SOFTECH MICROSYSTEMS
UCSD p-SYSTEM!M yERSION IV

FOR THE APPLE II'™ COMPUTER

Marech 1983
SofTech Microsystems, Ine,
San Diego, California

Copyright © 1983 by SofTech Microsystems, Ine,

All rights reserved., No part of this work may be reproduced in any form or by
any means or used to make a derivative work (such as a translation,
transformation, or adaptation) without the permission in writing of SofTech
Microsystems, Inc,

UCSD and UCSD Pascal are trademarks of the Regents of the University of
California, Use thereof in conjunction with any goods or services is authorized by
specific license only, and any unauthorized use is contrary to the laws of the State
of California.

APPLE and APPLE II are trademarks of Apple Computer Inc.
SMARTERM is a trademark of Advanced Logic Systems, Inc.
DOUBLEVISION is a trademark of The Computer Stop Corp.
MICROMODEM 1II is a trademark of D.C. Hayes Associates, Inc,

Printed in the United States of America.

DISCLAIMER: These documents and the software they describe are subject to
change without notice., No warranty expressed or implied covers their use,
Neither the manufacturer nor the seller is responsible or liable for any
consequences of their use,

TABLE OF

INTRODUCTIONCOOOO0."...".0

CHAPTER ONE

GETTING STARTED
Powering Up With the p-System.,
Backing Up Your Diskettes

L2.1

L2.2
Important Keyboard Considerations

L4 Running the STARTUP: Diskette .

L1
L2

L3

e # @« ® & o 8 & o o @

Formatting a New Diskette .
Making Backups

CHAPTER TWO

MAKING USE OF THE p-SYSTEM

II.1

IL1.1
II.1.2

II.2
I3

Software ComponentS « « « o « o o
Operating System . . ¢ ¢ ¢ ¢ o «
Filer 4 ¢ o ¢ o o 0 0 0o 0 0 0 o oo

3 Editor. « ¢« o ¢ ¢ ¢ ¢ 0o 0o 0 ¢ a oo

4 Compilers o+ ¢ ¢« o ¢ o 0 ¢ o ¢ ¢ o

DS Libraries ¢ ¢ o « o o 6 0 0 0 0 o

6 Utilities & v o ¢ e o 0 0 ¢ o 0 o o

.7 The Booter Utility « &

.8 Disk Utilities « ¢ ¢ ¢ o ¢ ¢ s o »

.9 Using DISKCHANGE

1 Using DISKCHANGE

ede 0
How to Create and Run a Simple Program
Ways to Configure Your Diskettes &

e & o e ¢ o

II.4 Large Programs. « « « o« o ¢ o s ¢ ¢ o ¢ o o o
II.5 Binding the Debugger into SYSTEM.PASCAL

CHAPTER THREE
CONFIGURING YOUR APPLE II SYSTEM
USING SUPPLIED PERIPHERAL DRIVERS

.1
L2
1.3
1.4
1ILS5
1.6

Reconfiguration Summary . . « « «
Supplied Drivers . « « « o o ¢ ¢ o o
Linking Together an SBIOS ,
GOTOXY and SYSTEM.MISCINFO .
The APPLEINFO Table ., . . ¢ ¢« &

e

Detailed Description of the Supplied

CHAPTER FOUR
WRITING YOUR OWN PERIPHERAL DRIVERS

Iv.1

The SBIOS Routines « « « « ¢ « o «
The Jump Veetor « « « « o ¢ «
Descriptions of the Routines
User-Defined Devices

e o o o

Dri

Physical Organization of the SBIOS

m e & o o & o

CONTENTS

s & & o o @

e o & o o o o

e & 6 e & @ e @ o & o 6 ° o = o

e ® & @ o @& & o o & s & 2 s s o

e & o o e o o

s e o o o o o

e & ® o o o o

e @ & e & o 9 o ¢ & & & & s ¢

e & & @ ® & @ 6 ¢ ® e & o & o o e o o o s o o

10
10
11
13
16

18
18
18
19
19
19
21
21
21
22
22
24
25
29
33
35

37
37
38
39
41
42
42

52
52
52
54
64
68

Table of Contents

IV.1.5 How SBIOS Routines are Called by the p-System. « « « ¢ ¢« o« « « 68
IV.1.6 Vector Lists and Register AssignmentS. « « « « ¢« ¢ o o ¢ ¢ o o o « 69
IV.1.7 The SBIOS Global VariablesS « « « « « ¢ ¢ s ¢ ¢ e e s 00000 seae 12
IV,.1,8 Sample Disk Driver. « « « o « e ¢ ¢ ¢ e e s s o s s s o seoeoesee 14
IV.1.9 Other Sample Drivers « « « « « o ¢ ¢ o e ¢ ¢ e o e o000 eeeee 7
IV.1,10 Example Driver Programs . « ¢ « « o« s o o s ¢ s s s o o ¢ s o o » 81
IV.1.11 Polling the Peripherals for I/O . 4 ¢ ¢ ¢ ¢ ¢ s e o o e e s o e oo 87
IV.1,12 Configuring DISKVECT . ¢ ¢ o s ¢ ¢ ¢ ¢ s s s s s e o 0 aoeeee 87
IV.1.13 Memory Configuration NoteS . « « « « ¢« ¢« ¢ ¢ ¢ o ¢ s a0 o000 88
IV.1.14 Reconfiguring the Interpreter . « « « o « ¢ ¢ o ¢ ¢ o ¢ ¢ e s s o o 89
IV.1,15 Miscellaneous NOteS . « « « « ¢ o ¢ ¢ ¢ ¢ s o e s s s s o eeoseee 93
IV.1,16 Using Real NUMDErS 4 4 o ¢ o ¢ ¢ ¢ 0 0 0 o e ¢ e e eooveeee 93
Iv.2 he Utility SETUP 4 4 ¢ ¢ ¢ ¢ o ¢ e 0 606 0 s s s s asasseoeses 93
IV.2,1 Running SETUP & 4 ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e ¢ e e aeeoooesoseees 94
Iv.2.2 Miscellaneous Notes for SETUP . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e s s a0 o e ee 95
Iv.2,3 The Data Items in SYSTEM. MISCINFO e e e s s e e e s e eesss 96
IV.2.4 Sample SYSTEM.MISCINFO ConfigurationsS. . « « « « « « « « o « « 103
IV.3 GOTOXY ¢ ¢ ¢ ¢ o ¢ o o o o 0 e oo ooassssseeeaececeess 104
IV.3.1 Writing Your OwWn GOTOXY . ¢ ¢ ¢ ¢ ¢ o e e e e o s oo oeceesas 104
IV.3.2 A Recipe for GOTOXY & ¢ ¢ ¢ ¢ o e 0 oo e seceoseaesees 106
Iv.3.3 Binding GOTOXY Using the Library Utility « « « « ¢ ¢ ¢ ¢ o « « « 108
IV.3:4 ProblemS. ¢ ¢« ¢« « o o o o o ¢ ¢ ¢ ¢ ¢ 0 0 ¢ a e s o eooosoeoeeees 110
IVi4 SCREENTEST « ¢ « o ¢ ¢ ¢ o e 0 s o s oeeossosssesasassss 111
IVi4,1 Running SCREENTEST & 4 ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o o s o6 easeeeee 111
IV.4.2 Results of SCREENTEST @ « o ¢ ¢ ¢ o ¢ ¢ 0 ¢ e s a e eoseoeaesae 112
IV.4.3 Problems that can be Fixed by Altering SYSTEM.MISCINFO .. 113
IV.4.4 Problems that can be Fixed by Changing GOTOXY .+ ¢4 o+« . 115
IVi4.5 Other Problems ¢ « « « ¢ « o ¢ ¢ ¢ s 006 0606 0csssssesesess 115
IV.4.6 Miscellaneous Notes on SCREENTEST ProblemsS. « « « o ¢« « « « « 116
IV,5 Creating Your Own BOOtStra8p « « « o « ¢ ¢ ¢ ¢ 0 s e e 0 s e 0 a0 oso 116
IV.5.1 The Concept of BoOting o « o« o« « ¢ ¢ ¢ o 6 ¢ ¢ ¢ 0 000 0eeseee 117
IV.5.2 Primary, Secondary, and Tertiary Bootstraps . . ¢« o« « o ¢« ¢ « o o« 117
IV.5.3 The Standard APPLE BOOtStrap « « « « o ¢ ¢ ¢ ¢« o ¢ o o o o 0 o o o 118
IV.5.4 Example Primary Bootstrap Outline . « « ¢« « ¢ ¢ ¢ ¢ e ¢ ¢ o ¢ » o« 119
IV.5.5 Placing a Primary Bootstrap on the DiSk « « ¢« ¢« ¢ o o 6o 6 o o o » 120
IV,5.6 Creating SYSTEMBOOT 4 4 ¢ ¢ ¢ ¢ ¢ 0 0 ¢ ¢ e oo ossseeess 121
CHAPTER FIVE

SPECIAL SOFTWARE FACILITIES. « ¢ ¢ ¢ ¢ ¢ ¢ o 0 ¢ ¢ a0 ecoeeeeeseee 123
V.l The APPLESTUFF Unit . & ¢ ¢ o ¢ o o ¢ e o 0 s 0 s o0 eoooeeeees 123
v.z The TURTLEGRAPHICS Unit ® ¢ ¢ & & ¢ o & & & & ¢ & & ¢ 2 o 8 & ¢ > * 0 127
V.2.1 Instelling and Initializing TURTLEGRAPHICS . . ¢ ¢ ¢ o o o o+« 128
V.2,2 TURTLEGRAPHICS Character FOnts . . ¢« ¢ « o« o ¢ ¢ o o o « o « « 128
V23 The Turtle ¢ o o o ¢ o « ¢ ¢ o o 0o 0 e o000 eoeessssseees 131
V24 The DiSPlay « o o o o o o ¢ o ¢ ¢ 0 0 ¢ o ¢ s s s 0esoseseeees 134

Table of Contents

Writing Characters with TURTLEGRAPHICS 134

V02.5 e & e & % & & ¢ 8 o o &

V2.6 SCAlINE & ¢ ¢ o ¢ o o ¢ ¢ 000 s asoossssscscssccssesse 135
V.2.7 Figures and the POrt « « « « ¢ o ¢ e o s o s s e e e s oeeeoeeos 136
v.2.8 Pixels. e @ & ® @ % & & § 6 & ® ¢ 0 8 6 @ & &6 O & & ¢ & @ & 0 & & O s 00 139
Vi2.9 FOtOfileS « o o ¢ ¢ o ¢ ¢ o o o ¢ s 0 s s s s aeaooeseeeeees 139
V.2.10 Routine Par8meters o« « « o s « o s o s o s s s o 0 o000 os oo 141
V.2.11 Sample PrOgram « o « o « o o o o s s ¢ o s s s a s o asoeeesee 142
V.2.12 Memory Space Requirements « o« o o o o o e o o o oo 0o 00 s oo 140
V.3 The CONFIG Utility « « « « « o ¢ o 0 e ¢ s o 0 0o s o oaeeeesoeees 146

APPENDICES:

APPENDIX A: THE p-SYSTEM DEVICES AND VOLUMES., s ¢ « ¢ s ¢ o ¢ o » 154
APPENDIX B: APPLE II SLOT ASSIGNMENTS . 4 o ¢ ¢ s ¢ o e o 0 e s o0oee 155
APPENDIX C: GENERIC APPLE DRIVERS . ¢ ¢ ¢ ¢ ¢ s s ¢ ¢ e e 0o e oo 156

APPENDIX D: BOOTING DIFFICULTIES 4 4 ¢ ¢ ¢ oo oo oeoeoeeesess 164

INDEX..o.-o.l..ll..c.-nloulovtooouoolooooooon 167

SOFTECH MICROSYSTEMS
UCSD p-SYSTEM, VERSION 1V

FOR THE APPLE 11

The new UCSD p-System, Version IV, is now available to APPLE II users. The
UCSD p-System features:

UCSD Pascal
The most popular Pascal available today.

BASIC
This popular language can now be compiled on the p-System,

System Software

The well known UCSD p-System's software allows powerful screen
oriented editing, easy file handling, separate compilation, assembly
language programming, plus many new features including concurrent
processing, special debugging facilities, dynamic memory allocation,
program chaining, and 1I/O redirection.

Applications Software

A growing set of applications is available to run with the Version IV
p-System including special editors, text formatting, data base managing,
and more,

Portability

Applications may be developed on the APPLE II with the p-System and
transported to other major microcomputers, including the IBM Personal
Computer.

Introduction

Extended Peripherals

Peripheral drivers for various terminals, boards, printers, disk drives, and
so on, are available with the Version IV UCSD p-System on the APPLE
II (or you may write your own driver for whatever peripherals you have,
including a cloek). Drivers are supplied for the following:

APPLE Disk II mini-floppies

Micro-Sei A-40/70 mini-floppies

Sorrento Valley Associates Floppy Controller (with 8 inch drives)
Lowercase Video Adapters

Lowercase Keyboard Adapters

APPLE Communications Card

APPLE Serial Card

APPLE Parallel Card

California Computer Systems Serial Card
Solid State Music AIO Serial Card
Sup'r'terminal 80 Column Video Board
Videx Videoterm (80 Column Video Board)
Smartermtm 80 Column Video Board
Doublevisiontm 80 Column Video Board
D.C. Hayes Micromodem IItm

In order to execute applications programs with the UCSD p-System, the
APPLE II computer must have at least 64K of RAM and a minimum of
280K bytes of disk storage. A video display device is also required (for
example, a monitor or TV console with converter),

Chapter I of this introductory manual describes how to boot the UCSD
p-System and backup your system disks. It also describes some keyboard
considerations,

Chapter II briefly describes various parts of the p-System such as the
Screen Oriented Editor, the filer, and the compiler. It shows how to
create and run a simple program. It also gives some suggestions for
arranging your files on diskettes so that you may most easily use the
p-System. The general reference for the p-System is the Users' Manual
whieh accompanies this manual and the software,

Chapter III describes how to configure the p-System so that it will
interface with any of the peripherals mentioned above. This involves
creating a file called the SBIOS (Simple Basic Input Output Subsystem) by
linking together the drivers that you require.

Introduction

Chapter IV is much more lengthy and complex, It describes how you may
write your own peripheral drivers and configure the p-System to interface
with the particular peripherals you may have. If you have no need to
reconfigure the p-System, you should skip this chapter,

Chapter V describes some software facilities that are available with the
p-System on the APPLE II. These include graphics display facilities,
support of special APPLE I/O capabilities, and so on,

CHAPTER 1

GETTING STARTED

Now that you have an APPLE Computer and a copy of the UCSD p-System, you
are probably wondering how to use them, Once you have become familiar with
the APPLE Computer hardware, and are ready to use the p-System, you should
read this manual FIRST,

In this chapter we are going to discuss the following topics:
Powering up with the p-System,
Backing up diskettes,
Important keyboard considerations.
Running the STARTUP diskette.

It is important that you read through this chapter. If you don't understand some
of it, you may be in danger of LOSING programs. If you have programmed
before, you know that means losing a lot of time and possibly money if you happen
to destroy the diskettes on which your p-System is shipped.

I.1 Powering Up with the p-System

First, take a look at the loose pages that accompany this manual, They contain
directory listings of the diskettes that you should have received with the p-System.
Make sure that all of it is included with the p-System you received.

There are two diskettes that will "bootstrap" on the APPLE Computer; SYSTEM1:
and STARTUP:. For now, we need only SYSTEM1:. "Bootstrapping"” means
bringing the p-System up. Most of this work is done by the system, hence the
term (as in "pulling yourself up by the bootstraps™),

In a standard configuration, a disk controller card should be placed in slot 6, and
two disk drives should be connected as drives 1 and 2, Drive 1, in this
configuration, is referred as #4:, and drive 2 as #5:. Put SYSTEMI: in drive #4:.
The label should be facing up, and the oblong slot that exposes the diskette should
be pointed away from you. Turn the power on and then close the disk drive door.

After a few moments, the p-System Command menu should appear. The menu is
the outer level of the "operating system," aad it shows most of the major
p-System commands. For now, you don't need to worry about what they mean,
You will get to see how some of them are used in the next section,

Getting Started

If you don't see a menu displayed after about a minute, then open the disk drive
doors and turn off the APPLE Computer. Read over the preceding few paragraphs
and make sure you did everything correctly. Be sure you are using the SYSTEM1:
diskette! Then try it again,

If you continue to have trouble, stop right here and call your dealer. Resume at
this point once you have bootstrapped your p-System. Or, if you like, read ahead
while you are waiting for help, and learn what to expect.

All right, now you have bootstrapped your p-System. The next thing to do is play
it safe and make backup copies of ALL your diskettes,

I.2 Backing Up Your Diskettes
I.2.1 Formatting a New Diskette

A brand new diskette must be formatted before you can use it on the APPLE
Computer. This is done by running a small "utility program" called
FORMATTER.CODE,

A M"utility program" is a program that comes with the p-System, and is run like
any user's program,

The p-System is shipped on several diskettes, and you must make a backup copy of
each of them. The first step is to format the new diskettes onto which you will
copy each of the original diskettes you recieved.

We assume that you have bootstrapped your p-System, and are looking at the
Command menu, To run FORMATTER.CODE, place the diskette called UTILITY:
in drive #5:, and press 'X' for X(ecute, The p-System will respond:

Execute what file ?
Now enter '#5:FORMATTER' and then press <return> key.
FORMATTER should respond with the following prompt:
F hich drive (4.5.9.12) 2
REMOVE both the SYSTEMI1: diskette and the UTILITY: diskette, Put a BLANK
diskette into drive #5:, and enter '5' followed by <return>. (If you press a plain

<return>, without the 5, the Format utility will finish without doing anything
more.)

10

Getting Started

FORMATTER will respond:
Format 35 tracks ?

The actual number may be different from 35, depending upon the type of drive you
are using. If, at this point, you press 'N', for no, the Format utility will ask how
many tracks to format. If you press 'Y', for yes, the formatting process will
proceed.

If you have a blank disk in the drive, and if nothing goes wrong, the message:

Format complete

will appear, and the first menu of the Format utility will appear again. If, at this
point you want to exit the Format utility, press <return>. If you want to format
another diskette, follow the above steps again.

If the disk to be formatted has a valid p-System directory, the Format utility will
prompt:

Destroy volume VOLNAME:

(VOLNAME: is the disk name,) Pressing 'Y' will allow the formatting process to
continue., NOTE: This will destroy the information contained on the diskette.
Pressing 'N' will return you to the first prompt of the Format utility.

If the Format utility gives you an error message while trying to format a diskette,
there may be something wrong with the diskette. Errors occur if no disk is
on-line, if the drive door is opened in the middle of the formatting process, if the
disk is in the drive upside down, if there are bad blocks on the disk, and so on.

An error message also oceurs if you try to format a diskette in any type of drive
other than APPLE II or Micro-Sei mini-floppy drives. The formatter won't work
on 8" disks,

When you have formatted all your diskettes, you may proceed to backup the
p-System diskettes,

I.2.2 Making Backups
You should put SYSTEM1: (the disk you bootstrapped with) back into drive #4.

Now press 'F' for F(iler. This command puts you at another "level" of the
p-System, where the letters you press are now commands to the File Handler,

11

Getting Started

Press 'T' for T(ransfer, The filer will ask you:
Trapsfer what file?

Now REMOVE the system disk, place one of the p-System diskettes in drive #4
and one of the formatted blank disks in drive #5,

Answer the prompt with '#4,#5', and press <return> key.
The filer then asks:
Transfer xxx blocks ? (Y/N)

Enter 'Y'. (The "xxx blocks" should indicate the size of the entire diskette,) The
filer then asks:

Destroy BLANK: ?
Enter 'Y',

The filer will transfer the contents of the diskette in drive #4 onto the diskette in
drive #5. When the filer is finished, a message to that effect is displayed.

The transfer is then complete. Remove both diskettes, label the new backup copy
appropriately, press 'T' again, and repeat these steps until you have made backup
copies of all your p-System diskettes,

WARNING: If you put the diskettes in backwards (for example, the blank diskette
in drive #4 and the master diskette in drive #5), the filer will display a message
such as:

Destroy SYSTEM1: 2
You should press 'N' or 'n', and correct the mistake,
You are now ready to use your copies for everyday work, Keep the diskettes that

were originally shipped in a safe place as backups. You may want to make an
additional set of backups for safety.

12

Getting Started

I.3 Important Keyboard Considerations

When you run your p-System on the Apple Computer, there are some important
keys that you should know about. This section describes them briefly. You
probably won't want to absorb all of the information here on first reading, but do
read through the section, and refer back to it when you need this information,

NOTE: The CTRL key is used in a similar manner to the shift key on a
typewriter in that it is pressed in combination with other keys. But, rather than
shifting those keys to uppercase, it causes them to take on some completely
different meaning., For example, holding down CTRL and pressing O, acts as an
up arrow,

Once the p-System has been bootstrapped, it isn't necessary to turnoff the APPLE
Computer in order to bootstrap it again, You can insert the diskette you want to
bootstrap from in drive #4 (or leave it there if it is already there), and press
<{reset> key., The APPLE Computer will rebootstrap your p~System.,

The <return> key is located on the right side of the keyboard, Whenever you
answer a prompt in the p-System, except for single-letter commands, you should
follow it with <return>, When you are using the editor, the <return> key acts as
a carriage return on the screen,

When you are entering input to the p-System, you can correct errors by
backspacing over them. The <backspace> key is the left pointing arrow,

Entering CTRL-X acts to rub out an entire line when answering p-System prompts,

The vector keys consist of the left arrow, the right arrow, CTRL-O (up arrow),
and CTRL-L (down arrow). The vector keys are usually used within the p-System
editor to move the cursor around, along with <return>, <space> (the standard space
bar), <tab> (CTRL-I), and some other commands.

Another character you must use while in the editor is called <etx>, This is the
character that accepts insertions and deletions. To send an <etx>, enter
CTRL-C.

If you do NOT want to accept an insertion or deletion, you may press the ESC key
(for "escape™),

If the display you are using is 40 columns wide, then you can use CTRL-A to
toggle from one side of the (80 column) screen to the other,

13

Getting Started

The screen can be put in a mode where it will shift, by 1/3 of the screen, as the
cursor moves off the sereen, The key that does this is initially set to CTRL-Z.

When a program is sending output, it is possible to stop and start that output by
entering CTRL-S. The first time you enter CTRL-S, output stops, the next time
you enter it, output begins again, and so forth,

If you no longer want the program to send any output, press CTRL-F. F stands
for "flush.," The program will continue to run, but won't send any output, and
should soon terminate.

If something goes wrong while a program is running, and you wish to halt it
completely, entering CTRL-@ causes a BREAK. This amounts to pressing CTRL,
SHIFT, and P all at the same time. The p-System displays an error message,
requests that you press <space>, and then reinitializes itself,

Normally, the Apple keyboard can only generate uppercase alphabetic characters.
The p-System converts all of these uppercase codes to lowercase codes. Special
key combinations are then provided to shift and alpha-lock characters entered at
the keyboard. If your Apple keyboard has the capability of producing uppercase
and lowercase characters, it is possible to turnoff the automatic lowercase
conversion and to enable the regular Shift key so that it can be used with
alphabetic characters. These and other related items are discussed in the
remaining paragraphs of this section,

For keyboards which only produce uppercase characters, a "soft" shift key is
provided. This key should be pressed and then released; the next alphabetical
character entered will be shifted to uppercase. In addition, the following special
characters will be shifted:

Key Unshifted Shifted
Control-K [{ (Displayed as [)
Shift-M] } (Displayed as 1)
Shift-N ° —
/ / \
Shift-P @ | (Displayed as \)

14

Getting Started

The shift key is initially set to CTRL-W. This key will shift only the next
character entered., If more than one shifted key is to be entered using this
method, CTRL-W must be re-entered each time,

Pressing CTRL-R will act as an alphalock toggle., Alphabetical characters will
toggle between uppercase and lowercase whenever this is entered.

If your keyboard will generate lowercase and uppercase alphabetic characters, then
the CONFIG utility may be used to set HAS_LC_KEYBOARD to true. This will
disable the automatic lowercase conversion as well as the soft shift key.

The standard APPLE II setup only recognizes the hard shift key (the actual key
labeled "shift") for certain special characters. To enable the p-System to
recognize the hard shift key in conjunction with alphabetical characters, you can
install a "shift wire mod.," This is a wire connecting the keyboard shift key to the
game port, When this is done, use the CONFIG utility to set the
HAS_SHIFT_WIRE bit to true. The following table shows how to produce the
following shifted and unshifted special characters when the shift wire mod has been
installed:

Key Unshifted Shifted
Control-K [{
Control-J 1 }
Control-N ° _

/ / \
Control-P d |

If your Apple system has an internal video with the capability to accept lowercase
sereen codes and display them, such as is provided by the Dan Paymar Adapter,
you may use CONFIG to set the HAS_LC_VIDEO bit to true,

If your Apple system is setup so that the video display won't show lowercase, and
you need to be able to distinguish uppercase from lowercase output, you may set
a flag that will display all uppercase letters as inverse uppercase and lowercase
as normal (not inverse) uppercase, To do this, use the CONFIG utility to set the
USE_INVERSE_LC bit to true,

15

Getting Started

NOTE: The characters: ™" (Tilde) and ™" (Grave accent) can't be entered with
the standard APPLE II keyboard (although they may be displayed on the screen if
generated by a program). This means that if you find it necessary to use the
utility SCREENTEST, you will be unable to satisfy its requirement of entering
those characters. This is only because of hardware limitations and should be of no
real concern. These characters can usually be generated if you are using an 80
column video board; you should consult your hardware documentation,

NOTE: If you are using an 80 column board with the general driver
CONSOLE.CODE (as described in Chapter III), some of the keys and special
characters described in this section may be used differently, or unsupported
altogether, depending upon your hardware. The shift-next-character key (CTRL-W),
and the alpha-lock key (CTRL-R) will actually be whatever the hardware manual
for the board indicates. Also, the special characters "[", "Jv, "7, nfn, mjn, nn, w/m,
m\n. n@n and "|" will be produced in the manner that the hardware manual
indicates,

The following table is a summary of this section:

Key Function
CTRL-X Erase Line

CTRL-O Up Arrow

CTRL-L Down Arrow

CTRL-1 Tab

CTRL-C <etx>

ESC <esc>

CTRL-A 40 Column Screen Toggle
CTRL-Z Sereen Mode Toggle
CTRL-S {stop>

CTRL-F <flush>

CTRL-@ <break>

CTRL-W Soft Shift Key
CTRL-R Alpha-lock

1.4 Running the STARTUP: Diskette

If you have never used the p-System before, then we recommend that you become
familiar with it by using Ken Bowles's i ! i
This guide uses a number of programs which are supplied on the diskette labeled

STARTUP:,

16

Getting Started

STARTUP: can be bootstrapped. It contains a p-System with an editor, but not a
compiler. To use a compiler, see Chapter II in this manual. STARTUP: also
contains the following files:

NAMEFILE
SCDEMO.CODE
COPYSCUNIT.CODE
UPDATE.CODE
COMPDEMO.TEXT
EDITDEMO,TEXT
UPDATE.TEXT

The use of these files is explained in the Beginners' Guide.

When you bootstrap on the STARTUP: diskette, you will find yourself in the middle
of a program. This is a demonstration program that is meant to give you some of
the feel for using the p-System. The Beginners' Guide tells you how to use it and
what to expect,

17

CHAPTER 11

MAKING USE OF THE p-SYSTEM

This chapter should be more interesting than the previous chapter, since it
describes the major components of the p-System, and some of the more effective
ways to use them,

IL.1 Software Components

What is the p-System, anyway? It's a collection of software components that
come in the form of files saved on diskettes, This software is used for writing
and running programs, The programs you write will use the Apple Computer's
hardweare in various ways,

When you use the p-System, you begin by bootstrapping it. When you have
bootstrapped, you see a Command menu that looks like this:

. . . . u 0

Each capital letter shown on the Command menu is a command to the p-System,
Entering one of these letters causes something to happen. Some of the commands,
such as E(dit and F(iler, call other programs that in turn have their own menus
and their own set of commands,

In other words, each component of the p-System serves a particular purpose. All of
them are fairly self-explanatory, and all of them are meant to be used by a single
user sitting in front of the Apple Computer display (in other words,
"interactively").

This section gives some brief descriptions of the major components of the
p-System,

IL.1.1 Operating System

Very little of the operating system is actually seen by you. The operating system
is essentially the program that controls the Apple Computer's resources and calls
various other programs,

The part of the operating system that IS important to you is the Command menu;
the one you see when the p-System is first bootstrapped. This set of commands
allows you to call other portions of the p-System, and to run programs that you
have written yourself,

18

Making Use of the p-System

The operating system is called SYSTEM.PASCAL. It can't run unless the files
SYSTEM.MISCINFO, SYSTEM.INTERP, SYSTEM.BOOT, and SYSTEM,SBIOS are also
on the disk that you bootstrap. These files all appear on the diskettes STARTUP:
and SYSTEM1:, which are shipped with the p-System. Either of these diskettes
can bootstrap the p-System, when placed in the #4: disk drive, as described in
Chapter I,

The operating system and its commands are described in the Users' Manual.

II.1.2 PFiler

You have already used the filer briefly to make backup copies of your p-System
diskettes. The filer is used for maintaining the collection of files on a diskette,
and transferring them from one location to another,

SYSTEM.FILER is the filer program. It is shipped on STARTUP: and SYSTEM1:,
The use of the filer is deseribed in the Users' Manual.

n.1.3 Editor

The editor allows you to create new text files such as programs or documents, It
also allows you to modify old text files. The editor makes use of the entire
display secreen, so it is easy to see the text you are working on, and modify it as
necessary,

The editor is called SYSTEM.EDITOR, and it is also shipped on STARTUP: and
SYSTEM1:,

The editor is described in the Users' Manual.

II.1.4 Compilers

With the UCSD p-System on the Apple Computer, you can write programs in UCSD
Pascal or in BASIC., Programming in one of these languages entails creating a
text file with the editor, and then "compiling" that text file by calling the

appropriate compiler. The compiler translates the program text into a form that
the p-System can execute on the Apple Computer,

19

Making Use of the p-System

When you compile a program, the name of the compiler must be
SYSTEM.COMPILER. The p-System is initially setup with the Pascal compiler
named SYSTEM.,COMPILER., If you intend to use the BASIC compiler you must
use the filer to change the name of SYSTEM.COMPILER to PASCAL.CODE (or
whatever other distinet name you wish), and the name of BASIC.CODE to
SYSTEM.COMPILER,

Also, when you compile a UCSD Pascal program, the file SYSTEM.SYNTAX should
be on the system disk (the diskette you bootstrap with). This file contains all the
error messages that the Pascal compiler needs if it encounters a syntax error while
compiling your program., SYSTEM.SYNTAX is shipped on SYSTEM1:,

The UCSD Pascal language is described in the UCSD Pascal Handbook.

To compile a BASIC program, BASIC.CODE must be changed to
SYSTEM.COMPILER (as described above), and BASIC.LIBRARY must be changed to
SYSTEM.LIBRARY and placed on the boot disk (after changing the name of the
standard SYSTEM.LIBRARY). Perhaps, a better alternative is to create an entirely
separate bootable disk which is dedicated to BASIC and which contains the properly
name compiler and library., We will say more about this in the section below on
"Ways To Configure Your Diskettes,"

BASIC doesn't have a file that corresponds to Pascal's SYSTEM.SYNTAX,

Information on the BASIC language, and using the LIB file that accomparies the
BASIC compiler, may be found in the BASIC Manual.

It is also possible to write programs to be executed directly by the Apple
Computer's 6502 microprocessor, These programs are said to be "assembled"
rather than compiled, and the p-System program that does this is
SYSTEM,ASSMBLER.

SYSTEM.,ASSMBLER is shipped along with the files 6500,OPCODES and
6500.ERRORS. These two files must be present whenever the assembler is run.,

We expect that only programmers already familiar with assembly languege will
attempt to use SYSTEM.ASSMBLER, and then only when they have a good reason
to. It is far easier to program in a "high-level" language such.as UCSD Pascal.

When you write a UCSD Pascal or BASIC program that calls assembly language

routines, you will need to use the linker program, which is called SYSTEM,LINKER,
The linker is described in the Users' Manual.

20

Making Use of the p-System

I1I.1.5 Libraries

Frequently, a number of programs will need to perform the same operations, It
isn't necessary to "reinvent the wheel" and write the same code over for every
program that needs it. You can write a portion of code called a "UNIT," and
compile it separately from the programs that use it, A disk file that contains one
or more UNITs for use by several programs is called a "library."

The most important library is called SYSTEM.LIBRARY, and such a file appears on
the diskette SYSTEM1:. SYSTEM.LIBRARY contains the units Longops and
Applestuff. If you have purchased the Turtlegraphics package, you may wish to
install the appropriate Turtlegraphics routines into SYSTEM.LIBRARY (see Section
v.2.1).

I1I.1.6 Utilities

Utilities are programs, and they are run in just the same way as your programs,
They are shipped with the p-System and, in general, they provide important
services, but aren't used as frequently as the programs (like the filer, editor, or
compiler) that are called directly from the operating system.

Most of the p-System utilities are shipped on the UTILITY: diskette. They are
desceribed in the Users' Manugl and in Chapter V of this manual,

II.1.7 The Booter Utility

The booter utility transfers a bootstrap from one disk to another. Normally, this
utility shouldn't be used on the Apple IIl. To copy a bootstrap, simply copy an
entire bootable disk onto a blank disk as described in Section 1.2, "Backing Up
Your Diskettes.” If you just want to copy the bootstrap (without altering the
directory or any of the files), T(ransfer 2 blocks, not the entire disk.

If you use a disk format where track 1 is the first p-System track, you should use
the booter utility to copy bootstraps. The code for the booter utility is on the
utilities disk under the name BOOTER.CODE. Execute BOOTER.CODE to copy a
bootstrap.

The booter utility asks for two disks names and copies all of track 0 from the
input disk to the output disk.

21

Making Use of the p-System

IL.1.8 Disk Utilities

DISKCHANGE and DISKSIZE are two utilities that are provided with all adaptable
systems, DISKCHANGE changes disk formats. DISKSIZE changes the capacity of
a disk as it is recorded in the p-System volume directory.

Changing disk formats is chiefly done in two situations:

1. When a different format allows the system's disk hardware to function

more efficiently; and
2. When you wish to use p-System disks that have been prepared on different
hardware using a different disk format,

IL1.9 Using DISKCHANGE

A floppy disk's "interleaving" is the ordering of sectors within a track. For
example, an interleaving ratio of one (that is, 1:1) means that logical sectors 1, 2,
3, and so on are stored in physical sectors 1, 2, 3, and so on, while an interleaving
ratio of two (that is, 2:1) means that logical sectors 1, 2, 3, and so on are stored
in physical sectors, 1, 3, 5, and so on, and 2, 4, and so on,

A floppy drive's "skew" is the offset when moving from one track to the next, For
example, with one-to-one interleaving, a skew of zero means that sector 1 on one
track is adjacent to sector 1 on the next track; skew of 6 means that sector 1 on
one track is adjacent to sector 7 on the next, and so forth.

Interleaving and skew are characteristics of a disk format, not of a drive, but for
each particular drive, there is a combination of interleaving and skew that is the
most efficient, and results in faster disk performance, Some drives require a bit
of "tuning" of disk formats, to determine what combinaton of interleaving and skew
yields the fastest disk access. The utility FINDPARAMS that is supplied with
adaptable systems is provided to help determine optimal values for interleaving and

skew,
The utility DISKCHANGE ellows a disk's interleaving and skew to be altered.

DISKCHANGE is supplied on the utilities disk that comes with your system. To run
it, X(ecute 'DISKCHANGE'.

22

Making Use of the p-System

After a single run of DISKCHANGE, the screen will look something like this
(underlined portions are user responses):

FLOPPY INTERLEAVING CHANGER [B3]
Type "' to exit
What is the source unit number? (4,5,9..12) 4
What is the destination unit number? (4,5,9..12) 3%
What is the interleave ratio of the drives used for the transfer? 2
SOURCE DISK TYPE:
What is the interleaving ratio? 1
What is the sector skew per track? @
What is the first interleaved track? 1
DESTINATION DISK TYPE:
What is the interleaving ration? 2
What is the sector skew per track? 6
What is the first interleaved track? 1
Insert source disk in drive #4, dest disk in drive #5, and press return
Insert system disk and press return
At any point, entering an exclamation point ("!') will abort the program.

The first two prompts asks which disk will be transferred to which disk,

NOTE: It's possible to transfer a disk to itself but backup the disk first as a
precaution against losing it.

The next prompt asks for the interleaving of the drives (that is, the optimal
interleaving for the drives you are using). This prompt is repeated if the program
can't use the answer you give. This value only affects the speed at which
DISKCHANGE operate,

For both source and destination disk, there are three prompts, Interleaving and

skew you will have to determine yourself; the track virtually all p-System disks
start on is track one (refer to the figures, and the following two sections).

23

Making Use of the p-System

The Apple II p-System disks come with two-to-one interleaving and zero skew,
Bootstrap the system without changing these values; once you are able to run
DISKCHANGE, it's safe to change them, However, this format has been choosen
for optimal efficiency and compatibility with Apple Pascal,

When DISKCHANGE displays the final prompt of ‘'Insert system disk and press
return', pressing 'R' instead of return causes a transfer to be done again with the

. That is, when you press 'R' after the last prompt,
DISKCHANGE again displays:

Insert source disk in drive #4, dest disk in drive #5, and press return

(or whatever drives were named),

You can't change the parameters, however, without finishing a DISKCHANGE run
and starting over again,

II.1.10 Using DISKSIZE

When DISKCHANGE is used to unpack a disk by transferring 1 5-1/4" adaptable
system disk image (1/2 of an 8" disk) onto an 8" disk, the new 8" disk directory
will still indicate a small disk size (240 blocks). Eight-ineh disks can hold about
494 blocks (the exact figure dpends on the hardware). To access the entire disk,
use DISKSIZE to change the recorded size of the new disk.

When you X(ecute 'DISKSIZE', it prompts you for the number of a disk drive. It
then asks for the number of blocks that the disk can hold, It then records this
number of your disk,

Calculate the number of blocks available on the disks by using the bootstrap
perameters for the system. Use the following formula,

(number of tracks per disk - first Pascal track)

* (number of sectors per track)
DIV (512 DIV number of bytes per sector)

24

Making Use of the p-System

II.2 How to Create and Run a Simple Program

In this section, we will "walk you through" creating a simple program, compiling it,
and running it,

BASIC programmers note: this sample uses a brief Pascal program, What we are
really trying to illustrate is the use of the editor to create a work file, the use of
the R(un command to compile and execute it, and the use of the filer to change
its name. These aspects of the p-System are the same regardless of which
language you are using.

First, bootstrap the p-System if you haven't already done so. We assume that you
are a new user who hasn't yet created a work file, If you do have a work file,
you should save it before going through this demonstration,

Now press 'E' for E(dit. You should get a display that looks like this:

>Edit:
No workfile is present, File? (<ret> for no file)

Since we are creating a new program, press <return> to continue,

Now press 'I' for I(nsert, and enter the following text as shown. To end a line,
press <return> key (as you would use the carriage return on a typewriter), Notice
that once you have indented a line, the lines that follow it are indented
automatically:

PROGRAM EASY;
BEGINN
WRITELN('HELLO, THERE!");
WRITELN;
WRITELN(*'YOU HAVE JUST RUN YOUR FIRST PROGRAM.");
END.

If you make a mistake while entering, <backspace> over it and re-enter the correct
characters, When you have finished entering in the program, enter CTRL-C (you
must hold down the CTRL key and then press 'C'), This should get you out of
Knsert, and back to the editor's main menu.

But the program we had you enter contains an error (if you didn't enter it just the

way it's shown here, it may contain more than one!), The 'BEGIN' in the second
line should contain one "N," not two.

25

Making Use of the p-System

To remove this extra letter, move the cursor (that's the movable block character)
back to the FIRST "N" by using the "arrow keys," These consist of the left
arrow, the right arrow, CTRL-O for up, and CTRL-L for down, Also <return>,
<space>, and <tab> (CTRL-I) may be used. Try moving around your program until
you get the feel for it.

Now, is the cursor at the first "N" in the second line? Good. To remove the
"N," press 'D' for D(elete, then press a space. This should delete the first "N.)"
Then enter CTRL-C, which should close up the line and return you to the main
editor prompt. If this worked, we can go on,

Press 'Q' for Q(uit, and you will see a prompt that looks like this:

>Quit:
U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a filename and return

Press 'U' for U(pdate. What this does is create a temporary file called
SYSTEM.WRK.TEXT. This file is on your system disk, and it contains the text
that you just entered. It is referred to as the "work file," and a little later we
will show you how to save it under a different name.

26

Making Use of the p-System

Now that we have a program, we want to run it, But we have to compile it
first. To do so, take your working copy of the disk SYSTEM2:, and put it in drive
#5:. Press 'R' for R(un. The operating system will recognize that your work file
hasn't been compiled, and so it will call the compiler SYSTEM.COMPILER that is
on the disk in drive #5. The compiler will display the message:

Output file for compiled listing? (<er> for none)
Either press the carriage return for no compiled listing or enter in a file name for
the listing file, When the compiler is finished, the operating system will run
your program, While the compiler is compiling, it displays some progress
information:

Pascal compiler - release level 1V,1 ¢65-2

< 0>.
EASY
< 2>ooo

5 lines compiled
EASY .

and when it's finished, it should run your program, creating some output that looks
like this:

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem, ?
Running...
HELLO, THERE!

YOU HAVE JUST RUN YOUR FIRST PROGRAM.

The compiler creates another portion of the work file called SYSTEM.WRK.CODE.
As long as SYSTEM.WRK.CODE exists, using the R(un command will run your
program over again without recompiling it.

(There is little difference between the expressions "running a program™" and
"executing a program.," But there is a large difference between the operating
system command R(un and the operating system command X(ecute, as you will

discover if you read Users' Manual.)

27

Making Use of the p-System

If there had been a "bug" or mistake in the program you were compiling (and there
might be, if you entered it differently from the program in this booklet), the
compiler would display & message something like this:

Pascal compiler - release level IV.0 c65-2

< 0>

EASY

< 2
WRITELN;

WRITELN('YOU'VE <—
Nlegal symbol (terminator expected)
Line 5
Type <sp> to continue, <ese> to terminate, or 'e' to edit

When the compiler tells you there is an error, there are three things you can
enter:

ESC ends the compilation;

<space> or <return> continues the
compilation and allows you to see
what other bugs the compiler
might report;

'E' or 'e' gets you back into the
editor and ellows you to fix the bug
on the spot.

Now, we could show you more about the editor, but the Users' Manual does a good
job of that. So for now, we will just save the work file that you have created,

Go back into the filer (by pressing 'F' at the Command menu). Now press 'S' for
S(ave. The filer will ask you:

Save as what file 2

Enter the file name 'TESTING', and then press <return>. When the work file has
been saved, we get this message:

Filer: G(et, S(ave, W(hat, N(ew, I{dir, R(em, C(hng, T(rans
Text file saved & Code file saved

28

Making Use of the p-System

The files SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE are renamed TESTING,TEXT
and TESTING.,CODE, respectively. These files are now your current work file.

Note that we didn't need to enter ".TEXT" or ".CODE". The filer supplies these
suffixes, This is a convenient shortcut, but in the filer it only applies to the work
file commands G(et and S(ave. For any other filer command, you must enter the
entire file name., (The filer does have a "wild card" facility which can be used to
specify files without entering the entire file name. This is described in the

Users' Manual.)

Now that the TESTING files are considered the work file, we can go back into the
editor (you should also be able to do this by now), and the editor will
automatically read in TESTING.TEXT for you to edit.

When you want to get rid of the TESTING files, go into the filer and press 'R' for
R(emove, The filer will ask:

Remove what file 2
Enter 'TESTING.TEXT'<return>, The display will now look like this:

Remove what file ? TESTING.TEXT
SYSTEM1:TESTING.TEXT —> removed
Update directory ?

If you are certain that you want to get rid of TESTING.TEXT, press 'Y' or 'y'.
Any other character will leave your disk unchanged.

You can remove TESTING,CODE in the same manner. There is also a shorteut, by
which you can remove both TESTING files at once. You can discover what this is
by looking at the section on "wild cards" in the Users' Manual.

II.3 Ways To Configure Your Diskettes

The entire p-System won't fit on a single diskette. It is shipped on the diskettes
listed on the loose pages that accompany this manual. While you are using your
p-System, you will want to create a set of diskettes that are convenient for you
to work with, The files on these diskettes (both p-System files and the files you
create) should be arranged so that you can do your work without too much
"shuffling" of diskettes in and out of the drives,

For this reason, none of your diskettes should be "packed" with files, It is often

convenient to save a file on the nearest available diskette, and leaving some space
on all your diskettes allows you to do this.

29

Making Use of the p-System

We recommend that you arrange your p-System in the following way:
1. A system disk for bootstrapping,
2. A language disk for preparing programs,
3. A utility disk for frequently-used utility programs,
4, Any number of disks that contain your own work.
Here is an example:

SYSTEM:
SYSTEM.,PASCAL
SYSTEM.MISCINFO
SYSTEM.INTERP
SYSTEM.SBIOS
SYSTEM,BOOT
SYSTEM.SYNTAX
SYSTEM,LIBRARY
SYSTEM.FILER
SYSTEM.EDITOR

PASCAL:
SYSTEM.COMPILER
LIBRARY.CODE

BASIC:
SYSTEM.COMPILER
LIBRARY.CODE

ASSEM:
SYSTEM.ASSMBLER
6500,0PCODES
6500,LERRORS
SYSTEM.LINKER
COMPRESS.CODE

30

Making Use of the p-System

UTILS:
FORMATTER.CODE
COPYDUPDIR.CODE
MARKDUPDIR.CODE
RECOVER.CODE
PATCH.CODE
DECODE.CODE
XREF.CODE
CONFIG.CODE

The first thing to create is a diskette that will bootstrap the p-System. We often
refer to this simply as the "system disk." There are certain files that MUST be
on the system disk. These are:

SYSTEM.PASCAL {the operating system}
SYSTEM.MISCINFO {configuration data}

SYSTEM,.INTERP {the interpreter}

SYSTEM.SBIOS {the SBIOS routines}

SYSTEM,BOOT {the Secondary and Tertiary Bootstraps}
SYSTEM.LIBRARY {the main library}

A system disk must also contain & Primary Bootstrap. This invisible bootstrap
code is located at the beginning of the diskette, before all other files, It is
transferred to another diskette when you transfer an ENTIRE diskette onto another
diskette by using the T(ransfer command in the filer,

Thus, if you want to create a system disk that has a different assortment of files
than the system disks that we ship, T(ransfer a system disk onto a new diskette.
Change the name of the new disk if you wish (using the C(hange command of the
filer.) Then R(emove those files you don't want from the new diskette, and
T(ransfer other files that you do want onto the new diskette (one at a time)
Filer commands are described in the Users' Manual. The filer is also discussed in

Ken Bowles's Beginners' Guide.

When you create a new system disk, remember two things:
1. You have to use FORMATTER on a a brand new disk before you can use

it; and
2. The files listed above MUST be on the system disk.

31

Making Use of the p-System

If the file SYSTEM.SYNTAX is on your system disk when you compile a UCSD
Pascal program, the compiler will produce full error messages (when necessary).
You can save some space by leaving this file off your system disk, but then the
Pascal compiler will only provide error numbers, which you must look up (they are
listed in an appendix to the UCSD Pascal Handbook).

Once you have a system disk that suits your requirements, it is easy to go on to
other things.

One "secret" to creating your set of diskettes was illustrated in the previous
section. When we called the compiler by using the operating system's R(un
command, the file SYSTEM.COMPILER was on the diskette in drive #5, and NOT
on the system disk.

Operating system commands like F(iler, E(dit, and C(ompile call programs that have
names like SYSTEM.FILER, SYSTEM.EDITOR, and SYSTEM.COMPILER. When you
use a command that requires one of these SYSTEM.xxx files, the file itself does
NOT need to be on the system disk. It can be on a diskette in any drive except,
of course, for the files already mentioned that must be on the system disk. This
gives you some flexibility when you decide which files to place on a certain
diskette,

With this in mind, you can create a diskette for each of the languages you plan to
be using. Notice that in the example, we have named the compiler
SYSTEM.COMPILER on both the PASCAL: and the BASIC: diskettes. The files are
different, but their names have been made the same for convenience. To compile
a program in UCSD Pascal, place the diskette PASCAL: in drive #5, and use the
C(ompile command or the R(un command, To compile a BASIC program, place
BASIC: in drive #5, and use C(ompile or R(un in just the same way.

To run a BASIC program, the file SYSTEM.LIBRARY on SYSTEM: must contain
certain portions of program code ("code segments")., Although the example
doesn't show this, if you are going to use BASIC frequently, the SYSTEM.LIBRARY
on the SYSTEM: disk should be a combination of the original SYSTEM.LIBRARY
plus the code segments in BASIC.LIBRARY. The utility LIBRARY is used to
combine libraries in this way. See the BASIC Manual and the Users' Manual for

more details,

Since the language diskettes, as we have shown them, still contain a lot of room,
this is a good area to keep work-in-progress. This could consist of programs that
aren't yet completed, It could also consist of portions of larger programs, where
the entire program is stored on some other diskette.

32

Making Use of the p-System

As you become more experienced with the p-System, you may find other
arrangements that work better for your particular style of programming, or your
particular use of the Apple Computer. The rule of thumb is, do what works best
for you. In this section, we have made suggestions that should be generally useful,
We have also pointed out some requirements of the p-System that apply regardless
of what diskette configuration you eventually choose.

II.4 Large Programs

This section is a little more advanced than the previous sections, and you may
want to skim it on first reading. But, it is probably a good idea just to read
through it in order to get an idea of some of the p-System's facilities.,

As you become more experienced with the p-System, it is likely that the programs
you write will become larger and more sophisticated. The larger a program is, the
more cumbersome it is to keep it in a single file. Also, several large programs
may use identical portions of code, On the p-System, UCSD Pascal and BASIC
allow you to compile a program in separate portions, called "units.," These units
can be located in files of their own, as we will explain below., They can also be
used by separate programs.

A unit is a package of routines (for example, PROCEDUREs, FUNCTIONS,
SUBROUTINEs, and so on), together with any appropriate variable and type
declarations global to the routines. Any number of programs may "use" a unit,
Using a unit means that the program can use the unit's declarations and call the
unit's routines, just as if those declarations and routines had been written into the
program itself,

Much of a unit is invisible to the program that uses it, The program doesn't know
how the unit implements the routines that the program can use. In fact, the unit
may contain other declarations and routines that the program doesn't know about
at all,

The advantage of this is modularity. It is possible to recompile a unit—perhaps
to fix a bug or improve an algorithm., If the unit's "interface" declarations (the
ones that another program may use) aren't changed, then it's NOT necessary to
recompile any programs that use the unit, It should be evident that this can save
a lot of time,

It is also possible for a unit to use another unit.

33

Making Use of the p-System

A code file may contain a single program, a single unit, or a number of units, A
code file that contains a number of units is called a "library.,"” Libraries are
especially useful for organizing the routines of a large program (especially one that
involves several programmers), or organizing a number of general-purpose routines
that many programs will use,

The library you have already encountered is SYSTEM.,LIBRARY., This contains
general-purpose routines for handling the Apple Computer hardware., If you are
using BASIC, SYSTEM.LIBRARY should also contain routines that the p-System
must use when BASIC programs are running,

SYSTEM,LIBRARY must reside on the system disk (unless the USERLIB facility is
used to specify a SYSTEM.LIBRARY on another disk, see below). But it is possible
to create any number of libraries of your own, and they may reside on any
diskette,

When a text file that consists of a number of units is compiled, a library is
created. It is also possible to create a library from several code files by using
the utility LIBRARY. LIBRARY can also be used to maintain library files that
have already been created.

If the unit your program uses isn't in SYSTEM.LIBRARY, then the program must
declare which file contains the unit. This file name must also appear in a file
called a "library text file,” This is simply a text file that contains names of
user's library files, The default library text file is called USERLIB,TEXT, and
must reside on the system disk.

When & program is run, the p-System searches for each unit that the program uses.
First it searches the files named in USERLIB.TEXT, and then the units in
SYSTEM.LIBRARY. If it can't find the unit at all, it gives an error message.

It is actually possible to have more than one library text file. When you X(ecute
a program, you can specify which library text file the p-System is to use (this is
done with an "execution option string"; see the Users' Manual). Since the files
named in a library text file are searched in the order they appear, it is possible to
arrange different library text files that are more efficient for running certain
programs,

All these facilities make it possible to break a large program into smaller pieces,
Many of the pieces can be made general-purpose, which saves much effort when
you are developing programs at a later time. By breaking down a large program
in this way, you can make it easier to debug and faster to compile, and avoid
running out of space on your diskettes.

34

Making Use of the p-System

II.5 Binding the Debugger into SYSTEM.PASCAL

A large unit of the operating system, the Pascal debugger (described in the Users'
Manual), is initially supplied as a separate code file on the UNITS: diskette. If
the debugger is to be used, it must be bound into SYSTEM.PASCAL (the operating
system). The reason it is provided separately is that this makes SYSTEM.PASCAL
smaller, and increases the amount of available disk space on the boot disk.

In order to bind the debugger into SYSTEM.PASCAL, the library facility is used.
First, enter the filer and T(ransfer 'UNITS:DEBUGGER.CODE' onto the boot disk.
Then return to the p-System Command menu and place the UTILITY: diskette into
drive #5:. X(ecute '#5:LIBRARY',

You need to have a disk around with enough contiguous memory space on it to
hold the new SYSTEM.PASCAL. When library prompts for an output file, place
that disk into drive #5: and answer '#5:NEW.,PASCAL'.

When library requests an input file, specify 'DEBUGGER' followed by <return>.
The debugger code file actually consists of two code segments: Debugger and
Extralex. These will be displayed,

At this point, press 'T', which will put the debugger into a mode where the
unnecessary interface text won't be copied into the new operating system,

Then press '0' to select slot zero (the debugger segment) followed by <spaced,
Enter a number greater than 15 (21 is standard), to select the destination slot,
followed by <space>. This will move the first segment over. Repeat this process
as follows: press 'l', <space>, enter another number greater than 15 (22 is
standard), <space>.

Now press 'N' for a new input file, Specify '"*SYSTEM.PASCAL', followed by
<return>. Now you may simply press 'E', and every remaining operating system
segment will be copied into the file you are creating.

Finally, press 'Q', for quit, followed by <return> when asked for a "Notice,"

You may now place NEW,PASCAL onto a boot disk as SYSTEM.PASCAL using the
T(ransfer command of the filer (or the C(hange command if NEW.,PASCAL is
already on the desired boot disk). Make sure there is enough room on the boot
disk to hold the new SYSTEM.,PASCAL. Also, make sure that the boot disk has all
of the required files mentioned in Section IL3, including the invisible bootstrap
code,

35

Making Use of the p-System

If everything has been performed properly, the new disk should boot, and the
debugging facility should be installed.

NOTE: Be certain that you have at least one backup bootable disk that is
completely separate from this entire process of binding the debugger into
SYSTEM.PASCAL. This will insure that you are able to reboot if something goes
wrong.

36

CHAPTER Il
CONFIGURING YOUR APPLE II SYSTEM

USING SUPPLIED PERIPHERAL DRIVERS

The APPLE II Computer has at least a hundred peripheral devices that are
available to users. The UCSD p-System provides a very good way to interface
with the particular peripherals that you may have.

The collection of hardware driver routines within the p-System is called the SBIOS
(Simplified Basic Input Ouput Subsystem). Initially, the SBIOS is setup to interface
with the standard APPLE II hardware (keyboard, 40 column display, printer, serieal
line, and APPLE II disk drives). However, each of these driver routines are
provided individually, along with several other individual driver routines. Any of
these routines may be linked together to form a new SBIOS which interfaces with
different peripherals. (It is also possible to write your own driver routines and
link them into an SBIOS. See Chapter IV.)

This chapter describes how to link an SBIOS together.
IIl.I Reconfiguration Summary

The following steps are necessary to completely reconfigure a system properly and
have all parts of the system work properly with any hardware change. Some steps
may not be needed if the change you are making doesn't affect that step.

1. Check to see if the standard SBIOS drivers will support the hardware you
have changed to. If you require a different driver in your SBIOS you will
have to relink the SYSTEM.SBIOS as described in Section IIL.2 of this
manual.

2. X(ecute the CONFIG utility and set the parameters as necessary. This is
described in Section V.3 of this manual.

3. Relink the SYSTEM.INTERP to use the appropriate BIOS as described in
Section IV.1.13 of this manual. (This is not always needed.)

4, Install the appropriate GOTOXY into the operating system
(SYSTEM.PASCAL) as described in Section IV.3. This step is only needed
if you are going to use an external terminal such as a SOROC that has a
different gotoxy.

5. X(ecute the SETUP utility and set any parameters that have changed in

SYSTEM.MISCINFO. This is usually only needed if you are adding an
external terminal and is described in Section IV.2.

37

Configuration/Supplied Drivers

6. If each of the above steps are done correctly, then you should be able to
boot the new system disk with the new hardware configuration,

II1.2 Supplied Drivers

The following code files contain the peripheral drivers supplied with the UCSD

p-System,
NOTE:

DRIVERS.CODE linked with CONSOLE.CODE supports Sup-r-term,

Smarterm, and Videx 80 column boards, as well as most other 80 column boards
for the Apple II (except Doublevision).

SBIOS.CODE
DISKIL.CODE
CONSOLE.CODE
PRINTER.CODE
REMOTE.CODE
PATCHCARD.CODE

INTCARD.CODE

COMMCARD.CODE

SERCARD.CODE
FIRMCARD.CODE

PRLCARD.CODE

EMPTY.INT.CODE

EMPTY.COMM.CODE
EMPTY.FIRM.CODE

38

SBIOS jump table and disk driver interface

Driver for the APPLE/Micro-Sei mini-floppies

Jump table for console routines

Jump table for printer routines

Jump table for remote routines

Patches CONSOLE.CODE, PRINTER.CODE, or
REMOTE.CODE to use FIRMCARD.CODE,
SERCARD.CODE, PRLCARD.CODE, COMMCARD,.CODE,
or INTCARD.CODE depending on the type of card in a
certain slot

Internal console driver: the jump table in
CONSOLE.CODE will be patched (using
PATCHCARD.CODE) to this code if a card is not
recognized in slot 3

Communication card driver: the jump table in
CONSOLE.CODE, PRINTER.CODE, or REMOTE.CODE will
be patched with routines in this code if a communication
card is recognized in a selected slot. ("Selected" signifies
CONSOLE.CODE, PRINTER.CODE, or REMOTE.CODE was
linked into your SYSTEM,BIOS

Serial card driver: used if a serial card is

recognized in a selected slot

Firmware card driver: used if a firmware card is
recognized in a selected slot

Parallel card driver: used if a parallel card

driver is recognized in the printer slot and
PRINTER.CODE has been selected

Stub for the internal console driver, should

be used if space is needed for SYSTEM.SBIOS and the
internal console driver is not needed

Stub for COMMCARD.CODE

Stub for FIRMCARD.CODE

Configuration/Supplied Drivers

EMPTY.SER.CODE Stub for SERCARD.CODE

EMPTY.PRL.CODE Stub for PRLCARD.CODE

INTERRUPTS.CODE Contains the SBIOS routines Quite, Enable, and
Event

DRIVERS.CODE Contains the LIBRARYed files PATCHCARD.CODE,

INTCARD.CODE, COMMCARD.CODE, SERCARD.CODE,
FIRMCARD,CODE, and PRLCARD.CODE

NOTE: EMPTY.CON.CODE and EMPTY.PRUC.CODE aren't listed. They are stubs
for the console and printer/remote/user/clock, respectively., They should only be
used when writing your own bootstrap (see Chapter IV).

III.3 Linking Together an SBIOS

In order to link these files together into an SBIOS, the p-System linker is used.
The following example shows how the standard SBIOS is created:

First, put the disk volume CODE: in one of your drives and use the filer to P(refix
to that volume. Call the linker by pressing 'L' from the Command menu. Then
answer the following prompts with the underlined responses:

Host file: SBIOS

Lib File: DISKII

Lib File: DISKVECT
Lib File: CONSQLE
Lib File: KEYBOARD
Lib File: PRINTER
Lib File: REMOTE
Lib File: DRIVERS
Lib File: INTERRUPTS
Lib File: EMPTY.USR
Lib File: EMPTY.CLK
Lib File: ENDMARK
Lib File: <return>

Map File: <return>
Output File? SYSTEM.SBIOS

The DISKII routine must be the first Lib File linked. The rest of the routines
may be linked in any order. ENDMARK should always be the last file,

39

Configuration/Supplied Drivers

The file should now be compressed by executing UTILITY:COMPRESS and making
SYSTEM.SBIOS a relocatable file with the same name, The last address of the
last PROC listed by COMPRESS must not exceed FFFH. If it does, it will extend
past the space reserved for the SBIOS in the language card and be truncated at
FFFH. Al isn't lost, Using CONFIG with the desired cards in slots 1, 2, 3 you
can determine which drivers you need to link into the SBIOS. The other drivers can
be replaced with their appropriate stub, For example, after executing CONFIG
and doing a G(et from M(emory, I(dent will display the following:

Slot Device Card Type
1 Printer: PRL
2 Remote: SER
3 Console: FIRM

This means a parallel driver is needed for the printer, a serial driver for remote
and a firmware driver for the console., The following SBIOS will work for this
configuration,

Host File: SBIOS

Lib File: DISKII

Lib File: DISKVECT

Lib File: CONSOLE

Lib Files KEYBQARD
Lib File: PRINTER

Lib File: REMOTE

Lib File: PATCHCARD
Lib File: EMPTY.INT
Lib File: PRLCARD

Lib File: SERCARD

Lib File: FIRMCARD
Lib Files EMPTY,COMM
Lib File: INTERRUPTS
Lib File: EMPTY.USR
Lib File: EMPTY.CLK
Lib File: ENDMARK

Lib File: <return>

Map File: <return>
Output File: SYSTEM.SBIOS

The SBIOS has been reduced in size because stubs have replaced INTCARD.CODE
and COMMCARD.CODE,

40

Configuration/Supplied Drivers

Then use the filer to T(ransfer SYSTEM.SBIOS to your boot disk. Be sure you
have at least one bootable backup disk so that you may reboot if something goes
wrong,

If, as an example, you want to use the Sup-r-term 80 column video board instead
of the general console, replace CONSOLE with SUPRTERM. If, in this case, you
also decide not to use PRINTER: or REMOTE: you eliminate the need for
DRIVERS, or any combination that uses PATCHCARD.

All of the listed files, or appropriate substitutes, must be linked into the SBIOS.
If, for example, you don't have a printer, you may link EMPTY.PRN in place of
PRINTER into the SBIOS. But, don't omit a printer file all together.

NOTE: You shouldn't call the output file SYSTEM.SBIOS unless you have backed up
the original SYSTEM.SBIOS. The p-System will remove any existing file which has
the same name that you are giving to the linker output file, Somewhere you
should have at least one backup bootable disk with SYSTEM.SBIOS on it so that
you may reboot if something goes wrong during the creation of a new SBIOS.

IIl.4 GOTOXY and SYSTEM.MISCINFO

GOTOXY is a unit within the operating system which handles terminal-specific
cursor movement,

SYSTEM.MISCINFO is a data file which contains various pieces of information
pertaining to the hardware configuration (especially terminal-specific information).

In addition to the standard SYSTEM.MISCINFO and GOTOXY within the operating
system, you are provided with two files called SOROC.GOTOXY and
SOROC.MISCINFO, If you wish to use the SOROC terminal, instead of the
standard APPLE internal console, you will pot have to change the console driver
within the SBIOS, as it works with both internal and external consoles. But, you
will have to use the supplied SOROC GOTOXY and MISCINFO. To do this, you
should bind SOROC.GOTOXY into the operating system (see Section IV.3.3, "Binding
GOTOXY Using the LIBRARY Utility"). Also, you should use the filer to S(ave
the old SYSTEM,MISCINFO as OLD.MISCINFO, and T(ransfer SOROC.MISCINFO to
the boot disk as SYSTEM.MISCINFO.

If you wish to use some other terminal, you will have to write your own GOTOXY
(see Chapter IV) and create your own SYSTEM.MISCINFO using the SETUP utility
(see Chapter 1V).

41

Configuration/Supplied Drivers

III.5 The APPLEINFO Table

The APPLEINFO Table contains some information pertaining to the configuration of
peripherals specifically for the APPLE II computer. This table resides on the boot
disk near the Primary Bootstrap code and is loaded into memory by the bootstrap
at boot time. The table may be altered on disk to take effect at the next boot
time or in memory to have immediate effect by using the CONFIG utility
described in Chapter V. You should read about the CONFIG utility and decide
which parameters you may want to change,

The areas in the table for disk parameters are used by the low-level routines in
the operating system (RSP and BIOS) to describe how each of your disk drives are
formatted and how blocks are mapped on to the physical disk sectors,

The areas pertaining to the console, printer, remote, user and clock are designed
to be read only by the drivers in the SBIOS. They are there to allow the SBIOS
drivers to be more flexible and have parameters that can be configured for a
specific hardware setup. The unused areas are user-defined parameters that may
be accessed by user-written SBIOS drivers,

1.6 Detailed Description of the Supplied Drivers

This section contains descriptions of the supplied drivers, A table that describes
which cards belong to which slots within the APPLE II, is given in Appendix B,

42

Configuration/Supplied Drivers

SBIOS.CODE

Definitions:
SBIOS, SYSINIT, SYSHALT, POLLING, DSKINIT, DSKSTRT, DSKSTOP,
DSKREAD, DSKWRIT, SETDISK, SETTRAK, SETSECT, SETBUFR

References:
CONINIT, CONSTAT, CONREAD, CONWRIT, DISKVECT, PRNINIT,
PRNSTAT, PRNREAD, PRNWRIT, REMINIT, REMSTAT, REMREAD,
REMWRIT, USRINIT, USRSTAT, USRREAD, USRWRIT, CLKREAD, SENABLE,
SQUIET, SEVENT, ENDMARK

Zero Page: 20H-3FH used

Slot(s) used: n/a

Function:
Provides system init/halt routines, provides SBIOS jump table which is
referenced by the BIOS interface routines, provides interface to appropriate
disk driver by referencing the driver address table (DISKVECT), When a
disk is selected (SETDISK) the jump table from the appropriate driver is
copied onto the SBIOS jump table and that driver is used until the next call
to SETDISK. This code is always a multiple of 256 bytes in length. It must
be the first code in the SBIOS,

PRINTER.CODE

Definitions: PRINTER, PRNINIT, PRNSTAT, PRNREAD, PRNWRIT

References: NOTRDY, PATCH_ADDRS

Zero Page: 20H-3FH used

Slot(s) used: Slot 1 is checked for its card type.

Functions:
The first time PRNINIT is called, it calls the external routine
PATCH_ADDRS which determines what kind of card is in slot 1 and patches
the jump table in PRINTER.CODE accordingly. It outputs the character as
appropriate using the routines that are patched into its jump table,
PRNREAD is not implemented.,

REMOTE.CODE

Definitionss REMOTE, REMINIT, REMSTAT, REMREAD, REMWRIT

References: NOTRDY, PATCH_ADDRS

Zero page: T8H-7TFH used

Slot(s) used: Slot 2 is checked for its card type.

Functions:
The first time REMINIT is called, it calls PATCH_ADDRS which determines
the card type in slot 2 and patches the REMOTE.CODE jump table
accordingly, This driver then outputs the character as appropriate, using the
routines that are patched into its jump table.

43

Configuration/Supplied Drivers

CONSOLE.CODE

Definitions: CONSOLE, CONINIT, CONREAD, CONWRIT
References: NOTRDY, PATCH_ADDRS

Zero page: 60H-6FH used

Slot(s) used:

44

Slot 3 is empty for internal console use, slot 3 contains a serial card for
external console use, the following cards work for external use: CCS serial
card, SSM serial card, Apple serial card, Apple Comm card, Sup-r-term 80
column video board, Smarterm 80 column video board, Videx 80 column video
board, and most other 80 column video boards. (The Doublevision 80
column video board is not supported by CONSOLE.CODE; DBL.VISION.CODE
supports this card.)

NOTE: It is expected that most other 80 column boards will work correctly
with CONSOLE.CODE. In order for them to be supported, they must adhere
to the serial card or firmware card protocol. A serial card is recognized if
the hexadecimal location C305 contains the value 38 hexadecimal, the
location C307 contains the value 18 hexadecimal, and the standard Apple
entry points for console initialize (C800), console read (C84D), and console
write (C9AA) are all present and interface to correct routines. A firmware
card is recognized if the locations C305 and C307 contain the values just
mentioned, and the location C30B contains the value 01 hexadecimal as well.,

NOTE: Sup-r-term, Smarterm, and Videx are supported by their own
board-specific drivers (as well as the general console driver), If you use the
general console driver you won't need to relink the SBIOS in order to plug
in and use an 80 column board (except for the Doublevision board). There
are advantages to using the board-specific drivers, however. One advantage
is that the shift key, alpha-lock key, and special characters may be produced
in the exact manner described in Section I.3, "Important Keyboard
Considerations.” If you use the general console driver for an 80 column
board, this may not be true; you should read Section L3 in either case.
Also, the board-specific drivers teke up less memory room in bank two of
the language card (on 64K systems). This may make a difference if you
intend to write a large SBIOS (the SBIOS must fit into that space).
Furthermore, the console-related parameters in the APPLEINFO table
(described elsewhere in this manual) will be ignored if you use the general
console routine with an 80 column video board. This means that you can't
alter those parameters under this situation,

Configuration/Supplied Drivers

Function:

The internal console provides an 80 column terminal simulator with random
cursor addressing, vertical and horizontal secrolling, uppercase
only—lowercase/uppercase option, inverse uppercase option, selectable cursor
option, keyboard entry routines which perform uppercase/lowercase conversion
with soft shift key or shift wire modification, definable keys for special
functions. The external console is automatically enabled if one of the
supported serial cards are found in slot 3, If found, all console input/output
goes to the card. Keyboard queuing works with both the internal and the
external console,

COMMCARD.CODE

Definitionss COMINIT, COMSTAT, COMREAD, COMWRIT

References: KEYPRESSED, SIGNAL_EVENT, JUSTBOOT

Zero Page: 60H-TFH used

Slots(s) used: Slots 1-3 depending on the value of the X register.

Functions:
Calls the appropriate routine given there is a communication card in slot X
where X is the X register,

DISKIL.CODE

Definitions: DISKII
References: POLLING
Zero Page: 40H-5FH used
Slot(s) used: slot 6 contains physical drive 0,1
slot 5 contains physical drive 2,3
slot 4 contains physical drive 4,5
Function:
Reads/writes Apple format 16 sector tracks with 256 byte sectors, will
position head properly for a track number up to 127. This driver works
with Apple Disk II, Micro-Sci A-40/70 and other equivalent drives., It
detects Apple Disk II or Micro-Sci and uses proper seek rates for each, It
uses the APPLEINFO table to get the number of tracks on a particular drive
which is used for recalibration of the head. This driver must be loaded on
a page boundary.

45

Configuration/Supplied Drivers

DISKVECT.CODE

Definitions: DISKVECT

References: DISKII

Zero Page: none

Slots used: n/a

Function:
Provides an array of 6 pointers, each pointing to the jump table of one of
the disk drivers. The 6 pointers correspond to physical drive numbers 0
through 5.

EMPTY.PRN.CODE

Definitions: EMPTYPRN, PRNINIT, PRNSTAT, PRNREAD, PRNWRIT

References: none

Zero Page: none

Slots used: none

Function:
Provides minimum code to return status code showing that the printer is
off-line and that no character is waiting to be read from the printer,

EMPTY.REM.CODE

Definitionss EMPTYREM, REMINIT, REMSTAT, REMREAD, REMWRIT

References: none

Zero Page: none

Slots used: none

Function:
Provides minimum code to return status code showing that the remote
device is off-line and that no character is waiting to be read from the
remote port,

EMPTY.CON.CODE

Definitions: EMPTYCON, CONINIT, CONSTAT, CONREAD, CONWRIT

References: none

Zero Page: none

Slots used: none

Function:
Provides minimum code to return status code showing that the console is
off-line and that no character is waiting to be read from the keyboard.
Used only for creating a SYSTEM.BOOT file.

46

Configuration/Supplied Drivers

EMPTY.INT.CODE

Definitionss EMPTYINT, INTINIT, INTSTAT, INTREAD, INTWRIT

References: none

Zero Page: none

Slots used: none

Funection:
Provides minimum code to return status code showing that the internal
console is off-line and that no character is waiting to be read from the
keyboard. Used if there is an 80 column card in slot 3 and
CONSOLE.CODE is used.

EMPTY.USR.CODE

Routines: EMPTYUSR, USRINIT, USRSTAT, USRREAD, USRWRIT

References: none

Zero Page: none

Slots used: none

Function:
Provides minimum code to return status code showing that the user devices
are off-line,

EMPTY.CLK.CODE

Definitions: EMPTYCLK, CLKREAD

References: none

Zero Page: none

Slots used: none

Funection:
Provides minimum code to return status code showing that the clock is
off-line. Also returns 0 in both time and words,

FIRMCARD.CODE

Definitions: FIRMINIT, FIRMSTAT, FIRMREAD, FIRMWRIT

References: KEYPRESSED, SIGNAL_EVENT, JUSTBOOT, INITCARD

Zero Page: 60H-7TFH used

Slot(s) used: Slots 1-3 depending on the value of the X register.

Functions:
Calls the appropriate firmware routine given there is a firmware card in slot
X where X is the X register,

47

Configuration/Supplied Drivers

INTCARD.CODE

Definitions: INTINIT, INTSTAT, INTREAD, INTWRIT

References: KEYINIT, KEYSTAT, KEYREAD

Zero Page: 60H-6FH used

Slot(s) used: This driver can only be used in slot 3.

Function:
The internal console provides an 80 column terminal simulator with random
cursor addressing, vertical and horiztonal scrolling, uppercase
only—lowercase/uppercase option, inverse uppercase option, selectable cursor
option, keyboard entry routines which perform uppercase/lowercase conversion
with soft shift key or shift wire modification, definable keys for special
functions. The external console is automatically enabled if one of the
supported serial cards are found in slot 3. If found, all console input/output
goes to the card. Keyboard queuing works with both the internal and the
external console.

INTERRUPTS.CODE

Definitionss SQUIET, SENABLE, SEVENT

References: none

Slot(s) used: none

Zero Page: none

Functions:
Enables or disables interrupts, returns event number given an interrupt has
occurred,

PATCHCARD.CODE

Definitions: PATCH_ADDRS, INITCARD, NOTRDY, JUSTBOOT
References:
COMINIT, COMSTAT, COMREAD, COMWRIT,
SERINIT, SERSTAT, SERREAD, SERWRIT,
FIRMINIT, FIRMSTAT, FIRMREAD, FIRMWRIT,
PRLINIT, PRLSTAT, PRLREAD, PRLWWRIT,
INTINIT, INTSTAT, INTREAD, INTWRIT
Slot(s) used: Can enable slots 1-3
Zero Page: none
Functions:
Patches CONSOLE.CODE, PRINTER.CODE, or REMOTE.CODE with the
appropriate routines, It also initializes a card to its startup state.

48

Configuration/Supplied Drivers

PRLCARD.CODE

Definitions: PRLINIT, PRLSTAT, PRLREAD, PRLWRIT
References: none
Zero Page: T70H-7TH used
Slot(s) used: This driver can only be used for slot 1.
Functions:
Calls the appropriate parallel routine given there is a parallel in slot 1,

SERCARD.CODE

Definitions: SERINIT, SERSTAT, SERREAD, SERWRIT

References: KEYPRESSED, SIGNAL_EVENT, JUSTBOOT, INITCARD

Zero Page: 60H-7FH used

Slot(s) used: Slots 1-3 depending on the vealue of the X register.

Functions:
Calls the appropriate serial routine given there is a serial card in slot X
where X is the X register,

SUPRTERM.CODE

Definitions: SUPRTERM, CONINIT, CONSTAT, CONREAD, CONWRIT

References: KEYINIT, KEYSTAT, KEYREAD

Zero Page: 20H-35H, 60H-6FH

Slot(s) used: Sup-r-term card must be in slot 3

Function:
Provides standard terminal driver with output cursor, up/down screen
serolling, 80 column uppercase/lowercase display with all standard terminal
functions including random cursor addressing.

DBL.VISION,CODE

Definitions: DBLVISION, CONINIT, CONSTAT, CONREAD, CONWRIT

References: KEYINIT, KEYSTAT, KEYREAD

Zero Page: 20H-35H, 60H-6FH

Slot(s) used: Double Vision card must be in slot 3

Function:
Provides standard terminal driver with output cursor, up/down screen
scerolling, 80 column uppercase/lowercase display with all standard terminal
functions including random cursor addressing.

49

Configuration/Supplied Drivers

SMARTERM.CODE

Definitions: SMARTERM, CONINIT, CONSTAT, CONREAD, CONWRIT

References: KEYINIT, KEYSTAT, KEYREAD

Zero Page: 20H-35H, 60H-6FH

Slot(s) used: SMARTERM card must be in slot 3

Function:
Provides standard terminal driver with output ecursor, up/down screen
serolling, 80 column uppercase/lowercase display with all standard terminal
funetions including random cursor addressing.

VIDEX.CODE

Definitions: VIDEX, CONINIT, CONSTAT, CONREAD, CONWRIT

References: KEYINIT, KEYSTAT, KEYREAD

Zero Page: 20H-35H, 60H-6FH

Slot(s) used: VIDEX card must be in slot 3

Function:
Provides standard terminal driver with output cursor, up/down screen
scrolling, 80 column uppercase/lowercase display with all standard terminal
functions including random cursor addressing.

KEYBOARD.CODE

Definitions: KEYINIT, KEYSTAT, KEYREAD

References: none

Zero Page: 20H-35H

Slot(s) used: none

Function:
Provides standard functions to be used with the APPLE Il keyboard, Provides
all the functions for uppercase/lowercase entry ineluding soft shift key, shift
wire mod support, console queuing and optional support of a full
uppercase/lowercase keyboard.,

50

Configuration/Supplied Drivers

SVASINCH.CODE

Definitions: SVASINCH

References: none

Zero Page: 20H-35H

Slot(s) used: SVA single density disk controller in slot 7

Function:
Provides interface to two eight inch floppy disk drives through a Sorrento
Valley Associates floppy controller. Any two physical drives may be
assigned to use this driver; one must be an odd physical drive number and
one an even drive number. (Only two drives may use this driver.) The disk
controller must be in slot 7 or the system will crash, This calls ROM
routines for SBIOS functions and if the card isn't installed, it will feil. You
must change the table of vectors and reassemble DISKVECT.TEXT (see
Section IV.1.10). You must also set the parameters for the 8" drives using
CONFIG (see Section V.3).

SVAVECT.CODE

Definitions: DISKVECT

References: DISKII, SVASINCH

Function:
Assigns two eight ineh drives to physical devices #4 and #5. Devices 0, 1,
2, 3 are APPLE mini-floppies.

51

CHAPTER 1V

WRITING YOUR OWN PERIPHERAL DRIVERS

If you desire to write your own peripheral drivers you will need a detailed
understanding of the SBIOS. This section describes the SBIOS routines and their
requirements., Then it describes how SBIOS routines are called, and concludes with
a section on how to test an SBIOS. (Chapter III describes how to link together an
SBIOS out of individual drivers.)

The SETUP utility is described in this chapter, SETUP is used to create or alter
SYSTEM.MISCINFO. SYSTEM.MISCINFC is a data file on the boot disk which
contains various pieces of information, most of which pertain to terminal handling.
You will probably have to alter SYSTEM.MISCINFO if you are using a terminal
other than the standard internal console, or a SOROC external console. (Drivers
and MISCINFO files for those consoles are provided, see Chapter III.)

The GOTOXY unit of the operating system is described in this chapter, GOTOXY
moves the cusor to a given position on the screen. GOTOXY is a very small
piece of code which you will have to write if you aren't using an internal console
or a SOROC external console. (GOTOXY code is provided for these, see Chapter
III.) If you need to write this code, you will also need to bind it into the
operating system using the LIBRARY utiltiy. This process is also described in this
chapter,

Also, bootstrapping is described in case you want to bootstrap from a disk other
than an APPLE II mini-floppy or Micro-Sci A-40/70 mini-floppy (for which a
Primary Bootstrap is provided),

IV.1 The SBIOS Routines
IV.l.1 The Jump Vector
These are the names of the SBIOS routines, along with a brief description of each
routine, SBIOS routines are called through a jump vector table, The Vector
Number column shows the order that these routines appear in the table and the

Vector Offset column shows the actual offset of the jump instruction for a given
routine within the table,

952

Writing Your Own Peripheral Drivers

:
E

SYSINIT 0 0 initialize machine
SYSHALT 1 3 exit UCSD p-System
CONINIT 2 6 console initialize
CONSTAT 3 9 console status
CONREAD 4 C console input
CONWRIT 5 F console output
SETDISK 6 12 set disk number
SETTRAK 7 15 set track number
SETSECT 8 18 set sector number
SETBUFR 9 1B set buffer address
DSKREAD 10 1E read sector from disk
DSKWRIT 11 21 write sector to disk
DSKINIT 12 24 reset disk

DSKSTRT 13 27 activate disk
DSKSTOP 14 2A deactivate disk
PRNINIT 15 2D printer initialize
PRNSTAT 16 30 printer status
PRNREAD 17 33 printer read
PRNWRIT 18 36 printer write
REMINIT 19 39 remote initialize
REMSTAT 20 3C remote status
REMREAD 21 3F remote read

REMWRIT 22 42 remote write

USRINIT 23 45 user devices initialize
USRSTAT 24 48 user devices status
USRREAD 25 4B user devices read
USRWRIT 26 4E user devices write
CLKREAD 27 51 system elock read
SQUIET 28 54 disables interrupts
SENABLE 29 57 enables interrupts
SEVENT 30 5A determines what kind of

interrupt just ocecurred

53

Writing Your Own Peripheral Drivers

IV.1.2 Descriptions of the Routines

SBIOS routines are called by the BIOS. They are called rarely, if ever, by your
programs., Parameters are sometimes passed on the stack or in registers, The
parameter passing conventions are discussed later in this chapter.

Many of the SBIOS routines return a status word: this status word is used as the
system's IORESULT. It is important that status words be returned correctly. If
they are incorrect, the system may crash or even fail to bootstrap. An IORESULT
of 0 signifies a correct operation, An IORESULT of 9 should always be returned
when an 1I/O device isn't on-line. (Remember that floppy disks are frequently
removed and replaced, so the disk-handling routines should be careful to check that
a disk is in the desired drive.)

The SBIOS must maintain four variables that describe the state of disk 1/O.
These are called CURDISK, CURTRAK, CURSECT, and CURBUFR. The first three

describe the current disk drive (zero based) and the current frack and sector on
that disk, CURBUFR is a pointer to a read/write buffer in main memory.

Following is a description of each of the SBIOS routines, in order:

SYSINIT

SYSINIT is the first routine called when a system is bootstrapped. It should
initialize the hardware in any way necessary. This may include setting up
interrupt vectors, enabling RAM memories, and turning off any I/O devices that
won't be used.,

A pointer to the interpreter's jump table is passed to SYSINIT. This pointer isn't
used by the bootstrap; it is provided for use by other SBIOS routines, It is saved
on Zero Page in the word labeled BTABLE. See SBIOS.GLOB.TEXT source code.
SYSINIT is provided in SBIOS.CODE and may not be replaced.

SYSHALT

SYSHALT is called when the p-System terminates (through a H(alt), This enables
the APPLE mother board ROMs and performs a power on reset.

SYSHALT is provided in SBIOS.CODE and may not be replaced.

54

Writing Your Own Peripheral Drivers

CONINIT

CONINIT initializes the console port. It returns the status of the console
connection,

Initializing the console means preparing the console hardware to send and receive
characters, If the terminal's baud rate and parity bits can be set by software,
CONINIT should configure it to operate as quickly as possible, ignoring parity bits.,

If CONINIT encounters no problems in initializing the console, it should return a 0
(zero). If it detects that the terminal is off-line, it should return a 9.

CONSTAT
CONSTAT returns two parameters that describe the status of the console,

The first parameter is the state of the console connection. This is identical to
the parameter returned by CONINIT: if the console is on-line, the parameter should
return 0; if the console is off-line (disconnected), the parameter should return 9.

The second parameter describes the state of the console input channel. If a
character has been entered on the keyboard, the parameter should return FF
hexadecimal; otherwise, it should return 0, (Note: CONSTAT does pot read the
pending character, but merely reports its presence.)

CONREAD

CONREAD reads a single character from the keyboard. It returns that character,
and the status of the console connection,

If the console is on-line and a character is pending, CONREAD reads that
character., If the console is on-line but no character is pending, CONREAD
waits, by polling the console, until a character appears, and then reads that
character,

If the read was sucecessful, the status parameter should return a 0. If the console
was off-line, the parameter should return a 9. If a character was read but there
appears to be a transmission problem, CONREAD should return the character, and
the status parameter should be set to 1,

The character read should be returned exactly as read from the keyboard port
with no modifications,

95

Writing Your Own Peripheral Drivers

CONWRIT

CONWRIT writes a single character to the console, It reports the status of the
console connection,

If the console is on-line, the character is sent, and CONWRIT returns 0. If the
console is off-line, CONWRIT returns 9., If there is a transmission problem,
CONWRIT returns 1: the system will assume that the character was lost.
CONWRIT shouldn't alter the output character in any way, unless it must do so in
order for the console to display the character properly. (For example, don't strip
parity bits, unless the terminal won't function properly when they are set).
SETDISK

SETDISK sets CURDISK,

CURDISK (as well as CURTRAK, CURSECT, and CURBUFR, which are mentioned
below), is a global value in the BIOS, The SBIOS must keep a copy of these
values, for use by the SBIOS disk-handling routines (DSKREAD, DSKWRIT, DSKINIT,
DSKSTRT, and DSKSTOP).

Disk numbers may be in the range 0 through 5.

SETDISK merely changes a value; it doesn't alter the hardware state, nor does it
return a status.

SETTRAK

SETTRAK sets CURTRAK.

CURTRAK is used by DSKREAD and DSKWRIT.

Track numbers range from 0 to one less than the number of tracks on the disk.

Like SETDISK, SETTRAK merely changes a value; it doesn't alter the hardware
state, nor does it return a status,

56

Writing Your Own Peripheral Drivers

SETSECT

SETSECT sets CURSECT,

CURSECT is used by DSKREAD and DSKWRIT.

Sector numbers range from 1 to the number of sectors on a track.
SETSECT doesn't alter the hardware state or return a status.
SETBUFR

SETBUFR sets CURBUFR,

CURBUFR is used by DSKREAD and DSKWRIT. It is the hardware address of a
buffer area large enough to contain one sector.

SETBUFR doesn't alter the hardware state or return a status.,

DSKREAD
DSKREAD reads a sector from a floppy disk and returns a status.

DSKREAD must ensure that the sector it reads is identified by the values
CURDISK, CURTRAK, and CURSECT. It should read the sector into the buffer
whose address is CURBUFR,

DSKREAD may assume that CURDISK, CURTRAK, CURSECT, and CURBUFR have
all been correctly set by previous calls to SETDISK, SETTRAK, SETSECT, and
SETBUFR. It shouldn't change these values.

If the read was successful, the status should return 0, If the disk was off-line or
otherwise unavailable, the status should return 9. If there was an error in reading,
the status should return 1. If there are any problems, DSKREAD should always
return an error status; it shouldn't retry the read or hang on an error,

DSKREAD may also assume that DSKINIT has already been called at least once for

the CURDISK, and that DSKSTRT has been called for the CURDISK more recently
than DSKSTOP.

57

Writing Your Own Peripheral Drivers

DSKWRIT
DSKWRIT writes a sector to a floppy disk and returns a status.

DSKWRIT must ensure that the sector it writes is identified by the values
CURDISK, CURTRAK, and CURSECT. It should write the sector from the buffer
whose address is CURBUFR.,

DSKWRIT may assume that CURDISK, CURTRAK, CURSECT, and CURBUFR have
all been correctly set by previous calls to SETDISK, SETTRAK, SETSECT, and
SETBUFR. It shouldn't change these values,

If the write was successful, the status should return 0., If the disk was off-line or
otherwise unavailable, the status should return 9, If there was an error in writing,
the status should return (decimal) 16, If there are any problems, DSKWRIT should
always return an error status; it shouldn't retry the write or hang on an error.

DSKWRIT may also assume that DSKINIT has already been called at least once for
the CURDISK, and that DSKSTRT has been called for the CURDISK more recently
than DSKSTOP,

To keep disk writes reasonably fast, DSKWRIT shouldn't do read-after-write
checking.

58

Writing Your Own Peripheral Drivers

DSKINIT
DSKINIT resets the disk CURDISK, and returns a status,

DSKINIT may assume that SETDISK and DSKSTRT have already been called to
select CURDISK and set it in motion,

DSKINIT must move the recording head to track 0. If possible, the drive should
be reset to its power-up state, and prepared for reading and writing.

If CURDISK is on-line (that is, the drive is connected, turned on, and contains a
floppy disk) and the DSKINIT is successful, the status should return 0; otherwise,
the status returns 9,

If there are any problems, DSKINIT should always return an error status rather
than hang on an error,

DSKINIT shouldn't alter the values of CURDISK, CURTRAK, CURSECT, and
CURBUFR.

DSKINIT is called when the system is booted or reinitialized (that is, after
SYSINIT is called), It is also called when a disk read error occurs before a retry
is attempted by the BIOS. It isn't called every time a disk read/write sequence is
begun; that is the purpose of DSKSTRT.

DSKSTRT

DSKSTRT prepares the disk CURDISK for a series of read, write, or initialize
operations (that is, for a sequence of calls to DSKREAD, DSKWRIT, and DSKINIT).

DSKSTRT may assume that SETDISK has already been called to set the value of
CURDISK.

DSKSTRT should perform any motor starting and head loading operations that
aren't done automatically (by the hardware) as consequences of read, write, and
initialize operations,

DSKSTRT doesn't return a status,

This routine is intended for use with certain mini-floppy drives (5-1/4"), Most 8"
floppies won't require that DSKSTRT perform any action,

59

Writing Your Own Peripheral Drivers

DSKSTOP

DSKSTOP stops the disk CURDISK; it is meant to be called at the end of a series
of disk read, write, or initialize operations.

DSKSTOP may assume that SETDISK has already been called to set the value of
CURDISK.

DSKSTOP should perform any motor stopping and head unloading operations that
aren't done automatically (by the hardware) after read, write, and initialize
operations,

DSKSTOP doesn't return a status.

This routine is intended for use with mini-floppy drives (5-1/4"). Most 8" floppy
hardware won't require that DSKSTOP perform any action,

PRNINIT

PRNINIT initializes the printer port. It reports the status of the printer
connection,

Initializing the printer means preparing the printer hardware to receive (and
possibly to send) characters. If baud rate and parity bits can be set by software,
PRNINIT should configure the printer to operate as quickly as possible, with no
parity translation. Any interrupt vectors associated with printer operation should
be set in SYSINIT, not PRNINIT,

If PRNINIT encounters no problems, it should return a 0., If the printer is
off-line, it should return a 9.

PRNINIT shouldn't send the printer a form feed.

60

Writing Your Own Peripheral Drivers

PRNSTAT
PRNSTAT returns two parameters that describe the status of the printer,

The first parameter is the state of the printer connection., This is identical to the
status returned by PRNINIT: if the printer is on-line, the status must be 0; if the
printer is off-line, the status must be 9,

The second status is the state of the printer input or output channel depending on
the I/O direction flag (X register), If the I/O flag is nonzero, it indicates input
and PRNSTAT returns FF hexadecimal if a character is pending on the printer
input channel; otherwise, it returns 0. (Note: PRNSTAT doesn't read the pending
character, but merely reports its presence.) If the I/O direction flag is 0, it
indicates output and PRNSTAT returns 0 if the printer can accept a character and
FF hexadecimal if the printer is busy.

PRNREAD

PRNREAD reads a single character from the printer input channel, It returns the
character, and the status of the printer connection,

If the printer is on-line and a character is pending on the input channel,
PRNREAD reads that character. If the printer is on-line but no character is
pending, PRNREAD waits, by polling the printer input channel, until a character
appears, and then reads it.

If the read was successful, the status is 0., If the printer is off-line, the status is
9. If a character was read but there were problems in transmission, PRNREAD
should return the character and set the status to 1,

The character should be returned exactly as read from the input channel, with no
modifications,

If the system's printer has no input channel, PRNREAD should do nothing and
return & status of 0.

61

Writing Your Own Peripheral Drivers

PRNWRIT

PRNWRIT writes a single character to the printer output channel, It returns the
status of the printer connection.

If the printer is on-line, the character is transmitted as soon as the printer is
ready to receive it. The status returned is 0.

If there are transmission problems, the status returned is 1.

If the printer is off-line, the status returned is 9.

PRNWRIT shouldn't alter the output character except when this is necessary to
display the character on the printer correctly (for example, don't strip parity bits,
unless the printer won't function properly when they are set).

REMINIT

REMINIT initializes the remote port (which is intended for an extra serial line such
as a phone link). It returns the status of the remote connection,

Initializing the remote port means preparing the remote hardware to send and
receive characters. If baud rate and parity bits can be set by software, REMINIT
should configure the port to operate as quickly as possible, with no parity
translation. Any interrupt vectors associated with remote I/O should be set in
SYSINIT, not in REMINIT,

If all is well, REMINIT returns a status of 0. If the remote port is off-line, or if
there is no driver for the remote hardware, REMINIT returns 9.

REMSTAT
REMSTAT returns two parameters that describe the status of the remote port,

The first parameter is identical to the status returned by REMINIT: if all is well,
the status is 0; if the port is off-line or there is no driver, the status is 9.

The second parameter returns FF hexadecimal if a character has been received on

the remote channel, and 0 if no character has been received. (Note that
REMSTAT doesn't read the pending character; it merely reports its presence.)

62

Writing Your Own Peripheral Drivers

REMREAD

REMREAD reads a single character from the remote input channel, It returns the
character, and the status of the remote connection,

If the remote port is on-line and a character is pending, REMREAD reads that
character. If the port is on-line but no character is pending, REMREAD waits,
by polling the remote port, until a character appears, and then reads it,

If the read was successful, the status is 0, If the remote port is off-line or has
no driver, the status is 9. If the character was read but there was a transmission
problem, REMREAD should return the character, and the status is 1,

The character read should be passed exactly as it is read from the remote input
port, with no modifications,

REMWRIT

REMWRIT writes a single character to the remote output channel, It returns the
status of the remote connection,

If the remote port is on-line, the character is sent and the status is 0, If the
remote port is off-line or has no driver, the status is 9, If there is a transmission
problem, the character is sent and the status is 1.

REMWRIT shouldn't alter the output character in any way, unless it must do so to

ensure proper transmission. (For example, don't strip parity bits, unless the
remote line or device won't function when they are present.)

63

Writing Your Own Peripheral Drivers

CLKREAD

CLKREAD returns a time based on the current state of the system's hardware
clock, and a status.

The time is returned as a 32-bit integer. Time is measured in 1/60ths of a
second., If the system eclock runs continually, time should be measured from

midnight., Otherwise, time should be measured from the most recent call to
SYSINIT,

Thus, SYSINIT must restart the system clock, unless the clock runs continually.

If the clock is on-line and enabled, CLKREAD returns the time, and a status of 0.
If the cloek is off-line, CLKREAD returns a status of 9, and sets the time equal
to 0.

If the hardware clock doesn't count in 1/60ths of a second, CLKREAD should
perform some reasonable approximation.

SQUIET

SQUIET disables interrupts.

SENABLE

SENABLE enables interrupts.

SEVENT

SEVENT checks the processor flags and sets register A to 33 (decimal) if the break
flag is set. If it wasn't set and KEYPRESSED is nonzero event, 19 (decimal) is
returned; otherwise, event 32 (decimal), IRQ interrupt, is returned.

IV.1.3 User-Defined Devices

The routines that handle user-defined devices (that is specialized hardware of one
kind or another) have several features in common,

The system may support a number of user-defined devices. Yet the SBIOS has
only one set of USRxxxx routines: USRINIT, USRSTAT, USRREAD, and USRWRIT.

64

Writing Your Own Peripheral Drivers

When one of these routines is called, the user must specify which particular device
is intended by passing the routine the device number, Numbers of user-defined
devices may be in the range 128 through 255. Pascal programs may access
user-defined devices by using the appropriate device numbers when calling the
UNITREAD, UNITWRITE—family of intrinsics (see the UCSD Pascal Handbook).

NOTE: These numbers are truly user-definable; it is the SBIOS routines that are
responsible for knowing which device is which, and what its number is. No other
system routines have knowledge of user-defined devices,

The standard status parameters returned by most SBIOS routines include 0 for
on-line (and all correct), and 9 for off-line, It may be that one or more
user-defined devices in your system must return more detailed information about
their state. If this is the case, the numbers 128 through 255 are available as
user-definable status codes. The responsibility for handling these nonstandard
status codes belongs entirely to the user's software,

USRINIT
USRINIT initializes a single user-defined device. It returns a status.
USRINIT is passed a device number,

If the specified device is on-line, USRINIT resets it to its power-up condition,
Any interrupt vectors associated with the device should be initialized in SYSINIT,

not USRINIT.

If the device is on-line, USRINIT returns a status of 0. If the device is off-line
(or just plain nonexistent), USRINIT returns a status of 0. Other status codes may
be defined by you.

65

Writing Your Own Peripheral Drivers

USRSTAT
USRSTAT returns status information about a user-defined device,

USRSTAT is passed a device number, a pointer to a status record, and an
input/output toggle.

A simple status is returned, as with most SBIOS routines, This is 0 for on-line, 9
for off-line, Other status codes may be defined by you.

The pointer points to a 30-word status record in memory. USRSTAT may write
status information in this area. The format and meaning of the status record are
entirely up to you.

The "input/output toggle" is a single word, If its low-order bit is 0, USRSTAT
should report on the device's output channel, If its low-order bit is 1, USRSTAT
should report on the device's input channel.

The three high-order bits of the input/output toggle may &also be used to further
specify the sort of status information required. This is entirely at your option.

USRSTAT is the SBIOS routine that corresponds to the Pascal intrinsie
UNITSTATUS. You may wish to refer to the description of this intrinsic in the

Users' Manual,
USRREAD

USRREAD reads information from a user-defined device into a buffer in main
memory, It returns a status.

USRREAD is passed a device number, a pointer to a buffer, and three extra
parameters.

Information is read from the specified device into the buffer in memory.

The three extra parameters may be defined according to the requirements of the
specified device., This is entirely up to you.

USRREAD returns 0 for on-line, 9 for off-line, or a user-defined status number,

66

Writing Your Own Peripheral Drivers

USRWRIT

USRWRIT writes information from a buffer in main memory to a user-defined
device, It returns a status.

USRWRIT is passed a device number, a pointer to a buffer, and three extra
parameters,

Information is written to the specified device from the memory buffer.

The three extra parameters may be defined according to the requirements of the
specified device., This is entirely up to the user.

USRWRIT returns 0 for on-line, 9 for off-line, or a user-defined status number,

67

Writing Your Own Peripheral Drivers

IV.1.4 Physical Organization of the SBIOS

The SBIOS should be organized with the jump vector (see below) at the beginning,
followed by data space and code, A sample SBIOS might look like:

.PROC SBIOS

. INCLUDE SBIOS.GLOB.TEXT

.DEF SYSINIT,SYSHALT,POLLING

.REF CONINIT, CONSTAT, ...

Beginning of the SBIOS
Jump to SYSINIT routine
Jump to SYSHALT routine
Jump to CONINIT routine
Jump to CONSTAT routine

SBIOS
JMP SYSINIT
JMP SYSHALT
JMP CONINIT
JMP CONSTAT

we we ws we ws

POLLING JMP @BTABLE

SYSINIT

RTS ; Make sure to return to caller

SYSHALT

.ALIGN 256 ; Length must by a multiple of 256 to
; maintain page boundaries
.END

IV.1.5 How SBIOS Routines are Called by the p-System

This section is provided for your information. You shouldn't have to call any
SBIOS routines.

Each SBIOS routine is called through a jump vector. The jump vector is an array
of jump instructions. A program calling an SBIOS routine must access the jump
vector rather than the routine's physical location; in this way, the system need not
know the size of SBIOS routines, or how they are ordered in memory.,

68

Writing Your Own Peripheral Drivers

If the contents of the jump vector are correct, a call to the SBIOS routine will
jump into the jump vector and then to the desired routine. The call to the SBIOS
should is a subroutine call (JSR). Each individual SBIOS routine is responsible for
returning to its caller properly.

IV.1,6 Vector Lists and Register Assignments

The system assumes that the SBIOS routines use all registers except the stack
pointer,

SBIOS routines must return their status (IORESULT) in the X register.

Parameters are passed to SBIOS routines in the X and A registers. Where these
registers appear together (XA), they represent a 16-bit quantity: X is the
high-order byte and A is the low-order byte.

The disk read routines read into a buffer in main memory. The stack pointer
shouldn't be modified (except as necessary to return from each routine in a
standard manner; for example, to remove parameters, or place results on the

stack).

The following table shows the parameters for each routine in the basic SBIOS,
along with each routine's vector offset (that is, the position in the jump table of
the instruction that jumps to that routine). (The vector offsets are shown in
hexadecimal.)

69

Writing Your Own Peripheral Drivers

Routine
SYSINIT

SYSHALT
CONINIT
CONSTAT

CONREAD
CONWRIT

SETDISK
SETTRAK
SETSECT
SETBUFR
DSKREAD
DSKWRIT
DSKINIT
SKSTRT

DSKSTOP
PRNINIT
PRNSTAT

PRNREAD
PRNWRIT
REMINIT
REMSTAT
REMREAD

REMWRIT
USRINIT

70

Yector Offset
00

03
06
09

0C
0F

12
15
18
1B
1E
21
24
27
2A
2D
30

33
36
39
3C
3F

42

45

Parameters

passed: XA

<none>
returns:
returns:

returns:

passed:
returns:
passed:
passed:

g e S e

passed: XA
passed: XA

returns:
returns:
returns:
<none>

<none>

returns:
returns:

returns:

passed:

returns:
returns:
returns:

returns:

passed:
returns:
passed:
returns:

X
X
X

PP XXX PP P

L L | ¥ L 1 L 1 T [| O T T N T |

pointer to
interpreter's
jump table

IORESULT

IORESULT

0 if no char pending
FF if char pending
IORESULT

input char

output char

IORESULT
disk no,
track no.
sector no,
buffer addr.
IORESULT
IORESULT
IORESULT

(CURDISK)

(CURTRAK)
(CURSECT)

(CURBUFR)

IORESULT

IORESULT

0 if no char pending
FF if char pending
IORESULT

input char

output char

IORESULT

IORESULT

IORESULT

0 if no char pending
FF if char pending
IORESULT

input char

output char

IORESULT

device number
IORESULT

Routine VYector Offset

USRSTAT 48
USRREAD 4B
USRWRIT 4E
CLKREAD 51
SQUIET 54
SENABLE 57
SEVENT S5A

Writing Your Own Peripheral Drivers

Parameters

passed: SP return address
input/output toggle
pointer to status rec
device number
IORESULT

return address

extra parameter 2
extra parameter 1
pointer to buffer
device number

extra parameter 3
IORESULT

return address

extra parameter 2
extra parameter 1
pointer to buffer
device number

extra parameter 3
IORESULT

IORESULT

least significant word
most significant word

returns: X
passed: SP

returns: X
passed: SP

returns: X
returns: X
SP

event number

returns: A

71

Writing Your Own Peripheral Drivers

Some of the above routines are passed parameters on top of the stack. These
routine must remove these parameters from the stack, and not alter the stack in
any other way. All stack parameters are 16-bit words. In the table below,
parameters on the stack are shown in the order they appear on the stack, with the
stack pointer (SP) at the top (the least significant byte of a word is popped first).
The "extra parameters" 1, 2, and 3 for the USRREAD and USRWRIT routines
correspond to (respectively) the byte count, block number, and control word
parameters in the Pascal intrinsics UNITREAD and UNITWRITE.

IV.1.7 The SBIOS Global Variables

This section contains a listing of the source for the SBIOS global variables. On
the CODE: diskette there is a file called SBIOS.GLOB.TEXT which contains a soft
copy of these declarations, If you are going to write your own driver routines,
you will want to JINCLUDE this file as shown in the sample drivers in the next
two sections.

72

“e

LASECT

.ORG

0

Writing Your Own Peripheral Drivers

Zero Page Variables and Globals

; Reserved for Pascal External Procedures:
.BLOCK 32

.
b
»

3

TEMP1 «.WORD
TEMP 2 «WORD
TEMP3 «WORD
TEMP4 .WORD
TEMP S5 «WORD
TEMP6 .WORD
TEMP7 «WORD
TEMP8 .WORD
TEMP9 «WORD
TEMP10 «.WORD
TEMP11 « WORD

; System Space:
BTABLE .WORD

2=interrupt

APPLEINFO ,WORD

Temporary space available to SBIOS routines, externals, etc.,
the state of these aren't guaranteed after a call to POLLING:

; Pointer to BIOS jump table
; Jump Veetors: O=pollunits, l=dskchng,

; Pointer to APPLEINFO area
; Reserved
; Reserved
;s Reserved

;s Allocate 32 bytes
; Allocate 16 bytes
; Allocate 8 bytes
s Allocate 8 bytes

by SBIOS routines:

Online IORESULT (returned in Xreg)
CRC error IORESULT

Bad device number IORESULT

Device off-1line IORESULT

.WORD
.WORD
«WORD
; SBIOS Drivers Space:
DSKZP .BLOCK 32.
CONZP .BLOCK 16,
PRNZP .BLOCK 8.
REMZP .BLOCK 8
.PSECT
;s Return codes used
ONLINE .EQU 0
CRCERROR .EQU 1
BADNUM .EQU 2
OFFLINE .EQU 9
READONLY L.EQU 16

“e es we e e

Device read only IORESULT

73

Writing Your Own Peripheral Drivers

IV.1,8 Sample Disk Driver

This section contains an outline of the DISKII driver provided with the p-System.,
It is intended as an example outline of how a driver is written, The next section
contains an outline for a console driver and some brief explanations for other
drivers you may want to write,

NOTE: Only one disk driver may use the zero page area dedicated to disk drivers
(DSKZP in the SBIOS globals, above). The supplied DISKII driver uses this area
already. If you replace DISKII with your own driver you may use this space, If
you are simply adding another driver (or in any situation where you are planning to
use more than one disk driver), the additional driver(s) must use the TEMP words
as Zero Page memory. These TEMPs aren't guaranteed between calls to the driver
routines which use them,

74

Writing Your Own Peripheral Drivers

The following is the sample disk driver:

.PROC DISKII

. INCLUDE SBIOS.GLOB,TEXT

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

s Variables:

CURDISK
CURTRAK
CURSECT
CURBUFR

SETDISK

SETTRAK

SETSECT

SETDISK
SETTRAK
SETSECT
SETBUFR
DSKREAD
DSKWRIT
DSKINIT
DSKSTRT
DSKSTOP

.BYTE 0
.WORD 0
.BYTE 0
.WORD 0

;s Params:

; Note:

?

It

AREG = disk number

is not necessary to call DSKCHNG,
; handled by the SBIOS main procedure.

STA CURDISK

RTS

; Params:
STX CURTRAK + 1

’

AREG =

in 0,.5

track lo, XREG=TRACK HI

;s in range 0..(number of tracks -1)

STA CURTRAK

RTS

; Params: AREG = sector number
3y in 1 .. number of sectors
STA CURSECT

RTS

that

is

75

Writing Your Own Peripheral Drivers

Params: AREG = buffer pointer lo,
XREG = buffer pointer hi

Read or write sector to/from buffer
at this location

STA CURBUFR

STX CURBUFR+1

RTS

SETBUFR

we we we we

DISKINIT ; Start of code to move head to track 0.
ees Init Code ...
LDX #ONLINE ; Return appropriate status code

RTS
DSKREAD ; Start of code to read a sector.
s You might want to use TEMP1l as a
; zero page pointer to the buffer
LDA CURBUFR
STA TEMP1
LDA CURBUFR+1
STA TEMP1+1
..+ Read code ...
LDX #ONLINE ; Return appropriate status code
RTS
DSKWRIT Start of code to write a sector.

’
; You might want to use TEMP1 as a
; zero page pointer to the buffer

LDA CURBUFR

STA TEMP1

LDA CURBUFR+1

STA TEMP1+1

ees Write code ...

LDX #ONLINE ; Return appropriate status code

RTS

DSKSTRT ; Start of code to turn on drive motor
... Start motor code ...
RTS

DSKSTOP ; Sart of code to turn off drive motor
ees Stop motor code ...
RTS

. END

76

Writing Your Own Peripheral Drivers

IV.1.9 Other Sample Drivers

All drivers must first meet the performance requirements specified in Section
IV.1.2 which defines what the routines actually do and their general parameters,
They must also meet the requirements specified in Section IV.1.6 regarding register
assignments for parameters and results, The following information is needed to
write and link SBIOS drivers into an APPLE configurable SBIOS.

CONSOLE DRIVER
Your console routine must meet the following requirements:

1. The source text must begin with a .PROC (not .FUNC) and the PROC
name must be unique among the drivers to be linked.

2. It must .DEF CONSTAT, CONINIT, CONREAD, CONWRIT

3. You may only use the zero page allocated(16 bytes at 60H) to the
console,

4. You may use the zero page temporaries (20H thru 35H),

See recipe for a console driver below,
PRINTER DRIVER

The printer driver is very similar to the console driver. It must meet all the
same requirements with the exception that it .DEF's PRNSTAT, PRNINIT,
PRNREAD, PRNWRIT and uses the zero page allocated (8 bytes at 70H) to the
printer driver,

REMOTE DRIVER

The remote driver is very similar to the console driver. It must meet all the
same requirements with the exception that it .DEF's REMSTAT, REMINIT,
REMREAD, REMWRIT and uses the zero page allocated (8 bytes at 78H) to the
remote driver,

USER DRIVER
The user driver must is also similar except parameter passing also uses the stack.
It must .DEF USRSTAT, USRINIT, USRREAD, USRWRIT. It may ONLY use the

zero page temporaries. There is no zero page space reserved for the user
routines,

7

Writing Your Own Peripheral Drivers

CLOCK DRIVER

The cloek driver returns the time words on the stack, It must .DEF CLKREAD, It

may ONLY use the zero page temporaries.
for the clock routine,

78

There is no zero page space reserved

Writing Your Own Peripheral Drivers

The following is an example console driver:
+«PROC YOURCONSOLE
.DEF CONINIT,CONSTAT,CONREAD,CONWRIT
. INCLUDE SBIOS.GLOB,TEXT
+ASECT
.ORG CONZP ;jbeginning of zero page for

; console (16 bytes)
;sample variables you might declare:

CH .BYTE seursor horizontal position
Cv .BYTE seursor vertical position
.PSECT

;All routines return status code in Xreg
;CONREAD returns keycode read in Areg
;CONWRIT get screen character in Areg
;CONSTAT returns status flag in Areg

CONINIT ... your init code ...
LDX #ONLINE
RTS

CONSTAT ... your status code ...
LDA #0
LDX #ONLINE
RTS

CONREAD ... your read code ..,

LDX #ONLINE
RTS

79

Writing Your Own Peripheral Drivers

CONWRIT ... your write code ...

$10

80

s if you want to handle upper/lowercase conversion:

TAX
LDY #4E

LDA @APPLEINFO,Y

LSR A
TXA

BCS $10
CMP #61
BCC $10
SBC #32.

;save character in Xreg
soffset to HAS_LC_VIDEO flag for console

;flag bit to carry

srestore character into Areg

sbranch if true (no need to convert)
;check to see if its lowercase

sbranch if its not a lowercase character
;carry is set, convert to lowercase

; to uppercase

.+.s Write char to screen ...

LDX #ONLINE
RTS

.END

Writing Your Own Peripheral Drivers

IVv.1.10 Example Driver Programs

“we We we we we we we

.PROC SVAS8INCH

notes:

we we Wwe we we we e

zero page:

“we we se

+ASECT
.ORG 18H
USED «.WORD
.ORG 20H
TEMP1 .WORD
TEMP 2 +«WORD
TEMP3 «.WORD
.PSECT

H
3 constants:

’

ONLINE .EQU 0
READERR .EQU 1
OFFLINE ,.EQU 9
READONLY.EQU 16.

DISABLE .EQU OCFFF
ENABLE .EQU 0C700
SVASETTRAK .EQU 0C800
SVASETSECT .EQU 0C803
SVASETBUFR .EQU 0C806

**

8" floppy disk for Apple II sbios
Sorrento Valley Associates 8" controller
with Autoboot firmware

***************************************#**************

SVA controller firmware uses 18H,19H on

zero page although these locations

are saved and restored by this driver.

When using this driver do not set the

loword of memory below 0800H,

it uses loes: 47F,4FF,77F (and possibly others)

sstatus- on line (0)
sdisk read error (1)
;disk off line (9)
sdisk write protected (16.)

sdisable roms using shared space at C800H
;enable SVA controller rom

sAreg=track#

sAreg=sector#

;Areg=hi pointer byte,

81

Writing Your Own Peripheral Drivers

;Xreg=lo pointer byte
SVASETDISK .EQU 0C809 sAreg=disk#
SVADSKREAD .EQU 0C80C ;reads sector
SVADSKWRIT .EQU O0C80F swrites sector
SVADSKINIT .EQU 0C812 smoves head to track 0

;jump table must be at beginning of disk driver code
JMP SETDISK

JMP SVASETTRAK

JMP SVASETSECT

JMP SETBUFR

JMP DSKREAD

JMP DSKWRIT

JMP DSKINIT

JMP DSKSTRT

JMP DSKSTOP

SETDISK BIT DISABLE ;jdisable shared rom space
BIT ENABLE senable for disk driver
AND #1

JMP SVASETDISK

SETBUFR TAY
TXA
JMP SVASETBUFR

DSKSTRT BIT DISABLE
BIT ENABLE
LDA USED smove USED word to TEMP2 word
;(save zero page)
STA TEMP2
LDA USED+1
STA TEMP2+1
RTS

DSKSTOP BIT DISABLE
LDA TEMP2 smove TEMP2 word to USED word
;(restores zero page)
STA USED
LDA TEMP2+1
STA USED+1
RTS

DSKINIT JSR SVADSKINIT
BCC OK

82

Writing Your Own Peripheral Drivers

LDX #OFFLINE ;disk off line
RTS

DSKREAD JSR SVADSKREAD
BCC OK
LDX #READERR ;disk read error
RTS

DSKWRIT JSR SVADSKWRIT
BCC OK
LDX #READONLY ;disk write protected
RTS

OK LDX #ONLINE sreturn on line
RTS

«.END

83

Writing Your Own Peripheral Drivers

sThis is an example of an comm card driver
sthat will assemble and
;execute when linked in a IV,0 Apple Sbios,

ekdkkkkkkkkkokkkkkkkkkokkk ke kkkkkkkkokkkkkkkkkkkkkkkkkkokkkk

CONSOLE for Apple II1(TM) sbios

“we ee we »

edkkokkkkdkokkkkkkokkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk b k%

.PROC CONSOLE
.DEF CONINIT,CONSTAT ,CONREAD,CONWRIT
.REF KEYINIT,KEYSTAT,KEYREAD

-

SLOT .EQU 3
CARDADDR.FQU 0C000+<SLOT*100H>
PORTADDR .EQU 0C080+<SLOT*10H>

ONLINE L(EQU 0

; COMM CARD
; driver to be used if an Apple
; comm card is in console slot
STATUS .EQU PORTADDR+0EH ;jstatus port address for
;6850 ACIA chip

;read status port:

; 0=RDRF,1=TDRE, 2=DCD, 3=CTS,4=FmErr,5=Ovrn,6=Parity,7=1RQ

swrite status port:
XXXXXX01l=initial baud
XXXXXX11l=master reset

rate divide

PORT

84

.
’
.
b
.
’
2
.
b
.
2
.
?
.
b
.
’
.
?
o
b
.
]
.

XXX000XX=17
XXX001XX=17
XXX010XX=17
XXX011XX=7
XXX100XX=8
XXX101XX=8
XXX110XX=8
XXX111XX=8

X00XXXXX=RTS=1low, Transmit

bits, even
bits, odd
bits, even
bits, odd
bits and 2
bits and 1
bits, even
bits, odd

parity,
parity,
parity,
parity,
stop bits
stop bit
parity, 1
parity, 1

Laadil il SV S

stop
stop
stop
stop

stop
stop

interrupt

0XXXXXXX=recieve interrupts disabled

EQU PORTADDR+0FH

bits
bits
bit
bit

bit
bit

disabled

sinput/output port address

BOOTFLAG.BYTE 0

CONINIT LDA
BNE
LDA
STA
LDA
STA
DEC
initialized
$10 LDX
RTS

CONSTAT LDX
LDA
TAY
LSR
BCC
TYA
AND
BNE
LDA
RTS
$5 BIT
$10 LDA
RTS

CONWRIT PHA
$5 LDA
AND
BEQ
PLA
STA
LDX
RTS

CONREAD LDA
LSR
BCC
LDY

; check for overrun and

LDA
AND
BEQ
BIT

BOOTFLAG
$10
$#00000011T
STATUS
#00010001T
STATUS
BOOTFLAG

#ONLINE

#ONLINE
STATUS

A
$10

#00100000T
$5
#0FF

PORT
#0

STATUS
#00000010T
$5

PORT
#ONLINE

STATUS
A
CONREAD
PORT

STATUS
#00100000T
$10

PORT

Writing Your Own Peripheral Drivers

;only initialize card once
smaster reset signal

;8 data bits and 2 stop bits
snote that card has been

sreturn on line

;assume console online

sbranch if no character in buffer

smask off overrun bit
;sbraneh if overrun has occurred
;echar available

;elear overrun condition
s;no char available

s;save char to print
stransmit buffer empty?

srestore char to print
stransmit character
sreturn on line

scharacter recieved?

sbraneh if no char recieved
;get character from port

if true clear overrun condition

smask off overrun bit

;branch if no overrun
sclear overrun condition

85

Writing Your Own Peripheral Drivers

$10 TYA
LDX #ONLINE
RTS

.END

86

sreturn on line

Writing Your Own Peripheral Drivers

IV.1.11 Polling the Peripherals for 1/0

The POLLING routine places any I/O characters in the proper queue. It should be
called from any time consuming SBIOS routine (such as a disk driver)., You may
call POLLING by declaring:

.REF POLLING
within your routine and then simply performing a:
JSR POLLING

at reasonable intervals. POLLING is called by the p-System before every sector
read/write and during character I/O to the console, printer, and remote line,

NOTE: Calls to POLLING may destroy values in the SBIOS Zero Page Temporaries.
No registers are destroyed by POLLING, however.

IVv.1.12 Configuring DISKVECT

DISKVECT is a tiny 6502 assembly language procedure that you must alter if you
are writing your own disk driver. The source (DISKVECT.TEXT) is provided, along
with the code for the standard version, It looks like this:

.MACRO VECTORS

.REF %1 ,%2,%3,%4,%5,%6
.WORD %1,%2,%3,%4,%5,%6
. ENDM

.PROC DISKVECT

VECTORS DISKII,DISKII,DISKII,DISKII,DISKII,DISKII
;Drives: 0 1 2 3 4 5

.END

What this does is assign physical drives 0 through 5 to the listed disk driver's
PROC names. In the standard case, all of the drivers are DISKI (APPLE II or
Micro-Sei mini-floppies). To change DISKVECT, edit the source file and put
the name(s) for your disk driver routine(s) in the desired spot(s), in place of
DISKII. Then reassemble the source. The new DISKVECT.CODE must be
linked into SYSTEM.SBIOS (see Chapter III) and SYSTEM.BOOT (see Section
Iv.5).

87

Writing Your Own Peripheral Drivers

88

NOTE: Initially physical drives 0 through 5 are assigned to p-System drives
#4:, #5:, #9:, #10:, #11: #12: consecutively, This may be changed using the
CONFIG utility (see Chapter V).

IV.1.13 Memory Configuration Notes

All memory addresses are word addresses: the low byte must be even (for
example, the highest word in memory is FFFE hexadecimal; the highest byte is
FFFF).

The SBIOS may use any interrupt vectors it needs without fear of conflicting
with the p-System,

The stack pointer must be initialized to O0FF hexadecimal before bootstrap
parameters are pushed onto the stack.

Writing Your Own Peripheral Drivers

The following is the APPLE II memory configuration for 64K systems:

0000-001F
0020-0035
0036-003F
0040-005F
0060-006F
0070-0077
0078-007F
0080-00FF
0100-01FF
0200-03FF
0400-07FF
0800-
0800-08FF

0300-0BFF

1000-17FF
1800-3?2?
-BBFE
BCO00-BFFE
-BFFF
C000-COFF
C100-C7FF
C800-CFFF
D000-DFFF
DO00-DFFF
E000-FFF9

FFFA-FFFF

Reserved for user assembly programs
Reserved for user and SBIOS temporary variables
SBIOS system info
SBIOS disk controller variables
SBIOS console driver variables
SBIOS printer driver variables
SBIOS remote driver variables
Interpreter/BIOS variables
Processor hardware stack
APPLEINFO table and reserved space
Internal screen, displayed half
Bottom of p-System Heap after booting
Primary bootstrap from track 0, sector 0
(entry at 0801),
Second part of primary bootstrap from track 0,
sectors 2,4,6
Volume #4: directory loaded by primary bootstrap
Tertiary bootstrap from SYSTEM.BOOT (entry at 1800)
Bottom of p-System Stack if using internal console
Internal screen, undisplayed half
Bottom of p-System Stack if using 80 column board
Control locations for built in devices
ROM space for slots 1 through 7
Expansion ROM space
(Bank 1) Interpreter
(Bank 2) SBIOS
Interpreter (continued)/BIOS/Interface
RAM containing interrupt vectors

IV.1.14 Reconfiguring the Interpreter

The interpreter disk contains code files which may be linked together to form
an interpreter configured differently than the SYSTEM.INTERP that is shipped
already linked.

89

Writing Your Own Peripheral Drivers

These are the relevant files:

Name Description
INTERP.CODE Interpreter with no real numbers
BIOS.CODE A simple BIOS with no input queuing for

console, printer, or input
(this is the smallest BIOS)

BIOS.C.CODE BIOS with queuing for console

BIOS.CR.CODE «. queuing for console and remote

BIOS.CRP.CODE «. queuing for console, remote,
and printer

APPLEINTER.CODE SBIOCS interface

The SYSTEM,INTERP that is shipped is INTERP.CODE linked with BIOS.C.CODE
and APPLEINTER.CODE. With the 64K APPLE you have the same amount of
available memory without regard to the size of SYSTEM.INTERP,

To create a new interpreter, you must link the desired code files together,
Follow these steps (throughout these examples, user input is underlined):

1. Link the code file,

90

You must make the following choices:

Whether to use BIOS, BIOS.C, BIOS.CR, and BIOS.CRP. These progressively
larger BIOS files. Queuing allows more efficient I/O. Use the BIOS that most
closely matches your hardware configuration. One important restriction to
note when selecting a BIOS is that queuing won't work on the Apple Serial
card and the BIOS you select must not have queuing on the deviece for which
you have connected an APPLE Serial card. For example, if you are using an
Apple Serial card for console you MUST use BIOS.CODE, none of the other
BIOS's can be used; if you are using an Apple Serial card for remote, you
may NOT use BIOS.CR.CODE or BIOS.CRP.CODE.

Writing Your Own Peripheral Drivers

Once you know what the pieces of your new interpreter will be, you can link
them together with the system's linker. The interpreter code file you choose
will always be the 'Host file?', and the remaining code files will be entered as

'Lib file?'s, always in the following order:

the INTERP file you have chosen
the BIOS you have chosen
APPLEINTER

and let the output file be the work file, (For more information on the linker,
see the Users' Mapual, Section VIIL4.)

Example:

At the system Command menu, press 'L' for L(ink., The following prompts
appear (<return> means the carriage return key, and comments are in {h:

Host file? INTERP<return>
Lib file? BIOS.CRP<return> {or other BIOS}
Opening BIOS.CRP,CODE

Lib file? APPLEINTER<return>
Opening APPLEINTER.CODE
Lib file? <return>

. {more Linker output}

Output file? <return> {makes *SYSTEM.WRK.CODE}

91

Writing Your Own Peripheral Drivers

2. Compress the code file,

Place the UTILITY disk in drive #5:. At the system Command menu, press 'X'
for X(ecute, then '#5:COMPRESS<return>'. The utility COMPRESS shows a
series of prompts; answer them as follows:

Assembly Code File Compress
Press "' to escape

Do you wish to produce a relocatable object file (Y/N)L

File to compress : SYSTEM_WRK
Output file (<ret> for same) : NEW.INTERP

and COMPRESS will either complete its work, or issue an error message, in
which case you must try again. The last address of the last PROC displayed
while COMPRESS is running must not exceed 2FFFH, If it does, the interpreter
won't fit into the language card on a 64K system,

COMPRESS is described in the Users' Manual, Section X.1,

3. Change file names
First, make sure you have at least one bootable backup disk so that you may
reboot if something goes wrong. Then, at the system Command menu, press 'F'

for f(iler. C(hange SYSTEM.INTERP to OLD.INTERP. Then C(hange
NEW,INTERP to SYSTEM.INTERP.

You should now be ready to try booting your system again, with the new
interpreter and new SBIOS.

92

Writing Your Own Peripheral Drivers

IV.1.15 Miscellaneous Notes

6502 Systems use an expression stack that is limited to 128 words of data. When
this stack overflows, the system is halted and reinitialized, Correct UCSD Pascal
programs that run on other systems may not run on 6502 Systems, This problem
can be avoided by following two rules:

1. Sets must contain no more than 512 elements, (The maximum element
can't exceed 511,)

2. Nested set expressions must be written so that there are never more than
3 unevaluated operands as the expression is evaluated from left-to-right.
For example:

A+B+C+D))

requires that all four variables be on the stack before evaluation begins,
A safer and equivalent expression would be:

((C+D)+B)+A
IV.1.16 Using Real Numbers

To use two word reals, transfer the file SYSTEM.REAL2 from the CODE: disk to
your boot disk renaming if SYSTEM.REAL. Then L)ibrary REAL2.CODE, from the
SYSTEM2: disk, into your SYSTEM,PASCAL making a new SYSTEM.PASCAL on
your boot disk. (Make sure you backup the current SYSTEM.PASCAL.) The same
procedure is used for four word reals using SYSTEM.REAL4 instead of
SYSTEM.REAL2 and REAL4.CODE instead of REAL2.CODE,

IV.2 The Utility SETUP

SETUP is provided as a system utility called SETUP.CODE., SETUP changes a file
that contains details about your terminal, and a few miscellaneous details about
the system in general. SETUP can be run, and the data changed, as many times as
you desire. After running it, it's important to reboot (or I(nitialize) so that the
system will start using the new information, It is also important to backup old
data.

93

Writing Your Own Peripheral Drivers

The file that SETUP uses to store all of this information is called
SYSTEM.MISCINFO, Each system initialization loads it into main memory., New
versions of SYSTEM.MISCINFO are created by SETUP, and are called
NEW.MISCINFO. Backups are created by renaming or copying SYSTEM.MISCINFO
with the filer, and then changing NEW.MISCINFO to SYSTEM.MISCINFO.
SYSTEM.MISCINFO contains three types of information:

1, Miscellaneous data about the system;

2. General information about the terminal; and

3. Specific information about the terminal's various control keys.
IV.2.1 Running SETUP
SETUP is a utility program, and is run like any other compiled program: press 'X'
for X(ecute, and then answer the prompt with 'SETUP'<enter>. It will display the
word 'INITIALIZING' followed by a string of dots, and then the menu:

SETUP: C(HANGE T{EACH H(ELP Q(UIT [version]

To call any command, just press its initial letter.

H(ELP gives you a description of the commands that are visible on any menu
where it appears.

T(EACH gives a detailed description of the use of SETUP. Most of it is
concerned with input formats, They are mainly self-explanatory, but if this is
your first time running SETUP, you should look through all of T(EACH.
C(HANGE gives you the option of going through a menu of all the items, or
changing one data item at a time, In either case, the current values are
displayed, and you have the option of changing them, If this is your first time
running SETUP, the values given are the system defaults,
Q(UIT has the following options:

H(ELP),

M(EMORY) UPDATE, which places the new values in main memory;

D(ISK) UPDATE, which creates NEW,MISCINFO on your disk for future use;

94

Writing Your Own Peripheral Drivers

R(ETURN), which lets you go back into SETUP and make more changes; and
E(XIT), which ends the program and returns you to the Command menu,

Please note that if you have a NEW,MISCINFO already on your disk, D(ISK)
UPDATE will write over it,

The section below entitled, "Miscellaneous Notes For Setup,"” contains a detailed
description of the data items in SYSTEM.MISCINFO.

If you use SETUP to change your character set, don't under estimate the
importance of using keys you can easily remember, and making dangerous keys like
BREAK and ESCAPE hard to hit,

Once you have run SETUP, you should always backup SYSTEM.MISCINFO under
some other name (for example, OLD.MISCINFO), then change the name of
NEW.MISCINFO to SYSTEM.MISCINFO and reboot or I(nitialize, It is indeed
possible to update memory only (rather than create a NEW.MISCINFO), and go on
using the system without rebooting, but the results will be lost when the system is
rebooted or I(nitialized. In general, M(EMORY) UPDATE is a Q(UIT option that
you will use only when experimenting. If you desire, the current in-memory
SYSTEM.MISCINFO can be saved by rerunning SETUP and doing a D(ISK) UPDATE

before you reboot.

When you reboot or I(nitialize, the new SYSTEM.MISCINFO will be read into main
memory and its data used by the system, provided it has been stored under that
name on the system disk (the disk from whieh you boot),

IV.2,2 Miscellaneous Notes for SETUP

The STUDENT bit, one of SYSTEM.MISCINFO's data items, should always be set
to FALSE,

The HAS 8510A bit is always FALSE.

HAS WORD ORIENTED MACHINE is always FALSE.

HAS BYTE FLIPPED MACHINE is FALSE,

SETUP and the manual refer to PREFIXED [DELETE CHARACTER]. This refers to

the backspace function., Think of it as PREFIXED [BACKSPACE]. It will be
FALSE,

95

Writing Your Own Peripheral Drivers

If you are using a terminal instead of the internal APPLE console and keyboard,
your terminal should be set to run in full duplex, with no auto-echo.

Don't use terminal functions that do a "Delete and close up" on lines or
characters—not all terminals have these functions, and so they are supplied through
the Screen Oriented Editor's software.

In general, if SETUP prompts for a feature that your terminal doesn't have, set
the item to NUL (CTRL-@).

IV.2.3 The Data Items in SYSTEM.MISCINFO

This seetion enumerates the data items within SYSTEM.MISCINFO. The
information in this section is very specific, and you may skip it on first reading.
If you have a question about a certain data item, look in this section, The
default values for the standard APPLE internal console and keyboard are given,
The items are ordered according to SETUP's menu,

NOTE: SETUP frequently makes a distinction between a character which is a key
on the keyboard, and a character which is sent to the screen from the UCSD p-
System (they aren't necessarily the same),

There are a few characters which you can't change with SETUP. These are
CARRIAGE RETURN, LINE FEED (<if>), ASCIl DLE (CTRL-P), and TAB (CTRL-I).
ASCII DLE (data link escape) is used as a blank compression character. When sent
to an output text file, it is always followed by a byte containing the number of
blanks which the output device must insert. If you try to use CTRL-P for any
other function, you will run into trouble.

BACKSPACE

When sent to the screen, this character should move the cursor one space to the
left. Default: ASCI BS (CTRL-H).

CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SECOND WORD]

The Apple II doesn't use these fields. Default: 0.

96

Writing Your Own Peripheral Drivers

EDITOR ACCEPT KEY

This key is used by the Screen Oriented Editor. When pressed, it ends the action
of a command, and accepts whatever actions were taken. Default: ASCII ETX
(CTRL-C).

EDITOR ESCAPE KEY

This key is used by the Screen Oriented Editor. It is the opposite of the EDITOR
ACCEPT KEY--when pressed, it ends the action of a command, and ignores
whatever actions were taken, Default and Suggested: ASCII ESC (CTRL-).
EDITOR EXCHANGE-DELETE KEY

This key is also used by the Screen Oriented Editor. It operates only while doing
an X(change, and deletes a single character. Default: CTRL-D.

EDITOR EXCHANGE-INSERT KEY

Like the EDITOR EXCHANGE-DELETE KEY, this only operates while doing an
X(change in the Screen Oriented Editor: it inserts a single space. Default:
CTRL-K.

ERASE LINE

When sent to the screen, this character erases all the characters on the line that
the cursor is on. Default: CTRL-W.

ERASE SCREEN

When sent to the screen, this character erases the entire screen, Default:
CTRL-L,

ERASE TO END OF LINE

When sent to the screen, this character erases all characters from (and including)
the current cursor position to the end of the same line., Default: CTRL-).

ERASE TO END OF SCREEN

When sent to the screen, this character erases all characters from (and including)
the current cursor position to the end of the screen, Default: CTRL-K.

97

Writing Your Own Peripheral Drivers

FIRST SUBSIDIARY VOL NUMBER

This entry is the first unit number to be used as a subsidiary volume. For
example, if you set it to 14, the first subsidiary volume is device #14:,

NOTE: In previous versions of the UCSD p-System, only 6 block devices were
allowed: 4, 5, 9 through 12, Now the number of block devices is configurable.
The devices from 9 through "First subsidiary vol number" -1 are now standard
block devices, Subsidiary volumes start with the device number indicated by "First
subsidiary vol number.," The number of subsidiary volumes is determined by "Max
number of subsidiary vols." The highest device number allowed for subsidiary
volumes or standard block devices.

WARNING: "First subsidiary vol number" must be greater than 8 to allow apace
for all of the standard system units (13 is recommended).

HAS 8510A

Is always FALSE,

HAS BYTE FLIPPED MACHINE

Is always FALSE.,

HAS CLOCK

Default is FALSE.

HAS EXTENDED MEMORY

This should always be FALSE on the Apple IL
HAS LOWER CASE

Default is FALSE,

HAS RANDOM CURSOR ADDRESSING

Is always TRUE unless your terminal is not a CRT.

98

Writing Your Own Peripheral Drivers

HAS SLOW TERMINAL

May be TRUE or FALSE. When this bit is TRUE, the system's menus and
messages are abbreviated. It is suggested that you leave this set at FALSE,
Default: FALSE.

HAS SPOOLING

This should always be set to FALSE. (The Print Spooler isn't available on the
Apple II.

HAS WORD ORIENTED MACHINE
Is always FALSE,
KEYBOARD INPUT MASK

Characters that are received from the keyboard will be logically ANDed with ths
value., For the Apple II, set this value to 7F hexadecimal (which throws away the
eighth bit).

KEY FOR BREAK

When this key is pressed while a program is running, the program will terminate
with a run-time error, Default: ASCII NUL (CTRL-Q).

KEY FOR FLUSH

This key may be pressed while the system is sending output (writing to the file
OUTPUT). The first time it is pressed, output is no longer displayed, and will be
ignored ("flushed") until FLUSH is pressed agein. This can be done any number of
times; FLUSH functions as a toggle. Note that processing continues while the
output is ignored, so using FLUSH causes output to be lost. Default and
suggested: ASCIH ACK (CTRL-F).

KEY FOR STOP

This key may be pressed while the system is writing to OUTPUT. Like FLUSH, it
is a toggle. Pressing it once causes output and processing to stop, pressing it
again causes output and processing to resume, and so on. No output is lost; STOP
is useful for slowing down a program so the output can be read while it is being
sent to the terminal. Default and suggested: ASCI DC3 (CTRL-S).

99

Writing Your Own Peripheral Drivers

KEY TO ALPHA LOCK

This character, when sent to the screen, locks the keyboard in uppercase (alpha
mode). Default: ASCIlI DC2 (CTRL-R).

KEY TO DELETE CHARACTER

Deletes the character where the cursor is, and moves cursor one character to the
left. Default and suggested: ASCII BS (CTRL-H).

KEY TO DELETE LINE

Deletes the line that the cursor is currently on., Default and suggested: ASCII
DEL (CTRL-X).

KEY TO END FILE

Sets the intrinsic Boolean function EOF to TRUE when pressed while reading from
the system input files (either KEYBOARD or INPUT, which come from device
CONSOLE:). Default and suggested: ASCII ETX (CTRL-C).

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP

These keys are recognized by the Screen Oriented Editor, and are used when
editing a document to move the cursor about the screen. Default (in order):
CTRL-L, CTRL-H, CTRL-U, CTRL-O.

LEAD IN FROM KEYBOARD

Pressing certain keys generates a two-character sequence. The first character in
these cases must always be a prefix, and must be the same for all such sequences,
This data item specifies that prefix. Note that this character is only accepted as a
lead in for characters where you have set PREFIXED[Kitemname>] to TRUE.
Default: ASCH NUL (CTRL-@).

100

Writing Your Own Peripheral Drivers

LEAD IN TO SCREEN

Some terminals require a two-character sequence to activate certain functions. If
the first character in all these sequences is the same, this data item can specify
this prefix. This item is similar to the one above. The prefix is only generated

as a lead in for characters where you have set PREFIXED[<itemname>] to TRUE.
Default: ASCIl NUL (CTRL-Q).

MAX NUMBER OF SUBSIDIARY VOLS

This field indicates the maximum number of subsidiary volumes that may be on-line
at once. Because the p-System Unit Table expands a few bytes with each
additional subsidiary volume entry, set this number to the smallest convenient
value. (Also see FIRST SUBSIDIARY VOL NUMBER.)

The highest subsidiary volume will be "First subsidiary volume number + "Max
number of subsidiary vols" -1, This expression must be less than or equal to 127,
which is the highest device number allowed for system units.

MAX NUMBER OF USER SERIAL VOLS

User-defined serial devices aren't available on the Apple II, This should be set to
0.

MOVE CURSOR HOME

When sent to the terminal, moves the cursor to the upper left-hand corner of the
sereen (position (0,0)). Default: CTRL-Y.

MOVE CURSOR RIGHT

When sent to the terminal, moves the cursor nondestructively one space to the
right., Default: CTRL~\.

MOVE CURSOR UP

When sent to the terminal, moves the cursor vertically up one line. Default:
CTRL~_ (underline),

NONPRINTING CHARACTER
The character that will be displayed on the screen when a nonprinting character is

entered or sent to the terminal while using the Sereen Oriented Editor. Default
and suggested: '?',

101

Writing Your Own Peripheral Drivers

PREFIXED [<itemname>]

If any two-character sequence must be generated by a key or sent to the screen,
the system will recognize that if you set PREFIXED[<itemname>] to TRUE. See
the explanations for LEAD IN FROM KEYBOARD and LEAD IN TO SCREEN. Al
PREFIXED[<itemname>] defaults are FALSE,

SCREEN HEIGHT

The number of lines in your display secreen, starting from 1. Default: 24 (base
ten).

SCREEN WIDTH

The number of characters in one line on your display, starting from 1. Defaults
79 (base ten), This default is intended for the 40 column standard APPLE console.
If you have an 80 column display, you may set this to 80. (The standeard APPLE
40 column configuration emulates an 80 column screen using the special keys
described in Section I.3. The reason for making the default 79, instead of 80, is
that the p-System shortens some of the filer prompts if the screen is less than 80
columns wide. This results in easier use of the filer with the 40 column display.)

SEGMENT ALIGNMENT

This should be set to 0 on the Apple Il

STUDENT

Should always be FALSE.

VERTICAL MOVE DELAY

May be a decimal integer from 0 to 11, Many terminals require a delay after
vertical cursor movements, This delay allows the movement to be completed
before another character is sent, This data item specifies the number of nulls
that the system sends to the terminal after every CARRIAGE RETURN, ERASE

TO END OF LINE, ERASE TO END OF SCREEN, CLEAR SCREEN, and MOVE
CURSOR UP, Default: 0.

102

IVv.2.4 Sample SYSTEM.MISCINFO Configurations

Writing Your Own Peripheral Drivers

Here is a list of SYSTEM.MISCINFO data items followed by some sample velues
for the internal console and two popular terminals,
menu haven't been included; these are data items that refer to the processor

configuration, not your terminal,

Some items in the SETUP

These examples represent what we consider reasonable layouts for a few different
keyboards, but we don't guarantee that they work for your particular hardware, or

match your individual taste.

Terminals:

Data Items:
BACKSPACE

EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
ERASE LINE

ERASE SCREEN

ERASE TO END OF LINE
ERASE TO END OF SCRN

HAS LOWER CASE

HAS RAND CURS ADDR
HAS SLOW TERMINAL
KEY FOR BREAK

KEY FOR FLUSH

KEY FOR STOP

KEY TO ALPHA LOCK
KEY TO DELETE CHAR
KEY TO DELETE LINE
KEY TO END FILE

KEY TO MV CURS DOWN
KEY TO MV CURS LEFT
KEY TO MV CURS RGHT

KEY TO MV CURS UP
LEAD IN FROM KEYBD
LEAD IN TO SCREEN
MOVE CURSOR HOME
MOVE CURSOR RIGHT
MOVE CURSOR UP

NON PRINTING CHAR
PREF [DELETE CHARI]

PREF [ED ACCEPT KEY]
PREF [ED ESCAPE KEY]

INTERNAL
CONSOLE

etrl-H
ctrl-C
esc
NUL
ctrl-L
etrl-]
ctrl-K
FALSE
TRUE
FALSE
etrl-@
ctrl-F
ctrl-S
ctrl-R
ctrl-H
ctrl1-X
ctrl-C
etrl-L
ctrl-H
ctrl-U
ctrl-0O
ctrl-@
etrl-@
ctrl-Y
etrl-\
etrl-_
'?'
FALSE
FALSE
FALSE

HAZELTINE
1500/1510

backspace

ctrl-C
esc
NUL
ctrl-\
ctrl-0O
ctrl-X
TRUE
TRUE
FALSE
break *
cetrl-F
ctrl-S
NUL

backspace
shift-DEL

ctrl-C
ctrl-K

backspace

ctrl-P
ctrl-L
NUL

ctrl-R
ctrl-P
ctrl-L
1?1
FALSE
FALSE
FALSE

SOROC
1Q120

ctrl-H
home
esc

NUL

t %1

T

Y

TRUE
TRUE
FALSE
break
ctrl-F
ctrl-S
ctrl-R
l-arrow
rubout
ctrl~-C
d-arrow
l-arrow
r-arrow
u-arrow
NUL

esc
ctrl-"
r-arrow
u-arrow
l?t
FALSE
FALSE
FALSE

103

Writing Your Own Peripheral Drivers

Terminals: INTERNAL HAZELTINE SOROC
CONSOLE 1500/1510 1Q120
PREF [ERASE LINE] FALSE FALSE FALSE
PREF [ERASE SCREEN] FALSE TRUE TRUE
PREF [ERASE TO EOLN] FALSE TRUE TRUE
PREF [ERSE TO EOSCN] FALSE TRUE TRUE
PREF [KEY DEL CHAR] FALSE FALSE FALSE
PREF [KEY DEL LINE] FALSE FALSE FALSE
PREF [KEY MV CRS DN] FALSE FALSE FALSE
PREF [KEY MV CRS LT] FALSE FALSE FALSE
PREF [KEY MV CRS RT] FALSE FALSE FALSE
PREF [KEY MV CRS UP] FALSE FALSE FALSE
PREF [MOVE CRS HOME] FALSE TRUE FALSE
PREF [MOVE CURS RT] FALSE FALSE FALSE
PREF [MOVE CURS UP] FALSE FALSE FALSE
PREF [NONPRINT CHAR] FALSE FALSE FALSE
SCREEN HEIGHT 24 24 24
SCREEN WIDTH 79 80 80
STUDENT FALSE FALSE FALSE
VERTICAL MOVE DELAY 0 5 10

* Break is also control-@ on Hazeltines,
IVv.3 GOTOXY

GOTOXY is a Pascal UNIT embedded in the operating system, It provides random
addressing for your terminal's cursor. There are two GOTOXY units provided with
the p-System on the APPLE II, These are the GOTOXY for the standard APPLE
internal console, and for the SOROC terminal. If you need to write your own
GOTOXY for some other terminal, you will have to code the Pascal unit, compile
it, then bind it into the operating system using the utility LIBRARY.

Before you write your own GOTOXY, you should understand the /O intrinsic
UNITWRITE, which is described in Section VI.2 of the Users' Manual.

Iv.3.1 Writing Your Own GOTOXY

You may write GOTOXY using either YALOE or the Screen Oriented Editor,
whichever you find more convenient,

104

Writing Your Own Peripheral Drivers

The purpose and the calling protocol of GOTOXY are quite simple. The procedure
is given two parameters, X and Y. They must be in that order, and they must be
of type INTEGER. The procedure should position the terminal's cursor at
coordinates (X,Y), where (0,0) is home (the upper left-hand corner of the sereen),
That is all it should do.

To get your GOTOXY to run at all, there are a few things that are required.

First, the name of your unit must be GOTOXY. The name of the procedure itself
must be something different,

Second, you must include the pseudo-comment {$U-} This compiler option allows
you to use the predeclared name GOTOXY as the name of your unit—it will
become part of the operating system. This comment must be the first line of your
source code, If it doesn't look like one of the following lines:

(*$U-*)
{$U-}

your GOTOXY will not compile.

Finally, the code for GOTOXY should be compiled as a UNIT, as shown in the next
section,

Your procedure should check that the values of X and Y are within bounds. If
they are off the screen, change them to a value that is on the screen (such as the
nearest location along the border—this is what all the sample procedures do).

You will need to move the cursor by a WRITE to the terminal, a repeated set of
WRITEs within a loop, or a UNITWRITE of a vector. Using UNITWRITE is
recommended—it can speed up your terminal handling by about 10%. (Although if
you use UNITWRITE, you can't redirect console output.)

To summarize, your GOTOXY should contain, in order:

1. The pseudo-comment '{$U-}';
2. In the program body, a check to make sure that X and Y are on the

sereen;
3. A section that fills an array with all the characters you must send to the

terminal; and
4. The actual write to the terminal, preferably with UNITWRITE.

105

Writing Your Own Peripheral Drivers

NOTE: Some terminals take a bias on X and Y. For example, sending
(X+32,Y+32) actually positions the cursor at (X,Y). If your terminal is capable of
this, you should include these offsets in your procedure. This will eliminate any
problems you might run into with the ASCIl DLE (CTRL-P) character, which is
always interpreted as a blank-compression character. You don't want to send this
value as a cursor control character,

The following section contains a more detailed description of GOTOXY.
IV.3.2 A Recipe for GOTOXY

The following is an example of a GOTOXY unit:

106

Writing Your Own Peripheral Drivers

{$U-1} { ALWAYS include this compiler directive. }
UNIT GOTOXY;

INTERFACE

PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENTAT ION
PROCEDURE AGOTOXY ;

CONST TELL_LENGTH_MINUS_1 = 3,
OFFSET = 32;
{ You may have to change these, depending on your terminal, }

VAR TELL: PACKED ARRAY [0..TELL_LENGTH_MINUS_1]
OF 0..255;

BEGIN
IF X>79 THEN X:=79
ELSE IF X<0 THEN X:=0;
IF Y>23 THEN Y:=23
ELSE IF Y<0 THEN Y:=0;
{ This range-checking is necessary. The actual
sereenwidth and height may be different for you. }

{ These first elements of TELL must contain
the characters which tell your terminal to
position the cursor at (X,Y):
fill in the blanks...

TELL[O] :

TELL[1] := _____ ;

{ The actual X and Y values are usually the
last things in the array;
the order may be different on your terminal, }

TELL[TELL_LENGTH_MINUS_1 - 1] := Y+OFFSET;

TELL[TELL_LENGTH_MINUS 1] := X+OFFSET;

UNITWRITE(1,TELL, TELL_LENGTH_MINUS_1 + 1)
END {AGOTOXY };

END {UNIT GOTOXY}.

107

Writing Your Own Peripheral Drivers

Once your GOTOXY is written, it should be compiled to a code file. You may
name the code file anything you wish,

A common error is incorrectly entering the comment {$U-}'. If this isn't the first
line in your source file, if the comment contains spaces that aren't shown in this

manual, or if there are any other variances, your GOTOXY will not compile. You
will get the error message 'GOTOXY predeclared' when you try to compile,

IV.3.3 Binding GOTOXY Using the LIBRARY Utility

The p-System is shipped with the standard APPLE internal console GOTOXY bound
into the operating system. If you want to use another GOTOXY, either one you
wrote or one that is provided with the p-System, you must bind that GOTOXY into
the operating system (SYSTEM.PASCAL).

You should also make sure that the STUDENT bit in SYSTEM.MISCINFO is set to
FALSE—otherwise, GOTOXY binding won't work, and you will get the message 'No
proc in seg table' when you try to reboot the system.

First, backup your system disk, If the binding works, all will be well, and you will
have a functioning system with a new (and hopefully functioning) GOTOXY. If the

binding does pot work, your system may be destroyed. Make sure you have a
backup boot disk.

The LIBRARY is a utility program which is shipped under the name
LIBRARY.CODE. To run it, X(ecute LIBRARY.

The first prompt LIBRARY gives you is:
Output file? NEW,PASCAL

the underlined portion is a sample response. Choose any unambiguous name that
suits you—this new output file will become the new operating system if all goes
well. Be sure you have enough room on your disk for the new system: most
systems are from 80 to 120 blocks long. If there isn't enough room on your disk,
either use the filer's K(runch command to create more room, or use another disk
with more room,

108

Writing Your Own Peripheral Drivers

LIBRARY then asks:

Input file? MYGOTO.CODE
the underlined portion is a sample response. This should be the file that contains
your compiled GOTOXY procedure, It will be displayed in slot 0 of the input file,
fso)u must move it to a slot in the output file (this new slot must be greater than
Press 'T'. The INTERFACE part of your unit won't be copied.
Press '0'. LIBRARY prompts:

Copy from slot 0?
press <space>, LIBRARY prompts:

Copy to which slot? 16
respond with a number greater than 15 (as shown),
Now press 'N' for N(ew. This causes a repeat of the prompt:

Input file? SYSTEM.PASCAL
enter in the name of your operating system, as shown. This is the new input file.
Finally, press 'E' for E(very. This will cause all of the slots in SYSTEM.PASCAL

to be transferred to the output file, except for GOTOXY, which won't be
destroyed because it is already there.

109

Writing Your Own Peripheral Drivers

Before using E(very, your screen should look like this:

Library: N(ew, 0-9(slot-to-slot, E(very, S(elect, C(omp-unit, F(ill,?

Input

-1 N LN -O

ceEeEeCcCcwnngc

file: SYSTEM.PASCAL

KERNEL 1490 9 u SCREENOP 854 18 u SMALLCOM 163
PRINTERR 650 10 s SEGSCINI 402 19 u COMMANDI 983
INITIALT 1139 11 u CONCURRE 146 20 u REALOPS 1270
GETCMD 3599 12 u PERMHEAP 190

PASCALIO 765 13 u OSUTIL 235

EXTRAIO 248 14 u FILEOPS 2032

HEAPOPS 246 15 s USERPROG 1605

EXTRAHEA 699 16 u GOTOXY 55

STRINGOP 236 17 u SOFTOPS 604

Output file: NEWSYS.CODE
16 u GOTOXY 29

NOTE: There is a GOTOXY in the SYSTEM,PASCAL that is shipped. This will
be abandoned by the E(very command, since you have already put a GOTOXY in
the output file,

Pressing 'Q' for Q(uit causes the changes you have made to be saved in your
output file,

Once you are out of LIBRARY, use the filer to change the name of
SYSTEM.PASCAL to something like OLD.PASCAL, and NEW,PASCAL (or whatever
you have called your new output file) to SYSTEM.PASCAL. Then bootstrap your
system again; the new GOTOXY will be in effeet.

If at any point while using LIBRARY, you think you have made a mistake, A(bort
will exit without recording any changes. When modifying the operating system, it
is far better to be safe than sorry.

NOTE: While using LIBRARY on the operating system, pnever move KERNEL from
slot 0 or USERPROG from slot 15,

IVv.3.4 Problems
If your newly created system won't bootstrap at all, it may be because you moved

the USERPROG segment when you used LIBRARY. USERPROG must be at slot
fifteen in SYSTEM.PASCAL. Boot your system's backup, and try again,

110

Writing Your Own Peripheral Drivers

If the system starts to boot, but halts with the message 'No unit in seg table', it
may also mean that the STUDENT bit is on in your SYSTEM,MISCINFO file. The
STUDENT bit must be FALSE when you compile your GOTOXY. Boot your
system's backup, change the STUDENT bit to FALSE (using SETUP), recompile your
GOTOXY, and use LIBRARY again,

For more information on LIBRARY, see Section VIIL5 in the Users' Manual.

Once LIBRARY has been successfully run, and the system successfully rebooted,
you should run SCREENTEST to make sure the Screen Oriented Editor interface
will work.

IV.4 SCREENTEST

After you have changed your SYSTEM,MISCINFO, or your GOTOXY, or both, you
will want to test the results, SCREENTEST is a utility which accomplishes that.
Like SETUP, it is largely self-explanatory., SCREENTEST checks that the
interpreter and operating system are sending and receiving characters correctly,
that the control keys are set up correctly, and that the Screen Oriented Editor
will interface to the terminal as it is supposed to,

When you run SCREENTEST, it will display patterns on the screen and ask you if
they are correct. You will need to be seated at your terminal while SCREENTEST
is running; it takes roughly five minutes.

SCREENTEST will also output a report of errors to any file you specify. If you
do encounter problems, you will need this report to help track them down,
especially if you require assistance from your supplier's support group.

IV.4.1 Running SCREENTEST

Press 'X' for X(ecute, and enter 'SCREENTEST<return>', It will respond by
displaying a heading, telling you that all questions must be answered with either
'Y' or 'N' (either uppercase or lowercase; all other characters are ignored), and
will then prompt you for the name of an error log file,

If you press <return> instead of specifying a log file name, no error report will be
generated. You may want to do this if you are running SCREENTEST for the first
time and don't anticipate any problems, If you do have trouble, you can run it
again, this time with a log. Sending the log to "PRINTER:" may suit your needs
if you have a hard copy device; otherwise, you can save it on a disk file named
"LOG.TEXT" or something similar, (The .TEXT suffix is necessary if you want to
look at it with the editor.)

111

Writing Your Own Peripheral Drivers

If your terminal is set up correctly, you should be able to answer 'Y' to all of the
yes/no questions that SCREENTEST asks, If there is any problem with the
questions about individual characters, SCREENTEST will tell you immediately.
The log file will also contain a record of all problems.

IV.4.2 Results of SCREENTEST
SCREENTEST consists of twelve individual tests. Their names follow:

test_basic
test_clr_screen
test_gotoxy
test_clr_line
test_erase_eol
test_etoeos
test_home
test_single_vectors
test_scroll
test_DLE_expansion
test_keyboard
test_normal_keys

Each of these tests may generate error messages, While the text of each error
message is fairly clear, some further explanation follows. The error messages are
grouped by the nature of the problems—what you must check in order to solve
them. They are further grouped under the name of the test that generates them,
This information is included in the error log.

IV.4.3 Problems that can be Fixed by Altering SYSTEM.MISCINFO

If you get any of these error messages, check your SETUP values. To the right of
each error message listed below is a suggestion as to which key or character value
might be in error. These suggestions won't always pinpoint your problem, but they
will tell you what you should check first, It may be the case that changing
SETUP doesn't fix your problem., Some special cases are described at the end of
this section, If these don't cover your particular problem, you should probably ask
for help.

test_clr_screen:

sereen not cleared -> is ERASE SCREEN OK?

cursor not left at (0,0) afterwards
-> is MOVE CURSOR HOME OK?

112

Writing Your Own Peripheral Drivers

test_clr_line:
didn't clear enough - (x,y)
(where x and y are the cursor co-ordinates)
-> is ERASE LINE OK?
Clearing one line affected another
-> is ERASE LINE OK?
test_erase_eol:
sc_erase_to_eol didn't work
-> is ERASE TO END OF LINE OK?
test_etoeos:
sc_eras_eos didn't work
-> is ERASE TO END OF SCREEN OK?
test_home:
cursor didn't go home

-> is MOVE CURSOR HOME OK?

test_single_vectors:

se_right didn't work -> is MOVE CURSOR RIGHT OK?
sc_left didn't work -> is BACKSPACE OK?

sc_up didn't work -> is MOVE CURSOR UP OK?
sc_down didn't work -> this shouldn't happen;

call p-System Support!

113

Writing Your Own Peripheral Drivers

test_keyboard:

<key> not correct -> is <key> OK? <key> means one of
the following:
KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP
BACKSPACE
EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
KEY TO DELETE LINE
KEY TO END FILE

test_normal_keys:

Can't type these - <list>

-> dlist> means a list of any standard
printing characters; this usually
means that a standard character is
being interpreted as a special key,
which usually happens when
HASPREFIX is incorreet—it should
be FALSE for a key which needs
no prefix, or TRUE for a key which
does need one; check your own
terminal manual;

114

Writing Your Own Peripheral Drivers

IV.4.4 Problems that can be Fixed by Changing GOTOXY
test_gotoxy:

gotoxy(0,0) did not go home
gotoxy(screenwidth-1,sereenwidth) not ok
box not correctly drawn
exhaustive_gotoxy_check: first pass not ok
exhaustive_gotoxy_check: top line not ok
-> all these problems relate to your

GOTOXY procedure; if you find any
discrepancies, you will have to
change it; refer to the previous
section in this document for a
description of using GOTOXY,

and to the first paragraph in

the miscellaneous notes below;

IV.4.5 Other Problems

test_basic:

not all characters written out
-> there is a problem with the
p-System intrinsic UNITWRITE,
or with the SBIOS.
Disregard the rest of SCREENTEST's
results until this particular
problem is cleared up;

test_scroll:
se_down at bottom didn't scroll properly

~> there is a note below about
scrolling;

115

Writing Your Own Peripheral Drivers

test_DLE_expansion:

expansion not happening properly

-> there is a problem in your
interpreter's terminal handling;
this may be hardware-related;
it is still possible to run with
improper DLE expansion—you may
encounter off-by-one errors and
the like in your output and your
editing; DLE is an ASCII
character used as a blank-
compression code to save space
in output strings;

IV.4.6 Miscellaneous Notes on SCREENTEST Problems

The system interprets an ASCII DLE or chr(16) (base ten) within a text file as a
blank-compression code (this is its standard use). It can lead to problems if
GOTOXY ever writes out a chr(16) as an X or Y value, If you run into this
problem, check whether your terminal can handle an offset on X and Y values,
that is, whether sending it X+32 and Y+32 will position the cursor at (X,Y) (the
value 32 is just an example). If so, this will fix your problem. If not, you will
have to modify GOTOXY so it catches this situation; see above,

Some terminals won't scroll at all, or scroll two lines at a time. The p-System's
Screen Oriented Editor unfortunately can't handle these terminals—you must use
YALOE for SYSTEM.EDITOR.

Use your judgment when interpreting the results of SCREENTEST: if something is
reported as an error, but the Screen Oriented Editor performs to your satisfaction,
don't worry about the SCREENTEST evaluation,

IV.5 Creating Your Own Bootstrap

You may wish to bootstrap from a disk other then the APPLE II mini-floppies or
the Miero-Sei A-40/70 mini-floppies. For example, you may have 8" floppies or a
hard disk that you want to use as the system disk. In this case, you will need to
write your own Bootstrap. This section details what a bootstrap is and how to
write one. '

116

Writing Your Own Peripheral Drivers

IV.5.1 The Concept of Booting

"Booting" or "bootstrapping" is the process of starting a software system on
hardware which is running either no software at all, or a totally different system.
The term comes from the phrase "pulling yourself up by the bootstraps"; a
bootstrap is essentially a program which (starting from scratch) loads another
program and then transfers control to that program.

The UCSD p-System runs on a virtual "p-machine", which on most microprocessors
is emulated by the system's interpreter. The task of the bootstrap is to load the
interpreter, associated low-level I/O routines, and portions of the operating system,
and then start the interpreter's execution,

Iv.5.2 Primary, Secondary, and Tertiary Bootstraps

The bootstrap is divided into three separate parts. This section summarizes the
actions of each. If you are booting from a disk other than a standard APPLE II
mini-floppy or a Micro-Sei A-40/70 mini-floppy, you will only need to rewrite the
Primary Bootstrap. The descriptions of the Secondary and Tertiary Bootstraps,
which reside in SYSTEM.BOOT, are for your information only.

The Primary Bootstrap:

1. Puts a copy of the APPLEINFO Table at 0200H

2. Loads the directory from blocks 2,3,4,5 into 1000H.,

3. Searches directory to find SYSTEM.BOOT.

4, Loads SYSTEM.BOOT starting at 1800H,

5. Pushes hardware configuration parameters onto the stack:
1: Low memory word (Top of stack, last pushed)
2: High memory word
3: Maximum sectors per track
4: Maximum bytes per sector
5: Pointer to directory

6. Jumps to 1800H (the secondary bootstrap).

The Secondary Bootstrap:

. Initializes the BIOS (which is part of this bootstrap).

. Searches the directory for the interpreter (SYSTEM.INTERP).

. Loads the interpreter and SYSTEM.SBIOS.

. Transfers control to the tertiary bootstrap (which is included within
SYSTEM.BOOT).

> QO DD =

117

Writing Your Own Peripheral Drivers

The Tertiary Bootstrap (whose code is linked into SYSTEM.BOOT along with the
Secondary Bootstrap):

Saves the BIOS initialization words (which are on the stack),

Initializes some hardware devices and peripherals.

Locates SYSTEM.PASCAL (the operating system),

Reads block 0 of the operating system in order to initialize the system's
environment,

5. Reads the kernel and initialization segments of the operating system,

6. Initializes the p-machine,

7. Starts execution of the operating system,

E N
« o o

IVv.5.3 The Standard APPLE Bootstrap
This section details the standard APPLE bootstrap routines,

When the machine is turned on, or the reset key is pressed, the 6502 processor
jumps to the Boot ROM, The Boot ROM is located at C600-C6FF hexadecimal
(the disk controller card). It loads sector 0 of track 0 from the boot disk into
0800-08FF hexadecimal and jumps to the beginning of that code. This is the first
sector of the of the Primary Bootstrap. If you are writting your own Primary
Bootstrap, you will need to place it on the boot disk where it will be loaded by
the boot ROM,

The Primary Bootstrap loads the last three sectors of itself into 0900-0BFF
hexadecimal. Included within the Primary Bootstrap is the APPLEINFO table, A
copy of this table is placed at 0200H., (You are supplied with the source for the
APPLEINFO table., You must include this in your Primary Bootstrap and move it
to 0200H. For more information about this table, see the CONFIG Utility in
Chapter V.) The Primary Bootstrap then reads the disk directory into RAM
starting at 1000 hexadecimal. Then it reads SYSTEM.BOOT into RAM starting at
1800 hexadecimal. Finally, it jumps to 1800 hexadecimal, Note that this code
makes calls to the BOOTROM code to read sectors from the boot disk.

The Secondary and Tertiary Bootstraps are now located from 1800 to 37??
hexadecimal (they may not exceed 3FFF hexadecimal),

The Secondary Bootstrap reads SYSTEM.SBIOS (which is relocatable) into RAM and
relocates it to just below BFFF hexadecimal if you have a 48K machine; or to
start at D000 hex in bank 2 of the language card if you have a 64K machine, It
then sets the Zero Page pointer to the SBIOS. It reads SYSTEM.INTERP (which is
relocatable) into RAM and relocates it to start just below SBIOS if you have a
48K machine, or to start at D000 (in bank 1 of the language card) is this is a 64K
machine,

118

Writing Your Own Peripheral Drivers

The Tertiary boot loads KERNEL and USERPROG onto the stack. It creats SIBs
and TIBs (p-machine data structures). It initializes the interpreter, BIOS and
SBIOS. It then starts execution of the interpreter by jumping to the instruction
feteh loop.

The Secondary and Tertiary bootstraps are self-contained. Within them is a copy
of some of the SBIOS drivers,

IV.5.4 Example Primary Bootstrap Outline

The following is an outline for the standard Primary Bootstrap routine provided
with the UCSD p-System on the APPLE II:

.PROC PRIBOOT

DIRBLOCK .EQU 2 ;jdirectory start bloek
DIRSIZE L.EQU 8 sdirectory size in 256
; byte sectors
DIRECTORY.EQU 1000H ;directory load address
SECBOOT .EQU 1800H ;secondary boot load
; address
ENTRY JMP PRIMARY ;jwill change as loading
$ proceeds
.BYTE 0 ;filler (PARAMS must start
; at offset 4 for CONFIG)
PARAMS .WORD 0800 ;address of lowest word in
; contiguous memory
.WORD 0BFFE ;address of highest word of
3 contiguous memory
+WORD 26. smaximum number of sectors
;s per track for all disks
.WORD 256, ;max imum number of bytes

; per sector for all disks
.WORD DIRECTORY
PARMSIZE ,EQU *-PARAMS

PRIMARY ...code to perform primary bootstrap...

LA B

JMP SECBOOT

119

Writing Your Own Peripheral Drivers

.ALIGN 768,
sMust be at 768, for CONFIG to work
;sAPPLEINFO tables, these must be at offset 768.
;(2nd page of blockl) in bootstrap for CONFIG.
;At run-time APPLEINFO will be in main memory for
;aceess by SBIOS in SYSTEM.BOOT, SBIOS in

;s SYSTEM.SBIOS, and formatter.

INFOTABLE sdisk format table
; ntrks,nscts,bytes,intrlv,first,skew
.WORD 35., 16., 256., 2, 0, 0
.WORD 35., 16., 256., 2, 0, 0
.WORD 35., 16., 256., 2, 0, 0
.WORD 35., 16., 256., 2, 0, 0
.WORD 35., 16., 256., 2, 0, 0
.WORD 35., 16., 256., 2, 0, 0

PHYSDISK.BYTE 0,1,2,3,4,5 ;physical disk

; translation table

;16 bytes per section:

CONSOLE .BYTE 0. sHAS_LC_VIDEO (0=false,255=true)
.BYTE 0. ;s HAS _LC_KEYBOARD
.BYTE 17H ;SHIFT_KEY (ascii code)
.BYTE 01H s FLIP_KEY
.BYTE 1AH s FOLLOW_KEY
.BYTE 0 ; USE_INVERSE_LC
.BYTE 0 sHAS_SHIFT_WIRE
.BLOCK 9. sunassigned

PRINTER .BYTE 255. sHAS_LC_PRINTER °
.BYTE 255, sNEEDS_LINEFEED
.BLOCK 14, sunassigned

REMOTE .BLOCK 16. ;junassinged

USER .BLOCK 16, sunassinged

CLOCK .BLOCK 16. sunassigned

.ALIGN 256,

.END

120

Writing Your Own Peripheral Drivers

IV.5.5 Placing a Primary Bootstrap on the Disk

When you have written your Primary Bootstrap, you need to place it within the
first two blocks of the disk. To do this, simply transfer the bootstrap code file to
the disk volume, using the T(ransfer command of the filer. As long as the file is
2 blocks or less in size (and it must be), the filer will allow you to make the
transfer, This will install the bootstrap on the disk without destroying the
directory.

Another way to move a bootstrap into place is to do a volume-to-volume T(ransfer
in the filer specifying a source disk which already contains a bootstrap. The
bootstrap will be copied along with the rest of the disk.

Alternatively, the Primary Bootstrap may use Track 0 and the p-System volume
may start on Track 1. In this case, the utility ABSWRITE may be used to write
the bootstrap onto Track 0,

IV.5.6 Creating SYSTEM.BOOT

If you have written your own disk driver routine, you will need to create an new
SYSTEM.BOOT with that driver linked into it., This is a similar process to
creating a SYSTEM.SBIOS (where your disk driver must also be present), Call the
linker by pressing 'L' at the Command menu. Answer the linker prompts with
the following underlined responses:

Host File: APPLESEC
Lib File: SBIOS

Lib File: YOURDRIVER
Lib File: DISKVECT
Lib File: EMPTY.CON
Lib Filee EMPTY,PRUC
Lib Files APPLETERT
Lib File: BIOS

Lib File: INTERRUPTS
Lib Filee KEYBOARD
Lib File: ENDMARK
Lib File: <return>

Map File: <returny
Output File? NEW,BOOT

At this point, you must X(ecute Compress (on the utilities disk) and compress

NEW.BOOT into a ponreloecatable file whose starting address is 1800H. Use
"NEW.BOOT" as the input and output file names.

121

Writing Your Own Peripheral Drivers

APPLESEC and SBIOS are each a multiple of 256 bytes in length, and they both
must start on a page boundary. If YOURDRIVER must start on a page boundary,
it should immediately follow SBIOS, If you have more than one driver that must
start on a page boundary, all of the routines linked before those drivers must be
multiples of 256 bytes. The rest of the files may be in any order. ENDMARK
must be last,

When you have created NEW.,BOOT, use the filer to change SYSTEM.BOOT to
OLD.BOOT, and NEW.BOOT to SYSTEM.BOOT. Make sure you have at least one
bootable backup disk, so that you may reboot in the standard configuration if
something goes wrong.

122

CHAPTER V

SPECIAL SOFTWARE FACILITIES

This chapter details several software facilities that are available with the UCSD
p-System on the Apple Computer,

V.1 The APPLESTUFF Unit

The APPLESTUFF Unit contains routines which interact with the Apple Computer's
hardware., The following is the Interface section of the APPLESTUFF Unit:

UNIT APPLESTUFF;
INTERFACE

TYPE
AS_PADDLE_NUM = 0.,3;
AS_BUTTON_NUM = 0..2;
AS_TTLOUT_NUM =0,.3;
AS_BYTE=0..255;

FUNCTION PADDLE (SELECT:AS_PADDLE_NUM): AS_BYTE;
FUNCTION BUTTON (SELECT:AS_BUTTON_NUM): BOOLEAN;
PROCEDURE TTLOUT (SELECT:AS_TTLOUT_NUM; DATA:BOOLEAN);
FUNCTION KEYPRESS: BOOLEAN;

FUNCTION RANDOM: INTEGER;

PROCEDURE RANDOMIZE;

PROCEDURE NOTE (PITCH:AS_BYTE; DURATION:AS_BYTE);
PROCEDURE NOISE (PITCH:AS_BYTE; DURATION:AS_BYTE);
PROCEDURE VIDEOMODE (MODE:INTEGER);

PROCEDURE PALETTE (COLOR:INTEGER);

The remaining paragraphs of this section describe the APPLESTUFF routines.
FUNCTION PADDLE (SELECT:AS_PADDLE_NUM): AS BYTE;
This function selects one of the four Analog Input locations described in the

APPLE 1I Reference Manual, The value of the parameter SELECT determines

which input location is read. The funection returns a vealue (0 through 255) which
indicates the setting of the game paddle associated with that input location.

123

Special Software Facilities

FUNCTION BUTTON (SELECT:AS_BUTTON_NUM): BOOLEAN;

This function selects one of the three One-Bit Inputs (described in the APPLE I
Reference Manual) depending upon the value of the parameter SELECT. It returns
a boolean function value which indicates whether or not the push-button associated

with that input is depressed.
PROCEDURE TTLOUT (SELECT:AS_TTLOUT_NUM; DATA:BOOLEAN);

This procedure selects one of the four Annunciator Outputs, again depending upon
the value of the parameter SELECT. The value of the parameter DATA will
determine if the referenced annunciator will be turned "on" or "off,"

FUNCTION KEYPRESS: BOOLEAN;

This function will return true if a character is waiting in the type ahead queue,
and false otherwise,

FUNCTION RANDOM: INTEGER;
This function returns a ramdom integer.
PROCEDURE RANDOMIZE;

This function gives a new seed to the RANDOM function (based on 1/0
transactions).

PROCEDURE NOTE (PITCH:AS_BYTE; DURATION:AS_BYTE);
PROCEDURE NOISE (PITCH:AS_BYTE; DURATION:AS_BYTE);

Procedure NOTE produces a note on the APPLE speaker., Procedure NOISE
produces a pitched white noise sound.,

For parameter DURATION, a value of 255 is longest, and a value of 0 is shortest.
For parameter PITCH, a value of 0 indicates a rest, a value of 1 indicates a
single click of the speaker, and the values 2 through 50 indicate 49 notes, each a
half step apart (four octaves all together).

124

Special Software Facilities

PROCEDURE VIDEOMODE (MODE:INTEGER);
PROCEDURE PALETTE (COLOR:INTEGER);

These two procedures work together to determintg shat colors may be selected by
procedures within the TURTLEGRAPHICS Upit a’eScribed in Section V.2.). The
video mode may be set to any of the values O through 4, by calling VIDEOMODE
with parameter MODE set to the appropriate vdalu¢ . The palette color may be set
to 0 or 1, and only has an effect upon video meje; 2. The following video modes
cause the indicated colors to be available from TUATLEGRAPHICS:

MODE 0:

This is the normal console I/O mode. If the APPLE display is used, it will be
configured for APPLE "TEXTMODE."

MODE 1:

This is the APPLE "LORES" graphies mode. It has 40 pixels (light dots)
horizontally, and 48 pixels vertically, Sixteen colors are available, Procedure
PENCOLOR within TURTLEGRAPHICS may choose among:

black
magenta
dark blue
light purple
dark green
grey
medium blue
light blue
brown
orange

grey

pink

green
yellow
blue-green
white

WO~ DNk WNE-EO

125

Special Software Facilities

MODE 2:

This is a version of APPLE "HIRES" graphies supporting 4 colors from one of two
palettes, The screen has 140 pixels horizontally and 192 pixels vertically.
Depending upon the value set by procedure palette, the following are the available
colors in this mode:

PALETTE (0)
black
violet
green
white

black
blue
orange
white

WO
o i

MODE 3:

This version of APPLE "HIRES" graphics mode allows 6 colors. When certain
colors occur in close proximity, however, some unexpected results may occur,
(This mode is for real APPLE afficionaddos!) The screen resolution is again 140 x
192, The color mapping is as follows:

black
violet
green
blue
orange
white

Dk LW -O
wonononon

MODE 4:

This video mode is for use on black and white displays only, It can be used on
color monitors only by turning the color saturation control to its lowest intensity.
It provides the highest resolution available on an APPLE, 280 x 192.

0
1

black
white

126

Special Software Facilities

V.2 The TURTLEGRAPHICS Unit

Turtlegraphics is a package of routines for creating and manipulating images on a
graphies display. These routines can be used to control the background of the
screen, draw figures, alter old figures, and display figures using viewports and
scaling. It also contains routines that allow the user to save figures in disk files
and retrieve them,

The simplest Turtlegraphics routines are intentionally very easy to learn and use.
Once the user is familiar with these, more complicated features (such as scaling
and pixel addressing) should present no problem,

A "pixel," by the way, is a single "picture element" or dot on the display.

Turtlegraphics allows the user to create a number of "figures,” or drawing areas.
One such figure is the display screen itself, and other figures may be saved in
memory. FEach figure has a turtle of its own., The size of a figure may be set
by the user (it does not need to be the same size as the actual display). See
Section V,2.7.

The actual display is addressed in terms of a display scale, which may be set by
you. This allows your own coordinates to be mapped into pixels on the display.
All other figures are scaled by the global display scale. See Section V,2.6

You may define a "viewport,” or window on the display. This limits all graphic
activity to within that port. See Section V.2.7.

Each subsection below is divided into two parts. The first part is an overview of
the topic at hand, and the second part consists of descriptions of the relevant
Turtlegraphics routines.,

For quick reference, Section V.2,10 contains a listing of the Interface part of the
Turtlegraphies unit,

Section V.2.11 contains a sample program which illustrates a number of the
Turtlegraphics routines,

127

Special Software Facilities

V.2.1 Installing and Initializing TURTLEGRAPHICS

The TURTLEGRAPHICS package is sold separately from the rest of the UCSD
p-System. If you have purchased TURTLEGRAPHICS you should have received a
disk called TURTLE:. It contains the files:

TURTLE2.CODE
TURTLE4.CODE
USRGRAFS.CODE
SYSTEM.FONT
CHARSIZE.CODE
CHAREDIT.CODE

TURTLE2.CODE or TURTLE4,CODE is the main collection of graphies routines that
make up the package. TURTLE2.CODE corresponds to the 2-word real version and
TURTLE4.CODE corresponds to the 4-word real version, The remaining text will
refer to ths code file as TURTLEX.CODE., (You are free to choose the real size.)
It must either be installed within *SYSTEM.LIBRARY (the "*" indicates that the
file resides on the boot disk) or a USERLIB must be created so that the p-System
can find the unit within TURTLEx.CODE. Both of these processes are described
below. SYSTEM.LIBRARY must contain Applestuff if you are going to use
Turtlegraphies,

USRGRAFS.CODE contains special initialization and termination code used by
TURTLEGRAPHICS. You must install it, along with TURTLEx.CODE into
*SYSTEM.LIBRARY, or create an appropriate USERLIB.

SYSTEM.FONT defines the character set used by procedures WCHAR and WSTRING
(deseribed in Seetion V.2.5). SYSTEM.FONT must be T(ransfered onto the boot
disk using the filer,

V.2.2 TURTLEGRAPHICS Character Fonts

Turtlegraphics allows programs to label figures by calling two special routines,
WChar and WString, These routines draw characters in figures by using a table
stored in a file called *SYSTEM,FONT.

The standard system is shipped with a character font that contains 128 ASCII

codes, similar in style to those on the some personal computers. Each character
occupies an area 8 pixels high by 8 pixels wide.

128

Special Software Facilities

Two code files, CHARSIZE.CODE and CAREDIT.CODE, are provided on the
TURTLE: disk. Executing the code file CHARSIZE allows you to change the
character size in TURTLEGRAPHICS, CHAREDIT enables you to create or edit a
character font, To use the character font, save it on the boot disk as
SYSTEM.FONT. Note that SYSTEM.FONT must have the same character size as
specified by CHARSIZE.

Most of the rest of this section describes the two processes of installing
TURTLEx,CODE and USRGRAFS.CODE into *SYSTEM.LIBRARY, and creating a
USERLIB file, When you have properly performed one of these two tasks, and
when you have T(ransfered SYSTEM.FONT onto the boot disk, TURTLEGRAPHICS
will be installed,

During compilation time and during run-time, the p-System needs to locate the two
appropriate units which make up TURTLEGRAPHICS., The p-System looks for a
file called SYSTEM.LIBRARY on the boot disk to find units, If a file called
USERLIB.TEXT exists, the p-System also will examine its contents.
USERLIB.TEXT should be a regular text file, created with the editor, Within this
text file names of code files which serve as additional libraries of units are
expected. So, if you wish, you may enter the editor and create a file with the
contents:

#5:TURTLEX.CODE
#5:USRGRAFS.CODE

Now this text file should be saved on disk as USERLIB ("USERLIB,TEXT" is how it
will actually appear). Now, you must be sure that you have a disk in drive #5:
containing the two files whenever you run TURTLEGRAPHICS.

Another way to use the USERLIB facility, would be to make the contents of
USERLIB.TEXT:

TURTLEx.CODE
USRGRAFS.CODE

In other words, to leave off the "#5:". In this case, you should use the filer to
T(ransfer the code files onto the boot disk, It won't be necessary to have a disk in
drive #5: to run TURTLEGRAPHICS if you do it in this manner.

The other way to install TURTLEGRAPHICS is to place the two appropriate units

into *SYSTEM.LIBRARY. To do this, X(ecute the utility LIBRARY (on the
UTILITY: diskette).

129

Special Software Facilities

When LIBRARY asks you for an output file, specify 'NEW.LIBRARY'. When it
asks you for an input file, specify 'SYSTEM.LIBRARY'. The units within the
current SYSTEM.LIBRARY on the boot disk will be displayed. Press 'E', for
Every, and all of these units will be moved into the file you are creating.

Then press 'N', for a new input file. When LIBRARY prompts you for this input
file, specify '#5:TURTLEX.CODE' (the disk TURTLE: should be placed in drive #5:).
Again press 'E', for Every.

Repeat the steps in the last paragraph and indicate '#5:USRGRAFS.CODE' as the
new input file. Again, press 'E', for Every.,

Now that you have moved all of the standard SYSTEM.LIBRARY, as well as the
TURTLEGRAPHICS units, into the new library, press 'Q', for Quit, Then press
<return> when asked for a Notice. The output file will be called NEW.LIBRARY.

If there isn't enough room on the boot disk for this output file, you will receive
an error message somewhere along the way., In this case you should somehow
make more room, You may do this by R(emoving unnecessary files, K(runching the
disk, and so on, Alternatively, you may specify another disk as the one to contain
the output file,

Use the filer to C(hange SYSTEM.LIBRARY to OLD.LIBRARY, and NEW.LIBRARY
to SYSTEM.LIBRARY. (If the new SYSTEM.LIBRARY isn't on the boot disk,
T(ransfer it there.) Once your are confident that you have done all of this
correctly, you may R(emove OLD.LIBRARY if you wish,

NOTE: If you use this second method of moving the units into
*SYSTEM.LIBRARY, be certain that you have a backup of the original
SYSTEM.LIBRARY somewhere which is completely separate from the entire
process. This will insure you against damaging that file by any mistakes you
might make during this process,

It is worth mentioning the $U Pascal compiler option here, Both of the above
methods allow access to units during compilation time as well as run-time, There
is, however, still another way to access units during (Pascal) compilation time.
Rather than simply using the Pascal statement:

USES TURTLEGRAPHICS;

(as shown in the sample program, Section V,2,11) you may use a statement like:

USES {$U turtle:TURTLEx.CODE} TURTLEGRAPHICS;

130

Special Software Facilities

The compiler will search for the disk TURTLE:, and will then find the file
TURTLEx.,CODE on that disk. The compiler will then be able to USE the
interface section of the needed unit. This is a way to compile a program which
uses a unit which is not within *SYSTEM.LIBRARY. But, in order to run that
program, you will still need to employ one of the two methods described in this
section,

NOTE: Unless you have the standard APPLE 40 column display you will probably
have to perform some special operations to ready the hardware to display graphie
information, You will probably have to switch the display hardware from normal
text mode into graphics mode and back. Because of the wide variety of
configurations, this responsibility has been left to you., By using procedure
TTLOUT within the APPLESTUFF unit, you may reference the Annunciator
Outputs, if necessary, to perform any necessary mode switching,

V.2.3 The Turtle

The "turtle" is an imaginary creature that resides on the display screen, It carries
with it a "pen,” and can be made to draw lines by moving it about the display.
The possible movements of a turtle are:

move in a straight line (Move);

move to a particular point on the display (Moveto);
turn, relative to the current direction (Turn);

turn to a particular direction (Turnto).

Thus, the turtle draws straight lines in some given direction. The color of the lines
it draws can be specified (Pen_color), and so can the nature of the line drawn
(Pen_mode),

Wherever the turtle is located, its position and direction can be ascertained by
three functions: Turtle_x, Turtle_y, and Turtle_angle,

NOTE: The turtle may be moved anywhere; it isn't limited by the size of the
figure or the size of the display. But only movements within the figure will be
visible,

To use the turtle in a figure other than the actual display, you may call
Activate_Turtle. We will discuss new figures in Section V.2.7.

131

Special Software Facilities

The remainder of this section describes the routines that handle the turtle, Since
this section is meant to double as a reference, some of the routine descriptions
mention features we haven't yet discussed. Just skim over anything you don't yet
understand.

Procedure Move (distance: real);

Moves the active turtle the specified distance along its current direction. The
turtle leaves a tracing of its path (unless the drawing mode is 'nop')s The
distance is specified in the units of the current display scale (see Section V.2.6).
The movement will be visible unless the current turtle is in a figure that isn't
currently on the display.

Procedure Moveto (x,y: real);

Moves the active turtle in a straight line from its current position to the specified
location. The turtle leaves a tracing of its path (unless the drawing mode is
'nop'). The x,y coordinates are specified in the units of the current display scale,
Procedure Turn (rotation: real);

Turns the active turtle by the amount specified (in degrees). A positive angle
turns the turtle counterclockwise, and a negative angle turns it clockwise.

Procedure Turnto (heading: real);

Sets the direction (the "heading") of the active turtle to a specified angle. The
angle is given in degrees; zero (0) degrees faces the right-hand side of the screen,
and ninety (90) degrees faces the top of the screen,

Procedure Pen_color (shade: integer);

Parameter Shade determines what the pen color is, The color that Shade indicates

depends upon how procedures VIDEOMODE and PALLETE of the APPLESTUFF unit
have been used (see Section V.1).

132

Special Software Facilities

Procedure Pen_mode (mode: integer);

Sets the active turtle's drawing mode. This mode doesn't change until Pen_mode
is called again,

These are the possible modes:

0 = Nop - doesn't alter the figure,

1 = Substitute - writes the current pen color,
2 = Overwrite - writes the current pen color,
3 = Underwrite - writes the current pen color., When the pen crosses &

pixel that isn't of the background color, that figure is pot overwritten.

4 = Complement - the pen complements the color of each pixel that it
crosses, (The complement of a color is its opposite; the complement of
the complement of a color is the original color.)

Values greater than 4 are treated as Nop.

(These descriptions apply to movements of the turtle, They have a more complex
meaning when a figure is copied onto a figure that is already displayed—see
Figures and the Port.)

Function Turtle_x : real;

Returns a real value that is the x-coordinate of the active turtle, in units of the
current Display_scale.

Function Turtle_y : real;

Returns a real value that is the y-coordinate of the active turtle, in units of the
current Display_scale,

Function Turtle_angle : real;

Returns a real value that is the direction (in degrees) of the active turtle.

133

Special Software Facilities

Procedure Activate_Turtle (screen: integer);

Specifies to which figure subsequent Turtlegraphics commands are directed. Each
invocation of this procedure puts the previously active turtle to sleep and awakens
the turtle in the designated figure., When Turtlegraphics is initialized, the turtle
in the actual display is awake.

V.2.4 The Display

The color of the display (or any other figure) depends in part on settings
determined by procedures VIDEOMODE and PALETTE within the APPLESTUFF unit
(Section V.1),

A figure can be filled with a single color (not necessarily the background color) by
calling Fillscreen,

NOTE: When Turtlegraphics is initialized, the video mode is set to 2. You may
call VIDEOMODE in APPLESTUFF to change this, but the display is cleared, and if
the new mode is other than 2, Display_scale must be called immediately to
reinitialize the display. At the end of a program using TURTLEGRAPHICS, the
VIDEOMODE is restored to 0.

Procedure Fillscreen (screen: integer; shade: integer);

Fills the specified figure ("screen") with the specified color ("shade"). If
sereen = 0, whieh indicates the actual display screen, then only the current
viewport is shaded. For user-created figures, the entire figure is shaded.

Procedure Background (screen: integer; shade: integer);

Specifies the backgound color for a figure, The initial background color of all
figures is black (color 0),

V.2.5 Writing Characters with TURTLEGRAPHICS

It is possible to draw legends, labels, and so forth on the display while using the
Turtlegraphies unit, This is done with the following two procedures:

Procedure Wchar (c:char; copymode,shade:integer);
Procedure Wstring (var s:string; copymode,shade:integer);

These procedures will display the character or string arguments at the current
active turtle location. They can be used to label either user-created figures, or
the actual display screen,

134

Special Software Facilities

V.2.6 Scaling

When you wish to display data without altering the input data, it is possible to set
scaling factors that translate data into locations on the display. This is done with
Display_scale. The display scale applies globally to all figures,

Because of the shape of the actual display, data for particular shapes (especially
curved figures) might become distorted when using a different display scale. In
this case, the function Aspect_ratio can be used to preserve the "squareness" of
the figure.

Procedure Display_scale (min_x,min_y,max_x,max_y: real);

Defines the range of input coordinate positions that are to be visible on the
display. Turtlegraphics maps your coordinates into pixel locations according to the
scale specified in Display_scale,

This procedure sets the viewport (see Section V,2.7) to encompass the whole
display. The display bounds apply to input data. For the actual display, these
bounds can be any values the user requires, but user-created figures always have
(0,0) as their lower left-hand corner,

The default display scale in Videomode 2 is:

140
191

min_x =
min_y = 0, max_y

which is simply the array of pixels on the full display.
As an example, if you wish to graph a financial chart from the years 1970 to 1980
along the x axis, and from $500,000 to $500,000,000 along the y axis, the following
call could be used:

Display_scale(1970, 5.0E5, 1980, 5.0E8)

After this, calls to turtle operations could be done using meaningful numbers rather
than quantities of pixels.

135

Special Software Facilities

Function Aspect_ratio : real;

Returns a real number that is the width/height ratio of the CRT. This can be
used to compute parameters for Display_Scale that provide square aspect ratios,

If an application is designed to show information where the aspect ratio of the
display is ecritical (that is, circles, squares, pie-charts, and so on) it must insure
that the ratio:

(max_x - min_x) / (max_y - min_y)

is the same as the aspect ratio of the physical screen upon which the image is
being displayed. When the Turtlegraphics unit is initalized, min x and min_y are
set to 0. Max_x is initialized to the number of pixels in the x direction, and
max_y is initialized to the number of pixels in the y direction. In order to change
to different units that still have the same aspect ratio, a call similar to the
following ‘can be used:

Display_scale(0, 0, 100*ASPECT_RATIO, 100);

This utilizes Funetion Aspect_ratio deseribed above, and makes the y axis 100 units
long.

Turtlegraphics always treats the turtle as being in a fixed pixel loecation,
Changing the scaling of the system with a call to this routine in the middle of a
program doesn't alter the pixel position of any of the turtles in the figures.
However, the values returned from X _pos and Y_pos may change.

V.2.7 Figures and the Port

You can create and delete new figures, each with its own turtle. When a new
figure is created, it is assigned an integer, and this integer refers to that figure in
subsequent calls to Turtlegraphics procedures. New figures can be saved
(Putfigure) or displayed on the screen (Getfigure).

The actual display is always referred to as figure 0.

136

Special Software Facilities

The active portion of the display can be restricted by calling Viewport, which
creates a "window" on the screen in which all subsequent graphics activity takes
place. You might create a figure, specify the port, then display that figure (or a
portion of it) within the port. Specifying a viewport doesn't restrict turtle
activity, it merely restricts what is displayed on the screen.

User-created figures can be saved in p-System disk files. See Section V.2.9.
Function Create_figure (x_size,y_size: real): integer

Creates a new figure which is rectangular, and has the dimensions (x_size, y_size),
where (0,0) designates the lower left-hand corner. The dimensions are in units of
the current display scale. The figure is identified by the integer returned by
Create_figure,

When a figure is created it contains its own turtle, which is at 0,0 and has &
direction of 0 (it faces the right-hand side of the figure)., The turtle in a
user-created figure can be used by calling Activate_Turtle (described in Section
V.2.3).

Procedure Delete_figure (screen: integer);
Discards a previously created display figure area.

Though figures may be created and destroyed, indiscriminate use of these contructs
may rapidly exhaust the memory available in the p-System due to Heap
fragmentation, For example, a figure may be created using Create_figure (or it
may be read in from disk using Function Load_Figure, described below)., If
possible, after that figure is used (for example, with a Getfigure, Putfigure,
Load_figure or Store_figure operation) it should be deleted before other figures are
created. If many figures are created, and randomly deleted, the Heap
fragmentation problem may occur,

Procedure Getfigure (source_screen: integer;
corner_x,corner_y: real; mode: integer);

Transfers a user-created figure (the "source") to the display screen (the
"destination") using the drawing mode specified, The figure is placed on the
display such that its lower left-hand corner is at (corner_x, corner _y). The x and
y positions are specified in the units of the current display scale. If the display
scale has been modified since the figure was created, the results of this procedure
are unpredictable,

137

Special Software Facilities

These are the effects of the drawing mode:

0 Nop - doesn't alter the destination,

Substitute - each pixel in the source replaces the corresponding pixel in
the destination,

1

2 = Overwrite - each pixel in the source that is pot of the source's
background color replaces the corresponding pixel in the destination,

3 = Underwrite - each pixel in the source that isn't of the source's
background color is copied to the corresponding pixel in the destination
only if the corresponding pixel is of the destination's background color,

4 = Complement - for each pixel in the source that isn't of the source's
background color, the corresponding pixel in the destination is
complemented.

Values greater than 4 are treated as Nop.

If a portion of the source figure falls outside the display or the window, it is set
to the source's background color,

Procedure Putfigure (destination_screen: integer;
corner_x,corner_y: real; mode: integer);

Transfers a portion of the display screen to a user-created figure using the drawing
mode specified (see above). The portion transferred to the figure is the area of
the display that the figure covers when it is placed on the display with its lower
left-hand corner is at (corner_x, corner_y). If the display scale has been modified
since the figure was created, the results of this procedure are unpredictable.

NOTE: When a figure is moved to the display by Getfigure, further modifications
to the display do not affect the copy of the figure that is saved in memory. If
you wish to save the results of graphies work on the display, it is necessary to

call Putfigure.

138

Special Software Facilities

Procedure Viewport (min_x,min_y, max_x,max_y: integer);

Defines the boundaries of a "window" which confines subsequent graphies activities,
The Viewport procedure applies only to the actual display. When a window has
been defined, graphics activities outside of it are neither displayed nor retained in
any way. Therefore, lines, or portions thereof, that are drawn outside the window
are essentially lost and won't be displayed (this is true even if the window is
subsequently expanded to encompass a previously drawn line). The viewport
boundaries are specified in the units of the current display scale. If the specified
size of the viewport is larger than the current range of the display, the Viewport
is truncated to the display limits,

V.2.8 Pixels
It is possible to ascertain (Read_pixel) or write (Set_pixel) the color of an
individual pixel within a given figure. These routines are more specific than the

turtle-moving routines. They are less straightforward to use, but give you greater
control,

Function Read_pixel (screen: integer; x,y: real): integer;

Returns the value of the color of the pixel at the x,y location in the specified
figure. The x,y location is specified in the units of the current Display_scale.

Procedure Set_pixel (screen: integer; x,y: real; shade: integer);

Sets the pixel at the x,y location of the specified figure to the specified color.
The x,y location is specified in the units of the current Display_scale.

V.2.9 Fotofiles

You may create disk files that contain Turtlegraphics figures, New figures may be
written to a file, and old figures restored for viewing or modification.

When figures are written to a file, they are written sequentially, and assigned an
"index" that is their location in the file, They may be retrieved "randomly" by
using this index value,

The p-System name for files of figures always contains the suffix ".FOTO". It

isn't necessary to use this suffix when calling Read_figure_file or Write_figure_file
(if absent, it will be supplied automatically).

139

Special Software Facilities

Function Read_figure_file (title: string): integer;

Specifies the title of a file from which all subsequent figures will be loaded. If a
figure file is already open for reading when this function is called, it is closed
before the new file is opened. Only one figure file may be open for reading at a
single time. This function returns an integer value which is the IORESULT of
opening the file,

Function Write_figure_file (title: string): integer;

Creates an output file into which user-created figures may be stored. If another
figure file is open for writing when this function is called, it is closed, with lock,
before the new file is created. Only one figure file may be open for writing at a
single time. This function returns an integer result which is the IORESULT of the
file creation,

Function Load_figure (index: integer): integer;

Loads the indexed figure from the current input figure file and assigns it a new,
unique, figure number. An automatic Create_figure is performed. If the operation
fails for any reason, a Figure_number of zero (0) is returned,

Function Store_figure (figure: integer): integer;

Sequentially writes the designated figure to the output figure file. The function
returns an integer that is the figure's positional index in the current output figure

file. Positional indexes start at one (1). If the index returned equals zero (0),
Turtlegraphies didn't successfully store the figure,

140

Special Software Facilities

V.2.10 Routine Parameters

The following is the interface section for the Turtlegraphics unit, showing the
parameters to all Turtlegraphies routines:

Unit Turtlegraphies;
Interface

Procedure Display_scale(min_x, min_y, max_x, max_y: real);

Function Aspect_ratio: real;

Function Create_figure(x_size, y_size: real): integer;

Procedure Delete_figure(screen: integer);

Procedure Viewport(min_x, min_y, max_x, max_y: real);

Procedure Fillscreen(screen: integer; shade: integer);

Procedure Background(screen: integer; shade: integer);

Function Read_pixel(screen: integer; x, y : real) :integer;

Procedure Set_pixel(screen: integer; x, y: real; shade: color)

Procedure Getfigure(source_screen: integer, corner_Xx,
corner_y: real; mode: integer);

Procedure Putfigure(destination_screen: integer, corner_x,
corner_y: real; mode: integer)

Function Read_figure_file(title: string): integer;

Function Write_figure_file(title: string): integer;

Function Load_figure(index: integer): integer;

Function Store_figure(figure: integer): integer;

Procedure Activate_Turtle(screen: integer);

Function Turtle_x: real;

Function Turtle_y: real;

Function Turtle_angle: real;

Procedure Move(distance: real);

Procedure Moveto(x,y: real);

Procedure Turn(rotation: real);

Procedure Turnto(heading: real);

Procedure Pen_mode(mode: integer);

Procedure Pen_color(shade: integer);

Procedure Wechar(c:char; copymode, shade: integer);

Procedure Wstring(var s:string; copymode, shade: integer);

141

Special Software Facilities

V.2.11 Sample Program
Here is a sample program that illustrates a number of Turtlegraphics routines:
program Spiraldemo;

uses Turtlegraphics, Applestuff;

const nop = 0;
substitute = 1;

var I, J, Mode: jnteger;
C: chars
Color: jnteger;
Seed: jinteger;
LX, LY, UX, UY: real;

function Random_Num (Range: jnteger): integer;
begin
Seed:= Seed * 233 + 1133
Random_Num:= Seed mod Range;
Seed:= Seed mod 256;
end;

procedure ClearBottom;
{clears bottom line of screen
for prompts}

begin
Penmode (nop);
Moveto (0, 0);
WString (°' ', substitute, 1);
end;
begin
ClearBottom; {various initializations}

WString ('ENTER RANDOM NUMBER: ', substitute, 1);
read(keyboard, Seed);
ClearBottom;
Display_Scale (0, 0, 200*Aspect_Ratio, 200);
{Aspect_Ratio used so
pattern will be round}
Color:= 0;
WString ('ENTER VIEWPORT LL CORNER: ', substitute, 1);
read(keyboard, LX,LY);
ClearBottom;

142

Special Software Facilities

WString ('ENTER VIEWPORT UR CORNER: ', substitute, 1);
read(keyboard, UX,UY);

ClearBottom;

WString ('PENMODE= ', substitute, 1);

read(keyboard, MODE);

Palette (0);

{0= black, l=green, 2=red, 3=yellow}
ViewPort (LX, LY, UX, UY); {ereate port}
PenMode (0);

{use blank pen while moving it}
Moveto (100*Aspect_Ratio, 100);

{put turtle in center of port}

{Aspect_Ratio ensures that it will be

correctly centered}
PenMode (Mode);

{set pen to selected color}
J:= Random_Num(90)+90;

{angle by which turtle will move

note that turtle begins faeing right

and will move counterclockwise

(J is positive)}

for I1:= 2 to 200 do
{draw spiral in 200 segments
of increasing length}
begin
{ecycle through the colors}
Color:= Color+l;
if Color > 3 then Color:= 1;
PenColor (Color);
Move(1I);
Turn(J);
end;

143

Special Software Facilities

I:= Create_Figure (UX-LX, UY-LY);
{ecreate figure the size of the port}
PutFigure (I, LX, LY, 1);
{save it; mode overwrites
old figure (if any)}
ViewPort (0, 0, Aspect_Ratio*200, 200);
{respecify viewport in
the lower left corner}
GetFigure (I, 0, 0, 1);
{display finished spiral}
readln;
{eclear user input buffer}
end.

144

Special Software Facilities

Iv.2.12 Memory Space Requirements

When running TURTLEGRAPHICS, the error message 'NO SPACE FOR HIRES
DISPLAY' can occur when data or code encroaches on the area of memory set
aside for the screen. During initialization, a 4K section is created in low memory
from 2000 to 4000 hexadecimal,

The program is loaded after the creation of the hires screen. If the 'NO SPACE'
error occurs during load time, it is due to too much data for the space between
the current top of the heap and the hires screen. This can be alleviated by
declaring fewer global variables or fewer segments, (Each segment has an entry in
the segment identifier table which is created at load time. The term segment
refers to either units or segment procedures.) Please note that the LOADER is

also present at this time.

A good method for saving space is to use pointers to data structures. If you have
buffers or other data structures, a pointer to the item can be declared globally
and procedure NEW used to create the data structure when needed, This saves
loading space as the pointer is only one word, Run-time space can be saved by
use of procedure DISPOSE when the structure is not in use,

If the error occurs during execution time, some method will have to be found to
make the resident portion of the program smaller. This can be done by making
the program smaller overall or breaking the program into smaller segments.

145

Special Software Facilities

V.3 The CONFIG Utility

The CONFIG Utility allows you to set certain parameters affecting how the
p-System handles peripherals, When you X(ecute UTILITY:CONFIG, the following
menu appears:

Apple-Config: G(et, S(ave, C(onsole, D(isk, P(rinter, R(emote ?
Apple-Config: T(clock, U(ser, X(Patch, B(ootstrap, Q(uiit

(The second half of the menu appears if you press '?'.)
G(et

If you press 'G' for G(et you are able to read the APPLEINFO table and the
Primary Bootstrap parameters, The following promptline appears:

Read from M(emory or D(isk ?

If you press 'M', only the APPLEINFO table is read, and the copy that resides in
RAM is what you will now be looking at as you continue to use CONFIG. If you
press 'D', you will be asked to select which disk drive you want to read from.
You will then be prompted to insert the disk you wish to examine and perhaps
modify. Both the APPLEINFO table and the Primary Bootstrap perameters will be
available for inspection if you read from disk.

You must do a R(ead before you can execute any of the other CONFIG commands.

S(ave

The S(ave option allows you to save any changes you have made. You are
prompted to save to M(emory or D(isk. If you save to M(emory, only the
APPLEINFO table is saved. If you save to D(isk and had originally read from
disk, both the APPLEINFO table and the Bootstrap parameters will be saved. If
you save to D(isk and had originally read from memory, only the APPLEINFO table
will be saved.,

146

Special Software Facilities

C(onsole

If, from the CONFIG menu, you select C(onsole you will be able to alter the
following console parameters:

HAS_LC_VIDEO
HAS_LC_KEYBOARD
SHIFT_KEY
FLIP_KEY
FOLLOW_KEY
USE_INVERSE_LC
HAS_SHIFT_WIRE
CURSOR_CHAR

HAS_LC_VIDEO, HAS_LC_KEYBOARD, USE_JNVERSE_LC, and HAS_SHIFT_WIRE are
booleans which take a value of TRUE or FALSE. In C(hange mode, simply press
'T'" or 'F' followed by <return> for these values (indicating True or False).
Alternatively, you may press 'Y' or 'N' followed by <return> (indicating Yes for
true, or No for false), Press the actual keys you want to use for the other
options, followed by <return>.

If you have an internal console with lowercase video capability, you will want to
set HAS_LC_VIDEO to TRUE., If your keyboard will generate both uppercase and
lowercase characters, you should set HAS_LC_KEYBOARD to TRUE.

If you want to change the "soft" shift key (see Section L3), you may enter
whatever CTRL-key combination you desire for SHIFT_KEY.

FLIP_KEY refers to the key that flips the 40 column screen from one side to the
other. FOLLOW_KEY is the key that causes the 40 column screen to move with
the cursor as it moves off the screen, These may be altered in the same manner

as the SHIFT_KEY.

USE_INVERSE_LC, if TRUE, indicates that your APPLE system can't display
lowercase, and that uppercase letters should, therefore, be displayed as inverse
uppercase letters, Lowercase letters will be displayed as regular (not inverse)
uppercase characters.

HAS_SHIFT_WIRE indicates that you have wired your APPLE computer so that the
"hard" shift key can be recognized for alphabetic characters (see Section L3).

147

Special Software Facilities

CURSOR_CHAR may take on a value from 1 to 4 and indicates what type of
cursor you desire to have. Its values have the following meanings:

No cursor

Solid block cursor
Flashing block cursor
Underline cursor
Flashing underline cursor

LW =O

D(isk

Selecting D(isk will allow you to examine or alter the following disk driver
parameterss

Number of TRACKS per disk

Number of SECTORS per track

Number of BYTES per sector

The INTERLEAVE of the sectors

The FIRST interleaved track

The track to track SKEW

The PHYSICAL drive (0..5) association to p-System
volumes (#4:, #5:, #9:, #10:, #11:, #12:)

Simply enter the volume number (4, 5, 9, 10, 11, 12) and then either enter new

values for the various parameters followed by <return>, or simply press <return> to
leave any value unchanged.

148

Special Software Facilities

P(rinter
Selecting P(rinter allows access to the following parameters:

HAS_LC_PRINTER
NEEDS_LINEFEED
BAUD_RATE

If your printer has lowercase, you will want to set HAS_LC_PRINTER to TRUE.

NEEDS_LINEFEED may be TRUE or FALSE., If TRUE it indicates that the printer
requires a line-feed after a carriage return is sent,

BAUD_RATE may take on a value from 0 to 255, The supplied printer driver
assigns the following meaning to the value of BAUD_RATE:

110
150
300
600
1200
2400
4800

¢ 9600
19200

WO =3I U W
%0 @0 e es o o se s e

R(emote

This option allows access the following serial line paramters:

CONVER_LC
ZERO_BIT7
BAUD_RATE

CONVER_LC indicates that all alphabetic characters should be converted to
lowercase before being sent,

ZERO_BIT7 indicates that the parity bit should be set to zero before a character
is sent,

BAUD_RATE has the same meaning as it does for P(rinter above,

149

Special Software Facilities

T(clock and U(ser

These two options aren't currently implemented within the CONFIG Utiltity,

150

Special Software Facilities

X(Patch

The examine and patch option displays a hexadecimal dump of the APPLEINFO
table which you may alter directly. The fields are displayed on the left for
convenience. C(hange allows you to select a particular byte offset into the table
(in hexadecimal) and alter it (in hexadecimal). You may press <return> to leave
the byte unchanged.

The following is an edited assembled listing of the APPLEINFO table showing
offsets:

0200| INFOTABLE

0200] ; ntrks,nsets,bytes,intrlv,first,skew
0200| .WORD 35., 16., 256., 2, 0, 0
0208]
020C| .WORD 35., 16., 256., 2, 0, 0
0214]
0218 .WORD 35., 16., 256., 2, 0, 0
0220 |
0224| .WORD 35., 16., 256.,, 2, 0, 0
022C|
0230]| .WORD 35., 16.,, 256., 2, g, 0
0238 |
023C| .WORD 35., 16., 256., 2, 0, 0

0244]| ;physical disk translation table.
0248] PHYSDISK BYTE 0,1,2,3,4,5
024E| ;16 bytes per section:

024E| CONSOLE .BYTE 0 ;sHAS_LC_VIDEO (0=false,255=true)
024F | .BYTE 0. sHAS _LC_KEYBOARD

0250 .BYTE 17H ;SHIFT_KEY (ascii code)
0251 | .BYTE 01H ;FLIP_KEY

0252 | .BYTE 1AH ;FOLLOW_KEY

0253 | .BYTE 0 s USE_INVERSE_IC

0254 | .BYTE 0 sHAS_SHIFT_WIRE

0255 | .BLOCK 9. j;unassigned

025E| PRINTER .BYTE 25 sHAS_LC_PRINTER

025F| .BYTE 255. ;NEEDS_LINEFEED

02601 .BLOCK 14. j;unassigned

026E| REMOTE .BLOCK 16 j;unassinged
027E| USER .BLOCK 16 j;unassinged
028E| CLOCK .BLOCK 16 j;unassigned

151

Special Software Facilities

B(ootstrap

If you then select B(ootstrap, the four Primary Bootstrap parameters are displayed,
and you have the option of C(hanging them or Q(uitting this option, If you press
'C' to change them, a prompt for each one will appear. You may then enter in a
new value followed by <return>, or you may leave the original velue unchanged by
simply pressing <return>. Pressing 'Q' returns you to the CONFIG menu.

If you are using an 80 column board (which doesn't use screen memory at
BCO0OH-BFFEH) you may set HIWORD to BFFEH instead of BBFEH. This will give
you an extra 1024 bytes of memory for use by the p-System.

MAXSECT (maximum number of sectors per track) must be set to correspond to
the drive with the highest number of sectors per track of all drives. For example,
if you have a mix of drives on-line—some with 16 sectors per track, 26 sectors per
track and 32 sectors per track—you would set MAXSECT to 32.

Similarly, MAXBYTE (maximum number of bytes per sector) must be set to the
number of bytes per sector of the drive which has the greatest number,

I)dent
If a G)et is done from M)emory, an I)dent will display the current card

configuration for PRINTER:, REMOTE:, and CONSOLE:. A table will be displayed
as follows:

Slot Device Card Type
0 PRINTER: PRL
1 REMOTE : SER
2 CONSOLE: Internal

Where card type can be any of the following:

PRL - Parallel card (PRINTER: slot only)

SER - Serial card

Firm - Firmware card

Internal - Card in the CONSOLE: slot is recognized, internal console
Comm - Communication Card

None - Card is not recognized or no card is in slot

152

Special Software Facilities

The table listed above signifies a parallel card in the PRINTER: slot, a serial card
is in the REMOTE: slot and either no card or a card that isn't recognized is in
the CONSOLE: slot. This information can be very useful when linking together an
SBIOS. For more information, see Section IIL2.

153

9..12

154

APPENDIX A
THE p-SYSTEM DEVICES AND VOLUMES

Vol L Lo

CONSOLE: screen and keyboard with echo
SYSTERM: screen and keyboard without echo
GRAPHIC: <not implemented>

<{disk name>: the system disk

<disk name>: the alternate disk

PRINTER: a line printer
REMIN: a serial input line
REMOUT: a serial output line

<{disk name>: additional disk drives

APPENDIX B

APPLE II SLOT ASSIGNMENTS

Apple

Slot Interface Card Volume Device#
0 16k Ram Memory Card n/a n/a
1 Printer Interface PRINTER: 6
2 Serial Interface REMIN: /REMOUT: 7/8
3 Serial Interface to terminal CONSOLE: 1

or 80 Column Video Board

4 Disk Controller <disk names> 11/12
5 Disk Controller {disk names> 9/10
6 Disk Controller (required) <disk names> 4/5
7 unassigned

NOTE: All interface cards are optional except slot 6.

155

APPENDIX C

GENERIC APPLE DRIVERS

The console, printer, and remote SBIOS interfaces have been changed to
accommodate the wide variety of peripherals used with Apple computers. These
drivers will now support most serial, firmware, comm, and parallel printer cards.
Most cards that follow Apple's signature protocol will operate on the p-System.
The following table summarizes the Apple signature protocol.

Type of Card Signature
CNO5 CNOT CNOB (where N=slot number)
Comm 18 38
Serial 38 18 1
Firmware 38 18 =1
Parallel 48 48

For example, using a firmware printer card, the address C105H contains 38H,
C107H is 18H and location C10BH is 1. In the case of the console, if the
80-column card in slot 3 doesn't adhere to any of the signature descriptions listed
in the preceding table, the console will default to the internal console interface,
whieh is supplied in the code file CONSOLE.CODE.

GENERIC DRIVER TEST RESULTS

The Apple Upgrade package includes a code disk that contains a new set of drivers
that were developed to widen the range of applicability of the p-System to the
wide range of peripherals used with the Apple II computer. The following hardware
configuration tables, which are organized according to the 80-column console cards,
show the results of testing various card configurations.

The first row of each table contains the mother board slot number and the first
column lists the device cards. The character "Y" located at the intersection of
the two variables indicates that the particular device card was placed in that
particular slot.

156

CONF IGURATION 1:

Appendix C

Internal Console Card Test

language card
grappler card
AIO comm card
corvus card
smarterm card
videx card
double vision
diskii card
micro-sci card

Errors detected :

Error description :

none

Comments : Used with generic drivers in SBIOS

CONFIGURATION 2:

Videx Card Test

language card
grappler card
AIO comm card
corvus card
smarterm card
videx card
double vision
diskii card
micero-sci card

Errors detected :

Error description :

will not boot

Comments : used with generic console driver in SBIOS.

157

Appendix C

CONFIGURATION 3: Videx Card Test

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micro-sci card !

Errors detected : None
Error description :
Comments : Used with generic console driver in SBIOS.

CONFIGURATION 4: Videx Card Test

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micro-sci card !

Errors detected : None
Error description :
Comments : VIDEX.CODE linked into SBIOS
NOTE: same result without the grappler card.

158

Appendix C

CONFIGURATION 5: Videx Card as CONSOLE Test

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micero-sci card !

Errors detected : None
Error description :
Comments ¢ VIDEX,CODE linked into sbios.

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micro-sci card !

Errors detected : Doesn't boot

Error description :

Comments : Using the generic console.code. With the generic console driver, the
system will not boot with the double vision card in any hardware configuration.

159

Appendix C

CONFIGURATION 7: Double Vision Card Test

language card !
grappler card !
AJO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micro-sci card !

Errors detected : won't boot with grappler card

Error description : Grappler card not supported in combination with double vision
card,

Comments : without grappler card will boot and NO ERRORS on console, Uses
dblvision.code for the SBIOS.

CONFIGURATION 8: Smarterm Card Test

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
miero-sei card !

Errors detected : NONE

Error description :

Comments : SMARTERM.CODE linked into SBIOS.
note: same results without grappler card.

160

Appendix C

CONFIGURATION 9: Smarterm Card Test

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micro-sci card !

Errors detected : None
Error description :
Comments : AIO card to SOROC as printer.

CONFIGURATION 10: Smarterm as Console

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micero-sci card !

Errors detected : None
Error description :
Comments : Used generic CONSOLE.CODE.

161

Appendix C

CONFIGURATION 11: AIO Comm Card as CONSOLE Driver Test

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micro-sei card !

Errors detected: None

Error description:

Comments: Used generic CONSOLE.CODE.

CONFIGURATION 12: AIO Card as CONSOLE Driver Test

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micro-sci card !

Errors detected: None
Error description:
Comments: Used generic CONSOLE.CODE.

162

Appendix C

CONFIGURATION 13: AIO Card as CONSOLE Driver Test

language card !
grappler card !
AIO comm card !
corvus card !
smarterm card !
videx card !
double vision !
diskii card !
micro-seci card !

Errors detected: None
Error descriptions
Comments: generic console driver

163

APPENDIX D

BOOTING DIFFICULTIES

The p-System, as supplied for the Apple II, is intended to run a basic Apple II
hardware configuration, and may not initially drive some hardware configurations,
It may be necessary to reconfigure the system to operate in the particular
environment defined by your Apple and peripheral cards.

NOTE: The printer driver supplied won't drive the Silentype Printer and the
Apple Super Serial Card may not be driven if an Apple Language card is used,

The system will only boot from DISKII drives, or drives which properly emulate
DISKII.,

If the p-System won't boot on your present hardware configuration, we suggest that
you attempt to configure the system as follows:

1. Try to boot the system with ONLY: a) 16K RAM card in slot 0; and b)
DISKII drives in slot 6. The system is designed to boot in this configuration
and should do so with no problems,

2. The supplied SYSTEM.SBIOS contains general PRINTER, REMOTE, and
CONSOLE drivers, as well as a DISKII/MICRO-SCI disk driver. If needed,
you should build a new SYSTEM.SBIOS for your system, as described in
Chapter III, according to the following:

slot 1: PRINTER: the supplied printer driver will work with most
serial or parallel printer cards, If an 80 column card is
used, a specific console driver may be necessary.

slot 2: REMOTE: the supplied remote driver will work with most
serial remote cards or RS-232 cards, including the D.C.
HAYES MICROMODEM. If an 80 column card is used, a
specific console driver may be necessary.

slot 3: CONSOLE: the general console driver will work with several
of the available 80 column cards, however, if certain
printer or remote cards are used it is necessary to replace
CONSOLE.CODE with one of the supplied specific drivers
when relinking an SBIOS, Cars which have a soft switch
will require a SYSTEM.STARTUP program which enables the
switch. An example for use with the Videx 80 column card
is attached,

164

Appendix D

slot 4: DISKII: the supplied vectors expect DISKII or MICRO-SCI
drive controllers in this slot. (However, a Z-80 card will

be ignored.)

slot 5: DISKII: the supplied vectors expect DISKII or MICRO-SCI
drive controllers in this slot.

slot 6: DISKII: the supplied vectors expect DISKII or MICRO-SCI
drive controllers in this slot, This is the boot slot and it
will be necessary, at least initially, to have DISKII

controller in this slot.

slot 7: May be used for SVA 8" disk controller (single sided, single
density at present), but the system must first be configured
by linking in the SVASINCH and SVAVECT to the SBIOS.

3. Run the utilities CONFIG.CODE and SETUP.CODE and detailed in Chapter V
and Chapter 1V, respectively.

4, If any of the code files on the CODE: disk are used, it is necessary to
transfer SYSTEM.BOOT from the CODE: disk to the boot disk.

5. When you have completed these steps, turnoff the computer, replace the
cards you have configured the system for, and reboot the system,

165

Appendix D

The following source code is designed to activate the Videx Soft Switch on the
column card, The code appears to solve the Soft Switeh problem,

Program Startup may be implemented in the following manner:
1., Enter in and compile the source code;
2. Save the source and code under some arbitrary name; and
3. Change the <NAME>,CODE file to SYSTEM.STARTUP,
Booting your system will now result in engaging the Soft Switch,
PROGRAM, STARTUP ;
(* flip Videx Soft Switch on system startup ¥)
PROCEDURE POKE(ADDR,VALUE : INTEGER);
TYPE MEMCELL = PACKED ARRAY[0..0] OF 0..255;

VAR MEMORY : RECORD CASE BOOLEAN OF
FALSE : (ADDRESS : INTEGER);

TRUE : (CONTENTS : "MEMCELL);
END; (* memory *)

begin (* poke ¥)
memory.address ;= addr;
memory.contents"[0] := value mod 256;
end; (* poke ¥)

begin (* startup *)
writeln('About to poke videx soft switch on....');
poke(-16295,0);
writeln('Soft Switeh engaged.');

end, (* startup ¥)

166

80

INDEX

APPLE Hardware Requirements
APPLEINFO Table
APPLEINTER.CODE

APPLE Slot Assignments
APPLESTUFF Unit

Arranging Disk Files
Assembler

Backing up Diskettes
BASIC
1 !

Binding in the Debugger
BIOS.CODE
BIOS.C.CODE
BIOS.CR.CODE
BIOS.CRP.CODE

Boot Disks
Bootstrapping

CLKREAD

Clock Driver
Compilers
COMMCARD.CODE
Configuring Disk Files
CONFIG Utility
Console Driver Example
CONINIT

CONREAD

CONSTAT

CONWRIT
CONSOLE.CODE

DBL.VISION.CODE
Debugger

Disk Driver

Disk Files

Disk Formatting
DISKII.CODE
DISKVECT.CODE
Diskveet Configuration
Driver Example (Console)
Driver Example (Disk)
Driver Examples (Other)
DRIVERS.CODE
DSKINIT

DSKREAD

42
90

155
123

29

20, 30

11
19
16, 31
35
90
90
90
90
9, 30
9, 116

64
78

19

38, 45
29

146

79

55

55

55

56

38, 43

49
35
74
29
10
38, 45
46
87
79
4
77
39
59
57

167

Index

168

DSKSTOP
DSKSTRT
DSKWRIT

Editor
EMPTY.CLK.CODE
EMPTY.COMM.CODE
EMPTY.CON.CODE
EMPTY.FIRM.CODE
EMPTY.INT.CODE
EMPTY.PRL.CODE
EMPTY.PRN.CODE
EMPTY.REM.CODE
EMPTY.SER.CODE
EMPTY.USR.CODE
ENDMARK.CODE

Filer
FIRMCARD.CODE
FORMATTER.CODE

GOTOXY

Hardware Requirements
HAS_LC_VIDEO
HAS_SHIFT_WIRE

INTCARD.CODE
INTERRUPTS.CODE
INTERP.CODE
Interpreter Configuration

Keyboard Notes
KEYBOARD.CODE

Linking an Interpreter
Linking an SBIOS

Memory Configuration
Operating System

PATCHCARD.CODE
Peripheral Drivers
Polling Peripherals
Primary Bootstrap
PRINTER.CODE

60
59
58

19
47
38
46
38
38, 47
38
46
46
38
47
39

19
38, 47
11

41, 104, 115

7
15, 147
15, 147

38, 48
39, 48
90
89

13
50

89
39

9, 18

38, 48

37

87

117, 119, 120
38, 43

PRNINIT
PRNREAD
PRNSTAT
PRNWRIT
p-System Devices

Reconfiguration Summary
REMINIT

Remote Driver
REMREAD

REMSTAT

REMWRIT
REMOTE.CODE

Sample Disk Driver
Sample Console Driver
Sample GOTOXY

Sample Pascal Program
Sample Primary Bootstrap
Sample SYSTEM.MISCINFOs
SBIOS.CODE

SBIOS Jump Vector
SBIOS Outline

SBIOS Routines

SBIOS Parameter Passing
SBIOS Variables
SCREENTEST

SENABLE
SERCARD.CODE
SEVENT

SETBUFR

SETDISK

SETSECT

SETTRAK

SETUP.CODE
SMARTERM.CODE
SQUIET

STARTUP: Diskette
SUPRTERM.CODE
Supplied Peripheral Drivers
SVASINCH.CODE
SVAVECT.CODE
SYSHALT

SYSINIT

System Disk Files
SYSTEM.BOOT
SYSTEM.LIBRARY

Index

60
61
61
62
154

37
62
77
63
62
63
38, 43

74
79
107
25
119

5

38, 43
52

68

52

70

73
111
64

38, 49
64

57

55

57

56

93

50

64

16

49

37

51

51

54

54

31
121
21, 31, 34

169

Index

170

SYSTEM.MISCINFO
SYSTEM.,PASCAL
SYSTEM.SYNTAX

Terminal Configuration
TURTLEGRAPHICS Unit

Units

User-Defined Devices
User Driver

USRINIT

USRREAD

USRSTAT

USRWRIT

Utilities

VIDEX.CODE

Writing Your Own Drivers
Writing Your Own Bootstrap

41, 96, 113
18, 30, 35
19, 29

37, 96, 104, 146
127

33
64
77
65
66
66
67
21

50

52
116

