ADDENDUM

TO THE

USERS' MANUAL SUPPLEMENT

VERSION v

Addendum
Users' Manual Supplement
Version IV

PREFACE

This addendum contains additions and corrections to the Users's Manual
Supplement, Version IV.

Chapter 9, The 8086 and 68000 Assemblers, on pages 1 through 7 of this addendum
is a new chapter.

Pages 9 and 10 of this addendum, which contain corrected information concerning
the Segment Alignment setting for the Z80 and 8080, the QUIET and ENABLE
commands, and the EVENT I/O interface, replace pages 1 and 2 of the Users'
Manual Supplement.

Page 11 of this addendum, which contains a corrected directory list of the current
Z80 release disks, replaces page 3 of the Users's Manual Supplement.

Page 12 of this addendum, which contains a corrected directory list of the current
8086 release disks, replaces page 16 of the Users' Manual Supplement.

Addendum
Users' Manual Supplement
Version IV

TABLE OF CONTENTS

Title

9. The 8086 and 68000 Assemblers . . . o .+ . .

1.

The 8086 Assembler . . ¢ o s ¢ ¢ ¢ o &
Notational Conventions « « « « « & « o
8086/88/87 Assembler Error Messages
68000 Assembler . « v ¢ v ¢ o o s o o
Syntax Conventions . + ¢« « « ¢ ¢ & & &

Miscellaneous
8086 Error Messages

New Product Package
.Z80 and 8080
QUIET and ENABLE
EVENT . ..o v v v v .

Z80 Adaptable System Files .
8086 Adaptable System Files

e e o o s o o o “« o o o @
e o @ 6 o o 6 & o 8 o s & & o o & 0 e
-
6 @ e 4 85 o & 0 2 s v o o & o o o
@ o & o e & o o s s e o * o 0 .
@ o ¢ e s s o s @ ¢ e o s s 0 o
e o o ¢ o e o o e o e o & o o & o o o
e & & o 0 o s o s > . o o o 0 . o .
e e e & 4 o o s e e e ¢ e o o & & s o o o
e ¢ 8 & e s 8 0 e e o . . .
¢ o o o . e ¢ o o o o & o ¢ & 9 o & o o o
* o e o o o e o . . .
e o o o o e o & o e e o o & o e s s e e o
¢ o e e o s s o . . o * o o e 0 .
------------ e & o e o e o & & s e o

Page

~NowvanE e

iii

Addendum
Users' Manual Supplement
Version [V

9. THE 8086 AND 68000 ASSEMBLERS

This section contains information specific to the 8086 and 68000 versions of the
UCSD p-System adaptable assembler.

The 8086 Assembler

The UCSD p-System 8086/88/87 Assembler differs in some respects from the
standard Intel assembler. These differences are listed in this section. Also, the
8086/88/87 specific assembler errors are listed.

Notational Conventions

Assembler Directives. None of the Intel assembler directives or operators are
implemented. Instead, the assembler directives described in the Users' Manual are
available.

Parenthesis. Index or base register references in a memory operand are enclosed
in parentheses, not square brackets, e.g., FIRST(BX) rather than FIRST[BX].

Immediate Byte. ADD immediate byte to memory operand is coded

ADDBIM memop,immedbyte

to distinguish it from the ADD memop, immedword which is the default.
Similarly, MOVBIM, ADCBIM, SUBBIM, SBBBIM, CMPBIM, ANDBIM, ORBIM,
XORBIM, and TESTBIM are added to the vocabulary.

Memory Byte. INC memory byte is coded:
INCMB memop

to distinguish it from INC memory word, which is the default. Similarly,
DECMB, MULMB, IMULMB, DIVMB, IDIVMB, NOTMB, NEGMB, ROLMB, RORMB,
RCLMB, RCRMB, SALMB, SHLMB, SHRMB, SARMB were added to the vocabulary
to specify memory byte operands.

MUL and DIV Byte. In MUL, IMUL, DIV, IDIV the single memory operand form,
e.g.,

MUL memop

implies a word operation. To specify a byte operation, either MULMB memop may
be used, or the form

Addendum
Users' Manual Supplement
Version IV

MUL AL,memop

The same holds true for IMUL, DIV, IDIV. (Note DIV AL,memop is rather
misleading, as the actual operation would be AX/memory-byte.)

MOV Substitute for LEA. For LEA reg,label or LEA reg,label+const the
assembler will substitute MOV reg,immed val where immed val = label or
label+const. This saves four clock times (4 vs. 8).

IN and OUT. The normal form of IN and OUT is IN ac,port or IN ac,0X and
QUT port,ac or OUT DX,ac where ac=AL denotes an 8-bit data path and
ac=AX denotes a 16-bit path. Since the accumulator is the only possible register
source/destination (DX specifies port=address in DX), single operand forms are also
provided: INB and QUTB for byte data, and INW and OUTW for 16-bit data. The
syntax is INB port or INB DX.

In the two-operand forms of IN and OUT, the order of the operands is not
important; thus OUT ac,DX or OUT ac,port will be acceptable.

String Operations. The mnemonics for the string operations are suffixed with B or
W to denote byte or word operations: thus MOVSB and MOVSW, CMPSB and
CMPSW, SCASB and SCASW, LODSB and LODSW, and STOSB and STOSW are in
the vocabulary, but MOVS ... STOS are not.

Segment Override. XLAT and the string instructions have implied memory
operands and nothing is required to be coded in the operand field. However, in
order to permit the specification of a segment override prefix in the case of
XLAT, MOVSB/MOVSW, CMPSB/CMPSW, and LODSB/LODSW, the assembler permits
operand expressions for these instructions.

Note, however, that only the default segment for SI, namely DS, can be
overridden. The segment for DI is ES and cannot be overridden. A segment
override prefix of DS applied to SI does not generate a segment override prefix.

If these operations were written with operands, they would have this syntax:

XLAT AL, (BX)
MOVS{BIW} (DI1),[seg:J1(SI)
awPs B W (DI),[seqg:1(sI)
scas{Biwl (D1).AX

LODS {8 W AX,[seg:](S1)
STOS{B W (DI),AX

The string instructions may be prefixed by a REP (repeat) instruction of some

Addendum
Users' Manual Supplement
Version IV

type. The assembler flags an error if both REP and a segment override are
specified.

In addition to the forms DS:memop, etc., a separate mnemonic SEG followed by a
segment register name may be written in a statement preceding the instruction
mnemonic.

Examples:

MOV AX,ES:AVALUE

{s equivalent to

SEG ES MOV AX,AVALUE

Long Jumps, Calls, and Returns. Intersegment CALL, RET, and JMP are
implemented as follows:

a. The mnemonics CALLL, RETL, and JMPL spectfxcally designate
intersegment operatlons.

b. An indirect address (e.g., (reg) or (label)) is assembled in
standard fashion with a "mod op r/m" effective address byte
possibly followed by displacement bytes. The memaory
location referenced must hold the new IP, and the next
higher location must hold the new CS.

c. The direct address forrmm must have two absolute operands:

CALLL exprl,expr2

where exprl is the new IP and expr2 becomes the new CS.
Constants or external symbols (e.q., .REF definitions) qualify
as absolute operands.
8087 Mnemonics. Mnemonics for the 8087 floating point operations are standard
except for certain of the memory reference operations, where a letter suffix is
appended to denote the operand size:
D short real or short integer (double word)

__Q long real or long integer (quad word)

__W integer word

Addendum
Users' Manual Supplement
Version IV

__T temporary real (ten byte)
The D and Q suffixes apply to the following real ops:

FADD, FCOM, FCOMP, FDIV, FDIVR, FMUL, FST, FSUB, FSUBR,
FLD, FSTP

e.g., FADDD, FADDQ, etc.
The T suffix applies only to FLD and FSTP.
The W and D suffixes apply to the following integer ops:

FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FIMUL, FIST, FISUB,
FISUBR, FILD, FISTP

The Q suffix for long integers applies only to FILD and FISTP.
8086/88/87 Assembler Error Messages
The following error messages are specific to the 8086/88/87 Assembler:

76: Had label, open parenenthesis then illegality
77: Expected absolute expression

78: Both operands connot be a segment register
79: Illegal pair of index registers

80: Have to use BX,BP,SI or DI

81: Illegal constant as first operand

82: The first operand is needed

83: The second operand is needed

84: Expected comma before 2nd operand

85: Registers stand alone except in indirect

86: Only 2 registers per operand

87: Expected label or absolute

88: Illegal to use BP indirect alone

89: Close parenthesis expected

90: Cannot POP CS

91: Cannot have exchange of r8 with rlé

$2: Segment registers not allowed

93: ESC external op on left must be const < 64
94: Only one of the operands can have segment override
95: Right operand must be a memory location

96: Left operand must be a 16-bit register

97: Left operand must be memory or register alone
98: Op cannot be a segment register or immediate

I~

Addendum
Users' Manual Supplement
Version IV

99: Count must be 1 or in CL

100: A byte constant operand is required

101: Operand must use () or be a label

'102: LOCK followed by something illegal

103: REP precedes only string operations

104: Not implemented

105: Expected a label

106:

107: Open parenthesis expected

108: Expected register alone as right operand
109: Segovpre then regalone, thats illegal -
110: Only one operand allowed

111: Operands are AL,op2 for byte MUL, etc.
112: SP can only be used with the SS segment
113: MOVBIM only for immediate to memory
114: BIMs must be immediate bytes to memory
115: Seqg override on repeated instruction not ok
116: Segment register expected

117: (8087) Invalid two-operand format

118: (8087) Invalid single operand format

119: (8087) Improper operand field

120: (8087) Instruction has no operands

121: No override of ES on string destination
122: Interseg needs 2 constant or external operands
123: 1/O port must be immediate byte or DX
124: 1/O source/dest register must be AL or AX

68000 Assembler

Syntax Conventions

The 68000 Assembler follows Motorola standard syntax for opcode fields, register
names and address modes. The following list points out some restrictions of the
p-System Adaptable Assembler.

Absolute addresses in the range 0000H..7FFFH generate the absolute
short address mode. Absolute short addresses in the range
F8000H..FFFFFH cannot be generated.

Absolute addresses in the range 8000H..FFFFH and external references
generate the absolute long address mode. Absolute addresses above
FFFFH cannot be generated.

Any address which can be made PC-relative generates the PC-relative

Addendum
Users' Manual Supplement
Version 1V

address mode.
Absolute immediates above FFFFH cannot be generated.

Opcodes which have an optional suffix of A,I,M,Q or X must contain
that suffix explicitly.

Length qualifiers (.B, .W or L) must be specified explicitly in those
instructions which have a choice of length. All other instructions must
not contain a length qualifier. -

The following instructions MUST contain a length qualifier:

ADD, ADDA, ADDI, ADDQ, ADDX, AND, ANDI, ASL (register), ASR
(register), CLR, CMP, CMPA, CMPI, CMPM, EOR, EORI, EXT, LSL
(register), LSR (register), MOVE (except special forms), MOVEA, MOVEM,
MOVEP, NEG, NEGX, NOT, OR, ORI, ROL (register), ROR (register),
ROXL (register), ROXR (register), SUB, SUBA, SUBI, SUBQ, SUBX, TST

The following instructions must NOT contain a length qualifier:

ABCD, ASL (memory), ASR (memory), BCHG, BCLR, BSET, BTST, CHK,
DBce, DIVS, DIVU, EXG, JMP, JSR, LEA, LINK, LSL (memory), LSR
(memory), MOVE to CCR, MOVE to SR, MOVE from SR, MOVE USP,
MOVEQ, MULS, MULU, NBCD, NOP, PEA, RESET, ROL (memory),
ROR (memory), ROXL (memory) ROXR (memory), RTE, RSR, RTS,
SBCD, Scec, STOP, SWAP, TAS, TRAP, TRAPY, UNLK

The following instructions may contain an optional length qualifier of .S (generate
short forward branch):

Bece, BRA, BSR
Miscellaneous

The 68000 processor is byte-addressed and word-oriented. The byte sex is most-
significant byte first.

The default constant radix is decimal, and the default list radix is hexadecimal.

Addendur
Users' Manual Supplemen
Version I

68000 Error Messages
The following error messages are specific to the 68000 Assembler:

76: unrecognizable address mode
77: address register expected
78: close paren ')’ expected

79: displacement out of range
80: index register expected

81: illegal length qualifier

82: illegal source address mode
83: illegal destination address mode
84: comma !,' expected

85: length qualifier required

86: length qualifier not allowed
87: data register expected

88: label expected

89: illegal register list

90: immediate operand expected

Addendum
Users's Manual Supplement
Version IV

1. NEW PRODUCT PACKAGE

The release disks for ‘the current release of the p-System are formatted into
virtual floppies, as with previous Adaptable Systems. However, there are now two
(rather than three) virtual floppies per disk. Each virtual floppy contains 240
blocks. The following diagram illustrates the disk images of the virtual floppies:

Track:

0 1 37 38 39 . 75 176
m 1 B 1 U1
lo TI 240 Block Virtual lo T| 240 Block Virtual | n |
lo rl Floppy lo rl Floppy [u |
It al Disk Volume One It al Disk Volume Two | s |
| el | cl ‘ | e |
[ki Ikl | d |
| | | | |

l

The p-System can be configured to use no real numbers, 2-word real numbers, or
4-word real numbers. For each p-System shipped, there are three Interpreters: one
for each of these configurations. There are also two Operating Systems: one for
2-word and one for 4-word reals.

For whichever language(s) you use, you are shipped two versions of the compiler:
one for 2-word and one for 4-word reals, as above. If the language is BASIC or
FORTRAN, there are also two versions of the runtime library, one for 2-word and
one for 4-word reals.

For the Adaptable System, you must supply the FULL Extended SBIOS. The
printer, remote, and clock routines may simply be stubs, unless you intend to use
those features, but the routines QUIET and ENABLE must be implemented. These
are new SBIOS routines, and are described below.

EVENT is a new BIOS routine that may be called from the SBIOS. You must
implement a keys-ready event if you wish to use print spooling (described in
Chapter 5). EVENT itself is described below.

The actual catalogs of files shipped with each p-System are shown later in the
section that corresponds to your processor.

For this release, extended memory is supported on the 8086, but not on the Z80
and 8080. However, one of the SETUP parameters in the section that discusses
extended memory does apply to 8080 and ZB0 systems. The Segment Alignment

Addendum
Users's Manual Supplement
Version IV

for the Z80 and the 8080 must be set to 2.
Z80 and 8080

This release of the p-System on the Z80 or 8080 may be brought up as described
in the Version IV.0 Installation Guide. The only differences are in the format of
virtual floppies on each release disk, the distinction between software components
for 2-word and 4-word reals as described above, and the new SBIOS and BIOS
routines described below.

QUIET and ENABLE

QUIET must disable any P-machine 'events' from occurring. The simplest way to
do this is simply to disable all processor interrupts. [f your hardware configuration
does not allow you to do this, you must devise some other scheme for disabling
interrupts.

In the SBIOS jump vector, the offset of QUIET is 5S4 (hex).

ENABLE allows P-machine events to occur. This may be done by simply re-
enabling processor interrupts, or by a scheme that corresponds to the one used by
QUIET.

in the SBIOS jump vector, the offset of ENABLE is 57 (hex).

EVENT

EVENT is a BIOS routine that may be called from the SBIOS. Its jump vector
offset is 06 (hex).

When an 5BIOS routine detects a hardware interrupt (such as a key pressed on the
console's keyboard), it may call EVENT with an appropriate event number. This
event number may be associated with a semaphore in a high-level lanquage (in
UCSD Pascal, this is accomplished by the attach intrinsic).

The events that a user may choose to signal, and what to do with them, are
entirely up to the user. The event numbers 0..31 are reserved for the p-System's
use, and the event numbers 32..63 are available for user definition.

However, if the user wishes to use print spooling, the SBIOS must call EVENT with
an event number of 19 whenever a key is pressed on the console.

10

Addendur
Users' Manual Supplemen
Version T

Z80 Adaptable Systam Files

Here are the directories of the current release disks for the Z80. Note that ther
is no special disk for utilities: utility programs are shipped on the second image c
the SYSTEM disk itself.

The ADAPZ disk:

SYSZ808:

SYSTEM.INTERP 26 23-Yov-81 6§ S12 Davafile
3YSTENM.MISCINPQ ! 24~Yov-81 32 194 Datafile
JYSTIM. 2ASCAL 108 24~-Nov-8t 33 512 Datafile
SYSTEM.2ILZR .32 28—ul-81 141 512 Codefile
JETUP.CODB 28 15-Jul-381t 17 5t2 Codefile
SYSTEM.LIBRARY 9 T=van-31 201 512 Dataflle
¢ TXUSED > 30 210

6/6 ziles<listed/ta-dir>, 210 blocks used, 30 unused, 30 in largest
Y3800

JYSTEM. INTZRP 26 2%-Yav-31 5 §12 Datafile
SYSTIN.XISCINPO 1 24=Jov-31 32 194 Datafile
SYSTEM. 2ASCAL 108 24-Jov=31 33 §12 Datafile
JYSTEN.2ILZER 22 23-Jul-31 141 512 Coderile
3B1TU2.CODE 28 | 5=Jul-81 173 512 Codefile
SYSTEM.LIBRARY 9 T—Jan-81 201 512 Dataflile
¢ JNUSZD > 30 210

.
[
-

6/6 21leas<listed/{a-dir>, 210 bdlocks us 30 unused, %0 {n largest

The SYSTEM disk:

3715t

3YSTIM.ZDITOR 49 28-Jul-81 6 512 Codefile
SYSTEM.3TITAX 14 4-Dec-80 55 512 Datafile
DEBUGGER.CODEB 29 22-sul-31 89 212 Coderile
2ATCH.CODE 34 3J-Jov-31 a8 5§12 Coderile
DISKCEANGE.CODE 3 S-Dec-30 132 512 Codefile
FINDPARANS.CODE 9 3-Dec-30 140 512 Coderfile
¢ THNUSED > 91 149

6/6 2.las<listed/in-dir>, 149 blocks used, 91 unused, 91 in largest
3Y32:

YALOE.CODB 12 2-Dec-30 [512 Codefile
300TZR.CODE 3 4-Dec-30 18 512 Codefile
DISKSIZZ.CODE 3 3-Dec-30 21 512 Codefills
SAMPLEGOTO.22XT 4 1T7-Jov=78 24 512 TextTile
DECODE.CODE 29 35-Mar-31 23 512 Codeflle
COPYDUPDIR.CODE 3 2-Dec-30 56 512 Codefile
MARKDUPDIR.CODE 4 2-Dec-8C 59 512 Codefile
IREP.CODB 29 3=-Dec-30 63 512 Codefile
AZCOVER.G.CODB 8 S=Dec-30 2 512 Codefile
REALOPS.4.CODE 11 21 -Aug-31 100 S12 Codefile
REALOPS.22.CODE 9 24-Yov-31 11 542 Codeflle
I{ZRNEL.CODB 65 11-3ep-3t 120 512 Codefile
COMMANDIO.CQDE 6 20~vul-81 185 5§12 Caodefile
"SCREENOPS.CODE 1% 29-Jun-381 101 512 Coderile
LIBRARY.CODE 13 6-Jov=3! 204 §12 Codefile
ABSWYRIZXB.CODE 4 3~Dec-80 217 §12 <Codefile
< UNUSED > t9 221

16/16 24lasciisted/in-dir>, 22! Hlocks used, 19 unused, 19 in largest

Addendum
Users' Manual Supplement
Version IV

8086 Adaptable System Files

Here are the current release disks for the 8086 with extended memory. These are
the only twa disks required for the 8086 system. Note that utility programs are
shipped on the second image of the SYSTEM disk.

The SYSTEM disk:

3131
JYSTEN.2DITCR 49 28-Jul-3i 6 512 Codefliles
OZBUGGER.CODE 29 22-Jul-81 55 512 Codefile
PATCH.CODZ 34 3-¥ov-31 84 512 Codefile
SYSTEX.3TITAX 14 4-Dec-30 118 S12 Datafile
DISKCEAKGR.CODB 8 S5-Dec-30 132 512 Codefile
PIYDPARAMS.CODR 9 32-Dec-30 140 512 Codefile
< JNTUSZD > 91 149
&/ 6 'ilas(liatod/in-d‘r). 149 blocks used, 351 unused, 91 {a largest
3YS2:
ASMB8086.CODE ' 60 29-May-3t 6 512 Zodeflle
2086.0PCCDE3 S S-day-3! 1) 52 DJatafile
3086.ZRRCRS 11 3=May-31 T 120 Datafile
3087.20P3 3 4-Peb-81 82 512 Datarfile
YALOE.CODE 12 2-dec-30 35 512 Ccderfile
20CTZR.CODB 3 4-Dec-30 97 512 Codefile
DISKSIZZ.COD= 3 3-Dec-30 100 €12 Coderfils
SAMPLZGOTO. 72X7 4 i7-Nov=-78 103 512 TextZflle
JECODE.CODE 28 S-Xar-31 107 512 Codefile
CCPYDUPDIR.CODE 3 2-Dec-30 135 512 Codefila
MAAXDUPDIR.CIDE 4 2-Dec-30 {x8 512 Codefile
IRS2.CODR 29 3-lec-30 142 512 Codefile
RECIVER.G.COLCZ 3 S5-Dec-80 [l 512 Codezile
SCARZEZNTEST.CODR 13 4=vun-31 17 512 Codefile
ZI3RARY.CODE 1T 6-ilov-81 192 512 Coderils
< TNUSED > 35 205

1S5/15 Ziles<listed/in-dir>, 205 blocks usad, 35 unuased, 35 ia largest

The INTERP disk:

363713:

SY3TEN. IXTZRP 19 13=Dec-31 5 512 Datafile
3YSTEN.MISCINPO 1 24-Jov-31 25 194 Datarile
SYSTEM.2ASCAL 108 24-Yov-81 26 512 Dataflle
SYSTEN.?TLER 32 28~vul-31 134 312 Coderile
SZTUP.CODZ2 29 ' 5-Jul-3! 166 512 Coderfile
JYSTEN.LI3RARY 7 8-Peb-32 194 S12 Codefile
SYSTEM.LI 26 27-Jan-81 201 512 Codefile
¢ TNUSZED > 13 227

7/7 Zilesclisted/in-dir>, 227 Slocks uased, 17 unused, 13 {1 largest
3AINT:

-OMPRE33.CCD2 ‘0 2=Dec-80 6 512 <Coderfile
INTERPI.CODE 20 6=O0ct-3! 16 512 Codefile
INT2RPY.2.C0DE 23 6=0ct=3! 36 512 Codefile
INTERPX.4.CODE 24 E<Qc*-81 sa 512 Zodafile
A3P.CODE 6§ 18-3ap-31 83 512 Codefils
3I08.CODR 6 25-3ep-81 89 512 Codeflile
3I108.C.CODE § 26-3ep-8! 98 S12 Coderile
3I03.CRk.CODE 6 26~3ep~31 101 512 ZCodefile
3I08.CRP.CODE 6 26-3ep-81 107 512 Coderfile
TERT3B00T.CCDE 7 1 7=3ep-81 13 512 Codeflile
REALOPS.2.C0ODE 10 21-dug-3t 120 S12 Coderfile
AZALOPI.4.CODE 11 21 -Aug-81 1%0 S12 Codeflle
TERNEL.CODE 65 !1-Sep~31! 141 512 Coderils
CCMMANDIOQO.CODE 6 20-Jul-81 206 512 Codeflls
3CIEZZNOPS.CODE 13 29—Jun-3t 212 S12 ZodezZlle
¢ UNUSED > 15 225

15/15 files<listed/ia~dir>, 225 blocks 1sed, 135 unused, 1S in largest

12

UCSD p-System
USERS” MANUAL SUPPLEMENT

Version IV

January 1982

SofTech Microsystems, Inc.
San Diego, California

XenoFile is a trademark of SofTech Microsystems, Inc.

UCSD, UCSD Pascal, and UCSD p-System are all trademarks of the Regents of the
University of California. Use thereof in conjunction with any goods or services is
authorized by specific license only, and any unauthorized use is contrary to the
laws of the State of Califomia.

CP/M is a registered trademark of Digital Research, Inc.

Copyright © 1982 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may be reproduced in any form or by
any means or used to make a derivative work (such as a translation,

transformation, or adaptation) without the permission in writing of SofTech
Microsystems, Inc.

1.

Table of .Contenta

NEW PRODUCT PACKAGE
1 2780 and 8080 . ..
2 CP/M Adaptable System
3 8086

SYMBOLIC DEBUGGER

EXTENDED MEMORY

NATIVE CODE GENERATION

.

a o ¢ & o o o 0

.

« o » .

PRINT SPOOLING « .« ¢ v o o

INTERRUPT HANDLING

XENOFILE

TURTLEGRAPHICS

.

.
.
-
e o o
.
.
-

e o e o

o\

17
25
29
31
33
35

75

1. NEW PRODUCT PACKAGE

The release disks for the current release of the p-System are formatted into
virtual floppies, as with previous Adaptable Systems. However, there are now two
(rather than three) virtual floppies per disk. Each virtual floppy contains 240
blocks. The following diagram illustrates the disk images of the virtual floppies:

Track:

0 1 37 38 39 75 76
B8 T TTeT T TUul
lo T 240 Block Virtual lo T 240 Block Virtual | n |
lo rl Floppy fo r| Floppy | u |
It al Disk Volume One It al Disk Volume Two | s |
| el | ¢l | e |
| Kkl | &l | d |
| | | .

The p-System can be configured to use no real numbers, 2-word real numbers, or
4-word real numbers. For each p-System shipped, there are three Interpreters: one
for each of these configurations. There are also two Operating Systems: one for
2-word and one for 4-word reals.

For whichever language(s) you use, you are shipped two versions of the compiler:
one for 2-word and one for 4-word reals, as above. If the language is BASIC or
FORTRAN, there are also two versions of the runtime library, one for 2-word and
one for 4-word reals.

For the Adaptable System, you must supply the FULL Extended SBIOS. The
printer, remote, and clock routines may simply be stubs, unless you intend to use
those features, but the routines QUIET and ENABLE must be implemented. These
are new SBIOS routines, and are described below.

EVENT is a new BIOS routine that may be called from the SBIOS. You must
implement a keys-ready event if you wish to use print spooling (described in
Chapter 5). EVENT itself is described below.

The actual catalogs of files shipped with each p-System are shown later in the
section that corresponds to your processor.

1. Z80 and 8080

This release of the p-System on the Z80 or 8080 may be brought up as described
in the Version IV.0 Installation Guide. The only differences are in the format of
virtual floppies on each release disk, the distinction between software components
for 2-word and 4-word reals as described above, and the new SBIOS and BIOS
routines described below.

QUIET and ENABLE

QUIET must disable any P-machine ‘events’ from occurring. The simplest way to
do this is simply to disable all processor interrupts. If your hardware configuration
does not allow you to do this, you must devise some other scheme for disabling
interrupts.

In the SBIOS jump vector, the offset of QUIET is 38 (hex).

ENABLE allows P-machine events to occur. This may be done by simply re-

enabling processor interrupts, or by a scheme that corresponds to the one used by
QUIET.

In the SBIOS jump vector, the offset of ENABLE is 3A (hex).

EVENT)

EVENT is a BIOS routine that may be called from the SBIOS. Its jump vector
offset is 04 (hex).

When an SBIOS routine detects a hardware interrupt (such as a key pressed on the
console’s keyboard), it may call EVENT with an appropriate event number. This
event number may be associated with a semaphore in a high-level lanquage (in
UCSD Pascal, this is accomplished by the attach intrinsic).

The events that a user may choose to signal, and what to do with them, are
entirely up to the user. The event numbers 0..31 are reserved for the p-System’s
use, and the event numbers 32..63 are available for user definition.

However, if the user wishes to use print spooling, the SBIOS must call EVENT with
an event number of 19 whenever a key is pressed on the console. See Chapter 6
for more details.

Adaptable System Files

Here are the directories of the current release disks for the Z80. Note that there
is no special disk for utilities: utility programs are shipped on the second image of
the SYSTEM disk itself.

The ADAPZ disk:

5YSZg@g:

SYSTEM.INTERP 26 23-Nov-81 6 512 Datafile
SYSTEM.MISCINFO 1 24-Nov-81 32 194 Datafile
SYSTEM.PASCAL 108 24-Nov-81 33 512 Datafile
SYSTEM.FILER 32 28-Jul-81 141 512 Codefile
SETUP.CODE 28 15-Jul-81 173 512 Codefile
SYSTEM.LIBRARY 9 7-Jan-81 201 512 Datafile
< UNUSED > 30 219

6/6 files<listed/in-dir>, 210 blocks used, 38 unused, 308 in largest

SYSZ80D:

SYSTEM.INTERP 26 23-Nov-81 6 512 Datafile
SYSTEM.MISCINFO 1 24-Nov-81 32 194 Datafile
SYSTEM.PASCAL 168 24-Nov-81 33 512 Datafile
SYSTEM.FILER 32 28-Jul-81 141 512 Codefile
SETUP.CODE 28 15-Jul-81 173 512 Codefile
SYSTEM.LIBRARY 9 7-Jan-81 201 512 Datafile
< UNUSED > 30 210

6/6 files<listed/in-dir>, 210 blocks used, 30 unused, 3@ in largest

The SYSTEM disk:

SYSl:

SYSTEM.EDITOR 49 28-Jul-81 6 512 Codefile
SYSTEM.SYNTAX 14 4-Dec-80 55 512 Datafile
DEBUGGER.CODE 29 22-Jul-81 69 512 Codefile
PATCH.CODE 34 3-Nov-81 98 512 Codefile
LIBRARY.CODE 13 6-Nov-8l 132 512 Codefile
< UNUSED > 95 145

5/5 files<listed/in-dir>, 145 blocks used, 95 unused, 95 in largest

SYS2:

YALOE.CODE 12 2-Dec-80 6 512 Codefile
BOOTER.CODE 3 4-Dec-880 18 512 Codefile
DISKCHANGE .CODE 8 S-Dec-80 21 512 Codefile
DISKSIZE.CODE 3 3-Dec-88 29 512 Codefile
FINDPARAMS.CODE 9 3-Dec-8@ 32 512 Codefile
SAMPLEGOTO.TEXT 4 17-Nov-78 41 512 Textfile
DECODE.CODE 28 S5-Mar-81 45 512 Codefile
COPYDUPDIR.CODE 3 2-Dec-80 73 512 Codefile
MARKDUPDIR.CODE 4 2-Dec-80 76 512 Codefile
XREF .CODE 29 3-Dec-89 892 512 Codefile
RECOVER.G,.CODE 8 S-Dec-88 109 512 Codefile
REALOPS.4.CODE 11 21-Aug-81 117 512 Codefile
REALOPS.Z2.CODE 9 24-Nov-81 128 512 Codefile
KERNEL,CODE 65 11-Sep-81 137 512 Codefile
COMMANDIO.CODE 6 28-Jul-81 202 512 Codefile
SCREENOPS.CODE 13 29-Jun-81 208 512 Codefile
ABSWRITE.CODE 4 3-Dec-88 221 512 Codefile
< UNUSED > 15 225

17/17 files<listed/in-dir>, 225 blocks used, 15 unused, 15 in largest

The INTERP disk:

“ZINT:

INTERP.Z.CODE 25 11-Nov-81 6 512 Codefile
FpP@.CODE 4 11-Nov-81 31 512 Codefile
FP2.Z.CODE 7 11-Nov-81 35 512 Codefile
FP4.CODE 8 11-Nov-81 42 512 Codefile
RSP .CODE 6 13-Nov-81 50 512 Codefile
BIOS.CODE 8 13-Nov-81 56 512 Codefile
BIOS.C.CODE 8 2¢-0Oct-81 64 512 Codefile
BIOS.CR.CODE 9 23-Nov-81 72 512 Codefile
BIOS.CRP.CODE 9 23-Nov-81 81 512 Codefile
INTER.CODE 4 1-Nov-81 90 512 Codefile
INTER,X.CODE 4 1-Nov-81 94 512 Codefile
INTER.CPM1.CODE 4 1-Nov-81 98 512 Codefile
INTER.CPM2.CODE 4 1-Nov-81 182 512 Codefile
INTER.CPM4.CODE 4 1-Nov-81 106 512 Codefile
TERTBOOT.CODE 5 15-0Oct-81 110 512 Codeflle
< UNUSED > 125 115

15/15 files<listed/in-dir>, 115 blocks used, 125 unused, 125 in largest

ASM:

280 . ASSMBLER 51 2-Dec-89 6 512 Codefile
286 .0PCODES 3 20-Dec-78 57 68 Datafile
28@.ERRORS 8 23-Sep-80 60 74 Datafile
COMPRESS.CODE 19 3-Dec-88 68 512 Codefile
SYSTEM.LINKER 26 27-Jan-81 78 512 Codefile
SCREENTEST.CODE 13 4-Jun-81 194 512 Codefile
CPMBOOT.CODE 22 7-Jan-81 117 512 Codefile
< UNUSED > 181 139

7/7 files<listed/in-dir>, 139 blocks used, 1€1 unused, 181 in largest

For B080 Systems, the release disks are the same, except that ADAPZ is replaced
by ADAPS:

5YS808:

SYSTEM.INTERP 27 23-Nov-81 h 512 Datafile
SYSTEM.MISCINFO 1 24-Nov-81 33 194 Datafile
SYSTEM.PASCAL 148 24-Nov-81 34 512 Datafile
SYSTEM.FILER 32 28-Jul-81 142 512 Codefile
SETUP.CODE 28 15-Jul-81 174 512 Codefile
SYSTEM.LIBRARY 9 7-Jan-81 202 512 Datafile
< UNUSED > 29 211

6/6 files<listed/in-dir>, 211 blocks used, 29 unused, 29 in largest

SYS86D:

SYSTEM.INTERP 27 23-Nov-81 6 512 Datafile
SYSTEM.MISCINFO 1 24-Nov-81 33 194 Datafile
SYSTEM.PASCAL 188 24-Nov-81 34 512 Datafile
SYSTEM.FILER 32 28-Jul-81 142 512 Codefile
SETUP.CODE 28 15-Jul-81 174 512 Codefile
SYSTEM.LIBRARY 9 7-Jan-81 282 512 Datafile
< UNUSED > 29 211

6/6 files<listed/in-dir>, 211 blocks used, 29 unused, 29 in largest

2. CP/M Adaptable System

This release of the Adaptable p-System for CP/M may be brought up as described
in the Version IV.0 Installation Guide. When CP/M is used to bootstrap the p-
System, the only differences are in the format of virtual floppies on each release

disk, and the distinction between software components for 2-word and 4-word reals,
as described above.

However, if the user wishes to use print spooling (described in Chapter 5), then a
new Extended SBIOS must be written, and it must implement QUIET, ENABLE, and
the keys-ready interrupt (by calling EVENT). These routines are described above in
the section on the full Adaptable System.

CP/M Adaptable System Files

The CP/M release is identical to the ZB0 or 8080 release, except that the ADAPZ
or ADAPS disk is replaced by the CPMADAP disk:

SYSCPM:

SYSTEM.INTERP 27 23-Nov-81 6 512 Datafile
SYSTEM.MISCINFO 1 24-Nov-81 33 194 Datafile
SYSTEM.PASCAL 168 24-Nov-8l1 34 512 Datafile
SYSTEM.FILER 32 28-Jul-81 142 512 Codefile
SETUP.CODE 28 15-Jul-81 174 512 Codefile
CPM2,INTERP 27 24-Nov-81 202 512 Datafile
SYSTEM.LIBRARY 9 7-Jan-81 229 512 Datafile
< UNUSED > 2 238

7/7 files<listed/in-dir>, 238 blocks used, 2 unused, 2 in largest

5YS8@8:

SYSTEM.INTERP 27 23-Nov-81 6 512 Datafile
SYSTEM.MISCINFO 1 24-Nov-81 33 194 Datafile
SYSTEM.PASCAL 188 24-Nov-81 34 512 Datafile
SYSTEM.FILER 32 28-Jul-81 142 512 Codefile
SETUP.CODE 28 15-Jul-81 174 512 Codeflile
SYSTEM.LIBRARY 9 7-Jan-81 202 512 Datafile
< UNUSED > 29 211

6/6 files<listed/in-dir>, 211 blocks used, 29 unused, 29 in largest

Note that as above, utility programs are shipped on the second image of the
SYSTEM disk.

3. 8086

This section describes the bootstraps, SBIOS interface, and BIOS interface for the
8086. You should already be familiar with an Adaptable System, as described in
the Installation Guide. :

8086 systems that run Version IV can take advantage of extended memory. This is
described in Chapter 3 of this booklet.

The P-machine emulator ("interpreter'") for the 8086 is broken into several modules.
These are:

1) The main part of the Interpreter.
2) The RSP (Runtime Support Package).
3) The BIOS (Basic 1/O Subsystem).

4) The tertiary bootstrap routine.

To use the 8086 Interpreter, the following modules (with their object code
filenames to the right) must be linked together:

Interpreter INTERPX.CODE or
INTERPX.2.CODE or
INTERPX.4.CODE

Runtime Support Package RSP.CODE

BIOS BIOS.CODE or
BIOS.C.CODE or
BIOS.CR.CODE or
BIOS.CRP.CODE

Tertiary Bootstrap TERTBOOT.CODE

The user is responsible for supplying SBIOS routines, as described in the
Installation Guide.

The SYSTEM.INTERP supplied on the release disks contains no floating point
support or I/O character queuing (INTERPX.CODE, RSP.CODE, BIOS.CODE, and
TERTBOOT.CODE).

The 27 and ‘4" in the Interpreter codefiles distinguish between the 2-word and 4-
word floating point packages. The Operating System must contain routines that
use the corresponding floating point size (REALOPS unit in SYSTEM.PASCAL) if
real numbers are to be used.

The ‘C°, "CR% and 'CRP’ in the BIOS code files indicate console, remote port, and
printer character input queuing, as stated in the Installation Guide.

After linking, the utility program COMPRESS (described in the Users’ Manual) must
be run to form a memory image file of the Interpreter. The answers to the

questions asked by COMPRESS are: NO relocatable output, base address = 0, the
linker output file, and the desired filename (such as SYSTEM.INTERP).

Bootstrapping the p-System

The steps necessary to get the Adaptable p-System started are described here.
Please note that all address values are to be set relative to the CS register (i.e.,
the Interpreter load point specified by the user).

1. Load the primary bootstrap (Track 0, Sectors 1 and 2) and the user
supplied SBIOS.

2. Set the Stack Pointer to any unused (but VALID) address value (such as
C000). The SP register will be reset to MEMTOP at the start of the
TERTBOOT routine, so the value set here is not critical. Push the Adaptable
System parameters onto the Stack as indicated in the Installation Guide. As

previously stated, all address values are relative to the Interpreter load point.
(See below.)

3. Set the CS register to the desired base (load point) of the Interpreter.

4. Do a short (intrasegment) jump to the bootstrap address (BOOOH -- CS-
relative). (The CS register may also be set by making a long {intersegment}
jump.) This invokes the primary bootstrap.

The primary bootstrap reads the secondary bootstrap from disk and jumps to it.
The secondary bootstrap finds the Interpreter, reads it in, and jumps to the
tertiary bootstrap (which is part of the Interpreter). Once the System is up

and running, a user may wish to simplify the bootstrapping mechanism (see the
Installation Guide).

SBIOS Interface

The SBIOS routines are called from the BIOS through an address vector (NOT a
jump vector, as with other processors). The following table briefly defines this
interface. Addresses pointed to by the vector offsets are CS-relative,

Routine Vector offset Inputs Outputs
SYSINIT 00 AX = pointer to Interpreter
jump table

SYSHALT 02

CONINIT 04 AH = ioresult

CONSTAT 06 AH = ioresult
AL = char present

CONREAD 08 AH = ioresult
AL = char

CONWRIT 0A AL = char AH = ioresult

SETDISK oC AL = current disk

SETTRAK OE AL = current track

SETSECT 10 AL = current sector

SETBUFR 12 AX = buffer addr (ES-relative)

DSKREAD 14 AH = ioresult

DSKWRIT 16 AH = ioresult

DSKINIT 18 AH = ioresult

DSKSTRT 1A

DSKSTOP 1C

PRNINIT 1E AH = ioresult

PRNSTAT 20 AH = ioresult
AL = char present

PRNREAD 22 AH = ioresult
AL = char

PRNWRIT 24 AL = char AH = ioresult

REMINIT 26 AH = ioresult

REMSTAT 28 . AH joresult

AL char present
REMREAD 2A AH = ioresult
AL = char
REMWRIT 2C AL = char AH = ioresult
USRINIT 2E AL = unit # AH = ioresult
USRSTAT 30 TOS(SP)->return
i/o toggle
“statrec
device #
USRREAD 32 TOS(SP)->return addr i
block #
byte count
“buffer (DS-rel)
device #
control word
USRWRIT 34 TOS(SP)->return addr
block #
byte count
“buffer (DS-rel)
device ##
control word
CLKREAD 36 AH = ioresult
DX = high word
CX = low word
QUIET 38
ENABLE 3A

Notes on the SBIOS:

1. The SBIOS must be assembled relative to zero (i.e., with no ORG
directive), and relocated to its load address (relative to the CS or DS register)
by using the COMPRESS utility.

2. The SBIOS is responsible for ensuring that the SS, DS, and CS registers are
restored to the same state as at entry. All other registers are available for
use.

3, The SBIOS vector contains only addresses, not jump instructions.

4, All SBIOS routines are CALLed indirectly from the BIOS through the
vector. To return to the BIOS, a RET instruction is all that is needed (these
calls and returns are short (intrasegment) CALLs and RETSs).

5. The 8086 Adaptable System requires an Extended SBIOS (all of the above
entry points). If user, remote, clock, or printers are not present, the routine
should simply return an ioresult of 9 (offline).

6. QUIET and ENABLE are new entry points not documented in the
Installation Guide. QUIET contains the functions necessary to disable P-
machine ‘events” from occurring. ENABLE allows events to occur. In most
systems, the disable and enable interrupts functions (respectively) are all that
are necessary (CLI and STI processor commands). A few hardware
configurations may not permit the global disabling of processor interrupts, so
some other scheme must be devised.

7. The routine vector passed to SYSINIT is described below.

BIOS Routines Accessible to the SBIOS

The use of the new routine EVENT is described in Chapter 6 of this booklet, which
discusses interrupt handling.

If you intend to use print spooling, then you must use EVENT to signal a keys-
ready interrupt (event number 19). See Chapter 5 of this booklet for more details.

Routine Vector offset Inputs

POLLUNITS 00

DSKCHNG 02 BX = “disk descriptor block
(#tracks
{isectors
sector size
interleaving
skew
first track)

EVENT 04 DI = event #

The Primary Bootstrap

The primary bootstrap must be assembled relative to zero (i.e., without an ORG

directive), and relocated to 8000H by using the utility COMPRESS (described in the
Users” Manual).

The address of the Interpreter must be set to zero. The CS register must be set
to the desired Interpreter base (shifted right by &4 bits). The bootstrapping and
interpretation are relative to this CS value. The DS, ES, and SS registers will be

10

set to the same value by the bootstrap. (ALL address values within the SBIOS
must be relative to this CS value.)

The following parameters must be on the stack:

TOS --> SBIOS tester parameter (ignored by primary boot)
address of Interpreter (CS-relative)
address of SBIOS (CS-relative)
address of low word of contiguous memory (CS-relative)
address of high word of contiguous memory (CS-relative)
number of tracks on boot disk
number of sectors per track
number of bytes per sector
interleaving factor
first interleaved track
track-to-track skew .
maximum number of sectors in table
maximum number of bytes per sector

The primary bootstrap must pop these values from the Stack, load the SBICS, and
call the SBIOS SYSINIT routine. It must then read in the secondary bootstrap,
which is located on Track 0.

Next, the primary bootstrap must push the following values onto the Stack:

TOS --> address of Interpreter (relative to CS)
address of SBIOS (CS-relative)
address of low word of contiguous memory (CS-relative)
address of high word of contiguous memory (CS-relative)
number of tracks on boot disk
number of sectors per track
number of bytes per sector
interleaving factor
first interleaved track
track-to-track skew
maximum number of sectors in table
maximum number of bytes per sector

(Note that these values are the same as before, except that the SBIOS test
parameter is no longer present.)

Finally, the primary bootstrap must jump to the secondary bootstrap.

The Secondary Bootstrap

‘Like the primary bootstrap, the secondary bootstrap must be assembled relative to
zero (no ORG). It must be linked with a copy of the BIOS, and relocated to
8200H by using the utility COMPRESS.

Again, the CS register must be set to the Interpreter load address, and the DS,

11

£S, and SS registers must be set to the same value.
The secondary bootstrap carries out the following steps:
1. Pop the parameters off the Stack.
2. Allocate the sector translation table in high memory.

3. Allocate the partial sector read buffer.

4. Update the value of the "address of the highest word of contiguous

memory" parameter (to protect the tables just allocated).

5. Call the BIOS routines SYSIN, CONSIN, and DSKIN (for the booting drive).

These routines must be called in this order.

6. Read the directory from the booting disk. -

7. Read the Interpreter into the desired location (i.e., the value in CS).
8. Restack the parameters for the tertiary bootstrap, as follows:

TOS --> unit number of boot disk
address of Interpreter (CS-relative)
address of SBIOS (CS-relative)
addr of low word of contiguous memory (CS-relative)
addr of high word of contiguous memory (CS-relative)
number of tracks on boot disk
number of sectors per track
number of bytes per sector
interleaving factor
first interleaved track
track-to-track skew
pointer to sector translation table (CS-relative)
pointer to partial sector read buffer (CS-relative)

9. Do a short (intrasegment) jump to the tertiary bootstrap (indirectly through

the Interpreter load address).

The Tertiary Bootstrap

The tertiary bootstrap must be linked with the Interpreter, RSP, and BIOS.
the LAST "module" within this codefile.

Once the tertiary bootstrap has been run, the memory it occupies is once again

available to the System.
These are the steps that the tertiary bootstrap must follow:

1. Set the DS and ES registers to the value in CS (Interpreter load point).

12

2. Pop the parameters off the Stack, and pass them to the BIOS.
3, Call the BIOS SYSIN routine.
4. Do a unitclear on the console.

5. (et the "address of the highest word of contiguous memory" parameter,
and set the Stack pointer to this value.

6. Do a unitclear on the booting disk drive.

7. Read the directory of the booting drive, find SYSTEM.PASCAL, and read in
its segments 1 and 15.

8. Build the Operating- System data structures.
9. Set up the divide-by-zero interrupt.

10. Put the CS value into the common block of the Interpreter (this is for
the Native Code Generator (CODEGEN) jump).

11. Jump to the Interpreter’s fetch loop.

13

The BIOS Interface

The BIOS routines are called from the RSP through an address vector. The
following table briefly defines this interface. The return address in the RSP is
always on the top of stack at the call.

Routine Vector offset Inputs Outputs
CONSRD 0o AH = ioresult
AL = char
CONSWR 02 AL = char AH = ioresult
CONSIN 04 TOS -> “break routine AH = ioresult
“syscom -
CONSST 06 TOS -> “status record AH = ioresult
control word
PRNRD 08 AH = ioresult
AL = char
PRNWR 0A AL = char AH = ioresult
PRNIN oC AH = ioresult
PRNST OE TOS = “status record AH = ioresult
control word
DSKRD 10 TOS = block # AH = ioresult
byte count
“buffer (ES-relative)
drive # (0..5)
contro!l word
DSKWR 12 TOS = block # AH = ioresuit
byte count
~buffer (ES-relative)
drive # (0..5)
control word
DSKIN 14 CL = drive # (0..5) AH = ioresult
DSKST 16 CL = drive # (0..5)
TOS = “status record
control word
REMRD 18 AH = ioresult
AL = char

14

REMWR
REMIN

REMST

USERRD

USERWR

USERIN

USERST

SYSRD
SYSWR
SYSIN

SYSST

22

24

26

28
2A
2C

2E

AL = char

TOS = “status record
control word

TOS -» block #
byte count
“buffer (DS-rel)
device #
control word

TOS -> block
byte count
“buffer (DS-rel)
device #
control word

AL = unit #

TOS -> i/o toggle
“statrec
device

TOS -> “statrec
control word

AH = ioresult
AH = ioresult
AH = ioresult

AH = ioresult

statrec[0]=hiram
statrec[1]=clock(lo)
statrec[2]=clock(hi)

8086 Adaptable System Files

Here are the directories of the current release disks for the 8086:

The SYSTEM disk:

SYS1:

SYSTEM.EDITOR 49 28-Jul-381 6 512 Codeflile
DEBUGGER.CODE 29 22-Jul-81 55 512 Codefile
PATCH.CODE 34 3-Nov-8l 84 512 Codefile
SYSTEM.SYNTAX 14 4-Dec-890 118 512 Datafile
< UNUSED > 108 132

4/4 files<listed/in-dir>, 132 blocks used, 188 unused, 108 in largest

SYS2:

ASMB@86 .CODE A8 29-May-81) 512 Codefile
8@86A,.0PCODES 5 S-May-81 66 52 Datafile
8884 .ERRORS 11 8-May-81 71 136 Datafile
80887.FOPS 3 4-Feb-81 82 512 Datafile
YALOE.CODE 12 2-Dec-80 85 512 Codefile
BOOTER.CODE 3 4-Dec-80 97 512 Codefile
DISKCHANGE.CODE 8 S-Dec-84 129 512 Codefile -
DISKSIZE.CODE 3 13-Dec-3¢ 108 512 Codefile
FINDPARAMS .CODE 9 3-Dec-3@ 111 512 Codefile
SAMPLEGOTO.TEXT 4 17-Nov-178 128 512 Textfile
DECODE.CODE 28 S5-Mar-81 124 512 Codefile
COPYDUPDIR.CODE 3 2-Dec-88 152 512 Codefile
MARKDUPDIR.CODE 4 2-Dec-80 155 512 Codefile
XREF.CODE 29 3-Dec-80 159 512 <Codefile
RECOVER.G.CODE 8 S-Dec-80 188 512 Codefile
SCREENTEST.CODE 13 4-Jun-81 196 512 Codefile
LIBRARY.CODE 13 6-Nov-81 209 512 Codefile
ABSWRITE.CODE 4 3-Dec-80 222 512 Codefile

< UNUSED > 14 226
18/18 filesc<listed/in-dir>, 226 blocks used, 14 unused, 14 in largest

The INTERP disk:

B6SYS:

SYSTEM.INTERP 19 15-Dec-81 6 5§12 Datafile
SYSTEM.MISCINFO 1 24-Nov-81 25 194 Datafile
SYSTEM.PASCAL 188 24-Nov-81 26 512 Dataflle
SYSTEM.FILER 32 28-Jul-81 134 512 Codeflle
SETUP.CODE 28 15-Jul=81 166 512 Codeflile
SYSTEM.LIBRARY 9 23-Sep-81 194 512 Datafile
SYSTEM,LINKER 26 27-Jan-81 293 512 Codefile
< UNUSED > 11 229

7/7 files<listed/in-dir>, 229 blocks used, 11 unused, 11 in largest

86INT:

COMPRESS.CODE 18 3-Dec-80 6 512 Codeflle
INTERPX.CODE 26 6-0ct-31l 16 512 Codefile
INTERPX.2.CODE 23 6-0ct-81 36 512 Codefile
INTERPX.4.CODE 24 6-0ct-81 59 512 Codefile
RSP .CODE 6 18-Sep-81 83 512 Codefile
BI0S.CODE 6 26-Sep-81 89 512 Codefile
BI0S.C.CODE 6§ 26-Sep-81 95 512 Codefile
BI0S.CR.CODE 6 26-Sep-81 181 512 Codefile
BIOS.CRP,CODE 6 26-Sep-81 187 512 Codefile
TERTBOOT.CODE 7 17-Sep-81 113 512 Codefile
REALOPS.2.CODE 1¢ 21-Aug-81 129 512 Codefile
REALOPS.4.CODE 11 21-Aug-81 13¢ 512 Codefile
KERNEL.CODE 65 11-Sep-81 141 512 Codefile
COMMANDIO.CODE 6 20-Jul-81 206 512 Codefile
SCREENOPS.CODE 13 29-Jun-81 212 512 Codefile
< UNUSED > 15 225

15/15 files<listed/in-dlir>, 225 blocks used, 15 unused, 15 in largest

These are the only two disks required for the 8086 system. Note that
programs are shipped on the second image of the SYSTEM disk.

16

utility

2. SYMBOLIC DEBUGGER
This product is available on all processors that support the. current release.

This chapter describes the Debugger utility. The Debugger can be used as an aid
to debugging compiled programs. It can be invoked from the main System
promptline, or during the execution of a program (when a breakpoint is
encountered). Memory may be displayed and altered, P-code may be single-
stepped, Markstack chains may be displayed and traversed, and so forth.

There are no promptlines explaining the Debugger commands because such prompts
would detract from the information displayed by the Debugger itself. When a
command is entered, there are usually several prompts that may ask for further
information such as a segment name, variable offset, and so forth.

In order to use the Debugger properly, it is necessary to be familiar with the
UCSD P-machine architecture. The user should understand the P-code operators,
Stack usage, variable and parameter allocation, and so forth. These topics are
discussed in the Internal Architecture Guide.

When using the Debugger, it is also useful to have a compiled listing of the
program being debugged. This listing helps determine P-code offsets and similar
information, and should be current.

You should be aware that the Debugger is a low-level tool, and as such, must be
used with caution. If the Debugger is used incorrectly, the System can die.

It is easier to use the Debugger if the code being debugged has been compiled
with the $D+ option (the Users’ Manual describes compiler options in general).
The $D option (which defaults to $D-) instructs the Compiler to output symbolic
debugger information for those portions of a program that are compiled with $D+
turned on. Variables within a given routine may be specified by name (rather than
data segment offset number) if at least one statement within that routine is
compiled $D+. Breakpoints may be specified by line number (rather than P-code
offset number) for all statements covered by the $D+ option. Once a program is

debugged, however, it should be recompiled without symbolic debugger information,
because this information increases the size of the codefile.

Basic Debugger Commands

The Debugger may be entered from the main System promptline by typing ‘D,
Whenever the Debugger is entered in a ‘fresh” state, the prompt, ‘DEBUG {version
#}°, appears and a ‘(" is displayed on the second line. Being in a ‘fresh” state
means that the Debugger was not previously active and no breakpoints are
currently enabled. [If the Debugger is entered in a ‘non-fresh’ state, only the ¢
appears.

Many of the Debugger commands require two characters (such as 1P’ for L(ist

P(code, or ‘LR’ for L(ist R(egister). If, after typing the first character, you
decide to exit the command, simply type {space> and the main mode of the

17

Debugger is re-invoked.

The Debugger may be exited by typing Q(uit, R(esume, or S(tep. If the Debugger
is exited using the Q(uit option, it is disabled. If it is later re-invoked, it is in a
¢resh’” state. If the Debugger is exited using the R(esume option, execution
continues from where it left off and the Debugger is still active. If it is then re-
invoked, it is in a ‘non-fresh” state. If the Debugger is exited by using the S(tep
option, a single P-code operator is executed and then the Debugger is
automatically re-invoked (in a ‘non-fresh’ state).

If a program is running under the Debugger’s R(esume command, it may force a
return to the Debugger by calling the halt intrinsic (described in the Users’
Manual). In fact, ANY runtime error causes a return to the Debugger, if the
Debugger is active while the program is running.

If you wish to enter the Debugger while a program is running, but do not wish to
alter the program’s code at all, the Debugger itself may be used to set
breakpoints.

Breakpoints are handled by typing ‘B* for B(reakpoint. After "B is typed, one of
the following commands must be used: S(et, R(emove, or L(ist.

If ‘S” is typed (after the ‘B’), then a breakpoint may be set. The user may have,
at most, five breakpoints numbered O through 4. The first prompt is ‘Set Break
#7°: a digit 0..4 should be typed followed by <space>. The next prompt is
‘Segname?’: the name of the desired segment should be typed followed by <space>.
Then “Procname or {#?° appears: the number of the desired procedure OR the first
eight characters of the valid procedure name should be typed followed by <space>.
If a procedure number is entered, then ‘Offset #?° appears: the desired offset
within the procedure should be typed followed by <space>. If a procedure name is
entered after the ‘Procname or f#° prompt, the following line is displayed: Tirst
_ Last #_ Line #?°. The underlines are actually numbers that indicate the first
and last line numbers. The desired line number within the specified range should
be entered. A breakpoint is then set and if, during execution resumption, that
segment, procedure, and offset are encountered, the Debugger is automatically re-
invoked.

Note: Under the B(reakpoint command, the "First #__ Last #_" information can be
displayed ONLY if the Debugger finds symbolic debugger information in the
codefile; that is, this mode can only be used if you have included a {$D+} compiler
option within the procedure where you wish to place a breakpoint.

Whether you set breakpoints by segment and offset number, or by procedure name
and line number, it should be evident that having a compiled listing of your
program will make it far easier to determine where the breakpoint is.

When setting a breakpoint, a space may be typed for the break number, segment
name, etc. Rather than exiting the breakpoint command (as would happen with
other commands), the previous breakpoint’s information is used. For example, if it
is desired to break in the same segment and procedure but with a different offset,
a space may be typed for everything except the offset.

L8

If, after typing B(reakpoint, an ‘R’ is typed, a breakpoint may be removed. The
prompt ‘Remove break #7° appears. To remove a breakpoint, type its number
followed by a <space>.

If after typing B(reakpoint, an 1. is typed, the current breakpoints are listed.

The Debugger may be memlocked or memswapped (see the descriptions of those
intrinsics) by using the M(emory command at the outer level. “ML" memlocks and
‘MS’ memswaps the Debugger.

Displaying and Altering Memory

The V(ar command allows data segment memory to be displayed. This is another
two-character command and may be followed by G(lobal, L(ocal, I(ntermediate,
E(xtended, or P(rocedure. If ‘G” or L’ is typed, the prompt Varname or Offset
#2° appears: the desired offset into the data segment or variable name should be
typed. (Note: Only ‘Offset #° appears if symbolic debugger information cannot be
found.) If ‘I’ is typed, ‘Delta Lex Level?’ is also prompted (when an offset
number is input). If E’ is typed, the prompts ‘Seg #° and ‘Offset #° are displayed
(extended variables may not be specified symbolically). If P" is typed, an offset
within a specified procedure may be displayed: ‘Segment name?’, ‘Procname or #7°
and Varname or Offset f#?° are all prompted in sequence.

When any of the non-symbolic options are used, a line similar to the following is
displayed:

(1) S=INIT P{#1 VO{#l 2ClA: 0B 05 53 43 41 4C 43 61 --SCALCa

In this example, a Local () segment of memory is displayed. The segment is INIT,
procedure 1, variable offset 1 at absolute hex location 2CIlA. Following this, eight
bytes are displayed, first in HEX and then in ASCI (a ’-* indicates that the

character is not a printable ASCII character).

If the desired variable had been entered symbolically, the following line would
appear:

(1) S=INIT P=FILLTABL V=TABLE1 2ClA: 0B 05 53 43 41 4C 43 61 --SCALCa

It is possible to change the frame of reference from which the global, local, and
intermediate variables are viewed. This can be done by using the C(hain
command. After ‘C’ is typed the following three options are available: U(p, D(own
and L(ist. If 17 is typed, all of the currently existing mark stacks are displayed,
with the most recently created one first. An entry in the list resembles the
following:

(ms) S =HEAPOPS P#3 O#23 msstat=347C msdyn =F 0AQ msipc =01DA msenv =FEES8

If the U(p or D(own options are used, the frame of reference moves up or down
one link and variable listings (using the "V’ command) change accordingly.

19

After a line has been displayed by the V(ar command, a “+” or "-" may be typed.
This displays the succeeding or preceding eight bytes of memory. If a */ is typed,
then the line displayed above it may be altered in hex mode. If a * “ is typed,
then the line displayed above it may be altered in ASCII mode. When altering in
hex mode, any characters that are to be left unchanged may be skipped by typing
¢space>. In the ASCII mode, any characters to be left unchanged may be skipped
by typing <return>.

A text file may be viewed from the debugger by typing F(ile. The ‘Filename?’
‘First line #?° and ‘Last line #?° prompts are then displayed. This command lists

as many lines as possible in the window between “first line” and ‘last line” of the
indicated file.

Further Single-Stepping Options

When the single-stepping mode (the S(tep command described above) is used, one P-
code operator is executed at a time. When control is returned to the Debugger, it
displays various pieces of information if they are desired. In order to select what
will be displayed, the E(nable mode should be used. After typing ‘E’, the following
options are available: R(egister, P(code, M(arkstack, A(ddress, and L(oad. Any or
all of these options may be enabled at the same time.

If R(egister is enabled, a line such as the following is displayed after each single
step:

(rg) mp=F082 sp=F09C erec=FEEB seqg=9782 ipc=01C3 tib=0493 rdyq=2EBC
If P(code is enabled, a line such as the following is displayed after each step:
(cd) S=HEAPOPS Pi#3 O#23 LLA 1
If M(arkstack is enabled, a line such as the following is displayed after each step:
(ms) S=HEAPOPS P#3 O#23 msstat=347C msdyn=FO0AQ0 msipc=01DA msenv=FEES
If A(ddress is enabled, a line such as the following is displayed after each step:
(a) S=HEAPOPS P{#3 Of#23 2C1A: 0B 05 53 43 41 4C 43 61 --SCALCa
In order to initialize this address to a given value, there is an A(ddress mode at
the outer level. When “A° is typed, "Address ?° appears. An absolute address, in
hex, should be typed in. At this point, eight bytes are displayed starting at that
address. Also, that address is now displayed if the E(nable A(ddress option is on.

Enabling E(very causes all of the above options to be enabled.

The D(isable mode disables any of the options just described. The L(ist mode lists
any of the above options.

20

Also, at the outer level, there is- a P(code option. This option asks for ‘Segment
name?’, Procname or #?°, and either First #__ Last #_", "Start Line #7, End Line
#7° or ‘Start Offset #77, ‘End Offset #?°. This command disassembles the
indicated portion of code. This may be useful during single-step mode if you wish
to look ahead in the P-code stream. This mode may be exited before it reaches
the ending offset by typing <break>; control returns to the Debugger.

Example of Debugger Usage
Suppose the following program is to be debugged:

Pascal Compiler IV.O

10 0:d1 [$L LIST.TEXT}

2 2 1:d 1 PROGRAM NOT_DEBU3GED;

3 2 1:d 1 VAR 1,J3,K: INTEGER;

4 2 l:d 4 B1,B2:BOOLEAN;

5 2 1:0 0 BEGIN

6 2 1:1 0 [:=1;

72 1:1 3 Ji=1;

8 2 1:1 6 IF K <> 1 THEN WRITELN
(‘Whats wrong?”);

9 2 :0 0 END.

End of Compilation.

First we enter the Debugger and set a breakpoint at the beginning of the IF
statement:

(BS) Set break #? 0 Segname? NOTDEBUG Procname or #2 1 Offset #7 6
(EP)
(R)

After setting the breakpoint we enable P-code (EP) and resume (R). Now we

execute the program above, and when it reaches offset 6, the Debugger is entered.
We single-step twice:

Hit break #0 at S=NOTDEBUG P#l O#6
(cd) S=NOTODEBUG P#1l O#6 SLDO1
(cd) S=NOTDEBUG P#1 O#7 SLDC1
(cd) S=NOTDEBUG P#l Of{8 NEQUI

We see that our first single-step did a short load global 1. (Note: This put K on
the stack. K is NOT global 3; 1 is global 3, J is global 2, and K is global 1.
Every string of variables (such as 1, J, K" in a declaration) is allocated in reverse
order. Boolean Bl, which follows, is at offset 5, and B2 is at offset 4.
Parameters, on the other hand, ARE allocated in the order in which they appear.)
The second single-step did a short load constant 1 onto the Stack. Now we are
about to do an integer comparison (¢>). But this is where our error shows up, sO

21

we decide to look at what is on the Stack before doing this comparison:

(LR)

(rg) mp=EB62 sp=EBB2 erec= ...

(A) Address? EB82

(a) EB82: 01 00 C5 14 ...

We list the registers and then look at the memory address that sp points to.
What we discover is a 1 on top of the stack (01 00: this is a least-significant-
byte-first machine) followed by a word of what appears to be garbage. This leads
us to suspect that K was not initialized. Looking over the listing, we quickly
realize that this is the case.

22

Summary of the Commands

A(dress

B(reak point
S(et
R(emove
L(ist

C(hain
U(p
D(own
L(ist

D(isable
E(nable
F(le

L(ist
R(egister
P(code
M(arkstack
A(ddress
E(very

M(emory
L(ock
S(wap

P(code
Q(uit
R(esume
S(tep
V(ariable
G(lobal
L{ocal
I(nter

P(roc
E(xtended

Displays a given address

Segment, procedure and offset must be specified
Allows a break point (0 through 4) to be set
Allows a break point to be removed

Lists current break points

Changes frame of reference for V(ariable command
Chains up mark stack links

Chains down mark stack links

Lists current mark stacks

Disables the following from being displaysd

Enables the following to be displayed during single step
Allows viewing of text files

Lists the following

The registers: mp, sp, erec, seg, ipc, tib, rdyq

Current P-code mnemonic

Mark stack display

A given address
All of the above

Memlocks the Debugger

Memswaps the Debugger

Dissassembles a given procedure

Quits the Debugger, “fresh” state if re-entered

Exits Debugger, Debugger remains active, ‘non-fresh’
Single steps P-code and returns to Debugger
Displays global memory

Displays local memory

Displays intermediate memaory

Displays data segement of given procedure
Displays variables in another segment

23

3. EXTENDED MEMORY
Extended Memory is availabile only ‘on systems that use ar 8086 processor.

If your system is configured with extended memory, then the Codepool resides in a
different area than the Stack and the Heap. This allows much more space for
code and data, and greatly reduces the chances of a Stack overflow.

A Codepool that resides between the Stack and the Heap (as in all Version IV.0
Systems) is called an "internal" Codepool. A Codepool that occupies a memory
page of its own (as in systems with extended memory) is called an "external"
Codepool.

The segments in an external Codepool may not need to be moved or swapped as
often as the segments in an internal Codepool, so extended memory provides a
speed advantage as well.

The description of Codepool handling that appears in Chapter 3 of the Internal
Architecture Guide still applies, except that the Operating System’s Codepool
descriptor has been changed, as described below.

The following fragment of Pascal shows the declarations for a Codepool descriptor
in the current Operating System:

type
CodePool: “Pooldes; ,,
{points to a description of the Codepool}

Pooldes: record
PoolBase: FullAddress;
{the 1st physical address in the
Codepool. A 32-bit quantity}
PoolSize: integer;

{size of the Codepool in words.
This value is only referenced if
the pool is external.}

MinOffset: Memptr;

{Byte offset of the lowest

useable value in the pool.
If the pool is internal this
value depends on HeapTop;
otherwise it depends only
on segment alignment
requirements (if any)}
MaxOffset: Memptr;

{Byte offset one word
past the highest position
in the pool. If the pool
is internal, it also equals
the SP_LOW value of the
main task.}

25

The Codepool is managed only by the FAULTHANDLER segment within KERNEL.

The p-System is shipped with extended memory disabled.
memory in your 8086 system, you may enable extended memory by doing the

Resolution: integer;

{Segment alignment
requirements in bytes
(machine-dependent).}

PoolHead: SIB_P;

{Points to the SIB of the
segment at the base of
the pool. If the pool is
internal, this is the
segment nearest the Heap,}

PermSIB: SIB P;

{Points to the SIB of the
first segment that is
locked in the pool.}

SP Low: Memptr;

TThe lowest possible bound
of the Stack; if the pool
is external, this is ignored;
if the pool is internal, this
is one word above the top of
the pool.}

HeapTop: Memptr;

{Points to the top of the
Heap; ignored if the pool
is external.}

Extended: Boolean;

{True if the Codepool is

external.}

end;

following steps.

Execute the SETUP utility, and set the following data items in SYSTEM.MISCINFO

to the values described:

CODE POOL BASE[First Word]
CODE POOL BASE[Second Word]

26

This is a 32-bit address that denotes the lowest address of the memory page
in which you want the Codepool to reside.
high-order hex digits, and ‘Second Word" contains the four low-order hex
The least significant hex digit of the second word must be zero, so
that memory segments will align properly.
Pooldes record will be set to this value.

Important: If you do NOT use extended memory, then the value of both
words MUST be set to zero.

If you have sufficient

First Word” contains the four

The PoolBase field in the

CODE POOL SIZE

This should equal the number of WORDS of memory in the Codepool area,
MINUS ONE. This value can be as high as 32767 (a 64K-byte area). It can
also be smaller, if desired. The Poolsize field in Pooldes will be set to this

value. This value is ignored if HAS EXTERNAL MEMORY is false.

HAS EXTENDED MEMORY
This should be set to true if you are to use extended memory. This should
be set to false if 64K (or less) memory is to be used. The Extended field
in Pooldes will be set to this value.

SEGMENT ALIGNMENT

This should be set to 16 (base ten), which is the segnient alignment for 8086
processors. The Resolution field in Pooldes will be set to this value.

After running SETUP and changing these values to fit your hardware, you must
reboot in order for the changes to take effect.

27

4. NATIVE CODE GENERATION
This product is presently available for systems with Z80 and 8086 processors.

The Native Code Generator is a utility that takes an executable P-code codefile as
input, and procuces ancther executable codefile. The output file, however,
contains a mixture of P-code and native code (N-code) for either the Z80 or the
8086 (whichever processor you are using). The Code Generator selectively
translates embedded sections of the P-code input file into equivalent N-code.

Generally, N-code executes much more quickly than P-code, but requires more
memory space. Time-critical code may take fuller advantage of the processor’s
speed if it is translated into N-code.

The selection of which code is translated into native code has been left under user
control. The user specifies what code he wishes translated to N-code by enclosing
the desired sections with the compile-time switches $N+ and $N-. When the
Compiler encounters the $N+ option, it begins emitting additional P-codes that
contain information necessary for the Code Generator to perform its translation.
When it encounters the $N- option, it discontinues the generation of the additional
P-codes. The default setting for this compiler option is $N-.

An entire routine (Procedure, Function etc.) is the smallest unit that can be
translated into Native Code at one time (in the current implementation). The $N+
must occur before the first begin within that routine. The Code Generator will
not generate any Native Code unless at least one entire routine is included
between a $N+ and the corresponding $N-.

The object code produced by the Compiler from source containing the $N+ option
is executable like any other P-code file. The only difference is a very slight
increase in codefile size due to the extra P-code hooks placed there for possible
native code generation.

If there are any references to assembly language routines within a codefile, these
routines must be linked in before that codefile may be processed through the Code
Generator (see the chapter on the Adaptable Assembler and the section on the
Linker in the Users” Manual for information about linking assembly language
routines into codefiles).

The Code Generator will not necessarily translate all P-codes within the section(s)
of code specified by the user into N-code. Due to the unwieldy nature of their
machine code equivalents, some P-codes will be left in their original P-code form.
Also, only those sections of P-code that encompass an entire routine (procedure, ‘
function, or process in UCSD Pascal) will be translated.

The Code Generator accepts codefiles generated by any of the compilers released
as part of the UCSD p-System. The Code Generator will only fail to generate an
output file if the input file is not a valid executable codefile.

The Code Generator produces an object codefile whose execution behavior is

identical to that of the P-code codefile, except for differences with respect to

29

execution speed, object code size, or implementation dependencies (for example,
the evaluation of conditional expressions is often implementation-dependent). If a
loop were constructed in the source program that checked the value of a variable
and used the variable to index into an array in the same expression, it would be
possible for the P-code object file to give a value range error for some value of
the variable. The corresponding N-code however, might (in some situations) short-
circuit the array indexing and subsequent value-range check if the first test failed.

Concurrency is implemented in such a way that P-codes are uninterruptable
operations. If a P-machine interrupt occurs during the execution of a P-code, the
event is queued until the P-code finishes. In this respect, any embedded N-code in
the codefile behaves as if it were a single P-code. If the user has a native code
routine bound into a codefile, then the execution of that routine appears as a
single uninterruptable P-code. Any P-machine interrupts that occur during the
execution of the native code routine are queued until the end of the routine.
Since the Code Generator does not, in general, translate all P-codes in the
selected sections of the input file into N-code, it is typically a” much smaller
sequence of N-code that appears as a single P-code to the P-machine.

It is possible to force a poll within a routine that will be translated into native
code by the Code Generator. To do this, simply include the pseudo-comment 1$N-
,N+}* in the source code.

When you run the Code Generator, it prompts you for an input file name and an
output file name. If the input file name does not have ".CODE’ appended to it,
and a file with that name cannot be found in the directory, the Code Generator
appends .CODE’ to the name and tries again. This does NOT happen when you
specify the output file name. If you wish the output file to have a name with a
*.CODE" suffix (which is generally the case), you must type ".CODE" yourself.

Finally, the Code Generator can optionally output an assembly language format
listing for each routine that it translates.

30

5. PRINT SPOOLING

This product is available on systems with an 8086, Z80, or 8080 processor. Users
of CP/M Adaptable Systeams MUST write their own SBIOS in order to use print
spooling. The requirements are mentioned in this chapter, - and described in
Chapter 1.

The print spooler allows you to make a queue of files that are printed concurrently
with normal execution of the p-System. The program itself is called
SPOOLER.CODE, and it MUST reside on the System disk. The queue it creates is
a file called *SYSTEM.SPOOLER.

When SPOOLER is eX(ecuted, the following promptline appears:

Spool: P(rint, D(elete, L(ist, S(uspend, R(esume, A(bort, C(lear, Q(uit
P(rint prompts for the name of a file to be printed. This name is then added to
the queue. If SYSTEM.SPOOLER does not already exist, it is created. In the

simplest case, P(rint may be used to send a single file to the printer. Up to 21
files may be placed in the print queue.

D(elete prompts for a filename to be taken out of the print queue. All
occurrences of that file name are taken out of the queue.

L(ist displays the files currently within the queue.
S(uspend temporarily halts the printing of the current file.

R(esume continues the printing of the current file after a S(uspend. R(esume also
starts printing the next file in the queue after an error or an A(bort.

A(bort permanently stops the printing process of the current file and takes it out
of the queue.

C(lear deletes all file names from the queue.
Q(uit exits the Spooler utility and starts transferring files to the printer.

If an error occurs (e.g., a nonexistent file is specified in the queue), the error
message appears only when the p-System is at the main System promptline. If
necessary, the Spooler waits until the user returns to the outer level.

Program I/O to the printer may run concurrently with spooled I/O. The Spooler
finishes the current file and then turns the printer over to the user program. (The
user program is suspended while it waits for the printer.) The user program should
only do Pascal (or other high-level) writes to the printer. If the user program
does printer I/O using unitwrite, the I/0O is sent immediately and appears randomly
interspersed with the 1/0 going on in the background.

The utility SPOOLER.CODE makes use of the Operating System unit SPOOLOPS.
Within this unit there is a process called Spooltask. Spooltask is start’ed at boot

31

time and runs concurrently with the rest of the UCSD p-System. When the file
*SYSTEM.SPOOLER exists, Soooltask prints the files that it names. Spooltask runs
as a "background" to the main operations of the p-System.

*SPOOLER.CODE interfaces with SPOOLOPS and uses routines within it to
generate and alter the print queue within *SYSTEM.,SPOOLER.

To enable spooling, the HAS SPOOLING data item in *SYSTEM.MISCINFO must be
TRUE. In addition, the QUIET and ENABLE routines in the Extended SBIOS must
be implemented (sze Chapter 1). Finally, the Interpreter’s EVENT routine must be

called from the Extended SBIOS with a keys-ready interrupt.

Whenever a key is struck on the console, the SBIOS must call EVENT with an
event number of 19. At present, this "keys-ready" interrupt is used only by
SPOOLOPS, and the event number 19 is reserved for this purpose.

For more information on EVENT, see the following chapter, Chapter 6.

32

6. INTERRUPT HANDLING

The programmer may def:ne interrupts and how to handle them for systems with
any currently supported processor. At present, the only "predefined" interrupt that
is visiole to the user is the keys-ready interrupt required for print spooling (see
the preceding chapter, and Chapter 1).

Compiled programs handle interrupts by use of the attach intrinsic. To use this
facility, it is necessary to make some provisions in the SBIOS. These are
described in this chapter.

The current SBIOS is capable of calling these Interpreter routines:

Routine Name Vector Number Description

POLLUNITS 0 polls character 1/O devices
DSKCHNG 1 changes disk format values
EVENT 2 signals an event

(For the 8086, these routines are called through an address vector rather than a
jump table. See Section 1.3.)

EVENT is a new routine that can signal some event (typically a hardware event).
There are no currently defined user events, but the programmer may define such
events in the SBIOS, and use EVENT to implement them.

Each event that the programmer wishes to recognize is given an event number.

When the SBIOS detects one of these events, it passes the appropriate number to
EVENT.

If a Pascal program has attach’ed a semaphore to an event number (as described in
the Users’ Manual), then a call to EVENT with that event number signal’s the
semaphore. The signal takes place before the next P-code is executed. If the
event number has not been attach’ed, then the call to EVENT is ignored.

The SBIOS programmer may define event numbers in the range 32..63. The
numbers 0..31 are reserved for the System’s use, and must NOT be used (except to
enable print spooling, as described in the note below).

EVENT destroys ALL processor registers except the Stack Pointer.
Note: If you wish to support print spooling, then the Extended SBIOS must call

EVENT with an event number of 19 whenever a key is pressed on the console.
This is a System-supported event number, and there is no need to attach it.

33

Jascal Compiler IV.1 cSs-4 11/24/83 Page

Using KERNEL

2 2 :

J 2 :

4 2 : CONST

5 2 : VERSION =."[IV.1 B4h1’;

6 2. 1: MMAXINT = 32767; { MAXIMUM INTEGER VALUE }

7 2 MAXDIR = 77; { MAX NUMBER OF ENTRIES IN A DIRECTORY }
a 2 VIOLENG = 7; { NUMBER OF CHARS IN A VOLUME ID }
9 2 : TIDLENG = 15; NUMEER OF CHARS IN TITLE ID 3

10 2 : MAXSEG = 15; MAX CODE SEGMENT NUMBER 3

11 2 : FBLKSIZE = 512; STANDARD DISK BLOCK LENGTH 3

12 2 : DIRBLK = 2; DISK ADDR OF DIRECTORY }

13 . 2 : AGELINIT = 300; MAX AGE FOR GDIRP...IN TICKS }

« = - wm um we sn e wx um - s ww - - - am
e - T - ~ A R~ N L T T — I A B~~~ — —S =~ - < - A O - - - -2 - - - - - - A -~ I~ - -~

DLE = 16 BLANK COMPRESSION CODE

NAME_LENG = 23; Number of characters in a full file name?}
SWAPPING = O; Swapping segment status}

P_LOCKED = ~1; Position Locked segment status?

STACK_SLOP = 40; Number of words of temp for procedure stack}
MEM_LINK_SIZE = 4; { Wumber of words in heap record}

{
{
{
{
{
EOL = 13; { END-OF-LINE...ASCII CR }
{
{
{
{
{
{

sys_error = 0
proc_error= J;

{ Unknown system error}
{ Unknown procedure error}
stk_error = 4; { Stack overflow error}
sys_io_error = 9; { System I/0 error}
halt_error = 14; { Programmed halt }

{

{

{

{

{

heap_errar= 15; Heap operation error}
seg_fault = 128; Segment fault?
stk_fault = 129; Stack fault?
heap_fault= 130;
pool_fault= 131;

Heap operation fault}
Used to consolidate pool after purgel

Lol el anii ol e e adi ot o A R R O O N N T T S S S S i O QI A S G Sy S G W S U G T T e
as ax wa *x aa . s s w M e ex - %s @s ws am sy wa w*m . s
Ll a0 U N i SO S A SF MU QAT i QI T

TYPE
: IORSLTWD = (INOERROR,IPADBLOCK,IBADUNIT,IRADMODE , ITIMEQOUT,
362 : ILOSTUNIT, ILOSTFILE, IBADTITLE, INOROOM, INOUNIT,
37z : INOFILE, IDUPFILE, INOTCLOSED, INOTOPEN , IPADFORMAT,
38 2 : IBUFOVFL, i_write_prot, i_ill_block, i_ill_buf};
0 2 :
&0 2 : { COMMAND STATES...SEE GETCMD 3
41 2
42 2 CMDSTATE = (sys_boot, sys_init, sys_halt,UPROGNOU,UPROGUOK,SYSPROG,
43 2 COMPONLY , COMPANDGO , L INKANDGO , sys_debug) ;
44 2 :
45 2 : { CODE FILES USED IN GETCMD 3
46 2 : .
47 2 SYSFILE = (ASSMPLER,COMPILER,EDITOR,FILER,LINKER);
48 2 :
49 2 : { ARCHIVAL INFQ...THE DATE }
50 2 :
51 2 : DATEREC = PACKED RECORD
52 2 MONTH: 0..12; { 0 IMPLIES DATE NOT MEANINGFUL 3}
53 2 DAY: 0..J31; 1 DAY OF MONTH 3}
54 2 YEAR: 0..100 { 100 IS TEMP DISK FLAG }
2

END { DATEREC } ;

Pascal Compiler IV.1 cS5s-4 - #SYSTEM.LIBRARY 11/24/83

57
58
59
60
61
&2
63
64
&5
66
&7
68
&9
70

71(;9
72e Y
73 ™,
74
75
76
77
78
79
80
81
82
83
84
&8s
86
a7
88

89
so(

2PN RO RN NRDNNNNDRMN RN

V)

RN MNMRPBR N NR DR RN BRDR

7!
92

93
94 .
93
96
97
98
79
100
101
102
103
104
105
104
107
108
109
110
111
112
113

g

P2 R RS PSR R R RS RO R RS R R RY BRI RS R R BRI RS RSN

".

» a " = aw -
= e - O e e e e e S -~ — I - A O R — N T ~ S~ — I — Y - - - - - - - - - - - - -

as as =m o« T -

Ll il T T e T T T e e L A e e N A i N G S W W e N Ly

UNITNUM = 0..127;
VID = STRINGCVIDLENGI;

DIRRANGE = 0..MAXDIR;
TID = STRINGLTIDLENGI;

full_id = STRINGCname_Lengd;

{

{

Page 2

VOLUME TABLES }

DISK DIRECTORIES }

file_table = ARRAY [sys_filel OF full_id;

FILEKIND = (UNTYPEDFILE,XDSKFILE,CODEFILE, TEXTFILE,INFOFILE,
DATAFILE,GRAFFILE,FOTOFILE,SECUREDIR,SUBSVOL) ;

DIRENTRY = PACKED RECORD
DFIRSTBLK: INTEGER;
DLASTELK: INTEGER;

SECUREDIR,

{

FIRST PHYSICAL DISK ADDR }

{ POINTS AT BLOCK FOLLOWING 3
CASE DFKIND: FILEWKIND OF

UNTYPEDFILE: { ONLY IN DIRCOJ...VOLUME .INFO 3
(Filler_1 : 0..2048; {13 bits)

DVID: VID;

DEQVBLK: INTEGER;
DNUMFILES: DIRRANGE; { NUM FILES IN DIR }
DLOADTIME: INTEGER; { TIME OF LAST ACCESS }
DLASTBOOT: DATEREC); { MOST RECENT DATE SETTING }
XDSKFILE, CODEFILE, TEXTFILE, INFOFILE,
DATAFILE,GRAFFILE ,FOTOFILE,SUBSVOL
(filler_2 : 0..1024; {12 bits}
status : BOOLEAN;

DTID: TID;

{ NAME OF DISK VOLUME 3}
{ LASTBLK OF VOLUME 3

{Filer kludge temporary}
{ TITLE OF FILE }

DLASTBYTE: 1..FBLKSIZE; ¢ NUM BYTES IN LAST BLOCK }
DACCESS: DATEREC)

END ¢ DIRENTRY } ;

DIRP = "DIRECTORY;

{ LAST MODIFICATION DATE }

DIRECTORY = ARRAY CDIRRANGE] OF DIRENTRY;

{

FILE INFORMATION }

CLOSETYPE = (CNORMAL,CLOCK, CPURGE, CCRUNCH) ;

WINDOWP = “WINDOW;

WINDOW = PACKED ARRAY [O0..031 OF CHAR;

FIBP = “FIB;

FIB = RECORD

FWINDOW: WINDOWP; { USER WINDOW...F*, USED BY GET-PUT }

FEOF ,FEOLN: BOOLEAN;

FSTATE: (FJANDW,FNEEDCHAR,FGOTCHAR) ;
FRECSIZE: INTEGER; { IN BYTES...0=>BLOCKFILE, 1=>CHARFILE }

f_Lock : SEMAPHORE;
CASE FISOPEN: BOOLEAN OF

TRUE: (FISBLKD: BOOLEAN; { FILE IS ON BLOCK DEVICE }

FUNIT: UNITNUM;
FVID: VID;
FREPTCNT,

{

{

{

PHYSICAL UNIT # }
VOLUME NAME 3
TIMES F* VALID W/0 GET 2

Jascal Compiler IV.1 cS5s-4 - #BYSTEM.LIBRARY 11/24/83 Page 3

114 2 1:u 1 FNXTBLK, { NEXT REL BLOCK TO IO }

115 2 1t 1 FMAXBLK: INTEGER; { MAX REL BLOCK ACCESSED }

116 2 1:u 1 FMODIFIED:BOOLEAN;{ PLEASE SET NEW DATE IN CLOSE }
117 2 1:u 1 FHEADER: DIRENTRY;{ COPY OF DISK DIR ENTRY }

118 2 {:u 1 CASE FSOFTBUF: BOOLEAN OF { DISK GET-PUT STUFF }
119 2 1:u 1 TRUE: (FNXTBYTE,FMAXBYTE: INTEGER;

120 2 1 1 ~ FBUFCHNGD: BOOLEAN;

121 2 1:u 1 FBUFFER: PACKED ARRAY [O..FBLKSIZEJ OF CHAR))
122 2 1:u 1 END { FIB } ; '

123 2 1:u 1

124 2 {:u 1 { USER WORKFILE STUFF 3}

125 2 1:u 1

126 2 1eu 1 INFOREC = RECORD

127 2 1:u 1 SYMFIBP,CODEFIBP: FIBP; { WORKFILES FOR SCRATCH }
128(; 2 1:u 1 ERRSYM,ERRBLK,ERRNUM: INTEGER; { ERROR STUFF IN EDIT }
129« : 1au 1 SLOWTERM,STUPID: BOOLEAN; { STUDENT PROGRAMMER ID!! }
130“'5 1:u 1 ALTMODE: CHAR; { WASHOUT CHAR FOR COMPILER }
131 2 f:u 1 GOTSYM,GOTCODE: BOOLEAN; { TITLES ARE MEANINGFUL }
132 2 1:u 1 WORKVID,SYMVID,CODEVID: VID; { PERMICUR WORKFILE VOLUMES }
133 2 1:u 1 WORKTID,SYMTID,CODETID: TID { PERM&CUR WORKFILES TITLE }
134 2 1:u 1 END { INFOREC 3 ;

135 2 1:u 1

136 2 1:u 1

137 2 1:u 1 int_p = "INTEGER;

138 2 1:u 1 tib_p = “tib;

139 2 1:u 1 sib_p = "sib;

140 2 1:u 1 e_rec_p = “e_rec;

141 2 1:u 1 e_vec_p = "e_vec;

142 2 T:u 1 sem_p = “semj

143 2 1:u 1 mscwp = “mscw;

144 2 Teu 1 p_mem_chunk = “mem_chunk;

145 2 1:u 1 vip = “vinfo;

146 2 1y 1

1A 2 1w 1 byte = 0..255;

148 Sor? 1:u 1 mem_chunk = ARRAY [0..0] OF INTEGER; {Accessed $R-}

149 2 1:u 1 alpha = PACKED ARRAY [0..71 OF CHAR; {Identifier name}

150 2 1:u 1

151 2 1:u 1 mem_ptr = RECORD

152 2 {:u 1 CASE INTEGER OF

153 2 1l:u 1 0 ¢ (m: "mem_Link);

154 2 Tiu 1 1: G ¢ int_p);

135 2 1:u 1 2 ¢ (c : p_mem_chunk);

156 2 1:u 1 J ¢ (t : INTEGER);

157 2 1w 1 END {of mem_ptr};

158 2 Teu 1

159 2 1:u 1 mem_Link = RECORD

160 2 1wy 1 avail_Llist : mem_ptr;

161 2 1:u 1 n_words : INTEGER;

162 2 1:u 1 CASE BOOLEAN OF

163 2 1:u 1 TRUE : (last_avail,

164 2 1:u 1 prev_mark : mem_ptr);

165 2 1:u 1 END {of mem_Link};

166 2 1y 1

167 2 1:u 1 vinfo = record

168 2 Tiu 1 sequnit 1 integer;

169 2 l:u i segvid i vid;

170 2 1:u 1 end {of vinfol;

Pascal Compiler IV.1 c55-4 - #*SYSTEM.LIBRARY 11/24/83

171
172
173
174
175
176
177
178
179
180
181
182
183

RN RN NN RNR NN DR R

& > o
IR
é

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

ha

204(2

206

PR RS B3 R R R B R R R R R NN

&

§

S

4 b

g8

\
Mrs::mmh:-mmmwwmmwmmmmmmmmr\(

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Page 4

poolptr = “pooldes;
sib = RECORD ; -

seg_pool : poolpir;

seg_base : mem_ptr; {Base memory location}

seg_refs : INTEGER; {# of active calls}

timestamp: INTEGER; {Memory swap priority}

Link_count: INTEGER; {Number of Links to SIB}

residency: p_Locked..MAX_INT; {memory residency status}

seg_name : alpha;
seg_leng : INTEGER;
seg_addr : INTEGER;
vol_info : vip;
data_size: INTEGER;
res_sibs : RECORD
next_sib,

{Segment name}

(# of words in segment}

{Disk address of segment)

{Disk unit and vol id of segment}

{Number of words in data segment}

{Code Pool management record} _
{Pointer to next sib}

prev_sib : sib_p; {Poginter to previous sib}

CASE BOOLEAN OF

{Scratch area}

TRUE ¢ (next_sort : sib_p);
FALSE : (new_Loc : mem_ptr)
END {of res_sibsl;

mtype:integer;
END {of sib};

e_vec = RECORD tEnvironment vector}

vect_Length : INTEGER;

map : ARRAY [1..1] OF e_rec_p; ({Accessed $R-)

END {of e_vec};

e_rec = RECORD {Environment record?

env_data : mem_ptr;
env_vect @ e_vec_p;
env_sib : sib_p;
CASE POOLEAN OF

tPointer to base data segment}
{Pointer to environment vector}
{Pointer to associated segment}
{Outer block information}

TRUE : (link_count : INTEGER;
next_rec : e_rec_p);

END; {of e_rec}

mscw = PACKED RECORD { Mark stack control }
ms_stat : mscw_pj{ Lexical parent pointer }

ms_dynl : mscw_p;{ Ptr to

caller’s mscw 2

ms_ipc : INTEGER;{ Byte inx in retrn code seg }
ms_env @ e_rec_pj{ Environment of caller code }

ms_proc: integer;{ Proc #
END { of mscw } ;

of caller }

tib = RECORD { Task information block }

regs : PACKED RECORD

wait_q : tib_p;
prior : byte;
flags : byte;
sp_Llow : mem_ptr;
sp_upr : mem_ptr;
sp : mem_ptr;

mp & mSCw_p;

{ Queue link for semaphores }

{ Task’s cpu priority }

{ State flags...not defined yet }
{ Lower stack pointer Limit)

{ Upper Limit on stack }

{ Actual top of stack pointer 3}

{ Active procedure MSCW ptr }

reserved : integer;

ipc : INTEGER;

{ Byte ptr in current code seg }

"ascal Compiler IV.1 c55-4 - #SYSTEM.LIBRARY 11/24/83 Page 5

228 2 1:u 1 env 1 e_rec_p; . { Ptr to current environment }
229 2 1:u 1 procnum:byte; R
230 2 1:u 1 tibioresult:byte;

231 2 1:u 1 hang_p : sem_p; { Which task is waiting on }
232 2 1:u 1 m_depend : INTEGER;{ Reserved for interpreter }
233 2 1:u 1 { initted to O when process started }
234 2 1:u 1 END { of regs } ;

235 2 1:u 1 main_task : BOOLEAN;

236 2 1:u 1 start_mscw : mscw_p;

237 2 1:u 1 END € of tib } ;

238 2 1:u 1

239 2 1:u 1 sem = RECORD { Semaphore format }

240 2 1:u 1 sem_count : INTEGER; { Number outstanding signals }

241 . 2 1:u 1 sem_wait_q & tib_p { List of tasks waiting on sem }
242(;32 1:u 1 END { of sem } ; -
243 V T:u 1

264 T2 T 1 fault_message = RECORD

245 2 1:u 1 fault_tib ¢ tib_p;

246 2 1:u 1 fault_e_rec : e_rec_p;

247 2 1 1 fault_words : INTEGER;

248 2 1:u 1 fault_type : seg_fault..pool_fault;

249 2 1:u 1 END {of fault_message};

250 2 1:u 1

251 2 1:u 1 fulladdress = array[0..1] of integer; {32 bits}

252 2 1:u 1

253 2 1:u 1 utablentry = record

254 2 {:u 1 uvid : vid; ¢ volume id for unit }

255 2 1:u 1 case uisblkd : boolean of

256 2 1:u 1 true : (ueovblk : integer;

257 2 1:u 1 uphysvol : unitnum;

258 2 {:u 1 ublkoff : integer;

259z 1:u 1 upvid : vid)

260, 2 1:u 1 end {utable} ;

261(. 4 1y 1 utable = array Cunitnum] of utablentry; { O not used }

262 g 1iu 1

263 2 1:u 1 { SYSTEM COMMUNICATION AREA }
264 2 1:u 1 { SEE INTERPRETERS...NOTE }
265 2 1:u 1 { THAT WE ASSUME BACKWARD 3
266 2 1:u 1 { FIELD ALLOCATION IS DONE 3}
267 2 1:u 1 syscomrec = record {modified for IV.1}

268 2 1:u 1 iorslt : iorsliwd; { RESULT OF LAST 10 CALL }
269 2 1:u 1 rsrvdl : integer;

270 2 1:u 1 sysunit : unitnum; { PHYSICAL UNIT OF BOOTLOAD)
271 2 1 1 rervd? : integer;

272 2 1:u 1 gdirp : dirp; { GLOBAL DIR POINTER,SEE VOLSEARCH }
273 2 1iu 1 fault_sem : RECORD

276 2 1:u 1 real_sem, message_sem : SEMAPHORE;

275 2 1:u 1 message : fault_message;

276 2 1:u 1 END {of fault_sem?;

277 2 1:u 1 { starting unit number for subsidiary volumes}
278 2 1 1 subsidstart : unitnum;

279 2 1:u 1 rsrvdd @ integer;

280 2 1:u 1 spool_avail : boolean;

281 2 1:u 1 poolinfo : record

282 2 1:u 1 pooloutside : boolean;

283 z 1 1 poolsize : integer;

286 2 1:u 1 poolbase ! fulladdress;

Pascal Compiler IV.1 c5s-4 - #*SYSTEM.LIBRARY 11/24/83 Page &

285 2 1:u 1 resolution : integer;

286 2 {:u 1 end;

287 2 w1 timestamp : integer;)

288 2 1:u 1 unitable ¢ “utable;

289 2 1:u 1 unitdivision : packed record

290 2 1:u 1 serialmax : byte; {number of user serial units}
291 2 1:u 1 subsidmax : byte; {max number of subsid vols}
292 2 1:u 1 end;

293 2 1:u 1 expaninfo: packed record

294 2 1:u 1 insertchar,deletchar:char;

295 2 1:u 1 expani,expan2:integer;

296 2 1:u 1 end;

297 2 1:u 1 pmachver : (pre_iv_i, iv_i, post_iv_1);

298 . 2 1:u 1 realsize ¢ integer;

29R; 2 1:u 1 MISCINFO: PACKED RECORD .
300 2 1:u 1 NOBREAK, STUPID, SLOWTERM,

301“'% 1:u 1 HASXYCRT ,HASL.CCRT ,HAS8510A ,HASCLOCK: BOOLEAN;
Jo2 2 1:u 1 USERKIND: (NORMAL, AQUIZ, BOOKER, PQUIZ)
Jjo3 2 1:u 1 END;

Jos 2 1iu 1 CRTTYPE: INTEGER;

Jos 2 {:u 1 CRTCTRL: PACKED RECORD

Jos 2 1:u 1 RLF ,NDFS,ERASEEOL , ERASEEQS,HOME ,ESCAPE: CHAR;
Joz 2 1:u 1 BACKSPACE: CHAR;

Jjos 2 1:u 1 FILLCOUNT: 0..255;

Jjoe 2 1:u 1 CLEARSCREEN, CLEARLINE: CHAR;

310 2 1:u 1 PREFIXED: PACKED ARRAY [0..81 OF BOOLEAN
Ji1 2 1:u 1 END;

J12 2 1:u 1 CRTINFO: PACKED RECORD

J13 2 1:u 1 WIOTH,HEIGHT: INTEGER;

314 2 1:u 1 RIGHT ,LEFT,DOWN,UP: CHAR;

J13 2 1:u 1 BADCH, CHARDEL ,STOP, BREAK, FLUSH,EOF : CHAR;
316 2 {:u 1 ALTMODE,LINEDEL: CHAR;

37, 2 1:u 1 alphalok,char_mask,ETX,PREFIX: CHAR;

318(; 2 1:u 1 PREFIXED: PACKED ARRAY [O..151 OF BOOLEAN;
319 ;‘ 1:u 1 ERD

320 T2 1:u 1 END { SYSCOM 3;

J21 2 1:u 1

322 2 1:u 1 MISCINFOREC = RECORD

323 2 1:u 1 MSYSCOM: SYSCOMREC

324 2 1:u 1 END;

Jas 2 1:u 1

J26 2 1:u 1 pooldes = record

327 2 1:u 1 poolbase : fulladdress;

J28 z 1:u 1 poolsize ¢ integer;

J29 2 1:u 1 minoffset : memptr;

30 2 Tiu 1 maxoffset : memptr;

J3 2 1:u 1 resolution : integer; {in bytes}

332 2 1:u 1 poolhead @ sibp;

333 2 yH 1 perasib : sibp;

J34 2 1 1 extended : boolean:

333 2 1:u 1 end;

33 2] 1 bytearray = packed array [0..0] of byte;

337 2 1:u 1

38 z T:u 1

J39 2 1:u 1 VAR

340 2 1:u 1 SYSCOM: “SYSCOMREC; { MAGIC PARAM...SET UP IN BOOT ?
341 2 1:u 2 GFILES: ARRAY [0..51 OF FIBP; { GLOBAL FILES, O=INPUT, 1=0UTPUT }

Mascal Compiler IV.1 cS5s-4 -~ *SYSTEM.LIBRARY 11/24/83 Page 7

Js2 2 1t 8 USERINFO: INFOREC; { WORK STUFF FOR COMPILER ETC }
343 2 1:u 54 EMPTYHEAP: “integer; " { HEAP MARK FOR MEM MANAGING 3
Jas 2 1:u 35 maintask : tib_p; { taskinfo block of op sys prog)
J45 2 1:u 56 Has_PM : BOOLEAN; { performance monitor in use }
J&s 2 {:u 57 INPUTFIB,OUTPUTFIB,SYSTERM @ FIBP; { CONSOLE FILES...GFILES ARE COPIES }
J&7 2 T:u 60 SYVID,DKVID: VID; { SYSUNIT VOLID & DEFAULT VOLID }
J&8 2 f:u 68 THEDATE: DATEREC; { TODAY...SET IN FILER OR SIGN ON }
349 2 1:u 69 STATE: CHMDSTATE; { FOR GETCOMMAND)

350 2 f:u 70 heap_info : RECORD { Stuff for heap management }

351 2 f:u 70 Lock : SEMAPHORE;

Js2 2 f:u 70 top_mark,

353 2z 1:u 70 heap_top ¢ mem_ptr;

354 2 {:u 70 END { of heap_info } ;

355, 2 leu 74 task_info : RECORD { Stuff for task management }

356(:,3 leu 74 Lock, .
357, 2 ey 74 task_done : SEMAPHORE;

358“5 liu 74 n_tasks : INTEGER;

J59 2 12w 74 END { of task_info } ;

J60 feu 79 IPOT: ARRAY CO..41 OF INTEGER; { INTEGER POWERS OF TEN)

361 1:u 84 FILLER: STRINGLC111; { NULLS FOR CARRIAGE DELAY }

362 1:u 90 DIGITS: SET OF “0°..°9";

363 1:u 94 PL: STRING;

344 f:u 135 maxunit : unitnum;

365 1:u 136 FILENAME: file_table;

Jbé f:u 196 junk : processid;

367 T:u 197 fault_sem : RECORD

&8 1:u 197 real_sem, message_sem : SEMAPHORE;

369 o 197 message : fault_message;

J70 w197 END {of fault_seml;

371 :tu 205 unit_List : e_rec_p;

372 u 206 user_snv_vec,

MN!"-."NM(P BRI R PSR R R RMMNMNRNNRNRDNDR

1
1:
1:
1
373 Teu 206 Sys_env_vec : e_vec_p;
374 - 1:u 208 dir_Lock : SEMAPHORE; { for volume and directory exclusion }
375(T:u 210 inexerr : boolean; { set when processing execution errors
376 1:u 211 so that file system Locks are not enforced }
377 1w 211 dfliptog:boolean; { true when gdirp contains a flipped directory }
J78 1:u 212 debugging:boolean;
379 1w 213 permlist:memptr; { List of "permanent" new's }
J8o T:u 214 suspectset : set of unitnum;
381 liu 222 atsysprompt:boolean; { true if at system prompt }
Jgz 2 1:u 223 userlib: fullid; { Library text file }
383 2 T:u 235 syslist:e_rec_p; { Last unit placed on unit_List that is a
J84 {commented “;°} system unit; all subsequent units added
J&s 2 T:u 236 to the unit_List are user units 2}
Jgs 2 1:u 236 nofit : boolean; {set to true if dumpsegs can’t get any more room}
387 2 1w 237 codepool : poolptr;
J88 2 1:u 238 resolving_break : boolean; {true if in debugger and a code segment
387 2z 1y 239 must be read in without breakpoints)
Je0 2 1:u 239
J?1 z 1:u 239 procedure exec_error(bad_e_rec_pie_rec_p; n_words,err:integer);
J9z2 2 1:u 1 procedure loadseg(segerec:erecp);
J9y 2 Tiu 1 procedure rlocseg(segerecierecp);
J9¢ 2 1:u 1 function ptr_add (p : mem_ptr; n_words : integer) : int_p;
395 2 1:u 1 function ptr_sub (p_0, p_1 : mem_ptr) : integer;
J96 2 1:u 1 function ptr_Less (p_1, p_2 : mem_ptr) : boolean;
397 Z 1:u 1 function ptr_gtr (p_1, p_2 : mem_ptr) : boolean;
J9g 2 1:u 1 function ptr_geq (p_1, p_2 : mem_ptr) : boolean;

*fascal Compiler IV.1 cSs-4 -~ #SYSTEM.LIBRARY 11/24/83 Page

399 2 {:u 1 procedure print(s:string);

400 2 1:u 1 procedure printint(izinteger);

401 2 1:u 1 procedure writestr(s:string);)
402 2 1:u 1 procedure checkunit{lvid:vid; Lunitzunitnum);

403 2 f:u 1 procedure moveseg(segsib:sibp; srcpool:poolptr; srcoffset:memptr);
404 2 1:u 1

‘nd of Campilation.

(!

Pascal Compiler IV.1 c5s-4 11/24/83 Page

Using COMMANDI

2 2 1:u 1

3 2 1eu 1 type bigstring=string[2551;

& 2 {:u 1 var havechain,inredirect,outredirect,monitorapen,inmonitor:bootean;

5 2 1:u 13 function redirect(command:bigstring):booLean;

6 2 1:u 1 procedure exception(stopchaining:boolean);

7 2 1:u 1 procedure chain(command:bigstring);

8 2 1:u 1

9 2 1:u 1 procedure initcommand;

17 2 1:u 1 pracedure startmonitor;

1 2 i 1 procedure stopmonitor(saveit:boolean);

12 2 1:u 1 procedure getchainline(var command:bigstring);
2 1:u 1

13(:

_nd o{x‘\mpitation.
A 4

*ascal Compiler IV.1 cS5s-4 11/24/83 Page

Using ERRORHAN _
2 2 1:u 1
J 2 1eu 1
4 2 1:u 1 type
5 2 13 1 drive_range = 4,,127;
6 2 1:u 1
7 2 1:u 1 procedure set_error_Line (Line : integer);
8 2 1:u 1 procedure set_user_message (drive : drive_range; mess : string);
¢ 2 1:u 1

nd of Compilation.

Pascal Compiler IV.1 c55-4 11/24/83 Page 1

Using SCREENOP

2 1:u 1
2 1:u 1
2 1eu 1 const
2 1:u 1 sc_fill_Len = 11;
2 1:u 1 sc_eol = 13;
2 1:u 1
2 1:u 1 type
2 1:u 1 sc_chset = gset of char;
2 1:u 1 SC_misc_rec = packed record
2 1:u 1 height, width : 0..255;
2 {:u 1 can_break, slow, xy_crt, lc_crt,
-2 Tiu 1 can_upscroll, can_downscroll : boolean;
A PR end; .
. 1:u 1 sc_date_rec = packed record
1:u 1 month : 0..12;
17 2 1:u 1 day : 0..31;
18 2 1:u 1 year : 0..99;
19 2 H 1 end;
20 2 1:u 1 sc_info_type = packed record
21 2 1:u 1 sc_version : string;
2 2 1:u 1 sc_date : sc_date_rec;
A T:u 1 spec_char : sc_chset; {Characters not to echo)
26 2 1:u 1 misc_info : sc_misc_rec;
25 2 liu 1 end;
26 2 1:u 1 sc_long_string = stringl255];
27 2 l:u 1 sc_scrn_command = (sc_whome, sc_eras_s, sc_erase_eol, sc_clear_Lne,
28 2 1:u 1 sc_clear_scn, sc_up_cursor, sc_down_cursor,
29 2 Tiu 1 sc_Left_cursor, sc_right_cursor); .
Jo 2 1:u 1 sc_key_command = (sc_backspace_key, sc_dci_key, sc_eof_key, sc_etx_key,
Jt 2 1:u 1 sc_escape_key, sc_del_key, sc_up_key, sc_down_key,
32, 2 1:u 1 sc_Left_key, sc_right_key, sc_not_Legal, sc_insert_key,
33\ 2 1:u 1 sc_delete_key);
J4 e 1iu 1 sc_choice = (sc_get, sc_give);
35 2 tH 1 sc_window = packed array [0..0] of char;
J6 2 1:u 1 sc_tx_port = pecord
J7 2z 1:u 1 row, col, { screen relative?
38 2 1:u 1 height, width, { size of txport (zero based)}
J9 2z Tiu 1 cur_xy cur_y : integer;
40 2 1:u 1 {cursor positions relative to the txport 3}
41 2 1:u 1 end;
42 2 1:u 1
43 Z 1:u 1 tentries 4..syscom".subsidstart-1 are valid)
46 2 1:u 1 sc_err_msg_array = array [4..4] of "string; {accessed $R-}
45 2 1:u 1
46 2 1:u 1 var
47 2 1:u 1 sc_port @ sc_tx_port;
48 2 1:u 7 sc_printable_chars : sc_chset;
49 2 Tt 23 sc_errorline : integer;
50 2 f:u 24 sSC_errermessage : “sc_err_msg_array;
51 2 Tew 25
52 2 1aw 25 procedure sc_use_info(do_what:sc_choice; var t_info:sc_info_type);
53 2 1:u 1 procedure sc_use_port(do_what:sc_choice; var t_portisc_tx_port);
54 2 1:u 1 procedure sc_erase_to_eol(x,Line:integer);
55 2 1eu 1 procedure sc_left;
56 Z 1:u 1 procedure sc_right;

‘ascal Compiler IV.1 c55~4 - #SYSTEM.LIBRARY 11/24/83 Page

%]

57 2 1:u 1 procedure sc_up;

58 2 1:u 1 procedure sc_down;

59 2 1:u 1 pracedure sc_getc_ch(var ch:char; return_on_match:sc_chset);

&0 2 1:u 1 procedure sc_clr_screen;

61 2 1:u 1 procedure sc_clr_Line (y:integer);

62 2 1:u 1 procedure sc_home;

&3 2 1:u 1 procedure sc_eras_eos (x,linezinteger);

64 2 1:u 1 procedure sc_goto_xy(x, Line:zinteger);

& 2 1:u 1 pracedure sc_clr_cur_Line;

66 2 1:u 1 function sc_find_x:integer;

67 2 1:u 1 function sc_find_y:integer;

68 I 1:u 1 functien sc_scrn_has(whatisc_scrn_command):boolean;

&9 2 1:u 1 function sc_has_lhey(what:sc_key_command):boalean;

70,2 1:u 1 function sc_map_crt_command(var k_ch:char):sc_key_command;
712 1:u 1 function sc_prompt(line :sc_Long _string; X_CUrsor,y_cursor,X_pos,
72?.72 1 1 where:integer; return_on_matchisc_chset;

3 2 f:u 2 no_char_back:boolean; break_char:char):char;
74 2 1:u 1 function sc_check_char(var buf:sc_windowj var buf_index,bytes_Left:integer)
75 2 1:u tboolean;

7% 2 1:u 1 function sc_space_wait(flush:boolean):boolean;

77 2 1:u 1 procedure sc_init;

7 2 1tu 1

‘nd of Compilation.

Pascal Compiler IV.1 cS5s-4 11/24/83 Page 1

Using SYSINFO

2 2 1iu 1

J 2 1:u 1

4 2 1:u 1 Type 8I_Date_Rec = Packed Record

5 2 {:u 1 Month : 0..12;

6 2 1:u 1 Day : 0..31;

7 2 1:u 1 Year : 0..99;

8 2 1:u 1 End; { SI_Date_Rec }

9 2 1:u 1

10 2 1:u 1

11 2z 1:u 1 Procedure SI_Code_Vid (Var SI_Vol : String);

12 2 {:u 1 { Returns name of volume containing current workfile code }
13, -2 1:u 1

14%...2 1:u 1 .
15,.'2 1 1 Procedure SI_Code_Tid (Var SI_Title : String);

16 2 1:u 1 { Returns title of current workfile code }

17 2 1:u 1

18 2 1:u 1

19 2 1:u 1 Procedure SI_Text_Vid (Var 5I_Vol : String);

20 2 1:u 1 { Returns name of volume contarnlng current workere text }
21 2 1:u 1

2 2 {:u 1
23 2 1:u 1 Procedure SI_Text_Tid (Var SI_Title : String);
24 2 {:u 1 { Returns title of current workfile text 2}
25 2 1:u 1
26 2 1:u 1
27 2 1:u 1 Function 8I_Sys_Unit : Integer;
28 2 1:u 1 { Returns number of bootload unit }
29 2 t:u 1

Jo 2 1:u 1

J1 2 1:u 1 Procedure SI_Get_Sys_Vol (Var SI_Vol : String);
32, 2 1:u 1 { Returns system volume name }

5 AN 1:u 1

34 gt 1:u 1

35 Zz yH] 1 Procedure SI_Get_Pref_Vol (Var SI_Vol : String);
3 2 1:u 1 { Returns prefix volume name }
37 2z 1:u 1
33 2 1:u 1
39 2 f:u 1 Procedure SI_Set_Pref_Vol (SI_Vol : String);

40 2 1:u 1 { Gets prefix volume name }
41 2 1:u 1

42 2 1:u 1

43z 1:u 1 Procedure SI_Get_Date (Var 5I_Date : SI_Date_Rec);
44 2 1:u 1 { Returns current system date }

45 2 1:u 1

46 2 1:u 1
47 2 1y 1 Procedure SI_Set_Date (Var SI_Date : SI_Date_Rec);
48 2 1:u 1 { Sets current system date }

49 2 1:u 1
50 2 1:u 1
51 2 1:u 1
52 2 1:u 1 (FRRRREEEEER R R R R R R R R R R R E RN R RE AR)
53 2 1:u 1

54 2 1:u 1

-nd of Compilation.

Pascal Compiler IV.1 c5s-4 11/24/83 Page

Using FILEINFO

2 2 T 1 "
3 2 1:u 1
4 2 1:u 1
5 2 1:u 1 Type F_File_Type = file;
& 2 1:u 1 F_Date_Rec = Packed Record
7 2 1:u 1 Month : 0..12;
8§ 2 {:u 1 Day ¢ 0..31;
? 2 1:u 1 Year : 0..100;
10 2 1:u 1 End; { F_Date_Rec }
11 2 1:wu 1
1:u 1
1:u 1 Function F_Open (var fid: F_File_Type):boolean;
1:u 1
1:u 1 (¥ returns true if the file is open and false if not open #)
1:u 1
17 2 1:u 1 Function F_Length (Var Fid : F_File_Typel ¢ Integer;
18 2 1:u 1
19 2 1:u 1 {Returns the Length of the file attached to the Fid identifier.
20 2 {:u 1 If the file is not opened result is returned as zero}
21 2 1 1
2 2 1:u 1
23 2 1:u 1 Function F_Unit_number (Var Fid : F_File_Type) : integer;
24 2 1:u 1
25 2 1:u 1 {Returns the unit containing the file attached to the Fid
26 2 1:u 1 identifier. If there is no file opened to Fid, the function
27 2 1eu 1 result is Zero.}
28 2 1:u 1
29 2 1:u 1
30 2 1:u 1 Procedure F_Volume (Var Fid ¢ F_File_Type;
Ji 2 1:u 0 Var File_Volume : String);
32, 2 1:u 1
J\ 2 1:u 1 {Returns the name of the volume containing the file attached
34 i 1iu 1 to the Fid identifier. If there is no file opened to Fid,
5 S 1:u 1 the file_volume is set to a null string.}
J6 2 {:u 1
7 2z 1:u 1
3B =z 1w 1 Procedure F_File_Title (Var Fid s F_File_Type;
J9 2 1:u 0 Var File_Title : String);
40 2 1:u 1
41 2 1y 1 {Returns the title (with suffix) of the file attached to the
42 2 {:u 1 Fid identifier. If there is no file opened to Fid,
43 z 1:u 1 the File_title is set to the null string.}
44 2 1:u 1
45 2 1:u 1
46 2 T:u 1 Function F_Start (Var Fid : F_File_Type) : integer;
47 2 1:u 1
48 2 1:u 1 {Returns the block number of the first block of the file
49 2 1:u 1 attached to the Fid identifier. If there is no file opened
50 2 1:u 1 te Fid, the function result is returned is zero.?}
51 2 {:u 1 '
52 2 liu 1
53 2 1:u 1 Function F_is_Blocked (Var Fid : F_File_Type) : Boolean;
56 2 11y 1
55 2 1y 1 {Returns a boolean that is TRUE if the file attached to the
56 2 1:u 1 Fid identifier is located on a block-structured unit. If there

Pascal Compiler IV.1 c5s-4 - *SYSTEM.LIBRARY 11/24/83 Page 2

57
58
59
&0
61
62
63
64
65
64
&7
68

L N A A e e e Y

MMNRNRBRRRRDNNRNRDN

[=S = S~ =~

=nd of Compilation.

[SNt S SC N e R SN R A

is no file opened for the Fid or if the device is not block structured
y the function result is set to false.}

P

- Procedure F_Date (Var Fid : F_File_Type;

Var File_Date : F_Date_Rec);

{Returns a record indicating the last access date for the file
attached to the Fid identifier. If there is no file opened to
Fid, the File_Date is unchanged.}

Pascal Compiler IV.1 c5s-4 11/24/83 Page 1

Using WILD

2 2 w1)

J 2 f:u 1

4 2 1:u 1 Type

5 2 1w 1

6 2 1:u 1 D_PatRecP = *D_PatRec;

7 2 1iu 1 D_PatRec = Record

8 2 1:u 1 CompPos, { starting position of pattern in subject string }
? 2 1:u 1 CompLen, ¢ length of pattern in subject string }

10 2 1:u 1 WildPos, { starting position of pattern in wild string }
11 2 1:u 1 WildLen : Integer; { Length of pattern in wildcard string }
12 2 1:u 1 Next : D_PatRecP; { next pattern }

13,2 1:u 1 End; { D_PatRec }

1442 1:u 1 -

15%}‘ 1tu 1

16 72 1:u 1 Function D_Wild_Match(Wild, Comp : String; Var PPtr : D_PatRecP;

17 2 1:u 6 PInfo : Boolean) : Boolean;
18 2 1eu 1 { Compares two strings (one containing wildcards) and returns true if they
19 2 1:u 1 match. Includes information about pattern matching that occurred if re-
20 2 1:u 1 quested (by PInfo) 3
21 2 1:u 1
22 2 1:u 1 (R R R R)
23 2 1:u 1

nd of Compilation.

FPascal Compiler IV.1 cSs-4 11/24/83 Page 1

Using DIRINFO

26 2 {eu 1

25 Zz 1:u 1 uses

26 2 1:u 1 (#$U WILD.CODE¥) wild;

21 2 1iu 1

28 2 1:u 1 Type

29 2 1:u 1 D_DateRec = Packed Record

3o 2 1:u 1 Month : 0..12;

31 2z 1:u 1 Day : 0..31;

Jz 2 1:u 1 Year : 0..100;

3 2z 1:u 1 End;

J& 2 {:u 1

35 -2 1y 1

J6\..2 1:u 1 D_NameType = (D_Vol, D_Code, D_Text, D_Data, D_SVal, D_Temp, D Free);
J7. 1 1:u 1

38 1:u 1 D_Choice = Set of D_NameType;

J9 2 1:u 1

40 2 1:u 1 D _ListP = *D_List;

41 2 1:u 1 D_List = Record

42 2 1:u 1 D_Unit : Integer; { Unit # of entry }

43 2 1:u 1 D_Volume : StringC73; { volume name of unit }

44 2 1:u 1 D_VPat : D_PatRecP; { volume pattern info 3

45 2 {:u 1 0_NextEntry : D_ListP; { Next entry in List }

4 2 1eu 1 Case D_IsBLkd : Boolean Of

47 2 1:u 1 True ¢ (D_Start, { Starting block of entry }
48 2 1:u 1 D_Length : Integer; (Length (in blocks) of entry }
49 2 1:u 1 Case D_Kind : D_NameType Of

50 2 1:u 1 D _Vol, { Everything but D_Free 3

51 2 1:u 1 D_Temp,

52 2 1:u 1 D_Code,

33 2 1:u 1 D_Text,

54, 2 1:u 1 D Data,

AN 1:u 1 D_SVol : (D_Title : Stringl151;{ File name }

56 S H T 1 D_FPat : D_PatRecP; { name pattern info
57 ‘ES 1:u 1 D_Date : D_DateRec; { File date }

58 2 1:u 1 Case D_NameType of { # of files on vol }
59 2 1:u 1 D_Vol : (D_NumFiles : Integer)));

80 2 1:u 1 End;

41 2 1:u 1

62 2 Tiu 1 D_Result = (D_Okay, { Mission accomplished }

63 2 1:u 1 D Not_Found, ¢ Couldn’t find name and/or type }

64 2 1:u 1 D _Exists, { Name already exists; no name change made }
&5 2 1iu 1 D_Name_Error, { Illegal string passed }

66 2 12u 1 D_Off_Line, { Volume not on Line 3

67 2 1:u 1 D_Other); { Miscellaneous error }

&8 Z 1:u 1

&9 2 1:u 1

m 2 1:u 1 Function D_Dir_List(D_Name : String; D_Select : D_Choice;

71 2 1:u 4 Var D_Ptr : D_ListP; D_PInfo : Boolean) : D_Result;
72 2 1y 1 { Creates pointer to List of names of specified NameTypes

73 2 1:u 1 (D_Select), matching specified D_Name (wildcard characters allowed). In-
74 2 1:u 1 cludes information about pattern matching that occurred if requested

75 2 1:u 1 (by D_PInfa) }

%6 2 1:u 1

77 2 1:u 1

78 2z 1:u 1

Pascal Compiler IV.1 c5s5-4 - #GYSTEM.LIBRARY 11/24/83 Page 2

79 2 1:u 1 Function D_Scan_Title(D_Name : String; Var D_VolID, D_TitlelD : String;
80 2 1:u Var D_Type : D_NameType; Var D_Segs : Integer) : D_Result;
81 2 1:u 1 { Parses D_Name }

&2 2 1:u 1 :

83 2 1:u 1 Function D_Change_Name (D_OldName, D_NewName : String; D_RemOld : Boolean) : D_Result;
84 2 1:u 1 { Changes file name in D_OLdName to name in D_NewName, removing already
85 2 1:u 1 existing files of name in D_NewName if D_RemOld is set }

&6 2 {:u 1

87 2 1:u 1 Function D_Change_Date(D_Name : String; D_NewDate : D_DateRec;

8 2 1:u 0_Select : D_Choice) : D_Result;
89 2 {:u 1 { Changes date of directory or file name in D_Name to date specified by
90 2 1:u 1 0_NewDate. 0D_Name may contain wildcards }

91 2 1:u 1

92 -2 1iu 1 Function D_Rem_Files (D_Name : String; D_Select : D_Choice) : D_Result;
93(:;3 1:u 1 { Removes file of specified name (wildcards allowed) 3} -

QL 7 1:u 1

95 1:u 1 Procedure D_Lock;

9 2 1:u 1 Procedure D_Release;

97 2 1:u 1 { Provide means to Limit use of Dirlnfo routines to one task at a time

98 2 T:u 1 in multi-tasking environments 3

99 2 1:u 1

100 2 1:u 1 Functien D_Krunch (D_Unit,

101 2 1:u 1 D_Block : Integer) : D_Result;

102 2 Tiu 1 { Collects all unused space on a volume around D_Block. This unit must
103 2 1:u 1 not be in use when this operation is performed. 3}

104 2 1:u 1
105 =2 1:u 1 Function D_Mount (D_File_Name : String) : D_Result;

106 2 {:u 1 Function D_DisMount (D_Vol_Name : String) : D_Result;

107 2 1:u 1 { Provides a means of mounting and dismounting subsidiary volumes.

108 2 1:u 1 Wild cards may be used. }

109 2 l:u 1

110 2 1:u 1

111,-2 1w 1
112(; 2 1:u 1 {***}
113 ¢ : 1:u 1

-

-id of Compilation.

Jascal Compiler IV.1 c55-4 12/ 6/83 Page 1

1 2 1:d 1 program windowdisp;

Using WINDOWMA ”
2 2 1:u 1
3 2 1:u 1
4 2 1:u 1 {Window Manager for the UCSD p-System}
5 2 1:u 1 {Windows are displayed as rectangular areas on the screen, bordered by
6 2 Teu 1 a frame and optionally headed by a heading. Each window has its own
7 2 1:u 1 size, screen location, text area, cursor and status information.
8 2 T:u 1 Each window may be written into and will scroll independently, and
9 2 H 1 may be cleared, moved, changed in size, etc. by a user’'s program.
mw 2 1w 1
11 2z Tru 1 During any input operation the user may escape into ‘Window Manager
12 2 1:u 1 Mode” (and subsequently return to ‘Input Mode’, to complete the input).
i 1:u 1 In Window Manager Mode the Window Manager uses a special cursor which
{:u 1 is independent of any window. This cursor is used to indicate screen
Teu 1 position parameters to the Hide, Show, Alter, Move and Kill commands.
16 2 f:u 1 Whether or not a particular command may be applied to a particular
17 2 1:u 1 window is controlled by the user’s program.
18 2 1:y 1 }
19 2z l:u 1
20 2 1:u 1 CONST Wersion="10-Dec-82°;
21 2 ‘H 1 NoWindow=0;
2 2 1:u 1 MaxWindow=10;
23 2z 1:u 1
26 2 1:u 1 TYPE Window=NoWindow. .MaxWindow;
25 2 1:u 1 WindowOpt ions=(CanHide, CanMove,CanALter,CanKill,
26 2 1:u 1 HagHeading,CanScroll,CanPan);
27 2 1:u 1 WindowAttributes=SET OF WindowOptions;
28 2 1:u 1
29 2 1:u 1 {Initialisation Routines}
Jju z 1:u 1
32 1:u 1 PROCEDURE WStartup;
12(; : 1y 1 {Called by *SYSTEM.STARTUP to REALLY initialise}
33 oy 1:u 1 {If window manager is placed in *SYSTEM,PASCAL then you MUST supply
34 2 1:u 1 a #5YSTEM.STARTUP that calls WStartup. Thereafter any program which
I 2 1:u 1 uses the window manager should initialise via WInit, the effect of which
36 2 T:u 1 is to repaint the screen as it was when the Last using program terminated.
37 2 Tiu 1 If Window Manager is not in *SYSTEM.PASCAL then use WStartup always}
38 = 1:u 1
32 2 1:u 1 PROCEDURE WInit;
40 2 Tiu 1 tInitialise Window Manager System}
41 2 1:u 1 1just redisplays all windows}
42 2 Tiu 1 {if Manager is a system unit, all windows survive program changes}
43 2 1:u 1
44 2 Tru 1 {Routines to create, alter, show, clear, hide and dispose of windows)
45 2 1:u 1
46 2 1:u 1 FUNCTION WNew(WatX,WatY,WSizeX,WSizeY:INTEGER;
47 2 1:u 5 WControls:WindowAttributes;
48 2 1:u b WHeading:STRING) :Window;
49 2 1:u 1 {Get new window}
st 2 1:u 1
51 2 1:u 1 PROCEDURE WALter(W:Window;
52 Z2 l:u WatX,WatY,WSizeX,WSizeY: INTEGER;
53 2 1:u WControls:WindowAttributes;
54 2 1:u WHead ing:STRING) ;
55 2 1:u 1 {Alter existing window?

*ascal Compiler IV.1 c55-4 - #S:wfiler.code 12/ 6/83 Page 2

56 2 {:u 1 {WatX,WatY,SizeX,SizeY -ve means do not alter}

57 2 1:u 1 {WControls replaces existing window attributes?}

38 2 1:u 1 {Windaw must not be in show when WALter called})
59 2 1:u 1

60 2 1:u 1 PROCEDURE WShow(W:Window) ;

61 2 1:u 1 {Display window and set it as “current" one}

62 2 1:u 1

&3 2 1:u 1 PROCEDURE WCLearAndShow(W:Window);

&4 2 1iu 1 {Clear window, then "Show" it}

65 2 1:u 1

b6 2 {:u 1 PROCEDURE WHide (W:Window);

&7 2 liu 1 {Remove window from screen - it is not dlsposed of}

68 2 1:u 1

69 .2 1:u 1 PROCEDURE WDispose (W:Window);

70NH2 f:u {Dispose of old window?} .
71 2 1:u 1 {Window must not be in show when WDispose called?}
2% 1 1

73 2 1ru 1 {The following procedures all apply te the "current" last shown window?}
76 2 1:u 1

5 2 T:u 1 PROCEDURE WClear;

76 2 1:u 1 {Clear Windaw}

7 2 T:u 1

78 2 1:u 1 PROCEDURE WCLrEOL;

79 2 1eu 1 {Clear remainder of current Line}

80 2 1eu 1

81 2 {:u 1 PROCEDURE WCLrEQS;

82 2 1:u 1 {Clear remainder of window}

83 2 1:u 1

8¢ 2 1:u 1 PROCEDURE WGotoXY(X,Y:INTEGER);

a5 2 1:u 1 {5et Window cursor to X,Y}

8 2 1:u 1 {X,Y are relative to top left of window - base of 0, excluding heading}
87 2 l:u 1

88, 2 1:u 1 PROCEDURE WWriteCh(Ch:CHAR);

89(2 1:u 1 {Write Ch at cursor position in window?

90 o 1:u 1 {Non printable chs map to bell}

91 2 1:u 1

9z 2 1:u 1 PRGCEDURE WWriteStr(Str:STRING);

93 2 1:u 1 {Write Str at cursor position in window}

94 2 1y 1 {MUST NOT CONTAIN NON PRINTABLE CHARS)

95 2 1:u 1

96 2 1:u 1 PROCEDURE WWriteInt(Int,Width:INTEGER);

97 2 1:u 1 Write Int at cursor posn in window}

95 =z 1:u 1 {(Equivalent to WRITE(Int:Width) in Pascal}

?? 2 1:u 1 tWidth may be O (or -ve) to mean as narrow as possible}
100 2 1:u 1

101 2 {:u 1 PROCEDURE Hiriteln;

102 2 1:u 1 turite new®ne at cursor position in window}

103 2 1iu 1 <If cursor goes below base of window, window is cleared}
104 2 1iu 1

105 2 1:u 1 PROCEDURE" WReadCh(VAR Ch:CHAR;Echo:BOOLEAN) ;

106 2 l:u 1 {Get character from keyboard}

107 2 1iu 1 {Window functions can only take place within WReadCh}
108 2 1:u 1 {Any non window function ch is returned to user }
109 =z 1:u 1 {Echo is controlled by user - non printable chs echo as bell}
110 2 1:u 1 {0ther Window Reading Procedures - below - use WReadCh}
111z 1:u 1
112 z 1:u 1 PROCEDURE WReadL.nStr(VAR Str:STRING);

Pascal Compiler IV.1 cSs-4 =~ #5:wfiler.code 12/ 6/83 Page

113 2 1iu 1 {Get a string from keyboard - echoed}

114 2 T 1 {String is ended by newline. Only edit ch allowed is backspace}
115 2 1:u 1 {Non printable chs are not returned - but echo as bell} -
116 2 1:u 1

117 2 1:u 1 PROCEDURE WReadLnInt(VAR Int:INTEGER);

118 2 1:u 1 {Get an integer from keyboard - echoed}

119 2 1iu 1 {Integer is ended by newline. Only edit ch allowed is backspace}
120 2 1:u 1 {Non printable chs are not returned - but echo as bell}

121 2 1:u 1

122 2 1:u 1 PROCEDURE WReadlLn(Echc:BOOLEAN) ;

123 2 1:u 1 {Read up to next newline from keyboard?}

126 2 1:u 1 {Non printable chs echo as bell}

125 2 1:u 1 :

126 .2 1iu 1 {the following functions and procedures are utilities on windows?}
127(,—2;_;;‘2 CUTR | '

128‘~;2 T:u 1 FUMCTION WInWindow(X,Y:INTEGER):Window;)
12972 {:u 1 {Returns window in which position X,Y occurs - Nolindow if none}
130 2 1:u 1 {X,Y in screen coordinates}

131 2 1:u 1

132 2 Tiu 1 FUNCTION WChAtXY(X,Y:INTEGER; W:Window):CHAR;

133 2 1:u 1 {Return Ch under screen position X,Y in W}

136 2 1:u 1 {Space returned if X,Y not in Window, or NoWindow}

135 2 1:u 1 {Ch need not be in view at time of call}

136 2 1:u 1

137 2 1:u 1 PROCEDURE WXY(VAR X,Y:INTEGER);

138 2 {:u 1 {Get Coordinates of window manager cursor - in window coordinates)}
139 2 1:u 1

140 2 1:u 1 PROCEDURE WCursorXY(X,Y:INTEGER);

141 2 1:u 1 {Set coordinates of window manager cursor - in window coordinates}
142 2 1:u 1

143 2 1:u 1 FUNCTION WCurrentWindowsWindow;

144 2 1:u 1 {Return Current Window - one Last shown - may be NoWindow}

145 - .2 Hn 1

146 2 {1 (HISTORY

147\ {:u 1

148 2 1:u 1 Copyright: Austin Tate, ERCC. AlLL rights reserved.

149 2 1:u 1 This program may be used for non-commercial purposes
150 2 Tiu 1 by users of the UCSD p-System provided that this

151 2 1:u 1 copyright notice appears in the source. Enquiries for
152 2 1:u 1 other uses should be directed to the copyright owner.
153 2 fiu 1

154 2 {eu 1 The Nindow Manager was originally written in March 1981 by

155 2 1:u 1 Austin Tate, ERCC as a demonstration for a course on Office

156 2 Tiu 1 Systems and Advanced Personal Computers.

157 2 l:u 1

158 2 0 1 It was subsequently modified by Chris Lee while at INMOS up

159 2 1:u 1 to 10-Feb-82, The major changes he made were:

160 2 1:u 1

161 2 1iu 1 170 optimisation - all I/0 is delayed as Leng as possible, and
162 2 1:u 1 is done in as large units as possible, via UNITWRITE (asynch!''!'},
163 2 l:u 1 and isn’t done at all if what we want is on the screen already.
164 2 1:u 1 See routines flushoutput and repaint. Repaint certainly pays

165 2 1:u 1 its way (try moving and altering windows with the original and
166 2 {:u 1 this version), flushoutput almost certainly doesn’t - it makes
167 2 1:u 1 Lines zap out in one swell foop, but stops the dreaded dots.

168 2 1:u 1

169 2 1:u 1 Window Functions - on the operator interface are all handled

Pascal Compiler IV.1 c5s-4

170 2 1:u
171 2 1:u
172 2 1:u
173 2 1:u
174 2 l:u
175 2 1:u
176 2 1iu
177 2 1:u
178 2 1:u
179 2 1:u
180 2 1:u
181 2 1:u
182 2 1:u
183 .2 1:u
Z:;fl:*-' 1:u
185, 72 1:u
186"2 1:u
187 = 1:u
188 2 1:u
189 2 1:u
190 2 1:u
1971 2 1:u
192 2 1:u
193 2 1:u
194 2 1:u
195 2 1:u
196 2 1:u
197 2 1:u
198 =z 1:u
199 2 1:u
200 2 T
200 2 1:u
202 . 2 {:u
é'g.{](K l:u
e 1:u
EUSEE'S 1:u
206 2 l:u
207 2 1:u
208 2 1:u
209z 1:d
210 2 :0

-nd of Compilation.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.

- #5:wfiler.code 12/ 6/83 Page 4

inside the window manager. During input use ESC to toggle between
window manager and input modes (and notice the cursor change when
you do). See WindowFunction. Notice that screen position parameters
are signalled by moving the cursor and typing ESC or {space> (known
as a ‘mark’ in Window Manager Mode). Eg, to move a window type

ESC -~ to enter window mode
{move cursor into window to be moved}
Morm -~ to request a move
-——=* <move cursor to new top left corner position}
{space} or ESC -- the window moves at this point
{space? or ESC == to return to input mode
NE at point ----> WindowFunction calls itself recursively. You

can nest window functions (and get into a real mess) if you want).
The interface to WNew has changed to allow the programmer to_
control what WindowFunctions the user may apply to a window.

Frames - are drawn by characters. There are CONSTs for the four
corners and four sides so if you have forms drawing chars you
should be able to make things Look pretty

Scrolling and Panning - misc minor changes. Scroll by one third
of window depth rather than one Line. Only re-pan at input time.
Both these mods are designed to eliminate unnecessary 1/0 and
repainting.

To improve efficiency WWriteStr assumes that only printable
chars are in the string.

This version was produced during experimentation into window
management. Hence the code hasn’t been beautified and bugs
may be present.

The Window Manager as modified by Chris Lee was then altered in
some minor respects by Austin Tate prior to release to the
UCSD p-System Users® Society (USUS) Software Library in February 1982.

uses {$u #5:wfiler,codelwindowmanager;

0 begin end.

	1981add_001
	1981add_002
	1981add_003
	1981add_01
	1981add_02
	1981add_03
	1981add_04
	1981add_05
	1981add_06
	1981add_07
	1981add_08
	1981add_09
	1981add_10
	1981add_11
	1981add_12
	1982add_001
	1982add_002
	1982add_003
	1982add_004
	1982add_01
	1982add_02
	1982add_03
	1982add_04
	1982add_05
	1982add_06
	1982add_07
	1982add_08
	1982add_09
	1982add_10
	1982add_11
	1982add_12
	1982add_13
	1982add_14
	1982add_15
	1982add_16
	1982add_17
	1982add_18
	1982add_19
	1982add_20
	1982add_21
	1982add_22
	1982add_23
	1982add_24
	1982add_25
	1982add_26
	1982add_27
	1982add_28
	1982add_29
	1982add_30
	1982add_31
	1982add_32
	1982add_33
	1_01
	1_02
	1_03
	1_04
	1_05
	1_06
	1_07
	1_08
	2_01
	3_01
	4_01
	4_02
	5_01
	6_01
	6_02
	7_01
	8_01
	8_02
	9_01
	9_02
	9_03
	9_04

