Silicon Graphics Inc.

|IR1S

3

IRIS gk

User’s Guide

Version 2.1

Silicon Graphics, Inc.
630 Clyde Court
Mountain View,
California 94043
(415) 960-1980

Documentation:
Robin Florentine
Steven A. Locke
Celia Szente
Diane M. Wilford
Glen Williams

© Copyright 1985, Silicon Graphics, Inc.

This document contains proprietary information of Silicon
Graphics, Inc., and is protected by Federal copyright law.
The information may not be disclosed to third parties or
copied or duplicated in any form, in whole or in part, without
brior written consent of Silicon Graphics, Inc.

The information in this document is subject to change
without notice.

IRIS User’s Guide Version 2.1
Document Number 5001-051-002-0.

Preface

The IRIS is a powerful tool for interactive computer graphics. It is ideal for a
variety of graphics applications, including CAD/CAM, simulation, VLSI design,
and document preparation. The IRIS Graphics Library is the set of graphics
commands that provides high- and low-level support for graphics on the IRIS.
The IRIS User’s Guide describes the Graphics Library and consists of four major
sections.

L.

II.

II.

V.

The Programming Guide discusses the Graphics Library commands in a nar-
rative style. The first chapter is an IRIS System Overview and the
succeeding chapters are a topically organized discussion of the commands.

The Window Manager section describes Multiple Exposure, the window
manager for the IRIS workstation.

The Programming Examples section contains ten programs which illustrate
the use of various Graphics Library commands.

The Reference Manual presents the Graphics Library commands in alphabet-
ical order. Each entry contains a specification of the command in C, FOR-
TRAN, and Pascal, a description of what the command does, and refer-
ences to related commands.

The glossary defines graphics and IRIS-related terminology and the index identi-
fies where key terms are discussed in the Programming Guide.

Finally, we welcome your comments and suggestions on the IRIS documenta-
tion. These will be a valuable source of ideas for improvement of the IRIS User’s
Guide. For this purpose, a postage-paid Reader Comment form is provided at
the end of the guide.

Version 2.1 . IRIS User's Guide

IRIS User’s Guide Version 2.1

TABLE OF CONTENTS

I. PROGRAMMING GUIDE

1. Introduction

1.1
1.2
1.3

IRIS System Overview
The Graphics Library
Documentation Conventions

2. Global State Commands

2.1
2.2

Initialization
Saving Global State

3. Drawing Primitives

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Current Drawing Positions
Clearing the Viewport
Points

Lines

Rectangles

Polygons

Circles and Arcs

Text

Writing and Reading Pixels

4. Coordinate Transformations

4.1
4.2
4.3
4.4
4.5

Modeling Transformations
Viewing Transformations
Projection Transformations
Viewports

User-Defined Transformations

5. Textures and Fonts

5.1
5.2
5.3

Linestyles
Patterns
Fonts

6. Display Modes and Color

6.1
6.2
6.3
6.4

Display Modes

Colors Maps

Colors and Writemasks
Cursors

7. Input/Output Commands
7.1 Initializing a Device
7.2 Polling a Device
7.3 The Event Queue
7.4 Controlling Peripheral Input/Output Devices

8. Graphical Objects
8.1 Defining an Object
8.2 Using Objects
8.3 Object Editing

9. Picking and Selecting
9.1 Mapping the Screen to World Space
9.2 Picking '
9.3 Selecting

10. Geometry Pipeline Feedback
10.1 The Geometry Pipeline
10.2 Feedback Mode

11. Curves and Surfaces
11.1 Curve Mathematics
11.2 Drawing Curves
11.3 Drawing Surfaces

12. Hidden Surfaces
12.1 Z-Buffer Mode
12.2 Backfacing Polygon Removal

13. Shading and Depth-Cueing
13.1 Shading
13.2 Depth-Cueing

14. Textports

II. APPENDICES

Appendix A: Type Definitions for C and Pascal
Appendix B: Geometry Engine Computations
Appendix C: Transtormation Matrices

Appendix D: Feedback Parser

III. INDEX

IV. MULTIPLE EXPOSURE: THE IRIS WINDOW MANAGER

1. Introduction

2. The Default User Interface to the Window Manager
3. Programming the Window Manager

4. Programming Examples

5. Programming Considerations

6. Customizing the User Interface

V. PROGRAMMING EXAMPLES

Example 1: Getting Started

Example 2: Common Drawing Commands
Example 3: Object Coordinate Systems
Example 4: Double Buffer Display Mode
Example 5: Input/Output Devices
Example 6: Interactive Drawing

Example 72~ Popup Menus

Example 8: Modeling Transtormations
Example 9: Writemasks and Color Maps

Example 10: A Color Editor
VI. IRIS REFERENCE MANUAL

VII. GLOSSARY

-

IRIS User’s Guide Version 2.1

1. Introduction

The IRIS (Integrated Raster Imaging System) is a high-performance, high-
resolution color computing system for 2D and 3D computer graphics. It provides
a powerful set of graphics primitives in a combination of custom VLSI circuits,
conventional hardware, firmware, and software.

The heart of the IRIS is a custom VLSI chip called the Geometry EngineTM. A
pipeline of ten or twelve Geometry Engines accepts points, vectors, polygons,
characters, and curves in user-defined coordinate systems and transforms them
to screen coordinates, with rotation, clipping, and scaling. In addition to the
Geometry Pipeline, an IRIS system consists of: a general purpose microprocessor,
a raster subsystem, a high-resolution color monitor, a keyboard, and graphics in-
put devices.)

1.1 IRIS System Overview

Conceptually, the graphics hardware of the IRIS is divided into three pipelined
components, as shown in Figure 1.1: the applications/graphics processor, the
Geometry Pipeline, and the raster subsystem. The applications/graphics proces-
sor runs the applications program, and controls the Geometry Pipeline and the
raster subsystem. Graphics commands issued by the applications program either
are sent immediately through the pipeline, or are compiled into graphical objects
(display lists of graphics commands) which can be called later.

Graphics commands are expressed in 2D or 3D user-defined coordinates. These
commands are sent through the Geometry Pipeline, which performs matrix
transformations on the coordinates, clips the coordinates to normalized coordi-
nates, and scales the transformed, clipped coordinates to screen coordinates.
The output of the Geometry Pipeline is then sent to the raster subsystem. The
raster subsystem fills in the pixels between the endpoints of the lines, fills in the
interiors of polygons, converts character codes into bit-mapped characters, and
performs shading, depth-cueing, and hidden surface removal. A color value for
each pixel is stored in the system’s bitplanes. The values contained in the bit-
planes are then used to display an image on the monitor.

1.2 The Graphics Library

The IRIS Graphics Library is a set of graphics and utility commands that provide
high- and low-level support for graphics on the IRIS. The IRIS system software
is written in C, but the commands in the Graphics Library are callable in C, FOR-

Geometry Engine is trademark of Silicon Graphics, Inc.

Version 2.1 IRIS User’s Guide

Applications/

Graphics
Processor

Geometry Pipeline

Figure 1.1
The IRIS consists of three subsystems: the

Bitplanes

\ Raster
~ Subsystem

RGB values
to monitor

Applications/Graphics Processor, the Geometry

Pipeline, and the Raster Subsystem.

1-2

TRAN, and Pascal. The graphi¢s commands can be broken into the following

Introduction

categories:

L]

L]

.

Each of the above categories is discussed in a separate chapter of the Program-

Global state commands initialize the hardware and control global
state variables.

Primitive drawing commands draw points, lines, polygons, circles,
arcs, and text strings on the screen.

Drawing attribute commands select characteristics for drawing lines,
filling polygons, and writing text strings.

Coordinate transformation commands perform manipulations on coor-
dinate systems, including mapping user-defined coordinate systems
to screen coordinate systems.

Display mode and color commands determine how the bitplane image
memory is used and how objects are colored on the screen.

Input/output commands initialize and read input/output devices.

Object creation and editing commands provide the means to create
hierarchical structures of graphics commands.

Picking and selecting commands identify the commands that draw to
a specified area of the screen.

Geometry Pipeline feedback commands provide access to the computing
capabilities of the geometry hardware.

Curve and surfice commands draw complex curved lines and sur-
faces.

Hidden surfice commands activate z-buffer mode, in which hidden
lines and surfaces are removed from an image, and backface mode,
in which backfacing polygons are removed from an image.

Shading commands draw Gouraud-shaded polygons.

Depth-cue commands draw points, lines, curves, and surfaces with
intensities that vary as a function of depth.

Textport commands allocate an area of the screen for writing text.

ming Guide. Additional material is covered in the appendices:

Appendix A contains header files for IRIS programs.

o Appendix B shows the computations performed by the Geometry

Engines to transform, clip, and scale coordinate data.

o+ Appendix C gives the transformation matrices for the coordinate

transformation commands in the Graphics Library.

o Appendix D discusses a feedback parser which simplifies the use of

IRIS User’s Guide

the Geometry Engines in feedback mode.

Version 2.1

Introduction 1-3

1.3 Documentation Conventions

The IRIS Graphics Library is accessible from three programming languages: C,
FORTRAN, and Pascal. Specifications for the commands in the library are
separated from the text by horizontal lines. The C specification is given first, the
FORTRAN second, and the Pascal last. For example,

move(x, y, z)
Coord x, ¥, z;

subroutine move(x, y, z)
realx, y, z

procedure move(x, y, z: Coord);

Each command has a root name, like move. The default world space is 3D with
floating-point coordinates. Suffixes are added to some commands to indicate 2D,
integer (24 bits), and short integer (16 bits) arguments. Here are examples of the
move variations:

move (1.0, 2.0, 3.0) move2(1.0, 2.0)
movei (1, 2, 3) move2i (1, 2)
moves (1, 2, 3) move2s (1, 2)

The command names are unique to six characters to conform to standard FOR-
TRAN naming conventions. Commands are referred to by their full C or Pascal
name in the text.

While FORTRAN programs are constrained to a small set of predefined data
types, both C and Pascal allow user-defined data types. Data types have been
defined wherever it improves readability and reliability of the code. Appendix A
gives the data type definitions used for the C and Pascal libraries.

Most important constants have been given symbolic names, such as XMAX-
SCREEN. Their values can be found in Appendix A. Other constants are otten
given in hexidecimal. The C syntax is used: the hexidecimal digits are preceded
by "0x".

Sample programs are written in C, with the objective of making the programs
clear rather than efficient. FORTRAN versions of the following programs have
also been included in the text: the picking example in Chapter 9, the curve and
the surface patch examples in Chapter 11, and examples #2 and #7 in the Pro-
gramming Examples section.

Version 2.1) IRIS User’s Guide

IRIS User’'s Guide Version 2.1

2. Global State Commands

This chapter tells how to initialize an IRIS program, exit an IRIS program, and
control the global state variables.

2.1 Initialization

The first Graphics Library command in every IRIS program is ginit or gbegin.
These commands initialize the hardware, allocate memory for symbol tables and
display list objects, and set up default values for global state variables. They
have no arguments and should be called only once (before any other library com-
mand).

ginit()

subroutine ginit

procedure ginit;

gbegin performs all the same tasks as ginit, except it does not alter the color map.

gbegin()

subroutine gbegin

procedure gbegin;

Version 2.1 IRIS User’s Guide

2-2

Global State Commands

State Variable

Initial Value

Section #

available bitplanes
backface mode
color

color map mode
cursor

depthcue mode
display mode
font

linestyle
linestyle backup
linestyle repeat
linewidth
monitor type
pattern

picking size
reset linestyle
RGB color

RGB writemask
shaderange
viewport
writemask
zbuffer mode

all bitplanes™
off

undefined
one map

0 (arrow)®?
off

single buffer
0@

0 (solid)

off

1

1 pixel

monitor supplied®
0 (solid)

1010 pixels

on

undefined
undefined
0,7,0,1023

entire screen

all planes enabled”
off

6.1
12.2
6.3
6.2
6.4
13.2
6.1
5.3
5.1
5.1
5.1
5.1
2.1
5.2
9.2
5.1
6.3
6.3
13.2
4.4
6.3
12.1

Table 2.1: Initial values of global state variables

(1) If there are more than three bitplane boards installed, available planes = twelve.
(2) The color and writemask of the cursor are set to 1.
(3) Rasterfont 0 is a Helvetica-like font.

(4) A PROM on the graphics processor tells the IRIS which monitor it has.

IRIS User’s Guide

Version 2.1

Global State Commands

2-3

RGB Value
Index Name Red | Green | Blue
0 BLACK 0 0 0
1 RED 255 0 0
2 GREEN 0 255 0
3 YELLOW 255 255 0
4 BLUE 0 0 255
5 MAGENTA | 255 0 255
6 CYAN 0 255 255
7 WHITE 255 255 255
all others | unnamed undefined

Table 2.2: Initial color map values

greset returns the global state variables to their initial values, and can be called at
any time. The global state variables are listed in Table 2.1. The color map is ini-
tialized by greset to the values shown in Table 2.2. greset also performs the fol-
lowing tasks (which are discussed in more detail throughout the Programming

Guide):

e sets up a two-dimensional orthographic projection transtormation
that maps user-defined coordinates to the entire area of the screen
(see Section 4.3);

e turns on the cursor and ties it to MOUSEX and MOUSEY (see Sec-

tions 6.4 and 7.3);

e unqueues each button, each valuator, and the keyboard (see
Chapter 7);

« sets each button to FALSE (see Chapter 7);

o sets each valuator (except MOUSEY) to XMAXSCREEN/2, with a
range of 0 to XMAXSCREEN (see Chapter 7);

 sets MOUSEY to YMAXSCREEN/2, with range 0 to YMAXSCREEN
(see Chapter 7).

greset ()

subroutine greset

procedure greset;

When the IRIS is used as a terminal, most graphics commands are buffered at

Version 2.1

IRIS User’s Guide

2-4 Global State Commands

the host by the communication software for efficient block transfer of data from
the host to the IRIS. gfiush causes all buffered yet untransmitted graphics data to
be delivered to the IRIS. Certain graphics commands (notably those which re-
turn values) cause the host buffer to be flushed when they are executed. On the
IRIS workstation, gf1ush does nothing.

gflush ()
subroutine gflush

proceddre gflush;

The final graphics command in an IRIS program is gexit. gexit flushes communi-
cation buffers and waits for the graphics pipeline to empty.

gexit ()

subroutine gexit

procedure gexit;

The setmonitor command selects one of three types of monitors: HZ30 = 30hz in-
terlaced, HZ60 = 60hz non-interlaced, and NTSC = NTSC (television standard
encoding).

setmonitor (type)
short type;

subroutine setmon (type)
integer*4 type

procedure setmonitor(type: Short);

The getmonitor command returns the monitor type currently selected.

IRIS User's Guide Version 2.1

Global State Commands 2-5

long getmonitor ()

integer*4 function getmon()

function getmonitor: longint;

2.2 Saving Global State

The pushattributes command saves the current global state. The IRIS maintains a
stack of attributes, and pushattributes copies each of the following attributes onto
the stack: color or RGB color, writemask or RGB writemask, font, linestyle,
linestyle backup, reset linestyle, linewidth, pattern, front and back buffers.
These attributes are discussed in Chapters 5 and 6.

pushattributes ()

subroutine pushat

procedure pushattributes;

popattributes restores the most recently saved values of the global state variables.

popattributes ()

subroutine popatt

procedure popattributes;

Version 2.1 IRIS User’s Guide

IRIS User’s Guide Version 2.1

3. Drawing Primitives

The IRIS Graphics Library includes commands tor drawing points, lines, rectan-
gles, polygons, circles, arcs, curves, and surtaces. It also includes commands for
shading surfaces, for drawing text strings, and for writing and reading pixels.
These commands take positioning arguments that may be integers (24 bits), short
integers (16 bits), or floating-point numbers. Points, lines, polygons, and text
can be positioned in two or three dimensions. Rectangles, circles, and arcs are
defined in 2D, but can be translated to 3D using the modeling commands
described in Chapter 4. Curves are always specified in 3D, although the z coor-
dinate can be zero. Surface patches are specified in 3D.

3.1 Current Drawing Positions

The IRIS maintains two current drawing positions which determine where draw-
ing takes place when a drawing command is executed.

The current graphics position is specitied in 3D with floating-point coordinates and
is updated by all drawing commands, except text, pixel, and clear commands.
The current graphics position has meaning during streams of move, draw, and pat
commands. These commands can be interwoven with attribute-setting com-
mands. (See Chapters 5 and 6 for a discussion of attributes.) Most other com-
mands leave the graphics position undefined.

The current character position is specified in 2D with screen coordinates and has
meaning during streams of cmov, charstr, and the four routines that read and
write pixels. In general, only the attribute commands leave the character posi-
tion intact.

The getgpos command returns the current graphics position, after transformation
and before clipping and scaling. (The fourth coordinate, fw, is used for clipping
and perspective division.)

getgpos (fx, fy, fz, fw)
Coord *fx, *fy, *fz, *fw;

subroutine getgpo(fx, fy, fz, fw)
real fx, fy, £z, fw

procedure getgpos(var fx, fy, fz, fw: Coord);

Version 2.1 IRIS User’s Guide

3-2 Drawing Primitives

The getcpos command returns the current character position in screen coordi-
nates.

getcpos (ix, iy)
Screencoord *ix, *iy;

subroutine getcpo (ix, iy)
integer*2 ix, iy

procedure getcpos (var ix, iy: Screencord);

3.2 Clearing the Viewport

The clear command sets the screen area within the current viewport to the
current color using the current writemask and texture. (See Chapter 4 for a dis-
cussion of viewports and Chapters 5 and 6 for descriptions of the color, wri-
temask, and texture attributes.) clear leaves the current graphics position and the
current character position undefined.

clear ()

subroutine clear

procedure clear;

3.3 Points

The pnt command draws a point. If the point is visible on the screen, it is shown
as one pixel using the current color. pnt updates the current graphics position to
its specified location.

IRIS User’s Guide Version 2.1

Drawing Primitives 3-3

pat(x, y, 2)
Coord x, ¥y, Z;

subroutine pnt(x, y, z)
realx, ¥y, z

procedure pnt(x, y, z: Coord) ;

The following program draws 100 points in a square area of the screen:

#include "gl.h"

main()
{
int i,j;
ginit();
cursoff(); /* turn off cursor so it doesn’t interfere with drawing */
color (BLACK) ; /* make BLACK the current drawing color */
clear(); /* clear the screen (to black) */
color (BLUE) ; /* make BLUE the current drawing color */

for (i=0; i<{10; i=i+1) {
for (j=0; j<10; j=j+1)
pnti(ix5,j*5,0);

sleep(5);
gexit();

3.4 Lines

The move and draw commands draw lines. The move command sets the current
graphics position to the point specified by its arguments.

Version 2.1 IRIS User’s Guide

3-4 Drawing Primitives

move(x, y, z)
Coord x, y, z;

subroutine move(x, y, z)
realx, y, z

procedure move(x, y, z: Coord);

The draw command draws a line from the current graphics position to the point
specified by its arguments. The appearance of the line is determined by the
current linestyle, linewidth, linestyle repeat, linestyle backup, color, and wri-
temask (see Chapters 5 and 6). draw updates the current graphics position to the
point specified by its arguments.

draw(x, y, 2)
Coord x, y, z;

subroutine draw(x, y, z)
realx, y, z

procedure draw(x, y, z: Coord);

The following program draws a blue box on the screen using move and draw com-
mands. For simplicity, a 2D integer world space is assumed.

#include "gl.n"

main()

{
ginit();
cursoff();
color (BLACK) ;
clear();
color (BLUE) ;

move2i (200,200) ;
draw2i (200,300) ;
draw2i (300,300) ;
draw2i (300,200) ;
draw2i (200,200) ;
sleep(10); /* sleep for ten seconds before returning

IRIS User’s Guide Version 2.1

Drawing Primitives 3-5

to textport */
gexit();

Relative drawing

The relative drawing commands interpret their arguments using the current graph-
ics position as an origin. For example, the command

rmv(a,b,c)

changes the current graphics position from (x,y,z) to (x+a,y+b,z+c). The com-
mand

rdr(a,b,c)

draws a line from the current graphics position (x,y,z) to (x+a,y+b,z+c), and
sets the current graphics position to (x+a,y-+b,z+<c).

rmv(dx, dy, dz)
Coord dx, dy, dz;

subroutine rmv(dx, dy, dz)
real dx, dy, dz

procedure rmv(dx, dy, dz: Coord);

rdr (dx, dy, dz)
Coord dx, dy, dz;

subroutine rdr (dx, dy, dz)
real dx, dy, dz

procedure rdr(dx, dy, dz: Coord);

3.5 Rectangles

A rectangle is determined by two points specifying opposite corners. The sides
of the rectangle are parallel to the x and y axes; the z coordinate is zero. rect
- outlines a rectangle and rectf draws a filled rectangle. Since a rectangle is a
two-dimensional shape, these commands take only 2D arguments, and set z to
zero.

Version 2.1 IRIS User’s Guide

3-6) Drawing Primitives

rect takes four arguments: x1, y1, x2, and y2. As shown in Figure 3.1, a rectangle
is outlined by four line segments using the current linestyle, linewidth, linestyle
repeat, linestyle backup, color, and writemask.

rect(x1, y1, x2, y2)
Coord x1, yi1, x2, y2;

subroutine rect(x1, y1, x2, y2)
real x1, y1, x2, y2

procedure rect(x1, y1, x2, y2: Coord);

rectf takes the same arguments as rect and produces a filled rectangular region.
The currently selected texture pattern, color, and writemask are used. An exam-
ple is shown in Figure 3.1.

Both rect and rectt set the current graphics position to (x1, y1).

rectf (x1, y1, x2, y2)
Coord x1, yi1, x2, y2;

subroutine rectf(x1, yi, x2, y2)
real x1, y1, x2, y2

procedure rectf (xi, y1, x2, y2: Coord);

The rectcopy command copies a rectangular array of pixels defined in screen coor-
dinates to another position on the screen. The lower left corner of the new rec-
tangle is defined by newz and newy.

rectcopy(x1, yi, x2, y2, newx, newy)
Screencoord xi, y1, x2, y2, newx, newy;

subroutine rectco(xi, y1, x2, y2, newx, newy)
integer=*4 x1, yi, x2, y2, newx, newy

procedure rectcopy(xi, y1, x2, y2, newx, newy: Screencoord) ;

IRIS User’'s Guide Version 2.1

Drawing Primitives 3-7

3.6 Polygons

poly outlines a polygonal area; poif fills a polygonal area. A polygon is
represented by an array of points. The first and last points are automatically
connected to close the polygon.

poly takes two arguments: the number of points in the polygon and an array of
coordinates. Points can be expressed in 2D or 3D, using integers, shorts, or
floating-point numbers. The polygon is drawn using the current linestyle, lines-
tyle repeat, linestyle backup, linewidth, color, and writemask.

poly(n, parray)
long n;
Coord parray[][3];

subroutine poly(n, parray)
integer*4 n

real parray(3,n)

procedure poly(n: longint; var parray: Coord3array) ;

polf takes the same arguments as poly, but fills the polygon using the current
texture pattern, color, and writemask. All filled polygons must be convex.
Although no errors are reported if concave polygons are specified, they produce
unpredictable results.

poif (n, parray)
long n;
Coord parray(][3];

subroutine polf (n, parray)
integer*4 n

real parray(3,n)

procedure polf(n: longint; var parray: Coord3array) ;

Figure 3.1 shows a polygon drawn with both poly and po1f. A solid linestyle and
solid texture pattern are shown.

poly and polf set the current graphics position to the first point in array.

Filled polygons can also be drawn by specifying one vertex at a time. The pnv
command specifies the first point in a polygon. A sequence of pdr commands

Version 2.1 IRIS User’s Guide

i d
l , |
1 I a g

recti (1,1,5, 3) rectfi (1,1,5, 3)

TN

N/

poly 2i (6, parray) polf2i (6,parray)

parray [6] [2] = {{2,1},{1,3},{2,5},{4,5},{5,3},{4,1}]}

Figure 3.1

Rectangles are specified by opposite corners. A
polygon is defined by an array of points. Both
rectangles and polygons can be drawn as outlined

or filled areas.

3-8 Drawing Primitives

then draws lines to each of the subsequent points in the polygon (using the
current linestyle, linewidth, linestyle repeat, linestyle backup, color, and wri-
temask). The pclos command connects the last point with the first. The results
of the pmv, pdr, and pclos commands are undefined if the polygon is not convex.

pmv(x, ¥, z)
Coord x, ¥, 2;

subroutine pmv(x, y, z)
realx, y, z

procedure pmv(x, y, z: Coord);

pdr(x, y, z)
Coord x, y, z;

subroutine pdr(x, y, z)
realx, y, z

procedure pdr(x, y, z: Coord);

The rpmv command specifies the first point in a polygon using the current graph-
ics position as an origin. The rpdr command draws a line to a point in the po-
lygon using the previous point (the current graphics position) as an origin.

rpnv(dx, dy, dz)
Coord dx, dy, dz;

subroutine rpmv(dx, dy, dz)
real dx, dy, dz

procedure rpmv(dx, dy, dz: Coord);

IRIS User’s Guide Version 2.1

Drawing Primitives 3-9

rpdr (dx, dy, dz)
Coord dx, dy, dz;

subroutine rpdr (dx, dy, dz)
real dx, dy, dz

procedure rpdr (dx, dy, dz: Coord);

After a sequence of parw or rpdr commands, the pclos command connects the last
point in the polygon with the first.

pclos()

subroutine pclos

procedure pclos;

3.7 Circles and Arcs

circ and circtf draw outlined and filled circles. A circle is defined by a center
point and a radius, in the x-y plane, with z = 0. Circles are drawn using the
current linestyle, linewidth, linestyle repeat, linestyle backup, color, and wri-
temask.

circ(x, y, radius)
Coord x, y, radius;

subroutine circ(x, y, radius)
real x, y, radius

procedure circ(x, y, radius: Coord);

Filled circles are drawn with ciref. The current color, texture pattern, and wri-
temask are used to fill the circle with center (x,y) and radius radius. circ and
ciref set the current graphics position to (x+radius, y).

Version 2.1 IRIS User’s Guide

<
=

arci(x,y,radius,startang,endang)

. _“:\r -
\start

|

y R

arcfi(x,y,radius,startang,endang)

Figure 3.2

Circular arcs are defined by a center point, radius,
start angle, and end angle. They are drawn
counterclockwise, with angles measured from the
X-axis.

Drawing Primitives

circf(x, y, radius)
Coord x, y, radius;

subroutine circf(x, y, radius)
real x, y, radius

procedure circf(x, y, radius: Coord);

arc and arcf draw circular arcs. Arcs are defined by a center point, a radius, a
starting angle, and an ending angle. The angles are measured from the x axis
and are specified in integral tenths of degrees; positive angles describe counter-
clockwise rotations. The arc is drawn using the current color, linestyle, linestyle
repeat, linestyle backup, linewidth, and writemask. Figure 3.2 shows an arc and
the parameters that define it.

arc(x, y, radius, startang, endang)
Coord x, y, radius;
Angle startang, endang;

subroutine arc(x, y, radius, stang, endang)
real x, y, radius

integer+4 stang, endang

procedure arc(x, y, radius: Coord; startang, endang: Angle);

arct produces filled arcs. The current texture pattern, color, and writemask are
used. An example is shown in Figure 3.2. arc and arcf set the current graphics
position to the endpoint of the arc.

IRIS User’s Guide Version 2.1

Drawing Primitives 3-11

arcf(x, y, radius, startang, endang)
Coord x, y, radius;
Angle startang, endang;

subroutine arcf(x, y, radius, stang, endang)
real x, y, radius

integer*4 stang, endang

procedure arcf (x, y, radius: Coord; startang, endang: Angle) ;

3.8 Text

The current character position (see Section 3.1) determines where text is drawn
on the screen. The cmov command sets the current character position. Its argu-
ments specify a point in 2D or 3D, which is transformed into screen coordinates
and becomes the new character position.

cmov(x, ¥, 2)
Coord x, ¥y, Z;

subroutine cmov(x, y, 2)
realx, y, 2

procedure cmov(x, y, z: Coord);

charstr draws a string of characters. The origin of the first character in the string
is placed at the current character position. After the string is drawn, the current
character position is updated to the pixel to the right of the last character in the
string. (Character strings are null-terminated in C.) The text string is drawn in
the currently selected font and color. (See Section 5.3 for a discussion of fonts.)

Version 2.1 IRIS User’s Guide

viewport

v

before clipping

screenmask

viewport
after gross clipping / ;
screenmask

viewport

after fine clipping /
screenmask

Figure 3.3

Gross clipping removes all strings that start outside
the viewport. Fine clipping trims individual characters
to the screenmask.

3-12

Drawing Primitives

charstr(str)
String str;

subroutine charst(str, length)
character*(*) str
integer*4 length

procedure charstr(str: pstring);

If the origin of a character string lies outside the viewport, none of the characters
in the string are drawn. If the origin is inside the viewport, however, the char-
acters will be individually clipped to the screenmask. (Viewports and screen-
masks are discussed in the next chapter.) Although the screenmask is normally
set equal to the viewport, it can be set smaller than the viewport to enable two
kinds of clipping. As shown in Figure 3.3, gross clipping removes all strings that
start outside the viewport. Fine clipping trims individual characters to the screen-

mask.

The following example draws two lines of text. The program assumes the
currently selected font is less than twelve pixels high.

#include "gl.n"

main()

{

ginit () ;

cursoff (); /* turn the cursor off so it won’t interfere

with the text */
color (BLACK) ;
clear();
color (RED) ;
cmov2i (300,380) ;
charstr ("The first line is drawn ");
charstr ("in two parts. ");
cmov2i (300, 368);
charstr ("This line is 12 pixels lower. ");
sleep(5); /* pause for five seconds before returning
to textport */
curson(); /* turn the cursor back on */
gexit();

IRIS User’s Guide

Version 2.1

Drawing Primitives 3-13

3.9 Writing and Reading Pixels

The writepizels and writeRGB commands paint one or more pixels on the screen.
The commands specify the number of pixels to paint and a color for each pixel.
The current character position is the starting location; it is updated to the pixel
that follows the last one painted. The current character position becomes unde-
fined if the next pixel position is greater than XMAXSCREEN. Pixels are painted
from left to right and are clipped to the current screenmask (see Chapter 4).
These commands do not automatically wrap from one line to the next.

writepirels supplies the number of pixels to be painted and a color index for each
pixel. (See Chapter 6 for an explanation of color maps.)

writepixels(n, colors)
short n;
Colorindex colors(];

subroutine writep(n, colors)
integer*4 n

integer*2 colors(n)

procedure writepixels(n: Short; var colors: Colorarray) ;

writeRGB supplies a 24-bit RGB value (eight bits each for red, green, and blue) for
each pixel. It is written directly into the bitplanes. (See Chapter 6 for an expla-
nation of RGB mode.)

writeRGB(n, red, green, blue)
short n;
RGBvalue red[], green[], blue(];

subroutine writeR(n, red, green, blue)
integer*4 n

character*(*) red, green, blue

procedure writeRGB(n: Short; var red, green, blue: RGBarray);

It is also possible to read pixel values from image memory. readpizels attempts to
read up to n pixel values, starting from the current character position and moving
along a single scan line (constant y) in the direction of increasing x. readpizels
returns the number of pixels actually read. The values of pixels read outside the

Version 2.1 IRIS User’s Guide

3-14 Drawing Primitives

current viewport are undefined. The current character position is updated to the
pixel to the right of the last one read, or is undefined if the new position is out-
side the viewport. readpixels will not wrap to the next line of pixels when the
edge of the screen is encountered.

long readpixels(n, colors)
short n;
Colorindex colors(];

integer*4 function readpi(n, colors)
integer*4 n

integer*2 colors(n)

function readpixels(n: Short; var colors: Colorarray): longint;

readRGB attempts to read up to a pixel values from the bitplanes. They are read
into the red, green, and blue arrays starting from the current character position
along a single scan line (constant y) in the direction of increasing x. readrGB re-
turns the number of pixels actually read. The values of pixels read outside the
current viewport are undefined. The current character position is updated to the
pixel to the right of the last one read, or is undefined if the new position is out-
side the viewport.

long readRGB(n, red, green, blue)
short n;
RGBvalue red[], green(], blue(];

integer*4 function readRG(n, red, green, blue)
integer*4 n

character*(*) red, green, blue

function readRGB(n: Short; var red, green, blue: RGBarray) : longint;

IRIS User’s Guide Version 2.1

4. Coordinate Transformations

Chapter 3 discussed commands for drawing points, lines, circles, arcs, rectan-
gles, and polygons. These commands are the primitives for drawing images.
However, they can also be thought of as primitives for building models. For ex-
ample, a sequence of drawing commands can be used to define a 3-dimensional
shape. Such a sequence of commands is called a graphical object, and can be used
to define a geometric model. Graphical objects can be manipulated as single en-
tities — they can be moved, scaled, rotated, or combined with other objects into
more complex objects. The coordinate transformation commands discussed in
this chapter perform those manipulations. In addition, they map objects onto
the screen so they can be displayed.

The process of displaying images of complex models can be broken into two sub-
processes:

« building and manipulating models, and
* projecting models onto the screen.

A model is built from graphical objects. It is convenient to define each object in
terms of its own origin. For example, a planet might be drawn using the center
of the planet as the origin for each drawing command in the object. An object is
said to be defined in object space when a convenient point is chosen as the
object’s origin, and component parts are placed relative to it. Several objects
may be combined to form a composite object by mapping their individual coordi-
nate systems to a coordinate system based on a new origin. The new composite
object and its subobjects are defined in the new object space.

When a group of objects is to be displayed, it is defined in terms of one final ob-
ject coordinate system, which is then called world space. In order to display the
"world", a point of view must be specified. This point of view becomes the ori-
gin for a third coordinate system called eye space, and determines how the
"world" is viewed. All the objects to be displayed are then defined in terms of
the new coordinate system with origin at the view point.

Finally, the eye-space coordinate system must be mapped to a two-dimensional
coordinate system that can be projected on the screen. This coordinate system is
called screen space, and its origin is the lower left corner ot the image.

The coordinate transtormation commands perform the mappings from object
space to world space to eye space and finally to screen space. There are four
types of transformation commands: "

o Modeling transformation commands transform the coordinate systems
of objects. These commands include rotate, translate, and scale.

e Viewing transformation commands specity a viewing position, and

Version 2.1 IRIS User’s Guide

L

(a) original object (b) rotate (300.,2")

| |
[| = I
% 4| S —
“ N
| | |
kil | 1 T [‘
(c) translate (1.,1.,0.) (d) scale (-.5,5,1.)

SRS §

(e) sééle >(‘2.7,1 71)

Figure 4.1

The modeling commands are rotate, translate, and
scale. The object shown in (a) is rotated in (b),
translated in (c), and scaled in (d) and (e).

4-2 Coordinate Transformations

transform a world coordinate system to an eye coordinate system.
These commands include polarview and lookat.

* Projection transformation commands transform an eye coordinate sys-
tem to a screen coordinate system. These commands include per-
spective, window, ortho, and ortho2.

o Viewport commands define a rectangular region of the screen for
displaying an image (one screen coordinate system is transformed
into another). These commands include viewport and scrmask.

After a coordinate transformation command is executed, all subsequent com-
mands are interpreted through the new frame of reference. For example, if a
translate command is executed, subsequent commands act on a translated coor-
dinate system. If the perspective command has been executed, all subsequent ob-
jects will be projected on the screen with the specified perspective.

The coordinate transformation commands should be issued in the following ord-
er: a projection transformation command, a viewing transformation command,
and finally any number of modeling commands. Each coordinate transformation
is incorporated into the current transformation matrix, which reflects the cumula-
tive effect of all the transformations. The coordinates of every drawing com-
mand are multiplied by the current transformation matrix. The current transfor-
mation matrix is the top matrix in a stack of eight 4x4 floating-point matrices.
(The matrix stack can be extended in software to thirty-two matrices.) There are
five commands for manipulating the matrix stack: loadmatrix, getmatriz, multma-
trix, pushmatrix, and popmatrix.

4.1 Modeling Transformations

Each graphical object, or geometric model, is defined in its own coordinate sys-
tem (object space). The entire object can be manipulated using the modeling
transformation commands: rotate, translate, and scale. By combining or con-
catenating these primitives, more complex modeling transformations can be gen-
erated to express relationships between different parts of a complex object.

The rotate command specifies an angle and an axis of rotation. The angle is
given in tenths of degrees according to the right-hand rule — as you look down
the positive rotation axis to the origin, positive rotation is counterclockwise. The
axis of rotation is defined by a character, either ‘x’, 'y’, or ‘'z’ (the character can
be upper or lower case). For example, the object shown in Figure 4.1(a) is rotat-
ed 30 degrees with respect to the y-axis in Figure 4.1(b). All objects drawn after
the rotate command is executed are rotated. pushmatrix and popmatriz, described
later in this chapter, preserve and restore an unrotated world space.

IRIS User’s Guide Version 2.1

Coordinate Transformations 4-3

rotate(a, axis)
Angle a;
char axis;

subroutine rotate(a, axis)
integer*4 a

character axis

procedure rotate(a: Angle; axis: char);

The translate command places the object space origin at a given world coordinate
point. The object in Figure 4.1(a) is translated in Figure 4.1(c). All objects
drawn after execution of the translate command will be translated. Again, push-
matriz and popmatriz may be used to limit the scope of the translation.

translate(x, ¥, z)
Coord x, ¥, 2;

subroutine transl(x, y, z)

realx, y, z

procedure translate(x, y, z: Coord);

The scale command shrinks, expands, and mirrors objects. Its three arguments
specify scaling in each of the three coordinate directions. Values with magnitude
of 1 or more expand the object; values with magnitudes of less than 1 shrink it.
Negative values cause mirroring.

All objects drawn after the scale command is executed are scaled; pushmatrix and
popmatrix can be used to limit the scope of scale. The object shown in Figure
4.1(a) is shrunk to one quarter of its original size and mirrored about the y axis
in Figure 4.1(d). It is scaled only in the x direction in Figure 4.1(e).

Version 2.1 IRIS User’s Guide

I I

rotate (600.,2’)
translate (4.0,2.0,0.0)

translate (4.0,2.0,0.0)
rotate (600.,2’)

Figure 4.2

The modeling commands are not commutative. Frame
(a) shows the rotated and translated object; in (b), the
object has been translated and rotated.

Figure 4.3

N

-

polarview(10.,600, 300, 0)

N

_/

polarview(10.,600, 300, 450)

Polarview has four arguments: the viewing distance
from the origin, an incidence angle measured from
the z-axis in the y-z plane, an azimuthal angle
measured from the y-axis in the x-y plane, and a
twist around the line of sight. Each frame shows the
viewpoint and viewed image as additional arguments

to polarview are supplied.

Figure 4.3

/

polarview(0.,0,0,0)

-

polarview(10.,0,0,0)

_/

polarview(10.,0,300,0)

4-4 Coordinate Transformations

scale(x, y, z)
float x, y, 2;

subroutine scale(x, y, z)
realx, y, z

procedure scale(x, y, z: real);

rotate, tramslate, and scale can be combined to produce more complicated
transformations. The order in which these transformations are applied is impor-
tant. Figure 4.2 shows two different orderings of translate and rotate, with dif-
ferent results.

4.2 Viewing Transformations

The viewing transformations place the viewer and the eye coordinate system in
world space. In the process, they define the world coordinate system. The po-
larview and lookat commands define a right-handed world coordinate system
with x to the right, y up, and z toward the viewer. All rotations are specified
with integers in tenths of degrees. Rotations obey the right-hand rule. As the
viewer looks down a positive axis to the origin, a positive rotation about an axis
is counter-clockwise. Users may choose other orientations for the world space,
and can form viewing transformations from the modeling commands described
in the next section.

polarview and lookat specify points and directions of view. The eye is placed at
the point of view and looks at the world coordinate system’s origin. A viewing
transtormation command should always follow a projection command.

polarview defines the viewer's position in polar coordinates. The first three argu-
ments, dist, azim, and inc, define a viewpoint. dist is the distance from the
viewpoint to the world space origin. azim is the azimuthal angle in the x-y plane,
measured from the y axis. inc is the incidence angle in the y-z plane, measured
from the z axis. The line of sight is the line between the viewpoint and the
world space origin. Twist rotates the viewpoint around the line of sight using
the right-hand rule. All angles are specified in tenths of degrees and are in-
tegers. Figure 4.3 shows examples of polarview.

IRIS User’s Guide - Version 2.1

Coordinate Transformations 4-5

polarview(dist, azim, inc, twist)
Coord dist;
Angle azim, inc, twist;

subroutine polarv(dist, azim, inc, twist)
real dist

integer#*4 azim, inc, twist

procedure polarview(dist: Coord; azim, inc, twist: Angle);

lookat specifies a viewpoint and a reference point on the line of sight in world
coordinates. The viewpoint is at (vx, vy, vz) and the reference point at (px, py.
pz). These two points define the line of sight. twist measures right-handed rota-
tion about the z axis in the eye coordinate system. Figure 4.4 illustrates lookat.

lookat (vx, vy, vz, px, Py, Pz, twist)
Coord vx, vy, vz, pPX, Py, PzZ;
Angle twist;

subroutine lookat(vx, vy, vz, px, py, pz, twist)
real vx, vy, vz, Px, Py, pz

integer twist

procedure lookat(vx, vy, vz, px, py, pz: Coord; twist: Angle);

4.3 Projection Transformations

Projection transformations define the mapping from an eye-fixed coordinate sys-
tem to the screen. The eye is placed in a right-handed system with the viewer at
the origin looking down the negative z axis. Associated with each projection
transformation is a viewport specitying a screen area to display the projected im-
age.

The perspective and window commands specify perspective viewing pyramids into
the world coordinate system and differ only in the method of defining the py-
ramid. The ortho command defines a 3D viewing rectangular parallelepiped and
ortho2 defines a 2D viewing rectangle for orthographic projections.

perspective defines the viewing pyramid by indicating the field-of-view angle fovy
in the y direction of the eye coordinate system, the aspect ratio which deter-
mines the field of view in the x direction, and the location of the near and far

Version 2.1 IRIS User’s Guide

Figure 4.4

Lookat defines a viewpoint, a reference point along
the line of sight, and a twist angle. The first pair of
pictures shows the viewer and viewed image with no
twist; twist is added to the second pair of frames.

*Z

\

e o S R T e e e)

Ny

Figure 4.5
The perspective command defines a field of view, an
aspect ratio, and near and far clipping planes.

(0, O, -far)

/

“i
|
|
I

—~
- |
—~
I/ I
|
z L\ |
~
\\ :
|
1
1
~

Figure 4.6

The window command defines a viewing window. A
perspective view of the image is projected onto

the window.

4-6 Coordinate Transformations

clipping planes in the z direction. The aspect ratio is given as a ratio of x to y.
In general, the aspect ratio given in the perspective command should match the
aspect ratio of the associated viewport. For example, aspect = 2 means the
viewer sees twice as far in x as in y. If the viewport is also twice as wide as it is
tall, the image is displayed without distortion. The arguments near and far are
distances from the viewer to the near and far clipping planes, and are always po-
sitive. Figure 4.5 illustrates the perspective command.

perspective(fovy, aspect, near, far)
Angle fovy;

float aspect;

Coord near, far;

subroutine perspe(fovy, aspect, near, far)
integer*4 fovy

real aspect, near, far

procedure perspective(fovy: Angle; aspect: real; near, far: Coord);

window speciﬁes the position and size of the rectangular viewing frustum closest
to the eye (in the near clipping plane), and the location of the far clipping plane.
The image is projected with perspective onto the screen. See Figure 4.6.

window(left, right, bottom, top, near, far)
Coord left, right, bottom, top, near, far;

subroutine window(left, right, bottom, top, near, far)
real left, right, bottom, top, near, far

procedure window(left, right, bottom, top, near, far: Coord) ;

ortho defines a box-shaped enclosure in the eye coordinate system. 1left, right,
bottom, and top define the x and y clipping planes. near and far are distances
along the line of sight and can be negative. In other words, the z dlipping
planes are located at z = -near and z = -far. Figure 4.7 shows-an example of a
3D orthographic projection. ,

IRIS User’s Guide Version 2.1

Coordinate Transformations 4-7

ortho(left, right, bottom, top, near, far)
Coord left, right, bottom, top, near, far;

subroutine ortho(left, right, bottom, top, near, far)
real left, right, bottom, top, near, far

procedure ortho(left, right, bottom, top, near, far: Coord);

ortho2 defines a 2D clipping rectangle. When ortho2 is used with 3D world coor-
dinates, the z values are left unchanged.

ortho2(left, right, bottom, top)
Coord left, right, bottom, top;

subroutine ortho2(left, right, bottom, top)
real left, right, bottom, top

procedure ortho2(left, right, bottom, top: Coord);

4.4 Viewports

The area of the screen where an image is displayed is called a viewport and is
specified in screen coordinates. The visible screen area is 1024 pixels wide and
768 pixels high. The arguments to the viewport command define a rectangular
area on the screen by the left, right, bottom, and top coordinates.

viewport(left, right, bottom, top)
Screencoord left, right, bottom, top;

subroutine viewpo(left, right, bottom, top)
integer*4 left, right, bottom, top

procedure viewport(left, right, bottom, top: Screencoord) ;

The getviewport command returns the current viewport. The arguments to get-
viewport are the addresses of four memory locations. These will be assigned the
left, right, bottom and top coordinates of the viewport.

Version 2.1 IRIS User’s Guide

Figure 4.7

The ortho command defines a viewing window. An
orthographic view of the image is projected onto
the window.

4-8 Coordinate Transformations

getviewport(left, right, bottom, top)
Screencoord *left, *right, *bottom, *top;

subroutine getvie(left, right, bottom, top)
integer*2 left, right, bottom, top

procedure getviewport(var left, right, bottom, top: Screencoord);

A call to viewport sets both the viewport and the screenmask to the same area. A
call to scrmask sets only the screenmask, which should be placed entirely within
the viewport. Character strings that begin outside the viewport are clipped out;
this is called gross clipping. Strings which begin inside the viewport but outside
the screenmask are clipped to the screenmask. This is called fine clipping. For an
illustration of character clipping, see Figure 3.3.

scrmask(left, right, bottom, top)
Screencoord left, right, bottom, top;

subroutine scrmas(left, right, bottom, top)
integer*4 left, right, bottom, top

procedure scrmask(left, right, bottom, top: Screencoord);

getscrmask returns the screen coordinates of the current screenmask in the argu-
ments left, right, bottom, and top.

getscrmask(left, right, bottom, top)
Screencoord *left, *right, *bottom, *top;

subroutine getscr(left, right, bottom, top)
integer*2 left, right, bottom, top

procedure getscrmask(var left, right, bottom, top: Screencoord);

The IRIS maintains a stack of viewports and the top element in the stack is the
current viewport. The pushviewport command duplicates the current viewport
and pushes it on the stack.

IRIS User’s Guide ' Version 2.1

Coordinate Transformations 4-9

pushviewport ()
subroutine pushvi

procedure pushviewport;

The popviewport command pops the stack of viewports and sets the screenmask.
The viewport on top of the stack is lost.

popviewport ()

subroutine popvie

procedure popviewport;

4.5 User-Defined Transformations

A transformation is expressed as a 4x4 ftloating point matrix. Complex transfor-
mations can be built by concatenating a series of primitive ones. If M, V, and P
are modeling, viewing, and projection transformations, then the transformation
S that maps object space into screen space can be formulated as:

S=MVP

[xyzw]MVP =[xy z=w]
The clipping boundaries are

X=g4w , y=4w ,and z =4u .
The resulting screen coordinates,

x oy z
—,—,and —,
w w w

are scaled to the current viewport.

Version 2.1 IRIS User’s Guide

4-10 Coordinate Transformations

The Geometry Pipeline maintains a hardware stack that can hold up to eight
transformation matrices. (The stack can be extended in software to thirty-two
matrices.) The matrix on top of the stack, the current transformation matrix, is ap-
plied to all coordinate data.

The Geometry Pipeline forms a complex transformation matrix by pre-multiplying
the current matrix by each primitive transformation. The transformation S de-
fined above is formed by executing coordinate transformation commands in re-
verse order: first projection commands, then viewing commands, and finally
modeling commands. Note that P is loaded onto the matrix stack, while both V
and M pre-multiply the current matrix.

The projection, viewing, and modeling commands above provide a high-level in-
terface that manages the hardware matrix stack. Additional commands allow the
user direct control over the stack. These commands load or multiply user-
defined transformation matrices, push and pop the stack, and retrieve the matrix
on the top of the stack.

loadmatrix loads a 4x4 floating point matrix onto the stack, replacmg the current
top of the stack

loadmatrix(m)
Matrix m;

subroutine loadma(m)
real m(4,4)

procedure loadmatrix(m: Matrix);

nultmatrix pre-multiplies the current top of the transformation stack by the given
matrix; i.e., if T is the current matrix, multmatrix () replaces T with MT.

multmatrix(m)
Matrix m;

subroutine multma(m)
real m(4,4)

procedure multmatrix(m: Matrix);

pushmAt.rix pushes down the stack, duplicating the current matrix. If the stack
contains one matrix, M, after a pushmatrix command it will contain two copies of
M. Only the top copy can be modified.

IRIS User’s Guide Version 2.1

Coordinate Transformations 4-11

pushmatrix()
subroutine pushma

procedure pushmatrix;

popmatrix pops the transformation stack.

popmatrix ()
subroutine popmat

procedure popmatrix;

getmatrix copies the transformation matrix from the top of the stack to an array
provided by the user; the stack is unchanged.

getmatrix(m)

Matrix m;

subroutine getmat(m)
real m(4,4)

procedure getmatrix(var m: Matrix);

Version 2.1 ' IRIS User’s Guide

IRIS User’s Guide Version 2.1

5. Textures and Fonts

Chapter 3 presented commands for drawing images. This chapter presents com-
mands that control the characteristics, or attributes, of images when they are
displayed on the screen. Attributes such as linestyle, texture, and font deter-
mine precisely which pixels are to be drawn when a drawing command is execut-
ed. For example, the linestyle determines whether a line appears as a solid line,
or as a series of dashes, or as some other pattern.

5.1 Linestyles

Lines are drawn on the IRIS monitor using a 16-bit pattern called a linestyle. This
pattern is used cyclically to determine which pixels in a 16-pixel line segment are
to be colored. For example, the linestyle OXFFFF draws a solid line, while
OxFOFO draws a dashed line and 0x8888 draws a dotted one. The least signifi-
cant bit of the pattern is the mask for the first pixel of the line and every six-
teenth pixel thereafter. There is no performance penalty for drawing non-solid
lines.

The deflinestyle command defines a linestyle. The arguments specify an index
into a table where linestyles are stored and a sixteen-bit linestyle pattern. There
are 2 possible linestyle patterns and up to 128 of those patterns can be defined
at one time. By default, index 0 contains the pattern OxFFFF, which draws solid
lines. The pattern at index 0 cannot be redefined.

deflinestyle(n, 1ls)
short n;
Linestyle 1s;

subroutine deflin(a, 1s)
integer*4 n, 1s

procedure deflinestyle(n: Short; ls: Linestyle);

There is always a current linestyle; it is used for drawing lines and curves and
for outlining rectangles, polygons, circles, and arcs. The default linestyle is
linestyle 0. Another pattern can be chosen using the setlinestyle command. Its
argument is an index into the linestyle table built by calls to deflinestyle.

Version 2.1 IRIS User’s Guide

5-2 Textures and Fonts

setlinestyle(index)
short index;

subroutine setlin(index)
integer*4 index

procedure setlinestyle(index: Short);

Four commands modify the application of the linestyle pattern. The first com-
mand, 1sbackup, guarantees that a line will have a clearly marked endpoint. Nor-
mally, the current linestyle is used as a rotating pattern: '

for each pixel in the line {
if low-order bit of pattern=1 {

}

rotate pattern right one bit;
compute next pixel;

write current color into pixel

One implication of this algorithm is that the line may end without a clearly
marked endpoint. If enabled, the 1sbackup command guarantees the last two pix-
els in a line will be drawn. It takes one argument, a Boolean. If b = TRUE,
backup mode is enabled. FALSE, the default setting, means the linestyle will be
used as is, and lines may have invisible endpoints.

1sbackup(b)
Boolean b;

subroutine lsback(b)
logical b

procedure lsbackup(b: Boolean);

Normally, a fresh copy of the linestyle is used for each new line. To draw a
series of line segments with a continuous pattern, the resetls command is used.
It is used most often for drawing circles, arcs, or curves, since curved lines are
approximated with many short straight lines. If the linestyle is not reset
between segments, the pattern of the curve appears smooth and continuous.

resetls has one Boolean argument. FALSE turns the mode off: the linestyle will
not be reset between segments. TRUE, the default, means that each line will

IRIS User’s Guide Version 2.1

Textures and Fonts 5-3

start with a fresh copy of the pattern. Calls to reset1s have the side effect of ini-
tializing the linestyle, no matter what the argument. If reset1s is FALSE when
setlinestyle is called, the linestyle is not changed until resetls is called. resetis
should be set to TRUE when linestyle backup mode is enabled.

resetls(b)
Boolean b;

subroutine resetl (b)
logical b

procedure resetls(b: Boolean) ;

The 1srepeat command is used to s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>