SOF=Ey

MICROSYSTEemsS

p-System” Software
Reference Library

Assembler
Reference
Manual

1-13141.A

Copyright © 1983 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may be
reproduced in any form or by any means or used to
make a derivative work (such as a translation,
transformation, or adaptation) without the written
permission of SofTech Microsystems, Inc.

p-System is a trademark of SofTech Microsystems,
Ine.

UCSD and UCSD Pascal are registered trademarks
of the Regents of the University of California,
Use thereof in conjunetion with any goods or
services is authorized by specifie license only, and
any unauthorized use is contrary to the laws of the
State of California.

Printed in the United States of America.
Disclaimer

This document and the software it describes are
subject to change without notice. No warranty
expressed or implied covers their use. Neither the
manufacturer nor the seller is responsible or liable
for any consequences of their use.

PREFACE

Preface

This manual describes the p-System Assembler. The
assemblers which acecompany this manual enable you
to produce assembly language code for any one of
the following processors:

LSI-11/PDP-11
Z80

6502

6800

8080

9900

6809

78

68000
8086/8087/8088

The assembly language programming details for
these processors isn't covered in this manual. You
should use a manual which describes the processor
you are programming for along with this manual.

(See Chapter 2.)

You can use the p-System to develop assembly
language programs to provide:

1. Assembly language procedures to run under
control of a host program; or

2. Stand-aelone assembly language programs to use
outside of the operating system's environment.

The assemblers, in conjunction with the system
linker and some support programs, give you these
capabilities.

0500201:00A v

Preface

You should use this reference manual in conjunection
with the processor software manual that supports
your machine. For information concerning
differences from the processor's standard software
syntax, refer to Chapter 2.

This manual is organized as follows. Chapter 1,
"The Assembler,” presents detailed information
which applies to the assembler in general. Chapter
2, "Processor-Specific Information,” provides
information that is specific to each processor with
a section for each assembler.

Appendix A describes the linker which combines
separately assembled code files and can also link a
high-level host program with assembled routines.

Appendix B covers the Compress utility. This
utility allows you to produce a relocatable or
absolute assembled object code file, enabling it to
be run outside of the p-System environment.

Appendix C contains some typical 8086 routines.
These examples demonstrate how to interface with
Pascal program from assembly language.

Appendices D through M lists the assembler syntax
errors for each processor.

Appendix N shows the value of NIL used by each
processor.

vi 0500201:00A

TABLE
OF
CONTENTS

THE ASSthBLER . . L] L] . L] L] . L] L] L] . L] L] . 1_3

INTRODUCTION L] . L] L] L] L] L) . . L] . L L] L] . 1-3
Assembly Language Definition. . « « « . « 1-3
Assembly Language Applications.14

GENERAL INFORMATION. . « ¢« ¢ ¢ ¢ « « 1-5
Object Code Format. « « ¢« « ¢ ¢« ¢ ¢ ¢ & & 1=5
Byte Organization. « « « « « ¢ ¢ ¢« ¢ ¢« 1-5
Word Organization. « « « « ¢« ¢ ¢ « « « « 1-5
Source Code Format. . « « « « « « P]
Character Set. ¢« « ¢ « ¢ ¢ ¢ ¢ ¢ s s oo 1-6
Identifiers. « « « ¢ « ¢« ¢ ¢ s 0 e 0o e o s o 1-6
Predefined Symbols and Identifiers. . . 1-7
Character Strings. « « « « « ¢ « ¢ ¢« ¢ « « 1-8

Table of Contents

Constants. « « « « ¢« ¢ o ¢ ¢ e e 0o oo 1-8
Binary Integer Constants. 1-8
Decimal Integer Constants. . . « « « . 1-9
Hexadecimal Integer Constants. 1-9
Octal Integer Constants. . « « « « . o 1-10
Default Integer Constants. 1-10
Character Constants. . « « « « . « . . 1-10
Assembly Time Constants. 1-11

EXpressionS. « « « « o ¢« ¢ o o a oo+ . 1-11
Relocatable and Absolute. 1-12
Linking and Restrictions. 1-12
Arithmetic & Logical Operators. . . . 1-13
Subexpression Grouping. . « « « . . . 1-15
ExampleSe « « « ¢ o ¢ ¢ o ¢ e ¢ o o o« 1-16

Source Statement Format.1-17

Label Fields « o ¢ ¢« ¢ ¢ ¢ ¢ ¢ 0 o o oo 1-17

1-17

Standard I.shel Usage .

LR Loty — A " % % w e ® e @

Local Label Usage. . « « ¢« o ¢« « o « « 1-18
Opcode Field. « ¢« « ¢ ¢ ¢ o 0 o s o o « 1-20
Operand Field. « v ¢« v ¢ ¢ ¢ ¢ o v o o o 1-20
Comment Field. « ¢« ¢ ¢ ¢ ¢ ¢ e o o o« 1-20
Source File Format. . « « « « ¢ ¢ o o « « 1-21
Assembly Routines. . « « ¢« ¢« + o ¢ &+ o 1-21
Global Declarations. « « « « ¢« ¢ « « « « 1-22
Absolute Sections. « « « « ¢ ¢ ¢ ¢ o o o 1-22

Table of Contents

ASSEMBLER DIRECTIVES. « « « ¢« ¢ « « . 1-26
Procedure-Delimiting Directives. 1-29
Data and Constant Definitions. 1-34
Location Counter Modification. 1-39
Listing Control Directives. . « « « « « . 1-41
Program Linkage Directives. . . + . . . 1-49
Conditional Assembly Directives. 1-54
Macro Definition Directives. . « « « . « 1-55
Miscellaneous Directives. « « « « « « « « 1-57

CONDITIONAL ASSEMBLY. e o o o o o o 1-61
Conditional Expressions. « « « « « « « + « 1-62

MACRO LANGUAGE.1-63
Macro Definitions. « « « ¢« ¢ ¢ ¢ o ¢« « o « 1-64
Macro Callse ¢« ¢« ¢ ¢« ¢ ¢ ¢ o ¢ ¢ o ¢ ¢ oo 1-65
Parameter Passing. « « « « « « ¢« ¢« ¢« « « 1-65
Scope of Labels in Macros. « « « « « « o 1-67

Local Labels as Macro Parameters. . . 1-68

PROGRAM LINKING & RELOCATION. . 1-70
Program Linking Directives.1-73
Host Communication Directives. 1-74
External Reference Directives. 1-75
Program Identifier Directives. 1-76
Linking Program Modules. « « « « « « + « 1-77
Linking with a Pascal Program. 1-77
Parameter Passing Conventions. . . . 1-80
Variable Parameters. . « « « « « « « 1-81

Table of Contents

Value Parameters. « « « « « ¢« o « o « 1-82
String and Byte Array Parameters. . 1-83
Example of Linking to Pascal.1-86
Stand-Alone Applications. « « + « « « « 1-87
Assembling e + « « ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ s oo 1-88
Executing Absolute Code Files. . . . 1-89

OPERATION OF THE ASSEMBLER. .. . 1-92
Support Files. « « ¢ ¢ ¢« o ¢ ¢ o ¢ o ¢ o o 1-92
Setting Up Input And Output Files. . . 1-93
Responses to Listing Prompt. 1-94
Output ModeS . o« « ¢« ¢ ¢ ¢ ¢ s e« o o ¢ « « 1-96
Responses to Error Prompt. . « « « « « o 1-97

Miscellany . « « ¢« « ¢« ¢« ¢ ¢ o ¢ o « o s o« 1-98

ASSEMBLER OUTPUT. . . ¢« ¢ ¢ ¢ o o « « 1-99
Source Listing. « « ¢ « ¢« « ¢« o ¢« o o « « 1-100
Error MeSSagesS. « « « « o o « ¢ « o o « « 1-101
Code Listing e ¢« « « ¢« ¢ ¢ ¢ o ¢« ¢« o o o « 1-101
Forward References. « « « « « « « « » 1-102
External References. . . « « « ¢ « o . 1-103
Multiple Code Lines. « « « « « « « « « 1-103
Symbol Table. « « « ¢ ¢ ¢ ¢« ¢ o s o « o 1-104
Example Assembled Listing. 1-105

Table of Contents

INTRODUCTION L L] - L) L] L] L L] . L] - 2-3

LSI-11/PDP-11 ASSEMBLER . . « « ¢« 4 « « . 24
Syntax Conventions. « « « « ¢ ¢« ¢ ¢ ¢« o « 24
Sharing PME Resources. « « « « ¢« « « « « 2-4
Memory Organization. « « « « ¢« ¢ ¢« o o « « 24
Default Constant and List Radices. . . . 2-4

Z80 ASSEMBLER . ¢« ¢ ¢« ¢+ ¢ ¢ s e s 0 s e« s 25
Syntax Conventions. « « « « ¢« ¢ ¢« ¢ ¢« o &« 2-5
Sharing PME Resources. « « « « « « « » « 2-5
Memory Organization.25
Default Constant and List Radices. . . . 2-6

6502 ASSEMBLER. e ¢ e ¢ o ¢ o o ¢ o s o & 2-7
Syntax Conventions. « « ¢« « ¢« ¢ ¢ ¢« ¢« « « 2-7
Sharing PME Resources. . + « « « « « « « 2-8

Memorv Orggnization 2-8

HITINIVE Yy VIHWRINMGULIViII e s ¢ v 5 9 v v s s e e

Default Constant and List Radices. . . . 2-8

6800 ASSEMBLER . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ s ¢ s s s 279
Syntax Conventions. « « « « ¢ ¢« ¢ ¢ « ¢« « 2-9
Sharing PME Resources. . « « « « « « « « 2-10
Memory Organization. . . « « « « « « . . 2-10
Default Constant and List Radices. . . 2-10

Table of Contents

8080 ASSEMBLER . ¢ ¢ ¢ ¢ « s ¢ ¢ o ¢« o « 2-11
Syntax ConventionS. « « « « « « o « & « « 2-11
Sharing PME Resources. « « « « « « « « « 2-11
Memory Organization. « « « + . . 2-11
Default Constant and List Radices. . . 2-11

9900 ASSEMBLER. ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o « 2-12
Syntax Conventions. « « « « ¢« ¢ ¢ « o« « « 2-12
Sharing PME Resources. « « « « « « o « « 2712
Memory Organization. . . « « « ¢« ¢ . . . 2-12
Default Constant and List Radices. . . 2-13

6809 ASSEMBLER. . . ¢« ¢ ¢« ¢ ¢« ¢ o s« « 2-14
Syntax Conventions. « « « « ¢« ¢ ¢« « o « « 2-14
Sharing PME Resources. . « « « « « « « « 2-15
Memory Organization. . . « « « « « « « « 2-15
Default Constant and List Radices. . . 2-15

Z8 ASSEMBLER. . . ¢ ¢ ¢ « ¢ s e s ¢+« 2-16
Syntax ConventionS. « « « « ¢« ¢ ¢« ¢« « « « 2-16
Symbols . ¢« ¢ ¢« ¢ ¢ ¢ ¢« ¢ 0 ¢ v v e 2-16
Numeric Constants. « « « ¢« ¢« ¢« ¢ o . . 2-16
Predefined Constants. . « « « . .« . . . 2-16
Sharing PME Resources. « « « « « « » » « 2-17
Memory Organization. . . « « « « « « o« 2-17
Default and List Radices. « « « « « & « . 2-17

Table of Contents

8086/8088/8087 ASSEMBLER. . . « 2-18
Syntax Conventions. . « . . « « 2-18
Sharing PME ReSOUrcesS. « « « « « + « « « 2-24

Calling and Returning. « « « ¢« « ¢ « « « 2-24
Accessing Parameters. « « « « o o « « . 2-25
Register Usage . « « « « ¢ ¢« s « o « o « 2-26
Memory Organization. . . « « « « « o o & 2-27
Default Constant and List Radices. . . 2-28

68000 ASSEMBLER . « « ¢ o ¢ ¢ s o o « o « 2-29
Syntax Conventions. « « « « ¢« ¢ ¢ ¢ « « « 2-29
Sharing PME Resources. « « « « « « « « « 2-31
Memory Organization. « « « « « ¢« « « « &« 2-33
Default Constant and List Radices. . . 2-33

APPENDICES..Q-Qo-oooocoo--c A."'l
A:THELINKER..‘C....Oll...A_2

B: THE COMPRESS UTILITY. A-6
C: CODING EXAMPLES. ¢« 4+ ¢ ¢ ¢« « « « A-12
D: 6502 SYNTAX ERRORS. A-38
E: 6800 SYNTAX ERRORS. A-41
F: 6809 SYNTAX ERRORS. A-44
F: 8080 SYNTAX ERRORS. o o o A-47
H: 9900 SYNTAX ERRORS. « A-50

I: LSI-11/PDP-11 SYNTAX ERRORS. . . A-53
J: 28 SYNTAX ERRORS. A-56
K: Z80 SYNTAX ERRORS. A-59
L: 8086/88/87 SYNTAX ERRORS. A-62

Table of Contents

M: 68000 SYNTAX ERRORS. A-67
N: NIL POINTER VALUES. A-70

INDEX.. --------- o..cco-vo-l_l

Assembler

CHAPTER 1
THE ASSEMBLER

The Assembler

INTRODUCTION

This chapter describes the p-System Assembler. It
covers assembler-related concepts, assembler
directives, and assembler operations. Other topies
covered here include:

@ Linking assembled routines with host compilation
units.

@ Assembled listings.
® Error messages.

@ Sharing PME Resources.

Assembly Language Definition

An assembly language consists of symbolic names
that can represent machine instructions, memory
addresses, or program data. The main advantage
of assembly language programming over machine
coding is that programs can be organized in a

na naandahla faahi maline 4ham anaian

4+~
Mmore reaGaavie 1asnion g iHARLly L1 UU.DJ.CI. [V)

understand.

0500201:01A 1-3

The Assembler

An assembler translates an assembly language
program, called source code, into a sequence of
machine instructions, called objeet code.
Assemblers can create either relocatable or
absolute object code. Relocatable code ineludes
information that allows a loader to place it in
any available area of memory, while absolute
code must be loaded into a specific area of
memory. Symbolic addresses in programs that are
assembled to relocatable object code are called
relocatable addresses.

Assembly Language Applications

Using the p-System, you can develop:

1. Assembly language procedures to be used under
a host program; or

2. Stand-alone assembly language programs for
use in a different operating system

.
ATITIMATI AN

4
CUUVILVIIIITH L,

1-4 0500201:01A

The Assembler

GENERAL INFORMATION

Object Code Format

Byte Organization

A byte consists of eight bits. These bits may
represent eight binary values or a single
character of data. The bits may also represent
a one-byte machine instruction or a number
that is interpreted as either a signed two's
complement number in the range of -128 to 127
or an unsigned number in the range of 0 to
255.

Word Organization

A word consists of 16 bits or 2 adjacent bytes
in memory. A word may contain a one-word
machine instruction, any combination of byte
quantities, or a number that may be interpreted
as either a signed two's complement number in
the range of -32,768 to 32,767 or an unsigned
number in the range of 0 to 65,535,

0500201:01A 1-5

The Assembler

Source Code Format

Character Set

Use the following characters to construet
source code:

® Uppercase and lowercase alphabetiec
characters: A through Z, a through z

@ Numerals: 0 through 9

@ Special symbols: | @ # $ ¥~ & *¥ () <>~
[J.,/75:m"+-=2

@ Space (' ') character and tab character

Identifiers

Identifiers consist of an alphabetic character
followed by a series of alphanumeric characters
and/or underscore characters. The underscore
character isn't significant. Only the first 8
characters of an identifier are significant.

1-6 0500201:01A

The Assembler

Use identifiers in:
@ Label and constant definitions.

@ Machine instructions, assembler directives,
and macro identifiers.

@ Label and constant references.

FormArray
FORM_ARRAY
formarray

. all denote the same item.

Predefined Symbols and Identifiers

Predefined identifiers are reserved by the
assembler as symbolic names for machine
instructions and registers. Don't use them as
names for labels, constants, or procedures.
Also, the dollar sign, "$," is predefined to
specify the location counter. When used in
an expression, the dollar sign represents the
current value of the location counter in the
program,

0500201:01A 1-7

The Assembler

Character Strings

Write a character string as a series of ASCII
characters delimited by double quotes. A
string may contain up to 80 characters, but
can't cross source lines. You can embed a
double quote in a character string by entering
it twice; for example, "This contains
"embedded"™ double quotes." The assembler
directive .ASCII requires a character string for
its operand.

Strings also have limited uses in expressions.

Constants

1-8

Binary Integer Constants

Write a binary integer constant as a series
of bits or binary digits (0 through 1)
followed by the letter 'T'. The range of
values is 0 to 1111111111111111, or 0 to

11111111, if a byte constant,

oT
01000100T
1l101T

0500201:01A

The Assembler

Decimal Integer Constants

Write a decimal integer word constant as a
series of numerals (0 through 9) followed by
a period. Its range of values is -32768 to
32767 as a signed two's complement number.
As a byte constant, its range of values is
-128 to 127 as a signed two's complement
number or 0 to 255 as an unsigned number.

001.
256.
-4096.

Hexadecimal Integer Constants

Write a hexadecimal integer word constant as
a series of up to four significant hexadecimal
numerals (0 through 9, A through F) followed
by the letter 'H'. The leading numeral of a
hexadecimal constant must be a numeric
character. The range of values is 0 to
FFFE. These are examples of valid
hexadecimal constants:

OAH
1008
OFFFEH ; leading zero is required here

Byte constants possess similar syntax, but
can have at most two significant hexadecimal
numerals, with a range of 0 to FF.

0500201:01A 1-9

The Assembler

1-10

Octal Integer Constants

Write an octal integer word constant as a
series of up to six significant octal numerals
(0 through 7) followed by the letter 'Q'. Its
range of values is 0 to 177777, Byte
constants can have at most three significant
octal numerals, with a range of 0 to 377.

17Q
457Q
177776Q

Default Integer Constants

If you don't follow an integer constant with
'T', %', 'H', or 'Q', the integer will, by
default, be of a certain type. This type is
processor dependent. (See Chapter 2.)

Character Constants

Character constants are special cases of
charaecter strings; you may use them in
expressions. The maximum length is two
characters for a word constant and one
character for a byte constant. Character
constants are delimited by double quotes.

wpw
"BC"
"yA"

0500201:01A

The Assembler

Assembly Time Constants

Write an assembly time constant as an
identifier that the .EQU directive has
assigned a constant value. (Refer to the
section on "Data and Constant Definitions,"
presented later in this chapter.) Its value is
completely determined at assembly time from
the expression following the directive. You
must define assembly time constants before
you refer to them.

Expressions

Use expressions as symbolic operands for
machine instructions and assembler directives.
An expression can be:

@® A label, which might refer to a defined
address or an address further down in the
source code (implying that the label is
presently undefined), an externally
referenced address, or an absolute address.

@ A constant.

® A series of labels or constants separated by
arithmetic or logical operators.

® The null expression, which evaluates to a
constant of value 0.

0500201:01A 1-11

The Assembler

Relocatable and Absolute

1-12

An expression containing more than one label
is valid, only if the number of relocatable
labels added to the expression exceeds the
number of relocatable labels subtracted from
the expression by 2zero or one. The
expression result is absolute if the difference
is zero, and relocatable if the difference is
one. Don't use subexpressions that evaluate
to relocatable quantities as arguments to a
multiplication, division, or logical operation.
Also, don't apply unary operators to
relocatable quantities.

In relocatable programs, don't use absolute
expressions as operands of instructions that
require location-counter-relative address
modes.

Linking and Restrictions

An expression may contain no more than one
externally defined label, and its value must
be added to the expression. An expression
containing an external reference may not
contain a forward-referenced label, and the
relocation sum of any other relocatable
labels in the expression must be equal to
zero.

0500201:01A

The Assembler

An expression may contain no more than one
forward-referenced identifier. A
forward-referenced identifier is assumed to
be a relocatable label defined further down
in the source code; you must define any
other identifiers before using them in an
expression. Also, don't place an externally
defined label in an expression containing a
forward-referenced label.

Arithmetic & Logical Operators

You may use the following operators in
expressions:
@ Unary operations:

?+1 plus

' minus (two's complement negation)

1~ Jogical not (one's complement negation)

0500201:01A 1-13

The Assembler

1-14

@ Binary operations:

'+ plus

'-' minus

1"t exclusive or

'*! multiplication

'/' signed integer division (DIV)

'//' unsigned integer division (DIV)

'%' unsigned remainder division (MOD)

'|' bitwise OR

'&' bitwise AND

Use the following operators only with
conditional assembly directives:

=t equal

'<>'not equal

Use the following symbols as alternatives
to the singlie-characier definitions
presented above., Occurrences of these

alternative definitions require at least
single blank characters as delimiters:

OR =

AND = &
NOT = ™
XOR = '™
MOD = %'

0500201:01A

The Assembler

The assembler evaluates expressions from
left-toright; there 1is no operator
precedence. All operations are performed on
word quantities. Limit unary operators to
constants and absolute addresses; and enclose
subexpressions that contain embedded unary
operators with angle brackets.

Subexpression Grouping

You may use angle brackets ('<' and '>') in
expressions to override the left-to-right
evaluation of operands. Subexpressions
enclosed in angle brackets are completely
evaluated before including them in the rest
of the expression. Angle brackets are used
Using parentheses to group expressions
doesn't generate an error but causes the
assembler to interpret the expression as
indirect addressing mode.

0500201:01A 1-15

The Assembler

Examples

In the following examples of valid
expressions, the default radix is decimal:

MARK+4 The sum of the value of

identifier MARK plus 4

~ w

BILL-2 The result of subtracting 2 from

the value of identifier BILL.

~

2-BARRY The result of subtracting the
value of identifier BARRY from 2.

BARRY must be absolute.

~ w ne

3*2+MACRO The sum of the value of
identifier MACRO plus the

product of 3 times 2.

~ e

DAVID+3*2 2 times the sum of the
identifier DAVID and 3.

David must be absolute.

~e we

650/2-RICH The result of dividing 650 by 2
and subtracting the value of
identifier RICH from the

quotient. RICH must be absolute

e e N e

Null expression: constant 0

~4*%124<6/2> ; evaluates to -45 (decimal)
85+2+4<~5> ; evaluates to 82 (decimal)
011&<™0> ; evaluates to 1

0 .OR 1 .AND <.NOT 0> ; is the same expression
; (result is 1)

1-16 0500201:01A

The Assembler

Source Statement Format

An assembly language source program consists of
source statements that may contain machine
instructions, assembler directives, comments, or
nothing (a blank line). Each source statement is
defined as one line of a text file.

Label Field

The assembler supports the use of both
standard labels and loeal (that is, reusable)
labels. Begin the label field in the left-most
character position of each source line. Macro
identifiers and machine instructions must not
appear in the start of the label field, but
assembler directives and comments may appear
there.

Standard Label Usage

A standard label is an identifier placed in
the label field of a source statement. You
may terminate it with an optional colon
character, which isn't used when referencing
the label. Only the first eight characters of
the label are significant; the assembler
ignores the rest. The underscore character
isn't significant.

BIOS

L3456: ; referenced as 'L3456'
The__Kind
LONG__label ; last character is ignored

0500201:01A 1-17

The Assembler

1-18

A standard label is a symbolic name for a
unique address or constant; declare it only
once in a source program. A label is
optional for machine instruetions and for
many of the assembler directives. A source
statement consisting of only a label is a
valid statement; it effectively assigns the
current value of the location counter to the
label. This is equivalent to placing the label
in the label field of the next source
statement that generates object code.
Labels defined in the label field of the .EQU
directive are assigned the value of the
expression in the operand field. (See the
"Data and Constant Definitions" seection,
presented later in this chapter.)

Local Label Usage

Local labels allow source statements to be
labeled for other instructions to reference,
without taking up storage space in the
symbol table. They can contribute to the
cleanliness of source program design by
allowing nonmnemonic labels to be created
for iterative and decision construets to use,
thus reserving the use of mnemonic label
names for demarking conceptually more
important sections of code.

0500201:01A

The Assembler

In local labels, you must plac: " in the
first character position; the remaining
characters must be digits., As in regular
labels, only the first eight digits are
significant. The scope of a local label is
limited to the lines of source statements
between the declaration of consecutive
standard labels; thus, the jump to label $4 in
the following example is illegal:

LABELl

ADC AX, SsI
$3 MOV MEM, AX
Jc $3 ; legal
NOP
JNC $4 ; illegal
LABEL2
ADC AX, SI
$4 MOV MEM, AX

You may define up to 21 local labels
between 2 occurrences of a standard label.
On encountering a standard label, the
assembler purges all existing local label
definitions; hence, all local label names may
be redefined after that point. Don't use
local labels in the label field of the EQU

directive. (See the "Data and Constant
Definition" section in this chapter.)

0500201:01A 1-19

The Assembler

Opcode Field

Begin the opcode field with the first nonblank
character following the label field; or with the
first nonblank character following the left-most
character position when the label is omitted.
Terminate it with one or more blanks. The
opcode field can contain identifiers of the
following types:

@ Machine instruction.
@ Assembler directive.

@ Macro call,

Operand Field

Begin the operand field with the first nonblank
character following the opcode field; terminate
it with zero or more blanks. It can contain
zero or more expressions, depending on the
requirements of the preceding opcode.

Comment Field

You can precede the comment field with zero
or more blanks, begin it with a semicolon (';'),
and extend it to the end of the current source
line. The comment field may contain any
printable ASCII characters. It is listed on
assembled listings and has no other effect on
the assembly process.

1-20 0500201:01A

The Assembler

Source File Format

You should use the system editor to produce
assembly source files and save them as text files.
You can construct a source file from the
following entities:

@ Assembly routines (procedures and functions).

@ Global declarations.

Assembly Routines

A source file may contain more than one
assembly routine. In this case, a routine ends
when a routine delimiting directive ocecurs (for
example, the start of the following routine).
Each routine in a source file is a separate
entity. It contains its own relocation
information; and, during linking, a host program
may refer to it individually.

Begin assembly routines with a .PROC, .FUNC,
.RELPROC, or .RELFUNC directive.
Terminate the last routine in the source file
with the .END directive.

At the end of each routine, the assembler's
symbol table is cleared of all but predefined
and globally declared symbols, and the location
counter (LC) is reset to zero.

0500201:01A 1-21

The Assembler

Global Declarations

An assembly routine may not directly access
objects declared in another assembly routine,
even if the routines are assembled in the same
source file; however, sometimes it's desirable
for a set of routines to share a commmon
group of declarations. Therefore, the
assembler allows global data declarations.

All subsequent assembly routines may reference
any objects declared before a .PROC, .FUNC,
RELPROC, or .RELFUNC directive initially
occurs in a source file. No code may be
generated before the first procedure delimiting
directive; hence, the "global”™ objects are
limited to the noncode-generating directives
(.EQU, .REF, .DEF, .MACRO, .LIST, etc.).

Absolute Sections

You'll often have to access absolute addresses
in memory, regardless of where an assembly
routine is loaded in memory. For instance, a
program may need to access ROM routines.
Absolute sections allow you to define labels
and data space using the standard syntax and
directives; this give you the added capability
of specifying absolute (nonrelocatable) label
addresses, starting at any location in memory.

1-22 0500201:01A

The Assembler

You should initiate absolute sections with the
directive .ASECT (for absolute seection) and
terminate them with the directive .PSECT (for
program section, which is the default setting
during assembly). When the .ASECT directive
is encountered, the absolute section location
counter (ALC) becomes the current location
counter. Use the .ORG directive to set the
ALC to any desired value. Label definitions
are nonrelocatable and are assigned the current
value of the ALC. The data directives
WNORD, .BLOCK, and .BYTE cause the
ALC—instead of the regular LC—to be
ineremented.

Data directives in an absolute section can't
place initial values in the locations specified as

+hawvr naan whan naeand in +he nraoram cantian
bllc.y waii WiicCis uocu F 9 ¥ ik El Vsl. Qi WO LIViLe
Thus, the absolute section serves as a tool for
constructing a template of label-memory

address assignments.

You may use the equate directive (.EQU) in an
absolute section, but restrict the labels to

oy P =Tt e s e

being egquated only to absolute expressions.
The only other directives allowed to ocecur
within an absolute section are .LIST, .NOLIST,

.END, and the conditional assembly directives.

Absolute sections may appear as global objects.

0500201:01A 1-23

The

1-24

Assembler

The following is a

absolute section:

+ASECT

.ORG ODF00H

DSKOUT .BYTE

DSKSTAT .BYTE

CONS «WORD

BLAGUE .BLOCK 4

REMOUT .WORD

OFFSET .EQU REMOUT+2

.PSECT

.~

simple example of an

start absolute section
set ALC to DF00 hex

note - no data values assigned
label assignments below

DSROUT = DFQO0
DSKSTAT = DF01

CONS = DF02
BLAGUE=DFO4 (4 bytes)
REMOUT = DFO08

OFFSET = DFOA

0500201:01A

The Assembler

any non-code-
generating
operations

code-generating
or non-code generating m
operations and directives

0500201:01A

Figure 1-1. Structure of
an Assembled Module

1-25

The Assembler

ASSEMBLER DIRECTIVES

Assembler directives (sometimes referred to as
pseudo-ops) enable you to supply data to be
included in the program and control the assembly
process. Place assembler directives in the source
code as predefined identifiers preceded by a period

().

The following metasymbols are used in the syntax
definitions for assembler directives:

® Special characters and items in capital letters
must be entered as shown,

® Items within angle brackets (<>) are defined by
you.

@ Items within square brackets ([]) are optional.

@® The word 'or' indicates a choice between two
items.

1-26 0500201:01A

The Assembler

@ Items in lowercase letters are generic names for
classes of items.

The following terms are names for classes of items:

b

comment

expression

integer

label

value

value list

identifier

0500201:01A

The occurrence of one or more
blanks.

Any legal comment. (Refer to
the "Comment Field" paragraph
presented earlier in this chapter.)

Any legal expression. (Refer to
a prior paragraph entitled
"Expressions.")

Any legal integer constant as
defined eariler in the section
called "Constants,"

Any legal label. (Refer to the
"Label Field" paragraph earlier in
this chapter.)

Any label, ceonstant, or
expression. Its default value is
0.

A list of zero or more values
delimited by commas.

A legal identifier as defined in a

preceding paragraph entitled
"dentifiers.")

1-27

The Assembler

idlist A list of one or more identifiers
delimited by commas.

id:integer list A list of one or more
identifier-integer pairs separated
by a colon and delimited by a
comma. The colon:integer part is
optional; its default velue is 1.

character string Any legal character string. (See
the paragraph "Character
Strings," above.)

file identifier Any legal name for a Pascal text
file.
Example:

[<label>] [b] .ASCII b <character string> [<comment>]

This indicates that you may optionally include the
label field, and that you must include a character
string as an operand.

Small examples are included after each definition to
supply you with a reference to the specific syntax
of the directive.

1-28 0500201:01A

The Assembler

Procedure-Delimiting Directives

Include at least one set of procedure-delimiting
directives in every source program (including
those intended for use as stand-alone code files).
The assembler is used most frequently for
assembling small routines intended to be linked
with a host compilation unit. Use the directives
.PROC and .FUNC to identify and delimit
assembly language procedures; and .RELPROC and
RELFUNC to identify and delimit dynamically
relocatable procedures. Dynamically relocatable
procedures may reside in the code pool; they are
subject to more of the system's memory
management strategies. (For more detailed
information about using these directives, refer to
the section, "Program Linking and Relocation,"
presented later on in this chapter.)

0500201:01A 1-29

The Assembler

PROC

Form:

Identifies the beginning of an
assembly language procedure. The
procedure is terminated when
another delimiting directive occurs
in the source file.

[bl] .PROC b <identifier> [,<integer>] [<comment>]

Example:

1-30

<identifier> is the name
associated with the assembly
procedure.

<integer> indicates the number of
parameter words passed to this
routine., The default is 0.

0500201:01A

JFUNC

Form:

The Assembler

Identifies the beginning of an
assembly language function. The
host compilation unit expeets a
funetion to return a result on the
top of the stack; otherwise,
.FUNC is equivalent to the
LPROC directive.

[b]l .FUNC b <identifier>I[,<integer>] [<comment>]

Example:

.FUNC RANDOM

0500201:01A

{identifier> 1is the name
associated with the assembly
procedure.

72 N femAdiamcndanc 4 smsssmaboma o
\uucgei"/ LHnuicatited Lie iuinver o
perameter words passed to
routine. The default is 0.

1-31

The Assembler

RELPROC Identifies the beginning of a
dynamically relocatable assembly
language procedure. Such
assembly procedures must be
position-independent. (See the
"Program Linking and Relocation"
section in this chapter.) The
procedure is terminated when
another delimiting directive occurs
in the source file.

Form:

[bl .RELPROC b <identifier> [,<integer>] [<comment>]

<identifier> is the name
associated with the assembly
procedure,

<integer> indicates the number of

parameter words passed to this
routine. The default is 0.

Example:

«RELPROC POOF, 3

1-32 0500201:01A

RELFUNC

Form:

The Assembler

Identifies the beginning of a
dynamically relocatable assembly
language funetion. The host
compilation unit expeects this
funetion to return a function
result on top of the stack;
otherwise, .RELFUNC is
equivalent to the .RELPROC
directive.

[bl .RELFUNC b <identifier>[,<integer>] {<comment>]

Example:

+-RELFUNC POOOF

0500201:01A

<identifier> is the name
associated with the assembly
function.

{integer> indicates the number of
parameter words passed to this
routine. The default is 0.

1-33

The Assembler

.END Marks the end of an assembly
source file,

Form:

[<label>] [bl .END

Data and Constant Definitions

.ASCII Converts character strings to a
series of ASCII byte constants in
memory. The bytes are allocated
sequentially as they appear in the
string. An identifier in the label
field is assigned the location of
the first character allocated in
memory.

Form:

[<label>] [bl .ASCII b <character string> [<comment>]

<character string> is any string of
printable ASCII characters
delimited by double quotes.

Example:

.ASCII "HELLO"

1-34 0500201:01A

The Assembler

.BYTE Allocates and initializes values in
one or more bytes of memory.
Values must be absolute byte
quantities. The default value is
zero. An identifier in the label
field is assigned the location of
the first byte allocated in
memory.

Form:
[<labei>] (b} .BYTE b [valuelistl] [<comment>]
Example:

TEMP .BYTE 4; code would be 04 hex

TEMP1 .BYTE ; code would be 00 hex

0500201:01A 1-35

The Assembler

.BLOCK Allocates and initializes a block
of consecutive bytes in memory.
A byte value must be an absolute
quantity. The default value is
zero. An identifier in the label
field is assigned the location of
the first byte/word allocated.

Form:

[<label>] [bl .BLOCK b <length>[,<value>] [<comment>]

<length> is the the number of
bytes to allocate with the initial
value <value>.

Example:

TEMP .BLOCK 4,6H

The output code would be:

06 06 06 06 ;four bytes with value 06 hex

1-36 0500201:01A

.WORD

Form:

The Assembler

Allocates and initializes values in
one or more consecutive words of

memory. Values may be
relocatable quantities. The
default value is zero. An

identifier in the label field is
assigned the location of the first
word allocated.

[<label>] ([b] .WORD b <valuelist> [<comment>]

Example:

TEMP .WORD 0,2,,4

Example:

Ll .WORD L2

0500201:01A

On a processor which has the
least-significant byte first in a
word, the output code would be:

0000
0200

0000 ; this is a default value.
naAQOD

The output code would be a word
containing the address of the
label L2.

1-37

The Assembler

-EQU Associates a label with a
particular value. Labels may be
equated to an expression
containing relocatable labels,
externally referenced labels,
and/or absolute constants. The
general rule is that labels equated
to values must be defined before
use. The exception to this rule
is for labels equated to
expressions containing another
label. Local labels may not
appear in the label field of an
equate statement.

Form:
<label> [b] .EQU b <value> [<comment>]
Example:

BASE «EQU R6

1-38 0500201:01A

The Assembler

Loeation Counter Modification

These directives affect the value of the location
counter (LC or ALC) and the location in memory
of the code being generated.

ORG If used at the beginning of an
absolute assembly program, .ORG
initializes the location counter to
<{value>. Using .ORG anywhere
else generates zero bytes until
the value of the location counter
equals <value>,

Form:

[bl] .ORG b <value> [<comment>]
Example:

.ORG 1000H

0500201:01A 1-39

The Assembler

-ALIGN Outputs sufficient zero bytes to
set the location counter to a
value that is a multiple of the
operand value.

Form:

[b] .ALIGN b <value> [<comment>]
Example:

.ALIGN 2

This aligns the LC to a word
boundary.

1-40 0500201:01A

The Assembler

Listing Control Directives

Use these directives to control the format of the
assembled listing file generated by the assembler.
These directives don't generate code, and their
source lines don't appear on assembled listings.
(For a more detailed description of an assembled
listing, refer to the "Assembler Output"
paragraph, presented later in this chapter.)

TITLE

Form:

Changes the title printed on
the top of each page of the
assembled listing. The title
may be up to 80-characters
long. The assembler changes
the title to 'SYMBOLTABLE
DUMP' when printing a symbol
table; the title reverts back to
its former value after the
symbol table is printed. The
default value for the title is

LI §
.

[b] .TITLE b <character string> [<comment>]

Example:

.TITLE "MACROS"

0500201:01A

1-41

The Assembler

.ASCIILIST

Form:

Prints all bytes the .ASCII
directive generates in the code
field of the list file, creating
multiple lines in the list file if
necessary. Assembly begins
with an implicit .ASCIILIST
directive.

[b] .ASCIILIST [<comment>]

Example:

<ASCIILIST

NOASCIILIST

Form:

Limits the printing of data the
.ASCI directive generates to
as many bytes as will fit in
the code field of one line in
the list file.

[b] .NOASCIILIST I[<ccmment>]

Example:

.NOASCIILIST

1-42

0500201:01A

The Assembler

.CONDLIST Lists source code contained in
the unassembled sections of
conditional assembly directives.

Form:

[{b] .CONDLIST [<comment>]

Example:

.CONDLIST

NOCONDLIST Suppresses the listing of source
code contained in the
unassembled sections of
conditional assembly directives.
Assembly begins with an
implicit .NOCONDLIST
directive.

Form:

[b] .NOCONDLIST [<comment>]

Example:

«NOCONDLIST

0500201:01A 1-43

The Assembler

.NOSYMTABLE Suppresses the printing of a
symbol table after each
assembly routine in an
assembled listing.

Form:

[b] .NOSYMTABLE [<comment>]

Example:

«NOSYMTABLE

PAGEHEIGHT Controls the number of lines
printed in an assembled listing
between page breaks.
Assembly begins with an
implicit .PAGEHEIGHT 59
directive,

Form:

[bl] .PAGEHEIGHT <integer>

Example:

-PAGEHEIGHT 40.

1-44

[<comment>]

0500201:01A

NARROWPAGE

Form:

The Assembler

Limits the width of an
assembled listin%' to 80 columns.
The symbol table is printed in
a narrow format, source lines
are truncated to a maximum of
49 characters, and title lines
on the page headers are
truncated to a maximum of 40
characters.

[b]l] .NARROWPAGE [<comment>]

Example:

«NARROWPAGE

PAGE

Form:

[b]l .PAGE

Example:

.PAGE

0500201:01A

Continues the assembled listing
on the next page by sending an
ASCII form feed character to
the assembled listing.

1-45

The Assembler

LIST Enables output to the list file,
if a listing isn't already being
generated. You can use .LIST
and .NOLIST to examine
certain sections of source and
object code without creating an
assembled listing of the entire
program. Assembly begins with
an implicit .LIST directive.

Form:

[b] .LIST
Example:

-LIST

NOLIST Suppresses output to the list
file, if it isn't already off.

Form:
[b]l .NOLIST

Example:

«NOLIST

1-46 0500201:01A

MACROLIST

Form:

{b] .MACROLIST

Example:

«MACROLIST

0500201:01A

The Assembler

Specifies that all subsequent
macro definitions have their
macro bodies printed when they

are called in the source
program. Assembly begins with
an implicit .MACROLIST
directive. The section called
"Macero Language,"” presented
later in this chapter, gives a
detailed description of macro

language.

1-47

The Assembler

.NOMACROLIST Specifies that all subsequent

Form:

(bl .NOMACROLIST

Example:

+NOMACROLIST

LPATCHLIST

Form:

[b] .PATCHLIST
Example:

.PATCHLIST

1-48

macro definitions won't have
their maero bodies printed
when they are called in the
source program. Only the
macro identified and parameter
list are included in the listing.

Lists occurrences of all back
patches of forward-referenced
labels in the list file.
Assembly begins with an
implieit .PATCHLIST directive.
For a detailed description of
back patches, refer to the
paragraph, "Forward
References," in the section
called, "Assembler Output,”
presented later in this chapter.

0500201:01A

The Assembler

.NOPATCHLIST Suppresses the listing of back
patches of forward references.

Form:

[b] .NOPATCHLIST
Example:

«NOPATCHLIST

Program Linkage Directives

Linking directives enable communication between

separately assembled and/or compiled programs.
Later in this chapter, the section called "Program

aiT Do wvawia v

Linking and Relocation"™ has a detailed description
of program linking.

CONST Allows the assembly procedure to
access globally declared constants
in the host compilation unit.

Form:

[bl .CONST b <idlist> [<comment>]

Each <ID> is the name of a global
constant declared in the host.

Example:

.CONST LENGTH

0500201:01A 1-49

The Assembler

PUBLIC Allows an assembly language
routine to reference variables
declared in the global data segment
of the host compilation unit.

Form:

[b]l .PUBLIC b <idlist> [<comment>]

Each <ID> is the name of a global
variable declared in the host.

Example:

.PUBLIC I,J,LENGTH

1-50 0500201:01A

PRIVATE

Form:

The Assembler

Allows an assembly language
routine to store variables, which
only the assembly language routine
can access, in the global data
segment of the host compilation
unit,

[b]l .PRIVATE b <id:integer list> [<comment>]

Example:

Each <ID> is treated as a label
defined in the source code.
<integer> determines the number of
words of space allocated for <ID>.

«PRIVATE PRINT,BARRAY:9

0500201:01A

1-51

The Assembler

JNTERP

Form:

Allows an assembly language
procedure to access code or data
in the p-code PME. .(INTERP is a
predefined symbol for a
processor-dependent location in the
resident PME code; you may use
offsets from this base location to
access any code in the PME. To
use this feature correctly, you
must know the PME's jump vector
for this location, JUNTERP is
generally restricted to systems
applications.

valid when used in <expression>

Example:

ERR .EQU 12

1-52

; hypothetical
; routine offset

0500201:01A

The Assembler

REF Provides access to one or more
labels defined in other assembly
language routines.

Form:

[bl .REP <idlist> [<comment>]

Example:

+REF SCHLUMP

-DEF Makes one or more labels, to be
defined in the current routine,
available for other assembly
language routines to reference.

Form:

{b)l .DEF <idlist> [<comment>]

Example:

.DEF FOON, YEEN

0500201:01A 1-53

The Assembler

Conditional Assembly Directives

A detailed description of conditional assembly
features is presented later in this chapter in a
section called, "Conditional Assembly."

JF Marks the start of a conditional
section of source statements.

Form:

{b] .IF b <expression> [= or <> <expression>] [<comment>]

Example:

.IF DEBUG

ENDC Marks the end of a conditional
section of source statements.

Form:

[bl] .ENDC ([<comment>1}

Example:

.ENDC

1-54 0500201:01A

The Assembler

.ELSE Marks the start of an alternative
section of source statements.

Form:
[b] .ELSE [<comment>]
Example:

+.ELSE

Macro Definition Directives

A detailed description of macro language is
presented later in this chapter in the section,
"Macro Language.

MACRO Indicates the start of a macro
definition.

Form:

[bl] .MACRO b <identifier> [<comment>]

<identifier> calls the macro being
defined.

Example:

-MACRO ADDWORDS

0500201:01A 1-55

The Assembler

-ENDM Marks the end of & macro
definition.

Form:
[b] .ENDM [<comment>]
Example:

. ENDM

1-56 0500201:01A

The Assembler

Miscellaneous Directives

JINCLUDE

Form:

Example:

0500201:01A

Causes the assembler to start
assembling the file named as an
argument of the directive; when
the end of this file is reached,
assembling resumes with the source
code that follows the directive in
the original file. This feature is
useful for including a file of macro
definitions or for splitting up a
source program too large to be
edited as a single text file. You
can't use .INCLUDE in: (1) an
included source file (that is, nested
use of the directive); and (2) in a
macro definition.,

[b] .INCLUDE b <file identifier> [<comment>]

At least one blank character must
separate the comment field of the
TIANTNT TITNE Afmnndlern Loumen 4hn £311
divLU LIV UL UlleLlVC LIVl i< 11T

identifier.

.INCLUDE MYDISK:MACROS

1-57

The Assembler

-ABSOLUTE Causes the following assembly

Form:

Example:

1-58

routine to be assembled without
relocation information. Labels
become absolute addresses and
label arithmetic is allowed in
expressions. .ABSOLUTE is valid
only before the first procedure
delimiting directive occurs. Don't
use .ABSOLUTE when the
assembled routine is to be called
from a high-level host. (Refer to
the "Program Linking and
Relocation" section, presented later
in this chapter, for a detailed
description of abolute code files.)

[bl .ABSOLUTE [<comment>]

«ABSOLUTE

0500201:01A

.ASECT

Form:

Example:

PSECT

Form:

Example:

0500201:01A

The Assembler

Specifies the start of an absolute
section. For a detailed description
of ".,ASECT," refer to the
paragraph called "Absolute
Sections," presented earlier in this
chapter.

{bl .ASECT [<comment>]

ASECT

Specifies the start of a program
section and terminates an absolute
section. (Refer to the "Absolute
Sections™ paragraphs, presented
earlier.)

[b]l .PSECT [<comment>]

.PSECT

1-59

The Assembler

RADIX

Form:

Example:

1-60

Sets the current default radix to
the value of the operand.
Allowable operands are: 2 (binary),
8 (octal), 10 (decimal), and 16
(hexadecimal). The default radix
of an integer constant is
pr)ocessor—specific. (See Chapter
2.

[b] .RADIX <integer> [<comment>]

.RADIX 10 ; decimal
; default radix

0500201:01A

The Assembler

CONDITIONAL ASSEMBLY

Use conditional assembly directives to selectively
exclude or include sections of source code at
assembly time. Initiate conditional sections with
the .IF directive and terminate them with the
.ENDC directive. They may contain the .ELSE
directive. Use conditional expressions to control
inclusion of conditional sections. Conditional
sections may contain other conditional sections.

When the assembler encounters an .IF directive, it
evaluates the associated expression to determine
the condition value. If the condition value is false,
the source statements following the directive are
discarded until a matching .ENDC or .ELSE is
reached. If you use the .ELSE directive in a
conditional section, source code before the .ELSE is
assembled if the condition is true; and source code
after the .ELSE is assembled if the condition is
false.

Overall syntax for a conditional section (using the
meta language described earlier in the "Assemblers
Directives" paragraph) is as follows:

.IF <conditional expression>
<source statements>
[.ELSE
<source statements>]
+ENDC

0500201:01A 1-61

The Assembler

Conditional Expressions

A conditional expression can take one of two
forms: a single expression or comparison of two
character strings or expressions. The first form
is considered false if it evaluates to zero;
otherwise, it's considered true. The second form
of conditional expression compares for equality or
inequality (indicated by the symbols '=' and <!,
respectively).

Example:

.IF LABEL1-LABEL2 ; arithmetic expression

; This code is assembled only if
; difference is not zero

.IF $1="STUFF" ; comparison expression
; This code is assembled only if
; outer condition is true and
; text of first macro parameter
; is equal to “STUFF".

-ENDC : terminate nested section

This code is assembled if outer
condition is true

+ELSE
3 This code is assembled if first
; condition is false

.ENDC ; terminate outer section

1-62 0500201:01A

The Assembler

MACRO LANGUAGE

The assembler allows you to use a macro language
in source programs. This enables you to associate
a set of source statements with an identifying
symbol. When the assembler encounters this symbol
(known as a macro identifier) in the source code, it
substitutes the corresponding set of source
statements (known as the macro body) for the
macro identifier, and assembles the macro body as
if it had been included directly in the source
program. You can use carefully designed set of
macro definitions in all source programs to simplify
developing assembly language routines.,

In addition, you can enhance the macro language by
including a mechanism for passing parameters
(known as macro parameters) to the maecro body
while it is being expanded. This allows a single
macro definition to be used for an entire class of
subtasks.

Here is a simple example:

; macro definition...

.MACRO STRING ; macro identifier is

; STRING
; Macro Body:

%1 and %2 are
parameter
declarations

2nd parameter is
length byte

<ASCII &l ; 1lst parameter is

H argument
. ENDM ; end macro definition

~

~

+BYTE $2

~

0500201:01A 1-63

The Assembler

Further down in the

STRING "WRITE",S5.

STRING "“TYPE SPACE",10.

P I I

source code...

1st macro call

parameters are
'"WRITE"'
and '5.'

2nd macro call

parameters are

'"TYPE SPACE"'
and '10.°

This is what gets assembled...

.BYTE 5. ; data string declarations

.ASCII "WRITE"

-BYTE 10.
.ASCII “TYPE SPACE"

Macro Definitions

You may plece macro definitions anywhere in a
source program and delimit them with the
directives .MACRO and .ENDM. The macro
identifier must be unique to the source program,
except when you redefine a predefined machine
instruction name as a macro identifier. You
shouldn't include a macro definition within
another macro definition. However, you may
include macro calls. You may nest macro calls
to a maximum depth of five levels. A macro
definition must occur before any calls to that
macro are assembled, but macro calls may be
forward-referenced within the bodies of other
macro definitions.

1-64 0500201:01A

The Assembler

Macro Calls

You can place macro calls anywhere in a source
program that code may be generated. A macro
call consists of a macro identifier followed by a
list of parameters. Delimit the parameters with
commas and terminate them with a carriage
return or semicolon. Upon encountering a macro
call, source code is read from the text of the
corresponding macro body. Macro parameters
within the macro body are substituted with the
text of the matching parameter listed after the
macro identifier that initiated the call.

Parameter Passing

You may reference macro parameters in a macro
body by using the symbol '%n' in an expression,
where 'n' is a single nonzero decimal digit.
Upon scanning this symbol, the assembler replaces
it with the text of the n'th macro parameter.
Note that macro parameters are not expanded
within the quotes of an ASCII data string.

Three cases are possible:

1. The parameter exists—the substitution is made.

2. The n'th parameter doesn't exist in the
parameter list being checked (less than n

parameters were passed); a null string is
substituted.

0500201:01A 1-65

The Assembler

3. Another symbol of the form '%m' is
encountered in the parameter list. If nested
macro calls exist, the text of the m'th
parameter at the next higher level of macro
nesting is substituted; otherwise, the symbol
itself is assembled.

You must pass parameters without leading and
trailing blanks. You may pass all assembly
symbols, except macro calls, as parameters.

The following is an example of parameter passing
in macros:

.MACRO DOS
UNO $2,0N
SAR %1
.ENDM

-MACRO UNO
MOV $1,%2
SAL %2
.ENDM

1-66 0500201:01A

The Assembler

In a program, the macro call...

DOS TROIS,DEUX

assembles 8S...

MOV DEUX,UN ; UNO got UN directly,
; but had to use DOS's
; 2nd param

SAL UN

SAR TROIS ; DOS used its own 1lst
; param

Scope of Labels in Macros

A problem arises in using macro language when
the definition of a macro body requires you to
use branch instructions and, thus, have labels.
Declaring a regular label in a maecro body is
incorrect if the macro is called more than once,
because the label would be substituted twice into
the source program and flagged by the assembler
as a previously defined label. You can use
location-counter-relative addressing, but this is
prone to errors in nontrivial applications. The
best solution is to generate labels that are local
to the maecro body; the assembler's local labels
can do this.

0500201:01A 1-67

The Assembler

Local label names you declare in a macro body
are local to that macro; thus, a section of code
that contains a local label $1 and a macro call
whose body also has the local label $1, assembles
without errors. (Contrast this with what happens
when two occurrences of $1 fall between two
regular labels.) This feature allows you to use
local labels freely in macros without conflicting
with the rest of the program.

NOTE: Remember that a maximum of 21 loecal
labels can be active at any instant.

Local Labels as Macro Parameters

Passing local labels as parameters has a special
property. Unlike other macro parameters, local
labels aren't passed as uninterpreted text. The
scope of a local label passed in a macro call
doesn't change as it is passed through
increasing levels of macro nesting, regardless
of naming conflicts along the way. One use of
this property is passing an address to a macro
that simulates a conditional branch instruction.

The following is an example of passing local
labels as macro parameters:

«MACRO EIN

JE $1

JNE %l
$1

- ENDM

1-68 0500201:01A

The Assembler

In a program, the code...

TWIE
SUB ICHI,NI
EIN $1
RET
$1
JMP SAN

assembles aS...

TWIE
SUB ICHI,NI
JE $1 ; this references macro

H local label
JNE $1 ; this references
H outside $1
$1 ; macro local label

RET

$1 ; outside $1
JMP SAN

0500201:01A 1-69

The Assembler

PROGRAM LINKING & RELOCATION

The assembler produces either absolute or
relocatable objeet code that you may link, as
required, to create executable programs from
separately assembled or compiled modules. (The
linker is described in Appendix A.)

Program linking directives generate information the
system linker requires to link modules. Some of
the advantages of linking are:

® You can divide long programs into separately
assembled modules to avoid a long assembly,
reduce the symbol table size, and encourage
modular programming techniques.

® You can enable other linked modules to share
modules.

® You can add utility modules to the system
library for a large number of programs to use as
external procedures.

@ Programs can call assembly language procedures
directly.

The assembler generates linker information in both
relocatable and absolute code files., The system
linker accesses this information during linking and
removes it from the linked code file.

1-70 0500201:01A

The Assembler

Relocatable code includes information that allows a
loader program to place it anywhere in memory,
while absolute (also called core image) code files
must be loaded into a specific area of memory to
execute properly. Assembly procedures running in
the p-System environment must always be
relocatable; the system PME performs loading and
relocation at a load address the state of the
system determines.

Absolute code won't run under the p-System
environment (under which high-level programs must
run). However, relocatable code can run under the
p-System. Code segments containing statically
relocatable code remain in main memory throughout
the lifetime of their host program (or unit) and are
position-locked for that duration. Thus, relocatable
code may meintain and reference its own internal
data space (or spaces). In addition, statically
relocatable code saves some space because its
relocation information doesn't have to remain
present throughout the life of the program.

0500201:01A 1-71

The Assembler

The directives .PROC and .FUNC designate
statically relocatable routines; .RELPROC and
.RELFUNC designate dynamically relocatable
routines. Code segments that contain dynamically
relocatable code don't necessarily occupy the same
location in memory throughout their host's lifetime,
but are maintained in the code pool along with
other dynamic segments (mostly p-code); they may
be swapped in and out of main memory while the
host program (or unit) is running. Thus,
dynamically relocatable code shouldn't maintain
internal data spaces if that data must last across
calls to the assembled routine., Data that is meant
to last across different calls to the assembly
routine must be kept in your host data segments by
using .PRIVATEs and .PUBLICs.

1. Data space is embedded in the code, but the
code doesn't move:

.PROC FOON
-WORD SPACE

.END

2. The code moves, but data space is allocated in
the host compilation unit's global data segment:

-RELPROC FOON
«PRIVATE SPACE

-END

1-72 0500201:01A

The Assembler

3. Caution: The code may move and since the data
is embedded in the code, the data may be

destroyed between calls to the routine:

.RELPROC FOON
.WORD SPACE

.END

Code pool management is described in the Internal
Architecture Reference Manual.

Program Linking Directives

This section describes the overall use of linking
directives. All linking of assembly procedures
involves word quantities; it isn't possible to
externally define and reference data bytes or
assembly time constants. Arguments of these
directives must match the corresponding name in
the target module (a lowercase Pascal identifier
will matech an uppercase assembly name, and vice

oo) nA mitct nat hae
versa) and must not have been used before their

appearance in the directive. The assembler
treats all subsequent references to the arguments
as special cases of labels. The linker and/or
PME resolves these external references by adding
the link-time and run-time offsets to the existing
value of the word quantity in question. Thus,
any initial offsets generated by including of
external references and constants in expressions
are preserved.

0500201:01A 1-73

The Assembler

Host Communication Directives

Use the directives .CONST, .PUBLIC, and
PRIVATE to allow constants and data to be
shared between an assembly procedure and its
host compilation unit. For examples, see the
"Program Linkage Directives" paragraph in the
"Assembler Directives" section, presented

previously in this chapter.

1-74

.CONST

PUBLIC

Allows an assembly procedure
to access globally declared
constants in the host
compilation unit. The linker
patches all references to
arguments of .CONST with a
word containing the value of
the host's compiletime
constant,

Allows an assembly procedure
to access globally declared

variables in the host
compilation unit. Note: You
can use this directive to set up
pointers to the start of
multi-word variables in host
programs; it isn't limited to
single word variables.

0500201:01A

The Assembler

PRIVATE Allows an assembly procedure

to declare variables in the
global data segment of the host

compilation unit that the host
can't access. The optional
length attribute of the
arguments allows multi-word
data spaces to be allocated; the
default data space is one word.

External Reference Directives

Use the directives .REF and .DEF to allow
separately assembled modules to share data
space and subroutines. (For examples, refer
ahead, in this chapter, to the paragraph,

nxample of].zl]'lKlIlg to Pascal." [

.DEF Declares a label to be defined in the
current program as accessible to other
modules. One restriction is imposed on
its use—you can't .DEF a label that has
been equated to a constant expression
or used in an expression containing an
external reference.

REF Declares a label existing and .DEF'ed

in another module to be accessible to
the current program.

0500201:01A 1-75

The Assembler

Program Identifier Directives

Use the directives .PROC, .FUNC, .RELPROC,
RELFUNC, and .END as delimiters for source
programs. You must include at least one pair
of delimiting directives in every source program
(relocatable or absolute).

The identifier argument of the .PROC or
.RELPROC directive serves two functions: the
linker can reference it when linking an
assembly procedure to its corresponding host,
and other modules can reference it as an
externally declared label. Specifically, the
declaration:

.PROC FOON ; procedure heading

in a source program—is functionally equivalent
in the assembly environment to the following

statements:
.DEF FOON ; FOON may be externally
referenced
FOON ; declare POON as a label

This feature allows an assembly module to call
other (external and eventually linked in)
assembly modules by name. Use the .FUNC
and .RELFUNC directives when linking an
assembly function directly to a host program;
they aren't intended for uses that involve
linking with other assembly modules.

1-76 0500201:01A

The Assembler

The linker references the optional integer
argument after the procedure identifier. It
does this to determine if the number of
parameter words passed by the host's external
procedure declaration matches the number
specified by the assembly procedure
declaration, It isn't relevant when linking with
other assembly modules.

Linking Program Modules

For information on linking with the p-System's
other high-level languages, refer to the
documentation on that particular language.

External procedures and functions are assembly
language routines declared in Pascal programs.
To run Pascal programs with external
declarations, you must compile the Pascal
program, assemble the external procedure or
function, and link the two code files.

0500201:01A 1-77

The Assembler

A host program declares a procedure to be
external in a syntactically similar manner to a
forward declaration. The procedure heading is
given (with parameter list, if any), followed by
the keyword 'EXTERNAL'. Calls to the
external procedure use standard Pascal syntax.
The compiler checks that calls to the external
procedure agree in type and number of
parameters with the external declaration. All
parameters are pushed on the stack in the
order of their appearance in the parameter list
of the declaration; thus, the right-most
parameter in the declaration will be on the top
of the stack. (For a detailed description of
parameter passing conventions, refer to the
next section, called "Parameter Passing
Conventions.")

You must make sure that the assembly language
routine maintains the integrity of the stack.
This includes removing all parameters passed
from the host, preserving the SS and SP

1 1 + 1
registers, and making & clean return to the

Pascal run-time environment using the return
address originally passed to it. If you don't do
this, a potentially fatal system crash can
occur, as assembly routines are outside the
scope of the Pascal environment's run-time
error facilities. (For a detailed deseription of
Pascal/assembly language protocols, refer
ahead, in this chapter, to the section, "Sharing
PME Resources.")

1-78 0500201:01A

The Assembler

An external funection is similar to a procedure,
but has some differences that affect the way
that parameters are passed to and from the
Pascal run-time environment. First, the
external function call pushes one, two, or four
words on the stack before any parameters have
been pushed. Two or four words are pushed
for a function of type real, depending upon the
real size that you are using. One word is
pushed for all other types of functions. The
words are part of the p-machine's function
calling mechanism and are irrelevant to
assembly language functions; the assembly
routine must throw these away before returning
the function's result. Second, the assembly
routine must push the proper number of words
(2 or 4 for type real; 1, otherwise) containing
the function result onto the stack before
passing control back to the host. A subsequent
section, "Sharing PME Resources," describes a
clean way to do all of this without ever using
an actual POP or PUSH operation.

0500201:01A 1-79

The Assembler

1-80

Parameter Passing Conventions

The ability of external procedures to pass
any variables as parameters gives you
complete freedom to acecess the
machine-dependent representations of
machine-independent host data structures.
However, with this freedom comes the
responsibility of respecting the integrity of
the p-machine run-time environment. To give
you a better understanding of the
host/assembly language interface, this section
enumerates the p-machine's parameter passing
conventions for all data types; it doesn't
actually describe data representations. For
examples of parameter passing between
Pascal and external procedures, see Appendix
C.

You may pass parameters by either value or
by reference (variable parameters). To
manipulate assembly language, variable
parameters are handled in a more
straightforward fashion than value
parameters.,

The word "tos" is used in the following
sections as an abbreviation for "top of
stack."

0500201:01A

The Assembler

Variable Parameters

You should reference variable parameters
through a one-word pointer passed to the
procedure. Thus, the procedure declaration:

procedure pass_by name (var i,j : integer;
var q : some_type); external;

would pass three one-word pointers on the
stack; tos would be a pointer to q, followed
by pointers to j and i.

A Pascal external procedure declaration is
allowed to contain variable parameters
lacking the usual type declaration; this
enables you to pass variables of different
Pascal types through a single parameter to
an assembly routine. Untyped parameters
aren't allowed in normal Pascal procedure
declarations.

The procedure declaration:

procedure untyped_var (var i; var q:
some_type) ; external;

contains the untyped parameter ‘'i'.

0500201:01A 1-81

The Assembler

1-82

Value Parameters

Value parameters are handled according to
their data type. Pass the following types by
pushing copies of their current values
directly on the stack: boolean, char, integer,
real, subrange, scalar, pointer, set, and long
integer. Other sections of this manual
describe the number of words per data type
and the internal data format. For instance,
the declaration:

procedure pass_by value (i : integer; r : real);
external;

would pass two words or four words on "tos"
containing the value of the real variable 'r'
followed by one-word containing the value of
the integer variable 'i'.

ype record and array by
value in the same manner as variable
parameters; pointers to the actual variable
are pushed onto the stack. Pass variables of
type PACKED ARRAY OF CHAR and
STRING by value with a segment pointer
(described in next section).

Value parameters which are passed using
pointers should be copied into a local data
space for processing. The original copy of a
value parameter should never be altered.

0500201:01A

The Assembler

String and Byte Array Parameters

When a string or byte array is passed as a
value parameter to an assembly language
routine, a "segment pointer" is passed on the
stack. A segment pointer consists of two
words. The first word (tos) contains either
NIL or a pointer to a segment environment
record. (This is determined by whether the
parameter is a constant or variable.)

If the first word is NIL, then the second
word (at tos-1) points to the parameter.

If the first word isn't NIL, then to find the
parameter it is necessary tc chain through
some records. The first word (tos) is a
pointer and the second word (tos-1) is an
offset. The first word points to a segment
environment record (EREC). The third word
of that record contains a pointer to a SIB
(Segment Information Bloeck). If the first
word of the SIB is NIL, then the second
word is a pointer to the base of the segment
where the parameter resides. If the first
word of the SIB isn't NIL, then it points to
a Pool Descriptor. The contents of the first
two words of the Pool Descriptor plus the
contents of the second word of the SIB is a
pointer to the base of the segment where
the parameter resides. (Note that the first
word of the Pool Descriptor contains the 16
most-significant bits, and the second word
contains the 16 least-significant bits. Each
word, however, is in the natural byte sex of
the host processor. On processors that
address the least-significant byte first, this

0500201:01A 1-83

The Assembler

1-84

means that the bytes are in this order:
second most-significant, first most-significant,
fourth most-significant, third
most-significant.)

The exact location of the parameter is given
by the segment base plus the contents of the
second word on the stack (tos-1), which is an
offset into the code segment.

The following figure illustrates this accessing
scheme. Note that cases 1 and 2 produce a
16-bit address which is relative to the base
of the p-System Stack/Heap area. Case 3,
however, produces a 32-bit absolute physical
address. (For a full description of these
mechanisms, refer to the Internal
Architecture Reference Manual.)

0500201:01A

The Assembler

CASE 1
e e s PARAMETER
ir 1o = ik
TOS-1 >
TOS
CASE 2
EREC
siB
(N 3 (™
9521 e ros = i 2 2 N
Tos fP—— " ! R 7
IF 1ST
f PARAMETER WORD OF
SIB = NIL
+
J
BASE OF .
SEGMENTL | <
CASE 3
EREC
""" 3 rw\,.\
1 TOS-1 2 2
e IF TOS # NIL - -]
L > s
IF 18T
T PARAMETER POOL DESCRIPTOR WORD OF
[SIB 7 NIL
+
2
BASE OF __[-
SEGMENT -+

Figure 1-2, String and Byte
Array Parameters

0500201:01A 1-85

The Assembler

Example of Linking to Pascal

Note that in the following example the host
program passes control to the beginning of an
assembly procedure whether or not machine
instructions are there. Therefore, all data
sections you allocate in the procedure must
either: (1) occur after the end of the machine
instructions; or (2) have a jump instruection
branch around them.

PROGRAM EXAMPLE; { Pascal host program }

const size = 80;

var i,jrk: integer;

1stl: array [[0..9]1 of char;
{ PRT and LST2 get allocated here }

procedure do_nothing; external;

function null_func(xxyxx,z:integer)
:integer; external;

begin
k := 45;
do_nothing;
j := null_func(k,size);
end.
.PROC DONOTHING ; underscores are not

significant in Pasal

.CONST SIZE can get at size
constant in host
and also these two

global vars

«PUBLIC I,LST1

~e Ne N e e v e e ne

.DEF TEMP1 this allows NULLFUNC

to get at templ

code starts here...
POP RETURN1 return addr pushed on
POP RETURN2 stack

; does nothing

PUSH RETURN2 ; set up stack for
PUSH RETURNI1 ; return
RETL

; data area
RETADR .EQU TEMP1
TEMP1 «WORD
RETURN1 ,WORD
RETURN2 ,WORD
end of procedure
DONOTHING

1-86 0500201:01A

.FUNC
+PRIVATE

-REF

POP
POP

POP
POP

PUSH
PUSH

PUSH
RETL

RETURN1I .
RETURN2 .

.END

NULLFUNC, 2
PRT,LST2:9

TEMP1

~. N me me N

RETURN1 H
RETURN2

PRT
LST2+4

~ e

TEMP1

~ e e

LST2+4

ws o~ e

RETURN2
RETURN1

~ e e

WORD
WORD

~

10 words of

private data
references data temp
in DONOTHING

code starts here

save return address

get parameter 'z’
get parameter 'xxyxx'

toss 1 word of junk
(funtion return area)
performs null action

return xxyxx as
result
restore subr link

return to calling

program
data starts here

end of assembly

Stand-Alone Applications

Assembler

The p-System assembler can produce absolute

(core image) code files for

n-chfnm'e run-time environm

A AL L N

0500201:01A

use outside of the
ent,

1-87

The

1-88

Assembler

The p-System doesn't include a linking loader
or an assembly language debugger, as the
p-machine architecture isn't conducive to
running programs (whether high or low level)
that must reside in a dedicated area of
memory. You are responsible for loading and
executing the object code file; do this by using
the p-System, with the understanding that the
existing run-time environment may be
jeopardized in the process. (For some ideas on
how to create a Pascal loader program, refer
ahead, in this chapter, to the paragraph,
"Executing Absolute Code Files.")

Use Compress utility for a much easier and
more versatile way of doing this task. It
allows you to relocate and compact code.
Refer to Appendix B.

Assembling

Use the .ABSOLUTE and .ORG directives to
create an object code file suitable for use as
an absolute core image. .ABSOLUTE causes
the creation of nonrelocatable object code,
and .ORG can initialize the location counter
to any starting value. Limit a source file
headed by .ABSOLUTE to no more than one
assembly routine; sequential absolute routines
don't produce continuous object code and
can't be successfully linked with one another
to produce a core image.

0500201:01A

The Assembler

The code file format consists of a one-block
code file header followed by the absolute
code. It is terminated by one block of
linker information; thus, stripping off the
first and last block of the code file leaves a
core image file. You should use .ABSOLUTE
in only one routine; though linker information
is generated, it's difficult to link absolute
code files to produce a correct core image
file.

Executing Absolute Code Files

The following section describes one method
of using the p-System to load and execute
absolute code files. The program outlined
isn’'t the only solution. You can aiso use the
system intrinsies to read and/or move the
code file into the desired memory location;
however, this requires a knowledge of where
the p-machine emulator, operating system,
and your program reside in order to prevent
system crashes by accidentally overwriting
them. The program outlined below allows
you the most freedom in loading core images;
the only constraint is that the assembly code
itself isn't overwritten while being moved to
its final location. You can detect this

possibility before proceeding with loading.

0500201:01A 1-89

The Assembler

1-90

NOTE: In most cases, loading object code
into arbitary memory locations, while a
p-System is resident, adversely affects the
system; the absolute assembly language
program is then on its own, and rebooting
may be necessary to revive the p-System.

The loader program consists of:

1.

2.

A host program that calls two external
procedures.

One or more linkable absolute code files
to be loaded. (.RELPROCs aren't
allowed.)

A small assembly procedure,
MOVE_AND_GO, that moves the above
object code files from their system load
address to their proper locations and then
transfers control to them.

A small assembly language procedure,
LOAD_ADDRESS, that returns the system
load addresses of the assembly code to
the host program.

0500201:01A

The Assembler

The absolute code files are assembled to run
at their desired locations, and
MOVE_AND_GO contains the desired load
addresses of each core image. Both
LOAD_ADDRESS and MOVE_AND_GO have
external references to the core images; these
are used to calculate the system load address
and code size of each image file. The whole
collection is linked and executed. The host
performs the following actions:

1. Print the result of calling
LOAD_ADDRESS to determine whether the
area of memory in which the p-System
loaded the assembly code overlays the
known final load address of the core
images.

Issuing a prompt to continue, so that the
program can be aborted if a conflict
arises.

2. Calls MOVE_AND_GO.

0500201:01A 1-91

The Assembler

OPERATION OF THE ASSEMBLER

You call the system assembler by pressing 'A' with
the operating system Command menu displayed.
This command executes the file named
SYSTEM.ASSMBLER. (Note the missing 'E' in the
file name; this is required to conform to the file
system's restrictions on file name lengths.,) If this
isn't the name of the desired assembler version, be
sure to save the existing file 'SYSTEM.ASSMBLER'
under a different name before changing the desired
assembler's name to 'SYSTEM.ASSMBLER'.
Assemblers that aren't in use are usually saved
with a file name such as 'ASM8086.CODE’,

Support Files

The p-System Assembler has two associated
support files: an opcodes file and an error file.
Always store these along with the assembler code
file.

1-92 0500201:01A

The Assembler

In order for the assembler to run correctly, the
proper opcodes file must be present on some
on-line disk. The opcodes file has a name such
as Z80.0PCODES, 9900.0PCODES, and so forth.
The opcodes file contains all predefined symbols
(instruetion and register names) and their
corresponding values for the associated assembly
language. If the opcodes file isn't on-line, the
assembler writes '<opfilename> not on any vol'
and aborts the assembly. The 8086 assembler
uses an additional opcodes file called 8087.FOPS.
This is only necessary when you are programming
for the 8087 floating point processor.

The assembler also has an error file that contains
a list of processor-specific error messages. The
error file has a name such as 8080.ERRORS,
68K.ERRORS, and so forth. The error file need
not be present to run the assembler, but it can
aid greatly in eliminating syntax errors from a
newly written program.

Setting Up Input And Output Files

When you first call the assembler from the
Command menu, it attempts to open the work file
as its input file; if a work file exists, the first
prompt will be the listing prompt described in the
next paragraph, "Responses to Listing Prompt,"
and the generated code file will be named
'SYSTEM.WRK.CODE'". If not, this prompt
appears:

Assemble what text?

0500201:01A 1-93

The Assembler

Enter the file name of the input file; then press
<{return>. Pressing only <return> aborts the
assembly; otherwise, the next prompt eppears:

To what codefile?

Enter the desired name of the output code file,
followed by pressing <return>.

Pressing only <return> here causes the assembler
to name the output *SYSTEM.WRK.CODE', but
pressing '$' causes the code file to be created
with the same file name prefix as the source
file. The assembler then displays its standard
listing prompt.

Responses to Listing Prompt

Before assembling begins, the following prompt
appears on the console:

8086 Assembler [version]
Output file for assembled listing: (<CR> for none)

At this point, you may respond with one of the
following:

1-94 0500201:01A

1.

In

The Assembler

The <esec> key followed by <return>; this

aborts the assembly and returns you to the
Command menu.

'CONSOLE:' or '#1:; this sends an assembled
listing of the source program to the screen
during assembly.

'PRINTER:' or '#6:'; which sends an assembled
listing to the printer unit.

'REMOUT:' or '#8:'; which sends an assembled
listing to the REMOTE unit.

A carriage return; which causes the assembler
to suppress generation of an assembled listing
and ignore all listing directives.

All other responses cause the assembler to
write the assembled listing to a text file of
that name; any existing text file of that name
is removed in the process. For instance, the
following responses cause a list file named
'LISTING.TEXT'® to be created on disk unit 5:

#5:1isting.text
#5:1isting

all cases, it's your responsibility to ensure

that the specified unit is on-line; the assembler
will print an error message and abort if it is
requested to open an off-line I/0 unit.

0500201:01A 1-95

The Assembler

Output Modes

If you send an assembled listing to the console,
then that listing is displayed on the screen during
the assembly process; however, if you send the
listing to some other unit or if no listing is
generated, the assembler writes a running account
of the assembly process to the screen for your
benefit. One dot is written to the screen for
every line assembled; on every 50th line, the
number of lines currently assembled is written on
the left side of the screen (delimited by angle
brackets).

When the assembler processes an include file
directive, the console displays the current source
statement:

.INCLUDE <file name>

This allows you to keep track of which include
file is currently being assembled.

At the end of the assembly, the console displays
the total number of lines assembled in the source
program and the total number of errors flagged
in the source program.

1-96 0500201:01A

The Assembler

Responses to Error Prompt

When the assembler uncovers an error, it prints
the error number and the current source
statement. (If applicable to the error; this
doesn't apply to undefined labels and system
errors.) The assembler then attempts to retrieve
and print an error message from the errors file.
If the errors file can't be opened—the file
doesn't exist or there isn't enough memory—no
message appears. This is followed by the menu:

<sp> (continue), <esc>(terminate), E(dit

Pressing 'E' calls the editor, pressing <space>
continues the assembly, and pressing <esc> aborts
the assembly. The following restrictions exist
when you call the editor or attempt to continue:

1. In most cases, pressing <space> restarts the
assembly process with no problems; since
assembly language source statements are
independent of one another with respect to
syntax, it's not difficult for the assembler to
continue generating a code file, Thus, a code
file will exist at the end of an assembly if
you press <space> for every (nonfatal) error
prompt that appears; of course, the code
produced may not be a correct translation of
your source program. The assembler considers
certain system errors fatal; these errors abort
the assembly regardless of how you respond to
the preceding menu,

0500201:01A 1-97

The

2.

Assembler

If you press 'E', the system automatically calls
the editor. Unless you are using a work file,
the editor prompts you for a file name. You
should indicate the file currently being
assembled. The editor positions the cursor at
the location where the error occurred.

Miscellany

1-98

At the end of an assembly, an error message is
printed for each undefined label. In some
cases, you can ignore occurrences of undefined
labels if these labels are semantically
irrelevant to the desired execution of the code
file. The resulting code file will be perfectly
valid, but the references to the nonexistent
labels won't be completely resolved.

In addition to generating a code file, the
assembler makes use of a scratch file, whieh is
always removed from the disk upon normal
termination of the assembly. Occasionally
though, a system error may ocecur that prevents
the assembler from removing this file; if this
happens, a new file named 'LINKER.INFO' may
appear. You can easily remove it since it's
entirely useless outside of the assembler. This
should ocecur rarely if at all,

0500201:01A

The Assembler

ASSEMBLER OUTPUT

The assembler can generate two varieties of output
files. It always produces a code file, but you can
control whether or not it generates an assembled
listing of the source file.

An assembled listing displays each line of the
source program, the machine code generated by
that line, and the current value of the location
counter. The listing may display the expanded form
of all macro calls in the source program. Any
errors that occur during assembly contain messages
printed in the listing file, usually immediately
preceding the line of source code that caused the
error. A symbol table is printed at the end of the
listing; it's the directory for locating all labels
declared in the source program.

An assembled listing of a source program printed on
hard copy is one of the most effective debugging
aids available for assembly language programs; it's
equally useful for off-line, 'mental' debugging and
for use with system debuggers.

A description of the code file format is beyond the
scope of this document. See the Internal
Architecture Reference Manual.

0500201:01A 1-99

The Assembler

Source Listing

When you respond to the assembler's listing
prompt with a list file name, a paginated
assembled listing is produced. The default listing
is 132-characters wide and 55 lines per page.
Each line of a source program is ineluded in the
assembled listing, except for source lines that
contain list directives. Source statements that
contain the equate directive .EQU have the
resulting value of the associated expression listed
to the left of the source line.

Macro calls are always listed, including the list
of macro parameters and the comment field, if
any. The macro is expanded by listing the body
(with all formal parameters replaced by their
passed values) if the macro list option was
enabled when the macro was defined., Macro
expansion text is marked in the assembled listing
by the character '#' just to the left of the
source listing. Comment fields in the definition
of the macro body aren't listed in macro
expansions.

Source lines with conditional assembly directives
are listed; however, source statements in an
unassembled part of a conditional section aren't
listed unless the .CONDLIST directive has been
used.

1-100 0500201:01A

The Assembler

Error Messages

Error messages in assembled listings have the
same format as the error messages sent to the
console, except that the prompt isn't included.
(Refer back to the section, "Operation of the
Assembler.")

Code Listing

The code field lies to the left of the source
program listing. It always contains the current
value of the location counter, along with either
code generated by the matehing source statement
or the value of an expression ocecurring in a
statement that includes the equate directive
.EQU. All are printed in the default list radix
of the assembler version being used in either
hexadecimal or octal. (Refer ahead in this
chapter to the section, "Example Assembled
Listing.") Spaces delimit separately emitted bytes
and words of code on the same line.

0500201:01A 1-101

The Assembler

Forward References

When the assembler is forced to emit a byte or
word quantity that is the result of evaluating
an expression that includes an undefined label,
it lists a '*' for each digit of the quantity
printed (for example, an unresolved hexadecimal
byte is listed as ™*', while an unresolved octal
word appears as '*¥*¥¥x7). If you use the
.LPATCHLIST directive, the assembler lists
patch messages every time it encounters a
label declaration that enables it to resolve all
occurrences of a forward reference to that
label. The messages (one for every backpatch
performed) appear before the source statement
that contains the label in question; they look
like this:

<location in codefile patched>* <patch value>

-E

+h thic fnnfn a tha lictine A Aniha +tha

v l\-ll “31LO wvaLvul b’ !-ll" .ll.ﬂbll.ls UTOVL LWVS viiC
contents of each byte or word of emitted code.
If you want the assembled listing to be
especially elean and neat, use the
NOPATCHLIST directive to suppress the patch
messages.

1-102 0500201:01A

The Assembler

External References

When the assembler emits a word quantity that
results from evaluating an expression that
contains an externally referenced label, the
value of that label (which can't be determined
until link time) is taken as zero. Therefore,
the emitted value reflects only the result of
any assembly time constants that were present
in the expression.

Multiple Code Lines

Sometimes, one source statement can generate
more code than can fit in the code field. In
most cases, the code is listed on successive
lines of the code field, with corresponding
blank source listing fields. Three exceptions
are the .ORG, .ALIGN, and .BLOCK directives;
the code field for these arguments is limited to
as many bytes as will fit in the code field of
one line. This is because most uses of these
directives generate large numbers of

"t +3 h
uninteresting byte values,

0500201:01A 1-103

The Assembler

Symbol Table

The symbol table is an alphabetically sorted
table of entries for all symbols declared in the
source program. Each entry consists of three
fields; the symbol identifier, the symbol type,
and the value assigned to that symbol. The
symbol identifiers are defined in a dictionary
printed at the top of the symbol table.
Symbols equated to constants have their
constant values in the third field, while
program labels are matched with their location
counter offsets; all other symbols have dashes
in their value field, as they possess no values
relevant to the listing.

1-104 0500201:01A

The Assembler

Example Assembled Listing

The following is an example assembled listing.
It demonstrates several of listing features just
discussed (including macro expansion, forward
references, syntax errors, and the symbol
table):

00001 .PROC EXAMLE LISTING
00001

00001 0008 CONST_8 .EQU 8H

0000! 00 VAR_BYTE .BYTE

00011 0000 VAR_WORD .WORD

00031 0200 0400 0600 0800 TABLE .WORD 2,4,6,8,10,12,14,16,18,20,22
000B] 0A00 0CO0 OE00 1000

00134 1200 1400 1600

0019| OF OF OF OF OF OF OF ALL_ONES .BLOCK 10,0FE

00231
00231 +MACRO SAMPLE MACRO %1 %2
00231 MOV AX, 81
00231 MOV DX,%2
00231 .ENDM
0231
00231 8B EC START MOV BP,S5P ; This is the beginning
00251 C5 5E 22 LDS BX, (BP+22RH)

MOVE AX,BX
error 18: invalid structure
00281 MOVE AX,BX
0028| 8B 07 MOV AX, (BX)
002A[| 3B 06 **** CMP AX,CONST_7
002E| 74** JE END
00301 SAMPLE_MACRO CONST_8, AX
0030| B8 08 00] MOV AX,CONST_8
0033| 8B DO * MOV DX,AX
00351 8B C8 MOV CX ,AX
002F* 07
00371 CB END RETL
0038!
00381 +-END

Symbol Table

AB - Absolute LB - Label UD ~ Undefined MC - Macro
RF - Ref DF - Def PR - Proc FC - Func
PB - Public PV - Private CS - Consts
ALLONES LB 0019! CONST7 UD ----| CONST8 AB 00081 END LB 0037
EXAMLELI PR ----| MOVE UD ----1 SAMPLEMA MC ----| START LB 0023
TABLE LB 0003 VARBYTE LB 0000| VARWORD LB 00011
>>>>>CONST7

0500201:01A 1-105

The

1-106

Assembler

error l: undefined label
>>>>>MOVE
error 1: undefined label

Assembly complete: 28 lines
3 errors flagged on this assembly

0500201:01A

Processor-
specific
iInformation

o
£

uopjewiojuj

3151539ds-10s53304¢

CHAPTER 2
PROCESSOR-SPECIFIC

INFORMATION

Processor-Specifie Information

INTRODUCTION

This chapter is intended to be used in conjunction
with processor manuals distributed by the
manufacturers of the various processors. These
manuals provide syntax conventions for the
instruction sets and address modes used by the
corresponding assembler versions. The company
chosen as a base for syntax conventions is listed
for each version, along with a list of deviations
from that company's syntax conventions.

0500201:02A 2-3

Processor-Specific Information

LSI-11/PDP-11 ASSEMBLER

Syntax Conventions

The 11 assembler adheres to DEC standard syntax
for opcode fields, register names, and address
modes. The location counter symbol is an
asterisk '¥',

Sharing PME Resources

The return address to the system is passed on
the stack. Registers 0 and 1 are available to
the assembly routine; other registers must be
saved on entry and restored orn exit.

Memory Organization

The 11 processor is byte-addressed and
word-oriented; machine instructions and data
words must be aligned to start on an even byte
boundary. The byte sex 1is
least-significant-byte-first.

Default Constant and List Radices

The default constant radix and default list radix
are octal.

2-4 0500201:02A

Processor-Specific Information

Z80 ASSEMBLER

Syntax Conventions

The Z80 assembler adheres to Zilog standard
syntax for opcode fields, register names, and
address modes. The following conventions may
deviate from this standard:

@ The syntax for exchanging the register pair

AF and the alternate register pair 'AF' is the
following:

The location counter symbol is a dollar sign

'$'.

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for use in
the assembly routine.

Memory Organization

The Z80 processor is byte-addressed and
byteoriented. The byte sex is
least-significant-byte-first.

0500201:02A 2-5

Processor-Specific Information

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-6 0500201:02A

Processor-Specific Information

6502 ASSEMBLER

Syntax Conventions

The 6502 assembler adheres to Rockwell standard
syntax for opcode fields and register names. The
following conventions may deviate from this
standard:

® Immediate operands are specified by using a
preceding pound sign '#' character:

LABEL .EQU 5
LDA #LABEL 7 immediate

@ Zero-page addressing is achieved only by using

absolute operands (that is, assembly time
constants) with values between 0 and 255:

LABEL .EQU 5
LDA LABEL ; zero-page

@ Indirect addressing has the following form:

LDA €@LABEL,X 3 indexed-indirect (preindexing)
LDA @LABEL,Y 3 indirect-indexed (postindexing)
JNP €LABEL 3 indirect jump

The location counter symbol is an asterisk '¥',

0500201:02A 2-7

Processor-Specific Information

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for use in
the assembly routine.

Memory Organization

The 6502 processor is byte-addressed and
byteoriented. The byte sex is
least-significant-byte-first.

Default Constant and List Radices

The default constant radix and default list radix
are hexadecimal.

2-8 0500201:02A

Processor-Specific Information

6800 ASSEMBLER

Syntax Conventions

The 6800 assembler adheres to Motorola standard
syntax for opcode fields and register names. The
following conventions may deviate from this
standard:

@ All instructions which can specify the A and

B registers have the register name separated
from the opcode field:

LDA A,LABEL

LDA A,0,X (instead of LDA A,X)
LDX 0,X (instead of LDA X)
STA A,14,X

PUL A

ASL B

® Immediate operands are specified by using a
preceding pound sign '#' character:

LABEL -EQU 5
LDA A, #LABEL ; immediate

0500201:02A 2-9

Processor-Specific Information

@ Zero-page addressing is achieved only by using
absolute operands (that is, assembly time
constants) with values between 0 and 255:

LABEL .EQU 5
LDA B,LABEL ; zero-page

® Numbers in hex must always contain four
digits (yes, even for bytes):

+.BYTE 0002H,00A9H specifies the quantity 02A9 base 1]

The location counter symbol is an asterisk '*'.

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for use in
the assembly routine.

Memory Organization

The 6800 processor is byte-addressed and
byteoriented. The byte sex is
most-significant-byte-first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

2-10 0500201:02A

Processor-Specific Information

8080 ASSEMBLER

Syntax Conventions

The 8080 assembler adheres to Intel standard
syntax for opcode fields, register names, and
address modes. The location counter symbol is a
dollar sign '$'.

Sharing PME Resources

The return address to the system is passed on
the stack. All registers are available for use in
the assembly routine.

Memory Organization

The 8080 processor is byte-addressed and
byte-oriented. The byte sex is
least-significant-byte-first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

0500201:02A 2-11

Processor-Specific Information

9900 ASSEMBLER

Syntax Conventions

The 9900 assembler adheres to TI standard syntax
for opcode fields, register names, and address
modes. The following conventions may deviate
from this standard:

® In operand fields, the lack of an address mode
character (for example, a '@' or '*' preceding
the operand) defaults to '@'. The location
counter symbol is a dollar sign '$'.

Sharing PME Resources

The return address to the system is passed in
register 11. Registers 0 thru 5 are available to
the assembly routine; other registers must be
saved on entry and restored on exit,

Memory Organization

The 9900 processor is byte-addressed and
word-oriented; machine instructions and data
words must be aligned to start on an even byte
boundary. The byte sex is
most-significant-byte-first.

2-12 0500201:02A

Processor-Specific Information

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

0500201:02A 2-13

Processor-Specific Information

6809 ASSEMBLER

Syntax Conventions

The 6809 Assembler adheres to Motorola standard
syntax for opcode fields and register names. The
following conventions may deviate from this
standard:

® Immediate operands are specified by using a
preceding '#':

ANDCC $01

® Indirect addressing is specified by a single
leading at sign ('@') instead of square brackets
(L M

LDX @THERE, PCR

@ Zero-page addressing is achieved only by using
operands that are absolute (for example, not
labels) and less than 256:

ZEROPAGE .EQU 15
LDB ZEROPAGE

2-14 0500201:02A

Processor-Specific Information

Sharing PME Resources

The return address to the system is passed on
the stack. Registers Y and U must be saved and
restored if they are to be used. All other
registers are available for use.

Memory Organization

The 6809 processor is byte-addressed and
byteoriented. The byte sex is
most-significant-byte first.

Default Constant and List Radices

The default constant radix is decimal and the
default list radix is hexadecimal.

0500201:02A 2-15

Processor-Specific Information

Z8 ASSEMBLER

Syntax Conventions

Symbols

The Z8 Adaptable Assembler adheres to Zilog
standard syntax (refer to the Z8 PLZ/ASM
Assembly Language Programming Manual) for
opcode fields, register names, and addressing
modes.

Numeric Constants

The Z8 Assembler follows the constant
conventions of other adaptable assemblers,
except that octal constants are indicated by a
radix switeh character of 'O' rather than 'Q!,
and binary constants are indicated by a radix
switeh character of 'B' rather than 'T!.

011101B 0B 14670 111100

Predefined Constants

There are no predefined constants in the Z8
Assembler. Specifically, the constants '%L',
'%T', "¥R', '%P', '%%', and '%Q' in Zilog syntax
are NOT allowed.

2-16 0500201:02A

Processor-Specific Information

Sharing PME Resources

No PME is currently available for the Z8.

Memory Organization

The Z8 processor is byte-addressed and
byteoriented. The byte sex is
least-significant-byte-first.

Default and List Radices

The default constant radix is deecimal and the
default list radix is hexadecimal,

0500201:02A 2-17

Processor-Specific Information

8086/8088/8087 ASSEMBLER

Syntax Conventions

The p-System 8086/88/87 Assembler differs in
some respects from the standard Intel assembler.
This section lists these differences.

Assembler Directives. None of the Intel
assembler directives are implemented. Instead,
the assembler directives described in Chapter 1
of this manual are available.

Parenthesis. Enclose index or base register
references in a memory operand in parentheses,
not square brackets; for example, FIRST(BX)
rather than FIRST[BX]. Group expressions with
angle brackets rather than parentheses.

Immediate Byte. Code ADD immediate byte to
memory operand as:

ADDBIM memop,immedbyte

to distinguish it from the ADD memop,
immedword, whiech is the default. Similarly,
MOVBIM, ADCBIM, SUBBIM, SBBBIM, CMPBIM,
ANDBIM, ORBIM, XORBIM, and TESTBIM are
added to the vocabulary.

2-18 0500201:02A

Processor-Specific Information

Memory Byte. Code INC memory byte as:

INCMB memop

to distinguish it from INC memory word, which is
the default. Similarly, DECMB, MULMB, IMULMB,
DIVMB, IDIVMB, NOTMB, NEGMB, ROLMB,
RORMB, RCLMB, RCRMB, SALMB, SHLMB,
SHRMB, SARMB are added to the vocabulary to
specify memory byte operands.

Direct Addressing Mode. Code MOV with direct
addressing as:

MOVM AX,02DEFH
EFH,AX

to distinguish it from MOV immediate value which
is the default. Similarly, ADCM, ADDM, ANDM,
CMPM, ORM, SBBM, TESTM, and XORM are
added to the vocabulary for use with direct
addressing.

0500201:02A 2-19

Processor-Specific Information

MUL and DIV Byte. In MUL, IMUL, DIV, IDIV
the single memory operand form,

MUL memop

implies a word operation. To specify a byte
operation, you may use either MULMB memop, or
the form

MUL AL,memop

The same holds true for IMUL, DIV, IDIV. (Note
that DIV AL,memop is rather misleading, as the
actual operation would be AX/memory-byte.)

MOV Substitute for LEA. For LEA reg,label or
LEA reg,abel+const the assembler substitutes

MOV reg,immedval where immedval = label or
lahel+const. This saves four ecloek times (4

L) R p ol B Lt b g =V e ~aYeaN ~a

versus 8).

IN and OUT. The normal form of IN and OUT is
IN aec,port or IN ac,DX and OUT port,ac or OUT
DX,ac where ac=AL denotes an 8-bit data path
and ac=AX denotes a 16-bit path. Since the
accumulator is the only possible register
source/destination (DX specifies port=address in
DX), single operand forms are also provided: INB
and OUTB for byte data, and INW and OUTW for
16-bit data. The syntax is INB port or INB DX,

2-20 0500201:02A

Processor-Specific Information

In the two-operand forms of IN and OUT, the
order of the operands isn't important; thus OUT
ae,DX or OUT aec,port will be acceptable.

String Operations. The mnemonies for the string
operations are suffixed with B or W to denote
byte or word operations; thus, MOVSB and
MOVSW, CMPSB and CMPSW, SCASB and SCASW,
LODSB and LODSW, and STOSB and STOSW are
in the vocabulary, but MOVS—STOS aren't.

Segment Override. XLAT and the string
instructions (9) have implied memory operands and
nothing is required to be coded in the operand
field. However, to permit you to specify a
segment override prefix in the case of XLAT,
MOVSB/MOVSW, CMPSB/CMPSW, and
LODSB/LODSW, the assembler permits operand
expressions for these instructions.

NOTE: That only the default segment for SI,
namely DS, can be overridden. The segment for
DI is ES and can't be overridden. A segment
override prefix of DS applied to SI doesn't
generate a segment override prefix.

If you were to write these operations with
operands, they would have this syntax:

XLAT AL, (BX)
MOVS{B/W} (DI),iseg:](SI)
CMPS{B/W} (DI) ,[seg:1(5I)
SCAS{B/W} (DI) ,AX
LODS{B/W} AX, [seg:1(SI)
STOS{B/W} (DI) ,AX

0500201:02A 2-21

Processor-Specific Information

You may prefix the string instructions with a
REP (repeat) instruction of some type. The
assembler flags an error if you specify both REP
and a segment override.

In addition to the forms DS:memop, and so on,
you may write a separate mnemonic SEG followed
by a segment register name in a statement
preceding the instruction mnemonie. For
example:

MOV AX,ES:AVALUE

is equivalent to:

SEG ES MOV RAX,AVALUE

Long Jumps, Calls, and Returns. Implement
i_n_terepdmqu CAIL RET, and JMP as fAallnuwrce

S 2_TGItTEiy Ll lilly AV a AWVIIV TV O

1. The mnemonics CALLL, RETL, and JMPL
specifically designate intersegment operations.

2. An indirect address (for example, (reg) or
(label)) is assembled in standard fashion with a
"mod op r/m" effective address byte possibly
followed by displacement bytes. The memory
location referenced must hold the new IP, and
the next higher location must hold the new
Cs.

2-22 0500201:02A

Processor-Specific Information

3. The direet address form must have two
absolute operands:

CALLL exprl,expr2

where exprl is the new IP and expr2 becomes
the new CS. Constants or external symbols
(for example, .REF definitions) qualify as
absolute operands.

8087 Mnemonics. Mnemonies for the 8087
floating point operations are standard except for
some of the memory reference operations, where
a letter suffix is appended to denote the operand
size:

D short real or short integer (double word)
Q long real or long integer (quad word)
w

integer word

L]

temporary real (ten byte)

The 'D' and 'Q' suffixes apply to the following
real ops:

FADD, FCOM, FCOMP, FDIV, FDIVR,
FMUL, FST, FSUB, FSUBR, FLD, FSTP

For example, FADDD, FADDQ, and so.

The 'T' suffix applies only to FLD and FSTP.

0500201:02A 2-23

Processor-Specific Information

The 'W' and 'D' suffixes apply to the following
integer ops:

FIADD, FICOM, FICOMP, FIDIV,
FIDIVR, FIMUL, FIST, FISUB, FISUBR,
FILD, FISTP

The 'Q' suffix for long integers applies only to
FILD and FISTP,

Sharing PME Resources

Calling and Returning

The p-machine emulator (PME) calls an
assembly routine using the call long (CALLL)
operator. Thus, the top of the stack contains
a two-word return address upon entering into
the routine. In order to return from an
assembly routine, use the return long (RETL)

operator. (Alternatively, the return address
can be popped and a jump long (JMPL)

operation used.)

2-24 0500201:02A

Processor-Specifiec Information

Accessing Parameters

The 8086/88 Processor contains instructions
that facilitate accessing parameters passed to
an assembly routine. By moving the value of
SP (whieh points to the p-machine stack) into
BP, you can access the parameters by adding
an offset of 4 bytes (to account for the
two-word return address). The first parameter,
located four bytes above the top of the stack,
is actually the last declared parameter in the
host routine (the parameters are pushed in the
order that they are declared).

If a .FUNC assembly routine is to return a
function value, you should place it just above
the last parameter (which is just before the
first declared parameter) using the same
accessing scheme. The size of the returned
function value is either one, two, or four
words as described in a previous paragraph
called, "Linking with a Pascal Program.”

You may mv the RETL op,_ operand
that indicates how many bytes the stack
back after popping its two-word return address.
Use the size of the data space occupied by the
parameters. Thus, parameters may be accessed,
and a clean return made, without ever using a
specific POP or PUSH instruction.

~3
- D
=
[}
™~
:n

0500201:02A 2-25

Processor-Specific Information

The following is an example of this scheme of
accessing parameters and returning:

MoV BP,SP
MOV AX, (BP+4) ;Last Param
MOV BX, (BP+6) ;Middle Param

MoV CX, (BP+8) ;jFirst Param

MoV (BP+10) ,RSLT ;Function return val
;3 (if .FUNC)

RETL 6 sRemove 3 params

Register Usage

2-26

All of the 8086/88 registers are available for
use by your assembly routines (the PME saves
and restores the register values that it needs).

However, you must preserve SS and SP. (You
may create and use a private stack if a
minimum of 40 words are left available for
stack expansion during interrupts. This is a
very dangerous procedure, however, and is not
recommended.)

NOTE: You must maintain the integrity of the
p-machine stack. If you don't, the results
can't be predicted.

0500201:02A

Processor-Specific Information

Upon entering into the assembly routine, SS
points to the base of the p-machine stack and
data area. Also, DS, ES, and CS are all equal
to the base of the p-System code segment.

Parameters that are passed as Pascal VAR
variables are p-System pointers to actual data.
These pointers are relative to SS. For

example:
MOV BX, (BP+4) ; pick up parameter (pointer)
MOV AX,SS; (BX) ; pick up VAR parameter value

LPRIVATE and .PUBLIC variables are also SS
relative. For example:

.PRIVATE COUNTER
MOV AX,SS5:COUNTER

.BYTE quantities, .WORD quantities, and
.REF'ed labels are relative to CS, DS, or ES.

Memory Organization

The 8086 processor is byte-addressed and
byteoriented. The byte sex is
least-significant-byte-first.

0500201:02A 2-27

Processor-Specifie Information

Default Constant and List Radices

The default constant radix is decimal. The
default list radix is hexadecimal.

2-28 0500201:02A

Processor-Specific Information

68000 ASSEMBLER

Syntax Conventions

The 6800 Assembler follows Motorola standard
syntax for opcode fields, register names and
address modes. The following list points out
some restrictions.

® Only the absolute short address mode is
available. The absolute long address can't be
generated by the assembler.

@ Labels may not be accessed with the absolute
address mode.

@ References to labeis with a .PROC or .FUNC
generate the PC-relative address mode.

@ An external label may only be accessed as a
displacement from an address register.

® Immediates above FFFFH can't be generated.

@ Opcodes which have an optional suffix of A, I,
M, Q or X must contain that suffix explicitly.

® Length qualifiers (.B, .W or .L) must be
specified explicitly in those instructions which
have a choice of length. All other
instructions must not contain a length
qualifier.

0500201:02A 2-29

Processor-Specific Information

The following instuctions must contain a length
qualifier:

ADD, ADDA, ADDI, ADDQ, ADDX, AND,
ANDI, ASL (register), ASR (register), CLR,
CMP, CMPA, CMPI, CMPM, EOR, EORI,
EXT, LSL (register), LSR (register), MOVE
(except special forms), MOVEA, MOVEM,
MOVEP, NEG, NEGX, NOT, OR, ORI, ROL
(register), ROR (register), ROXL (register),
ROXR (register), SUB, SUBA, SUBI, SUBQ,
SUBX, TST

The following instructions must not contain a
length qualifier: :

ABCD, ASL (memory), ASR (memory),
BCHG, BCLR, BSET, BTST, CHK, DBec,
DIVS, DIVU, EXG, JMP, JSR, LEA, LINK,
LSL (memory), LSR (memory), MOVE to
CCR, MOVE to SR, MOVE from SR, MOVE
USP, MOVEQ, MULS, MULU, NBCD, NOP,
PEA, RESET, ROL (memory), ROR
(memory), ROXL (memory), ROXR
(memory), RTE, RSR, RTS, SBCD, Scec,
STOP, SWAP, TAS, TRAP, TRAPV, UNLK

The following instructions may contain an
optional length qualifier of .S (generate short
forward branch):

Bee, BRA, BSR

2-30 0500201:02A

Processor-Specifiec Information

Sharing PME Resources

An assembly language procedure is called via a
JSR instruction, so it should expeet a double
word return address on the stack. It is usual to
return via an RTS instruction.

Registers A0-A2 and D0-D7 are available for use.
Register A3-A7 must be restored to the values at
call-time if they are used.

Since pointers within the p-machine are byte
offsets from a base register (A6), .PUBLIC
references to Pascal variables will generate an
offset, not the actual address, of the variable.
In order to access an external variable, it is
necessary to use this offset as a displacement
from A6, For example:

ADDQ.W #1,ABC(A6)

0500201:02A 2-31

Processor-Specific Information

A variable parameter is a p-machine pointer to
the parameter, so it is also accessed as above.
For example, a variable parameter may be
accessed as follows:

MOVEQ $0,D7 ; clear the upper half of D7
MOVE.W 4(sp),D7 ; load the pointer (parameter)
ADDQ.W $#1,0(A6,D7.L) ; increment the variable

References to variables in other assembly
language procedures (via a .REF) may be
accessed as above using (A2), provided the
segment the procedures are in is located in the
data area (for example, it isn't a RELPROC),

Here is a list of the register values available to
the assembly language procedure on entry:

A2 - base of current segment
A3 - base of PME

A4 - p-machine program counter
A6 - pointer to data area

A7 - stack pointer

2-32 0500201:02A

Processor-Specifiec Information

The JINTERP directive (used to access items in
the PME) is ignored. Instead, accesses should be
made relative to A3 (the base of the PME). The
following entry-points are available to the
assembly language programmer:

routine offset parameters

XEQERR 04H DO.W - execution error number
NATRET 08H

XEQERR may be used to cause an execution
error to be recognized from assembly language.
XEQERR should be jumped to, not called.
Before jumping to XEQERR, the stack should be
clear of all parameters (including the return
word), and all registers should be restored. This
routine is normally used for system work.

NATRET is the entry-point used by automatically
generated native-code to return to the p-System.
It shouldn't be used for any other purpose.

Memory Organization

The 68000 processor is byte-addressed and
word-oriented. The byte sex is
most-significant-byte first.

Default Constant and List Radices

The default constant radix is decimal, and the
default list radix is hexadecimal.

0500201:02A 2-33

Appendices

APPENDICES

APPENDIX A
THE LINKER

The linker is an item on the Command menu which
allows assembled code to be linked into a host
program. The linker may also be used to link
together separately assembled pieces of a single
assembly program.

The linker is a program of the sort called a "link
editor." It stitches code together by installing the
internal linkages that allow various pieces to
functon as a unified whole.

When a program that must be linked is R(un, the
linker is automatically called and searches
*SYSTEM.LIBRARY for the necessary external
routines. If you use X(ecute, instead of R(un, or
the assembled routines aren't in SYSTEM.LIBRARY,
you are responsible for manually linking the code
before executing it.

When the linker is called automatically and can't
find the needed code in *SYSTEM.LIBRARY, it
responds with the following error message.

Proc,

Func,

Global,

or Public <identifier> undefined

In order to manually use the linker, select L(ink
from the Command menu.

A-2 0500201:0AA

Appendix A

Using the Linker

The linker displays prompts asking for several file

names.

It reads and links code together, and

displays the names of the routines it is linking.
The following paragraphs list those prompts and
explain the use or responses.

Host file?

Lib file?

0500201:0AA

The host file should contain the code
for the high-level program which
references external routines.
Alternatively, the host file may
contain an assembled routine which
references other assembled routines.
The ".CODE" suffix is automatically
appended to the file name that you
specify (unless you terminate that
name with a period). If you respond
with <return>, the linker attempts to
open the code work file as the host
file.

Any number of library files may be
specified. @ The prompt will keep

: .
+131
rcappearing until you press the

<{return>. Responding '*<return>’'
opens *SYSTEM.LIBRARY. The
successful opening of each library file
is reported. If the routines in a lib
file reference other routines, those
other routines are also linked into the
output file (assuming that they are
found in one of the lib files).

A-3

Appendix A

Example (underlined portions are your input):

Lib file? *<return>

Opening *SYSTEM.LIBRARY

Lib file? FIX.8<return>

No file FIX.8,CODE

Type <sp>(continue), <esc><terminate)

Lib file? FIX.9<return>

Opening FIX.9.CODE

bad seg name

Type <sp>(continue), <esc>(terminate), <space>
Lib Pile? _

When the names of all library files have been
entered, the linker reads all the necessary routines
from the designated code files. It then asks for a
destination for the linked code output:

Output file? Respond with a code file name
(often the same as the host file).
The .CODE suffix must be included.
If you press <return),
(*SYSTEM.WRK.CODE) becomes the
output file.

After this last prompt, the linker commences actual
linking. During linking, the linker displays the
names of all routines being linked. A missing or
undefined routine causes the linker to abort with
the '<identifier> undefined' message desecribed
above.

A-4 0500201:0AA

Appendix A

NOTE: Since the files may be assembled files,
they may be of either byte sex. However, all files
linked together must be of the same byte sex. The
linker produces a correct code file regardless of
which byte sex that is or whether it is the same as
the machine on which the linker is running.

The code file produced by the linker contains
routines in the order in whiech they were given in
the library files. This is important to note if the
program is an assembly language file. The code
file contains first routines from the host file and
then library file routines, all in their original order.

0500201:0AA A-5

APPENDIX B
THE COMPRESS UTILITY

The Compress utility program takes an input code
file consisting of one or more linked assembly
procedures. It produces an object file suitable for
execution outside the p-System run-time
environment,

Compress can produce either relocatable or absolute
object files. Absolute code files are relocated to
the base address specified by you and contain pure
machine code. Relocatable code files include a
simplified form of relocation information (a
description of its format is in this appendix). Both
kinds of output files are stripped of all file
information normally used by the system and must
be loaded into memory by your program in order to
execute properly.

Preparing Code Files

The assembly routines must be created with the
assembler, and linked with the linker. Code files
containing anything other than one segment of
linked assembly code will cause Compress to abort.
Routines to be compressed shouldn't contain any of
the following assembler directives.

ORG ABSOLUTE
PUBLIC PRIVATE
.CONST JNTERP

A-6 0500201:0AA

Appendix B

The .ORG and .ABSOLUTE directives produce
absolute code files directly from the assembler.
Code files that contain the .ABSOLUTE directive
can be compressed, but the resulting code will be
incorrect.

The .PUBLIC, .PRIVATE, .CONST and .INTERP
directives are used to communicate between
assembly procedures and a host compilation unit
(whether Pascal or some other language). These
have no use outside of the system's run-time
environment, Their inclusion in an assembly
program generates relocation information in formats
that will cause Compress to abort,

Running Compress

In order to run Compress, you should X(ecute
COMPRESS.CODE. This utility displays the
following prompt:

Assembly Code File Compressor <release version>

rnn FE1 kA A
ype '!' to escape

Do you wish to produce a relocatable object file? (Y/N)

If you press 'N', the following prompt appears:

Base address of relocation (hex) :

0500201:0AA A-T

Appendix B

This is the starting address of the absolute code
file to be produced. It should be entered as a
sequence of 1 to 4 hexadecimal digits followed by
<{return>. The prompt will reappear if an invalid
number is entered.

The following prompt always appears:

File to compress :

Enter the name of the file to be compressed. It
isn't necessary to enter the '.CODE' suffix. If the
file can't be found, the prompt reappears.

Output file (<ret> for same) :

Enter the name of the output file, which can be

any legal file name (Compress doesn't append a
CODE cllfflv\ Proccine {returnd ceaugeg the nnfpnf

_—ad D ina s sangs = TSSiag T vwas sa LA~V L= Y § L)

file to have the same name as the input file, thus
eliminating the original input file. If the file can't
be opened, Compress will print an error message
and abort.

In all the previous prompts, pressing the character
" causes Compress to abort.

A-8 0500201:0AA

Appendix B

After receiving this information from you, Compress
reads the entire source file, compresses the
procedures, and writes out the entire destination
file. Large code files may cause Compress to
abort, if the system doesn't have sufficient memory
space.

While running, Compress displays for each procedure
the starting and ending addresses (in hexadecimal)
and the length in bytes. After finishing, the total
number of bytes in the output file is displayed. If
an absolute code file is produced, the system
displays the highest memory address to be occupied
by the loaded code file.

Compress produces a file of pure code, which must
be loaded and executed directly by your software.

Action and Output Specification

Compress removes the following information from
input files:

® The segment dictionary (block 0 of code file).

Relocation list and procedure dictionary pointers.

Symbolic segment name and code sex word.

Embedded procedure DATASIZE and EXITIC
words.

0500201:0AA A-9

Appendix B

® Procedure dictionary and number of proes word.

@ Standard relocation list.

Procedure code in the output file is contiguous,
except for padding bytes, which are emitted (when
necessary) to preserve the word alignment of all
procedures. Code files always contain an integral
number of blocks of data and space between the
end of the executable code. The end of the code
file is zero-filled.

Relocatable object files must be formatted in the
following way. The relocatable code is immediately
followed by relocation information. The last word
in the last block of the code file contains the
code-relative word offset of the relocation list
header. The following lines are an example.

<starting byte address of loaded code> + <word offset * 2>
= <byte address of relocation list header word>

The list header word contains the decimal value
256. The next-lower-addressed word contains the
number of entries in the relocation list. This word
is followed (from higher addresses to lower
addresses) by the list of relocation entries.

A-10 0500201:0AA

Appendix B

Beneath the last relocation entry is a zero-filled
word, which marks the end of the relocation
information. Each relocation entry is a word
quantity containing a code-relative byte offset into
the loaded code. The following lines are an
example:

<starting byte address of loaded code> + <byte offset>
= <byte address of word to be relocated>

Each byte address pointed to by a relocation entry
is a word quantity that is relocated by adding the
byte address of the front of the loaded code.

NOTE: If you relocate a file towards the high end
of the 16-bit address space, you must ensure that
the relocated file won't wrap around into low
memory (that is, <relocation base address> + <code
file size> must be less than or equal to
FFFF(hexadecimal)). Compress performs no internal
checking for this case.

0500201:0AA A-11

APPENDIX C
CODING EXAMPLES

The first section in this appendix defines the
memory allocation scheme for Pascal data
structures. (This is necessary to understand if you
want to interface with these data structures from
assembly language.) The second section gives
assembly language coding examples (using the 8086
as the example processor) which interface with the
various Pascal data structures. The final section
contains some examples of typical routines that you
might need to write.

A-12 0500201:0AA

Appendix C

PASCAL DATA STRUCTURES
Given the following Pascal declaration:

TYPE REC = RECORD
FIELD_1,FIELD_2
FIELD_3,FIELD_4
FIELD_5 : CHAR;
END;

INTEGER:
REAL;

VAR A_RECORD : REC;

The order of allocation of the fields is:

FIELD_2 - 1 word for an integer

FIELD 1 - 1 word for an integer

PIELD_4 - 4 words for a real

FIELD_3 - 4 words for a real

FIELD_5 - 1 word, the low-order byte of which is used

In general, variables are allocated space using the following scheme:

Nth element of the first declaration list
(N-1)th element of the first declaration list
(N-2)th element of the first declaration list
First element of the first declaration list
Nth element of the second declaration list
(N-1)th element of the second declaration list

Nth element of the last declaration list

.

First element of the last declaration list

Using this scheme, the following two type declarations are
allocated identically:

TYPE REC1 = RECORD

A : INTEGER;

B : INTEGER;

C : INTEGER;
END;

REC2 = RECORD
C,B,A : INTEGER;
END;

0500201:0AA A-13

Appendix C

INTERFACING WITH PASCAL

This section contains several examples of assembly
language interfacing with the various types of
Pascal data structures.

Example 1:
Passing Variables by Value

program variables_to_assembly;
(* this program will be used as a driver
for a number of assembly routines *)

function int_by value (only_param: integer): integer; external;

begin
writeln(int_by_ value(1))
end.
.FUNC INT_BY_VALUE,l ; one word of parameters
MOV BP,SP ; store Stack Pointer into the
; usable Base Pointer
MOV AX, (BP+4) ; the last-declared parameter...
; in this case there is only one...
: is 4 bytes down/up in the stack
; because of the two word return
; address on the top of the stack
INC AX ; Jjust to do something
MOV (BP+6) ,AX ; the return location for a function
; always starts in the byte following
; the "deepest™ parameter... *
; one parameter, a one word integer,
; therefore, the next location is
; two bytes further into the stack
RETL 2 ; there are two bytes of parameters
; to be removed from the stack before
; returning to Pascal...note that the
; function value is not affected
<END

A-14 0500201:0AA

Appendix C

Example 2:
Passing Variables by Reference

program variables to_assembly;
var parameter_to_routine: integer;
procedure int_by reference (var only param: integer); external;

begin

parameter_to_routine := 1;

int_by reference(parameter_to_routine);
writeln{ parameter_to_routine)
end.

+.PROC INT BY_ REFERENCE,1 one word of parameters...
in this case it is a pointer
to the actual variable...
all pointers are relative to
the SS register at the start
of an assembly routine

Ns Ne e we we ne

=
Q
<
w
o
~

w0
o

familiar save of SP

BX. BX is used because
only certain registers may
be used for a particular
job...BX, SI or DI must

be used when addressing
through an offset

e N me % we e w

MOV AX,SS: (BX) fetch the value of the

parameter

~ o~

INC

e
~
.

ust t

o
[+7
)
]
ot
A
)

MoV SS: (BX) ,AX put the new value back
into the variable for

Pascal

~ we we

RETL 2

~

two bytes of parameters

END

0500201:0AA A-15

Appendix C

Example 3:
Passing Pointers By Value

program variables_to_assembly;

type pointer_to_int = “integer;

var parameter_to_routine: pointer_to_int;

function point_by value (only param: pointer_to_int): integer; external;

begin

new(parameter_to_routine);
parameter_to_routine” := 1;

writeln(point_by value(parameter_to_routine })
end.

.FUNC POINT_BY_VALUE,l one word of parameter

in this case, the actual
value of a pascal pointer
will be passed

e e

MOV BP,SP ; familiar
MoV BX, (BP + 4) ; mov the parameter into
; BX...this will be a Pascal
; pointer which is relative
; to the SS register
MOV AX,SS: (BX) ; using the parameter as a
; pointer...access the value
; of the variable
Inec A : do something
MOV (BP+6) ,AX ; store the new value into
; the function return word
RETL 2 ; two bytes of parameters
+.END

A-16 0500201:0AA

Appendix C

Example 4:
Passing Pointers By Reference

program variables_to_assembly;

type pointer_to_int = “integer;

var parameter_to_routine: pointer_to_int;

procedure point by reference (var only param: pointer_to_int); external;

begin

new(parameter_to_routine);
parameter_to_routine” := 1;

point_by reference(parameter_to_routine);
writeln(parameter_to_routine” !}

end.

one word of parameters

in this case, the parameter
is a pointer to a Pascal
pointer...yeah, two levels
of indirection

.PROC POINT_BY_ REFERENCE,1

e ne e we e

MOV BP,SP ; familiar
MOV BX, (BP + 4) ; mov the parameter into BX.
; BX because it is an offset
MOV AX,SS: (BX) ; fetch the Pascal variable...
; a pointer to an integer
MOV BX ,AX ; prepare to get actual value
MoV AX,SS: (BX) ; fetch the value that is
; pointed to by the Pascal
; pointer
INC AX ; do something
MOV 5S: (BX) ,AX ; store the new value in
; the Pascal variable
RETL 2 ; two bytes of parameters
.END

0500201:0AA A-17

Appendix C

Example 5:
Passing Reals By Value

program variable_passing;
function real by value (only_ parameter: real): real; external;

begin .
writeln(real_by value(10.0):4:1)
end.

.PUNC REAL_BY VALUE,4 ; 4 words of parameters

; because reals are stored
; as four-word numbers

MOV BP,SP ; familiar
MOV AX, (BP+4) ; last word of parameter...
; the low-order bytes of
; the mantissa
MoV BX,6.
MOV NUMBER (BX) ,AX ; store the value
MOV AX, (BP+6) ; next word of parameter
MOV BX,4.
MOV NUMBER (BX) ,AX ; store the value
MOV AX, (BP+8) ; next word of parameter
MOV BX,2.
MoV NUMBER{EX) ,AX ; store the value
MOV AX, (BP+10) ; first word of parameter...
; contains high-order byte
; of mantissa and the exponent
MOV NUMBER,AX ; store the value

{ do something with the number, in this case multiply it by ten...
for example, increment the exponent by one 1}

MoV AX ,NUMBER
INC AH ; exponent is high-order byte
MOV NUMBER,AX

{ the next section stores the new values into the stack for
the function return to Pascal }

MOV BX,6.

MOV AX,NUMBER (BX)
MOV (BP+12) ,AX
MOV BX,4.

A-18 0500201:0AA

Appendix C

MOV AX ,NUMBER (BX)
MOV (BP+14) ,AX
MOV BX,2.

MOV AX,NUMBER (BX)
MOV (BP+16) ,AX
MoV AX, NUMBER
MOV (BP+18) ,AX
RETL 8

NUMBER .BLOCK 8

.END

Example 6:
Passing Reals By Reference

program variable passing;
var param: real ;
procedure real_by_reference (var only parameter: real); external;

begin

param := 10.0;

real by reference(param);
writeln(param:4:1)
end.

.PROC REAL_BY_ REFERENCE,1l one word of parameter
a pointer to the real

~e we e

variable
MOV BP,SP ; familiar
MOV BX, (BP+4) ; mov the address of the
; variable into the
; "address”™ register
MoV AX,S8: (BX+6) ; fetch the last word of the
; variable (a four word
; real, last word is six
; bytes offset)
INC AH 3 increment the exponent...
; stored in the high_order
; byte
MOV SS: (BX+46) ,AX ; store the new value
RETL 2
.END

0500201:0AA A-19

Appendix C

Example 7:
Passing Characters By Value

program variable_passing;
function char_by value (only parameter: char): char; external;

begin

writeln(char_by value (‘a'))
end.

.FUNC CHAR_BY VALUE,l one word of parameter
the low order byte
contains the character

~ we v

MOV BP,SP ; familiar

MOV AX, (BP+4) ; get parameter

INC AL i increment the character...
; make an "A" a "B%,
; and so forth

MOV (BP+6) ,AX ; store value for function
; return

RETL 2

+«END

A-20 0500201:0AA

Example 8:

Passing Characters By

program variable_passing;

var param: char;

procedure char_by reference (var
begin

param := ‘a';
char_by_reference (param);

writeln(param)
end.
.PROC CHAR_BY_REFERENCE,1

MOV BP,SP ;
MOV BX, (BP+4) H
H
MOV A% ,58: (BX)]
H
INC AL :
H
MoV SS: (BX) ,AX H
RETL 2
+END

0500201:0AA

Appendix C

Reference

only parameter: char); external;

one word of parameter
is a pointer to a
character variable
familiar

get the address of the
actual variable

fetch the value of the
variable

increment the character...
for example, "A" to "B"

restore variable

A-21

Appendix C

Example 9:
Passing Arrays By Value

program variable passing;
type ary = array [1..101 of integer;

var param: ary;
i: integer;

function array by value (only parameter: ary): integer; external;

begin

for i := 1 to 10 do paraml[i] := i;
writeln(array_by value (param))
end.

.FUNC ARRAY BY VALUE,l one word of parameter...

a regular array is always
passed by reference, ie.

the address is the parameter

P

MOV BP,SP ; familiar

MOV BX, (BP+4) ; load the address

MOV AX,SS: (BX+18) ; fetch the last word in the
; array...offset of 9 words
; from the initial element

MOV (BP+6) ,AX i return the element in the
: function return word

RETL 2

.END

A-22 0500201:0AA

Appendix C

Example 10:
Passing Arrays By Reference

program variable_passing;
type ary = array {1..10] of integer;

var param: ary;
i: integer;

function array_ by reference (var only_ parameter: ary): integer; external;

begin

for i := 1 to 10 do paraml[i] := i;
writeln({array by reference (param))
end.

.FUNC ARRAY_BY_ REFERENCE,l one word of parameter...
a regular array is always
passed by reference, for
example, the address is

the parameter

~ e ne me owe

MOV BP,SP ; familiar

MOV BX, (BP+4) ; load the address

MOV AX,SS: (BX+18) ; fetch the last word in the
; array...offset of 9 words
; from the initial element

MOV (BP+6) ,AX ; return the element in the
; function return word

RETL 2

+END

0500201:0AA A-23

Appendix C

Example 11:

Passing Packed Arrays By Value

program variable_passing;
type

var param: ary;

i: integer;

ary = packed array [1..10] of 0..255;

function packed_array by value (only_ parameter: ary): integer; external;

begin
for i := 1 to 10 do param{il

2= i;

writeln(packed_array by value (param))

end.

.PUNC PACRED_ARRAY_BY VALUE,l
Mov BP,SP

MoV BX, (BP+4)

XOR AX,AX

MOV AL,SS: (BX+9)

MOV (BP+6) ,AX

RETL 2

+-END

A-24

one word of parameter...

a packed array of something
other than character is
passed as a regular array
familiar

load the address

zero AX

fetch the last byte in the
array...offset of 9 bytes
from the initial element

return the element in the
function return word

0500201:0AA

Example 12:
Passing Packed Arrays By Reference

program variable_passing;

type

var

Appendix C

ary = packed array [1..10] of 0..255;

param: ary;
i: integer;

function packed_array_by_reference
(var only parameter : ary): integer; external;

begin

for i := 1 to 10 do paraml[il

1= i;

writeln(packed_array_by_reference (param))

end.

.FUNC

MOV

MOV

XOR

MoV

MOV

RETL

-END

PACKRED_ARRAY_ BY REFERENCE,1

BP,SP
BX, (BP+4)
AX,AX

AL,SS: (BX+9)

(BP+6) ,AX

2

0500201:0AA

~e we we se

~

~ e e

~ ~

one word of parameter...

a packed array of something
other than character is
passed as a regular array
familiar

load the address

zero AX

fetch the last byte in the
array...offset of 9 bytes

from the initial element

return the element in the
function return word

A-25

Appendix C

Example 13:

Passing Strings or Packed

Arrays of Character By Value

program variable passing;

function string by value (only param: string): char; external;

begin

writeln(string by value ('something'))

end.

-FUNC

MoV

MOV

STRING_BY_VALUE, 2

BP,SP

AX, (BP+4)

~ Nr we we me we

~ Ne N ne e

Identical to Packed
Array of Char by Value
two words of parameters
are a segment pointer
to the string parameter

familiar

TOS...if NIL, for
example, = 0, next word
is a pointer, if not
NIL, for example, <> O,
strange things,..

{ NIL is an implementation dependent value...here it is
assumed to be equal to 0...this may not necessarily
be the case }

TEST
JE

HARD

AX,0.
EASY

{ not NIL...therefore, is a pointer to a Segment
Environment Record, the third word of which is a
pointer to the SIB, hence the 4 in the next

The second word of the SIB is the

pointer to the actual segment that contains the

statement.

string. }
MoV BX,AX
MoV DI,SS: (BX + 4)
MoV BX,SS: (DI + 2)
MoV AX, (BP+6)

A-26

. .

~ ~.

load "address" register
get address of SIB

get address of base of
actual segment

get next word of parameter...
this is the offset into

the actual segment for
the string

0500201:0AA

Appendix C

ADD BX,AX ; compute pointer to string...
; <pointer to segment> plus
; <offset>

JMP FOUND we now have the address of

the string in BX...Jjump
to do the work

~ w o~

EASY
{ is NIL...therefore the second word on
the stack is the pointer to the string }
MOV BX, (BP+6)
FOUND
{ we now have the address of the string in BX 1}
XOR AX ,AX ; zero AX
MoV AL,SS: (BX+1) ;s fetch the first character...
; ignore the length byte
MOV (BP+8) ,AX ; put the character into the
; function return word
; on the stack
RETL 4
.END

0500201:0AA A-27

Appendix C

Example 14:
Passing Strings By Reference

program variable passing;
var param: string;
procedure string_by_reference (var only param: string); external;

begin

write('>> ');

readln(param) ;
string_by_reference (param);
writeln(param)
end.

.PROC STRING_BY_ REFERENCE,1l one word of parameter
is the pointer to

~ we e

a string
MOV BP,SP ; familiar
MOV BX, (BP+4) ; load pointer into "address”™
; register
XOR AX ,AX ; zero AX
MOV AL,SS: (BX+1) ; ignore length byte and
; move the first character
; of the string into AX
SUB AX,32. ; turn a lowercase character
; into an uppercase character
; -+«it is assumed that the
; input string is in
i lowercase
MOV SS: (BX+1) ,AL ; restore the character
RETL 2
+END

A-28 0500201:0AA

Example 15:

Passing Packed Arrays
of Character by Reference

program variable passing;

type

var

Appendix C

ary = packed array [1..10] of char;

param: ary;

procedure packed _array_ by reference (var

begin

param := 'characters';
packed_array_by_reference (param);

writeln(param)

end.

.PROC

MOV

SUB

MOV

RETL

.END

PACKED_ARRAY_ BY REFERENCE,1l

BP,SP

BX, (BP+4)

AX,AX

AL,SS: (BX)

AX,32.

SS: (BX) ,AL

2

0500201:0AA

~ e . ~ ne we

~

~ ~e

Ne ws Mo s we

~

only_param: ary); external;

one word of parameter
is the pointer to
a string

familiar

load pointer into “address"
register

zero AX

move the first character
of the packed array into AX

turn a lowercase character
into an uppercase character
..-it is assumed that the

input packed array is in
lowercase

restore the character

A-29

Appendix C

Example 16:
Passing Records By Value

program variable_passing;

type rec = record
i_am_2nd,i_am_lst: integer;
i_am_4th,i_am 3rd: char;
end;

var param: rec;
function record_by value (only_param: rec): char; external;

begin
with param do
begin
i_am_2nd
i am lst
i am_4th
i_am_3rd
end;
writeln(record_by value (param })
end.

e e s e
oo
- -
O R e o~
gty

.FUNC RECORD_BY VALUE,1l one word of parameter... a
record is passed exactly

the same whether it is a
value or a reference
parameter...a pointer to the
structure is on the top

of the stack

w Ne he s e we me

MOV BP,SP ; familiar
MoV BX, (BP+4) ; access the pointer
MoV AX,S5S: (BX) access the first word

of the record...the last
variable in the first
field_declaration_list,
in this case an integer,
done as an example

~e ne N ne N o

{ the following is an example of accessing another field
in the record, in this case, the third word of the record
contains a char (the last variable in the second
declaration list). As a char is stored in the
low-order byte of the word, the offset should be even
address of the word. }

A-30 0500201:0AA

XOR DX,DX

MOV DL,SS: (BX+4)
MOV (BP+6) ,DX
RETL 2

.END

0500201:0AA

. we e e

~

Appendix C

zero DX

access the character and
store it in the low-order
byte of DX

place the character in the
function return word

A-31

Appendix C

Example 17:
Passing Records By Reference

program variable_passing;
type rec = record
i_am_2nd,i_am_lst: integer;
i_am 4th,i_am 3rd: char;
end;
var param : rec;

procedure record_by reference (var only param: rec); external;

begin
with param do
begin
i_am 2nd := 1;
i_am 1lst := 2;
i_am_4th := 'a';
i am 3rd := 'b';
end;

writeln('before call');
with param do
begin
writeln('i_am_lst ',i_am lst);
writeln('i_am_2nd ',i_am_2nd);
writeln('i_am 3rd ',i_am 3rd);
writeln('i_am_4th ',i_am_4th)
end;
record_by_reference (param);
writeln('after call');
with param do
begin
writeln('i_am 1lst ',i am_lst);
writeln('i_am_2nd ',i_am 2nd);
writeln('i_am_3rd ',i_am_3rd);
writeln('i_am_4th ',i_am_4th)
end
end.
.PROC RECORD_BY_REFERENCE,1 one word of parameter
is a pointer to a structure

~ ae

MOV BP,SP ; familiar
MOV BX, (BP+4) ; access the parameter
{ this routine switches the values of the variables

in the record...the first and second are both integers

and the third and the fourth are characters }

MOV AX,SS: (BX) ; get first word of record
MOV DX,SS: (BX+2) ; get second word of record

A-32 0500201:0AA

Appendix C

MOV ss: (BX) ,DX ; restore

MOV S8S: (BX+2) ,AX : variables

XOR AX,AX ; zero AX

XOR DX,DX ;s zero DX

MOV AL,SS: (BX+4) ; get low-order byte of
; the third word

MOV DL,SS: (BX+6) ; get low-order byte of
; the fourth word

MOV SS: (BX+4) ,DL ; restore

MOV SS: (BX+6) ,AL ; variables

RETL 2

«END

Example 18:

Multiple Parameter Passing

program strange_params;

type rec = record
fieldl: arrayl[l..10] of integer;
field2,field3: char;
end;

var paraml,param2: rec;
i: integer;

procedure multi_params
(value_rec: rec; var reference_rec: rec); external;

begin
with paraml do
begin
for i := 1 to 10 do fieldl[il := i;
field2 := 'a';
field3 := 'b';
end;
multi_params (paraml,param2):
with param2 do
begin
for i := 1 to 10 do writeln('element',i,' ',fieldllil);
writeln('field2 ',field2);
writeln('field3 ',field3)
end;
end.

0500201:0AA A-33

Appendix C

- PROC

MOV

MOV

Mov

MOV

MULTI_PARAMS,2

BP,SP

BX, (BP+6)

DI, (BP+4)

DI,18.

CX,10.

Ne Ne we e e e

~e

~ ne NeNe w .

~ =

two words of parameters

TOS is a pointer to a

record passed as a reference
parameter...TOS-1 is

a pointer to a record

passed as a value parameter

access TOS-1 for the address
of the value parameter

access TOS for the address
of the reference parameter

the first field of the record
is a ten element array of
integers, therefore the
offset of the last element

is 9 words or 18 bytes...

there are 10 elements in the
array

{ the following loop reads the 10 elements of the array
in the value parameter and stores them in reverse order
in the array in the reference parameter...that is why

the offset of the last element

START MOV

A-34

MOV

INC
INC
DEC
DEC

AX,SS: (BX)
SS: (DI) ,AX

BX
BX
DI
DI

LOOPNZ START

MOV

MOV

MOV

MOV

RETL

DI,22.

AX,SS: (BX)

SS: (DI+2) ,AX

AX,SS: (BX+2)

S§S: (DI) ,AX

4

is needed (see above). }

load next element
store it

~

the next element is
2 bytes offset

back up to previous
element...2 bytes

. w ae we

decrement CX, if not
0 then loop to START

~ e

access next element past
the array in the reference
parameter ’

load the next field from
the value parameter

store it in the last field
of the reference parameter

O

load the last field from

the value parameter

store it in the next-to-last
field of the reference param

Ne ws we we

0500201:0AA

Appendix C

Example 19:
Program to Determine NIL

NIL is a machine-dependent value. If you want to
determine what NIL is for your system, you can use
the following Pascal program. Note that the value
of NIL for each processor is listed in Appendix N.

program find nil;
type trix = record
case boolean of
true: (x: integer);
false: (y: “integer);
end;

var p: trix;

begin
p.y := nil;
writeln (p.x);
end.

0500201:0AA A-35

Appendix C

USEFUL ROUTINES

This section contains some example routines that
might be found generally useful.

function readport (port: integer): integer; external;
procedure writport (port, value: integer); external;
procedure readmemory
(segmnt, offset: integer; var result: integer); external;
function lookup (entry: integer): integer; external;

The first routine, below, reads a byte from an I/O

port.
port.

from memory.

The second routine writes a byte to an I/O
The third routine reads an arbitrary byte
The last two routines work together

to quickly look up an item in a table.

.FUNC

.EQU

-EQU
MOV
MOV
IN
XOR
MoV
RETL

PORT
RESULT
ENTRY

«PROC

.EQU

.EQU
MOV
MoV
MOV
ouT
RETL

VALUE
PORT

«RELPROC

VARPTR .EQU

OFFSET .EQU

SEGMENT .EQU
MOV
LDS
Mov
MOV
MOV
RETL

A-36

READPORT, 1

4

6

BP,SP

DX, (BP+PORT)
AL,DX

AH,AH
(BP+RESULT) , AX
2

WRITPORT, 2

4

6

BP,SP

DX, (BP+PORT)
AL, (BP+VALUE)
DX ,AL

4

READMEMORY, 3
4

6

8

BP,SP

BX, (BP+OFFSET)
AX, (BX)

DI, (BP+VARPTR)
S§S:(DI) ,AX

6

me we e Ne me e we we e

~ .

. e e

P R T R

read byte 1/0 port

port number to read from

result of function

point to parameters

fetch port number

read byte from port

put zero to extend to word

set returned result

cut stack by 2 bytes for parameter

write byte I/O port
value to write

fetch value to write
byte output value
cut back two parameters words

read word of memory

pointer to variable

pointer to memory

segment of memory

point to parameters

fetch extended pointer

memory word

pointer to variable

store in variable in stack segment
pop three parameters

0500201:0AA

Appendix C

«RELPROC PRIMES
.DEF TABLE
TABLE <WORD 1,2,3,5,7,11,13,17,23

+RELFUNC LOOKUP,1

+REP TABLE
LAST .EQU 8
ENTRY +«EQU 4
RESULT .EQU 6
MOV BP,SP
MoV BX, (BP+ENTRY) ; fetch index
CMP BX,LAST ; check range
JA $01 ; do nothing if too high
MOV 8I,BX ; copy to index register
MOV AX,TABLE (BX) (SI) ; tricky word index
MOV (BP+RESULT) ,AX ; store result
$01 RETL 2
«END

0500201:0AA A-37

APPENDIX D
6502 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegel character in text

: must .EQU before use if not to a label
13: macro identifier expected

14: code file too large

15: backwards .ORG not allowed

16: identifier expected

17: constant expected

18: invalid structure

19: extra special symbol

20: branch too far

21: LC-relative to externals not allowed
22: illegal macro parameter index

23: illegal macro parameter

24: operand not absolute

25: illegal use of special symbols

26: ill-formed expression

27: not enough operands

28: LC-relative to absolutes unrelocatable
29: constant overflow

30: illegal decimal constant

31: illegal octal constant

32: illegal binary constant

33: invalid key word

34: unmatched macro definition directive
35: include files may not be nested

e o0 0o 00 oo ee e

ol)
O = W00 =1 U OB
® @0 0 o0 06

A-38 0500201:0AA

Appendix D

36: unexpected end of input

37: .INCLUDE not allowed in macros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/0 - bad block, parity error (CRC)
48: 1/0 - illegal unit number

49: I/0 - illegal operation on unit

50: I/0 - undefined hardware error

51: I/O - unit no longer on-line

52: I/O - file no longer in directory

53: 1/0 - illegal file name

54: 1/0 - no room on disk

55: I/O - no such unit on-line

56: 1/0O - no such file on volume

57: 1/0O - duplicate file

58: I/0 - attempted open of open file
59: I/0 - attempted access of closed file
60: I/0O - bad format in real or integer
61: I/C - ring buffer overflow

62: I/0 - write to write-protected disk
63: I/0 - illegal bloek number

64: 1/0 - illegal buffer address

65: nested macro definitions not allowed
66: “=' or <> expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proec
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

0500201:0AA A-39

Appendix D

75: LC not word-aligned

76: index register required

77: 'X' or 'Y' expected

78: zero-page address required

79: illegal use of register

80: index register expected

81: ill-formed operand

82: 'X' expected for indexed addressing
83: must use 'X' index register

84: must use 'Y' index register

A-40 0500201:0AA

1:
2:
3:
4:
5:
6:

8:

9:
10:
11:
12;
13:
14:
15:
16:
17:
18:
19:
20:
21:

22;
23:
24:
25:
262
27:
28:
29:
30:
31:
32:
33:
34:
35:

-3

APPENDIX E
6800 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed
identifier expected

constant expected

invalid structure

extra special symbol

branch too far

LC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

LC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

0500201:0AA A-41

Appendix E

unexpected end of input

JNCLUDE not allowed in macros
label expected

expected local label

local label stack overflow

string constants must be on single line
string constant exceeds 80 characters
cannot handle this relocate count

no local labels in .ASECT

expected key word

string expected

I/0 - bad bloek, parity error (CRC)
I/O - illegal unit number

I/0 - illegal operation on unit

I/O - undefined hardware error

I/0 - unit no longer on-line

I/0 - file no longer in directory

I/0 - illegal file name

I/0 - no room on disk

I/O - no such unit on-line

I/O - no such file on volume

1I/0 - duplicate file

I/O - attempted open of open file
i/O - attempied access of ciosed file
I/O - bad format in real or integer
I/0 - ring buffer overflow

I/O - write to write-protected disk
1/0 - illegal block number

I/O - illegal buffer address

nested macro definitions not allowed
“=t or <> expected

may not equate to undefined labels
ABSOLUTE must appear before 1lst proec
PROC or .FUNC expected

too many procedures

only absolute expressions in .ASECT
must be label expression

no operands allowed in .ASECT
offset not word-aligned

0500201:0AA

75: LC not word-aligned

76: 'X' expected for indexed addressing
77: 'A' or "B' expected

78: invalid operand

79: comma expected

0500201:0AA

Appendix E

A-43

APPENDIX F
6809 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

15: backwards .ORG not allowed

16: identifier expected

17: constant expected

18: invalid structure

19: extra special symbol

20: branch too far

21: LC-relative to externals not allowed
22: illegal macro parameter index

23: illegal maecro parameter

24: operand not absolute

25: illegal use of special symbols

26: ill-formed expression

27: not enough operands

28: LC-relative to absolutes unrelocatable
29: constant overflow

30: illegal decimal constant

31: illegal octal constant

32: illegal binary constant

33: invalid key word

34: unmatched macro definition directive
35: include files may not be nested

[
— O WO =IO U C DN

90 00 40 00 ee 00 9p 00 es G0 oo

—
.o

L
= 0O b
e 90

A-44 0500201:0AA

Appendix F

36: unexpected end of input

37: INCLUDE not allowed in maeros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count
44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/O - bad bloek, parity error (CRC)
48: I/0 - illegal unit number

49: 1/0 - illegal operation on unit

50: I/0 - undefined hardware error

51: I/0 - unit no longer on-line

52: I/O - file no longer in directory

53: I/O - illegal file name

54: I/O - no room on disk

55: I/0 - no such unit on-line

56: I/0 - no such file on volume

57: 1/0 - duplicate file

58: I/O - attempted open of open file
59: I/0 - attempted access of closed file
60: I/O - bad format in real or integer
61: I/O - ring buffer overfiow

62: I/O - write to write-protected disk
63: I/O - illegal block number

64: 1/0 - illegal buffer address

65: nested macro definitions not allowed
66: "=' or "< expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

0500201:0AA A-45

Appendix F

75:
76:
772
78:
79:
80:
81:
82:
83:
84:
85:

A-46

LC not word-aligned
immediate operand expected
invalid register list entry
operand must be indexed
invalid index register

no offset allowed
indirect not allowed
invalid offset register
invalid offset

immediate not allowed
registers are incompatible

0500201:0AA

O CO = O Ut CODD

oo o

10;
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24;
25:
262
27:
28:
29:
30:
31:
32:
33:
34:
35:

APPENDIX G
8080 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed
identifier expected

constant expected

invalid structure

extra special symbol

branch too far

LC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

LC-relative to absolutes unrelocatable
constant overflow

illegal decimeal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

0500201:0AA

A-47

Appendix G

36:
37:
38:
39:
40:
41:
42
43:
44;
45:;
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:

A-48

unexpected end of input

JINCLUDE not allowed in macros
label expected

expected local label

local label stack overflow

string constants must be on single line
string constant exceeds 80 characters
cannot handle this relocate count

no local labels in .ASECT

expected key word

string expected

1/0 - bad bloek, parity error (CRC)
I/O - illegal unit number

I/0 - illegal operation on unit

I/0 - undefined hardware error

I/0 - unit no longer on-line

I/0 - file no longer in directory

I/O - illegal file name

I/O - no room on disk

I/O - no such unit on-line

1/O - no such file on volume

I/O - duplicate file

1/0 - attempted open of open file
I/0 - attempted access of closed file
I/O - bad format in real or integer
I/0 - ring buffer overflow

I/O - write to write-protected disk
I/0 - illegal bloek number

I/O - illegal buffer address

nested macro definitions not allowed
*=t or “<>" expected

may not equate to undefined labels
.ABSOLUTE must appear before 1st proc
PROC or .FUNC expected

too many procedures

only absolute expressions in .ASECT
must be label expression

no operands allowed in .ASECT
offset not word-aligned

0500201:0AA

75: LC not word-aligned
76: invalid operand
77: comma expected

0500201:0AA

Appendix G

A-49

00 06 eo 00 00 00 o0 00 e

—
SO WO ~IO Ui WY

APPENDIX H
9900 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed
identifier expected

constant expected

invalid structure

extra special symbol

branch too far

LC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

LC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

0500201:0AA

Appendix H

36: unexpected end of input

37: JINCLUDE not allowed in maeros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/O - bad block, parity error (CRC)
48: 1/0 - illegal unit number

49: I/0 - illegal operation on unit

50: 1/0 - undefined hardware error

51: I/O - unit no longer on-line

52: I/O - file no longer in directory

53: I/0O - illegal file name

54: I/0O - no room on disk

55: I/0 - no such unit on-line

56: 1/0O - no such file on volume

57: I/O - duplicate file

58: I/O - attempted open of open file
59: I/O - attempted access of closed file
60: I/0 - bad format in real or integer
6i: 1/O - ring buffer overflow

62: I/O - write to write-protected disk
63: 1/0 - illegal block number

64: I/0 - illegal buffer address

65: nested macro definitions not allowed
66: ="' or “<>° expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proec
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: must be label expression

73; no operands allowed in .ASECT

74: offset not word-aligned

0500201:0AA A-51

Appendix H

75:
76:

A-52

LC not word-aligned

illegal immediate operand

index must be WR

close paren ')' expected
indireet & autoiner must be WR
autoiner must be WR indirect
comma ',! expected

no operand allowed

illegal map file

WR expected

0500201:0AA

80 00 s 60 0% e¢ es o0 oo

[y
QWO =IO W)=

—
[y
e o0 &0

P
W N
e

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

APPENDIX 1
LSI-11/PDP-11 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed
identifier expected

constant expected

invalid structure

extra special symbol

branch too far

LC-relative to externals not allowed
ililegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

LC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

0500201:0AA

A-53

Appendix I

36:
37:
38:
39:
40:
41:
42:
43:
44:

45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
T1:
72:
73:
74:

A-54

unexpected end of input

JINCLUDE not allowed in macros
label expected

expected local label

local label stack overflow

string constants must be on single line
string constant exceeds 80 characters
cannot handle this relocate count

no local labels in .ASECT

expected key word

string expected

I/0 - bad bloek, parity error (CRC)
I/O - illegal unit number

I/0 - illegal operation on unit

I/0 - undefined hardware error

1/0 - unit no longer on-line

I/0 - file no longer in directory

I/0 - illegal file name

I/O - no room on disk

I/O - no such unit on-line

I/0 - no such file on volume

I/0 - duplicate file

I/O - attempted open of open file
I/0 - attempted access of closed file
I/O - bad format in real or integer
I/0 - ring buffer overflow

I/O - write to write-protected disk
I/O - illegal block number

I/O - illegal buffer address

nested macro definitions not allowed
*=' or "<>" expected

may not equate to undefined labels
ABSOLUTE must appear before 1st proc
PROC or .FUNC expected

too many procedures

only absolute expressions in .ASECT
must be label expression

no operands allowed in .ASECT
offset not word-aligned

0500201:0AA

75: LC not word-aligned

76: close paren ') expected

77: register expected

78: too many special symbols

79: unrecognizable operand

80: register reference only

81: first operand must be register
82: comma ',! expected

83: unimplemented instruction

84: must branch backwards to label

0500201:0AA

Appendix 1

A-55

APPENDIX J
Z8 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

invalid radix

must .EQU before use if not to a label
macro identifier expected

code file too large

15: backwards .ORG not allowed

16: identifier expected

17: constant expected

18: invalid structure

19: extra special symbol

20: branch too far

21: LC-relative to externals not allowed
22: illegal macro parameter index

23: illegal macro parameter

24: operand not absolute

25: illegal use of special symbols

26: ill-formed expression

27: not enough operands

28: LC-relative to absolutes unrelocatable
29: constant overflow

30: illegal decimal constant

31: illegal octal constant

32: illegal binary constant

33: invalid key word

34: unmatched macro definition directive
35: include files may not be nested

bt et ek ok ot
DO DD OO0 ~TID WD WD

%0 8¢ 00 *0 S0 00 ee Se 00 % es 00 e

.

A-56 0500201:0AA

Appendix J

36: unexpected end of input

37: .INCLUDE not allowed in macros

38: label expected

39: expected local label

40: local label stack overflow

41: string constants must be on single line
42: string constant exceeds 80 characters
43: cannot handle this relocate count

44: no local labels in .ASECT

45: expected key word

46: string expected

47: 1/O - bad block, parity error (CRC)
48: I/0 - illegal unit number

49: I/0 - illegal operation on unit

50: I/0 - undefined hardware error

51: 1/0 - unit no longer on-line

52: I/0O - file no longer in directory

53: I/0 - illegal file name

54: 1/0 - no room on disk

55: 1/0 - no such unit on-line

56: I/0 - no such file on volume

57: 1/0 - duplicate file

58: 1/O - attempted open of open file
59: 1/O - attempted access of closed file
60: I/O - bad format in real or integer
61i: 1/0 - ring buffer overfiow

62: I/0 - write to write-protected disk
63: 1/0 - illegal block number

64: I/0 - illegal buffer address

65: nested macro definitions not allowed
66: “=' or <> expected

67: may not equate to undefined labels
68: .ABSOLUTE must appear before 1st proc
69: .PROC or .FUNC expected

70: too many procedures

71: only absolute expressions in .ASECT
72: only labels equated to .DEFs

73: no operands allowed in .ASECT

74: offset not word-aligned

0500201:0AA A-57

Appendix J

75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:

A-58

LC not word-aligned

too many symbols
operand expected

bad data value

" expected

bad operand type

odd register

unknown instruction
working register expected
indirect or register expected
condition code expected

0500201:0AA

APPENDIX K
Z80 SYNTAX ERRORS

: undefined label
: operand out of range
must have procedure name
number of parameters expected
: extra symbols on source line
: input line over 80 characters
: unmatched conditional assembly directive
: must be declared in .ASECT before used
: identifier previously declared
10: improper format
11: illegal character in text
12: must .EQU before use if not to a label
13: macro identifier expected
14: code file too large
15: backwards .ORG not allowed
16: identifier expected
17: constant expected
18: invalid structure
19: extra special symbol
20: branch too far
21: LC-relative to externals not allowed
22: illegal macro parameter index
23: illegal macro parameter
24: operand not absolute
25: illegal use of special symbols
26: bill-formed expression
27: not enough operands
28: LC-relative to absolutes unrelocatable
29: constant overflow
30: illegal decimal constant
31: illegal octal constant
32: illegal binary constant
33: invalid key word
34: unmatched macro definition directive
35: include files may not be nested

1
2
3:
4:
5
6
7
8
9
0

0500201:0AA A-59

Appendix K

36:
37:
38:

unexpected end of input

JNCLUDE not allowed in macros
label expected

expected local label

local label stack overflow

string constants must be on single line
string constant exceeds 80 characters
cannot handle this relocate count

no locel labels in .ASECT

expected key word

string expected

I/O - bad block, parity error (CRC)
I/O - illegal unit number

I/0 - illegal operation on unit

I/O - undefined hardware error

I/O - unit no longer on-line

I/0 - file no longer in directory

I/O - illegal file name

I/O - no room on disk

I/0 - no such unit on-line

I/0 - no such file on volume

I/O - duplicate file

I/O - attempted open of open file
I/O - attempted access of closed file
I/0 - bad format in real or integer
I/O - ring buffer overflow

I/O - write to write-protected disk
I/O - illegal block number

I/O - illegal buffer address

nested macro definitions not allowed
“=t or “<>° expected

may not equate to undefined labels
.ABSOLUTE must appear before 1st proc
.LPROC or .FUNC expected

too many procedures

only absolute expressions in .ASECT
must be label expression

no operands allowed in .ASECT
offset not word-aligned

0500201:0AA

75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

LC not word-aligned
incorrect operand format
close paren ')' expected
comma ',! expected

plus '+ expected

open paren (' expected
stack pointer 'SP' expected
'HL' expected

illegal 'ce' condition code
register 'C' expected
register expected 'r'
register 'A' expected

0500201:0AA

Appendix K

A-61

APPENDIX L
8086/88/87 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters

unmatched conditional assembly
directive

must be declared in .ASECT before
used

identifier previously declared

10: improper format

11: illegal character in text

12: must .EQU before use if not to a label

13: macro identifier expected

14: code file too large

15: backwards .ORG not allowed

16: identifier expected

17: constant expected

18: invalid structure

19: extra special symbol

20: branch too far

21: LC-relative to externals not allowed

22: illegal macro parameter index

23: illegal macro parameter

24: operand not absolute

25: illegal use of special symbols

26: ill-formed expression

27: not enough operands

28: LC-realtive to absolutes

unrelocatable

29: constant overflow

30: illegal decimal constant

31: illegal octal constant

32: illegal binary constant

3 OOV OB
®e o0 o0 oo oo a0 ¢

o0
X

©w
.

A-62 0500201:0AA

Appendix L

33: invalid key word
34: unmatched macro definition
directive
35: include files may not be nested
36: unexpected end of input
37: JINCLUDE not ellowed in maeros
38: label expected
39: expected local label
40: local label stack overflow
41: string constants must be on
single line
42: string constants exceeds 80
characters
43: cannot handle this relocate count
44: no local labels in .ASECT
45: expected key word
46: string expected
47: 1/0 — bad block, parity
error (CRC)
48: 1/O — illegal unit number
49: 1/0 — illegal operation
on unit
50: I/O — undefined hardware
error
51: I/O — unit no longer
on-line
52: I/O — file no longer in
directory
53: I/O — illegal file name
54: I/O — no room on disk
55: I/O — no such unit on-line
56: I/O — no such file on volume
57: 1/O — duplicate file
58: I/O — attempted open of open
file
59: 1/0 — attempted access of closed file
60: I/O — bad format in real or integer
61: I/0 — ring buffer overflow
62: I/O — write to write-protected disk

0500201:0AA A-63

Appendix L

63: I/0 — illegal block number

64: I/0 — illegal buffer address

65: nested macro definitions not allowed

66: '=' or '<>' expected

67: may not equate to undefined labels

68: .ABSOLUTE must appear before first proc

69: PROC or .FUNC expected

70: to many procedures (more than 10)

71: only absolute expressions in .ASECT

72: must be label expression

73: no operands allowed in .ASECT

74: offset not word-aligned

75:¢ LC not word-aligned

76: had label, open parenthesis then
illegality

77: expected absolute expression

78: both operands cannot be a seg register

79: illegal pair of index registers

80: have to use BX, BP, SI or DI

81: illegal constant as first operand

82: the first operand is needed

83: the second operand is needed

84: expected comma before second
operand

85: registers stand-alone except in
indirect

86: only two registers per operand

87: expected label or absolute

89: close parenthesis expected

90: cannot POP CS

91: cannot have xchg r8 with r16

92: segment registers not allowed

93: ESC external operand on left must
be constant<64

94: only one of operands can have
segment override

95: right operand must be a memory
location

A-64 0500201:0AA

96:
97:
98:

99:
100:

101:
102:
103:
104:
105:
106:
107:
108:
109:

110:
111:

112:
113:
114:
115:
116:
117
118:

119:

left operand must be a 16 bit
register

left operand must be memory or
register alone

operand cannot be a segment or
immediate

count must be 1 or in CL

a byte constant operand is
required

operand must use () or be a
label

LOCK followed by something
illegal

REP precedes only string
operations

not implemented

expected a label

open parenthesis expected

expected register alone as right
operand

segovpre then regalone, that's
illegal

only one operand allowed

operands are AL,op2 for byte
MUL, etc.

SP can only be used with the SS
segment

MOVBIM only for immediate to
memory

BIMs must be immediate bytes to
memory

MOV immediate to Segment Register
not allowed

Segment Register expected

(8087) invalid two-operand format

(8087) invalid single operand
format

(8087) inproper operand field

0500201:0AA

Appendix L

A-65

Appendix L

120: (8087) instruction has no operands

121: no override of ES on string
destination

122: intersegment jump or call needs 2
constant or external operands

123: I/O port must be immediate byte
or DX

124: 1/0O source-destination register
must be AL or AX

125: prefix must be on same line as code

126: register expected as first token
after '('

A-66 0500201:0AA

@0 00 e ¢o o o8 00 se o0

WO =IO U OB =

- s
e

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

APPENDIX M
68000 SYNTAX ERRORS

undefined label

operand out of range

must have procedure name

number of parameters expected

extra symbols on source line

input line over 80 characters
unmatched conditional assembly directive
must be declared in .ASECT before used
identifier previously declared
improper format

illegal character in text

must .EQU before use if not to a label
macro identifier expected

code file too large

backwards .ORG not allowed
identifier expected

constant expected

invalid structure

extra special symbol

branch too far

LC-relative to externals not allowed
illegal macro parameter index

illegal macro parameter

operand not absolute

illegal use of special symbols
ill-formed expression

not enough operands

LC-relative to absolutes unrelocatable
constant overflow

illegal decimal constant

illegal octal constant

illegal binary constant

invalid key word

unmatched macro definition directive
include files may not be nested

0500201:0AA

A-67

Appendix M

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:;
50:
51:
52:
53:
54:
55:
56:
LYH
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:

A-68

unexpected end of input

JINCLUDE not allowed in macros
label expected

expected local label

local label stack overflow

string constants must be on single line
string constant exceeds 80 characters
cannot handle this relocate count

no local labels in .,ASECT

expected key word

string expected

1/0 - bad bloek, parity error (CRC)
I/O - illegal unit number

I/O - illegal operation on unit

I/O - undefined hardware error

I/O0 - unit no longer on-line

I/O - file no longer in directory

I/0 - illegal file name

I/O - no room on disk

I/0 - no such unit on-line

I/O - no such file on volume

I/0 - duplicate file

I/O - attempted open of open file
I/0 - attempted access of closed file
I/O - bad format in real or integer
I/0 - ring buffer overflow

I/O - write to write-protected disk
I/0 - illegal bloek number

I/O - illegal buffer address

nested maero definitions not allowed
“=' or “<> expected

may not equate to undefined labels
.ABSOLUTE must appear before 1st proc
JLPROC or .FUNC expected

too many procedures

only absolute expressions in .ASECT
must be label expression

no operands allowed in .ASECT
offset not word-aligned

0500201:0AA

75:
762
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:

LC not word-aligned
unrecognizable address mode
address register expected
close paren ')' expected
displacement out of range
index register expected
illegal length qualifier
illegal source address mode
illegal destination address mode
comma ',' expected

length qualifier required
length qualifier not allowed
data register expected

label expected

illegal register list
immediate operand expected

0500201:0AA

Appendix M

A-69

APPENDIX N
NIL POINTER VALUES

The following table lists the value designated as
NIL for each processor. A NIL pointer (a pointer
variable which is assigned the value NIL) is
uninitialized or points to nothing.

780 0001
8080 0001
6502 0000
6809 0000
68000 0000
HP-87 0000
PDP-11 Fo001
9900 0000
8086 0000

A-70 0500201:0AA

INDEX

6500'0...'. 002-7

68000 e 6 &6 &8 9 & ¢ @ 5 & ¢ & 0 8 8 2 0 0 8 & 5 s s 0 0 2-9
680000 e e s & o & e o &6 & & & 0 & & ¢ 0 0 0 & s & 2-29
6809 cccccc ® & & ¢ 8 ¢ 0 & 0 & o " s 0 0 0 & 0 0 2—14

80800...000.0‘.0.600000..o'oo 2—11
8086.0.0........0......-..00

[]
[V
[}
[y
[+]

9900..0..."Ooo\lc..ooooccc-.- 2—12

oABSOLUTE..Q..l.ocoo.-ono 1-58, 1-88

Absolute SectionNS. « e ¢ e s ¢ e e e s s 0o ¢ e s 1-22
ALC. et e vt eoesssosasssecesesss 1-23
ALIGN . i ¢ ettt s e sssesscseecsses 1-40
AND . ¢ ettt s e ceeeoscossssaseeasl-ld
Arithmetic Operators. « « « o o ¢ ¢ o oo oo« 1-13
GASCIl. ¢t ¢ e o s es s seesscecaasseeass l-34
WASCIILIST e ¢ ¢ ¢ t ¢ ¢ e 6 s s a s oseas e o e 1-42
ASECT . ¢ ¢ v e s e e eonwe e e eeaeal1-23, 1-59
Assembled Listing. ..o« ¢ o ¢e0e...1-94, 1-100
Assembler DirectiveS. ¢ « ¢ e e e s s ¢ ¢ s o s 1-26

conditional assembly......... 1-54, 1-61

external reference. « « « e« « e ¢ o ¢ s o« 1-75

host communication. « ¢« « « « e e ¢ o0 o« 1-73

0500201:0IA I-1

Index

listing control. « « e e ¢ e v e e aaeees 1-41
macro definitions. « v e« e e ¢ ... 1-55, 1-64
miscellaneous. « « ¢ e e e e e s s 0o esss 1-57
procedure-delimiting. « « « + ¢ ¢ s s s s o« 1-29
program delimiters.o ¢...1-76
program linkage. e ooeoc0e+q. 1-49
Assemblers
6500. ¢ ¢ coceeeeecosoosoansces2T
6800. ¢ ¢ ceocececesscocsonccces2=9
68000. .. ¢0ccceesecescconaacs 2-29
6809.-..0..Qoooo.o-..oooooo2-14
8080.¢¢eeceeeeeecossosoasanses2-11
80860.00o..ooooo-oo--ono..o2-18
9900.0--..0o-ooooooococ-ooo2—12
LSI-11. .. cceeeeececsncnsases 2-4
PDP-11..¢cceeececcccssccsacesld=d
Z8. st eeeeescsssssessasaasas 2-16
Z80. e eoeeeooososcsscssncssaes 2-5
Assembly Language. « .. coccoeeaeees 1-3
Assembly Routines. « « ¢ . e e oo ovoeeoal-21
Assembly Time Constants.¢o0s0¢..1-11

-B~-

Binary Integer Constants.«.200.. 1-8
BLOCK...ceeoeeeeeesoseeoes 1-23, 1-36
BYTE. e ot eeeeeeeeoaoeeseal-23, 1-35
Byte Organization.cceeoeeeeeel-5

-C-

Character Constants. « « ¢ o ¢ e ¢ 000 e0..1-10
Character Set. ... et eeceeseccsees 1-6
Character Strings..... I
Comment Field. .. eeecevecesaceses 1-20
COMPreSS. ¢« ¢ ¢ s e v oo esoseoescsaees 1-88
Conditional Assembly. . . eeses 1-61

I-2 0500201:01A

Index

Conditional Assembly Directives. 1-54
eCONDLIST;;e;e ----- eeeeeeeeeeel“43

.CONST....o..ot.o:o..co..1_49’ 1-74

-D-

Data and Constant Definitions.1-34
Decimal Integer ConstantS. . « ¢« « o ¢ ¢ ¢« o o o+ 1-9
DEF. . ¢¢ieeeseecseasaseos 1-53, 1-75
Default Integer Constants......«ec¢.. 1-10

-E-~-

ELSE. ¢ ¢ et eeceeeescoseesssl-dd, 1-61
tEND-..“O.....o.O...O.c 1-23, 1-34
ENDC....ceeeeeeeasseess 1-54, 1-61
ENDM.o 1-56, 1-64
EQU. et eveoeetoaeseses 1-23, 1-38
Error MessageS. « e « e e o o0 s s o« 1-97, 1-101
8086.ERRORS. . v ¢t et cteecaccaaaes 1-93
Example 8086 RoutinesS.:eeeee0e..A-36
EXpressions. « ¢ « e e ¢ e e s e s e eaeaenss.l-11
External Reference Directives. « « « ¢« o ¢« o o« 1-75

-F-

8087.FOPS.00.-0000ooo-ooooo-oo 1-93
.FUNC....-.....-.I-zl, 1-29, 1-31, 1-72

-H-

Hexadecimal Integer Constants. « . ¢ ¢ ... 1-9
Host Communication Directives. « « ¢ « « « « «1-74

0500201:0IA I-3

Index

-1I-

Identifiers.e e e c e s v vveceecrsscecesl-6
JFe i ettt ceteeeeoacsasssl=b4, 1-61
JNCLUDE. ¢ ¢ ¢ ¢ ¢ e e eeeeeeeeeoeose 15T
-INTERP.-ooooo.oo'o-ocooonno. 1-52

-L-

Label.................-...1"11—1‘17
Label Fielde . oo oo eeeeoeocesceass 1-17
Linking. e e ¢ e e teoeececeassacaese 1-70
Linking and Program Modules. « « « « ¢« ¢ o « +1-77
Linking Restrictions. .« «..eoeceeceeeeel-12
Linking to Pascal. « . e ¢eeeeeeeeee. 1-86
LLIST. o e et eoeveoeeseeoaes 1-23, 1-46
Listinge e c c e e e eeeeeeeess 1-94, 1-100
Listing Control Directives.: « « v o ¢ ¢ s « o« 1-41
Location Counter Modification. 1-39
Logical Operators. « « « e e e e s s o000+ 1-14

%o-oc-ooco-oooc'ooccooono-1"’14

e e e e 0 0 0 1-14

&QCOCQOOOOIQ.‘OOCO

*- ® & ¢ & @ 0 0 ¢ ¢ 0 s O s 0 s O e O 2 S S O 0 1_14
+‘ ® @ ¢ ¢ & 8 @ 9 8 & & O 0 & & 0 O O 0 60 e 1-14
“ o 6 8 @ 8 ¢ 6 6 ¢ s 0 02 0 8 e a0 e e 0 a2 e 1=14
/' S 8 o ¢ ® 8 & 2 ¢ & & 8 8 9 T C B O S ¢ S O O G 1-14

//nOQUOOOIQQCQIOOQOICQOOQQQ1-14

® 6 8 & 8 6 ¢ & 6 ¢ 8 06 0 & & & 0 2 S B O 0 0 0 0 1-14
® & ¢ @ & & & ¢ & & & & & & & 8 & 8 s s & 8 & o 0 1—14
@ @ @ ® 9 8 0 ¢ 6 0 8 & 2 & e 0 0 e 0 s s 0 0 1-14

o.'o'.ioo.cQlt.o‘l...o.o'l1_14

= >l

® & 0 ¢ & & 0 ¢ % & & 0 s S 0 2 6 & 0 e s 0 e o 0 1-14

LSI-].]..'.IIOIQO!oll..l.o.n..oo-2-4

oMACROo e @ ®© © ®# & 0 & & o & © ¢ & & 0 @ 1-55, 1"64
Macro Calls. . L] [] [] - L] L] . L] L] L] L] * o L] L] - L] . 1-65
Macro Definition Directives. ¢« « « ¢ ¢ « « « « 1-55

I-4 0500201:01A

Index

Maecro Definitions. . ¢« e e e e e e e oo eee. 1-64
Maecro Language. « . c e e e e e eoveeees 1-63
JMACROLIST . ¢ ¢ ¢ e e s coeeaocosecesesl-4T
Miscellaneous DirectiveS. « « o+ ¢ e ¢ o ¢ o o« 1-57
MOD. i ot eeeeeeoseccesssscaseassl-14

-N-

JNARROWPAGE. .« c c t et et eeeeeeas 1-45
JNOASCIILIST. ¢ ¢ ¢ ¢ ¢ ¢ e e o e seeaaass 1-42
JNOCONDLIST. « ¢ ¢ ¢ ¢ e e e eeeeeseessl-43
NOLIST: e v v s eveneeneesess 1-23, 1-46
JNOMACROLIST. ¢ ¢ ¢ ¢ ¢ e e e eveeeesssl-48
oNOPATCHLIST.o.-ooocooa-nccco-1-49
NOSYMTABLE. . . ¢ ¢ ¢ e e e ceeeessss 1-44
I e R X

-0-

Object Code Format. . « s s e s s e s s e s s« 1-5
Octal Integer Constants. ..e.ees000¢.. 1-10
Opcode Field. . e . veeveeeeeecees 1-20
8086.OPCODES. . c ¢ ¢ e v eeoeeoeeess 1-93
Operand Field. ¢ « v et et e v eeeeeses 1-20
OR ‘¢ eeeeeeeeesoesnsoseaasooesasl=-ld

.ORG..II'CQ.Q.CO....1_23’ 1—39, 1-88

-P-

PAGE. e e ettt essscsaseesss l-45
LPAGEHEIGHT. ¢« « ¢ ¢ ¢« ¢ttt e v eeseeadal-d44
Parameter Passing. « « e e c e e e s oo e os. 1-65
Parameter passing. .. e eceeeeeeees. A-36
Parameter Passing Conventions.1-80
LATCHLIST. « ¢ ¢ ¢ e e e e e s e oo 1-48, 1-102
PDP-11..¢¢cceeceoscencsacsacsas 2-4

0500201:0IA I-5

Index

LPRIVATE. . c ¢ ¢ e e eeeoeeeses 1-51, 1-75
LPROC...¢eeeeeee.l-21, 1-29, 1-30, 1-72
Procedure-Delimiting Directives. « « « « « . « 1-29
Program Identifier Directives. ...« ¢¢ .. .1-76
Program Linkage Directives. « « « o ¢ ¢« ¢« o« 1-49
Program Linking Directives. « « « ¢ ¢ ¢ o o« «1-73
Program Linking & Relocation......... 1-70
PSECT. .t e eeeeeeceascscccssoese 1-59
WLPUBLIC. « ¢ ¢ ¢ ¢ e seeceoeeses 1-50, 1-74

-R-

RADIX. v euennn I)
REF. . veeeerenesoennnees 1-53, 1-75
RELFUNC..........1-21, 1-29, 1-33, 1-72
RELPROC.1-21, 1-29, 1-32, 1-72

-S-

Sample 8086 Routines e ® 6 8 8 ¢ ¢ 0 ¢ 5 o 0 A—3 6
Stand-Alone Applications. . « « e ¢ ¢ 0 c e . 1-87
Symbol Table' e & ® & 8 @ & ¢ 9 O ¢ O * O s 0 o 1-104

-T-
.TITLEC'.I.l..l...l.'."....‘.1-41

-V-

Value Parametel‘s............-... 1-82
Variable Pal‘ametel‘s. e ¢ 6 8 ¢ 0 0 0 0 0 0 0 00 1‘81

—W-
.WORD.........-...o.....1—23, 1-37

I-6 0500201:0IA

Word Organization.....

-X-
‘XOR. ® &8 & * & & & ¢ 0 ¢ & o 0

-Z-

ZSOQCA'COOOQQCCQQQ

ZSOQQOOQOCQ..GCOQQ

Index

. 1-14

..2-16
0102-5

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-000
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08

