SOIF=EEE]

MmMICROSYSTEems

p-System™ Software
Reference Library

Program
Development

1-11041.A

p-Syste m®

Program Development Reference Manual

SofTech Microsystems, Ine.
San Diego, California

1-110.41.A

Copyright ©1983 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may be
reproduced in any form or by any means or used to
make a derivative work (such as a translation,
transformation, or adaptation) without the written
permission of SofTech Microsystems, Inec.

p-System is a trademark of SofTech Microsystems,
Ine.

UCSD and UCSD Pascal are registered trademarks
of the Regents of the University of California.
Use thereof in conjunction with any goods or
services is authorized by specific license only, and
any unauthorized use is contrary to the laws of the
State of California.

Printed in the United States of America.
Disclaimer

This document and the software it describes are
subject to change without notice. No warranty
expressed or implied covers their use. Neither the
manufacturer nor the seller is responsible or liable
for any consequences of their use.

TABLE
OF
CONTENTS

INTRODUC’I‘ION ¢ ® & o s e e s s s e s s s s s 1_3
HOW TO USE TEIS MANUAL.« 1-3
BACKGROUND ® 8 ¢ & o s s s ¢ 4 e ¢ s e s e @ 1_4

DESIGN PHILOSOPHY ® & & & o s & e e s e e @ 1—6
USGP'FI’iendly ® & ¢ & s 0 ¢ & o e 0 s 2 s o 3 3 1_7
Portability ® & e & o vt e s e s et s e e e s 1-7

Table of Contents

COMPILING PROGRAMS AND UNITS.
INTRODUC'HON . . L] L] L] L . L] L] . .

USING THE COMPILER . « ¢ ¢ ¢ v ¢ o ¢ ¢ o

2-3

2-3

2-3

syntaXEI‘rO[‘S........-........2"7

Compiled Listings. « « o ¢+ ¢ ¢ o o 0 0 o o 2-9

Compiler Options. « « « ¢ ¢ ¢ o o ¢ o s o
$B - Begin Conditional Compilation. . . .

$C - Copyright Field. « « « ¢ ¢« o ¢ o o
$D - Conditional Compilation Flag. . . .
$D - Symbolic Debugging ., « « « « « « &
$E - End Conditional Compilation.

$1 - I/O Check Option. « « ¢ o o o ¢ ¢ o
$I'IﬂCludeFile....-.........

$L - Compiled Listing. « « « « « v ¢ ¢ ¢
$N - Native Code Generation.
$P - Page and Pagination. . « « « ¢ « «
$Q - Quiets o ¢ ¢ v o 0 e e s e e
$R - Range Checking. « « « o ¢ ¢ ¢ ¢ ¢« &

$R2 and $R4 - Real Size. . « « ¢« ¢ « « &
$T - Title e v ¢ o ¢ ¢ o ¢ ¢ o s o ¢ o s oo
$U - Use Library. « « « o « o o ¢ o ¢ ¢«
$U - User Program. « « « « o ¢ o o o o »
Conditional Compilation. « « « ¢« « ¢« « ¢ « &
Selective USES .+ o o ¢ o ¢ ¢ o 5 s o o0 ¢ o o

2-13
2-15
2-15
2-135
2-16
2-16
2-16
2-17
2-1$
2-20
2-Z0
2-21
2-21
2-22
2-22
2-22
2-23
2-24
2-27

Table of Contents

SEGMENTS, UNITS AND LIBRARIES. 2-392
Segmenting a Program. 232
Separate Compilation — Units.92-33
Libraries. . « v v v v v v v v s s s s vt .. 2-36

GENERAL TACTICS. 2-40

USER INTERFACE. 33
INTRODUCTION. 3-3

RUN-TIME APPLICATION FACILITIES. ... 3-4
Single-Use Run-Time System. 3-5
System Initialization. 3-8

THE SCREEN CONTROL UNIT. 3-7
SCREENOPS Interface Section. 3-8
Routines within SCREENOPS. 3-1C

ERROR HANDLER UNIT. e v . . 3-18
Format of Error Messages.318

User Control of Error Messages. 3-20

THE COMMAND I/O UNIT. 3-24

TURTLEGRAPHICS . + v v v v v v v v w v .. 3-27
The Turtle.329
The Display . « v v v v v v v v v v v ... 3-35
Labels. 0 i oo 3-36
Sealing.o v it i s, 337
Figures and the Port. 3-41

Table of Contents

PiXElS e o o o o o o o s s o o o s o oo oo« 3745
FOtOfileS e o « o « o o o o o o s o o o oo oo 3746
Routine Parameters. « « « « o o s « o« o o« 348
Sample Program. « « « o « o o o o o o o oo 3-50
Using Turtlegraphics from FORTRAN. . . . 3-52
Using Turtlegraphies From BASIC. 3-57
Installing Turtlegraphies. . « « « « « « « o « 361
Graphics I/0 Routines. . « « « ¢ o o o o« 3-64
Graphics System Initialization. 3-74
Character FOntS. « « « ¢ o o o o o e o o s 3775
A Font Structure. « « « « o« « o o+ o o« + + 3776
Linking and Librarying. . « « « « « « « o o 377
Exercising Turtlegraphies. . . « « « « « » 3-78
Display Set and Clear Pixel Test. 3-78
Display Fill Color Tests. . « « o « « ¢ « o 3-73
Display Line-Drawing Exercises. 3-81
User-Created Figures Exercises. 3-86
QUICKSTART Units. « « « o o o o o o o« » 387
PEDGEN Unit Interface. « « « « « « « « « « 3-88
CHKSUMOPS Unit Interface. 3-95

Table of Contents

INTRODUCT‘ION--.ocoonouuoocco4-3
INTERFACE SECTIONS. + v ¢« ¢ v v v v v v o 4-5

DIRECTORY INFORMATION. 412
Notation and Terminology. 413
File Name Arguments. 4-15
File Type Selection. . « v v ¢ v v v 4-16
File Dates. . . « v v v v v v v v v v v .. 4-18
Error Results.o oo v v v .. 4-18
The DIR_INFO Routines.4-20

DPINFO. ...ttt e teneee.. 430
Wild Card File Name Change. 4-41

WILD CARDS (WILD) . « « v v v ¢« o v v« « . 4-55
Special Wild Card Characters. 4-56
Question Mark Wild Card. 4-57
Equal Sign Wild Card. . . v v o v v v . . 4-57
Subrange Wild Card. . « . . . « 4-58
D_Wild_Match Parameters. 4-60
D_Wild_Mateh Pattern Matching Info. . . . 4-61

SYSTEM INFORMATION. 4-65

FILE INFORMATION. 471

Table of Contents

DEBUGGING AND ANALYSIS. . . .+« ¢ .. 53
INTRODUCHON'-l----co..ocooo5—3

DEBUGGER. . « ¢« v ¢ v v e v v e v e e 93
Using the Debugger. . . « .« « « « v ¢« ¢ ¢ . .54
Entering and Exiting. « « « ¢ « ¢« ¢ ¢« o ¢« ¢ 57D
Using Break Points. . . « « v v ¢ ¢ v v oo 56
Viewing and Altering Variables. 5-8
Viewing Text Files. . . « . . ¢« o ¢ o . . 511
Displaying Useful Information. 512
Disassembling P-Code . « « « « ¢ v ¢« . .« .« 514
Performance Monitor Interaction.514
The 'Z' Command. « « « « ¢« ¢ ¢« ¢ o o o o« 915
Example of Debugger Usage. 517
Symbolic Debugging. . « « « « « ¢ ¢ o v o . 519
Symbolic Debugging Example. . . « 5-22
Summary of the Commands. . . « « « « « « 9525

PERFORMANCE MONITOR. 528

UTILITIES.O....lt.l.ll...ll'l.6-3
INTRODUCTION . & v ¢ ¢ ¢ ¢ ¢ ¢ s ¢ s o s oo 6-3

DECODE. « ¢ v ¢ ¢ ¢t e o s e o s ooese. b4
DECODE Programming Example. . . « . . . 6-6
D(ictionary Display. « « « « « ¢« v s o o o o« 6-8
Disassembled Listings « « « ¢ « ¢ « ¢ ¢« « o « 6-10

Table of Contents

NATIVE CODE GENERATOR.6-13
Directives and Pascal. 6-14
Directives and BASIC. . . v v v v v 6-18
Directives and FORTRAN. 6-18
Running the NCG. 6-18
NCG LIMITS. . + & vt v e e v v v v v v .. B-925

N O T X
EDIT Mod€ . v v v v 4 v v v v v v v o v o s« 8-27
TYPE Mode. « + v v ¢ v v v v v e v v we. 6-30
DUMP Mode. o v« v v v v v e e v v v v o 6-32
Prompts. ¢ v e, 6-35

THE XREF UTILITY. 6-36
Introduetion. 6-36
Referencer's OQutput v v v v v 6-36
Lexical Structure Table. 627
The Call Structure Table. 6-38
The Procedure Call Table. 6-39
Variable Reference Table. 6-39
Variable Call Table. . . ., 6-40
Warnings File. . . o o v v v v v v v v o . . 6-41
Using Referencer.6-42
Limitations. . . « . v . . v v 6-45

Table of Contents

APPE}JDICES . L] . L] L] L] A—l
A: EXECUTION ERRORS. ¢« oo oo A2

B:I/ORESULTS......-......tn.A_3

.

C: DEVICE NUMBERS. v ¢ ¢ ¢ ¢ ¢ v v oo+« A4

D.ASCIITABLE.o-cc.a-o---coooA—s

E: PASCAL SYNTAX ERRORS. A-6

F: COMPILER BACK-END ERRORS. A-11

INDEX-.....--.oooo-o.o---.oal-l

PREFACE

Preface

This book is a reference manual for the p—System@.
It describes the p-System facilities which enable
you to develop programs. It is designed for a data
processing professional who is familiar with the
p-System. The details of the various programming
languages—UCSD Pascal®, FORTRAN, and
BASIC—aren't covered in this manual.

The following books and manuals may also be of
interest to you. They are available from SofTech
Microsystems.

Personal Computing with the UCSD p-System
UCSD Pascal Handbook

Operating System Reference Manual
Assembler Reference Manual

Optional Products Reference Manual

Internal Architecture Reference Manual
Adaptable System Installation Manual
FORTRAN-77 Reference Manual

BASIC Reference Manual

0200101:00A v

vi

0200101:00A

CHAPTER 1

INTRODUCTION

Introduction

HOW TO USE THIS MANUAL

This book is a reference manual for use with the
p-System. It describes the p-System facilities
which enable you to develop programs.

Chapter 2, "Compiling Programs," covers the Pascal
compiler. The UCSD Pascal programming language
isn't covered in this manual. You should see the
UCSD_Pascal Handbook if you are interested in a
thorough description of the language. This chapter
also describes units, segments, and libraries. These
facilities are used when you separately compile
program modules. Using them you ean compile and
run much larger programs than you would otherwise
be able to within a given computer's memory and
disk space limitations.

Chapter 3, "User Interfacing,” describes several
p-System facilities that can assist your programs in
presenting a clean and portable user interface. For
example, the p-System can be completely hidden
underneath your application's own environment.
Programs may be chained together and called from
a simple menu driver that appears when a disk is
bootstrapped. Whether or not you use this
approach, you may wish to take advantage of
screen handling and error interception facilities
described in this chapter.

0200101:01A 1-3

Introduction

Chapter 4, "File Management,” covers the file
management units. These allow your programs to
manipulate disk files in a similar fashion to the
filer. For example, files can be listed and
removed, volumes can be crunched, and so forth.

Chapter 5, "Debugging and Analysis" covers the
debugger and the performance monitor units, The
debugger is a very powerful tool for finding and
correcting errors that might exist in programs you
write. The performance monitor allows you to
accumulate statistical information concerning
various performance-related issues. Many of the
utilities deseribed in Chapter 6 are also valuable as
debugging and analysis aids.

Chapter 6, "Utility Programs,” describes several
p-System utility programs that are generally useful.
Most of these are specifically valuable during
program development.

BACEGROUND

In June 1979, SofTech Microsystems in San Diego,
began to license, support, maintain, and develop the
p-System. The resulting effort to build the world's
best small computer environment for executing and
developing applications has dramatically increased
the growth and use of the p-System. The first
p-System ran on a 16-bit microprocessor. Today,
the p-System runs on 8-bit, 16-bit, and 32-bit
machines—ineluding the 780, 8080/8085, 8086, 6502,
6809, 68000, 9900, PDP-11, LSI-11, and VAX.

1-4 0200101:01A

Introduction

The p-System began as the solution to a problem.
The University of California at San Diego needed
interactive access to a high-level language for a
computer science course. In late 1974, Kenneth L.
Bowles began directing the development of the
solution to that problem: the p-System. He played
a prineipal role in the early development of the
software.

In the summer of 1977, a few off-campus users
began running a version of the p-System on a
PDP-11. When a version for the 8080 and the Z80
began operating in early 1978, outside interest
increased until a description of the p-System in
Byte Magazine drew over a thousand inquiries.

As interest grew, the demand for the p-System
couldn't be met within the available resources of
the project. SofTech Microsystems was chosen to
support and develop the p-System because of its
reputation for quality, high technology, and

language design and implementations.

0200101:01A 1-5

Introduction

DESIGN PHILOSOPHY

The development team, many of whom continued
their efforts on behalf of the system at SofTech
Microsystems, decided to use stand-alone, personal
computers as the hardware foundation for the
p-System rather than large, time-sharing computers.
They chose Pascal for the programming language
because it could serve in two capacities: the
language for the course and the system software
implementation language.

The development team had three primary design
concerns:

1. The user interface must be oriented specifically
to the novice, but must be acceptable to the
expert.

2. The implementation must fit into personal,
stand-alone machines (64K bytes of memory,
standard floppy disks, and a CRT terminal).

3. The implementation must provide a portable
software environment where code files (including
the operating system) could be moved intact to
a new microcomputer. In this way, application
programs written for one microcomputer coulc
run on another microcomputer without
recompilation.

The current design philosophy at SofTech
Microsystems, where the p-System continues to
evolve, is bascially the same as the original
philosophy.

1-6 0260101:01A

Introduction

User-Friendly

The p-System continuously identifies its current
mode and the options available to you in that
mode. This is accomplished by using menus,
displays, and prompts. You may select an option
from a menu by pressing a single-character
activity. The system's displays then guide your
interactions with the computer. As you gain
more experience, you can ignore the continuous
status information—unless it is needed.

Portability

The p-System is more portable than any other
microcomputer system. It protects your software
investments without restricting hardware options.
The p-System does this by compiling programs
into p-code—rather than native machine
language—thus, allowing these code files to be
executed on any mierocomputer that runs the
p-System.

0200101:01A 1-7

Compiler

CHAPTER 2
COMPILING PROGRAMS

AND UNITS

Compiling Programs and Units

INTRODUCTION

This chapter is principally concerned with the
UCSD Pascal compiler., The BASIC and FORTRAN
compilers are described in separate reference
manuals. However, this chapter should be useful
even if you are only planning to use BASIC or
FORTRAN.

The UCSD Pascal programming language isn't
covered here. If you're interested in a detailed
description of UCSD Pascal, you should consult the
UCSD Pascal Handbook.

Separate compilation is also covered in this
chapter. Specifically, the UCSD Pascal unit
construct, program segmentation, and code file
libraries are addressed.

USING THE COMPILER

The compiler takes a text file as input and
generates a machine-portable code file as output.
The generated code file contains p-code, which is
executed by the p-System's p-machine emulator.
This emulator is written in assembly language and
runs direetly on the host computer's hardware.

0200101:02A 2-3

Compiling Programs and Units

You can start the compiler by seleceting the
C(ompile or R(un activity of the Command menu.
If a work file exists, it is compiled. Otherwise,
you are prompted for a text file to compile, like
this:

Compile what text ? _

Enter the name of the text file, but don't include
the ".TEXT" suffix (which is assumed). Next, you
are asked:

To what codefile ? _

Here, you should enter the name of the code file
that you want the compiler to produce. Don't
include the ".CODE" suffix (which, once again, is
assumed). If you enter '$' followed by <return>,
the code file is given the name which corresponds
to the text file being compiled. If you simply
press <return>, the code file *SYSTEM.WRK.CODE
is produced. The next prompt is:

Output file for compiled listing ? (<esc> for none) _

2-4 0200101:02A

Compiling Programs and Units

This allows you to indicate where you want the
compiled listing to be sent. You can respond with
a file name, with a communications volume such as
PRINTER: or CONSOLE:, or simply with <return>.
When you enter a file name, the listing is placed in
the file. You may use the suffix ".TEXT", but it
is always appended if you don't. If you specify a
communications volume, the listing is sent there
(where it is printec, displayed, or transmitted).
When you simply press <return>, no listing is
produced.

The $L Pascal compiler option can also create a
compiled listing, as described later in this chapter.
If you indicate a file or communications volume in
response to this prompt, however, the compiler
option is overriden. (You should note that ".TEXT"

T m
isn't automatically appended with the $I

it is with this prompt.)

[»Y<}
11 Qo

While the compiler is running, it displays a report
of its progress on the screen in this manner:

Pascal compiler - release level VERSION
< 11

237 lines compiled

INITIALI .
MYPROG

0200101:02A 2-5

Compiling Programs and Units

During the first pass, the compiler displays the
name of each routine. In this example, INITIALI,
AROUTINE, and MYPROG are the routines. The
numbers enclosed within angle brackets, < >, are
the current line numbers, and each dot on the
sereen represents one source line compiled.

During the second pass, the names displayed are
segments. In the example, MYPROG is the program
segment, and INITIALI is a segment routine. Here
the dots represent one routine within the segment.
MYPROG contains both itself and AROUTINE.

You can suppress this output if you want by using
the $Q compiler option, described later.

If the compilation is successful, that is, if no
compilation errors are detected, the compiler
creates a code file. This file is called
*SYSTEM.WRK.CODE if you are using work files or
if you press <return> in response to the compiler's
prompt:

To what codefile?

Otherwise, it is given the name that you specify in
response to that prompt.

When you select R(un (instead of C(ompile), the
resulting code file is automatically executed. If
you have a work code file, or if you have just
compiled a program, R(un simply executes it.

2-6 0200101:02A

Compiling Programs and Units

Syntax Errors

If your program text doesn't conform to the rules
of the Pascal programming language, the compiler
issues a syntax error. When this happens, the
text where the error occurred is displayed, along
with an error number or message. Here are two
examples:

MY FIRST LINE OF TEXT <--—-

'PROGRAM' or 'UNIT' expected

Line 1

Type <sp> to continue, <esc> to terminate, or 'e' to edit

MY FIRST LINE OF TEXT <---

Error #405

Line 1

Type <sp> to continue, <esc> to terminate, or 'e' to edit

This is the same error displayed twice (the first
line of a program is incorrect). 1In the first
case, the error message is displayed. In the
second case, the error number is displayed. You
only receive the error message if the file
*SYSTEM.SYNTAX is available. If
*SYSTEM.SYNTAX isn't present, you need to look
up the error number in the appropriate appendix
to this manual. {Compiler error messages are
given for Pascal, BASIC, and FORTRAN.)

After each syntax error, a message like one of
these is displayed and the compiler gives you the
option of pressing <space> to continue the
compilation, <esc> to terminate it, or 'E' to
enter the editor.

0200101:02A 2-7

Compiling Programs and Units

You can press <space> for every syntax error in
the program if you wish. In this way, you can
usually discover all of the errors that exist.
(Eowever, some syntax errors can "confuse" the
compiler and hide other syntax errors.) A code
file is never produced if syntax errors are found.
But, a compiled listing can be produced. You
can use such a listing to keep track of the
errors so that you can correct them all at once.

If you elect to press 'E' after a syntax error,
the compilation is terminated (as it is with
{ese>). However, you can now fix the error
immediately because the editor is automatically
invoked. If the file that you are compiling is a
work file, it is read into your work space. If it
isn't a work file, you are asked to specify which
file you want to edit (in the editor's normal
fashion). In either case, when the file is read
into the work space, the cursor is placed at the
exact spot where the error was detected. The
error message or number is redisplayed and you
must press <space> to begin editing so that you
can fix the problem. When a syntax error occurs
in an include file (see the $I compiler option),
you must be sure to specify that file correctly as
you enter the editor. You are informed of the
name of the include file after the "Line #"
portion of the syntax error message.

If both the $Q and $L compiler options are in
effect, the compilation continues and the syntax
error is only reported in the listing file. In this
case, the screen remains undisturbed by syntax
errors.

2-8 0200101:02A

Compiling Programs and Units

Compiled Listings

The compiler may optionally produce a listing of
the compiled source. This listing contains your
text along with information about the
compilation. Compiled listings are very useful
for reference as well as analysis and debugging
purposes.

In order to produce a compiled listing, you ecan
use the compiler's prompt for a listing file whieh
is described above. Alternatively, you can use
the $L compiler option which is described under
compiler options, below.

Here is the entire compiled listing for a very

simble program:

Hpie glralls
Pascal Compiler VERSION 1/01/83 Page 1

1 0 0:4d 1 {SL list.text}

2 2 1l:d 1 Program Comp_Listing_Example; -

3 2 1:0 0 Begin

4 2 1:0 0 {

5 2 1:0] This is an example listing of

6 2 1:0 0 an empty program.

7 2 1:0 0 }

8 2 :0 0 End.

End of Compilation.

0200101:02A 2-9

Compiling Programs and Units

Here is a sample portion of a more complex
listing:

393 10 12:4 1 Procedure iocheck;

{ commented out ';' }{;

{ commented out ';' } This procedure will check the i/o operations of the
{ commented out ';' } index as it is in the process of rebuilding

397 10 12:d 11

398 10 12:0 0 Begin

399 10 12:1 0 If ioresult <> 0 Then

400 10 12:2 6 Begin

401 10 12:3 6 pl® := 'index I/O failure.';
402 10 12:3 32 prompt (errorline);

403 10 12:2 38 End; { if ioresult <> 0 then }

404 10 12:0 38 End; { iocheck }
405 10 12:0 50
406 10 13:d 1 Procedure dropindex(position: isamcoverage);

2-10 0200101:02A

Compiling Programs and Units

In those lines that aren't marked as commented
out (which is intended to warn you that a
comment may have accidentally eliminated some
Pascal code), the numbers that precede a source
line are:

1. The line number. For example, 397 in the
listing above.

2. The Pascal segment number. This entire
example is part of segment number 10.

3. The routine number followed by a eolon and
the "ex level." In the example, procedure
iocheck is routine number 12 and procedure
dropindex is routine 13. The lex level
indicates how deeply the text is nested within
Pascal begin-end pairs.

4. The number of bytes of data or code storage
which the routine requires at that point. For
example, the IF statement, line 399, requires 6
bytes of p-code. The entire procedure iocheck
requires 50 bytes of p-code.

Lines which contain declarations (variables,
constants, and so forth) show a "d" following the
routine number. In the listing above, lines 393
and 397 are examples of this.

0200101:02A 2-11

Compiling Programs and Units

When the module that you are compiling uses a
unit, the interface section of that unit appears in
the compiled listing with a "u" where the "d"
normally appears. Also, the additional line
'USING <UNITNAME>' appears in the heading to
make it easier for you to distinguish interface
sctions from the text that you are specifically
compiling.

Here is a portion of a compiled listing which
shows syntax errors:

596 10 1:5 228 lastpageitem := min(lastentry,lastentry);
---> Error %104
597 10 1:5 239
598 10 1:5 239 { loop through the page !}
599 10 1:5 239 PageInx := 0;
600 10 1:5 242 { function returns next greater }
601 10 1:5 242 Repeat {until found or (Pagelnx > lastentry)!}
602 10 1:6 242 Assert (PageInx < lastpageitem,'bad PagelInx');

---> Error #104
previous error - line 59%6 .
607 10 1:6 271 found := (datallPageInx].key > key);

This shows two instances of error 104. This
particular error indicates that an undeclared
identifier was found—"lastpageitem" is the
problem in both ecases. An actual message
indicating "undeclared identifier" would have been
listed if the file *SYSTEM.SYNTAX had been
aveilable.

Error messages indicate the position of the
previous syntax error. In this example, line 596
contains the first syntax error and line 602,
whieh contains the second, references line 596 as
the previous syntax error.

2-12 0200101:02A

Compiling Programs and Units

Compiler Options

You may direct some of the compiler's actions by
the use of compiler options embedded in the
source code. Compiler options are a set of
commands that may appear within
"pseudo-comments.” A pseudo-comment is like
any other Pascal comment (it is surrounded by
'(*' and '*)', or by "' and '}"). However, a dollar
sign immediately follows the left-hand delimiter,
for example:

{$I+}

(*$U MOLD.CODE*)
{$I+,8-,L+}
(*$R™*)

There are two kinds of compiler options: "switeh"
options and "string" options. A switch option is
a letter followed by a '+, '~', or '""'. A string
option is a letter followed by a string. (In the
examples above, the second is a string option;
the others are switch options.) A
pseudo-comment may contain any number of
switch options (separated by commas), and zero
or one string options. If a string option is
present in a pseudo-comment, it raust be the last
option. The string is delimited by the option
letter and the end of the comment.

If the pseudo-comment uses '(*' and '*)!, the
string in a string option may not contain an '*!.

0200101:02A 2-13

Compiling Programs and Units

Some options may appear anywhere within the
source text. Others must appear at the
beginning of the file (before the reserved word
PROGRAM or UNIT).

Switch options are either toggles or stack
options. If a switch option is a toggle, a '+
turns it on, and a '-' turns it off. The options
'I' and 'R' are "stack options,” as are the
conditional compilation flags (see below).

With each stack option, the current state (either
141 or '-') is saved on the top of a stack (up to
15 states deep). The stack may be "popped" by
a '"' (thus re-enabling the previous state of that
option). If the stack is "pushed" deeper than 15
states, the bottom state of the stack is lost. If
the stack is popped when it is empty, the value
is always '-'.

{$1-} ... current value is '-' — no I/0 checking

{$I+3 ::: current value is '+'

{$I”} ... current value is ‘~' again

{$I"} ... current value is '+', because this was the default
{$I"} ... current value is '-', because stack is now empty

The individual compiler options are described
below in alphabetical order. If you don't use any
compiler options, their default values will be in
effect. Here are the default values for the
compiler options:

{$R+,1+,L-,U+,P+}

2-14 0200101:02A

Compiling Programs and Units

These remain in effect unless you override them.

The $Q option defaults to Q- if HAS SLOW
TERMINAL is false and Q+ if HAS SLOW
TERMINAL is true. (HAS SLOW TERMINAL is a
data item in SYSTEM.MISCINFO which indicates
whether or not you have a hard copy terminal or
a screen).

Conditional compilation is also controlled by
compile-time options as described below.

$B - Begin Conditional Compilation

$B is a string option. It starts compilations of
a section of conditionally compiled source code.
See the section on conditional compilation,
below.

$C - Copyright Field

$C is a string option. It places the string
directly into the copyright field of the code
file's segment dictionary. The purpose of this
is to have a copyright notice embedded in the
code file.

$D - Conditional Compilation Flag

$D is a string option. It is used to declare or
alter the value of a conditional compilation
flag. See the section on conditional
compilation, below.

0200101:02A 2-15

Compiling Programs and Units

$D - Symbolic Debugging

There are two $D compiler options. This one
is a switch option. $D+ turns on symbolic
debugging information. $D- turns off symbolic
debugging information. The default is $D-.
(See Chapter 5 for more informaton about this
compiler option.)

$E - End Conditional Compilation

"E" ijs a string option. It ends a section of
conditionally compiled source code.

$1 - I/O Check Option

There are two options named by $I. The first
is a stack switch option (IOCHECK).

-3 o8 inh ic the defanlt instruets the combiler

qu!, 'Vlllbll I LU W aAliwavy ..w--...—-- r--"

to generate code after each I/O statement in a
program, This code verifies, at run-time, that
the 1/O operation was successful. If the
operation wasn't, the program terminates with
a run-time error.

$I- instruets the compiler not to generate any

I/0 checking code. In the case of an
unsuccessful I/O operation, the program
continues.

2-16 0200101:02A

Compiling Programs and Units

When you use the $I- option, your programs
should specifically test IORESULT (an intrinsic
p-System function) when there is the chance of
an I/O failure. If $I- is used and you don't
test IORESULT, the effects of an I/O error
are unpredictable.

During program development you should
probably use $I+. When your program is
thoroughly debugged, you may wish to use $I-
since less memory space is required without the
I/0 checking code. Also, you may wish to
intercept I/O errors in your program. (For
example, you may enter something incorrect
from the keyboard. Rather than terminating
with an I/O error, your program could prompt
you to correct the problem and try again.)

$1 - Include File

This is a string option. The string (delimited
by the letter 'I' ané the end of the comment)
is interpreted as the name of a file. If that
file can be found, it is included in the source
file and compiled.

{$I PROG2}

This includes the file PROG2.TEXT in the
program's source.

0200101:02A 2-17

Compiling Programs and Units

If the initial attempt to open the include file
fails, the compiler concatenates ".TEXT" to the
file name and tries again. If this second
attempt fails, or an I/O error occurs while
reading the include file, the compiler responds
with a fatel syntax error.

In order that included source may carry its
own declarations, an include file may contain

- CONST, TYPE, and VAR declarations,

2-18

optionally followed by routine declarations. If
this is the case, then the {$I...} comment must
precede any routine declarations in the main
program. Otherwise, the include file must
follow normal Pascal ordering.

Include files may be nested up to three files
deep (but no deeper).

Note that if a file name begins with a '+' or
-', a blank must be inserted between the
letter '"I' and the string. For example:

(*$I +PROG2*)

0200101:02A

Compiling Programs and Units

$L - Compiled Listing

You may use $L either as a toggle switch
option or a string option. When used as a
toggle, it turns the listing on or off at that
point in the source text. When used as a
string option, it indicates the name of the
listing file.

Here are two examples of $L with a string
option:

(*$L LIST.TEXT*)
(*$L PRINTER:*)

The first example indicates that the compiled
listing is to be saved on disk as the file
LIST.TEXT. The second example sends the
listing to the printer.

When used as a toggle, $L+ turns the listing on
and $L-turns it off. Using these options, you
can list only parts of a compilation if you
wish. The default for the toggle is $L- if you
have not named a listing file using the
compiler's prompt or using $L with a string
option. The default is $L+ if you have named
a listing file in either of these ways. No
matter which way you name the listing file,
you can switch the listing on or off using $L+
or $L-.

0200101:02A 2-19

Compiling Programs and Units

If you don't specifically name a listing file and
$L+ is in effect, the compiler writes to
*SYSTEM.LST.TEXT.

You should note that listing files which are
sent to disk files may be edited as any other
text file, provided they are created with a
.TEXT suffix. Without the .TEXT suffix, the
p-System treats the listing as a data file.
With the $L option, .TEXT is never appended.
However, from the compiler's prompt for a
listing file, .TEXT is always appended (unless
you enter it specifically).

$N - Native Code Generation

This is a swtich option. $N+ outputs compiler
information whiech allows code generation to
take place. $N- doesn't output this
information. The default is $N-. This option
is discussed in the Native Code Generator
section which is part of the Optional Products
Reference Manual.

$P - Page and Pagination

The compiler can place page breaks in the
compiled listing. It does this so that listings
sent to the printer (or listings sent to files and
later T(ransferred to the printer) break across
page boundaries. A form feed character
(ASCI FF) is output every 66 lines if $P+ is in
effect (this is the default). If you don't want
this, you should use $P-.

2-20 0200101:02A

Compiling Programs and Units

You can specifically cause a page break at any
point in a compiled listing by using the $P
option without a plus or minus sign,

$Q - Quiet

This is used to suppress the compiler's standard
output to the console. $Q+ causes the
compiler to suppress this output and $Q- causes
it to resume outputting status information.

$R - Range Checking

$R is a stack switeh option. The default, $R+,
causes the compiler to output code after every
indexed access (for example, to Pascal arrays)
to check that it is within the correct range.
This is called range checking. $R- turns range

checking off.

Programs compiled with the $R- are slightly
smaller and faster sinece they require less code.
However, if an invalid index oeccurs or a
invalid assignment is made, the program isn't
terminated with a run-time error. Until a
program has been completely tested, it is
suggested that you compile with the R+ option
left on.

0200101:02A 2-21

Com

piling Programs and Units

$R2 and $R4 - Real Size

$R2 causes the code file's floating point
arithmetic operations to be performed with two
word (32-bit) precision. $R4 causes four word
(64-bit) precision. The default real size
depends upon the particular PME that you are
using (that is, if your PME runs four word
reals, the default is four words). This
directive must occur before the first symbol in
a compilation that isn't a comment.

NOTE: If you attempt to run a code file with
one real size using a system configured for
another real size, you will receive execution
error 17 (real size mismatch).

$T - Title

$T is a string option. The string becomes the
new title of pages in the listing file.

$U - Use Library

2-22

There are two options indicated by $U. One is
a string option (Use Library). The other,
described below, is a toggle switch option
(User Program).

0200101:02A

Compiling Programs and Units

With the Use Library option, the string is
interpreted as a file name. This file should
contain the unit(s) that your program is about
to use. If the file is found, the compiler
attempts to locate the unit(s) that it needs for
the subsequent USES declarations. If a
particular unit isn't found there, the compiler
looks in *SYSTEM.LIBRARY.

If a client (program or unit) contains USES
declarations but no $U option, the compiler
looks for the used units first in the source file
itself, and then in *SYSTEM.LIBRARY.

The following is an example of a valid USES
clause using the $U option:

USES UNIT1.UNIT2, { Found in *SYSTEM.LIBRARY }
{$U A.CODE}
UNIT3, { Found in A.CODE }

{S$U B.LIBRARY}
UNIT4,UNITS; { Found in B.LIBRARY. }

$U - User Program

This option is used to specify whether the
compilation is your compilation, or a p-System
compilation. If present, it must appear before
the heading (that is, before the reserved word
PROGRAM or UNIT).

0200101:02A 2-23

Compiling Programs and Units

When the default $U+ is in effeet, your
program is indicated. The $U- option allows
system programmers tc compile units with
names that are predeclared in the p-System.
These units are actually part of the p-System,
itself. $U- also sets $R- and $I-.

In general you should never use this option,
unless you need to compile GOTOXY (see the
Adaptable System Installation Manual).

Conditional Compilation

You may conditionally compile portions of the
source text. At the beginning of a program's
text you can set a compile-time flag which
determines whether or not the conditionally
compiled text will be compiled.

In order to designate a section of text as
conditionally compilable, you must delimit it by
the options $B (for begin) and $E (for end).
Both of these options must name the flag which
determines whether the code between them is
compiled. The flag itself is declared by a $D
option at the beginning of the source. $D
options may be used at other locations in the
source to change the value of an existing flag.

2-24 0200101:02A

Compiling Programs and Units

Here is an example:

{SD DERUG} {declares DEB!
PROGRAM SIMPLE;
BEGIN

{$B DEBUG} {if DEBUG is TRUE, this section is compiled}

WRITELN('There is a bug.');
{$E DEBUG} {this ends the section}

{$B DEBUG-} {if DEBUG is FALSE, this section is compiled}
WRITELN('Nothing has failed.');
{$E DEBUG!}

END {SIMPLE}.

Each flag in a program must appear in a $D
option before the source heading. The name of a
flag follows the rules for Pascal identifiers. If

fhP f.]QO"Q name m f'n"nmznﬂ hy g '- Y’ that ﬂas ;D

set false. The flag may be followed by a '+,
which sets it true. If no sign is present, a flag
is true. The flag's name may also be followed
by a '"' as shown below.

The state of a flag may be changed by a $D

hoaaAin
option which appears after the source heading,

but the flag must have first been declared before
the heading.

0200101:02A 2-25

Compiling Programs and Units

The $B and $E options delimit a section of code
to be conditionally compiled. The $B option may
follow the flag's name with a '-', which causes
the delimited code to be compiled if the flag is
false. - In the absence of a '-', the code is
compiled if the flag is true. The flag's name
may also be followed by a '+ or '"'; these are
ignored. In a $E option, the flag's name may be
followed by a '+, ', or '"'; these symbols are
ignored.

The state of each flag is saved in a stack, just
as the state of a stack switch option is saved.
Thus, using a $D option with '"' yields the
previous value of the flag. Each flag's stack
may be as many as 15 values deep. If a 16th
value is pushed, the bottom of the stack is lost.
If an empty stack is popped with '"', the value
returned is always false.

If a section of code isn't compiled, any
pseudo-comments it may contain are ignored as
well.
{$D DEBUG-} {declares DEBUG and sets it FALSE}
PROGRAM SIMPLE;
BEGIN

{$D DEBUG+} {changes DEBUG to TRUE!}

i;é DEBUG} {if DEBUG is TRUE, this section is compiled}

WRITELN('There is a bug.');
{SE DEBUG} {this ends the section}

{$D DEBUG"} {restores previous value of DEBUG}
{... in this case, FALSE}
{$B DEBUG~} {if DEBUG is FALSE, this section is compiled}
WRITELN('Nothing has failed.');
{$E DEBUG}

END {SIMPLE}.

2-26 0200101:02A

Compiling Programs and Units

Selective Uses

Selective uses allows your programs to choose the
items that you wish to use from a unit's
interface section. You can often take advantage
of this to reduce compile-time space
requirements. Also, compilation time can be
reduced. Both of these are especially noticeable
when you are using units with large interface
sections from which you only require a few
items. This is because the rest of the interface
section doesn't need to be compiled.

Also, selective uses is valuable for documentation
purposes in that you can easily see the specific
items that a client needs from the unit it uses.

The following diagram explains the syntax of
selective uses:

@ unit (ident) B

identifier

;_% @__d/i

In this diagram, ident can be a constant, type,
variable, or routine (procedure, process, or
function). Here is an example of a selective
uses statement:

USES MYUNIT (A_CONST, VAR, VAR2, MY_ROUTINE);

0200101:02A 2-27

Compiling Programs and Units

If a selected declaration isn't present in the
interface text, an error results during
compilation.

Any constant or type used in a selected
declaration must be inecluded in the selective uses
list. For example, if VARI1 is of type TYPEIL,
the list above isn't acceptable unless TYPEL is
added (even though TYPE1l may not be directly
required by the client being compiled).

You should list only the name of a routine. No
explicit listing of parameters is needed.
However, any types or constants that the
parameters use must be explieitly included.

Most identifiers must be named explicitly in the
identifier list if they are to be made available to
the compiled module. Identifiers are available
implieitly in these situations:

® When an enumerated constant type is explicitly
listed, all the constant identifiers of the
enumeration are implicitly available.

® When a record type is explicitly listed, all its
field¢ names are implicitly available (for
example, see the following listing under unit
A, line 12, info_rec).

2-28 0200101:02A

Compiling Programs and Units

Here is an example of selective uses. Unit A is
selectively used by Units B and C.

Unit A;

interface

const
maxnum=1000;
maxchar=7;

type
byte=0..255;
codeblock=packed array
[0..maxnum] of byte;
alpha=packed array
[0..maxchar] of char;
ptr_info_rec="info_rec;
info_rec=record
code:codeblock;
1link,rlink:ptr_info_rec;
end;
next=char;

var
first,last:byte;

function update(var info:ptr_info_rec)
tnext;

implementation

function update;
begin
with info” do
begin
llink:=rlink;
if rlink=11link then

update:="'y'
else
update:='n';
end;

end;

end. {unit A}

0200101:02A 2-2¢9

Compiling Programs and Units

Unit B;
interface
{$U a.code}
uses a({const} maxchar,
{include for type ALPHA}
{types} alpha,
{include for variable WHICH}
byte,

{include for FIRST and LAST}
{vars } first,
{include for proc CHANGE}

last
{include for proc CHANGE}
maxchar=7;
byte=0..255;
alpha=packed array
[0..maxchar]l of char;
first,last:byte;
)i

procedure change(which:alpha);
implementation

procedure change;
begin
if which=" ' then
last:=first
else
first:=last;
end;

end; {unit B}

2-30

0200101:02A

Compiling Programs and Units

Unit C;
interface
implementation
{$U a.code}
uses a({const} maxnum,
{include for type CODEBLOCK}
maxchar,
{include for type ALPHA}
byte,
finclude for type CODEBLOCK}
{type} alpha,
{include for variable MINE}
info_rec,
{include for PTR_INFO_REC}
ptr_info_rec,
{include for func UPDATE}
codeblock,
{include for INFO_REC}
next,
{include for func UPDATE}
maxnum=1000;
maxchar=7;
byte=0..255;
codeblock=packed array
[0.,maxnum! of byte;
alpha=packed array
[0..maxchar] of char;
ptr_info_rec="info_rec;
info_rec=record
code:codeblock;
llink,rlink:ptr_info_rec;
end;
next=char;
function update
(var info:ptr_info_rec):next;

{func} update),
b;

var
info:ptr_info_rec;
mine:alpha;

begin
new(info);
new(info”.rlink);
info”.1link:=nil;
mine:='newsystm';
if update(info)='y"' then
writeln('info updated')
else
change (mine) ;
end.

0200101:02A 2-31

Compiling Programs and Units

SEGMENTS, UNITS AND LIBRARIES

Segments, units, and libraries are three major
facilities that help you manage large programs and
effectively use main memory. These facilities
enable very large programs to be developed in a
microsystem environment; in fact, these facilities
were used extensively in developing the system,
itself.

Segmenting a Program

An entire program need not to be in main
memory at run-time. Most programs can be
described in terms of a working set of code that
is required over a given time period. For
most—if not all—of a program's execution time,
the working set is a subset of the entire
program, sometimes a very small subset. Portions
of a program that aren't part of the working set
can reside on disk, thus freeing main memory for
other uses.

When the p-System executes a code file, it reads
code into me&in memory. When the code has
finished running, or the space it occupies is
needed for some action having higher priority,
the space it occupies may be overwritten with
new code or new data, Code is swapped into
main memory a segment at a time.

2-32 0200101:02A

Compiling Programs and Units

In its simplest form, a code segment includes a
main program and all of its routines. A routine
may occupy a segment of its own; this is
accomplished by declaring it a segment routine.
Segment routines may be swapped independently
of the main program; declaring a routine a
segment is useful in managing main memory. .

Routines that aren't part of a program's main
working set are prime candidates for occupying
their own segment. Such routines include
initialization and wrap-up procedures and routines
that are used only once or only rarely while a
program is executing. Reading a procedure in
from disk before it is executed takes time.
Therefore, the way that you divide up a program
is important.

UCSD Pascal, FORTRAN, and BASIC use their
own syntax for creating separate segments.
Refer to each particuler language's manual for
more information on this.

Separate Compilation — Units

Separate compilation is a technique whereby
segments of a program are compiled separately
and subsequently executed as a coordinated
whole.

0200101:02A 2-33

Compiling Programs and Units

Many programs are too large to compile within
the memory confines of a particular
microcomputer. Such programs might comfortably
run on the same machine, especially if they are
segmented properly, Compiling small pieces of a
program separately can overcome this memory
problem,

Separate compilation also allows small portions of
a program to be changed without necessarily
affecting the rest of the code. This saves time
and is less error prone. Libraries of correct
routines may be built up and used in developing
other programs. This capability is important if a
large program is being developed and is
invaluable if the project involves several
programmers.

These considerations also apply to assembly
language programs. Large assembly programs
(such as p-machine emulators) can often be more
effectively maintained in several separate pieces.
When all these pieces have been assembled, the
L(inker puts them together and installs the
linkages that allow the various pieces to
reference each other and function as a unified
whole.

You may also want to reference an assembly
language routine from a higher-level language
host program; for example, Pascal or FORTRAN,
This may be necessary for performance reasons
(assembly language is faster than p-code, the
output of the compilers) or to provide low-level,
machine-dependent or device-dependent handling.

2-34 0200101:02A

Compiling Programs and Units

Using the L(inker, the p-System allows assembly
language routines to be linked with other
assembly routines or into higher-level clients
(programs or units). For mcre information about
this, see the Assembler Reference Manual.

In UCSD Pascal, separate compilation is achieved
by the unit construct—a unit being a group of
routines and data structures. The contents of a
unit usually relate to some common application,
such as screen control or data file handling. A
program or another unit may use the routines and
data structures of a unit by simply naming it in
a USES declaration. The term "host" refers to
such a program, and "client compilation module"
refers to a program or unit that uses another
unit. In addition to being a separately compiled
module, a unit is also a code segment, in that it
can be swapped—as a whole—in and out of
memory. You should note that it is possible for
a unit's source text to be embedded in the
client's source text if you don't want to compile
a unit separately.

A unit consists of two main parts: (1) the
interface section, which can declare constants,
types, variables, procedures, processes, and
functions which are public (available to any
client module); and (2) the implementation
section, in which private declarations can be
made. These private declarations are available
only within the unit and not to eclient modules.

0200101:02A 2-35

Compiling Programs and Units

Pascal, BASIC, and FORTRAN use their own
syntax for separate compilation. (For more
information about this, refer to each language's
manual.)

Libraries

This section describes where you may place the
code files that contain units so those units are
available at compile-time or run-time. Run-time
availability is described first.

There are four places where units may reside
when the client's code is executed:

1. Within the client's code file.
2. In the SYSTEM.LIBRARY on the system disk.

3. In a user library.

LY 5

4, In the operating system {(SYSTEM.PASCAL).

The operating system units (described in the next
chapter) are standard code. Don't place units
that you write there. The other three options
are available for units that you write or use.

In order to place a unit directly into a client's
code file, use the Library utility, described in
Chapter 6. Once the unit's code and the eclient's
code are unified like this, the unit is available at
run-time.

2-36 0200101:02A

Compiling Programs and Units

SYSTEM.LIBRARY generally contains standard
units, such as the long integer package. You can
add your units to this file with the Library
utility. If you aren't currently using
SYSTEM.LIBRARY, you can simply rename a
unit's code file "SYSTEM.LIBRARY" and place it
on the boot disk. Of course, you can add more
files with the Library utility. All units that
reside in SYSTEM.LIBRARY are available to
clients.

A user library is any code file. The name of
this code file must be in a "library text file."
The standard default library text file is called
USERLIB.TEXT and must be on the system disk.
For example, if you create a USERLIB.TEXT
containing these lines:

DISK2:SOME.UNITS
*MY.LIB
ANOTHER.CODE

These three code files are designated as user
libraries. You don't have to specify the ".CODE"
here. For example, the first file may be either
DISK2:SOME.UNITS.CODE or DISK2:SOME.UNITS,
depending upon which file is actually found. All
three of these files may contain units which are
then available for you to use.

0200101:02A 2-37

Compiling Programs and Units

When the p-System is searching several libraries
for a unit, it first searches all of the user
libraries in the order that they appear in the
default library text file. It then searches
*SYSTEM.LIBRARY. If you wish to include
*SYSTEM.LIBRARY in the library text file, it is
searched in the order that it appears. (If no
library text file is used, only *SYSTEM.LIBRARY
is searched.)

You can use a library text file, other then
USERLIB.TEXT. Do this with the 'L' execution
option. For example, if you select X(ecute from
the Command menu and respond:

Execute what file? L=USERLIB2

During compile-time, as opposed to run-time, the
code for a unit may reside in either of two
locations:

1. *SYSTEM.LIBRARY

2. A code file specified in the text you are
compiling.

2-38 0200101:02A

Compiling Programs and Units

Pascal, BASIC, and FORTRAN each have a way to
indicate the names of units that are to be used.
Each language also has a method for specifying the
code files that contain those units. If you don't
indicate a particular code file, the compilers search
*SYSTEM.LIBRARY for any units you want to use.
If you do indicate a code file, the compilers look
there for the units. You can specify one unit as
being in a particular code file, and another unit as
being in a different code file if you wish.

0200101:02A 2-39

Compiling Programs and Units

GENERAL TACTICS

This section describes the use of segments and
units. It presents a scenaric for designing a large
program, with some useful strategies.

Units and segments divide large programs into
independent tasks. On microprocessor systems, the
main bottlenecks in developing large programs are:

® A large number of variable declarations that
consume space while a program is compiling.

@ Large pieces of code that use up memory space
while the program is executing.

Units address the first problem by: (1) allowing
separate compilation; and (2) minimizing the
number of variables needed to communicate between
separate tasks. Segments alleviate the second
problem by only requlrlng code that is in use to be

in main memony at any gl\icu time; uuuug this time,
unused code resides on disk.

You can write a program with run-time memory
management and separate compilations already
planned, or you can write as a whole and then
break it into segments and units. The latter
approach is feasible when you're unsure about
having to use segments or quite sure that they will
be used only rarely. The former approach is
preferred and easier to accomplish.

2-40 0200101:02A

Compiling Programs and Units

The following steps outline a typical procedure for

constructing a relatively large application program:

1. Design the program (user and machine
interfaces).

2. Determine needed additions to the library of
units, both general and applied tools.

3. Write and debug units and add to libraries.
4. Code and debug the program.

5. Tune the program for better performance.

During design, try to use existing procedures to
decrease coding time and increase reliability. You
can n(mnmp]iqh fhis stra 3

toaovy huy nging ninita
il AULOHIPIS Ll Ll v

To determine segmentation, consider the expected
execution sequence and try to group routines inside
segments so that the segment routines are called as
infrequently as possible.

While designing the program, consider the logical
(functional) grouping of procedures into units.
Besides making the compilation of & large program
possible, this can help the program's conceptual
design and make testing easier.

0200101:02A 2-41

Compiling Programs and Units

Units may contain segment routines within them.
You should be aware that a unit occupies a
segment of its own; except, possibly, for any
segment routines it may contain. The unit's
segment, like other code segments, remains
disk-resident except when its routines are being
called.

Steps 2 and 3 of the typical construction procedure
are aimed at capturing some of the new routines in
a form that allows them to be used in future
programs. At this point, you should review, and
perhaps modify, the design to identify those
routines that may be useful in the future. In
addition, useful routines might be made more
general and put into libraries.

Program and test the Library routines before
moving on to programming the rest of the program.
This adds more generally useful procedures to the
library.

The interface part of a unit should be completed
before the implementation part, especially if several
programmers are working on the same project.

Tuning a program usually involves performance
tuning. Since segments offer greater memory space
at reduced speed, performance is improved by: (1)
turning routines into segment routines; or (2)
turning segment routines back into normal routines.
Either route is feasible. Pay some attention to the
rules for declaring segments.

2-42 0200101:02A

Compiling Programs and Units

For information on languages, refer to the
appropriate language manual.

0200101:02A 2-43

User

Interface

User ..:31&

ce

i

CHAPTER 3

USER INTERPFACE

User Interface

INTRODUCTION

This chapter describes several facilities that ean
assist you in presenting a clean and portable user
interface from your programs.

The first section describes run-time facilities that
enable you to create your own applications
environment. The p-System can run invisibly under
your application using these facilities.

The next section describes the sereen control unit.
This unit, which is part of the operating system,
can be used by your programs to easily handle the
basic screen-oriented functions (such as clearing the
screen, moving the cursor, and so forth).

Next, the error handler unit is covered. It enables
your programs to intercept certain kinds of system
errors and display your own messages. You might
want to do this so that the error messages are
specific to your particular application, or they are
in a different language, and so forth.

After this, the command I/O unit is described.
This unit allows you to redirect I/O and chain
programs together. It is especially useful in
conjunction with the run-time facilities in the first
section,

0200101:03A 3-3

User Interface

RUN-TIME APPLICATION FACILITIES

As an applications developer, you may create
programs which are automatically executed by the
p-System. This exempts the end user from having
to X(ecute these programs. The underlying
p-System can even be completely hidden from such
a user. You may present menus and prompts that
apply specifically to your particular application.

If you name an executable code file,
SYSTEM.STARTUP, and place it on the system disk,
that program is executed when the p-System is
booted. This program begins before the p-System's
Command menu or welcome message is displayed.

SYSTEM.MENU operates similarly. It is executed
each time the Command menu would normally be
displayed.

Generally, SYSTEM.MENU is more useful for
creating your own applications environments since it
is called up repeatedly. Typically, you might place
a simple menu-driven program in SYSTEM.MENU.
This program displays the outer menus or prompts
and services global issues related to your
application package. When you select a component
of your package, you would use the CHAIN
procedure (within the operating system's Command
1/0 unit, described later in this chapter). CHAIN
allows another program to be executed (without
using the X(ecute command or displaying the
Command menu in between). When that program
completes its run, SYSTEM.MENU is again called.
In this sort of scenario, the p-System's Command
menu never appears.

3-4 0200101:03A

User Interface

Single-Use Run-Time System

The run-time system is a version of the p-System
designed to package and execute a single
application program or series of related programs
called by the p-System chain mechanism just
described. This version of the p-System never
reaches the Command menu. The p-System
components, such as the editor and filer, aren't a
part of this package. The package may contain
SYSTEM.STARTUP, but must contain
SYSTEM.MENU.

0200101:03A 3-5

User Interface

System Initialization

The following diagram illustrates the flow of
control each time the p-System is initialized:

<Symm Inmalizmion)

/

Execute
"SYSTEM.STARTUP|
(If Possible)

< A
Execute
NO — > Chained >
Program
svsrs::.msnu YES E >
Executable 1 -SYSTEM.MENU >
”?
Single-Use YES Haht
Figure 3-1.

3-6 0200101:03A

User Interface

THE SCREEN CONTROL UNIT

The screen control unit is a unit within the
operating system which your programs can use to
easily perform several useful screen-oriented tasks.
These include blanking out a line or the entire
sereen, placing the cursor at a particular position,
displaying p-System style menus, and so forth.
These tasks are performed in a way that makes
your programs transportable across different video
displays.

You should realize that there is a special screen
control unit for ANSI (American National Standards
Institute) terminals. (These terminals use three
character sequences. Most other terminals use, at
most, two character sequences.) However, the
interface section of this special version of the
secreen control unit is no different from the
standard unit. This means that your programs don't
have to be changed.

To use the screen control unit at compile time, you
must have a copy of SCREENOPS.CODE with its
interface section. A Pascal program must contain
USES declaration similar to this:

USES {$U SCREENOPS.CODE} SCREENOPS;

At run-time, only the operating system needs to be
available since it contains the SCREENOPS unit
(only without the interface section).

0200101:03A 3-7

User Interface

SCREENOPS Interface Section

Here is a listing of the interface section for
SCREENOPS:

unit screenops;
interface

const
sc_fill_len = 11;
sc_eol = 13;

type
sc_chset
sc_misc_rec

set of char;
packed record
can_break, slow, xy_crt, lc_crt,
can_upscroll, can_downscroll : boolean;
end;
sc_date_rec = packed record
month : 0..12;
day : 0..31;
year : 0..99;
end;
sc_info_type = packed record
sc_version : string;
sc_date : sc_date_rec;
spec_char : sc_chset; {Characters not to echo}
misc_info : sc_misc_rec;
end;
stringl[255];
(sc_whome, sc_eras_s, sc_erase_eol, sc_clear_lne,
sc_clear_scn, sc_up_cursor, sc_down_cursor,
sc_left_cursor, sc_right_cursor);
sc_key_command = (sc_backspace_key, sc_dcl_key, sc_eof_key, sc_etx_key,
sc_escape_key, sc_del_key, sc_up_key, sc_down_key,
sc_left_key, sc_right_key, sc_not_legal, sc_insert_key,
sc_delete_key) ;

sc_long_string
sc_scrn_command

sc_choice = (sc_get, sc_give);

sc_window = packed array [0..0] of char;

sc_tx_port = record
row, col, { screen relative}
height, width, { size of txport (zero based)}
cur_x, cur_y : integer; °

{cursor positions relative to the txport }
end;

{entries 4..syscom”.subsidstart-1 are valid}
sc_err_msg_array = array [4..4) of “string; {accessed $R-}

var
sc_port : sc_tx_port;
sc_printable_chars : sc_chset;
sc_errorline : integer;
sc_errormessage : "SC_err_msg_array;

3-8 0200101:03A

User Interface

procedure sc_use_info(do_what:sc_choice; var t_info:sc_info_type);

procedure sc_use_port(do_what:sc_choice; var t_port:sc_tx_port);

procedure sc_erase_to_eol(x,line:integer);

procedure sc_left;

procedure sc_right;

procedure sc_up;

procedure sc_down;

procedure sc_getc_ch(var ch:char; return_on_match:sc_chset);

procedure sc_clr_screen;

procedure sc_clr_line (y:integer):

procedure sc_home;

procedure sc_eras_eos (x,line:integer);

procedure sc_goto_xy(x, line:integer);

procedure sc_clr_cur_line;

function sc_find_x:integer;

function sc_find_y:integer;

function sc_scrn_has(what:sc_scrn_command) :boolean;

function sc_has_key(what:sc_key_command):boolean;

function sc_map_crt_command(var k_ch:char) :sc_key_command;

function sc_prompt(line :sc_long_string; X_Cursor,y_curser,x_pes,
where:integer; return_on_match:sc_chset;
no_char_back:boolean; break_char:char):char;

function sc_check_char(var buf:sc_window; var buf_index,bytes_ieft:integer)

:boolean;
function sc_space_wait(flush:boolean):boolean;
procedure sc_init;

0200101:03A 3-9

User Interface

Routines within SCREENOPS

This section describes the routines within the
screen control unit. The text ports mentioned
here are rectangular portions of the screen that
may be defined as smaller than the real screen.
At present, this feature isn't fully implemented.
Where text ports are mentioned in this section,
the entire screen is the default.

Procedure SC_Init;
Usually, only the operating system calls this

procedure. It initializes all the screen control
tables and variables.

Procedure SC_CIr_Cur_Line;

Erases the current line.

Procedure SC_CIr_Line (Y: integer);

Clears line number Y within the current text
port.

Procedure SC_Cir_Screen;

Clears the screen.

Procedure SC_Erase_to_EOL
(X, Line: integer);

Starting at position (X, Line) within the current

text port, erases everything to the end of the
line.

3-10 0200101:03A

User Interface

Procedure SC_Eras_EOS
(X, Line: integer);

Starting at position (X, Line) within the current

text port, erases everything to the end of the
screen,

Procedure SC_Left;

Moves the cursor one character to the left.

Procedure SC_Right;

Moves the cursor one character to the right.

Procedure SC_Up;

Moves the cursor one line up (in the same
column).

Procedure SC_Down;

15 P PR
Moves the cursor one line down.

Procedure SC_Home;

Moves the cursor to position 0,0 within the
current text port.

Procedure SC_GOTO_XY
(X, Line: integer);

Moves the cursor to position (X, Line).

0200101:03A 3-11

User Interface

Function SC_Find_X: integer;

Returns the column position of the cursor,
relative to the current text port.

Funtion SC_Find_Y: integer;

Returns the row position of the cursor, relative
to the current text port.

Procedure SC_GetC_CH
(VAR CH: char;
Return_on_Match: SC_ChSet);

SC_ChSet is a SET OF CHAR. This procedure
repeatedly reads from the keyboard into CH until
CH is equal to a member of Return_on_Match.
The characters that you pass in this set should
all be capitals (if they are alphabetic). If a
lowercase alphabetic character is receivec¢ from
the keyboard, it is translated into uppercase
before it is compared to the characters within
Return_on_Match.

3-12 0200101:03A

User Interface

Function SC_Space Wait
(Flush: Boolean): Booiean;

This function repeatedly reads from the keyboard
until a space or the ALTMODE character is
received. Before doing this, it does =&
UNITCLEAR(1) if flush is true, and displays
'Type <space> to continue'. It returns true if a
space wasn't read. After reading a <space>
successfully, this function echoes a carriage
return on the console.

0200101:03A 3-13

User Interface

Funetion SC_Prompt
(Line: SC_Long_String;
X _Cursor, Y_Cursor, X_Pos,
Where: integer;
Return_on_Match: SC_ChSet;
No_: Char Back- Boolean;
Break_Char: char): char;

This funetion dlsplays the menu line
(SC_Long_String is a STRING [255]) in the
current text port at (X_Pos, Where). The cursor
is placed at (X_Cursor, Y_Cursor) after the
prompt is printed. If X_Cursor is less than G,
the cursor is placed at the end of the prompt.
If the prompt is too large to fit within the
current text port, it is broken up into several
pieces, but only at the Break_Char. You can
view different parts of the prompt (ecyecling
through them) by entering '?'. If you only want
to display the prompt, No_Char_Back should be
true. In this case, SC_Prompt returns a function
value of NUL, ASCII 0. If you want to receive
a character from the user at the keyboard,
No_Char_Back should be false. (In this case,
sC_ Prompt returns a functon value of the
character received.) The keyboard is repeatedly
read until the character read matches one within
the Return_on_Match set. This set should be all
capitals (for alphabetic characters) since your
input is converted to uppercase when necessary.

3-14 0200101:03A

User Interface

Function SC_Check_Char
(VAR Buf: SC_Window;
VAR Buf_Index,
Bytes_Left: integer): Boolean;

While a string is being read, this function may be
called to see if a backspace or a rubout (DEL)
has been read. If so, the input buffer is altered
accordingly, and true is returned. Buf is a line
on the screen, Buf_Index indicates the cursor
position within Buf, and Bytes_Left is the number
of characters to the right of the cursor.

Function SC_Map CRT_Command
(VAR K_CH: char): SC_Key_Command;

SC_Key_Command is a type consisting of the
following elements: SC_Backspace_Key,
SC_DC1_Key, SC_EOF_Key, SC_ETX Key,
SC_Escape_Key, SC_DEL_Key, SC_Up_Key,
SC_Down_Key, SC_Left_Key, SC_Right Key,
SC_Not_Legal. The character passed is mapped
into one of these elements. SC_Not_Legal is
where all characters are mapped which don't fit
into one of the other ten categories. Prefix
characters are recognized by this function. If
you pass a prefix character, a nonechoed read is
done to get the next character (before the
mapping is performed). In this case, K_CH is
returned as that character. For the ANSI
version of Sereenops, another read may be done
(since three character codes are used on ANSI
terminals).

0200101:03A 3-15

User Interface

Function SC_Sern_Has
(What: SC_Sern_Command): Boolean;

SC Sern_Command is a type consisting of the
following elements: SC_Home, SC_Eras_S,
SC_Eras_EOL, SC_Clear_Lne, SC Clear Scn,
SC Up Cursor, SC_ Down _Cursor, SC_ Left _Cursor,
SC_Right_Cursor. This function returns TRUE if
the CRT has the control character passed.

Function SC_Has_Key
(What: SC_Key_Command): Boolean;

SC_Key_Command consists of the elements
prev1ously listed in the description of
SC_Map CRT_Command. This function returns
true if the keyboard generates the character
passed.

3-16 0200101:03A

User Interface

Procedure SC_Use_Info
{ Do_What: SC_Choice;
VAR T_Info: SC_Info_Type);

This function is used to pass information back
and forth between a program and the screen
control unit. Do_What may either be SC_Get or
SC_Give and indicates whether the program is
getting information from the screen control unit
or giving information to it. T Info contains
various items to be either passed or received.
The following information is contained within
T_Info.

SC_Version: string;
SC_Date: PACKED RECORD
Month: 0..12;
Day: 0..31;
Year: 0..99;
END;
Spec_Char: SET OF char; (* Characters not to echo *)
Misc_Info: PACKED RECORD
Height, Width: 0..255;
Can_Break, Slow, XY_CRT, LC_CRT,
Can_UpScroll, Can_DownScroll: Boolean;
END;

Procedure SC_Use_Port
(Do_What: SC_Choice;
VAR T_Port: SC_TX_Port);

This function works like SC_Use Info above. The
contents of T_Port are either passed or received
from the screen control unit. T _Port contains
the following information.

Row, Col,

Height, Width,
Cur_X, Cur_Y : integer;

0200101:03A 3-17

User Interface

ERROR HANDLER UNIT

Under certain circumstances, the p-System displays
execution error messages. If a code segment is
needed and the disk containing it isn't in the
appropriate drive, you are asked to replace the disk
and press <space> to continue. If a program
attempts to divide by zero or access outside the
bounds of a Pascal array, a message indicates this
and you are asked to press <space>, at which point
the p-System is reinitialized.

When certain errors occur, your programs can alter
the message that is displayecd. This is useful for
applications developers, especially those whose
customers speak languages other than English.

Format of Error Messages

Error messages are displayed on one specified
80-cclumn line. For example, when a code
segment is needed from a disk that isn't present
in the appropriate drive, the following prompt is
displayed:

Need segment SEGNAME: Put volume VOLNAME in unit U then press <space>
This indicates that the segment SEGNAME wasn't
found on volume in device U, Place the volume

VOLNAME in the correct drive and press
<space>. Execution should continue normally.

3-18 : 0200101:03A

User Interface

The following example shows the error message
that oceurs when you press the p-System BREAK
key.

Program Interrupted by user-Seg PASCALIO P# 17 O# 310 <space> continues

After <space> is pressed, the p-System is
reinitialized.

System error messages, such as these, always
appear at a fixed position on the screen. The
default position is the bottom line. (Any line
can be specified, however.) A BEL character
(audible beep) is written to the console device
when the message is written out.

After pressing <space>, the message line
disappears; and, when possible, the cursor returns
to its previous position. If a program uses
UNITREADs or UNITWRITEs to the console, the
previous cursor position may be lost. Use of
GOTOXY (but not SC_GOTOXY) may also lose
the previous cursor position. This is because the
p-System isn't informed of the cursor position
after these kinds of low-level I/O operations,

0200101:03A 3-19

User Interface

User Control of Error Messages

Your program may change the line on which an
error message is displayed. It may also change
the actual message displayed when a code
segment is required from a disk that isn't present
in the approprlate drive for blocked devices. If
the code file is on a subsidiary volume, set the
message for the principal volume.

The ERRCRHANDLING unit provides these
facilities. The file ERRORHANDL.CODE
contains this unit. To use ERRORHANDLING, a
Pascal program should have a declaration similar
to the following example.

USES {$U ERRORHAND.CODE} ERRORHANDLING;

Also, ERRORHANDLING must be available at
run-time, either in a library or placed into the
using program's code file with the Library utility.

3-20 0200101:03A

User Interface

The following procedures are available within this
unit:

Procedure Set_Error_Line
(Line:Integer);

Procedure Set_User_Message
(Drive:Integer; Mesg:String);

By calling SET_ERROR_LINE with the desired
line number as a parameter LINE, your program
may change the line on whieh p-System run-time
error messages are to be displayed. After the
call to SET_ERROR_LINE, any run-time error
messages are displayed on that line until
SET_ERROR_LINE is used again to specify
another line.

You may change the standard message for code
segments needed on disks that aren't present. By
calling SET_USER_MESSAGE with the DRIVE
parameter set to the physical device number and
the MESG parameter set to the desired message
string.

Then, if a code segment is required from a
missing disk in the unit for whieh your program
has designated a special error message, that
message is displayed. The p-System then waits
for you to press <space>, whether or not your
message actually indicates that a space is
needed. The message line is subsequently erased;
the cursor returns to its former position, if
possible; and execution continues.

0200101:03A 3-21

User Interface

CAUTION: Your message is destroyed by a
release if a MARK was called before a
SET_USER_MESSAGE.

NOTE: The physical device numbers are 4, 5,
and 9 through the maximum number for physical
disk as configured in SETUP.

For other kinds of execution errors, a standard
p-System message is displayed on the message
line. A fatal error always causes the p-System
to fail. For nonfatal errors, the p-System waits
for you to press <space>. The message line is
then erased, the cursor returns to its former
position, and execution continues (most likely the
p-System reinitializes itself).

To proceed from a nonfatal error, press <esc>.

WARNING: Escaping from a nonfatal error is a
dangerous practice since system data may be
corrupted.

Error message values you set remain in effect
during the program run, but are reset at program
termination or whenever p-System reinitialization
oceurs.

3-22 0200101:03A

User Interface

Your program may reset the error handling values
to their default values at any time if special
output is no longer desired. The missing code
segment message can be reset by passing a null
string to SET_USER_MESSAGE.

Unknown results may occur on console devices
whose screen width is narrower than the message
to be displayed.

0200101:03A 3-23

User Interface

THE COMMAND I/O UNIT

Command I/0 is a unit in the operating system.
From Pascal, your program should contain the
statement:

USES {$U commandio.code} COMMANDIO;

Then, the following procedures are available to the
program:

Procedure Chain
(Exec_Options: String);

A call to CHAIN causes the system to X(ecute
EXEC_OPTIONS after the calling program (the
chaining program) has terminated. The effect is
that of: (1) manually pressing 'X' to call X(ecute;
and (2) entering the characters in EXEC_OPTIONS.
Neither the Command menu nor the X(ecute prompt
is displayed; the system goes on to immediately
perform the actions indicated by EXEC_OPTIONS.

If a program (or sequence of programs) contains
more than one call to CHAIN, the EXEC_OPTIONS
are saved in a queue and performed on a
first-in-first-out basis before returning control of
the system to you.

To clear the queue, call CHAIN with an empty
string (for example, "CHAIN(");").

3-24 0200101:03A

User Interface

An execution error or an error in an
EXEC_OPTIONS string clears the queue, returning
control to you. A ecall to EXCEPTION, described
below, may also clear the queue.

CHAIN is a procedure in the operating system's
COMMANDIO unit; to use it, a program or unit
must declare 'USES COMMANDIO®.

Funection Redirect
(Exec_Options: String) : Boolean;

This should contain only option specifications and
not the name of a file to execute (to execute a
program from another program, see the CHAIN
intrinsie).

REDIRECT causes redireetion by performing all the
options specified in EXEC_OPTIONS. If all goes
well, it returns true. If an error oceurs, it returns
false.

If an error occurs during a call to REDIRECT, the
state of redirection is indeterminate; this is a
dangerous condition. If REDIRECT returns false,
your program should follow it with a call to
EXCEPTION, in order to turnoff all redirection. If
you don't do this, the results are unpredictable.

REDIRECT is a procedure in the operating system's
COMMANDIO unit; to use it, a program or unit
must contein the declaration 'USES COMMANDIO".

0200101:03A 3-25

User Interface

Procedure Exception
(Stopchaining: Boolean);

EXCEPTION turns off all redirection. If
STOPCHAINING is true, then the queue of
EXEC_OPTIONS created by CHAIN is also cleared
(see the intrinsic CHAIN).

Whenever an execution error ocecurs, an
EXCEPTION(TRUE) call is made (leaving redirection
on after an error leaves the system in an
indeterminate state).

EXCEPTION is a procedure in the operating
system's COMMANDIO urit; to use it, a program or
unit must declare 'USES COMMANDIO'.

3-26 0200101:03A

User Interface

TURTLEGRAPHICS

Turtlegraphics is a package of routines for creating
and manipulating images on a graphic display.
These routines can be used to control the
background of the screen, draw figures, alter old
figures, and display figures using viewports and
scaling. It also contains routines that allow you to
save figures in disk files and retrieve them.

The simplest Turtlegraphies routines are
intentionally very easy to learn and use. Once you
are familiar with these, more complicated features
(such as scaling and pixel addressing) should present
no problem,

Turtlegraphics allows you to create a number of
figures, or drawing areas. One such figure is the
display secreen itself, and other figures can be
saved in memory. Each figure has a turtle of its
own. The size of a figure may be set by you (it
doesn't need to be the same size as the actual
display).

The actual display is addressed in terms of a
display scale, which may be set by you. This
allows your own coordinates to be mapped into
pixels on the display. All other figures are scaled
by the global display scale.

0200101:03A 3-27

User Interface

You may also define a viewport, or window on the
display. This limits all graphic activity to within
that port.

Turtlegraphies is shipped in two ways. If the
p-System with Turtlegraphics is adapted to a
particular hardware configuration, then the graphic
routines are already tailored to the display. The
unit Turtlegraphies is already installed in
*SYSTEM.LIBRARY, and a program may use its
routines by including the following declaration:

USES Turtlegraphics; (or an equivalent declaration in BASIC or FORTRAN)

If Turtlegraphies is purchased as a separate,
configurable product, then you must write a number
of assembly language routines that control the
graphic display. These routines are called by the
Turtlegraphies unit and must be written and tested
before Turtlegraphics may be used.

Turtlegraphics is accessible from FORTRAN and
BASIC. This is described later in this section.

3-28 0200101:03A

User Interface

The Turtle

The turtle is an imaginary creature in the display
screen that will draw lines as you move it around
the display. The turtle can move in a
straight-line (Move), move to a particular point
on the display (Moveto), turn relative to the
current direetion (Turn), and turn to a particular
direction (Turnto).

Thus, the turtle draws straight-lines in some
given direction. The color of the lines it draws
can be specified (Pen_Color), and so can the
nature of the line drawn (Pen_Mode).

Wherever the turtle is located, its position and
direction can be ascertained by three functions:
Turtle_X, Turtle_Y, and Turtle_Angle.

NOTE: The turtle may be moved anywhere; it
isn't limited by the size of the figure or the size
of the display. But, only movements within the
figure will be visible. -

To use the turtle in a figure other than the
actual display, you may call Activate_Turtle.

0200101:03A 3-29

User Interface

The following paragraphs describe the routines
that control the turtle.

Procedure Move (Distance: Real);

Moves the active turtle the specified distance
along its current direction. The turtle leaves a
tracing of its path (unless the drawing mode is
"nop"). The distance is specified in the units of
the current display scale (see below). The
movement will be visible unless the current turtle
is in a figure that isn't currently on the display.

Procedure Moveto (X,Y: Real);

Moves the active turtle in a straight-line from its
current position to the specified location. The
turtle leaves a tracing of its path (unless the
drawing mode is "nop"). The X,Y coordinates are
specified in the units of the current display
scale.

Procedure Turn (Rotation: Real);

Turns the active turtle by the amount specified
(in degrees). A positive angle turns the turtle
counterclockwise, and a negative angle turns it
clockwise.

Procedure Turnto (Heading: Real);

Sets the direction (the heading) of the active
turtle to a specified angle. The angle is given
in degrees; zero (0) degrees faces the right side
of the screen, and ninety (90) degrees faces the
top of the screen.

3-30 0200101:03A

User Interface

Procedure Pen_Color (Shade: Integer);

Selects the color with which the active turtle
traces its movements (unless the pen mode is
"nop™). This color remains the same until
Pen_Color is called again.

The color of the pen depends on the way the
video display is set. If your Turtlegraphies is
already configured, the available colors are
described in the documentation for your
hardware. If you must configure Turtlegraphics
yourself, then the assembly language routines you
write will control the display color; refer to
"Installing Turtlegraphics,” below.

A sample set of colors might be:

Black
Blue
Red
Magenta
Green
Cyan
Yellow
White

L 1 I S I T

=IOV DD

Turtlegraphics uses a numeric designation for
color instead of a symbolic designation like the
word blue or red to maintain the p-System
language and hardware compatibility. For
example, while Pascal would allow the use of
symbolie color designations, BASIC and FORTRAN
wouldn't,

0200101:03A 3-31

User Interface

The term wild card refers to the standard
background color of your display. This depends
on your display hardware and might be called a
"hard" background (you may or may not be able
to change it from a program—this depends on
your hardware configuration). In Turtlegraphics,
each individual figure may have its own "soft"
background color, which we refer to simply as
the "background color" (as in the discussion
below).

You may also use black and white graphies, in
which case the colors might be simply:

0
1

Black
White

3-32 0200101:03A

User Interface

Procedure Pen_Mode (Mode: Integer);

Sets the active turtle's drawing mode. This mode
doesn't change until Pen_Mode is called again.

These are the possible modes:

0 Nop - doesn't alter the figure.

1 Substitute - writes the current pen color.
2 Overwrite - writes the current pen color.

3 Underwrite - writes the current pen color.
When the pen crosses a pixel that isn't of the
background color, that figure is not
overwritten.

4 Complement - the pen complements the ecolor
of each pixel that it crosses. (The
complement of a color is its opposite; the
complement of the complement of a color is
the original color.)

Values greater than 4 are treated as Nop.

These descriptions apply to movements of the
turtle. They have a more complex meaning when

a figure is copied onto a figure that is already
displayed.

0200101:03A 3-33

User Interface

Function Turtle_X : Real;

Returns a real velue that is the x-coordinate of
the active turtle, in units of the current
Display_Scale.

Function Turtle_Y : Real;

Returns a real value that is the y-coordinate of
the active turtle, in units of the current
Display_Scale.

Function Turtle_Angle : Real;

Returns a real value that is the direction (in
degrees) of the active turtle.

Procedure Activate_Turtle (Screen: Integer);

Specifies to which figure subsequent
Turtlegraphics commands are directed. Each
invocation of this procedure puts the previously
active turtle to sleep ané awakens the turtle in
the designated figure. When Turtlegraphics is
initialized, the turtle in the actual display is
awake. The initial position of the turtle is (0,0)
or the bottom left-hand corner of the screen,
ready to move right.

3-34 0200101:03A

User Interface

The Display

We refer to the initial background of the display
as the wild card color. The wild card color
(color 0) depends on your hardware (or it may be
possible for you to set it from a program). The
default is typically black. The background color
of a Turtlegraphies figure may be changed by you
with a call to Background. This "soft"
background applies when drawing mode is used, as
indicated above.

A figure can be filled with a single color (not
necessarily the background ecolor) by ecalling
Fillscreen.

NOTE: If you use Turtiegraphies (or customized
routines of your owr) to alter the settings of
your display, it is a good idea to reset
everything before your program terminates.
Usually it isn't possible for the display to return
to its original state, and the p-System software
has no knowledge of what that original state
was. Also, for the system to operate correctly,
you must follow any video mode change with a
call to Display_Scsle.

Procedure Fillscereen
(Screen: Integer; Shade: Integer);

Fills the specified figure ("screen") with the
specified color ("shade™. If sereen = 0, which
indicates the actual display screen, then only the
current viewport is shaded. For user-created
figures, the entire figure is shaded.

0200101:03A 3-35

User Interface

Procedure Background
(Sereen: Integer; Shade: Integer);

Specifies the backgound color for a figure. The
initial background color of all figures is the wild
card color.

Labels

It is possible to draw legends, labels, and so
forth on the display while wusing the
Turtlegraphics unit. This is done by calling
either WChar or WString. The character or
string appears at the location of the currently
active turtle. The text is displayed in the type
font defined by the file *SYSTEM.FONT. (See
"Installing Turtlegraphics,” below, to find out how
to define a font).

Procedure WChar
(C: Char; Copymode, Shade: Integer);

Writes a single character at the position of the
currently active turtle, using the indicated pen
mode and color. The character is always
displayed horizontally, regardless of the active
turtle's direction.

3-36 02060101:03A

User Interface

Procedure WString .
(S: String; Copymode, Shade: Integer);

Writes a string starting at the position of the
currently active turtle, using the indicated pen
mode and color. The string is always displayed
horizontally, regardless of the active turtle's
direction.

Sealing

When you wish to display data without altering
the input data itself, it is possible to set scaling
factors that translate date into loeations on the
display. This is done with Display_Scale. The
display scale applies globally to all figures.

Because of the shape of the actual display, data
for particular shapes (especially curved figures)
might become distorted when using a "straight"
display scale. In this case, the function
Aspect_Ratio can be used to preserve the
"squareness" of the figure,

0200101:03A 3-37

User Interface

Procedure Display_Scale
(Min_X,Min_Y,Max_X,Max_Y: Real);

Defines the range of input coordinate positions
that are to be visible on the display.
Turtlegraphics maps your coordinates into pixel
locations according to the scale specified in
Display_Scale.

This procedure sets the viewport to encompass
the whole display. The display bounds apply to
input data. For the actual display, these bounds
can be any values you require, but for
user-created figures (0,0) is the lower left-hand
corner.

If your Turtlegraphics package is tailored to your
hardware, then the default display scale is
already supplied. If you purchased Turtlegraphics
as a separate, configurable product, then you
must supply the parameters for your own display.
These must be returned by user-written procedure
Query_Environment. (Refer to "Installing
Turtlegraphics,"” below.)

3-38 0200101:03A

User Interface

The following lines are an example of a default
scale. It is simply the array of pixels on the
FULL display.

319

min_x = 0, max_x
= 199

min_y 0, max_y

tn

As an example, if you wish to graph a financial
chart from the years 1970 to 1980 along the x
axis, and from 500,000 to 500,000,000 along the y
axis, the following call could be used.

Display_scale(1970, 5.0E5, 1980, 5.0E8)

iang annld

After thi

[tun
gggggg \..uu, “uarivo L3 1
done using meaningful num
quantities of pixels.

nalle tn
~ s

3
ol
>

o
L]
-3
V7]
-3
[
-
=
)
a1
-
=y
o]
=]

0200101:03A 3-39

User Interface

Function Aspect_Ratio : Real;

Returns a real number that is the width/height
ratio of the CRT. This can be used to compute
parameters for Display_Scale that provide square
aspect ratios.

If an application is designed to show information
where the aspect ratio of the display is critical
(for example, circles, squares, pie-charts, and so
forth), it must ensure that the following ratio is
the same as the aspect ratio of the physical
sereen upon which the image is displayed.

(max_x - min_x) / (max_y - min_y)

When the Turtlegraphics unit is initalized, Min_X
and Min_Y are set to 0. Max_X is initialized to
the number of pixels in the X direction, and
Max_Y is initialized to the number of pixels in
the Y direction. In order to change to different
units that still have the same aspect ratio, a call
similar to the following example can be used.

Display_scale(0, 0, 100*ASPECT_RATIO, 100);

This utilizes Function Aspect_Ratio described
above, and makes the y axis 100 units long.

3-40 0200161:03A

User Interface

Turtlegraphies always treats the turtle as being
in a fixed pixel location. Changing the scaling
of the system with a call to this routine in the
middle of a program doesn't alter the pixel
position of any of the turtles in the figures.
However, the values returned from X_Pos and
Y_Pos may change.

Figures and the Port

You can create and delete new figures, each
with its own turtle. When & new figure is
created, it is assigned an integer, and this
integer refers to that figure in subsequent calls
to Turtlegraphics procedures. New figures can
be saved (Put_Figure) or displayed on the screen
(Get_Figure).

The actual display is always referred to as figure
0.

The active portion of the display can be
restricted by calling viewport, which creates a
"window" on the screen in which all subsequent
graphics activity takes place. You might create
a figure, specify the port, then display that
figure (or a portion of it) within the port.
Specifying a viewport doesn't restriet turtle
activity, it merely restricts what is displayed on
the secreen,

0200101:03A 3-41

User Interface

User-created figures can be saved in p-System
disk files.

Function Create_Figure
(X_Size,Y_Size: Real): Integer

Creates a new figure that is rectanguler, and has
the dimensions (X_Size, Y_Size), where (0,0)
designates the lower left-hand corner. The
dimensions are in units of the current display
scale. The figure is identified by the integer
returned by Create_Figure.

When a figure is created it contains its own
turtle, which is located at the initialization
position or 0,0 and has a direction of 0 (it faces
the right-hand side of the figure). The turtle in
a user-created figure can be used by calling
Activate_Turtle.

Procedure Delete_Figure
(Sereen: Integer);

Discards a previously created display figure area.

Though figures may be created and destroyed,
indiscriminate use of these constructs may rapidly
exhaust the memory available in the p-System due
to heap fragmentstion. For example, a figure
may be created using Create_Figure (or it may
be read in from disk using Funetion Load_Figure,
described below). If possible, after that figure is
used (for example, with a Get_Figure, Put_Figure,
Load_figure or Store_Figure operation), it should
be deleted before other figures are created. If
many figures are created and randomly deleted,
the heap fragmentation problem may occur.

3-42 0200101:03A

User Interface

Procedure Get Figure
(Source_Screen: Integer;
Corner_X,Corner_Y: Real;
Mode: Integer);

Transfers a user-created figure (the source) to
the display screen (the destination) using the
drawing mode specified. The figure is placed on
the display such that its lower left-hand corner
is at (Corner_X, Corner Y). The X and Y
positions are specified in the units of the current
display scale. If the display scale has been
modified since the figure was created, the results
of this procedure are unpredictable.

The following items define the drawing mode

e b
LIUIHOTLE D,

0 Nop - Doesn't alter the destination.

1 Substitute - Each pixel in the source replaces
the corresponding pixel in the destination.

2 Overwrite - Each pixel in the source that
isn't of the source's background color replaces
the corresponding pixel in the destination.

3 Underwrite - Each pixel in the source that
isn't of the source's background ecolor is
copied to the corresponding pixel in the
destination, only if the corresponding pixel is
of the destination's baekground color.

0200101:03A 3-43

User Interface

4 Complement - For each pixel in the source
that isn't of the source's background color,
the corresponding pixel in the destination is
complemented.

Values greater than 4 are treated as Nop.

If a portion of the source figure fells outside the
display or the window, it is set to the source's
background color.

Procedure Put_Figure
(Destination_Screen: Integer;
Corner_X,Corner_Y: Real; Mode: Integer);

Transfers a portion of the display screen to a
user-created figure using the drawing mode
specified (see above). The portion transferred to
the figure is the area of the display that the
figure covers when it is placed on the display
with its lower left-hand corner is at (Corner_X,
Corner_Y). If the display scale has been
modified since the figure was created, the results
of this procedure are unpredictable.

NOTE: When a figure is moved to the display by
Get_Figure, further modifications to the display
do not affect the copy of the figure that is
saved in memory. If you wish to save the results
of graphics work on the display, it is necessary
to call Put_Figure.

3-44 0200101:03A

User Intei‘f ace

Procedure Viewport
(Min_X,Min_Y, Max_X,Max_Y: Integer);

Defines the boundaries of a "window" that
confines subsequent graphies activities. The
viewport procedure applies only to the actual
display. When a window has been defined,
graphics activities outside of it are neither
displayed nor retained in any way. Therefore,
lines, or portions thereof, that are drawn outside
the window are essentially lost and won't be
displayed (this is true even if the window is
subsequently expanded to encompass a previously
drawn line). The viewport boundaries are
specified in the units of the current display
scale, If the specified size of the viewport is
larger than the current range of the display, the
viewport is truncated to the dispiay iimits.

Pixels

It is possible to ascertain (Read_Pixel) or alter
(Set_Pixel) the color of an individual pixel within
a given figure. These routines are more specific
than the turtle-moving routines. They are less
straightforward to use, but give you greater
control.

Function Read_Pixel
(Screen: Integer; X,Y: Real): Integer;

Returns the value of the color of the pixel at
the X,Y location in the specified figure. The
X,Y location is specified in the units of the
current display scale.

0200101:03A 3-45

User Interface

Procedure Set_Pixel
(Screen: Integer; X,Y: Real; Shade: Integer);

Sets the pixel at the X,Y location of the
specified figure to the specified color. The X,Y
location is specified in the units of the current
Display_Scale.

Fotofiles

You may create disk files that contain
Turtlegraphies figures. New figures may be
written to a file, and old figures restored for
viewing or modification.

When figures are written to a file, they are
written sequentially, and assigned an "index" that
is their location in the file. They may be
retrieved "randomly" by using this index value.

The p-System name for files of figures always
contains the suffix '"FOTO'. It isn't necessary to
use this suffix when calling Read_Figure_File or
Write Flgure File (if absent, it will be supphed
au;ou.atlcally,

3-46 0200101:03A

User Interface

Function Read_Figure_File
(Title: String): Integer;

Specifies the title of a file from whieh all
subsequent figures will be loaded. If a figure
file is already open for reading when this
function is called, it is closed before the new
file is opened. Only one figure file may be open
for reading at a single time. This funetion
returns an integer value which is the ioresult of
opening the file,

Function Write_Figure_File
(Title: String): Integer;

Creates an output file into which user-created
figures may be stored. If another figure file is
open for writing when this function is ecalled, it
is closed, with lock, before the new file is
created. Only one figure file may be open for
writing at a single time. This funection returns
an integer result which is the ioresult of the file

creation.

Function Load_Figure
(Index: Integer): Integer;

Loads the indexed figure from the current input
figure file and assigns it a new, unique, figure
number. An automatic Create_Figure is
performed. If the operation fails for any reason,
a Figure_Number of zero (0) is returned.

0200101:03A 3-47

User Interface

Function Store_Figure
(Figure: Integer): Integer;

Sequentially, writes the designated figure to the
output figure file. The function returns an
integer that is the figure's positional index in the
current output figure file. Positional indexes
start at one (1). 1If the index returned equals
zero (0), Turtlegraphies didn't successfully store
the figure.

3-48 0200101:03A

Routine Par

User Interface

ameters

The following shows the interface section for the
Turtlegraphics unit, including the parameters to
all Turtlegraphics routines:

unit Turtlegraphics;

interface

procedure

Display_Scale(min_x, min_y,
max_x, max_y: real);

function Aspect_Ratio : real;
function Create_Figure(x_size, y_size:

procedure
procedure

procedure

procedure

real) : integer;

integer J;
Viewport(min_x, min_y, max_x,

max_y : real });

Delete_Figure(screen:

Fillscreen(screen:
integer; shade:
integer);
Background(screen: infeger;
shade : integer J;

function Read Pixel(screen: integer:

procedure

procedure

procedure

X,y @ real) :integer;
Set_Pixel(screen:integer:;

x,y:real; shade:integer);
Get_Figure(source_screen:

integer:

corner_x, corner_y: real;

copymode : integer):
Put_Fiqure(destination_screen:

integer;

corner_x, corner_y: real;

mode : integer);

function Read_Figure_File(title : string }:

i
function Write_Figure_File(title : string):

function
function
procedure

function

function

function

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

0200101:03A

integer;
Load_Figure(index : integer):
integer;
Store_Figure(figure: integer):
integer;
Activate_Turtle(screen:
integer);
Turtle_x : real
Turtle_y : real
Turtle_Angle : real;
Move(distance : real);
Moveto(x,y : real);
Turn(rotation : real);
Turnto(direction : real);
Pen_Mode(state : jinteger);
Pen_Color (shade : integer);
WChar(c: g¢har; copymode, shade: integer);
WString(s: string; copymode, shade: integer);

3-49

User Interface

Sample Program

Here is a sample program that illustrates a
number of Turegraphies routines:

program Spiraldemo;
uses Turtlegraphics;

const nop = 0;
substitute = 1;

var I, J, Mode: integer:
C: char:
Color: integer;
Seed: integer;
LX, LY, UX, UY: real;

function Random (Range: integer): integer;
begin
Seed:= Seed * 233 + 113;
Random:= Seed mod Range;
Seed:= Seed mod 256;
end;

procedure ClearBottom;
{clears bottom line of screen
for prompts}
begin
Penmode (nop);
Moveto (0, 0);

WString (' ', substitute, 1);
end;
begin
ClearBottom; {various initializations}

WString ('ENTER RANDOM NUMBER: ', substitute, 1);
read(keyboard, Seed);
ClearBottom;
Display_Scale (0, 0, 200*Aspect_Ratio, 200);
{Aspect_Ratio used so
pattern will be round}
Color:= 0;
WString ('ENTER VIEWPORT LL CORNER: ', substitute, 1);
read(keyboard, LX,LY);
ClearBottom;
WString ('ENTER VIEWPORT UR CORNER: ', substitute, 1);
read (keyboard, UX,UY);
ClearBottom;
WString ('PENMODE= ', substitute, 1);

read(keyboard, MODE);

3-50C 0200101:03A

User Interface

Palette (0);

{0= black, l=green, 2=red, 3=yellow}
ViewPort (LX, LY, UX, UY); {create port}
PenMode (0);

{use blank pen while moving it}
Moveto (100*Aspect_Ratio, 100);

{put turtle in center of port}

{Aspect_Ratio ensures that it will be

correctly centered}
PenMode (Mode) ;

{set pen to selected color}
J:= Random(90)+90;

{angle by which turtle will move

note that turtle begins facing right

and will move counterclockwise
(J is positive)}

for I:= 2 to 200 do
{draw spiral in 200 segments
of increasing length}
begin
{cycle through the colors}
Color:= Color+l;
if Color > 3 then Color:= 1;
PenColor (Color);
Move(I);
Turn{J);
end;
:= Create_Fiqure (UX-LX, UY-LY);
{create figure the size of the port}
PutFigure (I, LX, LY, 1);
{save it; mode overwrites
old fiqure (if any)}
ViewPort (0, 0, Aspect_Ratio*200, 200);
{respecify viewport in
the lower left-hand corner}
GetFigure (I, 0, 0, 1);
{display finished spiral}
readln;
{clear user input buffer}
end.

02001C1:03A 3-51

User Interface

Using Turtlegraphies from FORTRAN

Using the Turtlegraphics routines from FORTRAN
requires accessing special interface units at
compile time. This is because the Pascal syntax
contained in the standard Turtlegraphics unit isn't
compatible with FORTRAN. In order to use
Turtlegraphies from FORTRAN, the FORTRAN
source program must contain a directive similar
to this:

$USES TURTLEGRAPHICS IN FTN.TURTLE.CODE

The Turtlegraphics unit in FTN.TURTLE.CODE
contains the special interface section that is
FORTRAN compatible. It is accessed at compile
time only. During program execution, the
Turtlegraphics unit in SYSTEM.LIBRARY is
accessed automatically.

In addition, there are two functions,
Readfigurefile and Writefigurefile, and one
procedure, Wstring, that can't be directly
referenced from FORTRAN. Instead, a separate
unit called FTURTLEGRAPHICS exists to provide
the support necessary to pass FORTRAN
arguments to these three routines. In order to
call Readfigurefile, Writefigurefile or Wstring, a
directive similar to this:

SUSES FTURTLEGRAPHICS IN RTLIB4.CODE

3-52 0200101:03A

User Interface

must appear in the FORTRAN program.
RTLIB4.CODE refers to the name of the
FORTRAN run-time library.

In order to call the Turtlegraphies routines from
FORTRAN, the following general guidelines
should be obeyed:

@ FORTRAN allows identifiers to be a maximum
of six characters only. PASCAL routines with
longer names need to be truncated when they
are called from FORTRAN.

® PASCAL boolean variables are referred to as
logical in FORTRAN.

@® FORTRAN refers to procedures as subroutines.
The word CALL must precede the subroutine
name in FORTRAN to indicate a subroutine or
procedure call.

0200101:03A 3-53

User Interface

The remainder of this section describes the
parameters of the routines using the appropriate
FORTRAN syntax.

SUBROUTINE MOVE (DISTANCE)
REAL DISTANCE

SUBROUTINE MOVETO (X, Y)
REAL X, Y

SUBROUTINE TURN (ROTATI)
REAL ROTATI

REAL HEADIN

SUBROUTINE PENCOL (SHADE)
INTEGER SHADE

SUBROUTINE PENMOD (MODE)
INTEGER MODE

REAL FUNCTION TURTLX ()
REAL FUNCTION TURTLY ()
REAL FUNCTION TURTLA ()

SUBROUTINE ACTIVA (SCREEN)
INTEGER SCREEN

SUBROUTINE FILLSC (SCREEN, SHADE)
INTEGER SCREEN, SHADE

SUBROUTINE BACKGR (SCREEN, SHADE)
INTEGER SCREEN, SHADE

SUBROUTINE DISPLA (MINX, MINY, MAXX, MAXY)
RERL MINX, MINY, MAXX, MAXY

REAL FUNCTION ASPECT ()

INTEGER FUNCTION CREATE (XSIZE, YSIZE)
REAL XSIZE, YSIZE

SUBROUTINE DELETE (SCREEN)
INTEGER SCREEN

SUBROUTINE GETFIG { SOURCE, XCOR, YCOR, MODE)
INTEGER SOURCE, MODE
REAL XCOR, YCOR

SUBROUTINE PUTFIG (DESTIN, XCOR, YCOR, MODE)
INTEGER DESTIN, MODE
REAL XCOR, YCOR

INTEGER FUNCTION READPI (SCREEN, X, Y)

INTEGER SCREEN
REAL X, Y

3-54 0200101:03A

User Interface

SUBROUTINE SETPIX (SCREEN, X, Y, SHADE)
INTEGER SCREEN, SHADE
REAL X, Y

INTEGER FUNCTION LOADFI (INDEX)
INTEGER INDEX

INTEGER FUNCTION STOREF (FIGURE)
INTEGER FIGURE

SUBROUTINE WCHAR (C, COPYMODE, SHADE)
CHARACTER*1 C
INTEGER COPYMODE, SHADE

The following three routines are contained in the
FORTRAN interface unit, FTURTLEGRAPHICS,
in the FORTRAN run-time library. Because a
character string can't be passed directly to the
functions Readfigurefile and Writefigurefile and
the procedure Wstring, the FORTRAN routines
FREADF, FWRITE and FWSTRING must be called
instead.

For the functions FREADF and FWRITE, TITLE
refers to the name of the Fotofile which is to be
read or written and LEN contains the length of
the TITLE variable.

INTEGER FUNCTION FREADF (TITLE, LEN)
CHARACTER*N TITLE
INTEGER LEN

INTEGER FUNCTION FWRITE (TITLE, LEN)

CHARACTER*N TITLE
INTEGER LEN

0200101:03A 3-55

User Interface

The following FORTRAN statements are
necessary to call them:

CHARACTER * 5 TITLE
INTEGER LEN, IRESLT

LEN = 5
TITLE = 'FOTOl'
IRESLT = FWRITE (TITLE, LEN)

or

IRESLT = FREADF (TITLE, LEN)

For FWSTRING, C is actually a string of length
LEN which is to be written in mode COPYMODE
with shade SHADE,

SUBROUTINE FWSTRING (C, LEN, COPYMODE, SHADE)
CHARACTER * <length of string> C
INTEGER LEN, COPYMODE, SHADE

To call FWSTRING, the following FORTRAN
statements are necessary:

LEN <length of string>
C = <string>
CALL FWSTRING (C, LEN, COPYMODE, SHADE)

3-56 0200101:03A

User Interface

Using Turtlegraphies From BASIC

Using the Turtlegraphics routines from BASIC
requires accessing a speecial interface unit at
compile time. This is because the Pascal syntax
contained in the standard Turtlegraphics unit isn't
compatible with BASIC. In order to use
Turtlegraphies from BASIC, the BASIC source
program must contain directives similar to these:

LIBRARY "BSC.TURTLE.CODE"
USES TURTLEGRAPHICS

The Turtlegraphies unit in BSC.TURTLE.CODE
contains the special interface section that is
BASIC compatible. It is accessed at compile
time only. During program execution, the
standard Turtlegraphies unit in SYSTEM.LIBRARY
is accessed automatically.

In addition, the procedure Wchar contains a
perameter of type CHAR which was changed to
type INTEGER for BASIC, when calling this
procedure the DIM var*1 variable in BASIC must
be changed to an INTEGER.

0200101:03A 3-57

User Interface

In order to call the Turtlegraphics routines from
BASIC, the following general guidelines should be
obeyed:

® BASIC doesn't allow imbedded reserved words
in identifiers, no identifiers should have this
characteristic.

@ BASIC refers to procedures as subroutines.
The word CALL must precede the subroutine
name irn BASIC to indicate a subroutine or
procedure call.

3-58 0200101:03A

User Interface

The remainder of this section deseribes the
parameters of the routines using the appropriate
BASIC syntax.

SUB DSPSCALE (MINX, MINY, MAXX, MAXY)
REAL MINX, MINY, MAXX, MAXY

DEF REAL ASPECTRATIO

DEF INTEGER CREADFIGURE (XSIZE, YSIZE
REAL XSIZE, YSIZE

SUB DELETEFIGURE (SCREEN)
INTEGER SCREEN

SUB VIEWPORT (MINX, MINY, MAXX, MAXY)
REAL MINX, MINY, MAXX, MAXY

SUB FILLSCREEN (SCREEN, SHADE)
INTEGER SCREEN, SHADE

SUB BACKGROUND (SCREEN, SHADE
INTEGER SCREEN, SHADE

DEF INTEGER RDPIXEL (SCREEN, X, Y)

INTEGER SCREEN
REAL X, Y

SUB SETPIXEL (SCREEN, X, Y, SHADE)

INTEGER SCREEN, SHADE

REAL X, Y

SUB GETFIGURE (SOURCESCREEN, CORNERX, CORNERY, COPYMODE)
INTEGER SOURCESCREEN, COPYMODE

REAL CORNERX, CORNERY

SUB PUTFIGURE (DESTINATIONSCREEN, CORNERX, CORNERY, COPYMODE)
INTEGER DESTINATIONSCREEN, COPYMODE

REAL CORNERX, CORNERY

DEF INTEGER RDFIGURE (TITLE)
DIM TITLES*8

DEF INTEGER WRTFIGURE (TITLE)
DIM TITLES*8

DEF INTEGER LDFIGURE (INDEX)
INTEGER INDEX

DEF INTEGER STORFIGURE { SCREEN)
INTEGER SCREEN

SUB ACTIVATETURTLE (SCREEN)
INTEGER SCREEN

DEF REAL TURTLX
DEF REAL TURTLY

DEF REAL TURTLANGLE

0200101:03A 3-59

User Interface

SUB MOVE (DISTANCE)
REAL DISTANCE

SUB MOVETO (X, Y)
REAL X, Y

SUB TURN (ROTATION)}
REAL ROTATION

SUB TURNTO (DIRECTION)
REAL DIRECTION

SUB PENMODE (STATE)
INTEGER STATE

SUB PENCOLOR (SHADE)
INTEGER SHADE

SUB WCHR (C, COPYMODE, SHADE)
INTEGER C, COPYMODE, SHADE

NOTE: To call procedure, WCHR the following
instructions must be used:

INTEGER C
DIM S$*1

C = ASC(S) (* s contians the character to print*)
CALL WCHR (C, COPYMODE, SHADE)

SUB WSTR (S, COPYMODE, SHADE)

DIM s$
INTEGER COPYMODE, SHADE

3-60 0200101:03A

User Interface

Installing Turtlegraphies

Turtlegraphies has been designed to facilitate the
development of portable graphies applications.
Turtlegraphies is distributed in two forms. Some
systems are distributed with Turtlegraphics
already configured into the *SYSTEM.LIBRARY
and ready to run. Turtlegraphies is also sold in
an adaptable form. This document describes how
to install adaptable Turtlegraphies on your
system.

The adaptable Turtlegraphics package is contained
in the following seven files:

GRAFIX2.CODE { A linkable Turtlegraphics Unit for
systems using 2-word real numbers }
GRAFIX4.CODE { A linkable Turtlegraphics Unit for

systems using 4-word real numbers }

USRGRAFS.TEXT { A skeleton graphics initialization
unit }

USRGRAFS.CODE { A dummy graphics initialization unit
for systems with no special setup
requirements }

SYSTEM.FONT { A data file containing the default
character font }

EXERCISE2.CODE { A test suite designed to exercise
your graphics I/0O implementation
on systems using 2-word real numbers }

EXERCISE4.CODE { A test suite designed to exercise

your graphics I/0 implementation

on systems using 4-word real numbers
EXERCISE.TEXT { Source program for low level routine

test program 1}

e

02001€1:03A 3-61

User Interface

To install Turtlegraphies on your p-System, it is
necessary to write a collection of low-level
graphics routines in assembly language and link
them into one of the GRAFIX files. These
routines perform simple functions such as set a
point to a specific color, or drawing a line
segment. Turtlegraphies builds upon these simple
routines to provide higher level services to UCSD
Pascal, BASIC, and FORTRAN. If you aren't
already familiar with Turtlegraphies, you should
stop and read its description in Chapter 1 of this
manual for your particular hardware. The
following section, entitled "Graphies I/0
Routines,” explains these low-level routines and
the structures they manage. It also provides
some implementation hints to help you get the
best performance from your system.

Some systems require special initialization prior
to performing graphics I/O. For example, it is
often necessary to disable a hardware character
generator on memory-mapped displays before you
can write to individual screen picture elements
(pixels). Similarly, at the end of graphics I/O it
is sometimes necessary to perform special
operations to restore the system display to
normeal operation.

3-62 0200101:03A

User Interface

Such initialization and termination is handled by
the initialization and termination code of the
USERGRAPHICS unit. If your system requires
some sort of graphies initialization or
finalization, you will have to develop a custom
USERGRAPHICS unit. The "Graphics System
Initielization" section, presented later in this
chapter, describes how to tailor the supplied unit
to suit your requirements. If your system
requires no special configuration to perform
graphies 1/0, skip the "Graphies System
Initialization" section, use the dummy unit
supplied.

The file *SYSTEM.FONT contains a dot matrix
character representation that is used by the
Turtlegraphies routines WChar and WString. A
subsequent section, "Character Fonts," describes
the structure of *SYSTEM.FONT and how to build
a custom version. It is strongly recommended
that you don't replace the default file until the
rest of Turtlegraphies is working. The
EXERCISE program and Turtlegraphics error
handlers expect a vali¢ font to be available.
"Linking and Librarying," below, describes the
ways Turtlegraphies may be libraried into a
p-System. It also describes the use of the
EXERCISE program in debugging a Turtlegraphics
adaptation.

0200101:03A 3-63

User Interface

Graphies 1I/0 Routines

3-64

The Turtlegraphies unit is created by linking
seven assembly code I/O routines into either
GRAFIX2.CODE or GRAFIX4.CODE. These
routines interact not only with the system
display, but also with a collection of data
structures that describe the state of
Turtlegraphies.

None of the routines described in this section
need to perform range-checking on the
parameters passed, EXCEPT for Draw_Line.
When any of these routines (except Draw_Line)
are to be called, Turtlegraphics performs the
appropriate range-checking beforehand.

The following subsections deseribe the syntax
and semanties of these routines.

0200101:03A

User Interface

Procedure Query_ Environment
(Var DisplayDese: DisplayRec);

Turtlegraphics uses this procedure to initialize
the parameters that deseribe the target
configuration. Query_Environment is passed a
pointer to a record that describes the
machine-dependent aspects of the system, ALL
the fields must be filled by this routine. The
Pascal description of the record below comes
from Turtlegraphies.

DisplayRec =
record
XPixelCnt: integer; {number of pixels in the x direction
on the actual display}
YPixelCnt: integer: {number of pixels in the y direction
on the actual display}

MaxColor: integer; {maximum valid color number}
AspectX: integer:
AspectY: integer; {a pair of integers such that

the ratio: AspectX/AspectY, is the
aspect ratio of the actual physical
display}

CharHeight: jnteger;

CharWidth: integer; {specifies the height and width of
characters generated by SYSTEM.FONT
in pixels. For the SYSTEM.FONT
shipped, the default is 8x8}

TargetStamp: integer; {identifies the current target
machine confiquration. Used as a
validity check by LOADFIGURE,
GETFIGURE, and PUTFIGURE }

end;

0200101:03A 3-65

User

3-66

Interface

Function Figure_Size
(Screen: SereenPtr): Integer;

This function tells Turtlegraphics the number of
words required to store the figure described by
the indicated ScreenRec on the target machine.
This function is called by Create_Figure when
an application dynamically creates a figure.
The size of the figure varies, Typically it is a
function of the figure area times the number
of colors available.

The encoding of user-created figures is
completely managed by the low-level routines
you are writing. You may elect to encode
your figures for maximum data compression if
your applications store many figures. You may
encode for maximum update efficiency, if you
have a great deal of available: storage.

On systems with large physical memory
capacity, you may elect to store the first
several user figures outside of the Stack/Heap
address space. In that situation, the figure
size can be zero.

0200101:03A

User Interface

The type ScreenPtr is a pointer to a Pascal
record that describes the state of =«
Turtlegraphies figure. There is one sereen
description record for every Turtlegraphics
figure, including the actual display.

ScreenPtr = “ScreenRec;

ScreenRec =
record
Valid: ScreenPtr; {pointer should always be a self
reference when figure is valid}
FigPtr: “fig; {pointer to the figure's locn in memory;
a nil pointer indicates that the record
describes the actual display}

Color: integer; {current pen celor}
Backgnd: integer; {current turtle background color}
Mode: integer; {current turtle drawing mode}

{the next four values delimit the viewport by pixel values:}
MinXPix: integer
MinYPix: integer
MaxXPix: integer
MaxYPix: integer
XPix: ipteger:; {turtle pixel x position}
YPix: ; {turtle pixel y position}
TargetStamp :integer: {target machine stamp which identifie

the machine configuration upon which the fiqure

wag created; it is updated only by low-level
routines}

Size: integer; {size of the figure in words}
XPos: real; {turtle x posn in display scale units}
YPos: real; {turtle y posn in display scale units}
Heading: real; {current orientation of the turtle}
ScaleStamp: ipteger; {Specifies the scale generation value
for which XPos and YPos are valid}
end;

0200101:03A 3-67

User Interface

3-68

Function Read_Screen_Pixel
(Pointer: ScreenPtr;
XPixel, YPixel: Integer): Integer;

The Read_Screen_Pixel function returns the
color of the pixel at the specified location in
figure. The XPixel and YPixel parameters give
the pixel location. Turtlegraphies checks the
range on all calls to this routine. If the
FigPtr in the indicated secreen record is nil,
then the function shculd return the state of
the actual display.

Procedure Set_Screen_Pixel
(Pointer: ScreenPtr;
XPixel, YPixel: Integer;
Shade: Integer);

The Set_Screen_Pixel procedure sets the pixel
at (XPixel, YPixel) to the designated color.
Shade specifies the color value. If the FigPtr
in the indicated screen record is nil, then the
procedure should modify the actual display.

0200101:03A

User Interface

Procedure Comp_Screen_Pixel
(Pointer: ScreenPtr;
XPixel, YPixel: Integer);

The Comp_Screen_Pixel procedure complements
the pixel at (XPixel, YPixel). Shade specifies
the color value. If the FigPtr in the indicated
screen record is nil, then the procedure should
modify the actual dlsplay

The definition of complement is left tc the
discretion of the implementor for a given
target machine, given the following
constraints—eomplementing a pixel must result
in a different unique color, the complement of
which is the original color. This implies that a
machine which supports Turtlegraphics must
have an even number of colors in its palette,
or that only an even number can be used.

Procedure Fill_Color
(Screen: SereenPtr; Shade: Integer);

This procedure fills a portion of the specified
screen with the designated color value. The
contents of the screen record fields MaxXPix,
MinXPix, MaxYPix, and MinYPix describe the
rectangular area that is filled. The FigPtr
contains a pointer to the area of memcry in
which the figure is stored. If FigPtr is nil,
the actual display (or a portion of it) should be
filled.

0200101:03A 3-69

User Interface

3-70

Procedure Draw_Line
(Pointer: SereenPtr;
StartX, StartY, EndX, EndY: Integer);

Draw_Line is the most complex routine to be
written for Turtlegraphies. It must draw a line
segment in the specified screen. The starting
and ending points of the line segment are
described by (StartX, StartY), (EndX, EndY).

IMPORTANT: Turtlegraphics does no range
checking on the line segment. The implementor
is responsible for computing all the points in
the line segment, and ONLY plotting those
within the viewport. (The viewport is defined
by the screen record fields MaxXPixel,
MaxYPixel, MinXPixel and MinYPixel.) In
addition, the points on the line must be plotted
using the PenColor and Mode specified in the
screen record. The valid mode values and
their meanings are described below:

const
nop
substitute
overwrite
underwrite
complement

a1 nn
a0 BN O
s e

we wes we

If the current mode is Nop, Draw_Line is NOT
called.

0200101:03A

User Interface

Substitute mode calls for every visible point on
the line segment to be unconditionally plotted.

Overwrite, for the purposes of Draw_Line, is
the same as Substitute.

Underwrite mode indicates that visible points
on the line segment are plotted only if the
pixel at that location is currently set to the
Backgnd color, as described in the screen
record.

Complement mode indicates that the visible
points on the line segment should be
complemented using the definition of
complement used by the Comp_Screen_Pixel
procedure.

The performance of Turtlegraphies is strongly
influenced by the efficiency of these routines.
It is recommended that every effort be made
to optimize their operation. Computing the
line trajectory and then only performing simple

addition to determine the locus of the next

point is a good way to minimize computing. A
"psuedo-Pascal" procedure below outlines how
Draw_Line might be structured:

procedure Draw_Line
(Screen: ScreenPtr;
StartX, StartY, EndX, EndY: integer):

var Temp, X, Y, DeltaX, Delta¥, Cnt,
XInc, XResidue, XCorrection,
YInc, YResidue, YCorrection: integer;
DXNeg, DYNeg: Boeolean;

procedure exchange_xy;
begin

0200101:03A 3-71

User

3-72

Interface

Temp := StartX;
StartX := EndX;
EndX := Temp;
DeltaX := -DeltaX;
Temp := StartY;
StartY := EndY;
EndY := Temp;
DeltaY := -Delta¥;
DXNeg := not DXNeg;
DYNeg := not DYNeg;
end;

procedure update_pix (px, py: integer):
begin
with Screen”
do begin
if (px>=MinXPix) and (px<=MaxXPix) and
(py>=MinYPix) and (py<=MaxYPix)
then
case mode of
substitute, overwrite:
set_screen_pixel(Screen,px,py,color);
underwrite:
if read_screen_pixel(Screen,px,py)=backgnd
then set_screen_pixel(Screen,px,py,color);

complement:
comp_screen_pixel (Screen,px,py);
end;
end;
end;
begin

DeltaX := EndX - StartX;
Delta¥Y := EndY - StartY;
DXNeg := DeltaX<0;
DYNeg := Delta¥<O0;
if DeltaX = 0 then {vertical line}
begin
if DYNeg then exchange_xy;
for Y:=StartY to EndY
do update_pix (StartX, Y)
end
else if DeltaY = 0 then {horizontal line}
begin
if DXNeg then exchange_xy;
for X:=StartX to EndX
do update_pix (X, StartY)
end
else if abs(DeltaY) > abs(DeltaX) then
{abs(slope) > 45 degrees}
begin
if DYNeg then exchange_xy;
{substitute for fractions:}
YInc := abs((64 * DeltaY) div DeltaX);
{using binary fixed point arithmetic operations:}
YCorrection := YInc mod 64 + 1;
YInc := YInc div 64;
Y := StartY;

0200101:03A

User Interface

X := StartX;
YResidue := 0;
Cnt := 0;
while Y <= EndY;
do begin
update_pix (X, ¥Y);
Y := Y+1;
Cnt := Cnt+l;
if Cnt=YInc then
if YResidue > 64 then
begin
Cnt := Cnt -1;
YResidue := YResidue - 64

end
else
begin
YResidue := YResidue + YCorrection;
Cnt := 0;

if DXNeg then X := X-1
else X := X + 1;
end;
end;

end

else {abs(slope)<= 45 degrees}

end;

begin

if DXNeg then exchange_xy;
{substitute for fractions:}

YTInpce=ahao({ (LA * Naléa¥) Aiwe Nal+avy
ALDCI=QR0 S5 Lesitaa,; GIV reatail;y

VY.
¢ 1
{using binary fixed point arithmetic operations:}

XCorrection := XInc mod 64 + 1;
XInc := XInc div 64;

X := StartX;

Y := StartyY;

XResidue := 0;

Cnt := 0;
while X <= EndX
do begin
update_pix (x, y):
X = X+1;
Cnt := Cnt+l;
if Cnt=XInc then
if XResidue > 64 then
begin
Cnt := Cnt -1;
XResidue := XResidue - 64
end
else
begin
XResidue := XResidue + XCorrection;
Cnt := 0;
if DYNeg then Y := Y-i
else Y := Y + 1;
end;
end;

end;

0200101:03A

3-73

User Interface

Graphices System Initialization

It is frequently necessary to perform some
special operations to ready a system to display
graphic information. COn some systems, for
example, the displey hardware must be switched
into a different mode. Similarly, at the
termination of graphic 1/C, it is often
necessary to perform some operations to
restore the system to normal operation.

Turtlegraphics addresses this situation by
expecting a unit called USERGRAPHICS to be
in *SYSTEM.LIBRARY. This unit has one
procedure:

procedure Hardware_config;

When Turtlegraphies is performing initialization
it calls Hardware_Config. At the end of a
program, any termination code present in the
USERGRAPHICS unit is executed.

Turtlegraphies is shipped with a skeleton
version of USERGRAPHICS in the file
USRGRAFS. This may be used if no special
initialization or termination is required. If
your system requires special configuration, you
can write your own USERGRAPEICS unit. The
only requirement is that USERGRAPHICS be in
*SYSTEM.LIBRARY, and that the FIRST
procedure in its interface section must be
called Hardware_Config.

3-74 0200101:03A

User Interface

Character Fonts

Turtlegraphics allows programs to label figures
by calling two special routines, WChar and
WString. These routines draw characters in
figures by using a table stored in a file called
*SYSTEM.FONT.

The standard system is shipped with a
character font that contains 128 ASCII codes,
similar in style to those on the scme personal
computers. Each character occupies an area 8
pixels high by 8 pixels wide. This character
size may be inappropriate to some displays.
On high resolution displays, such characters are
too small. On low resolution displays, it may
be desirable to use a 5x7 character matrix.

To replace the default font with one of your
own design, you must first be sure that your
version of the funetion Query_Environment
initializes the display record fields CharHeight
and CharWidth to the proper values. You must
then generate a new table and save it on the
boot disk as *SYSTEM.FONT.

0200101:03A 3-75

User Interface

A Font Structure

Turtlegraphics reads the font table as a
1-dimensional packed Boolean array. To draw
a character, it computes the index of the first
bit of a character as follows:

index:= ord(character) * CharHeight * CharWidth;

It then displays the characters, using an
algorithm similar to:

for x:=0 to CharWidth - 1
do for y:=0 to CharHeight - 1
do if fontlindex + x*CharHeight + yl then
set_pixel(screen, x+turtle_x, y+turtle_y, 1)
else
set_pixel(screen, x+turtle_x, y+turtle_y, 0);

Therefore, the font table is designed like a:

packed array [0..127, 0..CharWidth-1, 0..CharHeight] of Boolean

Don't use such a declaration to create your
character font in Pascal. Pascal aligns all
arrays (packed arrays included) so that all rows
and columns begin on word boundaries. This
will cause you problems if the product of
CharHeight and CharWidth isn't evenly divisible
by 16.

3-76 0200101:03A

User Interface

Display Fill_Color Tests

The next set of exercises tests Fill Color.
First the system calls Fillscreen in all the
valid colors for your system. You should be
careful to be sure that Set_Sereen_Pixel uses
the same color values as Fill_Color.

The next phase of this test should set the
screen to color 0 and then display a set of
overlapping rectangles from the lower left-hand
corner of the display to the upper right, using
all the avsilable colors. This is a test of
windowing in Fill_Color.

0200101:03A 3-79

The screen for a 4-color system is shown
below:

\

,

0200101:03A

User Interface

Display Line-Drawing Exercises

The next portion of the exercises is designed
to check the Draw_Line routine. First a set
of radial lines are drawn from the center of
the screen. Thirty-six radials are drawn
starting at the 3 o'clock position, and then
move counterclockwise around the center point.
This behavior is repeated for all the nonzero
colors, Again, be sure that the color
assignment matches both Fill_Color and
Set_Screen_Pixel. A sample copy of the sort
of display created by this test appears in the
figure below:

0200101:03A 3-81

User Interface

Figure 3-3.

3-82 0200101:03A

User Interface

The next part of the tests checks to see if
Draw_Line respects the viewport of the
display. The system issues the same commands
as it did on the previous tests, but this time
the viewport is restricted to a small rectangle
in the center of the display. The result should
be that the lines should stop at the periphery
of the rectangle, rather than continuing to
their previous end points., The figure below
shows how the display should appear when the
test is compiete:

0200101:03A 3-83

User Interface

Figure 3-4.

3-84 0200101:03A

User Interface

The last line-drawing test on the actual display
is performed only on systems with more than
two colors. This checks the update modes for
line drawing. A small rectangular area in the
middle of the display is shaded. Then the
same set of radials as before are drawn in
each of the modes. The expected effects for
each mode are summarized here:

0 In Nop mode nothing else should appear.

1 Substitute mode should draw lines over the
top of the rectangle and beyond.

Overwrite mode should draw lines over the
top of the rectangle and beyond.

(S

3 Underwrite mode shouldn't alter the center
the periphery of the rectangle, continuing
out to their previous end point.

nantanala NRaliala chAanld ha wigld
1 COC tﬂllglC. Nadialos oHvuru vo Vioi

4 In Complement mode, the radials should
emerge from the center point, but change
color at the periphery of the center
rectangle and terminate at the edge of the
screen.,

0200101:03A 3-85

User Interface

User-Created Figures Exercises

3-86

After testing the display, the Exercise prcgram
performs all the same operations on
user-created figures. The results of each test
are indicated on the actual display. A frame
is constructed on the actual display using
Fill_Color. Your figures resulting from each
test are copied into this viewing frame.

All the same figures should result, except for
those that tested viewports, a user-created
figure can't contain a viewport.

We remind you that a test can prove the
presence of bugs, but never their absence.
EXERCISE won't prove that your routines are
error-free, but if all the tests execute
successfully, your low-level routines work well
enough that you can now start using
Turtlegraphiecs.

0200101:03A

User Interface

QUICKSTART Units

The code files PEDGEN.CODE and
CHKSUMOPS.CODE are related to the
QUICKSTART utility (described in the Operating
System Reference Manual). These are two
standard p-System units which may be used by
p-System programs in order to perform tasks
related to the quickstarting of programs.

PEDGEN contains a single routine called
PED_GENERATE. PED_GENERATE creates a
new code file which conteins a description of the
execution environment required by the program.
This execution environment description is in the
form of & "Program Environment Descriptor"
referred to as a "PED.," The Pascal interface to
this unit is described below.

CHKSUMOPS contains routines to generate and
validate checksums for p-System code files. The
Pascal interface to this unit is deseribed after
PEDGEN.

0200101:03A 3-87

User Interface

PEDGEN Unit Interface

Here is the Pascal interface to the PEDGEN
unit:

unit pedgen;

{This unit contains the standard p-System routine which
installs a new Program Execution Environment Descriptor
(PED) into a program code file.}

interface
const max_pedgen_file_name_length = 255;
type pedgen_file name = string[max_pedgen_file_name_lengthl;

pedgen_result = {Result codes returned by
PED_GENERATE. }

(pgr_no_error,
{Result indicating
successful
operation.}

pgr_lib_error,
{Indicates I/0 error either
on open or read of a
library code file.}

pgr._lib_output_error,
{Indicates I/0 error when
creating a copy of an updated
library code file.}

pgr_chksum_error,
{I/0 error occurred when
attempting to insert new
checksum into a referenced
library code file.}

pgr_input_error,
{Indicates I/O error either
on open or read of host
program code file.}

pgr_output_error,
{Indicates I/0 error writing
PED to disk file.}

pgr_unit_error,
{Indicates failure to locate
a referenced unit.}

pgr_bad_library_list_error,
{Library file list text file
is not a text file.}

pgr_lib_list_error,
{Indicates 1/0 error reading
library file list text file.}

pgr_duplicate_unit_error,
{A unit name conflicts with

3-88 0200101:03A

User Interface

system contains more than
one unit with the same name.}

! t error,
{Number of library files referenced
by execution environment exceeds
max_library_file_refs.}

pgr._sys_ref_count_error,
{Number of system segments referenced
by execution environment exceeds
max_system_seg_refs.}

pgr_no_program_error,
{Input file is not a host
program, or the operating system
host unit is missing from an
operating system host code file.}

pgr_no_boot_seg_error,
{System host code file does not
contain the required boot segment.}

pgr_must_be_linked_error,

{Program environment references
a segment which contains
unresolved references to
assembly language routines.

Thus the program must be

linked by the Linker before an
environment can be constructed.}

e s
te_s

Program contains a reference to
a segment which was not compiled
with a Version IV compiler.}

pgr_not_enough_mem_error,

{Not enough memory to build
required temporary data
structures during environment
construction process.}

pgr_buf_overflow_error
{The buffer into which the PED
is being generated in not large
enough to describe the environment
for the program.});

{The following is the interface to the PED_GENERATE routine itself.}

function
ped_generate
(input_file_id: pedgen_file_name;
{File name of program code file for
which a new PED is to be constructed.}

output_file_id: pedgen_file_name;
{File name of new code file to be
created.}

is_system: boolean;
{If TRUE the PED for a new operating
system is to be constructed which does
not contain references to segments of
the current operating system.}

0200101:03A

3-89

User Interface

copy_input: boolean;
{If TRUE the PED is inserted in a new copy
of the source code file; otherwise the new
PED is written to the original code file.)

copy_libraries: boolean;
{Controls whether user is prompted for
where to copy updated versions of library
code files into which new checksums have
been inserted.}

write_progress_messages: boolean;
{If TRUE progress messages are written
to the standard file OUTPUT describing
how the execution environment is being
constructed.}

var the_iorslt: integer;
{When an I/0 result is returned this
parameter is set to the value of IORESULT.
If no I/O errors occur, this is set to zero.!}

var the_name: pedgen_file_name
{When a unit or a library code file is
not found, or an I/0 error occurs this
variable is set to the name of the unit
or file. When none of these errors
occur, this variable is set to the
empty string.}

}: pedgen_result;

The INPUT_FILE ID parameter specifies the file
name of the code file for which a Program
Environment Descriptor (PED) should be
constructed. The OUTPUT_FILE_ID parameter
specifies the file name for the new code file to
be created. OUTPUT_FILE_ID is only used when
the COPY_INPUT parameter has the value TRUE.

3-90 0200101:03A

User Interface

The IS_SYSTEM parameter is used to determine if
the program is a new version of the p-System
operating system. If IS_SYSTEM is TRUE,
PED_GENERATE generates a PED that doesn't
contein any information specific to the currently
executing operating system. If IS SYSTEM is
FALSE, the generated PED assumes the current
operating system environment.

The COPY_INPUT parameter specifies whether
the PED is to be installed in the existing code
file, or installed into a copy of the original
program code file. If COPY_INPUT is TRUE, a
copy of the original program code file is written
to the file specified by the OCUTPUT_FILE ID
parameter; otherwise, the source code file is
modified to contain a new PED.

This copying process begins by copying the
segment dictionary blocks of the original code
file to the designated output file. The segments
contaeined in the original code file are copied one
at a time to the output file. When all of the
code segments within the original code file have

. A . Atoes .
been copied, a revised segment dictionary is

created in a sequence of consequtive blocks at
the beginning of the new code file. The manner
in which the contents of the original code file
are transferred to the output code file ensures
that & PED present in the original code file
doesn't occupy space in the new program code
file. Onece this copying process is completed, the
building of a new PED for the program is
started. This final process consists of building
the execution environment for the program and
storing a representation of that environment in
the form of a PED in the new code file. The
PED is stored in the new code file by appending

0200101:03A 3-91

User Interface

it to the end of the code file.

If COPY_INPUT is FALSE, the new PED is
either written on top of an existing PED within
the original code file, or is appended to the end
of the original code file.

During the construction of the program execution
environment, each referenced library code file is
checked for the presence of & nonzero checksum
incicator in block zero of the segment dictionary
information. If this checksum indicator is zero,
the p-System checksum generation unit
CHKSUMOPS is called to insert a valid checksum
into the library code file. When the
COPY_LIBRARIES parameter is TRUE,
PED_GENERATE presents a prompt each time a
library code file is updated with a new checksum.

This prompt asks if you wish the upcated library
code file to be copied to another file. When
COPY_LIBRARIES is FALSE, no such prompts are
displayed. A detailed description of the
characteristics of this facility was given in the
description of QUICKSTART, above.

3-92 0200101:03A

User Interface

The WRITE_PROGRESS_MESSAGES parameter is
used to control whether or not PED_GENERATE
writes progress messages and error messages to
the file OUTPUT. These messages are generated
when this parameter has the value TRUE and are
suppressed when this parameter has the value
FALSE. A detailed deseription of the format of
the progress messages generated by
PED_GENERATE was given in the deseription of
QUICKSTART utility program.

The following is an example of the type of
progress messages that would be written to the
file OUTPUT as the result of a call to
PED_GENERATE with the COPY_INPUT and
WRITE_PROGRESS_MSGS parameters set to
TRUE, and the COPY_LIBRARIES parameter set
to FALSE:

Copying DISK1":PROG.code to DISK2:0LD.PROG.code

Copying complete. (134 blocks copied)

Using KERNEL from *SYSTEM.PASCAL

Installing new checksum into *SYSTEM.LIBRARY

Using LONGOPS from *SYSTEM.LIBRARY

Including EXPR as segment of MYUNIT1 from DISK1:UNIT1.CODE
Using MYUNIT1 from DISK1:UNIT1.CODE

Using PASCALIO from *SYSTEM.PASCAL

0200101:03A 3-93

User Interface

The reference parameters THE_IORESULT and
THE_NAME are used to return information
pertaining to certain errors. Upon entry to
PED_GENERATE, THE_IORESULT is set to the
value zero, and THE_NAME is set to the
empty string. Whenever PED_GENERATE returns
theresults PGR INPUT_ERROR,
PGR_OUTPUT_ERROR, or "PGR_LIB_ ERROR, the
value of IORESULT is placed in THE IORESULT
When PED_GENERATE returns the result
PGR_UNIT_ERROR or PGR_LIBR_ERROR the
name of the unit or library file bemg referenced
at the time of the error is placed into
THE_NAME.

If the segment dictionary of the program
indicates that the program must be linked using
the p-System linker, PED_GENERATE halts and
returns the result
PGR_MUST_BE_LINKED_ERROR.

3-94 0200101:03A

User Interface

CHKSUMOPS Unit Interface

Here is the interface to the p-System
CHKSUMOPS unit:

unit chksumops;
interface
const max_chksum file_name_length = 255;
type chksum_file_name = string[max_chksum _file name_lengthl;
chksum_result =

(chksum_no_error,
{Checksum operation
successful}

chksum_obsolete_error,
{Checksum in code
file is obsolete;
that is, the contents
of the file have
been changed}

chksum_io_error
{Error opening,
reading, or
writing code
file}
)i

function chksum_gen(file_id: chksum_file_name;

var iorslt: integer):

chksum_result;

function chksum _check(file_id: chksum_file name;
var iorslt: integer):
chksum_result;

The CHKSUM_CEN funection causes a new
checksum to be calculated and installed in the
checksum field of block zero of the code file
specified by the FILE ID parameter. This
function returns the result CHKSUM_NO_ERROR
if the operation is successful.

0200101:03A 3-95

User Interface

The CHKSUM_CHECK function calculates the
correct checksum for the contents of the code
file specified by the FILE_ID parameter. The
calculated checksum is compared with the
checksum stored in the file. If the checksum
present in the code file isn't zero and doesn't
match the calculated checksum, this function
returns the result CHKSUM_OBSOLETE_ERROR;
otherwise, the result CHKSUM_NO_ERROR is
returned.

Both the CHKSUM_GEN function and the
CHKSUM_CHECK function return the result
CHKSUM _IO_ERROR whenever an I/O error is
detected while opening, reading, or writing the
specified code file, If this result is returned,
the IORSLT parameter is set to the value of
IORESULT to indicate the nature of the I1/0
error.

The checksum value zero is reserved to indicate
the absence of a valid checksum in a code file.

3-96 0200101:03A

File
Management

CHAPTER 4

FILE MANAGEMENT UNITS

File Management Units

INTRODUCTION

Your Pascal programs can use the file management
units to accomplish several tasks usually performed
by the filer. There are four file management units:

DIR.INFO.CODE
WILD.CODE
SYS.INFO.CODE
FILE.INFO.CODE

DIR.INFO provides directory information. Your
programs may use this unit to:

List directories.

Parse file names into volume ID, file name, file
type, and size specification.

Change file names,

® Change the date associated with a file or

Remove files.
Xrunch a volume.
Mount and dismount subsidiary volumes.

Grant exclusive access rights to a directory by
task.

Release those exclusive access rights.

0200101:04A 4-3

File Management Units

WILD provides wild card string matching facilities.

FILE.INFO allows your programs to:
® Determine if files are opened.
® Finc the length of a file.

® Determine what storage volume contains a given
file.

® Extract the file title with its suffix, from a
file.

@ Find the starting block of a file.

® Determine whether or not a volume is a storage
volume or a communications volume.

® Return the date associated with a file.

SYS.INFO allows your programs to:

® Determine the device number or volure name of
the system disk (the volume referred to by
asterisk, "),

® Determine the file names for the work files and
the volumes on which they reside.

4-4 0200101:04A

File Management Units

INTERFACE SECTIONS

In order to take advantage of the file management
units, your Pascal programs should use them in a
USES decleration. (These units aren't available to
FORTRAN and BASIC programs.) For example, to
have access to all four units, you would use this
declaration:

USES {$U wild.codel}l WILD,
{$U dir.info.code} DIR_INFO,
{$U sys.info.code} SYS_INFO,
{$U file.info.code} FILE_INFO;

You can then call the routines these units contain
from your programs, Here are the interface
sections of the four file management units with
embedded comments. The routines are described in
detail throughout the rest of this chapter.

0200101:04A 4-5

File Management Units

Unit Interface

Unit Wild;
Interface

Type

D_PatRecP = "D_PatRec;

D_PatRec = Record
CompPos, { starting position of pattern in subject string }
CompLen, { length of pattern in subject string }
WildPos, { starting position of pattern in wild string }
WildLen : Integer; { length of pattern in wild card string }
Next : D_PatRecP; { next pattern }

End; { D_PatRec }

Function D_Wild_Match(Wild, Comp : String; Var PPtr : D_PatRecP;
PInfo : Boolean) : Boolean;
{ Compares two strings (one containing wild cards) and returns true if they
match. Includes information about pattern matching that occurred if
requested (by PInfo) 1}

4-6 0200101:04A

File Management Units

Unit Interface

Unit Dir_Info;

Interface
uses
(*$U WILD.CODE*) wild;

Type
D_DateRec = Packed Record
Month : 0..12;
Day : 0..31;
Year : 0..100;
End;

D_NameType = (D_Vol, D_Code, D_Text, D_Data, D_SVol, D_Temp, D_Free);
D_Choice = Set of D_NameType;

D_ListP = "D_List;
D_List = Record
D_Unit: Integer;
D_Volume: Stringl71;
D_VPat: D_PatRecP;
D_NextEntry: D_ListP;
Case D_IsBlkd: Boolean Of
True: (D_Start, Starting block of entry }
D_Length: Integer; { Length (in blocks) of entry }
Case D_Kind : D_NameType Of
D_vVol, { Everything but D_Free }
D_Temp,
D_Code,
D_Text,
D_bData,
D_SVol: (D_Title: Stringll51;{ File name }
D_FPat: D_PatRecP; { name pattern info }
D_Date: D_DateRec; { File date }
Case D_NameType of { # of files on vol }
D_Vol: (D_NumFiles: Integer)));

Unit # of entry 1}
volume name of unit }
volume pattern info }
Next entry in list }

e e

End;

D_Result = (D_Okay,
D_Not_Found,

Mission accomplished }
Couldn't find name and/or type }

{
{
D_Exists, { Name already exists; no name change made }
D_Name_Error, { Illegal string passed }
D_Off_Line, { Volume not on line }
D_Other); { Miscellaneous error }

Function D_Dir_List(D_Name: String; D_Select: D_Choice;

Var D_Ptr: D_ListP; D_PInfo: Boolean): D_Result;
Creates pointer to list of names of specified NameTypes
(D_Select), matching specified D_Name (wild card characters allowed).
Includes information about pattern matching that occurred if regquested
(by D_PInfo) }

-

Function D_Scan_Title(D_Name: String; Var D_Volume, D_Title: String;
Var D_Type: D_NameType; Var D_Segs: Integer): D_Result;
{ Parses D_Name }

0200161:04A 4-7

File Management Units

Function D_Change_Name
(D_OldName, D_NewName: String; D_RemOld: Boolean): D_Result;
{ Changes file name in D_OldName to name in D_NewName, removing already
existing files of name in D_NewName if D_RemOld is set }

Function D_Change_Date(D_Name: String; D_NewDate: D_DateRec;
D_Select: D_Choice): D_Result;
{ Changes date of directory or file name in D_Name to date specified by
D_NewDate. D_Name may contain wild cards }

Function D_Rem_Files (D_Name: String; D_Select: D_Choice): D_Result;
{ Removes file of specified name (wild cards allowed) }

Procedure D_Lock;

Procedure D_Release;

{ Provide means to limit use of DirInfo routines to one task at a time
in multitasking environments }

Function D_Krunch (D_Unit, D_Block: Integer): D_Result;
{ Collects all unused space on a volume around D_Block. This unit must
not be in use when this operation is performed. 1}

Function D_Mount (D_File_Name : String) : D_Result;

Function D_DisMount (D_Vol_Name : String) : D_Result;

{ Provides a means of mounting and dismounting subsidiary volumes.
Wild cards may_be used. }

4-8 0200101:04A

File Management Units

Unit Interface

Unit Sys_Info;
Interface

Type SI_Date_Rec = Packed Record
Month : 0..12;
Day : 0..31;
Year : 0..99;
End; { SI_Date_Rec }

Procedure SI_Code_Vid (Var SI_Vol : String);
{ Returns name of volume containing current work file code }

Procedure SI_Code_Tid (Var SI_Title : String);

{ Returns title of current work file code }

Procedure SI_Text_Vid (Var SI_Vol : String);
{ Returns name of volume containing current work file text }

Procedure SI_Text_Tid (Var SI_Title : String);
{ Returns title of current work file text }

Function SI_Sys_Unit : Integer;
{ Returns number of bootload unit }

Procedure SI_Get_Sys_Vol (Var SI_Vol : String);
{ Returns system volume name }

Procedure SI_Get_Pref_Vol (Var SI_Vol : String);
{ Returns prefix volume name }

Procedure SI_Set_Pref_Vol (SI_Vol : String);
{ Sets prefix volume name }

Procedure SI_Get_Date (Var SI_Date : SI_Date_Rec);
{ Returns current system date }

Procedure SI_Set_Date (Var SI_Date : SI_Date_Rec);
{ Sets current system date }

0200101:04A 4-9

File Management Units

Unit Interface

Unit FileInfo;
Interface

Type F_File_Type = file;

F_Date_Rec = Packed Record
Month : 0..12;
Day : 0..31;
Year : 0..100;
End; { F_Date_Rec }

Function F_Open (var fid: F_File_Type):boolean;
(* returns true if the file is open and false if not open *)
Function F_Length (Var Fid : F_File Type) : Integer;

(Returns the length of the file attached to the Fid identifier.
If the file is not opened result is returned as zero}

Function F_Unit_number (Var Fid : F_File_Type) : integer;

{Returns the unit containing the file attached to the Fid
jdentifier. If there is no file opened to Fid, the function
resuit is Zero.}

Procedure F_Volume (Var Fid : F_File Type;
Var File_Volume : String);

{Returns the name of the volume containing the file attached
to the Fid identifier. If there is no file opened to Fid,
the file_volume is set to a null string.}

Procedure F_File_Title (Var Fid : F_File_Type;
Var File_Title : String);

{Returns the title (with suffix) of the file attached to the
Fid identifier. If there is no file opened to Fid,
the File_title is set to the null string.}

Function F_Start (Var Fid : F_File_Type) : integer;

{Returns the block number of the first block of the file
attached to the Fid identifier. If there is no file opened
to Fid, the function result is returned is zero.}

Function F_is_Blocked (Var Fid : F_File_Type) : Boolean;
{Returns a boolean that is TRUE if the file attached to the
Fid identifier is located on a storage device. If there
is no file opened for the Fid or if the unit is not a storage
device, the function result is set to false.}

4-10 0200101:04A

File Management Units

Procedure F_Date (Var Fid : F_File_Type;
Var File_Date : F_Date_Rec);

{Returns a record indicating the last access date for the file

attached to the Fid identifier. If there is no file opened to
Fid, the File_Date is unchanged. }

0200101:04A 4-11

File Management Units

DIRECTORY INFORMATION

This section describes the directory information
unit, called DIR_INFO, which enables your programs
to access file system information.

Many of your applications may need to access and
modify directory information. This unit makes it
easy to perform most of these sorts of operations.
There are other ways to do this. The most
common solution is to construct your own routines
that directly access the operating system's data
structures. However, the interfaces provided by
this unit make directory information access much
safer and easier.

The DIR_INFO unit provides the following
capabilities to your programs:

® Directory Information Access. For any on-line
storage volume, DIR_INFO returns the volume
name, volume date, number of disk files on
volume, amount of unused space, and attributes
of individual disk files.

® Directory Manipulation. DIR_INFO provides
routines for changing the date or name of a disk
file or volume, removing files from a volume,
and mounting and dismounting subsidiary volumes.

® File Manipulation. *DIR_INFO allows you to

Krunch a velume in a similar fashion to the
filer.

4-12 0200101:04A

File Management Units

® Wild Cards. DIR_INFO uses the UNIT WILD,
which provides a wild card convention for
pattern matching of string variables, Most
DIR_INFO routines recognize the wild card
convertion in their file name arguments.

@ Error Handling. DIR_INFO defines a standard
error result (similar to UCSD p-System I/0
results) for routines involved with file names and
directory searches.

@ Multitasking Support. DIR_INFQO provides
routines for protecting file system information
from contention between concurrent tasks.
These routines ensure that only one task can
modify file system information at a time.

Notation and Terminology

In this chapter, a variant of Extended
Backus-Naur Form (EBNF) is used as a notation
for describing the form of wild cards and file
names. Meta-words are words that represent a
class of words; they are shown in the text by
the use of angle brackets < \ >. The following
expression is an example:

<fish> = trout | salmon | tuna

0200101:04A 4-13

File Management Units

The equal sign (=) indicates that the meta-word
on the left side can be substituted with the word
on the right side. The bar (|) separates
possible choices for substitution. In this example,
"fish" can be replaced by "trout,” "salmon," or
"tuna."

An item enclosed in square brackets [\] may be
substituted into a textual expression. For
example, [microleomputer can represent the text
strings computer and microcomputer.

An item enclosed in braces { \'} can be
substituted zero or more times into a textual
expression. The following expression represents
responses to jokes possessing varying degrees of
humor.

<joke-response> = {ha}

Literal occurrences of characters or strings of
characters are delimited by quotes to avoid
confusing them with notational definitions. For
example:

left-bracket = "<™ / "{" / "["

The term <file-objeet> is used throughout this
chapter; it is a generic term encompassing
communications and storage volumes, files, and
unused areas on storage volumes,

4-14 0200101:04A

File Management Units

File Name Arguments

Most DIR_INFO routines accept file name
arguments. The file name specifies the volume
and/or file to be accessed by the routine. You
should see the Gperating System Reference
Manual for a complete description of p-System
files and file names if you aren't familiar with
them.

Volume names and file names may contain wild
cards (which are described in the next section).
Device numbers and colons separating volume IDs
and file names must appear literally; they must
be independent of any wild card.

All DIR_INFO routines except D_Scan_Title
ignore file length specification. In some cases,
file name conventions in DIR_INFO differ slightly
from p-System file name conventions:

® DIR_INFO considers an empty
volume ID/file name argument to specify the
prefix vclume; that is, <file name> is empty
(implying a volume reference), and
<volume ID> is enipty (implying the prefixed
volume). An empty string isn't a valid file
name in the p-System.

@ DIR_INFO interprets wild card file names of
the form <vol-name)>:= to be valid volume
specifiers. This is consistent with DIR_INFO's
definition of the (=) wild card, but
inconsistent with the p-System filer's
interpretation of the (=) wild card. The
filer doesn't accept file names of this form as
volume specifiers.

0200101:04A 4-15

File Management Units

File Type Selection

Some DIR_INFO routines accept a <file-type>
parameter (named D_SELECT) which is used to
specify the file objeets to be accessed. (File
objects include volumes, unused areas on storage
volumes, temporary files, text files, code files,
and other types of files.) The file type
parameter is necessary because file names alone
can't completely specify all types of file objects
(such as unused disk areas). The routines that
generate directory information use both the file
name argument and the D_SELECT parameter to
determine the file objects on which to return
information.

DIR_INFO defines a scalar type, which is used to
specify file objects. D_SELECT is declared as a
set of this type; a file objeet is selected by
including its corresponding scalar in D_SELECT.

File object types:

(D_Vol, D_Code, D_Text,
D_Date, D_SVol, D_Temp,
D_Free);

D_NameType

D_Choice

Set Of D_NameType;

4-16 0200101:04A

File Management Units

Here is a description of these scalar values:

@ D_Vol. Selects all volumes matehing the file
name argument, Note that while volume
names may contain wild cards, device numbers
must be specified literally.

@ D Free. Selects all unused areas of disk
space on the volumes matching the file name
argument.

® D _Temp. Selects all temporary files matching
the file name argument. Files are considered
temporary if they have been opened—and not
yet elosed—by a program.

® D _Text. Selects all text files matching the
file name argument.

@ D Code. Selects all code files matching the
file name argument.

@ D Data. Selects all date files matching the
file name argument.

_SVol. Seleets all svol files matching

file name argument.

-+
>
[¢]

0200101:04A 4-17

File Management Units

File Dates

Disk files and disk volumes are assigned
<file-dates>. File detes are stored in records of
type D_Date_Rec. They are accessed and
modified by the DIR_INFO routines D_Dir_List
and D_Change_Date.

D_Date_Rec is declared as follows:

D_Date_Rec = Packed Record
Month : 0..12;
Day ¢ 0..31;
Year : 0..100;
End;{ D_Date_Rec }

A year value of 100 in a file date record
indicates that the object is a temporary disk file.
(This is a p-System file system convention.)

Error Results

All DIR_INFO routines that access file system
information return a value reflecting the result

of the file system operation. This result
indicates either that the routine finished without
errors or that an error occurred. Valid

information isn't returned when routines return a
result value indicating that an error has
occurred.

4-18 0200101:04A

File Management Units

The following items describe conditions that can
cause errors:

® The specified files, volumes, or unused spaces
can't be found in the disk directory.

® The specified unit is off-line.
® The file name argument has improper syntex.

@ The specified file name conflicts with an
existing file.

An error can never cause a function to terminate
abnormally. Errors that the routine can't
identify explicity are flagged. This is done by
returning a result that indicates an unknown
error has occurred,

DIR_INFG defines the following scalar type to
describe the possible errors encountered:

Type D_Result = (D_Okay,
D_Not_Found,

D Ex1s;s,

D_Name_Error,
D Off Line,
D_Other);

You should refer to the descriptions of the
various routines for details concerning the results
of errors and the status of directory information
returned during error conditions.

0200101:04A 4-19

File Management Units

The DIR_INFO Routines

Funetion D_Krunch
(D_Unit:integer;
D_Block:integer):D_Result;

This function Krunches the files on the volume
specified by D_Unit. This is similar to the
filer's K(runch activity. The block indicated by
D_Block is the point around which the unused
disk space is consolidated. Files located before
D_Block are moved forward (toward the
directory) and files after it are moved backward
(toward the last track).

NOTE: Using D_Krunch on a volume that
contains an executing or open file (including the
operating system) may destroy the files. If
function D_Krunch changes the location of &an
open or executing file, the system returns data
to the previous—not the present—location of the
file.

Function D_Mount
(D_File_Name:String):D_Result;

The D_File_Name parameter icentifies an svol
file. The corresponding subsidiary volume is
mounted unless D_Result indicates otherwise.
Wild cards may be used.

Function D_DisMount
(D_Vol_Name:String):D_Result;

The subsidiary volume identified by the

D Vol _Name parameter is dismounted. This
volume must be a subsidiary volume.

4-20 0200101:04A

File Management Units

Function D_Scan_Title
(D_NAME:String; Var D_VOLUME,
D_TITLE: String; Var D_TYPE:
D_NameType; Var D_SEGS:
Integer): D_Result;

D_Scan_Title parses the p-System file name
passed in D_NAME and returns the file name's
volume ID, file name, file type, and file length
specifier. The function result indicates the
validity of the file name argument. D_Scan Title
doesn't determine whether or not D_Name
actually exists,

D_Scan_Title accepts the following parameters.

® D NAME. A string containing a p-System file
ane.

=

@ D _VOLUME. A string that returns the volume
ID contsined in D_NAME. If D_NAME
contains no volume ID or if the volume ID is
(:), D_VOLUME is assigned the system's
defeult volume name. If the volume ID is
(*)or (*), D VOLUME is assigned the
system's boot volume name. Volume names
assigned to D_VOLUME contain only uppercase
characters and don't contain blank characters.

® D TITLE. A string that returns the file name
. contained in D_NAME. If D_NAME doesn't
contain a file name, D_TITLE is assigned the
empty string. File titles assigned to D_TITLE
contain only uppercase characters and don't
contein blank characters.

0200101:04A 4-21

File Management Units

D_TYPE. A scalar which returns a value
indicating the file type of the file name
contained in D_NAME,

The following items define D_TYPE's scalar type:

D_NameType = (D_Vol, D_Code, D_Text,
D_SVol, D_Data, D_Temp, D_Free,);

D_TYPE is set to D_Vol if the file name in
D_NAME is empty., D_TYPE is set to D_Code
if the file name is terminated by ".CODE", or
to D_Text if the file name is terminated by
"TEXT" or ".BACK". D_TYPE is set to
D_SVOL if the file name ends with .SVOL (a
subsidiary volume). If none of the above holds
true, D_TYPE is set to D_Data. Only the
suffix of a file is used to determine what
type it is. For example, the file name
SYSTEM.COMPILER is returned as a data file
because its suffix isn't .CODE,

D_SEGS. An integer that is assigned a value
indicating the presence of a file length specifier

in

D_NAME. The value returned in D_SEGS is

assigned as follows:

4-22

LENGTH SPECIFIER D_SEGS VALUE
[<nuraber>] <number>
[*] -1
<not present> 0

0200101:04A

File Manageiment Units

D_Scan_Title returns a function result of type
D R sult. The only scalar values returned by
D_Scan_Title are D _Okay and D_Name_Error;
they have the following meanings:

@ D_Okay. No Error. All information
returned by D_Scan_Title is valid.

® D_Name_Error. Illegal file name syntax in

D_NAME. The information returned by
D Scan Title is invalid.

Example Program

Program Scan_Test;
Uses
(*$SUWILD.CODE*)
wild,
(*SUDIR.INFO.CODE¥*)
DirInfo;
Var
Name,
Volume,
Title : String:;
Typ : D_NameType;
Seg_Flag : Integer;
Result : D_Result;
Ch : Char;
Begin { Scan_Test }
Writeln('— D_ScanTitle Test');
Repeat
Writeln;
Write('File name to parse: ');
Readln(Name) ;
Result := D_ScanTitle(Name, Volume, Title,
Typ, Seg_Flag);
Writeln('parsed: ');
case result of
d_okay:begin
Writeln(*' Volume name — ', Volume);
Writeln(' File name — ', Title);
HWrite(' File type — ');
Case Typ Of
D_Text : Writeln('text file');
D_Code : HWriteln('code file');
D_Data : Hriteln('data file');
D_SVol : Writeln('svol file');
End; { Cases }
If Seg_Flag <> 0 Then
Writeln(' Segment flag — ', Seg_Flag);
end;

0200101:04A 4-23

File Management Units

d_name_error:writeln(' Name error');
end;
¥riteln;
Write('Continue? ');
Read (Ch);
Hriteln;

Until Ch In ['n', 'N'];

End. { Scan_Test }

Function D_Dir_List
(D NAME:Strmg, D_SELECT : D_Choice;
Var D_PTR : D ListP;
D_PINFO : Boolean) D_Result;

D_Dir_List creates a list of records containing
directory information on volumes and disk files.
This information includes volume names and
device numbers of storage and ecommunications
on-line volumes, number of files on storage
volumes, lengths and starting blocks of disk
files and unused disk spaces, file names and
types, and file dates. The function result
value indicates invalid file name arguments,
off-line volumes, or not-found files.

D_Dir_List optionally provides information
describing how the wild card file name
argument matched files and/or volumes.

D _Dir_List accepts a set specifying the file
types on which to return information and a
string containing a file name. D_Dir_List
returns a pointer to a linked list of directory
information records. Each record contains the
name of a file or volume which matches the
file name argument and also is one of the
types specified in the file type set.

4-24 0200101:04A

File Management Units

® D NAME. The D_NAME parameter contains
a file name which may contain wild cards.

® D_SELECT. The D_SELECT parameter is a
set specifying the directory objects for
whiceh information is to be returned by
D_Dir_List. See the file type selection for
more information on directory object
selection.

® D _PTR. The D_PTR parameter is assigned
a pointer to a linked list of records
containing directory information for all
specified file objects. To be listed in a
directory, a file object must meet the

following criteria.

® It must reside on a volume whieh
matches the volume ID in D_NAME.

@ If the object is a disk file, it must
mateh the file ID in D_NAME.

® It must belong to one of the types
included in D_SELECT.

0200101:04A 4-25

File Management Units

The linked list contains one record for each
file object matched. The records are defined
as follows:

D_ListP = "D_List;
D_List = Record
D_Unit : Integer;
D_Volume : ing(71;
D_VPat : D_PatRecP;
D_NextEntry : D_ListP;
Case D_IsBlkd : Boolean Of
True : (D_Start,
D_Length : Integer;
Case D_Kind : D_NameType Of
D_Vol,
D_Temp,
D_Code,
D_Text,
D_Data,
D_SVol:

(D_Title : String [15]1;

D_FPat : D_PatRecP;

D_Date : D_DateRec;

Case D_NameType of

D_Vol: (D_NumFiles:Integer)));
End;

The D_List record fields return the following
information for each file object in the D_Ptr
list.

® D _Unit returns the device number of the
device containing the object.

® D Volume returns the name of the volume
containing the object.

4-26 0200101:04A

File Management Units

® D _VPat is a pointer to pattern matching
information collected while comparing
volumes to the volume ID in D_NAME (see
the section on the wild unit for details on
pattern matching information). D_VPat is
set to NIL if pattern matching information
isn't requested.

® D _NextEntry is a pointer to the next
directory information record in the list., It
is set to NIL if the current record is the
last record in the list.

@ D_IsBlkd is set to TRUE if the file object
is (or resides on) a storage volume.
Records describing serial volumes have
D_IsBlked set to FALSE; the remaining
fields are undefined.

The following fields exist only in records
deseribing file objects stored on storage
volumes (that is, D_IsBlkd is TRUE):

® D_Start contains the starting block number
of the file object. If the object is of type
D_Vol, this value is interpreted as the
block number of the first bloeck on the
volume (that is 0 for disk volume).

@ D_Length contains the length (in blocks) of
the file object. If the object is of type
D_Vol, this value is interpreted as the total
number of blocks on the volume (such as
320 for a typical single density, 5-1/4"
diskette).

0200101:04A 4-27

File Management Units

@ D Kind indicates the type of the file object
described by the current record.

The following fields exist only in records
describing disk file objects other than unused
disk areas (such as D_Kind in [D_Vol, D_Temp,
D_Code, D_Text, D_Data, D_SVol]:

@ D Title contains the file name of the
object. For objects of type D_Vol, this
field contains the empty string.

® D_FPat is a pointer to pattern matching
information collected while comparing file
names to the file ID in D_NAME (see wild
card UNIT for cetails on pattern matching
information). D_FPat is set NIL if pattern
matching information isn't requested or if
the file ID in D_NAME is empty.

® D Date contains the file date for the
current object.

® D _NumFiles is valid only for objects of
type D_Vol; it contains the number of files
in the volume's directory.

NOTE: An .SVOL file (which contains a
subsidiary volume) appears as any other file on
the principal volume. This means that
D_NumFiles doesn't correspond to an .SVOL
file. However, when accessed by its volume
ID, the actual subsidiary volume returns with a
valid D_NumFiles entry.

4-28 0200101:04A

File Management Units

File information is returned (in a linked list
accessed by D_Ptr) in the following order:

1.

[J%)
-

Volume on highest numbered device that
matches D_NAME (if D_Vol is in
D_SELECT).

Files in directory of this volume that match
D_NAME and are of one of the types in
D_SELECT (if a file type is in D_SELECT).

Last file on volume

First file on volume

Unused spaces on this volume (if D_Free is
in D_SELECT).

Last free space on volume

.

First free space on volume

Volume on lowest numbered device that
matches D_NAME (if D_Vol is in
D_SELECT).

Files in directory of this volume that match
D_NAME and are of one of the types in
D_SELECT (if a file type is in D_SELECT).

Last file on volume

First file on volume

0200101:04A 4-29

File

Management Units

6. Unused spaces on this volume (if D_Free is
in D_SELECT).

Last free space on volume

First free space on volume

D_PINFO

4-30

When set to TRUE, the D_PINFO parameter
indicates that pattern matching information
should be returned in a linked list accessed by
D_PTR. The D_WILD_MATCH function collects
this information while comparing volume and
file IDs; it is useful for determining how the
wild cards were expanded in D_NAME.
Information is returned in two pointers; one for
volume names matched (named D_VPat) and one
for file IDs matched (named D_FPat).

The following is an example of pattern record
lists:

D_NAME is set to '=:TEST{1-9}='

Two volumes contain files which match
D_NAME:

BOOT contains TEST5.CODE

WORK contains TESTS5.TEXT

0200101:04A

File Management Units

For BOOT:TEST5.CODE, D_Volume is 'BOOT',
D_Title is '"TEST5.CODE', and D_VPat returns

a pointer to the following information.

1. WildPos is 1, WildLen is 1
CompPos is 1, CompLen is 4
('=" matches 'BOOT!)

D_FPat returns a pointer to the following
information.

1. WildPos is 1, WildLen is 4
CompPos is 1, CompLen is 4
('"TEST' matches 'TEST")

2. WildPos is 5, WildLen is 5
CompPos is 5, CompLen is 1
(*{1-9}* matches '5'")

3. WildPos is 10, WildLen is 1
CompPos is 6, CompLen is 5
(*=' matches '.CODE?")

A similar list is returned for
WORK:TEST5.TEXT.

NOTE: If the volume ID in D_NAME consists
of a device number (such as "#5"), the volume
assigned to the device is defined to match the
volume ID in D_NAME. The Pos and Len
pointers are set as in the following example,

D_NAME is set to "#5:"

0200101:04A 4-31

File Management Units

A disk volume named "MYDISK" resides in
device 5.

1. WildPos is 1, WildLen is 2
CompPos is 1 CompLen is 6
("#5' matches "'MYDISK")

NOTE: D_FPat and D_VPat never contain
invalié information. If information is
unavailable or hasn't been requested, the
pointers are set to NIL.

Funetion Result

D _Dir_List returns a value of type D_Result.
D _Dir “List can return all scalar values “defined
in D_Result except D_Exists; the values have
the following meanings:

® D Okay. No error. All D_Ptr information
is valid.

® D Not_Found. No such file/volume found.
No match found for D_NAME. D_Dir_List
- sets D_Ptr to NIL.

® D Name_Error. Illegal syntax in D_NAME.
D_Dir_List sets D_Ptr to NIL.

4-32 0200101:04A

File Management Units

® D_OffLine. Volume off-line. The volume
specified by D_NAME wasn't on-line. This
error occurs only when the volume ID in
D_NAME doesn't contain wild eards (that is,
a single volume is specified, and it is
off-line). If the volume name in D_NAME
contains wild cards but doesn't match any
on-line volumes, D_Dir_List returns
D_Not_Found. D_Ptr is set to NIL.

@ D _Other. Unknown error. D_Dir
encountered an error it couldn't identify,
but which interrupted normal execution of
the function. D_Ptr is set to NIL.

0200101:04A 4-33

File Management Units

Example Program

The following program is a general purpose
directory lister; it accepts a string containing
wild cards and creates a list of matching files
and (if requested) pattern matching information
for the files. Note that the program uses the
MARK and RELEASE intrinsies to remove the
D _Dir_List information from the heap after the
information has been used.

Program Listtest;
Uses
(*$SUWILD.CODE*)
wild,
(*$SUDIR.INFO.CODE*)
Dirnfo;

Var
Select : D_Choice;
Want_Patterns : Boolean;
Heap_Ptr : “Integer:;
Segs : Integer;
Typ : D_NameType;
Volume, Title, Match : String:
Result : D_Result;
Ch : Char;
Ptr : D_ListP;

Procedure GiveChoice(Choice : String;
Kind : D_Choice);

Var

Ch : Char;
Begin

Write(' ',Choice,"' 2 ');

Read (Ch) ; Hriteln:

If Ch In ['y', 'Y') Then Select := Select + Kind;
End; { GiveChoice }

Procedure Print_Patterns(PatPtr : D_PatRecP;
Comp, Wild : String);

Var
Count : Integer;

Begin { Print_Patterns }
Count := 1;
Writeln('type <cr> for patterns');
Readlp; Writeln;
Repeat
Writeln('Pattern ', Count, ' :');

4-34 0200101:04A

File Management Units

With PatPtr”™ Do
Begin
Writeln(' Comp : ', Comp) ;

If CompLen <> 0

Hrite('”':(CompPos + 9));
If CompLen > 1 Then HWrite('"':(CompLen -- 1));
¥riteln;
HWriteln(' wild : ', wild);
Hrite('"':(WildPos + 9));
If WildLen > 1 Then Write('"':(WildLen -- 1));
Writeln; Writeln;
End;

PatPtr := PatPtr”.Next;

Count := Count + 1;

Until PatPtr = Nil

End; { Print_Patterns }

Procedure Print_Info(Ptr : D_ListP);

Begin { Print_Info }
Repeat
With Ptr” Do
Begin
If D_IsBlkd Then
Case D_Kind Of
D_Free : Write('Free space on ');
D_Vol : Hrite('Volume ');

D_Temp : Hrite('Temporary file on ');
D_Text : Hrite('Text fiie on *);
D_Code : Hrite('Code file on ");
D_Data : Write('Data file on ');
D_SVol : HWrite('SVol file on ');

End { Cases }

Else
Write('Communications volume ');
Writeln(D_Volume) ;
If Want_Patterns And (D_VPat <> Nil) Then
Begin
Hriteln:;
Writeln(' Volume patterns:');
Print_Patterns(D_VPat, D_Volume, Volume);
End;
Hriteln(' Unit number ', D_Unit);
If D_IsBlkd Then
Begin
If Not (D_Kind In [D_Vol, D_Freel) Then .
Hriteln(' File name .ee.e.... ', D_Title);
If D_Kind <> D_Pree Then
Begin
If Want_Patterns And (D_FPat <> Nil) Then
Begin
HWriteln(' File name patterns:');
Print_Patterns(D_FPat, D_Title, Title);
End;
With D_Date Do
Hriteln(' File date ..eeveees 'y

Month, '/', Day, '/', Year);

0200101:04A 4-35

File Management Units

End; { If D_Kind }
I1f D_Kind = D_Vol Then
Writeln(' Files on volume ... ', D_NumFiles);
Writeln(' Starting block ', D_Start);
Writeln(' File length ', D_Length);
End; { If D_IsBlkd }
End; { With Ptr” }
Writeln;
Write('Type <cr> for rest of list');
Readln; Writeln;
Ptr := Ptr”.D_NextEntry;
Until Ptr = Nil
End; { Print_Info }

Begin { Listtest }
Repeat

Mark (Heap_Ptr);

Select := [];

Writeln('Directory Lister —');

Write ('Volume and/or file name to match: ');

Readln(Match);

Write('Return pattern matching information? [y/n} ");

Read(Ch); HWriteln;

Want_Patterns := Ch In ['y', 'Y'];

If Want_Patterns Then
Result := D_ScanTitle(Match, Volume, Title, Typ, Segs);
Writeln('Types [y/n 1 : ');
GiveChoice('Directories', [D_Voll);
GiveChoice('Text Files ', [D_Textl);
GiveChoice('Code Files ', [D_Codel);
GiveChoice('Data Files ', I[D_Datal);
GiveChoice('Temp Files ', [D_Templ):
GiveChoice('Free Space ', ID_Freel);
GiveChoice('SVol Files ', [D_SVoll);
Result := D_DirList(Match, Select, Ptr, Want_Patterns);

If Ptr <> Nil Then
Print_Info(Ptr)

Else

Case Result Of
D_Name_Error : Writeln(' Error in file name');
D_Off_Line : Writeln(' Volume off line');
D_Not_Found : HWriteln(' File not found');
D_Other : Hriteln(' Miscellaneocus errer');

End; {cases}

Repeat

Write('Continue 2 ");
Read(Ch); Writeln;
Until Ch In ['n','N','y','¥Y');
Hriteln;
Release(Heap_Ptr);
Until Ch In ['n', 'N'];
End. { listtest }

4-36 0200101:04A

File Management Units

Function D Change Name
(D OLD_NAME, D_NEW NAME : String;
D_REMOLD : Boolean) D_Result;

D_Change_Name searches for the volume or
file designated by the file name contained in
D _OLD_NAME and changes its name to the file
name contained in D_NEW_NAME.

D_Change_Name only changes one file name at
a time, and thus doesn't accept file names
containing wild cards; however, it can be
combined with other Dir_Info and wild card
routines to create user-defined file name
changing routines that accept wild cards.

D Change Name accepts the following
parameters.

@ D OLD_NAME. A string containing the
name of the file to be changed. If the file
name is invalid, D_Change_Name returns
D_Name_Error. Note that wild card
characters are treated literally.

® D NEW_NAME. A string containing the
replacement file name. If the file name is
invalid, D_Change_Name returns
D_Name _Error. Note that wild card
characters are treated literally.

0200101:04A 4-37

File Management Units

4-38

® If D OLD_NAME contains an empty file

title, D_Change Name changes the name of
the volume specified by D_OLD_NAME to
the volume name in D_NEW_NAME; any file
title in D_NEW_NAME is ignored. If
D_OLD_NAME contains a nonempty file
title, D_Change_Name changes the name of
the disk file spec1f1ed by D_OLD_NAME to
the file title in D_NEW_NAME; any volume
name in D_NEW_NAME is 1gnored If the
file ID in D_NEW_NAME is empty,
D_Change_Name returns D_Name_Error.

D_REMOLD. If set to TRUE, D_REMOLD
indicates that an existing file or volume
designated by the file name in
D_NEW_NAME may be removed in order to
change the file name. If set to FALSE, the
presence of an existing file or volume with
the same name as D_NEW_NAME aborts the
name change, and D_Change_Name returns
D_Exists as a function result.

D_Change_Name returns a value of type
D_Result. D_Change_Name can return all
scaler values defined in D_Result; the
values have the following meanings.

® D Okay. No error. D_OLD_NAME was
found and its name changed.

® D_Not_Found. No such file/volume found.

No match found for D_OLD_NAME. No
change made.

0200101:04A

File Management Units

® D_Exists. The name change was blocked
by the presence of an existing file with
the same name as D_NEW_NAME. No
change made.

® D _Name_Frror. Illegal file name syntax
in D_OLD_NAME or D_NEW_NAME. No
change made.

® D _Off_Line. Volume off-line. The
volume specified by D_OLD_NAME wasn't
on-line, No change made.

® D_Other. Unknown. D_Change_Name

encountered an error it couldn't identify.
No change made.

0200101:04A 4-39

File Management Units

Example Program

The following program demonstrates how you
might use D_Change_Name.

Program chngtest;
Uses
(*SUWILD.CODE%*)
wild,
(*SUDIR.INFO.CODE¥*)
DirInfo;

Var
RemOld : Boolean;
01d, New: String;
Ch : Char;
Rslt : D_Result;

Begin { chngtest}

Writeln('D_ChangeName Test — ');

Repeat

Writeln;

Write('Name to change : ');

Readln(0ld) ;

Write('New name : ');

Readln(New) :

HWrite('Remove existing files (if any) of that name ? [y/nr] ");

Read (Ch); Writeln;

RemOld := Ch In ['y','Y'];

Case D_ChangeName (0Old,New,RemOld) Of
D_Okay : Writeln(’ No error');
D_Off_Line : Writeln(' Volume off line');
D_Name_Error : Writeln(' Error in file name');
D_Not_Found : Writeln(' File not found');
D_Other : Writeln(' Miscellaneous error');
End; { cases }
HWriteln;
Write('Continue ? ');
Read (Ch); HWriteln;

Until Ch In ['n', 'N'];

End. { chngtest }

4-4C 0200101:04A

File Management Units

Wild Card File Name Change

D_Change_Name doesn't accept wild carc file
name arguments; however, it can be combined
with the pattern matching information returned
by D_Dir_List to implement a wild card, file
name changing routine. (Note that this routine
must use directory locks in multi-tasking
environments.)

For example, assume that you have the
following files:

TEST1.TEXT
TEST12.CODE
TEST.DATA

You would like to change them to the
following names:

OLD1A.TEXT
OLD12A.CODE
OLDA.DATA

This can be performed by using D_Dir_List to
search for the file name 'TEST=.='. The
pattern matching information returned by
D_Dir_List can be used to create new file
titles; in this case, 'TEST' is replaced with
'OLD', and the first '=' is replaced with the
concatenation of the pattern matched by the
'=' and the literal string 'A'. The part of
each file title matched by the period and the
second '=' wild card 1is unchanged.
D_Change_Name is called with the modified
file title for each file matched by D _Dir_List.

0200101:04A 4-41

File Management Units

Example Program

The following program demonstrates how you
might use D_Change_Name and D_Dir_List
when constructing a specialized file name
changing utility. The program accepts a file
name argument containing two '=' wild cards;
for each file which matches the argument, the
file title is changed by swapping the string
patterns matched by the two '=' wild cards.

Program WildChange;

Uses
(*SUWILD.CODE*)
wild,
{*$UDIR.INFO.CODE*)
Dirinfo;

Var
Heap_Ptr : “Integer:
Typ : D_NameType;
Segs : Integer;
Select : D_Choice;
Volume, Name, Match : String:;
Result : D_Result;
Ch : Char;
Ptr : D_ListP;

Procedure GiveChoice(Choice : String; Kind : D_Choice);
Var
Ch : Char;

Begin

Write(' ',Choice,’ 2 ");

Read(Ch); Hriteln:;

If Ch In ['y', 'Y'] Then Select := Select + Kind;
End; { GiveChoice }

Procedure Print_Patterns(PatPtr : D_PatRecP;
Comp, Wild : String)
Var
Count : Integer;

Begin { Print_Patterns }
Count := 1j
Writeln('type <cr> for patterns');
Readln; HWriteln:
Repeat
Writeln('Pattern ', Count, ' :');
With PatPtr” Do
Begin
Writeln(' Comp : ', Comp);
If CompLen <> 0 Then
Write('"':(CompPos + 9)};
Hriteln;
Hriteln(' wWild : ', Wild);
Write('"':(WildPos + 9));

4-42 0200101:04A

File Management Units

If WildLen > 1 Then Write('"':(WildLen - 1));
Hriteln;Writeln;

End;
PatPtr
Count
Until PatPtr = Nil

End; { Print_Patterns }

Procedure Print_Info(Ptr : D_ListP; Want_Patterns : Boolean;
Volume, Name : String);
Begin { Print_Info }
Repeat
Writeln('MATCHED FILE —');
With Ptr” Do
Begin
Hrite(D_Volume, ':');
If D_IsBlkd Then
If Length(D_Title) > O Then
Write(D_Title);

Hriteln;
If Want_Patterns And (D_VPat <> Nil) Then

Begin
1
Hriteln(' Volume patterns:');
Print_Patterns(D_VPat, D_Volume, Volume);
Eng;

If D_IsBlkd Then
If Want_Patterns And (D_FPat <> Nil) Then

Begin
Hriteln(' File name patterns:');
Print_Patterns(D_FPat, D_Title, Name);
End;

End; { With Ptr” }

Writeln;
Brite('Type <cr> for rest of list');
BReadln; i ;

Ptr := Ptr”.D_NextEntry;
Until Ptr = Nil

End; { Print_Info }

Procedure Change(Ptr : D_ListP; Name : String):
Var

I, Posl, Lenl, Pos2, Len2, Last_Pos,

Mid_Pos, Last_Equal : Integer;

Patl, Pat2, Title, New : String;

Procedure Find_Equal(D_Title, Name : String:
Var PatPtr : D_PatRecP;
Var Pat : String;
Var Pos, Len : Integer);
Begin { Find_Equal }
While (Name[PatPtr”.wildPosl] <> '=') And
(PatPtr”.Next <> Nil) Do
PatPtr PatPtr”.Next;
With PatPtr” Do
Begin
If CompLen = 0 Then Pat := '!'
Else Pat := Copy(D_Title, CompPos, CompLen);
Pos := CompPos;
Len := CompLen;
End;
End; { Find_Equal }

Begin { Change }
With Ptr® Do
Begin
Find_Equal(D_Title, Name, D_FPat, Patl, Posl, Lenl);
If D_FPat <> Nil Then
Begin

D_FPat := D_FPat”.Next;
Find_Equal(D_Title, Name, D_FPat, Pat2, Pos2, Len2);

0200101:04A 4-43

File Management Units

4-44

Eng;

New := D_Title;

Last_Pos := Pos2 + Len2;

Mid_Pos := Posl + Len2;

Last_Equal := Last_Pos - Lenl;

For I := Posl To Mid_Pos - 1 Do { 1lst '=' }

For I := Mid_Pos To Last_Equal - 1 Do
New[I] := D_TitlelI - Len2 + Lenll;

For I := Last_Equal To Last_Pos - 1 Do { 2nd '='}

New[I] := PatllI - Last_Equal + 11:
New := Concat(D_Volume, ':', New);
Title := Concat(D_Volume, ':', D_Title);
Result := D_ChangeName(Title, New, Irue);
Hrite(Title, '->', New);
Case Result Of
D_Name_Error : Write(' Error in file name'});
D_Off_Line : Write(' Volume off line');
D_Not_Found : HWrite(' File not found");
D_Other : Write(' Miscellaneous error');
d; {cases}

End; { if D_FPat }
End; { with }
{ Change }

Function Display(S, Match, Volume, Name : String;

Var

Select : D_Choice) : D_ListP;

Ch : Char;

Ptr : D_ListP;
Want_Patterns : Bgolean;
Result : D_Result;

Begin { Display }
Hriteln; Writeln(S);
Write(' Display pattern matching information ? '");
Read (Ch); H¥riteln;
Want_Patterns := Ch In ['y', 'Y'];
Result := D_DirList(Match, Select, Ptr, Irue);
If Ptr <> Nil Then
Print_Info(Ptr, Want_Patterns, Volume, Name)
Else
Case Result Of

D_Name_Error : Writeln(' Error in file name');
D_Off_Line : Writeln (' Volume off line');
D_Not_Found : Hriteln(' File not found");
D_Other : HWriteln(' Miscellaneous error');

Eng; {cases}
Display := Ptr;

End;

{ Display 1}

Begin { WildChange 1}
Writeln;
Repeat

Mark (Heap_Ptr);

Select := [];

Hrite('File title to match (must contain two ''=''): '
Readln(Match);

Result := D_ScanTitle(Match, Volume, Name, Typ, Segs);
Writelp('Types [y/n 1 : ');

GiveChoice('Directories', [D_Voll);

GiveChoice('Text Files ', [D_Textl);

GiveChoice('Code Files ', [D_Codel);:

GiveChoice('Data Files ', ID_Datal);

GiveChoice('SVol Files ', [D_SVoll);

)i

Ptr := Display('0Old Files :', Match, Volume, Name, Select)

If Ptr <> Nil Then
Begin
Repeat
Change (Ptr, Name);
Ptr := Ptr”.D_NextEntry;

0200101:04A

File Management Units

Until Ptr = Nil;
Hrite('Redisplay files? '};
Read(Ch); Hriteln;
If Ch In ['y', 'Y'] Then
Ptr := Display{'New Files :', HMatch,
Volume, Name, Select);
End;
Repeat
Hrite('Continue ? ');
Read (Ch); HWriteln;
Until Ch In ['n','N','y','¥'];
MWriteln;
Release(Heap_Ptr);
Until Ch In ['n', 'N'];
End. { WildChng }

Function D_Change_Date
(D_NAME : String;
D_NEWDATE : D_DateRec;
D_SELECT : D_Choice) : D_Result;

D_Change_Date changes the file date of
volumes and files whose names match the file
name argument contained in D_NAME.
D_Change_Date accepts wild cards in its file
name argument. If a volume date is changed,
only the disk is updated. The disk must be
rebooted if the new date is to be used. To
change the internal date, which will appear
when D(ate is used in the filer, use the date
access procedures within the SYS.INFO unit.

D_Change_Date accepts the following
parameters.

@® D NAME. A string which contains a valid

file name. The file name may contain wild
cards.

0200101:04A 4-45

File

4-46

Management Units

® D _NEWDATE. A record of type D_DateRec
which conteins the new date, A year value
of 100 isn't accepted by D_Change_Date in
a new date.

® D_SELECT. A set of file and/or volume.
All scalar types except D_Free and D_Temp
apply to D_Change_Date. Disk free spaces
identified by the D_Free scalar don't
contain file dates. Temporary status for
files is specified by a special value in the
file date field. Thus, D_Free and D _Temp
are ignored if they are included in
D_SELECT.

D_Change_Date returns a value of type
D_Result. D_Change_Date can return all
scalar values defined in D_Result except
D_Exists; the values are described in the
following items.

® D_Okay. No error. D_NAME was found,
and D_NEWDATE was written to the
directory for the specified file or disk
volume,

® D_Not_Found. No such file/volume found.

No mateh found for D_NAME. No change
made.

® D_Name_FError. Illegal syntax in D_NAME,
No change made.

0200101:04A

File Management Units

® D _Off Line. Volume off-line. The volume
specified by D_NAME wasn't on-line. No
change made. This error occurs only if the
volume ID in D_NAME specifies a single
volume which is off-line. If the volume
name in D_NAME contains wild cards and
doesn't matech any on-line volumes,
D_Change_Date returns D_Not_Found.

® D _Other. Unknown error. No change made.
D_Change_Date encountered an unidentified
error which prevented successful completion
of the operation.

02001C1:04A 4-47

File Management Units

Example Program

4-48

The following program demonstrates the use of

D_Change_Date.

Program Date_Test;

Uses
(*SUWILD.CODE*}
wild,
(*$UDIR.INFO.CODE*)
DirInfo;

Var
Result : D_Result;
Ch : Char;
M, D, ¥ : Integer;
NewDate : D_DateRec;
Select : D_Choice;
FileName : String;

Procedure GiveChoice(Choice : String; Kind : D_Choice);

Var
Ch

: Char;

Begin
Write(' ',Choice,' 2?2 ');
Read(Ch); Writeln

If
End;

Ch In ['y', 'Y¥'] Then Select := Select + KRind;
{ GiveChoice }

Begin { Date_Test }

Select

= [1;

Writeln('D_ChangeDate Test —');

Repeat

Hriteln;

Hrite('File to change : '); Readln(FileName);
Writeln('Types [y/n 1 : ');
GiveChoice('Directories', [D_Voll);
GiveChoice('Text Files ', [D_Text));

GiveChoice('Code Files '
GiveChoice('Data Files '
GiveChoice('SVol Files '
GiveChoice('SVol Files °'
Hriteln('New date : ')

+ [D_Codel);
, [D_Datal);
, [D_SVoll);
, [D_SVoll);

Write('Month (1 - 121 : '); Readln(M);
Hrite('Day (1 - 311 : '); Readln(D);
Hrite('Year [0 - 99] : '); Readln(¥);

Wi

th NewDate Do
Begin
Month := M;
Day := D;
Year := Y;
End; { With NewDate }

Writeln

Resu

1t := D_ChangeDate(FileName, NewDate, Select};

Case Result Of

D_
D_

Okay : Writeln('date changed');
Name_Error : HWriteln('error in file name');

0200101:04A

File Management Units

D_Off_Line : Hritelpn('voiume off line’);
D_Not_Found : Hriteln('file not found');
D_Other : Writeln('miscellaneous error');

End; { cases }

Hriteln:

HWrite('Continue ? ');

Read (Ch) ; Writeln;

Until Ch In ['n','N'];
End. { Date_Test }

Function D_Rem_Files
(D_NAME : String;
D_SELECT : D_Choice) : D_Result;

The D_Rem_Files function removes file objects
whose names match the file name argument
contained in D_NAME and types match the
elements included in D _SELECT. The file
name argument may contain wild cards. Disk
files are permanently deleted from their
directories. Volumes are taken off-line, but
not altered in any way; off-line disk volumes
may be brought back on-line merely by
referencing them, while off-line serial volumes
remain inaccessible until the system is
reinitialized.

41\A LAl Aririnegy mano 4 ~mge
e 1 10\.4/1115 parameiers.

D_Rem_Files accepts
® D NAME. A string contairing the name of
the file(s) or volume(s) to be removed.

[] D_SELEC’I‘. A set of file objects to be
removed. The definition of the set is as
follows:

D_NameType = (D_Vol, D_Code, D_Text,

D_Data, D_SVol,
D _Temp, D_Free);

0200101:04A 4-49

File

4-50

Management Units

D_Choice = Set Of D_NameType;

All scalar types except D_Free apply to
D_Rem_Files. Disk free space can't be
removed from the directory; thus, D_Free is
ignored if it is included in D_SELECT.

D_Rem_Files returns a value of type D_Result.
D_Rem_Files can return all scalar values
defined in D_Result except D_Exists; the
values have the following meanings:

® D_Okay. No error. D_NAME was found.
If D Vol is included in D_SELECT, and a
volume matches the file name argument in
D_NAME, the volume is taken off-line. If
D Text D _Code, D Data, D_SVol, or
D Temp are included in D_SELECT, disk
files of those types which match D_NAME
are deleted from their directories.

® D _Not Found. No such file/volume found.
No mateh found for D _NAME. No change
made,

@ D_Name_Error. Illegal file name syntax in
D_NAME. No change made.

® D _Off_Line. Volume off-line. The volume
specified by D_NAME wasn't on-line. No
change made. This error occurs only if the
volume ID in D_NAME specifies a single
vclume which is off-line. If the volume ID
in D_NAME contains wild cards, but doesn't
matech any on-line volume, D_Rem_Files
returns D_Not_Found.

0200101:04A

File Management Units

® D _Other. Unknown error. No change made.
D_Rem_Files encountered an unidentified
error which prevented successful completion
of the operation.

Example Program

Program Rem _Test;

Uses
(*$UWILD.CODE*)
wiid,
(*$SUDIR.INFQ,.CODE*)
Dirinfo;

Var
Result : D_Result;
Select : D_Choice;
Ch : Char;

Remfile : String;

Procedure GiveChoice(Choice : String; Kind : D_Choice);
Var
Ch : Char;

Begin

Hrite(' ',Choice,' 2 ');

Read(Ch); Writeln;

If Ch In ['y', 'Y') Then Select := Select + Kind;
End; { GiveChoice }

Begin { Rem_Test }
Select := [1;
Hriteln('D_Rem Files Test —');
Repeat
Write('File(s) to remove : ');
Readln(Remfile);
Writeln('Types [y/n } :
GiveChoice('Directories’
GiveChoice('Temp Files ',
GiveChoice('Text Files ', [D_Textl);
GiveChoice('Code Files ', [D_Codel);
GiveChoice('Data Files ', [D_Datal):;
GiveChoice('SVol Files ', {D_SVoll);
Result := D_Rem Files(Remfile, Select);
Case Result Of
D_Okay : Hriteln('files removed');
D_Name_Error : HWriteln('error in file name');
D_Off_Line : Hriteln('volume off line');
D_Not_Found : HWriteln('file not found');
D_Other : HWriteln('miscellaneous error');
End; { cases }

l);
, [D_Voll):
(D_Templ) ;

Writeln;

Write('Continue ? ');

Read (Ch); Writeln:

Until Ch In ('n','N'];
End. { Rem_Test }

02001C1:04A 4-51

File

4-52

Management Units

Procedure D_Lock

D_Lock grants exclusive directory access rights
to the task that executes it; however, a task
may have to weit until another task releases
the directory lock before it can continue
execution past its call to D_Lock.

NOTE: D _Lock calls should always be matched
with D_Release calls to prevent system
deadlocks.

The Dir_Info routines D_Lock and D_Release
are prov1ded for wuse in multl-taskmg
environments. When used properly, they ensure
mutually exclusive access to directory
information.

Procedure D_Release

D_Release releases exclusive access rights to
the directory. Tasks already waiting for
directory access are automatically awakened
when the directory becomes available by a call
to D_Release.

0200101:04A

File Management Units

Example Pregram

The following program demonstrates the use of

D_Lock and D_Release.

Program Locktest;
Uses
(*$UWILD,CODE*)
wild,
(*$UDIR.INFO,.CODE*)
DirInfo;

Const
Stack_Size = 2000;

Var
Pid : Processid;
old,
New : String;
Date : D_DateRec;
M, D, Y : Ipnteger:;
Ch : Char;

Process Change_And_Check (01d, New: String; Date :

var
Result : D_Result;

Begin { Change_And_Check 1}
D_Lock;

{ beginning of critical section }

D_DateRec) ;

Result := D_ChangeDate(0ld, Date, [D_Vol..D_SVoll);

If Result = D_Okay Then
Result := D_ChangeName(0ld, New, True):;
D_Release; { end of critical section }

End; { Change_And_Check }

Begin { LockTest }

Repeat
Write('0ld file name: ');
Readln(014d);
Write('New file name: '};
Readln (New) ;

Writeln('New date:');
Write(' Month: ');
Readln (M) ;
Write(® Day: ')
Readln (D) ;
Write(' Year: ');
Readln(Y);
With Date Do
Begin
Month := M;
Day := D;

0200101:04A

4-53

File Management Units

Year := Y;
End;
Start(Change_And_Check (01d, New, Date), Pid, Stack_Size);
Write('Start another? '); ’
Read(Ch); HWriteln;
Until Ch In ('n', 'N'];
End. { Locktest 1}

4-54 0200101:04A

File Management Units

WILD CARDS (WILD)

The unit WILD provides a wild card convention for
pattern matching of string variables. Wild ecards
are special character sequences in a character
string; they are named wild cards because of their
ability to match whole classes of character
sequences rather than a single character sequence,
For instance, the string "a=" matches all character
strings starting with the letter "a" because (=) is
defined as a wild eard that matches any character
sequence.

Wild cards are useful in pattern matching situations
where many character strings are to be matehed
with a single request. The p-System filer uses a
set of wild card facilities in its directory
operations. Examples are given in the Operating
System Reference Manual that deseribes the filer
operation. Because of the extra funections provided
by this UNIT, there isn't a direct correspondence
between the filer and this UNIT. Where there are
differences in the use of characters, these are
described.

0200101:04A 4-55

File Management Units

Special Wild Card Characters

The following characters are defined as special
characters:

question mark
equal sign
braces
comma
hyphen

tilde

percent sign

and }

2 I B | N

R

Special characters may only be used as parts of
wild eards. However, a literal occurrence of &
special character can be represented by a two
character sequence consisting of a percent sign
followed by the special character. A percent
sign indicates that the following character is to
appear literally in the character string; for
instence, "xx%=yy" is treated as the literal
character string "xx=yy" rather than a wild card
string.

Examples of percent sign in wild cards:

g b%?def" matches "gb?def"
"abfa-z, %=}Ce%%f" matches "ab=de%f"
"ab%- def" matches "ab-def"

4-56 0200101:04A

Question Mark Wild Card

File Management Units

A question mark matches any single character.

In the filer,

the (?) is treated as an

interactive query of an (=) wild card. This
is one of the major differences in use of
characters between this UNIT and the filer.

Examples of (?) wild card:

Pattern:

Matches:

Nonmatch:

Equal Sign Wild Card

"ab?def"

"abbdef"
"gbrdef"

"abcef™
"abjkdef"

[1)

rapel

An equal sign matches any sequence of
characters, including the empty sequence. This
is the same as the filer except that more than
one (=) can appear in a wild card string.

Examples of (=) wild card:

Pattern:

Mateches:

Nonmatches:

0200101:04A

"ab=cdef="
"abcdefg"
"abdef"
"abececdef™

"abeef"

4-57

File Management Units

Subrange Wild Card

The subrenge wild card matches a single
character from the character set specified in
the subrange. The special characters, comma,
hyphen, tilde, and braces, are used to construct
subrange wild cards.

A subrange wild card consists of a character
set delimited by braces. A character set
consists of e list of character-items separated
by commas.

A character-item is either a character or a
character range (two characters separated by a
hyphen). A character range implicitly specifies
all characters lying between the two
characters. (Consult an ASCII table to
determine the ordering of characters.)

Character-items preceded by tildes are called
negated-items and are specifically execluded
from the character set. A character range
proceeded by a tilde is entirely excluded from
the character set. The list of character items
is evaluated left-to-right. Characters specified
by non-negated items are included into the set;
characters specified by negated items are
excluded from the set. Thus, a character
meatehes the subrange wild card if it matches
one of the non-negated items, but doesn't
mateh any of the negated choices. For
example, the subrange "{a-z,”r}" represents the
set of characters from "a" to "z," excluding
"r."

4-58 0200101:04A

File Management Units

NOTE: Blank characters within subrange wild
cards are ignored. Wild card characters can be
specified in character sets with the percent
sign notation described in the preceding
paragraphs.

Examples cof subrange wild cards:
{a,b,c}
{a-d,j,w-z}
{a'zy~j ,~X"‘Y}

Syntax for subrange wild card:

wild-card = "{" item-list "}
item-list = item < "," item >
item = [*] ehar-item
char-item = char / range

range = char "-" char

char = an ASCI character

Examples of subrange wild card:

Pattern: "ab{a-r, ~j, “k}def"
Matches: "abbdef"

"abrdef"
Nonmatches: "abjdef"

"abkdef™

"abzdef"

0200101:04A 4-59

File

Management Units

Function D_Wild_Mateh
(WILD, COMP: String;
Var PPTR : D_PatRecP;
PINFO : Boolean) : Boolean;

D_Wild_Mateh serves as a general purpose
pattern matcher for string variables- using the
wild card conventions described above. The
two main parameters are a wild card string,
WILD, and a literal string, COMP.
D_Wild_Match determines whether the literal
string matches the wild card string. If the
strings match, D_Wild_Mateh returns true;
otherwise, it returns false, If PINFO is set to
true, D_Wild_Mateh returns information
(accessed through PPTR) that describes how
the strings were matched.

D_Wild_Match Parameters

D_Wild_Mateh accepts the following parameters:

WILD. A string which may contain wild cards.
COMP. A literal text string.
PINFC. A Boolean. If set to TRUE, PINFO

requests that pattern matching information be
returned.

4-60 0200101:04A

File Management Units

® PPTR. Pointer of type D_PatRecP.
Depending on the value passed in PINFO,
D_Wild_Mateh either sets PPTR to NIL or
points it at a linked list of records containing
pattern matching information.

D_Wild_Match Pattern Matching Info

If PINFO is set to TRUE, D_Wild_Match returns
pattern matching information in PPTR. PPTR is
a pointer (of type D_PatRecP) to a linked list of
records which contain the starting positions and
lengths of corresponding character patterns in
WILD and COMP,

D_Pat_RecP is defined as follows:

D_PatRecP
D_PatRec

“D_PatRec;

Record
CompPos,
CompLen,
WildPos,
WildLen:Integer;
Next:D_PatRecP;

End; { D_PatRec }

CompPos and WildPos are the starting positions
of corresponding character patterns in COMP and
WILD, respectively. CompLen and WildLen are
the pattern lengths. Next points to the next
pattern record in the list; it is set to NIL in the
last pattern record. The patterns occur in the
list in the order in which they were matched in
the strings.

02001C1:04A 4-61

File Management Units

If

the strings don't match, or the list wasn't

requested (that is, PINFO is set to false), PPTR
is set to NIL.,

Example of pattern record list:

If

WILD contains:'=ab{a-m}=f?"
COMP contains:'abedefg’

PINFO is set to true, pattern recorc list

returned is:

1.

4-62

WildPos = 1, WildLen = 1
CompPos = 1, CompLen = 0
('=' matches the empty string)

WildPos = 2, WildLen = 2
CompPos = 1, CompLen = 2
("ab' matches 'ab')

WildPos = 4, WildLen = 5
CompPos = 3, CompLen =1
({fa-m}' matches 'e’)

WildPos = 9, WildLen =1
CompPos = 4, CompLen =
("=' matches 'de’)

2

WildPos = 10, WildLen = 1
CompPos = 6, CompLen =1
('f* matches 'f')

WildPos = 11, WildLen = 1

CompPos = 7, CompLen = 1
("?* matches 'g")

0200101:04A

File Management Units

NOTE: When the (=) wild card in WILD
matches an empty string in COMP, CompLen is
set to 0 and CompPos is set to the position of
the next pattern in COMP (that is, the position
where a nonempty pattern would have occurred).
Be sure to check the validity of CompPos indices
before using them to reference characters in
COMP; otherwise, range errors may oceur.

0200101:04A 4-63

File Management Units

Example Program

The following program is an example of a string
comparison routine that uses D_Wild_Match. The
program reads two strings and prints the result
of the comparison; if requested, it also prints
information describing how the patterns matched.

Program Wild_Test;

Uses (*SUWILD.CODE*)

wild;

Var
W, C : String;
Ch : Char:

PatPtr : D_PatRecP;
Want_Patterns : Boolean;

Procedure Print_Patterns(PatPtr : D_PatRecP;
C, W : String):
Var
Count : Integer:;

Begin { Print_Patterns }
Hriteln('type <cr> for patterns');
Readln; i H
Count := 1;

Repeat
Writelp('Pattern ', Count, ' :');:
With PatPtr” Do
Begin
Writeln(' Comp : ', C);

If CompLen <> 0 Then Write('"':(CompPos + 9));
1f CompLen > 1 Then Write('”':(CompLen - 1));

Writeln:
Hriteln(' Wild : ', W);
Hrite('"':(WildPos + 9));

I1f WildLen > 1 Then Hrite('"':(WildLen - 1));

Hriteln; Writeln;
End;
PatPtr := PatPtr”.Next:
Count := Count + 1;
Until PatPtr = Nil;
End; { Print_Patterns }

Begin { Wild_Test }

Repeat
Writeln('-WildCard Check—"');
Write('Wild Card String : ')
Readln (W) ;
Write('Comparison String : ');
Readln(C);

HWrite{'Do you want pattern matching information ? ly/nl ');

4-64

0200101:04A

File Management Units

Read(Ch) ;

Want_Patterns := Ch In ['y','Y']l;

Writeln; Writeln:

If D_Wild_Match(w, C, PatPtr, Want_Patterns) Then
Writeln('A Match')

Else Writeln('No Match');

1f Want_Patterns And (PatPtr <> Nil) Then
Print_Patterns(PatPtr, C, W);

Hrite('Continue 2 [y/n] ');

Read (Ch);

Writeln; Writeln;

Until Ch In ['n*, 'N'1;
End. { Wild_Test }

SYSTEM INFORMATION

Unit SYS.JUNFO is an easy way to access some of
the system global information. SYS.INFO uses
KERNEL.CODE in its implementation section.
Although it is possible to access KERNEL.CODE
directly, there are many variables that are normally
not needed. If you require a different set, then
another unit similar to this one ecan be easily
constructed for the particular situation.

In orcder to distinguish the variables defined by this
unit, they have been prefixed with SI. Here are
the SYS.INFO routines:

0200101:04A 4-65

File Management Units

Work Code File Name:

Procedure SI_Code_Vid
(Var SI_Vol : String);

Procedure SI_Code_Tid .
(var SI_Title : String);

The preceding procedures return the volume name

(SI_Vol) and the file name (SI_Title) of the system
work code file.

Work Text File Name:

Procedure SI_Text_Vid
(var SI_Vol : String);

Procedure SI_Text_Tid
(var SI_Title : String);

The preceding procedures return the volume name

(SI_Vol) and the file name (SI_Title) of the system
work text file.

System Volume:

Funection SI_Sys_Unit : Integer;
The SI_Sys_Unit function returns an integer

funcetion result. The device number of the drive
containing the system volume is returned.

4-66 0200101:04A

File Management Units

Procedure SI_Get_Sys Vol
(Var SI_Vol : String);

The preceding procedure returns the volume name
(SI_Vol) of the current system volume.

Prefixed Volume Name:

Procedure SI_Get_Pref_Vol
(Var SI_Vol : String);

Procedure SI_Set_Pref Vol
(SI_Vol : String);

The preceding procedures allow the current prefix
volume to be read and set.

0200101:04A 4-67

File Management Units

System Date:

Procedure SI_Get_Date
(Var SI_Date : SI_Date_Rec);

Procedure SI_Set_Date
(var SI_Date : SI_Date_Rec);

The SI_Get_Date and SI_Set_Date procedures access
and modify the system date. The date is passed as
a record of type SI_Date_Rec. Changing the date
won't change the date on the system disk. It will
only change the date internally in the operating
system. To change the date on the disk, use
function D_Change_Date within the DIR.INFO unit.

SI_Date_Rec = Packed Record
Month : 0..12;
Day : 0..31;
Year : 0..99;
End;

This record is used in the operating system to store
dates. It is a packed record and only requires 16
bits. All date variables use this format.

4-68 0200101:04A

File Management Units

Example Program

Program Sys_Test;
Uses {$USys.Info.Code} Sys_Info;

Var
Ch : Char:
Date : SI_Date_Rec;
Vol,
Title : String;

Begin
SI_Code_vVid (Vol);
SI_Code_Tid (Title);
If Length (Title) <> 0 Then
Writeln ('The Work Codefile is ', Vol, ':', Title)
Else
Hriteln ('There is no Work Codefile.');
SI_Text_Vid (Vol);
SI_Text_Tid (Title);
If Length (Title) <> 0 Then
Writeln ('The Work Textfile is ', Voi, ':', Title)
Else
Writeln ('There is no Work Textfile.');

Writeln;

SI_Get_Sys_Vol (Vol);

Writeln ('The System was booted on volume ', Vol,
': on device ', SI_Sys_Unit);

SI_Get_Pref_Vol (Veol);

Writeln;
Writeln ('The Prefix volume is ', Vol, ':');
Write ('New Prefix: ');
Readln (Vol);
Delete (Vol, Pos (':', Vol), 1);
If Length (Vol) In [1..7]1 Then
Begin
SI_Set_Pref_Vol (Vol);
SI_Get_Pref_vVol (Voli};
Writeln ('The Prefix volume is ', Vol, ':');
End {of If}
Else
Writeln ('No change made'};

Writeln;
SI_Get_Date (Date);
Writeln ('The current date is ' ,
Date.Month, -Date.Day, -Date.Year);

Repeat
Write ('Set for tomorrow''s date ? ');
Read (Ch);

Until Ch In ['y', 'Y', 'n', 'N'];

0200101:04A 4-69

File Management Units

Writeln;
If Ch In ['y', 'Y'] Then
Begin

Date.Day := Date.Day + 1;

If (Date.Month In [1, 3, 5, 7, 8, 10, 121) And (Date.Day = 32)
(Date.Month In [4, 6, 9, 11]) And (Date.Day = 31) Or
(Date.Month = 2) And (Date.Day = 29) Then

Begin
Date.Day := 1;

If Date.Month = 12 Then

Begin

Date.Year := Date.Year + 1;
Date.Month := 1;

End {of If =12}
Else

Date.Month := Date.Month + 1;
End {of If Date.Month};

SI_Set_Date (Date);

SI_Get_Date (Date);

Writeln ('The new date is ',

Date.Month, -Date.Day, -Date.Year);

End {of If Ch}

Else
Writeln ('No change made');
End {of Sys_Test},

4-70 0200101:04A

Or

File Management Units

FILE INFORMATION

This unit provides an easy way to access
information in the file information block (fib). It
uses the system globals from KERNEL.CODE,
Although it is possible for you to access the global
data, it is easier to use this unit. In order to
distinguish the variable names in this unit, they
have all been prefixed with an 'F',

Type F_File_Type = file;

Because of a Pascal language restriction, it is
necessary to declare files of type (f_file type) that
are to be passed on as parameters to these
procedures and functions.

Function F_Open
(var fid: F_File_Type):boolean;

This funetion should be called before any of the
following are used. This enables a check to be
made on the status of a file. The function returns
true if the file is open and false if isn't open.
The following functions won't give the correct
values if the file isn't open.

0200101:04A 4-71

File Management Units

Function F_Length
(Var Fid : F_File_Type) : Integer;

Returns the length (in blocks) of the file attached
to the Fid identifier. If the file isn't opened, the
result is returned as zero. This only has meaning
for files on storage volumes as the value returned
is the number of blocks allocated to the file.

Function F_Unit_Number
(Var Fid : F_File_Type) : integer;

Returns the device number of the storage volume
containing the file attached to the Fid identifier.
If there is no file opened to the Fid, the function
result is zero.

Procedure F_Volume
(var Fid : F_File_Type;
Var File_Volume : String);

Returns the name of the volume containing the file
attached to the Fid identifier. If the external file
lacks a defined volume name, F_Volume returns a
volume ID constructed from a device number (such
as #4:). If there is no file cpened tc the Fid, the

LA Vt}\’ll\r\d L4 LX) LI

File_Volume is set to a null string.

4-72 0200101:04A

File Management Units

Procedure F_File Title
(Var Fid : F_File_Type;
Var File_Title : String);

Returns the title (with suffix) of the file attached
to the Fid identifier. If there is no file opened to
Fid, or if the external file is a volume, then the
File_Title is set to a null string.

Function F_Start
(Var Fid : F_File_Type) : integer;

Returns the block number of the first block of the
file attached to the Fid identifier. This only has
meaning for files on storage volumes. If there is
no file opened to Fid, the function result is

madeimemnd (o mam
l'cturucu I 4C10,

Function F_is_Blocked
(var Fid: F_File_Type) : Boolean;

Returns a boolean that is TRUE if the file
attached to the Fid identifier is located on a
storage volume {or biock-structured device). If
there is no file opened for the Fid or if the device
isn't a storage volume, the function result is set to
false.

0200101:04A 4-73

File Management Units

Procedure F_Date
(var Fid : F_File_Type;
Var File_Date : F_Date_Rec);

Returns a record indicating the last access date for
the file attached to the Fid identifier. If there is
no file opened to Fid, the File_Date is unchanged.
The definition of F_Date_Rec type is:

F_Date_Rec = Packed Record
Month : 0..12;
Day : 0..31;
Year : 0..100;
End;

4-74 0200101:04A

Debugger

CHAPTER 5
DEBUGGING

AND ANALYSIS

Debugging and Analysis

INTRODUCTION

This chapter describes the debugger and the
performance monitor. The debugger is a tool for
correcting errors in programs that you develop.
The performance monitor is a mechanism that may
assist you in gathering program (or operating
system) performance information.

DEBUGGER

The symboliec debugger is a tool for loecating and
correcting errors in compiled programs. You can
call it from the Command menu. It can also be
selected while a program is running (when a break
point is encountered). Using the symbolic debugger,
you may display and alter memory, single-step

p—code, and display and traverse markstack chains.

To use the debugger effectively, you must be
familiar with the p-machine architecture and
understand the p-code operators, stack usage,
variable and parameter allocation, and so on.
These topics are discussed in the Internal
Architecture Reference Manual.

0200101:05A 5-3

Debugging and Analysis

You may have to use the Library utility to place
the debugger into SYSTEM.PASCAL. If this is the
case with your p-System package, you should
consult the "Configuration Notes Appendix" to the
Operating System Reference Manual.

Using the Debugger

There are no menus explaining the debugger
commands because they would detract from any
information displayed by the program being
debugged. However, when a command is entered,
the system displays several short prompts that
may ask for information.

Many of the debugger commands require two
characters (such as 'LP' for L(ist P(code, or 'LR'
for L(ist R(egister). To exit the program after
entering the first character, press <space> to
recall the main mode of the debugger.

A current compiled listing of the program is a
helpful debugging tool. It helps you determine
p-code offsets and similar information.

The debugger is a low-level tool, and as such,
you must use it with caution. If you use the
debugger incorrectly, the p-System can fail.

5-4 0200101:05A

Debugging and Analysis

Entering and Exiting

Press 'D' to call the debugger from the
Command menu. If you enter the debugger in
a fresh state, the system displays the following
prompts.

DEBUG [version #]
(

A fresh state means that the debugger wasn't
previously active, and nc break points are
currently enabled. If you enter the debugger
in a nonfresh state, only the left parenthesis
"(" appears.

Exit the debugger by pressing 'Q' to select
Q(uit, 'R' to select R(esume, or 'S' to select
S(tep. The Q(uit option disables the debugger.
If the debugger is selected again, it returns in
a fresh state. The R(esume option won't
disable the debugger and execution continues
from where it left off. The debugger is still
active; and if it is called again, it is in a
nonfresh state. The S(tep option executes a
single p-code and automatically again calls the
debugger in a nonfresh state.

If a program is running under the debugger's
R(esume command, it may force a return to the
debugger by calling the HALT intrinsic. In
fact, any run-time error causes a return to the
debugger, if the debugger is active while the
program is running.

0200101:05A 5-5

Debugging and Analysis

You may memlock or memswap the debugger
(see the descriptions of those intrinsics) by
using the M(emory command at the outer level.
'ML' memlocks and 'MS' memswaps the
debugger.

Using Break Points

To enter the debugger while a program is
running, but not alter the program's code, use
the debugger to set break points. Press 'B' to
call the B(reakpoint option and then use either
the S(et, R(emove, or L(ist command. To set a
break point, press S(et after pressing
B(reakpoint. There are, at most, five break
points numbered 0 through 4. The system
displays four prompts asking for information.
The first prompt is:

Set Break #?

Enter a digit in the range 0 through 4 and
press <space>. The next prompt is:

Segname?

Enter the name of the desired segment and
press <space>. The next prompt is:

Procname or #?

0200101:05A

Debugging and Analysis

Enter the number of the desired procedure and
press <space>. The final prompt is:

Enter the desired offset within the procedure
and press <space>., The system sets a break
point; and if that segment, procedure, and
offset are encountered while resuming
execution, the debugger is automatically called
again.

Use a compiled listing of the program to
determine the location of the break point. If

no compiled listing is available, use the text
file viewing facility.

To remove a break point, press B(reakpoint;
then press R(emove. The system displays the
following prompt:

Offset #2

To remove a break point, enter its number;
then press <{space>.

To list the current break points, press
B(reakpoint and then press L(ist.

Remove break #2?

0200101:05A 5-7

Debugging and Analysis

Viewing and Altering Variables

The V(ar command allows the system to display
data segment memory. It is another
two-character command that must be followed
by G(lobal, L(ocal, I(ntermediate, E(xtended, or
P(rocedure. If G(lobal or L(ocal is selected,
the system displays the following prompt:

Offset #2

Enter the desired offset into the data segment.

If I{ntermeciate is selected, the system displays
the following prompt:

Delta Lex Level?

Enter the appropricte delta lex level for the
desired intermediate variable.

If E(xtended is selected, the system displays
the following prompt:

Seqg #? Offset #?

Enter the appropriate segment number and
offset number for the desired extended
variable.

0200101:05A

Debugging and Analysis

If P(rocedure is selected, the system may
display an offset within a specified procedure.
The following prompts are displayed in
sequence.

Segment name? Procname or #? Varname or Offset#?

When any of these options are used, the system
displays a prompt similar to the following line:

(1) S=INIT P#1 VO#1 2ClA: OB 05 53 43 41 4C 43 61 — SCALCa

This example is a portion of the local
activation record for segment INIT, procedure
1, variable offset 1, at absolute hexadecimal
location 2C1A. Following this, eight bytes are
displayed, first in HEXADECIMAL and then in
ASCII (a dash "-" indicates that the character
isn't a printable ASCII character).

To view surrounding portions of memory, press
V(ar. After a line has been displayed by the
V(ar command, a '+' or '-' may be entered.
This displays the succeeding or preceding eight
bytes of memory.

0200101:05A 5-9

Debugging and Analysis

The eight bytes that are currently displayed
may be altered. If a '/' is pressed, then the
line may be altered in hexadecimal mode. If a
"\' is pressed, then the line may be altered in
ASCII mode. When altering in hexadecimal
mode, any characters that are to be left
unchanged may be skipped by pressing <space>.
In the ASCII mode, any characters to be left
unchanged may be skipped by pressing <return>.

It is possible to change the frame of reference
from which the global, local, and intermediate
variables are viewed. This can be done by
using the C(hain command. Press 'C'. The
U(p, D(own and L(ist options are available, If
'L' is pressed, all of the currently existing
mark stack control words are displayed, with
the most recently created one first. An entry
in the list resembles the following line.

(ms) S=HEAPOPS P#3 O#23 msstat=347C msdyn=FOAC msipc=01DA msenv=FEE8

This corresponds to a mark stack control word
with the indicated statie link (msstat), dynamic
link (msdyn), interpreter program counter
(msipc), and erec pointer (msenv). The
indicated segment (HEAPOPS), procedure (#3),
and offset (#23) are the return point for the
procedure call which created the MSCW.

If the U(p or D(own options are used, the
frame of reference moves up or down one link
and the frame of reference for variable listings
(using the 'V' command) changes accordingly.

5-10 0200101:05A

Debugging and Analysis

Viewing Text Files

To view a text file from the debugger, press
'F' to call the F(ile command. The system
displays the following prompt:

Filename? First line #? Last line #?

Enter the name of the text file to be viewed
followed by <space>. The .TEXT portion of
the file name is optional. Then enter the first
and last line numbers that delimit the portion
of text that you wish to view. This command
lists as many lines as possible in the window

from first line to last line of the indicated
filo.

22T

The F(ile command is useful for debugging
(especially using symbolic debugging) when a
hard copy of the relevant compiled listing isn't
available. Using this command, you can view
source files on disk and disk files containing

TS 1 1 3 + 1 3 +h Anhiisron
compiled listings without leaving the debugger.

0200101:05A 5-11

Debugging and Analysis

Displaying Useful Information

Whenever control is returned to the debugger
(that is, after a single-step operation, or when
a break point is encountered), it displays
various information if it is desired. This
information may include p-machine registers,
the current p-code operator, the information in
the current markstack, or any specified memory
location. In order to select what is displayed,
the E(nable mode should be used. After
entering 'E', the following options are available
at the command level, R(egister, P(code,
M(arkstack, A(ddress, and E(very (all of the
preceding). ‘Any or all of these options may be
enabled at the same time.

If R(egister is enabled, a line is displayed after
each single step. The following line is an
example of that display.

(rg) mp=F082 sp=F09C erec=FEE8 seg=9782 ipc=01C3 tib=0493 rdyq=2EBC

If P(code is enabled, a line such as the
following is displayed after each step:

(cd) S=HEAPOPS P#3 0#23 LLA 1

If M(arkstack is enabled, a line like the
following is displayed after each step:

(ms) S=HEAPOPS P#3 0#23 msstat=347C msdyn=FO0AQ msipc=01DA msenv=FEES8

5-12 0200101:05A

Debugging and Analysis

If A(ddress is enabled, the system generates a
display like the following line.

(a) S=BEAPOPS P#3 0%23 2Cl1A: OB 05 53 43 41 4C 43 61 — SCALCa

To initialize this address to a given value, use
A(ddress mode at the outer level. Press
A(ddress and the system displays the following
prompt.

Address ?

Enter the absolute address in hexadecimal.
The system displays eight bytes starting at that
address. Also, that address is now displayed if
the E(nable A(ddress option is on.

Enabling E(very causes all of the above options
to be enabled.

The D(isable mode disables any of the options
just desceribed. The L(ist mode lists any of the
above options.

*

0200101:05A 5-13

Debugging and Analysis

Disassembling P-Code

At the debugger's outer level, there is a
p-code option that displays the p-code
mnemonies for selected portions of code. This
option asks for:

Segname?
Procname or #?
Start Offset #? and End Offset #7?

The indicated portion of code is then
disassembled. This may be useful during
single-step mode if you wish to look ahead in
the p-code stream. This mode may be exited
before it reaches the ending offset by pressing
<break>; control returns to the debugger.

Performance Monitor Interaction

5-14

The 'I' command calls the PM_Interactive
procedure within the operating system if the
performance monitor is enabled. You may, in
this way, gain access to various sorts of
program performance information while using
the Debugger. For more information, see the
"Performance Monitor" section later in this
chapter.

0200101:05A

Debugging and Analysis

The 'Z' Command

The 'Z' command displays the segment
reference list for each segment which is
currently associated (within the operating
system as well as within the program being
executed). This segment reference list is
extracted from the environment vector (which
is described in the Internal Architecture
Reference Manual).

Segments within the currently executing
program, and within the operating system, may
contain external references; that is, they may
call routines from another segment or access
variables from another segment. For each
segment which has external references, a list
of the referenced segments is given by the 'Z’

command. The names of the referenced
segments as well as the associated segment
numbers are given. (When two or more

segments reference a particular segment, the
number associated with the referenced segment
may vary among them. This segment number is
used in the p-code operators which call
external routines and access external variables.)

0200101:05A 5-15

Debugging and Analysis

For example, if you use the 'Z' command when
the Debugger is called from the Command
menu, the segment reference list for each unit
within the operating system is displayed. Here
is a partial listing:

the sib is GOTOXY
1 KERNEL

2 GOTOXY

3 SCREENOP

the sib is DEBUGGER
KERNEL
DEBUGGER
PDEBUGIN
EXTRALEX
EXTRAIO
GOTOXY
FILEOPS
STRINGOF
PASCALIO
EXTRAHEA

HOWoNONU S

(-

the sib is PDEBUGIN
1 KERNEL
2 PDEBUGIN

the sib is SCREENOP
KERNEL

SCREENOP
SEGSCINI
STRINGOP
SEGSCPRO
PASCALIO

EXTRAIC

SEGSCCHE

GOTOXY

WoONOU S W

The "sib" is the Segment Information Block
(which is described in the Internal Architecture
Reference Manual). After "the sib is," the
name of an associated segment is given. Below
this name are the segments it references along
with the associated segment numbers.

5-16 0200101:05A

Debugging and Analysis

Example of Debugger Usage

Suppose the following program is to be
debugged:

Pascal Compiler IV.0

10 0:d1 {$L LIST.TEXT}

2 2 1:d 1 PROGRAM NOT__DEBUGGED;

3 21:4d1 VAR I,J,K:INTEGER;

4 2 1:4d 4 B1,B2:BOOLEAN;

52 1:6 0 BEGIN

6 21:10 I:=1;

7 21:1 3 J:=1;

8 21:16 IF K <> 1 THEN WRITELN ('Whats wrong?');
92 :00 END.

End of Compilation.

First we enter the debugger and set a break
point at the beginning of the IF statement:

(BS) Set break #? 0 Segname? NOTDEBUG Procname or #? 1 Offset #? 6
(EP)
(R)

After setting the break point we enable p-code
(EP) and resume (R). Now we execute the
program above, and when it reaches offset 6,
the debugger is entered. We single-step twice:

Eit break #0 at S=NOTDEBUG P#1 0#6
(cd) S=NOTDEBUG P#1 0%6 SLDOl
(cd) S=NOTDEBUG P#1 0#7 SLDCI1
(cd) S=NOTDEBUG P#1 0O%#8 NEQUI

We see that our first single-step did a short
load global 1.

(200101:05A 5-17

Debugging and Analysis

5-18

NOTE: This put 'K' on the stack., 'K' is NOT
global 3; 'I' is global 3, 'J' is global 2, and 'K'
is global 1. Every string of variables (such as
T, 'J', 'K' in a declaration) is allocated in
reverse order. Boolean B1, which follows, is
at offset 5, and B2 is at offset 4.
Parameters, on the other hand, ARE allocated
in the order in which they appear.

The second single-step did a short load
constant 1 onto the stack. Now we are about
to do an integer comparison (<>). But this is
where our error shows up, so we decide to
look at what is on the stack before doing this
comparison:

{LR)

(rg) mp=EB62 sp=EB82 erec= ...

(A) Address? EB82

(a) EB82: 01 00 C5 14 ...

We list the registers and then look at the
memory address to which register sp points.
We discover a 1 on top of the stack (01 00:
this is a least-significant-byte-first machine)
followed by a word of what appears to be
garbage. This leads us to suspect that 'K'
wasn't initialized. Looking over the listing, we
quickly realize that this is the case.

0200101:05A

Debugging and Analysis

Symbolie Debugging

The symboliec debugging feature allows
specification of variables by name, rather than
p-code offset. Also, break points and portions of
code to be disassembled may be indicated by
procedure name and line number, rather than
procedure number and p-code offset.

Having a current compiled listing of the code in
question is still essential for serious debugging
efforts.

To use symbolic debugging, it is necessary that
the code being debugged is compiled with the
$D+ option. The $D+ option, which defaults to
$D-, instructs the compiler to output symbolic
debugger information for those portions of a
program that are compiled with $D+ turned on.

Once a program is debugged, it should be
recompiled without symbolic debugger information,
because this information increases the size of the
code file. Symbolic debugger information for a
particular code segment is stored in another code
segment. This other segment is given the same
name as the code segment for which symbolie
debugger information is generated. However, the
name is in lowercase letters. (Executable code
segments are always given names consisting of
uppercase letters.)

0200101:05A 5-19

Debugging and Analysis

Using symbolie debugging, break points may be
specified by procedure name and line number for
all statements covered by the $D+ option. The
B(reakpoint command requests:

Procname or #?

Enter the first eight characters of the procedure
name. The next line displayed is:

First#_____ Last# _ Line#?

The underlines actually are values that define the
range of line numbers available to you within the
specified procedure. (These line numbers appear
on compiled listings.) Enter the desired line
number for the break point.

Variables within a given routine may be specified
by name (rather than data segment offset number)
if at least one statement within that routine is
compiled with $D+. The V(ar command allows
specification of G(lobal, L(ocal, I(ntermediate, or
P{rocedure variables in this manner. E{xtended
variables aren't allowed to be specified
symbolically. The V(ar command prompts:

Varname or Offset #?

5-20 0200101:05A

Debugging and Analysis

You may enter the first eight characters of the
declared icentifier. A line similar to the
following appears:

(1) S=INIT P=FILLTABL V=TABLEl 2C1A: OB 05 53 43 41 4C 43 61 — SCALCa

The segment is INIT; the procedure is
FILL_TABLES; and the variable is TABLEL.

Similarly, the code to be disassembled by the
p-code command can be specified symbolically for
all portions of code covered by the $D+ option.
This command requests:

Procname or #?

Enter the first eight characters of the procedure
name. The system displays the following prompt:

First # Last #__ Start Line#? End Line#?

The underlines are actually the boundaries that
are available to you. You should enter the
desired starting and ending line numbers. The
specified code is then disassembled.

0200101:05A 5-21

Debugging and Analysis

Symbolic Debugging Example

5-22

To use symbolic debugging, some part of a
Pascal compilation unit must be compiled with
the {$D+} compile-time directive. After this
code has been generated, it is possible to
reference variables and procedures by name
rather than offset. The following example is a
small Pascal program that has been compiled
with the 'D' option.

Pascal Compiler IV.1 c5s-4 3/ 4/82 Page 1
1 0 0:4 1 {$D+}
2 2 1:d 1 program example;
3 2 1:d 1 var a,b,c:integer;
4 2 1:4 4
5 2 1:d 4 procedure set_c_if_d;
6 2 2:d 1 var d:booclean;
7 2 2:0 0 begin
8 2 2:1 0 d:=a>b;
9 2 2:1 5 if d then
10 2 2:2 8 c:=a*b;
11 2 1:0 0 end;
12 2 1:0 0
13 2 1:0 0 begin
14 2 1:1 0 a:=0;
15 2 1:1 3 b:=5;
16 2 1:1 6 set_c_if_d;
17 2 :0 0 end.

End of Compilation.

0200101:05A

Debugging and Analysis

The following listing is an example of a debug
session.

Debug [x15]

(BS) Segname=EXAMPLE Procname or & = SETCIFD
symbolic seg not in mem Line#? 8

{R)

Hit break#0 at S=EXAMPLE P=SETCIFD L#8

(BS) Segname=EXAMPLE Procname or # = SETCIFD
First#8 Last#10 Line#? 9

(R)

Hit break#l at S=EXAMPLE P=SETCIFD L#9S

(VL) Varname or offset#? D

(1) S=EXAMPLE P=SETCIFD V=D E7B2 : (0000 9448 BEE7 190C-H-
Q)

The first time the debugger is entered, the
program example isn't in memory and hence the
symbolic segment isn't in memory. However, a
break point can still be set symbolically
providing you know on which line number to
stop. For the second break point, the symbolic
segment is in memory; because of this, its first

and last line numbers are given.

Notice the ariable 'D!

symbolically, and its conten

If you try to access symbolically when the
actual code segment is in memory and its
symbolic segment counterpart isn't present, the
system displays the error message 'symbolic seg
not in mem'. Use the 'Z' command in the
symbolic debugger to find out if symbolic
information is available for a particular
segment.

0200101:05A 5-23

Debugging and Analysis

5-24

The 'Z' command (as described above) displays
segment reference lists. For example, the
following is a partial list for a program called
EXAMPLE. The lowercase name 'example' is
the segment produced by the compiler which
contains the symbolic debugging information for
'EXAMPLE’", The existence of 'example'
indicates that symbolic debugging information is
available for at least one procedure in segment
'EXAMPLE’,

the sib is EXAMPLE
1 KERNEL
2 EXAMPLE
3 example

0200101:05A

Debugging and Analysis

Summary of the Commands

A(ddress

B(reakpoint

S(et

R(emove

L(ist

C(hain

U(p

D{own

L(ist
F(ile

E(nable

D(isable

I(nteract

0200101:05A

Displays a given address.

Segment, procedure and offset
must be specified.

Allows a break point
(0 through 4) to be set.

Allows a break point to be
removed.

Lists current break points.

Changes frame of reference for
V(ariable eommand.

Chains up mark stack links.
Chains down mark stack links.
Lists current mark stacks.
Allows viewing of text files.

Enables the following to be
displayed.

Disables the following from from
being displayed.

Interacts with the performance
monitor.

5-25

Debugging and Analysis

L(ist Lists the following:

R(egister The registers: mp, sp, erec, seg,
ipe, tib, rdyq.

P(code Current p-code mnemonic.
M(arkstack Mark stack display.

A(ddress A given address.

E(very All of the above.
I(nteractive Interacts with the performance
monitor.
M(emory
L{ock Memlocks the debugger.
S(wap Memswaps the debugger.
P(code Dissassembles a given procedure.
Q(uit Quits the debugger, 'fresh' state
if re-entered.
R(esume Exits debugger, debugger remains
active, 'nonfresh’.
S(tep Single steps p-code and returns to

debugger.

5-26 0200101:05A

Debugging and Analysis

V(ariable
G(iobal Displays global memory.
L(ocal Displays local memory.
Knter Displays intermediate memory.
P(roc Displays data segement of given

procedure.

E(xtended Displays variables in another
segment.

Z(seg list Displays segment lists.

0200101:05A 5-27

Debugging and Analysis

PERFORMANCE MONITOR

You can gain access to performance information by
writing a unit called PERFOPS and including it in
the operating system. This performance information
can help you analyze application programs or the
p-System itself. In the future, a full
implementation of PERFOPS will be provided.
Currently, however, only the hooks for a
performance monitor are available. You should be
aware that a sophisticated understanding of the
p-System's internal architecture is required in order
to write a useful performance monitor.

The p-System expects the following interface for
PERFOPS:

UNIT PERFOPS:
INTERFACE
USES KERNEL;
PROCEDURE FM_Fault;
PROCEDURE PM_Dump_Seg (SegToDump : SIB_P);
PROCEDURE PM_Prog_Begin;
PRCCEDURE PM_Prog_End;
PROCEDURE PM_Start_Stop (Start : BOOLEAN);
PROCEDURE PM_Interactive;
IMPLEMENTATION

5-28 0200101:05A

Debugging and Analysis

With the exception of PM_Start_Stop and
PM Interactive, the operating system calls these
procedures to indicate actions that the system is
taking. Calls to these procedures by the operating
system will only be made if the boolean, Has_PM
located in the KERNEL interface section, is set to
true. (PM_Start_Stop is responsible for setting this
boolean.) The following paragraphs describe the
procedures:

@ PM_Fault. The operating system calls this
procedure each time it enters the fault handler.
(A fault occurs whenever a code segment is
needed from disk, when the stack is about to
run into the code pool or the heap, when the
heap is about to run into the code pool or the
stack, or if a pool fault occurs on systems with
extended memory.) This procedure must not
cause an additional fault; it must not call any
procedure that may not be in memory. Stack
space requirements must be minimized.

® PM_Dump_Seg. The operating system calls this
procedure from the fault handler. PM_Dump_Seg
indicates that SegToDump is being removed from
the code pool. (A SIB_P is a pointer to a SIB.
SIBs are described in the Internal Architecture
Reference Manual.) This procedure must not
cause an additional fault; it must not call any
procedure that may not be in memory. Stack
space requirements must be minimized.

@ PM _Prog Begin. The operating system calls this
procedure to indicate that a program is about to
start.

0200101:05A 5-29

Debugging and Analysis

PM_Prog_End. The operating system calls this
procedure to mark the end of a program.

PM_Start_Stop. This entry point controls
performance monitoring. This procedure should
memlock PERFOPS and set Has_PM to true, or
vice versa depending on the value of parameter
start. You must call this routine before
PERFOPS can be used. It should be called
again to deactive PERFOPS. It can be called
directly from the program being analyzed. It
could also be called from a small program
executed just prior to (and just after) the
program being analyzed.

NOTE: PERFOPS must be memlocked before
setting Has_PM to true.

PM_Interactive. The 'I' command in the
debugger calls this procedure if Has_PM is true.
This routine should provide data gathered by the
first four procedures of PERFOPS. In this way,
you can use PERFOPS interactively from the
debugger.

5-30 0200101:05A

Utilities

saIInN

CHAPTER 6

UTILITY PROGRAMS

Utilities

INTRODUCTION

The p-System's utilities are various precompiled
programs that may assist you in many ways. Most
of the utility programs included here are useful
during program development. The utilities covered
in this chapter are:

® The Decode utility which displays the content of
code files in a meaningful fashion.

@ The Native Code Generator whiech translates
portions of a p-code file into processor-specific
native code.

@ The Patch utility which enables you to view the
internal content of any sort of file.

® The XREF utility which is useful for analyzing
Pascal programs.

0200101:06A 6-3

Utilities

DECODE

The DECODE utility, called DECODE.CODE,
provides access, in symbolic form, to all useful
items contained in code files. The following
information is available.

@ Names, types, global data size, and other
general information about all code segments in
the file.

@ Interface section text, if present, for all units
in the file.

@ Symbolic listing of any (or all) p-code procedures
in any (or all) segments of the file.

® Segment references and linker directives
associated with code segments.

The decoder should be used whenever you want
detailed knowledge of the internal contents of a
code file; for instance, an implementor of a
p-machine emulator decodes test programs so that
the object code can be executed and understood
step-by-step. You should refer to the Internal
Architecture Reference Manual, if detailed use of
the decoder is planned.

If a program uses a UNIT, the UNIT is decoded
only if it is within the host file; DECODE won't
search the disk for UNITs to decode. Assembly
routines linked into a higher-level host won't be
disassembled when the host is decoded.

6-4 0200101:06A

Utilities

When the system executes DECODE, the first
prompt asks for the input code file (if necessary,
the suffix .CODE is automatically appended). The
next prompt asks for the name of a listing file to
which DECODE's output may be written. This may
be CONSOLE: (indicated by pressing <return>),
REMOUT:, PRINTER:, or a disk file. The system
then displays the following menu:

Segment Guide: A(11l), #(dct index), Dlictionary), Q(uit)

The following items explain the DECODE options.

D(ictionary Displays the code file's segment
dictionary.

Al Disassembles all segments in the
code file.

#(det index A number of a dictionary index

followed by <return> disassembles a
given segment, if present.

Q(uit Exits the decoder.

0200101:06A 6-5

Utilities

DECODE Programming Example

Given the following Pascal program:

1 0:d 1 {SL LIST1.TEXT}
2 1:4 1 PROGRAM DEMO;
3 1:d 1 VAR I:INTEGER;
4 1:d 2
5 1:d 2 SEGMENT PROCEDURE ADDI;
6 3 1:0 0 BEGIN
7 3 1:1 o} I:=I+1;
8 3 1:0 5 END;
9 3 1:0 7
10 2 1:0 0 BEGIN
11 2 1:1 0 1:=50;
12 2 1:1 4 REPEAT
13 2 1:2 4 ADDI;
14 2 1:1 7 UNTIL I=400;
15 :0 14 END.

DECODE displays a prompt asking for input and
listing file names. Then, if you press 'D' to call
the D(ictionary option, the system displays the

following listing.

INX NAME START SIZE VERSION M_TYPE SG# SEG_TYPE RL FMY_NAME or

0: DEMO 2 20 IV_0 M_PSEUDO 2
1z ADDI 1 14 IV_0 M_PSEUDO 3
2: NO__SEG
3: NO_SEG
4: NO_SEG
S: NO_SEG
63 NO_SEG
7: NO_SEG
8: NO_SEG
9: NO_SEG
10: NO_SEG
11: NO_SEG
12: NO_SEG
13: NO_SEG
14: NO_SEG
15: NO_SEG

(C):

Sex: LEAST significant byte first

Segment Guide: A(1ll, #(dct index), D(ictionary, Q(uit

Next Page: 0

PROG_SEG R
PROC_SEG R

DSIZE SGRF HISG TS
1 5 3 0
DEMO

0200101:06A

Utilities

The A(ll options produces the following
disassembly.

Constant pool for segment DEMO

Block: 2 Block offset: 0 Seg offset: 0
0: 1700 0000 4445 4D4F 2020 2020 0100 1400 0400 0600 ----DEMO ----
10: 0000 -

Block: 2 Block offset: 40 Seg offset: 40

0: 0100 0000 0COO

Segment: DEMO Procedure: 1
Block: 2 Block offset: 26 Seg offset: 26
Data size: 0 Exist IC: 38
Offset Hex code
0(000) : LDCB 50 8032
2(002): SRO 1 A501
4(004) : SCXG ADDI 1 7201
6(006) ¢ SLDO 1 30
7(007) ¢ LDCI 400 819001
10(00A): EFJ 4 D2F8
exit code:
12(00C) RPU 0 9600
Constant pool for segment ADDI
Blocks 1 Block offset: 0 Seg ocffset: I
0: 1300 0000 4144 4449 2020 2020 0100 1000 0400 000C ----ADDI -—--
10: 0000 --

Block: 1 Block offset: 32 Seg offset: 32

0: 0100 0000 0COO

Segment: ADDI Procedure: 1
Block: 1 Block offset: 26 Seg offset: 26
Data size: 0 Exist IC: 30
Offset Hex code
0(000) : SLDO 1 30
1(001) ¢ INCI ED
2(002): SRO 1 A501
exit code:
4(004) : RPU 0 9600

0200101:06A 6-7

Utilities

D(ictionary Display

DECODE's D(ictionary option display is a format
of the code file segment dictionary. The
following items describe the information that is
displayed.

Index DECODEs name for each segment;
individual segments may be
disassembled by entering their
number and pressing <return>; for
example, '0<return>' for this sample
causes only DEMO to be

disassembled.
Name Contains the names of each segment.
Start Contains each segment's starting

block (relative within the code file).

Size The length in words of each
segment.

Version The p-System version number of the
segment. '

M_TYPE is the machine type. Usually this is
M_PSEUDO, indicating a p-code segment, but
assembled segments indicate a given machine.
Other possible values for M_TYPE are M_6809,
M_PDP, M_8080, M_Z_80, M_GA_440, M_6502,
M_6800, M_9900, M_8086, and M_68000.

6-8 0200101:06A

Utilities

SEG_TYPE can be NO_SEG, PROG_SEG,
UNIT SEG, PROC_SEG, or SEPRT SEG. NO SEG
is an empty Segi“lel‘lt slot, PROG _SEG is a
program segment UNIT_SEG is a UNIT segment,
PROC_SEG is a SEPARATE routine segment, and
SEPRT _SEG is an assembled segment.

The RL columns indicate whether or not the
segment is relocatable and whether it needs to
be linked. An 'R' indicates a relocatable
segment. An 'L' indicates a segment that must
be linked.

If the segment is declared within a program or
unit, then the FMY_NAME column contains its
family name, that is, the name of the program or
unit. Otherwise, the DSIZE SGRF HSG columns
are dispiayed and contain, respectively, the
compilation module's data size, segment
references, and the maximum number of segments.

At the bottom of the screen, '(C):' is followed
by whatever copyright notice the code file may
have. The next line indicates the byte sex of
the code file. The menu is the last line on the
sereen. On the same line, the block number of
the next portion of segment dictionary is
displayed after "Next Page:". (In this example,
the segment dictionary is entirely contained in
block zero so next page is zero. The last
portion of the segment dictionary always points
back to block zero.)

0200101:06A 6-9

Utilities

Disassembled Listing

The first portion of a disassembled listing shows
the housekeeping information at the beginning of
a code segment, The block number of this
information is given. (Code files start at block
0.) The block offset and segment offset are
always 0. The information occupies the first 11
words (0 through 10) of the segment. This
housekeeping information (which is described in
the Internal Architecture Reference Manual)
includes such things as the segment name, byte
sex indicator word, part number, and so forth.
To the right, the same information is displayed as
ASCII characters when printable, and as dashes
when nonprintable. (The segment name is usually
the most obvious part of this display.)

The next few lines have the same format and
display the constant pool. The block offset and
segment offset are always nonzero for the
constant pool. They represent the offset, in
bytes, of the constant pool from the beginning of
the block and the beginning of the segment,
respectively. String constants and character type

constants are usually easy to pick out in the
ASCII display to the right, '

6-10 0200101:06A

Utilities

The disassembled code itself is displayed by
procedures. The block number, block offset,
segment offset, data size, and Exit IC are
displayed. (Data size and Exit IC are described
in the Internal Architecture Reference Manual.)
The OFFSET column shows the offset in bytes
from the front of the procedure (the count is in
both decimal and hexadecimal). Then the p-code
mnemonic is displayed; followed by the operands,
if any; and finally, the HEX CODE for that
particular instruction.

The OFFSET column corresponds to the fourth
column in a compiled listing.

Jump operands are displayed as offsets relative
to the start of the procedure, rather than
IPCrelative {(IPC is the instruction program
counter). This is to make the disassembly more
readable. Thus, the operand shown is the offset
of some line; in the example, the equal false
jump (EFJ) on line 10 shows 4, which means line
4—the SCXG instruction; the HEX CODE
indicates that the offset is actually F8 (or -8),
which is IPC-relative.

If a single segment were to be disassembled
(rather than using the A(ll) command), a line
similar to the following would be displayed.

There are 1 procedures in segment DEMO.

Procedure Guice: A(11), #(of procedure), L(inker info),
Clonstant pool), S({egment references),
I(nterface text), Q(uit)

0200101:06A 6-11

Utilities

Selecting A(ll) disassembles all of the procedures
in the segment (in the example there is only
one). Entering the number of a procedure
followed by <return> disassembles that procedure.
If present, L(inker information, S(egment
references, and I(nterface text may also be
displayed.

For example, if the segment is a unit with
interface text and you press 'N', the following
listing may be displayed. '

Interface text for segment SOMEUNIT:

PROCEDURE A_PROC;

PROCEDURE ANOTHER_PROC (I:INTEGER);
FUNCTION A_FUNCTION:BOOLEAN;
IMPLEMENTATION

If the segment had references to other segments
and you press 'S', the following listing may be
displayed.

Segment references list for segment KERNEL:

14: *** 5: SYSCMND

13: CONCURRE 4: DEBUGGER

12: PASCALIO 3: FILEOPS

11: HEAPOPS 2: SCREENOP
0:

10: STRINGOP

If the segment had linker information and you
press 'L', the following listing may be displayed.

Linker information for segment SOMESEG:

SOMEPROC EXTPROC srcproc=4 nparams=0 koolbit=false

6-12 02001C1:06A

Utilities

NATIVE CODE GENERATOR

The Native Code Generator (NCG) is a utility
program that translates selected portions of an
executable p-code file into processor-specific native
code (n-code). Using native code directives
inserted into the source code, you indicate which
portions of the file are to be translated. The
result of this procedure is an equivalent p-System
code file that contains p-code and n-code. The
NCG will translate only valid executable code files
produced by a p-System compiler.

Because n-code generally executes faster than
p-code, the NCG can be used to speed up the
execution of selected portions of p-code; for
example, portions of code where most of the
run-time is spent. However, p-code was designed
for compactness and, consequently, takes up less
space in memory than n-code. To use the NCG
effectively, translate only those portions of p-code
for which execution time is critical. Misuse of the
NCG can greatly increase the size of the code file.

You indicate what portions of code are to be
translated by inserting native code directives into
the source file before compilation. The following
compile-time switches are the native code
directives.

$N+ and $N-

0200101:06A 6-13

Utilities

You insert the first switech {$N+} where the
translation should begin and insert the last switch
{$N-} where the translation should end. When the
compiler encounters the first switeh, it begins
generating the additional p-code necessary for
n-code generation and stops generating when it
encounters the last switch. The default setting for
this compiler option is {$N-}. (This notation applies
to UCSD Pascal. Similar notations apply to other
languages.)

Directives and Pascal

Because the NCG translates a Pascal code file
on a procedure-by-procedure basis, only a
complete procedure (function or process as
defined in UCSD Pascal) can be translated. One
set of native code directives may designate more
than one procedure; but the native code
generation can't begin within the body of a
procedure. The following example shows the use
of the native code directives in Pascal.

function MAX (a,b: integer): integer;
{$N+}
begin
if a > b then MAX:= a else MAX:= b;
endg;
{$N-1}

6-14 0200101:06A

Utilities

The object code file, produced by the compiler
from source code containing native code
directives, is an executable p-code file that
maintains its machine portability. The only
difference is that the native code directives
slightly increase the size of the object code file.

0200101:06A 6-15

Utilities

Directives and BASIC

The native code directives ($N+ and $N-) can be
inserted into the BASIC source code file at any
point within a procedure. You can specify
translation on a statement-by-statement basis.
The following example shows the use of native
code directives in BASIC.

GOSUB 100

I=4

GOSUB 100

STOP

{$N+}

100 REM THE SUBROUTINE
FOR J=1 TO 100

PRINT 1°5,1I".5

{...}

{$N-}
{...}
NEXT J
RETURN
END

6-16 0200101:06A

Utilities

Directives and FORTRAN

To designate code for translation in a FORTRAN
source code file, you must place the native code
directive $NATIVE before the first statement
function or executable statement in a procedure.
The native code directive must begin in the first
column of the line. The translation directive
still applies for the entire procedure. The
following example shows the use of native code
directives in FORTRAN.

FUNCTION MAX (I,J)
$NATIVE

MAX=I

IF (J .GT. I) MAX=J

RETURN

END

0200101:06A 6-17

Utilities

Running the NCG

The NCG is run by executing the appropriate
code file (suech as Z80.NCG.CODE).

The NCG generates a prompt asking you for an
input code file and an output code file. The
output file must contain the suffix .CODE . Only
executable code files can be translated by the
NCG (they must be already linked).

The NCG will produce a formatted listing of the
code generated for each procedure it translates.
The NCG generates a prompt asking you for the
name of a listing file. To produce a listing,
enter a listing file name (for example, Console:,
Printer:, #5:List, List.Text). To eliminate the
listing, press <return> in response to the prompt.

6-18 0200101:06A

Utilities

The following listing is an example of function
MAX translated on the Z80 NCG.

Final 280 Code for segment TEST

Segment offset 30

procedure 2

Source Object .RADIX
P-Code N-Code
(Dec. Offsets) MP .EQU
0l «WORD
0l
4: 0] A8 ;P-code NATIVE
1f DD5EOA LD
4| DD560B LD
71 DD6EOC LD
10! DD660D LD
i3i 7A LD
14} AC XOR
151 F23400 JP
181 A2 AND
191 C33800 Jp
22§ 7B Ll: LD
231 95 SUB
24| 7a LD
251 9C SBC
26| F24B00 L2: Jp
9: 29| 210E00 LD
321 08 ADD
331 DD5EOC LD
36| DD560D LD
391 73 LD
40! 2C INC
411 72 LD
11: 42| C35800 JP
13: 451 210E00 L3: LD
481 09 ADD
49| DD5EOCA LD
52| DD560B LD
51 73 LD
61 2C INC
571 72 LD
15: 58! CD4200 L4: CALL
15: 611 ;exit de
611 9602 ;p-code RPU

0200101:06A

10

91,-30

E, (IX+10)
D, (IX+11)
L, (IX+12)
H, (IX+13)
A,D

H

P,L1

2
2

D

m PP O

P,L3
HL,14
HL,BC

E, (IX+12)
D, (IX+13)
(HL) ,E

L

(HL) ,D
L4

HL,14
HL,BC

E, (IX+10)
D, (IX+11)
(HL) ,E

L

(BL) ,D
INTRP_REL+66

2

6-19

Utilities

The following listing is an example of function
MAX translated on the 8086.

Final 8086 Code for segment TEST procedure 2
Segment byte offset 30

Source Object .RADIX 10
P-Code N-Code MP .EQU BP
(Dec. Offsets) BASE .EQU DX
0l .WORD 34,0
(]
4: 0} A8 ;p-code NATIVE
1} 33Co0 XOR AX,AX
3| 8B5E04 MOV BX,4[BP]
61 3B5E02 CMP BX,2[BP]
91 7F01 JG Ll
111 40 INC AX
121 D1E8 L1: SHR AX,1
141 7208 Jc L2
9: 161 8B4604 MOV AX,4[BP]
191 894606 MOV 6[BP],AX
11: 221 EBO6 JMP L3
13: 24| 8B4602 L2: MOV AX,2[BP]
271 894606 MOV 6 [BP] ,AX
15: 301 FF1E0400 L3: CALL 4
15: 341 jexit code
341 9602 ;p~-code RPU 2

6-20 0200101:06A

Utilities

The following listing is an example of function
MAX translated on the 8080.

Final 8080 Code for segment TEST procedure 2
Segment offset 30

Source Object .RADIX 10
P-Code N-Code
(Dec. Offsets) MP .EQU BC
0l .WORD 96,-30
0l
4: 0! A8 ip-code NATIVE
11 210A00 LD HL,10
41 09 ADD HL,BC
5] 5E LD E, (HL)
61 2C INC L
71 56 LD D, (HL)
81 210C00 LD HL,12
111 09 ADD HL,BC
121 7E LD A, (BL)
131 2C INC L
141 66 LD H, (HL)
151 6F LD L.,A
161 7A LD A,D
171 ac XOR H
181 F23700 JP P,L1
21i A2 AND D
22} C33B00 JP L2
251 7B Ll: LD AE
261 95 SUB L
271 7A LD A,D
281 9C SBC H
29| F24F00 L2: JP P,L3
9: 321 210C00 LD HL,12
351 09 ADD HL,BC
361 SE LD E, (HL)
371 2C INC L
381 56 LD D, (EL)
391 210E00 LD HL,14
421 09 ADD HL,BC
431 73 LD (HL) ,E
441 2C INC L
451 72 LD (HL) ,D
11: 461 C35D00 Jp L4
13: 491 210A00 L3: LD HL,10
52| 09 ADD HL,BC
531 5E LD E, (HL)
541 2C INC L

0200101:06A 6-21

Utilities

15:
15:

6-22

551
561
591
601
611
621
631
661
661

56 LD
210E00 LD
09 ADD
73 LD
2C INC
72 LD
CD4200 L4: CALL
;exit code

9602 ip—code RPU

D, (HL)

HL,14

HL,BC

(HL) ,E

L

(BL) ,D
INTRP_REL+66

2

0200101:06A

Utilities

The following listing is an example of function
MAX translated on the 9900.

Final 9900 Code for Segment TEST Procedure 2
Segment byte offset 30

.RADIX 10
MP .EQU RS
Sp .EQU R10
Source Object BK -EQU R12
P-Code N-Code SEG .EQU R13
(Dec. Offsets) BASE .EQU R14
0! .WORD 58,0
ol
4: 0| A8 ;p~code NATIVE
il A8 ;p-code NATIVE
2| 8A69 000C 000A C €12 (MP) ,€10(MP)
8] 1105 JLT Ll
101 1304 JEQ Ll
9: 12! CA69 000C O00OE Mov @12 (MP) ,€14 (MP)
11: 181 1003 JMP L2
13: 20! CA69 000A O0OE Ll: MOV @10 (MP) ,€14 (MP)
15: 261 069C L2: BL *BK
15: 281 ;exit code
281 9602 :p-code RPU 2

0200101:06A 6-23

Utilities

The preceding listings show the hybrid mixture of
p-code and n-code produced by the NCG.
Cooperation between the n-code code and the
p-machine emulator (PME) is achieved using the
following conventions:

6-24

NATIVE is the p-code that instructs the PME
to start executing n-code. On the Z80, 8080,
and 8086, execution starts on the byte
following the NATIVE instruction. On the
9900, execution begins on the first word
boundary following the NATIVE instruction.

The header lists the register conventions:
p-machine registers on the left and processor
registers on the right.

The following reference points on each
processor listing indicate the instruction that
returns the processor from n-code to p-code.

780 Listing, line L4
8086 Listing, line L3
8080 Listing, line L4
9900 Listing, line L2

On the Z80 and 8080, global and external
variables are referenced through BASE relative
relocation. On the 8086, global variables are
referenced through register DX, which
contains Base. On the 9900, global variables
are referenced indexed from R14, which
contains Base. On both the 8086 and the
9900, external variables are referenced via
base relative relocation.

0200101:06A

Utilities

On the whole, the listing looks very much like a
listing created by the assembler. The following
notes may help interpret the differences.

® P-code is preceded by the the notation:
sp-code (all other instructions are n-code.)

® The exit code point of the procedure is
marked by the notation: jexit code.

® The left-most column of numbers contains
decimal byte offsets of equivalent p-code in
the original code file. These offsets should
help identify the source code by the offset in
the compiler listing.

® The second column contains decimal byte
offsets into the final procedure code
generated by the NCG.

NCG LIMITS

The NCG produces an object code file whose
execution behavior is identical to the p-code file,
except for differences in execution speed.

In those instances in which the compiler emits
calls to a run-time support routine, the NCG
leaves the p-code intact. Therefore, p-code is
used in those places where translation would
generate excessive code,

0200101:06A 6-25

Utilities

Sequences of straight n-code (code between a
NATIVE instruction and its matching return
instruction) are treated by the p-machine as a
single p-code. (See individual processor listings.)
This fact causes two problems. First, although
the <break> key may be recognized by the
p-machine emulator (PME) at any point, no
further action is taken until the next p-code
boundary (that is, until the current p-code is
completed and the next p-code is encountered).
Since there are no p-code boundaries in n-code,
long sequences of n-code can't be terminated by
pressing the <break> key. Second, p-machine
events (interrupts), like the break key, are only
acted upon at p-code boundaries.

It is possible to work around these problems.
You may force a p-code procedure call by calling
an empty procedure. P-code operators which
perform procedure calls aren't translated into
n-code. Therefore, long sequences of n-code can
be broken into smaller sequences by a procedure
call. Since it is the procedure call itself that
breaks up the sequence, the called procedure
could be an empty shell.

Some unusual FORTRAN and Pascal contructs
create code that the NCG won't translate. For
example, using the Pascal primitive, P_Machine,
to generate an RPU instruction.

6-26 02C0101:06A

Utilities

PATCH

The Pateh utility enables you to view files and
alter them interactivley on the byte level.

Patch is meant to be used interactively with a
CRT. It uses the screen control module (see the
Internal Architecture Reference Manual) to
accomplish this; therefore, it is
terminal-independent (within limitations).

There are two main facilities in Pateh: a mode for
editing files on the byte level and a mode for
dumping files in various formats.

The byte-editing capability allows you to edit text

files, make quick fixes to code files, and create
specialized test data.

The dump capability provides formatted dumps in
various radices. It also allows dumps from main
memory.

EDIT Mode

When the system executes Patch, you are in the
EDIT mode. DUMP is reached by entering 'D'.
No information is lost in chaining back and forth
between the two modes.

0200101:06A 6-27

Utilities

EDIT allows you to open a file or device, read
selected blocks (specified by relative block
number) into an edit buffer, either view that
buffer or modify it (with TYPE), and write the
modified block back to the file. The system
displays buffers on the screen in the desired
format; these can be edited in a manner similar
to using the screen-oriented editor.

The following paragraphs describe the individual
commands of the EDIT mode. When it is
impossible to perform a command, Pateh responds
with self-explanatory error messages. The
following lines are the EDIT mode menu.

EDIT : D(ump, G(et, R(ead, S(ave, M{ix, T(ype.I(nfo, F(or, B(ack, ?

EDIT : V(iew, W(ipe, Q(uit, ?

The following items explain each menu option.

D(ump Calls DUMP.

G(et Opens the file or device and
reads bloek zero into the
buffer.

R(ead Reads a specified block from
the current file.

S(ave Writes the contents of the
buffer out to the current
block.

6-28 0200101:06A

M{ix

Mixed

Hex

Knformation

F(orward

B(ackward

V(iew

0200101:06A

Utilities

Changes the display format for
the current block. Pressing
M' toggles to change from one
format to another:
hexadecimal or mixed.

Displays printable ASCII
characters and the hexadecimal
equivalent of nonprintable
characters.

Displays the bloek in
hexadecimal digits.

Displays information about the
current file including the file
name, the file length, the
whether the file is open,
whether UNITREADs are
allowed, the device number (-1
if UNITIO is false), and the
byte sex of the current
machine.

Gets the next block in the
file.

Gets the preceding block in
the file.

Displays the current block (see
M(ix).

6-29

Utilities

W(ipe Clears the display of the bloeck
off the screen.

Q(uit Quits the Patch program.

T(ype Goes into the typing mode,

whieh allows the buffer to be
edited (described in following
section).

TYPE Mode

The TYPE mode, like the screen-oriented editor,
allows the information on the screen to be
modified by moving the cursor and entering over
existing information. To correct errors made
while using the TYPE mode, leave the EDIT mode
without saving the file, read the block over, and
try again.

The following line is an example of the TYPE
mode menu,

TYPE: C(har, H(ex, F(ill, U(p, D(own, L(eft, R(ight, <vector arrows>, Q(uit

C(haracter ~ Exchanges bytes in the buffer for
ASCII characters as they are
pressed, starting from the cursor
and continuing until you press
{etx>. Only printeble characters
are accepted,

6-30 0200101:06A

H(ex

F(i

Utilities

Exchanges bytes in the buffer for
hexadecimal digits as they are
pressed, starting from the cursor
and continuing until a 'Q' is
pressed; (hexadecimal digits can be
either uppercase or lowercase).

Fills a portion of the current block
with the same byte pattern.
Accepts either ASCII characters or
hexadecimal digits for the pattern;
upon completion, the cursor rests
after the last byte filled.

The following commands move the cursor around
within the block of displayed data. The cursor is
always at a particular byte. Rather than moving
off the sereen, the cursor wraps around from side
to side and from top to bottom.

U(p

D(own

L(eft

R(ight

Moves the cursor up one row.

Moves the cursor down one
row.

Moves the cursor left one
column.

Moves the cursor right one
column,

{vector arrows> Moves the cursor in the

0200101:06A

direction of the arrow.

6-31

Utilities

Q(uit Exits the TYPE mode and
returns to the EDIT mode.

DUMP Mode

You can generate DUMP mode in the following
formats:

@ Decimal, hexadecimal, and octal words.
@ ASCII characters, if printable.

® Decimal (BCD) and octal bytes.

DUMP can flip the bytes in a word before
displaying it or simultaneously display a line of
words in both flipped and nonflipped form.

Input to the DUMP mode can be a disk file you
specify or can come directly from main memory.
(The DUMP mode is used primarily to examine
the PME and/or the Basic Input/Output Subsystem
[BIOS].)

The width of the output can be controlled; a line
may contain any number of machine words: 15
words fill an 132-character line, and 9 words fill
an 80-character line.

6-32 0200101:06A

Utilities

When you enter the DUMP mode, the screen
displays two options: Do and Q(uit. Also a
lengthy set of format specifications are displayed.
These can be modified by pressing the letter of
the item and then entering the specification. To
activate the specification, press 'D' for D(o.

The following list shows the DUMP mode
specifications:

a. The input: A disk file or device.

b. The number of the block from which dumping
starts; if (A) is a device, this number isn't
range-checked.

e¢. The number of blocks to print out; if thi

t 18
too larce, DUUMP merely stons when there are
t large, DUMP merely siops when there are

no more blocks to output.

wn

d. Pressing 'D' starts the dump.

e. A toggle: If true, it reads from main memory;
if false, it reads from the file in (A).

f. An offset: The dump may start with a byte
that is past byte zero; 0 <= (F) <= maxint.

g. The number of ©bytes to print;
0 <= (G) <= maxint.

h. The output file, opened as a text file,

i.- The width of the output line, in machine
words; 1 <= (I) <= 15.

0200101:06A 6-33

Utilities

The following six items have three associated
Booleans that must be specified: USE, FLIP, and
BOTH.

n.

O.

6-34

USE tells DUMP whether or not to use the
format associated with that item.

FLIP tells DUMP whether or not to flip the
bytes before displaying words in that format.

BOTH tells DUMP to simultaneously display
both flipped and nonflipped versions of the
line. If BOTH is true, the value of FLIP
doesn't matter.

Display each word as a decimal integer.

Display each word as hexadecimal digits in
byte order.

Display each word as ASCII characters in byte
order; nonprintable characters are displayed as
hexadecimal digits.

Display each word as an octal integer; this is
the octal equivalent of (J).

Display each word as decimal bytes (BCD) in
byte order.

Display each word as octal digits in byte
order.

Put a blank line after the nonflipped version
of a line.

0200101:06A

Utilities

t. Put blank lines between different formats of a
line.

Both the EDIT and DUMP modes remember all
their pertinent information when the other mode
is operating.

Prompts

All user-supplied numbers used by PATCH are
read as strings and then converted to integers.
Only the first five characters of the string are
considered.- If there are any nonnumeric
characters in the string, the integer defaults to
zero. If integer overflow ocecurs, the integer
defaults to maxint. (Since integer overflow can
only be detected by the presence of a negative
number, integers in the range 65536 to 98303
come out modulo 32768.)

0200101:06A 6-35

Utilities

THE XREF UTILITY
THE CROSS-REFERENCER

Introduection

The procedural cross-referencer (XREF) is a
software tool that helps you interpret large
Pascal program listings. The referencer provides
a compact summary of the procedure nesting in a
program; & list of the procedures; and, for each,
the procedures that call them; and a table of
calls each procedure made along with all nonlocal
variable references. It thus provides information
about the interprocedural dependencies of a
program.

Referencer's Output

The referencer produces five tables and an
optional warnings file:

@ Lexical structure table: summarizes static
procedure nesting.

@ Call structure table: lists procedures and the
procedures that they call,

@ Procedure call table: presents procedures and
the procedures that call them.

® Variable reference table: shows each
procedure and the variables it references.

6-36 0200101:06A

Utilities

@ Variable call table: lists each variable and the
procedures which reference or modify it.

® Warnings file if desired: indicates possible
problems in the source program.

Lexical Structure Table

The first table displays the lexical structure
and the procedure headings. (The term
procecdure means procedure, funection, process or
program in this document unless otherwise
stated.) As the system reads the input
program, it prints out each heading with the
line numbers of the lines in which it occurs.
The text is indented to display the lexical
nesting. (This indentation must sometimes be
compressed to fit on an output line.)

Referencer considers a procedure heading to be
any text between the words: procedure,
funetion, process, or program—and the
semicolon which follows. This isn't the Pascal
definition, but is more useful in debugging

programs. If these reserved words are
embedcecd within comments, they are ignored.

0200101:06A 6-37

Utilities

The Call Structure Table

6-38

The system produces the second table after it
scans the program completely. The call
structure table is the result of examining the
internal data. For each procedure listed in
alphabetical order, the table holds:

The line-number of the line on which its
heading starts.

Unless it was external or formal (and had
no corresponding block), the line number of
the BEGIN that starts its statement part.

The characters 'ext! if the procedure has an
external body (declared with a directive
other than FORWARD); the characters 'fml’
if it is a formal procedural or functional
parameter; or 'eh?' if it is declared
forward with no associated forward block or
BEGIN. If a number appears, the procedure
has been declared FORWARD and this is the
line number of the line where the block of
the procedure begins (that is, the second
part of the two-part declaration).

A list of all user-declared procedures
directly called by this procedure. (In other
words, their call is contained in the
statement part.) The list is in order of
occurrence in the text; a procedure isn't
listed more than once.

0200101:06A

Utilities

® A list of variables referenced by this
procedure; and, if nonlocal, the procedure in
which they were declared. If a variable is
modified by an assignment, then it is printed
with an asterisk (*) in front of it.

The Procedure Call Table

This table is an alphabetical list of procedures;
and for each procedure the procedures that
call it.

Variable Reference Table

This table is an alphabetical list of procedures;
and, for each procedure, the variables that the
procedure examines or modifies in any way. If
the variable isn't local to the procedure in
question, then the procedure is listed in which
the variable was declared.

0200101:06A 6-39

Utilities

Variable references are shown in three forms:
@ <variable name> ::= a local variable
@ <procedure name> <variable name) ::=
a variable defined in <procedure> that is
used but not modified
@ <procedure name>*<variable name> ::=

a variable defined in <procedure> which is
modified

Variable Call Table

The form of the variable call table is
demonstrated in the following line.

<procedure name> <variable name>: <procedure name> [<procedure name>]

The first procedure name is the procedure that
owns the variable name, and the following
procedure(s) either examine or modify that
variable,

6-40 0200101:06A

Utilities

Warnings File

A file of warning messages. There are three
types of warning messages in the warning file:

@ 'Symbol' may be undeclared line# xxxx.
@ 'Symbol' may not be initialized line# xxxx.

@ Not standard, nested comments line# xxxx.

'Symbol' is an identifier, and xxxx is the
number of the line on which it ocecurs.

Referencer only catches initializations done by
replacement statements (':='), so variables that
are initialized by procedure calls (including
READ, and so on) are flagged as possibly
uninitialized. Depending on the program, there

may be a surplus of sueh warning messages.

The 'Not standard, nested comments' warning
refers to the nesting of comments having
different bracket types: (* like this
{ verstehen Sie? } *), which is accepted by the
UCSD Pascal compiler, but not the current ISO

draft standard.

The warnings file may only be generated if the
variable reference table is also generated.

0200101:06A 6-41

Utili

ties

Using Referencer

6-42

The referencer has options that are
user-defined at run-time. When you X(ecute
XREF, referencer displays prompts asking for
answers for the following questions.

@ Width of the output device? [40..132]

This is the length of the output line for the
available terminal/printer. Suggested output
width is 80 characters.

@ File to be Cross-Referenced?

The name of the text file that contains the
Pascal program to be referenced. If the
specified file can't be successfully opened,
the prompt is repeated until you enter a
valid input file name or press <returnd.
Entering an empty file name, (<return>)
exits referencer.

0200101:06A

Utilities

® [s this a compiled listing? [y/nl:
The program reads either .TEXT files
containing Pascal source programs or listing
files generated by the compiler. Using a
compiled listing as input assures you that
the line numbers referenced are
synchronized with the line numbers the
compiler generates.,

® Do you want intrinsics listed?

This allows identifiers such as '"WRITELN!,
'PRED', and 'GET' to be accepted as valid
symbols. These are then cross-referenced as
procedures listed outside the lexical nesting
and, therefore, aren’'t expected to have a
'BEGIN' associated with them.

® Do you want initial procedure nestings?

This generates the lexical structure table.
This table shows the procedure headings
and, for each procedure, the list of
procedures that it calls.

® Do you want procedure called by trees?

This option is offered only if the lexical
structure table is desired. A 'y' generates
both the call structure table and the
procedure call table. The procedure call
table lists each procedure and all of the
procedures that call it. (A warning is
displayed if less than 10,000 words of
memory are available to generate these
trees; no provision is made for possible
stack overflow.)

0200101:06A 6-43

Utilities

6-44

® Do you want variables referenced? [y/n}k

A 'y' generates the variable reference table.

Do you want variable called by trees?

[y/nl:

A 'y' generates the variable call table.

Do you wish warnings? [y/n)

'Y' generates the warnings file. This option
is offered only if the preceding selection
was made.

Please enter the name of the warning file:
If you select warnings, then you have the
option of directing the warnings to any file.

If the file is a disk file, the name should
have '.TEXT' appended to it.

Output File:
The name of the file to which you would
like the output directed. If the file is a

disk file, the name should have '.TEXT!
appended to it.

0200101:06A

Utilities

The referencer expects to read a complete and
syntactically correct Pascal program. Although
results with syntactically incorrect programs
aren't assured, the referencer isn't sensitive to
most flaws. It cares about procedure, funetion,
program headings, and about properly matching
BEGINs and CASEs with ENDs in the statement
parts.

Referencer doesn't try to format procedure and
function headings; it leaves them as they were
entered in the program, except for aligning
indentations.

The tables are all as wide as the output line
length, as specified by you. Eighty characters
are usually sufﬁclent For large programs, the

first table uuc lexical structure LuUIC) is
clearer with a larger print line.

Limitations

When presented with incorrect Paseal programs,
the behavior of referencer isn't assured.
However, it has been designed to be reliable,
and there are few flaws that can cause it to
fail. The most critical features are: (1) the
general structure of procedure headings; and
(2) correctly matching an END with each
BEGIN or CASE in each statement part (since
this information is used to deteet the end of a
procedure).

0200101:06A 6-45

Utilities

6-46

If an error is explicitly detected (referencer
has very few explicit error checks and minimal
error-recovery), the system displays the
following message:

FATAL ERROR - No identifier after prog/proc/func - At Line No. ###

The line number displayed (###) is the line
where the program found an error; like all
diagnoses this doesn't assure that the correct
reason is ascribed to the error. Processing
continues for a while despite the fatal error,
but only the lexical structure table is
produced.

Referencer accepts standard Pascal programs,
UCSD Pascal programs, and p-System units; it
processes each correctly.

0200101:06A

Appendices

APPENDICES

APPENDIX A
EXECUTION ERRORS

Fatal system error

Invalid index, value out of range
No segment, bad code file
Procedure not present at exit time
Stack overflow

Integer overflow

Divide by zero

Invalid memory reference <bus timed out>
User break

Fatal system I/O error

10 User I/O error

11 Unimplemented instruction

12 Floating point math error

13 String too long

14 Halt, Break Point

15 Bad Block

16 Break Point

17 Incompatible Real Number Size

18 Set Too Large

19 Segment Too Large

ORI W ~-O

All run-time errors cause the system to I(nitialize
itself; FATAL errors cause the system to
rebootsirap. Some FATAL errors ieave the system
in an irreparable state, in which case you must
rebootstrap.

A-2 0200101:0AA

APPENDIX B
I/0 RESULTS

No error

Bad Block, Parity error (CRC)

Bad Device Number

Illegal 1/0 request

Data-com timeout

Volume is no longer on-line

File is no longer in directory

Bad file name

No room, insufficient space on volume

No sueh volume on-line

10 No such file on volume

11 Duplicate directory entry

12 Not closed: attempt to open an open file
13 Not open: attempt to access a closed file
14 Bad format: error in reading real or integer
15 Ring buffer overflow

16 Volume is write-protected

17 Illegal block number

18 Illegal buffer

WO =3O U v W - D

0200101:0AA A-3

Device
Number

OO0 =3O WL b))

128...255

A-4

APPENDIX C
DEVICE NUMBERS

Volume
Name

CONSOLE:
SYSTERM:
<{System disk ">
<other disk>
PRINTER:
REMIN:
REMOUT:
<additional disks,
subsidiary veclumes,
or user-defined
serial devices>

<{user-defined devices>

0200101:0AA

000 00 NUL
001 01 SOH
002 02 STX
003 03 ETX

005 05 ENQ
006 06 ACK
007 07 BEL
010 08 BS
011 09 HT
10 012 0A LF
11 013 0B VT
12 014 0C FF
13 015 0D CR
14 016 OE SO
15 017 OF sI
16 020 10 DLE
17 021 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM

WOV d W ~O

27 033 1B ESC
28 034 1C Fs
29 035 1D GS
30 036 1E RS
31 037 1F UsS

0200101:0AA

APPENDIX D

ASCII TABLE
040 20 SP 64 100
041 21 ! 65 101
042 22 " 66 102
043 23 # 67 103
044 24 3 78 104
045 25 % 69 105
046 26 & 70 106
047 27 ! 71 107
050 28 (72 110
051 29) 73 111
052 2A * 74 112
053 2B + 75 113
054 2C¢ , 76 114
055 20 - 77 115
056 2E . 78 116
057 2F / 79 117
060 30 0 80 120
061 31 1 81 121
062 32 2 82 122
063 33 3 83 123
664 34 4 84 124
065 35 5 85 125
066 36 6 86 126
067 37 7 87 127
070 38 8 89 130
071 39 9 89 131
072 3A : 99 132
073 3B ; 91 133
074 3C < 92 134
075 3D = 93 135
076 3E > 94 136
077 3F 2 95 137

YR SN X ECCHNMWOYOZRENRUHTONMEBOOW ™ ®

177

.

T — AN X ECS TN QUOD BRI WG REDOMDOLO T D

DEL

APPENDIX E
PASCAL SYNTAX ERRORS

1: Error in simple type
2: Identifier expected

3: Unimplemented error
4: ') expected

5 ' expected

6: Illegal symbol (terminator expected)
7: Error in parameter list
8: 'OF' expected

: (" expected

10: Error in type

11: ' expected

12: ']' expected

13: 'END' expected

14: ;' expected

15: Integer expected

16: '=" expected

17: 'BEGIN' expected

18: Error in declaration part
19: Error in <field-list>

20: ') expeected

21: '™*' expected

22: 'INTERFACE' expected
23: 'IMPLEMENTATION' expected
24: 'UNIT' expected

50: Error in constant

51: ‘':=' expected

52: 'THEN' expected

53: 'UNTIL' expected

54: 'DO' expected

35: 'TO' or 'DOWNTO' expected in for statement
26: 'IF' expected

57: 'FILE' expected

58: Error in <factor> (bad expression)

39: Error in variable

A-6 0200101:0AA

Appendix E

60: Must be of type 'SEMAPHORE!

61: Must be of type 'PROCESSID'

62: Process not allowed at this nesting level
63: Only main task may start processes

101: Identifier declared twice

102: Low bound exceeds high bound

103: Identifier is not of the appropriate class

104: Undeclared identifier

105: Sign not allowed

106: Number expected

107: Incompatible subrange types

108: File not sllowed here

108: Type must not be real

110: <tagfield> type must be scalar or subrange

111: Incompatible with <tagfield> part

112: Index type must not be real

113: Index type must be a scalar or subrange

114: Base type must not be real

115: Base type must be & scalar or a subrange

116: Error in type of standard procedure
parameter

117: Unsatisified forward reference

118: Forward reference type identifier in
varigble declaration

119: Respecified paraneters not OK for a
forward declared procedure

120: Funetion result type must be scalar,
subrange or pointer

121: File value parameter not allowed

122: A forward declared function's result type
cannot be respecified

123: Missing result type in function declaration

124: F-format for reals only

125: Error in type of standard procedure
parameter

0200101:0AA A-T

Appendix E

126:

127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137
138:
139:

140:
141:
142:
143:
144:
145:
146:
147:

148:
149:

150:

151:
152:
153:
154:
155:
156:
157:
158:
159:

Number of parameters does not agree
with declaration

INegal parameter substitution

Result type does not agree with declaration

Type confliet of operands

Expression is not of set type

Tests on equality allowed only

Striet inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be Boolean

Set element type must be sealar or subrange

Set element types must be compatible

Type of variable is not array

Index type is not compatible with the
declaration

Type of variable is not record

Type of variable must be file or pointer

Illegal parameter solution

Illegal type of loop control variable

Nllegal type of expression

Type conflict

Assignment of files not allowed

Label type incompatible with selecting
expression

Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not
allowed

Assignment to formal function is not allowed

No such field in this record

Type error in read

Actual parameter must be a variable

Control variable cannot be formal or nonlocal

Multidefined case label

Too many cases in case statement

No such variant in this record

Real or string tagfields not allowed

A-8 0200101:0AA

Appendix E

160: Previous declaration was not forward

161: Again forward declared

162: Parameter size must be constant

163: Missing variant in declaration

164: Substitution of standard proc/func not
allowed

165: Multidefined label

166: Multideclared label

167: Undeclared label

168: Undefined label

169: Error in base set

170: Value parameter expected

171: Value parameter expected

172: Undeclared external file

173: FORTRAN procedure or function expected

174: Pascal functon or procedure expected

175: Semaphore value parameter not allowed

176: Undefined forward procedure or function

182: Nested UNITs not allowed

183: External declaration not allowed at this
nesting level

184: External declaration not allowed in
INTERFACE section

185: Segment declaration not allowed in
INTERFACE section

186: Labels not allowed in INTERFACE section

187: Attempt to open library unsuccessful

188: UNIT not declared in previous uses
declaration

189: 'USES' not allowed at this nesting level

190: UNIT not in library

191: Forward declaration was not segment

192: Forward declaration was segment

193: Not enough room for this operation

194: Flag must be declared at top of program

195: Unit not importable

0200101:CAA A-9

Appendix E

201: Error in real number - digit expected

202: String constant must not exceed source line

203: Integer constant exceeds range

204: 8 or 9 in octal number

250: Too many scopes of nested identifiers

251: Too many nested procedures or functions

252: Too many forward references of procedure
entries

253: Procedure too long

254: Too many long constants in this procedure

256: Too many external references

257: Too many externals

258: Too many local files

259: Expression too complicated

300: Division by zero

301: No case provided for this value

302: Index expression out of bounds

303: Value to be assigned is out of bounds
304: Element expression out of range

398: Implementation restriction

399: Implementation restrietion

400: Illegal character in text

401: Unexpected end of input

402: Error in writing code file, not enough room

403: Error in reading include file

404: Error in writing list file, not enough room

405: 'PROGRAM' or 'UNIT' expected

406: Include file not legal

407: Include file nesting limit exceeded

408: INTERFACE section not contained in one
file

409: Unit name reserved for system

¢10: Disk error

500: Assembler error

A-10 0200101:0AA

APPENDIX F
COMPILER BACK-END ERRORS

The compiler back-end errors can result from a
variety of problems. Basically, they occur when the
back-end finds itself or the intermediate code file in
an unexpected state. (The intermediate code file is a
file used by the compiler to communicate between the
front-end and back-end of the compiler. It consists
of compiler directives intermixed with actual p-code.)
Back-end errors can be caused by a corrupt
intermediate code file, external forces (such as bad
blocks on the disk), or source file information that is
skipped by the front-end but used by the back-end.

The following table lists each of the back-end errors
and gives a possible explanation for their occurrence:

Error
Number Comments
-1 While trying to generate the constant
pool information for a particular code
segment, the back-end tries to read one
block from the intermediate code file and
the read fails.
1 If the lexical procedure nesting is

greater than 31, this error will oceur.
Since the front-end only allows nesting
of seven procedures, this error should
theoretically never occur.

0200101:0AA A-11

Appendix F

11

A-12

The intermediate code file directives are
bytes with values greater than 252. If
the back-end reads a directive with a
value that is less than 253, error number
4 will result.

The current procedure number is greater
than the maximum number of procedures
for that segment.

The operator (variable, constant, jump
location) that the back-end is trying to
remap isn't in the scope of the
compilation unit.

The back-end can't find the target site
to jump to while resolving jumps.

There are more than 400 jumps in the
jump table while trying to enter a site
jump error. Try dividing each procedure
with many jumps into more than one
procedure.

There are niore than 400 jumps in the
jump table while trying to enter a target
jump. Try dividing each procedure with
many jumps into more than one
procedure.

The code pointer is less than 0 or
greater than the length of the
intermediate code file while building a
jump table.

0200101:0AA

12

22

23

24

25

[
-1

28

29

30

Appendix F

A jump site can't be found in the jump
table.

Unexpected end of input while generating
the LCO p-code instruction.

Unexpected end of input while generating
the LDC p-code instruction.

The exit for a certain procedure can't be
found in the jump table.

The code pointer is less than 0 or
greater than the length of the
intermediate code file while generating
p-code.

The code pointer is less than 0 before
trying to read in more code from the
intermediate code file to the code
buffer.

The code pointer is less than 0 after
trying to read in more code from the
intermediate code file to the code
buffer.

The current final output block number is
greater than the block number of the
intermediate code file being processed.

The final code file size exceeds the
intermediate code file size before trying
to write more final code.

0200101:0AA A-13

Appendix F

31

41

86

99

The final code file size exceeds the
intermediate code file size after writing
more final code.

The line length of a compiled listing
exceeds 120 characters. (Note: This
error can occur on a pre-IV.l1 compiler if
there is an illegal character after a DLE
character.)

Couldn't find a particular segment in the
intermediate code file.

The number of procedures doesn't match
the number specified in the procedure
dictionary.

When you encounter a back-end error:

@ If a syntax error has occurred in the front-end and
a back-end error ocecurs, fix the syntax error and
try recompiling.

® If there are bad blocks on any of the disks being
used for the compilation replace the bad disks with
good ones and try recompiling.

A-14

0200101:0AA

INDEX

-8-

8080000....0-00-.0--onnano‘ooc. 6_24
8086.--0u.aoocuoo-ocooocsc..... 6-24

-A-

adaptable Turtlegraphies package......... 3-61
gltering memory. « . v v e et v eeeeoeeasss 5-9
ANSI. ¢ i i it it ittt ettt e e e e 3T
Aspect_Ratio. . oo v v v v v v v vt v v e s o337
assembly language.00 0000 2-34
assembly language routines......... 3-28 3-31

-B-

background. . . « ¢ ¢ttt i it i it aee. 3-35
background, black and white.332
background, hard. ¢ oo eoeeeeeses.3-32
Base. ittt B-24
base relative location. . .. ¢e e eeveeee..b-24
BASIC. . ¢ e v et v v v e v .e.2-3, 3-31, 3-62, 6-16
BASIC source code file.............. 6-16
DOOt diSKe o ¢ v o v e v v o e e s e 3-T75, 3-77
break points.¢ii it veeeoeesees 56

-C-

Call Structure Table. .. ¢ o ¢ et e eeeee.. 6-38
character fonts, Turtlegraphics.......... 3-75
character SiZe€. ... e oo v oo eoesaeoeesasd-75
CharHeight. . v + ¢« v v et et et e e ee..3-75 3-76

0200101:0IA I-1

Index

CharWidth. . . . v v e e et v v e s seeas. 3-75, 3-76
clear pixel test. ... v vt et veess. 3-78
CODE. . ittt ittt st eaeasaanossseas 6-18
code segment. . e .o eveeoeeesooesssas 2-33
color, background. . « . « ¢ ¢ ¢ v v s s s e eee. 3-32
color fillinge e« v v et vttt e veenesseees 3-69
Command I/O Unit. oeeeeeueasaes3d=24
Clompile. s v vttt vt neoesoeseaceeesas 2-4
compile-time switches. . v v v v v v vt e v e, 6-13
compiled listing. « « v v e v vt et v v veeeas 279
COmMpPiler. « o o vt s et o oo s s s eavessoeesa2-3
Compiler OptionS.: « v e o v ¢ o e o e 0o 0 s o sese 2-13
$B Begin Conditional Comp. 2-15, 2-24
$B End Conditional Comp. .« e e e o+ ... 2-24
$C Copyright. + ¢ v v vttt v e s nnwees 2-15
$D Conditional Comp Flag.2-15 2-24
$D Symbolic Debugging. .« « « « « o ¢ o ¢ s+ . 2-16
$E End Conditional Comp. ... s e 00 ... 2-16
$1 Include File.e v v v o oo v v v oo weesa2-17
$I I/O CheCK:s v v v e v vt eneesnessaes2-16
$L Compiled Listing. .+ o v e oo eesesa.2-19
$N Native Code Generation. 2-20
$P Page. ..ottt e ittt anonaneess 2-20
$Q Quiet. ..ttt it i i it .2-21
$R2 and $R4 Real Size. . v v v oo, 2-22
$R Range Checking. .. . s e v o oo s sso . 2-21
$T Title. oo vt it vt v ot enneneaees 2-22
$U Use Library. « v o o o o e e v oo a o oo 2-22
$U User Program. ... eoeeeseeeeess 2-23
Complement. . . «+ 3-33, 3-44, 3-71, 3-85
complementing pixels. ¢« ¢ v v o v e e v s 0000 3-69
conditional compilation. . « « « o s s v e 000 2-24
Create_Figure. « « v e v e e e e oo e v o 3-42, 3-66
creating new - figures. . « « ¢ v e v e e oo 3-41

I-2 0200101:0IA

Index
- D —_

Date_Test.ttt ... 4-47
D_Change Name....................4-39
D Choice. it iieenn... 4-18
D Code. st v iiiiiitn e iienennene. 4-17
D oData. i ittt ittt ettt nneen. 4-17
D@bug

break points.0........ 58

variables. 58
debugger.ttt it enen. 53
debugging. it i i ... 3-78
decimal byte offsets. 6-25
QeCOG@. 4 v ittt ittt i e e64
default display scale. v oo 3-38
default fonmt.............c0vvuuu.. 375
default font, replacing............... 3-75
deleting new figures. 3-41
D b T X
direction, turtle................... 3-30
directories. « v v v v it i it i, 4-12
Directory Information................ 4-12

File Type Selection.4-18

Notation and Terminology........... 4-13
Directory Information Access.4-12
directory lister program.............. 4-33
Directory Manipulation.vv.u.... 4-12
DIRNFO. ¢ v i it ittt i vt e nnnen 4-3, 4-12
DIR_INFO

File Type Selection.v.....4-18

Notation and Terminology........... 4-13
DIR_INFO.......iiiiiiiiiinneeen. 4-8
disassembling. v v v v v v v vttt e e ... 5-14
Display. .ottt it iiiieeennan.. 3-35
displaying memory........ueeueeeeeo...5-9
Display Scale. . v v v v v v vennenn. 3-37, 3-40
display scale. .. v i v ittt eennnn.. 3-27
display scale, straight............... 3-37
display set test......ueueveeuuoon.. 3-78
D NAME. & .ttt ittt et 421

0200101:01A I-3

Index

D NameType. s e e vt o veessonaossesss 4-16
drawing @reas.eooeeoeososesess 327
Drawing Mode. oo eeeeesoosossssd=dd
Drawing Modes
Complement. « « v o v v s oo vsesss 3733,
NOPe et et sonseoeenaeeeess 3733,
OVErWPitE€. o v ¢ ¢ v o 0 0 s 0o o o s v s 0 o s o
Substitute. « o « ¢« e e v e v e o s . 3733,
UnGerwrite. « « ¢ « o e o o s a s s s o s o3-33,
Draw_Lin€. « ¢ v v v e et e aveesses. 3764,
DrawLme teSte ¢ o o s o 0 st e e v s 0 a e
DScan _Titles o v o vt vt v e e neaess415,
DSELECT
D SVOl: vt ot v eeenncnonceoansnsns
D Temp. e e o oo esoeeeocoocsccsscan
D _TexXteuoeeeeeosoooeoososnconsoss
D TITLE. « ¢ ¢ sttt e vt oaceoeasocsons
D TYPE. « ottt ettt easasoeconcaans
D Vol. .ot eieneostoneoncoannsas
D VOLUME. ¢ ¢ vttt e v assenscossonas

.

eeriey
|

O W

LW W

rh»h»&h)h"?uh'hrhuh

]
DO b= DN DD b pd e = b)) OO0 =T s W
ot e] DD bt] a3 A O W

-E-

eNCOAING e o o ¢ o v e e s s oo o s s s oo os oo
error handler unit. ... ¢ o e oo eeo e oo
Error Handling. . « « o ¢ ¢ ¢« ¢ o e s e 0 0o oo
error results. . .o v o e o s e s s s s e e e s e n e
Example Program. eeoe e oo eae
sxecutable code files. ¢« ¢ e v e o v v v 0o e v o
axecutable p-code file. ...t
EXERCISE2.CODE. ¢ v e ¢ e v e e s o s s s o e e
EXERCISE4.CODE. . ¢ ¢ ¢ e e v et vt s s oo s o
EXERCISE programMe. « « « s « o s o s s s 0 s o o oo
23XErciSe ProOgramsS. « « « o o s o o o o o s o o oo
EXERCISE.TEXT. ¢ ¢« v ¢ s o 0o 0 e s o oo eesoe
Exercising Turtlegraphics. « « « o v ¢ v ¢ o v 0 e
axit code pointe ..o oo v e o e v o v oo oo

L |
— e)

O L B W W

D e W o W d 3
DD ~3 ~3 =3 O -3 =3 H

IO OOMWWON O UL WDM

I-4 0200101:0IA

Index

Extended Backus-Naur Form (EBNF). 4-13
external variables. ¢ v v v et v v v v i v e ... B6-24

-F-

FigPtr. ii it iineeee..3-68, 3
Figures. . v v vttt it tnveeeeenneoss 3
figures. « v v v i i it i i i i i i e .3
Figure size....¢.iv it tieneeeeeaas 3
figure sSQUArENESS. « v v v vttt v e v v v eo.. 3-
file dateS. v v i vttt i et ennneneeees 4
FILEINFO.t eenens.. .44, 4
File Information. ... v vvveveieveees, 4
File Management UnitS. e.eeeeo..
DIRANFO. . . v v vttt ittt e e e 4-3
FILEANFO. v ien.. 474, 4-T1
SYSINFO. . vttt v i v it e e u. . 4-4,
WILD . ¢ et ittt ittt ettt neaneeeas 4-4
File Manipulation. . . v v v v e v o v e v enn.. d4-12
file, Turtlegraphies.veevveeeees.. 3-61
FILE _INFO. ...ttt inetieeeennenes 4-9
Fill Color test. .. .v'viveneeeeeese. 379
Fillscreen. « ¢ v v v vttt v vt e e veneeesaas 3-35
font, default.......v'eeveeeeeeesa. 3-75
Font Structure.euveeeeeeeeeeee. 3-78
font table.t vene.. 3-76
FORTRAN. 2-3, 3-31, 3-62, 6-16
FORTRAN constructs. « « ¢ v v oo v e v veeo. 6-26
FORTRAN source code file. . vcveveveeo.. 6-16
B O
FOTOFILES. . v v i v it ittt e et e nnnees. 3-46
Funetion
Aspect Ratio. iviie.. 3-
Create_Figure.o veene.. 3-
D _Change Date.ovvvieeeo.. 4-
D _Change Name. .. .vvvveeeenenenes.d-
D Dir_List. o v v o v vttt st et e nnas 4

DO CO W W W
e oo

0200101:0IA I-5

Index

D DisMount. . . ¢ vt v vttt i e e eennn
D Krunch. o v v v ottt e v s ettt a oo oas
D Mount. . o i v ot ettt teneennan
D Rem_FileS. « e et e et v vt aneeens

D Scan_Title. ¢ o o v o v v v e v v o e v s oo

D Wild Mateh. v v v v vt v e enenennn.
FlgureSlze....................
F is Blocked. « « c v e v vt vttt e aeeann
F Length., . . . oo i i i it veeneenns
F Open. ...t eeeeeeeonansos
F Start. . ¢ o v v ittt iiie e sans
F_Unit_Number..........cc0oo...
Load _Figure.o veeeeeeeeeonns
Read_Figure_File. « ¢ v v v e et v v v 0 v
Read Pixel. ... et v i i iv s
Read_Screen_Pixel. v v
Redirect. . .« c v v vt v i i ittt enan
Result. . i oo ittt ieeeenaneann
SC_Check_Char. . v et v vttt v v v anans
SCFlnd K ettt te ettt e et aeeeens
SC Find Y. eeeeeeooaooooaooannn
SC_Has_Key. oo oo ooeeesosooeeas
SC_Map_CRT_CommanC. « « « « ¢« ¢ ¢ o0 o s
SC_Prompt. ¢ v v vt v v vt e v v nnensean
SC_Sern_HaS. ¢ ¢« e v e e vt v e e v veensos
SC_Space_Wait.
SI_Sys_ Unit. oo oo i teeeveeeoesoos
Store_Figure. « .. oove v et veeneeens
Turtle_Angle. . v ¢ v o v vttt e i et e e o
Turtle_X. ¢ ot v v et vttt oo vonoeos
Turtle_ Y. ...t iiiieeenennn
Write_Figure File. . . v v v v v v v e v v v v e

-G -

Get_Figure. L] . » . L] L] L] L] L] L] L] L] L] . . .
global display scale. .. .¢ v v e e eoveenson

L L LU

|
H CO W W O b bt b b = b el CODD O W R el s AT a7~ DD DD N

ww.&wwwww.&pfhgxwaqs.&.&hh
N R RO WA MMANNDUINUIOUN-IINWHNDNWOIO~ROODDOO

L W
llglolll

wwwwclorhwww

3-41
3-27

I-6 0200101:0IA

Index

global wvariables.6-24
GRAFIX2.CODE. . v vttt v i v v e .. 3-64, 3-77
GRAFIX4,.CODE.vvuvuu... 3-64, 3-77
GRAFIX fileSu v v vt vt i e vennnneeeess 3-62
GRAFIXX.CODE. v vt v ittt st e v e ae e 3-77
Graphies I/O Routines. . v ..vvveveoeo.. 3-64
Graphies System Initialization. 3-74

-H-

ha[‘d ba(}kground................... 3-32
Hardware_COHfig....-.............. 3-74

-I-

implementation section.vueue.'eo... 2-35
Input code filew . vviveewwneesneess.b-18
Installing Turtlegraphies.03-61
interface section.vveuu... 2-35, 3-49
joresult. o o v it i e ey, 3-47
I/O Routines.vuviieeeunnn...3-64

K
bl’eak key....-....-............. 6—26

-L-

7 S
Labels..........................3-36
Lexical Structure Table...............6-37
librar-ies.........................2—36
lbrarying. . v oo v v it i i e e .. 3-TT
library text file....'vuueeeeuvenn.. 2-37
L(nKer.s o v v v vt it e n et eenneeeee..2-34
Hnking . v v v v it i it e e e 2-32, 3-77

0200101:0IA I-7

Index

Linking and Librarying.....«.eeooeeee. 3-77
listing e o « v o et v s s oeeesneeees 279, 6-25
Load Figure....euoeeeeeeeoeoasosss 342
LockteSt. v v o v v o o s oo o e ssoeaseessesd=d2

-M-

mark stack chain. .« ¢ ¢ et et veeaeeass 0-10
MAX Function
8080. . v ¢ v o e o e e esesaessaseaass 6-21
8086 . v ¢ v o ¢ e o et e s s eessesaaasasas 6-20
9900 . « « ¢ o e o ¢ e o e o s s s eseeaasas 6-23
Z80 e ¢ ¢« « e o vt s e s s s e s asesesesab-19
MaXXPiXe o o s s 0 e s o e ooessessasaesassdb69
MaXY PiXe o v e o ot oot eaaatnscoosassased-B9
MEMOLY e o s s e e s s s s s sosesocasssasse 909
Meta-WOrdS . « o o o e e e o 6 s caessasasesas 4-13
MIiNXPiXe « « ¢ ¢ o 0 e e oseasessessesses 3-69
MIiNYPiXe o « o e et o e v aeessesansesaes 3-69
Mode VElUES . ¢ v o e e o s s e seaseonaasas 3-70
Multi-tasking Support.eco 0.0+, 4-13

"3

-N -

SN+t vt v s oo e o vneeaseeessess 8-13, 6-14
BN=" o s i ittt st asssesssassess 6-13, 6-14
NATIVE. ¢ ¢ vt t et e eoesesasassoeess 6-24
SNATIVE. ¢ v v 4 ¢t s o e s s aaueeooesness b-16
native Code. « « v v e vt s s s asseeesoea. 6-13
native code directives.6-13, 6-14, 6-16
native code generation............... 6-14
NATIVE instruction. .« . .. eeoeoeoeeeee. 6-24
N COAE€ .+ ¢« « ¢ c e v s e asvesse. 6-13, 6-24, 6-26
NOPe o e s e e veeeaeasss 3-33, 3-43, 3-70, 3-85
numberic designation. .« « « v v vt oo 3-31

I-8 0200101:0IA

Index

-0-

object code file. .. v vevveveeeeeeasee. 6-15
Operating System User Manual.4-14
output code file. ... v veveeeeeeoes. 6-18
Overwrite. 3-33, 3-43, 3-71, 3-85

-P-

parameters, routine....... 3-49
Pascal. o v i it it i it i i e e e ... 2-3
Pascal code file. .. v i vivneeen.. 6-14
Pascal constructs. « « v v v vt v v e en...b-26
Pascal primitive. 6-26
L] N X

DUMP..... oo iiiien..6-27, 6-32

D X

Prompts. .. v v i i ittt ittt et e, . 8-35

TYPE. . .o ittt it ittt iee.. 6-30
peode................. 6-13, 6-24, 6-25
pcode boundary........¢.c0c00e0... 6-28
Pcode file. . v iv it ieeeeeeeeeeeee.b-25
Peode. . . ¢ i i it ittt et e e 5-12-5-14
p-machine registers. « « v v v v v v v v v e vwa..6-24
Pen Color. iiiiennneo..3-20
Pen_Mode.........00iivivinenne.. 3-29
Performance. « v v v v vt i vt it e, . 371
PIXele o v i ittt it e e e e e e, 327
g -
pixels, complementing........v.v..... 3-69
p-mechine emulator.evveeveuweeoe..6-24
p-machine emulator (PME). 6-26
I Y
Port. i i i it e e e e e e e .. 3-41
position functions.vveevuee... 3-20

0200101:0IA I-9

Index

Procedure
Activate_Turtle..................3
Background.....................3
ChaiNe o o o e v eesansoaeannssesss 3
Comp_Screen_Pixel................3
Delete_Figure...................3
Display Scale. « o« v o e e e v s v v e oo 3
D_Lock.......................4
Draw_Line.....................3
D Rele@S€. + v o v s e o v s s oo aoc o e 4
Exception......................3
F Dat€. oo oeossoooeonsasecssos 4
F_File_Title....................4

Fill COlOT. ¢ v e v et v e s o e v ecocnns 3

3
4
3
3
3
3
3
3
3

O D DB DO O

FillSCrEeN. « « s o s o e s s s s s s oo s oo o
F_Volume. ¢« « o ¢ s o o v s s o s oo onoos e
Get_Figure. .. e ceveeenccoeoceene
MOVE e « ¢ o o o 2 o s s s s s o s oaeoeassass
MOVELO e v ¢ ¢ ¢ o s s o s s s s oo osoaossss
Pen_CoOlOr. « ¢« v o oo oo anoceonsacen
Pen_MoG€. e s v oo e e s s oo s oo cnes
Put_Figure.ccoceoeecevoaenes
Query_Environment. oo e e e e oo
SC Clr_Cur_Line. « v v oo veavceon e
SC_ Clr_Lin€. . v oo vveeaocceoccnscs
SC CIr_SCreeN. o« o o oo oo s oo s oo s oo
SC DOWNe ¢t o oo o oo ovaossocensens
SC_Eras_EOS....................3-11
SC_Erase_to_EOL.................3-10
SC_GetC_CH....................3-12
SC_Goto_XY....................3—11
SC_Home......................3—11
SC_Init...............;.......3-10
SC_Left.......................3—11
SC_Right......................3-11
SC_Up........................3—11
SC_Use_Info....................3—17
SC_Use_Port....................3-17

pwwww.h-qmm-q-qu-qmw.bmmww

—_—o oo uk WHOOoOWND

3-
3-
3-
3-

[e)

I-10 0200101:0IA

Index

Set_Error_Line.co00uu..
Set_Pixel. .o v v i it iiiiinnenenn..
Set_Screen_Pixel. ..o v v vvn ...
Set_User_Message......uovveeuuen..
SI_ Code _Tide oo v v v i einneennn.
SI_ Code_Vid. v v v v v v v v i v e e eenen..
SIGetDate....................
SI_Get Pref_Vol. .. v'veiiniennenn..
SI_ Get_Sys_Vole v v v vt v v v inneenn..
SI Set_ Date. oo v v v v i i ennnennen..
SI Set_Pref Vol i w i eeeeeneen.
SI_Text Tide v v v v v v it i e e eenenn.
SIText Vide o e e
Turnto. . v o v vttt it s e e e e
Viewport. v it i i i i i,
WChar........................
WString. « v v v i i i it i e e .
Procedure Call Table................
processor listing.u'eueueeuweeeon.
PrOCeSSOr TegiSterS. v v o v v v o v o o oo oo oo
Program
Date_Test. . v v v v it oteenenenn
DChangeName..................
directory lister program............ 4-33
Locktest. v it i i i i i neee.. 4-59
Rem _Test.4-51
Scan_Test. v it iiieeennenene...4-23
Sys Test. oo vi it i e eenn.. 4-68
WildChng. v v i it i i i e s .. 4-41
Wild_ Test.0 v .u... 4-63
program, Sampleé.veeeeeneeees. 3-50
Put_Figure...........i0iuuunu... 3-41

PSR
DN O W rO

SN O Q 3OO =

»h-k.hulkohuam-
S = W i e =

TRRLTTLLLE
I

NN WWWhWWwOHYD
BB O~ oo™

e
QO W
O -3

Q

Query_Environment. 3-38, 3-75

0200101:01A I-11

Index

-R-

range—checking.....................3-64
Reference Points
8080 . « « o o oo oo eeesasonsaseseass 6-24
8086 . o v o vt s oo eeocenosssacseass 6-24
0900 . « v o o s e o s eseassssacssesss 6-24
Z80 . o o o oo s oot anesaneecaneessb-24
reference pointsS. .« c ¢ v o v s v oo v vt oo e 6-24
Referencer's Output
call structure table. :eooeoee. 6-36
lexical structure table. eoesee. 6-36
procedure call table. ...t ev e 6-36
variable call table. .« oo o oo eeoeoas 637
variable reference table. ... ¢ e e oo+ 6-36
warnings file. ..o oo e oo e oo ooo . 6237
registers.........................5-12
Rem_Test........................4-51
restricting display. .« e e oo oo 3-41
Routine Parameters. . « « « o e s s s s o v 00+« 3-49
R(UN o o s o oo s neeesnncosnsessasses 274
run-time system. ... e v e e v v e e oo 3-5
run-time support routin€.« 6-25

-S -

Scaling..........................3-37
scaling fACLOPS. o o o o o e e nsossoosesoass 3737
Scan_Test........................4-23
sereen control UNite .o oo oo oo oo ooosass 37
secreen description PECOrds o o o o oo s s s s oo 3-67
SCREENOPS.CODE. « v e et v s s eneaoeossesd?
SCPEENPIr e v o o o s e v oo osensocesoeeses 367
Segmenting a Program. . « o o oo o o oo s s oe 2732
segments....................2—32, 2-40
SELECHIVE USESe o o o o v oo o s o s o asoososssd2

I-12 0200101:0IA

Index

separate compilation

external compilation. . « « v v e v v e e s 0. 2-33
Share. « v e v ottt ettt et eeesesosaassd-b69
Shipping . o « ¢ ¢ ¢ et e v et s st s s eoasees 3728
single sStep.e e e oot e v oo et esosasasesadl2
Size, figure. ..o oo vt i eeeeeeeneaees 3-27
soft background. « + « « ¢ v e ¢ et e e o s e e s3-3D
SOUPCE COdE. o e o o v ot oo s neeeoasases 6-15
source files ¢ v v v v ot et o s e v o s e essb-13
special initialization.+ e e e v e e ees.o3-62
straight n-code. . . ¢« c s c e s s e e s o ecace- 6-26
Substitute. . « ¢ s ¢ oo o ... 3-33, 3-43, 3-71, 3-85
symbolic debugging. ceeeeeeeeee.d19
symbolic designation.00 3-31
SYNta8X ErTOrS. « v ¢ o e o e o e o s oo s s oo oees 2=T
SYSINFO. « v v s v e v e s v v eeessaes 4-4, 4-65
*SYSTEM.FONT., 3-36, 3-63, 3-75, 3-77
System Information.......eoeoveeeees..d-65
system initialization. . ..cceeveeeeeacea3-6
system initialization, graphies........... 3-74
SYSTEM.LIBRARY . ¢ v e v ¢t et e e e e e v eeess2-36
*SYSTEM.LIBRARY....... 3-28, 3-61, 3-74, 3-77
SYSTEMMENU. ¢ e ¢ v et et s evseesacesseo—d

SYSTEMOSTARTUP.....lt.ll.Il.‘l.l.3_
Sys_Test 46

LATTLe ¢ &6 ¢ &8 & 8 & & 8 8 ° 5 v E s s s . e o o s e

SY)’S—_IBTFO.IUll...llll...".......4-

0 00 >

-T-

test, clear pixel. .. ¢ v v e v e v eeee.3-78
test, display test. ..., 3-78
text files. .. v v i i i sttt it s e eaeensadll
TUrtle . ¢ o o o oo e s v oo s s osseeeasess 328
Turtle_Angle. . o v i v v v i i e v i i e en e 3-29
TURTLE.CODE. s v v ¢t ¢ v e o s n o eneeasssad=T7
turtle direction. « « « ¢« ¢ ¢ s et v e v e s oees.3-30
TURTLEGRAPHICS . « ¢ ¢ ¢ ¢ ¢t e s 00 aseaea 3=77

0200101:0IA I-13

Index

Turtlegraphics character fonts. 3-75
Turtlegraphics fileS. o e e v v e vt v v v veee. 3-61
Turtlegraphics general routines.3-27
Turtlegraphics, installing.¢¢¢e0e¢.... 3-61
Turtlegraphies unit, creating. . « .+ 3-64
Turtle_X. ..o it e ittt ittt s3-29
Turtle _Y. .o it ittt ittt nneeesa3-29

-U-

UCSD Pascal. e v v e v 00 eeeea. 2-3, 3-62, 6-14
Underwrite. . . v oo oo .. 3-33, 3-43, 3-71, 3-85
Unit Interface
DIR _INFO. ..ttt teeeeeernneneesseasdb
FILE_INFO. ...ttt nneeeees 49
SYS_INFO. .ttt eeeeeenenees.d-8
WILD . . e ittt it e teteetenenneeee 45
units.00 . . 2-32, 2-33, 2-35, 2-40, 6-4
implementation section. . «.....0.... 2-35
interface section.vveveeveo..2-35
USECa ¢ o v o o s o s s v s s s s s s ssssesessas 240
user-created figure..............3-43, 3-44
User-Created Figures Exercises.......... 3-86
USERGRAPHICS. . . v v vt vt v v v v w..3-T4, 3-T7
USERGRAPHICS unit. cveevveeeeos 3-63
USERLIB.TEXT . ¢ ¢ v vttt v s v neesesea2-37
HUSERLIB.TEXT e ¢ v ¢ v v v e o nnonceoeeees 377
Using Referencer. .«ueeeeeeeeees.b-42
USRGRAFS. . . . ittt ittt it i e enes 3-74

-V-

Variable Call Tables « v ¢ ¢ ¢ v v e o e o vsee. 6-40
Variable Reference Table. eevee...6-39
variables. . v« v i it it i e e e e e eee.. 5-8
VECLOr APPOWS . o ¢ « o o o o o o e s oo o e e s oo 6-31
viewport. . v v i it i i i e e .. 3-28, 3-41

I-14 0200101:0IA

Index

viewport boundaries. ceeeeee... 3-45

-WwW-

Warnings File. . v v i v vt ettt vt v eeee.. 6-41
WChar.........ccvv 0., .3-36, 3-63, 3-75
width/height ratio. . .. v o v v v v v v v v 3-40
WILD. ot vttt ettt et eneeennssssd-4, 4-5
Wild Cards. v v v v o v vttt et nesseeees 4-13
WildChng. o v vt e v v i ittt e . 4-41
Wild_Test. v v v i v vttt et eeeeeeneaeass 4-63
WIndOW. « o v v e v e v v v v e was. 3-28, 3-41, 3-45
WString. . v v v v vee... 336, 3-63, 3-75

-X-

x-coordinate. . . . i i i i i ... 3734
XREF..-.-.-..--tocc'-oououo'occ6_36

-Y-

y*coordiﬂate...-.-.-.....--......- 3-34

Z
Zso.--..-.-olnlllo-voncnc.;ocoﬁ6"24

0200101:01A I-15

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	3-00
	3-01
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	3-91
	3-92
	3-93
	3-94
	3-95
	3-96
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16

