

Offset(hex)

00
03
06

09

0C
OF
12
15

18

18
1E
21

24
27
2A
2D

30

33
36
39

3C

Architecture Guide
The BIOS

Parameters

return data byte in Reg A
write data byte in Reg A
BREAK vector at (5)+3,(S)+4
SYSCOM pointer at (5)+5,(5)+6
STATREC pointer at (5)+3,(5)+4
CONTROL word at (5)+5,(5)+6

return data byte in Reg A
write data byte in Reg A -
(none)

STATREC pointer at (5)+3,(S)+4
CONTROL word at (5)+5,(5)+6

block number at (S)+3,(S)+4
byte count at (5)+5,(5)+6

data area address at (5)+7,(5)+8
drive number at (5)+9,(5)+A
CONTROL word at (5)+B,(5)+C
(same as DISKREAD)

drive number in Reg A

drive number in Reg A
STATREC pointer at (5)+3,(S)+4
CONTROL word at (5)+5,(5)+6

return data byte in Reg A
write data byte in Reg A
(none)

STATREC pointer at (5)+3,(S)+4
CONTROL word at (S)+5,(5)+6

block number at (S)+3,(S)+4
byte count at (5)+5,(S)+6

data area address at (5)+7,(5)+8
device number at (5)+9,(S)+A
CONTROL word at (5)+B,(5)+C
(same as USERREAD)

device number in Reg A
device number in Reg A
STATREC pointer at (5)+3,(5)+4
CONTROL word at (5)+5,(5)+6

block number at (S)+3,(S)+4
byte count at (5)+5,(S)+6

107

Architecture Guide

The BlOS
data area address at (5)+7,(5)+8
device number at (5)+9,(S)+A
CONTROL word at (5§)+B,(5)+C
SYSWRITE 3F (same as SYSREAD)
SYSCTRL - 42 device number in Reg A
SYSSTAT 45 device number in Reg A

STATREC pointer at (5)+3,(5)+4
CONTROL word at (5)+5,(5)+6

111.5.2.3 6809

Entry Points: All BIOS entry points are given as positive offsets from the beginning
of the B1OS code space. These locations should contain a vector to the
appropriate address in the B1OS.

Parameters: When parameters are not being passed in a specified register, they are
pushed on the stack. Offsets from the address pointed to by SP (described as
(SP)) are given, recognizing that the stack grows down and that SP normally points
to the first available address below valid data.

Completion Code: Return in register B.

Calling Sequence: The RSP will use the JSR instruction to call the BlOS. Thus
the return address will be at (5P)+0, (SP)+l. The U and Y registers contain
interpreter information which must be preserved/restored by the BIOS prior to
returning to the RSP. All other registers are available for use. The stack should
be cleaned off by the BIOS before returning to the RSP.

Entry Point Offset(hex) Parameters

CONSOLEREAD 00 return data byte in Reg A

CONSOLEWRITE 02 write data byte in Reg A

CONSOLECTRL 04 BREAK vector at (SP)+2,(SP)+3
SYSCOM pointer at (SP)+4,(SP)+5

CONSOLESTAT 06 STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

PRINTERREAD 08 return data byte in Reg A

PRINTERWRITE 0A write data byte in Reg A

PRINTERCTRL 0C (none)

PRINTERSTAT 0E STATREC pointer at (SP)+2,(SP)+3

CONTROL word at (SP)+4,(SP)+5

DISKREAD 10 block number at (SP)+2,(SP)+3
byte count at (SP)+4,(SP)+5

108

'DISKWRITE
DISKCTRL
DISKSTAT

REMOTEREAD
REMOTEWRITE
REMOTECTRL
REMOTESTAT

USERREAD

USERWRITE

USERCTRL
USERSTAT

SYSREAD

SYSWRITE
SYSCTRL
SYSSTAT

12
14
16

18
1A
1C
1E

20

22

24
26

28

ZA
2C
2E

Architecture Guide

data area address at (SP)+6,(SP)+7
drive number at (SP)+8,(SP)+9
CONTROL word at (SP)+A,(SP)+B
(same as DISKREAD)

drive number in Reg A

drive number in Reg A

STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

return data byte in Reg A

write data byte in Reg A

(none) -
STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

block number at (SP)+2,(SP)+3
byte count at (SP)+4,(SP)+5

data area address at (SP)+6,(SP)+7
device number at (SP)+8,(SP)+9
CONTROL word at (SP)+A,(SP)+B
(same as USERREAD)

device number in Reg A

device number in Reg A
STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

block number at (SP)+2,(SP)+3
byte count at (SP)+4,(SP)+5

data area address at (SP)+6,(SP)+7
device number at (5P)+8,(SP)+9
CONTROL word at (SP)+A,(SP)+B
(same as SYSREAD)

device number in Reg A

device number in Reg A
STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4,(SP)+5

The BlOS

109

Architecture Guide
The BIOS

110

Architecture Guide
Operating System

IV. THE OPERATING SYSTEM

1V.1 Organization
1V.1.1 Structured Overview of the System

The 1V.0 Operating System is a collection of Pascal UNITs. The organization of
UNITs in the Operating System was determined by three considerations: functional
grouping, space and language restrictions, and necessary code-sharing with other
portions of the System. Some UNITs (such as SCREENOPS) are intended to be
accessible to user programs as well. The name of a UNIT in the Operating

System generally reflects its function. This is a full list of Operating System
UNITs:

Unit Name Function

HEAPOPS Heap operators

EXTRAHEAP

PERMHEAP

SCREENOPS Screen control

FILEOPS File and Directory operations

PASCALIO File-level 1/O

EXTRAIO

SOF TOPS

SMALLCOMMAND 1/0O redirection and chaining

COMMANDIO

STRINGOPS String intrinsics

OSUTIL Conversion utilities

CONCURRENCY Concurrency

REALOPS Floating Point Functions and Real Number 1/0
LONGOPS Long Integer operations

GOTOXY Screen cursor control (may be user-supplied)
KERNEL Nonswappable central facilities of Op. System

(always resident in main memory)

111

Architecture Guide
Operating System

GETCMD Subsidiary segments of KERNEL
USERPROG (swappable)

INITIALIZE

PRINTERROR

KERNEL contains the resident code necessary to maintain the codepool, handle
faults, and read segments. The Kernel also contains four subsidiary segments,
which are swappable:

GETCMD processes user input at the main command level, and builds a user
program’s runtime environment; -

USERPROG is the reserved segment slot for the user’s program (at bootstrap
time it contains the Pascal-level code which builds the initial runtime
environment for the Operating System);

INITIALIZE is called when the System is booted or re-initialized: it reads
SYSTEM.MISCINFO, locates the System codefiles, and sets up the table of
devices;

PRINTERROR prints runtime error messages.

The Operating System UNITs are compiled separately. They are bound together
in a single codefile, SYSTEM.PASCAL, by using the utility LIBRARY.

Because of certain bootstrap restrictions, KERNEL must always reside in segment-
slot 0 and USERPROG must always reside in slot 15. There are no other
restrictions on the location of units within SYSTEM.PASCAL.

112

Architecture Guide
The Operating System

IV.2 P-Machine Support
1V.2.1 The Heap
1v.2.1.1 Overview

The Heap is an area in low memory used for the allocation of dynamically stored
variables. The upper bound of the Heap depends upon the size of the Stack and
the Codepool. The area between the Heap and the Codepool is provisionally
available to the Heap: Stack faults and segment faults may change the size of this

area. Heap faults are used by the Heap operators to request that more space be
allocated to the heap. -

The Heap is manipulated by a number of intrinsic routines. These either allocate
or de-allocate Heap space in a particular way. The rest of this section is an
introduction to these routines.

1Iv.2.1.1.1 MARK and RELEASE

MARK saves the location of the current top of the Heap. RELEASE cuts the
Heap back to the location of the corresponding mark. Variables which were
allocated between the time of the MARK and the time of the RELEASE are
removed from the Heap, except for variables allocated by PERMNEW. MARK and
RELEASE may be nested; the integrity of the Heap requires that they be correctly
paired.

1v.2.1.1.2 NEW and VARNEW

NEW and VARNEW cause variables to be allocated on the Heap above the
"topmost" mark. NEW(P), where variable P is a pointer to type T, causes the
number of words in type T to be allocated. P is assigned the address of the first
location allocated to P on the Heap. If T is a record with variants, space for the
largest variant is allocated. In Pascal, a call to NEW may designate a particular
variant, so that space for this particular variant is allocated (which may be less
than the largest variant in that record).

VARNEW(P,NWords), where P is a pointer to type T, causes NWords to be
allocated on the Heap. T would most commonly be an array. NWords (indirectly)
determines how many elements of the array are actually available in this instance.
P returns the address of the first location allocated on the Heap.

VARNEW is a function, and returns the number of words that actually were

allocated: this should equal NWords; if it is 0, then there was less than NWords
of available space, and if it is some other number, something went wrong.

113

Architecture Guide
The Operating System

1v.2.1.1.3 DISPOSE and VARDISPOSE

DISPOSE and VARDISPOSE de-allocate space reserved by NEW and VARNEW,
respectively. DISPOSE(P) frees the number of words pointed to by P.
VARDISPOSE(P,NWords) frees NWords words. In both cases, P is assigned the
value NIL.

To avoid destroying important information that is on the Heap, extreme caution
should be used with these intrinsics, which do little error-checking of their own.
Heap space allocated by a VARNEW should be freed only by a VARDISPOSE with
the same NWords parameter, and MARK/RELEASE pairs should always match.
Furthermore, if the NEW is called for a specific variant, the same variant should
be used to DISPOSE that area.

If these intrinsics are misused, the System is likely to crash: this is the least
mysterious of the symptoms that may occur.

1v.2.1.1.4 PERMNEW and PERMDISPOSE

A variable can be allocated on the Heap by PERMNEW(P), where P is a pointer to
the variable’s type. A variable allocated by PERMNEW can only be de-allocated
by PERMDISPOSE(P). Even a RELEASE cannot remove it. These routines are
meant for System use, and are not user routines.

The Operating System uses these routines to allow variables to remain defined
across MARK/RELEASE pairs. Program CHAIN commands are saved on the Heap
with PERMNEW, so that even after the chaining program terminates, and its Heap

space is released, these commands are still available to determine the further
actions of the System,

1V.2.1.2 Heap lmplementation
1v.2.1.2.1 Operating System Interface

1v.2.1.2.1.1 Unit Organization

Code for the Heap operators is contained in three units: HEAPOPS, EXTRAHEAP,
and PERMHEAP. HEAPOPS contains MARK, RELEASE, and NEW. EXTRAHEAP
contains DISPOSE, VARNEW, VARAVAIL, MEMLOCK, and MEMSWARP.
PERMHEAP contains PERMNEW, PERMDISPOSE, and PERMRELEASE.
(VARAVAIL, MEMLOCK, and MEMSWAP are for segment management and are
discussed elsewhere.)

114

Architecture Guide
The Operating System

1v.2.1.2.1.2 Heap Globals

The Operating System uses several variableé to manage the Heap. The Heap is
maintained by a linked list of MARKs. The topmost MARK is indicated by

Heaplnfo.TopMark. A MARK (also called an HMR, for Heap Mark Record) has the
following structure:

TYPE
MemLink = RECORD
Avail_list: MemPtr;
NWords: integer;
CASE Boolean OF
true: (Last Avail, ,
Prev_Mark: MemPtr);
END;

In a MARK, NWords is always 0, and the variant is always TRUE. NWords is O
because the MARK merely marks a location on the Heap, and does not reserve any
space.

Each MARK points to an Avail_List, which is a list of records of type MemLink.
These records are FALSE variants of MemLink, and NWords contains the number of
words of available space (including the two words of the record itself). The
Avail List chain is ended by an Avail List of NIL.

The first MARK on the Heap contains a Prev_Mark of NIL. All successive MARKs
point back to their predecessor, so that the MARK chain can be traversed.

For each MARK, the first Avail _List record is the lowest unallocated space above
the MARK. Last_Avail points to the last of the available space. This s
typically bounded by allocated Heap space or by another MARK; if the MARK is
TopMark, Last Avail is bounded by the Codepool.

The Heap maintenance variables have the following structure:

VAR
Heaplnfo: RECORD
Lock: semaphore;
TopMark,
HeapTop: MemPtr;
END;
PoolBase: MemPtr;

115

Architecture Guide
The Operating System

PermList: MemPtr;

The Lock semaphore guarantees that the Heap is modified by only one process at a
time. TopMark points to the highest MARK. HeapTop points to the highest
allocated space on the Heap. The fault handler uses HeapTop to determine how
close the Codepool can be moved towards the Heap. PoolBase points to the base
of the Codepool. PermList points to a linked list of PERMNEW’ed variables. The
list is identical in structure to an Avail List, but each NWords indicates the
number of words allocated by a PERMNEW. If PermList is NIL, then no variables
have been PERMNEW ed.

1v.2.1.2.1.3 Tactics

In general, a request for Heap space through a MARK, NEW, VARNEW, or
PERMNEW causes HeapTop to be set to the new top of the Heap. The fault
handler always places the Codepool (located at PoolBase) above HeapTop; thus,
HeapTop reserves space for the Heap as soon as a Heap operator requests it. This

is necessary because of possible interactions between Stack fault handling and Heap
space allocation.

The Operating System uses the global variable SysCom".GDirP (global directory
pointer) to allocate a disk directory on the Heap. The Operating System’s use of
this Heap space is meant to be invisible to the user. Therefore, before any Heap
operation (except DISPOSE), SysCom~.GDirP is DISPOSE’d to make the space
occupied by the directory available again.

1V.2.1.2.2 Runtime Environment

Since both the user and the Operating System use the Heap, the Operating
System MARK’s the Heap immediately before the execution of a user program by
the call:

MARK (EMPTYHEAP);
... after the user program terminates, the Operating System calls:
RELEASE (EMPTYHEAP);

Thus, all user space is freed after the program terminates, unless space has been
allocated by one or more calls to PERMNEW.

MARK'(EMPTYHEAP) occurs after the runtime environment for the user program
has been built. The program’s runtime environment structures such as SIBs,
E_Rec’s, and E_Vec’s, are for the use of the Operating System, and are allocated

116

Architecture Guide
The Operating System

space before EMPTYHEAP. Data that is global to the user program and any units
it USES also appears before EMPTYHEAP. Heap space that follows EMPTYHEAP
is intended only for the local use of the user program.

The Heap is shared by all tasks in the System.

117

Architecture Guide
The Operating System

1IV.2.2 The Codepool

The Codepool resides in main memory between the Stack and the Heap. It
contains executable code segments that may possibly be discarded, or swapped in
from disk again. Thus, the contents, size, and position of the Codepool may
change during a program’s execution. The flexibility of the Codepool handlmg

can provide a running program with more free memory space than in previous
versions.

A segment in the Codepool must be either P-code or relocatable native code.
Nonrelocatable native code segments reside on the Heap: they are placed there at
associate time.

The Codepool is a contiguous block of code segments: whenever a segment is
discarded, the surrounding segments are moved together. Segments being swapped
in are given space at either end of the Codepool.

Segments in the Codepool are orgamzed into a doubly-linked list by pointers in
each segment’s SIB (described in the previous chapter).

The routines that manage the Codepool are in the Operating System’s KERNEL

unit. They make use of the pointers within the SIB, and the following global
values:

PoolHead: SIB Ptr; Points to the SIB of the segment at the base
B of the Codepool (next to the Heap).

PermSIB: SIB Ptr; Points to the SIB of the segment that is always
resident in the Codepool (currently, GOTOXY).

PoolBase: Mem Ptr; Points to the memory location at the base of
the Codepool.

SP_Low: Mem Ptr; The lowest possible bound of the Stack; this
points to the address which is one word above
the top of the Codepool.

HeapTop: Mem Ptr; Points to the top of the Heap.

When space is requested either for the Heap or the Stack, the Codepool

management routines first attempt to re-position the Codepool without swapping
out any segments.

The actual bounds of the Codepool are in Pool _Base, which points to the low end
of the Codepool, and SP_Low, which points to one word above the top of the
Codepool. The Codepool operators may move it all the way to HeapTop on the
Heap side, or up to SP minus a 40-word margin on the Stack side.

118

Architecture Guide
The Operating System

The Codepool may be modified by any of the following circumstances:

(1) A Heap fault is detected, and the Codepool is moved up in memory toward
the Stack to free the needed number of words for the Heap.

(2) A Stack fault is detected, and the Codepool is moved down in memory
toward the Heap to free the needed number of words for the Stack.

(3) A Heap fault or Stack fault is detected, and the Codepool cannot be moved
to allocate the space: one or more segments are swapped out, the remaining
segments are moved together, and the Codepool is positroned to allow for the
needed Heap or Stack space.

(4) A Heap or Stack fault is detected, and even after swappping out all of the

swappable segments, not enough space is available: a STACK OVERFLOW is
reported, and the System is re-initialized.

(5) A segment fault is detected. The Codepool management routines first try
to read the segment in at either end of the Codepool without moving it. If
this is impossible, they attempt to create more room by moving the Codepool
toward either the Stack or the Heap, and then read the segment. If this too
is impossible, segments are swapped out to make room, and the new segment is

then read in. If this last effort also fails, a STACK OVERFLOW is reported,
and the System is re-initialized.

The Codepool management routines are only called by the Faulthandler. Since the
Faulthandler is a subsidiary task, its own stack is statically allocated. Thus, the

Faulthandler can manipulate the Codepool freely, without fear of causing a Stack
fault.

119

Architecture Guide
The Operating System

1V.2.3 Fault Handling

When memory space is required by the Stack or Heap, or entry into a non-resident
segment is attempted, a fault is issued. The Faulthandler process is activated, and

uses the Codepool management routines to rearrange main memory (as described in
the previous section).

The Faulthandler is a process that is START’ed at bootstrap time. Most of the
time it is idle, WAIT’ing on a semaphore. When the semaphore is SIGNAL‘ed,
the Faulthandler is activated and performs its memory management functions.

Faults can be SIGNAL’ed by the Interpreter (Stack and segment faults), or by the

EXECERROR procedure in the Operating System (Heap faults and one segment
fault).

The semaphore record used by the Faulthandler resides in SYSCOM. It is declared
as follows: ‘

Fault Message = RECORD
Fault_TIB: TIB_Ptr;
Fault E Rec: E_Rec_Ptr;
Fault Words: integer; .
Fault_Type: Seg Fault .. Heap_Fault;
END;

Fault Sem: RECORD
Real Sem, Message_Sem: semaphore;
Message: Fault Message;
END;

The Interpreter detects only Stack and segment faults. When the Interpreter
detects a fault, it places the appropriate information in Fault Sem.Message and
SIGNAL’s Fault Sem.Message Sem. The SIGNAL causes a task switch to the
Faulthandler, and the fault is processed. After it has dealt with the Codepool,
Faulthandler WAIT’s: this causes a task switch back to the previously running
process. The instruction that caused the fault is re-executed.

The Operating System issues Heap faults, and in one instance, a segment fault.
Heap faults are detected by the Heap operators when requests are made for Heap
space by MARK, NEW, VARNEW, and PERMNEW. The one segment fault is issued
by MEMLOCK if a segment to be locked in the Codepool is not already resident.

120

Architecture Guide
The Operating System

To issue a fault, the Operating System calls the execution error procedure
(EXECERROR), and passes it the needed information. EXECERROR then performs
a SIGNAL on Message_Sem.

The Faulthandler first ensures that the currently running segment is not swapped
out, and then uses the Codepool management routines to adjust the main memory
layout.

If a Stack fault is caused by a call to a routine in a different segment,
Faulthandler must lock both calling and called segments into memory.

121

Architecture Guide
The Operating System

1v.2.4 Concurrency

Operating System routines support concurrency only by the activation and de-
activation of processes: actual task switching is accomplished by the P-machine
operations SIGNAL and WAIT.

Concurrency support in Version 1V.0 is intended for low-level tasks. Most System-
level facilities, particularly 1/0, are synchronous. For instance, a READ or
UNITREAD from the console does not return to the caller until a character is
available. No task switch can occur during the waiting period.

The Operating System global variable Task Info is used to keep track of some of
the data for subsidiary processes. lts structure is as follows:

Task_Info: RECORD
Lock,
Task_Done: semaphore;
N_Tasks: integer;
END {of Task__lnfo};

Task Info.Lock is used to ensure mutual exclusion while changing the values of
other Task_Info fields. Task _Done is used to WAIT on the termination of any

subsidiary processes. N_Tasks_ is the number of subsidiary tasks that have been
STARTed.

The unit CONCURRENCY has three routines: START, STOP, and BLK EXIT. For
each process initiation, the Compiler emits initialization code that signals the
semaphore passed to START. The Compiler also emits a call to STOP in the exit

code of each process; a call to BLK EXIT is part of the exit code of a main
process.

START builds the data structures for a new task and sets it in execution. The
task’s TI1B, activation record, and stack space are allocated on the Heap, and the
Operating System forces a task switch by issuing a WAIT. Presumably, the new
process starts executing, and switches back to START by doing a SIGNAL after its
parameters have been copied. Actually, when START performs the WAIT, it is the
process with the highest priority that begins executing.

STOP records the termination of a process. It decrements Task Info.N_Tasks,
SIGNAL’s Task_Info.Task Done, and then initializes and waits on a dummy
semaphore in order to force a permanent task switch from the terminating process.

BLK EXIT is called by a main task, and waits for the termination of all subsidiary

tasks. It waits on Task_Done, and terminates the main task when N_Tasks equals
zero.

122

Architecture Guide -
The Operating System

1IV.3 1/0O Support
1v.3.1 FIBs

File 1/O is controlled with a structure called a FIB (File Information Block). When
a user declares a file, the Compiler emits code to initialize a FIB for that file.
A FIB is declared as follows:

FIB = RECORD
FWindow: Window_P;
FEOF, FEOLN: Boolean;
FState: (FJandW, FNeedChar, FGotChar);
FRecSize: integer;
FLock: semaphore;
CASE Fl1sOpen: Boolean OF
true: (FlsBlkd: Boolean;
FDev: DevNum;
FVallD: VollD;
FReptCnt,
FNxtBlk,
FMaxBlk: integer;
FModified: Boolean;
FHeader: DirEntry;
CASE FSoftBuf: Boolean OF
true: (FNxtByte, FMaxByte: integer;
FBufChngd: Boolean;
FBuffer: PACKED ARRAY [0..FBIkSize]

OF CHARY))
END {of FIB}

FWindow points to the current character in the file’s buffer. FEOF and FEOLN
are the EOF and EOLN flags. FState indicates that the file is either a standard
(Jensen & Wirth) file, an INTERACTIVE file awaiting a character, or an
INTERACTIVE file with a character. FRecSize is 0 for untyped files, 1 for
INTERACTIVE files and textfiles; if it is larger than zero, it indicates the size (in
bytes) of a record. FlLock is used to ensure that only one process at a time may
modify the file. FlsOpen is TRUE only when the file is open.

If FlsOpen is TRUE, then several other fields become relevant. F1sBlkd is TRUE
if the file resides on a block-structured device. FDev is the number of that
device, and FVollD the name of the volume. FReptCnt contains a count of the
" number of times the window value is valid before another GET is needed.
FNxtBlk is the next (relative) block to access. FMaxBlk is the maximum (relative)
block that can be accessed. FModified becomes TRUE if the file is modified: a
new date is then set in the directory. FHeader is a copy of the file’s directory

123

Architecture Guide
The Operating System

entry. FSoftBuf is TRUE if soft-buffered 1/0O is used: this is the case for all files
on block-structured volumes, except untyped files.

If FSoftBuf is TRUE, then the last set of FIB fields are used: FNxtByte and
FMaxByte are used for buffer handling, FBufChngd indicates that the buffer
contents have been modified, and FBuffer is the buffer itself.

1V.3.2 Directories

Figure 6 illustrates the structure of a directory (as on a disk or other block-
structured volume):)

124

DIRENTRY RECORD (0)

Architecture Guide
The Operating System

for dfkind=securedir, untyped file (dir[0])

dfirstblk
dlastblk
filler_1 | dfkind
length (7) 1
. 2 3
dvid 2 5
6 7
deovblk
dnumfiles
dloadtime
(year)] (month) | (day) }dlastboot _
DIRENTRY RECORD (1-77)
dfirstblk
dlastblk
status | filter_2 | dfkind
bit /| length (15) 1
2 3
4 5
. 6 7
dtid < 8 -)
10 11
12 13
\[12 15
dlastbyte
(year) [(month) | (day) } daccess
DIRECTORY: array [0..77] of direntry;
0 1 o o o 77

DIRECTORY FORMAT
FIGURE 6

125

Architecture Guide
The Operating System

1Vv.3.3 Varieties of 1/0

Record 1/0

Record 1/O applies to typed Pascal files, using the intrinsics GET and PUT.
Screen 1/0

Screen 1/O may be handled by the unit SCREENOPS, whose routines are described
in the following section.

Input from the screen is accomplished by the procedure CHAR_DEV_GET, which

uses SC_CHECK _CHAR (in SCREENOPS) and SYSCOM~MISCINFO to determine
whether any special handling needs to be done.

Output to the screen is accomplished by a simple UNITWRITE.
Block 1/O

Block 1/O applies to untyped files. The routines BLOCKREAD and BLOCKWRITE
are used. These are part of the System routine FBLOCKIO in the EXTRAIO unit.

When a file is accessed as an untyped file, all other file formatting is disabled.

Text 1/0

A textfile is a file of ASCIl characters. 1t has a 2-block header that contains
formatting information used by the Screen Oriented Editor. When a textfile is
used by a System program other than the Editor, the Operating System ignores this
header. When a new textfile is created, the Operating System writes a 2-block
header filled with NULs.

Textfiles always have an even number of blocks. Thus, the smallest possible
textfile is 4 blocks long. Any extra space is padded with NULs.

Each record in a textfile is one line of text, terminated by a <return> character.
If the first character in a textfile record is a DLE (decimal 16), it is interpreted
as a blank-compression code: the following byte is (32+n), where n is thé number
of leading blanks. This blank-compression code is generated by the Editor (chiefly
for the purpose of saving space in indented program source).

User programs typically handle textfiles with READ, READLN, WRITE, and

WRITELN., GET and PUT may be used, and follow the Jensen & Wirth standard
for files of type TEXT.

126

Architecture Guide
The Operating System

IV.4 Using the Screen Control Unit

This section describes how the Screen Control Unit may be used to perform various
CRT-related tasks.

In order to use the Screen Control Unit, the programmer must have a copy of
SCREENOPS.CODE with its INTERFACE section. The program must contain the
following USES declaration:

USES {$U SCREENOPS.CODE} SCREENOPS;

IV.4.1 Routines within the Screen Control Unit

All of the routines described in this section may be called from your program. The
text ports mentioned below are rectangular portions of the screen which may be
defined to be of a different size than the real screen. At present, this feature is

not fully utilized by all of the UCSD p-System. Where text ports are mentioned
in this section, the entire screen should be understood to be the default.

PROCEDURE SC_Init;

Usually this procedure is only called by the Operating System. It initializes all
the Screen Control tables and variables.

PROCEDURE SC_Clr_Cur_Line;

Erases the current line.

PROCEDURE SC_ClIr_Line (Y: integer);

Clears line number Y within the current text port.

PROCEDURE SC_ClIr_Screen;

Clears the screen.

' PROCEDURE SC_Erase to EOL (X, Line: integer);

Starting at position (X, Line) within the current text port, everything to the end of
the line is erased.

127

Architecture Guide
The Operating System

PROCEDURE SC_Eras EOS (X, Line: integer);

Starting at position (X, Line) within the current text port, everything to the end of
the screen is erased.

PROCEDURE SC_Left;

Moves the cursor one character to the left.

PROCEDURE SC_Right;

Moves the cursor one character to the right.

PROCEDURE SC_Up;

Moves the cursor one line up (in the same column).

PROCEDURE SC_Down;

Moves the cursor one line down.

PROCEDURE SC_Home;

Moves the cursor to position 0,0 within the current text port.

PROCEDURE SC_GOTO_XY (X, Line: integer);

Moves the cursor to position (X, Line).

FUNCTION SC Find_X: integer;

Returns the column position of the cursor, relative to the current text port.

FUNCTION SC _Find_Y: integer;

Returns the row position of the cursor, relative to the current text port.

128

Architecture Guide
The Operating System

PROCEDURE SC_GetC_CH (VAR CH: char;
Return_on_Match: SC_ChSet);

SC_ChSet is a SET OF CHAR. This procedure repeatedly reads from the keyboard
into CH until CH is equal to a member of Return_on Match. The characters that
you pass in this set should all be capitals (if they are alphabetic). 1f a lower case
alphabetic character is recieved from the keyboard, it will be translated into upper
case before it is compared to the characters within Return_on Match.

FUNCTION SC_Space_Wait (Flush: Boolean): Boolean;

This function repeatedly reads from the keyboard until a <{space> or the ALTMODE
character is recieved. Before doing this it does a UNITCLEAR(1l) if Flush is

TRUE, and writes ‘Type <space> to continue’. It returns TRUE if a <space> was
not read.

FUNCTION SC_Prompt (Line: SC_Long_String;
X Cursor, Y _Cursor, X _Pos, Where: integer;
Return on Match- SC_ ChSeb
No_| Char Back: Boolean;
Break_Char: char): char;

This function displays the promptline, Line (SC Long String is a STRING [255]) in
the current text port at (X_Pos, Where). The cursor is placed at (X _Cursor,
Y Cursor) after the prompt is printed. 1f X Cursor is less than 0, the cursor is
placed at the end of the prompt. If the prompt is too large to fit within the
current text port, it is broken up into several pieces, but only at the Break Char
-- the user can view different parts of the prompt (cycling through them) by
typing ‘?°. If a character is being prompted for, No Char Back should be sent as
false. The keyboard is repeatedly read until the character read matches one
within Return on Match.

FUNCTION SC_Check_Char (VAR Buf: SC_Window;
VAR Buf lndex,
Bytes Left: integer): Boolean;

While a string is being read, this function may be called to see if a <backspace>
or a <rubout> (DEL) has been read. If so, the input buffer is altered accordingly,
and TRUE is returned. Buf is a line on the screen, Buf Index indicates the cursor

position within Buf, and Bytes_Left is the number of characters to the right of the
cursor.

129

Architecture Guide
The Operating System

FUNCTION SC_Map_CRT_Command (VAR K_CH: char): SC_Key Command;

SC_Key_Command is a type consisting of the following elements:
(SCT_Backspace_Key, SC_DC1 Key, SC_EOF _Key, SC_ETX_Key, SC_Escape Key,
SC_DEL_Key, SC_Up_Key, SC Down Key, SC Left Key, SC_Right Key,
SC_Not_Legal). The character passed is mapped into one of these elements.

FUNCTION SC_Scrn_ Has (What: SC_Scrn_Command): Boolean;
SC_Scrn_Command is a type consisting of the following elements: (SC_Home;
SC_Eras_S, SC_Eras_EOL, SC_Clear_Lne, SC_Clear_Scn, SC_Up_Cursor,
SC_Down Cursor, SC_Left Cursor, SC_Right Cursor). This function returns TRUE if
the CRT has the control character passed.

FUNCTION SC_Has Key (What: SC Key Command): Boolean;

SC_Key_Command consists of the elements listed in the description of

SC_Map_CRT_Command above. This function returns true if the CRT generates
the keyboard character passed.

PROCEDURE SC_Use_Info (Do_What: SC_Choice;
VAR T_lnfo: SC_Info Type);

This function is used to pass information back and forth between a program and
the Screen Control Unit. Do _What may either be SC_Get or SC_Give, and
indicates whether the program is getting or giving information to the Screen
Control Unit. T_Info contains various items to be either passed or received. The
following information is contained within T Info:

SC Version: string;
SC Date: PACKED RECORD
Month: 0..12;

Day: 0..31;
Year: 0..99;
END;

Spec_Char: SET OF char; (* Characters not to echo *)
Misc_Info: PACKED RECORD
Height, Width: 0..255;
Can Break, Slow, XY CRT, LC CRT,
Can_UpScroll, Can_DownScroll: Boolean;
END;

130

Architecture Guide
The Operating System

PROCEDURE SC Use_Port (Do_What: SC_Choice;

VAR T_Port: SC_TX Port);

This function works like SC_Use_lnfo above. The contents of T Port are either

passed or recieved from the Screen Control Unit. T_Port contains the following
information:

Row, Col,

Height, Width,
Cur_X, Cur_ Y : integer;

131

Architecture Guide
The Operating System

132

Architecture Guide
Program Execution

V. PROGRAM EXECUTION

The runtime environment for a user program is created by the Operating System’s
GETCMD unit. GETCMD starts the execution of System programs such as the
Compiler, Linker, Filer, etc., and user programs named in the eX(ecute command.
In all such cases, GETCMD calls the procedure ASSOCIATE, which finds the

appropriate codefile, and then calls BUILDENV. BUILDENV constructs a program’s
runtime environment, as outlined in Chapter ll.

BUILDENV recursively traverses the segments used by a program. For each
segment, it initializes an E Vec, E_Rec, and SIB. As each E Rec is created, it is
linked to a chain of segments that are already active: in this way, the Operating
System can keep track of all active segments. Before BUILDENV initializes
segment information, it checks to see if that segment is already active, and if it
is, it does nothing but initialize the proper pointers, Otherwise, the E Vec, £ Rec,
and SIB must be created from information present in the codefile.

SEGREFs are segment reference assignments emitted by the Compiler. Segment
numbers are local to a code segment. The main program is segment 2, and
subsidiary segments, if any, are numbered starting from 3. Segment 1 is always
the Operating System’s KERNEL unit. SEGREFs are emitted for any principal
segments used by the compilation (such as a used unit). At associate time,
BUILDENV uses the SEGREF list to find the segments that the program uses.

All runtime errors detected by the System cause the current program to halt. The
System displays an error message, and when the user types a <{space>, the System
is re-initialized. The program’s runtime environment is lost.

When a program terminates, control returns to GETCMD, which waits for further
instructions. When a program terminates normally, its environment is not lost, and
the program can be re-started with the U(ser restart command. The System may
or may not need to call BUILDENV again.

133

Architecture Guide
Program Execution

134

Architecture Guide
Appendices

V. APPENDICES
VLLA Glossary

This is intended as an aid to readers who are unfamiliar with many "buzz words"
used in this document, and is not meant to be either comprehensive or precise.

ASSOCIATE TIME - That part of a program’s lifetime in which the segments
and their various references to each other are associated by the Operating
System. This occurs when the program is prepared for execution.

BLANK-FILLED - All 8-bit bytes within the specified region are filled with
blanks (ASCII 32).

BLOCK - An area of memory (usually on a‘disk) with a fixed size of 512
contiguous 8-bit bytes (256 contiguous 16 bit-words).

BLOCK BOUNDARY - Byte zero of any block.
BYTE POINTER - A byte address (as opposed to a word address).

BYTE SEX - Some processors address 16-bit words with the most-significant-
byte' first, others with the least-significant-byte first. Byte sex refers to this
difference in addressing; two machines with different addressing styles are said
to have different (or opposite) byte sex.

COMPILATION UNIT - A program or portion of a program that can be
compiled by itself: in other words, a program or a UNIT.

COMPILE TIME - That part of a program’s lifetime in which it is being
compiled (or assembled).

CONCURRENCY - The execution of two or more tasks or processes in
parallel, i.e. at the same time. Synonymous with multitasking.

DYNAMIC - Information which changes during program execution (or is not
known before runtime).

FILLER - A field in a data structure that is at present unused. If this area
is described as "reserved for future use" then it usually should be zero-filled.
This 'avoids confusion when future versions of the System make use of filler
space.

INTER-SEGMENT - The data (or program) in question occupies more than one
segment, or contains pointers to another segment.

135

Architecture Guide
Appendices

136

LINK TIME - That part of a program’s lifetime in which it is being operated
on by the Linker.

MULTIPROGRAMMING - An environment that supports more than one user,

where each user can perform multitasking. (The p-System does not support
multiprogramming.)

MULTITASKING - The execution of two or more tasks in parallel, i.e. at the
same time. A task is a PROCESS from the user’s point of view; from the

System’s point of view it might be a program. (The p-System does support
multitasking.) .

MULTIWORD - Some positive integral number of words.

NATIVE CODE - Assembled code for some physical (as opposed to ideal)
processor. Also called machine code or (sometimes) hard code.

ONE’S COMPLEMENT - All bits in the designated field are flipped.

P-CODE - Assembled code for an ideal processor. P-code stands for "pseudo-
code." The p-System Interpreter implements a "pseudo-machine."

POSTPROCESSOR - A program which is executed after the completion of
some other program, and uses as input the output of that previous program. A
postprocessor that creates output which can be used by still another program
is often called a "filter."

PRINCIPAL SEGMENT - A segment that has a segment reference list, i.e., a
segment with a SEG TYPE of PROG_SEG or UNIT SEG. Corresponds to the
outer segment of any compilation unit. UNITs, FORTRAN programs, and the
outermost block of a Pascal program are all principal segments.

RECURSION - see RECURSION.

RELOCATABLE - A portion of object code that can be moved to different
locations in memory without changing its meaning. P-code is relocatable.
Native code may or may not be.

RUNTIME - That part of a program’s lifetime in which it is being executed
(or "run").

SELF-MODIFYING - Code which overwrites or modifies itself during
execution, thus changing its meaning. This is not recommended!

Architecture Guide '
Appendices

SEG-RELATIVE - fhe address of an object is specified as an offset from the
beginning of the code segment in which it resides.

STATIC - Information which does not change throughout program execution (it
is known before runtime).

SUBSIDIARY SEGMENT - A segment that has no segment reference list, i.e.,
a segment with a SEG TYPE of PROC_SEG or SEPRT SEG. Corresponds to

the object code of any segment whose source text is not separately compilable.

Pascal segment procedures and segments produced—b_y the UCSD Adaptable
Assembler are subsidiary segments.

TOS - Short for "top of stack." The object that is on the top of the P-
machine stack (which is the object that was most recently pushed).

UPWARD COMPATIBILITY - Code that runs on current versions of a system
will run on future versions of that system. A more limited and more easily
obtained version of upward compatibility requires source code to be recompiled
on new versions, but ensures that it will run when recompiled.

WORD - 16 bits aligned on an even byte-address boundary. The byte which is

most significant is determined by the byte sex of the machine for which it was
generated.

WORD POINTER - A word address (as opposed to a byte address). The
address of a word must be even.

ZERO-FILLED - A field of data that contains nothing but zeroes (all bits
must be 0).

137

Architecture Guide
Appendices

V1.B P-Codes

SLDC 0..31 Short Load Word Constant
LDOCN 152 Load Constant NIL

LDCB 128 Load Constant Byte

LDCI 129 LLoad Constant Word

LCO 130 Load Contant Offset
SLDL1 32 Short Load Local Word
SLDL16 47

LDL 135 Load Local Word

SLLAL 96 Short Load Local Address
SLLAS 103

LLA 132 Load Local Address
SSTL1 104 Short Store Local Word
SSTLS 111

STL 164 Store Local Word

SLDO1 48 Short Load Global Word
SL.DO16 63

LDO 133 Load Glaobal Word

LAO 134 Load Global Address

SRO 165 Store Global Word

SLOD1 173 Short Load Intermediate Word
SLOD2 174

LOD 137 Load Intermediate Word
LDA 136 Load Intermediate Address
STR 166 Store Intermediate Word
LDE 154 LLoad Extended Word

138

Architecture Guide
Appendices

LAE 155 Load Extended Address

STE 217 Store Extended Word

SINDO 120 Short Index and Load Word
SIND7 127

IND 230 Index and Load Word

STO 196 Store Indirect

LDC 131 Load Multiple Word Constant
LLDM 208 Load Multiple Words

ST™M 142 Store Multiple Words
LDCRL 242 Load Real Constant

LDRD 243 Load Real

STRL 244 Store Real

CAP 171 Copy Array Parameter

CcsP 172 Copy String Parameter

LDB 167 Load Byte

STB 200 Store Byte

LDP 201 Load a Packed Field

STP 202 Store into a Packed Field
MOV 197 Move

INC 231 Increment Field Pointer

IXA 215 Index Array

IXP 216 Index Packed Array

LAND 161 Logical And

LOR 160 Logical Or

LNOT 229 Logical Not

- BNOT 159 Boolean Not

LEUSW 180 Less Than or Equal Unsigned
GEUSW 181 Greater Than or Equal Unsigned

139

Architecture Guide

Appendices

ABI 224 Absolute Value Integer

NGI 225 Negate Integer

INCI1 237 Increment Integer

DEC1 238 Decrement Integer

ADI 162 Add Integers

SBl1 163 Subtract Integers

MP1 140 Multiply Integers

Dv1 141 Divide Integers

MODI 143 Modulo Integers

CHK 203 Check Subrange Bounds
EQUI 176 Equal Integer

NEGI 177 Not Equal Integer

LEQI 178 Less Than or Equal Integer
GEQI 179 Greater Than or Equal Integer
FLT 204 Float Top-of-Stack

TNC 190 Truncate Real

RND 191 Round Real

ABR 227 Absolute Value of Real
NGR 228 Negate Real

ADR 192 Add Reals

SBR 193 Subtract Reals

MPR 194 Multiply Reals

DVR 195 Divide Reals

EQREAL 205 Equal Real

LEREAL 206 Less Than or Equal Real
GEREAL 207 Greater Than or Equal Real
ADJ 199 Adjust Set

SRS 188 Build a Subrange Set

INN 218 Set Membership

UNI 219 Set Union

INT 220 Set Intersection

DIF 221 Set Difference

EQPWR 182 Equal Set

LEPWR 183 Less Than or Equal Set
GEPWR 184 Greater Than or Equal Set
EQBYT 185 Equal Byte Array

LEBYT 186 Less Than or Equal Byte Array
GEBYT 187 Greater Than or Equal Byte Array

140

UJP
FJP
TIP
EFJ
NFJ
JPL
FJIPL
XJIP

CPL
CPG

SCPI1
SCPI2

CPI1
CXL

SCXG1
SCXGB
CXG
CXI
CPF
RPU

LSL
BPT

SIGNAL
WAIT

EQSTR
LESTR
GESTR
ASTR
CSTR

PR
SPR
DUP1
DUPR

138
212
241
210
211
139
213
214

144
145

239
240

146
147

112
119
148
149
151
150

153
158

222
223

232
233
234
235
236

157
209
226
198

Architecture Guide
Appendices

Unconditional Jump
False Jump

True Jump

Equal False Jump

Not Equal False Jump
Unconditional Long Jump
False Long Jump

Case Jump

Call Local Procedure -
Call Global Procedure

Short Call Intermediate Procedure

Call Intermediate Procedure
Call Local External Procedure

Short Call External Global Procedure

Call Global External Procedure

Call Intermediate External Procedure
Call Formal Procedure

Return from Procedure

Load Static Link

Breakpoint

Signal
Wait

Equal String

Less Than or Equal String
Greater Than or Equal String
Assign String

Check String Index

Load Processor Register
Store Processor Register
Duplicate One Word
Duplicate Real

141

Architecture Guide

Appendices

SWAP 189 Swap

NOP 156 No Operation

NAT 168 Native Code

NAT-INFO 169 Native Code Information
RESERVE1l 250 reserved

RESERVE6 255

142

WWNNI\)NNNNNNNH!—‘HHP—‘HI—'HHH
l—‘O\Om\IU\\nS—\WNHD\Cm\IO\WDUNHO\OCD\JO\U\-\L\\HNI—‘O

VI.C Appendix C -- American

000
001
002
003
004
005
006
007
010
0l1
012
013
0l4
015
0lé6
017
020
021
02?2
023
024
025
026
027
030
031
032
033
034
035
036
037

00
01
02
03
g4
05
06
07
08
09
0A
08
0C
0o
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
18
1C
1D
1E
1F

NUL
SOH
STX
ETX
EOT
ENGQ

BEL
BS
HT
LF
VT
FF

SO

Sl

DLE
DC1
DC2
0C3
DC4

SYN
ETB
CAN

sUB
ESC
FS
GS
RS
us

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
38
3C
3D
3E
3F

D VL A e e VO NAWVES =N O S

Architecture Guide
Appendices

Standard Code for Information Interchange

SP

+ ke~ TQe eI -

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

40
41
42
43
44
45
46
47
48
49
4A
48
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
S5A
58
5C
50
SE
S5F

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

60
61
62
63
64
65
66
67
68
69
6A
68
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
1A
78
7C
7D
7E
7F

R le———N< X £ <C w700V O 53 =X — =0 0 Q0 0T0O

L

143

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144

