
R SUBSleiRRY OF SOFTECH 

SOFTECH MICROSYSTEMS UCSD P-SYSTEM8 VERSION IV 

C. A. Irvine 

Vice President, Engineering 

15 October 1980 

UCSD, ,UCSD Pascal and UCSD p-System are trademarks of the 
Regents of the University of California. Use thereof in 
conjunction with any goods or services is authorized by 
specific license only, and any unauthorized use is contrary 
to the laws of the state of California. 

9494 BlaCk Mountain Rd., San Diego, CA 92126 (714) 578-6105 ~X:910-335-1594 



SOFTECH MICROSYSTEMS UCSD p-SYSTEM VERSION IV 

The UCSD p-System Version IV, is a major step forward in the 
development of the p-System. It is a result of about a half 
million dollar investment, and clearly demonstrates the 
dedication of SofTech Microsystems to the future of the 
p-System. The promise of the UCSD p-System lies in porta­
bility. A portable system in which FULLY portable applica­
tions programs can be developed promises to reduce software 
development costs, increase the real productivity of pro­
grammers, significantly reduce redundant programming efforts 
thus making programmer's work more interesting, and most 
importantly it can mean that more really useful programs can 
reach the hands of end users at lower cost than ever before. 
In order for any of this potential to be real ized, the 
p-System cannot be allowed to rest on its achievements in 
portabili ty. It must grow and develop so as to keep pace 
with the microcomputer industry's needs. Version. IV was 
developed by SofTech Microsystems in order to - restrengthen 
the p-System's portability (which was allowed to weaken 
somewhat during the development of version 11.1 and 111.0 at 
UCSD), and to move strongly into important new areas such as 
mul ti tasking applications programs. Version IV represents 
the first move towards a modern and powerful operating 
system. Preceding versions of the p-System included only a 
rudimentary operating system, which could perhaps be more 
accurately characterized as a "run-time support package". 
In Version IV the Operating System has taken on new 
responsibili ties in the. areas of task control, scheduling 
and memory management services. It reestablishes the dedi­
cation to portability, it provides important new facilities 
to the application developer, and it lays the foundation for 
the future growth of the system. 

The primary objective of the Version IV development effort 
was to resolve the existing incompatibilities among the 
Versions 11.0, 11.1 (distributed by Apple Computer Corp.), 
and 111.0 (distributed by Western Digital Corp.). In order 
to accomplish this objective the design of the p-Machine had 
to be changed and, as a result, object code portability from 
preceding versions to Version IV could not be achieved. 
However, upward compatibility of source programs from ver­
sions 11.0, 11.1 and 111.0 was considered to be an absolute 
necessity. 

Users of a preceding version of the system will find Version 
IV to be a major improvement and that there are some 
important new features and characteristics. The documenta­
tion was almost completely rewritten and an Internal Archi­
tecture Guide and Installation Manual have been added. The 

- 1 -



system is now provided with an integral Screen Control Unit 
and GOTOXY is now a UNIT which no lo~ger requires the use of 
BINDER. The portablility of object code files has been 
improved by eliminating the byte-sex dependencies, and 
problems associated with real number constants. The librar­
ian program has been rewr i tten and the user will find that 
it is much more understandable and easier to use. A couple 
of important utility programs, a p-Code Debugger and a 
powerful _ cross-referencer, have been added. The "new" 
features arise out of several sources. First, each of the 
preceding versions provided features not found in one or 
more of the others. Second, some important capabilities 
were added in'order to provide a stable, integrated system 
containing all of the features of the preceding versions. 

-he new features provided by Version IV. 8 fall into two 
categories: program seg~entation~ and multitasking (concur­
rency) • The important new operational characteristics of 
Version IV result from the use of these features within the 
operating syste~_i:tself. 

SEGMENT PROCEDURE's in Version IV, may be used' much more 
conveniently than ever before. The programmer has much 
greater control over their residency, and the operating 
system provides much more effective management of them than 
in earlier versions of the system. For example, the new p­
Code Debugger makes use of the new segment management 
facilities so that it is only loaded when an execution error 
or breakpoint is encountered. Version IV has eliminated the 
need for using the Linker to construct programs which use 
separately compiled UNIT~s (except assembly language proce­
dures), and thus has made program construction and checkout 
more efficient. The Pascal Compiler has been reorganized 
into a one and a half pass compiler and t~e 1288 byte limit 
on the size of procedures has been removed. The stifling 
limits regarding the number of UNITs and SEGMENTS which 
could be used within a program have, for all practical 
purposes, been removed. All of this means that much larger 
and more sophisticated applications systems can be written 
than can be with Version IV's predegessors. 

The concurrency features of Version IV permit applications 
systems with .. foreground" and "background n processes, and 
the development of applications programs with more logical 
and understandable structure. The foundation for the expan­
sion of the operating system to multiprocessor configura­
tions is also provided by the concurrency features. 

The new segmentation facilities and the concurrency features 
provided by Version IV, have been used in the Operating 
System in order to produce a system which provides a great 

- 2 -



deal more useable space to- the application programs while 
providing even more services than preceding versions of the 
p-System. 

The development of this new version of the p-System required 
that all of the p-Machine Emulators be substantially revis­
ed, and that almost every major component of the p-System be 
heavily modified. Those that were not so drastically 
changed still required substantial testing. Many thousands 
of lines of validation code were written and used to ensure 
the reliability of Version IV. These validation programs 
will ensure that future releases of the p-System will be 
much more thoroughly tested than ever before. 

UNITS and Program Segmentation 

The facilities associated with the use of UNITS have been 
substantially improved in Version IV. UNITs may now contain 
SEGMENT procedures, processes and functions. They may now 
contain INITIALIZATION sections which are automatically 
invoked before the first invokation of any procedures within 
the UNIT. Files may now be declared in the IMPLEMENTATION 
section of UNITS. 

Versions II. 8 and III. 8 of the UCSD System provided for 
separate compilation of program units of two kinds: ('regu­
lar') UNITS and SEPARATE UNITS. The use of the Linker was 
required t~ bind in either kind of UNIT to the host (main) 
program and since a unique copy was bound into each host, 
substantial space was sometimes consumed on disk volumes to 
house multiple copies of the same code segments. The 
advantage of SEPARATE UNITs over ' regular' UNITs was that 
when a SEPARATE UNIT was bound in by the Linker, only those 
procedures were bound in which were actually called by the 
host program • 

In Version IV.8, the need for SEPARATE UNITs has been 
satisfied by allowing UNITs to contain SEGMENT PROCEDUREs. 
Since SEGMENT PROCEDURES are only loaded when called (and 
released from memory when exited), the functional capabili­
ties of. SEPARATE UNITS can be attained with 'regular' UNITs 
which contain SEGMENT PROCEDURES. This strategy was chosen 
for Version IV. 8 because it not only' meets the need but 
makes the UCSD Pascal language definition more uniform. It 
in fact results in providing capabilities not present in any 
of the preceding versions, and simplifies and improves the 
separate compilation facilities of the system. In addition 
the limits regarding the number of segments which may be 
used in a program have been substantially relaxed in Version 
IV.8. In Version IV.8 a compilation unit may contain up to 
16 segments, up to 256 segments maybe referenced by a 
compilation unit, and up to 256 compilation units may be 

- 3 -



referenced by'a program. These relaxed limits have, for all 
practical purposes, removed -all serious constraints to the 
use of separate compilation and segment procedures. 

Version 11.1 provided, in addition to 'regular' UNITS, the 
INTRINSIC UNIT. The advantages of INTRINSIC UNITs wer~ that 
they did not require the use of the Linker, and that disk 
images of INTRINSIC UNITs are shared among all of their host 
programs. The pr imary disadvantage of INTRINSIC UNITs, as 
implemented in Version 11.1, was that a "segment number" had 
to be assigned at the time the INTRINSIC UNIT was compiled, 
and each host program had to use the unit with that segment 
number. This constraipt severly limited the utility of 
INTRINSIC UNITs. __ For) example, two INTRINSIC UNITs which 
were assigned the same segment number at compile time could 
not both be used in a single host program. 

Although the Version IV.8 Compiler accepts declarations for 
all three kinds of UNITs (UNIT, SEPARATE UNIT, and INTRINSIC 
UNIT), it treats. all units as INTRINSIC UNITs, with one 
major improvement. In Version IV.8 the segment number 
assigned at compile time (if -any), is not fixed at compile 
time of the host program. Therefore the primary constraint 
of Version 11.1 with regard£to INTRINSIC UNITs has been 
relaxed in Version IV.8. 

In addition to the changes discussed above, Version IV.8 has 
taken a radical departure from the memory management strate­
gies employed in earlier versions. Prior to Version IV code 
segments were loaded onto the stack as they were invoked. 
In Version IV.8 code segments are managed in a "code pool" 
which is separate from both the stack and the heap. The 
code pool management strategy allows yonsiderably more 
flexible operation than was ever before possible. Segments 
may be dynamically loaded, unloaded, and relocated as 
execution time needs demand. The code for a segment may be 
shared among several processes which use it. A "activity 
count" is maintained for each segment. The activity count 
reflects the frequency with which the segment has been used 
a.nd how recently it was used. Segments which are not memory 
locked. are removed from memory when necessary, and the 
~egments with the lowest activity count are the first to be 
removed under such circumstances. All segments, including 
those resulting from- the main body of a UNIT or PROGRAM are 
managed in this fashion. In previous versions only segment 
procedures and functions were, in a very constrained manner, 
loaded dynamically. 

Perhaps most importantly, the Code Pool approach is the 
basis for new facilities which permit the programmer and the 
program an opportunity to manage the pode segment "working 

- 4 -



set". Two .PAGE 8 new system calls have been introduced in 
Version IV.O: 

MEMLOCK«seglist»; 

MEMSWAP«seglist»; 

where <seglist> is a string (constant or variable) 
containing.a list of segment names. 

The MEMLOCK call requests that the operating system should 
ensure that the segments specified in <seglist> should, once 
they are loaded, remain in memory even when they become 

.inactive. The MEMSWAP call declares that those segments 
specified in <seglist> should return to normal segment 
status, i.e. competing on the basis of activity counts with 
other segments for space in the main memory. Quite indepen­
dently of their importance in programs which use concurrency 
facilities, these two calls provide a means for the program 
to exercise much greater control over memory utilization. A 
program can, for example, under. Version IV. 0 dynamically 
adjust its· segmentation and thus reduce disk accesses for 
frequently used segments, and free up memory for rarely used 
segments. 

Significant improvements have been made in the area of heap 
storage management. Three new intrinsic functions (VARNEW, 
VARAVAIL, and VARDISPOSE) which permit much more natural 
control of heap storage allocation than the formerly common 
practice of sequential calls to NEW. DISPOSE is now fully 
supported and in fact can be used in programs which employ 
mark/release strategies~· 

In summary, Version IV. 0 accepts (for compatibility) all 
three kinds of UNIT declarations. It tr,eats them all as 
INTRINSIC UNITs, whose segment number may vary from one host 
program to another. Furthermore a UNIT may, in Version 
IV.O, contain SEGMENT PROCEDURE declarations, private file 
and USES declarations, and the residency of all SEGMENTs can 
be dynamically controlled through the use of MEMLOCK and 
MEMSWAP calls. 

- 5 -



Multitasking (Concurrency) 

version III. '" provided facilities for the construction of 
mul ti tasking and/or inter rupt dr i ven application programs. 
The facilities were provided through£the addition of: 

1. A new kind of procedure called a PROCESS; 

2. Some system calls to control the execution of 
a PROCESS; 

3. A new predefined data type, the SEMAPHORE; and 

4. Some system calls for manipulation of 
SEMAPHOREs. 

A PROCESS is ~ssentially a special kind of procedure. 
PROCESSes provide a means for dividing an application 
progr am into 'logically concur rent' tasks. PROCESSes are 
all invoked by the main program. The easiest way to think 
about PROCESSes, is to consider a multiprocessor system 
where there are enough processors so that each task may be 
assigned to an available processor when it is invoked. Such 
tasks all may access the global data of the main program and 
thus may communicate through that data. If there were not a 
sufficient number of processors, then the operating system 
would sometimes have to place a new task 'on hold' until a 
processor became available. It would also, if more than one 
task was on hold when a processor became available, choose 
which task should next be assigned to the available proces­
sor. PROCESSes are handled in the UCSD System in this 
manner, however the sys'tem is prepared to handle only one 
processor and thus only one task is active a time. 

SEMAPHOREs are a predefined data type which permit tasks to 
synchronize their activities in several important ways. In 
essence they provide a reliable way for tasks to ensure that 
they can use shared resources safely and consistently. 

The SEMAPHORE manipulation calls provided by the system 
provide the means for a task to SIGNAL another task and for 
a task to WAIT for such a SIGNAL to arrive. 

The MEMLOCK and MEMSWAP calls discussed above have been 
added to the facilities of Version IV."', in order that the 
program can ensure that 'active' tasks (which are awaiting 
the arrival of a SIGNAL, perhaps provided by an interrupt) 
are not removed from memory. 

In order to provide a greater degree of protection, the 
dperating System contains mechanisms which effectively lock 
the file system so as to prevent inconsistent file activity. 

- 6 -



The multitasking features provided by Version IV. 0 provide 
the means to construct m'ul ti tasking application programs. 
Examples of such programs include: 

programs which print reports via one task while 
accepting input data via another task: 

interrupt driven programs, such as real-time 
process control applications: 

multiaccess application programs which provide 
services to users at more than one terminal: or 

programs which are organized as a set of "co­
routines". 

The MEMLOCK and' MEMSWAP calls discussed above have been 
added to the facilities of Version IV.O, in order that the 
program can. ensure that 'active' tasks (which are awaiting 
the arrival of a SIGNAL, perhaps provided by an interrupt) 
are not removed from memory. 

The multitasking (concurrency) facilities provided by Ver­
sion IV.O are described in detail in the Version IV User's 
Manual. 

- 7 -



ATTACHMEN 

"UPWARD COMPATIBILITY" 

This appendix surveys various aspects of the compatibility 
of Version IV of the UCSD p-System with preceding versions 
of this software system. Although an important objective of 
the Version IV development effort was to achieve full upward 
compatibility from versions II.~, 11.1 and III.~, some 
aspects, such as object code compatibility, had to be 
sacrificed in order to expand the capabilities of the 
system. Furthermore, it is possible to wr i te non-portable 
programs (by accident or intent) even in the UCSD p-System. 
Certain implementation dependent and hardware implementation 
practices when used in programs running under earlier 
versions may cause difficulty under Version IV. 

The following sections of this attachment will address 
several dimensions of the upward compatibility problem. 

Source Level Pascal and FORTRAN Programs 

In general this objective has been achieved. In fact 
Version IV has also achieved a somewhat higher level of 
object portability than earlier versions. All 'normal' UCSD 
Pascal and all FORTRAN 77 programs which run under Versions 
II.~, 11.1 or III.~ can be compiled, without change, and run 
under Version IV.~. In general terms, a 'normal' program is 
one which has not made use of implementation characteristics 
of the compiler, operating system or P-Machine. The imple­
mentation dependent Pascal programming practices which will 
require program modification are defined below. 

Object Programs 

Some changes and extensions have been made to the P­
Machine, and as a result Version II.~, 11.1 and III.~ object 
programs cannot be executed under Version IV.~. Source 
level programs must be recompiled under Version IV. ~ in 
order to execute properly under IV.~. 

Full portability of object programs and disk directories is 
supported among Version IV implementations. That is, the 
byte-sex, floating point constarit, and directory "flipping" 
problems have been solved in this version. 

- 1 -



Assembly Language Procedure an,d Functions 

Assembly language PROCEDURES which accept parameters of type 
STRING, and' assembly language FUNCTIONS will need slight 
modification in order to be used under Version IV.~. 

Media Conversion 

External storage media logical formats have not changed in 
Version IV. ~. Therefore, no file or media, conversion is 
required for program text or data. 

Version Dependent Programming Practices (Pascal) 

The following paragraphs define those Pascal programming 
practices which will cause programs which execute correctly 
under Version II.~, II.l, or III.~ to fail when compiled and 
executed' under Version IV.~. The use of any of the 
following programming practices will require that a program 
containing them be modified before recompilation under 
Version IV.~: 

System Data Structure Dependencies 

Some of the definitions of system data structures have 
changed under Version IV. "'. Therefore programs which di­
rectly access such structures (e.g. SYSCOM, SIB's, etc), 
will ,have to be modified in order to execute correctly when 
recompiled under Version IV."'. 

Heap storage utilization 

Under Version IV.'" the program cannot assume that the memory 
immediately following that obtained by a NEW is unoccupied 
and therefore available for use by the program. 

Similarly, the program cannot assume that the storage 
obtained by consecutive calls to NEW will yield contiguous 
storage. The practice of indexing across the boundary 
separating storage obtained by consecutive execution of NEW 
may therefore fail under Version IV. 

Calls to MARK and RELEASE, must, under Version IV. ~ be 
paired correctly. The pointer value' obtained by calling 
MARK must not be modified prior to calling RELEASE with that 
pointer value. Furthermore that pointer value obtained by 
calling MARK cannot be used as a base pointer for storage 
references. 

- 2 -



In previous versions segment procedures comprising a large 
program could be compiled separately and then stitched 
together using the LIBRARY program. This was possible 
because segment numbers were assigned only to explicitly 
declared segments or units. Thus it was relatively easy to 
arrange dummy segment declarations in the separate compila­
tions to assure consistency of segment numbers. In Version 
IV this a good bit more difficult and therefore UNITS (which 
are designed for separate compilations) should be used 
instead. 

"Tightly Fitting" Programs 

The user has· a great deal more control over the amount of 
memory required in Version IV.O for the operating system 
during run-time than in any of the preceding versions. 
However, Version, IV. 0 does, in general, use more memory 
during execution of a user program than Version 11.0, 11.1 
or 111.0. Therefore those application programs which have 
been carefully tailored (using SEGMENTS, INTRINSIC UNITS, 
SEPARATE UNITS, etc.) to fit "tightly" under one of the 
preceding versions, may not fit, without some modification 
under Version IV.O. 

The collection of memory management facilities have been 
increased substantially under Version IV.O, and as a result 
"tightly fitting" programs can be modified so as to have 
larger amounts of available memory than in preceding ver-
sions. . 

In summary, programs which were carefully tailored to fit 
the available memory in preceding versions may need to be 
modified to. fit under Version IV.", but 'Version IV.O can 
accomodate larger programs than preceding versions. 

On-Line Volume Management 

Since the Version IV. 0 operating system is now segmented, 
and segments can be released from memory when they are not 
actively executing, the disk containing the operating system 
segments must remain mounted at all times. Therefore 
programs which required that the system disk be removed and 
replaced by other volumes, may need some modification for 
correct execution under Version IV.O. 

- 3 -


